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FOREWORD 

This book contains thirty papers that are based on the presentations made in the eleven- 
session Symposium on "Damage Mechanics in Engineering Materials" on the occasion of the Joint 
ASME/ASCE/SES Mechanics Conference (McNU97), held in Evanston, Illinois, June 28-July 2, 
1997. These sessions were mainly in the constitutive modeling of damage mechanics of engineering 
materials. These papers represent the most recent work conducted on damage mechanics in 
engineering materials. They encompass macromechanical/micromechanical constitutive modeling, 
experimental procedures, and numerical modeling. Inelastic behavior, interfaces, damage, fracture, 
failure, and computational methods are included. 

The book is divided into six parts. Part I is general and deals with the study of damage 
mechanics. Part II is on the localization and damage. Damage in Brittle Materials is presented in 
Part [II, while Part IV deals with damage in metals and metal matrix composites. The computational 
aspects of damage models are presented in two papers in Part V. Finally, two papers in Part VI 
present damage in polymers and elastomers. The papers discuss topics ranging from theoretical 
treatments to experimental investigation. The papers investigate both micromechanics and 
continuum aspects of damage in materials. 

We express our gratitude to all the authors that contributed to this work. Their time and 
effort are greatly appreciated. 

George Z. Voyiadjis 
Baton Rouge, Louisiana 

Jiann-Wen Woody Ju 
Los Angeles, California 

Jean-Louis Chaboche 
Paris, France 

September 1997 
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A p p r o a c h  

J.L. Chaboche, O. Lesn6, T. Pottier 
O.N.E.R.A. 
29 avenue de la Division Leclerc 
92320 Ch~tillon, France 

A b s t r a c t  

A constitutive framework is developed for the inelastic analysis of composite 
structures. It is based on a Continuum Damage Mechanics approach, at the 
mesoscopic level of each ply (for laminates) or at the macroscopic level for more 
homogeneous sequences. The theory is developed in a hierarchical order, 
involving the successive modelling of elasticity coupled with damage, elasto- 
viscoplasticity coupled with damage and viscoelasticity/recovery coupled with 
damage. A part icular  at tention is focused on the modelling of damage 
deactivation effects, which stays a key difficulty for cyclic loadings. The 
capabilities of the models are i l lustrated on three quite different materials,  a 
SiC/SiC composite, a SiC/Ti composite and a C/PMR15 composite. 

1. I N T R O D U C T I O N  

The inelastic analysis of composite structural  elements needs the 
development of good constitutive equations that  incorporate both the inelastic- 
plastic-viscoplastic behaviour and the effect of the progressive damage growth. 
For computational efficiency evidences, this had to be done at some continuum 
level, often called the mesoscale for composite structures. 

During the past  decade, specific efforts have been done in the constitutive 
modelling of composite materials.  Different classes of theories have been 
developed with the helps of micromechanics, but at the scale of the continuum, 
assuming the existence of a Representative Volume Element of material  (RVE). 
In this paper, we concentrate the efforts on the macroscopic modelling tools, 
directly useful for the structural  inelastic analysis, based on the continuum 
thermodynamics with internal variables and Continuum Damage Mechanics 
(CDM) concepts. 



A rapid survey of the l i terature  does not show a very large number  of 
researchers in this field, and at the macroscopic cont inuum level, for developing 
constitutive models for composites, from the theoretical basis to the complete 
identification and application. We can mention Talreja [1-2], Allen et al. [3], 
Ladeveze and Allix [4-6], Robinson et al. [7], Ka t tan  and Voyiadjis [8], Perreux 
and Oytana  [9], Chow and Yang [10] and probably some few others.  The number  
of references should obviously increase considerably if we consider modelling 
efforts based on micromechanics,  using self consistent methods,  homogenizat ion 
techniques, cell analysis  or any other kind of micro-macro t ransformat ion.  

The researches made at ONERA around a number  of composite sys tems used 
in Aeronautics and Aerospace applications have contributed to develop a 
succession of macroscopic constitutive and damage models tha t  can be organized 
through a hierarchical  modelling structure,  as shown in section 2 below. In the 
present paper, we try to summarize  and to discuss these modelling capabilities, 
showing some exploitations on various materials .  In section 2, are recalled the 
various scales for a composite s t ructure  analysis  and the proposed hierarchy of 
models. In section 3, is presented the general  framework for this constitutive 
equations development,  including the damage deactivation effects (closure 
effects), plastic flow and damage evolution rules. Section 4 gives some examples 
of applications, to Ceramic Matrix Composites (CMC), Metal Matr ix  Composites 
(MMC) and Organic Matrix Composites (OMC). In every case, they are long fibre 
unidirectional or woven composite systems,  but  the same approach has also been 
applied to short  fibre systems, like in [11]. 

2. A H I E R A R C H I C A L  M O D E L L I N G  OF C O M P O S I T E  S T R U C T U R E S  

First, we should have to indicate the various scales tha t  play role in the 
inelastic analysis  of a composite s t ructure  : 

- The component or s t ructural  level, where the composite par t  is often in the form 
of a laminate.  In some very macroscopic (elastic) analysis,  the lamina te  itself is 
considered as a continuum. When considering inelastic and damage  processes, 
this way of modelling has now to be considered as insufficient : us ing the finite 
element s t ructural  analysis,  in the f ramework of a plate or shell or pseudo 3D 
discretization, we should have to dissociate the kinematic  assumptions  
(displacement discretization) and the mater ia l  behaviour discretization tha t  must  
be treated ply by ply. 

- The scale of the e lementary  ply is the one at which we present ly  develop 
macroscopic consti tutive equations (it is often called the mesoscopic scale). Fig.1 
i l lustrates the laminate  decomposition. The ply has  a unidirectional s t ructure  for 
classical OMC laminates  and some MMC's laminates  but can be also composed of 
woven fabrics, like in the applications given in section 4 on SiC/SiC or C/PMR15. 



Figure 1. Schemat ics  of (a) mesoscopic analysis  in laminates ,  
(b) plain weave s t ruc ture  with homogeneous s tacking sequence. 

The ply assemblage  (fibre + mat r ix  or ya rn  + matr ix)  is then considered as a 
cont inuum, even in the presence of damage  ( t ransverse cracks for example). At 
this level, we could also consider special interfacial  models to describe the 
progressive damage  and de laminat ion  between adjacent  plies, as developed by 
Allix and Ladev~ze [12-13] and more recently Lo and Allen [14]. 

- The microscale, in which we use the consti tut ive equations of the e lementary  
consti tuents,  matr ix ,  fibres, f ibre/matr ix interfaces, etc... In some case, the 
analysis  has to be made  via a double level micro-macro approach (fibre + matr ix  
to give the ya rn  behaviour,  then yarn  + mat r ix  to model the ply behaviour). 
Difficulties increase when  taking into account microcracking, e i ther  in the matr ix  
or at the f ibre/matr ix interface. 

- Smaller  scale could also be considered when interact ing with  the composite 
processing routes ; an example  is the various interphases ,  diffusion zones and the 
roughness aspects in the region of interface between fibre and matr ix .  This is far 
beyond the scope of the present  paper. 

The consti tut ive and damage  models tha t  are formulated in the next  section 
obey to a hierarchical  s t ructure  tha t  can be elaborated as follows. Figure 2 
i l lus t ra tes  the ma in  features  of the corresponding modelling specificities and 
capabilit ies on examples  tha t  are or have been t rea ted  by ONERA co-workers : 

a) The basic behaviour  corresponds to the elastic damaged mate r i a l  (brittle 
damage),  as i l lus t ra ted  by CMC's, especially SiC-SiC plain weaves composites. 



The main  non-l inear i ty  observed in the tensile response is associated to the 
damage development  (matr ix  micro-cracking). One of the clear specificities of the 
tension-compression behaviour  is the damage  deact ivat ion effect t ha t  takes  place 
under  unloading/reverse  loading conditions, associated to the closure of 
previously created and opened microcracks. This effect m u s t  play role in the 
frame of the s ta te  potent ia l  as an elastic reversible process, leading to a bi l inear  
kind of elastic behaviour.  

b) In some other CMC's or in C-SiC composites, where  the larger  the rmal  
expansion misma tch  induces larger  manufac tu re  res idual  stresses,  the 
microcrack closure and damage  deact ivat ion takes  place at  a non-zero stress 
state. As i l lus t ra ted  on Fig. 2, this effect produces irreversible s t ra ins  t ha t  can be 
associated to the damage  development  itself, wi thout  any addit ional  s ta te  
variable or addi t ional  dissipative processes. 

c) In some other cases, for the C/C for example,  we need to introduce an evolution 
of the closure strain.  In other  words, the irreversible s t ra in  (or "plastic" strain) 
evolves dur ing  the damage  grows. Then, we have addit ional  s ta te  var iables  and 
evolution equations.  The corresponding irreversible s t ra ins  can be associated 
both to the friction effects between fibres, yarns  etc.., and to the damage  driven 
friction effects on the previously developed micro-cracks. 

d) Other  plast ici ty effects are clearly due to the inelastic behaviour  of the mat r ix  
itself. This is the case for meta l  mat r ix  composite, for example in the SiC/Ti 
system tha t  will be s tudied in this paper,  or for organic mat r ix  composites where 
it is necessary to describe the mat r ix  viscoelastic behaviour  under  t ransverse  or 
shear  loading conditions. The tension-compression behaviour  of the C/PMR15 
system in a 45 ~ direction (to the ya rn  axes) is a clear i l lus t ra t ion of this si tuation. 
In these systems,  we need the combination of the previous modell ing capabili t ies 
a-b-c to a more or less classical plastic or viscoelastic const i tut ive equation. 

e) The last  aspect,  not addressed in the present  paper,  is re lated to addit ional 
hysteret ic effects associated to damage/fr ict ion interact ions at  the f ibre/matrix 
interfaces. Quite l imited in the SiC/SiC sys tem such effects can be more 
pronounced in other  CMC's. In such cases, the mat r ix  microcracks are often 
bridged by intact  fibres and the dissipative processes take place in the fibre- 
matr ix  interface near  the crack opening region, producing both fibre mat r ix  
decohesion and sliding. The corresponding friction mechanisms ,  enhanced by the 
matr ix  damage  (microcracks) development  are clearly the cause for increasingly 
hysteret ic  effects t ha t  take  place dur ing the unloading-reloading cycles, 
hysteresis  tha t  have nothing to see with the mat r ix  behaviour  (point d). 



3. G E N E R A L  F R A M E W O R K  OF T H E  C O N S T I T U T I V E  M O D E L S  

3.1. T h e  s t a t e  p o t e n t i a l  
We consider the small s t rain assumption.  The consti tutive models are based 

on the cont inuum thermodynamics  with internal  variables.  We assume the 
existence of a state potential ,  from which can be derived all the s tate  equations,  
tha t  is the ones governing the reversible processes. We consider here the free 
energy as the thermodynamic  state potential ,  depending on the observable 
variables ~, the total s t ra in  and T, the t empera tu re  and on a set of in te rna l  state 
var iables :  

= ~(~, T, Ep, ~c, %, r, 5,~, d) (1) 

~p is the plastic strain,  usual ly defined through the unloaded configuration, but 
will be defined more specifically below, in the f ramework of the damage 

deactivation rule. ~c is the s train state associated to the deactivation (at which 

the deactivation can take place), aj, j=l ,2 ,  ... are a set of kinematic  harden ing  
variables, and r is the isotropic hardening  variable. 

H i e r a r c h i c a l  m o d e l s  . . . . . . . . . . . . . . . . . . .  

G o 
~---- i I G R ~"~-- 

�9 (~o  

SiC/SiC i /SiC 

Elastic 

Damage 
+ Deactivation 

Elastic Elastic Elastic 

Damage Damage Damage 
+ 

+ + Viscoplasticity 
Irreversible "Plasticity" + 

strain hysteresis 

Figure 2. Schematics of the hierarchical  modelling framework. 



In the present  CDM approach, we consider two kinds of damage  var iables  : 
- 5a, (z=1,2,3 represen t  three  scalar  damage var iables  associated to the microcrack 
tha t  develop paral lel  or perpendicular  to the reinforcements  (fibres, yarns).  The 
use of scalars is mot ivated by the fact tha t  these damages  have known mater ia l  
directions p~ (where p,~ is the vector perpendicular  to the corresponding family of 
microcracks). 

Table 1 
The state equat ions  of the damaged  elastic behaviour  for both active and 
deactivated damage"  

state ootential" 

1 ( ~. 1 �9 - 1 (~-  ~. - ~o):f~:(~ - ~ . -  ~o)+ ~ ( ~ - ~ ) :  ~'"-�9 f~ (~ - ~  )+~ y;~, :e,:~, (2) 

f~ = L o - ES~[A~'K~]~ -[D(d):K]~ ~= r162 
ot 

(3) 

I f  f= I~ + rl h ( - p ~ . E . p ~ ) 5 ~ P ~ : [ A ~ : K ~ I ' P ~  + ~ h ( - n , . ~ . n ~ )  N~:[I)(d):KL'N , 
i , , l  

(4) 

C, = C , -  XS~[A. 'KP l , -  [D(d):KP 1, (5) 
Gt 

D(a) = y[ I +  el, + -~(1 - y)[ t ~  + t ~  a], (6) 

P ~ = g | 1 7 4 1 7 4  N~ =n~|174174 (8) 

stale eauations �9 

O~ (L "rr f.): (E ) o = ~ = ~ . ( ~ - ~ p - ~ o ) +  - - ~  (9) 

~,,~ = c . ( ~ -  ~p - ~o)-- o -  (L'" - ~ ) - ( ~ -  ~ )  
ap = Ogp 

(10) 

X, = 0tO = ( ~ , . a ,  
c3ot~ 

( l l )  



- d is a second order damage tensor tha t  describes microcracks which 
orientations are given by the direction of the damaging  loading (and not by the 
constituents). Though a fourth rank  damage tensor could be more appropriate  to 
describe a general  induced anisotropy (Chaboche [15-16], Lubarda  and 
Krajcinovic [17]), we limit ourselves to a second rank  damage tensor 

The chosen form for the state potential  is indicated in Table 1, together  with 
the corresponding state  equations. The specific choices made for the damage 
deactivation and plastic s t ra in definition will be discussed in the next two sub- 
sections. Let us r emark  tha t  a dual formulation is still possible, using the Gibbs 
free enthalpy instead of( l ) ,  as was developed by Maire and Lesne [18]. 

In table 1, we have decomposed the free energy into the elastic par t  ~e, and 

the inelastic one ~gp, assuming  the uncoupling between the hardening  and elastic 
behaviour. The elastic energy is decomposed into two quadrat ic  terms (eqn (1)) 

that  will be explained below. ~0 = m0 = m (T-T o) is the thermal  expansion. 

3.2. D a m a g e  ef fec t  a n d  d a m a g e  d e a c t i v a t i o n  r u l e  
The elastic behaviour  is described by relation (9) in table 1, where L eff is 

defined in two steps. First,  L is the present  elastic stiffness tensor for all 
damages active, i.e. all microcracks open. It is obtained from the damage 
variables via eqn (2) in which K~ and K are given mater ia l  dependent  tensors, 
related to the initial symmetries .  D(d) is a fourth r ank  damage effect tensor, 

build up from the second rank  damage by eqn (6), and 5 k A k plays the same role 

for the scalar damages,  using (7). Second, we define L elf from L,  taking into 
account the damage deactivation effects via eqn (4), where h is the Heaviside 
function and P~, N~ are fourth order projection operators (8), n i (i=1,2,3) being the 
principal or thonormal  system in which is wri t ten the deactivation. 

This damage deactivation rule was proposed initially by Chaboche [19]. It is 
chosen in order to el iminate any s t ress-s t rain discontinuity when the 
activation/deactivation takes place, tha t  is when the normal  component 
~ i - T r ( - N i ' ~ i ) - n /  . ~ . n ;  or -~,~=p,~.-~.p,~ change sign. The projection 

operation with N i in (4) selects only the corresponding "diagonal term" L, in the 
stiffness matrix. The mater ial  pa ramete r  q allows description of partial  
deactivation effects, with 0 < vl < !. 

The energy ~,,, the stored energy associated to hardening,  could also be 

decomposed similarly to the elastic energy, showing the active terms with C j 

and the deactivation ones. However, it would increase the complexity and need 
additional deactivation rules, in terms of ai, the deactivation taking place 
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independently of the elastic one. For these reasons, we only consider the active 

situation, using the damaged harden ing  modulus  C j in eqs (1) and (11). 

There is no deactivation effect for ha rden ing  but a corresponding effect will be 
discussed in the frame of the yield function determination.  The operators  K p and 

K p, different in principle of K~ and K, are mater ia l  dependent  fourth rank  
tensors. 

Table 2 
Thermodynamic forces associated with the scalar and tensorial damage variables 

damage ~(finilies �9 

Ya 
Otp 
05 a 

1 
I ( e - E  -t~o):[A.:K ] ' ( r  2 P ~ i 

1 
--~q h(-T,'(e'~)) e : : [ A ~ ' K . ] "  e: 

~'~ =P~'(e-e~)=p~.~.p.  

(12) 

(13) 

. . . .  , iy[ )], 
Y= Od 4 

- q ~  h(-rr(e.;)) [e~, Tr(-6;)+-d: Tr(e ; ) ]+~(U; .e : ) ,  (14) 

= K:~ E] = N,-(e-e.)=n, . '~ .n,  ~; = K:E; (~5) 

Remark : The projection direction p~ is fixed by the initial composite symmetr ies  
(constituent directions). However, the choice for the principal deactivation 
directions n, is open. The natura l  way should be to take the principal directions of 
the damage tensor d (closure of the subjacent "principal micro-cracks"), but tha t  
leads to some indeterminat ions  in the initial undamaged conditions for the 
thermodynamic affinity y associated to damage. Presently,  we prefer to use the 
principal directions of e-~ c. 

Remark : In order to reduce the number  of mater ial  dependent  parameters ,  the 
fourth rank tensors K~ and K can be selected as identical to the initial 

undamaged stiffness L o. It leads then to the classical definition of the damage 
through the stiffness change. We can also select the par t icular  case where the 

tensors K p and K p are identical to C i. 
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Table 3 
The damage loading surfaces and corresponding damage ra te  equat ions : 

Scalar variables : 

8o -- (yo>-  0 

Tensorial variable : 

= ~[ (y :  Q:yfi]- ~ T r ( d ) -  (1 - ~ ) T r ( y . d )  <_ 0 g 
I. J 

rate equations �9 

(16) 

(17) 

3.3. D a m a g e  e v o l u t i o n  rules  
For the damage  evolution equations,  we follow the s t andard  procedure and 

the corresponding normal i ty  rules. A dissipation potential  is assumed to exist 
and is ass imila ted with  the damage loading surface ( that  enclose all the non- 
damaging  states)  expressed in the space of the thermodynamic  forces y~ and y 
associated to the damage  state var iables  5, and d. These thermodynamic  forces 
are indicated in table 2 and the corresponding damage evolution equations in 
Table 3. 

More specifically, the scalar damages  are assumed to obey mult iple criteria 
(dependent  or independent) ,  with one independent  mult ipl ier  12 i for each damage 

growth (determined by the corresponding consistency condition gi = gi = 0). For 

the tensor damage,  we necessary have to introduce some scalar invariants .  In 
equation (17), we combine the possibilities for an homothetical  evolution (~ = 1) 
and a quas i - independant  evolution (~ = 0), in terms of loading directions. 

Let us point out two assumpt ions  made in the present  way of damage 
modell ing:  

- We use the s t anda rd  rule in order to match  automat ical ly  the Second Principle 
of thermodynamics .  However, the dissipation potentials  for damage and 
plasticity are considered independent ly,  with independent  multipliers,  as 
proposed by Chow and Wei [19], Hansen  and Schreyer [20], Chaboche [21]. 

- The evolution is considered as ra te  independent .  In the normal i ty  rules (18), we 
have mult ipl iers  ~ and 1i tha t  mus t  be determined by the corresponding 

consistency conditions g~ = 0, g = 0. 
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3.4. M o d e l l i n g  o f  p l a s t i c  f l ow ,  w i t h o u t  d a m a g e  
For the plastic flow, we use a yield surface in the stress space or more 

precisely in the "active stress" space (~,. In fact, (~ is the the rmodynamic  affinity 
associated to E,, in the the rmodynamic  potential ,  and is given by (10) in table 1. 
The yield surface obeys a Hill's criterion, eqn (19) table 4, where  the fourth rank  
tensor H is depending on the mater ia l .  

In order to meet  the the rmodynamic  requ i rement  (the Second Principle), we 
assume the existence of a set of dissipative potentials,  F ,  F ,  associated to 
plasticity and the rmal  recovery processes. This way of general iz ing the s tandard  
procedure has been discussed recently by Chaboche [21]. The specific choices are 
given by eqs (19) and (20). The general ized normal i ty  assumpt ions  writes as (21) 
(22) and shows in the kinemat ic  ha rden ing  evolution the combination of three 
terms : the normal  (linear) hardening,  the dynamic recovery term, proportional to 
the modulus of the plastic s t ra in  ra te  and the static recovery term. 

Table 4 
The viscoplastic theory for the undamaged  configuration : 

yield  criterion and  dissipation po ten t ia l  �9 

/ =  (r x~:n:r - x)) ~ - R- , =  I1~ X L -  R - ,  X = E Xi (19) 
i 

. - 1  F, - /+~Ey,  x,.c, :x, 1 i~ Y,i (Xi. -, )~-'~Z~ 1 = .Ci "X Fs 2 .  m + l  i 

n o r m a l i t y  rule �9 

�9 OF �9 tl:(op - X) 
t~p =~, "---e- = 5k = ~ n  

~ II~ 

J J 

p l a s t i c i t y  �9 f = f = 0 - - '  

dissi t~atio n �9 _ 

z ~ -  %. ~ - y~ x i .  ~ - R ~ >_ 0 
i 

(20) 

(21) 

(22) 

(23) 

(24) 
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The plastic mult ipl ier  ~ is determined ei ther  by the consistency condition 

/ -  0 in the rate independent  case or by a viscoplastic equation (23) in the reverse 

case (which is assumed here). Let us r emark  tha t  ~. is the modulus of the plastic 

s train rate as defined by lb = I[~:p [I., = (cp H-"Cp ))/ = ~. 

The isotropic hardening  evolution equation,  governing the scalar variable r is 
not addressed in the present  paper. It can be postulated of a form similar  to the 
kinematic hardening,  incorporating a l inear  term, a recall term (dynamic 
recovery) and a static recovery term (Nouailhas [22]). 

Table 5 
The viscoplasticity theory for the damaged configuration �9 

yield criterion and dissipation potential �9 

,~, -- M'" -o ,  ~, - M,.X, :~ = E 'X, a s )  
i 

- , , 7 ,  

I ~ :(::[' :X Fp=f+ 2 y,X, , 

m+l ' Y" 
r ,  - ~ , E m + l  (28) 

n o r m a l i t y  r u l e  �9 

dOp 

M"fr'r,'l|:(M'rr: O'p - X) 

II~ xU. 
a ~ - - i  O F  _ OF, 

0Xj dXj 
- ~,~" M'"-~'~, - v,r x~/, - v,, [x~Hm"(:i':x~ 

(29) 

(30) 

3.5. Viscoplastic flow coupled with damage  
In the above equat ion for the viscoplastic flow, we introduce the damage 

coupling effect through an effective stress concept (table 5). 

We assume the same kind of damage effectiveness between elastic and plastic 

behaviour and use the effective stresses ~ and X i in the yield criterion and 

plastic potential, instead of Op and X i in the undamaged  si tuation (equation (27)) �9 
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8p : l~(d):o,,, X, = 1~, (d): X~ l~I= 1VI(d) and M i - l~i(d ) 

in eqs (25), (26) are the damage effect fourth rank  operators which choice will be 
discussed below in section 3.6. Due to the s tandard  procedure and normal i ty  rule 
the rate equations for e and aj follow easily. 

In the case where damage deactivation takes  place, there are several 
possibilities for introducing its effects in the plastic/viscoplastic equation. We 
could have played with an effective Hill's operator  H and its deactivation 
counterpar t  I-I e", with a deactivation criterion based on the overstress g,-X. 

In the present  theory, we have preferred to define an effective damage effect 
tensor M ~'", eqn (26), in which the damage is deactivated with a rule exactly 
similar to the one used for elasticity. In eqn (26), the projection operators P and 
N are the same as before but the deactivation is wri t ten in terms of the "normal" 
value of(~ (instead of~-E~). 

o~ 

/ I~ f f  L (b) ~c > 0 

Figure 3. Schematics of the plastic s t ra in  definition after a tensile damage �9 
(a) closure point with a negative tensile stress 

(b) closure point with a positive stress. 
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This is necessary in order to prevent any discontinuity of the s tress-strain 
response but introduces different ins tants  for the deactivation. There is no 

deactivation effect on the operators M, associated with the various back-stresses, 

but this is sufficient to correctly meet the experimental  results. Let us note that ,  
due to the generalized normality, we still check the thermodynamic requirement  
of a positive dissipation. 

3.6. S o m e  r e m a r k s  
The effective stress definition is based on the description of the elastic 

behaviour of the damaged material.  There are two main assumptions possible : 

(i) the energy equivalence principle [23], tha t  assumes the same elastic energy 
in the effective (undamaged) space, 

(ii) the strain equivalence principle [24], tha t  assumes the comparison between 
damaged and undamaged configurations through the strain response. 

Other generalizations have been proposed (Chow [25]) involving the plastic 
work equivalence, but  they are no more tractable in the frame of a state 
equivalence. The advantage of the energy equivalence is the automatic symmetry  
of the damaged stiffness and the possibility to completely t reat  the state problem 
within the effective undamaged space. This way was intensively used by 
Voyiadjis and Kat tan  [8], [26], and more recently by Kruch et al. [27] for the two 
scale elasto plastic and damage modelling of MMC's. However, we still prefer to 
use the strain equivalence assumption in the present  work, due to his larger 
flexibility. Contrary to the energy equivalence, any damaged induced anisotropy 

can be modelled. For instance, the damage effect tensors M and M i can easily 

be determined from the damaged stiffness, all damages considered as active : 

lVI- L:L- '  1~I~ - C~.C~-'. 

The damage deactivation rule chosen in section 3.2 introduces a specific 
definition for the plastic strain itself. This question is present in every theory 
where the deactivation effects introduce a bi-linear (or non linear) elastic 
behaviour. Assuming a rate independent behaviour (and the small strain 
hypothesis), examinat ion of eq (9) leads to the following definition" 

- The plastic strain ap is defined by the elastic linear unloading, all damages 
active, eventually linearly extrapolated to the zero stress state. 

This property is obvious from the active damage assumption, considering 

L e,= L in eqn (9), leading to a = % for g = 0. Figure 3 i l lustrates this definition in 
the case of tension-compression, after damaging in tension (within the 
simplification of constant off-diagonal compliance terms, not depending on 
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damage). Two si tuat ions are considered : (a) When the closure s t ra in  ac leads to a 
negative closure stress, the most usual case, the plastic s t ra in is defined by the 
(true) residual s t ra in  at zero stress. (b) In the reverse case, the plastic s t rain 
definition uses a l inear extrapolat ion to zero stress instead of the t rue bil inear 
elastic unloading. 

O" 

(~c ' 

E Ec E 

, (a)  c<o I /I:'L o 

Figure 4. Schematics of the reverse hypothesis for the plastic s t ra in  definition 
closure point with (a) a negative tensile stress, (b) a positive stress. 

Let us note tha t  in some other theories (GSrard and Baste [28]) it has been 

considered a variable definition of ~p: in case (b), ~p was defined as in figure 4-b, 
by extrapolation,  at the beginning of the unloading (BC), but by the t rue residual 

s t rain at o = 0 when the damage is deactivated (CD). The varying Ep at the 
ins tant  of deactivation leads to some theoretical shortcomings. 

Another form of deactivation equation could have been proposed, generalizing 
directly the one used by Chaboche et al. [29] for the elastic-brittle case (CMC's). 
Instead of (2), the free energy could be postulated : 

I (L r - L ) : ( e -  )+ (32) 

leading to the stress : 

(33) 
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This complementa ry  choice can describe (in principle) the same kind of 
deact ivat ion behaviour,  wi th  the same bi l inear  unloading but  a different 
definition of the plastic s t ra in,  as i l lus t ra ted  by figure 4 �9 

- The plastic strain ~p is defined by the elastic linear unloading, all damages 
deactivated (from compressive side) eventually extrapolated to the zero stress state. 

The formulat ion given in section 3.2 is preferred due to the following main  
reasons �9 

- It gives a more na tu ra l  definition for the plastic s train,  through the direct 
unloading from the loading tha t  has  produced both plast ici ty and damage.  

- It leads to a plastic s t ra in  tha t  does not differ too much from the residual  s t ra in  
at  zero stress. This is especially t rue for the observed behaviour  in SiC/Ti MMC's 
(see section 4.2), where the closure s t ra in  is not varying much but  the closure 
stress (after tension) becomes significantly negative.  The assumpt ion  (33) leads 
to much larger  differences. 

- It allows a consistent  description of the dissipation dur ing plastic flow, through 

the active s tress  (~p defined by eqn (10). The above choice (32) introduces much 
less na tu ra l  in terpre ta t ions .  

- It describes easily a positive dissipat ion associated to the evolution of the 

closure s t ra in  at. This aspect  is not addressed in the present  paper  but the 

assumpt ion  tha t  ec evolves only for active damage  is immedia te ly  consistent  with 
thermodynamics ,  which is not the case wi th  the other formulation.  

1 0 100 

~ -~oo  ~ - I o o  

E E 

o 

_ oo _ oo / i  i2<m:  
�9 - , l ~  . - , l~  ' )  

-500 -500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
,i i i i i i i 

-0.2 -0.1 0 0 1 0 2 -0.2 --0.1 0 0.1 0.2 
de format ion  ( % )  de fo rmat ion  (%) 

Figure 5. SiC/SiC cyclic tension-compression in the 0 ~ direction" 
(a) exper iments ,  (b) modelling. 
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Figure 6. SiC/SiC tension-torsion prediction �9 (a) monotonic tensile responses, 
(b) monotonic shear for various stress ratios responses.  

4. O V E R V I E W  OF S O M E  A P P L I C A T I O N S  

The constitutive and damage models presented in section 3 have been applied 
to several kinds of composite systems. Some results are given below for 3 of them �9 

(i) a ceramic matrix composite, 
(ii) an organic matrix woven composite, C/PMR15, 
(iii) a SiC/Ti metal  matrix unidirectional composite. 
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4.1. A p p l i c a t i o n  to the  SiC/SiC c o m p o s i t e s  
The mater ia l  is const i tuted of woven layers, with a plain weave structures.  

Each yarn is composed of a large number  of SiC fibres and const i tutes  by itself a 
unidirectional composite. The plies are superposed in a continuous stacking 
sequence, so tha t  we do not need to consider the stratif ication and the mater ia l  
can be considered as macroscopically homogeneous, as a 3D continuum. 

The mater ia l  is elastic brit t le and two kinds of mat r ix  microcracks are 
developing:  the ones parallel  to the fibres ( transverse cracks), tha t  we describe 
by scalar damage variables,  and the ones tha t  develop more or less perpendicular  
to the max imum principal stress, tha t  we describe by a second rank  damage 
tensor [18], [29]. We use the damage rules indicated in table 3, especially a rule 
like (17), tha t  allows to introduce a shape change in the loading surface as 
damage progresses [18]. Obviously, we neglect any plastic or viscoplastic 
behaviour. 
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Figure 7. Prediction of Young's modulus change (directions 1 and 2) on SiC/SiC 
under  a sequence incremental  tension followed by incremental  in ternal  pressure. 
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Some results are selected in figures 5 to 7 showing successively the model 
capability for uniaxial and multiaxial loading conditions. In particular, we 
observe the correct reproduction of the microcrack closure effect for 0 ~ tension- 
compression loadings, a slightly less good result  for the 45 ~ direction. The 
tension-torsion on tubular  specimens is correctly predicted (the experiments were 
not introduced into the model determination procedure). Moreover, under cyclic 
shear (torsion), with increasing extrema, the model is able to reproduce further 
damage at each peak (thanks to the choice of rule like (17). Moreover, a biaxial 
test under increasing tensile peaks, followed by increasing internal pressure 
maxima, is correctly predicted both in terms of the stress-strain responses and 
for the two Young's modulus (as measured by unloadings/low level reloadings). 
Figure 7 demonstrates  the model capability. 

Figure 8. SiC/Ti MMC tensile responses at 450~ : monotonic tests and 
simulations with unloadings (a) longitudinal, (b) transverse. 

4.2. A p p l i c a t i o n  to a S iCfr i  m e t a l  m a t r i x  c o m p o s i t e  
The material is composed of long SiC fibres (SMll-40 +) and a 6242 t i tanium 

matrix. It is used in the unidirectional form and tested in the longitudinal and 
transverse directions at 450 and 550~ In that  case, we considered only one set 
of scalar damage variables [30] but further studies should also consider the 
tensorial damage. The elastic-viscoplastic behaviour of the material  is described 
by equations of table V, with two back stresses (one linear hardening, one non 
linear hardening) but no static recovery effects. 

One specificity of the macroscopic model application is that  it is built up from a 
micro-macro analysis based on the constitutive equations of the matrix and fibres 
{11] [30]. The tensors L and C, are obtained from that  analysis and contain the 
constituent characteristics (behaviour, geometry and arrangements).  

The deactivation rule is applied in terms of the Total Strain, as indicated by 

eqn (4). Presently, we consider that  ec is the thermal strain ee, determined after 
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the modelling of the manufac tu r ing  process. In fur ther  work, we should have a 

slightly evolving ~c 

Figure 8 shows the correct modelling, both for the longi tudinal  and 
t ransverse  directions. In this last  case, we observe the damage  at  the very 
beginning after the elastic domain (by the Young's modulus decrease), followed 
by a significant plastic s t ra in  and a slower damage  evolution. Figures  9 and 10 
demons t ra te  the capabi l i ty  of the model under  cyclic loading conditions (with 
stress reversals). In par t icular ,  we observe in figure 10 the damage  deact ivat ion 
around a constant  total  s t ra in  (near 0). 

Figure  9. Stress controlled cyclic tes ts  on SiC/Ti 
at  550~ and the corresponding simulations.  

4.3. A p p l i c a t i o n  to  a C/PMR15 c o m p o s i t e  
The mater ia l  is a woven composite, with the eight ha rdness  sat in 

a r rangement .  The woven plies are superposed identically so t ha t  there is a 
symmet ry  between the directions 0 ~ and 90 ~ The na tu re  of the organic mat r ix  
and the stiffness of the eight hardness  sat in  weave introduces ex t remely  different 
responses for the 0 ~ and 45 ~ uniaxial  tension exper iments  : 
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Figure  10. S t ress  controlled cyclic s imula t ions  
wi th  increased  compress ion and  damage  deact ivat ion.  

- For the 0 ~ direction, we have  essent ia l ly  an elastic l inear  response.  The damage  
is not real ly  observable  before the specimen failure. It is only on the  t r ansve r se  
s t ra in  (Poisson's effect) t h a t  we can m e a s u r e  the damage  effect. 

- In the 45 ~ direction,  the response is essent ia l ly  the one of the matr ix ,  
viscoelastic, wi th  large hys te re t ic  cycles. The damage  grows only for large s tress  
levels but  its direct  m e a s u r e m e n t  th rough  st iffness change is difficult due to the 
viscoelastic hys tere t ic  effects. 

Figure  11. Monotonic tensi le  curve s imula t ion  for C/PMR15 in the  + 45 ~ 
direction, oooo tes ts  ; . . . . . . . .  calculat ions ; (a) low s t ra in  rate,  (b) h igh s t r a in  rate.  
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An extensive exper imenta l  s tudy has  been performed, at  various 
tempera tures ,  including cyclic tension, cyclic tension-compression,  creep, creep 
followed by recovery tes ts  etc... Figures (11) and (12) show only a few results.  
Modelling was done by using the following choices [31] �9 

- The viscous behaviour  is described by the viscoplastic f ramework,  considering 
visco-elasticity as a l imi t ing case of viscoplasticity [32] wi thout  yield s tress  (k = R 
= 0 in eqn (27)). 

- The back stress  is decomposed into 3 to 5 e l emen ta ry  back s t resses  in order to 
be able to s imula te  the hystere t ic  effects. 

- The static recovery effect in eqn (30) is t aken  into account, t ha t  provides a quasi 
complete s t ra in  recovery after unloading and a sufficient hold at  the test  
tempera ture .  

Figure 12. Tensile creep and recovery for C/PMR15 in the + 45 ~ direction. 
- * + o tests  ; ........... calculations ; (a) at  room t empera tu re  ; (b) a t  315~ 

5. C O N C L U S I O N  

A general const i tut ive f ramework has  been developed tha t  describes various 
behaviours and various kinds of composites. The hierarchical  s t ruc ture  of the 
models has been i l lus t ra ted  by the application to three very different composite 
systems, involving the e las t ic-damaging case, wi th  deact ivat ion (SiC/SiC), the 
addition of viscoplastici ty (SiCfri) and the addit ion of viscoelasticity and static 
recovery effects (C/PMR15). 

The proposed combined consti tut ive and damage  equat ions are able to take 
into account both the ini t ial  anisotropy of the composite and the damage  induced 
anisotropy, together  wi th  the effects of damage  deact ivat ion dur ing elastic or 
viscoplastic reversals .  
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These directionality effects refer to microstructural aspects : the constituent 
arrangements and the assumed directions of microcracks. Obviously, this is done 
through the global approach of CDM so that the local description of microcracks 
is not introduced in detail. Instead of a completely deductive approach (still to be 
developed for "predictive applications"), we have mixed micromechanical 
considerations and the macroscopic phenomenological approach. 

The proposed framework is already able to incorporate many of the most 
significant non-linearities in the composite behaviour. Some further 
developments and improvements are needed in order: 

- to reproduce more completely some damage deactivation effects. Some 
experiments show that the shear initial stiffness is recovered after damage 
deactivation, which is not possible within the present deactivation rule. 

- to describe the hysteretic effects and associated "inelastic strains" that are not 
induced by the matrix behaviour but by microslips between fibre, matrix and 
microcracks, including the interface behaviour. 
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Fundamental aspects of damage conjugate force of irreversible thermodynamics for elastic- 
plastic-damage materials and the appropriate selection of the spaces for the description of the 
damage surface and damage potential were first discussed. It was elucidated that the Gibbs 
thermodynamic potential facilitates the description of the experimental damage surface, since the 
damage conjugate force can be easily related to stress. It was emphasized that the normality law 
of damage potential must be examined in the space of the damage conjugate force which can be 
positive under any multiaxial state of stress, because of the positiveness of the damage 
evolution. Finally, a series of experiments was carried out in order to investigate whether the 
damage potential in the space of the damage conjugate force can be identical to the damage 
surface. 

1 INTRODUCTION 

Continuum damage mechanics (CDM) based on irreversible thermodynamics [1-17] is 
one of the most systematic approaches for the unified modeling of the coupled phenomena of 
elastic-plastic deformation and material damage. The existence of the damage potential and the 
related damage surface is postulated a priori in the usual framework of this approach. Under 
this postulation the damage evolution equation can be derived by use of the associated flow rule 
and the normality law [5, 6, 9-11, 13-19]. However, since the irreversible thermodynamics 
gives only the thermodynamically admissible framework, the identification of the fundamental 
aspects of these equations should have recourse to a series of experiments. 

Though thermodynamical framework gives a damage potential and the corresponding 
damage surface in damage conjugate force space, experimental verifications of the damage 
surface were performed in stress space [20-23]. Therefore, in order to facilitate the comparison 
of the experimental damage surface with the theoretical one, the damage conjugate force should 
have a simple relation to stress tensor. 

Moreover, as regards the experiments mentioned above, they were concerned only 
with the verification of the existence of the damage surface. Thus, the further experimental 
investigations are necessary to clarify the validity of the assumption of the associated flow rule 
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and the normality law of damage evolution, i.e., the existence of the damage potential. In this 
case the damage conjugate force space should be employed for the verification of the existence 
of the damage potential. 

The present paper is concerned with the thermodynamical modeling of constitutive and 
damage evolution equations of elastic-plastic-damage materials, in order that the experimental 
damage surface conducted in the combined stress space [23] can be described properly. Based 
on the discussion on the space of damage surface and the damage conjugate force, the Gibbs 
thermodynamic potential is first employed so that the theoretical damage surface in the space of 
the damage conjugate force may be related to the experimental one in the stress space. The 
Gibbs thermodynamic potential is assumed to be decomposed into three parts; the 
complementary energy affected by damage, the potential concerning the plastic deformation and 
the potential describing a surface energy due to damage [8, 10, 11, 14, 15, 17]. 

The damage surface is expressed as a function of the damage conjugate force, and 
postulates the associated flow rule and the normality law from which the damage evolution 
equation is derived. Then, the resulting equations are applied to the experimental results of the 
spheroidized graphite cast iron. 

Finally, the validity of the associated flow rule and the normality law is discussed in 
reference to the corresponding results of the experiments. 

2 MODELING OF ELASTIC-PLASTIC-DAMAGE MATERIALS 

2.1 Space of Damage Conjugate Force by Use of Gibbs  
Thermodynamic Potential 

The present authors have discussed the constitutive and the damage evolution 
equations of elastic-brittle [16] and elastic-plastic-damage materials [17] by means of the 
irreversible thermodynamics theory. Since the Helmholtz free energy was employed in these 
papers, the damage conjugate force was expressed as a function of elastic strain tensor. Thus, 
the examination of the validity of these proposed theories necessitates the experiments governed 
by the elastic strain. However, the experiments governed by the elastic strain may be difficult in 
the case of the elastic-plastic-damage materials, because the elastic strain can not be easily 
determined due to the change in the elastic properties by the development of damage. 

Because of this situation, most experimental studies on the geometry and the properties 
of the damage surfaces of composites [20], geological materials [21, 22] and elastic-plastic 
damage polycrystalline metals [23] have been conducted under combined stress space. From the 
viewpoint of the simplicity in the experimental formulation of the constitutive and damage 
evolution equations, the dmnage conjugate force may be preferably related to stress tensor. Of 
course, we could express the damage conjugate force as a function of stress by use of the 
relation between the stress and the elastic strain, even though the Helmholtz free energy is 
employed. However, the resulting expression of damage conjugate force may have very 
complicated form. 

In the present paper, therefore, the constitutive and damage evolution equations will be 
developed by use of the Gibbs thermodynamic potential. 

2.2 Internal Variables 
Inelastic deformation of the elastic-plastic-damage materials such as polycrystalline 
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metals is usually caused by not only the change of the dislocation structure, the deformation and 
rotation of grains, but also the internal damage due to the nucleation and growth of the 
microscopic cavities. The state of such damage is often dependent on the direction of the applied 
stress[4, 8, 9], and hence is anisotropic. Besides the anisotropy of the damage itself, the 
anisotropy of the elastic and (or) plastic deformation due to the anisotropic damage may be 
observed in the damaged process of materials. Therefore, In order to describe the behavior of 
the elastic-plastic-damage materials, we will employ a scalar isotropic hardening variable s, a 
second rank symmetric damage tensor D [24, 25], and a scalar variable 13 which prescribes the 
further development of the damage. The scalar variable/3 corresponds to the scalar isotropic 
hardening variable r in the theory of plasticity [16]. 

2.3 Formulation of Gibbs Thermodynamic Potential 
We take elastic-plastic-damage of polycrystalline materials with moderate ductility, and 

assume that the Gibbs thermodynamic potential F consists of the complementary energy F" 
due to the elastic deformation, the potential related to the plastic deformation F 1' and that of 
damage F a. The potential F p may be the distortion energy of lattice related to dislocation 
structure, while F ~ may be related to the surface energy due to the cavity nucleation. Though 
the complementary energy F e will be influenced by damage through the effect of degradation 
of the elastic property, the influence of damage to other state variables on other potentials may 
be small. Thus, the Gibbs thermodynamic potential F of these materials per unit mass have the 
following expression [ 10, I l ]: 

F(~r,r ,O,  ~) = r "~ (~r,D) + F ~ (r) + [.a (~) (l) 

If the material is assumed to be isotropic in the initial undamaged state, F"(o',D) of 
equation (l) can be expressed as an isotropic scalar function of two symmetric tensors o" and 
D. According to the representation theory of non-linear algebra, the most general form of the 
isotropic scalar function /-'e(o',D) can be expressed as the combination of the ten basic 
invariants of two symmetric tensors o" and D [29, 30]. At the initial undamaged state, the 
elastic behavior of the elastic-plastic materials is assumed to be isotropic and linear, and thus the 
function Fe(o',D) is quadratic in o'. On the other hand, since F"(or, D) will decrease as 
damage develops, it will be supposed to be linear in D [4, 5]. 

If we incorporate further the crack closure effects under compressive stress and the 
related conditions for continuous transition of stress-strain responses from crack opening to 
closure [32, 33], the elastic-damage complementary energy is given as follows: 

v o 1 + v 0 1-'e(or, D) = -  _~_ (tro-)2 + trot 2 
2Lo 2Eo 

+OltrD(tro') 2 + 02trDtr~ 2 + O3tro'tr(arD ) + 04tr(~2D) (2) 

where symbols E o and v o are Young's modulus and Poisson's ratio at the initial undamaged 
state, while 01 through O 4 are material constants. The symbol ~ is the modified stress 
tensor representing closure effects of microcracks [2, 25, 31, 32] and is given in the principal 
stress coordinate system as follows: 
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(I - 1,2,3, no sum.) (3a) 

= + (3b) 

where ( ) is  Macauley bracket, H( ) is  Heaviside step function, and o', (I : l, 2, 3) are the 
principal values of o'. The capital index I indicates the principal stress coordinate. Furthermore, 
the symbol ~" (0 < ~r < 1) is a material constant describing the extent of crack closure effect, 
i.e., ( = 1 implies complete closure while ~" = 0 implies vanishing effects. 

As for the other terms in equation (1). F P ( r )  represents the effects of the isotropic 
hardening of plastic deformation, while F"(/3) is introduced by assuming the linear relation 

between internal variable 13 and its conjugate force B. Thus, we have 

1 exp(-br)]  (4) r '(r)= R~ r + ~  

1 

where R ,  b and K~ are material constants. 

2.4 E l a s t i c - D a m a g e  C o n s t i t u t i v e  E q u a t i o n  and T h e r m o d y n a m i c  
C o n j u g a t e  F o r c e s  

According to the conventional procedure of the thermodynamic formulation, the elastic 
constitutive equation of the damaged material can be obtained by the use of equation (4) and 
equation (10), and leads to 

_ 1 + v 0 
~, ,_  cYF'___~" - - -  v'--z-~ ( t r ~ r ) l  + o" + 2 0 , ( t r D t r o ' ) l  + 20 , ( t rD)~"  c?~ 

0o" E o E o - O~r 

+ 0 3 [ t r ( ~ r D ) I  + (tro')D] + 04 (~D + D ~ ) ' ~  (6) 
do" 

It should be noted that the stress-strain relation of equation (6) should have a 
continuous transition from the crack opening to closure [32, 33]. However, the condition for 
the continuous transition of equation (6) can not be examined in general case, but can be 
confirmed in the particular case of plane stress written in the corresponding principal coordinate 
system. 

The conjugate forces corresponding to internal state variables D, r and/3, on the other 
hand, can be derived by the use of equations (2), (4) and (5): 

y =_ OF" = [O,(tro.)2 + O, t r ~ 2 ] l  + O,(trtr)o" + 04 ~2 (7) 
d D  - " 

R =-- ~ 
d---~ -= Roo[l- exp(-br)] (8) 
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OF" 
B -  - K~,/3 (9) 

s,e 

Since the Gibbs thermodynamic potential has been employed, the damage conjugate 
force Y of equation (7) can be expressed as a function of stress tensor. 

2.5 Dissipation Potential 
The dissipation of the plastic deformation in polycrystalline materials is mainly 

produced by dislocation motion under the applied stress, while the dissipation of damage is 
governed by the release of internal energy due to the development of microscopic cavities. Thus, 
we represent these dissipation mechanisms by two different potential functions, i.e., plastic 
potential F p and damage potential F d. Then, the total dissipation potential can be given as the 
sum of these two parts of dissipation: 

F(or, Y,R,B;D,r, fl)= FP(or, R;D)+ F"(Y,B;D,r) (10) 

where the quantity preceding the semicolon (;) in the expression of the potentialF denotes the 
variables while those after (;) are the parameters. 

Since damage will lead to the reduction of load carrying area and induce the stress 
concentration around defects, it may bring about the reduction of yield surface. In view of this 
effect, the damage tensor D has been included in F e of equation (10) as a parameter. The 
experimental results on the damage surface show that the geometry of the surfaces does not 
always remains similar, but may depend on the current damage state [23]. Furthermore, the 
development of damage is also dependent on a plastic deformation. Thus, the tensor D 
together with the internal state variable of isotropic hardening r are incorporated into the damage 
potential F a as a parameter in order to have more precise description of the damage 
development. 

2.5.1 Plastic Dissipation Potential 
Let us assume the associate flow rule; i.e., the yield surface is identical to the plastic 

dissipation potential FP(tr, R; D). By restricting the present discussion to relatively simple 
loading histories, the following isotropic hardening yield surface can be assumed by extending 
the yon Mises yield condition to the damaged materials [ 10, I l ]: 

FP(tr, R; D)= O'~q -(try + R)= 0 (11) 

o-q = ~3o"" M(D)" o "" (12) 

where o" is the deviatoric stress tensor, while M(D) is a fourth rank symmetric tensor with 
damage tensor D as an argument. 

The yield function of equation ( 11 ) furnishes the constitutive equation for plastic strain 
rate k p and the rate of isotropic hardening variable k as follows" 
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�9 p f,,lpO Fp 3f4pMiju~ 
Eq= , = 

30"ij 2 o" ,q 
(13) 

i=AP 8FP =A r' (14) 
O(-R) 

where the parameter AP is an unknown multiplier determined from the consistency condition 
/~'P = 0, and will be given later in Section 2.6. 

The loading / unloading conditions of equation (13) are defined by the condition that 
the following Kuhn-Tucker relations should be always satisfied [27, 35]: 

AP > 0 ,  F p < 0 ,  JlPF p = 0  (15) 

The function M(D)  in equation (12) should be specified so that it may properly describe the 
increased effects of stress due to damage. By postulating moderate effects of D on the plastic 
deformation, M(D)  is expressed by the following linear function of D: 

(16) 

where c p is a material constant. 

2.5.2 Damage Dissipation Potential 
As was observed in the previous experiments on damage surface in stress space by the 

present authors[23], there exists a damage surface which prescribes the limitation of damage 
development, and the loading / unloading and neutral loading condition holds with respect to the 
surface. From theoretical point of view, on the other hand, the existence of the damage 
dissipation potential F d will be proved if the doJnage evolution depends only on the damage 
conjugate force and the current material state [18], and damage evolution can be expressed by 
the normality rule of F a. 

In the present paper, we will assume the associate flow rule as in the case of the 
plasticity. Furthermore, the function F '~ will be expressed as a function of the damage 
conjugate force Y in order to satisfy the thermodynamic requirement. 

According to the experimental results [23], the geometry of the damage surface 
depends not only on the hydrostatic stress, but also on plastic deformation and the current state 
of damage. 

Thus, based on the above discussion, the damage surface will be assumed so that the 
surface may describe the experimental one [23] as follows: 

U ( Y , B ; D , r ) =  Y~, +c' r t rDtrY-(B, ,  + B ) = 0  (17) 
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where L(D) is a fourth rank tensor function of the damage tensor D describing the damage- 
induced change of the damage surface. The symbol B o in equation (17) is a material constant to 

specify the size of the initial damage surface. 
As regards the tensor L(D), it should be determined so that equation (17) may 

describe the corresponding experimental results. In the present paper, since the material damage 
in the elastic-plastic material employed is not so significant, the tensor L(D) can be given by a 
linear function of damage tensor D and furnishes as follows: 

= 2(,,,,,, +,,,,,, )+ lc"(,,,,,,, +,,,,.,,, + +,,,,,,,) (19) 

The evolution equations of damage D and /3 are given as follows: 

D = ft u 3Fu = fie[ L: Y +crr(trD)I 1 
3Y [2req 

(20) 

fi = jl e 3 Fd = j l  d (21) 
4-8) 

where /1 d can be derived from the consistency condition PJ = 0, and will be given in Section 
2.6. Similarly to the plasticity case, the loading / unloading conditions for the damage evolution 
are specified by the following Kuhn-Tucker relations [27, 35]" 

Jl a >0, F a <0, zidF J =0  (22) 

2.6 Calculation of Multipliers 
When damage and plasticity occur simultaneously, the multipliers AP and JV must be 

obtained by solving simultaneously the consistency condition for the plastic yield surface and 

the damage surface as follows [35]" 

O F-~P " dr O D o Y ) k -oY- 

dR (dR)(dB OFd.Ou ' )  
dr d r  dfl 3D 3Y 

(23) 

OF d . 

OY 
dB OF d OF d 

dfl 3D aY 

(24) 
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3. C O M P A R I S O N  W I T H  THE E X P E R I M E N T S  ON T U B U L A R  S P E C I M E N S  
OF S P H E R O I D I Z E D  G R A P H I T E  CAST I R O N  

3.1 Spec imen  of Sphero id i zed  Graphite  Cast  Iron  
Tubular specimens of spheroidized graphite cast iron FCIM00 (JIS) were employed in 

the present experiments. The wall thickness of the specimen is 1 mm, and may be sufficiently 
thick to ensure the continuum assumption because the average diameter of spheroidized graphite 
particles is about 30/xm. The fracture mechanism of the spheroidized graphite cast iron has 

been found mainly to be the decohesion at the interfaces between the graphite particles and the 
ferrite matrix, in addition to the ductile failure of ferrite matrix induced by the development of 
microcracks and plastic deformation. 

3.2 Uniaxia l  Tens ion  T e s t s  
The material constants in equations (1)-(24) are identified so that the test results under 

uniaxial tension shown in Figs. 1, 2 and 3 together with the initial damage surface of Fig. 8 may 
be described by these equations. The material constants thus determined are as follows: 

E o = 169GPa, v o = 0.285, s r = 0.89, 

O l = -3.95 • 10  -7 MPa -~, 02 = 4.00 x 10 -<~ MPa -~ , 

03 = --4.00 • 10 -v MPa -~, 04 = 2.50 x 10 -<' MPa -~, 

b = 15, R o = 293.0 MPa, R= = 250.0 MPa, c p = 1.0, 

Kj = 1.3, B o = 0.273, c d = -15.0, c' = 50.0 

(25) 

Fig. 1 shows the comparison between the experimental uniaxial stress-strain relation 
and the corresponding prediction by equations (6), (13), (14), (20)and (21). It can be seen that 
the experimental result can be precisely described by the present theory. 

Figs.2 and 3, on the other hand, show the comparison of Young's modulus E l and 
Poisson's ratio v~2 which is the ration of transverse strain induced by the axial tension to the 

6 0 0  

5OO 

4 0 0  

t; 
3 0 0  

r.~ 

2 0 0  
. , , ~  

< 
1 0 0  - 

0 -  
0 . 0 0  

f 
E 0 = 169 G P a  

v o = 0 .285  

o}, = 293 M P a  

i I 
0 . 0 4  

Expe r imen ta l  

. . . . .  Ca lcu la t ed  

i I l I 
0 . 0 8  0 . 1 2  

Axial  strain 

0 . 1 6  

Fig. 1 Experimental and calculated stress-strain curves under uniaxial tension. 
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axial strain. Young's modulus El and Poisson's ratio u~2 under uniaxial tension tests were 
measured in the unloading processes which were carried out at every 1.5% increment of strain 
on the corresponding stress-strain curve [23]. 

In Fig.2, the decrease in the experimental results of E l is observed due to internal 
damage, and E 1 attains to about 90% of its initial value at failure. This feature can be described 
well by the calculated result. 

Fig.3, on the other hand, shows that the present theory with damage anisotropy can 
describe the observed decrease of Poisson's ratio vl~_ precisely. Moreover, Poisson's ratio ~,~_ 
attains to 92% of its initial value. As observed in equation (25), the material constants O~ and 
03 must have negative values in order to describe the larger decrease in Young's modulus than 

that in Poisson's ratio. Though the damage-induced change 
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Fig.4 Predicted results of damage variable under uniaxial tension. 

of Poisson's ratio can not be described by the isotropic damage theory [36], the present theory 
of anisotropic damage can describe the observed decrease of Poisson' s ratio precisely. 

Finally, the damage evolution curves predicted by equation (20) together with the 
material constants of equation (25) are entered in Fig.4. A solid line in this figure shows the 
damage component D~t of the axial direction x,. Moreover, broken line shows D,_,_ and D33 
of the direction perpendicular to %. As observed in Fig. 4, the anisotropy of the damage is not 
so significant, and this is attributable to the fact that the spheroidized graphite cast iron 
employed in this experiments is rather ductile, and the anisotropy in the cavity formation in this 
materials is rather small. 

3.3 Tors ional  Tes t s  
Fig.5 shows the comparison between the experimental results of shear stress-shear 

strain curve and the corresponding prediction by the same equations in the case of uniaxial 
tension. The material constants (25)which had been determined by the preceding uniaxial 
loading tests were again employed. Since the shear yield stress is z v =168 MPa, i.e., 
approximately l / ~ 3  of the tensile yield stress or v (= 293MPa), the initial yield of the present 
material obeys the von Mises criterion of equation ( l l ). Fig. 5 also assures the close agreement 
of the present theory with the experiment. 

Evolution of the damage components are shown in Fig. 6. In this figure, the principal 
values /91~, /)2,_ and /933 are entered, since the directions of the principal stress may play the 
most important role to the clack opening or closure. As observed in this figure, the damage 
component /9~ in the principal direction ~1 is larger than the component /922, which may be 
accounted for by the difference in the damage development in two directions 2~ and J_,. This 
results is due to the introduction of the modified stress ~ of equation (3) into the Gibbs 
thermodynamic potential F e (tr,  D )  of equation (2). 

From physical point of view, the damage is caused mainly by the microscopic defects 
produced by the tensile principal stress, while the compressive principal stress leads to less 
material damage than the tensile one because of the crack closure effect. Therefore, the actual 
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material behavior can be propedy described by the present formulation. 

Furthermore, the damage variable /333 of the principal direction 23 does not differ 

much from /91~ and /922. This result shows that the damage development of this material under 
torsional loading also has rather insignificant anisotropy even though there exist certain 
unilateral nature. Physically, this results is explained by the fact that the damage of this material 
mainly occurs by the decohesion of almost the whole boundary of the spheroidized graphite and 
the ferrite matrix. 

Fig. 7 gives a comparison between the observed and the predicted shear modulus G~2. 
The shear modulus G12 decreases according to the damage growth, and leads to about 93% of 
its initial value at fracture. 
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Fig.5 Experimental and predicted shear stress-shear strain. 
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3 . 4  C o m p a r i s o n  o f  t h e  d a m a g e  s u r f a c e  
Fig.8 shows the initial, subsequent and final damage surfaces obtained by the 

experiments and the prediction of the theoretical damage surface (17), respectively. The 
symbols C), �89 and A correspond to the initial, subsequent and final damage surface by 
experiments, respectively, while a solid, broken and dotted line represent the predicted results 
of the theoretical damage surface of equation (17). The prediction of the damage surfaces is 
performed as follows: the value of the axial stress and the shear stress are obtained so that they 
can satisfy equation (17), in which the value of B o + B has been prescribed at the uniaxial 

stress state corresponding to the initial, subsequent and final states. 
As regards the initial damage surface, the experimental results can be described by the 

proposed damage surface of equation (17), which has a first quadrant of an ellipse in the space 
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of axial tensile and shear stress. The ellipse of the initial damage surface has the aspect ratio of 
tr/r- 1.46, which is in contrast to the ellipse (tr/r -~f3) of the initial yield surface of yon 
Mises type. From this difference, it is found that the influence of hydrostatic stress can not be 
neglected for damage development due to microcrack nucleation and growth. In the present 
theory, this effect has been represented by the term of trtr in the damage conjugate force Y of 
equation (7), which in turn results from the expression of /-'~ of equation (2). 

On the other hand, the aspect ratio of the subsequent damage surface is cr/r = I. 62, 
which is closer to the aspect ratio of von Mises type than that of the initial damage surface. This 
is because the increasing plastic deformation of the ferrite matrix will govern gradually the 
damage process, and final damage surface, whose aspect tr/r is approximately -v/33, might 
have been governed by the ductile damage. 

The proposed damage surface and the damage evolution equation derived by the 
consistency condition and the normality rule of equation (17) can describe the geometry of each 
damage surface. This implies the validity of the introduction of the effect of the current state of 
the material damage, the hydrostatic stress and the plastic deformation into the damage surface 
of equation (17). 

4 E X P E R I M E N T A L  V A L I D A T I O N  OF D A M A G E  P O T E N T I A L  

Though the discussion of the preceding section revealed that there exists the damage 
surface in stress space and that the condition of loading / unloading and neutral loading is 
sufficiently satisfied [23], the validity of the normality law of the damage surface remains 
unconfirmed. Thus, further experimental investigations are necessary to validate the existence 
of a damage potential surface. For this investigations a series of experiments are performed to 
verify the validation of the assumption of the normality law in the present paper. 

Let us first note that the normality law of the damage evolution should be discussed not 
in stress space but in the space of damage conjugate force. This is due to the fact that, though 
the stress space can give reversed directions under some loading conditions, the damage 
evolution can be always positive unless there are healing effects. On the other hand, the damage 
conjugate force is always positive in the space of axial-torsional stress. Therefore, the normality 
law must be examined in the space of damage conjugate force. It should be noted that the 
material constants O 1 through O 4 must be determined so that the damage behavior of the 
specific material may be described properly. We must select such material constants that the 
damage conjugate force equation (16) are negative if the heating effect of damage will occurs 
under the corresponding stress states (for instance, O1 = O~ = O 4 = 0, 03 > 0 under stress 
state o'~1 < 0, trtr > 0).  

4.1 Procedure of Experiment 
First, we will employ the tubular specimens which we used before in the experimental 

verification of the damage surface [23]. Each specimen is subjected to loading along the three 
different proportional loading paths A: O-Ao-AI-A 2, B: O-Bo-B1-B 2 and C: O-Co-CI-C 2 as 
shown in Fig. 12. In this figure, A o, B o and C O are the stress states on the initial damage surface, 
while A 1, B~ and C~ are on the subsequent damage surface[23]. Furthermore, A,, B 2 and C 2 are 
the stress states before the final fracture. Then, at the stress states A~, B t, Ct, A 2, B 2 and C 2, 
Young's modulus E l, Poisson's ratio u12 and Shear modulus G~2 were determined with 



40 

f 
Experimental: Predicted, Eq.( 17): 

400 O Initial .. Initial 
[] Subsequent .............. Subsequent 
A Final Final 

~ 300 ~-C~ . . . .  " 3,- , .. 

o 200  . . . . . . . . . . .  

~ ~~o ~/';.,.... - -, ~ a ' ; " " . . . . . . .  A ,, 
r~ 100 '" ~l 

0 1 oo 200 300 400 500 600 
Axial stress (~, MPa 

Fig.9 Stress paths for verification of normality law of damage surface 

confident coefficient of 99%. 
The components Dll, D22 and D33of the damage tensor D on the each stress state 

were calculated by the equations of Young's modulus E l, Poisson's ratio ~'l_, and the shear 
modulus G~_ with material constants (25) obtained from equation (6) as follows" 

E l = Eo 
l+2Eo{(O~+O2)trD+(O3+O4)D,,} (26) 

uo- {2OltrD + 03(D,l + D22)} 
vl2 = 1+ 2Eo{(O , + O2)trD+(O 3 + "04)Dl, } (27) 

E 0 
G12 

2(1 "~" 110) "~" 2E0{O2(1 @ ~2 )trO -~- "1.~4 (l-~ ~2)Oli } 
(28) 

where the damage component D~2 has been excluded in equation (28), since the component 
D~2 has very small value in comparison with the other components D~l, D22 and D33. 

By solving these equations as simultaneous equations of the three unknowns of Dtl, 
D22 and D33, the experimental values of the damage variable can be obtained. However, the 
simultaneous equations by use of El, ul2 and G~2 obtained by experiments do not always 
furnish physically admissible set of the values of D i ~, D22 and D3~. Therefore, in the present 
paper, the values of D~l, D22 and D33 are determined so that E~, v~ and G~2 calculated by 

equations (26)-(28) with the material constants (25) may exist in the confidence interval for 
experimental values of E~, ~'l,_ and G~_ with confidence coefficient of 99%. 

4.2 Comparison between experiment and theory 
Figs. 10(a) and (b) show the relation between the damage variable D~l-D22 and Dll- 
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Fig. 10 Damage development along the corresponding loading path A, B and C. 

D33. Three lines and symbols show the predicted and experimental results for the 
corresponding paths A, B and C. The experimental results on each path show a good agreement 
with the theoretical one. Furthermore, as observed in Figs. 13(a) and (b), the development of 
damage along each path tends to isotropic, namely the slope of the tangent of each line leads to 
7r/4. This feature of insignificant anisotropy may be accounted for by the damage development 
observed in Fig. 7. 

Figs. 11 (a) and (b)show the initial and the subsequent damage surfaces and the 
direction of damage evolution obtained by the experiments in the space of the damage conjugate 
force, projected on Y~-~2 and Y~-Y33 plane. The directions of damage growth on the stress 

point A o, B o, C o, A~, B~ and C~ were obtained from Figs. 10(a) and (b). 
As observed in the initial and the subsequent damage surface covered by experiments, 

the range that the damage conjugate force can vary is very narrow. Therefore, the proposed 
damage evolution equations (20) which is derived by assuming the normality law of the damage 
surface can be nearly isotropic. The directions of the stress states &~, B o and C o on the initial 
damage surface, and the directions of the stress states AI, B~ and CI on the subsequent damage 
surface can be found to satisfy the normality law because each direction is almost perpendicular 
to the initial and the subsequent damage surface described by equation (17). 

From these results, it follows that the proposed damage surface of equation (17) is 
found to be identical to the damage potential, and that the assumption of the damage potential 
and the corresponding normality law in deriving the damage evolution equation is certified. 

5. C O N C L U S I O N S  

Constitutive and the damage evolution equations of the elastic-plastic-damage materials 
were developed based on irreversible thermodynamics, and their validity was discussed by 
performing a series of experiments under combined state of stress. The conclusions obtained 
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Fig. 11 Directions of damage development in the space of damage conjugate force 

from the present work are summarized as follows: 
1) It was found that the employment of the Gibbs thermodynamical potential was appropriate 

to relate the damage experiments in stress space to the present theory. 
2) The resulting constitutive and damage evolution equations could describe the anisotropic 

change in the elastic properties of the spheroidized graphite cast iron due to damage with 
good agreements. 

3) The proposed damage surface was verified to describe the experimental initial and the 
subsequent damage surface expressed in stress space properly. This is because that the 



43 

effects of the hydrostatic stress, plastic deformation and the current damage state in the 
proposed damage surface are effectively introduced. 

4) The direction of the experimental damage rate vectors is confirmed to coincide with the 
outward normal of the initial and subsequent damage surface in the space of the damage 
conjugate force. This validates the existence of the damage potential and the normality law 
on damage evolution, which are the common postulation in deriving the damage equation by 
use of damage mechanics based on irreversible thermodynamics. 
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A B S T R A C T  

In this paper the kinematics of damage for finite strain, elasto-plastic deformation is 
introduced using the fourth-order damage effect tensor through the concept of the effective 
stress within the framework of continuum damage mechanics. In the absence of the 
kinematic description of damage deformation leads one to adopt one of the following two 
different hypotheses for the small deformation problems. One uses either the hypothesis 
of strain equivalence or the hyphothesis of energy equivalence in order to characterize the 
damage of the material. The proposed approach in this work provides a general description 
of kinematics of damage applicable to finite strains. This is accomplished by directly 
considering the kinematics of the deformation field and furthermore it is not confined 
to small strains as in the case of the strain equivalence or the strain energy equivalence 
approaches. In this work, the damage is described kinematically in both the elastic domain 
and plastic domain using the fourth order damage effect tensor which is a function of the 
second-order damage tensor. The damage effect tensor is explicitly characterized in terms 
of a kinematic measure of damage through a second-order damage tensor. Two kinds 
of second-order damage tensor representations are used in this work with respect to two 
reference configurations. The finite elasto-plastic deformation behavior with damage is 
also viewed here within the framework of thermodynamics with internal state variables. 
Using the consistent thermodynamic formulation one introduces seperately the strain due 
to damage and the associated dissipation energy due to this strain. 

Theoret ica l  Pre l iminaries  

A continuous body in an initial undeformed configuration that consists of the mate- 
rial volume 12 ~ is denoted by C ~ while the elasto-plastic damage deformed configuration 
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at time t after the body is subjected to a set of external agencies is denoted by C t. The 
corresponding material volume at time, t is denoted by gt t. Upon elastic unloading from 
the configuration C t an intermediate stress free configuration is denoted by Cap. In the 
framework of continuum damage mechanics a number of fictitious configurations, based 
on the effective stress concept, are assumed that are obtained by fictitiously removing all 
the damage that the body has undergone. Thus the fictitious configuration of the body 
denoted by C 't is obtained from C t by fictitiously removing all the damage that the body 
has undergone at C t. Also the fictitious configuration denoted by C p is assumed which is 
obtained from C ap by fictitiously removing all the damage that the body has undergone 
at C ap. While the configuration C'P is the intermediate configuration upon unloading 
from the configuration C t. The initial undeformed body may have a pre-existing damage 
state. The initial fictitious effective configuration denoted by C ~ is defined by removing 
the initial damage from the initial undeformed configuration of the body. In the case of 
no initial damage existing in the undeformed body, the initial fictitious effective configu- 
ration is identical to the initial undeformed configuration. Cartesian tensors are used in 
this work and the tensorial index notation is employed in all equations. The tensors used 
in the text are denoted by boldface letters. However, superscripts in the notation do not 
indicate tensorial index but merely stand for corresponding deformation configurations 
such as "e" for elastic, "p" for plastic, and "d" for damage etc. The barred and tilded 
notations refer to the fictitious effective configurations. 

Description of Damage State 

The damage state can be described using an even order tensor (Leckie [5], Onat [11] 
and Betten [1]). Ju [4] pointed out that even for isotropic damage one should employ a 
damage tensor(not a scalar damage variable) to characterize the state of damage in mate- 
rials. However, the damage generally is anisotropic due to the external agency condition 
or the material nature itself. Although the fourth-order damage tensor can be used di- 
rectly as a linear transformation tensor to define the effective stress tensor, it is not easy 
to characterize physically the fourth-order damage tensor compared to the second-order 
damage tensor. In this work, the damage is considered as a symmetric second-order ten- 
sor. However, damage tensor for the finite elasto-plastic deformation can be defined in 
two reference systems [9]. The first one is the damage tensor denoted by ~b representing 
the damage state with respect to the current damaged configuration, C t. Another one is 
denoted by ~ and is representing the damage state with respect to the elastically unloaded 
damage configuration, Cap. Both are given by Murakami [8] as follows 

3 

r -- ~ ' k  , ~ 5k~kj (no s u m  in k) (1) 
k - 1  
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and 
3 

~Pij = E^~mi^k^kmj (no s u m  in  k) (2) 
k = l  

where fik and rh k are eigenvectors corresponding to the eigenvalues, Ck and ~k, of the 
damage tensors, ~ and ~o, respectively. 

3 Fourth-Order  A n i s o t r o p i c  D a m a g e  Effect Tensor  

In a general state of deformation and damage, the effective stress tensor d is related 
to the Cauchy stress tensor a by the following linear transformation (Murakani and Ohno [10]) 

aij = Mikj~ak~ (3) 

where M is a fourth-order linear transformation operator called the damage effect tensor. 
Depending on the form used for M, it is very clear from equation (3) that the effective 
stress tensor ~ is generally nonsymmetric. Using a non-symmetric effective stress tensor 
as given by equation (3) to formulate a constitutive model will result in the introduction of 
the Cosserat and a micropolar continua. However, the use of such complicated mechanics 
can be easily avoided if the proper fourth-order linear transformation tensor is formulated 
in order to symmetrize the effective stress tensor. Such a linear transformation tensor 
called the damage effect tensor is obtained in the literature [6, 13] using symmetrization 
methods. One of the symmetrization methods given by Cordebois and Sidoroff [2] and 
Lee et al. [6] is expressed as follows 

~ j  = ( ~  - r  Cj~)-~/~ (4) 

The fourth-order damage effect tensors corresponding to equations (4) is defined such 
that 

Mikj, -- (Sik -- r r (5) 

4 The  K i n e m a t i c s  of  D a m a g e  for E las to -P las t i c  Be-  
havior wi th  Fini te  Strains  

4.1  A M u l t i p l i c a t i v e  Decomposition 
A schematic drawing representing the kinematics of elasto-plastic damage deforma- 

tion is shown in Figure 1. C ~ is the initial undeformed configuration of the body which 
may have an initial damage in the material. 
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Figure 1" Schematic representation of elasto-plastic damage deformation configuration 

C t represents the current elasto-plastically deformed and damaged configuration 
of tile body. The configuration C ~ represents tile initial configuration of tile body that 
is obtained by fictitiously removing the initial damage from the C ~ configuration. If tile 
initial configuration is undamaged consequently there is no difference between configura- 
tions C ~ and C ~ Configuration (~t is obtained by fictitiously removing tile damage from 
configuration C t. Configuration C dp is an intermediate configuration upon elastic unload- 
ing. In the most general case of large deformation processes, damage may be involved 
due to void and microcrack development because of external agencies. Although damage 
in the microlevel is a material discontinuity, damage can be considered as an irreversible 
deformation process in the framework of Continuum Damage Mechanics. Furthermore, 
one assumes that upon unloading from the elasto-palstic damage state, tile elastic part 
of the deformation can be completely recovered while no additional plastic deformation 
and damage takes place. Thus upon unloading the elasto-plastic damage deformed body 
from the current configuration C t will elastically unload to an intermediate stress free 
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configuration denoted by C dp as shown in Fig 1. Although the damage process is an 
irreversible deformation thermodynamically, however, deformation due to damage itself 
can be partially or completely recovered upon unloading due to closure of micro-cracks or 
contraction of micro-voids. Nevertheless, recovery of damage deformation does not mean 
the healing of damage. No naterials are brittle or ductile. The deformation gradient 
tensor and the Green deformation tensor of the elasto-plastic damage deformation can be 
obtained through Path I, Path II or Path III as shown in Figure 1. Considering Path I 
the deformation gradient referred to the undeformed configuration, C ~ is denoted by F 
and is polarly decomposed into the elastic deformation gradient denoted by F e and the 
damage-plastic deformation gradient denoted by F dp such that 

F,j = r (6) 

The elastic deformation gradient is given by 

Oxi 

The corresponding damage-plastic deformation gradient is given by 

OX~ 

The Right Cauchy Green deformation tensor, C, is given by 

wdp we w e  dp qJ = -~k- ~ - . ~ F ~  (9) 

The finite deformation damage models by Ju [3] and Zbib [17] emphasize that "added 
flexibility" due to the existence of microcracks or microvoids is already embedded in the 
deformation gradient implicity. Murakami [9] presented the kinematics of damage defor- 
mation using the second-order damage tensor. However, the lack of an explicit formula- 
tion for the kinematics of finite deformation with damage leads to the failure in obtaining 
an explicit derivation of the kinematics that directly consider the damage deformation. 
Although most finite strain elasto-plastic deformation processes involve damage such as 
micro-voids, nucleations and micro-crack development due to external agencies, however, 
only the elastic and plastic deformation processes are cosidered kinematically due to the 
complexity in the involvement of damage deformation. In this work, the kinematics of 
damage will be explicitely characterized based on continuum damage mechanics. The 
elastic deformation gradient corresponds to elastic stretching and rigid body rotations 
due to both internal and external constraints. The plastic deformation gradient is arising 
from purely irreversible processes due to dislocations in the material. Damage may be 
initiated and evolves in both the elastic and plastic deformation processes. Particularly, 
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damage in the elastic deformation state is termed elastic damage which is the case for most 
brittle materials while damage in the plastic deformation state is termed plastic damage 
which is mainly for ductile materials. Additional deformation due to damage consists of 
damage itself with additional deformation due to elastic and plastic deformation. This 
causes loss of elastic and plastic stiffness. In this work, kinematics of damage deformation 
is completely described for both damage and the coupling of damage with elasto-plastic 
deformation. The total Lagrangian strain tensor is expressed as follows 

s ---- -~I (":;'ap~aP~,- ki "~ kj -- 6ij) -+- 1Fd~(F~mF~n2 -- Smn)" F-dPnj 

d p e  dp 
= E~.r'+F~i-CmnFnj 

ed ,  e = + $1j (10) 

where s and s are the Lagrangian damage-plastic strain tensor and the Lagrangian 
elastic strain tensor measured with respect to the reference configuration C ~ , respectively. 
While 6 e is the Lagrangian elastic strain tensor measured with respect to the intermediate 
configuration C dp. Similiarly, the Eulerian strains corresponding to deformation gradients 
F e and f dp are given by 

dp l ( 5 i j _ F d p - '  dp-' % = ) (11) 

The total Eulerian strain tensor can be expressed as follows 

eij = e i j+F~7 '  
e dp 

= eij + eij 

(12) 

The strain e dr' is refered to the intermediate configuration C dr', while the strains e, e e, 
and e @ are defined relative to the current configuration as a reference. The relationship 
between the Lagrangian and Eulerian strains is obtained directly in the form 

Eij = Fkiek~F~j (14) 

The kinematics of finite strain elasto-plastic deformation including damage is completely 
described in Path I. In order to describe the kinematics of damage and plastic deformation, 
the deformation gradient given by equation (6) may be further decomposed into 

Fij me md F p = " ik" km ,~j (15) 
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However, it is very difficult to characterize physically only the kinematics of deformation 
due to damage inspite of its obvious physical phenomena. The damage, however, may be 
defined through the effective stress concept. Similarly the kinematics of damage can be 
described using the effective kinematic configuration. Considering Path II the deformation 
gradient can be alternatively expressed as follows 

F/ j  ]~d ~e ~p ~do (16) 
- ~  ~.- ik~.  k r n X  r n n ~ . n j  

where ~ is the fictitious damage deformation gradient from configuration (~t to C t and 
is given by 

p ~  = Oxi 
0zj (17) 

The elastic deformation gradient in the effective configuration is given by 

0Z~ (18) 

The corresponding plastic deformation gradient in the effective configuration is given by 

0Jfj (19) 

while the fictitious initial damage deformation gradient from configuration C ~ to C ~ is 
given by 

= o x ,  
oxj (20) 

Similar to Path I, the Right Cauchy Green deformation tensor, C, is given by 

~do ]~p ]~e - d  -d  -e  -p  = f ~ F ~  (21) Cij .. mk.. kp~ ,qFq, F~,, ~;~o 

The Lagrangian damage strain tensor measured with respect to the fictious configuration 
(~t is given by 

Q=~ = 1 -d -d -~(F~iF~i - 5,j) (22) 

and the corresponding Lagrangian effective elastic strain tensor measured with respect to 
the fictious configuration CP is given by 

--e --e 

~iij = -~ ( F~iF~j - 5ij) (23) 
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The Lagrangian effective plastic strain tensor measured with respect to the fictious un- 
_ 

damaged initial configuration C ~ is given by 

(24) 

The total Lagrangian strain tensor is therefore expressed as follows 

1 - d o  - do 1 -do 5 ~/~do 1 
- 5 r s )F~mFmj  - - - (F]~m mnj  nj -~ F~n - + F~ i F~rn ( ~'qer Fqes - gij  2 (F~i F~j (fij) + -~ F ~ i  -p  -p  - do -p -p  - do 

l p d ? p p  - d  - d  - e  - p  - d o  + - ~ - w , - , ~ , o - e  (Fq,.Fq: (25) 

The Lagrangian initial damage strain tensor measured with respect to the reference con- 
figuration C ~ is denoted by 

E-~ o = l r ~ d o ~ . o  ~" ki" kj - 5ij) (26) 

The Lagraxlgian plastic strain tensor measured with respect to the reference configuration 
C ~ is denoted by 

~ p  _ _  - d o  = p  - d o  
F~i ekmF,~ j (27) 

One now defines the Lagrangian elastic strain tensor measured with respect to the refer- 
ence configuration C ~ as follows 

E-,~ -~o = F,~, P ~ k ~ . ~ ' ~ F ~  ~ (28) 

and the corresponding Lagrangian damage strain tensor measured with respect to the 
reference configuration C ~ is given by 

t ~  /~do. ~,p ~ ~ ~ ~p ~,do (29) 
- -  - w z -  w n ~ n k G k m ~ m r ~ r s X  s j  

The total Lagrangian strain is now given as follows through the additive decomposition 
of the corresponding strains 

E,j = E-,? + g~ + ~ + E-,~ (30) 

Finaly Path III gives the deformation gradient as follows 

~kd kp ~do (31) Fij -- F~t tm m n " n j  
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where ~,d is the fictious damage deformation gradient from configuration (~P to C dp and 
is given by 

0 ~  (32) 

and the corresponding plastic deformation gradient in the effective configuration is given 
by 

0)(j (33) 

Similar to Path II, the Right Cauchy Green deformation tensor C is given by 

~do ~p ~d Fe Fe ]~d ~p pdo (34) 
C i j  = ~ m k ~ k p ~ p q  - q i -  r a n -  n r -  r s -  s j  

The Lagrangian damage strain tensor measured with respect to the fictitious intermediate 
configuration (~P is given by 

1 -d -d eij = -~ ( F~i F~j - 5ij ) (35) 

The total Lagrangian strain tensor is expressed as follows 

1-( rzd~ fzd~ -- 5ij) + -~F=,(Ft,~Fi: n ,.m,~j ,~j + -~F2i F~,~(Fd,.Fdq~ 5,.~)pp pdo. ~ij • 2 ~' ki " kj 1 - d o  ~ p  ~ p  _ ,~ ~ ~ . d o  1 - d o  ~ p  ~ - -  - s i n -  m3 

1 - d o ~ . p  - d e e ~ d - p  
- )F;mFinkF~j (36) +-~ F~,~ ,~=F~.,~ ( FqrFq~ Jr~ - d o  

The Lagrangian damage strain tensor measured with respect to the reference configuration 
C ~ is denoted by 

gidj V~?do~p g d  ~ p  ~?do (37) 
--" ~ k i  ~ m k  ~ m n L  nqL q j  

The Lagrangian elastic strain tensor measured with respect to the reference configuration 
C ~ is denoted by 

] 0 d o  ~ P  ]~'~d e ~ d ~ p - d o  s  = " u " k," ,~kem,~F,~qFqrF;j (38) 

The corresponding total Lagrangian strain is now given by 

a j  : t,~ ~ +g~  + t ~ + s  (39) 

The total Lagrangian strain tensors obtained by considering the three paths are given by 
equations (10), (30) and (39). From the equivalency of these total strains, one obtains 
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the explicit presentations of the kinematics of damage as follows. With the assumption 
of the equivalence between the elastic strain tensors given by equations (10) and (39), 
the damage-plastic deformation gradient given by (8) and the Lagrangian damage plastic 
strain tensor can be expressed as follows 

and 

= (40 )  

Furthermore one obtains the following expression from equations (30) and (39) as follows 

= (42 )  

which concludes that CP and CP are the same. Substituting equations (29), (37) and (38) 
into equation (42), one obtains the effective Lagrangian elastic strain tensor as follows 

- /~- ,do/~p _~d ~-~e _-=d ~-~d e Z-~d - p  - d o  
E ~  = " k , "  mk[emn - p,e + ]F~sF;  j (43) l*qmeqr l*qmeqrl~rn 

Using equations (28) and (43) one can now express ~ as follows 

This expression gives a general relation of the effective elastic strain for finite strains of 
elasto-plasic damage deformation. For the special case when one assumes that 

-~ -/~,~,~.P~ = 0 (45) Qj 

equation (44) can be reduced to the following expression 

~d e ~d (46) eij - -  t,~iekll-,lj 

This relation is similar to that obtained without the consideration of the kinematics of 
damage and only utilizing the hypothesis of elastic energy equivalence. However, equa- 
tion (46) for the case of finite strains is given by relation (44) which cannot be obtained 
through the hypothesis of elastic energy equivalence. Equation (45) maybe valid only for 
some special cases of the small strain theory. 

4.2 F ic t i t ious  D a m a g e  D e f o r m a t i o n  G r a d i e n t s  

The two fictitious deformation gradients given by equations (17) and (32) may 
be used to define the damage tensor in order to describe the damage behavior of solids. 
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Since the fictitious effective deformed cofiguration denoted by ~,t is obtained by removing 
the damages from the real deformed configuration denoted by C t, therefore the differ- 
ential volume of the fictitious effective deformed volumes denoted by d~ t is obtained as 
follows [12] 

dr2 t : df'l t _ d f l  a 

= r  - r - r - r d f t t  (47) 

o r  

d ~ t  = j d d ~ t  (48) 

where f~t is the volume of damage in the configuration C t and jd is termed the Jacobian 
of the damage deformation which is the determinant of the fictitious damage deformation 
gradient. Thus the Jacobian of the damage deformation can be written as follows 

1 
/ 

~ / ( 1  - r  - r  - ~) 

The determinant of the matrix [a ] in  equation (??) is given by 

] [a ] [  = [[b]TI I[fi]l  I [b] l  

(49) 

= I [ ~ ] 1  

1 
= (50) 

V/~- ~)(I- ~)(1 -~) 
Thus one assumes the following relation without loss of generality 

p~ = [ ~  - r189 (51) 

Although the identity is established between jd and lal, however, this is not sufficient 
to demonstrate the validity of equation (51). This relation is assumed here based on 
the physics of the geometrically symmetrized effective stress concept [12]. Similiarly, the 

fictitious damage deformation gradient l ~'d can be written as follows 

p~ = [~,j - ~,j]- �89 (52) 
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Finally, assuming that 2 = 5: based on equation (42) the relations between ~d and i ~d, 
and ~ and ~b are given by 

~ d  _. ~-~e ]~d l~e-I 
�9 k~- kt-  ~j ( 5 3 )  

and 

e e - 1  
~ , j  = F~iCk~Fi. ~ (54) 

I r r e v e r s i b l e  T h e r m o d y n a m i c s  

The finite elasto-plastic deformation behavior with damage can be viewed within the 
framework of thermodynamics with internal state variables. The Helmholtz free energy 
per unit mass in an isothermal deformation process at the current state of the deformation 
and material damage is assumed as follows: 

= r + T (55) 

where r is the strain energy which is a purely reversible stored energy, while T is the 
energy associated with specific microstructura] changes produced by damage and plastic 
yielding. Conceptionally, the energy T is assumed to be an irreversible energy. In genera]l, 
an explicit presentation of the energy T and its rate T is limited by the complexities of the 
internal microstructura] changes, however, only two internal variables which are associated 
with damage and plastic hardening, respectively are considered in this work. For the sake 
of a schematic description of the above stated concepts, the uniaxial stress-strain curves 
shown in Figure 2 are used. In Figure 2, /~ is the initial undamaged Young's modulus, 
E is the damaged Young's modulus, S is the second Piola Kirchhoff stress, and $ is the 
Lagrangian strain. Eventhough these notations are for the case of uniaxial state, they 
can be used in indicia] tensor notation in the equations below without loss of generality. 
Refering to the solid curve in Figure 2, the total Lagrangian strain tensor E is given by 

(56) 

where s is the plastic strain tensor, s is the elastic strain tensor, and s is the additional 
strain tensor due to damage. Comparing equations (10) and (56) one notes that 

= + (57) 

Furthermore the additional strain tensor due to damage can be decomposed as follows 

d I -d t! 
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Figure 2: Schematic representation of elasto-plastic damage strain increments in the case 
of a uniaxial stress-strain curve 

Furthermore the additional strain tensor due to damage can be decomposed as follows 

-dl! 

where ~d" is the irrecoverable damage strain tensor due to lack of closure of the micro- 
cracks and microvoids during unloading, while $d' is the elastic damage strain due to 
reduction of the elastic stiffness tensor, tensor,E E due to unloading can be obtained by 

d' Ei~ = E5 + E~j (59) 



58 

The srain energy r which is shown as the shaded triangular area in Figure 2 is assumed 
as follows 

1 ~.EE c.F, r = ~ j  ~ j ~  (60) 

where p is the specific density. Furthermore this strain energy can be decomposed into 
the elastic strain energy Ce and the damage strain energy r as follows 

r ___ C e + r  (61) 

The elastic strain energy, Ce is given by 

1 
r = ~ E~j~E~ (62) J 

and the corresponding damage strain energy Cd is given by 

Cd 1 c, E E  ~,E 1 e - e - ~p'.',j , jk , ' - 'k , -  ~ps163 (63) 

where E and E are the initial undamaged elastic stiffness and the damaged elastic stiffness, 
respectively. These stiffnesses are defined such that 

02r 
E,j~, = (64) OE~OE~, 

and 

Ei~kl = E ~ (65) 
0Eij 0Ek~ 

The damaged elastic stifness in the case of finite deformation is given by Park az~d Voyi- 
adjis [12] as follows 

where 

Ei jrs  --  N ik j lSk lpqNprqs  (66) 

The elastic damage stiffness given by equation (66) is symmetric. This is in line with the 
classic sense of continnum mechanics which is violated by using the hypothesis of strain 

= a~laj~ 1 (67) 
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equivalence. Using the similar relation between the Lagrangian and the Eulerian strain 
tensors given by equation (14), the corresponding strain energy given by equation(60) can 

E r = 1, .f,. r.jE jktF kF, t , .  
zp  

1 E  A E 
--" ~ E m n  m n r  s Ors zp 

be written as follows 

(68) 

where •E is the Eulerian strain corresponding to the Lagrangian strain shown in equa- 

(69) 

tion (59), and A is termed the Eulerian elastic stiffness which is given by 

Amn,.8 = F, mF.jEijklF, .kF~t 

The second Piola-Kirchhoff stress tensor, ~ is defined as follows 

ar 

= PoEb (70) 

The second Piola-Kirchhoff stress tensor, ,ff is related to the Cauchy stress tensor, er by 
the following relation 

Sij - J F i k t a k m F j m  (71) 

The Kirchhoff stress tensor T is related to the Cauchy stress tensor by 

~ j  -- Ja i j  (72) 

The rate of the Helmholtz free energy is then given as follows 

- r -+- ~/" (73) 

If the deformation process is assumed to be isothermal with negligible temperature non- 
uniformoties, the rate of the Helmholtz free energy can be written using the first law of 
thermodynamics (balance of energy) as follows. 

= T~jT)ij - Tr/ (74) 

where T is the temperature and 77 is the irreversible entropy production rate. The product 
Tr/ represents the energy dissipation rate associated with both the damage and plastic 
deformation processes. The energy of the dissipation rate is given as follows 

Trl = S,j~i~" + S, jE;~ - "r (75) 
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The first two terms on the right-hand side of equation (75) represent a macroscopicaJly 
non-recoverable rate of work expanded on damage and plastic processes, respectively. 
Furthermore the rate of the additional strain tensor due to damage is given by 

�9 - d "  ' d' E~ = /f~j +s  (76) 

If we assume that a fraction of the additional strain tensor can be recoverd during unload- 
ing, then the elastic damage tensor due to the reduction of the elastic stiffness is given 
by 

�9 dl g~j = Cgkaj (77) 

where c is a fraction which ranges from 0 to 1. Then the permenant damage strain due 
to lack of closure of micro-cracks and micro-cavities is given by 

~d" j = (1--c)gdj (78) 

Thus the energy of the dissipation rate given by equation (74) can be written as follows 

Tr/ = (1 - c)SijE~ + Sijg~ - 4F 

= (1 - ~ ) % v , ~  + < j v 5  - ~c (79) 

The rate of energy associated with a specific microstructural change due to both the 
damage and the plastic processes can be decomposed as follows 

where one defines that 

and 

(80) 

pg~a = Yijr (81) 

P'~P = Ao&ij (82) 

where Y and j t  are the general forces conjugated by damage and plastic yielding, respec- 
tively. They are defined as follows 

0q~ 
Y~J = P0r 

0r  ~d 0T 
= p - ~ - =  + p (83) 

0r 

0if1 
Ao = poao (84) 

In view of equation (79) one notes that it is equivalent to the work by Lubarda and 
1 Krajcinovic [7] when ( 1 -  c ) =  ~. 
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6 C o n s t i t u t i v e  E q u a t i o n  for F in i te  E l a s t o - P l a s t i c  De-  
format ion  wi th  D a m a g e  B e h a v i o r  

The kinematics and the thermodynamics discussed in the previous sections pro- 
vide the basis for a finite deformation damage elasto-plasticity. In this section the basic 
structure of the constitutive equations are reviewed based on the generalized Hooke's law, 
originally obtained for small elastic strains such that the second Piola-Kirchoff stress ten- 
sor S is the gradient of free energy �9 with respect to the Lagrangian elastic strain tensor 
s given by equation (70). Referring to Figure 2 one obtains the following relation when 
generalized to the three dimensional state of stress and strain 

Si j  = Eijk , (Ek,  - E~, -- E~,) (148a) 
-- e = EijklC~l (148b) 

= Eijk,(C~, + s (148c) 

- E i j k , ( E k , -  s s  (148d) (85) 

From the incremental analysis one obtains the following rate form of the constitutive 
equation by differentiating equation (148a) 

& j  = ~, , j~ , (&,  - t ; ,  - t 2 , )  (86) 
Consiquently the constitutive equation of the elasto-pastic damage behavior can be writ- 
ten as follows 

S i j  D P  " = E~kjts 

where E DP is the damage elasto-plastic stifness and is expressed as follows 

EijDkP~ = E, i k j , -  E ~ k j , -  E~djt 

(87) 

(88) 

where E p is the plastic stiffness and E d is the damage stiffness. Both E p and E d are 
the reduction in stiffness due to the plastic and damage deteriorations, respectively. The 
plastic stiffness and the damage stiffness can be obtaind by using the flow rule and damage 
evolution law, respectively. By assuming that the reference state coincides with the current 
configuration, the second Piola-Kirchoff stress rate, S can be replaced by the corotationaJ 
rate of the Cauchy stress tensor a and the rate of Lagrangian strain tensor E by the 
deformation rate ~ as follows 

D P  aij  -- E~jklZ)kt (89) 

The corotational rate of the Cauchy stress tensor, a is related to the rate of the rate of 
the Cauchy stress tensor, dr as follows 

(9o) 
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where 

W *  = W -  W p -  W a (91) 

The details of the complete constitutive models using the proposed kinematics and the 
evolution laws of damage will be stated in the forthcoming paper. 

7 C O N C L U S I O N  

The fourth-order anisotropic damage effect tensor, M, using the kinematic mea- 
sure for damage expressed through the second-order damage tensor qb, is reviewed here in 
reference to the symmetrization of the effective stress tensor. This introduces a distinct 
kinematic measure of damage which is complimentary to the deformation kinematic mea- 
sure of strain. A thermodynamically consistent evolution equation for the damage tensor, 
~b together with a generalized thermodynamic force conjugate to the damage tensor was 
presented in the paper by Voyiadjis and Park [14, 15]. Voyiadjis and Venson [16] quanti- 
fied the physical values of the eigenvalues, q~k (k -- 1,2, 3), and the second-order damage 
tensor, ~b, for the unidirectional fibrous composite by measuring the crack densities with 
the assumption that one of the eigen-directions of the damage tensor coincides with the 
fiber direction. 

The fourth-order anisotropic damage effect tensor used here is obtained through 
the geometrical symmetrization of the effective stress [2]. This tensor is used here for the 
kinematic description of damage. The explicit representation of the fourth-order dam- 
age effect tensor is obtained with reference to the principal damage direction coordinate 
system. 

The damage elasto-plastic deformation for finite strain is also described here using 
the kinematics of damage. In this work the multiplicative decomposition of the defor- 
mation gradient and the additive decomposition of the Lagrangian strain tensor are used 
in order to describe the kinematics of damage. Both formulations are used to deduce 
seperately the strain due to damage and the coupled elasto-plastic, elastic-damage and 
plastic-damage strains. 

The thermodynamic formulation introduces seperately the strain due to damage 
and the associated dissipation energy due to this strain as shown by equations(63). In 
the previous work by Voyiadjis and Park [14] this term was ignored due to the lack of the 
formulation of the kinematics of strain due to damage. A new free energy is presented 
in this work for finite elasto-plastic deformation with damage. Using this free energy the 
generalized thermodynamic force associated with the second-order damage tensor can be 
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derived. Using the consistent thermodynamic formulation one introduces seperately the 
strain due to damage and the associated dissipation energy due to this strain. 

Both constitutive relations between the rate of the second Piola-Kirchhoff stress 
tensor and the Lagrangian strain rate, and between the corotational rate of the Cauchy 
stress and the deformation rate axe established for the elasto-plastic model with damage. 
The resulting tangential elasto-plastic damage stiffness is obtained in the form of an 
additive decomposition of the respective elastic, plastic and damage stiffnesses. 
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1. I N T R O D U C T I O N  

Spatial randomness, as opposed to periodic geometries, may have a significant effect on 
damage formation in composite materials. This issue was studied extensively over the last few 
years [1, 2, 3, 4], and in this paper we report new results on effects of scale and boundary 
conditions in the determination of meso-scale continuum-type models for elasticity and 
fracture. These models are formulated on scales larger than the single inclusion, yet smaller 
than the conventional continuum limit. The latter corresponds to the classical concept of a 
Representative Volume Element (RVE) which presupposes the presence of a statistical 
representation of the microstructure with all the typical microheterogeneities, and thus calls for 
relatively large volumes. Indeed, according to Hill [5], an RVE should be such that the relations 
between volume average stress and strain should be the same regardless of whether kinematic or 
stress boundary conditions have been used. 

In our previous papers [2, 3, 4], we have developed a classification of damage states and 
patterns as well as a characterization of their statistical scatter as a function of the spatial 
resolution scale. This involves two parameters - stiffness ratio and strain-to-failure ratio of 
both phases - which define a damage plane onto which various aspects of systems's response 
are being mapped, thereby resulting in so-called damage maps. However, a comprehensive 
study of damage micromechanics requires an understanding of the influence of type of loading 
applied through the specimen boundaries on its effective response. Motivated by the earlier 
results on elasticity of undamaged random materials [6, 7], in this paper we investigate this 
aspect in the context of the out-of-plane elastic and elastic-brittle response of matrix-inclusion 
composites with randomly distributed inclusions. That is, we define several types of boundary 
conditions and study a range of different responses that may result. The analysis is based on a 
representation of the composite by a very fine two-dimensional spring network, whereby 
damage evolution is simulated by sequentially removing/breaking bonds in accordance with the 
local state of stress/strain concentrations. 
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2. TYPES OF BOUNDARY CONDITIONS AND CONSEQUENCES FOR ELASTIC 
MODULI 

The heterogeneity of many composite materials - i.e., their piecewise continuous nature - 
is a primary motivation for introducing an effective continuum approximation. The latter is 
typically set up on macroscales, that is, scales which are mathematically infinite compared to the 
dimension of a single inclusion (grain). While this is sufficient in many situations where 
interest is only in the fields of stress, strain and displacement which vary slowly relative to the 
microscale, there is a number of cases where a resolution at intermediate, so-called meso-scales 

is necessary. The concept of a meso-sca le  5 = L / d  is defined in the Fig. la) below with the 
help of a w i n d o w  of size L relative to the inclusion diameter d. 

�9 e~ 

Figure 1. Two windows of the same scale 8, showing (a) a disordered microstructure, 
(b) a disordered microstructure with periodicity L; (c) shows a periodic unit cell. 

This window concept [6, 7] allows the formulation of effective constitutive relations on a 
given scale 8, and immediately raises the question of the choice of boundary conditions which 
should thereby be involved. As we have showed in our preceding papers [6, 7], essential [8] 
(also called displacement, or Dirichlet) 

u ( x )  = ~.  x Vx e ~B u (1) 

and natural [8] (also called traction, or Neumann) 

t ( x )  = ~ .  x V x  E ~ B  t (2) 

conditions play a fundamental role here. Here, ~: is a prescribed volume (area) average strain, and 
is a prescribed volume (area) average stress. Adoption of these boundary conditions leads to a 

hierarchy  o f  s c a l e - d e p e n d e n t  bounds  on the macroscopic effective tensor C 'efT , that is [9] 

c R - ( s R )  -~ - < S l )  -~ <- < sns,) -~ < < sn~> -~ < C e:: < < ces) <- ( ces,> < ( C l )  - c v 'v'8' < 8 

(3) 



67 

e n 
In the above, C~5 and S~ stand for effective stiffness and compliance tensors on the scale 8, 

which were obtained under essential and natural conditions, respectively. It was shown in [10] 
that a material's response under any uniform boundary conditions of mixed type, at any scale 8, 
is bounded by (3). 

Another viewpoint on this issue is provided by a consideration of finite scale periodicity in 
the microstructure. Thus, if L represents a periodic length scale, we are led to Fig. lb). With a 
periodic microstructure there comes naturally a periodic boundary condition 

u(x + 6) = u(x) + ~..x 

t ( x + L )  = - t (x )  
V x  E r p (4) 

where ~ is a prescribed constant strain. The advantage of this approach lies in (i) the removal of 

a boundary effect, and (ii) prediction of responses closer to C eff than those resulting from (1) 
and (2) at any fixed 8. The second advantage implies a faster approach to homogenization than 
that resulting from either (1) or (2). It is important to note that the periodic unit cell of Fig. l c) 
is a special case of Fig. l b); it represents a classical concept employed in a large portion of 
recent and ongoing work in micromechanics of elasticity, plasticity and damage. 

A specimen's response on the mesoscale (8 finite) is, in general, anisotropic. We therefore 
employ the radius R 

J R ~ C12 ' max -" ( C l l  - C22 ) 2 / 4  + C12 (5) 

of the corresponding Mohr's circle to quantify a given elasticity tensor, while the trace t rC~-  

C ii/2 is used to describe this tensor's fundamental magnitude. 

In Fig. 2a) we show the hierarchy (3) in terms of the trace of the effective stiffness tensors 
for a matrix-inclusion composite with locally isotropic constituents having inclusions that are 10 
times softer. This is the case of a 35% volume fraction of inclusions, with the stiffness of 

inclusions being C (i) = 0.1, and that of the matrix being C (m) = 1. In Fig. 2b) we display the 
radii R of the corresponding Mohr's circle for three boundary conditions 'dd,' 'tt' and 'dt' listed 
below. As expected, very large windows need to be taken in order to homogenize the material; 
this situation gets worse as contrast increases [7]. Thus, a question arises as to a possibility of 

finding some other boundary conditions that might more rapidly lead to the response C eff at 
much smaller scales than say 8 = 48 in Fig. 2b). In fact, usual laboratory testing procedures 
typically employ mixed boundary conditions, where the displacement is being applied in, say, y- 
direction, while surface tractions are zero in the x-direction. 

The above considerations lead us to several different conditions shown in Fig. 3. In 
particular, we have here: 

a) displacement (dd) 
b) traction (tt) 
c) mixed: displacement-traction (dt) 
d) displacement-periodic (dp) 
e) traction-periodic (tp). 
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Figure 2a) A hierarchy of scale dependent bounds, normalized by C (m) = 1, of stiffnesses of 

the disk-matrix composite of Fig. la) at the stiffness c o n t r a s t  c ( i ) / c  (m) = 0 . l "  b)  Radii of 
the corresponding Mohr's circles as function of 8. 
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Figure 3. Five types of boundary conditions: (a) displacement, (b) traction, 
c) mixed (displacement-traction), d) displacement-periodic, e) traction-periodic. 
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In Figs. 4, 5, and 6 we present the histograms and probability fits to trC a and R as functions 

of the window size 5 for the cases of displacement, traction, and mixed boundary condition for a 
matrix-inclusion composite at the stiffness contrast 0.1; of course, in the case of traction 

-1 
conditions we calculate the compliance and show ( t rSa)  in columns 'tp' and 'tt' of Table 1. 

In particular, in each of these Figures, we have five rows, each of which corresponds to 5 = 3, 6, 
12, 24, and 48. As discussed in detail in our papers [4, 7], the most convenient and best justified 
probability distribution for composite materials is the beta distribution. It is given by 

x_? a -1 x _  al -1 

f (x ;a l ,  a2, 81, ~32) = (82_  51)B(al ,  a2) (6) 

where a j ,  a 2 , 51 , and ~i 2 are adjustable parameters, and B(a], a2) = F(x )F(y ) / (F (x ,  y)) is the 

beta function. 

It is easily observed that both invariants decrease toward zero as the window size increases, 

with the traces being relatively symmetric and all the radii being very non-symmetric. Whereas 

this last observation is consistent with the fact that the radius must be a positive valued random 

variable, more insight into the matter can be gleaned from the Table 3 below. 

The Figures 4 - 6 are augmented by Tables 1 - 4 which, for five different boundary conditions 

and five different ~i's, give the following: 

Table 1: averages of traces, 

Table 2: coefficients of variation (COV) of traces, 

Table 3: averages of radii, 

Table 4: coefficients of variation (COV) of radii, 

All these data are listed in five rows - again corresponding to five window scales reported in 

the above figures. In fact, we also provide here the data obtained from the displacement-periodic 

( 'dp ')  and traction-periodic ( ' tp ' )  conditions, while the displacement, displacement-traction, and 

traction conditions are denoted by 'dd' ,  'dt,' and 'tt '. The latter were obtained for microstructures 

lacking any periodicity (Fig. l a), while the former did, of course, require a periodicity, such as 

shown in Fig. lb). However, the common characteristic of all the simulated cases was the same 

volume fraction of 35%. 

It can now be gleaned from Table 1 that 'dd' and 'tt' bound the other three sets of results, 
with 'dt' being stiffer than 'dp' ,  and this one being stiffer than 'tp'.  While Tables 2 and 3 depict 
the heuristically expected trends, an entirely new observation follows from Table 4: the COV of 

the radius R of either (Ca) or ~S~), for all the boundary conditions studied here, is 

approximately constant. The variations that are observed may probably be attributed to a 

limited number of realizations B(c0) of the random composite B that were run in the Monte 

Carlo sense. In all of the above we used 300 B (o3) 's at 8 = 3 ,200  at 8 = 6, 100 at 8 - 12, 50 at 

8 = 24, and 20 at 8 = 48. 
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Table 1: average trace 

~5=3 

~i=6 

8 =  12 

dd 

0.598 

0.596 

0.572 

dp 

0.567 

0.056 

0.561 

dt 

0.574 

0.581 

0.565 

tp 

0.476 

0.512 

0.534 

0.469 

0.523 

0.535 

8 = 24 0.568 0.559 0.564 0.546 0.549 

8 = 48 0.562 0.558 0.560 0.552 0.553 

Table 2: COV of t race 

dd dp dt tp tt 

5 = 3 0.096 0.014 0.102 0.054 0.109 
, , ,  

5 = 6 0.035 0.005 0.038 0.021 0.041 

5 = 12 0.016 0.003 0.017 0.008 0.017 

5 = 24 0.005 0.001 0.006 0.003 0.006 

5 = 48 0.002 0.0008 0.002 0.001 0.002 

Table 3: average of R 

5 = 3  

5 = 6  

5 =  12 

dd 

0.018 

0.009 

0.0049 

dp 

0.017 

0.011 

0.005 

dt 

0.033 

0.017 

0.008 

tp 

0.144 

0.058 

0.024 

0.108 

0.041 

0.019 

8 = 24 0.0023 0.003 0.004 0.012 0.002 

~5 = 48 0.0012 0.0013 0.0018 0.006 0.004 

Table 4: COV of R 

dd dp dt tp tt 

~5 = 3 0.566 0.636 0.464 0.530 0.546 

~5 = 6 0.576 0.485 0.416 0.517 0.536 

8 = 12 0.490 

8 = 24 0.6075 

8 = 4 8  0.652 

0.498 

0.511 

0.613 

0.415 

0.423 

0.611 

0.529 

0.422 

0.423 

0.541 

0.593 

0.627 
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Figure 4. The histograms and probability fits to t rC  8 (left column) and R (right column) as 

functions of the window size 8 = 3, 6, 12, 24, and 48 under displacement boundary condition 
of a matrix-inclusion composite at contrast 0.1 
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Figure 5. The histograms and probability fits to trC~ (left column) and R (right column) as 

functions of the window size 8 = 3, 6, 12, 24, and 48 under mixed (displacement-traction) 
boundary condition of a matrix-inclusion composite at contrast 0.1 
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Figure 6. The histograms and probability fits to t rS  8 (left column) and R (right column) as 

functions of the window size 8 = 3, 6, 12, 24, and 48 under traction boundary condition of a 
matrix-inclusion composite at contrast 0.1 
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3. SCALE E F F E C T S  F O R  SEVERAL BOUNDARY CONDITIONS 

3.1 The spr ing ne twork  method  
Our tool in the investigation of all these responses is a numerical simulation method based 

on a very fine two-dimensional spring network representation of the composite [ 11], whereby 
damage evolution is simulated by sequentially removing/breaking bonds in accordance with the 
local state of stress/strain concentrations. This spring network method has, in fact, been used in 
establishing the results of the previous section, i.e., just in the elastic range. In the following, we 
first describe the salient features of this approach, and then turn to a study of the damage 
responses. 

The continuum composite (the transverse plane of a fiber-matrix composite) is discretized 
using a square spring network. Thus, the stiffness tensor of a unit cell of this spring network, mod- 
eling an isotropic continuum, is given as 

k 
C l l  -" C22 = ~ C12 = C21 = 0 (7) 

where k is half the bond spring constant. In case of calculation of effective stiffnesses of 

undamaged materials at stiffness cont ras t  c ( i ) / c  (m) = 0.1 we choose the inclusion diameter, d, 
to be ten times the lattice spacing. 

This resolution, however, is not high enough to simulate damage evolution due to the 
problem of mesh dependence. Thus, we introduce a refined version of a square lattice model 
through the addition of diagonal bonds - a tetratriangular lattice; see [12] for an in-plane 
elasticity formulation. This is, in effect, a non-local spring network model since the diagonal 
bonds connect second, rather than first, nearest neighbors. Twenty spacings per inclusion for 
this diagonal bond model have been found to practically remove the mesh dependence. We 
therefore carry out the comparisons of a square lattice and a square lattice with diagonal bonds 
at this resolution of twenty spacings - this is discussed further in Section 2.2 below. 

The coordinates of inclusions' centers are generated through a Poisson point process; they are 
rounded off so as to place the disk centers on the nodes of the spring network. In order to avoid 
the problem of arbitrarily narrow necks between the inclusions, we force the disks centers to be at 

least two lattice spacings apart. Next, the spring constants of matrix and inclusion bonds (k (m) and 

k (i)) are assigned according as they fall in a given phase, while any bond straddling the circular 

matrix-inclusion boundaries has its spring constant k (b) assigned according to a series spring sys- 

tem weighted by the partial lengths (l (m) and l (i)) of the bonds that belong to the respective matrix 

and inclusion domains, that is 

~,ik(m) + lk(i)) 
l =  Ilbl = I m i i + (8) 

A solution for the displacement field u(x) over the window domain is accomplished by 
employing a conjugate gradient method [13] with respect to the total energy (sum of energies 
stored in all the spring bonds), while subject to chosen boundary conditions. The total potential 
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energy E stored in the network provides a basis for determination of the equivalent, effective 
medium, according to the relation 

Vs_ 
E = -~--e. Cs(m ) - g: (9) 

In (9) V~5 is the volume of B~i(m ) . 

The spring networks allow a possibility of simulating fracture events, such as a simultaneous 
growth of many cracks, through the removal of spring bonds according to their exceeding local 
failure criteria, while taking full account of the resulting stress redistribution throughout the lat- 
tice. In our two-phase composite two basic failure criteria are needed: failure of matrix bonds and 
failure of inclusion bonds; these are expressed in terms of the matrix (inclusion) bond strain rela- 
tive to the critical matrix (inclusion) strain 

ECm) > _(m) E(i) _(i) 
_ e c r  and _ > g-'cr (10) 

Additionally, we postulate a failure criterion of any bond straddling the circular matrix-inclu- 

sion boundaries: the critical strain is weighted by the partial lengths (I (m) and l (i)) of the bond that 
belong to the respective matrix and inclusion domains, that is 

. (m) . (i) 
b leer  l eer  + l = l/b[ = l(m) + l(i) (11) 

Ecr -- l(m) l (i) 

3 .2  E f f e c t s  o f  b o u n d a r y  c o n d i t i o n s  o n  d a m a g e  m e c h a n i c s  o f  r a n d o m  c o m p o s i t e s  

It is well known that the sensitivity of fracture and damage phenomena to material disorder 
is generally higher than that of effective elastic responses. In this section we report our ongoing 
research on the dependence of the effective meso-scale damage responses to various types of 
boundaries conditions. Two aspects are here of primary interest: the character of damage 

patterns and the effective stress-strain curves. For a composite of stiffness contrast c ( i ) / C  Cm) = 

(i)_ (m) 10, the following boundary conditions are I0 and strain-to-failure contrast E c r / E c r  = 

investigated: 
on a square lattice: 
- displacement 
- traction 
- mixed (displacement-traction) 
- displacement-periodic 
- traction-periodic 
- periodic-periodic 
and on a square lattice with diagonal bonds: 
- displacement. 
First of all, we note that, for the chosen case of material parameters, cracks form outside the 
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inclusions, although fracture is concentrated in their vicinity due to the stress and strain 
concentrations there. It is observed from Fig. 7 that the damage patterns strongly depend on the 
choice of the boundary conditions. Additionally, as shown in Fig. 8, the effective stress-strain 
curves are very sensitive to this choice too. Clearly, the displacement conditions add stiffness 
and, in a sense, structural integrity to the material, but, as they change to mixed (displacement- 
traction) or entirely traction conditions, the material becomes much weaker. This is also 
explained by the fact that the load controlled fracture is unstable. 

In accordance with this observation, the effective responses of two displacement controlled 
tests, compared in Fig. 7 g) and h), are several times stiffer and stronger than the other ones 
involving tractions. Furthermore, the test corresponding to a square lattice without the diagonal 
bonds turns out to be stiffer and stronger (vide Fig. 8 b) than the one with such bonds. It is 
gratifying, however, that their damage patterns differ very little - compare Figs. 7a) and 7g). 
Thus, we may conclude that, the damage (i.e., crack) patterns of elastic-brittle composites with 
stiffer and stronger inclusions in anti-plane loading - but not their effective stress-strain curves 
- can be adequately simulated by square lattices without resort to tetratriangular ones. This and 
other related issues require further investigation in other regions of the parameter plane. 
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Figure 7. Crack patterns under (a) displacement, (b) traction, (c) mixed (essential-traction), and 
(d) displacement-periodic boundary conditions on a square lattice. 
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Figure 7-cntd. Crack patterns under (e) traction-periodic, (f) periodic-periodic conditions on a 
square lattice, and (g) displacement conditions on a lattice with diagonal bonds. 

For a comparison, (a) is repeated next to (g) as (h) 
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Figure 8. Effective stress-strain curves for all the cases of Fig. 7. The lower figure shows a 
blowup of cases other than kinematic boundary conditions. 
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Abstract 
As a result of matrix cracking in fiber reinforced composites, fracture planforms assume a 

wide variation of profiles due to the fact that fiber bridging strongly affects the behavior of local 
crack fronts. This observation raises the question on the legitimacy of commonly used penny- 
shaped crack solutions when applied to fiber reinforced composites. Accordingly, investigation of 
the effects of fracture front profiles on mechanical responses is the thrust of this paper. We start 
with the solution of a penny-shaped crack in a unidirectional, fiber reinforced composite, which 
demonstrates necessarity of considering wavy fracture fronts in fiber reinforced composites. A 
theoretical framework for fiber reinforced composites with irregular fracture fronts due to matrix 
cracking is then established via a micromechanics model. The difference between small crack- 
size matrix cracking and large crack-size matrix cracking is investigated in detail. It is shown that 
the bridging effect is insignificant when matrix crack size is small and solution of effective prop- 
erty are obtained using Mori-Tanaka's method by treating cracks and reinforcing fibers as distinct, 
but interacting phases. When the crack size becomes large, the bridging effects has to be taken 
into consideration. With bridging tractions obtained in consistency with the micromechanics solu- 
tion, and corresponding crack energy backed out, the effective properties are obtained through a 
modification of standard Mori-Tanaka's treatment of multi-phase composites. Analytical solutions 
show that the generalization of a crack density of a penny-shaped planform is insufficient in 
describing the effective responses of fiber-reinforced composites with matrix cracking. Approxi- 
mate solutions that account for the effects of the irregularity of crack planforms are given in 
closed forms for several cases, including rectangle, polygon, rhombus, cross and the wavy frac- 
ture front. 

1. Introduction 
Matrix cracking has been observed as one of the major failure modes in a fiber reinforced 

ceramic composite material. The failure normally starts from a uniform crack initiation and as 
they continue to grow under field use conditions, those cracks finally interact and coalesce to form 
a localized failure zone. One technique of monitoring the structure integrity made of these com- 
posites is to record the material repsonses in a non-destructive manner. For such applications and 
many others, the overall properties of a microcracked composite is critical for the purpose of cor- 
relating recorded data to structural integrity. Although there is an extensive body of literature 
devoted to addressing cracking induced material behavior changes in composite materials (e.g., 
Taya and Chou, 198 l, Zhao et al., 1989, Divert 1986, 1990, Huang et al., 1994a and Hu and 
Huangl993 for micromechanics treatments, and Kachanov 1985, 1987 and 1993, Hu and Chan- 
dra, 1993, Hu et al 1993a, b, Hu et al. 1994 and Chandra et al. 1995 for numerical treatments), lit- 
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tie has been done in terms of addressing the effects of fiber bridging on the overall composite 
behavior. Fiber bridging brought about complexity to a ceramic composite material in two 
aspects. First, composite behavior changes significantly during its load-carrying life span. When a 
fresh composite structure starts initiating small cracks, there is no bridging taking place since the 
crack size in this duration is normally smaller than fibers'. As the cracks continue to grow, the 
bridging extent expands to resist the crack growth. This process transfers to different stages of a 
structural life profile, which has to be known to interpret non-destructive data. Second, the crack 
growth in a fiber bridging environment is very complex and the planform of a crack, or the profile 
of fracture fronts is being strongly affected by local bridging fibers. Therefore, self-similar crack 
growth is to hardly be maintained. 

This paper presents a theoretical treatment of effective mechanical repsonses of fiber rein- 
forced ceramic composites suffering from matrix cracking with a motivation of including the 
effects of fiber bridging and the effects of irregular fracture fronts as a result of continued crack 
growth under a fiber bridging environment. In Section 2, a penny-shaped crack with fiber bridging 
is considered and the solution reveals a wavy variation of stress intensity factor and energy 
release rate along the fracture front, which will subsequently grow into a wavy fracture planform. 
Section 3 focuses on the solution of effective properties when the size of irregular planform 
cracks is small whereby bridging is insignificant. Section 4 investigated the effective properties of 
fiber reinforced ceramic composites under a bridging environment. Simplification of the results 
under approximate conditions is presented in Section 5, where the effects of irregular fracture 
fronts are investigated. A brief summary of the results are presented in Section 6. 

Figure 1. Typical distribution of fibers inside a penny-shaped crack. 

2. Growth Of Penny-shaped Cracks In Fiber Reinforced Composites 
To illustrate the necessarity of irregular fracture fronts in composite materials, a uni-direc- 

tional, fiber reinforced composite, subject to matrix cracking is considered. Assuming that a 
remote stress in fiber direction creates the matrix cracking initially in the form of a penny-shaped 
crack perpendicular to the fiber direction. The focus here is on the solution of local stress intensity 
factors along the fracture front of the penny-shaped crack subject to the remote stress. The details 
of fiber distribution inside the penny-shaped crack are to be considered since the bridging trac- 
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tions exist over only those areas where a fiber exists. Representative fiber patches inside a penny- 
shaped crack are shown in Figure 1, and bridging tractions are imposed over these fiber patches. 
The bridging tractions over each patch area are as yet unknown and may vary with the position 
inside each fiber patch. We assume that a linear bridging law exists such that the bridging traction, 
s, can be related to the crack opening displacement, u, through the following relationship: 
. -  xo  (1)  

where K is the proportionality constant. The crack opening displacement under the remote stress, 

o and bridging tractions can be written as (Fabrikant 1989, Gao and Rice 1987) 033 , 

N 

w = - tan-l(-~]lodPod~o ( p , ~ )  4 H f ~ 3 ( a 2 - p 2 )  !/2 2 H Z S S r  'r 

i= IS i 

(2) 
where si(r o, fo) represents the as yet unknown bridging traction distribution over the ith fiber 

patch, Si is the area of the ith fiber patch with radius a, the integration is carried out over all N 

patches inside the penny-shaped crack in order to account for the total crack opening contribution 
from all the bridging fiber patches, and 

+ 2 1/2 
R = I-p2 P o - 2 P O o  c~ ( * - r  ' ( 3 )  

rl= [(a2-p2)(a2-p:)]l'2 ( 4 )  

a 

H =  l - v 2  
~e (5) 

Imposing the bridging law over all the fiber patches, we have the following normalized governing 
equation: 

N 

4 - - ~ Z  .,z tan R Ra f  = ~ o j ( p , r  ( P , r  r Sj, j = 1 . . . . .  N 
i = ! S i G33 

(6) 
where x is a dimensionless configuration constant, 

~ : .~__K ( 7 )  Ha/ 
The bridging strength increases as the value of x decreases; x varies over a wide range, depending 
on the particular bridging configuration. To solve for the unknown bridging tractions, o, (po, %), we 

assume that 
M M 

o, ~po.*o) : Z ~i  ," ~-..cos-o + ~ . .~~  (8) 
nffiOmffiO 

where (r, q) are the local polar coordinates associated with the ith fiber, amn and bmn are the 

unknown coefficients, and M is the number of terms, which is truncated for the purpose of numer- 
ical efficiency. Equation (6) can then be solved by satisfying the integral equation at a sufficient 
number of collocation points. It is noted, however, that the integration becomes singular due to R 
-> 0 when S i = Sj. The integration singularity can be removed by transforming the coordinates 

(Po, %) to (P'o,'l"o) as follows: 

po,:O~,o : r162 + pco~, (9a) 

PoSin~bo = P'osinr  + ps in~b (9b) 
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In the numerical implementation, the collocation points should be evenly distributed over each 
fiber in order to secure a spatially smooth, convergent solution. Our numerical calculations show 
that very accurate bridging transactions with relative errors of less 5% can be obtained with trun- 
cation terms of M = 6 for fiber densities up to 40%. 

The normalized stress intensity factor (SIF) can be obtained in terms of bridging tractions 
following an approach by Cherepanov (1979): 

, iio,, ,o, a Ko - ~ a Z  o, ~Oo ~o~Ood, o (10) 
i= IS# 033 a -Po-2aPoCOS (r - r  

o o without the presence where r o = 2o, d~/~ is the stress intensity factor due to remote loading 033, 

of fiber bridging. The energy release rate can be readily evaluated from the SIF (Tada et al. 1985), 
1 - v  2 m G(r  = - - -~  [K(r 2 (11) 

Simplification of the solution for the fiber-bridged crack system can be achieved if the 
bridging force variation inside each fiber is insignificant such that 
ol(P0, 00) = Ot = constant (12) 
and the governing equation becomes 

N 
4 [ ( r 1 6 2  2 } ~  t .  O33s fftan-t(B]p~176176 Raf = ~oj 

(p.r ~ s ~ . j  = 1 . . . . .  N (13) 

If the area Si of each fiber is also very small compared to that of the penny-shaped crack, or a/af 

>> 1 (af is the characteristic fiber radius), the equation can be approximately satisfied by collocat- 

ing (r, f) at only one particular point inside each fiber. If the choice of that collocation points is 
made at the centers, (p~r of each fiber, along with the approximation of integrals, we obtain 

[ ( a ) 2  ( ~ ) 2 ]  ,/z ~ 
4 ~ - - X t , s - ~  = ~o~ j = 1 ..... N ( 1 4 )  

i = I 033 

where 

! U = 2~Ltan -'-~ for i . j  (15) 
ij Rij 

and 

R o = [p~+0~-2p,p~o~ (r162 '/2 for i* j  (16) 

[(aZ-P~)(aZ-PZi)]'/2 (17) 
110 = a 

and 

10 = 2I f tan- t (~R)  p~176 for i  = j  (18) 
s, 

where a coordinate transformation similar to that given in Equations (9a, b) is required to elimi- 
nate the singularity, ensuring the accurate evaluation of Iij for i = j. From Equation (14) or its par- 

ent form, Equation (6), we can identify the following three major factors that affect a bridged- 
crack system: (1) the dimensionless configuration constant, as characterized by K/Ha in the case 
of a linear bridge; (2) the fiber distribution patterns as represented by p / a  and fi; and (3) the ratio 

of crack to fiber radius. 
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The simplification presented here reduces the solution matrix to a minimum size, allowing 
closed-form solutions for certain fiber distribution patterns. For example, we consider a penny- 
shaped crack bridged by six symmetric fibers. In this case, all the fibers have equal bridging 
transactions of si/s 0 (= s2/s 0 ..... s6/so). Equation (14) becomes 

4[(a~) 2 (-~)2] I/2- (i _~ 1 ) (~1 -- (~! 
- 1,~ ~o ~o (19) 

The bridging traction can be given in the closed form as 

4 
~1 _ ( 2 0 )  t~ ~ 6 

i--1 
It is emphasized here that the simplified solution presented in this section is valid when the 

fiber radius is small compared to the penny-shaped crack's size. Our numerical results for a num- 
ber of fiber distribution patterns show that the simplified solution can yield results with an error of 
less than 15% for fiber volume fractions as much as 50%. Therefore, use of the simplified solution 
can be justified for the most commonly used fiber-reinforced composite systems. 

270.0* 

210.0" 330.0* 

180.0" 0.0" 

150.0" 30.0 ~ 

v.v 
90.0* 

Figure 2. SIF variations along the front of a penny-shaped crack. 

The effect of fiber distribution on the spatial variation of fracture front behavior now can 
be brought out. The fiber distribution may vary drastically inside a penny-shaped crack, reflecting 
the complexity of processing and the statistical nature of the location of crack nucleation. In order 
to examine the effect of fiber distribution patterns on the fracture front behavior, a typical offset- 
ting arrangements with seven fibers inside the penny-shaped crack (average fiber spacing, a / a  = 

0.9), are considered and the solution can be obtained in the closed form in a fashion similar to the 
case of six fibers. It is noted that there the variations of SIFs follows a wavy form along the frac- 
ture front (Figure 2) where the wave peaks at locations away from bridging fibers and bottoms at 
locations close to bridging fibers. In concluding this section, fiber bridging is strongly affecting 
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the local behavior and by a crack growth theory, a planform of a penny-shaped crack can not be 
maintained. This phenomenon necessitates the investigation of overall mechanical properties of 
composite materials with matrix cracking featuring irregular fracture fronts. 

3. Elastic Properties For Fiber Reinforced Composites With Small Matrix Cracks Of Irreg- 
ular Fracture Fronts 

A fiber-reinforced composite containing planar matrix cracks of small-size, S/Sf << 1, is 

investigated first (where S is the area of a typical matrix crack and Sf the area of a typical fiber 

cross section). In this case, the effect of fiber bridging on overall mechanical property is insignifi- 
cant. Therefore, the solution for a fiber-reinforced composite containing small-sized matrix cracks 
can be obtained by treating the composite as a material with two phases of inclusions, one being 
the reinforcing fibers and the other being cracks. A micromechanics approach, using Mori- 
Tanaka's average technique, will be adapted in the present study. The micromechanics analysis, 
when employed for solution of effective properties, involves two ingredients: a proper stress- 
strain definition and a geometric model accounting for phase interactions. The stress-strain rela- 
tionship for overall composite responses can be addressed by a direct approach (Benveniste 1987) 
or by an energy equivalence approach (Budiansky 1965, Huang et al. 1993). When used for 
hybrid composites with coexisting reinforcements and cracks, the energy approach has been 
proven to be advantageous since crack energy can be evaluated through the concept of an energy 
release rate (Budiansky and O'Connell 1976, Huang et al. 1993). In the following, an energy bal- 
ance framework will be utilized and adapted to the Mori-Tanaka average technique in order to 
obtain the solution for effective composite properties. 

Consider a large block of composite material comprised of reinforcing fibers in the x 3 

direction and a system of small-sized parallel matrix cracks in the direction perpendicular to the 
fibers. The fibers are assumed to be cylindrical and are randomly distributed in the x l-x: plane. 

The cracks of irregular fracture fronts are assumed to be randomly distributed in planes perpen- 
dicular to the fiber direction. The elastic modulus and Poisson's ratio of the matrix are E m and n m, 

and those of the fibers are Ef and nf. Due to the aligned distribution of fibers and cracks, the com- 

posite shows an orthotropic behavior and can be characterized by the following general stress- 
strain relation: 

,% = Cok,Ek, or % = c jk ,% (21-22) 

where Cijkl is the elastic moduli tensor of the composite material. In order to determine Cjikl or its 
= 0 inverse (tensor of elastic constants), apply a uniform stress, % %, to the surface of the block of 

composite material. The strain energy of the composite material is, from the homogenization, 
given as 

1 .~ - I  o o V 
u = ~t .ou,%% (23) 

where V is the total volume of the composite material. On the other hand, one can view the strain 
energy from each individual phase. For a composite system with inclusions and cracks, the strain 
energy can be given as (Huang et al. 1993) 

l / l+v o o v o o 



87 

§ ' - , -~7~E. )~  - ,+ ~-2~:~ ~ + ~p-~: "~" l  v 

+ L II~o,,,,,,~as (24) 
I = I  S i 

where E,~ - ~/vf ~ E,~ dV is the average fiber strain, the last term is the total crack energy under the 
Vf 

specified loading condition, S i is the area of a particular crack in the composite block, and N is the 

number of cracks in that block. The last term in Equation (24) represents the total crack energy in 
the block. By energy equivalence, we have, from Eqs. (23) and (24), 
C- I  o o 1 + v m o o vm o o 

ijkl(~ij(~kl -" ---~m (~ ij(~ ij - -~m(Y ii(Y j j  

+<, '+,+,,--77<',:,; + ~,-~v~ ~,+,,,>~- j 
N 

1 0 (25) 
i = I Si 

where S is the area of a crack surface; for the small crack size considered here, S/Sf << 1. ,, is the 

normal of the crack surface and ,, is the crack opening displacements in the composite material 

(with microcracks), subject tractions derived from ,o on crack surface. o 
Equation (25) is an exact representation of the energy equivalence between two views of 

the cracked composite: one regards the composite as an effective, homogeneous medium, and the 
other considers the details of the individual phases -- the matrix, fibers, and cracks. The major dif- 
ficulty in obtaining the effective responses of microcracked composite materials lies in accurate 
evaluation of average fiber stress and crack opening displacements. This is especially so for crack 
energy when fracture fronts become irregular and when fiber bridging is taking place for each 
individual crack. In order to overcome this difficulty in determining the effective property of the 
microcracked composites, or Cijkl, a scheme for obtaining average fiber strain, as well as the crack 

energy represented by the last term in Equations (24) and (25), has to be developed to approxi- 
mately account for interactions among the matrix, fibers, and cracks. It is this scheme for evaluat- 
ing the average fiber strain and crack energy that introduces a variety of approximations 
associated with a micromechanics model. Two schemes, the Mori-Tanaka method (e.g., Taya and 
Chou 1981; Weng 1984, 1990; Benveniste 1987) and the inclusion-matrix-composite model, also 
referred to as the generalized self-consistent method (e.g., Christensen and Lo 1979; Benveniste 
1986; Siboni and Benveniste 1991; Huang et al. 1994a, c), have gained a wide range of accep- 
tance. These two schemes are competing in some applications and complementary in others [see 
Christensen (1990), Wang and Weng (1992), and Huang et al. (1994b) for detailed discussions on 
their comparisons]. In what follows, we use the Mori-Tanaka method to evaluate the average fiber 
strain and crack energy. It is noted here that the Moil-Tanaka method is relatively simple in terms 
of providing closed-form solutions, it is unambiguous in terms of accommodating multiphase 
inclusions (as is certainly the case for the microcracked composite under consideration), and it has 
the typical features of a micromechanics model. These features will be modified as they becomes 
insufficient as the extent of fiber bridging increases (see Section 4). 

In order to implement the Mori-Tanaka method, we apply a remote stress, ~ = ~o ( a~ = o, 
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otherwise). The aligned ellipsoidal inclusions are used so that a solution for the long, cylindrical 
fibers can be derived by taking the limit of the aligned ellipsoidal axis to infinity. The average 
stresses of the matrix material in the composite system will be developed due to the remote stress 
o33 - %. The state of the average matrix stress is not necessarily coaxial with the remote stress; it 

is, however, axisymmetric and can be expressed as 13it, 1322,1333 �9 The average fiber stress can be 

characterized, by reasoning, as ( ~ , ~ , ~ ) .  One can show that the average stress in cracks, in a 

limit sense, is zero (Benveniste 1987, Zhao et al. 1989). The stress equilibrium then requires 

(l-c/) 011 + c f  ~ = o (26) 
033 ~33 (SO 

The key assumption of Mori-Tanaka's method used to contain the average fiber stress and crack 
energy was described in Chandra et al (1996). The average fiber stress and crack energy release 
can be obtained by embedding a single typical fiber and a single crack in an infinitely extended 

matrix material subject to the average matrix stress stare [o~, o~, o~'). The average fiber stresses 

( ~ , ~ . ~ )  can be related to (o,~.o:~,o~) through the solution of the single-fiber system. After 

inverting the readily derivable single-fiber solution given by Mura (1982), we have 

13,7 = m,,,m,3 ~ / (27)  

J 
where 

m,, = ~{~-v.+131~-(l +zv.)v,i i (28a) 

(28b) ml3 = ~13(v -v~) 

V m 
m31 = T-"'C-,, + 13 l vm -  (2 . vm) vii 

m33 = 13 (1 - v , v ~ )  

E m 

El(l-v],) 
Substituting Eq. (27) into Eq. (26), we have 

( 1 - c f )  m3l c f  + ( 1 - c f )  m33 0~33 130 

The solution of Eq. (29) leads to 

C m 
o o 2~ (vm-vt) 13 

{ c-E  3 0~363 = 1 c l  + + [ 3 ( l - v  i -2vmvt )  
o o ~, T 

~ I 022 
13o ~ 

- --V (vm_vt) [3 
2y 

/ 3 033 1 ~ _.~ 1 
Oo - C-m 1 -  y ) y 1 _--_--_--_--_--_--~v m + [ ~ ( l - v i - 2 v m v t )  

where 

(28c) 

(28d) 

(28e) 

(29) 

(30) 

(31) 

(32) 

(33) 
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c2 Iv ] T " -  L~I3(Vm-Vi) ~+13(Vm-2Vi-VmVi) + [ C : + C . , ~ ( I - v . , v i )  I 

x c I § 2 ~ § [3 (1 - vi-2v v,) (34) 

Now turn to evaluation of a single representative crack energy, W, 

1 - ~  .,.~ 2 f f  16(1-vZ)(_~)2A3 o (35) 
d~ c.~," S m m 

W h e r e ,  is the opening displacement of a single crack in an infinitely extended matrix material 
subject to the average matrix stress, o37, and after normalization against the square root of crack 

era" , is the dimensionless crack opening displacement, r is a dimensionless area, ~, ~o : 3<,-:>o~.a 

material constant equal to the inverse of the fight hand side of Equation (33) and finally ,o .is the 

dimensionless crack displacement averaged over the crack surface area. 

With the solution of the average fiber stresses (or strains) and the crack energy in hand, the 
governing equation (Eq. 25) for the determination of effective moduli can be implemented, giving 

+1-v~ 16 N .~ 
----t-f- ~ ~ a ~o (36) 

While Eq. (36), along with Eqs. (31)-(55), provides a complete solution for the longitudinal mod- 
ulus E 3, further simplification is possible. The final result is found to be 

3 -I 

'~16N ~_ } +(1 - V2m)~2vA w o (37) 

where G m and ~:, are the shear and in-plane bulk moduli of the matrix material and ~:: are the in- 

plane bulk moduli of the fibers. 
Following a similar spirit, the other components of the stiffness tensor, for example, the 

shear modulus in z-x plane, can be obtained by modifying Equations (26-37) with replacement of 
corresponding remote stress and Eshelby solution. Since our focus is on the the modulus most 
severely weakened by cracks, we only present the the solution to E 3. 

It should be noted that the asymmetric stiffness tensor may be resulted in when Mori- 
Tanaka's method is utilized for a composite with a multi-phase inclusions of anisotropic proper- 
ties and non-spherical or non-cylinderical shapes (Benveniste et al. 1991 and Ferrari 1991). Here 
we have followed the Mori-Tanaka Method derived by Huang et al. (1995), where a mathematical 
treatment toovercome asymmetric stiffness tensor was given. 

4. Elastic Properties For Fiber Reinforced Composites With Large-Size Matrix Cracks Of 
Irregular Fracture Fronts 

When large-size cracks develop, the fibers will bridge across the cracks and, as described 
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before, the geometric intersections of fibers and cracks will create a feature that is distinct from 
that of small-size matrix cracks. First, the bridging fibers falling inside a crack will exert a distri- 
bution of closing tractions over the area of a crack where a fiber exists. Second, the fibers inside a 
crack are not entirely immersed in the surrounding matrix material. Those fibers falling inside a 
crack will remain surrounded by the matrix material, with the exception that a free exposition of 
the fiber surface occurs along the crack opening. One important assumption of the present study is 
that the effect of the fiber exposition is neglected. This assumption can be well justified under a 
small deformation conditions where crack opening always remains small. Therefore, we can still 
consider the fibers as being entirely surrounded by matrix material. When crack opening displace- 
ments are small in comparison to fiber length, as they are for most fiber-reinforced composite sys- 
tems, the effect of fiber expositions is marginal. In order to account for the effect of fiber bridging 
on crack opening displacements, and eventually on the effective moduli, the energy equivalence 
equation should be modified. The Mori-Tanaka scheme is modified such that a typical crack sur- 
face is imposed with a distribution of closing tractions (or bridging forces). Although the average 
matrix stresses can still be evaluated following the procedures detailed in Section 3, the crack 
energy release rate will also depend on the average matrix stress and the bridging tractions. 

If one cuts the fibers along a crack plane, a pair of opposite tractions appears on the cut 
fiber sections. It is noted that these tractions are the bridging forces. Keep in mind that the bridg- 
ing tractions can be approximated as the average fiber axial stress. We further distributed these 
bridging tractions over the area of planform crack. The uniform bridging tractions obtained are 

t 1} 0o-  ~ c2+ 2 [l---'~m +l~(l -v ' -vlv ' )  (38) 

The crack energy is then found to be 
2 b/2 

s 
16( , -  v~ )(~ 3 1"~ 2 2. i_ 

3 e  -~) Oo'~ Wo (39) 

where ; is the inverse of right hand side in Equation (38). The effective longitudinal modulus can 
be obtained in a similar manner: 

= c.+ c: ~ + e(~:/r- + c/X'- + i/a + 

3 ~-~)  ~A ~0 o (40) 

The solutions given in Eqs. (39) and (40) are modifications of the standard micromechanics solu- 
tions given in Eqs. (36) and (37). This modification provides one possible avenue, based entirely 
on a micromechanics model, to account for the effect of fiber bridging. The main theme in deriv- 
ing the solution is to distribute, over cracks, the bridging tractions that are self-consistent with the 
average fiber stresses obtained by a micromechanics analysis. 

It should be noted that the modified micromechanics solution provides a self-consistent 
approach to accommodating the bridging effect within a micromechanics framework. The model, 
however, does not consist of any physical input for the development of bridging. This issue can be 
addressed in a transition model that calls for solution for cracks with bridging from discrete fibers, 
where a full bridging solution with a bridging law governing relevant mechanisms can be 
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obtained (Hu, et al 1995). Also, our analysis shows that the modified micromechanics solution has 
applicability to most SiC-reinforced ceramics within a commonly used fiber volume fraction 
range of up to 40%. There are cases (with combinations of constituent properties and high volume 

fraction) that may produce negative values of/o3"~-c/o-~) or (o,"~-c,.o-~,3). This implies that cracks 

are not opened based on the micromechanics solution. A simple approach to account for this is to 
discard the crack influence term in Eqs. (39) and (40) when cracks are not open. Other approaches 
include the consideration of fiber stress variations in the axial direction. 

5. Crack Density and Approximate Solutions For Irregular Fracture Fronts 
Crack density has been introduced for penny-shaped cracks of average radius,  by Bris- 

tow (1960) 

Na~ (41) 0=--- 9 - 
and it has been generalized for cracks with irregular planform, for example, by Budiansky and 
O'Connell (1976) 

2NA2 (42) 
P=~vp 
Remarkably, the definition for penny-shaped cracks stems directly from that fact that the crack 
opening displacements when averaged over the crack planform area becomes a constant. For 
irregular crack planforms, there is no warrant that the displacements averaged over the crack area 
will become independent of other geometric constants, which define the planform of the irregular 
crack fronts. One can always evaluate the crack opening displacements in an infinitely extended 
matrix material with only a single crack and then obtain effective properties by using Equations 
(37) and (40), thus, avoiding any error that arises from a generalization formula such as Equation 
(42). 

The effective properties of a microcracked solid expressed directly in terms of the geomet- 
ric variations of crack planforms other than a lumped parameter are desirable. Although closed 
forms of such solutions are highly unlikely, the crack energy solutions of Fabrikant (1989) under 
the condition of truncating a polynomial solution up to 4th terms can be utilized to obtain closed- 
form approximations. That simplification gives 

E--- m - Cm+C f + Em(c f / ]~m+cm/~" f+ I / G  m + 

,61, ! (43) 3 g2 J 
Where , is the crack density and reduces to the definition given in Equation (41) for penny- 
shaped cracks. 

The dependence o f ,  on the irregularity of several crack planforms is given as follows. 
(1) For a rectangle of width a and length b, ,---~ ~, 

NA 3n f e  ( 4 4 )  
P -  v i2 . / i  § ~ 

(2) For or a n-sided polygon of equal length, 
,. 

NA3/2 ~/cot(~) 
P -  V n3/2sin( ~'~ (45) 
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(3) For rhombus of semi-axis, a and b, ,=~, 

NA3'2 ,/~ (46) 
P - V 12(1 +8)  

(4) For a centrically intersected cross of two rectangles of width a and b, ,= ~ ~, 

NA 3/2 
p _ (47) 

V 12 I ~ " - _ _ E I ~ / Z ( I + e 2 ) _ I I  

6. Conc lus ions  and Di scuss ion  
The effective moduli of a fiber-reinforced composite with matrix cracking have been 

investigated in this paper. Our analysis reveals that a penny-shaped crack can not be maintained in 
a penny-shaped planform if fiber bridging is in effect. From the crack driving force solution 
derived, it is shown that the continued growth of a penny-shaped crack will produce a wavy frac- 
ture fronts. As a result, fiber reinforced ceramic composites with fiber bridging will always 
assume irregular planforms. To account for the effect of fiber bridging on effective moduli, the 
Mori-Tanaka's method is utilized with a modification of crack energy under unknown bridging 
tractions, which in turn are obtained during the process of micromechanics solution. One can 
always obtain the effective properties by carrying out numerical solutions for the really simplified 
micromechanics model, that is, a single crack of irregular planform being embedded in an infi- 
nitely extended matrix material subjecting a stress state of the magnitude of average matrix mate- 
rial. It is shown that there is no warrant that a lumped crack density will be sufficient in describing 
the effective properties of fiber reinforced ceramic composites. The approximate closed-form 
solutions are obtained with a modification of crack density that incorporates the effects of irregu- 
larity of fracture fronts on the effective properties. 

In fiber reinforced ceramic composites, fiber bridging controls the local toughness behav- 
ior, and consequently governs crack growth behavior. Fracture fronts evolves around a certain 
crack growth law during the structural life span. The evolution of fracture planform is a critical 
issue that has to be understood before a micromechanics model, combined with no-destructive 
measurements can be applied to predict the structural integrity. For non-penny shaped cracks, as 
we described in Equations (44-46), if the mathematical treatment by Huang et al. (1995) is used, it 
may eliminate the asymmetry. But without getting the details worked out, the effect of asymmetry 
may well affect the accuracy of those formula given in Equations (44-46).Work on this and on 
crack planform evolution will constitute a part of our future investigation. 

A c k n o w l e d g m e n t s  

This work has been supported under an ARPA Contract (No. MDA972-93-2-0017), enti- 
tled "Optimized Module And Area Array I/O Thin Film CMOS Technologies In Support Of Cryo 
Electronic And High Temperature Superconducting Applications" during 1994-1995 and contin- 
ued recently under an ARPA contract (No. F33615-97-2-1026), entitled "Electronic Systems 
Manufacturing: Low Cost Mixed Mode Modules Computer Aided Mechanical Design & Analysis 
Infrastructure Development," for 1996-1998. The authors gratefully acknowledge Frank Patten, 
Bob Parker, Dan Radack and Stu Wolf of ARPA, and Luis Concha and Bill Russell of Wright Lab- 
oratory, Wright-Paterson AFB for their helpful discussions and suggestions. 



93 

References 
Benveniste, Y., 1986, "On the Effective Thermal Conductivity of Multi-Phase Composites," 

ZAMP, Vol. 37, 696-713. 
Benveniste, Y., 1987, "A New Approach to the Application of Mori-Tanaka's Theory in Com- 

posite Materials," Mech. Mat., Vol 6, pp. 147-157. 
Benveniste, Y., 1992, "Uniform Fields and Universal Relations in Piezoelectric Composites," 

J. Mech. Phys. Solids, Vol. 40, pp. 1295-1312. 
Benveniste, Y., 1993, "Exact Results in the Micromechanics of Fibrous Piezoelectric Com- 

posites Exhibiting Pyroelectricity," Proc. R. Soc. Lond. A, Vol. 441, pp. 59-81. 
Benveniste, Y., Dvorak, G. J., and Chen, T., 1991, "On diagonal Symmetry of the Approxi- 

mate Effective Stiffness Tensor of Heterogeneous Media," J. Mech. Phys. Solids, Vol. 39, pp. 
927-946 

Budiansky, B., 1965, "On the Elastic Moduli of Some Heterogeneous Material," J. Mech. 
Phys. Solids, Vol. 13, pp. 223-227. 

Budiansky, B. and O'Connell, R.J., 1976, "Elastic Moduli of a Cracked Solid," Int. J. Solids 
Struc., Vol. 12, pp. 81-97. 

Chandra, A., Huang, Y., Wei, X., and Hu, K.X., 1995, "A Hybrid Micro-Macro BEM Formu- 
lation for Micro-Crack Clusters in Elastic Components," Int. J. Num. Meth. Eng., Vol. 38, pp 
1215-1236. 

Cherepanov, G.P., 1979, Mechanics of Brittle Fracture, McGraw-Hill, New York. 
Christensen, R.M., 1990, "A Critical Evaluation for a Class of Micro-Mechanics Models," J. 

Mech. Phys. Solids, Vol. 38, pp. 379-404. 
Christensen, R.M. and Lo, K.H., 1979, "Solutions for Effective Shear Properties in Three 

Phase Sphere and Cylinder Models," J. Mech. Phys. Solids, Vol. 27, pp. 315-330. 
Christensen, R., Schantz, H., and Shapiro, J., 1992, "On the Range of Validity of the Mori- 

Tanaka Method," J. Mech. Phys. Solids, Vol. 40, pp. 69-73. 
Dvorak, G.J., 1986, "Thermal Expansion of Elastic-Plastic Composite Materials," J. App. 

Mech., Vol. 53, pp. 737-743. 
Dvorak, G.J., 1990, "On Uniform Fields in Heterogeneous Media," Proc. R. Soc. Lond. A, 

Vol. 43 I, pp. 89-110. 
Fabrikant, V.I., 1989, Application of Potential Theory in Mechanics--A Selection of New 

Results, Kluwer Academic Publishers, Dordrecht, The Netherlands. 
Ferrari, M., 1991, "Asymmetry and the High Concentration Limit of the Moil-Tanaka Effec- 

tive Medium Theory," Mechanics of Materials, Vol. 11, pp. 251-156. 
Gao, H. and Rice, J.R., 1987, "Somewhat Circular Tensile Cracks," Int. J. Fracture, Vol. 33, 

pp. 155-174. 
Hu, K. X. and Chandra, A., 1993, "Interactions among general systems of cracks and anti- 

cracks: an integral equation approach," ASME J. Appl. Mech., 60, pp. 920-928. 
Hu, K. X. and Huang, Y., 1993, "A microcracked solid reinforced by rigid-line fibers," Com- 

posites Sci. Tech., 49, pp. 145-151. 
Hu, K. X., Chandra, A. and Huang Y., 1993a, "Multiple void-crack Interaction," Int. J. Solids 

Struc., 30, pp. 1473-1489. 
Hu, K. X., Chandra, A. and Huang, Y., 1993b, "Fundamental solutions for dilute inclusions 

embedded in microcracked solids," Mech. Materials, Vol. 16, pp. 281-294. 
Hu, K. X., Chandra, A., and Huang, Y., 1994, "On Interacting Bridged-Crack Systems," Int. J. 



94 

Solids and Struc., Vol. 31, pp. 599-611. 
Huang, Y., Hu, K.X., and Chandra, A., 1993, "The Effective Elastic Moduli of Microcracked 

Composite Materials," Int. J. Solids and Struc., Vol. 30, pp. 1907-1918. 
Huang, Y., Hu, K.X., and Chandra, A., 1994a, "A Generalized Self-Consistent Mechanics 

Method for Microcracked Solids," J. Mech. Phys. Solids, Vol. 42, pp. 1273-1291. 
Huang, Y., Hu, K.X., and Chandra, A., 1994b, "Several Variations of the Generalized Self- 

Consistent Method for Hybrid Composites," Composites Sci. and Tech., Vol. 52, pp. 19-27. 
Huang, Y., Hu, K.X., Wei, X. and Chandra, A., 1994c, "A Generalized Self-Consistent 

Mechanics Method for Composite Materials with Multiphase Inclusions," J. Mech. Phys. Solids, 
Vol. 42, pp. 491-504. 

Huang, Y., Hwang, K. C., Hu, K.X., and Chandra, A., 1995, "A unified Energy Approach to a 
Class of Mechanics Models for Composite Materials," Acta Mechanica Sinica, Vol. 11, pp. 59-75. 

Kachanov, M., 1985, "A Simple Technique Of Stress Analysis In Elastic Solids with Many 
Cracks" Int. J. Fracture, Vol. 28, pp. R 11-R 19. 

Kachanov, M., 1987, "Elastic Solids with Many Cracks: A Simple Method of Analysis," Int. J. 
Solids Structures, Vol. 23, pp. 23-43 

Kachanov, M., 1993, "Elastic Solids with Many Cracks and Related Problems," Advanced in 
Applied Mechanics (J.W. Hutchinson and T.Y. Wu, eds.), Vol. 30, pp. 259-445, Academic Press, 
San Diego. 

Mura, T., 1982, Micromechanics of Defects in Solids, 2nd Edition, Martinus Nijhoff Publish- 
ers, The Hague, The Netherlands. 

Norris, A.N., 1985, "A Differential Scheme for the Effective Moduli of Composites," Mech. 
Mat., Vol. 4, pp. 1-16. 

Siboni, G. and Benveniste, Y., 199 I, "A Micromechanics Model for the Effective Thermome- 
chanical Behavior of Multiphase Composite Media," Mech. Mat., Vol. 11, pp. 107-122. 

Tada, H., Paris, P.C., and Irwin, G.R., 1985, The Stress Analysis of Cracks Handbook, Paris 
Productions, Inc., St. Louis, Missouri. 

Taya, M. and Chou, T.-W., 1981, "On Two Kinds of Ellipsoidal Inhomogeneities in an Infinite 
Elastic Body: An Application to a Hybrid Composite," Int. J. Solids Struc., Vol. 17, pp. 553-563. 

Wang, Y.M. and Weng, G.J., 1992, "The Influence of Inclusion Shape on the Overall Vis- 
coelastic Behavior of Composites," ASME J. Appl. Mech., Vol. 59, pp. 510-518. 

Weng, G.J., 1984, "Some Elastic Properties of Reinforced Solids, with Special Reference to 
Isotropic Containing Spherical Inclusions," Int. J. Eng. Sci., Vol. 22, pp. 845-856. 

Weng, G.J., 1990, "The Theoretical Connection Between Mori-Tanaka's Theory and the 
Hashin-Shtrikman-Walpole Bounds," Int. J. Eng. Sci., Vol. 28, pp. 1111-1120. 

Zhao, Y.H., Tandon, G.P., and Weng, G.J., 1989, "Elastic Moduli of a Class of Porous Materi- 
als," Acta Mechanica, Vol. 76, pp. 105-130. 



Damage Mechanics in Engineering Materials 
G.Z. Voyiadjis, J.-W.W. Ju and J.-L. Chaboche (Editors) 
�9 1998 Elsevier Science B.V. All rights reserved. 95 

Crack-tip singularity in damaged materials 

Yan Liu and Sumio Murakami 

Department of Mechanical Engineering, Nagoya University 

Furo-cho, Chikusa-ku, Nagoya 464-01, Japan 

The effects of the preceding damage field on the stress singularity of a growing mode 

III crack are investigated from the view point of Continuum Damage Mechanics (CDM). 

By postulating a circular damage field at the crack-tip represented by a power law func- 

tion r m of radius r, analytical solutions of asymptotic stress and strain fields were first 

obtained. It was found that the asymptotic stress field depends on the power law exponent 

m of the given damage distribution, and the well known elastic singularity disappears 

when the damage exponent m becomes larger than 3/4. However, the strain field was 

ascertained to be always singular regardless of the exponent m. Then, for more general 

damage distributions, numerical analyses by means of the finite element method were 

performed, and the effects of the geometry of three local damage fields on the stress 

distribution around the crack-tip were elucidated. It was shown that, though the damage 

field behind the crack-tip gives significant influence on the stress field in front of a grow- 

ing crack, the analytical solution for the circular damage field gives essentially similar 

stress singularity as that for more general damage distribution. The results give important 

insights into some fundamental aspects of the local approach to fracture based on CDM. 

1. I N T R O D U C T I O N  

Stress and train singularity at a crack-tip plays an essential role in fracture mechanics 

(Broek, 1974), since it governs the stability and the rate of crack growth. Thus the crack- 

tip stress fields in an intact (undamaged) material have been investigated extensively; the 

asymptotic solutions of the stress fields have been obtained not only for linear elastic 

material (Irwin, 1957), but also for power-law hardening plastic material (Hutchinson, 

1968; Rice and Rosengren, 1968) 

However, crack growth in elastic-plastic and creep materials is usually brought about 

by the nucleation, growth and coalescence of microscopic cavities in the front of the 

crack-tip. In such fracture process, the crack-tip stress field and the stress singularity will 
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be influenced not only by the nonlinearity of stress-strain relation, but also by the consid- 

erable reduction of stiffness due to the material damage. 

As a result of this importance, the effects of the material damz~ge on the crack-tip stress 

fields have been investigated from C o n t i n u u m  D a m a g e  M e c h a n i c s  (CDM) point of view 

in some recent papers (Wang and Chow, 1992; Zhang and Gross, 1993; Zhang, Hwang 

and Hao, 1993; Astafjev and Grigorova, 1995). Wang and Chow (1992), for example, 

analyzed the mode I stress field in a damaged power-law elastic-plastic material, and 

elucidated that the original HRR singularity is not largely influenced by the inclusion of 

damage. In their analysis, they postulated that the damage develops from an intact mate- 

rial and the damaged state is specified by the current field variables. Zhang and Gross 

(1993), on the other hand, performed a similar analysis for the asymptotic stress field of 

mode III crack in a power-law strain-hardening material damaged by uniformly distrib- 

uted microcracks oriented in directions different from that of the main crack. This analy- 

sis shows that the stress fields in the damaged material have the same structure as that of 

the HRR field in an undamaged material. The asymptotic solution for mode III crack in a 

damaged elastic material was discussed also by Zhang, Hwang and Hao (1993) by postu- 

lating that the damage field is governed by the current strain field. Their results showed 

two possible damage distributions; a uniform distribution and a power-law one that takes 

zero at crack-tip. However, in actual crack growth problems, the damage distribution in 

front of the crack-tip is not uniform, but is dependent on the history of the field variables. 

The damage field in front of a crack-tip is not uniform in general, and the damage field 

brought about by a growing crack depends on the history of the field variables governing 

the damage. Thus the results of the analyses based on the such damage fields cannot give 

sufficient information on the effects of the preceding damage on the crack behavior. In 

this respect, Astafjev and Grigorova (1995) derived an asymptotic stress field for a his- 

tory-dependent creep damage evolution. However, their solution required an unrealistic 

condition that a complete damage zone exists in the 1/4 plane behind the crack-tip. 

The present paper aims to elucidate the effects of the preceding damage on the stress 

and strain singularity at a crack-tip of a growing crack. In order to present the damage 

states in front of a growing crack from the viewpoint of CDM, a idealized circular damage 

distribution that takes a critical damage value at the crack-tip, represented by a power law 

function r m of radius r, is employed first. The elastic asymptotic field of a mode III crack 

is obtained, and the effects of the preceding damage distribution on the stress and strain 

singularity are discussed. Then, in order to elaborate the analysis, finite element calcula- 

tion was performed for more general damage distributions, and the resulting stress singu- 

larity is compared with the corresponding analytical solution. 
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Besides the stability and the rate of crack growth, the singularity of crack-tip field is 

influential also in the problem of mesh-dependence in the local approach of fracture based 

on CDM and Finite Element Method (FEM). Thus the results of the present analyses will 

provide important insight not only into the effects of the preceding damage on crack 

growth behavior, but also into the mesh-dependent problem of the local approach. 

2. F I E L D  E Q U A T I O N  AND ITS ANALYTICAL S O L U T I O N  

2.1 Material damage and stiffness reduction 

When a material is subjected to internal damage due to microscopic defects or cavities, 

the change in the elastic moduli will occur together with the reduction in the yield stress, 

tensile strength and fracture ductility of the material. According to the continuum damage 

theory, if the anisotropy of the damage is not salient, the internal damage can be presented 

by a scalar damage variable D (0 < D < Dcr), where Ocr is the critical damage value for 

fracture. In this case, reduction of the shear modulus/z of the material can be expressed as 

follows (Kachanov, 1986; Lemaitre and Chaboche, 1990): 

bt =/~0(1 - D~ Ocr ) (1) 

where/~0 is the shear modulus of the undamaged material. 

For a crack under anti-plane shear load (mode III) shown in Figure 1, we will employ 

two coordinate systems O-xyz and O-rOz with the origin at the crack-tip. In the case of a 

growing crack, the damage variable in Eq. (1) should take its critical value D = Dcr at r = 

0 (crack-tip), and decrease to D = 0 in the undamaged zone. In order to facilitate an ana- 

Y 

r 

Figure 1. An anti-plane shear (mode III) crack 
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lytical solution, we will first suppose an idealized circular damage distribution around the 

crack-tip, and represent the damage variable D as follows: 

D =  D(r )  (2) 

For the convenience of the following analysis, we introduce a new function to denote 

the reduction of shear modulus p due to damage, i.e, 

g(r)  = p ( r )  I Po = 1 - D(r)  I Ocr (3) 

Since 0 < D(r)  < Ocr and D(0) = Ocr, we have the following restriction to the function 

g(r): 

O <_ g(r)  <_ l, g(O) = O (4) 

2.2 Basic  equat ions  and its solut ions  

For a mode III crack shown in Figure 1, the only non-zero displacement component is 

w = w(r ,O)  (5) 

Thus, we have two corresponding non-zero components of shear strain and stress as fol- 

lows: 

l o w  l l O w  
e'z = ez~ = 2 Or ' e~ = ez~ = 2 r DO (6) 

Ow 
arz -" a z r  = t.t(r)---~, trOz = azO = l . l ( r ) - ~  

low 

r O0 
(7) 

By neglecting the body force, the equation of equilibrium of the problem leads to 

0o',; cr,~ 1 0o'~ 
Or + + -  = 0 (8)  r r O0 

Substituting Eqs. (3) and (5)-(7) into Eq. (8), we obtain the following basic equation for 

the displacement w in the polar coordinate system 

t92w(r,O) 1 03w(r,O) 1 02w(r,O) 
Or--------T--- + [1 + a ( r ) ] - ~ r  Or + r2 0 0 2  = 0 (9) 

where 
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or(r) = r .  g' ( r ) /  g(r)  (10) 

In the special case of D ( r ) =  O, g(r)  is reduced to a constant and Eq. (9) recovers the 

conventional equation for non-damaged elastic medium. 

We seek solution of Eq. (7) in the form of 

w(r,O) = s  rS~v(O) (11) 

where /~ and s are unknown constants, and ~(0) is an unknown function of 0. Since the 

displacement w at the crack-tip ( r = 0) is zero, the constant s in the above equation should 

be positive, i.e. 

s > 0  (12) 

Substitution of Eq. (11) into Eq. (9) leads to the following ordinary differential equation 

for ~(0): 

l~"' (0)  + IS 2 + s o t ( r ) ] ~ ( O ) = 0  (13) 

The general solution of Eq. (13) is 

r = B.  cos[O~/sis + a(r)]) + C.  sin[O4s[s + a(r)]) (14) 

where B and C are constants. Because of the asymmetry of the anti-plane shear deforma- 

tion of ~(0),  we have 

B = 0  (15)  

Substituting Eqs. (14) and (15) into (9), we have the general solution of Eq. (9) as fol- 

lows: 

w(r,O) = L .  r s sin[Oa[s[s + a(r)]] (16) 

where L = C./~. Shear stress components o'0z and O'rz are now obtained from Eq. (16) 

and Eq. (7) as follows: 

cr,z = L . kt(r)r  s-l {s . sin[Oa/s[s + a(r)]] 

sO [a (r )  - a ( r )  2 + fl(r)] } (17)  +cos[O4s[s  + a(r)]] 2~/s[s + a(r)] 

Croz = L .  l.t(r)r s-l ~ls[s + a(r)]  cos[O~[s[s + a(r)]] (18) 
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where  the function f l(r) is defined as 

~(r)  = r 2. g" ( r ) l  g(r) (19) 

Final ly  Stress free boundary  condit ions on the crack surfaces require that 

CrOz(_+zr) = 0 (20) 

In view of  Eq. (18), this implies 

cos(zr~/s[s + a ( r ) ] )  = 0 (21) 

o r  

k 
~[s[s + a(r)]  = 2-, k = 1,3,5... (22) 

Z 

By solving Eq. (21), we have 

4 a ( r )  2 +k  2 - a ( r )  k 1,3,5.. (23) 
S - "  , ~ -  �9 

where  another  root of s from Eq. (21) has been excluded because of the condit ion (11). 

2.3 Power law damage distribution 

In view of Eq. (23), in order that the exponent  s may be a constant  as assumed in Eq. 

(11), the damage  (or the shear modulus)  distribution function g(r) should satisfy the fol- 

lowing relation: 

r . g ' ( r )  
a ( r )  = ~ = m (= const.) g(r) (24) 

where  m is a constant.  Solving the differential equation (24) with the condi t ion (4)2, we 

obtain the fol lowing power  law function for the damage distribution: 

g(r) = (r / ro ) 'n (25) 

where  r o is a constant ,  and represents  a character is t ic  size of the d a m a g e  zone.  W h i l e  

r < r 0 gives D > 0 and /~ </-to, we have D = 0 and /~ = / l  0 when r = r 0 . According  to the 

Eq. (4)~, we have the fol lowing restriction to the function g(r): 
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r 0 > r > 0 ,  m > 0  (26) 

According to Eq. (24), the existence of a power law type solution of Eq. (9) requires 

that the damage distribution function g(r) should be a power law type. However,  it is 

worth emphasizing that the power law distribution of damage, Eq. (25), can be an asymp- 

totic representation to an arbitrary damage distribution g(r) which tends to zero o(r m) 
(with m > 0) for r ~ 0. 

In the following analysis, the power-law type distribution of damage (25) will be em- 

ployed to investigate the effects of damage field on the crack-tip stress field. Figure 2 

shows the power-law damage distribution for different values of exponent m. 

2.4 Genera l  solutions of de format ion  and  stress 

A general solution of the problem can be obtained for a power law damage distribution 

(25). By use of Eqs. (24) and (25) we can now rewrite Eq. (23) as 

4 m  2 + k 2 - m 
s = , k = l, 3, 5... (27) 

2 

Then, by use of Eq. (25), Eq. (19) leads to 

fl(r)= m(m-1) (28) 

1.0 m=O 

0.8 

m = 0.25 
" ~  0.6 

' 0.4  0"751. 0 l - D = / l / / 1 0  

0.2  

0.0 I I I I / I 

0.0  0 .2  0 .4  0 .6  0 .8  1.0 

r/r0 

Figure 2. Distribution of damage and variation of shear 

modulus in front of a crack-tip 
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Substituting Eqs. (24), (27) and (28) into Eqs. (16)-(18), and summing up every terms 

for k = 1, 3, 5 ..... we obtain the following general solutions for deformation and stress: 

M t(2j_l  ) +(2j_1)2 w(r,O) = ~ . r(4m ~ -m)/2 sin[(2j - 1)0/2] (29) 
j=l 

It(r) ~{L(2j_l).r(~Um2+(2j_l)i_m_2)/2(4m2 + ( 2 j _  1)2 -m) s in [ (2 j -1 )O /2] }  (30) 
~ = 2 j=l 

It(r) ~ {L (2j-l). r(4m2 +(2J-1)2-m-2)/2 (2j  - 1)cos[(2j-  1)0/2]} 
~Oz -- T j=I (3]) 

where L (2 j - l )  (j=1,2,3...) are unknown constants which should be determined from the 

remote boundary conditions. 

2.5 Asymptotic  fields of stress and strain 

In order to elucidate the effects of damage distribution on the singular stress field, we 

are more interested in the asymptotic solution for r ~ 0. Since the power law damage 

function employed in the present analysis can be considered as an asymptotic representa- 

tion to arbitrary damage distribution, the asymptotic solutions of Eqs. (29)-(31) give more 

general insight into the crack behavior in damaged materials. 

When r ---) 0, the dominant  terms of the general solutions (29)-(31) are those with 

minimum exponent j of r. Thus we obtain the asymptotic solutions of the deformation and 

stress fields as follows: 

w(a) ( r, O) = ~ Plllr~ . r( ~r-~m~ +l-m) / 2 .sin 0 
U0 -2 (32) 

tyxz(a)(r,O) = Pm . r(~m2+l+m-2)/2 " (rxz(O'm) 

Pm . r(4-~m~+l +m-2) / 2 (Yyz(a)(r,O) = ~ "rYz(O'm) 

(33) 

(34) 

where Pitt, (rxz(O,m) and ~yz(O,m) are parameter and functions representing the magni- 

tude and the circumferential distribution of the asymptotic fields, and are given by 

P , ,  = r~ ~ ( 3 5 )  
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~xz(O,m) = -[1 - ( 4 m  2 -k- 1 - m - 1)cos0]sin 0 -~ (36) 

0 
6yz(O,m ) = [~/m 2 "  + 1 - m - ( ~ l m  2 "  + 1 - m - 1 ) c o s 0 ]  c o s -  (37) 

2 

In Eqs. (32)-(34), the superscript "(a)" denotes the asymptotic solution. 

Figures 3 and 4 show, respectively, the radial and the circumferential distribution of 

the stress fields (33)-(34) for several different values of m. In particular, it will be ob- 

served from Figure 3 that the stress singularity will disappear if the exponent m becomes 

larger than 0.75. Because of its importance, the effect of damage distribution on stress 

singularity will be discussed in some details in the next Section. 

Substituting Eq. (32) into Eq. (6), we obtain also the asymptotic strain fields as fol- 

lows: 

.f-~ Plllrg F -(m+2-~m2+l) /2  .(~/m 2 + 1 -m)s in  0 Grz(a)(r,O) (38) ~Tr /-to 2 

0 Eoz(a)(r,O) = Plllr~ r -(m+2- m~T-~l)/2 .COS-- 
PO 2 

( 3 9 )  

5 - 

~b 4-- 

+ 3 -  

'~o 2 -  

b 

0.5 

m = 0  
~t 

lao 
= ( r /  ro) m 

0.75 

O.O O.8 1 .O 

~ 2.0' 

0.2 0.4 0.6 
r/ro 

Figure 3. Radial  distribution of asymptotic  stress field in 

front of a crack-tip in elastic-damage material 



104 
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0.8 ~ m  
0.6 - - 0  

0.4- 

/1 )m 
0 . 2 -  ~ = ( r l  ro 

0 . 0 -  

I ! I 
0 50 1 oo 150 

0 ~ 
0.0 

-0.2 
2.0 

-0.4 

-0.6 

oei : r,r0 m m00  l 
- 1 . 0  I 1 I 

0 50 1 o0 150 
0 

Figure 4. Circumferential distribution of asymptotic stress field 

in front of a crack-tip in elastic damage material 

Obviously, when m = 0, the above solutions will recover to the well known elastic strain 

fields with -1/2 singularity. However, for any positive value of the damage exponent m, 

the strain exponent - (m + 2 -  aim 2 + 1 ) /2 is always negative, which implies that the crack- 

tip strains are always singular in the present solutions. This is not surprising because the 

damage distribution assumed in the present analysis takes a critical damage value at the 

crack-tip. Such a crack-tip of critical damage implies a growing crack, or a separation 
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process  of  the mater ia l  e lement  at the crack-tip,  and thus we have infinite (s ingular)  

strains at the crack-tip. 

3. E F F E C T S  O F  D A M A G E  D I S T R I B U T I O N  ON S T R E S S  S I N G U L A R I T Y  

It was observed from Figure 3 that the radial distribution of asymptotic stress fields are 

influenced significantly by the exponent  m of the damage distribution; in particular, the 

well known stress singularity in a cracked elastic material  will disappear  in a damaged  

material for m > 3/4. This influence of the exponent  m on the crack-tip stress singularity 

will be discussed in more detail. 

3.1  C a s e  m = 0 

Substitution of  m = 0 into Eqs. (32)-(34) gives conventional elastic crack-tip field that 

has a wel l -known singularity o f -  1/2; i.e. 

w(a)(r,O)= Km ~ "sin0 
/10 ~ (40) 

Kin �9 sin-0 (41 ) Crxz(r'O)= ~ 2 

K m 0 
~Yz(r'O) = ~/2n'r" cos--2 (42) 

where stress intensity factor K m is given by 

Km = L im[~(Cry~) lo=o]  = ~ r ~ " ,  = P"~lm=0 (43)  r--,0 ~/2 "~ ~'0 

Obviously, Eqs. (3) and (24) show that an undamaged elastic medium D = 0 leads to m 

= 0 .  Moreover,  the condition m = 0 implies also a transient damage state in which a crack- 

tip is not completely damaged, or D < Dcr at the crack-tip. The damage distribution in this 

transient damage state is illustrated in Figure 5, and can be represented by a relation 

g(r) = ~[1 + r/(r)] (44) 

where  ~ (0 < ~ < 1 ) is a parameter,  and rl(r) is an arbitrary function for which 7/(0) = 0 

and r/' (0), 7/"(0)exist. 

Substituting Eq. (42) into Eqs. (24) and (19), and taking a limit of  r ~ 0, we have 
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m=0 ,  f l = 0  (45) 

This shows that, Eqs. (40)-(42) are also the asymptotic solutions for a crack with a partly 

damaged crack-tip shown in Figure 5. Then, the correspondent stress intensity factor 

leads to 

/-~- j : : / - (1 ) ,  Km=.~-~'-~-, ~o (46) 

which is subjected to the influences of damage through ~ and L (1) and is smaller than the 

value given by Eq. (43). As an important example of this partly damaged crack-tip, we 

can take an artificial crack which is under loading but has not started to grow. However, 

when the crack-tip is completely damaged and the crack growth is started, the crack-tip 

fields will be changed from Eqs. (40)-(43) for m = 0 to Eqs.(32)-(37) for m ~ 0. 

So far a number of papers (Schovanec, 1986; Ang and Clements, 1987; Konda and 

Erdogan, 1994) on the stress intensity factor of a crack in the elastic medium with non- 

uniform elastic modulus have been published, they are mainly related to the fracture prob- 

lems of functionally gradient materials. In particular, when the elastic modulus at the 

crack-tip is smaller (but not zero) than that of the other part of the material, the stress 

intensity factor has been found to be smaller than that of a crack in a uniform elastic 

medium (Ang and Clements, 1987). 

1.0 

Damage-free (m = 0) 

| 

maged crack-tip 

Crack-tip 

c r a c k - t i p  > 0> _ 

v 

Figure 5. Distribution of elastic modulus for a partly damaged crack-tip 
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3 .2  C a s e  0 < m < 3 / 4  

In this case, the crack-tip is completely damaged and the elastic modulus at the crack- 

tip becomes zero. However, as shown in Figure 2, the damage variable D decreases rap- 

idly in the neighborhood of the crack-tip. Under this condition, we can find that the crack- 

tip stress still has a singularity of s (- 1/2 < s < 0), because the exponent of r in stress fields 

(33) and (34) is smaller than 0, i.e. 

- 1 / 2  < (a/m 2 +1 + m - 2 ) / 2  < 0 (47) 

Obviously, the intensity of the singularity has differed from the -1/2 singularity of the 

undamaged material due to the influences of damage. The larger the exponent m of the 

damage distribution is, the weaker singularity we have. Namely, for a growing crack 

influenced by the preceding damage field, K m is no more a proper parameter to describe 

the intensity of the asymptotic stress field, and hence the parameter Pm defined in Eq. 

(35) should be employed. According to the present analysis, the parameter Pill contains 

two important factors of the preceding damage fields, i.e., damage exponent m and dam- 

age zone size r 0. Therefore, this parameter provides a novel possibility to describe the 

transient effects of crack growth under non-steady state; the transient effects can be natu- 

rally included into the parameter Pnl of crack growth. 

3 .3  C a s e  m > 3 / 4  

Stress singularity at a crack-tip will disappear in this case, because the exponent s of r 

in stress fields (33) and (34) is now positive, i.e. 

s = 4 m  2 +1 + m - - 2 > O  (48) 

As observed in Figure 2, we have a moderate damage distribution in the vicinity of crack- 

tip when m > 3/4. This means that, when the decrease of the damage variable at the crack- 

tip is not so sharp, or not steeper than r 3/4, the crack-tip stress field will become non- 

singular. 

From physical point of view, crack-tip stress should be finite rather than singular. Hith- 

erto, this has been explained by considering the plastic zone in the front of crack-tip. 

However, the present analysis for the first time clarifies the important role of the preced- 

ing damage zone in the vanishing of the stress singularity. Moreover, the present analysis 

gives an analytical expression for the damage distribution that will lead to non-singular 

stress field. It should be noted that, the important effects of the damage zone on the stress 

singularity can not be clarified if a partly damaged crack-tip (Figure 5) is postulated in the 
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analysis (Wang and Chow, 1992). 

As one of the most important problems in the development of the local approach of 

fracture based on CDM and FEM, the mesh-dependence due to stress singularity in front 

of crack-tip has been often discussed (Liu, Murakami and Kanagawa, 1994; Murakami 

and Liu, 1996). The present results elucidate an essential condition to ensure mesh-inde- 

pendent solution in local approach. Namely, for certain damage distribution (m > 3/4 in 

the present elastic damage case), the stress singularity and the related mesh-dependence 

will naturally disappear without use of any non-local numerical procedures (Pijaudier- 

Cabot and Bazant, 1986; Bazant and Pijaudier-Cabot, 1988; Chaboche, 1988). 

4. N U M E R I C A L  ANALYSIS FOR MORE GENERALDAMAGE 

DISTRIBUTIONS 

The analyses in the preceding Section were conducted for an idealized radial distribu- 

tion g(r) of damage, as shown in Figure 6(a). Although this can be a good approximation 

to the damage fields in front of crack-tip, it is worth examining the effects of the damage 

distribution in the circumferential direction, particularly the effects of the damage "wake" 

behind the crack-tip. In this Section, we will discuss the effects of more general damage 

distribution by means of Finite Element Method (FEM). The validity of the analytical 

solution for circular damage field will be also discussed. 

4.1 Damage distribution and finite e lement  model  

Finite element analysis will be performed for the following three kinds of damage 

distribution around a crack as shown in Figure 6: 

1) Distribution A [Figure 6(a)] 

This is the same radial distribution as that used in the analytical analysis of Section 2 

and 3. The numerical analysis for this damage distribution is conducted in order to con- 

firm the accuracy of the FEM analysis and to provide a basis for the comparison with 

other damage distributions. From Eqs. (2) and (25), we have the following elastic modu- 

lus in the circular damage zone with its center at the crack-tip: 

la = P o ( r /  ro) m (49) 

where r 0 is damage size shown in Figure 6. 

2) Distribution B [Figure 6(b)] 

In this case, a wake zone is added to the above radial distribution A. Thus, inside the 
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damage zone shown in Figure 6(b), we have 

= I120(r/ro)m x >_0 

12 ~120(y/ro) m x < 0 (50) 

(3) Distribution C [Figure 6(c)] 

In general, larger stress is induced in front of a crack-tip than the region lateral to the 

crack, and thus the damage develops more significantly in the direction of crack than in its 

circumferential direction. In view of this situation, a semi-elliptic damage zone in front of 

crack is assumed in this case as shown in Figure 6(c), where the length of the damage zone 

on the y-axis remains to be r 0 while that on the x-axis will be taken as kr  o (k > 1). In this 

distribution, the elastic modulus inside the damage zone is given as follows: 

Figure 6. Three damage distributions employed in the analyses 
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Ii.to(~/(xlk)2 + y2 [ro)m ~z= 
L~o(y /ro)  ~ 

x > 0  
x < 0  (51) 

In the succeeding finite element analysis, the elastic modulus at every Gaussian points 

inside the damage zone will be prescribed by one of the above damage distribution, Eqs. 

(49)-(51). For those Gaussian points outside the damage zone, the elastic modulus is 

taken to be/~0. 

A cracked specimen as shown in Figure 7 is implemented in the finite element calcula- 

tions by use of ABAQUS code. The crack size a and the damage zone size r 0 of the 

specimen are taken as follows: 

a=0 .1W (52) 

r 0 = 0.05a = 0.005W (53) 

This quite small damage zone size is selected in order to simulate the situation of a con- 

strained damage field around an elastic crack. 

The specimen is discretized by 135 20-node isoparametric elements. The partial finite 

element meshes around the crack-tip is shown in Figure 7. To ensure the accuracy of 

stress distribution inside the damage zone, the element size Ae (Figure 7) in front of 

crack-tip is controlled as small as 

Ae = 0.02r 0 (54) 

'~0 
| | | | | | | | | | | 

\ iJ 

W 

/ 
/ 

Figure 7. Specimen geometry and finite element meshes 

(part) at a crack-tip 
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4.2 Compar i son  between numerical  and analytical solutions 

Figure 8 shows comparison between numerical and analytical results of  shear stress 

distribution on the crack line ( 0 = 0) in front of a crack-tip, for the circular damage distri- 

bution of Figure 6(a). Let us first compare the results for the undamaged case (m = 0) 

where the numerical solution of crack-tip stress field can be compared with the well  

known K111-field of fracture mechanics. Excellent agreement can be observed, and the 

maximum average error in the numerical results for Zy z is smaller than 1.5%. This con- 

firms that, the good accuracy of the numerical solution can be achieved by the use of the 

present finite element model. 

Then, for the cases of damaged material (m > 0), similar comparison is observed in Fig 

8. The theoretical curves of these cases are calculated by use of Eq. (34). Then, the values 

of Pill are obtained by best fitting the analytical equation (34) with the numerical results. 

The good correlation between the analytical and the numerical results is confirmed also 

for different m values. Then, the r-distribution of crack-tip stress field obeys a power law 

of r (~m~+l+m-2)/2, and thus the stress singularity is governed by the damage exponent m 

and disappears when m > 0.75. 

4.3 Effects of more general damage distribution 

Figure 9 shows the numerical results of the crack-tip stress fields obtained for the dam- 

age distribution A, B and C (with k = 2.0) of Figure 6. Several different values of expo- 
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Figure 8. Comparison between numerical and an analytical stress 

distributions obtained for damage distribution A 



112 

nent m have been employed in these calculations. For a specific m value, the curves corre- 

sponding to the damage distribution A, B and C show almost same distribution to each 

other, although there exist some differences in stress values. These results implies that, 

for more general damage distribution, the analytical solution of Eqs. (33)-(34) can be 

employed also as a good approximation to describe the effects of damage distribution on 

the stress singularity in the front of a crack-tip. 

In Figure 9, it is found that stress values are almost the same for the damage distribu- 

tion B and C in a zone very close to the crack-tip. This implies that the shape of the 

damage zone has not apparent effects on the crack-tip stress fields. In contrast to this, the 

existence of a wake zone of the damage has salient influences on the stress fields. It is 

found that, the damage distribution A which contains no wake zone of damage gives a 

stress field about 10-30% larger than those of the damage distribution B and C. For ob- 

taining a more precise asymptotic stress field for a growing crack surrounded by a dam- 

age zone, the distribution of the preceding damage, i.e., the wake zone of damage will 

play an essential role. 

5. C O N C L U S I O N S  

In order to elucidate the crucial effects of the preceding damage field on the stress 

singularity at a growing crack, elastic field of mode III crack was analyzed for three dif- 

ferent distribution of the preceding damage. In the asymptotic analysis of Section 2 and 3, 
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Figure 9. Comparison of stress distributions obtained by 
use of damage dustribution A, B and C 
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an idealized circular damage distribution represented by a power law function r m of the 

distance r from the crack-tip was employed. The resulting analytical solution in this case 

elucidates that an elastic stress singularity is govemed by the exponent m that specifies 

the essential characteristics of the damage distribution, and the singularity will disappear 

when m becomes larger than 0.75. 

The results of Eqs. (33)-(34) of the present analysis revealed, for the first time, the 

important role of the preceding damage zone in the evaluation of the stress singularity at 

a growing crack. Although it has been inferred that the crack-tip stress should be zero in a 

damaged medium (Riedel, 1987; Riedel, 1990), the precise analytical behavior has not 

been clarified hitherto. However, according to the present analysis, the zero stress at the 

crack-tip was predicted for larger value of the exponent m of damage distribution. 

These analytical results give us some important insight into the numerical simulation 

based CDM. The mesh-dependence of FEM analysis and other numerical difficulties in 

the crack growth analysis by local approach have been urgent problems for many years, 

and are closely related to the stress singularity. The present results indicates a new way to 

avoid these problems; i.e., the improvement of the damage evolution and the constitutive 

equations may furnish moderate damage distribution (m > 3/4 in the present elastic dam- 

age case), and thus may avoid the singularity in the numerical simulation. 

In Section 4, FEM analysis was performed to investigate the effects of more general 

distributions of the preceding damage. According to the results of the analysis for these 

different distributions, no essentially differences in the stress singularity have been found. 

However,  the important role of the wake zone of damage distribution (i.e., the damage 

distribution behind the crack-tip) has been revealed. 

Although the present results are derived for a mode III crack in elastic medium sub- 

jected to damage, the similar problems for a mode I crack have been analyzed and will be 

published elsewhere. 
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The micromechanic analysis of a fatigue band in the most favorably oriented crystal at the 
free surface of a polycrystal is extended to the analysis of a single crystal under plane strain. 
The boundary tractions on the boundaries of the crystal embedded in the polycrystal are 
removed by applying equal and opposite tractions. The stress field caused by these opposite 
tractions is analyzed using finite element method. Extrusions on both sides the of single 
crystals as commonly observed is shown in the analytical calculations. 

1. INTRODUCTION 

Single crystals have been used in component parts of turbine engines. These parts are 
subject to repeated mechanical and thermal loadings. It has been found that about 90% of the 
catastrophic failures of these parts are due to fatigue of materials [1 ]. Hence, understanding 
the mechanism of these failures is essential to their reductions. The present study attempts to 
give a method to analyze the fatigue crack initiation of these single crystals. 

Lin [2] and Lin et al. [3] have developed a physical model to analyze the high-cycle 
fatigue crack initiation of a face-centered cubic (f.c.c.) polycrystal. This model is amended to 
analyze the fatigue crack initiation of f.c.c, single crystals. 

Single crystal tests show that under loading, slip occurs along certain directions on certain 
planes. This slip depends on the resolved shear stress and is independent of the normal stress 
on the sliding plane. The dependence of slip on the resolved shear stress, known as Schmid's 
law, has been shown by Parker [4] to hold also for cyclic loadings. Initial defects exist in all 

metals and cause an initial stress field, which gives an initial resolved shear stress field x; in 

the metal. The shear stress due to applied load is denoted by T". When this x" combined 

with x' reaches the critical shear stress x~ in some region, slip occurs to keep the resolved 
shear stress from exceeding the critical. After unloading, the slip remains and causes a 

residual resolved shear stress field x r . The total resolved shear stress is then 
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z = z  ~' + z '  +z"  (1) 

The governing condition to initiate or continue slip in a region is to have this resolved shear 

stress 1: equal to z c. 

To calculate the residual stress, the analogy between plastic strain and applied force is 
used [5]. It has been shown that the equivalent body force per unit volume along x~-axis due 

to plastic strain es is 

F, = --C,jk, e'k'i, j (2) 

where C0k ~ is the elastic constants of  the metal. The repetition of  alphabetic subscripts 

denotes summation and the subscript after a comma denotes differentiation with respect to the 
coordinate variable. The equivalent surface force per unit area along x,-axis has been shown 
a s  

S, = C},k, e ~,'~ rl, (3) 

where rl, is the cosine of the angle between the exterior normal to the surface and the 

x j-axis. In the following analysis, the slip plane and the slip direction of the crystal is taken 

to form a 45 ~ angle with the specimen axis. 

Extrusions and intrusions have been observed to grow monotonically on fatigued 
specimens [6]. Kinematically, an extrusion forms when a positive shear strain occurs in a thin 
slice P and a negative shear strain in a closely located thin slice Q (see Figure 1). The initial 

stress field z' favorable to this mode of slip is one having positive shear stress in P and 

negative in Q. Such an initial stress field can be provided by an initial tensile strain e'~ in R 

(the repetition of Greek subscript does not denote summation). Lin and Ito [7] suggested that 

the tensile strain e'~ in R along the slip direction o: may be provided by a row of interstitial 

dipoles. Antonopoulos et al. [8] and Mughrabi et al. [9] have indicated that the ladder 
structure in a persistent slip band (PSB) can be described by an array of edge dislocation 

dipoles. A tensile loading z22 on the polycrystal produces a positive z" in the whole crystal. 

Taking z' to be positive in P and negative in Q, then z ' + z "  in P will first reach z ' ,  
r prompting P to slide. This slip causes a residual shear stress z ~ .  The length of the crystal 

(along x3-axis, normal to the plane of Figure 1) is assumed to be much longer than the band 
thickness. In the center length portion of the crystal, the slip and hence the plastic strain 
distributions along the band is assumed to be constant along the x3-axis. This causes the 

deformation to be plane strain, and hence Oz~3/Sx3 = 0. Applying the equilibrium condition 

l:,,,j = 0 in terms of the (o~,[3,x 3 ) coordinates gives 8z ~,~/Sx, + Or, ~l~/Ox~ = 0. The first term 

is generally small, so the second term is also small. Hence the change in z" ~ across the small 
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band thickness (from P to Q) is very small. As a result, the slip in P reduces not only the 
positive shear stress in P, but also reduces the same amount of positive shear stress in Q. This 
decrease of positive shear stress is the same as increase of negative shear stress, causing Q to 
slide more readily during the reversed loading [7]. Similarly, the negative slip in Q reduces 
the negative shear stress not only in Q but also in P, thus causing P to slide more readily 
during the second forward loading. This process is repeated for every cycle and thus provides 
a natural gating mechanism to cause the alternate slip in P and Q, resulting in monotonic 
growth of the extrusion. Interchanging the signs of the initial stresses will produce an 
intrusion instead of  an extrusion. This gating mechanism does not require the crystal to have 
more than one slip plane such as a f.c.c, crystal, hence is also applicable to hexagonal crystals. 

" ~ inR. This ; The build-up of the slip strain e~ in P and Q is caused by e~  e~  causes an 

initial compression in R, which in turn causes positive ~;~ in P and negative ~ in Q. Under 

cyclic loading, the extrusion grows and R increases in length. This elongation causes the 
compression in R to decrease. There are 12 slip systems in a f.c.c, crystal. The change of 
direct stress "c~ in R causes changes in resolved shear stress in all slip systems. When the 

decrease in compression in R becomes large, the applied stress can cause a second slip system 
to have shear stress reaching the critical value and slide. The plastic strain e~' n caused by slip 

in causing the positive and in this secondary slip system has a tensor component just like e~  

negative ~'~ in P and Q, respectively. The occurrence of the secondary slip system was 

recently clearly observed by Zhai et al. [10]. The 12 slip systems of a f.c.c, crystal are shown 
in Figure 2. The ot[3 slip system in Figure 1 is called the primary slip system, which is 

identified as a 2 system in Figure 2. The secondary slip system due to the change of direct 

stress T~ under cyclic loading was found by Lin et al. [3] to be c 3. The plastic strain e~n~" due 

to the slip has a tensor component e~'3, which induces an equivalent force component F~. The 

presence of F~ requires the modification of the plane strain solution. A similar problem was 
shown in the analysis of prismatic bars by Lekhnitski [11] and is referred to as the generalized 
plane strain problem. This problem is defined as 

u, = u  i(x~,x 2) , i=1,2,3 (4) 

The stress in an isotropic elastic body is given as 

[ 1( )] 
D 8 0 0  + ui.i ~,j = 2g 1 + 2u -~ + uj., (5) 

where | = u~.~ + u2. 2 , g is the shear modulus, and u is the Poisson's ratio. 
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2. METHOD OF ANALYSIS 

To analyze the fatigue band in a single crystal under generalized plane strain, consider 
a crystal embedded at a free surface of a polycrystal under alternate tension and compression. 
The sliding direction and the slip plane make 45 ~ with the free surface and the loading axis 
(see Figure 1). The solutions of the plastic strain distributions in the fatigue band of the 
polycrystal have been shown by Lin et al. [3]. Melan [12] has given a plane stress solution of 
the stress field due to a given loading on a semi-infinite plate. His solution has been modified 
by Tung and Lin [ 13] for plane strain. This plane strain solution is then generalized to include 
the generalized plane strain deformation. Let zij(x,x~, ) be the stress at point x due to a unit 

force applied at point x' along the Xk-direction. The stress components are expressed in 
terms of the Airy stress functions, ~) k 'S, as 

~,, ( x , x ; )  - ax~ ' z ~  ( x , x ; )  - Ox~ ' ~'~ ( x , x ; )  _ Ox, Ox~ ' 

' = (x, ' ) = o  ~ (x, ' > = - @  (x, ' > + ~  ( x x ' ) )  '1~ 13 (X'  Xk ) '[23 Xk , 33 Xk I! Xk 22 , k , k = 1,2 

(6) 

' = (x, ' ) = T  ( x , x ' ) = ~  ( x , x ' ) = 0  "~ll (X, X k )  T22 Xk 33 k 12 k , 

0+ k 000, t t 
�9 ,3(X, Xk) -- , T ~ 3 ( x , x , )  - , 

Ox, Ox 2 
k = 3  

(7) 

where 

1 X I 
dp, (x,x') = -(p + q)(x 2 - x; )(0, + 0 2 )+ ~- q(x, - x;)In ~ + 2p 

x , x f ( x ,  + x;)  

1 X I 
*2 (x,x') = - ( p  + q)(x 2 - x; )(0, + 0 2 )+ ~- q ( x  2 - x; ) ln-~2 - 2p 

In X~ + In X 2 
~ 3 ( X ' X t )  = -- 4n 

X 2 

x ,x ; (x~ - x ; )  

X2 

(8)  

(9)  

( lO)  

and 

1 
q = p ( 1 - 2 t o )  , 

P = 4 n ( 1 - t 0 )  ' 
_ _ , ) 2  _ , ) 2  

x , - ( x ,  , 

O~ =arctan " - n < O  < n  0 2 =arctan - 
x, x; x, + x; . < o~ < 2 

(11) 

(12) 

Equations (6) and (7) give the residual stress field, r ,  in the surface crystal embedded in 
the polycrystal. This analysis also gives surface tractions on the grain boundaries (see 
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Figure 1). In a single crystal, the surface tractions are zero, and hence must be removed by 
applying equal and opposite tractions on the boundary. The stress field caused by the equal 
and opposite tractions is here solved by finite element method (FEM). Plastic strain occurs 
only in the fatigue band. The fatigue band is divided into a number of grids. The plastic 

it(R) ,,(L) and in the right half by e~ strain in a grid in the left half of the crystal is denoted by e~j 

The solution of the stress field in Figure 3(a) is the sum of the solution of Figures 3(b), (c), 
It(L) and (d). Figure 3(b) gives uniform stress. The stress field caused by plastic strain, e 0 , is 

solved by the semi-infinite solid solution with the free surface at the left, as shown in 
Figure 4. This solution satisfies the condition of zero traction at the free surface and gives 
surface tractions on the right, top, and bottom planes (see Figure 4(b)). These tractions are 
removed by applying equal and opposite tractions as shown in Figure 4(c). The stress field 
due to the loading in Figure 4(c) is solved by FEM. With the plastic strain grid in the left half 
of the crystal, the equivalent forces induced by the plastic strain is relatively far from the 
considered crystal boundaries, and hence the variation of surface traction along the boundary 
is small, and the grids of the FEM does not need to be very fine. This will facilitate the FEM 
solution. Similarly, for the solution of Figure 3(d), the slid grid is in the right half. The free 

i has the surface of the semi-infinite solid is taken to be at the right side. The initial strain e~ 

same effect as the plastic strain, so the procedure for solving the residual stress field can be 
applied for solving the initial stress caused by initial strain in the fatigue band. This gives a 
method to calculate the influence coefficient of the stress in the mth grid due to a unit inelastic 
strain (plastic strain and initial strain) in the nt__h grid. The resolved shear stress ~ is the sum 

of the initial stress ~', the applied stress ~", and the residual stresses, r(L) and r(R) This 

sum is equated to the critical shear stress, ~', and the incremental plastic strain distributions at 
different stages of loading are obtained. 

3. EXPERIMENTAL OBSERVATIONS 

Mecke and Blochwitz [14] observed the subgrain displacement in single nickel crystal 
under cyclic loading. These experiments were carried out under constant plastic strain 
amplitudes at room temperature. It is shown that the PSBs have penetrated across the whole 
crystal and extruded out on both sides as shown in figure 5. The case with extrusion 
protruding on one side and intrusion on the other side was not observed. Basinski et 
al. [15,16] tested copper single crystals at a constant plastic strain amplitude at room 
temperature under cyclic loadings. In these tests, both extrusions and intrusions are observed. 
Zhai et al. [17,18] performed fatigue experiments on aluminum single crystals under constant 
cyclic stress amplitude. Again, both extrusions and intrusions were observed on the free 
surfaces. 
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4. NUMERICAL CALCULATIONS 

The analytical solution developed in Section 2 is here applied to analyze the single crystal 
tests. To simplify the calculation, a single fatigue band in the single crystal is considered (see 
Figure 1). The analytical method can readily be used to analyze multiple fatigue bands in the 
crystal. Referring to Figure 1 (b), both P and Q are assumed to be 0.05 ~tm in thickness, and R 
to be 1.0 ~m. The crystal is f.c.c, and is assumed to be elastically isotropic with shear 

modulus ~ = 50 GPa and the Poisson ratio ~ = 0.3. The critical shear stress, ~c, is taken to 

be 200 MPa, and cyclic loading T22 -399.55 MPa. An initial tensile strain was assumed to 
vary linearly from a maximum value at the center to zero at the two ends of a 1.4 mm segment 
in the fatigue band. This segment was divided into a number of grids, and each grid was 
approximated by a uniform initial tensile strain. This assumed initial tensile strain 

distribution was found to give a uniform initial resolved shear stress, 1:;. Thus a uniform ~ 
of 0.5 MPa was used in the present analysis. The variations of the plastic strain in P and Q 
along the length of the fatigue band at different cycles of loading are shown in Figure 6. 

Then an initial tensile strain of the same amount is assumed to be located at the left side. 
The variations of plastic strains were calculated and the results are shown in Figure 7. It is 
seen that both locations of the initial tensile strain give extrusions protruded out on both sides. 
If the initial tensile strain is replaced by an initial compression strain, intrusions instead of 
extrusions will occur on both sides. This seems to agree with the experimental observations. 

5. CONCLUSIONS 

As discussed previously, for an extrusion to protrude, the shear strain in P has to be 
positive and that in Q has to be negative near the occurrence of extrusion. This requires 
positive resolved shear stress in P and negative in Q. In turn, this requires a compressive 
stress in R to push the extrusion out. The occurrence of extrusion on both sides of the single 
crystal implies compression in R on both faces. A segment in R with an initial tension in the 
fatigue band tends to increase the length of the compressive stress in R under cyclic loadings. 
This is likely to spread this compression over the length of fatigue band and causes extrusion 
on both faces of the crystal. 

Similarly, for an intrusion to occur on the left side, the shear strain in P must be negative 
and that in Q must be positive. This requires a tensile stress in R to pull the intrusion in. A 
segment in R with an initial compressive strain tends to increase the length of the tensile stress 
in R under cyclic loadings. The spread of the tension in R over the length of the fatigue band 
will result in intrusions on both faces. This gives the likeliness of intrusions on both faces. 
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Figure 2. Crystallographic direction of a f.c.c, crystal. 
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The sliding crack model revisited 
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Abstract: Two-dimensional micromechanical sliding crack model of inelastic deformation in 
brittle solids under compression is reexamined within the thermodynamic framework with 
microstructural internal variables (Rice, 1971, 1975). Incremental stress-strain equations are 
derived for an elastic solid weakened by non-interacting sliding microcracks. Preliminary 
results of crack-crack interactions in the presence of frictional and cohesive resistance are also 
presented. 

1. INTRODUCTION 

It is well documented that nonlinear deformation and failure of brittle rocks involve the 
growth of microcracks from stress concentrators such as preexisting cracks and voids, 
inclusions, and dissimilar grain contacts. In unconfined compression tests the microcracks 
grow predominantly on the planes subparallel to the direction of loading. The final fracture in 
the form of splitting is commonly attributed to the unstable propagation of one or more of the 
largest and most favorably oriented cracks running longitudinally towards the specimen's ends. 
The failure is abrupt and inelastic strain at failure remains relatively small. In contrast, if a 
substantial lateral confinement is applied the deformation process is more complicated since it 
incorporates both brittle and ductile deformation modes. The final fracture (faulting) in a 
confined specimen results from the cooperative action of many small cracks that grow in a 
stable manner, interact and eventually form a dominant shear fault (crack band) at some angle 
to the maximum load axis. The s t ress-  strain curve in this case visibly deviates from the 
straight line. The inelastic and elastic strains at failure (apex of the o r - e  curve in the stress- 
controlled test) are typically of the same order of magnitude. Microstructural parameters, such 
as grain size, porosity, distribution of cleavage planes, initial crack density, etc., usually play an 
important role in the process of rock deformation. 

*) Project partially supported by the State Committee for Scientific Research, Poland (Grant no. 7TO7A026) 
and Deutscher Akademischer Austauschdienst, Germany. 
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The microcrack growth under axial compression at low-to-moderate lateral pressures may 
occur according to several different mechanisms. Some of these mechanisms such as: frictional 
sliding on initial flaws producing secondary tension wings, tension cracking from isolated 
pores, pore collapse, have been extensively studied both experimentally and analytically (e.g. 
Brace and Bombolakis, 1963; Bieniawski, 1967; Walsh, 1965; Peng and Johnson, 1976; 
Nemat-Nasser and Horii, 1982, Horii and Nemat-Nasser, 1985a, 1986; Nemat-Nasser and 
Obata, 1988; Kachanov, 1982; Moss and Gupta, 1982; Steif, 1984, Zaitsev, 1985; Sammis and 
Ashby, 1986; Ashby and Hallam, 1986; Kemeny and Cook, 1991; Wang and Kemeny, 1993; 
Dyskin et al., 1995; Fanella and Krajcinovic, 1988; Ju, 1991; Zhao et al., 1993). 

In this paper, attention is focused on the sliding crack model originated by Brace and 
Bombolakis (1963) and then widely used in the literature (for references see Basista and Gross, 
1997a) to represent inelastic deformation of low-porosity rocks. It involves a rather complex 
sequence of events starting with the frictional sliding on the faces of preexisting (closed) flaws, 
followed by the curvilinear kinking from the crack tips, and completed by the subsequent 
mode-I growth of the kinked wings in the planes roughly parallel to the direction of dominant 
compressive stress. Depending on the sign of confining stress, the wing cracks may grow either 
in a stable (lateral compression) or unstable (lateral tension) manner. 

The objective of this paper is to analytically derive the stress-strain relations for elastic 
material containing frictionally sliding microcracks under overall compressive stress. For this 
purpose, the thermodynamic framework with microstructural internal variables (Rice, 1971, 
1975) is adopted. The authors' recent results (Basista and Gross, 1997a,b) are here 
summarized and further advanced by examining the interaction of frictional cracks. 

2. INTERNAL VARIABLE REPRESENTATION OF SLIDING CRACK MODEL 

Consider an isothermal deformation of a microcracked elastic solid subject to compressive 
principal stresses o-I, o- 2 (compression is viewed negative). The analysis is confined to low 

lateral pressures [o-21 << Io-il so that strains may be considered infinitesimal and plastic effects 

may be neglected. Since the overall material response is nonlinear and stress-path dependent, 
an incremental formulation is necessary. For simplicity, the attention is focused on non- 
interacting slits embedded in a two-dimensional homogeneous and isotropic matrix. The sliding 
crack interaction will be addressed later in a separate section. 

It is assumed that a macroscopically homogeneous deformation process can be suitably 
approximated by a sequence of constrained equilibrium states (Rice, 1971, 1975). As a 
consequence, it can be shown that the inelastic part of the macroscopic strain increment is 
related to the increments of internal variables at the microscale according to 

I , Zo(o,H) 
d'r - Vo Z 

d~ (l) 

where f~ - f~ (c ,H)  is the set of thermodynamic forces conjugated to the internal variables 

~ ,  ~ is the tensor of applied stresses, H (for history) represents symbolically the current 
collection of values of 2~, V 0 denotes the volume of a representative volume element (RVE). 
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The summation in (1) extends over all sites of the RVE where the microstructural 
rearrangements take place. The total strain increment can be decomposed as 

de = d ' e  +die = M:do +die (2) 

where d;e is given by (1). The instantaneous compliance tensor M is defined as 

e~VJ(a 'H)  I. axed M~.~ - ~-~j c~o-~, (3) 

Here, g (o, H) is the specific complementary (Gibbs) energy given by 

~//(t~, H ) -  ~//~ + A ~/(t~, H) , ~//0 __ 1~ oq M Oijkl Okl (4) 

where A g (g ,  H) denotes the inelastic part of g due to the frictional slip and the presence of 

wing cracks, M ~ is the elastic compliance of the matrix material. Note that for open cracks, Ckt 
the instantaneous compliance M~.k~ defined in (3) is the secant (effective) compliance which is, 

in fact, the unloading compliance. However, this conclusion ceases to be valid for closed 
frictional cracks considered in this paper (for details see Ju, 1991). This and related issues 
pertinent to the applicability of Rice's framework to the sliding crack mechanism of inelastic 
deformation are analyzed in more detail in Basista and Gross (1997a). 

Frictional sliding on a preexisiting slit, which remains closed during the whole deformation 
cycle, leads to the formation of curvilinear tension wings. Similarly as in Nemat-Nasser and 
Obata (1988), the curvilinear wings are represented by the equivalent straight ones, as shown in 
Fig. 1. The orientation 0 of the equivalent crack tip is yet to be determined maximizing K z 
with respect to 0 for a given wing length l. 

The inelastic part of the specific complementary energy of a representative surface element 
(RSE) containing N non-interacting winged cracks is 

A~,(o,H)- N c ~r,'~(o,b)dbdx; + 2IG(o,l,O)dl 
0 0 

E 1! t N 2cir,2( ~ b)db + K~)dl 
- Ao 0 ' 2 + 

(5) 

where: A 0 is the area of the RSE, ~j are the actual stresses acting on PP" in the local 

coordinate system (x;, x~), 2c is the length of the preexisting slit, l is the wing crack length, 
m 

b(x~) is the relative slip displacement of the points on PP" with b being its average value over 

2c, G is the elastic energy release rate. As usual in the fracture mechanics notation 
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E for plane stress l 
E ~  Eo/ll-_. v~), for plane s trainj '  with E 0 and v 0 being Young's modulus and Poisson's 

ratio of the matrix material. The specific complementary energy is shown in a general form (5). 
Its integrated form, although analytic, is rather lengthy and is not displayed here. 

Q, 

l \o .1, 

r 
...... r ..... r 

,r 

Figure 1. Sliding crack with tension wings. 

Using (4) and (5), the inelastic change of q/reads 

8 ~  d V  
d'~- d~ +--yi-at + -~ao 

= A-~ r[zZcdb + 2 G d l + - ~  2 G dO - -~o ~--~ f ~ d ~  

(6) 

From (6) the microfluxes and the conjugated thermodynamic forces for a single crack are 

f l - r'lz 2c, d~l - db " f2 = G, d~2 - dl; 

l 

dG dl A - ~ - - ~  , a ~  - a o  

o 

(7) 
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The explicit expressions for f~, f2, f3 are contingent on the knowledge of the actual shear 
stress r'12 acting on PP', and the stress intensity factors K~ and K H at the wing crack tips. 

From the superposition principle and the equilibrium of forces along PP' in  the cross section 
QPP' Q' (Fig. 1) it follows that 

rl* 2 2 c -  [O-ll cos2(O + ~0)+o.~2 sinZ(g + cp)+ r12 sin 2(0 + q9)]2l sin 0 

+ [�89 (o.ll- Cr22) sin 2(0 + cP) - r12 cos2(O + q~)] 21 cos0+ 2Fel(b,l ) - 0  
(8) 

* r �9 where: T12--T;2- T12 denotes the net shear stress that causes the slip on PP after the 
r , ( ) cohesive and frictional resistance have been overcome, v~2 - -$s in2~p  0-11 -o-22 + ~12 COS2(~ 

is the shear stress resolved on PP" ~l ,  o22, z-~: are the applied stresses at infinity. The term 

~,(b,1)  in (8) represents the sum (Fel~ sin0+ F f  cos0) of the projections on PP" of the 

appropriate, as yet unknown, elastic restoring forces (or crack closing forces) F I F 11 in 
e l  ~ e l  

mode I, II respectively. Anticipating subsequent differentiation of the thermodynamic forces 
fa with respect to o-ij, all three stress components o-~1 , o-22 , r12 were introduced into (8), 

although r~2 - O. In view of (7) and (8), the thermodynamic force conjugated to db becomes 

f l - rlrz2c- o.l121sin~pcos(O + ~o) + crz221costpsin(O + q~) - r1221cos(O + 2rp) - 2L, (b ,  1) (9) 

The exact solution of the stress intensity factors (SIFs) at the curvilinear wing tips can be 
obtained only numerically (Horii and Nemat-Nasser, 1985a; Lauterbach and Gross, submitted). 
For the present modeling purposes, closed-form thus approximate solutions are required. 
Numerous approximations of K I and KIt available in the open literature can be arranged in 
two classes displacement-driven models (e.g. Steif, 1984; Nemat-Nasser and Obata, 1988) and 
force-driven models (Moss and Gupta, 1982; Zaitsev 1985; Horii and Nemat-Nasser, 1986; 
Kemeny and Cook, 1991). The key concepts of the displacement-driven vs. the force-driven 
idealization of the basic mechanism are depicted in Fig.2a, b, respectively. 

In the displacement-driven model (Fig.2a), the rectilinear wings are pushed sideways by a 
rigid wedge whose dimensions depend on the preexisting crack length 2c and the varying 
average slip displacement b .  In this case, the SIFs involve complete elliptic integrals of the 

first and second kind: K(k)  and E(k), with the modulus k - x/12+ 21ccosO/(l + c cos0), cf. 

Tada et al. (1985). In general, these SIFs are not expressible by analytic functions except for a 
special case of semi-infinite wedge which, when translated into the present context, means two 
isolated (non-interacting) straight wing cracks. Strictly speaking, this is a realistic 
approximation only for the initial phase of kinking (very small wings). This special case was 
used as a basis in Nemat-Nasser and Obata (1988) for an analytical derivation of the inelastic 
strain from the respective crack opening displacements (CODs). 

If the crack tips of a displacement-driven crack (Fig.2a) do not interact with each other (i.e. 
1 << c ) the modulus k is equal to zero. Consequently, the SIFs at the tips Q and Q" are 
expressible in the following form (e.g. Tada et al., 1985) 
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E~ b sin O 
 z4t +r) [-~lro;cosZ(O+fp)+azz~nZ(O+cp) sin2(O+ r + ~ 2  t 1~ +r12 

2~2n-(1+/'*) - --[zi2 eca2(O+qg)-i(oi,-a-a)sin2(O+qg)] 

(10) 

where 1 *~ -0.27 c~r2/32 is a nucleus wing length introduced in Nemat-Nasser and Obata 
(1988) to get proper asymptotic behavior of the above expressions in the short wing limit 
( l  ~ 0), i.e. to arrive at the Cotterell-Rice solution (Cotterell and Rice, 1980) for infinitesimal 
wings. 

0"  2 

Q t 

b 2ccos0  

O" 2 

Q r 

O 

F - F 

(a) (b) 

Figure 2. Idealizations of sliding crack (from Basista and Gross, 1997b) (a) Displacement- 
driven, (b) Force-driven. 

In the reality, the original sliding crack QPP'Q" (Fig. 1) is displacement-driven: the SIFs at 
the wing tips are directly proportional to the relative slip of the slanted crack faces. However, 
when the preexisting crack undergoes forward- or backsliding, its wedging action upon the 
wings may equivalently be seen as force-driven (Nemat-Nasser and Obata, 1988). In such a 
case, the wedging effect the slip displacement exerts on the wings is represented by two 
collinear splitting forces F - - 2 c r y *  2 . Assuming that the curvilinear wing cracks can be 

approximated by the straight ones whose orientation is to be determined from the maximization 
of K I , the estimates of the SIFs at the wing tips in Fig.2b are (Horii and Nemat-Nasser, 1986) 
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X , ( F , t , , , )  - 
Fs in0  

+ ~-/[crl, cos2(O + 99)+ o'2,. sin2(O + qg)+ r12 sin 2(0 + qg)] 

K H ( F , I , a  ) - 
- F c o s 0  

- ,f~-/[- 1(O-ll- cr22) sin 2(0 + qg)+ r12 cos2(0 + qg)] 

where l* - 0.27 c plays the same role as in the displacement-driven model. 

(11) 

3. DERIVATION OF STRAIN INCREMENT 

The next step of the analysis consists in the calculation of the inelastic strain increment 
induced by the frictional sliding along the preexisting flaw, the wing crack extension and its 
simultaneous rotation. The wing crack rotation is a by-product of the modeling of the wing tip 
path. Recall that the curvilinear wing is traced as a sequence of inclined straight cracks whose 
orientations 0 are determined maximizing K 1 for a given wing length l. The wing length itself 
is calculated from the K 1 = Kic condition. The inelastic strain increments are obtained from the 
fundamental relation (1) using the derived microstructural thermodynamic forces (7), (9) and 
the approximate expressions for the SIFs (10), (11). It is essential that the conjugate forces f~ 
be symmetrized in components of o and all three stress components be included when 
performing the differentiation in (1). Alter some computational effort, the final outcome in the 
global coordinates (x,, x2) reads (Basista and Gross, 1997b) 

Strain increment due to f r ic t ional  sl iding (b -driven and  F-driven model  alike) 

d ~ - [ -  sin 2(p 
eij coo~ cos2(p 

c~ 2('~ d~" + co o [ -2  sin ('~ c~ + (P) 
sin 2~p J cos(0 + 2q9) 

] 
2 cosq9 sin(0 + qg)J db 

(12) 

The following normalized quantities have been introduced in (12) and will be used in the 
sequel: co o -Nc2/Ao, "b-b/c, "{-l/c, where N is the number of non-interacting, active 

winged cracks in the representative surface element (RSE) of the area A0, b, 1, c are marked 
in Fig. 1. Note that parameter coo, which arises here in a natural manner from the structure of 
the potential A~,  is identical to the damage parameter introduced in Walsh (1965). In the 
literature, this parameter is also often referred to as the Budiansky-O'Connell (1976) crack 
density parameter. 
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Strain increment due to wing crack extension (b -driven) 

co o [-2 sin + cos(O + +) 
da'f - T g' (~') cos(O + 2+) 

cos(O + 2 + ) l _ _  
2cos+ sin(O ++)Jbdl  

~O,i [4o-' c~ ++)+4o'2 sin2(O ++)][�89 sin 2(0c~ ++)++) �89 2(Osin2( 0 ++)++)] 

+ o I [-sin2(O ++) cos2(O ++)-] 
[-(o'1 -o'2) sin 2( 0 ++)[_ cos2(O ++) sin2(O ++)J 

where g,(1)- ~/1/(l +l~ 

ld/ 

(13) 

Strain increment due to wing crack rotation (b =driven) 

d- o [-sin + sin(O + +) 
% - co~ [_�89 + O) 

-�89 + O)]~h,(~f)dO 
cos ~ cos(O + ~o) 

zl 2F - sin2(O + +)o-, 
+ COo I~l---~ 2 COS 

' 2(0++)(o, + )] ~cos o-2 dO 
sin 2(0 + +) o-: J 

where ha(l ) - ~/1(1" + 1") -  L~ln 77;- +2 +1 +1. 

(14) 

Strain increment due to wing crack extension (F-driven) 

''[ cos<O+' cos/O+2 ' E_____~og:t~{~ -2sin+ + -~ 
cos(O +2+) 2 cos+ sin(O ++) 

i , �9 2" ,,~ cos2(O++) �89 
~rCOo [4~, cod(O +~o)+4cr~ s,n (0 +~o)]k~sin2( 0 +~o) sin2(O +~o) ] 

+ E--~ I , ,~-sin2(O ++) cos2(O ++)] 
I dl 

(15) 

where 
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Strain increment due to wing crack rotation (F-driven) 

-8reff ~sin ~ sin(O + qg) 
do~,jO - co o E~ [ - �89 sin(2~o + O) 

-�89 sin(2tp + O)-] 
cos co o 

+co o 
2zr12 1 - sin2(O + ~o) o-1 

t 1 2(0 +(P)(o-l + ) E~ 7cos cry_ 
2cos2(O + qg) (% +o-2)Id o 

sin 2(0 + qg) o- 2 

(16) 

1"* r21" I~_.2. (~__;_~) ~ where h2(l ) - ~/1"(1 + l '*)-  -~ln~-;-  +2 +l + lJ. 

Having determined the inelastic strain it remains yet to compute the elastic part of the strain 
increment of the RSE containing isotropically distributed winged cracks. Within the present 
framework, this is done according to the relations (2) and (3) with the Gibbs potential 
determined by (5). The final form of the elastic part of strain tensor in the global coordinates 
reads 

Elastic part o f  strain increment (b-driven) 

7/" )"2 I dOl' cOs2(o + (P) 
de g'J - M'a~ d~ + co~ E--7- �88 (do-l, + do-22)sin 2(0 + (p) 

�88 (do-,, + do-22) sin 2(e + (p) 1 
do-22 sin2(0 + (p) 

(17) 

Elastic part o f  strain increment (F-driven) 

d e OOtj -2d~gij(b-driven) (18) 

The total strain increment comprises all the individual terms, namely 

d~j -deo% + do~ + dc,~ + dc ~ (19) 

A systematic discussion of the obtained equations (12)-(18) is provided in Basista and Gross 
(1997b). 

So far in this section we were concerned with forward sliding in loading regime. If the 
effective shear stress on a preexisting crack diminishes for some reason r,2 < 0 , then the 

sliding crack may undergo unloading. Various situations in unloading were analyzed in detail in 
Basista and Gross (1997a). 
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4. KINETIC EQUATIONS FOR INTERNAL VARIABLES 

The preceding section has shown how the inelastic and elastic macroscopic strain are related 
to the particular microstructural rearrangements induced by the sliding crack mechanism. The 
microfluxes d~; and their conjugated thermodynamic forces f, have been explicitly identified. 
The framework is now completed by the specification of kinetic relations for the rates d~,/dt. 
Since no crack-crack interaction has been so far included in the present model, it suffices to 
consider kinetic equations for three microstructural internal variables b, 1, 0 resulting from the 
analysis of a single kinked crack. Consequently, the overall strain may be estimated afterwards 
using a simple averaging procedure that sums up the individual contributions of all active 
cracks while accounting for the assumed spatial distribution of the preexisting flaws. 

In general, the slip displacement b is to be computed from the forward- or backsliding 
, - . . ,  

activation condition, the wing length 1 from the kinked crack instability condition, the 
orientation angle 0 of the equivalent straight crack from the maximization analysis of K~ with 

respect to O. The rates ~, l', 0 expressed in terms of the applied stress rates ~j are obtained 

imposing the consistency requirements upon the above conditions. 
It is assumed that frictional contact on PP" is governed by the Coulomb-Mohr law. Hence, 

the actual stresses acting on PP" at sliding are correlated according to 

~-,'~ : ~-~. - , u  o-(, ( 2o )  

where vc is the cohesion, p is the coefficient of dry friction and 

o-(~- o-I~ cos 2 to+cr22 sin 2 to+ ri2 sin2to is the resolved normal stress transmitted across PP'. 
The sliding activation condition is then obtained by combining the equilibrium equation (8) and 
the Mohr-Coulomb condition (20) for frictional glide to get 

~"= o'!, [costp (sin tp - p cos tp) + T cos(O + tp) sin ~p] 

- o-22[sin tp (cos tp +/.t sin tp)+ T sin(O + ~o)cos tp] 

+ r,a[cosZq9 +/~ s i n Z r  cos(O + 2tp)] + rc +c --1 Eel-0 

(21) 

As noticed by Moss and Gupta (1982), it is difficult to determine/~1 because the stress-crack 
opening displacement relation for the entire kinked crack is not available. Consequently, some 
approximate solutions were sought. For example, Moss and Gupta (1982) neglected the initial 
slit (c --+ 0), friction and cohesion and considered two limiting cases: 0 --~ 90 ~ (locally, mode-I 
crack) and 0 -~ 0 ~ (mode-II crack). Upon introducing a simplification that the wings grow 
parallel to the direction of the largest principal compressive stress o- 1 (i.e. 0 + to = ~r/2), these 
authors obtained from (21) that 

m 

bE~ (22) 
/~t -  4 
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Incidentally, an identical result was obtained in Basista and Gross (1997) while the derivation 
scheme itself was based on a somewhat different reasoning. Estimation of the elastic restoring 
forces makes the computation of b (normalized average slip) straightforward. Furthermore, 

A., 
the kinetic equation for b can now be derived from the sliding activation equation (21) by time 
differentiation. It is perhaps interesting to note that the present considerations provide a 
micromechanical explanation of the lack of the normality rule in macroscopic constitutive 
equations for frictional materials. Kestin and Rice (1970) and Rice (1971) proved that the 
normality rule holds if a particular flux depends on the macroscopic stress only via its own 
thermodynamic force. It can be inferred from (7), (8) and (22) that such a dependence does not 
hold for a material with sliding cracks (Basista and Gross, 1997a). We recall also an alternative 
algorithm for computing b proposed by Nemat-Nasser and Obata (1988). These authors did 
not analyze equilibrium of a slanted crack but derived b from the duality of K 1 factors by 
requiring that K 1 of the displacement-driven model (10) be equal to that of the force-driven 
model (11) when the sliding mechanism is active. 

The remaining kinematic variables l and 0 are obtained as functions of ~j from the 

following conditions: 

I K ,  = K , ~  

0K, (23) 

Kinetic relations for l (~j) and 6/(~j) follow from (23) by time differentiation. The resulting 

equations are algebraically quite involved, thus were solved numerically using the symbolic 
algebra soflwares. In the long wing limit these equations take much simpler forms and in 
uniaxial compression are even solvable analytically (Basista and Gross, 1997a). 

5. AVERAGE STRESS-STRAIN RELATIONS 

In the preceding sections, the preexisting cracks had fixed orientation and size. In order to 
compute overall stress-strain curves a homogenization procedure is necessary. Since crack 
interactions are not yet included, the overall stresses and strains may be approximated by 
simple area averages of the contributions of individual sliding cracks. Assuming a finite number 
of specific orientations of preexisting cracks, the average strain increment may be computed as 
in Nemat-Nasser and Obata (1988), from 

l R 

d-~,j ---~r~idcij(~or,COo(~Or)) (24) 

where R is the number of considered orientations q%. The strain increments under the 
summation sign in (24) are given by equations (12)-(19). For an isotropic distribution of 
preexisting cracks all crack orientations are likely to appear. From the symmetry arguments, it 
further follows that the shear strains in the global coordinate system (x~, x z) must vanish. 
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As an illustration of the developed constitutive theory, Basista and Gross (1997a) 
considered an example of uniaxial compression on Westerly granite specimens. The force- 
driven model mechanism (Fig.2b) was adopted for the computations of strain increments along 
the lines of Section 3. The following material parameters were assumed: 

E o = 58000 MPa, v o = 0.23, o-,c = - 2 0 4  MPa, 

/.t - 0.65, c - 5- 10 -4 m, K ~ c  - 0.7 MPa x/-m, 

r c = 1 2 M P a ,  09 o=0.375, R = 9 0 .  200[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 I 

01 . . . . . . . . . . .  ~ 0 t . . . . . . . . . . . . .  
-2 -1 0 1 2 3 4 5 -1 

(25) 

0 1 2 3 

STRAIN "10^3 VOLUMETRIC STRAIN "10^3 

(a) (b) 

Figure 3. Analytical predictions (solid lines) from Basista and Gross (1997a) vs. test data on 
Westerly granite (Zoback and Byerlee, 1975). 

In Fig.3a, b the obtained theoretical curves are compared with the experimental data of 
Zoback and Byerlee (1975). Simple as it is, this damage model predicts several qualitative 
features of the brittle response of granite: the overall trends in loading and unloading are well 
preserved, the lateral inelastic strain is substantially larger than its axial counterpart, the 
permanent set and hysteresis loops are accounted for. Note that the material parameters used 
in the computations are rather realistic and are documented in the referenced literature. 
Typically of all micromechanical models, the present formulation contains no fitting parameters 

6. INTERACTION OF FRICTIONAL CRACKS 

In this section, we shall report some preliminary results concerning the sliding cracks 
interaction effects and their incorporation in the present thermodynamic framework with 
microstructural internal variables. In general, crack interactions may be analyzed either 
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indirectly through one of the effective continua techniques (e.g. self-consistent method) or 
directly by formulating and solving an appropriate elasticity problem. In some simple cases of 
crack configurations, the integral equation method may successfully be employed to get the 
exact (analytical or numerical) solution to the elasticity problem in question. However, for 
large crack concentrations, the exact solution is practically out of our reach and the so called 
approximate direct methods offer a way out. Of several approximate direct methods dealing 
with crack-crack interactions (e.g. Gross, 1982; Horii & Nemat-Nasser, 1985b; Benveniste et 
al., 1989), the one proposed by Kachanov (1987) is chosen for its simplicity and accuracy. 

Consider a plate of linear elastic material weakened by N arbitrarily located rectilinear 
closed cracks under overall compression. The present analysis of crack-crack interactions is 
confined to the phase 1 (in the notation of Basista and Gross, 1997a) which stands for 
frictional sliding on preexisitng cracks with no tension wings yet. Within the present 
framework, the crack interaction effects (amplification or shielding) will influence the 
thermodynamic forces and the fluxes. In phase 1, it is sufficient to determine the actual shear 
stress (conjugate force) r~' 2 along the preexisting crack, and the average slip displacement 

m 
(internal variable) b from which the inelastic strains can be computed in the standard manner 
of Section 2. 
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Figure 4. Superposition of stresses for two frictional cracks under compression. 

The original Kachanov method has to be modified to account for cohesive-frictional sliding 
on closed cracks. In preparation for that, consider the superposition of stresses depicted in 
Fig.4. To facilitate the drawing, only two cracks are marked in Fig.4, whereas the equations to 
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follow are formulated for an arbitrary 2D array of N cracks. According to Kachanov (1987), 
the problem C can be represented as a superposition o f N  subproblems each involving only one 
isolated crack but loaded by unknown stresses r~2 L, o-~*~ L , (L=I,...,N). In contrast to open 

mode-I and mode-II cracks considered in Kachanov (1987, p.24), the signs of superimposed 
stresses in Fig.4 are strictly observed in order to avoid confusion among the several different 
stresses involved in the compression case. Recall that the continuum mechanics sign 
convention is used throughout this paper, i.e. compression is viewed negative. Consequently, 
for closed frictional cracks, it follows that 

- + (26) 

O-11 L -- O-l'l L -- (o'lrl  L -+- A o ' I L )  ~ O (27) 

where rl'2 L, cr~'~ L denote the actual (contact) shear and normal stresses existing on the faces of 

L-th crack, r~z L, cr[~ are the resolved (due to the remote loading ) shear and normal stresses 

L Acre] are the interaction terms, i.e. along the line of L-th crack in a continuous material, Ar~2, 
shear and normal stresses generated in the continuous material along the line of L-th crack by 
all other cracks. 

The key assumption of the Kachanov method is that the unknown crack interaction stresses 
L Acr~ are induced only by uniform average stresses (as yet also unknown) acting on the At12, 

other cracks' faces. Denote by P,f and T,f the standard stress fields that are generated in the 

continuous material by the K-th crack loaded by uniform normal and shear tractions of unit 
intensity, respectively. The standard stress fields can be found in Kachanov (1987) or in the 
related papers that are referenced there. The crack interaction stresses, generated in the 
continuous material along the line of L-th crack, can be expressed as 

(28) 

no sum over L; sum over K - 1 ..... N; (K ~ L) 

(29) 

where n, m are the unit vectors normal and tangential to the crack; ( ) denotes the average 

value of the bracketed quantity. Averaging (28) and (29) leads to 

(Ao -L) - _AlXl t (O-l'K) -- A1K~ (T1 "K ) (30) 

(Arl~) - -AE~ (Cry'K) - AE~ (r;  K) (31) 
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KL where A 0 are the transmission factors (interaction matrices) defined as follows 

; (X-- L) 

(32) 

In (32)1,2 summation is extended over K, while no sum convention applies to L. For 
convenience, the notation of transmission factors in (32) has been slightly changed as 
compared with the original one in Kachanov (1987). For example A2Xl L denotes the average 

shear stress (lower index 2) on crack L due to unit normal stress (lower index 1) on crack K. In 
practical terms, computation of the above transmission factors requires integration of the 
standard stress fields caused by the K-th crack along the line of the L-th crack. 

The actual stresses r~' 2 , Crll due to frictional contact on the L-th crack faces are interrelated 

through the Coulomb-Mohr law of dry friction, namely 

rl'2 L - r c -/~o-1'1L (33) 

Combining (33), (26) and (27) gives 

Tl2 L --('Z" c -- ~./O"; L -- Tlr2L) - (I../Ao'-I L -~- A Tl L ) (34) 

By averaging (34) and making use of(27), (30), (31), we obtain a system of N linear equations 

(6  xL - ,u A,~ - Az~ ) (rl 'f) - (r  C - ,ucr[~ - q~), (K ,L  - 1,2, ..., N) (35) 

The right hand side of (35) specifies the remote loading conditions and the friction-cohesion 
resistance on the considered crack. The crack array geometry and the influence of friction on 
the transmission of shear stresses are reflected in the left hand part. 

Equations (35) with the transmission factors (32) and a given loading (cr~, r~r~) constitute 

the governing system of equations for the average shear stresses (q'2x). To solve them, a 

numerical program, developed originally by Wagner and Gross (1988) for open cracks, has 
been extended here to account for the mode-II frictional sliding under overall compressive 
stresses. For a simple configuration of two inclined equal cracks (Fig.5a) under uniaxial 

compression, the obtained approximate solutions for (r1"2) - (r12 2) =-('tl~ ) have been 

compared with the 'exact' numerical results of Lauterbach and Gross (1997) who applied the 
BEM to solve the appropriate elastic boundary-value problem by means of the Kolosov- 
Muskhelishvili stress potentials. The curves in Fig.5b represent the average shear stresses 
acting on the individual cracks vs. the relative distance of crack tips. The solid lines depict the 
current results whereas the numerical solution of Lauterbach and Gross is marked by symbols. 
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Both solutions are practically indistinguishable. Note that for the most part 

configuration promotes shielding i.e. (r~" 2) diminishes as d/c becomes smaller. 

cr~ =-50.  MPa 

2d 

1 ~=45~ 

25.00 -- 

20.00 -- 

15.00 . . . . .  

rc = 1.0 Mpa, p = 0.1 

r c = 1.0 Mpa, p = 0.2 

/ ! 0.00 0.40 0.80 
d / c  

1.2 

(a) (b) 

Figure 5. (a) Two symmetrically inclined cracks under uniaxial compression. (b) Average shear 

stresses (r~" 2) on crack faces vs. relative distance between crack tips. 

Another illustrative example of two collinear inclined cracks is shown in Fig.6a,b. It is 
commonly known that collinear configurations of open cracks induce amplification of stresses 
and stress intensity factors. In case of frictional cracks this effect is maintained as seen in Fig. 
6b. 

Having computed the average stresses (Vl*zl'), it is now possible to determine the actual 

shear stresses v~'~ (thermodynamic force in phase 1) acting on the L-th crack faces. This can be 

accomplished upon computing Ao-~;, A r~ from (28), (29), then rl'2 L from (34), and finally r~'~ 

from (26). 
The next step is to determine the average relative slip displacement (internal variable) 

( b L ) - b - L o f  the points on crack faces. As stated in Kachanov (1987), the average 

displacement jump and the average tractions on a crack are interrelated through a simple 
(approximate) proportionality 

(36) 
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*L __ ( i f ; L ,  I,.12L) . The minus sign in (36)results  from the sign conventions applied to where t; 

stresses and displacement jumps. For the considered closed frictional cracks, it holds Crll L - 0 

and the proportionality (36) takes the form 

L zc ( Z.12L ) (37) 
b 2 L - ( b ~ ) / c  : E o  

Once the fluxes and conjugate forces are determined, the inelastic strain increments can be 
computed from the fundamental micro-macro transition relation (1). 

cr l = - 5 0 .  M P a  

2c " ~ = 4 5  o 
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r c = 1.0, /~ = 0.2 
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Figure 6. (a) Two collinear inclined cracks under uniaxial compression. (b) Average shear 

stresses (rl'2) on crack faces vs. relative distance of  crack tips. 

7. C O N C L U S I O N S  

In the first part of  this paper, we have reviewed our recent results regarding the sliding 
crack model of  brittle deformation within the context of Rice thermodynamic framework with 
microstructural internal variables. Two idealizations of  the basic deformational 
micromechanism were analyzed: the displacement-driven model and the force-driven model. 
The entire sliding crack was considered with energy dissipation on the frictional sliding on 
preexisting flaws, the wing cracks extension, and the wing cracks rotation. The latter was 
introduced to mimic the curvilinear path of  the wing tip propagation. Incremental stress-strain 
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equations were derived and applied to predict experimentally observed behavior of granite 
specimens in unconfined compression. 

The second part was devoted to the interaction effects of sliding cracks examined within the 
Rice thermodynamic framework. So far, only phase 1 (frictional sliding, no wings yet) was 
analyzed. The Kachanov (1987) strong interaction scheme was modified to account for 
frictional and cohesive resistance on closed cracks. Preliminary developments show that the 
model lends itself well to this method of modeling of crack-crack interactions. 
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The damage accumulated within the material element is associated with the physical plane 
and predicted by the contact stress or strain rule. For singular stress or strains regimes a non- 
local failure or damage rule is used. The application to both monotonic and variable loading is 
provided. The theoretical model predictions are compared with the experimental data obtained 
for notched specimens under combined tension and shear loading varying monotonically or cy- 
clically. The compliance variation is predicted from the known damage distribution on physical 
planes. 

1. INTRODUCTION 

The present work is concerned with the uniform formulation of damage and failure rules for 
materials subjected to monotonic or variable loading. A simple approach could be based on the 
elastic stress analysis with neglect of stress redistribution due to damage or plastic strains. The 
failure of brittle materials and high cycle fatigue problems could be treated within this ap- 
proach. The local or non-local stress condition on the physical plane element is used to predict 
crack initiation or damage growth. This approach differs from the elastic fracture mechanics 
where the elastic energy release associated with the plane crack growth is used as a critical 
factor. However, the fracture mechanics assumptions do not allow for treatment of crack ini- 
tiation processes from sharp notches, inclusions or grain boundary singularities. On the other 
hand, the proposed approach provides the simple tool to treat both crack initiation and propa- 
gation stages within the same constitutive assumptions. The experimental data validate the 
proposed model, though more ample empirical evidence is needed. The present model provides 
also the damage distribution on physical planes. The associated compliance variation can next 
be determined and the damage strain can be included in the analysis. 

The present paper synthesizes and extends the previous authors results [ 1-8]. The compre- 
hensive exposition of damage mechanics can be found in books by Lemaitre [10] and Krajci- 
nowic [9]. 
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2. N O N - L O C A L  B R I T T L E  FAILURE C R I T E R I O N  

Consider an arbitrary physical plane A and the local coordinate system (~1,~2,~3) (Fig. 1). In 
the global coordinate system (Xl,X2,X3) the origin of  the local system is specified by the position 
vector xo(xol,Xo2,X03) and the unit normal vector n(n~,n2,n3), specifies the plane orientation, 
where n, = cos(d~3,x,). 

The stress and strain tensors _0" and _6 provide the traction and strain vectors 2; and E. In the 
local coordinate system we have 

~ . ( r n l ,  r , ,2 ,o ' . )  = Ni jcr jknk,  

where N,j = cos(~X,,xj) is the transformation matrix. 
We have also 

E, (7"nl, Yn2 , e'n ) = No.r jknk , 

or. = cro.ninj, 6. = 6onin j ,  

1 [ 1 r . z  = cr~t;anj = cr~.t;oni = ~ ~ t;anj + tzjn,  , 

l [  1 r , z  = e~.t~anj = e~.t;an, = -~ e~. t;anj + t~an~ , 

(1) 

(2) 

where t x, = cos(~:x,x, ), Z = 1, 2. 

~3 
d. 

Fig. 1. Physical plane d with the associ- 
ated local coordinate system (~:~,~2,~3), and 
the global reference system (x=,x~,x3). 

The resulting shear stress and strain in the plane d 
are expressed as follows 

= , Y. = [7'.12 + 7'.2 . (3) 

Let us assume that the crack initiation and propa- 
gation process in the plane A depends on the contact 
stress and strain components, and also the damage ac- 
cumulation on the physical plane. The stress condition 
of  failure for monotonic loading is referred to the 
critical plane A~ on which the local stress failure func- 
tion reaches a maximum, thus 

(4) 

where Rfo is the brittle failure factor; R~, is the stress 
failure function, crc, rc are the failure stresses in ten- 

sion and shear. 
Let us note that the criterion (4) allows for specification of  the critical load and also of  

crack location and orientation as the maximization process is carried out with respect to x0 and 
n. The stress failure function is expressed in terms of contact traction components or, and r,. 
Depending on the material property this function can be assumed as normal or shear stress 
function or a combined function of different forms in tension and compression regimes, Fig.2. 

Consider, for instance, an elliptic condition for or, > 0 and the Coulomb condition for 

or. < 0, thus 
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~1 0.2 

t~ t~ 

Fig.2. Stress brittle failure function in the stress plane: a) elliptic condition for normal tensile stress 
combined with the shear condition for compressive normal stress, b) Coulomb condition with tension 
cut-off, c) shear condition, d) tension condition 

R~, ~ - ,  / l ( [ r ,  I + a ,  tanfp) ' 
Lr~ 

a.>_o,  

(9" n < 0 .  

(5) 

The stress failure function can be presented in the (an, r,) plane as the envelope of stress circles 
in the critical state. The critical planes a~, a2 are specified by the tangency points of the Mohr 
circle and the envelope, Fig.2. There are two critical planes for the Coulomb or shear stress 
condition and only one plane for the normal stress condition. 

For large stress gradients or singular stress regimes such as those occurring at vertices of 
wedge shaped notches the non-local stress failure condition is applied by averaging the failure 
stress function over on area do • do, Fig. 1, thus obtaining 

R r. = ~a~ R--. (o'. / ere, r. / %) - 1 R. d~:,d~2 = 1. (6) 

where R---~ is the non-local failure function. An alternative non-local condition can be obtained 

by averaging stress components acting the plane A 

a , ,  = ~ a , , d ~ l d ~ 2  r. = do 2 0 0 do 2 ' �9 

and substituting to (4), thus 
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R,o -~a3R-o(~. /~r  ~./~o) : ~, (8) 
The size parameter do (representing the size of the damage zone) can be specified by re- 

quiting the non-local condition (6) to be equivalent to the Griffith condition in the case of  ten- 
sile crack propagation. This provides [ 1 ] 

d 0 = -- , (9) 

where K~r is the critical stress intensity factor in Mode I. 
Assume now that the critical stress values crc and re depend on temperature To and the ac- 

cumulated damage ~o,  so that 

~o - ~o (To,~O.o)- ~oo (To)0 - ~~ ~ _- ~ ( r o , ~ ) -  ~oo(ro)0- ~ )  ~, (lO) 

where crr rr are the critical stress for the undamaged material and p is the material parameter. 
From (10) it follows that 

o ) .o=1-  o'~ = 1 -  L ( l l )  

and we assumed that the damage affects in the same way both critical stresses o'c and re. 
A more general case can be treated when the coupled stress and plastic damage a~o, a~p oc- 

curs accompanied by corrosive damage a~h. The effective damage on the plane A can be repre- 
sented as follows 

and 

(12) 

where ~o provides the combined measure of plastic and corrosive damage. 
The strain failure condition can be formulated analogously to the stress condition. Consider 

the failure strain function 

Rr~ - ~.,a~R~(c. / e c , Y . / Y c ) -  1, (14) 

where Rf~ is the failure strain factor, and ec, ?'c are the critical normal and shear strains. The 
failure strain function can be assumed in the form 

&(~. / ~ , r . / y o ) :  + (15) �9 

where ( c , ) :  e, for , ,  > 0 and ( , , ) :  0 for e, < 0. The non-local failure condition can now be writ- 

ten as follows 
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= a 1 Rf6 ~ln,x~R'-"s(sn/F-'r = ~n,x R e d ~ d ~  = 1. (16) 

where the size parameter d~ can be expressed by comparing (16) with the Griffith condition for 
the tensile crack. For the plane stress case we have 

= -- . (17) 
O" e 

Let us note that the stress and strain conditions are not equivalent and provide different pre- 
dictions. In fact, the value of  e, depends not only on or, but also on oh, o~2, acting within the 
plane A. 

3. E X P E R I M E N T A L  ANALYSIS OF C R A C K  I N I T I A T I O N  IN N O T C H E D  
E L E M E N T S  

Consider a plate with sharp wedge shaped notch of  the angle 2fl subjected to combined ten- 
sion and shear. In the local coordinate system (r, 69, the stress and displacement fields can be 
presented in the form [ 11 ] 

cr~ -(2r~r) 't'-' K~aij(oa ) + (2r~.) 't''-' Kdbij(oa), 
q; - ( 2 m ' )  't' K~c;(~9)+ (2rtr) ~t" Kdd,(,9). 

where the singularity exponents 2~ and ,;Ln are specified from the characteristic equations 

2~sin2a + sin2A~a = 0, 2tlsin2a - s in2~ la  = 0, a = rt - fl 

and the generalized stress intensity factors for Mode I and Mode II are defined as follows 

(18) 

(19) 

Fig.3. Special device for biaxial loading of plane specimens with notches 
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K~ al~m__,0[(2xr)l-'l' (r,~9)], Kd = l i m  [(2rw) l-'h' rra(r,~9)] = 0"3'9 ,9=0 r-cOt " (20) 

In order to analyze experimentally the crack initiation in notched specimens, a special device 
was constructed [8], Fig.3. The plane specimens are fixed in the device at an angle ~ with re- 
spect to the applied tensile force F. The tensile and shear forces acting on the transverse cross 
section are 

T = F sin V, P = F cosg  (21) 

The monotonic loading tests were carried out on polimethyi metacrylate (PMMA) speci- 
mens. Two notches of depth 25 mm were made symmetrically in the central specimen portion 
of width 12 = 100 mm. The specimens length is 1, = 200 mm, the distance between notch root s 
equals a = 50 mm and the radius of a semicircular notch equals r0 = 25 mm. The specimen 
thickness is g = 5 mm. 

a) b) 

la 

o o 
1 

[ , 
F 71 

Fig.4. Plane specimens with: a) sharp notches, 
b) semicircular notches 

The stress distribution and the general- 

ized stress intensity factors K : ,  Kn ~ were 

determined numerically by using singular 
stress elements. The details of  calculation are 
presented in the paper by Seweryn et al. [8]. 
The values of critical loads Fc at the crack 
propagation for varying loading angle ~u and 
the notch angle 2fl are plotted in Figures 
6a, d. The crack propagation direction & for 
varying angles and 2fl are shown in Figures 
5a, d. The value of the critical stress o-~ was 
identified by testing the specimen with the 
semicircular notch (2fl = 180 ~ 21 = 1) and as- 
suming ere to correspond to crack initiation at 
notch root. It was further assumed that 

0 < crdr~ <_ 1. The non-local size parameters do or dE were specified by determining the critical 
value of the stress intensity factor K~. This value was specified in terms of generalized stress 

intensity factors Kiar for 2fl = 200+60 ~ and the critical stress cry, thus 
1 

O'c (KI2c 12(1-21) 
KIc = T /21o" r (22) 

For PMMA the following values were obtained: ere = 115 MPa, K~c = 1.37 MPa m -~ do-- 0.09 
mm, d~ = 0.038 mm. 

It is seen that the use of the non-local stress condition (6) provides good correlation as re- 
gards to critical load variation with the loading angle ~ and the notch angle 2ft. Similarly, the 
crack propagation orientation is well predicted by the non-local failure condition. On the other 
hand, the strain failure condition did not provide good correlation with the experimental data. 
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4. STRESS C O N D I T I O N  FOR D A M A G E  A C C U M U L A T I O N  

Let us now extend the analysis of  the previous section by considering the accumulation of  
damage on the physical plane for variable loading conditions. The stress variation occurs within 
the elastic domain, so the compliance variation can be neglected and the damage growth can be 

related to elastic stress variation on the plane A, thus dc0.o = dco.a (E, dE,.O.o). 

Experimental data indicate that the high cycle fatigue damage occurs for stress path ex- 
ceeding the threshold values of  stress on the physical plane. We therefore introduce the dam- 
age initiation condition RoD(or., r.,.(2.o) = c specifying a domain in the plane or., r.. The damage 
initiation function RoD(or. lorD, r. ~to) is assumed to have the same form as the failure function 
Ro(or./orc, r./rc). The critical stresses o-~, rc are replaced by oro <- or~, ro < r~, where oro, ro specify 
the damage initiation thresholds in pure tension and shear. The damage growth occurs when 



1 5 2  

a) 
2.0 Zl r .... -s=rRgsTs - ?s6~FF6ff ............ 

"I i, nnnnn EXPERIMENTAL DATA 
l i - - - STRAIN CONDITION 

J', 2,8=20* dl 

' t '  ~1.5  , 
: w n 

z ~ JI 0 0 1 t J, o : / , 
i i :1, ~ ~ : r, o ~ ,, 

E : L L  - ~  . . . . . . .  - I  
0 lil I i i 

i i 
i i 
i i 

0.5 (deg)i 
(~ ........ i~  ....... 3~ ....... ~.'~ ....... ~'6 ....... ~ ....... ~o 

LOADING ANGLE ~=arctan(T/P) 
c) 

3.o r : : _ 2  - s i ~ s  ~6~6 , f 6~  . . . . . . . . . . . .  ! 
', r n - ' r n  EXPERIMENTAL DATA I~ 
i --- STRAIN CONDITION 

2.5 ' / d : !  I [ ]  

: 2,8;60* 
: / , 

o ~~ , [ z  ," ~ / ' ~ , "  
g 1.5 

( " )  ' 0 ~" 

o 1.0 ! - 
' (dog) o.5 o ........ i'd ....... .ii~ ....... i'~ ....... ~,'6 ....... ~'~ . . . . . . .  ~o 

LOADING ANGLE ~-arcton(T/P) 

b) 

!i r - - - - - s i ~  is -s-  ~:6 ~GF~gg . . . . . . . . . . . .  i 

l', - < 2 . 0  2,8 40 
,.. p 
z~ ~E B / i  
-g i B t I  
g t', ~ o ~ _  - " ' -  
E .,, _,, ~. w 
~ 1.0 

0 . 5  _-1; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  !,".", ~! 
0 15 30 45 60 75 90 

LOADING ANGLE l#=orcton(T/P) 
d) 

s.o ] r  : :  : : - s : r ~ E g s -  ~ 6 g Z d ~ 6 ~  . . . . . . . . . . . .  i 
~', nnr'rn EXPERIMENTAL DATA 

4.5 ] : - - - -  STRAIN CONDITION 1~ 
~1' l/J 

,~ 1, 1,-~, : 2,8=80* 

>~1i / 
~ / z 3.0 

2.s I', / ~  ..J 
_ El I.-- 
ix: o 1.5~! Z , , . / B  n 

~ o  
1.O 

o.~ ; .................................................... f.~.~. ?.! 
0 15 30 45 60 75 90 

LOADING ANGLE ~=arctan(T/P) 

Fig .6 .  C r i t i c a l  l o a d  v a l u e  FJPc  vs  l o a d i n g  a n g l e  ~u for  s p e c i m e n s  w i t h  n o t c h e s  o f  a n g l e s :  a)  2,0 = 20  ~ 

b)  2 f l  = 4 0  ~ c)  2,,8 = 6 0  ~ d)  2,3 ' =  80  ~ 

: v}  >l, Rroo ~Roo ~" ~" 

where  Rf~,o is the damage  initiation factor. For large stress gradients the non-local  condit ion 
should be used,  thus 

, - ~ a : ~ / ~ - g  I I R(~o , d ~ , d ~  = I. 
(""0) ~"' "'L"o o o 

o r  

(24)  

( 2 5 )  
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Rm<l 

Fig.7. Local brittle failure and damage initia- 
tion curves in the stress plane 

follows 

where 

and 

The stress values O-o and ro depend on the 
temperature To and the accumulated damage, so 
that 

, -- )q cr o =O'o(T o cono)=Croo(ToX1 o,~ 
' (26) 

, - - ) q  ro =to(To co,~)=roo(ToX 1 co,~ , 

where q is the material parameter. 
Consider now the domain of damage accu- 

mulation Of, which in the plane (cr,,r,) is 
bounded by the curves R,~o = 1 and R~, = 1, 
Fig. 7. Introduce the non-dimensional factor 

Roo~ = R~ / Roo. (27) 

The damage growth can now be expressed as 

d %o = eo(Ro)&o, (:8) 

d/~o _{0dRo for dR o >0  and Roo>l  
for dR,,_<0 or Roo_<l' 

(29) 

OR~ OR~ d .(2,~ (30) 
+ -~r~ dr" + c3.r 

where the last term accounting for damage effect can be neglected in most cases. The damage 
accumulation occurs for stress increment vectors directed into the exterior of the domain 
Ro = const, Fig. 8a. 

An alternative specification of loading-unloading domains is shown in Figure 8b. The incre- 

ment d/~ o is now specified as follows 

8Ro 0/2o 8Ro 8Ro 
d/~ o = ~ d c r , ,  + d " + ~ d r " ~ :  + d.(2,,,,. 

00" n ~ Tnl OT.2 ~,.('2n o 
(31) 

The stress increments d&.,di. ,  (i = 1, 2) are associated with the moving loading-unloading 

domain in the plane (or., r.;). The full unloading occurs when the stress vector is directed into 
the interior of corner domain PAB, thus 

and 

dd  n = d o n  for do'~_>0 and o'~_>0, 
dt~ - 0 for dcr~ < 0 or crn < 0, 

(32a) 

dz: m - d r  m for vmdr m_>O, 
dz:,,. - 0 for rmdr~; < O. (32b) 
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L~ 

[. / ~r F 

- - - r  
Fig.8. Damage initiation and stress failure curves in the (cr.,r.i) - plane: a) loading-unloading domains 
specified by the curves Ro = const, b) loading-unloading domains specified by straight lines or.,= const, 
r., = const. 

Moreover, the damage initiation condition is exceeded. The inequalities (32) specify four do- 
mains I, II, III and IV of full loading (I), shear loading - tension unloading (II), full unloading 
(Ill) and tension loading - shear unloading (IV). 

For large stress gradients, the non-local condition is used, so that 

do do 

d0--H-! ! d/~ d ~ d ~ .  (33) 

The form of the damage accumulation function ~(R,,)  was assumed as follows 

~u,,(R~,) = A~ (34) 
1 -  Rr 1 -  R~o c ' 

where no and Ao are material parameters. 
A simpler version of the model can be obtained by assuming crc and rc to be constant, 

R, ,  = R, , (cr . ,  r.), and 

0 

The crack initiation condition occurs for the critical value of co.~, thus 

Rd = ~a~co.,,. = 1. (36) 

For large stress gradients, the non-local condition (28) is applied. 
The fatigue crack growth condition can be expressed similarly to (6), namely 

_  a05[ d ], 
where Ad is the parameter of crack growth. 

Assume that the damage initiation corresponding to the condition Roo = 1, and the crack 
initiation corresponding to the condition R~o = 1 are expressed by similar functions, 



155 

Cro 
crc % 

(f_< R,, < 1). For the damage accumulation function (34), we have 

Rd =~.a~ I d l  1 - f  -1 .  0 
where 

(':-/3" - ( "~ 
PcPoJ 

ro 
- - f Introduce within the domain Of a one parameter family of curves R,, = const 

(38) 

(39) 

and P, Po, Pc are shown in Figure 8. 

5.  E X P E R I M E N T A L  V E R I F I C A T I O N  O F  NON-LOCAL FATIGUE C R A C K  
INITIATION CONDITION 

In this section we shall present the experimental data concerned with the crack initiation in 
plane elements with wedge shaped notches subjected to cyclically varying tension and shear. 
The specimen thickness is 5 mm, notch angles are 2fl = 40 ~ 80 ~ and 180 ~ (semicircular notch). 
Figure 4 presents the dimensions of specimen made o fPMMA (,,Perspex"). The cyclic loading 
between zero and maximal force value with the frequency 3 Hz was executed in a specially de- 
signed device allowing for varying specimen orientation with respect to tensile force direction. 
The experimental details are provided by Molski and Seweryn [ 12]. 

The number of cycles corresponding to crack initiation at the notch root was specified by 
using the non-local crack initiation condition (33), (34) and the normal stress function Ro. The 
crack initiation can now be expressed as follows 

re ) na+l ] 
R d - Nf max__ .A~,,  (~9)- cr o - 1, 

(~) L \ o-c _ cr o 
(40) 

where r, oa are the polar coordinates with the origin at the notch vertex, Nf is the number of cy- 
cles corresponding to crack initiation. The averaged stress amplitude equals 

1 do 
(41) 

Using the asymptotic representation of stress state near the notch vertex, we have 

A~9 a = .1_21 + , ( 4 2 )  
21 (2 rdo ) AIi (2nao)'-&' 

where AKr AKn ~ are the amplitudes of generalized stress intensity factors in wedge shaped 
notches. Equation (42) can be rewritten in the form 
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&(2~o) 1-~' 
~:~ (P)fi, (8) ) (43) cos ~, + sin ~ , 

2,u (2rdo) l-x" 

where coefficients ~ and 2in are determined from the numerical solution by the finite element 

Table 1. Experimental results of fatigue 
tests for PMMA-specimens with V- 
notches [ 121 

No. 2fl V AF Nf 
[deg] [deg]  [kN] 

1 40 0 1,95 1 
2 40 30 2,20 1 

i 

3 40 60 2,56 1 
4 40 75 2,78 1 
5 40 30 1,80 i 4 
6 40 75 2,20 15 
7 40 30 1,70 ] 26 
8 40 60 2,00 59 
9 40 75 2,00 122 
10 40 60 1,80 169 
11 40 0 1,60 310 
12 40 30 1,50 395 
13 40 0 1,40 1832 
14 80 0 2,25 1 
15 80 30 2.64 1 
16 80 60 3,35 1 
17 80 75 5,03 1 
18 80 75 4,02 3 
19 80 0 1,90 19 
20 80 30 2,10 48 
21 80 60 2,50 53 
22 80 75 2,75 126 
23 80 30 1,80 528 
24 80 0 1,70 579 
25 180 0 11,50 1 
26 180 0 8,00 266 
27 180 0 6,50 2226 

method (~ = KI a / P, ~, = K,~ / T ). 

Introducing the effective normal stress ampli- 
tude 

Acre. = max Affas  (0 ) ,  (44) (a) 
the number of cycles corresponding to crack ini- 
tiation at the notch vertex is expressed from the 
simple relation 

I AO'az - or~ t I o g g f  = - ( .  a + l ) log . (45)  
O" c -- O" ~ 

It is seen that the non-local crack initiation condi- 
tion provided simple relation for Nf, analogous to 
the one-dimensional condition. Figure 9 presents 
both the predicted curve and the experimental 
data. The values of the critical stress ere = 81.2 
lk~a and Of the size of damage zone do= 0.164 

mm were specified from the monotonic loading 
test. The value of Cro and no were specified from 
uniaxial fatigue tests, obtaining no = 10.7 and 
Cro= 21.6 MPa. It is seen from Figure 9 that fair 
agreement was obtained between model prediction 
and experiment. The experimental points lie within 
15% scatter layer with respect to the theoretical 
curve Acr, z - Nf (only two experimental points for 
2fl = 80 ~ and ~ = 75 ~ lie outside the scatter layer, 
which may be due to imperfection in specimen fab- 
rication). The agreement can be regarded as satis- 

factory, noting that for static tests of PMMA the experimental scatter lies within the range 
+ 12% (cf. Williams [ 13 ]). 

It should be emphasized that the non-local crack initiation condition from sharp or rounded 
notches provides an effective tool for quantitative prediction. The crack propagation process 
can be treated in a similar way. 
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6. COMPLIANCE VARIATION OF THE DAMAGED MATERIAL 

1~176 9 0  "- .. 

ao " - .  

Oz 7 0 | . .  ~ ..m..EL. - 

, I 
m 5o 

z 

5 2O o I t-rrrn EXPERIMENTAL DATA 

I NON-LOCAL CRITERION 
"' I0 ERROR 15% 

0 .w . . . . .  ,.,1 . . . . . . . .  1 . . . . . .  ,.i . . . . . . . .  ) 
1 10  10  = 10 3 1 0 '  

NUMBER OF CYCLES - Nf 

Fig.9. Equivalent stress range AC&z vs number of 
cycles to fatigue crack initiation for biaxial loading 
(PMMA-specimens with V-notches) [ 121 

So far, we neglected the effect of com- 
pliance variation of the damaged material. 
However, for concrete, ceramics, and met- 
als this variation may be significant in the 
later stage of damage accumulation, and 
effect the stress distribution. The problem 
of variation of the elastic compliance tensor 
due to damage was treated in numerous pa- 
pers, cf. Budiansky and O'Connel [14], Or- 
tiz and Popov [ 16], Horii and Nemat-Naser 
[15], Lubarda and Krajcinovic [17]. The 
compliance variation was related to the 
known damage tensor or crack density 
within the microelement. 
In this section, we shall present the method 
of description of compliance variation due 
to damage distribution on all physical 
planes. Assume the strain decomposition 

(46) 

where ~ is the elastic strain tensor of the undamaged material and C,jkt is the compliance ten- 

sor of the damaged material. We have 

�9 kl - C,jkl ~rkt = C~jktO'kt, (47) 

where Cu~ t is the compliance tensor of the undamaged material and Cv~ t is the compliance in- 

crement due to damage. For stress and strain increments (or rates) we have accordingly 

) "d 
~iJ - - ~ ;  + ~i d = kl Jr-ctdk, (~Tkl + Cij.klO'kl . (48) 

The damage strains on the physical plane can be expressed as follows 

d d d i d (  ) 
~'n = CijkltTklHiFI j , )lnct -- -2 CijkltTkl t triH j q- t ctjFli �9 (49) 

where a = l, 2. Noting that n k n  k = t l k t l k  = t 2 k t 2 k  = 1 ,  and using (3), the expressions (49) can 
be presented as follows 

6~_  d 
C~.kln, n j n k n l c r  n - C d c r . ,  

 d_l d I( X )1 -~Cij.kl t l jYI  i + tliYl J. tliFlk + t l k t l l  Tnl -- Ctdl Tnl , ( S O )  

=' [( 1( )1 -4 C i.ld k l t 2 j. FI ' .q- , 2 , FI j t 2 l FI k .Jr , 2 k Fl l Tn 2 -- c dt 2 Tn 2 , 



158 

where C~ a , C~, Cta2 represent the compliance variations due to normal and shear stresses on the 

physical plane. 
Consider now a finite number N of circular cracks in a material element of volume V. The 

elastic energy of the element is a sum of elastic energy ~ in the undamaged material and the 
energy W a due to damage, thus 

N 
~ / ' ( I~ )  = W e(O')-k- Wd(O') -" We(O)+ Zw"d  (o'). (51) 

z=l 

In the case of a single crack of radius 1 z within the plane A (Fig. 10), subjected to normal 
stress cr ff , the energy portion W a has the form (cf. Sneddon [ 18]): 

where d,  = 16 ( 1 - v  2) H(cr#)is  the Heaviside function, H(cr #) = <cr#>/cr~ z . 
3E ' 

Accounting for the normal opening mode, the elastic energy is expressed as follows 

It 

/ 

Fig. 10. Circular cracks of 
radius l, 

where n x is the unit normal vector specifying z-th crack orientation. 
The compliance increment due to microcracks can then be expressed as follows 

! 'r )~ W= l e 1 'Y'~d n (o'if' e(crff). (53) -~ O'ijCij.klO'kl dV  +-~ Ix 3 
z = l  

Consider a material element of volume Vo with No circular mi- 
crocracks. Neglecting the effect of crack interaction the specific 
elastic energy of the elements equals 

W l d n NZ~=IIz3(yIZI~7.U. KIfl2H(I~I.~) 
V D - 2 croCv~'crkt + 

-- -'~O'q. Ciy.ekl -F-~D Z l z a " z " z " Z n F H ( c r  f crk, (54) -- '~i '~j '~k 
Z=I 

(55) 

If the crack density distribution p,(n) is specified together with the crack diameter distribution 
l,(n), the compliance increment due to damage can be presented in the form 

C,,.{,- d. f 2rr, aa pn(n) In(n)H(crn)%nynkn I d.(2 = I Gdn (n) H(crn) HiMjHkH l d~'-2, 4n 
(56) 

where the element is assumed on a cylinder of the radius bD and height aD. 
For a combined tension and shear loading, neglecting friction and dilatancy effect on the 

crack interfaces, the elastic energy increase due to damage equals 

(52) 

d 3 Z Z Z X c~.~/- % = 
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W. Zd : ~_[Z31 [dn(V ,  E X o . n Z ) 2 H ( o . f f  ) +  dt(v, EXTff )2], ( 5 7 )  

where d n and d t depend on elastic stiffness parameters. The compliance tensor C~% now 

equals 

d I. ,~--~ (d  n z H(o"~ d t T. Z Cij'kl--VD~=ilz3 Qijkl )'4- ijkl) (58) 
where 

ai~kl -- ~Z  ~Z ~Z~',Z "'i ,Lj "'k "'l , 

Tij.kZl : t lZj.FI Z +t l i  l'l j l ll ?l k 4" t lk l~l I ) +  l ~j. l'li z "4" ' 2i ?l j t 2 l Fl k -k- 

When the distributions p,(n) and/.(n) are known, the expression for Co d becomes 

(59) 

where 

Co d, = ~(G: (n) Q~k, H(cr.)+ G d (n) ~k,) dO. 
4n 

B, n . ( " ) t . ( . ) ,  S, : a, 
2r~a D 

(60) 

An alternative way of calculation of compliance increase due to damage distribution c~(n } 
was proposed by Seweryn and Mr6z [7]. It is assumed that both normal and shear damage 

strains e d = 6d (or., CO.), y d = y d (%, CO.) are induced on the physical plane. Assume the fol- 
d lowing relationship between co. and z. 

d An l-c~ trn= (o',), 

where A., q" are material parameters.. 
Let us introduce the following distributions scalar and tensors [ 19] 

d* = d Co d* = I C. d (n) d.O. C,}* = I C. d (n)n,n I d.O, C,,kt I C, (n) n, nynkn , dl-2.. 
4n 4n 4n 

(61) 

(62) 

The compliance tensor Co~ l is now determined from the relation 

Cff.k~ 315( d" 2 Co d~ ) 
-- 3 ~  Cij'kl -- -3 Aijkl "4- - ~  ]iJ'kl ' (63) 

where fourth order tensors AUk, and Io~, are defined as follows 

1 / d* d* d* / Ajjk, : g~4jCkl "at- ~klCij. "+" 4k C fl -I- 4,cd; -t- Sjk C d* Jr" Sj, Cff* 
1 (64) 
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For the plane case the integration is performed over the circle of unit radius (.(2 = 2rt, 

dO  = d6I). Introducing the scalar Co a* and the tensors C~* i C0a~ 

Co a * -  .[C~(,9)d,9, C,~*= ~ C~ (~9) n, nj do a, C~ 1 = I C~ (,9) n, njnknz d~9 (65) 
2n 2n 2n 

the damage compliance tensor is specified as follows 

_ Co a" C~.k t = ~_C0.kz8 d* -rt6 Agkt + - ~  Igu, l . (66) 

a)  b)  

1.0 . . . . . . . . . . . . . . . . .  

0.8- ~ ~ '  
"3t o ' ( ~ ) / c r  / ~ E, ~ 10 . /  

n . =  I 
p = I 

0.2 

~o (~/a) 
o . o /  . . . . . .  ! o.o o.b 0.'5 0.8 1.b 1.'~ 1.s 

b 
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Fig. 11. Diagrams of stress-strain, damage, and critical stress evolution for two different sets of material 
parameters [71: a)f= 0,4, p = 1, q= I, Ao= 0,3, no = 1, A,Eo = 10; b)f= 0,2, p = 2,5, q = 2, Ao = 0,6, 
no = 1, A,Eo = 50 

Let us consider now the case of uniaxial tension for which the damage growth is dependent 
on the normal stress (oo/rc ~ 0). We have 

d/~,, = (do' .)  + p<cr.) dco. (67) 
_ _ ) p + l  " 

O'co ( l  (,On) p O'co (1 O) n 

and the growth of  damage is specified by the relation 

(do' .)  
d o , , = (  p*<cr.) )) ' (68) 

where the damage accumulation function is 

- Ao o<0-  s) )  l-f (69) 
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The resulting relation between the tensile stress and strain is obtained in the form 

6E o 
cr - . , (70) 

I+AnE o (On H(a) 
1-CO n 

where E o is the initial value of the Young modulus 

Figures 11 present the stress-strain, and damage evolution curves and the variation of a~ on 
the plane normal to tension axis. It is seen that depending on the values of A,Eo, q" and p the 
stress strain curves may have different character. In fact in Figure 11 b the curve exhibits both 
stable and unstable (softening) response. 

7. CONCLUDING REMARKS 

The present paper provides the uniform treatment o f  damage accumulation and failure of 
materials for both monotonic and variable loading. Instead of formulating the constitutive 
equations for a volume element, the damage is associated with the physical plane and ex- 
pressed in terms of contact stress components. The damage distribution ~ (n )  can then be de- 
scribed and the critical plane can be specified. The non-local failure condition and the damage 
growth rule provide the possibility to treat both regular and singular stress regimes. Also the 
crack initiation and propagation can be studied within the same constitutive assumptions. The 
present approach can then be applied to predict brittle failure of structural components with 
notches and also high cycle fatigue amplitudes for multiaxial loading. The prediction of com- 
pliance variation due to accumulated damage on physical planes enables the treatment of dam- 
age problems with account for stress redistribution due damage strains. The presented frame- 
work seems much simpler than the traditional damage models employing damage tensor state 
variables and representation of free energy in terms of strain and those variables, cf. Krajci- 
nowic [9] or Lemaitre [10]. 
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1. ABSTRACT 

This paper describes a micromechanical model of the constitutive behavior of unidirectional 
fiber composites in which nonlinear behavior arises solely from the force-separation response 
of the interfaces. The direct method of composite materials theory is employed to obtain the 
effective property relations for a representative volume element while a local analysis of a 
solitary inclusion problem yields kinetic equations governing interface separation components. 
The resulting model, which involves no adjustable parameters, falls within the conceptual 
framework of continuum damage mechanics with "damage" variables that have a precise 
geometrical meaning. For equibiaxial loading the single damage variable is shown to be 
equivalent to the area density of voids surrounding the fibers. For complex planar loading more 
damage variables occur and these are shown to be the expansion coefficients arising in an 
eigenfunction representation of the average displacement jump at the inclusion-matrix 
interface. Local fields are determined by the dilute estimate and the Mori-Tanaka estimate 
assuming smooth interface response governed by a Needleman-type normal force-separation 
mechanism. Explicit results are presented for transverse uniaxial tension and transverse uniaxial 
compression loading of a composite reinforced by fibers in dilute concentration. 

2. INTRODUCTION. PLANAR BULK RESPONSE. 

In conventional damage models of brittle media the damage process typically involves the 
evolution of distributed cracking from a virgin reference state through complete failure defined 
in some physically meaningful, yet mathematically tractable, manner. By contrast the model 
described in this paper employs the term damage to mean the process by which the stiffness of 
a fiber composite degrades owing to the nonlinear separation of the interfaces beginning with 
initial interfacial cohesion (Fig. l a) through intermediate debonding (interface forces are active) 
(Fig.lb) and terminating with partial or complete decohesion (portions of the interface are 
essentially free of interface force) (Fig. 1 c). The present work concerns the behavior transverse 
to the fiber direction so that at the termination of the process (in which a significant part of the 
interface has lost cohesion) the composite may still support transverse load (primarily by the 
matrix) as well as axial load. The term damage is employed in this work because the 
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Fig. 1 a. Reference state. Fig. 1 b. Intermediate state. Fig. 1 c. Decohered state. 

micromechanical model has the mathematical structure of continuum damage mechanics, i.e., a 
relation between stresses and strains and certain other "damage" variables which in turn are 
governed by their own kinetic equations relating them to stresses and/or strains. In practice, 
the direct method of composite materials theory is employed to yield an effective property 
relation for the representative volume element $ (RVE) while interface jump boundary 
conditions of a local, solitary inclusion problem yield the kinetic equations. 

2.1. Bulk response.  The  dilute est imate .  
An illustration of this idea is contained in the following problem of planar bulk response of a 

unidirectional fiber composite in dilute concentration [ 1 ]. Thus, assume the existence of an 
RVE through which randomly distributed fibers embedded in a matrix phase may be modeled 
as effectively homogeneous and transversely isotropic. The effective transverse bulk modulus 
K ~ relates equibiaxial, transversely plane stresses and strains through the relation, 

= (1) 

where 20 is the two dimensional trace (tr2S) of the stress tensor (S) and 2e is the plane strain 
dilatation given by the two dimensional trace of the strain tensor E. A standard result of 
composite materials theory relates the effective moduli of the composite to the moduli and 
phase volume averages of the constituents provided the mean strain (or stress) in the fiber 
phase is know as a function of prescribed uniform boundary condition. If displacement 
discontinuities are allowed to develop at the fiber-matrix interfaces then the effective property 
relation depends on interfacial displacement jump components as well. Under these 
circumstances the relation assumes the form [2,3], 

I 1 1 1 2~: 
2-7 ,+c 

,) 
2K + ~ + ~1, (2) 

where e is the mean effective strain, 6 is the mean stress, ~:+ (K) is the bulk modulus of the 

/v matrix (fibers), and c is the fiber volume concentration defined by ~ vol(f~,) o1(~). In (2) 
i=! 

the quantity N- is the mean stress in the fiber phase, 
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N 

~"] vol(K2i )~ i 
- -  i=, ( 3 )  
0 - -  N 

2vol(n,) 
i=l 

while the quantity ,~ characterizes the contributions of  interfacial discontinuities to the mean 

effective strain and is given by, 

N 

c~ .[ lul. n da 
i=, o~, (4) 

2~ vol(n~) 
i=l 

Note that f2~ is the region occupied by the i th fiber with unit normal n, ~, is the mean stress in 

the i th fiber and Iul indicates interface displacement jump. In order to apply (2), (3) and (4) one 
needs to know the displacement jump at each fiber-matrix interface as well as the mean stress 
in each of  the fibers. The difficulty involved in obtaining these quantities has given rise to 
various and competing ad hoc estimates of  local fields. Consider the situation where the fiber 
distribution is such that interaction effects between the fibers can be ignored. Under these 
circumstances each fiber can be regarded as isolated and subject to the same remotely applied 

equibiaxial stress field S = o(ea | e 1 + e 2 | e 2 + 2v + e~ | e~) where unit vector e3 is directed 

along the fiber axis (Fig.2). Then (3) and (4) become, 

G -13',  , 

c ~ (5) 
2vol(fl ,)  lui- n da , i = 1,2,.. . ,N . 

i 

e 2  

r 

Fig.2. The solitary inclusion problem. 
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In order to complete the specification of the solitary fiber boundary value problem, assume that 
a Needleman-type [4,5] cohesive zone of vanishing thickness surrounds the fiber. If the 
interface is assumed uniform and incapable of supporting shear then the interface force- 
separation relation is given by, 

s , ( n ; u ) -  f(u)n , (6) 

where u(=lud/R) is the normalized radial component of the interface displacement jump. Now 
assume that the elastic fields are rotationally symmetric so that u(=u0) is uniform, independent 
of interface coordinate 0. (Note that depending on the form of f non symmetric solutions may 
exist to this problem as well [6,7,8]). Then (52) becomes simply ,~=cu0. Furthermore, it can be 
shown [ 1,9] that, 

~  - f ( U o )  , i = 1 , 2 , . . . , N ,  

F(uo" o ) =  Uo - OtoC~ + ot ,f(Uo)- 0 ,  
(7) 

where the coefficients or0, (/,1 are dependent on the matrix and fiber elastic moduli. Combining 
(2) and (7) and noting that ~=cu0 yields the system, 

0~. o 
- ~(o, o 0 ) -  o~o + ~ o 0  , 

0(, i 

F(m o, o) - m o - COtoO + ot,cf(o o) - 0 . c .  0 . 

(8) 

where the coefficients (zi, i-0,1,2 are given by, 

1 1 1 1 1 
ct o - 2 K  ~ + ~ ,  c t l -  + ~  , ct 2 = ~ +  

21Lt + ~ 21.t' 2K + 

c ( K  ' - ,c-)(~* + K : ' )  

2K'2(gt+ + K-) (9) 

E q u a t i o n  (81) is the effective property relation and (82) is the kinetic equation governing the 
local evolution of interface separations. The quantity m0(=cu0), regarded as the damage 
parameter, is a measure of the void area density in the plane of the cross section of the fibers. 
To see this simply note that cu0 is NrtR|u,l/area(~) (N is the total number of fibers) so that, 

total void area 

area(~) 
2 = 20 0 + 0(030). (10) 

Thus to a term of order O(o0 2) o0 is one half the area density of voids. Note that while this 
correspondence is consistent with the original formulation of scalar damage as the area density 
of voids in a cross section (Rabotnov [10]) its meaning is nevertheless different. In the classical 
sense the void area density measures the loss of load bearing capability of material. The 
evolution of damage in this sense represents both the nucleation and growth of traction free 
defects. In the sense used in this paper the number of voids is fixed (by c) and equal to the 
number of fibers. Damage evolution in our sense means the growth of voids at the fiber-matrix 
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interface from initial coherence through complete decohesion when the voids are essentially 
traction free. 

The system of equations (8) is complete once the functional form of the interface force law is 
prescribed since we assume that the elastic properties of the constituents and the fiber volume 
concentration are know a priori. Now assume that the interface force magnitude f is such that 
it is momotonically increasing on (-oo, Umax), monotonically decreasing on (Um~x, oo) and such 
that Umax>0, f(0)=0, and Lim f(u0)=0, u 0 1" u v ~ (u . . . .  oo). By (8) the undamaged state c00=0, 
corresponding to perfect interfacial coherence, coincides with the unloaded reference state. 
Furthermore, the fully damaged state is obtained from (8) by letting f(co0)=0 for co o ;~ 0 so 

that, 

o 0-cot0o or u 0 - u  v -  + o , 

1 I 1 c(__~l+ _~l+~]t~ 
g = g v - 2 - ~ ~  2--~ + k2K +21a ./_] " 

(11) 

In (11 l) Uv is just the normalized radial displacement of a solitary void while (112) is the stress- 
strain relation for a composite containing a dilute distribution of cylindrical voids. Note that if 
the fiber-matrix interfaces are regarded as rigidly bonded then co0=0 for any load and (81) yields 
the stress-strain relation, 

1 I 1 cOc+~_)c-)(I.t~+)c+).lo " (12) 

Equations (112) and (12) are consistent with well known results of voided and rigid interface 
composites [ 11 ]. 

Finally, it should be pointed out that the damage model is self consistent in the sense that an 
applied boundary strain yields an effective stiffness which is the inverse of the effective 
compliance obtained through (8). This has been demonstrated in [ 1 ]. 

2.2. Bulk response. The Mori-Tanaka estimate. 
The Mori-Tanaka estimate [12] as applied to composite media [13] is one of a number of ad 

hoc models designed to incorporate aspects of inclusion-inclusion interaction at non dilute 
concentration in the estimation of the mean stress or strain in the inclusion phase. Unlike the 
self consistent and three phase estimates which surround the inclusion with an effective 
medium or an effective medium-matrix shell, the Mori-Tanaka estimate assumes that 
neighboring inclusions act to modify the matrix stress (or strain) field "seen" by a 
representative inclusion. 

For the problem of bulk response this assumption means that we must estimate the mean 
fiber stress and interface displacement jump in a solitary fiber problem similar to that used in 
the dilute estimate except for the fact that the remotely applied stress is the mean stress in the 
matrix ~+. (Recall the relationship, for two phase composites, 
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t~ - ( 1 -  c )~  + + c~-  , (13) 

where ~ is both the mean equibiaxial stress and the uniform boundary condition.) Thus, the 
relation (2) remains unchanged but (7) assumes the form, 

~'i -- f (Uo),  i =  1,2,..., N ,  

F(uo;O) = Uo -Oto ~+ + ot,f(Uo) - 0 .  
(14) 

Now use (13) to eliminate ~+ in (14) noting that ~ -  - ~ - i -  f(Uo), i=1,2,.. . ,  N. Then the 

governing equations are of  the form, 

(~0 
- o o )  - fi:  + fi- Oo , 

F(o 0,a)  - 03 0 - c&0cY + &,cf(030) = 0 , 

(15) 

where the ~i  a re  given by, 

,(, +) ,(c 
z-U+ , 2-U+  

, - c  + 

2K- 2 ' 

1 c ( 1 -  C)(K: § - K - ) ( l . t  + + K: +)  

~ 2K + 2~c (kt+K +K K -Cla 'K +cla ~: ) 

(16) 

Equations (15) are identical in structure to (8) and, in fact, become them in the limit of  small c, 

i.e., 6t 0 - ot o + O(c) ,  6t~ - ot 1 + O(c) , 6t 2 - a :  + O(c 2). (Note that terms of  order O(c) are 

neglected in &o, &i since c00=cu0.) Thus, consistent with the case of  voided or rigid interface 

composites, the Mori-Tanaka estimate predicts the correct dilute approximation in the limit of  
small concentration. The system (15),(16) is also identical to that obtained from the three 
phase estimate and the composite cylinders model as given in [9]. 

Again as with the case of  voided or rigid interface composites, the Moil-Tanaka estimate, 
applied to composites with non linear interfaces, is self consistent. To see this write relations 
analogous to (2) and (13) as, 

- 2~ 'e  - 2~: + e + c(2~c-- - 2K + )g- - 2~c + h , 

e-,~ = (1 -c )g  + + c g - ,  
(17) 

where ~," is the effective bulk modulus, e is the uniform boundary strain (mean effective strain) 

and e-~ is the mean strain (recall ~l=cu0). We need to show that ~ ' - K ' .  First, solve the 

solitary fiber problem with remote "load" given by the mean strain in the matrix phase ~+. The 
solution to this problem along with some algebraic manipulation yields the desired result. 
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The limiting case of the voided composite follows from (152) by simply setting f(o0) equal to 
zero. Then o 0 -C&o6 or u 0 -&0 a which is the opening of a single void. The stress-strain 
relation for the voided composite then follows from (151), 

 -;cC (18) 

To obtain the stress-strain relation of a rigidly bonded composite let o0 =0 in (15 0 so that, 

I 1+ C(1-c)(K: + -K-)(~+ +K +) 1 
~ = 2 - ~  + 2K + (~t +K: + +~+~- - c--P--~ + + c~t + K:- ) ~" (19) 

Both (18) and (19) are consistent with known results [ 14]. 

2.3. Predictions. 
Predictions of composite response follows from (8) or (15) provided we prescribe the 

interface force magnitude (0. In this work we employ the physically based force law of 
Ferrante, Smith and Rose [ 15]. The physically based law, in the form originally used in [ 16], 
has the form, 

f: u ~ e~MAX(13 u/p)exp(-13 u/p) ,  (20) 

where p is the characteristic length ratio 6/R, 6MAX is the interface strength, and 13 is a fit 
parameter which can be arbitrarily fixed provided 6 is considered as a phenomenological 
parameter (Fig.3). If the work of separation of interface force (20) is required to be the same 
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~ I , 
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.-0.25 I1. / 

Fig.3. The interface force law. 
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as that for the third degree polynomial approximation of f then 13 assumes the value 4.8325. 
Note that (20) allows for a small amount of interpenetration when the interface is compressed. 

In the two equations of the set (8) (or (15)) the damage parameter COo can be eliminated to 
obtain a single equation involving the equibiaxial stress, equibiaxial strain and other physical 
and geometrical parameters describing the system. The resulting form provides no further 
insight so the sets (8) and (15) were plotted directly using MAPLE [ 17]. Fig.4 is a graph of the 
stress-strain response for a composite system consisting of an epoxy matrix reinforced by glass 
fibers. The interface strength (OMAX) is taken to be ~0 of the matrix elastic modulus and the 

force length parameter (9) is chosen to be 0.075. Both the dilute estimate and the Moil-Tanaka 
estimate are shown at different values of fiber volume concentration. Note that dilute estimate 
curves are only shown for values of fiber volume concentration (c) of .05 and. 1. For values of 
c greater then. 1 the dilute estimate yields predictions which may be regarded as unreliable in 
the sense that the stiffness at any strain value will be overestimated. The Mori-Tanaka estimate 
captures the phenomenon of composite instability under increasing stress owing to fiber-fiber 
interaction at large volume concentrations. Similar instability is observed in graphs of 
composite response at small force length ratios and small volume fiber concentrations [9]. The 
destabilizing mechanism is a consequence of the rapid descent of the interface force law (Fig. 
3) which occurs under increasing interface separation in the solitary fiber problem (see [ 18]). 

40000 D,M-T 
c=.05 

D 
c=. l  

M-T 
c=. l  

c=.25 

M-T 
c=.45 

0 t' 0.()2 0.04 0.~)6 

Fig.4. Bulk composite response. Dilute estimate (D), Moil-Tanaka estimate (M-T). 
(~: =7291667psi, la-=4375000psi, •+=617284psi, kt+=185185psi, CYMAX=10000, 19=.075) 

3. GENERAL FORMULATION. TENSION AND COMPRESSION RESPONSE. 

A general theory of the effective behavior of composites composed of linear elastic 
constituents with nonlinear interfaces has been presented in [ 1 ]. The following contains a brief 
outline of the theory for the special case in which the interfaces are assumed (i) uniform, 
independent of interface coordinate and (ii) perfectly smooth so that they do not support shear. 
The interface force law is then governed by (6). 
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3.1. General formulation. 
Three dimensional analogs to effective property relations (2) and (171) are well known [2,3] 

and assume the form, 

- K'[Sl : K+[S] + c(K- - K+)[g-] + A , 

- + c ( C -  - c C + A ,  
(21) 

where K*(C ") is the effective composite compliance(stiffness) and, as before, a +(-) 
superscript indicates a matrix(inclusion) field. (Note that tensor notation is consistent with 
Gurtin [19], e.g. C[E] = CijkaEkie i |  Eu=Eijujei, etc.) Analogous to (4) the displacement 

discontinuity tensor A represents the contribution of interfacial separation to the mean effective 
strain and is given by, 

N 

c~)-] I ([u] | n + n | [u]) da 
i=l afai (22) A ' -  ~ 

vo/(n,) 
i=l 

As before E - ( S - )  represents the mean inclusion strain(stress) taken over all the inclusions. If 

all inclusions are assumed to behave identically then these quantities can be regarded as mean 
values taken over a single inclusion. Note that this assumption has severe consequences in the 
prediction of realistic composite response (see Concluding Remarks). 

w 
The problem of estimating the mean inclusion strain(stress) E - ( S - )  and the interface 

displacement jump [u] (for use in determining A) requires the formulation and solution of an 
appropriate solitary inclusion problem. For the dilute estimate we consider the situation shown 

in Fig.3 where the remote stress is given by S - S11el | el + S=e 2 | e 2 + v + (S~1 + $22)e3 | e 3 . 
(By the spectral decomposition theorem this is the most general planar remote loading.) The 
displacement field within, and external to, the inclusion may be written in the form, 

U + (X)  = U v (X)  -- J" U + ( x ,  ~ ) s  I ( n ;  i u l ( ~ ) )  ds~, 

u-(x)- ~U-(x,~)s,(n;lul(~))ds~, ~ eOf~, 
Of/ 

(23) 

where U +, U- are the (presumed known) kernel functions generally dependent on the matrix 
and inclusion elastic moduli and derived, for example, from the Boussinesq-Flamant solution to 
the problem of a concentrated force acting at a point normal and (if interfacial shear is present) 
tangent to the boundary of an interior and exterior domain. The term uv represents the void 
solution and depends linearly on the remote stress field S. Matrix and inclusion displacement 
fields depend on the interfacial displacement jump through the interface force law (6) 
appearing in the integrals in (23). An integral equation governing the interfacial displacement 
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jump [u] is obtained by subtracting the equations in (23) and constraining the field point to 
reside on the interface, 

[u](x)=h(x)+ ~K(x,~)si(n;[u](~) ) ds~, x,~ eO~ , 
Og) 

(24) 

where the kernel K (as distinct from compliance K) is the negative of the sum of the kernel 
functions given in (23). The term h appearing in (24) is the displacement of the inner boundary 
of a void under remote load and is a linear function of both the remote stress S and the point x 
residing on the boundary. Additional equations enforcing rigid body equilibrium of the 
inclusion must be satisfied as well and these relations, given by, 

j's~(n;lul(~,)) ds~ - 0 , f r (~ )  x s~(n;lul(~)) ds~ = 0 , (25) 
0r 0 ~  

fix the rigid body modes of the displacement jump. (Note that (252) is automatically satisfied 
by interface force law (6).) Given an inclusion geometry and a specific form of interface-force 
separation law (e.g. (6) and (20)) a solution for the interface displacement jump is sought from 
(24) and (25). This quantity then determines the interface force vector s~(n;[u](x)). Note that 
non linearities in the prescribed interface force-interface separation law yield a displacement 
jump which depends non linearly on the remote stress. 

Quantities needed to complete the specification of the effective property relations (21) are 
the displacement discontinuity tensor A and the mean inclusion stress S-.  The interface 
displacement jump solution to (24) determines A directly through (22). The mean stress in the 
inclusion phase is computed from (23b) along with the stress displacement relations, 

' I 1 S- = vol(f~------~ ~'- f (divu-)l dv + It- ~ ( V u  + Vu T) dv , (26) 

m 

where k-, It- are the three dimensional Lame' moduli. (Note that S- ultimately depends upon 
the interface displacement jump through (232) and si(n;[u](x)).) Thus, provided we can 
determine the solution to the nonlinear integral equations (24) and (25), the effective response 
follows from (6), (211), (22), 232) and (26). A detailed analysis of (24), (25) has been carried 
out in [8] for different remote loadings. A sketch of the procedure is given below. 

First, radial and angular components of (24) and (25~) are written in the form, 

2 ~  

u(0) - h r (0) + ~ f(u(0')) Kr (0,0') dO', 
0 

2 n  

v(0) - h o (01 + ff f(u(0')) K o (0, 0'1 dO', 
0 

2 ~  2 n  

f(u(0')) cos(0') dO' - 0 ,  ~ f(u(0')) sin(0') dO' - 0 
0 0 

(27) 
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where u(v) is the normalized radial(angular) component of interface displacement jump 
H/R(Iu0I/R), h~(ho) is the normalized radial(angular) component of displacement of inner 
boundary of a void and Kr, Ko are (known) weakly singular kernel functions. For the interface 
force magnitude given by (20), (271) is a non linear integral equation of the Hammerstein type. 
Equation (272) is an integral expression which directly determines the tangential displacement 
jump once (271) has been solved. (Note that owing to the assumption of a perfectly smooth 
interface the tangential displacement (v) is completely determined by u.) The remaining 
equations (273) and (274) enforce rigid body force equilibrium of the inclusion. 

In practice a solution to (271), (273) and (274) is sought in the form of an expansion of 
eigenfunctions of the kernel Kr. It can be shown that K~ has, through the bilinear formula, a 
mean convergent eigenfunction expansion in eigenvalues and orthonormal eigenfunctions given 
by, 

_E+E - 
~o = (1+ v - ) ( 1 - 2 v - ) E  + +(1+ v+)E - ' 

- (n2 - 1)E+E - 
~2n-1 ~'2n 2n[(1-v-2)E § +(1-v+2)E-]  + (1 + v+ )(1-  2 v+ )E - - ( 1 +  v- ) (1-  2v-)E + 

q~0- 1 /2 ,~ ,  q~2.-, - cosn0/~rn -, q~2,- sin n0/x/-n- , n = 2,3,... 

If we preclude the possibility of rigid displacement of the inclusion we can assume that even, 
symmetric solutions may be approximated by the finite series expansion, 

U -- U 0 "+- ~ U4i_ I cos2i0 , (28) 
1=1 

which identically satisfies (273), (274). Substitution of (28) into (271) yields a set of n+l non 
linear algebraic equations (G(u0,u4i_l)=0 i = 1,2,...,n) governing the expansion coefficients ui, 

U o -- 
1 

2n~, o 
~0 TM f(u0, U4i_l ; 0 ' ) d 0 '  -- h 0 - 0, 

1 j-0~.,~ ') 'dO' u 3 - ~ 3  f(Uo,U4,_ l;0 cos20 - h  a - 0 ,  

U4j_I -- 
~l~4j- 1 

f(u0, U4,_ 1 ; 0 ' )  cos2j0'd0' - 0, j = 2,3,..., 

(29) 

where hr=h0+h3cos20 and ho, h3 are linear in the remote load ratio's S l l / E  +, $22/E +. (For a 
discussion of convergence properties of the solution (28) see [8].) The expansion for v(0) is 
taken in the form, 

v(O)- v o + ~ v4, sin2iO, (30) 
i=l 



174 

where the equations governing the coefficients follow directly from (272) and are of the form, 

V 0 - - 0 ,  

2~ 

2! C+2C 'n  ! �9 O) cos2nOdO, n = 1,2, _ 1 ho(O) sin2nOdO + x ( a n  2 _ 1) f ( U k '  " " "  V4n 

(31) 

The coefficients C, C' are given explicitly in [8] and are functions of matrix and inclusion 
elastic moduli. 

The eigenfunction expansions (28) and (30), and the equations governing the expansion 
coefficients ((29) and (31)) represent the kinetic equations in a micromechanical damage model 
of the mechanical response of fiber composites which "damage" by loss of cohesion at the 
fiber-matrix interfaces. (A virtually identical formulation applies to particulate composites as 
well. The only constraint on the geometry of the reinforcement phase being the tractability in 
forming the kernel functions U § U-, K in integral equations (23) and (24) and the ease in 

m 
evaluating the mean inclusion stress S- in representation (26).) It follows from (22), (28) and 
(30) that the displacement discontinuity tensor A has the form, 

A - c  Uo + ~ - u 3 - ~ - v 4  e, |  + U o - ~ - u 3  "{'-2-V 4 e2 |  �9 (32) 

It can be shown that (232) and (26) imply that components of the mean inclusion stress S- are 
given by, 

27t 
- 1 - 1 2,~ 
S, -, - ~ ! f(u(0'))[l + cos 20'] dO', SEE -- ~ ! f(u(0'))[1 -- COS 20'] dO', 

2a 2~ 

S~ - ~ f(u(O')) sin 20' de' $33 = ~ f(u(O')) dO' 
7I 

0 0 

(33) 

Because of the expansion (28) the mean inclusion stress is a function of the expansion 
coefficients, i.e., S-(u 0' u4._,). The effective property relation (211) is in the form of a stress- 
strain relation depending on expansion coefficients u0,ua~-l,V4i which assume the role of damage 
parameters. These variables are governed by the non linear relations (29) and (31), i.e., the 
kinetic equations. Thus, the damage parameters represent the expansion coefficients in an 
eigenfunction representation of the interface displacement jump in a solitary inclusion problem. 
Note that an entirely equivalent formulation of this problem begins with the effective property 
relation (212). The remote boundary condition in the related solitary inclusion problem is then 
an applied strain. It can be proved (see [ 1 ]) that the effective stiffness C ~ determined in this 
way is the inverse of the effective compliance K ~ determined as in the previous discussion. 
Thus, non linear interface response preserves self consistency. 

The general formulation just described was developed for dilute concentrations of inclusions. 
In order to capture some of the effects of inclusion-inclusion interaction the Moil-Tanaka 
estimate can be implemented within this framework in a manner similar to that given in section 
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2.2. We need only consider the solitary inclusion problem depicted in Fig. 3 since the form of 
the effective property relations (21) remain unchanged (of course the functional forms of A 

m 

and S- will change). Consider the integral equations (24) and (25) (or (27)) governing the 
interface displacement jump. The quantity h is the displacement of the inner boundary of a void 
and is linear in remote load S. No other term in these equations depends on the remote loading. 
The Mori-Tanaka estimate is obtained simply by replacing S in h by S § which may be 

m 

expressed in terms of S and S- by the tensor analog of (13). This process requires a 
readjustment of the integral equations (24) and (25) (or (27)). In this paper we will not pursue 
this idea any further and the following section will present results for uniaxial tension and 
compression based only on the dilute estimate. Future work will present explicit results for the 
Moil-Tanaka estimate. 

3.2. Uniaxial tension anti compression. 
Consider the case of uniaxial tension transverse to the fiber direction, i.e., 

S -o (e~  | + v+e3 | , cy>0. Then, for the response in the load direction (g=Ell) the 
effective property relation (211) becomes, 

( +  4__@_+1 ( 1 1 ) ( 1 1 .)(gl_l+S_-z~)+A,, , (34) 
- + o + c  41a--41.t + (gl-~-g2~)+c 4K- 4 K  + 

and, for the planar response transverse to the load direction, 

- - r +c  i.t + (Sz2-Sn)  +c 4~: 4K E22 4K + 41 a+ 41.t- - 4 - - + 

where Al~, A22 are given by (32). The quantity S,q is just ~- appearing in (33). Now the 

system governing the n+l mode approximation (n+l normal modes, n tangential modes) 
consists of equations (6), (20), (29), (31), (32), (33) and (34). (Note that for tension loading 
h0, h3 in (29) are given by h 0 - ( 1 - v + Z ) g / E  + , h3=2h0.) Because the tangential expansion 
coefficients depend on the normal coefficients through (31) they can be eliminated from (32). 
Then the system of equations to be solved may be written symbolically as, 

~ - F ( o ; t 0 j ) ,  
(36) 

G~(o ; t0 j ) -0 ,  i , j=0 ,1 , . . . ,n  , 

where the c0j are normalized expansion coefficients arising in the normal separation at the 
interface, i.e., r In order to obtain predictions of composite response a computer 
program, employing the Newton-Raphson method together with the composite Simpson 1/3 
Rule, was written to integrate (36) numerically. First, local solutions for the interface 
separation (c0j) are sought (from (362)) for fixed constitutive parameters under increasing 
uniaxial load o. Hadamard stability (stability in energy) of the equilibria is assessed through an 
examination of eigenvalues of the matrix of partial derivatives of Gi(o;t0j) and stable and 
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unstable solution branches are pieced together to form the evolution of mode multipliers with 
load (see [8] for more details). The stress strain curve e(a) follows directly from (361). 
Computations were carried out for an n value of 3, which corresponds to 4 normal modes (1, 
cos20, cos40, cos60) and 3 tangential modes (sin20, sin40, sin60). Fig. 5 represents a graph of 
composite tensile response for a range of values of force length ratio p(=8/R). The void 
solutions [20], 

It" _ 1 _6k+ +8It + c + O ( c  2) , 
it+ 3k + + It+ 

~:* 3k + +4i t  + 
- 1 - c + O ( c  2)  , 

K + 3It + 

(37) 

and the rigid interface solutions [20], 

B 
~ 

it+ 

K ~ 

K + 

+ O(c  ~-) , 
[It+ ~ ( i t +  - It- )] - ( k  + + -~ It+ ) / ( 2 k  + + ~ It+ ) 

c 
+ O ( c  2 ) 

+ - + , it+)/(k + _}_4 It+ [K +/(K - K ) ] - ( k  +~ ~ ) 

(38) 

are used to get the limiting behavior for uniaxial tension through the relation 
e = (l/4it ~ + 1/4K')O and these curves bound the nonlinear interface solutions. (Note that k 
appearing in the above formulas is the three dimensional bulk modulus.) In particular the 
stiffness of the rigid interface composite is greater than the maximum stiffness of the nonlinear 
interface composite owing to the allowance of interface slip during interface debonding. 
Furthermore, the stiffness of the voided composite is less than the minimum stiffness of the 
nonlinear interface composite owing to the compressive action of the matrix on the fibers 
normal to the direction of maximum interface separation. (Material interpenetration at fiber 
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- /t = 0.005 

=__ o.o  / 
10000.0 -- 

(5 

(in psi) 

 oooo 

7 J  K § =679,012, It* =185,185 in psi 
K =8,750,000, ILt =4,375,000 

~ o.olo o.o2o o.oao 
E 

Fig. 5. Compos i te  response fo r  var ious fo rce  length ratios. Un iax ia l  tension. 
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matrix interfaces is resisted through the interface force law f (Fig.3).) An inspection of the 
curves in Fig. 5 indicates the effect of force length parameter on response. Thus, decreasing p, 
i.e., decreasing the range of action of the interface force, precipitates an abrupt transition in 
composite response at increasing stress. This aggregate behavior corresponds to bifurcation of 
equilibrium interface separation in the solitary inclusion problem arising from the local effect of 
rapid descent of the interface force separation law for each interface. 

The behavior just described is qualitatively similar to the response of the nonlinear composite 
subject to pure shear [ 1]. It is also similar to the equibiaxial stress problem although in that 
case, the limiting rigid composite solution and the void solution are recovered exactly by the 
nonlinear composite upon initial application of the load (rigid composite stiffness) and 
asymptotically as the interface force approaches zero (voided composite stiffness). This is 
because the interface separations are rotationally symmetric and tangential interface force and 
displacement jump are zero. Note that under equibiaxial loading the normal component of 
fiber-matrix interface force carries matrix stresses to the fibers. In contrast, only a part of the 
matrix stresses arising from tensile load is transmitted to the fibers by the normal component of 
interface force. The remaining portion would be born by the tangential component of interface 
force. Because it is absent in the constitutive characterization of the interface employed here, 
the composite response is more compliant. This same state of affairs exists under pure shear 
loading [ 1 ] only to an even greater degree. Note that the equibiaxial response curves are exact 
in the sense that only one symmetrical mode arises in the description of interface separation. 
By contrast, tensile response requires an infinite number of modes to exactly characterize 
interface separation. 

Finally, Fig. 6 shows composite response under a uniaxial compressive load o<0 given the 
same constitutive parameters used previously. Under uniaxial compressive loading a symmetric 
solution to the solitary inclusion problem indicates that the interface will separate in regions 
approximately perpendicular to the load line while regions of matrix and inclusion boundary 
parallel to the load line will be in mechanical contact Levy [7]. Because this separation action is 
indirect, caused essentially by the Poisson effect, the influence of debonding on the overall 
effective response is minimal (as indicated in Fig. 6). 
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Fig. 6. Composite response for various force length ratios. Uniaxial compression. 
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4. CONCLUDING REMARKS. 

This paper describes a micromechanical damage model of a two phase composite material 
composed of linear elastic constituents which interact through non linear interface forces. 
Within this framework damage is defined as the loss of cohesion at the inclusion-matrix 
interfaces and is measured by coefficients in a series representation of the displacement jump at 
a representative interface. The attractiveness of this approach is that no adjustable parameters 
appear in the model which requires only that the elastic properties of the phases and the 
properties of a representative interface (e.g. interface strength, work of separation, etc.) be 
specified. As has been demonstrated, the model is capable of handling dilute distributions of 
inclusions as well as larger inclusion volume fractions through the Moil-Tanaka estimate. 
Although the paper has concentrated primarily on unidirectional fiber composites the 
framework is virtually identical for particulate composites. 

The specification of the dilute estimate or the Moil-Tanaka estimate is just one assumption 
which needs to be made a priori. Another, is the form of the interface constitutive relation. In 
this paper we have employed a force law (20) derived from a potential so that the results 
obtained may be unrealistic if the loading is reversed. This problem can be dealt with by 
proposing a more realistic interface force law within the same conceptual framework utilized 
here. The phenomenon of matrix inelasticity is more difficult to address within the proposed 
micromechanical framework. Alternative models combining micromechanics and continuum 
damage concepts in an elastoplastic setting do however exist (see [21 ]). 

A more severe assumption employed by the proposed model is that the damage process 
indicated in Fig. 1 is representative, i.e., at each level of remote loading every inclusion has 
precisely the same void surrounding it. (This hypothesis is built into the model through the 
process of solving a solitary inclusion problem and employing the local fields as representative 
of all inclusions in the composite.) Progressive debonding is therefore not accounted for in the 
model and to include it would require the solution to an isolated multi particle system or some 
other hypothesis concerning the inclusion fields arising in (21). Future work will address this 
important issue. 
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A b s t r a c t  
The paper aims at the investigation of ductile localized fracture phenomena in 

dynamic adiabatic processes in inelastic solids. Particular attention is focused on the 
dependence of fracture phenomenon upon the evolution of constitutive properties of 
the material. The micro-damage mechanism is treated as a sequence of nucleation, 
growth and coalescence of microcracks. 

To accomplish in one model the description of the rate sensitivity of the material 
and rate dependent micro-damage mechanism the theory of thermoviscoplasticity 
is developed within a framework of the rate type covariance material structure with 
finite set of internal state variables. This theory takes into consideration the effects 
of micro-damage mechanism and thermomechanical coupling. The rate dependent, 
internal state variables approach has the exciting feature of being directly connected 
to the evolution of microstructural properties of the material. The relaxation time is 
used as characteristic time which can thus be viewed as a regularization parameter, 
or as a micromechanical parameter to be determined from physical experimental ob- 
servations. By assuming that the relaxation time tends to zero the rate independent 
thermoplastic response of the material with rate independent micro-damage mech- 
anism is considered. The dynamic fracture criterion within localized shear band 
region is proposed. This criterion implies that the fracture is the time dependent 
process, i.e. it depends strongly on time duration of the stress impulse. 

Rate dependency (viscosity) allows the spatial differential operator in the gov- 
erning equations to retain its ellipticity, and the initial-value problem is well-posed. 
The viscoplastic regularization procedure assures the stable integration algorithm 
by using the finite element method. Particular attention is focused on the well- 
posedness of the evolution problem (the initial-boundary value problem) as well as 
on its numerical solutions. Convergence, consistency and stability of the discretised 
problem are discussed. The validity of the Lax equivalence theorem is examined. 

Utilizing the finite element method and ABAQUS system for regularized elasto- 
viscoplastic model the numerical investigation of the three dimensional dynamic 
adiabatic deformation in particular body is presented. Two particular examples 
have been considered, namely dynamic adiabatic processes for a thin-walled steel 
tube and for a thin steel plate. In each case a thin shear band region of finite 
width which undergoes significant deformations and temperature rise has been de- 
termined. Its evolution until occurrence of final fracture has been simulated. It has 
been investigated how the localized fracture mode depends on various constitutive 
parameters (namely the relaxation time and the irreversibility coefficient). 
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1. I N T R O D U C T I O N  

In technological dynamical processes fracture can occur as a result of an adiabatic shear 
band localization generally attributed to a plastic instability generated by thermal soft- 
ening and intrinsic micro-damage mechanism during plastic deformation. 

Hartlcy, Duffy and Hawley (1987), Marchand and Duffy (1988), Marchand, Cho and 
Duffy (1988) and Cho, Chi and Duffy (1988) made microscopic observations of the shear 
band localization on the thin-walled steel tubes in a split Hopkinson torsion bar. Three 
different steels were tested. Dynamic deformation in shear was imposed to produce shear 
bands. It was found whenever the shear band led to fracture of the specimen, the frac- 
ture occurred by a process of void nucleation, growth and coalescence. No cleavage was 
observed on any fracture surface, including the most brittle of the steel tested. This is 
presumably due to the thermal softening of the shear band material that results from 
the local temperature rise and micro-damage mechanism occurring during deformation 
process. 

Adiabatic shear banding in 4340 steel under pure shear loading in split Hopkinson 
torsion bar using a high-speed photography was studied by Giovanola (1988). It was 
found that shear localization occurs in two sequential stages over width of 60 #m and 
20 #m, respectively. Strain rates approaching 1.4.106 s -1 were measured in the band 
and temperature elevation was in excess of 1000~ Fractographic and metallographic 
observations have shown that the mechanism of shear fracture by microvoid nucleation 
and growth may, at least in certain situations, provide a plausible explanation for tile 
formation of wite etching bands. General conclusion from experimental observations 
of (]iovanola (1988) is that tile thermomechanical strain localization and micro-damage 
mechanisms become the main cooperative phenomena responsible for adiabatic shear band 
localized fracture. 

Chakrabarti and Spretnak (1975) investigated the localized fracture mode for tensile 
steel sheet specimens simulating both plane stress and plane strain processes. The mate- 
rial used in their study was AISI 4340 steel. The principal variable in this flat specimen 
test was the width to thickness ratio. Variation in specimen geometry produces significant 
changes in stress state, directions of shear bands and ductility. They found that fracture 
propagated consistently along the shear band localized region. 

In recent years Zbib and Jurban (1992) have investigated numerically a three di- 
mensional problem involving the development of shear bands in a steel bar pulled in 
tension and Batra and Zhang (1993) the three-dimensional dynamic thermomechanical 
deformations of a 4340 steel thin tube twisted in a split ttopkinson bar at nominal strain 
rate of 1000, 2500 and 25000 s -1. 

The papers by Perzyna and Duszek- Perzyna (1994), Perzyna (1994, 1995), Lodygowski 
and Perzyna (1996, 1997) and Lodygowski (1996) presented the application of a recently 
developed viscoplastic-damage type constitutive theory for high strain rate flow process 
and ductile fracture to the problems of shear band localization and fracture of dynamically 
loaded thin-walled tubes experiencing strain rates ranging between 10 -1 - 104 s -1 and 
the investigation of localized fracture phenomena in thin and thick plates undergoing 
adiabatic dynamic and isothermal quasi-static processes. 

The main objective of the present paper is the investigation of the influence of some 
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constitutive parameters on shear band localization phenomena. 
In chapter 2 the formulation of the initial-boundary value problem (evolution prob- 

lem) and development of a constitutive model within a thermodynamic framework of the 
rate type material structure with internal state variables are given. Such important effects 
as the micro-damage mechanism and thermomechanical coupling are taken into consid- 
eration. It has been assumed that the intrinsic micro-damage mechanism consists of the 
nucleation, growth and coalescence of microvoids. The rate dependent evolution equation 
for the porosity parameter has been postulated. Discussion of cooperative phenomena, 
i.e. thermomechanical coupling and micro-damage mechanism is given. The fracture 
criterion is presented and the description of an adiabatic inelastic flow process is given. 

Numerical solutions of the initial-boundary value problem (evolution problem) are dis- 
cussed in chapter 3. Well-posedness of the evolution problem is presented. Discretisation 
in space and time is proposed and convergence, consistency and stability are examined. 
The Lax equivalence theorem is formulated. 

Chapter 4 is devoted to the numerical investigation of shear band localization fracture. 
Two particular examples have been considered, namely dynamic adiabatic processes for 
a thin-walled steel tube and for a thin steel plate. All formulated initial boundary value 
problems (evolution problems) have been solved numerically by means of finite element 
method and ABAQUS system, cf. chapter 5. In each case particular attention has 
been focused on a thin shear band region of finite width which undergoes significant 
deformations and temperature rise. Its evolution until occurrence of fracture has been 
simulated. 

In chapter 6 the influence of some constitutive parameters on localized fracture phe- 
nomena have been investigated. Tile paper closes with some conclusions in chapter 7. 

. 

PROBLEM) 
2.1. F o r m u l a t i o n  of the  evolut ion  p r o b l e m  

Find ~ as function of t and x satisfying* 

(i) ~b = .A(t, ~)~ + f(t, ~); 
(ii) ~(0)  = ~~ (1) 
(iii) The boundary conditions. 

A strict solution of (1) with f ( t ,~ )  = 0 (i.e. the homogeneous evolution problem)is  
defined as a function qp(t) E E (a Banach space) such that 

~(t)  e 73(r for all t e [O, tf], (2) 

lira IlqP(t + A t ) -  ~(t)  _ .A~o(t)llz_ 0 for all t C [0, t]]. 
zat--.0 At 

* We shall follow here some fundamental results which have been discussed in Richtmyer and Morton 
(1967), Strang and Fix (1973), Richtmyer (1978), Ionescu and Sofonea (1993) and Dautray and Lions 
(1993). 

INITIAL-BOUNDARY VALUE PROBLEM (EVOLUTION 



186 

The boundary conditions are taken care of by restricting the domain I)(,4) to elements of 
E that satisfy those conditions; they are assumed to be linear and homogeneous, so that  
the set S of all ~ that satisfy them is a linear manifold; 7)(~4) is assumed to be contained 
in S. 

The choice of the Banach space E, as well as the domain of .A, is an essential part  of 
the formulation of the evolution problem. 

2.2. R a t e  t y p e  c o n s t i t u t i v e  s t r u c t u r e  for an e l a s t i c - v i s c o p l a s t i c  d a m a g e d  m a -  
t e r i a l  

The main objective is to develop the rate type constitutive structure for an elastic- 
viscoplastic material in which the effects of the micro-damage mechanism and thermo- 
mechanical coupling are taken into consideration. 

Let us introduce the axioms as follows: 

(i) Axiom of the existence of the free energy function in the form 

- F,  , ) ,  (3) 

where e is the Eulerian strain tensor, F the deformation gradient, v ~ a temperature  
field and ~ denotes the internal state variable vector. 

(ii) Axiom of objectivity (spatial covariance). The constitutive structure should be 
invariant with respect to any diffeomorphism ~ : ,5" ~ $,  where ,S' denotes the 
actual (spatial) configuration of a body B, of. Marsden and Ilughes (1983). 

(iii) The axiom of entropy production. For any regular process ~bt, v~t, #t of a body B 
the constitutive functions are assumed to satisfy the reduced dissipation inequality 

1 1 
p1~ciT �9 d - (r/~) + ~) - ~--~q. gradv~ >__ 0, (4) 

where 4)t is the function of motion, p and PReJ denote tile mass density in the actual 
and reference configuration, respectively, 7" is tile Kirchhoff stress tensor, d = d c +dp 
tile rate of total deformation, 7/denotes tile specific (per unit mass) entropy and q 
is tile heat vector field. 

Let us postulate iu = (r ~), where r denotes the new internal state vector which describes 
the dissipation effects generated by viscoplastic flow phenomena and ~ is the volume 
fraction porosity parameter and takes account for micro-damage mechanism. 

Let us introduce tile plastic potential function for damaged material in tile form cf. 
Shima and Oyane (1976) and Perzyna (1984, 1986) 

J2 (Jl)  ~ 
f - - - ~ + n 5  ~o ; (5) 
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where J1 ab  1 ' a b . . . '  cd  ~ = T gab, J2 = g r  , YacYbd, nO denotes the yield stress of the matrix material, 
n - n(tg) is the temperature dependent material function and g denotes the metric tensor 
in S. 

Let us postulate the evolution equations as follows t (Lv defines the Lie derivative with 
respect to the velocity field and the dot denotes the material derivative) 

d ' - A P ,  L v r  ~ - 2 ,  (6) 

where for the elastic-viscoplastic model of a material we assume (cf. Perzyna (1963, 1971, 
1994, 1995)) 

1 
A - ~m ( ~ ( f -  ~)}, (7) 

Tm denotes the relaxation time for mechanical disturbances and x is the isotropic work- 
hardening parameter, (b is the empirical overstress function and the bracket (.) defines 
the ramp function, the material function Z is intrinsically determined by the constitutive 
assumptions postulated, the scalar valued evolution function E has to be determined and 
the tensor function P is defined as follows. 

p = 1 O f  (8) 
2 Or" 

The isotropic hardening-softening material function n is assumed in the form cf. Perzyna 
(1984, 1986)and Nemes, Eftis and Randles (1990) 

n - { q + ( 1 - q ) e x p [ - h ( O ) e v ] }  2 1 -  , (9) 

where q = ~ x0 and Xl denote the yield and saturation stress of the matrix material NO ' 
(both can be temperature dependent functions), respectively, h - h(0) is tile temperature 
dependent strain hardening function for the matrix material, e p -  fo(:~d p" dp)�89 is 
the equivalent plastic deformation and ~F denotes the value of porosity at which the 
incipient fracture occurs. The overstress viscoplastic function ~ is postulated in the form 
(cf. Perzyna (1963, 1971)) 

_ _ _ ) m ,  = ~(f  ~) (f ~ whereto 1,a,5,.. .  (10) 

The axioms (i)-(iii), the energy balance equation and the evolution equations (6) lead 
to tile rate equations as follows 

1 )~ 
L v r  = s  " d - s  - [(E~ + g r  + r g )  " P] ~ - -~ ( ( f  - x ), 

0p 07- d v Ad, (11) pc;~) = - d i v q +  " d + x r "  + 
pn~ f O0 

where 

tFor precise definition of the finite elasto-plastic deformation see Duszek-Perzyna and Perzyna (1994) 
and Perzyna (1995). 
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f_.e __ P R e f  -~e  2 , - -  - - P R e f  OeO0' cp -- --0 002, (12) 

the irreversibility coefficient X is defined by 

(0@_~ 02@) 1 
X - - P  - 0 0 0 0 r  " Z ~ r . p ,  (13) 

A denotes the generalized force conjugates to the internal state variable ~ and is determined 
by the relation 

A - - p  ~ - 0 0 0 0 ~  " (14) 

To make possible numerical investigation of the three-dimensional dynamic adiabatic 
deformations of a body for different ranges of strain rate we introduce some simplifications 
of the constitutive model. 

(i) By analogy with the infinitesimal theory of elasticity we postulate linear elastic 
properties of the material, i.e. 

2 ) abgcd bd ac ( f__e )abcd __ G ( gac gdb -t- gcb.qda ) -t- I'( -- 5 G g . -t- 7" .q , (15) 

where G and K denote the shear and bulk modulus, respectiv(',ly. 

(ii) It is assumed that 

F_.~ -~ : s  = 0g, (16) 

where 0 is the thermal expansion coefficient in tile elastic range. 

It is noteworthy that tile influence of tile evolution of microvoids on elastic properties 
of the material is not taken into account. 

2.3. Intrinsic micro-damage  process 

The intrinsic micro damage process consists of nucleation, growth and coalescence of 
microvoids (microcracks). Recent experimental observation results (cf. Shockey et al. 
(1985)) have shown that coalescence mechanism can be treated as nucleation and growth 
process on a smaller scale. This conjecture simplifies very much tile description of the 
intrinsic micro-damage process by taking account only of the nucleation and growth 
mechanisms. Then the porosity or tile void volume fraction parameter { can be determined 

by ~ -  (~)n,,cl + (~)gTow" 
Physical considerations (cf. Curran et al. (1987) and Perzyna (1986)) have shown 

that the nucleation of microvoids in dynamic loading processes which are characterized 
by very short time duration is governed by the thermally-activated mechanism. Based 
on this heuristic suggestion we postulate for rate dependent plastic flow 
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m*(~) I o -- ON(~, 1,9, e p) [ 1j 
1 h*({ 0) exp - (17) 

( ~ ) n u c l -  rra ' ]CL9 ' 

where k denotes the Boltzmann constant, h*(~, v~) represents a void nucleation material 
function which is introduced to take account of the effect of microvoid interaction, m*(0) 
is a temperature dependent coefficient, cr = (1/3)J1 is the mean stress and CrN(~, 0, C p) 
is the porosity, temperature and equivalent plastic strain dependent threshold stress for 
microvoid nucleation�9 

For the growth mechanism we postulate (cf. Johnson (1981), Perzyna (1986), Perzyna 
and Drabik (1989, 1995) and Nemes et al. (1990)) 

1 g*(~, 0) Icy (~ 0, CP)] (18) = e v  - , , 

where Tm x/~ denotes the dynamic viscosity of a material, g*(~c, 0) represents a void growth 
material function and takes account for void interaction and cr~q((, 0, E p) is the porosity, 
temperature and equivalent plastic strain dependent void growth threshold mean stress. 

Equations (17) and (18) determine the evolution function E postulated in Eq. (6)a. 

2,4,  
m e c h a n i s m )  

For adiabatic process ( q -  0) Eq. (11)2 takes the form 

pcvO - O p 07- d p A~ 
Pn~f O0 " d + x r "  + . (19) 

The first term on tile right-hand side of Eq. (19) has not a dissipative nature and is of 
tile second order when compared with tile internal dissipation terms. Its contribution to 
internal heating is small. This may suggest that in some considerations it carl be neglected. 
However this nondissipative term will have important influence on tile propagation and 
interaction of stress waves in inelastic damaged solids. 

The second term on the right-hand side of Eq. (19) represents the rate of internal 
dissipation duc to plastic flow process while the last term gives the contribution to tile 
rate of internal dissipation generated by the intrinsic micro-damage mechanism. 

When the nondissipative term is neglected then Eq. (19) takes the form 

pCpO - x r "  d '  + A~. (20) 

From Eq. (20) we can compute the irreversibility coefficient X. It gives 

p%0- A~ 
�9 (21) 

X = 7"" dp 

For A - O, i.e. when the influence of the intrinsic micro--damage mechanism is not taken 
into consideration, Eq. (21) takes the form 

p%0 (22) 
X -  7-.dp" 

C o o p e r a t i v e  p h e n o m e n a  ( t h e r m o m e c h a n i c a l  coupl ing  and m i c r o - d a m a g e  
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For this particular case the irreversibility coefficient X has a simple interpretation as the 
heat rate conversion to plastic work rate fraction. However Eq. (21) shows that the 
remaining work rate is attributed to the energy rate lost for micro-damage effects. 

When modelling thermomechanical behaviour of materials X is usually assumed to be 
a constant in the range 0 . 8 5 -  0.95 (a practice that dates back to the work of Taylor and 
Quinney (1934)). 

Recent experimental investigations performed by Mason, Rosakis and Ravichandran 
(1994) by using a Kolsky (split Hopkinson) pressure bar and a high-speed infrared detector 
array have clearly shown that this assumption may not be correct for all metals. 

The reason for this considerable discrepancy is clearly visible from Eq. (21). The rate 
of the lost energy A~ implied by the intrinsic micro-damage mechanism is responsible for 
the decreasing of X. 

Mason, Rosakis and Ravichandran (1994) observed that the irreversibility coefficient 
X depends of strain and strain rate in a range of metals. Their experimental observations 
have significant implications in the study of the conditions preceding and governing adi- 
abatic shear band formation and shear band growth as well as on the establishment of a 
criterion governing dynamic fracture mode selection in rate sensitive materials. 

2.5.  F r a c t u r e  cr i t er ion  

We base the fracture criterion on the evolution of the porosity internal state variable. 
Let us assume that for ( = ~F catastrophe takes place (of. Perzyna (1984)), that is 

= ~(~, ,  0,~) le:e~= 0. (23) 

It means that for ( = ~F the material looses its stress carrying capacity. The condition 
(23) describes the main feature observed experimentally that the load tends to zero at the 
fracture point. It is noteworthy that the isotropic hardening-softening material function 
k proposed in particular form (9) satisfies the fracture criterion (23). 

2.6.  A d i a b a t i c  ine las t i c  flow p r o c e s s  

The evolution problem (1) describes an adiabatic inelastic flow process provided 

v 0 
.P_g_ ~_ 

, [( ) ] 1  )m  A ' ~ ~ t h ,  PM f x F_..thr + E,~ + g v  + r g  " P ~--~ ( ( f  - x ) -  
= 7" PM(1--~)cp ,~ PM(1--~)Cp 

, . . . ,  

X 1 )m ~ ~_ 

A __ 

0 0 0 0 0 0 
0 0 1 -~grad div 7"grad p~ p~(1-~o) p~ 0 
0 --pMdiv 0 0 0 0 
0 ~ ' s y m ~ + 2 s y m ( v ' ~ )  0 0 0 0 " 
0 0 0 0 0 0 
0 ~_ o-r . s y m ~  0 0 0 0 

CpPRe f 0"0 

(24) 
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It is noteworthy that  the spatial operator .A has the same form as in elastodynamics of 
damaged material  while all dissipative effects generated by viscoplastic flow phenomena 
influence the process through the nonlinear function f. 

3. N U M E R I C A L  S O L U T I O N  O F  T H E  E V O L U T I O N  P R O B -  
L E M  

3.1 .  W e l l - p o s e d n e s s  of t h e  e v o l u t i o n  p r o b l e m  

The homogeneous evolution problem (i.e. for f = 0) is called well posed (in the sense of 
Hadamard)  if it has the following properties: 

(i) The strict solutions are uniquely determined by their initial elements; 

(ii) The set Y of all initial elements of strict solutions is dense in the Banach space E; 

(iii) For any finite interval [0, t0], to C [0, tl] there is a constant K = K(to) such that 
every strict solution satisfies the inequality 

II~(t)ll ~ KIl~o~ for 0 < t ~ to. (25) 

The inhomogeneous evolution problem (1) will be called well posed if it has a unique solu- 
tion for all reasonable choices of ~a ~ and f(t,  ~a) and if the solution depends continuously, 
in some sense, on those choices. 

It is possible to show (cf. Richtmyer (1978)) that strict solutions exists for sets of ~o ~ 
and f(.) that are dense in E and E~ (a new Banach space), respectively. 

Let us consider first undamaged material (i.e. we assume ~ - 0). For this case the 
spatial operator ,4 has strictly the form as in elastodynamics. Then, for the proof of the 
well--posedness of the homogeneous evolution problem (for f - 0) we (:an use the results 
obtained in elastodynamics. Next, we can extent the results to elasto-viscoplasticity by 
considering the nonhomogeneous evolution problem (when f -r 0) and by superposing 
suitable smoothness assertions for the nonlinear function f (cf. Ionescu and Sofonea 
(1993) and Perzyna (1994, 1995)). 

3.2. D i s c r e t i s a t i o n  in space  and  t i m e  

We must approximate (1) twice. First, when E is infinite dimensional, we must replace .,4 
by an operator .Ah which operates in a finite dimensional space Vh C E, where, in general, 
h > 0 represents a discretisation step in space, such that dim(Vh) ~ cx~ as h ~ 0. Second, 
we must discretise in time, that is to say choose a sequence of moments tn (for example 
tn = na t ,  where At is time step) at which we shall calculate the approximate solution. 

Let us introduce the following semi-discretised (discrete in space) problem. 

Find ~o h C C~ to]; Vh) (C O denotes the space of functions 
continuous on ([0, t0], Vh)) satisfying 

~,~(~/= .Ah~,h(t)+ fh(t), 
, ,r  - ~ o , h .  

(26) 
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The operator .Ah for the finite element method can be obtained by a variational formula- 
tion approach. The discrete equations are obtained by the Galerkin method at particular 
points in the domain. 

Finally, we shall define a method allowing us to calculate ~p~ E Vh, an approximation 
to ~h(t~) starting from ~ - 1  (we limit ourselves to a two-level scheme). Then we can 
write 

~ + 1  __ Ch(Z~t)~ ~ + Atf~, ~o~ - ~Oo, h (27) 

where we introduce the operator Ch(At) C s (s is the set of continuous linear map- 
ping of Vh with values in Vh) and where f~ approximates fh(t~). 

We shall always assume that the evolution problem (1) is well posed and there exists 
a projection Rh of E into Vh such that 

lim [ Rh~p - ~O [E = 0 V~ e E. (28) 
h---~0 

3.3. C o n v e r g e n c e ,  c o n s i s t e n c y  a n d  s t a b i l i t y  

The first fundamental question is that of the convergence, when h and At tend to zero, of 
the sequence {~o~}, the solution (27), towards the function ~(t) ,  the solution of (1). Let 
us restrict our consideration, for the moment, to the case where f(t)  - 0. 

D e f i n i t i o n  1. The scheme defined by (27) will be called convergent if the (:orl(titiorl 

~ao,h-~O ~ as h + 0  (29) 

implies that 

~ p ~ ~ o ( t )  as A t e 0 ,  n ~ ~  with n A t ~ t  (30) 

for all t C]0, t0[, to C [0, t]], where ~0~ is defirmd by (27) and ~ ( t ) i s  the solution of 
(1). All this holds for arbitrary ~0. 

The study of the convergence of an approximation scheme involves two fundamental  
properties of the scheme, consistency and stability. 

D e f i n i t i o n  2. Tile scheme defined by (27) is called stable, if there exists a constant 
K >_ 1 independent of h and At such that 

II(Ch(At))nRhllC(E) <_ K Vn, At satisfying nat  <_ to. (31) 

In the Definition 1 and 2 there occur two parameters h and At. It may be that  the scheme 
is not stable (or convergent) unless At and h satisfy supplementary hypotheses of the type 
At /h  ~ <_ constant, a < 0, in which case we call the scheme c o n d i t i o n a l l y  s t ab le .  If 
the scheme is stable for arbitrary h and At we say that it is u n c o n d i t i o n a l l y  s t ab le .  

D e f i n i t i o n  3. The scheme defined by (27) will be called consistent with equation (1) 
if there exists a subspace Y C E dense in E, such that for every w(t) which is a 
solution of (1) with ~0 C Y (and f - 0) we have 
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C h ( A t ) R h q o ( t )  - ~p(t) 
lim I - .Aqp(t)IE = O. (32) 

h---*0,A t---.0 A t  

We can now state  the Lax equivalence theorem (cf. Richtmyer and Morton (1967), Strang 
and Fix (1973) and Dautray  and Lions (1993)). 

T h e o r e m .  Suppose that  the evolution problem (1) is well-posed for t C [0, to] and tha t  it 
is approximated by the scheme (27), which we assume consistent. Then the scheme 
is convergent if and only if it is stable. 

The proof of the Lax equivalence theorem can be found in Dautray and Lions (1993). 

4. E X A M P L E S  O F  T H E  E V O L U T I O N  P R O B L E M  

4.1.  A d i a b a t i c  d y n a m i c  p r o c e s s  for  t h i n  s t e e l  t u b e  

Cho, Chi and Duffy (1988) tested the specimens machined in the shape of th in-wal led 
tubes with integral hexagonal flanges for gripping. Torsional loading at high strain rates 
was applied in a torsional Kolsky bar (spl i t -Hopkinson bar). 

We idealize the in i t ia l -boundary value problem (cf. Lodygowski and Perzyna (1997)) 
by assuming the specimen in the shape of thin-walled tube. 

The initial conditions are taken in the form 

r  0) - 0, v (x ,  0) - 0, p(x, 0) - ,o~j - p~,(1 - ~0), 

v (x ,  0) = 0, ~(x, 0) = ~0, O(x, 0) = 00 = constant  in B. (33) 

That  is, the body is initial at rest, is stress free at a uniform tempera tu re  vQ0 and the 
initial porosity at every material  point is {0. 

For the boundary conditions, we assume 

r .  n = 0 on the inner and outer surfaces of the tube,  

q .  n = 0 ==> gradv~ �9 n = 0 on all bounding surfaces, 
1 

V(Xl,X2,0, t) - 0, v ( x , , x 2 ,  L , t )  - w * ( t ) ( x ~ + x ~ )  ~n*, (34) 

where n is a unit outward normal to the respective surfaces, w*( t )  is the angular  speed of 
the end surface x3 = L of the tube, and n* is a unit vector tangent  to the surface x3 = L. 
It is assumed that  

f, ~; t /20,  0 <_ t <_ 20~s, (35) _ . . . . .  

/ w~, t > 20#s. 

The rise t ime of 20 #s is typical for torsional tests done in a split Hopkinson bar (cf. Ba t ra  
and Zhang (1993)). 

The following values for various mater ial  parameters  are assumed (AISI 1018 cold 
rolled steel) 

PM -- 7860 k g / m  3, 
K = 210 GPa,  
h = c o a s t  = 5.15, 

cp = 460 J /kg~ 
no = 237 MPa, 
n = cons t  = 1.25, 

G = 80 GPa,  
/~1 - -  1.2" a0, 
m = 5  (forv~ = 0 ) ,  

00 = 293 K, 
m = 4.7 (for vq = 353 K). 
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Two parameters,  namely the relaxation time Tm and the irreversibility coefficient X, have 
been changed in the range as follows 

T m -  2 .5 .10  .2 - 2 .5 .10 -s s for 272 < v~ _< 353 K, 
T m -  1.0.10 .2 - 1.0.10 -s  s for  v ~ >353  K, 

X - 0 . 6  - 0 . 9 .  

The tube has been twisted at nominal shear strain rates rangin~ 1 0 3 -  104 s -1. 
For the particular example considered it has been assumed ~ - 0 (no influence of the 

micro-damage mechanism) and w~) - 253 s - 1  

4.2. A d i a b a t i c  d y n a m i c  p r o c e s s e s  for t h i n  s tee l  p l a t e  

We idealized the init ial-boundary value problem investigated by Chakrabart i  and Spret- 
nak (1975) by assuming the velocity driven adiabatic process for a thin steel plate (12.7 x 
25.4 x 0.33 mm). The material of a plate is AISI 4340 steel. The following values for 
material parameters  are assumed: aM = 7850 kg /m 3, E (Young's modulus) = 200 MPa, 
the yield stress is 1634 kPa at reference temperature  v~0 = 293 K, 1310 kPa at v ~ = 343 K, 
1006 kPa at v ~ = 482 K, cp = 4.6 kJ /kg  K, ~0 = 0.04, ~F = 0.3, m = 1. 

The relaxation time 7~ and the irreversibility coefficient X are assumed to change in 
the ranges as follows: T m =  2.5. l0 -2 - 2 .5 .10 -6 s, X = 0.6 - 0.9. 

The symmetry  of the boundary conditions is strictly keeping, to one edge of the [)late 
constant velocity is applied v = 10 m/s  and the other edge is motionless (v = 0). 

5. N U M E R I C A L  C O M P U T A T I O N  R E S U L T S  

5.1. T h i n  s t ee l  t u b e  

Tile aforestated initial-boundary value problem has been solved by using the wide spec- 
t rum of ABAQUS possibilities (of. Lodygowski et al. (1994) and I,odygowski and Perzyna 
(1996)). 

The half of the specimen (the thin walled cylinder) is modelled via both rnultilayer shell 
and three-dimensional brick elements with 4 layers in radial direction. In circumferential 
direction the model consists of 24 segments with 10 elements on the depth. 

To avoid the reflection of waves and to model the influence of the rest of the speci- 
men it has been postulated that the additional spring and mass elements are taken into 
consideration. 

In Figs. 1-4 the evolution of tile plastic equivalent strain in different laminates for 
various pairs of the relaxation time 7~ and the irreversibility coefficient X has been visu- 
alized. 

5.2. T h i n  s t ee l  p l a t e  

For adiabatic dynamic process the specimen (a thin sheet) is modelled via 800 (20 x 40) 
shell elements. Dynamic explicit method is used (more than 120 000 inc.), cf. Glema et 
al. (1997). 
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In Fig. 5 the deformed meshes for various relaxation time Tm have been presented. 
The distribution of the equivalent plastic deformation along the longer edge of the plate 
is shown in Fig. 6. The modes of fracture for different relaxation time Tm have been 
visualized in Fig. 7. 

6. D I S C U S S I O N  O F  T H E  I N F L U E N C E  O F  C O N S T I T U T I V E  
P A R A M E T E R S  

From the results obtained for adiabatic processes for thin steel tube and for thin steel 
plate it has been proved that the width of the shear band region and the temperature 
rise vary very much with the relaxation time assumed. It has been also observed that 
the distribution of the equivalent plastic deformation and the modes of fracture along 
the shear band region are very much affected by the relaxation time. It has been clearly 
shown that the wave propagation and interaction and the deformation process and as the 
result the localization of plastic deformation along the shear band are very much depended 
on the assumed value for the relaxation time. Since the relaxation time can be viewed 
either as a regularization parameter or as a microstructural parameter to be determined 
basing on physical foundations and experimental observations hence the identification of 
this parameter has a great importance for proper constitutive modelling for localization 
and fracture phenomena. It has been found that localization anf fracture phenomena are 
not so much affected by the irreversibility coefficient. 

7. F I N A L  C O M M E N T S  

It has been proved that the localization of plastic deformation phenomenon in an elastic- 
viscoplastic solid body can arise only as the result of the reflection and interaction of waves. 
It has different character then that which occurs in a rate independent elasto-plastic 
solid body (cf. Perzyna (1994, 1995)). Rate dependency (viscosity) allows tile spatial 
difference operator in the governing equations to retain its ellipticity and the initial value 
problem is well-posed. Viscosity introduces implicitly a length-scale parameter into the 
dynamical initial-boundary value problem and hence it implies that the localization region 
is diffused when compared with an inviscid plastic material. The introduced length--scale 
is proportional to the relaxation time. The main feature of the developed theoretical model 
is the possibility of the investigation of the entire process considered. Under dynamic 
loading conditions the propagation of deformation in the specimen considered establishes 
heterogeneous distributions of stress and strain, causing the location of the instability 
regions in the form of shear bands. These regions vary with the imposed strain rate and 
are affected by the assumed value of the relaxation time (or viscosity parameter). Thus 
the evolution of the localized shear band region until occurrence of fracture has been 
simulated. It has been also proved that the insensitivity of the results to mesh refinement 
is apparent whether material softening in present or not. 
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Macromechanical Description of Micro-Shear Banding 
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Physical model of shear strain rate produced by active micro--shear bands in metals is 

formulated and mathematical idealization of micro--shear bands system by means of the 

theory of singular surface of order one is proposed. Extension of the known averaging 

procedure over the representative volume element traversed by the strong discontinuity 

surface of a vortex sheet type is presented. Constitutive description of small elastic and 

large plastic deformations within the framework of two surface plasticity model with 

internal yield surface connected with kinematic hardening anisotropy and the external 

surface approximating the generic micro-shear banding surface is proposed. The idea of 

the multiple potential surfaces forming a vertex on the smooth external surface is 

applied to display the connection with the geometric pattern of micro--shear bands. 

1. INTRODUCTION 

Metallographic observations reveal that in heavily deformed metals, in particular 

under highly constrained conditions which can appear in technological shaping 

operations, a multiscale hierarchy of shear banding occurs. Also at the advanced stage of 

ductile fracture, while void coalescence takes place, the behaviour of the ligaments 

between the voids is controlled by the formation of micro-shear bands. The new 

mechanism of deformation progressively replaces crystallographic multiple slip and 

twinning also at small strains, if they are preceded by the alteration of the scheme of 

straining. The change of deformation mode contributes to the development of strain 

induced anisotropy and modifies material properties. Therefore, macromechanical 

description of micro--shear banding is important for adequate constitutive modelling of 

inelastic strain and damage processes in metallic solids. 

Theoretical analysis of large plastic deformations of metals accounting for active 
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micro---shear bands requires careful analysis of averaging procedures and proper setting 

of the resulting description within continuum theory of materials. Formulation of a 

complete theory based on the precise micro-to-macro transition remains an open 

question. An attempt to tackle the averaging procedure over the RVE with micro-shear 

bands was presented in [1], where the macroscopic measure of velocity gradient 

accounting for micro-shear banding was derived. The derivation is based on the physical 

model relating macroscopic shear strain rate with microstructural features of 

micro-shear bands, mathematical idealization of a system (cluster) of active 

micro--shear bands as propagating singular surface of order one, having properties of a 

vortex sheet, and the extension of the known averaging procedure applied to the 

representative volume element (RVE), which is traversed by the discontinuity surface. 

This makes possible to derive in a more rigorous manner the constitutive relations of 

plasticity accounting for macroscopic effects of micro-shear bands, which were obtained 

previously under certain simplifying assumptions, [2---4]. The double surface plasticity 

model, proposed in [4] and [5], has been extended and corroborated in this study. The 

internal yield surface is connected with nonlinear kinematic hardening model of 

Armstrong-Frederick type while the external surface corresponds with the saturation of 

the back stress effect. It appears that this phenomenon can be correlated with massive 

formation of micro-shear bands. Basing on the idea of the "extremal surface", presented 

by Hill [6], the concept of the generic micro---shear banding surface was introduced, 

which can be approximated by means of the class of the external limit surfaces. The 

model proposed shows that the contribution of active micro-shear bands with their 

characteristic geometric pattern, transmitted to the macroscopic level, produce the 

non---coaxiality between principal directions of stress and rate of plastic deformations. 

The relation for plastic spin appears in a natural way as an effect of this non---coaxiality. 

It transpires that depending on the contribution of the mechanisms involved in plastic 

flow, a fully active range, separated from the elastic range by a truly nonlinear zone 

called the partially active range, may exist. A new physical insight is given into the 

linear and nonlinear flow laws, in rates of deformation and stress, known in the theory of 

plasticity. The idea of multiple potential surfaces forming a vertex on the smooth 

external surface is applied to connect the fully active range and the partially active 

range with the definite geometric pattern of micro---shear bands. This leads to the new 

non-associated plastic flow rules accounting for the effects of micro--shear banding. The 

possibilities of certain simplifications and perspectives of the application of the 

theoretical model vis-a-vis the results presented recently in the literature are discussed. 
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2. PHYSICAL MOTIVATION 

The term micro-shear band is understood as a long and very thin (of order 0.1 #m) 

sheet-like region of concentrated plastic shear, crossing grain boundaries without 

deviation and forming a definite pattern in relation to the principal directions of strain. 

The experimental information about mechanical behaviour and related structural 

features is reviewed, e.g. in [2-3] and [7-8], where the comprehensive list of references is 

given. The metallographic observations reveal the hierarchy of plastic slip processes: 

from coplanar dislocation groups moving collectively along active slip systems, through 

slip lammellae and slip bands to coarse slip bands, which may further transform into 

transgranular micro---shear bands and form clusters (packets) of micro-shear bands of 

the thickness of order (10 - 100) #m. The clusters of micro---shear bands, produced for 

instance in rolling, form the planar structures, which are usually inclined by the angle ~o 

of about �9 35 ~ to the rolling plane and are orthogonal to the specimen lateral face. There 

can be, however, considerable deviations from this value within the 15 ~ to 50 ~ range. It 

is worthy to stress that the problem of specifying the angle is complicated by the 

difficulty of distinguishing the most recently formed micro-shear bands from those that 

were formed earlier and subsequently rotated with material towards the rolling plane, cf. 

[3] and [7-8]. This is related with the important observation, stressed in [8] and 

discussed also in [3], that a particular micro---shear band operates only once and develops 

rapidly to its full extent. The micro---shear bands, once formed, do not contribute further 

to the increase in plastic shear strain. Thus, it appears that the successive generations of 

active micro-shear bands competing with the mechanism of multiple crystallographic 

slip are responsible for plastic strain in metals. 

The discussion of experimental observations concerning micro-shear bands geometry 

leads to the hypothesis, which says that it is typical of the clusters of active micro---shear 

bands that their planes are rotated relative to the respective planes of maximum shear 

stress by a certain angle ~, which is usually of the order (5 - 15) ~ This deviation angle 

plays essential r61e in the phenomenological theory of plastic deformations accounting 

for the effects of micro---shear banding and will be considered as a statistically averaged 

micro-shear bands orientation parameter, transmitting to the macroscopic level the 

geometry of their spatial pattern. The experimental observations show that the spatial 

pattern of micro--shear bands does not change for loading conditions that deviate within 

limits from the proportional loading path, i.e. the load increments are confined to a 

certain cone, in particular wedge-shaped region, the angle of which can be determined 

experimentally. For instance, according to Dybiec [9], in the polycrystalline Cu the 
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critical angle 8c of this cone is of the order 22 ~ However, more drastic change of the 

loading scheme produces the change of the spatial orientation of micro-shear bands. 

This is supported by the results presented in [10], where after cross rolling two families 

of micro---shear bands inclined by about �9 35 ~ to the most recent rolling direction were 

observed. The existence of the deviation angle /~ is characteristic for the micro-shear 

bands produced in the deformation processes carried under nearly isothermal conditions. 

Thermal shear bands, i.e. the mode of plastic flow localization governed by a coupled 

thermoplastic mechanism, have also been studied by many authors. In particular, the 

so---called "adiabatic shear bands" are often reported to coincide with the trajectories of 

maximum shear stress, what results in/~ = 0, [11]. 

3. CONTINUUM MECHANICS DESCRIPTION OF MICRO-SHEAR BANDING 

3.1. Macroscopic averaging in plasticity of metals 

Problem of macroscopic averaging in plasticity of metals was discussed in [1], where 

also the bibliography of the earlier papers was given. The averaging procedure and 

micro-to-macro transition, studied within the framework of finite strain theory in [12] 

and [13] lead to the following relations for the macroscopic measures of the deformation 

gradient F and its rate F, which are averaged over the reference configuration V ~ of the 

RVE and can be expressed by means of surface data 

'J 'I F - { f }  = ~ Gradx dV = ~  x |  dA , 
[] o o o 

o v o OV 
o 0 

1Jc,ad : 4v =1 Ix. dA F-I~= : m o : m Y o  o 

o v o OV 
o o 

(1) 

(2) 

where the symbol X denotes the microscopic field of motion of the material point X in 
m [] 

the reference configuration of the RVE into its current position x = X (X , t), and the 
[] [] [] 

microscopic field of velocity v is determined in the current configuration 
m 

( ) x ( X , t ) , t  - x ( x , t ) .  (3) 
m m m m m m m m 

The presented averaging procedure is valid under the general assumption that the 

dominant mechanism of plastic deformation corresponds to multiple crystallographic 

slip. In such a case, the theory describing kinematics and constitutive structure of finite 
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elastic-plastic deformation of crystalline solids is well established and the transition 

between the microscopic and macroscopic levels is well understood, (cf. [1] for more 

detailed discussion and pertinent references). As it was stressed in [3] and [5], the 

situation changes when additional mechanism of the multiscale system of shear banding 

is taken into consideration. 

3.2. Physical model of shear strain rate produced by active micrHhear  bands 

Consider a certain RVE containing the region of progressive shear banding, depicted 

schematically in Fig. la, where the traces of successive clusters of micro-shear bands are 

shown. The arrow points to the direction of the expansion of the region. According to 

the physical motivation discussed above, at this level of observation the clusters of 

active micro-shear bands can be considered as elementary carriers of plastic strain. 

G) b) c) 

5 

~ ~ _ Y. X _ ~\\\\X\\\\\XX. ~ / 

Ill  

Eros 

Figure 1. Schematic illustration of the multiscale system of shear banding. 

In Fig. lb, the ~WmagnificationWt of the shear banding area is ~tzoomed in" and the related 

fundamental mechanism of plastic shear is illustrated. The cluster of micro--shear bands 
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has the active zone of the thickness H and the width L , in which the passage of 
m s  ms  

active micro--shear bands results in the local perturbat ion,  A , of the microscopic 
m s  

displacement field, u = x - X  , moving with the speed V as a distortion wave. The 
In in m s 

possible profile of the local perturbation,  A , is depicted in Fig. lc. 
ms  

Consider a set of N active micro-shear  bands of similar orientat ion and produced 
m s  

within the t ime period At ,  which can be considered as an infinitesimal increment of 

" t ime-l ike parameter"  t in the macroscopic description. As it is depicted schematically 

in Fig. lb, such a system (cluster) of micro--shear bands produces the microscopic shear 

strain 7 , which is given by the following relation 
ms 

N 

A B N ms 
x - x - n l -Zx i  ,v - -  ms  A - -  m s ms __ 

! 
ms H ms L ms ms 

ms m s i 

(4) 

where B is the total displacement produced by a single micro--shear band and x 
ms  ms  

denotes the average distance that  N micro-shear  bands have moved in the active zone. 
mS 

The width of the active zone L can be determined by the length of the path that  
ms  

micro-shear  bands passed with an average speed v during the time period At .  
ms  

Assuming that  the distance x and the number of active micro--shear bands N can 
ms ms  

change during the propagation of the active zone we have from (4) 

B ( _N) 7 = ms N x + x  , 
ms L H ms  ms ms  ms  

m s m s  

( 5 )  

where the dot denotes differentiation with respect to the " t ime- l ike  parameter"  t. Let us 

observe that  under the simplifying assumption that  the speed of micro--shear bands in 

the active zone of the cluster is approximately the same, the rate x 
m s  

can be identified 

with the speed v of the head of a single micro-shear  band, x = v , (cf. [1], where the 
ms ms  ms  

model of a single micro-shear  band is studied). If the number  of active micro---shear 

bands operating in the active zone of a single cluster can be assumed constant,  (5) takes 

the form which is formally similar to the Orowan relation, (cf. [1]) 

N 
,y = B p v , p = ms  , ( 6 )  

ms  ms  ms  ms  ms  L H 

m s m s  



209 

where p corresponds to the density of micro-shear bands operating within the active 
ms 

zone of the cluster�9 This is the number of active micro-shear bands that cut through a 

unit cross-sectional area. 

3.2. System of active micro-shear bands as a surface of strong discontinuity 

The foregoing discussion of physical nature of micro--shear banding process support 

the following hypothesis: 

The passage of micro---shear bands within the active zone of the cluster, results in the 

perturbation of the microscopic displacement field A travelling with the speed V,  
ms s 

which produces a discontinuity of the microscopic velocity field in the RVE it traverses. 

The progression of dusters of micro---shear bands can be idealized mathematically by 

means of a singular surface of order one propagating through the macro---element (RVE) 

of the continuum�9 

The necessary mathematical formalism of the theory of propagating singular surfaces 

is given, e.g. in [14], [15] and [16]. The theory allows to identify the postulated 

discontinuity surface of the microscopic velocity field v in the RVE as a singular 
m 

surface moving in the region V ~ of the reference configuration of the body given by the 

equation E(t) �9 G(X ,t) = 0, where for each instant of "time-like parameter" t E I c R, 
Ill 

the surface E(t) c V ~ has the dual counterpart S(t) c V, in the spatial configuration of 

the RVE, S(t) �9 g(Xm,t ) = 0, i.e. the material points X E E(t) occupy the places 
m 

x E S(t) at a given instant t. There exists the jump discontinuity of derivatives of the 
in 

function of motion 36 , i.e. of the microscopic velocity field [X ] ~ 0 and the deformation 
in Ill 

gradient [ f ] r  0, which are assumed smooth in each point of V x I excluding the 
O 

discontinuity surface 

[ X ] - X § 1 6 2  [f] = f " -  f- :/: 0 .  (7) 
In In In 

According to [14] and [16] the considered surface of strong discontinuity of microscopic 

velocity field fulfills the properties of a vortex sheet with the jump discontinuity of the 

first derivatives of X given by 
in 

V 
[, ] = Vs [ q  , (s) 

in U 

where s and n are, respectively, the unit tangent and the unit normal vectors to the 

discontinuity surface S(t) while U corresponds to the local speed of propagation of S(t). 



210 

Similarly, for the material counterpart of a singular surface E(t) the compatibility 

relations take the form 
V 

[ x ] = V  s~, [fl = s ~ |  fo~ ~ .~o ,  (9) 
m v~ 

where N is the unit normal vector to the discontinuity surface E(t) and U N is the 

normal component of the surface velocity (cf. [15], p. 96). 

3.4. Macroscopic measure of the rate of deformation produced by micro--shear banding 

According to the analysis in [1], the averaging procedure (2) of the microscopic 

velocity field X over the macro-element V can be generalized for the macroscopic 
m o 

RVE traversed by the singular surface of vortex sheet type with the velocity jump of the 

magnitude V s. Then, the macroscopic measures of deformation gradient F and its rate 

are expressed by means of surface data in the following way 

v 1 F = x | u dA ,(10) 
o o ' 

~ ~(~1 
where according to (1), F = F and due to (2) and (9) 

= 1 I Gradx dV + 1 I Vss| ~Ov ~ m o ~o~ t )  

and in the spatial form 

(11) 

v |  = g gradv dV + 1 m m -- V s s o  n d A ,  (12) 
t_ - Vov_s( t )  v Vs t) 
where k denotes the macroscopic measure of velocity gradient, averaged over the 

macro-element V traversed by the vortex sheet S(t). The averaging formula (12) 

enables us to account for the contribution of micro-shear banding in the macroscopic 

measure of velocity gradient produced at finite elastic-plastic strain. According to (12), 

the velocity gradient k is decomposed as follows 

1 I 1 t Vss | ndA. (13) L = L + L M s  , L = ~  gradvmdV , LMS=-  
v Vs t) 

Assuming that the singular surface S(t) forms a plane traversing volume V, with the 
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unit vectors s and u held constant, (13)3 results in LMS = 7M s S | n ,  where the 

macroscopic shear strain rate 7M s is determined according to (6) by the microscopic 

variables as an average over the RVE 

ms ms V S ms ms S ~ ~ t  t) ms 

Assuming for simplicity that the structural parameter B and the speed v are 
ms ms 

constant over the surface S(t), we have 

�9 = = 1 ] H  p d A . r  (15) 
")'MS BmsVmsPMS ' PMS ms ms 

(t) s 

The symbol PUS denotes the macroscopic volume density of micro-shear bands that 

operate within the sequence of clusters sweeping the RVE. The density PMS may change 

with f'time-like parameter" t, for the magnitudes of H and p are, in general, various 
ms ms 

for different clusters and (15) takes the following equivalent form, [1] 

;)'MS -- BmsLms~)MS " (16) 

The derived relations are valid for a single system of micro-shear bands. This can be 

generalized for the case of a double shearing system 
2 

L = L + E ;Y('MSi) 8(i) |  n ( i )  , (17) 

i = l  

where 7M s "(i) is the macroscopic shear strain rate and s(i) , n(i) are the respective unit 

vectors of the "i"th shearing system. It worthy to note, that (17) is valid only under the 

simplifying assumption that the active micro---shear bands in both systems operate in 

the time period, which corresponds to a sufficiently small increment of "time-like 

parameter" in the macroscopic description. Otherwise, the sequence of events should be 

taken into considerations. The above relations provide the following macroscopic 

measures of the rate of plastic deformations and plastic spin produced by active 

micro-shear bands 

= �89 § L s), =  (LMs- L s) (18) 
The discussed averaging procedure over the RVE with the singular surface allows to 

account for the characteristic geometric pattern of micro--shear bands which is 

transmitted upwards through a multiscale hierarchy of observational levels. 
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3.4. The meaning of "yield" within the context of micm-sheax banding 

It was recognized in [2--4] that in the plasticity model accounting for the effects of 

micro--shear bands the meaning of '~yield" is not a trivial one and requires more detailed 

analysis. The precise connection of the nominal yield points with intrinsic material 

properties was discussed earlier by Hill in [6] and [17], where the idea of an "extremal 

surface" was proposed. Let us imagine that after a given prestrain of the RVE of a 

polycrystalline aggregate, further glide hardening on the active slip systems of its 

constituent grains is suspended. In general, due to constraint hardening, the incremental 

plastic flow under constant overall load is still precluded. However, as it was observed in 

[6], special configurations of internal micro-stresses and yield vertices are possible that 

together admit one or more fields of strain rate which are compatible with zero stress 

rate. According to Hill [18], such fields correspond to intrinsic eigenstates and are 

associated with incipient branching of constitutive relation between increments of 

objective stress and strain. If the micro-shear bands are understood as an effect of 

special configuration of internal micro-stresses that accumulate at grain boundaries till 

the glide hardening on the active slip systems is suspended and then abruptly release 

producing, under constant overall load, the field of plastic deformation rate D~s as a 

self-induced deformation mode, the similarity with the intrinsic eigenstates, discussed in 

[6] and [18], can be observed. As is emphasized in [6], the "extremal surface" is not a 

single yield surface but is rather an assemblage of yield points for physically distinct 

states of the RVE, none of which can be reached from any other via purely elastic paths 

in the stress space. Then, the following observation correlates the properties of the 

"extremal surface" with the mechanism of micro-shear banding: 

The properties of the "extremal surface" conform with the mechanism of micro-shear 

banding. The yield state approaching a certain state on the "extremal surface" can be 

related with the formation of a particular spatial pattern of micro-shear bands. Another 

state occupying the "extremal surface" pertains to another spatial pattern of 

micro-shear bands. The transition from one state to the other is not possible via a 

purely elastic path, for an accumulated plastic strain is necessary to produce the new set 

of micro-shear bands characterized, in general, by another geometric pattern. Such an 

"extremal surface" forms the generic micro-shear banding surface. 

Based on the aforementioned discussion, a simplified model with two limit surfaces can 

be introduced. The preliminary study of such a model of plastic flow with an external 

surface taking into account the onset of shear-banding and the internal yield surface, 

which is related with the back stress anisotropy was presented in [4] and [5]. 
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4. CONSTITUTIVE DESCRIPTION 

4.1. Basic concepts and relations of elasto-plasticity of structured solids 

Consider a polycrystalline aggregate as a continuum body. An infinitesimal neigh- 

bourhood of a material point X of this body corresponds to the aforementioned RVE, 

which is sufficient for a valid continuum mechanics description of gross elastic-plastic 

behaviour. The dominant orientation of the crystalline lattice in the RVE is represented 

by director vectors. We can choose an arbitrary triad of orthogonal unit vectors that 

will serve as a reference frame for the description of anisotropic properties and elastic 

behaviour of material element. The director vectors define the structure of continuous 

body. The different visualizations of such a triad are discussed in [19-24], where more 

detailed discussion and further references can be found. The assumption that the 

continuum is endowed with the structure in the form of the director vectors leads to the 

Mandel's concepts of the local, relaxed, intermediate isoclinic configurations, plastic spin 

and structure corotational rate. Due to this, the decomposition of the deformation 

gradient F becomes unique F = EP , where E denotes the elastic transformation from 

the intermediate isoclinic configuration to the current one and P is the plastic 

transformation from the reference configuration to the isoclinic one. The derivation of 

the macroscopic measure of the velocity gradient L and its decomposition (13) makes 

possible to formulate in a more rigorous manner the constitutive equations of 

elastoplasticity with an account of micro-shear banding. The following kinematical 

relations can be derived, (cf. [1]): 

D = D e + DP = D e + D~ + D~S W = W e q- W p -- W e q- W~ q- W p (19) 
' MS' 

where D~ and W~ correspond, respectively, to the rate of plastic deformation and plastic 

spin produced by crystallographic multiple slip. Observe that according to (13), if the 

contribution of micro-shear bands is negligible, we have DP s = W~s = 0. 

Further analysis will be confined to isothermal processes with small elastic strains. 

Then, due to the polar decomposition E = V e R  e and logarithmic elastic strain e = lnV e 

the following approximate relations can be obtained, (cf. e.g. [5]): 

D p -  Re{pp -'} R eT, W p = Re{pp -1} aeT,  D e =  E + ~ W e -  W e ~, (20) 
s a 

with the elasticity equation 
o o 02~ 

W e--  ReR eT. (21) 7 - =  s  e, 7 - - -  7 " -  w e ' / -  + 7 - W  e, s = Pk ' 

0e 06 

The symbol s denotes the fourth-order tensor of elastic moduli and �9 is the free energy 
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^ ^ 

function per unit mass, assumed in the form ~(e, A) = r (E) + r where A is the 
! 

set of internal variables taken with respect to the isoclinic configuration. 

4.2. Model of plastic flow with nonlinear evolution of kinematic hardening 

Let us consider the description of elastic-plastic behaviour of metallic solids with two 

limit surfaces. The internal yield surface f is connected with nonlinear kinematic 

hardening anisotropy and the external surface 7 is related with the micro--shear 

banding, cf. Fig. 2. It is sufficient for further study to assume the model of small elastic 

and finite plastic deformations with the following set of internal variables: 

A " { a ,  , A �9 { a , S ) ,  a R e eT = = = , ~ = ~, (9.9.) 

related with the isoclinic and current configurations, respectively. The tensor variable a, 

often called the deviatoric back stress, describes kinematic hardening effect (the 

( i)},  i = l  2 translation of the yield surface) and the scalar variables s =: {~, 1(, PMS ' ' 

represent the isotropic hardening parameters x and 1(, as well as, the macroscopic 

r i l that operate within the sequence of clusters volume density of micro---shear bands PMS 

of the "i"th shearing system sweeping the RVE. The Huber - Mises criterion accounting 

for kinematic hardening is assumed to approximate the internal yield surface f and the 

constitutive equations at the yield point take the form: 
�9 

/ ( r , ,  ,~, ,~) = ( r -  , ~ ) : ( r , -  ,~) - , ~ =  o,  ,~ = b( ,~  - ' ~ )~ s '  ,~ (o)  = ,~ ( 2 3 )  
S O '  

o 1 

D = D  e + D ~ = ( s 1 7 4  # f = ~ ( r ' - a ) ,  (24) 

O �9 �9 
' D 

a = (V~2 h a 5 -  Cra)-Ts, a (0) = ao, 7s = (2D~:D~) �89 (25) 

where r' is the deviator of the Kirchhoff stress r, and ~ is a material constant 
S 

representing a saturation value for ~, whereas b corresponds to a constant controlling 

the pace of saturation. The internal variable ~ determines the "size" of the yield surface, 

(i.e. ~ = ~ R, where R is the radius of the Huber-Mises cylinder). The combined 

plastic hardening modulus h reads: 
' 1 h=h +ha, h =b(~ -~), h =h c #'a. (26) 

i i s a a V~ r f 

The form of the nonlinear kinematic hardening rule (25) was proposed originally for 
1 

small strains by Armstrong and Frederick [25] and applied further in the studies on 

cyclic plasticity (cf. e.g. Chaboche [26]). The material constant c r is related with the 
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saturation of the back stress effect while accumulated plastic strain increases. The scalar 
o o 

multiplier j fulfills the conditions j = 1 if #f:r > 0 and j = 0 if #f 'r  < 0. The 

objective rate of the kinematic hardening parameter a reads 
O �9 

a - -  a - - W  ea - [ -  a W  e ,  W e -~  W - - W  p .  (27) 

The additional constitutive equation for the plastic spin W p is necessary to determine 

the spin W e of the rotation of the structure. In the study by Paulun and Pr [27] 

the relation for plastic spin was derived, which can be applied for the case of nonlinear 

kinematic hardening rule (25) in the following form 
1 

3 (aD p --  D P a )  ~ = (�89 - a "a) �89 (28) W~ - 2 ' " 
+ 

More detailed discussion on the proper formulation of the relation for plastic spin for the 

and of its special form for c = 0, known as case of kinematic hardening rule (25)a r 

Prager-Ziegler law, is given in [22] and [27], where further references can be found. 

4.3. Approximation of the generic micro-shear banding surface 

Let us observe that the nonlinear hardening rule (25) implicitly introduces the 
1 

o 

second limit surface, for a = 0 leads to, (cf. [26]): 
�9 h ~ 1 

= ( 2 9 )  = - - 0 ,  /c - s ,  =  (rMs) + 
s r 

where ]C is the "size" of the limit surface, (i.e. ]C = 1 ~, where ~ is the radius of the 

external surface), ]C is a material constant representing a saturation value for ~', and B is 
s 

a material constant controlling the pace of saturation. The parameter ]C can be 

determined from the observations of micro---shear bands formation. According to the 

recent studies of Oliferuk et al. [28] the saturation of internal micro---stresses can be 

correlated with massive formation of micro-shear bands. This is related with certain 

amount of plastic strain ~s = FMS' accumulated along a given deformation path. 

Assuming that the internal micro---stresses can be represented on the macroscopic level 

by the back stress a, we can determine the material constant Cr, which relates the 

saturation of the back stress effect with micro-shear banding. In this way, the resulting 

limit surface Y of radius ~ comes into contact, at the loading point, with the generic 

micro-shear banding surface. The discussed results of deformation tests complemented 

with metallographic observations reveal that the onset of micro---shear bands is strongly 
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dependent upon the change of loading scheme and the resulting deformation path, (cf. 

eg. [5]). Therefore, the class of external limit surfaces, determined for different loading 

histories, should be considered. This is depicted in Fig. 2, where the external limit 

surfaces YA and YB arrive at the micro--shear banding surface. The points of contact 

are pertinent to the respective stress states r~ and rB, which have been reached for 

different loading paths s and s According to (29), the general functional relations 

FMS = ~(s and c r = C ( s  should be used to determine the family of external surfaces, 

which approximate locally the generic micro---shear banding surface. Systematic experi- 

mental investigations are necessary to asses the change of FMS and c r for different 

loading paths. 

~AA 
A 

I~ F 

I 

I 
/-... m . s . b .  

I s u r f a c e  
I 

J 

Figure 2. The generic micro--shear banding (m.s.b.) surface approximated by the 

class of the external limit surfaces Y obtained for different loading paths s 

4.4. Derivation of plastic flow laws accounting for micro~heax banding 

According to Hill [6],  the macroscopic constitutive equations describing 

elastic-plastic deformations of polycrystalline aggregates are either thoroughly or 

partially incrementally nonlinear. Depending on the contribution of the mechanisms 
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involved in plastic flow, a region of fully active loading, called also a fully active range, 

separated from the total unloading (elastic) range by a truly nonlinear zone 

corresponding to the partially active range, may exist. According to the works [6], [29] 

and [30] the following hypothesis is formulated, [3]: 

For continued plastic flow with the deviations from proportional loading contained 

within a certain cone of stress rates that corresponds to the fully active range, the 

incremental plastic response can be assumed as linearly dependent on the stress 

increment. Inside the fully active range the spatial pattern of micro---shear bands is 

fixed, whereas in the partially active range the spatial pattern of active micro--shear 

bands is changing following the orientation of the maximum shear stress plane. This is 

associated with the thoroughly nonlinear relation between the rates of plastic 

deformations and stress. 

The connection of the fully active range and partially active range with the geometric 

pattern of micro-shear bands is necessary to specify the relation for the rate of plastic 

deformations for different loading paths. Due to the fact that the multiple sources of 

plasticity are dealt with, the theory of multimechanisms with multiple plastic potentials 

can be considered. The concept of multiple potential surfaces forming a vertex on the 

smooth limit surface was studied earlier by Mr6z [31] within the framework of 

non-associated flow laws. In our case, the existence of the following plastic potentials 

related with the mechanisms responsible for plastic flow can be postulated, (cf. [3]): 

(i) The plastic potential go that reproduces at the macroscopic level the crystallographic 

multiple slips and is associated with the external surface approximated by means of the 

Huber-Mises locus 7: -- go" 

(ii) The non-associated plastic potentials g~ and g2 that approximate at the macroscopic 

level the multiplicity of plastic potential functions related with the dusters of active 

m/cro---shear bands. 

The plastic potential functions g~ and g2 display the geometry of the considered 

micro-shear bands systems and result in two separate planes that form in the space of 

principal stresses Ti, i = 1, 2, 3, a vertex at the loading point on the smooth 

Huber-Mises cylinder Y. The planes are defined by normals N., which can be expressed 
1 

in terms of the unit vectors s( il, nr i~ , i = 1, 2, defining the "i"th system (cluster) of 

micro-shear bands N = ~ (s~ i~| nr il + nr i)| S(i) ). As it is shown in Fig. 3 the 
i 

normals N., i = 1, 2, can be expressed in terms of the unit normal p~ and the unit 
1 

tangent T to the limit surface ~'(r',/C) at the loading point 
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2D 

) 

1 ~ /1: '  

"1:2 go "[:3 

Figure 3.The projection of the Huber-Mises cylinder 9 r = go and the potential planes 

g~ and g2 onto the deviatoric plane and the plastic cone defined by the angle ft. 

N - cos2/~ I~ F + sin2/~ T N - cos2/~ ~ - sin2/~ T (31) 
1 ~ 2 

o 

1 ( 4 )  o o 
/~F r ' ,  W = g 7  = ~ r [ r , -  (r:/,F)/,F] 7 =  (1 , = , ~-~')~ (321 

where due to 
o o 2 o o o 2 o o 

I1","-(":~) ~vll = ":" - ( " : ~ ) ,  , : ~  = II',llcos~, (33) 
0 

the mormalization factor ~" is given by ; -  (llrllsin~) -1. According to (19) and (31), the 
1 

relation for the rate of plastic deformation takes form 

D P - D P + D ~ =  "Y"F + ~MsT (34) 

where 
~ 

;'f O'S + ')MS' ;'/MS COS2fl(" (1) "(2) ), �9 = sin2fl(" (1) + "(2) - - = 71~S - ")'MS eMS ")'MS 71~S )" (3 5) 

This is depicted in Fig. 3 showing the plastic wedge---shaped region, within which the all 

possible rates of plastic deformation DP are confined. Observe that  only the normal 

component of the rate of plastic deformations contributes to the change of the radius of 
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the limit surface 9r(r', K) and the consistency condition, ~r = 0, yields 
o 

= 2 }:I ' H = B ( K - K ) .  
s 

The following active micro-shear bands fractions f(1) f(2) 
' MS ' MS 

$ 
shearing ;), , are introduced, respectively, 

7M s'(1) COS2fl = f(MS ') ~ ' --;Y('MS2) COS2fl = f(MS2) ;), , (37) 

where due to (34)1 and for ~ > 0 the following constraints hold 

m 

7s 7*+ f(1) +f(2) =1  f(1) +f(2) e[0,1] f~) f(2) e[0 1] (38) 
MS MS ' MS MS ' ' MS ' " 

7 
Basing on the observation that the micro-shear bands can be active only in the case of 

continued plastic flow, i.e. when loading condition is fulfilled, it is assumed that for 
:# 

;), = 0, f(i) _ f(2) = 0 The all possible special cases resulting from the conditions MS MS " 

(38) are discussed in [3] The fractions f(i) f(2) display the stochastic character of the 
�9 MS ' MS 

active micro-shear bands formation during the deformation process and can be 

determined within the framework of internal variables approach. In particular, 

(i) with the pertinent accounting for (16) and (37) allows us to relate the fractions fMS 

(i) i = 1 2 which can be considered as macroscopic densities of micro-shear bands PMS ' ' ' 

internal variables given by the following evolution equations 

_ .  ( i ) ) ~ *  ( i ) ( o )  ( i )  PMS " ( i )  r ( i ) ( ' r ,  ~, K, a, PMS ' PMS = Po ' (39) 

what results in 

(i)), i =  1 2 (40) fMS(i) : BmsLms Fr i)(T, /~, ~, a, PMS ' " 

Proper specification of the evolution functions F (i) remains an open problem and 

needs further studies. Certain microscopic models lead to the conjecture that shear 

banding may contribute to the rate of plastic deformation as a sequence of the 

generations of active micro-shear bands governed by logistic equation (Verhulst 

equation), taken from the population dynamics, (cf. [32]). 

According to (32) and (34-37), the rate of plastic deformation takes the form, which 

is formally similar to the hypoelastic case of J deformation theory but accounting for 
2 

partially active range enables unloading, (cf. [2])" 

(36) 

, of the rate of plastic 

o 

T'~F 2--~ o o 
DP - 2 H #~ § [ r ' - ( r : # v  ) ~ ] ,  (41) 

1 
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1 I 

H 
1 

~ " / ~  fMS tan2f/ , 5E (5c' ~]  

n I]~-' 11 s in5 
1 

H tan5 fMS tan2fl , 5E [0 ,5 c]  
C 

par t ia l ly  act ive range 

fully act ive range. 

(42) 

The second term in (41) is responsible for the non---coaxiality between the principal 

directions of stress and rate of plastic deformations and H plays the r61e of the 
1 

non---coaxiality modulus, which in the case of the fully active range, i.e. for 5 E [0, 5c] , is 

formally similar to the Mandel-Spencer non---coaxiality modulus discussed earlier within 

the context of plastic behaviour of single crystals and geological materials, (of. [3]). The 

symbol fMs = f(usl) _f(2)Ms ' fMs E [-1, 1], denotes the nett fraction of the active 

micro-shear bands that contribute to the total rate of plastic shearing. The correspond- 

ing relation for plastic spin in the case of micro-shear banding reads, (cf. [3])- 

f . s  X(5) o o "ctanS, 5E (5c' ~] 
w p  : = . ( 4 3 )  

MS 4~ H cos2f/ ctan~c, 5E [0, 5c] 

Equivalently, for the yield point r' reaching the limit surface 9r(r ', ~'), the following 

new form of non-associated plastic flow rule can be derived, (cf. [5]): 
O 

i p g| (44) D - D  e + D  p - ( s  

(1-fMs tan2f/ctan5 )#F + fMS t an2/~ 
" sin5 p , 5 E ( 5 c ,  ~] 

0 

7" 

, P -  o , (4s) 
Ilfll 

g fMS t an2f/ 
(1--fMs tan2~ ctanSc) ~ + sin5 Pc'  ~ E [0 ,5c] 

C 

O O 

where i = 1 if ~ ' r  > 0 and i = 0 if #F'r < O, whereas Pc is such that 

arccos(Pc:/~ ) = 5 c. Observe that for 5 E [0, 5c] , the following inverted form of ('t4) exists 
o i 
r -  17" ( 1 -  1 ttg | ) :D,  (46) 

2H + /t ")~F 
g 

where i = 1 i f  ) i  F �9 D > 0 and i = 0 if )~F " D < 0, 'kF = s -raL I 

1 1 

In the partially active range, i.e. for 5 E (~c '  ~ ]' the constitutive equation (44) i s  

thoroughly nonlinear. According to (47), the resulting potential surface gf is determined 

by the normal # ,  cf. Fig. 2, where the fraction fMs is the controlling parameter of the 
g 

non-associated plastic flow law. If _ufs = 0 (46) transforms into the J flow law. The 
' 2 

magnitude of fMs E [-1, 1] can fluctuate in the course of plastic flow. However, the 
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assumption that fMs is kept constant during the deformation process can be considered 

as a useful first approximation. 

5. CONCLUDING REMARKS 

In [2], the model accounting for the double shear system with related yield planes, 

intersecting at the Huber-Mises yield locus, was briefly mentioned as an alternative 

approach. Notwithstanding the fact that the additional yield conditions related with 

shear banding have no firm physical and experimental foundations, such an approach 

could be considered as an attractive approximation simplifying theoretical and computa- 

tional analysis of boundary value problems. This found confirmation in recent studies, 

[33], where the similar approach, based on the assumption that the contribution of 

crystallographic multislip, represented by the J flow law, and micro-shear banding 
2 

allows to the additive composition of pertinent rates of plastic deformation, was 

presented independently. The authors proposed "a dual yield constitutive model involv- 

ing both the J flow and a threshold shear stress based-flow", which was incorporated in 
2 

a finite element program capable of handling large strains and rotations. The results of 

simulation of shear band localization occurring in a uniaxially loaded plane strain 

specimen show that relatively simple phenomenological approach, capturing the most 

essential features of micro---shear banding, can lead to satisfactory approximation of 

material behaviour. The implementation of the presented constitutive description into 

the known models describing the porous material failure by void growth to coalescence, 

[34-36], could appear useful in more accurate prediction of damage processes. 
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1. INTRODUCTION 

Starting in the early 1980s a tremendous amount of activity has been devoted to develop- 
ing numerical methodologies which are able to trace the entire load-deflection path up to and 
including complete failure of a specimen or a structural part or component. Different for- 
malisms have been used for this purpose, such as plasticity for metals and soils, being physi- 
cally more appealing for these materials, and damage theories for more brittle materials such 
as concrete, ceramics, certain fibre-reinforced polymers and rocks under low confining pres- 
sures. In either formalism a descending branch in the stress-strain curve is introduced at a 
generic stage of the deformation process to simulate the loss of load-carrying capacity at pro- 
gressive straining. These approaches are macroscopic in the sense that the globally observed 
descending load-deflection curve is translated into local 'softening' stress-strain relations. 
Thus, a homogenized response is obtained of microscopic processes which occur in the mate- 
rial. 

A mathematical consequence of such macroscopic models, which are normally based 
on continuum mechanics, is that at a certain threshold level of loading the governing differen- 
tial equations locally lose ellipticity (or hyperbolicity if dynamic loading conditions are con- 
sidered). Consequently, the boundary or initial value problem becomes ill-posed [1], and ana- 
lytical as well as numerical solutions become meaningless. A host of solutions has been sug- 
gested to remedy this deficiency of the standard continuum approach. For high-speed phe- 
nomena the inclusion of the inherent rate dependence of a material seems natural, see for in- 
stance Needleman [2] for metals, Loret and Prdvost [3] for soils and Sluys [4-6] for concrete. 
For granular materials a revival of the Cosserat continuum has been witnessed, and microme- 
chanical foundations for applying such a theory have been established [7]. Numerical ap- 
proaches have been elaborated that can be implemented in standard finite element codes in a 
straightforward fashion [8,9]. For cracking in concrete and ceramics, but also for describing 
void growth in metals nonlocal theories have been suggested either in an integral format or in 
a differential format. For a simple elastic-damaging formalism a nonlocal theory in an integral 
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format has been proposed by Pijaudier-Cabot and Bazant [ 10]. Aifantis and his colleagues 
[11-15] and Schreyer and Chen [16] have proposed gradient plasticity theories, which were 
cast into a numerical format by de Borst and co-workers [17-20]. More recently, Mtihlhaus et  

al. [21 ] have proposed a gradient theory within a damage mechanics framework, and numeri- 
cal approaches that are related to this theory have been described in [22,23]. A somewhat dif- 
ferent formalism was advocated in [24,25], including a robust numerical implementation. 

In this contribution we shall consider enriched damage theories in which the damage is 
coupled to (isotropic) elasticity. Firstly, we shall briefly summarize standard damage theories 
and nonlocal damage theories in an integral format. Based on the latter class of theories a 
family of gradient-enhanced damage theories will be derived. For the particular case where 
higher-order gradients of a local equivalent strain are introduced, a refinement is described, 
which remedies the problem of artifical widening of the damage zone in progressive stages of 
the loading process [26,27]. A concise description of the numerical implementation of this 
model will be given. Finally, a comparison will be carried out between some gradient damage 
theories and a nonlocal damage theory in an integral format. 

2. ELASTICITY-BASED DAMAGE MODELS 

Damage mechanics theory can be used to describe degradation and failure of structural mate- 
rials and components. In its simplest form, it degrades the elastic properties, in particular 
Young's modulus with the accumulation of damage [28]: 

o" -- (1 - oJ)D~" (1) 

with o" the stress tensor, e the strain tensor, D the virgin elastic stiffness tensor, and o a 
scalar-valued internal variable, which reflects the amount of damage which the material has 
experienced. It starts at zero (undamaged state) and grows to one (complete loss of integrity) 
as a function of a scalar-valued history parameter ~', which represents the most severe defor- 
mation the material has experienced: o = o ( ~ ) .  The history parameter initiates at a threshold 
level tci and damage growth is possible if the damage loading function 

f ( ~ ' e q ,  to) = Eeq -- K" (2) 

vanishes. In particular, the damage loading function f and the growth rate of the history pa- 
rameter tc have to satisfy the Kuhn-Tucker loading-unloading conditions 

f < 0 ,  # > 0  , f ~ = 0  (3) 

In eq. (2) Gq is the local equivalent strain. For metals, the local energy release rate due to 
damage is often substituted [29], i.e. eeq - l/2eTDe, while for pressure-sensitive materials, it 
can be a function of the positive principal strains [30] 

~ 3 
E~q = Z ( <  E~ >)2 

i=! 
(4) 

with < .  > the Macauley brackets. 
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3. NONLOCAL DAMAGE MODELS 

In a nonlocal generalization the equivalent strain Eeq is normally replaced by a spatially 
averaged quantity [ 10], 

f ( s  K') = s -- K" (5) 

where the nonlocal average strain e~q is computed as: 

i f  I g(S)Eeq(X+S) dV,  Vr(x) = g(s) dV (6) 
s  Vr(X) ~' v 

with g(s) a weight function, e.g., the error function, 

1 _s2/212 g(s) = e (7) 
24~t 

and s a relative position vector pointing to the infinitesimal volume dV. Alternatively, the lo- 
cally defined history parameter tr may be replaced in the damage loading function f by a spa- 
tially averaged quantity" 

f ( s  K')-- s -- tr (8) 

where the nonlocal history parameter i? follows from: 

' f  s K'(X)-- Vr(x) g(S)K'(X + S) dV , Vr(x ) -  g(s) dV (9) 
v 

The Kuhn-Tucker conditions can now be written as: 

f < _ O ,  k>_O , f k = O  (lo) 

4. GRADIENT DAMAGE MODELS 

Nonlocal constitutive relations can be considered as a point of departure for constructing 
gradient models. Again, this can either be done by expanding the equivalent strain eeq of (6), 
or by applying an expansion with respect to the history parameter ~ of (9). We will first con- 
sider the expansion of ~- and then we will do the same for Ceq. Expanding the kernel ~c into a 
Taylor series we obtain for an isotropic, infinite medium 

K"-  K" + cV2K" (1 1) 

where higher-order terms have been omitted. The gradient constant c is a material parameter 
of the dimension length squared. It can be related to the averaging volume and then becomes 
dependent on the precise form of the weight function g. For instance, for a one-dimensional 
continuum and taking the error function (7), we obtain c = l/fie. It is recalled, that in this pa- 
per we adopt a phenomenological view in which ~ reflects the length scale of the failure pro- 
cess that we wish to describe macroscopically. 
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A special case of the above theory is obtained by assuming a linear relation between the 
local history parameter tr and the local damage variable co" 

tc = tci + M(o,  (12) 

with tc i representing a threshold value below which there is no damage growth, and M a con- 
stant [22]. Now, the damage loading function changes into 

f = Eeq -- /If' i -- M((o + cV2(..o) (13) 

and co can be taken as the independent variable in finite element implementations [22,23]. 
In a fashion similar to the derivation of gradient damage models based on the averaging 

of the history parameter tr we can elaborate a gradient approximation of the local equivalent 
strain eeq. If we truncate after the second-order terms and carry out the integration implied in 
(6) under the assumption of isotropy, the following relation ensues: 

Ceq -- Eeq + Cv2  s (14) 

This formulation has a severe disadvantage when applied in a finite element context, namely 
that it requires computation of second-order gradients of the local equivalent strain eeq. Since 
this quantity is a function of the strain tensor and since the strain tensor involves first-order 
derivatives of the displacements, third-order derivatives of the displacements have to be com- 
puted, which necessitates CI-continuity of the shape functions. As a possible remedy, a two- 
field formulation can be set up, in which the local equivalent strain Ceq is replaced by an inde- 
pendent, continuous field variable, say gcq. Applying the divergence theorem then leads to a 
formulation in which only c~ shape functions are necessary. A more elegant solu- 
tion is obtained by differentiating eq. (14) twice and substituting the result into eq. (14). 
Again neglecting fourth-order terms then leads to 

Eeq -- C v z  Eeq -- Eeq (15) 

When g,,q is discretized independently and use is made of the divergence theorem, a C~ - 
polation for geq suffices [24]. 

Recently, Geers [26,27] has shown that formulation (15), in which the gradient parame- 
ter c is a constant, is deficient in the sense that for progressive damage an artificial spreading 
of the damage zone occurs that is orthogonal to the direction of crack propagation. For the ex- 
ample of a Compact Tension Test, shown in Figure 1, the computed damage distributions are 
shown in Figures 2 and 3 for two different stages in the loading process. Figure 2 shows that 
initially a small, narrow damage zone arises. However, upon further crack propagation, this 
zone evolves into a broad band of damage, Figure 3, which is physically unacceptable, since 
after a full crack has formed (oJ= 1) the surrounding material should unload and not be 
stretched further. To accommodate this observation, Geers [26,27] has proposed to replace the 
constant parameter c in eq. (15) by ( ,  

geq - ( v 2  geq = Eeq (16) 

which is a function of the local strain state, e.g., 

~ ' - - r  (s / s if eeq < ~r else ( = c (17) 
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Figure I. Compact Tension Specimen. 

Figure 2. Widening of damage zone: onset of damage evolution. 

Figure 3. Widening of damage zone: progressive damage evolution. 

In this fashion, the gradient activity ( grows with increasing local strains. If local unloading 
occurs due to stress relief because of the nearby existence of fully developed crack the nonlo- 
cal interaction decreases again through its coupling to the local strain state ~'eq- This is demon- 
strated in Figures 4 and 5, where the same specimen is analysed as in Figures 1-3, but now 
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Figure 4. Damage evolution with an evolution law for the gradient activity (.  

with the evolution law (17) for the gradient activity ( instead of the constant gradient parame- 
ter c. From Figure 4 we observe that the damage zone remains confined to the original width 
which it occupied during the initial localization process. The evolution of the variable gradient 
activity ( is visualized in Figure 5 for different stages of the loading process. We clearly ob- 
serve a decrease of the gradient activity, and therefore of the nonlocal interaction, after the 
crack tip has passed and when the local crack growth has been completed. Indeed, in a phe- 
nomenological manner the observation is modelled that the nonlocai effect is related to phe- 
nomena as microcracking, crack bridging, debonding of the fibres and fibre pull-out, which 
gradually vanish upon growth to a full crack. 

5. FINITE ELEMENT ASPECTS 

For the formulation of the incremental boundary value problem in gradient-enhanced 
continua we introduce the displacement vector u, the strain tensor in a vector form t; and the 
stress tensor in a vector format a .  Under the assumption of small deformations, we have the 
equilibrium equations for a body occupying a volume V 

L X a + b = O  (18) 

the kinematic equations 

z~=Lu (19) 

and constitutive equations, cf. eq. (1) for simple, isotropic damage, b is a body-force vector 
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Figure 5. Evolution of the gradient activity ( upon progressive deformation. 

and L is a differential operator matrix which connects the strains to the displacements. To 
complete the incremental boundary value problem we have standard static and kinematic 
boundary conditions on complementary parts of the body surface S. 

For the development of the finite element formulation of the gradient-enhanced damage 
model we start by transforming the governing equations for motion (18) and the 'nonlocal' 
equivalent strain geq, eq. (16), into a weak form: 

'~Su r(LT +b  d V - 0  o" ) (20) 

v 

j" ~geq(geq - ~'V2geq - Eeq ) d V  - 0 
v 

(21) 

where the ~5-symbol denotes the variation of a quantity. Using the divergence theorem, the 
standard boundary conditions with t the boundary tractions, and assuming a non-standard 
boundary condition of the form nT(fVg,,q)- 0, we obtain 

j'(LSu)To'dV = J " ,~uTb dV + j " ~SuTI dS (22) 
v v s 

j'[fgeq Eeq + (V~geq)T(fV~'eq) + ~geq(Vf)TVg'eq - ~Feq eeq ] dV - 0 
v 

(23) 

According to eq. (23), gradients of ( have to be computed. This is most elegantly accom- 
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plished by replacing ( in eq. (23) by a continuous field variable z, such that 

I[Sg'eq Eeq + (V~eq) T(zgg'eq ) + ~eq(VZ)TVEeq -- t~'eq Eeq ] dV - 0 (24) 
v 

subject to the constraint 

f az(z - dV = 0 () (25) 
v 

A three-field theory is now obtained with the basic variables u, g~q and z. 
The set of equations (22), (24) and (25) is highly nonlinear and must be solved using an 

iterative procedure at structural level. The Newton-Raphson procedure is widely used for this 
purpose and has also been adopted in this study. This algorithm requires the linearization of 
the above set of equations. Care must be exercised that this linearization is carried out in a 
consistent fashion, since else the quadratic convergence of the method is lost. This lineariza- 
tion process has been carried out by Geers [26,27] and is briefly summarized below. 

Since the damage variable o is a function of the history parameter to, which is coupled 
to the nonstandard equivalent strain gr we have 

/)to /)i,- 
-- d~eq (26) do  /)to ageq 

and we can linearize the constitutive equation (1) as 

(t)g~ (~ Dei_idgeq (27) do" - (1 - o i - i ) D L d u  - ~ -  - i  -I  

where the d-symbol denotes the iterative changes of a variable from iteration i -  1 to i and the 
kinematic relation (19) has been used. We now substitute eq. (27) into eq. (22) to obtain 

a o  Or 
auTL T (1-o i_ l )DLdu-  ~ -! ~ Dgi_ldEeq dV 

-I 

= I  6uTbdV + J " ~uTt d S -  I (L~u)To.i-idV 
v s v 

In a similar fashion we can linearize eqs (24) and (25) as 

- I  3g~ql v c~g. LdudV+ I [3~eqdgeq+ageq(gzi-')Tvdgeq+a(Vgcq)Tzi-' gd~cq]dV 
V - !  V 

(28) 

+ f[Sg~q(Vg~q,i_l)TVdz + 8(V~eq)TV~eq,i_l dZ ] dV = 
v 
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-- ~ ~Eeq[Eeq, i_ l  + (VEeq,i_ 1 )TVzi_  1 -- Eeq,i_l ] dV - ~ r Zi-I dV 
v v 

(29) 

and 

8Z - ~, 0e J,_l L d u + d z  d V = -  f 8Z(Zi-I-  (i_l)dV 
V -1 V 

(3O) 

The finite element discretization is now rather straightforward. We interpolate the dis- 
placements u, the nonstandard equivalent strain s and the gradient activity z by 

U - Naa (31) 

g -  Netr--eq (32) 

z = Nzz (33) 

with N~, N~ and N z matrices which contain the interpolation polynomials for the displace- 
ments, the nonstandard equivalent strains and the gradient activity, respectively, and a, geq and 
z vectors that contain the nodal degrees of freedom for the displacements, the nonstandard 
equivalent strains and the gradient activity. The strains t: and the gradients of geq and z are 
then obtained as 

tr = Baa (34) 

Vgeq -- Be~eq (35) 

Vz - Bzz (36) 

where B a - LNa, B~.- VN~ and B z -  VN~ contain the derivatives of the respective shape func- 
tions. Substitution of eqs (31)-(36) into the linearized equations (28)-(30) and requiring that 
the result holds for any kinematically admissible discrete nodal variation 8a, ~Eeq and ~Sz then 
results in 

i o llda I I al K~a K~ K~ dgeq = f~ 

Kz.~ 0 K= dz f~ 

(37) 

with the vectors f~, f, and f~ defined as 

fa-- j" NTb dV + j" Na TtdS- j" BaTcri-n dV 
v s v 

(38a) 

fE - - f (NTN~ g~q,i -, + NT ~T T T eq,i_lBeBzZi_l + B e B e g e q , i _ l N r z i _  I - NTs dV 
v 

(38b) 
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fz = - j" NT (Nzzi-I - (i- ,)  dV 
v 

and the tangential submatrices 

Kaa - j'( 1 - (_oi_  1 )BTDBa dV 
v 

Ka~- 
V - I  - i  

BTD~i_INe dV 

T(+ eq I BadV K c a - - j ' N ~  ~ _, 
v 

T T B T K ~ =  (N~Nc+N~Zi_lBzB~+ ~Nzzi_lB~)dV 
v 

Kc. ._j" +-T T BeTBcg.eq,i_l (N~ eeq.i_lB~Bz + Nz) dV 
v 

V -1 - I  

(38c) 

K~ j" T - Nz.Nz dV 
v 

(39a) 

(39b) 

(39c) 

(39d) 

(39e) 

Ba dV (39t) 

(39g) 

6. NONLOCAL VERSUS GRADIENT DAMAGE MODELS 

To gain some insight into the properties of the nonlocal versus the gradient damage mod- 
els, a dispersion analysis is now carried out for a one-dimensional bar of infinite length [6,31]. 
We shall briefly summarize the main results of such an investigation that has been carried out 
for the nonlocal damage model with averaging on the equivalent strain and a constant internal 
length scale l, and the two related gradient models (explicit and implicit format, eqs (14) and 
(15), respectively) [25]. 

In a dispersion analysis a perturbation of the form 

~ u  - f i e  i k ( x - c ' t )  ( 40 )  

is introduced into the governing set of equations, namely the equation of motion, the kinemat- 
ic relation and the constitutive model, which have been combined to give a single expression 
in terms of the axial displacement of the bar and have been linearized around a homogeneous 
deformation state indicated with the subscript 0. In eq. (40) k is the wave number, cf is the 
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corresponding phase velocity and fi is the amplitude of the perturbation. The following ex- 
pressions are obtained for the phase velocity [25]: 

QI Non-local damage model, eq. (6): 

4 i~)-~)oe-kZ/2t2 C f  - "  C e 1 - o90 - Co 

CI Gradient damage model in explicit format, eq. ( 14): 

(41) 

4 /o~ c f -  c e 1 - 090 - c 0 ~ (1 - 1/2k212 ) 

[21 Gradient damage model in implicit format, eq. (15): 

(42) 

C f -  C e 1 -- 090 -- s ~ (1 + 1]2k212)-1 (43) 

1200 
non - l oca l  ,," I 
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0 0.5 1 1.5 

wave  number [1/mm] 

Figure 6. Wave velocity as function of wave number. 

In eqs (41)-(43) ce is the elastic wave velocity, eo is the existing strain level and o90 is the cor- 
responding value of the damage parameter. The following material data were used: a Young's 
modulus E = 20,000 MPa, a density such that ce = 1000 m/s, a linear degrading damage mod- 
el with an initial value tr = 0.0001, a value ~r 0.0125 at which the local load-carrying ca- 

pacity is exhausted, and an internal length scale l - ~J2 mm. Taking a strain level e0 = ~i, the 
curves of Figure 6 are obtained. 

We observe that all three models result in a cut-off wave number below which loading 
waves cannot propagate, i.e. the wave speed becomes imaginary. This phenomenon was also 
found for gradient-enhanced plasticity models [4,6,20]. However, the cut-off wave number 
now depends on the existing strain level, and as seen in Figure 7, the critical wave length be- 
comes smaller for increasing deformation, in contrast to gradient plasticity where it remains 
constant. Also, the three different damage models start to differ at increasing strain levels. 
The most salient observation is that while the nonlocal damage model and the gradient model 
in an implicit format approach a zero wave length, and therefore a physically realistic vanish- 
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Figure 7. Cut-off wave length as function of strain level. 
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Figure 8. Load-deflection curves at mesh refinement (implicit gradient model). 

ing localization zone for large strain levels, this is not so for the gradient damage model in an 
explicit format, thus precluding a gradual transition into a line crack. 

Next, we consider a bar with a finite length, L = 100 mm, and take an imperfection 
(10% reduction of the cross sectional area A) in the centre 10 mm of the bar. Now, for reasons 
mentioned above, numerical computations have been carried out only for the implicit gradient 
damage model and for the nonlocal damage model, but not for the explicit gradient damage 
model. In the first case a full constrained Newton-Raphson procedure was adopted [24], while 
a secant stiffness method was used for the nonlocal damage model. It appeared that the non- 
local damage model requires a less fine discretization than the implicit gradient damage mod- 
el, as the results for an 80 element and for a 160 element discretization already coincide in the 
nonlocal approach, while this is not the case for the implicit gradient model, Figure 8. On the 
other hand, convergence in terms of equilibrium iterations is much better for the gradient 
model, and fully converged solutions could be obtained until almost a zero residual load level, 
Figures 8 and 9. The equilibrium-finding iterative procedure for the nonlocal model fails at a 
non-zero residual load level. In fact, for finer discretizations the iterative procedure diverges at 
an earlier stage in the loading process. Figure 9 compares the load-deflection curves for both 
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Figure 9. Comparison of the nonlocal and implicit gradient models. 
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models for a discretization of 320 elements. We observe that upon further loading, the differ- 
ences between both models become more pronounced and that at a certain stage convergence 
is lost for the nonlocal damage model. 

7. CONCLUDING REMARKS 

A family of gradient-enhanced damage models has been described where the damage is cou- 
pled to elasticity. Although they can be related to nonlocal damage models in an integral for- 
mat, their properties are in some cases quite different from those of nonlocal integral-type 
damage models, as has been shown by dispersion analyses and by a simple one-dimensional 
example. For a particular gradient-enhanced damage model an enhancement has been suggest- 
ed, which eliminates the widening of the damage zone which is observed upon fracture propa- 
gation in enhanced damage models where the internal length scale remains constant. For this 
model, a computationally efficient scheme has been described, which opens the way to large- 
scale computations. 
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In the work the experimental observations on single and polycrystalline metals are used 
to show the need for a new approach to crystal plasticity in which three aspects of slip: 
mechanistic, geometrical and structural are incorporated. A particular attention is paid to the 
effect of a sequential operation of slip systems. The arguments that the change in the 
deformation bearing systems leads to the catastrophic coarse slip in single crystals and to shear 
banding in polycrystalline metals are provided. The model of the sequential multi-system slip is 
shown along with the results of the numerical calculations of the crystal behavior. The 
criterion for micro-shear banding is discussed on the basis of the features of micro-shear bands 
in metallic materials. 

1. INTRODUCTION 

Except of particular conditions, like high temperature and/or very low stress, plastic 
flow of crystalline materials results from slip. The experimental studies, briefly summarized in 
[ 1 ] show that localization of strain has to be considered as the particular mode of plastic flow 
which in a single crystal receives the form of catastrophic (coarse) slip, while in polycrystals 
it takes the form of a trans-granular shear (shear band). Appearance of such forms of slip 
clearly points to the evolution of slip extent during deformation. Hence, the analytical 
account for this evolution may be an alternative way to predict the global performance of 
crystals during plastic yielding. In such approach three aspects of slip: mechanistic, 
geometrical and structural, must be simultaneously taken into consideration in order to 
obtain coherent and fully consistent with experimental facts description of the crystal 
behavior. It seems to be the way to predict the strain hardening of crystals oriented for a 
single system glide, the latent hardening effects and the condition of the change from a fine 
(homogeneous) slip behavior into a coarse, localized slip. The experimentally proved role of 
the coarse slip within individual grains of a polycrystalline aggregate as a precursor of micro 
shear bands strengthens the idea that shear banding is the latest stage of the slip evolution 
and makes that the analytical description of slip behavior in a single crystal may provide the 
basis for prediction of the global behavior of polycrystals. 

In this work the experimental observations on single and polycrystalline metals are 
used to show the need for a new approach to crystal plasticity in which the already mentioned 
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aspects of slip in crystals are incorporated. The numerical analysis is aimed to predict the 
formation and evolution of the crystal substructure and, consequently, the evolution of slip 
features in the course of straining. To accomplish this goal it is assumed that slip in a crystal 
(individual grain of a polycrystalline aggregate) begins in one system, and activation of 
secondary systems has a sequential character and varies in tact with evolution of the scheme 
of loading. The latter is defined from the geometry of slip (geometrical constraints) which via 
reaction (elastic) stress, the crystal reorientation and throughout the slip criterion activates 
the secondary slip systems and controls the amount of shear in the operating systems. The 
first analytical results are compared with experimental observations of slips in single crystals. 
The meaning of the sequential multi-system slip is discussed in terms of the accumulation of 
dislocations in particular systems (obstacles pattern), associated evolution of slip, the stability 
of the substructure and the conditions for the breakdown in the slip evolution law into 
catastrophic (trans-substructural) coarse slip and into micro-shear band. 

2. THE NATURE AND EVOLUTION OF SLIP- experimental basis for modelling 

At the background of the analysis there are some common and fundamental 
experimental observations. The first is that slip is a highly anisotropic form of the response of 
crystal to the applied load. Therefore, slip begins in that of the crystallographically equivalent 
systems in which the lattice resistance to shear (movement of dislocations) is the least and in 
which the resolved shear stress is the highest. Hence the criterion for slip [2] which may be 
written in the following generalized form: 

1: = o : b | n ,  (1) 

selectively chooses a slip system at the onset of plastic yielding. This causes that in most (if 
not all) cases of the scheme of loading the first amount of slip occurs inane slip system. 
This argument may be used also for the case of a symmetrical orientation of crystal in which 
the resolved shear stress is the same for a few systems, simply because the ideal symmetrical 
orientation is highly unlike. In addition, because of the lattice imperfections, even then the 
local conditions favor the choice of a single system slip. 

In a microstructural scale slip is a physical act which comprises generation and 
movement of dislocations in the common plane. The extent of these elementary slip events - 
area swept or the mean free path of the dislocation glide k, and the number of dislocations 
generated p - are the intrinsic features of slip. They have the topological representation in 
the pattern of slip lines on the crystal surface. The effect of several evenly distributed slip 
events in a system is equivalent to the homogeneous shear ? - (b.N-7~.dA/V) of the body or in 
a simplified form ? = b �9 P �9 k (Orovan relationship). An associated effect is the 
accumulation of dislocations, which gives rise to the formation of substructure (the obstacles 
network). 
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Fig. 1. The latent hardening effect after Basinski & Jackson [3] 

Therefore, if the criterion for the slip is met, then some amount of shear is carried by 
the slip system leading to accumulation of dislocations in tho active slip plane. In 
consequence, the initial equivalence of crystallographically identical systems is lost. This 
structural aspect of slip is well exposed by the latent hardening ratio (the value of flow stress 
in a secondary system to that in the deformation bearing one). As it is shown in Fig. 1, this 
ratio jumps dramatically from the value 1 (before deformation) to the value of the order of 3 
if a small slip takes place in the ,,primary system". This fact prompts one to accept that 
activation of the other system, which is necessary in order to accomplish the requested 
permanent change of the crystal shape, follows in a sequential manner. 

This is the most important experiment born conclusion, which has to be at the 
background of the construction of a model of evolution of crystals behavior. Such an 
approach to crystal plasticity is substantially different from the so far developed models, 
which rely upon the assumption of a simultaneous multi-system slip, and especially those 
based upon Taylor [4} or Bishop and Hill [5] arguments. The basic difference concerns the 
identification of the operative slip systems and the amount of shear in each of them, and 
consequently, it pertains to the associated structural effects like rotation of the crystal lattice 
relative to the loading system and accumulation of dislocations in different slip planes 
(formation and stability of the obstacles network). In the case of a sequential operation of 
slip systems, it is impossible to predict ,,a priori" which systems are brought into operation 
and how big is the shear they carry until the geometrical aspect of slip and the associated 
evolution of the loading scheme are considered. This statement meets a very convincing 
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experimental evidence in the observations of slip activity, evolution of slip extent and strain 
hardening of a single crystal oriented for a single slip in the uniaxial tension experiment. 

Let u s ,  therefore, briefly summarize the observations for a FCC crystal loaded 
along the <145> lattice direction. Then, while rising the tensile force, the yield criterion is 
met only for one of the twelve crystallographically equivalent systems - [ 101 ](111). The 
orientation of the crystal causes that the applied load favors slip only in this system over a 
very large (of the order of 50%) elongation of the crystal, making that this system is the 
deformation bearing system. Inspection of the tensile characteristics of such an oriented 
crystal, like that quoted aiter Basinski [6] in Fig.2, shows that already after small deformation 

(stage of easy glide ) the hardening rate rises very quickly to the level of 10 .2 l.t which is 

the highest rate of strain hardening of the crystal. The extent of the easy glide increases to 
several percent of crystal elongation with the increase of the initial critical slip stress as it was 
shown for the first time in the pioneer works of Sachs and co-workers on single crystals of 
Cu, Cu-Zn and Ag-Au alloy single crystals [7-9]. This stage is commonly interpreted as the 
range of the single slip activity just because of the lack of hardening and very large, strain 
independent slip extent (length of slip lines) [10]. Accumulation of dislocations in the primary 
system leads to formation of the obstacles network in the form of parallel dislocation walls 
along active slip planes, which do not interfere with the slip on parallel slip planes in-between 
the walls. A sudden rise of the hardening in a transient region between the first and the 
second stage of deformation has to be, therefore, associated with the appearance of slip in 
secondary systems (forest hardening). 
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Fig.2 Tensile characteristics of a single slip oriented Cu single crystal and variation of strain 
hardening rate in the course of straining aiter [6]. 
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Figure 3 shows the slip line pattern at the beginning (a) and at the end of the easy 
glide stage of the deformation (b) of Cu-Al crystal proving that the slip line length in this 
stage is constant and that progress in straining results from the increase of the number of slip 
events (number of slip lines) in the same system. 

Fig3. Slip patterns in Cu-AI single crystal at the beginning (a), and at the end of the easy 
glide (b). 

The onset of the second stage of deformation coincides with the beginning of the slip 
evolution, as it is shown in Fig.4 [ 10]. It has been found that the slip line length is inversely 
proportional to the second stage deformation of the crystal [6,10]. The experimental 
observations clearly show that the transient from the first to the second stage of a single 
crystal hardening is associated with slip in the secondary [011](11 l) system which is termed 
the conjugate system to emphasize that it comes into operation in a feedback with the primary 
system. Dislocations accumulating in this system form the obstacles network for slip in the 
primary system (Fig.5) giving rise to slip evolution and the strain hardening (Fig.2). 

Fig.4. The evolution of the slip 
length in the primary system in 
the course of straining of FCC 
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Fig.5 Slip pattern typical for the second stage of deformation (the highest strain hardening) 
in Cu-AI single crystal showing the slip activity in the primary and the conjugate systems. 

There is a very important experimental information that the orientation factor for slip 
in the conjugate system is then 2.5 times smaller than that in the primary system, and along 
with the latent hardening ratio (about 2.5) it makes that the applied stress at the moment of 
conjugate slip activation has to be roughly 6 times higher than that being measured. In terms 
of the applied stress argument it is impossible to justify the slip, proved also experimentally in 
the ,,cross slip" system. For these systems the orientation factor is zero and it remains zero 
throughout the second stage of deformation of a single crystal for typical orientations with 
tensile axis lying in the cross slip plane. There exists, therefore, other cause of the activation 
of the secondary systems than the sole applied stress. Slip in the secondary systems has to be 
therefore considered as the accommodating slip, which is driven by the reaction stress 
resulting from the forbidden components of the deformation tensor under tensile conditions. 
This reaction stress has to be precisely evaluated in order to identify the secondary slip 
systems, the sequence of their operation and the amount of shear they carry in every instant 
of sequential operation. This has been recently exposed in an analytical work on the effect of 
sequential slip upon the description of the plastic deformation of crystals[ 11 ]. It is shown 
there that only under very special conditions the simultaneous double system slip yields the 
same result as a sequential operation of these systems. Fig.6 gives a simple illustration of the 
effect of the amount of the shear increment d7 (the same for each system) upon the rotation 
of the two initially orthogonal edges of a hypothetical crystal after the commutative 
operation of two slip systems symmetrically disposed within the crystal. From this figure one 
can find that for the same cumulated deformation in the systems the geometrical change of 
the crystal faces is not unique and depends upon the value of the strain increments in the 
systems. 
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Fig.6. The effect of the increment of deformation during sequential operation of two 
symmetrically disposed slip systems upon the rotation of edges of a hypothetical crystal. 

From the point of view of the evolution of the slip behavior the answer to the 
question which system and when comes into operation and how much shear it carries is 
crucial. This conclusion meets support in the results of the strain path change experiments on 
single and polycrystalline metals which have to be considered as the second most important 
information about the nature of slip in crystals. Jakson and Basinski [3] have shown that the 
plastic flow dunng the subsequent deformation (i.e. in a sample taken from the parent crystal 
after it had undergone some initial plastic deformation) was unstable if the secondary 
deformation employed a slip system different than that used in the primary straining. The slip 
in a secondary system took then the form of a coarse slip which extended across the existing 
substructure (obstacles network). These facts point to a mechanical instability of the 
dislocation substructure during the slip in a secondary system providing, however, that the 
secondary system becomes the deformation bearing one. This last statement follows the 
experimental observation of the so called ,,overshoot instability" which is observed often to 
terminate uniform deformation during tension of single crystals when the orientation factor 
becomes the highest for the secondary (conjugate) system.[ 12]. 

The observations of the behavior of single crystals of alloys subjected to tension in the 
symmetrical (double system slip) orientation [7, 13] (Fig.7) and Basinski's observations that 
in such orientation the tensile axis passes several times the symmetry [001 ]-[ 111 ] line during 
straining [ 14] provide another proof that the operation of slip systems is sequential and that 
some critical amount of shear in a system is needed to destabilize the existing substructure. It 
results in the catastrophic trans-substructural coarse slip development. Such a response of slip 
to the change of the deformation beating system suggests that the collapse of the substructure 
which opens the way for the catastrophic slip (by making an easy path for the dislocation 
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motion) is a direct effect of the slip geometry. This may happen in the case of a dislocation 
wall made of primary dislocation dipoles. Rotation of the wall due to slip in a secondary, 
noncoplanar system leads to the collapse of the wall if the opposite dipole segments are 
brought to the common slip plane. This may happen provided that the shear in the secondary 
system is sufficiently large. This, in turn, means that the criterion for coarse slip is met when 
the deformation conditions lead to a change of the deformation beating system and may be 
met if the accommodating slip destabilizes the obstacles network. 

Fig. 7. The tensile stress-strain curve 
of Cu-Al single crystal oriented for 
double system slip [ 13 ]. 

�9 1.8 Cu - 10.9 7. At 

~" 1.4 
I 

1.2 

o 1.0 
. . j  

, . ,  ~ | 

] 
I I - -  , 

- '1 
P [  

DEFORMAT'nN [ 1 1  ~ j 

Qi~/Qrr ~0.65 
Q /Q] o,o 

0 8  

0.6 

0.4 

0.2 

o;2 o14 0:s o18 1.'4 
ELONGATION 

3 5 0 0  . 

2 8 0 0  . 

Z 
v 

2 1 0 0 .  

fl] 
o 
_.i 1 4 0 0  . 

7 0 0  . 

0 . 

V = 0 . 0 0 0 7  mm/sec 

0 9 1 . 8  2 . 7  3 . 8  4 . 5  
D i s p  l a c e m e n t  ( r a m )  

Fig.8. The tensile characteristics and macroscopic shear bands in polycrystalline iron formed 
during tension after primary rolling deformation [15]. 

Such a purely geometric (athermal) effect of the sequential slip must be taken into 
consideration in order to understand the evolution of the metal substructure and its stability in 
the course of deformation. This argument is valid also for polycrystals. The experiments 
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performed on polycrystalline metals clearly show that the change of the scheme of straining, 
which on the level of an individual grain means the change in the deformation bearing 
system, leads to the macroscopic strain localization in shear bands [ 15-19]. The example of 
such a response of the slip to the change of the scheme of straining from rolling to tension 
along the transverse direction is shown in Fig. 8 

Optical microscope observations show that the macroscopic band is composed of a set 
of parallel micro-shear bands, maintaining the same position in the sample as the 
macroscopic band (Fig.10). They show also that formation of micro-shear bands in 
polycrystals is preceded by formation of coarse slip bands within individual grains whose 
positions follow the orientation of crystallographically preferred slip systems [o-k-g]. Such a 
behavior could be forecast on the basis of the already given arguments. Basinski and Jackson 
argued [ 3 ] that in polycrystals ,,since due to grain boundary constraints the slip system 
operative in individual grains will be forced to change as the deformation proceeds". Such 
changes must promote coarse slip within grains, which develops along with the homogeneous 
fine slip deformation. A simultaneous operation of two modes of slip may account for the fact 
that the strain hardening rate in polycrystals is never as high as in the second stage of a single 
crystal deformation. The argument used by Basinski and Jackson addresses the criterion for 
coarse slip development (precursors of micro shear bands) to the effect of secondary slip. At 
the same time, the activation of a secondary slip system is ascribed to the constraints 
induced evolution of the stress state in the material. Therefore, either an analytical or a 
numerical account for the constraints effect on the choice of the operating slip system within 
individual grains seems to be the key to understand the performance of the polycrystalline 
metals. The conversion of coarse slip event into a micro-shear band appears in such 
circumstances as the next stage of the slip evolution which possesses its own characteristic 
features. The very peculiar feature of this mode of deformation is that deformation is 
concentrated within the very narrow (0.1 - 0.2~tm) layers (micro shear bands) which extend 
across several grains of a polycrystalline aggregate keeping the same position in the material 
as is shown in Fig.9. 

Fig.9. Microstructure features 
of shear banding in Armco iron [15]. 
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Fig. 10. Different spatial distribution of micro-shear bands in Aluminum alloy (a,b) and the 
effect of the scheme of loading upon their orientation in the sample[l 7]. 

The position of shear bands in the material is sensitive to the scheme of loading, but 
not to the material structure and texture [15-18]. These properties of micro shear bands, 
along with the experimental evidence that the deformation within the band is a simple shear 
deformation [19], prompts one to accept that slip in crystals may also occur in other than 
the crystallographically preferred slip systems. The experiments reveal that the conditions 
allowing to activate another- ,,non-easy" system are closely connected with the structure 
destabilization due to the change of the deformation path. A criterion for activation of non- 
easy slip systems and transmission of slip across a grain boundary has already been proposed 
[20]. Practical use of such a criterion is , however, conditioned by the first demand - 
formation of a ,,sott path" for a catastrophic (highly cooperative) movement of dislocations. 

It is worth mentioning that these properties of micro-shear bands, and in particular 
the possibility to induce this mode of deformation by the change of the scheme of loading, 
which also controls the position of micro-shear bands in the material, have already been used 
in the control of the metal structure [ 17,18,21 ]. In Fig. 10 some examples of shear bands in 
polycrystalline Aluminum alloy are shown. They were induced in different spatial 
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distributions and orientations in the samples. The results of the experiments with formation of 
natural metal-matrix-composites [22] by decomposition of the unstable matrix along 
deliberately induced micro-shear bands indicate that the practical knowledge in this area 
exceeds theoretical considerations. That is why in our approach to crystal plasticity the 
emphasis is put on these experimental facts which concern the slip behavior. It seems that 
just these facts provide the instruction how to model the evolution of the structural features 
and mechanical performance of crystals. In particular they show that there are three distinct 
forms of the slip in polycrystalline metals which undergo the evolution in the course of 
straining. A fine, fully structure controlled slip breaks down into a catastrophic (trans- 
substructural) coarse slip and the coarse slip evolves into a trans-granular shear (polycrystals). 
These forms show different properties, hence the criteria for the breakdown from one to the 
other form have to be considered separately. Therefore, at the beginning it is necessary to 
find the appropriate model of the fine (multi-sytem) slip in a single crystals and identify the 
reasons of its breakdown into a catastrophic slip. Such a model must be based upon the 
features and consequences of crystallographically determined slips. In turn, the criterion for 
shear banding (polycrystals) should resolve itself into the identification of the conditions 
under which a coarse slip is able to continue across several grains regardless their 
orientation. The basic assumption which has to be made then is, that there are the conditions 
for activation the slip in non easy slip systems. These two different models of slip will be, 
therefore, considered separately. The first as the ,,Sequential slip based model" and the 
second as the ,,Criterion for a trans-granular shear". 

3. SEQUENTIAL SLIP BASED M O D E L -  the first numerical results. 

The experimental facts justify the postulate that the change from a homogeneous 
deformation into unstable, localized one, which is equivalent to the change from the fine, 
evenly distributed slip into a catastrophic coarse slip, may be considered as resulting from the 
sequential operation of slip systems. Therefore, the criterion for such a catastrophe should be 
sought in the evolution of the amount of slip in operative systems in every instant of their 
sequential activation along with identification of these systems and the moments of their 
activation. The advantage of such approach to crystal plasticity is that it gives a chance to 
trace the evolution of the total density of dislocations accumulated in the crystal and also the 
distribution of the dislocations among different systems. Hence, the most important 
properties of crystal, like flow stress and latent hardening ratio, and their evolution in the 
course of straining which are required for modeling [23], may be numerically found. 
Agreement of the calculated and experimental data is then the premise that this approach to 
the crystal plasticity and, in particular, to plastic flow instability in crystals is correct. The first 
step in the analysis was, therefore, to model the mechanical performance of a single fcc 
crystal oriented (tension) for a single slip glide which is the best experimentally documented 
case of crystal deformations. 

The scheme of calculation was as follows: from an increment d~/of a simple shear in 
the primary system the geometrical changes of the crystal and its spatial orientation, while 
non-constrained by the loading system, were calculated from the deformation gradient tensor 
Fpl of the primary homogeneous slip. Then, the necessary rotation and elastic distortions of 
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the crystal to make it match with the tensile system were evaluated. The reaction stresses, 
responsible for such matching were determined via elastic shear modulus. The applied tensile 
stress was then supplemented by the reaction stress components and, from the generalized 
slip criterion (eq. 1), the values of the shear stress in the crystallographically allowed systems 
were calculated. The increment of the strain in the primary system was taken in such a way 
that the generated constraints were too low to activate a secondary system until a few 
incremental shears in the primary system took place. The back stress in the primary system 
(from the constraints) was balanced by the increase of the tensile stress, so that the yield 
criterion in the system was sustained. Density of the dislocation ps in the system was 
determined using the Orovan relationship. The initial slip distance ~ was taken from the 
experiments [6,10], and the spacings between slip events were calculated by taking into 
account that the number of dislocations emitted from a source is proportional to the shear 
stress in the system and the free path of dislocations. In this way the mesh-length of the 
primary dislocation network (obstacles pattern for the secondary systems) was estimated. As 
a result the current critical shear stress for slip in a secondary system (proportional to the 
square root of the primary dislocation density) and the free path of dislocation glide in such a 
system were found . Every time the evolution of the stress state led to activation of the 
secondary system (the most stressed one in which the slip criterion was met), the increment 
of slip was found from the argument that the secondary slip replaces elastic distortions by 
plastic deformation (releases the reaction stresses) and tends to restore the initial scheme of 
loading. The density of the dislocations stored in the secondary system was then calculated 
allowing to evaluate the structural (forest) hardening of the primary system. The rise of the 
applied stress in order to overcome this effect was the measure of the macroscopic rate of 
strain hardening of the crystal. The final product of the calculation procedure is the flow 
stress - strain dependence as shown in Fig. 11 .These curves were found for different values 
of the initial critical shear stress in the primary system (respectively 5, 10 and 20 MPa) and 
different initial free path of the dislocation glide 0. l mm and 1 mm, respectively, and the 
shear modulus 40000 MPa. Hence, the results may be compared with experimental FCC 
single crystals tensile curves. The parallel result was the identification of the operating slip 
systems. 

These curves reveal the experimentally found features of the tensile deformation of 
single crystals for the chosen orientation. The easy glide region of deformation was found to 
be sensitive to the initial critical shear stress of slip, and the value of the strain hardening rate 
in this stage was found to be of the order of 10 .3 la in tact with experimental observations. 
The rate of the strain hardening in the second stage, which again, in tact with measurements 
is not constant throughout this stage, reaches the experimentally found value of the order of 
10-2 ~. 

The most important information for verification of the model comes from the 
identification of the operative slip systems. Within the range of strains tested by the model, it 
is found that the secondary slip employs the conjugate [011](111) and the cross plane 
[011 ](1 i" 1) systems and that they operate alternatively with the primary system. This result is, 
therefore, fully consistent with experimental observations and it seems to be the first 
analytically predicted effect. 



249 

1: = 5 M P a  
I, : 0.1 mm 

= 10MPa 
k =0.1 mm 

1: = 20 MPa 
k = l m m  

5.2 

In 
o~ 5 
I-. 

In 
724.8 
.m 

Q. 
~ 4.6 

4.4 

3.6 

3.4 
In 
In 
(I) 32 
k-- " 
-i--, 

In 
72 3 
O) 

Q-2.8 
Q. 

2.6 

2.4 

1.8 
In 
tat) 
(D 
k-- ..-,1.6 
o9 

"--1.4 

r 

1.2 

0 

J /- 

I 

0 0.01 0.02 0.03 0.04 0.05 

O. Ol O. 02 O. 03 O. 04 O. 05 

f 
f "  / 

J 

s t r a i n  

1 -.I. -,--- 

0.05 0 O. Ol O. 02 O. 03 O. 04 

Fig. 11. Calculated stress-strain curves for different value of Zcrit and k 

The additional verification of the model was obtained when the procedure had been 
used to identify the accommodating slip systems in the other, experimentally documented 
case. Twinning in the Cu-AI single crystal reflects such a case. The mechanical effect of 
twinning, which takes place under the overshoot instability conditions is marked on the 
tensile characteristics by the instability point (the second in Fig.7) . The twinning system 
employs then the conjugate (1 [ 1) plane and [ J 21 ] the twinning direction. Already a very thin 
plate of twin which carries the very large (0.707) shear, in the tensile test has to be 
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accommodated by slip in a secondary slip systems. The numerical calculations indicate that 
these systemsare: the critical plane system [0i 1 ](i'11) and the two cross plane systems [011 ] 
(1 i 1) and [ 101 ](111). Fig. 12 shows the slip pattern on the surface of a partly twinned 
crystal. Identification of the slip traces has shown that they belong to a critical and to two 
(white and dark) cross plane systems. These results justify the conclusion that exact account 
for the role of the ,,geometrical" constraints is crucial for prediction of the operative slip 
system, the sequence and the moment of activation and the amount of shear they carry. It 
seems also justified to believe that within the proposed model such an account is possible. 

Fig.12. Slip pattern on the surface of Cu-AI crystal partly twinned during tensile 
deformation 

As a comment to these results it is necessary to emphasize that the mechanism of 
glide was considered athermal. There are two arguments behind this assumption. The first 
comes from the experimental data which show that the strain hardening rate of crystals in the 
first and in the second stage of deformation is temperature independent [6]. The second 
argument results from the mechanism of slip. The elementary slip event consists of the 
emission of the dislocations from a source and their cooperative movement which is 
governed by the long range applied and interaction stresses. From this point of view, thermal 
activation, which at this stage has not been yet taken into consideration, is associated rather 
with the rearrangement (relaxation) of the already stored dislocations than with thei~ 
thermally assisted glide. Such an rearrangement definitely helps to destabilize the obstacles 
network, but this effect appears important for the third stage of single crystal deformation 
(stage of dynamic recovery) the onset of which is temperature and strain rate dependent [6]. 
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A monotone decrease of the hardening rate in this stage coincides with concomitant fine and 
coarse slips in the primary (deformation bearing) system. There is, therefore, a good reason 
to believe that the decrease of hardening rate results from successive replacement of the fine, 
homogeneous slip by a localized coarse slip. The most convincing argument for this 
observation has been provided by Cottrell and Stokes [24]. They showed that the rise of the 
temperature in the course of straining of the crystal results in the catastrophic coarse slip 
which in such circumstances takes the form of the propagating Luders front or develops into 
a neck. 

4. CRITERION FOR TRANS-GRANULAR SHEAR 

The already mentioned observations of the morphological features of shear bands 
delivered a clear suggestion about the mechanism of this mode of deformation. They have 
lead to the idea that a micro-shear band results from the conversion of an avalanche like 
(catastrophic) movement of dislocations which develops along a soft path in the crystal. Such 
a highly cooperative movement possesses the property of the stress pulse traveling across 
the crystal. The formation of the micro-shear bands resolves itself into the criterion for 
non-dispersive transmission of the stress pulse across a grain boundary [20]. The term ,,non- 
dispersive transmission" means that the shear carried by a dislocation avalanche, which 
develops in a crystallographically favorable system, does not disperse at a grain boundary, but 
continues along non-easy systems across several grains. It also means, that such a pulse 
results from the superposition of the stress fields of dislocations, and therefore it has to be a 
complex local stress state. This conclusion has been proved by the experiments on the 
Aluminum and the Fe-Ni alloys. The shear band induced fracture of the sheet of 
polycrystalline metal (Fig. 14), while leaving the deformation zone during the rolling [22] , 
and formation of the martensite along shear bands during rolling [18] provide a clear 
evidence for very large tensile stress along the normal to the plane of shear. From such an 
experiment it was possible, also, to deduce that shear bands possess a wavy nature. The 
experiments with the shear bands induced martensite show, for example, that there must be a 
communication system between separate martensitic plates. Otherwise it would be very 
difficult to understand why they arrange along the common micro- shear bands. 

Fig. 13. Fracture along shear bands 
during rolling of Aluminum alloy [22]. 

Fig. l'l.Stress induced (rolling) formation 
plates ofmartensite in Fe-30Ni alloy [ 18]. 
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Therefore, an analytical account for such a criterion needs that the physical 
mechanism of slip (movement of dislocation) to be taken into considerations. The starting 
point of the analysis is the profile of internal stress associated with a pile-up configuration of 
dislocations. Two extreme momentary situations (Fig. IS) may be considered. In the case (a) 
the pile-up stress may relax due to the activation of slip system in a neighboring grain. Then 
the stress pulse amplitude will never reach the static pile-up stress, which may be orders of 
magnitude large than the applied stress. This case can be classified as a dissipative 
transmission of the pulse throughout the grain boundary. In the case (b) the second grain 
does not ,,see" the stress concentration, except the very last moment of the pile-up formation. 
The peak stress may be of the order of the theoretical strength, required for homogeneous 
nucleation of dislocations (high enough to activate slip in a non-easy system). 
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Fig. IS. A hypothetical dispersive (a) and non-dispersive transmission of the stress pulse of a 
group of dislocations through the grain boundary [20]. 

A numerical distinction between these two case can be performed on the basis of the 
rate of stress increase in the location on the grain boundary. The stress rate do/dt may be 
written: 

da/dt = (d~/dx). (dx/dt) (2) 
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The fight hand terms of the expression are the stress gradient at the grain boundary 
(caused by the approaching group of dislocations, and the velocity Vg of the group, 
respectively). 

The position dependent gradient of the stress in the group of dislocations and the 
velocity of the group are the controlling factors for the grain boundary stressing rate, but only 
if there is no relaxation of stresses due to slip in the neighboring grain. This means that non- 
dissipative transmission of the stress pulse through the grain boundary is possible when the 
rate of the stressing is higher than the highest available (critical) rate of the stress 
transmission. This critical rate of the stress transmission is, in turn, determined by the velocity 
of sound in a metal, which for a shear stress wave is c = (p/pm) ~/z, where la is shear modulus 
and 9m the material proper density. Here, ,,c" is the velocity of the displacement of a material 
point du/dt; thus, the critical rate of stressing can be found via the well known relationship 
between displacement, strain and stress. These yield the following relation: 

(5"crit : C" ( ~ / D )  (3 )  

o r  

O'crit = ( l . t / D ) - ( ( B / p r o )  1/2 (4 )  

The quantity D in the formula is the thickness of the zone of shearing (thickness of the 
micro-shear band). The criterion for the non-dispersive stress transmission, as well as for the 
highest peak stress of the pile-up, takes the form: 

(do'/dx)~wVg > B 3/2 / (b.pm 1/2) (5) 

When fulfilled, the pile-up stress may reach the theoretical value, which is transmitted with 
sonic velocity in a neighboring grain in the form of the stress pulse. Audible acoustic emission 
heard during a jerky flow in some materials during tension may be considered as the proof of 
highly dynamic nature of shear banding for which the proposed criterion may be applied. 

5. FINAL REMARKS 

The proposed model of the plastic flow in crystals is based upon a step by step 
numerical analysis of the evolution of the crystal behavior in the course of straining. 
Therefore, it should be considered as an alternative, with respect to a ,,constitutive" 
modeling, way of the account for catastrophic phenomena in crystalline materials. A criterion 
for the catastrophic plastic flow is sought in the evolution of intrinsic properties (slip 
distance, number of dislocations engaged in a slip event) of the slip, but not in the evolution 
of global features of the material. Such an approach offers some definite advantages. First of 
all it is free from empirical data except of those which concerns the initial (prior to straining) 
material features. Instead, it makes possible to evaluate the evolution of the material 
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properties. The criterion of strain localization specifies the conditions which must be met 
locally in order to initiate that process. Therefore it is not a probabilistic criterion but is 
addressed to the location in the material from which the localization may develop. The 
meaning of this statement is well exposed by the experiments with shear banding in a fine and 
coarse grain material [15]. It was shown that in a fine grain material the zone of 
macroscopic localization is composed of very densely spaced microbands. In the coarse grain 
material such a zone is discontinuous (Fig.16) what poinlxto the crystallographic origin of 
shear bands. Then, the continuos or discontinuous development of localization depends on 
the number (population) of grains in which the conditions for catastrophic slip are reached. 

Fig. 16. Continues and discontinues distribution of shear bands during necking in a fine and 
coarse grain Armco Iron [15]. 

It seems, therefore, justified to focus upon the modelling of the mechanical behavior 
of single crystals in different loading conditions (crystal orientation, scheme of loading, 
temperature) in order to identify the circumstance under which the development of a 
catastrophic flow is especially easy. 
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Abstract : Scalar damage models are very often implemented in computational 
analyses in order to predict the responses and failure modes of concrete and 
reinforced concrete structures.  In most situations, however, damage is not 
isotropic but ra ther  geometrically oriented. Therefore, there as been m a n y  
questions about the pertinence and range of applicability of isotropic, scalar, 
damage models for describing a degradation process which is strongly 
geometrically oriented. In order to assess what  are the limitations of such a 
simplifying assumption, a comparative study is presented. The scalar damage 
model is compared with another model where damage induced orthotropy is taken  
into account. Structural  analyses on bending beams, compression-shear and 
tension-shear concrete panels are discussed. Although it may appear  to be 
simplistic, the scalar damage model provides accurate predictions when failure is 
due to uniaxial extension. Crack closure introduces an additional anisotropy which 
is important  in compression-shear problems. Finally, damage induced anisotropy 
seems important  when failure is due to multiaxial extension, such as in shear- 
tension problems. 

1. I N T R O D U C T I O N  

Quasi-brittle materials  such as concrete exhibit a non linear s t ress-s t ra in  
response mainly because of micro-cracking. In most cases, these microcracks are 
oriented with respect of the applied stress history (Shah and Maji 1989, Torrenti 
et al. 1989): in uniaxial tension microcraks develop perpendicularly to the tensile 
stress; in compression, splitting cracks parallel to the direction of the compressive 
stress appear. In constitutive models, it is usually recognised tha t  microcracks 
open in a plane which is perpendicular to the direction of the maximum principal 
tensile stress (Rots 1988, De Borst and Nauta  1985, Govindjee et al. 1995) or 
controlled by the principal strain directions (see e.g. Simo and Ju  1987, Berthaud 
et al. 1990). The development of microcracks results in a progressive degradation 
of the elastic stiffness of the material. The degraded elastic operator is not 
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expected to remain isotropic but to become gradually anisotropic. This 
phenomenon is called damage-induced anisotropy. 

Start ing in the 80's, several anisotropic damage models have been 
developed for quasi-brittle materials. Among many proposals Krajcinovic and 
Fonseka (1981) used damage vectors, Sidoroff (1981), Chaboche et al. (1994), 
Mazars and Pijaudier-Cabot (1989), Dragon and Mroz (1979), Valanis (1991) used 
a second order tensor, Ortiz (1985), Simo and Ju  (1987), Yazdani and Schreyer 
(1990), and more recently Carol et al. (1994) proposed to consider tha t  damage is 
a fourth order tensor. Each proposal yields a specific type of anisotropy. For 
instance, with a second order tensor the damaged material becomes orthotropic. 
Their variety is somewhat puzzling because it is difficult to compare the predicted 
type of damage-induced anisotropy with experimental data and therefore it is 
difficult to provide a proper method for choosing the most appropriate type of 
damage variable. 

From a theoretical point of view, it seems appropriate tha t  rational 
methods for the derivation of the type of damage variables should be devised. 
Ladeveze (1983) proposed a general technique of approximation of the elastic 
stiffness of a damaged material. The method introduces two damage surfaces 
which characterise the unidirectional stiffness and the compressibility of the 
material for any loading direction. The elastic moduli are derived using an 
approximation technique similar to a weighted residual method. A second 
technique is based on the microplane approach proposed for quasi-brittle 
materials by Bazant  (see e.g. Bazant and Prat  1989). The elastic (or tangent) 
stiffness of the material is obtained from the relationship between the stress and 
the strain vectors for any arbitrary microplane direction. The construction of the 
stiffness results from a energy based equivalence. Damage is defined at the 
microplane level and the relation with the global elastic stiffness of the material 
was elucidated by Carol et al. (1991). They arrived at the definition of a fourth 
order damage tensor where the damage variables at the microplane level appear  
and simplifications can be performed. 

In Ladeveze's proposal, it is already stated that  the definition of the damage 
surfaces should be envisioned with respect to experimental observations: without 
any other discriminating data, the simple knowledge of a uniaxial response of the 
material (axial strain vs. axial stress) cannot provide anything but a one scalar 
isotropic damage model. For the same experiment, the additional knowledge of the 
axial strain vs. transverse strain curve yields a two scalar isotropic damage 
model. Fichant et al. (1997) combined the simple features of the microplane 
approach with the approximation of damage surfaces in the same spirit as 
Ladeveze's approach. They derived a simplified microplane-type model where the 
behaviour of the damaged material is discretised along a finite set of directions and 
interpolated in between them. The elastic behaviour of the damaged material 
depends on the interpolation used for the distribution of damage in each direction of 
the material. With a infinite number of discretisation directions, the microplane 
model is recovered. As a consequence, the degree of interpolation of the damage 
surface can be related to the experimental knowledge of the mechanical response 
of the material considered. 

Interestingly, these methods provide also a common ground from which 
different type of models starting from different discretisation levels (and thus 
different types of damage-induced anisotropy) can be compared. In view of the 
simplicity of implementation of a scalar model, it can be appealing to disregard the 
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crack orientation, provided the numerical predictions do not really differ from those 
of a more realistic model which incorporates damage-induced anisotropy. In this 
paper, we will focus attention on this issue and we will t ry  to sort out cases where 
a simple, scalar approach yields sufficiently accurate results. 

2. P R I N C I P L E  OF THE CONSTITUTIVE MODELS 

The models tha t  are going to be compared are based on the approximation of the 
relationship between the overall stress (latter simply denoted as stress) and the 
effective stress in the material  defined by the equation: 

, o , o (  ) 
tYij = CijktE~l or tr 0. = Cok t C d' ...... ued -~ 

klmn 
(1) 

where cr o is the overall s tress component, (~ is the effective stress component,  

and C,!~'[ ''''~eJ is the stiffness of the damaged material,  and C,~ u is the initial stiffness 
of the undamaged material,  assumed to be isotropic, linear and elastic. Let us 
define the relationship between the stress and the effective stress along a finite 
set of directions of unit  vectors n: 

n ! O" = (1 - d(  ))niO'on j 

I 2 
, , _ ( , , ,  z" "- (1- ~(n)) Z ( o ' o n j  o'un t 

i=1 

(2) 

where c~ and r are the normal and tangential components of the stress vector  
respectively, and two damage surfaces are introduced: 

Sd(n): n ~ d (n )  and S~(n): n ~ 6(n)  (3) 

d(n)  a n d  5 (n)  are scalar valued quantities which introduce the effect of damage in 
the relation between the effective stress vector and the overall s tress vector. The 
basis of the model is the numerical interpolation of these surfaces. They are 
approximated by the knowledge of d(n)  a n d  5(n)  for a finite set of directions. 

The stress is solution of the virtual work equation : 

find O'ij such that Ve~ 

f([(. . , )]  ;.jk (4) 
= - cr u ltn ,. + (1 - 6(n))(o'on j - nkcruntn ~ . G o 

3 s 

The model is similar to a microplane model which is kinetically constrained 
(Bazant  and Ozbolt, 1990). The most important  difference with the microplane 
model is tha t  in the absence of damage, Eq. (4) yields exactly the stiffness matr ix  
of an isotropic material,  without the need for integrating numerically. We will now 
consider tha t  the two damage surfaces are identical: d ( n ) = 5 ( n ) .  The simplest  
approximation, which does not yield isotropy, corresponds to an ellipsoidal damage 
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surface: this surface is characterised by three principal directions and by the 
values of three damage scalars d i along these directions. The isotropic damage 
model will be deduced from the anisotropic one simply by assuming tha t  the 
damage surface is spherical instead of being ellipsoidal. 

The evolution of the elastic constants due to damage growth is given, in both 
isotropic and orthotropic approximations, by the evolution of the damage surfaces. 
Initially, the damage surface (Eq. 3) is reduced to a point d(n)- O. Once damage 
s tar ts  to grow, it becomes an ellipsoidal or spherical surface. The evolution of 
damage is controlled by a loading surface f :  

f ( n ) = n e n - e j - z ( n )  (5) 

where Z is an hardening soi~ening variable which is interpolated in the same 
fashion as the damage surface. The threshold of damage is given by the strain eu. 
The evolution of the damage surface is defined by an evolution equation inspired 
that  of an isotropic model (Mazars and Pijaudier-Cabot, 1989)" 

l td n ;E 1 if f(n') = 0 and n'kn" > 0 then (n*~*~ exp(-a(n*en*-ea) n'~" 

{z(n')=n'kn" 

else d(h') = O, 2(n') = 0 

(6) 

The model parameters are the initial radius of the surface Z(n) which is assumed 
to be isotropic initially since the undamaged material is isotropic and the 
parameter  a. The first parameter  can be related to the tensile strength of the 
material if one assumes that damage in uniaxial tension occurs at the peak s t ress  
and the second will be related to the fracture energy of the material in the same 
spirit as smeared crack models (Rots 1988). Note that  the vectors n" are the 
three principal directions of the incremental strain whenever damage grows. The 
new damage surface is the combination of two surfaces: the one corresponding to 
the initial damage surface, and the surface corresponding to the incremental 
growth of damage. The principal directions of the macroscopic stress tensor are 
not necessarily the same as the principal directions of the strain tensor in the 
anisotropic model (Fichant et al., 1997). 

It is important to remark that  the model parameters  in the evolution laws 
of damage do not depend on the level of interpolation. In the comparisons, this 
characteristic will be essential because any discretisation level will provide exactly 
the same uniaxial material response in tension. 

3. A N I S O T R O P I C  PLASTIC-DAMAGE MODEL 

Degradation of the stiffness due to progressive microcracking is one among several 
important  features of the behaviour of concrete. Plastic strains are observed 
experimentally. When the loading history is not monotonic, damage deactivation 
occurs due to microcrack closure. It seems important to take into account these 



263 

phenomena in order to carry out the comparison between the isotropic and 
anisotropic damage models. 

3.1. D a m a g e  - p las t i c i ty  c o u p l i n g  
In view of the form of the damage model, elasto-plastic damage can be introduced 
at several levels. In the microplane approach, plasticity is coupled to damage at  
the microplane level (Bazant and Prat,  1989). In other phenomenological models 
(see e.g. Ju  1989, Lemaitre 1984) the coupling between damage and plasticity is 
introduced in the definition of the free energy of the material. Because we wish to 
separate  the approximation of damage from plasticity, we will use the second 
technique. Note tha t  damage will only affect the elastic part  of the behaviour, 
which means tha t  locally plasticity (microcraks sliding) and damage (microcrack 
opening) are assumed to be uncoupled as far as their evolution is concerned. This 
will introduce also a great simplicity in the computational implementation (Ju 
1989, Benallal et al. 1991). 

In the present  approach, we decompose the strain increment in an elastic 
and plastic one: 

d e  o = d e ~  + de~ '  (7) 

and damage is introduced in the elastic part of the stress-strain response: 

__ (",~hum,ged l~e 
,1 v Okl "~ kt ( 8 )  

Note that  from now on the elastic strain s~ will replace the total strain e 0 is the 
equations (5,6)defining the evolution of damage. We assume tha t  the evolution of 
the plastic strain is controlled by a yield function which is expressed in term of the 
effective stress in the undamaged material. Because plasticity is indexed on the 
effective stress, it will not interact with the specific approximations used for the 
damage models. Among the various possibilities in the choice of a yield function, 
we have chosen to implement a yield function due to Nadai (1950) inspired from 
the Drucker-Prager criterion. The two constants in the Nadai criterion are given 
the following values: fl = 1.16 and y = 0.4. 

The evolution of the plastic strain is defined according to the normality rule 
and the hardening rule is given by: 

w = q p ~  + w o (9) 

where q and r are model parameters  and w o defines the initial reversible domain 
in the stress space. 

3.2. C r a c k  c l o s u r e  e f fec ts  
Crack closure effects are of importance when the material  is subjected to 
alternated loads. During load cycles, micro cracks close progressively and the 
tangent  stiffness of the material should increase while damage is kept constant.  
Within isotropic damage modelling, one solution is to introduce two damage 
scalars, instead of one, in order to separate the mechanical effect of micro 
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cracking depending on the sign of the stress. Here, a separat ion of the s t ress  
tensor into a positive and negative part  is introduced: 

o" = <o') + + <o" >- (10)  

where < ff >+, and < ff >- are the positive and negative par t  (polar decomposition) 
of the stress tensor  (for a scalar <x> § =x if x>0 and <x> § = 0 ff x<0). The influence 
of damage, introduced in Eqs. (2) of the model, is modified: 

(;on i = (I- d(n))<(~>'+ onj + (I- d~ (n))<G>'_ onj (11) 

de(n) defines a new damage surface which describes the influence of tensile 
damage on the response of the material  in compression. Because this new variable 
refers to the same s ta te  of degradation as in tension, there is a relation between 
de(n) and d(n). The new damage surface defining d~(n) is directly deduced from the 
damage surface d(n). It is an ellipsoidal surface with the same principal direction 
as the surface defining d(n) and along each principal direction i, we have the 
relation: 

d[i=(d~(1-5~ i e [ 1 ' 3 1 2  (12) 

where 5 o is the kronecker symbol and a is a model parameter .  Note tha t  the two 
surfaces dc(n ) and d(n) are spherical in the case ofisotropic damage. 
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Figure 1 �9 Uniaxial  tension-compression response of the anisotropic model. 
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3.3. Response of the model and computational  aspects 
For the two approximations of the damage surface, the constitutive relations 
contain 6 model parameters in addition to the Young's modulus of the material  and 
the Poisson's ratio. The first series of 3 parameters  ( s j , a , a )  deals with the 
evolution of damage in tension and in compression. The second series of three 
parameters  involved in the plastic part  of the constitutive relation is (q, r ,  w o). 
They are obtained from a fitting of the uniaxial compression response of concrete 
once the parameters  involved in the damage part  of the constitutive relations 
have been obtained. 

The two damage models exhibit strain softening. In order to circumvent  
some of the difficulties involved with softening in the computations, we have 
chosen to control that  the energy dissipation due to cracking in uniaxial tension be 
constant whatever  the finite element size during localisation (see e.g. Rots 1988). 

Figure 1 shows a typical uniaxial compression-tension response of the model 
corresponding to a standard concrete with a tensile strength of 3 MPa and a 
compressive s trength of 40 MPa. The set of model parameters  is: 

E = 30000 M P a ,  v = 0.2, a = 1000, a = 12,e a = 10 -4, r = 0.5, q = 7 0 0 0 M P a ,  W o = 2 6 . 4 M P a  

The anisotropic model reproduces quite well (qualitatively) the evolution of the 
longitudinal and of the t ransverse strains with the stress. With the isotropic 
model, that  is assuming that  the damage surface in Eq. (3) is a sphere, the same 
good description of the axial stress-axial strain curve would be obtained with the 
same model parameters .  The axial s t ress- t ransverse strain curve would be, 
however, different because the (elastic) Poisson's ratio of the material  would not be 
affected by damage. 

The anisotropic model and the isotropic model have been implemented in the 
finite element code Castem 2000. Given the strain and the strain increment, the 
plastic strain increment is computed first. Because it depends on the effective 
stress only, the plastic strain increment is independent of damage. We have used 
for plasticity a classical return mapping algorithm (Ortiz and Simo 1986, Simo 
and Taylor 1986). The plane stress constraint is added in the computation of the 
plastic multiplier (Aravas 1987). Once the increment of plastic strain has been 
computed, the incremental damage is computed explicitly from Eqs. (5,6) and the 
new state of stress is obtained from Eq. (4) (for more details see Fichant, 1996). 

4. F I N I T E  E L E M E N T  C O M P U T A T I O N S  AND C O M P A R I S O N S  

We are going now to compare the isotropic and anisotropic models on three types  
of structural  analyses. At the level of the constitutive relations, a comparison has 
been performed by Fichant et al. (1997) revealing that  the shear response of the 
anisotropic damage model differs substantially from that  of the isotropic one. This 
observation was based on the analysis of the material  response to a strongly non 
radial loading history proposed by Willam et al. (1986). For situations where the 
loading history does not yield severe non radial stress or strain histories, we will 
see that  the results can be quite different. 
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4.1. Single edge notched beam 
The first comparison deals with the single edge notched concrete beam tested by 
Schlangen (1993). This type of experiment has been simulated extensively in the 
l i terature using smeared crack models and plasticity based models (see e.g. Rots 
1988, Feens t ra  1993). The geometry of the beam and loading appa ra tus  is 
schematised on Fig. (2). The load F is applied on the testing appara tus  so tha t  the 
point load close to the notch is FI=10/ l l  F and the point load near  the beam end is 
F 2 = 1/11 F. 

Figure 2: Single-edged notched beam :geometry and loads. 

The material  properties used in the simulations are the same as those chosen in 
Feens t ra ' s  analysis (1993): 

For concrete : 
Young's modulus: E = 35000 MPa 
Poisson's Ratio" v = 0.15 
Tensile strength : f, = 2.SMPa which yields e~ = 0.76 10 -4 
Fracture  energy : G r = 0.07 N/mm 
Compressive s t rength : f = 36.5 MPa 

other model pa ramete r s :  
a = 1 2  
r = 0 . 5 , q  = 7 0 0 0 M P a ,  w o = 26.4MPa 

For the loading appara tus  (steel beam) 
Young's modulus: E = 200000 MPa 
Poisson's Ratio: v = 0.3 
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Figure 3 shows the plot of the applied load F versus the crack mouth sliding 
displacement (CMSD). We have plotted on this figure the experimental data, the 
computations performed with the isotropic and anisotropic plastic damage models 
and with the rotating crack model (Feenstra, 1993). Considering the experimental 
dispersion, the three predictions are quite equivalent, except for large 
displacements. 

Figure 3 : Single-edged notched beam : load vs. CMSD response. 

The predicted distributions of damage are also quite similar. It should be noted 
that, the two damage models are sensitive to mesh alignment when damage 
localises to form a crack. The regularisation employed here avoids mesh-size 
dependence but not mesh-alignment effects. In this experiment, damage 
essentially occurs due to extensions. The two damage models provide the same 
material response in uniaxial tension, therefore it is not surprising that the models 
provide approximately the same result. 

4.2. Compression shear experiments 
Compression shear experiments have been performed by Fichant on plain 
concrete I-shaped panels (C16ment et al. 1994, Fichant 1996). The geometry of 
the panels and the loading system is shown on Fig. (4). 
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Figure 4 : Compression shear test: specimens tested (dimensions in mm). 

The panel thickness is 60 mm. Notches were cut on most of specimens in order to 
control crack propagation and to avoid multiple cracking as much as possible. The 
tests were designed so that  diagonal shear cracks propagate in the specimen 
subjected to alternated shear loads. 

Figure 5: Compression shear test: experimental and predicted responses. 
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From the experimental viewpoint, applying shear requires the combination of two 
loads in two orthogonal directions. The biaxial testing frame for these experiments 
was a Schenk multiaxial testing system. The vertical load, denoted M 1 on Fig. (4) 
was applied with two hydraulic jacks and the lateral loads denoted as M 0 were 
applied with another pair of jacks. The vertical compression force was constrained 
to remain constant (75KN). The horizontal loads were applied under displacement 
controlled conditions. 

The material  properties of concrete and the corresponding model 
parameters  were the same as those of in the previous computation. Only one half 
of the plate was considered with a central symmetry of the displacements. Figure 
5 shows the comparison between the experiment and the two predictions of the 
isotropic and anisotropic damage models. Again, the numerical predictions are 
quite similar. In both simulations, two independent diagonal crack sys tems 
develop in the plate, same as in the experiments. The first one when the horizontal 
load is negative and the second one when it becomes positive. Figure 6 shows the 
distribution of damage for the isotropic damage model. It is interesting to note tha t  
although the isotropic damage model does not contain any directional information, 
it provides a very accurate prediction of the damage system. Because of damage 
deactivation, the first damage band does not affect the material response when 
the shear load is reversed. Hence, the two damage bands propagate independently. 
In the stress-strain relations, the crack closure effect which introduces effectively 
a damage-induced anisotropy, is the most important feature in this example. 

Figure 6: compression shear test : map of damage at the end of the loading history 
with the isotropic model 

4.3. Double  edged notched specimen 
On tension shear  problems, the predictions of the two models should not be as 
close because damage deactivation may not occur. In order to investigate this 
possibility, computations on the double edged notched specimens tested by Nooru- 
Mohamed (1992) have been performed. Figure 7 shows the specimen geometry of 
the plain concrete panels tested. Their thickness was 50 mm. The panels were 
loaded by a shear force denoted as Ps first. This load was kept constant while 
uniaxial tension was applied to the specimen. The tensile force P was controlled by 
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the  rela t ive tensile d i sp lacement  ~ m e a s u r e d  in be tween  two points  A and A' as  
shown on the  figure. 

F igure  7 : Double-edged notched specimen : geometry  and loads. 

In order to focus on the  differences be tween  the two d a m a g e  models,  we 
have  removed  plast ici ty from the const i tut ive  relat ions.  The ma te r i a l  p roper t ies  of 
concrete and  the  model p a r a m e t e r s  used in the  computa t ions  are: 

Young's modulus: E = 30000 MPa,  Poisson's Ratio: v = 0.2 
Tensile  s t r eng th  : f, = 3MPa which yields e~ = 1 10 -~ 
F r a c t u r e  energy : G I = 0 .1N/mm 

Compress ive  s t r eng th  : f. = 36.5 MPa, a = 12 

Figure 8 :Double-edged notched specimen: tensile load vs. ver t ical  d i sp l acemen t  
for Ps=5 KN. 
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Two tests have been considered with different values of the shear  force: Ps = 
5 KN and P~ = 10 KN. Figures (8,9) show the predictions according to the two 
constitutive relations in both cases. The maximum tensile loads are quite similar 
for the lowest shear  force and the predictions of the two models differ as shear  is 
increased. It is interesting to compare the evolution of the maximum tensile force: 
the data indicate tha t  the maximum tensile force should decrease by 15 % as 
shear  is increased. The computations with the isotropic damage model yield 
exactly the contrary. With the anisotropic model, there is very a slight decrease of 
the tensile load. The reason for these differences is better  illustrated on the maps  
of damage. 

Figure 9 �9 Double-edged notched specimen" tensile load vs. vertical displacement 
for Ps=lO KN. 

For the smallest shear load, horizontal cracks develop in the center of the plate. 
Both models provide reasonably accurate predictions compared to the 
experiments. When Ps= 10 KN, two curved cracks should develop according to the 
experimental observation (Fig. 10). Still, the isotropic model predicts t ha t  
horizontal cracks should propagate while the curved crack propagation is be t ter  
approached with the anisotropic damage model. 

5.CONCLUDING REMARKS 

Isotropic (scalar) damage models are simple to develop and can be easily fitted 
from uniaxial experiments. At the same time, damage-induced anisotropy is 
delicate to characterise experimentally. It increases the number of model 
parameters  to be experimentally determined, at least in the context of 
phenomenological models where damage is a second order or a fourth order tensor. 
Although it is legitimate to argue that  the definition of a damage variable should 
indeed incorporate some directional information, it is interesting to sort out 
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situations where an isotropic model 
structural analyses. 

may yield equally good predictions in 

Figure 10 :Double-edged notched specimen: damage according to the experiment 
(a), to the isotropic damage model (b), and to the anisotropic model for P~=10 KN. 

When the failure mode is essentially controlled by uniaxial tension, we found 
that damage-induced anisotropy is not required. In fact, damage deactivation due 
to crack closure is more important as it introduces anisotropy of the elastic 
stiffness. Damage induced anisotropy seems important when the material is 
locally subjected to multiaxial extensions, as in the shear tension problems. It is 
also expected that anisotropy is of central importance in situations where the 
loading history is severely non radial with an incremental growth of damage. This 
particular point remain to be validated with other comparisons on structural 
analyses. 
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An axisymmetric thermomechanical constitutive model is proposed for airfield concrete 
pavement under very rapid heating and cooling processes due to high-temperature exhaust gas 
from axisymmetric vectored thrust engines. Newman's crack growth model is applied to esti- 
mate the delamination (thermal spalling) time of the airfield concrete pavement at various loca- 
tions due to the internal pore pressure. Furthermore, coupled heat and mass transfer in concrete 
pavement is considered. 

1. I N T R O D U C T I O N  

The ordinary Portland cement (OPC) concrete has been widely used in airbase facilities 
such as airfield runways and parking aprons. During the take-off and landing of advanced air- 
craft, OPC concrete airfield pavement is subjected to extremely rapid transient high-temperature 
loadings as well as thermal cycles of heating and cooling due to very hot exhaust gas emanating 
from modern vectored thrust engines (VTE), or auxiliary power units (APU), etc. Examples are 
the AV-8B Harrier, F/A-18, and the next generation Joint Strike Fighters (JSF). In particular, 
the exhaust gas temperature of a VTE could rapidly reach over 800 ~ and the corresponding 
exhaust velocity could go beyond 600 m/s. 

Damage to airfield concrete pavement could be in the form of thermomechanical "spalling" 
or "scaling" of concrete runways and launch pads due to transient (monotonic or cyclic) high 
temperature loadings. Alternatively, "scaling" of concrete parking aprons could occur due to 
coupled thermal-mechanical-chemical degradation effects from heat and oils; cf. McVay, Smith- 
son and Manzione (1993). Scaling refers to thin plate-like pieces or lamina that flake or peel 
off from the damaged concrete surfaces. By contrast, spalling refers to small, thin pancake- 
shaped pieces which explode into the air because of very large steam pressure in pores, high 
thermal gradients and large compressive thermal stresses (parallel to the surface in the pave- 
ment). Specifically, compressive stresses produce not only concrete crushing, but also a bulging 
instability (similar to buckling) of the top layer. Under these severe thermomechanical loadings, 
internal microcracks nucleate and propagate in concrete, leading to progressive delamination at 
some shallow depth beneath the pavement surface. 

Thermomechanical behavior and properties of concretes at elevated temperatures have been 
studied in the past four decades primarily owing to the interests in heat resistance of concretes in 
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fire engineering, and conventional as well as nuclear electric power plants. We refer to Bazant et 
al. (1982) for an extensive literature review on high-temperature behavior of OPC and refractory 
concretes. Among the temperature-dependent properties of OPC concretes at high temperatures 
discussed by Bazant et al. (1982), important aspects include dehydration of cement, increase 
of porosity, moisture content, thermal expansion and shrinkage, pore steam pressure, loss of 
strength, thermal cracking due to thermal incompatibility, degradation of elastic moduli, thermal 
creep, heat capacity, thermal conductivity and thermal diffusivity, and explosive thermal spalling 
due to excessive pore steam pressure, etc. 

2. A X I S Y M M E T R I C  HEAT C O N D U C T I O N  M O D E L  

2.1 Transient temperature distribution 

When the airfield concrete pavement is subjected to vectored thrust from an axisymmetric 
engine nozzle, an axisymmetric heat conduction formulation can be employed. Due to the wide 
temperature range (say from 25 ~ to 700 ~ considered, we must consider the density p, the 
specific heat c and the thermal conductivity lq of concrete as functions of the temperature T. 
The axisymmetric heat conduction equation takes the form: 

pc: cOt =Or K (-~r + --?' ~ li ~ (1) 

In this study, the temperature history 7's(t) at the pavement surface (z = 0) is prescribed based 
on experimental data. The heat flux is approximated as zero at the bottom pavement; i.e., q = 

,gT lq -57: ~ O. Moreover, the heat flux at 7'/H = 0 and r / R  = co (the radial far field) is approximated 
07" as zero; i.e., q - Iq-57 ,.~ O. For simplicity, the initial temperature in the concrete pavement is 

assumed to be To = 25 ~ 

We employ a conditionally stable explicit finite difference scheme to solve Eq. ( 1 ). We can 
obtain the following temperature solution: 

7,,~+ I ~ ,,~ At I((j+2)t 
" j l  = ~ j l  + _n C n 

P j l  ~jl 

__ Lr~] __ ](n(j_ �89 [Lr~ -- T(3-1,1] I (~  [l(j+i,l  . . . .  "F.;~] 

( A t )  2 + r j l  A r  

/ : -n [Ti(,,+) ~)L jt F i(I_~)]} + " , - - 

(Az) 2 (2) 

For the foregoing explicit scheme, the von Neumann heuristic stability criterion takes the 
form: 

At < min [ pj~cj~(A~)2(Az)2 ] (3) 
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Based on available experimental data from the literatures, we employ the following numer- 
ical values for varying thermal properties of the concrete pavement. (a) p(T)  changes linearly 
from 1.45 g/cm 3 at 105 ~ to 1.3 g/cm 3 at 850 ~ (Harmathy, 1970)" (b) c(T) increases linearly 
from 0.23 cal/g.~ at 25 ~ to 0.26 cal/g.~ at 1000 ~ (Harmathy and Allen, 1973)" and (c) the 
thermal conductivity K(T)c h a n g es  linearly from 1.26 kcal/m.hr.~ at 25 ~ to 1.01 kcal/m.hr.~ 
at 1000 ~ 

A comparison is displayed in Figure 1 between the actual experimental data (Rish and Mc- 
Vay, 1994) and our model predictions for the temperatures versus time at different depths with 
r / R = 0 (the center line). 

2.2 Pore pressure distribution 

For simplicity, pores in concrete are modeled as spherical microvoids fully saturated with 
water at this time. Our formulation here follows the ASME Steam Tables; see, Keenan et al. 
(1978), Meyer et al. (1993). Specifically, during the saturation state (the K-function), the re- 
duced saturation pressure becomes 

P1,.(r, z, t) l Ei~=, k~(l - o)  ~ 
= e z p  0 1 +k6(l  - 0 ) + k 7 ( l  - 0 )  2 

(~ -0) } 
k8(l - 0) 2 + k9 

(4) 

where 0 = (7 ' ( r , - , t )  + 273.15)/7;-I, l~-i = 22.12 MPa, and 7'ci = 647.3 ~ The constants in 
Eq. (4) are kl = -7.691234564,/,:2 = -26 .08023696,  k3 = -168.1706546,  ]~:4 = 64.23285504, 
/,:5 -- - 118.9646225,/,:6 = 4.167117320, /`~7 - -  20.97506760,/`:8 = 109, and/`:9 = 6. 

By contrast, above the critical temperature, the pore pressure follows the L-function: 

PL(r, z, t) 
= Lo + LlO + L202 (5) 

where L0 = 15.74373327, L! = -34.17061978,  and L2 = 19.31380707. 

2.3 Thermoelastic stress-strain relationship with void effects 

For a linear elastic concrete pavement with many spherical microvoids, the additional strain 
U due to the void effects can be approximately rendered as 

= ~-~ (u | n + n ~ u) dS (6) 

where V denotes the (sufficiently large) representative volume, ~ denotes a summation oper- 
ator over all voids, u denotes the displacement vector, n signifies the outward normal vector 
associated with u, and S signifies the void surface. 
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The stress-strain relationship with void effects will be: 
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where E* and u*, respectively, are the effective elastic Young's modulus and Poisson's ratio 
with void effects: 

E 
H" = (8) 

1 + ciSA 

1, + r  
u" = (9) 

i + r  

Here, Ig is the virgin elastic Young's modulus without voids, u is the virgin elastic Poisson's ratio 
without voids, P is the internal pore pressure, ~r denotes the linear thermal expansion coefficient, 
AT denotes the temperature change, and 

3(I - u)(9 + 5u) 
A - (10) 

2 ( 7 -  5u) 

3(1 - u)(l + 5u) 
I3= (11) 

2 ( 7 -  5u) 

C = ( l + u )  
2E (12) 

N 
47r 

i=1 

Obviously, r is the void volume fraction. Moreover, R denotes the void radius. 
Here, we synthesize available experimental data from the literatures and adopt the following 

propeRies: E" = 34,475 [1 - 0 . 0 0 1 3 9 ( T -  T0) +4.48 x 10-7(T - To) z] MPa (Cruz, 1966)> 
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u* = 0.27 - 0.000453(T - To) (Marechal, 1972), and c~ = 1.3 x 10-5/~ (Cruz and Gillen, 
1980). 

We assume that the radial displacements are zero at r = 0 and r = ~ (or a large distance 
compared to R, the radius of the nozzle). Similarly, we assume that the displacements in the 
radial and axial directions are zero at z = c~ (or a large distance compared to the thickness of 
the pavement). 

To calculate the stress distributions inside the concrete pavement, we employ the axisym- 
metric 4-node linear elastic finite element codes for each specific time t. The radial stress dis- 
tribution at r / R  = 0 is shown in Figure 2 for various time. 

3. A CRACK G R O W T H  MODEL 

According to the Newman's  crack growth model (Newman, 1971; Tada, et al., 1985), ten- 
sion microcracks may be induced from microvoids when the vapor pressures inside spherical 
microvoids increase to a certain level. The Mode I crack tip quasi-static stress intensity factor 
due to the vapor pressure inside a microvoid reads 

If~s = P(r,z,t) x / ~  F ( a ) a+[~ (14) 

where a is the crack length,/~ is the microvoid radius, and F(s) = 1 +( 1 - s)(0.5 +0.743( 1 - . 5 ) 2 ) .  

The quasi-static crack growth criterion takes the form: 

fits 2 Kit (15) 

where fflc is the Mode I fracture toughness of concrete (taken as a constant, 200 KN/m3/2). For 
simplicity, we assume an initial crack length a0 = 0.1/~ for a microvoid in our calculation. From 
Ju and Zhang (1997) and the present study, we find that the dynamic crack growth velocity a is 
very high, approximately 2,000 m/sec .  Therefore, once a crack propagates from the perimeter 
of a pore, it practically takes no time to reach the delamination (thermal spalling) state. 

It is known that tension cracks grow in the general direction of maximum compression. As 
was discussed in the previous section and figures, the in-plane stress state in the plane parallel 
to the concrete surface is compressive. Therefore, cracks are expected to grow from pressured 
voids along the direction parallel to the concrete pavement surface. 

A pore size distribution curve was provided by Meyer-Ottens (1975), which is adopted here 
to estimate the pore sizes. Since the largest pore size is the dominant factor, the pore size under 
consideration is taken as/~ = 51tin. It is emphasized again that the crack growth speed is very 
fast and the delamination occurs instantaneously as soon as Eq. (15) is satisfied. 

To illustrate the behavior of the proposed simple delamination model, Figure 3 shows the 
time to delamination versus r / R  at the airfield concrete pavement surface. Figure 4 displays the 
time to delamination versus various depths at 7-/R = 0. 
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4. C O U P L E D  H E A T  A N D  M A S S  T R A N S F E R  IN C O N C R E T E  

To model the mass (moisture and exhaust) and heat transfer through concrete, coupled par- 
tial differential equations must be solved concerning the conservation of moisture, exhaust and 
energy. 

4.1 Coupled governing equations of heat and mass transfer in concrete 

Let us assume a single potential which governs the moisture flux J~ and gas flux Jg" 

Jm =-a-y-~Vpw (16) 
g 

The heat flux takes the form" 

Jg =-a-~gVpg  (17) 
g 

q = - ~ v T  (~8) 

where k is the heat conductivity of concrete. 

The conservation of mass for moisture requires that 

O~v Owd 
= --27..I , , ,  + (19) 

Ot Ot 

where w is the moisture concentration, wd is the total mass of free (evaporable) water that has 
been released into the pore by dehydration, and w,t is obtained from experimental data. 

The conservation of mass for gas requires that 

OG 
= - V �9 .l.q (20) 

Ot 

where G is the gas concentration. 

The balance of heat leads to 

OT Ow 9 G  
pC--~, - C~,a--~ C~Jw " V T  - Cga--~, - CgJg . VT = - V ' q  (21) 

where p, C are the mass density and isobaric heat capacity of concrete (including its chemically 
combined water, but excluding its free water), Cw~ is heat of sorption of free water, C~,, is the 
isobaric heat capacity of bulk (liquid) water, Cga is the heat of sorption of gas, and Cg is the 
isobaric heat capacity of gas. 
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4.2 Equations of state of pore water and gas 

For nonsaturated (partially saturated) concrete, we have pw <_ p~(T). Here, p~(T) is the 
saturation pressure of water at temperature T. Bazant et al. (1978) provided the following 
semi-empirical expression by fitting the test data. For h < 0.96, we write 

I 

w (w_.~_h),~cT, (22) 
g 

where 

h =  pw (23) 
ps(T) 

T 
! 

rn(T) = 1 . 0 4 -  (24) 
22.34 + T'  

(25) 
~&+ 1 

Here, 7' is the temperature (~ and To = 25~ Further, c is the mass of (anhydrous) cement of 
concrete (kg/m 3) and w~ is the saturation water content at 25~ It is convenient to determine 
w~/c accurately for a given concrete mix. 

For saturated concrete, we have p~,, >_ ps(T). For h > 1.04, we write 

(7. 
w = - (26) 

I /  

where u is the specific volume of water, and c is the available pore space for water by taking 
into account the increase in pore space resulting from elastic volume expansion, decrease in 
adsorbable water and/or partial dehydration. 

For 0.96 _< h _< 1.04, we use the linear interpolation to calculate w. 

For gas content, we use the following equation to calculate G: 

G = p.q~(l - s) (27) 
Rg(T + 273.15) 

where R~ is the gas constant and s is the volume fraction of liquid water in pore. 
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4.3 Numerical simulation 

For simplicity, only one dimensional heat and mass transfer problem will be considered 
here. We employ the explicit finite difference scheme to solve this problem. For any explicit 
finite difference scheme, we must consider the stability criterion of the numerical solution. 

The initial water content in concrete is 95kg/m 3, and the saturation water content in concrete 
w~ at 25~ is lOOkg/m 3. The cement content is 300kg/rrz 3. The initial porosity of concrete at 
25~ is 0.15. The water permeability of concrete at 25~ is a~o = 5.0 • 10 -13. 

Pore pressure histories at different depths are plotted in Figure 5. In addition, the water 
content histories at different depths are displayed in Figure 6. We observe that the drying rate 
near the concrete pavement surface (the heating surface) is very high. This is due to the high 
heating rate of the concrete pavement surface by the exhaust gas from the aircraft vectored thrust 
nozzle. The type of aircraft engine determines the heating rate of the concrete pavement surface. 
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Figure 3. The time to delamination failure as a function of r / R  at the surface. 

0 0  

500 

400 

300 

200 

100 

0 
0 2 4 6 8 

Depth (mm) 

Figure 4. The time to delamination failure as a function of the depth at r / R  = 0. 



2 8 6  

5 . . . .  ', . �9 . �9 o . . . .  ' , ' . " .  �9 �9 , '- . �9 �9 

2 0  

~ 1 0  

- D e p t h  = 1 c m  

......... Depth= 2cm / /  

- - - Depth - 3 cm // - 

0 50  100 150 2 0 0  2 5 0  

T i m e  ( see ) 

F i g u r e  5. T h e  p o r e  p r e s s u r e  h i s t o r i e s  a t  d i f f e r e n t  d e p t h s .  

-~ 6 0  

c~ 
o 

4 0  

0 0  . . . .  I . . . .  "1 . . . .  I . . . .  ! . . . .  

8 0  

. . . . . . . .  t ~ = 2 r  \ - 

- - - Depth = 3 cm ~ - 

2O 

0 
0 50  100 150 2 0 0  2 5 0  

T i m e  ( see  ) 

F i g u r e  6.  T h e  w a t e r  c o n t e n t  h i s t o r i e s  a t  d i f f e r e n t  d e p t h s .  



Damage Mechanics in Engineering Materials 
G.Z. Voyiadjis, J.-W.W. Ju and J.-L. Chaboche (Editors) 
�9 1998 Elsevier Science B.V. All rights reserved. 287 

Mechanical behavior of thin-film coating/substrate systems 
under nanoindentation 

Jackie Li a, Alex Hsieh b and Tsu-Wei Chou a 

aCenter for Composite Materials, and Department of Mechanical Engineering, 

University of Delaware, Newark, DE 19716, U.S.A. 

bArmy Research Laboratory, Weapons and Materials Research Directorate, 

AMSRL-WM-MA, Aberdeen Proving Ground, MD 21005-5069, U.S.A. 

This paper investigates the mechanical behavior of thin-film coating/substrate 

systems under nanoindentation testing. Experimental results have demonstrated the 

different failure mechanisms of material systems consist of hard-coating on soft substrate 

and soft-coating on hard substrate. An analytical model using Hankel's transform method 

is introduced to examine the displacement and stress fields of a thin-film coating/substrate 

system with perfect interfacial bonding under an axisymmetrical compressive loading on 

the coating surface. The present analysis can account for the influence of the film thickness 

and the material properties of the substrate. This knowledge of the stress fields provides the 

basis of understanding of the failure mechanisms of thin-film coating/substrate systems. 

Finally, the influence of Poisson's ratios of the film and the substrate are discussed in 

detail. 

1. I N T R O D U C T I O N  

Thin-film coatings have been used extensively in industry for a variety of purposes, 

for example, protection of the substrate materials from mechanical, thermal and chemically 

aggressive environment. Nanoindentation tests have been used to measure the mechanical 

properties of coatings and their bonding to the substrate. Two types of coating are 

considered in the present study: hard-coating on a soft-substrate such as diamond-like 

carbon (DLC) coating on polycarbonate, and soft-coating on a hard-substrate such as DLC 

on silicon. Distinct failure mechanisms have been observed for these two types of coating 
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systems through nanoindentation tests. In order to better understand the failure of 

coating/substrate systems, an analytical model using Hankel's transform [1] have been 

developed to evaluate the elastic fields due to nanoindentation. In most of the existing 

works, the substrate material is often treated as a rigid body [2-4], and numerical iteration 

[5, 6] and finite element methods [3,4, 7-10] have been adopted for the analyses. 

In this paper, first, we present the experimental observations of nanoindentation 

fracture for both hard- and soft-coating/substrate systems. Then, the analytical elastic 

solution, which are capable of accounting for the influences of the thin-film thickness and 

material properties, are presented to explain the failure behavior of the coating/substrate 

systems. Finally, the Poisson's ratio effect of the coating/substrate system is discussed in 

details. 

2. E X P E R I M E N T A L  O B S E R V A T I O N S  

Nanoindentation tests for thin-film coating/substrate systems were conducted at the 

Oak Ridge National Laboratory, and the load-displacement relations of the coating/substrate 

systems have been obtained [ 11 ]. The coating and substrate material properties can then be 

evaluated using the load-displacement data and the continuous stiffness measurement 

technique developed by Olivcrand Pethica [121. Also failure mechanisms can be observed 

microscopically during the indentation test, which are recapitulated in the following. 

Diamond-like carbon (DLC) thin film coating material was deposited on the 

substrates of silicon and polycarbonate through ion beam deposition. The thickness of DLC 

coating was varied from 0.1/~m to 2/~m to examine its influence. 

Nanoindentation experiments were performed at room temperature with a 

Berkovich indenter. Here the specimens of DLC/Si with 2/~m and 0.1,um coating 

thickness, and DLC/polycarbonatc with 0.1/~m coating thickness were used in the 

nanoindentation tests. The following elastic properties of coatings and substrates are quoted 

from reference [ 11]. 

TABLE 1. Elastic properties of coatings and substrates 

Material Elastic modulus (GPa) Poisson's Ratio 

DLC (in DLC/Si) 110 0.2 

Silicon 

DLC(in DLC/polycarbonate) 

Polycarbonate 

200 

38 

0.2 

0.2 

0.35 
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Fig. 1. Micrographs of 2ym indentation depth on DLC/Si system with DLC coating 
thickness: (a) t=2ym, and (b) t=O. 1/am [ 11 ]. 
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From the above Table, DLC/Si and DLC/polycarbonate clearly represent the elastically soft- 

coating/hard-substrate system and hard-coating/soft-substrate system, respectively. 

These two material systems exhibit totally different failure phenomena under 

nanoindentation tests. Figure l(a) and (b) show the micrographs of 2/am indentation depth 

of DLC/Si with 2/am and 0.1/am coating thickness, respectively. In Fig. l(a) no failure is 

observed since the DLC coating is considerably thicker and the indentation depth is not 

high enough to cause any fracture. However, when the thickness of the DLC coating 

becomes very thin, delamination around the edge of the contact zone in the DLC/Si system 

can be observed very clearly in Fig. 1 (b). 

Fig.2 Micrograph of 4/~m indentation depth on DLC/polycarbonate with 0.1/~m DLC 

coating thickness [ 11 ]. 

On the other hand, Fig. 2 shows the major cracks in the film along the three edges 

of the pyramid-shaped Berkovich indenter and micro cracks in the film around the contact 

zone for DLC/polycarbonate. The contrast between Fig. l(b) and Fig.2 indicates that 

delamination is the dominant failure mode in soft-coating system, whereas film cracking 

occurs first in the hard-coating system. The knowledge of the stress fields in the 

coating/substrate systems under nanoindentation will give better insight of their failure 

behavior. 
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3. T H E O R E T I C A L  M O D E L I N G  

Li and Chou [13] recently have developed an analytically elastic solution of thin- 

film coating/substrate system under an axisymmetric loading by using Hankel's transform 

technique. Their approach is adopted in the present study. Instead of solving the elastic 

fields due to Berkovich indentation, we consider the indentation problem of the 

coating/substrate system under an axisymmetric loading shown in Fig.3. This is motivated 

by the work of Gao and Wu [14], who have pointed out that an axisymmetric cylindrical 

punch can be used to model nonaxisymmetrical indenters (e.g. Vickers and Berkovich 

indenters) due to the insensitivity of the stress distribution to indenter cross sectional shape. 

tl 

o 
ITI 

2 
[1-(r/ro) ] o ( r ) = o  m 

ro 

tao, Vo 

. . _ - - -  

z 

Fig.3 A ~hematic diagram of a coating/substrate system under an axisymmetric loading 

In Fig.3, the thin-film is denoted as phase 1, and phase 0 is for the half-space 

substrate. Both phases are assumed to be isotropic and perfectly bonded to each other. The 

elastic shear modulus and Poisson's ratio are written as ]/i and v, for the i-th phase. The 

coating thickness, radius of the contact zone, and the maximum loading stress are denoted 

as t, r0, and crm, respectively. Here we choose the cylindrical polar coordinates (r, 0, z) to 

describe the axisymmetric problem with respect to z-axis, and the stress components are 

Cfr, 0 0 ,  Oz,  TrO , TOz and T zr. 

The symmetry condition with respect to the z-axis implies that "rr0 and "r0z vanish, 

and the equilibrium equations are reduced to 
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3Tr~ 1 cra_~. + + - ( a ,  - % ) - 0 (1)  
01" 3z  r 

a~r~ a a ~  + + =0.  (2) 
8r  8z r 

By introducing a stress function q),  the stress components  can be expressed in terms of q) 

as follows: 

cr r - xv2q)z -2 (3 .  + [l~)CI)rr z 

cr z = (33. + 4/~)VZq~z - 2(3. +/a)~zz z 

cr o - 3.V2~z - 2(3. + / ~ ) 1  (I)r z (3) 
r 

Or zzr 

2 
where 3. is the LAme constant,  and (I)rr z --" 3 3 ( I  9 / 3r 3Z. In the case of axial symmetry ,  

V2 3 2 1 3 3 2 
_= ~ + + ~ Then the compatibil i ty equation can be written as 

3r  2 r 8r  8z 2 " 

V 4 (I) ~- 0 .  (4) 

Fol lowing Harding and Sneddon 114], the Hankel 's  transform is applied to solve 

the atx)ve biharmonic equation 

G = J~o cI~Jo( ~ r ) d r  (5) 

where J0(~r) is a Bessel function of the first kind of order 0. Thus,  Equation (4) is reduced 

to an ordinary differential equation 

d )2 
-z--i- - ~5 2 G = 0 .  
dz 

(6) 

The  solution of Eq.(6) is easily obtained as 

G = (A  + Bz )e  ~z + ( C + D z ) e  -~  (7)  
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where A, B, C and D are constants which are in general functions of ~ and can be 

determined from the boundary conditions. By inverting Hankel's transform, the stress 

function can be solved as 

oo 

q) - fo  ~GJ~ (~r )d~"  (8) 

Based upon Eq.(8), the stress fields then can be obtained from Eqs. (3). 

For the material systems considered here, the stress function q) needs to be found 

for the coating as well as the substrate. Thus, instead of four coefficients in Eq. (8) there 

are eight coefficients denoted as A0, B0, Co, Do, A 1, B 1, C1, and D1, where the subscripts 

0 and 1 represent the substrate and coating phase, respectively. Since all the stresses and 

displacements vanish when z - ->  oo, A0 and B0 must be zero, and the remaining six 

coefficients can be determined from the boundary and interfacial continuity conditions. 

The boundary loading conditions in the indentation problem considered here are 

expressed as 

% ( r , O )  = - q ( r ) ,  Tzr(r,0) = 0 (9) 

wherc the negative sign in the first equation indicates a compression, and the function q(r) 

can be further expressed in terms of Hankel's transform as 

q(r )  = fo~( ~ ) ~ J o ( ~ r ) d ~ .  (10) 

Perfect bonding at the interface between the film and the substrate is assumed. Then the 

interfacial continuity conditions at the plane z = t are given as 

th (r , t  ) - Uo(r,t ) w~(r,t)  = Wo(r,t)  

cr~(r , t )  - Cr~o(r,t) T~,~(r,t) - T~,o(r,t) (11) 

By using the boundary and interface conditions (9) and (11), and following the derivation 

of Li and Chou [ 13 ], the stress components are obtained as 
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ar,(p, ~)= 17fffq(~)[ ~,',(rt, ~ ) + ~  

D~ f f  4(O [-a:,(n,~) + ~ 

~r,( rl, g) ]r/j ~ (pq)dr I 
D(n) ] 

~'ri(~'/'~')D(?/) ] J'(prl)drl 
(12) 

1 oo ~'o, ( r/, g) r/jo (pq)dr/ 
oo,(p,~) =Tfo q(O D(,7) 

r-. ~o,(n,o ~l 
(13) 

1 | ( r _ .  - 
,,~,(o, c ) :  7s ~ ~) [~ "' ~) + "<' D(rt) ]q/o(pO)drt (14) 

D( rt ) nJ, (on )dn (15) 

where 

2 ' 
a,o (.,~)= o 

Ori(r/, g.) = ~ . -  1 {[_a +3b + 2b(2 + g')r/ - 4b(1 - g)r/2 ]e-(Z- O. - 2ab(1 + go)e -(4- ~)0 

-(3 - 2 g'~)e -m + 2b[2- (2  + g')q + 2gq2} -(z+~)" - abe -(4+~)"} 

~rO(r/, g) = - 2Y~ {[-c + 3 d -  2 (c -  d(2 + g)) r/]e -~" 

+[ac-  3bd + 2bd(2 + g)r/+ 4bd( 1-g)r/2 ]e -(2+~)0 } (16) 

_, 1{[ 2b(2yz ~ Y2 gq) e-/4- ~)" O'rl(~Y~,~') =~" -a + bYl  + + g)r I -  4b(1- )r/2]e -(2-;)" - 2ab( + 

-( y , -  2~)e-~" + 2b[2Yo- (21,,+ g)r/+ 2~21e -(2§ - abe -(4§ 

- - c + d Y 3 -  - e-m 

+[ac - bdY3 + 2bd(2Y4 + g)r I + 4bd(1- g)qZ]e-(2+~)" } 

with 
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r / =  ~t ,  g = z / t,  a n d  p = r / t  

D(r/)  - 1 - ( a  + b+  4b/12)e -2rl + abe -40 

( 3 -  4 V o ) a - ( 3 -  4v , )  a - 1 
a =  , b =  , a -  

1 + (3 - 4Vo)a  a + (3 - 4 V l )  /,to 

Yo = 1 -  v 1, Y1 = 3 - 4 v l ,  ]/2 = 1 - 2 v  1, ]t 3 - 3 - 4 v  o (17) 

and y 4 = 1 - 2 v o 

c - ~  
a 

, d -  

tX + Yl Y3 tx + 1 

Also, 

= G ( , . ; ) .  o 

cr'-o, ( r/, g) = - 2  v,[-(1 + 2 rl)be -(z-;)" + abe -(4-~)" + e -~0 - ( 1 -  2 rl)be -(z+;)" ] 

- -  ( _~  L e - -  _ 

, . - 'oo( . . ; )-  ;) (18) 

and 

G( / ' ~ ,  ~')-" --~'r] (]cl,~'), ~;0(/ ' / ,  ~') "- 0 

1 
~ , (  r I, g ) =  ~-{[a + b + 2 b ( 2 - g ) r l +  4b(1-~- ) r l  2 ]e -(z- ;)" - 2 a b ( 1 -  grl)e -(4- ;)" 

- ( 1 +  2 ; r / ) e  -~"-  2 b [ ( 2 - g - ) r / +  2;r /2]e -(2+~)" +abe -(4+~)" } 

~ 0 ( r / , ~ )  = 2Y~ { - [ c  + d + 2 ( c - d ( 1 - ~ - ) ) r / ] e - ; "  
or 

+[ac + b d -  2 b d ( a -  g ) r /+  4 b d ( 1 -  g)r/2]e -(2*;)"} (19) 
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% -- o 

1 ~,z,( r/, g)= ~-{[-a + b + 2bgr I - 4b(1-g)rlZ]e -(z-O~ 2abgrle -`4-On 

+(1- 2grl)e -~" - 2b(1-  gr/+ 2g'o2)e -(2+ ;)rl + abe -(4+;)rs} 

~r~o(rl, g ) - 2 Y ~  
ot 

+[ac - bd + 2bdgr I + 4bd(1 - if)r/Z]e-(2+~'"}. (20) 

For the coating/substrate system, the stress distribution on the loading surface is 

unknown, and it is difficult to determine from the displacement profile. Thus, in order to 

simulate the non-uniform loading distribution of the indentation problem, the following 

form of surface loading is assumed and shown in Fig.3: 

q(r) = I or" 

[o 

2 1( i r ~ F  o 

r >  r 0 

(21) 

where ( r  is the maximum stress at r = 0, and r0 is the loading contact radius. Then q(r) in 

Hankel's transform domain, ~'(~), can be written as 

~(~) =20mtZ[  2 p...~Oz Jo (po rl) ] o0 [u (22) 

where P0 = r0 / t and r / -  ~t. Then the components of stress can be solved accordingly. 

4. R E S U L T S  

Now we use the above elastic solution to calculate the stress fields of DLC/Si and 

DLC/polycarbonate systems. Figure 4 shows the normalized radial and hoop stresses along 

the axisymmetric z-axis with t=r0 for both coating/substrate systems, and the bulk substrate 

materials Si and polycarbonate. Due to the symmetry of loading with respect to the z-axis, 

the radial and hoop stresses along the z-axis in this case are identical. The elastic properties 

of the materials are taken from Table 1. The horizontal line at z/t= 1 indicates the interface. 

The radial and hoop stresses for both bulk materials of Si and polycarbonate (dashed lines) 

are continuous, while the stresses in DLC/Si and DLC/polycarbonate (solid lines) show 
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discontinuity across the interface due to the mismatch of material properties. Also the radial 

(hoop) stress reaches the maximum in tension in the DLC coating film at the interface for 

DLC/polycarbonate. This result provides the analytical basis of film cracking (Fig.2) in the 

hard-coating system. But for the soft-coating/hard-substrate system (e.g. DLC/Si),  instead 

of film cracking, delamination occurs first (see Fig. 1 (b)). 

N 

' ' ' ' ' _ 1 ~  - '  ' ' ' ' I ' ' ' ' I ' ' ' ' 

" Polycarbonate" , ~  ~ 

DLC/Si 

-0.3 

. . . .  I , , , , I , , , , 

-02 -0.1 0 0.1 0.2 0.3 

Fig.4 Radial (hoop) stress distribution along the z-axis 

Figure 5 shows the shear stress distribution along the r-axis at the interface (z=t) 

with t=r0. The maximum shear stress occurs near the edge of loading contact zone for all 

the coating/substrate and bulk substrate systems. The DLC/Si system shows the highest 

value of the maximum shear stress, which is apparently responsible for the interfacial 

delamination shown in Fig. l(b). 
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Fig. 5 Shear stress distribution along the r-axis at the interface 

Finally, we consider the effect of Poisson's ratio on the coating/substrate system. 

Figure 6 shows the normalized radial and hc• stresses along the axisymmetric z-axis with 

t=ro. This time the shear moduli of the coating and the substrate are assumed to be identical 

(pl=p0), and the Poisson's ratio of the substrate v0=0.33, and the Poisson's ratio of the 

film coating vl assumes the values of 0.1, 0.2 and 0.5. The change of the normal stress 

due to the difference of Poisson's ratios between the thin film and the substrate is not as 

significant as that shown in Fig. 4. Particularly, when v~>v o (dash-dotted line in Fig.6), 

the normal radial stress in the film is always compressive, which cannot induce cracking in 

the film. It should also be noted that the Y oung's mcxiuli of the film and the substrate are 

different when the Poisson's ratio of the film changes. From the relation ol E,-2/~,( 1 +v),  

one can find that E~>E o, when v~>v0; these result can also be used to define a hard-coating 

(E~>E o ), and a soft-coating (E~<E 0 ). However, since Poisson's ratio v < 0.5 in general, 
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the ratio of the Young's moduli between the coating and the substrate can not be greater 

than 1.5. As a result, cracks are unlikely to occur in the film of a coating/substrate system 

due to the difference of the Poisson's ratios between the two phases. 

N 

0.5 

1.5 

2.5 

3.5 

" '  I - -  L ~  J t ! s a I t i - " - - ,  - ~ ~ _ -  -'-...1~...... t i 
- ~ _ - "  ~ - ~  

_ 

. . 

] 
- 

- !~1=t~o, V o = 0 . 3 3  

- ~ v1--v0=0.33 
~_ . . . . .  v1=0.1 
_- . . . . .  v1=0.2 

- - V l=U .b  

. 

- , , ~ I , , ~ I , , L I , , , i , , , , 

-1 -o.8 -o.8 -o.4 -o.2 o 0.2 

~ 1 7 6  ( % / % . )  

Fig.6 The influence of Poisson's ratio on the radial (hoop) stress distribution 

along the z-axis 

The effect of Poisson's ratio on the shear stress field of the coating/substrate 

systems has also been examined. Figure 7 shows the shear stress distributions in the film 

of the coating/substrate system at the interface with t=-r0, /~1=/~0, and v0=0.33. As Vl 

increases the maximum value of the shear stress also increases. For Vl >v0, the shear stress 

of the coating system is greater than that of the bulk substrate material itself. As a result, 

interfacial delamination is likely to occur. 
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Fig.7 Influence of the Poisson's ratio on shear stress of the coating/substrate 

system. 

5. C O N C L U S I O N S  

In this paper we have examined the elastic stress field of coating/substrate systems 

under nanoindentation and its implication on failure mechanisms. Delamination in soft- 

coating/hard-substrate systems such as DLC/Si has been observed, while film cracking 

occurs in hard-coating/soft-substrate systems such as DLC/polycarbonate. Results of the 

elastic stress analysis show that the maximum shear stress occurs near the loading contact 

zone at the interface for the DLC/Si system, which is responsible for film delamination. On 

the other hand, the existence of tensile radial stress in the film near the interface for the 

hard-coating/soft-substrate DLC/polycarbonate system is the main reason for the cracks in 

the hard film. Finally, Poisson's ratio effects on stress field of the coating/substrate system 

have been examined. As a conclusion, The difference of the Poisson's ratio between the 

coating and substrate may cause film delamination if the Poisson's ratio of the film is 
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greater than that of the substrate. However, Poisson's ratio effect is insufficient to cause 

film cracking. 
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In this paper, the derivation of a mechanism-based constitutive law is presented to 
model the mechanical behavior of fiber-reinforced composites. It allows to account for 
matrix-cracking, interfacial debonding and sliding in the framework of Continuum Damage 
Mechanics. Applications are performed on a unidirectional SiC/SiC composite and on 
concrete specimens. 

1. I N T R O D U C T I O N  

The basic mechanisms related to the degradation of brittle matrices reinforced by con- 
tinuous or discontinuous fibers and submitted to monotonic loading histories are matrix- 
(:racking, interracial debonding and sliding, and eventually fiber breakage and fiber pull- 
out. These mechanisms induce stiffness losses and inelastic strains. The latter are studied 
within the framework of C(mtimnnn Damage Mechanics (CDM) by using micromechan- 
ical analyses. An explicit expression of the Helmholtz free energy density is derived. In 
particular, internal variables are carefully chosen to (tescribe the degradation mechanisms 
and written in an appropriate format to allow the derivation of constitutive equations 
applicable to structural calculations. 

The model is used to analyze experimental data obtained on SiC matrices unidirec- 
tionally reinforced by continuous SiC fibers. The evolution laws are derived by using 
micromechanical parameters. The same model is used to study the behavior of an un- 
reinforced concrete. To avoid localized damage, a prismatic concrete specimen is loaded 
by aluminum bars glued on two opposite lateral faces. In particular, the effect of glue 
between the aluminum bars and the concrete specimen is discussed and modeled. Fur- 
thermore, the model is utilized to study the behavior of concrete specimen reinforced 
by short fibers made of steel and aligned along the loading direction. This composite is 
loaded by using a similar technique as that used to analyze unreinforced concrete. The 
effect of the addition of short fibers is discussed. 

2. P H Y S I C A L  M O D E L  

Loading a composite consisting of a brittle matrix supported by stronger fibers, usu- 
ally causes multiple matrix-cracking [1] accompanied by debonding and sliding at the 
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fiber-matrix interface. Because of stress redistribution between the fiber and matrix, 
the cracking density usually saturates. Matrix-cracking is responsible for the decrease of 
stiffness observed in experiments on Brittle Matrix Composites (BMCs), relief of resid- 
ual stresses due to processing and sliding at the fiber-matrix interface are the source of 
irreversible strains. 

2.1. T h e  U n i t  Cel l  
The cell illustrated in Fig. 1 and first proposed by Aveston and Kelly [2] has stood the 

test of time with the introduction of a debond energy at the front of the slipping region 
[3]. This unit cell constitutes the basis for formulating constitutive equations suitable for 
finite element calculations used in design studies. 

Figure 1. Elementary Cell. 

In the unit cell shown in Fig. 1 the elastic moduli of tile fiber and matrix are Ef and 
Em respectively, the volume fraction of tile fiber is f and Rf is the fiber radius. Tile 
elastic modulus of tile undamaged composite is E = f Ef + (1 - f)Em. Matrix-cracking 
occurs when the matrix stress reaches a material value O'mc [1,4] and tile average distance 
between cracks is denoted by 2L. Tile debond length at the f iber /matr ix  interface is 2/d, 
and the interface is assumed to haw; a constant shear strength T. The critical energy 
release rate to extend all interfac(~ crack is Gd. Following Hutchinson and Jcnsen [3], this 
critical energy release rate Gd can bc represented as a debond strength O" d which introduces 
simplicity in later calculations 

(7 d - -  2~/(1 - f)EmEf~d 
RfE (1) 

To define the state of the unit cell, the values for the crack spacing 2L, the slip length 2/d 
and the interface properties T and O" d I n u s t  be known. The latter are unknown material 
parameters but are assumed to be constant. Residual stresses are introduced during 
processing so that  the stress level in the matrix O'pm is an additional unknown. 
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The statistical nature of the distribution of crack distances and debond lengths discussed 
in Ref. [5] is not considered herein. For the sake of simplicity, it is assumed that  the average 
crack distance 2L and the corresponding debond length 2ld are sufficient to characterize 
the state of the material. 

2.2. Interrogation of First Loading Response 
On first loading, the initial response of the composite is elastic when the modulus is E. 

On reaching the matrix-cracking stress Crm~, matrix-cracking occurs which is accompanied 
by matrix-fiber interface debonding and slip. From the partial unloading tests shown 
in Fig. 2, it is possible to measure the current elastic modulus E(1 - D) and the total 
irreversible or inelastic strain. The relationship between the damage variable D and the 
crack spacing 2L may be estimated from micromechanics following the model of Cox [6] 
and Aveston and Kelly [2] 

f~ 
D = 1 + Q (2) 

in which tile dimensionless quantities are defined by 

f ~ -  ~ t a n h  , co= Rf A =  f E f  , f12= 2GmE (3) 

/ 3 L  ' ( 1  - f)E,,, ( 1  - f)EmEr In ( nr ) 

whcr(' G,n is the shear modulus of the m~trix and 2R,,, the average distance between fibers 
( f  -- R'~/R,2,,, see Fig. 1). Since the damage wmal)le D is readily Ineasllre(t, Eqn. (2) 
provides a means of determining indirectly the crack st)acillg 2L. 

The (:ra(:k opening displacement A<. following matrix-cracking consists of two contribu- 
tions, viz. A,. is the elastic opening dim to cracking, and Ap is the opening due to tile relief 
of the residual stresses (hm to processing. The crack opening displacement A,. resultillg 
froIn elastic, deformations is given by the relationship [7,8] 

(1 -- f)EJ,n A e a D  
E L E ( 1 -  D) 

(4) 

By using the model of Cox [6] and Aveston and Kelly [2], the crack opening displacement 
Ap is acconq)anied by the irreversible strain e~ 

(1 - f)E,,,  Ap ep,,,D at;,,, 
(:r--- E L = 1 - D with epm = Em (5) 

and by the relief of initially stored energy 

2 E%mD 1 
~'r = --2(1 -- D) = 2 tSpm~'fr (6) 

When interface slip occurs, it is accompanied by an additional crack opening displace- 
ment As. The latter gives rise to a self-balancing stress field along the slip length 2/F 
(_< 2ld) in the matrix, crm(z) and in the fiber, af(z), for which the corresponding elastic 
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strains are denoted by s and el(Z), respectively. The self-balancing stress fields cause 
inelastic strains 

(1 - f )Em As 1 .s 
e i -  E L = -s ~ e f ( z ) d z  (7) 

The total crack opening displacement A is the sum of three contributions 

/~ = /~e "}- /~p -ol- As (8) 

The crack closure condition is simply expressed as A = 0. Debonding  and friction also 
cause elastic energy to be stored in the material. The expression for the non-recoverable 
energy is found to be 

E A  L 
V)d-- -~ ,~0 (](z)dz (9) 

The explicit calculation of the integral is left to a later stage. Equation (9) is concerned 
with the residual stress due to debonding and sliding. Normally there is an initial residual 
stress in many composite systems due to processing. The presence of tile two residual 
stress fields induces a coupling term r in the total non-re(:overal)le energy density r 
If the residual stress field due to t)ro(:essing is constant along the total length of tile 
(:omt)osite, the non-recoverabh ~, exmrgy density ~/~dlp can t)e ext)ress('d as 

~/',tlp -- - e i E % m  (10) 

E(tlmti()n (10) shows that  the in(:lasti(' st raill (i aIl(t the lnisfit stra, iIl e, .... are suffi(:icnt to 
lncasllre the energy r(;slflting fronl tim (:()lit)ling. 

3. T H E  C O N T I N U U M  R E P R E S E N T A T I O N  

Since the objective of tilt' paI)c'r is to obtain mechaIlisn>tmsed constitlltive equations 
which are sllitable for finite element (:alclflations, the results of the model arc reformulated 
by using the techniques of Contiimum Mechani(:s and the concept of state w~riables [9,10]. 
The model described in the pre('e(ting se('tion tmlps to define the state variables and to 
calculate ttw, free energy (tensity (also called state potential) from whictl the (:orresponding 
forces (:ml t)e (teduced. Finally, the evollltion la,ws have to t)e writtell. 

3.1 .  S t a t e  P o t e n t i a l  for U n i d i r e c t i o n a l  C o m p o s i t e s  
The frec energy density for a giwul state is calculated by performing two clasti(: calcu- 

lations following approaches intro(tlwc(t t)y Volterra [11], and used to analyze the elastic 
behavior of homogeneous and isotropic media [11,12], and the influence of inclusions in 
~m infinite medium [13]. The first step consists of calculating the elastic energy when a 
(:rack is introduced and the unbroken part (f)  is moved with respect to the broken part 
(m) by an additional amount A~ ()vet a length 2lv = 2ld with no external load. The 
derivation of the non-recoverable energy ~/L~ has been determined in the previous section 
and is rewritten as follows 

~(~2 j~2mL ) 
~ s -  ~-~ c iEepm-  2(1 -- D) (11) 
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where the general expression of the damage variable d is given by 

1 L z)dz] 2 L dz] d : ]  [L f0 ef( / [1 f0 e](z) (12) 
By using the micromechanical model with a debond strength (7 d and a constant  shear 
strength T defined previously, the inelastic strain ei and the damage variable d are ex- 
pressed as 

ld [ 1 _2] -1 
ei = AdTd (1 + Y]d) , d - -  ~ 1 + 5 (1 + Y]d) (13) 

where the dimensionless groups Id, Z d and Ed are given by 

ld T ld CrdRf 
Ad= L '  T d =  R f E f '  E d - -  rld (14) 

The wflue of the square bracket of Eqn. (13.2) varies between 1 and 4/3 for a high and low 
debond energy material [14] respectively, which means that  the value of the dimensionless 
group Ed has little effect on d. 

The second step consists of an elastic loading of a cracked system with friction pre- 
vcnte(t. The recoverable part  of the Hehnholtz free energy density becomes 

E(1 - D) [ e-pro (15) "~/"' - 2 e - ei 1 - 

The total free c~mrgy (tensity is the Sllnl of the two compon(mts (11) and (15) of energy 
(tcllsity. Tim total free energy (hmsity (:an [)e ext)rcssc(t t)y llsing four state variables which 
arc th('. total strain e, and three internal varial)les, viz. the (tanmge variable D modeling 
tho. loss of stiff'hess (tuc to cracking, the incb~stic strain ei (hie to (h'])on(ting an(t sliding, 
the (tmilage variat)le d measllring the amount  of non-recoverable energy (hm to (tcbonding 
and slip 

E(1 - D) [ ~pmD_ ]2 Ee~ Ee~2,mD 
~/ ' -  ~ - ei + - ciEcp,, ,-  (16) 

2 l - D ]  ~ 2(1 - D) 

The fl)r('cs associated with the state w~riabh;s are given by 

o~/, o~/, o,~, &/, 
0 =  ;de ' Y =  O D '  X =  Oei  ' Y =  O d  (17) 
Equation (17.1) defines the macroscopic stress cy and Eqn. (17.2) the energy release rate 
density Y associated with matrix-cracking. The energy release rate density Y is pro- 
portional to the square of a modified 'effectiw stress' (o + E%m)/(1 - D). Similarly, 
Eqn. (17.3) defines tile back stress X associated with sliding whose exact value depends 
upon the interracial properties. Equation (17.4) defines the energy release rate density y 
associated to the residual stresses due to debonding and sliding. 



308 

3 . 2 .  S t a t e  P o t e n t i a l  f or  2 D  C o m p o s i t e s  

A 2D formulation requires an anisotropic damage description [15]. In the case of crack- 
ing perpendicular to the fiber direction, the generalization is straight forward since the 
only compliance change is given in the fiber direction, and therefore only one scalar 
anisotropic damage variable is needed and the previous 1D analysis is still relevant. For 
a 0/90 layered or woven composite, the Helmholtz free energy density depends upon the 
damage variables modeling matrix-cracking in the 0 and 90-degree 'layers' 

1 
% = ~ e__e" ~(D~ Dgm~ �9 e (18) 

where e denotes the elastic strain tensor '" the contraction with respect to two indices, 
~ e  ' " 

__E the elastic stiffness tensor of the damaged composite (i.e., it depends upon the matrix- 

cracking damage variables D ~ and D ~  [15]). 
A second order tensor is needed to model the inelastic strains due to debonding and 

slip. In the case of a 2D composite, a first order approximation only requires the in-plane 
components (i.e. ~i l l  ~i22 and ei,2) of the inelastic strain tensor e Since each operative 

' ' ' - - i "  

slip system can be integrated separately in terms of energetic contributions, the internal 
damage variables can be defined separately for each inelastic strain term. Therefore there 
are as many debond damage terms as non-vanishing inelastic strain components  [15] 

- -f § (19) 
~/~,t 2 dl l  2 (t22 2 d12 

wlw.re Fall  , /~22, are tim Young's inodlfli aloIlg tim 1- an(t 2-dircctioxls, rest)ectiw;ly, and 
G12 is the shear modulus in the 1-2 plan(;. In the case of cracking perpendicular  to the 
fiber direction, only one inelastic straill component is different from zero, viz. the nornml 
coinpoimnt along tim fiber direction. Similarly, only one scalar debond damage variable 
is need(~(l. 

Equation (10) is 11sed to derive the generalized coupling term @dlp for 2D coInposites 

~/~dl~, -- -- e~ �9 E " e (20) ~- --pro 

where __E is the stiffness tensor of the undanmge(t material. It is worth noting that  the 

misfit strain tensor e is an average tensor on the composite level to be computed for each 
- - - - p m  

specific architecture. L~stly, the relief of initially stored energy by the residual stresses 
due to processing is expressed as a generalization of Eqn. (6) 

1 
~/)r = - -~  -~--pn," ~----E" ~r (~---pm' DO,  D9~ (21) 

where tile irreversible strain tensor e depends upon tile misfit strain tensor e and the =r --pm 
damage state described by D ~ and D~ .  

The Helmholtz free energy density depends upon the damage variables modeling matrix- 
cracking, the inelastic strain tensor as well as the damage variables modeling debonding 
and sliding 
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1 .E(D o, 90 = ~ ~ Dm)'-e--e 

El i  g2nl 1 E22 g2n22 (712 g2nl 2 1 
+ t t e . ' E ' e  e 

2 dll  2 d22 2 d12 - - 1  : --pm 2 --pm 
" ~----~ "-(-r (--~pm' DO, D9~ (22) 

with 

:~5: -- :,(~"- ~ (-~--pm' DO, D9m~ 

where e__ is the total  strain tensor. The associated forces are defined by 
m 

(23) 

0~ 
cr = (24) 
= oqe 

ym 0 = a~  ~0 a~, (25) 
aDO , Yg = aD~O 

x = a ~  (26) 
= 1  

oW oW (27) 0ga , !/22= , y12= 

'911 = Odll 0d22 0d12 

Equations (24), (25), (26) and (27)constitute a generalization of Eqns. (17.1), (17.2), 
(17.3) and (17.4). 

3 . 3 .  T h e  E v o l u t i o n  Laws  
The final step in establishing the model is to determine the growth laws FD, Fi, Fd which 

relate the state variables (D, e~, d) to their associated forces (Y, X, 9) 

D -  F , , ( Y )  , ~ = ~ ( X )  , d -  E~(:,/) (28) 

To be thermodynamically adxnissi|)le, the intrinsic dissipation 7) must t)e positive 

(29) 

It can be shown that  this condition is satisfied ill the present (:as(,,. 
The evolution laws will be identified for two different BMCs, viz. a unidirectional 

SiC/SiC composite and a reinforced concrete. Tile identification procedure is based upon 
the experimental results of a loading/partial  unloading test (Fig. 2) from which the cur- 
rent value of the elastic modulus E(1 - D) and the total inelastic strain ei + er can be 
measured. A similar approach is used to identify tile parameters of the evolution laws of 
2D composites. A detailed description of tile procedure can be found in Ref. [16]. 



310 

~g 
O 
,l...a 

r.~ 

E(1-D) 

#- /~ + Dl~pm/(l-D) I /  i 
#/ 

Strain, 

Figure 2. Schematic stress/strain curve with partial unloading. 

4. S i C / S i C  C O M P O S I T E  

Tile first material to be analyzed is a unidirectional SiC/SiC (:omposite. This material 
has been extensively studied so that  many ext)erinlental data  are available. In particular, 
the ( :h~ l~ i lg (  ~, of the average (:rack density with the ~t)t)lied stress has been measured [17] 
even though the task is tedious aim Ileeds sI)(~(:ial (:are t() get reliable data  [18}. The initial 
cracking condition can be written as 

z = Y,. (3o)  

From Eqns. (17.2) and (30), the matrix-cracking stress a,,,,, is found to be 

E + gpm -- 

This relationship is a transcription in the framework of CDM of the well-known expression 
derived in Linear Elastic Fracture Mectmnics [4]. The Cox' Model (see Eqns. (2) and (3), 
1 > 2.5 w) predicts that  there is a linear relationship between the damage quantity 
D/(1  - D) and the average crack (tensity a~ 

D cJ 
= -- (32) 

1 - D  A 

The micromechanics associated with crack spacing is complex and involves statistical cal- 
culations [19]. Instead of following this route, use is made of the experimental observation 
of Domergue [17] that  the crack density a~ satisfies the following evolution law 

a - ~  ( a .  - am~) r 
aJ = with a0 = (33) 

(7 0 / '~f  
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The normalizing constants LF and (7 F are the values of L and a at failure before saturation 
occurs. If saturation occurs, the previous constants are the values of L and a at saturation. 
By eliminating the crack density w from the last two equations and by using Eqn. (17.2) 
for Y in Eqn. (33) combined to Eqn. (32), the evolution law for D in terms of Y becomes 

D z 
2v/-Y + v/Yoo- ~ -  V/(2v/Y + v / ~ o -  x / ~ )  9 _ 4v/-~ (v / -~_  v/Ycc) 

24-V 
with 12EYo = Aao (34) 

To get the onset of interfacial debonding (when ld = 0), the dependence of the dimen- 
sionless group Td with the applied stress a is needed 

1 ( a - orid ) (35) 

where the stress Oid describing the onset of interfacial debonding can be calculated 

aid Acrd 
- - -  = (36) 
E [- ~pm Ef  

Tile growth law for the inelastic strain ~i has been defined by Eqn. (28.2) with tile def- 
inition of the back stress X given in Eqn. (17.3). By eliminating tile debond length 
la between Eqns. (13) and (35), and the crack spacing 2L (Eqns. (3.2) and (33)), the 
relationship between ei and the applied stress c: becomes 

~ i  ' -  

B - 

4A2ao 
--~-f ) with B - '  7 (37) 

It is possible formally to develop tile relationshit) (28.2), but from a computation point 
of view, it is easier to use directly the result of the micromechanics given in Eqn. (37). 

The growth law of the interfacial damage d (;an be written as a function of its associated 
force y. Instead, the evolution law is given as a function of the applied stress a 

[ 1{ d - B (a - amc)(a - O'id ) 1 + 1 + 2 (38) 
2 A'2 a o E -:3 ~ E 

The first key parameter to determine is the misfit strain (~pm- Usually at the onset 
of matrix-cracking, the inelastic strains are very small so that  the value of the misfit 
stress E%m is obtained by searching the intersection of the unloading line with the elastic 
response of the material (see Fig. 2). The accuracy of the measurement of this quantity 
can be checked by using the first partial unloadings. In the present case, the following 
estimate is found 

gpm = 5.8 X 10 -4 4 - 4  x 10 -5  (39) 
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The  value of the misfit s t rain is in good agreement  with t ha t  ob ta ined  by using an iden- 
tification technique based upon the analysis of hysteresis loops [14]. The  difference in 
coefficients of t he rma l  expansion is then on the order  of A a  ~ 1.5 x 10 -6 :t: 10 .7 K -1 
when the t e m p e r a t u r e  variat ion A T  = 1000 K. The  value of A a  is expec ted  for S iC/S iC 
composi tes  ob ta ined  by CVI [17]. 

The  exper imenta l  re lat ionship observed between D and Y is shown in Fig. 3. From this 

curve the values of the dimensionless pa ramete r s  q2Y~/E and 2 ~ o / E  can be ob ta ined  

2---~- = 1.07 x 10 -3 • 3 x 10 -6 and ~ / ~  = 3.7 x 10 -4 -t- 8 • 10 -6 (40) 

from which the matr ix-cracking stress O'me can be derived immedia te ly  and has the value 
275 + 1 MPa, which is in good agreement  with exper imenta l  observat ions  [17]. 

.5 . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . .  
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r.~ 1.5 I 0  -4 

1 lO -4 

0-5 

0 
270 280 290 300 310 320 330 340 
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Figure 3. Damage  variable D verslls its as- 
sociated force Y for a SiC~SiC composite.  

Figllre 4. Inelastic s t rain ei versus apt)lied 
stress a for a S iC/SiC composi te .  

Equat ions  (37) and (38) contain the (timcnsionlcss pa ramete r s  B/4A 2 and Aad/Ef. 
They are identified by using the inelastic s train due to debonding  and sliding alone. By 
fitting the exper imenta l  da t a  of Fig. 4, the values of the dimensionless pa rame te r s  are 

B Aad _ -'3 
4A 2 = 7 3 •  10 :~ : t :9•  103 and - ~ f  1 .7 •  10 : t : 2 x  10 -~ (41) 

Since all the dimensionless pa ramete rs  have been identified, the value of the dimension- 
less group Ad can be computed  

Id 
/~d - -  Z "-- BwTd (42) 

At sa tura t ion,  Ad is equal to unity so tha t  the value for the sa tu ra t ion  stress as~t is 

(7sa t --- 490 M P a  > aF = 340 MPa  (43) 
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Figure 5. Damage variable d versus applied stress a for a SiC/SiC composite. 

Another output of tile identification is the variation of the damage variable d with the 
applied stress ( r .  F i g u r e  5 compares tile response of a high debond energy (HDE) material, 
a low debond energy (LDE) material and the analyzed SiC/SiC composite. The behavior 
of the SiC/SiC conlposite coincides with the response given by an HDE material. This 
result was also found [)y Evans et al. [14]. ()n the other hail(t, it has been shown that  
layered almnina with carl)on/et)oxy prepregs is all LDE composite [20]. 

In tile previous sectiolls, the only discllssed features were associated with monotonic 
loading conditions. As a ('OlISe(tllellCC of the t)reviolls i(tentification, the inelastic strains 
lit)oil comt)let, e 1reloading (referred to as t)ermanent, st, raills and denoted by %) are, pre- 
dictions sfil(:e they we, re not  llS(?(t to t l lne the model. Unloading, from the Inaximum stress 
cr,,,~,x to a stress cr,,,~,x - Act is accompanie(t |)y reverse slip froIn tile extremity of the 
debonded region (the reverse slip length is 2/,,). The expressions of the inelastic strain 
Ae~i decrement is given by 

A{i = -2A,,E, (44) 

where tile diinensionless group T,, measures the average strain due to reverse slip over a 
(tist~mce lu 

wl, Act 
E 1 - -  Ef/r~f 4 E A  (45) 

and  Au is def ined as 

I, 
A,, = E = B ~ T , ,  (46)  

Equation (44) is valid provided the reverse slip length I, is less than the debond length 
ld. When the reverse slip length lu is equal to the debond length Id, reverse slip no longer 
evolves. If Acr~ denotes the stress decrement at which slip arrest occurs then 

A~ra 
= 4 A T d  (47) 

E 
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When A a  > Aaa, the inelastic strain decrement  is 

A a -  Aaa  
Aei = --2kdTd -- A E  Ad (48) 

When  the mater ia l  behaves in an HDE regime, slip arrest  is very likely to occur. This 
proper ty  can be noticed when the hysteresis loops have a parabolic  and a subsequent  
linear port ion.  In the present case, slip arrest  was always involved. Figure 6 shows tha t  
the predicted values of the pe rmanen t  strains are in good agreement  with the measured  
ones. 
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. . . .  i . . . .  i . . . .  i . . . .  I . . . .  i . . . .  i . . . .  I 

270 280 290 300 310 320 330 340 

Maximum Applied Stress, cy (MPa) 
I l l ~ . l X  

Fig;llr(,. 6. l'('rllmlW.llt strain ep versus lnaxi- Figlir<'. 7. Crack closllr(, st, ross a,. vt,.rslls 
lIllllll at)t)lic(t stress rr,,.,• for a SiC/SiC (:o1i> IImxillllllll ai)t)licd st, r('.ss a ...... for a SiC/SiC 
t)ositc. (:()lIlt)()sitc. 

Lttstly, the crack closure conditio~l ix analyzc(t. No da ta  ttrc awtilablc to corot)arc the 
t)rcdictions with cxI)crimental data.  By ,lsi,,g E(lnS. (4), (5), (7) and (8), the crack closure 
condition A - 0  can be rewri t ten  as 

(<, + E%,,) D 
~'(<:)+ S ( 1 - D )  : 0  (#J) 

where c,,: denotes  the closure stress, ei(c,,.) the ilw.lastic straill at the current  stress level and 
D the damage  variable at, the max inmm stress level Omax. Gcoinctrically, this condit ion 
is given by the intersection of the s trcss/s trai l l  ('alrvc with the elastic response (a = Ee) 
of the material:  see Fig. 2. Equat ion  (49) shows tha t  the crack closure condit ion depends 
upon all tim a.ctivc mechanisms. In t)articnlar, when friction is t)rcventcd (i.e., ei = 0), 
the closure stress (a,: = --E%m) is independent  of the damage  variable D. This result 
was used to identify the Inisfit s train e pm (sec Fig. 2). Fur thermore ,  the crack closure 
stress only vanishes when the misfit s train vanishes. Under this hypothesis ,  the closure 
condition reduces to the two equivalent conditions: a,: = 0 and ec = 0, where c_,: is the 
closure strain. 
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In Fig. 7, the predicted values of the closure stress are plotted. When the maximum 
stress is less than the debond stress (i.e., O ' i d  - - -  285 MPa) the closure stress is equal to 
- - E % m  = --150 MPa as expected by the model. As the maximum stress increases, the 
closure stress increases too. 

5. C O N C R E T E  S P E C I M E N  

The identification of the constitutive law of monolithic as well as fiber-reinforced con- 
crete in tension is difficult from a direct uniaxial test. Early localization occurs and leads 
to the formation of one macrocrack. A special tension test allowing the Identification of 
Diffuse Damage (referred to as ' IS2')  was first proposed by L'Hermite [21], then devised 
by Bazant and Pijaudier-Cabot [22], Mazars et al. [23,24]. This technique consists of 
gluing 8 x 8 x 250 mm a aluminum bars on 38 x 80 x 160 mm a concrete prismatic 
specimens (Fig. 8) to avoid the formation of a single crack. In the identification pro- 
cedure, tile previous authors assume that  the interface between the aluminum bars and 
tile concrete specimen is infinitely strong (CTd + oc) and that  the strain is uniform in 
the bars. Under these assumptions, the underlying behavior of concrete is deduced in a 
straight forward manner [22 24]. In the present case, the effect of the interface will be 
(~xpli(:itly (:onsidered and discussed. 

Figure 8. Schematic of an ID2 specinmn. 

Figure 9. Stress/s train response of an ID2 
concrete specimen (fsf = 0.%) loaded in 
tension. 

The aim of this section is to analyze this ext)erimental technique by using the model 
of Section 3. The effect of short fibers added in a concrete matrix is also discussed. In 
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the tested concrete specimens, four different volume fractions (f~f) of short steel fibers are 
considered: 0., 0.1, 0.3 and 0.6%. The fibers are aligned along the loading direction. 

5.1. Ana lys i s  of  U n r e i n f o r c e d  C o n c r e t e  
In this subsection, experimental  da ta  obtained for two ID2 specimens made of unre- 

inforced concrete (f~f = 0.%) are analyzed. As a first approximation,  this specimen can 
be described by the unit cell introduced in Section 2. In the present case however, the 
residual stresses due to processing can be neglected. The state variables still are e, D, ei 
and d on a macroscopic scale and the associated forces are a, Y, X and y, respectively. 
Unload/reload sequences in tension (Fig. 9) are performed. The damage variable D, the 
inelastic strain ci as well as the permanent  strain % are measured as a function of the 
applied stress a. 

Figure 9 shows that  at the end of the test, the composite behavior approaches that  of the 
voluine fraction of aluminum bars (denoted by fEf  in the figure). It is therefore expected 
that ,  contrary to the analyzed SiC/SiC composite, saturat ion occurs. This feature will 
be discussed later on. 
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Figure 10. Damage variat)le D versus its as- 
sociated force Y for two ID2 concrete spec- 
imens (s -- ().%). 

Figure 11. Inelastic strain ~i versus at)- 
plied stress (~ for two ID2 c(mcrete speci- 
mens ( f , r  = 0 . % ) .  

The identification procedure uses the same information as that  used in tile analysis of 
tile unidirectional SiC/SiC composite (viz. the damage variable D and tile inelastic strain 
~i). Tile experimental  relationship observed between D and Y is given in Fig. 10. From 
this curve the values of the following dimensionless parameters  can be obtained 

~ / - ~  A - l ' 3 x l 0 - a + 1 0 - 5  a~l(t ( @ 2  = 4.4 x 10 -4 -t-6 • 10 -'~ (50) 

from which the matrix-cracking stress a,nc can be derived imInediately and has the value 
5.1 + 0.4 MPa, which is in good agreement with the experimental  observations of Fig. 9. 
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The dimensionless parameters B / 4 A  ~ and Aod/Ef  are identified by using the inelastic 
strain due to debonding and sliding. By fitting the experimental results of Fig. 11, the 
values of the dimensionless parameters are 

B 

4A 2 

A(Td 
= 12x  103+103 and ~ ~ 0  (51) 

The fact that (7 d is vanishingly small indicates that the specimen behaves in a low debond 
energy (LDE) regime. Therefore, the usual assumptions made to identify the underlying 
behavior of concrete (i.e., cr d ----+ (3(3) cannot be used in the present case. The analysis of 
the change of the inelastic strain shows that there is a change in the evolution pattern for 
a stress greater than 12 MPa, indicating the onset of cracking saturation. 
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Figure 12. Permanent strain ep versus maximum ai)t)lied stress ampex for two ID2 concrete 
s p e c i , n e n s  (.f,f - 0.%). 

When the co ,n lx ) s i t e  behaves in an LDE reginm ~md the residual stresses are negligible, 
there exists a very simple relationship between the inelastic strain ei and the corresponding 
permanent strain ep 

~ i -  2% (52) 

Figure 12 shows that the predictions of tile change of the permanent strain with the 
applied stress is in reasonable agreement with the experiments. Figures 11 and 12 con- 
sistently show that the saturation stress is equal to 12 MPa. On the other hand, Fig. 10 
shows that the prediction, a priori only valid up to saturation, can be further extended. 
Beyond tile saturation level, the behavior of the ID2 specimen is mainly driven by the alu- 
minum bars and the interface between the bars and the concrete parallelepiped (Fig. 9). 
It is worth remembering that  the interface is weak (indicated by the LDE regime): the 
underlying behavior of concrete is very difficult to deduce since the stress state in concrete 
is not uniform along the loading direction. 
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5.2. A n a l y s i s  o f  R e i n f o r c e d  C o n c r e t e  

The effect of the addition of short fibers is discussed in this subsection by comparing 
the response of specimens with and without  short fibers. 
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Figure 13. Comparison of stress/strain re- Figure 14. Damage variable D versus 
sponses of ID2 concrete specimens loaded in its associated force Y for ID2 specimens 
tension when f~f = 0., 0.1,0.3 and 0.6%. (fsf = 0., 0.1, 0.3 and 0.6%). The symbols 

are ext)erimcntal da ta  and the solid line is 
the identification when f~f = 0.%. 

Tile comparison at a purely macroscot)ic level consists of plotting the s tress/s train 
responses for different volume fractions of short fibers (f~f = 0., 0.1,0.3 and 0.6%). Figure 
13 shows that  the volume fraction fsf = 0.% constitutes a lower bound to tile s tress/s train 
behavior. However the effect of the volume fraction is not very important .  

The experimental  relationship observed between D and Y is shown in Fig. 14. The effect 
of the addition of short fibers becomes more significant. However, the most important  
feature is the presence of short fibers but not their relative volume fraction. This result 
indicates that  the cracks are probably bridged but by very few short fibers so that  the 
actual value of the volume fraction is unimportant .  

Similarly, Fig. 15, shows that  the overall inelastic strain is more influenced by the 
presence of short fibers rather than their respective volume fraction. Lastly, Fig. 16 
shows the prediction of the change of the permanent  strain with the maximum stress. 
A similar effect of the short fiber volume fraction can be observed. The prediction is in 
reasonable agreement with all the experimental  da ta  up to the saturat ion level (i.e., 12 
MPa). 

6. S U M M A R Y  

A Cont inuum Damage Mechanics formulation has been applied to fiber-reinforced Com- 
posites. In addition to the total  strain, the internal variables which define the state of 
the material  have been identified. Matrix-cracking is described by one damage variable, 
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Figure 15. Inelastic strain ei ver- 
sus applied stress a for ID2 specimens 
(fsf = 0. ,0.1,0.3 and 0.6%).The symbols 
are experimental  da ta  and the solid line is 
tile identification when f~f = 0.%. 

Figure 16. Permanent  strain ep versus max- 
imum applied stress O'ma x for ID2 specimens 
f~f = 0., 0.1, 0.3 and 0.6%.The symbols are 
experimental  da ta  and the solid line is the 
prediction when f~f = 0.% 

debonding and sliding are modeled by an inelastic strain and another  damage variable 
measuring the amount  of non-recoverable energy. These variables are related to micro- 
scopic quantit ies introduced to analyze the degradat ion mechanisms of BMCs. 

Micromechanical parameters  are exhibited to Inodel matrix-cracking, interracial debond- 
illg and sliding. Their  identification is discussed by analyzing the mechanical behavior of 
a mfidirectional SiC/SiC composite. This composite behaves in a large debond  energy 
regime in which tim stress levels related to the (tebon(t s t rength are significantly higher 
than those related to sliding. 

Conversely, concrete specimens reinforced by a luminum bars exhibit a low debond  en- 
ergy regime. The classical identification t)rocedure cam~ot be used to infer the behavior of 
(:oncrete from the response of tile composite system. Fhlrthermore, this type of experiment  
is more sensitive to the presence or the lack of short fibers in concrete than  the actual 
volume fraction (up to 0.6%). However, in some other cases, the effect of fiber volume 
fraction can be more significant (e.g., three point flexure tests [25]). 

The framework presented in this paper has been extended to model layered as well as 
woven fiber-reinforced composites. The nature  of the different internal variables have been 
discussed. The same fortnalism can also be used to model high tempera ture  applications in 
which the change of residual stresses as well as creep mechanisms need to be incorporated 
[26]. This work is still in progress. 
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A m e s o c r a c k  d a m a g e  and  f r i c t ion  c o u p l e d  m o d e l  for  br i t t le  m a t e r i a l s  

A. Dragon and D. Halm 

Laboratoire de M6canique et de Physique des Mat6riaux (UMR CNRS 6617), ENSMA, 
T616port 2, BP 109, 86960 Futuroscope Cedex, France 

A three-dimensional model of anisotropic damage by mesocrack growth, Halm and Dragon 
[ 1 ], is first summarized in its extended version. It is employing a second-order tensorial damage 
variable and considering damage (i.e. generation and growth of decohesion microsurfaces) as 
the unique dissipative mechanism. The m o d e l -  concerning rate-independent, small strain, 
isothermal behav iour -  reduces any system of mesocracks to three equivalent orthogonal sets 
and leads to a form of orthotropy. It allows to take into account residual effects due to damage 
itself. To account for elastic moduli recovery due to crack closure phenomena a compromise 
solution has been advanced between micromechanical considerations imposing a fourth-order 
crack-related tensor and macroscopic modelling efficiency. The formulation maintains the 
orthotropy of the effective properties, instead of eventual general form of anisotropy. Unlike 
some models which do not avoid (or rectify a posteriori) discontinuity of the stress-strain 
response, the approach herein ensures a priori the stress continuity and allows to express a 
convenient macroscopic opening-closure criterion. 

The foregoing model is in the present work considered as coupled with a form of friction- 
induced plasticity. To account for the friction effects on microcrack lips a new internal variable 
is introduced to capture the corresponding dissipative mechanism. The thermodynamic potential 
(free-energy function) is enlarged and modified by introducing two additional terms related to 
the stored energy due to frictional sliding. The evolution law of the latter is formulated in the 
space of corresponding thermodynamic forces through a standard scheme. Numerical 
simulations for complex loading paths are successively performed and compared with available 
experimental data. 

1. I N T R O D U C T I O N  

The specific stress-stain response of brittle materials such as rocks, plain concrete, ceramics, 
glasscs can be inferred in large degree from their predominant damage micromechanism, namely 
multiple micro- and mesocrack incipience and growth. The progressive, microcrack orientation 
dependent degradation of elastic moduli at the macroscopic level is commonly accompanied with 
the events like volumetric dilatancy, induced anisotropy, irreversible strain after unloading, 
more pronounced in the direction of preponderant microcracking. The unilateral eflect 
consisting in elastic moduli recovery due to crack closure under the compressive load is a 
characteristic teature of cyclic behaviour of the materials at stake. 

When considering the crack closure for a microcrack system in a brittle solid under 
mechanical loading one can trace a link between complex multistage loading and unloading 
curves observed experimentally and the friction resistance at the crack lips level and subsequent 
fiictional sliding and/or eventual crack opening. In such a way the unloading process for a 
damaged material can be itself friction-locked and possibly dissipative (if followed by frictional 
sliding). The inelastic unloading is just a particular event revealing the coupling effect of damage 
by microcracking with a form of plasticity generated by the frictional sliding on closed multiple 
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crack set. It has received some attention in the past, see f.ex. Kachanov [2], Horii and Nemat- 
Nasser [3], Ju [4], Krajcinovic et al. [5], Andrieux et al. [6], Gambarotta and Lagomarsino [7], 
Fond and Berthaud [8]. For the most part the papers cited represent instructive micromechanical 
analyses leading to models covering limited spectre of stress-strain paths (two-dimensional, 
axisymmetric, etc.). The purpose of this paper is to address - in an overview m a n n e r -  basic 
issues of 3D-modelling employing an internal variable formalism for the joint process of 
anisotropic damage by microcraking and frictional sliding at closed microcracks. The aim is to 
provide an efficient, reasonably simple, macroscopic - whereas strongly micromechanically 
st imulated- model. The approach presented is based on the anisotropic damage model proposed 
by Dragon, see Dragon et al. [9] and extended by Halm and Dragon [ 1 ] to include the unilateral 
effect concerning normal stiffness recovery with respect to a microcrack plane. 

An outline of the remainder of this paper is as follows : in Section 2 is summarized the 
existing model by Halm and Dragon for anisotropic damage by microcracking with normal 
unilateral effect. In Section 3 are considered basic issues of a new, non-classical modelling of 
frictional sliding. The latter is built under general loading conditions involving various 
dissipative configurations : frictional sliding for constant damage for closed microcracks, 
frictional sliding and evolving damage for closed microcracks, damage with no frictional sliding 
for open cracks, combinations of above for multiple crack systems. In fact, in the present 
model, multiple systems of parallel cracks are reduced to three orthogonal equivalent systems 
thus inducing a form of orthotropy (instead of eventual more general anisotropy), according to 
Dragon et al. [9], see also Kachanov [10]. The friction model given herein allows avoiding 
some inconveniences of the Coulomb model though strong affinities persist. It is presented in 
itself in Section 3 whereas the full damage/friction coupling is discussed and recapitulated in 
Section 4. Some example calculations are shown further (Section 5) to demonstrate various 
features of the coupled model and to make comparison with experimental data. The model 
presented is aimed to provide an efficient and consistent tool for structural analysis accounting 
for basic dissipative phenomena in brittle solids. Emphasis is put on reasonable simplicity and 
on accessible identification of material constants from prevalent laboratory tests. 

2. A N I S O T R O P I C  D A M A G E  AND N O R M A L  U N I L A T E R A L  E F F E C T  

This Section outlines the salient features of the anisotropic damage model by Halm and 
Dragon [ 1 ] which forms the framework for further developments presented in Sections 3 and 4. 
An objective of the damage model summarized below is to describe - in a realistic and structural 
calculus applicable m a n n e r -  the process of mesocrack-induced anisotropic degradation and 
relative behaviour of an elastic rock-like 'brittle' solid. It stipulates evaluation of effective elastic 
moduli of a material with microcracks and an adequate description of the evolution of damage. 
The emphasis has been put on an "open" formulation of the model to allow further extensions 
and couplings. It is based on the hypotheses and developments ordered below in the items from 
(i) to (v) : 

(i) A single damage internal variable is constituted by a symmetric, second-order tensor D 
indicating orientation of microcrack set(s) as well as the dissipative mechanism under 
consideration, namely generation and growth of decohesion microsurfaces : 

I ) -  ,~_.,d i ( s ) n  i |  i (I) 
i 

The scalar density d' (s) is proportional to the extent s of decohesion surface and the unit normal 
vector n ~ describes orientation of the i-th set of parallel crack-like defects. The form (1) is 
motivated by micromechanical considerations (see e.g. Kachanov [2,10]) but in the context 
here the density d(s) is reckoned as a macroscopic quantity. The expression (1) is in itself a 
guiding interpretation of damage-related internal variable D. Since D is a symmetric second- 



323 

order tensor it has three positive eigenvalues D k (k = 1, 2, 3) and three orthogonal eigenvectors 
v k. This means that any system of microcracks (1), decomposed into 1 ..... i .... n of subsystems 
of parallel mesocracks can be reduced to three equivalent orthogonal sets of cracks characterized 
by densities D k and normal vectors v k" 

3 

D=y__, D k v k |  k (2) 
k=l  

(ii) The damage-dependent strain energy (free energy per unit volume) w(e,D) generates a 
form of elastic orthotropy - in connection to three eigensystems (2) - for D ~ 0 ; w is assumed 
a linear function of D and in this way corresponding to non-interacting cracks hypothesis. On 
the other hand it contains linear and quadratic terms in E. A particular invariant form given 
below comprises a single linear term reading g tr(E.D), g = const, corresponding to damage- 
induced residual phenomena. The macroscopic residual stress for E = 0 is thus explicitly 
obtained. Inversely, for o" = 0, non-zero residual strain is induced. 

(iii) Under predominantly compressive loading favourably oriented cracks close leading to an 
elastic moduli recovery phenomenon in the direction normal to the closed cracks. It is called 
here normal unilateral effect-  in the absence of frictional sliding (the latter, when accounted for 
later, will induce a 'shear' recovery effect as well) - and requires more involved damage 
characterization. In fact, for a set of cracks constrained against opening a fourth-order tensorial 
density is necessary for a rigorous, micromechanically motivated description. A compromise 
solution has been advanced in [1] between micromechanical considerations imposing an 
additional fourth-order damage variable and macroscopic modelling efficiency. The formulation 
maintains the orthotropy of the effective, elastic properties - instead of eventual more general 

anisotropy induced by a new fourth-order damage tensor - and the fourth-order entity D, 
necessary to account for the normal unilateral effect, is directly assembled with the eigenvalues 
and eigenvectors of D : 

3 
v k | v k | v k | v k f i -  ~ D k (3) 

k=3 

(iv) A single scalar simultaneous invariant of 1) and E completes the expression of the free 
energy (thermodynamic potential), with no additional material constant with respect to the basic 
form w(~:,D) postulated in (ii). Rigorous continuity analysis in the framework of multilinear 
elasticity (for a given damage state), recast in [ 1 ], leads to a simple microcrack closure condition 
for an equivalent set, namely �9 vk.~-,,.V k ~ 0. The detailed expression of w(g,D) including the 
normal unilateral effect is" 

1 
w(~:, 1)) - 2 )v(tr~:)2 + t't tr(~'~) + gtr(~:.D) + octr~:tr(~:.D) + 2[3 tr(~.l~.D) 

(4) 

where H is the classical Heaviside function �9 o~, [3 are material constants related to modified 
elastic moduli for a given damage state. X and la are conventional Lame constants for elastic 
(non damaged) solid matrix. 
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The corresponding damage-influenced orthotropic elasticity representation cr(e,D) and the 
damage driving (thermodynamic) force F D are determined by partial derivation �9 

0 " =  
~W 

= X(tre) 1 + 2 g e +  g D  + c~[tr (e.D) 1 + (tre) D] + 213 (E.D + D.E) 

3 
- 2((x + 213) ~ H ( - - v k . E . v k ) D k  ( v k . E . v k ) v  k ~) V k 

k=l 

(5) 

F D = 
~D 

. . . .  g~:-  a ( t r e ) E -  213 (E.~:) 

3 
+ (a; + 213) ~ H ( - v  k .E.V k).(v k.~:.v k )2 V k (~) vk 

k=l 

(6) 

In spite of the presence of the Heaviside function H(-vk.e.vk), W, O and F D remain continuous 
when passing from the open mesocracks configuration to the closed mesocracks configuration 
and vice versa. 

(v) The evolution of D, corresponding to the brittle, splitting-like crack kinetics, has been 
found to follow the normality rule with respect to a criterion in the space of components of the 
proper thermodynamic force (affinity) F D. The damage evolution is thus following the principle 
of maximum (damage)dissipation, see also Govindjee et al. [ 11], and is related here to tensile 
(positive) straining e § and to actual damage pattern. The particular damage criterion f(FD,D) _< 0 
is explicitly dependent on the part F Dl+ = - ge § = F D - F D2 - F D l  of the driving force F D . F  TM is 
the strain energy release rate term related to residual 'locked' effects : F D1 = - ge, F D2 represents 
the remaining recoverable energy release rate. The former term is decomposed into the splitting 
part F D~+ = - ge +, e+ = P§ with P§ a positive fourth-order projection tensor selecting positive 
eigenvalues from strain, and the non-splitting part FDI= - g(e - U). The damage criterion and 
rate-independent damage evolution law are thus as follows : 

Dt ~/ 1 t r [ ( F D _ F m  FD~- D2 Dr- 

+ - ) D]- +  ,tr o)_ o 
(7) 

I 0  I 1 i f f < 0 o r f = 0 ,  i~<0 Of ~;+ �9 A~, > 0 (8) 
D - AI) ~ FD = A D  + B D if f = 0 and i" = 0 

4 2 tr(~+.~: + ) 

Remarks �9 

The fourth-order tensor I) depends entirely on D (see definition (3)) �9 it does not require a 
separate evolution law. 

In numerical calculations any loading path is considered as a collection of D-proportional 
segments. The form of Eqn (6) is valid for such a segment, i.e. for a given configuration of 
principal directions of D. 

The model, non-linear as it is, contains eight material constants o n l y : X ,  p, or, [3, g, B, C O 
and C~. Seven of them can be relatively easily determined from axisymmetric triaxiai 
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compression test with unloading, see Dragon et al. [9]. In particular, C o and C~ are determined 
from the corresponding non-linear damage loading portion of experimental curves. The 
identification of o~ and 13 exploits the unloading portions considered as elastic according to the 
hypotheses (i)-(v) of the foregoing frictionless damage-elastic version. The point where the 
unloading is performed should correspond to pronounced oriented damage, but has to be 
reasonably far from the bifurcation-onset point to avoid interference. 

To determine B one should resort to a two-segment loading path experiment. The second 
loading is to be performed off the first-segment damage-induced anisotropy axes. One can see 
from (8) that B intervenes as a sort of a damage-drag constant moderating the D-principal axes 
tendency to follow e§ in complex non-proportional loading involving e+-axes rotation. 

An operational, structural analysis approach employing the concept of damage should 
combine an efficient damage model implemented in robust computer algorithm associated with 
proper tools for detection and control of bifurcation phenomena. The latter indicate eventual 
transition from distributed damage to surface-like localization considered as a precursor of 
macroscopic fracture. In any case bifurcation events point out an ill-posedness of the problem 
and necessity of remaking a computational scheme. Actually, the basic model presented, i.e. the 
one summarized above except the last, unilateral effect related term in w(e,D) put up in eqn (4), 
was extensively tested for its capacities to generate physically sound localized failure 
mechanisms, see e.g. [9,12]. The very fair predictions in this field obtained for homogeneous 
stress-strain paths as well as for boundary-value problems related to rock engineering 
applications have prompted further developments of the model itself including its coupling with 
a form of mesocrack-friction-induced plasticity as put forward in the next section. 

3. M E S O C R A C K  F R I C T I O N  I N D U C E D  P L A S T I C I T Y  

The unilateral normal effect included in the model summarized in Section 2 allows a moduli 
recovery in the direction normal to the closed mesocracks. It fails to capture a shear moduli 
recovery parallelly to the crack plane resulting from some blocking of mesocrack lips 
displacement due to roughness and corresponding friction phenomena. Experimental data 
involving loading-unloading cycles for specimens subject to torsion and hydrostatic 
compression for instance show hysteretic effects generated by such a blocking and subsequent 
frictional sliding on closed mesocrack lips. The beginning of unloading is characterized by a 
quasi-vertical curve while further decreasing slope is linked to progressive sliding, see f.ex. 
Pecqueur [13]. Some attempts of micromechanical modelling of the phenomena deserve 
attention, [2-8]. However they are not directly operational for an efficient structural analysis. 
Some of earlier attempts (Kachanov [2], Horii and Nemat-Nasser [3]) consider the influence of 
friction on effective moduli but do not provide satisfactory treatment of sliding evolution. Most 
of existing approaches are limited to two-dimensional analyses, as e.g. [6], with the notable 
exception of the more recent work by Gambarotta and Lagomarsino [7]. 

3.1. E l a s t i c - d a m a g e - a n d - f r i c t i o n  response  
The global strain expression for a representative volume of elastic solid of stiffness C 

containing microcracks (assumed plane and quasi-circular for simplicity) can be written as a 
sum of the solid matrix contribution e" and the crack contribution a ~ : 

I e -  C - ' '  o'+ --S'- ( (b } |  n +  n |  i "  "".., I 

s - ~:" + ~  ( 9 )  Eci 
2V i i 

with the crack displacement discontinuity b ~ being averaged ((b~)) for the microcrack set i. For 
closed sliding cracks, as long as the orientation n' is preserved, (b ~) is orthogonal to n~: 

(b ~) = ~ g~ , g~ _L n ~ if n~= const. (10) 
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with ~i representing the amount of sliding in the direction ge. One can write furthermore : 

= si I~ci ~i ( g i |  h i +  n i |  gi) 
2V 

(11) 

Hence, for the microcrack system i, the sliding variable is chosen in the form : 

~r S i ~i 
= sym (n | g ) i ,  (12) 

V 

the symmetrisation being operated for the expression in parentheses. The similarity with (1) is 
S i ~i 

striking : as for D, the form of"/is  motivated by micromechanics ; as for d(s) the quantity 
V 

cannot be explicitly calculated in the framework of macroscopic model. Moreover, as any 
system of microcracks represented by D reduces to three equivalent sets according to (2), the 
sliding tensor ~ can be written in the analogous manner : 

3 k~k 3 
T = y__, s sym (v |  k =y_, ~,k 

k--l V k=l 

where v k, k = 1,2,3 are D-eigenvectors. 
Let us consider, for a while, a single system of mesocracks characterized by the only 

principal non zero component D x and the normal (eigenvector) v 3. The objective here is to argue 
for an enlarged form of the free-energy function w(e;D,7) accounting for the frictional blocking 
and sliding effects for closed crack sets. 

From (4), (5) one can infer that the anisotropic damage-induced shear moduli are entirely 
determined by l-t (solid matrix shear modulus) and the term 213tr(e.e.D). Hence, for the damage 
configuration at stake (DI=D2=0 ; D 3 g: 0) one obtains : 

{ (Yl3 - 2hi'el3 + 2~D3E13 

O'23 = 21ae23 + 2~D3 e23 

The degradation of moduli in the normal direction to the open crack set is described in the 
conjugate manner by the c~-term as well as the l-one. The expression of the Young modulus E 3 
for the damage configuration as above is 

E 3 = ~ , + 2 p + 2 o t D  3+413D 3 -  
(k.+ctD3) 2 

Z,+bt 

Let us consider the transition from open cracks to closed ones, assuming friction resistant 
lips when in contact. The crack-open form of (4), with H(-v3.e.v~)=0 applies for the former 
case. When the cracks are closed and blocked by friction resistance at a given "/, the shear 
modulus l-t is recovered and this should be properly reflected in the new modified expression 
w(~:;D,"/). The 13-term should be counterbalanced in this expression. The or-term, having no 
influence on shear moduli, enters as before. Additional invariants including 'g can be only 
simultaneous C/,D)-invariants as there is no sliding on crack lips in the absence of damage. As 
from (15) one infers tr ~ = 0 and tr(%D) = 0 (for conservative damage axes), only two 
simultaneous invariants of e, ~, and D convey useful information. They are : tr(e."[.D) and 
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tr(T.7.D). The argument for the quantity including ~ in the last term of (4) was to restitute the 
normal stiffness reduced by the term 213tr(e.e.D) in the first line of (4), but since this latter term 
is going to be counterbalanced, the former quantity has to disappear from w. Doing so allows 
one to write the expression w(e;D,~/) for closed friction-resistant crack lips in the form : 

1 

w(E,D,T) 2 ~'(tre)2 + l.ttr (e.e) + gtr (e.D) + o~tretr (~.D) 

- o~(E" I)" E) + Zlltr (E.'y.D) + 2TIEtr(T.'y.D) 

(13) 

rl~ and 1"12 a r e  material constants to be identified. 
From the micromechanics viewpoint there are infinity of crack-closure paths possible 

(straight, slantwise, mixed .... ). The macroscopic model continuity requires w and ~-functions 
continuity. This leads to the following condition at the closure-point : 

e.D = T.D ~ = at closure-point (14) 7ij sym(EikVkVj) 
D . E -  D. T 

The latter formula constitutes an initialization for the sliding variable T and can be explained as 
fol lows:  at closure point, the sliding quantity ~r is equal to the strain E in the crack plane, the 
matrix transmits its deformation to the crack. 

According to the continuity conditions for multilinear elasticity (Wesolowski [ 14], Curnier et 
al. [15]) already employed in [1] in the context of unilateral normal effect, see eqns (4)-(6) 
Sect. 2, the jump of effective elastic stiffness [[C*]] between open crack (the corresponding 
energy is designated by w~ below) and closed crack respective configurations should be a 
singular operator. It is sufficient that its all second-order determinants be equal to zero. 

In the present context -eqn (13) at the very closure point, taking into account ( 1 4 ) -  [[C*]] is 
given as follows : 

I I [ [ c ' l ] -  ~--~]~,D 0~E D 

[[Ciikl]] = 1"11-t-112--~ ~ik Djl+ 8jlDik +~ilDjk +~jkDil -- 20~fiijkl 

The above-mentioned singularity requirement and an additional stronger condition applied by 
Halm and Dragon [16] (in the way similar as in [1 ]) lead respectively to 

t 
l 

2rl~ + q 2 - 1 3 -  0 

rl~ - 4[3 
(15) 

Tile free-energy w(•;D, T) can now be written as follows (for either open or closed cracks) 

1 
w(E;D,T) - ~- k(trr;) 2 + ~ tr(~;.E) + g tr(~;.D) + o~tr ~;tr(~;.D) + 2~3 tr(~;.~;.D) 

+ U(-v.t~.v)[-213tr (~.t:.D)-c~E" I ) ' ~  + 413tr (e .T.D)-  213tr (T.T.D)] 

(16) 
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The expression (16) can be generalized to three non-interactive equivalent crack sets 
represented by eigenvectors v R associated with the principal components D R, k= 1,2,3. One can 
select the k-th set using the following projection operator L R �9 

L k = V k (~) V k (~ V k {~) V k 

D k= Dk Vk (~) V k- L k" D 
(17) 

This allows to write counterpart equations of (4)-(6) independently for each equivalent set, all 
possible configurations being included (open or closed, sliding or non sliding sets) " 

w(E,D,T) = 1 X(trE) 2 + lt.ttr (E.E) + gtr(E.D) + ottr(~:)tr (E.D) + 213tr (E.~:.D) 

3 
+ ~ H (--vk.E.V k )[--ORE " (DkL k )" E:- 2[3tr(~.s k ) + 4~tr (E.~ck.D k ) -- 2~tr (yk.'yk.D k )] 

k=l 

(18) 

O'--  
~w 

0E 
- )~(tr~;) 1 + 2BE + gD + o~[tr(E.D)l + (trE)D] + 213 (E.D+ Dx:) 

3 
+ Z H  (--vk.E.vk)[--2(XDk (vk .E .vk) (v  k (~)vk) - 2~(E .D k + Dk.E) + 2 ~ ( ~ k . D  k -t- Dk. 'yk)] 

k=l 

(19) 

F I) = 0w 

3D 

3 
= - g ~ ; -  O~(trE)E- 2~ (E.~:) + ~ H (-vk.E.V k )[O~(vk.E.V k )2vk ~) V k -}- 213 L k �9 (e.e) 

k=l 

- 4[3 L k �9 (E.T k ) + 2[3 L k �9 (T k .T k )] 

(20) 

As each equivalent set of the normal v k is to be considered independently, the corresponding 
affinity (thermodynamic force) is" 

F ~  = 0w = H (--vk.E.V k)[ -  213(E.D k + Dk.E) + 2[3(Tk.D k + Dk.T k)] (21) 
0T k 

Tile remark concerning eqn (6), Section 2, stating its validity for a D-proportional segment, 
i.e. for a given configuration of principal direction of D, is still in force for eqn (20). 

3 . 2 .  S l i d i n g  c r i t e r i o n  a n d  e v o l u t i o n  
Thc model herein considers frictional non-sliding/sliding phenomena on mcsocrack lips on a 

macroscopic scale, by an approach similar to that to damage, notwithstanding the 
micromechanicai background and interpretations of D and T. So, the Coulomb criterion form, 
function of the corresponding shear and normal tractions on a crack lip, employed in 
micromechanical models (Horii and Nemat-Nasser [3], Andrieux et al. [6], Gambarotta and 
Lagomarsino [7]), is methodologically less suitable in the present context. The pertinent 
thermodynamic affinity governing frictional sliding on an equivalent system k, (k= 1,2,3) is the 
entity F ~ defined above as the strain energy release-rate with respect to '1(. 

The frictional non sliding/sliding complementary law is based on the hypotheses as follows : 
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(i) The sliding criterion depends explicitly on the norm of the tangential part F ~k of the 
"force" F ~' and on the normal strain vk.E.V k consecutively to the strain-related representation of 
the energy w and the crack-closure criterion at stake (vk.E.V k < 0). 

(ii) Contrarily to inconsistencies relative to the normality rule in the classical Coulomb 
framework affected by appearance of a normal separating velocity (cf. for example Michalowski 
and Mroz [17], Curnier [18]) a standard scheme in the space of forces conjugate to 3r k keeps 
physical pertinence. The normality rule appears to relate the frictional sliding rate to the 
tangential force F ~k indicating its leaning to the crack plane (for a DKproportional loading 
segment). 

Consequently, the corresponding convex reversibility domain h k < 0 can be written as 

+ _<0 

if vk.e.V k < 0 

where P is a material constant, a strain-related friction coefficient in the space (F~,e) and 

F ~ = F ~k + F vNk ; F Yrk = F vk _ (vk.F~.v k) V k | V k 

F vNk = (vk.FVk.V k) V k | V k 

The normality rule for ,~r is then 

(22) 

(23) 

4/k k 
- A ~ ,  

0h k ( v ~  - V l'Nk v k .E.v k ) t 0 ' _ F grk 

0 F ~ - Ak~ ' ~ 2tr(F.ffk .Fgrk) 

i f h  k < 0 o r h  k = 0 ,  h k < 0  

k >  0 i fhk  _ 0 a n d l ~ k  _ 0 ,  A~,_ 

(24) 

Detailed comments on salient aspects of the criterion h k = 0 in the strain space are given by 
Halm and Dragon [16]. Figure 1 shows the corresponding form together with a hardening-like 
phenomenon (for ,/k ~: 0) in reduced stress space ((Y33,0~3). The similitude between the actual 
yield surface and the Coulomb one can be clearly noticed. In connection with the crack 
opening/closure condition (a single crack system D 3 ~: 0 is considered for illustration) the cone 
hK= 0 is shifted to the left : it corresponds to negative value of (533 at the closure point. The 
correspondence of (22) with the Coulomb locus can be pointed out furthermore when 
comparing 9 with the conventional Coulomb coefficient 9c. For the stress and sliding 
configuration depicted in Fig. I, the Coulomb locus is IcYl31 + pc033 = 0 and 

P,: = pit with A = )v (1 - 2v) + 2 i t -  2or v D~ (25) 
I [31D3A 

By examining the complete set (18)-(24) of the equations of the model, one call see that tile 
frictional sliding does not sweep away the relative simplicity of the enlarged model (see the end 
of Section 2). Only one additional constant p adds to eight material constants 
()v,it,ot,13,Co,C~,g,B). It can be stressed that p (as Pc above) governs the slope of the cone in 
Fig. l, an example illustrating the general form (22). However, P is not here the unique slope- 
governing factor. In the example considered the slope is inversely proportional to D 3 thus 
implying that a higher crack density is favouring sliding amount. 
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Figure 1. Frictional sliding criterion and the relative sliding-induced hardening mechanism in the 
reduced stress-space (0"33, cy~3). 

4 .  D A M A G E  AND F R I C T I O N A L  S L I D I N G  I N T E R A C T I O N .  F U L L Y  
C O U P L E D  M O D E L  

The model completed in Section 3 incorporating friction-induced blocking and sliding on 
equivalent mesocrack-sets is valid for a given ('freezed') damage state or for conservative 
damage evolution (Dk-proportional loading paths). It has proved conclusive in representing 
multistage loading-and-unloading dissipative cycles due to blocking-and-sliding sequences, see 
Halm and Dragon [16] for illustrations. In particular a dissipative unloading blocking-and- 
sliding sequence could be obtained while for the same stress-strain cycle the frictionless model 
of Section 2 gave purely elastic unloading. 

The splitting-like damage kinetics considered in Section 2 is approximately valid for closed 
sliding mesocracks even when some branching occurs see for example Horii and Nemat-Nasser 
[19] for some experimental insight. This type of kinetics will be still considered as the 
predominant mechanism furthest for DK-non-proportional loading. This means the 
complementary damage law (7)-(8) being reconducted for more complex stress-strain paths 
involving varying D k orientations. However, as the frictional blocking-and-sliding is inevitably 
affecting the stress-strain response, so f.ex. the stress threshold corresponding to damage 
criterion f=0 is subsequently affected. For example in the stress subspace analogous to that of 
Fig. 1, the frontier f=0 corresponding to closed cracks under frictional blocking/sliding is 
farther beyond the limit for frictionless cracks, see e.g. Fig. 9 in [ 16]. 

This is mostly the sliding complementary rule (22)-(24) which needs to be perfected to 
k describe fairly the D-non-proportional loading paths. If the principal axes of D rotate the 

orthogonality ~,k :Dk=0 is no longer true and discontinuities may arise, especially for crack 
closure-opening transition. So, an enhanced form of h k < 0 needs to account for the Dk-axes 
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rotation. The form (22), depending on F ffk, produced - via normality rule (24) - sliding Tk in 
the mesocrack plane. A judicious modification of this basic assumption should be compatible 
with sliding and damage departure from the actual mesocrack equivalent plane. This is achieved 
by means of the following partition of F ~, given below for a single crack set of normal v k �9 

F ~k - F grk + F vNk - F ffk + 4[~('y k " D k ) V k | V k -- 413(t~ �9 D k ) V k | ll} 'k 

�9 . . . .  v -  

F k -413(t~" D k) V k | V k 

(26) 

F k is the appropriate part of F vk to enter the more general expression of h k _< 0 suitable for the 
model including Dk-axes rotation. First, one obtains that for Dk-proportional loading F k reduces 
to F grk (as "l( k" D k = 0) and the new representation h k (F k, Vk.E.V k) reduces to (22). Secondly, 
the above-mentioned, crucial stress continuity problem is effectively dealt with. In fact, 
comparing (14),(21),(23),(26), one can see that the closure-opening transition point for sliding 
crack-set can be alternatively defined as 

Fk=  F'~k= 0 r E.D k + Dk.t~ = '~k.Dk + Dk.'~ (27) 

Despite the fact that the above equation represents weaker condition than (14), it allows to verify 
the singularity requirement for [[C*]] (cf. Section 3.1) leading to the stress continuity. 

It can be remarked that though 'l,a:D k #: 0 as equivalent crack-axes rotate no additional 
invariants are necessary in the strain energy expression (18). This is not required by the 
continuity considerations (see above) and it brings neither significant information. For example, 
introducing tr e tr ('yk.Dk), tr T k ( ~ . D  k) and Tk : Dk L k :Tk does not convey more record on 
shear moduli degradation than existing invariants tr (e.Tk.D k) and tr ('l~.'~.Dk). 

The above considerations lead to the following improved expression for the sliding 
complementary rule : 

~ 1  .F k hk (Fk,vk.E.vk) - 2 t r (Fk ) + Dvk.E.V k <_0 (28) 

~r k 3 h (F k , v k .E.V k ) I 
0 i f h  k < 0 o r h  k - 0 ,  l;! k < 0  

F k 
- ~ k>_ 0 k if hk __ 0 and lak _ 0 ,  A~ 

A't X/2tr(-Fk "Fk) 

(29) 

The direction of Tk is thus allowed to leave the equivalent crack-set plane consecutively to the 
rotation of the latter. In such a manner Dk-non-proportional loading can be followed by the 
model which takes into account the interaction of the two dissipative mechanisms " damage and 
frictional sliding. The corresponding combined dissipation is 

3 
D -  F D" D + Z F ~  .~k  (30)  

k=l 

Despite of the corresponding normality rules, i.e. the formulae (8) and (29) respectively for 
damage growth and frictional sliding, and the convexity characterizing the domains f<0 and h<0 
one should check the non-negativity of D in the process of numerical integration. This is 
because of the partition of the respective thermodynamic forces, i.e. the sole parts FD-Fm-F  D~- 
and F ~k - [-4[3 ( E ' D  k) V k | v k] entering respectively into the corresponding damage and 
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sliding-yield functions. The convex domains at stake should contain their origin respectively in 
the F D- space and in F~-space to ensure thermodynamically admissible evolutions (one can note 
in this point some analogy with the kinematic hardening rule in classical plasticity). In this 
respect the algorithmic approximation of the coupled model should control the dissipation issue 
for each step and integration point. The incremental procedure leading to numerical integration 
of the equations of the model can be summarized as follows : 

(i) It can be performed in the standard strain discretization for the loading path under finite 
consideration ; at time t n the set E", o 'n, D", atkn is known. 

(ii) For each damage equivalent system, the normal strain vk.e.V k is checked. 
(iii) If Vk.E.V k > 0 (open crack-set), ~ vanishes and if f = 0, the increment of D is calculated 

from the discretized form of (8). 
(iv) If vk.E.V k < 0 (closed crack-set), both criteria f < 0, h k < 0 are checked ; the increments 

A~  and AD are simultaneously calculated from (8) and (29). 
(v) The integration of the two evolution rules above is performed by an implicit algorithm 

whose numerical stability is well confirmed. Moreover the implicit procedure has been found 
particularly advantageous for a large class of damage models (Cormery, [20]) as being naturally 
compatible with their constitutive formulation. In the present model one can notice the low 
numerical coupling degree between ~/' and D : D n is obtained, independently of ~k,, by a simple 
"naturally implicit" algorithmic approximation of (8). Once D n is calculated, T kn is determined 
by iterative procedure from (29). 

For completeness, the coupled rate-independent anisotropic damage-frictional sliding 
constitutive equations are summarized in Table 1. 

Table 1 
Rate-independent anisotropic damage-frictional coupled model 

Free energy : 
(per unit volume) 

1 
w(E;D,T) - = ~(trs) 2 + g t r  (~Z.E) + g tr(e.D) + o~tr etr(e .D) + 213 tr(e.e.D ) 

2 
3 

+ y_, H (--vk.(z.V k )[--aS " (DkL k )" e -  2~tr (Iz.~:.D k ) + 4~tr (E.Tk.D k ) 
k=l 

- 2~ tr (Tk.Tk.D k )] 

Stress-strain and internal 
variable relations : 

Damage complementary 
rule : 

l)-consistency : 

Frictional sliding related 
plasticity: 

~-consis tency : 

0w 0w 3w 
t~ = --~e' see(19) " F~ - -  0---D' see(20)" F ~ = - ~  see (21) 

0Tk ' 
for details 

f(F ~ - F D1 - F Dl-, D) < 0 , see (7) for details 

0 f  I ~ + ] + B D  , A D >_0 D - A  D 0 F  D = A  D ~/2tr(e+.e +) 

i" AI> = 0 

hk (Fk,vk.E.vk)_ --.Jl ~ t r (F k . F  k ) + p v.~.v k _< 0, see (23), (26) 

for detailed form of F k 
F k ,yk k 0hk k k ~, 0 

- A v ~ f f ~  = A ,  t~ /2 t r (Fk .Fk)  , A v _  

l~k k A~, - 0 
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5. A P P L I C A T I O N  : R O C K - L I K E  SOLIDS 

To illustrate the model pertinency two selected numerical examples are provided below. They 
are concerned with brittle rock behaviour and examine the effect of loading involving 
necessarily the closed mesocrack related phenomena thus bringing forward the efficiency of the 
fully coupled model. 

The first example is the analysis of a homogeneous stress-strain path relative to the third step 
of the complex loading programme as follows : 

�9 Step 1 : Uniaxial tension, ~3 > 0, induces damage D 3 > 0 ( a set of parallel mesocracks of 
normal 3). 

�9 Step 2 : Unloading then reloading under compression beyond the crack closure threshold 
are considered. The corresponding numerical simulation is strain-controlled ; 
E 3 3  < E l l  = E 2 2 .  

�9 Step 3 : Upon a given (freezed) configuration (s = e n) corresponding to mesocracks 
closure is superposed additional shear strain-controlled loading : s = E23 and 
subsequent unloading. Three loading-unloading cycles are simulated. In Figure 2 
the corresponding o~3vs g~3 loading and unloading curves are plotted. Damage 
growth, accompanied with principal D-axes rotation is calculated for each loading 
cycle. Friction blocking or sliding effects are accounted for. 

40 , ' ' ' ' I' ' ' 

B F 

3O 

i 

fl) 

..el 

10 / la = 17500 MPa C1 =_0.55 MPa 

o~ = 1900 MPa B = 0 

A E p = --20400 MPa P = 2500 MPa 

g = - 110 MPa 

i , i �9 | . �9 �9 i . , , 

o o .  o o o s  o .  oo~ o .  o o l s  o .  002  o .  0'02; o .  o03  

Shear strain 

Figure 2. Shear stress (c~13)-shear strain (~13) loading and unloading cycles corresponding to 
damage and frictional sliding variations. Non-proportional damage growth is simulated 
preceded by an initial tension-induced damage (D 3 > 0) and subsequent compression-induced 
crack closure. Complex hysteresis for the two incipient cycles (A-B-C-D-E-F and F-G-H-I) is 
followed by purely elastic unloading and loading (J-K-L ; J-L). 
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The initial stiffened portion O-A is due to friction-induced blocking effect corresponding to 
recovery of the solid elastic shear modulus It. Beyond A frictional sliding is evolving, the slope 
of the portion A-B is lower than the slope 0-A. From B to C damage growth accompanied with 
frictional sliding occurs. The loading path at stake is a D-non-proportional one ; there is some 
rotation of equivalent crack-axes and a complex damage state is brought about. The C-D portion 
represents slightly non-linear unloading curve. In fact this is a multiform unloading process 
with successive sliding sequences : blocking on one equivalent set, two remaining sets open, 
followed by closure of a second one and frictional sliding on one then two sets, etc. The non- 
linearity of C-D is hardly visible on the graphic representation. The segment D-E represents 
again (as OA) a blocking stage followed by sliding E-F, damage F-G, etc. For the third cycle a 
purely elastic unloading J-K and loading K-L (L=J) are noticed. This kind of elastic shakedown 
should be further analysed and compared to reliable experimental data, [21 ]. Here, the simulated 
c u r v e  o'13vs.F_,13 is presented to illustrate the capacity of the model to deal with multiple stage 
loading/unloading loops involving, eventually coupled damage-and-sliding effects. The material 
under consideration is Fontainebleau sandstone. 

The second example refers to experimental tests by Pecqueur [ 13] consisting in a torsional 
loading applied to hollow cylinder specimens under hydrostatic compression. The cylinder is 
cut in a brittle rock (Vosges sandstone). In fact, the torque vs. angular deformation curve 
plotted in Figure 3 (solid line) concerns the central, quasi-homogeneous part with respect to 
stress-strain distribution. The corresponding calculations concern a pre-damaged material with a 
set of mesocracks perpendicular to the cylinder axis in compression-induced closure range. 
Again, an initial stiffened portion is observed corresponding to friction-related blocking 
phenomenon (stage I). It is followed by stage II where frictional sliding evolution is noticed. 
This explains the reduced slope observed in Figure 2, the solid line leaning closely to the 
experimental one. Finally, for stage III, the simultaneous complex damage growth and sliding 
take place and the slope becomes even smaller. The calculated coupled damage growth and 
sliding effect is somewhat larger than experimentally observed but the overall agreement is quite 
satisfactory for the coupled damage and sliding model. The same simulation (with the same 
initial damage level and configuration) has been carried out for the sole anisotropic damage 
(frictionless) model of Section 2. The curves clearly indicate that the hypothesis of perfectly 
lubricated cracks underestimates the torque value whereas friction stiffens the material and 
predicts a behaviour closer to experiment. Note also that the drop (stage III) is much more 
pronounced for the frictionless model. 

6. C O N C L U D I N G  R E M A R K S  

Some of the basic issues concerning inelastic behaviour of brittle materials like rocks and 
concrete have been presented and explored in the framework of rate-type constitute theory with 
internal variables. In fact, inelasticity in such materials results from the evolution of a large 
number of internal (micro-)and/or mesocracks accompanied with microscopic frictional effects, 
volumetric dilatancy and strong pressure sensitivity. The corresponding continuum damage 
models attempting to capture the progressive degradation of mechanical properties attributable to 
evolution of multiple defects and accounting for irreversible frictional sliding over the internal 
crack surfaces arc referred to the extended framework of damagc-elastoplastic constitutive 
theory including the classical rate theory of elastoplastic detormation of crystalline materials as 
well as the non-linear theories of progressively mesofracturing solids. Such a global vision of 
non-linear mechanics of materials has been recently postulated by Lubarda and Krajcinovic 
[22]. 
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Figure 3. Torsional load versus angular deformation response for hollow cylinder example. The 
solid line gives the homogeneous response of the model when both damage and frictional 
blocking/sliding (for closed mesocracks) are taken into account. It appears fairly close to 
experimental response (Pecqueur, [13]). The latter effectively happens to be homogeneous in 
the central third. 
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The model presented here provides a realistic description of anisotropic damage evolution by 
multiple mesocrack-growth and of irreversible frictional sliding-related plasticity. It constitutes 
an efficient instrument for structural analysis due to its relative simplicity (a small number of 
material parameters to identify) and its modular character allowing to treat engineering problems 
at various level of complexity. The first, basic level concerns modelling the anisotropic 
degradation by mesocrack growth, Dragon et al. [9]. The second level consists in accounting 
for the normal moduli recovery with respect to equivalent mesocrack-sets (Section 2 herein). 
Some cyclic and pressure overloading phenomena can be well approximated by this version, see 
Halm and Dragon [ 1 ]. The damage and frictional blocking/sliding coupled model proposed 
above allows to treat complex loading paths with rotating loading and damage axes (torsional 
loading for example). Some successful structural analysis applications including three- 
dimensional detection of damage localization have been performed by employing the basic 
version. Further study concerns enhanced integration of pre-existing and/or 'virtual' damage 
phenomena susceptible to emerge on the mesoscale of a material at early stages of loading and 
thus to affect strongly its further resistance to failure. 
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Anisotropic damage  model  for the triaxial creep behaviour  of  plain concrete  
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Department of Structural Engineering, Politecnico di Milano 
Piazza Leonardo da Vinci 32, 20133 Milan, Italy 

A viscoplastic model with damage was developed to describe the mechanical behaviour of 
plain concrete subjected to sustained multiaxial stresses of high intensity. The model is 
characterized by inelastic strains due to plasticity and damage and by a second-order damage 
tensor. The evolution laws for these variables are formulated by extending the proposal of 
other authors for metals and rocksalt. The procedure to obtain the main model parameters 
from experiments is also outlined. The reliability of the model was assessed through 
comparisons with available test results. 

1. INTRODUCTION 

The present work is originated by an extensive experimental research program carried out at 
the Department of Structural Engineering of Milan Technical University (Politecnico). This 
program investigates the behaviour of plain concrete subjected to high sustained triaxial 
loading, either cyclic or constant in time. Concrete cylinders were tested in a triaxial cell, in 
which axial load and lateral pressure could be independently varied; further details on the 
testing apparatus can be found in [ 1 ]. The research aimed at obtaining a better understanding 
of the complex phenomena that take place in concrete at high stress levels, in view of more 
rationally exploiting the properties of concrete and its possible application within a broader 
range of stresses. 

The main results of the research (reported in [2-4]) can be summarized as follows: (a) at 
high stress levels, creep effects, associated with the maximum stress attained during cycles, 
dominate over dynamic effects, provided that the cycle amplitude does not exceed about 30% 
of the maximum stress; (b) if the cycle amplitude is a given fraction of the static triaxial 
strength at different values of the confining pressure, fatigue life is positively affected by an 
increase in lateral confinement only if the hydrostatic stress does not exceed a certain level [4]; 
(c) the decrease in stiffness (i.e., the material damage) is mostly affected by the maximum 
deviatoric stress attained during the pre-loading phase that precedes the cyclic or creep test 
[3]; (d) damage evolves si,mlificantly only during the tertiary creep stage [3]; (e) specimens 
submitted to triaxial tests that do not fail within a maximum prescribed time, experience a 
decrease in strength if they are reloaded to failure in uniaxial compression: the decrease is as 
more important as higher the previously applied lateral confinement was [2]; (f) specimens 
submitted to uni- and triaxial tests that do not fail within a maximum prescribed time, 
experience an increase in strength if they are reloaded to failure with the same confinement 
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previously applied: the increase is as more important as higher the applied lateral confinement 
was and can even attain 30+35% of the static strength of the virgin specimens. 

The description of the above phenomena requires having mathematical models available, 
capable of accounting for the material damage, the damage-induced creep acceleration and, 
possibly, the evolution of the elastic and the failure domain of the material resulting from 
creep. No model was found in the literature specifically formulated to describe the triaxial 
creep behaviour of concrete at high stress levels. Indeed, a number of (elastic-) viscoplastic 
models exists, conceived for relatively homogeneous materials such as metals, rocksalt and 
clay. A reason for this is that for metals the problem arises of creep failure at elevated 
temperature, whereas thermally-induced creep strains can be the origin of local failures in 
underground waste isolation deposits excavated in rock salt. Additionally, some models for 
clay exist capable of describing the evolution of the elastic domain of the material following 
creep. In a preliminary work [5] the problem was tackled of assessing whether these models 
can be applied to concrete the heterogeneous nature of which is likely to be associated with 
damage phenomena different from crystalline materials. It was concluded that, from a 
phenomenological point of view, the same evolution laws that govern the evolution of creep- 
induced damage in metals and rocksalt are appropriate to concrete and that similarities exist 
between creep-induced "hardening" in clay and concrete. A model capable of simultaneously 
accounting for creep strains, damage variable(s) and an evolving elastic domain, however, is 
presently missing. 

The model presented in this work is a viscoplastic model with damage, obtained as an 
extension of the model proposed by the authors for static and cyclic loads [6,7]. The model is 
featured by two second-order damage tensors, representative of surface damage induced by 
tensile and compressive strains. A viscoplastic potential is introduced in order to obtain the 
evolution laws for damage and permanent strains. These strains are considered as the sum of 
inelastic strains due to plasticity and inelastic strains due to damage. 

A discussion about the identification of the model parameters is presented in the last 
Sections of the paper, where some comparisons with available experimental results are also 
depicted. These results confirm the reliability of the presented model. 

2. THE MODEL PROPOSED: THEORETICAL DEVELOPMENTS 

The model proposed by the authors in [6,7] for quasi-static loading is able to reproduce the 
unilateral behaviour of concrete; this expression indicates the fact that, during loads histories 
involving changes in sign of the applied stress, the loss in stiflhess associated with cracks 
opened in tension is recovered when cracks close after the stress has turned to compression 
[e.g. 8]. Accordingly, two independent damage tensors were introduced, coT, oc, which 
account for damage induced by tensile and compressive strains, respectively. Since further 
treatments will cover triaxial compression tests, volumetric damage will be assumed to be 
negligible in loading conditions where all principal stresses are compressive. 

Allowing for unilaterality, the following expressions is proposed for the Helmoltz free 
energy of the material: 
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9 ~  3 Gotr[( 1 COT),/2 e" T),/2 e T =~-(k  o - 2 G o ) t r 2 e +  - �9 -(1-co �9 ] 

+ Gotr[(1-  co c) ''~- .e c . (1-co c),/2 .e c ] 
(1) 

e T (resp. e c) must be intended as the tensor having the same positive (resp. negative) 
eigenvalues as the elastic strain tensor e, and vanishing possible other eigenvalues, k o and G O 
are the bulk and shear modulus respectively of  the undamaged material. 

Derivation of  eq. (1) respect to e gives the stress-strain relationship: 

o = [(k 0 - 2Go)tr(e)]l + 2Go[(1 -co T)l/2 .e T . (1-co T)I/21.~. 2 G o [ ( l _ c  0 c)v2 .e c . (1-co c),/2 ] (2) 

Derivation of  eq. (1) with respect to the damage variables yields the damage driving forces 
conjugate to coT and coc: 

Y '  = - a(Oq/'~') = Goe" .e"" yC = _ c3(OW ~') = GoeC .e c . (3a,b) 
0co r aco c 

Note that tensors yT and y c  have the same principal directions as e: accordingly, both co T and 
m c also have the same principal directions. 

Once that the intensive variables conjugated to the extensive ones have been defined 
through a suitable thermodynamic potential, the evolution laws for the state variables must be 
introduced. When damageable materials are dealt with, it is customary to substitute nominal 
stresses with "effective stresses", which are increased respect to the nominal ones to allow for 
the reduction in load-carrying material section [9]. Here, the effective stress tensor o is 
defined as the tensor having fy~ = o~ /(1 - m ~It) as eigenvalues, meaning that 03 ~tI = co~c if the 

ii T if such strain is tensile. corresponding principal elastic strain is compressive, whereas co~ - cos 
For the description of  the inelastic response of  the material, several authors showed that the 

theory of  viscoplasticity with mixed hardening is able to reproduce the creep behaviour of  
metals and rocksalt [9,10]. Supposing to apply this theory to concrete, the following 
viscoplastic potential f~p is introduced: /N+I 

K X - R  (4) 
f~v = A~ N + ! K 

with 

is the deviator of  the effective stress tensor 6 ,  defined as 

S = 6 - 1 t r ( 6 ) l .  (6) 
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B is the tensor of the kinematic hardening variables (backstress tensor); R is the isotropic 
hardening scalar variable; K is a normalizing stress variable (dragstress); Ao and N are material 
constants. The evolution laws for B, R and K will be described later. 

Derivation of the potential with respect to the stress tensor yields the plastic strain rate: 

m D m 3  X e / : P - 0 f 2 P -  A0 
0o 2 

R/~S-B 
J~oq 

(7) 

The plastic strains (7) are not sufficient to characterize the creep behaviour of concrete 
subjected to high stresses. Indeed, if creep tests with unloading-reloading cycles are performed, 
the linear domain is found to expand. If the time at constant stress is sufficiently long, the 
stress point can re-enter the linear domain, although creep strains do not stabilize as eq. (7) 
would predict (see Fig. 1). Consequently, the total inelastic strain rate is considered as sum of 
two contributions: 
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Figure 1 - Uniaxial creep test at 90% of ultimate strength with unloading and reloading 
cycles. The dashed line represents the boundary of the linear field. 

~i : ~;p + ~d (8) 

The second term,/;d, is considered to be associated with damage, according to the proposal 
of Herrmann & Kestin [ 11 ]. Also this contribution is assumed to be irreversible and, as a first 
approximation, it will be supposed to be of the form ~ d = f(c0, th). 

For the damage evolution law, an expression is used similar to that proposed by Bodner 
[ 12] for metals, and later extended by Chan et al. [ 13] to rock salt. Its applicability to concrete 
has been verified in [5 ]. 
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Starting form these observations, the expression of the potential of dissipation can be 
completed by adding to D.p a second term f2d, that accounts for the dissipation due to damage 
and for damage-induced inelastic strains: 

aTtr[ T + a tr[o 

[ I I 1 +aT+IaT tr oT.(gT)az-(YT) aT+I +ac+lac tr coc.(gc) ac.(YC) ac+l 
(9) 

a H, al H, a H, a H (>0), with H=T or C, are material constants; ~T and ~c  are two second- 

order tensors with eigenvalues o~,-H ({x=i, ii, iii ) related to the eigenvalues of o H by the relation 

-H _lnoH Derivation of ~'~d respect to the stress tensor yields the damage-induced (t)o~ = o~" 

inelastic strains: 

g d 0~"2d aToT .0~T .(1_ oT) -1 �9 =~=C30 +aC~ "~ .(1 - O C) -1 ( 1 0 )  

If the damage components take small values (less than about 0.2), the associated inelastic 
strain given by this equation is almost identical to that computed according to the relation 
proposed by Herrmann & Kestin [11]. 

Derivation of f2 d respect to the damage driving forces gives the evolution laws of damage in 
tension and compression: 

6~T C3~d ToT aT a T = =a .(~T) .(yT) ( l la)  
ay'l" 

6)c cg~d a2 c yC a3 c : =aCoC.(~ c) . ( )  (l lb) 
ay  c 

Note that damage increases for any value of the damage driving forces, but its evolution can 
be extremely slow when the damage variables and the damage driving forces (that is, the 
effective stress) take small values. 

In order to complete the model, it is necessary to define the evolution laws for the plastic 
variables B, R and K. Starting from the expressions proposed in [ 10], we can write: 

R = A3(l-  R/R')~;ePq (12) 

K = As( l -  K/K')gPq (13) 

with 

-  ll pll 
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As far as the kinematic hardening variable is concerned, the original proposal by Aubertin 
[ 10] reads 

i 1 B = A l ~P - 8 ~ B  
Sea J 

(15) 

with 

B'eq = Bo(~Pq/~:o) I/N (16) 

B 0 being a material parameter. 
According to this proposal, the plastic strains rates (7) are purely deviatoric. Application of 

this expression to triaxial creep tests on concrete cylinders, however, was found to be 
inappropriate since axial and diametral creep strains could not be simultaneously well 
described; we will return later on this point in Section 4. A similar problem was encountered by 
Chan et al. [14] with an isotropic damage model formulated for the creep of rocksalt. This 
inconsistency was explained by those authors by assuming non-associativity for the damage- 
induced creep strains. Here it is proposed to modify eq. (15) by setting 

B = A I [ ~  p-~pBeq B] (17) 

where A l is now a second order tensor that shares with ~ p and B the principal directions. In 
particular, for triaxial tests on cylinders, the two nonvanishing significant values of B read: 

AI ~:[qB l BI = AII~IP - - ~ e  q (18a) 

= (18b) 

In eqns. (12,13,16,18), B'eq , R' and K' represent the saturation values of the relevant 

variables, while AI, A l, A3, As, B0 and ~0 are material parameters. Finally, note that the 
evolution of these variables depends only on the plastic component of the permanent strains. 

Two examples will be presented to illustrate the model capabilities. In Fig. 2 the simulation 
is shown of uniaxial creep tests at different fractions of the uniaxial compressive strength, cr c. 
The model correctly accounts for the increase in creep time to failure with decreasing stress 
level. In particular, at o less than about 0.5o c the time for which the material sustains the 
applied stress is apparently unbounded. Also note that the three stages of primary (or 
transient), secondary (or steady-state) and, possibly, tertiary creep are reproduced by the 
model. 
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Fig. 3 shows the influence of the lateral confinement upon the creep time to failure, tf, as 
predicted by the model in the simulation of triaxial creep tests on cylinders at 90% of the static 
strength for a given ratio r between confining pressure and axial stress. The trend of  tf with r is 
not monotonic and is somehow consistent with the experimentally observed trend of the 
fatigue life with r [4]. This can be explained by considering that, in the simulated tests, an 
increase in r is matched both by an increase in hydrostatic compression and in deviatoric stress: 
these two stress components have opposite effects on fatigue life and creep time to failure; 
depending on which of  these two effects dominates, tf can either increase or decrease with r. 

/ cr = 0 . 9 5  cr c / 0 .85  /0 
~"  4 .75 

*,.,, 3 

_ _ . _ . _ -  - ~  " . . 
0 . 5 0  
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0 , I , I 

0 100000  2 0 0 0 0 0  3 0 0 0 0 0  4 0 0 0 0 0  

t ime  ( sec)  

Figure 2 - Simulation of uniaxial creep tests at different stress levels. 
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Figure 3 - Predicted creep time to failure, tf, vs. ratio r between confining pressure and axial 
stress for triaxial creep tests at 90% of the triaxial static strength for a given r. 
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3. PARAMETER IDENTIFICATION 

For sake of illustration, the procedure to identify the model parameters will be now 
discussed with reference to triaxial tests on cylinders. 

The model parameters are partly associated with the plastic behaviour of the material and 
partly associated with damage phenomena. Thus, in principle it would be necessary to have 
experimental data available from creep tests where damage phenomena are negligible, to 
separately identify the first set of parameters. Nevertheless, experiments show that the damage 
evolution becomes significant only after the primary and secondary creep stages are concluded. 
Consequently, the parameters pertinent to the viscoplastic behaviour of the material can be 
identified during these two phases. On the contrary, the material constants that define damage 
and damage-induced inelastic strains can be obtained by data from the final phase of the tests 
(tertiary creep). 

The evolution of the parameters B'oq , R' and the coefficients AI, A 1, A3 that define the 

evolution laws of Bl, B2 and R can be identified considering uni- and triaxial creep tests with 
loading and reloading cycles during the pre-loading phase and at different times of the creep 
test. Referring to the inelastic part of strains only, the amplitude of the current elastic domain 
can be determined from the extension of vertical segment of the 6-e p plot during the loading- 
reloading phase. Note that, in principle, extension tests could also be required to completely 
define the linear domain. For sake of simplicity, here it is assumed that the elastic limit in 
tension is unaffected by permanent strains. The mid-point of the elastic segment gives the value 

of B1 and B2. The values of A I and A [ depend on the initial slope of the Bl-e~ and B2-e~ 

plots, while A3 is the initial slope of the R-eoPq curve. 

The parameter Ao can be derived from the initial slope of the primary creep curve. By 
knowing the experimental value of ~ ,  which is practically constant during the secondary creep 
phase, the values of K' and N can be obtained by eq. (7). 

Fig. 4 shows the identification of K' and N by using the results of six triaxial tests with 
different values of the ratio r. The experimental values of r and ~' are reported in Table 1. 
Since no unloading-reloading cycles were performed during these tests, the values of R' and 

B'eq were obtained by extrapolation from the results ofuniaxial tests including such cycles. 

Since A5 determines the velocity at which K reaches its saturation value K', this value can be 
obtained based on the duration of the primary creep stage, while the constants ~0 and B0 in eq. 
(16) depend on the i~fitial plastic threshold. 

As far as the parameters that govern the damage evolution are concerned, an and a H are 
obtained through the values of the creep time to rupture of the material at different stress 

levels, while a H controls the velocity of the damage evolution (H=T or C). 

Finally, the parameters a0 n are obtained from eq. (10) removing from the total inelastic 
strain the plastic contribution, identified by eq. (7). 



345 

Table 1 - Experimental values of the secondary creep rate in the triaxial tests employed for the 
identification of the model parameters 

test no. r ~1 p (see-l) 

1819-28 0.04 3.75e-10 
1825-16 0.04 2.5e-10 
1824-40 O. 10 1.5e-9 
1825-24 0.10 1.25e-9 
1819-38 0.14 2.5e-9 
1825-28 0.14 1.75e-9 
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Figure 4 - Identification of parameters K' and N through the plot of the secondary creep rate 

versus the active stress Xeq - R. 

4. NUMERICAL SIMULATIONS 

The parameters identified from triaxial creep tests, according to the procedure illustrated in 
the previous section, were also used to simulate uniaxial tests on three concrete specimens 
tested at constant stress equal to 95% of the ultimate static strength. The relevant results are 
shown in Fig. 5a,b. Fig. 5a shows plots of the axial and lateral strain versus time, while in Fig. 
5b the volumetric strain is plotted versus the axial strain. On account of the experimental 
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scatter, the computed model response seems to average the experimental data from the three 
tests fairly well. In particular, note that the model is able to capture the phenomenon of 
dilatancy that precedes failure, owing to the anisotropic description of damage. 
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Figure 5 - Uniaxial creep tests at 95% of the static strength: numerical simulation of three 
experiments. (a) axial and lateral strain vs. time; (b) volumetric vs. axial strain. 
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It is worth emphasizing that different values for the parameter A~ and A~ had to be 
employed for the evolution laws of B~ and B2, whereas according to the original proposal from 
[ 10] these values would be equal. Indeed, Fig. 6 shows the numerical evolution of lateral strain 

vs. time: the dashed line is obtained assuming A~ = A~, while using two different values for A] 

and A~ gives the solid line. This picture shows clearly that the original viscoplastic model, with 
purely deviatoric plastic strains, when applied to concrete, is unable to simultaneously describe 
the evolution of both the axial and the lateral strain. 
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Figure 6 - Lateral strain during uniaxial creep tests at 95% of the static strength; experimental 

data from three tests and theoretical predictions with equal and different values for A I and A 

Fig. 7 shows the evolution of damage variables o c and co T in time in the simulation of the 
uniaxial creep tests: note that their values are si,.mnificant only atter the end of secondary creep. 

Also note that 03 w increases faster than t0 c . These features of the numerical model are 
consistent with the experimental finding not only for creep tests but also for cyclic tests [3]. 

Finally, by using the same parameters, two triaxial creep tests with r = 0.14 at 90% of the 
triaxial static strength were modeled [3]. The tested specimens did not fail within 400000 
seconds, so that the tertiary creep stage is missing in both tests. The experimental results and 
the obtained simulation are reported in Fig. 8. Here again, note that the numerical response is 
in good agreement with the experimental data. 
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Figure 7 - Evolution of the damage variables during the uniaxial creep tests simulated in Fig. 3. 
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Figure 8 - Numerical simulation of two triaxial creep tests (r=0.14) at 90% of the static 
strength~ 
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5. CONCLUDING REMARKS 

A model able to describe the behaviour of concrete subjected to sustained elevated triaxial 
loading has been proposed. For this aim, the phenomena due to plasticity have been coupled to 
damage through the definition of a suitable viscoplastic potential. The evolution laws of 
permanent strains and damage variables are thermodynamically consistent, since they were 
obtained by derivation of this potential. In this model viscoelastic strains are neglected and 
creep strains are considered to be entirely unrecoverable: this is an assumption common to 
other theoretical models developed for metals and rocksalt subjected to high constant stress 
(see e.g. [10,13]). A procedure to identify the model constants and variables has been outlined. 
The reliability of the model has been assessed through comparisons with results of uni- and 
triaxial tests. 

The model is featured by an important number of parameters; the procedure to identify 
these parameters, however, is not impractical since they define the evolution laws of variables 
which possess a clear physical meaning. 

Although in principle the model is able to describe quite general load histories, the laws 
proposed for the evolution of the damage variables during creep tests are inappropriate to 
describe monotonic tests. Indeed, if creep tests are correctly modeled, damage turns out to be 
unrealistically negligible during the pre-loading phase and during reloading to failure for 
specimens that did not fail at constant stress. On account of the latter remark, the residual 
strength of the material upon re-loading turns out to be unrealistically high respect to 
experiments. Future developments will aim at formulating evolution laws applicable with a 
broader range of tests. 

The remarks recalled in the Introduction based on the results of a number of creep tests 
were used as guidelines to formulate a theoretical model qualitatively accounting for the salient 
features of the behaviour of concrete at high sustained stresses, namely the evolution of the 
elastic domain with permanent strains and the occurrence of damage phenomena. Work is 
presently in progress to establish specific relationships between any single loading parameters 
and the change in stiffi~ess and strength of the material. 
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A mechanical material model is derived for 4D Carbon/Carbon composites. By using an 
anisotropic damage mechanics approach, a very simple mathematical model of the material 
mechanical behavior, based on some remarkable experimentally-observed properties, is built at 
the macroscopic scale. The identification of the material parameters is presented. The 
predictions of the model are then compared to different tests. Fiber yarn debonding near edges 
is also studied through a material mesomodel, with the mesoconstituents being: the fiber yarns, 
the matrix and the interfaces. Initial results are shown for a tension specimen. 

1. I N T R O D U C T I O N  

The material under study was manufactured by S.E.P. (Soci6t6 Europdenne de 
Propulsion) and is a 4D Carbon-Carbon composite comprising four reinforcement directions 
parallel to the largest diagonals of a cube. These materials, called SEPCARB 4D, are used in the 
throat nozzles of solid propulsion systems (Fig. 1) owing to their excellent thermo-mechanical 
properties and their high resistance to ablation [1]. Structures made of SEPCARB 4D are 
submitted to very high thermal gradients (from 20~ to 3000~ as well as to complex 
mechanical stresses. The aim of this study is to accurately model the thermo-mechanical 
behavior of these materials, and in particular their damage mechanisms, in order to predict the 
response of industrial structures. 

The macroscopic behavior of this material is highly anisotropic and non-linear. Several 
types of degradations are observed inside the material and near the edges. Studying these 
degradations at the micro scale seems to be infeasible because of the 4D structure of the 
material. Also the material has a complicated behavior and very little information is available to 
build a behavior model. Thus, the approach adopted seeks to make the best use of the avalaible 
information herein. A very simple mathematical material model has first been derived for 
multiaxial loadings as a consequence of some remarkable experimentally-observed properties 
and the material geometry. The anisotropic continuum damage mechanics theory introduced by 
Ladev~ze [2] is applied with the central focus being to derive the simplest damage kinematics. 
Anelastic phenomena are taken into account by a plastic like model. 
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Identifying the material constants and functions characterizing the studied 4D CC 
composite is a rather difficult task. Fiber debonding near the edge is very significant in tensile 
tests and affects the results of these tests. Proceeding further in the test analysis, a study of these 
edge effect phenomena is in progress. The model is still three-dimensional, but it takes into 
account the material heterogeneity and complicated architecture. As in [3-4], the model is 
developed at the meso-scale, intermediate between the macro scale of the structure and the 
micro scale of the fiber. For each meso-constituent (fiber yams, matrix and interfaces), a 
mechanical model is used. To rebuild a homogeneous behavior from the meso model, a 
method based on the asymptotic development theory for periodic media is carried out. 

Figure 1: Nozzle throat and Sepcarb 4D composite 

2. MATERIAL AND MAIN EXPERIMENTAL FEATURE 

The reinforcement yarns (fibers/matrix) have variable diameters, which are typically 
between 1 and 3mm. They are positioned in four directions parallel to the larger diagonals of a 
cube (Fig. 1). One defines the X, Y and Z axis oriented perpendicularly to the cube faces, with 
the base (X',Y',Z) obtained by a 45 ~ rotation of (X,Y,Z) around Z and the vectors Ri.i ~ {~.2.3.4) of 
the reinforcement directions. 

This material has a non-linear anisotropic behavior, as shown in Figure 2, where the 
presented experimental results (stress - longitudinal strain) were obtained in tension in 
directions X, X' and ~ to ambient temperature. For a loading in a direction of reinforcement, 
both transversal and longitudinal strains increase linearly with the stress until a brittle failure. 
Responses to tension with cycling stresses in the X and X' directions show behavior with 
damage and anelastic strains. Damage of the Sepcarb 4D is attributed mainly to the 
mechanisms of Yarn/Matrix interface degradations. 

Results from tension tests conducted by S.E.P. in the X-direction on specimens with 
circular sections of different diameters (Fig. 3) show that Yound's modulus and failure stress 
increase with the section dimensions of specimen. 



353 

Figure 2: Experimental responses of the 
internal behavior obtained in tension 

in the X, X' and R directions 

Figure 3: Stress-strain curves of tension tests in 
the X-direction, at ambient temperature; influence 

of the size of specimen section (S.E.P. results) 

The failure surface of the large section specimen reveals two zones (Fig. 4): 

-a rather flat central zone of yarn failure, and 
-a peripheral zone approximately 15mm in width showing an irregular 
surface with yarn debonding. 

In contrast, the failure surface of the specimen with 10 and 30-mm diameters seems to 
indicate only the presence of the zone of high debonding. These two zones allow assuming 
different variations for degradations occuring far from a free surface and near the edges. This 
phenomenon is attributed to the edge effect which modifies the stress distribution both in matrix 
and yarns close to a free surface. 

Figure 4a: Failure surface of a circular 
cylindrical specimen with a section diameter 

of 30mm (S.E.P.) 

Figure 4b: Failure surface of a circular 
cylindrical specimen with a section diameter 

of 50mm (S.E.P.) 

To approach a model of the Sepcarb 4D mechanical behavior, one have to dissociate both 
the internal behavior and the yarn debonding initiated near the edges. The initial study, presented 
below, aims to the model and identify, at the macroscopic scale, the "intemal" behavior of 
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Sepcarb 4D. The second study concerns more specifically the phenomenon of yarn debonding 
linking to free edge effects. In order to take into account the material heterogeneity and complex 
architecture, the model, such as in [3-4], is developed at the mesoscopic scale, intermediate 
between the macro scale of the structure and the micro scale of the fiber. 

3. MACROSCOPIC MODELING OF THE FAR-EDGE SEPCARB 4D 
MECHANICAL BEHAVIOR 

3.1. Hypotheses 
This modeling approach is based on the responses obtained with the tension tests 

conducted on the large-section specimens. These different responses (Fig. 2) display the very 
high anisotropy of the mechanical behavior. This anisotropy is due to the reinforcement 
orientations which are much stiffer than the matrix. Therefore, for a loading in a direction of 
reinforcement, was obtained a linear evolution, until a brittle failure, of the transversal and 
longitudinal strains as a function of the longitudinal stress. Because of the symmetry of the yarn 
orientations, the Young's modulus is identical for each direction of reinforcement. Symmetries 
induced by the yarn orientations also impose the same material behavior for the directions X, Y 
and Z. Figure 2 shows, for tension tests in these directions, a behavior with damage and 
anelastic strains. 

3.2. Modeling of the elastic behavior and damage kinematics 
The description of Sepcarb 4D behavior in the elastic domain is developed using the 

classical Hooke tensor with only 3 coefficients. The spatial disposition and orientations of the 
reinforcements impose, by symmetry, a cubic elastic behavior. In Figure 5, the variation of 
Young's modulus E(fi) is represented, as calculated with Hooke's tensor, and shows the high 
anisotropy induced by the reinforcements. 

Figure 5: Variation of Young's modulus; surface E(fi). 



355 

In the cube basis, the orthotropic basis of the 
material in which the 3 directions X, Y and Z are 
equivalent, the inverse of the elastic tensor (denoted K) 
can be written very easily with Young's modulus in 
the X-direction (denoted E), Poisson's ratio X Y 
(denoted v) and the XY shear modulus (denoted G). 

K-l: 

v v 0 0 0 E E 
1 v 0 0 0 E E 

__! 0 0 0 E 
I 0 0 2G 

1 0 2G 
I 

2G 
(x.v.z) 

To describe the degradation state of the material, damage mechanics [5] is used and, in 
particular, its extension to anisotropic damage as proposed by Ladev6ze [2] and already used for 
different composites [6-7-8]; the Hooke's tensor variation is used as a damage indicator. The 
main problem is to define the internal variables of damage. Two, and only two, assumptions are 
introduced: 

- the longitudinal modulus and Poisson coefficients remain constant for 
tension tests in each direction of reinforcement, and 
- the material, even after being damaged, behaves similarly in the 4 directions 
of yams, which supposes a homogeneous distribution of the degradations in 
the 4 directions; the distribution damage types have already been observed on 
3D C-C composites [4]. 

In order to take into account these assumptions, a barycentric representation, based on the 
four unit v e c t o r s  Ri,iE{l,2,3,4 ) defining the reinforcement directions, is introduced. It is shown 
that, from the strain energy [9], the Hooke's tensor K can be described with the following 
coefficients: 

Tr[K-' . [R,.  Rj' ],ym.[Rk.R,' ]~y,,, ],(i,j,k,l)e {1,2,3,4} 4 (1) 

Since the 4 directions of reinforcement have been assumed to play identical roles, even for 
the damaged material, the coefficients defined in (1) can be reduced to the following seven" 

a = Tr[K-' .(R, .R,t ).(__R, .R,' )] 

b = Tr[K-I .(Rl .Nit ).(Rl .R2t )sym ] 

C = Tr[K-I .(R, .R,t ).(R2.R3t )sym ] 

d = Zr[K-I .(RI .Rlt ).(R2.R2t )] 

e = Tr[K-I .(Rl .R2t )sym.(Ri .R2t )sym ] 

f = Tr[K-i .(Ri .R2' )sym.(Rl .R3~ )sym ] 

g = Yr[K-I .(R! .R2t )sym.(R3.R4t )sym ] 

(2) 

These seven coefficients are not independent. Relationship (3) which binds the 4 vectors 
R~ reveals 4 relationships between the seven parameters" 

4 
Z Ri ~- 0, avec 4-3-R,: i=l 

1 [l' 
1 , 4 ~ - R 2 :  ,~/'3-R3: 
1 - 1  

a + 3 b = 0  
-1 I 1 d + b + 2 c = 0  - 1 ,~/-3-R4: - 1 
1 - 1 e + 2 f + b = 0  

c + g + 2 f = 0  

(3) 
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Three independent coefficients that completely describe the elastic behavior are obtained 
and we choose: 

E + G ( 1 - 2 v )  a 0  
a = 3EG 

- E  + 3G(1 - 2v) 
d = (4) 

9EG 

E + G ( 3  + 2v) 
e =  > 0  

9EG 

This choice allows taking into account directly the experimental information obtained in 
the reinforcement directions. The coefficient "a" is by definition the inverse of the Young 's  
modulus of the material in a reinforcement direction. It is therefore a constant elastic parameter 
denoted "%". The coefficient "d", which is linked to the transverse modulus X'R of the Sepcarb 
4D, is constant as well and denoted "do". The damage kinematics are then determined and 
associated to the latter coefficient. The parameter "e", positive by definition, is selected, h is 
defined as a damage scalar coefficient, varying from 1 to infinity, equal to the fraction of the 
initial value of "e" to the value corresponding to a damage state of the material: 

a = ao= E(Ri) -l 

- VRi,,,, = 9d - a =0 d = do (5) 
ER, 16 

e = eoh 

3.3.  D a m a g e  force  - D a m a g e  evo lu t ion  law 
The thermodynamic force Yh associated with the parameter h is defined classically from 

the elastic strain energy of the damaged material in the following way: 

9 
3 9do(A ' -2A-~ +A )+ eoh(A I -A2)  (6) Ed = ~ao(-A, +6A3 + 3A2)+~ . 2 ~- 

with: A I = (~XX 2 d -  (Iyy 2 d -  (~ZZ 2 , A2 = OxxOvv + OxxO7_z + OzzOvv , and A 3 = Oxu 2 + Ovz 2 + Oxz 2 

o~Ed] 
V~ = -~lo,,_-cs, (7) 

The dissipation due to the damage is written" co = Yh.h. The state of damage with quasi- 
static loading is assumed to depend on the maximum force; one therefore has: 

h = f(Y__h), with: Yh (t)= sup(Y h (I:)). 
~ < t  - 

(8) 

The damage evolution law "Yh -> h" is an experimentally-identified material 
characteristic. 
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3.4. Anelastic strain modeling 
The micro defect, i.e. the damage, leads to sliding with friction in the matrix and in the 

interfaces and thus to anelastic strains. More generally, it is possible to obtain coupling 
phenomena between damage and anelasticity. One way to model these phenomena is to apply 
plasticity mechanical modelling. The notion which seems to work quite well is to build the 
model from quantities which are called "effective": the effective stress tensor ~5~ and the 
effective anelastic strain rate gP [ 10]. 

The effective stress is chosen; it defines the coupling between the classical stress and the 
damage state which is involved in anelastic strains. One particular choice which will be pursued 
herein is: 

~ - K0.K-1.(,~ , with Ko the initial Hooke tensor (9) 

way: 
The effective anelastic strain rate is defined from the anelastic dissipation in the following 

T ~ . g P ]  = Tr[~.s l . (10) 

The anelastic model results from the following hypotheses: 

- the behavior in the 4 reinforcement directions is only elastic, 
- the hardening is assumed to be isotropic, and 
- the limit of the elastic domain is defined with an anisotropic threshold which 
is written: 

( l l )  

with H being a fourth-order tensor which defines the coupling between the 
different stresses. 

By analogy with damage (like for damage, anelastic strains are blocked in the directions 
of reinforcements), a system of representation of the anelastic behavior is used with the 
reinforcement directions explicitly. The H tensor is then similar to the Hooke's  tensor. 
Introducing the blocking, which was experimentally observed, of the longitudinal and 
transversal anelastic strains for a loading in a given yarn direction, it can be shown in [9] that H 
is entirely defined with only 1 parameter and thus: 

+ + (12) 

Anelastic flow law is obtained from the threshold function by: 

~ - Of 
= P ~  with 15 e 0, f -~ 0 and 15f = 0 (13) 
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The effective accumulated anelastic strain rate is then: 

1 r 2 .l,p 2 ,l,p 2 
"- EXX 4" Eyy 4" EZZ q . ) - -  (14) 

The anelastic model is completely defined once the hardening function: "P-,(~)- P-,0" as 
been experimentally identified. 

3.5. Model parameters identification 

3.5.1. Experimental method 

To experimentally identify the internal behavior, tension tests conducted on the specimens 
with large diameter are used, along with more detailed tests in which edge degradations are 
blocked mechanically. In order to block yarn debonding, a thin layer of resin epoxy (with a 
thickness of about 0.02mm) has been deposited on the specimen tested in the L.M.T. 
laboratory. The initial longitudinal elastic modulus identified in this manner is greater than the 
modulus obtained with the non-coated specimen (even, despite the small dimensions of the 
section of the coated specimen). In contrast, the maximum stress values obtained are less than 
the one obtained with the specimen with large sections. The phenomenon of debonding, 
although blocked during the first part of the tests, has occurred. The curves presented in Figure 
6 allow us, in comparing the results of tests conducted on coated specimens with those 
conducted on the large-section specimens, to define the limit of the influence of the resin on 
edge effects (which defines the limit of the identification of the model parameters). This limit 
corresponds to the appearance of unstuck marks of the resin on the coated specimen, marks 
which were visually observed during the tests (Fig. 7). 

Figure 6: Comparison of results of tension test 
conducted with specimens of several sizes and 

on a specimen coated with a resin epoxy. 

Figure 7" Face of a damaged specimen" yarn 
debonding and unstuck resin 

3.5.2. Elastic parameters and damage evolution law 

The simplicity of the defined model allows carrying out the complete identification of the 
material parameters with only 2 tension tests with cycling: the first one in a reinforcement 
direction, and the other one in the X-direction. For each cycle, one obtains the maximum value 
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of the stress, the longitudinal strain and 2 transversal strains measured perpendicularly to the 
longitudinal direction. 

With a test in a direction of reinforcement, the values of the constant elastic parameters a 0 
and d o are obtained. Transverse and longitudinal responses obtained from a tension test in the 
X-direction yield the value of the parameter "e" as well as its evolution. For each unloading, two 
values of the variable h are derived, with one taking into account the longitudinal elastic 
modulus, and the other one taking into account the transverse elastic modulus (15). Values of 
the associated variable Yh are obtained from the maximum value of the stress for each unload. 

1 = 3 (  - a ~ 1 7 6  

E v = l~-(a0 + d0-2e)  

Figure 8 presents the results generated from two tests. The points obtained from both the 
longitudinal and transverse responses provide the same evolution for the parameter h. This 
result constitutes an important validation of the approach used to build the internal model 
presented. The curve identified from this graph is a straight line. 

Figure 8: Identification of the damage evolution law 

3.5.3. Identification of the plastic model 

The hardening function is derived by calculating the values of "p" from the anelastic strain 
measures, along with the values of "R(~)+ R0" from the maximum value of the stress reached 
before each unload. The results obtained from 2 tests are presented in Figure 9. The identified 
curve is a straight line. 
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Figure 9: Identification of the hardening function 
3.6. Correlation calculations/tests 

To use the presented model, the classic elastic moduli is defined in the initial basis (X, Y, 
Z) using the relationships between the barycentric moduli and the classic moduli: 

8 4 - a o -  do + 2e  

E = 3 ( _ a o + 3 d o + 6 e )  ' G=9(ao_do)  and V = _ a o + 3 d o + 6 e  (16) 

The model has been identified at S.E.P. for temperatures between 0 ~ and 2500 ~ and 
introduced into the F.E. computation code MARC. It has been validated by different 
comparisons tests/calculations (4-point bending test, tube being submitted to an internal 
pressure). Figure 10 presents results obtained both experimentally and numerically for a 4-point 
bending test conducted at 1000 ~ 

Figure 10: Test/calculation results for a 4-point bending test at 1000~ 
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4. STUDY OF THE DEBONDING P H E N O M E N O N  

4.1. Mesoscopic scale 
Observations of the specimen failure surfaces (Fig. 4) and the edge surfaces of the 

specimens (Fig. 7) show a yam debonding and slipping in the composite respectively. The aim 
of this second study is to understand the origin and the evolution of this degradation in 
cooection with the local redistribution of the stresses near a free surface. A study at a 
mesoscopic scale allows taking into account the composite structure (organization of the yarns) 
and easily modeling the mechanisms of degradation. Such an approach has already been used in 
the study of Carbon/Carbon composites such as 3D A6rolor [4] and 3D EVO [3]. These 
studies, carried out at the mesoscopic scale, have made it possible to understand the importance 
of the interface in composite material damage. 

The description of the Sepcarb 4D at the mesoscopic scale uses 3 meso-constituents, 
which are: 

- the yams, cylindrical with a circular section, 
- the matrix that fills the voids imposed by the presence of yarns in 4 directions 
(in the case of the Sepcarb 4D, the matrix has a continuous volume), and 
- the interfaces that transmit efforts between yams and matrix. 

Damage is held constant in each meso-constutuent of the cells defining the structure. The 
model thus defined is consistent; results of numerical computations are independent of the 
mesh. 

4.2. Modeling of the meso-constituent mechanical behavior 
To simplify the modeling process, it is initially assumed that the major damage 

phenomenon is the yarn/matrix interfaces degradation. A brittle, transverse isotropic elastic 
model is therefore chosen for the yarn behavior and an isotropic elastic behavior for the matrix. 
For the interface, results of many studies conducted on the problem of yarn/matrix interface 
debonding in composites [11-14] are utilized. The behavior is elastic with damage; totally 
damaged sliding with friction is modeled with the Coulomb law. A brittle damage threshold is 
chosen to characterize the interface degradation. The threshold is defined as a quadratic criterion 
on the normal and tangeant stresses of the interface: 

(oN os)2 
O c  + ~ = 1 (17) 

4.3. Modeling of the geometry 
The Sepcarb 4D is manufactured with cylindrical yarns of circular sections. Their spatial 

orientations define a priori a punctual contact surface. It can be noticed from the photograph of a 
plane normal to X (Fig. 12) that the yarns, after the material manufacturing, have a rather 
hexagonal-shaped section. One also notices that the angles between 3 directions of yarns 
projected on a plane perpendicular to the fourth direction are 60 ~ (Fig. 11). We have therefore 
chosen to model the yam geometry by a cylindrical form with a hexagonal section. The contact 
zone between two yams is thus surfacic in the form of a rhombus. 
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Figure 11: Visualization of the angles 
between the projections, in a plane 

perpendicular to one axis of the yarns 

Figure 12: Plane of normal X, modeling of the 
yarn geometry 

4.4. 3D computation of a specimen 
In order to take into account experimental results showing the influences of a free edge, 

the structure chosen is a specimen in tension-compression. To simplify the development of the 
mesh, the section chosen is square, instead of the circular shape of the specimen used by 
S.E.P. 

The dimensions of the section are between 10 and 50mm inclusive and are linked to the 
material periodicity. Specimen length is approximately 250mm. Since the total length of the 
specimen is high compared to the section dimensions and the period (between 5 and I0mm, 
depending on the direction), the effects due to the loading (imposed displacement) on heads is 
assumed not to modify the response of the specimens medium zone. The area studied is thus 
reduced by utilizing the periodicity with a technique of asymptotic development. 

Figure 13: Homogeneous zone of a specimen 

This technique introduced in [ 15-16] is primarily intended to separate local effects (to the 
level of an elementary cell) from global effects (macroscopic loading). Technically, an 
asymptotic development to the solution of the mechanical problem is being performed. One can 
find in [ 17] an implementation of the technique for the study of edge effects in composite 
material structures. This technique has been used in [4] to develop an approach to the 
mesoscopic scale of Carbon/Carbon composites which are periodic in 3 directions. The 
technique of asymptotic developments is utilized for homogeneous plates in [18] and for 
stratified Carbon/Carbon composite 2D periodics in [3]. Here, a technique adapted to beam 1D 
periodics is developed; it will be described in a later paper. 
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The mechanical problem obtained is solved numerically by the F. E. method. Because of 
the complexity of the structure, we have chosen not to use an automatic three-dimensional 
mesher to build the mesh, so as to more easily manage the number, the size and the form of the 
finite elements. In order to use interface elements, the meshes of the different substructures 
(yarn and matrix) are made compatible Several sizes have been drawn up for the mesh. Figure 
15 displays the coarsest mesh of a period of the homogeneous area of a specimen. 

Figure 14: Coarse mesh of the section specimen of direction X' 

4.5. Computational tool 
To study the influence of edge effects, the structure (a period of the homogeneous zone of 

a specimen) has to be large enough. The finite-element discretized problem thus assume a very 
large size (50,000 dof for the mesh presented in Figure 14, with the discretisation being the 
coarsest, and the section of the specimen being only about 200mm2). Moreover, it is non-linear 
because of the behavior (contact with friction) of yam/yarn and yarn/matrix interfaces. Using a 
numerical method adapted to such problems then becomes necessary. 

The computational strategy proposed by P. Ladev6ze [ 19] is used herein. This approach is 
based on a formulation and on a strategy that are well-suited to the use of parallel computers. 
Here, what is sought in the use of this parallelism is, above all, a high degree of both 
modularity and flexibility in the description of the problem. The principles of this method are 
detailed in [20]. It leads to a decomposition of the structure into sub-structures and interfaces. 
The aim is to construct a mechanical and "parallel" algorithm in relying on the mechanical 
properties of the problem. The contact-type non-linearities are treated in a local and mixed 
manner through a constitutive law associated with the interfaces. Unlike classical techniques for 
solving contact and friction problems, this approach does not introduce additional variables 
(such as Lagrange multipliers) into the global resolution of the problem; these non-linearities are 
treated locally at the interfaces. More over, this approach leads to a reduction in problem size 
and costs for larger problems [20], even on sequential computers. 

The development of the approach has led to the development, by L. CHAMPANEY, of a 
semi-industrial prototype software (COFAST 3D). This software has been implemented in the 
industrial calculation code CASTEM 2000 (developed by CEA: Commissariat ~t l'Energie 
Atomique [21]) and uses its pre- and post-processing functions (meshing, stiffness matrice 
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construction, visualization). Specific procedures have been added in order to use the flexibility 
of the approach: research and automatic construction of the geometry of interfaces, adapted 
post-processing procedures. 

4.6. Mechanical characteristics of the meso-constituents 
The yarn longitudinal Young's modulus has been identified experimentally by S.E.P. [ 1 ]. 

Initially, in order to obtain values of the other mechanical characteristics of the meso- 
constituents, we have been relying on values presented in [4], with respect to another 
Carbon/Carbon composite. 

The method of identifying mechanical characteristics of the meso-constituents is similar 
to the one presented in [4]. Tests on sticks are in progress. A traction test will allow obtaining 
the longitudinal Young's modulus and Poisson's coefficient v~2 (with 1 being the longitudinal 
direction of a yarn). The value of the shear coefficient G~2 is evauated with a torsion test. The 
other elastic characteristics will be obtained from the initial macroscopic values of the elastic 
modulus of the material, using a homogenization technique by the asymptotic development of 
3D periodical media, with the interfaces being assumed perfect. 

4.7. Initial results 
The results presented hereafter are currently almost all qualitative. Nevertheless, the first 

numerical computations allow validating the different choices made. Indeed, the main effects 
owing to the presence of the edge problem are obtained. 

Figure 15: Component X'X' of the stress field in 3 sections 
with different sizes for the same macroscopic strain. 

With an elastic computation (the interfacial behavior is held to be perfect), the presence of 
the edge effect can already be observed. Figure 15 displays the tension/compression stress 
fields obtained with 3 sections of different sizes for the same macroscopic strain. One can see 
very clearly (Fig. 15) on the large section an evolution, between the edge and the heart of the 
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section, of the stress value in the yarns not perpendicular to the direction of loading. One also 
notices that the maximum value of the stress increases with the dimensions of the section. 
These differences in the stress fields presented have an influence on the specimen stiffness, with 
the stiffness being defined by the ratio of the mean over a period of the tension/compression 
stress field to the macroscopic strain. The calculated stiffness increases with the section area 
(Table 1). Therefore, the experimental phenomenon of the initial longitudinal modulus 
sensitivity to the dimensions of the specimen section is exposed. 

Section 1 2 3 

Longitudinal modulus (GPa) 11.7 16.6 22 

Table 1: Computation results: stiffness value of the specimen 
as a function of the section size of the specimen. 

A second phenomenon observed is the evolution, as a function of the section dimensions, 
of the specimens, of the maximum stress attained with a tension test. Figure 16 shows the 
curves (longitudinal strain - longitudinal stress intensity) obtained with the 3 sections presented. 
The degradation threshold of the interfacial behavior (initially perfect and then frictional contact) 
chosen for these initial calculations is a limit on the interfacial shear stress value. The 
experimental phenomenon of specimen stiffening as the specimen dimensions increase is 
described. 

Figure 16: Macroscopic curves (longitudinal strain - stress intensity) 
obtained by computation 

5. CONCLUSIONS AND PERSPECTIVES 

An initial model of the internal mechanical behavior of Sepcarb 4D composites has been 
proposed and identified. In order to easily take into account the prefered directions which are the 
4 directions of reinforcements, a model of non-linear behavior has been developed using a 
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system of barycentric coordination. The elasto-plastic type model with damage thus obtained is 
very simple since it necessitates only three elastic coefficients, one curve to describe the damage 
evolution and one curve to describe anelasticity. The identification of this model necessitates 
only 2 tension tests, a test in a direction of reinforcement with longitudinal and transversal strain 
measures and an off-yarn axis test with a measure of the longitudinal strain. An experimental 
point of view towards strengthening the specimen edges allows a simplified identification. The 
edge effects have been fixed only partially; a stronger protection of the edges is envisaged. 
Another solution consists of taking into account the influence of the debonding during testing. 

The material is then studied at a smaller scale, called the mesoscopic scale, which 
corresponds to the scale of the material constituents: the fiber yarns, the matrix and their 
interfaces. A simple model of the mechanical behavior of these meso-constituents is developed: 
brittle transverse isotropic elastic for the yarns, isotropic elastic for the matrix, and perfect then 
contact with friction after a brutal damage for the interfaces. With this model, the influence on 
some of the mechanical macroscopic characteristics (initial Young' s modulus and failure stress) 
of the specimen section dimensions is obtained. 

Nevertheless, the results obtained are still only qualitative. In order to carry out a more 
precise study, it is thus necessary to verify several points: the influence of the mesh size on 
results, and the influence of the interface degradation criterion, in taking into account the normal 
stress in the interface, seems to help model the confinement of the material far from a free 
surface. 
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I N T R O D U C T I O N  �9 

The aerospace industry has demonstrated the feasibility of particulate reinforced MMC 
structural components, taking advantages of the stiffness, fatigue and friction properties of 
these materials. MMC prototype component have been introduced in helicopters and aircraft's, 
and series production will soon become a reality. 
As MMCs are very heterogeneous materials, their mechanical properties are highly dependent 
on their composition: matrix, type and volume fraction of reinforcement, interface between 
matrix and particles. In order to extend the range of industrial application of MMCs, it is 
therefore necessary to develop micromechanical models predicting their macroscopic 
mechanical behavior from their composition. These models will be key tools for the 
development and optimization of these materials. 
Our objective is to predict the tensile behavior, the damage and the failure of an aluminum 
X2080 reinforced by different volume fraction of silicon carbide, using a micro-macro 
relationship. 

1 Materials and experimental results �9 

The first stage of this study has been an experimental characterization of powder metallurgy 
MMCs: aluminum alloy and associated unreinforced aluminum matrix. The results are used as 
input and validation data for the model. 
The materials were made by a powder blending and extruded route.X2080 and X2080 + SiCp 
(15 and 20%) extruded round bars were used. 
All the materials were both T4 heat treated. 
The microstructure of MMCs has been characterized using image analysis. The particles are 
almost aligned in the extrusion direction. 
Their average diameter is 121,trn, their aspect ratio is 1,5. 
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The mechanical properties of the matrix and MMC's have been measured from tensile tests. 
Results are reported in the following table: 

Table 1" 
Mechanical Properties 

Material E (GPa) 
Matrix X2080 75 

X2080+15% SiCp 100 
. . . .  

X2080+20% SiCp 105 

II 

6ult (MPA) A (%) v 
530 19 0.32 

, .  

545 6 0.27 
540 3.6 0.28 

Introduction of SiC particles in the aluminum alloy results: 
�9 in an increase of the material Young's modulus (high E value of SiC) 
�9 in a decrease in the material ductility 

Fractographic investigation fractography has revealed that fracture surface consists of 
microvoids of sizes ranging from the micron to ten microns. The origin of these voids has been 
attributed to fracture of either the SiC particles or the inclusions and precipitates. 
Ductile failure consists of void nucleation, growth and coalescence stages, the relative 
importance of each stage should determine the macroscopic ductility of the material. 

In order to determine the microstructural damage mechanisms at the origin of the MMC static 
behavior, tensile tests in-situ in a scanning electron microscope have been carried out.. 
In the MMCs studied, the main damage mechanism is particle failure which appears in the 
largest particles or in the most elongated ones just before the macroscopic yield stress of the 
material. New particles are broken until failure of the specimen which takes place by linking of 
the microcracks initiated in the matrix from the broken particles. 
The fracture plane of most particles is normal to the macroscopic loading axis, indicating that 
the particles are broken because of the local tensile stress induced in the particle. 

Generally statistical criteria are used to describe particles fracture. In this study a Weibull law 
has been chosen, in which the two important parameters are the particle size and the maximum 
principal stress in the particle. 
The size and aspect ratio distributions of broken particles have been measured during the in- 
situ tensile tests, the results are used to determine the Weibull parameters of the SiC particles. 

The accumulated number of the broken particles increases with the plastic strain imposed to 
the MMC.In the following graph (fig 1), the evolution of the ratio of broken particles with the 
macroscopic plastic strain is plotted as a function of their size and aspect ratio. Larger particles 
are fractured first at lower strain level, then followed by smaller sized ones at higher strain 
levels. 
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Fig 1 :Number of broken particles function of 
the macroscopic strain for different diameter and aspect ratio 

2 Prediction of the tensile behavior of  M M C s  : , , , , , 

In a second stage of the study, the micromechanical model has been developed and validated 
with the above mentioned experimental data. The input of the model are, the mechanical 
properties of the particles which are considered as elastic brittle, the mechanical properties of 
the matrix which is considered as elastoplastic, the histograms of size and aspect ratio of the 
particles, the damage criterion at the origin of the failure. 
The micromechanical model used to predict the tensile mechanical behavior of MMCs is based 
on Mori and Tanaka's method and takes into account the plasticity of the matrix and the 
damage of the constituents. 

2 1 Micromechanical model: 

Mori and Tanaka's method is based on Eshelby's original work. Its main assumption is 
contained in the strain localization relation which defines the load sharing between the different 
constituents. This localization relation is expressed by [ 1 ]: 

g r  " -  T r l ~ 0  

(1) 

g0,L0 and gr,Lr are the average strain and stiffness tensor of the matrix and the r-th 
reinforcement respectively. Sr is the Eshelby's tensor. 
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If a uniform stress E is applied to the material, it was shown that the average local stress over 
the composite is equal to E, the corresponding strain in the material is noted E and we have: 

Z = C O ((3"/0 + C 1 ((3"/1 

E : Co(~)o -q- Cl (~)1 
(2) 

( )jmeans the volume average value in the volume of the phase i 

As a result, the estimation of the composite stiffness tensor can be written as: 

( I l l - '  L :  coLo+~-'~CrLrTr c0I+~--~CrTr (3) 
r=l r=! 

2 2 Elastoplastic behaviour : 

The model is extended to the elastoplastic behavior using the concept of secant moduli. 
The theory makes use of a linear comparison material, whose elastic moduli at every instant are 
chosen to coincide with the average secant moduli of the matrix to reflect its elastoplastic 
behavior state. Following Eshelby's equivalent inclusion principle and Mori-Tanaka's mean 
field method, the composite is subsequently replaced by the comparison material filled with 
equivalent transformation strains. The matrix behavior is identified from the tensile stress-strain 
curve of the unreinforced alloy and the composite stress-strain curve is determined step by 
step by varying progressively the matrix secant modulus. 
This approach differs from the original one proposed by Tandom and Weng [2] by the new 
definition of the matrix effective stress. The effective stress is not defined in terms of the 
averaged stress in the matrix alone but in terms of the average elastic distortional energy in the 
matrix [ 3-4]. 
It can be evaluated from the variation of the effective compliance with respect to the variation 
of the local shear modulus such as: 

2 3 , ( 392o TM ) 
= 

Co 5P0 
(4) 

where M is the composite compliance tensor and la 0 the local shear modulus. 

While the original theory [2], is not acceptable for porous materials under a high triaxiality 
(effective stress is calculated directly from mean deviatoric stress and therefore vanishes under 
an hydrostatic tension), the new theory is suitable for application for porous materials and high 
triaxiality loading conditions. Compared to the secant moduli based on the average matrix 
stress, the proposed method always gives softer predictions in the case of uniaxial loading. 
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2 3 Damage evolution: 

The fracture probability of  each particles is a fimction of its volume Vr and of the maximum 
principal stress or. 
The Weibulrs law can be written [5-6]: 

( Vr ( O'r'~ m ) 
P~(o'~,Vr) = 1-  exp/ - -~- - / - -=  I (5) 

\ . kO'u) 

m, ou, are called shape and scale parameters. 
Vr and V. are the volume of the rth group and that of  the reference group for which the 
Weibulrs parameters are determined respectively. 
in our case we have [7]: 
On = 1500MPa 
m=4 
V0 is the volume for a particle of  diameter 101am 

The number of broken particles are increasing functions of the macroscopic load (Fig 2). 
We choose to replace the broken particles by penny shaped cracks located perpendicular to the 
loading direction and which are oblate spheroids with the major axe being equal to the radius 
of particles and the minor axe being a function of the external load (Fig 3). 

Fig 2 : Number of broken particles 

The analytical value of the crack opening displacemem h is : 

h = 2 b ~ 3  I# 
is the eigenstrain in the crack. 

(6) 
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Using Mori Tanaka's method, we have : 

c: = (Lo(I-S~))-' (O'o-O'~) (7) 

Fig 3 :Evolution of the C. OD for penny-shape 

The tensile stress-strain curve is calculated step by step by varying progressively the matrix 
secant modulus and introducing broken particles. 
composite elastic moduli are a function of the volume fraction of both unbroken and broken 
particles, since the number of broken particles is a function of external macroscopic loading, 
the evolution of Young's modulus can be predicted during the simulation of a stress-strain 
c u r v e .  

Fig 4 : Young's modulus evolution during a tensile test 
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3 P r e d i c t i o n  o f  f a i l u r e  �9 

Regions of the matrix adjacent to broken particles are sites with high hydrostatic tension and 
hence the nucleation of cavities is expected. The failure between adjacent broken particles 
appears to occur by intense growth of these cavities in the matrix. The origin of these 
microvoids is attributed to failure of inclusions and precipitates. The nucleation and growth of 
these cavities near the penny-shaped cracks is governed by high value of the strain near the 
crack tip in shear bands. 
In order to predict the failure we have to calculate the growth of these voids. 
Macroscopic failure is govemed by a critical volume fraction of voids. 

3 . 1  Stress and strain f ie lds  near the crack : 

The strain distribution at the crack tip is obtained from HRR solution. 
Following the HRR solution, the equivalent plastic strain eP(r,0) of the dominant J region is 

represented by [8] : 

, = E P ( N , 0 )  (8) 
O'ylnr 

r : distance from the crack tip 
O'y �9 yield strength 
In :integral constant 

The original HRR solution is not suitable for porous material because the yield criterion used is 
a Von Mises criterion. In our case we want to take into account the local porosity due to 
decohesion of precipitates. So we have modified the original theory, following the same 
procedure used by Li and Pan [9]. 
The yield criterion we use is calculated with Mori Tanaka's model [ 10] 

V(Eij ) = 3a.Z 2 + b. Ze 2 

9 + 6 c  
with a=  P b=  

9(1-Cp)  2 

9Cp 

4(1-Cp)  2 

Cp : volume fraction of microvoids near penny-shaped crack 

c~e: = 3a. E2m + b.E~ 

(9) 

(10) 
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by taking a=0 and b = 1 (Von Mis6s) we can find HRR solutions in all the followed equations. 

0oe _ aEm_ 3bs~j 3 
OOij ~ e  tSij + ~  Ee 2 = -  (11) 2Ee 2 s~js~j 

6~j = 0 if i~j 8ij = 1 if i=j 

We suppose that the stress-strain relation in the matrix can be written like : 

13 (y 
ot (y = ~ +  ( 1 2 )  

13y oy 

where n is the strain hardening exponent, ot is material constant ,  cry and 13y are the yield stress 

and yield strain. 

Using the equations 10 and 11 we can generalize the equation 12 to a multiaxial stress state. 

We suppose that the hardening plasticity is isotropic and that the plastic deformation obey to 

the normality rule. Then we obtain the relation between the plastic stress and plastic strain : 

p /  n/b.s,j a' m u / 
13'J = 3Gt ~  + 
130 \ O  0 ) 2 0  e 3 0  e 

(13) 

With the condition of  plane deformation we have : 

3bSll aYm 
~ +  gij = 0  (14) 

2oe oe 

We solve the equation 14 and we determine : 

Em = 3b(E 22 + 2 33) 

6b + 2a 
(15) 

And solving the equation 14 and 15 we can write �9 
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= 2oe 6b + 2a (16a) 

oe + 4ab)Z33 + (2ab-3b2)Z22 (16b) 
2oe 6b + 2a 

c2P3 = 3a (bo.23) (16c) 
cy 2oe 

! 

Using the same method we calculate ~e = (3aEm 2 + bee 2)2 

Ze { (3b + 2a) 2 - 6ab 6a 2 - 2(3b + a) 2 
4r3 = (6b+ 2a) 2 (Z22 + Z23) + (6b + 2a)2 E22Y.33 + E23} 

oe f 3ab2 + b(3b + 2a) 2 24ab 2 - 2b(3b + a) 2 
~f3= (6b+ 2a) 2 (E22 + Z23) + (6b + 2a)2 

1 

222233 +bE23 2 

(17) 

(~8) 

We calculate the crack tip singularity field like Hutchinson, Rice and Rosengren [6] 

With reference to polar coordinates, r and 0 ,  centered at the crack tip, the asymptotic crack- 

tip stress, strain and displacement fields are �9 

I 

cyij = ~Y c~ey~yl(n,a,b)r ~ij(O,a,b) (19a) 

n ln+l 
~;ij = ot~yl -J" b)r ~ij (0, a, b) (19b) 

~ ct~yo'yI(n,a, 

I J I nn ' u, = c~eyr ~,(0,a,b) (19c) 
aeyoyI(n,a,b)r 
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3 

In is a dimensionless constant 

n o.en+lcosO _ sinO(~rr(~lO_~;)_~rO(~r+~l~+_~+ltO.rrUr+~ro~lo~ 0 I = ; .  n + l  (20) 

Fig 5 �9 The O-variations of  the normalized stresses for n=5 
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The 0-variations of  the dimensionless functions ~ij ,~ij and ui depend on n. These variations 

are normalized by setting the maximum value of  the 0-variation of  the effective stress 

~e  = to unity 

The 0-variations of  the stresses are represented in figure 5. A comparison of  the stress plots 
shows that for a fixed n, a large fraction of  voids results in a small coo, a small or,. The 
generalized effective stress is found to peak between 90 and 100 deg for all the cases. 
We find the same tendency as Li and Pan, but the advantage of  our method is to be directly 
dependent of  the volume fraction of  voids %. 

Thus the HRR modified singularity in conjunction with the value of  J completely specifies the 
near crack tip fields. 
J represems the amplitude of  the singular fields. We calculate J using MTanaka's model [11]: 

The energy release rate of  a penny-shaped crack can be defined as 

1 * 
P = P0 + E int = P0 + --o'g V c 

2 

(21) 

P is the total potential energy 
P0 is the total potential energy without any inhomogeneity and Eint is the interaction energy 
between the applied stress and the inhomogeneity 

Vc is the volume of  the penny-shaped crack and e* is the eigenstrain in the crack. 

(22) 

Fig 6 : Energy release rate 
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3.2 Growth o f  micro-voids : 

With the yield criterion (eq 9) we can calculate the growth of cavities in a porous material : 

(~00) 9 Y'm Ln =6e  4 ( 3 + 2 C p ) s  
(23) 

R0 : initial radius of precipitate 

Y'rn . triaxiality rate near the crack 
Ze 

% : volume fraction of cavities 

The volume fraction of microvoids is a function of the strain field near the crack : 

G~Cp -- ( 1 -Cp) O'~kk (2 4) 

3.3 Failure criterion : 

The macroscopic failure begins by the failure of the matrix between to broken particles. This 
failure will be easier if the distance between these particles is short (this is the case for a 
composite reinforced by a high fraction of particles). Thus our criterion has to depend on the 
growth of cavities and of the volume fraction of particles. 
Our criterion is that macroscopic failure is governed by a critical growth of cavities at half of 
the distance d between two broken particles 

f: volume fraction of particles 
2R: diameter of particles 

(25) 

This critical distance depends on the volume fraction of particles 

We don't have experimentally values of the critical growth which provides the failure . 
However we can compare composites reinforced with different fraction of particles. 
If we know the macroscopic strain failure for a composite reinforced with 1 5% of particles, we 
can calculate the critical growth of cavities at the distance d15o/o For the other composites the 
failure will provide when this critical growth will be obtained at the distance dr. 

The results are represented in figure 7. 
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Fig 7 �9 Evolution of the failure strain of the composite 
as a function of the particles volume fraction 

C O N C L U S I O N  �9 

The use of a micromechanical model to predict the failure provides good results. It takes into 
account the microstructure of the material, the mechanical properties of the constituents and so 
it can be easily extended to other composites. The advantage of the model is to be key tool for 
the development and optimization of composites materials. 
In this study we suppose that we have an homogeneous repartition of particles which can be a 
restriction for the use of the model. So we have recently develop a model providing the effect 
of a particle distribution on deformation behavior of particulate metal matrix composite [ 10]. 
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ABSTRACT 

Flow/damage surfaces are defined using a thermodynamics basis in terms of stress, 
inelastic strain rate, and internal variables. The most meaningful definition for viscoplasticity, 
surfaces of constant dissipation rate, is investigated for a unidirectional silicon 
carbide/titanium composite system using two micromechanics approaches; finite element 
analysis of a unit cell and the generalized method of cells. Damage, in terms of fiber/matrix 
debonding, is accounted for when a tensile interfacial traction is present. Three types of 
periodic microstructural architectures are considered; rectangular packing, hexagonal packing, 
and square diagonal packing. The microstructural architecture is observed to influence the 
shape and location of flow/damage surfaces and becomes more important as the fiber volume 
fraction increases. 

1. INTRODUCTION 

The advent of man-made fiber-reinforced composite materials some forty years ago enabled 
the design of more efficient structures and greatly expanded the domain of engineered 
materials. Recent developments in the processing of unidirectional metal matrix composites 
(MMCs) provide new opportunities for engineers and materials scientists to tailor 
microstructural architecture for specific applications. For example, placing individual fibers in 
photo-etched grooves in foils of matrix material results in a very uniform microstructure. 
Since the grooves hold the fiber in place during consolidation, we can engineer the 
microstructure by simply specifying the foil thickness and groove pattern. The question that 
we attempt to answer herein is 'how does microstructure effect the overall inelastic material 
response in the presence of multiaxial stress states?' Furthermore, for silicon carbide/titanium 
(SiC/Ti) composites the bond between the constituents is weak and this damage mode, when 
active, can greatly affect the overall material response. This affect is large or small depending 
on the interfacial tractions, which are dictated largely by the applied loading. 
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We consider the influence of microstructural architecture effects using micromechanics, by 
employing both a finite element analysis (FEA) approach and the generalized method of cells 
(GMC) approach developed by Paley and Aboudi (1992) (and further extended by Aboudi, 
1995). Practical implications on experimental programs and continuum modeling are 
addressed. Since the material response is viscoplastic, we consider surfaces geometrically 
analogous to yield surfaces and include the effects of damage in their definition. In order to 
demonstrate how fiber/matrix debonding influences overall inelasticity we sometimes show 
results for the more fictitious strong bond case. We pay particular attention to definitions 
which indicate the onset of inelasticity, in order to stay within a consistent thermodynamical 
framework. This research merges and builds upon two recent publications; one dealing with 
microstructural architectures subjected to uniaxial loadings (Arnold et al, 1996a) and the other 
with macroscale flow/damage surfaces (Lissenden and Arnold, 1997a) given a fixed 
architecture. 

1.1 Uniaxial Response 
The effect of microstructural architecture on the uniaxial response of MMCs to axial 

(parallel to fiber direction) and transverse (normal to fiber direction) loading is well 
documented. There is very little effect for axial loading, but a significant effect for transverse 
loading, particularly in the inelastic regime. Arnold et al (1996a) provide the starting point for 
the current study as well as an extensive literature review on the subject. In this sequel we 
consider aligned continuous silicon carbide reinforcement of a titanium matrix. For a model 
SiC/Ti system we chose the SCS-6 fiber and TIMETAL-21S matrix system having 35% fiber 
volume content. The constituent response for uniaxial tensile loading is shown in Fig. 1. The 
fiber response is taken to be linear elastic and temperature independent, while the matrix 
response is elastic-viscoplastic and temperature dependent. 

SiC/Ti stress-strain response is complex, even for uniaxial loading, because it exhibits a 
distinct direction-dependence. Tensile and compressive stress-strain responses to axial and 
transverse loading at room temperature (23~ are shown in Fig. 2. Very little overall 
inelasticity is evident in the axial 
response as it is fiber-dominated and 
thermal residual stresses cause the 
proportional limit to be smaller when 
subjected to tensile loading than when 
a compressive loading is applied (see 
Fig. 2a). For transverse loading the 
proportional limit is also smaller for 
tensile loading than for compressive 
loading (Fig. 2b), but the cause is 
fi ber/matri x debondin g (for 
experimental results see, for example, 
Majumdar and Newaz, 1992). The 
transverse response is dominated by the 
matrix behavior as well as the weak 
interface. Not only are tensile and 
compressive responses different for both 

1500 I ii tSiC Tl 

L ~ ~ ' -  23~ 
ca_ ~ 1000 1it I 

5OO 

0.00 0.01 0.02 
Strain 

Figure 1: Predicted constituent response 
for SiC fiber and Ti matrix 
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Figure 2 Response of SiC/Ti to (a) axial and (b) transverse loading 

axial and transverse loadings, but of course the axial response is different than the transverse 
response. 

matrix composites for applications involving 
elevated temperature environments. Hence, the 
viscoplasticity of anisotropic composite 
materials susceptible to internal damage must be 
addressed. From the viewpoint of structural 
analysts investigating complex components, a 
macroscale continuum model is preferred due to 

1.2 Muitiaxial Response 
SiC/Ti is a candidate material for components in advanced aeropropulsion systems. The 

stress state in many of these compone'nts; such as rings, shafts, and impellers; is multiaxial -- 
prompting the question, 'Can we infer the multiaxial material response from the laboratory- 
measured uniaxial response?' If this were possible, then the additional complexity associated 
with multiaxial experimentation could be avoided. Otherwise, multiaxial experiments are 
necessary. 

Consider the construction of a surface of constant deviation from proportionality (SCDFP) 
from uniaxial test data. A SCDFP is defined in a similar fashion to a yield surface; by an 
offset strain. However, for a SCDFP the offset is defined in the presence of stress, and thus 
includes inelasticity and damage. Figure 3 shows the four points associated with uniaxial 
loading in the axial-transverse stress plane as well as the complete SCDFP. It does not seem 
possible to construct the complete SCDFP from uniaxial data with no a priori  knowledge of 
the overall multiaxial response, due to the 

irregular geometric shape of the SCDFP. Transverse 

2. INELASTIC F L O W  

Our subject is the inelastic response of metal 
Axial 
Stress 

Figure 3: Surface of constant deviation 
from proportionality and the associated 
points for uniaxial loading 
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its numerical efficiency relative to the alternative, micromechanics analysis. However, such a 
continuum model is not currently available; nor are the exploratory, characterization, and 
validation experiments required to develop such a model. Thus, in the present study we will 
use a theoretical framework appropriate for continuum modeling to guide us and employ two 
micromechanics models to numerically perform the required experiments so as to understand 
the theoretical and experimental implications and/or assumptions necessary in either approach 
(continuum or micromechanics). 

2.1 Theoretical F r amework  
The theoretical considerations used in this paper are based on an energy balance. The 

primary variables are the Cauchy stress tensor, ~3ij, the internal stress tensor, ~0, and 
temperature, T. Other internal state variables could also be defined and used. The current 
values of these variables can be used to define the Gibbs thermodynamic potential, 

G =G(crij,aij ,T ). Conjugate to these variables are the total strain tensor, e 0, the internal 

strain tensor, hij, and the entropy, S, 

OG OG OG 
e/ j - -  0o"/j h/J = - o~a~ S = ---~-. (1) 

Our basis is that the total work performed on the system must be equal to the sum of the stored 
energy and the energy dissipated, where the stored energy includes an elastic component as 
well as an inelastic component associated with the internal state. Thus, the dissipation 

potential, f~ - f~(crij,aij, T), can be defined to be crijk[j -aij~ij. 

The associated flow law and evolution equations are given by normality, 

I _ c,~ ~0 = o~ (x 0 - Qijkt-l~kt, where Qijk l  = - 0 2 G (2) 
k O &r 0 Oa ij Oa OOa kt 

and Qou is called the internal compliance operator. Thus, once the functional dependencies of 
the Gibbs and dissipation potentials have been determined, all of the variables are known by 
simple differentiation. Let us now assume that the dissipation potential can be written in terms 
of two scalar functions, ~ = ~(F,G),  where F depends on the deviatoric effective stress, E 0, 
and G depends only on the internal stress (Robinson and Ellis, 1986). The deviatoric effective 
stress is the difference between the deviatoric Cauchy stress and the deviatoric internal stress. 

Now the flow law can be written, k/~ - - ~-~ OF . Thus, the direction of the inelastic strain rate 
OF OO'ij 

vector is normal to surfaces having F=constant. However, if it is true that the normality 
condition is not satisfied in MMCs, as indicated by Nigam et al (1994) for boron/aluminum, 
then it becomes necessary to develop a nonassociated flow law and evolution equations. We 
will return to this issue after discussing various surface definitions. 

2.2 Surface Definitions 
The concept of a yield surface is well known in rate-independent plasticity, even if no one 

definition of yielding has been universally adopted. The most common definitions employed 
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are the proportional limit, a small (usually 5 to 20• 10 -6) offset strain, a back-extrapolation, and 
a large (usually 0.2%) offset strain. For rate-dependent plasticity (viscoplasticity), the concept 
of a strict yield surface breaks down as stress states outside the yield surface are assessable 
(since no consistency condition applies). Thus the need for geometrically analogous, 
thermodynamically based, flow surface definitions. Two different rate-dependent definitions 
have been proposed; 

1) surfaces of constant dissipation rate (SCDRs), defined by cYijk -aij , t i j  and 
/ �9 I -I 2) surfaces of constant inelastic strain rate (SCISRs), defined by 3/e/je0. 

Lissenden and Arnold (1997a) demonstrated, using micromechanics, that the direction of the 
overall inelastic strain rate vector can differ significantly from the outward normal of a SCISR. 
Whereas for the stress planes considered, the direction of the overall inelastic strain rate vector 
was reasonably close to the outward normal of the SCDRs considered. On the other hand, 
SCISRs may be more amenable to experimental methods than are SCDRs because stress 
quantities are not included in the definition. 

Consider, for example, an isotropic monolithic metal. The effect of hydrostatic stress on 
the flow of most metals is quite small and usually neglected. Flow behavior can then written 

1 1 
in terms of the deviatoric stress invariants J2 - ~  E020 and J3 = -~ ~-'ij~jk~-'ki by taking 

+ 

F =  -1  
k 2 (3) 

where c is an experimentally determined constant and k is the yield stress (Drucker, 1949). If 
the metal is near the virgin state, i.e. o~ij -- 0, SCDRs and SCISRs are described by 

tr(jk / = 2k2(F+ 1) ~  (4) 

" =  {E ii8c lj + ~/eij'SiJ k3(f+ 1) (F+ 1)+ k6(F+ 1)2 
2c 2J2 }~ 

k6(F+ l)2 J4 --~ (5) 

respectively. Clearly, SCDRs are proportional to surfaces of constant F in general SCISRs are 
not. However, if the effect of J3 is negligible, i.e. c=0, then SCISRs are also proportional to 
surfaces of constant F. A similar argument has been made for selecting SCDR's  over those of 
SCISR's in the case of anisotropic J2 materials as well. Also, Lissenden and Arnold (1997a) 

extrapolated these results to rate-independent plasticity by considering Zije I and ~/3 / t Eij•ij , 

where the latter is the usual equivalent inelastic strain definition, and found results analogous 
to those for SCDRs and SCISRs. 

One major difference exists between the above definitions and common flow surface 

definitions, and that is that the overall inelastic strain e / ,  and its rate, include the effect of 
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fiber-matrix debonding in that we define the inelastic strain to be the strain that deviated from 
proportionality. Hence, the acronym SCDFP, indicating a surface of constant deviation from 
proportionality. A SCDFP is a yield surface if and only if there is no debonding. 

2.3 Factors Influencing Flow 
Many factors influence inelastic flow in metallic materials. Certainly, temperature and 

loading rate as well as the past loading history can be important in many metals. Additionally, 
microstructural architecture, degree of anisotropy, fiber-matrix bond strength, and damage 
influence flow in composites. Other factors, such as the stress plane, definition, and target 
value influence how flow is represented. Lissenden and Arnold (1997a,b) illustrated the 
effects of many of these factors. The current paper focuses on the influence of microstructural 
architecture and fiber-matrix bond strength. We consider repeating microstructures, 
specifically ones having rectangular, hexagonal, and square diagonal fiber packing arrays as 
shown in Fig. 4. The rectangular array has an aspect ratio, R = a /b .  For the special case of a 
square array, R=I.  Additionally, we consider strong and weak fiber-matrix bonding. Our 
definition of strong is that there is no discontinuity in the displacement field at the interface, 
likewise weak means that the interface can transmit a finite traction before debonding causes 
the fiber and matrix to separate. 

3. M I C R O M E C H A N I C S  

Biaxial experiments on unidirectional continuous-fiber reinforced SiC/Ti (35% fiber by 
volume, unless noted otherwise) in the axial-transverse (O'11-O'22) and transverse-transverse 
(0"33-0"22) stress planes were simulated numerically using micromechanics. Initial overall 
(macroscopic) flow/damage surfaces were mapped out by probing at different angles in the 
various stress planes. After each probe the material state was returned to its virgin state. 

3.1 Finite Element Analysis 
The commercial FEA program ABAQUS (HKS, 1995) was used to determine overall 

stresses and strains in the repeating unit cells of interest, shown in Fig. 5a. Generalized plane 
strain triangular elements were used. Only SCDRs for strongly bonded SiC/Ti were 
considered using FEA. Overall inelastic strain components were calculated as the difference 
between the total strain components, found by volumetric averaging, and the elastic strain, 
found from the overall stress (volumetric average) and elastic properties. While no mesh 
convergence studies were performed, the discretization of the square array has been shown to 
give good overall results (Lissenden and Herakovich, 1995). 

3.2 Generalized Method of Cells 
The generalized method of cells (GMC) (Paley and Aboudi, 1992; Aboudi, 1995) is an 

approximate analytical micromechanics model that extends the original method of cells 
(Aboudi, 1991) to an arbitrary number of subcells, permitting the study of different 
microstructures. The reader is referred to Aboudi (1995) for the detailed equations of GMC. 
The method employs standard micromechanics relations. Elastic and inelastic/thermal strain 
concentration tensors, Aij~l and Dijkl, respectively, are determined for each subcell and the 
effective elastic stiffness tensor, B*Okl, defined from them. GMC has been implemented into 
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Figure 4: Repeating Microstructures 

Figure 5: Square, hexagonal, and square diagonal discretizations for (a) FEA and (b) GMC 

the micromechanics analysis code (MAC) which has many user friendly features and 
significant flexibility (Wilt and Arnold, 1996). GMC discretizations for rectangular, 
hexagonal, and square diagonal arrays are shown in Fig. 5b. 
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3.3 Constituent Models 
As mentioned previously, the fiber response is assumed to be linear elastic and temperature 

independent. The elastic-viscoplastic behavior of the matrix is represented using a generalized 
viscoplastic potential structure (GVIPS) model (Arnold et al, 1996b,c). This model is a fully 
associative, multiaxial, nonisothermal, nonlinear kinematic hardening viscoplastic model for 
use with initially isotropic metallic materials. A unique aspect of this model is the inclusion of 
nonlinear hardening through the use of a compliance operator Qijkl in the evolution law for the 
back stress. This nonlinear tensorial operator is significant in that it allows both the flow and 
evolutionary laws to be fully associative and greatly influences the multiaxial response under 
nonproportional loading paths. 

Weak bonding between the fiber and matrix is modeled by assuming that a jump in the 
displacement field may occur under certain conditions, while the traction vector remains 
continuous. In this model debonding initiates when the normal traction exceeds a critical 
value or when the tangential traction exceeds a critical value, with no interaction between the 
two. Once debonding has initiated, the interfacial displacement rate is made proportional to 
the stress rate. In the results for SiC/Ti with a weak bond the critical traction value has been 
taken to be 103 MPa and the ratio of interfacial displacement rate to stress rate after debonding 
has been taken to be 0.271 mm/MPa. 

4. RESULTS 

Flow/damage surfaces are mapped out in a specific stress plane by probing the surface in a 
number of directions from the origin. A point on the surface is found when the prescribed 
target value of the appropriate definition (SCDFP, SCDR, or SCISR) is surpassed. The 
material state is then returned to the virgin condition and the next probe initiated. The 
equivalent loading rate for all FEA probes was 2 MPa/sec, whereas GMC probes were actually 
conducted under strain control at a rate equivalent to the 2 MPa/sec in the elastic region. 

FEA-determined SCDRs in the axial-transverse and transverse-transverse stress planes for 
target values of 1, 5, and 10 kPa/sec are shown in Fig. 6. These surfaces are for a strongly 
bonded SiC/Ti at room temperature and include thermal residual stresses. Both square (i.e. 
rectangular packing with R=I) and square diagonal fiber architectures are shown. Square and 
square diagonal architectures were considered because in previous work (FEA work by 
Brockenbrough et al, 1991; GMC work by Arnold et al, 1996a) these two architectures 
resulted in extremes in the overall uniaxial stress-strain response, where square packing was 
the stiffest and square diagonal packing was the most compliant. The observation that axial 
stress-strain response is unaffected by microstructure (Brockenbrough et al, 1991) is 
corroborated by Fig. 6. Additionally, Fig. 6 shows that SCDRs with different target values are 
not in general concentric. We hypothesize that this is related to the redistribution of stresses 
and strains as inelastic flow occurs and further analysis is under way. 

The effect of modifying the aspect ratio (R=0.5, 1.0, and 2.0) associated with the 
rectangular fiber packing, on the 5 kPa/sec SCDRs is shown in Fig. 7 for room temperature 
and 650~ in the axial-transverse and transverse-transverse stress planes. These surfaces were 
determined using FEA and are for strongly bonded SiC/Ti. While aspect ratios of 0.5 and 2.0 
are more extreme than those commonly fabricated, they illustrate that aspect ratio can have a 
significant effect on the shape and location of SCDRs. 
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One application for the kind of information that flow surfaces provide is the design of 
components subjected to loads resulting in deterministic multiaxial stress states. The 
microstructure can then be engineered to best resist the loading. For example, a ring mounted 
on a shaft in a jet engine will rotate in service. Thus, the radial and circumferential stress 
components will be tensile. Suppose the ring is to be fabricated from a hoop-wound, strongly 
bonded SiC/Ti, and that the goal is to delay the onset of inelastic flow as long as possible. 
According to the first quadrant of the axial-transverse stress plane in Fig. 7, the largest 
possible aspect ratio should be used. The large aspect ratio provides a long ligament of matrix 
material between fibers for the transverse stress to flow through, while a small aspect ratio is 
associated with a short ligament of matrix between fibers and more localized flow. 

In figure 8, FEA and GMC predicted 5 kPa/sec SCDRs at 650~ are compared for square 
and square diagonal packings with a strong fiber-matrix bond. In the axial-transverse plane 
the SCDRs predicted by FEA and GMC are in good agreement. However, in the transverse- 
transverse plane SCDRs predicted by GMC are larger than those predicted by FEA. For equi- 
biaxial tension the disparity is 35% for square packing and 55% for square diagonal packing. 
For uniaxial transverse tension the difference between FEA and GMC is 40-45%. This 
disparity is in contrast to the excellent agreement between yield surfaces defined by local 
yielding (Mises stress) that Pindera and Aboudi (1988) reported for the method of cells (square 
packing) and FEA. In Fig. 8 overall SCDRs are determined based on overall inelastic strain 
rates and stresses, as might be done in an experiment. The disparity is troubling and the 
subject of current study. However, it appears that the GMC results are qualitatively 
representative of the material response and can be used at least as a quick, inexpensive, guide 
for materials scientists and engineers designing microstructures. 

Consider now, the more realistic case of a weak fiber-matrix bond. SCDFPs for S iC/Ti at 
650~ having square and square diagonal packings are shown in Fig. 9 for strong and weak 
bonds. The primary effect of a weak bond is to significantly reduce the tensile stress at which 
deviation from proportional response begins. Since compressive interfacial tractions are not 
detrimental to the integrity of the interface, flow surfaces and flow/damage surfaces are the 
same for compressive loading (unless debonding due to Poisson expansion occurs, see 
Lissenden and Arnold (1997a)). Additionally, axial loading is not observed to cause 
debonding. The effect of debonding is slightly different for square and square diagonal 
packings. One of these differences is 
misleading. The uniaxial transverse 
tensile stress leading to a 2061.t 
SCDFP is 104 MPa for square 
diagonal packing and 87 MPa for 
square packing, possibly leading one 
to believe that square diagonal packing 
would be preferred. However, the 
square diagonal packing exhibits no 
hardening while the square packing 
does (Fig. 10). Therefore, the square 
packing may be desirable even though 
it has a lower stress for the given 
SCDFP. 

200 

Square pack 
13_ 

lOO  - - - - -  

,~ Sq uare Diag. pack 

0 1 ...... L _ j  
0.00 0.01 0.02 

Strain 

Figure 10: Uniaxial transverse tensile response 
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Brockenbrough et al (1991) and 600 
Arnold et al (1996a) demonstrated that 
as the fiber volume fraction increases, 
the effect of microstructural architecture 

1 3 _  

increases for uniaxial loadings. Figure 
11 shows 1 kPa/sec SCDRs in the axial- ,,, r 

transverse stress plane at 650~ for _.~ 
square, hexagonal and square diagonal m 0 

' (1) 

packings and fiber volume fractions of -" 
0.35 and 0.50 The primary effect of > �9 r 

r  

increasing the fiber volume fraction is 
to enlarge the SCDR. Additionally, ~ 
larger differences in the SCDRs for the 
three microstructures are observed for 
the higher fiber volume fraction, 
especially in quadrant HI where both 
stress components are compressive. 
Figure 11 also indicates that the effect --- 

t ~  

of debonding on SCDRs is not as sharp o_ 
as it is on SCDFPs (Fig. 10), at least for 

r 

the target values plotted, which were 
(1) 

chosen to be equivalent definitions for ~ 0 
transverse loading at room temperature ,, 

r 

(these target values are not equivalent at ~, 
650oc) ,,, �9 c -  

I - - "  

5. DISCUSSION 

Multiaxial stress states are 
encountered in the analysis and design 
of most structural components due to 
complex loadings and geometries as 
well as stress concentrations. The 
response of MMCs to multiaxial stress 

-600 
600 

! ! 

35% fiber 

i 

! ! 

Fiber Packing 

Square 

Hexagonal 

- - Square Diagonal 

-600 
-600 

! 

50% fiber 

! ! 

0 600 
Axial Stress (MPa) 

Figure 11' Effect of fiber volume fraction 
on 1 kPa/s SCDRs at 650~ (from GMC) 

states can not be inferred from uniaxial test data. It is necessary to conduct multiaxial tests to 
guide and later validate theoretical models�9 To implement the thermodynamically based 
framework discussed in Section 2 we need to determine the functional form the Gibbs and 
dissipation potentials. Experimentally determined SCDRs in various stress planes will provide 
excellent guidance for this task. 

We have used micromechanics to generate overall flow/damage surfaces for unidirectional 
MMCs having different microstructures. Except for the special case of uniaxial loading in the 
direction of the fibers, microstructure influences the shape and location of the flow/damage 
surface. The magnitude of the effect that microstructure has on flow/damage surfaces depends 
on fiber volume fraction, definition of flow, and target value among other things. This adds 
yet another level of complexity to the continuum approach to modeling multiaxial inelastic 
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response of MMCs. Thus, in contrast to flow in isotropic materials where the dissipation 
potential can be written in terms of stress invariants, internal state invariants, and temperature; 
we must also consider directionality, microstructure, and debonding. This constitutes a most 
difficult task. 

A weak fiber/matrix bond significantly influences the shape of the flow/damage surface. A 
dramatic flattening of the surface is observed for transverse tensile loading. Although not 
considered in this work, debonding also occurs under shear loading. 

In conclusion, flow/damage surfaces need to be determined experimentally for a range of 
target values as well as different microstructures. These results will provide validation for 
micromechanics models and guidance for continuum models. 
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Calibration and val idat ion of an anisotropic  e lasto-plast ic  
damage  model  for sheet  metal  forming 
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The anisotropic elasto-plastic damage model developed by Y.Y. Zhu [1] is 
summarised,  then its calibration method is presented, and applied on two steel 
sheets : one is adapted for deep drawing and the other one is a high-tensile steel. 
The first results from the simulations of Nakazyma tests are discussed, then the 
conclusions define the potentials of such model as well as its limitation and the 
intended further work is described. 

1. I N T R O D U C T I O N  

In industry, simulations of sheet metal forming operations by means of FEM 
code are becoming a necessity during product and process development. However, 
still a lot of researches has to be done before results of such simulations become 
sufficiently accurate and predict correctly location and moment of failure events. 

The anisotropic behaviour of sheet is well known, for instance a circular cup 
drawned from a circular piece of metal sheet using axisymmetric tools often 
presents an ondulating rim called earing. The origin of such a behaviour is the 
crystallographic nature of the plastic metal deformation. The use of anisotropic 
elasto-plastic models allow the description of such phenomena, current cases of 4 
ears can be accurately predicted by a classical Hill model [2], but more singular 
cases of 6 ears request an accurate yield locus shape based for instance on 
texture measurements  and polycrystal plasticity as the model developed by P. 
Van Houtte [3]. 

An accurate initial yield locus is not sufficient to model sheet metal forming of 
complex shapes because in such cases strain paths are not proportional. So the 
work hardening rate needs a particular attention, if one wants  to model the 
Bauschinger effect and the cross effect. The physics based work-hardening model 
proposed by Teodosiu [4] is an interesting alternative to the conventional 
phenomenological models. 

Concerning the failure prediction, previous studies [5] from our depar tment  
have demonstrated the interest of an approach based on the continuous damage 
mechanics compared to an uncoupled approach based on various fracture criteria. 
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The uncoupled method based on post processing induces very low extra  
computation costs, however, it is difficult to find one criterion able to predict all 
failure types as many different mechanisms exist such as internal  or external  
necking, large shear  deformation, nucleation, growth and coalescence of voids 
and so on. From our experience, the fully coupled approach based on the 
continuum damage theory is more attractive as it is able to characterise micro- 
crack initiation and growth in ductile materials  for different loading paths  such 
as shear, tensile or compression state ... This previous work [5] was dedicated to 
isotropic elasto-plastic damage model and has been validated by experiments  on 
bulk aluminium. 

The damage models and their softening behaviour lead however to numerical  
problems as mesh dependency which can be reduced by means  of viscoplastic, 
dynamic or thermal  regularisation. Another solution to prevent  mesh dependency 
is the non local approach [6]. 

Damage models such as Gurson's one [7] or its recent improvement  proposed 
by Gologanu [8] need precise data to describe nucleation growth and coalescence 
of voids accurately. Such information is difficult to get from macroscopic tests 
and must  rely on microscopic measurements  of voids [9] which consists in a very 
long investigation. The models proposed by Lemaitre  and Chaboche [10] have 
perhaps shorter roots in microscopics physics but have the advantage of being 
calibrated by macroscopic tests, this is the major reason of our choice of such a 
type of model. Their success for isotropic materials  are numerous [11], the model 
presented here is one trial to extend such a model to anisotropic cases. 

2. Y.Y. ZHU'S A N I S O T R O P I C  E L A S T O P L A S T I C  DAMAGE M O D E L  

A short l i terature review of anisotropic elastoplastic damage models can be 
found in [12]. In fact, Zhu's model is a modified version from previous 
constitutive laws proposed by Cordebois and Sidoroff [13, 14], its main features 
are the following ones" 
(1) Three major anisotropies are taken into account, including �9 anisotropic 

elasticity, anisotropic plasticity and anisotropic damage; 
(2) The generalized damage effect tensor M proposed by Chow and Wang [15] is 

used; 
(3) A new damage characteristic tensor J based on the hypothesis of damage 

energy equivalence is proposed; 
(4) An effective computational integration algorithm with two step split operators 

is proposed; 
(5) As large displacements and strains happen, the definition of local axes fitted 

on mater ia l  principal axes is necessary, the local reference system proposed by 
Munhoven [16] is used; 

(6) Hill yield locus is adapted to describe plastic behaviour, however the plastic 
tensor H is not assumed constant during hardening,  a plastic energy 
equivalence rule is adopted. 
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2.1. The anisotropic damage 
One basic hypothesis in most isotropic and anisotropic models of continuum 

damage mechanics is that,  neglecting the details of microscopic damage growth, 
damage can be viewed as a macroscopic state variable which reflects the average 
microscopic damage growth and modifies the stress in the sense of "effective 
stress". This basic assumption of effective stress can be s tated this w a y "  there 
exists a "damage effect tensor" M (D) applied to the stress tensor ~ which defines 

the effective stress tensor ~ [10], tha t  is �9 

= M(D)~  (1) 

where the damage effect tensor M (D) is a second-order or fourth-order tensor 
depending on the damage tensor D. Note tha t  four fundamental  variables of 
continuum damage mechanics have been introduced in the foregoing hypothesis, 
i.e. the damage tensor D, the damage effect tensor M (D), the effective stress 

__ w 
tensor ~ and effective strain tensor e. 

Anisotropic damage may be characterised by a symmetric second-order tensor 
D, because of its mathematical  simplicity. There is no uniquely defined 
mathemat ica l  formulation of M (D), Zhu's choice is the one proposed by Chow and 
Wang [15] which has the advantages of a possible reduction to a one scalar 
variable for isotropic damage and of having simple expression outside the stress 
tensor principle directions. 

In the principal co-ordinate system of damage, which in our formulation is 
assumed to be the material  principal system where Hill yield locus is expressed, 
we have" 

]r M[(~ 1 ]r 
/ ( ~ 1 1  (~22 (~33 (~23 (~31 (~12 --  _ _  1 (~ 22 (~33 (~23 (~31 (~12 (2) 
with the fourth rank  symmetric tensor" 
M = diag 

[ 1 1 1 1 1 1 1 
1 _ D l , 1 _ D 2 , 1 _ D 3  , x / ( I _ D 2 ) ( I _ D 3 ) , x / ( I _ D 3 ) ( I _ D I ) ,  / ( I _D~) ( I_D2)  (3) 

Instead of the conventional postulate of strain or stress equivalence, an 
hypothesis of energy equivalence is used. It states that  the complementary 
elastic energy for a damaged material  has the same form as tha t  of a fictitious 
undamaged mater ia l  except that  the stress is replaced by the effective stress in 
the energy formulation. Mathematically,  

We(~,D) We(~_,D) or 2 ~_T C:I-~ I~T-c -1 _ = _= _~ _q ( 4 )  

where C_. and _C are the virgin and the damage elastic material stiffness tensors 

respectively. By recalling (1), it can be easily proved that �9 

= M ( D ) C _ ) M ( D )  (5) 

and according to the hypothesis of energy equivalence the effective elastic s t rain 
vector is �9 

e =M- 'e  (6) 
where �9 
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M -1 = d i a g  

[1 - D 1,1 - D 2,1 - D 3 , ~/(1 - D 2 ) ( 1  - D 3 ) ,  ~/(1 - D 3 ) ( 1  - D 1 ) ,  ~/(1 - D ~ ) ( 1  - D 2 )] (7) 

2 . 2  G e n e r a l  t h e r m o d y n a m i c  a n a l y s i s  

2 . 2 . 1  S t a t e  v a r i a b l e s  

The internal  variables to be used in the thermodynamic analysis are listed, 
together with their associated thermodynamic forces, in Table 1. The general 
structure of the constitutive equations is furnished by the well-established 
thermodynamic theory of irreversible processes with such state variables. 
Hereafter, isothermal condition is assumed. 

Table 1 
State variables 
Elastic s train _e e 

Accumulated plastic strain a 
Damage variable D = (D, D 2 D 3) 
Overall damage 

Associated thermodsnamic forces 
Cauchy stress 
Plastic hardening threshold R 
Damage energy release rate Y = (Y, Y~ Y3) 
Damage strengthening threshold B 

2 . 2 . 2  T h e r m o d y n a m i c  p o t e n t i a l  

As it has been indicated in Lemaitre [10], uncoupled plasticity and elasticity 
are assumed such that  the elastic properties depend only on damage variables 
and not on the dislocation density represented by r For practical purposes, 
another hypothesis is introduced" energies involved in plastic flow and damage 
processes, dissipated by heat  or stored in the material ,  are independent.  
Consequently, in the present model, the Helmholtz free energy takes the 
following form [17] �9 
pl~l(~e,D,o~,~)= We(~e,D)-}- ~p(O~).~- l~d(~ ) (8) 

where W e (s is the elastic strain energy, ~p(a )  the free energy due to plastic 

hardening and ~ ( ~ )  the free energy due to damage hardening. The 

complementary energy is obtained from the Legendre t ransformation of the free 
energy with respect to strain, i.e. 
pl-I(~__,D,o~,~) : ~-.~:~e -P~(E-e'D'o~,~) = We(~__.,D)- l~lp(O~)- lOr (9) 

According to the energy equivalence hypothesis, the elastic s train energy 
We(ge ,D)  and the complementary elastic energy W e ( ~ , D )  can be evaluated and 

following the rules of thermodynamics of irreversible processes, the associated 
thermodynamic forces are given by" 
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~ - M -~ C e M -~ e__e 
~ -  3e_ e 

3 ~  3 ~ p ( a )  

R = p 3a  - 3a  (10a,b,c,d,) 

B = p 3[3 - 3[3 

~ ~n ~We (~, D) = _ ~  MCe~ ~ M  
Y = P3-D = - P  3--D - 3 D  - -3--D~ 

The nega t ive  of Y can be considered as the elast ic s t r a in  energy  ra t e  assoc ia ted  
wi th  a uni t  d a m a g e  inc remen t  as it is easy to show t h a t  �9 

1 dWe ] (11) 

- Y -  2 d D  at constant ,s _ 

Y is often given the  n a m e  of "damage energy  re lease  ra te"  [10]. 

2.2.3 The dissipation power 
According to the  second law of the rmodynamics ,  the  total  d iss ipat ion power  

wi th  convexity and  normal i ty  proper t ies  is : 

dp = ~e - R S ~ -  Y D -  S ~  > 0 (12) -- - -p  

Wi th in  the hypothes is  of independence  of energy  diss ipat ions  be tween  plast ic  
flow and  d a m a g e  processes,  eq. (12) can be s e p a r a t e d  into two pa r t s  such t h a t  : 

ce  - R(k > 0 and  - Y D -  B~ > 0 (13) __rap 

Equa t ion  (13) shows the  existence of a plastic diss ipat ive  potent ia l  and  a d a m a g e  
diss ipat ive  potent ial ,  i.e. 
F p ( ~ , D , R )  = 0 and F a ( Y , B )  = 0 (14) 

in which  the  former  r ep resen t s  the plastic yield criterion; the  l a t t e r  is the  
d a m a g e  evolution criterion. In case the cr i ter ia  Fp = 0 and  Fa = 0 are  sat isf ied,  

the  ac tua l  va lues  of ~ , R , Y , B  will m a k e  the  diss ipat ion power  of eq. (12) a 

s t a t i ona ry  value.  

If  we in t roduce  Lagrange  mul t ip l ie rs  ~p and ~d, eq. (12) can be w r i t t e n "  

~p = ~e - R& - Y D  - S ~  - XpFp - X~F d (15) - - - - p  

Thus  we have  �9 

3 ~ - 0 ~ e  = ~ . p  - 0 ~ D = - ~ d  
-P ~ 3 Y  - -  3 Y  

DR - O ~ (~= ~p - ~  ~B - O ~ ~= -~'d 3 8  

(16) 

2.3 Fully coupled anisotropic elastoplastic damage model 
2.3.1 Anisotropic elasticity and damage 

When  a m a t e r i a l  is damaged ,  the const i tu t ive  re la t ion is �9 
-1 

(~ ---- C e l ~ e  o r  ~e --'~ C~---e (~ (17) 
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The classical Hook's elastic tensor for orthotropic mater ia ls  combined with 
equation (5) yields to the following expression" 

f 
el I } 

s [ 

e33 ~ = 

E23 [ 

7 
1 - v12 - v13 

0 2 
E l (1 - D 1 ) (1 - D 1 )(1 - D 2 ) E  l (1 - D 1 ~1 - D 3 ) E  1 

- v21 I - v23 
0 2 

( I - D 1 )(1 - D 2 ) E 2 E 2 (1 - D 2 ) (1 - D 3 X 1 - D 2 ) E 2 

- v31 - v32 1 

2 
(I-DI)(I-D3)E 3 (I-D2)(I-D3)E 3 E3(I- D 3 ) 

0 0 

0 0 0 

0 0 0 0 0 
2G23 (I - D 2 )(I - D 3 ) 

0 0 0 0 0 

2G31 (1 - D 1 )(1 - D 3 ) 

0 0 0 0 0 

2G12 (1 - D 1 )(! - D 2 ) - 

II 

r 
22 

% ! 

a 
31 ]  

oJ . 12 

(18) 

In order to guarantee the positive definiteness of C e ,  the following conditions 

should be satisfied : 

0 < Ac < 1 with A c = 1 -  V21V12 --  V31V13 - -  V32V23 - -  V12V23V31  --  V 2 1 V 1 3 V 3 2  

0 < l - v i j v j i  < l ( n o s u m  oni ,  j), 0~_D i <1 

G23>0, G31>0, G12>0, E 1 > 0 ,  E 2 > 0 ,  E 3 > 0  (19) 
Orthotropic symmetry  assumes  also the following equali t ies  expressed in the 
initial state (D, = D 2 = D 3 = 0) : 

VI2 V21 V31 VI3 V32 V23 
- - - (20) 

E1 E2 ' E3 E1 ' E  3 E 2 

2.3.2 A n i s o t r o p i c  p l a s t i c  y i e l d  s u r f a c e  
In the damage characterisation of materials  undergoing large plastic strains,  

Hill's yield criterion in stress space is expressed in the following form �9 

F p ( ~ , D , R )  = F p ( ~ , R )  = OF - R o - R ( a )  = O (21) 

where R o is the initial strain hardening threshold. 

The effective equivalent stress (~F is �9 

(r F = = (rr  H cr j  (22) 

The effective plastic characteristic tensor H__ is given by" 

H = M ( D ) H M ( D )  (23) 

The positive definite tensor H for orthotropic materials  is represented by a 6x6 
matrix in the material  principal co-ordinate system [2] �9 
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H ~  

- G + H  - H  - G  

- H  H + F  - F  

- G  - F  F + G  

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

N 0 0 

0 L 0 

0 0 M 

(24) 

where  F, G, H, L, M, N are pa ramete r s  character is ing the current  s ta te  of plast ic 
anisotropy. For a s t ra in -harden ing  mater ia l ,  the uniaxia l  yield s tress  var ies  wi th  
increasing plastic s train,  and therefore the anisotropic p a r a m e t e r s  should also 
vary,  since they are functions of the current  yield s t ress  [17]. For sheet  me ta l  
forming, this can be easily exper imenta l ly  checked by measu r ing  the wel l -known 
Lankford coefficient r, rat io of t ransversa l  and thickness  s t ra in  ra te  dur ing a 
tensile test.  This ratio depends on the angle between the tensi le and the rolling 
direction, this fact is directly connected to F G H L M N paramete r s ,  expression 
of the anisotropic property of the sheet. However, the Lankford coefficient is not 
constant  dur ing each tensile test, it depends on plastic s t ra in ,  this yields to the 
conclusion tha t  H tensor  mus t  vary. As this increases the model complexity, a lot 
of Hill models neglect this fact and use a constant  H tensor.  

m 

g y = initial effective equivalent plastic 

stress 

g yi = initial effective plastic stress in 
direction i 

( ~ F  -"  effective equivalent s t r e s s  

corresponding to r 

(~Fi " -  effective stress in direction i 

leading to the same plastic work as gF 
E t = slope of effective equivalent stress 
plastic strain curve 

Figure  1. Equa t ing  plastic work E t i  = slope of effective stress plastic 
strain curve in direction i 

In Zhu's model, the H tensor  evolution is based on the plastic work equivalence 
in each direction. The simple case of a l inear  work ha rden ing  ma te r i a l  is 
described by figure i where for shortness  indice eq is dropped. 

1 _ 2  _ 2  1 _ 2  _ 2  

Wp ~- ~ ,  ( ~  Fi-- l~ yi ) : - - ~ ( I T  F-- O'y ) = plastic work (25) 
1 1  $ 

In this  case, equat ing plastic work leads to following rat ios �9 

( ~ F  ( ~ F  

ai - -  - -  - - 2  - - 2  (26) 
\ ~ J (Eti / E t ) ( - ~  - ~y ) + ,~ yi 

with i = 1, 2, 3, 23, 31, 12. 
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The relation between a i and classical anisotropic parameters  are listed 
hereaf te r :  

f G + H = 2 a  1 - H = - a  1 - a  2 + a  3 N=2a23 
H + F = 2 a  2 - G = - a  l + a  2 - a  3 L=2aa l  (27) 

F + G  = 2a 3 - F  = a 1 - a  2 - a  3 M = 2a12 

Obviously, if direction 1 is taken as reference direction a I = 1. This hardening  
approach induces changes in yield shape and yield size. 

The plastic constitutive equations incorporating mater ia l  damage may  be 
derived by taking the yield criterion (21) as a potential function. By assuming an 
associated flow rule, the plastic s t rain is characterised as follows : 

~Fp M H M ~  ~p 
-~P = XP ~ -- 2~F (28) 
(plastic flow rule) 

{ R = ~  dR  
P da (29) 

(isotropic hardening rule) 

Fp < 0,~p >__ 0,~.Fp = 0 

(plastic loading / unloading rule) (30) 

2.3.3 Damage  evolut ion law and damage surface 
In a similar way to the arguments  leading to plastic dissipative potential,  one 

can assume tha t  there exists a surface F~=0, which separates  the damaging 
domain from the undamaging domain. A damage criterion in a quadrat ic  
homogeneous function of the damage energy release rate Y was proposed [13, 
14l �9 
F~ = Yeq - Bo - B(~) = 0 (31) 

where the equivalent damage energy release rate  Yeq is defined by �9 
F 1 "]1/2 

Yeq -L-~Y_TJ_Y_J r 

in which J is the damage characteristic tensor. 
The determinat ion of a suitable damage characteristic tensor J, which is 

simple enough to be applied and yet describes accurately the non-linear na ture  of 
damage growth, may well be the most important  aspect in the present  
formulation of anisotropic damage evolution law. 

Normally, J should be a fourth order tensor as H. However, since we work on 
the principal co-ordinate system of damage, it can be t reated like a second order 
tensor. The damage characteristic tensor J proposed by Zhu is an extension of the 
formulation due to Lu [18], it is based on the damage energy equivalence. 

J = 2 ~/JiJ2 J2 ~/J2Ja (33) 

L4JIJ~ 4J2J~ J~ 
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In the case of damage hardening materials, the equivalent damage energy 
released rate Yeq increases with the total damage growth, and hence, the 
anisotropic parameters (J,, J~, J3) in the above equation should also vary. Their 
evolution follows the same principle then for H tensor component except that  
plastic work is here replaced by damage work. For the case of linear damage 
hardening, and the choice of component Y, as reference direction, J2 and J3 are 
computed by relations (34) and J, = 1. 

Y} 
Ji = (Dti / Dt 1)(Y2 _ yo2 ) + y~ (34) 

with i = 2 or 3. 
Figure 2 recalls Y,, Yi, Yo,, Yoi, Dt,, Dti significances. 

Figure 2. Equating damage work. 
In much the same way as the definition of plastic flow, the evolution law of 

anisotropic damage is characterised below" 

D =-~a ~)F,~ J Y  
- -  ~ ) Y  - - 2Y ~'~ = Y * ~ , d  

- -  e q  

J Y  
with Y* = - ~  (35) 

2Yeq 
(damage evolution rule) 

~F~ 

dB ~ = dB 

(damage hardening rule) 

{ F~ _<0, s _> 0, s =0 
(damage loading/unloading rule) (37) 

2.4 F i n a l  c o n s t i t u t i v e  r e l a t i o n s  
The complete set of equations is available in [1, 12], here we just  recall the 

algebraic way to reach it and the final form of the result. 
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According to elastic constitutive relations and to the effective s t ra in  tensor 
definition (6),we have" 
m 

(3" = C M -1 e (38) 
- - e  - -  - - e  

Using the additive decomposition of s t rain rate in an elastic and plastic par t  as 
well as the time derivative of the inverse of the damage effect tensor and the 
damage rate  equation (35), the objective rate  form of equation (38) is obtained �9 

n 

~_ = C e M - I ~ - C ' ~ . p  - D'~.,~ (39) 

where C_[" and D* are explicitly defined in [1] and ^ subscript means objective rate. 
Finally the objective rate of the stress tensor is easily computed as �9 

A 

8 = M Z ~ - M - ~ M ~  (40) 
Concerning damage evolution, s tar t ing from the damage energy released rate 

Y in (10d), its time derivative is computed �9 

Z = J'i~ + H'~.~ + T'~.~ (41) 

where J ' ,  H" and T" are explicitly defined in [1]. 
The final set of equations is composed by equations (28, 29, 30, 35, 36, 37, 40, 

41) and the re turn  mapping algorithms proposed by Simo [19] is applied. 

3. C A L I B R A T I O N  M E T H O D  OF Y.Y. ZHU'S A N I S O T R O P I C  
E L A S T O P L A S T I C  D A M A G E M O D E L  

As implemented in the non-linear finite element code LAGAMINE from 
Depar tment  MSM, Y.Y. Zhu's model need following data : 

�9 the effective stress strain curves (~e in each tensile and shear  direction (11, 22, 
33, 23, 31, 12) in the materials  reference frame ; 

�9 the initial damage energy release rate  versus associated damage component 
Yi Di in each materials  principal direction 1, 2, 3 ; 

�9 the initial materials  reference frame position is expressed according to global 
axis used for finite element mesh. 

2 y '~ 

\ 

\ 

\ 

\ 
\ 

Tra nsversal 
direction 

X 
/ 

/ 

. . . . .  , 

Rolling 
direction 

Figure 3. Definition of reference axis 

Let us consider a sheet, where rolling direction is assumed to be 1 direction, 
three different set of experiments will provide the necessary values �9 



411 

�9 no rma l i zed  tens i le  tes t s  in direct ion 11, 22 and  in di rect ion a = 45 ~ (f igure 3 
def ines  th is  d i r e c t i o n ) w i t h  accura te  m e a s u r e m e n t s  in the  field of smal l  s t r a i n s  
for anisot ropic  elastic p a r a m e t e r s  ; 

�9 no rma l i zed  tens i le  tes t s  pe r formed  in mul t ip le  d i rect ions  (~ wi th  a ccu r a t e  
m e a s u r e m e n t s  in the  field of large s t r a ins  for anisot ropic  plast ic  p a r a m e t e r s  ; 

�9 for d a m a g e  evolut ion  law, non classical tens i le  tes t s  w i th  n u m e r o u s  load ing  
and  un load ing  cycles in direct ions 11 and  22, wi th  s amp le  s h a p e  a d a p t e d  to 
localize s t r ic t ion posi t ion for damage  p a r a m e t e r s .  

The  de ta i led  p rocedure  is descr ibed hereaf te r .  

3.1 C a l i b r a t i o n  o f  t h e  i n i t i a l  a n i s o t r o p i c  e l a s t i c  p r o p e r t i e s  
Tensi le  t es t  in direct ion a = 0, 45 and  90 ~ are  pe r fo rmed  wi th  accu ra t e  

m e a s u r e s  of long i tud ina l  e~, t r an sve r sa l  ey and  th ickness  e, s t ra in .  F ig u r e  3 
defines local axis du r ing  tens i le  expe r imen t  (x, y, z) and  m a t e r i a l  re fe rence  f r a m e  
(1, 2, 3). Recal l ing  classical ro ta t ion  e q u a t i o n s ,  local s t ress  a n d  s t r a in  c o m p o n e n t  
((~x' %'  (~xy' ~x' Cy, exy ) a re  direct ly re la ted  to s t ress  and  s t r a in  componen t s  in 
material axis ((~,,, (~22, (~,2, e,,, e22, e23). 

I~it I COS20C sin20~ -2cosO~sinC~lf~Xx 1 
= sin 2 c~ cos 2 c~ 2 c o s ~ s i n a  ~y (42) 

[~,~_ c o s ~ s i n a  - c o s a s i n a  cos 2 a - s i n  2 a  v 

w h e r e  ~ can be replaced  by c or e. 
So equa t ion  (18) wr i t t en  in ma te r i a l  re ference  axis descr ibes  the  s t r e s s - s t r a i n  

re la t ion  in the  ini t ial  elast ic field w h e n  d a m a g e  has  not  yet  occurred (D,, D~, D:, = 
0), we f ind" 

�9 for tens i le  t es t  (t 0 o E1 (~x -Eleyy _-- �9 ~ -  V12 ---- E x 13 x 
�9 for tens i le  t es t  a 90 o E2 (~x - E2eyy 

___ �9 _ V21 = C xx qT x 
�9 for tens i le  t es t  a = 45 ~ 

- Ele zz 
v13 = ~ (43) fix 

- E2ezz 
v23 = ~ (44) (~x 

(~11 (~22 ~ xx Jr E yy 

c 1 1 = - ~ - v 1 2  E 1 - 2 

(~22 (~11 C xx -i- E yy 

e22 = E--~-- v21 E 2 - 2 (45) 

(~xx 
(~11 ---- (~22 " -  (~12 - -  2 

which yields to" 

1 4Cxx l -v ,2  1-v21 

G,2 Cx El E2 

So we still miss E3, G2s and G3, , and the following assumptions are done �9 

(46) 
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G12 = G3I = G23 

E 1 + E 2 
E 3 =  2 

(47) 

3.2 C a l i b r a t i o n  o f  a c l a s s i c a l  Hil l  m a t r i x  for  p l a s t i c  b e h a v i o u r  
As it will be described in section 3.4, this in termediate  step is necessary in 

_ _ m  

order to reach the needed (o~) i curves. So forgetting, the frame of damage  

approach, we mus t  fit the classical Hill parameters  from tensile experiments.  We 
have chosen the method proposed by Noat  [20] because his final plastic 
parameters  take into account in a nice weighted way both stress and s t ra in  
measurements .  However, we have adapted this method to our plastic work 
equivalence assumpt ion in each direction. 

The classical Hill model can be retrieved from (22, 23, 24) equat ions where no 
damage is assumed.  This leads to following expression : 

)2 )2 )2 2No22 + 2Lo223 + 2Mo21 2o F (48) F(o22 - o33 + G(Ol l  - O33 + H(O~l  - O22 + = 

Using axis t ransformat ion relation (42) and Hill's formula (48), we can express 
the plastic stress for one tensile test  in an a direction by : 

2o f 
2 ( a ) =  (49) 

OH ( H + G ) + ( F _ G ) s i n 4 ( t x ) + ( 2 N _ 2 H _ G ) s i n 2 ( c x ) c o s 2 ( a )  

The Lankford coefficient already defined in section 2.3.2 can be expressed 
thanks  to the normalized rule applied on Hill criterium. This gives the final 
resu l t :  

H - ( F  + G + 4 H  - 2 N )  s i n  2 ( a ) c o s  2 ( a )  

F H (o~)  = F s i n  2 ( a )  + G cos 2 (r (50) 

In relations (49) and (50), H index m e a n s :  value deduced from Hill plasticity, 
and in the following functional O, exp. index significates value deduced from 
exper iments :  

~ ( C ~ ) - ~ e x p ( a ~ )  *- 2(l-n)  1 (51) 
i=l,j O Fex p 

where j gives the total number  of different directions ~i explored by experiments,  
is a weight ing factor defining the weight of stress and s t ra in  measu remen t  and 

OF e,p is the stress measurement  average. 
We determine the set of parameters  F, G, H, N minimising the functional r by 

a classical least square method for different mater ial  states.  From the general  
Hill formula (48) and the knowledge of plastic work level, the necessary multi- 
l inear stress s t ra in  curves (o,, ell) , ((~22 e22)' (O33 e33), (O12 el2) can be produced. As no 
information on (013 a,3) and (023 , e23) curves are available, they are assumed to be 
equal to (012e,2) curve. 

3.3 C a l i b r a t i o n  of  the  d a m a g e  m o d e l  
The sample shape is modified from the one used in preceding sections 3.1 and 

3.2. Our goal is to localize the striction phenomena where our longitudinal  and 
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thickness extensometers are settled. The shape defined on figure 4 has been 
chosen among others for the quite good homogeneity property of the stress and 
s t rain fields in the reduced section [21]. 

/ 130 

/ 

t 
24 

f ~  

,~2 

t 

40 

i i 
L,. i r" 100 ~ i 

i~ 220 " *"i 

Figure 4. Shape description of the samples used for damage measures.  

The needed curves are the damage energy released ra te-damage ones" YiDi. 
From equation (10d) applied on a tensile test  in a direction i, we get �9 

Yi = El (1  _ Di )3 (52) 

Thanks  to the loading-unloading cycles, the evolution of the effective Young 

modulus Ei (e i i )  is measured. This curve associated with equation (18) gives the 

damage component evolution D,(e~)  �9 

D , (e , , )  = 1 -  ~ ~ (53) 

where E i is the initial value of the Young modulus. 
So as ai,(e,,) is known by measurement  and D,(e~)  is defined by equation (53) 

using equation (52), we can produce Yi Di curves easily for i equal 1 and 2. In our 
model, a bilinear model is fitted on these experimental  points (fig. 5). 

3 5  �9 

3 

2 5  

2 �9 Y1 

~-. linear regression curve  

1.5 . . . . . . . . . .  

1 

0.5 

0 0,1 0.2 0.3 0.4 0.5 

D=mage DI  

Figure 5. Bilinear description of the damage energy released rate (N/mm 2) for a 
classical deep drawing steel. 
Concerning the thickness direction, such a direct approach cannot be applied as it 
is not possible to perform cyclic tensile test in this direction. However the Yo3 
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value  is directly deduced from equat ion  (52) where  D 3 equal  zero. For  D~ value,  
we take  advan tage  of the thickness  m e a s u r e m e n t  dur ing  the  per formed tensi le  
tests ,  a direct  algebraic t r ans fo rma t ion  of equat ion  (18) gives : 

V 3 i ( I i i  

D 3 ( E i i )  "- I + (1 - D i ( g i i  ) )EaE33 (54) 

Knowing  the  damage  work associated to e~iand the  a s sumpt ion  of d a m a g e  

work  equivalence in each direction, Dt3 is obtained. 

3.4  C o m p u t a t i o n s  o f  ( o , e )  i curves 

Thanks  to the previous exper iment  analysis ,  we dispose of: 
�9 (oiieii) mul t i - l inear  curves for i = 11, 22, 33, 13, 32, 12 (see section 3.2) ; 

�9 Di~(eii) curves are  measu red  from equat ion (52) for i = 11 and 22. 

So, using re la t ion (2), (o~e~) curves are easily obta ined for direct ions 11 and  
22. To apply the same approach to other  directions, we miss  D~(ei~) curves. 

However ,  the curve Y3 (Da) has  been computed t hanks  to the  damage  work  
equivalence principle. So using re la t ion (52) wi th  the  ~ s t ress  produced by the  

Hill model,  we can reach D3a(eaa) curve and the final (~33e33) behaviour .  

Concerning shear  curve, using the (~ e,2) Hill curve we in tegra te  in a 
decoupled way damage  evolution and then  apply re la t ion  (2). Equa l i ty  of shea r  
curves is again  assumed.  

4. C A L I B R A T I O N  O F  TWO D I F F E R E N T  S T E E L  S H E E T S  

The above procedure has  been applied on one high tensile steel sheet  (code 1) 
and  on a classical deep drawing steel sheet  (code 2) The table  2 gives the  final 
set  of p a r a m e t e r s  for a fi t t ing using tensile test  in large s t ra ins  in 7 direct ions (a 
= 0, 15, 30, 45, 60, 75, 90) and the weight ing  coefficient of T1 equal  to 0,5. 

Table 2 
The ma te r i a l  p a r a m e t e r s  
Elastic parameters 

E, E2 E 3 
1 210000 203500 207000 
2 157000  1 5 8 0 0 0  157700 

Initial flow stress ( (~ = (~ here) 
{~yl .-.~1~Imm2) a,3 (N/mm ~) (N/mm 2) 

1 266 277 284 
2 108 104 110 
Damage curve parameters 

Y,o Y2o Y3o 
(N/mm*) (N/mm *) (N/mm *) 

1 0.34 0.38 0.39 
2 0.075 0.068 0.077 

G I2 
83000 
53600 

ayl2 2\ 
(N/mm) 
161 
65 

Dtl  
(N/mm 2) 
14.65 
20.55 

~t,2 tt,a tha 
0.28 0.32 0.30 
0.36 0.34 0.34 
Linear effective hardening assumption 

Ett 2 F-,t2 2 E,a 2 Et l2  
(N/mm) (N/mm) (N/mm) (N/mm ~) 
5338 6026 6076 459 
5262 5167 3029 650 

D~ D~ 
(N/mm 2) (N/mm 2) 
13.45 14.05 
20.55 3.53 



415 

2 5 0 0 0 0  

150000  

100000  

( . 

�9 . - X  . X 

X 

[ _- ,,ph.o~ 1 
- x - a l p h a  9 0  ~ 

I I I I I I I I I 

2 4 6 8 10 12 14 16 18 
axlalstrain(%) 
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Figure 6. Evolution of Young modulus with axial strain. 

For high tensile steel sheet, the experiment results have defined decreasing 
Young modulus (figure 6a), so the model application seems quite right. However 
for deep drawing steel sheet, this decreasing character (figure 6b) is not observed 
and damage curve parameters are quite inaccurate. The first rough analysis of 
the experiments has produced a set of parameters using the linear hardening 
assumption. 

5. VALIDATION EXPERIMENTS AND SIMULATIONS 

Reference [1] has already presented experiments and simulations such as 
hemispherical punch stretching or deep drawing by cylindrical and square 
punches. 
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Figure 7. Biaxial Nakazyma test  conditions 

As one of our present goals is the prediction of forming limit diagrams,  we 
have simulated the Nakazyma test  producing the biaxial tensile condition. This 
test  can be described by following features : 
�9 initial rectangular  blank of 0.8 mm thick; 
�9 spherical punch with a radius of 80 mm; 
�9 Coulomb friction coefficient of 0,05; 
�9 blankholder shape and die shape are defined on figure 7. 

The blank is fixed horizontally on a circle of 242 mm diameter,  so only this 
zone is meshed. Vertical displacement is prevented by contact with die and 
blankholder which are both totally fixed. 

The simulations are computed with the non l inear finite element  code 
LAGAMINE developed by the depar tment  MSM of Liege University. The volume 
finite element discretization consists in one layer of 705 8-node mixed elements.  
The tools are modelled by one spherical segment for the punch and two sets of 
respectively 20 and 140 triangles for the blankholder and die. The contact 
problem is t reated by 1410 surface contact elements based on a penal ty approach 
[22] with the penalty coefficient of 500 Mpedmm 3. The simulation is driven by the 
vertical punch displacement and is stopped for a punch depth of 32 mm. By 
symmetry  only one quar ter  of the experiment is simulated. Figure 8 presents  the 
equivalent s t rain at the punch depth of 30 mm, the mater ia l  dependence is 
clearly illustrated. The steel for deep drawing application shows a large 
repart i t ion of the strain when the high-tensile steel has a s t ra ined zone more 
localized and of higher strain level. 

The equivalent damage variable is very interesting, again a different 
behaviour can be checked for each steel (figure 9). The rupture  localization 
predicted by the higher value of damage are in good concordance with the 
experimental  crack observation. 
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Figure 8. Equivalent  strain computed for a punch depth of 30 mm. 
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Figure 9. Equivalent damage variable computed for a punch depth of 30 mm. 
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7. CONCLUSION 

An energy-based anisotropic elastoplastic damage model at finite strain has 
been presented in this paper to characterize progressive damage and crack 
growth. Throughout the discussion, the concept of energy plays a very important 
role not only in deriving the damage effect tensor M (D), the damage 
characteristic tensor J and the effective plastic characteristic tensor H but also in 
establishing the plastic evolution law and the damage evolution law. 

Even if the presented model - experiment comparisons are already quite 
encouraging, the lack of decreasing values of Young modulus for deep drawing 
steel sets a problem to the basic damage theory assumptions. We think that a 
strong texture effect could explain this experimental observation. We are looking 
for an increase of Young modulus due to texture evolution compensated by a 
decrease of Young modulus due to damage. Our measurements should be under 
this assumption, the result of an unstable equilibrium between these two 
tendencies. This must of course be checked and it will be our main goal in our 
further investigation. However, validation procedure is still in progress as we 
intend to simulate 4 other geometries of Nakazyma tests associated to other 
typical points of Forming Limit Diagram. 
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Modeling of Oxidation and its Effect on the Crack Growth 
Resistance of Titanium Alloys 
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Metals (superalloys) and Metal Matrix Composites (MMC) are being used 
for elevated temperature applications such as leading edge components in 
hypersonic aircraft or turbine blades, which undergo highly variable me- 
chanical loads in corrosive environments. Even though protective coatings 
are used to prevent oxidation, surface wear and microcracks may lead to 
oxygen penetration into the metallic substrate and subsequent chemical 
reaction, transforming the metal into a brittle oxide, with detrimental  
consequences for the integrity and life of the structure. The oxidation of 
the metal matrix is modeled in the present work by modifying the Fick- 
ian diffusion problem in order to simulate the chemical reaction (phase 
change) in the metal. Two different variants of a fixed grid finite element 
method for numerical sinmlation of oxidation are used. The first approach 
is based on reformulating the governing equation in both the oxide and 
matrix, resulting in a single, non-linear equation for the whole domain. 
The second approach tracks the oxidation front and splits the domain 
into metal and oxide subdomains. In both approaches, the accuracy of 
the numerical method is measured by comparing the numerical results 
with the exact solution for specific cases. Coupled with the mechanical 
analysis, the model is used to estimate the effect of the oxide layer on the 
energy release rate. 

1 I n t r o d u c t i o n  

Meta l  ma t r ix  composi tes  have been proposed for elevated t e m p e r a t u r e  advanced applica- 
tions, due to their  s t r eng th  and abili ty to re ta in  their  mechanical  in tegr i ty  at re lat ively high 
t empera tu res .  Most  of the  systems tha t  have recent ly been invest igated are the  different 

1 On leave from Inst. of Math., Bulgarian Academy of Science. Currently Graduate  Student at 
Texas A&M University 
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SiC/Ti MMCs. Enviromental effects, such as oxidation, have been shown experimentally 
to contribute significantly to damage development in SiC/Ti systems at elevated temper- 
atures [1-7]. In these studies, the oxidation is shown to degrade the composite due to the 
development of a brittle surface oxide layer (TiO~ on the titanium matrix at elevated temper- 
atures. Fatigue tests on the SCS-6/~21S MMC system [6] show that the life of the unoxidized 
specimen is greater than the oxidized specimen. Specifically, at 650~ the fatigue life in an 
oxidizing environment (air) was found to be only 25% of the fatigue life in an inert gas 
(argon) environment. However, another study [8] has shown that oxidation during fatigue 
crack growth improves the material performance by reducing the fatigue crack growth rate. 

Figurel shows an SEM photograph of an oxidized pre-cracked titanium cpecimen. The ex- 
periment was performed at Materials and Structures Laboratory at Texas A&M University. 
As shown on Figurel, an oxide scale of a titanium, approximately equal to 5#m, has been 
formed after oxidation at 700~ for 24hrs. Motivated by this and other similar experimen- 
tal observations, the current research focuses on the modeling of the propagation of surface 
oxidation fronts and the analysis of the pre-oxidized cracked speciments under applied me- 
chanical load. For the purposes of the numerical implementation, the oxidized crack surfaces 
are assumed to have a planar geometry. 

Fig. 1. Oxidized crack in Ti specimen at 700~ fox 24hr 

The modeling of oxidation in titanium and the tracking of the oxidation front involves devel- 
opment of numerical techniques, similar to the ones used for phase change problems. Such 
methods can be generally divided into two groups. The first group consists of algorithms with 
explicit capturing of the unknown phase change interface [9-13]. The second group includes 
methods without explicit interface tracking, which are based on smearing the free bound- 
ary [14]. The current research investigates both of the approaches in modeling oxidation. 
The first approach tracks the oxidation front and splits the domain into metal and oxide 
subdomains. The second approach is based on reformulating the governing PDE in both the 
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oxide and matr ix,  resulting in a single non-linear P D E  for the whole domain.  Bo th  me thods  
are implemented  in a fixed grid FEM. 

The  problem of crack propagat ion  in an oxidized Ti-15-3 specimen is also considered. The  
present numerical  s imulat ion investigates the effect of the stiffness increase [2] and the oxide 
volumetric expansion [7,2] on the energy release rate. 

2 T w o - d i m e n s i o n a l  F i c k i a n  d i f fu s ion  m o d e l  o f  o x i d a t i o n  w i t h  a m o v i n g  i n t e r f a c e  

Let f~ C R 2 be a fixed domain with 0f~ as its boundary,  f~ is par t i t ioned by the interface 
curve T (t) with parameter iza t ion  r (s, t), 81 (t) ~ 8 ~ 82 (t) into two subdomains  f~l and ft2, 
respectively, such tha t  gt = ~21 U f~2, T = ~"~1 N ~2, and 0f~ = CWtl U oqf~2 (Fig. 2). Assuming 

I-'D2 

X I 

Fig. 2. Two-dimensional domain with interface T(t) separating two different phases, which occupy 
Ftl and Ft2, respectively 

tha t  Fickian diffusion is valid, the total  mass concentrat ion of oxygen in f~l and f~2 satisfies 
the following equat ions [15] �9 

0~1 (x, t) 
Ot 

= V .  (D1Vcl (x , t ) ) ,  x E ~21, (1) 

0~ (x, t) 
Ot 

= V .  (D2Vc2 (x, t)), x e f~2. (2) 

Here Cl (x, t) and c2 (x, t) are the total  mass concentrat ions of oxygen in f~l and f~2, respec- 
tively, and D1 and D2 are the diffusivities of the two phases (i.e., oxide scale and t i t an ium 
matrix)  tha t  occupy f~l and f~2 , respectively. 
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The  initial condit ions are 

c, (x,  o ) = / 1  x e a ,  ( t ) ,  (3) 

c2 (x, O) = f2 x E a2 (t) and (4) 

r (s, O) = ro (s) .  (5) 

The  boundary  conditions on 0f~ are 

C1 (X, t) = Cl (X, ~,) on 1-'19 a n d  - D l V C l  "n l  -= 7~,~ (x, ~,) on F~r, (6) 

c2 (x, t) = c?~. (x, t) on F2D and - D g V c 2 . n ~ . = r b , ~ ( x , t )  on F~v , (7) 

where ~71 (x, t), ~2 (x, t) are prescribed oxygen concentrations,  rb,? (x , t ) ,  and rb,~ (x , t )  are 
normal components  of oxygen mass flllxes throllgh the external  bolmdaries  of f~l and f~2 for 
t > 0, with outward unit  normal vectors nl  and n~ and 

0a,  = rg  u rb ,  oa~ = r> u r~.  (8) 

The interface "1-(t) tha t  part i t ions f~ into two regions is a phase boundary  tha t  separates  
the oxidized part  from the metallic part ,  where oxidation has not taken place. Assuming 
tha t  the chemical reaction occurs on a short t ime scale compared with the diffusion process, 
when the concentra t ion of oxygen reaches a critical vah~e coT, oxidation ins tantaneously  takes 
place and the interface moves, always satisfying the critical concentra t ion requirement .  The  
appropr ia te  interface conditions, expressing conservation of total  oxygen mass across the 
interface and init iation of the oxidation process whenever a critical oxygen concentra t ion is 
reached, are given by 

- D x  (Vc~).  N = - D 2  (Vc2)- N + [c] V, (9) 

~, (~, t) = ~ , c~ (~, t) = c ~  - [c], (10) 

where N is the unit  normal  vector on "1-(t) pointed outward f~2, V is the normal  velocity of 
dr . N and [c] is the jump discontinuity of the oxygen the oxidation interface, namely, V = ?7 

concentra t ion at the interface. 
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3 N u m e r i c a l  S imula t ion  of Oxida t ion  Process  

3.1 Discrete Interface Method 

As mentioned in the introduction, the discrete interface method is a variant of front tracking 
techniques, whereby the location of the moving interface is found by solving the oxygen dif- 
fusion equations in adjacent to the interface domains and by connecting the solution through 
appropriate interface conditions. The discrete interface formulation starts by multiplying the 
governing equations (1),(2) in two phases with the test fimction ~ and integrating over the 
region ft, i.e., 

(ac, ac~.) 
O, § 

~'~1 ~"~2 ~'~ 

(11) 

Performing integration by parts and considering the interface condition (9), the above equa- 
tion yields 

D~Vcp. Vc~ - r  dA = ~ r Nds + r (12) 
= ~=loft'~_r "7- 

Applying Galerkin method (i.e. use similar shape function for the concentration and the test 
flmction), equation (12) can be rewritten ~us 

D,~Vcp. Vc ,  -r Ot ,] dA =. r (13) 
"-- T 

and 
N 

C(X)  = E C i ~ ) i '  
i=1 

where {:} are the shape flmctions, ci are the nodal concentration values. Using linear in- 
terpolation in time, which is a standard procedure for the time dependent finite element 
problem [16], the concentration at any time point can be expressed as 

{ c a } = ( 1 - 0 ) { c 2 } + 0 { c 2 + 1 } ,  0_<0_< 1, a = 1 , 2 .  (14) 

Using (14) and finite difference approximation for the time derivative, the equation (13) can 
be rewritten as 

c a = - - ~ - +  Ks a = l  ~ + 0Kn+l n + l  Ms 0 " 

a = l  

c~ + F ~, (15) 
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where 

K,~,j = ./D,~Vcp~. VcpjdA 
gt,:, 

/ Mmj = ~i �9 r 
fL~ 

1 
Fi = ./' [c]~iVds = ~ ./' [clcPidA 

7" f~m 

and f~,~. is the area swept by the interface during its propagation in time At. 

(16) 

(17) 

(18) 

An iterative approach is needed in solving eq.(15) since it has 2 interdependent variables. 
The solution strategy starts with guessing the interface location for tile next time increment 
so that M2 +1 and K2 +1 can be evaluated. After solving the linear system, the interface 
location is calculated by interpolating the nodal concentration c2 +1. The iterative process is 
ended when the difference between the interface location used to calculate M n+l and K2 +1, 
and the interface location obtained by interpolating c'X +1, is smaller than a prescribed error 
limit. 

3.2 Interface Smearing Method 

To avoid dealing with tile jlunI) discontimfity, the following change of variables is introdltced: 

~-~ (x, t,) = ~ (x,  t,) + [~]. (19) 

The single diffusivity coefficient D is introdlmed by the following eqlmlity: 

D ( c ) = { D 1 ,  i f  C>Ccr, 
D2, i f  c<c~,.. 

(20) 

By including condition (9) in the governing equations (1) and (2), we obtain 

Oc 
{1 + [c] 6 ( c -  Cc~)} ~ : V .  (D (c) Vc),  (21) 

where 
= lc l '  i f  c>cc,., 

c 

[ ~, i f  c<ccT. 
Equation (21) combines the governing equations (1) and (2), as well as the interface con- 
dition (9). The equivalence of the above two systems of equations is considered in detail 
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in [14]. To avoid dealing with the Dirac function, the smoothed flmction 5 ( c -  c~,,A) is 
introduced (A is the length of a semi-interval in which 6 ( c -  c~r, A) =fi 0). The coefficient 
(~ (c) is introduced by the following equality: 

d (c) = 1 + [c] 5 (c - c~,,, A).  (22) 

In the interval (C~r -- A, c~ + A), the coefficient D (c) is approximated by a linear flmction, 
i . e . ~  

b(~) = 

D 1, if C > C22 , 

D1 - D2 D2c22 - Dlc l l  if cll < c < c22, (23) 2 ~  c + 2 / x  ' - - 

D2, if c < Cl~, 

where 
C l l  --- Ccr -- i~, C2 2 ~ Cc r ~t_ A .  

By combining equations (21), (22) and (23), the following eq~ation is obtained" 

Oc Vc) (24) 

As a result of the above problem reformulation, instead of solving eq,~ations (1), (2) and (9), 
we have to solve a single non-linear PDE (24). 

Mllltipying (24) by the test flmction 99 and integrating over the domain ~'~ for a fixed time t, 
we have: 

. / 'G  (c) -~cpdA = . /  V . (c) ~pdA. 
Ft ~ 

(2~) 

By applying Green's formula, the right hand side term in the above equation becomes 

Oc / �9 �9 - D-fizcpds = O. 
f~ f~ OFt 

(26) 

Assuming 
Oc 
~ = 0  on FN 
01~, 

and following the standard Galerkin procedllre, the weak formulation of the problem for 
fixed t becomes 

/ / d ( c ) -~ , .  cpdA + [gVc .  VcpdA = O, t > O, (27) 
f~ f~ 
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where ~ is in the space of piecewise linear functions. Using the standard FEM approach, the 
oxygen concentration is given by 

N 

c(x, t) = (28) 
i = 1  

where ci(t) are the nodal values of oxygen concentration. Subst i tut ing (28) into (27) and 
enforcing eq. (27) for all test flmctions ~oj, we have' 

MaC dt + K c  = 0, (29) 

where K and M are corresponding "stiffnes" and "mass" matrices with entries 

f~ 

(30) 

K~j - . / b V ~ o j .  VcpidA. (31) 
12 

Using the backward Euler method for the time derivative in the semi-discrete problem (29) 
we obtain 

C n __ C n - 1  

M At + K c " =  0, (32) 

where c" and C n - 1  a r e  the evaluations of c at n th and ( n -  1) th time steps, and At is the 
time increment. For given c "-1, eq. (32) results in the following system of equations for tile 
unknown a n : 

(M ) M 
+ K c " =  ~ C  n-1 (33) 

Note, that  matrices M and K include the non-linear coefficients G(c) a n d / ) ( c ) .  Therefore, 
an iterative process is used in solving (33). The iterative process uses the value of c from 
the previous iteration and terminates when the maximum difference between two successive 
iterative solutions is less than a desired tolerance in the domain. 

3.3 Numerical results 

To validate the above described numericM algorithm for 2D problems, the following model 
problem has been solved. We consider a square domain ft = { (Zx, z2) " 0 _< xl _< 100#rn, 0 _< 
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x2 _< 100p, m}, with the following boundary and initial conditions: 

Oc 
c (x , t )=co ,  X E F D  and ~--~n=0, X E F N ,  

c(x, 0) = 0, 

(34) 

(35) 

where FD = {(xl,x2) : xl = 0, 0 _< x~ _< 100p, m} and FN = 0ft \ FD. 

The above formulated 2D problem is equivalent to the 1D problem in .7,1 direction, since the 
resulting concentration is independant on x2. As it was mentioned in [17], there is an analyti- 
cal solution for the 1D case, therefore we can use it for comparison purposes. The oxide layer 
thickness vs. t ime computed by the two different finite element methods discussed earlier, as 
well as the analytical solution and SEM photograph of oxidized Ti-15-3 specimen, are plotted 
in Fig.3. The following parameters,  corresponding to Ti-15-3 oxidized at 700~ [15], have 
been ~lsed: D1 = 3.02.10-3#m2/sec, D2 = 1.431.10-3#m2/sec, Cc~ = 0.65.c0 and [c] = 0.5.c0. 
As it can be seen from Fig.3, both approaches are in agreement with the analytical solu- 

Fig. 3. Oxide layer growth in Ti-15-3: a) Modeling results; b) SEM photograph of the oxide layer 
on Ti-15-3 formed at 700~ for 3hrs [15] 

tion and with experimental data. The above level of accuracy has been observed for time 
increment At = lOsec and mesh of triangular elements with element size lp, rn. 

The above described numerical approaches in sections 3.1 and 3.2 have also been compared 
with the analytical solution of a problem with a geometry similar to the one that  will be 
later investigated for the mechanical problem, i.e., the oxide layer growth from the surface of 
a semi-infinite crack (see Fig.4). For comparison purposes we take D1 = D2 = D and [c] = 0, 
since for this case the problem has an analytical solution (see Appendix A). A finite square 
domain with dimensions 100#rex 100p, m has been used for computations and the oxidation 
time was such that  the oxide growth was not affected by the presence of the finite external 
boundaries. The crack length a has been assumed to be equal to 30#m for the numerical 
calculations. Results that  compare the analytical solution and the two FEM solutions are 
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Fig. 4. Schematic of the geometry for the oxidation from a crack surface 

shown in Fig.5 and Fig.6. Oxygen concentration profiles perpendicular to the crack surface 
along x2 axis (for Xl = 0) are plotted in Fig.5 and profiles ahead of the crack tip (for x2 = 0, 
xl>_a) are plot ted in Fig.6. The numerical results obtained with both approaches are in 
agreement with the analytical solution. 

Fig. 5. Oxygen concentration profiles along x2 perpendicular to the crack surface (Xl -= 0) for test 
case shown in Fig.4 

Having gained experience in terms of discretization in space and time from the above example 
problem, the problem of oxide layer propagation from the surfaces of a crack in Ti-15-3 
specimen has been considered under realistic conditions for different diffusion coefficients, 
D1 and D2, and a non-zero concentration jump. The material parameters,  corresponding to 
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Fig. 6. Oxygen oncentration profiles ahead of the crack tip 

the Ti-15-3 at 700~ [15] have been used for the numerical solution of this problem. For the 
purposes of the analysis, a pre-cracked square Ti-15-3 specimen 1511,m• 1511,m with a crack 
length 8p, m has been considered. The location of the oxidation front at times 0.25hr, 0.5hr 
and lhr is plotted in Fig.7. Direct comparison with experimental remtlts for oxidation of 
pre-cracked specimen is very difficult, since the surface crack appears to be non-planar at a 
length scale comparable with oxide scale thickness, as seen in Fig.1. 
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Fig. 7. Simulation of the location of oxidation flont in an oxidized Ti-15-3 specimen at 700~ 
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4 C r a c k  G r o w t h  R e s i s t a n c e  of  a P r e - O x i d i z e d ,  P r e - C r a c k e d  Ti-15-3  S p e c i m e n  
u n d e r  M e c h a n i c a l  Load .  

To investigate the effect of crack surface oxidation on crack growth resistance, a mechanical 
model simulating pre-oxidized, pre-cracked Ti-15-3 specimen is considered. The geometry 
and boundary conditions for the mechanical problem are shown in Fig.8. A plate with an 
edge crack under uniaxial monotonic static loading perpendicular to the crack direction 
(Mode I) is considered. The particular problem is chosen since its analytical solution has 
been established and its geometry is similar to that of a compact tension specimen. 

2W 

Fig. 8. Boundary value problem for the mechanically loaded oxidized specimen 

Three cases are modeled corresponding to the bo~mdary conditions shown in Fig.8. The 
first case assumes material properties for homogeneous linear elastic material, corresponding 
to Ti-15-3 (room temperatllre) and is introduced as a reference solution. The second case 
considers the mechanical analysis of a preoxidized specimen, tested at room temperature. 
The third case is similar to the second with additional accounting of the vohlmetric expansion 
caused by oxidation. 

~.I Finite Element Implementation 

Due to the symmetry in the applied loading and geometry, only half of the domain is modeled. 
The schematic of the mesh configuration is described in Fig.9, while the actllal mesh includes 
157 8-node quadrilateral elements. The "spider web" mesh is used since it is known to be 
accurate in modeling fracture mechanics problem [18,19]. The 8-node quadrilateral element 
is chosen in order to model the stress and strain singularity at the crack tip. The quarter 
point method, which captures a square root singularityes in the stress, derived by Henshell 
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and Shaw [18] and Barsoum [19] is used here. The simulation is performed by means of the 
commercial finite element software A B A Q U S .  

Regular 8 node 
quadrilateral element 

Fig. 9. The quarter point finite element mesh 

In the linear elastic case and tile case for homogeneolls material, the energy release rate {~ 
is equal to the value of J-integral [20,21]. To calculate tile energy release rate in FEM, the 
contour integral method is used. The contollr integral inethod starts with the formulation of 
J- integral  [22], which for the two-dimensional case, can be expressed as 

Jr =. Wdz2- Tj~,.r, ds (36) 
F 

where F is any open curve enclosing tile crack tip and W is the elastic strain energy. 

The finite element formulation of the J-integral as given by [23] is 

m{( ouj) 
JF =- ~ p~l W51i - oij det 

OXk 
Wp, (37) 

P 

Oq = ~ qOp O~k 
Oz,: O~k Oz~ Q~ (38) 

k = l  

where m designates the number of Gauss integration points for each element; Wp is the 
weight for the pth integration point; ~k indicates the local coordinates of the elements; q is a 
smooth flmction which has a value of unity on F and zero at the crack tip, i.e. Qp has value 
1 whenever the node is located on F and 0 whenever the node is located at the crack tip. 
~A indicates that  the summation is performed over the elements in area A enclosed by F 
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and the crack surfaces, and the quantity in brackets in eq.(37) is evaluated at the pth Gauss 
point of each element. 

The numerical results for the first case show that  the numerical method has very good accu- 
racy. Table 1 shows the comparison of J-integral values calculated using the exact solution 
versus the numerical method. The finite element model simulates a 20turn x 60ram Ti-15- 
3 specimen with 1MPa tensile load. The material properties for the Ti-15-3 specimen are 
taken from [24] and are tabulated in Table 2. 

exact numerical 

J-integral, MPa.m 2.056 2.028 

Table 1 
Comparison of the stress intensity factor on homogeneous case 

Young modulus, GPa 

Poisson ratio 

Table 2 
Material properties of Ti-15-3 and TiO~ 

Ti-15-3 TiO2 

110 182 

0.33 0.33 

The second case simlllates the mechanical response of a pre-oxidized specimen with a center 
crack and an oxide layer formed along the crack sllrfaces. The geometry of the oxide layer 
is simulated by utilizing reslflts obtained by the oxidation model presented in section 3.3, 
similar to ones shown in Fig.7. 

The presence of the oxide, which has different elastic constants than the metal, introdusec 
a modification in the formlflation of the J-integral, which is now path dependent [25]. To 
briefly show this, ass~lme that  F* is a closed path, i.e. F* = F1 + F2+s~lrface crack connecting 
the curves, with F1 being in the metal phase, while F2 inside the oxide layer, as shown in 
Fig.10. By evahlating the J-integral on F*, the divergence theorem can be applied so that  

Y 

Fig. 10. Schematic representation of all oxidated cracked specimen with partial oxidation of the 
crack surfaces 
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eq.(36) can be rewritten as 

J r * = . /  W d x 2 -  TjTT, x ds = 
F *  * 

0w 0( 
Oxx Oxy aiJ~.~,x dA. (39) 

When the material contains an inhomogeneity in area A*, W = W(xi ,  eij). Therefore, the 
first term on the right hand side of eqn.(39) can be expressed as 

lOW Ozi 
W(.T'i, e i j ) , l  : 0.T,i Oeij 

O w l  Ozi 1- ~ Cij,1 = W,i~ci jc i j ,1  "n t- O'ijUi,jl. (40) 

Substituting eqn. (40) into (39)yields 

(9.,/:, i 
Jr. = Jr ~ - Jr,2 = W ,: =--c e i j l d A , (41) 

�9 "Oeij  "' A* 

which concludes that the ,/-integral in heterogeneolls material is path dependent. From 
the above eq~ation it Call be conch~ded that, if the oxide layer geometry is simlflated as 
described in Fig.7, the J-integral would be different for different paths. To simplify the 
mlmerical implementation, only the oxide layer sllrro~lnding the crack tip is considered, as 
schematically shown in Fig.10. By considering only part of the oxide scale, the J-integral 
needs to be calculated only on two different paths (inside and oIitside the oxide layer). 
The oxide layer is described by elements with different el~tic stiffness than the rest of 
the material. The work of Wallace [26] on Ti-/321S conch~des that the oxide layer has higher 
stiffness than its metal phase. By simlflating Wallace's oxidation experiment, we can estitnate 
Yolmg's modlflus of the TiO2 compolmd, which is also tabulated in Table 2. 

Fig. l l  shows the J-integral measllred on the domain inside and outside the oxide layer for 
the second case�9 It can be seen from the picture that ~s the oxide layer grows, the J-integral 
decreases. This is consistent with the theoretical prediction described in equation (B.4), i.e. 
as the overall stiffness increases, the J-integral decreases�9 The result also reconfirms that the 
J-integral is path dependent in heterogeneo,~s materials and is consistent with tile analytical 
evahlation in [25]. However, since tile difference between tile elastic constants of the oxide 
and metal is small, the difference in the values of the J-integral calculated inside and outside 
of the oxide layer is small. 

Fig.12 shows contollr plots of cr22 vahms for the oxidized and unoxidized specimens close 
to the crack tip. The thickness of the oxide layer is 0.4ram for this case and metal-oxide 
interface is shown by a white line in Fig.12b. The result for the oxidized specimen shows 
that there is a jump in (722 due to the difference in the elastic stiffness of the metal and the 
oxide. 
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Fig. 11. J-integral for the oxidized Ti-15-3 specimen 

Fig. 12. Contour plot of a22 for: a) unoxidized Ti-15-3 specimen; b) oxidized Ti-15-3 specimen (the 
domain corresponds to the shaded area in Fig.9) 

5 Conc lus ions  

Two implementations of fixed grid finite element method, for solving oxidation in Ti-15-3 
have been derived from two different concepts (i.e. the interface smearing method and discrete 
interface method). Both approaches have been tested on problems which have analytical 
solution and have shown very good accuracy. Validated numerical models have been used to 
simulate the oxide propagating from the crack surface in Ti-15-3 specimen. 

The mechanical responses of the fractured specimen have been succesfldly modeled using the 
quarter point method. For the pre-oxidized specimen, the model predicts that the energy 
release rate will decrease as the oxide layer grows. The decrease is due to the oxide scale 
which has higher Young's modulus than the unoxidized metal phase. 
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The presented results can be considered as preliminary in nature and represent initial stages 
of thorough investigation on the behavior of metal matrix composites (MMC) at high oper- 
ating temperatures.  Future research will use the current oxidation and mechanical models to 
simulate the thermomechanical response of MMC under oxidizing environments undergoing 
monotonic and cyclic loading. 
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A p p e n d i c e s  

A O x i d a t i o n  A n a l y t i c a l  S o l u t i o n  

An exact analytical solution has been established to check the validity of numerical calcula- 
tions. Due to the limitation in finding the closed form solution for the general 2D case, the 



:~- = 0 
,mr 

test case does not consider the concentration jump and different diffusion coefficients in the 
two phases. The boundary  value problem consists of diffusion from the surfaces of a crack at 
0 = 0 and a circular domain of radius r0 (in the comparison with the numerical simulation 
r0 = lOOp, m) where zero flux conditions are prescribed (see Fig. A.1). 
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Fig. A.1. Geometry and boundary conditions for the boundary value problem solved in closed form 

Taking into account these assumptions, the governing equations become the same as the 
single-phase diffusion problem, i.e., 

D V 2 c  = Oc 
Ot (A.1) 

The boundary conditions are then 

OC 
c(r, 0, t) = 1, ~-~r(r0, 0, t) = 0, (A.2) 

which describe the concentration on the s~lrface of the crack and the flux at the perimeter 
of the domain. The initial condition is 

c(r, O, 0) = 0. (A.3) 

To create homogeneous boundary conditions, the substi tution (? = c -  1 has been made so 
that  the boundary and initial conditions become 

0~ ~(~, 0, t) = 0, ~ ( ~ 0 ,  0, t) = 0, ~(~, 0, 0) = - 1 .  (A.4) 

Applying separation of variables we have 

= R(r ) (9 (O)T( t ) ,  (A.5) 

which eventually leads to the final form of the solution given by the following expression: 
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o o  o O  

= E E 
m=0 s=l 

/ 2  r . ,  r .t 
Brn.s f -~=~oJ m+ I /2,sJrn (-~O~ rn+I/2,s)X 

�9 t ~2  D t  - 0  m+1/2,sJ 
sin ((rn + 1/2)0)e + 1, 

where 

(A .6)  

Eoo (m+2k+3/2) Jm+2k+3/2(Jm,+l/2,s) k=0 (~+k+5/4)(~+k+l/4) �9 
B,-,,.8 = - J' 1_2.2]/)1 , (A .7)  j2.(fm+l/2,s ) [(m+l/2,s) 2 - -  (7//, + 

and " 8 th  Jm+1/2,8 is the zero of the derivative of Bessel flmction Jm+l/2. Note that  this solution 
corresponds to a singular mass flux at the crack tip. It can be shown that  

OC -1/2 ~ , - ~ r  for r --*0. (A.8) 
Or 

B T h e  f r a c t u r e  m e c h a n i c s  e x a c t  s o l u t i o n  

The analytical solution for the problem described in Fig. 8 is solved in [20]. The stresses in 
x2 and Xl direction ahead of the crack tip are 

KI 
a*2=ax~ = x/~--d' (B.1) 

a a 2 a 3 a 4 ) 
KI = a~v"-~-a, 1.12 - 0 . 2 3 ~  + 10.6~- 7 - 21.7~--~ + 30.4~--~ , (B.2) 

where d is the distance in Xl direction from the crack tip, outward from the crack, KI is the 
stress intensity factor for the Mode I crack problem [20], and ao~ is the far field stress. 

The displacement in x2 direction is 

4-ux2 = -t-4(1 - u)(1 + u ) K i ~ - d l  
E 2---~ ' (B.3) 

where dl is the distance in x l direction from the crack tip, inward to the crack. The J-integral  
or the energy release rate for plain strain problem is 

G =  J =  - ~ ( 1  - v2). (B.4) 
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A b s t r a c t  

With an eye toward functionally graded plasticity in porous material,  a homoge- 
nization scheme is developed to determine the overall elastoplastic behavior of a porous 
material  with an interfacial ductile zone. The development involves four key steps: i) a 
linear comparison composite, ii) the secant moduli of the ductile phases, iii) an energy 
approach, and iv) a field-fluctuation method. With the aid of a 3-phase spherically con- 
centric solid, tile developed theory can be readily used to calculate the overall elastoplastic 
behavior of the porous material regardless whether the interfacial ductile layer is softer 
or stiffer than the matrix. To assess its accuracy, an exact local analysis is also carried 
out under pure dilatation, and comparison between the two indicates a close agreement. 
The th('ory is then applied to examine the influence of the ductile interfacial zone on 
the overM1 elastoplastic strength. The results show that its volume concentration and its 
relative stiffness to the ductile matrix (:an both have a very significant effect on the overall 
elastoplastic behavior of the porous material. 

1. I N T R O D U C T I O N  

A functionally graded material represents a new (:lass of engineering materials whose 
properties may vary with position. To provide an optimal behavior such a variation has 
to be designed intelligently. Within the context of a porous material  containing spherical 
voids, such a change may emanate from the void surface. A linear variation of the matrix 
property is schematically shown in Fig.l(a).  The objective then is to find the precise 
distribution of the matrix property so that it can render the best possible overall elasto- 
plastic strength. In this initial study, we shM1 not address such a continuous variation; 
instead a simpler microgeometry involving a step function as depicted in Fig.l(b) will be 
considered. A step-function provides two distinctively different elastoplastic regions such 
that one may be stiffer than the other. The theory developed then can serve as a basis 
for the future study with an arbitrarily varying matrix property. In this light the theory 
will represent a first step toward a full functionally graded plasticity in porous materials. 
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When voids with two such distinctive outer layers exist, the system can be represented 
by the 3-phase concentric sphere model as sketched in Fig.l(b). where the voids are re- 

Figure 1: The geometrical representation of tile model 

ferred to as phase 1, the interracial zone as phase 2, and the original material as phase 
3. Both phase 2 and phase 3 are elastoplastic, each having its own yield stress and 
work-hardening characteristics. To address this nonlinear problem, an energy approach 
originally proposed by Qiu and Weng (1992) for a porous material (without an inter- 
phase) and particle-reinforced composite will be extended to this 3-phase problem. As 
will become evident later, such an extension requires the evaluation of the homogenized 
effective stress of both ductile phases. The original direct energy equivalence method sug- 
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gested there was not sufficient for this purpose, and a field-fluctuation method recently 
developed by Hu (1996) will be introduced here. It turns out that this method is versatile 
enough to provide the effective stress for a multiphase concentric sphere configuration, 
and can become potentially useful for the study of a functionally-graded porous material 
where the property changes continuously. The energy approach will also make use of a 
linear comparison composite in conjunction with the secant moduli of the ductile phases, 
an idea previously suggested by Tandon and Weng (1988) and Weng (1990) for the study 
of particle-reinforced plasticity and the plasticity of dual-phase metals, respectively. 

2. C O N S T I T U T I V E  E Q U A T I O N S  O F  T H E  D U C T I L E  P H A S E S  

To pave the way for the use of the secant moduli in the linear comparison composite, 
we first establish the dependence of these moduli on the effective stress. The effective 
stress and strain relation of a ductile phase in general can be represented by the modified 
Ludwik equation, as 

a~ ~) - a(~)+ h~. (e~(~)) nr , r - 2,3 (1) 

where a (~) h~ and n~ arc the tensile yield stress strength coefficient and work-hardening y ' 

_l(~) exponent, in turn, of the r-th phase. In terms of its deviatoric stress o ij and plastic 

strain _7,(~) e~j , the effective stress and plastic strain are defined as 

[3 a,!,) _,(~)] �89 1,(r) _ [ 2  ~,(r)i,(~)] �89 

It follows that the secant Young's modulus of the r-th phase is giwm 1)y 

I e~(~ ) ] -i 
J'(~))-r ] ' (3) 

in terms of its elastic Young's modulus, E~. The secant shear modulus and the secant 
Poisson's ratio also follow from the isotropic relations and plastic incompressibility, as 

1 (1 (4) 

where v~ is the elastic Poisson's ratio. 

3. T H E  E F F E C T I V E  E L A S T I C  P R O P E R T I E S  O F  T H E  L I N E A R  C O M -  
P A R I S O N  C O M P O S I T E  

In the composite sphere model depicted in Fig.l(b), the volume concentration of the 
r-th phase is denoted by c~, and its outer radius by a~. It follows that 

c l  - -  ( a l / a 3 )  3 c 2  - -  ( a  2 - -  a 1 , (5) 
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(a) Elastic comparison composite (b) Porous materials with 2 ductile phases 

Figure 2: Elastic comparison composite 

The concept of a linear comparison composite is shown in Fig.2, where the elastic bulk 
and shear moduli (nr and # r ) i n  Fig.2(a) are set equal to the secant moduli (n~ and #~) 
in Fig.2(b) of the original nonlinear composite at every stage of deformation. In such a 
model the exact effective bulk modulus has been derived by Qiu and Weng (1991), and 
we shall extend Christensen and Lo's (1979) generalized self-consistent scheme to find 
the effective shear modulus. Direct application of Qiu and Weng's results to the porous 
material yields 

n, - na + (3n3 + 41t3)[-cln3(an= + 4#2) 

+ 4c21ti(,r - n3)]/{4#i[(3n2 + 4it;) + 3(cl + c2) 

�9 (n3  - n2) ]  + 3 c ,  n2 [ 4 ( # ;  - #2) / (ca + c2) + (3n3 + 4 / t2 ) ]  } ( 6 )  

for the effective bulk modulus, where the subscript s r('flccts the secant state of the ductile 
phase at a given stage of deformation. Following Christcnsen and Lo's proc('durc, analysis 
of the 3-phase model in the generMized self-consistent scheme leads to a matrix as shown 
in the Appendix. When its determinant is set equal to zero, it provides a s('cond-order 
algebraic equation for the effective shear modulus Its. The secant Young's modulus then 
follows as 

9n'tt" (7) 
S~ = (3n. + ft.)" 

This pair of moduli provides the effective moduli tensor L~ and compliances tensor M~ 

L., - ( 3 , % ,  2tt.), Ms = (1/3n.,1/2tt,), (8) 

where the subscript s again signifies the "secant" state of the constituent phases. These 
results will be used as the effective secant moduli of the nonlinear compositc. As both 
effective moduli involve the yet-unknown secant shear moduli of phase 2 and 3, these 
individual moduli must be determined first at a given level of the applied stress. 
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4.  T H E  F I E L D - F L U C T U A T I O N  M E T H O D  

To evaluate the effective stress of the interphase and the matrix, the field-fluctuation 
method recently developed by Hu (1996) will be extended to this 3-phase solid. The 
original method based on the energy equivalence between the golbal system and the local 
constituent phases as suggested by Qiu and Weng (1992) provides only one equation, 
but now we have two unknowns, and therefore it is not sufficient. Hu's field fluctuation 
method also starts out from Qiu and Weng's energy equivalence, but instead of proceeding 
to evaluate the effective stress from this equation, he seeked for the variation of the energy 
due to the variation of the shear modulus of the ductile phase whose effective stress is of 
interest. According to Qiu and Weng' energy approach, the homogenized effective stress 
of a heterogeneously deformed ductile phase is defined based on the distortional energy 
equivalence, as 

6#; 

_ _  1 1 
= (9) 

which is equivalent to 

fvr 1 fy, 3 _,(~) _,(~) 1 ,zv 
= -  o i j  ( 

3=,(r)=,(~) 1 /yr 3 _,~,t(,.) -'vt(")(x) dV, (10) 

where V~ represents the volume of the r-th phase and superscripts pt refer to the "per- 
turbe(l" field over the mean of the considered phase. In symbolic notation, it can be 
rewritten as 

3 , t 
2(~)(x) > =  - < ( r tr~  > (11) a 2(r) --< a~ 2 

where the angle brackets represent the volume average of the said quantity over the r-th 
phase, and a bold-faced Greek letter signifies a second-order tensor. 

Then starting out with the energy equivMence of the total elastic energy Us between 
the homogenized overall system with an effective compliances tensor M., and the individ- 
ual phases with a compliances tensor M: for the r-th phase 

2U. = erM.er = :~ < a~M:~r~  > ,  (12) 

one may proceed to seek for the variation of this energy when the shear modulus of the 
r-th phase changes from #~ to #;~+3#~. Under the same external stress ~r the local stress 
will also chenge from (rr(x) to o ' r (x)+~%(x),  but due to the vanishing perturbed outer 
traction the additional stress field will not contribute to the overall energy. It follows that 
such a variation will result in 

, ,  

Cr < O'r O" r > = ~r~M~, (13) 
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and this leads to the homogenized effective stress for the r-th phase 

..2(r) = ~r - 3 # r  6M, 
~" ~ c, 6#~ &" (14) 

When applied for both phases r=2  and 3, it provides the needed effective stress for 
both the ductile interracial zone and the outer matrix. Once these effective stresses are 
found, the corresponding secant moduli of the r-th phase will follow from the constitutive 
equations, and the effective secant moduli of the nonlinear system can then be determined 
from ,~, and #, of the comparison composite. This process may be continued by increasing 
the level of the applied stress & until the entire stress-strain curve of the porous material 
is obtained. 

5. A N  E X A C T  S O L U T I O N  U N D E R  H Y D R O S T A T I C  L O A D I N G  

To provide an assessment for the accuracy of the developed homogenization theory, 
an exact solution will be derived here under a pure hydrostatic loading with a linearly 
strain-hardening phases (n=l  for both phases). 

5.1. E las t ic  field 

Before the onset of plastic deformation, the field in the 3-phase porous material is 
elastic. The displacement field in both phase 2 and 3 fl)r the geometry shown in Fig.l(b) 
a r e  

u~') = B~i)r + B~')-~, i -  2,3 (15) 

in a spherical coordinate, whereas the stress in the voids simply vanishes. The displace- 
ment fields result in the strain components 

a3 el ~ _ , ( i )_  B~i) B~i)a3 
,7)  : - 7 ,  + 7 '  i - 2, a (16) 

and stress fields 

r--~, ~.r162 + ~-ff, i - 2, 3. (17) 

The constants B~ i) and B~ ~) can be determined from the continuity conditions and the 
boundary condition. 

5.2. S u b s e q u e n t  plast ic  d e f o r m a t i o n  

Once plastic deformation occurs in any layer, there are two possible subsequent trends 
under increased hydrostatic tension. 

1. Plastic deformation increases in the yielded phase while the other layer remains 
elastic. 
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Figure 3: Partial yielding model 

2. The other layer also starts to yield; in both phases the inner region is plastic and 
the outer one is elastic. 

A schematic diagram for such a partial yielding is depicted in Fig.3, where r(vi) represents 
the outer radius of the plastic region of the i-th layer (i = 2,3). In any case under an 
increased loading the layer with partial yielding will proceed to become full yielding. We 
use e to denote that  the whole region is elastic, pp partial plastic, fp  fully plastic. Unlike in 
an ordinary 2-phase material, there are now many possible routes of plastic deformation; 
these routes are listed in Fig.4. Within r(vi) < r < ai, the material is in the elastic state 

lpp2e le2pp 

| 
1 ppIpp 1 eIfp 1 ppIpp 

| , , / \  | ; / \  
lfp2pp I pp2fp lfp2pp lpp2fp lfp2pp lpp2fp 

I fp2fp 1 fp2fp I fp2fp I fp2fp I fp2fp I fp2fp 

Figure 4: The routes of plastic deformation 

and the results are given above . Within ai-1 < r < r (i), the material  is in the plastic 



448 

and 

state. To render the many possiblilities to a more manageable condition the plastic field 
will now be analyzed assuming both phases to be incompressible and the outer traction 
is tensile. Now with u (i) = 1/2, one has 

~0(~ ) > 4~), 4 ' :  ~ < o, 4 ~  ) - ~!~) - ~(~') - h,4'~) ~. (~8) 

The analysis can be carried out in a fashion as in Qiu and Weng (1992) for a two-phase 
solid. After some lengthy algebra, one arrives at 

D(i) o-(i) 
- ra t h i + E  i, (19) 

2 D 1 o'!i,) = 2a(i)Ei log r + (i)hi + C (i) (20) 
hi + Ei 3 -~ ' 

and 

u!i) _ hi + Ei D (i) 
- - 2 E i  r - - T "  ( 2 1 )  

Equations (19), (20) and (21) are valid expressions for radial plastic strain, radial stress 
and radial displacement in the plastic region in i-th layer. For the case pp, we have 

e~/)v]r=r(/, -- 0. (22) 

Substi tut ing Equation (19) into (22), we can get D (i) in the case pp as 

D(i) _ _ a}/) r(i))a" - h( i )  + E ( i )  ( ( 2 3 )  

So the radial plastic strain, stress and displacement for the case pp ('an be rewrit ten as 

4,;),, = ~!/) (~(')x ~ 
hi + E-----~ [ 1 -  .---~-) ]' 

�9 = 2 a ( i ) E / l o g r -  2a(i)hi (r(_i)\t, l a  
O'~zr ) C(i), + (24) 

~, + E, 3(t~, + E , ) ,  ~ / 

2Ei r :  " 

The continuity conditions on radial displacement and radial stress at the i g t e r f a c ~  
between the different phases and the regions with different deformation states, in addition 
to the prescribed traction at the boundary, lead to an equation system for each case shown 
in Fig.4 with which one can obtain the unknown coefficients B (i) and C (i) Among all 
the possible cases, there are nine distinct ones as depicted in Fig.4. The elastoplastic 
relationship which resembles the overall elastic bulk modulus can be obtained through 
the fact that ~kk is related to the prescribed traction at the boundary through ~kk = 3Nb 
and 

_ ~ ( 1 ) _  3 c l  ~ ( 2 5 )  ~kk -- Cl ~kk - ~ 2  \ a l  

due to the elastic and plastic incompressibility assumption for the two ductile layers. 
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6. R E S U L T S  A N D  D I S C U S S I O N S  

Now that both the energy approach and the exact solution under pure dilatation have 
been established, we shall first compare the results of both approaches for the hydrosatic 
loading. Then the energy approach will be used to examine the influence of the ductile 
intefacial zone on the overall behavior of the porous material. 

6.1.  C o m p a r i s o n  b e t w e e n  the  exact  so lu t ion  and the  e n e r g y  approach  

The comparison will be made with a bilinear stress-strain curve for both ductile 
phases. The tangent modulus in the plastic range E~' for the i-th phase is now related to 
the Young's modulus and work-hardening modulus as 

1 1 1 
Ef  - E, + h--~." (26) 

We first choose the following parameters in the comparison: 

cl = 0.3, c2 = 0.35, c3 = 0.35, 

E3 - 68.3GPa, a(u 3) - 250MPa, (27) 

which correspond to the Young's modulus and yield stress of a 6061-T6 alumnium alloy 
(Arsenault, 1984; Nieh and Chellman, 1984). 

We shall first consider both phases to be ideally plastic without work-hardening. 

~kk[MPa] 
800 

400 

2.0 
A 

(I)=0. 5 

I ...... Energy approach 
Exact approach 

j 

0.000 0.010 0.020 ~kk 

Figure 5" The overall elastoplastic relationship under hydrostatic loading with different 
ratios of the Young's moduli 

In Fig.5, the yield stress of the intefacial layer is taken to be equal to that of the 
outer layer, but its Young's modulus varies by being double, equal or half of that of the 



450 

Okk[MPa] 
1200 f 

8 0 0  - 

400 

o~)/o~)=2.0 

...... Energy approach 
Exact approach 

0 , , , , l ~ , , , I , 

0.000 0.010 0.020 akk 

Figure 6" The elastoplastic relationship under hydrostatic loading with different ratios of 

outer matrix. From this figure two observations can be made: First, both the energy 
approach and the exact solution provide very close results under dilatational loading, but 
the energy approach gives slightly harder response than the exact solution. The difference 
is due to the fact that the energy approach uses the average of the distortional energy of 
each layer to assess the extent of plastic deformation and therefore one gets to know the 
plasticity later than by the exact approach which allows one to inspect plasticity locally. 
Secondly, there are two major stages of the overall elastoplastic deformation contributed 
by these two ductile phases. In addition there is a smooth transition in the exact analysis 
reflecting the local plastic flow, a phenomenon absent in the homogenization scheme. 
Fig.6 shows the relationship with different ratios of yield stress while maintaining the 
same Young's modulus. Finally to examine the influence of strain hardening we keep the 
Young's modulus and yeild stress of both phases to be identical, but take the tangent 
modulus of the matrix to be 1/lOth of its elastic Young's modulus as 

E ~ -  1/10Ea - 6.S3GPa. (28) 

The results are plotted in Fig.7 with different ratios of Ev(2). Good agreement is again 
evident. These three comparisons indicate that, no matter which material constant is 
being varied, the results of the homogenization scheme is very close to that of the exact 
solution. 

Now it is interesting to see how the volume concentration of the interfacial zone affects 
the overall elastoplastic behavior of the porous material. The results with a softer inter- 
phase are shown in Fig.8 at three levels of volume concentrations" c2=0, 0.1, 0.2 and 0.3, 
with an ideally plastic matrix in Fig.S(a) and a linearly work-hardening one in Fig.S(b). 
In these calculations, the property of the interphase is taken to be 1/lOth of the matrix 
a s  

E~ - Ea/10, a(, =) - a(,3)/10, E~- E~/lO, (29) 
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~kk[MPa] 

1200 

800 

400 

(2) (1) . . . . . . .  . - "  ~S- - "  Ep/E =2.0 ..... ~..~7.~ .... 

/ ........ Energy approach 
Exact approach 

, , i J | , , , , | i , _  

0.000 0.010 0.020 F--'kk 

Figure 7: The elastoplastic relationship under hydrostatic loading with different ratios of 
E(~) 

a--,k[MPa ] ~ , , [MPa]  I ~176 r 1 ~176 
c1=0.3 c1=0.3 

! . . . . . .  ~~ I ! . . . . . .  e ~  

[ .-"" 0.1 

6 0 0  600 ; ~ -  

0 0 
0.000 0.010 0.020 ~ ,  0.000 0.010 0.020 ~ ,  

(a) Ideal ly plast ic (b) Work  harden ing  

Figure 8" The influence of a soft interphase volume concentration on the overall behavior 
of the porous material 

Comparison between the energy approach and the exact solutions are again satisfactory, 
both indicating the weakening effect of the degraded interfacial zone as its volume con- 
centration increases. On the other hand the results with a harder interphase are seen in 
Fig.9; these have been calculated with the properties 

E 2 -  1.1E3, a (2) - 3 a  (3), E ~ -  1.1E~. (30) 
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Exact 

0 . . . .  ' . . . .  ' , , 
0.000 0.010 0.020 

(b) Work hardening 

Figure 9" The influence of a hard interphase volume concentration on the overall behavior 
of the porous material  

Both figures again display a close agreement between the two approaches, and they 
further indicate the strengthening effect of this interracial region on the overall property 
of the system. 

6.2 Tensi le  and shear behavior  

Now that  the homogenization scheme has been shown to provide estimates which are 
consistent with the exact solutions under dilatational loading, it can be applied to examine 
the influence of its volume concentration on the overall response of the porous materials 
under other loading conditions. For this, we shall use the 6061-T6 alumnium as the 
matrix, whose Young's modulus and yield stress have already been given in Eq. (27). 
This material  further has the strength coefficient and work-hardening exponent (Qiu and 
Weng, 1992) 

h3 = 173 MPa, n3 = 0.455. (31) 

We shall examine the tensile behavior first, and then followed by the shear one. In each 
case the interfacial ductile zone will be taken to be softer and then harder than the outer 
layer. 

The tensile behavior of the porous material with a soft interfacial zone is shown in 
Fig.10(a), with a property only 1/lOth of the original matrix as indicated there. Its 
Poisson ratio and work-hardening exponent n are kept to be the same as those of the 
matrix. As its volume concentration increases from 0 to 0.3, the overall behavior is seen 
to continue to weaken. Here the condition c2:0  also corresponds to the ordinary porous 
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(b) Hard interphase ~11 

Figure 10" Tensile behavior of the porous material  with a ductile interfacial zone 

material  without such an interracial zone and, in all cases, the overall elastoplastic strength 
of the porous materials is substantially softer than that  of the pure matr ix  itself, which 
is also indicated as a dotted line there. The condition with a hard interfacial zone is 
shown in Fig.10(b), where the interphase is taken to be twice as stiff as the matrix.  As its 
volume concentration increases, the overall strenth of the porous material  also increases. 
But even at c:=0.3,  the response is still not as stiff as the original matr ix  itself. Finally 
the volume-concentration dependence of the shear behavior is depicted in F ig . l l (a )  and 
(b) with a weak and a strong interracial zone, respectively. The volume concentration 
of the ductile interphase again displays a significant influence on the overall elastoplastic 
behavior of the porous material. 

7. C O N C L U D I N G  R E M A R K S  

Based on an energy approach and a field-fluctuation method,  a homogenization scheme 
has been developed to determine the overall stress-strain relations of a porous material  
containing two ductile layers. This theory is applicable to both conditions whether the 
interfacial zone is softer or harder than the matrix,  and it can be used at finite concentra- 
tions of the constituent phases. The step-function variation of the matr ix  property is the 
simplest kind of the matr ix property variation and, thus, the theory established represents 
a first step toward a full functionally graded plasticity in porous materials. The theory 
has proven to be accurate in light of an exact local analysis under hydrostatic loading, 
and its applications to tension and shear also reflect the strong dependence of the overall 
elastoplastic strength on the ductile interfacial zone. 
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Figure 11: Shear behavior of the porous material with a ductile interfacial zone 
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A layerwise finite element with enhanced strains is developed for the analysis 
of laminates with special emphasis on the study of delamination characteristics. 
An interface model using the penalty function method is developed to calculate 
strain energy release rates. Since the interface model provides the facility for 
the closure of delamination by a small amount, strain energy release rates were 
evaluated by actual crack closure and by virtual crack closure methods for a 
comparative study. A double cantilever plate problem is used to illustrate the 
accuracy of the computational approaches developed herein. 

1. I N T R O D U C T I O N  

1.1 B a c k g r o u n d  

In the analysis of composite laminates, when the primary (:on('ern is 
the global response, one may choose to model the laminate with layers of 
different mechanical properties as a single layer with equivalent mechanical 
characteristics. Two widely used examples of equivah;nt siIlgh; layer (ESL) 
theories are the classical and first order shear deformation theories [1]. These 
theories are appealingly simple and economic in analysis and provide reasonably 
accurate solution for global response characteristics such as overall (h;fle(:tions, 
critical buckling loads, fundamental vibration frequencies and associated mode 
shapes. 

When the emphasis of the analysis shifts from global response to the study 
of initiation of damage or delamination between layers, accurate determination 
of interlaminar stresses and strains gain more importance. For damage such 
as matrix cracks, intra-lamina stresses are important, and for delamination 
and adhesive joint separation, interlaminar stresses are important. Hence, in 
studying laminates with delamination, it is necessary to model tile laminate 
using a refined theory both in terms of 3D-kinemati(:s and constitutive 
relations compared to ESL theories. Basic frame work for this is provided 
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by the generalized layerwise plate theory (GLPT) of Reddy [1,2]. In GLPT, 
enhancement in kinematics over an ESL theory is made by allowing for more 
than one kinematic layer through the thickness. The analyst has the choice 
to selectively refine the kinematics through the thickness of the laminate as 
desired. The layerwise theory is a 3D theory in the sense that  it uses full 
3D constitutive relations compared to the plane stress-reduced constitutive 
relations used in ESL theories. Even though, the layerwise theory provides the 
facility for using a refined kinematics, it should be used sparingly because the 
refinement through the thickness increases the problem size tremendously. 

1.2 D e l a m i n a t i o n  S t u d i e s  

In the study of delamination in laminates, the strain energy release rate 
has gained importance as a criterion for delamination growth. The growth of 
delamination is predicted by comparing the (working) strain energy release rate 
G near the delamination tip to its critical (allowable) value Gc. The critical 
strain energy release rate Gc is a quantity that is evaluated by conducting 
experiments. In general, Gc depends on the mode ratio, material and relative 
ply orientation of the lamina surrounding the delamination. 

Several methods are described in the literature for evaluating the strain 
energy release rates. In one method it is evaluated as the rate of change of 
total potential energy of tile system with (:rack exteIlsion and it is determine(t 
by evaluating total potential energy at two (tifferent (:rack lengths [3,4]. Another 
method is based oil the evaluation of compliance at two different crack lengths 
[5,6]. These methods provide direct means of evaluating strain energy release 
rates and require analysis of the problem at two separate configurations differing 
by a small value of (:rack closure length. In direct contrast to these methods 
where the (:rack closure is real, another method is used where tile closllre of 
the crack is kept virtual (i.e., imagined). The advantage here is that it requires 
only one analysis instead of two. This is achieved by approximating the load 
required to close tile crack from tile results of a single analysis. Further this 
method integrates well with the standard finite element method. Due to the 
virtual nature of the crack closure, this method is called virtual crack closure 
method (VCCM). This method has been applied successfully to 2D problems 
using low order elements [7] and found to be accurate even with coarse meshes 
near the crack tip. The method has further been extended for 3D elements [8] 
and found to be effective in 3D problems [9]. 

In the study of delaminations in composite laminates, much research has 
been done and a general overview is given by O'Brien [10]. Analytical 
investigations of the subject, in contrast to numerical studies, usually consider 
simple plane geometries and homogeneous, isotropic or orthotropic plates. 
Laminated plates with embedded delamination under the action of inplane 
loads have been studied for delamination buckling and the consequential 
growth of delamination. This type of delamination growth, called instability 
related delamination, has been studied for laminated plates with through width 
delamination [11]. This analysis has been extended to laminated plates with 
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elliptical embedded delamination geometries and the distr ibut ion of s train 
energy release rates along the delamination front has been studied [9,12]. 
Additional references on analytical and semi-analytical studies on delaminat ion 
buckling in flat composites can be found in the review article [13]. 

1.3 P r e s e n t  S t u d y  

The objective of the present s tudy is to develop an interface model 
for the recovery of accurate interlaminar stresses and s tudy delaminat ion 
characteristics in composite laminates. A layerwise finite element model with 
enhanced strains is developed for the purpose. The layerwise finite element 
model provides the framework for refinement of displacement variation through 
the thickness if and when it is needed. The through the thickness refinement 
is accompanied by refinement in the plane of the laminate,  and thus proves to 
be expensive. On the other hand, coarse mesh through the thickness leads to 
the possibility of thickness locking if the Poisson effect through the thickness 
is not correctly represented. The enhanced strain method with enhancement  
field provided for transverse normal strain component  is used here to overcome 
the thickness locking. 

For the recovery of interlaminar stresses and for the s tudy of delaminat ions 
in laminates an interfa(:e model is (teveloped. This involves the sele(:tion of an 
interface in the laminate x-priori an(t modeling it as an adhesive ('ontact zone 
between portions of the laminate separated by this interfa(:e. The adhesive 
(:onta('t between portion of the laminate at its interfa(:e is enforced t)y penal ty 
filn(:tion metho(t [14] and the (:ontact 1o3(t that  satisfies tile eqlfilibrillm at the 
interfa(:e is used in evaluating tile interlaminar stresses. Use of this interface 
too(tel in the stll(ty of (telamillation ('haracteristi(:s have tlm advantage that  
it provi(tes the framework for extending or closing the bonde(t port ion of the 
laminate by a small amount  as is reqllired by the crack clo.s'ur~ method (CCM). 
Strain energy release rate by this interface model has been evaluated using crack 
(:losure method and by virtlml crack closure method (VCCM) for ( 'omparative 
study. This interface model is studied for its accuracy by comparing the results 
with reference solutions in the literature. 

2. E N H A N C E D  A S S U M E D  S T R A I N  E L E M E N T  

2.1 Bas i c  Idea  

Enhanced strain method [15] is an approach that  is found to be effective in 
improving the performance of finite elements against locking. This is achieved 
by enhancing the strain with an incompatible field that  is (:hosen to satisfy 
any constraint.  The enhanced strain method is discussed here in the context 
of a small displacement theory and tile rectangular  Cartesian coordinates 
for the sake of simplicity and clarity in bringing out the essentials of the 
method.  The application of this method for geometrically nonlinear problems 
is straightforward.  



462 

Let the to ta l  s t ra in  field eij be the sum of the incompat ib le  field g,:j and the 
compat ib le  s t ra in  field e D 

- + (2.  l )  

where the compat ib le  s t ra in  field e D is re lated to the d isp lacement  componen t s  
ui by the usual  s t ra in-d isp lacement  relat ions 

1 
- + uj, ) ( 2 . 2 )  

Mathemat ica l ly ,  the incompat ib le  s t rain components  g~j should be identical ly 
zero everywhere.  Therefore,  the work done by the ac tua l  stresses in moving 
th rough  the incompat ib le  s t rains  is zero. However, a compu ta t i ona l  scheme 
does not account  for the zero work done unless it is explici ty included in the 
formulat ion.  T h a t  is, we must  include the condit ions 

g.ij = O, i, j = 1, 2, 3 (2.3) 

as cons t ra in ts  in the finite element development .  

2.2 V a r i a t i o n a l  B a s i s  

Tile tota l  potent ia l  energy fllnctional used for the development  of tile 
( t isplacement finite element model tha t  includes the cons t ra in t  (2.3) is derived 
llsing the Lagrange  multiplier  method.  The  Lagrange mult ipl iers  associated 
with the cons t ra in ts  (2.3) turn  out to be - a i j .  The  filnctional is given by 

(2.4) 

The  finite element  based on the s t a t emen t  5I:I = (} requires independen t  
approx imat ion  of the three fields: 'ui,gij, and aij. In the the enhanced  s t ra in  
clement,  however, the independent  stress field is e l iminated  by selecting the 
independent  stress field to be or thogonal  to the enhancemen t  s t ra in  field 

./; gijo'ij dv - 0 (2.5) 

Of course, the s t a t emen t  in (2.5) is a weak form of gij = 0, which is responsible 
for locking. Now the variat ional  s t a t emen t  for the enhanced  s t ra in  finite 
element model  can be s ta ted  as 

51"I- 0 subjected  to the condit ion (2.5) (2.6) 

where 
fisui ds (2.7) 
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The s ta tement  51"I- 0 gives 

OUo 
fsSui ds = 0 (2.8) 

Thus,  the two independent  fields for the enhanced strain formulation are the 
displacements ui and the enhanced assumed strains ~,:j. By choosing the stress 
field to satisfy (2.6) the stresses are el iminated from the variat ional  expression. 

2.3 T h e  C h o i c e  of  E n h a n c e m e n t  Fie ld  

Deter iorated coarse mesh performance of a layerwise element with low order 
(i.e, linear) interpolat ion of the thickness variation is what  we wish to remedy. 
In this case, it is the inability of the element to model the nearly zero transverse 
normal strain s i tuat ion tha t  causes the problem. By the proper  choice of 
the enhancement  field it is possible to design low order elements tha t  have 
improved coarse mesh performance. This is done by identifying the constraint  
(e33 = 0) in s train field whose deficiency causes the deter iora ted performance 
of the element and introducing it into the element formulation through the 
incompatible enhancement  field, as explained in the previous section. 

Identifying the enhancement  field is a s traightforward procedure for the 
case of a regular shaped element, compared to tha t  of a dis torted element. 
Distort ion in the element geometry makes it difficult to identify the deficiency 
in the function field. Hence, for a general element, the procedure needs to be 
modified to include a mapping of a general element to an isoparametri(: (tomain. 
This  makes it possible to work in the isoparametr ic  domain which is regular 
shaped compared to a physical domain. Details on the mapping between the 
physical and isoparametr ic  domains are discussed in [16]. 

3. F I N I T E  E L E M E N T  M O D E L  

3.1 Layerwise  D i s p l a c e m e n t  Fie ld  

Equat ions  of motion represented in (2.9) for an enhanced strain method  
involve two independent ly  assumed fields, namely, the displacements and 
enhanced strains. In the present study, the displacements are assumed from 
a layerwise field suitable for the analysis of a layered media [1,2]. In order to 
develop a layerwise theory for a geometrically non-linear analysis it is required 
to model the strain distr ibution through the thickness in a kinematical ly correct 
manner.  T h a t  is, the kinematic condition tha t  exists at the interface between 
the lamina should be such that  the transverse strains are piecewise continuous 
through the laminate  thickness. The geometry of the laminate  at configuration 
fh, for example,  is represented as 

N 

I=i 
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where tz~ represents  the mater ia l  coordina te  in a s t a t i ona ry  Car t e s i an  
coordina te  frame for a mater ia l  point at (r of the l amina te  in the 
configurat ion at  fit. Similar expressions hold at t = 0 and t = t + At. 
One dimensional  linear Lagrange  shape functions OI are used in (3.1) for 
represent ing the var iat ion of geomet ry  in the thickness direction. 

From the geomet ry  of the laminate ,  defined at different configurat ions,  the 
corresponding displacements  can be expressed as 

N 

I=1  
N 

t + A t  H, i _ t+At.T,  ~ _ r , ( r  ,7) 
I=1  
N 

II, i - -  t+Al" ,tl ~ �9 -- , : -  t u i - -  ~ ~ i ( 4  I )  u{ (~ ,~ / )  ( i - -  1 , 2 , 3 )  (3.2) 
I =1  

The  quant i t ies  tv,[ and t+At~t[,: have the meaning  of total  d isp lacements  at  the 
interface I between the k inemat ic  layers for the configurat ion ft~, and ~ t + A t ,  

respectively; '.,~ represent  the incremental  d isp lacement  for the sam(: interface 
I. These inplane displacements  are approx ima ted  using in terpola t ion  funct ions 
of 2D elements.  

3 . 2  E l e m e n t  E q u a t i o n s  

Tile l inearized incremental  equat ion of motion for all cnhan(:cd s t ra in  
metho(t  (:an be wr i t ten  as (see Moor thy  [16]) 

.t 

�9 , V 

. (~:-- l) 

where [.t +At z [.t +zxr 
t+At 12 = ./,+~,v .fi fu,i dv + ./,+zx, s f~~ ?~~1,,i ds (3.4) 

is the residual,  tc~ D - (1/2)(t'u,i,j + t ' u j , i )  represent  the compat ib le  linear s trains,  
rg~j represent  the incompat ible  enhancement  strain,  tTI,ij = (1/2)(t'um,i t ' t t m , j )  

represent  the non-l inear  par t  of Green-Lagrange  strains,  t h~ are the Car tes ian  
components  of (Cauchy)  stresses in t2t evalua ted  th rough  the coIlst i tut ive 
relations, and tC,ij~:l represent  the incremental  mater ia l  p roper ty  matr ix .  Dur ing  
the eqll i l ibrium i terat ions (in redllcing the residual error),  the set:ond te rm 
on the right hand  side of (3.3), which represents  the internal  force vector,  is 
upda t ed  in each i terat ion.  T h a t  is, for the ~:th i terat ion the t e rm is eva lua ted  
with the quant i t ies  known from tile ( k - 1 ) t h  i terat ion.  The  the Cauchy stresses 
t+AtTij are to be recovered in such a manne r  tha t  it is or thogonal  to the 
enhancemen t  field t + A t E i j :  

~ " t + A t  - 
+ A t V  Ti j  t + A t C i j  d ~ ) -  0 (3.5) 
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The element matrices are obtained when the displacement and enhancement  
fields are subs t i tu ted  into the incremental equations of motion (3.3). We obtain 

[tK]{Ad} + [tP] T{Aa} - {t+AtR~} - { t R I } ( k _ l )  

[tP] {Ad} + [tQ]{Aa} - -  --{thI}(k_l) 
(3.6) 

(3.7) 

where 
[,K] = [,.KL] + [,.KN] (3.S~) 

['JR]- ./v [,~]T [,C] [ ,~]  ,Z~, [,.Q]- . / '  [,~1~ [,C] [,~1 dv (3.8b) 

(k-l) (k-l) 

The terms {t/~I}(k_l) and {~hI}(a._l) are the internal force vector and the 
conjugate vector corresponding tO the strain parameters,  respectively. They 
are evaluated at the most recently known configuration. The subs(:ript ( k -  1) 
is used to indicate tha t  the quanti ty is evaluated with solution from the previous 
iteratiotl. For additional details, the reader may consult Referen(:e 31. 

II: 11sing the displacement field (3.2), which is C ~ (:ontinuollS across the 
eleme:lt boundary, the strain field will be (tiscontinuous across the element 
layers. Consistent with the (tispla('ement field, the eIlhan(:e(t strains are 
Ilot Ina(te (:ontinuous across the eleinent layer |)ouIldary. Tim (tis(:ontim:ous 
enhall(:ement fiel(t eliminates the (:ollpling of l:nknown strait: parameters  from 
one element layer to another. This has the (:onsequen(:e that  strain parameters  
(:an be eliminated within tim element layer without  in(:reasing the tulml)(;r of 
unknowns in the global set of eqllations from that  in a pllr(; (lispla(:em(;nt 
metho(t. Thus from eq:lation (3.7) we have 

{Aa} - -[tQ] -I [{th, l } (k_l)  n t- [tr]{AdI] (3.9) 

The strain parameters  can be elimiI:ate(t from (3.6)by using (3.9). Thus the 
clement equations take the form 

[tK]{Ad} = {F} (3.10a) 

IrK] =IRK]- [tP]T[tQ]-I[tP] 
{F} --{t+AtR~} -- {tR/}(~:_:) + [tP]T[tQ]-l{th, l}(~:_l) (3.lOb) 

The incremental solution for the displacements is obtained after solving the 
assembled set of equations from the element equations (3.10). From the 
displacement solution the incremental solution in the enhancement  strain 
parameters  are post computed from (3.9). 
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4. M O D E L I N G  OF I N T E R L A Y E R  D E L A M I N A T I O N  

4.1 I n t r o d u c t i o n  

In a l amina te  with many  layers, de lamina t ion  is a major  failure mechanism.  
It is character ized by the separat ion or debonding  between layers and may 
be represented as an in ter laminar  crack. For the predict ion of the onset of 
de lamina t ion  and its growth,  stress based cri teria and s t ra in energy release 
rate based cri ter ia  have been used. The stress and s t ra in  energy release 
rate evaluat ion in a region near the de lamina t ion  tip is compl ica ted  by the 
tr iaxial  na tu re  of the stress and strain fields. Among  the stresses at the 
de lamina t ion  tip, the evaluat ion of in ter laminar  stresses is more i m p o r t a n t  
from the de lamina t ion  point of view. 

While the evaluat ion of stresses from const i tut ive relat ions is more 
consistent wi th  the general formulat ion,  the stresses recovered from the 
equi l ibr ium equat ions  are more accurate.  Hence, in the present  s tudy  the 
laminate  is modeled in such a manner  tha t  it will facilitate a direct recovery of 
in ter laminar  stresses from equil ibrium conditions. It is achieved by model ing 
the laminate  as two sublaminates  oil ei ther side of the de lamina ted  interface. 
Tile total  laminate  is analyzed by bringing tile two s l lblaminates  toge ther  by 
enforcing a no-slip adhesive. (:ontact (:ondition. In te r laminar  stresses are, later  
re(:overed from the, (:ontzt(:t loads tha t  satisfy force, eqllilit)riunl at the iilterfa(:e. 
There is one other  advantage in mo(teling the, in te r laminar  t)(nln(tary in this 
Inanner (:ompared to tha t  evalllate(t from const i tut ive relat ions in a finite 
eleInent analysis. Irrespe(:tive of the size of the element near tim iilterface, 
the, Gauss point  lo(:ations wtmre stresses are, evaluate(t are ilot oil tile iIlterfa(:e. 
In Ino(teling the iIlterfa(:e, (:onta(:t in the present approa(:ll, it is assllIn(',(t tha t  the 
Ilo(tes on tile two faces of the delainilmtion are, in (:onta(:t prior to ( telainination 
aIl(t tile no-slip adtmsive (:onta(:t (:ondition is enforced by the penal ty  filnction 
metho(1. 

L+ALT, 3 

t+ALXl 

Nx Body 1 

L+ALT, 2 

Figure  4.1: Contac t  between two bodies. 
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4.2 P e n a l t y  F o r m u l a t i o n  of  C o n t a c t  

Consider two bodies, hit t ing body 1 and target  body 2 in contact (see Figure 
4.1), and suppose tha t  point B on body 1 and point A on body 2 were originally 
in contact.  Further  assume that  during the motion they were separated by a 
small amount  of penetrat ion t+Z~tp (superscript t + At is omit ted inFigure 4.1 
for clarity) 

t+Atp = t+Atx2 - t+Atxl (4.1) 

where t+Atx2 represents the position vector of contact  point in body 2 (point 
A) and t+Atxl is the position vector of contact point in body 1 (point B). 

The components  of penetrat ion (displacement) at contact point ('an be 
expressed in the normal and tangential  directions to the interface as 

t+AtpI-  ( t+At;r'2 -- t+At3"l)"i t+AtNIi (I, i -  1, 2, 3) (4.2) 

where t+AtNli denote the ith component  of the vector t+AtN t represented in 
the global Cartesian coor<tinates. Now assuming that  the <:ontiguration change 
from [~t to [~++zxt is small slu:h that  t+AtNl,i ~t Nil and we have 

,+A, PI - '/ 'I + API (4.3a) 

'P,  - ( ' : , , ~ - '  :,,))'N,~ , Ap,  - ( , ,~  - , , ] ) '+A'x , ,  (4.at,) 

Tim finite elemeIlt approximatioIl of iil(:renlental pelmtratioll equatioIl (4.3) is 
obtained by approximat ing the. (tispla(:ements ",,~ of the body 2 at the (:onta(:t 
point usiIlg eleinents on the target sllrface. For details, see, [16]. 

During tim Inotion of the bodies 1 and 2 in (:onta(:t, there may |)e regioIls 
on the sllrfat:e of the two booties that  nee~t to t)e in a(thesive (:oIlta(:t. For a 
laminate with aIl einbedde(t (telamiImtion, this region is the bon(te(t portioil of 
the lamiIlate at tim interface wtlere the (lelamination is present. In or(ter to 
enfor(:e this a(thesive contact (:oIl(titioIl oil ttlis port ion of the sllrfa(:e, a zero 
penetrat ion condition is imposed 11sing the penalty fllnction metho(1. In the 
penalty functioIl Inethod, the constraint condition 

'+AtP I - 0  (Y-  1,2,3) (4.4) 

is included ill tile finite element formulation by minimizing the ino(tified 
functional 

n . , - ~ + n p  (4.5) 

where I~I represents total  energy associated with the assemblage of finite 
elements with enhanced strains 

o~I 
a{Au} = [R]{Au} - {Y} (4.6) 
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and lip represents the penal ty functional associated with the constraint  (4.4) 

1 L, (t+Atp~. t+Atp~) (4.7) 

n--1 

where Lt represents the total  number  of hi t t ing nodes where no slip adhesive 
contact condition is enforced. 

After obtaining the incremental  solution ui during motion from 
configuration t2t to fit+At, components  of penet ra t ion  along normal tangent ia l  
coordinate for any contact point can be post computed from (4.2) as 

t+Ats I --(t+At.T,2- t+At.T, li) t+AtNIi (4.8) 

where t+Atx,i = tx,i + u,i. Further ,  the contact  loads at contact  node n are 
evaluated from the penetra t ion displacement and penal ty  pa ramete r  a., as 
follows 

t+Atq},._--a, t+Atp?, (4.9) 

The load t+Atq~/ at contact  node n represents the reaction forces between the 
hit t ing node and target  surface. 

4.3 S tra in  E n e r g y  R e l e a s e  R a t e s  

Even thollgh linear elastic fractllre mechanics (LEFM) is not applicable 
in general to laminated composites with through tile thickness cracks, it has 
generally been a(:cepte(t tha t  (h:lamination can be chara(:terize(t t)y L E F M  
with critical strain energy release rat(; as a growth (:riterion. Three  basi(: 
modes of delamination,  Modes I, II and III represent the opening, sliding 
and twisting shear modes, respectively. In general three modes can exists in 
isolation or in combinations. Tilt; associated strain energy release rates G[, G[t 
and G[[[ can be evaluated for a delarnination problem for each of the three 
modes of delaInitmtions. They represent the total  energy tha t  is released from 
the body for a small crack extension Aa during the corresponding mode of 
delamination.  Three  different methods of evaluating the strain energy release 
rates are discussed in the sett ing of finite element method.  They  are tile vir tual  
crack closure method (VCCM),  crack closure method (CCM),  and the potential  
energy change method (PECM).  For details see [16]. 

5. N U M E R I C A L  R E S U L T S  

5.1 P r o b l e m  D e s c r i p t i o n  

In order to il lustrate the application of the finite element model developed 
and the strain energy release rate procedures, a double cantilever problem is 
chosen as an example. The geometry of the double cantilever is shown in 
Figure 5.1. A split t ing load of magni tude P is applied at the tip of the double 
cantilever to produce an opening mode near the crack tip. 
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5.2 Analyt i ca l  Solut ion 

If the specimen is assumed to experience small d isplacements  so tha t  linear 
approx imat ions  can be used and the length a and the thickness h of one 
canti lever are such tha t  a / h  value is large and the shear deformat ion  effects 
can be neglected, then the tip deflection can be obta ined  as (see Reddy  [1]) 

p a  3 

5 = 3 D  b (5.1) 

where D b denotes the effective bending stiffness, which depends  on the 
b o u n d a r y  condit ion at the edges y = 0 and y = B. W h e n  the canti lever is 
small in the width  direction, it can be approx imated  as a beam and when it is 
long in the wid th  direction it is a plate strip in cylindrical bending.  The beam 
bending is a plane stress problem whereas the cylindrical bending is a plane 
s train problem. The effective bending stiffness D b for the canti lever depends  
on whether  it is modeled as a plane stress or plane s t ra in problem. 

y , v  

u(0, y, z) - 0 
w(0, y, z) - 0 

Plane strain: v(z, O, z) - v(:r, B, z) - 0 Plane stress: 

B 

:F,~ 71, 

v (0 ,  0, 0) - 0 

t 

T 

z ~ w  It, - -  "I-' 
1 2 

q 
I. 

A el.-- ~Z 

F igure  5.1: Geometry,  loading and bol lndary condit ions of the (tolltflc 
cantilever. 

The double cantilever geometry considered here is symmet r ic  abou t  tile 
plane z = T / 2  so tha t  the mode II s train energy release rate  Gtl = 0. Assuming 
fur ther  tha t  the dissipation of energy takes place only at the crack tip dur ing 
the crack extension,  total  s train energy release rate G is equal to the opening 
mode s t ra in energy energy rate G I 

dII  
G - G I  - da 
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where II represents  the total  potent ia l  energy of the body  per unit  wid th  of the 
lamina te  and a is the de laminat ion  length. This can be represented graphical ly  
in the load-deflection curve, where 82 and 81 represent  the tip deflections of 
the double cantilever at two different de lamina t ion  lengths a and a + Aa (see 
Figure 5.2). Then  for a double cantilever, to ta l  s t ra in  energy release ra te  can 
be ob ta ined  as 

G - GI  = 2 • [1Lzp52 + P ( 5 1  - 52) - 1 ] z P S 1  j IAa-~0 = P ( 5 1  - 52 ) IAa-~0  ( 5 . 2 )  
B A a  B A a  

Using the load deflection relation from (5.1) 

P(a + Aa) a Pa a 
5 1  - -  3D b , 8 2 -  3D b (5.3) 

t he  s t ra in  energy release rate becomes 

p2a2 

G I -  B D  b 
9Dr,82 

B a  4 
(5.4) 

where 8 is the tip deflection. 

q 

T 

P 

Ipl  

_q 

t 
a + A a  

Figure 5.2: Double cantilever configurations at two different de lamina t ion  
lengths a and Aa. 

5.3 Special ly  Orthtropic  Double  Canti lever 

The geometry,  loading and bounda ry  condit ions for this problem (see [11]) 
are the same as those shown in Figure 5.1. The dimensions of the double 
canti lever are: a/h 50, T -  0.04", h T /2  - 0 . 0 2 " ,  A -  2" - A/2  1" = = , a = , 
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and B = 1". The plane stress condition is assumed, and a spli t t ing load of 
magni tude  P is applied at the tip of the double cantilever for an opening mode 
near the delamination tip q. The material  properties of the lamina used are 

E1 = 2 0 X  106 psi, E2 = E a  = 2  x 106 psi, (723 = ( 7 3 1 = ( 7 1 2  = 0 . 8 5  x 106 psi 

//23 -- //13 = //12 --= 0.21 

The lamina orientation is such that  fiber direction is along the length of 
the double cantilever. The finite element used in the plane of the double 
cantilever is shown in Figure 5.3. An inplane mesh of 14 x 1 is used in the 
analysis and the sequence of lengths (in,) of elements used in the analysis 
are: 0.32, (/.32, 0.32, 0.02, 0.01, 0.005, 0.005 and repeated symmetrically. Linear 
Lagrange 1D elements are used in the thickness direction, as shown in Figure 
5.4. 

Figure  5.3: The 2D element used for inplane discretization. 

0 ~ 

0~ 
Selected interface 

Figure  5.4: Nonuniform mesh used through tile thickness. 

The strain energy relea,se rate at the crack tip is calculated by three different 
approaches. Even though these methods evaluate the strain energy release 
rate based on a small delamination closure, the VCCM requires an analysis 
only at one delamination length, because of the virtual nature of the crack 
closure considered. In the other two approaches (CCM and PECM)  the 
delamination closure (Aa) is real and hence two different analyses are required 
for the evaluation of the strain energy release rate. Irrespective of whether  the 
delamination closure (Aa) is virtual or real, all the above methods  require it 
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to be small for an accurate determination of the strain energy release rate. In 
the context  of the finite element method,  this delamination closure is dictated 
by the size of the elements adjacent to the delamination tip. In this study, the 
delamination closure length considered is 0.005". 

The analyt ical  solution for the strain energy release rate can be obta ined 
from (5.1). For the plane stress problem the effective bending stiffness is 
D b = E l I ~ y .  Where,  Iyy represents the moment  of inert ia  of the section of 
the cantilever about  the y-axis .  The  strain energy release rate GI obta ined 
from different methods  are compared with the analytical  solution in Figure 
5.5. It can be seen that ,  all the three methods  yield the strain energy release 
rate G1 very close to the analytical  solution. This is despite the fact tha t  the 
present analysis uses a higher-order element which has been repor ted [7] to be 
inaccurate  in the evaluation of strain energy release rate. 
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Figure  5.5: ComparisoIl of the strain energy release rates. 
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F igure  5.6: Load-deflection curves for double cantilever. 

Figure 5.6 shows a comparison of the load-deflection curves obtained using 
F E M  and the analytical  solutions. It can be noted tha t  the F E M  with 
contact  enforcement by penalty function method predicts a more compliant  
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response compared to that  from the analytical solution. This is a t t r ibu ted  
to the assumption of clamped endcondition made in obtaining the analytical  
solution. The clamped endcondition is only an approximation to the actual  
boundary  condition at the ends of the double cantilever segments (i.e., near the 
delamination tip). 

Figures 5.7 and 5.8 show the effect of penalty parameter  on the tip deflection 
and strain energy release rate G1 for an applied load of 1 lb. It is noted tha t  
value of the penal ty  parameter  greater than 10 6 has little effect on the tip 
deflection as well as on the strain energy release rates. 
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Figure  5.7: Effe(:t of the penalty parameter  on tip deflection. 
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Figure  5.8: Effect of the penalty parameter  on the strain energy release rate. 

5.4 Cross-Ply  (0/90)s Double  Canti lever 

In this section a cross-ply double cantilever problem is considered in plane 
strain state. Tile geometry of the cantilever is shown in Figure 5.1. It has an 
overall length of A = 6", width B = 1", and thickness is T. The total  double 
cantilever is a composite laminate (0/90)s, and the individual plies have the 
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following mater ial  properties in principal material  directions 

E1 -- 25 x 106psi, E2 = E3 = 1 x 106psi, G23 - 0 . 2  x 106psi 

G12 - -  G13 = 0 .5  • 1 0 6 p s i ,  u12 = t/23 - u13 - -  0 . 2 5  

Each of these mater ial  plies considered are of equal thickness hk,. 

The laminate  is assumed to have an embedded delaminat ion in the midplane 
of the cantilever extending to a length of a = 3 I' from its free end making it a 
double cantilever. A split t ing load of magni tude  P = 1 lb is applied at the tip 
of the cantilever. The displacements (u,v,w) along the (z ,y ,z)  directions are 
constrained as follows: 

~,,(o, v, z) - o ,  ~,(:r, o, z) - o ,  ~ ( o ,  v, z) = o ,  ~(:~,, B ,  ~) - o 

A 2D mesh of 6-node elements (see Figure 5.9) is used in conjunction with a 
1D mesh (Figure 5.10) of 2-node linear elements through the thickness direction. 
The 6-node elements used in the inplane mesh has a quadrat ic  variat ion along 
the z -d i r ec t i on  for captur ing bending deflection of the laminate  and has linear 
variation along the y-di rec t ion .  

I h k 0 

90 

90 

0 

L2DC L4DC L6DC L8DC 

Size of sequence of elements frmn bottonl of laminate 

L2DC. (2.0, 2.0) hk 

L4DC- (1.0, 1.0, 1.0, 1.0) Ilk 

L6DC. ( 1.0, 0.5, 0.5, 0.5, 0.5, 1.0) hk 

L8DC: ( 1.0, 0.5, 0.25, 0.25, 0.25, 0.25, 0.5, 1.0) hk 

F igure  5.9: Mesh used through tile thickness of cross-ply double (:antilever. 

The strain energy release rate at the crack tip is calculated by the three 
different approaches. In order to s tudy the sensitivity of different approaches 
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to the length of delamination closures considered, strain energy release 
rates are evaluated using different meshes that  produce different amounts  of 
delaminat ion closure lengths. The different inplane meshes considered are given 
below. 

M e s h  D C 0 :  

Number  of elements (along z, y): 8 x 1 

Length of elements: 0.75" (8 elements) 

Delaminat ion closure length Aa = 0.75" 

M e s h  D C I :  

Number  of elements (along :r,,y): 10 x 1 

Length of elements: 0.75" (3 elements), 0.375" (4 elements), 0.75" (3 
elements) 
Delaminat ion closure length Aa = 0.375" 

M e s h  DC2:  

Number  of elements (along :r, y): 12 x 1 

Length of elements: 0.75" (3 (~lcm(~nts), 0.375", 0.1875" (4 (~lcmcnts), ().375", 
0.75" (3 cl(mmnts) 

Delairlination (:losllre leIlgth Aa = 0.1875" 

M e s h  DC3:  

NllInbcr of ('.h:mcnts (along x, y): 14 x 1 

Length of (~lemcnts: 0.75" (3 eh~m(,nts), 0.375", 0.1875", 0.09375" (4 (,l(~ments), 
0.1875", 0.375", 0.75" (3 elements) 

Delaminat ion closure length Aa = 0.1875" 

The strain energy release rates evaluated from different metho(ts are plotted 
against Aa/a in Figures 5.10 and 5.11 for a/h values of 2 and 100, respectively, 
where h is the thickness of tile sublaminate.  A mesh with 2 linear elements 
(L2DC in Figure 5.9) throllgh tile whole thickness of the laminate is (:onsi(tered 
in this study. It can be seen that  all the three methods converge approximately  
to the same value of Gl as Aa approaches zero. Further,  it is noted that  VCCM 
is less sensitive to Aa/a indicating that  it produces more accurate value of Gr 
compared to CCM and PECM for larger values of Aa/a values. Sensitivity 
(:urvcs from CCM and PECM are very (:lose to each other for small values 
of a/h 11pto 50 and (lifter slightly for the case of a/h = 100. Figllres 5.12 and 
5.13are the log-log plots showing the variation of G1 with respect to a/h for large 
and small values of delamination closure lengths (Aa/a = 0.25 and 0.03125). It 
is noted that  the curves obtained from all three methods  (VCCM,CCM and 
PECM)  are very (:lose to each other for Aa/a = 0.125 and smaller. 
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F i g u r e  5.13: Variation of G1 with a/h for A a / a  = 0.03125. 

In order to s tudy the effect of mesh refinement through the thickness 
on GI, four different thickness meshes (L2DC, L4DC, L6DC and L8DC) are 
considered. The number of elements used in each of these meshes and size of 
the elements arc shown in Figure 5.9. The 2D mesh used here is DC3. The 
strain energy rate G1 obtained from each of these meshes is given in Table 
5.1 for VCCM. It is Ilote(t that  the change in the GI vallles with thickness 
refinement is very small for large a/h  values. 

Table 5.1: GI (lb.in/in 2) vallms for different thickness Ineshes from VCCM. 

Meshes a / h -  2 a/h, - 4 a / h , -  10 a / h , -  20 a/h, - 50 a/h  - 1(1() 

L2DC 1.610E-5 9.239E-5 1.069E-3 7.643E-3 1.112E-1 8.662E-1 
L4DC 1.633E-5 9.389E-5 1.(}76E-3 7.671E-3 1.113E-1 8.667E-1 
L6DC 1.652E-5 9.509E-5 1.082E-3 7.690E-3 1.114E-1 8.669E-1 
L8DC 1.659E-5 9.550E-5 1.080E-3 7.695E-3 1.114E-1 8.669E-1 

To ascertain the accuracy of the evaluated strain energy release rates, the GI 
computed from different numerical methods are compared with the analytical 
solution. The analytical sollltion given in (5.1) is valid for thin laminates where 
shear deformation effects can be neglected. The effective bending stiffness D b 
for the cross-ply laminate is given by 

Db = D l l A l l  -- B~I (5.12) 

where 

( A l l , B l l , D l l )  = . / i  Q l l (1 ,  z, z2) dz , 
E1 

Ql l  = (5.13) 
1 -- ~12~21 
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The integrat ion indicated in (5.13) is over the thickness of each cantilever. Table 
5.2 gives a comparison between GI from three a l ternate  numerical  methods  to 
tha t  from the analytical  solution for a/h = 50 and 100. The meshes used in the 
analysis are DC3 for inplane refinement and L2DC for thickness refinement.  It 
can be seen tha t  Gt from VCCM, CCM and P E C M  are close to the analyt ical  
solution for thin laminates. 

Table 5.2: Comparison of GI (Ib.in/in 2) from al ternate  methods.  

a /h  VCCM CCM P E C M  Analyt ical  

50 0.1112 0.1079 0.1079 0.1063 
100 0.8662 0.8417 0.8424 0.8503 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

A layerwise finite element is developed for the geometrically nonlinear 
analysis of laminated  composites using higher order functions for the inplane 
approximat ion and a linear function for the thickness approximat ion.  All 
problems considered in tile stll(ty are bending dominated  and hence, reqllire 11se 
of higher order functions in the inplane direction for captur ing accurate  bending 
response. Linear functions are used in modeling the thickness dire(:tion of the 
laminate  because it is extremely expensive to provide refinement throllgh the 
thickness. The  thickness locking effects associated with the llse of low or(ter 
functions through the thickness arc overcome by the use of enhanced strain 
method with enhancement  field defined for the transwwse ilormal strains. 

The layerwise finite element developed herein is used in the analysis of 
laminates,  with a chosen interface modeled with emphasis on the s tudy of 
delaminations.  In a laminate with an embedded delamination,  the interface 
is modeled as a contact zone between the laminate  halves separa ted  by the 
interface. This  is achieved by considering the total  laminate as two independent  
sublaminates  separated by the interface, but analyzed as a single laminate  by 
enforcing a no-slip adhesive contact  condition at the interface. 

The interface model developed herein is used to analyze double (:antilever 
problems. Strain energy release rates (:omputed using the present model are 
found to be in good agreement with the approximate  analytical  solutions for 
the case with specified load. However, the comparison was not as good for 
cases with a specified displacements at the tip of the double cantilever. This 
is due to the fact tha t  the analytical  solution is based on the assumpt ion  of a 
c lamped end condition for the segments of the double cantilever. 
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The present study concerns finite element predictions of carbon-fiber/epoxy-resin composite 

coupon delamination tests up to fracture. For these predictions, a previously-defined damage 

mesomodel of composite laminates is used and implemented in a tridimensional F.E. code. 

This F.E. software includes the interlaminar interfacial deterioration as well as the main inner 

layer damage mechanisms. This code is able to predict at any time and at any point the 

"intensities" of the different damage mechanisms up to fracture. However herein, attention is 

being focused on the identification and comparison of F.E. predictions with M55J/M18 

carbon/epoxy experimental results obtained from the AEROSPATIALE company. 

I. I N T R O D U C T I O N  

An initial step, which has been achieved in other studies, is to define what we call a laminate 

mesomodel. At the mesoscale, characterized by the thickness of the ply, the laminated 

structure is described as a stacking sequence of homogeneous layers throughout the thickness 

and interlaminar interfaces. The main damage mechanisms are described as: fiber breaking, 

matrix micro-cracking and adjacent layers debonding [ 1-3]. The single-layer model includes 

both damage and inelasticity. The interlaminar interface is defined as a two-dimensional 

mechanical model which ensures traction and displacement transfer from on ply to another. Its 

mechanical behavior depends on the angle between the fibers of two adjacent layers. 
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It is well-known that fracture simulation using a continuum damage model leads to severe 

theoretical and numerical difficulties. A second step which has also been achieved, is to 

overcome these difficulties. For laminates and, more generally, for composites, we propose 

the concept of the mesomodel: the state of damage is uniform within each meso-constituent. 

For laminates, it is uniform throughout the thickness of each single layer; as a complement, 

continuum damage models with delay effects are introduced. 

Two models have to be identified: the single layer model and the interface model [4-7,9- 

11,13,16]. The appropriate tests used consist of: tension, bending, delamination. Each 

composite specimen, which contains several layers and interfaces, is computed in order to 

derive the material quantities intrinsic to the single layer or to the interlaminar interface [9-11 ]. 

The proposed procedure is rather simple and has been applied to various materials. Various 

comparisons with experimental results have been performed to show the possibilities and the 

limits of our proposed computational damage mechanics approach for laminates. A Finite 

Element code, devoted to stiff stress gradients, has been developed. It's an extended version of 

the F.E. code Castem 2000 (C.E.A.) [8]. Several tests of delamination propagation (DCB, 

MMF, ENF and CLS) or of initiation (edge delamination or holed plate specimens) are 

considered herein. 

We will pay special attention to the basic aspects of the finite element simulations of 

interlaminar and intralaminar damages. The finite element predictions of classical Fracture 

Mechanics coupon tests are analyzed. In particular, the value of using a Damage Mechanics 

approach for initiation prediction as well as for the interpretation of standard Fracture 

Mechanics tests, in connection with experiments [11], is discussed. 

2. M E S O M O D E L I N G  C O N C E P T  

Let us recall that delamination often appears as an interaction between fiber-breaking, 

transverse micro-cracking and the debonding of adjacent layers itself. For laminates, three 

different scales may easily be defined: the micro scale of the individual fiber, the meso scale 

associated with the thickness of the elementary ply, and the macro scale which is the structural 

one. Due to the small thickness of the elementary ply and to the kinematics of the deterioration 

inside the ply, it is both possible and worthwhile to derive a material model at the mesoscale. 

The one proposed in [5] is defined by two meso-constituents, a single layer and an interface 

(Figure 1). The interface is a mechanical surface connecting two adjacent layers and depends 

on the relative orientation of their fibers. 
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Figure 1. Laminate modeling 

A mesomodel is then defined by adding another property: a uniform damage state is 

prescribed throughout the thickness of the elementary ply. This point plays a major role when 

one tries to simulate a crack with a damage model. Let us recall that in order to be able to 

perform a complete analysis of the delamination process in all cases, damage models with 

delay effects are introduced for the in-plane direction. One limitation of the proposed 

mesomodel is that it is able to describe only two types of macrocracks. The first type is a 

delamination crack within the interface, and the second type is the crack is orthogonal to the 

laminate with each cracked layer being completely cracked in its thickness. Let us also note 

that the (0 ~ 0 ~ interface appears to be something artificial if the material is well made. 

Normally, such an interface need not be introduced. However, such an "artificial" interface can 

be introduced for describing an initial crack in a thick layer. 

Let us recall that the single-layer model and its identification, including damage such as 

fiber-breaking and transverse micro-cracking as well as inelastic effects, were previously 

developed in [4-5]. In section 3, the single-layer model is detailed. 

3. S I N G L E - L A Y E R  M O D E L I N G  

The carbon-fiber/epoxy-resin material under consideration in this study has only one 

reinforced direction. In what follows, subscripts 1, 2 and 3 designate the fiber direction, the 

transverse direction inside the layer and the normal direction, respectively. An energy is 

proposed here to predict the damage in a laminated structure [9]. The damaged material strain 

energy, by splitting the energy into a "tension" energy and a "compression" energy, is written 

in the case of the plane stress assumption. With the transverse rigidity in compression being 

supposed equal to E 0, one then obtains the following energy for the damaged-layer material: 
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where ~ is a material function, that takes into accout the non-linear response in compression. 

dF, d and d' are three scalar internal variables which remain constant within the thickness. They 

define the damage of the single layer. The forces associated with the mechanical dissipation are: 
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where <X>+ is the positive part of X and << >> denotes the mean value within the thickness. 

For static loadings, the damage evolution law can be formally written" 

�9 = Yd' lx  x < t )  Yd' I; < t ) d'lt Ad' (Yd Ix' ' d l t  = A d ( Y d l x '  Ix '  -- 

where the operators Ad and Ad' are material characteristics. The operator Ad is drawn for 

instance in Figure 2. dF corresponds to a brittle fracture mechanism. More details, in particular 

for the modeling of inelastic strains, can be found in [4,7,9]. 
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Figure 2. Shear damage evolution of the elementary ply for the M55J/M18 material. 

4. INTERLAMINAR INTERFACE MODELING 

4.1. Damage kinematics of the interface 

The interlaminar connection is thus modeled as a two-dimensional entity which ensures 

stress and displacement transfers from one ply to another. The diagram leading to the 

definition of the interface is classical for isotropic bi-materials. The interlaminar connection can 

be interpreted as a ply of matrix whose thickness (denoted by e) is small compared to the in- 

plane dimension. Therefore, the wavelength of the displacement in the normal direction N3 is 

on the order of magnitude of the thickness, while the wavelength of the displacement fields in 

the plane is on the order of the in-plane directions. 

Figure 3. "Orthotropic" directions of the interface. 
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[ U ] = U  + - U - =  [U]I N 1 + [ U ] 2 N  2+[W]N__. 3 (1) 

is the difference in displacements between the upper and lower surfaces of ~ .  Thus, at the first 

order, the strain energy of f2 is: 

l I ~  1 f [U)  T [U]dr  
E d = ~ Tr[ KE 0 g0 ] d~  --. ~ e H e 

J F  

(2) 

where F is the area of the mid-plane interface, and H is a (3,3) symmetric matrix. Let us 

denote the bisectors of the fiber directions by (Nl, N2). They are necessarily "orthotropic" 

directions of the interface, since a [01,02] interface is equivalent to a [02,01] interface (Figure 

3). The ideas and framework which govern the interface damage model are similar to those 

used for deriving the layer damage model [5],[9]. Like in the layer model, the effect of the 

deterioration of the interlaminar connection on its mechanical behavior is taken into account by 

means of internal damage variables. The different behavior in "tension" and in "compression" 

are distinguished by splitting the strain energy into "tension-energy " and "compression- 

energy". More precisely, we use the following expression, as proposed in [ I0], of the energy 

per unit area. Thus, in the (N~, N2, N3) axes, the elastic strain energy of the interface may be 

written as follows in stress form: 

fl- 2 2 
1 < _ o33>+2 < o33 >+2 o ~ 3  + o23 

Ed = 2 .[ k 3 + k3o (l-d3) + klo(1-dl) k2(l-d2) 
dF (3) ~ 1  

Three internal damage indicators, associated with the three Fracture Mechanics modes, are 

thereby introduced. 

4.2. Interfacial damage evolution laws 

These evolution laws must satisfy the Clausius-Duheim inequality. Classically, the damage 

forces, associated with the dissipated energy o3, are introduced as follows: 

2 2 2 
1<O33>+ 1 O31 1 032 

Yd3 = 2 k0(l_d)2 " Ydl = 2 k  0 (l-d 1)2 " Yd2 = 2 k 0 (1_02)2 (4) 

with: o3 =Yd3 cl3 + YdlCll + Yd cl2 ( o3 >- 0 ) 
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The damage evolution laws used in this study are based on the assumption that the evolution 

of the different damage indicators is strongly coupled and driven by a unique equivalent 

damage force. The following model, developed in [13], considers that the damage evolution is 

governed by means of an equivalent damage force of the following form: 

)oc l/oc. 
Y (t) = sup ]x<_t [ (Yd~+ (T1Ydl + (]t2Yd2) a) I xl (5) 

where 7 l, 72 and o~ are material parameters. In terms of delamination modes, the first term is 

associated with the first opening mode, and the two others are associated with the second and 

third modes. Compared to other damage evolution laws, used for example in [5-7], an 

enhanced coupling model, associated with the parameter ~, is proposed. The effect herein is to 

be able to describe Fracture Mechanics failure loci which are quite general. A damage evolution 

law is then defined by the choice of a material function W, such that: 

d 3 = d ! = d 2 = W(Y) if d < 1 ; d 3 = d I = d 2 = 1 otherwise 

A simple case, used for application purposes, is: 

n <Y-Yo>+ n 
W(Y) = [ n+l Yo-Yo ] (6) 

where a critical value Yc and a threshold value Yo are introduced. High values of n correspond 

to a brittle interface. 

To summarize, the damage evolution law is defined by means of six intrinsic material 

parameters Yc,Yo, ~'l, ~'2, ot and n. The threshold Yo is introduced here in order to expand the 

possibility of describing both the initiation of a delamination crack and its propagation. As 

regards the initiation of a delamination crack, the significant parameters are Yo, n and o~. It will 

be shown hereafter that Yc, 71,72 and o~ are related to the critical damage forces. 

4.3. Identification method for interface propagation parameters 

A simple way to identify the propagation parameters is to compare the mechanical 

dissipation yielded by the two approaches of Damage Mechanics and Linear Elastic Fracture 

Mechanics. This was performed in [13], and only the results will be presented below. In the 

case of pure-mode situations, when the critical energy release rate reaches its stabilized value at 

the propagation denoted by G~c, we obtain: 
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Y_ 
C~ci=Yc" C~cli = c " C~ciii = 

' 71'  72 
(8) 

For a mixed-mode loading situation, a standard LEFM model [ 14] is simply derived: 

/ / / / ~ GI ~ + ( G I I / O ~  GIII : 1  

~~c~I) + GPII 
(9) 

4.4. Extension with delay effects 

In order to obtain, in all cases, a consistent model for the description of rupture, a variant of 

the previous damage model that introduces delay effects [8-13,15,16] is applied. In quasi-static 

problems, the use of such damage evolution laws implicitly introduces a length scale into the 

governing equations of the problem and thus avoids the pathological mesh sensitivity for 

composite structures. 

5. F R A C T U R E  M E C H A N I C S  TESTS 

5.1. Introduction 

The aim of this section is to present the classical Fracture Mechanics tests which have been 

chosen to identify the interface damage model. In a second step, these examples will be 

predicted with the help of our F.E. code and then compared with experimental results. The 

tests conducted in this work are the pure-mode I DCB (Double-Cantilever Beam) Test [ 17], the 

pure-mode II ENF (End-Notched Flexure) test [18], and two mixed-mode tests" the MMF 

(Mixed-Mode Flexure) test and the CLS (Cracked-Lap Shear) test [19] (Figure 4). These tests 

were conducted on an INSTRON testing machine at ambient temperature, and the displacement 

rate loading was set at 2 mm min -1 in the DCB and CLS tests and at 1 mm min -l in the ENF 

and MMF tests. The F.E. predictions were conducted on HP 735 machines. 

The D.C.B test is probably encountered the most often in the literature. In this mode I test, 

the links between Linear Elastic Fracture Mechanics and Damage allow identifying the Yc 

damage model parameter. The E.N.F test is used to obtain the critical energy release rate in 

mode II. Using both mode I and mode II experimental results, the links between Linear Elastic 

Fracture Mechanics and Damage allow identifying the YI damage model parameter. The 

hypothesis (yj =Y2) is made without any further experimental information on mode III. In the 

M.M.F test, a mixed-mode critical energy release rate is obtained. In this mixed-mode test, 
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mode I is dominant. The evolution of the damageable area is refined. Each specimen tested is a 

[(+0/-O)4s/(-0/-I-0)ns] laminate with 0 = 0 ~ 22.5 ~ or 45 ~ according to the three kinds of +0 

interlaminar interfaces investigated. The stacking sequence is equilibrated and symmetric in 

each arm of the beam in order to suppress any bending/twisting-membrane coupling effect. 

Such tests are usually analyzed by means of Linear Elastic Fracture Mechanics (LEFM). 

Nevertheless, in the case of carbon-epoxy laminates, the main assumptions of LEFM are not 

always satisfied even in the simple case of a D.C.B. specimen. This is true, in particular, in the 

case of: non-unidirectional stacking sequences and R-curve-like phenomena. In the former 

case, inner layer damage mechanisms may be activated; they lead to an apparent energy release 

rate different from the local interfacial one. In this case, a damage analysis of the layers and 

interfaces should be performed [ 11 ]. 

~ F 
DCB test 

a) L pure mode I 
F 

~F ENF test 

MMF test 
c) [ J ,  57 % mode I 

F ~ .~  CLS test 
d) 4 ~ i 20% modeI 

Figure 4. Standard Fracture Mechanics tests. 

5.2. Identification of the damageable interface propagation parameters 

From the corrected critical energy release rates at propagation (Figure 5) [ 11] and from the 

relationships existing between Fracture Mechanics and Damage Mechanics (8), we deduce the 

values of the critical energies Yc and the coupling coefficient Tl. Without any further 

information on mode III interlaminar fracture, let us recall that we can choose 72 = 71, which 

is justified at least for a +45 ~ interface. The identification results are reported in Table 1. For 

each kind of interface, the parameter ~, which governs the shape of the failure locus in the 
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mixed-mode (9), is identified in the normalized mode I/mode II plane (Figure 6). It is observed 

that ~ is always greater than 1, and we can choose the same parameter  ot for the two +0 

interfaces (0 r 0~ 

Table 1. Interface model parameters. 

Interface Yc (N mm- 1) ~ 1 o~ 

0~ ~ 0.113 + 0.007 0.37 + 0.15 

0.167 + 0.013 0.36 + 0.17 

0.192 + 0.014 0.44 + 0.16 

+22.5 ~ 

+45 ~ 

1.59 

1.12 

1.19 

With the +0 interfaces, the dissipative phenomena inside the layers are not insignificant in 

particular for the case (0 = +45~ and thus a critical damage force may not be entirely attributed 

to the delamination process. In fact, by introducing the dissipation inside the layer it is possible 

to clearly identify the intrinsic damage interface parameters [ 11 ]. Let us note that the interface 

parameters seem to be independent of 0 for all +0 interfaces with 0 ~: 0 ~ Let us also note that 

the (0~ ~ interface appears to be something artificial. However, such an "artificial" interface 

can be introduced, for example, to describe an initial crack in a thick layer. 

Figure 5. Critical energy release rates at propagation. 
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Figure 6. Identification of e~ for the +45 ~ interface. 

5.3. Simulation of  classical Fracture Mechanics tests 

Tridimensional F.E. predictions are conducted, with the shape of the delaminaton front also 

being predicted. The tests of crack propagation in interlaminar fracture specimens are usually 

conducted on beam specimens with an initiated crack at the studied interface. Our specimens 

are 300 mm long and 20 mm wide. The mean thickness of a single ply is on the order of 0.1 

mm, and one element in the thickness is chosen for the prediction. An anti-adhesive film 40 

mm long and 25 ~tm thick is inserted at the mid-plane in order to initiate cracking. From a 

computational point of view, an interface of zero stiffness rigidity is used, in combination with 

unilateral contact conditions, in order to model the initial crack (anti-adhesive film) in the F.E. 

predictions. 

The evolution of the damaged area is then refined for all test predictions. Experimental 

results and finite element predicted values exhibit good correlation (Figures 7-10). In 

particular, the lengths of the debonding area are found to be close. 
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Figure 7. Prediction of a D.C.B. test. Comparison between experimental results and predicted 

values. The initial crack closure is a= 50 mm. The evolution of the crack length at the end of the 

test is 23mm. 

Figure 8. Prediction of an E.N.F. test. Comparison between experimental results and predicted 

values. The initial crack closure is a=68mm. The evolution of the crack length at the end of the 

test is 77mm. 
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Figure 9. Prediction of an M.M.F. test. Comparison between experimental results and predicted 

values. The initial crack closure is a=45mm, the crack length at the end of the test is 32.77mm. 

Figure 10. C.L.S. test: comparison of the initiation of the delamination crack between 

experimental results and predicted values. 
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After each Fracture Mechanics test, the experimental delamination shape of the test 

specimen is highlighted by an X-ray photograph. For the unidirectional M55J/M18 material, 

the X-ray shape is shown in Figure 11 for the D.C.B., E.N.F., M.M.F. and C.L.S. tests. The 

delamination front is not straight in the width direction of the test specimens. Near the edge, 

there is curvature of the delamination front in all tests. In the case of the C.L.S. test, this shape 

is not symmetric. The computed shape of the delamination area is shown for the D.C.B. test 

in Figure 12. It should be noted that the curvature of the delamination front is greater for tests 

conducted with the M55J/M18 material with 0 angle values other than 0 degrees. 

Figure 11. X-ray delamination shape photograph in the unidirectional material case. 

Figure 12. Prediction of the delamination front in the D.C.B. test. 
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6. I N I T I A T I O N  P R E D I C T I O N  

The study of the initiation of a delamination crack is often investigated by means of Edge 

Delamination Tension specimens [20]. In this case, Fracture Mechanics is not well adapted. 

In addition, delamination, especially at its onset, appears to result from an intricate interaction 

between inner layer damage mechanisms and the deterioration of the interlaminar interface 

itself [3]. Under such conditions, it seems adequate to use the previously-defined mesomodel 

for the layer and the interface. 

In order to emphasize the value of the Damage Mechanics of Interface in the prediction of 

initiation, let us consider the case where damage phenomena are located in both layers and 

interfaces. An EDT specimen under tension was simulated. In such a case the numerical 

problem is set in a strip perpendicular to the edge. This type of problem has been studied in a 

similar way in [6, 21 ]. The simulations are compared with experimental results in the case of a 

[03,-452,90]s M55J/M18 material specimen. Delamination occurs at the mid-plane interface. 

The values of the longitudinal strain at the onset of delamination are compared. This example 

shows the necessity of including all the damage mechanisms into the delamination analysis 

even for quite simple specimens. The edge is straight and the problem to solve can be set up as 

a generalized plain strain problem in a strip perpendicular to the edge. In the previous test, the 

delamination starts on the 0~ ~ interface and after this initiation point, the load can still 

increase, with the maximum value of the applied tension load being around three times the 

initiation load. Without taking the inner layer mechanisms into account in our Finite Element 

Analysis, the initiation and maximum load coincide. Introducing the inner damage 

mechanisms (namely, the transverse and shear microcracking), the delamination propagation 

then becomes stable under increasing tension up to the fiber rupture of the 0 ~ plies [22]. Figure 

13 depicts the state of damage before the final failure of the specimen. The comparison 

between the predicted values and the experimental results is quite encouraging, and the location 

of the onset of delamination was correctly predicted (Figure 14). 
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Figure 13. The laminate is a M55J/M18 [03, +452, 90]sym stacking sequence. The F.E. damage 

prediction of the quarter-section represents shear failure in the +45 ~ layers. 

Figure 14. A crack first appears in the central interface (quarter of interface). 

7. H O L E D  P L A T E  IN TENSION 

Let us consider the structural computation example defined in Figure 15. It is a holed plate 

[+ 22.5 ~ , -22.5~ subjected to tension. The loading history is shown in Figure 16. At any 

point and at any time, the code is able to yield the "intensity" of the various damage 

mechanisms up until the ultimate fracture. The main damage mechanism herein is 

delamination, i.e. the deterioration of the (22.50/-22.5 ~ interface. Figure 17 shows the value of 
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the damage variable "d3" at times T1 and T2. The increase in the delaminated area is very 

significant. The layer's damage mechanisms are weakly excited (Figure 18). 

Figure 151 A structural computation example. 

Figure 16. Loading history. 
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Figure 17. Damage variable d3 of the (22.5~ ~ interlace at times T l and T2. 

Figure 18. Damagc variablc d ot" the layers at times T I and T2. 
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CONCLUSIONS 

A mesomodel of laminate structure has been built and identified for various composites. 

Resistance to delamination can be characterized by a few material parameters. Comparisons 

with experimental results proved to be very satisfactory. 

However, calculations performed with such a mesomodel lead to very large computational 

times. A present challenge is to develop a more effective computational strategy and, in 

particular, to use parallel computers. 
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ABSTRACT 

Rubber like materials (hyperelastic or visco-hyperelastic solids) are characterised by large 
elastic deformations and are usually assumed incompressible. It is however frequently 
observed that a significant volume change is associated to the damage process, resulting in the 
so-called damaged induced compressibility. The purpose of this paper is to analyse some 
implications of this unusual coupling between damage and volume changes in o~herwise 
incompressible materials. Attention will be focused on isotropic hyperelastic behaviour and 
rate-independent isotropic damage description (one scalar damage variable D). 
The constitutive framework, based on a novel constraint condition will be briefly established. 
Three different models will be presented namely (i) a constrained model developed within the 
GSM framework (Generaliscd Standard Materials), (ii) a modified non GSM constrained 
model with simplified evolution law for damage, (iii) an unconstrained, nearly compressible 
model ,including the constraint as a limiting case. 
Special emphasis will be laid on two specific aspects of these models: (i) coupling of the 
elastic law with the damage evolution through the Lagrange multiplier q associated to the 
constraint and which occurs in both the stress tensor and the damage thermodynamic force Y, 
(ii) An essential difference between stress and strain control which will then be discussed in 
more detail for the studied models. 

1. INTRODUCTION 

Elastomers are those rubberlike materials often used in confining industrial environments 
characterised by: large elastic deformations, non linear-rate dependence, continuous damage 
mechanisms, ageing, induced volume variation, Mullins effect, rigidification effect at high 
elongations, etc... A complete review on these physical properties are given in the pioneering 
reference book by Treloar [I]. 
1. Modelling as accurately as possible these phenomena is a very important task for the 

numerical computations of the elastomeric structure components. In the literature the 
rubber like materials are often treated as incompressible or very nearly so, as can be found 
in the important work of Ogden summarised in his book [2] and the references given there. 
The non linear rate dependence is often modelled using the basic hereditary integral 
formulation [3, 4] or less frequently using the framework of the thermodynamic of 
irreversible processes with internal state variables and intermediate configuration as 
proposed first by Sidoroff [5, 6, 7] and used by many others [8-11 ]. 
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For many black filled elastomeric materials it is observed [ 12, 13] that the deformation process 
is often associated with damage growth which in turn induces an important volume variation. 
This means that the material behaves as incompressible in the beginning of the deformation 
process and volume changes appears as the damaging deformation increase. This has been 
modelled first by Ogden [2] in the case of very small volume changes associated with the 
deformation of rubber-like solids without any reference to the damage process. 
Recently the authors [11, 14, 15] proposed a fully three-dimensional finite-strain visco- 
hyperelastic model accounting for the following important features : 
- large hyperelastic deformations, 
- rigidification at high extensions i.e. the slope of the force-extension curve begins to rise at 

high elongations, 
- Mullins softening effect, 
- isotropic continuum damage, 
- non-linear rate effects (viscous effects), 
- volume variation induced by the damage growth. 
In this work, we limit ourselves to the modelling of the damaged hyperelastic behaviour of 
elastomeric solids with an induced volume changes. The framework of the thermodynamics of 
irreversible processes with state variables [16, 17] is used using an Eulerean description. For 
the sake of simplicity, attention is focused on the isothermal and fully isotropic case with the left 
Cauchy Green dilatation tensor Bq associated to the Cauchy stress tensor Ti: taken as external 

�9 J 

variables. Isotropic damage is represented by a simple scalar lntemal variable D in the 
Chaboche's sense [18] associated to the generalised thermodynamic force Y. The volume 
variation is supposed to be exclusively due to the damage initiation and growth. 
A new non classical constraint condition is proposed to describe the induced compressibility. 
Three different models are presented namely (i) an internally constrained model (IC Model) 
within the Generalised Standard Materials (GSM) framework [19], (ii) a modified non GSM 
constrained model with non associative damage flow, (iii) an unconstrained, weakly or nearly 
incompressible model (NI Model), which include the IC model as a limiting case. 
Special emphasis will be laid on two specific aspects of these models : (i) coupling of the elastic 
law with the damage evolution through the Lagrange multiplier q associated to the constraint and 
which occurs in both the stress tensor and the damage thermodynamic force Y, (ii) an essential 
difference between stress and strain control which will then be discussed in more detail for the 3 
mentioned models. In particular it will be shown that a strain-controlled loading path is highly 
singular and that some amount of stress-control is necessary for a reason-able material 
description. This will be discussed by establishing the consistency condition and differential 
constitutive equation under similar loading paths differing only by the control variables. 

2. BASIC K I N E M A T I C S  AND T H E R M O D Y N A M I C  B A C K G R O U N D  

2 . 1 .  K i n e m a t i c  b a c k g r o u n d  

We first introduce some thermodynamic definitions and kinematic results that will be used 
throughout the paper. Writing the current position of a material point as x; and the reference 
position of the same point as X~, the deformation gradient is : 

Ox; 
, = ( 1 )  F'i axj 

then Y, the volume change at the point x i, can be written using the balance of mass as : 

p0 
J = det Fii = ~ > 0 

P 
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where p~ and p(x , t )  are the densities of the material in the initial (point Xj) and current 
(point x)  configurations respectively. 
Furthermore, the symmetric left Cauchy-Green tensor B~j as a convenient Eulerean strain 
measure is used" 

B o = F~, Fj, with J = det F 0 = (det Bij) I/2 (2) 

Now, our interest is concerned with hyperelastic materials being initially incompressible 
i.e. J ( X , t  = 0) = 1, which motivates splitting the deformation gradient F 0 and consequently B 0 
into a volumic (dilatational) and isochoric (distortional) parts �9 

Fij = (J'/34. , )F"k) and B 0 = (j-2/3~/,)~',j (3) 

giving ~ = det ~0 = (det B'0) ~/2= 1 which ensures the volume preserving of the distortional 
deformation process. 

2.2. T h e r m o d y n a m i c  founda t i on  of the models  
Following Sidoroff [5-7] the decomposition (3) transforms the state variables (B o, T~)) to the 

dilatational state variables (J, Tif') and the distortional state variables (B o ,To ) where Ti/ is the 

spherical part of the Cauchy stress tensor and T~j its classical deviatoric part. The free energy in 
the initial (undeformed) configuration is taken as a state potential. This is taken as a frame 

indifferent function of the main arguments J,B# and D in the strain space namely 

polll(J,B,:l, D) = W(J,B~j, D) .  By using the Clausius-Duhem inequality representing the 
second law of thermodynamics in the current (isothermal) configuration we have �9 

L D,:i - P ~ > 0 or ~ Dii - W > 0 (4) 

where use has been mode of the very useful Kirchhoff stress tensor "r 0 = J 7]/). Following the 

GSM theory in the case of rate independent flow, a damage criterion, indifferently in stain or in 
stress spaces, is introduced by supposing that at any time of loading history the damage surface 
is given by" 

f ( Y ; D ) < O  (5) 

An unloading, neutral loading or loading from a damage state shall be added to the criterion (5) 
according to the standard time independent flow theory. Note that in some situations the GSM 
frame appears as very restrictive. In that case a flow potential is introduced in the same space, 

namely F(Y;D)  so that the consistency condition still given by . [ ( Y ' D ) = 0  while the 
evolution equation is obtained from the potential F(Y;D)  by using the generalised normality 
rule. This defined the so-called non associative flow theory. 
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3. THE INTERNALLY CONSTRAINED MODEL (MODEL IC) 

This model is based on a non-classical constraint condition which impose some internal 
constraint in both the deformation and the damage. This can be made using the straight forward 
general treatment of the internally constrained material as can be found in Truesdell and Noll 
[2o]. 
The state potential is taken as purely distortional with damage effect : 

W( B~i, D) = (1 - D)W o ( Bq ) (6) 

Using (6) the basic inequality writes : 

['t 'o- 2(1-D)dev('-Bi, 3W~ ) l] -- OB,j D,j + Wo( Bo ) [) >- 0 (7) 

The motion of the body is now required to satisfy the following internal constraint : 

J - g(D) = 0 or equivalent ly det Fq - g(D) = 0 (8) 

where g(D) is a differentiable, positive and increasing scalar function of the damage variable D 
with g ( D = 0 )  = 1 for the model NI. Note that when D=O (8) reduced to the classical 
incompressibility condition presented in [20]. 
The time derivative of (8) gives : 

Og(D) s = 0  (9) 
JD,/~,j a D  

By combining (7) and (9) and using the Lagrange multiplier q one can write : 

I'co - qJ~2 - 2(1- D)dev(-ffi, OW~ o-~,j " D,j 
(ag(D) - - )  

+ q 319 +W~176 b>O 

(lo) 
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which lead to the following state laws : 

%ij =1:; +I:i D ~isj =qJ~ij 

xi D = 2(1-  D)dev(B ~ (Bij)] OBkj 
(11) 

~g 
y = y s + y D  yS = q O D  (12) 

yD = Wo(Bij ) 

and YD> 0 (13) 

Note that both the generalised thermodynamic forces l',~ and Y are determined by the motion 
only within an arbitrary hydrostatic pressure proportional to q. These represent a reaction forces 
produced by the constraint (8) imposed on both : the deformation and the damage. Moreover 
when there is no damage (D=0) the state relations (11, 12) becomes those of a classical 
incompressible hyperelastic body defined by the free energy W o. 
Now to derive the damage evolution law for the model IC, two different cases should be 
examined: 

MODEL IC 1 
In this case the GSM frame is used with the damage criterion, given by : 

f ( Y ; D ) =  Y -Q(D)  (14) 

with Q(D) being a differentiable positive and increasing function of D, representing the size of 
the damage surface in the Y space. Following the standard normality argument the damage 
evolution (complementary law) is given by : 

~1 3D �9 __~ 
= --~-- = 5 (15) 

where ~ is the damage << multiplier >> given by the consistency condition )~ = 0 �9 

(16) 

It is clear that this equation introduces an unusual coupling between the damage multiplier 

and the time derivative q of the Lagrange multiplier q which is undetermined at this stage. 
Hence to use this model one should determine the explicit expression of q for each loading path 
by using some specific conditions depending on the type of the applied loading path. In fact two 
cases can be observed : 
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The first one correspond to those loading paths where the stress state is controlled and the strain 
is left enough freedom to satisfy the internal constraint (eq. 8). In those cases the multiplier q is 
completely determined by given condition imposed on some stress components and lead to q 

function of D and B,:i (i.e. q(D, Bij)). By using (16) and after some calculations, one can 
obtain �9 

if f = 0 and~.jD o > 0 

elsewhere 

�9 . ] 

(17) 

(18) 

OQ Ogc)q ~)2g 
H=019 0D019 OD 2 q >0  (19) 

The main basic difficulty in this case comes from the definition of the stress control at finite 
strain which is not an easy task in the general case. 
The second case correspond to the loading path where the strain (or the transformation gradient 
F )  is controlled. In general this case is highly singular in the sense that the damage evolution is 

completely controlled by the internal constraint i.e. by the kinematics of the motion (eq. 8) and 
no longer by the flow condition (eq. 14). The Lagrange multiplier is then determined by the 
loading condition f ( Y ; D ) = O  using both (14) and (11, 12). 

q(D,-B#) = Q(D) -  W o ( Bij ) 
Og(D) (20) 

O/9 

MODEL IC2 

To avoid these problems related to the coupling between the multipliers ~ and q, an 
approximate thermodynamic approach is used, namely the non associative flow theory. This 
leads to using two functionals : 

�9 The damage criterion depending only on the deviatoric part yD of Y. This means that we 
suppose that the damage mechanism is associated with maximum distortional energy as in 
Simo [8]. 
Hence the damage criterion writes : 

f (yO. D) = yO _ Q(D) (21) 
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�9 The damage potential taken similar to eq. (14) and depends on the overall Y" 

F(Y,D)= Y-Q(D) (22) 

so that 

/~ ~ OF ~ (23) = ~ - -=  

and /9 is equal zero elsewhere. The consistency condition is now simplified because only 
y o is used in the damage criterion and we get �9 

= IH~,D;j if f = 0 a n d  ~iD;j > 0  

0 elsewhere 
(24) 

~j = 2dev[-Bik ~ (25) 

3Q 
H = ~-~.> 0 (26) 

This thermodynamically approximated model is very helpful when there is no special condition 
to determine explicitly the constraint multiplier q. Hence it is particularly suitable for 
implementation in some general purpose finite element code. 

4. THE NEARLY INCOMPRESSIBLE MODEL (MODEL NI) 

In this model the state potential with damage effect is taken under the following form �9 

W(J,B,:i, D ) =  Kcp(J)+ (1-  D)Wo(B o) (27) 

The term qg(J) is the spherical part of the potential (volumetric behaviour) with �9 

J 
J = ~ (28) g(D) 

m 

and g(D) is the same function used in (8). K is the compressibility modulus. The term W0(B0) 
represents the distortional part of the potential (for the undamaged material) affected by the 
reduction factor (I-D) due to damage effect [8, 18, 21 ]. 
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Using eq. (27) and (28), the basic thermodynamic inequality (4) becomes" 

, r o - K J  Oy ) . ~ j - 2 ( 1 - D ) d e v  B,, 3Bk.i ' DiJ 

( -- J ag(D)&p(Y))~)>O 
Wo ( Sq) + K g ( n----~--~ aJ - 

(29) 

which lead to the following thermodynamic forces (z~j, Y) associated to B u and D called the 

state laws" 

s ~ 6.. "to = ~i + "cii D "c;~ = KJ cgJ q 

"t'i5 ) = 2(1- O ) de (. i, "ff ~ 7  

y=y. ,+yD Y " = K J  g' ~q~(J) 
g(D) o3] 

y ~  = Wo(B o ) 

(30) 

(31) 

and �9 

Y I ) > O  (32) 

& 
Where g '  denotes the derivative of g with respect to D i.e. g '= c-c-~' we note that both T 0 and Y 

are decomposed into two parts respectively related to the spherical and the distorsional behavior. 
The damage evolution equation is than obtained within the GSM framework using the same 
criterion (14) giving the relation (15) where the damage multiplier is now given by : 

= ,Di, i f f  = 0  and ~jDij > 0 
otherwise 

(33) 

where H>0 is the tangent << damage - modulus defined by �9 

H = ~ 2 o ,  + 2 o ,  (34) 

and the second order tensor ~i is given by �9 

~j = 2dev(-Bi, OW~ l+ KJ g'(D)( Oq~( J) 02q~(3") I 
�9 c)-B~j g (D)  OJ 't" y (~2 (~ij (35) 
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To completely determine the model NC, it remains to specify the 

functions Wo(Bi j ),qg(J),g(D) and Q(D).  Such a determination should be made on the basis of 
phenomenological approach based on available experimental data base and will be discussed in 
5. 
The comparison of (11/12) and (30/31) shows that the difference between the model IC and the 

model NI is concerned only with the spherical parts �9 zi ~ of zij and Y' of Y. 

5. A P P L I C A T I O N  A N D  D I S C U S S I O N  

5 .1 .  G e n e r a l  c o n s i d e r a t i o n s  

To completely determine the proposed models it remains to specify the state potentials W o and q) 
and the functions g and Q. This should be made on the basis of available experimental data. 
Here for definiteness, the state potential is chosen as a Money-Rivlin form and for the other 

functions we shall adopt a very simple forms 0-1 and )-2 being the first and second elementary 

invariants of # i j )  " 

I/ )( /' )( W0 G 1 3)+ 13 I2 3 = +13 I i -  - - 
2 2 2 

l ( j - 1  
q~=2 

g(D) = l+  ~,D 

Q(D) = Qo" D + D  o 

(36) 

where G, /3 ,  Y, Q~, Do and n are five material constants under isothermal condition for the 

three models. G and/3characterise the distortional hyperelastic behaviour, y represents the 

maximum amount (when D=I) of the volume variation and Q,~, D O and n characterise the size 
and the non linear evolution of the damage surface. 
Now the missing link between the model Nl and the model IC are discussed. First it is easy to 
show that the model NI transforms on the model IC when compressibility modulus K goes to 

the infinity. In fact when K ---) oo the effective volume variation J ~ 1 and (30a) and (3 l a) of 
the model Nl becomes : 

ag (37) 1: ij = qr ij and Y~ = q OD 

which are identical to "t'il and Y, of the model IC given by (1 l a) and (12a). Naturally, 

KJ Oq~ 0J = q  is an arbitrary hydrostatic pressure to be determined by given conditions on some 

components of stress tensor. 
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Now from (36b), the quantity J 0q) -- ~)j can be approximated by J -  1 for the small variations of 

J .  Accordingly the eq. (34) and (35) of the model NI becomes �9 

H : - ~  _,~, g OD ) 

~.j = 2dev Bo ~ )  + Kg- f f -~(2J  - 1)0ij 

(38) 

and when K---> +,,o then J ----> 1 and one can easily shown that the ratio H transforms to 

the following relation : 

J Doc3;j 

OD 

(39) 

which is fully consistent with the time derivative (eq. 9) of the internal constraint (eq. 8). 
These results give the proof that the model NI is fully compatible with the model IC when K 
approaches the infinity. In what follows this can be shown numerically for different simple 
loading paths under both stress and strain controlled conditions. 

5 . 2 .  Stress  contro l led  path. The uniaxial  tension case 
The simplest stress controlled loading path is the uniaxial tension which is defined by : 

Fij = 

)~ 0 

J 
0 

0 0 
J 

,X 

Ii ~ il and z i i = 0 (40) 

0 

The tensor B,~i is then given by" 

Bi j  = 

V 2 0 0 

l 
0 0 

1 
0 0 

_ 

with K = j - l / 3  (41) 
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The Eulerean deformation rate tensor is given by �9 

.j -- 

2, 
0 0 

0 7 " -  0 

0 0 

(42) 

m 

so the deviatoric parts of B;i and its inverse are �9 

8--,5' - l  
0 -  

(43a) 

(43b) 

Now the state and evolution equations of the models NI and IC will be written in this particular 
uniaxial stress controlled path, using the constitutive functionals given by (36). 
For the model IC, the state laws (11, 12) writes" 

rii = qJaii  + G(  l -  O )  ~-+,6 B# - - ~ - f l  ,, (44) 

(45) 

The first component of the stress tensor is given by �9 

2 
"c~ , = q J  + ~ ( 1 -  D)v(~') (46) 

where �9 

(47) 
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The multiplier q is determined by the condition 7:22 = 0 to get : 

1 ~:(~) 
q -  ~-(1- D) - - - f -  (48) 

For the damage evolution equation in the case of the first flow condition (eq. 14), the 
consistency condition writes : 

) _ o~n ( D) (-'~)L)+m(D)~'~-~Dc)r(~cgO 0 (49) 
- 1 - D  + c)D 7:___ o,,t, c~ = 

where :  

1 g'(D) 
m(D) = .~'%'(1- D) g(D-~ (50) 

which allows the determination of the damage evolution in the case of the associative model (i.e. 
model IC 1) : 

(51) 

wi th :  

~O b,, 
L H = c)D- OD~r(~ > 0 

(52) 

For the non associative model (i.e. model IC2) defined by the criteria (21) and (22), it is very 
easy to show that the equation (52) reduces to : 

(53) 

This indicates that the thermodynamic approximation taken in (21) leads to neglecting the 
second terms of the RHS of the equation (52), which comes from the spherical part ys of the 

force Y. The lose of these terms has a small influence on /) so that (53) represents a good 
approximation of (52) as shown numerically in [ 11 ]. 
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As a conclusion, the main equations of the model IC in the case of uniaxial stress controlled 
path are" 

) ~!1 "1~11 = ( 1 -  D)x ~ or o = or 1-I = xli 
J ;~ 

__ j - I / 3 ~  

'/] 
2 +~  X, - + 2 - ] 3  X,-X2 

J = g(D) = 1 + yD 

~(;~)='r + m ( D )  31:()~) 3Q 3m and H = - a:(Z) 
3)~ 0D 3D \--1 

;(x) = and H = oQ 
~, 3D 

for the associative model 

for the non associative model 

54) 

where cr is the first component of the Cauchy stress tensor ~ and / - / i s  the first component of 

the first Piola-Kirchhoff stress tensor. 

The model NI is now examined. The main difference with the model IC comes from the 

spherical parts Y' and ri' j which writes" 

Y" = K,I(.I- 1 g~g' g' : 7 "T'i" I 

(55) 

(56) 

The deviatoric parts -ri' ~ and yD being unchanged compared to the model IC. As discussed in 

w the use of the quantity q = KJ ( , 1 -  1) as a Lagrange multiplier allows to apply the same 

treatment as for the model IC. Particularly q is determined by the condition "rzz = 0 �9 

1 
q = -~-(1 - D)r(~ ' )  (57) 

which gives after assuming a small variation of J �9 

... (1-  D) z'(~') (58) 
J = l +  3K" 
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The consistency condition is similar to the model IC with the same definition of the function 
m(D). Hence to main equations of the model NI in this uniaxial stress case are : 

(~) '~Jl zll 
'1~ I1 = (1 - D)z or o = or H = 

J 
~, __ j - I / 3~  

GI/1 //2 l//' l/ '/1 = 2 + ~  X , - X  + 2 - [ 3  X,-X, 2 

J = g(D)J with J = 1+ 
3K 

D =  1 

= + m ( D )  

H _._ 
o~Q _ ~)m z(X) 

OD ~)D 

(59) 

The only one difference between the models NI and IC comes from the equation governing the 
volume variation J. 
The figures l.a and l.b show the comparison of the model NI with the compressibility modulus 
K=I, 10 and 100 MPa, and the model IC using the following material cons tan t s :  

G = IMPa, Q~ = 2.5, D o = 10 -4 ,  /~ = 0, t/-- 2. These figures represent the variation of the first 

Kirschhoff stress T and the damage D versus the elongation ~. It is clear that for K sufficiently 
high (here K=100),  the model NI gives exactly the same results as the model IC. However  
when K is very low (here K-1 MPa) the results of the model NI are quite different from those 
given by the model IC as shown theoretically in w The figure 2 shows the variation of J and 

the function g(D) versus ~, for the three values of K. One can notice that for the low value of K 
the gap between g and J is very high. However when K grows the function g(D) goes to J 
indicating that the model NI becomes indentical to the model IC. 
Finally one can conclude that for this stress controlled loading path the proposed internally 
constrained model (model IC) gives results fully compatible with the nearly incompressible 
model when the compressibility modulus goes to the infinity. 
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5 .3 .  S t r a i n  c o n t r o l l e d  p a t h  
The typical simplest strain controlled loading path is the simple shear. However to avoid some 
kinematic difficulties resulting from the rotation tensor a simple strain controlled loading path 
similar to the uniaxial tension is introduced. This path called the isochoric extension is defined 
b y :  

F/j ~" 

A, 0 

1 
0 

0 0 
1 

42- 

I! ll 0 0 1 
J = det F o = 1 and zo "-- ' ~ ' 2 2  0 (60) 

0 "t'2 2 

The other characteristic variables are �9 

Bi i = Bij = 

~2 0 

1 
0 

0 0 

Bij 

1 

X 

r2 0 i l  

o o 1 = -1 0 
Dij 2 0 -1 

3I-i o il 3 )~2 0 

(61) 

For the model IC the use of equations (11, 12) gives the non zero components of the stress 
tensor �9 

2 
r,, = q + - ~ ( l -  D)z(X) 

7:22 : q - ~ ( 1 -  

I 

D) z(~,) 
..5 

(62) 

and the damage force �9 

y=qg,+yO =qg,+Wo~o) (63) 

where yO being given by the second term of the RHS of (45), while x(~,) is given by (47) where 

2, is replaced by X. 
This model leaves undetermined the constraint multiplier q. But the isochory of the motion 
transforms the constraint given by (8) to �9 

1 - g ( D ) = 0  V D (64) 



518 

This means that the damage evolution is so that g(D)-1 which indicates that D=0. Hence the 
model IC excludes the damage evolution for this isochoric loading path. The multiplier q can be 
determined using the loading conditions f=0 (see eq. 14). 

qg'+WoCBo)- Q0 = 0 (65a) 

which g ives :  

q = -'~-7 [Wo ( 'Bo)- Qo (65b) 

where Qo--Q(D=O) is a constant representing the initial radius of the damage surface in the strain 
space. Finally the equations of the model IC in this case are : 

z',, = -  o ) -  Q_o } -~-(1 - D) ~'[A,] 

2 = ('B'0 } 1 (  1 ] 

D = 0 and J = 1 

(66) 

Note in this case the presence of an increasing compressive terms in both "r~ and ~'22- These 
compressive stresses insure the isochory of the motion and make the damage growth 

impossible. For the model NI and using the small variation of J ,  the non zero components of 
stress as well as the damage growth obtained from the consistency condition are : 

2 
Z', ,=  K(,I - 1) +-~-(l - D)'r(~) 

1 
T22-- K(J"- 1)+~-(1-  D)z'(/~) 

(67) 

(68) 

(69) 

(70) 

It is clear from (69) and (67) that if K ---) +oo then /) ~ 0 which makes the damage growth 
impossible as for the model IC. Hence this gives the proof that also the model NI behaves like 
the model IC when K increases. 
The figures 3a, 3b, 3c and 3d illustrate this result using the same material constants as in w 

The figures 3a and 3b show the behaviour of the stress components "r~ and ~'22 for the model IC 
and the model NI with K= 1, 10 and 100 MPa. One can observe that for the low values of K 
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damage grows inducing the volume variation, while for the high values of K (here 
K= 100 MPa) the damage evolution is zero and consequently J is equal 1. This result is fully 
compatible with the model IC which gives directly D=0 and J=l .  This is clearly shown in 
figures 3c and 3d where the damage still equal to zero when K= 100 giving a constant value of 

, . . . ,  

J = l .  

6. CONCLUSION 

A new constraint has been introduced to account for the volume change resulting from damage 
in an otherwise incompressible material. This constraint introduces some unusual coupling 
effect between the hydrostatic pressure and the thermodynamic force associated to damage, 
these two variables being coupled through the Lagrange multiplier associated to the constaint 
condition. In order to clarify this coupling another weakly compressible model has been 
introduced and shown to give the constrained model as a limiting case. 

Investigation of two special cases: uniaxial tension and isochoric traction has then shown the 
essential differences between imposed strain and stress control. It follows from these examples 
that strain control appears as a singular case with damage controlled by the kinematics and 
apparition of a high hydrostatic stress. Total or partial stress control therefore is a more realistic 
approximation for practical situations. 

This however rises a problem for the implementation in a finite elements method where the 
incremental constitutive equation is required under full strain control; The approximate IC2 
model may provide an appropriate and efficient framework. 
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Figure 1" Variation of (a) Stress, (b) Damage versus the elongation for uniaxial tension under 
stress control 

Figure 2: Variation of J and g(d) versus the elongation for uniaxial tension under stress control 
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Figure 3: Variation of (a) first component of stress, (b) second component of stress, (c) damage, 
(d) effective volume variation versus the elongation for the isochoric extention 

under strain control 
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1. A B S T R A C T  

The strength of unidirectional polymer matrix composites has been predicted using 
Pagano's axisymmetric damage model (ADM) in conjunction with Batdorf's statistical 
strength model. In order to utilize the axisymmetric model, hexagonally arranged fibers 
were converted to fiber rings. Then, the stress concentration and ineffective lengths at 
fibers adjacent to broken fibers could be calculated using ADM. These, quantities plus the 
Weibull parameters of carbon fibers were used to predict the tensile strength. Through the 
stress analysis, it was also shown that for large ratios of El/Era there is local load sharing 
due to fiber breakage. The advantage of the analysis is that one can incorporate other 
geometric damage modes, such as interracial debonding or matrix cracks, to investigate 
their effect on strength. The results of the analysis showed good comparison to 
experimental results for carbon fiber based systems. Finally, some stiffness predictions on 
fragmented and short fiber composites will be presented. 

2. I N T R O D U C T I O N  

Unlike homogeneous brittle materials, fiber reinforced composites contain a 
population of observable pre-existing defects which do not lead to final failure. Instead, an 
accumulation of matrix fracture or fiber fractures develop as the material is loaded. 
Fracture mechanics-based analysis may account for the strength of a single fiber, but it is 
inadequate for an unidirectional fiber composite where the behavior of the system is 
dorninated by an accumulation and interaction of defects. As a result, any study of the 
strength of composites must emphasize the statistical process of damage development. 

Because the damage growth process is controlled by microscopic parameters and 
properties, one needs to analyze these materials at this level. Traditionally, microscopic 
variations in these materials have been homogenized and much of the vital information, 
such as fiber/matrix bonding, has not been taken into account. It is for this reason that a 
micromechanics based approach must be used to account for the inhomogeneity of these 
materials. Micromechanics models can take into account details regarding fiber/matrix 
interface and allow one to analyze stress variations due to local effects around constituent 
materials. 
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The driving force for micromechanical strength evolution in PMC's is the stress 
concentration resulting from a broken fiber. In this review, various models of this 
phenomenon based on shear lag, elasticity, and variational analysis will be presented. 

One of the first attempts to determine local stresses in and around fibers was 
presented by Cox [ 1]. He assumed that a rectangular array of aligned isotropic fibers 
existed in a matrix material which constituted a composite mat. The load transfer which 
occurs between the matrix and the fiber ends was derived to be exponentially decaying as 
a function of the axial coordinate. This formulation was a forerunner for the more popular 
classical solution describing stress redistribution which occurs near a broken fiber (i.e. the 
shear lag model) in a continuous composite system. This analysis provided the axial 
stiffness values and longitudinal contraction in the composite mat due to a uniaxial load. 
The results were compared to experhnental values for the mechanical properties of such 
composites. 

Rosen [2] was one of the first to investigate the stress redistribution which occurs 
in the vicinity of a fractured fiber of a unidirectional continuous fiber composites. By 
making the classical assumption of PMC's (i.e. the matrix essentially does not support 
axial load) the shear lag solution was formulated. This analysis suggested that the stresses 
decay exponentially at the fiber end as a function of the axial direction. These equations 
also provided a theoretical prediction for the size of the region where there is a stress rise 
(i.e. ineffective length). This portion of the fiber does not support any substantial load over 
this region. 

Hedgepeth and Van Dyke [3] calculated the stress concentrations on neighboring 
fibers due to single and multiple fiber fractures. Their analysis used an influence function 
approach along with shear lag assumptions. Results were presented for both three- 
dimensional square and hexagonal arrays where specified numbers of fibers were broken. 
In addition, the stress concentration factor in the element adjacent to a broken fiber in a 
two dimensional array where the shear stress in the matrix adjacent to the broken fiber is 
restricted by a lhnit stress, was calculated. However, due to the shear lag assumptions, the 
model does not include the stiffness of the matrix. As a result, the applicability of such an 
analysis is limited. 

In this study, Batdorf's [4] statistical strength model, which is a simplified version 
of an analysis developed by Harlow and Phoenix [5], will be used to predict strength of 
unidirectional composites. Through many approximations and simplifications the analysis 
was simplified to a point where the strength of a 3-D composite could be predicted. The 
analysis uses stress concentrations and ineffective lengths due to multiple fiber fractures to 
estimate stresses at which instability occurs, i.e. catastrophic failure. To study the effects 
of the simplifications on the predicted strength, a comparison was made to the exact 
solution developed by Harlow and Phoenix. It was shown that the simplifications and 
approximations resulted in differences on the order of only a few percent. 

To calculate stress concentrations and ineffective lengths Pagano's Axisymmetric 
Damage model (ADM) is used [6]. The ADM is based on Reissner's variational theorem 
[71 and is constructed in conjunction with an equilibrium stress field in which r- 
dependence is assumed (i.e. ~z and croo are assumed to vary linearly in the radial 
direction). The problem is formulated in general to solve a variety of problems dealing 
with thermoelastic response of a concentric cylindrical body. The strength of the model is 
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that it is formulated in general to deal with not only fiber breakage, but any number of 
damage modes. In addition, axial and transverse loads can be applied, simultaneously. The 
only limit of the analysis is ones' ability to represent a problem by an axisymmetric 
concentric cylinders. Furthermore, both stress and displacement conditions are satisfied by 
the use of Reissner's theorem; thus a full stress and displacement field can be calculated. 
Furthermore, various damage modes can be included either separately or simultaneously in 
the representative volume element. As a result, stress states in the material due to damage 
growth and interaction can be examined. Finally, the ADM model will be used to predict 
stiffness. Two scenarios consisting of a composite with fragmented and short fibers will be 
studied. 

3. M I C R O M E C H A N I C A L  M O D E L I N G  

Due to the internal anisotropy of composites, one must model the mechanical 
behavior of these materials by considering microlevel geometry. The difficulty in analyzing 
the internal geometry comes from the fact that in real materials there is no well defined, 
periodic repeating "unit cell". That is to say, in a given composite volume, fiber spacing 
and orientation is not the same from point to point. Therefore, it is very difficult to define 
what is called a representative volume element (RVE), to reflect the composite as a 
whole. As a result, many researchers consider average values of fiber spacing and 
orientation. 

The problem, however, arises when one decides to add various type of damage 
into the RVE. Numerous researchers have observed a whole family of damage modes 
which control macroscopic behavior 18-10]. Many times, these damage modes occur 
concurrently or in series. The following figure depicts some of the observed and suspected 
damage modes which could occur in fibrous composites. 

Experimentally, it is very difficult to determine which damage mode(s) controls 
macroscopic behavior. Due to scale at which these processes occur, one cannot in any 
practical way determine initiation or growth of damage in situ during loading. Often, 
experimentalist can only obtain such information by post-mortem study of the fracture 
surface of a failed material. However, this type of information does not say much about 
the evolution or initiation of damage, which is most vital for micromechanical modeling. 

Even if one knows the damage modes present in a given composite, there still lies 
the question of how to model these damage modes under the RVE scheme. Assuming one 
has carefully determined the damage modes in a given material experimentally, the task 
now lies in determining the stress states at the fiber-matrix level. Experimentally, there 
have been attempts at obtaining such information through the use of model composites 
[111. Model composites are basically a scaled up version of a composite consisting of 
oversized fibers arranged in a controlled manner. At this level, one can obtain information 
regarding local strains and observe the evolution of damage in and around constituent 
materials. However, it is still unclear as to how to apply the data obtained by these studies 
to real composites since stiffness and certainly strength change as a function of volume. 
Furthermore, the effects due to geometric scaling are still unclear. 
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3.1 Batdorf's Statistical Strength Model 

A strength model based on the statistical nature of fiber failure was developed by 
S.B. Batdorf [4]. Unlike previous models that base strength on chain-of-bundles model, 
Batdorf 's model investigates the problem on the basis of formation and growth of 
individual fiber fracture. The model uses the well known weakest link theory developed by 
Weibull [ 12], which was originally used to study the strength variations in metals. The 
basic assumption of the model by Batdorf is that the fibers in the composite are 
unidirectional and the matrix is much less stiff than the fibers. As a result, the matrix does 
not appreciably contribute directly to the strength of the composite, but does however act 
to transfer stress from one fiber to another. Such is the case in carbon fiber composites, 
where in most cases the ratio of fiber to matrix stiffness is on the order of 100. 

As a result of the loading in the fiber direction, we develop multiple single fiber 
breaks in the array of fibers that make up the composite. The fact that we are using a 
statistical theory we assume no particular fiber arrangement. In addition, fiber breaks 
occur in a random fashion throughout the composite. Once these breaks occur, naturally 
the unbroken fibers in the composite must carry the additional load not carried by the 
broken fibers. The resultant stress not only redistributes itself radially away from the 
cracked fiber, but also perpendicular to the crack plane on the neighboring fibers. The 
distribution of stress on the neighboring fibers has two major components of interest in 
this study. First, the magnitude of the stress concentration, which is at its maximum in the 
crack plane. The other component is the length of decay of stress to its' far field value. 
This value is most often referred to as the ineffective length or so'ess tran.~fer length. 

In this model, we first consider our composite to have an array of N fibers of 
length L. The fibers are all aligned in one direction, and the composite as a whole is 
loaded in the direction parallel to the fibers. As mentioned previously, this model assumes 
that there is a progression of fiber failures. That is to say, as we load the composite we 
form single fiber breaks (singlets) randomly in the array of fibers. These single fiber breaks 
cause an overstress in the neighboring fibers. As a result, a neighboring fiber fails and thus 
a doublet is formed. As we further increase the load doublets become triplets and in 
general "i-plets" are formed. Since we are interested in the progression of fiber breaks, we 
must know the number of fibers and the stress distribution on these fibers surrounding the 
fiber break. For a singlet, the number of neighboring fibers is denoted n~, each of which is 
subject to an overstress described by a stress concentration factor c~ (relative to the 
applied stress) at the plane of the fiber break. The overstressed region extends over a 
distance 51, but diminishes with distance from the fiber break. A doublet has nz neighbors 
that are overstressed by c2, with the overstress extending over a distance 52. The subscript 
i will designate the above quantities for an i-plet. For multiplets of order 2 or higher, the 
stress concentration factor will not be the same for all neighboring fibers. But for the sake 
of simplicity this difference will be ignored in this study. 

Since the failure of fibers is a statistical event, we assume the failure of the fibers to 
conform to the Weibull 2-parameter representation. That is to say, when a stress o is 
applied uniformly over a length l, the cumulative probability of failure Ps is given by 
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PI ( ~ ) = 1 - e -t~" ,where k = ( 1 ) 

where Go is the characteristic strength of a fiber of length l, and m is the Weibull modulus 
of the fiber. In Batdorf 's analysis Pf is taken to be 

P.r = k l~m (2) 

if PI is assumed to be < < 1. In the present analysis, the full form shown in equation (1) is 
used to predict strength. If there are N fibers with length L, the number of singlets formed 
in the composite is simply 

Q~ = N P  I (3) 

A singlet becomes a doublet when one of the neighboring fibers in its surrounding breaks 
due to the stress concentration. If we assume the stress varies linearly from the overstress 
to the far field stress, we obtain for the failure probability of such an overstress segment to 
be 

PS2) = 1 - e  -*z'(~''~)" (4) 

where 

c? +' - 1  
kl =81 (5) 

ci"(c  I - l ) ( m +  1) 

is the effective length of the overstress region. As a result the probability that a given 
singlet becomes a doublet is 

P1--,2 = nl ( 1 - e kx'/c,. ~.. ) (6) 

The number of doublets formed is given by multiplying the number of singlets by the 
probability of failure of a singlet becoming a doublet, i.e. 

Q2 = Q, P~--,2 (7) 

In general for the number of i-plets formed we have 

Qi+l = Qini (  1-e~x'~c' ')" ) w h e r e i = l , 2 . 3  .... N (8) 
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If one plots this equation for i = 1 , 2 , 3 . . . N ,  where i is the mukiplet number, the following graph 
is produced in Figure (1). This graph is a hypothetical plot of the Q functions. The x-axis 
represents the applied stress and the y-axis represents the number of i-plets formed. As one 
goes along the x-axis the stress increases. Once o'1 is reached, singlets are formed in the array 
of fibers. Further increase in stress results in more singlet formation until or:, at which point 
sorr~ of the singlets become doublets, etc. These Q-plots form a failure envelop for the 
material under consideration. As the multiplicity of the fiber fractures increases, the failure 
envelop collapses on to the x-axis. The point where this envelop crosses the x-axis is the stress 
at which the composite fails. 
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Figure 1 Schematic of Q-plots for interpretation of ultimate strength (Batdorf 141). 

3.2 Pagano's Axisymmetric Damage Model 

In order to utilize the model described above, we must calculate the stress 
concentration and ineffective lengths at fibers adjacent to broken fibers. To do this we use 
Pagano's axisymmetric damage model 161. Initially, this model was developed to study the 
various damage modes that occur as a result of loading a 0 ~ unidirectional brittle matrix 
composites (BMC). In BMC's, it has been shown that initially matrix cracks form and 
grow until the matrix is fully cracked and fibers bridge the crack face. Thereafter, the 
cracks either grow into the fibers or deflect to form interracial debonding on the fiber 
surface. Due to the circular geometry of the fibers, the unit cell considered is 
axisymmetric. The model can approximate stress fields and energy release rates of bodies 
in the form of concentric cylinders and subject to various idealized internal cracks and 
boundary conditions (see Figure 2). 
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Figure 2 Damage modes in brittle matrix composites 

The approach utilized is Reissner's Variational Theorem [7], which has been used 
to study stress fields in flat laminates [ 13], and in involute bodies of revolution [ 14]. It has 
been shown that such a model produces an accurate description of the stress field ahead of 
the stress riser, and it can also incorporate multiple sublayers to improve solution 
accuracy. 

The model is generated by subdividing the body into regions containing a core and 
a number of shells (see Figure 3) and satisfying the Reissner variational equation with an 
assumed stress field in each region. 

Figure 3 Axisymmetric element showing a typic',d layer. 
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Reissner has shown that the governing equations of linear elasticity can be obtained 
provided the variational operator S is applied both stresses and displacements. 

= 0  (9) 

where 

J = ~ FdV - I ~idS 
V S" 

(10) 

and 

F _ 1  
-~c~ij(  ~i ,  j + ~ j j  ) -  W ( l l )  

in terms of the Cartesian coordinates x i ( i  = 1,2,3), where W is complimentary energy 

density, V is the volume element, S is the entire surface, ~ are the prescribed tractions, ~i 

are the displacement components, and S '  is the portion of the boundary on which one or 
more traction components are prescribed. 

The stress field is assumed such that cro and ~ are linear in r within each region, 
while the forms of o'r and yr, are chosen to satisfy the axisymmetric equilibrium equations 
of linear elasticity. Letting o-1, or2, ~ ,  and as represent ~ ,  cro, Or, and z,:, respectively, we 
arrive at the relations in the region rl < r < t2 

~i) 
c~ i = pi . l  f .  ( i - 1,2,3 5 , .I = 1,2,.. 5 ) (12) 

where fJ'~ are known shape functions of r defined such that 

P i,~ ( z ) = c~ i ( r,, , z ) ( i - 1,2,35"o: - 1,2 ) (13) 

The remaining dependent variables follow directly from the mathematics, they include the 
weighted displacements 

r2 

= 

rl 

where u is the radial displacement component, and 

(14) 

r2 

r I 

(15~ 
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where w is the axial displacement. For a body composed of a core region plus N shells, the 
formulation leads to the solution of 18N + 16 algebraic and ordinary differential equations 
in z. Proper end boundary conditions on the planes z = const, for each region for which 
q r 0 consists of specifying one member of each of the products 

- r  2 r 2 + r r  +r  2)ps3 } 
p53~- ' r 2  Psi i P52 . . . .  ( 1 2 /~, 

r r ( r - r )  r2r 2 
1 2 

{rlP52 -r2P51 + (rl +r2 )P53 } 
rlr2 ( r2 - r~ ) rl2 r f a 

(16) 

For the core region r~ = 0 these become 

Ps2 _ r2 ] ) s3  )u, P53 fi 
r2 

(17) 

while for all regions, one member of each of the products 

{ t 2 P I ! - rl P ' 2 } gv' { P I 2- - P ' ~ } 2 - r~ r 2 - r 1 (18) 

must be prescribed on planes z = const.. On planes r = const., the appropriate prescribed 
functions consist of one member of each of the following products 

P31Ul ,PsiWl (19) 

on surfaces r = t'~ ~ 0 and 

P32U2 ,P52W2 (20) 

on surfaces r = r 2 . Furthermore, continuity conditions can be written for the surfaces r = 

const, and planes z = const, which are the internal to the body (see ref. 6). The number of 
regions in the r direction can be increased in order to improve solution accuracy. Since the 
field equations within each region reduce to a system of algebraic and ordinary differential 
equations with constant coefficients, the general form of the solution for any of the 
dependent variables P(z) is expressed by 

P( z ) = Z Aiex'~ + Pp( z ) (21) 
i 

within each region, where A; are constants, 2 /a re  eigenvalues of a determinant and Pt,(z) is 
a particular solution, which in this case is a polynomial. 
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4. STRENGTH PREDICTIONS 

In predicting strength, the specific system considered is a unidirectionally reinforced 
composite with continuous fibers. The fibers are also assumed to be arranged in a hexagonal 
pattern. This type of arrangement can be seen locally in cross-sections perpendicular to the 
fiber direction. This is especially true for high fiber volume fractions. In addition, hexagonal 
arrangement lends itself for ease in numerical studies where relative distances between fiber can 
be calculated using simple geometric analysis. As mentioned before, the crack growth 
mechanism in PMC's is generally in the form of fiber breaks which initiate at various locations 
in the material until clusters of fiber breaks form and coalesce until finally the material fails. In 
our analysis, we must determine the stress concentration as well as the ineffective lengths 
around singlets and multiplets. For singlets, the issue determining relative distance from the 
broken core fiber to neighboring fibers is nonexistent since all the adjacent fibers are he same 
distance away. But for doublets, for example, the distance to neighboring fibers varies, thus the 
extent of stress redistribution is not uniform around the break. 

In order to overcome this problem the hexagonal array of fibers is transformed into 
concentric rings of fibers and matrix (See Fig. 4). This type of arrangement was first used by 
Hedgepeth and Van Dyke [311 and later by Case 115] to study stress concentrations in fiberous 
systems. The concentric, axisyrrunetric arrangement, or concentric cylinder model (CCM) 
consists of a single fiber at the center surrounded by annular rings of fiber consisting of 6, 12, 
18... fibers radially outward from the center. 

Figure 4 Schematic of hexagonal array converted to fiber rings. 

As a result, the stress concentration caused by the broken fiber core will be equally 
distributed on the rings surrounding it. To simulate the progression of fiber breaks, we break 
the first fiber ring surrounding the broken fiber since it experiences the highest stresses. Then, 
the next ring surrounding the 7 broken fibers is broken. As a result, the progression of fiber 
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breaks occurs in the form of broken rings rather than individual fiber breaks. Nevertheless, as 
will be shown, this approximation mimics damage growth in PMC's and results in good 
strength predictions. 

In order to utilize Pagano's axisymn~tric damage model, we need to define an 
axisyrrmaetric element consisting of fiber and matrix rings. The following axisymmetric element 
in Figure 5 shows the arrangement of the fiber and matrix rings. The dimensions are chosen so 
as to preserve, as well as possible, the fiber volume fraction of the composite, which is 60% for 
the element shown. 

Due to the approximation of the hexagonal array, as we put more fiber rings the fiber 
volume fraction is not perfectly preserved, but decreases by about 5%. In addition to the fiber 
rings, we have a composite ring surrounding all the inner rings. That is to say, at a far distance 
from the point of damage initiation, we have the properties of the undamaged composite. The 
elastic properties of the graphite fibers are EI~ = 301 GPa E22 -" 20 GPa ,  G I 2  = 20 GPa, v12 = 
0.20, V23 = 0.25. 

Figure 5 Axisymmetric element showing boundary conditions. 

To simulate a fiber fracture, we apply a unit pressure at one of the boundaries of the 
fiber regions to simulate an opening crack. We can see in Figure (5) the various boundary 
conditions used in the study. To simulate a broken ring, we apply a pressure to the ring as done 
to the fiber core. Note, however, that a broken ring in actuality is the failure of a number of 
fibers rather than just one. From this arrangement, we calculate the axial stresses at both the 
surface and center of the rings surrounding the broken fiber(s). 

In Figure 6, we see the calculated stress distribution using Pagano's axisymmetric 
damage model. As once can see, at the plane of the fiber break, we have a stress concentration 
which at some distance 5/2, the ineffective length, dies down to the far field or applied stress. If 
we go on further, i.e. break the next ring of fibers, we form a total of 7 fiber breaks. In Figure 7 
we see the stress distribution on the ring adjacent to the 7 broken fibers and the second most 
adjacent ring. As expected, both the stress concentration and the ineffective length increases at 
both the center and the surface of the fiber ring. In addition, one can see that at the second 
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neighboring ring there is very little stress concentration, and the stresses do not vary much in 
the axial direction. This shows the localized stress redistribution that occurs as a result of fiber 
fracture in PMC's. If we break yet another ring, we again see and increase in stress 
concentration and ineffective length. In addition, the greater number of broken fibers result in 
the stress distribution in the radial direction to be not as localized. This is a consistent trend 
seen in fracture mechanics of isotropic materials where the stress ahead of a large crack dies off 
slower than a small crack. 

Figure 6 Stress distribution due to one fiber break at neighboring fiber ring (E,,,= 0.75 GPa). 

Figure 7 Stress distribution due to one fiber break plus one ring (7 fibers) at first and second 
neighboring fiber rings (E,,= 0.75 GPa). 
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Figure 8 Stress distribution due to one fiber break plus two rings (19 fibers) at neighboring 
fiber ring (Em = 0.75 GPa). 

In order to predict the strength of brittle materials, a characterization of the strength 
distribution must be made. The most widely used and accepted methods is by using Weibull 
analysis [12]. In the Weibull analysis, usually two quantities are used to characterize the 
material's statistical strength. The first is the Weibull Modulus, m, which gives the spread in 
the distribution of strength around a mean. For brittle materials, m is less that 10, which 
suggest a large spread in strength, compared to a metal for which m is close to 20. The second 
parameter is characteristic strength, a,, which is the strength of the material for a given gauge 
length. For our system, if,, and m were determined form strength versus gauge length data for 
AS4 carbon fibers obtained from Wimolkiatisak and Bell 116]. Then the two parameters were 
determined by a procedure outline by Masson and Bourgain 117 !. The results of the analysis for 
AS4 fibers result in m = 10.649 and a, = 760.878 ksi for a 1 mnl gauge length. 

In order to utilize Batdorf's analysis, the stress concentrations and the ineffective 
lengths for all values of i in this range must be known. As a result, curves were fitted to the 
data generated, thus stress concentrations and ineffective lengths for all multiplicties from 1 to 
17 breaks were calculated (see Figures 9 and 10). The ineffective lengths were determined to 
be the length at which the stress cros~s the far-field value (i.e. ~,/cr,, = 1 ). 

In Figure (11), the results of the analysis is compared to experimental tensile strengths 
of carbon fiber based PMC's. It should be noted that the experimental values are an average of 
a number of tests on specimens of same dimensions (3" X 0.5" X 0.04"). The dimensions of 
the specimens corresponds to the total number of fibers to be 193,358 for a fiber radius of 3.57 
l.tm and vf = 0.6, assuming a hexagonal arrangement. As can be seen, the results show good 
correlation with experimental results. In the analysis, the critical i-plet was at most 7, thus one 
might expect limited fiber damage prior to final failure. Since the fibers are annular rings, it is 
not apparent which value, i.e center or surface, is most representative of the "real" system. But, 
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Figure 9 Surface stress concentration on adjacent fibers as a function of broken fibers and 
matrix stiffness for a carbon fiber polymer matrix composite 

Figure 10 Ineffective length as a function of broken fibers and matrix stiffness for a carbon fiber 
polymer matrix composite. 

it is safe to assume that the strength is somewhere within the range predicted, and the lower 
prediction is definitely a lower bound on the strength. 
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Figure 11 Strength predictions at both surface and center values compared to tensile strengths 
of carbon fiber polymer matrix composites. 

5. S T I F F N E S S  P R E D I C T I O N S  

One of the reasons for studying stiffness is to aid in predicting stiffness degradation due 
to service conditions. That is to say, in time the 1naterials used in the structure will experience 
some damage due to cyclic loading and unloading. Of course, other environmental effects "also 
degrade material properties, but these will not be modeled in this study. In PMC's, the cause 
of stiffness change is mainly due to fiber breakage and fragmentation, i.e. multiple fracture of a 
single fiber. As a result of smaller fiber fragments, the ability of the fibers to carry load 
diminishes, thus the stiffness of the composite decreases. As will be shown later, depending on 
the fiber/matrix properties and fiber arrangement, fiber fragmentation can have dramatic effects 
on overall stiffness. 

In this section the overall stiffness of a fragmented continuous fiber composite as 
well as the stiffness of a short-fiber composite will be studied. To calculate the effective 
stiffness of the composite, we need to measure the stresses and strains in both the fiber and the 
matrix. To calculate these microlevel quantities, Pagano's axisyrnn'etric damage model is used. 
Next, the volume average stresses and strains are determined by the following 

(i, 1 I :i)dV ' (,, 1 ~ r 
<o~ > = ~ T  ~ <~:, >=Q-77 cz )dV (22) 

V(i) V(il 

where i = f,m denoting fiber and matrix, respectively. Then the composite stress and strain are 
calculated according to rule of mixtures 
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f _ m 
<or > 0 = f < O z > + ( 1 - f ) < o  z > 

f m 

<Sz >c= f <Sz > + ( 1 - f ) < e z  > 

(23) 

As a result, the effective stiffness is given simply by 

< O'z >c E~. = (24) 
< Ez >c 

For the following analysis, the properties were chosen to be that of AS4 carbon fibers (E~ = 
235 GPa, E22- E33 = 20 GPa, vl2 - 0.20, and v23 - 0.25), and the matrix E - 2.9 GPa and v = 
0.35. 

5.1 Stiffness of Fragmented Fiber Composite 

The advantage of using micromechanical stresses are that now one can place into the 
model various damage modes and recalculate the effective stiffness. The importance of such an 
analysis is that it enables one to predict stiffness degradation as a function of damage mode and 
progression. Using stiffness change as a damage parameter provides an easy way to ascertain 
damage accumulation in a structure. The process can also be reversed so stiffness can be 
determined if the amount of damage in a structure is known. As a result, stiffness of materials 
during service can be monitored. As mentioned previously, damage development in PMC's is 
mainly due to fiber breakage and fiber fragmentation. Fiber fragmentation results in damage 
growth throughout the material without any signs of gross failure. However, as reported by 
many researchers I18 I, the effects of microcracking on stiffness is quite significant. In the fiber 
fragmentation process, the degree to which fragmentation occurs is controlled mainly by 
interfacial properties and the fiber's statistical strength characteristics. Similarly, in PMC's fiber 
microcracking reaches a saturation point up to a point where matrix failure initiates and gross 
failure occurs. However, it has been reported that fiber crack saturation is not achieved for 
perfectly bonded PMC's [191. As a result, such composites show very low toughness 
compared to the neat resin. This hnperfect bonding has been show to be controlling property 
that gives CMC's hnproved toughness over traditional ceramics. In this study, bonding is 
assumed to be perfect. 

In Figure (12 a), the axisymn~tric element used in the analysis is shown. To simulate a 
fiber break, the stresses on the fiber surface are set to be zero. To load the element, far from the 
crack plane a unit displacement is applied. By varying the height or the z-dimension of the 
element, we can analyze different fragmentation lengths. As before, fiber and matrix stresses 
are computed and averaged over their respective volumes. In Figure (12 b), both the effects of 
fiber fragmentation and fiber volume fraction are presented. It is hoped that such an analysis 
will prove to be useful in predicting stiffness of a composite once damage modes are known. 
Such a curve can be generated for other damage modes such as interfacial debonding, matrix 
cracking, thermal effects or any combination of these phenomenon. 
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Figure 12 (a) Schematic of axisymmetric model for continuous fiber composite with fiber 
fracttu'e and Co) Variation of effective modulus as a function of fiber fragmentation length and 

fiber volume fi'action.. 

5.2 Short-Fiber Composites 

One of the least understood areas of composite materials technology is the behavior of 
short fiber composites. It is, however, ironic that by volume short fiber composites are 
produced by greater amounts than continuous fiber systems. Of the many short fiber systems, 
fiber glass reinforced resins have been ufflized by many different industries, including 
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commercial and civilian applications such as automobiles and aircraft. The main reason for this 
is due to the ease in manufacturing and lower material cost. In many cases, the effective 
properties of such systems are treated as isotropic materials. That is to say, for random short 
fiber materials, it is assumed that directional variation in properties do not exist. However due 
to manufacturing techniques fibers can assume certain orientations. In this study, the effective 
modulus of a short fiber composite which is unidirectionally oriented will be calculated. In 
Figure (13), the axisymmetric element used in the analysis is shown. The dimensions of the 
fiber and the surrounding matrix are chosen such that the aspect ratio of the fibers are 50. The 
properties of the fiber are that of steel ( E = 190 GPa, v = 0.3) and the matrix is an epoxy ( E = 
2.5 GPa, v =0.35). The dimensions of the fiber are varied so as to achieve different fiber 
volume fractions. In the limit as the dimensions of the fiber reach the outer dimensions, vf = 1, 
and as the fiber dimension diminishes we have vf = 0, as expected. 

In Figure (14), the results of the analysis is shown. In addition, the results are compared 
to Carman's [20] results and experimental results generated by Berthelot [21 ] for a steel/epoxy 
short fiber system. Both the present and Carman's result overpredict the experimental values. 
This is due to the fact that during manufacturing of the specimens, there was a distribution of 
fiber orientations from + 10 ~ Another reason for the overprediction is due to the assumption of 
perfect bonding that both models incorporate. Nevertheless, the results show good agreement 
with experimental results and follow the expected trend. 

Figure 13 Schematic of axisymmetric model for short fiber composite with aspect ratio of 50. 
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Figure 14 Results of stit~ess calculations and experiments for a short-fiber composite. 

6. C O N C L U S I O N S  & F U R T H E R  W O R K  

�9 A representative volume of a continuous fiber composite with fibers arranged in a 
hexagonal pattern was constructed to study the effects of fiber fracture on load sharing 
by neighboring fibers. The stress distribution in the fibers adjacent to the fiber breaks 
were calculated. 

�9 From the stress distributions, the stress concentration and the ineffective lengths were 
used in conjunction with the fiber's Weibull parameters to predict the strength of the 
composite as a whole. This was achieved through a statistical strength model 
developed by Harlow and Phoenix [5] and later refined by Batdorf [4]. 

�9 The results of the strength predictions were compared to experimental results of 
tensile strength of carbon fiber composites. 

�9 Using Pagano's model, the stiffness of a continuous fiber composite was determined 
from calculated microstresses and strains. The stresses and strains were volume 
averaged over each constituent and the effective modulus was determined for a 
fragmented fiber composite and a short-fiber composite. 

�9 The advantage of using Pagano's model is that we can calculate the change in stress 
fields due to any type of damage. As a further study, the effects of different damage 
modes, such as debonding and matrix cracks, on stiffness and strength can be studied. 
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