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FOREWORD

This book contains thirty papers that are based on the presentations made in the eleven-
session Symposium on “Damage Mechaunics in Engineering Materials” on the occasion of the Joint
ASME/ASCE/SES Mechanics Conference (McNU97), held in Evanston, Illinois, June 28-July 2,
1997. These sessions were mainly in the constitutive modeling of damage mechanics of engineering
materials. These papers represent the most recent work conducted on damage mechanics in
engineering materials. They encompass macromechanical/micromechanical constitutive modeling,
experimental procedures, and numerical modeling. Inelastic behavior, interfaces, damage, fracture,
failure, and computational methods are included.

The book is divided into six parts. Part I is general and deals with the study of damage
mechanics. Part Il is on the localization and damage. Damage in Brittle Materials is presented in
Part III, while Part IV deals with damage in metals and metal matrix composites. The computational
aspects of damage models are presented in two papers in Part V. Finally, two papers in Part VI
present damage in polymers and elastomers. The papers discuss topics ranging from theoretical
treatments to experimental investigation. The papers investigate both micromechanics and
continuum aspects of damage in materials.

We express our gratitude to all the authors that contributed to this work. Their time and

effort are greatly appreciated.

George Z. Voyiadjis Jiann-Wen Woody Ju Jean-Louis Chaboche
Baton Rouge, Louisiana Los Angeles, California Paris, France

September 1997
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Damage Mechanics in Engineering Materials
G.Z. Voyiadjis, J.-W.W. Ju and J.-L. Chaboche (Editors)
1998 Elsevier Science B.V. 3

Continuum Damage Mechanics of Composites: Towards a Unified
Approach

J.L. Chaboche, O. Lesné, T. Pottier
O.N.ERA.

29 avenue de la Division Leclerc
92320 Chatillon, France

Abstract

A constitutive framework is developed for the inelastic analysis of composite
structures. It is based on a Continuum Damage Mechanics approach, at the
mesoscopic level of each ply (for laminates) or at the macroscopic level for more
homogeneous sequences. The theory is developed in a hierarchical order,
involving the successive modelling of elasticity coupled with damage, elasto-
viscoplasticity coupled with damage and viscoelasticity/recovery coupled with
damage. A particular attention is focused on the modelling of damage
deactivation effects, which stays a key difficulty for cyclic loadings. The
capabilities of the models are illustrated on three quite different materials, a
SiC/SiC composite, a SiC/Ti composite and a C/PMR15 composite.

1. INTRODUCTION

The inelastic analysis of composite structural elements needs the
development of good constitutive equations that incorporate both the inelastic-
plastic-viscoplastic behaviour and the effect of the progressive damage growth.
For computational efficiency evidences, this had to be done at some continuum
level, often called the mesoscale for composite structures.

During the past decade, specific efforts have been done in the constitutive
modelling of composite materials. Different classes of theories have been
developed with the helps of micromechanics, but at the scale of the continuum,
assuming the existence of a Representative Volume Element of material (RVE).
In this paper, we concentrate the efforts on the macroscopic modelling tools,
directly useful for the structural inelastic analysis, based on the continuum
thermodynamics with internal variables and Continuum Damage Mechanics
(CDM) concepts.



A rapid survey of the literature does not show a very large number of
researchers in this field, and at the macroscopic continuum level, for developing
constitutive models for composites, from the theoretical basis to the complete
identification and application. We can mention Talreja [1-2], Allen et al. [3],
Ladeveze and Allix [4-6], Robinson et al. [7], Kattan and Voyiadjis {8], Perreux
and Oytana [9], Chow and Yang [10] and probably some few others. The number
of references should obviously increase considerably if we consider modelling
efforts based on micromechanics, using self consistent methods, homogenization
techniques, cell analysis or any other kind of micro-macro transformation.

The researches made at ONERA around a number of composite systems used
in Aeronautics and Aerospace applications have contributed to develop a
succession of macroscopic constitutive and damage models that can be organized
through a hierarchical modelling structure, as shown in section 2 below. In the
present paper, we try to summarize and to discuss these modelling capabilities,
showing some exploitations on various materials. In section 2, are recalled the
various scales for a composite structure analysis and the proposed hierarchy of
models. In section 3, is presented the general framework for this constitutive
cquations development, including the damage deactivation effects (closure
effects), plastic flow and damage evolution rules. Section 4 gives some examples
of applications, to Ceramic Matrix Composites (CMC), Metal Matrix Composites
(MMC) and Organic Matrix Composites (OMC). In every case, they are long fibre
unidirectional or woven composite systems, but the same approach has also been
applied to short fibre systems, like in [11].

2. A HIERARCHICAL MODELLING OF COMPOSITE STRUCTURES

First, we should have to indicate the various scales that play role in the
inelastic analysis of a composite structure :

- The component or structural level, where the composite part is often in the form
of a laminate. In some very macroscopic (elastic) analysis, the laminate itself is
considered as a continuum. When considering inelastic and damage processes,
this way of modelling has now to be considered as insufficient : using the finite
element structural analysis, in the framework of a plate or shell or pseudo 3D
discretization, we should have to dissociate the kinematic assumptions
(displacement discretization) and the material behaviour discretization that must
be treated ply by ply.

- The scale of the elementary ply is the one at which we presently develop
macroscopic constitutive equations (it is often called the mesoscopic scale). Fig.1
illustrates the laminate decomposition. The ply has a unidirectional structure for
classical OMC laminates and some MMC's laminates but can be also composed of
woven fabrics, like in the applications given in section 4 on SiC/SiC or C/PMR15.
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Figure 1. Schematics of (a) mesoscopic analysis in laminates,
(b) plain weave structure with homogeneous stacking sequence.

The ply assemblage (fibre + matrix or yarn + matrix) is then considered as a
continuum, even in the presence of damage (transverse cracks for example). At
this level, we could also consider special interfacial models to describe the
progressive damage and delamination between adjacent plies, as developed by
Allix and Ladevéze [12-13] and more recently Lo and Allen [14].

- The microscale, in which we use the constitutive equations of the elementary
constituents, matrix, fibres, fibre/matrix interfaces, etc... In some case, the
analysis has to be made via a double level micro-macro approach (fibre + matrix
to give the yarn behaviour, then yarn + matrix to model the ply behaviour).
Difficulties increase when taking into account microcracking, either in the matrix
or at the fibre/matrix interface.

- Smaller scale could also be considered when interacting with the composite
processing routes ; an example is the various interphases, diffusion zones and the
roughness aspects in the region of interface between fibre and matrix. This is far
beyond the scope of the present paper.

The constitutive and damage models that are formulated in the next section
obey to a hierarchical structure that can be elaborated as follows. Figure 2
illustrates the main features of the corresponding modelling specificities and
capabilities on examples that are or have been treated by ONERA co-workers :

a) The basic behaviour corresponds to the elastic damaged material (brittle
damage), as illustrated by CMC's, especially SiC-SiC plain weaves composites.



The main non-linearity observed in the tensile response is associated to the
damage development (matrix micro-cracking). One of the clear specificities of the
tension-compression behaviour is the damage deactivation effect that takes place
under unloading/reverse loading conditions, associated to the closure of
previously created and opened microcracks. This effect must play role in the
frame of the state potential as an elastic reversible process, leading to a bilinear
kind of elastic behaviour.

b) In some other CMC's or in C-SiC composites, where the larger thermal
expansion mismatch induces larger manufacture residual stresses, the
microcrack closure and damage deactivation takes place at a non-zero stress
state. As illustrated on Fig. 2, this effect produces irreversible strains that can be
associated to the damage development itself, without any additional state
variable or additional dissipative processes.

¢) In some other cases, for the C/C for example, we need to introduce an evolution
of the closure strain. In other words, the irreversible strain (or "plastic" strain)
evolves during the damage grows. Then, we have additional state variables and
evolution equations. The corresponding irreversible strains can be associated
both to the friction effects between fibres, yarns etc... and to the damage driven
friction effects on the previously developed micro-cracks.

d) Other plasticity effects are clearly due to the inelastic behaviour of the matrix
itself. This is the case for metal matrix composite, for example in the SiC/Ti
system that will be studied in this paper, or for organic matrix composites where
it is necessary to describe the matrix viscoelastic behaviour under transverse or
shear loading conditions. The tension-compression behaviour of the C/PMR15
system in a 45° direction (to the yarn axes) is a clear illustration of this situation.
In these systems, we need the combination of the previous modelling capabilities
a-b-c to a more or less classical plastic or viscoelastic constitutive equation.

e) The last aspect, not addressed in the present paper, is related to additional
hysteretic effects associated to damage/friction interactions at the fibre/matrix
interfaces. Quite limited in the SiC/SiC system such effects can be more
pronounced in other CMC's. In such cases, the matrix microcracks are often
bridged by intact fibres and the dissipative processes take place in the fibre-
matrix interface near the crack opening region, producing both fibre matrix
decohesion and sliding. The corresponding friction mechanisms, enhanced by the
matrix damage (microcracks) development are clearly the cause for increasingly
hysteretic effects that take place during the unloading-reloading cycles,
hysteresis that have nothing to see with the matrix behaviour (point d).



3. GENERAL FRAMEWORK OF THE CONSTITUTIVE MODELS

3.1. The state potential

We consider the small strain assumption. The constitutive models are based
on the continuum thermodynamics with internal variables. We assume the
existence of a state potential, from which can be derived all the state equations,
that is the ones governing the reversible processes. We consider here the free
energy as the thermodynamic state potential, depending on the observable
variables g, the total strain and T, the temperature and on a set of internal state
variables :

y=yle, T ¢, €, o, T, S, d) (D

P’

g, 1s the plastic strain, usually defined through the unloaded configuration, but
will be defined more specifically below, in the framework of the damage
deactivation rule. €_is the strain state associated to the deactivation (at which
the deactivation can take place), o;, j=1,2, ... are a set of kinematic hardening

variables, and r is the isotropic hardening variable.

Hierarchical models g

€ € € / 3
/
° 4 MMC's
SiCISiC CISiC C/PMR1S
Elastic Elastic Elastic Elastic
Damage Damage Damage Damage
+ Deactivation +
+ + Viscoplasticity
Irreversible "Plasticity" +
strain hysteresis

Figure 2. Schematics of the hierarchical modelling framework.



In the present CDM approach, we consider two kinds of damage variables :

- &, 0=1,2,3 represent three scalar damage variables associated to the microcrack
that develop parallel or perpendicular to the reinforcements (fibres, yarns). The
use of scalars is motivated by the fact that these damages have known material
directions p, (where p, is the vector perpendicular to the corresponding family of

microcracks).

Table 1

The state equations of the damaged elastic behaviour for both active and

deactivated damage :

state_potential :

2

L=L,-Y3,[A.:K,] -[D(@):K],

a=1 i

C,=C,~ ¥.5,[A:K:] - [D@rK),

D(d)=vy[I®d], +%(1—y)[1@d+15d],

Pi=pepepop

Stale equations :

6 T el
o=—lg=L(s—s,-£9)+(L"-L)(£—sc)
o,=%‘2=l“:(s—sp~se)—o-(ﬁ"—l ) (e-€.)

P
X, =6—w=é,:a,

p = l(s -, — €, )ili(e-€, - 60)*‘%(6 —Ec):(L'" - ﬂ):(s —5()+%Zal;él;ai

E=e-¢g,

“ 3 3
L"=L+ n{ Y po E p)B P ALK, ] 2P, + Y h(-n B ) N2 [D(d): K] 2N,

=1

3
A =peepopep + I)iau[(pk ep)s(pop)] + h{)zﬁk,[(pk o) e(pep)|

N,=nenonen,

@

3

&)

6)

®

)

(10)

n




- d i1s a second order damage tensor that describes microcracks which
orientations are given by the direction of the damaging loading (and not by the
constituents). Though a fourth rank damage tensor could be more appropriate to
describe a general induced anisotropy (Chaboche [15-16], Lubarda and
Krajcinovic {17]), we limit ourselves to a second rank damage tensor

The chosen form for the state potential is indicated in Table 1, together with
the corresponding state equations. The specific choices made for the damage
deactivation and plastic strain definition will be discussed in the next two sub-
sections. Let us remark that a dual formulation is still possible, using the Gibbs
free enthalpy instead of (1), as was developed by Maire and Lesne [18].

In table 1, we have decomposed the free energy into the elastic part y,, and
the inelastic one y,,, assuming the uncoupling between the hardening and elastic
behaviour. The elastic energy is decomposed into two quadratic terms (eqn (1))
that will be explained below. g = m6 = m (T-T ) is the thermal expansion.

3.2. Damage effect and damage deactivation rule

The elastic behaviour is described by relation (9) in table 1, where L* is
defined in two steps. First, L is the present elastic stiffness tensor for all
damages active, i.e. all microcracks open. It is obtained from the damage
variables via eqn (2) in which K, and K are given material dependent tensors,
related to the initial symmetries. D(d) is a fourth rank damage effect tensor,
build up from the second rank damage by eqn (6), and §, A, plays the same role
for the scalar damages, using (7). Second, we define LT from L, taking into
account the damage deactivation effects via eqn (4), where & is the Heaviside
function and P,, N, are fourth order projection operators (8), n,(i=1,2,3) being the
principal orthonormal system in which is written the deactivation.

This damage deactivation rule was proposed initially by Chaboche [19]. It is
chosen in order to eliminate any stress-strain discontinuity when the
activation/deactivation takes place, that is when the normal component
€ =Tr(-N,:€,)=n,-e-n; or §,=p, € p, change sign. The projection
operation with N, in (4) selects only the corresponding "diagonal term" L, in the
stiffness matrix. The material parameter m allows description of partial
deactivation effects, with 0<n<1.

The energy vy, , the stored energy associated to hardening, could also be
decomposed similarly to the elastic energy, showing the active terms with C i

and the deactivation ones. However, it would increase the complexity and need
additional deactivation rules, in terms of o, the deactivation taking place
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independently of the elastic one. For these reasons, we only consider the active
situation, using the damaged hardening modulus C; in egs (1) and (11).

There is no deactivation effect for hardening but a corresponding effect will be
discussed in the frame of the yield function determination. The operators K! and

KP, different in principle of K, and K, are material dependent fourth rank
tensors.

Table 2
Thermodynamic forces associated with the scalar and tensorial damage variables
] (inities :
op 1 1
Yo =_650 5( —€, g F[ALK, ] :(e-g, —se)+52l:a,:[Aa:K§]!:a,
-%n h(-Tr (€,)) €5:[Aq:K, ]2 € (12)
E; =Pa:(£-sc)=pa‘€'pa (13)
0w __y 1-y
Y= o -Z(a—sp €) Tr(T)+T Tr(e-¢ —ee] [ €E-¢ —se)]
Y
+Z’{Z[a‘ 7r(X,)+ X, Tr(a ]+—[X a,]}
-nZh(-Tr(e,’))[%[e,’ Tr (5;)+ 3, Tr(e,')]+—4—(6,'.£,' ),] (14)
]
c=K:€ g, =N,:(e-€. )=n,.5.n G, = K:g| (15)

Remark : The projection direction p, is fixed by the initial composite symmetries
(constituent directions). However, the choice for the principal deactivation
directions n, is open. The natural way should be to take the principal directions of
the damage tensor d (closure of the subjacent "principal micro-cracks"), but that
leads to some indeterminations in the initial undamaged conditions for the
thermodynamic affinity y associated to damage. Presently, we prefer to use the

principal directions of e-¢_.

Remark : In order to reduce the number of material dependent parameters, the
fourth rank tensors K, and K can be selected as identical to the initial
undamaged stiffness L. It leads then to the classical definition of the damage
through the stiffness change. We can also select the particular case where the
tensors Kf, and KP? are identical to C,.
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Table 3
The damage loading surfaces and corresponding damage rate equations :

Scalar variables :

8 =(¥u) = ra(01,0,,05)<0 (16)

Tensorial variable :

g = @[(y: Q:y)E| - E1r(d) - (1-O)Tr(y.a) < 0 an
rate equations :
: . Og - . 0g
O = H, % d=p== (18)
0, oy

3.3. Damage evolution rules

For the damage evolution equations, we follow the standard procedure and
the corresponding normality rules. A dissipation potential is assumed to exist
and is assimilated with the damage loading surface (that enclose all the non-
damaging states) expressed in the space of the thermodynamic forces y, and y
associated to the damage state variables 8, and d. These thermodynamic forces
are indicated in table 2 and the corresponding damage evolution equations in
Table 3.

More specifically, the scalar damages are assumed to obey multiple criteria
(dependent or independent), with one independent multiplier ji; for each damage
growth (determined by the corresponding consistency condition g, =g, =0). For
the tensor damage, we necessary have to introduce some scalar invariants. In
equation (17), we combine the possibilities for an homothetical evolution (§ = 1)
and a quasi-independant evolution (§ = 0), in terms of loading directions.

Let us point out two assumptions made in the present way of damage
modelling :

- We use the standard rule in order to match automatically the Second Principle
of thermodynamics. However, the dissipation potentials for damage and
plasticity are considered independently, with independent multipliers, as
proposed by Chow and Wei [19], Hansen and Schreyer [20], Chaboche [21].

- The evolution is considered as rate independent. In the normality rules (18), we
have multipliers I, and [I that must be determined by the corresponding

consistency conditions g, =0, g=0.
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3.4. Modelling of plastic flow, without damage

For the plastic flow, we use a yield surface in the stress space or more
precisely in the "active stress" space ¢,. In fact, o, is the thermodynamic affinity
associated to €, in the thermodynamic potential, and is given by (10) in table 1.
The yield surface obeys a Hill's criterion, eqn (19) table 4, where the fourth rank
tensor H is depending on the material.

In order to meet the thermodynamic requirement (the Second Principle), we
assume the existence of a set of dissipative potentials, F, F,, associated to
plasticity and thermal recovery processes. This way of generalizing the standard
procedure has been discussed recently by Chaboche [21]. The specific choices are
given by eqs (19) and (20). The generalized normality assumptions writes as (21)
(22) and shows in the kinematic hardening evolution the combination of three
terms : the normal (linear) hardening, the dynamic recovery term, proportional to

the modulus of the plastic strain rate and the static recovery term.

Table 4
The viscoplastic theory for the undamaged configuration :

yield criterion and dissipation potential :
7=((0, - X1t (0, - X))% - R-k =0, - X], ~R- X-TX, a9

m+ ]
Ve =

(x :C;":X,)

! - i
F,=f+52in,.:Ci‘:xi ‘=;Z o0

normality rule :

. }\O_L }\II:(op—X) N
E, = =Ag——r—=An @1
’ do, "Gp - x",
- OF F 1 : m-l
a; =- X, X, C; XJ.)\—y,jIXj" C;:X; (22)
plasticity : f= f= 0 — A
viscoplasticity : A= <£—> 23)
dissipation :

ﬁcp:ép—zxi:di—RiZO (24
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The plastic multiplier A is determined either by the consistency condition
f =0 in the rate independent case or by a viscoplastic equation (23) in the reverse
case (which is assumed here). Let us remark that A is the modulus of the plastic
:H_':é:p)y2 =A.

strain rate as defined by p = "ér*"fr' = (ép

The isotropic hardening evolution equation, governing the scalar variable r is
not addressed in the present paper. It can be postulated of a form similar to the

kinematic hardening, incorporating a linear term, a recall term (dynamic
recovery) and a static recovery term (Nouailhas [22]).

Table 5
The viscoplasticity theory for the damaged configuration :
&,=M":0, X, =M,;:X, X=¥X, (5)
i

M =M+ np{Zh(-pa.op.pa)éa P:(1-M)P, + T hn.0,.m) Ni:(l-M):N.} 26)
a=1 I=1

.z - o\¥ I
£=(@, -%a:@, - X)) - R-k=]6, - %] - R-k @n
m+]
F, = f+1yy, x,:Cx Fo==y o (x:6x,) 7 @8
,=f Z'ZYI ST s 2;’n+1 A ST
normality rule :
COF, . MUTE(M%o, - X
g, =A=L =2 ( = X) 9)
ao" ||6P - X“u
. s OF, OF, a1 T e s
&= =A==k -2 = MM i€, —v,ClX A -y x| Cx (30)

3.5. Viscoplastic flow coupled with damage
In the above equation for the viscoplastic flow, we introduce the damage
coupling effect through an effective stress concept (table 5).

We assume the same kind of damage effectiveness between elastic and plastic
behaviour and use the effective stresses &, and X, in the yield criterion and

plastic potential, instead of ¢, and X, in the undamaged situation (equation (27)) :
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&, =M(d)o,, X, =M, (d): X, M = M(d)and M, = M, (d)
in eqgs (25), (26) are the damage effect fourth rank operators which choice will be
discussed below in section 3.6. Due to the standard procedure and normality rule
the rate equations for €, and ¢, follow easily.

In the case where damage deactivation takes place, there are several
possibilities for introducing its effects in the plastic/viscoplastic equation. We
could have played with an effective Hill's operator H and its deactivation
counterpart H, with a deactivation criterion based on the overstress ¢,-X.

In the present theory, we have preferred to define an effective damage effect
tensor M, eqn (26), in which the damage is deactivated with a rule exactly
similar to the one used for elasticity. In eqn (26), the projection operators P, and
N are the same as before but the deactivation is written in terms of the "normal"
value of 6 (instead of e-¢).

o’
I
=1
I

[
oy

(@ oc<0 (o) 6c> 0

Figure 3. Schematics of the plastic strain definition after a tensile damage :
(a) closure point with a negative tensile stress
(b) closure point with a positive stress.
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This is necessary in order to prevent any discontinuity of the stress-strain
response but introduces different instants for the deactivation. There is no

deactivation effect on the operators 1\71i associated with the various back-stresses,
but this is sufficient to correctly meet the experimental results. Let us note that,
due to the generalized normality, we still check the thermodynamic requirement
of a positive dissipation.

3.6. Some remarks
The effective stress definition is based on the description of the elastic

behaviour of the damaged material. There are two main assumptions possible :

(i) the energy equivalence principle [23], that assumes the same elastic energy
in the effective (undamaged) space,

(ii) the strain equivalence principle {24], that assumes the comparison between
damaged and undamaged configurations through the strain response.

Other generalizations have been proposed (Chow [25]) involving the plastic
work equivalence, but they are no more tractable in the frame of a state
equivalence. The advantage of the energy equivalence is the automatic symmetry
of the damaged stiffness and the possibility to completely treat the state problem
within the effective undamaged space. This way was intensively used by
Voyiadjis and Kattan [8], [26], and more recently by Kruch et al. [27] for the two
scale elasto plastic and damage modelling of MMC's. However, we still prefer to
use the strain equivalence assumption in the present work, due to his larger
flexibility. Contrary to the energy equivalence, any damaged induced anisotropy

can be modelled. For instance, the damage effect tensors M and IVIi can easily
be determined from the damaged stiffness, all damages considered as active :

M=L.L" M, =C,:C'.

The damage deactivation rule chosen in section 3.2 introduces a specific
definition for the plastic strain itself. This question is present in every theory
where the deactivation effects introduce a bi-linear (or non linear) elastic
behaviour. Assuming a rate independent behaviour (and the small strain
hypothesis), examination of eq (9) leads to the following definition :

- The plastic strain €, is defined by the elastic linear unloading, all damages
active, eventually linearly extrapolated to the zero stress state.

This property is obvious from the active damage assumption, considering
L*"=L in eqn (9), leading to € = ¢, for 6 = 0. Figure 3 illustrates this definition in
the case of tension-compression, after damaging in tension (within the
simplification of constant off-diagonal compliance terms, not depending on
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damage). Two situations are considered : (a) When the closure strain ¢_leads to a
negative closure stress, the most usual case, the plastic strain is defined by the
(true) residual strain at zero stress. (b) In the reverse case, the plastic strain
definition uses a linear extrapolation to zero stress instead of the true bilinear
elastic unloading.

m"

(@ o0c<0 () oc>0

Figure 4. Schematics of the reverse hypothesis for the plastic strain definition
closure point with (a) a negative tensile stress, (b) a positive stress.

Let us note that in some other theories (Gérard and Baste [28]) it has been

considered a variable definition of ¢ : in case (b), ¢, was defined as in figure 4-b,
by extrapolation, at the beginning of the unloading (BC), but by the true residual

strain at 6 = 0 when the damage is deactivated (CD). The varying ¢, at the
instant of deactivation leads to some theoretical shortcomings.

Another form of deactivation equation could have been proposed, generalizing
directly the one used by Chaboche et al. {29] for the elastic-brittle case (CMC's).
Instead of (2), the free energy could be postulated :

‘V:%(E—Ep):L:(€—Ep)+%(€—-8c)(Lm ~L)(e-¢.)+v, (32)

leading to the stress :
o=Li(e-¢,)+(L" -L)(e-¢,) (33)
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This complementary choice can describe (in principle) the same kind of
deactivation behaviour, with the same bilinear unloading but a different
definition of the plastic strain, as illustrated by figure 4 :

- The plastic strain €, is defined by the elastic linear unloading, all damages
deactivated (from compressive side) eventually extrapolated to the zero stress state.

The formulation given in section 3.2 is preferred due to the following main
reasons :

- It gives a more natural definition for the plastic strain, through the direct
unloading from the loading that has produced both plasticity and damage.

- It leads to a plastic strain that does not differ too much from the residual strain
at zero stress. This is especially true for the observed behaviour in SiC/Ti MMC's
(see section 4.2), where the closure strain is not varying much but the closure
stress (after tension) becomes significantly negative. The assumption (33) leads
to much larger differences.

- It allows a consistent description of the dissipation during plastic flow, through
the active stress o, defined by eqn (10). The above choice (32) introduces much
less natural interpretations.

- It describes easily a positive dissipation associated to the evolution of the
closure strain ¢. This aspect is not addressed in the present paper but the

assumption that €_evolves only for active damage is immediately consistent with
thermodynamics, which is not the case with the other formulation.
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Figure 5. SiC/SiC cyclic tension-compression in the 0° direction :
(a) experiments, (b) modelling.
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Figure 6. SiC/SiC tension-torsion prediction : (a) monotonic tensile responses,
(b) monotonic shear for various stress ratios responses.

4. OVERVIEW OF SOME APPLICATIONS

The constitutive and damage models presented in section 3 have been applied
to several kinds of composite systems. Some results are given below for 3 of them :

(i) a ceramic matrix composite,
(i1) an organic matrix woven composite, C/PMR15,
(iii) a SiC/Ti metal matrix unidirectional composite.
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4.1. Application to the SiC/SiC composites

The material is constituted of woven layers, with a plain weave structures.
Each yarn is composed of a large number of SiC fibres and constitutes by itself a
unidirectional composite. The plies are superposed in a continuous stacking
sequence, so that we do not need to consider the stratification and the material
can be considered as macroscopically homogeneous, as a 3D continuum.

The material is elastic brittle and two kinds of matrix microcracks are
developing : the ones parallel to the fibres (transverse cracks), that we describe
by scalar damage variables, and the ones that develop more or less perpendicular
to the maximum principal stress, that we describe by a second rank damage
tensor [18], [29]. We use the damage rules indicated in table 3, especially a rule
like (17), that allows to introduce a shape change in the loading surface as
damage progresses [18]. Obviously, we neglect any plastic or viscoplastic
behaviour.

Tensile tests Internal Pressure tests
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Figure 7. Prediction of Young's modulus change (directions 1 and 2) on SiC/SiC
under a sequence incremental tension followed by incremental internal pressure.
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Some results are selected in figures 5 to 7 showing successively the model
capability for uniaxial and multiaxial loading conditions. In particular, we
observe the correct reproduction of the microcrack closure effect for 0° tension-
compression loadings, a slightly less good result for the 45° direction. The
tension-torsion on tubular specimens is correctly predicted (the experiments were
not introduced into the model determination procedure). Moreover, under cyclic
shear (torsion), with increasing extrema, the model is able to reproduce further
damage at each peak (thanks to the choice of rule like (17). Moreover, a biaxial
test under increasing tensile peaks, followed by increasing internal pressure
maxima, is correctly predicted both in terms of the stress-strain responses and
for the two Young's modulus (as measured by unloadings/low level reloadings).
Figure 7 demonstrates the model capability.

Figure 8. SiC/Ti1 MMC tensile responses at 450°C : monotonic tests and
simulations with unloadings (a) longitudinal, (b) transverse.

4.2. Application to a SiC/Ti metal matrix composite

The material is composed of long SiC fibres (SM11-40%) and a 6242 titanium
matrix. It is used in the unidirectional form and tested in the longitudinal and
transverse directions at 450 and 550°C. In that case, we considered only one set
of scalar damage variables [30] but further studies should also consider the
tensorial damage. The elastic-viscoplastic behaviour of the material is described
by equations of table V, with two back stresses (one linear hardening, one non
linear hardening) but no static recovery effects.

One specificity of the macroscopic model application is that it is built up from a
micro-macro analysis based on the constitutive equations of the matrix and fibres
[11] {30]. The tensors L and C, are obtained from that analysis and contain the
constituent characteristics (behaviour, geometry and arrangements).

The deactivation rule is applied in terms of the Total Strain, as indicated by
eqn (4). Presently, we consider that ¢_is the thermal strain gq, determined after
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the modelling of the manufacturing process. In further work, we should have a
slightly evolving €_

Figure 8 shows the correct modelling, both for the longitudinal and
transverse directions. In this last case, we observe the damage at the very
beginning after the elastic domain (by the Young's modulus decrease), followed
by a significant plastic strain and a slower damage evolution. Figures 9 and 10
demonstrate the capability of the model under cyclic loading conditions (with
stress reversals). In particular, we observe in figure 10 the damage deactivation
around a constant total strain (near 0).

Figure 9. Stress controlled cyclic tests on SiC/Ti
at 550°C and the corresponding simulations.

4.3. Application to a C/PMR15 composite

The material is a woven composite, with the eight hardness satin
arrangement. The woven plies are superposed identically so that there is a
symmetry between the directions 0° and 90°. The nature of the organic matrix
and the stiffness of the eight hardness satin weave introduces extremely different
responses for the 0° and 45° uniaxial tension experiments :
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Figure 10. Stress controlled cyclic simulations
with increased compression and damage deactivation.

- For the 0° direction, we have essentially an elastic linear response. The damage
is not really observable before the specimen failure. It is only on the transverse
strain (Poisson's effect) that we can measure the damage effect.

- In the 45° direction, the response is essentially the one of the matrix,
viscoelastic, with large hysteretic cycles. The damage grows only for large stress
levels but its direct measurement through stiffness change is difficult due to the
viscoelastic hysteretic effects.

T=250C (2e-02%5)

strass (MPa)
stress (MPa)

B 10 12 ) 2 4 L]

]
strain (%)

Figure 11. Monotonic tensile curve simulation for C/PMR15 in the + 45°
direction. oooo tests ; - - calculations ; (a) low strain rate, (b) high strain rate.
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An extensive experimental study has been performed, at various
temperatures, including cyclic tension, cyclic tension-compression, creep, creep
followed by recovery tests etc... Figures (11) and (12) show only a few results.
Modelling was done by using the following choices [31] :

- The viscous behaviour is described by the viscoplastic framework, considering
visco-elasticity as a limiting case of viscoplasticity [32] without yield stress (k = R
=0 in eqn (27)).

- The back stress is decomposed into 3 to 5 elementary back stresses in order to
be able to simulate the hysteretic effects.

- The static recovery effect in eqn (30) is taken into account, that provides a quasi
complete strain recovery after unloading and a sufficient hold at the test
temperature.

* L Aeeassss8252355 3 i85 388
1 1 4 5 8 7

Figure 12. Tensile creep and recovery for C/PMRI15 in the + 45° direction.
* + o tests; - calculations ; (a) at room temperature ; (b) at 315°C.

5. CONCLUSION

A general constitutive framework has been developed that describes various
behaviours and various kinds of composites. The hierarchical structure of the
models has been illustrated by the application to three very different composite
systems, involving the elastic-damaging case, with deactivation (SiC/SiC), the
addition of viscoplasticity (SiC/Ti) and the addition of viscoelasticity and static
recovery effects (C/PMR15).

The proposed combined constitutive and damage equations are able to take
into account both the initial anisotropy of the composite and the damage induced
anisotropy, together with the effects of damage deactivation during elastic or
viscoplastic reversals.
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These directionality effects refer to microstructural aspects : the constituent
arrangements and the assumed directions of microcracks. Obviously, this is done
through the global approach of CDM so that the local description of microcracks
is not introduced in detail. Instead of a completely deductive approach (still to be
developed for "predictive applications"), we have mixed micromechanical
considerations and the macroscopic phenomenological approach.

The proposed framework is already able to incorporate many of the most
significant non-linearities in the composite behaviour. Some further
developments and improvements are needed in order :

- to reproduce more completely some damage deactivation effects. Some
experiments show that the shear initial stiffness is recovered after damage
deactivation, which is not possible within the present deactivation rule.

- to describe the hysteretic effects and associated "inelastic strains" that are not
induced by the matrix behaviour but by microslips between fibre, matrix and
microcracks, including the interface behaviour.
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Fundamental aspects of damage conjugate force of irreversible thermodynamics for elastic-
plastic-damage materials and the appropriate selection of the spaces for the description of the
damage surface and damage potential were first discussed. It was elucidated that the Gibbs
thermodynamic potential facilitates the description of the experimental damage surface, since the
damage conjugate force can be easily related to stress. It was emphasized that the normality law
of damage potential must be examined in the space of the damage conjugate force which can be
positive under any multiaxial state of stress, because of the positiveness of the damage
evolution. Finally, a series of experiments was carried out in order to investigate whether the
damage potential in the space of the damage conjugate force can be identical to the damage
surface.

1 INTRODUCTION

Continuum damage mechanics (CDM) based on irreversible thermodynamics [1-17] is
one of the most systematic approaches for the unified modeling of the coupled phenomena of
elastic-plastic deformation and material damage. The existence of the damage potential and the
related damage surface is postulated a priori in the usual framework of this approach. Under
this postulation the damage evolution equation can be derived by use of the associated flow rule
and the normality law [5, 6, 9-11, 13-19]. However, since the irreversible thermodynamics
gives only the thermodynamically admissible framework, the identification of the fundamental
aspects of these equations should have recourse to a series of experiments.

Though thermodynamical framework gives a damage potential and the corresponding
damage surface in damage conjugate force space, experimental verifications of the damage
surface were performed in stress space [20-23]. Therefore, in order to facilitate the comparison
of the experimental damage surface with the theoretical one, the damage conjugate force should
have a simple relation to stress tensor.

Moreover, as regards the experiments mentioned above, they were concerned only
with the verification of the existence of the damage surface. Thus, the further experimental
investigations are necessary to clarify the validity of the assumption of the associated flow rule
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and the normality law of damage evolution, i.e., the existence of the damage potential. In this
case the damage conjugate force space should be employed for the verification of the existence
of the damage potential.

The present paper is concerned with the thermodynamical modeling of constitutive and
damage evolution equations of elastic-plastic-damage materials, in order that the experimental
damage surface conducted in the combined stress space [23] can be described properly. Based
on the discussion on the space of damage surface and the damage conjugate force, the Gibbs
thermodynamic potential is first employed so that the theoretical damage surface in the space of
the damage conjugate force may be related to the experimental one in the stress space. The
Gibbs thermodynamic potential is assumed to be decomposed into three parts; the
complementary energy affected by damage, the potential concerning the plastic deformation and
the potential describing a surface energy due to damage [8, 10, 11, 14, 15, 17].

The damage surface is expressed as a function of the damage conjugate force, and
postulates the associated flow rule and the normality law from which the damage evolution
equation is derived. Then, the resulting equations are applied to the experimental results of the
spheroidized graphite cast iron.

Finally, the validity of the associated flow rule and the normality law is discussed in
reference to the corresponding results of the experiments.

2 MODELING OF ELASTIC-PLASTIC-DAMAGE MATERIALS

2.1 Space of Damage Conjugate Force by Use of Gibbs
Thermodynamic Potential

The present authors have discussed the constitutive and the damage evolution
equations of elastic-brittle [16] and elastic-plastic-damage materials [17] by means of the
irreversible thermodynamics theory. Since the Helmholtz free energy was employed in these
papers, the damage conjugate force was expressed as a function of elastic strain tensor. Thus,
the examination of the validity of these proposed theories necessitates the experiments governed
by the elastic strain. However, the experiments governed by the elastic strain may be difficult in
the case of the elastic-plastic-damage materials. because the elastic strain can not be easily
determined due to the change in the elastic properties by the development of damage.

Because of this situation, most experimental studies on the geometry and the properties
of the damage surfaces of composites [20], geological materials [21, 22] and elastic-plastic
damage polycrystalline metals [23] have been conducted under combined stress space. From the
viewpoint of the simplicity in the experimental formulation of the constitutive and damage
evolution equations, the damage conjugate force may be preferably related to stress tensor. Of
course, we could express the damage conjugate force as a function of stress by use of the
relation between the stress and the elastic strain, even though the Helmholtz free energy is
employed. However, the resulting expression of damage conjugate force may have very
complicated form.

In the present paper, therefore, the constitutive and damage evolution equations will be
developed by use of the Gibbs thermodynamic potential.

2.2 Internal Variables
Inelastic deformation of the elastic-plastic-damage materials such as polycrystalline
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metals is usually caused by not only the change of the dislocation structure, the deformation and
rotation of grains, but also the internal damage due to the nucleation and growth of the
microscopic cavities. The state of such damage is often dependent on the direction of the applied
stress[4, 8, 9], and hence is anisotropic. Besides the anisotropy of the damage itself, the
anisotropy of the elastic and (or) plastic deformation due to the anisotropic damage may be
observed in the damaged process of materials. Therefore, In order to describe the behavior of
the elastic-plastic-damage materials, we will employ a scalar isotropic hardening variable r, a
second rank symmetric damage tensor D [24, 25], and a scalar variable 8 which prescribes the
further development of the damage. The scalar variable 8 corresponds to the scalar isotropic
hardening variable r in the theory of plasticity [16].

2.3 Formulation of Gibbs Thermodynamic Potential

We take elastic-plastic-damage of polycrystalline materials with moderate ductility, and
assume that the Gibbs thermodynamic potential I consists of the complementary energy I™*
due to the elastic deformation, the potential related to the plastic deformation I'” and that of
damage I'‘. The potential I'” may be the distortion energy of lattice related to dislocation
structure, while I'¢ may be related to the surface energy due to the cavity nucleation. Though
the complementary energy [ will be influenced by damage through the effect of degradation
of the elastic property, the influence of damage to other state variables on other potentials may
be small. Thus, the Gibbs thermodynamic potential I” of these materials per unit mass have the
following expression [10, 11}:

I(a.r.D,B)=TI"(e,D)+ I (r)+ T (B) (1)

If the material is assumed to be isotropic in the initial undamaged state, I'“(o,D) of
equation (1) can be expressed as an isotropic scalar function of two symmetric tensors ¢ and
D. According to the representation theory of non-linear algebra, the most general form of the
isotropic scalar function I"°(o,D) can be expressed as the combination of the ten basic
invariants of two symmetric tensors @ and D [29, 30]. At the initial undamaged state, the
elastic behavior of the elastic-plastic materials is assumed to be isotropic and linear, and thus the
function I'*(o,D) is quadratic in @. On the other hand, since I'“(o,D) will decrease as
damage develops, it will be supposed to be linear in D [4, 5].

If we incorporate further the crack closure effects under compressive stress and the
related conditions for continuous transition of stress-strain responses from crack opening to
closure {32, 33], the elastic-damage complementary energy is given as follows:

r“(e,D)=—-2
2E0 (1]

+8,uD(tra )’ + &,uDud’ + d,trotr(aD) + 9, D) 2)

(ra)’ + lil&traz

where symbols E, and v, are Young’s modulus and Poisson’s ratio at the initial undamaged
state, while 3, through J, are material constants. The symbol & is the modified stress
tensor representing closure effects of microcracks [2, 25, 31, 32] and is given in the principal
stress coordinate system as follows:
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7,=(0,)-{(-0,)=¢&0o,)o, (=123, nosum.) (3a)

§(0,) = Hlo)) +¢H(-0,) (3b)

where ( ) is Macauley bracket, H( ) is Heaviside step function, and o, (/ =1, 2, 3) are the
principal values of ¢ . The capital index [ indicates the principal stress coordinate. Furthermore,
the symbol ¢ (0<{<1) is a material constant describing the extent of crack closure effect,
i.e., ¢ =1 implies complete closure while ¢ =0 implies vanishing effects.

As for the other terms in equation (1), I'”(r) represents the effects of the isotropic
hardening of plastic deformation, while I'/() is introduced by assuming the linear relation
between internal variable 8 and its conjugate force B. Thus, we have

()= R,,[r . %exp(—br)] )

1 2
r*(B) =5 KB’ 5)
where R_, b and K, are material constants.

2.4 Elastic-Damage Constitutive Equation and Thermodynamic
Conjugate Forces
According to the conventional procedure of the thermodynamic formulation, the elastic
constitutive equation of the damaged material can be obtained by the use of equation (4) and
equation (10), and leads to

¢

I —i(tr(r)l + Ma + 28, (eDtror)I + 29, (uD) - ﬂ
Jor E, E, - o

+9,[tr(@D)I +(tra)D]+ 9,(TD + DF): ’;—‘7 )
ag

It should be noted that the stress-strain relation of equation (6) should have a
continuous transition from the crack opening to closure [32, 33]. However, the condition for
the continuous transition of equation (6) can not be examined in general case, but can be
confirmed in the particular case of plane stress written in the corresponding principal coordinate
system.

The conjugate forces corresponding to internal state variables D, r and 3, on the other
hand, can be derived by the use of equations (2). (4) and (5):

= % = [1.‘),(tra')2 + ﬁltrﬁz]l +9,(tro)o + 9,0 ¢a)

R= '9(% = R [1-exp(-br)| (8)
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or
B= % =K,B ©))

Since the Gibbs thermodynamic potential has been employed, the damage conjugate
force Y of equation (7) can be expressed as a function of stress tensor.

2.5 Dissipation Potential

The dissipation of the plastic deformation in polycrystalline materials is mainly
produced by dislocation motion under the applied stress, while the dissipation of damage is
governed by the release of internal energy due to the development of microscopic cavities. Thus,
we represent these dissipation mechanisms by two different potential functions, i.e., plastic
potential F” and damage potential F°. Then, the total dissipation potential can be given as the
sum of these two parts of dissipation:

F(o,Y,R, B,D,r,B)=F’ (o, R,D)+ F(Y,B;D,r) (10)

where the quantity preceding the semicolon (;) in the expression of the potential F denotes the
variables while those after (;) are the parameters.

Since damage will lead to the reduction of load carrying area and induce the stress
concentration around defects, it may bring about the reduction of yield surface. In view of this
effect, the damage tensor D has been included in F? of equation (10) as a parameter. The
experimental results on the damage surface show that the geometry of the surfaces does not
always remains similar, but may depend on the current damage state [23]. Furthermore, the
development of damage is also dependent on a plastic deformation. Thus, the tensor D
together with the internal state variable of isotropic hardening r are incorporated into the damage
potential F’ as a parameter in order to have more precise description of the damage
development.

2.5.1 Plastic Dissipation Potential

Let us assume the associate flow rule; i.e., the yield surface is identical to the plastic
dissipation potential F?(o, R; D). By restricting the present discussion to relatively simple
loading histories, the following isotropic hardening yield surface can be assumed by extending
the von Mises yield condition to the damaged materials [10, 11]:

F(o,R,D)=0, —(0,+R)=0 an

o, = /%a":M(D):o" (12)

where ¢ is the deviatoric stress tensor, while M(D) is a fourth rank symmetric tensor with

damage tensor D as an argument.
The yield function of equation (11) furnishes the constitutive equation for plastic strain

rate &7, and the rate of isotropic hardening variable r as follows:
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JF’ 2 M0y

&= N N 13

Y do; 2 a, 3
» .

r—A”d(FR)=A” (14)

where the parameter A” is an unknown multiplier determined from the consistency condition
F? =0, and will be given later in Section 2.6.

The loading / unloading conditions of equation (13) are defined by the condition that
the following Kuhn-Tucker relations should be always satisfied [27, 35]:

A >0, FF<0, AF’=0 (15)

The function M(D) in equation (12) should be specified so that it may properly describe the
increased effects of stress due to damage. By postulating moderate effects of D on the plastic
deformation, M(D) is expressed by the following linear function of D:

[M(D)]. = (5,‘5/1+3,,3]k) 3¢ "(8,D,+ D;8,+8,D; + D,3,,) (16)

I/AI ik

where ¢’ is a material constant.

2.5.2 Damage Dissipation Potential

As was observed in the previous experiments on damage surface in stress space by the
present authors[23], there exists a damage surface which prescribes the limitation of damage
development, and the loading / unloading and neutral loading condition holds with respect to the
surface. From theoretical point of view, on the other hand, the existence of the damage
dissipation potential F¢ will be proved if the damage evolution depends only on the damage
conjugate force and the current material state [18], and damage evolution can be expressed by
the normality rule of F*.

In the present paper, we will assume the associate flow rule as in the case of the
plasticity. Furthermore, the function F‘ will be expressed as a function of the damage
conjugate force Y in order to satisfy the thermodynamic requirement.

According to the experimental results [23], the geometry of the damage surface
depends not only on the hydrostatic stress, but also on plastic deformation and the current state
of damage.

Thus, based on the above discussion, the damage surface will be assumed so that the
surface may describe the experimental one [23] as follows:

F\Y,B;D,r)=Y, +c ruDuY —(B,+ B)=0 a7

1
Y, = EY:L(D):Y (18)
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where L(D) is a fourth rank tensor function of the damage tensor D describing the damage-
induced change of the damage surface. The symbol B, in equation (17) is a material constant to
specify the size of the initial damage surface.

As regards the tensor L{D), it should be determined so that equation (17) may
describe the corresponding experimental results. In the present paper, since the material damage
in the elastic-plastic material employed is not so significant, the tensor L(D) can be given by a
linear function of damage tensor D and furnishes as follows:

1 1
[L(D)),, = E(siksj, +8,8, )+ Ecd(s,ku,, +D,8,+8,D, +D,5,) (19)

The evolution equations of damage D and S are given as follows:

. d . .
D= Ad£ = A"{:L 24 +c"r(trD)I:| (20)
oY 2Y,,
. 3 d -
B=A"(;(}_FB)= ‘ @n

where A’ can be derived from the consistency condition F* =0, and will be given in Section
2.6. Similarly to the plasticity case, the loading / unloading conditions for the damage evolution
are specified by the following Kuhn-Tucker relations [27, 35]:

A'>0, F'<0, AF'=0 (22)

2.6 Calculation of Multipliers . '
When damage and plasticity occur simultaneously, the multipliers A” and A* must be

obtained by solving simultaneously the consistency condition for the plastic yield surface and
the damage surface as follows [35]:

gF?  (OF" OF Y F
“’+ aD "~ 9Y A\ aY

N =92 23
dr (gljj dB_GF' oF" @
dr dr A\dB oD " sY

aF
A= dB &aYFd GF” (24)
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3. COMPARISON WITH THE EXPERIMENTS ON TUBULAR SPECIMENS
OF SPHEROIDIZED GRAPHITE CAST IRON

3.1 Specimen of Spheroidized Graphite Cast Iron

Tubular specimens of spheroidized graphite cast iron FCD400 (JIS) were employed in
the present experiments. The wall thickness of the specimen is 1 mm, and may be sufficiently
thick to ensure the continuum assumption because the average diameter of spheroidized graphite
particles is about 30 um. The fracture mechanism of the spheroidized graphite cast iron has
been found mainly to be the decohesion at the interfaces between the graphite particles and the
ferrite matrix, in addition to the ductile failure of ferrite matrix induced by the development of
microcracks and plastic deformation.

3.2 Uniaxial Tension Tests

The material constants in equations (1)-(24) are identified so that the test results under
uniaxial tension shown in Figs.1, 2 and 3 together with the initial damage surface of Fig.8 may
be described by these equations. The material constants thus determined are as follows:

E, =169GPa, v, =0.285,{ = 0.89,

9, =-3.95x10"MPa"', 8, =4.00x 10" MPa™',

9, =—4.00x107"MPa™, ¢, =2.50x10°MPa™, (25)
b=15, R, =293.0MPa, R_ =250.0MPa, ¢’ = 1.0,

K,=13,B,=0273, ¢ =-15.0,¢' =50.0

Fig. | shows the comparison between the experimental uniaxial stress-strain relation
and the corresponding prediction by equations (6), (13), (14), (20) and (21). It can be seen that
the experimental result can be precisely described by the present theory.

Figs.2 and 3, on the other hand, show the comparison of Young’s modulus E, and
Poisson’s ratio v, which is the ration of transverse strain induced by the axial tension to the

600

500

400

300

200+ E,=169 GPa

Axial stress ¢, MPa

v,=0.285 Experimental
1001 o _s93MmPa ot Calculated
Y
O =5 1 l 1. ‘ 1 l 1
0.00 0.04 0.08 0.12 0.16

Axial strain €

Fig.1 Experimental and calculated stress-strain curves under uniaxial tension.
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axial strain. Young's modulus F, and Poisson’s ratio »,, under uniaxial tension tests were
measured in the unloading processes which were carried out at every 1.5% increment of strain
on the corresponding stress-strain curve [23].

In Fig.2, the decrease in the experimental results of E, is observed due to internal
damage, and E, attains to about 90% of its initial value at failure. This feature can be described
well by the calculated result.

Fig.3, on the other hand, shows that the present theory with damage anisotropy can
describe the observed decrease of Poisson’s ratio v,, precisely. Moreover, Poisson’s ratio v,
attains to 92% of its initial value. As observed in equation (25), the material constants o, and
3, must have negative values in order to describe the larger decrease in Young’s modulus than

that in Poisson’s ratio. Though the damage-induced change

200 —
g
&
. 150 |- Q00 0o
gy
2
2 100 -
3
&
= E,=169 GPa
S s0
S O Experimental
Calculated
0 H_ 1 ] | l 1 l 1 J
0.00 0.04 0.08 0.12 0.16

Axial strain €

Fig.2 Results of Young's modulus under uniaxial tension.
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Fig.3 Results of Poisson’s ratio under uniaxial tension.
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Fig.4 Predicted results of damage variable under uniaxial tension.

of Poisson’s ratio can not be described by the isotropic damage theory [36], the present theory
of anisotropic damage can describe the observed decrease of Poisson’s ratio precisely.

Finally, the damage evolution curves predicted by equation (20) together with the
material constants of equation (25) are entered in Fig.4. A solid line in this figure shows the
damage component D, of the axial direction x,. Moreover, broken line shows D,, and D,
of the direction perpendicular to x,. As observed in Fig.4, the anisotropy of the damage is not
so significant, and this is attributable to the fact that the spheroidized graphite cast iron
employed in this experiments is rather ductile, and the anisotropy in the cavity formation in this
materials is rather small.

3.3 Torsional Tests

Fig.5 shows the comparison between the experimental results of shear stress-shear
strain curve and the corresponding prediction by the same equations in the case of uniaxial
tension. The material constants (25) which had been determined by the preceding uniaxial
loading tests were again employed. Since the shear yield stress is 7, =168 MPa, i.e.,
approximately 1/+/3 of the tensile yield stress o, (= 293MPa), the initial yield of the present
material obeys the von Mises criterion of equation (11). Fig.5 also assures the close agreement
of the present theory with the experiment.

Evolution of the damage components are shown in Fig.6. In this figure, the principal
values b“, ﬁ,, and LA)n are entered, since the directions of the principal stress may play the
most 1mp01’(ant role to the clack opening or closure. As observed in this ﬁgure the damage

component Dll in the principal direction X, is larger than the component DW which _may be
accounted for by the difference in the damage development in two directions x, and %,. This
results is due to the introduction of the modified stress & of equation (3) into the Gibbs
thermodynamic potential I'*(or, D) of equation (2).

From physical point of view, the damage is caused mainly by the microscopic defects
produced by the tensile principal stress, while the compressive principal stress leads to less
material damage than the tensile one because of the crack closure effect. Therefore, the actual



material behavior can be properly described by the present formulation.

Furthermore, the damage variable ﬁn of the principal direction X, does not differ

much from 15“ and D,,. This result shows that the damage development of this material under
torsional loading also has rather insignificant anisotropy even though there exist certain
unilateral nature. Physically, this results is explained by the fact that the damage of this material
mainly occurs by the decohesion of almost the whole boundary of the spheroidized graphite and

the ferrite matrix.

Fig.7 gives a comparison between the observed and the predicted shear modulus G,,.
The shear modulus G,, decreases according to the damage growth, and leads to about 93% of

its initial value at fracture.
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Shear strain y

Fig.5 Experimental and predicted shear stress-shear strain.
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Fig.6 Predicted result of damage variable under torsion.
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3.4 Comparison of the damage surface

Fig.8 shows the initial, subsequent and final damage surfaces obtained by the
experiments and the prediction of the theoretical damage surface (17), respectively. The
symbols O, [0 and A correspond to the initial, subsequent and final damage surface by
experiments, respectively, while a solid, broken and dotted line represent the predicted results
of the theoretical damage surface of equation (17). The prediction of the damage surfaces is
performed as follows: the value of the axial stress and the shear stress are obtained so that they
can satisfy equation (17), in which the value of B, + B has been prescribed at the uniaxial
stress state corresponding to the initial, subsequent and final states.

As regards the initial damage surface, the experimental results can be described by the
proposed damage surface of equation (17), which has a first quadrant of an ellipse in the space
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Fig.7 Experimental and predicted results of shear modulus under torsion.
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Fig.8 Damage surfaces under combined stress space
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of axial tensile and shear stress. The ellipse of the initial damage surface has the aspect ratio of
o/T=1.46, which is in contrast to the ellipse (o/7 =+/3) of the initial yield surface of von
Mises type. From this difference, it is found that the influence of hydrostatic stress can not be
neglected for damage development due to microcrack nucleation and growth. In the present
theory, this effect has been represented by the term of tror in the damage conjugate force Y of
equation (7), which in turn results from the expression of I'* of equation (2).

On the other hand, the aspect ratio of the subsequent damage surface is o/7 = 1.62,
which is closer to the aspect ratio of von Mises type than that of the initial damage surface. This
is because the increasing plastic deformation of the ferrite matrix will govern gradually the
damage process, and final damage surface, whose aspect o/t is approximately /3, might
have been governed by the ductile damage.

The proposed damage surface and the damage evolution equation derived by the
consistency condition and the normality rule of equation (17) can describe the geometry of each
damage surface. This implies the validity of the introduction of the effect of the current state of
the material damage, the hydrostatic stress and the plastic deformation into the damage surface
of equation (17).

4 EXPERIMENTAL VALIDATION OF DAMAGE POTENTIAL

Though the discussion of the preceding section revealed that there exists the damage
surface in stress space and that the condition of loading / unloading and neutral loading is
sufficiently satisfied [23], the validity of the normality law of the damage surface remains
unconfirmed. Thus, further experimental investigations are necessary to validate the existence
of a damage potential surface. For this investigations a series of experiments are performed to
verify the validation of the assumption of the normality law in the present paper.

Let us first note that the normality law of the damage evolution should be discussed not
in stress space but in the space of damage conjugate force. This is due to the fact that, though
the stress space can give reversed directions under some loading conditions, the damage
evolution can be always positive unless there are healing effects. On the other hand, the damage
conjugate force is always positive in the space of axial-torsional stress. Therefore, the normality
law must be examined in the space of damage conjugate force. It should be noted that the
material constants 9, through &, must be determined so that the damage behavior of the
specific material may be described properly. We must select such material constants that the
damage conjugate force equation (16) are negative if the healing effect of damage will occurs
under the corresponding stress states (for instance, 4, =¥, =9, =0, ¥,>0 under stress
state o, <0, tro>0).

4.1 Procedure of Experiment

First, we will employ the tubular specimens which we used before in the experimental
verification of the damage surface [23]. Each specimen is subjected to loading along the three
different proportional loading paths A: O-A,-A;-A,, B: O-B,-B,-B, and C: O-C,-C,-C, as
shown in Fig. 12. In this figure, A,, B, and C, are the stress states on the initial damage surface,
while A,, B, and C, are on the subsequent damage surface[23]. Furthermore, A,, B, and C, are
the stress states before the final fracture. Then, at the stress states A, B, C,, A,, B, and C,,
Young's modulus E,, Poisson's ratio »,, and Shear modulus G,, were determined with
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Fig.9 Stress paths for verification of normality law of damage surface
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confident coefficient of 99%.
The components

modulus G, with material constants (25) obtained from equation (6) as follows:

D,,, D,, and D,,of the damage tensor D on the each stress state
were calculated by the equations of Young’s modulus E,, Poisson’s ratio v, and the shear

E

E =
V2B {(9, + 90,)uD + (9, + 9,)D, }

v, —{20,ttD + 9,(D,, + Dy,)}

P TTR2E (9, 0, )uD + (9, +9,)D, ]

E()

G, =

P 2014y 2B {8,(1+ 0D + 9,(1+ £)D, )

(26)

@7

(28)

where the damage component D,, has been excluded in equation (28), since the component

D,, has very small value in comparison with the other components D,, D,, and D,,.

experimental values of E,, v, and G,, with confidence coefficient of 99%.

By solving these equations as simultaneous equations of the three unknowns of D,
D,, and D,,, the experimental values of the damage variable can be obtained. However, the
simultaneous equations by use of E,, v, and G,, obtained by experiments do not always
furnish physically admissible set of the values of D,,, D,, and D,,. Therefore, in the present
paper, the values of D,,, D,, and D, are determined so that E,, v, and G, calculated by

equations (26)~(28) with the material constants (25) may exist in the confidence interval for

4.2 Comparison between experiment and theory
Figs. 10(a) and (b) show the relation between the damage variable D,,-D,, and D, -
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Fig.10 Damage development along the corresponding loading path A, B and C.

D,,. Three lines and symbols show the predicted and experimental results for the
corresponding paths A, B and C. The experimental results on each path show a good agreement
with the theoretical one. Furthermore, as observed in Figs.13(a) and (b), the development of
damage along each path tends to isotropic, namely the slope of the tangent of each line leads to
7/4. This feature of insignificant anisotropy may be accounted for by the damage development
observed in Fig.7.

Figs. 11 (a) and (b) show the initial and the subsequent damage surfaces and the
direction of damage evolution obtained by the experiments in the space of the damage conjugate
force, projected on Y,-Y,, and Y, -Y,, plane. The directions of damage growth on the stress
point A,, B, C,, A, B, and C, were obtained from Figs.10(a) and (b).

As observed in the initial and the subsequent damage surface covered by experiments,
the range that the damage conjugate force can vary is very narrow. Therefore, the proposed
damage evolution equations (20) which is derived by assuming the normality law of the damage
surface can be nearly isotropic. The directions of the stress states A, B, and C, on the initial
damage surface, and the directions of the stress states A|, B, and C, on the subsequent damage
surface can be found to satisfy the normality law because each direction is almost perpendicular
to the initial and the subsequent damage surface described by equation (17).

From these results, it follows that the proposed damage surface of equation (17) is
found to be identical to the damage potential, and that the assumption of the damage potential
and the corresponding normality law in deriving the damage evolution equation is certified.

5. CONCLUSIONS

Constitutive and the damage evolution equations of the elastic-plastic-damage materials
were developed based on irreversible thermodynamics, and their validity was discussed by
performing a series of experiments under combined state of stress. The conclusions obtained
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Fig.11 Directions of damage development in the space of damage conjugate force

from the present work are summarized as follows:

1) Itwas found that the employment of the Gibbs thermodynamical potential was appropriate
to relate the damage experiments in stress space to the present theory.

2) The resulting constitutive and damage evolution equations could describe the anisotropic
change in the elastic properties of the spheroidized graphite cast iron due to damage with
good agreements.

3) The proposed damage surface was verified to describe the experimental initial and the
subsequent damage surface expressed in stress space properly. This is because that the
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effects of the hydrostatic stress, plastic deformation and the current damage state in the
proposed damage surface are effectively introduced.

The direction of the experimental damage rate vectors is confirmed to coincide with the
outward normal of the initial and subsequent damage surface in the space of the damage
conjugate force. This validates the existence of the damage potential and the normality law
on damage evolution, which are the common postulation in deriving the damage equation by
use of damage mechanics based on irreversible thermodynamics.
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ABSTRACT

In this paper the kinematics of damage for finite strain, elasto-plastic deformation is
introduced using the fourth-order damage effect tensor through the concept of the effective
stress within the framework of continuum damage mechanics. In the absence of the
kinematic description of damage deformation leads one to adopt one of the following two
different hypotheses for the small deformation problems. One uses either the hypothesis
of strain equivalence or the hyphothesis of energy equivalence in order to characterize the
damage of the material. The proposed approach in this work provides a general description
of kinematics of damage applicable to finite strains. This is accomplished by directly
considering the kinematics of the deformation field and furthermore it is not confined
to small strains as in the case of the strain equivalence or the strain energy equivalence
approaches. In this work, the damage is described kinematically in both the elastic domain
and plastic domain using the fourth order damage effect tensor which is a function of the
second-order damage tensor. The damage effect tensor is explicitly characterized in terms
of a kinematic measure of damage through a second-order damage tensor. Two kinds
of second-order damage tensor representations are used in this work with respect to two
reference configurations. The finite elasto-plastic deformation behavior with damage is
also viewed here within the framework of thermodynamics with internal state variables.
Using the consistent thermodynamic formulation one introduces seperately the strain due
to damage and the associated dissipation energy due to this strain.

1 Theoretical Preliminaries

A continuous body in an initial undeformed configuration that consists of the mate-
rial volume Q° is denoted by C°, while the elasto-plastic damage deformed configuration
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at time ¢ after the body is subjected to a set of external agencies is denoted by C*. The
corresponding material volume at time, t is denoted by Q°. Upon elastic unloading from
the configuration C* an intermediate stress free configuration is denoted by C%. In the
framework of continuum damage mechanics a number of fictitious configurations, based
on the effective stress concept, are assumed that are obtained by fictitiously removing all
the damage that the body has undergone. Thus the fictitious configuration of the body
denoted by C* is obtained from C* by fictitiously removing all the damage that the body
has undergone at C*. Also the fictitious configuration denoted by C? is assumed which is
obtained from C% by fictitiously removing all the damage that the body has undergone
at C%. While the configuration CP is the intermediate configuration upon unloading
from the configuration C*. The initial undeformed body may have a pre-existing damage
state. The initial fictitious effective configuration denoted by C° is defined by removing
the initial damage from the initial undeformed configuration of the body. In the case of
no initial damage existing in the undeformed body, the initial fictitious effective configu-
ration is identical to the initial undeformed configuration. Cartesian tensors are used in
this work and the tensorial index notation is employed in all equations. The tensors used
in the text are denoted by boldface letters. However, superscripts in the notation do not
indicate tensorial index but merely stand for corresponding deformation configurations
such as "e” for elastic, "p” for plastic, and ”d” for damage etc. The barred and tilded
notations refer to the fictitious effective configurations.

2 Description of Damage State

The damage state can be described using an even order tensor (Leckie [5], Onat [11]
and Betten [1]). Ju [4] pointed out that even for isotropic damage one should employ a
damage tensor(not a scalar damage variable) to characterize the state of damage in mate-
rials. However, the damage generally is anisotropic due to the external agency condition
or the material nature itself. Although the fourth-order damage tensor can be used di-
rectly as a linear transformation tensor to define the effective stress tensor, it is not easy
to characterize physically the fourth-order damage tensor compared to the second-order
damage tensor. In this work, the damage is considered as a symmetric second-order ten-
sor. However, damage tensor for the finite elasto-plastic deformation can be defined in
two reference systems [9]. The first one is the damage tensor denoted by ¢ representing
the damage state with respect to the current damaged configuration, Ct. Another one is
denoted by ¢ and is representing the damage state with respect to the elastically unloaded
damage configuration, C%. Both are given by Murakami [8] as follows

3
dij = Z(ﬁkﬁfﬁf (no sum in k) (1)
k=1
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and

3
Yij = Zgbkr“nf 7§ (no sum in k) (2)
k=1
where 7f and m® are eigenvectors corresponding to the eigenvalues, ér and @y, of the
damage tensors, ¢ and ¢, respectively.

3 Fourth-Order Anisotropic Damage Effect Tensor

In a general state of deformation and damage, the effective stress tensor & is related
to the Cauchy stress tensor o by the following linear transformation (Murakani and Ohno [10])

Gij = Mijon (3)
where M is a fourth-order linear transformation operator called the damage effect tensor.
Depending on the form used for M, it is very clear from equation (3) that the effective
stress tensor & is generally nonsymmetric. Using a non-symmetric effective stress tensor
as given by equation (3) to formulate a constitutive model will result in the introduction of
the Cosserat and a micropolar continua. However, the use of such complicated mechanics
can be easily avoided if the proper fourth-order linear transformation tensor is formulated
in order to symmetrize the effective stress tensor. Such a linear transformation tensor
called the damage effect tensor is obtained in the literature [6, 13] using symmetrization
methods. Ome of the symmetrization methods given by Cordebois and Sidoroff {2] and
Lee et al. [6] is expressed as follows

G = (0 — bux) Powm(d — ¢50)"? (4)
The fourth-order damage effect tensors corresponding to equations (4) is defined such
that

Mgt = (6 = ¢u)™2(05 — &) ™" (5)

4 The Kinematics of Damage for Elasto-Plastic Be-
havior with Finite Strains

4.1 A Multiplicative Decomposition

A schematic drawing representing the kinematics of elasto-plastic damage deforma-
tion is shown in Figure 1. C° is the initial undeformed configuration of the body which
may have an initial damage in the material.
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Figure 1: Schematic representation of elasto-plastic damage deformation configuration

C* represents the current elasto-plastically deformed and damaged configuration
of the body. The configuration C° represents the initial configuration of the body that
is obtained by fictitiously removing the initial damage from the C° configuration. If the
initial configuration is undamaged consequently there is no difference between configura-
tions C° and C°. Configuration C* is obtained by fictitiously removing the damage from
configuration C*. Configuration C? is an intermediate configuration upon elastic unload-
ing. In the most general case of large deformation processes, damage may be involved
due to void and microcrack development because of external agencies. Although damage
in the microlevel is a material discontinuity, damage can be considered as an irreversible
deformation process in the framework of Continuum Damage Mechanics. Furthermore,
one assumes that upon unloading from the elasto-palstic damage state, the elastic part
of the deformation can be completely recovered while no additional plastic deformation
and damage takes place. Thus upon unloading the elasto-plastic damage deformed body
from the current configuration C* will elastically unload to an intermediate stress free
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configuration denoted by C% as shown in Fig 1. Although the damage process is an
irreversible deformation thermodynamically, however, deformation due to damage itself
can be partially or completely recovered upon unloading due to closure of micro-cracks or
contraction of micro-voids. Nevertheless, recovery of damage deformation does not mean
the healing of damage. No naterials are brittle or ductile. The deformation gradient
tensor and the Green deformation tensor of the elasto-plastic damage deformation can be
obtained through Path I, Path II or Path III as shown in Figure 1. Considering Path I
the deformation gradient referred to the undeformed configuration, C° is denoted by F
and is polarly decomposed into the elastic deformation gradient denoted by F°® and the
damage-plastic deformation gradient denoted by F% such that

Fy = Fiby (6)
The elastic deformation gradient is given by
(91‘,'

dp
oz y

F = (7)

The corresponding damage-plastic deformation gradient is given by

82:-
dp t
Fij = —-——j (8)

The Right Cauchy Green deformation tensor, C, is given by
C; = FXFLF: . F (9)

kit nm* mj
The finite deformation damage models by Ju [3] and Zbib [17] emphasize that ”added
flexibility” due to the existence of microcracks or microvoids is already embedded in the
deformation gradient implicity. Murakami [9] presented the kinematics of damage defor-
mation using the second-order damage tensor. However, the lack of an explicit formula-
tion for the kinematics of finite deformation with damage leads to the failure in obtaining
an explicit derivation of the kinematics that directly consider the damage deformation.
Although most finite strain elasto-plastic deformation processes involve damage such as
micro-voids, nucleations and micro-crack development due to external agencies, however,
only the elastic and plastic deformation processes are cosidered kinematically due to the
complexity in the involvement of damage deformation. In this work, the kinematics of
damage will be explicitely characterized based on continuum damage mechanics. The
elastic deformation gradient corresponds to elastic stretching and rigid body rotations
due to both internal and external constraints. The plastic deformation gradient is arising
from purely irreversible processes due to dislocations in the material. Damage may be
initiated and evolves in both the elastic and plastic deformation processes. Particularly,
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damage in the elastic deformation state is termed elastic damage which is the case for most
brittle materials while damage in the plastic deformation state is termed plastic damage
which is mainly for ductile materials. Additional deformation due to damage consists of
damage itself with additional deformation due to elastic and plastic deformation. This
causes loss of elastic and plastic stifiness. In this work, kinematics of damage deformation
is completely described for both damage and the coupling of damage with elasto-plastic
deformation. The total Lagrangian strain tensor is expressed as follows

1 1 .
& = §(Fﬂ”Fg — &) + §Fr‘1i1’:'(kaFkn — On) F
= E¥ + F¥et F

mi-mn

= EP+E (10)

where €% and £° are the Lagrangian damage-plastic strain tensor and the Lagrangian
elastic strain tensor measured with respect to the reference configuration C°, respectively.
While ¢ is the Lagrangian elastic strain tensor measured with respect to the intermediate
configuration C%. Similiarly, the Eulerian strains corresponding to deformation gradients
F¢ and F% are given by

1 -1 —1
€y = ;0,-F FY) (11)
¢ = Lo, - FEY (12)
ij 2 1 ki kj

The total Eulerian strain tensor can be expressed as follows

. .e e~! _dp pe-!
& = €+ Fg ek,

= & +e7 (13)

The strain e? is refered to the intermediate configuration C%, while the strains ¢, €°,
and € are defined relative to the current configuration as a reference. The relationship
between the Lagrangian and Eulerian strains is obtained directly in the form

& = Freukly; (14)

The kinematics of finite strain elasto-plastic deformation including damage is completely
described in Path 1. In order to describe the kinematics of damage and plastic deformation,
the deformation gradient given by equation (6) may be further decomposed into

Fy = FiFgF (15)
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However, it is very difficult to characterize physically only the kinematics of deformation
due to damage inspite of its obvious physical phenomena. The damage, however, may be
defined through the effective stress concept. Similarly the kinematics of damage can be
described using the effective kinematic configuration. Considering Path II the deformation
gradient can be alternatively expressed as follows

Fy = FiFgF1.F% (16)

mn’ nj

where F? is the fictitious damage deformation gradient from configuration C* to C* and
is given by

_ Oz;
d i
d - =t 1
i3 af]' ( 7)
The elastic deformation gradient in the effective configuration is given by
_ 0z,
F; = 57 (18)

J
The corresponding plastic deformation gradient in the effective configuration is given by

_ oz?
o= 2 (19)
K 0X;

while the fictitious initial damage deformation gradient from configuration C° to C° is
given by

0X;
Fdo — :
ij a Xj (20)
Similar to Path I, the Right Cauchy Green deformation tensor, C, is given by
Ci; = F‘,‘fl‘}cF:pF‘;qF‘;F—',ﬁnF‘,frFﬂF‘g? (21)

The Lagrangian damage strain tensor measured with respect to the fictious configuration
C! is given by

1 -, -
& = 5(F,;‘,.F,;”j—(5,‘]‘) (22)

g

and the corresponding Lagrangian effective elastic strain tensor measured with respect to
the fictious configuration C? is given by

=€ 1 e o
&ij = §(FlciFI:j_6iJ') (23)
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The Lagrangian effective plastic strain tensor measured with respect to the fictious un-
damaged initial configuration C° is given by

& = S(FLFL—by) (24)

The total Lagrangian strain tensor is therefore expressed as follows

1 = ' 1. o ( I I mdo 1= o e I I do
Es = 5(FEFE = b) + P (FFl, — ) P + S P (Fo B — 6,,) Fo F

9 ni qr— gs sm* mj

nw® rn\* gr- gs

1-, - = = - = =
+ o P Frn (P Fgy ~ b)) En L B (25)
The Lagrangian initial damage strain tensor measured with respect to the reference con-
figuration C° is denoted by

1

£ = LREES ) (26)

The Lagrangian plastic strain tensor measured with respect to the reference configuration
C” is denoted by

& = F,g°e*,;mFd; (27)

m

One now defines the Lagrangian elastic strain tensor measured with respect to the refer-
ence configuration C° as follows

gfj = F‘:fF:kE_;mF::"F%O (28)
and the corresponding Lagrangian damage strain tensor measured with respect to the
reference configuration C° is given by

witwn'n mr- rst gj

£4 = F&Fs Feel Fe FrFe (29)

The total Lagrangian strain is now given as follows through the additive decomposition
of the corresponding strains

& = g-go + gf? + gf, + E—f] (30)

Finaly Path III gives the deformation gradient as follows

F; = FiFgFo.Fy (31)
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~d ~
where F' is the fictious damage deformation gradient from configuration C? to C% and
is given by
d
sa _ Oz

(32)

and the corresponding plastic deformation gradient in the effective configuration is given
by

= ozt
P = =

Similar to Path II, the Right Cauchy Green deformation tensor € is given by

Ci = FisFlFaFaFe, Fo o Fe (34)
The Lagrangian damage strain tensor measured with respect to the fictitious intermediate
configuration C? is given by

1 -, ~
= 5(F,;’,.F,;’j—cs,~) (35)

ij
The total Lagrangian strain tensor is expressed as follows

1_o"o 1‘c~ 7 rndo 1_o"' rd 1 n do
gij = §(det Flgg _6ij) + §Fr¢rili(FfmFI€n—6mﬂ)F:j + EFr‘i FrPn(F:rF:s _JrS)Ffme(ritj

wit nw” ra\* grfgs sm* mk

1- orp I e e d P do
+§F"~F” FA(FLFy, — &) o FE FS (36)
The Lagrangian damage strain tensor measured with respect to the reference configuration
C"° is denoted by
Ef = FXF?. et FPFE (37)

The Lagrangian elastic strain tensor measured with respect to the reference configuration
C”° is denoted by

gfi = F‘l‘:oplglpglkE:nnF:qF‘:rF:; (38)
The corresponding total Lagrangian strain is now given by
_  fdo & cd e

i = EF+ELTEL+ES (39)

The total Lagrangian strain tensors obtained by considering the three paths are given by
equations (10), (30) and (39). From the equivalency of these total strains, one obtains
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the explicit presentations of the kinematics of damage as follows. With the assumption
of the equivalence between the elastic strain tensors given by equations (10) and (39),
the damage-plastic deformation gradient given by (8) and the Lagrangian damage plastic
strain tensor can be expressed as follows

d Fdo Fp £
Ff = FeRgR (40)
and
d; cdo o cd
Furthermore one obtains the following expression from equations (30) and (39) as follows
EG+E8 = ER+E5 (42)

which concludes that C? and CP are the same. Substituting equations (29), (37) and (38)
into equation (42), one obtains the effective Lagrangian elastic strain tensor as follows

By = FEFLJet, — Foth e+ Pt AL, P (43)

gmtqr-rn nst sy

Using equations (28) and (43) one can now express € as follows

A _ e d [ fd Fd
& = & — Fri&mnFuj + Frieon Fy; (44)
This expression gives a general relation of the effective elastic strain for finite strains of
elasto-plasic damage deformation. For the special case when one assumes that
& — Frma by = 0 (45)

mi-mn’ nj
equation (44) can be reduced to the following expression

& = Flgifizﬁ}‘; (46)
This relation is similar to that obtained without the consideration of the kinematics of
damage and only utilizing the hypothesis of elastic energy equivalence. However, equa-
tion (46) for the case of finite strains is given by relation (44) which cannot be obtained
through the hypothesis of elastic energy equivalence. Equation (45) maybe valid only for
some special cases of the small strain theory.

4.2 Fictitious Damage Deformation Gradients

The two fictitious deformation gradients given by equations (17) and (32) may
be used to define the damage tensor in order to describe the damage behavior of solids.
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Since the fictitious effective deformed cofiguration denoted by C* is obtained by removing
the damages from the real deformed configuration denoted by C?, therefore the differ-
ential volume of the fictitious effective deformed volumes denoted by df2¢ is obtained as
follows [12]

dQt dQt — d0e

V=81 - )1 - o) ast (47)
or
ot = J4d (48)

where U is the volume of damage in the configuration C* and J¢ is termed the Jacobian
of the damage deformation which is the determinant of the fictitious damage deformation
gradient. Thus the Jacobian of the damage deformation can be written as follows

7= |
1
= = = = (49)
VA =6)(1—d2)(1 - )
The determinant of the matrix [ a] in equation (??) is given by
[Tall = [[6)7] [[a]] [[b]]
= [[a]]
1
= - = = (50)
\ﬁl — ¢1)(1 = ¢2)(1 — ¢s)
Thus one assumes the following relation without loss of generality
Fy = [6— ¢l (51)

Although the identity is established between J? and |a|, however, this is not sufficient
to demonstrate the validity of equation (51). This relation is assumed here based on
the physics of the geometrically symmetrized effective stress concept {12]. Similiarly, the

~d
fictitious damage deformation gradient F can be written as follows

FE = [6;— il (52)
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Finally, assuming that £ = % based on equation (42) the relations between F and F* )
and ¢ and ¢ are given by

F = FLFSFg (53)

L)

and

©ij F ,f,.d)k,F,j._' (54)

5 Irreversible Thermodynamics

The finite elasto-plastic deformation behavior with damage can be viewed within the
framework of thermodynamics with internal state variables. The Helmholtz free energy
per unit mass in an isothermal deformation process at the current state of the deformation
and material damage is assumed as follows:

U= ¢+ T (55)

where v is the strain energy which is a purely reversible stored energy, while T is the
energy associated with specific microstructural changes produced by damage and plastic
yielding. Conceptionally, the energy T is assumed to be an irreversible energy. In generall,
an explicit presentation of the energy T and its rate T is limited by the complexities of the
internal microstructural changes, however, only two internal variables which are associated
with damage and plastic hardening, respectively are considered in this work. For the sake
of a schematic description of the above stated concepts, the uniaxial stress-strain curves
shown in Figure 2 are used. In Figure 2, E is the initial undamaged Young’s modulus,
E is the damaged Young’s modulus, S is the second Piola Kirchhoff stress, and £ is the
Lagrangian strain. Eventhough these notations are for the case of uniaxial state, they
can be used in indicial tensor notation in the equations below without loss of generality.
Refering to the solid curve in Figure 2, the total Lagrangian strain tensor £ is given by

E; = EL+EG+ES (56)

where E? is the plastic strain tensor, £° is the elastic strain tensor, and &4 is the additional
strain tensor due to damage. Comparing equations (10) and (56) one notes that

dp  __ d
&F = EL+E (57)
Furthermore the additional strain tensor due to damage can be decomposed as follows

d __ ! d'’
£y = 5;‘].+£,.J. (58)
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Figure 2: Schematic representation of elasto-plastic damage strain increments in the case
of a uniaxial stress-strain curve

Furthermore the additional strain tensor due to damage can be decomposed as follows
£8 = £5+€F (58)
where £%" is the irrecoverable damage strain tensor due to lack of closure of the micro-

cracks and microvoids during unloading, while &% is the elastic damage strain due to
reduction of the elastic stiffness tensor. tensor,£Z due to unloading can be obtained by

£F = EG+EL (59)
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The srain energy 1 which is shown as the shaded triangular area in Figure 2 is assumed
as follows

1
Y = '2;55Eijlc155 (60)

where p is the specific density. Furthermore this strain energy can be decomposed into
the elastic strain energy ¢ and the damage strain energy ¢ as follows

b = Yt +yf (61)
The elastic strain energy, ¥¢ is given by
Yt = ;—pé’ijijklé',‘j, (62)
and the corresponding damage strain energy v is given by
W= EEBEl — o Eont (63)

where E and E are the initial undamaged elastic stiffness and the damaged elastic stiffness,
respectively. These stiffnesses are defined such that

_ v
Eijkl 6—6,?85—,& (64)
and
A
., - [
E;]kl aggag’ﬁ (6‘))

The damaged elastic stifness in the case of finite deformation is given by Park and Voyi-
adjis {12] as follows

Eijrs = Nilcleklquprqs (66)
where
Nuji = M
= a,-“,claj_‘1 (67)

The elastic damage stiffness given by equation (66) is symmetric. This is in line with the
classic sense of continnum mechanics which is violated by using the hypothesis of strain
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equivalence. Using the similar relation between the Lagrangian and the Eulerian strain
tensors given by equation (14), the corresponding strain energy given by equation(60) can
be written as follows
1
Y = ?pf,ﬁnFmiFnjEijkzFrkFazfﬂ

1
= %frEr;nAmnrsez (68)

where €Z is the Eulerian strain corresponding to the Lagrangian strain shown in equa-
tion (59), and A is termed the Eulerian elastic stiffness which is given by

Amm‘s = FmiFnjEijlerszl (69)

The second Piola-Kirchhoff stress tensor, 8 is defined as follows
oy
P ocE
e
Paee,

S,'j =
(70)
The second Piola-Kirchhoff stress tensor, 8 is related to the Cauchy stress tensor, o by
the following relation
S5 = JF;'0umFim (71)

The Kirchhoff stress tensor T is related to the Cauchy stress tensor by

7;1' = JO’,'J' (72)
The rate of the Helmholtz free energy is then given as follows

U o= 47T (73)

If the deformation process is assumed to be isothermal with negligible temperature non-
uniformoties, the rate of the Helmholtz free energy can be written using the first law of
thermodynamics (balance of energy) as follows.

¥ = TyDy-Tn (74)

where T is the temperature and 7 is the irreversible entropy production rate. The product
Tn represents the energy dissipation rate associated with both the damage and plastic
deformation processes. The energy of the dissipation rate is given as follows

Ty = Suéf +8ueh -7 (75)
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The first two terms on the right-hand side of equation (75) represent a macroscopically
non-recoverable rate of work expanded on damage and plastic processes, respectively.
Furthermore the rate of the additional strain tensor due to damage is given by

£ = £ 48 (76)
If we assume that a fraction of the additional strain tensor can be recoverd during unload-
ing, then the elastic damage tensor due to the reduction of the elastic stiffness is given
by
Ef = c& (77)
where c is a fraction which ranges from 0 to 1. Then the permenant damage strain due
to lack of closure of micro-cracks and micro-cavities is given by
Y = (1-c)& (78)
Thus the energy of the dissipation rate given by equation (74) can be written as follows
TT] = (1 - C)S,]g:; + 81155 - T
= 1-oTyDs + TPy - T (79)
The rate of energy associated with a specific microstructural change due to both the
damage and the plastic processes can be decomposed as follows

T = T¢4+7° (80)
where one defines that

pT = Viydy (81)
and

pYP = Aijd; (82)

where Y and A are the general forces conjugated by damage and plastic yielding, respec-
tively. They are defined as follows

ov
Vi; Pa—(m—j
Oyed oY
e 83
P96 "o (83)
ov

Aij = pmr— 84
¥ aai]_ ( )

In view of equation (79) one notes that it is equivalent to the work by Lubarda and

Krajcinovic (7] when (1 —¢) = 1.
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6 Constitutive Equation for Finite Elasto-Plastic De-
formation with Damage Behavior

The kinematics and the thermodynamics discussed in the previous sections pro-
vide the basis for a finite deformation damage elasto-plasticity. In this section the basic
structure of the constitutive equations are reviewed based on the generalized Hooke's law,
originally obtained for small elastic strains such that the second Piola-Kirchoff stress ten-
sor 8 is the gradient of free energy ¥ with respect to the Lagrangian elastic strain tensor
EF given by equation (70). Referring to Figure 2 one obtains the following relation when
generalized to the three dimensional state of stress and strain

Si; = Eiyn(En—EL—ER) (148a)
= Eyukl (148b)
= Eyu(Ey +EF) (148¢)
= Eyn(Eu—EF — E7) (148d) (85)

From the incremental analysis one obtains the following rate form of the constitutive
equation by differentiating equation (148a)

Sij = Eijn(u—EL—ER) (86)
Consiquently the constitutive equation of the elasto-pastic damage behavior can be writ-
ten as follows

Si; = ERNE (87)
where EP” is the damage elasto-plastic stifness and is expressed as follows
EiIJ?IS = Eyj— B, — E{‘iﬂ (88)

where EP is the plastic stiffness and E* is the damage stiffness. Both EF and E? are
the reduction in stiffness due to the plastic and damage deteriorations, respectively. The
plastic stiffness and the damage stiffness can be obtaind by using the flow rule and damage
evolution law, respectively. By assuming that the reference state coincides with the current
configuration, the second Piola-Kirchoff stress rate, S can be replaced by the corotational
rate of the Cauchy stress tensor ¢ and the rate of Lagrangian strain tensor £ by the
deformation rate D as follows

0 = EDiDu (89)

The corotational rate of the Cauchy stress tensor, ¢ is related to the rate of the rate of
the Cauchy stress tensor, & as follows

gi; = ('T,'j - W:kakj + UikW]:j (90)
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where
wW* = W-Wwr-w¢ (91)

The details of the complete constitutive models using the proposed kinematics and the
evolution laws of damage will be stated in the forthcoming paper.

7 CONCLUSION

The fourth-order anisotropic damage effect tensor, M, using the kinematic mea-
sure for damage expressed through the second-order damage tensor @, is reviewed here in
reference to the symmetrization of the effective stress tensor. This introduces a distinct
kinematic measure of damage which is complimentary to the deformation kinematic mea-
sure of strain. A thermodynamically consistent evolution equation for the damage tensor,
¢ together with a generalized thermodynamic force conjugate to the damage tensor was
presented in the paper by Voyiadjis and Park (14, 15]. Voyiadjis and Venson [16] quanti-
fied the physical values of the eigenvalues, ¢ (k = 1,2, 3), and the second-order damage
tensor, ¢, for the unidirectional fibrous composite by measuring the crack densities with
the assumption that one of the eigen-directions of the damage tensor coincides with the
fiber direction.

The fourth-order anisotropic damage effect tensor used here is obtained through
the geometrical symmetrization of the effective stress [2]. This tensor is used here for the
kinematic description of damage. The explicit representation of the fourth-order dam-
age effect tensor is obtained with reference to the principal damage direction coordinate
system.

The damage elasto-plastic deformation for finite strain is also described here using
the kinematics of damage. In this work the multiplicative decomposition of the defor-
mation gradient and the additive decomposition of the Lagrangian strain tensor are used
in order to describe the kinematics of damage. Both formulations are used to deduce
seperately the strain due to damage and the coupled elasto-plastic, elastic-damage and
plastic-damage strains.

The thermodynamic formulation introduces seperately the strain due to damage
and the associated dissipation energy due to this strain as shown by equations(63). In
the previous work by Voyiadjis and Park [14] this term was ignored due to the lack of the
formulation of the kinematics of strain due to damage. A new free energy is presented
in this work for finite elasto-plastic deformation with damage. Using this free energy the
generalized thermodynamic force associated with the second-order damage tensor can be
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derived. Using the consistent thermodynamic formulation one introduces seperately the
strain due to damage and the associated dissipation energy due to this strain.

Both constitutive relations between the rate of the second Piola-Kirchhoff stress
tensor and the Lagrangian strain rate, and between the corotational rate of the Cauchy
stress and the deformation rate are established for the elasto-plastic model with damage.
The resulting tangential elasto-plastic damage stiffness is obtained in the form of an
additive decomposition of the respective elastic, plastic and damage stiffnesses.
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1. INTRODUCTION

Spatial randomness, as opposed to periodic geometries, may have a significant effect on
damage formation in composite materials. This issue was studied extensively over the last few
years [1, 2, 3, 4], and in this paper we report new results on effects of scale and boundary
conditions in the determination of meso-scale continuum-type models for elasticity and
fracture. These models are formulated on scales larger than the single inclusion, yet smaller
than the conventional continuum limit. The latter corresponds to the classical concept of a
Representative Volume Element (RVE) which presupposes the presence of a statistical
representation of the microstructure with all the typical microheterogeneities, and thus calls for
relatively large volumes. Indeed, according to Hill [S], an RVE should be such that the relations
between volume average stress and strain should be the same regardless of whether kinematic or
stress boundary conditions have been used.

In our previous papers {2, 3, 4], we have developed a classification of damage states and
patterns as well as a characterization of their statistical scatter as a function of the spatial
resolution scale. This involves two parameters - stiffness ratio and strain-to-failure ratio of
both phases - which define a damage plane onto which various aspects of systems's response
are being mapped, thereby resulting in so-called damage maps. However, a comprehensive
study of damage micromechanics requires an understanding of the influence of type of loading
applied through the specimen boundaries on its effective response. Motivated by the earlier
results on elasticity of undamaged random materials [6, 7], in this paper we investigate this
aspect in the context of the out-of-plane elastic and elastic-brittle response of matrix-inclusion
composites with randomly distributed inclusions. That is, we define several types of boundary
conditions and study a range of different responses that may result. The analysis is based on a
representation of the composite by a very fine two-dimensional spring network, whereby
damage evolution is simulated by sequentially removing/breaking bonds in accordance with the
local state of stress/strain concentrations.
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2. TYPES OF BOUNDARY CONDITIONS AND CONSEQUENCES FOR ELASTIC
MODULI

The heterogeneity of many composite materials - i.e., their piecewise continuous nature -
is a primary motivation for introducing an effective continuum approximation. The latter is
typically set up on macroscales, that is, scales which are mathematically infinite compared to the
dimension of a single inclusion (grain). While this is sufficient in many situations where
interest is only in the fields of stress, strain and displacement which vary slowly relative to the
microscale, there is a number of cases where a resolution at intermediate, so-called meso-scales
is necessary. The concept of a meso-scale = L/d is defined in the Fig. 1a) below with the
help of a window of size L relative to the inclusion diameter d.

Figure 1. Two windows of the same scale 8, showing (a) a disordered microstructure,
(b) a disordered microstructure with periodicity L; (c) shows a periodic unit cell.

This window concept [6, 7] allows the formulation of effective constitutive relations on a
given scale §, and immediately raises the question of the choice of boundary conditions which
should thereby be involved. As we have showed in our preceding papers [6, 7], essential [8]
(also called displacement, or Dirichlet)

and natural [8] (also called traction, or Neumann)
H(x) = G- x Vx € 9B, 2

conditions play a fundamental role here. Here, € is a prescribed volume (area) average strain, and
G is a prescribed volume (area) average stress. Adoption of these boundary conditions leads to a
hierarchy of scale-dependent bounds on the macroscopic effective tensor C “ff , that is [9]

cf=sf ' =(sh7"< <sg.>" < (sg)_' <c¥<(cy<(cy<(chH=c’ v <8
3)
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In the above, Cg and Sg stand for effective stiffness and compliance tensors on the scale &,

which were obtained under essential and natural conditions, respectively. It was shown in [10]
that a material’s response under any uniform boundary conditions of mixed type, at any scale 3,
is bounded by (3).

Another viewpoint on this issue is provided by a consideration of finite scale periodicity in
the microstructure. Thus, if L represents a periodic length scale, we are led to Fig. 1b). With a
periodic microstructure there comes naturally a periodic boundary condition

u(x+L) = u(x)+&-x

r
Hx+ L) = —1(x) vre B )

where £ is a prescribed constant strain. The advantage of this approach lies in (i) the removal of

a boundary effect, and (ii) prediction of responses closer to ¢ than those resulting from (1)
and (2) at any fixed 8. The second advantage implies a faster approach to homogenization than
that resulting from either (1) or (2). It is important to note that the periodic unit cell of Fig. 1c)
is a special case of Fig. 1b); it represents a classical concept employed in a large portion of
recent and ongoing work in micromechanics of elasticity, plasticity and damage.

A specimen’s response on the mesoscale (d finite) is, in general, anisotropic. We therefore
employ the radius R

7 2
R=Cy ppax = A/(Cn—czz) /4 +Cyy (5)

of the corresponding Mohr’s circle to quantify a given elasticity tensor, while the trace trCg=

C;;/2 is used to describe this tensor’s fundamental magnitude.

In Fig. 2a) we show the hierarchy (3) in terms of the trace of the effective stiffness tensors
for a matrix-inclusion composite with locally isotropic constituents having inclusions that are 10
times softer. This is the case of a 35% volume fraction of inclusions, with the stiffness of

inclusions being ¢ = 0.1, and that of the matrix being c™ =1. In Fig. 2b) we display the
radii R of the corresponding Mohr’s circle for three boundary conditions ‘dd,” ‘tt” and *dt’ listed
below. As expected, very large windows need to be taken in order to homogenize the material;
this situation gets worse as contrast increases [7]. Thus, a question arises as to a possibility of

finding some other boundary conditions that might more rapidly lead to the response c at
much smaller scales than say 6 = 48 in Fig. 2b). In fact, usual laboratory testing procedures
typically employ mixed boundary conditions, where the displacement is being applied in, say, y-
direction, while surface tractions are zero in the x-direction.

The above considerations lead us to several different conditions shown in Fig. 3. In
particular, we have here:

a) displacement (dd)

b) traction (tt)

¢) mixed: displacement-traction (dt)

d) displacement-periodic (dp)

e) traction-periodic (tp).
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Figure 2a) A hierarchy of scale dependent bounds, normalized by ¢ = 1, of stiffnesses of

the disk-matrix composite of Fig. 1a) at the stiffness contrast C(i)/ "™ = 0.1; b) Radii of
the corresponding Mohr’s circles as function of 0.
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In Figs. 4, 5, and 6 we present the histograms and probability fits to trCy and R as functions

of the window size 8 for the cases of displacement, traction, and mixed boundary condition for a

matrix-inclusion composite at the stiffness contrast 0.1; of course, in the case of traction
. . -1,

conditions we calculate the compliance and show (trSg) ~ in columns ‘tp’ and ‘tt’ of Table 1.

In particular, in each of these Figures, we have five rows, each of which corresponds to & = 3, 6,
12, 24, and 48. As discussed in detail in our papers [4, 7], the most convenient and best justified
probability distribution for composite materials is the beta distribution. It is given by

x=8 -1 | x=38 -1
(82_8]) ( —82—61)

(8,-9)B(ay, a,)

f(x;a])aZy 5], 82) = (6)

where a,, a,, 8, , and d, are adjustable parameters, and B(a,, a,) = ['(x)I['(y)/(['(x, y)) is the
beta function.

It is easily observed that both invariants decrease toward zero as the window size increases,
with the traces being relatively symmetric and all the radii being very non-symmetric. Whereas
this last observation is consistent with the fact that the radius must be a positive valued random
variable, more insight into the matter can be gleaned from the Table 3 below.

The Figures 4 - 6 are augmented by Tables | - 4 which, for five different boundary conditions
and five different &’s, give the following:

Table 1: averages of traces,

Table 2: coefficients of variation (COV) of traces,

Table 3: averages of radii,

Table 4: coefficients of variation (COV) of radii,

All these data are listed in five rows - again corresponding to five window scales reported in
the above figures. In fact, we also provide here the data obtained from the displacement-periodic
(‘dp’) and traction-periodic (‘tp’) conditions, while the displacement, displacement-traction, and
traction conditions are denoted by ‘dd’, ‘dt,” and ‘tt’. The latter were obtained for microstructures
lacking any periodicity (Fig. 1a), while the former did, of course, require a periodicity, such as
shown in Fig. 1b). However, the common characteristic of all the simulated cases was the same
volume fraction of 35%.

It can now be gleaned from Table 1 that ‘dd’ and ‘tt” bound the other three sets of results,
with ‘dt’ being stiffer than ‘dp’, and this one being stiffer than ‘tp’. While Tables 2 and 3 depict
the heuristically expected trends, an entirely new observation follows from Table 4: the COV of

the radius R of either (Cg) or (Sg), for all the boundary conditions studied here, is
approximately constant. The variations that are observed may probably be atiributed to a

limited number of realizations B(®) of the random composite B that were run in the Monte

Carlo sense. In all of the above we used 300 B(w) ‘s at §=3,200at§ =6, 100 at 6 = 12, 50 at
6 =24, and 20 at § = 48.



Table 1: average trace
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dd dp dt tp tt
6=3 0.598 0.567 0.574 0.476 0.469
6=6 0.596 0.056 0.581 0.512 0.523
5=12 0.572 0.561 0.565 0.534 0.535
6=24 0.568 0.559 0.564 0.546 0.549
6=48 0.562 0.558 0.560 0.552 0.553

Table 2: COV of trace

dd dp dt tp tt
6=3 0.096 0.014 0.102 0.054 0.109
6=6 0.035 0.005 0.038 0.021 0.041
6=12 0.016 0.003 0.017 0.008 0.017
6=24 0.005 0.001 0.006 0.003 0.006
5=48 0.002 0.0008 0.002 0.001 0.002

Table 3: average of R

dd dp dt tp tt
6=3 0.018 0.017 0.033 0.144 0.108
8=6 0.009 0.011 0.017 0.058 0.041
8=12 0.0049 0.005 0.008 0.024 0.019
8=24 0.0023 0.003 0.004 0.012 0.002
6=48 0.0012 0.0013 0.0018 0.006 0.004

Table 4;: COV of R

dd dp dt tp tt
§=3 0.566 0.636 0.464 0.530 0.546
6=6 0.576 0.485 0416 0.517 0.536
6=12 0.490 0.498 0415 0.529 0.541
8=124 0.6075 0.511 0.423 0.422 0.593
6=48 0.652 0.613 0.611 0.423 0.627




72

8.0 40.0
70— F— ] 35.0
50—/ e 25.0

4.0 ] 20.0
3.0 4 ] 15.0
2.0 1 10.0

|
N
~
1.0 m—‘ 5.0 A
0.0 A . L NIZFW-». —i

0.4 0.5 0.6 0.7 0.8 0.0 001 002 003 004 005 006
20.0 80.0
175 f— 70.0
15.0

-
] 1

125 — 50.0 \——

10,0 & 40.0 5

= —

75 - 30.0
5.0 }—

A
w111 o !
|

.0
00.4 0.5 0.6 7 0.8 00 001 002 003 004 005 0.06

50.0

40.0 f————1 -

300 - —

200 | -

J .
100} - b o _ - t,g,,]{,,,¥,,,,<,,*v

0 0.03 004 005 0.06

125.0
100.0
75.0
50.0

250} -

G.0

05 0.06
0.4 0.04 00

0.7 0.8

400.0
350.0 |- -
300.0 - = g
250.0
2000}t - - — — -
150.0 | R Ak e S
100.0 |—— —
50.0 b—-— —f ~

0.0
0.4 0.5 0.6 0.7 0.8

0.01 002 003 004 005 0.06
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of a matrix-inclusion composite at contrast 0.1
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Figure 5. The histograms and probability fits to trCy (left column) and R (right column) as

functions of the window size 8 = 3, 6, 12, 24, and 48 under mixed (displacement-traction)
boundary condition of a matrix-inclusion composite at contrast 0.1
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matrix-inclusion composite at contrast 0.1
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3. SCALE EFFECTS FOR SEVERAL BOUNDARY CONDITIONS

3.1 The spring network method

Our tool in the investigation of all these responses is a numerical simulation method based
on a very fine two-dimensional spring network representation of the composite [11], whereby
damage evolution is simulated by sequentially removing/breaking bonds in accordance with the
local state of stress/strain concentrations. This spring network method has, in fact, been used in
establishing the results of the previous section, i.e., just in the elastic range. In the following, we
first describe the salient features of this approach, and then turn to a study of the damage
responses.

The continuum composite (the transverse plane of a fiber-matrix composite) is discretized
using a square spring network. Thus, the stiffness tensor of a unit cell of this spring network, mod-
eling an isotropic continuum, is given as

k
Cy =0Cp= 3 Cp=0Cy =0 @)

where k is half the bond spring constant. In case of calculation of effective stiffnesses of

undamaged materials at stiffness contrast C(') / C(m) = 0.1 we choose the inclusion diameter, d,
to be ten times the lattice spacing.

This resolution, however, is not high enough to simulate damage evolution due to the
problem of mesh dependence. Thus, we introduce a refined version of a square lattice model
through the addition of diagonal bonds - a tetratriangular lattice; see [12] for an in-plane
elasticity formulation. This is, in effect, a non-local spring network model since the diagonal
bonds connect second, rather than first, nearest neighbors. Twenty spacings per inclusion for
this diagonal bond model have been found to practically remove the mesh dependence. We
therefore carry out the comparisons of a square lattice and a square lattice with diagonal bonds
at this resolution of twenty spacings - this is discussed further in Section 2.2 below.

The coordinates of inclusions’ centers are generated through a Poisson point process; they are
rounded off so as to place the disk centers on the nodes of the spring network. In order to avoid
the problem of arbitrarily narrow necks between the inclusions, we force the disks centers to be at

least two lattice spacings apart. Next, the spring constants of matrix and inclusion bonds (k(m) and
k(i)) are assigned according as they fall in a given phase, while any bond straddling the circular

- . . . . b . . . .
matrix-inclusion boundaries has its spring constant K assigned according to a series spring sys-

tem weighted by the partial lengths (l(m) and l(i)) of the bonds that belong to the respective matrix
and inclusion domains, that is
o (1 OY Wo_om g
K=o L=t = 1 @®)
™ i

A solution for the displacement field u(x) over the window domain is accomplished by

employing a conjugate gradient method [13] with respect to the total energy (sum of energies
stored in all the spring bonds), while subject to chosen boundary conditions. The total potential
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energy E stored in the network provides a basis for determination of the equivalent, effective
medium, according to the relation

Vs

E=2

£-Cs(w) - € ')

In (9) Vg is the volume of Bg(w).

The spring networks allow a possibility of simulating fracture events, such as a simultaneous
growth of many cracks, through the removal of spring bonds according to their exceeding local
failure criteria, while taking full account of the resulting stress redistribution throughout the lat-
tice. In our two-phase composite two basic failure criteria are needed: failure of matrix bonds and
failure of inclusion bonds; these are expressed in terms of the matrix (inclusion) bond strain rela-
tive to the critical matrix (inclusion) strain

e™2e™  and Y€l (10)

Additionally, we postulate a failure criterion of any bond straddling the circular matrix-inclu-

sion boundaries: the critical strain is weighted by the partial lengths (l(m) and 1 ) of the bond that
belong to the respective matrix and inclusion domains, that is

ESENG!
lee,” | leo Wm0
A e 7] = i (10

3.2 Effects of boundary conditions on damage mechanics of random composites

It is well known that the sensitivity of fracture and damage phenomena to material disorder
is generally higher than that of effective elastic responses. In this section we report our ongoing
research on the dependence of the effective meso-scale damage responses to various types of
boundaries conditions. Two aspects are here of primary interest: the character of damage

patterns and the effective stress-strain curves. For a composite of stiffness contrast C D/t =

10 and strain-to-failure contrast S(Cir)/ei':') = 10, the following boundary conditions are

investigated:
on a square lattice:
- displacement
- traction
mixed (displacement-traction)
- displacement-periodic
- traction-periodic
- periodic-periodic
and on a square lattice with diagonal bonds:
- displacement.
First of all, we note that, for the chosen case of material parameters, cracks form outside the
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inclusions, although fracture is concentrated in their vicinity due to the stress and strain
concentrations there. It is observed from Fig. 7 that the damage patterns strongly depend on the
choice of the boundary conditions. Additionally, as shown in Fig. 8, the effective stress-strain
curves are very sensitive to this choice too. Clearly, the displacement conditions add stiffness
and, in a sense, structural integrity to the material, but, as they change to mixed (displacement-
traction) or entirely traction conditions, the material becomes much weaker. This is also
explained by the fact that the load controlled fracture is unstable.

In accordance with this observation, the effective responses of two displacement controlled
tests, compared in Fig. 7 g) and h), are several times stiffer and stronger than the other ones
involving tractions. Furthermore, the test corresponding to a square lattice without the diagonal
bonds turns out to be stiffer and stronger (vide Fig. 8 b) than the one with such bonds. It is
gratifying, however, that their damage patterns differ very little - compare Figs. 7a) and 7g).
Thus, we may conclude that, the damage (i.e., crack) patterns of elastic-brittle composites with
stiffer and stronger inclusions in anti-plane loading - but not their effective stress-strain curves
- can be adequately simulated by square lattices without resort to tetratriangular ones. This and
other related issues require further investigation in other regions of the parameter plane.
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Figure 7. Crack patterns under (a) displacement, (b) traction, (c) mixed (essential-traction), and
(d) displacement-periodic boundary conditions on a square lattice.
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Figure 7-cntd. Crack patterns under (e) traction-periodic, (f) periodic-periodic conditions on a
square lattice, and (g) displacement conditions on a lattice with diagonal bonds.
For a comparison, (a) is repeated next to (g) as (h)
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Figure 8. Effective stress-strain curves for all the cases of Fig. 7. The lower figure shows a
blowup of cases other than kinematic boundary conditions.
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Abstract

As a result of matrix cracking in fiber reinforced composites, fracture planforms assume a
wide variation of profiles due to the fact that fiber bridging strongly affects the behavior of local
crack fronts. This observation raises the question on the legitimacy of commonly used penny-
shaped crack solutions when applied to fiber reinforced composites. Accordingly, investigation of
the effects of fracture front profiles on mechanical responses is the thrust of this paper. We start
with the solution of a penny-shaped crack in a unidirectional, fiber reinforced composite, which
demonstrates necessarity of considering wavy fracture fronts in fiber reinforced composites. A
theoretical framework for fiber reinforced composites with irregular fracture fronts due to matrix
cracking is then established via a micromechanics model. The difference between small crack-
size matrix cracking and large crack-size matrix cracking is investigated in detail. It is shown that
the bridging effect is insignificant when matrix crack size is small and solution of effective prop-
erty are obtained using Mori-Tanaka’s method by treating cracks and reinforcing fibers as distinct,
but interacting phases. When the crack size becomes large, the bridging effects has to be taken
into consideration. With bridging tractions obtained in consistency with the micromechanics solu-
tion, and corresponding crack energy backed out, the effective properties are obtained through a
maodification of standard Mori-Tanaka’s treatment of multi-phase composites. Analytical solutions
show that the generalization of a crack density of a penny-shaped planform is insufficient in
describing the effective responses of fiber-reinforced composites with matrix cracking. Approxi-
mate solutions that account for the effects of the irregularity of crack planforms are given in
closed forms for several cases, including rectangle, polygon, rhombus, cross and the wavy frac-
ture front.

1. Introduction

Matrix cracking has been observed as one of the major failure modes in a fiber reinforced
ceramic composite material. The failure normally starts from a uniform crack initiation and as
they continue to grow under field use conditions, those cracks finally interact and coalesce to form
a localized failure zone. One technique of monitoring the structure integrity made of these com-
posites is to record the material repsonses in a non-destructive manner. For such applications and
many others, the overall properties of a microcracked composite is critical for the purpose of cor-
relating recorded data to structural integrity. Although there is an extensive body of literature
devoted to addressing cracking induced material behavior changes in composite materials (e.g.,
Taya and Chou, 1981, Zhao et al., 1989, Divert 1986, 1990, Huang et al., 1994a and Hu and
Huang1993 for micromechanics treatments, and Kachanov 1985, 1987 and 1993, Hu and Chan-
dra, 1993, Hu et al 1993a, b, Hu et al. 1994 and Chandra et al. 1995 for numerical treatments), lit-
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tle has been done in terms of addressing the effects of fiber bridging on the overall composite
behavior. Fiber bridging brought about complexity to a ceramic composite material in two
aspects. First, composite behavior changes significantly during its load-carrying life span. When a
fresh composite structure starts initiating small cracks, there is no bridging taking place since the
crack size in this duration is normally smaller than fibers’. As the cracks continue to grow, the
bridging extent expands to resist the crack growth. This process transfers to different stages of a
structural life profile, which has to be known to interpret non-destructive data. Second, the crack
growth in a fiber bridging environment is very complex and the planform of a crack, or the profile
of fracture fronts is being strongly affected by local bridging fibers. Therefore, self-similar crack
growth is to hardly be maintained.

This paper presents a theoretical treatment of effective mechanical repsonses of fiber rein-
forced ceramic composites suffering from matrix cracking with a motivation of including the
effects of fiber bridging and the effects of irregular fracture fronts as a result of continued crack
growth under a fiber bridging environment. In Section 2, a penny-shaped crack with fiber bridging
is considered and the solution reveals a wavy variation of stress intensity factor and energy
release rate along the fracture front, which will subsequently grow into a wavy fracture planform.
Section 3 focuses on the solution of effective properties when the size of irregular planform
cracks is small whereby bridging is insignificant. Section 4 investigated the effective properties of
fiber reinforced ceramic composites under a bridging environment. Simplification of the results
under approximate conditions is presented in Section 5, where the effects of irregular fracture
fronts are investigated. A brief summary of the results are presented in Section 6.

Figure 1. Typical distribution of fibers inside a penny-shaped crack.

2. Growth Of Penny-shaped Cracks In Fiber Reinforced Composites

To illustrate the necessarity of irregular fracture fronts in composite materials, a uni-direc-
tional, fiber reinforced composite, subject to matrix cracking is considered. Assuming that a
remote stress in fiber direction creates the matrix cracking initially in the form of a penny-shaped
crack perpendicular to the fiber direction. The focus here is on the solution of local stress intensity
factors along the fracture front of the penny-shaped crack subject to the remote stress. The details
of fiber distribution inside the penny-shaped crack are to be considered since the bridging trac-
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tions exist over only those areas where a fiber exists. Representative fiber patches inside a penny-
shaped crack are shown in Figure 1, and bridging tractions are imposed over these fiber patches.
The bridging tractions over each patch area are as yet unknown and may vary with the position
inside each fiber patch. We assume that a linear bridging law exists such that the bridging traction,
s, can be related to the crack opening displacement, u, through the following relationship:

u = Ko ¢))

where K is the proportionality constant. The crack opening displacement under the remote stress,
o5, , and bridging tractions can be written as (Fabrikant 1989, Gao and Rice 1987)

w(p,0) = 4H523(a2—p2)v2—%HiJJLWtan_l(%)podpod%

i=15,
@
where s;(r,, f;) represents the as yet unknown bridging traction distribution over the ith fiber
patch, S; is the area of the ith fiber patch with radius a, the integration is carried out over all N

patches inside the penny-shaped crack in order to account for the total crack opening contribution
from all the bridging fiber patches, and

R = [p*+p3-20ppcas (6091, ©)
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Imposing the bridging law over all the fiber patches, we have the following normalized governing
equation:

N
ay (pNT? 2 0, (P 90)  _11PadPoddy o
4[(‘1—!) —(af)z] = e an” Rt = £0,(p,9) (0. €S,i=1,..,N
i=1s, 33
(6)
where x is a dimensionless configuration constant,
K
g- K )
Ha/

The bridging strength increases as the value of x decreases; x varies over a wide range, depending
on the particular bridging configuration. To solve for the unknown bridging tractions, o, (p, ¢, , WE
assume that

M M
G (P ¢9) = z 2 rm(amncosn9+bmnsinn6) (8)

n=0m=0

where (r, q) are the local polar coordinates associated with the ith fiber, a,,, and by, are the
unknown coefficients, and M is the number of terms, which is truncated for the purpose of numer-
ical efficiency. Equation (6) can then be solved by satisfying the integral equation at a sufficient
number of collocation points. It is noted, however, that the integration becomes singular due to R
-> 0 when §; = §;. The integration singularity can be removed by transforming the coordinates
(b by 1O (p ¢’y as follows:

Pocosd, = plgcosd’y + pcosé (98.)

Posing, = p'ysing’y + psing (9b)



84

In the numerical implementation, the collocation points should be evenly distributed over each
fiber in order to secure a spatially smooth, convergent solution. Our numerical calculations show
that very accurate bridging transactions with relative errors of less 5% can be obtained with trun-
cation terms of M = 6 for fiber densities up to 40%.

The normalized stress intensity factor (SIF) can be obtained in terms of bridging tractions
following an approach by Cherepanov (1979):

gt 3 (o0 L) b (10)

Kq i=15, G @ —po—2apocos(¢ 6o

where k, = 2¢3,/ma /n is the stress intensity factor due to remote loading o), , without the presence
of fiber bridging. The energy release rate can be readily evaluated from the SIF (Tada et al. 1985),

2

" K (@) (1
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G(o) =

Simplification of the solution for the fiber-bridged crack system can be achieved if the
bridging force variation inside each fiber is insignificant such that
0,(pg 9y) = G, = constant (12)
and the goveming equation becomes

2]1/2 ZZ o, “- _,( )Podpod% - éoj

(P.0) €S, = 1.....N (13)
If the area S; of each fiber is also very small compared to that of the penny-shaped crack, or a/a¢
>> 1 (a; is the characteristic fiber radius), the equation can be approximately satisfied by collocat-

ing (r, f) at only one particular point inside each fiber. If the choice of that collocation points is
made at the centers, (p,¢,). of each fiber, along with the approximation of integrals, we obtain

ay: (P, 1/2_N .ﬂ: - fo N 14
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where
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where a coordinate transformation similar to that given in Equations (9a, b) is required to elimi-
nate the singularity, ensuring the accurate evaluation of I; for i = j. From Equation (14) or its par-
ent form, Equation (6), we can identify the following three major factors that affect a bridged-
crack system: (1) the dimensionless configuration constant, as characterized by K/Ha in the case
of a linear bridge; (2) the fiber distribution patterns as represented by p,/a and f;; and (3) the ratio
of crack to fiber radius.
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The simplification presented here reduces the solution matrix to a minimum size, allowing
closed-form solutions for certain fiber distribution patterns. For example, we consider a penny-
shaped crack bridged by six symmetric fibers. In this case, all the fibers have equal bridging
transactions of §;/sg (= S4/8,..., S¢/Sp). Equation (14) becomes

a\2 (P2 L o o
4[(;/) ‘(;l)] "(ig,l[u]g:) = E(?:’ (19)
The bridging traction can be given in the closed form as
[GRGIN
S N9/ \&/d 20)
%o

6
B+ Y I,
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It is emphasized here that the simplified solution presented in this section is valid when the
fiber radius is small compared to the penny-shaped crack’s size. Our numerical results for a num-
ber of fiber distribution patterns show that the simplified solution can yield results with an error of
less than 15% for fiber volume fractions as much as 50%. Therefore, use of the simplified solution

can be justified for the most commonly used fiber-reinforced composite systems.
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Figure 2. SIF variations along the front of a penny-shaped crack.

The effect of fiber distribution on the spatial variation of fracture front behavior now can
be brought out. The fiber distribution may vary drastically inside a penny-shaped crack, reflecting
the complexity of processing and the statistical nature of the location of crack nucleation. In order
to examine the effect of fiber distribution patterns on the fracture front behavior, a typical offset-
ting arrangements with seven fibers inside the penny-shaped crack (average fiber spacing, a/a =
0.9), are considered and the solution can be obtained in the closed form in a fashion similar to the
case of six fibers. It is noted that there the variations of SIFs follows a wavy form along the frac-
ture front (Figure 2) where the wave peaks at locations away from bridging fibers and bottoms at
locations close to bridging fibers. In concluding this section, fiber bridging is strongly affecting
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the local behavior and by a crack growth theory, a planform of a penny-shaped crack can not be
maintained. This phenomenon necessitates the investigation of overall mechanical properties of
composite materials with matrix cracking featuring irregular fracture fronts.

3. Elastic Properties For Fiber Reinforced Composites With Small Matrix Cracks Of Irreg-
ular Fracture Fronts

A fiber-reinforced composite containing planar matrix cracks of small-size, S/S; << 1, is
investigated first (where S is the area of a typical matrix crack and S; the area of a typical fiber
cross section). In this case, the effect of fiber bridging on overall mechanical property is insignifi-
cant. Therefore, the solution for a fiber-reinforced composite containing small-sized matrix cracks
can be obtained by treating the composite as a material with two phases of inclusions, one being
the reinforcing fibers and the other being cracks. A micromechanics approach, using Mori-
Tanaka’s average technique, will be adapted in the present study. The micromechanics analysis,
when employed for solution of effective properties, involves two ingredients: a proper stress-
strain definition and a geometric model accounting for phase interactions. The stress-strain rela-
tionship for overall composite responses can be addressed by a direct approach (Benveniste 1987)
or by an energy equivalence approach (Budiansky 1965, Huang et al. 1993). When used for
hybrid composites with coexisting reinforcements and cracks, the energy approach has been
proven to be advantageous since crack energy can be evaluated through the concept of an energy
release rate (Budiansky and O’Connell 1976, Huang et al. 1993). In the following, an energy bal-
ance framework will be utilized and adapted to the Mori-Tanaka average technique in order to
obtain the solution for effective composite properties.

Consider a large block of composite material comprised of reinforcing fibers in the x;
direction and a system of small-sized parallel matrix cracks in the direction perpendicular to the
fibers. The fibers are assumed to be cylindrical and are randomly distributed in the x;-x, plane.
The cracks of irregular fracture fronts are assumed to be randomly distributed in planes perpen-
dicular to the fiber direction. The elastic modulus and Poisson’s ratio of the matrix are E; and n,,

and those of the fibers are E¢ and ny. Due to the aligned distribution of fibers and cracks, the com-

posite shows an orthotropic behavior and can be characterized by the following general stress-
strain relation:

-1
0; = Cyey OF €, = C oy (21-22)

where Cyy is the elastic moduli tensor of the composite material. In order to determine Ciixr Or its

inverse (tensor of elastic constants), apply a uniform stress, o, = o, to the surface of the block of

composite material. The strain energy of the composite material is, from the homogenization,
given as

1 -1 00
U = 3CusonY (23)

where V is the total volume of the composite material. On the other hand, one can view the strain
energy from each individual phase. For a composite system with inclusions and cracks, the strain
energy can be given as (Huang et al. 1993)

114V 060 Vm o0
U_i{ E. o“cjl.—E—mU“ojl.
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where ¢/ = 1/v, j e; dV is the average fiber strain, the last term is the total crack energy under the
vy

specified loading condition, S; is the area of a particular crack in the composite block, and N is the

number of cracks in that block. The last term in Equation (24) represents the total crack energy in

the block. By energy equivalence, we have, from Eqgs. (23) and (24),
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where § is the area of a crack surface; for the small crack size considered here, S/S; << 1. ., is the
normal of the crack surface and ., is the crack opening displacements in the composite material
(with microcracks), subject tractions derived from o], on crack surface.

Equation (25) is an exact representation of the energy equivalence between two views of
the cracked composite: one regards the composite as an effective, homogeneous medium, and the
other considers the details of the individual phases -- the matrix, fibers, and cracks. The major dif-
ficulty in obtaining the effective responses of microcracked composite materials lies in accurate
evaluation of average fiber stress and crack opening displacements. This is especially so for crack
energy when fracture fronts become irregular and when fiber bridging is taking place for each
individual crack. In order to overcome this difficulty in determining the effective property of the
microcracked composites, or Cyjy), a scheme for obtaining average fiber strain, as well as the crack
energy represented by the last term in Equations (24) and (25), has to be developed to approxi-
mately account for interactions among the matrix, fibers, and cracks. It is this scheme for evaluat-
ing the average fiber strain and crack energy that introduces a variety of approximations
associated with a micromechanics model. Two schemes, the Mori-Tanaka method (e.g., Taya and
Chou 1981; Weng 1984, 1990; Benveniste 1987) and the inclusion-matrix-composite model, also
referred to as the generalized self-consistent method (e.g., Christensen and Lo 1979; Benveniste
1986; Siboni and Benveniste 1991; Huang et al. 1994a, c), have gained a wide range of accep-
tance. These two schemes are competing in some applications and complementary in others [see
Christensen (1990), Wang and Weng (1992), and Huang et al. (1994b) for detailed discussions on
their comparisons]. In what follows, we use the Mori-Tanaka method to evaluate the average fiber
strain and crack energy. It is noted here that the Mori-Tanaka method is relatively simple in terms
of providing closed-form solutions, it is unambiguous in terms of accommodating multiphase
inclusions (as is certainly the case for the microcracked composite under consideration), and it has
the typical features of a micromechanics model. These features will be modified as they becomes
insufficient as the extent of fiber bridging increases (see Section 4).

In order to implement the Mori-Tanaka method, we apply a remote stress, oy, = o, (aj; = 0,
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otherwise). The aligned ellipsoidal inclusions are used so that a solution for the long, cylindrical
fibers can be derived by taking the limit of the aligned ellipsoidal axis to infinity. The average
stresses of the matrix material in the composite system will be developed due to the remote stress
oy, = o,. The state of the average matrix stress is not necessarily coaxial with the remote stress; it
is, however, axisymmetric and can be expressed as (o’,",’, o;';‘,c;‘;). The average fiber stress can be

characterized, by reasoning, as (o{’,’, c’;o{’;) One can show that the average stress in cracks, in a
limit sense, is zero (Benveniste 1987, Zhao et al. 1989). The stress equilibrium then requires

u_c,){ :},[ﬁ -( 2] 26)

%o
The key assumption of Mori-Tanaka’s method used to contain the average fiber stress and crack
energy was described in Chandra et al (1996). The average fiber stress and crack energy release
can be obtained by embedding a single typical fiber and a single crack in an infinitely extended

malrix material subject to the average matrix Stress state (c;",‘, L u’,";). The average fiber stresses

(o{’,’, cga;) can be related to (UT,‘, o;;‘,c’,";) through the solution of the single-fiber system. After
inverting the readily derivable single-fiber solution given by Mura (1982), we have

i my,m "
11 = n+*"13 1" (27)
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Substituting Eq. (27) into Eq. (26), we have
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The solution of Eq. (29) leads to
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where
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Now turn to evaluation of a single representative crack energy, W,

o L=ve [ )2 160 1-v2)( 062 3
W= lecnds = E:" (c,,) ./Zj!wods = —-(W)(f) A'wg (35)
Where . is the opening displacement of a single crack in an infinitely extended matrix material
subject to the average matrix stress, o , and after normalization against the square root of crack

£ w
area, a, w, = m

o , is the dimensionless crack opening displacement, ; is a dimensionless

301 -v)ony JA
material constant equal to the inverse of the right hand side of Equation (33) and finally =, .is the
dimensionless crack displacement averaged over the crack surface area.

With the solution of the average fiber stresses (or strains) and the crack energy in hand, the
governing equation (Eq. 25) for the determination of effective moduli can be implemented, giving
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While Eq. (36), along with Egs. (31)-(55), provides a complete solution for the longitudinal mod-
ulus Es, further simplification is possible. The final result is found to be
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where G, and &,, are the shear and in-plane bulk moduli of the matrix material and &, are the in-
plane bulk moduli of the fibers.

Following a similar spirit, the other components of the stiffness tensor, for example, the
shear modulus in z-x plane, can be obtained by modifying Equations (26-37) with replacement of
corresponding remote stress and Eshelby solution. Since our focus is on the the modulus most
severely weakened by cracks, we only present the the solution to Es.

It should be noted that the asymmetric stiffness tensor may be resulted in when Mori-
Tanaka’s method is utilized for a composite with a multi-phase inclusions of anisotropic proper-
ties and non-spherical or non-cylinderical shapes (Benveniste et al. 1991 and Ferrari 1991). Here
we have followed the Mori-Tanaka Method derived by Huang et al. (1995), where a mathematical
treatment toovercome asymmetric stiffness tensor was given.

4. Elastic Properties For Fiber Reinforced Composites With Large-Size Matrix Cracks Of
Irregular Fracture Fronts
When large-size cracks develop, the fibers will bridge across the cracks and, as described
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before, the geometric intersections of fibers and cracks will create a feature that is distinct from
that of small-size matrix cracks. First, the bridging fibers falling inside a crack will exert a distri-
bution of closing tractions over the area of a crack where a fiber exists. Second, the fibers inside a
crack are not entirely immersed in the surrounding matrix material. Those fibers falling inside a
crack will remain surrounded by the matrix material, with the exception that a free exposition of
the fiber surface occurs along the crack opening. One important assumption of the present study is
that the effect of the fiber exposition is neglected. This assumption can be well justified under a
small deformation conditions where crack opening always remains small. Therefore, we can still
consider the fibers as being entirely surrounded by matrix material. When crack opening displace-
ments are small in comparison to fiber length, as they are for most fiber-reinforced composite sys-
tems, the effect of fiber expositions is marginal. In order to account for the effect of fiber bridging
on crack opening displacements, and eventually on the effective moduli, the energy equivalence
equation should be modified. The Mori-Tanaka scheme is modified such that a typical crack sur-
face is imposed with a distribution of closing tractions (or bridging forces). Although the average
matrix stresses can still be evaluated following the procedures detailed in Section 3, the crack
energy release rate will also depend on the average matrix stress and the bridging tractions.

If one cuts the fibers along a crack plane, a pair of opposite tractions appears on the cut
fiber sections. It is noted that these tractions are the bridging forces. Keep in mind that the bridg-
ing tractions can be approximated as the average fiber axial stress. We further distributed these
bridging tractions over the area of planform crack. The uniform bridging tractions obtained are

-V
m

The crack energy is then found to be
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where ¢ is the inverse of right hand side in Equation (38). The effective longitudinal modulus can
be obtained in a similar manner:
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The solutions given in Egs. (39) and (40) are modifications of the standard micromechanics solu-
tions given in Egs. (36) and (37). This modification provides one possible avenue, based entirely
on a micromechanics model, to account for the effect of fiber bridging. The main theme in deriv-
ing the solution is to distribute, over cracks, the bridging tractions that are self-consistent with the
average fiber stresses obtained by a micromechanics analysis.

It should be noted that the modified micromechanics solution provides a self-consistent
approach to accommodating the bridging effect within a micromechanics framework. The model,
however, does not consist of any physical input for the development of bridging. This issue can be
addressed in a transition model that calls for solution for cracks with bridging from discrete fibers,
where a full bridging solution with a bridging law governing relevant mechanisms can be
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obtained (Hu, et al 1995). Also, our analysis shows that the modified micromechanics solution has
applicability to most SiC-reinforced ceramics within a commonly used fiber volume fraction
range of up to 40%. There are cases (with combinations of constituent properties and high volume

fraction) that may produce negative values of (c;';‘ -c,af,’) or (of;' -c,o—,",’). This implies that cracks
are not opened based on the micromechanics solution. A simple approach to account for this is to
discard the crack influence term in Egs. (39) and (40) when cracks are not open. Other approaches

include the consideration of fiber stress variations in the axial direction.

S. Crack Density and Approximate Solutions For Irregular Fracture Fronts
Crack density has been introduced for penny-shaped cracks of average radius . by Bris-
tow (1960)

p = e @1

and it has been generalized for cracks with irregular planform, for example, by Budiansky and
O’Connell (1976)

- 15 “)

Remarkably, the definition for penny-shaped cracks stems directly from that fact that the crack
opening displacements when averaged over the crack planform area becomes a constant. For
irregular crack planforms, there is no warrant that the displacements averaged over the crack area
will become independent of other geometric constants, which define the planform of the irregular
crack fronts. One can always evaluate the crack opening displacements in an infinitely extended
matrix material with only a single crack and then obtain effective properties by using Equations
(37) and (40), thus, avoiding any error that arises from a generalization formula such as Equation
(42).

The effective properties of a microcracked solid expressed directly in terms of the geomet-
ric variations of crack planforms other than a lumped parameter are desirable. Although closed
forms of such solutions are highly unlikely, the crack energy solutions of Fabrikant (1989) under
the condition of truncating a polynomial solution up to 4th terms can be utilized to obtain closed-
form approximations. That simplification gives
E _ {[c +c[§l+ 4c/cm(vj—vm)2 H‘l"
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Where » is the crack density and reduces to the definition given in Equation (41) for penny-
shaped cracks.

The dependence of » on the irregularity of several crack planforms is given as follows.
(1) For a rectangle of width a and length b, ¢-¢x

NA32 Je
v 1R2J1+¢2 (44)

(2) For or a n-sided polygon of equal length,
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(3) For rhombus of semi-axis, 2 and b, ¢-z2<;

NA32 .[2—2
="V 2+9 (46)

(4) For a centrically intersected cross of two rectangles of width a and b, -2«

=NA312 JZ—E 47
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6. Conclusions and Discussion

The effective moduli of a fiber-reinforced composite with matrix cracking have been
investigated in this paper. Our analysis reveals that a penny-shaped crack can not be maintained in
a penny-shaped planform if fiber bridging is in effect. From the crack driving force solution
derived, it is shown that the continued growth of a penny-shaped crack will produce a wavy frac-
ture fronts. As a result, fiber reinforced ceramic composites with fiber bridging will always
assumne irregular planforms. To account for the effect of fiber bridging on effective moduli, the
Mori-Tanaka’s method is utilized with a modification of crack energy under unknown bridging
tractions, which in turn are obtained during the process of micromechanics solution. One can
always obtain the effective properties by carrying out numerical solutions for the really simplified
micromechanics model, that is, a single crack of irregular planform being embedded in an infi-
nitely extended matrix material subjecting a stress state of the magnitude of average matrix mate-
rial. It is shown that there is no warrant that a lumped crack density will be sufficient in describing
the effective properties of fiber reinforced ceramic composites. The approximate closed-form
solutions are obtained with a modification of crack density that incorporates the effects of irregu-
larity of fracture fronts on the effective properties.

In fiber reinforced ceramic composites, fiber bridging controls the local toughness behav-
ior, and consequently governs crack growth behavior. Fracture fronts evolves around a certain
crack growth law during the structural life span. The evolution of fracture planform is a critical
issue that has to be understood before a micromechanics model, combined with no-destructive
measurements can be applied to predict the structural integrity. For non-penny shaped cracks, as
we described in Equations (44-46), if the mathematical treatment by Huang et al. (1995) is used, it
may eliminate the asymmetry. But without getting the details worked out, the effect of asymmetry
may well affect the accuracy of those formula given in Equations (44-46).Work on this and on
crack planform evolution will constitute a part of our future investigation.
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The effects of the preceding damage field on the stress singularity of a growing mode
III crack are investigated from the view point of Continuum Damage Mechanics (CDM).
By postulating a circular damage field at the crack-tip represented by a power law func-
tion r™ of radius r, analytical solutions of asymptotic stress and strain fields were first
obtained. It was found that the asymptotic stress field depends on the power law exponent
m of the given damage distribution, and the well known elastic singularity disappears
when the damage exponent m becomes larger than 3/4. However, the strain field was
ascertained to be always singular regardless of the exponent m. Then, for more general
damage distributions, numerical analyses by means of the finite element method were
performed, and the effects of the geometry of three local damage fields on the stress
distribution around the crack-tip were elucidated. It was shown that, though the damage
field behind the crack-tip gives significant influence on the stress field in front of a grow-
ing crack, the analytical solution for the circular damage field gives essentially similar
stress singularity as that for more general damage distribution. The results give important
insights into some fundamental aspects of the local approach to fracture based on CDM.

1. INTRODUCTION

Stress and train singularity at a crack-tip plays an essential role in fracture mechanics
(Broek, 1974), since it governs the stability and the rate of crack growth. Thus the crack-
tip stress fields in an intact (undamaged) material have been investigated extensively; the
asymptotic solutions of the stress fields have been obtained not only for linear elastic
material (Irwin, 1957), but also for power-law hardening plastic material (Hutchinson,
1968; Rice and Rosengren, 1968)

However, crack growth in elastic-plastic and creep materials is usually brought about
by the nucleation, growth and coalescence of microscopic cavities in the front of the
crack-tip. In such fracture process, the crack-tip stress ficld and the stress singularity will
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be influenced not only by the nonlinearity of stress-strain relation, but also by the consid-
erable reduction of stiffness due to the material damage.

As a result of this importance, the effects of the material damage on the crack-tip stress
fields have been investigated from Continuum Damage Mechanics (CDM) point of view
in some recent papers (Wang and Chow, 1992; Zhang and Gross, 1993; Zhang, Hwang
and Hao, 1993; Astafjev and Grigorova, 1995). Wang and Chow (1992), for example,
analyzed the mode I stress field in a damaged power-law elastic-plastic material, and
elucidated that the original HRR singularity is not largely influenced by the inclusion of
damage. In their analysis, they postulated that the damage develops from an intact mate-
rial and the damaged state is specified by the current field variables. Zhang and Gross
(1993), on the other hand, performed a similar analysis for the asymptotic stress field of
mode III crack in a power-law strain-hardening material damaged by uniformly distrib-
uted microcracks oriented in directions different from that of the main crack. This analy-
sis shows that the stress fields in the damaged material have the same structure as that of
the HRR field in an undamaged material. The asymptotic solution for mode III crack in a
damaged elastic material was discussed also by Zhang, Hwang and Hao (1993) by postu-
lating that the damage field is governed by the current strain field. Their results showed
two possible damage distributions; a uniform distribution and a power-law one that takes
zero at crack-tip. However, in actual crack growth problems, the damage distribution in
front of the crack-tip is not uniform, but is dependent on the history of the field variables.

The damage field in front of a crack-tip is not uniform in general, and the damage field
brought about by a growing crack depends on the history of the field variables governing
the damage. Thus the results of the analyses based on the such damage fields cannot give
sufficient information on the effects of the preceding damage on the crack behavior. In
this respect, Astafjev and Grigorova (1995) derived an asymptotic stress field for a his-
tory-dependent creep damage evolution. However, their solution required an unrealistic
condition that a complete damage zone exists in the 1/4 plane behind the crack-tip.

The present paper aims to elucidate the effects of the preceding damage on the stress
and strain singularity at a crack-tip of a growing crack. In order to present the damage
states in front of a growing crack from the viewpoint of CDM, a idealized circular damage
distribution that takes a critical damage value at the crack-tip, represented by a power law
function r™ of radius r, is employed first. The elastic asymptotic field of a mode III crack
is obtained, and the effects of the preceding damage distribution on the stress and strain
singularity are discussed. Then, in order to elaborate the analysis, finite element calcula-
tion was performed for more general damage distributions, and the resulting stress singu-

larity is compared with the corresponding analytical solution.
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Besides the stability and the rate of crack growth, the singularity of crack-tip field is
influential also in the problem of mesh-dependence in the local approach of fracture based
on CDM and Finite Element Method (FEM). Thus the results of the present analyses will
provide important insight not only into the effects of the preceding damage on crack
growth behavior, but also into the mesh-dependent problem of the local approach.

2. FIELD EQUATION AND ITS ANALYTICAL SOLUTION

2.1 Material damage and stiffness reduction

When a material is subjected to internal damage due to microscopic defects or cavities,
the change in the elastic moduli will occur together with the reduction in the yield stress,
tensile strength and fracture ductility of the material. According to the continuum damage
theory, if the anisotropy of the damage is not salient, the internal damage can be presented
by a scalar damage variable D (0<D< D, ), where D, is the critical damage value for
fracture. In this case, reduction of the shear modulus i of the material can be expressed as
follows (Kachanov, 1986; Lemaitre and Chaboche, 1990):

#=.u0(l_D/Dcr) M

where p, is the shear modulus of the undamaged material.

For a crack under anti-plane shear load (mode III) shown in Figure 1, we will employ
two coordinate systems O-xyz and O-r6z with the origin at the crack-tip. In the case of a
growing crack, the damage variable in Eq. (1) should take its critical value D= D,, atr=
0 (crack-tip), and decrease to p =( in the undamaged zone. In order to facilitate an ana-

Figure 1. An anti-plane shear (mode III) crack
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lytical solution, we will first suppose an idealized circular damage distribution around the
crack-tip, and represent the damage variable D as follows:

D=D(r) 2)

For the convenience of the following analysis, we introduce a new function to denote
the reduction of shear modulus u due to damage, i.e,

g(r)= u(r) po =1- D(r)/ D,, 3)

Since 0< D(r)< D,, and D(0) = D,,, we have the following restriction to the function

g(r):

0<g(r)=<l, g0)=0 C)]
2.2 Basic equations and its solutions

For a mode III crack shown in Figure 1, the only non-zero displacement component is
w=w(r,0) (5)

Thus, we have two corresponding non-zero components of shear strain and stress as fol-

lows:

E_ =€ —lﬂ Ea =€ -—llﬂ

nTr T T 208 (©)
ow 10w

O‘,Z=0'Z,=u(r)3, 6&=019=ﬂ(r);% D

By neglecting the body force, the equation of equilibrium of the problem leads to

do,, © 1 do
On O [ 2% _
or M r +r 06 0 ®)

Substituting Eqgs. (3) and (5)-(7) into Eq. (8), we obtain the following basic equation for
the displacement w in the polar coordinate system

*w(r,0)

2
o 1 ow(r,0) +L8 w(r,0) -0

+[1+a(r)]; > T ot - ®

where
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o(r)=r-g'(r)/g(r) (10)

In the special case of D(r)=0, g(r) is reduced to a constant and Eq. (9) recovers the
conventional equation for non-damaged elastic medium.
We seek solution of Eq. (7) in the form of

w(r,0) = L-r*(6) )

where £ and s are unknown constants, and w(8) is an unknown function of 6. Since the
displacement w at the crack-tip (r = 0) is zero, the constant s in the above equation should
be positive, i.e.

s>0 (12)

Substitution of Eq. (11) into Eq. (9) leads to the following ordinary differential equation
for w(@):

W (0)+[s% + sa(rw(B) =0 (13)
The general solution of Eq. (13) is
w(0) = B- cos[0+/s[s + a(r)]) + C-sin[B4/s[s + a(r)]) (14)

where B and C are constants. Because of the asymmetry of the anti-plane shear deforma-
tion of w(8), we have

B=0 (15)
Substituting Egs. (14) and (15) into (9), we have the general solution of Eq. (9) as fol-
lows:

w(r,8) = L-r’sin[0./s[s + a(r)]] (16)

where L= C- L. Shear stress components G, and ¢, are now obtained from Eq. (16)
and Eq. (7) as follows:

6, = L u(r)r' (s sin[6/ss + ae(r)]]

s6 2
+cos[9w}s[s+a(r)]]m[a(r)—a(r) +ﬁ(r)]} (17)

G, = L- u(r)r' ™ Jsls + a(r)] cos[0+/s[s + a(r)]] (18)
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where the function B(r) is defined as

Bry=r-g" (r)! g(r) (19)
Finally Stress free boundary conditions on the crack surfaces require that

Og(£m)=0 20)

In view of Eq. (18), this implies

cos(m+[s[s +a(r)]) =0 @n

or

Js[s+a(n)] =

, k=13,5.. 22)

N | &

By solving Eq. (21), we have

2 2
V)" k" e 55 (23)

> »d,

where another root of s from Eq. (21) has been excluded because of the condition (11).

2.3 Power law damage distribution

In view of Eq. (23), in order that the exponent s may be a constant as assumed in Eq.
(11), the damage (or the shear modulus) distribution function g(r) should satisfy the fol-

lowing relation:

r-g(n

0= g(r)

=m (= const.) (24)

where m is a constant. Solving the differential equation (24) with the condition 4),, we

obtain the following power law function for the damage distribution:

g(r)=(rin)" (25)

where r_ is a constant, and represents a characteristic size of the damage zone. While
r<r gives D>0 and p <y, we have D=0 and p = gy when r =ry. According to the
Eq. (4),, we have the following restriction to the function g(r):
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n2r20, m>0 (26)

According to Eq. (24), the existence of a power law type solution of Eq. (9) requires
that the damage distribution function g(r) should be a power law type. However, it is
worth emphasizing that the power law distribution of damage, Eq. (25), can be an asymp-
totic representation to an arbitrary damage distribution g(r) which tends to zero o(r™)
(with m>0) for r = 0.

In the following analysis, the power-law type distribution of damage (25) will be em-
ployed to investigate the effects of damage field on the crack-tip stress field. Figure 2
shows the power-law damage distribution for different values of exponent .

2.4 General solutions of deformation and stress
A general solution of the problem can be obtained for a power law damage distribution

(25). By use of Eqgs. (24) and (25) we can now rewrite Eq. (23) as

2.2 _
s=W, k=135... @7

Then, by use of Eq. (25), Eq. (19) leads to

B(r) = m(m—1) @8

l'D’ WHO

0.0 0.2 0.4 0.6 0.8 1.0

r/ry

Figure 2. Distribution of damage and variation of shear
modulus in front of a crack-tip
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Substituting Eqgs. (24), (27) and (28) into Eqgs. (16)-(18), and summing up every terms
fork =1, 3, 5,..., we obtain the following general solutions for deformation and stress:

M . F] RTY)
w(r,@) = 3 [0 pNm+2i=DT=m2 Gin (2§ - 1)/2)

: (29)
j=1
M . 2 T
0, = -—-“;’) }:I{EZJ"’ 3@ om 22 (25— 1)* — m)sin[(2) - 1)6/2]) (30)
pa
M . 2 PETY?
O = D S (L PTG 0 ycos((2) - 16/2) a1
Jj=1

where 7D (j=1,2,3...) are unknown constants which should be determined from the

remote boundary conditions.

2.5 Asymptotic fields of stress and strain

In order to elucidate the effects of damage distribution on the singular stress field, we
are more interested in the asymptotic solution for r — 0. Since the power law damage
function employed in the present analysis can be considered as an asymptotic representa-
tion to arbitrary damage distribution, the asymptotic solutions of Eqs. (29)-(31) give more
general insight into the crack behavior in damaged materials.

When r — 0, the dominant terms of the general solutions (29)-(31) are those with
minimum exponent j of r. Thus we obtain the asymptotic solutions of the deformation and

stress fields as follows:

w(a>(r,9)=\PPLI'Q_.r“'""“""')’Z-sinQ 32)
T H 2
P, I 4l 4m— -
sz(a)(r,e) — __éL m s lim=2)12 -G,,(6,m) 33
a P, [m? m— -
O'yz( )(r,9)=i'r( e 2)12'0—)’2(&’") (34)

\2m

where Py, 6,,(8,m) and &,,(6,m) are parameter and functions representing the magni-
tude and the circumferential distribution of the asymptotic fields, and are given by

IOy
Py =22 (35)
0
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G, (0.m)=-[1—-(v m?*+1l-m— l)cose]sing 36)
G, (0,m)=[Nm? +1-m~m? +1-m- l)cose]cosg 37

In Eqgs. (32)-(34), the superscript " denotes the asymptotic solution.

Figures 3 and 4 show, respectively, the radial and the circumferential distribution of
the stress fields (33)-(34) for several different values of m. In particular, it will be ob-
served from Figure 3 that the stress singularity will disappear if the exponent m becomes
larger than 0.75. Because of its importance, the effect of damage distribution on stress
singularity will be discussed in some details in the next Section.

Substituting Eq. (32) into Eq. (6), we obtain also the asymptotic strain fields as fol-

lows:
m
e,z<“>(r,e>=F—P’”'° A2 (i 1~ mysin 38)
T U, 2
2 P, r'" - —Jm? 72 o
£, (r,0 =\/:—'”° prOmr2oNmADI2 o=
o (1, 0) P 2 (39)
TN
= H m
= —=(r/r
S 4 m=0 (r/m)
R 0
Q
|
o 0.5
|3
o 2-
a5
< 0.75
li 1
Q
7 1.0
6 2.0
0 7 T T T
0.0 0.2 0.4 0.6 0.8 1.0
r/r

Figure 3. Radial distribution of asymptotic stress field in
front of a crack-tip in elastic-damage material
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Figure 4. Circumferential distribution of asymptotic stress field
in front of a crack-tip in elastic damage material

Obviously, when m =0, the above solutions will recover to the well known elastic strain
fields with -1/2 singularity. However, for any positive value of the damage exponent m,
the strain exponent —(m +2 —vm® +1)/2 is always negative, which implies that the crack-
tip strains are always singular in the present solutions. This is not surprising because the
damage distribution assumed in the present analysis takes a critical damage value at the
crack-tip. Such a crack-tip of critical damage implies a growing crack, or a separation



105

process of the material element at the crack-tip, and thus we have infinite (singular)
strains at the crack-tip.

3. EFFECTS OF DAMAGE DISTRIBUTION ON STRESS SINGULARITY

It was observed from Figure 3 that the radial distribution of asymptotic stress fields are
influenced significantly by the exponent m of the damage distribution; in particular, the
well known stress singularity in a cracked elastic material will disappear in a damaged
material for m = 3/4. This influence of the exponent m on the crack-tip stress singularity
will be discussed in more detail.

3.1 Casem=0

Substitution of m = 0 into Eqs. (32)-(34) gives conventional elastic crack-tip field that
has a well-known singularity of -1/2; i.e.

K 2r o

@y Q)= L ’—~s'n—

w4 (r,0) _—ﬂo - i 2 40)
K )

O}Ar,@):—ﬁsm—z- “1)
il 0

GYz(r19)=m'cos"2" 42)

where stress intensity factor X, is given by

. (4
Ky = Liml\27r(o,,)],_ 1= \/;L(l):uo = Pl 43)

Obviously, Eqgs. (3) and (24) show that an undamaged elastic medium D = 0 leads to m
= 0. Moreover, the condition m = 0 implies also a transient damage state in which a crack-
tip is not completely damaged, or D < D,, at the crack-tip. The damage distribution in this
transient damage state is illustrated in Figure 5, and can be represented by a relation

g(r) = §[1+n(r)] 44)

where £ (0< £ <1) is a parameter, and 7(r) is an arbitrary function for which 7(0)=0
and 11 (0), 1" (0) exist.
Substituting Eq. (42) into Egs. (24) and (19), and taking a limit of r — 0, we have
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m=0, B=0 (45)

This shows that, Eqs. (40)-(42) are also the asymptotic solutions for a crack with a partly
damaged crack-tip shown in Figure 5. Then, the correspondent stress intensity factor

leads to

T
Ky = \/;514(1)#0 (46)

which is subjected to the influences of damage through & and [V and is smaller than the
value given by Eq. (43). As an important example of this partly damaged crack-tip, we
can take an artificial crack which is under loading but has not started to grow. However,
when the crack-tip is completely damaged and the crack growth is started, the crack-tip
fields will be changed from Egs. (40)-(43) for m = 0 to Eqs.(32)-(37) for m # 0.

So far a number of papers (Schovanec, 1986; Ang and Clements, 1987; Konda and
Erdogan, 1994) on the stress intensity factor of a crack in the elastic medium with non-
uniform elastic modulus have been published, they are mainly related to the fracture prob-
lems of functionally gradient materials. In particular, when the elastic modulus at the
crack-tip is smaller (but not zero) than that of the other part of the material, the stress
intensity factor has been found to be smaller than that of a crack in a uniform elastic
medium (Ang and Clements, 1987).

Who Damage-free (m = 0)
1.0
o \Panly damaged crack-tip
Y
X
g Completely damaged
crack-tip (m > 0)
Y >
r
Crack-tip

Figure 5. Distribution of elastic modulus for a partly damaged crack-tip
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3.2 Case 0 <m < 3/4

In this case, the crack-tip is completely damaged and the elastic modulus at the crack-
tip becomes zero. However, as shown in Figure 2, the damage variable D decreases rap-
idly in the neighborhood of the crack-tip. Under this condition, we can find that the crack-
tip stress still has a singularity of s (-1/2 < s <0), because the exponent of r in stress fields
(33) and (34) is smaller than 0, i.e.

“1/2<(Wm? +1+m-2)/2<0 @7

Obviously, the intensity of the singularity has differed from the -1/2 singularity of the
undamaged material due to the influences of damage. The larger the exponent m of the
damage distribution is, the weaker singularity we have. Namely, for a growing crack
influenced by the preceding damage field, K is no more a proper parameter to describe
the intensity of the asymptotic stress field, and hence the parameter Py, defined in Eq.
(35) should be employed. According to the present analysis, the parameter P, contains
two important factors of the preceding damage fields, i.e., damage exponent m and dam-
age zone size ry. Therefore, this parameter provides a novel possibility to describe the
transient effects of crack growth under non-steady state; the transient effects can be natu-
rally included into the parameter Py; of crack growth.

3.3 Casem =>3/4

Stress singularity at a crack-tip will disappear in this case, because the exponent s of r

in stress fields (33) and (34) is now positive, i.e.

s=Vm?+1+m-220 (48)

As observed in Figure 2, we have a moderate damage distribution in the vicinity of crack-
tip when m 2 3/4. This means that, when the decrease of the damage variable at the crack-

tip is not so sharp, or not steeper than r*'*

, the crack-tip stress field will become non-
singular.

From physical point of view, crack-tip stress should be finite rather than singular. Hith-
erto, this has been explained by considering the plastic zone in the front of crack-tip.
However, the present analysis for the first time clarifies the important role of the preced-
ing damage zone in the vanishing of the stress singularity. Moreover, the present analysis
gives an analytical expression for the damage distribution that will lead to non-singular
stress field. It should be noted that, the important effects of the damage zone on the stress

singularity can not be clarified if a partly damaged crack-tip (Figure 5) is postulated in the
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analysis (Wang and Chow, 1992).

As one of the most important problems in the development of the local approach of
fracture based on CDM and FEM, the mesh-dependence due to stress singularity in front
of crack-tip has been often discussed (Liu, Murakami and Kanagawa, 1994; Murakami
and Liu, 1996). The present results elucidate an essential condition to ensure mesh-inde-
pendent solution in local approach. Namely, for certain damage distribution (m > 3/4 in
the present elastic damage case), the stress singularity and the related mesh-dependence
will naturally disappear without use of any non-local numerical procedures (Pijaudier-
Cabot and Bazant, 1986; Bazant and Pijaudier-Cabot, 1988; Chaboche, 1988).

4. NUMERICAL ANALYSIS FOR MORE GENERALDAMAGE
DISTRIBUTIONS

The analyses in the preceding Section were conducted for an idealized radial distribu-
tion g(r) of damage, as shown in Figure 6(a). Although this can be a good approximation
to the damage fields in front of crack-tip, it is worth examining the effects of the damage
distribution in the circumferential direction, particularly the effects of the damage “wake”
behind the crack-tip. In this Section, we will discuss the effects of more general damage
distribution by means of Finite Element Method (FEM). The validity of the analytical
solution for circular damage field will be also discussed.

4.1 Damage distribution and finite element model

Finite element analysis will be performed for the following three kinds of damage
distribution around a crack as shown in Figure 6:

1) Distribution A [Figure 6(a)]

This is the same radial distribution as that used in the analytical analysis of Section 2
and 3. The numerical analysis for this damage distribution is conducted in order to con-
firm the accuracy of the FEM analysis and to provide a basis for the comparison with
other damage distributions. From Egs. (2) and (25), we have the following elastic modu-
lus in the circular damage zone with its center at the crack-tip:

H=to(r/ )" “9

where r, is damage size shown in Figure 6.

2) Distribution B [Figure 6(b)]

In this case, a wake zone is added to the above radial distribution A. Thus, inside the



109

damage zone shown in Figure 6(b), we have

{#o(r/’o)m x20
= (50)

NG x<0

(3) Distribution C [Figure 6(c)]

In general, larger stress is induced in front of a crack-tip than the region lateral to the
crack, and thus the damage develops more significantly in the direction of crack than in its
circumferential direction. In view of this situation, a semi-elliptic damage zone in front of
crack is assumed in this case as shown in Figure 6(c), where the length of the damage zone
on the y-axis remains to be r, while that on the x-axis will be taken as kry (k >1). In this
distribution, the elastic modulus inside the damage zone is given as follows:

v
‘.

Damage
Damage zone ,
zone |(r,8)

(r, 0)
IP ] To X

4

(a) Damage distribution A

Damage A

4 = B

zone (7:.8) 77
.

PN 1" x
r— 0

.‘I\'J'-'.l
(k>1)

(c) Damage distribution C

Figure 6. Three damage distributions employed in the analyses
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. Ho(W /B2 + Y2 1™ x>0
Lo/ i)™ x<0 Gb
In the succeeding finite element analysis, the elastic modulus at every Gaussian points
inside the damage zone will be prescribed by one of the above damage distribution, Eqs.
(49)-(51). For those Gaussian points outside the damage zone, the elastic modulus is
taken to be u.
A cracked specimen as shown in Figure 7 is implemented in the finite element calcula-
tions by use of ABAQUS code. The crack size a and the damage zone size r, of the

specimen are taken as follows:

a=01W (52)
10 = 0.05a = 0.005W (53)

This quite small damage zone size is selected in order to simulate the situation of a con-
strained damage field around an elastic crack.

The specimen is discretized by 135 20-node isoparametric elements. The partial finite
element meshes around the crack-tip is shown in Figure 7. To ensure the accuracy of
stress distribution inside the damage zone, the element size Ae (Figure 7) in front of

crack-tip is controlled as small as

Ae =0.02ry 54)

T
®© 0 ® ® 0 @ ® 0O 0 6 e

\ Z w72

SN =

/

‘Ae
-
w

Y

Figure 7. Specimen geometry and finite element meshes
(part) at a crack-tip
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4.2 Comparison between numerical and analytical solutions

Figure 8 shows comparison between numerical and analytical results of shear stress
distribution on the crack line (g = ¢) in front of a crack-tip, for the circular damage distri-
bution of Figure 6(a). Let us first compare the results for the undamaged case (;; = 0)
where the numerical solution of crack-tip stress field can be compared with the well
known K, -field of fracture mechanics. Excellent agreement can be observed, and the
maximum average error in the numerical results for 7, is smaller than 1.5%. This con-
firms that, the good accuracy of the numerical solution can be achieved by the use of the
present finite element model.

Then, for the cases of damaged material (;; > (), similar comparison is observed in Fig
8. The theoretical curves of these cases are calculated by use of Eq. (34). Then, the values
of Py, are obtained by best fitting the analytical equation (34) with the numerical results.
The good correlation between the analytical and the numerical results is confirmed also
for different m values. Then, the r-distribution of crack-tip stress field obeys a power law
of ,-(*/'”_2-*_‘*’"“2)’ 2 and thus the stress singularity is governed by the damage exponent m

and disappears when m 20.75.

4.3 Effects of more general damage distribution

Figure 9 shows the numerical results of the crack-tip stress fields obtained for the dam-
age distribution A, B and C (with k = 2.0) of Figure 6. Several different values of expo-

100
e -0 Analytical solutions:
5] m=v. e Undamaged material ( m =0)
4 Oy (Kyy-field) — Damaged material ( m > 0)

Numerical solutions:

Qa
O
Qa,
2 %‘2 O Damage distribution A
o

»
X
o\

T T T T
0.00 0.05 0.10 0.15 0.20 0.25
/1y

Figure 8. Comparison between numerical and an analytical stress
distributions obtained for damage distribution A
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nent m have been employed in these calculations. For a specific m value, the curves corre-
sponding to the damage distribution A, B and C show almost same distribution to each
other, although there exist some differences in stress values. These results implies that,
for more general damage distribution, the analytical solution of Eqs. (33)-(34) can be
employed also as a good approximation to describe the effects of damage distribution on
the stress singularity in the front of a crack-tip.

In Figure 9, it is found that stress values are almost the same for the damage distribu-
tion B and C in a zone very close to the crack-tip. This implies that the shape of the
damage zone has not apparent effects on the crack-tip stress fields. In contrast to this, the
existence of a wake zone of the damage has salient influences on the stress fields. It is
found that, the damage distribution A which contains no wake zone of damage gives a
stress field about 10-30% larger than those of the damage distribution B and C. For ob-
taining a more precise asymptotic stress field for a growing crack surrounded by a dam-
age zone, the distribution of the preceding damage, i.e., the wake zone of damage will

play an essential role.

5. CONCLUSIONS

In order to elucidate the crucial effects of the preceding damage field on the stress
singularity at a growing crack, elastic field of mode III crack was analyzed for three dif-
ferent distribution of the preceding damage. In the asymptotic analysis of Section 2 and 3,

“1 —— Damage distribution A
R Damage distribution B
24 ---- Damage distribution C (k =2)

T I T T

0.00 0.05 0.10 0.15 0.20 0.25
r/ry

Figure 9. Comparison of stress distributions obtained by
use of damage dustribution A, B and C
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an idealized circular damage distribution represented by a power law function ,m of the
distance r from the crack-tip was employed. The resulting analytical solution in this case
elucidates that an elastic stress singularity is governed by the exponent m that specifies
the essential characteristics of the damage distribution, and the singularity will disappear
when m becomes larger than 0.75.

The results of Eqs. (33)-(34) of the present analysis revealed, for the first time, the
important role of the preceding damage zone in the evaluation of the stress singularity at
a growing crack. Although it has been inferred that the crack-tip stress should be zero in a
damaged medium (Riedel, 1987; Riedel, 1990), the precise analytical behavior has not
been clarified hitherto. However, according to the present analysis, the zero stress at the
crack-tip was predicted for larger value of the exponent m of damage distribution.

These analytical results give us some important insight into the numerical simulation
based CDM. The mesh-dependence of FEM analysis and other numerical difficulties in
the crack growth analysis by local approach have been urgent problems for many years,
and are closely related to the stress singularity. The present results indicates a new way to
avoid these problems; i.e., the improvement of the damage evolution and the constitutive
equations may furnish moderate damage distribution (n > 3/4 in the present elastic dam-
age case), and thus may avoid the singularity in the numerical simulation.

In Section 4, FEM analysis was performed to investigate the effects of more general
distributions of the preceding damage. According to the results of the analysis for these
different distributions, no essentially differences in the stress singularity have been found.
However, the important role of the wake zone of damage distribution (i.e., the damage
distribution behind the crack-tip) has been revealed.

Although the present results are derived for a mode III crack in elastic medium sub-
jected to damage, the similar problems for a mode I crack have been analyzed and will be
published elsewhere.
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The micromechanic analysis of a fatigue band in the most favorably oriented crystal at the
free surface of a polycrystal is extended to the analysis of a single crystal under plane strain.
The boundary tractions on the boundaries of the crystal embedded in the polycrystal are
removed by applying equal and opposite tractions. The stress field caused by these opposite
tractions is analyzed using finite element method. Extrusions on both sides the of single
crystals as commonly observed is shown in the analytical calculations.

1. INTRODUCTION

Single crystals have been used in component parts of turbine engines. These parts are
subject to repeated mechanical and thermal loadings. It has been found that about 90% of the
catastrophic failures of these parts are due to fatigue of materials {1]. Hence, understanding
the mechanism of these failures is essential to their reductions. The present study attempts to
give a method to analyze the fatigue crack initiation of these single crystals.

Lin [2] and Lin et al. [3] have developed a physical model to analyze the high-cycle
fatigue crack initiation of a face-centered cubic (f.c.c.) polycrystal. This model is amended to
analyze the fatigue crack initiation of f.c.c. single crystals.

Single crystal tests show that under loading, slip occurs along certain directions on certain
planes. This slip depends on the resolved shear stress and is independent of the normal stress
on the sliding plane. The dependence of slip on the resolved shear stress, known as Schmid’s
law, has been shown by Parker [4] to hold also for cyclic loadings. Initial defects exist in all

metals and cause an initial stress field, which gives an initial resolved shear stress field t' in
the metal. The shear stress due to applied load is denoted by t“. When this t“ combined

with t' reaches the critical shear stress t° in some region, slip occurs to keep the resolved
shear stress from exceeding the critical. After unloading, the slip remains and causes a

residual resolved shear stress field t". The total resolved shear stress is then
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t=t"+1t" +1" 1)

The governing condition to initiate or continue slip in a region is to have this resolved shear
stress T equal to T°.

To calculate the residual stress, the analogy between plastic strain and applied force is
used [5]. It has been shown that the equivalent body force per unit volume along x,-axis due
to plastic strain e is

E = _Cl/klelz;,,/ (2)
where C,,, is the elastic constants of the metal. The repetition of alphabetic subscripts
denotes summation and the subscript after a comma denotes differentiation with respect to the
coordinate variable. The equivalent surface force per unit area along x,-axis has been shown
as

S, =Cpem, (3)

i

where 1, is the cosine of the angle between the exterior normal to the surface and the
x,-axis. In the following analysis, the slip plane and the slip direction of the crystal is taken
to form a 45° angle with the specimen axis.

Extrusions and intrusions have been observed to grow monotonically on flatigued
specimens [6]. Kinematically. an extrusion forms when a positive shear strain occurs in a thin
slice P and a negative shear strain in a closcly located thin slice O (see Figure 1). The initial
stress field 1' favorable to this mode of slip is one having positive shear stress in P and

negative in (). Such an initial stress field can be provided by an initial tensile strain ¢, in R

(the repetition of Greek subscript does not denote summation). Lin and Ito [7] suggested that
the tensile strain ¢/, in R along the slip direction o may be provided by a row of interstitial

dipoles. Antonopoulos et al. [8] and Mughrabi et al. [9] have indicated that the ladder
structure in a persistent slip band (PSB) can be described by an array of edge dislocation

u

dipoles. A tensile loading t,, on the polycrystal produces a positive t* in the whole crystal.

Taking t' to be positive in P and negative in (J, then t' +1“ in P will first reach t*,

r

prompting P to slide. This slip causes a residual shear stress t;. The length of the crystal
(along x,-axis, normal to the plane of Figure 1) is assumed to be much longer than the band
thickness. In the center length portion of the crystal, the slip and hence the plastic strain
distributions along the band is assumed to be constant along the x,-axis. This causes the
/dx, = 0. Applying the equilibrium condition
[0x, + 01, /Ox, = 0. The first term

deformation to be plane strain, and hence ot

ol

1,, =0 interms of the (a,B.x;) coordinates gives ot

£33

r

is generally small, so the second term is also small. Hence the change in 1/ across the small
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band thickness (from P to Q) is very small. As a result, the slip in P reduces not only the
positive shear stress in P, but also reduces the same amount of positive shear stress in Q. This
decrease of positive shear stress is the same as increase of negative shear stress, causing Q to
slide more readily during the reversed loading [7]. Similarly, the negative slip in Q reduces
the negative shear stress not only in Q but also in P, thus causing P to slide more readily
during the second forward loading. This process is repeated for every cycle and thus provides
a natural gating mechanism to cause the alternate slip in P and @, resulting in monotonic
growth of the extrusion. Interchanging the signs of the initial stresses will produce an
intrusion instead of an extrusion. This gating mechanism does not require the crystal to have
more than one slip plane such as a f.c.c. crystal, hence is also applicable to hexagonal crystals.

The build-up of the slip strain e/ in P and Q is caused by e, in R. This el causes an

initial compression in R, which in turn causes positive 1., in P and negative r;B in Q. Under
cyclic loading, the extrusion grows and R increases in length. This elongation causes the
compression in R to decrease. There are 12 slip systems in a f.c.c. crystal. The change of
direct stress T, in R causes changes in resolved shear stress in all slip systems. When the
decrease in compression in R becomes large, the applied stress can cause a second slip system
to have shear stress reaching the critical value and slide. The plastic strain e/ caused by slip
in this secondary slip system has a tensor component just like e/, in causing the positive and
negative T, in £ and (), respectively. The occurrence of the secondary slip system was
recently clearly observed by Zhai et al. [10]. The 12 slip systems of a f.c.c. crystal are shown
in Figure 2. The af slip system in Figure 1 is called the primary slip system, which is
identified as a, system in Figure 2. The secondary slip system due to the change of direct
stress 1, under cyclic loading was found by Lin et al. [3] to be ¢;. The plastic strain ¢;, due
to the slip has a tensor component e,, which induces an equivalent force component F,. The
presence of F) requires the modification of the plane strain solution. A similar problem was
shown in the analysis of prismatic bars by Lekhnitski [11] and is referred to as the generalized
plane strain problem. This problem is defined as

u, =u,(x,,x,) , i=123 4
The stress in an isotropic elastic body is given as

L

1
1, zzp{———HzUs,,@ﬁLE(u,‘, +u/_,)} (5)

where © =y, +u,,, p is the shear modulus, and v is the Poisson’s ratio.
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2. METHOD OF ANALYSIS

To analyze the fatigue band in a single crystal under generalized plane strain, consider
a crystal embedded at a free surface of a polycrystal under alternate tension and compression.
The sliding direction and the slip plane make 45° with the free surface and the loading axis
(see Figure 1). The solutions of the plastic strain distributions in the fatigue band of the
polycrystal have been shown by Lin et al. [3]. Melan [12] has given a plane stress solution of
the stress field due to a given loading on a semi-infinite plate. His solution has been modified
by Tung and Lin [13] for plane strain. This plane strain solution is then generalized to include
the generalized plane strain deformation. Let t,(x,x}) be the stress at point x due to a unit

force applied at point x'along the x,-direction. The stress components are expressed in
terms of the Airy stress functions, ¢, ’s, as

2% ¢ 8%
) = D) =T ) =5 ©
10X, = T,(x) =0, T,(0x,) = —u(t, (X)) + T, (X)), k=12

T, (XX,) =T, (60X, ) = 1, (X)) =T, (x,x;, ) =0

NG 8 7
le(x’xk):gf ) Tz}(xyxk):axj , k=3
where
1 X X% (x, +x7)
6, (xx) = ~(p+q)(x, = x; )0, +0,) + 5 ¢lx, - x{)in T+ 2p =0 8)
2 X, X,
, . 1 Ay X x,x/(x, —x})
¢3(X»X)=~(p+q)(x2—x2)(9,+92)+—q(x2—x2)1n_'_2p##—2 9)
2 X, X,
, InX,+InX,
by(xx) ===t =t (10)
and
! (1-2v)
ETEEREE = -2v) ,
Pmqna—vy > 17°F )
2 2 ) 2
X1=(x,—x{) +(x2—x;) , Xg=(x|+x,') +(x2—x£)
X, — X5 X —x! - n
91=arCtan(xz‘_x?) -n<0,<m , Gzzarctan[xZ'er?) —ESGZSE (12)

Equations (6) and (7) give the residual stress field, 1", in the surface crystal embedded in
the polycrystal. This analysis also gives surface tractions on the grain boundaries (see
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Figure 1). In a single crystal, the surface tractions are zero, and hence must be removed by
applying equal and opposite tractions on the boundary. The stress field caused by the equal
and opposite tractions is here solved by finite element method (FEM). Plastic strain occurs
only in the fatigue band. The fatigue band is divided into a number of grids. The plastic

strain in a grid in the left half of the crystal is denoted by e;/*’ and in the right half by e;/'®.
The solution of the stress field in Figure 3(a) is the sum of the solution of Figures 3(b), (c),

and (d). Figure 3(b) gives uniform stress. The stress field caused by plastic strain, e!.’,."”
solved by the semi-infinite solid solution with the free surface at the left, as shown in
Figure 4. This solution satisfies the condition of zero traction at the free surface and gives
surface tractions on the right, top, and bottom planes (see Figure 4(b)). These tractions are
removed by applying equal and opposite tractions as shown in Figure 4(c). The stress field
due to the loading in Figure 4(c) is solved by FEM. With the plastic strain grid in the left half
of the crystal, the equivalent forces induced by the plastic strain is relatively far from the
considered crystal boundaries, and hence the variation of surface traction along the boundary
is small, and the grids of the FEM does not need to be very fine. This will facilitate the FEM
solution. Similarly, for the solution of Figure 3(d), the slid grid is in the right half. The free

surface of the semi-infinite solid is taken to be at the right side. The initial strain e} has the

, 18

same effect as the plastic strain, so the procedure for solving the residual stress field can be
applied for solving the initial stress caused by initial strain in the fatigue band. This gives a
method to calculate the influence coefficient of the stress in the mth grid due to a unit inelastic
strain (plastic strain and initial strain) in the nth grid. The resolved shear stress 7 is the sum
"B and t"™ . This

sum is equated to the critical shear stress, 1, and the incremental plastic strain distributions at
different stages of loading are obtained.

of the initial stress t', the applied stress t“, and the residual stresses, T

3. EXPERIMENTAL OBSERVATIONS

Mecke and Blochwitz [14] observed the subgrain displacement in single nickel crystal
under cyclic loading. These experiments were carried out under constant plastic strain
amplitudes at room temperature. [t is shown that the PSBs have penetrated across the whole
crystal and extruded out on both sides as shown in figure 5. The case with extrusion
protruding on one side and intrusion on the other side was not observed. Basinski et
al. [15,16] tested copper single crystals at a constant plastic strain amplitude at room
temperature under cyclic loadings. In these tests, both extrusions and intrusions are observed.
Zhai et al. [17,18] performed fatigue experiments on aluminum single crystals under constant
cyclic stress amplitude. Again, both extrusions and intrusions were observed on the free
surfaces.



120

4. NUMERICAL CALCULATIONS

The analytical solution developed in Section 2 is here applied to analyze the single crystal
tests. To simplify the calculation, a single fatigue band in the single crystal is considered (see
Figure 1). The analytical method can readily be used to analyze multiple fatigue bands in the
crystal. Referring to Figure 1(b), both P and Q are assumed to be 0.05 pm in thickness, and R
to be 1.0 pm. The crystal is f.c.c. and is assumed to be elastically isotropic with shear
modulus p =50 GPa and the Poisson ratio v =0.3. The critical shear stress, ¢, is taken to
be 200 MPa, and cyclic loading 1,, =399.55 MPa. An initial tensile strain was assumed to
vary linearly from a maximum value at the center to zero at the two ends of a 1.4 mm segment
in the fatigue band. This segment was divided into a number of grids, and each grid was
approximated by a uniform initial tensile strain. This assumed initial tensile strain

distribution was found to give a uniform initial resolved shear stress, t'. Thus a uniform t’
of 0.5 MPa was used in the present analysis. The variations of the plastic strain in P and Q
along the length of the fatigue band at different cycles of loading are shown in Figure 6.

Then an initial tensile strain of the same amount is assumed to be located at the left side.
The variations of plastic strains were calculated and the results are shown in Figure 7. It is
seen that both locations of the initial tensile strain give extrusions protruded out on both sides.
If the initial tensile strain is replaced by an initial compression strain, intrusions instead of
extrusions will occur on both sides. This seems to agree with the experimental observations.

5. CONCLUSIONS

As discussed previously, for an extrusion to protrude, the shear strain in P has to be
positive and that in () has to be negative near the occurrence of extrusion. This requires
positive resolved shear stress in P and negative in (). In turn, this requires a compressive
stress in R to push the extrusion out. The occurrence of extrusion on both sides of the single
crystal implies compression in R on both faces. A segment in R with an initial tension in the
fatigue band tends to increase the length of the compressive stress in R under cyclic loadings.
This is likely to spread this compression over the length of fatigue band and causes extrusion
on both faces of the crystal.

Similarly, for an intrusion to occur on the left side, the shear strain in P must be negative
and that in Q must be positive. This requires a tensile stress in R to pull the intrusion in. A
segment in R with an initial compressive strain tends to increase the length of the tensile stress
in R under cyclic loadings. The spread of the tension in R over the length of the fatigue band
will result in intrusions on both faces. This gives the likeliness of intrusions on both faces.
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Figure 1. Micromechanic models of fatigue crack initiation.

v

Figure 2. Crystallographic direction of a f.c.c. crystal.
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The sliding crack model revisited
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Abstract: Two-dimensional micromechanical sliding crack model of inelastic deformation in
brittle solids under compression is reexamined within the thermodynamic framework with
microstructural internal variables (Rice, 1971, 1975). Incremental stress-strain equations are
derived for an elastic solid weakened by non-interacting sliding microcracks. Preliminary
results of crack-crack interactions in the presence of frictional and cohesive resistance are also
presented.

1. INTRODUCTION

It is well documented that nonlinear deformation and failure of brittle rocks involve the
growth of microcracks from stress concentrators such as preexisting cracks and voids,
inclusions, and dissimilar grain contacts. In unconfined compression tests the microcracks
grow predominantly on the planes subparallel to the direction of loading. The final fracture in
the form of splitting is commonly attributed to the unstable propagation of one or more of the
largest and most favorably oriented cracks running longitudinally towards the specimen's ends.
The failure is abrupt and inelastic strain at failure remains relatively small. In contrast, if a
substantial lateral confinement is applied the deformation process is more complicated since it
incorporates both brittle and ductile deformation modes. The final fracture (faulting) in a
confined specimen results from the cooperative action of many small cracks that grow in a
stable manner, interact and eventually form a dominant shear fault (crack band) at some angle
to the maximum load axis. The stress - strain curve in this case visibly deviates from the
straight line. The inelastic and elastic strains at failure (apex of the o— & curve in the stress-
controlled test) are typically of the same order of magnitude. Microstructural parameters, such
as grain size, porosity, distribution of cleavage planes, initial crack density, etc., usually play an
important role in the process of rock deformation.

g Project partially supported by the State Committee for Scientific Research, Poland (Grant no. 7TO7A026)
and Deutscher Akademischer Austauschdienst, Germany.



126

The microcrack growth under axial compression at low-to-moderate lateral pressures may
occur according to several different mechanisms. Some of these mechanisms such as: frictional
sliding on initial flaws producing secondary tension wings, tension cracking from isolated
pores, pore collapse, have been extensively studied both experimentally and analytically (e.g.
Brace and Bombolakis, 1963; Bieniawski, 1967, Walsh, 1965; Peng and Johnson, 1976;
Nemat-Nasser and Horii, 1982, Horii and Nemat-Nasser, 1985a, 1986; Nemat-Nasser and
Obata, 1988; Kachanov, 1982; Moss and Gupta, 1982; Steif, 1984, Zaitsev, 1985; Sammis and
Ashby, 1986; Ashby and Hallam, 1986; Kemeny and Cook, 1991, Wang and Kemeny, 1993;
Dyskin et al., 1995; Fanella and Krajcinovic, 1988; Ju, 1991; Zhao et al., 1993).

In this paper, attention is focused on the sliding crack model originated by Brace and
Bombolakis (1963) and then widely used in the literature (for references see Basista and Gross,
1997a) to represent inelastic deformation of low-porosity rocks. It involves a rather complex
sequence of events starting with the frictional sliding on the faces of preexisting (closed) flaws,
followed by the curvilinear kinking from the crack tips, and completed by the subsequent
mode-I growth of the kinked wings in the planes roughly parallel to the direction of dominant
compressive stress. Depending on the sign of confining stress, the wing cracks may grow either
in a stable (lateral compression) or unstable (lateral tension) manner.

The objective of this paper is to analytically derive the stress-strain relations for elastic
material containing frictionally sliding microcracks under overall compressive stress. For this
purpose, the thermodynamic framework with microstructural internal variables (Rice, 1971,
1975) i1s adopted. The authors’ recent results (Basista and Gross, 1997a,b) are here
summarized and further advanced by examining the interaction of frictional cracks.

2. INTERNAL VARIABLE REPRESENTATION OF SLIDING CRACK MODEL

Consider an isothermal deformation of a microcracked elastic solid subject to compressive
principal stresses o, o, (compression is viewed negative). The analysis is confined to low

lateral pressures |02| << |ol| so that strains may be considered infinitesimal and plastic effects

may be neglected. Since the overall material response is nonlinear and stress-path dependent,
an incremental formulation is necessary. For simplicity, the attention is focused on non-
interacting slits embedded in a two-dimensional homogeneous and isotropic matrix. The sliding
crack interaction will be addressed later in a separate section.

It is assumed that a macroscopically homogeneous deformation process can be suitably
approximated by a sequence of constrained equilibrium states (Rice, 1971, 1975). As a
consequence, it can be shown that the inelastic part of the macroscopic strain increment is
related to the increments of internal variables at the microscale according to

. 1 38f,(o.H)
dgu_VOZ 0',0_'] déz (I)

where f, = f,(c,H ) is the set of thermodynamic forces conjugated to the internal variables

&,, o is the tensor of applied stresses, H (for history) represents symbolically the current
collection of values of £_, V, denotes the volume of a representative volume element (RVE).
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The summation in (1) extends over all sites of the RVE where the microstructural
rearrangements take place. The total strain increment can be decomposed as

de=d’s+d’e =M:do +d'e )
where d’e is given by (1). The instantaneous compliance tensor M is defined as

o? H
Mnkl :—V/&‘—)lﬂ fixed (3)
y éo ; do

Here, v (o, H) is the specific complementary (Gibbs) energy given by
v(o.H)=v'(0)+Av(o.H) , ¥’ =}o,M, 0, “

where Ay (o, H) denotes the inelastic part of y due to the frictional slip and the presence of
wing cracks, M Okl is the elastic compliance of the matrix material. Note that for open cracks,
y

the instantaneous compliance M,,, defined in (3) is the secant (effective) compliance which is,

in fact, the unloading compliance. However, this conclusion ceases to be valid for closed
frictional cracks considered in this paper (for details see Ju, 1991). This and related issues
pertinent to the applicability of Rice’s framework to the sliding crack mechanism of inelastic
deformation are analyzed in more detail in Basista and Gross (1997a).

Frictional sliding on a preexisiting slit, which remains closed during the whole deformation
cycle, leads to the formation of curvilinear tension wings. Similarly as in Nemat-Nasser and
Obata (1988), the curvilinear wings are represented by the equivalent straight ones, as shown in
Fig. 1. The orientation @ of the equivalent crack tip is yet to be determined maximizing X,
with respect to € for a given wing length /.

The inelastic part of the specific complementary energy of a representative surface element
(RSE) containing N non-interacting winged cracks is

N
AV/(G,H):/T

0

c b("i)
{j [ 71,(,6) dbax; +2j.G(c,l,9)dl}
0

-c i}

5)
N 2 , =\ 1 ¢ 2 2
- Z{ZC‘[ 7,(0,8)db + ok I (K + K,,)dl}

where: A, is the area of the RSE, o] are the actual stresses acting on PP’ in the local
coordinate system (x{ , x;), 2¢ is the length of the preexisting slit, / is the wing crack length,
b(xz') is the relative slip displacement of the points on PP’ with b being its average value over

2c, G is the elastic energy release rate. As usual in the fracture mechanics notation
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E, for plane stress
Ej=

— 3 M 2 1 P M 2
E, /(1_ Vg) for plane strain}’ with E; and v, being Young’s modulus and Poisson’s

ratio of the matrix material. The specific complementary energy is shown in a general form (5).
Its integrated form, although analytic, is rather lengthy and is not displayed here.

R

£ 1

Figure 1. Sliding crack with tension wings.

Using (4) and (5), the inelastic change of y reads

dy — Oy oy
d'y=—=db +— —
V=2 +ﬁldl+ agde
6
N\ eacds +2Gdl+ 2 2}('611 do Nifd ©
= — C —_ = —
AO TlZ 56 A 4 Ao o] a él
From (6) the microfluxes and the conjugated thermodynamic forces for a single crack are
[5G
fi=tih2e, d& =db,  f,=G, d&=dl;  fy= —Zdl, déy =db Y

o0

[
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The explicit expressions for f,, f,, f, are contingent on the knowledge of the actual shear
stress 77, acting on PP’, and the stress intensity factors K, and K, at the wing crack tips.

From the superposition principle and the equilibrium of forces along PP " in the cross section
QPP'(' (Fig.1) it follows that

T, 2¢ — [0'” cosz(9+ (o) + 0y, sin2(9+ (o) +17,, sin 2(0+ (p)] 2/sin @
8
+ [%(o“ -~ 022) sin2(6+ ) - 7,, cos2(6’+(p)]2l cos@+2F,(h,1)=0 ®

where: 7, =1/, — 7], denotes the net shear stress that causes the slip on PP’ after the
cohesive and frictional resistance have been overcome, 7/, = —%sin 2(/)(0'“ - 0'22) + 7, COS2¢
is the shear stress resolved on PP, o,,, 0,,, 7,, are the applied stresses at infinity. The term
F,(5,1) in (8) represents the sum (F,j sin@+ F/ cos9) of the projections on PP’ of the
F!in
mode I, II respectively. Anticipating subsequent differentiation of the thermodynamic forces
f, with respect to o, all three stress components o,,, o,,, 7,, were introduced into (8),

appropriate, as yet unknown, elastic restoring forces (or crack closing forces) F)

el>

iy
although 7, = 0. In view of (7) and (8), the thermodynamic force conjugated to db becomes

fi=1,2c—-0,2lsing 005(0 + (o) + 0,2/ cose sin(9 + (p) -7, Zlcos(O + 2(p) - Zﬁ;, (I;, l) 9)

The exact solution of the stress intensity factors (SIFs) at the curvilinear wing tips can be
obtained only numerically (Horii and Nemat-Nasser, 1985a; Lauterbach and Gross, submitted).
For the present modeling purposes, closed-form thus approximate solutions are required.
Numerous approximations of K, and K, available in the open literature can be arranged in

two classes: displacement-driven models (e.g. Steif, 1984; Nemat-Nasser and Obata, 1988) and
force-driven models (Moss and Gupta, 1982; Zaitsev 1985; Horii and Nemat-Nasser, 1986;
Kemeny and Cook, 1991). The key concepts of the displacement-driven vs. the force-driven
idealization of the basic mechanism are depicted in Fig.2a,b, respectively.

In the displacement-driven model (Fig.2a), the rectilinear wings are pushed sideways by a
rigid wedge whose dimensions depend on the preexisting crack length 2¢ and the varying

average slip displacement & . In this case, the SIFs involve complete elliptic integrals of the
first and second kind: K(k) and E(k), with the modulus & = v/* +2/c cos0/(l+ccos€) ,cf

Tada et al. (1985). In general, these SIFs are not expressible by analytic functions except for a
special case of semi-infinite wedge which, when transiated into the present context, means two
isolated (non-interacting) straight wing cracks. Strictly speaking, this is a realistic
approximation only for the initial phase of kinking (very small wings). This special case was
used as a basis in Nemat-Nasser and Obata (1988) for an analytical derivation of the inelastic
strain from the respective crack opening displacements (CODs).

If the crack tips of a displacement-driven crack (Fig.2a) do not interact with each other (i.e.
! << c¢) the modulus k is equal to zero. Consequently, the SIFs at the tips () and Q" are
expressible in the following form (e.g. Tada et al., 1985)
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b lo zfz'i:——lsm% \/%[0'110(32(6+¢)+% sin2(0+@ +7, sin46+¢)]

(10)
Qboos@ ’nl . .
bl —|n, 6 —s\oy — 6
c r—_27z(l+l" 2[q ooQ( +(o) (q o-zz)smi +(p)]

where I™ =027 cx?/32 is a nucleus wing length introduced in Nemat-Nasser and Obata
(1988) to get proper asymptotic behavior of the above expressions in the short wing limit
(/- 0), i.e. to arrive at the Cotterell-Rice solution (Cotterell and Rice, 1980) for infinitesimal
wings.

vy vy v

Ql
> 1 < % <«
o, A o, 9 a
> b \\2ccoso [€ - F <
21
> ! < —» o) <
Q

FFf Fr T

(a) (b)

Figure 2. Idealizations of sliding crack (from Basista and Gross, 1997b): (a) Displacement-
driven, (b) Force-driven.

In the reality, the orniginal sliding crack QPP Q" (Fig.1) is displacement-driven: the SIFs at
the wing tips are directly proportional to the relative slip of the slanted crack faces. However,
when the preexisting crack undergoes forward- or backsliding, its wedging action upon the
wings may equivalently be seen as force-driven (Nemat-Nasser and Obata, 1988). In such a
case, the wedging effect the slip displacement exerts on the wings is represented by two
collinear splitting forces F = —2c7z), . Assuming that the curvilinear wing cracks can be

approximated by the straight ones whose orientation is to be determined from the maximization
of K, , the estimates of the SIFs at the wing tips in Fig.2b are (Horii and Nemat-Nasser, 1986)
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K,(F,lc)= F(—Slm?—) \/ﬁ[a“ cos*(8 + )+ oy, sin*(6 + @) + 7,, 5in 26 + (o)]
z(l+
(n
K,(F,lc)= —Feos6 «/ﬁ[— Yoy, - 0)5in2(8 + @) + 7, cos2(6 + (p)]
ﬂ(l+l’)

where /" =027c¢ plays the same role as /™ in the displacement-driven model.

3. DERIVATION OF STRAIN INCREMENT

The next step of the analysis consists in the calculation of the inelastic strain increment
induced by the frictional sliding along the preexisting flaw, the wing crack extension and its
simultaneous rotation. The wing crack rotation is a by-product of the modeling of the wing tip
path. Recall that the curvilinear wing is traced as a sequence of inclined straight cracks whose
orientations 6 are determined maximizing K, for a given wing length /. The wing length itself
is calculated from the K, = K, condition. The inelastic strain increments are obtained from the

fundamental relation (1) using the derived microstructural thermodynamic forces (7), (9) and
the approximate expressions for the SIFs (10), (11). It is essential that the conjugate forces f,
be symmetrized in components of ¢ and all three stress components be included when
performing the differentiation in (1). After some computational effort, the final outcome in the

global coordinates (xl, xz) reads (Basista and Gross, 1997b):

Strain increment due fo frictional sliding (. b -driven and F-driven model alike)

de = -sin2¢ cos2p o -2sinpcos(6+¢)  cos(6+2¢) T 12
v °| cos2¢ sin2p ° cos(9+2¢7) 2cos@ sin(¢9+(p)

The following normalized quantities have been introduced in (12) and will be used in the
sequel: w, = Nc?/4,, b =b, /e, T =lfc, where N is the number of non-interacting, active
winged cracks in the representative surface element (RSE) of the area A4, b, I, ¢ are marked
in Fig.1. Note that parameter w,, which arises here in a natural manner from the structure of
the potential Ay, is identical to the damage parameter introduced in Walsh (1965). In the

literature, this parameter is also often referred to as the Budiansky-O’Connell (1976) crack
density parameter.
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Strain increment due fo wing crack extension ( b -driven)

[—2si {6 +0) {6 +2¢0) |
@, [+ sing cos(@ + ¢ cos @ +2¢ o~
det =g\l bdl
%77 g,( )L cos(6 +2¢) 2cos¢sin(6+go)J

(13)
( rcos2(9+ ) 1
. 1) 2sm2 9+¢J
4 ’(0 4o o
o [ o, cos* (8 + ) + 40, sin’( +¢’)]Psin2(9+(0) sin’(0 + @) J

2E1 I r—SXHZ(g +¢ cos2 6+¢ _]
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Strain increment due to wing crack rotation (1 b -driven)
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Strain increment due to wing crack extension (F-driven)
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Strain increment due to wing crack rotation (F-driven)
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where hz(f):,ﬁ(lN+lN')—%ln|L§~l, +2 %;(7[—,+1]+1J|_

Having determined the inelastic strain it remains yet to compute the elastic part of the strain
increment of the RSE containing isotropically distributed winged cracks. Within the present
framework, this is done according to the relations (2) and (3) with the Gibbs potential
determined by (5). The final form of the elastic part of strain tensor in the global coordinates
reads

+w,

Elastic part of strain increment (b ~driven)

s 5 N .
RIS = Wi o S s ik B B
Elastic part of strain increment (F-driven)

d'e, =2d°, (b - driven) (18)
The total strain increment comprises all the individual terms, namely

dg, =d‘e, +dg; +dg) +de! (19)

A systematic discussion of the obtained equations (12)-(18) is provided in Basista and Gross
(1997b).
So far in this section we were concerned with forward sliding in loading regime. If the

effective shear stress on a preexisting crack diminishes for some reason (d|r1'2| < O), then the

sliding crack may undergo unloading. Various situations in unloading were analyzed in detail in
Basista and Gross (1997a).
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4. KINETIC EQUATIONS FOR INTERNAL VARIABLES

The preceding section has shown how the inelastic and elastic macroscopic strain are related
to the particular microstructural rearrangements induced by the sliding crack mechanism. The
microfluxes d£, and their conjugated thermodynamic forces f, have been explicitly identified.
The framework is now completed by the specification of kinetic relations for the rates d¢&, /dt .
Since no crack-crack interaction has been so far included in the present model, it suffices to
consider kinetic equations for three microstructural internal variables b s lN, @ resulting from the
analysis of a single kinked crack. Consequently, the overall strain may be estimated afterwards
using a simple averaging procedure that sums up the individual contributions of all active
cracks while accounting for the assumed spatial distribution of the preexisting flaws.

In general, the slip displacement b is to be computed from the forward- or backsliding
activation condition, the wing length 7 from the kinked crack instability condition, the
orientation angle @ of the equivalent straight crack from the maximization analysis of K, with

respect to 8. The rates 5,7,68 expressed in terms of the applied stress rates o, are obtained
imposing the consistency requirements upon the above conditions.

It is assumed that frictional contact on PP’ is governed by the Coulomb-Mohr law. Hence,
the actual stresses acting on PP’ at sliding are correlated according to

T, =T, - po) (20)

where 7, is the cohesion, u is the coefficient of dry friction and
0y, = 0y, cos’ ¢ + 0y, sin’ @ + 7, sin2¢ is the resolved normal stress transmitted across PP,
The sliding activation condition is then obtained by combining the equilibrium equation (8) and

the Mohr-Coulomb condition (20) for frictional glide to get

=g, [cosw(sin(p ~ pcosg)+1 cos(6 +¢)sin (p]
Aazzlsin(p(cos¢+ ysin(p)+75in(9+¢)cos¢] 2D
+ T|2[C052¢ + psin2¢p -1 cos(6 + 2(p)] v+ 4¢ ' F,=0

As noticed by Moss and Gupta (1982), it is difficult to determine ﬁ;l because the stress-crack
opening displacement relation for the entire kinked crack is not available. Consequently, some
approximate solutions were sought. For example, Moss and Gupta (1982) neglected the initial
slit (¢ — 0), friction and cohesion and considered two limiting cases: & — 90" (locally, mode-I
crack) and 8 — 0° (mode-II crack). Upon introducing a simplification that the wings grow
parallel to the direction of the largest principal compressive stress o, (i.e. @ + ¢ = 7/2), these
authors obtained from (21) that

Nl

E
4

F,=

’
0

(22)
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Incidentally, an identical result was obtained in Basista and Gross (1997) while the derivation
scheme itself was based on a somewhat different reasoning. Estimation of the elastic restoring

forces makes the computation of b (normalized average slip) straightforward. Furthermore,

the kinetic equation for  can now be derived from the sliding activation equation (21) by time
differentiation. It is perhaps interesting to note that the present considerations provide a
micromechanical explanation of the lack of the normality rule in macroscopic constitutive
equations for frictional materials. Kestin and Rice (1970) and Rice (1971) proved that the
normality rule holds if a particular flux depends on the macroscopic stress only via its own
thermodynamic force. It can be inferred from (7), (8) and (22) that such a dependence does not
hold for a material with sliding cracks (Basista and Gross, 1997a). We recall also an alternative
algorithm for computing b proposed by Nemat-Nasser and Obata (1988). These authors did
not analyze equilibrium of a slanted crack but derived b from the duality of K, factors by
requiring that K, of the displacement-driven model (10) be equal to that of the force-driven
model (11) when the sliding mechanism is active.

The remaining kinematic variables /and @ are obtained as functions of o, from the

following conditions:

JK/ =K
9K _, (23)
[(79 -

Kinetic relations for l~(o",]) and 6 (o,) follow from (23) by time differentiation. The resulting

equations are algebraically quite involved, thus were solved numerically using the symbolic
algebra softwares. In the long wing limit these equations take much simpler forms and in
uniaxial compression are even solvable analytically (Basista and Gross, 1997a).

5. AVERAGE STRESS-STRAIN RELATIONS

In the preceding sections, the preexisting cracks had fixed orientation and size. In order to
compute overall stress-strain curves a homogenization procedure is necessary. Since crack
interactions are not yet included, the overall stresses and strains may be approximated by
simple area averages of the contributions of individual sliding cracks. Assuming a finite number
of specific orientations of preexisting cracks, the average strain increment may be computed as
in Nemat-Nasser and Obata (1988), from

de, = %ids,}((p,,wo((p,)) (24)

r=1

where R is the number of considered orientations ¢ . The strain increments under the
summation sign in (24) are given by equations (12)-(19). For an isotropic distribution of
preexisting cracks all crack orientations are likely to appear. From the symmetry arguments, it
further follows that the shear strains in the global coordinate system (x,,x,) must vanish.
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As an illustration of the developed constitutive theory, Basista and Gross (1997a)
considered an example of uniaxial compression on Westerly granite specimens. The force-
driven model mechanism (Fig.2b) was adopted for the computations of strain increments along
the lines of Section 3. The following material parameters were assumed:

E, = 58000 MPa, v, =023, o, =-204 MPa,

#=065 ¢=5-10*m, K, =07MPavm, (25)
7, =12 MPa, @, =0375 R=90.
200 200
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Figure 3. Analytical predictions (solid lines) from Basista and Gross (1997a) vs. test data on
Westerly granite (Zoback and Byerlee, 1975).

In Fig.3a,b the obtained theoretical curves are compared with the experimental data of
Zoback and Byerlee (1975). Simple as it is, this damage model predicts several qualitative
features of the brittle response of granite: the overall trends in loading and unloading are well
preserved, the lateral inelastic strain is substantially larger than its axial counterpart, the
permanent set and hysteresis loops are accounted for. Note that the material parameters used
in the computations are rather realistic and are documented in the referenced literature.
Typically of all micromechanical models, the present formulation contains no fitting parameters

6. INTERACTION OF FRICTIONAL CRACKS

In this section, we shall report some preliminary results concerning the sliding cracks
interaction effects and their incorporation in the present thermodynamic framework with
microstructural internal variables. In general, crack interactions may be analyzed either
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indirectly through one of the effective continua techniques (e.g. self-consistent method) or
directly by formulating and solving an appropriate elasticity problem. In some simple cases of
crack configurations, the integral equation method may successfully be employed to get the
exact (analytical or numerical) solution to the elasticity problem in question. However, for
large crack concentrations, the exact solution is practically out of our reach and the so called
approximate direct methods offer a way out. Of several approximate direct methods dealing
with crack-crack interactions (e.g. Gross, 1982; Horii & Nemat-Nasser, 1985b; Benveniste et
al., 1989), the one proposed by Kachanov (1987) is chosen for its simplicity and accuracy.
Consider a plate of linear elastic material weakened by N arbitrarily located rectilinear
closed cracks under overall compression. The present analysis of crack-crack interactions is
confined to the phase I (in the notation of Basista and Gross, 1997a) which stands for
frictional sliding on preexisitng cracks with no tension wings yet. Within the present
framework, the crack interaction effects (amplification or shielding) will influence the
thermodynamic forces and the fluxes. In phase 1, it is sufficient to determine the actual shear
stress (conjugate force) 7, along the preexisting crack, and the average slip displacement

(internal variable)  from which the inelastic strains can be computed in the standard manner

of Section 2.
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Figure 4. Superposition of stresses for two frictional cracks under compression.

The original Kachanov method has to be modified to account for cohesive-frictional sliding
on closed cracks. In preparation for that, consider the superposition of stresses depicted in
Fig.4. To facilitate the drawing, only two cracks are marked in Fig.4, whereas the equations to
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follow are formulated for an arbitrary 2D array of N cracks. According to Kachanov (1987),
the problem C can be represented as a superposition of N subproblems each involving only one

isolated crack but loaded by unknown stresses 7,7, o,;, (L=1,..,N). In contrast to open

mode-I and mode-II cracks considered in Kachanov (1987, p.24), the signs of superimposed
stresses in Fig.4 are strictly observed in order to avoid confusion among the several different
stresses involved in the compression case. Recall that the continuum mechanics sign
convention is used throughout this paper, i.e. compression is viewed negative. Consequently,
for closed frictional cracks, it follows that

Tl.zL = 71,2 (712 +A712) (26)

01‘1L = 0’1’1 (0'11 +Ao'n) 0 (27)

where 7,,", o}’ denote the actual (contact) shear and normal stresses existing on the faces of
L-th crack, 7,7, o,y are the resolved (due to the remote loading ) shear and normal stresses

along the line of L-th crack in a continuous material, Az,5, Ao}’ are the interaction terms, i.e.

shear and normal stresses generated in the continuous material along the line of L-th crack by
all other cracks.

The key assumption of the Kachanov method is that the unknown crack interaction stresses
Atz);, Ac: are induced only by uniform average stresses (as yet also unknown) acting on the

other cracks’ faces. Denote by P" and 7, X the standard stress fields that are generated in the

continuous material by the K-th crack loaded by uniform normal and shear tractions of unit
intensity, respectively. The standard stress fields can be found in Kachanov (1987) or in the
related papers that are referenced there. The crack interaction stresses, generated in the
continuous material along the line of L-th crack, can be expressed as

Aot; = -nt[ B (or ) + T (aiF) ] ! (28)

J

nosumover L, sumoverK =1,... . N; (K= L)

Az = [ 0’11 + 7;K<r1‘zK )]mL (29)

J

where n, m are the unit vectors normal and tangential to the crack; < > denotes the average
value of the bracketed quantity. Averaging (28) and (29) leads to

<A011> = Allaf( 1.1k> Aﬁ( 1.2K> (30)

(Ars) = -A5 (o) - A5 () G1)
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where A’;L are the transmission factors (interaction matrices) defined as follows

AL = njL(p__K>Ln.L, A = n.L<7;.jK>LnjL; (K1)

i J d

J? i J

AF=0; (K=1)

A :n’,L<P,jK>LmL ASL = n.L<7;jK>Lm.L; (K=L) (32)

In (32),, summation is extended over K, while no sum convention applies to L. For
convenience, the notation of transmission factors in (32) has been slightly changed as
compared with the original one in Kachanov (1987). For example Al denotes the average
shear stress (lower index 2) on crack L due to unit normal stress (lower index 1) on crack XK. In
practical terms, computation of the above transmission factors requires integration of the
standard stress fields caused by the K-th crack along the line of the L-th crack.

The actual stresses 7y, , o}, due to frictional contact on the L-th crack faces are interrelated
through the Coulomb-Mohr law of dry friction, namely

Ty = T, - oy (33)
Combining (33), (26) and (27) gives
Tl.zL = (Tc - .uo'lrlL - rlrzL ) = (/“ AGILI + ATle) (34)

By averaging (34) and making use of (27), (30), (31), we obtain a system of NV linear equations

1

(6% - w A~ AZ) () = (- pott -~ ). (KL=12,....N) ()
The right hand side of (35) specifies the remote loading conditions and the friction-cohesion
resistance on the considered crack. The crack array geometry and the influence of friction on
the transmission of shear stresses are reflected in the left hand part.

Equations (35) with the transmission factors (32) and a given loading (ol’,L , Ty ) constitute

the governing system of equations for the average shear stresses <r;2'( > To solve them, a

numerical program, developed originally by Wagner and Gross (1988) for open cracks, has
been extended here to account for the mode-II frictional sliding under overall compressive
stresses. For a simple configuration of two inclined equal cracks (Fig.5a) under uniaxial

compression, the obtained approximate solutions for (r,'z) :<r,'22>=—<rl'zl> have been

compared with the ‘exact’ numerical results of Lauterbach and Gross (1997) who applied the
BEM to solve the appropriate elastic boundary-value problem by means of the Kolosov-
Muskhelishvili stress potentials. The curves in Fig.5b represent the average shear stresses
acting on the individual cracks vs. the relative distance of crack tips. The solid lines depict the
current results whereas the numerical solution of Lauterbach and Gross is marked by symbols.
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Both solutions are practically indistinguishable. Note that for the most part
configuration promotes shielding i.e. <T;2> diminishes as d/c becomes smaller.

25.00 =
o, =-50. MPa
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<T;2 ), MPa
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. /é E\ , 7, =10 Mpa, g =02
I 5,
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? ? 0.00 0.40 0.80 1.2
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Figure 5. (a) Two symmetrically inclined cracks under uniaxial compression. (b) Average shear
stresses <z,'2> on crack faces vs. relative distance between crack tips.

Another illustrative example of two collinear inclined cracks is shown in Fig.6ab. It is
commonly known that collinear configurations of open cracks induce amplification of stresses

and stress intensity factors. In case of frictional cracks this effect is maintained as seen in Fig,
6b.

Having computed the average stresses (r,'{'), it is now possible to determine the actual
shear stresses 7;; (thermodynamic force in phase 1) acting on the L-th crack faces. This can be
accomplished upon computing Ac);, Az} from (28), (29), then 7, from (34), and finally 7/
from (26).

The next step is to determine the average relative slip displacement (internal variable)
(bL> =b"of the points on crack faces. As stated in Kachanov (1987), the average

displacement jump and the average tractions on a crack are interrelated through a simple
(approximate) proportionality

(1) = ~(Eg fmet)(b") (36)
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where " = (O';lL,T;ZL). The minus sign in (36) results from the sign conventions applied to

stresses and displacement jumps. For the considered closed frictional cracks, it holds o} =0
and the proportionality (36) takes the form

By = (bl)[c" = —gg (r:t) 37)

Once the fluxes and conjugate forces are determined, the inelastic strain increments can be
computed from the fundamental micro-macro transition relation (1).
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Figure 6. (a) Two collinear inclined cracks under uniaxial compression. (b) Average shear
stresses (r&) on crack faces vs. relative distance of crack tips.

7. CONCLUSIONS

In the first part of this paper, we have reviewed our recent results regarding the sliding
crack model of brittle deformation within the context of Rice thermodynamic framework with
microstructural internal variables. Two idealizations of the basic deformational
micromechanism were analyzed: the displacement-driven model and the force-driven model.
The entire sliding crack was considered with energy dissipation on the frictional sliding on
preexisting flaws, the wing cracks extension, and the wing cracks rotation. The latter was
introduced to mimic the curvilinear path of the wing tip propagation. Incremental stress-strain
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equations were derived and applied to predict experimentally observed behavior of granite
specimens in unconfined compression.

The second part was devoted to the interaction effects of sliding cracks examined within the
Rice thermodynamic framework. So far, only phase ! (frictional sliding, no wings yet) was
analyzed. The Kachanov (1987) strong interaction scheme was modified to account for
frictional and cohesive resistance on closed cracks. Preliminary developments show that the
model lends itself well to this method of modeling of crack-crack interactions.
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Damage evolution rule for multiaxial variable loading
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The damage accumulated within the material element is associated with the physical plane
and predicted by the contact stress or strain rule. For singular stress or strains regimes a non-
local failure or damage rule is used. The application to both monotonic and variable loading is
provided. The theoretical model predictions are compared with the experimental data obtained
for notched specimens under combined tension and shear loading varying monotonically or cy-
clically. The compliance variation is predicted from the known damage distribution on physical
planes.

1. INTRODUCTION

The present work is concerned with the uniform formulation of damage and failure rules for
materials subjected to monotonic or variable loading. A simple approach could be based on the
elastic stress analysis with neglect of stress redistribution due to damage or plastic strains. The
failure of brittle materials and high cycle fatigue problems could be treated within this ap-
proach. The local or non-local stress condition on the physical plane element is used to predict
crack initiation or damage growth. This approach differs from the elastic fracture mechanics
where the elastic energy release associated with the plane crack growth is used as a critical
factor. However, the fracture mechanics assumptions do not allow for treatment of crack ini-
tiation processes from sharp notches, inclusions or grain boundary singularities. On the other
hand, the proposed approach provides the simple tool to treat both crack initiation and propa-
gation stages within the same constitutive assumptions. The experimental data validate the
proposed model, though more ample empirical evidence is needed. The present model provides
also the damage distribution on physical planes. The associated compliance variation can next
be determined and the damage strain can be included in the analysis.

The present paper synthesizes and extends the previous authors results [1-8]. The compre-
hensive exposition of damage mechanics can be found in books by Lemaitre [10] and Krajci-
nowic [9].
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2. NON-LOCAL BRITTLE FAILURE CRITERION

Consider an arbitrary physical plane 4 and the local coordinate system (&,&,&) (Fig.1). In
the global coordinate system (x,x2,x3) the origin of the local system is specified by the position
vector xXo(Xo1,Xo2,%03) and the unit normal vector n(m,ny,ns), specifies the plane orientation,
where n, = cos(&,x;).

The stress and strain tensors g and ¢ provide the traction and strain vectors Z and E. In the
local coordinate system we have

Z;‘(Tnl’rnZ’o-n)=Nnjo-jknk’ Ei(ynlv}/ﬂ’gn):Nijgjknk’ (1)
where N; = cos(&,x;) is the transformation matrix.

We have also

g,

. = Oynn;, & =€Enn

gy

1
Tpy = Oyl yhty = Oyl o1y = 507)‘[’;51’"1 +tl]n,], 2)

1
Yy = E5lah; = &yl M = 56"‘1[’1'”1 'sz”i]’

where t,; = cos(&,x), x =1, 2.
The resulting shear stress and strain in the plane 4
are expressed as follows

T" = [TVIIZ + Tn22]1/2’ 7»1 = [},nl2 +7n22]l/2. (3)

Let us assume that the crack initiation and propa-
gation process in the plane A depends on the contact
stress and strain components, and also the damage ac-
cumulation on the physical plane. The stress condition
of failure for monotonic loading is referred to the
critical plane A. on which the local stress failure func-
tion reaches a maximum, thus

Ry =(23:3R°(on/ac,r"/rc)=1, 4

Fig. 1. Physical plane 4 with the associ-
ated local coordinate system (£,5,5), and
the global reference system (x),x2,x3).

where Ry is the brittle failure factor; R, is the stress
failure function, o, t. are the failure stresses in ten-
sion and shear.

Let us note that the criterion (4) allows for specification of the critical load and also of
crack location and orientation as the maximization process is carried out with respect to x and
n. The stress failure function is expressed in terms of contact traction components o, and 7,.
Depending on the material property this function can be assumed as normal or shear stress
function or a combined function of different forms in tension and compression regimes, Fig.2.

Consider, for instance, an elliptic condition for o, > 0 and the Coulomb condition for
o, <0, thus
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Fig.2. Stress brittle failure function in the stress plane: a) elliptic condition for normal tensile stress
combined with the shear condition for compressive normal stress, b) Coulomb condition with tension
cut-off, ¢) shear condition, d) tension condition
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<
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n

The stress failure function can be presented in the (o, 7,) plane as the envelope of stress circles
in the critical state. The critical planes ay, a; are specified by the tangency points of the Mohr
circle and the envelope, Fig.2. There are two critical planes for the Coulomb or shear stress
condition and only one plane for the normal stress condition.

For large stress gradients or singular stress regimes such as those occurring at vertices of
wedge shaped notches the non-local stress failure condition is applied by averaging the failure
stress function over on area dy x dp, Fig.1, thus obtaining

dydq
=(r:;a)()ﬁo(an/ac,rn/r) zmns|: 2IIR déd@z] 6)

where R, is the non-local failure function. An alternative non-local condition can be obtained
by averaging stress components acting the plane 4

dyd, dydy

jja d&ds, T, =;1—(1)2~Ijrnd§,d§. Q)

00

__L
"—d

and substituting to (4), thus
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Rfc = (R?:SEU(En /O’c,‘l'" / TC) = 1’ (8)

The size parameter dy (representing the size of the damage zone) can be specified by re-
quiring the non-local condition (6) to be equivalent to the Griffith condition in the case of ten-
sile crack propagation. This provides [1]

2
dy = 3(5—) , ©

n\ o,

where K| is the critical stress intensity factor in Mode L.
Assume now that the critical stress values o and 7. depend on temperature 7, and the ac-
cumulated damage @,q, so that

o, ZUC(TO,(U,,G)=O'C°(7;)(1—a)nu)p, 7. '—'TC(T:),(UW):TCO(T;)(I—(()"U)F, (10)

where o, 7o are the critical stress for the undamaged material and p is the material parameter.

From (10) it follows that
\Vp 1p
wm,=1-[ij =1—(_’°_J (11)
UCQ z'CO

and we assumed that the damage affects in the same way both critical stresses o, and ..

A more general case can be treated when the coupled stress and plastic damage @0, @, OC-
curs accompanied by corrosive damage .. The effective damage on the plane 4 can be repre-
sented as follows

'(zm = W +¢c(wnp ’wnh)‘ (lz)
and
o :o’co(Tcxl_Qc)p’ T, = rco(To)(l—'ch)p’ (13)

where @, provides the combined measure of plastic and corrosive damage.
The strain failure condition can be formulated analogously to the stress condition. Consider
the failure strain function

Re =panR (e, 6.7, /7)<, 09

where Ry is the failure strain factor, and &, y. are the critical normal and shear strains. The
failure strain function can be assumed in the form

[(g">]2 (}/ Jz 0,5
Rg(a,,/gc,y,,/yc)z e ) (15)
& Ve :

where (£,)=¢, for £,>0and (£,)=0 for &,< 0. The non-local failure condition can now be writ-

ten as follows
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dyd,
Ry, =(3_§311(6n ERMIAE (T,?S{d% { (I)Rg dédéz} =1 (16)

where the size parameter d, can be expressed by comparing (16) with the Griffith condition for
the tensile crack. For the plane stress case we have

d =3(mjz. a7

o o,

Let us note that the stress and strain conditions are not equivalent and provide different pre-
dictions. In fact, the value of &, depends not only on o, but also on o, Gp, acting within the
plane A.

3. EXPERIMENTAL ANALYSIS OF CRACK INITIATION IN NOTCHED
ELEMENTS

Consider a plate with sharp wedge shaped notch of the angle 2/ subjected to combined ten-
sion and shear. In the local coordinate system (r,.9), the stress and displacement fields can be
presented in the form [11]

o, =u)" " Kia,(9) + @nr) " K5, (9),
g, =(@nr) " K, (9) + 2m) M K Ed (9).
where the singularity exponents A; and Ay are specified from the characteristic equations
Asin2a +sin2a =0, Aysin2a -sin2lya=0, a=n-pf (19)

and the generalized stress intensity factors for Mode I and Mode II are defined as follows

(18)

A=A

Fig.3. Special device for biaxial loading of plane specimens with notches
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K= tim [@m) ™ o4,(.9)] Ki=, =lgrrn_>0[(27tr)l—'1" 7,0(.9)]. (20)

8=0 r—>0!

In order to analyze experimentally the crack initiation in notched specimens, a special device
was constructed [8], Fig.3. The plane specimens are fixed in the device at an angle y with re-
spect to the applied tensile force F. The tensile and shear forces acting on the transverse cross
section are

T=Fsiny, P=Fcosy 21)

The monotonic loading tests were carried out on polimethyl metacrylate (PMMA) speci-
mens. Two notches of depth 25 mm were made symmetrically in the central specimen portion
of width /, = 100 mm. The specimens length is /; = 200 mm, the distance between notch root s
equals a =50 mm and the radius of a semicircular notch equals 7o = 25 mm. The specimen
thickness is g =5 mm.

2) b) The stress distribution and the general-

y /fp\ ra ized st.ress intensit?/ factors K{l', K{}. were
T determined numerically by wusing singular

j’ stress elements. The details of calculation are
____________ presented in the paper by Seweryn et al. [8].
o o The values of critical loads F, at the crack
Wﬁ " < propagation for varying loading angle y and
the notch angle 23 are plotted in Figures

4| b ____ 6a,d. The crack propagation direction % for
N varying angles and 2f are shown in Figures
—= Sa,d. The value of the critical stress o, was
:PP M=T4 l” identified by testing the specimen with the

semicircular notch (2= 180°, 4, = 1) and as-
suming o, to correspond to crack initiation at
notch root. It was further assumed that
0 < o/7. < 1. The non-local size parameters d, or d, were specified by determining the critical
value of the stress intensity factor Kj.. This value was specified in terms of generalized stress

intensity factors Kli for 23 = 20°+60° and the critical stress o, thus
1

o, [ K{i Jm
2 \ Ao,

For PMMA the following values were obtained: o, = 115 MPa, Ki. = 1.37 MPa m™’, d, = 0.09
mm, d.= 0.038 mm.

It is seen that the use of the non-local stress condition (6) provides good correlation as re-
gards to critical load variation with the loading angle y and the notch angle 2. Similarly, the
crack propagation orientation is well predicted by the non-local failure condition. On the other
hand, the strain failure condition did not provide good correlation with the experimental data.

Fig.4. Planc specimens with: a) sharp notches,
b) semicircular notches

K, = 22
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Fig.5. Crack initiation direction for specimens with notches of angles: a) 28 = 20°, b) 28 = 40°,

¢) 23=60°, d) 23= 80° vs loading angle

4. STRESS CONDITION FOR DAMAGE ACCUMULATION

Let us now extend the analysis of the previous section by considering the accumulation of
damage on the physical plane for variable loading conditions. The stress variation occurs within
the elastic domain, so the compliance variation can be neglected and the damage growth can be
related to elastic stress variation on the plane 4, thus dw,, = dwm(Z,dZ,.Q,,a).

Experimental data indicate that the high cycle fatigue damage occurs for stress path ex-
ceeding the threshold values of stress on the physical plane. We therefore introduce the dam-
age initiation condition Roo{( G, 7, €2n0) = ¢ specifying a domain in the plane o;, 7,. The damage
initiation function Reo(0, /00, T./%,) is assumed to have the same form as the failure function
R(0,/0.,1,/7.). The critical stresses o, 7. are replaced by o, < o:, % < 7, where o, 7, specify
the damage initiation thresholds in pure tension and shear. The damage growth occurs when
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where Ry, is the damage initiation factor. For large stress gradients the non-local condition
should be used, thus

or

(24)

(25)
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v, The stress values o, and 7, depend on the
\Rﬂ\. . temperature 7, and the accumulated damage, so
C
that

. %o ZTO(T(')’a)nG):Too(?;Xl—wnc)qr
Riss<

T Ripg< where ¢ is the material parameter.
Consider now the domain of damage accu-

mulation % which in the plane (o,,7.) is

/ bounded by the curves R;, = 1 and R; = 1,

Fig.7. Introduce the non-dimensional factor

J}% O'oZUo(T;’wnc):o""’(]:’)(l_wm)q, (26)
w Ra=1 /"¢

Fig.7. Local brittle failure and damage initia-

tion curves in the stress plane Rcoc =R, / Rso. @7
The damage growth can now be expressed as
follows
dw,e = ¥ (R,)dR,, (28)
where
. dR;, for dR, >0 and R , >1
dR; = {0 for dR, <0 or R, <1’ (29)
and
dr, = _ R d(&) +—0R° d(—riJ = R do, + R, dr +ﬁe°—d.() , (30)
° Yo, /0,) \o.) Az,/1,) \7.) &0, or, " o092, ™

where the last term accounting for damage effect can be neglected in most cases. The damage
accumulation occurs for stress increment vectors directed into the exterior of the domain
Rs = const, Fig.8a.

An alternative specification of foading-unloading domains is shown in Figure 8b. The incre-
ment dR_ is now specified as follows

~ OR OR R OR
dR, = —dg, + —=dr,, + —dr -da,. . 31
3 ao_ O, + or . Tm + 31’,,2 T2 + on 'no ( )

n no

n

The stress increments d&,,dz,, (i = 1, 2) are associated with the moving loading-unloading

domain in the plane (o,,7,). The full unloading occurs when the stress vector is directed into
the interior of corner domain PAB, thus

do,=do, for do,>0 and o, >0,
do,=0 for do,<0 or o,<0, (322)

and

for t,dr, 20,

dé, =0  for z,dz, <O. (32b)
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do ’ //
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Fig.8. Damage initiation and stress failure curves in the (,,7,) - plane: a) loading-unloading domains
specified by the curves R, = const, b) loading-unloading domains specified by straight lines o,,= const,
T, = const.

Moreover, the damage initiation condition is exceeded. The inequalities (32) specify four do-
mains I, I1, IIT and IV of full loading (I), shear loading - tension unloading (II), full unloading
(I11) and tension loading - shear unloading (IV).

For large stress gradients, the non-local condition is used, so that

- 1 dydy

dR, :d—HdR d&dé,. (33)

The form of the damage accumulation function ¥5(Rs) was assumed as follows

¥ (R,) = A (R“ "R"“‘J"o l (34)
v ° 1_Rcmc I—Rcoc ’

where n, and A, are material parameters.
A simpler version of the model can be obtained by assuming o. and z. to be constant,
Rs = Ro(0w, 1), and

kﬂ
= IY{,(RG)dRc, (35)
0
The crack initiation condition occurs for the critical value of w,, thus
R, = (:-].30 W, =1 (36)

For large stress gradients, the non-local condition (28) is applied.
The fatigue crack growth condition can be expressed similarly to (6), namely

da = (na)slA ¥, ] 37

where A4 is the parameter of crack growth.
Assume that the damage initiation corresponding to the condition Rs, = 1, and the crack
initiation corresponding to the condition Rg,=1 are expressed by similar functions,
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> = f . Introduce within the domain £ a one parameter family of curves R, = const

O,
o

-||«~a

o

(f < R; < 1). For the damage accumulation function (34), we have

- max| 4, [Fed )" 9Re |
K=oy E[A'[l—fj —r|7t (38)
where
Rc_f "u_ Po "
( l—fj _[ CPOJ ' (39)

and P, P,, P. are shown in Figure 8.

5. EXPERIMENTAL VERIFICATION OF NON-LOCAL FATIGUE CRACK
INITIATION CONDITION

In this section we shall present the experimental data concerned with the crack initiation in
plane elements with wedge shaped notches subjected to cyclically varying tension and shear.
The specimen thickness is 5 mm, notch angles are 2 = 40°, 80° and 180° (semicircular notch).
Figure 4 presents the dimensions of specimen made of PMMA (,,Perspex”). The cyclic loading
between zero and maximal force value with the frequency 3 Hz was executed in a specially de-
signed device allowing for varying specimen orientation with respect to tensile force direction.
The experimental details are provided by Molski and Seweryn [12].

The number of cycles corresponding to crack initiation at the notch root was specified by
using the non-local crack initiation condition (33), (34) and the normal stress function R,. The
crack initiation can now be expressed as follows

— ng+1
(A%sw)—%) 1: 1, (40)

Ry = Ny max

0.~ 0,

where r, 3 are the polar coordinates with the origin at the notch vertex, N is the number of cy-
cles corresponding to crack initiation. The averaged stress amplitude equals

dy
Ags :aLjAasg(s) dr. (41)
09

Using the asymptotic representation of stress state near the notch vertex, we have
AKTA(9) | _AKiifu(8)
-4 -7y
A(2ndo) ™ Ay (2mdp)

where AK,‘, AK,'} are the amplitudes of generalized stress intensity factors in wedge shaped
notches. Equation (42) can be rewritten in the form

AU‘Q‘Q =

(42)
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Acgg ('B)fl (3) cosy + n ('B)f" (9) sin

N osiny . (43)

Ay (2nd,)' 4 A (2nd,)

where coefficients & and & are determined from the numerical solution by the finite element
method (& =K' /P, & =K} /T).

Table 1. Experimental results of fatigue . . .
re by Introducing the effective normal stress ampli-

tests for PMMA-specimens with V-

notches [12] tude
No. | 28 v AF Ne Ao, = max ATge(9), (44)
[deg] | deg) | [kN] )

1 40 0 1,95 1 the number of cycles corresponding to crack ini-
§ :g 23 ;;2 : tiation at the notch vertex is expressed from the
4 40 e 278 1 simple relation

5 40 30 1,80 4

, Ao, — 0O,

6 | 40 75 | 2,20 15 log N¢ = ~(n, + l)log(—"‘z——") 45)
7 40 30 1,70 26 O, =0,

8 40 60 2,00 59 . e . .
0 40 75 2,00 122 I.t is seen.that the non-loc:.:ll crack initiation condi-
10 | 40 60 1,80 169 tion provided simple relathn for Ng, analogous to
11 40 0 1,60 310 the one-dimensional condition. Figure 9 presents
12 | 40 30 1,50 395 both the predicted curve and the experimental
:z ;g g ;";(5) 18132 data. The values of the critical stress o, = 81.2
s | g0 30 264 ) MPa and of thcle size of damage zone c.i0= 0. 1.64
16 80 60 3.35 1 mm were specified from the monotonic loading
17 | 80 75 5,03 1 test. The value of o, and n, were specified from
ig gg 705 ‘:2(2) 139 uniaxial fatigue tests, obtaining »,=10.7 and
20 | 80 30 210 43 0,=21.6 MPa. 1t is seen from Figure 9 that fair
21 | 80 60 | 250 53 agreement was obtained between model prediction
22 | 8o 75 2,75 126 and experiment. The experimental points lie within
23 80 30 1,80 528 15% scatter layer with respect to the theoretical
24 80 0 1,70 5':9 curve Ag,, - Nr (only two experimental points for
32 igg g lslbs(;) 266 2 =80° and = 75° lie outside the scatter layer,
27 | 180 0 6:50 2226 which may be due to imperfection in specimen fab-

rication). The agreement can be regarded as satis-
factory, noting that for static tests of PMMA the experimental scatter lies within the range
+12% (cf. Williams [13]).

It should be emphasized that the non-local crack initiation condition from sharp or rounded
notches provides an effective tool for quantitative prediction. The crack propagation process
can be treated in a similar way.
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6. COMPLIANCE VARIATION OF THE DAMAGED MATERIAL

100 So far, we neglected the effect of com-
90 5\\‘ pliance variation of the damaged material.

§ 80 S~ However, for concrete, ceramics, and met-
. als this variation may be significant in the
% T~ later stage of damage accumulation, and
o 507 effect the stress distribution. The problem
EJ 50 --_a of variation of the elastic compliance tensor
v 40 o o due to damage was treated in numerous pa-
g 30 pers, cf. Budiansky and O’Connel [14], Or-
g 204 tiz and Popov [16], Horii and Nemat-Naser
g ol m.EEéiE“ﬂgg:{AgR?pg,Q,ON [15), Lubarda and Krajcinovic [17]. The
- =~ ERROR 15% compliance variation was related to the

0 e 1t 18 Thn+  known damage tensor or crack density

within the microelement.

In this section, we shall present the method
of description of compliance variation due
to damage distribution on all physical
planes. Assume the strain decomposition

NUMBER OF CYCLES — N

Fig.9. Equivalent stress range Ao,, vs number of
cycles to fatigue crack initiation for biaxial loading
(PMMA -specimens with V-notches) [12]

e d _
& =& t& =00y, (46)

where &/ is the elastic strain tensor of the undamaged material and Cy is the compliance ten-

sor of the damaged material. We have

d
8d = (C’]“ —C;kl)o-kl = Uklakl’ (47)

Y

where Cjj, is the compliance tensor of the undamaged material and C;,d is the compliance in-

crement due to damage. For stress and strain increments (or rates) we have accordingly

. e, 2d _ [ e 4\ ~d
&y =& & = (Cijkl +Cyu )0 W+ CiaOu (48)

The damage strains on the physical plane can be expressed as follows
et =Ct ounn d —lCdo(l n,+t n) (49)
n = CoguOuhing, 7na—2 ik Cri\Fa?ty TN ).

where a =1, 2. Noting that n,n, =1,,1,, =1,.t,, =1, and using (3), the expressions (49) can
be presented as follows

d d d
g, = Cyk,n,njnkn,cr,, =C,o,,
1
4 d _d
Ym = ZCU'kl[(tljni +tl:nj)(tllnk 'Hlk”l)]fnl =Lt (50)

1
d d d
Vm2 :ZCl'jkI[(tZ_/nl +’21”j)(’21”k +t2knl)]Tn2 =Ci%p,
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where C2?,CJ,CS represent the compliance variations due to normal and shear stresses on the

physical plane.

Consider now a finite number N of circular cracks in a material element of volume V. The
elastic energy of the element is a sum of elastic energy #° in the undamaged material and the
energy W' due to damage, thus

(o) = W*(0) + W(c) = () + éW; (©). s1)

In the case of a single crack of radius /, within the plane A (Fig. 10), subjected to normal
stress o , the energy portion W* has the form (cf. Sneddon [18]):

Wy = ~do(v.5) L (02) H(oZ) (52)

where d,, = E(—;Ig—vﬂ, H( ) is the Heaviside function, H(a’) <al>/a"

Accounting for the normal opening mode, the elastic energy is expressed as follows
1Y 3 2
W=— j 0,Cou0u dV+-2—lZ=:]dnll (o) H(o?) (53)

) 4
"t
T"H Consider a material element of volume Vp with Np circular mi-
" " crocracks. Neglecting the effect of crack interaction the specific

X .
elastic energy of the elements equals

w d, Vo 2
a Ceoy+—=21°\n*o n?) Hlo}
VD i~ ykl ™~ kl ZVD E] X ( gty ) ( n )
—la +—Zl nln’n n H( ) (54)
Fig.10. Circular cracks of Ty u’d kM Ou

radius /,
where n¥ is the unit normal vector specifying y-th crack orientation.
The compliance increment due to microcracks can then be expressed as follows

Cly = ninninfH(o?) (55)

If the crack density distribution p,(n) is specified together with the crack diameter distribution
1,(n), the compliance increment due to damage can be presented in the form

dn
Chu = T 4[ p, ()1, (m)H{o, Jnn nn, d02 = j Gi(n)H(o,) nn,nn, d2, (56)
where the element is assumed on a cylinder of the radius bp and height ap.

For a combined tension and shear loading, neglecting friction and dilatancy effect on the
crack interfaces, the elastic energy increase due to damage equals
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1 2 2
Wi =217l 0 EXo2 ) H(o ) +a 0 EXe) | (57)
where d, and d, depend on elastic stiffness parameters. The compliance tensor CJ ki NOW
equals
13,3
=y 2, (dn O H(oZ)+d, 1) (58)
where

X x X A
gt = RERFMCR

1
1 = 5 [(nx +inz Yeimt +iint )+ ekt + chm? ek 4 i), 59)
When the distributions p,(n) and /,(n) are known, the expression for Cﬁ becomes
ifkl
Ciu = | (G;‘ (1) Qs H(o,) + G (n) T, ) de2. (60)
where

d,

D

G;'(n)= B, p,(n) 1,(n), B =

An alternative way of calculation of compliance increase due to damage distribution w,(n}
was proposed by Seweryn and Mroz [7]. It is assumed that both normal and shear damage

strains &2 = g¢ (a,,,w,,), }'f =yd (r,,,a),,) are induced on the physical plane. Assume the fol-

lowing relationship between @, and &?

e;’ =A,,[ 2 ]q-(an, 1)

where A,, ¢ are material parameters..
Let us introduce the following distributions scalar and tensors [19]

CS = [Cim)dn, ¢ = [Clm)nn, d2, Cpy = I C(n) mnymm, 42 (62)
4n 4n

The compliance tensor C y# 18 now determined from the relation

315 2 cs
Cykl [Cukl ukl +- 21 I y‘kl) b (63)
where fourth order tensors A;u and /iy are defined as follows
1 * * i L
Ay = —(a.c +8,CF +8,CH +8,C8 +8,C8 +5,C8),

(64)
Ly =% (5 B + 648, +a,5,,,)
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For the plane case the integration is performed over the circle of unit radius (£2 = 2,
d2=d9). Introducing the scalar C" and the tensors C ;,:,

CS = [Ci9)d8, ¢ = [Ci(9)nn, d9, Ch = jc (9) nn,myn, d3 (65)
2r 2n

the damage compliance tensor is specified as follows

d.
cs C 6 G 1 (66)
+—1.,.
ykl gkl n ykI 2 ikl
a) b)
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Fig.11. Diagrams of stress-strain, damage, and critical stress evolution for two different sets of material
parameters [7}:a) /=04, p=1,9g=1,4,=03,n,= 1, A,£,=10;b) f=0,2, p=2,5, g =2, 4, = 0,6,
n,=1,A4,F,=50

Let us consider now the case of uniaxial tension for which the damage growth is dependent
on the normal stress (oy/%. — 0). We have

- <d0',,> p(a,,) dw,

= _ 67
o o_co(l_w")p o_co(l_wn)pﬂ ( )
and the growth of damage is specified by the relation
do, =——10 “":2 at (68)
crc{l - ¥ B )
o, (1 - w,,)

where the damage accumulation function is

_ <a"“UO>J"° 1
%—Ac[ac(]_f) — (69)
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The resulting relation between the tensile stress and strain is obtained in the form

ek,
o= : , (70)

q
1+AnE°( On ) H(o)
-

n

where E, is the initial value of the Young modulus

Figures 11 present the stress-strain, and damage evolution curves and the variation of o; on
the plane normal to tension axis. It is seen that depending on the values of A,E,, ¢° and p the
stress strain curves may have different character. In fact in Figure 11b the curve exhibits both
stable and unstable (softening) response.

7. CONCLUDING REMARKS

The present paper provides the uniform treatment -of damage accumulation and failure of
materials for both monotonic and variable loading. Instead of formulating the constitutive
equations for a volume element, the damage is associated with the physical plane and ex-
pressed in terms of contact stress components. The damage distribution @,(n) can then be de-
scribed and the critical plane can be specified. The non-local failure condition and the damage
growth rule provide the possibility to treat both regular and singular stress regimes. Also the
crack initiation and propagation can be studied within the same constitutive assumptions. The
present approach can then be applied to predict brittle failure of structural components with
notches and also high cycle fatigue amplitudes for multiaxial loading. The prediction of com-
pliance variation due to accumulated damage on physical planes enables the treatment of dam-
age problems with account for stress redistribution due damage strains. The presented frame-
work seems much simpler than the traditional damage models employing damage tensor state
variables and representation of free energy in terms of strain and those variables, cf. Krajci-
nowic [9] or Lemaitre [10].
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1. ABSTRACT

This paper describes a micromechanical model of the constitutive behavior of unidirectional
fiber composites in which nonlinear behavior arises solely from the force-separation response
of the interfaces. The direct method of composite materials theory is employed to obtain the
effective property relations for a representative volume element while a local analysis of a
solitary inclusion problem yields kinetic equations governing interface separation components.
The resulting model, which involves no adjustable parameters, falls within the conceptual
framework of continuum damage mechanics with “damage” variables that have a precise
geometrical meaning. For equibiaxial loading the single damage variable is shown to be
equivalent to the area density of voids surrounding the fibers. For complex planar loading more
damage variables occur and these are shown to be the expansion coefficients arising in an
eigenfunction representation of the average displacement jump at the inclusion-matrix
interface. Local fields are determined by the dilute estimate and the Mori-Tanaka estimate
assuming smooth interface response governed by a Needleman-type normal force-separation
mechanism. Explicit results are presented for transverse uniaxial tension and transverse uniaxial
compression loading of a composite reinforced by fibers in dilute concentration.

2. INTRODUCTION. PLANAR BULK RESPONSE.

In conventional damage models of brittle media the damage process typically involves the
evolution of distributed cracking from a virgin reference state through complete failure defined
in some physically meaningful, yet mathematically tractable, manner. By contrast the model
described in this paper employs the term damage to mean the process by which the stiffness of
a fiber composite degrades owing to the nonlinear separation of the interfaces beginning with
initial interfacial cohesion (Fig.1a) through intermediate debonding (interface forces are active)
(Fig.1b) and terminating with partial or complete decohesion (portions of the interface are
essentially free of interface force) (Fig.1c). The present work concerns the behavior transverse
to the fiber direction so that at the termination of the process (in which a significant part of the
interface has lost cohesion) the composite may still support transverse load (primarily by the
matrix) as well as axial load. The term damage is employed in this work because the
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Fig.1a. Reference state. Fig.1b. Intermediate state. Fig.1c. Decohered state.

micromechanical model has the mathematical structure of continuum damage mechanics, i.e,, a
relation between stresses and strains and certain other “damage” variables which in turn are
governed by their own kinetic equations relating them to stresses and/or strains. In practice,
the direct method of composite materials theory is employed to yield an effective property
relation for the representative volume element # (RVE) while interface jump boundary
conditions of a local, solitary inclusion problem yield the kinetic equations.

2.1. Bulk response. The dilute estimate.

An illustration of this idea is contained in the following problem of planar bulk response of a
unidirectional fiber composite in dilute concentration [1]. Thus, assume the existence of an
RVE through which randomly distributed fibers embedded in a matrix phase may be modeled
as effectively homogeneous and transversely isotropic. The effective transverse bulk modulus
k relates equibiaxial, transversely plane stresses and strains through the relation,

o=2"e, Q)]

where 26 is the two dimensional trace (tr,S) of the stress tensor (S) and 2e is the plane strain
dilatation given by the two dimensional trace of the strain tensor E. A standard result of
composite materials theory relates the effective moduli of the composite to the moduli and
phase volume averages of the constituents provided the mean strain (or stress) in the fiber
phase is know as a function of prescribed uniform boundary condition. If displacement
discontinuities are allowed to develop at the fiber-matrix interfaces then the effective property
relation depends on interfacial displacement jump components as well. Under these
circumstances the relation assumes the form [2,3],

I 1 ( 1 1)_,
g=p 0= 0+q 5 —-7 )0 +4, 2)

where € is the mean effective strain, o is the mean stress, k' (k") is the bulk modulus of the

N
matrix (fibers), and c¢ is the fiber volume concentration defined by Z vol(€,) /vol(B). In (2)

1=l

the quantity G~ is the mean stress in the fiber phase,
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i vol(€2,)5;
& =5— , (3)
Z vol(Q,)

while the quantity 4 characterizes the contributions of interfacial discontinuities to the mean
effective strain and is given by,

CZN: I[u]-nda

4=l _ 4)
23" vol(Q,)

Note that €; is the region occupied by the i fiber with unit normal n, G, is the mean stress in
the i fiber and [u] indicates interface displacement jump. In order to apply (2), (3) and (4) one
needs to know the displacement jump at each fiber-matrix interface as well as the mean stress
in each of the fibers. The difficulty involved in obtaining these quantities has given rise to
various and competing ad hoc estimates of local fields. Consider the situation where the fiber
distribution is such that interaction effects between the fibers can be ignored. Under these
circumstances each fiber can be regarded as isolated and subject to the same remotely applied
equibiaxial stress field S=oc(e, ®e, +e, e, +2v'e, ®e,) where unit vector e; is directed
along the fiber axis (Fig.2). Then (3) and (4) become,

G =0, ,

) )

C .
@) Jlende 112N

Fig.2. The solitary inclusion problem.
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In order to complete the specification of the solitary fiber boundary value problem, assume that
a Needleman-type [4,5] cohesive zone of vanishing thickness surrounds the fiber. If the
interface is assumed uniform and incapable of supporting shear then the interface force-
separation relation is given by,

s;(mu) = f(u)n , (©)

where u(=[u,]/R) is the normalized radial component of the interface displacement jump. Now
assume that the elastic fields are rotationally symmetric so that u(=uy) is uniform, independent
of interface coordinate 6. (Note that depending on the form of f non symmetric solutions may
exist to this problem as well [6,7,8]). Then (5;) becomes simply 4=cu,. Furthermore, it can be

shown [1,9] that,

g, =f(u),i=12,..,N, ;
F(u,;0)=u, —a,0 +o,f(u,) =0, )
where the coefficients o, a; are dependent on the matrix and fiber elastic moduli. Combining
(2) and (7) and noting that 4=cuj, yields the system,

A o,
e=¢e(0,0,)=0,6+—, ,

a, ®)

Fl0,,0)=0,-co,0+a,cf(w,)=0, cz0,

0
where the coefficients a, i=0,1,2 are given by,

1 1 1 1 1 ok —x )u' +x")

= — =—t— , o, =
%o = o Zp.”a' 2k 2 0 P 2! 2x(p' +x )

®

Equation (8,) is the effective property relation and (8;) is the kinetic equation governing the
local evolution of interface separations. The quantity o¢(=cug), regarded as the damage
parameter, is a measure of the void area density in the plane of the cross section of the fibers.
To see this simply note that cu, is NnRJu;]/area(#) (N is the total number of fibers) so that,

total void area
Tm:zmo+0(m§). (10)
Thus to a term of order O(w,’) o is one half the area density of voids. Note that while this
correspondence is consistent with the original formulation of scalar damage as the area density
of voids in a cross section (Rabotnov [10]) its meaning is nevertheless different. In the classical
sense the void area density measures the loss of load bearing capability of material. The
evolution of damage in this sense represents both the nucleation and growth of traction free
defects. In the sense used in this paper the number of voids is fixed (by c) and equal to the
number of fibers. Damage evolution in our sense means the growth of voids at the fiber-matrix
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interface from initial coherence through complete decohesion when the voids are essentially
traction free.

The system of equations (8) is complete once the functional form of the interface force law is
prescribed since we assume that the elastic properties of the constituents and the fiber volume
concentration are know a priori. Now assume that the interface force magnitude f is such that
it is momotonically increasing on (-0, Umax), monotonically decreasing on (Umsx, ) and such
that Umac>0, f(0)=0, and Lim f{ug)=0, u, T u, €(u,_,,%). By (8) the undamaged state w,=0,
corresponding to perfect interfacial coherence, coincides with the unloaded reference state.
Furthermore, the fully damaged state is obtained from (8) by letting f(we)=0 for 0, #0 so

that,

1 1
0, =C0,0 Or u, =u, :(ZK* + ijc ,

11)
1l +(1 N 1) (
T T T CZK* 2u” o

v

In (11,) uy is just the normalized radial displacement of a solitary void while (115) is the stress-
strain relation for a composite containing a dilute distribution of cylindrical voids. Note that if
the fiber-matrix interfaces are regarded as rigidly bonded then wo=0 for any load and (8;) yields
the stress-strain relation,

e _%G_{Lch(K’—K )(u’+K+)}G a2

© 2! 2%* 2k (u +x7)
Equations (11;) and (12) are consistent with well known results of voided and rigid interface
composites [11].

Finally, it should be pointed out that the damage model is self consistent in the sense that an
applied boundary strain yields an effective stiffness which is the inverse of the effective
compliance obtained through (8). This has been demonstrated in [1].

2.2. Bulk response. The Mori-Tanaka estimate.

The Mori-Tanaka estimate [12] as applied to composite media [13] is one of a number of ad
hoc models designed to incorporate aspects of inclusion-inclusion interaction at non dilute
concentration in the estimation of the mean stress or strain in the inclusion phase. Unlike the
self consistent and three phase estimates which surround the inclusion with an effective
medium or an effective medium-matrix shell, the Mori-Tanaka estimate assumes that
neighboring inclusions act to modify the matrix stress (or strain) field “seen” by a
representative inclusion.

For the problem of bulk response this assumption means that we must estimate the mean
fiber stress and interface displacement jump in a solitary fiber problem similar to that used in
the dilute estimate except for the fact that the remotely applied stress is the mean stress in the

matrix G . (Recall the relationship, for two phase composites,
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c=(1-¢c)c’+co” , (13)

where o is both the mean equibiaxial stress and the uniform boundary condition.) Thus, the
relation (2) remains unchanged but (7) assumes the form,

5, =f(u,),i=12, N,

Fu,;0)=u,-a,0 +o,f(u,)=0.

(14

Now use (13) to eliminate * in (14) noting that 6~ =0, = f(u,), i=1,2,...,N. Then the
governing equations are of the form,

~

~ N Qg
e=€(0,0,)=0,0+= @, ,

@, (15)

F(@,,6)=0,~cq,0+&,cf(0,)=0,

where the &, are given by,

~_1(1+1J . l(c+l-c+1)
%o =T e 2k IV ST e T 2ut/)
1 . c(l-c)(x' —x YU +x")

T2k’ 2kt(u'k k' —cp'k top'k )

(16)

a

Equations (15) are identical in structure to (8) and, in fact, become them in the limit of small c,
ie, d,=a,+0c), &, =a,+0(c), 4, =a, +0(c’). (Note that terms of order O(c) are
neglected in &,,&, since wo=cup.) Thus, consistent with the case of voided or rigid interface
composites, the Mori-Tanaka estimate predicts the correct dilute approximation in the limit of
small concentration. The system (15),(16) is also identical to that obtained from the three
phase estimate and the composite cylinders model as given in [9].

Again as with the case of voided or rigid interface composites, the Mori-Tanaka estimate,
applied to composites with non linear interfaces, is self consistent. To see this write relations
analogous to (2) and (13) as,

o=2ke=2k'e+c(2k -2k’ )E -2k'4 ,
(17)

e-4=(1-¢c)g’ +cg”,

where k" is the effective bulk modulus, € is the uniform boundary strain (mean effective strain)
and €4 is the mean strain (recall A=cu,). We need to show that k* =«". First, solve the

solitary fiber problem with remote “load” given by the mean strain in the matrix phase €. The
solution to this problem along with some algebraic manipulation yields the desired result.
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The limiting case of the voided composite follows from (15;) by simply setting f{wo) equal to
zero. Then ®, = cd,0 or u, = 4,0 which is the opening of a single void. The stress-strain

relation for the voided composite then follows from (15,),

‘., :{ML—Q}, _ (18)

u+ex”

To obtain the stress-strain relation of a rigidly bonded composite let mp =0 in (15;) so that,

. :{ 1 N c(l-c)}x" —x " )u" +x7) }c. (19)

2" 2kT(ukT kT —ep'kt +eu'kT)
Both (18) and (19) are consistent with known results [14].

2.3. Predictions.

Predictions of composite response follows from (8) or (15) provided we prescribe the
interface force magnitude (f). In this work we employ the physically based force law of
Ferrante, Smith and Rose [15]. The physically based law, in the form originally used in [16],
has the form,

f:u—> e, (Bu/p)exp(-Pu/p), (20)

where p is the characteristic length ratio 8/R, omax is the interface strength, and B is a fit
parameter which can be arbitrarily fixed provided & is considered as a phenomenological
parameter (Fig.3). If the work of separation of interface force (20) is required to be the same

17

0.75 +

/0 wax
0.5

0.25

0
08 1 22 34 46 58 7 8.2

0.25 Pu/p

Fig.3. The interface force law.
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as that for the third degree polynomial approximation of f then B assumes the value 4.8325.
Note that (20) allows for a small amount of interpenetration when the interface is compressed.
In the two equations of the set (8) (or (15)) the damage parameter wy can be eliminated to
obtain a single equation involving the equibiaxial stress, equibiaxial strain and other physical
and geometrical parameters describing the system. The resulting form provides no further
insight so the sets (8) and (15) were plotted directly using MAPLE [17]. Fig.4 is a graph of the
stress-strain response for a composite system consisting of an epoxy matrix reinforced by glass
fibers. The interface strength (omax) is taken to be 35 of the matrix elastic modulus and the

force length parameter (p) is chosen to be 0.075. Both the dilute estimate and the Mori-Tanaka
estimate are shown at different values of fiber volume concentration. Note that dilute estimate
curves are only shown for values of fiber volume concentration (c) of .05 and .1. For values of
c greater then .1 the dilute estimate yields predictions which may be regarded as unreliable in
the sense that the stiffness at any strain value will be overestimated. The Mori-Tanaka estimate
captures the phenomenon of composite instability under increasing stress owing to fiber-fiber
interaction at large volume concentrations, Similar instability is observed in graphs of
composite response at small force length ratios and small volume fiber concentrations [9]. The
destabilizing mechanism is a consequence of the rapid descent of the interface force law (Fig.
3) which occurs under increasing interface separation in the solitary fiber problem (see [18]).

D
40000 D M-T c=.1
c=.05
M-T
300004 =1
(v -T
20000 c=25
10000 M-T
c=.45
0 002 004 006
€

Fig.4. Bulk composite response. Dilute estimate (D), Mori-Tanaka estimate (M-T).
(x =7291667psi, u"=4375000psi, k'=617284psi, 1'=185185psi, omax=10000, p=.075)

3. GENERAL FORMULATION. TENSION AND COMPRESSION RESPONSE.

A general theory of the effective behavior of composites composed of linear elastic
constituents with nonlinear interfaces has been presented in [1]. The following contains a brief
outline of the theory for the special case in which the interfaces are assumed (i) uniform,
independent of interface coordinate and (ii) perfectly smooth so that they do not support shear.
The interface force law is then governed by (6).
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3.1. General formulation.
Three dimensional analogs to effective property relations (2) and (17,) are well known [2,3]
and assume the form,

E=K'[S1=K'[S]+¢(K -K')[S 1+A , @
S =C'[E]=C'[E]+ c(C’ -C')[E]-C'A , )

where K*(C") is the effective composite compliance(stiffness) and, as before, a +(-)
superscript indicates a matrix(inclusion) field. (Note that tensor notation is consistent with
Gurtin [19], e.g. C[E]=C,E e, ®¢;, Eu=Eju;e;, etc.) Analogous to (4) the displacement
discontinuity tensor A represents the contribution of interfacial separation to the mean effective
strain and is given by,

ci I([u]®n+n®[u])da
A=—2 . (22)
22 vol(Q,)

As before E"(S™) represents the mean inclusion strain(stress) taken over all the inclusions. If
all inclusions are assumed to behave identically then these quantities can be regarded as mean
values taken over a single inclusion. Note that this assumption has severe consequences in the
prediction of realistic composite response (see Concluding Remarks).

The problem of estimating the mean inclusion strain(stress) E (S°) and the interface
displacement jump [u] (for use in determining A) requires the formulation and solution of an
appropriate solitary inclusion problem. For the dilute estimate we consider the situation shown
in Fig.3 where the remote stress is givenby S=S, e, ®e, +S,.e,®e, + v’ (S5, +S,,)e, Qe,.
(By the spectral decomposition theorem this is the most general planar remote loading.) The
displacement field within, and external to, the inclusion may be written in the form,

u'(x) = u, ()~ U (x,E)s,(n; [u](®)) ds,,

(23)
w(@) = [U (x,E)s,(m;[ul(E)) ds,, &edQ,

where U’, U™ are the (presumed known) kernel functions generally dependent on the matrix
and inclusion elastic moduli and derived, for example, from the Boussinesq-Flamant solution to
the problem of a concentrated force acting at a point normal and (if interfacial shear is present)
tangent to the boundary of an interior and exterior domain. The term u, represents the void
solution and depends linearly on the remote stress field S. Matrix and inclusion displacement
fields depend on the interfacial displacement jump through the interface force law (6)
appearing in the integrals in (23). An integral equation governing the interfacial displacement
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jump [u] is obtained by subtracting the equations in (23) and constraining the field point to
reside on the interface,

[ul(x) =h(x) + J'K(X,f;) si(;[u](§)) ds, , x.§€0Q , (24)
aQ

where the kernel K (as distinct from compliance K) is the negative of the sum of the kernel
functions given in (23). The term h appearing in (24) is the displacement of the inner boundary
of a void under remote load and is a linear function of both the remote stress S and the point x
residing on the boundary. Additional equations enforcing rigid body equilibrium of the
inclusion must be satisfied as well and these relations, given by,

[simuiE) ds, =0, [rE)xs(mul&)ds, =0 , @5)

0 0

fix the rigid body modes of the displacement jump. (Note that (25,) is automatically satisfied
by interface force law (6).) Given an inclusion geometry and a specific form of interface-force
separation law (e.g. (6) and (20)) a solution for the interface displacement jump is sought from
(24) and (25). This quantity then determines the interface force vector s;(n;[u}(x)). Note that
non linearities in the prescribed interface force-interface separation law yield a displacement
jump which depends non linearly on the remote stress.

Quantities needed to complete the specification of the effective property relations (21) are
the displacement discontinuity tensor A and the mean inclusion stress S~ . The interface
displacement jump solution to (24) determines A directly through (22). The mean stress in the
inclusion phase is computed from (23b) along with the stress displacement relations,

= ot £ (divu )l dv +p~ i (Vu +Vu") dv} , (26)

where A", u~ are the three dimensional Lame’ moduli. (Note that S~ ultimately depends upon
the interface displacement jump through (23;) and si(m;[u](x)).) Thus, provided we can
determine the solution to the nonlinear integral equations (24) and (25), the effective response
follows from (6), (21,), (22), 23,) and (26). A detailed analysis of (24), (25) has been carried
out in [8] for different remote loadings. A sketch of the procedure is given below.

First, radial and angular components of (24) and (25,) are written in the form,

u®) =h (0)+ ff(u(ﬁ’)) K, (6,86) d6',
v(B) =h,(0) + jf(u(G’)) K,(8,6") do", 27

ff(u(e’)) cos(8')d6’ =0, ff(u(e')) sin(8’)de’ =0,



173

where u(v) is the normalized radial(angular) component of interface displacement jump
[ud/R([uel/R), hi(he) is the normalized radial(angular) component of displacement of inner
boundary of a void and K,, Ke are (known) weakly singular kernel functions. For the interface
force magnitude given by (20), (27,) is a non linear integral equation of the Hammerstein type.
Equation (27,) is an integral expression which directly determines the tangential displacement
jump once (27;) has been solved. (Note that owing to the assumption of a perfectly smooth
interface the tangential displacement (v) is completely determined by u.) The remaining
equations (27;) and (27,) enforce rigid body force equilibrium of the inclusion.

In practice a solution to (27,), (27;) and (274) is sought in the form of an expansion of
eigenfunctions of the kernel K,. It can be shown that K, has, through the bilinear formula, a
mean convergent eigenfunction expansion in eigenvalues and orthonormal eigenfunctions given

by,

A -E'E’
O @+v)(1-2v)E +(1+V)E™

- (n®> -DE'E"
A'2n»1 = xZn = -2 + +2 - + + - - - +
20[(1-v)E* +(1- v?)E [+ (1+ v )(1-2v")E" —(1+ v )(1-2V))E
(pO:I/VZn, (pm,:cosne/x/;, (pz,,:sinne/x/;, n=23 .

If we preclude the possibility of rigid displacement of the inclusion we can assume that even,
symmetric solutions may be approximated by the finite series expansion,

u=u, + Zuh , €082i0 | (28)

1=1

which identically satisfies (275), (274). Substitution of (28) into (27;) yields a set of n+1 non
linear algebraic equations (G(uo,u4-1)=0 i=1,2,...,n) governing the expansion coefficients u;,

1 2n
Yo~ 2 [fcuy,u,,,:07d0" b, =0,
1 21
u, - n—x}j(,f(uo,ua,,,;e )c0s20'd0’ — h, =0, (29)

1 2% 0 ’ H
u4)71"mfof(uo,u%l;B’)cosZJG de’'=0, j=23,..,

where h=hy+hs;cos20 and hy, h; are linear in the remote load ratio’s S)//E*, Sz/E’. (For a
discussion of convergence properties of the solution (28) see [8].) The expansion for v(B) is
taken in the form,

v(0) = v, + 2 v, sin2i0, (30)

i=1



174

where the equations governing the coefficients follow directly from (27;) and are of the form,

0o =0,

C+2C'n

31
—Ih (9)sm2n6d€)+T———If(uk,G)COSZanG n=12.. 31
n

The coefficients C,C’ are given explicitly in [8] and are functions of matrix and inclusion
elastic moduli.

The eigenfunction expansions (28) and (30), and the equations governing the expansion
coefficients ((29) and (31)) represent the kinetic equations in a micromechanical damage model
of the mechanical response of fiber composites which “damage” by loss of cohesion at the
fiber-matrix interfaces. (A virtually identical formulation applies to particulate composites as
well. The only constraint on the geometry of the reinforcement phase being the tractability in
forming the kernel functions U*, U”, K in integral equations (23) and (24) and the ease in
evaluating the mean inclusion stress S~ in representation (26).) It follows from (22), (28) and
(30) that the displacement discontinuity tensor A has the form,

1 1 1 1
A= C[(uo +5u3 _EV“)C’ ®e, +[uo —Zu +Ev4)e2 ®e2} . (32)

It can be shown that (23;) and (26) imply that components of the mean inclusion stress S~ are
given by,

_ 1
112_

o‘—.“

(u(6’))[1+cos29’]d6', S, = —2]— j f(u(©"))[1- cos26]d6",
’ (33)

S - 5;[- jf(u(e')) sin20'do’ S, = V? f(u(8")) de’ .
Q

oty

Because of the expansion (28) the mean inclusion stress is a function of the expansion
coefficients, i.e., S (u,,u,, ). The effective property relation (21,) is in the form of a stress-
strain relation depending on expansion coefficients ug,us;.1,v4 which assume the role of damage
parameters. These variables are governed by the non linear relations (29) and (31), i.e., the
kinetic equations. Thus, the damage parameters represent the expansion coefficients in an
eigenfunction representation of the interface displacement jump in a solitary inclusion problem.
Note that an entirely equivalent formulation of this problem begins with the effective property
relation (213). The remote boundary condition in the related solitary inclusion problem is then
an applied strain. It can be proved (see [1]) that the effective stiffness C* determined in this

way is the inverse of the effective compliance K™ determined as in the previous discussion.
Thus, non linear interface response preserves self consistency.

The general formulation just described was developed for dilute concentrations of inclusions.
In order to capture some of the effects of inclusion-inclusion interaction the Mori-Tanaka
estimate can be implemented within this framework in a manner similar to that given in section



175

2.2. We need only consider the solitary inclusion problem depicted in Fig. 3 since the form of
the effective property relations (21) remain unchanged (of course the functional forms of A
and S~ will change). Consider the integral equations (24) and (25) (or (27)) governing the
interface displacement jump. The quantity h is the displacement of the inner boundary of a void
and is linear in remote load S. No other term in these equations depends on the remote loading.
The Mori-Tanaka estimate is obtained simply by replacing S in h by S* which may be
expressed in terms of S and S~ by the tensor analog of (13). This process requires a
readjustment of the integral equations (24) and (25) (or (27)). In this paper we will not pursue
this idea any further and the following section will present results for uniaxial tension and
compression based only on the dilute estimate. Future work will present explicit results for the
Mori-Tanaka estimate.

3.2. Uniaxial tension and compression.
Consider the case of uniaxial tension transverse to the fiber direction, ie.,

S=oc(e,®e, +v'e,Qe;), c>0. Then, for the response in the load direction (e=E,;) the
effective property relation (21,) becomes,

1o L P T W
i :(411* +4x*jc+°(4u‘ _4u*j(s“ _s”)”(mc‘ _4K*)(S” tS) AL, (Y

and, for the planar response transverse to the load direction,

1 1 1 1) . 1 1Y -
Ezz:(?_ZE)G+C(:‘“__$)(SZZ_Sll)+c(;§/—_zx_+)(sn+Szz)+A22 . (3%

where Ayi, Ay, are given by (32). The quantity S, is just G~ appearing in (33). Now the
system governing the n+1 mode approximation (n+1 normal modes, n tangential modes)
consists of equations (6), (20), (29), (31), (32), (33) and (34). (Note that for tension loading
hy, hs in (29) are given by h, =(1-v*?)6/E', h;=2h,.) Because the tangential expansion
coefficients depend on the normal coefficients through (31) they can be eliminated from (32).
Then the system of equations to be solved may be written symbolically as,

e=F(o,0)),

G,(o:0,)=0, i,j=0,1,...n , (36)
where the ®; are normalized expansion coefficients arising in the normal separation at the
interface, i.e., w=cu;. In order to obtain predictions of composite response a computer
program, employing the Newton-Raphson method together with the composite Simpson 1/3
Rule, was written to integrate (36) numerically. First, local solutions for the interface
separation (w;) are sought (from (36,)) for fixed constitutive parameters under increasing
uniaxial load o. Hadamard stability (stability in energy) of the equilibria is assessed through an
examination of eigenvalues of the matrix of partial derivatives of Gi(o;0;) and stable and
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unstable solution branches are pieced together to form the evolution of mode multipliers with
load (see [8] for more details). The stress strain curve g(c) follows directly from (36,).
Computations were carried out for an n value of 3, which corresponds to 4 normal modes (1,
€0s20, cos40, cos60) and 3 tangential modes (sin20, sin40, sin60). Fig. 5 represents a graph of
composite tensile response for a range of values of force length ratio p(=6/R). The void
solutions [20],

n 6k* +8u”

1 2

u+ =1 3k+ + u+ c +O(C ) s

: 3k +4u’ 37
K 2K tan 2
K+—1 30 c+0(c%) ,
and the rigid interface solutions [20],
iy c )

P 1_ + + - + + + + +O(c ) H
n W' /(' —p)]- (k" +3u")/2k" +5u)

. (38)
L ¢ +0(c?)

K KT -xO)]- (k' i)/ F4pt)

are used to get the limiting behavior for uniaxial tension through the relation
g = (I/4u” +1/4x")c and these curves bound the nonlinear interface solutions. (Note that k
appearing in the above formulas is the three dimensional bulk modulus.) In particular the
stiffness of the rigid interface composite is greater than the maximum stiffness of the nonlinear
interface composite owing to the allowance of interface slip during interface debonding.
Furthermore, the stiffness of the voided composite is less than the minimum stiffness of the
nonlinear interface composite owing to the compressive action of the matrix on the fibers
normal to the direction of maximum interface separation. (Material interpenetration at fiber
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€

Fig. 5. Composite response for various force length ratios. Uniaxial tension.
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matrix interfaces is resisted through the interface force law f (Fig.3).) An inspection of the
curves in Fig. 5 indicates the effect of force length parameter on response. Thus, decreasing p,
i.e., decreasing the range of action of the interface force, precipitates an abrupt transition in
composite response at increasing stress. This aggregate behavior corresponds to bifurcation of
equilibrium interface separation in the solitary inclusion problem arising from the local effect of
rapid descent of the interface force separation law for each interface.

The behavior just described is qualitatively similar to the response of the nonlinear composite
subject to pure shear [1]. It is also similar to the equibiaxial stress problem although in that
case, the limiting rigid composite solution and the void solution are recovered exactly by the
nonlinear composite upon initial application of the load (rigid composite stiffness) and
asymptotically as the interface force approaches zero (voided composite stiffness). This is
because the interface separations are rotationally symmetric and tangential interface force and
displacement jump are zero. Note that under equibiaxial loading the normal component of
fiber-matrix interface force carries matrix stresses to the fibers. In contrast, only a part of the
matrix stresses arising from tensile load is transmitted to the fibers by the normal component of
interface force. The remaining portion would be born by the tangential component of interface
force. Because it is absent in the constitutive characterization of the interface employed here,
the composite response is more compliant. This same state of affairs exists under pure shear
loading [1] only to an even greater degree. Note that the equibiaxial response curves are exact
in the sense that only one symmetrical mode arises in the description of interface separation.
By contrast, tensile response requires an infinite number of modes to exactly characterize
interface separation.

Finally, Fig. 6 shows composite response under a uniaxial compressive load o<0 given the
same constitutive parameters used previousty. Under uniaxial compressive loading a symmetric
solution to the solitary inclusion problem indicates that the interface will separate in regions
approximately perpendicular to the load line while regions of matrix and inclusion boundary
parallel to the load line will be in mechanical contact Levy [7]. Because this separation action is
indirect, caused essentially by the Poisson effect, the influence of debonding on the overall
effective response is minimal (as indicated in Fig. 6).
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—— =001
—>— p =005
20000.0 -
o
(in psi)
10000.0 | B=5, c=8%
C,.ax =10,000 psi
k' =679,012, u* =185,185 psi
x =8,750,000, p =4,375,000
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Fig. 6. Composite response for various force length ratios. Uniaxial compression.
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4. CONCLUDING REMARKS.

This paper describes a micromechanical damage model of a two phase composite material
composed of linear elastic constituents which interact through non linear interface forces.
Within this framework damage is defined as the loss of cohesion at the inclusion-matrix
interfaces and is measured by coefficients in a series representation of the displacement jump at
a representative interface. The attractiveness of this approach is that no adjustable parameters
appear in the model which requires only that the elastic properties of the phases and the
properties of a representative interface (e.g. interface strength, work of separation, etc.) be
specified. As has been demonstrated, the model is capable of handling dilute distributions of
inclusions as well as larger inclusion volume fractions through the Mori-Tanaka estimate.
Although the paper has concentrated primarily on unidirectional fiber composites the
framework is virtually identical for particulate composites.

The specification of the dilute estimate or the Mori-Tanaka estimate is just one assumption
which needs to be made a priori. Another, is the form of the interface constitutive relation. In
this paper we have employed a force law (20) derived from a potential so that the results
obtained may be unrealistic if the loading is reversed. This problem can be dealt with by
proposing a more realistic interface force law within the same conceptual framework utilized
here. The phenomenon of matrix inelasticity is more difficult to address within the proposed
micromechanical framework. Alternative models combining micromechanics and continuum
damage concepts in an elastoplastic setting do however exist (see [21]).

A more severe assumption employed by the proposed model is that the damage process
indicated in Fig. 1 is representative, i.e., at each level of remote loading every inclusion has
precisely the same void surrounding it. (This hypothesis is built into the model through the
process of solving a solitary inclusion problem and employing the local fields as representative
of all inclusions in the composite.) Progressive debonding is therefore not accounted for in the
model and to include it would require the solution to an isolated multi particle system or some
other hypothesis concerning the inclusion fields arising in (21). Future work will address this
important issue.
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Abstract

The paper aims at the investigation of ductile localized fracture phenomena in
dynamic adiabatic processes in inelastic solids. Particular attention is focused on the
dependence of fracture phenomenon upon the evolution of constitutive properties of
the material. The micro-damage mechanism is treated as a sequence of nucleation,
growth and coalescence of microcracks.

To accomplish in one model the description of the rate sensitivity of the material
and rate dependent micro-damage mechanism the theory of thermoviscoplasticity
is developed within a framework of the rate type covariance material structure with
finite set of internal state variables. This theory takes into consideration the effects
of micro-damage mechanism and thermomechanical coupling. The rate dependent,
internal state variables approach has the exciting feature of being directly connected
to the evolution of microstructural properties of the material. The relaxation time is
used as characteristic time which can thus be viewed as a regularization parameter,
or as a micromechanical parameter to be determined from physical experimental ob-
servations. By assuming that the relaxation time tends to zero the rate independent
thermoplastic response of the material with rate independent micro-damage mech-
anism is considered. The dynamic fracture criterion within localized shear band
region is proposed. This criterion implies that the fracture is the time dependent
process, i.e. it depends strongly on time duration of the stress impulse.

Rate dependency (viscosity) allows the spatial differential operator in the gov-
erning equations to retain its ellipticity, and the initial-value problem is well-posed.
The viscoplastic regularization procedure assures the stable integration algorithm
by using the finite element method. Particular attention is focused on the well-
posedness of the evolution problem (the initial-boundary value problem) as well as
on its numerical solutions. Convergence, consistency and stability of the discretised
problem are discussed. The validity of the Lax equivalence theorem is examined.

Utilizing the finite element method and ABAQUS system for regularized elasto-
viscoplastic model the numerical investigation of the three dimensional dynamic
adiabatic deformation in particular body is presented. Two particular examples
have been considered, namely dynamic adiabatic processes for a thin-walled steel
tube and for a thin steel plate. In each case a thin shear band region of finite
width which undergoes significant deformations and temperature rise has been de-
termined. Its evolution until occurrence of final fracture has been simulated. It has
been investigated how the localized fracture mode depends on various constitutive
parameters (namely the relaxation time and the irreversibility coefficient).
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1. INTRODUCTION

In technological dynamical processes fracture can occur as a result of an adiabatic shear
band localization generally attributed to a plastic instability generated by thermal soft-
ening and intrinsic micro-damage mechanism during plastic deformation.

Hartley, Duffy and Hawley (1987), Marchand and Duffy (1988), Marchand, Cho and
Duffy (1988) and Cho, Chi and Duffy (1988) made microscopic observations of the shear
band localization on the thin-walled steel tubes in a split Hopkinson torsion bar. Three
different steels were tested. Dynamic deformation in shear was imposed to produce shear
bands. It was found whenever the shear band led to fracture of the specimen, the frac-
ture occurred by a process of void nucleation, growth and coalescence. No cleavage was
observed on any fracture surface, including the most brittle of the steel tested. This is
presumably due to the thermal softening of the shear band material that results from
the local temperature rise and micro-damage mechanism occurring during deformation
process.

Adiabatic shear banding in 4340 steel under pure shear loading in split Hopkinson
torsion bar using a high-speed photography was studied by Giovanola (1988). It was
found that shear localization occurs in two sequential stages over width of 60 ym and
20 pm, respectively. Strain rates approaching 1.4 - 10° s™' were measured in the band
and temperature elevation was in excess of 1000°C. Fractographic and mectallographic
observations have shown that the mechanism of shear fracture by microvoid nucleation
and growth may, at least in certain situations, provide a plausible explanation for the
formation of wite ctching bands. General conclusion from experimental observations
of Giovanola (1988) is that the thermomechanical strain localization and micro- damage
mechanisms become the main cooperative phenomena responsible for adiabatic shear band
localized fracture.

Chakrabarti and Spretnak (1975) investigated the localized fracture mode for tensile

rial used in their study was AISI 4340 stecl. The principal variable in this flat specimen
test was the width to thickness ratio. Variation in specimen geomelry produces significant
changes in stress state, directions of shear bands and ductility. They found that fracture
propagated consistently along the shear band localized region.

In recent years 7Zbib and Jurban (1992) have investigated numerically a three di-
mensional problem involving the development of shear bands in a steel bar pulled in
tension and Batra and Zhang (1993) the three-dimensional dynamic thermomechanical
deformations of a 4340 steel thin tube twisted in a split Hopkinson bar at nominal strain
rate of 1000, 2500 and 25000 s~*.

The papers by Perzyna and Duszek- Perzyna (1994), Perzyna (1994, 1995), Lodygowski
and Perzyna (1996, 1997) and Lodygowski (1996) presented the application of a recently
developed viscoplastic-damage type constitulive theory for high strain rate flow process
and ductile fracture to the problems of shear band localization and fracture of dynamically
loaded thin-walled tubes experiencing strain rates ranging between 107! — 10 s and
the investigation of localized fracture phenomena in thin and thick plates undergoing
adiabatic dynamic and isothermal quasi-static processes.

The main objective of the present paper is the investigation of the influence of some
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constitutive parameters on shear band localization phenomena.

In chapter 2 the formulation of the initial-boundary value problem (evolution prob-
lem) and development of a constitutive model within a thermodynamic framework of the
rate type material structure with internal state variables are given. Such important effects
as the micro-damage mechanism and thermomechanical coupling are taken into consid-
eration. It has been assumed that the intrinsic micro-damage mechanism consists of the
nucleation, growth and coalescence of microvoids. The rate dependent evolution equation
for the porosity parameter has been postulated. Discussion of cooperative phenomena,
i.e. thermomechanical coupling and micro-damage mechanism is given. The fracture
criterion is presented and the description of an adiabatic inelastic flow process is given.

Numerical solutions of the initial-boundary value problem (evolution problem) are dis-
cussed in chapter 3. Well-posedness of the evolution problem is presented. Discretisation
in space and time is proposed and convergence, consistency and stability are examined.
The Lax equivalence theorem is formulated.

Chapter 4 is devoted to the numerical investigation of shear band localization fracture.
Two particular examples have been considered, namely dynamic adiabatic processes for
a thin-walled steel tube and for a thin steel plate. All formulated initial boundary value
problems (evolution problems) have been solved numerically by means of finite element
method and ABAQUS system, cf. chapter 5. In each case particular attention has
been focused on a thin shear band region of finite width which undergoes significant
deformations and temperature rise. Its evolution until occurrence of fracture has been
simulated.

In chapter 6 the influence of some constitutive parameters on localized fracture phe-
nomena have been investigated. The paper closes with some conclusions in chapter 7.

2. INITIAL-BOUNDARY VALUE PROBLEM (EVOLUTION
PROBLEM)

2.1. Formulation of the evolution problem

Find ¢ as function of ¢ and x satisfying”

(i) @ =Altp)e +1(t,e);
(i) »(0) = ¥°(x); (1)

(iii) The boundary conditions.

A strict solution of (1) with £(¢,¢) = 0 (i.e. the homogeneous evolution problem) is
defined as a function ¢(t) € E (a Banach space) such that

p(t) € D(A), forall t€]0,t], (2)
et + At) — o(t)
lim | ———F———

At—0 At

*We shall follow here some fundamental results which have been discussed in Richtmyer and Morton

(1967), Strang and Fix (1973), Richtmyer (1978), lonescu and Sofonea (1993) and Dautray and Lions
(1993).

—Ap)lg=0 forall tef0,¢tf]
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The boundary conditions are taken care of by restricting the domain D(.A) to elements of
E that satisfy those conditions; they are assumed to be linear and homogeneous, so that
the set S of all ¢ that satisfy them is a linear manifold; D(A) is assumed to be contained
in S.

The choice of the Banach space E, as well as the domain of A, is an essential part of
the formulation of the evolution problem.

2.2. Rate type constitutive structure for an elastic—viscoplastic damaged ma-
terial

The main objective is to develop the rate type constitutive structure for an elastic-
viscoplastic material in which the effects of the micro-damage mechanism and thermo-
mechanical coupling are taken into consideration.

Let us introduce the axioms as follows:

(i) Axiom of the existence of the free energy function in the form

'(/) = 1/;(8,F,19;[l,), (3)

where e is the Eulerian strain tensor, F the deformation gradient, ¥ a temperature
field and u denotes the internal state variable vector.

(i1) Axiom of objectivity (spatial covariance). The constitutive structure should be
invariant with respect to any diffeomorphism & : § — S, where § denotes the
actual (spatial) configuration of a body B, ¢f. Marsden and Hughes (1983).

(iif) The axiom of entropy production. For any regular process ¢, 9, g, of a body B
the constitutive functions are assumed to satisfy the reduced dissipation inequality

. 1
T7:d— (npd+¢) — —q-gradd > 0, (4)
PRef pY

where ¢, is the function of motion, p and pp.s denote the mass density in the actual
and reference configuration, respectively, 7 is the Kirchhoff stress tensor, d = d°+d”
the rate of total deformation, 5 denotes the specific (per unit mass) entropy and q
is the heat vector field.

Let us postulate g = (¢, ), where ¢ denotes the new internal state vector which describes
the dissipation effects generated by viscoplastic flow phenomena and € is the volume
fraction porosity parameter and takes account for micro-damage mechanism.

Let us introduce the plastic potential function for damaged material in the form cf.
Shima and Oyane (1976) and Perzyna (1984, 1986)

r=2 e (1Y )

2
Ko Ko
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where J; = 7%%¢g,, J2 = %T'“bT'Cdgacgbd, ko denotes the yield stress of the matrix material,
n = n(d) is the temperature dependent material function and g denotes the metric tensor
in S.

Let us postulate the evolution equations as follows' (Lq, defines the Lie derivative with
respect to the velocity field and the dot denotes the material derivative)

d? = AP, Lu¢=AZ, (=%, (6)

where for the elastic—viscoplastic model of a material we assume (cf. Perzyna (1963, 1971,

1994, 1995))

1
A=z - <)), (7)

T.. denotes the relaxation time for mechanical disturbances and « is the isotropic work—
hardening parameter, ® is the empirical overstress function and the bracket (-) defines
the ramp function, the material function Z is intrinsically determined by the constitutive
assumptions postulated, the scalar valued evolution function = has to be determined and
the tensor function P is defined as follows.

_10f
201
The isotropic hardening-softening material function « is assumed in the form cf. Perzyna

(1984, 1986) and Nemes, Eftis and Randles (1990)

(8)

%
k= {g+ (1 - g)exp[-h(9) €]} [1 - (6%) ] ; (9)
where ¢ = £, ko and &, denote the yicld and saturation stress of the matrix material
(both can be temperature dependent functions), respectively, A = h(¥) is the temperature
dependent strain hardening function for the matrix material, €°= fot(gd” : d”)%dt is
the equivalent plastic deformation and ¢ denotes the value of porosity at which the
incipient fracture occurs. The overstress viscoplastic function @ is postulated in the form

(cf. Perzyna (1963, 1971))
O(f —k)=(f—k)", wherem=1,35,... (10)

The axioms (i)-(iii), the energy balance equation and the evolution equations (6) lead
to the rate equations as follows

. 1
Lvr = L£°f:d-— Lthﬂ — [(»Ce + g7 + Tg) : P] T ((f - K)m)v
pc,,19 = —divq+ dp Q’—-:d+XT:d”+/\5, (11)
PRef aJ
where

tFor precise definition of the finite elasto-plastic deformation see Duszek—Perzyna and Perzyna (1994)
and Perzyna (1995).
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. 9% 0% 0%
L= presger £ = gy o= g (12

the irreversibility coefficient x is defined by

(e, 0% 1
X==F <a_¢”'9az96c> T (13)

A denotes the generalized force conjugates to the internal state variable £ and is determined
by the relation

o 0%
A=—pl= -9 .
P (35 FYFT: (14)
To make possible numerical investigation of the three—dimensional dynamic adiabatic

deformations of a body for different ranges of strain rate we introduce some simplifications
of the constitutive model.

(i) By analogy with the infinitesimal theory of elasticity we postulate linear elastic
properties of the material, i.e.

e 2 a Ci ac
(Le)abcd — G(gacgdb+gcbgda> + (1‘ _ %G)(} bgd+deg ; (15)

where (G and K denote the shear and bulk modulus, respectively.
(11) It is assumed that

1

£ LM = 0g, (16)

where 6 is the thermal expansion coefficient in the elastic range.

It is noteworthy that the influence of the evolution of microvoids on elastic properties
of the material is not taken into account.

2.3. Intrinsic micro—damage process

The intrinsic micro damage process consists of nucleation, growth and coalescence of
microvoids (microcracks). Recent experimental observation results (cf. Shockey et al.
(1985)) have shown that coalescence mechanism can be treated as nucleation and growth
process on a smaller scale. This conjecture simplifies very much the description of the
intrinsic micro-damage process by taking account only of the nucleation and growth
mechanisms. Then the porosity or the void volume fraction parameter £ can be determined

by { = (E) nucl + (£>gr0w.

Physical considerations {(cf. Curran et al. (1987) and Perzyna (1986)) have shown
that the nucleation of microvoids in dynamic loading processes which are characterized
by very short time duration is governed by the thermally-activated mechanism. Based

on this heuristic suggestion we postulate for rate dependent plastic flow
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. *N|o—0o P
I .

where k denotes the Boltzmann constant, h*(§,J) represents a void nucleation material
function which is introduced to take account of the effect of microvoid interaction, m*(J)
1s a temperature dependent coefficient, o = (1/3)J; is the mean stress and on(£,d, €F)
is the porosity, temperature and equivalent plastic strain dependent threshold stress for
microvoid nucleation.

For the growth mechanism we postulate (cf. Johnson (1981), Perzyna (1986), Perzyna
and Drabik (1989, 1995) and Nemes et al. (1990))

3 1 g*(g?ﬂ) P
) =7y 17~ olED €, (18)
where T, \/k denotes the dynamic viscosity of a material, g*(£, 9) represents a void growth
material function and takes account for void interaction and o.,(¢,9, €P) is the porosity,
temperature and equivalent plastic strain dependent void growth threshold mean stress.
Equations (17) and (18) determine the evolution function = postulated in Eq. (6)3.

2.4. Cooperative phenomena (thermomechanical coupling and micro—damage
mechanism)

For adiabatic process (q = 0) Eq. (11); takes the form

p Or

ﬂl{j(,)_ﬁ:d+XT:dp+/\€' (19)

p(;p19 =9

The first term on the right-hand side of I5q. (19) has not a dissipative nature and is of
the second order when compared with the internal dissipation terms. Its contribution to
internal heating is small. This may suggest that in some considerations it can be neglected.
However this nondissipative term will have important influence on the propagation and
interaction of stress waves in inelastic damaged solids.

The second term on the right-hand side of EEq. (19) represents the rate of internal
dissipation due to plastic flow process while the last term gives the contribution to the
rate of internal dissipation generated by the intrinsic micro-damage mechanism.

When the nondissipative term is neglected then IXq. (19) takes the form

pe,d = xT: dP + AE. (20)
From Eq. (20) we can compute the irreversibility coefficient x. It gives

pcﬂ—/\{:
X= :':dp ' (21)

For A = 0, i.c. when the influence of the intrinsic micro-damage mechanism is not taken
into consideration, Eq. (21) takes the form

pe,d
X=7 :pdp' (22)




190

For this particular case the irreversibility coefficient x has a simple interpretation as the
heat rate conversion to plastic work rate fraction. However Eq. (21) shows that the
remaining work rate is attributed to the energy rate lost for micro-damage effects.

When modelling thermomechanical behaviour of materials x is usually assumed to be
a constant in the range 0.85 — 0.95 (a practice that dates back to the work of Taylor and
Quinney (1934)).

Recent experimental investigations performed by Mason, Rosakis and Ravichandran
(1994) by using a Kolsky (split Hopkinson) pressure bar and a high-speed infrared detector
array have clearly shown that this assumption may not be correct for all metals.

The reason for this considerable discrepancy is clearly visible from Eq. (21). The rate
of the lost energy A€ implied by the intrinsic micro-damage mechanism is responsible for
the decreasing of x.

Mason, Rosakis and Ravichandran (1994) observed that the irreversibility coefficient
x depends of strain and strain rate in a range of metals. Their experimental observations
have significant implications in the study of the conditions preceding and governing adi-
abatic shear band formation and shear band growth as well as on the establishment of a
criterion governing dynamic fracture mode selection in rate sensitive materials.

2.5. Fracture criterion

We base the fracture criterion on the evolution of the porosity internal state variable.
Let us assume that for £ = £ catastrophe takes place (cf. Perzyna (1984)), that is

k= ;{(Epvﬂvﬁ) |E=fF: 0. (23)

It means that for £ = £F the material looses its stress carrying capacily. The condition
(23) describes the main feature observed experimentally that the load tends to zero at the
fracture point. It is noteworthy that the isotropic hardening-softening material function
% proposed in particular form (9) satisfies the fracture criterion (23).

2.6. Adiabatic inelastic flow process

The evolution problem (1) describes an adiabatic inelastic flow process provided

é v
v m2~
p= pu f= X th N 1 AE h
- 1] - [ . m = t bl
2 (o £ + £ + g +78) P (= 0)™) = 5dEq €
X . 1 - m A Ll
v oM(l—f)CpT ’ Pﬁ((f - K) > + pm(1=E€)cp ™
0 0 0 0 0 0
1 T div Tgrad
0 0 T w2 2ite Fo-wag ©
10 —padiv 0 0 0 0
A= 0 [E:symZ + 2sym(t : %) 0 0 0 0| (24)
0 0 0 0 0 0
0 Cppﬂnel % : symg’; 0 0 0 0
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It is noteworthy that the spatial operator A has the same form as in elastodynamics of
damaged material while all dissipative effects generated by viscoplastic flow phenomena
influence the process through the nonlinear function f.

3. NUMERICAL SOLUTION OF THE EVOLUTION PROB-
LEM

3.1. Well-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f = 0) is called well posed (in the sense of
Hadamard) if it has the following properties:

(i) The strict solutions are uniquely determined by their initial elements;
(11) The set Y of all initial elements of strict solutions is dense in the Banach space E;

(iii) For any finite interval [0,tc], to € {0,2s] there is a constant K = K(¢o) such that
every strict solution satisfies the inequality

e°ll, for 0<t<t. (25)

Il < K

The inhomogeneous evolution problem (1) will be called well posed if it has a unique solu-
tion for all reasonable choices of " and f(¢, ) and if the solution depends continuously,
in some scnse, on those choices.

It is possible to show (cf. Richtmyer (1978)) that strict solutions exists for sets of °
and f(-) that are dense in E and E; (a new Banach space}, respectively.

Let us consider first undamaged material (i.e. we assume = = 0). Ior this case the
spatial operator A has strictly the form as in elastodynamics. Then, for the proof of the
well-posedness of the homogeneous evolution problem (for f = 0) we can use the results
obtained in elastodynamics. Next, we can extent the results to elasto-viscoplasticity by
considering the nonhomogeneous evolution problem (when f # 0) and by superposing
suitable smoothness assertions for the nonlinear function f (cf. lonescu and Sofonea

(1993) and Perzyna (1994, 1995)).

3.2. Discretisation in space and time

We must approximate (1) twice. First, when E is infinite dimensional, we must replace A

by an operator A, which operates in a finite dimensional space V,, C E, where, in general,

h > 0 represents a discretisation step in space, such that dim(V,) — oo as A — 0. Second,

we must discretise in time, that is to say choose a sequence of moments ¢, (for example

t, = nAt, where At is time step) at which we shall calculate the approximate solution.
Let us introduce the following semi-discretised (discrete in space) problem.

Find @, € C°([0,to]; Vi) (C° denotes the space of functions
continuous on ([0, o], Vi)) satisfying

Sl = A (t) + £a(0),

#r(0) = o

(26)
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The operator Ay, for the finite element method can be obtained by a variational formula-
tion approach. The discrete equations are obtained by the Galerkin method at particular
points in the domain.

Finally, we shall define a method allowing us to calculate ¢} € V}, an approximation
to ¢u(ts) starting from @7~! (we limit ourselves to a two-level scheme). Then we can
write

@it = Ch(At)pr + A, 9h = @0 (27)

where we introduce the operator Chr(At) € L(V4) (£ is the set of continuous linear map-
ping of V;, with values in V;) and where f} approximates fi(t,).

We shall always assume that the evolution problem (1) is well posed and there exists
a projection Ry of E into Vj, such that

lim | Rap —¢ [e=0 Ve €E. (28)

3.3. Convergence, consistency and stability

The first fundamental question is that of the convergence, when & and At tend to zero, of
the sequence {¥}}, the solution (27), towards the function @{t), the solution of (1). Let
us restrict our consideration, for the moment, to the case where f(t) = 0.

Definition 1. The scheme defined by (27) will be called convergent if the condition
Por — @’ as h—0 (29)
implies that
pr = e(l) as AL—-0, n—ooo with nAt -t (30)
for all ¢ €]0, 4, to € [0, ], where @} is defined by (27) and @(£) is the solution of

(1). All this holds for arbitrary ¢°.

The study of the convergence of an approximation scheme involves two fundamental
properties of the scheme, consistency and stability.

Definition 2. The scheme defined by (27) is called stable, if therc exists a constant
K > 1 independent of A and Al such that

HCR(A)) Riljcey < K Vn, At satisfying nAt < to. 31)

In the Definition 1 and 2 there occur two parameters A and At. It may be that the scheme
is not stable (or convergent) unless At and h satisfy supplementary hypotheses of the type
At/h* < constant, o < 0, in which case we call the scheme conditionally stable. If
the scheme is stable for arbitrary £ and At we say that it is unconditionally stable.

Definition 3. The scheme defined by (27) will be called consistent with equation (1)
if there exists a subspace Y C E dense in E, such that for every ¢(¢) which is a
solution of (1) with ¢° C Y (and f = 0) we have
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| Cr(At)Ryep(t) — (1)

1m
h—0,At—0 At

— Ap(t) [e= 0. (32)

We can now state the Lax equivalence theorem (cf. Richtmyer and Morton (1967), Strang
and Fix (1973) and Dautray and Lions (1993)).

Theorem. Suppose that the evolution problem (1) is well-posed for ¢ € [0,¢5] and that it
is approximated by the scheme (27), which we assume consistent. Then the scheme
is convergent if and only if it is stable.

The proof of the Lax equivalence theorem can be found in Dautray and Lions (1993).

4. EXAMPLES OF THE EVOLUTION PROBLEM

4.1. Adiabatic dynamic process for thin steel tube

Cho, Chi and Duffy (1988) tested the specimens machined in the shape of thin-walled
tubes with integral hexagonal flanges for gripping. Torsional loading at high strain rates
was applied in a torsional Kolsky bar (split-Hopkinson bar).

We idealize the initial-boundary value problem (cf. Lodygowski and Perzyna (1997))
by assuming the specimen in the shape of thin-walled tube.

The initial conditions are taken in the form

d)(X,O) = 07 U(X,O) = 01 p(X,O) = PRef = p(/]\/l(l - 60)7
T(x,0) =0, £&(x,0) =&, 9(x,0)=13p = constant in B. (33)
That is, the body is initial at rest, is stress frce at a uniform temperature dy and the

initial porosity at every material point is &o.
For the boundary conditions, we assume

7-n = 0 on the inner and outer surfaces of the tube,
qn = 0 = gradd -n =0 on all bounding surfaces,
1
v(z1,25,0,t) = 0, v(zy,25,L,8) = wi(t) (zf + z,f,) *n", (34)

where n is a unit outward normal to the respective surfaces, w*(t) is the angular speed of
the end surface 3 = L. of the tube, and n* is a unit vector tangent to the surface x3 = L.
It is assumed that

i wyt /20, 0 <t < 20ps, .
wi(t) = { Wy, t > 20ps. (35)

The rise time of 20 us is typical for torsional tests done in a split Hopkinson bar (cf. Batra
and Zhang (1993)).

The following values for various material parameters arc assumed (AISI 1018 cold
rolled steel)

pm = 7860 kg/m3, ¢, =460 J/kg°C, G =80 GPa,
K =210 Gpa, Ko = 237 MPa, Ky = 1.2. Ko, 190 =293 K,
h = const =5.15, n=const=125 m=5 (ford =0), m=4.7 (for J = 353 K).
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Two parameters, namely the relaxation time T}, and the irreversibility coeflicient x, have
been changed in the range as follows

T, =25-10"2 — 2.5-1078 s for 272 < 9 < 353 K,
T, =10-10"2 — 1.0-1073 s for > 353 K,
x =06 — 0.9.

The tube has been twisted at nominal shear strain rates ranging 10° — 10* s~
For the particular example considered it has been assumed € = 0 (no influence of the

micro-~damage mechanism) and w§ = 253 s7".

4.2. Adiabatic dynamic processes for thin steel plate

We idealized the initial-boundary value problem investigated by Chakrabarti and Spret-
nak (1975) by assuming the velocity driven adiabatic process for a thin steel plate (12.7 x
25.4 x 0.33 mm). The material of a plate is AISI 4340 steel. The following values for
material parameters are assumed: o = 7850 kg/m®, F (Young’s modulus) = 200 MPa,
the yield stress is 1634 kPa at reference temperature ¥o = 293 K, 1310 kPa at ¥ = 343 K,
1006 kPa at 9 = 482 K, ¢, = 4.6 k) /kg K, & = 0.04, (¥ = 0.3, m = 1.

The relaxation time T,, and the irreversibility coefficient x are assumed to change in
the ranges as follows: T, =2.5-107% — 2.5-107%s, x = 0.6 — 0.9.

The symmetry of the boundary conditions is strictly keeping, to one edge of the plate
constant velocity is applied v = 10 m/s and the other edge is motionless (v = 0).

5. NUMERICAL COMPUTATION RESULTS
5.1. Thin steel tube

The aforestated initial-boundary value problem has been solved by using the wide spec-
trum of ABAQUS possibilities (cf. Lodygowski et al. (1994) and Lodygowski and Perzyna
(1996)).

The half of the specimen (the thin walled cylinder) is modelled via both multilayer shell
and three-dimensional brick elements with 4 layers in radial direction. In circumferential
direction the model consists of 24 segments with 10 elements on the depth.

To avoid the reflection of waves and to model the influence of the rest of the speci-
men it has been postulated that the additional spring and mass elements are taken into
consideration.

In Figs. 1-4 the evolution of the plastic equivalent strain in different laminates for
various pairs of the relaxation time 7}, and the irreversibility coefficient x has been visu-
alized.

5.2. Thin steel plate

For adiabatic dynamic process the specimen (a thin sheet) is modelled via 800 (20 x 40)
shell elements. Dynamic explicit method is used (more than 120 000 inc.), cf. Glema et
al. (1997).



25
{*10%*=2)

20

PEEQ

Figure 1. Evolution of the plastic equivalent strain in different
laminates, for T, = 2.5-10~% s and x = 0.9.

LINE VARIABLE

El4

L8

BLIZ
ELIE
EL20
EL24
EL2
L2
ELIG

o o I s N e

K

SCALE
FATTOR

L

.

-00Z-00
00Z-0C
00z-0C
Z.002 OC
~.00z-0C
-.002-0C
L002-0C
~.00z-0¢
- .002-0C
- 002-0C

2
Time

4
(*10%*-4)

25 T T
(*10%*-2)

LINE VAITABLE SCALE / f

20

PEEQ

0 1 2 3 ]
Time [*10%*-4)

Figure 2. Evolution of the plastic equivalent strain in different
laminates, for 7, = 2.5- 1072 s and y = 0.6.

S6l



10
jx10%%=1)

o

PEEQ

0 1 2 3 q
Time {*10**-4)

Figure 3. Evolution of the plastic equivalent strain in different
laminates, for T;, = 2.5-107% s and x = 0.9.

10

(*10%*=1)

PEEQ

Time [*10*==4)

Figure 4. Evolution of the plastic equivalent strain in different
laminates, for T;, = 2.5-107% s and x = 0.6.

961



197

In Fig. 5 the deformed meshes for various relaxation time 7,, have been presented.
The distribution of the equivalent plastic deformation along the longer edge of the plate
is shown in Fig. 6. The modes of fracture for different relaxation time T,, have been
visualized in Fig. 7.

6. DISCUSSION OF THE INFLUENCE OF CONSTITUTIVE
PARAMETERS

From the results obtained for adiabatic processes for thin steel tube and for thin steel
plate it has been proved that the width of the shear band region and the temperature
rise vary very much with the relaxation time assumed. It has been also observed that
the distribution of the equivalent plastic deformation and the modes of fracture along
the shear band region are very much affected by the relaxation time. It has been clearly
shown that the wave propagation and interaction and the deformation process and as the
result the localization of plastic deformation along the shear band are very much depended
on the assumed value for the relaxation time. Since the relaxation time can be viewed
either as a regularization parameter or as a microstructural parameter to be determined
basing on physical foundations and experimental observations hence the identification of
this parameter has a great importance for proper constitutive modelling for localization
and fracture phenomena. It has been found that localization anf fracture phenomena are
not so much affected by the irreversibility coeflicient.

7. FINAL COMMENTS

It has been proved that the localization of plastic deformation phenomenon in an clastic
viscoplastic solid body can arise only as the result of the reflection and interaction of waves.
It has different character then that which occurs in a rate independent elasto-plastic
solid body (cf. Perzyna (1994, 1995)). Rate dependency (viscosity) allows the spatial
difference operator in the governing cquations to retain its ellipticity and the initial value
problem is well-posed. Viscosity introduces implicitly a length-scale parameter into the
dynamical initial-boundary value problem and hence it implies that the localization region
is diffused when compared with an inviscid plastic material. The introduced length--scale
is proportional to the relaxation time. The main feature of the developed theoretical model
is the possibility of the investigation of the entire process considered. Under dynamic
loading conditions the propagation of deformation in the specimen considered establishes
heterogeneous distributions of stress and strain, causing the location of the instability
regions in the form of shear bands. These regions vary with the imposed strain rate and
are affected by the assumed value of the relaxation time (or viscosity parameter). Thus
the evolution of the localized shear band region until occurrence of fracture has been
simulated. It has been also proved that the insensitivity of the results to mesh refinement
is apparent whether material softening in present or not.
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Macromechanical Description of Micro-Shear Banding
R.B. Pecherski

Institute of Fundamental Technological Research, Polish Academy of Sciences,
Swietokrzyska 21, 00—049 Warsaw, Poland, rpecher@ippt.gov.pl

Physical model of shear strain rate produced by active micro—shear bands in metals is
formulated and mathematical idealization of micro—shear bands system by means of the
theory of singular surface of order one is proposed. Extension of the known averaging
procedure over the representative volume element traversed by the strong discontinuity
surface of a vortex sheet type is presented. Constitutive description of small elastic and
large plastic deformations within the framework of two surface plasticity model with
internal yield surface connected with kinematic hardening anisotropy and the external
surface approximating the generic micro—shear banding surface is proposed. The idea of
the multiple potential surfaces forming a vertex on the smooth external surface is
applied to display the connection with the geometric pattern of micro—shear bands.

1. INTRODUCTION

Metallographic observations reveal that in heavily deformed metals, in particular
under highly constrained conditions which can appear in technological shaping
operations, a multiscale hierarchy of shear banding occurs. Also at the advanced stage of
ductile fracture, while void coalescence takes place, the behaviour of the ligaments
between the voids is controlled by the formation of micro—shear bands. The new
mechanism of deformation progressively replaces crystallographic multiple slip and
twinning also at small strains, if they are preceded by the alteration of the scheme of
straining. The change of deformation mode contributes to the development of strain
induced anisotropy and modifies material properties. Therefore, macromechanical
description of micro—shear banding is important for adequate constitutive modelling of
inelastic strain and damage processes in metallic solids.

Theoretical analysis of large plastic deformations of metals accounting for active
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micro—shear bands requires careful analysis of averaging procedures and proper setting
of the resulting description within continuum theory of materials. Formulation of a
complete theory based on the precise micro—to—macro transition remains an open
question. An attempt to tackle the averaging procedure over the RVE with micro—shear
bands was presented in [1], where the macroscopic measure of velocity gradient
accounting for micro—shear banding was derived. The derivation is based on the physical
model relating macroscopic shear strain rate with microstructural features of
micro—shear bands, mathematical idealization of a system (cluster) of active
micro—shear bands as propagating singular surface of order one, having properties of a
vortex sheet, and the extension of the known averaging procedure applied to the
representative volume element (RVE), which is traversed by the discontinuity surface.
This makes possible to derive in a more rigorous manner the constitutive relations of
plasticity accounting for macroscopic effects of micro—shear bands, which were obtained
previously under certain simplifying assumptions, [2-4]. The double surface plasticity
model, proposed in [4] and [5], has been extended and corroborated in this study. The
internal yield surface is connected with nonlinear kinematic hardening model of
Armstrong—Frederick type while the external surface corresponds with the saturation of
the back stress effect. It appears that this phenomenon can be correlated with massive
formation of micro—shear bands. Basing on the idea of the "extremal surface", presented
by Hill [6], the concept of the generic micro—shear banding surface was introduced,
which can be approximated by means of the class of the external limit surfaces. The
model proposed shows that the contribution of active micro—shear bands with their
characteristic geometric pattern, transmitted to the macroscopic level, produce the
non—coaxiality between principal directions of stress and rate of plastic deformations.
The relation for plastic spin appears in a natural way as an effect of this non—coaxiality.
It transpires that depending on the contribution of the mechanisms involved in plastic
flow, a fully active range, separated from the elastic range by a truly nonlinear zone
called the partially active range, may exist. A new physical insight is given into the
linear and nonlinear flow laws, in rates of deformation and stress, known in the theory of
plasticity. The idea of multiple potential surfaces forming a vertex on the smooth
external surface is applied to connect the fully active range and the partially active
range with the definite geometric pattern of micro—shear bands. This leads to the new
non—associated plastic flow rules accounting for the effects of micro—shear banding. The
possibilities of certain simplifications and perspectives of the application of the
theoretical model vis—a—vis the results presented recently in the literature are discussed.
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2. PHYSICAL MOTIVATION

The term micro—shear band is understood as a long and very thin (of order 0.1 um)
sheet—like region of concentrated plastic shear, crossing grain boundaries without
deviation and forming a definite pattern in relation to the principal directions of strain.
The experimental information about mechanical behaviour and related structural
features is reviewed, e.g. in [2—3] and [7—8], where the comprehensive list of references is
given. The metallographic observations reveal the hierarchy of plastic slip processes:
from coplanar dislocation groups moving collectively along active slip systems, through
slip lammellae and slip bands to coarse slip bands, which may further transform into
transgranular micro—shear bands and form clusters (packets) of micro—shear bands of
the thickness of order (10 + 100) pm. The clusters of micro—shear bands, produced for
instance in rolling, form the planar structures, which are usually inclined by the angle ¢
of about + 35° to the rolling plane and are orthogonal to the specimen lateral face. There
can be, however, considerable deviations from this value within the 15° to 50° range. It
is worthy to stress that the problem of specifying the angle is complicated by the
difficulty of distinguishing the most recently formed micro—shear bands from those that
were formed earlier and subsequently rotated with material towards the rolling plane, cf.
[3] and [7-8]. This is related with the important observation, stressed in [8] and
discussed also in [3], that a particular micro—shear band operates only once and develops
rapidly to its full extent. The micro—shear bands, once formed, do not contribute further
to the increase in plastic shear strain. Thus, it appears that the successive generations of
active micro—shear bands competing with the mechanism of multiple crystallographic
slip are responsible for plastic strain in metals.

The discussion of experimental observations concerning micro—shear bands geometry
leads to the hypothesis, which says that it is typical of the clusters of active micro—shear
bands that their planes are rotated relative to the respective planes of maximum shear
stress by a certain angle §, which is usually of the order (5 + 15)°. This deviation angle
plays essential role in the phenomenological theory of plastic deformations accounting
for the effects of micro—shear banding and will be considered as a statistically averaged
micro—shear bands orientation parameter, transmitting to the macroscopic level the
geometry of their spatial pattern. The experimental observations show that the spatial
pattern of micro—shear bands does not change for loading conditions that deviate within
limits from the proportional loading path, i.e. the load increments are confined to a
certain cone, in particular wedge—shaped region, the angle of which can be determined
experimentally. For instance, according to Dybiec [9], in the polycrystalline Cu the
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critical angle 6c of this cone is of the order 22°. However, more drastic change of the

loading scheme produces the change of the spatial orientation of micro—shear bands.
This is supported by the results presented in [10], where after cross rolling two families
of micro—shear bands inclined by about + 35° to the most recent rolling direction were
observed. The existence of the deviation angle § is characteristic for the micro—shear
bands produced in the deformation processes carried under nearly isothermal conditions.
Thermal shear bands, i.e. the mode of plastic flow localization governed by a coupled
thermoplastic mechanism, have also been studied by many authors. In particular, the
so—called "adiabatic shear bands" are often reported to coincide with the trajectories of
maximum shear stress, what results in § = 0, [11].

3. CONTINUUM MECHANICS DESCRIPTION OF MICRO-SHEAR BANDING

3.1. Macroscopic averaging in plasticity of metals

Problem of macroscopic averaging in plasticity of metals was discussed in [1], where
also the bibliography of the earlier papers was given. The averaging procedure and
micro—to—macro transition, studied within the framework of finite strain theory in [12]
and [13] lead to the following relations for the macroscopic measures of the deformation

gradient F and its rate f‘, which are averaged over the reference configuration Vv of the

RVE and can be expressed by means of surface data

1 1
Fz{f}:vjeradxmdvozv JxGVOdAO, (1)
Oy o v
o] 0
. 1 . ] .
F={f} = 7 JGradxde0= v Jxm@vo dAo, (2)
Oy 0 gv
0 0

where the symbol x denotes the microscopic field of motion of the material point X in
m m
the reference configuration of the RVE into its current position x = x (X , t), and the
m m m
microscopic field of velocity v is determined in the current configuration
m

vo=v(x,t)= vm(xm(xm, t),t) = X (X 1) (3)

The presented averaging procedure is valid under the general assumption that the

dominant mechanism of plastic deformation corresponds to multiple crystallographic
slip. In such a case, the theory describing kinematics and constitutive structure of finite
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elastic—plastic deformation of crystalline solids is well established and the tramsition
between the microscopic and macroscopic levels is well understood, (cf. [1] for more
detailed discussion and pertinent references). As it was stressed in [3] and {5], the
situation changes when additional mechanism of the multiscale system of shear banding

is taken into consideration.

3.2. Physical model of shear strain rate produced by active micro—shear bands

Consider a certain RVE containing the region of progressive shear banding, depicted
schematically in Fig. 1a, where the traces of successive clusters of micro—shear bands are
shown. The arrow points to the direction of the expansion of the region. According to
the physical motivation discussed above, at this level of observation the clusters of
active micro—shear bands can be considered as elementary carriers of plastic strain.

a) b) c)
wed e

Lms

Figure 1. Schematic illustration of the multiscale system of shear banding.

In Fig. 1b, the "magnification" of the shear banding area is "zoomed in" and the related
fundamental mechanism of plastic shear is illustrated. The cluster of micro—shear bands
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has the active zone of the thickness H and the width L , in which the passage of
ms ms
active micro—shear bands results in the local perturbation, A , of the microscopic
ms

displacement field, u = x — X , moving with the speed V as a distortion wave. The
m m m S

possible profile of the local perturbation, A , is depicted in Fig. 1c.
ms

Consider a set of N active micro—shear bands of similar orientation and produced
ms

within the time period A7, which can be considered as an infinitesimal increment of
"time-like parameter" ¢ in the macroscopic description. As it is depicted schematically
in Fig. 1b, such a system (cluster) of micro—shear bands produces the microscopic shear
strain 7 which is given by the following relation

N
A B N 1 L5
— ms — _ms_ms I = =
7ms - H ’ Ams L xms ’ xms nzxi ! (4)
ms ms i
where B is the total displacement produced by a single micro—shear band and x
ms ms

denotes the average distance that N micro—shear bands have moved in the active zone.
ms

The width of the active zone L can be determined by the length of the path that
ms
micro—shear bands passed with an average speed v during the time period Ar.
ms

Assuming that the distance x and the number of active micro—shear bands N can
ms ms

change during the propagation of the active zone we have from (4)

B . .
=—ms (N x +% N ), (5)
ms L H ms ms m$ ms
ms ms
where the dot denotes differentiation with respect to the "time—like parameter" ¢. Let us

observe that under the simplifying assumption that the speed of micro—shear bands in

the active zone of the cluster is approximately the same, the rate x can be identified
ms

with the speed v of the head of a single micro—shear band, X =zv , (cf. [1], where the
ms ms ms
model of a single micro—shear band is studied). If the number of active micro—shear

bands operating in the active zone of a single cluster can be assumed constant, (5) takes
the form which is formally similar to the Orowan relation, (cf. [1])

ms (6)

i
ms ms ms ms ’ ms L H

2
Il
o]
@
h~Y
Il
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where p corresponds to the density of micro—shear bands operating within the active
ms

zone of the cluster. This is the number of active micro—shear bands that cut through a
unit cross—sectional area.

3.2. System of active micro—shear bands as a surface of strong discontinuity

The foregoing discussion of physical nature of micro—shear banding process support
the following hypothesis:
The passage of micro—shear bands within the active zone of the cluster, results in the
perturbation of the microscopic displacement field Ams travelling with the speed VS,

which produces a discontinuity of the microscopic velocity field in the RVE it traverses.
The progression of clusters of micro—shear bands can be idealized mathematically by
means of a singular surface of order one propagating through the macro—element (RVE)
of the continuum.

The necessary mathematical formalism of the theory of propagating singular surfaces
is given, e.g. in [14], [15} and [16]. The theory allows to identify the postulated
discontinuity surface of the microscopic velocity field v in the RVE as a singular

surface moving in the region V _ of the reference configuration of the body given by the
equation X(t) : G(Xm,t) = 0, where for each instant of "time-like parameter" te I c R,
the surface (¢} ¢ V_ has the dual counterpart S(¢) C V, in the spatial configuration of
the RVE, S(¢) : g(xm,t) = 0, i.e. the material points Xm € L(f) occupy the places

x € S(t) at a given instant ¢ There exists the jump discontinuity of derivatives of the
m

function of motion x , i.e. of the microscopic velocity field [x ] # 0 and the deformation
m m
gradient [f] # 0, which are assumed smooth in each point of V. = I excluding the
discontinuity surface
Ix1=x'-x#0, [f1=f-f+0. (7)
m m m
According to [14] and [16] the considered surface of strong discontinuity of microscopic

velocity field fulfills the properties of a vortex sheet with the jump discontinuity of the
first derivatives of x given by
m

1%
[vm]=VSs, [f]:—;ssanf, for U40 , (8)

where s and n are, respectively, the unit tangent and the unit normal vectors to the
discontinuity surface S(¢) while U corresponds to the local speed of propagation of S(%).
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Similarly, for the material counterpart of a singular surface L(¢) the compatibility

relations take the form
. 1%
[x1=Vys, [fl =——2seN for U0, (9)

N
where N is the unit normal vector to the discontinuity surface X(¢) and Uy is the

normal component of the surface velocity (cf. [15], p. 96).

3.4. Macroscopic measure of the rate of deformatior produced by micro—shear banding
According to the analysis in [1], the averaging procedure (2) of the microscopic

velocity field x over the macro—element V_ can be generalized for the macroscopic
m

RVE traversed by the singular surface of vortex sheet type with the velocity jump of the

magnitude Vs‘ Then, the macroscopic measures of deformation gradient F and its rate F

are expressed by means of surface data in the following way

-
1]
<[+

x ev dA (10)
n ) )
ov =5 (t)

where according to (1), F = F and due to (2) and (9)1

1 : 1
F = VJ Grady_dV, + 1 J V,se NdA_, (11)
[o] Oz(t)
VO
and in the spatial form
L=l v@udA:ngradvdv+lJ V. sendA (12)
Y m \ m v S ’
ov—s(t) v s(t)

where L denotes the macroscopic measure of velocity gradient, averaged over the
macro—element V traversed by the vortex sheet S(f). The averaging formula (12)
enables us to account for the contribution of micro—shear banding in the macroscopic
measure of velocity gradient produced at finite elastic—plastic strain. According to (12),
the velocity gradient L is decomposed as follows

L=L+L, L= H gradv 4V, L =1 J V s ndA. (13)

v (%)
Assuming that the singular surface S(¢) forms a plane traversing volume V, with the
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unit vectors s and n held constant, (13)3 results in L o = 7, 8 ® n, where the

MS
macroscopic shear strain rate 7, is determined according to (6) by the microscopic

variables as an average over the RVE

SR ; -1
s = o J H y dA =1 J H B poudA. (14)

s(t) s(t)

Assuming for simplicity that the structural parameter B and the speed v are
ms ms

constant over the surface S(t), we have

Y= -1
Ns = Bolufus 0 Pus T VJ H p.dA - (15)

s(t)
The symbol Pys denctes the macroscopic volume density of micro—shear bands that

operate within the sequence of clusters sweeping the RVE. The density Pyyg 0AY change
with "time—like parameter" ¢, for the magnitudes of H and p are, in general, various
ms ms

for different clusters and (15) takes the following equivalent form, [1]

s = B, L Dys- (16)

The derived relations are valid for a single system of micro—shear bands. This can be
generalized for the case of a double shearing system

2
L=L + ziyh“sﬂ sthe pth | (17)
i=1
where 7:4;’ is the macroscopic shear strain rate and s | n(1 are the respective unit
vectors of the "i"th shearing system. It worthy to note, that (17) is valid only under the
simplifying assumption that the active micro—shear bands in both systems operate in
the time period, which corresponds to a sufficiently small increment of "time-like
parameter" in the macroscopic description. Otherwise, the sequence of events should be
taken into considerations. The above relations provide the following macroscopic
measures of the rate of plastic deformations and plastic spin produced by active

micro—shear bands

_1 T 1 T
Dis =5 (Lyg + L), Wig =5 (Lyg —Lyg) - (18)

The discussed averaging procedure over the RVE with the singular surface allows to
account for the characteristic geometric pattern of micro—shear bands which is
transmitted upwards through a multiscale hierarchy of observational levels.



212

3.4. The meaning of "yield" within the context of micro—shear banding

It was recognized in [2—4] that in the plasticity model accounting for the effects of
micro—shear bands the meaning of "yield" is not a trivial one and requires more detailed
analysis. The precise connection of the nominal yield points with intrinsic material
properties was discussed earlier by Hill in [6] and [17], where the idea of an "extremal
surface" was proposed. Let us imagine that after a given prestrain of the RVE of a
polycrystalline aggregate, further glide hardening on the active slip systems of its
constituent grains is suspended. In general, due to constraint hardening, the incremental
plastic flow under constant overall load is still precluded. However, as it was observed in
[6], special configurations of internal micro—stresses and yield vertices are possible that
together admit one or more fields of strain rate which are compatible with zero stress
rate. According to Hill [18], such fields correspond to intrinsic eigenstates and are
associated with incipient branching of constitutive relation between increments of
objective stress and strain. If the micro—shear bands are understood as an effect of
special configuration of internal micro—stresses that accumulate at grain boundaries till
the glide hardening on the active slip systems is suspended and then abruptly release
producing, under constant overall load, the field of plastic deformation rate Dﬁs as a

self—induced deformation mode, the similarity with the intrinsic eigenstates, discussed in
(6] and [18], can be observed. As is emphasized in [6], the "extremal surface" is not a
single yield surface but is rather an assemblage of yield points for physically distinct
states of the RVE, none of which can be reached from any other via purely elastic paths
in the stress space. Then, the following observation correlates the properties of the
"extremal surface" with the mechanism of micro—shear banding:

The properties of the "extremal surface" conform with the mechanism of micro—shear
banding. The yield state approaching a certain state on the "extremal surface" can be
related with the formation of a particular spatial pattern of micro—shear bands. Another
state occupying the "extremal surface" pertains to another spatial pattern of
micro—shear bands. The transition from one state to the other is not possible via a
purely elastic path, for an accumulated plastic strain is necessary to produce the new set
of micro—shear bands characterized, in general, by another geometric pattern. Such an
"extremal surface" forms the generic micro—shear banding surface.

Based on the aforementioned discussion, a simplified model with two limit surfaces can
be introduced. The preliminary study of such a model of plastic flow with an external
surface taking into account the onset of shear—banding and the internal yield surface,
which is related with the back stress anisotropy was presented in [4] and [5].
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4. CONSTITUTIVE DESCRIPTION

4.1. Basic concepts and relations of elasto—plasticity of structured solids

Consider a polycrystalline aggregate as a continuum body. An infinitesimal neigh-
bourhood of a material point X of this body corresponds to the aforementioned RVE,
which is sufficient for a valid continuum mechanics description of gross elastic—plastic
behaviour. The dominant orientation of the crystalline lattice in the RVE is represented
by director vectors. We can choose an arbitrary triad of orthogonal unit vectors that
will serve as a reference frame for the description of anisotropic properties and elastic
behaviour of material element. The director vectors define the structure of continuous
body. The different visualizations of such a triad are discussed in [19—24], where more
detailed discussion and further references can be found. The assumption that the
continuum is endowed with the structure in the form of the director vectors leads to the
Mandel’s concepts of the local, relaxed, intermediate isoclinic configurations, plastic spin
and structure corotational rate. Due to this, the decomposition of the deformation
gradient F becomes unique F = EP , where E denotes the elastic transformation from
the intermediate isoclinic configuration to the current one and P is the plastic
transformation from the reference configuration to the isoclinic one. The derivation of
the macroscopic measure of the velocity gradient L and its decomposition (13) makes
possible to formulate in a more rigorous manner the constitutive equations of
elastoplasticity with an account of micro—shear banding. The following kinematical
relations can be derived, (cf. {1]):

D=D°+DP=D°+DL+Db, W=W+WP=W°+ WD+ WD, (19)

where Dls’ and Wg correspond, respectively, to the rate of plastic deformation and plastic

spin produced by crystallographic multiple slip. Observe that according to (13), if the

contribution of micro—shear bands is negligible, we have Dﬁs = Wﬁs = 0.

Further analysis will be confined to isothermal processes with small elastic strains.
Then, due to the polar decomposition E = VER® and logarithmic elastic strain € = InV*
the following approximate relations can be obtained, (cf. e.g. [5]):

DP = RY{PP '} RT, WP=Re{PP } R De=c+eWe_Wee (20)
S a
with the elasticity equation
o o . 2 .
r=L:D,, r=71—-Wer4+r1We, [L=p 9%  we_ReRe. (21)
k 9e de

The symbol £ denotes the fourth—order tensor of elastic moduli and & is the free energy
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function per unit mass, assumed in the form &(e, A) = <I>1(e) + <I>2(A), where A is the

set of internal variables taken with respect to the isoclinic configuration.

4.2. Model of plastic flow with nonlinear evolution of kinematic hardening

Let us consider the description of elastic—plastic behaviour of metallic solids with two
limit surfaces. The internal yield surface f is connected with nonlinear kinematic
hardening anisotropy and the external surface F is related with the micro—shear
banding, cf. Fig. 2. It is sufficient for further study to assume the model of small elastic
and finite plastic deformations with the following set of internal variables:

A= {a5s}, A= {as), a=R%R", s=s, (22)
related with the isoclinic and current configurations, respectively. The tensor variable a,
often called the deviatoric back stress, describes kinematic hardening effect (the
translation of the yield surface) and the scalar variables s =: {x, X, p}"’si’}, i=1,2

represent the isotropic hardening parameters & and X, as well as, the macroscopic
volume density of micro—shear bands p}(‘;’ that operate within the sequence of clusters

of the "i"th shearing system sweeping the RVE. The Huber — Mises criterion accounting
for kinematic hardening is assumed to approximate the internal yield surface f and the
constitutive equations at the yield point take the form:

j(T’y a, ’5) = %(T’ - a):(T, - a) -k = 0, IC = b(lcs - K)’_YS) K(O) =Ky (23)
. o
— nNe — (14 ] . =1 p_
D=D +D§_(£1+2huf@uf).-r, pf—ﬂk('r a), (24)
o ) = h
a=(Zhp —c0)y, a(0)=a, 7 =(2DEDR), (25)

where 7' is the deviator of the Kirchhoff stress 7, and ¥ is a material constant
8

representing a saturation value for s, whereas b corresponds to a constant controlling
the pace of saturation. The internal variable £ determines the "size" of the yield surface,
(ie. & ZEIR’ where R is the radius of the Huber—Mises cylinder). The combined

plastic hardening modulus h reads:

- - - _y 1 .
h = hi +h), hi = b(/cs k), h,=h p ¢ b (26)
The form of the nonlinear kinematic hardening rule (25)1 was proposed originally for

small strains by Armstrong and Frederick [25] and applied further in the studies on
cyclic plasticity (cf. e.g. Chaboche {26]). The material constant ¢, is related with the
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saturation of the back stress effect while accumulated plastic strain increases. The scalar
o] e
multiplier 7 fulfills the conditions 5 = 1 if BT 20 and 7 =0 if piT < 0. The

objective rate of the kinematic hardening parameter a reads
o .

a=a—Wea+ aW®, We=W-—-WP. (27)
The additional constitutive equation for the plastic spin WP is necessary to determine
the spin W* of the rotation of the structure. In the study by Paulun and Pecherski [27]
the relation for plastic spin was derived, which can be applied for the case of nonlinear
kinematic hardening rule (25)1 in the following form

3

2
(b} + 3 @h)?

More detailed discussion on the proper formulation of the relation for plastic spin for the

WE = (aDP-DPa),  a=(3e:a)t. (28)

case of kinematic hardening rule (25)1 and of its special form for ¢ =0, known as

Prager—Ziegler law, is given in [22] and [27], where further references can be found.

4.3. Approximation of the generic micro—shear banding surface
Let us observe that the nonlinear hardening rule (25)1 implicitly introduces the

o]
second limit surface, for @ = 0 leads to, (cf. [26]):
. . h
Fr, K= (rr)—K2=0, K=BE —K7,  K0)=KT,)+2, (29)
r

s

where £ is the "size" of the limit surface, (i.e. X = L %, where 7% is the radius of the

external surface), X is a material constant representing a saturation value for X, and B is
S

a material constant controlling the pace of saturation. The parameter K can be
determined from the observations of micro—shear bands formation. According to the
recent studies of Oliferuk et al. [28] the saturation of internal micro—stresses can be
correlated with massive formation of micro—shear bands. This is related with certain

amount of plastic strain ’_ys =T accumulated along a given deformation path.

MS’
Assuming that the internal micro—stresses can be represented on the macroscopic level
by the back stress @, we can determine the material constant € which relates the

saturation of the back stress effect with micro—shear banding. In this way, the resulting
limit surface F of radius 2 comes into contact, at the loading point, with the generic
micro—shear banding surface. The discussed results of deformation tests complemented
with metallographic observations reveal that the onset of micro—shear bands is strongly
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dependent upon the change of loading scheme and the resulting deformation path, (cf.
eg. [5]). Therefore, the class of external limit surfaces, determined for different loading
histories, should be considered. This is depicted in Fig. 2, where the external limit
surfaces F A and F, arrive at the micro—shear banding surface. The points of contact
are pertinent to the respective stress states L and T which have been reached for
different loading paths EA and LB. According to (29), the general functional relations
Pys = G(£) and ¢ = C(£) should be used to determine the family of external surfaces,

which approximate locally the generic micro—shear banding surface. Systematic experi-
mental investigations are necessary to asses the change of FMS and c, for different

loading paths.
‘T1 lia

\J/

|
N [
. m.s.b.
surface

Figure 2. The generic micro—shear banding (m.s.b.) surface approximated by the
class of the external limit surfaces ¥ obtained for different loading paths L.

4.4. Derivation of plastic flow laws accounting for micro—shear banding

According to Hill [6], the macroscopic constitutive equations describing
elastic—plastic deformations of polycrystalline aggregates are either thoroughly or
partially incrementally nonlinear. Depending on the contribution of the mechanisms
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involved in plastic flow, a region of fully active loading, called also a fully active range,
separated from the total unloading (elastic) range by a truly nonlinear zone
corresponding to the partially active range, may exist. According to the works [6], [29]
and [30] the following hypothesis is formulated, [3]:

For continued plastic flow with the deviations from proportional loading contained
within a certain cone of stress rates that corresponds to the fully active range, the
incremental plastic response can be assumed as linearly dependent on the stress
increment. Inside the fully active range the spatial pattern of micro—shear bands is
fixed, whereas in the partially active range the spatial pattern of active micro—shear
bands is changing following the orientation of the maximum shear stress plane. This is
associated with the thoroughly nonlinear relation between the rates of plastic
deformations and stress.

The connection of the fully active range and partially active range with the geometric
pattern of micro—shear bands is necessary to specify the relation for the rate of plastic
deformations for different loading paths. Due to the fact that the multiple sources of
plasticity are dealt with, the theory of multimechanisms with multiple plastic potentials
can be considered. The concept of multiple potential surfaces forming a vertex on the
smooth limit surface was studied earlier by Mréz [31] within the framework of
non—associated flow laws. In our case, the existence of the following plastic potentials
related with the mechanisms responsible for plastic flow can be postulated, (cf. [3]):

(i) The plastic potential A that reproduces at the macroscopic level the crystallographic

multiple slips and is associated with the external surface approximated by means of the
Huber—Mises locus F = 9,

(ii) The non—associated plastic potentials g, and g, that approximate at the macroscopic

level the multiplicity of plastic potential functions related with the clusters of active
micro—shear bands.
The plastic potential functions 9, and g, display the geometry of the considered

micro—shear bands systems and result in two separate planes that form in the space of
principal stresses Ti i=1,2,3, a vertex at the loading point on the smooth

Huber—Mises cylinder F. The planes are defined by normals Ni, which can be expressed
in terms of the unit vectors stV ath i =1, 2, defining the "i"th system (cluster) of
micro—shear bands N = g(s( Ye nth + nthe sth) As it is shown in Fig. 3, the
normals Ni, i =1, 2, can be expressed in terms of the unit normal M and the unit

tangent T to the limit surface F(7, X) at the loading point
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Figure 3.The projection of the Huber—Mises cylinder ¥ = ¢ and the potential planes
& 0

9, and g, onto the deviatoric plane and the plastic cone defined by the angle 4.

N1 = cos2f B + sin2 T , N2 = cos2f e — sin24 T , (31)

b = T = ,V?(—Z) ,V['r —( Tiphg e ], T= (%T’ZT’)%. (32)
ﬁK T

where due to

Il = () el = Por — (o), o = [I7lcoss, (33)

o -
the mormalization factor ¥ is given by ¥ = (||7||siné) ' According to (19)1 and (31), the

relation for the rate of plastic deformation takes form

_ 2 2
DP =D+ DR =237 s + %56, T, (34)
where
I )
Y= Ut e s = C0528(%5g) — 1), eys = SIN2B(75g" + W) . (35)

This is depicted in Fig. 3 showing the plastic wedge—shaped region, within which the all
possible rates of plastic deformation DP are confined. Observe that only the normal
component of the rate of plastic deformations contributes to the change of the radius of
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the limit surface F(7’, X) and the consistency condition, F= 0, yields
0o

y =42 T}:I“F ,  H=B( -K). (36)

The following active micro—shear bands fractions, f}(aé) , fn(ag)’ of the rate of plastic
X
shearing v , are introguced, respectively, .
(1) — {2 _A — f(2) ;
Tis cos2f = fMS v, Nis cos2f = st ¥, (37)
Wk
where due to (34)1 and for 7 > 0 the following constraints hold

7
S (n (2) — (1) (2) (1) f(2)
? +i 6 =1, £+ €01, £, L2 €[o, 1]. (38)

Basing on the observation that the micro—shear bands can be active only in the case of
continued plastic flow, i.e. when loading condition is fulfilled, it is assumed that for
¥y =0, f;{s“ = f}(dSZ) = 0. The all possible special cases resulting from the conditions

(38) are discussed in [3]. The fractions fi;) , f{2) display the stochastic character of the

active micro—shear bands formation during the deformation process and can be
determined within the framework of internal variables approach. In particular,
accounting for (16) and (37) allows us to relate the fractions fl(WSi) with the pertinent

macroscopic densities of micro—shear bands p'1’ i = 1, 2, which can be considered as

MS
internal variables given by the following evolution equations
by’ =T 6 K e pi )y o pag’ (0) =080, (39)
what results in
(i (i) (i) =
st = BmSLmSF (1, &, X, o, Pys ), i=1,2 (40)

Proper specification of the evolution functions T'? remains an open problem and
needs further studies. Certain microscopic models lead to the conjecture that shear
banding may contribute to the rate of plastic deformation as a sequence of the
generations of active micro—shear bands governed by logistic equation (Verhulst
equation), taken from the population dynamics, (cf. [32]).

According to (32) and (34—37), the rate of plastic deformation takes the form, which
is formally similar to the hypoelastic case of J ) deformation theory but accounting for

partially active range enables unloading, (cf. [2]):

9]‘”, o o
DY =5y + 3 (7 () ) (4)
1
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T f _tan2f T
T ke Tyg , 0€ (5c’ E] partially active range
=1 T %) sins 42)
! ﬁ—ﬁ—o: fug tan28 , 6€[0,6,] fully active range.

The second term in (41) is responsible for the non—coaxiality between the principal
directions of stress and rate of plastic deformations and H1 plays the role of the

non—coaxiality modulus, which in the case of the fully active range, i.e. for § € [0, 6C], is

formally similar to the Mandel—Spencer non—coaxiality modulus discussed earlier within
the context of plastic behaviour of single crystals and geological materials, (cf. [3]). The

symbol stzfi’é) —f2 € [-1, 1], denotes the nett fraction of the active

MS ° fMS
micro—shear bands that contribute to the total rate of plastic shearing. The correspond-
ing relation for plastic spin in the case of micro—shear banding reads, (cf. [3]):

f,s X(8) o 0 {ctan&, be (8, 5]

WP =—2>2— (77—77), x(8) = .
47 H cos2f8 ctand,, 6€[0, 6, ]

MS (43)

Equivalently, for the yield point 7 reaching the limit surface #(7', X), the following
new form of non—associated plastic flow rule can be derived, (cf. [5]):

. [0}
D=D°+DP=(Lt+—"pop)r, (44)
2H &
fMS tan2f T o
(1—st tan2ﬁctan6)uF+—sm—p , 66(66,7] T
I‘g = fMS tan2f y P= 5 (45)
(1-f,q tan2f ctané ) u, + ~sag, p., 60,6, ] 7l

¢} ¢}
where ¢ = 1 if BT 2 0 and 7 = 0 if Bp:T < 0, whereas P, is such that

arccos(p,:p,) = 6. Observe that for 6 € [0, § ], the following inverted form of (44) exists

o i p®A

‘r:[:(l——l——g——F—):D, (46)
2H + p A

g °F

where i1=1ifAF:D20 and i‘=0if)\F:D<0, )\F=[:;LF.

In the partially active range, i.e. for § € (4, , g ], the constitutive equation (44) is

thoroughly nonlinear. According to (47), the resulting potential surface 9, is determined

by the normal u , cf. Fig. 2, where the fraction fMS is the controlling parameter of the

g

non—associated plastic flow law. If fus =0, (46) transforms into the J2 flow law. The

magnitude of f . €[-1, 1] can fluctuate in the course of plastic flow. However, the
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assumption that st is kept constant during the deformation process can be considered

as a useful first approximation.
5. CONCLUDING REMARKS

In [2], the model accounting for the double shear system with related yield planes,
intersecting at the Huber—Mises yield locus, was briefly mentioned as an alternative
approach. Notwithstanding the fact that the additional yield conditions related with
shear banding have no firm physical and experimental foundations, such an approach
could be considered as an attractive approximation simplifying theoretical and computa-
tional analysis of boundary value problems. This found confirmation in recent studies,
[33], where the similar approach, based on the assumption that the contribution of
crystallographic multislip, represented by the J2 flow law, and micro—shear banding

allows to the additive composition of pertinent rates of plastic deformation, was
presented independently. The authors proposed "a dual yield constitutive model involv-
ing both the J , flow and a threshold shear stress based—flow", which was incorporated in

a finite element program capable of handling large strains and rotations. The results of
simulation of shear band localization occurring in a uniaxially loaded plane strain
specimen show that relatively simple phenomenological approach, capturing the most
essential features of micro—shear banding, can lead to satisfactory approximation of
material behaviour. The implementation of the presented constitutive description into
the known models describing the porous material failure by void growth to coalescence,
[34—36], could appear useful in more accurate prediction of damage processes.
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1. INTRODUCTION

Starting in the early 1980s a tremendous amount of activity has been devoted to develop-
ing numerical methodologies which are able to trace the entire load-deflection path up to and
including complete failure of a specimen or a structural part or component. Different for-
malisms have been used for this purpose, such as plasticity for metals and soils, being physi-
cally more appealing for these materials, and damage theories for more brittle materials such
as concrete, ceramics, certain fibre-reinforced polymers and rocks under low confining pres-
sures. In either formalism a descending branch in the stress-strain curve is introduced at a
generic stage of the deformation process to simulate the loss of load-carrying capacity at pro-
gressive straining. These approaches are macroscopic in the sense that the globally observed
descending load-deflection curve is translated into local ‘softening’ stress-strain relations.
Thus, a homogenized response is obtained of microscopic processes which occur in the mate-
rial.

A mathematical consequence of such macroscopic models, which are normally based
on continuum mechanics, is that at a certain threshold level of loading the governing differen-
tial equations locally lose ellipticity (or hyperbolicity if dynamic loading conditions are con-
sidered). Consequently, the boundary or initial value problem becomes ill-posed [1], and ana-
lytical as well as numerical solutions become meaningless. A host of solutions has been sug-
gested to remedy this deficiency of the standard continuum approach. For high-speed phe-
nomena the inclusion of the inherent rate dependence of a material seems natural, see for in-
stance Needleman [2] for metals, Loret and Prévost {3] for soils and Sluys [4-6] for concrete.
For granular materials a revival of the Cosserat continuum has been witnessed, and microme-
chanical foundations for applying such a theory have been established {7]. Numerical ap-
proaches have been elaborated that can be implemented in standard finite element codes in a
straightforward fashion [8,9]. For cracking in concrete and ceramics, but also for describing
void growth in metals nonlocal theories have been suggested either in an integral format or in
a differential format. For a simple elastic-damaging formalism a nonlocal theory in an integral
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format has been proposed by Pijaudier-Cabot and Bazant [10]. Aifantis and his colleagues
[11-15] and Schreyer and Chen [16] have proposed gradient plasticity theories, which were
cast into a numerical format by de Borst and co-workers [17-20]. More recently, Miihlhaus ef
al. [21] have proposed a gradient theory within a damage mechanics framework, and numeri-
cal approaches that are related to this theory have been described in [22,23]. A somewhat dif-
ferent formalism was advocated in [24,25], including a robust numerical implementation.

In this contribution we shall consider enriched damage theories in which the damage is
coupled to (isotropic) elasticity. Firstly, we shall briefly summarize standard damage theories
and nonlocal damage theories in an integral format. Based on the latter class of theories a
family of gradient-enhanced damage theories will be derived. For the particular case where
higher-order gradients of a local equivalent strain are introduced, a refinement is described,
which remedies the problem of artifical widening of the damage zone in progressive stages of
the loading process [26,27]. A concise description of the numerical implementation of this
model will be given. Finally, a comparison will be carried out between some gradient damage
theories and a nonlocal damage theory in an integral format.

2. ELASTICITY-BASED DAMAGE MODELS

Damage mechanics theory can be used to describe degradation and failure of structural mate-
rials and components. In its simplest form, it degrades the elastic properties, in particular
Young’s modulus with the accumulation of damage [28]:

o=(1-w)De (nH
with o the stress tensor, £ the strain tensor, D the virgin elastic stiffness tensor, and @ a
scalar-valued internal variable, which reflects the amount of damage which the material has
experienced. It starts at zero (undamaged state) and grows to one (complete loss of integrity)
as a function of a scalar-valued history parameter x, which represents the most severe defor-

mation the material has experienced: w=w(x). The history parameter initiates at a threshold
level x; and damage growth is possible if the damage loading function

f(gcqu)Zch_K (2)

vanishes. In particular, the damage loading function f and the growth rate of the history pa-
rameter x have to satisfy the Kuhn-Tucker loading-unloading conditions

f<0 , £20 , fk=0 3)

In eq. (2) £, is the local equivalent strain. For metals, the local energy release rate due to
damage is often substituted [29], ie. £, = I/,eTDe, while for pressure-sensitive materials, it
can be a function of the positive principal strains [30]

’ 3
Ecq = 2(< £ >)2 4)
=1

with < - > the Macauley brackets.
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3. NONLOCAL DAMAGE MODELS

In a nonlocal generalization the equivalent strain g, is normally replaced by a spatially
averaged quantity [10],

f(geqvk):Eeq_K (5)

where the nonlocal average strain £, is computed as:

_ 1 _
Qﬂm—vzalgﬁkmu+9dv, K@%Jg@NV ©)

with g(s) a weight function, e.g., the error function,

l 2952
(5)= == ™
ENG7T

and s a relative position vector pointing to the infinitesimal volume dV. Alternatively, the lo-
cally defined history parameter x may be replaced in the damage loading function f by a spa-
tially averaged quantity:
f(gcq,k)zgcq_’? (8)
where the nonlocal history parameter ik follows from:
1
Vi(x)

R0 = [gxx+9dV, V0= [ gis)av ©
v 14

The Kuhn-Tucker conditions can now be written as:

f<0, #20 , fi=0 (10)

4. GRADIENT DAMAGE MODELS

Nonlocal constitutive relations can be considered as a point of departure for constructing
gradient models. Again, this can either be done by expanding the equivalent strain €., of (6),
or by applying an expansion with respect to the history parameter « of (9). We will first con-
sider the expansion of x and then we will do the same for ¢,,. Expanding the kernel x into a
Taylor series we obtain for an isotropic, infinite medium

k=x+cVx an

where higher-order terms have been omitted. The gradient constant ¢ is a material parameter
of the dimension length squared. It can be related to the averaging volume and then becomes
dependent on the precise form of the weight function g. For instance, for a one-dimensional
continuum and taking the error function (7), we obtain ¢ = 512, Tt is recalled, that in this pa-
per we adopt a phenomenological view in which ¢ reflects the length scale of the failure pro-
cess that we wish to describe macroscopically.
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A special case of the above theory is obtained by assuming a linear relation between the
local history parameter x and the local damage variable w:

k=x+Mo, (12}

with x; representing a threshold value below which there is no damage growth, and M a con-
stant [22]. Now, the damage loading function changes into

f=£eq—xi—M(w+cV2w) (13)

and w can be taken as the independent variable in finite element implementations [22,23].

In a fashion similar to the derivation of gradient damage models based on the averaging
of the history parameter k', we can elaborate a gradient approximation of the local equivalent
strain £,4. If we truncate after the second-order terms and carry out the integration implied in
(6) under the assumption of isotropy, the following relation ensues:

Eeq=Eeqt cvzeeq (14)

This formulation has a severe disadvantage when applied in a finite element context, namely
that it requires computation of second-order gradients of the local equivalent strain £.4. Since
this quantity is a function of the strain tensor and since the strain tensor involves first-order
derivatives of the displacements, third-order derivatives of the displacements have to be com-
puted, which necessitates C'-continuity of the shape functions. As a possible remedy, a two-
field formulation can be set up, in which the local equivalent strain ¢, is replaced by an inde-
pendent, continuous field variable, say £,. Applying the divergence theorem then leads to a
formulation in which only C%-continuous shape functions are necessary. A more elegant solu-
tion is obtained by differentiating eq. (14) twice and substituting the result into eq. (14).
Again neglecting fourth-order terms then leads to

Eoq— cVZEcq =€y (15)

When £, is discretized independently and use is made of the divergence theorem, a C’-inter-
polation for £, suffices [24].

Recently, Geers [26,27] has shown that formulation (15), in which the gradient parame-
ter ¢ is a constant, is deficient in the sense that for progressive damage an artificial spreading
of the damage zone occurs that is orthogonal to the direction of crack propagation. For the ex-
ample of a Compact Tension Test, shown in Figure 1, the computed damage distributions are
shown in Figures 2 and 3 for two different stages in the loading process. Figure 2 shows that
initially a small, narrow damage zone arises. However, upon further crack propagation, this
zone evolves into a broad band of damage, Figure 3, which is physically unacceptable, since
after a full crack has formed (w=1) the surrounding material should unload and not be
stretched further. To accommodate this observation, Geers [26,27] has proposed to replace the
constant parameter ¢ in eq. (15) by ¢,

Boq— ¢ Vi =ty (16)
which is a function of the local strain state, e.g.,

F=cleqle;) if €q<e, else {=c (17
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™ -

Figure 1. Compact Tension Specimen.

Figure 2. Widening of damage zone: onset of damage evolution.

10

Figure 3. Widening of damage zone: progressive damage evolution.

In this fashion, the gradient activity ¢ grows with increasing local strains. If local unloading
occurs due to stress relief because of the nearby existence of fully developed crack the nonlo-
cal interaction decreases again through its coupling to the local strain state &.,. This is demon-
strated in Figures 4 and 5, where the same specimen is analysed as in Figures [-3, but now
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Force = 1863 [N] Displ. = 1.04 [mm] D Force = 1380 [N] Displ. = 2.21 [mm] D

e = 501 [N] Displ. = 3.87 [mm] D Force = 220 [N] Displ. = 5.85 [mm] D

0.8
0.6

0.4

0.2

Figure 4. Damage evolution with an evolution law for the gradient activity ¢

with the evolution law (17) for the gradient activity ¢ instead of the constant gradient parame-
ter ¢. From Figure 4 we observe that the damage zone remains confined to the original width
which it occupied during the initial localization process. The evolution of the variable gradient
activity ¢ is visualized in Figure S for different stages of the loading process. We clearly ob-
serve a decrease of the gradient activity, and therefore of the nonlocal interaction, after the
crack tip has passed and when the local crack growth has been completed. Indeed, in a phe-
nomenological manner the observation is modelled that the nonlocal effect is related to phe-
nomena as microcracking, crack bridging, debonding of the fibres and fibre pull-out, which
gradually vanish upon growth to a full crack.

5. FINITE ELEMENT ASPECTS

For the formulation of the incremental boundary value problem in gradient-enhanced
continua we introduce the displacement vector u, the strain tensor in a vector form & and the
stress tensor in a vector format o. Under the assumption of small deformations, we have the
equilibrium equations for a body occupying a volume V

L' +b=0 (18)
the kinematic equations
E= Lu (19)

and constitutive equations, cf. eq. (1) for simple, isotropic damage. b is a body-force vector
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Figure 5. Evolution of the gradient activity { upon progressive deformation.

and L is a differential operator matrix which connects the strains to the displacements. To
complete the incremental boundary value problem we have standard static and kinematic
boundary conditions on complementary parts of the body surface §.

For the development of the finite element formulation of the gradient-enhanced damage
model we start by transforming the governing equations for motion (18) and the ‘nonlocal’

equivalent strain £.,, eq. (16), into a weak form:

eq®

j suT(L"e+b)dV =0 0)
v

j 8 u(feq = VP By = £eq) AV = 0 @)
1

where the §-symbol denotes the variation of a quantity. Using the divergence theorem, the
standard boundary conditions with t the boundary tractions, and assuming a non-standard
boundary condition of the form nT(§VEcq) =0, we obtain

J'(Lau)Tadv - j subdv + J' Su'tds 22)
v v N

j[ach Eeq + (V08 (U VEe) + 884(VE) Vg — 08 £6q1dV =0 23)
v

According to eq. (23), gradients of { have to be computed. This is most elegantly accom-
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plished by replacing { in eq. (23) by a continuous field variable z, such that

(162 2eq + (V82e0) (2V i)+ 820q(VD) Vg = 85eq g 1AV =0 24)
v

subject to the constraint

j S2(z-¢)dV =0 25)
1

A three-field theory is now obtained with the basic variables u, £, and z.

The set of equations (22), (24) and (25) is highly nonlinear and must be solved using an
iterative procedure at structural level. The Newton-Raphson procedure is widely used for this
purpose and has also been adopted in this study. This algorithm requires the linearization of
the above set of equations. Care must be exercised that this linearization is carried out in a
consistent fashion, since else the quadratic convergence of the method is lost. This lineariza-
tion process has been carried out by Geers [26,27] and is briefly summarized below.

Since the damage variable @ is a function of the history parameter x, which is coupled
to the nonstandard equivalent strain £, we have

dw dx _
dw = ™ a_ —dE, (26)

and we can linearize the constitutive equation (1) as

dw dx
=(1- D — i d&,
do = (1 — w,_)DLdu - (a’( )l l(aguq Ji—le,_,detq 27)

where the d-symbol denotes the iterative changes of a variable from iteration i — 1 to i and the
kinematic relation (19) has been used. We now substitute eq. (27) into eq. (22) to obtain

J(SuTLT (1 - w,_,)DLdu — (a“’) (a'( ) De,_,dé,, |dV
K J_\0&q ),

eq
= j suTbdV + j su'tds - j (LéwTa, ,dV (28)
Vv N \%

In a similar fashion we can linearize eqs (24) and (25) as

€C — — - -
I Ok ( 4 ) LdudV + J [0 Eq +0E(VZiy )TVdscq + 6(V£cq)Tzi_l Vdé,]dv
oe J_

+ j [02.(VErqi) Vdz +8(VE,)VE

eq.i
1%

_le]dV:
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- J 88eqlBegict + (ViEeqin)) Vi) — Eeqit 1AV — I 8(VEe)) Vo2 dV 29)
v v
and

[ 52 _(a;j (ae&q) Ldu+dz [dV=- [ 62(zs - ¢ dV ©0
v ageq i—1 de i-1 v

The finite element discretization is now rather straightforward. We interpolate the dis-
placements u, the nonstandard equivalent strain £, and the gradient activity z by

u=N,a (31
£=N,&, (32
z=N,z (33)

with N, N, and N, matrices which contain the interpolation polynomials for the displace-
ments, the nonstandard equivalent strains and the gradient activity, respectively, and a, €., and
z vectors that contain the nodal degrees of freedom for the displacements, the nonstandard
equivalent strains and the gradient activity. The strains £ and the gradients of &, and z are
then obtained as

ce=B,a (34)
V&, =B,&, (35)
Vz=B,z (36)

where B, =LN_, B, =VN, and B, = VN, contain the derivatives of the respective shape func-
tions. Substitution of eqs (31)-(36) into the linearized equations (28)-(30) and requiring that
the result holds for any kinematically admissible discrete nodal variation da, 5., and &z then
results in

K, K, 0 ][da f,
K(‘ﬂ K[F Ké‘.’ d ECQ = fE (37)
K, 0 K. | dz f,

with the vectors f, f, and f, defined as
f,= j NIbav + [ NItds- j B'o, ,dV (38a)
v v

S

eq,i~

f.=- J.(NINrEcq,i—l +NJ &0, BIBZ | + BB £, N.zi_| —Nleeqi) dV (38b)
v
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f,=— j NI(Nz,_ - ¢i)dV 38¢)
Vv

and the tangential submatrices

K, = j(l — ;_))BTDB, dV (392)
\4
0 d
K, = aad X BDe¢, N, dV (39b)
ok )_\9Z., )
v 1 i-1
o0&,
K, =- j NI[—E) B,dV (39c)
v oE ),
K, = j (NN, +N7z_,B'B, +BIN,z_,B,)dV (39d)
1
Ksz = J(Nzégq,i—l BIBZ + BIBFEcq.i—I Nr) dv (39¢)
v
de,
K.u:—JNT( o¢ ) (—Ei"—) B, dV (391)
k v 9 i\ 9€ i,
K= [NIN.av (39g)
v

6. NONLOCAL VERSUS GRADIENT DAMAGE MODELS

To gain some insight into the properties of the nonlocal versus the gradient damage mod-
els, a dispersion analysis is now carried out for a one-dimensional bar of infinite length [6,31].
We shall briefly summarize the main results of such an investigation that has been carried out
for the nonlocal damage model with averaging on the equivalent strain and a constant internal
length scale /, and the two related gradient models (explicit and implicit format, eqs (14) and
(15), respectively) [25].
In a dispersion analysis a perturbation of the form

Su = petr—ad (40)

is introduced into the governing set of equations, namely the equation of motion, the kinemat-
ic relation and the constitutive model, which have been combined to give a single expression
in terms of the axial displacement of the bar and have been linearized around a homogeneous
deformation state indicated with the subscript 0. In eq. (40) k is the wave number, ¢ is the
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corresponding phase velocity and & is the amplitude of the perturbation. The following ex-
pressions are obtained for the phase velocity [25]:

(1 Non-local damage model, eq. (6):

0
¢ = ce'\/l — @y~ 80[5] eknL 1
o

(1 Gradient damage model in explicit format, eq. (14):

= cc’\/l — Wy — 80(%?) (1 = 1k212) (42)
0

1 Gradient damage model in implicit format, eq. (15):

0
ce= cc‘\/l - wy — so(ﬁ) (1 + 1hk212)! (43)
0
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Figure 6. Wave velocity as function of wave number.

In eqs (41)-(43) c, is the elastic wave velocity, £ is the existing strain level and w, is the cor-
responding value of the damage parameter. The following material data were used: a Young’s
modulus E = 20,000 MPa, a density such that ¢, = 1000 m/s, a linear degrading damage mod-
el with an initial value x; = 0.0001, a value x, = 0.0125 at which the local load-carrying ca-
pacity is exhausted, and an internal length scale [ = V2 mm. Taking a strain level £, = x;, the
curves of Figure 6 are obtained.

We observe that all three models result in a cut-off wave number below which loading
waves cannot propagate, i.e. the wave speed becomes imaginary. This phenomenon was also
found for gradient-enhanced plasticity models [4,6,20]. However, the cut-off wave number
now depends on the existing strain level, and as seen in Figure 7, the critical wave length be-
comes smaller for increasing deformation, in contrast to gradient plasticity where it remains
constant. Also, the three different damage models start to differ at increasing strain levels.
The most salient observation is that while the nonlocal damage model and the gradient model
in an implicit format approach a zero wave length, and therefore a physically realistic vanish-
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Figure 8. Load-deflection curves at mesh refinement (implicit gradient model).

ing localization zone for large strain levels, this is not so for the gradient damage model in an
explicit format, thus precluding a gradual transition into a line crack.

Next, we consider a bar with a finite length, L = 100 mm, and take an imperfection
(10% reduction of the cross sectional area A) in the centre 10 mm of the bar. Now, for reasons
mentioned above, numerical computations have been carried out only for the implicit gradient
damage model and for the nonlocal damage model, but not for the explicit gradient damage
model. In the first case a full constrained Newton-Raphson procedure was adopted [24], while
a secant stiffness method was used for the nonlocal damage model. It appeared that the non-
local damage model requires a less fine discretization than the implicit gradient damage mod-
el, as the results for an 80 element and for a 160 element discretization already coincide in the
nonlocal approach, while this is not the case for the implicit gradient model, Figure 8. On the
other hand, convergence in terms of equilibrium iterations is much better for the gradient
model, and fully converged solutions could be obtained until almost a zero residual load level,
Figures 8 and 9. The equilibrium-finding iterative procedure for the nonlocal model fails at a
non-zero residual load level. In fact, for finer discretizations the iterative procedure diverges at
an earlier stage in the loading process. Figure 9 compares the load-deflection curves for both
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Figure 9. Comparison of the nonlocal and implicit gradient models.

models for a discretization of 320 elements. We observe that upon further loading, the differ-
ences between both models become more pronounced and that at a certain stage convergence
is lost for the nonlocal damage model.

7. CONCLUDING REMARKS

A family of gradient-enhanced damage models has been described where the damage is cou-
pled to elasticity. Although they can be related to nonloca! damage models in an integral for-
mat, their properties are in some cases quite different from those of nonlocal integral-type
damage models, as has been shown by dispersion analyses and by a simple one-dimensional
example. For a particular gradient-enhanced damage model an enhancement has been suggest-
ed, which eliminates the widening of the damage zone which is observed upon fracture propa-
gation in enhanced damage models where the internal length scale remains constant. For this
model, a computationally efficient scheme has been described, which opens the way to large-
scale computations.
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Catastrophic slip phenomena in crystalline materials
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In the work the experimental observations on single and polycrystalline metals are used
to show the need for a new approach to crystal plasticity in which three aspects of slip:
mechanistic, geometrical and structural are incorporated. A particular attention is paid to the
effect of a sequential operation of slip systems. The arguments that the change in the
deformation bearing systems leads to the catastrophic coarse slip in single crystals and to shear
banding in polycrystalline metals are provided. The model of the sequential multi-system slip is
shown along with the results of the numerical calculations of the crystal behavior. The
criterion for micro-shear banding is discussed on the basis of the features of micro-shear bands
in metallic materials.

1. INTRODUCTION

Except of particular conditions, like high temperature and/or very low stress, plastic
flow of crystalline materials results from slip. The experimental studies, briefly summarized in
[1] show that localization of strain has to be considered as the particular mode of plastic flow
which in a single crystal receives the form of catastrophic (coarse) shp, while in polycrystals
it takes the form of a trans-granular shear (shear band). Appearance of such forms of slip
clearly points to the evolution of slip extent during deformation. Hence, the analytical
account for this evolution may be an alternative way to predict the global performance of
crystals during plastic yielding. In such approach three aspects of slip. mechanistic,
geometrical and structural, must be simultaneously taken into consideration in order to
obtain coherent and fully consistent with experimental facts description of the crystal
behavior. It seems to be the way to predict the strain hardening of crystals oriented for a
single system glide, the latent hardening effects and the condition of the change from a fine
(homogeneous) slip behavior into a coarse , localized slip. The experimentally proved role of
the coarse slip within individual grains of a polycrystalline aggregate as a precursor of micro
shear bands strengthens the idea that shear banding is the latest stage of the slip evolution
and makes that the analytical description of slip behavior in a single crystal may provide the
basis for prediction of the global behavior of polycrystals.

In this work the experimental observations on single and polycrystalline metals are
used to show the need for a new approach to crystal plasticity in which the already mentioned
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aspects of slip in crystals are incorporated. The numerical analysis is aimed to predict the
formation and evolution of the crystal substructure and, consequently, the evolution of slip
features in the course of straining. To accomplish this goal it 1s assumed that slip in a crystal
(individual grain of a polycrystalline aggregate) begins in one system, and activation of
secondary systems has a sequential character and varies in tact with evolution of the scheme
of loading . The latter is defined from the geometry of slip (geometrical constraints) which via
reaction (elastic) stress, the crystal reorientation and throughout the slip criterion activates
the secondary slip systems and controls the amount of shear in the operating systems. The
first analytical results are compared with experimental observations of slips in single crystals.
The meaning of the sequential multi-system slip is discussed in terms of the accumulation of
dislocations in particular systems (obstacles pattern), associated evolution of slip, the stability
of the substructure and the conditions for the breakdown in the slip evolution law into
catastrophic (trans-substructural) coarse slip and into micro-shear band.

2. THE NATURE AND EVOLUTION OF SLIP - experimental basis for modelling

At the background of the analysis there are some common and fundamental
experimental observations. The first is that slip is a highly anisotropic form of the response of
crystal to the applied load. Therefore, slip begins in that of the crystallographically equivalent
systems in which the lattice resistance to shear (movement of dislocations) is the least and in
which the resolved shear stress is the highest. Hence the criterion for slip [2] which may be
written in the following generalized form:

T = 6:b® n, n

selectively chooses a slip system at the onset of plastic yielding. This causes that in most (if
not all) cases of the scheme of loading the first amount of slip occurs inone slip system.
This argument may be used also for the case of a symmetrical orientation of crystal in which
the resolved shear stress is the same for a few systems, simply because the ideal symmetrical
orientation is highly unlike. In addition, because of the lattice imperfections, even then the
local conditions favor the choice of a single system slip.

In a microstructural scale slip is a physical act which comprises generation and
movement of dislocations in the common plane. The extent of these elementary slip events -
area swept or the mean free path of the dislocation glide A, and the number of dislocations
generated p - are the intrinsic features of slip. They have the topological representation in
the pattern of slip lines on the crystal surface. The effect of several evenly distributed slip
events in a system is equivalent to the homogeneous shear y = (b-N-A-dA/V) of the body or in
a simplified form y = b . p - A (Orovan relationship). An associated effect is the
accumulation of dislocations, which gives rise to the formation of substructure (the obstacles
network).
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Fig.1. The latent hardening effect after Basinski & Jackson [3]

Therefore, if the criterion for the slip is met, then some amount of shear is carried by
the slip system leading to accumulation of dislocations in the active slip plane. In
consequence, the initial equivalence of crystallographically identical systems is lost. This
structural aspect of slip is well exposed by the latent hardening ratio (the value of flow stress
in a secondary system to that in the deformation bearing one). As it is shown in Fig.1, this
ratio jumps dramatically from the value 1 (before deformation) to the value of the order of 3
if a small slip takes place in the ,primary system” This fact prompts one to accept that
activation of the other system, which is necessary in order to accomplish the requested
permanent change of the crystal shape, follows in a sequential manner.

This is the most important experiment born conclusion, which has to be at the
background of the construction of a model of evolution of crystals behavior. Such an
approach to crystal plasticity is substantially different from the so far developed models,
which rely upon the assumption of a simultaneous multi-system shp, and especially those
based upon Taylor [4} or Bishop and Hill [5] arguments. The basic difference concerns the
identification of the operative slip systems and the amount of shear in each of them, and
consequently, it pertains to the associated structural effects like rotation of the crystal lattice
relative to the loading system and accumulation of dislocations in different slip planes
(formation and stability of the obstacles network). In the case of a sequential operation of
slip systems, 1t is impossible to predict ,,a prion” which systems are brought into operation
and how big is the shear they carry until the geometrical aspect of slip and the associated
evolution of the loading scheme are considered. This statement meets a very convincing
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experimental evidence in the observations of slip activity, evolution of slip extent and strain
hardening of a single crystal oriented for a single slip in the uniaxial tension experiment.

Let us , therefore, briefly summarize the observations for a FCC crystal loaded
along the <145> lattice direction. Then, while rising the tensile force, the yield criterion is
met only for one of the twelve crystallographically equivalent systems - [101](111). The
orientation of the crystal causes that the applied load favors slip only in this system over a
very large (of the order of 50%) elongation of the crystal, making that this system is the
deformation bearing system. Inspection of the tensile characteristics of such an oriented
crystal, like that quoted after Basinski [6] in Fig.2, shows that already after small deformation

(stage of easy glide ) the hardening rate rises very quickly to the level of 10° pu  which is

the highest rate of strain hardening of the crystal. The extent of the easy glide increases to
several percent of crystal elongation with the increase of the initial critical slip stress as it was
shown for the first time in the pioneer works of Sachs and co-workers on single crystals of
Cu, Cu-Zn and Ag-Au alloy single crystals [7-9]. This stage is commonly interpreted as the
range of the single slip activity just because of the lack of hardening and very large, strain
independent slip extent (length of slip lines) {10]. Accumulation of dislocations in the primary
system leads to formation of the obstacles network in the form of parallel dislocation walls
along active slip planes, which do not interfere with the slip on paraliel slip planes in-between
the walls. A sudden nse of the hardening in a transient region between the first and the
second stage of deformation has to be, therefore, associated with the appearance of slip in
secondary systems (forest hardening).

(a)

16—

144

RESOLVED SHEAR STRESS kg/mm?

2 b 3 .8 1.0 1.2
RESOLVED SHERR STRRIN

Fig.2 Tensile characteristics of a single slip oriented Cu single crystal and variation of strain
hardening rate in the course of straining after [6].
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Figure 3 shows the slip line pattern at the beginning (a) and at the end of the easy
glide stage of the deformation (b) of Cu-Al crystal proving that the slip line length in this

stage is constant and that progress in straining results from the increase of the number of slip
events (number of slip lines) in the same system.

Fig.3. Slip patterns in Cu-Al single crystal at the beginning (a), and at the end of the easy
glide (b).

The onset of the second stage of deformation coincides with the beginning of the slip
evolution, as it is shown in Fig.4 [10]. It has been found that the slip line length is inversely
proportional to the second stage deformation of the crystal [6,10]. The experimental
observations clearly show that the transient from the first to the second stage of a single
crystal hardening 1s associated with slip in the secondary [011]}(111) system which is termed
the conjugate system to emphasize that it comes into operation in a feedback with the primary
system. Dislocations accumulating in this system form the obstacles network for slip in the
primary system (Fig.5) giving rise to slip evolution and the strain hardening (Fig.2).
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the course of straining of FCC
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Fig.5 Slip pattern typical for the second stage of deformation (the highest strain hardening)
in Cu-Al single crystal showing the slip activity in the primary and the conjugate systems.

There is a very important experimental information that the orientation factor for slip
in the conjugate system is then 2.5 times smaller than that in the primary system, and along
with the latent hardening ratio (about 2.5) it makes that the applied stress at the moment of
conjugate slip activation has to be roughly 6 times higher than that being measured . In terms
of the applied stress argument it is impossible to justify the slip, proved also experimentally in
the ,,cross slip” system. For these systems the orientation factor is zero and it remains zero
throughout the second stage of deformation of a single crystal for typical orientations with
tensile axis lying in the cross slip plane. There exists, therefore, other cause of the activation
of the secondary systems than the sole applied stress. Slip in the secondary systems has to be
therefore considered as the accommodating slip, which is driven by the reaction stress
resulting from the forbidden components of the deformation tensor under tensile conditions.
This reaction stress has to be precisely evaluated in order to identify the secondary slip
systems, the sequence of their operation and the amount of shear they carry in every instant
of sequential operation. This has been recently exposed in an analytical work on the effect of
sequential slip upon the description of the plastic deformation of crystals[11]. It is shown
there that only under very special conditions the simultaneous double system slip yields the
same result as a sequential operation of these systems. Fig.6 gives a simple illustration of the
effect of the amount of the shear increment dy (the same for each system) upon the rotation
of the two initially orthogonal edges of a hypothetical crystal after the commutative
operation of two slip systems symmetrically disposed within the crystal. From this figure one
can find that for the same cumulated deformation in the systems the geometrical change of
the crystal faces is not unique and depends upon the value of the strain increments in the
systems.
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Fig.6. The effect of the increment of deformation during sequential operation of two
symmetrically disposed slip systems upon the rotation of edges of a hypothetical crystal.

From the point of view of the evolution of the slip behavior the answer to the
question which system and when comes into operation and how much shear it carries is
crucial. This conclusion meets support in the results of the strain path change experiments on
single and polycrystalline metals which have to be considered as the second most important
information about the nature of slip in crystals. Jakson and Basinski [3] have shown that the
plastic flow during the subsequent deformation (i.e. in a sample taken from the parent crystal
after it had undergone some initial plastic deformation) was unstable if the secondary
deformation employed a slip system different than that used in the primary straining. The slip
in a secondary system took then the form of a coarse slip which extended across the existing
substructure (obstacles network). These facts point to a mechanical instability of the
dislocation substructure during the slip in a secondary system providing, however, that the
secondary system becomes the deformation bearing one. This last statement follows the
experimental observation of the so called ,,overshoot instability” which is observed often to
terminate uniform deformation during tension of single crystals when the orientation factor
becomes the highest for the secondary (conjugate) system. [12].

The observations of the behavior of single crystals of alloys subjected to tension in the
symmetrical (double system slip) orientation {7, 13] (Fig.7) and Basinski’s observations that
in such orientation the tensile axis passes several times the symmetry [001]-[111] line during
straining [14] provide another proof that the operation of slip systems is sequential and that
some critical amount of shear in a system is needed to destabilize the existing substructure. It
results in the catastrophic trans-substructural coarse slip development. Such a response of slip
to the change of the deformation bearing system suggests that the collapse of the substructure
which opens the way for the catastrophic slip (by making an easy path for the dislocation
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motion) is a direct effect of the slip geometry. This may happen in the case of a dislocation
wall made of primary dislocation dipoles . Rotation of the wall due to slip in a secondary,
noncoplanar system leads to the collapse of the wall if the opposite dipole segments are
brought to the common slip plane. This may happen provided that the shear in the secondary
system is sufficiently large. This, in turn, means that the criterion for coarse slip is met when
the deformation conditions lead to a change of the deformation bearing system and may be
met if the accommodating slip destabilizes the obstacles network.

. T
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Fig.8. The tensile charactenistics and macroscopic shear bands in polycrystalline iron formed
during tension after primary rolling deformation [15].

Such a purely geometric (athermal) effect of the sequential slip must be taken into
consideration in order to understand the evolution of the metal substructure and its stability in
the course of deformation. This argument is valid also for polycrystals. The experiments
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performed on polycrystalline metals clearly show that the change of the scheme of straining,
which on the level of an individual grain means the change in the deformation bearing
system, leads to the macroscopic strain localization in shear bands [15-19]. The example of
such a response of the slip to the change of the scheme of straining from rolling to tension
along the transverse direction is shown in Fig.8

Optical microscope observations show that the macroscopic band is composed of a set
of parallel micro-shear bands, maintaining the same position in the sample as the
macroscopic band (Fig.10). They show also that formation of micro-shear bands in
polycrystals is preceded by formation of coarse slip bands within individual grains whose
positions follow the orientation of crystallographically preferred slip systems [0-k-g]. Such a
behavior could be forecast on the basis of the already given arguments. Basinski and Jackson
argued [ 3] that in polycrystals ,since due to grain boundary constraints the slip system
operative in individual grains will be forced to change as the deformation proceeds”. Such
changes must promote coarse slip within grains, which develops along with the homogeneous
fine slip deformation. A simultaneous operation of two modes of slip may account for the fact
that the strain hardening rate in polycrystals is never as high as in the second stage of a single
crystal deformation. The argument used by Basinski and Jackson addresses the criterion for
coarse slip development (precursors of micro shear bands) to the effect of secondary slip. At
the same time, the activation of a secondary slip system is ascribed to the constraints
induced evolution of the stress state in the material. Therefore, either an analytical or a
numerical account for the constraints effect on the choice of the operating slip system within
individual grains seems to be the key to understand the performance of the polycrystalline
metals. The conversion of coarse slip event into a micro-shear band appears in such
circumstances as the next stage of the slip evolution which possesses its own characteristic
features. The very peculiar feature of this mode of deformation is that deformation is
concentrated within the very narrow (0.1 - 0.2um) layers (micro shear bands) which extend
across several grains of a polycrystalline aggregate keeping the same position in the material
as 1s shown in Fig.9. —

Fig.9. Microstructure features
of shear banding in Armco iron [15].
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Fig.10. Different spatial distribution of micro-shear bands in Aluminum alloy (a,b) and the
effect of the scheme of loading upon their orientation in the sample[17].

The position of shear bands in the material is sensitive to the scheme of loading, but
not to the material structure and texture [15-18]. These properties of micro shear bands,
along with the experimental evidence that the deformation within the band is a simple shear
deformation [19], prompts one to accept that slip in crystals may also occur in other than
the crystailographically preferred slip systems. The experiments reveal that the conditions
allowing to activate another - ,non-easy” system are closely connected with the structure
destabilization due to the change of the deformation path . A criterion for activation of non-
easy slip systems and transmission of slip across a grain boundary has already been proposed
[20). Practical use of such a criterion is , however, conditioned by the first demand -
formation of a ,,soft path” for a catastrophic (highly cooperative) movement of dislocations.

It is worth mentioning that these properties of micro-shear bands, and in particular
the possibility to induce this mode of deformation by the change of the scheme of loading,
which also controls the position of micro-shear bands in the material, have already been used
in the control of the metal structure [17,18,21]. In Fig.10 some examples of shear bands in
polycrystalline Aluminum alloy are shown. They were induced in different spatial
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distributions and orientations in the samples. The results of the experiments with formation of
natural metal-matrix-composites [22] by decomposition of the unstable matrix along
deliberately induced micro-shear bands indicate that the practical knowledge in this area
exceeds theoretical considerations. That is why in our approach to crystal plasticity the
emphasis is put on these experimental facts which concern the slip behavior. It seems that
just these facts provide the instruction how to model the evolution of the structural features
and mechanical performance of crystals. In particular they show that there are three distinct
forms of the slip in polycrystalline metals which undergo the evolution in the course of
straining. A fine, fully structure controlled slip breaks down into a catastrophic (trans-
substructural) coarse slip and the coarse slip evolves into a trans-granular shear (polycrystals).
These forms show different properties, hence the criteria for the breakdown from one to the
other form have to be considered separately. Therefore, at the beginning it is necessary to
find the appropriate model of the fine (multi-sytem) slip in a single crystals and identify the
reasons of its breakdown into a catastrophic slip. Such a model must be based upon the
features and consequences of crystallographically determined slips. In turn, the criterion for
shear banding (polycrystals) should resolve itself into the identification of the conditions
under which a coarse slip is able to continue across several grains regardless their
orientation. The basic assumption which has to be made then is, that there are the conditions
for activation the slip in non easy slip systems. These two different models of slip will be,
therefore, considered separately. The first as the ,.Sequential slip based model” and the
second as the ,,Criterion for a trans-granular shear”.

3. SEQUENTIAL SLIP BASED MODEL - the first numerical results.

The experimental facts justify the postulate that the change from a homogeneous
deformation into unstable, localized one, which is equivalent to the change from the fine,
evenly distributed slip into a catastrophic coarse slip, may be considered as resulting from the
sequential operation of slip systems. Therefore, the criterion for such a catastrophe should be
sought in the evolution of the amount of slip in operative systems in every instant of their
sequential activation along with identification of these systems and the moments of their
activation. The advantage of such approach to crystal plasticity is that it gives a chance to
trace the evolution of the total density of dislocations accumulated in the crystal and also the
distribution of the dislocations among different systems. Hence, the most important
properties of crystal, like flow stress and latent hardening ratio, and their evolution in the
course of straining which are required for modeling [23], may be numerically found.
Agreement of the calculated and experimental data is then the premise that this approach to
the crystal plasticity and, in particular, to plastic flow instability in crystals is correct. The first
step in the analysis was, therefore, to model the mechanical performance of a single fcc
crystal oriented (tension) for a single slip glide which is the best experimentally documented
case of crystal deformations.

The scheme of calculation was as follows: from an increment dy of a simple shear in
the primary system the geometrical changes of the crystal and its spatial orientation, while
non-constrained by the loading system, were calculated from the deformation gradient tensor
Fp1 of the primary homogeneous slip. Then, the necessary rotation and elastic distortions of
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the crystal to make it match with the tensile system were evaluated. The reaction stresses,
responsible for such matching were determined via elastic shear modulus. The applied tensile
stress was then supplemented by the reaction stress components and, from the generalized
slip criterion (eq.1), the values of the shear stress in the crystallographically allowed systems
were calculated. The increment of the strain in the primary system was taken in such a way
that the generated constraints were too low to activate a secondary system until a few
incremental shears in the primary system took place. The back stress in the primary system
(from the constraints) was balanced by the increase of the tensile stress, so that the yield
criterion in the system was sustained. Density of the dislocation ps in the system was
determined using the Orovan relationship. The initial slip distance A was taken from the
experiments [6,10], and the spacings between slip events were calculated by taking into
account that the number of dislocations emitted from a source is proportional to the shear
stress in the system and the free path of dislocations. In this way the mesh-length of the
primary dislocation network (obstacles pattern for the secondary systems) was estimated. As
a result the current critical shear stress for slip in a secondary system (proportional to the
square root of the primary dislocation density) and the free path of dislocation glide in such a
system were found . Every time the evolution of the stress state led to activation of the
secondary system (the most stressed one in which the slip criterion was met), the increment
of slip was found from the argument that the secondary slip replaces elastic distortions by
plastic deformation (releases the reaction stresses) and tends to restore the initial scheme of
loading. The density of the dislocations stored in the secondary system was then calculated
allowing to evaluate the structural (forest) hardening of the primary system. The rise of the
applied stress in order to overcome this effect was the measure of the macroscopic rate of
strain hardening of the crystal. The final product of the calculation procedure is the flow
stress - strain dependence as shown in Fig. 11.These curves were found for different values
of the initial critical shear stress in the primary system (respectively 5, 10 and 20 MPa) and
different initial free path of the dislocation glide 0.Imm and 1 mm, respectively, and the
shear modulus 40000 MPa. Hence, the results may be compared with experimental FCC
single crystals tensile curves. The parallel result was the identification of the operating slip
systems.

These curves reveal the experimentally found features of the tensile deformation of
single crystals for the chosen orientation. The easy glide region of deformation was found to
be sensitive to the initial critical shear stress of slip, and the value of the strain hardening rate
in this stage was found to be of the order of 10” p in tact with experimental observations.
The rate of the strain hardening in the second stage, which again, in tact with measurements
is not constant throughout this stage, reaches the experimentally found value of the order of
107 .

The most important information for verification of the model comes from the
identification of the operative slip systems. Within the range of strains tested by the model, it
is found that the secondary slip employs the conjugate [011](111) and the cross plane
[011](111) systems and that they operate alternatively with the primary system. This result is,
therefore, fully consistent with experimental observations and it seems to be the first
analytically predicted effect.
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Fig.11. Calculated stress-strain curves for different value of T and A

The additional verification of the model was obtained when the procedure had been
used to identify the accommodating slip systems in the other, experimentally documented
case. Twinning in the Cu-Al single crystal reflects such a case. The mechanical effect of
twinning, which takes place under the overshoot instability conditions is marked on the
tensile characteristics by the instability point (the second in Fig.7) . The twinning system
employs then the conjugate (111) plane and [121] the twinning direction. Already a very thin
plate of twin which carries the very large (0.707) shear, in the tensile test has to be
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accommodated by slip in a secondary slip systems. The numerical calculations indicate that
these systems are: the critical plane system [011](T11) and the two cross plane systems [011]
(171) and [101](111). Fig.12 shows the slip pattern on the surface of a partly twinned
crystal. Identification of the slip traces has shown that they belong to a critical and to two
(white and dark) cross plane systems. These results justify the conclusion that exact account
for the role of the ,geometrical” constraints is crucial for prediction of the operative slip
system, the sequence and the moment of activation and the amount of shear they carry. It
seems also justified to believe that within the proposed model such an account is possible.

Fig.12. Slip pattern on the surface of Cu-Al crystal partly twinned during tensile
deformation

As a comment to these results it is necessary to emphasize that the mechanism of
glide was considered athermal. There are two arguments behind this assumption. The first
comes from the experimental data which show that the strain hardening rate of crystals in the
first and in the second stage of deformation is temperature independent [6]. The second
argument results from the mechanism of slip. The elementary slip event consists of the
emission of the dislocations from a source and their cooperative movement which is
governed by the long range applied and interaction stresses. From this point of view, thermal
activation, which at this stage has not been yet taken into consideration, is associated rather
with the rearrangement (relaxation) of the already stored dislocations than with thesw
thermally assisted glide. Such an rearrangement definitely helps to destabilize the obstacles
network, but this effect appears important for the third stage of single crystal deformation
(stage of dynamic recovery) the onset of which is temperature and strain rate dependent {6].
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A monotone decrease of the hardening rate in this stage coincides with concomitant fine and
coarse slips in the primary (deformation bearing) system. There is, therefore, a good reason
to believe that the decrease of hardening rate results from successive replacement of the fine,
homogeneous slip by a localized coarse slip. The most convincing argument for this
observation has been provided by Cottrell and Stokes [24]. They showed that the rise of the
temperature in the course of straining of the crystal results in the catastrophic coarse slip
which in such circumstances takes the form of the propagating Luders front or develops into
a neck.

4. CRITERION FOR TRANS-GRANULAR SHEAR

The already mentioned observations of the morphological features of shear bands
delivered a clear suggestion about the mechanism of this mode of deformation. They have
lead to the idea that a micro-shear band results from the conversion of an avalanche like
(catastrophic) movement of dislocations which develops along a soft path in the crystal. Such
a highly cooperative movement possesses the property of the stress pulse traveling across
the crystal. The formation of the micro-shear bands resolves itself into the criterion for
non-dispersive transmission of the stress pulse across a grain boundary [20]. The term , non-
dispersive transmission” means that the shear carried by a dislocation avalanche, which
develops in a crystallographically favorable system, does not disperse at a grain boundary, but
continues along non-easy systems across several grains. It also means, that such a pulse
results from the superposition of the stress fields of dislocations, and therefore it has to be a
complex local stress state. This conclusion has been proved by the experiments on the
Aluminum  and the Fe-Ni alloys. The shear band induced fracture of the sheet of
polycrystalline metal (Fig. 14), while leaving the deformation zone during the rolling [22] |
and formation of the martensite along shear bands during rolling [18] provide a clear
evidence for very large tensile stress along the normal to the plane of shear. From such an
experiment it was possible, also, to deduce that shear bands possess a wavy nature. The
experiments with the shear bands induced martensite show, for example, that there must be a
communication system between separate martensitic plates. Otherwise it would be very
difficult to understand why they arrange along the common micro- shear bands.

Fig.13. Fracture along shear bands
during rolling of Aluminum alloy [22].

Fig. 14 Stress induced (rolling) formation
plates of martensite in Fe-30Ni alloy [18].
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Therefore, an analytical account for such a criterion needs that the physical
mechanism of slip (movement of dislocation) to be taken into considerations. The starting
point of the analysis is the profile of internal stress associated with a pile-up configuration of
dislocations. Two extreme momentary situations (Fig.15) may be considered. In the case (a)
the pile-up stress may relax due to the activation of slip system in a neighboring grain. Then
the stress pulse amplitude will never reach the static pile-up stress, which may be orders of
magnitude large than the applied stress. This case can be classified as a dissipative
transmission of the pulse throughout the grain boundary. In the case (b) the second grain
does not ,,see” the stress concentration, except the very last moment of the pile-up formation.
The peak stress may be of the order of the theoretical strength, required for homogeneous
nucleation of dislocations (high enough to activate slip in a non-easy system).
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Fig.15. A hypothetical dispersive (a) and non-dispersive transmission of the stress pulse of a
group of dislocations through the grain boundary [20].

A numerical distinction between these two case can be performed on the basis of the

rate of stress increase in the location on the grain boundary. The stress rate do/dt may be
written:

do/dt = (do/dx) - (dx/dt) (2)
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The right hand terms of the expression are the stress gradient at the grain boundary
(caused by the approaching group of dislocations, and the velocity Vg of the group,
respectively).

The position dependent gradient of the stress in the group of dislocations and the
velocity of the group are the controlling factors for the grain boundary stressing rate, but only
if there is no relaxation of stresses due to slip in the neighboring grain. This means that non-
dissipative transmission of the stress pulse through the grain boundary is possible when the
rate of the stressing is higher than the highest available (critical) rate of the stress
transmission. This critical rate of the stress transmission is, in turn, determined by the velocity
of sound in a metal, which for a shear stress wave is ¢ = (i/pm)'?, where p is shear modulus
and p,, the material proper density. Here, ,,c” is the velocity of the displacement of a material
point du/dt; thus, the critical rate of stressing can be found via the well known relationship
between displacement, strain and stress. These yield the following relation:

it = ¢ - (WD) €)
or
Ger = (WD) (Wpm)"” . )

The quantity D in the formula is the thickness of the zone of shearing (thickness of the
micro-shear band). The criterion for the non-dispersive stress transmission, as well as for the
highest peak stress of the pile-up, takes the form:

(do/dx)en Vg > 12/ (b-pu’?) (5)

When fulfilled, the pile-up stress may reach the theoretical value, which is transmtted with
sonic velocity in a neighboring grain in the form of the stress pulse. Audible acoustic emission
heard during a jerky flow in some materials during tension may be considered as the proof of
highly dynamic nature of shear banding for which the proposed criterion may be applied.

5. FINAL REMARKS

The proposed model of the plastic flow in crystals is based upon a step by step
numerical analysis of the evolution of the crystal behavior in the course of straining.
Therefore, it should be considered as an alternative, with respect to a ,.constitutive”
modeling, way of the account for catastrophic phenomena in crystalline materials. A criterion
for the catastrophic plastic flow is sought in the evolution of intrinsic properties (slip
distance, number of dislocations engaged in a slip event) of the slip, but not in the evolution
of global features of the material. Such an approach offers some definite advantages. First of
all it is free from empirical data except of those which concerns the initial (prior to straining)
material features. Instead, it makes possible to evaluate the evolution of the material
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properties. The criterion of strain localization specifies the conditions which must be met
locally in order to initiate that process. Therefore it is not a probabilistic criterion but is
addressed to the location in the material from which the localization may develop. The
meaning of this statement is well exposed by the experiments with shear banding in a fine and
coarse grain material [15]. It was shown that in a fine grain material the zone of
macroscopic localization is composed of very densely spaced microbands. In the coarse grain
material such a zone is discontinuous (Fig.16) what pointsto the crystallographic origin of
shear bands. Then, the continuos or discontinuous development of localization depends on
the number (population) of grains in which the conditions for catastrophic slip are reached.

SMALL GRAIN SIZE
LARGE GRAIN SIZE

Fig.16. Continues and discontinues distribution of shear bands during necking in a fine and
coarse grain Armco Iron [15].

It seems, therefore, justified to focus upon the modelling of the mechanical behavior
of single crystals in different loading conditions (crystal orientation, scheme of loading,
temperature) in order to identify the circumstance under which the development of a
catastrophic flow is especially easy.
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Abstract : Scalar damage models are very often implemented in computational
analyses in order to predict the responses and failure modes of concrete and
reinforced concrete structures. In most situations, however, damage is not
isotropic but rather geometrically oriented. Therefore, there as been many
questions about the pertinence and range of applicability of isotropic, scalar,
damage models for describing a degradation process which is strongly
geometrically oriented. In order to assess what are the limitations of such a
simplifying assumption, a comparative study is presented. The scalar damage
model is compared with another model where damage induced orthotropy is taken
into account. Structural analyses on bending beams, compression-shear and
tension-shear concrete panels are discussed. Although it may appear to be
simplistic, the scalar damage model provides accurate predictions when failure is
due to uniaxial extension. Crack closure introduces an additional anisotropy which
is important in compression-shear problems. Finally, damage induced anisotropy
seems important when failure is due to multiaxial extension, such as in shear-
tension problems.

1. INTRODUCTION

Quasi-brittle materials such as concrete exhibit a non linear stress-strain
response mainly because of micro-cracking. In most cases, these microcracks are
oriented with respect of the applied stress history (Shah and Maji 1989, Torrenti
et al. 1989): in uniaxial tension microcraks develop perpendicularly to the tensile
stress; in compression, splitting cracks parallel to the direction of the compressive
stress appear. In constitutive models, it is usually recognised that microcracks
open in a plane which is perpendicular to the direction of the maximum principal
tensile stress (Rots 1988, De Borst and Nauta 1985, Govindjee et al. 1995) or
controlled by the principal strain directions (see e.g. Simo and Ju 1987, Berthaud
et al. 1990). The development of microcracks results in a progressive degradation
of the elastic stiffness of the material. The degraded elastic operator is not
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expected to remain isotropic but to become gradually anisotropic. This
phenomenon is called damage-induced anisotropy.

Starting in the 80's, several anisotropic damage models have been
developed for quasi-brittle materials. Among many proposals Krajcinovic and
Fonseka (1981) used damage vectors, Sidoroff (1981), Chaboche et al. (1994),
Mazars and Pijaudier-Cabot (1989), Dragon and Mroz (1979), Valanis (1991) used
a second order tensor, Ortiz (1985), Simo and Ju (1987), Yazdani and Schreyer
(1990), and more recently Carol et al. (1994) proposed to consider that damage is
a fourth order tensor. Each proposal yields a specific type of anisotropy. For
instance, with a second order tensor the damaged material becomes orthotropic.
Their variety is somewhat puzzling because it is difficult to compare the predicted
type of damage-induced anisotropy with experimental data and therefore it is
difficult to provide a proper method for choosing the most appropriate type of
damage variable.

From a theoretical point of view, it seems appropriate that rational
methods for the derivation of the type of damage variables should be devised.
Ladeveze (1983) proposed a general technique of approximation of the elastic
stiffness of a damaged material. The method introduces two damage surfaces
which characterise the unidirectional stiffness and the compressibility of the
material for any loading direction. The elastic moduli are derived using an
approximation technique similar to a weighted residual method. A second
technique is based on the microplane approach proposed for quasi-brittle
materials by Bazant (see e.g. Bazant and Prat 1989). The elastic (or tangent)
stiffness of the material is obtained from the relationship between the stress and
the strain vectors for any arbitrary microplane direction. The construction of the
stiffness results from a energy based equivalence. Damage is defined at the
microplane level and the relation with the global elastic stiffness of the material
was elucidated by Carol et al. (1991). They arrived at the definition of a fourth
order damage tensor where the damage variables at the microplane level appear
and simplifications can be performed.

In Ladeveze's proposal, it is already stated that the definition of the damage
surfaces should be envisioned with respect to experimental observations: without
any other discriminating data, the simple knowledge of a uniaxial response of the
material (axial strain vs. axial stress) cannot provide anything but a one scalar
isotropic damage model. For the same experiment, the additional knowledge of the
axial strain vs. transverse strain curve yields a two scalar isotropic damage
model. Fichant et al. (1997) combined the simple features of the microplane
approach with the approximation of damage surfaces in the same spirit as
Ladeveze's approach. They derived a simplified microplane-type model where the
behaviour of the damaged material is discretised along a finite set of directions and
interpolated in between them. The elastic behaviour of the damaged material
depends on the interpolation used for the distribution of damage in each direction of
the material. With a infinite number of discretisation directions, the microplane
model is recovered. As a consequence, the degree of interpolation of the damage
surface can be related to the experimental knowledge of the mechanical response
of the material considered.

Interestingly, these methods provide also a common ground from which
different type of models starting from different discretisation levels (and thus
different types of damage-induced anisotropy) can be compared. In view of the
simplicity of implementation of a scalar model, it can be appealing to disregard the
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crack orientation, provided the numerical predictions do not really differ from those
of a more realistic model which incorporates damage-induced anisotropy. In this
paper, we will focus attention on this issue and we will try to sort out cases where
a simple, scalar approach yields sufficiently accurate results.

2. PRINCIPLE OF THE CONSTITUTIVE MODELS

The models that are going to be compared are based on the approximation of the
relationship between the overall stress (latter simply denoted as stress) and the
effective stress in the material defined by the equation:

t _ 0 1 _. 0 damaged -1
o, = qjklgkl or o; = q‘jkl(c )k,,,m O (1)
where o, is the overall stress component, o is the effective stress component,

and Cj"* is the stiffness of the damaged material, and C, is the initial stiffness

of the undamaged material, assumed to be isotropic, linear and elastic. Let us
define the relationship between the stress and the effective stress along a finite
set of directions of unit vectors n:

c=(1-d(m)non,
3 2 (2)

r=(1- 5(”))\/2(0;”1 - (n‘ O'k,n,)n,.)

i=1

where ¢ and 7 are the normal and tangential components of the stress vector
respectively, and two damage surfaces are introduced:

S,(n): n—d(n)and S;(n): n—- &) (3)

d(n) and &(n) are scalar valued quantities which introduce the effect of damage in
the relation between the effective stress vector and the overall stress vector. The
basis of the model is the numerical interpolation of these surfaces. They are
approximated by the knowledge of d(n) and &(n) for a finite set of directions.

The stress is solution of the virtual work equation :

find oy such that Ve,

4
i;—[ 05€; = !([(1 —d(n))nonn, +(1— 5(n))(o,.']n,. - nko'l/d”[ni)] en, )dg (4)

The model is similar to a microplane model which is kinetically constrained
(Bazant and Ozbolt, 1990). The most important difference with the microplane
model is that in the absence of damage, Eq. (4) yields exactly the stiffness matrix
of an isotropic material, without the need for integrating numerically. We will now
consider that the two damage surfaces are identical: d(n)=6(n). The simplest
approximation, which does not yield isotropy, corresponds to an ellipsoidal damage
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surface: this surface is characterised by three principal directions and by the
values of three damage scalars d, along these directions. The isotropic damage
model will be deduced from the anisotropic one simply by assuming that the
damage surface is spherical instead of being ellipsoidal.

The evolution of the elastic constants due to damage growth is given, in both
isotropic and orthotropic approximations, by the evolution of the damage surfaces.
Initially, the damage surface (Eq. 3) is reduced to a point d(n)=0. Once damage
starts to grow, it becomes an ellipsoidal or spherical surface. The evolution of
damage is controlled by a loading surface f:

f(n)y=nen-¢g, - y(n) (5)

where y is an hardening softening variable which is interpolated in the same
fashion as the damage surface. The threshold of damage is given by the strain ¢,.

The evolution of the damage surface is defined by an evolution equation inspired
that of an isotropic model (Mazars and Pijaudier-Cabot, 1989):

- g1+a(n*en* .
d(n’)= i(—(z—))exp(—a(n*en*—g,z) n én
(n*en*)

y(ny=n'én (6)

if f(n")=0and n'én’ >0 then

else d(i")=0, y(n")=0

The model parameters are the initial radius of the surface x(n) which is assumed
to be isotropic initially since the undamaged material is isotropic and the
parameter a. The first parameter can be related to the tensile strength of the
material if one assumes that damage in uniaxial tension occurs at the peak stress
and the second will be related to the fracture energy of the material in the same
spirit as smeared crack models (Rots 1988). Note that the vectors n’ are the
three principal directions of the incremental strain whenever damage grows. The
new damage surface is the combination of two surfaces: the one corresponding to
the initial damage surface, and the surface corresponding to the incremental
growth of damage. The principal directions of the macroscopic stress tensor are
not necessarily the same as the principal directions of the strain tensor in the
anisotropic model (Fichant et al., 1997).

It is important to remark that the model parameters in the evolution laws
of damage do not depend on the level of interpolation. In the comparisons, this
characteristic will be essential because any discretisation level will provide exactly
the same uniaxial material response in tension.

3. ANISOTROPIC PLASTIC-DAMAGE MODEL

Degradation of the stiffness due to progressive microcracking is one among several
important features of the behaviour of concrete. Plastic strains are observed
experimentally. When the loading history is not monotonic, damage deactivation
occurs due to microcrack closure. It seems important to take into account these
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phenomena in order to carry out the comparison between the isotropic and
anisotropic damage models.

3.1. Damage - plasticity coupling
In view of the form of the damage model, elasto-plastic damage can be introduced
at several levels. In the microplane approach, plasticity is coupled to damage at
the microplane level (Bazant and Prat, 1989). In other phenomenological models
(see e.g. Ju 1989, Lemaitre 1984) the coupling between damage and plasticity is
introduced in the definition of the free energy of the material. Because we wish to
separate the approximation of damage from plasticity, we will use the second
technique. Note that damage will only affect the elastic part of the behaviour,
which means that locally plasticity (microcraks sliding) and damage (microcrack
opening) are assumed to be uncoupled as far as their evolution is concerned. This
will introduce also a great simplicity in the computational implementation (Ju
1989, Benallal et al. 1991).

In the present approach, we decompose the strain increment in an elastic
and plastic one:

de; = de; +de] (M
and damage is introduced in the elastic part of the stress-strain response:

— damaged e
O-l] - CI]U £kl (8)

Note that from now on the elastic strain & will replace the total strain ¢, is the

equations (5,6) defining the evolution of damage. We assume that the evolution of
the plastic strain is controlled by a yield function which is expressed in term of the
effective stress in the undamaged material. Because plasticity is indexed on the
effective stress, it will not interact with the specific approximations used for the
damage models. Among the various possibilities in the choice of a yield function,
we have chosen to implement a yield function due to Nadai (1950) inspired from
the Drucker-Prager criterion. The two constants in the Nadai criterion are given
the following values: 8 =1.16 and y =0.4.

The evolution of the plastic strain is defined according to the normality rule
and the hardening rule is given by:

w=qp +w, (9)

where ¢ and r are model parameters and w, defines the initial reversible domain
in the stress space.

3.2. Crack closure effects

Crack closure effects are of importance when the material is subjected to
alternated loads. During load cycles, micro cracks close progressively and the
tangent stiffness of the material should increase while damage is kept constant.
Within isotropic damage modelling, one solution is to introduce two damage
scalars, instead of one, in order to separate the mechanical effect of micro
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cracking depending on the sign of the stress. Here, a separation of the stress
tensor into a positive and negative part is introduced:

oc=(0) +(c ) (10)

where < ¢ >", and < 0 >- are the positive and negative part (polar decomposition)
of the stress tensor (for a scalar <x>* =x if x>0 and <x>* = 0 if x<0). The influence
of damage, introduced in Egs. (2) of the model, is modified:

on, =(1-dm)o), ;n, +(1-d(m) o). n, (11)
d.(n) defines a new damage surface which describes the influence of tensile

damage on the response of the material in compression. Because this new variable
refers to the same state of degradation as in tension, there is a relation between
d.(n) and d(n). The new damage surface defining d,(n) is directly deduced from the

damage surface d(n). It is an ellipsoidal surface with the same principal direction
as the surface defining d(n) and along each principal direction #Z, we have the
relation:

d =(df(lT_5")j ,ie[1,3] (12)

where §, is the kronecker symbol anda is a model parameter. Note that the two
surfaces d (n) and d(n) are spherical in the case of isotropic damage.
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Figure 1 : Uniaxial tension-compression response of the anisotropic model.



265

3.3. Response of the model and computational aspects

For the two approximations of the damage surface, the constitutive relations
contain 6 model parameters in addition to the Young's modulus of the material and
the Poisson's ratio. The first series of 3 parameters (g,,a,0) deals with the
evolution of damage in tension and in compression. The second series of three
parameters involved in the plastic part of the constitutive relation is (g, r,w,).
They are obtained from a fitting of the uniaxial compression response of concrete
once the parameters involved in the damage part of the constitutive relations
have been obtained.

The two damage models exhibit strain softening. In order to circumvent
some of the difficulties involved with softening in the computations, we have
chosen to control that the energy dissipation due to cracking in uniaxial tension be
constant whatever the finite element size during localisation (see e.g. Rots 1988).

Figure 1 shows a typical uniaxial compression-tension response of the model
corresponding to a standard concrete with a tensile strength of 3 MPa and a
compressive strength of 40 MPa. The set of model parameters is:

E=30000 MPa, v=02, a=1000, @ =12,&, =107, r=0.5, g=7000MPa, W, =26.4MPa

The anisotropic model reproduces quite well (qualitatively) the evolution of the
longitudinal and of the transverse strains with the stress. With the isotropic
model, that is assuming that the damage surface in Eq. (3) is a sphere, the same
good description of the axial stress-axial strain curve would be obtained with the
same model parameters. The axial stress-transverse strain curve would be,
however, different because the (elastic) Poisson's ratio of the material would not be
affected by damage.

The anisotropic model and the isotropic model have been implemented in the
finite element code Castem 2000. Given the strain and the strain increment, the
plastic strain increment is computed first. Because it depends on the effective
stress only, the plastic strain increment is independent of damage. We have used
for plasticity a classical return mapping algorithm (Ortiz and Simo 1986, Simo
and Taylor 1986). The plane stress constraint is added in the computation of the
plastic multiplier (Aravas 1987). Once the increment of plastic strain has been
computed, the incremental damage is computed explicitly from Egs. (5,6) and the
new state of stress is obtained from Eq. (4) (for more details see Fichant, 1996).

4. FINITE ELEMENT COMPUTATIONS AND COMPARISONS

We are going now to compare the isotropic and anisotropic models on three types
of structural analyses. At the level of the constitutive relations, a comparison has
been performed by Fichant et al. (1997) revealing that the shear response of the
anisotropic damage model differs substantially from that of the isotropic one. This
observation was based on the analysis of the material response to a strongly non
radial loading history proposed by Willam et al. (1986). For situations where the
loading history does not yield severe non radial stress or strain histories, we will
see that the results can be quite different.



266

4.1. Single edge notched beam

The first comparison deals with the single edge notched concrete beam tested by
Schlangen (1993). This type of experiment has been simulated extensively in the
literature using smeared crack models and plasticity based models (see e.g. Rots
1988, Feenstra 1993). The geometry of the beam and loading apparatus is
schematised on Fig. (2). The load F is applied on the testing apparatus so that the
point load close to the notch is F,=10/11 F and the point load near the beam end is
F,=1/11F.

100

20 180 20 180 20

Figure 2: Single-edged notched beam : geometry and loads.

The material properties used in the simulations are the same as those chosen in
Feenstra's analysis (1993):

For concrete :
Young's modulus: E = 35000 MPa
Poisson's Ratio: v=0.15
Tensile strength : f = 2.8 MPa which yields ¢, =0.76 10~
Fracture energy : G, = 0.07N/mm
Compressive strength : f =36.5 MPa
other model parameters :
a=12
r=0.5,4 =7000MPa,w, = 26.4MPa

For the loading apparatus (steel beam)
Young's modulus: E = 200000 MPa
Poisson's Ratio: v=0.3
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Figure 3 shows the plot of the applied load F versus the crack mouth sliding
displacement (CMSD). We have plotted on this figure the experimental data, the
computations performed with the isotropic and anisotropic plastic damage models
and with the rotating crack model (Feenstra, 1993). Considering the experimental
dispersion, the three predictions are quite equivalent, except for large
displacements.

510
—e— experiment
_____ isotropic damage
4 104 anisotropic damage

rotating crack

Force (N)

CSMD (mm)
Figure 3 : Single-edged notched beam : load vs. CMSD response.

The predicted distributions of damage are also quite similar. It should be noted
that, the two damage models are sensitive to mesh alignment when damage
localises to form a crack. The regularisation employed here avoids mesh-size
dependence but not mesh-alignment effects. In this experiment, damage
essentially occurs due to extensions. The two damage models provide the same
material response in uniaxial tension, therefore it is not surprising that the models
provide approximately the same result.

4.2. Compression shear experiments

Compression shear experiments have been performed by Fichant on plain
concrete I-shaped panels (Clément et al. 1994, Fichant 1996). The geometry of
the panels and the loading system is shown on Fig. (4).
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Figure 4 : Compression shear test: specimens tested (dimensions in mm).

The panel thickness is 60 mm. Notches were cut on most of specimens in order to
control crack propagation and to avoid multiple cracking as much as possible. The
tests were designed so that diagonal shear cracks propagate in the specimen

subjected to alternated shear loads.
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Figure 5: Compression shear test: experimental and predicted responses.
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From the experimental viewpoint, applying shear requires the combination of two
loads in two orthogonal directions. The biaxial testing frame for these experiments
was a Schenk multiaxial testing system. The vertical load, denoted M, on Fig. (4)
was applied with two hydraulic jacks and the lateral loads denoted as M, were
applied with another pair of jacks. The vertical compression force was constrained
to remain constant (75KN). The horizontal loads were applied under displacement
controlled conditions.

The material properties of concrete and the corresponding model
parameters were the same as those of in the previous computation. Only one half
of the plate was considered with a central symmetry of the displacements. Figure
5 shows the comparison between the experiment and the two predictions of the
isotropic and anisotropic damage models. Again, the numerical predictions are
quite similar. In both simulations, two independent diagonal crack systems
develop in the plate, same as in the experiments. The first one when the horizontal
load is negative and the second one when it becomes positive. Figure 6 shows the
distribution of damage for the isotropic damage model. It is interesting to note that
although the isotropic damage model does not contain any directional information,
it provides a very accurate prediction of the damage system. Because of damage
deactivation, the first damage band does not affect the material response when
the shear load is reversed. Hence, the two damage bands propagate independently.
In the stress-strain relations, the crack closure effect which introduces effectively
a damage-induced anisotropy, is the most important feature in this example.

MO MO0 M

PR -
X

Figure 6: compression shear test : map of damage at the end of the loading history
with the isotropic model

4.3. Double edged notched specimen

On tension shear problems, the predictions of the two models should not be as
close because damage deactivation may not occur. In order to investigate this
possibility, computations on the double edged notched specimens tested by Nooru-
Mohamed (1992) have been performed. Figure 7 shows the specimen geometry of
the plain concrete panels tested. Their thickness was 50 mm. The panels were
loaded by a shear force denoted as P, first. This load was kept constant while
uniaxial tension was applied to the specimen. The tensile force P was controlled by
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the relative tensile displacement § measured in between two points A and A' as
shown on the figure.

i + _ Ps[kN]
5 A ts 100mm ¥
65mm[ — +¢<§— = + 5
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X
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e e

25mm  150mm 25mm

Figure 7 : Double-edged notched specimen : geometry and loads.

In order to focus on the differences between the two damage models, we
have removed plasticity from the constitutive relations. The material properties of
concrete and the model parameters used in the computations are:

Young's modulus: E = 30000 MPa, Poisson's Ratio: v=0.2
Tensile strength : f = 3MPa which yields ¢, =110™
Fracture energy : G, = 0.1N/mm

Compressive strength : f =36.5 MPa, o =12

[——isotropic model
—orthotropic model

0 0,02 0,04 0,06 0,08 0,1
& [mm]

Figure 8 : Double-edged notched specimen: tensile load vs. vertical displacement
for P,=5 KN.
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Two tests have been considered with different values of the shear force: P, =
5 KN and P, = 10 KN. Figures (8,9) show the predictions according to the two
constitutive relations in both cases. The maximum tensile loads are quite similar
for the lowest shear force and the predictions of the two models differ as shear is
increased. It is interesting to compare the evolution of the maximum tensile force:
the data indicate that the maximum tensile force should decrease by 15 % as
shear is increased. The computations with the isotropic damage model yield
exactly the contrary. With the anisotropic model, there is very a slight decrease of
the tensile load. The reason for these differences is better illustrated on the maps
of damage.

30 p : .
25k
20 3
z ¢
& 15 E- <
10 F ]
; ]
5F 3
0 PRI BEPUTU NPT S S MU
0 0,02 0,04 0,06 0,08 0,1
& [mm]

Figure 9 : Double-edged notched specimen: tensile load vs. vertical displacement
for P,=10 KN.

For the smallest shear load, horizontal cracks develop in the center of the plate.
Both models provide reasonably accurate predictions compared to the
experiments. When P, = 10 KN, two curved cracks should develop according to the
experimental observation (Fig. 10). Still, the isotropic model predicts that
horizontal cracks should propagate while the curved crack propagation is better
approached with the anisotropic damage model.

5.CONCLUDING REMARKS

Isotropic (scalar) damage models are simple to develop and can be easily fitted
from uniaxial experiments. At the same time, damage-induced anisotropy is
delicate to characterise experimentally. It increases the number of model
parameters to be experimentally determined, at least in the context of
phenomenological models where damage is a second order or a fourth order tensor.
Although it is legitimate to argue that the definition of a damage variable should
indeed incorporate some directional information, it is interesting to sort out
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situations where an isotropic model may yield equally good predictions in
structural analyses.

__front face

_____
- —

rear foce
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load-path 4b (46-05)

[LERS]

W G I T O e -

Figure 10 : Double-edged notched specimen: damage according to the experiment
(a), to the isotropic damage model (b), and to the anisotropic model for P,=10 KN.

When the failure mode is essentially controlled by uniaxial tension, we found
that damage-induced anisotropy is not required. In fact, damage deactivation due
to crack closure is more important as it introduces anisotropy of the elastic
stiffness. Damage induced anisotropy seems important when the material is
locally subjected to multiaxial extensions, as in the shear tension problems. It is
also expected that anisotropy is of central importance in situations where the
loading history is severely non radial with an incremental growth of damage. This
particular point remain to be validated with other comparisons on structural
analyses.
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Advanced Thermomechanical Constitutive Models for
Airfield Concrete Pavement under High Temperatures

J. W. Ju and Y. Zhang

Department of Civil and Environmental Engineering, University of California, Los Angeles,
CA 90095-1593, U.S.A.

An axisymmetric thermomechanical constitutive model is proposed for airfield concrete
pavement under very rapid heating and cooling processes due to high-temperature exhaust gas
from axisymmetric vectored thrust engines. Newman’s crack growth model is applied to esti-
mate the delamination (thermal spalling) time of the airfield concrete pavement at various loca-
tions due to the internal pore pressure. Furthermore, coupled heat and mass transfer in concrete
pavement is considered.

1. INTRODUCTION

The ordinary Portland cement (OPC) concrete has been widely used in airbase facilities
such as airfield runways and parking aprons. During the take-off and landing of advanced air-
craft, OPC concrete airfield pavement is subjected to extremely rapid transient high-temperature
loadings as well as thermal cycles of heating and cooling due to very hot exhaust gas emanating
from modern vectored thrust engines (VTE), or auxiliary power units (APU), etc. Examples are
the AV-8B Harrier, F/A-18, and the next generation Joint Strike Fighters (JSF). In particular,
the exhaust gas temperature of a VTE could rapidly reach over 800 °C, and the corresponding
exhaust velocity could go beyond 600 m/s.

Damage to airfield concrete pavement could be in the form of thermomechanical “spalling”
or “scaling” of concrete runways and launch pads due to transient (monotonic or cyclic) high
temperature loadings. Alternatively, “scaling” of concrete parking aprons could occur due to
coupled thermal-mechanical-chemical degradation effects from heat and oils; cf. McVay, Smith-
son and Manzione (1993). Scaling refers to thin plate-like pieces or lamina that flake or peel
off from the damaged concrete surfaces. By contrast, spalling refers to small, thin pancake-
shaped pieces which explode into the air because of very large steam pressure in pores, high
thermal gradients and large compressive thermal stresses (parallel to the surface in the pave-
ment). Specifically, compressive stresses produce not only concrete crushing, but also a bulging
instability (similar to buckling) of the top layer. Under these severe thermomechanical loadings,
internal microcracks nucleate and propagate in concrete, leading to progressive delamination at
some shallow depth beneath the pavement surface.

Thermomechanical behavior and properties of concretes at elevated temperatures have been
studied in the past four decades primarily owing to the interests in heat resistance of concretes in
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fire engineering, and conventional as well as nuclear electric power plants. We refer to Bazant et
al. (1982) for an extensive literature review on high-temperature behavior of OPC and refractory
concretes. Among the temperature-dependent properties of OPC concretes at high temperatures
discussed by Bazant et al. (1982), important aspects include dehydration of cement, increase
of porosity, moisture content, thermal expansion and shrinkage, pore steam pressure, loss of
strength, thermal cracking due to thermal incompatibility, degradation of elastic moduli, thermal
creep, heat capacity, thermal conductivity and thermal diffusivity, and explosive thermal spalling
due to excessive pore steam pressure, etc.

2. AXISYMMETRIC HEAT CONDUCTION MODEL

2.1 Transient temperature distribution

When the airfield concrete pavement is subjected to vectored thrust from an axisymmetric
engine nozzle, an axisymmetric heat conduction formulation can be employed. Due to the wide
temperature range (say from 25 °C to 700 °C) considered, we must consider the density p, the
specific heat ¢ and the thermal conductivity A" of concrete as functions of the temperature 7'.
The axisymmetric heat conduction equation takes the form:

or g f or Kar o [ or
oW o ("W)*TW*E(H):) )
In this study, the temperature history 7(¢) at the pavement surface (z = 0) is prescribed based
on experimental data. The heat flux is approximated as zero at the bottom pavement; i.e., ¢ =
N5 9T 2 0. Moreover, the heat flux at /2 = O and r/ R = oo (the radial far field) is approximated
as zero ie,q¢= N+ ’” = 0. For simplicity, the initial temperature in the concrete pavement is

assumed to be T = 25 ocC.

We employ a conditionally stable explicit finite difference scheme to solve Eq. (1). We can
obtain the following temperature solution:
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For the foregoing explicit scheme, the von Neumann heuristic stability criterion takes the
form:
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Based on available experimental data from the literatures, we employ the following numer-
ical values for varying thermal properties of the concrete pavement. (a) p(1') changes linearly
from 1.45 g/cm? at 105 °C to 1.3 g/cm? at 850 °C (Harmathy, 1970); (b) ¢(T') increases linearly
from 0.23 cal/g.’C at 25 °C to 0.26 cal/g."C at 1000 °C (Harmathy and Allen, 1973); and (c) the
thermal conductivity K (T') changes linearly from 1.26 kcal/m.hr.°C at 25 °C to 1.01 kcal/m.hr.°C
at 1000 °C.

A comparison is displayed in Figure 1 between the actual experimental data (Rish and Mc-
Vay, 1994) and our model predictions for the temperatures versus time at different depths with
r/ R = 0 (the center line).

2.2 Pore pressure distribution

For simplicity, pores in concrete are modeled as spherical microvoids fully saturated with
water at this time. Our formulation here follows the ASME Steam Tables; see, Keenan et al.
(1978), Meyer et al. (1993). Specifically, during the saturation state (the /'-function), the re-
duced saturation pressure becomes

Pirz,) m_p{l SLik( -0y (1-0) } @

Py 0 U+ kg(1 — )+ ko(1 — 002 g(1 — 0)2 + kg

where 0 = (10, z,t) + 273.15)/ 1.1, P = 22.12 MPa, and 7, = 647.3 °K. The constants in
Eq. (4) are ky = ~7.691234564, k> = —26.08023696, k3 = —168.1706546, k4 = 64.23285504,
ks = —118.9646225, ke = 4.167117320, k7 = 20.97506760, ky = 10°, and kg = 6.

By contrast, above the critical temperature, the pore pressure follows the L-function:

PL(T’ <, l)

= Lo+ 110+ [.0° 5
P o+ L0+ Lo (5)

where Ly = 15.74373327, 1., = —34.17061978, and L, = 19.31380707.

2.3 Thermoelastic stress-strain relationship with void effects

For a linear elastic concrete pavement with many spherical microvoids, the additional strain
@ due to the void effects can be approximately rendered as

(k)

—d _ 1 P d
¢ ——zvzk: S(u@)n+n®u)db (6)

where V denotes the (sufficiently large) representative volume, 3 denotes a summation oper-
ator over all voids, u denotes the displacement vector, n signifies the outward normal vector
associated with u, and S signifies the void surface.
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The stress-strain relationship with void effects will be:
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where [£* and v*, respectively, are the effective elastic Young’s modulus and Poisson’s ratio
with void effects:
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Here, I4 is the virgin elastic Young’s modulus without voids,  is the virgin elastic Poisson’s ratio
without voids, I’ is the internal pore pressure, «v denotes the linear thermal expansion coefficient,
AT denotes the temperature change, and

Obviously, ¢ is the void volume fraction. Moreover, R denotes the void radius.
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Here, we synthesize available experimental data from the literatures and adopt the following
properties: E* = 34,475 [1 — 0.0013HT — Tp) +4.48 x 10°(T — To)z] MPa (Cruz, 1966),
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v* = 0.27 — 0.000453(T — Tp) Marechal, 1972), and o = 1.3 x 107%/°C (Cruz and Gillen,
1980).

We assume that the radial displacements are zero at » = 0 and r = oo (or a large distance
compared to R, the radius of the nozzle). Similarly, we assume that the displacements in the
radial and axial directions are zero at z = oo (or a large distance compared to the thickness of
the pavement).

To calculate the stress distributions inside the concrete pavement, we employ the axisym-
metric 4-node linear elastic finite element codes for each specific time ¢. The radial stress dis-
tribution at 7/ R = 0 is shown in Figure 2 for various time.

3. A CRACK GROWTH MODEL

According to the Newman’s crack growth model (Newman, 1971; Tada, et al., 1985), ten-
sion microcracks may be induced from microvoids when the vapor pressures inside spherical
microvoids increase to a certain level. The Mode I crack tip quasi-static stress intensity factor
due to the vapor pressure inside a microvoid reads

Kiy = P(r,z,0) /7a F (L) (14)

a+ R

where a is the crack length, R is the microvoid radius, and F(s) = 1+(1 —s)(0.5+0.743(1 — 8)?).

The quasi-static crack growth criterion takes the form:

Kis > K. (15)

where I\, is the Mode I fracture toughness of concrete (taken as a constant, 200 KN/mW). For
simplicity, we assume an initial crack length ao = 0.1 for a microvoid in our calculation. From
Ju and Zhang (1997) and the present study, we find that the dynamic crack growth velocity & is
very high, approximately 2,000 m/sec. Therefore, once a crack propagates from the perimeter
of a pore, it practically takes no time to reach the delamination (thermal spalling) state.

It is known that tension cracks grow in the general direction of maximum compression. As
was discussed in the previous section and figures, the in-plane stress state in the plane parallel
to the concrete surface is compressive. Therefore, cracks are expected to grow from pressured
voids along the direction parallel to the concrete pavement surface.

A pore size distribution curve was provided by Meyer-Ottens (1975), which is adopted here
to estimate the pore sizes. Since the largest pore size is the dominant factor, the pore size under
consideration is taken as R = Sum. It is emphasized again that the crack growth speed is very
fast and the delamination occurs instantaneously as soon as Eq. (15) is satisfied.

To illustrate the behavior of the proposed simple delamination model, Figure 3 shows the
time to delamination versus r/ R at the airfield concrete pavement surface. Figure 4 displays the
time to delamination versus various depths at /R = 0.
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4. COUPLED HEAT AND MASS TRANSFER IN CONCRETE

To model the mass (moisture and exhaust) and heat transfer through concrete, coupled par-
tial differential equations must be solved concerning the conservation of moisture, exhaust and
energy.

4.1 Coupled governing equations of heat and mass transfer in concrete

Let us assume a single potential which governs the moisture flux J,, and gas flux J:

Jo= 29, (16)
g
J,=—22vp, (17)
g
The heat flux takes the form:
4= —kVT (18)

where £ is the heat conductivity of concrete.

The conservation of mass for moisture requires that

Jw o+ (‘)‘wd
i

ST (19)

where w is the moisture concentration, w, is the total mass of free (evaporable) water that has
been released into the pore by dehydration, and w, is obtained from experimental data.

The conservation of mass for gas requires that

oG
=-V.J 20
ot g (20)
where G is the gas concentration.
The balance of heat leads to
oT Hw 1o
S — ——-C VT —-Cpo——-C,J,- VT = -V . 21

where p, ' are the mass density and isobaric heat capacity of concrete (including its chemically
combined water, but excluding its free water), C,,, is heat of sorption of free water, C,, is the
isobaric heat capacity of bulk (liquid) water, C,, is the heat of sorption of gas, and C| is the
isobaric heat capacity of gas.
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4.2 Equations of state of pore water and gas

For nonsaturated (partially saturated) concrete, we have p,, < p,(T). Here, p(T) is the
saturation pressure of water at temperature 7. Bazant et al. (1978) provided the following
semi-empirical expression by fitting the test data. For 2 < 0.96, we write

w _ ﬂ ﬁ
== () @2)
where
Pw
= 23
ps(T) @3
T+10\°
T/ N L 2
(b22)

Here, 7' is the temperature (°C’) and Ty = 25°C". Further, ¢ is the mass of (anhydrous) cement of
concrete (kg/m*) and w is the saturation water content at 25°C’. It is convenient to determine
w) /¢ accurately for a given concrete mix.

For saturated concrete, we have p,, > p,(T). For h > 1.04, we write

w=< (26)

14

where v is the specific volume of water, and ¢ is the available pore space for water by taking
into account the increase in pore space resulting from elastic volume expansion, decrease in
adsorbable water and/or partial dehydration.

For 0.96 < h < 1.04, we use the linear interpolation to calculate w.

For gas content, we use the following equation to calculate G

. Pyl =)

7= (27)
R,(T +273.15)

where R, is the gas constant and s is the volume fraction of liquid water in pore.
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4.3 Numerical simulation

For simplicity, only one dimensional heat and mass transfer problem will be considered
here. We employ the explicit finite difference scheme to solve this problem. For any explicit
finite difference scheme, we must consider the stability criterion of the numerical solution.

The initial water content in concrete is 95kg/ m?3, and the saturation water content in concrete
w) at 25°C is 100kg/m>. The cement content is 300kg/m>. The initial porosity of concrete at
25°C is 0.15. The water permeability of concrete at 25°C' is a,,, = 5.0 x 107'*.

Pore pressure histories at different depths are plotted in Figure 5. In addition, the water
content histories at different depths are displayed in Figure 6. We observe that the drying rate
near the concrete pavement surface (the heating surface) is very high. This is due to the high
heating rate of the concrete pavement surface by the exhaust gas from the aircraft vectored thrust
nozzle. The type of aircraft engine determines the heating rate of the concrete pavement surface.
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This paper investigates the mechanical behavior of thin-film coating/substrate
systems under nanoindentation testing. Experimental results have demonstrated the
different failure mechanisms of material systems consist of hard-coating on soft substrate
and soft-coating on hard substrate. An analytical model using Hankel's transform method
is introduced to examine the displacement and stress fields of a thin-film coating/substrate
system with perfect interfacial bonding under an axisymmetrical compressive loading on
the coating surface. The present analysis can account for the influence of the film thickness
and the material properties of the substrate. This knowledge of the stress fields provides the
basis of understanding of the failure mechanisms of thin-film coating/substrate systems.
Finally, the influence of Poisson's ratios of the film and the substrate are discussed in
detail.

1. INTRODUCTION

Thin-film coatings have been used extensively in industry for a variety of purposes,
for example, protection of the substrate materials from mechanical, thermal and chemically
aggressive environment. Nanoindentation tests have been used to measure the mechanical
properties of coatings and their bonding to the substrate. Two types of coating are
considered in the present study: hard-coating on a soft-substrate such as diamond-like
carbon (DLC) coating on polycarbonate, and soft-coating on a hard-substrate such as DLC

on silicon. Distinct failure mechanisms have been observed for these two types of coating
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systems through nanoindentation tests. In order to better understand the failure of
coating/substrate systems, an analytical model using Hankel's transform [1] have been
developed to evaluate the elastic fields due to nanoindentation. In most of the existing
works, the substrate material is often treated as a rigid body [2-4], and numerical iteration
[5, 6] and finite element methods [3,4, 7-10] have been adopted for the analyses.

In this paper, first, we present the experimental observations of nanoindentation
fracture for both hard- and soft-coating/substrate systems. Then, the analytical elastic
solution, which are capable of accounting for the influences of the thin-film thickness and
material properties, are presented to explain the failure behavior of the coating/substrate
systems. Finally, the Poisson’s ratio effect of the coating/substrate system is discussed in
details.

2. EXPERIMENTAL OBSERVATIONS

Nanoindentation tests for thin-film coating/substrate systems were conducted at the
Oak Ridge National Laboratory, and the load-displacement relations of the coating/substrate
systems have been obtained [11]. The coating and substrate material properties can then be
evaluated using the load-displacement data and the continuous stiffness measurement
technique developed by Oliver and Pethica [12]. Also failure mechanisms can be observed
microscopically during the indentation test, which are recapitulated in the following.

Diamond-like carbon (DLC) thin film coating material was deposited on the
substrates of silicon and polycarbonate through ion beam deposition. The thickness of DLC
coating was varied from 0.1 gm to 2um to examine its influence.

Nanoindentation experiments were performed at room temperature with a
Berkovich indenter. Here the specimens of DLC/Si with 2um and O.1ym coating
thickness, and DLC/polycarbonate with O.1ym coating thickness were used in the
nanoindentation tests. The following elastic properties of coatings and substrates are quoted

from reference [11].

TABLE 1. Elastic properties of coatings and substrates

Material Elastic modulus (GPa) Poisson's Ratio
DLC (in DLC/S1) 110 0.2
Silicon 200 0.2
DLC(in DLC/polycarbonate) 38 0.2
Polycarbonate 3 0.35




289

(b)

Fig.1. Micrographs of 2um indentation depth on DLC/Si system with DLC coating
thickness: (a) t=2pm, and (b) t=0.1ym [11].
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From the above Table, DLC/Si and DLC/polycarbonate clearly represent the elastically soft-
coating/hard-substrate system and hard-coating/soft-substrate system, respectively.

These two material systems exhibit totally different failure phenomena under
nanoindentation tests. Figure 1(a) and (b) show the micrographs of 2um indentation depth
of DLC/Si with 2y¢m and O.1ym coating thickness, respectively. In Fig. 1(a) no failure is
observed since the DL.C coating is considerably thicker and the indentation depth is not
high enough to cause any fracture. However, when the thickness of the DLC coating
becomes very thin, delamination around the edge of the contact zone in the DLC/Si system
can be observed very clearly in Fig. 1(b).

Fig.2 Micrograph of 4um indentation depth on DLC/polycarbonate with 0.1ym DLC

coating thickness {11].

On the other hand, Fig. 2 shows the major cracks in the film along the threc edges
of the pyramid-shaped Berkovich indenter and micro cracks in the film around the contact
zone for DLC/polycarbonate. The contrast between Fig.1(b) and Fig.2 indicates that
delamination is the dominant failure mode in soft-coating system, whereas film cracking
occurs first in the hard-coating system. The knowledge of the stress fields in the
coating/substrate systems under nanoindentation will give better insight of their failure
behavior.
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3. THEORETICAL MODELING

Li and Chou [13] recently have developed an analytically elastic solution of thin-
film coating/substrate system under an axisymmetric loading by using Hankel's transform
technique. Their approach is adopted in the present study. Instead of solving the elastic
fields due to Berkovich indentation, we consider the indentation problem of the
coating/substrate system under an axisymmetric loading shown in Fig.3. This is motivated
by the work of Gao and Wu [14], who have pointed out that an axisymmetric cylindrical
punch can be used to model nonaxisymmetrical indenters (e.g. Vickers and Berkovich

indenters) due to the insensitivity of the stress distribution to indenter cross sectional shape.

& on=0_[ -(r/ro)z]

ro

w W, vy

Uo Vo

z

Fig.3 A schematic diagram of a coating/substrate system under an axisymmetric loading

In Fig.3, the thin-film is denoted as phase 1, and phase O is for the half-space
substrate. Both phases are assumed to be isotropic and perfectly bonded to each other. The
elastic shear modulus and Poisson's ratio are written as y; and v; for the i-th phase. The
coating thickness, radius of the contact zone, and the maximum loading stress are denoted
as t, ry, and o, respectively. Here we choose the cylindrical polar coordinates (r, 6, 7) to
describe the axisymmetric problem with respect to z-axis, and the stress components are

g, Ty, 0, T

r

8> 1’-02 a'nd Tzr'
The symmetry condition with respect to the z-axis implies that 7,, and t,, vanish,

and the equilibrium equations are reduced to
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do  dt, 1

—+—*H+—-(0,-0,)=0 1

> oz r(, o) (1)
9%, 9% T, @
ar  x r

By introducing a stress function @, the stress components can be expressed in terms of @

as follows:

0, =AV:D -2(A + WP,
0, =BGA+4WV’D, - 2(A + )P,

0, = AV, -2(A + wie, 3
r

T,=(A+ 2u)aiV2CD “2A+m)P,,
r

where A is the Ldme constant, and @, , = 3°® | gr*dz . In the case of axial symmetry,
# 14 & . . .

V? = — + —— + —5. Then the compatibility equation can be written as
ar ror 9z

Vi =0. 4

Following Harding and Sneddon [14], the Hankel's transform is applied to solve
the above biharmonic equation

G = [, Dri (Er)dr 5

where J,(£r) is a Bessel function of the first kind of order 0. Thus, Equation (4) is reduced

to an ordinary differcntial equation

&\
(&7—.;:) G-0. (6)

The solution of Eq.(6) is casily obtained as

G =(A+ Bpe®¥ +(C+ Dp)e™ @)
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where A, B, C and D are constants which are in general functions of £ and can be
determined from the boundary conditions. By inverting Hankel's transform, the stress

function can be solved as
@ = [ EGJ,(§r)dE. ®

Based upon Eq.(8), the stress fields then can be obtained from Eqgs. (3).

For the material systems considered here, the stress function @ needs to be found
for the coating as well as the substrate. Thus, instead of four coefficients in Eq. (8) there
are eight coefficients denoted as Ag, By, Co, Do, A1, By, C1, and D;, where the subscripts

0 and 1 represent the substrate and coating phase, respectively. Since all the stresses and
displacements vanish when z —> ®, A and Bg must be zero, and the remaining six

coefficients can be determined from the boundary and interfacial continuity conditions.
The boundary loading conditions in the indentation problem considered here are

cxpressed as
o/(r,0)=-q(r), 7z,0r0)=0 &)

where the negative sign in the first equation indicates a compression, and the function g(r)

can be further expressed in terms of Hankel's transform as
q(r) =j;f7(§)§Jo(§f)d§~ (10)

Perfect bonding at the interface between the film and the subsirate is assumed. Then the

interfacial continuity conditions at the plane z = ¢ are given as

u, (r,1) = uy(r.1) wi(r,1) = wy(r,1) (1

o, (r.1) =0, T,,(r) =1,
By using the boundary and interface conditions (9) and (11), and following the derivation
of Li and Chou [13], the stress components are obtained as
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[

o, (06)= = §)la;<n,g) L T(1.9)]

J, d
D(n) Jn L (pm)dn

(12)

1 — CAGE] PP
f q(&)l G.(n.5)+ “om | (pn)dn
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+ ok B Fa .0 + = L Vilemdn

1 ©
o,(p,6) = Fﬁ, q( §) lo H(m.9)+ —‘DL:%}'}’O(PW)‘M (14

7,,(p.¢) = —f q(§) r,z.(n §)+—“I'5(n—)g)}nfl(pn)dn (15)

where

- 1 _ e
O,,(n,g)=5e , U,O(n,g)=0

F.(ng)= %{[—a +3b+25(2 + ) - 4b(1- <)y e 9" ~ 2ab(1+ cm)e "
~3-2an)e™ +2b[2- (2 + g)n+26m* ¢ - abe-(m)n}

3,o(n g)=—ﬂ{[ c+3d-2(c ~d(erg))"] ~n

[ac 3bd +2bd(2 + )+ 4bd(1- ¢ )y }(M } (16)

. 1
E,I(n.§)=5{[—a+byl+2b(2yz+§)n—4b( o O 2ab(y, + ) "

_(yl —2g7])e'5" +2b[2}’0 (2}/2 +§)’I+2g7] ] (2+5)n —abe -(a46)n }

Fo(n¢)= 2y°{[€+dya—2( —d(1-¢))nle
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_ B-4v))a-(3-4v,) b a-1 "

1+(3-4v))a

Yo=1-v, 1,=3-4v,, y,=1-2v,

and y, = 1-2v,

Also,

Ga(ng)=Tns) Tuing)=0

= o«
a+@3-4v,) Ko

Y3=3-4v, a7

(_791(711 §) = “2V1[—(1 + 21’))b€_(2—g)n + abe_““;)" +e 5" _(1 _ zn)be-(2+g)n]

— B8vyvodf - (2
Foo(n.) = =L - (1-2y)pe

Fu(ng)=a,.(ng). Too(n.6) =T,(n.¢)

and

Ga(ng)=-G,(ng) T(ng)=0

(18)

1 - - —-(4-
G.(ns)= 5{[a +b+26(2 - )+ 4b(1 - )n? e 9" —2ab(1 - gn)e

_(l + zgn)e_gq - 24(2 - g)'r’ + 2§n2}'(2*§)’1 + abe—(4+g)y,}

(710(7%5') = zaﬁ{-[c +d+ 2(6 - d(] _ g))n}-sn

s[ac + bd - 26d(2- &) + 4bd(1 - )’} "}

(19)
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T.(n¢)=5,(nc) T,o(ng)=0

fm(’l- §) = %{[—d +b+2bsm - 4b(1 _ g)nZ]e-(Z—;)n _ Zabgne_(4~§)"
+(1_ 2gn)e'§'l _ 2b(1 _ gr’ + 2m2)e-(2+g)n + abe—(4+g)r,}

T.o(nc)= 22" {—[c —d+2c-d(1-g))nle™

+[ac —bd + 2bdsn +4bd( -’ ]e 2“)"}. 20)

For the coating/substrate system, the stress distribution on the loading surface is
unknown, and it is difficult to determine from the displacement profile. Thus, in order to
simulate the non-uniform loading distribution of the indentation problem, the following

form of surface loading is assumed and shown in Fig.3:
I [1 ( r )2 ] rsr
o 1-{—
an={" %) | ’ 1)

where 5, is the maximum stress at r = 0, and r, is the loading contact radius. Then ¢(7) in

Hankel's transform domain, g(&), can be written as

2
—J

g(g)-22= (pom) - £ o (pon)} (22)

b
where p, = r, /1 and n = & . Then the components of stress can be solved accordingly.

4. RESULTS

Now we use the above elastic solution to calculate the stress fields of DLC/Si and
DL.C/polycarbonate systems. Figure 4 shows the normalized radial and hoop stresses along
the axisymmetric z-axis with 1=r( for both coating/substrate systems, and the bulk substrate
materials Si and polycarbonate. Due to the symmetry of loading with respect to the z-axis,
the radial and hoop stresses along the z-axis in this case are identical. The elastic properties
of the materials are taken from Table 1. The horizontal line at z/t=1 indicates the interface.
The radial and hoop stresses for both bulk materials of Si and polycarbonate (dashed lines)
are continuous, while the stresses in DLC/Si and DLC/polycarbonate (solid lines) show
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discontinuity across the interface due to the mismatch of material properties. Also the radial
(hoop) stress reaches the maximum in tension in the DLC coating film at the interface for
DLC/polycarbonate. This result provides the analytical basis of film cracking (Fig.2) in the
hard-coating system. But for the soft-coating/hard-substrate system (e.g. DLC/ Si), instead

of film cracking, delamination occurs first (see Fig. 1(b)).

0
1
DLC/Si
= P =
N 2 -
3 -
4 MU TR SN E SR TS S T PR U VO N VORN VAT YR SO MU T TS W
03 02 01 0 0.1 02 03

or/ om( oe/ om)

Fig.4 Radial (hoop) stress distribution along the z-axis

Figure 5 shows the shear stress distribution along the r-axis at the interface (z=t)
with t=ry. The maximum shear stress occurs near the edge of loading contact zone for all

the coating/substrate and bulk substrate systems. The DLC/Si system shows the highest
value of the maximum shear stress, which is apparently responsible for the interfacial

delamination shown in Fig.1(b).
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Fig. 5 Shear stress distribution along the r-axis at the interface

Finally, we consider the effect of Poisson's ratio on the coating/substrate system.
Figurc 6 shows the normalized radial and hoop stresses along the axisymmetric z-axis with
t=ry. This time the shear moduli of the coating and the substrate arc assumed to be identical
(H1=Hg), and the Poisson's ratio of the substrate v=0.33, and the Poisson's ratio of the
film coating v; assumes the values of 0.1, 0.2 and 0.5. The change of the normal stress
due to the difference of Poisson’s ratios between the thin film and the substrate is not as
significant as that shown in Fig. 4. Particularly, when v,>v, (dash-dotted linc in Fig.6),
the normal radial stress in the film is always compressive, which cannot induce cracking in
the film. It should also be noted that the Young’s moduli of the film and the substrate arc
different when the Poisson’s ratio of the film changes. From the relation of E=2p(14v),
onc can find that E;>E,, when v,>v,; these result can also be used to definc a hard-coating

(E,>E, ), and a soft-coating (I, <k, ). However, since Poisson’s ratio v < 0.5 in general,
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the ratio of the Young’s moduli between the coating and the substrate can not be greater
than 1.5. As a result, cracks are unlikely to occur in the film of a coating/substrate system

due to the difference of the Poisson's ratios between the two phases.
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Fig.6 The influence of Poisson's ratio on the radial (hoop) stress distribution

along the z-axis

The effect of Poisson's ratio on the shear stress field of the coating/substrate
systems has also been examined. Figure 7 shows the shear stress distributions in the film
of the coating/substrate system at the interface with t=ry, p;=po, and vp=0.33. As v,
increases the maximum value of the shear stress also increases. For v; >v, the shear stress
of the coating system is greater than that of the bulk substrate material itself. As a result,

interfacial delamination is likely to occur.
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Fig.7 Influence of the Poisson's ratio on shear stress of the coating/substrate
system.

5. CONCLUSIONS

In this paper we have examined the elastic stress field of coating/substrate systems
under nanoindentation and its implication on failurc mechanisms. Delamination in soft-
coating/hard-substrate systems such as DLC/Si has been observed, while film cracking
occurs in hard-coating/soft-substrate systems such as DLC/polycarbonate. Results of the
clastic stress analysis show that the maximum shear stress occurs near the loading contact
zone at the interface for the DLC/Si system, which is responsible for film delamination. On
the other hand, the existence of tensile radial stress in the film near the interface for the
hard-coating/soft-substrate DLC/polycarbonate system is the main reason for the cracks in
the hard film. Finally, Poisson's ratio effects on stress field of the coating/substrate system
have been examined. As a conclusion, The difference of the Poisson's ratio between the

coating and substrate may cause film delamination if the Poisson's ratio of the film is
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greater than that of the substrate. However, Poisson’s ratio effect is insufficient to cause

film cracking.
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In this paper, the derivation of a mechanism-based constitutive law is presented to
model the mechanical behavior of fiber-reinforced composites. It allows to account for
matrix-cracking, interfacial debonding and sliding in the framework of Continuum Damage
Mechanics. Applications are performed on a unidirectional SiC/SiC composite and on
concrete specimens.

1. INTRODUCTION

The basic mechanisms related to the degradation of brittle matrices reinforced by con-
tinuous or discontinuous fibers and submitted to monotonic loading histories are matrix-
cracking, interfacial debonding and sliding, and cventually fiber breakage and fiber pull-
out. These mechanisms induce stiffness losses and inelastic strains. The latter are studied
within the framework of Continuum Damage Mechanics (CDM) by using micromechan-
ical analyses. An explicit expression of the Helmholtz free energy deunsity is derived. In
particular, internal variables are carefully chosen to describe the degradation mechanisms
and written in an appropriate format to allow the derivation of constitutive equations
applicable to structural calculations.

The model! is used to analyze experimental data obtained on SiC matrices unidirec-
tionally reinforced by continuous SiC fibers. The evolution laws are derived by using
micromechanical parameters. The same model is used to study the behavior of an un-
reinforced concrete. To avoid localized damage, a prismatic concrete specimen is loaded
by aluminum bars glued on two opposite lateral faces. In particular, the effect of glue
between the aluminum bars and the concrete specimen is discussed and modeled. Fur-
thermore, the model is utilized to study the behavior of concrete specimen reinforced
by short fibers made of stecl and aligned along the loading direction. This composite is
loaded by using a similar technique as that used to analyze unreinforced concrete. The
effect of the addition of short fibers is discussed.

2. PHYSICAL MODEL

Loading a composite consisting of a brittle matrix supported by stronger fibers, usu-
ally causes multiple matrix-cracking [1] accompanied by debonding and sliding at the
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fiber-matrix interface. Because of stress redistribution between the fiber and matrix,
the cracking density usually saturates. Matrix-cracking is responsible for the decrease of
stiffness observed in experiments on Brittle Matrix Composites (BMCs), relief of resid-
ual stresses due to processing and sliding at the fiber-matrix interface are the source of
irreversible strains.

2.1. The Unit Cell

The cell illustrated in Fig. 1 and first proposed by Aveston and Kelly [2] has stood the
test of time with the introduction of a debond energy at the front of the slipping region
[3]. This unit cell constitutes the basis for formulating constitutive equations suitable for
finite element calculations used in design studies.

21,
2A_ | Interface
. b

Fiber (f)

(\ Matrix (m)

21

2R,
-

Figure 1. Elementary Cell.

In the unit cell shown in Fig. 1 the clastic moduli of the fiber and matrix are E; and
E.. respectively, the volume fraction of the fiber is f and Ry is the fiber radius. The
clastic modulus of the undamaged composite is £ = fE; + (1 — f)E,,. Matrix-cracking
occurs when the matrix stress reaches a material value oy, [1,4] and the average distance
between cracks is denoted by 2L. The debond length at the fiber/matrix interface is 2lg,
and the interface is assumed to have a constant shear strength 7. The critical energy
release rate to extend an interface crack is Gy. Following Hutchinson and Jensen [3], this
critical energy release rate G4 can be represented as a debond strength oy which introduces
simplicity in later calculations

(1= fYEnE:Gy

g4 =2 RE (1)

To define the state of the unit cell, the values for the crack spacing 2L, the slip length 214
and the interface properties 7 and ¢4 must be known. The latter are unknown material
parameters but are assumed to be constant. Residual stresses are introduced during

processing so that the stress level in the matrix o7 is an additional unknown.
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The statistical nature of the distribution of crack distances and debond lengths discussed
in Ref. [5] is not considered herein. For the sake of simplicity, it is assumed that the average
crack distance 2L and the corresponding debond length 2l are sufficient to characterize
the state of the material.

2.2. Interrogation of First Loading Response

On first loading, the initial response of the composite is clastic when the modulus is E.
On reaching the matrix-cracking stress o, matrix-cracking occurs which is accompanied
by matrix-fiber interface debonding and slip. From the partial unloading tests shown
in Fig. 2, it is possible to measure the current elastic modulus E(1 — D) and the total
irreversible or inelastic strain. The relationship between the damage variable D and the
crack spacing 2L may be estimated from micromechanics following the model of Cox [6]
and Aveston and Kelly [2]

Q

- 2
14+ 0 @)
in which the dimensionless quantities are defined by
W 1 Rr fE[ . QGmE
Q=—tanh<A) L w=— , A= " = 3
A w ﬁL (1 - f)Em (1 — f)EmE[ In (%L:") ( )

where G, is the shear modulus of the matrix and 2R, the average distance between fibers
(f = R{/R:, see Fig. 1). Since the damage variable D is readily measured, Eqn. (2)
provides a means of determining indirectly the crack spacing 2L.

The crack opening displacement A, following matrix-cracking consists of two contribu-
tions, viz. A, is the elastic opening due to cracking, and A, is the opening due to the relief
of the residual stresses due to processing. The crack opening displacement. A, resulting
from elastic deformations is given by the relationship [7,8]

(1= f)Bude oD

E L E(1-D) (4)

By using the model of Cox [6] and Aveston and Kelly [2], the crack opening displacement
A, is accompanied by the irreversible strain e,

(1 - f)Em éﬁ . Fme (T;;m

€= 7 7 =1-D with €, = E. (5)
and by the relief of initially stored energy

E€2>mD i
P = —m = ~§emeer (6)

When interface slip occurs, it is accompanied by an additional crack opening displace-
ment A;. The latter gives rise to a self-balancing stress field along the slip length 2{p
(< 2l4} in the matrix, o, (2) and in the fiber, o¢(z), for which the corresponding elastic
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strains are denoted by en(2) and €(z), respectively. The self-balancing stress fields cause
inelastic strains
(1 — f)Em As _

1 L
€ = £ T -1 /0 er(2)dz (7)

The total crack opening displacement A is the sum of three contributions
A=A+ Dy + A (8)

The crack closure condition is simply expressed as A = 0. Debonding and friction also
cause elastic energy to be stored in the material. The expression for the non-recoverable
energy is found to be

EA L .
S 5f(z)dz (9)

Py =
The explicit calculation of the integral is left to a later stage. Equation (9) is concerned
with the residual stress due to debonding and sliding. Normally there is an initial residual
stress in many composite systems duc to processing. The presence of the two residual
stress flelds induces a coupling term ¢y, in the total non-recoverable energy density .
If the residual stress field due to processing is constant along the total length of the
composite, the non-recoverable energy density g, can be expressed as

I/)(Hp = ”“(iE(pm (1())

Equation (10) shows that the inelastic strain ¢ and the misfit strain e, are sufficient to
measure the energy resulting from the coupling.

3. THE CONTINUUM REPRESENTATION

Since the objective of the paper is to obtain mechanism-based constitutive equations
which are suitable for finite element caleulations, the results of the model are reformulated
by using the techniques of Continuum Mechanics and the concept of state variables [9,10).
The model described in the preceding section helps to define the state variables and to
calculate the free energy density (also called state potential) from which the corresponding
forces can be deduced. Finally, the evolution laws have to be written.

3.1. State Potential for Unidirectional Composites

The free energy density for a given state is calculated by performning two clastic calcu-
lations following approaches introduced by Volterra [11], and used to analyze the clastic
behavior of homogencous and isotropic media [11,12], and the influence of inclusions in
an infinite medium [13]. The first step consists of calculating the clastic energy when a
crack is introduced and the unbroken part (f) is moved with respect to the broken part
() by an additional amount A, over a length 2l = 23 with no external load. The
derivation of the non-recoverable cnergy v has been determined in the previous section
and is rewritten as follows
Ee? B Ee, D
20~ P 30—y )

1/)52
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where the general expression of the damage variable d is given by

d=% {% /OL ef(z)dzr/ [% /OL ef(z)dz} (12)

By using the micromechanical model with a debond strength o4 and a constant shear
strength 7 defined previously, the inelastic strain ¢ and the damage variable d are ex-
pressed as

A 1 ]!
f=ATa(1+%0) L d=2 142 (1+507) (13)

where the dimensionless groups A4, Ty and X4 are given by

l4 Tlg o4 Ry
A= Tl = s d = 14
=7 =g s (14)

The value of the square bracket of Eqn. (13.2) varies between 1 and 4/3 for a high and low
debond energy material [14] respectively, which means that the value of the dimensionless
group ¥4 has little effect on d.

The second step consists of an elastic loading of a cracked system with friction pre-
vented. The recoverable part of the Helmholtz free energy density becomes

,,/,“:M f*‘i*ﬁ

2 1-D (15)

The total free energy density is the sum of the two components (11) and (15) of energy

density. The total free energy density can be expressed by using four state variables which

are the total strain €, and three internal variables, viz. the damage variable D modeling

the loss of stiflness due to cracking, the inelastic strain ¢ due to debonding and sliding,

the damage variable d measuring the amount of non-recoverable energy due to debonding
and slip

E(l - D) (me : Ef,z Ees D
Y= ——FF — 6 = T ‘—_iEnn_¢ 16
i’ > T 1Dl Toa TP T yT D) (16)
The forces associated with the state variables are given by
T oY B o
i y = &% X =--= = —-— 1
7 O ' 8D’ Oe; 4 od (17)

Equation (17.1) defines the macroscopic stress ¢ and Eqn. (17.2) the energy release rate
density Y associated with matrix-cracking. The energy release rate density Y is pro-
portional to the square of a modified ‘effective stress’” (0 + Eepm)/(1 — D). Similarly,
Equ. (17.3) defines the back stress X associated with sliding whose exact value depends
upon the interfacial properties. Equation (17.4) defines the energy release rate density y
associated to the residual stresses due to debonding and sliding.
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3.2. State Potential for 2D Composites

A 2D formulation requires an anisotropic damage description [15]. In the case of crack-
ing perpendicular to the fiber direction, the generalization is straight forward since the
only compliance change is given in the fiber direction, and therefore only one scalar
anisotropic damage variable is needed and the previous 1D analysis is still relevant. For
a 0/90 layered or woven composite, the Helmholtz free energy density depends upon the
damage variables modeling matrix-cracking in the 0 and 90-degree ‘layers’

1 (o 0

3 & E(Dm DY) ¢, (18)
where ¢ denotes the elastic strain tensor, " the contraction with respect to two indices,
E the elastic stiffness tensor of the damaged composite (i.e., it depends upon the matrix-

cracking damage variables DO, and D% [15]).

A second order tensor is needed to model the inelastic strains due to debonding and
slip. In the case of a 2D composite, a first order approximation only requires the in-plane
components (i.c., €1, €22, and €;12) of the inelastic strain tensor £ Since each operative
slip system can be integrated separately in terms of energetic contributions, the internal
damage variables can be defined separately for each inelastic strain term. Therefore there

are as many debond damage terms as non-vanishing inelastic strain components [15]

2 2 2
_ Eve Enchy  Guey

P — (
l/)d 2 (111 2 ([22 2 (1|2 (1))

where E\y, E,y, are the Young’s moduli along the 1- and 2-directions, respectively, and
Gy is the shear modulus in the 1-2 plane. In the case of cracking perpendicular to the
fiber direction, only one inelastic strain component is different from zero, viz. the normal
component along the fiber direction. Similarly, only one scalar debond damage variable
is needed.

Equation (10) is used to derive the generalized coupling term g, for 2D composites

1/)(1]]) = - gi : (20)

M=y

L€
=pm

where E is the stiffness tensor of the undamaged material. It is worth noting that the

misfit strain tensor € is an average tensor on the composite level to be computed for each
specific architecture. Lastly, the relief of initially stored energy by the residual stresses
due to processing is expressed as a generalization of Equ. (6)

1/)1,:—16 :_:E_:e (e

2 =pm =r \=pm’

DS, DY) (21)

where the irreversible strain tensor ¢ depends upon the misfit strain tensor €om and the

damage state described by D% and D%,

The Helmholtz free energy density depends upon the damage variables modeling matrix-
cracking, the inelastic strain tensor as well as the damage variables modeling debonding
and sliding
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Vo= 5o EDL DY),
+ %Ejnllll %Ej,zg %i‘%‘;—gi:érgpm—%gpmigig(épm’ngﬁngo) (22)

with
€=t~ &= & (Epm Do DY) (23)
where ¢ is the total strain tensor. The associated forces are defined by

2= 5 (24)
Yo = - daDw o Vel = —d%” (25)
x = -5 (26)
Yn = —% o Y = _0—(2% v Y2 = *8(?11/1)2 (27)

Equations (24), (25), (26) aud (27) constitute a generalization of Eqns. (17.1), (17.2),
(17.3) and (17.4).

3.3. The Evolution Laws
The final step in establishing the model is to determine the growth laws Fpy, F;, Fy which
relate the state variables (D, €, d) to their associated forees (Y, X, y)

D=FY), ei=F(X) , d= Fa(y) (28)

To be thermodynamically admissible, the intrinsic dissipation D must be positive

D=YD+Xe&+yd>0 (29)

It can be shown that this condition is satisfied in the present case.

The evolution laws will be identified for two different BMCs, viz. a unidirectional
SiC/SiC composite and a reinforced concrete. The identification procedure is based upon
the experimental results of a loading/partial unloading test (Fig. 2) from which the cur-
rent value of the elastic modulus £(1 — D) and the total inelastic strain € + €, can be
measured. A similar approach is used to identify the parameters of the evolution laws of
2D composites. A detailed description of the procedure can be found in Ref. [16].
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Figure 2. Schematic stress/strain curve with partial unloading.

4. SiC/SiC COMPOSITE

The first material to be analyzed is a unidirectional SiC/SiC composite. This material
has been extensively studied so that many experimental data are available. In particular,
the change of the average crack density with the applicd stress has been measured {17]
even though the task is tedious and needs special care to get reliable data [18]. The initial
cracking condition can be written as

Y =Y. (30)
From Equs. (17.2) and (30), the matrix-cracking stress oy, is found to be

(Tlll(f 2)/(

€pm = E (31)
This relationship is a transcription in the framework of CDM of the well-known expression
derived in Linear Elastic Fracture Mechanics {4]. The Cox’ Model (sce Eqns. (2) and (3),
1 > 2.5 w) predicts that there is a linear relationship between the damage quantity
D/(1 — D) and the average crack density w

D w
Y (32)
1-D A
The micromechanics associated with crack spacing is complex and involves statistical cal-
culations [19]. Instead of following this route, use is made of the experimental observation
of Domergue {17] that the crack density w satisfies the following evolution law

o — o,

p — Ome) BLp
w = —— with aoz———(aP Tinc) Ly

- R (33)
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The normalizing constants Ly and of are the values of L and o at failure before saturation
occurs. If saturation occurs, the previous constants are the values of L and o at saturation.
By eliminating the crack density w from the last two equations and by using Eqn. (17.2)
for Y in Eqn. (33) combined to Eqn. (32), the evolution law for D in terms of Y becomes

WY + VT~ VT~ (VT 4 VT~ V) 4T (VT — TD)
N 2VY
with  1/2EY, = Aoy (34)

To get the onset of interfacial debonding (when /3 = 0), the dependence of the dimen-
sionless group Ty with the applied stress o is needed

_1 0 — Oid
Td_2A( E ) (35)

where the stress 0,q describing the onset of interfacial debonding can be calculated

Oid Adg
—_ m = — 36
E + fp Ef ('3 )

The growth law for the inelastic strain ¢; has been defined by Eqn. (28.2) with the def-
inition of the back stress X given in Equ. (17.3). By climinating the debond length
la between Equs. (13) and (35), and the crack spacing 2L (Eqns. (3.2) and (33)), the
relationship between ¢ and the applied stress o becomes

B (U - (fmc) a 2 Aoy )2 . BEx
[ = “pm -\ 5= th B=—— <
‘ 4A%q [(E T ) ( E¢ Wit T (37)

It is possible formally to develop the relationship (28.2), but from a computation point
of view, it is casicr to use directly the result of the micromechanics given in Equ. (37).

The growth law of the interfacial damage d can be written as a function of its associated
force y. Instead, the evolution law is given as a function of the applied stress o

o1 —1
1 A — Oy S
1+§{1+2T"rd(” E”i) } } (38)

The first key parameter to determine is the misfit strain €,,,. Usually at the onset
of matrix-cracking, the inelastic strains are very small so that the value of the misfit
stress Eepy, is obtained by searching the intersection of the unloading line with the elastic
response of the material (see Fig. 2). The accuracy of the measurement of this quantity
can be checked by using the first partial unloadings. In the present case, the following
estimate is found

B (U - Umc) ((7' - Uid)

1l =
‘ 2A20'0E

€om =58 x 1071 £ 4 x 107° (39)
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The value of the misfit strain is in good agreement with that obtained by using an iden-
tification technique based upon the analysis of hysteresis loops [14]. The difference in
coefficients of thermal expansion is then on the order of Aa = 1.5 x 1078 £ 1077 K~!
when the temperature variation AT = 1000 K. The value of A« is expected for SiC/SiC
composites obtained by CVI [17].

The experimental relationship observed between D and Y is shown in Fig. 3. From this

curve the values of the dimensionless parameters 1/2Y./E and 1/2Yy/E can be obtained

2Y, [2Y; _ _
z =107 x107* +£3 x 107® and ?0:3.7><104i8><106 (40)

from which the matrix-cracking stress o, can be derived immediately and has the value
275 + 1 MPa, which is in good agreement with experimental observations [17].
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Figure 3. Damage variable D versus its as- Figure 4. Inelastic strain €; versus applied
sociated force Y for a SiC/SiC composite.  stress o for a SiC/SiC composite.

Equations (37) and (38) contain the dimensionless parameters B/4A? and Aoy/E:.
They are identified by using the inclastic strain due to debonding and sliding alone. By
fitting the experimental data of Fig. 4, the values of the dimensionless parameters are

B 4 . A . )
= T3 x10°£9x10° and T(’fd = 1.7x 1079 £2x 1075 (41)

Since all the dimensionless parameters have been identified, the value of the dimension-
less group A4 can be computed

l
Ag = Zd = BwTy (42)

At saturation, A4 is equal to unity so that the value for the saturation stress og,, is

Osat = 490 MPa > of = 340 MPa (43)
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Figure 5. Damage variable d versus applied stress ¢ for a SiC/SiC composite.

Another output of the identification is the variation of the damage variable d with the
applied stress o. Figure 5 compares the response of a high debond energy (HDE) material,
a low debond energy (LDE) material and the analyzed SiC/SiC composite. The behavior
of the SiC/SiC composite coincides with the response given by an HDE material. This
result was also found by Evans et al. [14]. On the other hand, it has been shown that
layered alumina with carbon/epoxy prepregs is an LDE composite [20].

In the previous sections, the only discussed features were associated with monotonic
loading conditions. As a consequence of the previous identification, the inclastic strains
upon complete unloading (referred to as permanent strains and denoted by €,) are pre-
dictions since they were not used to tune the model. Unloading from the maximum stress
Omax 1O & SEress Ouux — A is accompanied by reverse slip from the extremity of the
debonded region (the reverse slip length is 2{,). The expressions of the inelastic strain
A¢; decrement is given by

AEi = _2/\u,Tu (44)

where the dimensionless group T, mecasures the average strain due to reverse slip over a
distance [,

7l Ao

"= ER 1A (45)
and A, is defined as
lll
)‘u = Z = Bw,-ru (46)

Equation (44) is valid provided the reverse slip length [, is less than the debond length
lq. When the reverse slip length [, is equal to the debond length {4, reverse slip no longer
evolves. If Ao, denotes the stress decrement at which slip arrest occurs then

Ao
E d ( )
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When Ao > Ao, the inelastic strain decrement is

Ao — Ao,
AE

When the material behaves in an HDE regime, slip arrest is very likely to occur. This
property can be noticed when the hysteresis loops have a parabolic and a subsequent
linear portion. In the present case, slip arrest was always involved. Figure 6 shows that
the predicted values of the permanent strains are in good agreement with the measured
ones.

AEi = —2/\de - /\d (48)
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Figure 6. Permanent strain ¢, versus maxi- Figure 7. Crack closure stress o, versus
minn applied stress g, for a SiC/SIC com-  maximum applied stress oy, for a SiC/SiC
posite. composite.

Lastly, the crack closure condition is analyzed. No data are available to compare the
predictions with experimental data. By using Equs. (4), (5), (7) and (8), the crack closure
condition A = 0 can be rewritten as

((7(' + E(pm) D

Fi(ﬂ(‘) —E‘m— =0 (49)

where g, denotes the closure stress, €;(o..) the inclastic strain at the current stress level and
D the damage variable at the maximum stress level opa. Geometrically, this condition
is given by the intersection of the stress/strain curve with the elastic response (o = Ee)
of the material: see Fig. 2. Equation (49) shows that the crack closure condition depends
upon all the active mechanisms. In particular, when friction is prevented (i.e., ¢ = 0},
the closure stress (0. = —Fe,) Is independent of the damage variable D. This result
was used to identify the misfit strain ey, (sce Fig. 2). Furthermore, the crack closure
stress only vanishes when the misfit strain vanishes. Under this hypothesis, the closure
condition reduces to the two equivalent conditions: o, = 0 and ¢, = 0, where ¢, is the
closure strain.
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In Fig. 7, the predicted values of the closure stress are plotted. When the maximum
stress is less than the debond stress (i.e., o;q = 285 MPa) the closure stress is equal to
—Eepm = —150 MPa as expected by the model. As the maximum stress increases, the
closure stress increases too.

5. CONCRETE SPECIMEN

The identification of the constitutive law of monolithic as well as fiber-reinforced con-
crete in tension is difficult from a direct uniaxial test. Early localization occurs and leads
to the formation of one macrocrack. A special tension test allowing the Identification of
Diffuse Damage (referred to as ‘ID2’) was first proposed by L’Hermite [21], then devised
by Bazant and Pijaudicr-Cabot [22], Mazars et al. [23,24]. This technique consists of
gluing 8 x 8 x 250 mm?® aluminum bars on 38 x 80 x 160 mm?* concrete prismatic
specimens (Fig. 8) to avoid the formation of a single crack. In the identification pro-
cedure, the previous authors assume that the interface between the aluminum bars and
the concrete specimen is infinitely strong (04 — o0) and that the strain is uniform in
the bars. Under these assumptions, the underlying behavior of concrete is deduced in a
straight forward manner [22 24]. In the present case, the effect of the interface will be
explicitly considered and discussed.

Applied load
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Figure 9. Stress/strain response of an ID2
concrete specimen (fyy = 0.%) loaded in
Figure 8. Schematic of an ID2 specitnen. tension.

The aim of this section is to analyze this experimental technique by using the model
of Section 3. The effect of short fibers added in a concrete matrix is also discussed. In
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the tested concrete specimens, four different volume fractions (fi) of short steel fibers are
considered: 0.,0.1,0.3 and 0.6%. The fibers are aligned along the loading direction.

5.1. Analysis of Unreinforced Concrete

In this subsection, experimental data obtained for two ID2 specimens made of unre-
inforced concrete (fi = 0.%) are analyzed. As a first approximation, this specimen can
be described by the unit cell introduced in Section 2. In the present case however, the
residual stresses due to processing can be neglected. The state variables still are €, D, ¢
and d on a macroscopic scale and the associated forces are ¢,Y, X and y, respectively.
Unload /reload sequences in tension (Fig. 9) are performed. The damage variable D, the
inelastic strain ¢ as well as the permanent strain e, are measured as a function of the
applied stress o.

Figure 9 shows that at the end of the test, the composite behavior approaches that of the
volume fraction of aluminum bars (denoted by fEy in the figure). It is therefore expected
that, contrary to the analyzed SiC/SiC composite, saturation occurs. This feature will
be discussed later on.
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-
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Figure 10. Damage variable D versus its as- Figure 11, Inclastic strain ¢ versus ap-
sociated force Y for two ID2 concrete spec- plied stress o for two 1D2 concrete speci-
imens (f¢ = 0.%). mens (fg = 0.%).

The identification procedure uses the same information as that used in the analysis of
the unidirectional SiC/SiC composite (viz. the damage variable D and the inelastic strain
€). The experimental relationship observed between D and Y is given in Fig. 10. From
this curve the values of the following dimensionless parameters can be obtained

2Y, . 5 [2Y, 5
L = 13X 107 £ 107" and f“ =44x107"+£6x 107° (50)

from which the matrix-cracking stress o, can be derived immediately and has the value
5.1 £0.4 MPa, which is in good agreement with the experimental observations of Fig. 9.
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The dimensionless parameters B/4A? and Ao,/ FE; are identified by using the inelastic
strain due to debonding and sliding. By fitting the experimental results of Fig. 11, the
values of the dimensionless parameters are

53:12“0%103 and Afaf‘igo (51)
The fact that o4 is vanishingly small indicates that the specimen behaves in a low debond
energy (LDE) regime. Therefore, the usual assumptions made to identify the underlying
behavior of concrete (i.e., o4 — 00) cannot be used in the present case. The analysis of
the change of the inelastic strain shows that there is a change in the evolution pattern for
a stress greater than 12 MPa, indicating the onset of cracking saturation.
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Figure 12. Permanent strain ¢, versus maximum applied stress o,y for two ID2 concrete
specimens (fy = 0.%).

When the composite behaves in an LDE regime and the residual stresses are negligible,
there exists a very simple relationship between the inelastic strain €; and the corresponding
permanent strain €,

€ = 26[) (52)

Figure 12 shows that the predictions of the change of the permanent strain with the
applied stress is in reasonable agreement with the experiments. Figures 11 and 12 con-
sistently show that the saturation stress is equal to 12 MPa. On the other hand, Fig. 10
shows that the prediction, e priori only valid up to saturation, can be further extended.
Beyond the saturation level, the behavior of the ID2 specimen is mainly driven by the alu-
minum bars and the interface between the bars and the concrete parallelepiped (Fig. 9).
It is worth remembering that the interface is weak (indicated by the LDE regime): the
underlying behavior of concrete is very difficult to deduce since the stress state in concrete
is not uniform along the loading direction.
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5.2. Analysis of Reinforced Concrete
The effect of the addition of short fibers is discussed in this subsection by comparing
the response of specimens with and without short fibers.
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Figure 14. Damage variable D versus

Figure 13. Comparison of stress/strain re-
spounses of ID2 concrete specimens loaded in
tension when fyg = 0.,0.1,0.3 and 0.6%.

its associated force Y for ID2 specimens
(fsr = 0.,0.1,0.3 and 0.6%). The symbols
arc experimental data and the solid line is
the identification when fi = 0.%.

The comparison at a purely macroscopic level consists of plotting the stress/strain
responses for different volume fractions of short fibers (fo = 0.,0.1,0.3 and 0.6%). Figure
13 shows that the volume fraction fir = 0.% constitutes a lower bound to the stress/strain
behavior. However the effect of the volume fraction is not very important.

The experimental relationship observed between D and Y is shown in Fig. 14. The cffect
of the addition of short fibers becomes more significant. However, the most important
feature is the presence of short fibers but not their relative volume fraction. This result
indicates that the cracks are probably bridged but by very few short fibers so that the
actual value of the volume fraction is unimportant.

Similarly, Fig. 15, shows that the overall inelastic strain is more influenced by the
presence of short fibers rather than their respective volume fraction. Lastly, Fig. 16
shows the prediction of the change of the permanent strain with the maximum stress.
A similar effect of the short fiber volume fraction can be observed. The prediction is in
reasonable agreement with all the experimental data up to the saturation level (i.e., 12
MPa).

6. SUMMARY

A Continuum Damage Mechanics formulation has been applied to fiber-reinforced Com-
posites. In addition to the total strain, the internal variables which define the state of
the material have been identified. Matrix-cracking is described by one damage variable,
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fst = 0.,0.1,0.3 and 0.6%.The symbols are
experimental data and the solid line is the
prediction when fi = 0.%

debonding and sliding are modeled by an inclastic strain and another damage variable
measuring the amount of non-recoverable energy. These variables are related to micro-
scopic quantities introduced to analyze the degradation mechanising of BMCs.

Micromechanical parameters are exhibited to model matrix-cracking, interfacial debond-
ing and sliding. Their identification is discussed by analyzing the mechanical behavior of
a unidirectional SiC/SiC composite. This composite behaves in a large debond energy
regime in which the stress levels related to the debond strength are significantly higher
than those related to sliding.

Conversely, concrete specimens reinforced by aluminum bars exhibit a low debond en-
ergy regime. The classical identification procedure cannot be used to infer the behavior of
concrete from the response of the composite system. Furthermore, this type of experiment
is more sensitive to the presence or the lack of short fibers in concrete than the actual
volume fraction (up to 0.6%). However, in some other cases, the effect of fiber volume
fraction can be more significant (e.g., three point flexure tests [25]).

The framework presented in this paper has been extended to model layered as well as
woven fiber-reinforced composites. The nature of the different internal variables have been
discussed. The same formalism can also be used to model high temperature applications in
which the change of residual stresses as well as creep mechanisms need to be incorporated
[26]. This work is still in progress.
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A mesocrack damage and friction coupled model for brittle materials

A. Dragon and D. Halm
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A three-dimensional model of anisotropic damage by mesocrack growth, Halm and Dragon
[1], is first summarized in its extended version. It is employing a second-order tensorial damage
variable and considering damage (i.e. generation and growth of decohesion microsurfaces) as
the unique dissipative mechanism. The model — concerning rate-independent, small strain,
isothermal behaviour — reduces any system of mesocracks to three equivalent orthogonal sets
and leads to a form of orthotropy. It allows to take into account residual effects due to damage
itself. To account for elastic moduli recovery due to crack closure phenomena a compromise
solution has been advanced between micromechanical considerations imposing a fourth-order
crack-related tensor and macroscopic modelling efficiency. The formulation maintains the
orthotropy of the effective properties, instead of eventual general form of anisotropy. Unlike
some models which do not avoid (or rectify a posteriori) discontinuity of the stress-strain
response, the approach herein ensures a priori the stress continuity and allows to express a
convenient macroscopic opening-closure criterion.

The foregoing model is in the present work considered as coupled with a form of friction-
induced plasticity. To account for the friction effects on microcrack lips a new internal variable
is introduced to capture the corresponding dissipative mechanism. The thermodynamic potential
(free-energy function) is enlarged and modified by introducing two additional terms related to
the stored energy due to frictional sliding. The evolution law of the latter is formulated in the
space of corresponding thermodynamic forces through a standard scheme. Numerical
simulations for complex loading paths are successively performed and compared with available
experimental data.

1. INTRODUCTION

The specific stress-stain response of brittle materials such as rocks, plain concrete, ceramics,
glasses can be inferred in large degree from their predominant damage micromechanism, namely
multiple micro- and mesocrack incipience and growth. The progressive, microcrack orientation
dependent degradation of elastic moduli at the macroscopic level is commonly accompanied with
the events like volumetric dilatancy, induced anisotropy, irreversible strain after unloading,
more pronounced in the direction of preponderant microcracking. The unilateral effect
consisting in elastic moduli recovery due to crack closure under the compressive load is a
characteristic feature of cyclic behaviour of the materials at stake.

When considering the crack closure for a microcrack system in a brittle solid under
mechanical loading one can trace a link between complex multistage loading and unloading
curves observed experimentally and the friction resistance at the crack lips level and subsequent
frictional sliding and/or eventual crack opening. In such a way the unloading process for a
damaged material can be itself friction-locked and possibly dissipative (if followed by frictional
sliding). The inelastic unloading is just a particular event revealing the coupling effect of damage
by microcracking with a form of plasticity generated by the frictional sliding on closed multiple
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crack set. It has received some attention in the past, see f.ex. Kachanov [2], Horii and Nemat-
Nasser [3], Ju [4], Krajcinovic et al. [5], Andrieux et al. [6], Gambarotta and Lagomarsino [7],
Fond and Berthaud [8]. For the most part the papers cited represent instructive micromechanical
analyses leading to models covering limited spectre of stress-strain paths (two-dimensional,
axisymmetric, etc.). The purpose of this paper is to address ~ in an overview manner — basic
issues of 3D-modelling employing an internal variable formalism for the joint process of
anisotropic damage by microcraking and frictional sliding at closed microcracks. The aim is to
provide an efficient, reasonably simple, macroscopic — whereas strongly micromechanically
stimulated — model. The approach presented is based on the anisotropic damage model proposed
by Dragon, see Dragon et al. [9] and extended by Halm and Dragon [1] to include the unilateral
effect concerning normal stiffness recovery with respect to a microcrack plane.

An outline of the remainder of this paper is as follows : in Section 2 is summarized the
existing model by Halm and Dragon for anisotropic damage by microcracking with normal
unilateral effect. In Section 3 are considered basic issues of a new, non-classical modelling of
frictional sliding. The latter is built under general loading conditions involving various
dissipative configurations : frictional sliding for constant damage for closed microcracks,
frictional sliding and evolving damage for closed microcracks, damage with no frictional sliding
for open cracks, combinations of above for multiple crack systems. In fact, in the present
model, multiple systems of parallel cracks are reduced to three orthogonal equivalent systems
thus inducing a form of orthotropy (instead of eventual more general anisotropy), according to
Dragon et al. [9], see also Kachanov [10]. The friction model given herein allows avoiding
some inconveniences of the Coulomb model though strong affinities persist. It is presented in
itself in Section 3 whereas the full damage/friction coupling is discussed and recapitulated in
Section 4. Some example calculations are shown further (Section 5) to demonstrate various
features of the coupled model and to make comparison with experimental data. The model
presented is aimed to provide an efficient and consistent tool for structural analysis accounting
for basic dissipative phenomena in brittle solids. Emphasis is put on reasonable simplicity and
on accessible identification of material constants from prevalent laboratory tests.

2. ANISOTROPIC DAMAGE AND NORMAL UNILATERAL EFFECT

This Section outlines the salient features of the anisotropic damage model by Halm and
Dragon [1] which forms the framework for further developments presented in Sections 3 and 4.
An objective of the damage model summarized below is to describe — in a realistic and structural
calculus applicable manner — the process of mesocrack-induced anisotropic degradation and
relative behaviour of an elastic rock-like 'brittle’ solid. It stipulates evaluation of effective elastic
moduli of a material with microcracks and an adequate description of the evolution of damage.
The emphasis has been put on an "open” formulation of the model to allow further extensions
and couplings. It is based on the hypotheses and developments ordered below in the items from
(i) to (v):

(i) A single damage internal variable is constituted by a symmetric, second-order tensor D
indicating orientation of microcrack set(s) as well as the dissipative mechanism under
consideration, namely generation and growth of decohesion microsurfaces :

D=>4d (s)n'®n’ (1

The scalar density d' (s) is proportional to the extent s of decohesion surface and the unit normai
vector n' describes orientation of the i-th set of parallel crack-like defects. The form (1) is
motivated by micromechanical considerations (see e.g. Kachanov [2,10]) but in the context
here the density d(s) is reckoned as a macroscopic quantity. The expression (1) is in itself a
guiding interpretation of damage-related internal variable D. Since D is a symmetric second-
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order tensor it has three positive eigenvalues D, (k = 1, 2, 3) and three orthogonal eigenvectors
v*. This means that any system of microcracks (1), decomposed into 1,...,i,...n of subsystems
of parallel mesocracks can be reduced to three equivalent orthogonal sets of cracks characterized
by densities D, and normal vectors v* :

3
D=Y D, v ®V* 2)
k=1

(ii) The damage-dependent strain energy (free energy per unit volume) w(€,D) generates a
form of elastic orthotropy — in connection to three eigensystems (2) — for D # 0 ; w is assumed
a linear function of D and in this way corresponding to non-interacting cracks hypothesis. On
the other hand it contains linear and quadratic terms in €. A particular invariant form given
below comprises a single linear term reading g tr(€.D), g = const, corresponding to damage-
induced residual phenomena. The macroscopic residual stress for € = 0 is thus explicitly
obtained. Inversely, for ¢ = 0, non-zero residual strain is induced.

(iii) Under predominantly compressive loading favourably oriented cracks close leading to an
elastic moduli recovery phenomenon in the direction normal to the closed cracks. It is called
here normal unilateral effect — in the absence of frictional sliding (the latter, when accounted for
later, will induce a ‘'shear’ recovery effect as well) — and requires more involved damage
characterization. In fact, for a set of cracks constrained against opening a fourth-order tensorial
density is necessary for a rigorous, micromechanically motivated description. A compromise
solution has been advanced in [1] between micromechanical considerations imposing an
additional fourth-order damage variable and macroscopic modelling efficiency. The formulation
maintains the orthotropy of the effective, elastic properties — instead of eventual more general

anisotropy induced by a new fourth-order damage tensor — and the fourth-order entity D,
necessary to account for the normal unilateral effect, is directly assembled with the eigenvalues
and eigenvectors of D :

3
D=Y D, VO V@V ®V 3)
k=3

(iv) A single scalar simultaneous invariant of D and € completes the expression of the free
energy (thermodynamic potential), with no additional material constant with respect to the basic
form w(g,D) postulated in (ii). Rigorous continuity analysis in the framework of multilinear
elasticity (for a given damage state), recast in [1], leads to a simple microcrack closure condition
for an equivalent set, namely : v ev* < 0. The detailed expression of w(€,D) including the
normal unilateral effect is :

1 2
w(g, D)= 5 Are) +ptr(eg) + gu(eD)y+awetr(eD) + 2B r (e.eD)
i . @
—(a+2B)s[2 H(-v'evH) DV @ v @ v' ® vk} €
k=l
where H is the classical Heaviside function ; o, 8 are material constants related to modified

clastic moduli for a given damage state. A and [ are conventional Lamé constants for elastic
(non damaged) solid matrix.
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The corresponding damage-influenced orthotropic elasticity representation o(g,D) and the
damage driving (thermodynamic) force F® are determined by partial derivation :

o= aa_w_ =A(tre)l +2ne+ gD+a[tr(e.D)1 +(trs)D]+2B (eD+Dg)
€

3 (5)

-2(a+2B) Y, H(-v*£v*)D, (v evF)vi @ v*

k=1

FP = —g—; =—ge—o(tre)e—2B(e.€)

3 6)

+(@+2B) Y H(-vFevh).(vevi )y’ v vk
k=1

In spite of the presence of the Heaviside function H(-v*e.v¥), w, ¢ and FP remain continuous
when passing from the open mesocracks configuration to the closed mesocracks configuration
and vice versa.

(v) The evolution of D, corresponding to the brittle, splitting-like crack kinetics, has been
found to follow the normality rule with respect to a criterion in the space of components of the
proper thermodynamic force (affinity) F°. The damage evolution is thus following the principle
of maximum {(damage) dissipation, see also Govindjee et al. [11], and is related here to tensile
(positive) straining € and to actual damage pattern. The particular damage criterion f(F°,D) < 0
is explicitly dependent on the part F°'* = — ge* = F® — F°> - F°" of the driving force F°.F"' is
the strain energy release rate term related to residual 'locked’ effects : F*' = — ge, F? represents
the remaining recoverable energy release rate. The former term is decomposed into the splitting
part F°'* = — gg*, " = P*:¢, with P* a positive fourth-order projection tensor selecting positive
eigenvalues from strain, and the non-splitting part F°" = — g(€ — €*). The damage criterion and
rate-independent damage evolution law are thus as follows :

£(F® — F2 — F°- p =\/lt FP _ pP2 _ pbi-\(pD _ gb2 _ o'~
( RER I )1 o
+Bu|(F° ~F”* -F”")D]-(C, +C,rD) <0

» 0 iff<Oorf=0, f<0

5y ot _ + TALZ0 0 (8)
D=A,— = 3 . b
P An{—‘*“m} iff=0and f=0

N 2t(eteh)

Remarks :

The fourth-order tensor D depends entirely on D (see definition (3)) ; it does not require a
separate evolution law.

In numerical calculations any loading path is considered as a collection of D-proportional
segments. The form of Eqn (6) is valid for such a segment, i.e. for a given configuration of
principal directions of D.

The model, non-linear as it is, contains eight material constants only : A, U, o, 8, g, B, C,
and C,. Seven of them can be relatively easily determined from axisymmetric triaxial
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compression test with unloading, see Dragon et al. [9]. In particular, C, and C, are determined
from the corresponding non-linear damage loading portion of experimental curves. The
identification of o and B exploits the unloading portions considered as elastic according to the
hypotheses (i)-(v) of the foregoing frictionless damage-elastic version. The point where the
unloading is performed should correspond to pronounced oriented damage, but has to be
reasonably far from the bifurcation-onset point to avoid interference.

To determine B one should resort to a two-segment loading path experiment. The second
loading is to be performed off the first-segment damage-induced anisotropy axes. One can see
from (8) that B intervenes as a sort of a damage-drag constant moderating the D-principal axes
tendency to follow €*-axes in complex non-proportional loading involving €*-axes rotation.

An operational, structural analysis approach employing the concept of damage should
combine an efficient damage model implemented in robust computer algorithm associated with
proper tools for detection and control of bifurcation phenomena. The latter indicate eventual
transition from distributed damage to surface-like localization considered as a precursor of
macroscopic fracture. In any case bifurcation events point out an ill-posedness of the problem
and necessity of remaking a computational scheme. Actually, the basic model presented, i.e. the
one summarized above except the last, unilateral effect related term in w(g,D) put up in eqn (4),
was extensively tested for its capacities to generate physically sound localized failure
mechanisms, see e.g. [9,12]. The very fair predictions in this field obtained for homogeneous
stress-strain paths as well as for boundary-value problems related to rock engineering
applications have prompted further developments of the model itself including its coupling with
a form of mesocrack-friction-induced plasticity as put forward in the next section.

3. MESOCRACK FRICTION INDUCED PLASTICITY

The unilateral normal effect included in the model summarized in Section 2 allows a moduli
recovery in the direction normal to the closed mesocracks. It fails to capture a shear moduli
recovery parallelly to the crack plane resulting from some blocking of mesocrack lips
displacement due to roughness and corresponding friction phenomena. Experimental data
involving loading-unloading cycles for specimens subject to torsion and hydrostatic
compression for instance show hysteretic effects generated by such a blocking and subsequent
frictional sliding on closed mesocrack lips. The beginning of unloading is characterized by a
quasi-vertical curve while further decreasing slope is linked to progressive sliding, see f.ex.
Pecqueur [I3]. Some attempts of micromechanical modelling of the phenomena deserve
attention , [2-8]. However they are not directly operational for an efficient structural analysis.
Some of earlier attempts (Kachanov [2], Horii and Nemat-Nasser [3]) consider the influence of
friction on effective moduli but do not provide satisfactory treatment of sliding evolution. Most
of existing approaches are limited to two-dimensional analyses, as e.g. [6], with the notable
exception of the more recent work by Gambarotta and Lagomarsino [7].

3.1. Elastic-damage-and-friction response

The global strain expression for a representative volume of elastic solid of stiffness C
containing microcracks (assumed plane and quasi-circular for simplicity) can be written as a
sum of the solid matrix contribution €” and the crack contribution €° :

8:(:»[I(S+$Z(<b)®n+n®<b>)ls‘:en+2€ci )

with the crack displacement discontinuity b* being averaged ((b')) for the microcrack set i. For
closed sliding cracks, as long as the orientation ' is preserved, (b") is orthogonal ton' :

mYy=Eg | g ln if  n'=const (10)
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with &' representing the amount of sliding in the direction g'. One can write furthermore :

e=—¢(g®n+n'® 11
~ & (& g) (11)

Hence, for the microcrack system i, the sliding variable is chosen in the form :

igi
i

Y =S—V—sym n®g), (12)

the symmetrisation being operated for the expression in parentheses. The similarity with (1) is
i E.,l

cannot be explicitly calculated in the framework of macroscopic model. Moreover, as any
system of microcracks represented by D reduces to three equivalent sets according to (2), the
sliding tensor ¥ can be written in the analogous manner :

striking : as for D, the form of 7 is motivated by micromechanics ; as for d(s) the quantity

k&k 3
Y= 2 v sym v®'y) =z_:

k=1

where V¥, k = 1,2,3 are D-eigenvectors.

Let us consider, for a while, a single system of mesocracks characterized by the only
principal non zero component D, and the normal (eigenvector) V*. The objective here is to argue
for an enlarged form of the free-energy function w(g;D,y) accounting for the frictional blocking
and sliding effects for closed crack sets.

From (4), (5) one can infer that the anisotropic damage-induced shear moduli are entirely
determined by [ (solid matrix shear modulus) and the term 2ftr(e.€.D). Hence, for the damage
configuration at stake (D,=D,=0 ; D, # 0) one obtains :

{513 =2e;; +2BD5g
Oy =218y +2BDsepy

The degradation of moduli in the normal direction to the open crack set is described in the
conjugate manner by the o-term as well as the B-one. The expression of the Young modulus E,
for the damage configuration as above is

(}\+ocD3)2

E,=A+2u+20D,;+4BD, -
) ‘ ’ A+

Let us consider the transition from open cracks to closed ones, assuming friction resistant
lips when in contact. The crack-open form of (4), with H(=v*.€.v")=0 applics for the former
case. When the cracks are closed and blocked by friction resistance at a given vy, the shear
modulus W is recovered and this should be properly reflected in the new modified expression
w(€;D,Y). The B-term should be counterbalanced in this expression. The a-term, having no
influence on shear moduli, enters as before. Additional invariants including ¥ can be only
simultaneous (y,D)-invariants as there is no sliding on crack lips in the absence of damage. As
from (15) one infers tr Yy = 0 and tr(y.D) = O (for conservative damage axes), only two
simultaneous invariants of €, ¥ and D convey useful information. They are : tr(€.y.D) and
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tr(v.y.D). The argument for the quantity including B in the last term of (4) was to restitute the
normal stiffness reduced by the term 2ftr(€.€.D) in the first line of (4), but since this latter term
is going to be counterbalanced, the former quantity has to disappear from w. Doing so allows
one to write the expression w(g;D,y) for closed friction-resistant crack lips in the form :

w(g,D,y) = %x(tre)z + ptr (€.€) + gtr (£.D) + atretr (€.D) 13)

—o(e:D:e)+ mtr(ey.D)+2n,tr(y.y.D)

7, and N, are material constants to be identified.

From the micromechanics viewpoint there are infinity of crack-closure paths possible
(straight, slantwise, mixed,...). The macroscopic model continuity requires w and G-functions
continuity. This leads to the following condition at the closure-point :

{e.D =vD

De=Dy Yy = Sym(€y Vi V)) at closure-point (14)
The latter formula constitutes an initialization for the sliding variable ¥ and can be explained as
follows : at closure point, the sliding quantity 7y is equal to the strain € in the crack plane, the
matrix transmits its deformation to the crack.

According to the continuity conditions for multilinear elasticity (Wesolowski [14], Curnier et
al. {15]) already employed in [1] in the context of unilateral normal effect, see eqns (4)-(6)
Sect. 2, the jump of effective clastic stiffness [[C*]] between open crack (the corresponding
energy is designated by w° below) and closed crack respective configurations should be a
singular operator. It is sufficient that its all second-order determinants be equal to zero.

In the present context —eqn (13) at the very closure point, taking into account (14) — [[C*]] is
given as follows :

*we

oede

REY
cl =
[[C*]] Yeoe

>

D

YD
. 1 N
HCh 1= (Em +M, - B)(Sik Dji+8;Dy +8;Dy + 8jan)_ 20Dy

The above-mentioned singularity requirement and an additional stronger condition applied by
Halm and Dragon [16] (in the way similar as in [1]) lead respectively to

1
n = 4B
The free-energy w(€;D,y) can now be written as follows (for either open or closed cracks)
|
w(g;D,y) = Ekurs)2 +ptr(e.€) + gtr(e.D) + auretr(e.D) + 2P tr(e.€.D)

(16)
+ H(-v.ev) [— 2Btr(eeD)-ae: D: e+ 4Bt (ey.D) - ZBtr(y.y.D)]
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The expression (16) can be generalized to three non-interactive equivalent crack sets
represented by eigenvectors v* associated with the prmcxpal components D,, k=1,2,3. One can
select the k-th set using the following projection operator L* :

L=vF® v @ v @ v*
(17)
D=DV*® Vv =L*:D

This allows to write counterpart equations of (4)-(6) independently for each equivalent set, all
possible configurations being included (open or closed, sliding or non sliding sets) :

w(e,D,y) = %%.(trt:)2 + utr(e.€) + gtr (€.D) + atr (e)tr (€. D) + 2Ptr (.£.D)

3 (18)
+ Y H (v ev* )[—ae (D, L) : £ 2Btr(e£.D*) + 4Btr (e* . D*) - 2Btr (y* 4 .D")]
k=1

o= aa—w = A(tre)1 +2pe + gD + aftr(eD)1 + (tre) D] + 2B (e.D + D.g)
€

3
+ Y H(-v*ev")[-20D, (V* v )(v* ® v*) - 2B(e D* + D* £) + 2B(y*.D* + D* v")]
k=1

(19)

FP = -2% — _ge—o(tre)e - 2B(es)+2H( vEEvH[a(vE evh )V ® v+ 2BLF : (ee)

oD k=1
— 4B (e )+ 2BLF 1 (Y5 M)
(20

As each equivalent set of the normal v* is to be considered independently, the corresponding
affinity (thermodynamic force) is :

F* = %—H(—V £v*)[-2B(eD* +D* &)+ 2B(y* D* + Dy ) 21

The remark concerning eqn (6), Section 2, stating its validity for a D-proportional segment,
i.c. for a given configuration of principal direction of D, is still in force for eqn (20).

3.2. Sliding criterion and evolution

The model herein considers frictional non-sliding/sliding phenomena on mesocrack lips on a
macroscopic  scale, by an approach similar to that to damage, notwithstanding the
micromechanical background and interpretations of D and ¥. So, the Coulomb criterion form,
function of the corresponding shear and normal tractions on a crack lip, employed in
micromechanical models (Horii and Nemat-Nasser [3], Andrieux et al. [6], Gambarotta and
Lagomarsino [7]), is methodologically less suitable in the present context. The pertinent
thermodynamic affinity governing frictional sliding on an equivalent system k, (k=1,2,3) is the
entity F* defined above as the strain energy releaserate with respect to y*.

The frictional non sliding/sliding complementary law is based on the hypotheses as follows :
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(i) The sliding criterion depends explicitly on the norm of the tangential part F'™ of the
“force" F™ and on the normal strain v*.€.v* consecutively to the strain-related representation of
the energy w and the crack-closure criterion at stake (V*.€.v* < 0).

(ii) Contrarily to inconsistencies relative to the normality rule in the classical Coulomb
framework affected by appearance of a normal separating velocity (cf. for example Michalowski
and Mroz [17], Curnier [18]) a standard scheme in the space of forces conjugate to ¥* keeps
physical pertinence. The normality rule appears to relate the frictional sliding rate to the
tangential force F'™ indicating its leaning to the crack plane (for a D*-proportional loading
segment).

gConSthuently, the corresponding convex reversibility domain h* < 0 can be written as

1
KTk ok o k) _ pkfmtk Nk Gk pok) _ 1 Yk _ Nk Y vk peyNK K ok
h (F ,VOEV )— h (F F™ viev )— \/2 tr[(F F )(F F )] +pv.ev <0
if vkevE<0 (22)
where p is a material constant, a strainelated friction coefficient in the space (F*,€) and
Fr=F™ L PNe o P FR (VR E* VR vE @ v
(23)
F = (VKF V) v ® v

The normality rule for ¥* is then

if h* <0orh*=0,h* <0

0
. oKX — ™ vhevk) —
= Ak

! OF™ "2 (FTOET)

Detailed comments on salient aspects of the criterion h* = 0 in the strain space are given by
Halm and Dragon [16]. Figure 1 shows the corresponding form together with a hardening-like
phenomenon (for Y* # 0) in reduced stress space (0,,,0,,). The similitude between the actual
yield surface and the Coulomb one can be clearly noticed. In connection with the crack
oE)ening/closure condition (a single crack system D, # 0 is considered for illustration) the cone
h* = 0 is shifted to the left : it corresponds to negative value of &,, at the closure point. The
correspondence of (22) with the Coulomb locus can be pointed out furthermore when
comparing p with the conventional Coulomb coefficient p_. For the stress and sliding

configuration depicted in Fig. 1, the Coulomb locus is |G|3| +p.0y; =0 and

<
I
>

if h* =0and h* =0, A% 20

(24)

po=—PH with A=A (1 -2v)+2u-20v D, 25)

| B| DA

By examining the complete set (18)-(24) of the equations of the model, one can see that the
frictional sliding does not sweep away the relative simplicity of the enlarged model (see the end
of Section 2). Only one additional constant p adds to eight material constants
(Au,0,8,C,,C,.g,B). It can be stressed that p (as p, above) governs the slope of the cone in
Fig. 1, an example illustrating the general form (22). However, p is not here the unique slope-
governing factor. In the example considered the slope is inversely proportional to D, thus
implying that a higher crack density is favouring sliding amount.
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Figure 1. Frictional sliding criterion and the relative sliding-induced hardening mechanism in the
reduced stress-space (G,;, G,5).

4. DAMAGE AND FRICTIONAL SLIDING INTERACTION. FULLY
COUPLED MODEL

The model completed in Section 3 incorporating friction-induced blocking and sliding on
equivalent mesocrack-sets is valid for a given (freezed') damage state or for conservative
damage evolution (D*-proportional loading paths). It has proved conclusive in representing
multistage loading-and-unloading dissipative cycles due to blocking-and-sliding sequences, see
Halm and Dragon [16] for illustrations. In particular a dissipative unloading blocking-and-
sliding sequence could be obtained while for the same stress-strain cycle the frictionless model
of Section 2 gave purely elastic unloading.

The splitting-like damage kinetics considered in Section 2 is approximately valid for closed
sliding mesocracks even when some branching occurs see for example Horii and Nemat-Nasser
[19] for some experimental insight. This tg/pe of kinetics will be still considered as the
predominant mechanism furthest for -non-proportional loading. This means the
complementary damage law (7)-(8) being reconducted for more complex stress-strain paths
involving varying D* orientations. However, as the frictional blocking-and-sliding is inevitably
affecting the stress-strain response, so f.ex. the stress threshold corresponding to damage
criterion f=0 is subsequently affected. For example in the stress subspace analogous to that of
Fig. 1, the frontier f=0 corresponding to closed cracks under frictional blocking/sliding is
farther beyond the limit for frictionless cracks, see e.g. Fig. 9 in [16].

This is mostly the sliding complementary rule (22)-(24) which needs to be [zerfected to
describe fairly the DF-non-proportional loading paths. If the principal axes of D¥ rotate the
orlhogonahty 'y : D*=0 is no longer true and dlscontmumes may arise, especially for crack
closure-opening transmon So, an enhanced form of h* < 0 needs to account for the D*-axes
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rotation. The form (22), depending on F*™, produced — via normality rule (24) - sliding ¥~ in
the mesocrack plane. A judicious modification of this basic assumption should be compatible
with sliding and damage departure from the actual mesocrack equivalent plane. This is achieved
by means of the following partition of F*, given below for a single crack set of normal v* :

F* = Y N = BT L 4B8(yF DMV @ VE - 4B (e DX) vF @ vk

(26)
= F* —4B(e: D¥) v ® Vv

F* is the appropriate part of F** to enter the more general expression of h* < 0 suitable for the
model including D*-axes rotation. First, one obtains that for D*-proportional loading F* reduces
to F'™ (as ¥ : D* = 0) and the new representation h* (F*, v*.€.v¥) reduces to (22). Secondly,
the above-mentioned, crucial stress continuity problem is effectively dealt with. In fact,
comparing (14),(21),(23),(26), one can see that the closure-opening transition point for sliding
crack-set can be alternatively defined as

Fr=F"*=0 = e.D* + D*.e = ¥ D* + DXy 27

Despite the fact that the above equation represents weaker condition than (14), it allows to verify
the singularity requirement for [[C*]] (cf. Section 3.1) leading to the stress continuity.

It can be remarked that though y:D* # 0 as equivalent crack-axes rotate no additional
invariants are necessary in the strain energy expression (18). This is not required by the
continuity considerations (see above) and it brings neither significant information. For example,
introducing tr € tr (Y*.D"), tr y* (y*.D*) and ¥* : D, L* : ¥* does not convey more record on
shear moduli degradation than existing invariants tr (€.y*.D*) and tr (¥.y*.D").

The above considerations lead to the following improved expression for the sliding
complementary rule :

h* (F¥ vk evh) = /%lr(Fk.Fk) +pvhevt <0 (28)

C ok 0 if h* <0orh* =0,h* <0
SN’ oh(F*,viev) F ' ' 29)
T = Ay SFF =AM —— ifh*=0andh*=0,A% 20

T 2t (F R

The direction of ¥*is thus allowed to leave the equivalent crack-set plane consecutively to the
rotation of the latter. In such a manner D*-non-proportional loading can be followed by the
mode! which takes into account the interaction of the two dissipative mechanisms : damage and
frictional sliding. The corresponding combined dissipation is

3
D=F":D+Y F* 4 (30)

k=1

Despite of the corresponding normality rules, i.e. the formulae (8) and (29) respectively for
damage growth and frictional sliding, and the convexity characterizing the domains f<0 and h<0

one should check the non-negativity of P in the process of numerical integration. This is
because of the partition of the respective thermodynamic forces, i.e. the sole parts F°-F"*-F""

and F* — [~ 4B (£ : D*) v¥ ® V¥] entering respectively into the corresponding damage and
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sliding-yield functions. The convex domains at stake should contain their origin respectively in
the F°- space and in F*-space to ensure thermodynamically admissible evolutions (one can note
in this point some analogy with the kinematic hardening rule in classical plasticity). In this
respect the algorithmic approximation of the coupled model should control the dissipation issue
for each step and integration point. The incremental procedure leading to numerical integration
of the equations of the model can be summarized as follows :

(i) It can be performed in the standard strain discretization for the loading path under finite
consideration ; at time t* the set €%, 6", D", ¥ is known.

(ii) For each damage equivalent system, the normal strain v*.€.v* is checked.

(iii) If v*.e.v* > O (open crack-set), ¥* vanishes and if f = 0, the increment of D is calculated
from the discretized form of (8).

(iv) If v€.e.v* €0 (closed crack-set), both criteria f < 0, h* < 0 are checked ; the increments
AY* and AD are simultaneously calculated from (8) and (29).

(v) The integration of the two evolution rules above is performed by an implicit algorithm
whose numerical stability is well confirmed. Moreover the implicit procedure has been found
particularly advantageous for a large class of damage models (Cormery, [20]) as being naturally
compatible with their constitutive formulation. In the present model one can notice the low
numerical coupling degree between ¥ and D : D" is obtained, independently of ¥**, by a simple
“naturally implicit" algorithmic approximation of (8). Once D" is calculated, ¥*" is determined
by iterative procedure from (29).

For completeness, the coupled rate-independent anisotropic damage-frictional sliding
constitutive equations are summarized in Table 1.

Table |
Rate-independent anisotropic damage-frictional coupled model

Free energy :
(per unit volume)

w(g;D,y) = %k(tre)2 +utr (e€) +gtr(e.D) +atretr (£D) + 2B tr(e.€.D)

3
+ Y H(-v*ev*)[-0€: (D, L*) : e~ 2Ptr (e.£D*) + 4Bur (e.y* D)
k=1

- 2Btr(y* 45 .DY)]

Stress-strain and internal ow ow ow
; ; . o=—,see(19);F, = ——, see(20 ;FW=————,see 21
variable relations : % (19} Fp D (20) e 2n
for details
Damage complementary f(F° —FP2—F"" D) <0 , see (7) for details
rule : of et
D:A —_ = —_—— +BD R A, 20
DIFD D \/211'(5*_8*) } D
D-consistency : {‘A” =0

Frictional sliding related _ - o s v
plasticity : h* (F*v.e.v¥) = Jr(EF ) +pv.evt <0, see (23), (26)

for detailed form of F*

oh* . F*

k k k
— =N At>0
VOFY T o (F* R !
Y-consistency : hkA"y =0

7 =A
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5. APPLICATION : ROCK-LIKE SOLIDS

{MPa)

Shear stress

To illustrate the model pertinency two selected numerical examples are provided below. They
are concerned with brittle rock behaviour and examine the effect of loading involving
necessarily the closed mesocrack related phenomena thus bringing forward the efficiency of the
fully coupled model.

The first example is the analysis of a homogeneous stress-strain path relative to the third step
of the complex loading programme as follows :

« Step 1 : Uniaxial tension, 6, > 0, induces damage D, > O ( a set of parallel mesocracks of
normal 3).

* Step 2 : Unloading then reloading under compression beyond the crack closure threshold
are considered. The corresponding numerical simulation is strain-controlled ;
€13 < & = &y ) . )

* Step 3 : Upon a given (freezed) configuration (£,,,€,, = €,,) corresponding to mesocracks
closure is superposed additional shear strain-controlled loading : €,, = €,, and
subsequent unloading. Three loading-unloading cycles are simulated. In Figure 2
the corresponding G,,vs €, loading and unloading curves are plotted. Damage
growth, accompanied with principal D-axes rotation is calculated for each loading
cycle. Friction blocking or sliding effects are accounted for.

40 T T T T — T

30 b .

20} 1

A = 26250 MPa Cp =0.001 MPa
10 | | = 17500 MPa Cy =0.55MPa .
o = 1900 MPa B=0
B = -20400 MPa p = 2500 MPa
g=-110MPa
ot ¢ p/H /K ) ) . ) :
0 0.0005 0.001 0.0015 0.002 0.0025 0.003

Shear strain

Figure 2. Shear stress (o,)-shear strain (€,,) loading and unloading cycles corresponding to

damage and frictional shiding variations. Non-proportional damage growth is simulated
preceded by an initial tension-induced damage (D, > 0) and subsequent compression-induced
crack closure. Complex hysteresis for the two incipient cycles (A-B-C-D-E-F and F-G-H-]) is
followed by purely elastic unloading and loading (J-K-L ; J=L).
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The initial stiffened portion O-A is due to friction-induced blocking effect corresponding to
recovery of the solid elastic shear modulus p. Beyond A frictional sliding is evolving, the slope
of the portion A-B is lower than the slope 0-A. From B to C damage growth accompanied with
frictional sliding occurs. The loading path at stake is a D-non-proportional one ; there is some
rotation of equivalent crack-axes and a complex damage state is brought about. The C-D portion
represents slightly non-linear unloading curve. In fact this is a multiform unloading process
with successive sliding sequences : blocking on one equivalent set, two remaining sets open,
followed by closure of a second one and frictional sliding on one then two sets, etc. The non-
linearity of C-D is hardly visible on the graphic representation. The segment D-E represents
again (as OA) a blocking stage followed by sliding E-F, damage F-G, etc. For the third cycle a
purely elastic unloading J-K and loading K-L (L.=J) are noticed. This kind of elastic shakedown
should be further analysed and compared to reliable experimental data, [21]. Here, the simulated
curve G,,Vs.£,, is presented to illustrate the capacity of the model to deal with multiple stage
loading/unloading loops involving, eventually coupled damage-and-sliding effects. The material
under consideration is Fontainebleau sandstone.

The second example refers to experimental tests by Pecqueur [13] consisting in a torsional
loading applied to hollow cylinder specimens under hydrostatic compression. The cylinder is
cut in a brittle rock (Vosges sandstone). In fact, the torque vs. angular deformation curve
plotted in Figure 3 (solid line) concerns the central, quasi-homogeneous part with respect to
stress-strain distribution. The corresponding calculations concern a pre-damaged material with a
set of mesocracks perpendicular to the cylinder axis in compression-induced closure range.
Again, an initial stiffened portion is observed corresponding to friction-related blocking
phenomenon (stage I). It is followed by stage II where frictional sliding evolution is noticed.
This explains the reduced slope observed in Figure 2, the solid line leaning closely to the
experimental one. Finally, for stage III, the simultaneous complex damage growth and sliding
take place and the slope becomes even smaller. The calculated coupled damage growth and
sliding effect is somewhat larger than experimentally observed but the overall agreement is quite
satisfactory for the coupled damage and sliding model. The same simulation (with the same
initial damage level and configuration) has been carried out for the sole anisotropic damage
(frictionless) model of Section 2. The curves clearly indicate that the hypothesis of perfectly
lubricated cracks underestimates the torque value whereas friction stiffens the material and
predicts a behaviour closer to experiment. Note also that the drop (stage III) is much more
pronounced for the frictionless model.

6. CONCLUDING REMARKS

Some of the basic issues concerning inelastic behaviour of brittle materials like rocks and
concrete have been presented and explored in the framework of rate-type constitute theory with
internal variables. In fact, inelasticity in such materiais results from the evolution of a large
number of internal (micro-)and/or mesocracks accompanicd with microscopic frictional cffects,
volumetric dilatancy and strong pressure sensitivity. The corresponding continuum damage
models attempting to capture the progressive degradation of mechanical properties attributable to
evolution of multiple defects and accounting for irreversible frictional sliding over the internal
crack surfaces arc referred to the extended framework of damage-clastoplastic constitutive
theory including the classical rate theory of clastoplastic deformation of crystalline materials as
well as the non-linear theories of progressively mesofracturing solids. Such a global vision of
non-linear mechanics of materials has been recently postulated by Lubarda and Krajcinovic
[22].
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Figure 3. Torsional load versus angular deformation response for hollow cylinder example. The
solid line gives the homogeneous response of the model when both damage and frictional
blocking/sliding (for closed mesocracks) are taken into account. It appears fairly close to
experimental response (Pecqueur, [13]). The latter effectively happens to be homogeneous in

the central third.
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The model presented here provides a realistic description of anisotropic damage evolution by
multiple mesocrack-growth and of irreversible frictional sliding-related plasticity. It constitutes
an efficient instrument for structural analysis due to its relative simplicity (a small number of
material parameters to identify) and its modular character allowing to treat engineering problems
at various level of complexity. The first, basic level concerns modelling the anisotropic
degradation by mesocrack growth, Dragon et al. [9]. The second level consists in accounting
for the normal moduli recovery with respect to equivalent mesocrack-sets (Section 2 herein).
Some cyclic and pressure overloading phenomena can be well approximated by this version, see
Halm and Dragon [1]. The damage and frictional blocking/sliding coupled model proposed
above allows to treat complex loading paths with rotating loading and damage axes (torsional
loading for example). Some successful structural analysis applications including three-
dimensional detection of damage localization have been performed by employing the basic
version. Further study concerns enhanced integration of pre-existing and/or 'virtual' damage
phenomena susceptible to emerge on the mesoscale of a material at early stages of loading and
thus to affect strongly its further resistance to failure.
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Anisotropic damage model for the triaxial creep behaviour of plain concrete
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A viscoplastic model with damage was developed to describe the mechanical behaviour of
plain concrete subjected to sustained multiaxial stresses of high intensity. The model is
characterized by inelastic strains due to plasticity and damage and by a second-order damage
tensor. The evolution laws for these variables are formulated by extending the proposal of
other authors for metals and rocksalt. The procedure to obtain the main model parameters
from experiments is also outlined. The reliability of the model was assessed through
comparisons with available test results.

1. INTRODUCTION

The present work is originated by an extensive experimental research program carried out at
the Department of Structural Engineering of Milan Technical University (Politecnico). This
program investigates the behaviour of plain concrete subjected to high sustained triaxial
loading, either cyclic or constant in time. Concrete cylinders were tested in a triaxial cell, in
which axial load and lateral pressure could be independently varied; further details on the
testing apparatus can be found in [1]. The research aimed at obtaining a better understanding
of the complex phenomena that take place in concrete at high stress levels, in view of more
rationally exploiting the properties of concrete and its possible application within a broader
range of stresses.

The main results of the research (reported in [2-4]) can be summarized as follows: (a) at
high stress levels, creep effects, associated with the maximum stress attained during cycles,
dominate over dynamic effects, provided that the cycle amplitude does not exceed about 30%
of the maximum stress; (b) if the cycle amplitude is a given fraction of the static triaxial
strength at different values of the confining pressure, fatigue life is positively affected by an
increase in lateral confinement only if the hydrostatic stress does not exceed a certain level [4];
(c) the decrease in stiffness (i.e., the material damage) is mostly affected by the maximum
deviatoric stress attained during the pre-loading phase that precedes the cyclic or creep test
[3]; (d) damage evolves significantly only during the tertiary creep stage [3]; (¢) specimens
submitted to triaxial tests that do not fail within a maximum prescribed time, experience a
decrease in strength if they are reloaded to failure in uniaxial compression: the decrease is as
more important as higher the previously applied lateral confinement was [2]; (f) specimens
submitted to uni- and triaxial tests that do not fail within a maximum prescribed time,
experience an increase in strength if they are reloaded to failure with the same confinement
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previously applied: the increase is as more important as higher the applied lateral confinement
was and can even attain 30+35% of the static strength of the virgin specimens.

The description of the above phenomena requires having mathematical models available,
capable of accounting for the material damage, the damage-induced creep acceleration and,
possibly, the evolution of the elastic and the failure domain of the material resulting from
creep. No model was found in the literature specifically formulated to describe the triaxial
creep behaviour of concrete at high stress levels. Indeed, a number of (elastic-) viscoplastic
models exists, conceived for relatively homogeneous materials such as metals, rocksalt and
clay. A reason for this is that for metals the problem arises of creep failure at elevated
temperature, whereas thermally-induced creep strains can be the origin of local failures in
underground waste isolation deposits excavated in rock salt. Additionally, some models for
clay exist capable of describing the evolution of the elastic domain of the material following
creep. In a preliminary work [5] the problem was tackled of assessing whether these models
can be applied to concrete the heterogeneous nature of which is likely to be associated with
damage phenomena different from crystalline materials. It was concluded that, from a
phenomenological point of view, the same evolution laws that govern the evolution of creep-
induced damage in metals and rocksalt are appropriate to concrete and that similarities exist
between creep-induced "hardening" in clay and concrete. A model capable of simultaneously
accounting for creep strains, damage variable(s) and an evolving elastic domain, however, is
presently missing.

The model presented in this work is a viscoplastic model with damage, obtained as an
extension of the model proposed by the authors for static and cyclic loads [6,7]. The model is
featured by two second-order damage tensors, representative of surface damage induced by
tensile and compressive strains. A viscoplastic potential is introduced in order to obtain the
evolution laws for damage and permanent strains. These strains are considered as the sum of
inelastic strains due to plasticity and inelastic strains due to damage.

A discussion about the identification of the model parameters is presented in the last
Sections of the paper, where some comparisons with available experimental results are also
depicted. These results confirm the reliability of the presented model.

2. THE MODEL PROPOSED: THEORETICAL DEVELOPMENTS

The model proposed by the authors in [6,7] for quasi-static loading is able to reproduce the
unilateral behaviour of concrete; this expression indicates the fact that, during loads histories
involving changes in sign of the applied stress, the loss in stiffness associated with cracks
opened in tension is recovered when cracks close after the stress has turned to compression
fe.g. 8]. Accordingly, two independent damage tensors were introduced, ©!, @€, which
account for damage induced by tensile and compressive strains, respectively. Since further
treatments will cover triaxial compression tests, volumetric damage will be assumed to be
negligible in loading conditions where all principal stresses are compressive.

Allowing for unilaterality, the following expressions is proposed for the Helmoltz free
energy of the material:
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oy = %(k0 —2G0)tr2e+G0tr[(l —oNH)" e (1-0")"” -eT] M

+G0tr[(l—wc)l/2 .e¢ ‘(l_mC)I/Z .ec]

el (resp. €C) must be intended as the tensor having the same positive (resp. negative)
eigenvalues as the elastic strain tensor e, and vanishing possible other eigenvalues. k, and G,
are the bulk and shear modulus respectively of the undamaged material.

Derivation of eq. (1) respect to e gives the stress-strain relationship:

o = [(k, —2G,)tr(e)[1+2G,[(1- ") -e"-(1-07)"*]+2G, [(1-©°)"” ¢ -(1-0 )] (2)

Derivation of eq. (1) with respect to the damage variables yields the damage driving forces
conjugate to o7 and ot

el el
Y'= —?r—) =Ge'-e'; Y= —% =G,e® e, (3a,b)
o o)

Note that tensors YT and YC have the same principal directions as e: accordingly, both oT and
o€ also have the same principal directions.

Once that the intensive variables conjugated to the extensive ones have been defined
through a suitable thermodynamic potential, the evolution laws for the state variables must be
introduced. When damageable materials are dealt with, it is customary to substitute nominal
stresses with "effective stresses”, which are increased respect to the nominal ones to allow for
the reduction in load-carrying material section [9]. Here, the effective stress tensor G is

defined as the tensor having G, = o, /(1- ') as eigenvalues, meaning that 0! = oS if the

corresponding principal elastic strain is compressive, whereas o) = u)oTL if such strain is tensile.

For the description of the inelastic response of the material, several authors showed that the
theory of viscoplasticity with mixed hardening is able to reproduce the creep behaviour of
metals and rocksait [9,10]. Supposing to apply this theory to concrete, the following

viscoplastic potential ,, is introduced:

~ N+1
K /X -R
Q =A — (—= 4

v ”N+1< K > “)

with

X,= 25 )

S is the deviator of the effective stress tensor 6, defined as

S:&—ln&n. (6)
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B is the tensor of the kinematic hardening variables (backstress tensor); R is the isotropic
hardening scalar variable; K is a normalizing stress variable (dragstress); Ag and N are material
constants. The evolution laws for B, R and K will be described later.

Derivation of the potential with respect to the stress tensor yields the plastic strain rate:

gP=—2> < 7
K (7

T dc 2 X.,

~ N .

oQ 3A0<xm R> $-B

The plastic strains (7) are not sufficient to characterize the creep behaviour of concrete
subjected to high stresses. Indeed, if creep tests with unloading-reloading cycles are performed,
the linear domain is found to expand. If the time at constant stress is sufficiently long, the
stress point can re-enter the linear domain, although creep strains do not stabilize as eq. (7)
would predict (see Fig. 1). Consequently, the total inelastic strain rate is considered as sum of
two contributions:

45

40 -
35 | constant load te st

reloading to failure

30 1

(MPa) 20 -

unloading-reloading cycles

00 05 10 15 20 25 3.0 35
& (*1000)

Figure 1 - Uniaxial creep test at 90% of ultimate strength with unloading and reloading
cycles. The dashed line represents the boundary of the linear field.

g =gP+gd

(8)
The second term, £°, is considered to be associated with damage, according to the proposal
of Herrmann & Kestin [11]. Also this contribution is assumed to be irreversible and, as a first
approximation, it will be supposed to be of the form £ = f(0,®).
For the damage evolution law, an expression is used similar to that proposed by Bodner
[12] for metals, and later extended by Chan et al. [13] to rock salt. Its applicability to concrete
has been verified in [5].
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Starting form these observations, the expression of the potential of dissipation can be
completed by adding to €, a second term €2, that accounts for the dissipation due to damage
and for damage-induced inelastic strains:

Q4= agtr[mT @7 -6] +agtr[(oc ¢ -&]

T T T4 c S C41 9)
om0 o (e vy

af,{, alH, a?, a? (>0), with H=T or C, are material constants; & and @ are two second-

order tensors with eigenvalues @ ;’ (a=LILIII) related to the eigenvalues of o!! by the relation
68 =-mofl. Derivation of Q, respect to the stress tensor yields the damage-induced
inelastic strains:

éd=%=ang-®T-(l—mT)_l+ang-d)c-(l—mc)_l (10)

If the damage components take small values (less than about 0.2), the associated inelastic
strain given by this equation is almost identical to that computed according to the relation
proposed by Herrmann & Kestin [11].

Derivation of QO respect to the damage driving forces gives the evolution laws of damage in
tension and compression:

(sz%:aleT_(aT)a;'(YT)ag (11a)
° :-zg—gq?mc .(50)ag -(YC)ag (11b)

Note that damage increases for any value of the damage driving forces, but its evolution can
be extremely slow when the damage variables and the damage driving forces (that is, the
effective stress) take small values.

In order to complete the model, it is necessary to define the evolution laws for the plastic
variables B, R and K. Starting from the expressions proposed in [10], we can write:

R=A;(1-R/R)EE, (12)
K=A;5(1-K/KEE, (13)
with

- |5k 0
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As far as the kinematic hardening variable is concerned, the original proposal by Aubertin
[10] reads

. &P

B=A|eP--38 (15)
Beq

with

B,y = Bo(&, /&o)'™ (16)

B, being a material parameter.

According to this proposal, the plastic strains rates (7) are purely deviatoric. Application of
this expression to triaxial creep tests on concrete cylinders, however, was found to be
inappropriate since axial and diametral creep strains could not be simultaneously well
described; we will return later on this point in Section 4. A similar problem was encountered by
Chan ef al. [14] with an isotropic damage model formulated for the creep of rocksalt. This
inconsistency was explained by those authors by assuming non-associativity for the damage-
induced creep strains. Here it is proposed to modify eq. (15) by setting

. &P
B=Al{ép—%°qB] a7
Beg

where A! is now a second order tensor that shares with £ and B the principal directions. In
particular, for triaxial tests on cylinders, the two nonvanishing significant values of B read:

1

: p Al

B =AE} - L&k B, (18a)
B,

. Al

B, =Aj%5-—2iP B, (18b)
B,

In eqns. (12,13,16,18), By,
variables, while Al A;, As, As, By and €, are material parameters. Finally, note that the
evolution of these variables depends only on the plastic component of the permanent strains.

Two examples will be presented to illustrate the model capabilities. In Fig. 2 the simulation
is shown of uniaxial creep tests at different fractions of the uniaxial compressive strength, o
The model correctly accounts for the increase in creep time to failure with decreasing stress
level. In particular, at o less than about 0.5c, the time for which the material sustains the
applied stress is apparently unbounded. Also note that the three stages of primary (or
transient), secondary (or steady-state) and, possibly, tertiary creep are reproduced by the
model.

R' and K' represent the saturation values of the relevant
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Fig. 3 shows the influence of the lateral confinement upon the creep time to failure, tg, as
predicted by the model in the simulation of triaxial creep tests on cylinders at 90% of the static
strength for a given ratio r between confining pressure and axial stress. The trend of t; with r is
not monotonic and is somehow consistent with the experimentally observed trend of the
fatigue life with r [4]. This can be explained by considering that, in the simulated tests, an
increase in r is matched both by an increase in hydrostatic compression and in deviatoric stress:
these two stress components have opposite effects on fatigue life and creep time to failure;
depending on which of these two effects dominates, t; can either increase or decrease with r.

axial strain (*1000)

O+————
0 100000 200000 300000 400000
time (sec)

T I T ]

Figure 2 - Simulation of uniaxial creep tests at different stress levels.

AE+S- e,
/ . N
] \
& 2E+5- .
= 4 T e
OE+0 T T ]
0.00 0.05 0.10 0.15

Figure 3 - Predicted creep time to failure, tg, vs. ratio r between confining pressure and axial
stress for triaxial creep tests at 90% of the triaxial static strength for a given r.
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3. PARAMETER IDENTIFICATION

For sake of illustration, the procedure to identify the model parameters will be now
discussed with reference to triaxial tests on cylinders.

The model parameters are partly associated with the plastic behaviour of the material and
partly associated with damage phenomena. Thus, in principle it would be necessary to have
experimental data available from creep tests where damage phenomena are negligible, to
separately identify the first set of parameters. Nevertheless, experiments show that the damage
evolution becomes significant only after the primary and secondary creep stages are concluded.
Consequently, the parameters pertinent to the viscoplastic behaviour of the material can be
identified during these two phases. On the contrary, the material constants that define damage
and damage-induced inelastic strains can be obtained by data from the final phase of the tests
(tertiary creep).

The evolution of the parameters B;q, R’ and the coeflicients A}, A;, A; that define the
evolution laws of B, B, and R can be identified considering uni- and triaxial creep tests with
loading and reloading cycles during the pre-loading phase and at different times of the creep
test. Referring to the inelastic part of strains only, the amplitude of the current elastic domain
can be determined from the extension of vertical segment of the 6-£° plot during the loading-
reloading phase. Note that, in principle, extension tests could also be required to completely
define the linear domain. For sake of simplicity, here it is assumed that the elastic limit in
tension is unaffected by permanent strains. The mid-point of the elastic segment gives the value
of B, and B;. The values of A% and Ai depend on the initial slope of the B,-€} and B,-&}
plots, while Aj; is the initial slope of the R—egq curve.

The parameter A, can be derived from the initial slope of the primary creep curve. By
knowing the experimental value of €], which is practically constant during the secondary creep
phase, the values of K' and N can be obtained by eq. (7).

Fig. 4 shows the identification of K' and N by using the results of six triaxial tests with
different values of the ratio r. The experimental values of r and €} are reported in Table 1.
Since no unloading-reloading cycles were performed during these tests, the values of R' and

B;q were obtained by extrapolation from the results of uniaxial tests including such cycles.

Since As determines the velocity at which K reaches its saturation value K', this value can be
obtained based on the duration of the primary creep stage, while the constants €, and B, in eq.
(16) depend on the initial plastic threshold.

As far as the parameters that govern the damage evolution are concerned, a{i and a? are
obtained through the values of the creep time to rupture of the material at different stress
levels, while a? controls the velocity of the damage evolution (H=T or C).

Finally, the parameters agi are obtained from eq. (10) removing from the total inelastic
strain the plastic contribution, identified by eq. (7).
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Table 1 - Experimental values of the secondary creep rate in the triaxial tests employed for the
identification of the model parameters

test no. T éIP (Sec-l)
1819-28 0.04 3.75e-10
1825-16 0.04 2.5e-10
1824-40 0.10 1.5¢-9
1825-24 0.10 1.25¢-9
1819-38 0.14 2.5e-9
1825-28 0.14 1.75e-9
3E-9
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Figure 4 - Identification of parameters K' and N through the plot of the secondary creep rate
versus the active stress X —R.

4. NUMERICAL SIMULATIONS

The parameters identified from triaxial creep tests, according to the procedure illustrated in
the previous section, were also used to simulate uniaxial tests on three concrete specimens
tested at constant stress equal to 95% of the ultimate static strength. The relevant results are
shown in Fig. 5a,b. Fig. 5a shows plots of the axial and lateral strain versus time, while in Fig,
5b the volumetric strain is plotted versus the axial strain. On account of the experimental
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scatter, the computed model response seems to average the experimental data from the three
tests fairly well. In particular, note that the model is able to capture the phenomenon of
dilatancy that precedes failure, owing to the anisotropic description of damage.

6
5 model
'5 S 4-test# 1] test # 3
£
== 3 test # 2
S *
57 2
1 .
time (sec)
O T T T T I T T T T { T T T T_l (a)
c -1 100000 200000 300000
.g g ]
-3 34 model
S x
8% 4
[y~ 1 -
= 5] test # 2
-6 test # 1
1 -
0] (b)
| 4
-1 . .
g= | axial strain
g 24 (*1000)
o3 1 test # 3
£ES 34
U x ]
__g -4 test # 1
o 4
>
-5
. test # 2
-6 -
-7

Figure 5 - Uniaxial creep tests at 95% of the static strength: numerical simulation of three
experiments. (a) axial and lateral strain vs. time; (b) volumetric vs. axial strain.
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It is worth emphasizing that different values for the parameter A{ and A% had to be

employed for the evolution laws of B, and B,, whereas according to the original proposal from
[10] these values would be equal. Indeed, Fig. 6 shows the numerical evolution of lateral strain

vs. time: the dashed line is obtained assuming A| = Al while using two different values for A}

and Alz gives the solid line. This picture shows clearly that the original viscoplastic model, with
purely deviatoric plastic strains, when applied to concrete, is unable to simultaneously describe
the evolution of both the axial and the lateral strain.

time (sec)
0 100000 200000

0 1 1 | 1 1 1 4

model (Al1= Azl)

lateral strain (*1000)
&
|

Figure 6 - Lateral strain during uniaxial creep tests at 95% of the static strength; experimental
data from three tests and theoretical predictions with equal and different values for A: and A;l,_

Fig. 7 shows the evolution of damage variables mIC and m; in time in the simulation of the
uniaxial creep tests: note that their values are significant only after the end of secondary creep.
Also note that m; increases faster than mf. These features of the numerical model are
consistent with the experimental finding not only for creep tests but also for cyclic tests [3].

Finally, by using the same parameters, two triaxial creep tests with r = 0.14 at 90% of the
triaxial static strength were modeled [3]. The tested specimens did not fail within 400000
seconds, so that the tertiary creep stage is missing in both tests. The experimental results and
the obtained simulation are reported in Fig. 8. Here again, note that the numerical response is
in good agreement with the experimental data.
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Figure 7 - Evolution of the damage variables during the uniaxial creep tests simulated in Fig. 3.
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Figure 8 - Numerical simulation of two triaxial creep tests (r=0.14) at 90% of the static

strength,



5. CONCLUDING REMARKS

A model able to describe the behaviour of concrete subjected to sustained elevated triaxial
loading has been proposed. For this aim, the phenomena due to plasticity have been coupled to
damage through the definition of a suitable viscoplastic potential. The evolution laws of
permanent strains and damage variables are thermodynamically consistent, since they were
obtained by derivation of this potential. In this model viscoelastic strains are neglected and
creep strains are considered to be entirely unrecoverable: this is an assumption common to
other theoretical models developed for metals and rocksalt subjected to high constant stress
(see e.g. [10,13]). A procedure to identify the model constants and variables has been outlined.
The reliability of the model has been assessed through comparisons with results of uni- and
triaxial tests.

The model is featured by an important number of parameters; the procedure to identify
these parameters, however, is not impractical since they define the evolution laws of variables
which possess a clear physical meaning.

Although in principle the model is able to describe quite general load histories, the laws
proposed for the evolution of the damage variables during creep tests are inappropriate to
describe monotonic tests. Indeed, if creep tests are correctly modeled, damage turns out to be
unrealistically negligible during the pre-loading phase and during reloading to failure for
specimens that did not fail at constant stress. On account of the latter remark, the residual
strength of the material upon re-loading tums out to be unrealistically high respect to
experiments. Future developments will aim at formulating evolution laws applicable with a
broader range of tests.

The remarks recalled in the Introduction based on the results of a number of creep tests
were used as guidelines to formulate a theoretical model qualitatively accounting for the salient
features of the behaviour of concrete at high sustained stresses, namely the evolution of the
elastic domain with permanent strains and the occurrence of damage phenomena. Work is
presently in progress to establish specific relationships between any single loading parameters
and the change in stiffhess and strength of the material.
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A mechanical material model is derived for 4D Carbon/Carbon composites. By using an
anisotropic damage mechanics approach, a very simple mathematical model of the material
mechanical behavior, based on some remarkable experimentally-observed properties, is built at
the macroscopic scale. The identification of the material parameters is presented. The
predictions of the model are then compared to different tests. Fiber yarn debonding near edges
is also studied through a material mesomodel, with the mesoconstituents being: the fiber yarns,
the matrix and the interfaces. Initial results are shown for a tension specimen.

1. INTRODUCTION

The material under study was manufactured by S.E.P. (Société Européenne de
Propulsion) and is a 4D Carbon-Carbon composite comprising four reinforcement directions
parallel to the largest diagonals of a cube. These materials, called SEPCARB 4D, are used in the
throat nozzles of solid propulsion systems (Fig. 1) owing to their excellent thermo-mechanical
properties and their high resistance to ablation [1]. Structures made of SEPCARB 4D are
submitted to very high thermal gradients (from 20°C to 3000°C) as well as to complex
mechanical stresses. The aim of this study is to accurately model the thermo-mechanical
behavior of these materials, and in particular their damage mechanisms, in order to predict the
response of industrial structures.

The macroscopic behavior of this material is highly anisotropic and non-linear. Several
types of degradations are observed inside the material and near the edges. Studying these
degradations at the micro scale seems to be infeasible because of the 4D structure of the
material. Also the material has a complicated behavior and very little information is available to
build a behavior model. Thus, the approach adopted seeks to make the best use of the avalaible
information herein. A very simple mathematical material model has first been derived for
multiaxial loadings as a consequence of some remarkable experimentally-observed properties
and the material geometry. The anisotropic continuum damage mechanics theory introduced by
Ladeveze [2] is applied with the central focus being to derive the simplest damage kinematics.
Anelastic phenomena are taken into account by a plastic like model.
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Identifying the material constants and functions characterizing the studied 4D CC
composite is a rather difficult task. Fiber debonding near the edge is very significant in tensile
tests and affects the results of these tests. Proceeding further in the test analysis, a study of these
edge effect phenomena is in progress. The model is still three-dimensional, but it takes into
account the material heterogeneity and complicated architecture. As in [3-4], the model is
developed at the meso-scale, intermediate between the macro scale of the structure and the
micro scale of the fiber. For each meso-constituent (fiber yarns, matrix and interfaces), a
mechanical model is used. To rebuild a homogeneous behavior from the meso model, a
method based on the asymptotic development theory for periodic media is carried out.

Nozzle
thermal

Thermal insulation

insulation

\

Nozzle

Igniter

! Filament wound A S/
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Figure 1: Nozzle throat and Sepcarb 4D composite
2. MATERIAL AND MAIN EXPERIMENTAL FEATURE

The reinforcement yarns (fibers/matrix) have variable diameters, which are typically
between 1 and 3mm. They are positioned in four directions paralle] to the larger diagonals of a
cube (Fig. 1). One defines the X, Y and Z axis oriented perpendicularly to the cube faces, with
the base (X',Y',Z) obtained by a 45° rotation of (X,Y,Z) around Z and the vectors R e {1234) of
the reinforcement directions.

This material has a non-linear anisotropic behavior, as shown in Figure 2, where the
presented experimental results (stress - longitudinal strain) were obtained in tension in
directions X, X' and R to ambient temperature. For a loading in a direction of reinforcement,
both transversal and longitudinal strains increase linearly with the stress until a brittle failure.
Responses to tension with cycling stresses in the X and X' directions show behavior with
damage and anelastic strains. Damage of the Sepcarb 4D is attributed mainly to the
mechanisms of Yarn/Matrix interface degradations.

Results from tension tests conducted by S.E.P. in the X-direction on specimens with
circular sections of different diameters (Fig. 3) show that Yound’s modulus and failure stress
increase with the section dimensions of specimen.



353

[ |
4+ W T
4o T hmian | 6 1963 mm
120% ; === Dimcion R s0 1
Rt : —Dimcion X Ly - 707 mm?
8100+ ; Dimcion X & 40
= e b 3
b= B =
e H w 30 1 :
4 @ G
8 b 400mm
o =] 20 4 X
: 7] 225mm’
10 78mm’?
] L . " i
x e 0. 00 0. 50 1. 00 1. 50 2.00
Strain ( %) Strain (%)

Figure 2: Experimental responses of the Figure 3: Stress-strain curves of tension tests in
internal behavior obtained in tension the X-direction, at ambient temperature; influence
in the X, X' and R directions of the size of specimen section (S.E.P. results)

The failure surface of the large section specimen reveals two zones (Fig. 4):

-a rather flat central zone of yarn failure, and
-a peripheral zone approximately 15mm in width showing an irregular
surface with yarn debonding.

In contrast, the failure surface of the specimen with 10 and 30-mm diameters seems to
indicate only the presence of the zone of high debonding. These two zones allow assuming
different variations for degradations occuring far from a free surface and near the edges. This
phenomenon is attributed to the edge effect which modifies the stress distribution both in matrix
and yarns close to a free surface.

Figure 4a: Failure surface of a circular Figure 4b: Failure surface of a circular
cylindrical specimen with a section diameter  cylindrical specimen with a section diameter
of 30mm (S.E.P.) of 50mm (S.E.P.)

To approach a model of the Sepcarb 4D mechanical behavior, one have to dissociate both
the internal behavior and the yamn debonding initiated near the edges. The initial study, presented
below, aims to the model and identify, at the macroscopic scale, the "internal” behavior of
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Sepcarb 4D. The second study concerns more specifically the phenomenon of yarn debonding
linking to free edge effects. In order to take into account the material heterogeneity and complex
architecture, the model, such as in [3-4], is developed at the mesoscopic scale, intermediate
between the macro scale of the structure and the micro scale of the fiber.

3. MACROSCOPIC MODELING OF THE FAR-EDGE SEPCARB 4D
MECHANICAL BEHAVIOR

3.1. Hypotheses

This modeling approach is based on the responses obtained with the tension tests
conducted on the large-section specimens. These different responses (Fig. 2) display the very
high anisotropy of the mechanical behavior. This anisotropy is due to the reinforcement
orientations which are much stiffer than the matrix. Therefore, for a loading in a direction of
reinforcement, was obtained a linear evolution, until a brittle failure, of the transversal and
longitudinal strains as a function of the longitudinal stress. Because of the symmetry of the yam
orientations, the Young’s modulus is identical for each direction of reinforcement. Symmetries
induced by the yarn orientations also impose the same material behavior for the directions X, Y
and Z. Figure 2 shows, for tension tests in these directions, a behavior with damage and
anelastic strains.

3.2. Modeling of the elastic behavior and damage kinematics

The description of Sepcarb 4D behavior in the elastic domain is developed using the
classical Hooke tensor with only 3 coefficients. The spatial disposition and orientations of the
reinforcements impose, by symmetry, a cubic elastic behavior. In Figure 5, the variation of
Young’s modulus E(Ti) is represented, as calculated with Hooke’s tensor, and shows the high
anisotropy induced by the reinforcements.

20— R

Figure 5: Variation of Young’s modulus; surface E(ﬁ). n
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To describe the degradation state of the material, damage mechanics [5] is used and, in
particular, its extension to anisotropic damage as proposed by Ladevéze [2] and already used for
different composites [6-7-8]; the Hooke’s tensor variation is used as a damage indicator. The
main problem is to define the internal variables of damage. Two, and only two, assumptions are
introduced:

- the longitudinal modulus and Poisson coefficients remain constant for
tenston tests in each direction of reinforcement, and

- the material, even after being damaged, behaves similarly in the 4 directions
of yarns, which supposes a homogeneous distribution of the degradations in
the 4 directions; the distribution damage types have already been observed on
3D C-C composites [4].

In order to take into account these assumptions, a barycentric representation, based on the
four unit vectors Ri_ie(l_m_J) defining the reinforcement directions, is introduced. It is shown

that, from the strain energy [9], the Hooke’s tensor K can be described with the following
coefficients:

Tr[K".[Bi.Bj‘]sym.[Bk.B[‘]W],(i,j,k,l) €{1,2,3,4} (1

Since the 4 directions of reinforcement have been assumed to play identical roles, even for
the damaged material, the coefficients defined in (1) can be reduced to the following seven:

@

These seven coefficients are not independent. Relationship (3) which binds the 4 vectors
R, reveals 4 relationships between the seven parameters:

| 1 a+3b=0
4 — -

> R,=0,avec v3R,| | ¥3R,| | ¥3Ry| -1 v3R,|-1 =/ d+D+2c=0 3)
=1 1 - 1 1 e+2f+b=0

c+g+2f=0



356

Three independent coefficients that completely describe the elastic behavior are obtained
and we choose:

E+G(l—2v)

a=—3——]T—z

d=-E+3;?5(é-2v) @)
E+G(3+2v)

e=—9E‘G—ZO

This choice allows taking into account directly the experimental information obtained in
the reinforcement directions. The coefficient "a" is by definition the inverse of the Young’s
modulus of the material in a reinforcement direction. It is therefore a constant elastic parameter
denoted "a,". The coefficient "d", which is linked to the transverse modulus X'R of the Sepcarb
4D, is constant as well and denoted "d,". The damage kinematics are then determined and
associated to the latter coefficient. The parameter "e", positive by definition, is selected. h is
defined as a damage scalar coefficient, varying from 1 to infinity, equal to the fraction of the

initial value of “e" to the value corresponding to a damage state of the material:

a=a,= E(Ri)_l

—Vriv _9d-a _
E, - 16 4= )
e=eoh

3.3. Damage force - Damage evolution law
The thermodynamic force Y, associated with the parameter h is defined classically from
the elastic strain energy of the damaged material in the following way:

3 9 9
E,= gao(-A, +6A, +3A2)+§d0(Al —2A,+ A2)+Ze0h(A, -A,) (6)
with: A} = 0y’ + Oyy? + 07, Ay = OxxOyy + OxxOzz + Oz0yy , and A, = Oxy? + Oy,? + Uy,

oE
%=

G, =cst

)

The dissipation due to the damage is written: ® =Y, .h. The state of damage with quasi-
static loading is assumed to depend on the maximum force; one therefore has:

h = f(Yy), with: Y, (t)= sILiP(Yh(‘C)). (8)

"

The damage evolution law
characteristic.

Yh > h" is an experimentally-identified material
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3.4. Anelastic strain modeling

The micro defect, i.e. the damage, leads to sliding with friction in the matrix and in the
interfaces and thus to anelastic strains. More generally, it is possible to obtain coupling
phenomena between damage and anelasticity. One way to model these phenomena is to apply
plasticity mechanical modelling. The notion which seems to work quite well is to build the
model from quantities which are called "effective™: the effective stress tensor < and the

effective anelastic strain rate £°[10].

The effective stress is chosen; it defines the coupling between the classical stress and the
damage state which is involved in anelastic strains. One particular choice which will be pursued
herein is:

& = K, K '@ , with K,, the initial Hooke tensor ©)

The effective anelastic strain rate is defined from the anelastic dissipation in the following
way:

Tr|2.8°| = Trfw.57). (10
The anelastic model results from the following hypotheses:
- the behavior in the 4 reinforcement directions is only elastic,
- the hardening is assumed to be isotropic, and

- the limit of the elastic domain is defined with an anisotropic threshold which
is written:

e

with H being a fourth-order tensor which defines the coupling between the
different stresses.

(11)

By analogy with damage (like for damage, anelastic strains are blocked in the directions
of reinforcements), a system of representation of the anelastic behavior is used with the
reinforcement directions explicitly. The H tensor is then similar to the Hooke’s tensor.
Introducing the blocking, which was experimentally observed, of the longitudinal and
transversal anelastic strains for a loading in a given yarn direction, it can be shown in [9] that H
is entirely defined with only 1 parameter and thus:

f(fj,ﬁ) = \/ 2(é\"xx2 + 6wz + 6zz2 = OxxOyy = Oxx8zz — Gyy Oz | ~ R(ﬁ) -R, (12)
Anelastic flow law is obtained from the threshold function by:

f)ad—f withp=0,f<0and pf=0 (13)

2P
€

QR

ij lR=cu
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The effective accumulated anelastic strain rate is then:

b=/ + B+ EL (14)

The anelastic model is completely defined once the hardening function: "ﬁ(ﬁ)— R," as
been experimentally identified.

3.5. Model parameters identification

3.5.1. Experimental method

To experimentally identify the internal behavior, tension tests conducted on the specimens
with large diameter are used, along with more detailed tests in which edge degradations are
blocked mechanically. In order to block yarn debonding, a thin layer of resin epoxy (with a
thickness of about 0.02mm) has been deposited on the specimen tested in the L.M.T.
laboratory. The initial longitudinal elastic modulus identified in this manner is greater than the
modulus obtained with the non-coated specimen (even, despite the small dimensions of the
section of the coated specimen). In contrast, the maximum stress values obtained are less than
the one obtained with the specimen with large sections. The phenomenon of debonding,
although blocked during the first part of the tests, has occurred. The curves presented in Figure
6 allow us, in comparing the results of tests conducted on coated specimens with those
conducted on the large-section specimens, to define the limit of the influence of the resin on
edge effects (which defines the limit of the identification of the model parameters). This limit
corresponds to the appearance of unstuck marks of the resin on the coated specimen, marks
which were visually observed during the tests (Fig. 7).

60
1963 mm?2

707 mm?

280 mm?2
g ——

~ _,/’}’

Stress (MPa)

0.0 ).5 1.0 1.5 20
Strain (%)

Figure 6: Comparison of results of tension test  Figure 7: Face of a damaged specimen: yarn
conducted with specimens of several sizes and debonding and unstuck resin
on a specimen coated with a resin epoxy.

3.5.2. Elastic parameters and damage evolution law

The simplicity of the defined model allows carrying out the complete identification of the
material parameters with only 2 tension tests with cycling: the first one in a reinforcement
direction, and the other one in the X-direction. For each cycle, one obtains the maximum value
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of the stress, the longitudinal strain and 2 transversal strains measured perpendicularly to the
longitudinal direction.

With a test in a direction of reinforcement, the values of the constant elastic parameters aj
and d, are obtained. Transverse and longitudinal responses obtained from a tension test in the
X-direction yield the value of the parameter "e" as well as its evolution. For each unloading, two
values of the variable h are derived, with one taking into account the longitudinal elastic
modulus, and the other one taking into account the transverse elastic modulus (15). Values of
the associated variable Y, are obtained from the maximum value of the stress for each unload.

% = %(— ag+3d, + 6e)
(15)
2= 1—96(a0 +do - 2e)

Figure 8 presents the results generated from two tests. The points obtained from both the
longitudinal and transverse responses provide the same evolution for the parameter h. This
result constitutes an important validation of the approach used to build the internal model
presented. The curve identified from this graph is a straight line.

8 Test 1: longi.
4 "[‘\‘.':l
m Test
a Test

1
1: trans.
2: longi.
2: trans.

— Identification

M 0. 06 ), 08

0, 04
Yh (MPa)

Figure 8: Identification of the damage evolution law

3.5.3. Identification of the plastic model

"o

The hardening function is derived by calculating the values of "p" from the anelastic strain
measures, along with the values of "R(f)) + R, " from the maximum value of the stress reached

before each unload. The results obtained from 2 tests are presented in Figure 9. The identified
curve is a straight line.
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Figure 9: Identification of the hardening function
3.6. Correlation calculations/tests
To use the presented model, the classic elastic moduli is defined in the initial basis (X, Y,
Z) using the relationships between the barycentric moduli and the classic moduli:

8 G 4 d _-ao-d0+2e
E=3 730,760 > O 0%a,-d,) 24 V=15 ¥3d,+06e

(16)

The model has been identified at S.E.P. for temperatures between 0° and 2500 °C and
introduced into the F.E. computation code MARC. It has been validated by different
comparisons tests/calculations (4-point bending test, tube being submitted to an internal
pressure). Figure 10 presents results obtained both experimentally and numerically for a 4-point
bending test conducted at 1000 °C.
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Figure 10: Test/calculation results for a 4-point bending test at 1000°C
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4. STUDY OF THE DEBONDING PHENOMENON

4.1. Mesoscopic scale

Observations of the specimen failure surfaces (Fig. 4) and the edge surfaces of the
specimens (Fig. 7) show a yam debonding and slipping in the composite respectively. The aim
of this second study is to understand the origin and the evolution of this degradation in
cooection with the local redistribution of the stresses near a free surface. A study at a
mesoscopic scale allows taking into account the composite structure (organization of the yarns)
and easily modeling the mechanisms of degradation. Such an approach has already been used in
the study of Carbon/Carbon composites such as 3D Aérolor [4] and 3D EVO [3]. These
studies, carried out at the mesoscopic scale, have made it possible to understand the importance
of the interface in composite material damage.

The description of the Sepcarb 4D at the mesoscopic scale uses 3 meso-constituents,
which are:
- the yarns, cylindrical with a circular section,
- the matrix that fills the voids imposed by the presence of yarns in 4 directions
(in the case of the Sepcarb 4D, the matrix has a continuous volume), and
- the interfaces that transmit efforts between yarns and matrix.

Damage is held constant in each meso-constutuent of the cells defining the structure. The
model thus defined is consistent; results of numerical computations are independent of the
mesh.

4.2. Modeling of the meso-constituent mechanical behavior

To simplify the modeling process, it is initially assumed that the major damage
phenomenon is the yam/matrix interfaces degradation. A brittle, transverse isotropic elastic
model is therefore chosen for the yarn behavior and an isotropic elastic behavior for the matrix.
For the interface, results of many studies conducted on the problem of yarn/matrix interface
debonding in composites [11-14] are utilized. The behavior is elastic with damage; totally
damaged sliding with friction is modeled with the Coulomb law. A brittle damage threshold is
chosen to characterize the interface degradation. The threshold is defined as a quadratic criterion
on the normal and tangeant stresses of the interface:

(2

4.3. Modeling of the geometry

The Sepcarb 4D is manufactured with cylindrical yarns of circular sections. Their spatial
orientations define a priori a punctual contact surface. It can be noticed from the photograph of a
plane normal to X (Fig. 12) that the yarns, after the material manufacturing, have a rather
hexagonal-shaped section. One also notices that the angles between 3 directions of yarns
projected on a plane perpendicular to the fourth direction are 60° (Fig. 11). We have therefore
chosen to model the yarn geometry by a cylindrical form with a hexagonal section. The contact
zone between two yarns is thus surfacic in the form of a rhombus.
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Figure 11: Visualization of the angles Figure 12: Plane of normal X, modeling of the
between the projections, in a plane yarn geometry
perpendicular to one axis of the yams

4.4. 3D computation of a specimen

In order to take into account experimental results showing the influences of a free edge,
the structure chosen is a specimen in tension-compression. To simplify the development of the
mesh, the section chosen is square, instead of the circular shape of the specimen used by
S.E.P.

The dimensions of the section are between 10 and 50mm inclusive and are linked to the
material periodicity. Specimen length is approximately 250mm. Since the total length of the
specimen is high compared to the section dimensions and the period (between 5 and 10mm,
depending on the direction), the effects due to the loading (imposed displacement) on heads is
assumed not to modify the response of the specimens medium zone. The area studied is thus
reduced by utilizing the periodicity with a technique of asymptotic development.

Figure 13: Homogeneous zone of a specimen

This technique introduced in [15-16] is primarily intended to separate local effects (to the
level of an elementary cell) from global effects (macroscopic loading). Technically, an
asymptotic development to the solution of the mechanical problem is being performed. One can
find in [17] an implementation of the technique for the study of edge effects in composite
material structures. This technique has been used in [4] to develop an approach to the
mesoscopic scale of Carbon/Carbon composites which are periodic in 3 directions. The
technique of asymptotic developments is utilized for homogeneous plates in [18] and for
stratified Carbon/Carbon composite 2D periodics in [3]. Here, a technique adapted to beam 1D
periodics is developed; it will be described in a later paper.
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The mechanical problem obtained is solved numerically by the F. E. method. Because of
the complexity of the structure, we have chosen not to use an automatic three-dimensional
mesher to build the mesh, so as to more easily manage the number, the size and the form of the
finite elements. In order to use interface elements, the meshes of the different substructures
(yarn and matrix) are made compatible Several sizes have been drawn up for the mesh. Figure
15 displays the coarsest mesh of a period of the homogeneous area of a specimen.

Figure 14: Coarse mesh of the section specimen of direction X'

4.5. Computational tool

To study the influence of edge effects, the structure (a period of the homogeneous zone of
a specimen) has to be large enough. The finite-element discretized problem thus assume a very
large size (50,000 dof for the mesh presented in Figure 14, with the discretisation being the
coarsest, and the section of the specimen being only about 200mm?). Moreover, it is non-linear
because of the behavior (contact with friction) of yarn/yarn and yarn/matrix interfaces. Using a
numerical method adapted to such problems then becomes necessary.

The computational strategy proposed by P. Ladeveze [19] is used herein. This approach is
based on a formulation and on a strategy that are well-suited to the use of parallel computers.
Here, what is sought in the use of this parallelism is, above all, a high degree of both
modularity and flexibility in the description of the problem. The principles of this method are
detailed in [20]. It leads to a decomposition of the structure into sub-structures and interfaces.
The aim is to construct a mechanical and "parallel" algorithm in relying on the mechanical
properties of the problem. The contact-type non-linearities are treated in a local and mixed
manner through a constitutive law associated with the interfaces. Unlike classical techniques for
solving contact and friction problems, this approach does not introduce additional variables
(such as Lagrange multipliers) into the global resolution of the problem; these non-linearities are
treated locally at the interfaces. More over, this approach leads to a reduction in problem size
and costs for larger problems [20], even on sequential computers.

The development of the approach has led to the development, by L. CHAMPANEY, of a
semi-industrial prototype software (COFAST 3D). This software has been implemented in the
industrial calculation code CASTEM 2000 (developed by CEA: Commissariat A |'Energic
Atomique [21]) and uses its pre- and post-processing functions (meshing, stiffness matrice
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construction, visualization). Specific procedures have been added in order to use the flexibility
of the approach: research and automatic construction of the geometry of interfaces, adapted
post-processing procedures.

4.6. Mechanical characteristics of the meso-constituents

The yarn longitudinal Young’s modulus has been identified experimentally by S.E.P. [1].
Initially, in order to obtain values of the other mechanical characteristics of the meso-
constituents, we have been relying on values presented in [4], with respect to another
Carbon/Carbon composite.

The method of identifying mechanical characteristics of the meso-constituents is similar
to the one presented in [4]. Tests on sticks are in progress. A traction test will allow obtaining
the longitudinal Young’s modulus and Poisson’s coefficient v,, (with 1 being the longitudinal
direction of a yarn). The value of the shear coefficient G,, is evauated with a torsion test. The
other elastic characteristics will be obtained from the initial macroscopic values of the elastic
modulus of the material, using a homogenization technique by the asymptotic development of
3D periodical media, with the interfaces being assumed perfect.

4.7. Initial results

The results presented hereafter are currently almost all qualitative. Nevertheless, the first
numerical computations allow validating the different choices made. Indeed, the main effects
owing to the presence of the edge problem are obtained.
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Figure 15: Component X'X' of the stress field in 3 sections
with different sizes for the same macroscopic strain.

With an elastic computation (the interfacial behavior is held to be perfect), the presence of
the edge effect can already be observed. Figure 15 displays the tension/compression stress
fields obtained with 3 sections of different sizes for the same macroscopic strain. One can see
very clearly (Fig. 15) on the large section an evolution, between the edge and the heart of the
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section, of the stress value in the yarns not perpendicular to the direction of loading. One also
notices that the maximum value of the stress increases with the dimensions of the section.
These differences in the stress fields presented have an influence on the specimen stiffness, with
the stiffness being defined by the ratio of the mean over a period of the tension/compression
stress field to the macroscopic strain. The calculated stiffness increases with the section area
(Table 1). Therefore, the experimental phenomenon of the initial longitudinal modulus
sensitivity to the dimensions of the specimen section is exposed.

Section 1 2 3
Longitudinal modulus (GPa) 11.7 16.6 22

Table 1: Computation results: stiffness value of the specimen
as a function of the section size of the specimen.

A second phenomenon observed is the evolution, as a function of the section dimensions,
of the specimens, of the maximum stress attained with a tension test. Figure 16 shows the
curves (longitudinal strain - longitudinal stress intensity) obtained with the 3 sections presented.
The degradation threshold of the interfacial behavior (initially perfect and then frictional contact)
chosen for these initial calculations is a limit on the interfacial shear stress value. The
experimental phenomenon of specimen stiffening as the specimen dimensions increase is
described.

—small section

medium section

large section

0 0.2 0.4 0.6 0.8

Strain (%)

Figure 16: Macroscopic curves (longitudinal strain - stress intensity)
obtained by computation

5. CONCLUSIONS AND PERSPECTIVES

An initial model of the internal mechanical behavior of Sepcarb 4D composites has been
proposed and identified. In order to easily take into account the prefered directions which are the
4 directions of reinforcements, a model of non-linear behavior has been developed using a
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system of barycentric coordination. The elasto-plastic type model with damage thus obtained is
very simple since it necessitates only three elastic coefficients, one curve to describe the damage
evolution and one curve to describe anelasticity. The identification of this model necessitates
only 2 tension tests, a test in a direction of reinforcement with longitudinal and transversal strain
measures and an off-yarn axis test with a measure of the longitudinal strain. An experimental
point of view towards strengthening the specimen edges allows a simplified identification. The
edge effects have been fixed only partially; a stronger protection of the edges is envisaged.
Another solution consists of taking into account the influence of the debonding during testing.

The material is then studied at a smaller scale, called the mesoscopic scale, which
corresponds to the scale of the material constituents: the fiber yarns, the matrix and their
interfaces. A simple model of the mechanical behavior of these meso-constituents is developed:
brittle transverse isotropic elastic for the yarns, isotropic elastic for the matrix, and perfect then
contact with friction after a brutal damage for the interfaces. With this model, the influence on
some of the mechanical macroscopic characteristics (initial Young’s modulus and failure stress)
of the specimen section dimensions is obtained.

Nevertheless, the results obtained are still only qualitative. In order to carry out a more
precise study, it is thus necessary to verify several points: the influence of the mesh size on
results, and the influence of the interface degradation criterion, in taking into account the normal
stress in the interface, seems to help model the confinement of the material far from a free
surface.
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INTRODUCTION :

The aerospace industry has demonstrated the feasibility of particulate reinforced MMC
structural components, taking advantages of the stiffness, fatigue and friction properties of
these materials. MMC prototype component have been introduced in helicopters and aircraft's,
and series production will soon become a reality.

As MMCs are very heterogeneous materials, their mechanical properties are highly dependent
on their composition: matrix, type and volume fraction of reinforcement, interface between
matrix and particles. In order to extend the range of industrial application of MMCs, it is
therefore necessary to develop micromechanical models predicting their macroscopic
mechanical behavior from their composition. These models will be key tools for the
development and optimization of these materials.

Our objective is to predict the tensile behavior, the damage and the failure of an aluminum
X2080 reinforced by different volume fraction of silicon carbide, using a micro-macro
relationship.

1 Materials and experimental results :

The first stage of this study has been an experimental characterization of powder metallurgy
MMCs: aluminum alloy and associated unreinforced aluminum matrix. The results are used as
input and validation data for the model.

The materials were made by a powder blending and extruded route.X2080 and X2080 + SiCp
(15 and 20%) extruded round bars were used.

All the materials were both T4 heat treated.

The microstructure of MMCs has been characterized using image analysis. The particles are
almost aligned in the extrusion direction.

Their average diameter is 12um, their aspect ratio is 1,5.
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The mechanical properties of the matrix and MMC’s have been measured from tensile tests.
Results are reported in the following table:

Table 1 :
Mechanical Properties
Material E (GPa) cult (MPA) A (%) v
Matrix X2080 75 530 19 0.32
X2080+15% SiCp 100 545 6 0.27
X2080+20% SiCp_ 105 540 3.6 0.28

Introduction of SiC particles in the aluminum alloy results:
e in an increase of the material Young's modulus (high E value of SiC)
e in a decrease in the material ductility

Fractographic investigation fractography has revealed that fracture surface consists of
microvoids of sizes ranging from the micron to ten microns. The origin of these voids has been
attributed to fracture of either the SiC particles or the inclusions and precipitates.

Ductile failure consists of void nucleation, growth and coalescence stages, the relative
importance of each stage should determine the macroscopic ductility of the material.

In order to determine the microstructural damage mechanisms at the origin of the MMC static
behavior, tensile tests in-situ in a scanning electron microscope have been carried out..

In the MMCs studied, the main damage mechanism is particle failure which appears in the
largest particles or in the most elongated ones just before the macroscopic yield stress of the
material. New particles are broken until failure of the specimen which takes place by linking of
the microcracks initiated in the matrix from the broken particles.

The fracture plane of most particles is normal to the macroscopic loading axis, indicating that
the particles are broken because of the local tensile stress induced in the particle.

Generally statistical criteria are used to describe particles fracture. In this study a Weibull law
has been chosen, in which the two important parameters are the particle size and the maximum
principal stress in the particle.

The size and aspect ratio distributions of broken particles have been measured during the in-
situ tensile tests, the results are used to determine the Weibull parameters of the SiC particles.

The accumulated number of the broken particles increases with the plastic strain imposed to
the MMC.In the following graph (fig 1) , the evolution of the ratio of broken particles with the
macroscopic plastic strain is plotted as a function of their size and aspect ratio. Larger particles
are fractured first at lower strain level , then followed by smaller sized ones at higher strain
levels.
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Fig 1 : Number of broken particles function of
the macroscopic strain for different diameter and aspect ratio

2 Prediction of the tensile behavior of MMCs :

In a second stage of the study, the micromechanical model has been developed and validated
with the above mentioned experimental data. The input of the model are, the mechanical
properties of the particles which are considered as elastic brittle, the mechanical properties of
the matrix which is considered as elastoplastic, the histograms of size and aspect ratio of the
particles, the damage criterion at the origin of the failure.

The micromechanical model used to predict the tensile mechanical behavior of MMCs is based
on Mori and Tanaka's method and takes into account the plasticity of the matrix and the
damage of the constituents.

2 1 Micromechanical model:

Mori and Tanaka’s method is based on Eshelby’s original work. Its main assumption is
contained in the strain localization relation which defines the load sharing between the different
constituents. This localization relation is expressed by [1]:

8r = TrSO

T =L, +Ly(s; - 1)] LS ()

T

€, L, and €L are the average strain and stiffness tensor of the matrix and the r-th
reinforcement respectively. Sr is the Eshelby’s tensor.
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If a uniform stress Z is applied to the material, it was shown that the average local stress over
the composite is equal to Z, the corresponding strain in the material is noted E and we have:

T =c,{(0), +¢ (o),

E= c0<8>0 + c1(5)1 @

( >imeans the volume average value in the volume of the phase i

As a result, the estimation of the composite stiffness tensor can be written as:

_ _ -
L=[coLo+2c,L,T,)[coI+§fc,T,J 3)
r=1 r=1

2 2 Elastoplastic behaviour :

The model is extended to the elastoplastic behavior using the concept of secant moduli.

The theory makes use of a linear comparison material, whose elastic moduli at every instant are
chosen to coincide with the average secant moduli of the matrix to reflect its elastoplastic
behavior state. Following Eshelby’s equivalent inclusion principle and Mori-Tanaka’s mean
field method, the composite is subsequently replaced by the comparison material filled with
equivalent transformation strains. The matrix behavior is identified from the tensile stress-strain
curve of the unreinforced alloy and the composite stress-strain curve is determined step by
step by varying progressively the matrix secant modulus.

This approach differs from the original one proposed by Tandom and Weng {2] by the new
definition of the matrix effective stress. The effective stress is not defined in terms of the
averaged stress in the matrix alone but in terms of the average elastic distortional energy in the
matrix [3-4] .

It can be evaluated from the variation of the effective compliance with respect to the variation
of the local shear modulus such as:

3, .. 3u) M
2o o) =y 2Re O
G, = 2(0 c >0 2.[ ¢ 6;10]'2 ©)]

where M is the composite compliance tensor and pthe local shear modulus.

While the original theory [2], is not acceptable for porous materials under a high triaxiality
(effective stress is calculated directly from mean deviatoric stress and therefore vanishes under
an hydrostatic tension), the new theory is suitable for application for porous materials and high
triaxiality loading conditions. Compared to the secant moduli based on the average matrix
stress, the proposed method always gives softer predictions in the case of uniaxial loading.
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2 3 Damage evolution:

The fracture probability of each particles is a function of its volume V; and of the maximum

principal stress ;.
The Weibull's law can be written [5-6]:

P(o,,V,)= l—exp[—%[&) J )

g

u u

m,o,, are called shape and scale parameters.

V; and V, are the volume of the rth group and that of the reference group for which the
Weibull's parameters are determined respectively.

in our case we have [7]:

o,~1500MPa

m=4

V is the volume for a particle of diameter 10um

The number of broken particles are increasing functions of the macroscopic load (Fig 2).

We choose to replace the broken particles by penny shaped cracks located perpendicular to the
loading direction and which are oblate spheroids with the major axe being equal to the radius
of particles and the minor axe being a function of the external load (Fig 3).

Number of broken particles :
increasing function of the macroscopic load

Fracture probability
o o o 0 p o b o
O a2 v w2t N

Macroscopic Strain (%)

Fig 2 : Number of broken particles

The analytical value of the crack opening displacement h is :

h=2be3; (6)

& is the eigenstrain in the crack.
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Using Mori Tanaka's method, we have :
& =(Lo(1-8,)) " (64-0,)

Evolution of the crack opening displacement

COD pm with the macroscopic strain
0.7
0.6 Volume fraction of
0.5 particles is 20%
0.4 crack's diameter is
10pm

03
0.2
0,1

0

1 2 3 4 5 6
Macroscopic strain %

Fig 3 : Evolution of the C.OD for penny-shape

(7

The tensile stress-strain curve is calculated step by step by varying progressively the matrix
secant modulus and introducing broken particles.
composite elastic moduli are a function of the volume fraction of both unbroken and broken
particles. since the number of broken particles is a function of external macroscopic loading,
the evolution of Young's modulus can be predicted during the simulation of a stress-strain

curve.

E:
1,02
3
0,98
0,96
0,94
0,92
0.9
0,88
0,86

0,89

Young's modulus degradation

E0  X2080 +15% SiCp
T
T * MODEL
M, * EXPERIMENTAL
1 2 3 4 ] [

Macroscopical Strain

Fig 4 : Young's modulus evolution during a tensile test
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3 Prediction of failure :

Regions of the matrix adjacent to broken particles are sites with high hydrostatic tension and
hence the nucleation of cavities is expected. The failure between adjacent broken particles
appears to occur by intense growth of these cavities in the matrix. The origin of these
microvoids is attributed to failure of inclusions and precipitates. The nucleation and growth of
these cavities near the penny-shaped cracks is governed by high value of the strain near the
crack tip in shear bands.

In order to predict the failure we have to calculate the growth of these voids.

Macroscopic failure is governed by a critical volume fraction of voids.

3 .1 Stress and strain fields near the crack :

The strain distribution at the crack tip is obtained from HRR solution.
Following the HRR solution, the equivalent plastic strain g"(r,&) of the dominant J region is
represented by [8] :

g"(r,@)=(

N

ol r

J &"(N.6) ®)
r : distance from the crack tip

o, : yield strength

I, : integral constant

The original HRR solution is not suitable for porous material because the yield criterion used is
a Von Mises criterion. In our case we want to take into account the local porosity due to
decohesion of precipitates. So we have modified the original theory, following the same
procedure used by Li and Pan [9].

The yield criterion we use is calculated with Mori Tanaka's model [10]

W(Ej)=3a.23 +b.52 )

9+ 6¢ 9¢
with a = P_ b= P

i) 4]

¢p : volume fraction of microvoids near penny-shaped crack

ce’ =3a.Z2 +b.L. (10)
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by taking a=0 and b=1 (Von Misés) we can find HRR solutions in all the followed equations.

3bs..
6_03_ ast . ij vl =%Sgsu (11

o0 . Te ! 2%e

)

Sij =0 1f1$_] 6ij =1if l=_]

We suppose that the stress-strain relation in the matrix can be written like :

izi’—m(i] (12)
gy oy \oy

where n is the strain hardening exponent, a is material constant , oy and ¢y are the yield stress
and yield strain.

Using the equations 10 and 11 we can generalize the equation 12 to a multiaxial stress state.
We suppose that the hardening plasticity is isotropic and that the plastic deformation obey to

the normality rule. Then we obtain the relation between the plastic stress and plastic strain :

el "(bs, aZ 8
_'1_230{&) (_J+_'“_Jj (13)
€, o, 20, 3o,

With the condition of plane deformation we have :

3b
11 +a2m5ij=0 (14)
20¢ oe

We solve the equation 14 and we determine :

e 3b(Z2; +X33)

15
6b +2a (15)

And solving the equation 14 and 15 we can write :
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2 a [ oe) n _(3b2 +4ab|z, +(2ab - 307233 ]
&y 20e\ay 6b +2a (16a)
£ 3 (ae]n _(3b2 +4ab)zy3 +(2ab - 362}, ] .
&Y " 20e oy 6b+2a (16b)
&5 3 !
£23 _ _a(ﬁj (b0'23) (16¢)
&y 2c0e\oay
i
Using the same method we calculate oe = (3a2m2 + bZeZ)2
1
2 2 2
Te |(3b+2a)” —6ab( > 2\, 6a” —2(3b+a) 2 |2
S Ak esd bt 7 S 37 0 WPl it/ 0 SO (17
NGl { (6b+ 2a)2 ( 22 33) (6b+ 2a)2 22233 + 223 )
I
ce |3ab”+b(3b+2a)’ /5 5\ 24ab% -2b(3b+a)’ , |2
el 5 (222 + Z33) + 3 Zy2X33 +bE33 (18)
3 (6b+2a) (6b +2a)

We calculate the crack tip singularity field like Hutchinson, Rice and Rosengren {6]
With reference to polar coordinates, r and 0 , centered at the crack tip, the asymptotic crack-

tip stress, strain and displacement fields are :

J n+l~
oy —— = 0.a.b 19
5 Gy[aayo-yl(n,a,b)rjl 5,(6.a,b) (192)

n

J n+1~
i = 7 N i\ ab
% agyl:aeym'l(n,a,b)r} 5,(0.2.b) (19%)

n

)r]"ﬂ %,(6.a,b) (19¢)

u, =oeyr| ———
' Y [aeyo’yl(n,a,b
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In is a dimensionless constant

I= fn[ﬁice““cose —[sine(an(ﬁe —ﬁ,’)—E‘e(ﬁr +ﬁ,§))+ cosb G, U +G T,
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Fig 5 : The G-variations of the normalized stresses for n=5
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The 0-variations of the dimensionless functions &j; , ; and U; depend on n. These variations

are normalized by setting the maximum value of the O-variation of the effective stress

Ge = [(%)sﬁj]}z to unity

The O-variations of the stresses are represented in figure 5. A comparison of the stress plots
shows that for a fixed n, a large fraction of voids results in a small o4, a small o,,. The
generalized effective stress is found to peak between 90 and 100 deg for all the cases.

We find the same tendency as Li and Pan, but the advantage of our method is to be directly
dependent of the volume fraction of voids c,.

Thus the HRR modified singularity in conjunction with the value of J completely specifies the
near crack tip fields.
J represents the amplitude of the singular fields. We calculate J using MTanaka's model {11]:

The energy release rate of a penny-shaped crack can be defined as
1 (P

2ma)

| (21)
P=Py+Ejy =Py +Eag'vc

P is the total potential energy
P, is the total potential energy without any inhomogeneity and Eint is the interaction energy
between the applied stress and the inhomogeneity

V. is the volume of the penny-shaped crack and €* is the eigenstrain in the crack.
e =(L(1-8,) = (22)

Evolution of the energy release rate

160 Aluminium remforced
140 with 20 %aof SiC
£ 120
=
= 100
::_L 80
60

0 1 2 3 4 5

Macroscopic strain %

Fig 6 : Energy release rate
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3.2 Growth of micro-voids :

With the yield criterion (eq 9) we can calculate the growth of cavities in a porous material :
R z
Ln(—] =&, % im (23)
Rg 4(3+2¢p) Ze

Ry : initial radius of precipitate

P L

=M . triaxiality rate near the crack
€

¢p : volume fraction of cavities

The volume fraction of microvoids is a function of the strain field near the crack :

an = (l-Cp) aSkk (24)

3.3 Failure criterion :

The macroscopic failure begins by the failure of the matrix between to broken particles. This
failure will be easier if the distance between these particles is short (this is the case for a
composite reinforced by a high fraction of particles). Thus our criterion has to depend on the
growth of cavities and of the volume fraction of particles.

Our criterion is that macroscopic failure is governed by a critical growth of cavities at half of
the distance d between two broken particles

2 8
2df—R-(\/;—\/;) (25)

f: volume fraction of particles
2R : diameter of particles

This critical distance depends on the volume fraction of particles

We don't have experimentally values of the critical growth which provides the failure .
However we can compare composites reinforced with different fraction of particles.

If we know the macroscopic strain failure for a composite reinforced with 15% of particles, we
can calculate the critical growth of cavities at the distance d,s¢, For the other composites the
failure will provide when this critical growth will be obtained at the distance ds.

The results are represented in figure 7.
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Ultimate strain of MMCs :
function of volume fraction of particles
12
X 10-
E 8
-
= 6
&
= 4
=
=2
0

0 5 10 15 20 25 30
%SiCp

Fig 7 : Evolution of the failure strain of the composite
as a function of the particles volume fraction

CONCLUSION :

The use of a micromechanical model to predict the failure provides good results. It takes into
account the microstructure of the material, the mechanical properties of the constituents and so
it can be easily extended to other composites. The advantage of the model is to be key tool for
the development and optimization of composites materials.

In this study we suppose that we have an homogeneous repartition of particles which can be a
restriction for the use of the model. So we have recently develop a model providing the effect
of a particle distribution on deformation behavior of particulate metal matrix composite [10].
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ABSTRACT

Flow/damage surfaces are defined using a thermodynamics basis in terms of stress,
inelastic strain rate, and internal variables. The most meaningful definition for viscoplasticity,
surfaces of constant dissipation rate, is investigated for a unidirectional silicon
carbide/titanium composite system using two micromechanics approaches; finite element
analysis of a unit cell and the generalized method of cells. Damage, in terms of fiber/matrix
debonding, is accounted for when a tensile interfacial traction is present. Three types of
periodic microstructural architectures are considered; rectangular packing, hexagonal packing,
and square diagonal packing. The microstructural architecture is observed to influence the
shape and location of flow/damage surfaces and becomes more important as the fiber volume
fraction increases.

1. INTRODUCTION

The advent of man-made fiber-reinforced composite materials some forty years ago enabled
the design of more efficient structures and greatly expanded the domain of engineered
materials. Recent developments in the processing of unidirectional metal matrix composites
(MMCs) provide new opportunities for engineers and materials scientists to tailor
microstructural architecture for specific applications. For example, placing individual fibers in
photo-etched grooves in foils of matrix material results in a very uniform microstructure.
Since the grooves hold the fiber in place during consolidation, we can engineer the
microstructure by simply specifying the foil thickness and groove pattern. The question that
we attempt to answer herein is ‘how does microstructure effect the overall inelastic material
response in the presence of multiaxial stress states?” Furthermore, for silicon carbide/titanium
(SiC/Ti) composites the bond between the constituents is weak and this damage mode, when
active, can greatly affect the overall material response. This affect is large or small depending
on the interfacial tractions, which are dictated largely by the applied loading.
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We consider the influence of microstructural architecture effects using micromechanics, by
employing both a finite element analysis (FEA) approach and the generalized method of cells
(GMC) approach developed by Paley and Aboudi (1992) (and further extended by Aboudi,
1995).  Practical implications on experimental programs and continuum modeling are
addressed. Since the material response is viscoplastic, we consider surfaces geometrically
analogous to yield surfaces and include the effects of damage in their definition. In order to
demonstrate how fiber/matrix debonding influences overall inelasticity we sometimes show
results for the more fictitious strong bond case. We pay particular attention to definitions
which indicate the onset of inelasticity, in order to stay within a consistent thermodynamical
framework. This research merges and builds upon two recent publications; one dealing with
microstructural architectures subjected to uniaxial loadings (Arnold et al, 1996a) and the other
with macroscale flow/damage surfaces (Lissenden and Arnold, 1997a) given a fixed
architecture.

1.1 Uniaxial Response

The effect of microstructural architecture on the uniaxial response of MMCs to axial
(parallel to fiber direction) and transverse (normal to fiber direction) loading is well
documented. There is very little effect for axial loading, but a significant effect for transverse
loading, particularly in the inelastic regime. Arnold et al (1996a) provide the starting point for
the current study as well as an extensive literature review on the subject. In this sequel we
consider aligned continuous silicon carbide reinforcement of a titanium matrix. For a model
SiC/Ti system we chose the SCS-6 fiber and TIMETAL-21S matrix system having 35% fiber
volume content. The constituent response for uniaxial tensile loading is shown in Fig. 1. The
fiber response is taken to be linear elastic and temperature independent, while the matrix
response is elastic-viscoplastic and temperature dependent.

SiC/Ti stress-strain response is complex, even for uniaxial loading, because it exhibits a
distinct direction-dependence. Tensile and compressive stress-strain responses to axial and
transverse loading at room temperature (23°C) are shown in Fig. 2. Very little overall
inelasticity is evident in the axial

response as it is fiber-dominated and
thermal residual stresses cause the
proportional limit to be smaller when
subjected to tensile loading than when
a compressive loading is applied (see
Fig. 2a). For transverse loading the
proportional limit is also smaller for
tensile loading than for compressive
loading (Fig. 2b), but the cause is
fiber/matrix debonding (for
experimental results see, for example,
Majumdar and Newaz, 1992). The
transverse response is dominated by the
matrix behavior as well as the weak
interface.  Not only are tensile and
compressive responses different for both
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Figure 1: Predicted constituent response
for SiC fiber and Ti matrix
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Figure 2: Response of 8iC/Tito (a) axial and (b) transverse loading

axial and transverse loadings, but of course the axial response is different than the transverse
response.

1.2 Multiaxial Response

SiC/Ti is a candidate material for components in advanced aeropropulsion systems. The
stress state in many of these components; such as rings, shafts, and impellers; is multiaxial --
prompting the question, ‘Can we infer the multiaxial material response from the laboratory-
measured uniaxial response?’ If this were possible, then the additional complexity associated
with multiaxial experimentation could be avoided. Otherwise, multiaxial experiments are
necessary.

Consider the construction of a surface of constant deviation from proportionality (SCDFP)
from uniaxial test data. A SCDFP is defined in a similar fashion to a yield surface; by an
offset strain. However, for a SCDFP the offset is defined in the presence of stress, and thus
includes inelasticity and damage. Figure 3 shows the four points associated with uniaxial
loading in the axial-transverse stress plane as well as the complete SCDFP. It does not seem
possible to construct the complete SCDFP from uniaxial data with no a priori knowledge of
the overall multiaxial response, due to the
irregular geometric shape of the SCDFP.

Transverse
Stress

2. INELASTIC FLOW

Our subject is the inelastic response of metal
matrix composites for applications involving
elevated temperature environments. Hence, the
viscoplasticity  of  anisotropic  composite
materials susceptible to internal damage must be
addressed. From the viewpoint of structural
analysts investigating complex components, a
macroscale continuum model is preferred due to

Axial
Stress

Figure 3: Surface of constant deviation
from proportionality and the associated
points for uniaxial loading
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its numerical efficiency relative to the alternative, micromechanics analysis. However, such a
continuum model is not currently available; nor are the exploratory, characterization, and
validation experiments required to develop such a model. Thus, in the present study we will
use a theoretical framework appropriate for continuum modeling to guide us and employ two
micromechanics models to numerically perform the required experiments so as to understand
the theoretical and experimental implications and/or assumptions necessary in either approach
(continuum or micromechanics).

2.1 Theoretical Framework

The theoretical considerations used in this paper are based on an energy balance. The
primary variables are the Cauchy stress tensor, oy, the internal stress tensor, o, and
temperature, 7. Other internal state variables could also be defined and used. The current
values of these variables can be used to define the Gibbs thermodynamic potential,
G= G(o,j 0y,

strain tensor, 4;;, and the entropy, S,

T). Conjugate to these variables are the total strain tensor, g;, the internal

G, G X

€. =— = = . (1
y QGU y Baij or

Our basis is that the total work performed on the system must be equal to the sum of the stored

energy and the energy dissipated, where the stored energy includes an elastic component as
well as an inelastic component associated with the internal state. Thus, the dissipation

potential, Q = Q(O',«j,aij, T), can be defined to be 0,jé{j - a,-j&,-j.

The associated flow law and evolution equations are given by normality,

2
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and Qyy 1s called the internal compliance operator. Thus, once the functional dependencies of
the Gibbs and dissipation potentials have been determined, all of the variables are known by
simple differentiation. Let us now assume that the dissipation potential can be written in terms
of two scalar functions, Q = Q(F,G), where F depends on the deviatoric effective stress, Z,
and G depends only on the internal stress (Robinson and Ellis, 1986). The deviatoric effective
stress is the difference between the deviatoric Cauchy stress and the deviatoric internal stress.
,-’j = ——F Thus, the direction of the inelastic strain rate
JF do;

vector is normal to surfaces having F=constant. However, if it is true that the normality
condition is not satisfied in MMCs, as indicated by Nigam et al (1994) for boron/aluminum,
then it becomes necessary to develop a nonassociated flow law and evolution equations. We
will return to this issue after discussing various surface definitions.

Now the flow law can be written, &

2.2 Surface Definitions
The concept of a yield surface is well known in rate-independent plasticity, even if no one
definition of yielding has been universally adopted. The most common definitions employed
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are the proportional limit, a small (usually 5 to 20x10°®) offset strain, a back-extrapolation, and
a large (usually 0.2%) offset strain. For rate-dependent plasticity (viscoplasticity), the concept
of a strict yield surface breaks down as stress states outside the yield surface are assessable
(since no consistency condition applies). Thus the need for geometrically analogous,
thermodynamically based, flow surface definitions. Two different rate-dependent definitions
have been proposed;

1) surfaces of constant dissipation rate (SCDRs), defined by o'ijéilj _aij’iij and
2) surfaces of constant inelastic strain rate (SCISRs), defined by 8,’186

Lissenden and Arnold (1997a) demonstrated, using micromechanics, that the direction of the
overall inelastic strain rate vector can differ significantly from the outward normal of a SCISR.
Whereas for the stress planes considered, the direction of the overall inelastic strain rate vector
was reasonably close to the outward normal of the SCDRs considered. On the other hand,
SCISRs may be more amenable to experimental methods than are SCDRs because stress
quantities are not included in the definition.

Consider, for example, an isotropic monolithic metal. The effect of hydrostatic stress on
the flow of most metals is quite small and usually neglected. Flow behavior can then written

. - L 1 .
in terms of the deviatoric stress invariants J, = %ZUZU and J; = g):,-j):jk):ki by taking

1

(73 +c2)?
F= T 1 (3)
where c is an experimentally determined constant and k is the yield stress (Drucker, 1949). If
the metal is near the virgin state, i.e. o;; = 0, SCDRs and SCISRs are described by

N 2 N
b2
7 NG cJ? ( 8 ) 2 28003 o)
el = Y2 N (Fel)t—3 [ 1-—c|J3+— g0 22 5)
€ty k3(F+1){[( ) SEDEC 272 T ISP [ oF (

respectively. Clearly, SCDRs are proportional to surfaces of constant F in general SCISRs are
not. However, if the effect of J; is negligible, i.e. ¢=0, then SCISRs are also proportional to
surfaces of constant F. A similar argument has been made for selecting SCDR’s over those of
SCISR’s in the case of anisotropic J, materials as well. Also, Lissenden and Arnold (1997a)
extrapolated these results to rate-independent plasticity by considering Zijsi’j and 1,%611]-6!1 ,
where the latter is the usual equivalent inelastic strain definition, and found results analogous
to those for SCDRs and SCISRs.

One major difference exists between the above definitions and common flow surface

definitions, and that is that the overall inelastic strain S,lj and its rate, include the effect of
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fiber-matrix debonding in that we define the inelastic strain to be the strain that deviated from
proportionality. Hence, the acronym SCDFP, indicating a surface of constant deviation from
proportionality. A SCDFP is a yield surface if and only if there is no debonding.

2.3 Factors Influencing Flow

Many factors influence inelastic flow in metallic materials. Certainly, temperature and
loading rate as well as the past loading history can be important in many metals. Additionally,
microstructural architecture, degree of anisotropy, fiber-matrix bond strength, and damage
influence flow in composites. Other factors, such as the stress plane, definition, and target
value influence how flow is represented. Lissenden and Arnold (1997a,b) illustrated the
effects of many of these factors. The current paper focuses on the influence of microstructural
architecture and fiber-matrix bond strength. We consider repeating microstructures,
specifically ones having rectangular, hexagonal, and square diagonal fiber packing arrays as
shown in Fig. 4. The rectangular array has an aspect ratio, R =a/b. For the special case of a
square array, R=1. Additionally, we consider strong and weak fiber-matrix bonding. Our
definition of strong is that there is no discontinuity in the displacement field at the interface,
likewise weak means that the interface can transmit a finite traction before debonding causes
the fiber and matrix to separate.

3. MICROMECHANICS

Biaxial experiments on unidirectional continuous-fiber reinforced SiC/Ti (35% fiber by
volume, unless noted otherwise) in the axial-transverse (0;;-Co;) and transverse-transverse
(033-022) stress planes were simulated numerically using micromechanics. Initial overall
(macroscopic) flow/damage surfaces were mapped out by probing at different angles in the
various stress planes. After each probe the material state was returned to its virgin state.

3.1 Finite Element Analysis

The commercial FEA program ABAQUS (HKS, 1995) was used to determine overall
stresses and strains in the repeating unit cells of interest, shown in Fig. 5a. Generalized plane
strain triangular elements were used. Only SCDRs for strongly bonded SiC/Ti were
considered using FEA. Overall inelastic strain components were calculated as the difference
between the total strain components, found by volumetric averaging, and the elastic strain,
found from the overall stress (volumetric average) and elastic properties. While no mesh
convergence studies were performed, the discretization of the square array has been shown to
give good overall results (Lissenden and Herakovich, 1995).

3.2 Generalized Method of Cells

The generalized method of cells (GMC) (Paley and Aboudi, 1992; Aboudi, 1995) is an
approximate analytical micromechanics model that extends the original method of cells
(Aboudi, 1991) to an arbitrary number of subcells, permitting the study of different
microstructures. The reader is referred to Aboudi (1995) for the detailed equations of GMC.
The method employs standard micromechanics relations. Elastic and inelastic/thermal strain
concentration tensors, Ay and Dy, respectively, are determined for each subcell and the
effective elastic stiffness tensor, B*;y;, defined from them. GMC has been implemented into
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Figure 5: Square, hexagonal, and square diagonal discretizations for (a) FEA and (b) GMC

the micromechanics analysis code (MAC) which has many user friendly features and
significant flexibility (Wilt and Arnold, 1996). GMC discretizations for rectangular,
hexagonal, and square diagonal arrays are shown in Fig. 5b.
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3.3 Constituent Models

As mentioned previously, the fiber response is assumed to be linear elastic and temperature
independent. The elastic-viscoplastic behavior of the matrix is represented using a generalized
viscoplastic potential structure (GVIPS) model (Arnold et al, 1996b,c). This model is a fully
associative, multiaxial, nonisothermal, nonlinear kinematic hardening viscoplastic model for
use with initially isotropic metallic materials. A unique aspect of this model is the inclusion of
nonlinear hardening through the use of a compliance operator Q;i in the evolution law for the
back stress. This nonlinear tensorial operator is significant in that it allows both the flow and
evolutionary laws to be fully associative and greatly influences the multiaxial response under
nonproportional loading paths.

Weak bonding between the fiber and matrix is modeled by assuming that a jump in the
displacement field may occur under certain conditions, while the traction vector remains
continuous. In this model debonding initiates when the normal traction exceeds a critical
value or when the tangential traction exceeds a critical value, with no interaction between the
two. Once debonding has initiated, the interfacial displacement rate is made proportional to
the stress rate. In the results for SiC/Ti with a weak bond the critical traction value has been
taken to be 103 MPa and the ratio of interfacial displacement rate to stress rate after debonding
has been taken to be 0.271 mm/MPa.

4. RESULTS

Flow/damage surfaces are mapped out in a specific stress plane by probing the surface in a
number of directions from the origin. A point on the surface is found when the prescribed
target value of the appropriate definition (SCDFP, SCDR, or SCISR) is surpassed. The
material state is then returned to the virgin condition and the next probe initiated. The
equivalent loading rate for all FEA probes was 2 MPa/sec, whereas GMC probes were actually
conducted under strain control at a rate equivalent to the 2 MPa/sec in the elastic region.

FEA-determined SCDRs in the axial-transverse and transverse-transverse stress planes for
target values of 1, 5, and 10 kPa/sec are shown in Fig. 6. These surfaces are for a strongly
bonded SiC/Ti at room temperature and include thermal residual stresses. Both square (i.e.
rectangular packing with R=1) and square diagonal fiber architectures are shown. Square and
square diagonal architectures were considered because in previous work (FEA work by
Brockenbrough et al, 1991; GMC work by Arnold et al, 1996a) these two architectures
resulted in extremes in the overall uniaxial stress-strain response, where square packing was
the stiffest and square diagonal packing was the most compliant. The observation that axial
stress-strain response is unaffected by microstructure (Brockenbrough et al, 1991) is
corroborated by Fig. 6. Additionally, Fig. 6 shows that SCDRs with different target values are
not in general concentric. We hypothesize that this is related to the redistribution of stresses
and strains as inelastic flow occurs and further analysis is under way.

The effect of modifying the aspect ratio (R=0.5, 1.0, and 2.0) associated with the
rectangular fiber packing, on the 5 kPa/sec SCDRs is shown in Fig. 7 for room temperature
and 650°C in the axial-transverse and transverse-transverse stress planes. These surfaces were
determined using FEA and are for strongly bonded SiC/Ti. While aspect ratios of 0.5 and 2.0
are more extreme than those commonly fabricated, they illustrate that aspect ratio can have a
significant effect on the shape and location of SCDRs.
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One application for the kind of information that flow surfaces provide is the design of
components subjected to loads resulting in deterministic multiaxial stress states. The
microstructure can then be engineered to best resist the loading. For example, a ring mounted
on a shaft in a jet engine will rotate in service. Thus, the radial and circumferential stress
components will be tensile. Suppose the ring is to be fabricated from a hoop-wound, strongly
bonded SiC/Ti, and that the goal is to delay the onset of inelastic flow as long as possible.
According to the first quadrant of the axial-transverse stress plane in Fig. 7, the largest
possible aspect ratio should be used. The large aspect ratio provides a long ligament of matrix
material between fibers for the transverse stress to flow through, while a small aspect ratio is
associated with a short ligament of matrix between fibers and more localized flow.

In figure 8, FEA and GMC predicted 5 kPa/sec SCDRs at 650°C are compared for square
and square diagonal packings with a strong fiber-matrix bond. In the axial-transverse plane
the SCDRs predicted by FEA and GMC are in good agreement. However, in the transverse-
transverse plane SCDRs predicted by GMC are larger than those predicted by FEA. For equi-
biaxial tension the disparity is 35% for square packing and 55% for square diagonal packing.
For uniaxial transverse tension the difference between FEA and GMC is 40-45%. This
disparity is in contrast to the excellent agreement between yield surfaces defined by local
yielding (Mises stress) that Pindera and Aboudi (1988) reported for the method of cells (square
packing) and FEA. In Fig. 8 overall SCDRs are determined based on overall inelastic strain
rates and stresses, as might be done in an experiment. The disparity is troubling and the
subject of current study. However, it appears that the GMC results are qualitatively
representative of the material response and can be used at least as a quick, inexpensive, guide
for materials scientists and engineers designing microstructures.

Consider now, the more realistic case of a weak fiber-matrix bond. SCDFPs for SiC/Ti at
650°C having square and square diagonal packings are shown in Fig. 9 for strong and weak
bonds. The primary effect of a weak bond is to significantly reduce the tensile stress at which
deviation from proportional response begins. Since compressive interfacial tractions are not
detrimental to the integrity of the interface, flow surfaces and flow/damage surfaces are the
same for compressive loading (unless debonding due to Poisson expansion occurs, see
Lissenden and Arnold (1997a)). Additionally, axial loading is not observed to cause
debonding. The effect of debonding is slightly different for square and square diagonal
packings. One of these differences is
misleading. The uniaxial transverse 200
tensile stress leading to a 206p
SCDFP is 104 MPa for square
diagonal packing and 87 MPa for
square packing, possibly leading one
to believe that square diagonal packing
would be preferred. However, the
square diagonal packing exhibits no
hardening while the square packing
does (Fig. 10). Therefore, the square 0t
packing may be desirable even though 0.00 0.01 0.02
it has a lower stress for the given Strain
SCDFP. Figure 10: Uniaxial transverse tensile response
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Brockenbrough et al (1991) and 600 T - - T
Arnold et al (1996a) demonstrated that 35% fiber Fiber Packing
as the fiber volume fraction increases, L — 1L square ]
the effect of microstructural architecture
------ --- Hexagonal

increases for uniaxial loadings. Figure
11 shows 1 kPa/sec SCDRs in the axial-
transverse stress plane at 650°C for
square, hexagonal, and square diagonal
packings and fiber volume fractions of
0.35 and 0.50. The primary effect of
increasing the fiber volume fraction is
to enlarge the SCDR. Additionally, L .
larger differences in the SCDRs for the
three microstructures are observed for
the higher fiber volume fraction,
especially in quadrant III where both ]
stress components are compressive. 50% fiber
Figure 11 also indicates that the effect
of debonding on SCDRs is not as sharp
as it is on SCDFPs (Fig. 10), at least for
the target values plotted, which were
chosen to be equivalent definitions for
transverse loading at room temperature
(these target values are not equivalent at
650°C).
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of most structural components due to Axial Stress (MPa)
complex loadings and geometries as Figure 11: Effect of fiber volume fraction
well as stress concentrations.  The on 1 kPa/s SCDRs at 650°C (from GMC)
response of MMCs to multiaxial stress
states can not be inferred from uniaxial test data. It is necessary to conduct multiaxial tests to
guide and later validate theoretical models. To implement the thermodynamically based
framework discussed in Section 2 we need to determine the functional form the Gibbs and
dissipation potentials. Experimentally determined SCDRs in various stress planes will provide
excellent guidance for this task.

We have used micromechanics to generate overall flow/damage surfaces for unidirectional
MMCs having different microstructures. Except for the special case of uniaxial loading in the
direction of the fibers, microstructure influences the shape and location of the flow/damage
surface. The magnitude of the effect that microstructure has on flow/damage surfaces depends
on fiber volume fraction, definition of flow, and target value among other things. This adds
yet another level of complexity to the continuum approach to modeling multiaxial inelastic
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response of MMCs. Thus, in contrast to flow in isotropic materials where the dissipation
potential can be written in terms of stress invariants, internal state invariants, and temperature;
we must also consider directionality, microstructure, and debonding. This constitutes a most
difficult task.

A weak fiber/matrix bond significantly influences the shape of the flow/damage surface. A
dramatic flattening of the surface is observed for transverse tensile loading. Although not
considered in this work, debonding also occurs under shear loading.

In conclusion, flow/damage surfaces need to be determined experimentally for a range of
target values as well as different microstructures. These results will provide validation for
micromechanics models and guidance for continuum models.
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Calibration and validation of an anisotropic elasto-plastic
damage model for sheet metal forming
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The anisotropic elasto-plastic damage model developed by Y.Y. Zhu [1] is
summarised, then its calibration method is presented, and applied on two steel
sheets : one is adapted for deep drawing and the other one is a high-tensile steel.
The first results from the simulations of Nakazyma tests are discussed, then the
conclusions define the potentials of such model as well as its limitation and the
intended further work is described.

1. INTRODUCTION

In industry, simulations of sheet metal forming operations by means of FEM
code are becoming a necessity during product and process development. However,
still a lot of researches has to be done before results of such simulations become
sufficiently accurate and predict correctly location and moment of failure events.

The anisotropic behaviour of sheet is well known, for instance a circular cup
drawned from a circular piece of metal sheet using axisymmetric tools often
presents an ondulating rim called earing. The origin of such a behaviour is the
crystallographic nature of the plastic metal deformation. The use of anisotropic
elasto-plastic models allow the description of such phenomena, current cases of 4
ears can be accurately predicted by a classical Hill model [2], but more singular
cases of 6 ears request an accurate yield locus shape based for instance on
texture measurements and polycrystal plasticity as the model developed by P.
Van Houtte [3].

An accurate initial yield locus is not sufficient to model sheet metal forming of
complex shapes because in such cases strain paths are not proportional. So the
work hardening rate needs a particular attention, if one wants to model the
Bauschinger effect and the cross effect. The physics based work-hardening model
proposed by Teodosiu [4] is an interesting alternative to the conventional
phenomenological models.

Concerning the failure prediction, previous studies [5] from our department
have demonstrated the interest of an approach based on the continuous damage
mechanics compared to an uncoupled approach based on various fracture criteria.
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The uncoupled method based on post processing induces very low extra
computation costs, however, it is difficult to find one criterion able to predict all
failure types as many different mechanisms exist such as internal or external
necking, large shear deformation, nucleation, growth and coalescence of voids
and so on. From our experience, the fully coupled approach based on the
continuum damage theory is more attractive as it is able to characterise micro-
crack initiation and growth in ductile materials for different loading paths such
as shear, tensile or compression state ... This previous work [5] was dedicated to
isotropic elasto-plastic damage model and has been validated by experiments on
bulk aluminium.

The damage models and their softening behaviour lead however to numerical
problems as mesh dependency which can be reduced by means of viscoplastic,
dynamic or thermal regularisation. Another solution to prevent mesh dependency
is the non local approach [6].

Damage models such as Gurson's one [7] or its recent improvement proposed
by Gologanu [8] need precise data to describe nucleation growth and coalescence
of voids accurately. Such information is difficult to get from macroscopic tests
and must rely on microscopic measurements of voids [9] which consists in a very
long investigation. The models proposed by Lemaitre and Chaboche [10] have
perhaps shorter roots in microscopics physics but have the advantage of being
calibrated by macroscopic tests, this is the major reason of our choice of such a
type of model. Their success for isotropic materials are numerous [11], the model
presented here is one trial to extend such a model to anisotropic cases.

2.Y.Y. ZHU'S ANISOTROPIC ELASTOPLASTIC DAMAGE MODEL

A short literature review of anisotropic elastoplastic damage models can be
found in [12]. In fact, Zhu's model is a modified version from previous
constitutive laws proposed by Cordebois and Sidoroff [13, 14], its main features
are the following ones :

(1) Three major anisotropies are taken into account, including : anisotropic
elasticity, anisotropic plasticity and anisotropic damage;

(2) The generalized damage effect tensor M proposed by Chow and Wang [15] is
used;

(3) A new damage characteristic tensor J based on the hypothesis of damage
energy equivalence is proposed;

(4) An effective computational integration algorithm with two step split operators
is proposed;

(5) As large displacements and strains happen, the definition of local axes fitted
on material principal axes is necessary, the local reference system proposed by
Munhoven [16] is used;

(6) Hill yield locus is adapted to describe plastic behaviour, however the plastic
tensor H is not assumed constant during hardening, a plastic energy
equivalence rule is adopted.
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2.1. The anisotropic damage

One basic hypothesis in most isotropic and anisotropic models of continuum
damage mechanics is that, neglecting the details of microscopic damage growth,
damage can be viewed as a macroscopic state variable which reflects the average
microscopic damage growth and modifies the stress in the sense of "effective
stress". This basic assumption of effective stress can be stated this way : there
exists a "damage effect tensor" M (D) applied to the stress tensor g which defines

the effective stress tensor ¢ [10], that is :

oc=M(D)o 1)
where the damage effect tensor M (D) is a second-order or fourth-order tensor
depending on the damage tensor D. Note that four fundamental variables of
continuum damage mechanics have been introduced in the foregoing hypothesis,
i.e. the damage tensor D, the damage effect tensor M (D), the effective stress
tensor ¢ and effective strain tensor €.

Anisotropic damage may be characterised by a symmetric second-order tensor
D, because of its mathematical simplicity. There is no uniquely defined
mathematical formulation of M (D), Zhu's choice is the one proposed by Chow and
Wang [15] which has the advantages of a possible reduction to a one scalar
variable for isotropic damage and of having simple expression outside the stress
tensor principle directions.

In the principal co-ordinate system of damage, which in our formulation is
assumed to be the material principal system where Hill yield locus is expressed,
we have :

[611622 033023031012 ]T = M[0110220330230-31612 ]T (2)
with the fourth rank symmetric tensor :
M = diag
1 1 1 1 1 1
3)

1-D,’1-D,’1~-D,’ J1-D,)(1-D,)’ J(1-D,)(1-D,)’ J(1-D,)(1-D,)

Instead of the conventional postulate of strain or stress equivalence, an
hypothesis of energy equivalence is used. It states that the complementary
elastic energy for a damaged material has the same form as that of a fictitious
undamaged material except that the stress is replaced by the effective stress in
the energy formulation. Mathematically,

— 1- - 1 ,—
W.(c,D)=W.(g,D)or 5o C'g=50"Cc 4)
where C_and __C—e are the virgin and the damage elastic material stiffness tensors
respectively. By recalling (1), it can be easily proved that :

C.'=M(D)C'M(D) (5)

and according to the hypothesis of energy equivalence the effective elastic strain
vector is :

e, =Me, 6)
where :
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M =diag
[l—Dl,l—D2,1-Da,J(l—Dz)(l—Da),Jﬁ—Ds)(l—Dl),J(l—Dl)(l—Dz)] (7

2.2 General thermodynamic analysis
2.2.1 State variables

The internal variables to be used in the thermodynamic analysis are listed,
together with their associated thermodynamic forces, in Table 1. The general
structure of the constitutive equations is furnished by the well-established
thermodynamic theory of irreversible processes with such state wvariables.
Hereafter, isothermal condition 1s assumed.

Table 1

State variables Associated thermodynamic forces

Elastic strain g, Cauchy stress ¢

Accumulated plastic strain o Plastic hardening threshold R

Damage variable D = (D, D, D,) Damage energy release rate Y = (Y, Y, Y,)
Overall damage B Damage strengthening threshold B

2.2.2 Thermodynamic potential

As 1t has been indicated in Lemaitre [10], uncoupled plasticity and elasticity
are assumed such that the elastic properties depend only on damage variables
and not on the dislocation density represented by o. For practical purposes,
another hypothesis is introduced : energies involved in plastic flow and damage
processes, dissipated by heat or stored in the material, are independent.
Consequently, in the present model, the Helmholtz free energy takes the
following form {17] :
py(e,,D,a,B) =W, (e, ,D)+vy, (o) +y,(B) (8)
where W, (¢,,D) is the elastic strain energy, y (o) the free energy due to plastic
hardening and w,(B) the free energy due to damage hardening. The

complementary energy is obtained from the Legendre transformation of the free

energy with respect to strain, i.e.

pll(c,D,a,p) =o€, —py(e,,D,0,B)=W,(c,D) -y (o) -y ,(B) 9
According to the energy equivalence hypothesis, the elastic strain energy

W,(g,,D) and the complementary elastic energy W,(g,D) can be evaluated and

following the rules of thermodynamics of irreversible processes, the associated
thermodynamic forces are given by :



405

=2 _ e e
- age e e
oy oy, (a)
(1oa)b:c:d:)
TP T op
_ 9y _ on_ W(sD)__ ,, ..oM
X‘pag‘“pag“ aD =-0 MC, 2D 2

The negative of Y can be considered as the elastic strain energy rate associated
with a unit damage increment as it is easy to show that :

1 dW,
-Y="-72= 11
X 2 dD :|at constant ¢ ( )

Y is often given the name of "damage energy release rate" [10].

2.2.3 The dissipation power

According to the second law of thermodynamics, the total dissipation power
with convexity and normality properties is :
®=0¢ -Ra~YD-Bf20 (12)
Within the hypothesis of independence of energy dissipations between plastic
flow and damage processes, eq. (12) can be separated into two parts such that :
o¢ ~Ra20and -YD-BB >0 (13)
Equation (13) shows the existence of a plastic dissipative potential and a damage
dissipative potential, i.e.
F,(0,D,R)=0and F,(Y,B)=0 (14)

in which the former represents the plastic yield criterion; the latter is the
damage evolution criterion. In case the criteria F, =0 and F, =0 are satisfied,
the actual values of o,R,Y,B will make the dissipation power of eq. (12) a
stationary value.

If we introduce Lagrange multipliers A , and A 45 €q. (12) can be written :

®=0¢ -Ra-YD-BB-A,F,-A,F, (15)
Thus we have :

o . OF, 3 . . OF,

9 TG TG gy 0P hGy .
aﬁ_O:'_j\’ aFP aﬁ_ 2 xai

R =075 ST 07B=hap

2.3 Fully coupled anisotropic elastoplastic damage model
2.3.1 Anisotropic elasticity and damage
When a material is damaged, the constitutive relation is :

c=Ceorg, =C, o (17)
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The classical Hook's elastic tensor for orthotropic materials combined with
equation (5) yields to the following expression :
r

! Vi k)
3 0 0 0
E(1-D) (1-D)X1-Dy)E, (1= DXi-DyE
“Va ! )] %
£ 2 0 0 0
(A-DX1-D)E;  Ej(-Dy) (1- DyX1- D,)E, -
E 22
22 - vy ~Vy 1
2 0 0 0 ;
£ - - -
By | -DNI-DpEy (=DI-DPEy  Ey-Dy | (18)
- 1
€ o
» 0 0 0 EEEEE—— 0 0 23
26,,(1- D, X1 - Dy)
& »(-D, 3 -
1 31
1| o 0 0 0 Ee— 0
(o4
2Gy (1= Dy X1 - Dy 12
1
0 0 0 0 0
L 26, (1- D)1= D) |

In order to guarantee the positive definiteness of ée, the following conditions
should be satisfied :
0<A, <1with A, =1-VyVyy = VyVig = VgVas = VipVasVy — Vo Vig Vi
0<l-v,v,<l(nosumoni,j), 0<D; <1 (19)
G,>0, G;,>0, G,>0, E >0, E,>0, E,>0
Orthotropic symmetry assumes also the following equalities expressed in the
initial state (D, =D,=D, =0):

Yz Yo Yn _Ju Ve I (20)

2.3.2 Anisotropic plastic yield surface
In the damage characterisation of materials undergoing large plastic strains,
Hill's yield criterion in stress space is expressed in the following form :

F,(o,D,R)=F,(c,R)=0r-R,~R(0)=0 (21)
where R, is the initial strain hardening threshold.
The effective equivalent stress or is:

1 r 1/2 1 1/2
- 1 " (1 ,—
cr—{zg Hg} —{29 @} (22)
The effective plastic characteristic tensor H is given by :
H=M(D)HM(D) (23)

The positive definite tensor H for orthotropic materials is represented by a 6x6
matrix in the material principal co-ordinate system [2] :
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'G+H -H -G 0 0 0
-H H+F -F 0 0 O

He -G -F F+G 0 0 O (24)
= 0 0 0 N O O
0 0 0 0 L O
0 0 0 0 0 M

where F, G, H, L, M, N are parameters characterising the current state of plastic
anisotropy. For a strain-hardening material, the uniaxial yield stress varies with
increasing plastic strain, and therefore the anisotropic parameters should also
vary, since they are functions of the current yield stress [17]. For sheet metal
forming, this can be easily experimentally checked by measuring the well-known
Lankford coefficient r, ratio of transversal and thickness strain rate during a
tensile test. This ratio depends on the angle between the tensile and the rolling
direction, this fact is directly connected to F G H L M N parameters, expression
of the anisotropic property of the sheet. However, the Lankford coefficient is not
constant during each tensile test, it depends on plastic strain, this yields to the
conclusion that H tensor must vary. As this increases the model complexity, a lot
of Hill models neglect this fact and use a constant H tensor.

GA Ey = initial effective equivalent plastic
o . — & stress
& " G, = initial effective plastic stress in

direction i
o r = effective equivalent stress
corresponding to o

$ Ep, = effective stress in direction i

leading to the same plastic work as or
E, = slope of effective equivalent stress
plastic strain curve
E, = slope of effective stress plastic
strain curve in direction i

In Zhu's model, the H tensor evolution is based on the plastic work equivalence
in each direction. The simple case of a linear work hardening material is
described by figure 1 where for shortness indice eq is dropped.

_2 -2 _2 _2

w, =E(O’F,'—O"\v,‘)=ﬁ(o'F—O’y)= plastic work (25)

i

Figure 1. Equating plastic work

’
In this case, equating plastic work leads to following ratios :

Cr

2 —2
OF

a; —[‘ j = =2 —2 . =3

OFi (Eti/Et)(O'p—O'y)'i'Gyi
withi=1, 2, 3, 23, 31, 12.

(26)
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The relation between a, and classical anisotropic parameters are listed
hereafter :

G+H=2a, -H=-a,-a,+a; N =2a,
H+F=2a, -G=-a,+a,—a, L=2a, (27)
F+G=2a, -F=a,-a,-a;, M=2aq,

Obviously, if direction 1 is taken as reference direction a, =1. This hardening

approach induces changes in yield shape and yield size.

The plastic constitutive equations incorporating material damage may be
derived by taking the yield criterion (21) as a potential function. By assuming an
associated flow rule, the plastic strain is characterised as follows :

. oF » MHMog .
£, = ;\'P 90 = 26;- A'.D (28)
(plastic flow rule)

. . dR
B=% o (29)
(isotropic hardening rule)

. . . (30)
(plastic loading / unloading rule)

{Fp <0,i,20,A,F, =0

2.3.3 Damage evolution law and damage surface
In a similar way to the arguments leading to plastic dissipative potential, one

can assume that there exists a surface F,=0, which separates the damaging

domain from the undamaging domain. A damage criterion in a quadratic

homogeneous function of the damage energy release rate Y was proposed [13,
14] .

F,=Y,-B,-B(B)=0 (31)
where the equivalent damage energy release rate Y, is defined by :

1 1/2
Y, = [gzuz} (32)

in which J is the damage characteristic tensor.

The determination of a suitable damage characteristic tensor J, which is
simple enough to be applied and yet describes accurately the non-linear nature of
damage growth, may well be the most important aspect in the present
formulation of anisotropic damage evolution law.

Normally, J should be a fourth order tensor as H. However, since we work on
the principal co-ordinate system of damage, it can be treated like a second order
tensor. The damage characteristic tensor J proposed by Zhu is an extension of the
formulation due to Lu [18], it is based on the damage energy equivalence.

J, Nd,dJ, ,/J1J3
J=2 1/JIJ2 J, NO A (33)
,/JlJa 1/JQJ3 J,
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In the case of damage hardening materials, the equivalent damage energy
released rate Y, increases with the total damage growth, and hence, the
anisotropic parameters (J,, J,, J,) in the above equation should also vary. Their
evolution follows the same principle then for H tensor component except that
plastic work is here replaced by damage work. For the case of linear damage
hardening, and the choice of component Y, as reference direction, J, and J, are
computed by relations (34) and J, = 1.

J Y, 34

7D, DY Y+ ¥} A
withi=2or 3.

Figure 2recalls Y, Y, Y, Y

oi?

D,,, D, significances.

¥ A

YO

D4 Dj
Figure 2. Equating damage work.
In much the same way as the definition of plastic flow, the evolution law of
anisotropic damage is characterised below :
. . OF, JY

D=- dg=—2—_yg7»d=X Ay

. * ClX
withY =- 2.,
(damage evolution rule)

(35)

oF,
dI; o8 dB

B= &E = d—Bxd (36)

(damage hardening rule)

B=_j“ =j‘d

F,<0,A,20,A,F,=0
{d d dtd (37)

(damage loading/ unloading rule)

2.4 Final constitutive relations
The complete set of equations is available in [1, 12], here we just recall the
algebraic way to reach it and the final form of the result.
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According to elastic constitutive relations and to the effective strain tensor
definition (6),we have :
o=C,Me, (38)
Using the additive decomposition of strain rate in an elastic and plastic part as
well as the time derivative of the inverse of the damage effect tensor and the
damage rate equation (35), the objective rate form of equation (38) is obtained :

c=CM"¢-C%,-D'A, (39)

where C  and D are explicitly defined in [1] and * subscript means objective rate.
Finally the objective rate of the stress tensor is easily computed as :

8§=M"'o-M"'Mg (40)
Concerning damage evolution, starting from the damage energy released rate
Y in (10d), its time derivative is computed :
Y=J'¢+HA,+T'4, (41)
where J', H and T  are explicitly defined in [1].
The final set of equations is composed by equations (28, 29, 30, 35, 36, 37, 40,
41) and the return mapping algorithms proposed by Simo [19] is applied.

3. CALIBRATION METHOD OF Y.Y. ZHU’S ANISOTROPIC
ELASTOPLASTIC DAMAGEMODEL

As implemented in the non-linear finite element code LAGAMINE from
Department MSM, Y.Y. Zhu’s model need following data :

* the effective stress strain curves o¢ in each tensile and shear direction (11, 22,
33, 23, 31, 12) in the materials reference frame ;

» the initial damage energy release rate versus associated damage component
Y, D, in each materials principal direction 1, 2, 3 ;

e the initial materials reference frame position is expressed according to global
axis used for finite element mesh.

. 2 | Transversal
Yo direction

- \ @ 1
3z Rolling
direction

Figure 3. Definition of reference axis

Let us consider a sheet, where rolling direction is assumed to be 1 direction,
three different set of experiments will provide the necessary values :
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e normalized tensile tests in direction 11, 22 and in direction o = 45° (figure 3
defines this direction) with accurate measurements in the field of small strains
for anisotropic elastic parameters ;

e normalized tensile tests performed in multiple directions o with accurate
measurements in the field of large strains for anisotropic plastic parameters ;

o for damage evolution law, non classical tensile tests with numerous loading
and unloading cycles in directions 11 and 22, with sample shape adapted to
localize striction position for damage parameters.

The detailed procedure is described hereafter.

3.1 Calibration of the initial anisotropic elastic properties

Tensile test in direction o = 0, 45 and 90° are performed with accurate
measures of longitudinal ¢, transversal ¢ and thickness ¢, strain. Figure 3
defines local axis during tensile experiment (x, y, z) and material reference frame
(1, 2, 3). Recalling classical rotation equations , local stress and strain component

(o,, 6, G, &, &, &) are directly related to stress and strain components in
material axis (G,,, G, G,;, €, €5, E)-
&, cos’ & sin’ & —2cosoasine || &,
&, p=| sin’a cos’ & 2cosasina | &, (42)
g, cososin@  —cososina  cos’ o —sin’ & || &,

where £ can be replaced by ¢ or ¢.

So equation (18) written in material reference axis describes the stress-strain
relation in the initial elastic field when damage has not yet occurred (D, D,, D, =
0), we find :

. o] -Ege -E¢
o fortensiletest a=0°E, =—=~ v,=—22 y, =——L= (43)
EI GI GI
. o -E..e -Et
o for tensile test ¢ =90°E, = —= v, =——2 y =2z (44)
EII GI GX
e for tensile test o =45°:
011 622 81’1 + 8)’)’
£, =7V, == —
11 E‘1 12 El 2
622 0-11 En + 8)’)’
€py = - =V oy = ——— (45)
22 E2 21 E2 2
cxx
11 =0y =0 = _2‘

which yields to :
1 4e, 1-v, 1-v,

G, c E E,

x

(46)

So we still miss E;, G,, and G,,, and the following assumptions are done :
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Gy, =Gy, = Gy
g2t “o

3.2 Calibration of a classical Hill matrix for plastic behaviour

As it will be described in section 3.4, this intermediate step is necessary in
order to reach the needed (ot ), curves. So forgetting, the frame of damage
approach, we must fit the classical Hill parameters from tensile experiments. We
have chosen the method proposed by Noat [20] because his final plastic
parameters take into account in a nice weighted way both stress and strain
measurements. However, we have adapted this method to our plastic work
equivalence assumption in each direction.

The classical Hill model can be retrieved from (22, 23, 24) equations where no
damage is assumed. This leads to following expression :
F(6, ~064)" +G(0,, — Gy )* + H(G,, — 6, )" + 2NoZ, + 2Lck, + 2Mo}, = 262 (48)

Using axis transformation relation (42) and Hill’s formula (48), we can express
the plastic stress for one tensile test in an o direction by :

20,

(H+G)+(F-G)sin*(o)+ (2N -2H - G)sin*(a)cos* (o)

The Lankford coefficient already defined in section 2.3.2 can be expressed
thanks to the normalized rule applied on Hill criterium. This gives the final
result :

oy(a)= (49)

H-(F+G+4H-2N)sin*(o)cos*(a)
Fsin®*(a)+Geos®*(a)

In relations (49) and (50), H index means : value deduced from Hill plasticity,

and in the following functional ¢, exp. index significates value deduced from

experiments :

2
G (ai)_ ex( i)
0= Z(l—n){ H D } el (a)f (51)
Fop

i=1,j

(o) = (50)

where j gives the total number of different directions o, explored by experiments,
1) is a weighting factor defining the weight of stress and strain measurement and
Oy, 18 the stress measurement average.

We determine the set of parameters F, G, H, N minimising the functional ¢ by
a classical least square method for different material states. From the general
Hill formula (48) and the knowledge of plastic work level, the necessary multi-
linear stress strain curves (o,,€,), (0,, €,,), (6,,&,), (6,,€,,) can be produced. As no
information on (o, ¢,,) and (o, &,,) curves are available, they are assumed to be
equal to (o,¢,,) curve.

3.3 Calibration of the damage model
The sample shape is modified from the one used in preceding sections 3.1 and
3.2. Our goal is to localize the striction phenomena where our longitudinal and
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thickness extensometers are settled. The shape defined on figure 4 has been
chosen among others for the quite good homogeneity property of the stress and
strain fields in the reduced section [21].

130
- 40 40
|2
T
| e 100 > |
e 220 >

Figure 4. Shape description of the samples used for damage measures.

The needed curves are the damage energy released rate-damage ones: YD,
From equation (10d) applied on a tensile test in a direction i, we get :
2
fo ¥
Y =77 52
‘" EQ-D) (52)
Thanks to the loading-unloading cycles, the evolution of the effective Young
modulus Ei(g;) is measured. This curve associated with equation (18) gives the

damage component evolution D,(¢,) :

D(e,)=1- % (53)

where E; is the initial value of the Young modulus.

So as o,(¢,;) is known by measurement and D,(¢,) is defined by equation (53)
using equation (52), we can produce Y, D, curves easily for i equal 1 and 2. In our
model, a bilinear model is fitted on these experimental points (fig. 5).

35

linear regression curve

b '
0 0.1 0.2 0.3 0.4 05

Damage D1

Figure 5. Bilinear description of the damage energy released rate (N/mm?) for a
classical deep drawing steel.

Concerning the thickness direction, such a direct approach cannot be applied as it
is not possible to perform cyclic tensile test in this direction. However the Y,
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value is directly deduced from equation (52) where D, equal zero. For D,, value,
we take advantage of the thickness measurement during the performed tensile
tests, a direct algebraic transformation of equation (18) gives :
V3,0,
[t} (5 4)
(1-D,(e;))Ese;,
Knowing the damage work associated to g,and the assumption of damage

D,(e;)=1+

work equivalence in each direction, D,, is obtained.

3.4 Computations of ( E, £ ), curves

Thanks to the previous experiment analysis, we dispose of :

s (o,e,;) multi-linear curves for i = 11, 22, 33, 13, 32, 12 (see section 3.2) ;
e D,(e,) curves are measured from equation (52) for i = 11 and 22.

So, using relation (2), (6,€;) curves are easily obtained for directions 11 and
22. To apply the same approach to other directions, we miss D,(¢g,) curves.
However, the curve Y, (D,) has been computed thanks to the damage work
equivalence principle. So using relation (52) with the o, stress produced by the
Hill model, we can reach D,,(e,,) curve and the final (03€33) behaviour.

Concerning shear curve, using the (5, ¢,) Hill curve we integrate in a
decoupled way damage evolution and then apply relation (2). Equality of shear
curves is again assumed.

4. CALIBRATION OF TWO DIFFERENT STEEL SHEETS

The above procedure has been applied on one high tensile steel sheet (code 1)
and on a classical deep drawing steel sheet (code 2) The table 2 gives the final
set of parameters for a fitting using tensile test in large strains in 7 directions (o.
=0, 15, 30, 45, 60, 75, 90) and the weighting coefficient of j equal to 0,5.

Table 2
The material parameters
Elastic parameters

El Ez Ea GIZ Hip Hig s
1 210000 203500 207000 83000 0.28 0.32 0.30
2 157000 158000 157700 53600 0.36 0.34 0.34
Initial flow stress (G = s here) Linear effective hardening assumption
T, s G,z 2 ;,va 2 ;uz 2 Eu 2 E:z 2 E:a Ezm
(N/mm”) (N/mm" (N/mm? ©N/mm® ©N/mm?® (N/mm”) (N/mm°®) (N/mm?)
1 266 277 284 161 5338 6026 6076 459
2 108 104 110 65 5262 5167 3029 650
Damage curve parameters
Y, ¥, Y, D, D, D,
(N/mm®  (N/mm®) (N/mm® N/mm®» ©N/mm? (N/mm?)
1 0.34 0.38 0.39 14.65 13.45 14.05

2 0.075 0.068 0.077 20.55 20.55 3.53
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(b) deep drawing steel
Figure 6. Evolution of Young modulus with axial strain.

For high tensile steel sheet, the experiment results have defined decreasing
Young modulus (figure 6a), so the model application seems quite right. However
for deep drawing steel sheet, this decreasing character (figure 6b) is not observed
and damage curve parameters are quite inaccurate. The first rough analysis of

the experiments has produced a set of parameters using the linear hardening
assumption.

5. VALIDATION EXPERIMENTS AND SIMULATIONS

Reference [1] has already presented experiments and simulations such as

hemispherical punch stretching or deep drawing by cylindrical and square
punches.
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Blank holder
- 33 >
— Sheet
0.8
=22
82 -
e 121 -

Figure 7. Biaxial Nakazyma test conditions

As one of our present goals is the prediction of forming limit diagrams, we
have simulated the Nakazyma test producing the biaxial tensile condition. This
test can be described by following features :

e initial rectangular blank of 0.8 mm thick;

e spherical punch with a radius of 80 mm;

e Coulomb friction coefficient of 0,05;

¢ blankholder shape and die shape are defined on figure 7.

The blank is fixed horizontally on a circle of 242 mm diameter, so only this
zone is meshed. Vertical displacement is prevented by contact with die and
blankholder which are both totally fixed.

The simulations are computed with the non linear finite element code
LAGAMINE developed by the department MSM of Liege University. The volume
finite element discretization consists in one layer of 705 8-node mixed elements.
The tools are modelled by one spherical segment for the punch and two sets of
respectively 20 and 140 triangles for the blankholder and die. The contact
problem is treated by 1410 surface contact elements based on a penalty approach
[22] with the penalty coefficient of 500 Mpa/mm°’. The simulation is driven by the
vertical punch displacement and is stopped for a punch depth of 32 mm. By
symmetry only one quarter of the experiment is simulated. Figure 8 presents the
equivalent strain at the punch depth of 30 mm, the material dependence is
clearly illustrated. The steel for deep drawing application shows a large
repartition of the strain when the high-tensile steel has a strained zone more
localized and of higher strain level.

The equivalent damage variable is very interesting, again a different
behaviour can be checked for each steel (figure 9). The rupture localization
predicted by the higher value of damage are in good concordance with the
experimental crack observation.



417

0.204

0.000 —

a) high tensile steel

0.109

b) deep drawing steel

Figure 8. Equivalent strain computed for a punch depth of 30 mm.
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0.418-

0.000 ~—

0.052

0.004 ¢

b) deep drawing steel

Figure 9. Equivalent damage variable computed for a punch depth of 30 mm.
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7. CONCLUSION

An energy-based anisotropic elastoplastic damage model at finite strain has
been presented in this paper to characterize progressive damage and crack
growth. Throughout the discussion, the concept of energy plays a very important
role not only in deriving the damage effect tensor M (D), the damage
characteristic tensor J and the effective plastic characteristic tensor H but also in
establishing the plastic evolution law and the damage evolution law.

Even if the presented model - experiment comparisons are already quite
encouraging, the lack of decreasing values of Young modulus for deep drawing
steel sets a problem to the basic damage theory assumptions. We think that a
strong texture effect could explain this experimental observation. We are looking
for an increase of Young modulus due to texture evolution compensated by a
decrease of Young modulus due to damage. Our measurements should be under
this assumption, the result of an unstable equilibrium between these two
tendencies. This must of course be checked and it will be our main goal in our
further investigation. However, validation procedure is still in progress as we
intend to simulate 4 other geometries of Nakazyma tests associated to other
typical points of Forming Limit Diagram.
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Dimitris C. Lagoudas, Pavlin Entchev! and Robertus Triharjanto
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Metals (superalloys) and Metal Matrix Composites (MMC) are being used
for elevated temperature applications such as leading edge components in
hypersonic aircraft or turbine blades, which undergo highly variable me-
chanical loads in corrosive environments. Even though protective coatings
are used to prevent oxidation, surface wear and microcracks may lead to
oxygen penetration into the metallic substrate and subsequent chemical
reaction, transforming the metal into a brittle oxide, with detrimental
consequences for the integrity and life of the structure. The oxidation of
the metal matrix is modeled in the present work by modifying the Fick-
ian diffusion problem in order to simulate the chemical reaction (phase
change) in the metal. Two different variants of a fixed grid finite element
method for numerical simulation of oxidation are used. The first approach
is based on reformulating the governing equation in both the oxide and
matrix, resulting in a single, non-linear equation for the whole domain.
The second approach tracks the oxidation front and splits the domain
into metal and oxide subdomains. In both approaches, the accuracy of
the numerical method is measured by comparing the numerical results
with the exact solution for specific cases. Coupled with the mechanical
analysis, the model is used to estimate the effect of the oxide layer on the
energy release rate.

1 Introduction

Metal matrix composites have been proposed for elevated temperature advanced applica-
tions, due to their strength and ability to retain their mechanical integrity at relatively high
temperatures. Most of the systems that have recently been investigated are the different

1 On leave from Inst. of Math., Bulgarian Academy of Science. Currently Graduate Student at
Texas A&M University
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SiC/Ti MMCs. Enviromental effects, such as oxidation, have been shown experimentally
to contribute significantly to damage development in SiC/Ti systems at elevated temper-
atures [1-7]. In these studies, the oxidation is shown to degrade the composite due to the
development of a brittle surface oxide layer (TiO; on the titanium matrix at elevated temper-
atures. Fatigue tests on the SCS-6/621S MMC system [6] show that the life of the unoxidized
specimen is greater than the oxidized specimen. Specifically, at 650°C, the fatigue life in an
oxidizing environment (air) was found to be only 25% of the fatigue life in an inert gas
(argon) environment. However, another study [8] has shown that oxidation during fatigue
crack growth improves the material performance by reducing the fatigue crack growth rate.

Figurel shows an SEM photograph of an oxidized pre-cracked titanium cpecimen. The ex-
periment was performed at Materials and Structures Laboratory at Texas A&M University.
As shown on Figurel, an oxide scale of a titanium, approximately equal to 5um, has been
formed after oxidation at 700°C for 24hrs. Motivated by this and other similar experimen-
tal observations, the current research focuses on the modeling of the propagation of surface
oxidation fronts and the analysis of the pre-oxidized cracked speciments under applied me-
chanical load. For the purposes of the numerical implementation, the oxidized crack surfaces
are assumed to have a planar geometry.

L EFF S 3 EY B 115N N EX R T S—

Fig. 1. Oxidized crack in Ti specimen at 700°C for 24hr

The modeling of oxidation in titanium and the tracking of the oxidation front involves devel-
opment of numerical techniques, similar to the ones used for phase change problems. Such
methods can be generally divided into two groups. The first group consists of algorithms with
explicit capturing of the unknown phase change interface [9-13]. The second group includes
methods without explicit interface tracking, which are based on smearing the free bound-
ary [14]. The current research investigates both of the approaches in modeling oxidation.
The first approach tracks the oxidation front and splits the domain into metal and oxide
subdomains. The second approach is based on reformulating the governing PDE in both the
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oxide and matrix, resulting in a single non-linear PDE for the whole domain. Both methods
are implemented in a fixed grid FEM.

The problem of crack propagation in an oxidized Ti-15-3 specimen is also considered. The
present numerical simulation investigates the effect of the stiffness increase [2] and the oxide
volumetric expansion [7,2] on the energy release rate.

2 Two-dimensional Fickian diffusion model of oxidation with a moving interface

Let  C R? be a fixed domain with 8Q as its boundary. Q is partitioned by the interface
curve 7 (#) with parameterization r (s, 1), 51 () < s < 59 (¢) into two subdomains € and Qy,
respectively, such that Q = Q; Uy, 7 = Q3 NQ, and 30 = 09 U 92 (Fig. 2). Assuming

rD2

X

Fig. 2. Two-dimensional domain with interface 7(t) separating two different phases, which occupy
Q) and Q2, respectively

that Fickian diffusion is valid, the total mass concentration of oxygen in €2; and Q5 satisfies
the following equations [15] :

-801_8(;&1)_ =V - (DiVe (x,1)), x €, 1)
W =V - (DyVey (x,1)), x €. @)

Here ¢; (x,t) and ¢; (x,t) are the total mass concentrations of oxygen in Q; and 5, respec-
tively, and D; and Dj are the diffusivities of the two phases (i.e., oxide scale and titanium
matrix) that occupy £2; and Qy , respectively.



424

The initial conditions are

ax,0=fi xe(), (3)
C2 (X, O) = f2 X € (f) and (4)
r(s,0) =ro(s). (5)

The boundary conditions on 052 are
¢ (x,t) =¢é (x,t) on I'h and — D1Ve;-n; =} (x,t) on Tk, (6)

ca(x,t) =& (x,t) on T'Y and — DyVey-ny =mj(x,t) on I'%, (7

where ¢ (x,t), é(x,t) are prescribed oxygen concentrations. M} (x,t), and mj (x,t) are
normal components of oxygen mass fluxes through the external boundaries of £2; and Q, for
t > 0, with outward unit normal vectors n; and n, and

80, =TLUTY, 00, =T2 UT%. (8)

The interface 7 (¢) that partitions €2 into two regions is a phase boundary that separates
the oxidized part from the metallic part, where oxidation has not taken place. Assuming
that the chemical reaction occurs on a short time scale compared with the diffusion process,
when the concentration of oxygen reaches a critical value ¢, oxidation instantaneously takes
place and the interface moves, always satisfying the critical concentration requirement. The
appropriate interface conditions, expressing conservation of total oxygen mass across the
interface and initiation of the oxidation process whenever a critical oxygen concentration is
reached, are given by

—Dl (VCl) -N = _D2 (VCQ) -N + [C] V, (9)
e (nt)=ce , c(rt)y=ce—]|q, (10)
where N is the unit normal vector on 7 (t) pointed outward €25, V' is the normal velocity of

the oxidation interface, namely, V = '{-’i% -N and [ is the jump discontinuity of the oxygen
concentration at the interface.
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3 Numerical Simulation of Oxidation Process
3.1 Discrete Interface Method

As mentioned in the introduction, the discrete interface method is a variant of front tracking
techniques, whereby the location of the moving interface is found by solving the oxygen dif-
fusion equations in adjacent to the interface domains and by connecting the solution through
appropriate interface conditions. The discrete interface formulation starts by multiplying the
governing equations (1),(2) in two phases with the test function ¢ and integrating over the
region {2, i.e.,

/D1V crodA + /ng copd A = / (881 %ff) dA. (11)

Performing integration by parts and considering the interface condition (9), the above equa-
tion yields
2 8 .
>/ (D,,Vw  Vea - ) > [ ¢DuVeq Nds+ / dvds.  (12)
a=lg, “=lga,—r

Applying Galerkin method (i.e. use similar shape function for the concentration and the test
function), eguation (12) can be rewritten as

Z / (D V- Veg — da‘;'>dA / [Vds, (13)

a-—ln

and
N
ofx) = cips,
=1

where {p} are the shape functions. ¢; are the nodal concentration values. Using linear in-
terpolation in time, which is a standard procedure for the time dependent finite element
problem [16], the concentration at any time point can be expressed as

{ca} =1 =) {2} +0{c*"}, 0<6<1, a=12 (14)

Using (14) and finite difference approximation for the time derivative, the equation (13) can
be rewritten as

2 Mn+1 2 Mn
z[ +9Kn+1} iy ["E +9K”] <l +F", (15)
a=1

a=1
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where
K, = / DaVe: - Vip;dA (16)
D
Qo
1 n
Fi= _T/[C]%Vds = EQ/ [c]pidA (18)

and ., is the area swept by the interface during its propagation in time At.

An iterative approach is needed in solving eq.(13) since it has 2 interdependent variables.
The solution strategy starts with guessing the interface location for the next time increment
so that M™*! and K™ can be evaluated. After solving the linear system, the interface
location is calculated by interpolating the nodal concentration c?*!. The iterative process is
ended when the difference between the interface location used to calculate M?*! and Kn+!,
and the interface location obtained by interpolating c¢”*!, is smaller than a prescribed error

limit.
3.2 Interfuce Smearing Method

To avoid dealing with the jump discontinuity, the following change of variables is introduced:

G (x, 1) = (x,1) + [¢]. (19)

The single diffusivity coeflicient D is introduced by the following equality:

Dl: 1f € > Cer,y
D(c) = (20)
Dy, if ¢<cq-

By including condition (9) in the governing equations (1) and (2), we obtain

{l+[c]5(c—ca)}g$=V-(D(C)Vc), (21)

where
C1, lf € > Coy
C =
Tz, if ¢ <ce.
Equation (21) combines the governing equations (1) and (2}, as well as the interface con-
dition (9). The equivalence of the above two systems of equations is considered in detail
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in {14]. To avoid dealing with the Dirac function, the smoothed function & (¢ — cr, A) is
introduced (A is the length of a semi-interval in which 6 (¢ — cer, A) # 0). The coefficient
G (c) is introduced by the following equality:

Ge)=14[d6b(c—cer, D). (22)

In the interval (¢ — A, ¢ + A), the coefficient D (c¢) is approximated by a linear function,
ie.,

Dy, if c > Cog,

~ D-D Dycos — Die .

D(c) = 12A 2o 2 222A P e < e < e, (23)
DQ, if c < q,

where
C11 = Cer — Aw € = Cop + A

By combining equations (21), (22) and (23), the following equation is obtained:

- Oc

Glo)5 =V (D(c)Ve). (24)

As a result of the above problem reformulation, instead of solving equations (1), (2) and (9),
we have to solve a single non-linear PDE (24).

Multipying (24) by the test function ¢ and integrating over the domain €2 for a fixed time ¢,
we have:

l/'é(c) %‘wm = '/'v (D () Ve) pdA. (25)
Q Q

By applying Green’s formula, the right hand side term in the above equation becomes

. Oc - - Jc
/ G(¢) i pdA + / DVe - VpdA - / D%gods = 0. (26)
Q Q a0
Assuming
dc
o 0 on Ty

and following the standard Galerkin procedure, the weak formulation of the problem for
fixed t becomes

/'é () % CpdA + / DVe-VodA =0, t>0, (27)
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where ¢ is in the space of piecewise linear functions. Using the standard FEM approach, the
oxygen concentration is given by

e(x,t) = 3 ci(t)pi(x), (28)

i=1

where ¢;(t) are the nodal values of oxygen concentration. Substituting (28) into (27) and
enforcing eq. {(27) for all test functions ¢;, we have:

dc
ME + Kc =0, (29)

1]

where K and M are corresponding “stiffnes” and “mass” matrices with entries

My = [ Goypaa, (30)

Q
Kij = / DV, - VpidA. (31)
Q

Using the backward Euler method for the time derivative in the semi-discrete problem (29)
we obtain

¢t — Cn—l

MT + Kc" = 0, (32)

n—1 th

where ¢ and ¢ are the evaluations of ¢ at n** and (n — 1)”" time steps, and At is the
time increment. For given ¢!, eq. (32) results in the following system of equations for the
unknown c” :

M M
(Z? + K) c" = Ec"_l. (33)

Note, that matrices M and K include the non-linear coefficients G(c) and D(c). Therefore,
an iterative process is used in solving (33). The iterative process uses the value of ¢ from
the previous iteration and terminates when the maximum difference between two successive
iterative solutions is less than a desired tolerance in the domain.

3.8 Numerical results

To validate the above described numerical algorithm for 2D problems, the following model
problem has been solved. We consider a square domain Q = {(x1,72) : 0 < 7 < 100um,0 <
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Ty < 100pm}, with the following boundary and initial conditions:

e(x,t) =¢cp, xeTp and g—; =0, xely, (34)

¢(x,0) =0, (35)

where Tp = {(z1,22) : 71 = 0,0 < 72 < 100pm} and Ty = 02\ T'p.

The above formulated 2D problem is equivalent to the 1D problem in z; direction, since the
resulting concentration is independant on 3. As it was mentioned in [17], there is an analyti-
cal solution for the 1D case, therefore we can use it for comparison purposes. The oxide layer
thickness vs. time computed by the two different finite element methods discussed earlier, as
well as the analytical solution and SEM photograph of oxidized Ti-15-3 specimen, are plotted
in Fig.3. The following parameters, corresponding to Ti-15-3 oxidized at 700°C [15], have
been used: Dy = 3.02-1073pm?/sec, Dy = 1.431-107%um? /sec, cer = 0.65:¢o and [¢] = 0.5-¢q.
As it can be seen from Fig.3, both approaches are in agreement with the analytical solu-

8.00 =

—&— 1D analytical solution
—@— 2D FEM - smearing front
—>¢— 20 FEM - discrete interface

Oxide layer thickness, micron

0.00 "'|| LLRN RLLARYRRARAS LARARNRRRRAY ARRRAY LARR RN RRRRY| 3 7’ SKU H7.000 Z2Z9mm

000 100 200 300 400 500 600 700 B.00
Time, hour

Fig. 3. Oxide layer growth in Ti-15-3: a) Modeling results; b) SEM photograph of the oxide layer
on Ti-15-3 formed at 700°C for 3hrs [15]

tion and with experimental data. The above level of accuracy has been observed for time
increment At = 10sec and mesh of triangular elements with element size 1pm.

The above described numerical approaches in sections 3.1 and 3.2 have also been compared
with the analytical solution of a problem with a geometry similar to the one that will be
later investigated for the mechanical problem, i.e., the oxide layer growth from the surface of
a semi-infinite crack (see Fig.4). For comparison purposes we take D} = Dy = D and [c] = 0,
since for this case the problem has an analytical solution (see Appendix A). A finite square
domain with dimensions 100;mx 100pm has been used for computations and the oxidation
time was such that the oxide growth was not affected by the presence of the finite external
boundaries. The crack length a has been assumed to be equal to 30um for the numerical
calculations. Results that compare the analytical solution and the two FEM solutions are
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I R i stk ' PR

Crack surface

Fig. 4. Schematic of the geometry for the oxidation from a crack surface

shown in Fig.5 and Fig.6. Oxygen concentration profiles perpendicular to the crack surface
along x5 axis (for £; = 0) are plotted in Fig.5 and profiles ahead of the crack tip (for z, =0,
z,>a) are plotted in Fig.6. The numerical results obtained with both approaches are in
agreement with the analytical solution.

\ —<— Analytical solution

|

—4&@)— FEM - smearing front !

] H— FEM - discrete interface |

0.80 — \ /

Nermalized concentration C/iCo

020 T T T T T T T T T T T T T T T T

0.00 0.50 1.00 y, 150
Normalized distance from the crack surface- TDr
N

Fig. 5. Oxygen concentration profiles along 2 perpendicular to the crack surface (r; = 0) for test
case shown in Fig.4

Having gained experience in terms of discretization in space and time from the above example
problem, the problem of oxide layer propagation from the surfaces of a crack in Ti-15-3
specimen has been considered under realistic conditions for different diffusion coefficients,
D, and Dj, and a non-zero concentration jump. The material parameters, corresponding to
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Fig. 6. Oxygen oncentration profiles ahead of the crack tip

the Ti-15-3 at 700°C [15} have been used for the numerical solution of this problem. For the
purposes of the analysis, a pre-cracked square Ti-15-3 specimen 15pmx15m with a crack
length 8;tm has been considered. The location of the oxidation front at times 0.25h7, 0.5hr
and lhr is plotted in Fig.7. Direct comparison with experimental results for oxidation of
pre-cracked specimen is very difficult, since the surface crack appears to be non-planar at a
length scale comparable with oxide scale thickness, as scen in Fig.1.

6.00-,
x, ]
é FEM - smearinf front
4,00: - - - FEM-discrete interface
g .
5 3
= ]
2.003
.
0.00— IIlIllll‘Y[llIIll]ll[lllj_llT_rl
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

microns X,

Fig. 7. Simulation of the location of oxidation front in an oxidized Ti-15-3 specimen at 700°C
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4 Crack Growth Resistance of a Pre-Oxidized, Pre-Cracked Ti-15-3 Specimen
under Mechanical Load.

To investigate the effect of crack surface oxidation on crack growth resistance, a mechanical
model simulating pre-oxidized, pre-cracked Ti-15-3 specimen is considered. The geometry
and boundary conditions for the mechanical problem are shown in Fig.8. A plate with an
edge crack under uniaxial monotonic static loading perpendicular to the crack direction
(Mode I) is considered. The particular problem is chosen since its analytical solution has
been established and its geometry is similar to that of a compact tension specimen.

2w

X

Fig. 8. Boundary value problem for the mechanically loaded oxidized specimen

Three cases are modeled corresponding to the boundary conditions shown in Fig.8. The
first case assumes material properties for homogeneous linear elastic material, corresponding
to Ti-15-3 (room temperature) and is introduced as a reference solution. The second case
considers the mechanical analysis of a preoxidized specimen, tested at room temperature.
The third case is similar to the second with additional accounting of the volumetric expansion
caused by oxidation.

4.1 Finite Element Implementation

Due to the symmetry in the applied loading and geometry, only half of the domain is modeled.
The schematic of the mesh configuration is described in Fig.9, while the actual mesh includes
157 8-node quadrilateral elements. The “spider web” mesh is used since it is known to be
accurate in modeling fracture mechanics problem [18,19]. The 8-node quadrilateral element
is chosen in order to model the stress and strain singularity at the crack tip. The quarter
point method, which captures a square root singularityes in the stress, derived by Henshell
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and Shaw [18] and Barsoum [19] is used here. The simulation is performed by means of the
commercial finite element software ABAQUS.

Regular 8 node
quadrilateral element

] T
A A

Fig. 9. The quarter point finite element mesh

In the linear elastic case and the case for homogeneous material, the energy release rate G
is equal to the value of J-integral [20,21]. To calculate the energy release rate in FEM, the
contour integral method is used. The contour integral method starts with the formulation of
J-integral [22], which for the two-dimensional case, can he expressed as

Jp = / (Wd.TQ - '31 J dS) (36)
r

where T is any open curve enclosing the crack tip and W is the elastic strain energy.

The finite element formulation of the J-integral as given by [23] is

- du;\ dq qu}
Jr = Wéi; — 0y 9 et w, 27
' ZZ{( % )a“ 9, || (37)
94 _ 5~ o0 O
oz; ,; & Oy @ (38)

where m designates the number of Gauss integration points for each element; w, is the
weight for the p** integration point; & indicates the local coordinates of the elements; ¢ is a
smooth function which has a value of unity on I' and zero at the crack tip, i.e. @, has value
1 whenever the node is located on I and 0 whenever the node is located at the crack tip.
Y- 4 indicates that the summation is performed over the elements in area A enclosed by T'
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and the crack surfaces, and the quantity in brackets in eq.(37) is evaluated at the p** Gauss
point of each element.

The numerical results for the first case show that the numerical method has very good accu-
racy. Table 1 shows the comparison of J-integral values calculated using the exact solution
versus the numerical method. The finite element model simulates a 20mm x 60mm Ti-15-
3 specimen with 1M Pa tensile load. The material properties for the Ti-15-3 specimen are
taken from [24] and are tabulated in Table 2.

exact | numerical

J-integral, M Pa-m | 2.056 2.028

Table 1
Comparison of the stress intensity factor on homogeneous case

Ti-15-3 | TiO,
Young modulus, GPa 110 182
Poisson ratio 0.33 0.33

Table 2
Material properties of Ti-15-3 and TiOy

The second case simulates the mechanical response of a pre-oxidized specimen with a center
crack and an oxide layer formed along the crack surfaces. The geometry of the oxide layer
is simulated by utilizing results obtained by the oxidation model presented in section 3.3,
similar to ones shown in Fig.7.

The presence of the oxide, which has different elastic constants than the metal, introdusec
a modification in the formulation of the J-integral, which is now path dependent [25]. To
briefly show this, assume that ['* is a closed path, t.e. I'* = I'y + I'y+surface crack connecting
the curves, with T'; being in the metal phase, while T's inside the oxide layer, as shown in
Fig.10. By evaluating the J-integral on I'*, the divergence theorem can be applied so that

Fig. 10. Schematic representation of an oxidated cracked specimen with partial oxidation of the
crack surfaces
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eq.(36) can be rewritten as

B a] fow 9 auj

I*

When the material contains an inhomogeneity in area A*, W = W(x;,e;;). Therefore, the
first term on the right hand side of eqn.(39) can be expressed as

oW ox; OW Or;
W (i e5)1 = {Or, 9e, 65,,} €ija Wi"a?jﬁij,l + Oyt 1. (40)
Substituting eqn.(40) into (39) yields
Jee = Jp, — / W 5,JldA (41)

which concludes that the J-integral in heterogeneous material is path dependent. From
the above equation it can be concluded that, if the oxide layer geometry is simnlated as
described in Fig.7, the J-integral would be different for different paths. To simplify the
numerical implementation, only the oxide layer surrounding the crack tip is considered, as
schematically shown in Fig.10. By considering only part of the oxide scale, the J-integral
needs to be calculated only on two different paths (inside and outside the oxide layer).
The oxide layer is described by elements with different elastic stiffness than the rest of
the material. The work of Wallace [26] on Ti-§21S concludes that the oxide layer has higher
stiffness than its metal phase. By simulating Wallace’s oxidation experiment, we can estimate
Young’s modulus of the TiO, compound, which is also tabulated in Table 2

Fig.11 shows the J-integral measured on the domain inside and outside the oxide layer for
the second case. It can be seen from the picture that as the oxide layer grows, the J-integral
decreases. This is consistent with the theoretical prediction described in equation (B.4), i.e
as the overall stiffness increases, the J-integral decreases. The result also reconfirms that the
J-integral is path dependent in heterogeneous materials and is consistent with the analytical
evaluation in [25]. However, since the difference between the elastic constants of the oxide
and metal is small, the difference in the values of the J-integral calculated inside and outside
of the oxide layer is small.

Fig.12 shows contour plots of oy, values for the oxidized and unoxidized specimens close
to the crack tip. The thickness of the oxide layer is 0.4mm for this case and metal-oxide
interface is shown by a white line in Fig.12b. The result for the oxidized specimen shows
that there is a jump in 92 due to the difference in the elastic stiffness of the metal and the
oxide.
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Fig. 11. J-integral for the oxidized Ti-15-3 specimen

Fig. 12. Contour plot of oy for: a) unoxidized Ti-15-3 specimen; b) oxidized Ti-15-3 specimen (the
domain corresponds to the shaded area in Fig.9)

5 Conclusions

Two implementations of fixed grid finite element method, for solving oxidation in Ti-15-3
have been derived from two different concepts (i.e. the interface smearing method and discrete
interface method). Both approaches have been tested on problems which have analytical
solution and have shown very good accuracy. Validated numerical models have been used to
simulate the oxide propagating from the crack surface in Ti-15-3 specimen.

The mechanical responses of the fractured specimen have been succesfully modeled using the
quarter point method. For the pre-oxidized specimen, the model predicts that the energy
release rate will decrease as the oxide layer grows. The decrease is due to the oxide scale
which has higher Young’s modulus than the unoxidized metal phase.
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The presented results can be considered as preliminary in nature and represent initial stages
of thorough investigation on the behavior of metal matrix composites (MMC) at high oper-
ating temperatures. Future research will use the current oxidation and mechanical models to
simulate the thermomechanical response of MMC under oxidizing environments undergoing
monotonic and cyclic loading.
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Appendices

A Oxidation Analytical Solution

An exact analytical solution has been established to check the validity of numerical calcula-
tions. Due to the limitation in finding the closed form solution for the general 2D case, the
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test case does not consider the concentration jump and different diffusion coefficients in the
two phases. The boundary value problem consists of diffusion from the surfaces of a crack at
6 = 0 and a circular domain of radius r¢ (in the comparison with the numerical simulation
ro = 100pm) where zero flux conditions are prescribed (see Fig. A.1).

Fig. A.1. Geometry and boundary conditions for the boundary value problem solved in closed form

Taking into account these assumptions, the governing equations become the same as the
single-phase diffusion problem, i.e.,

. Jdc
DVic=—. )
Ve 5 (A.1)
The boundary conditions are then
0
e(r,0,) = 1, a—:(ro,(),t) =0, (A.2)

which describe the concentration on the surface of the crack and the flux at the perimeter
of the domain. The initial condition is

e(r,6,0) =0. (A.3)

To create homogeneous boundary conditions, the substitution ¢ = ¢ — 1 has been made so
that the boundary and initial conditions become

&(r,0,t) = 0, %(TO,()J) =0, &r0,0)=—1. (A.4)

Applying separation of variables we have

¢ = R(r)O(O)T(t), (A.5)

which eventually leads to the final form of the solution given by the following expression:
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and ]m+1/2 , is the s™ zero of the derivative of Bessel function Jm11/2. Note that this solution
corresponds to a singular mass flux at the crack tip. It can be shown that
9

~7
or

for r—0. (A.8)

B The fracture mechanics exact solution

The analytical solution for the problem described in Fig. 8 is solved in [20]. The stresses in
19 and z; direction ahead of the crack tip are

1\’1
Opy = Oy, = , B.1
e V2nd (B.1)
4
K[Z(Too\/ﬂ'(l(llz-—ozi;w + 10. 6m—21 7'1/7;4-30 41/V ) (B2)

where d is the distance in z; direction from the crack tip, outward from the crack, K is the
stress intensity factor for the Mode I crack problem [20], and o is the far field stress.

The displacement in x5 direction is

4(1_V)(1+V)I\ —di

tu,, =+
ez E o

(B.3)

where d; is the distance in z; direction from the crack tip, inward to the crack. The J-integral
or the energy release rate for plain strain problem is

ﬁu —2). (B.4)

G=1J="]
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Abstract

With an eye toward functionally graded plasticity in porous material, a homoge-
nization scheme is developed to determine the overall elastoplastic behavior of a porous
material with an interfacial ductile zone. The development involves four key steps: i) a
linear comparison composite, ii) the secant moduli of the ductile phases, iii) an energy
approach, and iv) a field-fluctuation method. With the aid of a 3-phase spherically con-
centric solid, the developed theory can be recadily used to calculate the overall elastoplastic
behavior of the porous material regardless whether the interfacial ductile layer is softer
or stiffer than the matrix. To assess its accuracy, an exact local analysis is also carried
out under pure dilatation, and comparison between the two indicates a close agreement.
The theory is then applied to examine the influence of the ductile interfacial zone on
the overall clastoplastic strength. The results show that its volume concentration and its
relative stiffness to the ductile matrix can both have a very significant cffect on the overall
clastoplastic behavior of the porous material.

1. INTRODUCTION

A functionally graded material represents a ncw class of engineering materials whose
properties may vary with position. To provide an optimal behavior such a variation has
to be designed intelligently. Within the context of a porous material containing spherical
voids, such a change may emanate from the void surface. A linear variation of the matrix
property is schematically shown in Fig.1(a). The objective then is to find the precise
distribution of the matrix property so that it can render the best possible overall elasto-
plastic strength. In this initial study, we shall not address such a continuous variation;
instead a simpler microgeometry involving a step function as depicted in Fig.1(b) will be
considered. A step-function provides two distinctively different elastoplastic regions such
that one may be stiffer than the other. The theory developed then can serve as a basis
for the future study with an arbitrarily varying matrix property. In this light the theory
will represent a first step toward a full functionally graded plasticity in porous materials.
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When voids with two such distinctive outer layers exist, the system can be represented
by the 3-phase concentric sphere model as sketched in Fig.1(b). where the voids are re-

(a) Ductile matrix with a continously varying property
//_\ Volume concentrations
Y 4 83 ¥\
/ az -~ \ (a1’
- | s 81
£ \ c [ a: }
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\ 3 | c,. 22— 8
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(b) Ductile porous material with a ductile interfacial zone

Figure 1: The geometrical representation of the model

ferred to as phase 1, the interfacial zone as phase 2, and the original material as phase
3. Both phasc 2 and phase 3 arc elastoplastic, cach having its own yield stress and
work-hardening characteristics. To address this nonlinear problem, an energy approach
originally proposed by Qiu and Weng (1992) for a porous material (without an inter-
phase) and particle-reinforced composite will be extended to this 3-phase problem. As
will become cvident later, such an extension requires the evaluation of the homogenized
effective stress of both ductile phases. The original direct energy equivalence method sug-
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gested there was not sufficient for this purpose, and a field-fluctuation method recently
developed by Hu (1996) will be introduced here. It turns out that this method is versatile
enough to provide the effective stress for a multiphase concentric sphere configuration,
and can become potentially useful for the study of a functionally-graded porous material
where the property changes continuously. The energy approach will also make use of a
linear comparison composite in conjunction with the secant moduli of the ductile phases,
an idea previously suggested by Tandon and Weng (1988) and Weng (1990) for the study
of particle-reinforced plasticity and the plasticity of dual-phase metals, respectively.

2. CONSTITUTIVE EQUATIONS OF THE DUCTILE PHASES

To pave the way for the use of the secant moduli in the linear comparison composite,
we first establish the dependence of these moduli on the effective stress. The effective
stress and strain relation of a ductile phase in general can be represented by the modified
Ludwik equation, as

ol = ‘71(;) + By - (2O r =23 (1)

wherce JL’), I, and n, are the tensile yield stress, strength cocfficient and work-hardening

(r)

exponent, in turn, of the 7-th phase. In terms of its deviatoric stress o';;’ and plastic

ij
strain efjm, the effective stress and plastic strain are defined as
1 1
0 _ 3 _in]? ) — [2 20 o] ®
ol = {5‘711‘,‘ ‘7/1','] , et = {5‘:, € ] . (2)
It follows that the sccant Young's modulus of the »-th phase is given by
-1
1 eplr) :|
Br= | , (3)
[E, oA by (e

in terms of its elastic Young's modulus, E.. The secant shear modulus and the secant
Poisson’s ratio also follow from the isotropic relations and plastic incompressibility, as

£ 1 1 E?
w=——-", yf:—_(__,,r)_" (4)
T2+ ) 2 2 E,

where v, 1s the elastic Poisson’s ratio.

3. THE EFFECTIVE ELASTIC PROPERTIES OF THE LINEAR COM-
PARISON COMPOSITE

In the composite sphere model depicted in Fig.1(b), the volume concentration of the
r-th phase is denoted by c,, and its outer radius by a,. It follows that

a = (a1/a3)®, c2=1(a)—a})/a}, e =1-(c1+c2) (5)
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Figure 2: Elastic comparison composite

The concept of a linear comparison composite is shown in Fig.2, where the elastic bulk
and shear moduli (k, and g,) in Fig.2(a) are set equal to the secant moduli (x? and p?)
in Fig.2(b) of the original nonlinear composite at every stage of deformation. In such a
model the exact effective bulk modulus has been derived by Qiu and Weng (1991), and
we shall extend Christensen and Lo’s (1979) generalized sclf-consistent scheme to find
the effective shear modulus. Direct application of Qiu and Weng’s results to the porous
material yields

Ke = Kz + (3r3 + 4p13)[—c183(3K2 + 4p23)
+ deapiy(rr — )] /{4n3((352 + 4p3) + 3(er + c2)
o (K3 — K2)] + erha[4(ng — p3)/ (er + c2) + (383 + 4p3)]} (6)

for the effective bulk modulus, where the subscript s reflects the secant state of the ductile
phase at a given stage of deformation. Following Christensen and Lo’s procedure, analysis
of the 3-phase model in the generalized self-consistent scheme leads to a matrix as shown
in the Appendix. When its determinant is set equal to zero, it provides a second-order
algebraic equation for the effective shear modulus p1,. The secant Young’s modulus then
follows as

9K, fts

E,=————.
(3k, + ps)

(7)
This pair of moduli provides the effective moduli tensor L, and compliances tensor M,
L, = (3K,,2u,), M, =(1/3k,,1/2p,), (8)

where the subscript s again significs the “secant” state of the constituent phases. These
results will be used as the effective secant moduli of the nonlinear composite. As both
effective moduli involve the yet-unknown secant shear moduli of phase 2 and 3, these
individual moduli must be determined first at a given level of the applied stress.
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4. THE FIELD-FLUCTUATION METHOD

To evaluate the effective stress of the interphase and the matrix, the field-fluctuation
method recently developed by Hu (1996) will be extended to this 3-phase solid. The
original method based on the energy equivalence between the golbal system and the local
constituent phases as suggested by Qiu and Weng (1992) provides only one equation,
but now we have two unknowns, and therefore it is not sufficient. Hu’s field fluctuation
method also starts out from Qiu and Weng’s energy equivalence, but instead of proceeding
to evaluate the effective stress from this equation, he seeked for the variation of the energy
due to the variation of the shear modulus of the ductile phase whose effective stress is of
interest. According to Qiu and Weng’ energy approach, the homogenized effective stress
of a heterogeneously deformed ductile phase is defined based on the distortional energy
equivalence, as

1 1 '
o2 = 1 Ut(r)
62 © V, Jv, 4z ¥

(2)o)(z) dV, (9)

which is equivalent to

,).f(r): V/ (* - (]V_ V/ 2 ’() ,)(J’ij (.r) dV

3_’ Yy _Hr 1 3 pt(r D
50,5 ’a,;’+ vl 50,.;“ (2)o 27 (z) 4V, (10)

where V, represents the volume of the r-th phase and superscripts pt refer to the “per-
turbed” field over the mean of the considered phase. In symbolic notation, it can be
rewritten as

rrf('

3
V=< 020 (z) >= 5 < ool >, (11)

where the angle brackets represent the volume average of the said quantity over the r-th
phase, and a bold-faced Greck letter signifies a second-order tensor.

Then starting out with the cnergy cquivalence of the total clastic energy U, between
the homogenized overall system with an cffective compliances tensor M, and the individ-
ual phases with a compliances tensor M? for the r-th phase

2, =6M,6 =% < o, Mo, >, (12)

one may proceed to seck for the variation of this energy when the shear modulus of the
r-th phase changes from p? to p?+8u?. Under the same external stress & the local stress
will also chenge from &,(z) to o.(z)+60.(x), but due to the vanishing perturbed outer
traction the additional stress field will not contribute to the overall encrgy. It follows that
such a variation will result in

¢ < olol >6(21

) - 56M,5, (13)
I
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and this leads to the homogenized effective stress for the r-th phase

—3u” §M,
o2 = & (—cﬂ—ﬁ) G. (14)

When applied for both phases r=2 and 3, it provides the needed effective stress for
both the ductile interfacial zone and the outer matrix. Once these effective stresses are
found, the corresponding secant moduli of the r-th phase will follow from the constitutive
equations, and the effective secant moduli of the nonlinear system can then be determined
from s, and g, of the comparison composite. This process may be continued by increasing
the level of the applied stress & until the entire stress-strain curve of the porous material
is obtained.

5. AN EXACT SOLUTION UNDER HYDROSTATIC LOADING

To provide an assessment for the accuracy of the developed homogenization theory,
an exact solution will be derived here under a pure hydrostatic loading with a linearly
strain-hardening phases (n=1 for both phases).

5.1. Elastic field

Before the onsct of plastic deformation, the field in the 3-phase porous material is
elastic. The displacement field in both phase 2 and 3 for the geometry shown in Fig.1(b)
are

3
i i i) @ .
u£>=B{>r+B§)—T—§, i=23 (15)

in a spherical coordinate, whereas the stress in the voids simply vanishes. The displace-
ment fields result in the strain components

3 3
i i )@ i @ i) Hez
e? =By - B2, e =eg=DB+ B3, i=23 (16)

and stress fields

. . ~as . . . ~ad
o =3B — 4B 2, o) = of) = 3mBl +2uB %2, i=2.3. (17)

2
)
r3

The constants B{i) and Béi) can be determined from the continuity conditions and the
boundary condition.

5.2. Subsequent plastic deformation

Once plastic deformation occurs in any layer, there are two possible subsequent trends
under increased hydrostatic tension.

1. Plastic deformation increases in the yielded phase while the other layer remains
elastic.
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Figure 3: Partial yielding model

2. The other layer also starts to yield; in both phases the inner region is plastic and
the outer one is elastic.

A schematic diagram for such a partial yielding is depicted in Fig.3, where rl(f) represents
the outer radius of the plastic region of the i-th layer (¢ = 2,3). In any case under an
increased loading the layer with partial yielding will proceed to become full yielding. We
use ¢ to denote that the whole region is elastic, pp partial plastic, fp fully plastic. Unlike in
an ordinary 2-phase material, there are now many possible routes of plastic deformation;
these routes are listed in Fig.4. Within r;(f) < 1 < a4, the material is in the elastic state

1 eZgD
@ / \ @
1pp2e 1e2pp
. N
1%p2pp/ 1fp2§> %@ezp 1pp2pp

.\ o | } N\

1fp2pp 1pp2fp 1fp2pp 1pp2fp  1fp2pp  1pp2fp
o } } } } |

1fp2fp 1fp2fp  1fp2fp 1fp2fp  1ip2fp 1fp2fp

Figure 4: The routes of plastic deformation

and the results are given above . Within a;1 < r < rl(f), the material is in the plastic
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state. To render the many possiblilities to a more manageable condition the plastic field
will now be analyzed assuming both phases to be incompressible and the outer traction
is tensile. Now with v = 1/2, one has

() > o P g, aé? B — a — hyelidr, (18)

rr

The analysis can be carried out in a fashion as in Qiu and Weng (1992) for a two-phase
solid. After some lengthy algebra, one arrives at

D(i) a'(i)

ir — ¥

rr 7_3 + hi+Ei7 (19)
and

4 200E; 2 a1 :

() = 2y " Zp@p.— ()
Tor h; + E; 0g1-+3 l7'3+0 ’ (20)
and

. h; + E; DB

(. _ 2t
u, 2B 17 (21)

Equations (19), (20) and (21) are valid expressions for radial plastic strain, radial stress
and radial displacement in the plastic region in i-th layer. For the case pp, we have

el =0. (22)

-

Substituting Equation (19) into (22), we can get D) in the case pp as

) oy (i))3
D = — m('l'p ) . (23)

So the radial plastic strain, stress and displacement for the case pp can be rewritten as

i) i3
(P — o 1-{2)
r hi + E; T ’

) 2o(i)E 20 p, MO .
(1) — lo v _* P 9
T T Rt E 8T T 3l + ) ( r ) e (24)

i )\3
S0 = o (Y
T 2F; r?

The continuity conditions on radial displacement and radial stress at the interfacgs
between the different phases and the regions with different deformation states, in addition
to the prescribed traction at the boundary, lead to an equation system for each case shown
in Fig.4 with which one can obtain the unknown coefficients B and C). Among all
the possible cases, there are nine distinct ones as depicted in Fig.4. The elastoplastic
relationship which resembles the overall elastic bulk modulus can be obtained through
the fact that @y is related to the prescribed traction at the boundary through 7 = 37
and

). o (D 3
€k = C1E = 3C1 o SE, (p—) (25)

due to the elastic and plastic incompressibility assumption for the two ductile layers.
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6. RESULTS AND DISCUSSIONS

Now that both the energy approach and the exact solution under pure dilatation have
been established, we shall first compare the results of both approaches for the hydrosatic
loading. Then the energy approach will be used to examine the influence of the ductile
intefacial zone on the overall behavior of the porous material.

6.1. Comparison between the exact solution and the energy approach

The comparison will be made with a bilinear stress-strain curve for both ductile
phases. The tangent modulus in the plastic range ET for the ¢-th phase is now related to
the Young’s modulus and work-hardening modulus as

1 1 1
E:E‘f‘ﬁ—.. (26)

We first choose the following parameters in the comparison:

1 = 03, Cop = 035, C3 — 035,
E; = 68.3GPa, 0¥ = 250MPa, (27)

which correspond to the Young's modulus and yield stress of a 6061-T6 alumnium alloy
(Arsenault, 1984; Nich and Chellman, 1984).
We shall first consider both phases to be ideally plastic without work-hardening.

400

Energy approach
—— Exact approach

0 i i
0.000 0.010 0.020 &,

Figure 5: The overall elastoplastic relationship under hydrostatic loading with different
ratios of the Young’s moduli

In Fig.5, the yield stress of the intefacial layer is taken to be equal to that of the
outer layer, but its Young’s modulus varies by being double, equal or half of that of the
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Figure 6: The elastoplastic relationship under hydrostatic loading with different ratios of
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outer matrix. From this figurc two observations can be made: First, both the energy
approach and the exact solution provide very close results under dilatational loading, but
the cnergy approach gives slightly harder response than the exact solution. The difference
is due to the fact that the cnergy approach uses the average of the distortional energy of
cach layer to assess the extent of plastic deformation and therefore one gets to know the
plasticity later than by the exact approach which allows one to inspect plasticity locally.
Sccondly, there are two major stages of the overall elastoplastic deformation contributed
by these two ductile phases. In addition there is a smooth transition in the exact analysis
reflecting the local plastic flow, a phenomenon absent in the homogenization scheme.
Fig.6 shows the relationship with different ratios of yicld stress while maintaining the
same Young's modulus. Finally to examine the influence of strain hardening we keep the
Young's modulus and yeild stress of both phases to be identical, but take the tangent
modulus of the matrix to be 1/10th of its elastic Young’s modulus as

E? =1/10E; = 6.83GPa. (28)

The results are plotted in Fig.7 with different ratios of Ex()z). Good agreement is again
evident. These three comparisons indicate that, no matter which material constant is
being varied, the results of the homogenization scheme is very close to that of the exact
solution.

Now it is interesting to sece how the volume concentration of the interfacial zone affects
the overall elastoplastic behavior of the porous material. The results with a softer inter-
phase are shown in Fig.8 at three levels of volume concentrations: ¢;=0, 0.1, 0.2 and 0.3,
with an ideally plastic matrix in Fig.8(a) and a linearly work-hardening one in Fig.8(b).
In these calculations, the property of the interphase is taken to be 1/10th of the matrix
as

E, = E5/10, o =0ol®/10, Ef = E%/10, (29)
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Figurc 8: The influence of a soft interphase volume concentration on the overall behavior
of the porous material

Comparison between the energy approach and the exact solutions arc again satisfactory,
both indicating the weakening effect of the degraded interfacial zone as its volume con-
centration increases. On the other hand the results with a harder interphase are seen in
Fig.9; these have been calculated with the properties
E,=11E;, o =30, E}=11E}. (30)

v
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Figure 9: The influence of a hard interphase volume concentration on the overall behavior
of the porous material

Both figures again display a close agreement between the two approaches, and they
further indicate the strengthening effect of this interfacial region on the overall property
of the system.

6.2 Tensile and shear behavior

Now that the homogenization scheme has been shown to provide estimates which are
consistent with the exact solutions under dilatational loading, it can be applied to examine
the influence of its volume concentration on the overall responsc of the porous materials
under other loading conditions. For this, we shall use the 6061-T6 alumnium as the
matrix, whose Young’s modulus and yield stress have already been given in Eq. (27).
This material further has the strength coefficient and work-hardening exponent (Qiu and
Weng, 1992)

hy = 173 MPa, nj = 0.455. (31)

We shall examine the tensile behavior first, and then followed by the shear one. In each
case the interfacial ductile zone will be taken to be softer and then harder than the outer
layer.

The tensile behavior of the porous material with a soft interfacial zone is shown in
Fig.10(a), with a property only 1/10th of the original matrix as indicated there. Its
Poisson ratio and work-hardening exponent n are kept to be the same as those of the
matrix. As its volume concentration increases from 0 to 0.3, the overall behavior is seen
to continue to weaken. Here the condition ¢;=0 also corresponds to the ordinary porous
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Figure 10: Tensile behavior of the porous material with a ductile interfacial zone

material without such an interfacial zone and, in all cases, the overall elastoplastic strength
of the porous materials is substantially softer than that of the pure matrix itself, which
is also indicated as a dotted line there. The condition with a hard interfacial zone is
shown in Fig.10(b), where the interphase is taken to be twice as stiff as the matrix. As its
volume concentration increases, the overall strenth of the porous material also increases.
But even at ¢;=0.3, the response is still not as stiff as the original matrix itself. Finally
the volume-concentration dependence of the shear behavior is depicted in Fig.11(a) and
(b) with a wcak and a strong interfacial zone, respectively. The volume concentration
of the ductile interphase again displays a significant influence on the overall elastoplastic
behavior of the porous material.

7. CONCLUDING REMARKS

Based on an energy approach and a field-fluctuation method, a homogenization scheme
has been developed to determine the overall stress-strain relations of a porous material
containing two ductile layers. This theory is applicable to both conditions whether the
interfacial zone is softer or harder than the matrix, and it can be used at finite concentra-
tions of the constituent phases. The step-function variation of the matrix property is the
simplest kind of the matrix property variation and, thus, the theory established represents
a first step toward a full functionally graded plasticity in porous materials. The theory
has proven to be accurate in light of an exact local analysis under hydrostatic loading,
and its applications to tension and shear also reflect the strong dependence of the overall
elastoplastic strength on the ductile interfacial zone.
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Modeling of Delamination Using a Layerwise Element with
Enhanced Strains

C. M. Dakshina Moorthy and J. N. Reddy

Department of Mechanical Engineering, Texas A&M University, College
Station, Texas 77843-3123, USA

A layerwise finite element with enhanced strains is developed for the analysis
of laminates with special emphasis on the study of delamination characteristics.
An interface model using the penalty function method is developed to calculate
strain energy release rates. Since the interface model provides the facility for
the closure of delamination by a small amount, strain energy release rates were
evaluated by actual crack closure and by virtual crack closure methods for a
comparative study. A double cantilever plate problem is used to illustrate the
accuracy of the computational approaches developed herein.

1. INTRODUCTION

1.1 Background

In the analysis of composite laminates, when the primary concern is
the global response, one may choose to model the laminate with layers of
different mechanical properties as a single layer with cquivalent mechanical
characteristics. Two widely used examples of equivalent single layer (ESL)
theories are the classical and first order shear deformation theories [1]. These
theories are appealingly simple and economic in analysis and provide reasonably
accurate solution for global response characteristics such as overall deflections,
critical buckling loads, fundamental vibration frequencies and associated mode
shapes.

When the emphasis of the analysis shifts from global response to the study
of initiation of damage or delamination between layers, accurate determination
of interlaminar stresses and strains gain more importance. For damage such
as matrix cracks, intra-lamina stresses are important, and for delamination
and adhesive joint separation, interlaminar stresses are important. Hence, in
studying laminates with delamination, it is necessary to model the laminate
using a refined theory both in terms of 3D-kinematics and constitutive
relations compared to ESL theories. Basic frame work for this is provided
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by the generalized layerwise plate theory (GLPT) of Reddy [1,2]. In GLPT,
enhancement in kinematics over an ESL theory is made by allowing for more
than one kinematic layer through the thickness. The analyst has the choice
to selectively refine the kinematics through the thickness of the laminate as
desired. The layerwise theory is a 3D theory in the sense that it uses full
3D constitutive relations compared to the plane stress-reduced constitutive
relations used in ESL theories. Even though, the layerwise theory provides the
facility for using a refined kinematics, it should be used sparingly because the
refinement through the thickness increases the problem size tremendously.

1.2 Delamination Studies

In the study of delamination in laminates, the strain energy release rate
has gained importance as a criterion for delamination growth. The growth of
delamination is predicted by comparing the (working) strain energy release rate
G near the delamination tip to its critical (allowable) value G.. The critical
strain energy release rate G. is a quantity that is evaluated by conducting
experiments. In general, G, depends on the mode ratio, material and relative
ply orientation of the lamina surrounding the delamination.

Several methods are described in the literature for evaluating the strain
energy release rates. In one method it is evaluated as the rate of change of
total potential energy of the system with crack extension and it is determined
by evaluating total potential energy at two different crack lengths [3,4]. Another
method is based on the evaluation of compliance at two different crack lengths
[5,6]. These methods provide dircct means of evaluating strain energy release
rates and require analysis of the problem at two separate configurations differing
by a small value of crack closure length. In direct contrast to these methods
where the crack closure is real, another method is used where the closure of
the crack is kept virtual (i.e., imagined). The advantage here is that it requires
only one analysis instead of two. This is achieved by approximating the load
required to close the crack from the results of a single analysis. Further this
method integrates well with the standard finite element method. Due to the
virtual nature of the crack closure, this method is called wirtual crack closure
method (VCCM). This method has been applied successfully to 2D problems
using low order elements [7] and found to be accurate even with coarse meshes
near the crack tip. The method has further been extended for 3D clements [8]
and found to be effective in 3D problems [9].

In the study of delaminations in composite laminates, much research has
been done and a general overview is given by O’Brien [10].  Analytical
investigations of the subject, in contrast to numerical studies, usually consider
simple plane geometries and homogeneous, isotropic or orthotropic plates.
Laminated plates with embedded delamination under the action of inplane
loads have been studied for delamination buckling and the consequential
growth of delamination. This type of delamination growth, called instability
related delamination, has been studied for laminated plates with through width
delamination [11]. This analysis has been extended to laminated plates with
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elliptical embedded delamination geometries and the distribution of strain
energy release rates along the delamination front has been studied [9,12].
Additional references on analytical and semi-analytical studies on delamination
buckling in flat composites can be found in the review article [13].

1.3 Present Study

The objective of the present study is to develop an interface model
for the recovery of accurate interlaminar stresses and study delamination
characteristics in composite laminates. A layerwise finite element model with
enhanced strains is developed for the purpose. The layerwise finite element
model provides the framework for refinement of displacement variation through
the thickness if and when it is needed. The through the thickness refinement
is accompanied by refinement in the plane of the laminate, and thus proves to
be expensive. On the other hand, coarse mesh through the thickness leads to
the possibility of thickness locking if the Poisson effect through the thickness
is not correctly represented. The enhanced strain method with enhancement
field provided for transverse normal strain component is used here to overcome
the thickness locking.

For the recovery of interlaminar stresses and for the study of delaminations
in laminates an interface model is developed. This involves the selection of an
interface in the laminate a-priori and modeling it as an adhesive contact zone
between portions of the laminate separated by this interface. The adhesive
contact between portion of the laminate at its interface is enforced by penalty
function method [14] and the coutact load that satisfies the equilibrium at the
interface is used in evaluating the interlaminar stresses. Use of this interface
model in the study of delamination characteristics have the advantage that
it provides the framework for extending or closing the bonded portion of the
laminate by a small amount as is required by the crack closure method (CCM).
Strain cnergy release rate by this interface model has been evaluated using crack
closure method and by virtual crack closure method (VCCM) for comparative
study. This interface model is studied for its accuracy by comparing the results
with reference solutions in the literature.

2. ENHANCED ASSUMED STRAIN ELEMENT

2.1 Basic Idea

Enhanced strain method [15] is an approach that is found to be effective in
improving the performance of finite clements against locking. This is achieved
by enhancing the strain with an incompatible field that is chosen to satisfy
any constraint. The enhanced strain method is discussed here in the context
of a small displacement theory and the rectangular Cartesian coordinates
for the sake of simplicity and clarity in bringing out the cssentials of the
method. The application of this method for geometrically nonlinear problems
is straightforward.
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Let the total strain field ¢;; be the sum of the incompatible field £;; and the
compatible strain field 2

€ij = 53 + €ij (2.1)

where the compatible strain field sg is related to the displacement components
u; by the usual strain-displacement relations

e = %(u,;,j + ;) (2.2)
Mathematically, the incompatible strain components &;; should be identically
zero everywhere. Therefore, the work done by the actual stresses in moving
through the incompatible strains is zero. However, a computational scheme
does not account for the zero work done unless it is explicity included in the
formulation. That is, we must include the conditions

5, =0, 4,7=1,23 (2.3)
as constraints in the finite element development.

2.2 Variational Basis

The total potential energy functional used for the development of the
displacement finite element model that includes the constraint (2.3) is derived
using the Lagrange multiplier method. The Lagrange multipliers associated
with the constraints (2.3) turn out to be —a;;. The functional is given by

H(’Il.,’,é,‘,j,(f,‘,j) = /V (U()(E,’j) - fF?l,,j) dv — /S ff,l,.,j ds — /V E,‘J‘(J’,jj dv (2.4)

The finite element based on the statement 6II = 0 requires independent
approximation of the three fields: w;,&;, and ¢;;. In the the enhanced strain
element, however, the independent stress field is eliminated by selecting the
independent stress field to be orthogonal to the enhancement strain field

./V Eijoi; dv =10 (2.5)

Of course, the statement in (2.5) is a weak form of &; = 0, which is responsible
for locking. Now the variational statement for the enhanced strain finite
element model can be stated as

811 =0 subjected to the condition (2.5) (2.6)

where

(2, €i5) = /V (U()(E,;j) - f,,;Eu,') dv — /9 fiui ds (2.7)
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The statement 6I1 = 0 gives

| /V (6D + 6255) g%j dv — /V FE6u; dv — /S Fobu; ds =0 (2.8)

Thus, the two independent fields for the enhanced strain formulation are the
displacements u; and the enhanced assumed strains €;;. By choosing the stress
field to satisfy (2.6) the stresses are eliminated from the variational expression.

2.3 The Choice of Enhancement Field

Deteriorated coarse mesh performance of a layerwise element with low order
(i.e, linear) interpolation of the thickness variation is what we wish to remedy.
In this case, it is the inability of the element to model the nearly zero transverse
normal strain situation that causes the problem. By the proper choice of
the enhancement field it is possible to design low order elements that have
improved coarse mesh performance. This is done by identifying the constraint
(e33 = 0) in strain field whose deficiency causes the deteriorated performance
of the element and introducing it into the element formulation through the
incompatible enhancement field, as explained in the previous section.

Identifying the enhancement field is a straightforward procedure for the
case of a regular shaped clement, compared to that of a distorted clement.
Distortion in the element geometry makes it difficult to identify the deficiency
in the function field. Hence, for a general element, the procedure needs to be
modified to include a mapping of a genceral element to an isoparametric domain.
This makes it possible to work in the isoparametric domain which is regular
shaped compared to a physical domain. Details on the mapping between the
physical and isoparametric domains are discussed in [16].

3. FINITE ELEMENT MODEL
3.1 Layerwise Displacement Field

Equations of motion represented in (2.9) for an enhanced strain method
involve two independently assumed fields, namely, the displacements and
enhanced strains. In the present study, the displacements are assumed from
a layerwise field suitable for the analysis of a layered media [1,2]. In order to
develop a layerwise theory for a geometrically non-linear analysis it is required
to model the strain distribution through the thickness in a kinematically correct
manner. That is, the kinematic condition that exists at the interface between
the lamina should be such that the transverse strains are piecewise continuous
through the laminate thickness. The geometry of the laminate at configuration
Q, for example, is represented as

N
fr = 3 ®(¢T) el (€, m) (3.1)
=1
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where ’z; represents the material coordinate in a stationary Cartesian

coordinate frame for a material point at (¢,7,¢/) of the laminate in the
configuration at ;. Similar expressions hold at + = 0 and + = ¢t + At
One dimensional linear Lagrange shape functions ®; are used in (3.1) for
representing the variation of geometry in the thickness direction.

From the geometry of the laminate, defined at different configurations, the
corresponding displacements can be expressed as

ﬁ'”'i = Z ®1 £77])

N
f+Af,““i — t+Af.T7: _ ():I:i = Z ‘D[((I) t+At“’1{(£7n)

N
; = t+AL”’7‘. - “7 - Z (I)I(C 5,7]) (7 = 1,273) (32)

The quantities 'u! and **2u! have the meaning of total displacements at the

interface I between the kinematic layers for the configuration Q; and Q,,a,
respectively; «! represent the incremental displacement for the same interface

I. These inplane displacements are approximated using interpolation functions
of 2D elements.

3.2 Element Equations

The lincarized incremental equation of motion for an enhanced strain
method can be written as (see Moorthy [16])

./V (é,p +b,bu)/(y,1“ (, ,\,-I—,q,) dv+/ T, b,//,/ dv

= I+A'R _ [/v T,(J (‘)/S,“,‘ d’”Lk._[) (55)

where
1AL

AR = fF 6w, (lv+/ f du; ds (3.4)

Jt+aty

is the residual, ,s,lj = (1/2)(sriz + ¢u;;) represent the compatible linear strains,
1€i; represent the incompatible enhancement strain, (mi; = (1/2}( s it )
represent the non-linear part of Green-Lagrange strains, "r,,-‘) arc the Cartesian
components of (Cauchy) stresses in Q; evaluated through the counstitutive
relations, and ;C;ji; represent the incremental material property matrix. During
the equilibrium iterations (in reducing the residual error), the second term
on the right hand side of (3.3), which represents the internal force vector, is
updated in each iteration. That is, for the kth iteration the term is evaluated
with the quantities known from the (k—1)th iteration. The the Cauchy stresses
t+Atr. are to be recovered in such a manner that it is orthogonal to the
enhancement field ;4 A:&;5:

»/+A'v LM"T’I’J’ t+AtEi; dv =10 (3.5)
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The element matrices are obtained when the displacement and enhancement
fields are substituted into the incremental equations of motion (3.3). We obtain

[K{Ad} + [P {Aa} = {2 R}~ {*R} (3.6)
[:P] {Ad} + [[Q{Aa} = —{'h"}

where
(K] = [K1] + [ KnN] (3.80)

1] =/ (B 18] dv \[Knl = [ [BaI[7] B do
Pl= [ GBI LCT LBl dv, [Q= [ LE]" LC) LE] dv (3.80)

I _ t_c by 1 . ' T gt _c
{'R Y-y = [ [tBL] { } dv e {"h Y-y = [/V[,E] {'7¢} dv )

The terms {'R'}_yy and {'h'}(_,, are the internal force vector and the
conjugate vector (‘OI‘I'(‘prIldlIlg to the strain parameters, respectively. They
are evaluated at the most recently known configuration. The subscript (k — 1)
is used to indicate that the quantity is evaluated with solution from the previous
iteration. For additional details, the reader may consult Reference 31.

In using the displacement field (3.2), which is C? continuous across the
clement boundary, the strain field will be discontinuous across the element
layers.  Consistent with the displacement field, the enhanced strains are
not made continuous across the clement layer boundary. The discontinuous
enthancement field climinates the coupling of unknown strain paramcters from
one element layer to another. This has the consequence that strain parameters
can be eliminated within the clement layer without increasing the number of
unknowns in the global set of equations from that in a pure displacement
method. Thus from equation (3.7) we have

{Aa} = ~[Q)" [{'h oy + [ PH{AdY] (3.9)

The strain parameters can be eliminated from (3.6)by using (3.9). Thus the
clement equations take the form

[K{Ad} = {F)} (3.100)

(K] =LK] - [PI"[Q1 " P] -
(F}y ={"YR) — 'R oy + P 1Q1 {0 by (3.10b)

The incremental solution for the displacements is obtained after solving the
assembled set of equations from the element equations (3.10). From the
displacement solution the incremental solution in the enhancement strain
parameters are post computed from (3.9).
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4. MODELING OF INTERLAYER DELAMINATION

4.1 Introduction

In a laminate with many layers, delamination is a major failure mechanism.
It is characterized by the separation or debonding between layers and may
be represented as an interlaminar crack. For the prediction of the onset of
delamination and its growth, stress based criteria and strain energy release
rate based criteria have been used. The stress and strain energy release
rate evaluation in a region near the delamination tip is complicated by the
triaxial nature of the stress and strain fields. Among the stresses at the
delamination tip, the evaluation of interlaminar stresses is more important
from the delamination point of view.

While the evaluation of stresses from counstitutive relations is more
consistent with the general formulation, the stresses recovered from the
equilibrium equations are more accurate. Hence, in the present study the
laminate is modeled in such a manner that it will facilitate a direct recovery of
interlaminar stresses from equilibrium conditions. It is achieved by modeling
the laminate as two sublaminates on cither side of the delaminated interface.
The total laminate is analyzed by bringing the two sublaminates together by
enforcing a no-slip adhesive contact condition. Interlaminar stresses are later
recovered from the contact loads that satisfy force cquilibrium at the interface.
There is one other advantage in modeling the interlaminar boundary in this
manner comparced to that cvaluated from constitutive relations in a finite
clement analysis.  Irrespective of the size of the element near the interface,
the Gauss point locations where stresses are evaluated are not on the interface.
In modeling the interface contact in the present approach, it is assumed that the
nodes on the two faces of the delamination are in contact prior to delamination
and the no-slip adhesive contact condition is enforced by the penalty function
method.

N, Body 1

N,
A

B Body 2

t+ot
Z3

t+At
Z,

l+AlIl

Figure 4.1: Contact between two bodies.
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4.2 Penalty Formulation of Contact

Consider two bodies, hitting body 1 and target body 2 in contact (see Figure
4.1), and suppose that point B on body 1 and point A on body 2 were originally
in contact. Further assume that during the motion they were separated by a
small amount of penetration “+2*P (superscript ¢ + At is omitted inFigure 4.1

for clarity)
f,+Af.P — ﬁ+Af,x2 _ f+Af,x1 (41)

where 'T2'x? represents the position vector of contact point in body 2 (point
A) and *2'x! is the position vector of contact point in body 1 (point B).

The components of penetration (displacement) at contact point can be
expressed in the normal and tangential directions to the interface as

APy = (1A AR (1,i=1,2,3) (4.2)

where AN, denote the ith component of the vector "*4/N; represented in
the global Cartesian coordinates. Now assuming that the configuration change
from § to .4, is small such that +3' Ny =" Ny; and we have

1Al P = IP/ + AP (4.3a)

'pr=(a? = e YIN L AP = (W = ul) AN, (4.3b)

i

The finite element approximation of incremental penetration equation (4.3) is
obtained by approximating the displacements «? of the body 2 at the contact
point using clements on the target surface. For details, see {16].

During the motion of the bodies 1 and 2 in contact, there may be regions
on the surface of the two bodies that need to be in adhesive contact. For a
laminate with an embedded delamination, this region is the bonded portion of
the laminate at the interface where the delamination is present. In order to
enforce this adhesive contact condition on this portion of the surface, a zero
penctration condition is imposed using the penalty function method. In the
penalty function method, the constraint condition

HAIp =) (1 =1,2,3) (4.4)

is included in the finite element forinulation by minimizing the modified
functional
I, =1 +11, (4.5)

where 1T represents total energy associated with the assemblage of finite
elements with enhanced strains

OTl

5TaT = [KHAUY — {7} (46)
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and II, represents the penalty functional associated with the constraint (4.4)

T

M, == an ("TAP7 A PR (4.7)

n=1

where L; represents the total number of hitting nodes where no slip adhesive
contact condition is enforced.

After obtaining the incremental solution wu; during motion from
configuration Q; to Q14+, components of penetration along normal tangential
coordinate for any contact point can be post computed from (4.2) as

r.+AtP[ — ("*At.rf _ t+At]7%) r+Ar,N” (4.8)

where *8tz, = ‘'z, + w;. Further, the contact loads at contact node n are
evaluated from the penetration displacement and penalty parameter «, as

follows
H—A,'(]y = —a, H—AI,P}H (49)

The load 2% at contact node n represents the reaction forces between the
hitting node and target surface.

4.3 Strain Energy Release Rates

Even though linear clastic fracture mechanics (LEFM) is not applicable
in general to laminated composites with through the thickness cracks, it has
generally been accepted that delamination can be characterized by LEFM
with critical strain cnergy release rate as a growth criterion. Three basic
modes of delamination, Modes I, II and III represent the opening, sliding
and twisting shear modes, respectively. In general three modes can exists in
isolation or in combinations. The associated strain energy release rates Gy, Gy
and Gy can be evaluated for a delamination problem for each of the three
modes of delaminations. They represent the total energy that is released from
the body for a small crack extension Aa during the corresponding mode of
delamination. Three different methods of evaluating the strain energy release
rates are discussed in the setting of finite element method. They are the virtual
crack closure method (VCCM), crack closure method (CCM), and the potential
energy change method (PECM). For details see [16].

5. NUMERICAL RESULTS

5.1 Problem Description

In order to illustrate the application of the finite element model developed
and the strain encrgy release rate procedures, a double cantilever problem is
chosen as an example. The geometry of the double cantilever is shown in
Figure 5.1. A splitting load of magnitude P is applied at the tip of the double
cantilever to produce an opening mode near the crack tip.
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5.2 Analytical Solution

If the specimen is assumed to experience small displacements so that linear
approximations can be used and the length a and the thickness h of one
cantilever are such that a/h value is large and the shear deformation effects
can be neglected, then the tip deflection can be obtained as (see Reddy [1])

Pa3
3Dt

where DY denotes the effective bending stiffness, which depends on the
boundary condition at the edges y = 0 and y = B. When the cantilever is
small in the width direction, it can be approximated as a beam and when it is
long in the width direction it is a plate strip in cylindrical bending. The beam
bending is a plane stress problem whereas the cylindrical bending is a plane
strain problem. The effective bending stiffness D® for the cantilever depends
on whether it is modeled as a plane stress or plane strain problem.

5= (5.1)

y,v

u(0,y,2) =0
w(0,y,2) =0 B

A €,

Plane strain: v(x,0,2) = v(x,B,2) =0 Plane stress: ©(0,0,0) =0

z,w _T
| lh 3 'P
T -‘—Q
T l P
a4

Figure 5.1: Geometry, loading and boundary conditions of the double
cantilever.

The double cantilever geometry considered here is symmetric about the
plane z = T/2 so that the mode II strain cnergy release rate Gy = 0. Assuming
further that the dissipation of energy takes place only at the crack tip during
the crack extension, total strain energy release rate G is equal to the opening
mode strain cnergy energy rate Gy

G=G;= _dl

da
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where II represents the total potential energy of the body per unit width of the
laminate and a is the delamination length. This can be represented graphically
in the load-deflection curve, where 8 and é; represent the tip deflections of
the double cantilever at two different delamination lengths a and a + Aa (see
Figure 5.2). Then for a double cantilever, total strain energy release rate can
be obtained as

P(61 — 63)

(P83 + P(61 — 63) — 1P61] B
'Aa.—»O - WlAa—‘O (5~2)

G=G1=2X BAa

Using the load deflection relation from (5.1)

P(a + Aa)? Pd®
by = et 2 == .
! 3Dt ' 7 3DpP (5-3)
the strain energy release rate becomes
P2’  9D6? .
C1=BDF = Ba® (5:4)
where 6 is the tip deflection.
7L
g
7!
-
1

|

_\”P'

a+ Aa l
1

Figure 5.2: Double cantilever configurations at two different delamination
lengths a and Aa.

5.3 Specially Orthtropic Double Cantilever

The geometry, loading and boundary conditions for this problem (see [11])
are the same as those shown in Figure 5.1. The dimensions of the double
cantilever are: a/h = 50, T = 0.04", h = T/2 = 0.02", A = 2" a = A/2 = 1",
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and B = 1”. The plane stress condition is assumed, and a splitting load of
magnitude P is applied at the tip of the double cantilever for an opening mode
near the delamination tip q. The material properties of the lamina used are

E; =20x 10° psi, Ey = FE3=2x10°% psi, Gy3 =G3 =Gz =0.85x 10° psi

3 = Vi3 = V19 = 0.21

The lamina orientation is such that fiber direction is along the length of
the double cantilever. The finite element used in the plane of the double
cantilever is shown in Figure 5.3. An inplane mesh of 14 x 1 is used in the
analysis and the sequence of lengths (in) of elements used in the analysis
are: 0.32,0.32,0.32,0.02,0.01,0.005,0.005 and repeated symmetrically. Linear
Lagrange 1D elements are used in the thickness direction, as shown in Figure

5.4,
U
3

Figure 5.3: The 2D eclement used for inplane discretization.

Selected interface

Figure 5.4: Nonuniform mesh used through the thickness.

The strain energy release rate at the crack tip is calculated by three different
approaches. Even though these methods evaluate the strain energy release
rate based on a small delamination closure, the VCCM requires an analysis
only at one delamination length, because of the virtual nature of the crack
closure considered. In the other two approaches (CCM and PECM) the
delamination closure (Aa) is real and hence two different analyses are required
for the evaluation of the strain energy release rate. Irrespective of whether the
delamination closure (Aa) is virtual or real, all the above methods require it
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to be small for an accurate determination of the strain energy release rate. In
the context of the finite element method, this delamination closure is dictated
by the size of the elements adjacent to the delamination tip. In this study, the
delamination closure length considered is 0.005".

The analytical solution for the strain energy release rate can be obtained
from (5.1). For the plane stress problem the effective bending stiffness is
Db = EyI,,. Where, I, represents the moment of inertia of the section of
the cantilever about the y—axis. The strain energy release rate G; obtained
from different methods are compared with the analytical solution in Figure
5.5. It can be seen that, all the three methods yield the strain energy release
rate G; very close to the analytical solution. This is despite the fact that the
present analysis uses a higher-order element which has been reported [7] to be
inaccurate in the evaluation of strain energy release rate.

M T T N T

30 - —vcem 1

a—a CCM
v PECM
—— Close form solution

25
Load, Ib

Figure 5.5: Comparison of the strain energy release rates.
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o

Figure 5.6: Load-deflection curves for double cantilever.

Figure 5.6 shows a comparison of the load-deflection curves obtained using
FEM and the analytical solutions. It can be noted that the FEM with
contact enforcement by penalty function method predicts a more compliant
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response compared to that from the analytical solution. This is attributed
to the assumption of clamped endcondition made in obtaining the analytical
solution. The clamped endcondition is only an approximation to the actual
boundary condition at the ends of the double cantilever segments (i.e., near the
delamination tip).

Figures 5.7 and 5.8 show the effect of penalty parameter on the tip deflection
and strain energy release rate G; for an applied load of 1 /6. It is noted that
value of the penalty parameter greater than 10% has little effect on the tip
deflection as well as on the strain energy release rates.

0.030 —r—F———F————T1————T7
0.029 - B
<
<
°
8 0.028 |- .
K}
o
a
(=
0.027 - .
0026 1 1 i 1 S IR |
2 4 6 8 10 12 14
Log(Penaity)

Figure 5.7: Effect of the penalty parameter on tip deflection.
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Figure 5.8: Effect of the penalty parameter on the strain energy release rate.

5.4 Cross-Ply (0/90); Double Cantilever

In this section a cross-ply double cantilever problem is considered in plane
strain state. The geometry of the cantilever is shown in Figure 5.1. Tt has an
overall length of A = ¢”, width B = 1", and thickness is T. The total double
cantilever is a composite laminate (0/90);, and the individual plies have the
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following material properties in principal material directions
Ep =25 x 100psi, Fo = F3=1x 10%psi, Gaz = 0.2 x 10%psi
Gy = Gi3 = 0.5 x 100psi, 19 = vo3 = 113 = 0.25
Each of these material plies considered are of equal thickness hy.

The laminate is assumed to have an embedded delamination in the midplanc
of the cantilever extending to a length of a = 3" from its free end making it a
double cantilever. A splitting load of magnitude P = 1 (b is applied at the tip
of the cantilever. The displacements (u,v,w) along the (x,y,z) directions are
constrained as follows:

u(0,y,2) =0, v(r,0,2)=0, w(0,y,2) =0, v(r,B,z)=0

A 2D mesh of 6-node elements (see Figure 5.9) is used in conjunction with a
1D mesh (Figure 5.10) of 2-node linear elements through the thickness direction.
The 6-node clements used in the inplane mesh has a quadratic variation along
the x—direction for capturing bending deflection of the laminate and has linear
variation along the y—direction.

h, |0
4
90
2 90
0
L

L2bC L4DC L6DC L8DC
Size of sequence of clements from bottom of laminate
L2DC: (2.0,2.0) hy
L4DC: (1.0, 1.0, 1.0, 1.0) hy
L6DC: (1.0,0.5,0.5,0.5,0.5, 1.0) Ay
L8DC: (1.0,0.5,0.25,0.25,0.25,0.25, 0.5, 1.0) hy

Figure 5.9: Mesh used through the thickness of cross-ply double cantilever.

The strain energy release rate at the crack tip is calculated by the three
different approaches. In order to study the sensitivity of different approaches
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to the length of delamination closures considered, strain energy release
rates are evaluated using different meshes that produce different amounts of
delamination closure lengths. The different inplane meshes considered are given
below.

Mesh DCO:
Number of elements (along =,y): 8 x 1
Length of elements: 0.75” (8 elements)
Delamination closure length Aa = 0.75"
Mesh DC1:
Number of elements (along z,y): 10 x 1

Length of elements: 0.75” (3 elements), 0.375" (4 elements), 0.75" (3
elements)

Delamination closure length Ae = 0.375"
Mesh DC2:
Number of elements (along @, y): 12 x 1

Length of elements: 0.75” (3 clements), 0.375”, 0.1875" (4 clements), 0.375”,
0.75" (3 clements)

Delamination closure length Aa = 0.1875”
Mesh DC3:
Number of clements (along x, y): 14 x 1

Length of elements: 0.75” (3 elements), 0.3757, 0.1875”, 0.09375” (4 clements),
0.1875", 0.375", 0.75" (3 elements)

Delamination closure length Aa = 0.1875"

The strain energy release rates evaluated from different methods are plotted
against Aa/e in Figures 5.10 and 5.11 for a/h values of 2 and 100, respectively,
where A is the thickness of the sublaminate. A mesh with 2 linear clements
(L2DC in Figure 5.9) through the whole thickness of the laminate is considered
in this study. It can be scen that all the three methods converge approximately
to the same value of G; as Aa approaches zero. Further, it is noted that VCCM
is less sensitive to Aa/a indicating that it produces more accurate value of Gy
compared to CCM and PECM for larger values of Aa/a values. Sensitivity
curves from CCM and PECM are very close to each other for small values
of a/h upto 50 and differ slightly for the case of a/h = 100. Figures 5.12 and
5.13are the log-log plots showing the variation of G; with respect to a/h for large
and small values of delamination closure lengths (Aa/a = 0.25 and 0.03125). It
is noted that the curves obtained from all three methods (VCCM,CCM and
PECM) are very close to each other for Aa/a = 0.125 and smaller.
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Figure 5.10: Sensitivity of G; to the ratio Aa/a for a/h = 2.
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Figure 5.11: Sensitivity of G to the ratio Aa/a for a/h=100.
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Figure 5.12: Variation of G; with a/h for Aa/a = 0.25.
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Figure 5.13: Variation of G; with a/h for Aa/a = 0.03125.

In order to study the effect of mesh refinement through the thickness
on Gy, four different thickness meshes (L2DC, L4DC, L6DC and L8DC) are
considered. The number of elements used in each of these meshes and size of
the elements arc shown in Figure 5.9. The 2D mesh used here is DC3. The
strain energy rate G; obtained from cach of these meshes is given in Table
5.1 for VCCM. It is noted that the change in the G; values with thickness
refinement is very small for large a/h values.

Table 5.1: G, (Ib.in/in?) values for different thickness meshes from VCCM.

Meshes alh =2 a/h =4 a/h=10 a/h =20 a/h=50 a/h =100

L2DC 1.610E-5 9.239E-5 1.069E-3 7.643E-3 1.112E-1 8.662E-1
L4DC 1.633E-5 9.389E-5 1.076E-3 7.671E-3 1.113E-1 &.667E-1
L6DC 1.652E-5  9.509E-5 1.082E-3 7.690E-3 1.114E-1 8.669E-1
L8DC 1.659E-5  9.550E-5 1.080E-3 7.695E-3 1.114E-1 8.669E-1

To ascertain the accuracy of the evaluated strain energy release rates, the G
computed from different numerical methods are compared with the analytical
solution. The analytical solution given in (5.1) is valid for thin laminates where
shear deformation effects can be neglected. The effective bending stiffness D?
for the cross-ply laminate is given by

_ Dy An — By

Db 5.12
= (5.12)
where
(A, Bu, D) = [ Qul,z2%) dz, Q S (5.13)
1, L1, i Sp b oo 1 1 — 1919 '
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The integration indicated in (5.13) is over the thickness of each cantilever. Table
5.2 gives a comparison between G; from three alternate numerical methods to
that from the analytical solution for a/h = 50 and 100. The meshes used in the
analysis are DC3 for inplane refinement and L2DC for thickness refinement. It
can be seen that G; from VCCM, CCM and PECM are close to the analytical
solution for thin laminates.

Table 5.2: Comparison of G; (Ib.in/in?) from alternate methods.

a/h VCCM CCM PECM Analytical
50 0.1112 0.1079 0.1079 0.1063
100 0.8662 0.8417 0.8424 0.8503

6. SUMMARY AND CONCLUSIONS

A layerwise finite element is developed for the geometrically nonlinear
analysis of laminated composites using higher order functions for the inplane
approximation and a linear function for the thickness approximation. All
problems considered in the study are bending dominated and hence, require use
of higher order functions in the inplane direction for capturing accurate bending
response. Linear functions are used in modeling the thickness dircection of the
laminate because it is extremely expensive to provide refinement through the
thickness. The thickness locking effects associated with the use of low order
functions through the thickness are overcome by the use of enhanced strain
method with enhancement ficld defined for the transverse normal strains.

The layerwise finite element developed herein is used in the analysis of
laminates, with a chosen interface modeled with emphasis on the study of
delaminations. In a laminate with an embedded delamination, the interface
is modeled as a contact zone between the laminate halves separated by the
interface. This is achieved by considering the total laminate as two independent
sublaminates separated by the interface, but analyzed as a single laminate by
enforcing a no-slip adhesive contact condition at the interface.

The interface model developed herein is used to analyze double cantilever
problems. Strain energy release rates computed using the present model are
found to be in good agreement with the approximate analytical solutions for
the case with specified load. However, the comparison was not as good for
cases with a specified displacements at the tip of the double cantilever. This
is due to the fact that the analytical solution is based on the assumption of a
clamped end condition for the segments of the double cantilever.
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A Computational Damage Mechanics Approach for Laminates: Identification
and Comparison with Experimental Results
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The present study concerns finite element predictions of carbon-fiber/epoxy-resin composite
coupon delamination tests up to fracture. For these predictions, a previously-defined damage
mesomodel of composite laminates is used and implemented in a tridimensional F.E. code.
This F.E. software includes the interlaminar interfacial deterioration as well as the main inner
layer damage mechanisms. This code is able to predict at any time and at any point the
"intensities" of the different damage mechanisms up to fracture. However herein, attention is
being focused on the identification and comparison of F.E. predictions with M55J/M18
carbon/epoxy experimental results obtained from the AEROSPATIALE company.

1. INTRODUCTION

An initial step, which has been achieved in other studies, is to define what we call a laminate
mesomodel. At the mesoscale, characterized by the thickness of the ply, the laminated
structure is described as a stacking sequence of homogeneous layers throughout the thickness
and interlaminar interfaces. The main damage mechanisms are described as: fiber breaking,
matrix micro-cracking and adjacent layers debonding [1-3]. The single-layer model includes
both damage and inelasticity. The interlaminar interface is defined as a two-dimensional
mechanical model which ensures traction and displacement transfer from on ply to another. Its

mechanical behavior depends on the angle between the fibers of two adjacent layers.



482

It is well-known that fracture simulation using a continuum damage model leads to severe
theoretical and numerical difficulties. A second step which has also been achieved, is to
overcome these difficulties. For laminates and, more generally, for composites, we propose
the concept of the mesomodel: the state of damage is uniform within each meso-constituent.
For laminates, it is uniform throughout the thickness of each single layer; as a complement,
continuum damage models with delay effects are introduced.

Two models have to be identified: the single layer model and the interface model [4-7,9-
11,13,16]. The appropriate tests used consist of: tension, bending, delamination. Each
composite specimen, which contains several layers and interfaces, is computed in order to
derive the material quantities intrinsic to the single layer or to the interlaminar interface {9-11].
The proposed procedure is rather simple and has been applied to various materials. Various
comparisons with experimental results have been performed to show the possibilities and the
limits of our proposed computational damage mechanics approach for laminates. A Finite
Element code, devoted to stiff stress gradients, has been developed. It's an extended version of
the F.E. code Castem 2000 (C.E.A.) [8]. Several tests of delamination propagation (DCB,
MMF, ENF and CLS) or of initiation (edge delamination or holed plate specimens) are
considered herein.

We will pay special attention to the basic aspects of the finite element simulations of
interlaminar and intralaminar damages. The finite element predictions of classical Fracture
Mechanics coupon tests are analyzed. In particular, the value of using a Damage Mechanics
approach for initiation prediction as well as for the interpretation of standard Fracture

Mechanics tests, in connection with experiments [11], is discussed.

2. MESOMODELING CONCEPT

Let us recall that delamination often appears as an interaction between fiber-breaking,
transverse micro-cracking and the debonding of adjacent layers itself. For laminates, three
different scales may easily be defined: the micro scale of the individual fiber, the meso scale
associated with the thickness of the elementary ply, and the macro scale which is the structural
one. Due to the small thickness of the elementary ply and to the kinematics of the deterioration
inside the ply, it is both possible and worthwhile to derive a material model at the mesoscale.
The one proposed in [5] is defined by two meso-constituents, a single layer and an interface
(Figure 1). The interface is a mechanical surface connecting two adjacent layers and depends

on the relative orientation of their fibers.
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— = Interface /

Figure 1. Laminate modeling

A mesomodel is then defined by adding another property: a uniform damage state is
prescribed throughout the thickness of the elementary ply. This point plays a major role when
one tries to simulate a crack with a damage model. Let us recall that in order to be able to
perform a complete analysis of the delamination process in all cases, damage models with
delay effects are introduced for the in-plane direction. One limitation of the proposed
mesomodel is that it is able to describe only two types of macrocracks. The first type is a
delamination crack within the interface, and the second type is the crack is orthogonal to the
laminate with each cracked layer being completely cracked in its thickness. Let us also note
that the (0°, 0°) interface appears to be something artificial if the material is well made.
Normally, such an interface need not be introduced. However, such an "artificial” interface can
be introduced for describing an initial crack in a thick layer.

Let us recall that the single-layer model and its identification, including damage such as
fiber-breaking and transverse micro-cracking as well as inelastic effects, were previously

developed in [4-5]. In section 3, the single-layer model is detailed.

3. SINGLE-LAYER MODELING

The carbon-fiber/epoxy-resin material under consideration in this study has only one
reinforced direction. In what follows, subscripts 1, 2 and 3 designate the fiber direction, the
transverse direction inside the layer and the normal direction, respectively. An energy is
proposed here to predict the damage in a laminated structure [9]. The damaged material strain
energy, by splitting the energy into a "tension” energy and a "compression" energy, is written
in the case of the plane stress assumption. With the transverse rigidity in compression being
supposed equal to E(z), one then obtains the following energy for the damaged-layer material:
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where ¢ is a material function, that takes into accout the non-linear response in compression.
dr, d and d' are three scalar internal variables which remain constant within the thickness. They

define the damage of the single layer. The forces associated with the mechanical dissipation are:
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where <X>4 is the positive part of X and << >> denotes the mean value within the thickness.

For static loadings, the damage evolution law can be formally written:

d|t =Ad(Yd|1’Yd'| T<t); d'll =Ad-(Yd‘t,Yd'|1,‘cSt)

T b
where the operators Ag and Ag' are material characteristics. The operator Aq is drawn for
instance in Figure 2. d corresponds to a brittie fracture mechanism. More details, in particular

for the modeling of inelastic strains, can be found in {4,7,9].
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Figure 2. Shear damage evolution of the elementary ply for the M55J/M18 material.

4. INTERLAMINAR INTERFACE MODELING

4.1. Damage kinematics of the interface

The interlaminar connection is thus modeled as a two-dimensional entity which ensures
stress and displacement transfers from one ply to another. The diagram leading to the
definition of the interface is classical for isotropic bi-materials. The interlaminar connection can
be interpreted as a ply of matrix whose thickness (denoted by e) is small compared to the in-
plane dimension. Therefore, the wavelength of the displacement in the normal direction N3 is
on the order of magnitude of the thickness, while the wavelength of the displacement fields in

the plane is on the order of the in-plane directions.

N3
ply
—
imeri‘uce—7(__. 1
ply —

Figure 3. "Orthotropic” directions of the interface.
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is the difference in displacements between the upper and lower surfaces of Q. Thus, at the first
order, the strain energy of Q is:

1 1 T
Ed_-.EIQTr[KEOEO]szEeJ'%H%J dr (2)
r

where I is the area of the mid-plane interface, and H is a (3,3) symmetric matrix. Let us
denote the bisectors of the fiber directions by (N, N2). They are necessarily "orthotropic”
directions of the interface, since a [01,02] interface is equivalent to a [6,0,] interface (Figure
3). The ideas and framework which govern the interface damage model are similar to those
used for deriving the layer damage model [5],[9]. Like in the layer model, the effect of the
deterioration of the interlaminar connection on its mechanical behavior is taken into account by
means of internal damage variables. The different behavior in "tension” and in "compression”
are distinguished by splitting the strain energy into "tension-energy " and "compression-
cnergy”. More precisely, we use the following expression, as proposed in [10], of the energy
per unit area. Thus, in the (N|, N2, N3) axes, the elastic strain energy of the interface may be

written as follows in stress form:

2 dr (3)

]

E -+ <'°33>+2 <G >4 c)32 523
-2 KB T 33dy) TRi-dp T R2(1-d
r 0 o( - 3) 0( - l) o( - 2)

Three internal damage indicators, associated with the three Fracture Mechanics modes, are

thereby introduced.

4.2. Interfacial damage evolution laws
These evolution laws must satisfy the Clausius-Duheim inequality. Classically, the damage

forces, associated with the dissipated energy o, are introduced as follows:

2 2 2
I 4)

I I
G721 02 Y4 T 2302 Y2 2 (01,2

with: © =Ygy dy+ Yy, d,+Y4dy (® 20)
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The damage evolution laws used in this study are based on the assumption that the evolution
of the different damage indicators is strongly coupled and driven by a unique equivalent
damage force. The following model, developed in [13], considers that the damage evolution is
governed by means of an equivalent damage force of the following form:

Y () =sup| [ (Ya§+ (1 Yap® + (1Y a)™ | o] 5)

where v, Y, and o are material parameters. In terms of delamination modes, the first term is
associated with the first opening mode, and the two others are associated with the second and
third modes. Compared to other damage evolution laws, used for example in [5-7], an
enhanced coupling model, associated with the parameter o, is proposed. The effect herein is to
be able to describe Fracture Mechanics failure loci which are quite general. A damage evolution
law is then defined by the choice of a material function W, such that:

dy=d;=d,=W() if d<1; dy=d;=d, =1 otherwise

A simple case, used for application purposes, is:

n <Y-Yo>4 n
WO = (047 Yoy, ©)
where a critical value Y and a threshold value Y,, are introduced. High values of n correspond
to a brittle interface.

To summarize, the damage evolution law is defined by means of six intrinsic material
parameters Y¢,Yo, Y|, ¥, O and n. The threshold Y, is introduced here in order to expand the
possibility of describing both the initiation of a delamination crack and its propagation. As
regards the initiation of a delamination crack, the significant parameters are Y, n and o. It will
be shown hereafter that Yy, v, ¥, and o are related to the critical damage forces.

4.3. Identification method for interface propagation parameters

A simple way to identify the propagation parameters is to compare the mechanical
dissipation yielded by the two approaches of Damage Mechanics and Linear Elastic Fracture
Mechanics. This was performed in [13], and only the resuits will be presented below. In the
case of pure-mode situations, when the critical energy release rate reaches its stabilized value at

the propagation denoted by G, we obtain:



GP. Y ; GP L. ¢4 X 8
ca=Te> Yen=y 5 YemTy, 8)

For a mixed-mode loading situation, a standard LEFM model [14] is simply derived:

o o o
G + S + L8 =1 9)
Gh G Gl

4.4. Extension with delay effects

In order to obtain, in all cases, a consistent model for the description of rupture, a variant of
the previous damage model that introduces delay effects [8-13,15,16] is applied. In quasi-static
problems, the use of such damage evolution laws implicitly introduces a length scale into the
governing equations of the problem and thus avoids the pathological mesh sensitivity for

composite structures.

5. FRACTURE MECHANICS TESTS

5.1. Introduction

The aim of this section is to present the classical Fracture Mechanics tests which have been
chosen to identify the interface damage model. In a second step, these examples will be
predicted with the help of our F.E. code and then compared with experimental results. The
tests conducted in this work are the pure-mode I DCB (Double-Cantilever Beam) Test [17], the
pure-mode II ENF (End-Notched Flexure) test [18], and two mixed-mode tests: the MMF
(Mixed-Mode Flexure) test and the CLS (Cracked-Lap Shear) test [19] (Figure 4). These tests
were conducted on an INSTRON testing machine at ambient temperature, and the displacement
rate loading was set at 2 mm min-! in the DCB and CLS tests and at | mm min"! in the ENF
and MMF tests. The F.E. predictions were conducted on HP 735 machines.

The D.C.B test is probably encountered the most often in the literature. In this mode I test,
the links between Linear Elastic Fracture Mechanics and Damage allow identifying the Y _
damage model parameter. The E.N.F test is used to obtain the critical energy release rate in
mode II. Using both mode I and mode II experimental results, the links between Linear Elastic
Fracture Mechanics and Damage allow identifying the ¥, damage model parameter. The
hypothesis (y; =Y,) is made without any further experimental information on mode III. In the

M.M.F test, a mixed-mode critical energy release rate is obtained. In this mixed-mode test,



489

mode I is dominant. The evolution of the damageable area is refined. Each specimen tested is a
[(+6/-0)4s/(-6+6)45] laminate with 6 = 0°, 22.5° or 45°, according to the three kinds of +0
interlaminar interfaces investigated. The stacking sequence is equilibrated and symmetric in
each arm of the beam in order to suppress any bending/twisting-membrane coupling effect.
Such tests are usually analyzed by means of Linear Elastic Fracture Mechanics (LEFM).
Nevertheless, in the case of carbon-epoxy laminates, the main assumptions of LEFM are not
always satisfied even in the simple case of a D.C.B. specimen. This is true, in particular, in the
case of: non-unidirectional stacking sequences and R-curve-like phenomena. In the former
case, inner layer damage mechanisms may be activated; they lead to an apparent energy release
rate different from the local interfacial one. In this case, a damage analysis of the layers and

interfaces should be performed [11].

F
L I DCB test
a)  F— F pure mode [
IF
F
[ ENF test
b) & Z% pure mode [I
§? F
1 MMF test
o | A 57% mode 1
F F CLS test
d) t = 20%mode

Figure 4. Standard Fracture Mechanics tests.

5.2. Identification of the damageable interface propagation parameters

From the corrected critical energy release rates at propagation (Figure 5) [11] and from the
relationships existing between Fracture Mechanics and Damage Mechanics (8), we deduce the
values of the critical energies Y, and the coupling coefficient y;. Without any further
information on mode III interlaminar fracture, let us recall that we can choose 7y, = 7y, which
is justified at least for a +45° interface. The identification results are reported in Table 1. For
each kind of interface, the parameter ¢, which governs the shape of the failure locus in the
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mixed-mode (9), is identified in the normalized mode IY'mode I plane (Figure 6). It is observed
that o is always greater than 1, and we can choose the same parameter o for the two 16
interfaces (8 # 0°).

Table 1. Interface model parameters.

Interface ¥, (Nmml) v, o
0°/0° 0.113£0.007 037%0.15 159
+22.5° 0.167£0.013 0.36+0.17 1.12
+45° 0.192+0.014 044 %0.16 1.19

With the 16 interfaces, the dissipative phenomena inside the layers are not insignificant in
particular for the case (8 = 45°), and thus a critical damage force may not be entirely attributed
to the delamination process. In fact, by introducing the dissipation inside the layer it is possible
to clearly identify the intrinsic damage interface parameters [11]. Let us note that the interface
parameters seem to be independent of @ for all 9 interfaces with 8 # 0°. Let us also note that
the (0°/0°) interface appears to be something artificial. However, such an "artificial" interface

can be introduced, for example, to describe an initial crack in a thick layer.

700 — _. 0°/0°
: B 22.5°/-22.5
_600] [0 45°/-45
E500}
=
o 400
(L]
T 300
T
€200
5
Qo
ol | ‘
DCcB MMF cLs.

Figure 5. Critical energy release rates at propagation.
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Figure 6. Identification of o for the +45° interface.

5.3. Simulation of classical Fracture Mechanics tests

Tridimensional F.E. predictions are conducted, with the shape of the delaminaton front also
being predicted. The tests of crack propagation in interlaminar fracture specimens are usually
conducted on beam specimens with an initiated crack at the studied interface. Our specimens
are 300 mm long and 20 mm wide. The mean thickness of a single ply is on the order of 0.1
mm, and one element in the thickness is chosen for the prediction. An anti-adhesive film 40
mm long and 25 um thick is inserted at the mid-plane in order to initiate cracking. From a
computational point of view, an interface of zero stiffness rigidity is used, in combination with
unilateral contact conditions, in order to model the initial crack (anti-adhesive film) in the F.E.
predictions.

The evolution of the damaged area is then refined for all test predictions. Experimental
results and finite element predicted values exhibit good correlation (Figures 7-10). In

particular, the lengths of the debonding area are found to be close.
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Figure 7. Prediction of a D.C.B. test. Comparison between experimental results and predicted
values. The initial crack closure is a= 50 mm. The evolution of the crack length at the end of the
test is 23mm.
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Figure 8. Prediction of an E.N.F. test. Comparison between experimental results and predicted
values. The initial crack closure is a=68mm. The evolution of the crack length at the end of the

test is 77mm.
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Figure 9. Prediction of an M.MLF. test. Comparison between experimental results and predicted

values. The initial crack closure is a=45mm, the crack length at the end of the test is 32.77mm.
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Figure 10. C.L.S. test: comparison of the initiation of the delamination crack between

experimental results and predicted values.
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After each Fracture Mechanics test, the experimental delamination shape of the test
specimen is highlighted by an X-ray photograph. For the unidirectional M55J/M 18 material,
the X-ray shape is shown in Figure 11 for the D.C.B., EN.F., M.M.F. and C.L.S. tests. The
delamination front is not straight in the width direction of the test specimens. Near the edge,
there is curvature of the delamination front in all tests. In the case of the C.L.S. test, this shape
is not symmetric. The computed shape of the delamination area is shown for the D.C.B. test
in Figure 12. It should be noted that the curvature of the delamination front is greater for tests
conducted with the M55J/M18 material with 6 angle values other than O degrees.

Figure 11. X-ray delamination shape photograph in the unidirectional material case.

T2

INSERT

Figure 12. Prediction of the delamination front in the D.C.B. test.
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6. INITIATION PREDICTION

The study of the initiation of a delamination crack is often investigated by means of Edge
Delamination Tension specimens [20]. In this case, Fracture Mechanics is not well adapted.
In addition, delamination, especially at its onset, appears to result from an intricate interaction
between inner layer damage mechanisms and the deterioration of the interlaminar interface
itself [3]. Under such conditions, it seems adequate to use the previously-defined mesomodel
for the layer and the interface.

In order to emphasize the value of the Damage Mechanics of Interface in the prediction of
initiation, let us consider the case where damage phenomena are located in both layers and
interfaces. An EDT specimen under tension was simulated. In such a case the numerical
problem is set in a strip perpendicular to the edge. This type of problem has been studied in a
similar way in [6, 21]. The simulations are compared with experimental results in the case of a
[03,1452,90]s M55J/M 18 material specimen. Delamination occurs at the mid-plane interface.
The values of the longitudinal strain at the onset of delamination are compared. This example
shows the necessity of including all the damage mechanisms into the delamination analysis
even for quite simple specimens. The edge is straight and the problem to solve can be set up as
a generalized plain strain problem in a strip perpendicular to the edge. In the previous test, the
delamination starts on the 0°/0° interface and after this initiation point, the load can still
increase, with the maximum value of the applied tension load being around three times the
initiation load. Without taking the inner layer mechanisms into account in our Finite Element
Analysis, the initiation and maximum load coincide. Introducing the inner damage
mechanisms (namely, the transverse and shear microcracking), the delamination propagation
then becomes stable under increasing tension up to the fiber rupture of the 0° plies [22]. Figure
13 depicts the state of damage before the final failure of the specimen. The comparison
between the predicted values and the experimental results is quite encouraging, and the location

of the onset of delamination was correctly predicted (Figure 14).
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6.00m-02

Figure 13. The laminate is a M55J/M18 [03, $45;, 90lsym stacking sequence. The F.E. damage
prediction of the quarter-section represents shear failure in the +45° layers.

Figure 14. A crack first appears in the central interface (quarter of interface).

7. HOLED PLATE IN TENSION

Let us consider the structural computation example defined in Figure 15. It is a holed plate
[+22.5°, -22.5°]5 subjected to tension. The loading history is shown in Figure 16. At any
point and at any time, the code is able to yield the "intensity" of the various damage
mechanisms up until the ultimate fracture. The main damage mechanism herein is
delamination, i.e. the deterioration of the (22.5°/-22.5°) interface. Figure 17 shows the value of
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the damage variable "d3" at times Ty and T,. The increase in the delaminated area is very

significant. The layer's damage mechanisms are weakly excited (Figure 18).

LAMINATE MODELLING

SYMMETRY PLANE

Figure 15. A structural computation example.

LOAD

DISPLACEMENT

Figure 16. Loading history.
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Figure 17. Damage variable d3 of the (22.5°/-22.5°) interface at times T and T?.

™

Figure 18. Damage variable d of the layers at times T and T?.
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CONCLUSIONS

A mesomodel of laminate structure has been built and identified for various composites.
Resistance to delamination can be characterized by a few material parameters. Comparisons
with experimental results proved to be very satisfactory.

However, calculations performed with such a mesomodel lead to very large computational
times. A present challenge is to develop a more effective computational strategy and, in

particular, to use parallel computers.
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ABSTRACT

Rubber like materials (hyperelastic or visco-hyperelastic solids) are characterised by large
elastic deformations and are usually assumed incompressible. It is however frequently
observed that a significant volume change is associated to the damage process, resulting in the
so-called damaged induced compressibility. The purpose of this paper is to analyse some
implications of this unusual coupling between damage and volume changes in otherwise
incompressible materials. Attention will be focused on isotropic hyperelastic behaviour and
rate-independent isotropic damage description (one scalar damage variable D).

The constitutive framework, based on a novel constraint condition will be bricfly established.
Three different models will be presented namely (i) a constrained model developed within the
GSM framework (Generaliscd Standard Materials), (ii) a modified non GSM constrained
model with simplified evolution law for damage, (iii) an unconstrained, nearly compressible
model ,including the constraint as a limiting case.

Special emphasis will be laid on two specific aspects of these models: (i) coupling of the
elastic law with the damage evolution through the Lagrange multiplier q associated to the
constraint and which occurs in both the stress tensor and the damage thermodynamic force ¥,
(ii) An essential difference between stress and strain control which will then be discussed in
more detail for the studied models.

1. INTRODUCTION

Elastomers are those rubberlike materials often used in confining industrial environments

characterised by: large elastic deformations, non linear-rate dependence, continuous damage

mechanisms, ageing, induced volume variation, Mullins effect, rigidification effect at high
clongations, etc... A complete review on these physical properties are given in the pioneering

reference book by Treloar [1].

1. Modelling as accurately as possible these phenomena is a very important task for the
numerical computations of the elastomeric structure components. In the literature the
rubber like materials are often treated as incompressible or very nearly so, as can be found
in the important work of Ogden summarised in his book [2] and the references given there.
The non linear rate dependence is often modelled using the basic hereditary integral
formulation [3, 4] or less frequently using the framework of the thermodynamic of
irreversible processes with internal state variables and intermediate configuration as
proposed first by Sidoroff [5, 6, 7] and used by many others [8-11].
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For many black filled elastomeric materials it is observed [12, 13] that the deformation process
is often associated with damage growth which in turn induces an important volume variation.
This means that the material behaves as incompressible in the beginning of the deformation
process and volume changes appears as the damaging deformation increase. This has been
modelled first by Ogden [2] in the case of very small volume changes associated with the
deformation of rubber-like solids without any reference to the damage process.

Recently the authors [11, 14, 15] proposed a fully three-dimensional finite-strain visco-
hyperelastic model accounting for the following important features :

- large hyperelastic deformations,

- rigidification at high extensions i.e. the slope of the force-extension curve begins to rise at
high elongations,
- Mullins softening effect,
- isotropic continuum damage,
- non-linear rate effects (viscous effects),
- volume variation induced by the damage growth.
In this work, we limit ourselves to the modelling of the damaged hyperelastic behaviour of
elastomeric solids with an induced volume changes. The framework of the thermodynamics of
irreversible processes with state variables [16, 17] is used using an Eulerean description. For
the sake of simplicity, attention is focused on the isothermal and fully isotropic case with the left
Cauchy Green dilatation tensor B, associated to the Cauchy stress tensor T, taken as external
variables. Isotropic damage is represented by a simple scalar internal ‘variable D in the
Chaboche’s sense [18] associated to the generalised thermodynamic force Y. The volume
variation is supposed to be exclusively due to the damage initiation and growth.
A new non classical constraint condition is proposed to describe the induced compressibility.
Three different models are presented namely (i) an internally constrained model (IC Model)
within the Generalised Standard Materials (GSM) framework [19], (ii) a modified non GSM
constrained model with non associative damage flow, (iii) an unconstrained, weakly or nearly
incompressible model (NI Model), which include the IC model as a limiting case.
Special emphasis will be laid on two specific aspects of these models : (i) coupling of the elastic
law with the damage evolution through the Lagrange multiplier g associated to the constraint and
which occurs in both the stress tensor and the damage thermodynamic force Y, (ii) an essential
difference between stress and strain control which will then be discussed in more detail for the 3
mentioned models. In particular it will be shown that a strain-controlled loading path is highly
singular and that some amount of stress-control is necessary for a reason-able material
description. This will be discussed by establishing the consistency condition and differential
constitutive equation under similar loading paths differing only by the control variables.

2. BASIC KINEMATICS AND THERMODYNAMIC BACKGROUND

2.1. Kinematic background

We first introduce some thermodynamic definitions and kinematic results that will be used
throughout the paper. Writing the current position of a material point as x, and the reference
position of the same point as X, the deformation gradient is :

F _ﬁ 1
u—aX, ()

then J, the volume change at the point x,, can be written using the balance of mass as :

0

J=detF, =250

)
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where p°(x,t) and p(x,f) are the densities of the material in the initial (point X ) and current

(point x,) configurations respectively.
Furthermore, the symmetric left Cauchy-Green tensor B; as a convenient Eulerean strain
measure is used :

B, = F, F, with J=det F; = (det B;)" )

Now, our interest is concerned with hyperelastic materials being initially incompressible
i.e. J(X,t =0) =1, which motivates splitting the deformation gradient F; and consequently B
into a volumic (dilatational) and isochoric (distortional) parts :

F,=(J"8,)Fy and B, =(J""8,)By 3)

giving 7=detf,~,v = (det B;)"™ =1 which ensures the volume preserving of the distortional
deformation process.

2.2. Thermodynamic foundation of the models

Following Sidoroff {5-7] the decomposition (3) transforms the state variables ( B,.j, T,.j) to the
dilatational state variables (J, ) and the distortional state variables ( B;,T; ) where T,.I."' is the
spherical part of the Cauchy stress tensor and T, its classical deviatoric part. The free energy in
the initial (undeformed) configuration is taken as a state potential. This is taken as a frame
indifferent function of the main arguments J.B; and D in the strain space namely

/)()l//(J,E,, ,D)=W(J,B;,D). By using the Clausius-Duhem inequality representing the
second law of thermodynamics in the current (isothermal) configuration we have :

TD,~p¥ 20 or  7,D,-W20 @)

where use has been mode of the very useful Kirchhoff stress tensor 7, =J T, Following the

GSM theory in the case of rate independent flow, a damage criterion, indifferently in stain or in
stress spaces, is introduced by supposing that at any time of loading history the damage surface
is given by :

fY;Dy<0 5

An unloading, neutral loading or loading from a damage state shall be added to the criterion (5)
according to the standard time independent flow theory. Note that in some situations the GSM
frame appears as very restrictive. In that case a flow potential is introduced in the same space,

namely F(Y;D) so that the consistency condition still given by f(Y;D)=0 while the
evolution equation is obtained from the potential F(Y;D) by using the generalised normality
rule. This defined the so-called non associative flow theory.
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3. THE INTERNALLY CONSTRAINED MODEL (MODEL IC)

This model is based on a non-classical constraint condition which impose some internal
constraint in both the deformation and the damage. This can be made using the straight forward
general treatment of the internally constrained material as can be found in Truesdell and Noll
[20].

The state potential is taken as purely distortional with damage effect :

W(B,, D) = (1- D)W, (B;) (6)

u

Using (6) the basic inequality writes :

- awo(ﬁ.j) -
T,j—Z(I—D)dev B;k—Tg-E— D,.].+W()(B,~j)D20 @)

i
The motion of the body is now required to satisfy the following internal constraint :
J—g(D) =0 orequivalently det ¥, - g(D)=0 (8)
where g(D) is a differentiable, positive and increasing scalar function of the damage variable D
withg(D=0) =1 for the model NI. Note that when D=0 (8) reduced to the classical

incompressibility condition presented in [20].
The time derivative of (8) gives :

D=0 9)

By combining (7) and (9) and using the Lagrange multiplier ¢ one can write :

— IW(B))
[r,., -gJ§ -2(1~ D)dev(Bik ;TWHDU .

+(q a’gg)+m(§,,))b >0
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which lead to the following state laws :

Tij =Tisj +T5 Tf_] =qJ8U
oW, (Bii (rn
r!j):z(l—D)dev[Bik of ”)j
kj
Y=Y YD yiog 28
oD (12)
YP = W (Bjj)
and  ¥YD20 (13)

Note that both the generalised thermodynamic forces 7, and Y are determined by the motion

only within an arbitrary hydrostatic pressure proportional to g. These represent a reaction forces
produced by the constraint (8) imposed on both : the deformation and the damage. Moreover
when there is no damage (D=0) the state relations (11, 12) becomes those of a classical
incompressible hyperelastic body defined by the free energy W,,.

Now to derive the damage evolution law for the model IC, two different cases should be

examined :

MODEL IC!
In this case the GSM frame is used with the damage criterion, given by :

SYiD)y=Y-Q(D) (14)
with Q( D) being a differentiable positive and increasing function of D, representing the size of
the damage surface in the Y space. Following the standard normality argument the damage

evolution (complementary law) is given by :

- dD .@f
D—-bt——éﬁ (15)

where & is the damage « multiplier » given by the consistency condition f =0 :

6=0 (16)

o (d¥Y— Y- OY df
oD aYy

JF I ;
a—y E—B,:,-Faqq'l'aDa)/(SJ'F

It is clear that this equation introduces an unusual coupling between the damage muitiplier &

and the time derivative gof the Lagrange multiplier ¢ which is undetermined at this stage.
Hence to use this model one should determine the explicit expression of g for each loading path
by using some specific conditions depending on the type of the applied loading path, In fact two
cases can be observed :
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The first one correspond to those loading paths where the stress state is controlled and the strain
is left enough freedom to satisfy the internal constraint (eq. 8). In those cases the multiplier g is
completely determined by given condition imposed on some stress components and lead to g
function of D and BT(,- (i.e. q(D,E;,-) ). By using (16) and after some calculations, one can
obtain :

[,j ,,] if f=0and{;D,;>0 an
elsewhere
(_u) 3g— aq
L = 2de13,k 35, +=5Bi Bk/J (18)
2
dQ dgdg J'g 0 )

9D b o’

The main basic difficulty in this case comes from the definition of the stress control at finite
strain which is not an easy task in the general case.

The second case correspond to the loading path where the strain (or the transformation gradient
F ) is controlled. In general this case is highly singular in the sense that the damage evolution is
completely controlled by the internal constraint i.e. by the kinematics of the motion (eq. 8) and
no longer by the flow condition (eq. 14). The Lagrange multiplier is then determined by the
loading condition f(Y;D) =0 using both (14) and (11, 12).

DB < Q(D)-W,(B,) 20

q(D, ")—W )
JD

MODEL IC2

To avoid these problems related to the coupling between the multipliers § and ¢, an
approximate thermodynamic approach is used, namely the non associative flow theory. This
leads to using two functionals :

o The damage criterion depending only on the deviatoric part Y of Y. This means that we
suppose that the damage mechanism is associated with maximum distortional energy as in
Simo [8].

Hence the damage criterion writes :

f¥”:D)=Y"-Q(D) 20
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e The damage potential taken similar to eq. (14) and depends on the overall Y :

FY,D)=Y-Q(D) 22)
so that

. o OF o

D=6 3_Y= o (23)

and D is equal zero elsewhere. The consistency condition is now simplified because only
Y? is used in the damage criterion and we get :

1
5= {HD if f=0and &,D, > (24)
0 elsewhere
— Y
;I = 2dev(B,k 9? ) (25)
K
d

This thermodynamically approximated model is very helpful when there is no special condition
to determine explicitly the constraint multiplier g. Hence it is particularly suitable for
implementation in some general purpose finite element code.

4. THE NEARLY INCOMPRESSIBLE MODEL (MODEL NI)

In this model the state potential with damage effect is taken under the following form :
W(J,B;, D)= Ko(J)+(1- D)W,(B;) @7)
The term @(J) is the spherical part of the potential (volumetric behaviour) with :

- J
J = g—D)- (28)

and g(D) is the same function used in (8). K is the compressibility modulus. The term WO(EU)
represents the distortional part of the potential (for the undamaged material) affected by the
reduction factor (1-D) due to damage effect [8, 18, 21].
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Using eq. (27) and (28), the basic thermodynamic inequality (4) becomes :

— OW,(B,
l KT a"’u)a ~2(1- D)dev(Bik—"i—ﬁJ}Dij+

ol JB,
(29)

J dg(D) ‘9"’(7))0 o

(%(B"f)’LK gD) oD &

which lead to the following thermodynamic forces (7;;, Y) associated to B, and D called the

state laws :
dp(J)
—_ + S D
T, =T°+7, = K] ——+ ETER o
(
— W, (B,
T, = 2(1- D)dey [ A ( ’))
3 Aj
_ e & de())
Y=Y'+Y? Y=
¢(D) o (31
=W, (Eu )
and :
YD20 (32)
- . . I
Where g’ denotes the derivative of g with respectto D ie. g'= D we note that both T, and Y
. j

are decomposed into two parts respectively related to the spherical and the distorsional behavior.
The damage evolution equation is than obtained within the GSM framework using the same
criterion (14) giving the relation (15) where the damage multiplier is now given by :

{ ¢,D, iff =0 and {;D; >0 (33)

otherwise

where H>0 is the tangent « damage » modulus defined by :

. L gD Pod) e (gD g (D)
H_Q(D”KJ{J( g(D)J T T \ed>) T wD G4
and the second order tensor {; is given by :

_ — OW,(B,) <8 (D)) - de()
gj—Zdev(B,-k 95, )+KJ 2(D) _87—+J_él72_— 0, (35)
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To completely determine the model NC, it remains to specify the

functions %(E.,-),(p(] ),g(D)and Q(D). Such a determination should be made on the basis of
phenomenological approach based on available experimental data base and will be discussed in

Tile comparison of (11/12) and (30/31) shows that the difference between the model IC and the
model NI is concerned only with the spherical parts : 7; of 7, and ¥* of Y.

5. APPLICATION AND DISCUSSION

5.1. General considerations

To completely determine the proposed models it remains to specify the state potentials W, and ¢
and the functions g and Q. This should be made on the basis of available experimental data.
Here for definiteness, the state potential is chosen as a Money-Rivlin form and for the other

functions we shall adopt a very simple forms (71 and T, being the first and second elementary

invariants of Bj;) :

W, =2[(;+BJ(1, —3)+(:12—B)(Iz -3)}

1 2
o= (-1 (36)
g(D)=1+vD
Q(D) = Q() "_ D+D0

where G, B, 7, Q,, D, and n are five material constants under isothermal condition for the
three models. G and fcharacterise the distortional hyperelastic behaviour, y represents the
maximum amount {(when D=/) of the volume variation and Q,, D, and n characterise the size
and the non linear evolution of the damage surface.

Now the missing link between the model NI and the model IC are discussed. First it is easy to
show that the model NI transforms on the model IC when compressibility modulus K goes to
the infinity. In fact when K — oo the effective volume variation 7 > 1 and (30a) and (31a) of
the model NI becomes :

og
T =qd; and Y, =q 9D (37)

which are identical to 7; and Y, of the model IC given by (lla) and (12a). Naturally,

KJ g‘}p =q is an arbitrary hydrostatic pressure to be determined by given conditions on some

components of stress tensor.
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d ~
Now from (36b), the quantity J 8? can be approximated by J —1 for the small variations of

7. Accordingly the eq. (34) and (35) of the model NI becomes :

a0 19gY -, -
H==>+ ;55) J(T -2)

38
= 2de B, 200 |4 kL 2719 >
§ = 2dev| By 55~ |+ K—=5 (20 =19,

i

/'Dij

and when K — +oo then J — 1 and one can easily shown that the ratio transforms to

the following relation :

. J
ngg—Dé (39

i
D
which is fully consistent with the time derivative (eq. 9) of the internal constraint (eq. 8).
These results give the proof that the mode! NI is fully compatible with the model IC when K

approaches the infinity. In what follows this can be shown numerically for different simple
loading paths under both stress and strain controlled conditions.

5.2. Stress controlled path. The uniaxial tension case
The simplest stress controlled loading path is the uniaxial tension which is defined by :

[ 1
A 0 0
T 0 0
F; =10 i 0 and T; =|0 0 0 (40)
' ] 0 0] 0
0 0
I A
The tensor E,, is then given by :
220 0W
1 : -1/3
Bij=|0 N 0 with A=J"""}A 41)
0 0 1
L Al
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The Eulerean deformation rate tensor is given by :

_ 3
A
T 0 0
D.=10 17 2 0 42
i 21_/1 (42)
o o 7 2
217 4

so the deviatoric parts of By, and its inverse are :

2 0 0
E-’-’—l—(f—l) 0-1 0 (43a)
"3 A
0 0 -1
-2 0 0
—y 1= 1
(B.,)=;[/l——ff] 01 0 (43b)
) 0 0 1

Now the state and evolution equations of the models NI and IC will be written in this particular
uniaxial stress controlled path, using the constitutive functionals given by (36).
For the model IC, the state laws (11, 12) writes :

7, = I8, +G(1- D){(%%)ﬁi’—(%—ﬂ](ﬁu')ﬂ (a4)

Y=qg‘+6[(%+ﬂj(71-3)+(%—ﬂ)(72-3] (45)

The first component of the stress tensor is given by :

T, =q./+2§(l— Dyr(%) (46)

where :

@] {5 2]
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The muitiplier g is determined by the condition 7,,=0 to get:

&

=30~ (48)

E
For the damage evolution equation in the case of the first flow condition (eq. 14), the
consistency condition writes :

. r,,D,, &m( D) (')' -
f=75+ t(T)D+m(D) =2 A-—==D=0 (49)
where :
1 g'(D)
m(D)—3(1 D)—g(D) (50)

which allows the determination of the damage evolution in the case of the associative model (i.e.
model IC1) :

b=l<gi> 1)

r(')

—_—+ m(D)
3Q om o (52)
'(93'— %T(x) >0

For the non associative model (i.e. model IC2) defined by the criteria (21) and (22), it is very
easy to show that the equation (52) reduces to :

_ )
7

_%
"D

(53)

This indicates that the thermodynamic approximation taken in (21) leads to neglecting the
second terms of the RHS of the equation (52), which comes from the spherical part Y* of the

force Y. The lose of these terms has a small influence on D so that (53) represents a good
approximation of (52) as shown numerically in [11].
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As a conclusion, the main equations of the model IC in the case of uniaxial stress controlled
path are :

T T
T, =(1-D)t(A) or o= J” or I= 71'
A=3""%
1 1 1 1

oY) ZG[(z +B)(K2 - k)+(2 _B)(x_ A2 ]]
J=g(D)=1+YyD 54)
hd 1 // *\
D= __(C(A)A]

H \\C( ) //

() ot(A) 3Q 9m

= D and — . fe . L.

¢(r) " +m(D) ™ an 3D 3D ©(A)  for the associative model
A

C(?\.) = T(}\' ) and H= gg for the non associative model

where ¢ is the first component of the Cauchy stress tensor 7, and I1is the first component of
the first Piola-Kirchhoff stress tensor.

The model NI is now examined. The main difference with the model IC comes from the
spherical parts ¥ and 7, which writes :

v =KJ(JT-1)5, =45, (55)
)N:KK]—¥§=%ﬁ, (56)

The deviatoric parts t;, and Y” being unchanged compared to the model IC. As discussed in

§5.1., the use of the quantity g = KJ (f - 1) as a Lagrange multiplier allows to apply the same
treatment as for the model IC. Particularly g is determined by the condition 7,,=0 :

1
g=5(1-D)(%) G

which gives after assuming a small variation of J

~ (1-D)
7 =10 e(7) (58)
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The consistency condition is similar to the model IC with the same definition of the function
m(D). Hence to main equations of the model NI in this uniaxial stress case are :

T
7, =(1-D)t(A) or c= J” or H=T;L'
A=17"0
1 1 1 1
A= G{(z +B)(7‘2 - k)+(2 _B)(k_ A2 H
J=g(D) with J=1+17D) (A (59)
3K

. 1 "“/ "X\
D=y ™

‘C()\.) Jt
L(r) = , TmD)

_0Q odm

"=3p "D )

The only one difference between the models NI and IC comes from the equation governing the
volume variation J.

The figures 1.2 and 1.b show the comparison of the model NI with the compressibility modulus
K=1, 10 and 100 MPa, and the model IC using the following material constants :

G =1IMPa, Q, =25, D,=10", B=0, n=2. These figures represent the variation of the first

Kirschhoff stress Tand the damage D versus the elongation A. It is clear that for K sufficiently
high (here K=100), the model NI gives exactly the same results as the model 1C. However
when K is very low (here K=1 MPa) the results of the model NI are quite different from those
given by the mode! IC as shown theoretically in §5.1. The figure 2 shows the variation of J and

the function g(D) versus A for the three values of K. One can notice that for the low value of K
the gap between g and J is very high. However when K grows the function g(D) goes to J
indicating that the model NI becomes indentical to the model IC.

Finally one can conclude that for this stress controlled loading path the proposed internally
constrained model (model IC) gives results fully compatible with the nearly incompressible
model when the compressibility modulus goes to the infinity.
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5.3. Strain controlled path

The typical simplest strain controlled loading path is the simple shear. However to avoid some
kinematic difficulties resulting from the rotation tensor a simple strain controlled loading path
similar to the uniaxial tension is introduced. This path called the isochoric extension is defined
by :

A 0 0
| T, 0 0
F,=|0 T 0 J=detF;=1and 17,=/0 T2 0 (60)
0 0 T,,
1
0 0 —_—
i i)

" ]
A ? 0 K 0 0
B, =B;=|0 0], i=_ 10 -1 0
i A 2 A
| 0 0 -1
0 0 1)
L A
2 0 0 | 20 0
5 _I\D
Bij“=l(7v— )0 -1 0|, (Bi.')l = (k— ) 0 ! 0
3 A i 30 A
0 0 - 0 0 1

For the model IC the use of equations (11, 12) gives the non zero components of the stress
tensor :

2
7, =q+§(1—D)r(A)

| (62)
T =q-50- D)
and the damage force :
Y = qg+Y" = qg'+W, (B, ) (63)

where Y? being given by the second term of the RHS of (45), while ©(X) is given by (47) where

A is replaced by A.
This model leaves undetermined the constraint multiplier . But the isochory of the motion
transforms the constraint given by (8) to :

1-g(D)=0V D (64)
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This means that the damage evolution is so that g(D)=1 which indicates that D=0. Hence the
model IC excludes the damage evolution for this isochoric loading path. The multiplier g can be
determined using the loading conditions f=0 (see eq. 14).

a8 +Wy(Bi)~ 0, =0 (653)
which gives :

1
q=—;[%(§f,-)—Qo]s0 (65b)

where Q,=Q(D=0) is a constant representing the initial radius of the damage surface in the strain
space. Finally the equations of the model IC in this case are :

T, = "Z}[WO(E'J’)“ Q()]““%(I“D)Tm

1 I
122=_?[m)(§,,)—Q0]+§(1—D)1[,1] (66)
D=0 and J =1

Note in this case the presence of an increasing compressive terms in both 7,, and 7,,. These
compressive stresses insure the isochory of the motion and make the damage growth

impossible. For the model NI and using the small variation of 7. the non zero components of
stress as well as the damage growth obtained from the consistency condition are :

- 2
7, =K(J - 1)+§(1—D)‘r(/1)

| 67)
T, =K(J - 1)+;(1- D)t(1)
y=kK(J - 1)%+ w,(8,) (68)
- L)
- ﬁ<7’1> %)

e S RN A
B ]

It is clear from (69) and (67) that if K — +co then D — 0 which makes the damage growth
impossible as for the model IC. Hence this gives the proof that also the model NI behaves like
the model IC when K increases.

The figures 3a, 3b, 3c and 3d illustrate this result using the same material constants as in §5.2.

The figures 3a and 3b show the behaviour of the stress components 7,, and 7,, for the model IC
and the model NI with K=1, 10 and 100 MPa. One can observe that for the low values of K
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damage grows inducing the volume variation, while for the high values of K (here
K=100 MPa) the damage evolution is zero and consequently J is equal 1. This result is fully
compatible with the model IC which gives directly D=0 and J=1. This is clearly shown in
figures 3¢ and 3d where the damage still equal to zero when K=100 giving a constant value of

J=1
6. CONCLUSION

A new constraint has been introduced to account for the volume change resulting from damage
in an otherwise incompressible material. This constraint introduces some unusual coupling
effect between the hydrostatic pressure and the thermodynamic force associated to damage,
these two variables being coupled through the Lagrange multiplier associated to the constaint
condition. In order to clarify this coupling another weakly compressible model has been
introduced and shown to give the constrained model as a limiting case.

Investigation of two special cases: uniaxial tension and isochoric traction has then shown the
essential differences between imposed strain and stress control. It follows from these examples
that strain control appears as a singular case with damage controlled by the kinematics and
apparition of a high hydrostatic stress. Total or partial stress control therefore is a more realistic
approximation for practical situations.

This however rises a problem for the implementation in a finite elements method where the

incremental constitutive equation is required under full strain control; The approximate IC2
model may provide an appropriate and efficient framework.
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— —K=10MPa , Model NC

——K =100 MPa , Model NC
and Model IC

Figure 1: Variation of (a) Stress, (b) Damage versus the elongation for uniaxial tension under
stress control
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Figure 2: Variation of J and g(d) versus the elongation for uniaxial tension under stress control
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1. ABSTRACT

The strength of unidirectional polymer matrix composites has been predicted using
Pagano’s axisymmetric damage model (ADM) in conjunction with Batdorf’s statistical
strength model. In order to utilize the axisymmetric model, hexagonally arranged fibers
were converted to fiber rings. Then, the stress concentration and ineffective lengths at
fibers adjacent to broken fibers could be calculated using ADM. These, quantities plus the
Weibull parameters of carbon fibers were used to predict the tensile strength. Through the
stress analysis, it was also shown that for large ratios of E¢/E.. there is local load sharing
due to fiber breakage. The advantage of the analysis is that one can incorporate other
geometric damage modes, such as interfacial debonding or matrix cracks, to investigate
their effect on strength. The results of the analysis showed good comparison to
experimental results for carbon fiber based systems. Finally, some stiffness predictions on
fragmented and short fiber composites will be presented.

2. INTRODUCTION

Unlike homogeneous brittle materials, fiber reinforced composites contain a
population of observable pre-existing defects which do not lead to final failure. Instead, an
accumulation of matrix fracture or fiber fractures develop as the material is loaded.
Fracture mechanics-based analysis may account for the strength of a single fiber, but it is
inadequate for an unidirectional fiber composite where the behavior of the system is
dominated by an accumulation and interaction of defects. As a result, any study of the
strength of composites must emphasize the statistical process of damage development.

Because the damage growth process is controlled by microscopic parameters and
properties, one needs to analyze these materials at this level. Traditionally, microscopic
variations in these materials have been homogenized and much of the vital information,
such as fiber/matrix bonding, has not been taken into account. It is for this reason that a
micromechanics based approach must be used to account for the inhomogeneity of these
materials. Micromechanics models can take into account details regarding fiber/matrix
interface and allow one to analyze stress variations due to local effects around constituent
materials.
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The driving force for micromechanical strength evolution in PMC’s is the stress
concentration resulting from a broken fiber. In this review, various models of this
phenomenon based on shear lag, elasticity, and variational analysis will be presented.

One of the first attempts to determine local stresses in and around fibers was
presented by Cox [1]. He assumed that a rectangular array of aligned isotropic fibers
existed in a matrix material which constituted a composite mat. The load transfer which
occurs between the matrix and the fiber ends was derived to be exponentially decaying as
a function of the axial coordinate. This formulation was a forerunner for the more popular
classical solution describing stress redistribution which occurs near a broken fiber (i.e. the
shear lag model) in a continuous composite system. This analysis provided the axial
stiffness values and longitudinal contraction in the composite mat due to a uniaxial load.
The results were compared to experimental values for the mechanical properties of such
composites.

Rosen [2] was one of the first to investigate the stress redistribution which occurs
in the vicinity of a fractured fiber of a unidirectional continuous fiber composites. By
making the classical assumption of PMC’s (i.e. the matrix essentially does not support
axial load) the shear lag solution was formulated. This analysis suggested that the stresses
decay exponentially at the fiber end as a function of the axial direction. These equations
also provided a theoretical prediction for the size of the region where there is a stress rise
(i.e. ineffective length). This portion of the fiber does not support any substantial load over
this region.

Hedgepeth and Van Dyke [3] calculated the stress concentrations on neighboring
fibers due to single and multiple fiber fractures. Their analysis used an influence function
approach along with shear lag assumptions. Results were presented for both three-
dimensional square and hexagonal arrays where specified numbers of fibers were broken.
In addition, the stress concentration factor in the element adjacent to a broken fiber in a
two dimensional array where the shear stress in the matrix adjacent to the broken fiber is
restricted by a limit stress, was calculated. However, due to the shear lag assumptions, the
model does not include the stiffness of the matrix. As a result, the applicability of such an
analysis is limited.

In this study, Batdorf’s {4} statistical strength model, which is a simplified version
of an analysis developed by Harlow and Phoenix [5], will be used to predict strength of
unidirectional composites. Through many approximations and simplifications the analysis
was simplified to a point where the strength of a 3-D composite could be predicted. The
analysis uses stress concentrations and ineffective lengths due to multiple fiber fractures to
estimate stresses at which instability occurs, i.e. catastrophic failure. To study the effects
of the simplifications on the predicted strength, a comparison was made to the exact
solution developed by Harlow and Phoenix. It was shown that the simplifications and
approximations resulted in differences on the order of only a few percent.

To calculate stress concentrations and ineffective lengths Pagano’s Axisymmetric
Damage model (ADM) is used [6]. The ADM is based on Reissner’s variational theorem
{71 and is constructed in conjunction with an equilibrium stress field in which r-
dependence is assumed (i.e. O.. and Oy are assumed to vary linearly in the radial
direction). The problem is formulated in general to solve a variety of problems dealing
with thermoelastic response of a concentric cylindrical body. The strength of the model is
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that it is formulated in general to deal with not only fiber breakage, but any number of
damage modes. In addition, axial and transverse loads can be applied, simultaneously. The
only limit of the analysis is ones’ ability to represent a problem by an axisymmetric
concentric cylinders. Furthermore, both stress and displacement conditions are satisfied by
the use of Reissner’s theorem; thus a full stress and displacement field can be calculated.
Furthermore, various damage modes can be included either separately or simultaneously in
the representative volume element. As a result, stress states in the material due to damage
growth and interaction can be examined. Finally, the ADM model will be used to predict
stiffness. Two scenarios consisting of a composite with fragmented and short fibers will be
studied.

3. MICROMECHANICAL MODELING

Due to the internal anisotropy of composites, one must model the mechanical
behavior of these materials by considering microlevel geometry. The difficulty in analyzing
the internal geometry comes from the fact that in real materials there is no well defined,
periodic repeating “unit cell”. That is to say, in a given composite volume, fiber spacing
and orientation is not the same from point to point. Therefore, it is very difficult to define
what is called a representative volume element (RVE), to reflect the composite as a
whole. As a result, many researchers consider average values of fiber spacing and
orientation.

The problem, however, arises when one decides to add various type of damage
into the RVE. Numerous researchers have observed a whole family of damage modes
which control macroscopic behavior [8-10]. Many times, these damage modes occur
concurrently or in series. The following figure depicts some of the observed and suspected
damage modes which could occur in fibrous composites.

Experimentally, it is very difficult to determine which damage mode(s) controls
macroscopic behavior. Due to scale at which these processes occur, one cannot in any
practical way determine initiation or growth of damage in situ during loading. Often,
experimentalist can only obtain such information by post-mortem study of the fracture
surface of a failed material. However, this type of information does not say much about
the evolution or initiation of damage, which is most vital for micromechanical modeling.

Even if one knows the damage modes present in a given composite, there still lies
the question of how to model these damage modes under the RVE scheme. Assuming one
has carefully determined the damage modes in a given material experimentally, the task
now lies in determining the stress states at the fiber-matrix level. Experimentally, there
have been attempts at obtaining such information through the use of model composites
{11}. Model composites are basically a scaled up version of a composite consisting of
oversized fibers arranged in a controlled manner. At this level, one can obtain information
regarding local strains and observe the evolution of damage in and around constituent
materials. However, it is still unclear as to how to apply the data obtained by these studies
to real composites since stiffness and certainly strength change as a function of volume.
Furthermore, the effects due to geometric scaling are still unclear.
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3.1 Batdorf’s Statistical Strength Model

A strength model based on the statistical nature of fiber failure was developed by
S.B. Batdorf [4]. Unlike previous models that base strength on chain-of-bundles model,
Batdorf’s model investigates the problem on the basis of formation and growth of
individual fiber fracture. The model uses the well known weakest link theory developed by
Weibull [12], which was originally used to study the strength variations in metals. The
basic assumption of the model by Batdorf is that the fibers in the composite are
unidirectional and the matrix is much less stiff than the fibers. As a result, the matrix does
not appreciably contribute directly to the strength of the composite, but does however act
to transfer stress from one fiber to another. Such is the case in carbon fiber composites,
where in most cases the ratio of fiber to matrix stiffness is on the order of 100.

As a result of the loading in the fiber direction, we develop multiple single fiber
breaks in the array of fibers that make up the composite. The fact that we are using a
statistical theory we assume no particular fiber arrangement. In addition, fiber breaks
occur in a random fashion throughout the composite. Once these breaks occur, naturally
the unbroken fibers in the composite must carry the additional load not carried by the
broken fibers. The resultant stress not only redistributes itself radially away from the
cracked fiber, but also perpendicular to the crack plane on the neighboring fibers. The
distribution of stress on the neighboring fibers has two major components of interest in
this study. First, the magnitude of the stress concentration, which is at its maximum in the
crack plane. The other component is the length of decay of stress to its” far field value.
This value is most often referred to as the ineffective length or stress transfer length.

In this model, we first consider our composite to have an array of N fibers of
length L. The fibers are all aligned in one direction, and the composite as a whole is
loaded in the direction parallel to the fibers. As mentioned previously, this model assumes
that there is a progression of fiber failures. That is to say, as we load the composite we
form single fiber breaks (singlets) randomly in the array of fibers. These single fiber breaks
cause an overstress in the neighboring fibers. As a result, a neighboring fiber fails and thus
a doublet is formed. As we further increase the load doublets become triplets and in
general “i-plets” are formed. Since we are interested in the progression of fiber breaks, we
must know the number of fibers and the stress distribution on these fibers surrounding the
fiber break. For a singlet, the number of neighboring fibers is denoted »,;, each of which is
subject to an overstress described by a stress concentration factor ¢; (relative to the
applied stress) at the plane of the fiber break. The overstressed region extends over a
distance &, but diminishes with distance from the fiber break. A doublet has n; neighbors
that are overstressed by c;, with the overstress extending over a distance &,. The subscript
i will designate the above quantities for an i-plet. For multiplets of order 2 or higher, the
stress concentration factor will not be the same for all neighboring fibers. But for the sake
of simplicity this difference will be ignored in this study.

Since the failure of fibers is a statistical event, we assume the failure of the fibers to
conform to the Weibull 2-parameter representation. That is to say, when a stress o is
applied uniformly over a length /, the cumulative probability of failure Py is given by



527

P/ (c)=1-¢"" where k=[0ij (N

0

where o, is the characteristic strength of a fiber of length /, and m is the Weibull modulus
of the fiber. In Batdorf’s analysis Py is taken to be

P, = kic" @)

if P, is assumed to be <</. In the present analysis, the full form shown in equation (1) is
used to predict strength. If there are N fibers with length L, the number of singlets formed
in the composite is simply

0, = NP, 3)

A singlet becomes a doublet when one of the neighboring fibers in its surrounding breaks
due to the stress concentration. If we assume the stress varies linearly from the overstress
to the far field stress, we obtain for the failure probability of such an overstress segment to
be

P/{Z) — l_()»kl.(qci}"‘ (4)
where

CmH -1
A, =8 - (5)

Yer(e, —1)(m+1)

is the effective length of the overstress region. As a result the probability that a given
singlet becomes a doublet is

P, =n(l=e™") (6)

152

The number of doublets formed is given by multiplying the number of singlets by the
probability of failure of a singlet becoming a doublet, i.e.

Q,=0/F,, 7N
In general for the number of i-plets formed we have

0., =0n(1—e™°" ) where i=123,...N (8)
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If one plots this equation for i = /,2,3...N, where i is the multiplet number, the following graph
is produced in Figure (1). This graph is a hypothetical plot of the Q functions. The x-axis
represents the applied stress and the y-axis represents the number of i-plets formed. As one
goes along the x-axis the stress increases. Once 0 is reached, singlets are formed in the array
of fibers. Further increase in stress results in more singlet formation until ¢, at which point
some of the singlets become doublets, etc. These Q-plots form a failure envelop for the
material under consideration. As the multiplicity of the fiber fractures increases, the failure
envelop collapses on to the x-axis. The point where this envelop crosses the x-axis is the stress
at which the composite fails.

100 -
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10| Qfs,) >
Vfs,) . .
n(Q) il /.lobal Failure
1 % /g,
A In(a)
Qo)

o0t

001 |-

Figure | Schematic of Q-plots for interpretation of ultimate strength (Batdorf [4]).
3.2 Pagano’s Axisymmetric Damage Model

In order to utilize the model described above, we must calculate the stress
concentration and ineffective lengths at fibers adjacent to broken fibers. To do this we use
Pagano’s axisymmetric damage model [6]. Initially, this model was developed to study the
various damage modes that occur as a result of loading a 0° unidirectional brittle matrix
composites (BMC). In BMC’s, it has been shown that initially matrix cracks form and
grow until the matrix is fully cracked and fibers bridge the crack face. Thereafter, the
cracks either grow into the fibers or deflect to form interfacial debonding on the fiber
surface. Due to the circular geometry of the fibers, the unit cell considered is
axisymmetric. The model can approximate stress fields and energy release rates of bodies
in the form of concentric cylinders and subject to various idealized internal cracks and
boundary conditions (see Figure 2).
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Figure 2 Damage modes in brittle matrix composites

The approach utilized is Reissner’s Variational Theorem [7], which has been used
to study stress fields in flat laminates [13], and in involute bodies of revolution [14]. It has
been shown that such a model produces an accurate description of the stress field ahead of
the stress riser, and it can also incorporate multiple sublayers to improve solution
accuracy.

The model is generated by subdividing the body into regions containing a core and
a number of shells (see Figure 3) and satisfying the Reissner variational equation with an

assumed stress field in each region. \
4
F

Figure 3 Axisymmetric element showing a typical layer.
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Reissner has shown that the governing equations of linear elasticity can be obtained
provided the variational operator & is applied both stresses and displacements.

& =0 )
where
J= dev —J‘T,.é,,ds (10)
14 s
and
1

in terms of the Cartesian coordinates x,(i =1273), where W is complimentary energy
density, V is the volume element, S is the entire surface, T“, are the prescribed tractions, &,
are the displacement components, and §”is the portion of the boundary on which one or
more traction components are prescribed.

The stress field is assumed such that 0y and ©; are linear in » within each region,
while the forms of o, and 7. are chosen to satisfy the axisymmetric equilibrium equations
of linear elasticity. Letting o;, 0., 0y, and Os represent G, Oy, G, and T,. , respectively, we
arrive at the relations in the region r, <+ <,

o;=py £ (i=1235:1=12,.5) (12)

where f/*’ are known shape functions of r defined such that

P(2)=0,(r,,z) (i=12350=12) (13)

The remaining dependent variables follow directly from the mathematics, they include the
weighted displacements

(ﬁ,d,li,ﬁ)=J‘u(l,r,rz,rz)dr (14)

where u is the radial displacement component, and

(0 #) = j (. )dr (15)
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where w is the axial displacement. For a body composed of a core region plus N shells, the
formulation leads to the solution of 18NV + 16 algebraic and ordinary differential equations
in z. Proper end boundary conditions on the planes z = const. for each region for which
r, # 0 consists of specifying one member of each of the products

2 2 2 2
r -r r-+rr +r
2 pSl | p52 _( 1 12 2 )p53

3 rr(r =r 2.2
12( 2 l) rl r2
r -r r+r _
1Psy 1 Ps +(1 222)p53 i (16)
nh(r,—n) Hr,

For the core region r; =0 these become

2

[P52 1 Ps3 )ﬂ,[)sgﬁ an
while for all regions, one member of each of the products

By ~NPo _
TS LA W, P —Pn W (18)
r —h r, —n

must be prescribed on planes z = const.. On planes r = const., the appropriate prescribed
functions consist of one member of each of the following products

Pyl Pswy (19)
on surfaces r =, # Oand
Pially s Py W (20)

on surfaces » =r,. Furthermore, continuity conditions can be written for the surfaces r =
const. and planes z = const. which are the internal to the body (see ref. 6). The number of
regions in the r direction can be increased in order to improve solution accuracy. Since the
field equations within each region reduce to a system of algebraic and ordinary differential
equations with constant coefficients, the general form of the solution for any of the
dependent variables P(z) is expressed by

P(z)=ZA,e*-Z+P,,(z) Qn

within each region, where A; are constants, A; are eigenvalues of a determinant and P,(z) is
a particular solution, which in this case is a polynomial.
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4. STRENGTH PREDICTIONS

In predicting strength, the specific system considered is a unidirectionally reinforced
composite with continuous fibers. The fibers are also assumed to be arranged in a hexagonal
pattern. This type of arrangement can be seen locally in cross-sections perpendicular to the
fiber direction. This is especially true for high fiber volume fractions. In addition, hexagonal
arrangement lends itself for ease in numerical studies where relative distances between fiber can
be calculated using simple geometric analysis. As mentioned before, the crack growth
mechanism in PMC’s is generally in the form of fiber breaks which initiate at various locations
in the material unti! clusters of fiber breaks form and coalesce until finally the material fails. In
our analysis, we must determine the stress concentration as well as the ineffective lengths
around singlets and multiplets. For singlets, the issue determining relative distance from the
broken core fiber to neighboring fibers is nonexistent since all the adjacent fibers are he same
distance away. But for doublets, for example, the distance to neighboring fibers varies, thus the
extent of stress redistribution is not uniform around the break.

In order to overcome this problem the hexagonal array of fibers is transformed into
concentric rings of fibers and matrix (See Fig. 4). This type of arrangement was first used by
Hedgepeth and Van Dyke {3] and later by Case [15] to study stress concentrations in fiberous
systems. The concentric, axisymmetric arrangement, or concentric cylinder model (CCM)
consists of a single fiber at the center surrounded by annular rings of fiber consisting of 6, 12,
18... fibers radially outward from the center.

Figure 4 Schematic of hexagonal array converted to fiber rings.

As a result, the stress concentration caused by the broken fiber core will be equally
distributed on the rings surrounding it. To simulate the progression of fiber breaks, we break
the first fiber ring surrounding the broken fiber since it experiences the highest stresses. Then,
the next ring surrounding the 7 broken fibers is broken. As a result, the progression of fiber
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breaks occurs in the form of broken rings rather than individual fiber breaks. Nevertheless, as
will be shown, this approximation mimics damage growth in PMC’s and results in good
strength predictions.

In order to utilize Pagano’s axisymmetric damage model, we need to define an
axisymmetric element consisting of fiber and matrix rings. The following axisymmetric element
in Figure 5 shows the arrangement of the fiber and matrix rings. The dimensions are chosen so
as to preserve, as well as possible, the fiber volume fraction of the composite, which is 60% for
the element shown.

Due to the approximation of the hexagonal array, as we put more fiber rings the fiber
volume fraction is not perfectly preserved, but decreases by about 5%. In addition to the fiber
rings, we have a composite ring surrounding all the inner rings. That is to say, at a far distance
from the point of damage initiation, we have the properties of the undamaged composite. The
elastic properties of the graphite fibers are E;; = 301 GPa E;; =20 GPa, Gy, =20 GPa, v|; =
020, Va3 = 0.25.

'S

[
|

Z

Figure 5 Axisymmetric element showing boundary conditions.

To simulate a fiber fracture, we apply a unit pressure at one of the boundaries of the
fiber regions to simulate an opening crack. We can see in Figure (5) the various boundary
conditions used in the study. To simulate a broken ring, we apply a pressure to the ring as done
to the fiber core. Note, however, that a broken ring in actuality is the failure of a number of
fibers rather than just one. From this arrangement, we calculate the axial stresses at both the
surface and center of the rings surrounding the broken fiber(s).

In Figure 6, we see the calculated stress distribution using Pagano’s axisymmetric
damage model. As once can see, at the plane of the fiber break, we have a stress concentration
which at some distance 8/2, the ineffective length, dies down to the far field or applied stress. If
we go on further, i.e. break the next ring of fibers, we form a total of 7 fiber breaks. In Figure 7
we see the stress distribution on the ring adjacent to the 7 broken fibers and the second most
adjacent ring. As expected, both the stress concentration and the ineffective length increases at
both the center and the surface of the fiber ring. In addition, one can see that at the second
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neighboring ring there is very little stress concentration, and the stresses do not vary much in
the axial direction. This shows the localized stress redistribution that occurs as a result of fiber
fracture in PMC’s. If we break yet another ring, we again see and increase in stress
concentration and ineffective length. In addition, the greater number of broken fibers result in
the stress distribution in the radial direction to be not as localized. This is a consistent trend
seen in fracture mechanics of isotropic materials where the stress ahead of a large crack dies off
slower than a small crack.

25 — e

Figure 6 Stress distribution due to one fiber break at neighboring fiber ring (E,= (.75 GPa).
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Figure 7 Stress distribution due to one fiber break plus one ring (7 fibers) at first and second
neighboring fiber rings (E..= 0.75 GPa).
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Figure § Stress distribution due to one fiber break plus two rings (19 fibers) at neighboring
fiber ring (En=0.75 GPa).

In order to predict the strength of brittle materials, a characterization of the strength
distribution must be made. The most widely used and accepted methods is by using Weibull
analysis [12]. In the Weibull analysis, usually two quantities are used to characterize the
material’s statistical strength. The first is the Weibull Modulus, m, which gives the spread in
the distribution of strength around a mean. For brittle materials, m is less that 10, which
suggest a large spread in strength, compared to a metal for which m is close to 20. The second
parameter is characteristic strength, o,, which is the strength of the material for a given gauge
length. For our system, o, and m were determined form strength versus gauge length data for
AS4 carbon fibers obtained from Wimolkiatisak and Bell [ 16]. Then the two parameters were
determined by a procedure outline by Masson and Bourgain [ 17]. The results of the analysis for
AS4 fibers result in m = 10.649 and o, = 760.878 ksi for a | mm. gauge length,

In order to utilize Batdorf’s analysis, the stress concentrations and the ineffective
lengths for all values of i in this range must be known. As a result. curves were fitted to the
data generated, thus stress concentrations and ineffective lengths for all muitiplicties from 1 to
17 breaks were calculated (see Figures 9 and 10). The ineffective lengths were determined to
be the length at which the stress crosses the far-field value (i.e. 6,/0, = 1).

In Figure (11), the results of the analysis is compared to experimental tensile strengths
of carbon fiber based PMC’s. It should be noted that the experimental values are an average of
a number of tests on specimens of same dimensions (3 X (0.5 X 0.04”). The dimensions of
the specimens corresponds to the total number of fibers to be 193,358 for a fiber radius of 3.57
pm and ve= 0.6, assuming a hexagonal arrangement. As can be seen, the results show good
correlation with experimental results. In the analysis, the critical i-plet was at most 7, thus one
might expect limited fiber damage prior to final failure. Since the fibers are annular rings, it is
not apparent which value, i.e center or surface, is most representative of the “real”” system. But,
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Surface Stress Concentration

Number of Broken Fibers

Figure 9 Surface stress concentration on adjacent fibers as a function of broken fibers and
matrix stiffness for a carbon fiber polymer matrix composite
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Figure 10 Ineffective length as a function of broken fibers and matrix stiffness for a carbon fiber
polymer matrix composite.

it is safe to assume that the strength is somewhere within the range predicted, and the lower
prediction is definitely a lower bound on the strength.
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Figure 11 Strength predictions at both surface and center values compared to tensile strengths
of carbon fiber polymer matrix composites.

5. STIFFNESS PREDICTIONS

One of the reasons for studying stiffness is to aid in predicting stiffness degradation due
to service conditions. That is to say, in time the materials used in the structure will experience
some damage due to cyclic loading and unloading. Of course, other environmental effects also
degrade material properties, but these will not be modeled in this study. In PMC’s, the cause
of stiffness change is mainly due to fiber breakage and fragmentation, i.e. multiple fracture of a
single fiber. As a result of smaller fiber fragments, the ability of the fibers to carry load
diminishes, thus the stiffness of the composite decreases. As will be shown later, depending on
the fiber/matrix properties and fiber arrangement, fiber fragmentation can have dramatic effects
on overall stiffness.

In this section the overall stiffness of a fragmented continuous fiber composite as
well as the stiffness of a short-fiber composite will be studied. To calculate the effective
stiffness of the composite, we need to measure the stresses and strains in both the fiber and the
matrix. To calculate these microlevel quantities, Pagano’s axisymmetric damage model is used.
Next, the volume average stresses and strains are determined by the following

_ 1 . 1
<oV >=—— Jo’dV, <& >=—-]eldV (22)
4 AV} (i) z ’ V(H z
Vi v
where [ = f,m denoting fiber and matrix, respectively. Then the composite stress and strain are

calculated according to rule of mixtures
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<o,>=f<ol>+(1-f)<ol >

(23)
<g,>=f<el>+1-f)<el >
As a result, the effective stiffness is given simply by
<o, >
@ =T 24)
<E, >,

For the following analysis, the properties were chosen to be that of AS4 carbon fibers (Ey; =
235 GPa, Eyp = E33 =20 GPa, v, =0.20, and v,; = 0.25), and the matrix E =29 GPaand v =
0.35.

5.1 Stiffness of Fragmented Fiber Composite

The advantage of using micromechanical stresses are that now one can place into the
model various damage modes and recalculate the effective stiffness. The importance of such an
analysis is that it enables one to predict stiffness degradation as a function of damage mode and
progression. Using stiffness change as a damage parameter provides an easy way to ascertain
damage accumulation in a structure. The process can also be reversed so stiffness can be
determined if the amount of damage in a structure is known. As a result, stiffness of materials
during service can be monitored. As mentioned previously, damage development in PMC’s is
mainly due to fiber breakage and fiber fragmentation. Fiber fragmentation results in damage
growth throughout the material without any signs of gross failure. However, as reported by
muny researchers [ 18], the effects of microcracking on stiffness is quite significant. In the fiber
fragmentation process, the degree to which fragmentation occurs is controlled mainly by
interfacial properties and the fiber’s statistical strength characteristics. Similarly, in PMC’s fiber
microcracking reaches a saturation point up to a point where matrix failure initiates and gross
failure occurs. However, it has been reported that fiber crack saturation is not achieved for
perfectly bonded PMC’s [19]. As a result, such composites show very low toughness
compared to the neat resin. This imperfect bonding has been show to be controlling property
that gives CMC’s improved toughness over traditional ceramics. In this study, bonding is
assurmed to be perfect.

In Figure (12 a), the axisymmetric element used in the analysis is shown. To simulate a
fiber break, the stresses on the fiber surface are set to be zero. To load the element, far from the
crack plane a unit displacement is applied. By varying the height or the z-dimension of the
element, we can analyze different fragmentation lengths. As before, fiber and matrix stresses
are computed and averaged over their respective volumes. In Figure (12 b), both the effects of
fiber fragmentation and fiber volume fraction are presented. It is hoped that such an analysis
will prove to be useful in predicting stiffness of a composite once damage modes are known.
Such a curve can be generated for other damage modes such as interfacial debonding, matrix
cracking, thermal effects or any combination of these phenomenon.
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Figure 12 (a) Schematic of axisymmetric model for continuous fiber composite with fiber
fracture and (b) Variation of effective modulus as a function of fiber fragmentation length and
fiber volume fraction..

5.2 Short-Fiber Composites

One of the least understood areas of composite materials technology is the behavior of
short fiber composites. It is, however, ironic that by volume short fiber composites are
produced by greater amounts than continuous fiber systems. Of the many short fiber systems,
fiber glass reinforced resins have been utilized by many different industries, including
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commercial and civilian applications such as automobiles and aircraft. The main reason for this
is due to the ease in manufacturing and lower material cost. In many cases, the effective
properties of such systems are treated as isotropic materials. That is to say, for random short
fiber materials, it is assumed that directional variation in properties do not exist. However due
to manufacturing techniques fibers can assume certain orientations. In this study, the effective
modulus of a short fiber composite which is unidirectionally oriented will be calculated. In
Figure (13), the axisymmetric element used in the analysis is shown. The dimensions of the
fiber and the surrounding matrix are chosen such that the aspect ratio of the fibers are 50. The
properties of the fiber are that of steel (E = 190 GPa, v = 0.3) and the matrix is an epoxy (E =
2.5 GPa, v =0.35). The dimensions of the fiber are varied so as to achieve different fiber
volume fractions. In the limit as the dimensions of the fiber reach the outer dimensions, v¢= 1,
and as the fiber dimension diminishes we have v¢= 0, as expected.

In Figure (14), the results of the analysis is shown. In addition, the results are compared
to Carman’s [20] results and experimental results generated by Berthelot {21] for a steel/epoxy
short fiber system. Both the present and Carman’s result overpredict the experimental values.
This is due to the fact that during manufacturing of the specimens, there was a distribution of
fiber orientations from £10°, Another reason for the overprediction is due to the assumption of
perfect bonding that both models incorporate. Nevertheless, the results show good agreement
with experimental results and follow the expected trend.
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Figure 13 Schematic of axisymmetric model for short fiber composite with aspect ratio of 50.
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Figure 14 Results of stiffness calculations and experiments for a short-fiber composite.
6. CONCLUSIONS & FURTHER WORK

e A representative volume of a continuous fiber composite with fibers arranged in a
hexagonal pattern was constructed to study the effects of fiber fracture on load sharing
by neighboring fibers. The stress distribution in the fibers adjacent to the fiber breaks
were calculated.

o From the stress distributions, the stress concentration and the ineffective lengths were
used in conjunction with the fiber’'s Weibull parameters to predict the strength of the
composite as a whole. This was achieved through a statistical strength model
developed by Harlow and Phoenix [5] and later refined by Batdorf [4].

e The results of the strength predictions were compared to experimental results of
tensile strength of carbon fiber composites.

o Using Pagano’s model, the stiffness of a continuous fiber composite was determined
from calculated microstresses and strains. The stresses and strains were volume
averaged over each constituent and the effective modulus was determined for a
fragmented fiber composite and a short-fiber composite.

o The advantage of using Pagano’s model is that we can calculate the change in stress
fields due to any type of damage. As a further study, the effects of different damage
modes, such as debonding and matrix cracks, on stiffness and strength can be studied.
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