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Preface

It has been more than three decades since my first book on ocean engineering,
Ocean Engineering Wave Mechanics. My purpose in writing that book was to give
ocean engineering students and ocean technologists an introduction to the mechan-
ics of water waves, and to present and demonstrate the analytical techniques used in
wave-structure interaction problems. Since the 1973 publication of that book, ocean
technology has been one of the most rapidly advancing engineering fields. The pur-
pose of this book is to present both fundamental and advanced techniques in the
analyses of both water waves and wave-structure interactions. The classical analyt-
ical works in the areas of wave mechanics are discussed in detail so that the reader
can follow the lines of thought of the masters who produced these classic analyses.

Most of the material presented herein is for readers with a basic education in
applied mechanics, including fluid mechanics or hydraulics and applied mathemat-
ics. The material is presented so that the reader can immediately apply the various
analytical techniques to problems of interest. To this end, examples are presented
in each section. Certain topics, such as the cnoidal theory, are of an advanced ana-
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lowing these topics are examples designed to demonstrate the application of these
advanced analytical methods.

I would like to express my thanks to Dr. David R. B. Kraemer of the University
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A special thanks is given to Professor Jacek Mostwin of Johns Hopkins Medi-
cal Institutions. Because of his consideration and skills, I was able to complete this
book.

xvii



xviii Preface

My sincere appreciation is given to my long-time friends and colleagues,
Dr. Ronald Gularte and Mrs. Alice Gularte, for proofreading the manuscript. They
provided guidance and editorial comments that were invaluable.

Finally, I would like to express my appreciation to my dear friend and colleague,
Professor Rameswar Bhattacharyya of the U.S. Naval Academy, for his suggestions
and encouragement. It has been my good fortune to be able to work closely with
Professor Bhattacharyya for more than thirty-eight years, and I have profited greatly
from the experience.

Michael E. McCormick
Annapolis, Maryland
December 2008



Notation

General

aw added mass (kg)
a cylindrical radius (m)
Aw added-mass moment of inertia (N-m-s2/rad)
A area (m2)
br,P,v linear radiation, power take-off, and viscous damping coefficients

(N-s/m)
b half-breadth and crest width (m)
bv nonlinear viscous damping coefficient (N-s2/m2)
B breadth of a structure into the page, or beam of a floating body (m)
c celerity vector (m/s)
cg group velocity (m/s)
Cd drag coefficient
D diameter (m)
d draft of a fixed or floating structure (m)
e 2.7182818 . . .
f frequency (Hz)
F force (N)
g gravitational constant (�9.81 m/s2)
h water depth (m)
H traveling wave height (m)
H(1,2)

n ( ) Hankel function of the first and second kinds
H standing wave height (m)
i (−1)1/2

i,j,k x,y,z-unit vectors
Ie second moment of area with respect to the e-axis (m4)
Ie body mass-moment of inertia with respect to the e-axis (N-m-s2/rad)
In modified Bessel function of the first kind
Jn( ) Bessel function of the first kind
KC Keulegan-Carpenter number
Kn( ) modified Bessel function of the second kind
Kr refraction coefficient in eq. 6.85
KR reflection coefficient in eq. 6.23

xix



xx Notation

KS shoaling coefficient in eq. 3.78
k wave number, 2�/� (1/m)
L body length (m)
m body mass (kg)
M moment (N-m)
n order of Bessel function and index number
n normal unit vector
p pressure (N/m2)
P energy flux (N-m/s)
Q volume flow rate (m3/s)
r radial coordinate (m)
r position vector (m)
R radius (m)
Re� Reynolds number based on length �

s local coordinate (m)
SPM Shore Protection Manual (U.S. Army, 1984)
SWL still-water level
t time (s)
T line tension (N)
T wave period (s)
u,v,w x,y,z-velocity components (m/s)
U nominal speed (m/s)
V velocity (m/s)
W body weight (N)
x,y inertial horizontal coordinates (m)
X,Y local horizontal coordinates (m)
Yn( ) Bessel function of the second kind
z inertial vertical coordinate (m)
Z local vertical coordinate (m)
� real part of a quantity
� imaginary part of a quantity
� free-surface displacement (m)
� angular coordinate (radians, degrees)
� wavelength (m)
� dynamic viscosity (N-s/m2)
� kinematic viscosity (m2/s)
� mass density (kg/m3)
� velocity potential (m2/s)
	 two-dimensional stream function (m2/s)

 circular wave frequency (rad/s)

Subscripts

avg average value
o amplitude
max maximum value
0 deep-water wave properties
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Chapter 1

E (To) wave-energy spectral density (m2/s)
F fetch (m, km)
Fmin minimum fetch (m, km)
To modal period (s)
U wind speed (m/s, km/hr)
XD developing length of a wind-generated sea (m, km)

Chapter 2

Cp pressure coefficient in Figure 2.11
f(t) see eq. 2.70
fV vortex-shedding frequency (Hz)
FB buoyant force (N)
Fr Froude number
j index number
Lm,p model and prototype lengths (m)
m,n indices
nς ς-scale factor (ς = F, L, p, P, t, V)
M+,− three-dimensional source and sink strengths (m3/s)
M+,− line source and sink strengths (m2/s)
N maximum index number
Ro,i outer and inner diameters (m)
R,�,� spherical coordinates
St� Strouhal number based on length �

Ŝ safety factor
V0 upstream velocity (m/s)
∨ volume (m3)
� weight density (N/m3)
� circulation (m2/s)
1,2,u axial, hoop, and ultimate stresses (N/m2)
� three-dimensional velocity potential (m2/s)
� three-dimensional stream function (m3/s)

Chapter 3

�,� arbitrary phase angles in eqs. 3.12 and 3.13
C arbitrary constant
E total energy (N-m)
Ep potential energy (N-m)
Ek kinetic energy (N-m)
FA,B(�) wavelength functions in eq. 3.34
KS shoaling coefficient
N sea-bed normal unit vector
P energy-flux vector (N-m/s)
T(t) time function in eq. 3.9
U,W standing-wave horizontal and vertical particle velocity components (m/s)
X(x) spatial function in eq. 3.9
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Z(z) spatial function in eq. 3.9
�F see eq. 3.35
ε power-conversion efficiency
�(x,t) translating horizontal displacement (m)
�(x,t) translating vertical displacement (m)
� standing-wave velocity potential (m2/s)
� standing-wave stream function (m3/s)

Subscripts

wc water column

Chapter 4

A integration constant in eq. 4.93
B perturbation constant in eq. 4.94
C free-surface constant value (m)
E′ energy per crest width (N-m/m)
E( ) complete elliptic integral of the second kind
fj, Fj see eqs. 4.77 and 4.78
K( ) complete elliptic integral of the first kind
K total energy per unit volume (N-m/m3)
� height of the trough above the sea (m)
S bottom coordinate (= z + h)
UR Ursell parameter; see Figure 4.1
U,W Stokian horizontal and vertical velocity components (m/s)
Ucon convective velocity (m/s)
� crest angle from the vertical (radians, degrees)
� free-surface function in eq. 4.88
ε perturbation constant in eqs. 4.8 and 4.9
� free-surface displacement from the wave trough (m)
M parameter
� horizontal particle convection length (m)

Subscripts

b breaking condition
c at a wave crest
� angular component
R radial component
0 properties at an origin of a coordinate system

Chapter 5

a wave amplitude (m)
A Weibull parameter in eq. 5.27
A generic spectral parameter in eq. 5.42
Ao coefficient in eq. 5.89
B Weibull parameter in eq. 5.27
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B generic spectral parameter in eq. 5.42
E energy per free-surface area (N-m/m2)
E energy intensity (N-m/m)
F fetch (m, km)
G( ) spreading function in eq. 5.92
– wave period index bed (m)
I maximum wave period index
j wave height index
J maximum wave height index
M dimensionless wave height ratio
m Weibull parameter in eq. 5.27
mH shape factor in eq. 5.102
mT shape factor in eq. 5.103
m generic spectral parameter in eq. 5.42
n generic spectral parameter in eq. 5.42
ni,j number of observed waves corresponding to the index j
N expected number of observed waves
p( ) probability density function
P( ) cumulative frequency of occurrence
P( ) cumulative probability of occurrence
R radial coordinate from a wave crest (m)
s spreading parameter
S(T) wave spectral density (m2/s)
tD duration (hours)
U10,19.5 wind speed at heights of 10 m and 19.5 m above the still-water

level (km/hr)
Z arbitrary variable
� equivalent Mach angle in Figure 5.17 (radians, degrees)
� wind angle from onshore direction (radians, degrees)
�2 the gamma function evaluated at (m+2)/m
� boundary layer thickness in Figure 5.16 (m)
� angle from wind direction in the horizontal plane (radians, degrees)
� angle from true north (radians, degrees)

Subscripts

avg averaged
B Bretschneider spectral density
DF critical duration
fds fully developed sea
h at a finite water depth
Hj,J property of the j or J wave height
I wave component index
J generic wave spectral density
J direction index
JON JONSWAP spectral density
LT long-term
rms root-mean-square
s significant wave
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z zero up-crossing period
+− maximum and negative wave amplitudes

Chapter 6

AI,R incident and reflected amplitude coefficients
A,B coefficients in eq. 6.132
b wave crest width (m)
BB boundary value of amplitude function
Bn( ) generic Bessel function in eq. 6.99d
B breadth of structure (m)
BF complex coefficient in eq. 6.111
BG complex coefficient in eq. 6.113
BFG BFBG

C line-integration path
C,D coefficients in eq. 6.133
C(uL) Fresnel integral
en energy per unit crest length over the nth step of the shoal in eq. 6.78
E( ) amplitude function in eq. 6.37
E( ) see eq. 6.163
F( ) arbitrary spatial function in eq. 6.101
G( ) arbitrary spatial function in eq. 6.103
f� linearized friction factor in eq. 6.31
H′ pure shoaling wave height (m)
K frequency parameter in eq. 6.50
K(A,B) see eq. 6.171
KA absorption coefficient in eq. 6.24
KD diffraction coefficient in eq. 6.23
� length of Region B in Figure 6.7 (m)
m slope of structural face
N wall porosity
N number of quasi-steps on the shoal in Figure 6.13
N normal unit vector on the sea bed
P(r) defined in eq. 6.99
P0,S points in Figure 6.21
rS relative position vector in Figure 6.21
Ru runup (m)
s arbitrary dependent variable in eq. 6.51
s,S coordinates in eqs. 6.141 and 6.142 (m)
s displacement vector in the direction of wave travel (m)
Qmn see eq. 6.169
Q(x) separation of variables function in eq. 6.192
S(uL) Fresnel integral
Smn see eq. 6.165
T(t) time function in separation-of-variables solution in eq. 6.46
X(x) spatial function in separation-of-variables solution in eq. 6.46
Y(y) separation-of-variables function in eq. 6.192
Y0 alongshore distance over the deep-water contour in Figure 6.17 (m)
Z(x,z) see eq. 6.181
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� differential operator, defined in eq. 6.185
ε angle between wave direction and wall (radians, degrees)
ε phase angles defined in eq. 6.140 (radians, degrees)
� angle measured from the leeward side of the seawall (radians, degrees)
� angle measured from the normal on the leeward side of the seawall

(radians, degrees), as in Figure 6.21
� alongshore component of the wavelength in eq. 6.20 (m)
� see eq. 6.160
� see eq. 6.161
σ phase angle in eq. 6.37 (radians, degrees)
Qsed volume-rate of sediment transport
�N defined in eq. 6.80
� spatially dependent velocity potential (m2/s)
� spatially and temporally dependent velocity potential (m2/s)

Subscripts

a properties upwave of the shoal
b properties downwave of the shoal (m3/s)
A property in Region A
A absorbed
B property in Region B
C property in Region C
D diffraction properties
I incident properties
m summation index
R reflected properties
T transmitted properties

Chapter 7

a slope-dependent coefficient in eq. 7.6
A parameter in eq. 7.2
b slope-dependent coefficient in eq. 7.7
B parameter in eq. 7.3
Cy,ε constants associated with stresses
Cp porosity factor in eq. 7.15, equal to 1-∨void/∨total

D local rate of energy dissipation (N-m−1-s−1)
D50 mean sediment diameter (m, cm, mm)
E1,2 constants in eqs. 7.71 and 7.72
f� friction factor in eq. 7.58
H′ pure shoaling wave height (m)
K proportionality constant in eq. 7.41
m slope of the sea bed
Px energy flux line intensity in eq. 7.51 (N/s)
Ru runup in Figure 7.1 (m)
[s] equivalent radiation stress matrix (N/m)
sXX,YY equivalent components of radiation stress in eq. 7.29 (N/m)
SXX principal component of radiation stress in eq. 7.20 (N/m)
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SYY transverse component of radiation stress in eq. 7.23 (N/m)
[S] radiation stress matrix (N/m)
Tε function of the eddy viscosity in eq. 7.54 (N/m)
U,V,W particle velocity components with respect to the wave direction in

Figure 7.7 (m/s)
V velocity vector in Figure 7.7
Vl alongshore (or longshore) velocity in Figure 7.6 (m/s)
Vs Vl/Vb

xS maximum set-up in eq. 7.48 (m)
x seaward coordinate from swash line in Figure 7.13 (m)
X,Y,Z wave coordinate system in Figure 7.7 (m)
� experimental proportionality constant in eq. 7.44
� parametric constant in eq. 7.49 (1/m)
�ε eddy viscosity in eq. 7.59 (N-s/m2)
� surf similarity parameter in eq. 7.9
� y time-averaged bed shear stress (N/m2)
� xys radiation stress (N/m2)
� ε effective eddy shear stress in eq. 7.61 (N/m2)
� x/xb

F momentum flux in eq. 7.35 (N/m)

Subscripts

b breaking condition
�s longshore property
s surf-zone conditions
S maximum set-up
sed sediment property
ε eddy viscosity property

Chapter 8

BT cap width of the trunk (m)
f expected number of failures
Fr Froude number
H′ pure shoaling wave height (m)
hT height of the breakwater (m)
k� layer coefficient in eq. 8.5
KD T stability coefficient in eq. 8.1
L0,1.. alongshore separation distance between groins 0 and 1, 1 and 2, . . . (m)
Lg groin length in Figure 8.2 (m)
m slope of the sea bed
m shape parameter in eq. 8.14
n number of primary stone layers
nL length scale factor in eq. 8.11
nt time scale factor in eq. 8.13
nV velocity scale factor in eq. 8.13
N number of cap stones of the breakwater trunk
N number of armor stones of a breakwater
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N100 expected number of observed waves over 100 years
P probability of failure (= 1 – R), as in Example 8.4
Qsed volume rate of sediment transport (m3/s)
rT total thickness of the primary armor stone layer (m)
R reliability, as defined in Example 8.4
V� alongshore (or longshore) velocity in Figure 8.2 (m/s)
W1T armor stone weight (N)
W2T shield stone weight (N)
W3T foundation stone weight (N)
W4T toe stone weight (N)
� stone mass density of the stone material (kg/m3)
ε angle of the breakwater weather face with respect to the horizontal

(radians, degrees)

Subscripts

D design condition
avg average value
max maximum value
ref reference value
rms root-mean-square value
T breakwater trunk properties

Chapter 9

a semi-length of a Lewis form (m)
a radius of a circle or circular cylinder (m)
ae equivalent radius in eq. 9.81 (m)
A semi-length of a rectangular caisson (m)
Ad projected area (m2)
Am see eq. 9.141
A1 Lewis transformation constant (m2)
A3 Lewis transformation constants (m4)
b semi-width of a Lewis form (m)
B semi-width of a rectangular caisson (m)
Bmn see eq. 9.141
B1 2Ymax|a=1

C contour enclosing an area S (m)
Ci inertial coefficient in eq. 9.26
Cd drag coefficient
CM mass coefficient defined in Figure 9.17 and eq. 9.79 for a circular caisson
CM mass coefficient defined in eq. 9.80 for a rectangular caisson
f( ) arbitrary function
Em constant associated with the index m in eq. 9.63
Fd drag force (N)
Fw wave-induced pressure force on the wall (N)
FW wave-induced pressure force on the wall, excluding higher-order terms

in �w in eq. 9.5 (N)
Γ non-dimensional force defined in eq. 9.151
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F 1mn Fourier series in eq. 9.111
G� (z) see eq. 9.138
ir unit vector in the radial direction
Kd drag parameter in eq. 9.173
Ki inertial parameter in eq. 9.175
Kn depth-draft parameter in eq. 9.108
KC Keulegan-Carpenter number in eq. 9.45
� length of a cross-brace (m)
NM expected number of waves over M years
p( ) wave-height probability density function in eq. 9.180 (1/m)
pw wave-induced wall pressure (N/m2)
P point in Figure 9.27
P1m see eqs. 9.109 and 9.110
P( ) wave-height probability in eq. 9.179
q(z) see eq. 9.94
Q(z) empirical function in eq. 9.94
Q(�) separation of variables function in Section 9.2H(3)
R(r) separation of variables function in Section 9.2H(3)
S area of a fluid enclosed by a contour C (m2)
S(f ) wave spectral density (m2-s)
T(f ) transfer function
umax horizontal particle motion at a wave crest (m/s)
UR Ursell parameter or number in eq. 9.54
V0 body velocity (m/s)
V∞ free-stream velocity at x = ±∞ (m/s)
∨disp displaced volume (m3)
w� ,z complex potentials in � - and z-planes (m2/s)
X x at a
X,Y,Z inertial coordinates on the sea bed (m)
Y y at a (m)
z x + iy (m)
Z(z) separation of variables function in Section 9.2H(3)
Zw depth of the center of pressure (m)
� eigenvalue in eq. 9.113
� angle from the direction of motion in the x-y plane (radians,

degrees)
� angle measured positively from the �-axis in the �-plane, and angle

measured from the wave direction to a ray in Figure 9.28 (radians,
degrees)

�m� see eq. 9.141
��� Kronecker delta in eq. 9.140
εm Neumann’s symbol
� � + iε (m)
� dispersion parameter in eq. 9.117
�(ka) MacCamy-Fuchs amplitude function in eq. 9.72
� kinematic viscosity (m2/s)
� displacement potential in eq. 9.99
(ka) MacCamy-Fuchs phase angle in eq. 9.73
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Subscripts

B Bretschneider wave spectral density
brace property on a cross-brace
cp property at the center of pressure
CL property on the centerline of the cylinder
G Garrett force and moment
I incident wave property
j,k,l caisson indices
m,n summation indices
MF MacCamy-Fuchs property
PM Pierson-Moskowitz wave spectral density
S scattered wave property
s significant wave property
w property at the wall
X,Y properties in the x- and y-directions
� properties associated with the rectangular caisson

Chapter 10

aP damping plate radius in Figure 10.10 (m)
ALP articulated-leg platform
Ad projected area for drag (m2)
Awp waterplane area for drag (m2)
bcz heaving critical damping coefficient (N-s/m)
bp power take-off damping coefficient (N-s/m)
br radiation damping coefficient (N-s/m)
bv equivalent linear viscous damping coefficient (N-s/m)
bz combine damping coefficient (N-s/m) in eq. 10.25
bv nonlinear viscous damping coefficient (N-s2/m2)
C constant in eq. 10.55
Cd drag coefficient
H(
) amplitude response function in eq. 10.51
H(
)∗ complex conjugate of (
)
kS spring constant (N/m)
lS relaxed mooring line length (m)
N power of the velocity in eq. 10.1
N number of mooring lines
NM number of observations over M years
p(Z) probability density (1/m)
P( ) probability of an event
Pz power absorbed (N-m/s)
SJ(T) wave spectral density in eq. 10.55 (m2-s)
Sz(T) response spectral density in eq. 10.55 (m2-s)
T time interval (s)
TS mooring line tension (N)
Tnz natural heaving period (s)
Vz heaving velocity vector of a body (m/s)
wcw capture width in eq. 10.46 (m)
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Z(
) frequency-dependent heaving amplitude (m)
�z phase angle between the incident wave and the wave-induced force

(radians, degrees)
� 0.5772157 (Euler’s constant)
�d change in draft (m)
�z damping ratio in eq. 10.21
εz phase angle between the heaving response and the wave-induced force

(radians, degrees)

nz natural heaving frequency (rad/s)

1,2 bounds of the half-power frequency bandwidth (rad/s)

Subscripts

ABS absolute value
avg averaged property
b damping property
B Bretschneider spectral density
dyn dynamic pressure
j amplitude number
J generic spectral density
n natural frequency property
N wave index in eq. 10.60
rms root-mean-square value
S property of mooring line spring effect
x,y,z motion directions

Chapter 11

a radius of a circle (m)
aw total added mass of a floating body (kg)
A area in eq. 11.185 (m2)
Aw added-mass moment of inertia (N-m-s2/rad)
A0 Lewis parameter (m0)
A1 Lewis parameter (m2)
A2 Lewis parameter (m3)
A3 Lewis parameter (m4)
bZ linear damping coefficient for heaving motions (N-s/m)
bwZ quasi-linear damping term in eqs. 11.82 and 11.84 (N-s/m)
b� waterline semi-breadth of a fixed or floating body at a distance � from the

center of gravity (m)
B center of buoyancy
B′ displaced center of buoyancy
B� linear damping coefficient for pitching motions (N-m-s/rad)
B� (�) breadth of a body at � (m)
c linear restoring coefficient (N/m)
ci( ) cosine integral
C angular restoring coefficient (N-m/rad)
Carea sectional area coefficient in eq. 11.43
Cmax (length) maxima coefficient in eq. 11.42
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CSF scale factor in eq. 11.40 when a = 1
CSF-a scale factor in eq. 11.40 when a 	= 1
Csmith Smith correction factor in eq. 11.63b
d,e,f angular coupling terms in eq. 11.15 (see Table 11.1)
d� draft at � (m)
D� diameter of a semicircular section at � (m)
D,E,F linear coupling terms in eq. 11.16 (see Table 11.1)
f( ) see eqs. 11.96 through 11.98
F(k) see eq. 11.159
Fa inertial reaction force in eq. 11.29 (N)
FB buoyant force (N)
Fr radiation damping force in eq. 11.31 (N)
FW total wave force in eq. 11.25 (N)
g( ) see eqs. 11.96 through 11.98
G center of gravity
GM metacentric height (m)
k2 shape parameter in eq. 11.144
k4 frequency coefficient in Table 11.3
K keel
Ix,y second moment of area with respect to the x- or y-axis (m4)
Li,j operators defined in eqs. 11.113 through 11.116, where i = 1,2 and j = 1,2
L waterplane ship length (m)
�aft distance from stern to G in the waterplane (m)
�fwd distance from the bow to G in the waterplane (m) pitching motions

(N-m-s/rad)
� freeboard of a floating body (m)
M metacenter
Mo two-dimensional source strength (m2/s)
Ma inertial reaction moment in eq. 11.30 (N-m)
Mr radiation damping moment in eq. 11.31 (N-m)
MW total wave moment in eq. 11.26 (N-m)
O origin of the ship coordinate system, X,Y,Z
P point on the strip in Figure 11.5
P point on the strip in Figure 11.24a
r radius of a circle (m)
r,� polar coordinates in the Y-Z plane, as in Figures 11.7b, 11.7c, and 11.12
RZ amplitude ratio in eqs. 11.88 and 11.89
R� radius of a semicircular section at � (m)
si( ) sine integral
s curvilinear coordinate in eq. 11.185 (m)
so amplitude in eq. 11.178 (m) S(Y,Z,t) strip envelope geometry in

Figure 11.22 (m)
S� strip area at � (m2)
Sbody spatial portion of strip envelope geometry in eq. 11.178 (m)
Te period of encounter (s)
U ship’s forward speed (m/s)
Vw(t) vertical speed of the free surface (m/s)
Vz heaving body speed (m/s)
Vwz vertical water particle velocity (m/s)
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Vw� vertical water particle velocity at z = � (m/s)
wZ complex velocity potential in eq. 11.51
x,y,z coordinate system attached to the calm-water free-surface (m)
X,Y,Z coordinate system at the center of gravity of a body (m)
XB see Figure 11.1
Ymax maximum half-breadth of a Lewis form (m)
Y� half-breadth at � (m)
W body weight (N)
z x + iy
z iz in eq. 11.49 and Figure 11.10b
ZZ heaving magnification factor in eq. 11.140
Z� pitching magnification factor in eq. 11.141
Zo amplitude of vertical body motion (m)
Zmax maximum half-height of a Lewis form (m)
Zo source location on the vertical axis in Figure 11.23 (m)
Zref reference draft in eq. 11.89 (m)
Zstat static displacement in eq. 11.131
Z� half-height at � (m)
� angular coordinate measured from the negative Z (or z) direction

(radians, degrees)
� angular coordinate in Figure 11.7 (radians, degrees)
�Z damping ratio for heaving motions
�� damping ratio for pitching motions
ε,∈ complex variables Figure 11.7a
εZ phase angle between the wave-induced force and the heaving motions

(radians, degrees)
� two-dimensional velocity potential (m2/s)
�sd velocity potential for a two-dimensional source (m2/s)
�s velocity potential for a two-dimensional point source (m2/s)
�� two-dimensional velocity potential in eq. 11.57 (m2/s)
�(Y,Z) spatial potential in eq. 11.175 (m2/s)
�S velocity potential for a two-dimensional line source (m2/s)
� rolling angular displacement measured from the y-axis (radians, degrees)

e circular frequency of encounter (rad/s)
′ indicating per unit length
�F phase angle between the wave-induced force and the wave in

eq. 11.101 (radians, degrees)
�M phase angle between the wave-induced moment and the wave in

eq. 11.106 (radians, degrees)
ε� phase angle between the wave-induced moment and the pitching motions

(radians, degrees)
� ε + i∈ in Figure 11.7a
�(t) vertical displacement of a strip (m)
� i� in eq. 11.49 and Figure 11.10a
� pitching angular deflection measured about the y-axis (radians, degrees)
� trim angle in eq. 11.70 (radians, degrees)
� distance from G to strip (m)
 yawing angular displacement measured about the z-axis (radians,

degrees)
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Subscripts

cir property associated with a circular section
cr critical damping
D diffracted wave property
e excitation
fs,FS free-surface property
gain gained buoyancy
h hydrodynamic force
I incident wave property
Lew Lewis form property
lost lost buoyancy
o identifies a point in space
o amplitude of a property
n resonant condition value
r radiation property
R reflected wave property
S property associated with a line source
v viscous property
w wave property
X,Y,Z respective surging, swaying, and heaving properties
Br radiation damping moment coefficient in eq. 12.125 (N-m-s/rad)
B breadth (in the x-direction) of a spread-footing structure at the soil

line (m)
BB Bretschneider spectrum coefficient (1/s4) in eq. 12.112
Bc buoyant force of a mooring line (N)
cS apparent soil cohesion in eq. 12.22 (N/m2)
wo defined in eq. 11.101
wc defined in eq. 11.101
ws defined in eq. 11.101
wz vertical component of the water particle motions
wZ vertical wave-body interaction properties
W total wave excitation
Z property of vertical motions
� property at a distance � from G
� pitching property
 yawing property
� rolling property

 wave-induced property

Chapter 12

a soil strength constant in eq. 12.24 (N/m2)
aa added mass (kg)
a spar radius (m)
Aa added-mass moment of inertia in eq. 12.124 (N-m-s2/rad)
ALP articulated-leg platform
AB Bretschneider spectrum coefficient (m2/s4) in eq. 12.112
Ay cross-sectional area of the leg material (m2)



xxxiv Notation

b soil strength constant in eq. 12.24 (N/m3)
br radiation damping coefficient
Csj effective soil damping constant for motions in the j (= x, z, or �) directions

(N-s/m or N-m-s/rad)
Ca,b integration constants in eq. 12.7
Cc,d constants in eq. 12.42
CdD drag coefficient based on spar diameter
CdDj equivalent linear drag coefficient in eq. 12.134
d0 draft of surface-piercing body (m)
d moored draft of a tension-moored body (m)
d embedment depth of a spread-footing structure (m)
d1 thickness of the subsurface plastic zone (m)
D spar diameter (m)
Din,out inner and outer diameters for a pile (m)
Es modulus of elasticity of the soil (N/m2)
E modulus of elasticity (Young’s modulus) of the leg material (N/m2)
Epile modulus of elasticity of the pile material (N/m2)
Es modulus of elasticity of the mooring line material (N/m2)
fn( ) see eq. 12.123
FOT flexible offshore tower
Fxo(
) complex force amplitude (N)
Fx,z shear and axial forces in a leg (N)
F� axial force in a diagonal member (N)
FX,Z horizontal and vertical reaction forces at the fixed eye-point of a mooring

line (N)
Fd pressure-drag force (N)
FZs shear force at the interface of the elastic and plastic zones (N)
F0 applied force at the soil-water interface (N)
Gs shear modulus of the soil in eq. 12.50
H(
) amplitude response function
H0( ) Struve function of zero order
IY second moment of area with respect to the Y-axis
Iy mass moment of inertia with respect to the y-axis (N-m-s2/rad)
ks effective elastic modulus in eq. 12.23a (N/m2)
Kj effective soil spring constant for motions in the j (= x, z, or �) directions

(N/m or N-m/rad)
KC Keulegan-Carpenter number in eqs. 9.45 and 12.129
Ks effective spring constant of a mooring line (N/m)
Ksp effective horizontal spring constant for mooring lines in parallel in

eq. 12.16 (N/m)
Kss effective horizontal spring constant for mooring lines in series in

eq. 12.17 (N/m)
KsX effective horizontal spring constant for a mooring lines in eq. 12.14 (N/m)

(see Figure 12.6b)
KX,Y effective spring constants for redundant moorings in the X- and

Y-directions (N/m)
L length of a diagonal (m)
L� length of a cross-brace (m)
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l relaxed mooring line length (m)
mn lumped mass at the nth node (kg)
mm mass of a mooring buoy (kg)
MZs bending moment at the interface of the elastic and plastic zones (N-m)
M0 applied moment at the soil-water interface (N-m)
n modal number
nL length scale factor
Ns force coefficient in eq. 12.23a
Ns number of tension mooring lines
N node number at the platform
p soil resistance in eq. 12.23 (N/m)
P,Q see eq. 12.30
r mooring line radius (m)
Rpas Rankine passive earth coefficient in eq. 12.27
s mooring line segment length (m)
S( ) wind-wave spectral density (m2/s)
T mooring line tension (N)
Tl tension in a tension mooring line (N)
TLP tension-leg platform
TRAP tension-restrained articulated platform
V velocity (m/s)
∨ volume (m3)
Wc net weight (weight minus buoyancy) of a mooring line (N)
W′

c net weight per unit line length (N/m)
W weight of floating structure (N)
Wc structural weight of a mooring line (N)
X(
) complex surging amplitude (m)
X,Y,Z slack mooring coordinates (m)
X,Y,Z coordinates over the center of gravity of a moored structure (m)
Xx sliding coordinate on the bed (m)
Zz heaving coordinate on the bed (m)
Zs soil coordinate (m)
� cable angle from the horizontal direction in the vertical plane (radians,

degrees)
�� phase angle between the wave and wave-induced moment (radians,

degrees)
� angle of a diagonal member to the horizontal (radians, degrees)
� cable angle to the X-direction in the horizontal plane (radians, degrees)
�� elongation of a diagonal member (m)
εs mooring line strain
εz phase angle between the heaving motions and the wave-induced force

(radians, degrees)
�y rocking coordinate on the bed (radians, degrees)
� angular displacement of a tension mooring line from the vertical (radians,

degrees)
�(ka) MacCamy-Fuchs amplitude function in eq. 9.72
�s Poisson’s ratio of the soil
yield property at the elastic-plastic boundary
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� rocking property
� property associated with horizontal mooring
1 property at the inflection point of the mooring line
� horizontal length of a relaxed mooring line in Figure 12.8b (m)
� s mass density of the soil (kg/m3)
 normal stress (N/m2)
(ka) MacCamy-Fuchs phase angle in eq. 9.73
� ss mooring line normal stress (N/m2)
� S shear or soil strength in eq. 12.22 (N/m2)
�s friction angle in eq. 12.22 (radians, degrees)

Subscripts

a,b,m properties as shackle a, b, m
avg averaged value
B property associated with buoyancy
B associated with the Bretschneider wave spectrum
c property of a mooring line or cable
C property associated with the damping
d nonlinear drag property
d equivalent linear drag property
� imaginary coefficient
MF associated with the MacCamy-Fuchs equation
rms root-mean-square value
� real coefficient
s soil property
s mooring line property
v viscous property
W property associated with the incident waves
x,y,� sliding, heaving, and rocking properties
x,z property in x- and z-directions
pile pile property
yield property at the movable eye-point of a mooring line

Appendices

a,b lengths in Figure H1
C constant in eq. E17
C Cp
Ca added-mass constant
CA added-mass moment-of-inertia constant
D diameter of a sphere (m)
E(ε,Q) elliptic integrals of the first kind
E′

k kinetic energy per unit length (N-m/m)
E(Q) E(�/2,Q), complete elliptic integral of the first kind
f(z) inverse Fourier transform
F arbitrary function in eq. C3
F(ε,Q) elliptic integrals of the second kind
F (z) Fourier transform
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G Green’s function (1/m)
G arbitrary function in eq. C3
ka,b,c,d Runga-Kutta constants in eq. B9
K separation-of-variables constant (1/m)
K(Q) F(�/2,Q), complete elliptic integral of the second kind
M three-dimensional source strength (m/s)
M constant in eq. E17
n index in Runga-Kutta method
N separation of variables constant (1/m)
n integer order of a Bessel function
P source point
p,q velocity potential values in eq. G2
Q q/p
Q parameter in eqs. G8 and G9
R radius of the sphere (m)
R radial position (m) (see Figure D1)
s surface coordinate (m)
S surface area (m2)
T(t) time variable (1/s) in eq. E14
T(t) time variable (1/s) in eq. E3
U fluid velocity (m/s)
∨ volume (m3)
w complex velocity potential (m2/s)
z complex variable (m)
� cylindrical angular coordinate (radians, degrees)
�a,b,c,d Runga-Kutta constants in eq. B10
� order of a Bessel function
� two-dimensional velocity potential (m2/s)
� three-dimensional velocity potential (m2/s)

 solid angle (radians, degrees) in eq. D6
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1 Introduction

The field of ocean engineering was formally identified as such in the 1960s. Prior to
that decade, civil, mechanical, and electrical engineers and naval architects concen-
trated on ocean-related technologies in rather narrow areas. Two books that helped
define ocean engineering in the 1960s are those by Wiegel (1964) and edited by
Myers, Holm, and McAllister (1969). These books are still often referenced today.
The integrated field of ocean engineering primarily resulted from the discovery of
massive oil deposits beneath the sea beds. This discovery led to the increased pro-
duction of both fixed and floating offshore structures and ancillary systems designed
to support extraction systems for the energy resource.

Some of the contemporary ocean engineering areas are listed in Table 1.1. The
areas discussed in this book are identified by an asterisk (∗) in the table. The primary
focus of this book is on wave-induced forces and the subsequent effects of ocean
structures.

A large number of the engineering problems that must be faced in the design
of ocean engineering systems involve water waves in one form or another. The engi-
neer’s ability to deal with these problems depends on the extent of their knowledge
of the physics of water waves. In this book, basic and intermediate analytical tech-
niques used in water-wave hydromechanics are presented. Each chapter contains
a number of worked examples designed to help the reader better understand the
various wave-related phenomena. An excellent physical discussion of ocean waves
is also found in the paperback book by Bascom (1964), which is available in book
stores.

1.1 Generation of a Sea

As previously written, a majority of the problems encountered by ocean engineers
are associated with ocean waves. Extremely large ocean waves can destroy the most
sturdy of ocean structures by impact whereas moderate persistent waves can cause
elastic fatigue of structural components. It is then appropriate to introduce the topic
of wave generation early in this book.

Winds generate seas containing waves of various heights (H) and periods (T).
Wind waves in a sea are statistical in nature, as discussed in Chapter 5. Wave heights
and periods vary randomly from place to place and from time to time. The average

1
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Table 1.1. Areas of ocean technology

Arctic Engineering Navigation
Acoustical Communications Pollution and Environmental Control
Coastal Engineering∗ Powering
Control of Marine Vehicles Resistance (Wave and Viscous)∗

Diving Seafloor Mechanics∗

Dredging Seakeeping∗

Energy Conversion∗ Sediment Transport∗

Foundations of Marine Structures∗ Sonar
Harbor Design Structural Design∗

Hydromechanics∗ Structural Mechanics∗

Instrumentation Undersea Optics
Life Support Underwater Vehicles (Manned and Remote)
Maneuvering Wave Mechanics∗

Materials Science and Engineering Wave-Structure-Soil Interactions∗

Mining

values of these wave properties depend on the nature and duration of the gener-
ating winds. A slight, sustained breeze will create the smallest water waves called
capillary waves. The name of these waves signifies the fact that the wave properties
are strongly influenced by the surface tension of the water. Hurricane winds create
high-energy waves, where the energy is distributed over a range of wave periods.
The distribution of the wave energy is called the wave spectrum.

To gain an understanding of storm-generated seas, consider the wind-wave tank
sketched in Figure 1.1. The wind field is over a rectangular harbor on a side of
the large tank. The sea in the region from x = 0 to x = Fmin of the wind field is

Fully Developed Sea

Fetch (F)

Boundary of Decay Region

Developing Sea

0 Fmin
x

U

U

U

Still Water Level

Fan
a. Area Sketch

b. Elevation Sketch

30°

30°

•Model Site
XD

Figure 1.1. Sketches of a Wind-Wave Flume Used in the Study of Wind-Generated Waves.
The wind generated by the fan on the left blows over the initially calm water surface. Air
turbulence-induced pressure fluctuations on the water surface initially produce small waves.
The waves then become subject to wind shear on the water surface, causing the waves to
grow in both height and length. This process is described in Chapter 3 and is illustrated in
Figure 3.1.
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Boundary of Decay Region

Developing Sea Fully Developed Sea Decaying Sea

0
x

U

E'(T)

E'(ToA)

ToA T

E'(T )

E'(ToB)

ToB T

E'(T )

E'(ToB)

ToB T

E'(T )
E'(ToC)

ToCT

30°

30°

•Model Site
XD

Fmin F

Figure 1.2. Energy Spectra in a Wind-Generated Wave Field. The peak energy value in the
developing sea is less than that in the fully developed sea. That is, E′(ToA) < E′(ToB), where
ToA and ToB are called the modal periods. The spectral density, E′(T), is independent of both
position and time within Fmin < x ≤ F. Also, the modal period in the developing sea is less
than that in the fully developed sea, that is, ToA < ToB. Comparing the spectra (plots of wave
energy versus period) in the fully developed sea and the decaying sea, we find E′(ToB) >

E′(ToC) and, in addition, ToB < ToC . The latter condition is due to dispersion, discussed in
Chapter 3.

said to be developing. This term means that the statistical averages of the wave
properties (height and period) are increasing with x. The reason for the increase
is that the wind energy absorbed by the sea is increasing with x. The distance Fmin

is called the minimum fetch. Over the region Fmin < x ≤ F (where F is called the
storm fetch), the statistical averages are both uniform over distance and constant
in time, and the sea in this region is said to be fully developed. When the waves
escape the wind field, they travel into a decay region. The length of this wind-free
region is defined by either a land mass or a site of interest. This length is called the
decay length and is represented by XD. Due to the phenomenon called diffraction,
the waves over the decay length expand into the quiet waters on either side of the
decay region. According to the Shore Protection Manual [see U.S. Army (1984)],
the diffraction spread has boundaries at approximately 30◦ to the wave direction, as
sketched in Figure 1.1a. Because energy is transferred along the crest into the quiet
waters, the energy intensity [E′(ToC) – spectral density or the wave energy per crest
width] decreases as x increases over F < x < XD. The energy intensity is propor-
tional to the square of the wave height (H2); so the wave height also decreases as x
increases in the decay region. The spectra (plots of the spectral density versus wave
period) in the decay region along the x-axis resemble those in Figure 1.2. In this fig-
ure, the modal period (period of maximum energy intensity) increases with x while
the overall energy intensity (represented by the area under the curve) decreases.
The increasing modal period is due to the phenomenon called dispersion, where the
longer waves (of greater period) outrun the shorter waves (of lesser period).

As wind waves travel in the decay region away from a storm, their energies
are spread over increasingly wider crest widths. This energy spreading decreases
the local energy intensity of the waves. The energy intensity decrease results in a
reduction in the wave height. As a result, sites close to a storm will experience rather
large waves of varying periods while distant sites will experience small waves of
rather long periods in a rather narrow-period bandwidth. The prediction of a storm
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Table 1.2. Beaufort Wind-Force Scale (BWFS)

BWFS U (km/hr) Wind/wave descriptions ISSS value Havg (m)

0 0.00–1.85 Dead Calm/Mirror Surface 0.00 0.00
1 1.85–5.56 Light Air/Ripples 0.00 0.00
2 7.41–11.12 Light Breeze/Small Wavelets 1 0.00–0.30
3 12.97–18.53 Gentle Breeze/Large Wavelets 1–2 0.30–0.61
4 20.39–29.65 Moderate Breeze/Small Waves 2–3 0.61–1.22
5 31.51–38.92 Fresh Breeze/Moderate Waves 4–5 1.22–2.44
6 40.77–50.04 Strong Breeze/Large Waves 5–6 2.44–3.96
7 51.89–61.16 Moderate Gale/Small Breaks with Foam and

Wind Steals
5–7 3.96⇒⇒

8 63.01–74.13 Fresh Gale/Moderate Breaks with Visible Spray 7–8 ⇒⇒⇒
9 75.98–87.10 Strong Gale/Large Breaks with Dense Foam

Streaks
8–9 ⇒⇒6.10

10 88.96–101.93 Whole Gale/White Sea 9 6.10–9.14
11 103.78–116.76 Storm/Exceptionally High Waves 9 9.14–13.72
12 118.61–131.58 Hurricane/Exceptionally High Waves with Air

Filled with Foam and Spray
9 >13.72

event is short term, that is, the time lapse between the prediction and the event is
usually a matter of days. Statistically, the extreme heights of storm waves can be
estimated using the methods presented in Chapter 5.

1.2 Wind Classification and Sea State

From the discussion in Section 1.1, we see that the energy content of a sea depends
on the winds responsible for the waves. The energy of the sea is characterized by
the heights and periods of the waves comprising the sea. As discussed by Bascom
(1964), Bretschneider (1969), and others, storm winds and the corresponding seas
each have scales that quantify their characters. These are the Beaufort Wind-Force
Scale (BWFS) and the International Sea State Scale (ISSS). A seafarer might write in
a ship log that the ship was in a storm with a “sea state 8” if the average wave
height would be about 20 meters. An oceanographer might characterize the same
storm as one having “Beaufort 11” winds, where the wind speed would be 60 knots
per hour (112 kilometers per hour). The wind and sea scales are described in
Table 1.2. In that table, U is the wind-speed range and Havg is the range of aver-
age wave heights.

A discussion of wind-wave generation and its mathematical analysis are con-
tained in the publication by Earle and Bishop (1984). For a historical perspective of
wave analysis, the paper by Craik (2003) is recommended.

1.3 Ocean Engineering Literature

The literature for the various ocean engineering areas is abundant, both in books
and journals. Many of the professional societies in the ocean-oriented countries
have journals devoted to specific ocean-related areas. In addition, there are a num-
ber of independent journals that are more general in coverage. Some of the journals
and their sponsoring organizations are listed in Table 1.3. Because advances in most
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Table 1.3. Ocean-oriented journals

Applied Ocean Research (Computational Mechanics Publishers)
Atmosphere-Ocean (Canadian Meteorological and Oceanography Society)
Biological Oceanography (Taylor and Francis Company)
Bulletin of Marine Science (University of Miami)
China Ocean Engineering (Elsevier-Pergamon Press)
Coastal Engineering (Elsevier Science Publishers)
Coastal Engineering Journal (Japan Society of Civil Engineers)
Coastal Management (Taylor and Francis Company)
Corrosion (Elsevier-Pergamon Press)
Corrosion (National Association of Corrosive Engineers)
Deep-Sea Research (Elsevier-Pergamon Press)
Estuaries (Estuarine Research Federation)
Estuarine Coastal and Shelf Science (Academic Press)
Energy Conversion (Institute of Electrical and Electronic Engineers)
Engineering for the Maritime Environment (Institution of Mechanical Engineers)
The Journal of the Acoustical Society of America
Journal of Energy Resources (American Society of Mechanical Engineers)
Journal of Hydraulic Engineering (American Society of Civil Engineers)
Journal of Marine Research (Yale University Press)
Journal of Ocean Engineering (Institute of Electrical and Electronic Engineers)
Journal of Offshore Mechanics and Arctic Engineering (American Society of Mechanical Engineers)
Journal of Physical Oceanography (American Meteorological Society)
Journal of Ship Production (Society of Naval Architects and Marine Engineers)
Journal of Ship Research (Society of Naval Architects and Marine Engineers)
Journal of Sound and Vibration (Academic Press)
Journal of Vibrations and Acoustics (American Society of Mechanical Engineers)
Limnology and Oceanography (American Society of Limnology and Oceanography)
Marine Biology (Springer-Verlag Press)
Marine Geology (Elsevier Science Publishers)
Marine Geotechnology (Taylor and Francis Company)
Marine Pollution Journal (Pergamon Press)
Marine Research Bulletin (U.S. Office of Naval Research)
Marine Technology (Society of Naval Architects and Marine Engineers)
Marine Technology Society Journal Materials Science and Engineering (Elsevier Science Publishers)
Materials Research Bulletin (Pergamon Press)
Naval Engineers Journal (American Society of Naval Engineers)
Naval Research Reviews (U.S. Office of Naval Research)
Ocean Engineering (Elsevier Science)
Ocean Engineering International (Engineering Committee on Oceanic Resources, Memorial University

of Newfoundland)
Ocean Industry (Gulf Publishing Company)
Ocean Science and Engineering (Marcel Dekker)
Ocean and Shoreline Management (Elsevier Science Publishers)
Oceanology (USSR Academy of Science)
Proceedings of the Institute of Marine Engineers
Progress in Oceanography (Pergamon Press)
Sedimentology (Blackwell Scientific Publishers)
Transactions of the Institute of Marine Engineers
Transactions of the Royal Institute of Naval Architects



6 Introduction

of the ocean technology areas occur almost daily, the reader is advised to consult
the journals of interest on a regular basis. Many of the journals listed in Table 1.3
can be accessed online.

There are a number of fine books covering various areas of ocean engineering.
Many of those devoted to wave mechanics are referred to in the chapters that follow,
and are listed in the References at the end of the book. For sources of information
on specific topics, web searches are useful.



2 Review of Hydromechanics

The term hydromechanics normally refers to that part of fluid mechanics devoted to
both the hydrostatics and hydrodynamics of incompressible flows. The term includes
the effects of free surface at the air-sea interface. Although the focus of the discus-
sion of hydrodynamic topics is on incompressible flows in this chapter, a discus-
sion of hydrostatics includes the effects of the compressibility of seawater at great
water depths. Because this is a review chapter, all aspects of hydrodynamics are not
addressed. The reader is referred to the book by Robert A. Granger (1985) for an
expanded coverage of the topics.

We begin our review of hydromechanics with a discussion of hydrostatics.
Although this subject is basic to a course in fluid mechanics, hydrostatics is often
neglected in favor of topics that are of more interest to the instructor. However,
for the designer of deep-submergence vehicles, a thorough knowledge of the funda-
mentals of hydrostatics is required.

2.1 Hydrostatics

A discussion of hydrostatics must begin by paraphrasing Archimedes’ Principle: A
body placed in a liquid loses an amount of weight equal to the weight of the liquid
that it displaces. From this simple observation, the hydrostatic equation can be
derived. Consider the can buoy sketched in Figure 2.1, which displaces a volume (∨)
of water. In that sketch, W is the buoy weight, A is the cross-sectional area, and d
is the buoy draft. From Archimedes’ Principle, the mathematical expression for the
static equilibrium of the body is

W = �∨ = (�g)Ad (2.1)

The displaced water is referred to by naval architects as the displacement of the
body. Assume that the body is in salt water, where the weight density (�) of the
water is approximately 10.1 × 103 N/m3, and the mass density (�) is about 1.03 ×
103 kg/m3 for salt water. Also in eq. 2.1, g is the gravitational acceleration (9.81 m/s2).
The density values are those at sea level under standard atmospheric conditions. The
product �gd in eq. 2.1 is the hydrostatic pressure acting over the bottom of the buoy.

From its equilibrium position, let the buoy sketched in Figure 2.1 be given a
small vertically downward displacement, −�z. The negative sign is due to the fact

7
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Waterline

z

x

d

y

−δzk

W

Figure 2.1. Sketch of a Freely Floating Can Buoy. The dashed
lines show the position of the buoy in static equilibrium,
whereas the solid lines show the buoy in a displaced condition.
The origin of the coordinate system is in the still water plane.

that the positive direction of the z-coordinate is upward, with its origin on the free
surface. The application of Archimedes’ Principle to the new equilibrium position
results in the following equation:

�(�∨) = −�g(�z)A= (�p)A (2.2)

Here, the change in hydrostatic pressure (�p) acting on the bottom of the buoy is
that which results from the additional displacement. The hydrostatic equation can
now be obtained by rearranging eq. 2.2 and passing to the limit as �z approaches
zero. The result is

dp
dz

= −�g = −� (2.3)

Equation 2.3 is a total derivative because the hydrostatic pressure does not vary on
planes parallel to the free surface.

According to King (1969), the weight density of salt water increases linearly
with depth. As previously stated, at sea level the weight density is 10.1 × 103 N/m3,
and is denoted by � 0. At a depth of approximately 9.15 × 103 m, the weight density is
10.46 × 103 N/m3. The inclusion of this variation in the hydrostatic equation results
in the following expression:

dp
dz

� −�0 + 0.0396z (2.4)

in units of N/m3. The integration of eq. 2.4 from sea level (z = 0) to an arbitrary
depth yields

p � −�0z + 0.0198z2 (2.5)

in N/m2. For a depth of 103 m, the difference in the incompressible and the com-
pressible pressure values is less than 0.3%. Hence, for moderate depths the com-
pressibility of seawater can be neglected.

There are a number of ocean engineering situations in which the hydrostatic
pressure is the primary design factor. These include the determination of the wall
thickness of a life capsule of a deep-submergence vehicle, the analysis of the com-
pression or volume reduction and collapse depth of deep-submergence capsules at
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b. Hoop Stresses

Figure 2.2. Sketches of a Pressure Hull of a Deep-
Submergence Vehicle (DSV). Also illustrated are
the hoop stresses and the ambient pressure. The
configuration consists of the two most stable geo-
metries of structures under pressure, those being
the circular cylinder and the sphere. Here, hemi-
spherical caps are shown.

extreme depths, and the determination of the conditions for static stability of float-
ing bodies. An example of the determination of the collapse depth is found in the
book by McCormick (1973).

EXAMPLE 2.1: PRESSURE HULL ANALYSIS Here we apply the hydrostatic equa-
tion (eq. 2.3 for incompressible water or eq. 2.4 for compressible water) to the
design of a pressure hull or life capsule of a deep-submergence vehicle (DSV)
to determine the weight-to-buoyancy ratio. Both the cost-effectiveness and the
design efficiency of a DSV increase as this ratio decreases in value. The basic
configuration of a pressure hull is either a spherical shell or a cylindrical shell
with hemispherical ends. The most common of these pressure hulls are made of
high-yield steel, titanium, or aluminum alloys, depending on both the mission
and operational depth. Garvey (1990) recommends the use of organic-matrix
composite pressure hulls because composites are positively buoyant. He states
that if the 15-ton, forged-steel, two-person life capsule of the DSV Trieste was
replaced by an equivalent composite capsule, the gasoline used for buoyancy
would not be needed. The gasoline displaces about 125 tons of seawater.

The analysis of the effects of the hydrostatic pressure on pressure hulls
requires the use of thin-wall shell theory, as stated by Garvey (1990). The term
“thin-wall” simply means that the thickness of the hull is small when compared
to the radius of the shell. Referring to the hull sketched in Figure 2.2, one can
determine the weight and buoyancy for both the cylindrical and hemispherical
components of the capsule. The strength and stability characteristics of the cap-
sule are determined from the thin-wall theory, as discussed by Ross (1990) and
others. From this theory, one obtains the relationships among the axial stress
(1), the hoop stress (2), and the net pressure (p) for the cylindrical portion of
the hull. For a wall thickness, t, these relationships are obtained as follows: The
expression for the axial stress in the cylindrical wall is

1 = pRo/(2t) = pRo/[2(Ro − Ri )] (2.6)

where the radii Ri and Ro are those of the inner and outer surfaces of the shell
wall, respectively. The hoop stress is

2 = 21 (2.7)
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Referring to Figure 2.2, the weight of the cylindrical portion of the pressure hull
is

Wc = �mg�
(
R2

o − R2
i

)
L (2.8)

where �m is the mass density of the hull material. The magnitude of the buoyant
force of the cylindrical section is obtained from

FBc = �g�R2
o L (2.9)

where � is the mass density of the water. The ratio of the weight to buoyancy is
then

Wc

Bc
= �m

�

(
1 − R2

i

R2
o

)
(2.10)

As previously stated, our objective is to minimize this ratio while maintaining
structural stability. For the analysis of the structural stability, the axial normal
stress can be expressed as

1 = u/Ŝ (2.11)

where the ultimate strength of the cylindrical wall, u, is the ratio of the max-
imum test load before breaking and the initial cross-sectional area. The safety
factor, Ŝ, is a function of both the type of material and the configuration of the
structure. For the cylinders, spheres, and connecting joints studied by Garvey
(1990), the safety factor values vary from 1.5 to 2.2. Continuing by eliminat-
ing the radii Ro and Ri, eqs. 2.6, 2.10, and 2.11 can be combined to obtain the
weight-to-buoyancy ratio, which is

Wc

Bc
= 2

(
�m

�

)(
pŜ
u

)(
1 − pŜ

2u

)
(2.12)

In eq. 2.12, the term pŜ/u (non-dimensional pressure) is negligible if
z < −103 m. However, for extreme depths an increase in the value of this term
results in a decrease of the weight-to-buoyancy ratio by up to 15% for both
titanium and composite hulls.

For the hemispherical caps of the hull sketched in Figure 2.2, the tangential
stress must be equal to the axial stress (1) of the cylindrical section of the hull
because this is a boundary condition at the joint of the sections. Hence, from
the application of the thin-wall theory to the spherical hull, the tangential stress
is given by eq. 2.6. The total weight of the hemispherical caps is

Ws = �mg
(
4/3)�(R3

o − R3
i

)
(2.13)

The magnitude of the total buoyant force on the hemispherical caps is

Bs = �g(4/3)�R3
o (2.14)

The combination of eqs. 2.6, 2.11, 2.13, and 2.14 yields the weight-to-buoyancy
ratio for the hemispherical caps, which is

Ws

Bs
= 1.5

�m

�

(
pŜ
u

)1 − 1
2

pŜ
u

+ 1
12

(
pŜ
u

)2

 (2.15)



2.2 Conservation of Mass 11

Garvey (1990) states that the value of the non-dimensional pressure, pŜ/u,
is negligible for z < −6,100 m. However, for extreme depths (z ≥ −10,000 m)
an increase in the value of the non-dimensional pressure results in a decrease
of the weight-to-buoyancy ratio of up to 10% for titanium hulls and 20% for
composite hulls.

We see that the non-dimensional pressure (pŜ/u) is a critical element in
the design of both the cylindrical and hemispherical hull components. To gain
an idea of the values of the non-dimensional pressure, consider a titanium hull
operating in the Mariana Trench at a depth of 11 × 103 m. For 64I4V titanium,
according to Garvey (1990), the ultimate strength is 8.62 × 108 N/m2 and the
safety factor (Ŝ) is 1.5 for both the cylindrical and hemispherical components
of the hull. At the 11 × 103-m depth, the combination of these values with the
pressure obtained from eq. 2.5 yields

pŜ/u = 0.198 (2.16)

Neglecting compressibility of the water (the second term in eq. 2.5) yields a
value of the non-dimensional pressure of 0.193. The respective compressible
and incompressible values of the weight-to-buoyancy ratio of the cylindrical hull
component, obtained from eq. 2.12, are 1.34 and 1.38. Hence, the inclusion of
compressibility results in less than a 3% difference in the values of Wc/Bc.

We have devoted quite a bit of discussion to the pressure hull problem because
it is normally treated lightly in the published literature. An excellent introductory
discussion of small cylindrical pressure hulls is presented in the book by Dawson
(1983), whereas Ross (1990) discusses the advanced topics.

2.2 Conservation of Mass

The conservation of mass applied to a fluid flow is expressed by the equation of
continuity. In words, this equation expresses the fact that the internal time-rate of
decrease of mass within a control volume equals the net efflux of mass through the
surface area of the volume. The equation can be written in differential form as

− ∂�

∂t
= ∇ · (� V) (2.17)

where the del operator is defined in Cartesian coordinates by

∇ ≡ ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (2.18)

and the fluid velocity vector is

V = ui + v j + wk (2.19)

In eqs. 2.18 and 2.19, the unit vectors of the Cartesian coordinates are i, j, and k,
referring to Figure 2.3 for their orientation. The units of eq. 2.17 are in terms of
time-rate of mass flow per unit volume. For a steady flow (one that does not vary in
time), eq. 2.17 reduces to

∇ · (�V) = 0 (2.20)
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∂z Figure 2.3. Sketch of an Elemental Vol-
ume Illustrating the Conservation of
Mass.

When the fluid is incompressible, then eq. 2.17 becomes

∇ · V = 0 (2.21)

for both steady and unsteady flows. The conservation of mass can also be expressed
in integral form. The integral continuity equation is

−
∫∫∫

∨

∂�

∂t
d∨ =

∫∫
A

�V · dA (2.22)

where, referring to Figure 2.3, the elemental volume and surface area are, respec-
tively,

d∨ = dxdydz (2.23)

and

dA= dydzi + dxdz j + dxdyk (2.24)

Note: The vector direction of an area element is outward from the fluid. For incom-
pressible flows, eq. 2.22 is simplified to∫∫

A
V · dA = 0 (2.25)

Many incompressible flows can be treated as being either uniform (not varying in
space) or spatially averaged over the flow area. If the control volume through which
the flow passes has N entrances and exhausts, then eq. 2.25 can be expressed in
terms of the spatially averaged velocities through the N flow areas. The resulting
equation is

N∑
j=1

V j · Aj =
N∑

j=1

Vj Aj cos(�j ) =
N∑

j=1

Qj = 0 (2.26)

In eq. 2.26, �j is the angle between the jth velocity vector and the corresponding flow
area, and Qj is the volume flow rate through that area. The use of this equation is
illustrated in the following example.
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U

a. Notation for Laminar Flow in a Tube

b. Flow through a Three-Branch Manifold

Figure 2.4. Sketches of a Section of a Pip-
ing Manifold Illustrating the Conservation of
Mass.

EXAMPLE 2.2: FLOW THROUGH A MANIFOLD Consider the laminar flow (flow in
“laminae” or “layers”) through the manifold sketched in Figure 2.4a. From the
book by Granger (1985) and others, the radial velocity distribution in a laminar
pipe flow is parabolic, and is represented mathematically by

u = U
R2

(R2 − r2) (2.27)

where, referring to Figure 2.4b, U is the maximum fluid velocity in the center
of the pipe of radius R, and r is the radial distance from the centerline. The
spatially averaged velocity in any of the component pipes is

V = 1
�R2

2�∫
0

R∫
0

urdrd� = U
2

(2.28)

Now, the application of eq. 2.26 to the flow in the manifold results in the fol-
lowing:

V1i · A1 + V2i · A2 + V3i · A3 =
V1 A1 cos(180◦) + V2 A2 cos(0◦) + V3 A3(0◦) = 0 (2.29)

From eq. 2.29, we obtain the following relationship of the average velocities in
the component pipes:

V1 A1 = V2 A2 + V3 A3 (2.30)

Because the terms in eqs. 2.29 and 2.30 are volume flow rates, eq. 2.30 can also
be written as

Q1 = Q2 + Q3 (2.31)

where the units of Q are m3/s in the International System and ft3/s in the British
system.

Laminar flow in pipes and tubes is referred to both as Poiseuille flow and
Hagen-Poiseuille flow, as J. L. M. Poiseuille presented the theoretical analysis
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a. Fluid at Rest in a Channel

b. Irrotaional Channel Flow

c. Rotational Channel Flow

Figure 2.5. Illustration of Irrotational and Rotational Flows. In (a) the fluid is at rest, and the
cross (+) is shown in its original position. In (b) the flow is irrotational because there is no net
rotation of the cross members. That is, the positive rotation of one arm of the cross is equal
in magnitude to the negative rotation of the other arm. In Figure 2.5c, the flow is rotational
because the rotations of the arms are in the same direction.

of the flow in 1840 while, G. H. L. Hagen, working independently of Poiseuille,
presented results of an experimental study of the flow in 1839. Both Poiseuille
and Hagen found that the maximum velocity of eq. 2.28 is a linear function of
the pressure gradient in the pipe.

2.3 Rotational and Irrotational Flows

The concept of the rotationality of a flow can be understood by considering the con-
vection of a small cross (+) in a channel flow. In Figure 2.5a, the cross is shown
at rest in the static fluid. In Figures 2.5b and 2.5c, the cross has migrated from its
resting position through a portion of a bend in the channel. In Figure 2.5b, the cross
has been deformed by having its component legs equally rotated in opposite direc-
tions. The net rotation about the center of the cross is zero, and the flow is said to be
irrotational. In Figure 2.5c, the legs of the cross equally rotate in the clockwise direc-
tion, so that there is a net rotation about the center of the cross. The flow in this case
is said to be rotational, and the positive direction of the rotation is counterclockwise.
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Figure 2.6. Concept of Circulation about a Hydrofoil. The two-dimensional flow about the
hydrofoil is divided by the stagnation streamline, which includes the foil itself. When the line
integrals of the product of the tangential flow velocity, V, and the surface direction vector, dr,
are equal, there is no net circulation about the foil. The circulation, �, is related to the lift on
the foil according to L = �V�. This relationship is called the Kutta-Joukowski theorem.

As is shown later in this chapter, the rotationality of a flow can be associated with
flow losses.

A. Circulation

Associated with the rotationality of a flow is the concept of circulation. Referring
to Figure 2.6, the circulation is defined as the line integral of the tangential velocity
of a fluid about a closed path, S. In Figure 2.6, the closed path is on the surface of
a hydrofoil. Mathematically, using the dot (·) to represent a scalar product and the
cross (×) to represent a vector product, the circulation is defined by

� ≡
∮

s
V · dr =

∫∫
A

∇ × V · dA (2.32)

where V is the velocity vector defined in eq. 2.19, dA is the elemental vector area
defined in eq. 2.24, and

dr = dxi + dy j + dzk (2.33)

is the position vector. The relationship between the line and surface integrals in
eq. 2.32 is the result of Stokes’ integral theorem. See the book of Courant (1968) for
a derivation of this theorem. Referring to Figure 2.6, the line integral in eq. 2.32 can
be written as

∮
S

V · dr =
b∫

a

V · dr |s1 +
a∫

b

V · dr |s2 (2.34)

If the circulation is zero, then

∇ × V = 0 (2.35a)
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in the surface integration of eq. 2.32, and the line integral is likewise equal to zero,
resulting in

b∫
a

V · dr |s1 = −
a∫

b

V · dr |s2 (2.35b)

from eq. 2.34.

B. The Velocity Potential

In eqs. 2.32 and 2.33, the scalar product V · dr can be expressed as a scalar differen-
tial according to

V · dr = d� (2.36)

Furthermore, the scalar differential d� in this expression can be expressed as

d� = ∇� · dr (2.37)

assuming that the function � is continuous. Comparing the expressions in eqs. 2.36
and 2.37, we see that the velocity vector can be expressed in terms of the gradient of
a continuous scalar function, that is,

V = ∇� (2.38)

or, in component form,

ui + v j + wk = ∂�

∂x
i + ∂�

∂y
j + ∂�

∂z
k (2.39)

The function � is called the velocity potential. When the velocity vector in the surface
integral of eq. 2.32 is replaced by the gradient of the velocity potential, the following
mathematical identity results:

∇ × ∇� ≡ 0 (2.40)

From this result, we conclude that the velocity potential can be used to represent
the fluid velocity if and only if the circulation is zero, that is, the flow must be irro-
tational. In other words, eq. 2.35 must be satisfied.

The advantage of using the velocity potential is that its use reduces the num-
ber of dependent variables from three (u, v, w) to one (�). To illustrate, consider
the equation of continuity for an incompressible flow, as expressed by eq. 2.21. A
general solution of that equation cannot be obtained if the equation has more than
one independent variable. If the flow can be considered to be irrotational, then the
velocity vector can be represented by the velocity potential, as in eq. 2.38. The result
obtained by combining eqs. 2.21 and 2.38 is

∇2� = 0 (2.41)

where the differential operator, called the Laplacian, is defined by

∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(2.42)

Equation 2.41 is called Laplace’s equation, and is a basic equation of the linear
wave theory discussed in Chapter 3. Laplace’s equation does have a general solution
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Figure 2.7. Velocity Potential (�) and Stream Func-
tion (	) Geometries. The stream function can be used
only in the analysis of two-dimensional flows, both
irrotational and rotational. Because axially symmet-
ric flows are two-dimensional, the stream function
is a useful tool in the analysis of these flows, as
discussed in Section 2.6. The lines representing the
velocity potential and the stream function (stream-
lines) are orthogonal.

because it is a linear equation involving only one dependent variable. See Appen-
dix E for the details.

C. The Stream Function

As discussed in the previous section, the velocity potential can be used in the
analysis of three-dimensional irrotational flows. Consider the two-dimensional flow
sketched in Figure 2.7. Our interest is in the volume flux (per unit depth into the
page) of fluid across the line S. That flux is mathematically represented by

b∫
a

V · N|dr | =
b∫

a

d	 =
b∫

a

∇	 · dr (2.43)

These relationships are similar to those in eqs. 2.36 and 2.37. That is, we have
replaced the scalar product of the velocity (eq. 2.19) and the line element (eq. 2.33)
by the scalar element d	 .

The vectors in eq. 2.43 can be written in component form as

V = ui + wk (2.44)

dr = dxi + dzk (2.45)

and

N = cos(�)i − sin(�)k = dz
dr

i − dx
dr

k (2.46)

The scalar differentials in eq. 2.43 are

dr = |dr | (2.47)

and

d	 = ∂	

∂x
dx + ∂	

∂z
dz (2.48)

The combination of eqs. 2.43 through 2.48 yields

b∫
a

V · Ndr =
b∫

a

udz −
b∫

a

wdx =
b∫

a

∂	

∂x
dx +

b∫
a

∂	

∂z
dz (2.49)
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From a comparison of the integrands of the last four integrals of eq. 2.49, the fol-
lowing relationships for the velocity components are

u = ∂	

∂z
, w = −∂	

∂x
(2.50)

The scalar function 	 is called the stream function.
The advantage of using the stream function is that its use reduces the number

of dependent variables from two (u,w) to one (	). Furthermore, no assumption of
irrotationality is required. Therefore, the stream function can be used in the analyses
of both rotational and irrotational two-dimensional flows. When the flow is both
two-dimensional and irrotational, then the Cartesian velocity components can be
represented by either the velocity potential or the stream function. Mathematically,
we can write the velocity components as

u = ∂�

∂x
= ∂	

∂z
(2.51)

in the horizontal direction, and

w = ∂�

∂z
= −∂	

∂x
(2.52)

in the vertical direction. Equations 2.51 and 2.52 are called the Cauchy-Riemann
equations.

The curves described by the potential function and the stream function can be
found by determining the conditions for which the differentials of these functions
are zero. That is, we seek the respective lines on which the functions are constant.
First, consider the condition for which the differential of the velocity potential is
zero,

d� = ∂�

∂x
dx + ∂�

∂z
dz = udx + wdz = 0 (2.53)

From the last equality, the following is obtained:

u
w

= − dz
dx

∣∣∣
�=constant

(2.54)

Similarly, the condition for the constant stream function is

d	 = ∂	

∂x
dx + ∂	

∂z
dz = −wdx + udz = 0 (2.55)

from which we obtain

u
w

= dx
dz

∣∣∣
	 =constant

(2.56)

Comparing the results of eqs. 2.54 and 2.56, we find that, for a two-dimensional irro-
tational flow, lines of constant � and 	 are orthogonal, as illustrated in Figures 2.7
and 2.8. The lines of constant 	 are called streamlines and are tangent to the velocity
vectors. In Figure 2.8, the boundaries of the flow are identified by the stream func-
tions 	0 and 	4. In general, any streamline can be considered to be a boundary of
the flow and, as such, no flow can cross streamlines.
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Figure 2.8. Flow in a Converging Channel. The boundaries
of the flow are identified by constant steam function val-
ues. Hence, any streamline can be considered to be a flow
boundary as there can be no flow across a streamline.

D. Superposition of Irrotational Flow Patterns

For an irrotational flow, the equation of continuity can be written in terms of the
velocity potential, �. The result is Laplace’s equation, eq. 2.41. That equation is a
linear, second-order, partial differential equation. Because it is linear, the various
solutions of the equation can be combined to form other solutions by the principle
of superposition. Physically, this means that irrotational flow patterns can be super-
imposed on each other to obtain other flow patterns. Several of the basic flow pat-
terns are shown in Figure 2.9 along with the associated expressions for the velo-
city potential. The principle of superposition is illustrated in the following example.

EXAMPLE 2.3: TWO-DIMENSIONAL IRROTATIONAL FLOW ABOUT A CIRCULAR

CYLINDER The geometric body that is most widely used in offshore ocean engi-
neering structures is the circular cylinder. For most fixed and floating platforms,
the circular cylinder is used for both the surface-piercing legs and the cross-
bracing between the legs. To obtain the ideal flow pattern about a cylindrical
cross-section, combine the velocity potentials for the uniform horizontal flow
(Figure 2.9a) and the doublet (Figure 2.9d). The resulting velocity potential is

� = �flow + �doublet

= V0x + C
(

x
x2 + z2

)
(2.57)

=
(

V0r + C
r

)
cos(�)

ϕ = V0x

V0

ψ = V0y

a. Uniform Flow b. Source at the Origin c. Source and Sink d. Doublet at the Origin
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Figure 2.9. Basic Two-Dimensional Flow Patterns. These and other flow patterns can be com-
bined to represent more complex flows by simply adding the velocity potentials or the stream
functions representing the component flows. For example, the addition of the velocity poten-
tials for the uniform flow in (a) and the doublet in (d) yields the velocity potential for the flow
about a circular cylinder, as sketched in Figure 2.10.
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Figure 2.10. Two-Dimensional Potential
Flow Past a Circular Cylinder. Low-Rey-
nolds number (V0D/�, where � is the kine-
matic viscosity) flows represented by poten-
tial or irrotational flow patterns are in
good agreement with those experimentally
observed. For example, see the photograph
of Sadatoshi Taneda of the quasi-two-
dimensional flow about a circular cylinder
at a Reynolds number of approximately
0.16 in the book of Milton Van Dyke (1982).

and the flow pattern is sketched in Figure 2.10. It is advantageous to use the
polar coordinate system because of the body geometry. The Cauchy-Riemann
equations of eqs. 2.51 and 2.52 in polar coordinates are

Vr = ∂�

∂r
= 1∂	

r∂�
(2.58)

and

V� = 1
r

∂�

∂�
= −∂	

∂r
(2.59)

On the surface of the cylinder, where the surface is intersected by the x-axis,
the velocity must be zero. For this reason, the points of intersection are called
stagnation points, and the streamline that is both coincident with the x-axis
and defines the surface of the cylinder is called the stagnation streamline. On
the cylinder, there can be no radial velocity component because flow cannot
cross streamlines. The radial velocity component is obtained by combining
eqs. 2.57 and 2.58. At the stagnation points, the radial velocity is

Vr |stagnation = 1
R

(
V0 − C

R2

)
(±1) = 0 (2.60)

Therefore, the constant in eqs. 2.57 and 2.60 is

C = V0 R2 (2.61)

The velocity potential of eq. 2.57 is then

� = V0 R
(

r
R

+ R
r

)
cos(�) (2.62)

The velocity adjacent to the top and bottom of the cylinder can be only in the
angular direction. That is, at r = R and � = 90◦ and 270◦, the adjacent velocity
is

V�|90,270 = ∓2V0 (2.63)

where the minus and plus signs refer to the top and bottom of the cylinder,
respectively.

Returning to the Cauchy-Riemann relationships of eqs. 2.58 and 2.59, we
can determine the stream function by combining those equations with the veloc-
ity potential of eq. 2.62 and integrating the resulting expressions to obtain

	 = V0 R
(

r
R

− R
r

)
sin(�) (2.64)
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Consider the conditions for which the value of the stream function is zero. From
the results in eq. 2.64, we see that the 	 = 0 when r = R and when � = 0◦ and
180◦. From this observation, we can conclude that the zero-value of the stream
function defines the stagnation streamline. This streamline, in turn, defines the
body in the flow.

It is possible to determine the irrotational flow patterns that are far more com-
plicated than those presented in Figure 2.9 by using conformal transformation of
complex variables. There are a number of excellent books on the subject of flow
representation using conformal transformations. The text by Granger (1985) gives
an excellent introduction to the subject. For more advanced treatments of the sub-
ject, the books of Vallentine (1967) and Karamcheti (1966) are recommended.

2.4 Conservation of Momentum and Energy

Newton’s second law of motion applied to fluid motion can be paraphrased as the
time-rate of change of linear momentum of the fluid is equal to the sum of the exter-
nal forces acting on the fluid. For an incompressible flow, this statement can be
expressed mathematically by

m
DV
Dt

= m
(

∂V
∂t

+ V · ∇V
)

= �F (2.65)

where m is the mass of the fluid in a control volume, V is the velocity vector, and F is
an external force acting on the mass in the control volume. In eq. 2.65, the notation
DV/Dt is used to represent the total time derivative of the velocity. Also in the
equation, there are two types of fluid acceleration. The first (∂V/∂t) is called the
local acceleration, and exists only if there is a velocity variation in time. For example,
the flow in Figure 2.9a has a local acceleration if the velocity V0 is time-dependent.
The second type of acceleration (V · ∇V) is called the convective acceleration, and
exists because of a change in flow geometry. For example, particles traveling along
a streamline from the position of the �0-line to the �4-line in Figure 2.8 accelerate
because of the change in the flow area between the two potential lines.

The external forces acting on the fluid are body forces, such as the gravita-
tional force (−�gk), and surface forces, which include those due to pressure gradient
(−∇p) and shear stress (�∇2V). The reader is referred to the books by Schlichting
(1979) and Granger (1985) for the derivations of the expressions for these forces.
Applied to an incompressible flow, the expression in eq. 2.65 is

�

(
∂V
∂t

+ V · ∇V
)

= −�gk − ∇ p + �∇2V (2.66)

This expression is a form of the Navier-Stokes equations. This vector equation rep-
resents three equations, one in each of the component directions. Equation 2.66
is nonlinear because of the convective acceleration. As such, the Navier-Stokes
equations have no general solution. However, there are numerous specific solutions
that have engineering significance. These solutions can be found in the book by
Schlichting (1979).

When the viscous forces are neglected (� = 0), the flow is said to be invis-
cid. For an inviscid flow, the Navier-Stokes equations reduce to a form called
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Euler’s equations, that is,

�

(
∂V
∂t

+ V · ∇V
)

= −�gk − ∇ p (2.67)

It should be noted that like the Navier-Stokes equations, Euler’s equations are non-
linear because of the convective acceleration. Hence, there is no general solution to
Euler’s equations.

The nonlinear convection acceleration term in eqs. 2.66 and 2.67 can be replaced
by the following vector identity:

V · ∇V = ∇
(

V2

2

)
− V × (∇ × V) (2.68)

When the flow is irrotational, then eq. 2.35 is satisfied, and the last term in eq. 2.68
vanishes. For an irrotational flow, the velocity potential, �, can be introduced using
the expression in eq. 2.38. The combination of eqs. 2.67, 2.68, and 2.35 yields the
irrotational form of Euler’s equations:

�∇
(

∂�

∂t
+ V2

2
+ gz + p

�

)
= 0 (2.69)

As in eq. 2.37, the vector product of the gradient in eq. 2.69 and the direction vector
of eq. 2.33 results in the differential of the scalars in the brackets of eq. 2.69. This
differential scalar can be integrated to obtain

�
∂�

∂t
+ �

V2

2
+ �gz + p = f (t) (2.70)

which is Bernoulli’s equation. The time function, f (t), results from the spatial inte-
gration. The respective terms on the left side of Bernoulli’s equation are the
unsteady kinetic energy, kinetic energy, potential energy, and the flow energy, all per
unit fluid volume. Bernoulli’s equation is a mathematical expression of the conser-
vation of energy for an irrotational flow. This equation is one of the basic equations
of the wave theories of Airy and Stokes, both of which are discussed in the next
chapter. The units of each term in eq. 2.70 are those of pressure. From left to right
on the left side of the equation, the first two terms represent the dynamic pressure
while the third term is the hydrostatic pressure and the last term is the total pressure.
Note: The units of pressure are equivalent to those of energy per unit volume.

EXAMPLE 2.4: PRESSURE DISTRIBUTION ON A CYLINDER IN AN IRROTATIONAL FLOW

In Example 2.3, the velocity potential and stream function are presented for
an irrotational flow about a two-dimensional circular cylinder, as sketched in
Figure 2.10. Using the results of that example, we can determine the pressure
distribution on the cross-section of a vertical cylinder in a uniform flow of veloc-
ity V0. On the cylinder, there is no radial velocity component because the flow
cannot cross a streamline, which in this case is the surface of the cylinder. Hence,
only the angular velocity component exists. The mathematical expression for
the velocity adjacent to the cylinder is

V�|r=R = 1∂�

r∂�

∣∣∣
r=R

= −2V0 sin(�) (2.71)

from the results of eqs. 2.59 and 2.62. Because the flow is irrotational, the pres-
sure distribution on the cylinder can be obtained from Bernoulli’s equation,
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Figure 2.11. Dynamic Pressure Coefficient Distribution on a Circular Cylinder in a Potential
Flow.

eq. 2.70. Assume that the flow is steady so that the time-derivative of the veloc-
ity potential is zero and the function f (t) is a constant. When Bernoulli’s equa-
tion is applied to the free surface or air-sea interface and well away from the
cylinder, the total pressure (p) is zero-gauge (atmospheric), and the hydrostatic
pressure (�gz) is zero if the original of z is on the free surface. The resulting
expression for the time function, f (t), is �(V2

0 /2). The expression for the total
pressure at any submerged point on the cylinder is then

p|r=R = �

2

(
V2

0 − V2
�

)− �gz = � V2
0

2
[1 − 4 sin2(�)] − �gz (2.72)

From this result, the reader can see that the pressures at � = 0◦ and 180◦ equal
the free-stream dynamic pressure plus the hydrostatic pressure. The referred-to
points on the cylinder are called stagnation points. The pressure at a stagna-
tion point is called the stagnation pressure. In Figure 2.11, the dynamic pressure
distribution at z ≤ 0 is plotted in the non-dimensional form of the pressure coef-
ficient, defined as

Cp =
�

2

(
V2

0 − V2
�

)
� V2

0 /2
(2.73)

where the parameters having the subscript “0” are those at x = ±∞. The stag-
nation pressure is that where Cp = 1. In that plot, we see that the dynamic
pressure is zero-gauge at � = ±30◦.

A phenomenon that is encountered in high-speed hydromechanics is that of cav-
itation. The term cavitation is the name given to low-pressure boiling. Fresh water
boils if the ambient pressure at a point equals the vapor pressure of water,

pv = −9.96 × 104 N/m2 (absolute) (2.74)

From the results of Example 2.4, we see that the cavitation will first occur at the
point z = 0, � = ±90◦. The determination of the cavitation speed is illustrated in
Example 2.5.

EXAMPLE 2.5: INCIPIENT CAVITATION ON A VERTICAL CIRCULAR CYLINDER The
results of eq. 2.71 show that the maximum velocity on the circular cylinder
occurs where � = ±90◦. The two points of maximum velocity at the free surface
are the points of minimum pressure, as can be seen from the results in eq. 2.72.
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Figure 2.12. Sketch of the Free-Surface Displacement about a Vertical Circular Cylinder in a
Steady Flow, as Predicted by Irrotational Flow Theory. The free-surface displacement, �, is
measured from the still-water level.

From that equation, the expression for the minimum dynamic pressure is

pdynamic = −1.5� V2
0 , at r = R, � = ∓90◦, z = 0 (2.75)

For the vapor pressure in eq. 2.74, the cavitation speed is

V0 =
√

− pv

1.5�
= 8.15 m/s (2.76)

for fresh water, where the mass density is � = 1,000 kg/m3.

If the total pressure expression of eq. 2.72 is applied to the free surface where
the static pressure is the ambient pressure (zero-gauge), then the deflection of the
free surface about the cylinder can be determined. Referring to Figure 2.12 for nota-
tion, the free-surface deflection obtained from eq. 2.72 is

z|r=R,P=0 ≡ � = V2
0

2g
[1 − 4 sin2 �] (2.77)

The results of eq. 2.77 are plotted in Figure 2.12. In this figure, the free-surface
deflection is seen to be greatest on both the upstream and downstream stagnation
lines of the cylinder while being lowest on the sides. The effects of viscosity cause
the actual curvature of the free surface about the cylinder to be different from that
sketched because energy is being transformed into heat by the action of viscosity.
The effects of viscosity are discussed in the next section.

2.5 Viscous Flows

Real fluids have the ability to somewhat resist shear deformation. The property
associated with that ability is called viscosity. Because of this property, the flow pat-
terns near solid bodies are significantly altered from the inviscid patterns predicted
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Figure 2.13. Pressure-Coefficient and Free-Surface Displacements for Flow about a Vertical,
Surface-Piercing Circular Cylinder in Steady Irrotational and Viscous Flows. The measured
data points are represented by •.

by the irrotational theory. Consider again the flow about a vertical circular cylinder.
The irrotational flow pattern around a fully submerged cross section is sketched in
Figure 2.10, whereas the free surface is sketched in Figure 2.12. The effects of viscos-
ity on the fully submerged flow pattern are shown in Figure 2.13a, and the viscous
effects on the free surface are illustrated in Figure 2.13b. Because of viscosity, the
energy is lost from the flow and absorbed by the body in the form of heat.

Consider a fluid particle traveling along the upstream stagnation streamline.
We know that the particle comes to a halt at the stagnation point. It is then divided,
halves of the particles traveling to both sides of the cylinder. The property of vis-
cosity causes the particles adjacent to a solid body to adhere to the surface. The
particles adjacent to those adhering to the surface are slowed by attraction to the
static particles, and the continuum must be preserved. The flow of the particles fur-
ther away from the surface is slowed to a lesser extent. The net effect is a loss of
kinetic energy in the region near the surface. Although the effects of viscosity the-
oretically extend an infinite distance from the surface, we can assume that there is
a finite distance from the surface beyond which viscosity has no significant effect.
Referring to Figure 2.14, the region in which viscous effects are evident is called the
boundary layer, and the distance between the edge of the affected region and the
surface is called the boundary layer thickness, denoted by �.

Laminar Boundary Layer
Transition Boundary Layer

Turbulent Boundary Layer
Separated Flow

Wake

Laminar Sublayer
Separation Point

Separation Streamline Shed Vortex

V0

Figure 2.14. Boundary Layers and Wake Created by a Viscous Flow Past a Two-Dimensional
Symmetric Hydrofoil. The scale of the sketch is exaggerated. A better understanding of the
scale of such flows can be obtained from Photograph 156 in the book by Van Dyke (1982).



26 Review of Hydromechanics

There are two forces that act on a particle in the flow near a solid. The first is the
inertial force, and the second is the viscous force. The effects of these two forces are
opposite in nature. The inertial force keeps the particle in motion, whereas the vis-
cous force tries to stop the particle. One can imagine that these two forces are con-
testing with each other for control over the particle. When the viscous force is dom-
inant, then the flow is slow and in well-ordered layers called laminae, and the flow
is said to be laminar. Because molecular attraction causes the particles to adhere to
the surface, viscous effects are strong near the body. Away from the body, the iner-
tia becomes dominant. In the area close to the front of the body, the boundary layer
is very thin. In this thin boundary layer, the viscosity is dominant and the flow is
laminar. This viscous flow region is called the laminar boundary layer. As the parti-
cles in the boundary layer travel further downstream from the stagnation point, the
effects of the inertia are experienced closer to the surface. The “contest” between
the inertial and viscous forces on the particles result in sporadic transverse motions.
The region in which these sporadic motions occur is called the transitional bound-
ary layer. Because the transverse motions result in transverse momentum transfer
between particles, the boundary layer thickness, �, increases at a greater rate in the
flow direction. The change in the curvature of the boundary layer causes more iner-
tia to be absorbed and, eventually, the inertial effects are dominant over most of
the boundary layer. This dominance causes random particle motions in both the
transverse and streamwise directions that are superimposed on the mean flow. The
nature of the flow is turbulent, and the affected region is called the turbulent bound-
ary layer.

One must keep in mind that energy of the flow is being both lost to surface
heating and redirected to the transverse direction in the turbulent boundary layer.
For the flow over both the upper and lower surfaces of the two-dimensional body
in Figure 2.14, there are points where the kinetic energies of the particles are zero.
At these points, the particles momentarily stop and are subsequently pushed out
into the adjacent flow by the particles that follow. Referring to the flow over the
upper surface of the body in Figure 2.14, there is a streamline called the separation
streamline along which the separated particles travel. Downstream of this stream-
line, some of the fluid particles travel in vortices in the wake of the body. The point
on the body where the separation streamline begins is called the point of separation.
The position of the point of separation is farther downstream in a turbulent bound-
ary layer than in a laminar boundary layer because more inertia is absorbed due to
the steeper turbulent boundary layer. The flow in the wake can be either laminar or
turbulent. Furthermore, the vortices can remain in a relatively fixed position with
respect to the body, or can be shed if the free-stream velocity (V0) increases. Vortex
shedding is a major area of concern to ocean engineers because the phenomenon
causes periodic transverse and streamwise forces that, in turn, can cause unwanted
body motions. One such situation is that of strumming of towing cables.

From what has been said concerning the relative effects of the inertial and vis-
cous forces on particles near a body, we can form two non-dimensional numbers
that represent the forces and fluid motions. The first of these numbers is called the
Reynolds number, which results from the ratio of the inertial force and the viscous
force. For both a circular cylinder and sphere, the Reynolds number is

ReD = � VD/� = VD/� (2.78)

where D is the body diameter, V is the free-stream (or towing) velocity, � is the
dynamic viscosity, � is the mass density of the fluid, and � is called the kinematic
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viscosity. Physically, the dynamic viscosity is the ratio of the shear stress and the
velocity gradient normal to the surface.

The second non-dimensional number is called the drag coefficient. This is the
ratio of the drag force and the inertial force. It is defined mathematically by

CdD = Fd

1
2

� V2 Ad

(2.79)

In eq. 2.79, Fd is the drag force and Ad is the projected area of the body. For a
cylinder of length L normal to V, the projected area is DL whereas that of a sphere
is �D2/2.

In addition to the drag on circular cylinders, the vortex shedding frequency ( fV)
can also be represented by a non-dimensional number called the Strouhal number.
The Strouhal number is defined by the following equation:

StD = fV D/V (2.80)

There have been many experimental studies to determine the relationships of both
the drag coefficient (Cd) and the Strouhal number (St) with the Reynolds number
(Re) for flows about circular cylinders. McCormick (1981) summarizes the results
of many of the experimental studies, and his results are presented in Figure 2.15.
The investigators responsible for those data are listed. Although not shown in Fig-
ure 2.15, the relationship between the two non-dimensional parameters is approxi-
mately linear on the log-log scale for Reynolds numbers less than approximately 4.
For this Reynolds number range, the flow in the boundary layer is laminar and there
is no wake. Between 4 and 40, a wake appears in which there are attached vortices.
The flows in both the boundary layer and wake are laminar, and the drag is propor-
tional to the velocity. For Reynolds numbers greater than 40, instabilities appear in
the boundary layer and the wake begins to oscillate. At a Reynolds number of about
65, the vortices in the wake begin to shed. The flow in the shed vortices is laminar
to a Reynolds number of about 800. As can be seen in Figure 2.15, the drag co-
efficient is approximately 1 in the Reynolds number range from approximately 800
to 6 × 103. Over this range, the flow in the boundary layer is laminar whereas that
in the wake is turbulent. Above a Reynolds number of approximately 6 × 103, the
flows in both the boundary layer and wake are mostly turbulent. As can be seen, the
drag data for Reynolds numbers greater than 15 × 103 have much scatter. Further-
more, there are few data beyond 107 because experimental studies in the ultrahigh
Reynolds regions are extremely difficult to perform.

The inverse of the Strouhal number is presented in Figure 2.15 because its
behavior resembles that of the drag coefficient. The reader can see that there is
much scatter in the data, with the maximum scatter occurring in the Reynolds num-
ber range from approximately 1.25 × 105 to 2.5 × 106. It is recommended that the
lower curves of Figure 2.15 be used in engineering calculations because the data are
concentrated near these curves.

A photographic album of numerous viscous flows is found in the book by Van
Dyke (1982). This publication is highly recommended to the reader.

EXAMPLE 2.6: DRAG AND VORTEX SHEDDING FOR AN OTEC COLD-WATER PIPE

Ocean thermal energy conversion (OTEC) is one of the six ocean thermal
energy conversion options. The other five energy sources are waves, ocean
currents, salinity gradients, tides, and the biomass. The principle of OTEC is
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Figure 2.15. Experimental Drag Coefficient and Strouhal Number as Functions of the
Reynolds Number (Based on Diameter) for Circular Cylinders in Steady Flows. The letters
shown below the graph identify both the experimental observations and the regions studied
by the experimenters, as listed in Table 2.1. The figure is after McCormick (1981).

as follows: Cold water from deep ocean water is upwelled through a large-
diameter, cold-water pipe (CWP) to a condenser of a Rankine-type engine.
Simultaneously, relatively warm surface water is passed through the evaporator
of the engine. A working fluid such as ammonia is circulated in a closed system,
absorbing heat from the evaporator and losing heat to the cold water in the con-
denser. When the working fluid absorbs the heat, it changes from a liquid phase
to a gaseous phase, and the gas expands through a turbine. The working fluid
changes from the gaseous phase to a liquid phase in the condenser as it loses
heat to the upwelled cold water. The cycle then repeats itself. For those seek-
ing more information on OTEC, the book by Avery and Wu (1994) is highly
recommended. A simplistic OTEC floating power plant is sketched in Fig-
ure 2.16.

A hydrodynamic problem associated with an OTEC system concerns the
vertical CWP. Because of the large diameter of the CWP, there are few or no
reliable drag or vortex-shedding data as the Reynolds number values are too
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Table 2.1. Flow phenomena and data sources for Figure 2.15 (reference
numbers are in parentheses)

A twin attached vortices (5)
B laminar oscillatory wake and vortex shedding (5)
C nonperiodic wake and transition to turbulence in the shear layer (5)
D laminar “bubble” and turbulent wake (5 and 6)
E questionable periodicity (3)
F no periodicity observed (3)
G small peaks in energy at various Strouhal number values (1)
H peak in energy at a Strouhal number of approximately 0.3 (1)
I unstable vortices (9)
J laminar vortex shedding (9)
K turbulence in free shear layer (9)
L laminar boundary layer and turbulent vortex wake (9)
M transition in the boundary layer (9)
N questionable periodicity (3)
O shear layer near separation is turbulent (2)
P turbulent wake (8)
Q vortex shedding frequency is the dominant frequency in spectrum (10)
R turbulent boundary layer plus regular vortex shedding in the wake (3)
S subcritical flow with the separation angle between 75◦ and 95◦ (6)
T critical flow with the separation angle approximately 140◦ (6)
U supercritical flow with the separation angle approximately 120◦ (7)
V critical flow (8)
W supercritical flow (8)
X transcritical flow (4)
Y wide band spectrum (10)
Z narrow band spectrum (10)

Experimental References
1 Sarpkaya (1979)
2 Jones, Cincotta, and Walker (1969)
3 Roshko (1961)
4 Miller (1976)
5 Morkovin (1964)
6 Achenbach (1971)
7 Achenbach (1968)
8 Schlichting (1979)
9 Reynolds (1974)

10 Every, King, and Weaver (1982)

large for practical experiments. To illustrate, consider an OTEC system hav-
ing a CWP with a 30-m outside diameter (D) located in the Florida Current
where the a subsurface current velocity (V0) can exceed 2 m/s. Assuming that
the kinematic viscosity (�) of salt water is 1.2 × 10−6 m2/s at 14◦C, the Reynolds
number (Re) from eq. 2.78 is 5.0 × 107. From the results in Figure 2.15, we
see that there are no drag coefficient (Cd) data or Strouhal number (St) data
for this large Reynolds number value. Hence, a design dilemma exists because
no practical experiment can be performed to supply the required data. To gain
some idea of the magnitudes of the drag force and vortex-shedding frequency
for the CWP, extrapolate the lower drag and vortex-shedding curves in Fig-
ure 2.15. The approximate results for the respective drag coefficient and the
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Mixed Water Exhaust
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Cold-Water Pipe

Cold Water Intake

D
L

Figure 2.16. Simplistic Sketch of One of the
First Conceptual Designs of an Ocean Ther-
mal Conversion (OTEC) System. The concep-
tual design of the floating system was per-
formed in the mid-1970s. More contempo-
rary OTEC concepts are found in the book
by Avery and Wu (1992). The operation of
the sketched system is as follows: Deep cold
water enters the bottom of the cold-water pipe
(CWP) and flows up to a condenser in the
platform. Near-surface warm water enters at
the top of the platform and flows through
an evaporator. The condenser and evaporator
comprise a Rankine-type thermal engine. The
diameter of the CWP varies from 32 to 40 m.
When operating in strong currents, the large-
diameter (D) CWP can pose a high-Reynolds
number problem for both drag and vortex-
shedding predictions.

inverse of the Strouhal number are 1.0 and 3.5, the latter yielding a Strouhal
number of 0.286. For these values, the drag on a 300-m-long CWP is 1.85 × 107 N
from eq. 2.79, and the vortex-shedding frequency is 0.0191 Hz from eq. 2.80.
Concerning the vortex-shedding frequency, the beam type of vibrations of the
CWP should be considered to determine if the fundamental or modal frequen-
cies are near the vortex-shedding frequency. If the energy of the shed vortices is
large, then there is the possibility of a near-resonance fatigue problem. For this
hypothetical problem, the large drag would offer a challenge to the designer of
the mooring system.

2.6 Hydrodynamics of Submerged Bodies

Naval architects have been aware that bodies of revolution are the best designs for
high-speed fully submerged vehicles. The hydrodynamic analyses of the conceptual
designs of these vehicles are usually based on the assumptions that the flows about
a hull are both axially symmetric and irrotational. For this reason, the basics of
ideal axially symmetric flows are presented herein. An excellent discussion of the
flows past various bodies of revolution can be found in the book edited by Thwaites
(1987).

In Section 2.3, it was shown that the stream function (	) can be used only in
the analyses of two-dimensional flow situations. The advantage of using the stream
function is that it can be used to represent both irrotational and rotational flows, the
latter flow including the effects of viscosity. Axially symmetric flows are, by their
nature, two-dimensional if the proper coordinate system is chosen. To illustrate,
consider the flow about the sphere sketched in Figure 2.17. If we choose a Cartesian
coordinate system, then the analysis of the flow cannot be two-dimensional because
there are velocity components in all three coordinate directions in the neighborhood
of the sphere.
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Figure 2.17 Coordinate Systems Used in
Axially Symmetric Flow Analyses. To
illustrate, the flow past a sphere is
sketched. The cylindrical (x, r, �) and
spherical (R, �, �) coordinate systems are
shown with the Cartesian system (x, y, z).

A good choice of a coordinate system for the flow about a cylinder is the cylin-
drical system (x, r, �), which is also shown in Figure 2.17. The reader can see that for
any value of r, the flow is independent of �. Hence, the flow is two-dimensional with
respect to the cylindrical coordinate system. The stream function for this coordinate
system is defined in terms of the volume rate of flow, Q, which can be mathemati-
cally defined as

Q = 2�(�b−�a) = 2�(��) (2.81)

Here, the three-dimensional stream function (�) is the Stokes stream function. From
eq. 2.81, the volume rate of flow between the stream surfaces defined by the two
functions (�a and �b) is known if the values of those stream functions are specified.
The surfaces defined by specific stream functions are called stream surfaces. The
Stokes stream function can also be represented in the spherical coordinate system
(R,�, �), also shown in Figure 2.17. Examples of flows in both the cylindrical and
spherical coordinate systems are presented in Figure 2.18.

The velocity potential for irrotational axially symmetric flows is denoted by �.
The relationships between the stream function and the velocity potential for irrota-
tional flows are determined from the velocity components as follows: In cylindrical
coordinates,

Vx = 1
r

∂�

∂r
= ∂�

∂x
(2.82)

and

Vr = −1
r

∂�

∂x
= ∂�

∂r
(2.83)

For spherical coordinates,

V� = 1
Rsin(�)

∂�

∂R
= 1

R
∂�

∂�
(2.84)

and

VR = 1
R2sin(�)

∂�

∂�
= ∂�

∂R
(2.85)

There is one major difference between the relationships of the stream function and
velocity potential in two-dimensional and axisymmetric flows. In irrotational two-
dimensional flows, lines corresponding to constant values of � and 	 are ortho-
gonal whereas surfaces corresponding to constant values of � and � are not always
orthogonal.
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Figure 2.18. Basic Axially Symmetric Flow Patterns. In (b) M is the strength of the source.
For a sink, the negative sign (−) is replaced by a positive sign (+). In (c), M+(x) is the stength
of the line source. In (d), � is the strength of the doublet.

EXAMPLE 2.7: FLOW ABOUT A SPHERE In Example 2.3, the velocity potential and
stream function for the two-dimensional irrotational flow about a cylinder are
derived by combining the respective expressions for a uniform free-stream flow
and a doublet. Following the same procedure, we obtain the expression for the
flow about a sphere of diameter D. Referring to Figure 2.19 for notation, the
stream function for that flow is

� = V0

2

[
R2 − D3

8R

]
sin2(�) (2.86)

The strength of the doublet (� in Figure 2.18a) is found by equating the
stream function to zero on the sphere, that is, at R = D/2. Adjacent to the
sphere, there can only be an angular velocity component because there can not
be flow across a stream surface (in this case, the sphere itself). The expression
for the angular velocity component in spherical coordinates, found from the
combination of eqs. 2.84 and 2.86, is

V� = − V0

2

[
2 + D3

8R3

]
sin(�) (2.87)

The velocity adjacent to the sphere is then

V�|R= D
2

= −3
2

V0 sin(�) (2.88)
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Figure 2.19. Notation for the Ideal Flow about a Sphere.

The pressure distribution on the sphere is found by applying Bernoulli’s equa-
tion (eq. 2.70). The flow is assumed to be steady; hence,

∂�

∂t
= 0 (2.89)

Furthermore, the total energy per unit volume on the stagnation streamline at
x = ±∞ is

f (t) = 1
2

� V2
0 + p0 (2.90)

in eq. 2.70. The resulting expression for the pressure on the sphere is then

p|R=D/2 = �V2
0

2

[
1 − 9

4
sin2(�)

]
+ p0 (2.91)

The first term on the right side of eq. 2.91 is the difference in the dynamic pres-
sures, whereas the last term in the equation is the ambient pressure. A plot
of the dimensionless dynamic pressure difference on a horizontal plane bisect-
ing the sphere is presented in Figure 2.20. Comparing the velocity expressions

1
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Cp
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Figure 2.20. Non-Dimensional Pressure Distributions
over a Sphere and a Cylinder of Equal Diameters. The
pressure coefficient is defined in eq. 2.73.
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Figure 2.21. Body of Revolution in a Uniform Flow. The body shape is created by combining
line sources of various strengths with a uniform flow that is parallel to the x-axis.

of eqs. 2.71 and 2.88, we see that the maximum velocity on the sphere is
75% that on the cylinder. Furthermore, the minimum dynamic pressure on the
sphere (from eq. 2.91) is approximately 42% greater than that on the cylinder
(eq. 2.72). These results illustrate the flow and pressure “relief” due to the three-
dimensionality of the flow about the sphere.

By combinations of sources and sinks (of various strengths), a uniform flow can
result in the flow about a more complicated body of revolution. Referring to the
sketch in Figure 2.21, different body shapes are obtained by simply adjusting the
strengths of the component sources and sinks. For a body with a desired (design)
shape, the accuracies of both the theoretical body shape and the flow increase
as the number of the sources and sinks increases and the distance between them
decreases. The sources and sinks are collectively referred to as line sources, whereas
the points on the body are called body points. It should be noted that the num-
ber of body points (actually rings of radii rn) is equal to the combined number of
sources and sinks. In Figure 2.21, the line sources are represented by blocks in the
two-dimensional figure, and the distances between end points of block m to a body
point n by �−mn (from the left end of the block) and �+mn (from the right end of the
block). If Mm is the strength of the source, then the stream function at point n due
to the line source is

��mn = −Mm(�−mn − �+mn)

� −Mm�xm cos(�n) (2.92)

where �n is that shown in Figure 2.21. The approximation is valid if the elemen-
tal length �x is very small. Now combine all of the elemental stream functions to
obtain

�n = −
ml∑

m=1

Mm(�−mn − �+mn)
(2.93)

= −
ml∑

m=1

Mm�xm cos(�n)

The expression in eq. 2.93 is that of the stream function at point n. To obtain
the Stokes stream function for a continuous line source, pass to the limit as �x
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approaches zero in eq. 2.93. The result is

�n = −
l∫

0

M(x) cos(�n)dxn (2.94)

The cosine term in eq. 2.94 can be replaced by

cos(�n) = x − xn√
(x − xn)2 + r2

n

(2.95)

Hence, eq. 2.94 can be rewritten as

�n = −
l∫

0

M(x)
x − xn√

(x − xn)2 + r2
n

dxn (2.96)

An excellent discussion of the use of line sources and sinks is found in the book by
Shames (1962).

We now combine the line source with a point source and a uniform flow to
obtain the flow about a body similar to that sketched in Figure 2.21. As is the case
for the flow about a sphere, the body shape can be obtained combining various
stream functions and setting the resulting combination equal to zero. We choose to
combine a line sink of length � and strength M− with a point source at the origin of
strength M+ and a uniform flow of velocity V0 parallel to the x-axis. The resulting
stream function is

� =
l∫

0

M (x)
x − xn√

(x − xn)2 + r2
n

dxn − M+ cos(�) + V0

2
r2

n (2.97a)

and the body then is defined by � = 0, or

l∫
0

M (x)
x − xn√

(x − xn)2 − r2
n

dxn = M+ cos(�) − V0

2
r2

n (2.97b)

There are two methods available for applying the results in eq. 2.97b to axially sym-
metric flows about bodies of revolution. The first is to choose a body shape by spec-
ifying r(x) on the body and solve for the line-source strength, M−(x). In this case,
eq. 2.97 is an integral equation of the first kind because the strength of the line
source in the integrand is assumed to be the only unknown. The equation has no
analytical solution, and must be solved numerically. The book by Dettman (1969)
is recommended to those readers interested in the techniques in solving integral
equations.

The second method of application of the results in eq. 2.97b is to specify the
function describing the line source strength, M−(x), and subsequently determine
the body shape from the resulting r(x) expression. An application of this method is
given in the example that follows.

EXAMPLE 2.8: FLOW ABOUT A BODY OF REVOLUTION A body shape that is similar
to the hulls of modern-day submarines can be obtained by combining a point
source of strength M+ at the origin, a line sink of uniform strength M− between
the origin and x = �, and a uniform flow of velocity V0 in the positive x-direction.



36 Review of Hydromechanics

The strength of a point source is related to the volume flow rate, Q+, from the
source by

M+ = Q+
4�

(2.98)

The relationship between the strength of the line sink of length l and the volume
flow rate into the line sink, Q−, is

M− = − Q−
4�l

(2.99)

To obtain a closed body shape, the magnitudes of the flow rates of the point
source and line sink must be equal, that is, Q+ = Q−. This requirement produces
the following relationship between the strengths of eqs. 2.98 and 2.99:

M− = −M+
l

(2.100)

Using the equality in eq. 2.100, the expression for the stream function describing
the flow about the body of revolution is

� = − M+

(
x
R1

− R1

l
+ R2

l

)
+ V0

2
r2 (2.101)

where, referring to Figure 2.22,

R1 =
√

x2 + r2 (2.102)

and

R2 =
√

(x − l)2 + r2 (2.103)

The expressions for the axial and radial velocity components are obtained by
combining eq. 2.101 with eqs. 2.82 and 2.83, respectively. The results are

Vx = M+

(
x

R3
1

+ 1
l R1

− 1
l R2

)
+ V0 (2.104)

and

Vr = M+
r

(
1
R1

− x2

R3
1

− x
l R1

+ x − l
l R2

)
(2.105)

The pressure distribution on the body is obtained by combining the velocity
components of eqs. 2.104 and 2.105 with Bernoulli’s equation, eq. 2.70. For
steady flow, the resulting pressure distribution on a horizontal plane bisecting
the body is obtained from

p = p0 + �

2

(
V2

0 − V2
x − V2

r

)
(2.106)

To illustrate, consider a body in a horizontal flow where V0 = 10 m/s. A point
source of strength M+ = 200 m3/s is at the origin, and a line sink of strength
M− = −M+/ l extends from the origin to x = l = 100 m. The resulting body
profile and pressure distribution in the horizontal plane bisecting the body are
obtained numerically, and are shown in Figure 2.22. The body is approximately
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10 m/s

5.15 × 104 

at x = −4.38m

−0.99 × 104 

at x = +12m

100m

−2.05 × 104 

at x = +3.0m

12 m

Dmax = 16 m

p − p0(N/m2)

x(m)

x(m)

Figure 2.22. Profile of a Body of Revolution in a Uniform Flow and the Resulting Pressure
Distribution over the Body. The values (in N/m2) shown are rounded off. The reader should
note that the minimum pressure does not occur at the maximum diameter of the body. This
pressure phenomenon is discussed in the book edited by Thwaites (1987).

104 m in length with a maximum diameter of approximately 16 m located at
x = 12 m. The maximum dynamic pressure is 51,500 N/m2 at the bow and the
minimum pressure is approximately −20,500 N/m2, and occurs at about x = 3 m,
or 9 m forward of the maximum body diameter.

The reader is encouraged to consult the book edited by Thwaites (1987) for a
comprehensive discussion of flows past bodies of revolution. Many of the analytical
and experimental studies of flows about bodies of revolution were performed in the
early twentieth century, when airships were of interest to the aerodynamicists.

2.7 Scaling

The purpose of an experiment is to obtain performance data for a modeled system
with the hope that the experimental data can be used to predict the performance of
a prototype or full-scale system. The success in accomplishing this purpose depends
on the scale of the experiment. For example, if we perform an experiment in a table-
top wave tank to determine the properties of ocean waves, the surface tension of the
water can distort the experimental data so that those data cannot be scaled up. That
is, the effects of this small-scale phenomenon are negligible on the prototype scale
but not on the model scale.
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The first step in scaling an experiment is to perform a dimensional analysis to
determine the non-dimensional parameter groupings that have the same values on
both the model and prototype scales. In Section 2.5, three non-dimensional num-
bers were presented in the discussion of viscous flows. Those numbers were the
Reynolds number (Re) in eq. 2.78, the drag coefficient (Cd) in eq. 2.79, and the
Strouhal number (St) in eq. 2.80. An excellent discussion of both physical modeling
and dimensional analysis is found in the book by Chadwick and Morfett (1986).

A scaling analysis usually begins by specifying the ratio of the model length
(Lm) and the prototype length (Lp). This is called the length scale factor,

nL = Lm

Lp
(2.107)

and is the choice of the experimenter. To avoid small-scale effects, the value of nL

should be as large as possible for the experimental facility to be used. Note: The
subscripts identifying the model and prototype are “m” and “p,” respectively.

There are forces that cannot be scaled simultaneously. For example, the total
drag on a ship is the sum of the viscous drag and wave drag. The former depends
on viscosity of the liquid, and the latter depends on gravity. The problem is that
these cannot be scaled simultaneously. For viscous drag, the non-dimensional num-
ber used in scaling is the Reynolds number based on ship length (L),

ReL = VL/� (2.108)

where V is the speed of the ship and � is the kinematic viscosity. For the drag due to
the waves produced by the motion of the ship, a non-dimensional number resulting
from the ratio of the inertial force and the gravitational force is used. This parameter
is called the Froude number based on ship length, and is defined as

Fr L = V/
√

gL (2.109)

where g is the gravitational acceleration (9.81 m/s2). Because we cannot Reynolds-
scale and Froude-scale simultaneously, an experimental technique must be devised
to exactly perform one type of scaling while approximating the other. On the model
scale, Froude scaling is easily accomplished whereas Reynolds scaling is not. The
reason for the difficulty in Reynolds scaling is as follows: On the model, the transi-
tion from laminar flow to turbulent flow in the boundary layer adjacent to the hull
does not occur at the same relative position as on the prototype. This transition
phenomenon is discussed in Section 2.5. To simulate the prototype transition on the
model, boundary-layer trips are placed on the hull model, as shown in Figure 2.23.
These trips are small projections from the hull that artificially produce turbulent
flow downstream of the trips.

As previously stated, if the scale factor (nL) is very small, then surface tension
can significantly affect the experimental results. The relative effects of the surface
tension is determined by the Weber number,

We = � V2L
s

(2.110)

which results from the ratio of the forces of inertia and surface tension (s).
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Boundary-layer Trips

Bulbous Bow

Figure 2.23. Boundary-Layer Trips on a Ship Model. The photograph of the bow of the ship
model shows boundary-layer trips on both the hull and the bulbous bow. The bulbous bow is
designed to reduce the wave drag on the ship.

In the ship-drag (or ship-resistance) study, the total drag on the ship is repre-
sented in non-dimensional form by the drag coefficient,

Cd = F
1
2

� V2 A
(2.111)

where A is the relevant area and F is the total drag force on the ship. For a submarine
that is well submerged and traveling at a low speed, the area in question would be
the surface area because only viscosity is involved. At greater speeds, the forces
due to the wake become dominant, and the area in eq. 2.110 is the maximum cross-
sectional area (or projected area).

Using the results of eqs. 2.107, 2.108, 2.109, and 2.111, we can now determine
the scale factors for velocity, time, force, pressure, and power. We assume that the
model and prototype operate in the same medium (either fresh water or salt water),
so that neither the mass density (�) nor the kinematic viscosity (�) need be scaled.
The scale factors obtained from Reynolds scaling and Froude scaling are as follows:

a. Length Scale: For both Reynolds scaling and Froude scaling, the length scale
factor is nL of eq. 2.107. Again, this is a choice of the experimenter and is nor-
mally based on the size of the experimental facility.

b. Time Scales:
1. Reynolds Scaling: We require the following equality:

Rem = ReP (2.112)

From the definition of the Reynolds number in eq. 2.108, the ratio of the
Reynolds numbers is

VmLm

VpLp
= L2

m/tm
L2

p/tp
= n2

L

nt
= 1 (2.113)



40 Review of Hydromechanics

From the last equality of eq. 2.113, the Reynolds time scale factor is

nt = n2
L (2.114)

2. Froude-Scaling: Here we require the Froude number equality, that is,

Frm = Frp (2.115)

which yields

Vm
√

Lm

Vp/
√

Lp
= (Lm/tm)/

√
Lm

(Lptp)/
√

Lp
=

√
nL

nt
= 1 (2.116)

The Froude time scale factor is then

nt = √
nL (2.117)

c. Velocity Scales:
1. Reynolds Scaling: From eq. 2.112, we obtain

VmLm

VpLp
= nVnL = 1 (2.118)

From the last relationship, the Reynolds velocity scale factor is

nV = nL
−1 (2.119)

2. Froude Scaling: From eq. 2.116, we obtain

Vm/
√

Lm

Vp/
√

Lp
= nV√

nL
= 1 (2.120)

The Froude velocity scale factor is then

nV = √
nL (2.121)

d. Force Scales: First, we must require drag coefficient equality, that is,

Cdm = Cdp (2.122)

which, from eq. 2.111, yields

Fm/V2
m Am

Fp/V2
p Ap

= nF

(nVnL)2
= 1 (2.123)

By rearranging the last two terms of eq. 2.123, one obtains

nF = n2
Vn2

L (2.124)

1. Reynolds Scaling: The combination of eqs. 2.119 and 2.124 yields the
Reynolds force scale factor, which is

nF = 1 (2.125)

2. Froude Scaling: The Froude force scale factor is obtained from the combina-
tion of eqs. 2.121 and 2.124. The resulting relationship is

nF = n3
L (2.126)
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e. Pressure Scales: Equation 2.123 can be rewritten such that the numerator and
denominator are expressed as pressure coefficients. The result is

(Fm/Am)/V2
m

(Fp/Ap)/V2
p

= pm/V2
m

pp/V2
p

= np

n2
V

= 1 (2.127)

From the last equality, one obtains

np = n2
V (2.128)

1. Reynolds Scaling: The combination of the results of eqs. 2.119 and 2.128
yields the Reynolds pressure scale factor,

np = n−2
L (2.129)

2. Froude Scaling: The Froude pressure scale factor is obtained from the com-
bination of eqs. 2.121 and 2.128. The result is

np = nL (2.130)

f. Power Scales: The power, P, of a flow is the product of the force and the veloc-
ity. Hence, we can define the power coefficient by

CP = P
FV

(2.131)

For a model study, we require the following equality:

CPm = CPp (2.132)

Equations 2.131 and 2.132 are combined to obtain

Pm/FmVm

Pp/FpVp
= nP

nF nV
= 1 (2.133)

from which, the power scale factor is

nP = nF nV (2.134)

1. Reynolds Scaling: By combining eqs. 2.119, 2.125, and 2.134, we obtain the
Reynolds power scale factor,

nP = n−1
L (2.135)

2. Froude Scaling: The Froude power scale factor is obtained by combining eqs.
2.121, 2.126, and 2.134. The resulting expression is

nP = n7/2
L (2.136)

From these results, we see that Reynolds scaling and Froude scaling cannot be per-
formed simultaneously if the model and prototype are studied in the same medium.
The use of the scale factors presented in this section is illustrated in the following
example.
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Electric Generator

Air Turbine

Flotation Collar

Mooring Line

Oscillating Air Flow

Air Chamber

Oscillating Internal
Free Surface

Capture Chamber Oscillating Flow at Intake

Figure 2.24. Sketch of a Pneumatic, Oscillating Water Column Wave Energy Conversion Sys-
tem. The internal water column is excited in a vertical motion by the passing waves. The
spatially averaged internal water surface acts as the face of a pneumatic quasi-piston.

EXAMPLE 2.9: WAVE POWER CONVERSION Because of the dwindling petroleum
resources, solar energy has received much attention since the early 1970s.
Solar energy is transformed into other energy forms, a number of which are
in the world’s oceans. These solar-ocean energy options include the energies
of biomass, currents, salinity gradients, tides (in part), and waves. Our inter-
est in this example is in the exploitation of ocean waves. A historical treat-
ment of wave energy conversion is found in the book by Ross (1979), whereas
McCormick (1981, 2007) and Shaw (1982) present technical discussions of the
subject.

Consider the pneumatic wave energy conversion system sketched in Fig-
ure 2.24. This system converts the energy of wave-excited motions of the inter-
nal water column into electrical energy by using a bi-directional air turbine. The
water column acts as a piston, alternately exhausting and inhaling air through
the air turbine. Our goal is to predict the prototype performance by experimen-
tally studying a quarter-scale (nL = 1/4) model of a prototype. The model is
found to generate an average power of 1 kW (kilowatt) in a wave tank where
the wave height (Hm) is 0.25 m and the wave period (Tm) is 3.0 s. Froude
scaling is the logical choice for predicting the performance of the prototype
as water waves exist because of gravity. The prototype waves corresponding
to those of the quarter-scale model have a height of Hp = Hm/nL = 1.0 m.
Using the time-scale factor in eq. 2.116, the prototype wave period value is
Tp = Tm/nt = Tm/n1/2

L = 6.0s. Finally, the power that can be expected from the
prototype system, according to the Froude power-scale factor of eq. 2.136, is
Pp = Pm/nP = Pm/n7/2

L = 128 kW. Note: In the contiguous United States, the
average electrical power requirement for each citizen is 1 kW, so the ideal pro-
totype should satisfy the electrical needs of 128 citizens.
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2.8 Closing Remarks

The purpose of this chapter is to present a review of the basic topics in hydrome-
chanics. From the author’s experience, these topics are most applicable to problems
involving ocean waves and wave-structure interactions. Many of the analytical tech-
niques that are discussed in this chapter are used in the chapters that follow. The
reader is encouraged to consult the references for thorough discussions of the vari-
ous topics.



3 Linear Surface Waves

Ocean waves are caused by the motions of celestial bodies, seismic disturbances,
moving bodies, and winds. The waves produced by these phenomena differ in size
and character, and the consequences of each must be dealt with differently.

The gravitational attractions of both the moon and the sun cause the largest
water waves, called the tides. The predictable tidal wave can be treated as a shallow-
water wave because its length is much greater than the water depth. Extreme tides,
called spring tides, occur when the attractive forces of both the moon and sun are
aligned and in the same direction. These tides can cause flooding of lowlands if
dikes or levees are not present. The tides can also be exploited by converting their
energies into useable energy forms. This is normally accomplished by creating tidal
barriers equipped with hydroturbines, taking advantage of the tidal-induced water
level changes on opposite sides of the barriers. An excellent book on tidal energy
conversion is that written by Charlier (1982).

Both sub-marine earthquakes and volcanic eruptions can produce a long, high-
energy wave called a tsunami (the Japanese word for a tidal wave, although the
wave referred to is not tidal in nature). This type of wave can pass a ship in the
open ocean and not be noticed by the ship’s crew because of the small wave height-
to-wavelength ratio (called the wave steepness). As the tsunami approaches a land
mass, the energy of the wave is transformed from mostly kinetic to mostly potential.
This causes the wave steepness to increase significantly, and the resulting high wave
can be devastating to coastal areas. An excellent discussion of the nature and conse-
quences of tsunami is found in the book of Professor Robert L. Wiegel (1964). The
book is a classic in the ocean engineering literature.

The speed of a ship traveling in a restricted waterway is normally limited
because of the potential damage caused by ship waves. These waves travel in a group
away from the line of motion of the ship. The energy of the ship-wave group depends
on the speed and geometry of the ship. When ship waves travel into shallow water,
they can become rather steep without breaking and, as a result, retain much of their
energy. The steep waves can cause excessive motions of small moored vessels that, in
turn, can result in mooring failures. Furthermore, when the steep ship waves break
near the shore, erosion can occur.

Wind-generated waves and their consequences are the primary focus of this
book. As discussed in the next section, winds produce waves that vary in length
from the short capillary wave to the long swell. Wind waves can be classified as

44
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linear waves (having sinusoidal profiles), nonlinear waves (having nonsymmetric
profiles with respect to the still-water level), and breaking waves. Each of these
waves has a special significance in ocean engineering, as discussed herein. The wind
scale and the sea state of wind waves are presented and discussed in Chapter 1.

3.1 Wind-Wave Generation

Let us first consider the effects of a slight breeze of velocity U0 over the free sur-
face (air-sea interface) of calm water of an open ocean. As discussed in Section 2.5,
because the air velocity is relatively small, the air flow is laminar. This laminar air
flow simply drags the water particles on the free surface in the direction of the flow
due to the viscosities of both the air and water. This air flow produces no wave, as
illustrated in Figure 3.1a.

When the speed of the air increases such that the flow in the boundary layer
adjacent to the free surface is turbulent, then the pressure fluctuations on the free
surface beneath the turbulent air flow deform the free surface, and small waves are
created. These waves are called capillary waves, and have a profile similar to that
sketched in Figure 3.1b. In that figure, we see that the crest of the wave is broad,
while the trough of the wave is narrow. The cause of this rather odd wave profile
is the surface tension, which is the dominant force. Capillary waves travel in the
direction of the air flow because of the shear stress on the free surface. For most
engineering problems involving water waves, capillary waves are of little significance
because of their low energy content.

As the air speed increases, the energy in the air turbulence increases as does that
of the surface shear stress. The air flow can now be referred to as a wind rather than
a breeze. The water converts the energies transferred to it by wind turbulence and
shear stress into longer waves having sinusoidal profiles, as sketched in Figure 3.1c.
These sinusoidal waves are called linear waves because they can be analyzed using
linearized equations, as discussed in the next section. One of the linear properties of
the waves is that of superposition, that is, linear waves of different heights (H) and
lengths (�) can be combined to form other wave profiles. As discussed in Chapter
5, the most basic analysis of random wave phenomena is that which exploits the
property of superposition.

When the wind speed increases further, both the height of the wave and the
wavelength increase due to the horizontal pressure gradient resulting from the sep-
aration of the air flow on the leeward side of the wave. The altered profile has
a narrow crest and a broad trough, as sketched in Figure 3.1d. We note that the
mean-water level (MWL) – the mean way between the crest and trough – is above
the still-water level (SWL). The reason for this is that volumes of water above and
below the SWL must be equal. Waves having a profile similar to that in Figure 3.1d
are called nonlinear waves because their properties can no longer be well predicted
using linearized equations. To analyze nonlinear waves, we use the expansion theory
of Stokes (1847, 1880), presented in Chapter 4.

A further increase in the wind speed can produce breaking waves, as sketched in
Figure 3.1e. A break is defined as the condition where the horizontal water-particle
velocity at the crest equals the wave velocity (c). The profile of a breaking wave
has a pointed crest and a broad trough. After the wave breaks, the wind can shear
off the crest, producing foamy white water that spills down the leeward side of the
wave. This white-water spill is called a white cap. Breaking waves are discussed in
Section 4.3.
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Figure 3.2. Sketch and Notation for the Linear Wave Analysis.

There are a number of hypotheses concerning the generation and growth of
wind waves. These are well discussed and illustrated by St. Denis (1969). In the
remainder of this chapter, the analysis of linear waves is presented. In Chapters 4
and 5, the respective nonlinear waves and random waves are discussed and analyzed.

3.2 Airy’s Linear Wave Theory

The first meaningful analysis of surface waves was performed by George B. Airy
in the middle of the nineteenth century; see Airy (1845). His analysis is known as
either the Airy wave theory or the linear wave theory. The latter name results from
the nature of Airy’s analysis, which involves the solution of the linear equation of
continuity for an irrotational flow (eq. 2.41) and the application of linearized bound-
ary conditions. Although the theory is somewhat basic, the kinematic wave proper-
ties derived from the theory agree quite well with those actually observed, provided
that the wave steepness (H/�) is small. In this section, we outline the linear wave the-
ory and discuss the predicted behavior of linear waves. Thorough discussions of the
theory are found in the classical books by Kinsman (1984), Lamb (1945), Lighthill
(1979), Phillips (1966), and Stoker (1957).

Before embarking on the analysis of linear waves, it is helpful to consider the
physical properties of a traveling surface wave, as sketched in Figure 3.2. In this fig-
ure, we see that the origin of the Cartesian coordinate system is on the SWL, which
is the calm-water position. The water depth, h, is measured from the sea floor to the
SWL. The wave has a height, H (measured from the trough to crest), and a wave-
length, � (measured from crest to crest), and travels in the x-direction at a celerity
or phase velocity, c. The vertical free-surface displacement, �(x, t), is measured from
the SWL and, as indicated, is a function of both time, t, and distance, x. Note: Books
that are directed at the civil engineering aspects of ocean engineering normally rep-
resent the water depth by d and the wavelength by L.
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Figure 3.3. Elliptical Path of a Surface
Particle of a Linear Wave. The numbers
correspond to the passing of the wave
crest (1), the nodes (2 and 4), and the
trough (3). The unit vectors n and N
are the outward normal vectors on the
free surface and sea floor, respectively.

We begin our analysis by assuming that the flow beneath the free surface is irro-
tational, where irrotational flow is discussed in Section 2.3. By making this assump-
tion, the velocity of the water particles can be represented by the velocity potential,
�, defined in eq. 2.38. The equation of continuity for an incompressible, irrotational
flow is expressed by Laplace’s equation, eq. 2.41. That equation is a specialized form
of the wave equation, which is a second-order linear equation describing most phys-
ical wave phenomena, including light and sound. In our analysis, the general solu-
tion of Laplace’s equation is obtained first, and the solution is then subjected to
linearized boundary conditions. Those boundary conditions are the following:

a. Kinematic Free-Surface Condition. This boundary condition requires that the
same water particles comprise the free surface at all times. Referring to Fig-
ure 3.2, this kinematic free-surface condition is mathematically represented by

V|z=� = Vn (3.1)

Physically, this equation expresses the condition that the velocity of a particle
on the free surface must equal the velocity of the free surface itself. Because
irrotational flow is assumed, eq. 3.1 can also be written as

V|z=� = ∇�|z=� = n
∂�

∂n

∣∣
z=�

(3.2)

where n is the outward unit normal vector on the free surface, as sketched in Fig-
ure 3.3. Assume that the free-surface displacement, �(x,t), is small compared to
the wavelength, �, so that the boundary condition described in eq. 3.2 can be
approximated by

V|z=� � ∂�

∂t
k � ∂�

∂z

∣∣
z=0k (3.3)

Note: The boundary condition in eq. 3.3 is mixed. That is, the left term is applied
at z = � while the right term is applied at z ≈ 0. The space and time dependen-
cies of the free-surface displacement are implied in the notation �. For the most
part, this notation will be used in the remainder of this chapter.

b. Sea-Floor Condition. Here, it is required that the water particles adjacent to
the floor (or bed) cannot cross that solid boundary. Mathematically, if the bed
is at z = −h, then

V · N|z=−h = ∂�

∂ N

∣∣
z=−h = 0 (3.4)

where N is the outward normal unit vector at the sea floor, sketched in Fig-
ure 3.3.

c. Dynamic Free-Surface Condition. For this condition, the pressure on the free
surface is zero (gauge) at any position, x, and any time, t. Because the flow is
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assumed to be irrotational, Bernoulli’s equation (eq. 2.70) can be applied to
the flow to obtain the pressure at any point in the water. Let us first examine
Bernoulli’s equation when applied to the free surface during a calm-water con-
dition. Because there is no motion, the first two terms of eq. 2.70 equate to zero.
On the free surface, the coordinate z is zero because the origin of the coor-
dinate system is on the SWL. Furthermore, because the pressure on the free
surface (here, the SWL) is zero, the time function, f (t), in eq. 2.70 must also be
equal to zero. Still water can then be considered to be a wave with a zero height
and an infinite wavelength. Because f (t) = 0 for this special wave, the equality
must hold for all waves.

Now consider a wave having a finite height and length, where the height is much
smaller than the wavelength (H � �), and apply Bernoulli’s equation to the free
surface. The result is {

∂�

∂t
+ g� + 1

2
V2
} ∣∣

z=�
= 0 (3.5)

Equation 3.5 is nonlinear because of the velocity-squared term. For small values of
the wave steepness, the nonlinear velocity term in eq. 3.5 can be neglected, that is,
the magnitude of the term is of second order when compared to the other two terms.
The linearized dynamic free-surface condition can be expressed mathematically by

� = − 1
g

∂�

∂t

∣∣
z=�

(3.6)

Physically, the linearization of eq. 3.5 resulting in the expression of eq. 3.6 is based
on the assumption that the vee-squared kinetic energy of the fluid particles is much
less than the other mechanical energies of the fluid.

The reader might ask what threshold values of wave properties are required to
justify the linearization of eq. 3.5. The following example, a comparison of small and
large waves, is presented to answer that question.

EXAMPLE 3.1: LINEARIZATION Both in the laboratory and in the field, it has been
observed that water particles travel in nearly circular paths if the ratio H/�

(the wave steepness) is small, and if the wave is not influenced by the bed. The
condition on the bed is termed the deep-water condition. Such a circular path
is a special case of the elliptical path sketched in Figure 3.3 for a particle on
the free surface. As can be seen in that figure, the minor axis of the elliptical
path is equal to the wave height. Therefore, when the wave is in deep water,
the minor and major axes of the path are equal, and the wave height is then the
diameter of a circular path. For the circular path, when two consecutive crests
pass over a time period T, the particle travels a distance �H with an average
speed V = �H/T.

Using this information, consider two waves having lengths of 100 m and
periods of 8.0 sec but with respective heights of 10 m and 1 m. The particles
on the steeper wave (for which H = 10 m) have a speed of 3.93 m/s whereas
those on the less-steep wave (for which H = 1 m) have a speed of 0.393 m/s.
With these values, compare the last two terms of eq. 3.5. For the 10-m wave,
the maximum values of the respective terms are 49.0 (m/s)2 and 7.71 (m/s)2. For
the 1-m wave, the values of these terms are, respectively, 4.90 (m/s)2 and 0.0771
(m/s)2. The differences in the values of these two terms is less than an order of
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magnitude for the 10-m wave but greater than an order of magnitude for the 1-
m wave. Hence, the linearization is justified for the smaller wave but not for the
larger wave. In general, the limits of applicability of the linearized wave theory
depend on the wave height, period, and water depth. An excellent discussion
of these limits is given by Le Méhauté (1969). In Chapter 4, the limits of the
various wave theories are discussed.

The free-surface conditions of eqs. 3.3 and 3.6 are now combined by eliminating
� to obtain the linearized free-surface condition, which is{

1
g

∂2�

∂t2
+ ∂�

∂z

} ∣∣
z=��0 = 0 (3.7)

Because the flow in the wave is assumed to be irrotational, the equation of continuity
is expressed by Laplace’s equation, eq. 2.41. That equation is

∇2� = 0 (3.8)

where the Laplacian operator,∇2, is defined in eq. 2.42. Equation 3.8 is an elliptic
partial differential equation and, as such, can be solved using a product solution.
There are two forms of the product solution that can be used. The first is of the
form

� = X(x)Z(z)T(t) (3.9)

and results in a standing wave, as shown in the book by McCormick (1973) and
others. The second product solution is for a traveling wave, and is

� = X(x ± ct)Z(z) = X(�)Z(z) (3.10)

The coordinate system for eq. 3.9 is fixed at a point, whereas that of eq. 3.10 moves
with the wave. For the traveling wave, substitute the expressions of eq. 3.10 into that
of eq. 3.8, and separate terms of the same variables to obtain

1
X

d2 X
d�2

= − 1
Z

d2 Z
dz2

= −k2 (3.11)

where k is a constant. The negative sign arises because the free-surface profile is
sinusoidal in the �-direction. An expression similar to that in eq. 3.11 is obtained
from the combination of eqs. 3.9 and 3.8.

The general �- and z-solutions of the ordinary differential equations in eq. 3.11
are, respectively,

X(�) = C� sin(k� + �) (3.12)

and

Z(z) = Cz cosh(kz + �) (3.13)

where C� , Cz, �, and � are arbitrary constants. Because the origins of the horizontal
coordinates � and x are arbitrary, the constant � can be assigned a zero value without
loss of generality. Equation 3.12 can then be written as

X(�) = C� sin(k�) (3.14)

To determine the constant �, apply the sea-floor condition of eq. 3.4 to the velocity
potential expression resulting from the combination of eqs. 3.10 and 3.13. Assuming
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that the sea floor is uniformly flat and horizontal, only the z-term is affected by the
boundary condition. That is, the sea-floor condition results in the equation

dZ
dz

∣∣
z=−h = kCz sinh(−kh + �) = 0 (3.15)

from which � = kh. The expression in eq. 3.13 is then

Z(z) = Cz cosh[k(x + h)] (3.16)

The combination of the expressions of eqs. 3.14 and 3.16 with that of eq. 3.10 results
in

� = C� cosh[k(z + h)] sin(k�) (3.17)

where C� = C� Cz.
Now consider the nature of the horizontal coordinate, � . From eq. 3.10, that

coordinate is defined as

� = x ± ct (3.18)

The origin of the coordinate corresponds to

x = ∓ ct (3.19)

From the result in eq. 3.19, we see that the value of x decreases as the time, t,
increases for the upper sign (−). Hence, the wave must travel in the negative x-
direction at a celerity or phase speed, c. The waves corresponding to the upper signs
in eqs. 3.18 and 3.19 are then called left-running waves. Following the same line of
reasoning, the lower signs in those equations correspond to right-running waves. The
respective coordinates for the right- and left-running waves are then

�+ = (x − ct) (3.20a)

and

�− = (x + ct) (3.20b)

Returning to the expression for the velocity potential in eq. 3.17, the arbitrariness
of the coefficient C� in the equation can now be removed. To do this, combine the
expressions in eq. 3.6 (the linearized free-surface condition) and eq. 3.17 by elim-
inating the velocity potential, �. This combination yields the following expression
for the free-surface displacement of a sinusoidal wave:

�± = ckC±
�

g
cosh(kh) cos(k�±) = H

2
cos(k�±) (3.21)

where the last equality results from our knowledge that the wave is sinusoidal in
both time and space. In the right term of eq. 3.21, H is the wave height. Comparing
the terms of the last equality of eq. 3.21, we obtain the expression for the coefficient
C�, which is

C±
� = ± H

2
g
kc

1
cosh(kh)

(3.22)

Now combine this expression and that of eq. 3.20 with that of eq. 3.17 to obtain the
final expression for the velocity potential of a traveling wave, that is,

�± = ± H
2

g
kc

cosh[k(z + h)]
cosh(kh)

sin[k(x ∓ ct)] (3.23)
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The velocity potential yields the velocity components of the particles in the irrota-
tional flow beneath traveling waves. The velocity potential expression in eq. 3.23 is
the primary result of the Airy wave theory. The other properties of the linear waves
can now be derived.

3.3 Traveling or Progressive Waves

By convention, right-running waves are normally considered in two-dimensional
wave mechanics problems. This convention is followed herein. Consider the right-
running wave sketched in Figure 3.2. The free-surface displacement caused by the
wave is

� = H
2

cos[k(x − ct)] (3.24)

from the combination of equations 3.20a and 3.21. Because the free-surface profile
is sinusoidal in both time and space, the maximum displacement from the SWL, or
the crest, occurs when

k(x − ct) = 0, ±2�, ±,±4�, . . . . (3.25)

Consider first the case for which t = 0. The distance in the x-direction between two
successive crests is the wavelength, �. From eq. 3.25, we obtain

k = 2�

�
(3.26)

The wave parameter, k, is called the wave number.
Next, consider the expression of eq. 3.25 when x = 0. The time lapse between

successive crests is the wave period, T. From the results in eq. 3.25, we obtain

kc = 2�

T
= 2� f ≡ 
 (3.27)

In this equation, f is the wave frequency in units of Hertz (Hz), and 
 is the circu-
lar wave frequency in units of radians per second. Combining eqs. 3.26 and 3.27 by
eliminating the wave number yields the expression for the celerity or phase velocity,

c = �

T
(3.28)

Returning to the velocity potential of eq. 3.23, the expression in that equation can
now be written in terms of the circular wave frequency as

� = H
2

g



cosh[k(z + h)]
cosh(kh)

sin(kx − 
t) (3.29)

Combine this expression with that of eq. 3.7 by eliminating the velocity potential.
After some simplification and the introduction of the expression in eq. 3.27, one
obtains the following relationship for the circular wave frequency:


 =
√

gk tanh(kh) (3.30)

Waves are dispersive in that the celerity depends on the frequency and length of
the wave and, in addition, on the water depth. Equations 3.26 and 3.30 can be
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Table 3.1. Linear theory parameters

h/� kh tanh(kh)

0.01 = 1/100 0.06283.. 0.06275..
0.04 = 1/25 0.25313.. 0.24616..
0.05 = 1/20 0.31415.. 0.30421..
0.10 = 1/10 0.62831.. 0.55689..
0.50 = 1/2 3.14159.. 0.99627..
1.00 = 1/1 6.28318.. 0.99999..

combined to obtain the expression for the wavelength, which is a form of the dis-
persion equation, that is,

� = 2�

k
= 2�g


2
tanh(kh) = gT2

2�
tanh

(
2�h

�

)
= cT (3.31)

The equation for the wavelength is transcendental because � cannot be isolated.
That is, the solution of � cannot be obtained analytically, so the values of the wave-
length must be determined using a numerical technique. One such technique is
that called successive approximations or successive substitutions, as discussed by
Carnahan (1969) and others. McCormick (1973) demonstrates the application of
this numerical technique to wave mechanics problems. The significance of eq. 3.31
is illustrated in the following examples.

EXAMPLE 3.2: WAVELENGTH VARIATION WITH WATER DEPTH From a knowledge of
hyperbolic functions, we know that tanh(kh) approaches unity as kh approaches
infinity. This behavior of kh would be observed if either h → ∞ or � → 0. At
the other extreme, where the values of kh are very small, tanh (kh) → kh. Phys-
ically, this extreme corresponds to either relatively small water depths or rel-
atively large wavelengths. The term “relative” is used because the behavior
depends on the ratio h/�. Some practical values of this ratio are presented in
Table 3.1 along with the corresponding values of kh and tanh(kh) for the sake
of illustration.

The results in Table 3.1 show that the difference in the values of kh and
tanh(kh) is about 3.16% or less for h/� ≤ 1/20, whereas for h/� ≥ 1/2 the dif-
ference between tanh(kh) and unity is less than 0.4%. The significance of these
approximation ranges is now discussed.

Because of the approximations presented in Example 3.2, it is a common prac-
tice in ocean engineering to partition the infinite range of h/� into three regions,
those being:

a. Shallow Water: h/� ≤ 1/20 so that tanh(kh) ≈ kh
b. Intermediate Water: 1/20 < h/� < 1/2 so that tanh(kh) = tanh(2�h/�)
c. Deep Water: h/� ≥ 1/2 so that tanh(kh) ≈ 1

In intermediate water, the transcendental relationship of eq. 3.31 applies as
it is written, and must be solved numerically. The numerical method of succes-
sive approximations, as applied to eq. 3.31, is demonstrated in Example 3.3. Note:
Coastal engineers working in the field can use the shallow-water approximation to
gain a fairly good idea of the length of waves in the coastal zone. Outside the coastal
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zone, offshore engineers find the deep-water approximation to be very useful in field
calculations of the wavelength.

EXAMPLE 3.3: WAVELENGTH SOLUTION BY SUCCESSIVE APPROXIMATIONS A wave
having a period (T) of 5 sec travels in water that is 10 m deep (h = 10 m).
The wavelength value determined from eq. 3.31 is obtained using the method
of successive approximations. The method can best be illustrated as follows:
Define two functions in the equation, those being

FA(�) = � (3.32)

and

FB(�) = gT2

2�
tanh

(
2�h

�

)
(3.33)

Plot these functions as shown in Figure 3.4. Obviously, the solution of eq. 3.31
is obtained when

FA(�) = FB(�) (3.34)

or where the lines in the figure cross. In fact, depending on the degree of accu-
racy desired, one could use the graphical solution. However, to increase the
degree of accuracy we use successive approximations. To find the wavelength
value numerically, assume a starting value of � equal, say, �1 = 10h = 100 m, as
illustrated in Figure 3.4. The initial value of FA(�) is then 100 m. If this is the
solution, then FB(�1) should also have the value of �1. However, for this first
approximation the value of the function is 21.7 m. To test the accuracy, let us
define the difference function as

�F = |FB(�i ) − FA(�i )| = |FB(�i ) − �i | (3.35)

The value of this function for the first approximation (i = 1) is 78.3 m. For
this example, let the desired value of �F be 0.1 m. The second approximation
(i = 2) is obtained by letting FA(�2) = �2 = 21.7 m and evaluating FB(�2). The
new value of that function is 38.8 m, and the value of the difference function is
17.1 m. By following this procedure, the desired accuracy is achieved in the sixth
approximation (i = 6), and the value of �6 is 36.6 m. A flow chart for successive
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Figure 3.5. Flow Chart for the Successive Approximation Solution for the Wavelength Value.

approximation is in Figure 3.5. The only restrictions on the initial value of � are
that it must be both greater than zero and finite.

From the graph in Figure 3.4, we can see that the number of itera-
tions required to achieve the desired accuracy is reduced as the value of �1

approaches the actual solution. However, from the results of this example it
is apparent that the process rapidly converges on the solution.

Now apply the deep- and shallow-water approximations to eq. 3.31. First, for
deep water the wavelength approximation is

� ≡ �0 � gT2

2�
� c0T (3.36)

where the subscript 0 is, by convention, used to identify deep-water properties. Phys-
ically, the result in eq. 3.36 shows that the deep water wavelength and celerity are
functions of the wave period only, both increasing as the period increases.

The shallow-water approximation of eq. 3.31 is

� � gT2

2�
kh = gT2

2�

2�h
�

= gT2h
�

� cT (3.37)

from which

� =
√

ghT � cT (3.38)

From this relationship, we see that the shallow-water wavelength is then a function
of both depth and period, decreasing as both decrease. However, the shallow-water
celerity is a function of depth and independent of period. From these results, we
see that waves both shorten and slow down as they approach the shoreline. The
approximations of both eqs. 3.36 and 3.38 are applied to the conditions in Example
3.3 in the following example.

EXAMPLE 3.4: DEEP- AND SHALLOW-WATER WAVELENGTH APPROXIMATIONS In
Example 3.3, the wave period is 5 sec, and the water depth is 10 m. For this
period value, the deep-water approximation in eq. 3.36 yields a wavelength
value of 39.0 m. The shallow-water wavelength approximation from eq. 3.38
for the given period and water depth is 49.5 m. To an accuracy of 0.1 m, the
numerical solution of eq. 3.31 yields 36.6 m. For the conditions in Example 3.3,
the deep-water approximation is rather good as a first estimate whereas the
shallow-water approximation is relatively poor.

A knowledge of traveling waves is needed for engineering analyses of both off-
shore and coastal structures. The linear wave theory for traveling waves discussed
in this section is useful in the analysis of the motions of floating bodies, as discussed
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as Applied to Perfect Reflection.

in Chapter 10. However, as waves travel into shallow water the steepness of the
waves increases and the wave profiles become nonlinear. For nonlinear waves, the
analytical methods are discussed in Chapters 4 and 6.

3.4 Standing Waves

In Section 3.2, it is stated that there are two forms of the product solution of the
equation of continuity, expressed as Laplace’s equation, eq. 2.41. The first is the
standing wave solution of eq. 3.9 and the second is the traveling wave solution of
eq. 3.10. The velocity potential for the traveling wave (both right- and left-running),
as derived from the linear theory, is presented in eq. 3.23. We can use that equation
to determine the velocity potential for a standing wave by taking advantage of the
property of superposition, discussed in Section 2.3D, that is, the velocity potential of
any two (or more) linear waves can be added together to obtain an additional wave
pattern.

Referring to Figure 3.6, consider two traveling waves having the same heights
and periods passing each other in the x-z plane, one wave being right-running and
the other left-running. The vector celerities of the respective waves are c+ and c−.
Because these vectors are equal in magnitude and opposite in direction, they cancel
each other when the two wave patterns are superimposed. The resulting wave pat-
tern is one having zero celerity, or a standing wave. By matching the signs in eq. 3.23,
the respective velocity potentials (�+ and �−) are obtained. Again, because of the
superposition property, we can add these potentials to obtain the potential for a
standing wave,

� = �++ �− = −Hg



cosh[k(z + h)]
cosh(kh)

cos(kx) sin(
t) (3.39)

In a similar manner, the free-surface displacements of the right-running wave,
�+ of eq. 3.24, and the left-running wave (�−) can be added to obtain the following:

�S = �+ + �− = H cos(kx) cos(
t) = H
2

cos(kx) cos(
t) (3.40)

after using trigonometric identities and simplifying (see Figure 3.6). In eq. 3.40, we
see that the standing wave height, H, is twice that of the traveling wave height, H,

H = 2H (3.41)

as illustrated in Figure 3.7.
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Figure 3.7. Sketch of a Standing Wave Profile Resulting from a
Perfect Reflection.

In both eqs. 3.39 and 3.40, we note that the spacial (x) and temporal (t) functions
are independent of each other. Because of this, the positions of the nodes (where
� = 0) and the antinodes (positions of the crests and troughs) are fixed in space.
Now take the origin of the spacial coordinate system to be as shown in Figure 3.7.
The nodes occur when

kx = 2�

�
x = �

2
,

3�

2
, . . . (3.42)

So the nodal points are at

x = �

4
,

3�

4
, . . . (3.43)

where � is the wavelength of both the traveling and standing waves.
The velocity potential expression in eq. 3.39 can be used in the Cauchy-Riemann

expressions of eqs. 2.51 and 2.52 to determine the stream function for the standing
wave pattern. The result is

� = Hg
2


sinh[k(z + h)]
cosh(kh)

sin(kx) sin(
t) (3.44)

As discussed in Section 2.3C, the stream function can be used for both two-
dimensional rotational or irrotational flows to establish the flow streamlines. In fact,
any constant value of � (the notation for a standing wave stream function) will
define a specific streamline. Furthermore, because no flow can cross a streamline,
any streamline can be considered to be a flow boundary. In Example 2.3, we see that
a zero value of the stream function defines the stagnation streamline and the surface
of a circular cylinder in a uniform flow. Consider the streamlines corresponding to
� = 0 when t > 0. The zero value of the stream function occurs where

kx = 0, �, 2�. . . . (3.45)

and when z = −h , i.e., on the sea floor. The condition in eq. 3.45 corresponds to

x = 0,
�

2
, �, . . . (3.46)

as sketched in Figure 3.8. To illustrate, consider the following example.

EXAMPLE 3.5: STANDING WAVES AT A SEAWALL Traveling waves having a height
of 0.5 m and a period of 5 sec perfectly reflect from a vertical seawall where the
water depth is 2 m. So, H = 0.5 m, T = 5 sec, and h = 2 m. These values of
period and water depth in eq. 3.31 yield a wavelength of approximately 20.9 m.
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The water depth-to-wavelength ratio for the stated conditions is h/� = 0.096, or
approximately 1/10. From the discussion in Section 3.3, this value corresponds
to intermediate water. After the wave reflects from the wall, the resulting stand-
ing wave height is twice that of the incident wave, so H = 1.0 m according to
eq. 3.41. The steepness of the incident traveling wave (H/�) is 0.0239, whereas
that of the standing wave (H/�) is 0.0478. The resulting stream function from
eq. 3.44 is

� = 0.335 sinh(0.601 + 0.301z) sin(0.301x) sin(1.26t) (3.47)

From this equation, the geometries of the streamlines corresponding to con-
stant values of � are determined. The resulting streamlines are similar to those
sketched in Figure 3.8, where the time is t = �/2
. In that figure, we see that
the fluid is partitioned into flow cells, the cells being half a wavelength in width,
or 10.45 m for the stated conditions. The boundaries of each cell correspond to
� = 0, as does the sea bed. Antinodes (crests and troughs) occur at the sides of
the cells and nodes are at the center of the cells.

Because there can be no flow across streamlines, any liquid spilled into the
water when standing waves are present should (theoretically) remain in the cell
in which the liquid is poured, provided that there are no other currents in the
cell. Contaminants should then be containable adjacent to sea walls.

From the discussion, we see that the reflection of traveling waves can result in
a standing wave, the height of which is twice that of the incident traveling wave, as
in eq. 3.41. However, the wavelength is the same for both the traveling and standing
waves because the wavelength depends only on the water depth and wave period.
One very important consequence of wave reflection from seawalls or quays is the
doubling of the wave steepness, as illustrated in Example 3.5. That is, because the
wavelength is unaffected by reflection, the wave steepnesses of the standing wave
and the incident traveling wave are related by

H
�

= 2
H
�

(3.48)

This condition follows directly from eq. 3.41. If a ship or a boat is moored to the sea-
wall, the increased wave steepness can cause excessive motions of the vessel, with
possible damage to the hull or the moorings. For this reason, when storms are fore-
cast large ships are usually taken from their berths to sea, whereas the smaller boats
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are taken to more sheltered waters. Standing wave formation is a major concern in
harbor design.

3.5 Water Particle Motions

In Section 2.3, the relationships between the velocity potential, stream function, and
velocity components of the water particles in a two-dimensional irrotational flow
are introduced as the Cauchy-Riemann equations, eqs. 2.51 and 2.52. In Section 3.2,
Airy’s theory yields the expression for the velocity potential. For right-running trav-
eling waves, the velocity potential expression is in eq. 3.29, whereas for a standing
wave, the potential is given by eq. 3.39.

To obtain the expressions for the two-dimensional water particle velocity com-
ponents in traveling waves in irrotational flows, simply combine eqs. 2.51 and 2.52,
respectively, with eq. 3.29 to obtain the following:

u = Hgkcosh[k(z + h)]
2
 cosh(kh)

cos(kx − 
t) (3.49)

= H
 cosh[k(z + h)]
2 sinh(kh)

cos(kx − 
t)

in the horizontal direction, and

w = Hgksinh[k(z + h)]
2
 cosh(kh)

sin(kx − 
t) (3.50)

= H
 cosh[k(z + h)]
2 sinh(kh)

sin(kx − 
t)

in the vertical direction, where the last term in each equation results from eq. 3.31.
For standing waves, the expressions for the velocity components are obtained

from the combinations of eqs. 2.51 and 2.52 with eq. 3.39. The respective results are

U = H
 cosh[k(z + h)]
2 sinh(kh)

sin(kx) sin(
t) (3.51)

in the horizontal direction, and

W = −H
 sinh[k(z + h)]
sin(kh)

cos(kx) sin(
t) (3.52)

in the vertical direction.
In the remainder of the present chapter, we concentrate on the motions of par-

ticles within right-running traveling waves. The horizontal and vertical particle dis-
placements (�, �) about a fixed mean point (xo, zo) are found by replacing (x,z) by
(xo + �, zo + �), expanding the results in Maclaurin series in � and � and, finally,
integrating the respective velocity expressions over time. Referring to Figure 3.9,
the resulting displacement expressions are, to the first order,

� =
∫

udt |xo,zo = − H cosh[k(zo + h)]
2 sinh(kh)

sin(kxo − 
t) (3.53)

in the horizontal direction, and

� =
∫

wdt |xo,zo = H sinh[k(zo + h)]
2 sinh(kh)

cos(kxo − 
t) (3.54)
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Figure 3.9. Position Vector for a Particle Beneath a Traveling Wave.

in the vertical direction. The subscript “o” identifies the mean position of the par-
ticle. The integration constants in eqs. 3.53 and 3.54 are neglected by adjustment of
the time origin. The location vector of the particle from the mean position is

r = �i + �k (3.55)

= H/2
sinh(kh)

{− cosh[k(zo + h)] sin(kxo − 
t)i + sinh[k(zo + h)] cos(kxo − 
t)k}

Referring to the graphs of the hyperbolic functions in Figure 3.10, the expression in
eq. 3.55 results in the following case.

CASE 1. DEEP WATER (1/2 ≤ h/λ < ∞, or π ≤ kh < ∞) For this range, sinh(kh) ≈
cosh(kh) ≈ ekh/2 and tanh(kh) ≈ 1. With these approximations, the expression
in eq. 3.55 is approximately

r = H0

2
ek0zo[− sin(k0xo − 
t)i + cos(k0xo − 
t)k] (3.56)

Here, the subscript “0” identifies deep-water properties and, again, “o” iden-
tifies the mean position of the particle. Because the values of zo are negative
beneath the SWL, the expression for r describes circular particle paths hav-
ing diameters that decrease with depth. Plots of these paths are sketched in
Figure 3.11. The maximum diameter corresponds to a mean position on the
SWL, where zo = 0.

CASE 2. INTERMEDIATE WATER (1/20 < h/λ < 1/2, or 2π/20 < kh < π) For this range
of kh, the equation for the location vector given in eq. 3.55 must be used as

Shallow Water Intermediate Water Deep Water

15

10

5

0
0 1 2 3 π 4

2π h
kh = λ

1

2π
20

KEY
cosh(kh)

tanh(kh)
sinh(kh) Figure 3.10. Behaviors of Hyperbolic

Functions.



3.6 The Wave Group 61

h

zo

x

c

H0ek0 zo

H0

λ0

2

h

x

c

H

x
h

c

H

Figure 3.11 Figure 3.12 Figure 3.13

Figures 3.11, 3.12 and 3.13. Particle Paths Predicted by Airy’s Linear Wave Theory. The deep-
water paths in Figure 3.11 are circular with diameters that decrease exponentially with depth.
In the figure, zo ≤ 0. In Figure 3.12, the intermediate water paths are elliptical with the major
and minor axes decreasing with depth. The shallow-water paths in Figure 3.13 are elliptical
with minor axes that decrease with depth and vertically uniform major axes.

stated. Plots resulting from the equation are sketched in Figure 3.12. In that
figure, we see that the particle paths are ellipses with major and minor axes that
decrease with depth. At zo = −h, the minor axis is zero, and the particle motions
are adjacent to the bed.

CASE 3. SHALLOW WATER (0 < h/λ ≤ 1/20, or 0 < kh ≤ 2π/20) Again, referring to the
plots of the hyperbolic functions in Figure 3.10, the shallow-water range of kh
justifies the approximations sinh(kh) ≈ tanh(kh) ≈ kh and cosh(kh) ≈ 1. With
these approximations, eq. 3.55 simplifies to

r = H
2kh

{− sin(kxo − 
t)i + [k(zo + h)] cos(kxo − 
t)k} (3.57)

This equation also results in elliptic particle paths; however, in this case the
major axes are uniform and the minor axes decrease with depth. These elliptic
paths are sketched in Figure 3.13.

The particle paths described by eqs. 3.55 through 3.57 are good approxi-
mations of those actually observed when the wave steepness (H/�) is small, or
when the wave profile is approximately sinusoidal. As the steepness increases,
or as the profile becomes nonlinear, there is a net convection of the particles in
the direction of wave travel, as is discussed in Chapter 4.

3.6 The Wave Group

It is demonstrated in Section 2.3D that various flow patterns in irrotational flows
can be superimposed upon each other to obtain other flow patterns. Because the
linear wave theory is based on the assumption of irrotational flow, we can superim-
pose regular wave patterns (those having specified heights and periods) to obtain
irregular wave patterns (those for which the heights and periods vary).

One such pattern is called the wave group, which is formed by superimposing
two waves having the same heights and slightly different periods. When many waves
of differing heights and periods are superimposed, the resulting pattern can appear



62 Linear Surface Waves

Crest-Trough Envelope

2H

c cg

x

Figure 3.14. Sketch of a Wave Group. In deep and intermediate waters, the waves form at the
left side of the group and travel to the right side, where they disappear because the celerity
(c) is greater than the group velocity (cg). In shallow water, the wave profile is uniform over
the group length because the celerity and the group velocity are equal.

to be random in the time, as discussed in Chapter 5. In this section, our interest is in
the simple wave group.

Consider two waves of height H and periods that differ by �T. The period dif-
ference results in small differences in both the period (�
) and the wave number
(�k), as expected. The free-surface displacements of the two waves are described
by

�1 = H
2

cos(kx − 
t) (3.58)

and

�2 = H
2

cos[(k + �k)x − (
 + �
)t] (3.59)

The superposition of these waves results in an irregular wave pattern described by

� = �1 + �2 = H cos
(

�k
2

x − �


2
t
)

cos[(k + �k)x − (
 + �
)t] (3.60)

where the expression is obtained with the help of trigonometric identities. Because it
is assumed that all of the incremental quantities are relatively small, that is, k � �k
and 
 � �
, the expression in eq. 3.60 can be approximated by

� ≈ H cos(kx − 
t) cos
(

�k
2

x − �


2
t
)

= 2�1 cos
(

�k
2

x − �


2
t
)

(3.61)

The wave pattern is called a wave group, and consists of a wave component, �1, and
an overriding function that modifies the wave height. An example of a wave group is
sketched in Figure 3.14. The waves within the group are described by the expression
in eq. 3.24, and have a celerity or phase velocity (c) obtained from eq. 3.31.

Now imagine that we are riding with the group such that the angle of the over-
riding cosine is held constant. The speed at which we must travel to obtain this effect
is found by taking the time derivative of this constant angle to obtain

cg = dx
dt

= lim
�k→0

�


�k
= d


dk
(3.62)

This velocity is called the group velocity. From eq. 3.30, we find 
 = √
[kg tanh(kh)].

The combination of this expression with that of eq. 3.62 yields

cg = c
2

[
1 + 2kh

sinh(2kh)

]
(3.63)

To gain an idea of the significance of the expression in eq. 3.63, consider the group
velocity at the extremes of the depth. In deep water, sinh(2kh) → 0.5e2kh, and the
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Figure 3.15. Schematic Sketch of a Deep-
Water Wave Group for Example 3.6.

group velocity is approximately

cg0 = lim
h→∞

(cg) = c0

2
(3.64a)

where, as before, the subscript “0” refers to the deep-water conditions. Physically,
the component waves of the group travel twice as fast as the group itself. Hence, in
deep water, waves appear at the back of the group, travel to the front of the group,
and then disappear.

In shallow water, sinh(2kh) → 2kh, and eq. 3.63 is approximately

cg = lim
h→0

(cg) = c (3.64b)

From this result, we see that the component waves of the group remain in the same
positions with respect to the front and back of the group in shallow water.

EXAMPLE 3.6: DEEP-WATER WAVE GROUP A 5-sec wave traveling in deep water is
found to have a wavelength of approximately 39.0 m, according to the expres-
sion in eq. 3.36. The celerity of the wave is c0 = �0/T = 7.8 m/s and, from
eq. 3.64, the group velocity is cg0 = c0/2 = 3.9 m/s. Consider a group composed
of ten of these deep-water waves. We wish to determine how far the wave group
travels when a component wave appears at the rear of the group and travels to
the front of the group. In other words, our interest is in how far the group trav-
els during the life of a component wave. Referring to the sketch in Figure 3.15,
the length of the group is L = 10�0 = 390 m, whereas the length of group travel
is � = cg0t . The component wave must travel the sum of the group length and
the distance that the group travels, or L+ � = c0t . By eliminating the time t, the
length equations can be combined. The resulting value of the group travel dis-
tance is � = L = 390 m. That is, the group travels a distance equal to its length,
and the component waves travel twice the group length.

The engineering consequences of wave grouping are often debated. Most of
the attention devoted to the subject has been in the area of structural design in the
coastal zone. One of the advocates of including the effects of wave grouping is Per
Bruun (1985), who states that the stability of rubble mound structures is sensitive
to wave groups. However, J. W. van der Meer (1988) counters that wave groups
play only a minor role in the stability problem. More recently, Medina, Fassardi,
and Hudspeth (1990) present a comprehensive discussion on the wave group effects
on the stability of rubble mound breakwaters. The reader should bear in mind that
the wave height in the center of the group is twice that of the component waves,
according to eq. 3.61. This can cause a problem in shallow water where, as discussed
in Chapter 4, the wave breaks when the height is approximately 0.9 times the water
depth. For this reason, the center waves can be quite high in the coastal zone before
breaking. This is one argument for accounting for wave groupiness in the design of
coastal structures.
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Figure 3.16. Notation for the Wave Energy and Energy
Flux Analyses.

3.7 Wave Energy and Power

All physical waves (water, acoustical, optical, etc.) represent energy in transition.
That is, energy is being transmitted by waves from one region to another. Free-
surface water waves are produced by the motions of bodies, such as ships, earth-
quakes, and winds, as discussed previously in this chapter. In this section, we derive
the expressions for both the average energy and the average energy flux or power
of water waves.

We begin our analysis by considering the potential energy of an elemental mass
of water displaced above the SWL, as sketched in Figure 3.16. The mass of that
element is

�m = ��(�x)b

where b is the width of the wave crest under consideration, and the free-surface
displacement (�) is positioned at the vertical centerline of the horizontally and ver-
tically symmetric element. The length of the element, �x, is assumed to be small
enough to allow us to both neglect the curvature of the free surface over this length
and to assume that the center of mass is a distance �/2 above the SWL. The elemen-
tal potential energy of this elemental mass is then

�Ep = g(�m)
�

2
= 1

2
�g�2(�x)b

The expression for the total potential energy of the wave is found by combining this
expression with that of eq. 3.24 and integrating the resulting expression over one
wavelength. The resulting expression for the total potential energy is then

Ep = �gH 2

8

�∫
0

cos2(kx − 
t)dxb = �gH 2�b
16

(3.65)

Next, we consider the kinetic energy of the submerged elemental mass of water
sketched in Figure 3.16. The elemental kinetic energy is

�Ek = 1
2

�(u2 + w2)b�x�z

where, for a linear wave, the respective particle velocity components (u, w) are
obtained from eqs. 3.49 and 3.50. The combination of these equations with the �Ek
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expression, and the subsequent integration over both the water depth and wave-
length, results in the total kinetic energy of the wave:

Ek = 1
2

�

0∫
−h

�∫
0

(u2 + w2)dxdzb = �gH2�b
16

(3.66)

Comparing the results of eqs. 3.65 and 3.66, we see that the total energy of a linear
wave is equally divided between potential and kinetic energies. Hence, the total
energy of the wave is the sum of the expressions in eqs. 3.65 and 3.66:

E = Ep + Ek = �gH2�b
8

(3.67)

From this result, we see that a doubling of the wave height (H) results in a four-fold
increase in the wave energy, whereas the energy is a linear function of the wave-
length. The depth effects on the wave energy are demonstrated in the following
example.

EXAMPLE 3.7: DEEP- AND SHALLOW-WATER WAVE ENERGY The combination of
wave-energy expression of eq. 3.67 and the deep-water wavelength expression
of eq. 3.36 results in

E0 = �g2 H2T 2b
16�

(3.68)

Similarly, the combination of the shallow-water wavelength expression of
eq. 3.38 and the energy expression of eq. 3.67 yields

E = �g3/2 H2
√

hTb
8

(3.69)

Comparing the results of eqs. 3.68 and 3.69, we see that the wave energy
is proportional to the square of the wave period in deep water, but directly
proportional to the period in shallow water.

To gain an idea of the magnitudes of the deep- and shallow-water energies,
apply eqs. 3.68 and 3.69 to waves having a 1-m height and a 5-sec period. For
the deep-water wave, the total energy per unit meter of crest (E0/b) is 49,300
N-m/m from eq. 3.68. For the shallow-water wave, applying eq. 3.69 to a wave
in 1 m of water yields an energy per unit meter of crest of 19,800 N-m/m. From
these results, we see that waves of equal height and period in deep and shallow
waters will have significantly different energies. This is true because the wave-
length decreases with depth, as illustrated in Example 3.4.

As stated previously, a wave represents energy in transition. Of interest then is
the rate of energy transmission in the direction of wave propagation, referred to
as the energy flux. To obtain a mathematical expression for the energy flux, begin
with the equation of energy conservation for an irrotational flow, Bernoulli’s equa-
tion (eq. 2.70). When this equation is applied to a surface wave, two simplifications
are made. First, as in the derivation of eq. 3.5, the time function f (t) in eq. 2.70
is zero. Second, as in the derivation of the linearized free-surface condition of eq. 3.6,
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the nonlinear kinetic energy term (�V2/2) is negligible for waves of very small steep-
ness, that is, H/� � 1. Bernoulli’s equation applied to linear waves is then

�
∂�

∂t
+ pgz + p = 0 (3.70)

The first term represents both the unsteady kinetic energy per unit volume and the
dynamic pressure, with the latter interpretation of interest here. The second term
of eq. 3.70 represents both the potential energy per unit volume and the hydrostatic
pressure. The third term in that equation is the flow energy per unit volume or the
total pressure in the water. The only energy term in eq. 3.70 that is explicitly time-
dependent is the kinetic energy term. Hence, the energy flux, which is the time-rate
of change of energy per unit area normal to the flow direction, is simply the product
of the dynamic pressure and the fluid velocity:

�
∂�

∂t
V = �

∂�

∂t
∇� (3.71)

where the mathematical expression for the velocity potential, �, is given in eq. 3.29.
To obtain the total energy flux in the direction of wave travel, combine eqs. 3.71 and
3.29 and integrate the resulting expression over both the normal area (bh) and the
wave period (T). The resulting expression can actually be considered to be the wave
power in the direction of wave travel. Hence, we represent the resulting expression
by the wave-power expression

P = �b
1
T

T∫
0

0∫
−h

∂�

∂t
∇�dzdt = �gH2cb

16

[
2kh

sinh(2kh)
+ 1
]

i (3.72a)

In this expression, we recognize the formula for the group velocity, cg, given in
eq. 3.63. Eq. 3.72 can then be rewritten in the more popular form,

P = �gH2cgb
8

i (3.72b)

Physically, the wave power is convected in the direction of wave travel at the velocity
of the wave group.

To obtain the deep-water approximation for the wave-power expression, com-
bine eqs. 3.72b and 3.64 to obtain

P = �gH2c0b
16

i = �g2 H2Tb
32�

i (3.73)

Comparing this expression with the deep-water energy expression of eq. 3.68, we
see that the energy is proportional to the square of the period, whereas the power is
directly proportional to the period. In shallow water, the results in eqs. 3.72b, 3.64,
and 3.38 are combined to obtain

P = �gH3/2 H2
√

hb
8

i (3.74)

In shallow water, the wave power is independent of the period.

EXAMPLE 3.8: DEEP- AND SHALLOW-WATER WAVE POWER To obtain an idea of
the magnitude of the wave power, consider the 1-m, 5-sec wave of Example 3.7
in deep water. The value of the power per unit meter of crest obtained from
eq. 3.73 is P/b = 4,930 watts/meter (W/m) or 4.93 kilowatts/meter (kW/m).
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If the wave height increases to 2 m while the period is kept at 5 sec, then the
power per unit length increases to 19.7 kW/m. That is, by doubling the wave
height and maintaining the period, the power is increased by a factor of 4. When
the shallow-water power expression of eq. 3.74 is applied to the 1-m, 5-sec wave
in 1 m of water, as in Example 3.7, the resulting power per unit crest width is
3.96 kW/m, which is approximately 80% of the deep-water power associated
with the same wave height and period.

EXAMPLE 3.9: WAVE POWER CONVERSION In Example 2.9, the scaling laws are
applied to a pneumatic wave-energy conversion system. The system is sketched
in Figure 2.24, and its operation is described in that example. Now, assume that
the prototype system of Example 2.9 operates in 2 m of water (h = 2.0 m)
where the wave height (H) is 1.0 m and the wave period (T) is 6 sec. From
the example, the prototype power (Pp) is 128 kW. McCormick (2007) and oth-
ers state that the maximum efficiency (�) for the system sketched in Figure 2.24
is 50%; that is, a maximum of 50% of the incident wave energy or power can be
converted to the energy or power of the oscillating water column. For this rea-
son, 256 kW of incident wave power is required to obtain the desired prototype
power under ideal conditions. Note that the efficiency applies to the hydraulics
and pneumatics of the system and not to the turbine, generator, and other power
take-off components. Our goal is to determine the width (bwc) of the water col-
umn needed to produce the 128 kW of usable power, assuming that there are
no point-absorbing effects, as described in Chapter 10.

First, the wave properties in 2 m of water must be determined for the 6-
sec wave. The transcendental wavelength expression of eq. 3.31 yields a value
of 25.6 m for �. The approximate wavelength expression of eq. 3.38 yields a
value of 26.6 m, a difference of less than 4%. Hence, we assume that the wave
conditions are those corresponding to shallow water so that the wave-power
expression of eq. 3.74 can be used. The equation that yields the water column
width (bwc) is then

Pp = 128,000 Watts = � P = �
�g3/2 H2

√
hbwc

8
(3.75)

where � = 0.5, � = 1,030 kg/m3, g = 9.81 m/s2, H = 1 m, and h = 2 m. The width
value is then 45.8 m.

The quarter-scale model of the prototype system yields a power of 1 kW
from Example 2.9. The width of the model water column is 11.4 m. This model
operates in a tank having a 0.5-m depth, where the respective wave height and
period are 0.25 m and 3.0 sec.

The area of wave-energy conversion is receiving considerable attention as waves
are a viable alternative energy resource for both island and isolated coastal commu-
nities. The reason for this interest can be understood by considering the follow-
ing: The average power required by a citizen of the contiguous United States is
1 kW. The island communities that are candidates for wave-energy conversion have
a requirement of about 100 W per person. The prototype of Examples 2.9 and 3.9
would then provide the average power for 1,280 island citizens. This converted wave
power could be used directly in the production of either electricity or potable water.
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3.8 Shoaling

A wave is said to “shoal” when the properties of the wave are affected by changes in
the water depth. The same term is used to identify a rise in the sea bed that affects
certain waves. The phenomenon of waves responding to changes in the water depth
is called shoaling. The behaviors of both the wavelength and celerity with changing
depth are mathematically described by the relationships in eq. 3.31, assuming that
the waves are linear. In addition, the behavior of the group velocity with depth is
described by the expression in eq. 3.63. We now focus our attention to the depth
effects on the wave height.

To determine the relationship describing the depth effects on the wave height,
we assume that the energy flux (wave power) is conserved as a wave passes from
one water depth to another. To visualize, consider the sketches in Figure 3.17. In
that figure, waves are shown to approach a shoreline over a flat, inclined bed. The
shoreline is defined as the intersection of the SWL and the bed. An area sketch of
the wave train is in Figure 3.17a, and an elevation sketch is in Figure 3.17b. The
angle between the bed and the horizontal direction is assumed to be small so that
there is no wave reflection.

As sketched in Figure 3.16, assume that the waves travel in a “channel” of width
b having virtual side walls. These “walls” are seen as straight lines in Figure 3.17a,
and are referred to as orthogonals because they are normal to the wave front. The
flow between the orthogonals is assumed to be irrotational; therefore, there are no
energy losses as the waves progress. With this assumption, the energy flux (wave
power) is invariant with x. That is, wave powers passing through vertical areas at
two offshore positions, say xA and xB, are equal. We can express this conservation
of wave power mathematically by

Pa = Pb (3.76a)

or, from the results in eq. 3.72b, we can write

�gH2
Acg Ab
8

i = �gH2
BcgBb
8

i (3.76b)

where cg is the group velocity, expressed by eq. 3.63. From the results in eq. 3.76b,
the relationship between the wave heights is found to be

HB = HA

√
cg A

cbB
(3.77)

Let position A be in deep water and position B be in the shoal. By convention, the
deep-water wave properties are identified by the subscript “0,” whereas the wave
properties in the shoal are not subscripted. The expression in eq. 3.77 relating the
deep-water wave height and that in the shoal can be written as

KS ≡ H
H0

=
√

cg0

cg
=
√

cosh2(kh)
sinh(kh) cosh(kh) + kh

(3.78)

where KS is called the shoaling coefficient. The last term in eq. 3.78 is obtained from
the combination of the expressions in eqs. 3.31, 3.36, 3.63, 3.64, and several hyper-
bolic function identities. The shoaling coefficient then describes the variation in the
height of a wave as it passes from deep water into a shoaling region.
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Figure 3.18. Linear Shoaling Curves. These curves apply to waves over flat, horizontal beds,
that is, where the bed slope is zero. Effects of the bed slope can be seen in the experimental
results shown in Figure 3.19.

It is also convenient to relate the other wave properties (wavelength, celerity,
and group velocity) over a shoal to those in deep water. To obtain these relation-
ships, first combine eqs. 3.31 and 3.36 to obtain the relationships for the wavelength
and celerity. The resulting expression is

�

�0
= c

c0
= tanh(kh) (3.79)

To relate the group velocities over a shoal and in deep water, simply rearrange
eq. 3.78. The resulting expression is

cg

cg0
= sinh(kh) cosh(kh) + kh

cosh2(kh)
= 1

K2
S

(3.80)

Curves resulting from eqs. 3.78, 3.79, and 3.80 are called the shoaling curves, and are
presented in Figure 3.18. These curves represent the behaviors of the wavelength,
celerity, group velocity, and wave heights with changing water depth, according to
Airy’s linear wave theory. In Chapter 4, it is shown that the wavelength, celerity,
and group velocity curves of Figure 3.18 are also those that correspond to Stokes’
second-order wave theory, discussed in Section 4.2.

As a test of the ability of the linear theory to predict wave heights in shoaling
waters, let us apply the shoaling coefficient expression of eq. 3.78 to experimen-
tal data obtained for shoaling on beaches of small slopes. The experimental data
are those of Brink-Kjær and Jonsson (1973), as reported by Svendsen and Jonsson
(1976). These data and the theoretical curve resulting from eq. 3.78 are presented
in Figure 3.19. The reader should note that the experimental data depend on both
the beach slope and the deep-water wave steepness, whereas the theoretical curve
from the linear theory is independent of both. A comparison of the theoretical and
experimental results shows that the minimum values of the experimental data are up
to 10% lower than the minimum theoretical value. Furthermore, the slopes of the
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experimental data in shallow water are greater than that of the theoretical curve.
Considering the limitations imposed by the assumption of linearity, Airy’s theory
does an acceptable job in predicting the qualitative behavior of shoaling waves.

3.9 Closing Remarks

The water wave theory of G. B. Airy (1845), called the linear wave theory, is the
basic wave theory used by ocean engineers. This extraordinary theory was presented
for the first time over a century-and-a-half ago. The range of validity of the linear
theory is quite broad considering the simplicity of the theory. In the following chap-
ters, we find many references to formulas of the linear theory that are developed
and presented in this chapter.

One final note concerning the measurement of water waves: There are a number
of experimental and field techniques used in the measurement of wave properties
(including the direction of wave travel). This important subject requires far more
discussion than can be afforded herein. For those readers interested in the wave
measurement area, the book of Tucker and Pitt (2001) is recommended.



4 Nonlinear Surface Waves

The study of nonlinear waves began early in the nineteenth century. Results of the
first studies of these waves were used to determine the quasi-static wave loads on
ships and other tethered floating structures. Although the first analytical techniques
were rather simplistic, these techniques were used well into the twentieth century.
In the mid-nineteenth century, more mathematically sophisticated analytical meth-
ods were introduced. These methods are used by both physical oceanographers and
ocean engineers in their respective predictions of real wave properties and the time-
dependent loadings on offshore structures.

There are a number of theories that can be used to approximately predict the
properties of nonlinear waves. Probably the earliest of these theories is that of
Gerstner (1808). The theory of Gerstner is a geometric type, and is commonly
referred to as the trochoidal theory. This name results from the predicted profile
of the breaking wave (see Figure 3.1e) which, from Gerstner’s theory, is a trochoid,
having a cusp at the crest. The trochoidal theory is rotational in a hydrodynamic
sense (see Section 2.3), with the rotational direction being opposite of that actually
observed. Results of the theory are still used today by some structural naval archi-
tects to predict the extreme quasi-static wave loads on ship hulls in both sagging
(crests at both the bow and stern, and the trough amidships) and hogging (troughs
at both the bow and stern, and a crest amidships). A discussion of the trochoidal
theory is found in the books of Wiegel (1964), Kinsman (1965), McCormick (1973),
Horikawa (1978), and Sarpkaya and Isaacson (1981), whereas Bhattacharyya (1978)
discusses the analyses of the wave loading on ships under sagging and hogging
conditions.

An irrotational expansion theory was introduced in the mid-nineteenth century
by Stokes (1847). That theory is based on the assumption that the wave properties
can be represented by perturbation series. The desired accuracy of the theory simply
depends on the number of terms maintained in each series. As is shown later in this
chapter, the Stokes second-order theory yields excellent results for certain ranges of
depth-wavelength ratio, that is, h/�. De (1955) derived the generalized fifth-order
theory, and expansions up to the fifth order have been found to yield good results
in the prediction of wave loading on fixed structures. We shall confine our discus-
sions to the second-order theory because of its relative simplicity. A discussion of
the higher-order Stokes theories can be found in the book of Patel (1989), whereas
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Dawson (1983) discusses the application of the Stokes fifth-order theory to wave
loading situations.

In the latter part of the twentieth century, several nonlinear wave theories were
developed to exploit the capabilities of high-speed computers. One such theory is
the stream-function theory of Dean (1965), which is outlined in the books of Sarp-
kaya and Isaacson (1981) and Dean and Dalrymple (1984). Results of the theory are
obtained numerically.

A nonlinear theory that can be used for wave profile prediction in the coastal
zone is that of Korteweg and deVries (1895). That theory is called the cnoidal
theory, the name of the theory chosen because of the use of the Jacobian elliptic
cosine function, cn. The cnoidal theory is used to predict the properties of long
waves in shallow water, that is, where the wavelength (�) is much greater than
the water depth (h). Useful results of the theory are presented in the Shore Pro-
tection Manual, published by the U. S. Army Corps of Engineers (see U.S. Army,
1984).

A limiting case of the cnoidal theory is the solitary wave, a wave first recognized
by Russell (1838, 1844). See the discussion of Russell’s observations in the book
by Crapper (1984). Theoretically, the solitary wave is a shallow-water wave having
an infinite length and, therefore, an infinite period. The passage of a solitary wave
is then a one-time event. In addition, the free surface of the wave is (theoretically)
entirely above the SWL. Although these wave properties are extraordinary, the ana-
lytical wave properties obtained from solitary wave theory do compare rather well
with measured long-wave properties in shallow water. The analysis of the solitary
wave was first satisfactorily performed by Boussinesq (1872), and later by Rayleigh
(1876) and McCowan (1891). The solitary wave theory is discussed later in this
chapter.

The analytical validity ranges of the various nonlinear wave theories are pre-
sented in Figure 4.1 with that of the linear theory. Versions of the figure appear in a
technical report by Le Méhauté (1969), publications by Dean (1967, 1974), and else-
where. Muga and Wilson (1970) also discuss the limitations of the validity curves.
In Figure 4.1, we see that the validity range of Airy’s linear wave theory, discussed
in Chapter 3, decreases with the water depth, h. The linear theory has application
to the long-period waves (swell) in both deep and intermediate waters. However,
Stokes’ theory has a larger validity range, extending to the breaking wave limit in
deep water. In shallow water, the cnoidal theory has a wide range of validity, where
the upper limit of that theory is the breaking line for the solitary theory. The Stokes,
cnoidal, and solitary wave theories are discussed in depth in the following sections.
Although the results of these theories are somewhat cumbersome, they can be eas-
ily programmed for either laptop computers or advanced pocket calculators for use
by engineers working in the field.

4.1 Nonlinear Wave Properties

Before discussing the nonlinear wave theories, let us familiarize ourselves with the
properties of nonlinear waves. The most striking difference between linear and
nonlinear waves is the wave profile, as can be seen by comparing the sketches in
Figures 3.1c and 3.1d. The profile of any monochromatic wave depends on the
wave height (H), period (T), and water depth (h). In deep water, where we assume
h > �0/2, the wave height and period can be combined into a single parameter called
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Figure 4.1. Analytical Validity Ranges of the Linear and Nonlinear Wave Theories. The break-
ing wave is the limiting case for each of the theories, as discussed in Section 4.7. The Ursell
(1953) parameter, UR ≡ H�2/2h3, represents the ratio of the convective inertia and the local
inertia, and is used to determine the regions of analytical validity. According to Le Méhauté
(1969), the linear theory is valid for UR � 1, whereas the cnoidal and solitary theories are
mathematically valid for UR � 1.

the wave steepness,

H0

�0
= 2�H0

gT 2
(4.1)

where the deep-water wavelength expression is in eq. 3.36. As the value of the wave
steepness increases, the wave profile becomes more nonlinear, as can be seen in
Figure 4.2. In that figure, experimentally observed deep-water wave profiles are
presented in non-dimensional forms, where the ratio of the free-surface displace-
ment to amplitude (2�/H) is shown as a function of x/� for several values of the
wave steepness. The sinusoidal profile is also sketched in that figure for the sake
of comparison. For the smallest value of H/�, the profile is approximately sinu-
soidal or linear. As the value of the wave steepness increases, the crest of the wave
becomes both narrow and high while the trough becomes both broad and shallow.
As sketched in Figure 3.1d, the MWL, which is midway between the trough and the
crest, is above the SWL for a nonlinear wave. For a linear wave, the MWL and SWL
are coincident. Above a specific steepness value, the wave breaks. The conditions
for breaking are discussed later in this chapter.
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2η/H

0.5
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−0.5
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x/λ = t/T

Figure 4.2. Linear Free-Surface Profile and
Experimental Free-Surface Displacements.
The data, obtained by Svendsen and Hansen
(1978), represented by �, correspond to
H0/�0 = 0.026, h/�0 = 2, and UR = 0.016.
Those data represented by • correspond to
H0/�0 = 0.032, h/�0 = 0.88, and UR = 0.023.

In shallow water, where we assume h < �/25, the water depth has a strong effect
on the wave profile. This is illustrated in Figure 4.3, where experimentally obtained
profiles are presented in non-dimensional forms for various values of the ratio of the
mean depth to wavelength (h/�). The data were obtained by Svendsen and Hansen
(1978) on a bed with a 1/35 slope. For this type of shallow-water wave, the wave-
induced force on a structure has a dual nature. As a high, narrow crest passes the
structure, the force in the horizontal direction is nearly impulsive, that is, a relatively
large force is experienced over a short time duration. When the trough passes, the
force is a quasi-steady hydrodynamic type.

In this chapter, the expansion theory of Stokes and the cnoidal theory are devel-
oped. To illustrate the use of the Stokes theory, the second-order theory is discussed.
Also, the solitary theory is shown to be the shallow-water limiting case of the cnoidal
theory.

4.2 Stokes’ Wave Theory

The expansion theory of G. G. Stokes (1847) is based on two basic assumptions.
First, as in the case of Airy’s wave theory in Chapter 3, the flow beneath the free
surface of the wave is assumed to be irrotational. This assumption allows the water

Bed Slope = 1/35

2η/H

x/ λ = t/T 
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0.0 0.5 1.0

0.5

1.0

−0.5

Figure 4.3. Linear Profile and Measured Data
in Shallow and Intermediate Waters. The data,
obtained by Svendsen and Hansen (1978), repre-
sented by � correspond to H0/�0 = 0.01, h/�0 =
0.04, and UR = 275. Those data represented by •
correspond to H0/�0 = 0.017, h/�0 = 0.065, and
UR = 68.5.
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Figure 4.4. Notation for the Stokes Wave Theory.

particle velocity components to be represented by the velocity potential, �, as in
eqs. 2.38 and 2.39. The second assumption is that the wave properties can be repre-
sented by perturbation series. Physically, this assumption is equivalent to producing
a nonlinear wave by superimposing linear waves upon each other. In Section 3.6,
we superimposed two linear waves of equal height but of slightly differing periods
to obtain the wave group. In the development of the Stokes theory, both the height
and period of the component waves must be determined. In this section, Stokes’
wave theory is described in general terms, and the second-order theory is demon-
strated. When using Stokes wave theory, one must be conscious of the analytical
validity ranges shown in Figure 4.1.

The nonlinear form of Bernoulli’s equation applied to the free surface is pre-
sented in eq. 3.5. Physically, the form of that equation can be considered to rep-
resent the energy of the flow per unit water mass. Let us rewrite eq. 3.5 with one
change, that is, replace the velocity term, V, with the gradient of the velocity poten-
tial, as in eq. 2.38. Referring to Figure 4.4 for notation, Bernoulli’s equation applied
to the free surface is then {

∂�

∂t
+ gη + 1

2
(∇�)2

}
|z=� = 0 (4.2)

where � is the velocity potential, � is the free-surface displacement from the SWL,
and g is the gravitational constant (9.81 m/s2). This equation is the nonlinear and
unsteady form of the dynamic free-surface condition. Instead of this form of the
free-surface condition, a quasi-steady form is used in the present analysis. Following
the method of Stokes, the unsteady term can be eliminated in Bernoulli’s equation
if the inertial frame of reference is changed to a relative frame fixed to the wave, as
sketched in Figure 4.5. The two coordinate systems are related by

X = x − ct

Z = z (4.3)

z

SWL

−(u − c)

−w

x

Z

X

c

ct

∆ x

∆η

θ

Figure 4.5. Notation for a Nonlinear Wave
of Fixed Form.
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From the first of these relationships, the horizontal velocity component in the
relative or wave frame of reference is

dX
dt

= dx
dt

− c = u − c = ∂�

∂x
− c (4.4)

Using this result, the dynamic free-surface condition in the relative frame is

g� + 1
2

[(
∂�

∂x
− c
)2

+
(

∂�

∂z

)2
] ∣∣∣∣∣

z=�

= K (4.5)

The kinematic free-surface condition is derived as follows: The vertical velocity
component of the water particle motion can be written in terms of c, η, and � by
taking advantage of the geometric relationships shown in Figure 4.5. In that figure,
the slope of the free surface at any point is

tan(θ) = lim
�X→0

�η

�X
= dη

dX
= w

u − c

∣∣∣∣
z=η

(4.6)

where � is the angle of the free surface with respect to the horizontal direction. From
eq. 4.6, we obtain the following expression for the vertical velocity component on
the free surface, which is the kinematic free-surface condition:

w = ∂�

∂z

∣∣∣∣
z=�

= d�

dX

{
∂�

∂x
− c
} ∣∣∣∣

z=�

(4.7)

Of the several approaches to Stokes’ wave theory, we choose that outlined
by Dean (1965) because of its directness. Following Dean (1965), we represent
the respective velocity potential and the free-surface displacement by perturbation
series as

� = ε1�1 + ε2�2 + · · · + εn�n + · · · =
∞∑

i=1

εi �i (4.8)

and

η = ε1�1 + ε2�2 + · · · + εn�n + · · · =
∞∑

i=1

εiηi (4.9)

where ε is an arbitrary constant assumed to be 0 < ε ≤ 1 to ensure series conver-
gence. Each higher-order term is then a perturbation to the sum of the lower-order
terms. Each term of the series in eq. 4.8 is a velocity potential of a specific wave.
Hence, each of these potentials must satisfy Laplace’s equation, eq. 2.41,

∇2�i = 0 (4.10)

The seafloor condition of eq. 3.4 must also be satisfied by each of the potential func-
tions. Assuming a flat, horizontal bed at z = −h, this boundary condition is

∂�i

∂z

∣∣∣∣
z=−h

= 0 (4.11)

Returning to the perturbation series representations, there are two additional
terms in eq. 4.5 to expand, those being the celerity, c, and the constant, K. There is
one difference between the series of eqs. 4.8 and 4.9 and those for these two terms.
The terms of eq. 4.5, Bernoulli’s equation, are in units of energy per unit mass.
Because the origin of the relative coordinate system is traveling away from the origin
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of the inertial system, there is a kinetic energy introduced. If no waves are present,
both � and � are equal to zero on the free surface. Hence, the imposed energy must
be equal to K, and that energy per unit mass is

K = 1
2

c2 (4.12)

This means that there are no terms in the expansions for both c and K that rep-
resent the case of no waves. The perturbation series for these respective terms are
then

c = C +
∞∑

i=1

εi ci (4.13)

and

K = K +
∞∑

i=1

εi Ki (4.14)

where C and K are the zeroth-order terms of the respective expansions.
Equations 4.5 and 4.7 represent the free-surface boundary conditions. The

derivatives of the velocity potential, �, in those equations are applied at z = η or
about the SWL at z = 0. Because of this, the derivatives of the velocity potential can
be expanded in a Maclaurin series, resulting in the following expressions:

∂�

∂x

∣∣∣∣
x=�

= ∂�

∂x

∣∣∣∣
z=0

+ 1
1!

∂2�

∂x∂z

∣∣∣∣
z=0

η + 1
2!

∂3�

∂x∂z2

∣∣∣∣
z=0

η2 + · · · · (4.15)

and

∂�

∂z

∣∣∣∣
z=η

= ∂�

∂z

∣∣∣∣
z=0

+ 1
1!

∂2�

∂z2

∣∣∣∣
z=0

η + 1
2!

∂3�

∂z3

∣∣∣∣
z=0

�2 + · · · · (4.16)

Equations 4.5 and 4.7 are now combined with both of the expansions of
eqs. 4.15 and 4.16 and the perturbation series of eqs. 4.8, 4.9, 4.13, and 4.14. The
resulting free-surface boundary conditions, the continuity equation of eq. 4.10, and
the seafloor condition of eq. 4.11 comprise the set of equations of the Stokes nth-
order wave theory. The equation sets for the various orders are obtained by equating
the coefficients of ε, the perturbation constant. For the zeroth-, first-, and second-
order theories, those equations are as follows.

a. Dynamic Free-Surface Condition:

ε0:
C2

2
= K0 (4.17)

ε1: gη1 + Cc1 − C
∂�1

∂x

∣∣∣∣
z=0

= K1 (4.18)

ε2: gη2 + 1
2

[(
∂�1

∂x

)2

+
(

∂�1

∂z

)2
] ∣∣∣∣∣

z=0

−
[

C
∂�2

∂x
+ c1

∂�1

∂x
+ Cη1

∂2�1

∂x∂z

] ∣∣∣∣
z=0

+ Cc2 + c2
1

2
= K2 (4.19)
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b. Kinematic Free-Surface Condition:

ε0: 0 = 0 (4.20)

ε1: − C
dη1

dx
= ∂�1

∂z

∣∣∣∣
z=0

(4.21)

ε2:
dη1

dx
∂�1

∂x

∣∣∣∣
z=0

− c1
dη1

dx
− C

dη2

dx
= ∂�2

∂z

∣∣∣∣
z=0

+ η1
∂2�1

∂z2

∣∣∣∣
z=0

(4.22)

c. Equation of Continuity (Laplace’s Equation):

ε0: 0 = 0 (4.23)

ε1: ∇2�1 = 0 (4.24)

ε2: ∇2�2 = 0 (4.25)

d. Seafloor Condition:

ε0: 0 = 0 (4.26)

ε1:
∂�1

∂z

∣∣∣∣
z=−h

= 0 (4.27)

ε2:
∂�2

∂z

∣∣∣∣
z=−h

= 0 (4.28)

In Section 3.2, we find that the general solution of Laplace’s equation (eq. 3.8),
subject to the seafloor condition of eq. 3.4, is eq. 3.17. Similarly, the respective gen-
eral solutions of eqs. 4.24 and 4.25 are

�1 = C�1 cosh[k1(z + h)] sin(k1 X1) (4.29)

and

�2 = C�2 cosh[k2(z + h)] sin(k2 X2) (4.30)

where the respective wave numbers are

k1 = 2�

�1
(4.31)

and

k2 = 2�

�2
(4.32)

An inspection of eqs. 4.17, 4.20, 4.23, and 4.26 leads to the conclusion that the
zeroth-order theory describes water having a flat surface. In the moving frame of
reference, the water is flowing in the negative X-direction with a speed of C.

To derive the equations for the first-order theory, we begin by taking a deriva-
tive of eq. 4.18 with respect to x, and combining the resulting expression with that
of eq. 4.21 by eliminating the derivative dη1/dX. We note that the derivatives with
respect to both X and x are equal from eq. 4.3. The result of the combination is
an expression for the celerity in terms of both first-order wave number and water
depth, that is,

C =
√

g
k1

tanh(k1h) (4.33)
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The same form of the celerity from the linear theory is obtained by rearranging
eqs. 3.30 and 3.31. Now, combine the expressions in eqs. 4.21, 4.29, and 4.33, and
integrate the resulting expression from the crest at X = 0 to the trough at �1/2.
This results in the expression for the parametric coefficient of the velocity potential
expression of eq. 4.29. That expression is

C�1 = gH1

2k1C
1

cosh(k1h)
(4.34)

where H1 = (ηmax − ηmin) is the wave height resulting from the integration. The
expression for the first-order velocity potential is then

�1 = gH1

2k1C
cosh[k1(z + h)]

cosh(k1h)
sin(k1 X) (4.35)

from eq. 4.29. Now combine eqs. 4.33, 4.35, and 4.21, and integrate the resulting
expression from the crest at the origin to X to obtain the expression for the first-
order free-surface deflection. The result is

η1 = H1

2
sin(k1 X) (4.36)

Finally, for the first order, the combination of the expressions in eqs. 4.35, 4.36, and
4.18 produces a relationship that is not trivial only if

K1 = Cc1 (4.37)

Several observations are made concerning the results of the first-order theory.
First, the expressions for both �1 and η1 are identical in form to the correspond-
ing velocity potential and free-surface displacement expressions obtained from the
linear theory. Second, when the X-coordinate in eqs. 4.35 and 4.36 is replaced by
the expression of eq. 4.3, and the product of the wave number and celerity in those
equations is replaced by the circular frequency, the resulting expressions are identi-
cal with those of the linear theory. We conclude that the first-order Stokes theory is
identical to the linear theory of Airy.

Following the introduction of the perturbation constant, ε, in eqs. 4.8 and 4.9,
the statement is made to the effect that the value of this positive arbitrary constant
should be less than or equal to unity to ensure convergence of the perturbation
series. Because we have determined that the first-order theory is identical with that
of Airy, the linear wave is that upon which we build to obtain higher-order (non-
linear) waves. For this reason, the value of the perturbation constant is

ε = 1 (4.38)

Because the expression for η1 in eq. 4.36 is linear, we can assume that the
second-order free-surface displacement is also linear because of the form of the
velocity potential in eq. 4.30. Physically, the assumption made in the Stokes the-
ory is that large waves can be formed by simply superimposing linear waves.
The second-order free-surface deflection can be written as

η2 = H2

2
cos(k2 X) (4.39)

where the wave height, H2, is to be determined. Before continuing with the second-
order theory, one assumption is made here. The second-order wave has some crests
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that coincide with those of the first-order theory. Mathematically, this assumption
can be represented by the wavelength relationship,

�1 ≡ � = n�2, n = 1, 2, 3, . . . . (4.40)

In terms of the wave number, eq. 4.40 is equivalent to

k1 ≡ k = 2�/� = k2/n, n = 1, 2, 3, . . . . (4.41)

In these equations, the integer, n, must be determined. To determine the value of
this integer, combine the second-order kinematic free-surface boundary condition
of eq. 4.22 with the expressions in eqs. 4.30, 4.35, 4.36, 4.37, 4.39, and 4.41. The
resulting expression is not trivial only if

n = 2 (4.42)

With this integer value in eq. 4.40, we see that the length of the perturbation wave
is half that of the first order.

Take a derivative with respect to X of the expression in eq. 4.19, and combine
the result with eq. 4.22 by eliminating dη2/dX. In the resulting expression, replace
�1, �2, and η1 by the respective expressions in eqs. 4.35, 4.30, and 4.36. The result is
not trivial only if

c1 = 0 (4.43)

In eq. 4.37, then,

K1 = 0 (4.44)

In addition, the combination of the equations leading to the result of eq. 4.43 yields
the expression for the parametric coefficient of the second-order velocity potential.
That is, in eq. 4.30,

C�2 = 3
32

CkH2
1

sinh4(kh)
(4.45)

The resulting second-order velocity potential expression is

�2 = 3
32

CkH2
1

cosh[2k(h + z)]

sinh4(kh)
sin(2kX) (4.46)

It is apparent that the results of the second-order theory can be expressed in terms
of the first-order wave height. Hence, from this point forward, we shall omit the
subscript “1” from that wave height and use the following wave height notation:

H = H1 (4.47)

The second-order wave height, H2, is found from the kinematic free-surface
expression of eq. 4.22. To obtain this height, first combine the free-surface displace-
ment expression of eq. 4.36 and the velocity potential expressions of eqs. 4.35 and
4.46 with eq. 4.22. Then, integrate dη2 from the trough to the crest of the second-
order wave. The resulting wave height expression is then

H2 = η2max − η2min = H2k
8

cosh(kh)

sinh3(kh)
[2 + cosh(2kh)] (4.48)

where, again, the subscript “1” has been omitted from the first-order wave proper-
ties in eq. 4.48.
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The final two unknowns of the second-order theory are the constant, K2, and
the celerity, c2. The relationship between the two can be found by applying eq. 4.18
to the special case of an infinitely long wave of zero height (the no-wave condition),
where η1 = η2 = �1 = �2 = 0. The result is

K2 = Cc2 (4.49)

With this result, the application of eq. 4.5 along with the first- and second-order
expressions applied to the no-wave condition yields

c2 = K2 = 0 (4.50)

The results obtained from Stokes’ second-order theory applied to traveling waves
are now summarized. The celerity or phase velocity expression to the second order
is found by combining eqs. 4.13, 4.38, 4.33, 4.43, and 4.5. The resulting expression is

c = �

T
=
√

g
k

tanh(kh) (4.51)

This expression can also be obtained from eqs. 3.30 and 3.31 of Airy’s linear the-
ory. Next, the velocity potential, obtained from the combination of eqs. 4.8 (to the
second order), 4.38, 4.35, 4.46, and 4.3, is

� = gH
2kc

cosh[k(z + h)]
cosh(kh)

sin(kx − 
t) + 3
32

ckH2 cosh[2k(z + h)]

sinh4(kh)
sin[2(kx − 
t)]

(4.52)

Finally, the free-surface displacement expression to the second order results from
the combination of eqs. 4.9, 4.38, 4.36, 4.39, and 4.48. That expression is

η = H
2

cos(kx − 
t) + kH2

16
cosh(kh)

sinh3(kh)
[2 + cosh(2kh)] cos[2(kx − 
t)] (4.53)

This expression shows that the second-order free-surface displacement is simply the
superposition of two linear waves having wave numbers that differ by a factor of
2, as illustrated in Figure 4.6. The free-surface profiles obtained from both Stokes’
second-order wave theory and the linear wave theory are illustrated in the following
example.

EXAMPLE 4.1: DEEP- AND SHALLOW-WATER FREE-SURFACE PROFILES The free-
surface displacement expression resulting from Stokes’ second-order theory
is given in eq. 4.53. This expression can be simplified by using the respective
approximations leading to eqs. 3.56 and 3.57 to obtain the free-surface profiles
in deep and shallow waters. The resulting approximations are the following: For
deep water, the free-surface displacement is

η0 � H0

2
cos(k0x − 
t) + k0 H2

0

8
cos[2(k0x − 
t)] (4.54)

where, as in Chapter 3, the subscript “0” indicates deep water, and for shallow
water,

η � H
2

cos(kx − 
t) + 3
16

H2

k2h3
cos[2(kx − 
t)] (4.55)

Before applying these approximations, let us determine the wave height
of the nonlinear wave. If we define that height as being the vertical distance
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Figure 4.6. Superposition of Linear Waves to
form a Stokes Second-Order Wave. From Fig-
ure 4.5, the relationship between the horizon-
tal coordinates is X = x − ct.

between the crest of the wave and the displacement midway between crests,
then we find that the height of the second-order wave is always equal to the
height of the basic linear wave, H. This can be proven by representing the ampli-
tudes of the two sine terms in eq. 4.53 by a1 and a2, where a2 is less than a1.

Returning to the approximate free-surface displacements, as represented
by eqs. 4.54 and 4.55, let us examine the deep-water free-surface profiles under
three conditions. First, referring to the validity ranges of the theories sketched
in Figure 4.1, the free-surface profiles obtained using eq. 4.54 are shown in Fig-
ure 4.7 in non-dimensional form for two wave steepness conditions. Those con-
ditions correspond to (a) the upper validity limit of the linear theory and (b) the
upper limit of the second-order theory. In each case, the wave height is assumed
to be equal to 1 m. For curves a and b the respective periods are then found to
be 10.1 sec and 3.57 sec. As the period decreases with the wave height held con-
stant, the wave steepness, H/�, in deep water increases. Hence, as the steepness
increases, the crest height above the SWL increases while the trough becomes
broader and more shallow.

Next, we apply eq. 4.55 to the shallow-water conditions for two points
on the shallow-water line in Figure 4.1. Those points correspond to ratios of
(a) H/�0 = 0.000377 and (b) H/�0 = 0.002010, where h�0 = 0.0100, and the

0

2η/H

1.0

−1.0

0 2π kXπ

H/λ = 0.00628, h/λ = 0.5
H/λ = 0.04400, h/λ = 0.5

Figure 4.7. Wave Profiles from Stokes’
Second-Order Theory Applied to Deep
Water. The continuous line corresponds
to the upper limit of the linear theory in
Figure 4.1, whereas the dashed line cor-
responds to the upper limit of Stokes’
second-order theory.
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H/λ = 0.000377, h/λ = 0.1
H/λ = 0.002010, h/λ = 0.1

0

2η/H

1.0

2.0

−1.0

0 2π kXπ

Figure 4.8. Free-Surface Profiles Obtained
from Stokes’ Second-Order Theory. The
reader should check the validity of the
Stokes’ second-order theory for these two
wave steepness values by consulting Fig-
ure 4.1.

resulting profiles are the curves in Figure 4.8. For both points studied in Fig-
ure 4.1, the wave height is 1.0 m. For the wave height ratio value of 0.000377,
the period is 41.2 sec and the water depth is 26.5 m. The profile for this
wave is nearly sinusoidal, as in Figure 4.7. For the larger wave height ratio
value (0.002010), the profile is nonlinear. The curve corresponding to condition
(b) clearly shows the wave corresponding to the second-order term of eq. 4.55.
The reader is encouraged to apply the conditions for (b) to Figure 4.1 to check
the validity of Stokes’ second-order theory. In addition, the reader is referred
to the book by Wiegel (1964) for comparisons of experimental and theoretical
data for these shallow-water irregular waves.

Before discussing the particle motions, it is worth noting here that we now have
a measure of the nonlinearity of water waves using the results of Stokes’ second-
order theory. That is the free-surface displacement expression of eq. 4.53. That dis-
placement expression in non-dimensional form can be plotted as a function of the
wave steepness. Mathematically, the relationship between the two non-dimensional
parameters can be written as

2ηmax

H
= 1 + f�

(
H
�

)
(4.56)

For a linear wave, fη(H/�) has a value of zero. As the wave profile becomes more
nonlinear, the value of the function increases. This measure of the nonlinearity is
illustrated in the following example, where results from eq. 4.56 are compared with
experimental data.

EXAMPLE 4.2: FREE-SURFACE DISPLACEMENT IN DEEP WATER Let us apply
eq. 4.56 to deep-water conditions, using the results of eq. 4.54 to define the func-
tion of that equation. The resulting deep-water expression is

2ηmax

H0
= 1 + �H0

2�0
(4.57)

This equation is now applied to an experiment that was conducted in the 36.6-m
wave and towing tank at the U.S. Naval Academy. That tank is 2.44 m wide and
1.52 m deep. For this experimental study, ten waves were created in two five-
wave groups. The first five waves had a frequency of 0.7 Hz and heights that
varied from 2.8 to 22.5 cm, whereas the second five had a frequency of 0.8 Hz
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Figure 4.9. Experimental and Theoretical
Non-Dimensional Crest Height as Func-
tions of the Deep-Water Wave Steepness.
The data represented by � correspond to
a wave frequency of 0.8 Hz whereas those
represented by ◦ correspond to a wave fre-
quency of 0.7 Hz. For both frequencies, the
water depth is 1.52 m. The line results from
eq. 4.57, Stokes second-order theory.

and heights that varied from 2.5 cm to 19.3 cm. The conditions for the 0.7-Hz
wave were not exactly deep water, because, according to eq. 3.36, the deep-
water wavelength is 3.19 m. Half of that value is 1.59 m, which is slightly larger
that the 1.52-m tank depth. Using the non-dimensional form of eq. 4.57, the
experimental data are presented in Figure 4.9, with the theoretical line resulting
from eq. 4.57. As can be seen in that figure, the theoretical and experimental
results agree quite well for wave steepness values below 1/17. Furthermore, the
maximum difference between the experimental data and the value of 2ηmax/H =
1.0 (from the linear theory) is 10% for steepness values of 1/17 or less. Because
of this good agreement, we can use the linear theory with some confidence for
wave steepness values up to 1/17 in deep water.

4.3 Second-Order Particle Motions

The plots in Figure 4.9 of the non-dimensional free-surface displacement predicted
by Stokes’ second-order theory show that for a given water depth, the wave crests
become high and narrow and the troughs become shallow and broad as the wave
steepness, H/�, increases. With this observation, attention is now directed to the
motions of the water particles on and beneath the free surface. In general, the two-
dimensional particle motions can be analyzed by first determining the particle veloc-
ity components, and then integrating these components over time, as is done for the
linear motions in Section 3.5. Using the velocity potential expression in eq. 4.52,
the second-order horizontal and vertical velocity components can be obtained from
the results of eqs. 2.51 and 2.52, respectively. The results are the following: In the
horizontal direction, the velocity component is

u = gH
2c

cosh[k(z + h)]
cosh(kh)

cos(kx − 
t) + 3
16

ck2 H2 cosh[2k(z + h)]

sinh4(kh)
cos[2(kx − 
t)]

(4.58)
and the vertical component is

w = gH
2c

sinh[k(z + h)]
cosh(kh)

sin(kx − 
t) + 3
16

ck2 H2 sinh[2k(z + h)]

sinh4(kh)
sin[2(kx − 
t)]

(4.59)

At first glance, it is difficult to determine the nature of the particle motions
from eqs. 4.58 and 4.59. The first terms in these respective equations are the same
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as those in eqs. 3.49 and 3.50, which result from Airy’s linear theory. Hence, as
noted previously in this chapter, the second-order effects are simply superimposed
on the linear motions of the water particles. As is done in Section 3.5, Stokes (1847)
assumed that the paths of the particles could be obtained with respect to some fixed
point (x0, z0) in the water. For the linear motions described in Chapter 3, this point
is found to be a mean point about which the particles travel.

Following the method of Stokes (1847), we replace the spacial coordinates in
eqs. 4.58 and 4.59 by

x = xo + � (4.60)

and

z = zo + � (4.61)

where both � and � are functions of time, and (xo, zo) is a fixed reference point.
Using a Maclaurin series, expand both the hyperbolic functions in � and the trigono-
metric functions in � in the resulting expressions for u and w. To the first order of �

and � , the expression for the horizontal velocity component is

u = d�

dt

= gH
2c cosh(kh)

{
cosh[k(zo + h)] cos(kxo − 
t) − k�

1!
cosh[k(zo + h)] sin(kxo − 
t)

+ k�

1!
sinh[k(zo + h)] cos(kxo − 
t) · · · ·

}

+ 3
16

ck2 H2

sinh4(kh)

{
cosh[2k(zo + h)] cos[2(kxo − 
t)]

− 2k�

1!
cosh[2k(zo + z)] sin[2(kxo − 
t)]

+ 2k�

1!
sinh[2k(zo + h)] cos[2(kxo − 
t)] · · · ·

}
(4.62)

Again, following Stokes (1847), simply replace the variables � and � in eq. 4.62
by the linear expressions of eqs. 3.53 and 3.54, respectively. Actually, in his 1847
paper Stokes only used the linear series in eq. 4.62. We shall apply the method to
both series. From an order-of-magnitude consideration, the three terms of the lin-
ear expansion and the first term of the second-order expansion shown in eq. 4.62
are retained. To the second order, the resulting approximate expression for the hor-
izontal velocity component is

u = d�

dt

� gH
2c

cosh[k(zo + h)]
cosh(kh)

cos(kxo − 
t)

+ ck2 H2

8 sinh2(kh)

{
3
2

cosh[2k(zo + h)]

sinh2(kh)
− 1

}
cos[2(kxo − 
t)]

+ ck2 H2

8
cosh[2k(zo + h)]

sinh2(kh)
(4.63)
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Figure 4.10. Experimental and Theoretical
Dimensionless Convection Velocity of the Sur-
face Particles in Deep Water as Functions of the
Deep-Water Wave Steepness. The theoretical
curve is obtained from eq. 4.66 at z0 = 0. The
frequencies and water depth are those for the
data in Figure 4.9. The data represented by ◦
correspond to a wave frequency of 0.7 Hz, and
those represented by � correspond to a wave
frequency of 0.8 Hz.

Similarly, the approximate expression for the vertical velocity component of a water
particle is

w = d�

dt

� gH
2c

sinh[k(zo + h)]
cosh(kh)

sin(kxo − 
t)

+ 3
16

ck2 H2 sinh[2k(zo + h)]

sinh4(kh)
sin[2(kxo − 
t)] (4.64)

to the same order of approximation as that of eq. 4.63.

4.4 Water Particle Convection

Comparing the approximate expressions of eqs. 4.62 and 4.63, we see that there is a
constant term in the u-expression of eq. 4.62. No such constant is in eq. 4.63. Phys-
ically, the constant term in the horizontal velocity expression represents a constant
velocity at which the water particles migrate in the direction of wave travel. This
velocity is called the convection velocity, and is expressed by

Ucon = ck2 H2

8
cosh[2k(zo + h)]

sinh2(kh)
(4.65)

Dimensionless results obtained from eq. 4.65 are presented in Figure 4.10 with
experimental data. The approximate expressions for the deep- and shallow-water
convection velocities are, respectively,

Ucon0 = c0k2
0 H2

0

4
e2k0zo = 
3

4g
H2

0 e2k0zo (4.66)

and

Ucon = cH2

8h2
(4.67)

For the case of intermediate water convection velocities, eq. 4.65 is used as shown.
The deep-water, intermediate-water, and shallow-water particle convection is
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Figure 4.11. Deep-Water, Second-Order Particle Paths in Deep Water (Not
to Scale). Compare these paths with those predicted by the linear theory in
Figure 3.11.

illustrated in Figures 4.11 through 4.13. The significance of the convection velocity
is demonstrated in the following example.

EXAMPLE 4.3: DEEP- AND SHALLOW-WATER PARTICLE CONVECTION VELOCITIES

Apply the approximations for the extremes of water depth (discussed in Sec-
tion 3.5) to eq. 4.65. As in Chapter 3, the subscript “0” indicates deep-water
properties in eq. 4.66, by convention. The results of eq. 4.66 show that the max-
imum migration for a given deep-water wave occurs on the free surface, as
expected, and as illustrated in Figure 4.11. This corresponds to zo = 0 because
zo is negative below the SWL. Furthermore, the convection velocity is seen to
be a strong function of the circular wave frequency, 
, being proportional to
the cube of the frequency. In shallow water, the convection velocity is seen
to be independent of position, from the results of eq. 4.67. That is, the particles
on the surface migrate as fast as those adjacent to the seafloor, as illustrated
in Figure 4.13. The shallow-water celerity or phase velocity, c, is a function of
depth only, from the results of eq. 3.38. The convection velocity in shallow water
is then independent of the wave frequency, according to eq. 4.67. Also from the
results of that equation, the convection velocity is seen to increase as the water
depth decreases. This depth dependence is important to engineers working in
the coastal zone, where much of coastal engineering deals with sediment trans-
port by waves.

Apply the deep-water convection velocity expression of eq. 4.66 to waves
having a 1-m height and a 4-sec period. For these waves, H/�0 = 0.040, which
is near the upper bound of the validity range of the second-order theory in
Figure 4.1. For this wave condition, the convection velocity of the particles on
the free surface is 0.0988 m/s, according to eq. 4.66. Note: The deep-water celer-
ity value is 6.24 m/s from eq. 3.36. The results in eq. 4.66 also show that the
convection of water particles decreases rapidly with the mean depth position of
the particle. Equation 4.66 is also applied to the conditions of Example 4.2 and
plotted in Figure 4.12 in non-dimensional form.

SWL

ξ = Ucon3T

h

H

c

Figure 4.12. Intermediate-Water, Second-Order Particle Paths in
Deep Water (Not to Scale). Compare these paths with those pre-
dicted by the linear theory in Figure 3.12.
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Figure 4.13. Shallow-Water, Second-Order Particle Paths in
Deep Water (Not to Scale). Compare these paths with those
predicted by the linear theory in Figure 3.13.

Return now to the discussion of the time-dependent water particle motions.
The displacement components of a particle about the position (x0, z0) is found by
integrating eqs. 4.63 and 4.64 over time to obtain

� = − H
2

cosh[k(zo + h)]
sinh(kh)

sin(kxo − 
t)

− kH2

16
1

sinh2(kh)

{
3
2

cosh[2k(zo + h)]

sinh2(kh)
− 1

}
sin[2kxo − 
t)] + Ucont (4.68)

in the horizontal direction, and

� = H
2

sinh[k(zo + h)]
sinh(kh)

cos(kxo − 
t)

+ 3
32

kH2 sinh[2k(zo + h)]

sinh4(kh)
cos[2(kxo − 
t)] (4.69)

in the vertical direction. In eq. 4.68, we see that the first two terms are sinusoidal,
whereas the last term is the convection displacement, which is linear in time. The
terms in eq. 4.69 are both sinusoidal. Hence, (x0, z0) is not a mean position of a
particle as it is in a linear wave in Section 3.5.

The deep- and shallow-water approximations of eqs. 4.68 and 4.69 are obtained
by using the extreme-value approximations of the hyperbolic functions given in Sec-
tion 3.5. The results are as follows:

CASE 1. DEEP WATER (1/2 ≤ h/λ < ∞, or π ≤ kh < ∞) In deep water, the horizontal
particle displacement expression is approximated by

�0 = − H0

2
ek0zo sin(k0xo − 
t) + 
3

4g
H2

0 e2k0zot (4.70)

where in the vertical direction, the approximate displacement expression is

�0 = H0

2
ek0zo cos(k0xo − 
t) (4.71)

Particle paths predicted by eqs. 4.70 and 4.71 are presented in Figure 4.11.

CASE 2. INTERMEDIATE WATER (1/20 ≤ h/λ < 1/2, or π/10 ≤ kh < π) In this range, the
respective expressions for � and � in eqs. 4.68 and 4.69 apply as written. Exam-
ples of the particle paths obtained by using these expressions are shown in
Figure 4.12.
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CASE 3. SHALLOW WATER (0 < h/λ < 1/20, or 0 < kh < π/10) The shallow-water
approximations of the expressions in eqs. 4.68 and 4.69 are, respectively,

� = − H
2

sin(kxo − 
t) + 3
32k

H2

h2
sin[2(kxo − 
t)] − cH2

8h2
t (4.72)

and

� = H
2

(zo + h)
h

cos(kxo − 
t) + 3
16

1
(kh)2

H2

h2
(zo + h) cos[2(kxo − 
t)]

(4.73)
Results obtained from eqs. 4.72 and 4.73 are sketched in Figure 4.13.

EXAMPLE 4.4: WAVE-INDUCED SPREADING OF A SURFACE SPILL As noted in Exam-
ple 4.3, because the celerity decreases with decreasing water depth, the hori-
zontal excursions of the water particles in shallow water increase as the wave
approaches the shoreline. This poses a problem for ocean environmental engi-
neers when contaminants, such as oil, are spilled at sea. In the absence of both
winds and currents, the spills spread slowly in deep water when compared to
their spread in shallow water, according to the results of eqs. 4.70 and 4.72,
respectively.

To illustrate, consider the migration of a thin oil layer on the surface of the
water. Let us determine the distances traveled by the oil, first on a deep-water
swell (where the respective wave height and period are 0.5 m and 7 sec), and
then on the swell in shallow water (where h/� = 1/25). We shall determine the
distance of travel over 70 sec in each case. Assuming that xo = t = 0 initially,
eq. 4.70 yields a convection distance of 0.323 m in deep water. In shallow water,
the celerity is approximately

c = �

T
�
√

gh = 25
h
T

(4.74)

from eq. 3.38. Equation 4.74 can be solved to determine the water depth where
the 7-sec wave becomes shallow. The result is

h = gT2

252
= 0.769 m (4.75)

The value of the celerity in shallow water is then 2.75 m/s. The wave height of
the 7-sec wave at this water depth is obtained from the shallow-water approxi-
mation of the shoaling coefficient expression of eq. 3.78,

KS = H
H0

�
√

1
2kh

=
√

�

4�h
= 1.41 (4.76)

The wave height in 0.769 m of water is then 1.08 m. With these values for the
celerity, water depth, and wave height, the last term of eq. 4.72 yields a distance
of 47.6 m. From these convection distances, we see that the oil spill in deep water
spreads slowly and, hence, is easy to contain. However, in shallow water the
convection distance over the same time is more than two orders of magnitude
greater than that in deep water.

This concludes the basic discussion of Stokes’ second-order wave theory. The
theory is used to determine breaking conditions later in this chapter. In the next
section, both the cnoidal and solitary wave theories are presented.
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Figure 4.14. Notation for the Cnoidal Wave Theory. The wave in the moving coordinate sys-
tem (X, S) is of permanent form.

4.5 Long Waves in Shallow Water

Lord Rayleigh (1876) extended the nonlinear method of Stokes by specifying the
forms of the series expansions of the water particle velocity components (u, w).
These expansions were then used by Korteweg and de Vries (1895) to develop a
theory for long periodic waves in shallow water, that is, where the wavelength, �, is
much greater than the water depth, h. It is also assumed by Korteweg and de Vries
that the free-surface displacement, �, is much less than the water depth. The waves
resulting from the theory were called cnoidal waves by the investigators because of
the presence of the Jacobian elliptic cosine function (cn) in the expression for the
free-surface displacement. See Abramowitz and Stegun (1965) for a discussion of
this function.

The cnoidal wave theory of Korteweg and de Vries (1895) has been the subject
of many investigations since its conception. See the papers of Wiegel (1960) and
Fenton (1979) and the book by Lighthill (1979), among others. The cnoidal theory
bridges the theoretical gap between very long, shallow-water waves and moderately
long waves in finite depths in that the respective extremes of the theory are identical
with the solitary wave theory of Boussinesq (1872) and McCowan (1891) and the
theory of Stokes (1847).

A. Cnoidal Wave Theory

Following the analysis of Lord Rayleigh (1876), we transform our (x, z) coordinate
system with its origin on the SWL to the (X, S) on the seafloor. The two systems
are related by X = x − ct and S = z + h, as sketched in Figure 4.14. The origin of
the coordinate system is then fixed below the crest of the wave, and the wave is of
permanent form. This is a slight modification of the technique used in the derivation
of Stokes’ theory in Section 4.2. In terms of the transformed coordinate system, we
represent the velocity components by rapidly convergent series of the forms

U = u − c = S0 f0 + S1 f1 + S2 f2 + · · · =
∞∑
j=0

Sj f j (4.77)
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and

W = w = S1 F1 + S2 F2 + · · · =
∞∑
j=1

Sj Fj (4.78)

where fj and Fj are functions of X. Assuming a flat, horizontal bed, the seafloor
condition where W(X, 0) = 0 is satisfied. As is the case for any incompressible
flow, the equation of continuity (eq. 2.21) must be satisfied. The combination eq.
2.21 (noting that ∂( )/∂ X = ∂( )/∂x, etc. in this application) and the expressions in
eqs. 4.77 and 4.78 yield the following relationship:

Fj = −1
j
∂ f j−1

∂ X
(4.79)

By assuming the irrotational flow condition of ∂U/∂S − ∂W/∂ X = 0, we obtain

f1 = 0 (4.80)

and, following Korteweg and de Vries (1895),

f j = 1
j
∂ Fj−1

∂ X
= − 1

j( j − 1)
∂2 f j−2

∂ X2
(4.81)

by incorporating eq. 4.79. The final forms of the velocity component expressions of
eqs. 4.77 and 4.78 are, respectively,

U = f0 − S2

2!
∂2 f0

∂ X2
+ S4

4!
∂4 f0

∂ X4
− · · · (4.82)

and

W = − S
1!

∂ f0

∂ X
+ S3

3!
∂3 f0

∂ X3
− S5

5!
∂5 f0

∂ X5
+ · · · (4.83)

The corresponding forms of the respective velocity potential and stream function
are

� =
∫

f0dX − S2

2!
∂ f0

∂ X
+ S4

4!
∂3 f0

∂ X3
− · · · (4.84)

and

	 = Sf0 − S3

3!
∂2 f0

∂ X2
+ S5

5!
∂4 f0

∂ X4
− · · · (4.85)

from the Cauchy-Riemann relationships of eqs. 2.51 and 2.52.
The expressions in eqs. 4.82 through 4.85 must satisfy the dynamic free-surface

condition. The form of that condition used here is similar to that given in eq. 4.5,
that is,

gS� + 1
2

[U2 + W2]|s�
= K (4.86)

In eq. 4.86, the position of the free surface of the water with respect to the seafloor is
denoted as S�. The velocity component expressions must also satisfy the kinematic
free-surface condition. Assuming a small free-surface curvature due to the long-
wave assumption, that condition can be expressed by

W|s�
� U|S�

∂S�

∂ X
(4.87)
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This expression is similar to the expression in eq. 4.7. In eqs. 4.82 through 4.85,
the function f0 has units of velocity. Korteweg and de Vries (1895) represent the
function by an expression similar to

f0 = −(q0 + �) (4.88)

where � (a free-surface function of X) is much less than q0. With this representation
of f0, combine the expressions in eqs. 4.82 and 4.83 with the X-derivative of eq. 4.86.
In the resulting expression, let

S� = � + � (4.89)

where � is the height of the trough of the wave above the floor, and ε (small when
compared to �) is the elevation of the free surface above the trough. These are
related to the still-water depth, h, and the free-surface displacement, �, in Fig-
ure 4.14. Note that the free-surface displacement from the SWL is �, whereas that
measured from the trough is �.

Differentiate eq. 4.86 with respect to X and combine the results with eqs. 4.82,
4.83, 4.88, and 4.89. To the first order, the resulting expression is

q0
∂�

∂ X
+ g

∂�

∂ X
= 0 (4.90)

The combination of eqs. 4.82, 4.83, 4.88, and 4.89 with eq. 4.87 yields

q0
∂�

∂ X
+ �

∂�

∂ X
= 0 (4.91)

to the first order, where � � η. The origin of η is on a horizontal line through the
trough, whereas the origin of � is on the SWL, as sketched in Figure 4.14. Equa-
tions 4.90 and 4.91 are satisfied if the first-order celerity is

q0 =
√

g� (4.92)

and the velocity function is

� = −q0

�
(η + A) (4.93)

where A is a constant of integration. Equations 4.92 and 4.93 are the first approxi-
mation of the Korteweg-de Vries long-wave theory.

The second approximation of the long-wave theory is based on the first by
assuming

f0 = −(q0 + � + ��) = −
[
q0 − q0

�
(η + A) − q0

�
B
]

(4.94)

where �� = −q0 B/�, and the function B is assumed to be small with respect to both
� and A, that is, B is a perturbation function. Following the same procedure that
leads to eqs. 4.90 and 4.91 while eliminating B, the following expression results from
the inclusion of the second-order terms:

d
dX

(
1
2
η2 + 2

3
Aη + �3

9
d2η

dX2

)
= 0 (4.95)
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where small-valued terms have been neglected. The same procedure can be fol-
lowed to determine the expression for B (that expression is presented later). Two
integrations of eq. 4.95 yield

�3

3

(
dη

dX

)2

+ η3 + 2Aη2 + 6C1η + C2 = 0 (4.96)

where C1 and C2 are constants of integration, as is � is in eq. 4.93. To determine
the C2 in eq. 4.96, we simply apply the equation at a trough where � = d�/dX = 0.
From this, we find C2 = 0. With this value, the slope of the free surface is obtained
directly from eq. 4.96, as

dη

dX
= ±

√
− 3

�3
η(η2 + 2Aη + 6C1) (4.97)

which is known as the Korteweg-de Vries equation.
There are two values resulting from the quadratic portion of eq. 4.97 for which

the slope of the free surface is zero. One of these values must correspond to the
crest, where � = H, while the other is at � = −C, where C must be determined. The
negative sign (−) in the latter is required to make the term 6C1 negative. Because ε is
never negative, the expression in eq. 4.97 would be imaginary unless 6C1 ≤ η2 + 2�η.
For this reason, we represent the quadratic portion of eq. 4.97 by

η2 + 2Aη + 6C1 = (η − H)(η + C) (4.98)

where 2A= C − H and 6C1 = −HC. The differential equation of Korteweg and de
Vries (1895), eq. 4.97, is now

dη

dX
= ±

√
3
�3

η(H − η)(C + η) (4.99)

With some manipulation, the integration of eq. 4.99 results in an expression
for the free-surface displacement involving the Jacobian elliptic (cosine) function,
cn(). See Abramowitz and Stegun (1965) for a discussion of this function. The limits
of integration are based on the assumption that the origin of the variable X corre-
sponds to a wave crest, that is, η = H at X = 0. The resulting free-surface expression
is then

η = h − � + η = H

[
cn2

(√
3(H + C)

4�3
X

)]
; M = H

H + C
(4.100)

where the wave height is H = �max, and M is the parameter of the function. For those
interested, the integration of eq. 4.99 is performed by first replacing the variable η

by v2. The resulting integral is found on page 596 of the book edited by Abramowitz
and Stegun (1965). A plot of η/H is presented in Figure 4.15 for three values of M,
after Milne-Thomson (1950).

The wavelength, �, can be determined from the results in eq. 4.100 by applying
that equation to the trough located half a wavelength away from the origin of X.
At this point, the value of cn2 must be zero, and the corresponding value of the
argument of the function is K, that is, K is the value of the argument of cn() at the
first zero-crossing. Mathematically, cn2(K) = 0. In addition, K is also the complete
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Figure 4.15. Free-Surface Profiles Re-
sulting from the Cnoidal Wave The-
ory. These dimensionless profiles are
obtained from eq. 4.100. As shown,
the limiting values of the parameter M
correspond to the linear wave theory
(M= 0) and the solitary theory (M=1).

elliptic function of the first kind. See Abramowitz and Stegun (1965) for a discussion
of this function. The expression for the wavelength of the cnoidal wave is then

� = 4�

√
�3

3(H + C)
= 4�

√
M�3

3H
(4.101)

Again, consider the respective velocity component expressions of eqs. 4.77 and 4.78.
The final expressions for these velocity components must first be determined. To do
this, we follow the derivation of eq. 4.95 except, in this case, we retain the perturba-
tion function B of eq. 4.94. The resulting expression for this function is

B = −η2

4�
+ �2

3
d2η

dX2
(4.102)

where, from the resets of eq. 4.95,

d2η

dX2
= − 3

2�3
[3η2 − 2(H − C)η − CH] (4.103)

using the notation of eq. 4.98. With these results, the first-order velocity component
expressions of eqs. 4.77 and 4.78 are, respectively,

U = u − c � −
√

g�

[
1 − 1

2�
(C − H) − CH

2�2
− (� + H − C)

η

�2

]
(4.104)

and, noting that d�/dX is given in eq. 4.99,

W = w = −S
dη

dX

√
g
�

(4.105)

The expression for the time-dependent horizontal velocity component of the
water particle obtained from eq. 4.104 is

u = c −
√

g�

[
1 − (C − H)

2�
− CH

2�2
− (� + H − C)

η

�2

]
(4.106)

This velocity is assumed to be zero at the nodes. That is, at the end of a trough
and the beginning of the next crest where the free surface crosses the SWL, the
horizontal particle velocity is assumed to be zero. By applying this condition to
the expression in eq. 4.110, the expression for the wave celerity is obtained. That
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Figure 4.16. Notation for Water Particle Displace-
ment from the Reference Point (x0, S0) in a Cnoidal
Wave. The time-dependent displacement compo-
nents are with respect to the inertial frame of refer-
ence (x, z) because the wave is of permanent form
in the relative frame of reference (X, S).

expression is

c =
√

g�

[
1 − (C − H)

2�
− CH

2�2
− (� + H − C)

η0

�2

]
(4.107)

where η0 is the vertical distance between the trough and the SWL. The combination
of eqs. 4.106 and 4.107 yields the following expression for the horizontal particle
velocity:

u =
√

g
�

(� + H − C)
�

(η − η0) (4.108)

The expression for η0 is found from that for the volume of water displaced by
the free surface. That volume is

Vη =
�∫

0

ηdX =
[

(H + C)
E(2K | M)

2K
− C

]
� = η0� (4.109)

where E() is a complete elliptic integral of the second kind. From Abramowitz and
Stegun (1965), we obtain the identity E(2K) = 2E(K). The vertical offset of the
trough from the SWL obtained from eq. 4.109 is then

η0 = (H + C)
E(K)

K
− C = h − � (4.110)

Referring to Figure 4.16 for notation, the expressions for the components of the
particle displacement vector from a reference point (x0, S0) are found by integrat-
ing the u- and w-expressions over time from t = 0 to some time t. The horizontal
displacement is found by first replacing the relative coordinate X by x0 − ct in
eq. 4.100. Without a loss in generality, the reference value of x0 is set to zero. When
t = 0, a wave crest is above (0, S0). Combine the resulting expression with that of
eq. 4.110 in eq. 4.108, and integrate the result to obtain

� =
t∫

0

udt =
√

4gH
3M

(� + H − C)
c

{
E
(

2K
T

t
)

−
[
1 − M

(
1 − η0

H

)] 2K
T

t
}

(4.111)

where T is the wave period. From this equation, we can see that there is a convection
in the x-direction over time. In a similar manner, the vertical displacement from the
point (0, S0) is obtained from integrating eq. 4.105 over time, again, noting that a
crest is initially over the point. The resulting expression is

� =
t∫

0

wdt =
√

g
�

H
c

[
cn2
(

2K
t
T

)
− 1
]

S0 (4.112)
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One final condition is imposed on the fluid motion in the absolute coordinate
system. That condition is that the net change in momentum of the fluid within the
control volume beneath a single wave must be zero. Mathematically, that condition
leads to the following relationship:

�∫
0




�+η∫
0

uds


 dX = ch� −

√
g�3�

[
1 − C − H

2�

(
1 + ∨η

��

)]
= 0 (4.113)

The term ∨η for the two-dimensional flow represents the volume per unit crest
width. From this result, the following expression for the celerity is obtained by
neglecting terms with the coefficient 1/�2:

c = �

T
�
√

g�3

h

[
1 − (C − H)

2�

](
1 + ∨η

��

)
(4.114)

In his discussion of the cnoidal theory, Lamb (1945) states that in the four basic
equations of the theory (the two in eq. 4.100 and those in eqs. 4.101 and 4.110), there
are six unknowns. Those unknowns are C, H, K, M, �, and �, and the water depth,
h, is known. By specifying any two of the unknowns, the others can be determined.
Theoretical physical oceanographers and applied mathematicians usually choose a
value of M that in turn determines a value of K and E(K). The values of the physi-
cal wave properties are then determined. This method is not satisfactory for design
engineering because the design conditions at a site must be specified. That is, at a
site the values of h, H, and T are known. In the sections that follow, we shall use
more practical forms of the equations of the theory and illustrate their use.

B. Application of the Cnoidal Theory

Wiegel (1960) presents a practical method of using the cnoidal wave theory along
with parametric plots that are useful to engineers. In what follows, Wiegel’s work is
summarized and an example is given.

The expression in eq. 4.110 is rearranged to obtain an expression for C. The
resulting expression is then equated to the C-expression resulting from the second
expression in eq. 4.100. The result is

C = (h − �) K − HE(K)
E(K) − K

= H
M

(1 − M) (4.115)

From the last equality, we can obtain an expression for the vertical position of the
wave trough with respect to the seafloor, that is,

� = h −
(

E(K)
K

+ M − 1
)

H
M

(4.116)

In addition, Wiegel (1960) assumes that � � h except in eq. 4.116. With this
approximation applied to eq. 4.101, the following expression for the wavelength is
obtained:

� � 4K

√
Mh3

3H
(4.117)
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Equation 4.117 can be rearranged in the form of the Ursell number, defined in the
caption of Figure 4.1:

UR ≡ H�2

2h3
= 8

3
K2M (4.118)

Wiegel (1960) then derives approximate expressions for the celerity and period,
which are, respectively,

c �
√

gh
[

1 + H
hM

(
1
2

− E(K)
K

)]
(4.119)

from eq. 4.114, and

T = �

c
�

4K

√
Mh2

3gH

1 + H
hM

(
1
2

− E(K)
K

) (4.120)

using the results of eqs. 4.117 and 4.119. Again, we note that the values of the depth,
wave height, and wave period at a site are known. Hence, the expression in eq.
4.120 is used to determine the value of the parameter M. This parametric value
is then used to determine the complete elliptic integrals of the first and second
kinds, that is, K(M) and E(M), respectively. Because the expression in eq. 4.120
is transcendental (the parameter cannot be separated), the value of the parame-
ter must be obtained numerically. As in the solution of the wavelength in Example
3.3, the method of successive approximations can be used to obtain the numerical
values.

Finally, the free-surface displacement from the SWL can be written in terms of
both the absolute coordinate system and time by replacing the relative coordinate,
X, by x – ct in eq. 4.100. The result is

� = � − h + η = � − h + cn2
[

2K
�

(x − ct)
]

H (4.121)

Again, we find in the equations of the theory the complete elliptic integrals of
the first kind, K(M), and the second kind, E(M). Abramowitz and Stegun (1965)
present polynomial approximations of these functions that can be used to facilitate
the solution of M. Those respective approximations are the following:

K(M) ≡ K = 1.38729 + 0.11197(1 − M) + 0.07252(1 − M)2

+ [0.5 + 0.12134(1 − M) + 0.02887(1 − M)2]ln
[

1
1 − M

]
+ �K(M) (4.122)

where |��(M)| ≤ 3 × 10−5, and

E(K) ≡ E � 1 + 0.46301(1 − M) + 0.10778(1 − M)2

+ [0.24527(1 − M) + 0.04124(1 − M)2]ln
[

1
1 − M

]
+ �E(M) (4.123)

where |�E(M)| ≤ 4 × 10−5. See Figure 4.17 for plots of the functions in eqs. 4.122
and 4.123.
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Figure 4.17. Complete Elliptic Integrals of the
First Kind (K) and the Second Kind (E) as
Functions of the Parameter M. The curves
result from eqs. 4.122 and 4.123, respectively.

The method of solution using Wiegel’s approach is as follows:

(a) Specify the conditions at the site, that is, h, H, and T.
(b) Determine the parameter M for the conditions in (a) by solving eqs. 4.120, 4.122,

and 4.123 simultaneously using a numerical method of solution. See Exam-
ple 3.3 for the method of successive approximations.

(c) Determine the values of the complete elliptic integrals, K and E(K), from
eqs. 4.122 and 4.123, respectively.

(d) Determine the wavelength, �, from eq. 4.117. Using this value, determine the
Ursell number, UR, from eq. 4.118. The value of the Ursell number can be used
to check the validity of the application of the theory with the site conditions in
Figure 4.1.

(e) Calculate the values of �, c, and C from the respective expressions in eqs. 4.116,
4.119, and 4.115.

(f) Determine the expression for the free-surface displacement from eq. 4.121 as a
function of time and space.

(g) Determine the particle velocity components (u, w) from eqs. 4.106 and 4.105
and displacement components (� , �) from eqs. 4.111 and 4.112.

To illustrate, the following example is presented.

EXAMPLE 4.5: APPLICATION OF THE CNOIDAL THEORY At a site on the coast of
Southern California, a fixed wave staff in 10 m of water records an average
wave height of 1.0 m and an average wave period of 13 sec. Using Wiegel’s
(1960) approximations of the cnoidal wave theory equations, we shall calculate
the wave properties at the staff and compare our results with those obtained
from the linear wave theory of Chapter 3.

For the site conditions of h = 10 m, H = 1.0 m, and T = 13 sec, the simul-
taneous solution of eqs. 4.120, 4.122, and 4.123 yields M � 0.7. This value in
eqs. 4.122 and 4.123, respectively, yields K � 2.076 and E[K(M)] � 1.242. Using
these values, the wavelength from eq. 4.117 is � = 127 m and the celerity from
eq. 4.120 is c = 9.76 m/s. From linear theory, the wavelength and celerity val-
ues are 124 m and 9.54 m/s, respectively, using the results of eq. 3.31. The value
of the deep-water wavelength according to linear theory is �0 = 264 m. From
eqs. 4.116 and 4.115, respectively, we obtain � = 9.57 m and C = 0.429 m. The
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trough of the wave is �0 = h − � = 0.43 m below the SWL. Note that for a linear
wave having a 1.0-m height, the value of �0 is 0.5 m. The maximum horizontal
velocity of the fluid particle is umax = 0.877 m/s, and the corresponding Ursell
number for the conditions is UR = 8.06. Referring to Figure 4.1, for h/�0 =
0.0379 and H/�0 = 0.00379 we see that the cnoidal theory applied to the stated
site conditions lies in the validity range of the second-order Stokes theory.

Before concluding this section, it must be stated that only the first-order cnoidal
theory is presented herein. Korteweg and de Vries (1895) present higher-order ver-
sions of the theory in their paper. These higher-order theories produce very inter-
esting results, including asymmetric wave profiles. The original paper is most inter-
esting, and is recommended to the reader.

In the next section, we apply the cnoidal wave theory to extremely shallow
water. The approximations in this application yield the same results as the soli-
tary wave theory, which is used extensively in coastal engineering problems. For
a derivation of the solitary theory, see the paper by McCowan (1891).

C. The Solitary Wave

As mentioned in the introductory paragraphs of this chapter, J. Scott Russell (1838,
1845, 1881), a naval architect, reported that he was able to observe a “wave of trans-
lation” or a “solitary wave” while studying the motions of a towed barge in a canal.
According to Russell (1881), his work on this type of wave was conducted in the
years of 1832 and 1833. Russell states that his work was a result of an earlier obser-
vation of the phenomenon by a William Houston, a canal boat owner and operator
on the Glasgow and Ardrossan Canal. This wave was observed to have unusual
properties. First, it was a one-time event. That is, when a fast-moving, horse-drawn
barge was suddenly accelerated (or brought to rest) in a canal, a single crest (or
trough) resulted that was totally above (or below) the SWL. Second, the form of the
free surface depended on both the volume of water displaced by the barge motion
and the water depth.

According to McCowan (1891), “the first sound approximate theory of the wave
was given by Boussinesq in 1871,” and was able to predict the wave phenomena
observed by Russell. However, McCowan (1891) is credited with a form of the soli-
tary theory that is used even today. In this section, we shall use the shallow-water
approximations of the first-order cnoidal theory of Korteweg and de Vries (1895) to
obtain the solitary wave equations.

We begin our analysis by noting that a solitary wave is, by definition, one hav-
ing both an infinite period and an infinite wavelength. The expression for the wave-
length from the cnoidal theory is in eq. 4.101. For that expression to be infinite, the
parameter M must be 1. This parametric value results in an infinite value of K from
eq. 4.122, a value of unity for E from eq. 4.123, a zero value of C from eq. 4.100,
and the equality � = h from eq. 4.116. This latter result is the same as �0 = 0 in
eq. 4.110, indicating that the free surface is entirely above (or below) the SWL.
Hence, by passing to the limit as M → 1 in eq. 4.100, we obtain the following expres-
sion for the free-surface displacement of a solitary wave:

lim
M→1

(η) = � = (H) lim
M→1

{
cn2

[√
3H
4�3

(x − ct)

]}
= (H)sech2

[√
3H
4h3

(x − ct)

]

(4.124)
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In addition to this result, the celerity expression obtained from eq. 4.107 is

c =
√

gh
(

1 + H
2h

)
�
√

g(h + H) (4.125)

The expressions in eqs. 4.124 and 4.125 are the same as those derived by Boussinesq
(1872).

The particle velocity components are obtained from eq. 4.108 for u, and from
eq. 4.105 for w. The resulting expressions are

u =
√

g
h

(
1 + H

h

)
η (4.126)

and

w = −
√

g
h

(z + h)
dη

dX
(4.127)

respectively. The corresponding particle displacements from point (x0, S0) over time
are

� =
t∫

0

udt =
√

4
3

H(h + H) tanh

(√
3H
4h3

ct

)
(4.128)

and

� =
t∫

0

wdt = −
√

H2

h(h + H)

[
tanh2

(√
3H
4h3

ct

)]
S0 (4.129)

from eqs. 4.111 and 4.112, respectively. From the results of eq. 4.128, according to
both the cnoidal and solitary theories, the horizontal displacements of the parti-
cles are independent of their vertical positions. Also from eq. 4.128, the horizontal
displacement from x0 = 0 asymptotically approaches

√
[4H(h + H)/3] as t → ∞.

Similarly, from eq. 4.129, the vertical downward displacement from S0 approaches√
[H2/h(h + H)]S0.

To obtain an idea of the accuracy of the displacement components described by
eqs. 4.128 and 4.129 for a solitary wave, the experimental data of Daily and Stephan
(1952) are used for comparison. The experimental and theoretical results are pre-
sented in Figure 4.18 for S0/h � 0.36, 0.98, and 1.35, where H/h � 0.51 and h =
7.9 cm. As can be seen in Figure 4.18, the agreement is excellent for the lower
values of S0/h, and is acceptable for the largest value. Daily and Stephan (1952)
also present celerity data. Some of those data are presented in Figure 4.19 with
the shallow-water linear expression of c obtained from eq. 3.38 and the exact and
approximate celerity expressions of eq. 4.125.

Because of the scales used in that figure, the spread in the data is somewhat
exaggerated. Actually, the two theoretical curves obtained from the solitary and the
experimental data differ by no more than 5% for H/h ≤ 1.0.

EXAMPLE 4.6: APPLICATION OF THE SOLITARY THEORY Nearer the shoreline than
the site of Example 4.5, a wave staff is located in 2 m of water. It records a wave
height of 1.0 m and a period of 15 sec. The equality of eq. 4.125 yields a celerity
value of 5.54 m/s, whereas the shallow-water approximation of the linear the-
ory yields 4.43 m/s. The maximum horizontal particle velocity at the crest of
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Figure 4.18. Theoretical and Experimen-
tal Particle Paths Beneath a Solitary
Wave. The theoretical curves result from
the application of eqs. 4.128 and 4.129,
whereas the experimental data (•) are
from Daily and Stephan (1952).

the wave is 3.32 m/s from eq. 4.126. Hence, the maximum particle velocity is
approximately 60% of the celerity. The Ursell (1953) parameter,

UR = H�2

2h3
= Hc2T2

2h3
(4.130)

as defined in Figure 4.1, has a value of 4.32 for the conditions at this near-shore
site. Note that the wavelength in this expression is replaced by the product of the
celerity and period because, for a solitary wave, the wavelength is theoretically
infinite. That product gives a wavelength of 83.1 m. Hence, the solitary theory
yields approximate results for extremely shallow-water wave properties.

Munk (1949) applied the solitary theory to waves in the surf zone region. In his
paper, an expression for an effective wavelength for the solitary wave is introduced.
The Munk solitary wavelength expression is presented in the next section, which is

0.0 1.0
0.0

1.5

H
h

c
gh

(1)(2)(3)(4) (5)

Figure 4.19. Theoretical and Experimental Celerity
Ratios for the Solitary Wave. The solid line results
from the equality in eq. 4.125, whereas the dashed
line results from the approximate expression in that
equation. The experimental data (•) are from Daily
and Stephan (1952). The numbered values of H/h
are the breaking limits of (1) Boussinesq (1872), (2)
McCowan (1891), (3) McCowan (1894), (4) Lenau
(1966), and (5) Miche (1944).
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devoted to breaking waves. The reader should note that the limiting condition for
the Stokes, cnoidal, and solitary wave theories is that of breaking.

4.6 Breaking Waves

Our interest is in the waves at the seaward boundary of the surf zone. The surf zone
for a beach is defined as the region between the outermost break to the position of
the uppermost runup. The runup is defined as the highest vertical position (above
the SWL) attained by water on a beach. The surf zone is discussed in more detail in
later chapters. Munk (1949) summarizes observations made by himself and others
concerning the abilities of the various wave theories (Airy’s linear theory, Stokes’
expansion theory, and the solitary theory) to predict wave properties near the surf
zone. His comments, based on comparisons of theoretical results and field and lab-
oratory data, are as follows: (a) The wave height of a wave approaching a beach is
considerably under-predicted by the linear theory. (b) The Stokes series converges
“more and more slowly as one approaches the breaker points.” (c) “As waves travel
into water of depth less than, say, three times the wave height, the previously flat
crests ‘hump’ into narrow crests separated by long flat troughs, and the character
of these isolated crests scarcely depends on the distance (�) between crests . . . ,” as
is approximated by the solitary theory. From these observations, Munk (1949) con-
cludes that the solitary theory is the most appropriate for waves near the surf zone.

For specific given wave period and water depth values, the highest wave is that
which is breaking. The breaking condition is defined as that for which the horizontal
particle velocity at the crest equals the celerity of the wave. Mathematically, the
breaking condition is

ucrest ≡ uc = c (4.131)

As Munk (1949) states, wave mechanicians observed that when this condition is
met, the wave crest is pointed, as sketched in Figure 3.1e. From this observation,
the linear wave theory cannot be used to accurately determine the properties of a
breaking wave because the free-surface profile of a linear wave is always sinusoidal,
as sketched in Figure 3.1c. Hence, we must look to the nonlinear theories to describe
breaking waves.

In the following sections, the analyses of breaking waves in deep water and in
water of finite depth are presented. The breaking-wave analyses presented are those
using the Stokes theory, Miche’s formula, and the solitary theory.

A. Stokes’ Deep-Water Analysis

In the collection of his papers, Stokes (1880) observes that the crest of a breaking
wave is pointed, that is, there is a discontinuity in the first derivative of the profile
at the break. The tangent lines of the weather (up-wave) and leeward (down-wave)
sides of the free surface then meet at the crest and form an angle �s, as sketched in
Figure 4.20. To determine that angle, Stokes outlines a procedure which is as fol-
lows: Begin by placing the origin of a polar coordinate system at the breaking crest,
as is done in Figure 4.20. Assuming irrotational flow, the equation of continuity is
Laplace’s equation (eq. 3.8), which for the polar coordinate system is

∂2�

∂ R2
+ 1

R
∂�

∂ R
+ 1

R2

∂2�

∂�2
= 0 (4.132)
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Figure 4.20. Breaking Crest Profile Pre-
dicted by Stokes (1880). This profile
did not result from Stokes’ original
wave analysis, which was published in
1847. The value of the crest angle for
the breaking wave was subsequently
obtained by Michell (1893) and by
Wilton (1913).

where � is the velocity potential, R is the radial coordinate, and � is the angle from
the negative vertical direction. A solution of eq. 4.132 for the velocity potential is

� = Cn Rn sin(n�) (4.133)

where Cn is a constant. The corresponding expression for the stream function is
also required. To obtain this expression, the Cauchy-Riemann relationships of eqs.
2.58 and 2.59 are used. The expression for the stream function resulting from the
combination of these equations and eq. 4.133 is

	 = −Cn Rn cos(n�) (4.134)

The velocity components obtained from this function are

vR = ∂�

∂R
� Cn Rn−1 sin(n�) (4.135)

and

v� = 1
R

∂�

∂�
� CnnRn−1 sin(n�) (4.136)

The expression for the velocity of water particles near the crest is then

V =
√

vR
2 + v2

� = CnnRn−1 (4.137)

From this result, we see that the magnitude of the particle velocity is independent
of the direction in the crest region, although the velocity components do vary with
the angle.

The dynamic free-surface condition applied near the crest is expressed by

g� + 1
2

V2 = K = c2

2
(4.138)

which is similar to the expression in eq. 4.5. The relationship between K and c is
given in eq. 4.12. At the crest, V = 0. Hence, the expression in eq. 4.138 becomes

�max = c2

2g
(4.139)

From the sketch in Figure 4.20, the free-surface displacement near the crest can be
approximately represented by

� = �max − Rcos(�s) = c2

2g
− Rcos(�s) (4.140)
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where the subscript s indicates at the free surface. At any point on the free surface
near the crest, the combination of eqs. 4.137 through 4.140 yields

− gRcos(�s) + 1
2

C2
nn2 R2(n−1) = 0 (4.141)

This equation is valid if n = 3/2. In addition, for the fixed wave form, the stream
function at the free surface must be equal to zero. By setting the expression in eq.
4.134 equal to zero and letting n = 3/2 and � = �s, the following is obtained:

3
2

�s = �

2
(4.142)

The half-angle of the crest is then

�s = ±�

3
(±60◦) (4.143)

From this result, the tangents to the free surface at the crest are separated by an
angle of 120◦. This angular value was subsequently obtained by both Michell (1893)
and Wilton (1913). McCowan (1894) theoretically demonstrates that the crest angle
for a breaking wave in shallow water is also 120◦.

The analyses of Stokes (1880) presented in this section and that presented in
Section 4.2 are not the same, which should be obvious to the reader. The second-
order theory of Stokes (1847) does not predict a pointed crest of a breaking wave
when the breaking condition of eq. 4.131 is applied to the analysis. Higher-order
approximations of Stokes do approach a sharp breaking crest. Penny and Price
(1952) demonstrate this fact when applying the fifth-order theory to a deep-water
breaking wave.

Values of the wave steepness (H0/�0)b of a deep-water breaking wave were
obtained by Michell (1893) and Wilton (1913). Michell’s value, the more widely
accepted, is

H0

�0

∣∣∣∣
b

= 0.142455 · · · � 1
7

(4.144)

Later in this chapter, the profiles of deep-water breaking waves obtained from
Stokes’ (1847) second-order and fifth-order theories will be compared with that
obtained using Michell’s (1893) complex variable theory.

B. Miche’s Formula: Breaking Waves in Waters of Finite Depth

To gain an insight into how the breaking wave steepness changes with water depth,
we first apply the breaking condition of eq. 4.131 to the linear wave theory of Chap-
ter 3. That is, by combining eq. 4.131 with the expressions for the celerity in eq. 4.33
and the horizontal component of the particle velocity of eq. 3.49 (the latter applied
at a crest), the following relationship results:

cb = Hb


2
1

tanh(kbhb)
= Cb

Hb

T
1

tanh(kbhb)
= �b

T
(4.145)

where, to generalize the formula, the proportionality constant Cb is introduced.
The subscript “b” is used to indicate the breaking condition. The last equality of
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eq. 4.145 can be rearranged to obtain an expression for the breaking wave steep-
ness, that is,

Hb

�b
= 1

Cb
tanh(kbhb) (4.146a)

In deep water, the hyperbolic tangent approaches unity, and the constant must be
equal to the inverse of the deep-water breaking wave steepness. Eq. 4.146a can then
be written as

Hb

�b
= H0

�0

∣∣∣∣
b

tanh(kbhb) (4.146b)

Using the deep-water wave steepness value of Michell (1893) in eq. 4.144, the
expression in eq. 4.146 can be approximated by

Hb

�b
= 1

7
tanh(kbhb) (4.147)

This expression of the breaking steepness is called Miche’s formula, and is an
approximation of the expression found in his 1944 paper. Miche actually presents a
coefficient value of 0.140 in his paper. The difference in this value and the 1/7
approximation is off by 2%. When applied to deep water, we see that the result-
ing approximation is identical with that of eq. 4.144. Hence, according to eq. 4.147
the wave steepness is maximum in deep water. In shallow water, eq. 4.147 is approx-
imately

Hb

�b
� 2�hb

7�b
(4.148)

From this expression, we obtain the following shallow-water ratio of wave height-
to-water depth:

Hb

hb
� 2�

7
= 0.897 · · · � 0.9 (4.149)

This value has been found to agree reasonably well with experimental data for waves
breaking over horizontal beds. In engineering practice, it is a good “field equation.”
Galvin (1972), a coastal engineer who has devoted much of his professional career
to waves in the coastal zone, carries the approximation of eq. 4.149 further when
he states “as a first approximation, the wave breaks when it reaches a depth equal
to the height.” The differences in observed and theoretically predicted breaking
conditions and wave properties are discussed later.

EXAMPLE 4.7: THEORETICAL, DEEP-WATER BREAKING WAVE PROFILES In this
example, the free-surface profiles obtained from Stokes’ (1847) second-order
theory and from Michell’s (1893) theory are compared. First, non-dimension-
alize the second-order expression of Stokes in eq. 4.54 by dividing through
by the deep-water wavelength, �0. Then apply Michell’s deep-water breaking
steepness value of eq. 4.144 to the resulting expression. The result is

�0

�0
|b = 1

2
H0

�0
|b cos(k0 X) + �

4

(
H0

�0
|b
)2

cos(2k0 X) (4.150)

where the coordinate X is defined by

X = x − ct (4.151)
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Figure 4.21. Deep-Water Breaking-Wave Profiles Predicted by the Theories of Stokes (1847)
and Michell (1893). Only the Michell profile predicts a breaking crest angle of 120◦. Michell’s
breaking-wave steepness value of (H0/�0)b = 0.142 is used for both of the Stokes profiles.
Both of the Stokes profiles are horizontal at their crests.

as illustrated in Figure 4.16. Apply Michell’s deep-water breaking steepness
value, H0/�0|b = 0.142, to the expression in eq. 4.150. The result is plotted
in Figure 4.21, along with results obtained from both the fifth-order theory of
Stokes (1847) and Michell’s (1893) theory. As previously mentioned, Michell’s
theory predicts a breaking crest angle of 120◦, as first predicted by Stokes (1880)
and later by Wilton (1913).

The reader can see that the results of Stokes’ second-order and fifth-order
theories both have zero slopes at the crests, whereas the Michell profile is
pointed. The fifth-order theory, discussed by Penny and Price (1952), more
closely approximates the Michell profile than does the second-order theory, as
expected.

C. Breaking Solitary Waves

When the breaking condition of eq. 4.131 is applied to a solitary wave, the ratio
of the breaking wave height-to-water depth value is somewhat different than that
of eq. 4.149, as is shown in the following analysis. To apply the breaking condition
(ucrest = c), equate the expression of eq. 4.126 applied at a wave crest (where η =
Hb) to the celerity expression of eq. 4.125. The resulting wave height-to-water depth
value is

Hb

hb
= 0.780776 · · · � 0.781 (4.152)

A comparison of this value with that of eq. 4.149 shows a difference of slightly
more than 15%. Galvin (1972) points out that the various analyses of solitary waves
from that of Boussinesq (1872) to Lenau’s (1966) analysis have yielded values of this
ratio varying from a low value of 0.73 to a high of 1.03. Although the value of 0.9 in
eq. 4.149 is a good field value, McCowan’s (1894) value of 0.78 has been adopted by
the coastal engineering community for waves breaking in shallow water.

The expression from which the profile of a breaking solitary wave is determined
is found by combining eqs. 4.124 and 4.149. The result of that combination, non-
dimensionalized by dividing through by the breaking wave height, is

�b

Hb
= sech2



√

3
4

(
Hb

hb

)3 X
Hb


 = sech2

(
0.597

X
Hb

)
(4.153)

The free-surface profile obtained from this expression is presented in Figure 4.22,
with the solitary wave profiles corresponding to H/h = 0.1 and 0.5. From the results
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Figure 4.22. Solitary Wave Profiles. The profiles are predicted by eq. 4.124 for four non-
breaking waves (H/h < 0.78) and one breaking wave (H/h = 0.78) from Michell’s equation,
eq. 4.153. The reader should note that all of the profiles are horizontal at the crest.

in the figure, one sees that there are dramatic changes in the profiles as the wave
height-to-depth ratio is increased.

The expression for the breaking height-to-depth ratio in eq. 4.152 shows no
dependence on the wave properties prior to the break. To make the solitary the-
ory more practical, Munk (1949) derives a relationship between the breaking height
and the deep-water wave steepness by using a modified solitary theory. The modifi-
cation is accomplished by introducing an effective wave period that is based on both
the displaced water volume of a solitary wave and the energy-flux conservation of
the wave.

The displaced volume of water of per crest width of a solitary wave between
points ±x on either side of the crest (at time t = 0), is found from the integration of
eq. 4.124. The result is

Q′ =
x∫

−x

�dx = 2

x∫
0

�dx = 4h2

√
1
3

(
H
h

+ �

h

)
(4.154)

where the free-surface displacement, �(x), is given in eq. 4.124. We note that the bed
is assumed to be horizontal so that the wave profile is symmetric about the crest. The
displaced volume over the entire solitary wave is obtained from eq. 4.154 by passing
to the limit as x → ∞. This volume is

Q = 4h2

√
H
3h

(4.155)

Following Munk (1949), we find that Q′/Q � 0.98 over the length defined by −2.5 ≤
x/h ≤ 2.5 when H/h = 0.5. That is, approximately 98% of the displaced volume is
found to be in the near-region of the crest.

According to Munk (1949), the energy of a solitary wave is approximately
divided equally between potential energy and kinetic energy. The energy of the soli-
tary wave per crest width over the length defined by ±x is

E′ = 4
3

�gh3 H
h

(
2 + �

H

)√1
3

(
H
h

− �

h

)
(4.156)

The total energy per crest length of a solitary wave is found by passing to the limit
as x → ∞, where � → 0. The resulting total energy expression is

E′ = lim
X→∞

E′ = 8
3

�gh3

√
1
3

(
H
h

)3

(4.157)
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Munk (1949) finds that E′/E′ � 0.98 over the length defined by −2.1 ≤ x/h ≤ 2.1
when H/h = 0.5. As is the case for the displaced volume, Munk concludes that most
of the energy of the solitary wave is in the near-region of the crest.

The conclusions concerning the concentrations of both the displaced volume
and the energy of a solitary wave lead Munk (1949) to conclude that an effec-
tive wavelength (�eff) can be introduced for the solitary wave. Munk states that
“the assumption of a single solitary wave is fulfilled to a high degree of accuracy
if the actual wave length (�) of the waves exceeds the effective wave length . . . ”
Applying this wavelength concept to a shallow-water breaking wave, the effective
wavelength is

�eff |b =
√

ghbTeff |b (4.158)

where the effective wave period is

Teff |b = 1.17
√

hb = 1.32
√

Hb (4.159)

This period expression is a limiting case of the effective-period expression derived
by Bagnold (1947), which in turn was based on the theory of McCowan (1894).
These effective properties are used simply to establish lower limits for the use of
the solitary theory.

Following Munk (1949), the breaking solitary wave height expression is found
by assuming that the energy flux is conserved between orthogonals as the wave
purely shoals, as is discussed in Section 3.7 for linear waves. Assuming that the wave
period is invariant with position, the conservation of the energy flux per crest width
is expressed by

cg0 E′
0 = c0

2
E′

0 = c0

2

{
1
8

�gH2
0 �0

}
= cbE′

b (4.160)

where the expression for the energy at the shallow-water break is found by applying
the energy expression of eq. 4.157 at hb. The resulting breaking wave height expres-
sion is

Hb = H0

3.3
(

H0

�0

)1/3
(4.161)

Results obtained from this equation are plotted in Figure 4.23 in non-dimensional
form. Munk (1949) plots this curve with field data, and shows that the curve bisects
the scatter of the measured data over the range of the deep-water steepness shown
in Figure 4.23. For H0/�0 > 0.02, Munk shows that the linear theory of Airy yields
satisfactory results.

EXAMPLE 4.8: BREAKING HEIGHT OF A SHOALING SOLITARY WAVE A deep-water
wave having a wave height of 1 m and a period of 8 sec shoals without
refraction on a straight, parallel-contoured beach. From both the linear and
Stokes second-order theories, the deep-water wavelength is approximately �0 �
g T2/2� � 100 m. The deep-water wave steepness is then H0/�0 � 0.01. From
eq. 4.161, the breaking wave height is approximately 1.99 m. From eq. 4.152,
this wave breaks in a water depth of approximately 2.52 m.

A final note: For the free-surface displacement expression in eq. 4.124, the value
of the derivative of � with respect to X is zero when applied to a crest. Because this
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Figure 4.23. Breaking Wave Height Ratio as a Function
of the Deep-Water Steepness for a Solitary Wave. From
eq. 4.161.

is true for any value of the height-to-depth ratios up to and including the breaking
value, the angle for a breaking solitary wave crest angle is also 0◦.

4.7 Summary

In this chapter, three classical nonlinear theories are outlined and discussed.
Although these theories were formulated in the nineteenth and early twentieth cen-
turies, they are used today by a number of oceanographers and ocean engineers
because of both their elegance and applicability under specific conditions. The ana-
lytical accomplishments of Stokes, Rayleigh, Korteweg, de Vries, Michell, and the
other renaissance wave mechanicians of that time period are truly extraordinary.

There have been numerous studies of nonlinear waves in the twentieth cen-
tury, the list of these being far too large to present here. By following the thought
processes of the early wave analysts, modern investigators have both extended and
expanded the early theories. Some of the more recent studies include the following:

a. Stokes Wave Theory: Bhattacharyya (1995) discusses two methods used in deriv-
ing the fifth-order theory.

b. Cnoidal Wave Theory: Yamaguchi (1992) reviews the studies of cnoidal theory
dating back to 1960. The application of the Korteweg-de Vries (1895) equation
to transient, axisymmetric waves is presented by Khangaonkar and Le Méhauté
(1991).

c. Solitary Wave Theory: Most of the mid- to late-twentieth-century works on soli-
tary waves have focused on shoaling. For example, Grilli, Subramanya, Svend-
sen, and Veeramony (1994) discuss the shoaling of solitary waves on plane
beaches.

d. Breaking Waves: Longuet-Higgins, Cokelet, and Fox (1976) present a short but
informative discussion of steep waves, including breaking waves. Broeze (1992)
applies the “panel method” in determining the properties of breaking waves.

Although these references are few, it would be of benefit to the reader to consult
these works for both their discussions and their references.



112 Nonlinear Surface Waves

4.8 Closing Remarks

Most of the waves observed in the world’s oceans are nonlinear. The reader will
find the results in Figure 4.1 useful in determining the appropriate theory to be used
in dealing with engineering problems involving nonlinear water waves. Fortunately,
in the conceptual design phase of many engineering projects, the linear theory pre-
sented in Chapter 3 is satisfactory in predicting the behaviors of wave-induced forces
and motions of ocean structures.



5 Random Seas

Let us begin by stating the term random is synonymous with unpredictable. A truly
random phenomenon should by definition defy mathematical analysis. One might
question then if random waves can be analyzed. By making certain assumptions,
waves that are random in the time domain can be shown to have rather predictable
properties in the frequency domain. In this chapter, a brief history of random wave
analysis is first presented. This is followed by discussions and illustrations of the
various statistical methods of wave analysis.

5.1 Introduction

We can safely assume that seafarers down through the ages have been aware of the
randomness or unpredictability of ocean waves. The occurrence of “rogue waves”
has been documented again and again. These are extremely high waves that occur in
the open ocean without warning. The earliest attempts to deal mathematically with
random waves were confined to averaging observed wave heights and periods. The
data were obtained by visual means in a laboratory setting (as by Weber and Weber,
1825, according to St. Denis, 1969), in lakes, onboard a ship (as by Abercromby,
1888), or in coastal waters. When log-keeping came into being, wave height and
period observations were recorded along with wind speeds. The more sophisticated
mariners also recorded wavelength estimations obtained by comparing the wave-
lengths with lengths of their vessels. The accuracy of the wave height estimations
from visual observations from ships is discussed by Cornish (1910). He reports that
the estimated wave height observations at the time of his writing were about 90%
accurate provided that the observer was well practiced. More examples of wave
height and wavelength estimations made during open-ocean voyages are given by
Cornish (1934). In addition, an excellent historical perspective on wave measure-
ment and analysis is presented by St. Denis (1969).

There are many instruments that have been created to measure the properties
of waves. The earliest laboratory devices were either vertical staffs or tank walls
with painted height scales. These were later replaced by capacitance probes and
digital wave staffs. At-sea wave studies are now conducted by using such devices
as digital wave staffs, floats equipped with accelerometers, and submerged pressure
gauges. All these systems are designed for studies of the wave climates at specific

113
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sites. Wider perspectives of ocean waves are obtained from both air and space crafts
equipped with both photographic and microwave imagery systems. For a discus-
sion of these techniques, the reader is referred to the collection of papers resulting
from the symposium on Measuring Ocean Waves from Space at the Johns Hopkins
University’s Applied Physics Laboratory in 1986 (see Beal, 1987). Excellent discus-
sions of the various wave measurement techniques are found in the books by Tucker
(1991) and Young (1999). Also in those references are clear and concise discussions
of the various statistical wave analysis methods.

Statistical averaging of wave heights and periods continued into the twentieth
century. Early in that century, oceanographers and applied mathematicians began
to consider the probabilities of occurrence of specific properties of ocean waves.
Many of the probabilistic studies were based on the work of John W. Strutt. In
1880, Strutt (then Baron Rayleigh, and later Lord Rayleigh) developed the well-
known Rayleigh probability distribution by considering the superposition of “a large
number of vibrations of the same pitch and of random phase” (see Strutt, 1880).
Strutt’s (Rayleigh’s) analysis was analogous to superimposing linear water waves
of the same height and frequency but randomly differing in phase. Approximately
70 years later, random phasing was used in the analysis of ocean waves by Pierson
(1952), Longuet-Higgins (1952), and others, and in the analysis of ship motions by
St. Denis and Pierson (1953).

In the mid-twentieth century, the method of time-series analysis was introduced
to physical oceanography. The work of Taylor (1921) (in which the correlation tech-
nique was used in the analyses of diffusion and turbulence), Rice (1944) (in the study
of noise), and Tuckey (1949) (in spectral analysis) inspired a number of investigators
to apply time-series techniques in the analysis of random ocean waves. In one year,
papers by Darbyshire (1952), Longuet-Higgins (1952), Neumann (1952), Pierson
(1952), and Putz (1952) were published, all containing analyses of ocean wave spec-
tra. According to Ewing (1971), the first detailed measurements of waves were made
by Barber and Ursell in 1945 (see Barber and Ursell, 1948, for details of their study).
Those investigators were able to estimate wave spectra. Later, empirical wave spec-
tral density formulas of Phillips (1958), Pierson and Moskowitz (1964), Hasselman
et al. (1973), and others appeared, each accounting for certain physical conditions.
The first analytical wave spectral density expression is attributed to Bretschneider
(1959). The works of both Pierson and Moskowitz (1964) and Bretschneider (1959)
are discussed in Section 5.7 of this book. The reader is also referred to the book
edited by Le Méhauté and Hanes (1990) and that written by Sorensen (1993) for
excellent discussions of these and other spectral representations. At the end of
the twentieth century, McCormick (1998b, 1999) applied the probability formula
of Weibull (1951) to water-wave spectral analysis with some success. This method is
also described and discussed herein.

In this chapter, the statistical analysis of ocean waves is developed. First, the
wave height (H) and period (T) values are determined from a wave trace, and a
bivariate (H-T) nomograph is constructed. Based on this data sample, various sta-
tistical averages, the probability, and the probability density are defined. Also, the
wave spectral density for discrete data is defined and applied to the H-T data. The
statistical functions are then applied to continuous data. Finally, the directional-
ity of random or irregular seas is discussed. All discussions contained herein are
introductory in nature. The reader is encouraged to consult the references for more
expansive discussions on wave measurement and analysis.
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a. Measured Wave Time-Trace b. Wave Properties from Zero Up-Crossing 
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Figure 5.1. Measured Wave Properties. In (a) the trace was obtained in a wave-tank simu-
lation of a wind-generated sea. In (b) the zero up-crossing method of wave identification
is applied. As can be seen, some waves are not identified by the zero up-crossing method
because they are totally above or below the horizontal axis. For large data sets, these missed
waves are considered to be statistically insignificant.

5.2 Statistical Analysis of Measured Waves

The properties of waves in the open ocean are typically determined by analyzing
signals from floating wave gauges. These signals are either recorded onboard the
floats or telemetered to ships, aircraft, or shore facilities for analysis. Such signals
might be transmitted for twenty minutes of each hour, twenty hours each day for
several years. A signal from an at-sea measurement system would be similar to that
shown in Figure 5.1a, which shows the displacement (�) of the free surface from the
SWL as a function of time (t). The trace shown in Figure 5.1a was obtained in a
laboratory simulation of a wind-generated sea. The wave pattern was produced by a
wave maker creating a number of regular waves (having specific heights and periods
but differing phases) over a period of time. In other words, these waves were phys-
ically superimposed on each other to produce an irregular wave pattern. Although
the trace appears to be random in time, there is a definite energy distribution in the
frequency domain of the input signal to the wave maker. Because the nature of a
wind-generated sea is somewhat well defined in the frequency (or period) domain,
the seas are often referred to as irregular seas instead of random seas.

There are several methods of identification of waves in an irregular trace such
as that shown in Figure 5.1a. One technique that is widely used by those performing
“hand and eye” analyses of wave traces is the zero up-crossing method. This method
is illustrated in Figure 5.1b, where the waves in the trace in Figure 5.1a are identified.
The method is as follows: Each time the wave trace crosses the time axis with a
positive slope (that is, a zero up-crossing), assume that one wave has passed and
another is just appearing. The zero up-crossing then is at the “front” of the trailing
wave and the “back” of the leading wave. The wave period is defined as the time
between consecutive up-crossings, whereas the wave height is defined as the vertical
distance between the maximum displacement and the minimum displacement of the
trace between consecutive up-crossings. The reader might question the accuracy of
the method as small waves that are entirely above or below the time axis are missed
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Table 5.1. Example of wave data obtained from at-sea measurements

H(m) – measured T(sec) – measured H(m) – rounded off T(sec) – rounded off

0.56 3.12 0.5 3.0
1.27 6.36 1.5 6.5
0.78 5.77 1.0 6.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

by the method. Statistically speaking, there are millions of waves that pass a point
in the open ocean each year. The sample is so large that the number of small waves
missed do not significantly affect the statistics.

The tabulated wave data would resemble the wave height and period data
shown in Table 5.1. Those data are taken with some specified accuracy. The ques-
tion might be raised as to how accurate we should be in these measurements. That
decision is strictly up to the individual reducing the data. To illustrate, the data in
Table 5.1 first appear with an accuracy of two places past the decimal point for both
the heights and periods. If this accuracy is maintained, the amount of data to be
analyzed is somewhat overwhelming. Instead of maintaining this accuracy, round
off the data to 0.5 m for the wave heights and 1.0 sec for the wave period, as illus-
trated in the table. Those rounded-off data are used to create a nomograph, such as
that in Figure 5.2. The 100 data points in the figure are used to illustrate the deriva-
tions and applications of the statistical wave properties discussed herein. The total
sample of wave heights and periods in Figure 5.2 is

N =
i=11∑
i=1

nTi =
j=7∑
j=1

nHj = 100 (5.1)

In eq. 5.1, i and j are indices of the wave periods and heights, respectively. To illus-
trate, the j = 4 wave height is 2 m, and there are 11 waves with this rounded-off wave
height value, that is, nH4 = 11.

We can now define some of the basic statistical properties of the wave data.
First, the cumulative frequency of occurrence of the wave height sample in Fig-
ure 5.2 is defined as

P(H ≤ HJ ) =
J∑

j=1

nHj

N
(5.2)

This is simply the percentage or fraction of the sample wave heights that are less
than or equal to the wave height, HJ. For an infinite sample, the cumulative fre-
quency of occurrence becomes the cumulative probability of occurrence, which is the
probability that any wave height, H, will be less than or equal to the wave height,
HJ. Mathematically, this probability is defined as

P(H ≤ HJ ) = lim
N→∞

P(H ≤ HJ ) = lim
N→∞

J∑
j=1

nHj

N
(5.3)

From this, a deterministic sea is one for which

P(H ≤ ∞) = 1 (5.4)
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Figure 5.2. Wave Height – Period Nomograph. In this figure, i and j are the indices of the
respective period (T) and wave height (H), and nTi and nHj are the numbers of observation
for the respective period and wave height values. The total sample is N.

because all wave heights must be less than infinite. At the other extreme, an impos-
sible sea is one for which

P(H ≤ 0) = 0 (5.5)

because no wave heights can be less than zero, and a zero wave height is unde-
fined. For a finite number of data points, as in Figure 5.2, the cumulative frequency
of occurrence can be considered to be an approximate cumulative probability of
occurrence.

EXAMPLE 5.1: CUMULATIVE PROBABILITY OF OCCURRENCE The probability that
any measured height in Figure 5.2 is less than or equal to 2 m (J = 4, H4 = 2 m)
is approximately

P(H ≤ 2 m) � P(H ≤ 2 m) = (nH1 + nH2 + nH3 + nH4 )
N

= 0.81

The term “approximately” is used because an infinite sample is required to have
a true probability. The probability is approximately equal to the cumulative
frequency of occurrence of eq. 5.2 for this finite sample. Following this example,
a chart of the probability as a function of wave height is constructed (see Fig-
ure 5.3).
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Figure 5.3. Cumulative Frequency of Occurrence for the Data in Figure 5.2. This can be con-
sidered to be an approximate probability of occurrence for the wave data.

We define the probability density function as the slope of the probability curve.
For continuous wave height data, the probability density function is

p(HJ ) = d[P(H ≤ HJ )]
dH

= lim
�H→0

�[P(H ≤ HJ )]
�H

(5.6)

Using the last term without passing to the limit, we can obtain an approximate prob-
ability density function for a discrete data set, such as that in Figure 5.2. The expres-
sion of that approximation is

p(HJ ) �
J∑

j=1

nHj − nHj−1

N(�H)
= (nHJ /N)

�H
(5.7)

The most-probable wave height, Hmp, is that wave height corresponding to the max-
imum value of the probability density. This wave height is then determined from

d[p(HJ )]
dH

∣∣Hmp = 0 (5.8)

if the wave height distribution is continuous. As is demonstrated in Sections 5.5 and
5.6, the most probable value of a random variable, from either experimental studies
or field measurements, can be used to determine the form of the probability density
function.

EXAMPLE 5.2: PROBABILITY DENSITY AND MOST-PROBABLE WAVE HEIGHT As in
Example 5.1, we focus our attention on the 2-m wave height (J = 4) in Fig-
ure 5.2. The value of the probability density, from eq. 5.7, is

p(H4) = p(2 m) = (nH4/N)
�H

= (11/100)
0.5

= 0.22 m−1

The probability distribution (the plot of the probability density) for the wave
height data in Figure 5.2 is presented in Figure 5.4. From the condition of
eq. 5.8, the most probable wave height in Figure 5.4 is Hmp = 1.0 m.



5.2 Statistical Analysis of Measured Waves 119

0.75 

0.50 

0.25 

0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Hj(m)

P(Hj)Figure 5.4. Probability Density for the
Wave Height Data in Figure 5.2.

In addition to the cumulative probability of occurrence and the probability den-
sity, other statistical properties of use in random wave analysis are listed in the
following.

A. Average Wave Period and Wave Height

The average wave period over the period range Ti < T ≤ TI is

Ti I =

I∑
i

nTi Ti

N

I∑
i

nTi
N

=

I∑
i

p(Ti )Ti�T

I∑
i

p(Ti )�T

(5.9a)

where the expression for p(Ti) is obtained by simply replacing the wave height (H)
by the period (T) and the indices ( j, J) by (i, I) in eq. 5.7. When the expression in
eq. 5.9a is applied to the total sample (N) of wave periods, then the expression for
the average wave period is obtained, that is,

Tavg =

imax∑
i=1

nTi Ti

N

1
=

imax∑
i=1

p(Ti )Ti�T

1
(5.9b)

In a similar manner, the average wave height over the range Hj < H ≤ HJ is

Hj J =

J∑
j

nHj Hj

N

J∑
j

nHj

N

=

J∑
j

p(Hj )Hj�H

J∑
j

p(Hj )�H

(5.10a)

The average wave height of the entire sample in Figure 5.2 is then

Havg =

jmax∑
j=1

nHj Hj

N

1
=

jmax∑
j=1

p(Hj )Hj�H

1
(5.10b)
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The average expressions of the wave properties are used in the design of wave-
energy conversion systems and other dynamic ocean systems.

B. Mean-Square and Root-Mean-Square Wave Heights

The mean-square wave height is obtained from an averaging formula that is similar
to that of eq. 5.10b. The expression for this wave property is

H2 =
jmax∑
j=1

nHj H2
j

N
=

jmax∑
j=1

p(Hj )H2
j �H (5.11)

where the unity value in the denominator (the value of the probability of occurrence
over the entire sample) is assumed here and henceforth. The square root of this is
called the root-mean-square wave height, that is,

Hrms =
√

H2 (5.12)

The root-mean-square wave height is considered to be a measured wave property.
It is extensively used in many statistical formulas including various expressions for
the probability density function for continuous wave data.

C. Variance of the Wave Heights

The variance of the wave heights is a measure of the spread of the data about the
average wave height, and is mathematically defined by

(H − Havg)2 =
jmax∑
j=1

nHj (Hj − Havg)2

N
=

jmax∑
j=−1

p(Hj )(Hj − Havg)2�H (5.13)

In the following example, the averages of the wave height and period and the mean-
square, root-mean-square, and variance of the wave heights are demonstrated.

EXAMPLE 5.3: AVERAGE WAVE PERIOD AND STATISTICAL WAVE HEIGHTS For the
data in Figure 5.2, the values of the respective average, mean-square, root-
mean-square wave heights, and the wave height variance are

Havg = 1.50 m

H2 = 2.87 m2

Hrms = 1.69 m

(H − H)2 = 0.64 m2

These values are obtained from eqs. 5.10b, 5.11, 5.12, and 5.13, respectively. The
average wave period obtained from eq. 5.9b is Tavg = 6.13 sec.

D. Significant Wave Height and Period

As previously stated in this chapter, most of the open-ocean wave height data prior
to the mid-twentieth century resulted from visual observations. Although Cornish
(1910) estimated the accuracy of such observations to be about 90%, Sverdrup and
Munk (1947) had different thoughts on the matter. According to Sverdrup and
Munk, the visually observed “average” wave heights more closely correspond to the
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Figure 5.5. Method for Determining the One-Third Highest Waves. By convention, the count
begins in the upper right corner of the nomograph. For the 100-wave sample, the highest one-
third of the sample is approximately 33 waves. Although there are 24 1.5-m waves, only 3 on
the right side are used in the count by our convention.

average height of the one-third highest waves. They reason that the visual observer
is selective in that one tends to neglect the smaller waves. Again, because so much
of the wave height data available at the time of their writing resulted from visual
observations, Sverdrup and Munk suggested that the average height of the one-third
highest waves be a standard of measure, and called that wave height the significant
wave height. The average period of the one-third highest waves is called the signifi-
cant wave period.

Consider again the wave height and period data of Figure 5.2. To determine
the significant wave height and significant wave period, we must first identify the
highest one-third waves in our data set. Because the sample (N) for the data in
Figure 5.2 is 100, the highest 33 waves are used. By convention, our count of the
highest waves begins with the data point in the upper right corner of the nomograph,
as illustrated in Figure 5.5. The indices corresponding to the data are i = 9 and j =
7. We count from right to left, and terminate our count after counting 33 waves,
that is, we terminate the count for index values of i = 10 and j = 3. The significant
wave height and period values for the data of Figures 5.2 and 5.5 are given in Exam-
ple 5.4.

EXAMPLE 5.4: SIGNIFICANT WAVE PROPERTIES The highest one-third wave heights
for the data in Figure 5.2 are identified in Figure 5.5. The average height of these
waves is the significant wave height, whereas the average period correspond-
ing to the one-third highest wave is the significant wave period. The respective
approximate values for these are

Hs = 2.44 m, Ts = 6.58 sec



122 Random Seas

The term “approximate” is used here as 33/100 is approximately 1/3. By compar-
ing our results with the average wave height and period values of Example 5.3,
we see that the significant wave height is about 1.63 times the average height,
whereas the average period is about 1.07 times the average period. For these
data then, the significant and average wave periods are approximately equal.

To avoid “hand and eye” measurements of wave data, as described in this sec-
tion, we seek similarities between our measured data and well-established statis-
tical properties of continuous wave data. In other words, after collecting as much
wave data as we can, we try to fit established formulas and curves to the data to
generalize our results. For example, if the sea is assumed to be ergodic (having sta-
tistical properties that are invariant in time and space), then the statistically aver-
aged wave periods and heights at a specific site in the ocean should be the same as
those at other sites. When we take into account the generation of these waves by
the wind, then we must qualify the ergodic hypothesis by specifying both the wind
speed and duration of the storm generating the seas. That is, for a given wind con-
dition (speed and duration) at a point, the statistical averages of the wave heights
and periods will be the same as those measured at some other time and place in the
ocean having the same wind conditions. Wave properties that are invariant in time
are said to be statistically stationary, whereas those that are invariant in space are
said to be statistically homogeneous. We assume that the waves are ergodic in our
discussions.

5.3 Continuous Probability Distributions

As stated in the previous section, it is not practical to measure wave properties
at every site of interest in the open ocean. For this reason, we try to match our
finite statistical wave height and period data with some widely used expressions for
either the probability of occurrence or the probability density. These established
expressions are continuous functions of the property in question. This means that
the sample (N) of random data is now considered to be infinite. With this assump-
tion, we can express eqs. 5.9, 5.10, 5.11, and 5.13 as integrals by passing to the limit
as N → ∞. The respective results are shown in the following.

A. Average Wave Period and Wave Height

For continuous wave data, the summations in eqs. 5.9a and 5.9b evolve into inte-
gral expressions of the average wave period and mean wave period, respectively.
The mathematical expression for the average wave period for the period range of
Ti < T ≤ TI is

Ti I =

TI∫
Ti

p(T)TdT

TI∫
Ti

p(T)dT

(5.14a)

where p(T) is the period probability density function. When the lower limits of the
integrals of eq. 5.14a are 0 and the upper limits are ∞, the resulting expression is
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that of the average wave period, that is,

Tavg =
∞∫

0

p(T)TdT (5.14b)

Similarly, the average wave height over the wave height range of Hj < H ≤
HJ is

Tj J =

HJ∫
Hj

p(H)HdH

HJ∫
Hj

p(h)dH

(5.15a)

where p(H) is the probability density of the wave heights. Over the semi-infinite
range 0 < H ≤ ∞, eq. 5.15a becomes

Havg =
∞∫

0

p(H)HdH (5.15b)

which is the expression for the mean wave height.
The mathematical expressions of the probability density functions in eqs. 5.14

and 5.15 must be specified. Several of these expressions are introduced and dis-
cussed in the next three sections.

B. Mean-Square Wave Height

The result of passing to the limit of the sum defining the mean-square wave height
in eq. 5.11 is

H2 =
∞∫

0

p(H)H2dH (5.16)

C. Variance of the Wave Heights

The variance for a continuous probability distribution of wave heights from eq. 5.13
is

(H − Havg)2 =
∞∫

0

p(H)(H − Havg)2dH (5.17)

where, again, the expression for the wave height probability function, p(H), must be
specified. This is done later in this chapter.

D. Significant Wave Height

Using the average wave height expression in eq. 5.15a, the significant wave height
for an infinite sample of wave heights can be determined by performing the



124 Random Seas

integration from the smallest wave height of the highest one-third heights. Rep-
resent this wave height by H33%. The expression for the significant wave height is
then

Hs =

∞∫
H33%

p(H)HdH

∞∫
H33%

p(H)dH
(5.18)

It is shown later in this chapter how one determines the value of H33% for a data
sample.

Our task is to find suitable probability distributions for the wave height data. Of
special interest to oceanographers and ocean engineers is the Rayleigh probability
distribution for the wave heights. The use of this distribution is of particular value
in determining wave loads of fixed and floating structures in the open ocean.

5.4 Rayleigh Probability Distribution of Wave Heights

The reader is again reminded that the probability distribution is a plot of the prob-
ability density function. There are a number of probability density functions that
have resulted from statistical analyses of various phenomena. As previously men-
tioned, the Rayleigh probability density function (see Strutt, 1880) resulted from
a study of the random vibrations created by superimposing linear, monochromatic
vibrations having the same frequency but differing in phase, the phase angle being
randomly chosen. In this section, the probability density of Lord Rayleigh (J. W.
Strutt) is used to represent the statistical distributions of wave heights in random
seas. The Rayleigh distribution applied to ocean waves is discussed in the classical
paper by Longuet-Higgins (1952).

For wave heights measured in the open ocean, the plot of the probability density
function (probability distribution) was found to resemble the Rayleigh probability
distribution. The expression of the Rayleigh probability density function for wave
heights is

p(H) = 2H
H2

rms
e
−
( H

Hrms

)2

(5.19)

where Hrms is the root-mean-square wave height, defined by eq. 5.12. Note that the
value of Hrms is considered to be a measured quantity.

As written in eq. 5.6, the probability density function is the derivative of the
probability. Hence, the expression for the Rayleigh probability of occurrence can
be obtained by integrating eq. 5.19 between two wave height limits. That is, the
probability that a measured wave height (H) will be between H = Hj and H = HJ is
obtained by integrating eq. 5.19 between these limits. The resulting expression for
the probability of occurrence is

P(Hj < H ≤ HJ ) =
HJ∫

Hj

p(H)dH = e
−
( Hj

Hrms

)2

− e
−
( HJ

Hrms

)2

(5.20)

The application of the Rayleigh probability relationships is demonstrated in the fol-
lowing example.
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Figure 5.6. Cummulative Frequency of Occurrence for the Data in Figure 5.2. The Rayleigh
probability formula in eq. 5.20 is used to obtain the theoretical curve.

EXAMPLE 5.5: RAYLEIGH PROBABILITY DENSITY AND PROBABILITY FUNCTIONS To
apply the probability density expression of eq. 5.19 and the expression for the
probability of occurrence of eq. 5.20 to the data in Figure 5.2, all that is needed
is the value for the root-mean-square wave height, the value of which is Hrms =
1.69 m from Example 5.3. The expression for the Rayleigh probability density
function is then

p(H) = 0.700He−0.350H2
, m−1

The corresponding Rayleigh cumulative probability of occurrence (the proba-
bility that H lies between 0 and HJ) is

P(0 < H ≤ HJ ) =
HJ∫

0

p(H)dH = 1 − e−0.350H2
J

This is also called the probability of non-exceedance by some wave analysts.
Results obtained from the application of this probability expression to the data
in Figure 5.3 are presented in Figure 5.6. The probability distribution, p(H), is
presented in Figure 5.7 with the values found in Figure 5.4.

A. Average Wave Height

The combination of the Rayleigh probability function of eq. 5.19 and the generic
equation for the average wave height of eq. 5.15a yields the following expression for
the average wave height in Hj < H ≤ HJ :

Hj J =
Hj e

−
(

Hj

Hrms

)2

− HJ e
−
(

HJ
Hrms

)2

+ Hrms

√
�

2

[
erf
(

HJ
Hrms

)
− erf

(
Hj

Hrms

)]
P (Hj < H ≤ HJ )

(5.21a)

where erf( ) is called the error function. Values of this function can be obtained from
the book edited by Abramowitz and Stegun (1965). From that reference, a rather
accurate approximate formula is found, and is presented following eq. 5.34. In the
denominator of eq. 5.21a is the probability of occurrence, the expression for which
is in eq. 5.20.
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Figure 5.7. Probability Density for the Data in Figure 5.2. The Rayleigh curve is obtained from
eq. 5.19.

When the expression in eq. 5.21a is applied to the entire range of wave heights,
that is, from Hj = 0 to HJ = ∞, the expression for the average wave height corre-
sponding to a Rayleigh wave height distribution results, that is,

Havg =
√

�

2
Hrms (5.21b)

As before, the root-mean-square wave height is normally considered to be a mea-
sured quantity in these equations.

B. Probability of Exceedance

The probability that a measured wave height will be greater than, say, HK is called
the probability of exceedance. From eq. 5.20, this probability is found by integrating
from HK to ∞. That probability is then expressed by

P(HK < H ≤ ∞) = e
−
( HK

Hrms

)2

= f (5.22)

where f is the fraction of waves having heights greater than HK. One application
of the formula is in the determination of the significant wave height, discussed in
Section 5.2D. From the expression in eq. 5.22, we can determine the value of HK for
the percentage of waves in question. The expression for that wave height is

HK = Hrms

√
ln
(

1
f

)
(5.23)

C. Significant Wave Height

The significant wave height is defined in Section 5.2D as the average height of the
one-third highest waves, and is mathematically represented by eq. 5.1 for a contin-
uous probability distribution of wave heights. To determine the value of the signif-
icant wave height, we need to know the smallest wave height value of the highest
one-third waves, which is also the lower limit of the integral in eq. 5.18. This lower
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limit is obtained from eq. 5.23, where the fraction is f = 1/3 and the subscript is K =
33%. The result is H33% = 1.048Hrms . Replace the lower limits of the integrals of
eq. 5.18 to obtain the expression for the significant wave height for a Rayleigh wave
height probability distribution. The result is

Hs = 1.416Hrms (5.24)

D. Extreme Wave Height

Equation 5.23 can be used to determine the extreme wave height of a sample of wave
heights assumed to have a Rayleigh distribution. Suppose that we determine (from
measurements) that there are NM waves passing a site in the open ocean in M years.
For that sample, we wish to determine the value of the height of the highest wave. In
other words, our interest is in the height of the f = 1/NM wave because there is only
one wave that can be the highest. That extreme (maximum) wave height is obtained
from eq. 5.23 by using this frequency value, that is,

Hmax = Hrms

√
ln(NM) = 2√

�
Havg

√
ln(NM) (5.25)

Here, the results of eq. 5.21b have been incorporated. For the data in Figure 5.2, NM

= 100 and Hrms = 1.69 m from Example 5.3. These values in eq. 5.25 yield Hmax =
3.63 m. This extreme value is close to the maximum wave height in the Figure 5.2
data, which is 3.5 m.

EXAMPLE 5.6: SIGNIFICANT AND EXTREME WAVE HEIGHTS At a site in the open
ocean, a wave staff is placed to determine the statistical wave properties. Mea-
surements are taken for 20 min each hour, 20 hours each day for 365 days. In
eq. 5.25, then, M = 1. The average measured wave properties are those found
in Example 5.3. From that example, we find

Havg = 1.5 m, Hrms = 1.69 m, Tavg = 6.13 sec

The significant wave height expression of eq. 5.24 then yields Hs = 2.39 m.
To determine the extreme wave height, the total sample of waves passing the
wave staff in 1 year must be determined. To make that determination, simply
divide the total number of seconds in 1 year (365 days × 24 hours × 3600 sec =
3.1536 × 107 sec) by the average wave period. The result is N1 � 5.14 × 106.
Substitute the wave property values and the N1 value into eq. 5.25 to obtain
Hmax = 6.63 m.

The reader can see that much information can be obtained if the wave height
probability distribution resembles that predicted by a Rayleigh probability density
function. This distribution is most valid in the open ocean. When in a coastal area,
the wave height distribution might be somewhat different than that predicted by
eq. 5.19. In that situation, a more general probability density function is desir-
able. One such distribution is that of Weibull (1951), which is discussed in the next
section.

5.5 Weibull Probability Distribution of Wave Heights

The Weibull probability density function is a parametric relationship that has wide
application. In fact, most of the commonly used probability density functions can
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be obtained from Weibull’s equation by the proper choice of the parameters in that
equation. In his 1951 paper, W. Weibull states that any cumulative probability of
occurrence of a variable (say, the wave height, H) being less than or equal to a
value (say, HJ.) can be represented by

P(0 < H ≤ HJ ) = 1 − e−F(HJ ) (5.26)

where F(HJ) is a function that is non-negative, non-decreasing, and vanishing at
some value, say, A. Weibull (1951) states that the “most simple function” satisfying
the conditions is

F(HJ ) = (HJ − A)m

Bm
(5.27)

With this relationship, the expression in eq. 5.26 is a three-parameter Weibull prob-
ability, where the parameters are A, B, and m. It must be noted that these expres-
sions have no theoretical basis. The probability density function corresponding to
the probability expression in eq. 5.26 (coupled with the function in eq. 5.27) is found
by simply taking the derivative of the probability with respect to HJ. The result is

p(HJ ) = m
(HJ − A)m−1

Bm
e− (HJ −A)m

Bm (5.28)

By comparing the expressions in eqs. 5.19 and 5.28, we see that the Rayleigh prob-
ability density function corresponds to the parametric values of m = 2 and A = 0,
where � = Hrms .

The average value of the variable is obtained from the combination of eqs. 5.15b
and 5.28. The resulting expression is

Havg = B�

(
m + 1

m

)
+ A (5.29)

where �( ) is a gamma function, the values of which can be found in the book edited
by Abramowitz and Stegun (1965) for various values of the parameter m.

By combining eqs. 5.16 and 5.28, we obtain both the mean-square and root-
mean-square of the variable. The mean-square expression is

H2 = B2�

(
m + 2

m

)
+ 2AB�

(
m + 1

m

)
+ A2

= H2
rms (5.30)

In general, the applications of the Weibull equation to the wave height and
period result in two-parameter expressions because the probability of occurrence
for the zero values of H and T is zero. For the free-surface displacement (�), the
three-parameter Weibull equation applies because this variable can have zero and
negative values.

Excellent discussions of the application of the Weibull probability distribution
function to ocean waves can be found in the texts by Tucker (1991) and Gren (1992).
Forristall (1978) applied a two-parameter (A = 0) Weibull probability density func-
tion to storm wave data, as reported by Tucker (1991). Because the root-mean-
square wave height is normally a measured property, the value of m can be obtained
from eq. 5.30 for a two-parameter expression. This is illustrated in the following
example.
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Figure 5.8. Amplitude (a+, a−) and Displacement (�) Distributions for the Wave Trace in
Figure 5.1.

EXAMPLE 5.7: WEIBULL PROBABILITY DENSITY AND PROBABILITY FUNCTIONS

Apply the two-parameter (A = 0) Weibull probability and probability func-
tion to the wave height data of Figure 5.2. The combination of the expression of
eqs. 5.12 and 5.30 yields the expression for the root-mean-square wave height.
That expression, combined with the value of Hrms from Example 5.3, yields

Hrms =
√

H2 = B

√
�

(
m + 2

m

)
= 1.69 m

In a similar manner, combine the average wave height value of Example 5.3
with the two-parameter expression of eq. 5.29 to obtain

Havg = B�

(
m + 1

m

)
= 1.50 m

The simultaneous solution of these equations, with the help of the gamma func-
tion tables in Abramowitz and Stegun (1965), yields m � 2.0 and B � 1.69 m.
These values correspond to the Rayleigh values. Hence, for the data in Figure
5.2, the Weibull probability density function and probability function are the
same as those in Example 5.5.

The equations of Weibull can be used to analyze both experimental and at-sea
data. Within the past several decades, the Weibull equations have found increasing
favor with physical oceanographers and ocean engineers.

5.6 The Gaussian-Rayleigh Sea

Let us again examine the experimental time trace of the free-surface displacement
(�) in Figure 5.1a. We are now interested in the distributions of both the time-
dependent free-surface displacement and the time-dependent positive and nega-
tive maxima of the free-surface displacement. These are illustrated in Figure 5.8.
In that figure, we see that the trace in Figure 5.1a is enveloped by dashed lines
drawn through the positive maxima (denoted by a+) and negative minima (denoted
by a−). Following Longuet-Higgins (1952), these maxima and minima are referred
to collectively as amplitudes, and the curves are called amplitude curves. In addition,
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Table 5.2. Experimental data for probability distributions

� (cm) Observations a+ (cm) Observations a− (cm) Observations

−10.0 2 − − −10.0 2
−7.5 8 − − −7.5 8
−5.0 19 − − −5.0 7
−2.5 26 − − −2.5 8

0.0 38 0.0 0 0.0 0
+2.5 32 +2.5 7 − −
+5.0 13 +5.0 7 − −
+7.5 8 +7.5 4 − −

+10.0 6 +10.0 4 − −
+12.5 2 +2.5 2 − −

there are lines passing through these curves that are parallel to the time axis. These
parallel lines intersect the solid �(t) curve and the dashed a+(t) and a−(t) curves. To
the right of these curves are data plots of the number of intersections. To illustrate,
for the parallel line corresponding to an �-value of 1 cm, there are 13 intersections
with the �-curve and 7 intersections with the a+-curve. The data gathered in this
manner are presented in Table 5.2. The data plots at the right side of Figure 5.8 are
used to determine the probability distributions of the time-dependent data. These
data are also presented in Figure 5.9 along with theoretical probability distributions.
To approximate the probability density of the free-surface displacement, the Gaus-
sian probability distribution is shown, whereas Rayleigh probability distributions are
used to approximate the probability densities of the amplitude data.

Assuming that the displacement of the free surface is a Gaussian process, the
following probability density function is used:

p(�) = 1

�rms
√

2�
e− 1

2 ( �
�rms )2

(5.31)

where �rms is considered to be a measured quantity. For the time segment shown in
Figure 5.8, the root-mean-square free-surface displacement is

�rms =

√√√√√ j=10∑
j=1

nj �
2
j

N�
(5.32)

the value of which is 4.54 cm for the data in Table 5.2. In both Table 5.2 and
eq. 5.32, nj is the number of intersection corresponding to the value of �j. The total
number (sample) of these intersections is N�. For the data in Table 5.2, that number
is 154. The Gaussian distribution of the free-surface displacement resulting from the
combination of the last two equations is presented in Figure 5.9a.

By replacing the wave height terms in eq. 5.19 and the free-surface displacement
in eq. 5.32 by the amplitudes (a+ or a−), one obtains the expression for the Rayleigh
probability densities of the free-surface maxima and minima (amplitudes). That is,
for either the maxima or minima, we can write

p(a) = 2a
a2

rms
e−
(

a
arms

)2

(5.33)
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a. Free-Surface Distributions

b. Amplitude Distributions
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Figure 5.9. Probability Distributions of the Free-Surface Displacement and Wave Amplitudes.
In (a), the Gaussian distribution obtained from eq. 5.31 is presented with the discrete free-
surface data. In (b), results from the Rayleigh formula in eq. 5.33 are presented with the
discrete amplitude values.

where the respective root-mean-square values of the maximum and minimum
amplitudes are a+

rms � 6.94 cm and a−
rms � 5.93 cm. The Rayleigh amplitude dis-

tributions, obtained by substituting these values into eq. 5.33, are presented in
Figure 5.9b. In Section 5.3, various formulas resulting from the assumption of
a Rayleigh distribution of wave heights are presented. Of particular interest are
the probability of occurrence of eq. 5.20, the averaging formula of eq. 5.21, and
the extreme value expression of eq. 5.25. These formulas can be applied to the
amplitude curves, again by replacing the wave height by the amplitude, as in
eq. 5.33.

For a Gaussian distribution of the time-dependent free surface, the average
value is zero. The various probabilities can be obtained by integrating the expression
in eq. 5.31 over any two values. The expression for the probability of occurrence is
then

P(� j < � ≤ �J ) =
�J∫

�j

p(�)d� = 1
2

[
erf
(

2√
2

�J

�rms

)
− erf

(
1√
2

� j

�rms

)]
(5.34)
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In eq. 5.34, the terms on the right involve error functions, defined as

erf(Z) = 2√
�

Z∫
0

e−�2
d�

� 1 − 1
(1 + 0.278393Z + 0.230389Z2 + 0.000972Z3 + 0.078108Z4)4

The polynomial approximation of the error function is obtained from Abramowitz
and Stegun (1965), and is valid for 0 ≤ Z < ∞, with an error that is less than 0.0005.
Using that approximation, we see that erf(0) = 0 and erf(∞) = 1. In addition, the
error function is an odd function, so erf(−Z) = −erf(Z). Hence, the probability
that −∞ < � ≤ ∞ is unity, as expected.

The agreement between the measured values and the theoretical curves in
Figure 5.9 is good, but not perfect. For perfect agreement, the wave system would
need to be Gaussian-Rayleigh or simply Gaussian. As demonstrated by Longuet-
Higgins (1952) and discussed by Buckley et al. (1984) and many others, a Gaussian
sea results from the superposition of linear waves. If there are nonlinear compo-
nents, as in Figures 5.1a, then the distribution of the time-dependent free surface will
be non-Gaussian. For the time-dependent amplitude curves, the probability distri-
butions in Figure 5.9 would be better represented by two-parameter Weibull (1951)
probability distribution functions. The method of evaluation of the parameters is
the same as that in Example 5.7.

Let us now determine a relationship between the root-mean-square free-surface
displacement and the root-mean-square wave height. To accomplish this, assume
that the sea is composed of a large number (N) of superimposed linear waves.
The sea is then Gaussian and is referred to as an irregular sea. In this sea, the free-
surface of the nth wave is

�n = Hn

2
cos(knx − 
nt)

from eq. 3.24. The spacial average of the square of this component wave over the
surface area �nb can be expressed as

〈�2〉n = H2
n

8

where the brackets 〈〉 indicate a spatial average. For N waves, the average of this
expression over the entire ensemble is the variance of the free-surface displacement,
that is,

�2 ≡ �2
rms =

N∑
n=1

〈�2〉n

N
=

N∑
n=1

H2
n

8N
= H2

8
= H2

rms

8
(5.35a)

From this expression, we obtain the root-mean-square, which is

�rms = Hrms

2
√

2
� 0.3536Hrms (5.35b)

where the value of Hrms is known from measurements.

EXAMPLE 5.8: ROOT-MEAN-SQUARE WAVE PROPERTIES It has been demonstrated
that the data in Table 5.2 are not quite Gaussian, and therefore some nonlinear
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wave components are present. We shall determine if the Gaussian assumption
leading to eq. 5.35 is satisfactory for these data. Using the amplitude (a+ and
a−) data in Table 5.2, the root-mean-square value of the wave height is found
to be

Hrms =
√√√√ j=N∑

j=1

nj 2
(
a2

j

)
N

=
√

141.35 � 11.9 cm

where, for a given amplitude value, H± = 2a±. There are 49 measured wave
heights in Table 5.2, so the sample or ensemble (Na) equals 49.

The application of eq. 5.32 to the data in Table 5.2 yields �rms = 4.54 cm,
which is approximately 0.382 Hrms . A comparison of this result with the expres-
sion in eq. 5.35b shows a difference in the two expressions of approximately
7%. Hence, for the data in Table 5.2, the Gaussian assumption leading to the
expression in eq. 5.35 is satisfactory.

5.7 Wave Spectral Density

This section is devoted to the relationship between the energies of both wind-
generated seas and long-term seas and the statistical properties of the wave fields.
Long-term seas are those for which data are recorded and averaged over time peri-
ods of months or years. Wind-generated seas have received far more attention than
long-term seas. The reason is that extreme wave heights in wind-generated seas are
used in the probabilistic design of ocean structures for survivability. The phenomena
associated with wind-wave generation is rather complex. In Chapters 3 and 4, the
waves are treated as two-dimensional phenomena, and the heights of the monochro-
matic waves are assumed to be independent of the wave period. This is not the case
in a wind-generated sea. The wind eddies that convect in the boundary layer adja-
cent to the free surface each have energies that are associated with their convection
velocities. Pressure variations on the free surface result from the passage of these
eddies. Convecting pressure pulses can deform the compliant free surface, thereby
creating the first waves, called ripples. There is a transverse curvature of the first
waves created that is partially the result of the increasing transverse curvature of
the rotational axes of the convecting wind eddies, as illustrated in Figure 5.10. The
interaction of such eddies and compliant surfaces is discussed by McCormick and
Mouring (1995). The pressure-induced deformations of the free surface then have
definite geometrical patterns. These geometrical patterns change due to wind-wave
interactions in which the wind stress acts on the free surface, and wind wakes are
formed on the leeward side of the waves, as illustrated in Figure 3.1d. The gener-
ation of wind-generated seas is also discussed in Section 1.1. The classification of
wind-generated seas is discussed in Section 1.2.

The literature for both wind-generated seas and long-term seas is extensive.
The first definitive analysis of wind-generated waves is attributed to Phillips (1957).
Discussions of this analytical method are found in the books by Kinsman (1965)
and Phillips (1966). More recent analyses and discussion of wind-generated waves
are given by Donelan (1990), in the book edited by Le Méhauté and Hanes (1990),
and by Tucker and Pitt (2001). The subject of wind stress on waves is discussed by
Wu (1980). The statistics of long-term seas are discussed by Isaacson and MacKenzie
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Figure 5.10. Sketch of Boundary-Layer Vortex Distortion and Migration. The vortices form
at various heights above the calm-water surface. Because of the distortion in the line vortex,
additional energy is absorbed at points along the line, and the vortex grows (strengthens)
at these points. As the vortex grows, it is subjected to greater wind speeds and lower wind
pressures. The changing wind properties further distort the vortex and cause it to grow and
migrate in both the horizontal and vertical directions over the calm-water surface. The time-
scale for the phenomenon depends on the height of the initial vortex formation because that
scale depends on the vertical velocity distribution of the wind.

(1981), Hogben (1990), and McCormick (1998b, 1999). Wind-wave spectra are ana-
lyzed in Section 5.8, whereas long-term spectra are analyzed in Section 5.9.

In the following subsections, general discussions of measured wave spectra and
empirical spectral expressions are presented.

A. Point Spectra from Discrete Wave Data

To analyze the energy content of a random sea from data obtained from point mea-
surements, we first assume that the sea is composed of a large number of linear
waves that are superimposed upon each other. Because of this assumption, let us
refer to this assumed sea as irregular rather than random. For a component wave of
an irregular sea, eq. 3.67 is used to obtain the energy per free-surface area (called
the energy intensity, E) per unit weight of water, that is,

E ≡ (E/�b)
�g

= E
�g

= H2

8
(5.36)

where �b is the surface area and �g is the weight-density of the water.
The expression in eq. 5.36 can be applied to the data in Figure 5.2 to determine

the average energy intensity distribution over the wave periods. For a period Ti in
that figure, we can write

E(Ti ) = �g
j(i) max∑
j(i) min

nj(i) H2
j(i)

8N
= �gS(Ti )�T (5.37)

where �T is the period increment (equal to 0.5 sec in Figure 5.2), j(i) is the wave
height index corresponding to the ith period, and N is the total sample (equal to 100
for the Figure 5.2 data). To illustrate, for i = 2 in Figure 5.2, T2 = 4.0 sec, whereas
j(2)min = 1 and j(2)max = 3. The function S(Ti) is called the wave spectral density. The
purpose of this function is to show the period dependence of the average energy
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intensity of a random sea. From eq. 5.37, the mathematical expression of the spectral
density for discrete data is

S(Ti ) =
j(i) max∑
j(i) min

nj(i) H2
j(i)

8N�T
(5.38)

The average energy intensity of all of the waves in the sample is simply the sum of
the terms in eq. 5.37 over all of the measured periods, that is,

imax∑
i=1

E(Ti ) = �g
imax∑
i=1

j(i) max∑
j(i) min

nj(i) Hj2
(i)

8N
= �g

jmax∑
j=1

nj H2
j

8N

= �g
imax∑
i=1

S(Ti )�T (5.39)

Note that the double summation of the second term is equivalent to the single sum-
mation of the third term as both sum over the entire sample. We can also rewrite
the summation of the third term in terms of the mean-square wave height and the
probability density function using the results of eq. 5.11. The result is

H2 = H2
rms =

jmax∑
j=1

p(Hj )H2
j �H = 8

imax∑
i=1

S(Ti )�T (5.40)

The applications of the spectral density formula of eq. 5.38 and the mean-square
wave height expression of eq. 5.40 are illustrated in the following example by using
the data in Figure 5.2.

EXAMPLE 5.9: WAVE SPECTRAL DENSITY FROM DISCRETE WAVE DATA The applica-
tion of the spectral density expression of eq. 5.38 to the data in Figure 5.2 yields
the following results:

S(T1) = S(3.5 sec) = [2(1.0 m)2 + 1(1.5 m)2]/[8(100)0.5 sec] � 0.0106 m2/s
S(T2) = S(4.0 s) � 0.0169 m2/s
S(T3) = S(4.5 s) � 0.0219 m2/s
S(T4) = S(5.0 s) � 0.0438 m2/s
S(T5) = S(5.5 s) � 0.0706 m2/s
S(T6) = S(6.0 s) � 0.1125 m2/s
S(T7) = S(6.5 s) � 0.1788 m2/s
S(T8) = S(7.0 s) � 0.1044 m2/s
S(T9) = S(7.5 s) � 0.1038 m2/s
S(T10) = S(8.0 s) � 0.0550 m2/s

When these values are multiplied by eight times the period increment (�T =
0.5 sec) and summed as in eq. 5.40, the result is 2.87 m2. This value is the same
as that of the mean-square wave height in Example 5.3, as expected.

The values of the spectral density are shown in Figure 5.11 with their corre-
sponding period values. The plot of the S(T) is called the wave spectrum. This plot
represents the distribution of the energy content of the sea over a range of mea-
sured wave periods. The most energetic waves in this sample occur at a period of
6.5 sec. This period is called the modal period. The modal period is one to avoid in
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Figure 5.11. Wave Spectrum for the Data in Figure 5.2 and Example 5.9.

the engineering design of a compliant offshore structure. On the other hand, the
design period for an ocean wave energy conversion system would be the modal
period.

B. Empirical Expressions of the Point Spectral Density

An enormous amount of wave data now exist. These data have resulted from point
measurements at various open-ocean and confined-water sites. Because of the abun-
dance of the data, a number of empirical expressions for the wave spectral density
have been formulated. Some of the works leading to these empirical expressions are
referred to in Section 5.1.

An empirical expression of the spectral density is a continuous functional rela-
tionship. To obtain such a function, the expression for the mean-square wave height
of eq. 5.40 is transformed by first passing to the limit as �T → 0 and �H → 0,
and then integrating the resulting expression over the wave period from T = 0 to
T = ∞. The result is

H2 = H2
rms =

∞∫
0

p(H)H2dH = 8�2 = 8

∞∫
0

S(T)dT (5.41a)

where the results of eq. 5.35a have been incorporated. A more general form of this
equation is

H2 = H2
rms = C

∞∫
0

S(T)dT (5.41b)
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where the constant, C, is determined from field data. The integral is sometimes
referred to as the zero moment because many physical oceanographers and ocean
engineers refer to

∞∫
0

TmS(T)dT

as the mth moment. We shall avoid referring to these expressions as “moments” as
the term could cause confusion in later chapters dealing with physical moments on
fixed and floating structures.

For fully developed seas (seas for which the statistical properties are both uni-
form over the free surface and constant in time), the generic equation used by a
number of investigators is

S(T) = ATme−BT n
(5.42)

where the coefficients A and B depend on the statistical wave properties. In turn,
these properties depend on those associated with the wind for wind-generated seas.
The wind properties are the nominal wind speed (U), the fetch (F), and the duration
(td). The fetch is the length of the sea over which the winds blow, and the duration is
the time-life of the wind event. In the empirical formulas, m and n result from curve-
fitting of the data. Four wind-wave spectra that are represented by eq. 5.42 are the
following: Neumann (1952), for which m = 4 and n = 2; Bretschneider (1959), for
which m = 3 and n = 4; Pierson and Moskowitz (1964), for which m = 3 and n = 4;
and the long-term formula of McCormick (1998b), for which m = 6 and n = 7. The
choice of the exponent m is rather critical in representing the condition of the sea, as
discussed by Pierson and Moskowitz (1964). The value of the exponent must be such
that it is neither small enough to result in prematurely breaking-wave conditions
(Phillips, 1958) nor large enough to introduce viscous dissipation (Hamada, 1964, as
reported by Pierson and Moskowitz, 1964).

The spectral density expression of eq. 5.42 can be combined with eq. 5.41b to
obtain a relationship for the mean-square and root-mean-square wave heights. The
result is

H2 = H2
rms = C

A

nB
m+1

n

�

(
m + 1

n

)
(5.43)

5.8 Wind-Wave Spectra

Because the formulas of Bretschneider (1959) and of Pierson and Moskowitz (1964)
have the same exponent values, that version of eq. 5.42 is used herein for the sake
of illustration. The Bretschneider and Pierson-Moskowitz spectra have been widely
used since their original appearances in the literature. The International Ship Struc-
tures Committee (ISSC) has modified the Bretschneider formula, whereas the Inter-
national Towing Tank Committee (ITTC) has modified the Pierson-Moskowitz for-
mula. For discussions of these respective modifications, see ISSC (1967) and ITTC
(1972). An additional modification of the Bretschneider spectrum was performed
by Mitsuyasu (1970), according to Goda (1985, 1990). Goda refers to the modi-
fied spectrum as the Bretschneider-Mitsuyasu spectrum. The 1990 paper by Goda
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appears as an appendix in the book edited by Pilarczyk (1990). Based on measure-
ments in the German Bight of the North Sea, Hasselmann et al. (1973) modified the
Pierson-Moskowitz formula to account for limited fetch. The resulting spectral for-
mula is called the JONSWAP spectrum, the acronym derived from the Joint North
Sea Wave Project. Hogben (1990) and Komen et al. (1994) give excellent discussions
of the various wave spectral density formulas.

The Bretschneider (1959) and Pierson-Moskowitz (1964) spectra expressions
have the following form in the wave period domain:

S(T) = AT3e−BT4
(5.44a)

We can also write the spectral expressions in the wave frequency domain ( f = 1/T),
where S(T)dT = −S( f )df . This relationship results from the fact that the energy
of the wave field over the frequency domain must be equal to that over the period
domain. The negative sign results from the derivative df/dT. Solving for the spectral
density in the frequency domain, we then obtain

S( f ) = −S(T)
dT
df

= T2S(T) = A
f 5

e
− B

f 4 (5.44b)

The preference in this book is to work with the period-domain spectra.
It must be noted here that the wave spectral density functions of Bretschneider

(1959) and of Pierson and Moskowitz (1964) are defined differently, that difference
being in the value of C in eq. 5.41b. Bretschneider (1959, 1963) specifies C = 1,
whereas Pierson and Moskowitz (1964) specify C = 1/8, as in eq. 5.39.

The coefficients A and B are directly related to the wave properties. The expres-
sions for these coefficients distinguish the various wave spectral density formu-
las. Bretschneider (1959, 1963) obtains expressions for the coefficients by assuming
Rayleigh probability distributions of the wave heights and wavelengths. The Pierson
and Moskowitz (1964) coefficients are based the similarity hypothesis of Kitaigorod-
skii (1962) and on at-sea measurements of the wave properties. Before discussing
the specific spectral expressions, we shall determine relationships for the various
statistical periods.

A. Statistical Wave Periods

Up to this point, most of the discussion of random waves has been focused on sta-
tistical wave heights. With the introduction of the concept of the wave spectral den-
sity, much information concerning the statistical wave periods can be obtained. In
the analyses that follow, the expressions in eq. 5.44 are used. The peak value of the
period-based spectral density of eq. 5.44 is found by setting the derivative dS/dT
equal to zero. The period that yields that peak value is called the modal period, and
is expressed as

To =
(

3
4B

)1/4

(5.45)

This formula is important to the design engineer because it represents the wave
period for which the energy of a wind-generated sea is a maximum. Sarpkaya and
Isaacson (1981) note that the modal period is not that for which the frequency-based
spectral density [S( f) in eq. 5.44b] is a maximum. They refer to that period as the
peak period, Tp. This period is determined by setting the derivative of the expression
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in eq. 5.44b equal to zero. The result is

Tp = 1
fp

=
(

5
4B

)1/4

=
(

5
3

)1/4

To (5.46)

The last equality is obtained by solving eq. 5.45 for B and combining the result with
the third term in eq. 5.46.

The statistical averages of the wave period can be obtained by using the spectral
expression in eq. 5.44a. The average period is found from

Tavg =

∞∫
0

TS(T)dT

∞∫
0

S(T)dT
= �

( 1
4

)
4B1/4

� 3.6256
4B1/4

(5.47)

where, again, the gamma function is discussed both by Abramowitz and Stegun
(1965). In a similar manner, the expressions for the mean-square period and the
root-mean-square period are obtained. The results are

T2 = T2
rms =

∞∫
0

T2S(T)dT

∞∫
0

S(T)dT
= �

( 3
2

)
√

B
= 1

2

√
�

B
(5.48)

By eliminating B in the combination of eqs. 5.47 and 5.48, we obtain the relationship
between the average period and the root-mean-square period, which is

Tavg � 0.96282Trms (5.49)

The significant wave period, Ts, is defined as the average period of the highest
one-third waves. According to Sarpkaya and Isaacson (1981), Bretschneider (1977)
proposed the following relationship between the significant period and the peak
period of eq. 5.46:

Ts =
(

4
5

) 1
4

Tp (5.50)

With this relationship, we can now relate the significant, peak, modal, mean, and
root-mean-square wave periods as

Ts � 0.946Tp � 1.075To � 1.104Tavg � 1.063Trms (5.51)

The reader will find these relationships to be of value when dealing with the various
spectral density formulas that are used in ocean engineering studies. The reader
will notice that the significant wave period and the other periods in eq. 5.51 do not
vary by more than 10%. When the concept of the significant wave period was first
introduced, it was common practice to equate the significant period to the mean
period and other periods of interest in engineering studies.

EXAMPLE 5.10: STATISTICAL WAVE PERIODS In Example 5.3, we find that the aver-
age period for the data in Figure 5.2 is 6.13 sec. The average period for the
highest 33 waves of those data is approximately the significant wave period, Ts.
Referring to the data in Figure 5.5, the value of the significant wave period is
approximately 6.58 sec, which is 1.073 times the average period value. This value
differs by less than 3% from the coefficient value of 1.104 in eq. 5.51.
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B. The Bretschneider Spectrum

Following Bretschneider (1959, 1963), assume that the wave heights have a Rayleigh
probability distribution, as expressed in eq. 5.19. By doing so, we can relate average
wave height and the significant wave height to the root-mean-square wave height,
as in eq. 5.21b and eq. 5.24, respectively. These relationships are

Havg =
√

�

2
Hrms � 0.886Hrms (5.52)

and

Hs � 1.416Hrms (5.53)

Bretschneider (1959, 1963) applies his analysis to deep-water waves, where the
wavelength-period relationships are

�0 � gT2

2�
,

d�0

dT
� gT

�
(5.54)

from eq. 3.36. The subscript “0” signifies deep-water conditions. Assume that the
wavelengths also have a Rayleigh probability distribution in deep water. The prob-
ability density function for the wavelengths is

p(�0) = 2�0

�2
0rms

e−
(

�0
�0rms

)2

(5.55)

which is similar to the wave height expression in eq. 5.19. The root-mean-square
wavelength in eq. 5.55 is related to the average wavelength, the mean-square, and
root-mean-square periods, according to

�0rms = 2√
�

�0avg = g
�3/2

T2
rms (5.56)

We now require that p(T)dT = p(�0) d�0. By combining this relationship with the
results of eqs. 5.54 through 5.56, we obtain the probability density function for the
deep-water wave periods, which is

p(T) = p(�0)
d�0

dT
= �

T3

T4
rms

e− �
4

(
T

Trms

)4

� 2.70
T3

T4
avg

e−0.675
(

T
Tavg

)4

(5.57)

where the results of eq. 5.49 have been used to obtain the last approximation. With
the probability density function for the wave period, we can rewrite the expression
for the average wave period of eq. 5.47 as

Tavg =

∞∫
0

TSB(T)dT

∞∫
0

SB(T)dT
=

∞∫
0

TSB(T)dT

H2
rms

=
∞∫

0

Tp(T)dT (5.58)

The subscript “B” identifies the spectral density function as that of Bretschneider
(1959, 1963). From the second equality, we see that C = 1 in eq. 5.41b for the
Bretschneider spectral density function. Hence, the integral of the Bretschneider
spectral function is eight times that of eq. 5.41a, by definition. Bretschneider defined
the spectrum in this manner. From the last equality in eq. 5.58, the relationship
between the spectral density and the probability density function is obtained. By
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replacing the probability density function of the integrand of the last integral in
eq. 5.58 by the expression in eq. 5.57, the Bretschneider spectral density formula is
obtained. The result is

SB(T) = H2
rms p(T) = 1.27H2

avg p(T) = 3.437
H2

avg

T4
avg

T3e−0.675
(

T
Tavg

)4

(5.59)

A comparison of the spectral density expressions in eqs. 5.44a and 5.59 shows that
the expression for the A coefficient is

AB = 3.437
H2

avg

T4
avg

(5.60)

while that of the B coefficient is

BB = 0.75

(
1

T4
0

)
� 0.675

(
1

T4
avg

)
(5.61)

As stated in Section 5.7B, when the spectral density expression of Bretschneider
is integrated over 0 < T < ∞, the result is the mean-square of the wave height,
that is,

∞∫
0

SB(T)dT = AB

4BB
� 1.27H2

avg = H2
rms

∞∫
0

p(T)dT = H2
rms (5.62)

C. The Pierson-Moskowitz Wind-Wave Spectrum

The wave spectral density expression of Pierson and Moskowitz (1964) is based on
the assumption of Kitaigorodskii (1962) that the wave spectrum is a function of four
variables. Those are the fetch (F), gravitational acceleration (g), frictional velocity
of the wind (U+), and the frequency ( f). Pierson and Moskowitz (1964) choose to
use the wind speed (U19.5) measured by a manometer at z = 19.5 m in their formula
in place of the frictional velocity. Their spectral formula contains constants that sat-
isfy the measured data of Moskowitz (1964) in open-ocean, fully developed seas.
The fetch is then assumed to be infinite. The Pierson-Moskowitz spectral density
function is

SPM = 0.00810
(2�)4

g2T3e
− 0.74

(2�)4

(
g

U19.5
T
)4

(5.63)

where the subscript PM refers to this particular spectral density formula. The con-
stant in eq. 5.41b is C = 1/8. A comparison of the expressions of eqs. 5.43 and 5.63
results in the following expressions for the Pierson-Moskowitz coefficients:

APM = 0.00810g2

(2�)4
(5.64)

and

BPM = 0.74
(2�)4

(
g

U19.5

)4

(5.65)

The integral of the Pierson-Moskowitz wave spectral density expression
[SPM(T) in eq. 5.63] is equal to the variance of the free-surface displacement, �.
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Figure 5.12. Relationship Between the Ave-
rage Wind Speeds at z = 19.5 m and z =
10 m. The logarithmic and approximate
curves result from eq. 5.67b. The verti-
cal dashed line is the upper limit of the
JONSWAP data, as reported by Carter
(1982).

For a Gaussian sea, the average free-surface displacement is zero, and the variance
is simply equal to the mean-square of the free-surface displacement. By using the
results in eq. 5.35a, the integral of the Pierson-Moskowitz spectrum is

∞∫
0

SPM(T)dT = APM

4BPM
� 2.74x10−3 (U19.5)4

g2
= H2

rms

8
= �2 (5.66)

Compare this expression with the discrete data expression of eq. 5.40. From the
comparison, we see that the Pierson-Moskowitz spectrum and the discrete-data
spectrum have similar definitions. However, a comparison of the expressions in
eqs. 5.40 and 5.62 shows that the integral of the Bretschneider spectrum is eight
times that of the Pierson-Moskowitz spectrum, and also approximately eight times
the sum of the discrete-data spectrum.

Following Pierson (1964), the relationship between the wind speed Uz (mea-
sured at any z) and that measured at z = 10 m is given by the following form of
logarithmic law:

Uz = U10

[
1 +

√
0.80 + 0.114U10

0.4 × 103/2
ln
( z

10

)]
(5.67a)

The reference height of 10 m is that used by Bretschneider (1959) and others. The
relationship between the nominal wind speeds at z = 19.5 m and z = 10 m is then

U19.5 = U10
[
1 + 0.0528

√
0.80 + 0.114U10

] � 1.075U10 (5.67b)

The approximation is used by Carter (1982) in an analysis of the JONSWAP data,
and is valid to approximately U10 � 30 m/s. The approximate expression is also used
later in this chapter. Curves obtained from the exact and approximate expressions
in eq. 5.67b are presented in Figure 5.12. The approximation introduces an error
of approximately 6.7% for U10 = 50 m/s. The logarithmic expression is presented
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neider, Pierson-Moskowitz Spectra and
the Long-Term Spectral Data of Fig-
ure 5.11.

because it appears in the paper of Moskowitz (1964). However, Kinsman (1965)
expresses doubt about the validity of the logarithmic law for wind over water.

EXAMPLE 5.11: COMPARISON OF OPEN-OCEAN WIND-WAVE SPECTRA The wave
spectral density values corresponding to the data in Table 5.2 are plotted in
Figure 5.13. Let us see how well the spectrum of these values compares with
the spectra predicted by the Bretschneider formula (eq. 5.59) and the Pierson-
Moskowitz formula (eq. 5.63). From the results of eqs. 5.62 and 5.66, the two
empirical spectral formulas are related by

AB

4BB
= 2APM

BPM
= H2

rms (5.68)

To apply these two formulas to the data, we must use the experimental value
of the mean-square wave height, which is 2.87 m2 from Examples 5.3 and 5.8.
First, the wind speed in eq. 5.66 can be determined. That value is approximately
10.6 m/s. Combine this value with the Pierson-Moskowitz spectral density
expression of eq. 5.63. Next, the mean wave height value of 1.50 m and the
mean period value of 6.13 sec (both values from Example 5.3) are combined
with the Bretschneider spectral density expression of eq. 5.59, and the result-
ing expression is multiplied by eight. The results are presented in Figure 5.13.
In that figure, we see that the discrete spectrum is sharply peaked at a 6.5-sec
period. The empirical spectra have peak values of less than half of the dis-
crete data peak value. The peak values of the empirical spectra occur at the
modal period (T0), defined by eq. 5.45. For the Pierson-Moskowitz spectrum,
the modal period value is 6.81 sec. For the Bretschneider spectrum, the value is
6.29 sec. The reader must keep in mind that comparisons of the spectra in this
example are for the purpose of illustration. The wave height and period data in
Figure 5.2 are representative of long-term seas but not of wind-generated seas.



144 Random Seas

7

Moskowitz Data
Bretschneider

Pierson-Moskowitz
6

5

4

3

2

1

0
0 10 20

(g/U)T

(g
/U

3 ) 
S 

× 
10

4

Figure 5.14. Non-Dimensional Bretschnei-
der and Pierson-Moskowitz Spectra and the
Observed Wind-Wave Data of Moskowitz
(1964).

For open-ocean wind-generated seas, spectral results obtained by using the
Bretschneider and Pierson-Moskowitz formulas compare well with measured spec-
tra. This fact is demonstrated by the results in Figure 5.14, where the spectral
data of Moskowitz (1964) and the results of eq. 5.59 (subject to the condition of
eq. 5.68) and eq. 5.63 are presented. The reader should note that the parameters of
the Pierson-Moskowitz spectral density formula (APM and BPM) are based on the
Moskowitz (1964) data. The good agreement of the Bretschneider spectral results
and the Moskowitz data indicates that the statistics of open-ocean wind-generated
seas are Rayleigh in nature.

D. The JONSWAP Spectra – the Fetch-Limited Sea

The discussions to this point have been concerned with open-ocean wind-generated
seas, that is, where the fetch is assumed to be infinite. If our engineering interest is in
a site that is near the coast of a land mass, then the wave statistics can be significantly
altered by the limited fetch. To establish fetch-limited statistics, the Joint North Sea
Wave Project (JONSWAP) was conducted in 1969, and reported by Hasselmann
et al. (1973). As discussed by Komen et al. (1994), Hasselmann et al. (1973) modified
the form of the Pierson-Moskowitz spectral representation (eq. 5.63) for an open-
ocean fully developed sea to obtain a four-parameter spectral representation of a
fetch-limited sea. The result is the five-parameter JONSWAP wave spectral density
formula, which is

SJ ON (T) = AJ ONT3e−BJ ONT4
� e

− 1
22

a,b

(
Tp
T

−1
)2

(5.69)
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where

AJ ON = 0.076

(2�)4 g2

(
Fg

U2
10

)−0.22

(5.70)

and

BJ ON = 1.25
T4

p
(5.71)

In the spectral formula, the five parameters are AJON, Tp, � , a, and b. The first two
are called the scale parameters, and the last three are the shape parameters. The term
� is called the peak enhancement parameter, whereas a and b modify the width of
the spectrum and thereby also enhance the peak. As reported by Hasselmann et al.
(1976), the mean values of the shape parameters are � = 3.3 and a = 0.07, which
apply to the high-period side of the peak period, Tp, in eq. 5.46 and b = 0.09, which
applies to the low-period side.

The mathematical form of the JONSWAP spectral formula of eq. 5.69 presents
a problem in obtaining explicit relationships. Relationships among the root-mean-
square wave height, peak spectral period, nominal wind speed, and fetch are
obtained using numerical techniques. These relationships are presented in the next
section.

For more in-depth discussions of the JONSWAP spectral density, the reader is
urged to consult the publications of Goda (1985), Hogben (1990), Tucker (1991),
Komen et al. (1994), and McCormick (1999).

E. Wave Property Relationships from Empirical Wind-Wave Spectra

In the following subsections, the empirical spectra for three situations are discussed.
Those are the fully developed open-ocean seas, the fetch-limited seas, and the
duration-limited seas.

(1) Fully Developed, Open-Ocean Seas

For wind-generated seas in the open ocean, results of the formula of Pierson
and Moskowitz (1964) can be used to obtain the relationships between average
wave properties (wave height and period) and the nominal wind speed. Following
Bretschneider (1959), who assumes that the Rayleigh probability density function
is valid for both the wave heights and wavelengths, the average wave heights and
periods can be related to the nominal velocities (U19.5 and U10). The wind-speed
approximation of eq. 5.67b is used to relate the nominal speeds at z = 10 m and z =
19.5 m. The resulting wave height and period expressions are as follows.

Root-Mean-Square Wave Height: The expression for the root-mean-square
wave height can be obtained directly from eq. 5.66. The result is

Hrms � 0.148
U2

19.5

g
� 0.171

U2
10

g
(5.72)

Average Wave Height: To obtain the mean wave height expression, combine
the expressions of eq. 5.72 and the Rayleigh result of eq. 5.21b. This combination
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results in

Havg =
√

�

2
Hrms � 0.131

U2
19.5

g
� 0.152

U2
10

g
(5.73)

Significant Wave Height: Again, assuming that the Rayleigh distribution of
wave heights is valid, eqs. 5.24 and 5.72 can be combined to obtain the expression
for the significant wave height. The resulting expression is

Hs � 1.416Hrms � 0.210
U2

19.5

g
� 0.243

U2
10

g
(5.74)

Results of this expression are presented in Figure 5.15a with the observed data
reported by Moskowitz (1964).

Average Period: To obtain the relationship between the average wave period
and the nominal velocity, combine eqs. 5.47 and 5.65 by eliminating the BPM coeffi-
cient. The result is

Tavg � 6.14
U19.5

g
� 6.60

U10

g
(5.75)

Root-Mean-Square Period: From the combination of eqs. 5.48 and 5.65, the
expression for the root-mean-square wave height is

Trms � 6.38
U19.5

g
� 6.86

U10

g
(5.76)

Modal Period: Equations 5.45, 5.46, and 5.65 are combined to obtain the expres-
sions for the modal and peak spectral periods, which is

To � 0.88Tp � 6.30
U19.5

g
� 6.77

U10

g
(5.77)

Results obtained from eq. 5.77 are presented in Figure 5.15, with the modal period
values corresponding to the Moskowitz (1964) data.
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The reader can see that the results obtained from the empirical equations and
the Moskowitz (1964) data in Figure 5.15b compare quite well. These good compar-
isons reinforce the conclusion that the probability distributions of the wave heights
and the wavelengths for a fully developed, open-ocean sea are well represented by
the Rayleigh probability density function, as assumed by Bretschneider (1959).

(2) Fetch-Limited Seas

Further analyses of the data leading to the JONSWAP spectral formula of eq. 5.69
yield averaged heights and periods for fetch-limited seas, that is, the fetch length (F)
over which the wind blows is limited by the presence of a land mass located upwind
from the site in question. Two such analyses are those of Hasselman et al. (1976)
and Carter (1982). The Carter results are presented here.

The Carter (1982) equations are presented in terms of the fetch (F) in kilome-
ters, wind duration (tD) in hours, and the nominal wind speed (U10) in meters per
second. The wave properties can be determined by either the fetch or the duration,
depending on value of the critical duration, defined by

tDF ≡ 2.315
(

U10

g

)(
g

F

U2
10

)0.7

(5.78)

For the fetch-limited sea, Carter (1982) states that

tD > tDF = 1.167
F0.7

U0.4
10

(5.79)

where, again, the fetch is in kilometers, the duration in hours, and the wind speed in
meters per second. The gravitational constant (g) used is 9.81 m/s2. For this condi-
tion, the following expressions apply:

Significant Wave Height:

Hs � 0.0511

(
U2

10

g

)(
gF

U2
10

)0.5

� 0.0163U10

√
F (5.80)

Peak Spectral Period:

Tp � 2.80
(

U10

g

)(
gF

U2
10

)0.3

� 0.566U0.4
10 F0.3 (5.81)

Average Wave Period:

Tavg � 0.857Tp � 2.40
(

U10

g

)(
gF

U2
10

)0.3

� 0.485U0.4
10 F0.3 (5.82)

where the relationship between the two periods is obtained from eq. 5.51.
Rather than using the mean period as in eq. 5.82, Carter (1982) presents an
expression for the zero up-crossing period (Tz), which he states is approximately
equal to 0.710Tp.
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(3) Duration-Limited Seas

For the duration-limited sea, the condition reported by Carter (1982) is

tD ≤ tDF = 1.167
F0.7

U0.4
10

(5.83)

For this condition, the following expressions apply:

Significant Wave Height:

Hs � 0.0280

(
U2

10

g

)(
gtD

U10

)5/7

� 0.0146U9/7
10 t5/7

D (5.84)

Peak Spectral Period:

Tp � 1.99
(

U10

g

)(
gtD

U10

)3/7

� 0.540U4/7
10 t3/7

D (5.85)

Average Wave Period:

Tavg � 0.857Tp � 1.70
(

U10

g

)(
gtD

U10

)3/7

� 0.461U4/7
10 t3/7

D (5.86)

By using the results of Sections (1), (2), and (3), the limiting conditions of
the JONSWAP relationships can be determined. That is, by assuming that the
JONSWAP and Pierson-Moskowitz are identical at limiting values of either the
fetch or duration for a given wind speed, we can obtain the limiting expressions for
F and tD for a developing sea. We shall do this by equating the various significant
wave height expressions presented in the subsections. For the fetch-limited case, the
Pierson-Moskowitz expression of eq. 5.74 and the JONSWAP expression of eq. 5.80
are equated to obtain the minimum fetch for a fully developed sea (Ffds). The result
is

F f ds = 2.32U2
10 (5.87)

in kilometers. Hence, when F ≥ F f ds , the sea is fully developed. For the duration-
limited case, the minimum duration for a fully developed sea is obtained by equating
the expressions in eqs. 5.74 and 5.84 and solving for the duration. The result is

tDf ds = 2.10U10 (5.88)

The analysis of the situation described in Example 5.12 illustrates the use of
the equations in hours. So when tD ≥ tDfds, the sea is fully developed. Following
the example of Carter (1982), a decision tree for the selection of the appropriate
expressions is given in Table 5.3.

EXAMPLE 5.12: FETCH-LIMITED AND DURATION-LIMITED SEAS Prior to the com-
mencement of a beach nourishment project near Ocean City, Maryland, on the
Atlantic coast of the contiguous United States, offshore operations at several
borrow sites are terminated at sea states above certain values. Borrow sites are
large sand bars that are the sand resources. The reader should consult the papers
by Grosskopf and Kraus (1994) and Dean (2003) for excellent discussions of
beach nourishment. For this particular operation, the maximum possible sea
states at the offshore sites are based on a 5-hour storm having a nominal wind
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Table 5.3. Decision tree for wave height and period equations

tD > tDF ?
(hours)

↓
Yes ← ↔ → No

(Fetch Limited) (Duration Limited)
↓ ↓

F > F f ds? tD > tDf ds ?
(km) (hours)

↓ ↓
No ← → Yes ← → No

(Fetch Limited) (Fully Developed) (Duration Limited)
↓ ↓ ↓

Hs(m): eq. 5.80 eq. 5.74 eq. 5.84
↓ ↓ ↓

Tp(sec): eq. 5.81 eq. 5.77 eq. 5.85
↓ ↓ ↓

Tavg(sec): eq. 5.82 eq. 5.75 eq. 5.86

speed of 15 m/s. Hence, U10 = 15 m/s and tD = 5 hours. The borrow sites are
located 1 km, 5 km, and 10 km east of the Ocean City shoreline. Assume all sites
are in deep water. For winds out of the west, the JONSWAP equations are to
be used, and for winds out of the east, the Pierson-Moskowitz equations apply.

For the winds out of the west, we must first determine the value of the criti-
cal duration, defined in eq. 5.78 for each borrow site. Applying the expression in
that equation to the various sites results in the following critical duration values:

tDF � 0.395F0.7 �
0.40 hour(F = 1 km)
1.22 hour(F = 5 km)
1.98 hour(F = 10 km)

Because our 5-hour duration is greater than these values, as in eq. 5.79, the seas
are fetch-limited at each site. Following the decision tree in Table 5.3, we must
now determine if the sea is fully developed. From eq. 5.87, the minimum fetch
for a fully developed sea is 522 km for our 15 m/s wind speed. So at each site,
the sea is developing when the winds are from the west. The significant wave
height values at each site are determined from eq. 5.80. Those values are

Hs � 0.244
√

F �
0.244 m(F = 1 km)
0.546 m(F = 5 km)
0.772 m(F = 10 km)

The application of eq. 5.82 to each site yields the following average period val-
ues:

Tavg � 1.137F0.3 �
1.137 sec(F = 1 km)
1.843 sec(F = 5 km)
2.269 sec(F = 10 km)

When the winds are out of the east at Ocean City, the seas will be fully devel-
oped if the fetch exceeds 522 km, from eq. 5.87. Assume that this is the case
for the 10 km borrow site. However, note that the duration does not exceed
31.5 hours – the condition of eq. 5.88 for a duration-limited sea. From Table 5.3,
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for the fetch-limited sea where the fetch is the minimum for a fully developed
sea, we can use the Pierson-Moskowitz results of eqs. 5.74 and 5.75 to obtain
the respective values of the significant wave height and average period. Those
results are

Hs � 5.57 m and Tavg � 10.09 sec

Comparing the statistical wave properties resulting from the two wind con-
ditions, we conclude that operations can continue at any of the sites for the
15 m/s wind out of the west, but should terminate long before the 5-hour dura-
tion when the winds are out of the east.

In lieu of a decision tree, such as that presented in Table 5.3, the U.S. Army
(1984) Shore Protection Manual contains curves that result from the JONSWAP
equations. The reader should consult that reference to see if the curves are more to
their liking.

F. Directional Properties of Wind-Generated Waves

The expressions for the spectral density up to this point are those that describe point
spectra, that is, the expressions describe the energy of the wave climate at a single
point in the ocean without consideration of the directions of travel of the component
waves. If three or more closely spaced wave gauges are simultaneously used to mea-
sure the wave properties, then the directionality of the sea can be determined, that
is, the energy distribution as a function of direction can be determined by correlat-
ing the signals from the gauges. The directionality of the waves can be important in
a number of engineering applications. For example, McCormick (1978) takes into
account the directionality of the sea in determining the wave energy resource for
arrays of wave energy conversion devices.

Wind waves are directional due to the nature of their creation. This fact is
demonstrated by the following simplistic analysis of the waves created by pressure
fluctuations on the free surface of the water caused by the passage of eddies in the
wind’s turbulent boundary layer, adjacent to the surface. Consider such a boundary
layer adjacent to the free surface of (initially) calm water. The randomly occur-
ring eddies, convecting in the nominal direction of the wind, are at various heights
above the free surface. Because of the velocity distribution in the boundary layer, as
illustrated in Figure 5.16, the convection velocity increases with distance above the
surface. In addition, the energies associated with the various eddies also depend on
their vertical position.

Let us consider one of these eddies. As described by McCormick and Mouring
(1995) and McCormick, Bhattacharyya, and Mouring (1997) and others, the eddies
first appear as rectilinear line vortices, as sketched in Figure 5.10. Certain segments
of the line vortex acquire energy more rapidly than other segments. As the energy of
a segment increases, the vortex grows and subsequently migrates away from the free
surface. The time scale of the events just described depends on the elevation of the
formation of the vortex in question. The evidence of the events on the water surface
is in the form of pressure fluctuations. The magnitudes of the pressure fluctuations
depend on the position of the vortex and, hence, on the speed at which the vortex is
convected.

Consider two surface-pressure pulses on the calm-water surface that are con-
vecting at velocities u1 and u2, where u2 > u1, as illustrated in Figure 5.17. The pulses
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Figure 5.16. Sketch of the Variation of Wind Speed in a Turbulent Boundary Layer over Calm
Water. As illustrated in Figure 5.10, the bursting phenomena originates in the buffer region.
The outer region is characterized by large-scale eddies. The boundary layer thickness (�) is
actually time-dependent because the turbulent eddies cause a somewhat wavy interface with
the external air flow. The reader is referred to the excellent discussion of the various boundary
layer phenomena found in the book by Granger (1995).

have respective periods of T1 and T2. The effect of each pressure pulse on the water
surface is to create a small radial wave. The expression for the free-surface deflec-
tion of the deep-water, radial wave originating at some point xa on the line of action
is

�a(ra, t) = −


g
Ao J1(k0ra − 
t)

→
(ra → ∞)

− 


g
A0

√
2

�(k0ra − 
t)
cos
(

k0ra − 
t − �

4

) (5.89)

The expression in eq. 5.89 results from the solution of Laplace’s equation (eq. 3.8) in
the cylindrical coordinate system, as derived by Lamb (1945), McCormick (1973),

α1
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λy
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c
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θ2
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c
α2 α2

Wave Front

a. Low Wind Speed b. High Wind Speed

U U

Figure 5.17. Area Sketch of Two Convecting (Wind) Pressure Pulses on a Calm-Water Sur-
face. Each pulse has the same period; however, the pulse associated with the speed u1(< u2)
is closer to the water surface. The angle, �, is analogous to the Mach angle in supersonic
aerodynamics. The actual wave patterns formed by continual traveling pressure disturbances
are known as Kelvin wave patterns because of the original work on the phenomenon by Lord
Kelvin (Sir W. Thomson). See Lamb (1945) for a discussion of waves generated by traveling
impulses, and Sorensen (1973, 1993) for the related topic of ship-generated waves.
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and others. In eq. 5.89, Ao is the amplitude of the wave at its origin and ra is the
radial coordinate from the origin of the wave. In the far field (where ra → ∞), the
radial wave fronts are approximately sinusoidal, having a deep-water wavelength
corresponding to the period of the pulse, as in eq. 5.54. The initial wave amplitude
(Ao) on the x-axis, or line of action, depends on the magnitude of the pressure pulse.
As the waves travel outward from their point of origin on the line of action, their
amplitudes decrease because the energy supplied by the pulse is distributed over
an expanding circumferential wave front. After a number of periods, the outermost
wave fronts approximately coalesce to form rectilinear wave fronts, as sketched in
Figure 5.17. The wave angle � (the angle between the direction of wave travel of the
rectilinear wave and the line of action) is a function of both the wave celerity, c, and
the convection speed, u. The expression for the wave angle is

� = cos−1
( c

u

)
= �

2
− � (5.90)

from the geometries in Figure 5.17. This simplified analysis of events is similar to that
in the production of supersonic waves, where the rectilinear wave front becomes a
shock wave, the velocity ratio in eq. 5.90 is called the Mach number, and the angle
� is called the Mach angle. After the creation of a radial wave, the surface wind-
shear stress acts to enhance the growth of wave segments in |�| < �/2. Although
this description of wind-wave generation is simplistic, it should give the reader an
idea of the nature of the phenomenon. The reader is referred to the works of Phillips
(1957, 1958, 1966, and 1985) for the mathematical physics of wind-wave generation.

Many papers have been written that are either devoted to the subject of direc-
tionality of wind-generated seas or include extensive discussions of the subject.
Included are those by Arthur (1949), Pierson (1955), Longuet-Higgins, Cartwright,
and Smith (1963), Cartwright (1963), Mitsuyasu et al. (1975), Le Méhauté (1982),
Ewing (1986), and Niedzwecki and Whatley (1991), among many others. The book
edited by Wiegel (1982) is devoted to engineering aspects of directional spectra. In
addition, excellent discussions of the subject are found in the books of Goda (1985)
and Tucker (1991).

One of the most popular mathematical expressions describing the directionality
of wind-wave spectra is that presented by Cartwright (1963), which in turn was based
on the analysis of Longuet-Higgins, Cartwright, and Smith (1963). The standard
method of presenting the directional wave data is to do so in terms of true north.
The angle, �, is measured from true north in a clockwise direction. In terms of this
angle, the Cartwright formula for the directional spectral density function is

S(T,�) = S(T)G(T,�) (5.91)

where the spreading function is given as

G (T,�) ≡ G (s)
∣∣∣∣cos

(
� − �0

2

)∣∣∣∣
2s

(5.92)

In eq. 5.92, s is called the spreading parameter, and �0 is the mean direction of the
energy of the sea. Both s and �0 are functions of the wave period. The normalizing
factor given by Cartwright (1963) has the following form:

G(s) = 22s−1

�

�2 (s + 1)
�(2s + 1)

(5.93)
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Figure 5.18. Area Sketch of a Three-Unit Array of MWPs Deployed in a Wind-Generated Sea.
Each unit is a hinged-barge system consisting of three barges, as sketched in Figure 5.19. The
wave-induced motions of the forward and after barges excite water pumps on the inertial
central barge. These pumps in turn force pressurized water through submerged hoses leading
to either a reverse-osmosis (RO) desalination system, as illustrated, or an electrical generator,
depending on the purpose of the system.

Because the point spectral density function, S(T), must result from an integration of
eq. 5.91 over all angles, the following condition must be true:

�∫
−�

G(T,�)d� = 1 (5.94)

There have been a number of at-sea studies resulting in modifications to both the
spreading parameter and the normalizing function. One of the most popular is that
of Mitsuyasu et al. (1975). From the data reported in that study, the authors recom-
mend the following expressions for the spreading parameter:

s = 11.5
(2�U10)�

gT
(5.95)

where the exponent values are � = −2.5, for T < Tp, and � = 5, for T ≥ Tp. The use
of the directional wave spectrum is illustrated in Example 5.13, based on the work
of McCormick (1978).

EXAMPLE 5.13: WAVE POWER RESOURCE DETERMINATION FOR A DIRECTIONAL SEA

One of the first expressions for the directional spectral density for open-ocean
waves was based on the Arthur (1949) “cosine observation.” Referring to the
sketch in Figure 5.18, that expression is

S (T, �) = S (T) G0(�) = S(T)
2
�

cos2(� − �wind), −�

2
< � − �wind <

�

2

(5.96)

from Pierson (1955). Equation 5.96 is based on the assumption that the mean
direction of the waves is the same as the nominal direction of the wind. We
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Figure 5.19. Elevation Sketches of the
McCabe Wave Pump. The dimensions
shown are those of the prototype that
was deployed in the Shannon estu-
ary from 1996 to 2003. The system is
designed to supply potable water or elec-
tricity, depending on the needs at the
site.

shall use this expression to illustrate the method of determining the wave power
resource for an array of wave energy conversion systems.

Floating wave energy converters appear to be best if oriented in line arrays.
That is, the most cost-effective orientation of such systems is the line array
consisting of a number of wave energy conversion modules, as opposed to
large single units. To illustrate, a line array of modules of a system called the
McCabe wave pump (MWP) is sketched in Figure 5.18. The MWP, sketched in
Figure 5.19, is a three-barge wave energy converter that is designed to produce
either electricity or potable water for isolated coastal communities or inhab-
ited islands. See the paper by McCormick and Kim (1997) for the details of
the MWP operation. Our attention is focused on an offshore array operating in
deep-water waves. The waves at the site in question have the same properties
as those in Examples 5.3 and 5.11, namely, a 1.50-m average wave height and an
average wave period of 6.13 sec. Referring to Figure 5.18, the wind direction is
�wind = 45◦ to the onshore direction.

To determine the wave power resource in a random sea, we must first deter-
mine the relationship between the average wave power and the directional
spectral density. This is accomplished by using a method similar to that used
in the derivation of the average energy intensity expression of eq. 5.39. For a
monochromatic wave, the energy intensity and energy flux (or power) can be
related by using the results of eqs. 3.72b and 5.36. For deep-water waves, the
result is

E0

�0b
= �g

H2
0

8
= |P0|

cg0 b
� 4�

|P0|
gTb

(5.97)

where b is the crest width and cg0 is the deep-water group velocity (�gT/4�).
Apply this expression to the Ith wave traveling in the Jth direction in a random
sea, as illustrated in Figure 5.18. As in the process leading to eq. 5.39, the power
of this wave is found to be

PI J � �g2

4�
S(TI J , �J )TI J bJ [cos(�J )i + sin(�J ) j] �T��

= PI J x + PI J y (5.98)
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In this expression, the power vector has two components. Those are the onshore
component (PIJx), which is that available to the array of wave energy convert-
ers, and the alongshore component (PIJy). Also in eq. 5.98 are the respective
onshore and alongshore unit vectors (i, j). The crest width (bJ), not shown in
the figure, is related to the array length (La) by

bJ = La cos(�J ) (5.99)

After combining the expressions in eqs. 5.98 and 5.99, we pass to the limits as
both �T and �� approach zero, and integrate the resulting power component
expressions. The resulting expression for the onshore power component (that
available to the line array) is

Px � �g2La

4�

�wind+ �
2∫

�wind− �
2

∞∫
0

S(T, �)T cos2(�)dTd�i (5.100)

Combine the expression in eq. 5.100 with both the directional spectral formula
of eq. 5.96 and the generic point spectral expression of eq. 5.44a, and divide the
result by the array length (La). The resulting expression is that for the onshore
power per unit array length:

Px

La
= �g2

64�

A
B5/4

�

(
5
4

)
[2 + cos(2�wind)] (5.101)

where the gamma function value is approximately 0.9064, from Abramowitz
and Stegun (1965).

For a 1.50-m mean wave height and a 6.13-sec mean period, the corre-
sponding wind speed at z = 19.5 m is 10.6 m/s from Example 5.11. We use
the Pierson-Moskowitz spectral coefficients in our analysis, which are APM �
5.00 × 10−4m2/s4 and BPM � 3.48 × 10−4s−4 from eqs. 5.64 and 5.65, respec-
tively. Substitute these values and the wind angle of 45◦ into the expression in
eq. 5.101 to obtain approximately 10,400 W/m, or 10.4 kW/m. Note that for each
citizen living in the contiguous United States, an average electrical power of
1 kW is required. Hence, at this site the power available to each meter of the
line array is enough for 10.4 U.S. citizens if that power can be converted to elec-
tricity at 100% efficiency. The actual conversion efficiency of the MWP is about
75%. The busbar power supplied by a MWP module with a 4-m beam (B) oper-
ating in this sea is Px B/La = 31.2 kW. If the sea is a head sea (�wind = 0), then
the busbar power would be approximately 46.8 kW. For the three-unit system
sketched in Figure 5.18, the busbar power is about 140 kW in a head sea.

One note concerning the exploitation of ocean waves for the production of
either electricity or potable water: The design of a wave energy conversion sys-
tem should be based on long-term wave statistics rather than short-term wind-
wave statistics. Short-term wind wave statistics are normally associated with
storms. Long-term wave statistics are those usually determined on a monthly or
yearly basis. Long-term statistics are used also in the design of control systems
for wave-energy conversion systems. Long-term wave statistics are discussed in
the next chapter.
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5.9 Long-Term Wave Statistics

In the designs of ocean structures and systems, there are two major considerations.
The first of these is survivability, and the second is performance. Most attention
is given to survivability because, without it, performance is of little consequence.
The survivability of an ocean system is based on extreme wave events, particularly
the maximum wave height that would be encountered in wind-generated seas over
the life of the system. Based on a Rayleigh probability density function for the wave
heights in a random sea, the expression for the maximum wave height is given in
eq. 5.25, and is discussed in Example 5.6. For example, for a structure located at the
position in the ocean for which the wave data in Figure 5.2 apply, the (statistically)
maximum wave height encountered in 100 years is 6.64 m, assuming yearly samples
of 6,000,000 waves. To survive the passage of this wave, the designer must deter-
mine the force associated with the wave, multiply by some safety factor, and design
accordingly.

The performance of an offshore system, such as the MWP wave energy conver-
sion system (sketched in Figures 5.18 and 5.19), depends on long-term wave statistics,
which are based on wave properties averaged over months or years. These statis-
tics are discussed by Hogben (1990) and others. McCormick (1998a) demonstrates
that the use of wind-wave formulas to predict the performance of an ocean sys-
tem can lead to erroneous results. Performance analyses of wave energy convert-
ers should be done using long-term statistical formulas. To this end, McCormick
(1998b) derives such formulas based on the two-parameter Weibull (1951) prob-
ability function, discussed in Section 5.5. McCormick obtains expressions for the
probability density functions for the wave heights and periods and, in addition, an
expression for the spectral density function by applying the derived formulas to the
open-ocean observations reported by Mollison (1982). Again, the data reported by
Mollison (1982) are for Station Porcupine in the Atlantic Ocean, several hundred
kilometers west of Ireland. Based on the Weibull (1951) two-parameter probabil-
ity density formula of eq. 5.28 (where A = 0), the expression for the wave height
probability density function for a long-term, open-ocean sea is

p (H) = mH

HmH
rms

�
0.5mH
2 HmH−1e−�

0.5mH
2 ( H

Hrms )mH

(5.102a)

where

�2 ≡ �

(
mH + 2

mH

)

Let us apply this formula to the deep-water wave data of Mollison (1982). The value
of Hrms is approximately 1.025 m for the data reported by Mollison (1982), whereas
the most-probable wave height (the wave height satisfying the condition of eq. 5.8)
is 0.625 m. The value of the shape factor (mH = 1.80) is found by curve-fitting. The
resulting probability density expression is

p (H) � 1.80H0.80e−1.001H1.80
(5.102b)

Plots obtained from the expression in eq. 5.102b, the Rayleigh formula of eq. 5.19,
and the probability density values for the observed wave heights are presented in
Figure 5.20. The wave height probability distributions presented in that figure show
that both the long-term distribution and the Rayleigh distribution under-predict the
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Figure 5.20. Long-Term and Rayleigh Probability Distributions
for Observed Data.

peak value occurring at the most-probable wave height by about 15%. However, the
shapes of both empirical curves are approximately the same. The Rayleigh curve
more closely fits the at-sea data than the long-term curve. We can conclude from
the results in Figure 5.20 that the long-term probability distribution of wave heights
in the open ocean is approximately Rayleigh.

McCormick (1998b) also presents a formula for the period probability density
function, which is

p (T) = mT

TmT
avg

�
mT
1 TmT−1e−�

mT
1

(
T

Tavg

)mT

(5.103a)

Here,

�1 ≡ �

(
mT + 1

mT

)

Applying this expression to the Mollison (1982) data yields

p (T) � 6.01 × 10−7T6e−8.56×10−8T7
(5.103b)

where the average wave period (Tavg) value for the data reported by Mollison (1982)
is 9.56 sec. The value of the shape factor (mT in eq. 5.28) is 7. Also, for the Mollison
data, Trms = 9.69 sec. Results obtained from the empirical formula of eq. 5.103b, the
Bretschneider-Rayleigh expression of eq. 5.57, and at-sea probability density values
for the Mollison data are presented in Figure 5.21. In that figure, we see an excellent
agreement between the long-term empirical distribution and the Mollison data. The
Bretschneider-Rayleigh curve under-predicts the peak probability density value
by about 40%, and has a much broader base. Hence, the empirical expression of
eq. 5.103a is recommended for long-term seas.
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Based on the modal period (To), McCormick (1998b) obtains the following
expression for the long-term spectral density function:

SLT(T) = ALTTmT−1e−BLT T mT = (mT − 1)
TmT

o

H2
rms

8
TmT−1 e−

(
mT−1

mT

)
( T

To )mT

(5.104a)

where the subscript LT refers to “long term.” The application of the long-term spec-
tral formula to the Mollison (1982) data results in

SLT (T) � 4.75 × 10−8T6e−5.17×10−8T7
(5.104b)

Here, for the Mollison (1982) observations To and Hrms are approximately 10.75 sec
and 1.025 m, respectively. Results obtained from eq. 5.104b are presented in
Figure 5.22, with results obtained using the Bretschneider spectral formula of
eq. 5.59 (divided by eight) and spectral density values corresponding to the observed
data of Mollison (1982). The division of the expression in eq. 5.59 by eight is dic-
tated by the relationship between the Bretschneider and Pierson-Moskowitz formu-
las (see eq. 5.66). The long-term spectral formula of eq. 5.104 is seen to agree well
with the observed data. Again, the Bretschneider formula is based on the assump-
tion of a Rayleigh probability distribution of wavelengths, as in eq. 5.56. The results
presented in Figure 5.22 then lead us to conclude that the long-term probability
distribution of wavelengths is not Rayleigh in nature.

5.10 Wave Spectra in Waters of Finite Depth

The discussions of the various wave spectral density formulas in Sections 5.8 are
based on the assumption that the water is infinitely deep. That is, the formulas
of Bretschneider (1959, 1963), Pierson and Moskowitz (1964), Hasselmann et al.
(1973), and McCormick (1998b) predict deep-water spectra. These respective for-
mulas are presented in eqs. 5.59, 5.63, 5.69, and 5.104a. The spectral formulas are all
proportional to the statistical wave heights raised to the second power. Assume that
this statement also applies in waters of finite depth. Furthermore, assume that the
constant coefficients and period-dependent coefficients in the spectral formulas do
not change with water depth. With these assumptions, the ratio of the finite-depth
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Figure 5.23. Bretschneider Spectra in Deep
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these spectra are given in Example 5.14.

and the infinite-depth spectral formulas is

SJ (T) |h
SJ0 (T)

=
(

Hrms |h
H0rms

)2

= K2
S = cosh2(kh)

sinh(kh) cosh(kh) + kh
(5.105)

Here, as is the custom, the subscript “0” refers to the deep-water condition and the
subscript J is generic. As an example of the latter, for the Bretschneider spectral
formula, J = B. Also in eq. 5.105 is KS, the shoaling coefficient defined in eq. 3.78.
By rearranging the terms in eq. 5.105, we obtain the expression for the wave spectral
density in water of finite depth, which is

SJ(T)|h =
[

cosh2(kh)
sinh(kh) cosh(kh) + kh

]
SJ0(T) (5.106)

The shoaling coefficient expression in eq. 5.105 is that resulting from the linear wave
theory. As discussed in Section 3.8, this expression is somewhat limited in that it is
independent of both the deep-water wave steepness (H0/�0) and the slope of the
bed. From the results in Figure 3.19, this is not the case in actuality.

EXAMPLE 5.14: BRETSCHNEIDER SPECTRA IN DEEP WATER AND WATERS OF FINITE

DEPTH In this example, our task is to compare the Bretschneider spectra in
deep water and in a water depth of 3 m. The measured deep-water average
wave properties are Havg0 = 1.50 m and Tavg = 7.00 sec. For the Bretschneider
spectrum corresponding to these average values, the modal period is To � 7.19
sec. The deep-water Bretschneider formula for this application is

SB0 (T) = 0.00322T3 e−0.000281T4

The deep-water spectrum obtained from this equation and that resulting from
the substitution of the equation into eq. 5.106 are presented in Figure 5.23. We
note that the modal period is greater where h = 3 m and the peak spectral
density value is also larger.

The results in Figure 5.23 are somewhat misleading. It would appear that the
energy in the waters of finite depth is greater than that of the corresponding waves
in the open ocean because the area under the spectrum is greater. This is not the
case. The energy intensity is greater where the depth is finite. That is, from eqs. 5.36
and 5.37, we see that the spectral density can be interpreted as the energy per unit
water weight per unit surface area. The surface area in eq. 5.36 is b�. In the shoaling
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process, the wavelength, �, decreases as the depth (h) decreases. Thus, the energy
per unit area (energy intensity) increases.

5.11 Closing Remarks

One of the more complicated areas of wave mechanics is that dealing with wave
statistics. With this in mind, the early sections of this chapter are written assum-
ing that the reader has only an elementary knowledge of statistics. Applications of
the statistical techniques described in this chapter are applied to ocean engineering
situations in Chapters 9 and 10.

The cited references (presented in the References at the end of the book) are
those that the author believes are significant in the evolution of water-wave sta-
tistical analyses. The reader is encouraged to consult these references to obtain
a thorough understanding of the topics discussed herein.



6 Wave Modification and Transformation

In Chapters 3 through 5, respectively, linear, nonlinear, and random waves are intro-
duced, analyzed, and discussed. These waves are assumed to be affected by two
physical boundaries, those being a flat, horizontal seafloor (or sea bed) and the free
surface (at the air-water interface). In the present chapter, other boundaries are con-
sidered. These include vertical and sloping walls and sloping beds. The presence of
these boundaries can cause the waves to be both modified (affecting the wave prop-
erties) and transformed (affecting the wave energy or energy flux). Specifically, the
presence of boundaries causes waves to reflect, shoal, refract, and diffract. These
wave phenomena and some of their engineering ramifications are discussed in the
present chapter. An excellent “working document” covering the coastal engineering
aspects of wave reflection, shoaling, refraction, and diffraction is the Shore Protec-
tion Manual of the Coastal Engineering Research Center (CERC) of the U.S. Army
Corps of Engineers (see U.S. Army, 1984). A more recent CERC publication is the
Automated Coastal Engineering System (User’s Guide and Technical Reference),
which is a computer-based document designed to assist coastal engineers in the
predicting the behavior of waves (see Leenknecht, Szuwalski, and Sherlock, 1992).
There are many other works available devoted to each wave phenomenon, the num-
ber being too large to individually reference in this chapter. For this reason, those
works that are referred to in this chapter are those which are either encompassing
or describe basic analyses, experiments, or prototype studies.

In Section 3.4, an introductory discussion of the phenomenon of reflection is
presented. In that introductory discussion, it is shown that if left-running and right-
running linear waves of equal heights and periods are superimposed upon each
other, then a standing wave results, the height of which is twice that of either com-
ponent traveling wave. The superposition of the waves then gives the same pattern
as that resulting from perfect reflection from a vertical wall. Imperfect reflection
results when part of the energy of the incident traveling wave is absorbed in by a
barrier. In this chapter, perfect and imperfect wave reflections of monochromatic
waves are discussed. The waves discussed include those that approach the reflecting
barrier both directly and obliquely.

Also in Chapter 3 (Section 3.8), the phenomenon of shoaling is introduced.
Shoaling is the process whereby the wave properties are affected by changing water
depth. In Figure 3.19, results obtained from the application of the linear wave the-
ory (based on the assumption of a horizontal bed) are presented with measured
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sloping-bed data. From the results in Figure 3.19, we see that the linear theoretical
results agree qualitatively with the measured wave behavior but not quantitatively.
The quantitative disagreement results from the linear theory’s inability to account
for either bed slope or deep-water wave steepness. In this chapter, we introduce
the long-wave equation to improve our ability to analyze the shoaling process. The
analysis is applied to shoaling monochromatic linear waves.

Two additional wave phenomena that result from the presence of physical barri-
ers are refraction and diffraction. As discussed herein, refraction is the phenomenon
whereby the direction of the wave front is changed due to changing water depths.
Historically, the first analysis of water-wave refraction was done in a manner simi-
lar to that used in the analysis of optical wave refraction, leading to the application
of Snell’s law to water waves. Snell’s law is attributed to the Dutch mathematician
Willebrod Snell von Rayen, who lived from 1591 to 1626. In this chapter, the analysis
based on Snell’s law is introduced and discussed.

The phenomenon called diffraction involves the crestwise transfer of wave
energy into regions of lower wave energy. These regions include shadow zones
(regions hidden from direct wave action) and the neighborhoods of energy-
absorbing bodies (either fixed or floating). The classical diffraction theory is first
presented and discussed. That theory is then applied to diffraction caused by vertical
thin barriers. The phenomenon of diffraction caused by energy-absorbing bodies is
discussed and analyzed in Chapters 9 and 10.

An equation derived by J. C. W. Berkhoff (1972, 1976), called the mild-slope
equation, has been found to predict all of the wave phenomena mentioned in the
previous paragraphs, that is, shoaling, reflection, refraction, and diffraction. This
equation is of the form of the Helmholtz equation, discussed in the book by
Matthews and Walker (1970) and others. The mild-slope equation must be solved
numerically because the coefficients of the equation change with water depth.
Because of its versatility, much attention has been devoted to the equation since
its introduction by Berkhoff. The mild-slope equation is derived in this chapter, and
applications to both pure shoaling and shoaling with refraction are presented.

The material in this chapter leads to the analyses of the real effects in the coastal
zone, presented in Chapter 7. The discussions in that chapter concentrate on empir-
ical analyses (that is, those based on observations). From the empirical formulas,
dimensionless parameters such as the surf similarity parameter result. Wave phe-
nomena in the coastal zone have been identified with specific ranges of the surf
similarity parameter. These ranges have been determined from both experimental
and field studies.

6.1 Wave Reflection from Vertical Barriers

The term wave reflection refers to the reflection of the energy flux or power of the
waves. See Section 3.7 for a discussion of the energy flux, and eq. 3.72 for a mathe-
matical expression of that wave property resulting from the linear wave theory. The
most general case involving wave reflection is that for which the energy flux of com-
ponent waves of a directional sea (discussed in Section 5.8F) are partially reflected
and partially absorbed by a structure. For example, see Yokoki, Isobe, and Wata-
nabe (1992) and Dickson, Herbers, and Thornton (1995). In this section, discussions
of perfect and imperfect reflections of monochromatic waves are presented, where
the incident waves approach reflecting structures either directly or obliquely.



6.1 Wave Reflection from Vertical Barriers 163

PA

PI

PR

x

y

εI

εI

λI

βR

εR

λR

λA

β1Figure 6.1. Area Diagram of Incident Waves Partially Reflected
and Partially Absorbed by a Vertical Structure.

The general case of wave reflection is first considered. That is, the assumption
is made that some structure, having the horizontal y-axis along its face, causes the
wave energy flux to be partially reflected and partially absorbed. Consider the vector
diagram in Figure 6.1. In that sketch, PI, PR, and PA represent the respective energy
fluxes of the incident, reflected, and absorbed waves. The “absorbed” wave is either
an actual wave or an equivalent wave having an energy flux equal to that absorbed.
The relationship involving these fluxes is

PI = PR + PA (6.1)

As sketched in Figure 6.1a, the vector PA is normal to the face of the structure in
the positive x-direction. The energy flux vectors in eq. 6.1 can be expressed in terms
of the component wave properties by using the linear wave expression in eq. 3.72.
The resulting vector expression is

�gH2
I cgIb
8

= �gH2
RcgRb
8

+ �gH2
Acg Ab
8

(6.2)

where the vector cg is the convection velocity vector of eq. 3.63, and b is the crest
width. Referring to the diagram in Figure 6.2, this expression can be both simplified
and written in terms of its respective onshore (in the x-direction) and alongshore (in
the y-direction) components as

H2
I |cgI | cos(�I) = H2

R|cgR| cos(�R) + H2
A|cg A| (6.3a)

or

H2
I cgI sin(εI) = −H2

RcgR sin(εR) + H2
Acg A (6.3b)

in the onshore direction, and in the alongshore direction,

H2
I |cgI | sin(�I) = H2

R|cgR| sin(�R) (6.4a)

y

x

s sIR
ε

ε ε

ε

Figure 6.2. Directional Vectors for Perfect Reflection from a Verti-
cal, Flat Barrier.
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or

H2
I cgI cos(εI) = H2

RcgR cos(εR) (6.4b)

where the angles ε and � are the directed angles of the component waves in
Figure 6.1, positive in the clockwise direction. From the results in eq. 6.4, we see
that the alongshore component of the energy flux is conserved.

Before applying these results, four basic assumptions are made. These are the
following:

(a) The periods of the component waves represented in eq. 6.1 are equal.
(b) The bed in the region of the face, both for x < 0 and x > 0, is at a uniform depth.
(c) The face of the structure is vertical and pierces the free surface.
(d) The incident, reflected, and absorbed waves are all in phase at the face of the

structure.

Assumptions (a) and (b) lead to the following relationships:

�I = �R = �A = � (6.5)

|cI| = |cR| = |cA| = c (6.6)

and

|cgI | = |cgR| = |cg A| = cg (6.7)

A. Perfect Reflection of Linear, Monochromatic Waves

By definition, perfect reflection is the case when all of the incident energy flux is
reflected back into the incident wave field. Also by definition, the absorbed energy
flux vector, PA, in eq. 6.1, is zero; consequently, so are the last terms in both eqs. 6.3
and 6.4. For perfect reflection, eqs. 6.3 and 6.4 become

H2
I sin(εI) = −H2

R sin(εR) (6.8)

and

H2
I cos(εI) = H2

R cos(εR) (6.9)

respectively. By squaring and adding these equations, the wave height relationship
is found to be

HI = HR = H (6.10)

When this result is combined with the expression in eq. 6.8, the following relation-
ship between the directed angles is obtained:

εI = −εR (6.11a)

The results of eq. 6.11a show that for perfect reflection, the magnitudes of the angles
of incidence and reflection are equal. In the remainder of this subsection, that angu-
lar magnitude is denoted as ε, that is,

|ε I | = | − εR| = ε (6.11b)
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Figure 6.3. Area Diagram of Perfect, Oblique Reflection (for an Incident Wave Angle of 45◦).
Note that for nonlinear waves, the incident wave angle of 45◦ is a limiting case for the pattern
shown. Wiegel (1964) discusses the oblique reflection of solitary waves from vertical walls,
where εI > 45◦. For this case, a near-wall wave front forms that is normal to the wall, and
travels along the wall. Away from the wall, a wave pattern exists that is similar to that shown.
Wiegel calls this reflection phenomenon the Mach-stem effect because of its similarity to the
pattern of reflected shock waves at corners.

The free-surface displacements of the respective incident and perfectly reflected
waves are mathematically represented by

�I = H
2

cos(ks I − 
t) (6.12)

and

ηR = H
2

cos(ksR − 
t) (6.13)

Referring to the sketch in Figure 6.3, the magnitudes of the wave direction vectors
(sI and sR) can be written in terms of the onshore coordinate (x) and alongshore
coordinate (y) as

sI = xsin(ε) + ycos(ε) (6.14)

and

sR = −xsin(ε) + ycos(ε) (6.15)

The free-surface displacement of the resulting wave is now obtained by, first, replac-
ing wave coordinates in eqs. 6.12 and 6.13 by the respective expressions in eqs. 6.14
and 6.15, and then adding the results. The resulting expression for the free-surface
displacement is

� = �I + ηR

= H
2

cos{k[xsin(ε) + ycos(ε)] − 
t} + H
2

cos{k[−xsin(ε) + ycos(ε)] − 
t} (6.16)

= H
2

cos[kx sin(ε)] cos[kycos(ε) − 
t]

where the height, H = 2H, is that of the wave system, as in eq. 3.41. For direct
(normal) reflection, ε = �/2. This angular value reduces eq. 6.16 to eq. 3.40.
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The nodes (points of zero displacement) of the wave pattern corresponding to
the expression in eq. 6.16 are found by equating that expression to zero and solving
for the conditions on x and y. The resulting nodal lines have coordinates of

x0 = − (2n − 1)�

4 sin(ε)
, y0 =

[
t
T

± (2n − 1)
4

]
�

cos(ε)
, where n = 1, 2, . . . . (6.17)

The antinodes (points of either maximum or minimum displacements) are
found by letting the derivatives of � with respect to x and y equal zero. The resulting
coordinate expressions are

x± = − n�

2 sin(ε)
, y± =

[
t
T

± n
2

]
�

cos(ε)
, where n = 1, 2, . . . . (6.18)

The results in eqs. 6.17 and 6.18 show that the wave pattern is fixed with respect
to the x-direction but moves in the y-direction. The speed at which these lines travel
in the y-direction can be found by, first, letting the angle of the last cosine function
in eq. 6.16 be equal to a constant, that is,

ky cos(ε) − 
t = constant (6.19)

This corresponds to the free-surface displacement that we would see if we rode in
a boat parallel to the barrier in the positive y-direction. The speed at which the
boat would travel to maintain the condition in eq. 6.19 is found by taking the time-
derivative of the expression in eq. 6.19. The resulting expression for the alongshore
speed is then

dy
dt

= 


k
1

cos(ε)
= �

T
1

cos(ε)
= �

T
= c

cos(ε)
(6.20)

where � is the alongshore distance between two successive crests at the barrier,
as illustrated in Figure 6.3. The expression in eq. 6.18 is infinite when the angle of
incidence (ε) is �/2. Also in that figure, several wave conditions are illustrated. We
see that the alongshore distance, �, increases with ε.

EXAMPLE 6.1: PERFECT OBLIQUE REFLECTION Consider the incident waves in
Figures 6.1 and 6.2 to be approaching the reflecting barrier with an angle of
incidence of 45◦. From the results presented in eqs. 6.17 and 6.18, we can deter-
mine the wave pattern in the region x ≤ 0. At time t = 0, the dimensionless
coordinates of the nodal lines, from eq. 6.17, are

x0

�
� −0.354(2n − 1),

y0

�
� ±0.354(2n − 1), where n = 1, 2, . . . .

whereas the dimensionless coordinates for the antinodal lines, from eq. 6.18, are

x±
�

� −0.707n,
y±
�

� ±0.707n, where n = 1, 2, . . . .

The pattern is sketched in Figure 6.3. From the results of eq. 6.20, that pattern
travels in the alongshore direction with a speed of

dy
dt

� 1.41c = 1.41
�

T
� �

T

The distance between successive crests at the barrier is then � � 1.41�.
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B. Imperfect Reflection of Direct, Monochromatic,
Linear Waves – Healy’s Formula

In Section 3.4, the wave pattern resulting from the superposition of two waves of
equal heights and periods traveling in opposite directions is analyzed. The result of
the superposition is a standing wave having a height (H) that is twice the wave height
(H) of either the incident or reflected traveling wave. The periods of the incident,
reflected, and standing waves are equal in that case. Now, we shall assume that some
of the energy is lost to the barrier when the incident wave approaches at an angle of
90◦ (� = �/2 in eq. 6.11b). Using the assumptions (a), (b), (c), and (d) stated prior
to Section 6.1, the expression in eq. 6.4 vanishes, whereas the expression in eq. 6.3
reduces to

H2
I = H2

R + H2
A (6.21)

Note that the negative sign in eq. 6.3 vanishes because of the relationship between
the directed incident and reflected angles in eq. 6.11a.

It is common practice to write an expression that is equivalent to that in eq. 6.21
in terms of non-dimensional coefficients. The equivalent expression is

1 = K2
R + K2

A (6.22)

which is obtained by dividing eq. 6.21 by the incident wave height. In eq. 6.22 are
the reflection coefficient, defined by

KR = HR

HI
(6.23)

and the absorption coefficient, defined by

KA = HA

HI
(6.24)

Some writers, such as Wang and Ren (1992), define these coefficients as ratios of
energies. Under our assumptions, the energy-based reflection and absorption coef-
ficients are then equal to the squares of those in eqs. 6.23 and 6.24, respectively.
The reader should also note that the absorption coefficient is sometimes referred
to as the transmission coefficient. In the present analysis, the portion of the inci-
dent energy flux that is not reflected is assumed to be totally absorbed within the
structure, with no transmission leeward of the structure. For this reason, the term
absorption coefficient is used.

Now, let us examine the expression for the free-surface displacement of the
wave pattern. That expression is

� = ηI + ηR

= HI

2
cos(kx − 
t) + HR

2
cos(−kx − 
t)

= aI cos(kx − 
t) + aR cos(−kx − 
t)

= (aI + aR) cos(kx) cos(
t) + (aI − aR) sin(kx) sin(
t) (6.25)

where aI(= HI/2) and aR(= HR/2) are the respective incident and reflected wave
amplitudes. From the last equality, the maximum free-surface displacement from
the SWL is

ηmax = aI + aR (6.26)
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Figure 6.4. Incident, Reflected, and Absorbed
Energy Flux Vectors at a Gabion-Faced Barrier.

and the minimum displacement is

ηmin = aI − aR (6.27)

By solving eqs. 6.26 and 6.27 simultaneously, we find

aI = ηmax + ηmin

2
(6.28)

and

aR = ηmax − ηmin

2
(6.29)

Hence, the reflection coefficient for the case of partial reflection from a vertical bar-
rier is

KR ≡ HR

HI
= aR

aI
= η max − η min

η max + η min
(6.30)

The expression in eq. 6.30 was derived by Healy (1953), and is known as Healy’s
formula. The use of Healy’s formula is illustrated in the following example.

EXAMPLE 6.2: DIRECT PARTIAL REFLECTION OF LINEAR WAVES In Example 3.5,
waves of 0.5-m heights and 5-sec periods are perfectly reflected from a seawall
in 2 m of water. The waves approach the seawall directly, so ε = �/2 in Figure
6.2. Because the reflection is direct and perfect, the height of the standing wave
is 1.0 m and the wavelength (unaffected by the reflection) is about 20.9 m. A
sketch of a standing wave is presented in Figure 3.8. Because of the relatively
large value of the wave steepness (H/�) of the standing wave, the docking of
boats at the seawall under these wave conditions is somewhat precarious. To
reduce the height of the wave pattern, a system of gabions is used, as illustrated
in Figure 6.4. Gabions are cubic wire baskets that are filled with stones.

In Figure 6.5, the profiles of the free-surface displacements corresponding
to the maximum and minimum wave components are shown. Theses profiles are
obtained from eq. 6.25, using the results in eqs. 6.26 and 6.27. At the face of the
modified structure in Figure 6.5, the maximum displacement (�max) is measured
to be 0.75 m. At a distance x = −�/4 − 5.23 m (seaward) from the face of the
structure, the maximum displacement is �min = 0.25 m. The subscript min (for
minimum) is used here because that value is the minimum value of the maxi-
mum free-surface displacement, as can be seen in Figure 6.5. Note that in Fig-
ure 3.8, we see that a node (� = 0) exists at x = −�/4 when the incident wave
is perfectly reflected. The resulting reflection coefficient value is 0.5 from eq.
6.30, and the corresponding absorption coefficient value is approximately 0.867
from eq. 6.22. The squares of the coefficients are proportional to the ratios of
the respective energies and the incident wave energy. Then for this partially
reflecting seawall, 0.25% of the incident energy is reflected and 0.75% is
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absorbed. The gabion system is then quite effective in reducing the wave reflec-
tion.

C. Reflection from a Vertical Porous Barrier

As stated in Example 6.2, the gabion system sketched in Figure 6.4 consists of cubi-
cal wire baskets filled with stones. Because of both the internal porosity and fric-
tional effects, wave energy is both absorbed and dissipated within the structure. If
the structure stands alone without a backing seawall, as sketched in Figure 6.6, then
it is possible that some of the wave energy will be transmitted to the “quiet waters”
in the lee of the structure. This type of structure is called a breakwater.

The analyses of the effects on waves of vertical porous structures include those
of Sollitt and Cross (1972), Madsen (1974, 1983), Liu, Yoon, and Dalrymple (1986),
and Wang and Ren (1992). Results of the two-dimensional analysis of Madsen
(1974) are used here to illustrate how the porosity and internal friction relate to
the reflection coefficient. As sketched in Figure 6.6, the rectangular, porous break-
water has a width B in the direction of wave travel. In his analysis of the internal
flow caused by the waves, Madsen (1974) makes the following assumptions:

(a) The porosity (N), defined as the void volume-to-total volume ratio, is uniform
throughout the structure.

(b) The structure is surface-piercing.
(c) The sea bed is flat and horizontal in −∞ < x < +∞.
(d) The incident, reflected, “absorbed,” and transmitted waves are all long, shallow-

water linear waves, where � � d and � � �.

Referring to the sketch in Figure 6.6 for notation, Madsen (1974) finds that the
reflection coefficient for the rectangular, porous breakwater is

KR = HR

HI
= 1

1 + 2N
kBf �

= kBf�
kBf� + 2N

(6.31)

Gabions

SWL
PI

PR

PA PT

HT 

h

c c

B

−c

HI HR

xFigure 6.6. Sketch of Incident, Reflected, “Absorbed,” and Trans-
mitted Waves at a Vertical Gabion Barrier.
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where HR is the height of the reflected wave, N is the porosity, k is the wave num-
ber for all of the waves, B is the breadth of the breakwater, and f� is the linearized
friction factor. The subscripts I, R, A, and T indicate properties of the incident,
reflected, absorbed, and transmitted waves, respectively. The value of f� can be
found analytically by using one of the various methods of Sollitt and Cross (1972),
Madsen (1974, 1983), and others. The porosity values for selected stones are pre-
sented in Table 7–13 in the Shore Protection Manual (see U.S. Army, 1984). Cor-
responding to the reflection coefficient expression of eq. 6.31 is the transmission
coefficient,

KT = HT

HI
= 1

1 + kBf�
2N

= 2N
2N + kBf�

(6.32)

where HT is the height of the transmitted wave.
The absorbed wave energy in this case is dissipated within the structure. The

conservation of the energy flux for the system is expressed by

PI = PR + PA + PT (6.33)

In eq. 6.33, the energy flux per crest width of any component wave is obtained from
the shallow-water expression in eq. 3.74. The resulting expression is

Pj

b
= �g3/2(Kj HI)2

√
h

8
(6.34)

where b is the crest width and the subscript j identifies the wave in question. For the
incident wave, j = I and KI ≡ 1. The absorbed, or dissipated, energy flux within
the structure is obtained by combining the results of eqs. 6.31 through 6.34. The
result is

PA

b
= �g3/2 H2

I

√
h

8

(
1 − K2

R − K2
T

)
= �g3/2 H2

I

√
h

8

[
4NkBf �

(2N + kBf �)2

] (6.35)

The expressions in eqs. 6.31, 6.32, and 6.35 have some physical limitations. The most
apparent of these concerns the structural breadth, B. As the width increases without
limit, the reflection coefficient of eq. 6.31 approaches unity. This result implies that
a porous structure of semi-infinite width will reflect all of the wave energy, which
is not true. For practical values of B (when compared to the wavelength), Madsen
(1974) shows rather good agreement with experimental results.

The following example deals with experimental methods for determining the
values of both the porosity and the linearized friction factor.

EXAMPLE 6.3: PARTIAL REFLECTION FROM A POROUS BREAKWATER A large-scale
model of a gabion breakwater is to be studied in a wave tank. The breadth (B)
of the structure, sketched in Figure 6.6, is 5 m, the water depth (h) is 2 m, and
the tank breadth (W) is 2 m. The structure spans the tank, so the experiment
is effectively two-dimensional. The goal of this study is to determine the effec-
tiveness of the breakwater in protecting the quiet-water area leeward of the
structure from the waves described in Example 6.2. Those waves are 0.5 m in
height (HI) and 5 sec in period (T). In that example, we find that the wavelength
(�) in 2 m of water is about 20.9 m.
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Figure 6.7. Notation for Waves on Inclined Barriers.
The notation for the slope of the barrier face is m ≡
tan(�).

First, we determine the volume of the gabions by placing them in still water
and measuring the volume of water that they displace. That displaced volume
is found to be approximately 10 m3. The displaced volume divided by the total
wetted volume of the structure (5 m × 2 m × 2 m = 20 m3) is the value of the
porosity; hence, N = 0.5.

In Example 6.2, the reflection coefficient (KR) is found to be 0.5. We can
now rearrange the expression in eq. 6.31 to obtain an expression for the lin-
earized friction factor. That expression is

f� = 2NKR

kB(1 − KR)
(6.36)

where, for this study, N = 0.5, KR = 0.5, k = 2�/� � 0.301 m−1, and W = 5 m.
The resulting value of the friction factor is approximately 3.33. This value in eq.
6.32 yields a transmission coefficient value of about 0.166. The percentage of
the incident energy flux transmitted to the quiet water is proportional to KT

2.
Only 2.76% of the incident energy flux is transmitted. We can conclude then
that the breakwater is an effective protective barrier for the wave conditions of
this experiment.

The reader is encouraged to consult the references for more detailed discussions
of partial reflection from porous structures.

6.2 Reflection from Inclined Barriers – The Long-Wave Equations

In the discussion of wave reflection from inclined barriers, it is important to keep in
mind that some of the wave energy will be lost when breaking occurs on the struc-
ture. This is not the case for linear waves reflecting from vertical or near-vertical
walls, as discussed in the previous section. For unbroken waves, there is an uprush
of water on the barrier. The maximum height of the uprush is called the runup, R, as
sketched in Figure 6.7. The ability to predict the value of the runup on near-vertical
structures is needed to design for the prevention of overtopping. This phenomenon
occurs when the runup is greater than the height of the crown of the barrier.

Most of the inclined barriers of interest are in the coastal zone, where the bar-
riers are beaches, nearshore structures, or shoreline structures. High-energy, long-
period waves in the coastal zone can be very damaging, causing either beach erosion
or damage to the artificial structures. There is a class of long-period waves called
long waves. Waves in this class lend themselves to rather simplistic mathematical
analyses. Long waves are defined as those for which the wavelength is much greater
than both the water depth and wave height. They are then shallow-water waves
by nature. The experimental data of Murota and Yamada, as presented by Shuto
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(1972), indicate that for long waves, near-perfect reflection from inclined barriers
occurs for a barrier-face angle (�) of between approximately 45◦ and 90◦. The reflec-
tion coefficient (KR in eq. 6.23) is approximately equal to 1.0 for this slope range.
For face angles less than 45◦, the experimental results are somewhat mixed. Break-
ing may also occur on or seaward of the structure having small angles of inclina-
tion. Tsai, Wang, and Lin (1998) and others show that occurrence of breaking on an
inclined barrier of a given wall slope (m) depends on the deep-water wave steepness
and the depth-to-deep-water wavelength ratio.

There are a number of analytical methods available for predicting the behavior
of waves on inclined barriers, such as seawalls and beaches. Many of these methods
require the use of numerical techniques to obtain applicable results. In this section,
we discuss both a quasi-closed-form method and a numerical method, both of which
are based on the long-wave assumptions (� � h and � � H). The long-wave equa-
tions are developed in the following subsection.

A. The Long-Wave Equations

Begin the analysis by assuming that two traveling linear waves are present well away
from the barrier (in the far field). Those are an incident right-running wave (� I) and
a reflected left-running wave (�R). Following Dean (1964), the resulting free surface
can be mathematically represented by

η = ηI + ηR

= El1(x) cos(
t + I) + EI2(x) sin(
t + I) (6.37)

= ER3(x) cos(
t + R) − ER4(x) sin(
t + R)

where the amplitude functions, E(x), and the phase angles, , are determined from
the boundary conditions. The boundary values for E(x) are defined later in this
chapter.

Referring to the sketch in Figure 6.7, linear monochromatic waves are assumed
to exist in Region A. In this region, the free-surface displacement is �A, and the
E-functions in eq. 6.37 are simply wave amplitudes of the component waves. The
E-functions for the respective incident and reflected waves can be written in terms
of wave heights as EI 1 = EI 2 = HI A/2 and ER1 = ER2 = HRA/2. The incident wave
height (HIA) is assumed to be known, and the height (HRA) of the reflected wave
is to be determined. Without loss in generality, we can assume that the phase angle
of the incident wave in Region A is zero, and that of the reflected wave, A, is to
be determined. The expression for the free-surface displacement in Region A is
then

�A = ηIA + ηRA = HIA

2
[cos(kAx) cos(
t) + sin(kAx) sin(
t)]

+ HRA

2
[cos(kAx) cos(
t + A) − sin(kAx) sin(
t + A)] (6.38)

In the analysis of the long waves encountering the inclined barrier, assume that
there is no energy lost from the system due to either friction or percolation into the
barrier. Furthermore, assume that waves travel in a channel of uniform width, b,
and in the direction normal to the barrier waterline, that is, the wave properties do
not vary in the y-direction (between the channel walls).
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Figure 6.8. Mass Flow through a Volume Element beneath the Free Surface.

Now consider the wave-traveling element over the inclined barrier sketched in
Figure 6.8. We can mathematically express the conservation of mass for the incom-
pressible flow in the control volume in that figure by

�u(h + η)b

=
[

�

(
h + ∂h

∂x
�x + η + ∂η

∂x
�x
)(

u + ∂u
∂x

�x
)

+ �

(
∂η

∂t
+ ∂2η �x

∂x∂t 2

)
�x
]

b

�
[

�u(h + η) + �h
∂u
∂x

�x + �u
∂h
∂x

�x + �η
∂u
∂x

�x + �
∂η

∂t
�x
]

b (6.39a)

where � is the mass density of water. In the approximation in eq. 6.39a, the terms
containing (�x)2 are assumed to be of second order and negligible. Because of this
assumption, the expression in eq. 6.39a reduces to the following form of the conti-
nuity equation:

h
∂u
∂x

+ u
∂h
∂x

+ η
∂u
∂x

+ ∂η

∂t
� 0 (6.39b)

The conservation of linear momentum of the water in the control volume is
expressed by Euler’s equation (eq. 2.67). In component form, the application of
that equation to the water element in Figure 6.8 is

�
∂u
∂t

+ �u
∂u
∂x

= −∂p
∂x

(6.40a)

and

�
∂w

∂t
+ �w

∂w

∂z
= −�g − ∂p

∂z
(6.40b)

The assumption of long waves allows for the simplification of these component
equations. The first simplification is due to the fact that the spacial variations in
the particle velocity components are of second order when compared to the other
terms in the expressions of eqs. 6.40a and 6.40b. Secondly, long waves are by nature
shallow-water waves. From the results in eq. 3.57, we see that the time variation of
vertical displacement of a water particle is much smaller than that of the horizon-
tal components in shallow water. Hence, the corresponding vertical velocity com-
ponent and its derivatives in time and space are relatively small compared to the
gravitational and pressure terms in eq. 6.40b. Neglecting these small terms and the
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second-order terms in the component equations of eq. 6.40 results in

�
∂u
∂t

� −∂p
∂x

(6.41a)

and

0 = −�g − ∂p
∂z

(6.41b)

The latter equation of these is the hydrostatic equation, eq. 2.3. The integration of
the second equation from the free surface (z = �, where p = 0) to any depth position
yields the pressure at any depth. The expression for the pressure is

p = �g(η − z) (6.42)

The expressions in eqs. 6.39, 6.41a, and 6.42 can be combined to form a single equa-
tion by eliminating both the horizontal velocity term, u, and the pressure, p. The
resulting expression is

− gh
∂2η

∂x2
− g

∂η

∂x
∂h
∂x

+ ∂2η

∂t2
� 0 (6.43)

where the depth is h = h(x) in the most general case.
In the following two subsections, eq. 6.43 is solved for the two limiting cases

of wave reflection. First, the case of perfectly reflecting barriers is analyzed. This is
followed by an analysis of waves on a nonreflecting barrier.

B. Perfect Reflection from an Inclined Barrier

For an inclined barrier with a flat face of slope m, as sketched in Figure 6.7, the
depth of the water at any position over the inclined barrier is expressed by

h = tan(�)(� − x) = m(� − x) (6.44)

where the origin of the coordinate system is over the toe of the barrier at a distance �

from the intersection of the SWL and the structure (the barrier waterline). Equation
6.44 yields a positive water depth seaward of the origin. For the inclined flat barrier,
the combination of eqs. 6.43 and 6.44 yields

− gm(� − x)
∂2η

∂x2
+ gm

∂η

∂x
+ ∂2η

∂t2
� 0 (6.45)

To solve eq. 6.43, we can assume the product solution,

η = X(x)T(t) (6.46)

as is done in the solution of Laplace’s equation, eq. 3.8. From the expression in eq.
6.38, we see that the time component of the separated equation is

d2T
dt2

= −
2T (6.47)

where 
 is the circular wave frequency. The solution of this second-order linear
differential equation is a linear combination of sine and cosine functions of 
t . The
combination of the expressions in eqs. 6.45, 6.46, and 6.47 results in the differential
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equation for X(x) of a long wave on an inclined barrier. That equation is

−(� − x)
d2X
dx2

+ dX
dx

− 
2

gm
X = 0 (6.48)

This equation is in a form of the Bessel equation in x. See Chapter 9 of the book
edited by Abramowitz and Stegun (1965). The solution of eq. 6.45 is then written
in terms of Bessel functions of the first kind, Jn( ), and the second kind, Yn( ), both
of zero order (n = 0). See Appendix A for a summary of the properties of these
functions. Following Dean (1964), the solution of eq. 6.45 for the free-surface dis-
placement in Region B (0 ≤ x ≤ �) is

ηB = AI J0(2K
√

� − x) cos(
t + lIB ) + AIY0(2K
√

� − x) sin(
t + IB)

+ ARJ0(2K
√

� − x) cos(
t + RB) − ARY0(2K
√

� − x) sin(
t + RB) (6.49)

where

K ≡ 
√
gm

= kA

√
hA

m
= kA

√
� (6.50)

The amplitude coefficients, AI and AR, are to be determined, as are the phase
angles, I and R. Note that the argument of the Bessel functions is a real func-
tion seaward of the shoreline and an imaginary function landward of the shoreline.
Landward of the shoreline (x > �) in Region C of Figure 6.7, the Bessel functions
J0( ) and Y0( ) are replaced by functions of modified Bessel functions I0( ) and K0( ).
The relationships for the zero-order Bessel functions are

J0(is) = I0(s), Y0(is) = i I0(s) − 2
�

K0(s) (6.51)

and s is either a variable or a parameter. If s is a dependent variable, then the spacial
derivatives of the Bessel functions of zero order are

dJ0(s)
dx

= −J1(s)
ds
dx

,
dY0(s)

dx
= −Y1(s)

ds
dx

(6.52)

and

dI0(s)
dx

= I1(s)
ds
dx

,
dK0(s)

dx
= −K1(s)

ds
dx

(6.53)

where the subscript “1” identifies Bessel functions of the first order. In our appli-
cation, the variable s is 2K

√
(� − x), where K is defined in eq. 6.50. The modified

Bessel functions are used landward of the origin, where x > �. Again, the prop-
erties of Bessel functions are summarized in Appendix A. From Appendix A and
eq. 6.51, we see that both the J0-function and I0-function equal 1.0 at the origin
(x = �), whereas the Y0-function equals −∞ and the K0-function equals +∞ at the
origin.

Equation 6.49, which applies from the toe of the barrier (x = 0) to the maximum
runup (x = � + R/m), has four unknowns. Those are the amplitudes, AI and AR, and
the phase angles, IB and RB. Recall that the reflected wave height, HRA, and phase
angle, A, in eq. 6.38 are also unknowns. Six boundary conditions are required to
determine these six unknowns.

For large wall angles, assume that there is no energy lost due to breaking. The
energy of the reflected wave is therefore equal to that of the incident wave. Because
the wavelengths of both waves must be equal, the wave height of the reflected wave
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must be equal to that of the incident wave (HRA = HIA). Following Lamb (1945),
we also require that the free-surface displacement be finite at the origin, which is at
the barrier waterline. Because the absolute values of Bessel functions of the second
kind are infinite at the origin, this requirement is met if AI and AR are equal in
eq. 6.49, as are the phase angles IB and RB. In region B then, let the amplitude
coefficient be BB and the phase angle be B. Equation 6.49 is now

�B = 2BB J0(2K
√

� − x) cos(
t + B) (6.54)

Because the first-order Bessel function (J0) becomes the modified Bessel function
(I0) in Region C, the free-surface displacement in this region is mathematically rep-
resented by

η C = 2BB I0(2K
√

x − �) cos(
t + B) (6.55)

where, again, I0[2K
√

(� − x)] is a modified Bessel function of the first kind, zero
order, as defined in eq. 6.51. Referring to the plots of the Bessel functions in
Appendix A, the reader can see that the coefficient of the trigonometric function
in the expression in eq. 6.54 plots as a “wavy” curve in Region B, whereas that in the
expression in eq. 6.55 plots as a diverging curve. Physically, the water motion land-
ward of the origin is that of an oscillating flume, as illustrated in Figure 6.11 and
discussed in Example 6.4. The maximum values of �B and �C at the origin occur
when the cosine terms in eqs. 6.54 and 6.55 are both equal to unity. Because the free
surface at the origin is continuous, the amplitude coefficients must be equal, as must
be the phase angles.

To determine the remaining unknowns (BB, A, and B), the boundary condi-
tions at the toe (x = 0) are used. At the toe of the barrier, we require the free-surface
displacements of Regions A and B to be equal. Mathematically,

ηA|x=0 = ηB|x=0 (6.56)

where, for a perfectly reflected wave, eq. 6.38 applied at the toe is

ηA|x=0 = (ηIA + ηRA)|x=0

(6.57)= HA cos
(A

2

)
cos
(


t + A

2

)
after some trigonometric manipulations. The expression in eq. 6.54 at the toe is

ηB|x=0 = 2BB J0(2K
√

�) cos(
t + B) (6.58)

where the wave number at the toe for the shallow-water wave is

kA ≡ k|xA = 2�√
ghAT

= 2�

�A
(6.59)

Also at the toe of the barrier, we require the equality of the slopes of the free sur-
faces, that is,

∂�A

∂x
|x=0 = ∂ηB

∂x
|x=0 (6.60)
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Figure 6.9. Amplitude-Function Ratio Versus Non-
Dimensional Water Depth. In this figure, the bed slope is
m = tan(�), as sketched in Figure 6.7.

By applying these boundary conditions and separating the coefficients of cos(
t)
and sin(
t), the desired unknown relationships are obtained. Those are the
amplitude function,

BB = HA

2
1√

J 2
0 (2K

√
�) + J 2

1 (2K
√

�)
(6.61)

and the phase angle,

A = −2 tan−1

[
J1(2K

√
�)

J0(2K
√

�)

]

= 2B

(6.62)

The dimensionless amplitude coefficient, 2BB/HA, and the phase angle, A, are
presented as functions of 2kAhA/m in Figures 6.9 and 6.10, respectively. From
the results in these figures, the reader can see that BB approaches HA/2 and A

approaches zero as the slope, m, approaches infinity (the slope of a vertical wall).
The free-surface expressions in eqs. 6.54 and 6.55 are actually equivalent

because a positive value of (� – x) results in a real number in eq. 6.54, whereas a
negative value results in an imaginary number. The latter results in the modified
Bessel function in eq. 6.55. Because of this, we can replace these two equations by
the following single equation:

ηBC = HA J0(2K
√

� − x)√
J 2

0A + J 2
1A

cos
[


t − tan−1
(

J1A

J0A

)]
(6.63)
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σAFigure 6.10. Phase-Angle Variation with Non-Dimensional Water
Depth.
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where the results of eqs. 6.61 and 6.62 have been incorporated. Also in eq. 6.63 are
the following Bessel function symbols:

J0A ≡ J0(2K
√

�) = J0

(
2kA

hA

m

)
= J0(2kA�) (6.64)

and

J1A ≡ J1(2K
√

�) = J1

(
2kA

hA

m

)
= J1(2kA�) (6.65)

The runup, R, is the maximum value of �BC at the intersection with the surface
of the barrier (see the sketch in Figure 6.7). In other words, it is the maximum height
of the uprush of water on the surface. The value of R is found from eq. 6.63 by
replacing both �BC by R and x by � + R/m while letting the angle of the cosine term
equal zero. The resulting expression is

�BC|x=�+ R
m

= R =
HA I0

(
2K
√

R
m

)
√

J 2
0A + J 2

1A

(6.66)

This equation is transcendental because R cannot be isolated. The solution of R can
be obtained using a numerical technique such as the method of successive approx-
imations, the method used in the determination of intermediate wavelength values
in Section 3.3. Again, our design goal is to ensure that the crown of the barrier is
greater than the maximum (design) value of R to prevent overtopping, that is, the
phenomenon of water passing over the barrier.

The behaviors of the waves on relatively steep inclined barriers is illustrated in
the following two examples.

EXAMPLE 6.4: TOTALLY REFLECTED WAVES ON AN INCLINED BARRIER An inclined
seawall is to be designed to protect a roadway. Up to this time, the roadway has
been protected from both waves and high water by a vertical seawall. The pur-
pose of the design is to see if inclining the seawall at an angle of 45◦ (for which
m = 1 in Figure 6.7) will increase the seawall’s effectiveness. The water depth
(hA) in the region is 1.5 m, and is uniform throughout Region A. The design
wave is one for which the period (T) is 10.0 sec and the height (HA) is 0.5 m.
The deep-water wavelength corresponding to the 10-sec period is �0 = 156 m
from eq. 3.36. To use the equations that are derived in this section, we must first
ensure that the design wave is a shallow-water wave. To make this determina-
tion, use the method of successive approximations to determine the wavelength
(�A) at the toe of the structure (see Section 3.3). The resulting wavelength is
approximately 38.0 m, a value approximately predicted by the shallow-water
expression in eq. 3.38. The depth-to-wavelength ratio is 0.0395 ∼= 1/25.3, which
satisfies the shallow-water condition in Section 3.5, that is, hA/�A < 1/20.

The behavior of the free surface over the seawall is determined from the
expression in eq. 6.63. The application of that expression to the seawall in ques-
tion results in

�BC|x≤� = 0.515J0(0.401
√

� − x) cos(0.628t − 0.248), x ≤ �
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Figure 6.11. Free-Surface Profiles at a
Flat Barrier Inclined at 45◦. Hence,
m = 1.

and

ηBC|x>� = 0.515 I0(0.401
√

x − �) cos(0.628t − 0.248), x > �

To obtain the free-surface profile landward of the toe over one period, simply
allow the angle in the cosine term to take on values of 0, �/4, �/2, 3�/2, �, and
so on. The results are sketched in Figure 6.11. The intersection of the profile
corresponding to the zero angle and the seawall is 0.526 m above the SWL. This
then is the value of the runup, R. If the seawall is vertical, then the water would
rise to a height equal to the incident wave height, HA, or 0.5 m. We conclude that
a decrease in slope causes an increase in the runup, at least in the range of 1 ≤
m ≤ ∞, and our goal of preventing overtopping is less attainable by decreasing
the face slope of the seawall.

One final comment concerning the runup on inclined barriers: Saville (1956)
conducted a series of wave tank experiments in which he studied the effects of face
slope (m), deep-water wave steepness (H0/�0), and relative toe depth (hA/H0) on
the relative runup (R/H0). He found that for a given face angle, the relative runup
varies significantly with the deep-water wave steepness, increasing as the steepness
decreases. His results are also presented in the Shore Protection Manual (see U.S.
Army, 1984).

C. Nonreflecting Beaches

We now focus our attention on beaches, which can be considered to be inclined
barriers with small slopes. In this subsection, the slope (m) of the beach is assumed
to be so small that there is no wave reflection. This is an approximation because
all beaches reflect part of the incident energy back to sea. The breaking phe-
nomenon, introduced in Chapter 3 and discussed further in Section 6.7, also reduces
the reflected energy. When waves break on a beach of unsaturated sand, then the
water (and its energy) percolates into the sand. Goda (1970) presents a breaking
index that allows the coastal engineer to predict the breaking conditions on beaches
of small slope. Based on the data of Goda and others, McCormick and Cerquetti
(2003) present empirical formulas for the use of wave analysts.

In the analysis of waves on nonreflecting beaches, the long-wave equations of
Section 6.2A are used. Referring to the sketch in Figure 6.12, the length (�) of the
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Figure 6.12. Notation for Waves on a Non-
reflecting Beach.

beach, from the toe to the shoreline, is assumed to be much greater than the length
(�A) of the incident wave. The free-surface displacement of this wave approaching
the toe of the beach is

ηA = HA

2
cos(kAx − 
t) (6.67)

where the origin of the x-axis is over the toe of the bed, as in Section 6.2B. As
the wave travels over the sloping bed of the beach, the free-surface displacement is
represented by

ηB = BB1 J0(2K
√

� − x) cos(
t + B) + B2BY0(2K
√

� − x) sin(
t + B) (6.68)

where BB1 and BB2 are amplitude coefficients.
At the toe of the beach, where x = 0, the boundary conditions of eqs. 6.56 and

6.60 apply. Physically, these respective conditions dictate that the magnitudes and
slopes of the free surfaces of the incident and transmitted waves must be equal.
From the application of the first toe condition, the following expression for the
amplitude coefficient is obtained:

BB1 = HA

2

√
Y2

0A + Y2
1A

(J1AY0A − J0AY1A)
= Y1A

J0A
BB2 = −Y0A

J1A
BB2 (6.69)

where J0A and J1A are the abbreviated notation for the Bessel functions of the first
kind, first and second order, respectively, and Y0A and Y1A are the abbreviated
Bessel functions of the second kind, all applied at x = 0 (see eqs. 6.64 and 6.65).
The phase angle in eq. 6.68 is

B = tan−1
(

Y0A

Y1A

)
= − tan−1

(
J1A

J0A

)
(6.70)

from the results in eq. 6.62. The combination of eqs. 6.68, 6.69, and 6.70 yields the
following expression for the free-surface displacement of the wave traveling on a
nonreflecting beach:

ηB = HA

2

√
Y2

0A + Y2
1A

(J0AY1A − J1AY0A)
{J0(2K

√
� − x) cos(
t + B)

+ Y0(2K
√

� − x) sin(
t + B)} (6.71)

where K is defined in eq. 6.50.

EXAMPLE 6.5: SHOALING ON A NONREFLECTING BEACH The incident waves in
Example 6.4 approach a beach having a 1/1000 (rise over run) slope, that is, m =
0.001. From Example 6.4, the toe of the beach is in 1.5 m of water (hA = 1.5 m),
where the incident wave has a height (HA) of 0.5 m and a period (T) of 10 sec.
In that example, we find that the deep-water wavelength (�0) is 156 m. The
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wavelength (�A) of the shallow-water wave is approximately 38.4 m, so the toe
of the beach is about 39 wavelengths from the shoreline. Our interest is in the
maximum free-surface displacement at a site halfway between the toe and the
shoreline, that is, at x = �/2 = 750 m.

The small slope results in large arguments of Bessel functions. For large
arguments (s), the Bessel functions can be approximated by

J0(s) � −Y1(s) �
√

2
�s

cos
(

s − �

4

)
+ O

[
1
s

]
(6.72)

and

J1(s) � Y0(s) �
√

2
�s

sin
(

s − �

4

)
+ O

[
1
s

]
(6.73)

from Abramowitz and Stegun (1965). The notation O[1/s] in these expressions
signifies the order of magnitude of the remaining terms. The approximations are
valid for s ≥ 15. For the m = 0.001 beach, 2K

√
� � 491.384, and the values of

the Bessel Functions are J0A � −Y1A � 0.031411 and J1A � Y0A � 0.017576. At
the site, where x = �/2, we have 2K

√
(�/2) � 347.461. For this value, the Bessel

functions are J0(�/2) � −Y1 � 0.019402 and J1(�/2) � Y0(�/2) � 0.038154. The
numbers of terms retained to the right of the decimal points might seem spuri-
ous; however, they are required for the accuracy of the trigonometric functions.
The angles of these functions are in radians.

After a few trigonometric manipulations, the approximation of the expres-
sion in eq. 6.71 is

ηB = HA

2

(
�

� − x

)1
4

cos
(

2K
√

� − x − �

4
+ 
t + B

)

= HB

2
cos[2K(

√
� − x −

√
�) + 
t] = HB

2
cos[2K(

√
� − √

� − x) − 
t]

(6.74)

From the definition of the shoaling coefficient (KS) in eq. 3.78, we find the fol-
lowing relationships for the wave heights:

HB

HA
= HB

H0

H0

HA
= KSB

KSA
=
(

hA

hB

)1/4

(6.75)

By applying the shoaling coefficient expression to the shallow-water conditions
at A and over the beach, we find that the relationship in eq. 6.75 can also be
obtained using Airy’s linear theory discussed in Chapter 3. The linear theory
can also be used to determine the celerity cB and the wavelength �B. To prove
this statement, simply “ride” with the crest of the wave so that the angle of the
cosine in the last term in eq. 6.74 appears to be constant. The time-derivative
of the constant angle leads to the same shallow-water celerity expression as
the linear theory expression in eq. 3.38.

From the results in Example 6.5, we see that for nonreflecting beaches of small
slope, Airy’s linear theory yields the same wave height, celerity, and wavelength
expressions as the theory outlined in this section for 2K

√
(�−x) ≥ 15. For values

less than 15, the expressions in eqs. 6.70 and 6.71 must be used.
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Figure 6.13. Step Approximation for a Rising Sea
Bed.

D. Reflection from a Bed of Intermediate Slope

Up to this point, our study of wave reflection has been focused on totally reflect-
ing vertical or near-vertical surfaces and on nonreflecting beaches. For both, the
surfaces are assumed to be flat and surface-piercing. We now introduce an approxi-
mate method for determining the partial reflection from beds of arbitrary slope that
may or may not be surface piercing.

As done by Rey, Belzons, and Guazzelli (1992), Twu and Liu (1999), and others,
assume that the bed sketched in Figure 6.13a can be approximately represented by a
series of small steps as in Figure 6.13b. The height (�h) and length (�x) of each step
are related to each other by the local bed slope, m(x), according to

�h
�x

= −m(x) (6.76)

The analysis can also be applied to down-sloping beds by simply changing the sign
of m in eq. 6.76. The steps are assumed to reflect only the portion of the wave that is
incident upon them, that is, a step reflects the energy in a vertical distance �h from
the base of the step. After the wave passes over the nth step, the wave is assumed
to have fully adjusted to the new water depth, which is (hn − �h) for the negatively
sloping bed. The energy of the reflected mini-wave is then subtracted from that of
the total of the incident wave, and the difference is the energy transmitted to the
next step.

In the following derivation, the reflective bed surface is assumed to be flat, hav-
ing a constant slope of −m, and extending from a horizontal bed of depth ha to a
horizontal bed of depth hb, as illustrated in Figure 6.13. The sloping bed is approx-
imated by N steps of equal size, although the equality of step size is not a require-
ment. If the horizontal length of the bed is L, then

ha − hb

N
= m

L
N

(6.77a)



6.2 Reflection from Inclined Barriers – The Long-Wave Equations 183

Also, for any depth ha > h(x) > hb, we can write

ha − h(x)
n

= m
x
n

(6.77b)

where n is the number of the step and 1 ≤ n ≤ N. As is done by Twu and Liu (1999),
we assume that the wave passing over any step is linear and that the sloping bed
ends at the shoreline. The latter assumption then requires that hb = 0. Twu and Liu
further assume that the total energy of the reflected mini-wave is proportional to
its kinetic energy. Mathematically, the time-averaged energy per unit volume of the
mini-wave reflected from the nth step is

en ∝ 1
T

T∫
0

�

2

(
u2

n + w2
n

)∣∣
h=hn

dt

∝ cosh2[kn(z + hn)] + sinh2[kn(z + hn)] = cosh[2kn(z + hn)] (6.78)

where ub and wn are the respective horizontal and vertical velocity components of
the fluid particles. By using the energy relationships of the reflected mini-wave, both
over the step and over the depth ha, we can write the expression for the wave height
of the reflected mini-wave over ha in terms of the incident wave height Ha. The
result is

Hn = Ha

�n

√
cosh2[kn(z + ha)] (6.79)

where

�N ≡
N−1∑
n=0

√
cosh

(
2nka

ha

N

)
(6.80)

One must keep in mind that the reflected mini-waves, when passing over the bed of
depth ha, have the same wavelength (and wave number) as the incident wave. The
properties that differ in the incident and reflected waves are the wave height and
the phase between the waves. These mini-waves coalesce to form the one reflected
wave over ha. The free-surface displacement of that wave is

�R = Ha

2�N

{
N−1∑
n=0

√
cosh

(
2nka

ha

N

)
cos
(

ka x + 
t − nka
2L
N

)}

= Ha

2�N

{
N−1∑
n=0

√
cosh

(
2nka

ha

N

)[
cos
(

ka x + 
t
)

cos
(

nka
2L
N

)

+ sin(ka x + 
t) sin
(

nka
2L
N

)]}

= HR

2
cos(ka x + 
t − R) = HR

2
[cos(ka x + 
t) cos(R)

+ sin(ka x + 
t) sin(R)] (6.81)

In eq. 6.81, the wave height HR is that of the reflected wave and R is the phase
angle between the incident wave and the reflected wave. In the first equality of eq.
6.81, the phase angle nka(2L/N) is based on the total distance that the mini-wave
(reflected by the nth step) must travel from the toe of the bed to the step and back to
the toe. Because of the coefficients of cosine and sine terms of the second and fourth
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Figure 6.14. Convergence for the Reflection Coefficient (KR)
and the Phase Angle (R) for Bed Slope (m) of 0.5 and a
Wave Period (T) of 7 sec.

equalities, eq. 6.81 is actually a system of two equations with two unknowns, those
unknowns being HR and R. Hence, these two wave properties can be determined.
The resulting expressions for these respective properties are

HR = Ha

2�N

×

√√√√√



N−1∑
n=0

√√√√cosh

(
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N

)
cos

(
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)


2

+



N−1∑
n=0

√√√√cosh

(
2nka
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N

)
sin

(
nka

2L
N

)]


2

= Ha KR (6.82)

were KR is the reflection coefficient, and,

R = arctan

{
N−1∑
n=0

√
cosh

(
2nka

ha

N

)
sin
(

nka
2L
N

)}
{

N−1∑
n=0

√
cosh

(
2nka

ha

N

)
cos
(

nka
2L
N

)} (6.83)

Obviously, the accuracy of the step method depends on the number N of
steps chosen. Twu and Liu (1999) show that for some incident wave-steepness and
bed-slope combinations, a good reflection coefficient convergence (in eq. 6.82) is
obtained by using as few as seven steps. However, we found that the convergences
for the phase angle in eq. 6.83 requires more steps. This is illustrated in the following
example.

EXAMPLE 6.6: CONVERGENCE OF THE REFLECTION COEFFICIENT AND PHASE ANGLE

A 7-sec deep-water wave approaches a bed having a slope (m) of 0.5. The value
of kh corresponding to the first shoaling contour (where h0 = �0/2) is the deep-
water value, that is, k0h0 = �. This value is that of kaha in eqs. 6.82 and 6.83.
From those respective equations, the convergences of KR and R are shown in
Figure 6.14. From the results in Figure 6.14, the reader can see that the reflection
coefficient value is approximately 0.24, with a satisfactory convergence obtained
with 30 steps. For the phase angle, the value of approximately −1.32 radians is
obtained with 50 steps.

Although the expressions in eqs. 6.82 and 6.83 appear to be somewhat “messy,”
they are quite straightforward, and are not difficult to program for a computer.
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Figure 6.15. Reflection Coefficients from Eq. 6.82 and
Experiments of Bourodimus and Ippen (1966).

EXAMPLE 6.7: REFLECTION FROM A BED TRANSITION In this example, we apply the
analysis of Twu and Liu (1999) to a bed having a rising transition in the direc-
tion of wave travel, as sketched in Figure 6.13. In that sketch, we see that the
bed has a depth of ha before the rise and hb following the rise. The relationships
of these limiting water depths, the length (L) and the slope (m) of the transition,
are found in eq. 6.77a. The values used in this example are those studied experi-
mentally by Bourodimus and Ippen (1966). The water depths in that experiment
are varied, as are the wave periods. The fixed experimental parametric values
are L = 2.44 m and m = 0.125. Values of the reflection coefficient obtained
from eq. 6.82 and the Bourodimus-Ippen experiment are presented in Figure
6.15. The parameter kbL(hb/ha) is that used by Bourodimus and Ippen (1966).
Comparing the theoretical and experimental results in Figure 6.15, we see that
the agreement between the predicted and observed values is good for the water
depths and periods of the experiment. Hence, the expansion method of Twu
and Liu (1999) can be used to predict the values of the reflection coefficient, not
only from beaches but from transitions of the bed.

We now consider waves approaching shoals and beaches at angles greater than
zero. The direction of these waves is altered by the changing depth of the bed – a
process called refraction.

6.3 Refraction without Reflection – Snell’s Law

Refraction occurs when a wave approaches the bottom contours at some nonzero
angle. To understand the phenomenon, consider the case of linear deep-water waves
obliquely approaching a shoreline over a bed having straight and parallel contours,
sketched in Figure 6.16. The case of pure shoaling over a similar bed is sketched in
Figure 3.17. For the case of refraction, the deep-water wave crests are at an angle
�0 to the first shoaling contour, that contour being at a depth (h0) approximately
equal to �0/2, assuming the linear wave theory of Chapter 3. Assume that a portion
of the wave is traveling in a fictitious channel having vertical walls (called orthogo-
nals) separated by a distance b along the crest. In deep water, this distance is b0. In
the analysis, assume that the energy flux (P) between orthogonals does not vary as
the wave approaches the shoreline. From this assumption, the energy flux between
orthogonals at any point in the shoal is equal to the energy flux in deep water. Math-
ematically, this condition is

P0b0 = �gH2
0 cg0 b0

8
= Pb = �gH2cgb

8
(6.84)
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Figure 6.16. Area Sketch of Refracting
Waves on a Beach Having Straight and
Parallel Bottom Contours. The wave
fronts are curved because the celerity val-
ues change along the wave fronts due to
the decreasing water depth – the process
called refraction.

From this equation, we obtain the following relationship between the deep-
water wave height and that over any bed contour, which is

H
H0

=
√

cg0

cg

√
b0

b
≡ KSKr (6.85)

where KS is the shoaling coefficient and Kr is called the refraction coefficient. In this
section, the expression for the shoaling coefficient is that in eq. 3.78. To determine
the values of the refraction coefficient, assume that the first shoaling contour is a
nonreflecting step, as sketched in Figure 6.17. Hence, we can construct two triangles
having a common hypotenuse of length Y0, called the alongshore distance, over the
deep-water contour. From geometric considerations, we can write

b0

b
= Y0 cos(�0)

Y0 cos(�)
= cos(�0)

cos(�)
= K2

r (6.86)

and

Y0

Y0
= 1 = �0/ sin(�0)

�/ sin(�)
= c0/ sin(�0)

c/ sin(�)
(6.87)
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Figure 6.17. Wave Refraction over a Nonreflecting Step. The
waves are assumed to be instantly bent as the waves pass
over the step.
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From eq. 6.86, we obtain the following expression for the refraction coefficient:

Kr =
√

cos(�0)
cos(�)

(6.88)

The relationship between the wavelength and celerity with the wave angle is
obtained from eq. 6.87, which is

�0

�
= c0

c
= sin(�0)

sin(�)
(6.89)

This relationship is called Snell’s law, as in the fields of optics and acoustics. The
expression in eq. 6.89 is somewhat misleading. It appears that the wavelength ratio
and the celerity ratio are functions of the wave angle. This is not the case because
the wavelength and celerity are only functions of the water depth and wave period,
as derived in Chapters 3 and 4. Snell’s law then shows the dependence of the wave
angle on the wavelength (or celerity).

The wave height relationship in eq. 6.85 can now be written as

H
H0

=
√

cg0 cos(�0)
cg cos(�)

=
√

cos(0)
cos(�)

√
cg0

cg

√
cos(�0)
cos(0)

= H′

H′
H′

H′
0

H′
0

H0
(6.90)

These relationships need some explanation. We shall see in Chapter 7 that most
of the empirical formulas available to predict breaking and runup on beaches result
from experiments that are without refraction. It is common practice to use the prime
(′) to indicate pure shoaling, as is done in eq. 6.90. Unfortunately, it is also common
practice to use the prime to represent the spatial derivatives, as in Chapter 9. In this
chapter, the primes represent pure shoaling. Because the celerity and, therefore,
the group velocity are independent of the wave angle, the middle terms of the last
equality of eq. 6.90 must be equal; that is, the equivalent purely shoaling wave height
ratio is

H′

H′
0

=
√

cg0

cg
(6.91)

The last terms of the last equality of eq. 6.90 can be also be equated. From this
equality, we obtain the equivalent deep-water wave height expression, which is

H′
0 = H0

√
cos(�0) (6.92)

as cos(0) = 1. The importance of this last relationship will be demonstrated later in
this chapter.

EXAMPLE 6.8: SHOALING AND REFRACTION ON A STRAIGHT, PARALLEL CONTOURED

BEACH Deep-water 1.0-m, 7-sec waves approach a beach having a bed slope
(m) of 0.05. On Monday, the waves approach directly (�0 = 0◦ in Figures 6.16
and 6.17), whereas on Tuesday, waves having the same wave height and period
approach at a deep-water angle of 45◦. To determine how refraction affects the
wave height, we compare the wave heights at a water depth of 3 m on the two
days. The onshore distance traveled by the incident waves from the h0 (= �0/2)
contour to the site contour is L = (h0 − h)/m � 70 m. The deep-water wave-
length and celerity values are obtained from eq. 3.36, and the group velocity
value for the deep-water waves is obtained from eq. 3.64. Those respective
values are �0 � 76.5 m, c0 � 10.9 m/s, and cg0 � 5.45 m/s. From eq. 3.31, the
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respective wavelength and celerity values at the site are � � 36.4 m and c � 5.20
m. The group velocity at the site is cg � 4.79 m/s from eq. 3.63. As expressed
by the expression in eq. 6.89, Snell’s law yields a wave angle at the site of
� � 19.7◦. The shoaling coefficient and refraction coefficient values are, respec-
tively, KS � 1.0682 (from eq. 3.78) and Kr � 0.8665 (from eq. 6.88). These values
applied to eq. 6.85 yield a wave height value of H � 0.926 m. For Kr = 1 (pure
shoaling), H′ � 1.0682 m.

The results of Example 6.8 show that the effect of depth-induced refraction is
to retard the growth of the wave height. From eq. 6.88, we see that the refraction
coefficient is equal to or less than one. The results in Figures 3.18 and 3.19 show that
the shoaling coefficient can be equal to, less than, or greater than one, depending on
the ratio of the values of the water depth at the site and the wavelength.

Assuming that the incident wave properties (height, period, and wave angle)
and water depth values are known, the procedure in solving refraction problems is
as follows:

(a) Determine the incident wavelength, celerity, and group velocity.
(b) Determine the wavelength, celerity, and group velocity at the site.
(c) Using the results in (a) and (b) determine the wave angle at the site using Snell’s

law (eq. 6.89).
(d) Determine the value of the shoaling coefficient from eq. 3.78.
(e) Using the site wave angle value from (c) determine the refraction coefficient

from eq. 6.88.
(f) Determine the wave height at the site from eq. 6.85.

More will be said of refraction later in this chapter in the discussion of the mild-slope
equation.

6.4 Diffraction

When waves travel past a body, a region called the shadow zone is created in the lee
(down-wave) of the body. The water particles in this region are shielded from the
incident waves approaching the body on the weather (up-wave) side. To illustrate,
consider the situation sketched in Figure 6.18. In that figure, linear waves are inci-
dent upon a large-diameter circular cylinder. The term “large” here means that the
diameter (D) of the cylinder is of the order of magnitude of the incident wavelength
(�). In the natural processes, nature avoids energy voids. Because the shadow zone
is a region of no direct wave energy, energy is transferred into the shadow zone by
the process called diffraction. We can define diffraction then as the transfer of wave
energy in a direction that is parallel to the wave front and into regions of lower wave
energy.

A classic of water-wave diffraction theories is that of Penny and Price (1944,
1952). That theory was extended and applied to engineering situations by Put-
nam and Arthur (1948), Blue and Johnson (1949), Johnson (1952), and Wiegel
(1962). These studies are discussed and summarized in the book by Wiegel (1964).
Graphical results of both Johnson (1952) and Wiegel (1962) are found in the Shore
Protection Manual of the CERC of the U.S. Army Corps of Engineers (see U.S.
Army, 1984). The diffraction theory of Sommerfeld (1896), which is applied to
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Figure 6.18. Waves Incident on a Large-Diameter Vertical
Cylinder. The shadow zone is the region into which wave
energy is transferred by the process called diffraction.

Fresnel-Kirchhoff diffraction of light waves, can be considered to be a foundation
for the twentieth-century water-wave diffraction theories. Penny and Price (1944,
1952) modified that theory for application to water waves incident on both fully
reflecting and totally absorbing semi-infinite breakwaters and, in addition, to waves
passing through a gap separating the heads (ends) of a pair of semi-infinite break-
waters.

The Penny-Price diffraction analyses are presented here following an introduc-
tory discussion of diffraction phenomenon. The introductory discussion of diffrac-
tion is rather lengthy because it is intended to describe to the reader how the equa-
tions evolve. For application of the diffraction theory to breakwaters, the book by
Wiegel (1964) is recommended. In addition, the reader is also encouraged to consult
the book by Elmore and Heald (1985) for a thorough coverage of the mathematical
physics of the diffraction of other wave forms, including light and sound waves.

A. Huygens’ Principle

The diffraction phenomenon occurs in all wave forms, such as acoustic and optical
waves. The earliest analytical works in wave diffraction were in the field of optics.
One of these works was by the Dutch physicist Christian Huygens, who in 1678
derived a geometrical theory based on the assumption that light is a wave phe-
nomenon, according to Halliday and Resnick (1978). Shortly before this, Robert
Hooke had proposed that light was a traveling wave phenomenon, as noted by
Elmore and Heald (1985). Referring to the sketch in Figure 6.19, an important
concept attributed to Huygens is that the wave front at a time t + �t is the tan-
gential surface to hemispherical wavelets originating on the front at time t. This is
called Huygens’ principle, and is used today as a basic principle in the analyses of
both refraction and diffraction of different types of waves. The books by Sommer-
feld (1954), Halliday and Resnick (1978), and Elmore and Heald (1985) are rec-
ommended for excellent discussions on the diffraction phenomena and Huygens’
principle. A variation of Huygens’ principle is used in the analysis of waves on the

t

t + ∆t
c

r

x

y

Wave Front

Figure 6.19. Advancing Wave Fronts
According to Huygens’ Principle. Each
point on the wave front at time t is the
source of a hemispherical wavelet. The
wavelets coalesce at time t + �t, form-
ing the new wave front.
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Figure 6.20. Wave Reflection and Diffraction at a Semi-Infinite Breakwater in Waters of Uni-
form Depth. Note that there are two shadow zones, one for the incident waves and one for
the reflected waves. The case of perfect reflection is sketched.

free surface of a liquid. In that case, Huygens’ wavelets are assumed to be semi-
cylindrical rather than hemispherical. This variation of Huygens’ principle is used
herein.

B. Basic Equations and Boundary Conditions in the Analysis of Diffraction

Consider incident linear water waves approaching a thin, semi-infinite breakwater,
as sketched in Figure 6.20. The water depth (h) is assumed to be uniform in the
neighborhood of the breakwater. Let the waves be traveling in the direction of the
s-coordinate, where the velocity potential (similar to that in eq. 3.23) is

�I = �Ie−i
t = HI

2
g
kc

cosh[k(z + h)]
cosh(kh)

sin(ks − 
t)

= HI

2
g
kc

cosh[k(z + h)]
cosh(kh)

sin[k[x cos(�I) + y sin(�I)] − 
t] (6.93)

= Z(z)�{ieik[x cos(�I )+y sin(�I )]−i
t}
where the subscript I identifies the incident wave properties. When the wave clears
the head (end) of the breakwater, the process of diffraction begins. The velocity
potential is altered due to diffraction, and can be written in complex form as

�D = �De−i
t = HI

2
g
kc

cosh[k(z + h)]
cosh(kh)

�{(x, y)e−i
t } (6.94)

where the subscript D is used to identify the diffracted wave properties. The nota-
tion � is used to represent the time-independent part of the velocity potential. The
spacial function, F(x,y), is to be determined. The velocity potential in eq. 6.94 must
satisfy Laplace’s equation, eq. 3.8, which is the mathematical expression for the
equation of continuity for an incompressible, irrotational flow. When the expres-
sions in eqs. 3.8 and 6.94 are combined, the result leads to

∇2�D = ∂2�D

∂x2
+ ∂2�D

∂y2
+ k2�D = 0 (6.95a)
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The latter equality of this equation is called the Helmholtz equation. An alterna-
tive form of eq. 6.95a is obtained by using polar coordinates. The resulting expres-
sion is

∂2�D

∂r2
+ 1

r
∂�D

∂r
+ 1

r2

∂2�D

∂�2
+ k2�D = 0 (6.95b)

Our task is to solve either of these equations, subject to boundary conditions.
Referring to Figure 6.20, the boundary conditions are both on the breakwater

and well away from that structure (for practical purposes, at an infinite distance
away from the structure). We can treat the breakwater as being either rigid (being
totally reflective) or compliant (being totally absorbent). The boundary condition
for the rigid (reflecting) breakwater is that the normal velocity component of the
water adjacent to the wall equals zero. Mathematically, this condition is

∂�D

∂x

∣∣∣∣
x =0

y≤0
= 0,

1∂�D

r∂�

∣∣∣∣
r>0

�=2�

= 0 (6.96)

In the first of these relationships, the notation x− is used to indicate the weather side
(upwave) of the zero-thickness breakwater. For the compliant (absorbent) break-
water, the structure somehow responds to the wave such that the pressure along the
structure is independent of time. From the linearized form of Bernoulli’s equation –
eq. 2.70, where f (t) = 0 – the dynamic pressure is zero. In terms of the velocity
potential, this condition is mathematically expressed by

�

[
∂�D

∂t

∣∣∣∣
x =0

y≤0

]
e−i
t = −i


[
�D
∣∣x =0

y≤0

]
e−i
t = 0 (6.97a)

and

�

[
∂�D

∂t

∣∣∣∣
r>0

�=2�

]
e−i
t = −i


[
�D
∣∣r>0
�=2�

]
e−i
t = 0 (6.97b)

Note that these conditions avoid the trivial condition of 
 = 0.
Let us obtain a general solution of eq. 6.95b. To do this, assume a product solu-

tion of the form

�D = cosh[k(z + h)]
cosh(kh)

P(r)�(�) = cosh[k(z + h)]
cosh(kh)

F(r, �) (6.98)

where the z-function is due to the seafloor condition, as in eq. 6.94. The combination
of eq. 6.98 and eq. 6.95b leads to the following radial component expressions:

Pa(r) = J0(kr)

Pb(r) = Y0(kr)

Pc(r) = H(1)
0 (kr) ≡ J0(kr) + iY0(kr)

Pd(r) = H(2)
0 (kr) ≡ J0(kr) − iY0(kr)

(6.99a)

where the functions on the right sides of the equations are zero-order Bessel func-
tions. See Appendix A for a summary of the properties of these functions, and
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Abramowitz and Stegun (1965). The following approximations of the Bessel func-
tions are valid if kr is very large:

Pa(r) = J0(kr) →
√

2
�kr

cos
(

kr − �

4

)
as kr → ∞

Pb(r) = Y0(kr) →
√

2
�kr

sin
(

kr − �

4

)
as kr → ∞

Pc(r) = H(1)
0 (kr) ≡ J0(kr) + iY0(kr) →

√
2

�kr
ei (kr− �

4 ) as kr → ∞

Pd(r) = H(2)
0 (kr) ≡ J0(kr) − iY0(kr) →

√
2

�kr
ei (kr− �

4 ) as kr → ∞

(6.99b)

For very small values of kr, the following approximations of the Bessel functions of
the first and second kind are valid:

Pa(r) = J0(kr) → 1, kr � 1

Pb(r) = Y0(kr) → 2
�

ln(kr), kr � 1
(6.99c)

In our analysis, derivatives of these Bessel functions are required. For any of the
zero-order Bessel functions, say B0(kr), the derivative is

dB0(kr)
dr

= −kB1(kr) (6.99d)

The far-field approximations in eq. 6.99b show that the solutions represent wave
forms having amplitudes that decrease in the radial direction. Each possible solution
satisfies the Sommerfeld radiation condition, the derivation of which can be found in
the book of Sommerfeld (1949) for both spherical and cylindrical waves. The book
by Brebbia and Walker (1979) also has a rather extensive discussion of the radiation
condition. For cylindrical water waves, the Sommerfeld radiation condition is

lim
r→∞

[√
r
(

∂�

∂r
− ik�

)]
= 0 (6.100)

C. Modified Huygens-Fresnel Principle

According to Elmore and Heald (1985), Augustus J. Fresnel in 1818 combined
Huygens’ principle (assuming hemispherical wavelets) with Thomas Young’s prin-
ciple of interference to account for the phenomenon of diffraction. The result was
a basic analysis of the phenomenon. The Huygens-Fresnel principle is used here to
give the reader a better understanding of how diffraction of water waves occurs.
There is one major difference in the analysis of water-wave diffraction, which is that
the wavelets in the water-wave applications are assumed to be cylindrical in form
rather than hemispherical.

Following Lindsay (1960), begin by considering three points in Figure 6.21.
Those points are PS (a source of semicylindrical waves outside a harbor entrance),
point PS’ (on the y-axis in the entrance gap separating the heads of the breakwa-
ters), and point PO (within the harbor). The harbor has a surface area, A. The small
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Figure 6.21. Semicylindrical Wavelets Transmit-
ting Energy into a Harbor Formed by Totally
Absorbent Boundaries.

circle, C2, surrounding PO defines a region that is outside of the area A. This small-
radius circle is a mathematical artifice required in the analysis. The entrance gap
(x = 0, 0 ≤ y ≤ L) is considered to be a part of the boundary of the enclosure. As
is done by Elmore and Heald (1985), we refer to point PS as a source point of semi-
cylindrical wavelets at time t = 0, PS’ as a secondary source point of semicylindrical
wavelets in the gap between the heads of the breakwater at time t = t ′, and PO as an
observer point, where wavelets from PS

′ arrive at time t = t′. Because our attention
is given to the free surface, we can use the linearized dynamic free-surface condi-
tion of eq. 3.6 to represent the free-surface deflection at PO in terms of the velocity
potential. The result is

ηPo
= −1∂�Po

g ∂t
|z=0 = 


g
F(r,�)e−i
t (6.101)

where r is the directed distance from the observation point to the secondary source
point and 
 = 2�/T is the circular wave frequency. The spacial function F(r,�) is
similar to the function F(x,y) in eq. 6.98. Again, the water is assumed to be of uni-
form depth. Our goal is to determine the free-surface deflection (�O) at the obser-
vation point (PO) that results from the wavelets produced at all of the secondary
source points (PS’) across the gap.

The function F(r,�) must satisfy the Helmholtz equation, similar to that in
eq. 6.95, that is,

∇2 F + k2 F = 0 (6.102)

To help us determine F(r,�), we introduce the function G(r,�), which is to be deter-
mined. We require this function to also satisfy the Helmholtz equation, so we can
write

∇2G + k2G = 0 (6.103)

The solutions of the Helmholtz equation are given in eq. 6.99. Hence, G(r,�) can
either be one of these solutions or a sum of the solutions. The two-dimensional
Green’s theorem of eq. C8 in Appendix C is now applied to F(r,�) and G(r,�). The
result of this application is∫∫

A
[G∇2 F − F∇2G]dA =

∫∫
A

[−Gk2 F + Fk2G]dA≡ 0

=
∫
C

[
G

∂ F
∂n

− F
∂G
∂n

]
dC (6.104)
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where eqs. 6.102 and 6.103 are incorporated. The area of the water surface bounded
by the borders C1 and C2 is A. Now, noting that r is in the opposite direction of the
outward normal coordinate n2 on the circle C2, perform the line integrations over
C1 and C2 to obtain

∫
C1

[
G

∂ F
∂n1

− F
∂G
∂n1

]
dC +

2�∫
0

[
G
(

− ∂ F
∂r

)
− F

(
− ∂G

∂r

)]
rd�|r=R = 0 (6.105)

where the second integral is over the C2 contour. We choose G(r,�) to be equal
to H0

(1)(kr), where the Hankel function is defined in eq. 6.99a. This function has a
singularity at the observation point, PO. We are not concerned about the singularity
because the point is within the circle and, therefore, not in area A. The chosen radial
function is a form of Green’s function, discussed in Section D2 of Appendix D. The
function applied to the internal boundary C2 is

G(r, �)|r=R = G(R) = H(1)
0 (kr)|r=R

= [J0(kr) + iY0(kr)]|r=R →
[

1 + i
2
�

ln(kR)
]

, kR � 1 (6.106)

where, again, the radius (R) of the circle is very small, that is, much smaller than the
wavelength (�). From eq, 6.99d, the derivative of this function with respect to the
outward normal direction on C2 is

dG
dn2

= −dG
dR

= kH(1)
1 (kR)

= k[J1(kR) + iY1(kR)] → k
[

kR
2

+ i
2

�kR

]
, kR � 1 (6.107)

In the integration over C2 (the second integral in eq. 6.105), combine eqs. 6.105
through 6.107 and pass to the limit as R → 0. By this process, one sees that the
singularity at the observation point is excluded. The resulting expression is∫

C1

[
G

∂ F
∂n1

− F
∂G
∂n1

]
dC + i4FPo = 0 (6.108)

By combining eqs. 6.106 and 6.107 with this expression, and noting that r cos(�) is
in the direction of n1 over the gap (the only region of C1 that contains the secondary
source points), the value of F(r,�) at the observation point is found to be

FPo = i
4

∫
c1

[
H(1)

0 (kr)
∂ F
∂n1

+ FkH(1)
1 (kr) cos(�)

]
dC (6.109)

Physically, this expression represents the contributions of all of the wavelets gen-
erated over the active part of boundary C1, which is the gap. For the situation
in Figure 6.21, the wavelets are produced by all of the secondary source points
across the gap. So, the expression in eq. 6.109 applied to the harbor sketched in Fig-
ure 6.21 is

FPo = i
1
4

L∫
0

[
H(1)

0 (kr)
∂ F
∂n1

+ FkH(1)
1 (kr) cos(�)

]
dy′ (6.110)

which is mathematically analogous to Huygens’ principle.
As stated previously, the source point (PS) emits semicylindrical sinusoidal

wavelets. The source point is assumed to be many wavelengths away from the gap.
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The value of the function F(rS,�S) at the gap is then assumed to be of the form

F(rs, �s) ≡ FP′
s
= BF√

rs
eikrS (6.111)

where BF is a dimensional constant. Note that the angle �S is not present in this
equation. The reason is that the wavelets are radiated uniformly between two points.
The normal derivative of the function at the gap involves �S because the direction
of the derivative depends on the orientation of the gap. Because rS cos(�S) is in the
opposite direction of the outward normal vector, n1, the normal derivative of the
expression in eq. 6.111 is

dFP′
S

dn1
= − dF

drS
cos(�S)

= −BF

(
− 1

2rS
+ ik

)
1√
rS

eikrS cos(�S) = BF

(
1

2rS
− ik

)
FP′

S
cos(�S) (6.112)

Similarly, assuming that PO is many wavelengths from the gap, G(r,�) in eq. 6.106
and its derivative in eq. 6.107 at the gap are

GP′
S
= H(1)

0 (kr) → BG

√
1
r

eirk, kr � 1 (6.113)

and
dGP′

S

dn1
= dG

dr
cos(�) = −kH(1)

1 (kr) cos(�)

→ −BG

√
1
r

(
1
2r

− ik
)

eikr cos(�), kr � 1 (6.114)

Note that the phase angle �/4 in the limiting functions of eq. 6.99 is neglected in
eqs. 6.113 and 6.114 because it can be absorbed into a complex coefficient BG. Com-
bine the expressions in eqs. 6.111 through 6.114 with that in eq. 6.110. The resulting
expression for large values of kr and krS is

FPo = i
BFG

4

L∫
0

[(
1

2rS
− ik

)
cos(�S) +

(
1
2

− ik
)

cos(�)
]

eik(r+rS)

√
rrS

dy′

� BFGk
2

L∫
0

[
cos(�S) + cos(�)

2

]
eik(r+rS)

√
rrS

dy′ (6.115)

where BFG = BFBG. The approximation in eq. 6.115 is called the Fresnell-Kirchhoff
diffraction formula, and is based on the assumption that both PS and PO are far
(many wavelengths) from the gap. The derivation of the formula is due to the
German physicist Gustav Kirchhoff (the co-inventor of the spectroscope). The for-
mula is difficult to work with; however, the derivation is physically enlightening and,
for this reason, it is presented here.

Assuming that the bed is uniform in Figure 6.21, the free-surface displacement
at the observation point is obtained by combining the expressions in eqs. 6.101 and
6.115. The result is

�Po = − 1
g

∂�Po

∂t

∣∣
z=0 � B


k
2g

L∫
0

[
cos(�S) + cos(�)

2

]
ei[k(r+rS)−
t]

√
rrS

dy′ (6.116)
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In summary, the physical reasoning leading to the expression in eq. 6.116 is the
following: The free-surface displacement at the observation point leeward of the
boundary results from Huygens-type semicylindrical wavelets originating at and dis-
tributed across the gap, and arriving simultaneously at the observation point. The
integral equation is basic to the derivation of the Sommerfeld (1896) diffraction the-
ory of light, upon which the Penny-Price (1952) diffraction analysis of water waves
is based.

There are a few geometric manipulations and approximations, due to Fresnel,
that must be performed before we arrive at the Penny-Price analysis. These are
based on the assumptions that, first, the aperture width (L) is small compared to
both r and rS, and second, both the source point (PS) and observation point (PO) are
relatively close to the centerline of the gap. The first of these assumptions requires
the gap to be approximately a slit in the vertical breakwater. With these assump-
tions, the cosines of the angles �S and � are

cos(�S) = |xS|
rS

� cos(�) = x
r

(6.117)

The separation distances of the points can be represented by

rS =
√

x2
S + (y′ − yS)2 = |xS|

√
1 + (y′ − yS)2

x2
S

� |xS|
[

1 + 1
2

(
y′

xS

)2
]

(6.118)

and

r =
√

x2 + (y − y′)2 = x

√
1 + (y − y′)2

x2
� x

[
1 + 1

2

(
y′

x

)2
]

(6.119)

The approximations in eqs. 6.118 and 6.119 are used in the exponent of the inte-
grand of eq. 6.116. In the coefficient of the exponential term of the integrand, we
can assume rS � xS and rO � xO to obtain

1
2

[
cos(�S) + cos(�)√

rSr

]
= 1

2

( |xS|
rS

+ x
rO

)
1√
rSr

� 1√|xS|x
(6.120)

Again, the last approximation is based on the assumption that the source point and
the observation point are near the centerline of the gap. With the relationships in
eq. 6.117 and the approximation in eqs. 6.120, the integral equation in eq. 6.116 is
approximately

ηPO
� B


k
2g

e−i
t ek(x+|xS|)
√

x|xS|

L∫
0

ei �
�

(
1
x + 1

|xS |
)

(y′)2

dy′ (6.121)

In the integral of eq. 6.121, let

u = y′
√

2
�

(
1
x

+ 1
|xS|

)
(6.122)

The expression in eq. 6.121 becomes

ηPO
� B


k
2g

e−i
t ei�(x+|xS|)
√

�

2(x + |xS|)

uL∫
0

ei �
2 u2

du (6.123)
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where the upper limit of the integral is the variable (introduced in eq. 6.122) evalu-
ated at y′ = L.

By using Euler’s identity, the integral in eq. 6.123 can be written as

uL∫
0

ei �
2 u2

du =
uL∫

0

cos
(�

2
u2
)

+ i

uL∫
0

sin
(

�

2
u2
)

du

≡ C(uL) + i S(uL) = −C(−uL) − i S(−uL) (6.124)

The integrals C(uL) and S(uL) are called Fresnel integrals. See Abramowitz and
Stegun (1965) for the details of these integrals. From the last equality, we see
that both C() and S() are asymmetric about  = 0, according to Abramowitz
and Stegun (1965), that is, C(−) = −C() and S(−) = −S(). Furthermore,
C(∞) = S(∞) = 1/2, so C(−∞) = −S(∞) = −1/2. As done by McCormick and
Kraemer (2002), we can simplify the diffraction analysis by using the following
approximations of the Fresnel integrals for positive values of uL:

C(uL) = −C(−uL) � 1
2

+
(1 + 0.926uL) sin

(
�

2
u2

L

)
2 + 1.792uL + 3.104u2

L

−
cos
(

�

2
u2

L

)
2 + 4.142uL + 3.492u2

L + 6.670u3
L

+ E(uL) (6.125)

and

S(uL) = −S(−uL) � 1
2

−
(1 + 0.926uL) cos

(
�

2
u2

L

)
2 + 1.792uL + 3.104u2

L

−
sin
(�

2
u2

L

)
2 + 4.142uL + 3.492u2

L + 6.670u3
L

+ E(uL) (6.126)

where 0 ≤ uL ≤ ∞. The remainder for both equations is E(uL) ≤ 0.002. The limiting
conditions for the Fresnel integrals, C(0) = S(0) = 0 and C(∞) = S(∞) = 1/2, are
obtained from eqs. 6.125 and 6.126. Because the Fresnel integrals must be evaluated
by using numerical methods, the reader will find these approximations to be most
useful for engineering applications. The expressions in eqs. 6.125 and 6.126 can be
evaluated using hand calculators by engineers in the field.

To summarize, the free-surface displacement at the observation point is ob-
tained from the expression in eq. 6.123. This expression is based on the assumptions
that both the gap width (L) and the off-center positions of both PS and PO are much
less than either x or xS in Figure 6.21. This is called the Fresnel diffraction for a
narrow gap or slit. Fresnel extended this analysis to diffraction of light by a single
straight edge. The Sommerfeld (1896) diffraction theory is based on the straight-
edge diffraction theory of Fresnel. Subsequently, as previously mentioned, Penny
and Price (1944, 1952) modified the Sommerfeld diffraction theory in their analysis
of water-wave diffraction. A summary of the Sommerfeld (1896) diffraction theory
is found in the book by Bateman (1964). The application of the Sommerfeld theory
to water waves is found in the book by Stoker (1957).
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D. Diffraction Analyses of Water Waves

As stated previously, the first major work on the application of diffraction theory
to water waves is that of Penny and Price (1944, 1952). The Penny-Price diffraction
analysis is in three parts, with only the first two parts presented here. Those are
the parts devoted to the diffraction of water waves having their crests parallel to a
semi-infinite breakwater, and to the diffraction analysis of waves approaching the
semi-infinite breakwater at an angle, as is the case in Figure 6.20. The analysis of
waves passing through a gap presented here is that of Williams and Crull (1993),
which is an extension of the analysis in Section 6.4.C.

Penny and Price (1944, 1952) begin their analysis of the wave field about a semi-
infinite breakwater, such as that sketched in Figure 6.20, with an expression for the
velocity potential that is similar to that in eq. 6.94. To present the analysis as by
Penny and Price, we use the coordinates (� ,x) where, as shown in Figure 6.20, � is
the coordinate that is coincident with the breakwater and x is the normal coordinate
to the structure. The origins of both coordinates are at the head of the structure.
The potential function is

� = Acosh[k(z + h)]�[F(x, �)e−iwt ] = Acosh[k(z + h)]�[F(r, �)e−iwt ] (6.127)

where F(� x) is a complex function that is to be determined. Referring to Figure
6.20, the angle � is that used in the derivation of Penny and Price (1944, 1952). The
velocity potential in eq. 6.127 applies to the entire wave field, and must satisfy the
continuity expression of the forms in eq. 6.95b. The combination of eqs. 6.127 and
6.96a results in the Helmholtz equation,

∇2 F = ∂2 F
∂�2

+ ∂2 F
∂x2

+ k2 F = 0 (6.128a)

The combination of eqs. 6.127 and 6.96b yields the continuity equation in cylindrical
form:

∂2 F
∂r2

+ 1∂ F
r∂r

+ 1∂2 F
r2∂�2

+ k2 F = 0 (6.128b)

The velocity potential must satisfy the boundary conditions at the barrier or seawall.
For the rigid breakwater (totally reflective), the boundary conditions of eq. 6.96 are

∂ F
∂�

∣∣∣∣
x =0

�≥0
= 0,

1∂ F
r∂�

∣∣∣∣
r>0

�=2�

= 0 (6.129)

where x− applies to the weather side (up-wave) of the zero-thickness breakwater.
For the compliant breakwater (totally absorbent), eq. 6.97 applies. For this condi-
tion, the resulting expressions are

F
∣∣x =0
�≥0 = 0, F

∣∣r>0
�=2�

= 0 (6.130)

Equations 6.127 through 6.130 are basic to analyses presented in the following two
subsections.

(1) Diffraction of Waves Directly Incident upon a Semi-Infinite Breakwater

In the diffraction analysis of water waves directly incident upon a semi-infinite
breakwater, Penny and Price (1944, 1952) assume that the form of F(� , x) is that
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Figure 6.22. Ray Diagram for Waves
Directly Incident upon a Rigid Breakwater
of Infinitely Small Thickness.

derived by Sommerfeld (1896) for the diffraction of light waves by a sharp-edged,
semi-infinite barrier. As mentioned previously, the Sommerfeld diffraction theory
is based on the Fresnel diffraction theory, which is outlined in the previous section.
The ray diagram in Figure 6.22 is useful in this analysis. The rays are parallel to the
celerity or phase velocity vector of the incident wave. The breakwater is assumed
to be rigid, so reflection of the incident wave occurs. Four regions are shown in
Figure 6.22. Those are:

(a) Region A: In this region are the incident waves and the diffracted reflected
waves.

(b) Region B: This region is occupied by the incident and reflected waves.
(c) Region C: This region is the shadow zone, occupied only by the diffracted inci-

dent waves.
(d) Region D: Incident waves primarily occupy this region.

The diffracted reflected waves are also in Region D and, to a lesser extent, in Region
C. If the breakwater is compliant, such that it absorbs all of the wave energy incident
upon it, then there is no reflection, and Regions A, B, and D are occupied only by
incident waves.

From Penny and Price (1944, 1952), the application of the Sommerfeld expres-
sion to both the rigid breakwater and a compliant breakwater results in the following
expression for F(� , x):

F(�, x)| rigid
Compliant

= (1 + i)
2


e−ikx

∫
−∞

e−i �
2 u2

du ± eikx

′∫
−∞

e−i �
2 u2

du




= (1 + i)
2


e−ikx


 0∫

−∞
e−i �

2 u2
du +

∫
0

e−i �
2 u2

du


± e−ikx


 0∫

−∞
e−i �

2 u2
du +

′∫
0

e−i �
2 u2

du






= (1 + i)
2


e−ikx


 (1 − i)

2
+

∫
0

e−i �
2 u2

du


± eikx


 (1 − i)

2
+

′∫
0

e−i �
2 u2

du






= (1 + i)
2

[
e−ikx

(〈
1
2

+ C()
〉
− i
〈

1
2

+ S()
〉)

± eikx
(〈

1
2

+ C(′)
〉
− i
〈

1
2

+ S(′)
〉)]

(6.131)
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Table 6.1. Penny-Price quadrant signs

Quadrants in Figure 6.22 Signs of  and ′

A +, −
B +, +
C −, −
D +, −

where C() and S() are Fresnel integrals, as defined in eq. 6.124, and approxi-
mated in eqs. 6.125 and 6.126, respectively. The real and imaginary parts of the rigid
breakwater function F(� ,x)|rigid are

F�|rigid = 1
2
{[2 + C() + C(′) + S() + S(′)] cos(kx)}

+ [C() − C(′) − S() + S(′)] sin(kx)}
= 1

2
[Acos(kx) + B sin(kx)] (6.132)

and

F�|rigid = 1
2
{[C() + C(′) − S() − S(′)] cos(kx)

− [C() − C(′) + S() − S(′)] sin(kx)}
= 1

2
[Dcos(kx) − E sin(kx)] (6.133)

The Sommerfeld expression for the respective real and imaginary parts of F(� , x)
that satisfy the boundary conditions for waves directly incident on a compliant or
absorbent breakwater are

F�|compliant = 1
2
{[C() − C(′) + S() − S(′)] cos(kx)

+ [C() + C(′) − S() − S(′)] sin(kx)}
= 1

2
[Ecos(kx) + Dsin(kx)] (6.134)

and

F�|compliant = 1
2
{[C() − C(′) − S() + S(′)] cos(kx)

− [2 + C() − C(′) + S() + S(′)] sin(kx)]}
= 1

2
[Bcos(kx) − Asin(kx)] (6.135)

The upper limits of the integrals of eq. 6.131 are

 = ±2

√
r − x

�
, ′ = ±2

√
r + x

�
(6.136)

where � is the wavelength, which is uniform everywhere because the water depth
(h) is assumed to be uniform. The radial term in eq. 6.136 and in Figure 6.20 is
r = √

(�2 + x2). According to Penny and Price (1944, 1952), the positive (+) and
negative (−) signs of the terms in eq. 6.136 are as follows:

Our interest is in the ratio of the wave heights of the diffracted and the incident
waves. This ratio is called the diffraction coefficient. To obtain the expression for the
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diffraction coefficient, we assume that the waves are linear and that the free-surface
displacements are represented by the linear relationship,

η = − 1
g

∂�

∂t
|z=��0 (6.137)

The velocity potentials for the incident and diffracted waves are given in eqs. 6.93
and 6.94, respectively. For the present application, y = −� and the reference point
on the incident wave can be at the head of the breakwater, where x = � = 0. Follow-
ing this procedure, the respective expressions for the diffraction coefficients for the
respective rigid and compliant breakwaters are

KD|rigid

≡ HD

HI
|rigid = |�D|

�I | |rigid

= |F(�, x)|rigid| =
√(

F�2|rigid + F�2|rigid
)

= 1
2

√
(A2 + D2) cos2(kx) + 2(AB − DE) cos(kx) sin(kx) + (B2 + E2) sin2(kx)

(6.138)

and

KD|compliant

≡ HD

HI
|compliant = |�D|

|�I | |compliant

= |F(�, x)|compliant| =
√(

F2
�|compliant + F2

�|compliant
)

= 1
2

√
(E2 + B2) cos2(kx) − 2(AB − DE) cos(kx) sin(kx) + (A2 + D2) sin2(kx)

(6.139)

where A and B are defined in eq. 6.132, and D and E are defined in eq. 6.133. Also
of interest are the phase angles between the diffracted waves and the incident wave
passing the head of the breakwater, which are, respectively,

ε|rigid = tan−1
(

F�
F�

)
|rigid (6.140a)

and

ε|compliant = tan−1
(

F�
F�

)
|compliant (6.140b)

These expressions are of use in determining the planar geometries of the wave
fronts. Results obtained using the expression for the diffraction coefficient in eq.
6.138 for a rigid breakwater are presented in Figure 6.23, where the distances are
non-dimensionalized by dividing by the wavelength (�), which is uniform through-
out the region of uniform water depth (h). Although Penny and Price (1944, 1952)
present plots of lines of constant values of KD for waves directly approaching a rigid
breakwater, we choose here to present the plot presented in the Shore Protection
Manual of the CERC of the U.S. Army Corps of Engineers (U.S. Army, 1984; see
Figure 6.24).

The diffraction diagram in Figure 6.24 is based on the assumption that the
breakwater is rigid and totally reflective. The diffraction diagrams for totally



202 Wave Modification and Transformation

6 5 4 3 2 1

1

2

3

4

5

6

7

8

9

10

0 −1 −2 −3 −4 −5 −6

1.0

0.0

1.0

0.0

y/λ

KD

x/λ

x/λ
ξ/λ = −y/λ

y/λ

KD

Figure 6.23. Diffraction Coefficient versus the Alongshore Position at x/� = 2 and x/� = 8.

absorbent breakwaters are somewhat different. This fact is illustrated in Figure 6.25,
where the diffraction coefficients for both rigid and absorbent breakwaters are plot-
ted as a function of y/�, where x/� = 2. Hence, caution must be taken in using dia-
grams to determine wave heights in the shadow zone, such as that in Figure 6.24. It
should also be noted that Penny and Price (1952) write that “the conditions (KD val-
ues) on the lee side of the breakwater at distances greater than about 2� are nearly
the same whether the breakwater is of the rigid or cushion (absorbent) type.” From
the results in Figure 6.25, this does not appear to be the case.

The results in Figure 6.25 were obtained by using the approximate polynomial
representations of the Fresnel integrals in eqs. 6.125 and 6.126. A further demon-
stration of the use of these approximations is presented in Example 6.9, where we
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Figure 6.24. Diffraction Coefficient Values for �I = �/2 (after Wiegel, 1964).
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Figure 6.25. Diffraction Coefficients for Rigid and Absorbent Breakwaters along a Line Par-
allel to the Leeward Face of the Breakwater.

determine the values of the diffraction coefficient along the leeward side of both
semi-infinite rigid and compliant breakwaters.

EXAMPLE 6.9: DIFFRACTION COEFFICIENTS ALONG THE LEEWARD SIDES OF RIGID

AND COMPLIANT BREAKWATERS We are to design a breakwater to create a har-
bor, as sketched in the insert of Figure 6.26. The beaches protected by the break-
water are perfect absorbers. Hence, the reflection coefficient (KR) values for
the beaches are zero. The shoreline structure to the right of the breakwater in
Figure 6.26 has the same reflection coefficient value at the breakwater. That is,
for the rigid breakwater, the shoreline structure has a reflection coefficient value
of one, whereas for the perfectly absorbent breakwater, the reflection coeffi-
cient of the shoreline structure is zero. Of particular interest is the value of the
diffraction coefficient at 10 wavelengths from the head of the breakwater on the
leeward side of the structure. From the results presented in Figure 6.26, we see
that the diffraction coefficient value for the rigid breakwater is approximately
0.0705 and that of the absorbent breakwater is 0.005. The absorbent breakwater
then provides more protection in the shadow zone of the harbor. However, from
the results in Figure 6.25 the water to the left of the absorbent breakwater will
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0.0705
0.0050

7 8 9 10
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Figure 6.26. Diffraction Coefficients along the Leeward Side of Rigid and Compliant
Breakwaters.
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be a little rough. The reader must remember that the polynomial representa-
tions of the Fresnel integrals in eqs. 6.125 and 6.126 are valid for 0 ≤ , ′ ≤ ∞.
Along the leeward side of the breakwater, both  < 0 and ′ < 0, so the Fresnel
integrals values are absolute values.

(2) Diffraction of Waves Obliquely Incident upon a Semi-Infinite Breakwater

Our interest now is directed at the situation sketched in Figure 6.20, where the inci-
dent waves approach the breakwater at an angle �I 	= 0 or �I 	= �/2; that is, where
the wave crests are oblique to the structure. Again, the subscript I identifies the inci-
dent wave properties. For this analysis, it is convenient to use the polar coordinate
system (r, �). To convert from the rectilinear coordinates to the polar coordinates,
use the wave coordinates, s and S, shown in Figure 6.20. That is, for the incident
wave,

s = xsin(�I) − ycos(�I) = r sin(�) sin(�I) + r cos(�) cos(�I) = r cos(� − �I)
(6.141)

and for the reflected wave,

S = −xsin(�I) − ycos(�I) = −r sin(�) sin(�I) + r cos(�) cos(�I) = r cos(� + �I)
(6.142)

The modified expression in eq. 6.131 is then

F(r, �)| rigid
compliant

= (1 + i)
2


e−ikS

∫
−∞

e−i �
2 u2

du ± e−iks

′∫
−∞

e−i �
2 u2

du




= (1 + i)
2

[
e−ikr

(〈
1
2

+ C()
〉
− i
〈

1
2

+ S()
〉)

± e−iks
(〈

1
2

+ C(′)
〉
− i
〈

1
2

+ S(′)
〉)]

= (1 + i)
2

[
e−ikr cos(�−�I )

(〈
1
2

+ C()
〉
− i
〈

1
2

+ S()
〉)

± e−ikr cos(�+�I )
(〈

1
2

+ C(′)〉 − i
〈

1
2

+ S(′)
〉)]

(6.143)

Expressions similar to those in eqs. 6.132 through 6.135, respectively, are

F�|rigid = 1
2
{[1 + C() + S()] cos(ks)

+ [C() − S()] sin(ks) + [1 + C(′) + S(′)] cos(kS)

+ [C(′) − S(′)] sin(kS)}
= 1

2
{A cos(ks) + B sin(ks) + M cos(kS) + N sin(kS)}

= 1
2
{A cos[kr cos(� − �I)] + B sin[kr cos(� − �I)]

+ M cos[kr cos(� + �I)] + N sin[kr cos(� + �I)]} (6.144)

F�|rigid = 1
2
{B cos(ks) − A sin(ks) + N cos(kS) − M sin(kS)}

= 1
2
{B cos[kr cos(� − �I)] − A sin[kr cos(� − �I)]

+ N cos[kr cos(� + �I)] − M sin[kr cos(� + �I)]} (6.145)
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F�|compliant = 1
2
{A cos(ks) + B sin(ks) − M cos(kS) − N sin(kS)}

= 1
2
{A cos[kr cos(� − �I)] − B sin[kr cos(� − �I)]

− M cos[kr cos(� + �I)] − N sin[kr cos(� + �I)]} (6.146)

and

F�|compliant = 1
2
{B cos(ks) − A sin(ks) + N cos(kS) − M sin(kS)}

= 1
2
{B cos[kr cos(� − �I)] − A sin[kr cos(� − �I)]

− N cos[kr cos(� + �I)] + M sin[kr cos(� + �I)]} (6.147)

where the coefficients A, B, M, and N are defined in eq. 6.144. The limits of integra-
tion in eq. 6.143 are

 = ±2

√
r − s

�
= ±2

√
kr
�

sin
(

� − �I

2

)
, ′ = ±2

√
r − S

�
= ±2

√
kr
�

sin
(

� + �I

2

)
(6.148)

where � is the uniform wavelength.
The respective diffraction coefficients for the rigid (totally reflecting) and com-

pliant (totally absorbing) breakwaters are

KD|rigid ≡ HD

HI
|rigid = |ηD|

|ηI |
|rigid

= |F(r, �)|rigid| =
√(

F2
r |rigid + F2

i |rigid
)

(6.149)

and

KD|compliant ≡ HD

HI
|compliant = |�D|

|�I | |compliant

= |F(r, �)|compliant| =
√(

F2
�|compliant + F2

�|compliant
)

(6.150)

The phase angles between the waves leeward of the y-axis and the incident waves
at y = 0 are similar to those in eq. 6.140. We should note that by giving the phase
angle a constant value, the solution of r, as a function of � in eq. 6.140, yields the
plan of the wave crest pattern. As noted by Penny and Price (1944, 1952), the crests
are approximately circular in the shadow zone.

From the Shore Protection Manual of the CERC of the U.S. Army Corps of
Engineers (U.S. Army, 1984), the source of Figure 6.24, we present two cases of
oblique reflection. Those are for incident waves approaching a perfectly reflecting
semi-infinite breakwater at angles of �I = 135◦ (3�/4 radians) in Figure 6.27, and
�I = 45◦ (�/4 radians) in Figure 6.28. These figures result from the work of Wiegel
(1962). Also see Wiegel (1964).

EXAMPLE 6.10: DIFFRACTION COEFFICIENTS ALONG THE LEEWARD SIDES OF A

RIGID BREAKWATER In Example 6.9, we determined the values of the diffrac-
tion coefficients adjacent to the leeward faces of totally reflecting (rigid) and
totally absorbent (compliant) breakwaters for waves approaching the break-
waters directly, that is, for �I = 90◦. The results of the study are presented in
Figure 6.26. We now direct our attention to waves approaching a rigid break-
water at both �I = 135◦ and �I = 45◦. For the entire wave fields associated
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Figure 6.27. Diffraction Coefficient Values for �I = 3�/4 (after U.S. Army, 1984).

with these incident wave conditions, the diffraction coefficients are presented
in Figures 6.27 and 6.28, respectively. As is the case for Figure 6.24, these
curves result from the analyses of Wiegel (1962) and the corresponding pre-
sentations in the Shore Protection Manual (see U.S. Army, 1984). Our inter-
est is in the values of the diffraction coefficient along the leeward side of the
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Figure 6.28. Diffraction Coefficient Values for �I = �/4 (after U.S. Army, 1984).
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Figure 6.29. Diffraction Coefficient versus Distance from the Head of a Semi-Infinite Rigid
Breakwater along the Leeward Side.

breakwater for the two oblique wave conditions. In eqs. 6.144, 6.145, 6.148,
and 6.149, the angle � is zero because our interest is in the leeward water adja-
cent to the structure. As in Example 6.9, the Fresnel integrals are determined
from the polynomial representations in eqs. 6.125 and 6.126, using the abso-
lute values of both  and ′. Following this, C(−) = −C() and S(−) =
−S() are used in eqs. 6.144, 6.145, 6.148, and 6.149. The results are presented
in Figure 6.29, where KD is presented as a function of the non-dimensional
distance (y/�) from the head of the breakwater on the leeward side. At 10
wavelengths from the head, the diffraction coefficient values for the respec-
tive �I = 135◦ and �I = 45◦ conditions are 0.054 and 0.133. The ratios of the
wave energy values at the site and at the head are proportional to KD

2 at y =
10. The respective energy ratio values are then 0.0027 and 0.0173, which are
relatively small.

(3) Diffraction of Waves by a System of Detached Breakwaters

There are several methods for determining the diffraction patterns caused by a sys-
tem of detached breakwaters, as sketched in Figure 6.30. Two of these are the eigen-
function method of Dalrymple and Martin (1990) and the Green’s function method
of Achenbach and Li (1986), which is applied to water waves by Williams and
Crull (1993). The Achenbach-Li scattering analysis is directed at acoustical, elas-
todynamic, and electromagnetic waves. The Dalrymple-Martin analysis involves an
eigenfunction expansion of the velocity potential, whereas the Williams-Crull anal-
ysis uses a Chebyshev expansion to represent the change in the velocity potential

Region A

Region B

x

y

cI

2�

2b

ΘI

2dFigure 6.30. Area Sketch of Waves Obliquely Incident on an
In-Line System of an Infinite Number of Thin, Detached
Breakwaters.
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across the individual units of the system. Abul-Azm and Williams (1997) extend the
Dalrymple-Martin analysis to determine the wave fields caused by waves obliquely
incident on single breakwaters of finite length, gaps separating semi-infinite break-
waters, and an infinite linear array of finite breakwaters, as sketched in Figure 6.30.
The analysis of Abul-Azm and Williams (1997), based on that of Dalrymple and
Martin (1990), is presented herein.

In the following derivation, we use the term scattered waves when referring col-
lectively to the reflected and diffracted waves of the wave field. The potential func-
tion (a real function, as indicated by �) representing the field composed of both
incident and scattered waves is

� = ��e−i
t = �(�I + �S)e−i
t

= −i
HI

2
g



cosh[kI(z + h)]
cosh(kI h)

�{[eikI [x cos(�I )+y sin(�I ) + F(x, y)]e−i
t } (6.151)

≡ −i Z(z)�{[eikI [x cos(�I )+y sin(�I ) + F(x, y)]e−i
t }
where the subscript I refers to properties of the incident waves. Note that in the
function Z(z) introduced in eq. 6.93, kc has been replaced by 
, the circular wave
frequency. The function F(x,y), which is to be determined, satisfies the Helmholtz
equation, eq. 6.102. Because the wave patterns associated with the breakwater units
in Figure 6.30 are repetitive in the y-direction, we can concentrate our analysis on
any single unit. The unit of interest is that centered in the dashed-line rectangle in
the figure. We refer to this rectangular area as a cell. The sides of the cell bisect
breakwater units, and the top and the bottom of the cell are at large distances
from the units, that is, d in Figure 6.30 is much greater than 2� (gap width), 2b
(length between unit centers), and the incident wavelength, �I. The cell of area 2bd
is divided into an up-wave region, A, and a down-wave region, B.

The breakwaters are assumed to be rigid and, therefore, reflect perfectly. The
boundary condition is mathematically represented by the expressions in eq. 6.129.
In the notation of Figure 6.30, that condition is

∂�

∂x

∣∣∣∣
x=0−

= ∂�

∂x

∣∣∣∣
x=0+

= 0, � ≤ |y| ≤ b (6.152)

which applies on both sides of a unit of negligible thickness. The notation x = 0−
identifies the weather (up-wave) side, and x = 0+ identifies the leeward (down-
wave) side. On the weather side, the combination of the velocity potential in eq.
6.151 and the first term in eq. 6.152 results in

∂�S

∂x

∣∣∣∣
x=0

= −∂�I

∂x

∣∣∣∣
x=0

= −Z(z)kI cos(�I)eikI sin(�I )y, � ≤ |y| ≤ b (6.153)

The diffracted component waves of the scattered field must also satisfy the Som-
merfeld radiation condition in eq. 6.100 at large values of |x|. Because the cell rep-
resented by the rectangular envelope in Figure 6.30 is the same for each unit, the
wave field is repetitive in the y-direction. The repetitive nature of the wave field
allows us to write

�(x, b) = �(x,−b), −d ≤ x ≤ +d (6.154)

and

∂�

∂y

∣∣∣∣
y=−b

= ∂�

∂y

∣∣∣∣
y=+b

, −d ≤ x ≤ +d (6.155)
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In Figure 6.30, the wave field within the cell is broken down into two regions, those
being the up-wave region, A, and the down-wave region, B. These two regions meet
at the y-axis, where the velocity potentials satisfy the following conditions:

�(A)(0, y) = �(B)(0, y), 0 < |y| < � (6.156)

and

∂�(A)

∂x

∣∣∣∣
x=0

= ∂�(B)

∂x

∣∣∣∣
x=0

, 0 < |y| < � (6.157)

Following Abul-Azm and Williams (1997), assume that the time-independent veloc-
ity potential for the up-wave region (Region A) and the down-wave region (Region
B) can be represented by

�(A) = −i Z(z)�
{

eikI [x cos(�I )+y sin(�I )] +
∞∑

m=−∞
Ame−i(�mx−vmy)

}
(6.158)

and

�(B) = −i Z(z)�
{

eikI [x cos(�I )+y sin(�I )] −
∞∑

m=−∞
Bme−i(�mx−vmy)

}
(6.159)

In these equations, the first term represents the incident waves, and the second term
represents the reflected and diffracted wave modes. The complex coefficients Am

and Bm are to be determined. By combining the boundary conditions of eqs. 6.156
and 6.157 with the expressions of eqs. 6.158 and 6.159, we find that Am and Bm are
equal in magnitude. So, we can confine our attention to either Region A or Region
B in the remainder of the analysis. Also, in eqs. 6.158 and 5.159 are the following:

vm = kI sin(�I) + m�

b
(6.160)

and

�m =
√

k2
I + v2

m (6.161)

The reflected and transmitted waves propagate in the respective −x and +x direc-
tions, so �m must be a real number. To ensure this, the radicand in eq. 6.161 must
be positive. The corresponding condition on the wave number is

k ≥ |vm| =
∣∣∣kI sin(�I) + m�

b

∣∣∣ (6.162)

This inequality is always satisfied for m = 0. Physically, this means that there will
always be one propagating wave mode. The other modes are those for evanescent
standing waves, exponentially decaying in the x-direction in Region B of Figure 6.30.

Again, because Am and Bm are equal in magnitude, we can write the boundary
condition of eq. 6.156 as

E(y) = kI cos(�I)eikI y sin(�I ) −
∞∑

m=−∞

�m

kI
Ameivmy = 0, � ≤ |y| ≤ b (6.163)

where we introduce E(y) as a boundary-condition function. This function represents
the boundary conditions at x = 0 for all values of y in 0 ≤ |y| ≤ b, including the
boundary condition in eq. 6.153. After dividing the expression in eq. 6.153 by kI,
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the boundary-condition function applied to the up-wave side of a unit is

�(A)(0, y) − �(B)(0, y) = 0 ⇒ E(y) ≡
∞∑

m=−∞
Ameivmy = 0, 0 < |y| < � (6.164)

Now, truncate the series in eqs. 6.163 and 6.164 at a finite index value |M|. That is,
the series is approximated by choosing the respective upper and lower limits of the
summation at m = −M and m = +M. The goal is to minimize the error introduced
by truncating the series in eqs. 6.163 and 6.164 with the appropriate choice of Am.
With the introduction of the function E(y), we can use Legendre’s least-squares
method for determining the values of Am, as done by Dalrymple and Martin (1990)
and Abul-Azm and Williams (1997). This method is outlined in the book of Korn
and Korn (2000) and is described in detail in books on numerical analysis. Using the
truncated-series approximation, we minimize

Smn =




2
(

1 − �

b

)
= 2 − Qmn, n = m

−2
sin
[

(n − m)�
�

b

]
(n − m)�

= −Qmn, n 	= m

(6.165)

with respect to Am by solving

b∫
−b

E∗ ∂ E(y)
∂ Am

dy = 0, m = ±1,±2, . . . ,±M (6.166)

where E∗ is the complex conjugate of E(y) and, therefore, a function of y.
The combination of the (truncated) expressions in eqs. 6.163 and 6.164 with that

in eq. 6.166 yields

b∫
−b

|E(y)|2dy =



b∫
−b

|E(y)|2dy


∣∣minimum (6.167)

where the parametric terms are

M∑
m=−M

A∗
m

(
Qmn + �∗

m�n

k2
I

Smn

)
� �n

kI
Sn0 cos(�I), n = 0,±1. ± 2, . . . ,±M (6.168)

and

Qmn =




2
�

b
, n = m

2
sin
[

(n − m)�
�

b

]
(n − m)�

, n 	= m

(6.169)

Equation 6.167 represents 2M + 1 equations with the same number of unknowns
(A∗

m being unknown). Abul-Azm and Williams (1997) find that satisfactory conver-
gence is obtained for M = 75.

Recall that m = 0 corresponds to a propagating wave mode because, for this
value, the condition of eq. 6.162 is satisfied. The complex coefficient A0 represents
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Figure 6.31. Predicted K–Values for a Gap between Infinite Breakwaters.

the zeroth-order reflection coefficient for the wave system, that is,

KR|rigid = HR

HI
= |A0| (6.170)

Furthermore, Abul-Azm and Williams (1997) define diffraction parameter (which
includes the diffraction coefficient) as the total free-surface elevation divided by the
incident wave amplitude, that is,

K(A)|rigid

K(B)|rigid

}
= |eikI [x cos(�I )+y sin(�I )] ±

∞∑
m=−∞

Ame−i(�mx−vmy)| (6.171)

The superscripts of the parameter refer to Region A and Region B. Abul-Azm and
Williams (1997) state that the changes in the values of diffraction parameter (K) for
M > 75 are less than 1%. Plots of the diffraction parameter are presented in Figure
6.31 for a gap between (approximate) semi-infinite breakwaters, and in Figure 6.32
for an infinite number of finite detached breakwaters. These plots are similar to
those presented by Abul-Azm and Williams (1997).

EXAMPLE 6.11: WAVES DIRECTLY INCIDENT ON A GAP BETWEEN SEMI-INFINITE

BREAKWATERS In this example, we discuss the conditions used by Abul-Azm
and Williams (1997) in obtaining the results in Figure 6.32. In the application,
�I = 0, as expected, that is, the waves are directly incident upon the gap between
the breakwaters. We also use the parametric value in Figure 6.31, that being
k� = �. One would expect b = ∞ because the breakwaters are semi-infinite in
length. However, this yields a rather trivial result for two reasons. First, from
the expressions in eqs. 6.168 and 6.169, we see that for a gap problem, Qmn = 0
for any combination of m and n values. Second, Smn = 0 for m 	= n, but Smn = 2
for m = n. Equation 6.167 then yields A∗

0 = 1, and A∗
m = 0 for m 	= 0. From the

results in eq. 6.170, we see that we have perfect reflection for the condition
b = ∞.

To obtain the plots of the diffraction parameter in Figure 6.31, Abul-Azm
and Williams (1997) assumed kb = 184.8, so that �/b = 0.017. Those investiga-
tors compare their results with those obtained by Johnson (1952), not shown
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Figure 6.32. Diffraction Parameter Values for Waves Directly Incident upon Detached Finite
Breakwaters Separated by a Gap of One Incident Wavelength.

in Figure 6.31, and find that the comparison is satisfactory. They attribute dif-
ferences near the gap to the basic assumption made in their analysis, that is,
because of the finite value of b, the analysis is still that of segmented breakwa-
ters of finite length, although the lengths of each unit are relatively large. Abul-
Azm and Williams (1997) show that the agreement with the curves of Johnson
(1952) improves as 2�/� increases for a given value of b.

Note that the diffraction parameter (K(B)) and the diffraction coefficient of
eqs. 6.149 and 6.150 are related by

K(B)|rigid = 1 + KD (6.172)

The diffraction coefficient is plotted in Figures 6.23 through 6.29, and the diffraction
parameter is plotted in Figures 6.31 and 6.32.

In this section, several methods of diffraction analysis are presented. For engi-
neering practice, the results presented in the Shore Protection Manual (SPM) of
the U.S. Army Corps of Engineers (U.S. Army, 1984) are recommended. The SPM
results are obtained from the works of Blue and Johnson (1949), Johnson (1952),
and Wiegel (1962), which, in turn, are related to the work of Penny and Price (1944,
1952).

6.5 The Mild-Slope Equation

In Chapter 3, the linear theory is applied to waves passing over a bed having straight
and parallel bottom contours, as sketched in Figure 6.16. The wave system in that
analysis is required to conserve the energy flux between orthogonals as the waves
approach the shoreline. That is, the expressions of the energy flux in eqs. 3.72a and
3.72b have fixed values for wave systems traveling from deep water to the shore-
line. The analysis leads to the expression for the shoaling coefficient (KS – a wave
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height ratio) in eq. 3.78. There are no terms in that equation that account for either
the deep-water wave steepness or the slope of the bed. In Figure 3.19, the shoal-
ing coefficient is represented by a single curve resulting from the linear analysis.
However, the experimental data in that figure show dependencies on both the wave
steepness and the bed slope.

In the following sections, the analysis of Berkhoff (1972, 1976), which accounts
for the bed slope, is presented. That analysis leads to the mild-slope equation, which
includes the effects of reflection, refraction, and diffraction.

A. Derivation of the Mild-Slope Equation

The analysis of Berkhoff (1972, 1976) leading to the mild-slope equation is presented
herein. As the name of the equation implies, the analysis is directed at shoaling over
moderately sloping beds. The analysis also includes the effects of both refraction
and diffraction. Since its introduction in 1972, the mild-slope equation has been the
subject of many studies. Two of the studies are those of Booij (1983), who studies
the accuracy of the mild-slope equation, and of Chandrasekera and Cheung (1997).
The latter includes the effects of both bottom curvature and the slope-squared terms
that were neglected in the original analysis. In this section, the mild-slope equation is
derived in its general form. The equation is then applied to the case of pure shoaling,
where the bottom contours are both straight and parallel. One note concerning the
equation: The mild-slope equation cannot be solved analytically, so we must rely
on numerical techniques to obtain results. Copeland (1985) presents an alternative
method to that of Berkhoff (1972, 1976).

Referring to the sketch Figure 6.33, consider linear waves approaching a rise in
the sea bed at an angle �a to the toe of the rise. As sketched in Figure 6.33a, reflec-
tion from the bed is assumed to occur. The bed has a moderate (mild) slope, and is
comprised of straight and parallel bottom contours. The rise can either terminate at
the shoreline, as is sketched in Figure 6.12, or at some offshore contour. The flow
within the waves is assumed to be irrotational, so that a velocity potential can be
used to mathematically represent the flow. Written in complex notation, the general
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form of the velocity potential for the shoaling wave is

� = �{�(x, y, z)Z [h(x), z]e−i
t }
= �{�(x, y, z)Z [h(x), z][cos(
t) − i sin(
t)]} (6.173)

where � indicates the real part of the mathematical expression, and i is the imag-
inary number,

√−1. For the sake of brevity, we shall omit � in the remainder of
this analysis; however, its presence is assumed. The dimensional term �(x, y, z) is
a weak function of z, as is explained later. The potential function in eq. 6.173 must
satisfy the equation of continuity in the form of Laplace’s equation,

∇2� = 0 (6.174)

and is subject to both the linearized free-surface condition,{
∂�

∂z
− 
2

g
�

} ∣∣∣∣
z=0

=
{

Z
∂�

∂z
+ �

∂ Z
∂z

− 
2

g
�Z
} ∣∣∣∣

z=0
= 0 (6.175)

and the seafloor or bed condition,

(∇� · N)|z=−h = 0 (6.176)

In eq. 6.176, the outward unit normal vector on the bed is

N = − sin(�)i + cos(�)k (6.177)

where i and k are the unit vectors in the respective x- and z-directions, and � is the
angle between the crest and the contour. The combination of the expressions in eqs.
6.176 and 6.177 results in[

−∂�

∂x
sin(�) + ∂�

∂z
cos(�)

] ∣∣∣∣
z=−h

= 0 (6.178)

Divide this expression by cos(�), and note that

tan(�) ≡ m = ∂h
∂x

(6.179)

where m is the slope of the inclined bed. The slope m can be either positive or
negative, depending on the bed geometry. The combination of eqs. 6.178 and 6.179
yields the following inclined bed condition:[

∂�

∂z
+ m

∂�

∂x

] ∣∣∣∣
z=−h

=
[

Z
∂�

∂z
+ �

∂ Z
∂z

+ mZ
∂�

∂x
+ m�

∂ Z
∂x

] ∣∣∣∣
z=−h

e−i
t = 0 (6.180)

Divide the second equality by �Z, noting that �|z=−h = �(x, y)|z=−h and Z|z=−h =
Z(x)|z=−h. The resulting expression in eq. 6.180 can then be separated into two equa-
tions, one for � and the other for Z. The solution of the latter, subject to the condi-
tions that there is no flow across the bed and that Z(x, 0) = 1 (imposed by Berkoff,
1972, 1976), is

Z(x, z) = cosh{k(x)[z + h(x)]}
cosh[k(x)h(x)]

(6.181)

In this expression, the wave number, k = k(x), must satisfy the dispersion relation-
ship,


2

g
= k(x) tanh[k(x)h(x)] (6.182)
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From this point on, the wave number and water depth will be represented by k and
h, respectively. Their dependence on x is implied.

When the expressions in eqs. 6.181 and 6.182 are combined with the linearized
free-surface condition of eq. 6.175, the result leads to the following:[

1∂�

�∂z

] ∣∣
z=0 = 0 (6.183)

Return now to the equation of continuity of eq. 6.174. The equation is satisfied if

∇2(�Z) = �2(�Z) + ∂2(�Z)
∂ Z2

= Z�2(�) + Z
∂2�

∂z2
+ 2

∂ Z
∂x

i · �(�) + 2
∂ Z∂�

∂z∂z
+ �

(
∂2 Z
∂x2

+ ∂2 Z
∂z2

)
= 0

(6.184)

where the two-dimensional vector operator is defined by

�( ) ≡ ∂( )
∂x

i + ∂( )
∂y

j (6.185)

Berkhoff (1972, 1974) uses Z(x,z) as a weighting function, multiplying the expres-
sion in eq. 6.184 by that function, and integrating the resulting expression over the
water depth. The result is

0∫
−h

{
Z2�2(�I) + Z2 ∂2�

∂z2
+ 2Z

(
∂ Z∂�

∂x∂x
+ ∂ Z∂�

∂z∂z

)
+ Z�

(
∂2 Z
∂x2

+ ∂2 Z
∂z2

)}
dz = 0

(6.186a)
which can be partially integrated to obtain

0∫
−h

{
Z2�2(�) + 2Z

∂ Z∂�

∂x∂x
+ Z�

∂2 Z
∂z2

}
dz + m

[
Z2 ∂�

∂x

] ∣∣∣∣
z=−h

}

+
0∫

−h

Z�
∂2 Z
∂x2

dz + m
[

Z�
∂ Z
∂x

] ∣∣∣∣
z=−h

= 0 (6.186b)

Chandrasekera and Cheung (1997) retain all of the terms in eq. 6.186 in their analy-
sis. The inclusion of the terms alters the results slightly, as discussed by Lee (1999).
Berkhoff (1972) neglects the last two terms of this equation, assuming that they are
of second order because of the gradually varying bed. The last two terms are also
neglected in the analysis herein.

Following Berkhoff (1972, 1974), the dimensional function of the velocity
potential in eq. 6.174 is represented by

�(x, y, z) = �0(x, y) + z1�1(x, y) + z2�2(x, y) + · · ·· =
∞∑

n=0

zn�n(x, y) (6.187)

Berkhoff (1972, 1974) assumes that �(x, y, z) is a weak function of z. That is,
for n ≥ 1 in the expansion, the terms are of second order both individually
and collectively when compared to the first term in the expansion, so only the
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first term is retained. The result is

�(x, y, z) � �0(x, y) (6.188)

Note that the subscript “0” is italicized here because the nonitalicized “0” is used to
identify deep-water properties and functions. The combination of the expression in
eq. 6.188 with the integral expression in eq. 6.186b results in

0∫
−h

Z2dz�2(�0) +
0∫

−h

∂(Z2)
∂x

dz
∂�0

∂x
+

0∫
−h

Z
∂2 Z
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Z
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dz�0
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0∫
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Z2dz�2(�0) + ∂
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 0∫

−h

Z2dz


 ∂�0

∂x
+ [0] + k2

0∫
−h

Z2dz�0 � 0 (6.189)

In eq. 6.189, the third integral of the first line can be shown to be dependent on
m2, which is of second order for beds of small slope, and is neglected on the second
line. The fourth integral of the second line is a result of the combination of eq.
6.181 and the fourth integral of the first line. The second line of eq. 6.189 is the
differential-integral form of the mild-slope equation. We shall introduce a notation
similar to that used by Booij (1983) to represent the integrals in the second line of
that equation, which is

G(x) ≡
0∫

−h

Z2dz = 1
4k

{
sinh(2kh) + 2kh

cosh2(kh)

}
= ccg

g
(6.190)

The second equality in this equation results from the expression in eq. 3.63. With
this notation, the differential form of the mild-slope equation is

G�2(�0) + ∂G∂�0

∂x ∂x
+ k2G�0 = ∂

∂x

(
G

∂�0

∂x

)
+ G

∂2�0

∂y2
+ k2G�0 = 0 (6.191)

Again, the onshore coordinate is x, and the alongshore coordinate is y, as sketched
in Figure 6.33b. In the remainder of this section, the mild-slope equation will be
applied to waves passing over a sea bed for which the contours are both straight and
parallel. For applications to other bottom topographies, the references should be
consulted.

B. Application to a Straight and Parallel Contoured Bed

Referring to Figure 6.33, the assumption of straight and parallel bottom contours
allows us to represent the function in eq. 6.188 by

�0(x, y) = Q(x)Y(y) = Q(x)eiky y = [Q�(x) + i Q�(x)]eiky y (6.192)

where Q�(x) and Q�(x) are the respective real and imaginary components and ky

is the component of the wave number in the y-direction. Note that the function
Y(y) results directly from the application of the separation-of-variables technique to
eq. 6.191. The wave number relationships are

ky = ka sin(�a) = k(x) sin[�(x)] (6.193)
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and

kx(x) = k(x) cos[�(x)] (6.194)

where �(x) is the angle between the contour and the wave crest. Physically, the
wave component in the y-direction has both a uniform wave height and wavelength
(and wave number) along the contour. The wave angle then does not vary along a
specific contour. The behavior of ky is also discussed in the next section, where the
refraction analysis using Snell’s law is discussed. The combination of eqs. 6.191 and
6.192 yields the following specialized form of the mild-slope equation:

G
d2 Q
dx2

+ dGdQ
dxdx

+ (k2 − k2
y

)
GQ = 0 (6.195)

The expression for G is in eq. 6.190. The derivative of that function is

dG(x)
dx

= dG
d(kh)

d(kh)
dx

= dG
d(kh)




km[
1 + k0h

sinh(kh)

]



= m
2

1

cosh2(kh)

{
2 sinh(2kh) − 4kh sinh2(kh)

sinh(2kh) + 2kh
− 1

} (6.196)

Equation 6.195 must be solved numerically. For the case of waves passing over
a rising bed having straight and parallel contours, as sketched in Figure 6.33, the
mild-slope equation can be solved using the Runga-Kutta numerical method, which
is presented in the text by Adey and Brebbia (1983) along with other numerical
techniques. Applications of the equation to more complicated bottom topography
require the use of the finite-element method (FEM) as, for example, by Chandrasek-
era and Cheung (1997). See the book by Zienkiewicz and Taylor (2000) for the
basics of this numerical technique.

Before presenting results obtained by using the mild-slope equation, several
comments concerning the nature of the function Q must be made. First, from eq.
6.192, one sees that Q is complex. Hence, both the real and imaginary parts of the
function must satisfy the mild-slope equation. Second, Q for the wave field in x ≤ 0
must represent both incident and reflected waves.

We note that the mild-slope equation is a second-order, ordinary differential
equation. Because Q is a complex function of x, there are two second-order equa-
tions to be solved – one corresponding to the real function, and the second corre-
sponding to the imaginary function. Each equation requires two boundary condi-
tions, either at the toe, where x = 0, or at x = L. Both the real and imaginary parts
of Q are found to be “wavy” functions of x. At the toe and for x < 0, the veloc-
ity potential for the complete wave pattern is the sum of the potentials for both
the incident waves and the reflected waves. At x = L, the potential represents the
transmitted wave.

Use the results obtained from the linear theory of Chapter 3 to obtain the Q-
values at both the toe or the crest of the rise. Specifically, we assume that the waves
are linear in the region having the uniform water depth, ha, and beyond the rise,
where the depth is hb.

The expression for the free-surface displacement is found by combining the lin-
earized dynamic free-surface condition of eq. 3.6 with the expression for the velocity



218 Wave Modification and Transformation

potential of eq. 6.173. That potential can be written as

� = �{Q(x)Z(h, z)ei(ky y−
t)} = �{Q(x)Z(h, z)ei[ka sin(�a)y−
t]}
= �{Q(x)Z(h, z)[cos(ky y − 
t) + i sin(ky y − 
t)]}
= �{[Q�(x) + i Q�(x)]Z(h, z)[cos(ky y − 
t) + i sin(ky y − 
t)]}
= Z(h, z){Q�(x) cos[ka sin(�a)y − 
t] − Q�(x) sin[ka sin(�a)y − 
t]} (6.197)

where, again, � refers to the real component of the equation. The subscripts, �
and �, identify the respective real and imaginary functions, and the wave number
relationship in the first line of the equation is from the results in eq. 6.193.

We can express the free-surface displacement at any position in terms of Q�
and Q� as

� = − 1
g
�
{

∂�

∂t

}
|z�0 = �

{
i



g
Q(x)ei(ky y−
t)

}
= �

{
ηx(x)ei(ky y−
t)

}
= −


g

{
Q� sin[ka sin(�a)y − 
t] + Q� cos[ka sin(�a)y − 
t]

}
= η� + η� (6.198)

where Za(0) = 1 from eq. 6.181. This expression allows us to relate the real and
imaginary parts of Q to the physical (linear) wave. In eq. 6.198, we see that Q�
and Q� are out of phase by an angle �/2 because of the nature of real and imaginary
components. Booij (1983) writes that “these (Q� and Q�) can be interpreted as posi-
tions of the free surface at two times, a quarter of a period apart” when multiplied
by the appropriate constants.

The relationship in eq. 6.198 allows us to write the specialized form of the
mild-slope equation in eq. 6.195 in terms of the free-surface displacement, �. The
result is

G
d2η

dx2
+ dGdη

dx dx
+ (k2 − k2

y

)
Gη = 0 (6.199)

Copeland (1985), Girolamo, Kostense, and Dingemans (1988), and others use this
form of the equation in their studies. We shall also use eq. 6.199 because the bound-
ary conditions required for the solution are easily applied to the free-surface dis-
placement.

At the toe of the rise and upwave of the rise (where h = ha and x ≤ 0), the
free-surface displacement is the sum of those due to the incident wave (�I) and the
reflected wave (�R). In this region, the free-surface displacement is then

ηa = ηI + ηR

= HI

2
cos[ka cos(�a)x + ka sin(�a) − 
t − I ] (6.200)

+ HR

2
cos[−ka cos(�a)x + ka sin(�a) − 
t + R]

where I and R are the respective phase angles. The incident wave leads the wave
transmitted to the rise and by the angle I while the reflected wave lags the trans-
mitted wave by R. As is the case for both optical and acoustical waves, the mag-
nitudes of the reflected wave angle and the incident wave angles are equal, that is,
|�R| = |�I | = |�a| (see Figure 6.33).
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The expression for the free-surface displacement at the crest of the rise and
downwave of that crest (where h = hb and x ≥ L) is

η b = HT

2
cos[kb cos(�b)x + kb sin(�b) − 
t + T] (6.201)

In eqs. 6.200 and 6.201, the wave numbers ka(=2�/�a) and kb(=2�/�b) are known
from the dispersion equation, eq. 3.31. There are only transmitted waves both at the
crest or the rise and downwave (x > L) of this crest. Those waves lag the waves on
the rise by an angle T.

In both the forms of eqs. 6.195 and 6.199, the mild-slope equation is a second-
order differential equation. Because of this, a specific solution requires two bound-
ary conditions. In solving the mild-slope equation of eq. 6.199, we specify the free-
surface displacement and its derivative with respect to x. These conditions can be
applied either at the toe of the rise or at the rise crest. Because there is only a
transmitted wave both at and downwave of the rise crest of the rise, we find that
Hb = HT and b = T . In the application of the mild-slope equation to breaking
waves, Girolamo, Kostense, and Dingemans (1988) assume the property values of
the transmitted waves (HT and T) well downwave of the crest rise. This may seem
awkward to the reader as the incident wave properties are normally assumed. How-
ever, for this boundary-value problem this solution method is valid. Without loss
in generality, we can dictate that a crest of the wave occurs at either the toe or the
crest. At the toe, �(0) = HI/2 and ∂�/∂x|x=0 = 0. These conditions are also those
used in Example 6.7.

It is important to remember that the �(x)-curve resulting from the solution of
eq. 6.199 does not change by changing the crest position of the rise. That is, for given
values of the slope (m) and the water depth (ha), the behavior of �(x) is determined.
Hence, the curve includes the effects of the cumulative reflectivity of the rise as x
increases. At x = 0, �(0) must then equal the incident wave displacement �I. The
gross reflection from the rise is quantitatively represented by the reflection coeffi-
cient (KR ≡ HR/HI). For the bed rise in question, we simply subtract the energy
flux of the mild-slope transmitted wave (eq. 3.72) from the energy flux of the ideal
(nonreflected) transmitted wave.

To demonstrate the application of the energy flux relationship of eq. 3.72, con-
sider a segment of a crest (wave front) of a wave approaching a submerged step
between two orthogonals (fictitious vertical walls, as in Figure 3.17a), illustrated in
Figure 6.34. Also in that figure are wave fronts of the reflected and transmitted wave
systems. The width, bI, of the channel formed by the pair or orthogonals is deter-
mined by the incident wavelength (�I) and the crest angle (�I) between the wave
front and the step, as can be seen in the figure. Note that the alongshore step length
is defined by the orthogonals and is common to the incident, reflected, and trans-
mitted wave systems. As a result, the channel widths are related by

bI

cos(�I)
= bR

cos(�R)
= bT

cos(�T)
(6.202)

Because the magnitudes of the incident and reflected wave angles are equal, we can
write |�I | = |�R| = |�a| and bI = bR = ba . Also from Figure 6.34, the relationships
among the wavelengths at the step are

�I

sin(�I)
= �R

sin(�R)
= �T

sin(�T)
(6.203)
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Figure 6.34. Incident, Reflected, and
Transmitted Waves at a Bed Step.

The transmitted wave front angle is �T = �b.
Assuming the conservation of the energy flux, the magnitude of the energy flux

(equal to that of the incident wave) is assumed to be unchanged after the reflection
and transmission occur. Mathematically, this is expressed by

|PI| = |PR| + |PT| (6.204)

So, the energy flux of the reflected wave is obtained from

|PR| = |PI| − |PT| (6.205)

For the ideal case of no reflection from the step, the incident and transmitted energy
fluxes are equal, as discussed in Section 6.3. That is,

|PI| = |P′
T| (6.206)

where the prime (′) is used to indicate the nonreflecting or pure shoaling assumption.
In terms of the linear wave properties, eq. 6.206 can be expressed as

�gH2
1 cgaba

8
= �g(H′

T)2cgbbb

8
(6.207)

where � is the mass density of the water, g is the gravitational constant, and cg is the
group velocity defined in eq. 3.63. Combine the expressions in eqs. 6.205 and 6.206
to obtain

|PR| = |P′
T| − |PT| (6.208)

This energy flux expression, expressed in terms of the wave properties, is

�gH2
Rcgaba

8
= �g(H′

T)2cgbbb

8
− �gH2

Tcgbbb

8

= �gH2
I cgaba

8
− �gH2

Tcgbbb

8

(6.209)

In this expression, H′
T is the wave height without reflection. Because both the reflect-

ing and nonreflecting wave systems have the same initial values, we divide the reflec-
tion and transmission terms of eq. 6.209 by �gH2

I cgaba/8, and take the square root
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of the resulting expression. The result is

HR

HI
=
√(

H′
T

HI

)2 cgbbb

cgaba
−
(

HT

HI

)2 cgbbb

cgaba
=
√

1 −
(

HT

HI

)2 cgb cosb

cga cosa
(6.210)

In terms of coefficient notation, the last equality of this expression yields

HR

HI
≡ KR =

√
1 − K2

T

K2
S K2

r

(6.211)

which relates the reflection coefficient (KR) to the shoaling coefficient [KS ≡√
(cga/cgb), discussed in Chapter 3], the refraction coefficient [Kr ≡ √

(ba/bb) =√{cos(�a)/ cos(�b)} from the results in eq. 6.88], and the transmission coefficient
(KT = Hb/Ha).

The application of the mild-slope equation is demonstrated in the following
example, where the equation is applied to the pure shoaling (shoaling without
refraction ) of waves. That is, the waves directly approach a straight, parallel-
contoured rise in the sea bed, hence, �a = �b = 0.

EXAMPLE 6.12: APPLICATION OF THE MILD SLOPE TO PURE SHOALING Consider a
system of 1-m, 7-sec linear waves in deep water approaching a rising bed having
straight, parallel, and evenly spaced bottom contours. The waves approach the
beach directly, so the separation distance (b) between orthogonals is uniform
throughout the region, and the wave angles (�) between the crest lines (wave
fronts) and the h-contours are equal to zero in Figure 6.33b. The water depth
at the crest of the bed rise is hb = 0.06�0 = 4.6 m, and the slope of the rise is
m = 1/3, which is the upper practical limit of the mild-slope equation. The mild-
slope equation in eq. 6.195 is solved for both the real and imaginary components
of Q, that is, Q� and Q�, respectively. In addition, because we know that these
components are out of phase by �/4, let the origin of the horizontal coordinate
be where the following conditions occur:

Q�a = 0,

Q�a = −gHI

2

� −5.46

m2

s
,

∂ Q�
∂x

∣∣∣∣
x=0

= gKa HI

2

� 0.449

m
s

and

∂ Q�
∂x

∣∣∣∣
x=0

= 0

These conditions result from the application of the expression in eq. 6.198 to
the toe, when the incident wave first arrives. Because both y and t have infinite
ranges, we assume that both are equal to zero in eq. 6.198 and in the spacial
derivative of the equation. The conditions here are then the boundary condi-
tions used in the solution of the mild-slope equation, eq. 6.195, when that equa-
tion is solved for Q� and Q� for waves approaching the rise directly (�a = 0 and
ky = 0). Plots of Q� and Q� are presented in Figure 6.35. The mild-slope equa-
tion is solved using the Runga-Kutta numerical integration, which is presented
in Appendix B of this book.
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Figure 6.35. Variation of the Real and
Imaginary Potentials over a Bed Slope of
1/3.

Our interest is in the behavior of the free surface over the bed rise, as pre-
dicted by the expression in eq. 6.198, and in the reflection and transmission coef-
ficients resulting from the rising bed. The free-surface profile, �, corresponding
to Q� is presented in non-dimensional form in Figure 6.36 as a function of x/L.
In Figure 6.36, we note that the wave height first decreases and then rises as the
wave shoals. This behavior is observed for nonreflecting shoaling waves, as dis-
cussed in Chapter 3. For comparison, in Figure 6.37 results obtained from the
linear shoaling coefficient expression of eq. 3.78 are plotted with H/HI values
obtained from the mild-slope analysis as functions of h/�0. From the plots, we
see that the linear and mild-slope analyses give approximately the same values
for the larger h/�0 values. As h/�0 decreases the curves separate, where the
lower-valued curve is that predicted by the mild-slope analysis. The separation
of the curves is due to the cumulative effects of wave reflection from the rise.
The reflection coefficient of eq. 6.211 is approximately 0.1365 for the given slope
and rise-crest depth.
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Figure 6.37. Comparison of the Shoaling Coefficients from the Linear Wave Theory and the
Mild-Slope Equation for a Bed Rise Having a Slope of 1/3.

In summary, the mild-slope equation is both versatile and useful. It allows us
to predict the wave profile, reflection coefficient, and transmission coefficients over
beds having moderate changes in elevation. The application of the equation is not
limited to beds having rectilinear elevations. One of the favorite applications of
wave analysts is the bed having a circular mound, such as analyzed by Chandrasek-
era and Cheung (1997) and others. The comparison of the theoretical and experi-
mental results for this bed geometry is quite good. Hence, we can use the mild-slope
equation with confidence.

6.6 Closing Remarks

In this chapter, some of the available theoretical and numerical methods used in
the analyses of wave modification and wave transformation are presented. Modi-
fication refers to a change in the wave properties, whereas transformation refers
to the change in the wave energy and energy flux. The methods presented in this
chapter are those that the author believes to be the best suited to the analyses and
solutions of ocean engineering problems. The readers are encouraged to consult the
references to obtain the details of the particular methods of interest.



7 Waves in the Coastal Zone

The field of coastal engineering has many facets. The reader is referred to the hand-
books edited by Herbich (1999) and by Kim (2009) for discussions of most of the
coastal engineering areas. In this chapter, the focus is on the coastal zone, where
most of the attention of coastal engineers is focused on the effects of breaking
and broken waves. The phenomenon of breaking is nonlinear in nature, as dis-
cussed in Section 4.6. The nonlinear behavior of breaking waves can be approxi-
mately predicted by theoretical analyses. The theoretical expressions for breaking
waves presented in Section 4.6 are based on two assumptions. First, the water depth
is assumed to be uniform, and second, the wave profile of the breaking wave is
symmetric about a vertical plane containing the crest line. Even with these mod-
eling constraints, the theoretical analyses have been found to have value in con-
ceptual engineering design applications. Dean (1974) presents a detailed discussion
of the limitations of the various wave theories when applied to waves at or near
breaking.

After a shoaling wave breaks, energy losses occur, and the resulting behavior of
the wave depends on phenomena that cannot be completely mathematically mod-
eled. The behavior of the wave prior to the break is also affected by bed friction and,
if the bed is porous, by percolation. These cause energy losses and complicate our
ability to theoretically predict the behavior of the wave. Because of this, empirical
formulas based on both experimental and field data have been developed. These
formulas can be used to predict the type of the breaking wave (spilling, plunging,
collapsing, and surging), the runup (resulting from the uprush on the beach), and
the alongshore or longshore transport of the water particles within the surf zone.

In this chapter, the nature of the breaking wave is first discussed. This discussion
is based on the extensive laboratory and field observations of Galvin (1968, 1972)
and others. The empirical formulas for the breaker height index of McCormick and
Cerquetti (2002), based on the works of Goda (1970a, 1970b), and the breaker depth
index of Weggel (1972) are then presented. The empirical equations are used in the
determination of the breaking height and breaking depth. The concept of surf sim-
ilarity (Iribarren and Nogales, 1949; Battjes, 1974), resulting from a dimensional
analysis of waves in the surf zone, is also introduced. From similarity considera-
tions, the non-dimensional parameter called both the surf similarity parameter and
the Iribarren number results. Specific ranges of this parameter have been shown
to correspond well to the types of breaks, the ratio of reflected-to-incident wave
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Figure 7.1. Sketch of the Profiles of Breaking and Broken Regular Waves in the Surf Zone. The
reader should note that the maximum height of the water above the SWL decreases as the
broken wave travels landward. The MWL is shown to be above the SWL. This phenomenon
is called wave set-up. The runup, Ru, is the height above the SWL attained by the landward
uprush of water. The seaward backrush of the water to the sea following the uprush is due
to gravity. The swash zone is the region landward of the break where the water motions are
flume-like. See U.S. Army (1984).

energies, runup, and the ratio of the breaking height-to-breaking depth for purely
shoaling waves. It is then demonstrated how the results for the purely shoaling
waves can be included in the analysis of refracting waves. Finally, the concept of
radiation stress (Longuet-Higgins, 1970a, 1970b, 1972; Longuet-Higgins and Stew-
ard, 1960, 1961, 1962, 1964) is discussed. This concept leads to methods to determine
the hydrodynamic phenomena within the surf zone, including set-up, set-down, and
longshore transport.

The discussions in this chapter are somewhat limited. For more complete cov-
erage of both coastal processes and coastal engineering, see the books by Dean
and Dalrymple (2002), Massel (1989), Sorensen (1997), and Herbich (1999). The
handbooks edited by Herbich (1999) and Kim (2009) contain extensive outlines
of the Automated Coastal Engineering System (ACES) of the U.S. Army Corps of
Engineers. The ACES is an updated and electronic version of the Shore Protection
Manual (see U.S. Army, 1984).

7.1 Coastal Zone Phenomena

There are three major regions of the coastal zone that are of interest. These are
called the littoral zone, the surf zone, and the swash zone. The littoral zone is the
region extending from the first (outermost) wave-induced motions of sediment on
the bed to the innermost extent of the uprush. Sand is the sediment of choice herein.
The littoral zone is the region of interest in coastal engineering, which is primarily
devoted to the prevention of either unwanted erosion (the loss of sand and other
littoral materials) or unwanted accretion (the gain of littoral materials). Within the
littoral zone is the surf zone, which is the region extending from the outermost break
to the innermost extent of the uprush, as sketched in Figure 7.1. The swash zone is
the region within the surf zone, landward of the break, where the water travels up
the beach with a flume-like flow called the uprush. Some of the uprushed water can
percolate into the sand, whereas the remainder of the water returns to sea in the
gravitationally induced backrush.
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As classified by Galvin (1968, 1972), there are four possible types of breaking
waves in the coastal zone. Profiles of these breaking waves are sketched in Fig-
ure 7.2. From Galvin (1972), the descriptions of the types of breaking waves are as
follows:

Spilling Break (Figure 7.2a): “Foam, bubbles, and turbulent water appear at
the wave crest and eventually cover the front face of the wave. Spilling starts
at the crest when a small tongue of water moves forward faster than the wave
form as a whole. In its final stages, the spilling wave evolves into a bore or an
undulatory bore.” (We see in this description that the mathematical definition
of the breaking wave in eq. 4.131 is physically realized.)

Plunging Break (Figure 7.2b): “The whole front face of the wave steepens until
vertical; the crest curls over the front face and falls into the base of the wave; and
a large sheet-like splash arises from the point where the crest touches down.”

Collapsing Break (Figure 7.2c): “The lower part of the front face of the wave
steepens until vertical, and this front face curls over as an abbreviated plunging
wave. The point where the front face begins to curl over is landward of, and
lower than, the point of maximum elevation of the wave.”

Surging Break (Figure 7.2d): “The front face and crest of the wave remains
relatively smooth and the wave slides up the beach with only minor production
of foam and bubbles. Resembles a standing wave.”

The sketches in Figure 7.2 are modeled after those of Galvin (1972). C. J. Galvin
has devoted much of his professional life to the study of waves in the coastal zone.
Although his referenced works are based on studies conducted several decades ago,
both in the field and in large wave tanks, his observations are still considered to be
most authoritative.

In Figure 7.1, two waves in the surf zone are sketched. Actually, there can be
several waves, depending on the type of break. For spilling waves over beds of small
slope, one can observe a number of waves, according to both Galvin (1972) and
Battjes (1974).

7.2 Empirical Analyses of Breaking Waves on Beaches

In this section, both experimental data and empirical formulas for purely shoaling
waves on beaches of uniform slope are presented and discussed. Of particular inter-
est are the results of the experimental studies of Goda (1970a, 1970b) and the empir-
ical equation of Weggel (1972), both of which appear in the Shore Protection Manual
(U.S. Army, 1984), and are widely used by the coastal engineering community. Also
presented is the empirical formula of McCormick and Cerquetti (2002), which is
based on the Goda (1970a) data, and the formula of Komar and Gaughan (1972)
for the breaking wave index over flat, horizontal beds. An excellent discussion of
many of the empirical and theoretical formulas for the breaking indices Hb

′/H0
′ and

hb/H0
′ is found in the paper of Wang and Du (1993). The prime (′) is used to indicate

pure shoaling (without refraction). McCormick and Cerquetti (2002) find that the
averaged data presented by Goda (1970a) for the breaking height index (Hb

′/H0
′)
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Figure 7.2. Types of Breaking Waves. See Galvin (1972).

for a purely shoaled wave over beds of uniform slope (m) can be approximated by

Hb
′

H0
′ = {1 + A tanh[B(m − 0.02)]}




cosh2
(

11.88
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′

�0

)
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2
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�0
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(7.1)
where

A = 0.236 − 1.641
(

H0
′

�0

)
(7.2)
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Figure 7.3. Breaking Height Index Curves. The solid lines are obtained from eq. 7.1 due to
McCormick and Cerquetti (2002), and the data points for m > 0 are the averaged values
reported by Goda (1970a) and presented in Table 7.1. The m = 0 values result from the
expression in eq. 7.4 due to Komar and Gaughan (1972).

and

B = 25.48 + 25.41
(

H0
′

�0

)
(7.3)

The expression in eq. 7.1 can be applied to breaking waves over both flat, horizontal
beds and beds of uniform slope. Results obtained from eq. 7.1 along with the aver-
aged numerical values of Goda (1970a) for m > 0 and the empirical data of Komar
and Gaughan (1972) for m = 0 are presented in Figure 7.3. The empirical expression
of Komar and Gaughan (1972) is

Hb
′ = 0.56H0

′(
H0

′

�0

)1/5
(7.4)

which is based on both the Airy’s linear wave theory, discussed in Chapter 3, and
observed data. Specific values of Goda (1970a) and those from eq. 7.1 are presented
in Table 7.1. Again, the primes (′) indicate that the properties are for purely shoal-
ing waves. As noted in the Shore Protection Manual (U.S. Army, 1984), the Goda
values in Figure 7.1 and Table 7.1 are based on somewhat scattered data. The results
from eq. 7.1, when applied to the case of a flat, horizontal bed (m = 0), agree
to within 10% with the results from empirical expression of Komar and Gaughan
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Table 7.1. Breaking indices (Hb
′/H0

′) from Goda (1970a) and eq. 7.1

m = | 1/50 | 1/30 | 1/20 | 1/10
H0

′/�0 Goda eq. 7.1 Goda eq. 7.1 Goda eq. 7.1 Goda eq. 7.1

0.002 2.28 2.242 2.45 2.413 2.65 2.578 2.80 2.746
0.003 2.01 2.014 2.19 2.166 2.29 2.314 2.44 2.464
0.004 1.85 1.866 2.00 2.007 2.10 2.142 2.23 2.280
0.006 1.68 1.677 1.79 1.801 1.88 1.922 1.98 2.044
0.008 1.54 1.555 1.64 1.669 1.72 1.779 1.84 1.890
0.010 1.45 1.467 1.55 1.573 1.64 1.675 1.71 1.779
0.015 1.31 1.321 1.41 1.414 1.50 1.503 1.58 1.592
0.020 1.22 1.229 1.32 1.313 1.39 1.393 1.48 1.472
0.030 – 1.117 1.21 1.188 1.26 1.255 1.35 1.320
0.040 1.05 1.052 1.14 1.113 1.18 1.170 1.26 1.226
0.060 1.01 0.985 1.05 1.031 1.09 1.075 1.15 1.117
0.080 0.98 0.959 1.00 0.994 1.02 1.027 1.07 1.057
0.100 0.94 0.952 0.96 0.977 0.97 1.000 0.98 1.019
0.120 0.94 0.955 0.94 0.969 0.95 0.981 0.96 0.992

(1972) in eq. 7.4. Other empirical expressions for the breaker height index are com-
pared and discussed by McCormick and Cerquetti (2002).

From either eq. 7.1 or the curves in Figure 7.3, the breaking height index for
purely shoaled waves on impermeable beds of uniform slope is obtained. With this
information, we can use the empirical formula of Weggel (1972) to obtain the break-
ing water depth. The Weggel formula is

hb

Hb
′ = 1

b − aHb
′

gT 2

= 1

b − 1
2�

Hb
′

�0

(7.5)

where the slope-dependant coefficients a and b are, respectively,

a = 43.75(1 − e−19m) (7.6)

and

b = 1.56
1 + e−19.5m

(7.7)

Results of eq. 7.5 are presented in Figure 7.4, where the breaker depth index is as
a function of the deep-water steepness (Hb

′/�0). Note that the breaker depth index
value for waves over a flat, horizontal bed is independent of Hb

′/�0. The use of
breaker index equations is illustrated in the following examples.

EXAMPLE 7.1: BREAKING WAVE PROPERTIES OVER A FLAT, HORIZONTAL BED In
Chapter 4, the Munk (1949) expression for a solitary breaking wave is given in
eq. 4.161. That expression is

Hb
′ = H0

′

3.3
(

H ′
0

�0

)1/3

The bed slope, m, does not appear in this expression. Here, we apply the Munk
expression, the McCormick-Cerquetti expression in eq. 7.1, and the Komar-
Gaughan expression in eq. 7.4 to 8-sec deep-water waves traveling over a flat,
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Figure 7.4. Breaking Depth Index Curves. The curves result from the empirical expression in
eq. 7.5 due to Weggel (1972).

horizontal bed, and compare the resulting breaking height values. The wave
heights are 0.2 m, 1 m, and 10 m, respectively. Because the deep-water wave-
length for this period is �0 � gT2/2� � 100 m, the deep-water wave steepness
values for these waves are 0.002, 0.01, and 0.1, respectively. In Figure 7.1, these
respective values approximately correspond to the left, center, and right condi-
tions in that figure. The results are as follows:

Hb
′/�0

McCormick-Cerquetti, Komar-Gaughan, Munk,
H0

′/�0 Eq. 7.1 Eq. 7.4 Eq. 4.161

0.002 2.000 1.941 2.405
0.01 1.310 1.407 1.406
0.1 0.918 0.888 0.653

When compared to the results obtained from eq. 7.1, the Munk (1949) equa-
tion is seen to over-predict the breaker index at the lowest deep-water wave
steepness value while under-predicting at the highest steepness value. Values
obtained from eq. 7.1 agree with the Komar-Gaughan results to within 8%.

EXAMPLE 7.2: BREAKING WAVE PROPERTIES ON A BEACH OF UNIFORM SLOPE –

EMPIRICAL EQUATIONS The 1-m, 8-sec deep-water waves in Example 7.1
approach a beach having a uniform slope (m) of 1/50. On Monday, the waves
approach directly, whereas on Tuesday, the waves approach at a deep-water
wave angle (�0) of 30◦. Using the expressions in eqs. 7.1 and 7.5, we are to
determine the breaking height and breaking depth on each day. On Monday,
the waves are not refracted; so, the equations can be applied directly. On Tues-
day, Snell’s law of eq. 6.89 must be incorporated to account for wave refraction.

As for the deep-water wave in Example 7.1, H0
′/�0 � 0.01 for Monday’s

waves. From eq. 7.1, the breaking height is approximately 1.47 m. For the deep-
water wavelength of �0 � gT2/2� � 100 m, one finds Hb

′/�0 = 0.00147. Using
this value and the slope of 1/50 in eq. 7.5, we obtain hb/Hb

′ � 1.08. The breaking
depth is then hb � 1.59 m. For the 1/50 slope, Monday’s waves are found to
break 79.3 m from the shoreline.
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For Tuesday’s waves, we must include refraction with the expressions in
eqs. 7.1 and 7.5. First, the equivalent nonrefracting deep-water wave height
must be determined. From eq. 6.90, that wave height is H0

′ = H0
√

[cos(�0)] �
0.931 m. Using this value, the equivalent deep-water steepness is H0

′/�0 �
0.00931, and from eq. 7.1, Hb

′/H0
′ � 1.50. The equivalent breaking wave height

is Hb
′ � 1.40 m. In the Weggel (1972) expression of eq. 7.5, Hb

′/�0 � 0.0140,
which yields hb/Hb

′ � 1.11. The water depth at the break is then hb � 1.55 m,

which is 77.5 m offshore from the shoreline. The wavelength at the breaking
depth is �b � 30.7 m from eq. 3.31, and the breaking wave angle is �b � 8.83o

from eq. 6.89. Finally, the breaking wave height is found to be

Hb = HbHb
′ H0

′

Hb
′ H0

′ H0
H0 =

√
cos(0)
cos(�b)

(
Hb

′

H0
′

)√
cos(�0)
cos(0)

H0

� (1.01) (1.50) (0.931) 1 m � 1.40 m (7.8)

The effects of refraction cause the Tuesday waves to break 1.8 m closer to shore
than the Monday waves, and the breaking wave height of the Tuesday waves
is 0.07 m smaller than that of the Monday waves. From these results, one can
conclude that refraction delays the break of the wave and, in addition, retards
the growth of the breaking wave height.

7.3 Surf Similarity

In Section 2.7, applications of dimensional analysis are presented to determine
model-to-prototype scaling relationships. The non-dimensional groupings can be
found by dimensional analysis or from experimental and field observations. Our
focus here is the latter. For waves in the coastal zone, Table 7.2 is useful in the
dimensional analysis. In that table, force is used as a primary dimension. Note that
when sediment transport in the coastal zone is of interest, the friction coefficient
on the bed and the properties of the sediment must be included. This topic is not
discussed herein.

The spatial coordinates (x, y, z), the running time (t), and the particle velocity
components (u, v, w) are not included in Table 7.2 because the dimensional analysis
is directed at wave parameters rather than independent and dependent variables.

For the present, our attention is focused on the kinematic properties of purely
shoaling waves traveling over a flat bed having a uniform slope, m. Therefore, there
will be no �-dependence. The water depth-to-offshore distance ratio, h/x, is equal
to the bed slope, m; hence, the bed slope is included in the analysis rather than h
and x. The analysis can be further simplified by the findings in Chapter 3, where the
kinematic wave properties over a horizontal bed are shown to depend on the wave
steepness, H/�, and the depth-to-wavelength ratio, h/�.

Iribarren and Nogales (1949) and Battjes (1974) discuss the non-dimensional
parameter known as both the Iribarren number and the surf similarity parameter,
defined as

�I ≡ m√
HI

′/�0

(7.9)

where HI
′ is the height of a nonrefracting incident wave. The parameter in eq. 7.9

is referred to as the surf similarity parameter in the remainder of this chapter. For
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Table 7.2. Physical quantities and dimensions

Physical quantity Symbol Dimensions

Length (wave height, wavelength, water H, �, h, xb L
depth, distance from shoreline)

Time (period) T T
Mass m F-T2-L−1

Mass density � F-T2-L−4

Velocity (celerity, group, and particle velocities) c, cg , and u, v, w L-T−1

Gravitational acceleration g L-T−2

Force F F
Pressure p F-L−2

Dynamic viscosity � F-T-L−2

Bed slope m F0-T0-L0

Wave angle � F0-T0-L0∗

∗ The dimensions of the angle are in radians or degrees.

a flat beach of uniform slope extending from the shoreline to deep water, the wave
height in eq. 7.9 is the deep-water wave height, H0

′, that is, the subscript I can be
replaced by 0. In the general form in eq. 7.9, the incident wave height could be over
a flat horizontal bed seaward of a foreshore of slope m.

A. Breaking Waves

As noted by Battjes (1974), Galvin (1968) uses an “offshore parameter,” defined
as H0

′/(�0m2) = 1/(�0)2, and an “inshore parameter,” defined as Hb
′/(gT 2m) =

m/[2�(�b)2], in his classification of breaking waves into breaker types, where the
subscript b identifies the wave properties at the break point. Galvin’s observations
are presented in Table 7.3. Again, the profiles of the breaker types are sketched in
Figure 7.2.

Battjes (1974) presents “an expression for the condition at which the transi-
tion occurs between non-breaking and breaking waves approaching a slope which is
plane in the neighborhood of the still-water line” of Iribarren and Nogales (1949).
This expression is based on shallow-water trochoidal wave theory (for example, see
McCormick, 1973), from which the breaking condition occurs when the breaking
wave amplitude (Hb

′/2) equals the water depth (hb). The reader should note that
the trochoidal theory predicts a cusp-shaped crest for a breaking wave, the exis-
tence of which is physically impossible. Iribarren and Nogales (1949) assume that
the breaking depth is a quarter-wavelength (�b/4) from the shoreline, where the
breaking wavelength is approximated by the shallow-water expression of the lin-
ear (and Stokes’ second-order) theory. From eq. 3.38, �b � √

(ghb)T. The resulting

Table 7.3. Breaker type �-ranges from Galvin’s (1968) observations

Breaker type �0 range �b range (Battjes, 1974)

Surging or collapsing �0 > 3.3 �b > 2.0
Plunging 0.5 < �0 < 3.3 0.4 < �b < 2.0
Spilling �0 < 0.5 �b < 0.4
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expression for the surf similarity parameter at the break is

�b ≡ m√
Hb

′/�0

� 2.3 (7.10)

The reader can see that this value occurs in range for surging or collapsing breaks in
Table 7.3.

For breaking waves on a beach of uniform slope extending into deep water, the
following formula has been used to approximate the mean data presented by Battjes
(1974):

Hb
′

hb
= 0.781 + 0.2�0, where �0 ≤ 2.0 (7.11)

From the results presented in Table 7.3, we see that this expression applies to
all spilling waves and some plunging waves. Note that the constant value in eq. 7.11
is that obtained from the solitary theory in eq. 4.152.

B. Wave Reflection

For waves approaching the shore directly (�0 = 0), the energy flux (wave power)
that is not lost in the breaking process will be reflected back to sea. Seaward of the
line of breakers, the incident and reflected wave heights are HI

′and HR
′, respectively.

The ratio of these two wave heights is called the reflection coefficient. As defined in
Chapter 6, the reflection coefficient is

KR ≡ HR
′

HI
′ (7.12)

The ratio of the reflected-to-incident energy flux is proportional to K2
R. Battjes

(1974) approximates the upper limit of the reflection coefficient for widely scattered
data by

KR = 0.1�2, where 0.1�2 < 1.0

= 1.0, where 0.1�2 > 1.0 (7.13)

A continuous equation that well approximates the upper bound of the reflection
coefficient data is

KR = tanh3.31(0.527�), where 0.1�2 ≤ 1.2 (7.14)

Results obtained from eqs. 7.13 and 7.14 are presented in Figure 7.5.

C. Runup

Landward of a shoaling wave break, the fluid motions are flume-like over the beach,
traveling landward in the uprush and seaward in the backrush. The uprush and back-
rush are paramount in the transport of sand. Depending on the slope of the bed and
the breaking wave conditions, the beach experiences either erosion or accretion. As
discussed in Chapter 6, the maximum height above the SWL attained by a broken
wave on a beach is called the runup, Ru. The runup is illustrated in Figure 7.1. For
waves on a beach extending into deep water, the runup for a purely shoaling wave
is obtained from the empirical formula of Hunt (1959). The Hunt formula is

Ru = Cp H0
′�0, where 0.1 ≤ �0 ≤ 2.3 (7.15)
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Figure 7.5. Upper Bounds of the Reflection Coefficients versus the Surf Similarity Parameter.

where Cp is called the porosity factor, defined as the volume of the void space and
the total volume of the solid and void components. For a smooth beach, Cp � 1.0.

See Hughes (2004) for an extensive analysis of this condition. From the results in
Table 7.3, we see that Hunt’s formula applies to all spilling waves and some plunging
waves.

EXAMPLE 7.3: BREAKING WAVE PROPERTIES ON A BEACH OF UNIFORM SLOPE –

SURF SIMILARITY Consider the conditions in Example 7.2, where 1-m, 8-sec
deep-water waves directly approach a 1/50 beach. For this condition, the deep-
water wave steepness is H0

′/�0 � 0.01. The value of the surf similarity param-
eter of eq. 7.9 (where HI

′ = H0
′) is �0 = m/

√
(H0

′/�0) � 0.2. From Table 7.3, a
spilling break will occur. Because �0 ≤ 2.0, the expression in eq. 7.11 can be used
to determine the ratio of the breaking height to breaking depth. The result is
Hb

′/hb = 0.821. In Example 7.2, using the Weggel (1972) expression in eq. 7.5,
we find that hb/Hb

′ = 1.08, or Hb
′/hb = 0.926. The difference in the values is

slightly larger than 10%. The reader should note that the expressions in eqs. 7.5
and 7.11 both yield Hb

′/hb|m=0 � 0.78 when applied to a flat, horizontal bed.

7.4 Surf Zone Hydromechanics – Radiation Stress

Coastal engineers are concerned with the wave- and current-induced motions of
sand. The wave-induced sand motions occur primarily in the surf zone. The surf zone
is the region between the outermost break and the landward extent of the uprush.
The sand is primarily transported by broken waves in the alongshore or longshore
direction; however, some time-averaged transport is both landward and seaward. To
assess the need for shore protection, the coastal engineer needs to fully understand
both the nature and magnitude of the longshore transport. To this end, Longuet-
Higgins and Stewart (1960, 1961, 1962, 1964) and Longuet-Higgins (1970a, 1970b,
1972) introduced and developed the concept of radiation stress. In this section, the
physical consequences of radiation stress are described and discussed.

Referring to Figure 7.6, a goal of this section is to determine the time-averaged
and depth-averaged longshore velocity distribution, V�(x), and the phenomena of
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Figure 7.6. Area Sketch of Waves Shoaling on a Parallel-Contoured Beach, Illustrating the
Time-Averaged and Depth-Averaged Longshore Velocity [V�(x)] Distribution.

wave set-up and set-down. Wave set-up is the rise of the MWL above the SWL.
It results from wave-induced water-mass transport toward the shoreline. Wave set-
down is the drop in the MWL below the SWL. Set-up can also be caused by wind
stress on the free surface of the water. This phenomenon, known as wind set-up,
is not discussed herein. The reader is referred to the Shore Protection Manual (see
U.S. Army, 1984).

A. Radiation Stress

(1) Radiation Stress in the Direction of Wave Travel

As stated by Longuet-Higgins (1970a, 1970b, 1972), the wave set-up depends on
the energy flux, and the longshore transport depends on the momentum flux.
These combined mechanisms lead to the concept of radiation stress. From Longuet-
Higgins and Stewart (1964), radiation stress is defined as “the excess flow of momen-
tum due to the presence of the waves,” or in other words, the excess momentum flux.

Radiation stress can be introduced on a theoretical level, as by Longuet-Higgins
and Stewart (1962), or on a practical (heuristic) level, as by Longuet-Higgins and
Stewart (1964). The latter is readily applicable to engineering situations and, for
that reason, the heuristic approach is taken in this section.

Consider linear waves traveling over a flat, horizontal bed. As sketched in Fig-
ure 7.7, the coordinate X is in the direction of wave travel, and the crest-wise coor-
dinate is Y. Referring to the coordinate box in Figure 7.7, the relationships between
these coordinates and the inertial onshore (x) and alongshore (y) coordinates are

X = x cos(�) + y sin(�)

Y = −x sin(�) + y cos(�)
(7.16)

Our attention is first directed at both the momentum flux and energy flux across a
vertical Y-Z plane. These are functions of the respective wave-induced horizontal
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Figure 7.7. Wave-Induced Water Particle Velocity Com-
ponents on a Vertical Plane Normal to the Wave
Direction.

and vertical velocity components, which for linear waves are

U = ∂�

∂ X
= u

cos(�)
= H


2
cosh[k(z + h)]

sinh(kh)
cos(kX − 
t) (7.17)

where u is the horizontal landward velocity component, and

W = w = ∂�

∂z
= H


2
cosh[k(z + h)]

sinh(kh)
sin(kX − 
t) (7.18)

from eqs. 3.49 and 3.50, respectively. In these equations, the velocity potential is

� = H
2

c
cosh [k(z + h)]

sinh(kh)
sin(kX − 
t) (7.19)

There is no transverse (along-crest) velocity component. The expression for the
velocity potential results from the combination of eqs. 3.29 and 3.30. Referring to
the sketch in Figure 7.7, there are two components of the momentum flux (through
the normal, vertical plane) – a horizontal component and a vertical combination of
eqs. 3.29 and 3.30. According to Longuet-Higgins and Stewart (1964), the principal
component of the radiation stress is the difference in the mean of the wave-induced
horizontal momentum flux and the mean flux in the absence of waves. That radia-
tion stress component is

SXX ≡
�(t)∫

−h

(�U2 + p)dz −
0∫

−h

p0dz

=
�(t)∫

−h

�U2dz +
0∫

−h

(p − p0)dz +
�(t)∫
0

pdz

�
0∫

−h

�U2dz +
0∫

−h

(p − p0)dz+
�(t)∫
0

pdz

= S(1)
XX + S(2)

XX + S(3)
XX (7.20)
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where the overline represents the time average and p0 is the hydrostatic pressure. In
this equation, SXX

(1) can be interpreted as the integral of a Reynolds stress over the
vertical plane in Figure 7.7. See Granger (1995) and other books covering the sub-
ject of fluid mechanics for in-depth discussions of the Reynolds stress. Continuing,
SXX

(2) results from the change in the mean pressure. According to Longuet-Higgins
and Stewart (1964), “the mean flux of vertical momentum across any horizontal
plane . . . must be just sufficient to support the weight of water above it.” The result
is that the integrand of the SXX

(2) integral in eq. 7.20 can be written as

p̄ − p0 = −� W 2 (7.21)

which is interpreted as a Reynolds stress. Finally, SXX
(3) in eq. 7.20 is approximately

equal to the time-averaged potential energy per surface area. For linear waves, the
principal component of the radiation stress is then

SXX =
[

S(1)
XX + S(2)

XX

]
+ S(3)

XX =
[

�gH2

8
2kh

sinh(2kh)

]
+ �gH2

16
(7.22)

(2) Radiation Stress Transverse to the Wave Travel

To obtain the expression for the transverse or along-crest component of the radia-
tion stress, consider the momentum flux through the vertical X-Z plane. As stated
previously, there is no flow across this plane because V = 0. Following the same line
of reasoning that leads to the expressions for the principal component of radiation
stress in eqs. 7.20 and 7.22, we find

SYY ≡
0∫

−h

( p̄ − p0)dz +
�(t)∫
0

pdz

=
0∫

−h

(−� W2)dz + 1
2

�g�2

= S(2)
YY + S(3)

YY

= �gH2

8

[
kh

sinh(2kh)

]
(7.23)

We note that because V = 0,

SXY = SYX =
�(t)∫

−h

�UVdz = 0 (7.24)

(3) Radiation Stress Matrix

The radiation stress can now be represented by the following stress matrix (stress
tensor):

[S] ≡
[

SXX 0

0 SYY

]
(7.25)

where the nonzero components are obtained from eqs. 7.22 and 7.23.
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EXAMPLE 7.4: COMPARISON OF RADIATION STRESS IN DEEP AND SHALLOW WATERS

In this example, we determine the forms of the elements of the stress tensor of
eq. 7.25 in both deep water and in shallow water. In deep water, where h > �0/2,

only the principal diagonal stress SXX = S(3)
XX (� �gH2

0/16) is in the matrix of
eq. 7.25. In shallow water, where h < �/20, both diagonal terms of the matrix
appear. These respective radiation stress components are SXX(� 3�gH2/16)
and SYY(� �gH2/16).

The value of the radiation stress in coastal engineering is primarily in the predic-
tion of the wave set-up and the longshore current. These phenomena are discussed
in later sections. To determine the set-up and longshore current expressions, we
must first transform the radiation stress matrix from the wave coordinate system
(X, Y, Z) to the inertial coordinate system (x, y, z).

(4) Transformation of the Radiation Stress Matrix

The combination of eqs. 7.22, 7.23, and 7.25 results in

[S] ≡
[

SXX SXY

SYX SYY

]
= �gH2

8




2kh
sinh(2kh)

+ 1
2

0

0
kh

sinh(2kh)


 (7.26)

where, again, X is the coordinate in the wave propagation direction and Y is the
along-crest coordinate, as in Figure 7.7. The coefficient of the last matrix is the wave
energy per surface area, that is, E/�b from eq. 3.67. Near the break, assume that
shallow-water conditions exist, so that the expression in eq. 7.26 is approximated
by

[S ]shallow � �gH2

8

[
3/2 0

0 1/2

]
(7.27)

In deep water, the radiation stress matrix is

[S ]deep � �gH2

8

[
1/2 0

0 0

]
(7.28)

as found in Example 7.4. Our goal is to define the matrix

[S ] =
[

SXX SXY

SYX SYY

]
(7.29)

that is equivalent to [S] in eq. 7.26. This is accomplished by considering the stresses
on a vertical rectangular water column sketched in Figure 7.8. From the equilibrium
of the radiation stress forces, we find the equivalent stresses. The normal compo-
nent, needed to determine the set-up or set-down, is

sXX = SXX cos2 (�) + SYY sin2(�)

= E
�b

(
1
2

+ 2kh
sinh(2kh)

)
cos2(�) + E

�b
kh

sinh(2kh)
sin2(�) (7.30)

where the energy intensity is E/�b = �gH2/8, and the lower-case s is used to rep-
resent the equivalent stress components. The diagonal component, needed for the
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Figure 7.8. Radiation Stress Forces and Equivalent Radiation Stress Forces. Both the radiation
stresses, S, and the equivalent radiation stresses, s, are assumed to be vertically averaged over
the faces of the vertical elemental water column.

determination of the longshore velocity, is

sxy (= syx) = (SXX − SYY) cos(�) sin(�) = �gH2

8

(
1
2

+ kh
sinh(2kh)

)
cos(�) sin(�)

= E
�b

(
1
2

+ kh
sinh(2kh)

)
cos(�) sin(�) = E

�b

(cg

c

)
cos(�) sin(�) (7.31)

The diagonal component can also be expressed in an integral form (similar to
that in eq. 7.24) as

sxy =
�(t)∫

−h

�uvdz (7.32)

Again, the overline is used to denote time averaging. Physically, the integral expres-
sion in eq. 7.32 represents the momentum flux (parallel to the shoreline) across a
shoreline-parallel vertical plane, as illustrated in Figure 7.9. The units of the momen-
tum flux are in terms of force per unit length.

Following Longuet-Higgins (1970a), and referring to Figure 7.8, Snell’s law of
eq. 6.89 allows us to write

b
cos(�)

= b0

cos(�0)
= �

sin(�)
= �0

sin(�0)
(7.33)

where b and b0 are the respective separation distances between two orthogonals in
water of finite depth and deep water. The radiation stress component in eq. 7.31 can
now be written as

sxy = E
�0b0

(
1
2

+ kh
sinh(2kh)

)
cos(�0) sin(�0) = E

�0b0

(cg

c

)
cos(�0) sin(�0) (7.34)

The expressions in eqs. 7.30 and 7.34 are used in the determination of the expres-
sions for the wave set-up and longshore velocity, respectively.
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Figure 7.9. Wave, Inertial, and Swash-Line Coordinates and Associated Unit Vectors.

EXAMPLE 7.5: NORMAL AND DIAGONAL RADIATION STRESS COMPONENTS FOR A

BREAKING WAVE In Example 7.2, a 1-m, 8-sec deep-water wave approaches
a beach having a uniform slope (m) of 1/50. In deep water, the crest of the
wave is at an angle (�0) of 30◦ to the shoreline. In that example, the expres-
sions in eqs. 7.1 and 7.5 are combined with 6.89 (Snell’s law) to determine
the breaking wave properties. The results are the following: hb = 1.55 m, Xb =
77.5 m, �b = 30.7 m, and �b = 8.83◦. Note that hb/�b � 1/20, so shallow-water
approximations can be used. At the break, the energy intensity (energy per sur-
face area) is Eb/�bbb = �gH2

b/8 = 2,480 N-m/m2. The values of the normal and
diagonal radiation stress components in eqs. 7.30 and 7.31 are, resepectively,
sxxb = 3,650 N/m and sxyb = 377 N/m. The values of these components in deep
water are sxx0 = 474 N/m and sxy0 = 547 N/m. Comparing the values, we see that
the normal component increases as the wave approaches the shoreline while the
diagonal component decreases.

B. Wave Set-Up and Set-Down

When waves approach the shoreline over a flat bed of slope m, the radiation stress
components will change as the wave approaches the shoreline, as demonstrated in
Examples 7.4 and 7.5. Longuet-Higgins and Stewart (1964) write that “changes in
radiation stress lead to changes in the level of the mean surface.” The phenomenon
that they describe is called wave set-up when the MWL rises above the SWL, and
set-down when the MWL is below the SWL. We shall collectively refer to the phe-
nomenon in the following derivation as the set-up. To analyze set-up, consider a
wave approaching the shoreline directly, as sketched in Figure 7.10. Assume that
the wave condition is that of shallow water and that the beach slope is small enough
so that the time averages of both u2 and uw are of second order. The time-averaged
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momentum flux (F ) entering the region of length dx is

F ≡ sxx +
�̄(t)∫

−h

�g(�̄ − z)dz = sxx + 1
2

�g(�̄ + h)2 (7.35)

where the time average of the free-surface elevation, �, represents the wave set-up.
The momentum exiting in the region has increased by

dF

dx
dx = d

dx

[
sxx + 1

2
�g(�̄ + h)2

]
dx = dsxx

dx
+ �g(�̄ + h)

(
d�̄

dx
+ dh

dx

)
dx

(7.36)
Because the bottom is not horizontal, there is an additional horizontal momentum
flux due to the hydrostatic pressure on the bottom (shown in Figure 7.10). This addi-
tional momentum flux is

dF

dx
dx = �g (�̄ + h)

dh
dx

dx (7.37)

The momentum flux expressions in eqs. 7.36 and 7.37 must be equal. Thus, the
momentum flux balance yields

dsxx

dx
dx + �g(�̄ + h)

d�̄

dx
dx � dsxx

dx
dx + �gh

d�̄

dx
dx = 0 (7.38)

The approximation in eq. 7.38 is based on the assumption that the wave set-up is
much less than the water depth. From eq. 7.38, we obtain the differential equation
for the wave set-up, which is

d�̄

dx
= − 1

�gh
dsxx

dx
= − 1

�gh
d

dx
[SXX cos2(�) + SYY sin2(�)]

= − 1
�gh

d
dx

[
E
�h

(
1
2

+ 2kh
sinh(2kh)

)
cos2(�) + E

�h
kh

sinh(2kh)
sin2(�)

]
(7.39)

The expression for the radiation stress in eq. 7.30 has been included in eq. 7.39. The
wave set-up is obtained by integrating eq. 7.39.

Consider the case where the waves directly approach a shoreline over a straight,
parallel-contoured bed of uniform slope. In Figure 7.9, the wave angle is � = 0◦. The
expression in eq. 7.39 can be integrated to obtain

�̄|�=0 = −
∫

1
�gh

dsxx = −k
H′2

8
1

sinh(2kh)

= − k0 H′2
0 /16

tanh2(kh)[sinh(kh) cosh(kh) + kh]
(7.40)
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Figure 7.11. Wave Set-Down Seaward of the Surf Zone for � = 0, from eq. 7.40. The entire
curve is below the SWL.

The prime (′) is used to indicate that the shoaling occurs without refraction. Details
of the integration in eq. 7.40 are presented by Longuet-Higgins and Stewart (1962).
We note that the bed slope (m) does not appear in the equation. This is as expected
because the derivation of the expression in eq. 7.40 is based on the linear theory
(discussed in Chapter 3), which assumes that the bed is flat at all points considered.
The last equality in eq. 7.40 results from replacing H by KS H0, where KS is the
shoaling coefficient of eq. 3.78. For waves approaching the shoreline seaward of
the break, results obtained from eq. 7.40 are presented in non-dimensional form
in Figure 7.11. For nonbreaking waves, the set-up is always negative and, hence,
instead of a set-up we have a set-down. The reason for the set-down is that the
normal component of the radiation stress is increasing as the wave approaches the
shore, as is demonstrated in Example 7.5.

In the surf zone, the radiation stress decreases, causing dsxx/dx to be negative
and the derivative of the set-up to be positive in eq. 7.30. The result is that there
is a set-up within the surf zone. As noted by Longuet-Higgins and Stewart (1963,
1964), the behavior of the radiation stress in the surf zone must be predicted by
using empirical expressions. To this end, we first determine the breaking height and
breaking depth by using the empirical expressions in Sections 7.2 or 7.3. The former
is recommended because of the relatively good accuracy of eqs. 7.1 and 7.5. For
waves directly approaching the shoreline over a bed of uniform slope, eq. 7.1 is used
to determine the breaking wave height, and eq. 7.5 is used in combination with the
results obtained from eq. 7.1 to determine the corresponding water depth.

A definitive experimental study of wave set-up and set-down was performed by
Bowen, Inman, and Simmons (1968). Prior to the publication resulting from that
study, results of the laboratory study of Saville (1961) were used to obtain empirical
coefficients for set-up in the surf zone. The Saville study was primarily concerned
with overtopping of seawalls. Results obtained by Bowen, Inman, and Simmons
(1968) for m = 0.082 � 1/12 are presented in Figure 7.12. In that figure, a set-down
is seen to extend from deep water to the plunge point. Landward of the plunge
point (in the swash zone of Figure 7.1), the gradient of the radiation stress is posi-
tive, eventually resulting in a set-up. For the data shown in the figure, the respective
wave period (T), deep-water wave height (H0

′), and breaking wave height (Hb
′) are
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Figure 7.12. Experimental, Theoretical, and Empirical Wave Set-Down and Set-Up and Crest-
Trough Envelope. The experimental data (set-down/set-up ◦ and crest-trough •) are from
Bowen, Inman, and Simmons (1968).

1.14 sec, 0.0645 m, and 0.0855 m. According to Longuet-Higgins and Stewart (1964),
the observed spacial derivative of the set-up is proportional to the spacial deriva-
tive of the water depth. However, the experimental results of Bowen, Inman, and
Simmons (1968) show that there is a “residual wave height” at the beach, causing
the behavior of the set-up in the swash zone to be slightly nonlinear with respect to
x. This nonlinear behavior can be seen in Figure 7.12a, where the larger values of
the set-up are shown to deviate from the rectilinear behavior of the lower set-up val-
ues in the swash. Other results presented by Bowen (1969a) show that the nonlinear
behavior becomes more or less apparent, depending on both the wave conditions
and the beach slope. According to both Bowen, Inman, and Simmons (1968) and
Longuet-Higgins (1972), the linear approximation for the behavior of the set-up in
the swash zone is in good qualitative and quantitative agreement with experimental
data.

From Bowen, Inman, and Simmons (1968), the expression for the gradient of
the set-up in the surf zone is

d�s

dx
� −K

dh
dx

= Km (7.41)
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where K is a proportionality constant, the subscript “s” designates surf-zone condi-
tions, and the water depth at any position is h = −mx. Upon integration, the expres-
sion for the set-up is then found to be

�s = Kmx + B = −Kh + B (7.42)

where B is a constant of integration.
To determine both K and B in eq. 7.42, two conditions for the set-up are

required. The first of these can be determined by applying the shallow-water approx-
imations to eq. 7.40 at the breaking point. The result is

�b � − 1
16

(Hb
′)2

hb
(7.43)

where the breaking depth is obtained from eq. 7.5. The second condition involves
the behavior of the wave height. According to Bowen, Inman, and Simmons (1968),
“Inside the break point the wave energy decreases shoreward, leading to a decrease
in the radiation stress. Using similarity arguments, we can assume that the height
of the broken wave, or bore, remains an approximately constant proportion of the
mean water depth.” The mathematical expression of the latter observation is

Hs = �(�s + h s) ≡ �h s (7.44)

where � is an experimental proportionality constant, and hs is the actual water depth
in the surf zone. The values of � reported by Bowen, Inman, and Simmons (1968)
range from 0.90 to 1.28. However, Longuet-Higgins (1972) recommends a value of
0.82. Again, the subscript “s” in eq. 7.44 indicates a property in the surf zone. By
letting � = 0 and assuming shallow-water conditions, the normal component of the
radiation stress in eq. 7.30 is

sxxs = 3
16

�gH2
s = 3

16
�g� 2h2

s (7.45)

Combine this expression with the equality in eq. 7.38 to obtain the gradient of the
set-up in the surf zone. Note that the approximation in eq. 7.38 is based on the
assumption that the set-down is much less than the water depth seaward of the
breaking point. This assumption cannot be made for the set-up in the surf zone.
The combination of eqs. 7.45 and 7.38 results in

d�s

dx
= − 1

�g(h + �s)
dsxxs

dx
= −3

8
� 2 dhs

dx
= −3

8
� 2
(

d�s

dx
+ dh

dx

)
(7.46a)

where, for the bed of uniform slope, dh/dx = −m. From the expression in eq. 7.46a,
we obtain

d�s

dx

(
= −d�s

dx

)
=

3
8

m� 2

1 + 3
8

� 2
= Km (7.46b)

In this equation, the swash-line coordinate (x) is introduced. Referring to Fig-
ure 7.9, this coordinate originates at the position of the maximum set-up. The swash-
line coordinate is used later in this chapter to determine the longshore velocity
expression.
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By both applying the condition in eq. 7.43 to eq. 7.42 and using the last equality
in eq. 7.46b, the following expression for the set-up in the surf zone is obtained:

�s = (3/8)� 2

1 + (3/8)� 2
(hb − h) − 1

16
H′

b
2

hb

= (3/8)� 2m
1 + (3/8)� 2

(xb + x) − 1
16

H′
b

2

hb
(7.47a)

where x = −xb = −hb/m is the location of the break, as sketched in Figure 7.9. An
alternative expression for the set-up can be obtained from eq. 7.42 by applying the
boundary condition h(xS) = 0, where x = xS is the position of maximum set-up. The
resulting expression is

�s = h s − h s

= m(
1 + 3

8
� 2
) (xs − x) − hs = m(

1 + 3
8

� 2
) (xs − x) + mx

= m(
1 + 3

8
� 2
)x + m(xs − x) (7.47b)

where, again, x is the swash-line coordinate.
By applying eq. 7.47a at x = xS (where x = 0), the position of maximum set-up

is found, as demonstrated in Example 7.7.

EXAMPLE 7.6: COMPARISON OF THEORETICAL AND EXPERIMENTAL WAVE HEIGHT,

WATER DEPTH, AND SET-DOWN AT A BREAK AND RUNUP In this example, we com-
pare the experimental data of Bowen, Inman, and Simmons (1968) in Figure
7.12 with results obtained from eq. 7.1 for the breaking wave height, eq. 7.5 for
the breaking water depth, and eq. 7.43 for the set-down at the break. The experi-
mental values of the deep-water wave height and wave period are, respectively,
6.45 cm and 1.14 sec. The slope (m) of the beach is approximately 0.082. For
these data, eq. 7.1 predicts a breaking height of 8.21 cm. The observed break-
ing height value is 8.55 cm. Equation 7.5 predicts a breaking depth of 7.73 cm,
whereas the observed value is 6.8 cm. The minimum observed set-down is −0.32
cm, and that predicted by eq. 7.43 is −0.55 cm. Hunt’s formula in eq. 7.15 pre-
dicts a runup value of 2.97 cm, where the porosity factor is Cp = 1 for the
smooth, impermeable bed. This factor is the ratio of the void volume to the
total (void + material) volume. From eq. 7.9, the value of the deep-water surf
similarity parameter is �0 = m/

√
(H0/�0) = 1.45, where the deep-water wave-

length (�0) is approximately 2.03 m. The observed runup is 3.25 cm.
The predicted breaking wave height, water depth, and runup values are in

relatively good agreement with the observed values. However, the agreement
between the minimum set-down values is not quite as good. In Figure 7.12a, we
see that the theoretical set-down values continue to decrease with kh. However,
the experimental values level off at the break point and then increase landward
of the plunge. As the wave approaches the break, the nonlinear phenomena
associated with the break become pronounced, but are not accounted for by the
theory.
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EXAMPLE 7.7: SET-UP IN THE SURF ZONE As in Example 7.6, our interest is in
predicting the behavior observed by Bowen, Inman, and Simmons (1968) lead-
ing to Figure 7.12. The conditions in that figure are the following: m = 0.082,
H0 = 6.45 cm, T = 1.14 sec. The proportionality constant in eq. 7.44 reported by
Bowen and his colleagues is � = 1.15. In Example 7.6, we find that the break-
ing wave height is Hb = 8.21 cm from eq. 7.1 and the breaking depth is hb =
7.73 cm from eq. 7.5. In units of centimeters, these values applied to the expres-
sion in eq. 7.47 result in the following expression for the surf-zone set-up in
Figure 7.12:

�s � 0.0272(94.3 + x) − 0.545

The position of the maximum set-up value (x = xS or x = 0) can be found in
terms of the breaking conditions by solving eq. 7.47a. The resulting expres-
sion is

xS = 3
8

� 2xb −

(
1 + 3

8
� 2
)

m
1
16

H′2
b

hb
(7.48)

For the parametric values, the onshore position of the maximum set-up is
xS = 37 cm from eq. 7.48. The predicted value of the maximum set-up is approx-
imately 3.02 cm and the observed value is 2.95 cm. The set-up curve is presented
in Figure 7.12 with the experimental results.

The nonlinearity of the experimental set-up data in the surf zone is evident in
Figure 7.12. The linear assumption leading to eqs. 7.47 and 7.48 yields a maximum
set-up value that agrees with that observed, at least for that particular experiment.
In a study of longshore transport and wave decay in the surf zone, Miller (1987)
examines the results obtained by assuming that the wave height variation in the surf
zone varies exponentially with x, that is,

Hs = Hbe−�(x+Xb) (7.49)

where � is a parametric constant. Miller (1987) compares results obtained from this
equation with both the observed data of Horikawa and Kuo (1966) and with the
linear assumption. This comparison shows the linear expression in eq. 7.44 is satis-
factory as a first approximation for the wave height variation in the surf zone.

C. Longshore Velocity

One of the focus areas of coastal engineering is beach stability. The goal is to pre-
serve the balance between erosion (the loss of material) and accretion (the gain of
material) along the sea coast. The material referred to is collectively called littoral
drift. For most of the beaches of the contiguous United States, the littoral drift is pri-
marily quartz and feldspar or, simply, beach sand. The longshore transport of mate-
rial is primarily due to the wave-induced littoral currents in the surf zone. Based on
the concept of radiation stress of Longuet-Higgins and Stewart (1960, 1961, 1962,
1964) and Longuet-Higgins (1970a, 1970b, 1972), the mechanics of the longshore
littoral currents can be developed. The primary references for the discussion of the
phenomenon herein are Longuet-Higgins (1972) and Bowen (1969b).

Longshore currents are time-dependent because the currents are caused by
refracting waves. However, in the analysis of the currents our interest is in their
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time-averaged values where, as sketched in Figure 7.6, the longshore velocity is rep-
resented by V�(x). Longuet-Higgins (1972) states that the quasi-steady longshore
currents result from a balance of forces, those being the driving force due to the
gradient of the radiation stress tensor ([S] in eq. 7.25), friction, and the hydrostatic
force due to the wave set-up. As shown in the derivation of eq. 6.84, the energy flux
is conserved between orthogonals seaward of the break. In the shoaling region, the
energy flux can then be written as

P = �gH2�b
8

(cg

�

)
= �gH2

0�0b0

8

(
cg0

�0

)

= E
cg

�
= E0

cg0

�0
(7.50)

In the second equality, replace b and b0 by Ycos(�) and Y0cos(�0), respectively,
where Y0 is the longshore distance between orthogonals, as sketched in Figure 6.17.
From the resulting relationship, we obtain

P = PxY0 ≡ �gH2

8
cgY0 cos(�) = �gH2

0

8
cg0Y0 cos(�0) (7.51)

The energy flux seaward of the line of breakers is then, theoretically, uniform as
no energy dissipation is included in the analysis. Because Y0 is constant, Px = P/Y0

must also be constant. By replacing E/� in eq. 7.34 by its equivalent from the second
equality of eq. 7.50, the relationship between the momentum flux and the onshore
component of the energy flux is obtained. That relationship is

sxy = Px
sin(�)

c
= Px

sin(�0)
c0

= �gH2
0

16
cos(�0) sin(�0) (7.52)

where the second equality results from Snell’s law, expressed by eq. 6.89. The nor-
mal component of the radiation stress (sxy) is then independent of water depth sea-
ward of the line of breakers because Px is independent of depth.

Near the line of breakers, the velocity gradient adjacent to the bed becomes
large if the fluid is viscous, and the bottom friction affects the wave energy. In the
surf zone, bottom friction, turbulence resulting from breaking, and bed percolation
all contribute to the dissipation of the wave energy. Here, we assume that the sea
bed is both smooth and impermeable. According to Longuet-Higgins (1972), the
spacial rate of change of the onshore component of the energy flux must equal the
local rate of dissipation. We can then write

∂Px

∂x
=
{

0, (−∞ ≤ x < −xb, ∞ > x > xb + xS)

−D, (−xb ≤ x < xS, xb + xS > x > 0)
(7.53)

where D is the local rate of energy dissipation, xb is the seaward distance of the
break from the shoreline, xS is the distance from the shoreline to the maximum set-
up, and x is the swash-line coordinate that is positive in the seaward direction. To
determine the effects of the loss mechanisms in the surf zone, consider an elemental
rectangular water column having a volume of h-dx-dy. An area sketch of the col-
umn is presented in Figure 7.13. The seaward side is shown at the line of breakers,
although the water column can be at any point in the surf zone. On the element,
the net radiation stress forces, the effective bed stress force, and the lateral mixing
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Figure 7.13. Equilibrium of Radiation Stress Forces, Lateral Mixing Forces, and Bed Frictional
Forces in the Surf Zone.

forces due to turbulence (all averaged over time) are in equilibrium. The equilib-
rium relationship of the net respective forces is∑

Fy = (�xys + �y − �ε)dxdy

= dsxys

dx
dxdy + �ydxdy − dTε

dx
dxdy = 0 (7.54)

where � xys is the radiation stress, � y is the bed shear stress, and the function Tε
depends on the eddy viscosity. One might question the directions of the forces in eq.
7.54 shown in Figure 7.13. According to Longuet-Higgins (1970a), “when the orbital
velocity is onshore, the direction of the bottom stress is inclined more in the positive
y-direction (if v is positive); when the orbital velocity is offshore, the bottom stress,
now almost in the opposite direction, is again more toward the positive y-direction.”
Hence, the forces due to the diagonal radiation stress component and bottom stress
are in the same direction. Our goal is to solve the differential equation in eq. 7.54
for the time-averaged and depth-averaged alongshore or longshore velocity, V�(x).

The first term in eq. 7.54 is the force resulting from the diagonal component
of the radiation stress. From the results in eq. 7.31, this radiation stress component
applied to the surf zone is

sxys = 1
8

�gH2
s sin(�s) cos(�s) � 1

8
�g� 2h2

s

√
ghs

sin(�0)
c0

cos(�b) (7.55)

The last approximation results from two assumptions: First, the wave angle within
the surf zone is small, as assumed by Longuet-Higgins in his authored and co-
authored referenced papers, and is approximately equal to that at the break. The
second assumption is made that Snell’s law (eq. 6.89) is approximately valid in the
surf zone.

In the remainder of this discussion, the derivation of the longshore velocity will
be in terms of the swash-line coordinate, x, as by Longuet-Higgins (1970b) and
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others. The radiation stress, which is the spacial derivative of the approximate
expression in eq. 7.55, is

�xys ≡ dsxys

dx
= 5

16
�g3/2� 2 sin(�0)

c0
cos(�b)h3/2

s

dhs

dx

= 5
16

�g3/2� 2 sin(�b)√
ghb

cos(�b)h3/2
s

m(
1 + 3

8
� 2
) (7.56)

= 5
16

�g3/2� 2 sin(�b)√
ghb

cos(�b)


 m(

1 + 3
8

� 2
)



5/2

x3/2 ≡ Cxyx3/2

Also, from eq. 7.46b the parametric constant is

K =
3
8

� 2

1 + 3
8

� 2
(7.57)

where � is the proportionality constant in eq. 7.44. In Figure 7.13, the momentum
flux is decreasing in the x-direction and increasing in the x-direction. That is, the
maximum momentum flux must be at the break, and decreases to the swash line.

The second term in eq. 7.54 involves the time-averaged shear stress (� y) on the
bed. There are several expressions available for � y that vary in complexity. As is
done in the derivation herein, simplifications of the shear stress expression are based
on two assumptions: The first is that the magnitude of the averaged longshore veloc-
ity within the surf zone is assumed to be much less than the maximum orbital veloc-
ity, which, according to Longuet-Higgins (1972) is Umax = �

√
(ghs) � 0.41

√
(ghs).

Second, as previously stated, the wave angle within the surf zone is small. Liu and
Dalrymple (1978) demonstrate the effects of the inclusions of both large longshore
velocities and large wave angles while neglecting the effect of turbulent mixing.

The respective particle velocity components in the wave coordinate directions
(X, Y, z in Figure 7.9) are U, V, w, whereas the components in the inertial coordinate
directions (x, y, z) are u, v, w. Following Longuet-Higgins (1972), we can expect v
to be relatively small if the wave angle at the break (�b) is small. However, Liu
and Dalrymple (1978) show that this is not always the case, based on both field and
experimental data.

In Example 7.5, we find that the breaking wave angle is 8.83◦ for a deep-water
wave angle of 30◦ over a bed having a 1/50 slope. If v is approximately an order of
magnitude less than Umax, then the mean bed shear stress in the longshore direction
can be mathematically represented by

�y(x) = 1
4�

� f UmaxV�(x)[1 + sin2(�s)]

� 1
8�

� f��
√

ghsV�(x) = 1
8�

� f��
√

g


 m(

1 + 3
8

� 2a
)



1/2

x1/2V�(x)

≡ Cyx1/2V�(x) (7.58)
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according to Liu and Dalrymple (1978). In this expression, f� is a friction fac-
tor (the value of which depends on the smoothness of the bed) and V�(x) is the
time-averaged longshore velocity. The approximation in eq. 7.58 follows from the
assumption concerning the smallness of the breaking angle (�b), as previously dis-
cussed. Also in eq. 7.58 is the maximum orbital velocity of the water particles,
Umax � (H/2h)

√
(gh), whereH = �h. The expression for Umax is obtained from

the shallow-water approximation of the horizontal particle velocity expression in
eq. 3.49.

The third term in eq. 7.54 involves the eddy viscosity resulting from the tur-
bulent mixing within the broken wave. Following Longuet-Higgins (1970b), let the
eddy viscosity function be represented by

�ε = Nε� x
√

ghs = Nε�
√

g

√√√√√ m(
1 + 3

8
� 2
)x3/2 (7.59)

where, from eq. 7.44, hs is the actual water depth in the surf zone and x is the
swash-line coordinate, as sketched in Figures 7.9 and 7.13. The expression for hs(x)
is found following eq. 7.46b. Nε is a experimental parametric constant. The effect of
the turbulent mixing due to the breaking waves is mathematically expressed by the
function

Tε = �εhs

dV�(x)
dx

= Nε�
√

g


 m(

1 + 3
8

� 2
)



3/2

x5/2 dV�(x)
dx

(7.60)

The effective shear stress due to turbulent mixing is then

�ε = dTε

dx
= Nε�

√
g


 m(

1 + 3
8

� 2
)



3/2 [
5
2

x3/2 dV�

dx
+ x5/2 d2V�

dx2

]

= Cε
5
2

x3/2 dV�

dx
+ Cε x5/2 d2V�

dx2
(7.61)

There have been many studies devoted to turbulent mixing in the surf zone since the
mid-twentieth century. For example, Bowen (1969b) assumes that the eddy viscos-
ity is uniform throughout the surf zone. By making this assumption, Bowen is able
to solve the time-averaged Navier-Stokes equations (eq. 2.66) applied to shallow
water. An excellent summary of the findings of these studies is presented by Longo,
Petti, and Losada (2002).

The expression in eq. 7.54 can now be rewritten using the relationships in
eqs. 7.56, 7.58, and 7.61, and rearranged to obtain

Cε x5/2 d2V�

dx2
+ Cε

5
2

x3/2 dV�

dx
− Cyx1/2V� = −Cxyx3/2 (7.62)

We should note that this equation applies only to the surf zone, where xb > x ≥ 0.
In the following subsections, the relative effects of the shear stress on the bed

and the lateral mixing due to the turbulence are examined. First, the lateral mixing,
represented by the first two terms in eq. 7.62, is neglected. Then, the bed shear,
represented by the third term, is assumed to be negligible.
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(1) Negligible Lateral Mixing

If the assumption is made that the bed friction force is much larger than the apparent
friction force due to lateral mixing, as assumed by Liu and Dalrymple (1978), then
Cε � 0 in eq. 7.62, and the longshore velocity is found to behave according to

V�(x)
∣∣Cε=0 = Cxy

Cy
x = 5

2
��

√
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f
√
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 m(
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8

� 2
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2
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= 5
2

��g
f


 m(
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8

� 2
)



2

sin(�0)
c0

cos(�b)x ≡ Vb
x
xb

≡ Vb� (7.63)

According to this equation, the velocity distribution increases linearly with swash-
line coordinate, maximizing at the line of breakers. This behavior is not supported
by experimental or field observations, so we can conclude that the lateral mix-
ing effects are not negligible. The last line of eq. 7.63 contains two identities,
Vb ≡ V�(xb) and � ≡ x/xb. Longuet-Higgins (1970b, 1972) uses these identities in
non-dimensionalizing the expression in eq. 7.62, as is done later in this chapter.

(2) Negligible Bed Friction

If the lateral mixing force is assumed to be much greater than the average bed fric-
tion, then Cy � 0 in eq. 7.62. The differential equation for this condition is

Cε x5/2 d2V�

dx2
+ Cε

5
2

x3/2 dV�

dx
= −Cxyx3/2 (7.64)

The solution of this equation, subject to the condition V�(x = 0) = 0 at the swash
line, is

V�

∣∣Cy=0 = −2
5

Cxy

Cε
x (7.65)

As is the case in eq. 7.63, this linear distribution of the longshore velocity is not
supported by physical observations. Hence, the bed friction effects cannot be con-
sidered to be negligible.

(3) Combined Bed Friction and Lateral Mixing Effects

Equation 7.62 is a linear, second-order, nonhomogeneous differential equation. Fol-
lowing Longuet-Higgins (1970b, 1972), the differential equation can be transformed
into a non-dimensional equation by dividing the equation by CyVb

√
xb, where the

reference velocity (Vb) is defined in eq. 7.63. The transformed equation can now be
written as

Cε

Cy

d
d�

[
� 5/2 d(V�/Vb)

d�

]
− � 1/2(V�/Vb) = −Cxy

Cy

xb

Vb
� 3/2

= Cε

Cy

d
d�

[
� 5/2 dV s

d�

]
− � 1/2V s = −� 3/2 (7.66)

where Vs = V�/Vb and � ≡ x/xb. Longuet-Higgins (1970b, 1972) uses the velocity
resulting from the assumption of negligible momentum transfer at the break (Vb)
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as a reference velocity. Equation 7.66 is a second-order Cauchy-Euler type of equa-
tion. Following Zill (1986), the solution of this equation, subject to the boundary
condition Vs(� = 0) = 0 where V�(x = 0) = 0, is

V s ≡ V�

Vb
= E1�

− 3
4 +
√

9
16 + Cy

Cε + 1

1 − 5
2

Cε

Cy

� (7.67)

where 0 ≤ � < 1 and Cε/Cy 	= 2/5. When Cε/Cy = 2/5, the form of the original dif-
ferential equation in eq. 7.62 changes, and the solution involves the natural log of � .
In eq. 7.67, the first term on the right side of the equal sign results from the homo-
geneous equation, whereas the second term is the particular solution of the non-
homogeneous equation. The integration constant E1 is determined by applying the
boundary conditions at the break, that is, where � ≡ 1. These boundary conditions
are not apparent, so one must be “manufactured,” so to speak. In deep water, where
x = ∞, we know that there is no net longshore velocity, so we can write V�(∞) = 0.
However, deep water is well outside the surf zone, and eq. 7.66 does not actually
apply in deep water. Because dSxy/dx = 0 seaward of the surf zone from eq. 7.52,
we can let the coefficient Cxy = 0. The resulting equation is then valid outside the
surf zone as both the lateral stress and bed stress are approximately equal to zero.
Under these assumptions and conditions, eq. 7.66 is

Cε

Cy

d
d�

[
� 5/2 dV s

d�

]
− � 1/2V s = 0 (7.68)

This equation is then the homogeneous part of eq. 7.66. The solution of eq. 7.68,
subject to V�(∞) = 0, is

V = V�

Vb
= E2�

− 3
4 −
√

9
16 + Cy

Cε (7.69)

where ∼ ∞ > � > 1. Note that the subscript “s” is missing from the velocity ratio
V because that subscript identifies surf-zone phenomena. At the break, the velocity
expressions in eqs. 7.67 and 7.69 must be equal, and the same can be said of their
spacial derivatives, that is,

V|�=1 = V s |�=1 (7.70a)

and
dV
d�

∣∣
�=1 = dV s

d�
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�=1 (7.70b)

These requirements result in two equations with two unknowns, E1 and E2. The
results are
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and
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Summarizing our results, the longshore velocity can be written as follows:
In the surf zone, where 1 < � (≡ x/xb) ≥ 0,

Vs(� ) ≡ V�

Vb
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(7.73a)

Seaward of the surf zone, where ∞ > � ≥ 1,

V (� ) = 1
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9
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Results obtained from eqs. 7.73a and 7.73b are presented in Figure 7.14. In that
figure, an inflection point for V(� ) is in the surf zone where the longshore velocity is
maximum. In eqs. 7.73a and 7.73b, the respective Cxy, Cy, and Cε are obtained from
eqs. 7.56, 7.58, and 7.61. The velocity at the break (Vb) is defined in eq. 7.63, and �

from eq. 7.44 has a value of about 0.82, according to Longuet-Higgins (1970b). To
find the expressions for the maximum longshore velocity and its position in the surf
zone, we equate the derivative of the expression in eq. 7.73a to zero.

The corresponding expression for position of the maximum longshore velo-
city is
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(7.74)

Knowledge of the position of the maximum longshore velocity is important in the
design of groins, which are structures projecting from shore into the surf zone.
Groins are designed to trap the sand being transported alongshore.

The expression for the maximum value of the longshore velocity is

Vmax =
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Cε

Cy
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− 3

4
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√

9
16
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 �(max) (7.75)

Results obtained from eqs. 7.74 and 7.76 are presented in Figure 7.14. Refaat,
Tsuchiya, and Kawata (1990) show excellent agreement between the Longuet-
Higgins model for the longshore velocity in eq. 7.73 and experimental results on
a smooth beach at a deep-water wave angle of �0 = 45◦.

The reader should remember that the profile of the longshore velocity depends
on the conditions in the surf zone. We have considered the relative effects of both
the shear stress on the bed and the apparent shear stress due to turbulent mixing.

Other considerations involve the porosity of the bed and the air content of the
water. Concerning the former: Cobble beaches absorb more water than beaches of



254 Waves in the Coastal Zone

1.0 

0.5 

0.0
0.0 1.0 2.0

V

V

Cε /Cy = 0.0 
Cε /Cy = 0.1 
Cε /Cy = 1.0

max

χ

Figure 7.14. Non-Dimensional Longshore Velocity Distribution. The non-dimensional veloc-
ity is V = V�/Vb, where Vb is the velocity at the liner of breakers, from eq. 7.63. That velocity
expression results from the assumption that no turbulent-mixing losses are present, that is,
Cε = 0. The non-dimensional spacial coordinate is � = x/xb, where x is the swash-line co-
ordinate in Figure 7.13. The maximum non-dimensional velocity (Vmax) values are obtained
from eq. 7.75.

fine sand. Also, dry sand absorbs more water than wet sand. The water absorbed
has both energy and momentum, so the longshore velocity is directly affected by
absorption or percolation. The air content in the surf zone depends on the type
of break (spilling, plunging, surging, and collapsing, illustrated in Figure 7.2). The
spilling break has foam at the crest, which expands as the wave travels through the
surf zone, so spilling waves can be assumed to be mildly aerated. Plunging waves
will trap air as they curl and are highly aerated. The surging and collapsing waves
will have the least air content of breaking waves. The presence of air causes the flow
to be heterogeneous, and both the mass density and viscosity differ from those of a
homogeneous flow.

EXAMPLE 7.8: MAXIMUM LONGSHORE VELOCITY Consider, again, the conditions in
Example 7.2, where 1-m, 8-sec deep-water waves approach a beach at an angle
(�0) of 30◦ to the shoreline. In deep water, the wavelength is �0 � 100 m and
the corresponding wave number is k0 � 0.0628 m−1. The beach has a uniform
slope (m) of 1/50. The following breaking conditions are found: hb = 1.55 m,
xb = 77.5 m, �b = 30.7 m, and �b = 8.83◦. It is noted that hb/�b � 1/20, so
shallow-water approximations can be used. From measurements, the parameter
Cε/Cy is found to be approximately 0.1. The non-dimensional longshore veloc-
ity distribution for this parametric value is shown in Figure 7.14. From eq. 7.74,
the maximum longshore velocity occurs at �(max) � 0.65, or x(max) � 50.4 m.
The maximum value of the time-averaged non-dimensional longshore veloc-
ity is approximately 0.517 from eq. 7.75. The expression for the maximum velo-
city is
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(7.76)
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where, as previously mentioned, � � 0.82 according to Longuet-Higgins
(1970b). To determine the value of hb, we must first determine the value of
the set-down at the break from eq. 7.40. Assuming shallow water at the break,
the approximate expression for the set-down is

�̄b � −k0 H2
0 cos(�0)

32(kbhb)3
(7.77)

the value of which is approximately −0.0534 m. Note: The expression in eq. 7.40
is for the nonrefracting condition, that is, �0 = 0◦. The expression can be applied
to refracting waves by assuming that the wave heights in the expression are
equivalent wave heights. That is, for the deep-water wave, the equivalent wave
height is H′

0 = H0
√

cos(�0), as in eqs. 6.90 and 7.8. The actual water depth at
the break is found to be hb � 1.50 m. Also needed in eq. 7.76 is the value of the
friction factor (f ) which, in turn, depends on the equivalent surface roughness
of the bed, �e. According to Liu and Dalrymple (1978), the empirical expression
for the friction factor is

f� � 1.41

(
4��e

�
√

ghbT

)2/3

(7.78)

This is based on the works of Jonsson (1966) and Kamphius (1975). Rather than
assuming a value of �e, we use f� = 0.04, the value given by Longuet-Higgins
(1970b). By using this f�-value in eq. 7.76, the maximum longshore velocity
value is approximately 0.638 m/s.

Refaat, Tsuchiya, and Kawata (1990) present experimental data showing rather
good agreement with the predicted longshore velocity distribution in the surf zone.
The expressions in eqs. 7.73 through 7.75 can then be used with some confidence in
the planning phase of shore protection projects.

D. Average Longshore Volume Flow Rate

A knowledge of the average longshore velocity distribution helps the engineer in
the design of a groin field to trap sand. In addition, the average longshore velocity
is related to the longshore volume flow rate. The amount of sand being transported
will be some fraction of the average total volume being transported alongshore in
the surf zone. The volume rate of water flow is found by integrating eq. 7.73a over
the average longshore flow area in the surf zone. The resulting expression for the
longshore volume flow rate is

Q�s =
xb∫

0

V�(x)h(x)dx = Cxy

Cy
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where, again, Cxy, Cy, and Cε are obtained from eqs. 7.56, 7.58, and 7.61, respec-
tively, whereas Vb is defined in eq. 7.63 and � from eq. 7.44 has a value of about 0.82,
according to Longuet-Higgins (1970b). The reader should note that the volume rate
of flow seaward of the line of breakers might be significant. However, most of the
sediment transported alongshore is in the surf zone.

EXAMPLE 7.9: LONGSHORE VOLUME TRANSPORT RATE The conditions in Exam-
ples 7.2 and 7.8 are the following: In deep water, T = 8 sec, �0 = 30◦,
�0 � 100 m, and k0 � 0.0628 m−1. On the uniform 1/50 beach, we find hb =
1.55 m, xb = 77.5 m, �b = 30.7 m, �b = 8.83◦, and hb/�b � 1/20, so the shallow-
water approximations are permitted. Also, the breaking wave height is about
1.27 m from eq. 7.44, where, again, we assume � � 0.82. In Example 7.8, the
parameter Cε/Cy is about 0.1. With these values applied to eq. 7.79, the volume
flow rate of water is approximately 7 × 10−3 m3/s. The corresponding yearly
volume flow rate is approximately 220,300 m3/year.

The longshore volume flux or volume transport rate obtained from eq. 7.79 is
for pure water. However, coastal engineers are interested in the mass transport rate
of sediment because the stability (the balance between erosion and accretion) of a
beach depends on this transport rate. Empirical formulas for the longshore sediment
transport rate are important in the planning analyses in coastal engineering. These
formulas are for the volume flow rate of the sediment within the longshore slurry.
One of the most widely used of these formulas is that presented in the Shore Pro-
tection Manual of the U.S. Army (1984). Also, see the technical report issued by the
U.S. Army Corps of Engineers (U.S. Army, 1990). Using that formula, the sediment
volume transport rate is

Qsed = Ksed

(�sed − �)Cp

� H2
sbcgb

16
sin(2�b) (7.80)

where Cp(� 0.6 for sand – the sediment of choice) is 1 minus the porosity
(∨void/∨total) for the sediment and � sed is the mass density of the sediment. Also
in eq. 7.80 are Ksed(� 0.39), a non-dimensional empirical coefficient, the significant
wave height at the line of breakers, Hsb, and the group velocity at the line of break-
ers, cgb � cb � √

(ghb), assuming shallow-water conditions. As discussed in Chap-
ter 5, the significant wave height is the average of the one-third highest waves. The
reader should note that the beach slope (m) is not explicit in eq. 7.80. The slope is
included in the expressions for the breaking wave height, as in eq. 7.1.

Another widely used formula for the mass transport of sediment is that of
Kamphuis (1991). His expression is based on both dimensional analysis and exper-
imental data. Kamphuis (2002) modifies his earlier expression, and shows that the
results obtained from that expression agree well with measured data. His expression
for the longshore transport of sediment mass is

dmsed

dt
= �sed Qsed = 7.9 × 10−4(�sed − �)

( g
2�

)1.25
H2

sbT1.5
p m0.75 D−0.25

50 sin0.6(2�b)

(7.81)
where Tp is the peak period (the period corresponding to the peak of the energy
period spectrum, as discussed in Chapter 5) and D50 is the mean diameter of the
sediment. Kamphius (2002) finds that his expression can be used for both regular
and irregular waves if the significant wave height, modal period (the peak spectral
frequency period), and mean wave angle for irregular waves are replaced by the
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respective regular wave height, period, and wave angle values. See eq. 5.51 for the
various period relationships.

EXAMPLE 7.10: LONGSHORE SEDIMENT TRANSPORT RATE In Example 7.9, the
volume rate of water flow is found to be approximately 0.0070 m3/s, from
the formula in eq. 7.79. Let us now attempt to determine the volume rate
of sand transport – where �sed = 2.65� � 2.65(1,030 kg/m3) � 2,730 kg/m3 for
this example – from the formula in 7.81 for the same (regular) wave condi-
tions. Using the relationship in eq. 7.44, assume that the breaking wave height
equals �h = 0.82(1.55 m) � 1.27 m. On the uniform 1/50 beach, hb = 1.55 m,
xb = 77.5 m, �b = 30.7 m, and �b = 8.83◦. In addition, a mean sand diameter
value must be assumed. For the 1/50 beach slope, Figure 4–36 in the Shore Pro-
tection Manual of the U.S. Army (1984) shows that the approximate range of
D50 is from 0.2 mm to 0.3 mm for the New Jersey coast. Assuming the 0.2 mm
value, the volume rate of sediment transport from eq. 7.81 is Qsed � 0.0046 m3/s.
Comparing this result with that in Example 7.9, we see that the sediment vol-
ume flow rate is about 65% of the water flow rate. Concerning the effect of the
mean particle diameter, D50: If the value is doubled in this example to 0.4 mm,
the sediment mass flow rate is decreased by approximately 16%.

7.5 Closing Remarks

The analyses and discussions presented in this chapter are designed to give the
reader an understanding of both the nature and behavior of the hydromechanics
of water waves near and in the surf zone. For more recent advances in surf zone
phenomena, the reader is referred to the collection of papers edited by Fredsoe
(2002).

In Chapter 8, several aspects of the planning phase of shore protection projects
are presented. As the reader will see, to make decisions concerning shore protection,
a good knowledge of coastal wave mechanics is vital. Chapter 8 covers rather specific
coastal engineering topics. The reader should consult Horikawa (1978), U.S. Army
(1984), Goda (1985), Sorensen (1997), Dean and Dalrymple (2002), and Herbich
(1999) for more extensive and detailed coverage of ocean engineering topics.



8 Coastal Engineering Considerations

The purpose of this chapter is to give a cursory introduction to shore protection and
to discuss some topics that are normally neglected in the coastal engineering liter-
ature. By shore protection, what is meant is the methodologies used in preventing
either a net erosion or a net accretion of beach sand due to wave action. Specifically,
some of the considerations that are part of the planning phase of shore protection
projects are discussed. Shore protection is one of the topics under the broad head-
ing of coastal engineering. The reader is referred to the books by Horikawa (1978),
U.S. Army (1994), Goda (1975), Sorensen (1997), Dean and Dalrymple (2002), and
that edited by Herbich (1999) for a more thorough discussion of the area of ocean
engineering. In addition, the proceedings of the International Coastal Engineering
Conference contain papers describing advances in both the science and technology
applied to the coastal zone. These conferences occur about every two years, and are
sponsored in part by the American Society of Civil Engineers (ASCE).

8.1 Shore Protection Methods

When a shoreline is identified as being unstable, the term usually means that there
is a net loss of sand (erosion) or net gain (accretion). The engineer must deter-
mine whether or not the instability is short-term or long-term. Short-term instabili-
ties are common, and are usually seasonal in nature. Winter waves tend to erode
beaches, whereas summer waves tend to restore sand to the beaches. So, many
beaches experience a winter erosion and a summer accretion, which are considered
to be short-term instabilities and are cyclic in nature. Some long-term instabilities
are also cyclic. For example, there are regions where sand spits form and disappear
over periods ranging up to centuries.

When the volumes of sediment for winter erosion and summer accretion are
equal, then the beach is stable. When this is not the case, then the beaches are
unstable, and some sort of remedial action might be required to restore the stabil-
ity. There are two remedial options that are available to the coastal engineer. These
options are soft (natural) stabilization and hard (human-made) stabilization.

Soft stabilization methods include the use of sand dunes in combination with
beach grasses, and beach nourishment, where sand from offshore deposits called
borrows is slurried onto the beach. The dunes can be artificially constructed and
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Figure 8.1. Area Sketch of Four Hard-Stabilization Structures. In the sketch, three groins,
comprising a groin field, are shown up-drift from the up-coast jetty. The groins extend from
the back-shore into the surf zone, whereas both the up-coast and down-coast jetties that form
the waterway are seen to extend through the surf zone. The breakwater that is sketched is
attached to the up-coast jetty. In many cases, breakwaters are unattached, particularly if they
are the only hard-stabilization technique used in a shore protection project. The up-coast and
down-coast revetments line the respective shores of the inland portion of the waterway.

then covered by deeply rooted beach grass that, in turn, stabilizes the dune. The
beach grass grows and subsequently traps wind-blown sand. As the trapped sand
piles up on the dune, the beach grasses grow higher, forming a stabilization cycle.
The dune then act as a sand supply for both the beach and for transport in the surf
zone.

Hard stabilization of a beach is normally accomplished by using one of three
types of structures: revetments, groins, and breakwaters. Referring to the area
sketch in Figure 8.1, a revetment is a structure composed of layered stone or con-
crete blocks that simply rest on the beach face. One normally finds these on beaches
in somewhat protected waters where the wave energy is relatively low, such as in the
northern Chesapeake Bay. A groin (groyne in British literature) is a structure that
extends from the shore into but not beyond the design surf zone. Groins are usually
oriented at right angles to the design shoreline, and are designed to partially trap
part of the sand transported alongshore in the surf zone. When two or more groins
are used, the system of groins is called a groin field. More will be said of groins later
in this section. A breakwater is a structure that is seaward of the surf zone, or in
other words, seaward of the line of breakers. Breakwaters have the most control of
the longshore transport because they shield the waters leeward of the structure (in
the shadow zone) from the direct wave action. Wave energy is transmitted into the
shadow zone of the structure by the process of diffraction, discussed in Chapter 6.
In Figure 8.1, an attached breakwater is sketched. That is, the breakwater shown
is attached to the up-coast jetty, protecting the mouth of the waterway from direct
wave attack. Also sketched in Figure 8.1 are two revetments that line the inland
boundaries of the waterway to stabilize the up-coast and down-coast banks.
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Figure 8.2. Groin Field Orientation. The area sketch shows two units of the main groin field
and, in addition, a two-unit terminal field. The design position of a foot of a groin in the main
field is 40% of the design surf zone width (xb) measured from the berm line. The length (Lg)
is the distance from the design berm to the toe. The ideal separation distance (L0) between
groins in the main field is two to three times the design groin length. The elevation sketch
shows the onshore section terminating at a dune to prevent flanking. The slope of the mid-
section cap is parallel to the design foreshore. The design berm is at the end of the design
foreshore and at a height equal to the runup measured from the mean high-water (MHW)
level, whereas the design shoreline is at the intersection of the mean low-water (MLW) level
and the design foreshore. A marker is needed to prevent the foot of the groin from becoming
a navigation hazard when submerged. Finally, an example of the averaged longshore velocity
distribution is shown at the right of the area sketch.

Referring to the sketches in Figure 8.2, when a groin field has been determined
to be the most cost-effective hard-stabilization option for a specific site, the land-
ward extent of each groin will be such that flanking is prevented. Flanking is the
bypassing of water around the landward end of the groin. At the landward end,
a dune or a bulkhead might be required to prevent flanking. However, the design
length of the groin is measured from the position of the design berm (at the posi-
tion of the design run-up) to about 40% of the surf zone width. For a groin at a
right angle to the shoreline, Lg = 0.4xb, where xb is defined in Figure 7.9. Although
the groin’s angular orientation with respect to the shoreline can be optimized to
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produce stable up-drift and down-drift sand fillets, groins are normally at right
angles, as sketched in Figure 8.2. Sand fillets are trapped sand deposits adjacent
to the groins. In Chapter 7, we find that the wave angle between a breaking wave
front and the groin is relatively small. Hence, oblique (non-normal) orientations of
groins are not cost-effective for many sites because the oblique groins are both more
material-intensive and are more difficult to construct. To minimize down-coast ero-
sion, a terminal groin field is needed, as sketched in Figure 8.2a. As can be seen in
that sketch, the foot of a unit in the terminal field is on a line drawn at 6◦ to the
design shoreline. This optimal termination angle has been determined from experi-
mental studies. For thorough discussions of the design and use of groins, the reader
is advised to consult the publications by the U.S. Army (1984, 1994), CIRIA (1990),
and Fleming (1990).

As mentioned previously, breakwaters are positioned seaward of the line of
breakers. These structures can be either attached to jetties (as sketched in Figure
8.1) or other structures, or can be detached. When a detached breakwater is con-
structed parallel to the shoreline, the response of the shoreline is almost immediate.
The initial sand formation is called a salient, which is a bulge in the shoreline hav-
ing a seaward apex that is in the breakwater’s shadow zone. Depending on both
the length between the breakwater’s up-drift and down-drift ends (heads) and the
unit’s distance form the shoreline, a tombolo might or might not form. A tombolo
resembles a sand causeway between the detached breakwater and the shoreline, and
is formed when the salient grows and attaches to the leeward face of the breakwa-
ter. This sand formation can be the cause of erosion of the down-coast beach. The
reader is encouraged to consult the publications of CIRIA (1991) and U.S. Army
(1984, 1994) for the details of breakwater planning and design.

EXAMPLE 8.1: PLANNING A GROIN FIELD The conditions in Examples 7.2, 7.8, and
7.9 are the following: In deep water, H0 = 1 m, T = 8 sec, �0 = 30◦, �0 � 100 m,
and k0 � 0.0628 m−1. On the uniform 1/50 beach, we found hb = 1.55 m, xb =
77.5 m, �b = 30.7 m, �b = 8.83◦, and hb/�b � 1/20, so that the shallow-water
approximations are permitted. Also, the breaking wave height is about 1.27 m,
from eq. 7.44.

Assume that the turbulent-mixing-to-bed-shear parameter is Cε/Cy = 0.1;
the non-dimensional distribution of the longshore velocity is shown in Figure
7.14. From Example 7.8, the maximum longshore velocity is 0.638 m/s, which
is at a distance of 0.65xb � 50.4 m from the position of the design berm line.
The berm line is determined by the runup, the value of which is Ru � 0.186 m
from Hunt’s formula in eq. 7.15, assuming a smooth bed. Because the bed
slope is 1/50, the berm line is 9.3 m landward of the shoreline. Hunt’s for-
mula is a function of the surf similarity parameter (�) defined by eq. 7.9. This
parameter is, in turn, a function of the equivalent deep-water wave height,
H′

0 = H0
√

[cos(�0)] � 0.931 m. The design length of the groin (Lg in Figure 8.2)
is equal to 0.4xb = 31 m. This is measured seaward from the berm line. The
averaged longshore velocity at the foot of a unit in the main field is about 0.531
m/s prior to the construction of the groin field. Of course, the longshore velocity
distribution is after the construction of the groins.

In the next section, we apply decision theory to the selection of the most cost-
effective hard-stabilization method of shore protection.
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8.2 Decision Process in Coastal Protection

Because there are two available remedial options (soft stabilization and hard sta-
bilization) in the stabilization of a beach, the coastal engineer must decide which
of the two is most apropos. A course of remedial action will have a probability of
success (reliability) that is normally less than unity. The difference (one minus the
probability of success) is the probability of failure. Associated with this probability
are both material and financial losses. Soft or hard solutions are neither perfect nor
have infinite lives, so we can expect losses associated with our remedial decision.

There are a number of considerations that are involved in making such a deci-
sion. These involve the states of nature, their probabilities of occurrence, and the
expected losses associated with the states of nature.

States of nature are conditions that are beyond the control of the design engi-
neer. For example, the engineer has no control over either the timing or the intensity
of storms. Severe storms produce destructive winds, waves, and floods, all of which
are probabilistic in nature. Winds, waves, and floods are of primary interest to the
coastal engineer in most of the ocean-boarding communities. In some areas, such as
the west coast of the contiguous United States, earthquakes must be added to the
list. Probabilities of occurrence can be attached to each of the states of nature and,
therefore, to their associated expected losses. For example, a rubble-mound break-
water is damaged if any of the armor stones (the protective layer of the structure)
are permanently displaced by storm waves. As is discussed in Chapter 5, by exam-
ining the history of storm waves at a site, we can assign a probability of occurrence
of the height of the destructive wave. To illustrate, consider a storm that statistically
occurs once every fifty years and (statistically) produces a maximum wave height of
3 m just seaward of the surf zone. If we use this wave height as a design wave height
for a breakwater, then we can expect a loss of, say, from 0% to 5% of the total num-
ber of armor stones over fifty years. Hence, as far as the waves are concerned, the
expected life of the breakwater is fifty years.

One of the available tools to help the coastal designer logically evaluate the cost-
effectiveness of the different methods of beach protection is the decision tree. It is
one of several tools of decision theory, which is widely used in the design process.
The use of a decision tree for a project to abate shoreline erosion is demonstrated
in the following example. As is seen in the example, the first decision to be made is
to either take some remedial action or not.

EXAMPLE 8.2: DECISION TREE FOR SHORELINE EROSION ABATEMENT A small
coastal community having a public beach experiences an erosion problem in
front of a boardwalk having a length of 1 km. The cause of the erosion has
been identified as an up-coast jetty, a structure that extends through the surf
zone and is designed to protect a waterway, so the problem is not seasonal
or cyclic in nature. The jetty was constructed several years ago approximately
1 km from the beach in question. The shoreline is retreating at a rate of 1 m per
year. This rate of retreat has been determined from a photographic survey. At
the beginning of the survey, the mean position of the shoreline was about 50 m
from the boardwalk. The consequences of the beach erosion are both property
damage and a decrease in the number of summer tourists. The monetary loss is
estimated to be $2M per year.
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The first decision to be made is to determine if spending tax dollars on beach
protection is justified. If no action is taken, the losses will then escalate over the
years. With no inflation in the monetary losses, which is unrealistic, the total
losses will amount to $20M at the end of ten years, In addition, the mean dis-
tance between the boardwalk and shoreline at the end of ten years will be 40 m
or less, so the decision is made to take action.

The next decision to be made concerns the choice of remedial options (soft
or hard). To help in this task, a decision tree is constructed, as in Figure 8.3. The
goal of using the decision tree is to determine the most cost-effective option.
In the figure, the “bottom line” is the cost per life-year associated with each
option. From Figure 8.3, we see that for this erosion problem, the most cost-
effective solution is the construction of dunes in front of the boardwalk, where
the dunes are stabilized by planted beach grass. One problem is identified with
this soft solution, that is, the boardwalk-to-shoreline distance is only 50 m, which
is rather small. From the Figure 8.3, we see that an estimated 100,000 m3 of sand
are required. If the dune could be constructed with a rectangular cross-section
having a 5-m height, then the dune would extend 20 m from the boardwalk,
which is unrealistic. So even though this soft solution has the lowest cost per
life-year, it is not feasible.

The most cost-effective hard stabilization option in Figure 8.3 is the groin
field having stone and steel construction. This combination groin field is seen to
have a bottom-line cost of slightly less than $0.2M per life-year, which is some-
what larger than the dune-beach grass option. The expected life of the groin
field is 50 years, with a yearly maintenance cost of about 1% of the construction
costs, or $90K per year.

The cost of a hard-stabilization option depends on a number of factors. These
include the location of the material supplier, the route of delivery, and permit costs.
In addition to these, political and social consideration can also affect the costs. To
illustrate, consider using wood as the primary construction material for a groin field
on a Southern California beach. This would not be a good choice for several rea-
sons. First, forests are distant. Second, environmentalists would object to cutting
down the trees. Finally, because most of the beaches in Southern California are well
populated, the route from the supplier to the site would probably travel through
very up-scale neighborhoods, making the decision somewhat politically unaccept-
able. For many coastal structures, quarry stone is the material of choice because of
its availability and ease of construction. In the next section, the relationship between
the size of the stone and the local wave climate is discussed.

8.3 Rubble-Mound Structures

Because the use of quarry stone in the construction of groins, jetties, breakwaters,
revetments, and seawalls is quite common, we shall demonstrate how the selection
of the stone weight for such structures is reliant on the local wave conditions. In
addition, the reliability of these rubble-mound structures is discussed. The popu-
larity of rubble-mound structures is due to both the relative ease of construction
and the relatively low cost of materials. The breakwater is chosen as the illustrative
structure because this type of structure is under the direct wave attack. In addition
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Figure 8.4. Sketch of a Three-Layer Breakwater Cross-Section. The depth of the primary
armor stone on the weather face and the height of the crest are dependent on the design
wave height, HD. The width of the crest or cap is BT, whereas the weather face angle is ε. A
single layer of armor is shown for the purpose of illustration. Depending on the severity of
the wave climate, the number of armor layers can be up to three. For many ocean sites, two
layers are considered to be satisfactory. When artificial armor units are used, one layer can
be used because the units are designed to be interlocking.

to rubble-mound structures, other types of breakwaters also are used. These are
discussed in the Shore Protection Manual; see U.S. Army (1984).

A. Stone Selection for Rubble-Mound Breakwaters

Depending on the wave climate at the site, there can be several types of stone that
are used in rubble-mound construction. Each stone type has a particular function.
For breakwaters subject to direct ocean waves, there are four types, which are armor
stone, shield stone, foundation stone, and toe stone. Each of these has a mass range
and a particular function. For breakwaters in protected waters, there might only be
one type of stone used in the construction. In any case, a mat is normally used to
help evenly distribute the weight of the structure over the bed. A three-layer cross-
section is sketched in Figure 8.4. In that sketch are the following stone types:

(1) Armor Stone: This type of stone composing the weather face of the breakwater
is called the primary armor stone. This is the design stone, because the weights
of the other stone types depend on the primary armor weight, W1T. The primary
armor is the most massive because it withstands the direct forces of the incident
waves. Secondary armor stone is that which composes the upper part of the
leeward face of the structure. The height of the primary armor layer above the
design water level is equal to the design wave height (HD), whereas the depth
of the layer is from 1.5HD to 2HD.

(2) Shield Stone: This type of stone has a weight W2T < W1T. It is designed to
both distribute the armor weight and to control energy transmission through the
structure. For the three-layer cross-section in Figure 8.4, the SPM (U.S. Army,
1984) recommends a shield stone weight range of W1T/15 ≤ W2T ≤ W1T/10.

(3) Foundation Stone: As the name implies, this small stone of weight W3T < W2T is
designed to evenly distribute the structural weight on the bed. It is self-adjusting
when settling occurs. A mat is normally used to both ensure the evenness of the
weight distribution on the bed and to prevent toe scour. The foundation stone
weight range recommended by the SPM is W1T/6000 ≤ W3T ≤ W1T/200.
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(4) Toe-Berm Stone: Toe scour can be a problem in long waves. To reduce
the scour, a toe berm is used, as sketched in Figure 8.4. The recommended
toe-stone weight is W4T � W1T/10; however, in long shallow-water waves, the
toe stone is relatively large.

There are two formulas used to determine the average weight of the pri-
mary armor. Those are the Irebarren formula (Irrebarren Cavanilles, 1938;
Irrebarren Cavanilles and Nogales y Olano, 1950) and the Hudson formula
(Hudson, 1953, 1959, 1961a, 1961b). In the United States, the Hudson formula is
used, which is

W1T = �stonegH3
D tan(ε)

KDT

(
�stone

�
− 1
)3 (8.1)

where � stone is the mass density of the stone, � is the mass density of salt water
(assume 1,030 kg/m3), ε is the angle of the structure’s weather face (measured from
the horizontal), and KDT is called the stability coefficient. Note that the subscript “T”
is used to identify the stability coefficient of the trunk of the breakwater. The trunk
is the main section of the structure, and the head of the breakwater is the structure’s
free end (or ends). The breakwater sketched in Figure 8.1 is attached to a jetty, so
that attached breakwater has one head. When a breakwater is not connected to any
other structure, then it is called an unattached breakwater and the trunk is between
the two heads. The wave forces on a head are larger than those on the trunk. The
reason for this is that the bottom contours near the heads are modified over time
because of sand accumulation. Hence, there is a refractive focusing on the heads.
For this reason, the stability coefficient for the primary armor on a head is smaller
than that for the trunk armor. Values of the stability coefficient for various armor
stones and units are presented in Table 7–8 in the SPM. The wave height, HD, in
eq. 8.1 is the design wave height. For random waves, discussed in Chapter 5, this
height could be the significant wave height or the extreme wave height occurring
over the design life of the structure. This is demonstrated in Example 8.3.

The weights of the other stones depend on the value obtained from eq. 8.1. The
weight ranges of these stones are the following:

Shield stone weight:

W2T � W1T

10
(8.2)

Foundation stone weight:

W3T � W1T

100
→ W1T

10
(8.3)

Toe-berm stone weight:

W4T � W1T

4000
→ W1T

200
(8.4)

In some regions, adequate quarries are not available to supply the required
armor stone. When this is the situation, artificial armor units (tetrapods, tribars,
etc.) are constructed of steel-reinforced concrete. These artificial armor units have
stability coefficient values that are greater than those for quarry stone because the
artificial armor units are designed to interlock. This feature also allows the artificial
armor units to be somewhat lighter than the quarry stone.
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Once the armor stone weight is determined, the layer thickness (rT) of the pri-
mary stone must be determined. From the SPM, the formula for the layer thickness
is

rT = nk�

(
W1T

�stoneg

)1/3

(8.5)

where n is the number of layers of armor, k� is called the layer coefficient, and
� stoneg is the specific weight of the stone based on the density of salt water. An
accepted (cost-effective) value for n is 2. For rough quarry stone in two layers, k� =
1.0, according to the SPM.

The cap width (BT in Figure 8.4) is determined from a formula similar to that in
eq. 8.5, that is

BT = Nk�

(
W1T

�stoneg

)1/3

(8.6)

where N is the number of cap stones. The SPM recommends N = 3 for stability and
to minimize the effects of overtopping.

The breakwater height (hT, not sketched in Figure 8.4) depends on the amount
of overtopping considered to be acceptable. In turn, the overtopping depends on
both the runup, Ru, and the cap width, BT. One formula for the structural height is

hT = hD + Ru (8.7)

where hD is the design water depth at the toe, equal to the sum of the mean low-
water depth and one-half of the tidal range. The runup value depends on both
the roughness and porosity of the weather face of the structure, as discussed in
the SPM. Referring to the sketch in Figure 8.4, an alternative to the expression in
eq. 8.7 is

hT = hD + HD (8.8)

where HD is the design wave height.
We now have enough information to illustrate the preliminary design of a

rubble-mound breakwater or a rubble-mound seawall.

EXAMPLE 8.3: PRELIMINARY DESIGN OF A RUBBLE-MOUND BREAKWATER The goal
is to construct a rubble-mound breakwater on a bed having a slope (m) of 1/20
using the 100-year wave height as our design wave height in eq. 8.1. The worst-
case condition of �0 = 0◦ is assumed because the wave heights will be maxi-
mum for this angle. The measured average deep-water wave property values
are H′

avg0 = 1 m and Tavg = 8 sec, where the prime (′) identifies shoaling with-
out refraction. The deep-water wave heights and wavelengths are both found
to have Rayleigh probability distributions, as discussed in Chapter 5. With this
assumption, the relationship between the extreme wave height (H′

max0) and the
average wave height (H′

avg) in eq. 5.25 is

H′
max0(100 years) ≡ H′

100 = 2√
�

H′
avg

√
ln(N100) (8.9)

Statistically, there are about 6 × 106 waves of engineering importance passing
an ocean site each year. So over 100 years, the statistical sample (N100) of waves
is 6 × 108. The deep-water 100-year wave height in deep water (H′

100) is then
approximately 5.07 m. Furthermore, the assumption of a Rayleigh distribution
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of the deep-water wave heights allows us to combine the expressions in eqs. 5.51
and 5.54 to obtain the following expression for the average wavelength:

�avg0 = g
2�

T2
rms �

(
1.104
1.064

)2 g
2�

T2
avg � 1.077

g
2�

T2
avg (8.10)

For the 8-sec average period, the average deep-water wavelength is approxi-
mately 108 m.

The decision is made to position the toe of the structure at the position
of the breaking 100-year wave. To determine the breaking wave height and
depth for this wave, we use the results in Figure 7.3 or eq. 7.5. In Figure 7.3, for
m = 1/20 and H′

100/�avg0 = 0.0469, we find H′
100b/H′

100 � 1.130. The breaking
100-year wave height is then H′

100b � 5.73 m. The breaking depth of h100b �
6.33 m is determined from either Figure 7.4 or eq. 7.5, for H′

100b/�avg0 � 0.0531.
The breaking depth is used here as the design depth (hD.) at the toe in Figure 8.4.
The design height of the structure (from eq. 8.8) is 12.1 m above the bed at the
toe, and the toe of the breakwater is approximately 127 m from the shoreline.

The design face of the structure has a slope if tan(ε) = 1/2. This is a good
value for both stability and cost-effectiveness. The breakwater is to be made
of rough quarry stone (assume � stone = 2,650 kg/m3 and � stoneg � 26,000 N/m3),
which is randomly placed. The value of the stability coefficient for the trunk of
the structure for the face angle and stone is 2.0 for a breaking wave, accord-
ing to the SPM. For breaking and nonbreaking waves on the face of the trunk’s
structure, the values of KDT are 2.0 and 4.0, respectively. The breaking and non-
breaking values of KDT for the heads of the breakwater are 1.6 and 2.8, respec-
tively, for this face slope and stone, again according to the SPM. For breaking
100-year waves on the trunk, the armor stone weight is approximately 316,000 N
or about 32.2 metric tonnes, from eq. 8.1. The shield, foundation, and toe-berm
stone weights are obtained from eqs. 8.2 to 8.4.

Assuming a layer coefficient (k�) value of 1.0 and a specific weight of
� stoneg = 26,000 N/m3, the layer thickness is approximately rT � 4.60 m from
eq. 8.5. For a three-stone cap, the cap width is BT � 6.90 m from eq. 8.6. If a
leeward slope of 1 is used, then the structure will cover a bed length of 43.2 m if
the bed is horizontal beneath the structure. See the sketch of the profile of the
breakwater in Figure 8.5.

8.4 Reliability of a Rubble-Mound Structure

The term reliability is synonymous with the probability of success. To be more spe-
cific, the reliability of an engineering system stands for the probability that the sys-
tem or system component will perform its specified function for a specified time (life
of the system) under specified conditions. It is important to remember that the satis-
factory performance, time period, and operating conditions must be clearly defined
if reliability is to have a useful, quantitative meaning. For a thorough coverage of
engineering reliability, the reader is referred to the book by Ramakumar (1993).

The concept of reliability is easily illustrated when applied to rubble-mound
structures. Consider again the breakwater profile sketched in Figure 8.4. As we
know, the structure is composed of stones of various classes based on the weight
of the primary armor stone. Statistically, the design wave height is that which will
ideally move no stones, if the armor is of uniform weight. In actuality, uniform stone
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Figure 8.5. Sketch of the Breakwater Profile of Example 8.3.

size is not a reality as the armor is usually taken from quarries where the stone is
obtained by blasting. Hence, there is a weight distribution of the armor stone, which
approximately varies from 75% to 1.25% of the design weight (that in Hudson’s
formula, eq. 8.1). The designer can then expect that some of the lower-weight stone
will be displaced when the design wave height passes. In fact, when Hudson did
his original work, he stated that when the design wave height passed, about 5% of
the stones of the cover layer would be displaced. Note that the failure mode for a
rubble-mound structure is the displacement (not movement) of the primary armor
stones on the cover layer.

The following example demonstrates how the reliability of a rubble-mound
structure can be determined from scaled experiments in a wave tank.

EXAMPLE 8.4: RELIABILITY OF A RUBBLE-MOUND BREAKWATER A wave-tank study
is to be performed on a 100th-scale model of the ocean type of a rubble-mound
breakwater in Example 8.3. In that example, the mean weight of the stones
on the face cover of the prototype is 164,000 N. The 5.54-m-wide cap of the
breakwater is 5.80 m (the design wave height value in Figure 8.4) above the
design water level. For this detached breakwater, the designer requires a total
of N = 6,000 primary armor stones on the cover layer of the structure.

For the model, the length scale is

nL ≡ Lm

Lp
= 1

100
(8.11)

where the subscripts m and p refer to the model dimension and the prototype
characteristic lengths, respectively. Because water waves dominate the fluid
environment, Froude scaling is used to determine the relationships between the
other model and prototype properties. From eqs. 2.109 and 2.116, the Froude
number equality is

Fr = Vm√
gLm

= Vp√
gLp

(8.12)

Dimensionally, V = L/t; so eq 8.12 can be rearranged to obtain

Vm/
√

Lm

Vp/
√

Lp
= nV√

nL
= (Lm/tm)/

√
Lm

(Lp/tp)/
√

Lp
=

√
nL

nt
= 1 (8.13)

Here, nV and nt are the respective velocity-scale factor and time-scale factor.
The time-scale factor is of most interest here as it determines the duration of
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Figure 8.6. Damage Range as a Function of Wave-Height Ratio. The curves define the band of
uncertainty for the exceedance of the design wave. The curves result from the data presented
in the Shore Protection Manual (U.S. Army, 1984). Damage is defined as the percentage of
primary armor stones that are permanently displaced from their as-constructed positions.

the experiment. For the 100th-scale model, nt = 1/10. From this result, we see
that each model time duration is a tenth of the prototype duration.

Results of one year of continual testing of the breakwater model in random
waves are presented in Table 8.1. The equivalent prototype duration is 10 years
from our time scale. The results presented in Table 8.1 are for each month of
testing. In that table, the number of failures (f) is the number of model cover-
layer armor stones displaced during one month of testing. These are added each
month to obtain the cumulative number of failures (�f). The number of sur-
vivors (s = N − �f) is the next column. The next column is the reliability (R),
defined as the number of survivors divided by the number of stones at the begin-
ning of the study, that is, s/N. The final column in Table 8.1 is the probability of
failure, which is P = 1 – R.

Concerning the armor stability, the data in Table 8.1 show that the worst
month of the model study was month 12, corresponding to month 120 on the
prototype scale, when 225 primary armor stones were displaced. The cumulative
number of failures (885) over the study duration represents about 14.8% of
the armor stone sample (6,000). For this breakwater, we could then specify
that the normal repair time cycle is 10 years, where (statistically) less than 15%
of the armor stone would be restored to the design position.

For the prototype, unpredictable severe storm seas might occur having a
maximum wave height that exceeds the design wave height. Following these
storms, repairs might be required.

Let us assume that we have been assembling reliability data for breakwaters
from many experimental and prototype studies for many years. The data will have
scatter, and therefore a resulting band of uncertainty, as in Figure 8.6. Statistical
formulas are available to represent both the reliability and probability of failure.
One of the most versatile probability formulas available to us is the Weibull proba-
bility formula (see Weibull, 1951) discussed in Section 5.5 of this book. Applied to
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Table 8.1. Reliability modal study for a rubble-mound breakwater

t (month) f �f s R(%) P(%)

0 – 0 6,000 100 0
1 20 20 5,980 99.7 0.3
2 15 35 5,965 99.4 0.6
3 25 60 5,940 99.0 0.1
4 30 90 5,910 98.5 1.5
5 25 115 5,885 98.1 1.9
6 100 215 5,785 96.4 3.6
7 35 250 5,750 95.8 4.2
8 130 380 5,620 93.7 6.3
9 20 400 5,600 93.3 6.7

10 55 455 5,545 92.4 7.6
11 205 660 5,340 89.0 11.0
12 225 885 5,115 85.2 14.8

our problem, the two-parameter Weibull probability formula used to represent the
cumulative probability of failure is

P(t) = 1 − e
−
(

t
tre f

)m

(8.14)

where m is called the shape parameter, and tref is some reference time referred to
as the scale parameter. Note that if m = 2 and tref = trms, then the expression in
eq. 8.14 is a Rayleigh probability, discussed in Section 5.4. The reliability at time t is
then

R(t) = 1 − P(t) = e
−
(

t
tref

)m

(8.15)

Both m and tref are experimental, and are determined from a process similar to that
in establishing Table 8.1.

EXAMPLE 8.5: WEIBULL RELIABILITY OF A RUBBLE-MOUND BREAKWATER The reli-
ability expression in eq. 8.14 is applied to the experimental data in Table 8.1.
To determine the two parameters (m and tref) in the expression, the 6- and 12-
month values in the table are used. Our interest is in the prototype and not
the model, so we must use the equivalent prototype times for the data, those
being 60 and 120 months, respectively. For the prototype data, the scale param-
eter is m � 2.13, and the shape parameter is tre f � 284 months. The data corre-
sponding to those in Table 8.1 for the prototype and the results obtained from
eqs. 8.14 and 8.15 are presented in Figure 8.7. As expected, the agreement
between the results is good because the parametric values are based on the data
in the table.

When two or more component reliabilities are considered in the design process,
then the system reliability is the product of the reliabilities. In this section, only wave
effects on rubble-mound breakwaters are considered. However, we could include
tidal currents, storm surges, and a number of other natural events that could affect
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Figure 8.7. Reliability and Probability of Failure for
the Prototype in Example 8.4. The solid lines represent
the Weibull results from eqs. 8.13 and 8.14, whereas
the reliability and probability values in Table 8.1 are
represented by • and �, respectively.

the stability of the structure. In that event, for I component reliabilities, the reliabil-
ity of the system is

R = RI RI−1 · · · R1 =
I∏

i=1

Ri (8.16)

A fact of design is that the cost of a system increases with the increase in reli-
ability. Hence, in design we must have trade-offs, that is, we can sacrifice some
reliability to keep the cost of the system down. For example, we could use a design
wave height with a shorter return period and reduce the armor stone size. This
would save money up front, but would add to the service costs later because the
reliability of the structure would be reduced, that is, the stones would be displaced
sooner. The construction costs are amortized over the life of the structure. Over the
life, we can then have an average construction cost. As we increase the reliability of
the structure, this cost will increase. The point to be made is that there is some value
of reliability that is the most cost-effective.

8.5 Closing Remarks

This chapter is designed to give the reader a brief introduction to shore protection.
The topics of decision making and reliability are included because these topics are
normally excluded in coastal engineering publications. The primary reference used
for this chapter is the Shore Protection Manual of the U.S. Army (1984). In addition
to this basic design reference, the U.S. Army Corps of Engineers provides a series
of Coastal Engineering Technical Notes that are available online. These technical
notes are designed to provide information on recent advances in engineering and
science related to the coastal zone.

An up-to-date discussion of the damage of stone breakwaters and revetments is
presented by Melby (2002). In that reference, empirical formulas are presented to
help designers of stone coastal structures. More recently, a two-volume handbook
edited by Kim (2009) has become available, in which many of the aspects of coastal
engineering are discussed in detail.



9 Wave-Induced Forces and Moments
on Fixed Bodies

The majority of engineering problems encountered by ocean engineers involve
wave-structure interactions. The waves in these interactions are altered and mod-
ified because of both the presence and motions of fixed and floating structures. The
analyses of the wave-induced forces and motions of fixed structures require some-
what different mathematical tools than the analyses of wave-structure interactions
of floating bodies. Wave-induced forces and motions of floating bodies are intro-
duced in Chapter 10 and discussed in depth in Chapter 11.

The mathematical foundations on which contemporary analyses of wave-
structure interactions are based date back to the nineteenth century when Stokes
(1851) demonstrated that the total force on a body in an unsteady flow consisted of
two components, those being a drag force and an inertial reaction of the fluid. The
objects of the Stokes study were pendula (hanging circular cylinders and one with
a spherical weight) moving in a viscous fluid where free-surface effects were not
considered. Our interest begins with works done in the early part of the twentieth
century, when most of the wave-structure interactions involved submerged hori-
zontal circular cylinders. The orientations of the cylinders of interest were horizon-
tal and fully submerged with their axes parallel to the wave fronts, as discussed by
Havelock (1917), Lamb (1932), and others. In the Havelock and Lamb references, it
is demonstrated how integral transforms and integral equations can be used to rep-
resent the free-surface response to a fully submerged, horizontal cylinder. Havelock
(1917, 1926) also demonstrates the utility of the method of images in free-surface
problems. Most of the significant works of Sir Thomas H. Havelock are reprinted in
a volume edited by Wigley (1960).

In the mid-twentieth century, vertical cylinders, both fully submerged and
surface-piercing, received much attention from the wave-structure analysts. For
this problem, Havelock (1940) presents results of an analytical study of diffraction
effects on surface-piercing structures of various cross-sections. A somewhat differ-
ent approach to the vertical cylinder in waves is taken by MacCamy and Fuchs
(1954). The results of that study were slightly modified by Mogridge and Jamieson
(1976), and the resulting analytical data were shown to compare well with exper-
imental data. Newman (1962) demonstrates how the forces on a compliant fixed
body can be related to the potentials of the exciting incident waves and the radiated
waves resulting from the wave-induced motions of the structure. The analysis result-
ing from the Newman (1962) study contributed to a number of later studies of fixed
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and floating bodies. Garrett (1971) presents an analysis of the forces on a truncated
vertical cylinder in waves. Later, Yeung (1981) used the Garrett force approach to
analyze the surging, heaving, and pitching motions of a truncated vertical cylinder
in waves.

The study of fixed, submerged and floating bodies of arbitrary shape must be
done by using numerical techniques. A series of papers dedicated to the numeri-
cal analysis of wave-structure interactions resulted from studies by Garrison (1974,
1975, 1978). Garrison’s method is sometimes referred to in the literature as the
“fat-body theory.” The numerical approach increased in popularity as the mem-
ory capacities and speeds of both mainframe and desktop computers increased.
Zienkiewicz, Lewis, and Stage (1978) and Schrefler and Zienkiewicz (1988) edited
proceedings resulting from conferences devoted to the application of numeri-
cal techniques to most aspects of ocean engineering, including fixed and floating
structures.

In this chapter, the analytical methods discussed are applied to bodies having
rather simple geometries. The reason for this approach is to minimize the need for
numerical methods. That is, the body geometries chosen to analyze herein will, for
the most part, lead to either closed-form or quasi-closed-form analyses. The latter
refers to analyses resulting in infinite series functions, such as Bessel functions and
numerical integrations. Numerical methods are of great value in modeling problems
in ocean engineering. However, they suffer as educational tools.

9.1 Wave-Induced Forces and Moments on a Seawall

In this section, two irrotational waves are used to determine the time-dependent
pressures on vertical walls. These are the linear wave and the solitary wave. The for-
mer is chosen primarily for the purpose of demonstration, whereas the latter is cho-
sen because of practicality. Also available to analysts is the nonlinear Stokes wave.

A. Pressure, Force, and Moment Resulting from Direct Reflection
of Linear Waves

The topic of standing waves resulting from perfect wave reflection from vertical
walls is discussed in Sections 3.4 and 6.1. In those discussions, we find that the wave
height of the standing linear wave is twice that of the linear incident wave, but the
wavelength is unchanged. In this section, the expressions for the wave pressure and
the resulting force and moment on a seawall in waters of finite depth are presented.

Assuming that the flow beneath the free surface is irrotational, the pressure at
any point in the flow can be obtained from Bernoulli’s equation, eq. 2.70. In Sec-
tion 3.1, we find that the time function, f (t), can be equated to zero when the pres-
sure on the free surface is atmospheric. Furthermore, in Example 3.1 it is shown
that the V-squared kinetic energy term in Bernoulli’s equation is of second order
for waves of small steepness (H/�), the assumption made here. With these assump-
tions, the pressure at any point in the flow is

p � −�
∂�

∂t
− �gz = �g

[
cosh[k(z + h)]

cosh(kh)
� − z

]
(9.1)

where the velocity potential is that in eq. 3.39,

� = −H
2

g



cosh[k(z + h)]
cosh(kh)

cos(kx) sin(
t) (9.2)
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SWLFigure 9.1. Notation for a Standing Wave at a
Seawall.

and the free-surface expression for the standing wave is that in eq. 3.40,

� = H
2

cos(kx) cos(
t) (9.3)

In these equations, H is the height of the standing wave, 
 is the circular wave
frequency, k is the wave number, g is the gravitational constant (9.81 m/s2), and
h is the water depth. When the pressure equation is applied at the free surface
(z = �), we see that the resulting pressure is not equal to zero as it should be from the
dynamic free-surface condition. The reason for this discrepancy is that the boundary
conditions in eqs. 3.2 and 3.3 are mixed. That is, eq. 3.2 applies to the free surface,
whereas eq. 3.3 applies to the SWL. When eq. 9.1 is applied to a standing wave in
shallow water, the free-surface condition is satisfied.

Consider a standing linear wave at the seawall, as sketched in Figure 9.1. In that
figure, the origin of the coordinate system is at the point of intersection of the SWL
and the wall. The pressure at any point on the seawall is

pw(z, t) = �g
{

cosh[k(z + h)]
cosh(kh)

�w − z
}

(9.4)

from eq. 9.1. The subscript w identifies conditions at the wall. The resulting force on
a width B of the wall is found by integrating the pressure expression of eq. 9.4 over
the time-dependent wetted surface of the wall. The resulting force expression is

Fw(t)i = B

�w(t)∫
−h

pw(z, t)dzi = �gB
{

sinh[k(h + �w)]
cosh(kh)

�w

k
− �2

w

2
+ h2

2

}
i (9.5)

See the sketch in Figure 9.1 for the notation. The corresponding moment about the
mud line is obtained from

Mw(t) j = −B

�w∫
−h

p(z, t)w(z + h)dz j

� −�gB
{

(h + �w) sinh[k(h + �w)] + 1 − cosh[k(h + �w)]
kcosh(kh)

�w

+
[

�3
w

3
+ h

�2
w

2
− h3

6

]}
j (9.6)

where the positive moment direction is counterclockwise by convention. The unit
vectors in the respective x-, y-, and z-coordinate directions are i, j, and k.
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The center of pressure is the point on the wall where the force obtained from
eq. 9.5 can be applied to produce a moment equal to that obtained from eq. 9.6.
From the moment-balance equation, the expression for the position of the center of
pressure is

z|cp ≡ −Zw = − Mw(t)
Fw

− h (9.7)

The respective force and moment expressions in eqs. 9.5 and 9.6 can be simpli-
fied if the wave amplitude (H/2) is an order of magnitude less than the water depth
at the wall. For this condition, the terms involving the higher powers of the free-
surface displacement (�2

w and �3
w) are of second order, and h + �w � h. To illustrate

the applicability of the approximations, consider the following example.

EXAMPLE 9.1: WAVE FORCE AND MOMENT ON A SEAWALL DUE TO STANDING LINEAR

WAVES A wave tank is 100 m in length, 3 m wide, and has a 2-m water depth for
a particular study. The tank is equipped with an absorbing wave maker, that is,
the wave maker not only creates the waves but also absorbs the waves reflected
from opposite end. A wave maker of this type is described by Milgram (1970),
among others. The depth of the tank is that in Example 3.5, where traveling
waves having a height (H) of 0.5 m and a period (T) of 5 sec perfectly reflect
from a vertical seawall. Those wave conditions are produced by the wave maker
in this study. The wavelength from eq. 3.31 is approximately 20.9 m. Because the
water depth-to-wavelength ratio h/� = 0.096 � 1/10, the conditions described
are those of intermediate water. Thus, the hyperbolic functions in eqs. 9.5
and 9.6 must be retained. Assuming perfect reflection from a vertical seawall
at x = 0, the standing wave has a height (H) of 1.0 m. The steepness of
the incident traveling wave (H/�) is 0.0239, and that of the standing wave
is 0.0478.

We are to determine the force on the reflecting tank wall at the waterline
(z = 0) obtained from eqs. 9.5 and 9.6, respectively, when a crest is at the wall,
that is, when �w = H/2 = 0.5 m. Our interest is in the force values when the
higher-order terms of �w are both included and excluded. When the �w terms
are included, the maximum force is approximately 92,000 N, and when the terms
are neglected, the maximum force is about 88,000 N, or a difference of approx-
imately 4.5%. The percentage difference variation over one period is shown in
Figure 9.2. The difference is defined as

�Fw

Fw

≡ Fw − FW

Fw

(9.8)

where the subscript W refers to the force excluding the higher-order �w-terms.
In Figure 9.2, the maximum difference of about 9.5% occurs at t = T/2, when
the force values are both minimum.

B. Pressure and Force Resulting from Direct Reflection of a Solitary Wave

A thorough discussion of solitary waves is contained in the book by Wiegel (1964).
In that book, Wiegel discusses both direct and oblique reflection of solitary waves,
and the appearance of Mach-stem waves that occur when the incident wave angle is
less than 45◦ (see Figure 6.3). In this section, our interest is in the forces produced
by directly reflected solitary waves. One consequence of this wave reflection is the
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Figure 9.2. Percentage Difference in the Wave-Induced Wall-Force Values over One Period
in Example 9.1. The forces in question are those obtained from eq. 9.5 with and without the
higher-order �w-terms.

migration of grounded ships, as discussed by Hudson (2001) and McCormick and
Hudson (2001). Those authors find that the horizontal force on the mid-section of
a broached ship produces migration if the waves are solitary but only rocking of
the section occurs if the waves are either linear or Stokian. Broaching occurs when
the ship’s vertical center-plane (from stem to stern) is parallel to the wave front.
This condition occurs when the ship loses power. The model used in the Hudson-
McCormick studies was slightly embedded in sand in a two-dimensional wave
tank.

In Section 4.5, we find that the solitary wave is a limiting case of the cnoidal
wave. The former is discussed in Section 4.5B, whereas the latter is discussed in
Section 4.5A. Both of these waves are based on the assumption that the flow is
irrotational, and the velocity components (u, w) can be represented by a veloc-
ity potential, as in eq. 4.84. This assumption allows us to determine the pressure
beneath the wave by using Bernoulli’s equation, eq. 2.70. Because the solitary wave
is infinitely long, we can assume that the term involving the time-derivative of the
potential function is of second order compared to the velocity-squared and hydro-
static terms in Bernoulli’s equation. We apply Bernoulli’s equation to both the free
surface (z = �), where the pressure is zero-gauge, and at some submerged point
(z < �) to obtain

p + 1
2

�(u2 + w2) + �gz = 1
2

�g

[
u2|z=� +

(
d�

dt

)2
]

+ �g� (9.9)

where z is positive above the SWL, as sketched in Figure 9.1.
For a solitary wave, the velocity components (u, w) are obtained from eqs. 4.126

and 4.127, respectively, the free-surface displacement (�) is given by eq. 4.124, and



278 Wave-Induced Forces and Moments on Fixed Bodies

z

x

h

dz

H

SWL
η(x, t)

pw dz dy i

Figure 9.3. Perfect Reflection of a Solitary Wave from a Vertical Seawall. For the condition
shown, a crest is at the wall. The wave height (H) there is equal to twice the height of the
incident wave, that is, H = 2H.

the celerity by eq. 4.125. The horizontal velocity component is

u = ∂�

∂x
= H

(
1 + H

h

)√
g
h

1

cosh2

[√
3H
4h3

(x − ct)

] � H

√
g
h

1

cosh2

[√
3H
4h3

(x − ct)

]

(9.10)

which is independent of z, so in eq. 9.9, u = u� if the value of x is the same for both
sides of the equation. The vertical velocity component is

w = ∂�

∂z
= (z + h)

√
3gH3

h4

sinh

[√
3H
4h3

(x − ct)

]

cosh3

[√
3H
4h3

(x − ct)

] (9.11)

The approximation in eq. 9.10 is based on the assumption that the height of the wave
is much less than the water depth, that is, H � h. Again, we note that the horizon-
tal component, u, is independent of the vertical coordinate, z, whereas the vertical
component is a linear function of the coordinate. The approximate expression for
the horizontal velocity component in eq. 9.10 and the vertical velocity component
expression in eq. 9.11 satisfy the equation of continuity, as expressed by Laplace’s
equation, eq. 2.41.

When the solitary wave reflects from a vertical sea wall, the mirror-image
method can be used to obtain the time-dependent wave profile at the wall. The
expression in eq. 4.124 can be used to obtain the following free-surface deflection
relationship at the wall:

�w(t) = 2H
1

cosh2

[√
3H
4h3

ct

] = H
1

cosh2

[√
3H
4h3

ct

] (9.12)

where H is the height of the wave at the wall, as illustrated in Figure 9.3. At t = 0, a
crest is at the wall, so �w = 2H = H in eq. 9.12. As t → ∞ in that equation, �w → 0.
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In Bernoulli’s equation for a solitary wave, eq. 9.9, the horizontal velocity com-
ponents at the wall must be zero because, vectorially, we add the horizontal incident
and image velocity components, which are equal but opposite in direction. In any
event, because u(x, t) = u�(x, t) for any value of x, the terms will cancel as written in
eq. 9.9. However, the vertical components are additive because they are both equal
and in the same direction. The resulting pressure on the wall at x = 0 is obtained
from

pw � 3
2

�g
H
h2

{
1 − (z + h)2

4h2

}
tanh2

[√
3H
4h3

(ct)

]
�2

w + �g(�w − z)

� �g (�w − z) (9.13)

The last approximation is due to the assumption that the wave height is much less
than the water depth, that is, H � h. With this assumption, the celerity in eq. 4.125
is approximately

c =
√

gh
(

1 + H
2h

)
�
√

g (h + H) �
√

gh (9.14)

The celerity of a solitary wave is a linear function of the wave height if the magni-
tude of the wave height is within an order of magnitude of the wave depth. Before
integrating the pressure expression in eq. 9.13 over the wetted face of the wall, the
accuracy of the final approximation of that equation is demonstrated in the follow-
ing example.

EXAMPLE 9.2: PRESSURE DISTRIBUTION ON A SEAWALL BENEATH A SOLITARY WAVE

Consider a 0.5-m, 15-sec wave at a seawall in 2 m of water. Our interest is in
the accuracy of the final approximation in eq. 9.13 for the pressure on the wall
being subjected to a solitary wave. From the linear theory approximation for the
wavelength in eq. 3.38, the wavelength corresponding to the given wave period
(T = 15 sec) and water depth (h = 2 m) is � � 66.4 m. Again, from eq. 3.38 and
from the last approximation in eq. 9.14, the celerity of this wave is c � 4.43 m/s.
If the first approximation in eq. 9.14 is used, c � 4.95 m/s for this wave (about a
10% difference).

Before applying the solitary theory or any of the wave theories discussed in
Chapters 3 or 4, we should test the validity of the theories by using Figure 4.1.
The non-dimensional parametric values in that figure are H/�0 � 0.00142 and
h/�0 � 0.00569, where from eq. 3.36 the deep-water wavelength is �0 � 351 m.
In Figure 4.1, these values correspond to the long-wave region of the cnoidal
theory, or approximately to the solitary theory. Hence, the use of the soli-
tary theory is analytically valid. Note that the validity range of the linear and
Stokian theories are well away from this point in Figure 4.1.

We shall determine the pressure as a function of time at the intersection
of the SWL and the seawall, where (x, z) = (0, 0). The results are presented in
Figure 9.4 in normalized form, where pw(0, t)/pwmax is presented as a function
of t/T. The inclusion of the dynamic term in the first approximation in eq. 9.13
results in a peak pressure of 10,890 N/m2 beneath the crest at the SWL, and the
exclusion of the dynamic term in the second approximation yields 10,104 N/m2.
The difference in the two predicted pressures is less than 7.8% over the wave
period. Because of this, we can use the second approximation in eq. 9.13 with
some confidence.
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Figure 9.4. Time-Variation of the Normal-
ized Pressure at the SWL on a Seawall from
Example 9.2. The pressure predicted by the
solitary theory is approximate for the wave
conditions of the example. A finite period is
a given in the example; however, the period
for a solitary wave is infinite.

To obtain the force on a wall of width B located at x = 0, simply integrate the
second approximation of the wall-pressure expression in eq. 9.13 over the wetted
height of the wall, that is, from z = −h to z = �w(t). The resulting time-dependent
horizontal force expression is

Fw (t) = B

�w∫
−h

pw(z, t)dz = 1
2

�gB(�w + h)2 (9.15)

where the free-surface displacement is in eq. 9.12. Referring to Figure 9.1, the
moment about the foot of the seawall (positive in the counterclockwise direction)
is

Mw (t) = −B

�w∫
−h

pw(z, t) [z + h] dz = −1
6

�gB (�w + h)3 (9.16)

The center of pressure for the solitary wave force is

zcp(t) = Mw(t)
Fw(t)

= −1
3

(�w + h) (9.17)

This result is as expected from a quasi-hydrostatic pressure distribution over the
wall.

As previously mentioned, the respective solitary-wave force and moment results
in eqs. 9.15 and 9.16 are important in predicting the migration toward shore of a
broached, grounded ship.

9.2 Wave-Induced Forces on Submerged and Surface-Piercing Bodies

In this section, we discuss the three types of wave-induced forces on rigid cylinders.
Those are the inertial force, the pressure-drag force, and the diffraction force. The
inertial force represents the inertial reaction of the added mass. Hence, the concept
of the added mass is discussed first.

A. The Concept of Added Mass

Before discussing wave-induced forces per se, it is necessary to introduce the concept
of added mass. This mass is that of the ambient water affected by the presence of a
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Figure 9.5. Two-Dimensional Cylindrical
Cross-Sections Accelerating in Stationary
Fluids. The sketch in Figure 9.5b is an
example of a Lewis form, discussed in
Section 9.2A(2).

fixed structure in a moving fluid, or that affected by the motions of a structure in a
stationary fluid. For dynamics problems in air, this mass can normally be neglected
because the mass density of air (about 1.225 kg/m2 under standard conditions) is
relatively small compared to that of the structural materials. However, in water this
is not the case. The sum of the added mass and the moving body mass is sometimes
referred to as the virtual mass.

Two-dimensional added-mass expressions for two geometries are discussed.
The first is the circular-shell geometry sketched in Figures 9.5a and 9.6. The choice of
this geometry for the cross-section of a structural element is based on two facts. First,
circular cylinders are relatively easy to fabricate. Second, the strength-to-material-
volume ratio is relatively large. Both of these make the circular, cylindrical-shell
structure cost-effective in applications to marine structures.

The second geometry is referred to as a Lewis form. This form is actually a
class of geometries that are symmetric in both the flow (or motion) direction and
normal to that direction, as described by Lewis (1929). An example of a Lewis form
is sketched in Figure 9.5b.

STREAMLINE and STREAKLINE

V∞ (t)

y

β
a

r

x

Figure 9.6. Accelerating Fluid about a Fixed Circular Cylinder.
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(1) Cylinders with Circular Cross-Sections

Consider the sketch in Figure 9.5a. In that figure, a two-dimensional circular cylinder
(infinite in length) of radius a is shown accelerating in a standing fluid. The velocity
of the cylinder at any time is V0(t) in the negative x-direction. The expression for
the velocity potential of the flow generated by the motion of the cylinder is found
by subtracting the velocity potential for a uniform horizontal flow (in Figure 2.9)
from the potential representing the flow past a circular cylinder in a uniform flow in
eq. 2.62. By applying the boundary condition ∂�/∂r |r =a,�=0 = −V0(t), the following
potential expression is found:

� = +V0(t)
a2

r
cos(�) (9.18)

where r is the radial coordinate having its origin at the center of the cylinder, and
� is the angular coordinate measured positively in the counterclockwise direction
from the x-axis. Note that in Figure 2.9, the angle � is used in place of �.

We can use the Cauchy-Riemann relationships of eqs. 2.58 and 2.59 to obtain
the following expression for the stream function for this flow:

	 = −V0(t)
a2

r
sin(�) (9.19)

Because our analysis is in the Lagrangian frame of reference (as opposed to the
Eulerian frame), a zero-value of the stream function does not define the surface of
the structure. The positive sign (+) in eq. 9.18 and the negative sign (−) in eq. 9.19
are associated with the cylinder’s motion in the negative x-direction. For travel in
the positive x-direction, the signs are reversed.

The kinetic energy (per unit depth into the page) of the excited ambient fluid is
obtained from

E′
k = 1

2
�

∞∫
a

2�∫
0

(∇�)2rd�dr = 1
2

��a2V2
0 (t) = 1

2
a′

w1V2
0 (t) (9.20)

where a′
w1 is the added mass per unit length of the accelerating cylinder, that is,

a′
w1 = ��a2 (9.21)

As is throughout the book, the prime (′) is used to indicate “per unit length” of the
cylinder. Physically, the added mass in this case is equal to the mass of displaced
fluid per unit length of cylinder.

The derivation of the expression for the added mass of a cylinder in an accel-
erating fluid is quite different than the derivation for the accelerating cylinder in a
stationary fluid. Rather than being concerned with the kinetic energy of the ambient
fluid, our attention is focused on the pressure distribution on the cylinder and the
resulting force. For a structure in a steady irrotational flow, the in-line (in the flow
direction) force on a body is zero. This is known as D’Alembert’s paradox, and is
discussed in detail in most texts on fluid mechanics. In an accelerating flow, there is
a net force because the time rate of change of the fluid momentum is not equal to
zero.

Referring to the sketch in Figure 9.6, the velocity potential for the unsteady flow
about a fixed circular cylinder of radius a in an accelerating fluid is found by combin-
ing the potentials for a doublet and a uniform (accelerating) flow. The component
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potential functions are presented in Figure 2.9. The resulting potential function for
accelerating flow about the fixed cylinder is

� = V∞ (t)
[

r + a2

r

]
cos (�) (9.22)

Here, V∞(t) is the velocity at x = ±∞. Combine this relationship with the unsteady
pressure expression of the linearized Bernoulli’s equation applied on the cylinder.
The result is

p|r=R = −�
∂�

∂t
|r=A = 2�a cos (�)

dV∞
dt

(9.23)

The positive sign (+) in eq. 9.22 and the negative sign (−) in eq. 9.23 are associated
with the fluid traveling in the positive x-direction. When the direction of the flow is
reversed, the signs are reversed. Integrate the pressure around the cylinder to obtain
the force on the cylinder. The resulting expression is

F ′
x = −

2�∫
0

p (r, �, t) cos (�)ad� = 2��a2 dV∞
dt

= a′
w2

dV∞
dt

(9.24)

The added mass per length of cylinder is then

a′
w2 = 2��a2 = 2a′

w1 (9.25)

The added mass in this case is twice that for the situation sketched in Figure 9.5a.
As in any analysis of fluid flows, we try to find non-dimensional numbers that

allow us to compare experimental and prototype results. For the added mass, let
a′

w1
be the reference added mass, and define the added-mass coefficient or inertial

coefficient as

Ci ≡ a′
w

a′
w1

= a′
w

��a2
(9.26)

The respective combinations of eqs. 9.21 and 9.25 with eq. 9.26 yield Ci 1 = 1 and
Ci 2 = 2. From the results presented by both Wiegel (1964) and Ippen (1966), exper-
imental values of the inertial coefficient vary from 0.4 to 4.0. This uncertainty is due
to the quality of the experimental data.

(2) Cylinders with Noncircular Cross-Sections – Lewis Forms

In this subsection, the analytical method of Lewis (1929) is used to determine the
two-dimensional added-mass expressions for cylinders having noncircular cross-
sections that are symmetric with respect to the coordinate axes, such as that in
Figure 9.5b. In the Lewis paper, the analyses of the inertia of the ambient fluid sur-
rounding two- and three-dimensional bodies are presented. The focus of the paper
is on vibrating ship hulls; however, the analytical method of the referenced paper
has been found to have a wider applicability. The Lewis analysis incorporates the
conformal mapping technique in the broader area of complex variables. For exam-
ple, see the books by Milne-Thomson (1960), Robertson (1965), Vallentine (1967),
Schinzinger and Laura (1991), Mei (1995), and Ablowitz and Fokas (1997), among
others, for discussions of conformal mapping and applications to fluid flows.
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Figure 9.7. Transformed Geometries in Example 9.3. These figures in the z-plane are obtained
by transforming a unit circle in the � -plane, according to eqs. 9.32 through 9.34.

Following the analysis of Lewis (1929), expressions of the velocity potential (�)
and the stream function (	) are derived. These expressions can then be used to
determine the kinetic energy of a body moving in a standing fluid. The resulting
energy expressions are used to determine the expressions for the added mass.

To determine the velocity potential and the stream function, we use the method
of complex variables, where the complex variables are in two planes. We refer to
these planes as the z-plane (the physical plane) and the � -plane (the transformed
plane). Note that the non-italicized z is used to represent the complex variable, and
the italicized z is a coordinate. The z-plane contains the body shape of interest,
whereas the � -plane contains the flow about a circle. The complex spatial variable
in the z-plane is

z = x + iy = rei� (9.27)

That is, the x-axis is the real axis and the y-axis is the imaginary axis in the z-plane,
as in Figures 9.7a and 9.7b. Similarly, the complex spatial variable in the � -plane is

� = � + iε = Rei� (9.28)

Here, the �-axis is the real axis and the ε-axis is the imaginary axis in the � -plane, as
in Figure 9.7a.
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Our interest is in relating the velocity potential (�z) and the stream function
(	 z) in the z-plane to those respective functions in the � -plane, i.e. �� and 	� . See
Section 2.3 for a discussion of the natures of these functions. The complex potential
in the � -plane is defined as

w� = �� + i	� = f�(�) (9.29)

and that in the z-plane is

wz = �z + i	z = fz (z) (9.30)

In reality, we have created two additional planes called potential planes, where the
velocity potential in each of these planes is the real axis and the stream function is
the imaginary axis. The advantage of using a conformal mapping technique in any
fluid analysis is due to the fact that the potentials in the two planes are equal in form.

The process of Lewis (1929) is to first map a unit circle in the � -plane (Figure
9.7a) onto the z-plane by specifying the functional relationship between z and � .
Then, the same is done with the w-planes. Finally, the transformed geometry is
mapped onto the potential plane (wz-plane) to obtain the velocity potential and
stream function for the flow in the z-plane. For a unit circle, the geometry of the
surface in the � -plane (Figure 9.7a) is obtained from√

�2 + ε2 = a = 1 (9.31a)

On the cylinder, the complex coordinate is then

�|R=a=1 = R|a=1 ei� = ei� = cos(�) + i sin(�) (9.31b)

where � is the angle measured positively from the �-axis and R is the radial coordi-
nate measured from the origin. Note that � has units of length, although no length
appears in the last two terms. In the following, we shall delay assuming a = 1 to
avoid confusion later in the added-mass derivation.

The Lewis transformation from the � -plane to the z-plane is

z = x + iy = � + A1

�
+ A3

� 3
(9.32)

where A1 and A3 are real numbers. The expression in eq. 9.32 is a special form of
the Laurent series. For example, see Ablowitz and Fokas (1997) for a discussion of
this series. The subscripts 1 and 3 in the constants correspond to the powers of � in
the denominators. The transformation of the circle is then

z|a = (x + iy)|a =
[

� + A1

�
+ A3

� 3

] ∣∣∣∣
a

=
[

aei� + A1

a
e−i� + A3

a3
e−3i�

]

=
[(

a + A1

a

)
cos(�) + A3

a3
cos(3�)

]
+ i
[(

a− A1

a

)
sin(�) − A3

a3
sin(3�)

]
(9.33)

In eqs. 9.32 and 9.33, A1 and A3 are parametric constants that determine the
body shape. From eq. 9.33, the body shape in the physical plane has the following
coordinates:

x|a ≡ X =
(

a + A1

a

)
cos (�) + A3

a3
cos (3�)

(9.34)
y|a ≡ Y =

(
a− A1

a

)
sin (�) − A3

a3
sin (3�)
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Geometries represented by eq. 9.34 are called Lewis forms. Note that the angle �

in the � -plane is simply a parameter in the z-plane relating the body coordinates,
X and Y. Letting � = 0 and � = �/2, respectively, the longitudinal and transverse
maxima are found to be

Xmax = a
(

1 + A1

a2
+ A3

a4

)
(9.35)

Ymax = a
(

1 − A1

a2
+ A3

a4

)

When both A1 and A3 equal zero in eqs. 9.32 through 9.35, then the transformed
geometry is a circle, as in the � -plane. We can specify the values of a, A1, and A3

to obtain the desired body shape. There are practical ranges of the parametric con-
stants, A1 and A3, which are discussed in Chapter 11. The transformation from the
� -plane to the z-plane is illustrated in the following example.

EXAMPLE 9.3: TWO LEWIS FORMS Consider the case where a = 1 and the con-
stants A1 and A3 in eqs. 9.32 through 9.35 have respective values of 0 and
−0.111. The body in the z-plane is presented in Figure 9.7b. When the respec-
tive values of A1 and A3 are 0 and +0.111, the body resulting from those val-
ues is presented in Figure 9.7c. In both cases, we have a squarish cylinder with
rounded edges. The body in Figure 9.7c has lines of symmetry at 45◦ to the
x-axis.

We note that below the x-axis, the bodies in Figure 9.7b and 9.7c resemble
ship hull sections. More is written of this in Chapter 11.

For a two-dimensional cylinder of arbitrary cross-section in a current of velocity
V∞(t) in the positive x-direction, there are two relationships that can be chosen
to relate the complex potentials in eqs. 9.29 and 9.30 with the respective complex
variables, � and z. The first of these relationships is in the � -plane, where the circular
cylinder is fixed in a fluid moving in the �-direction (similar to that in Figure 9.6).
The complex potential describing the flow about the cylinder in the � -plane is

w� = �� + i	� = V∞

(
� + a2

�

)
= V∞

[(
R = a2

R

)
cos(�) + i

(
R−a2

R

)
sin(�)

]
(9.36)

The body is fixed in a flow that is parallel to the respective �-axis at � = ±∞. Our
interest is in the case where the body in the z-plane is moving in a still fluid. The
last equality in eq. 9.36 results from the combination of eqs. 2.57 and 2.64 for the
respective velocity potential and stream function. Note that the value of the stream
function, 	� , is zero because R = a. The stream function is also equal to zero when
� = 0.

When the body in the z-plane moves at a speed, V0(t), in the negative x-
direction (similar to those in Figure 9.5b), the complex potential is the difference
in the complex potential in eq. 9.36 and that representing the horizontal flow in the
z-plane, which is V0(t)z. See Figure 2.9a for the velocity potential and stream
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function describing a parallel flow. In the z-plane, the complex potential in eq. 9.30
is

wz = �z + i	 z = w� − V0z = V0

(
� + a2

�

)
− V0

(
� + A1

�
+ A3

� 3

)

= V0

[
(a2−A1)

1
�

− A3

� 3

]
= V0

[
1
R

(a2−A1) cos(�)− A3

R3
cos(3�)

]

+ iV0

[
1
R

(a2−A1) sin(�) − A3

R3
sin(3�)

]
(9.37a)

The flow adjacent to the body is found by applying this equation to r = a. The
result is

wz |R=a = (�z + i	z)|R=a = V0

[
(a2−A1)

1
�

− A3

� 3

]∣∣∣∣
R=a

= V0

[(
a − A1

a

)
cos(�) − A3

a3
cos(3�)

]

+ iV0

[(
a − A1

a

)
sin(�) − A3

a3
sin(3�)

]
(9.37b)

From eq. 9.37b, the respective velocity potential and stream function expressions
for the flow adjacent to the body in the z-plane are

�z|R=a = V0 (t) a
[(

a − A1

a2

)
cos(�) − A3

a4
cos(3�)

]
(9.38)

and

	z|R=a = −V0 (t) a
[(

1− A1

a2

)
sin(�) − A3

a4
sin(3�)

]
(9.39)

In eqs. 9.38 and 9.39, the + and − signs are associated with the motion of the Lewis
form in the negative x-direction. For motion in the positive x-direction, the signs are
reversed.

To determine the added mass of the cylinder, the expressions in eqs. 9.38 and
9.39 are combined with that for the kinetic energy of the ambient fluid. In eq. 9.20,
the kinetic energy expression for a moving circular cylinder is given. Following
Lamb (1932), Milne-Thomson (1960), and others, the area integral for the kinetic
energy can be equated to a line integral expression by using Green’s theorem of
Appendix C, the Cauchy-Riemann relationships of eqs. 2.51 and 2.52, and the inte-
gral relationships in eq. 2.43. The resulting integral relationships are∫ ∫

s

(∇�z)
2 dS ≡

∫ ∫
S
∇�z · ∇�zdS

= −
∫ ∫

S
�z∇2�zdS −

∫
C

�z
∂�

∂n
dC = 0 −

∫
C

�zd	z (9.40)

where S is the area of the fluid and C is the contour of the boundary of the fluid.
The cylinder in question is assumed to be in an infinite fluid, so C is simply the line
defining the cylinder. The last term in eq. 9.40 results from the Cauchy-Riemann
equations of eqs. 2.51 and 2.52, where the orthogonal coordinates on the body are
C and n. Because of eq. 9.40, we can express the kinetic energy transferred from the
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moving body to the ambient fluid (per unit length of cylinder) as

E′
k|a=1 = 1

2
�

∫ ∫
S

(∇�z)2 dS|R=a = −1
2

�

∫
�zd	z|R=a = −1

2
�

2�∫
0

�z
d	z

d�
d� |R=a

= 1
2

� V2
0 (t) �a2

[(
1 − A1

a2

)2

+ 3
A2

a4

]
= 1

2
a′

wV2
0 (t) (9.41)

where a′
w is the added mass per unit length of the cylinder. From the last equality in

eq. 9.41, the expression for the added mass per unit length for the Lewis form is

a′
w = ��a2

[(
1 − A1

a2

)2

+ 3
A2

3

a4

]
(9.42)

The reader can see that when A1 = A3 = 0, the transformed circle is also a circle of
radius a, and the added-mass expression is the same as that in eq. 9.21.

The application of the added-mass expression to a cross-section having a trans-
verse (normal to V0) dimension, B1 = 2Ymax|a=1, is as follows: Following Lewis
(1929), first let a = 1 in eq. 9.42. Then, multiply both the velocity potential and
stream function expressions of eqs. 9.38 and 9.39 by B1/2Ymax|a=1 to change the
length scale. The added mass per unit length for a Lewis form is obtained by multi-
plying the expression in eq. 9.42 by (B1/2Ymax|a=1)2. The result is

a′
w|B1 = ��

[
(1 − A1)2 + 3A2

3

] ( B1

2Ymax |a=1

)2

= ��B2
1

[
(1 − A1)2 + 3A2

3

]
4 (1−A1 + A3)2 (9.43)

Here, Ymax|a=1 in the first equality is replaced by the expression in eq. 9.35, where
a = 1. The inertial coefficient for a Lewis form from eq. 9.26 is then

Ci ≡ a′
w|B1

a′
w1

= a′
w|B1

��( B1
2 )2

= (1−A1)2 + 3A2
3

(1−A1 + A3)2
(9.44)

The application of Lewis forms to floating bodies is discussed in Chapter 11. In that
chapter, we find that the added mass for such oscillating bodies depends on the
frequency of oscillation.

In the following example, an application of the method of Lewis (1929) for
determining the added mass is presented.

EXAMPLE 9.4: ADDED MASS OF A NONCIRCULAR CYLINDER The cylinders in Fig-
ures 9.7b and 9.7c are one of four legs supporting a semi-submergible offshore
platform in the open ocean where the mass density (�) of the salt water is
1,030 kg/m3. Our interest is in the added mass per unit length of each leg when
the legs move in the x-direction. The transverse dimension (B1a) of the leg is
4 m in Figure 9.7b, and the section of the leg that is of interest is well away from
the free surface.

(a) For the leg in Figure 9.7b moving in the negative x-direction, the constants
are A1 = 0 and A3 = −0.111. The added mass per unit length of the leg
from eq. 9.43 is approximately 16,980 kg/m.

(b) When the leg orientation is at 45◦ to the X-direction, then A1 = 0 and
A3 = 0.111. The transverse dimension (B1b) is not the same as in case (a).
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Rather, it is B1a/ cos(45◦) � 5.66 m. The approximate added-mass value for
this condition is 21,770 kg/m.

The respective added mass or inertia coefficient values for cases (a) and (b) are
approximately 1.312 and 0.840 from eq. 9.44.

In this discussion, we have illustrated an application of the Lewis (1929) method
of determining both the geometry and added mass of noncircular bodies. Our appli-
cation of the Lewis method is to bodies in an infinite still fluid. Lewis applied his
method to ship shapes piercing the free surface by determining the added mass of
the lower half of the bodies defined by the conformal transformations. The motions
of the body were assumed to have no effect on the free surface. This corresponds
to the low-wave-frequency condition, 
 → 0, discussed by Frank (1967) and oth-
ers, where the free surface corresponds to one of the coordinate axes. Brennen
(1982) presents a rather thorough review of the transformation techniques used in
the determination of the added-mass and the inertia coefficients, such as that of
Lewis (1929). There are also limitations on the Lewis transformation, as shown by
von Kerczek and Tuck (1969). The limiting conditions are presented in Chapter 11.
Finally, the added-mass expressions derived in this section are independent of the
frequency of the body motion. The frequency-dependent added mass is discussed in
this chapter and in Chapters 10 through 12.

B. Natures of Wave-Induced Forces on Circular Cylinders

When water waves pass a circular cylinder of diameter D (= 2a), the magnitude of
the wave-induced force depends primarily on two length ratios, D/� and D/H. The
components of the wave force are the viscous pressure force (due to a combination
of the boundary layer and the wake), inertial force (due to the acceleration of the
water, the cylinder, or both), and diffraction force (due to scattering – a combina-
tion of wave reflection and diffraction of the waves). The realms of these forces are
shown in Figure 9.8, which is due to Chakrabarti (1975). In that figure, the hori-
zontal coordinate is the product of the wave number (k) and the radius (a), that is,
ka = �D/�, whereas the vertical coordinate is called the Keulegan-Carpenter num-
ber, defined as

KC ≡ umaxT
D

(9.45)

where umax is the amplitude of the normal (horizontal) velocity – normal to the
centerline of the cylinder. As discussed by Woodward-Clyde (1980), the percentages
of the total force that is drag shown in Figure 9.8 are those near the free surface.
These percentages change with depth in deep-water waves.

The parameter in eq. 9.45 resulted from experimental studies by Keulegan and
Carpenter (1958) at the National Bureau of Standards. To apply the Keulegan-
Carpenter number to a vertical or horizontal cylinder positioned normal to a wave
front, the velocity umax is the amplitude of the particle velocity at a point under
investigation. For a vertical pile in linear waves, the velocity is the maximum hor-
izontal particle velocity at the crest of the wave, obtained from eq. 3.49. For this
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Figure 9.8. Wave-Induced Force Component Realms.
This chart is of value in the conceptual design phase
for offshore structures. The Keulegan-Carpenter
number (KC) is defined in eq. 9.45. The figure is due
to Chakrabarti (1975). The figure shown is valid in the
neighborhood of the free surface. The drag percent-
age for a given KC value will change with depth, as
discussed in the Woodward-Clyde (1980) report.

situation, the approximate expressions for KC in deep water and shallow water,
respectively, are

KC|deep � �H0

D
= 2�H0

a
(9.46)

and

KC |shallow � H
T

2D

√
g
h

(9.47)

In the following sections, the wave-induced drag, inertia, and diffraction forces are
discussed in terms of the Keulegan-Carpenter number.

C. Wave-Induced Drag Forces

Consider the case of a vertical circular pile piercing the free surface where ka is small
and the Keulegan-Carpenter number (KC) is large. Physically, the former indicates
that the wavelength (�) is much greater than the radius (a) whereas the latter can be
interpreted as the wave height (H) being much greater than the radius. A vertical,
surface-piercing mooring line under tension is an example of a structure satisfying
these conditions. From the results in Figure 9.8, the wave-induced force is primarily
a drag force, consisting of frictional drag and wake pressure drag.

The empirical analysis of the drag force on a cylinder in waves is more com-
plicated than that for a cylinder in a steady flow – the latter discussed in Section
2.5. The complications arise because the velocity amplitude varies over the length
of the cylinder if the cylinder is not both horizontal and normal to the wave. In addi-
tion, the flows in both the boundary layer and the wake are continually changing as
the wave passes. In fact, the longitudinal position of the wake actually changes with
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Figure 9.9. Behavior of the Drag Coefficient for a
Smooth Circular Cylinder in an Oscillatory Flow as
a Function of the Keulegan-Carpenter Number. The
curve represents an average of the data measured
by Keulegan and Carpenter (1958). The results pre-
sented in the book by Sarpkaya and Isaacson (1981)
show that this behavior is modified by the inclusion
of surface roughness.

the wave passage, being leeward over half of the wave period and forward over the
other half. In the wakes, vortices form and are either attached (when KC is low) or
shed (when KC is high). Vortex shedding can produce both longitudinal, or in-line,
and transverse motions of a cylinder. For a mooring line, these motions are referred
to as strumming. Vortices produced over half a wave period still exist over the other
half-period, and can be convected from the side of their origin to the other side.
In turn, this cumulatively affects the flow about the cylinder, as demonstrated by
Isaacson and Maull (1976) and others.

Returning to the discussion of the small cylinder, where the drag is dominant in
the direction of wave travel, the drag force equation for a cylinder that is horizontal
and parallel to the wave crest is

Fd = 1
2

�u |u| AdCd (9.48)

where the absolute value is required to preserve the force direction as the wave
passes. As is the case for a steady viscous flow past a cylinder in eq. 2.79, the area
(Ad) is that projected onto a plane normal to the celerity, c. The behavior of the
drag coefficient (Cd) is more complicated for the wave-induced flow, as would be
expected. This fact was demonstrated by Keulegan and Carpenter (1958). From that
study, the behavior of Cd and as function of KC in Figure 9.9 results. In that figure,
we see a peaking of the data in the lower KC range (KC < 25). Also determined in
the Keulegan-Carpenter study was the behavior of the inertia coefficient (Ci) with
KC shown in Figure 9.10. In that figure, we see a dip in the data with a minimum
value occurring approximately at the same KC value as the peak in the Cd curve.
When viewing the data curves in Figures 9.9 and 9.10, one must keep in mind that,
first, the curves represent scattered data and, second, another phenomenon is affect-
ing the force readings. That phenomenon is vortex shedding.

Approximately two decades after the Keulegan-Carpenter study, Sarpkaya
(1976, 1986) performed some of the most definitive experimental studies of the drag
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Figure 9.10. Behavior of the Inertia Coefficient for
a Smooth Circular Cylinder in an Oscillatory Flow
as a Function of the Keulegan-Carpenter Number.
As for the data in Figure 9.9, the curve represents
an average of the data measured by Keulegan and
Carpenter (1958). Again, the results presented in
the book by Sarpkaya and Isaacson (1981) show that
this behavior is modified by the inclusion of surface
roughness.
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and inertia forces on cylinders in oscillatory flows. He found that both the drag
and inertial coefficients are functions of the Reynolds number (Re in eq. 2.77), the
Keulegan-Carpenter number (KC), surface roughness, and a frequency parameter
which, in turn, is a function of both Re and KC. These dependencies cause a change
in both the position and magnitude of the peak in the Cd curve and the dip in the Ci

curve shown in Figures 9.9 and 9.10, respectively. For those readers interested in the
inter-relationships affecting the drag and inertia coefficients, the book by Sarpkaya
and Isaacson (1981) is recommended. That book contains an extensive discussion of
Sarpkaya’s earlier works.

The small-diameter cylinder is the most commonly used structural element in
offshore engineering. It is the structural geometry of the vertical pile, where the
cylinder is solid, and the basic geometric shape of the cross-brace in offshore struc-
tures, where the cylinder is hollow. The legs of most of the earliest offshore towers
had dimensions that qualified the structural elements as small-diameter cylinders.
The analysis of the forces on cylinders of small diameters involves an equation that
incorporates both the drag and inertial forces. The diffraction forces on small cylin-
ders in long waves are of second order, and can be neglected. The resulting equation
is called the Morison equation, and is discussed in the next section.

D. The Morison Equation

As previously stated, the total force on a cylinder in waves has three components,
those due to the drag, inertia, and scattering (reflection and the subsequent diffrac-
tion). The latter is referred to as the diffraction force. Referring to the force domains
in Figure 9.8, many of the circular cylinders used in ocean engineering structures
experience dominant drag and inertia forces – the diffraction forces being of second
order. A number of experimental studies were performed on cylinders in this force
domain by engineers at the University of California, Berkeley, after World War II.
The results of these studies are discussed by Wiegel (1964). From the Berkeley stud-
ies, an expression for the forces on circular piles in the low ka range of Figure 9.8 was
formulated by Morison et al. (1950). This expression is called the Morison equation,
and is still the subject of many studies. An excellent review of the pre-1980 studies of
the Morison equation and its applications is found in the Woodward-Clyde (1980)
study sponsored by the U.S. Navy’s Civil Engineering Laboratory. A comprehensive
study of the equation that includes later works is found in the dissertation of Cook
(1987), who worked with Emil Simiu at the U.S. National Bureau of Standards.

As is normally used in present-day engineering studies, the Morison equation is
an expression for the wave-induced force per unit length in the drag-inertia domains
in Figure 9.8. That equation is

F ′ = Cd
1
2

�u |u| A′
proj + Ci �

Du
Dt

∨′
disp (9.49)

where the prime (′) indicates that the term is per unit length. The first term on the
right side of the equation is the time-dependent drag force, and the second term
is the inertial reaction force of the fluid. This equation is a modified form of that
originally presented by Morison et al. (1950). First, the original equation did not
account for the change in direction of the horizontal particle velocity so the absolute
value of u was added. Second, the original study was directed at a circular cylinder,
so the projected area per unit length (A′

proj ) was simply D. Third, the displaced
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volume per unit length (∨′
disp) was originally the displaced volume per unit length of

a circular cylinder, or �D2/4. Finally, the total acceleration in eq. 9.49,

Du
Dt

= ∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

(9.50)

was originally the local acceleration, ∂u/∂t. Isaacson (1979) finds that the use of the
total derivative in eq. 9.49 yields better results than those obtained by using the
local acceleration alone, although he notes that the last convective terms in eq. 9.50
do not included added-mass effects. Sarpkaya and Isaacson (1981) indicate that the
convective acceleration (the last two terms in eq. 9.50) is negligible for most practical
applications.

There are several other corrections applied to the Morison equation. These
include those of Sarpkaya (1981) and Lighthill (1979). The Sarpkaya correction
accounts for the effects of vorticity. Lighhill shows that there is an additional non-
linear inertial force that is added to the expression in eq. 9.49. Call this force the
“Lighthill force.” This potential-flow term arises because of the in-line (in the flow
direction) gradient of the velocity. As discussed by Cook (1987), the form of the
Morison equation in eq. 9.49 must include the Lighthill force. This means that the
nonlinear drag has a potential component, and “the Morison equation leads to an
erroneous estimation of the force due to viscosity.” However, Cook concludes that
“the addition of the Lighthill correction term did not improve the Morison equation
significantly; in most cases the Morison equation without the Lighthill correction
provided a better fit to the measured forces.”

By performing a harmonic analysis of experimental data, Sarpkaya (1981) finds
that there are two corrective terms that should be added to the expression in eq.
9.49. Those terms correspond to the third and fifth harmonics in his analysis. As
presented by Cook (1987), the four-term Morison equation applied to a circular
cylinder due to Sarpkaya (1981) is

F ′ ≡ dF
dz

= Cd
1
2

�u |u| D + Ci �
∂u
∂t

�
D2

4

+
√

Cd KC
2−Ci

1
2

�u2
max D

[
0.01 + 0.10e0.08(KC−12.5)2]

· cos

(
3
t −

√
Cd KC

(2 − Ci )

[−0.05 − 0.35e−0.04(KC−12.5)2])

+
√

Cd KC
2 − Ci

1
2

�u2
max D

[
0.0025 + 0.053e−0.06(KC−12.5)2]

· cos

(
3
t −

√
Cd KC

(2 − Ci )

[
0.25 + 0.60e−0.02(KC−12.5)2])

(9.51)

The numerical terms and coefficients in eq. 9.51 are universal constants. A study
by Hudspeth and Nath (1985) yielded universal constants that differ from those in
the equation. Note that in the denominators of the radical signs in the equation, the
constant 2 is the value of the inertia coefficient from eq. 9.26 for the flow sketched
in Figure 9.6 – oscillatory potential flow past a fixed, two-dimensional cylinder. The
last two terms in eq. 9.51, called the residue terms, are of significance in the range
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7 ≤ KC ≤ 20, and are approximately zero outside of this region. In Figure 9.8, we
see that this range corresponds to that of inertia-dominated flows for ka ≤ 0.5. As
Cook (1987) writes, the residue terms “reflect the role played by the growth and
convection of vortices on the in-line force.” Finally, Cook writes that the practical
value of the expression in eq. 9.51 is in curve-fitting when applying the Morison
equation to measured data.

The determination of the drag coefficient, Cd, and the inertial coefficient, Ci, is
rather complex as these coefficients have been found to be functions of the Reynolds
number based on the diameter,

ReD = umax D
�

(9.52)

and the Keulegan-Carpenter number, KC, in eq. 9.45. For salt water, the kinematic
viscosity (�) in eq. 9.52 has a value of 1.2 × 10 −6 m2/s when the water tempera-
ture is 14◦C. The reader is referred to the papers by Sarpkaya (1976, 1986) and the
book by Sarpkaya and Isaacson (1981) for experimental and empirical studies of Cd

and Ci. For demonstration purposes, the curves of Keulegan and Carpenter (1958)
presented in Figures 9.9 and 9.10 are used herein. Furthermore, if we confine our
attention to linear waves, then the amplitude of the horizontal particle velocity in
eq. 9.52 is obtained from eq. 3.49, that is,

umax = 

H
2

cos h[k(z + h)]
sinh(kh)

(9.53)

Because of the nature of free-surface flows, KC (in eq. 9.45) varies with depth. For
a vertical circular cylinder in linear waves in intermediate water, this fact is demon-
strated from the expression resulting from the combination of eqs. 9.45 and 9.53.
The value of KC might be large at the free surface, and the eddy structure in the
neighborhood of the cylinder would be well developed. However, at the base of
the cylinder the KC value might be relatively small. For this situation, the hori-
zontal force per unit length would then be drag-dominated near the free surface
and inertia-dominated near the base of the structure. The application of the two-
dimensional Morison equation must be done in a piecewise fashion to account for
the vertical diffusion of the eddies. In the large-KC flow where the vortex produc-
tion is high, there are “wake-return effects,” as coined by Cook (1987). That is, the
wake formed by the flow in the wave direction over half of the wave period partially
persists over the second half-period, when the flow is in the opposite direction. The
remnants of the vortices produced in the first half of the wave period then affect
the flow conditions in the second half, and so forth. This historical effect cannot be
adequately accounted for by the Morison equation.

In the following example, the expression in eq. 9.51 is applied to a circular pile
in shallow-water, long, linear waves.

EXAMPLE 9.5: FORCE AND MOMENT ON A VERTICAL CIRCULAR PILE IN SHALLOW

WATER Referring to the sketch in Figure 9.11 for notation, consider a circular
pile of 0.3 m diameter (D = 2a) in 5 m (h) of water subject to linear swell having
a 0.5-m height (H) and a 15-sec period (T). Our goal is to determine the wave-
induced force and moment on the pile using the four-term Morison equation in
eq. 9.51. For this wave, the deep-water wavelength is �0 � gT2/2� � 351 m, and
the wavelength at the site is � � 104 m from both the linear theory (eq. 3.31)
and Stokes’ second-order theory. In the diagram of Figure 4.1, h/�0 � 0.0142
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Figure 9.11. Notation for the Wave-Force
Analysis on a Vertical, Circular Pile.

and H/�0 � 0.00142. For these values, the linear wave theory is marginally valid
and is used. The Ursell parameter,

UR ≡ H�2

2h3
(9.54)

in Figure 4.1 has a value of about 21.6. This value corresponds to a long-
wave condition because UR � 1. Also, the ratio of the wavelength to water
depth is approximately 20.8, so the shallow-water approximation is apropos.
The shallow-water Keulegan-Carpenter number value from eq. 9.47 is KC =
17.5. Also, for the stated conditions, ka = 0.009. These values in Figure 9.8 cor-
respond to the drag and inertia force region. Using the KC value in Figures 9.9
and 9.10, respectively, yields Cd � 1.95 and Ci � 0.75.

The application of the four-term Morison equation (eq. 9.51) to the small-
diameter pile in shallow water, where KC is invariant with depth, yields the
horizontal wave force in Newtons,

Fx (t) =
�CL(t)∫
−h

F ′(t)dz = [�CL (t) + h] F ′(t)

� [0.25 cos (0.419t) + 5] [211 cos (0.419t) |cos (0.419t)|−8.00 sin (0.419t)

+ 0.00226 cos (1.26t + 0.934) + 0.00138 cos (1.26t − 3.21)] (9.55)

and the corresponding wave-induced moment about the base of the pile at the
mud line (positive in the counterclockwise direction) in Newton-meters is

Mw (t) = −
�CL(t)∫
−h

(z + h) F ′tdz = − 1
2 [�CL (t) + h]2 F ′(t)

= − 1
2 [0.25 cos (0.419t) + 5]2 [211 cos (0.419t) |cos (0.419t)|

− 8.00 sin(0.419t) + 0.00226 cos (1.26t + 0.934)

+ 0.00138 cos (1.26t − 3.21)] (9.56)

where the subscript x indicates the force direction, w refers to the wave-induced
moment, and the subscript CL is used to represent the free-surface displace-
ment above the origin of the centerline of the pile. To obtain the values in
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Figure 9.12. Time History of the Wave-Induced Total Force and Drag Force on the Pile in
Example 9.5. The two drag forces are nearly identical, indicating that the conditions in Exam-
ple 9.5 are drag-dominated. The inertia force causes the total force (Fx) curve to be asymmet-
ric with respect to the mid-period (t = T/2 = 7.5 sec).

eqs. 9.55 and 9.56, the shallow-water maximum horizontal velocity, obtained
from eq. 9.53, is used:

umax � H
2

√
g
h

� 0.35 m/s (9.57)

The center of pressure of the force is obtained from

zcp (t) = Mw (t)
Fx (t)

− h = −1
2

[�CL (t) −h] (9.58)

for this shallow-water problem.
Assuming that the pile is in salt water where the ambient water temper-

ature is 14◦C and the kinematic viscosity (�) is 1.2 × 10−6 m2/s, the value of
the Reynolds number based on the pile diameter of eq. 9.52 is 8.75 × 104. For
the Keulegan-Carpenter (1958) experiments, the Reynolds-number values were
less than or equal to 5 × 104.

Results obtained from eq. 9.55 are presented in Figure 9.12, where the total
force on the pile is presented as a function of time. Also in that figure is the
component drag force. These results show that the drag force is the dominant
component of the total force for the given conditions. The effect of the relatively
small inertial component causes the total force curve to be unsymmetric with
respect to t = T/2 = 7.5 sec. Also, we can conclude that the additional terms in
the four-term Morison equation have a small effect on the total force for the
stated conditions.

The phase relationships among the drag force, inertial force, and free-
surface displacement can be seen in Figure 9.13, where the normalized force
components of Morison’s equation (eq. 9.49) and the normalized free-surface
displacement are presented as functions of the time ratio, t/T.
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Figure 9.13. Temporal Behaviors of the Normalized Wave-Induced Drag and Inertia Force
Components of Morison’s Equation and the Normalized Free-Surface Displacement.

Finally, for a totally submerged horizontal, circular cylinder (referred to a
brace) of length �, the Morison equation is

Fx−brace = 1
2

�u |u| (D�)Cd + �
∂u
∂t

(
�

D2

4

)
Ci� (9.59)

Braces connect legs of an offshore structure, and are used to improve the structural
stability. Many cross-braces are not in the plane of the wave front. The application of
Morison’s equation to these braces is done by breaking the wave-induced horizontal
velocity into components that are normal and parallel to the centerline of the brace.

E. Circular Cylinders of Large Diameter – The MacCamy-Fuchs Analysis

Up to this point, our interest has been in small-diameter cylinders subject to either
wave-induced drag forces or wave-induced inertia forces. For cylinders of circular
cross-section, these forces are dominant for relatively small values of ka (ka < 0.1)
in the Chakrabarti chart in Figure 9.8. We now direct our attention to the forces
for relatively large values of ka (> 0.5) where the dominant wave-induced force is
due to diffraction. In terms of the radius-to-wavelength ratio, our interest is in cir-
cular cylinders for which a/� > 0.08, or a diameter-to-wavelength ratio range of
D/� > 0.16. Akyildiz (2002) presents experimental diffraction-force data for this
range resulting from wave-tank studies of large cylinders in linear waves.

The introduction of structures with large-diameter legs came with the advent
of deep-water offshore drilling for oil. These legs are normally found on semi-
submersibles and tension-moored and slack-moored spar platforms, the latter dis-
cussed by Agarwal and Jain (2003) and others. When the cylinders encounter waves
having lengths of the order of magnitude of the diameters, then scattering occurs.
Scattering is normally referred to as the combination of wave reflection and diffrac-
tion. Diffraction, discussed in Section 6.4, can be considered to be the redistribution
of wave energy along the wave crest. A scattered wave pattern in the neighborhood
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of a vertical circular cylinder is sketched in Figure 9.14. In that figure, the incident
waves are reflected over the angular range of �/2 < � < 3�/2. According to Huy-
gens’ principle (Section 6.4A), the reflected waves radiate outward radially from
their point of origin and coalesce, so the energy per crest length of the reflected
waves decreases as the waves travel away from the body. The height of the reflected
wave is maximum at the point on the cylinder where � = �, and decreases to zero
at � = ±�/2. In the range of −�/2 < � < �/2, wave energy is transferred into the
shadow zone leeward of the cylinder because the shadow zone does not receive
direct incident wave energy.

The analysis of wave-structure interactions when a/� is in the diffraction region
of Figure 9.8 is approached using the potential theory. That is, the effects of viscosity
are assumed to be insignificant, and other losses are neglected. By assuming that the
entire flow field is potential in nature, Havelock (1940) analyzes the wave-induced
force on a vertical, circular cylinder of infinite length in waters of infinite depth. For
embedded, vertical, circular cylinders in waters of finite depth, MacCamy and Fuchs
(1954) present an analysis along the lines of the Havelock study. An excellent engi-
neering discussion of the MacCamy-Fuchs analysis is presented by Mogridge and
Jamieson (1976), and they show that the analysis agrees with experimental results.
Garrett (1971) applies the potential theory to vertical, cylindrical cylinders of finite
draft, and his analytical data are shown to agree well with experimental data of van
Oortmerssen (1971).

In this section, we present the MacCamy-Fuchs analysis of the diffraction
forces on an embedded vertical, circular cylinder, as modified by Mogridge and
Jamieson (1976). The notation for the analysis is presented in Figure 9.15. Following
MacCamy and Fuchs (1954), begin by assuming that two irrotational wave patterns
exist, those being the incident wave pattern (represented by the velocity potential,
�I) and the diffraction pattern (represented by �D). The total potential is then

� = �I + �D (9.60)
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Because of geometric considerations, the use of polar coordinates is found to be
advantageous. In terms of the polar coordinates, the velocity potential representing
the incident, right-running linear wave is

�I = HI

2
g



cosh [k(z + h)]
cosh (kh)

sin (kx − 
t) = HI

2
g



cosh [k(z + h)]
cosh (kh)

sin [kr cos (�) −
t]

= − HI

2
g



cosh [k(z + h)]
cosh (kh)

�{iei[kr cos(�)−
t]} (9.61a)

where � indicates the real part of the exponential function. The last equality is used
so that the temporal exponential function can be separated from the spacial expo-
nential function, and the latter can then be written in terms of Bessel functions. The
resulting expression is

�I = − HI

2
g



cosh [k(z + h)]
cosh (kh)

�
{

i

[
J0 (kr) + 2

∞∑
m=1

im Jm (kr) cos (m�)

]
e−i
t

}

= − HI

2
g



cosh [k(z + h)]
cosh (kh)

�
{ ∞∑

m=0

im+1εm Jm(kr) cos(m�)e−i
t

}
(9.61b)

where the relationship between the exponential function in eq. 9.61a and nth-order
Bessel functions of the first kind, Jm(kr), in eq. 9.61b can be found in the books
of Abramowitz and Stegun (1965) and Gradshteyn and Ryzhik (1965). Also, see
Appendix A for a brief discussion of Bessel functions. The reason for representing
the incident wave potential in terms of Bessel functions will become apparent later
in this derivation. From the last equality in eq. 9.61b, the constants associated with
the indices are seen to be ε0 = 1 and εm = 2 for m > 0. The notation εm is called
Neumann’s symbol, according to Miles and Gilbert (1968).

The potential representing the diffracted wave (scattered wave) must satisfy
Laplace’s equation in cylindrical coordinates, that is,

∇2(�D) = 1
r

∂

∂r

(
r
∂�D

∂r

)
+ 1

r2

∂2�D

∂�2
+ ∂2�D

∂z2
= 0 (9.62)
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where (r, z, �) are the cylindrical coordinates, as shown in Figure 9.15. The solu-
tion of this equation can be obtained by using separation of variables, the method
described in Section 3.2. Applying the seafloor boundary condition to the solution
results in the following expression for the diffraction potential:

�D = HI

2
g



cosh[k(z + h)]
cosh(kh)

�
{ ∞∑

m=0

Em[Jm(kr) + iYm(kr)] cos(m�)e−i
t

}

= HI

2
g



cosh[k(z + h)]
cosh (kh)

�
{ ∞∑

m=0

EmH(1)
m (kr) cos(m�)e−i
t

}
(9.63)

This potential represents a cylindrical wave radiating away from the origin. In this
equation, Em is a constant associated with a value of the index, m. Also in the equa-
tion are the mth-order Bessel function of the second kind, Ym(kr), and the mth-
order Hankel function of the first kind, H(1)

m (kr). From eq. 9.63, we see that the
relationship between the Hankel and Bessel functions is

H(1)
m (kr) = Jm(kr) + iYm(kr) (9.64)

The Hankel function is also referred to as the Bessel function of the third kind.
Again, see Appendix A for the properties of Bessel functions.

The expressions for the velocity potentials representing the incident waves
(eq. 9.61b) and the diffracted waves (eq. 9.63) can now be combined with the expres-
sion in eq. 9.60 to obtain the expression for the potential of the entire wave field. The
result is

� = HI

2
g



cosh[k(z + h)]
cosh(kh)

�
{ ∞∑

m=0

[
−im+1εm Jm(kr) + EmH (1)

m (kr)
]

cos(m�)e−i
t

}

(9.65)

The values of Em are found by applying the boundary condition on the wetted sur-
face of the fixed cylinder. Physically, there is no flow across that surface; hence, the
radial component of the fluid velocity on the surface is

∂�

∂r

∣∣∣∣ r=a = 0 (9.66)

Applying this condition to the second equality in eq. 9.65 yields the following expres-
sion for the constant Em:

Em = εmim+1 dJm/dr

dH (1)
m /dr |r=a

≡ εmim+1 J ′
m (ka)

H (1)
m

′
(ka)

, m = 0, 1, 2, . . . (9.67)

where the prime (′) indicates differentiation with respect to r and, again, εm is
Neumann’s symbol, where ε0 = 1 and εm = 2 for m ≥ 1. The combination of
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eqs. 9.65 and 9.67 results in the following expression for the potential representing
the entire wave field:

� = − HI

2
g



cosh [k(z + h)]
cosh(kh)

×

�
{ ∞∑

m=0

im+1εm

[
Jm (kr) − J ′

m(ka)

H (1)
m

′
(ka)

H (1)
m (kr)

]
cos(m�)e−i
t

}
(9.68)

Because both the incident and scattered waves are linear, the free-surface expres-
sion corresponding to the velocity potential in eq. 9.68 is found from application of
the linearized dynamic free-surface condition in eq. 3.6. From that combination, the
free-surface displacement expression is found to be

�(r, �, t) = �I + �S = − 1
g

∂�

∂t

∣∣∣∣
z=��0

= i



g
�

∣∣∣∣
z=��0

= HI

2
�
{ ∞∑

m=0

imεm

[
Jm (kr) − J ′

m (ka)

H (1)
m

′
(ka)

H(1)
m (kr)

]
cos(m�)e−i
t

}
(9.69)

The subscripts I and S identify the respective incident and scattered waves. The
velocity potential in eq. 9.68 is used to determine the time-dependent pressure on
the vertical cylinder sketched in Figure 9.16. From the linearized Bernoulli’s equa-
tion (eq. 3.70), the dynamic pressure is

p|r=a = −�
∂�

∂t

∣∣∣∣
r=a

= �g
HI

2
cosh [k(z + h)]

cosh (kh)
�
{ ∞∑

m=0

im εm

H (1)
m

′
(ka)

× [Jm (ka) H (1)
m

′
(ka) − J ′

m(ka)H (1)
m (ka)

]
cos(m�)e−i
t

}

= �g
HI

2
cosh [k(z + h)]

cosh (kh)
�
{ ∞∑

m=0

im+1 εm

H (1)
m

′
(ka)

[
2

�ka

]
cos (m�) e−i
t

}
(9.70)

The relationship between the bracketed Bessel-function expression in the second
equality and the bracketed term in the last equality is obtained by, first, replacing the
Hankel functions by the Bessel functions of the first and second kind, as in eq. 9.64,
and then using recurrence relationships for the cross products of Bessel functions
found in Abramowitz and Stegun (1965). The reader should note that the derivatives
of the Bessel and Hankel functions with respect to r in eq. 9.70 have dimensions of
m−1. For example, if f (r) = kr , then dJn( f )/dr = kdJn( f )/df .
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To obtain the expression for the wave-induced horizontal force on the verti-
cal cylinder, integrate the pressure expression in eq. 9.70 over the surface. In Fig-
ure 9.16, the elemental pressure force on the cylinder is shown. The horizontal force
is the real part of the resulting expression, that is,

Fx = −
0∫

−h

2�∫
0

p|r=a cos(�)ad�dz = �

0∫
−h

2�∫
0

�
{

∂�

∂t

∣∣∣∣
r=a

}
cos(�)ad�dz

= 2
�gHI

k
tanh(kh)

{
[J ′

1(ka) cos(
t) − Y′
1(ka) sin(
t)]

J ′
1

2(ka) + Y′
1

2(ka)

}

= 2
�gHI

k
tanh(kh)

sin[
t − (ka)]√
J ′

1
2(ka) + Y′

1
2(ka)

= 2
�gHI

k2
tanh(ka)�(ka) sin[
t − (ka)]

(9.71)

where the amplitude function is

� (ka) = k√
J ′

1
2(ka) + Y′

1
2(ka)

= 1√[
J0(ka) − 1

ka
J1(ka)

]2

+ [Y0(ka) − 1
ka Y1(ka)

]2
(9.72)

Results from this expression are shown in Figure 9.17. The phase angle in eq. 9.71
is

(ka) = tan−1
[

J ′
1 (ka)

Y′
1 (ka)

]
= tan−1


 J0(ka) − 1

ka
J1(ka)

Y0(ka) − 1
ka

Y1(ka)


 (9.73)

Results from this expression are presented in Figure 9.18. The integration of the
pressure over the wetted surface in eq. 9.71 contains only one term of the infinite
series. This result is due to the �-integration from which the only nonzero result
occurs for m = 1. The behaviors of the amplitude function, �(ka), and the mass
coefficient, CM, are shown in Figure 9.17, whereas that of the phase angle, (ka), is
seen in Figure 9.18. The mass coefficient is defined by eq. 9.78.

The wave-induced overturning moment (counterclockwise moment about the
base-axis Y of the structure in Figure 9.15), corresponding to the force of eq. 9.71, is
obtained from

MY =
0∫

−h

2�∫
0

(z + h)p|r=a cos(�)ad�dz = −�

0∫
−h

2�∫
0

(z + h)�
{

∂�

∂t

∣∣∣∣
r=a

}
cos(�)ad�dz

= −2
�gHI

k2

[J ′
1(ka) cos(
t) − Y′

1(ka) sin(
t)

J ′
1

2(ka) + Y′
1

2(ka)

{
kh tanh(kh) + 1

cosh(kh)
− 1
}

= −2
�gH1

k3

{
kh tanh(kh) + 1

cosh(kh)
− 1
}

�(ka) sin[
t − (ka)] (9.74)

The center of pressure of the diffraction force is located at

z|cp = − MY (t)
Fw (t)

− h (9.75)
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Figure 9.17. MacCamy-Fuchs Amplitude Function and Mass Coefficient versus Dimension-
less Cylinder Radius. The relationship between the amplitude function [�(ka)] and the mass
coefficient (CM) results from eq. 9.79. Note that the value of the mass coefficient is 2 for ka =
0. Physically, this condition corresponds to k → 0 as � → ∞. This value is that of the inertia
coefficient for an infinitely long cylinder with its axis normal to an accelerating fluid, obtained
by combining eqs. 9.25 and 9.26. The reader should also note that the region of dominant wave
diffraction for a vertical, surface-piercing circular cylinder in Figure 9.8 is ka ≥ 0.5, according
to Chakrabarti (1975).

EXAMPLE 9.6: FORCE AND MOMENT ON A COFFERDAM IN SHALLOW-WATER LINEAR

WAVES A second Chesapeake Bay Bridge Tunnel is to be constructed between
the Delmarva Peninsula and Virginia Beach parallel and seaward of the first
bridge tunnel. East of the planned bridge tunnel is the Atlantic Ocean. Sev-
eral of the piers of the bridge portion of the thoroughfare are in 3 m of water
where the average wave height is 1 m. A relatively long-period wave having a
1-m height and a 12-sec period is common at this site. For this wave, the deep-
water wavelength is approximately 225 m. From eq. 3.31, the wavelength at the
site is approximately 64.5 m, which results in a depth-to-wavelength value in
the shallow-water region of h/� < 1/20. To facilitate the construction of these
particular piers, single cofferdams of 40-m diameter are used. Our goal is to
determine the amplitudes of the horizontal wave force on a cofferdam and the
resulting overturning moment.

First, we should consult the Chakrabarti diagram in Figure 9.8 to determine
the nature of the wave force. For the conditions at the site, ka = �D/� � 0.56,
which is in the diffraction region of the figure. Because of this, the MacCamy-
Fuchs analysis of the wave-induced force is appropriate. The resulting shallow-
water wave force and overturning moment expressions are, respectively,

Fx = 2
�gHI

k
h�(ka) sin [
t − (ka)] (9.76)
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Figure 9.18. MacCamy-Fuchs Phase Angle versus Dimensionless Cylinder Radius.

from eq. 9.71, and

MY = −2
�gHI

k
h2� (ka) sin [
t −  (ka)] (9.77)

from eq. 9.74, where the respective amplitude function and the phase-angle val-
ues are approximately 0.482 and 12.3◦ from eqs. 9.72 and 9.73. The maximum
force is 1.04 × 106 N, and maximum moment is −3.12 × 106 Nm. From eq. 9.75,
the center of pressure for this shallow-water problem is z|cp = 0, that is, at the
waterline, and the resulting moment arm about the base is simply h, the water
depth.

The diffraction theory of MacCamy and Fuchs (1954) was experimentally tested
by Sundaravadivelu, Sundar, and Rao (1999), and the theoretical and experimental
results are shown to agree rather well. Hence, the MacCamy-Fuchs analysis can be
used with confidence.

F. Mass Coefficient for a Circular Cylinder

The expression in eq. 9.71 for the diffraction force on a vertical, circular cross-
section caisson can also be considered to be due to the time rate of change of linear
momentum. To obtain a corresponding expression, we must use a depth-averaged
horizontal acceleration of the particles within the incident wave, evaluated at the
position of the center of the cylinder when the cylinder is not present. Further-
more, we assume that this acceleration is in phase with the horizontal wave force of
eq. 9.71. With these assumptions, the following expression for the horizontal force
on a vertical circular caisson is obtained:

Fx = 2
�gHI

k2
tanh(kh) �(ka) sin[
t − (ka)]

= ��a2hCM
dU
dt

= ��a2hCM
d
dt


1

h

0∫
−h

∂�I

∂x

∣∣∣∣ x=0 dz}



= ��a2CM
HI g

2
tanh(kh) sin[
t − (ka)] (9.78)
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Figure 9.19. Notation for a Rectangular Cross-Section Caisson in
Oblique Waves.

where CM is called the mass coefficient, as opposed to the inertial coefficient in
eq. 9.26. In this book, the difference between the two coefficients is that the mass
coefficient is based on the total volume of the submerged portion of the structure,
whereas the inertial coefficient is based on the mass per unit depth of submergence.
The velocity, U, is a depth-averaged horizontal velocity component of the water par-
ticles in the wave direction at the site when the structure is not present. From the
comparison of the second and last expressions in eq. 9.78, the following expression
for the mass coefficient is obtained:

CM = 4
� (ka)
�k2a2

(9.79)

The behavior of the mass coefficient is seen in Figure 9.17. In that figure, we see that
CM = 2 = C2, where in eq. 9.26 i = 2. The value of 2 for CM then corresponds to the
case of a wave of infinite length.

In the next section, the Havelock/MacCamy-Fuchs theory is again modified to
obtain the diffraction force and overturning moment on a surface-piercing rectan-
gular caisson resting on the bed.

G. Diffraction Force and Moment on a Rectangular Cylinder

Vertical caissons with rectangular cross-sectional areas have received relatively lit-
tle attention compared to that directed at caissons having circular cross-sections. In
Chapter 8 of the book by Dean and Dalrymple (1984), the forces and moments on
a fixed, surface-piercing, rectangular solid of finite draft are analyzed. The body,
having vertical sides, is subject to linear waves of arbitrary incident angle (�I in
Figure 9.19). In their analysis, Dean and Dalrymple assume that the presence of the
body has no effect on the wave field. This assumption is called the Froude-Krylov
hypothesis, and is discussed later in Chapter 10 of this book. Rahman (1987a, 1987b)
presents a method of analysis of diffraction forces on bed-resting, rectangular cais-
sons based on the MacCamy-Fuchs (1954) analysis. The first of the Rahman papers
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contains a second-order approximation of the MacCamy-Fuchs analysis with appli-
cations to both circular and square caissons. The second paper is an extension of
the first, where the theory is applied to rectangular caissons. Essentially, Rahman
modifies the MacCamy-Fuchs force equation by introducing an “equivalent” cir-
cular cylinder. The Rahman method gives rather good results and, because of its
relative simplicity, is outlined here.

Following Rahman (1987a, 1987b), the force expression in eq. 9.78 is used as
an equivalent force expression for the rectangular caisson. Referring to the sketch
in Figure 9.19 for notation, consider waves obliquely approaching the weather face
of the rectangular caisson of length A and width B. The angle of approach is �I,
measured from the x-direction. The diffraction force on the rectangular caisson due
to these waves can be represented by an expression similar to that in eq. 9.78, that is,

Fx� = �ABhCM
dU
dt

cos(�I) (9.80)

where the subscript notation � is used to indicate that the forces are on rectangular
cross-sectioned structures. In this expression, the subscript M is used to distinguish
the force and mass coefficients from those for a circular caisson, for which the sub-
script is italicized. Let the forces represented by eqs. 9.78 and 9.80 be equal when the
approach angle, �I, is zero. The circular caisson is then equivalent to the rectangular
caisson under direct wave attack. By equating the two force equations, an expression
for the equivalent radius of the vertical cylinder is obtained. That expression is

ae =
√

AB
�

CM

CM
(9.81)

For an infinitely long caisson in an unbounded fluid, the relationship between the
mass coefficients can be approximated by

CM

CM
= CM

4
� (kae)
�k2a2

e

� 0.478
(

A
B

)0.410

+ 1 (9.82)

where the expression for the circular cylinder mass coefficient (CM) is found in
eq. 9.79. In the range of 0.1 ≤ B/A ≤ 10, the maximum difference in the values
obtained from eq. 9.82 and those presented by Saunders (1957) is less than 4%.
The Saunders values are based on the Lewis (1929) analysis presented in Section
9.2A(2). Rahman (1987a) assumes CM = CM in his second-order diffraction equa-
tions, and obtains force and moment results that compare well with experimental
results for square caissons for kB less than approximately 0.19. In his second paper,
Rahman (1987b) again assumes CM = CM, and applies the modified first-order
(MacCamy-Fuchs) equation to rectangular caissons. A variation of this study is
presented here.

The modified MacCamy-Fuchs expression of eq. 9.80 for a rectangular caisson
yields the following diffraction force expression:

Fx� = 2
�gHI

k2
tanh(kh) �(kae) cos(�I) sin[
t −  (kae)] (9.83)

where �(kae) is defined in eq. 9.72, and (kae) in eq. 9.73. Similarly, the diffraction
force in the y-direction is

Fy� = 2
�gHI

k2
tanh(kh) �(kae) cos(�I) sin[
t −  (kae)] (9.84)
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Figure 9.20. Notation for a Vertical, Truncated, Circu-
lar Cylinder. Also, see Figure 9.16.

The application of these equations is illustrated in the following example.

EXAMPLE 9.7: FORCE AND MOMENT ON A SQUARE CYLINDER IN SHALLOW-WATER

LINEAR WAVES For the Chesapeake Bay Bridge Tunnel situation in Exam-
ple 9.6, we are to replace the circular caissons with square caissons, where the
face of the structure subject to direct wave attack (�I = 0◦) has a width (B) equal
to the diameter of the circular caisson (40 m). The water depth is 3 m, and the
design wave has a height of 1 m and a period of 12 sec. In Example 9.6, we find
that the deep-water wavelength is approximately 225 m, and the wavelength at
the site is approximately 64.5 m which qualifies as a shallow-water wave. We
shall determine the maximum horizontal force on the caisson, assuming that
the diffraction force is dominant.

For the conditions presented, the mass-coefficient ratio for a square cais-
son is approximately 1.48 from eq. 9.82. The combination of this value with the
expression in eq. 9.81 yields an equivalent radius (ae) value of about 27.4 m.
Hence, kae � 2.67 which, from the Chakrabarti diagram in Figure 9.8, is well in
the diffraction region. When the waves approach the structure directly, the max-
imum wave force is approximately 1.14 × 106 N from eq. 9.83. For the circular
caisson, the wave force for this condition is about 0.93 × 106 N. If we assume
that the mass coefficient-ratio value equals one, as Rahman (1987a, 1987b)
does, then the equivalent radius is about 22.6 m, and kae � 2.20. For this value,
the wave force is about 1.02 × 106 N. That assumption then under-predicts the
wave-force amplitude by about 9%.

H. Truncated Circular Cylinder of Large Diameter

The truncated, vertical, circular cylinder, such as that sketched in Figures 9.14 and
9.20, might be found as a leg of a tension-leg platform (TLP), as discussed in Chap-
ters 10 and 12. The analyses of the ambient hydrodynamics and the corresponding
wave forces on either rigid or moving truncated cylinders are presented by Miles
and Gilbert (1968), Garrett (1971), Yeung (1981), Yilmaz and Incecik (1998), and
others. The Yilmaz-Incecik study and many of the other analyses are either appli-
cations or extensions of the Garrett study. Van Oortmerssen (1971) presents an
“engineering-friendly” formula for the horizontal force on a truncated cylinder in
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waters of finite depth. This formula is based on the works of Havelock (1940) and
MacCamy and Fuchs (1954). The analysis of MacCamy and Fuchs (1954), presented
in the last section, is also based on the Havelock analysis.

In this section, two approximate analyses are first presented. The first is that of
van Oortmerssen (1971) for the wave-induced horizontal force on a truncated circu-
lar cylinder. The second is a complimentary analysis presented by McCormick and
Cerquetti (2004) approximating the vertical force on that structure. These analyses
are followed by the more exact analysis of both the horizontal and vertical forces by
Garrett (1971). Results obtained from these three studies are then compared.

(1) Approximations of the Horizontal Force and Resulting Moment

Van Oortmerssen (1971) applies a parametric coefficient to the force expression
derived by MacCamy and Fuchs (1954) to obtain an expression for the horizontal
diffraction force on a vertical circular cylinder of finite draft in water of finite depth.
As discussed in Section 9.2E, the MacCamy-Fuchs force and moment formulas for
a vertical circular cylinder resting on a bed in waters of finite depth are based on
the Havelock (1940) analysis. The Havelock force formula applies to a cylinder of
infinite draft in infinitely deep water.

Referring to the sketches in Figure 9.20 for notation, the MacCamy-Fuchs hor-
izontal diffraction force expression in eq. 9.71 is

FxMF = 2
�gHI

k2
tanh(kh) �(ka) sin [
t − (ka)] (9.85)

where the subscript x refers to the direction, and the subscript MF identifies the
expression as that of MacCamy and Fuchs. To obtain the horizontal diffraction force
on a truncated circular cylinder of draft (d) in waters of finite depth (h), van Oort-
merssen (1971) multiplies the force expression in eq. 9.85 by a ratio of draft and
depth integrals as follows:

F(xd) �

0∫
−d

cosh[k(z + h)]dz

0∫
−h

cosh[k(z + h)]dz

FxMF = sinh(kh) − sinh[k(h − d)]
sinh(kh)

FxMF (9.86)

The moment about the free-surface axis, the y-axis, due to the force in eq. 9.86
is obtained from

MY(xd)− = F(xd)z|cp = F(xd)

0∫
−d

zcosh[k(z + h)]dz

0∫
−d

cosh[k(z + h)]dz

= F(xd)
1
k

{kd sinh[k(h − d)] + cosh[k(h − d)] − cosh(kh)}
{sinh(kh) − sinh[k(h − d)]} (9.87)

following van Oortmerssen. The moment is positive in the counterclockwise direc-
tion. From this expression, we find that the center of pressure is at

z|cp = kd sinh[k(h − d)] − cosh(kh) + cosh[k(h − d)]
{ksinh(kh) − ksinh[k(h − d)]} (9.88)
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The overturning moment about the bottom of the cylinder is simply the product of
the force in eq. 9.86 and (d + z|cp). The reader might note that the center of pressure
for the cylinder resting on the bed in shallow water is at the waterline, as is the case
for the MacCamy-Fuchs formula in Example 9.6.

The expressions in eqs. 9.85 and 9.88 can be applied with relative ease. Van
Oortmerssen (1971) presents no expression for the vertical force on the truncated
cylinder. Depending on the magnitudes of the wave height, period, water depth, and
the cylinder’s draft, the variation of the wave-induced pressure over the bottom of
the cylinder could be appreciable. The bottom-pressure force could then result in
a large component of the overturning moment. To compliment van Oortmerssen’s
analysis, McCormick and Cerquetti (2004) present an approximate expression for
the vertical force. That expression is presented and discussed in the next paragraphs.

(2) Approximations of the Vertical Force and Resulting Moment

Referring to Figure 9.20, the goal of the McCormick and Cerquetti (2004) analysis
is to find a vertical force expression resulting from a velocity potential in Region
1 (the gap) that will be finite at the origin of r, satisfy the equation of continuity,
and satisfy the boundary condition of no flow across both the bottom of the cylinder
and the sea bed. Before introducing such a potential, the potential in Region 2 is
assumed to be of the form

�2 = − HI

2
g



cosh[k(z + h)]
cosh(kh)

�
{ ∞∑

m=0

im+1εm f (kr) cos(m�)e−i
t

}
(9.89)

where, again, � indicates the real part of the expression and εm is Neumann’s symbol
(ε0 = 1 and εm = 2 for m ≥ 1). The function f (kr) is to be determined. Comparing
the expressions in eqs. 9.68 (the incident and scattered wave potential for a bed-
resting cylinder) and 9.89, we see that the form of the latter equation is modeled on
the former.

The potential function applicable to Region 1 of Figure 9.20 that is proposed is

�1 = HI

2
g



q(z)�
{ ∞∑

m=0

im+1εm
Im(kr)
I0(ka)

cos(m�)e−i
t

}
(9.90)

where Im(kr) is a modified Bessel function of the first kind, order m. The spa-
cial function q(z) is to be specified. That function must cause the velocity poten-
tial to satisfy ∇2�B = 0, the continuity equation, and the conditions on the body
(∂�B/∂z|z=−d = 0) and sea bed (∂�B/∂z|z=−h = 0).

The radial pressure force over the 1–2 vertical boundary is assumed to be the
same for the velocity potentials in eqs. 9.89 and 9.90. From Bernoulli’s equation, the
radial force is

Fr
∣∣ r=a
h<z<−d

= −�

2�∫
0

−d∫
−h

�
{

∂�1

∂t

∣∣∣∣
r=a

}
adzd� = −�

2�∫
0

−d∫
−h

�
{

∂�2

∂t

∣∣∣∣
r=a

}
adzd�

= −� g
HI

2
2�a2 (h − d)

a
qavg cos(
t)

= �g
HI

2
2�a2 sinh[k(h − d)]

ka cosh(kh)
f (ka) cos(
t) (9.91)
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where the only nonzero terms in each of the �-integrals occur when m = 0. Because
q(z) is not known, we have chosen to spatially average the function over the gap,
h-d. From the last equality in eq. 9.91, we find the following expression for that
averaged function:

qavg = − 1
k(h − d)

sinh[k(h − d)]
cosh(kh)

f (ka) (9.92)

Although f (ka) is not known, the expression in eq. 9.92 gives us some idea of the
form of the spacial function. Assume then that the spacial function can be repre-
sented by

q(z) = − 1
k(h − d)

sinh[k(h − d)]
cosh(kh)

Q(z) (9.93)

The potential function in eq. 9.90 is then

�1 = − HI

2
g



1
k(h − d)

sinh[k(h − d)]
cosh(kh)

Q(z)
∞∑

m=0

im+1εm
Im(ka)
I0(kr)

cos(m�)e−i
t (9.94)

where the real parametric function Q(z) is to be determined. This function can be
considered to be empirical in nature.

The vertical force on the bottom of the truncated cylinder that is due to the
velocity potential in eq. 9.94 is obtained from

Fz =
2�∫

0

a∫
0

p|z=−drdrd� = −�

2�∫
0

a∫
0

�
{

∂�1

∂t

∣∣∣∣
z=−d

}
rdrd�

= �gHI�a2 a sinh[k(h − d)]1I1(ka)
(h − d) cosh(kh)(ka)2 I0(ka)

Q(d) cos(
t) (9.95)

The moment about the y-axis in Figure 9.20 corresponding to the vertical force in
eq. 9.95 is obtained from

My =
2�∫

0

a∫
0

p|z=−dr2dr cos(�)d� = −�

2�∫
0

a∫
0

�
{

∂�1

∂t

∣∣∣∣
z=−d

}
r2dr cos(�)d�

= �gHI�a3 a
(h − d)

sinh[k(h − d)]
cosh(kh)

1
(ka)2

I2(ka)
I0(ka)

Q(d) sin(
t) (9.96)

The parametric function Q(d) in eqs. 9.95 and 9.96 must be determined. For an
infinitely long wave, where ka → 0, we know that the vertical force is simply due to
the additional buoyancy caused by the rise and fall in the horizontal free surface.
That is, the force must be equal to

lim
ka→0{Fz} = �g�(t)�a2 = �g

HI

2
�a2 cos(
t) (9.97)

where �(t) is the free-surface displacement of eq. 3.24, where x = 0. For the other
extreme, as ka → ∞, the vertical force must vanish. So, Q(d) must either vanish
or be finite for this condition to be satisfied. In addition to the ka conditions, the
vertical force must vanish if the cylinder rests on the bed, or when d = h. Based on
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Figure 9.21. Spar Work Platform in Example 9.8.

experimental data, the relationship chosen by McCormick and Cerquetti (2004) that
satisfies these conditions is

Q(d) = 1 −
(

d
h

) 10
ka

(9.98)

It is demonstrated later in this chapter that the values of the force amplitudes
obtained by substituting the expression in eq. 9.98 into eq. 9.95 compare well with
those obtained using the more exact force expressions of Garrett (1971) over spe-
cific ka ranges.

To gain an idea of the applicability of the approximate formulas, we apply the
force expressions in eqs. 9.86 and 9.95 (combined with the expression in eq. 9.98) to
the spar platform studied experimentally by Agarwal and Jain (2003) in the follow-
ing example.

EXAMPLE 9.8: WAVE-INDUCED FORCES ON A SPAR WORK PLATFORM Agarwal and
Jain (2003) study the effects of linear waves acting on a spar platform in deep
water, such as sketched in Figure 9.21. The spar has an approximate 20.3-m
radius (a) and a 216-m draft (d). The structure is in regular waves having a 7-m
height and a 12.5-sec period. The depth (h) of the water is 914 m; hence, the
condition is that of deep water because the wavelength (�) corresponding to the
wave period is approximately 244 m from eq. 3.36. The ka value for this wave-
length is 0.522 which, from the Chakrabarti chart in Figure 9.8, is approximately
at the lower limit of the diffraction force region for the horizontal force. To
see if the horizontal viscous and inertia forces might be significant, the deep-
water Keulegan-Carpenter number of eq. 9.46 must be evaluated. For the spar
in deep water, KC � �HI/T � 0.543 > 0.5. For the KC and ka values in Figure
9.8, the diffraction force is dominant. The combination of the MacCamy-Fuchs
force of eq. 9.71 with the van Oortmerssen force of eq. 9.86 yields a horizontal
force amplitude of approximately 4.27 × 108 N. The vertical force from eq. 9.95
is approximately 9.39 × 103 N.

The approximate force and moment formulas of van Oortmerssen (1971) and
McCormick and Cerquetti (2004) are analytical. Because of this, the formulas are
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relatively easy to use in the conceptual design phase of an engineering projects. The
mathematically elegant theory of Garrett (1971), presented in the next section, is
more exact; however, results from this theory must be obtained numerically. The
Garrett theory is presented herein for the sake of completeness.

In the past decade, several studies of wave forces on truncated vertical cylin-
ders have been reported. These studies involve computational fluid dynamics (CFD)
techniques and, as a result, are numerical in their natures. Results obtained from
these CFD studies are found to compare well with those observed in both the labo-
ratory and the field. The topic of CFD is outside of the scope of this book.

(3) Garrett’s Analysis

Garrett’s (1971) analysis of the diffraction force on a truncated, vertical, circular
cylinder, outlined herein, is a modification of the earlier work by Miles and Gilbert
(1968). The major difference in the Garrett and Miles-Gilbert studies concerns the
conditions at the boundary separating Regions 1 and 2, sketched in Figure 9.20b.
This difference in the boundary conditions is discussed later in this section. Miles
and Gilbert (1968) and Garrett (1971) take a somewhat different approach by basing
their analyses on the displacement potential (Φ) rather than the velocity potential
(�). The relationship between these two potentials is simply

Φ = i



� (9.99)

The gradient of the displacement potential then gives the particle displacement at
any point in the fluid. As sketched in Figure 9.20b, the flow field is divided into
two regions: Region 1 is the circular cylindrical region beneath the cylinder, where
r ≤ a and −h ≤ z ≤ −d. Region 2 is external to Region 1 and the cylinder, where
r > a and −h ≤ z ≤ 0. In both regions, the equation of continuity for the (assumed)
irrotational flow must be satisfied by the velocity and displacement potentials. In
cylindrical coordinates, that equation expressed in terms of the displacement poten-
tial is

∂2Φ

∂r2
+ 1

r
∂Φ

∂r
+ 1

r2

∂2Φ

∂�2
+ ∂2Φ

∂z2
= 0 (9.100)

Also satisfied in both regions is the seafloor condition which, in this analysis, is that
there is no particle displacement across the flat horizontal bed. From eq. 3.4, that
condition is

∂Φ

∂z

∣∣∣∣
z=−h

= 0 (9.101)

where the sea bed is assumed to be both flat and horizontal.
The boundary conditions on the cylinder are the following: In Region 1, the ver-

tical particle displacement on the bottom of the fixed cylinder must be zero. Mathe-
matically, this condition is expressed by

∂Φ

∂z

∣∣∣∣
z=−d

= 0, 0 ≤ r ≤ a (9.102)
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In Region 2, the radial particle displacement on the cylinder’s vertical surface is also
zero, that is,

∂Φ

∂z

∣∣∣∣
r=a

= 0, −d ≤ z ≤ 0 (9.103)

In Region 2, the linearized free-surface condition of eq. 3.7 and the Sommerfeld
radiation condition of eq. 6.100 must also apply. The respective expressions for these
conditions applied to the displacement potential are(

∂2Φ

∂t2
+ g

∂Φ

∂z

) ∣∣∣∣
z�0

= 0, r ≥ 0 (9.104)

and

lim
r→∞

[√
r
(

∂Φ

∂r
− ikΦ

)]
= 0 (9.105)

Note that the radiation condition is satisfied by the scattered waves, but not the
incident wave.

Region 1: In Region 1, the solution of eq. 9.100, subject to the boundary condi-
tions in eqs. 9.101 and 9.102, consists of two components. Those component equa-
tions are

Φ1mn(A) = C1mn(A) Im(Knr) cos[Kn(z + h)] cos(m�)e−i
t ,

{
m = 0, 1, 2, . . .

n = 1, 2, . . .

(9.106)

where Im(�nr) is a modified Bessel function of the first kind of order m (see
Appendix A), and

Φ1m0(B) = C1m0(B)

( r
a

)m
cos(m�)e−i
t , n = 0 (9.107)

In eqs. 9.106 and 9.107, C1mn(A) and C1mn(B) are coefficients that must be determined
from the boundary conditions. The subscript 1 refers to the region of application,
whereas the subscripts A and B are used to identify the specific solutions. Also in
eq. 9.106 is parameter

Kn = n�

h − d
(9.108)

which results from the application of the no-vertical-displacement boundary con-
ditions on the bed (eq. 9.102) and on the bottom of the cylinder (eq. 9.103). The
solution obtained using the separation-of-variables method results in the expression
in eq. 9.106 when the conditions on z-behavior are applied. Concerning eq. 9.103:
The r-solution in the equation contains Im(Knr); however, Km(Knr), the modified
Bessel function of the second kind of order m, is also a solution. At r = 0 in Region
1, we require the potential function to be finite. At the origin, Im(Knr) equals either
zero (for m > 0) or one (for m = 0), whereas Km(Knr) is infinite when r = 0 for
any integer value of m. Hence, Im(Knr) is chosen for the inner region solution. Con-
cerning eq. 9.107: The index, n, in the solution includes the value 0; however, when
this value is applied to the separated r-equation, the equation becomes a homoge-
neous, second-order Cauchy-Euler equation. Again, assuming that the potential is
finite at r = 0, the solution of Cauchy-Euler equation is eq. 9.106. The full solution of
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eq. 9.100 must include all values of m and n, and is

Φ1(r, z, t) =
∞∑

m=0

{
Φ1m0(B) +

∞∑
n=1

Φ1mn(A)

}

=
∞∑

m=0

{〈
C1m0(B)

(
r
a

)m

+
∞∑

n=1

C1mn(A) Im(Knr) cos[Kn(z+h)]

〉
cos(m�)

}
e−i
t

= HI

2

{
P10(r, z) + 2

∞∑
m=1

imP1m(r, z) cos(m�)

}
e−i
t (9.109)

The last equality is similar to a general expression for the internal potential function
used by both Miles and Gilbert (1968) and Garrett (1971). Following Garrett (1971),
apply the function P1m(r, z) at r = a, where −h ≤ z ≤ −d, and let this be represented
by

P1m(a, z) ≡ hf1m(z) = h

{
F 1m0 + 2

∞∑
n=1

F 1mn cos[Kn(z + h)]

}

= h
∞∑

n=0

εnF 1mn cos[Kn(z + h)], (−h ≤ z < −d) (9.110)

We note that the P1m(a, z) function has units of length, whereas f1m(z) is dimen-
sionless. We refer to f1m(z) as the boundary function. The last equality in eq. 9.110
can be considered to be a representation of f1m(z) by a Fourier series. As such, the
coefficients can be written as

F 1mn = 1
(h − d)

−d∫
−h

f1m(z) cos[Kn(z + h)]dz (9.111)

The combination of eqs. 9.109 applied at r = a and eq. 9.110 results in the rela-
tionships between C1mn and F 1mn. By both replacing C1mn by the appropriate F 1mn

relationship and requiring Φ(a, z, t) to be continuous at the boundary separating
Regions 1 and 2, the following expression for the displacement potential for the fluid
particles in Region 1 results:

Φ1(r, z, t) = HI

2
h

∞∑
m=0

{
F 1m0

(
r
a

)m

+ 2
∞∑

n=1

F 1mn
Im(Knr)
Im(Kna)

cos[Kn(z + h)]

}

× cos(m�)e−i
t (9.112)

where the expression for Kn is presented in eq. 9.108. The coefficients F 1mn are
unknown and must be determined. These coefficients are determined by matching
the solutions for Regions 1 and 2 at the interface of the two regions.

Region 2: In Region 2, the displacement potential represents the incident wave,
the waves reflected from the cylinder, and the effect of the particle motions re-
presented by Φ1 at the interface of Regions 1 and 2. The terms representing the
incident and reflected waves should resemble the expression in eq. 9.68, and the
form representing the displacement across the interface must be determined. To
determine the displacement potential (Φ2) in Region 2, we take the same approach
as that leading to eq. 9.109. Following Garrett (1971), eq. 9.100 is solved by the
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separation-of-variables method and then the respective seafloor, cylinder-boundary,
and free-surface conditions of eqs. 9.101, 9.103, and 9.104 are applied to the solution.
If the assumed solution is Φ2(r, �, z) = R(r)Q(�)Z(z), then the separated equation
for the z-coordinate can be expressed as

d2Z
dz2

= �2 (9.113)

where the eigenvalue, �, can be real or imaginary. When real, we can write � = ±k,
where k is the wave number, and the unique solution of eq. 9.113 is

Z0 ∝ cosh[k(z + h)] (9.114)

as in eq. 3.16. The value of k is obtained from the dispersion equation, eq. 3.31,
written as


2

g
= k0 = k tanh(kh) (9.115)

where k0 is the deep-water wave number. Equation 9.115 is a transcendental equa-
tion and can be solved by the method of successive approximations, as illustrated in
Example 3.3. When � is imaginary, we can write � = ±i�, and eq. 9.115 becomes

k0 = (i�) tanh(i�h) = −� tan(�h) (9.116)

This equation has an infinite number of �-values that satisfy this relationship
because a trigonometric function is involved. Miles and Garrett (1968) write that
a good approximate relationship for the eigenvalue is

�n � n�

h
− k0

n�
, n = 1, 2, . . . (9.117)

According to Miles and Garrett (1968), values obtained from the expression in eq.
9.117 have a maximum error of 1% for k0h = 1, and an error less than 1% for all
but the lowest mode (n = 1) for k0h < 10.

The �-solution of eq. 9.100 for Region 2 is the same as that for Region 1. How-
ever, the r-solution is different in that it involves the modified Bessel function of
the second kind, Km(�nr). The reason for this choice is that we require the poten-
tial function to remain finite as r → ∞. Because Km(�nr) → 0 and Im(�nr) → ∞ as
r → ∞, the choice is obvious.

The complete solution of eq. 9.100 in Region 2 must represent the incident wave
and the scattered wave fields. The latter field results from reflection and diffraction
and includes a set of waves called either trapped waves or evanescent waves. The
trapped waves are in the near field, and are standing waves having wave heights
that decrease with increasing r. The displacement potential representing the incident
wave component for Region 2 is

ΦI = i



�I

= HI

2
1
k0

cosh[k(z + h)]
cosh(kh)

�
{ ∞∑

m=0

εmim Jm(kr) cos(m�)e−i
t

}
(9.118)

where the velocity potential, �I , is expressed by eq. 9.61b of the MacCamy-Fuchs
derivation in Section 9.2E. A part of the scattered displacement potential should be
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similar to that in eq. 9.63 of the MacCamy-Fuchs derivation. Hence, we write

Φ2S(A) = − HI

2
1
k0

cosh[k(z + h)]
cosh(kh)

�
{ ∞∑

m=0

EmH(1)
m (kr) cos(m�)e−i
t

}
(9.119)

where the subscript S identifies the scattered potential and the coefficient Em is
determined from a boundary condition. Garrett (1971) assumes that the sum of the
potentials in eqs. 9.118 and 9.119 satisfies

[ΦI + Φ2S(A)]|r=a = 0, −d ≤ z ≤ 0 (9.120)

∂

∂r
[ΦI + Φ2S(A)]|r=a = 0, −d ≤ z ≤ 0 (9.121)

and ∣∣∣∣
{

∂

∂r
[ΦI + Φ2S(A)]

∣∣∣∣
r=a

} ∣∣∣∣ ≥ 0, −h ≤ z < −d (9.122)

The last of these conditions simply means that the radial velocity is continuous
across the boundary separating the regions. The first of the three boundary con-
ditions (eq. 9.120), applied to the side of the cylinder, yields

Em = εmim Jm(ka)

H(1)
m (ka)

(9.123)

The condition in eq. 9.120 is not assumed by Miles and Gilbert (1968). The reader
should also note the difference between eqs. 9.67 (of the MacCamy-Fuchs deriva-
tion) and 9.123.

Garrett (1971) assumes that the remainder of the scattered field is represented
by the first term of the following displacement potential expression:

Φ2S(B)(r, z, t) = HI

2
h�
{ ∞∑

m=0

∑
�

F2m�
Km(�r)
Km(�a)

cos[�(z + h)] cos(m�)e−i
t

}

= HI

2
h�
{ ∞∑

m=0

〈
F2mk

Km(−ikr)
Km(−ika)

cos[−ik(z + h)]

+
∑

�

F 2m��
Km(�r)
Km(�r)

cos[�(z + h)[cos(m�)

〉
e−i
t

}
(9.124)

where the modified Bessel function of the second kind, Km(�nr), is chosen because
Km(�nr) → 0 as r → ∞ and Im(�nr) → ∞. The values of F2m� are to be determined.
In eq. 9.124, the first term in the series corresponds to � = −ik and, again, represents
the remainder of the scattered field. The rest of the index values are the �, which are
real and greater than zero. Again, a good approximation of � is in eq. 9.117, where
k0h < 10. The reader should also note that

Km(−ikr) = 1
2

�im+1 H(1)
m (kr) (9.125)

and

cos [−ik(z + h)] = cosh[k(z + h)] (9.126)
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See the book edited by Abramowitz and Stegun (1965). The application of the dis-
placement potential in eq. 9.124 to the boundary at r = a results in

Φ2S(B)(a, z, t) = HI

2
h�
{ ∞∑

m=0

∑
�

F 2ma cos[�(z + h)]

}
cos(m�)e−i
t

= HI

2
h�

∞∑
m=0

f2m(z) cos(m�)e−i
t , (−h ≤ z ≤ 0) (9.127)

where, as in eq. 9.110, f2m(z) is called a boundary function. The summation in
eq. 9.127 can be considered to be a Fourier expansion similar to that in eq. 9.110.
So, the coefficients in eq. 9.127 can be expressed as

F 2m� = 1
h

0∫
−h

f2m(z) cos[�(z + h)]dz (9.128)

The use of the Fourier series to represent the boundary functions is rather clever. In
both eqs. 9.111 and 9.126, the coefficients are, in effect, the values of the integrands
averaged over the respective water depths in Regions 1 and 2, respectively.

The displacement potential in Region 2 can now be expressed as

Φ2 = ΦI + Φ2S(A) + Φ2S(B)

= HI

2
h�
{ ∞∑

m=0

[[〈
Jm(kr) − Jm(ka)

H(1)
m (ka)

H(1)
m (kr)

〉
1

kh
cosh[k(z + h)]

sinh(kh)
cos(m�)

+
∑

�

F 2m�
Km(�r) cos[�(z + h)]

Km(�a)

√
1
2

[
1 + sin(�h)

2�h

] cos(m�)

]]
e−i
t

}
,

(r ≥ a,−h ≤ z ≤ 0) (9.129)

Again, in the �-summation, the first value of � is −ik and the remaining values are
equal to �, representing real numbers. For � = −ik, we note the relationships in
eqs. 9.125 and 9.126. The potential function in eq. 9.129 satisfies the seafloor con-
dition of eq. 9.101 and the radiation condition of eq. 9.105. It must also satisfy the
respective cylinder-boundary condition and free-surface condition of eqs. 9.103 and
9.104.

Combined Solutions: Following Garrett (1971), there are three radial boundary
conditions that must be satisfied by the displacement potential and its radial deriva-
tive (the radial displacement). The first two of these are that the radial displacement
potential and its derivative must be continuous across the interface of Regions 1 and
2 of Figure 9.20b. Mathematically, these respective conditions are

Φ2|r=a = Φ1|r=a, (−h ≤ z < −d) (9.130)

and
∂Φ2

∂r

∣∣∣∣
r=a

= ∂Φ1

∂r

∣∣∣∣
r=a

, (−h ≤ z < −d) (9.131)

As a result, the boundary functions defined in eqs. 9.110 and 9.127 must be equal
over the common boundary of Regions 1 and 2, that is,

f1m(z) = f2m(z) = fm(z), (−h ≤ z < −d) (9.132)
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The condition in eq. 9.130 (and in eq. 9.132) is satisfied by taking advantage of the
Fourier coefficient expression in eq. 9.111 and the boundary-function relationships
in eqs. 9.127 and 9.128. From these relationships, we obtain

F 1mn = 1
(h − d)

−d∫
−h

fm(z) cos[Kn(z + h)]dz

= 1
(h − d)

−d∫
−h

∑
�

F 2m�
cos[Kn(z + h)]√
1
2

[
1 + sin(2�h)

2�h

] cos[�(z + h)]dz

=
∑

�

F 2m�
(−1)n

[�2(h − d)2 − n2�2]
�(h − d)

sin[�(h − d)]√
1
2

[
1+ sin(2�h)

2�h

] , (−h ≤ z < −d)

(9.133)

where Kn is defined in eq. 9.108. Again, we note that the first �-value is −ik, followed
by the �-values, where the latter can be approximated as in eq. 9.117. The continu-
ous displacement boundary condition in eq. 9.131 yields

∞∑
n=0

εnF 1mnKa
I ′
m(Kna)

Im(Kna)
cos[Kn(z + h)]

=
− 2i

�kh
cosh[k(z + h)]

H(1)
m (ka) sinh(kh)

+
∑

�

F 2m�
�aK′

m(�a)
Km(�a)

cos[�(z + h)]√
1
2

[
1 + sin(2�h)

2�h

] ,

(−h ≤ z < −d) (9.134)

The expressions in eqs. 9.133 and 9.134 can be combined by eliminating F1mn. This
results is

∑
�

F 2m�

[[
�aK′

m(�a)
Km(�a)

cos[�(z + h)]√
1
2

[
1 + sin(2�h)

2�h

] − �(h − d)
sin[�(h − d)]√

1
2

[
1 + sin(2�h)

2�h

]

×
∞∑

n=0

εn
(−1)n

[�2(h − d)2 − n2�2]
Ka

I ′
m(Kna)

Im(Kna)
cos[Kn(z + h)

]]

=
2i

�kh
H(1)

m (ka)

cosh[k(z + h)]
sinh(kh)

, (−h ≤ z < −d) (9.135)

The last boundary condition is the no-displacement condition that applies to
the vertical surface of the truncated circular cylinder. That condition, expressed
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mathematically by the expression in eq. 9.121, results in

∑
�

F 2m�
�aK′

m(�a) cos[�(z + h)]

Km(�a)

√
1
2

[
1 + sin(2�h)

2�h

] =
2i

�kh
H(1)

m (ka)

cosh[k(z + h)]
sinh(kh)

, (−d ≤ z ≤ 0)

(9.136)

The following relationship is used to obtain the results in eqs. 9.134 and 9.136:

Jm(ka)H(1)
m

′
(ka) − J ′

m(ka)H(1)
m (ka) = 2i

�ka
(9.137)

Equations 9.135 and 9.136 comprise a set of expressions containing the unknown
coefficients F 2m�. To determine the coefficient values for given wave, water depth,
and cylinder-draft conditions, Garrett (1971) multiplies both equations by the
function

G� (z) ≡ 1 cos[�(z + h)]

h

√
1
2

[
1 + sin(2�h)

2�h

] = cos[�(z + h)]
hQ�

(9.138)

integrates each over their respective z-ranges, and adds the respective expressions.
The resulting expression is

∑
�

F 2m�

{
−�a

K′
m(�a)

Km(�a)
��� +

∞∑
n=0

εn

(
1 − d

h

)
��(h − d)2

[�2(h − d)2 − n2�2][� 2(h − d)2 − n2�2]

· sinh[�(h − d)] sin[�(h − d)]
Q� Q�

Kna
I ′
m(Kna)

Im(Kna)

}
= −

2i

√
1
2

[
1 + sinh(2kh)

2kh

]

�khH(1)
m (ka) sinh(kh)

�k� (9.139)

In eq. 9.138, we have introduced a coefficient � . The purpose of this coefficient is
to take advantage of the property of orthogonality of the trigonometric functions.
Also in eq. 9.138, the parameter Q� is defined. In eq. 9.139, the parameter Q� is that
where � is used in place of � . Due to the orthogonality condition, the Kronecker
delta, defined by

��� ≡
{

0, (� 	= �)
1, (� = �)

(9.140)

is used in eq. 9.139.
The expression in eq. 9.139 is complex due to the Hankel function that appears

when the index � = −ik. After separating the real and imaginary terms, Garrett
(1971) defines a real matrix resulting from the separation, assumes that the matrix
is nonsingular, and introduces a real solution �m� to the resulting matrix equation.
That resulting equation is

∑
�

�m�

{
−�a

K′
m(�a)

Km(�a)
���+

∞∑
n=0

εn

(
1 − d

h

)
��(h − d)2

[�2(h − d)2 − n2�2][� 2(h − d)2 − n2�2]

· sin[�(h − d)] sin[�(h − d)]
Q� Q�

Kna
I ′
m(Kna)

Im(Kna)
+ ka

H(1)
m

′
(ka)

H(1)
m (ka)

�k��k�

}
= �k� (9.141a)
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Because this equation is somewhat unwieldy, let us rewrite the equation as

∑
a

�ma

{
−Am(�a)�a� +

∞∑
n=0

Bmn(a, �) + Am(ka)�ka�k�

}
= �k� (9.141b)

To help the reader obtain solutions for �m�, the following results from eq. 9.140 are
useful:

� � ��� �k� �k�

−ik −ik 1 1 1
−ik 	=−ik 0 1 0
� � 1 0 0
� 	= � 0 0 0

Restricting the values of � such that � = �, only the first and third lines of the
table need be considered. For the first condition in the table, Am(−ika) = Am(ka)
and eq. 9.141b becomes

�mk

∞∑
n=0

Bmn(k) = 1 (9.142)

For the third line in the table, the following relationship results:

∑
�

�m�

{
−Am(�a) +

∞∑
n=0

Bmn(�)

}
= 0 (9.143)

Garrett (1971) finds that the convergence of the n-summation is rather rapid, so he
obtains solutions for a finite number of � values. The reader is encouraged to consult
that reference for a discussion of the solution method.

The combination of eqs. 9.139 and 9.141a, using the values of �ma obtained from
eqs. 9.142 and 9.143, results in the following expression for F 2m�:

F 2ma = −

2i

√
1
2

[
1 + sinh(2kh)

2kh

]

�khH(1)
m (ka) sinh(kh)

�ma

1 − ka
H(1)

m
′
(ka)

H(1)
m (ka)

�mk

(9.144)

The reader should note that F 2m� is complex; however, �m� is real, and is the only
term depending on �. Therefore, the phase of F 2m� is independent of �. By using
the relationship in eq. 9.134, the values of F 1m� are determined from eq. 9.133. The
respective displacement potential functions Φ1 and Φ2 of eqs. 9.112 and 9.129 are
then determined.

The purpose of the Garrett (1971) study was to determine the wave-induced
forces and moments on a fixed circular dock (a vertical, truncated circular cylinder).
The force and moment expressions are now derived.

Wave-Induced Forces and Moments: The Garrett analysis is linear and based
on the assumption of irrotational flow; hence, the wave-induced pressure dynamic
on the vertical, truncated, circular cylinder can be obtained from the linearized
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Bernoulli’s equation (see eq. 3.70). The expression for the dynamic pressure in terms
of both the velocity potential (�) and displacement potential (Φ) is

p = −�
∂�

∂t
= i
�

∂Φ

∂t
(9.145)

where the Region 1 displacement potential, Φ1, is obtained from eq. 9.112, and the
Region 2 potential, Φ2, is expressed by eq. 9.129. Our interest is in the horizontal
force (Fx), the vertical force (Fz), and the overturning moment (My) caused by the
wave-induced dynamic pressure.

Consider first the horizontal force on the cylinder. This is found by integrating
the pressure in eq. 9.145 over the side of the cylinder. Referring to Figure 9.16, the
resulting force expression is

FxG = −
2�∫

0

0∫
−d

p|r=aa cos(�)dzd� = −i
�

2�∫
0

0∫
−d

∂Φ2|r=0

∂t
a cos(�)dzd� (9.146)

From the substitution of the displacement potential of eq. 9.129, this following
expression for the non-dimensional horizontal force is found:

FxG

�g
HI

2
�a2

= −2kh tanh(kh)�




〈
iF2,1k

sinh(kh) − sinh[k(h − d)]

(ka)

√
1
2

[
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2kh

]

+
∑
��

F 2,1�
sin(�h) − sin[�(h − d)]

(�a)

√
1
2

[
1 + sin(2�h)

2�h

]e−
t

〉


(9.147)

where the �-integration in eq. 9.146 results in nonzero terms if and only if m = 1.
Note that the summation is over the real values of �, that is, � = −ik is not included
in the summation.

The vertical force on the truncated circular cylinder is obtained from

FzG =
2�∫

0

a∫
0

p|z=−drdrd� = i
�

2�∫
0

a∫
0

∂Φ1|z=−d

∂t
rdrd� (9.148)

The non-dimensional vertical force expression resulting from the combination of
eqs. 9.148 and 9.112 is

FzG

�g
HI

2
�a2

= 2kh tanh(kh)

〈
1
2

F 1,00 + 2
∞∑

n=1

(−1)nF 1,0n
1

Kna
I ′
0(Kn)

I0(Kna)

〉
e−i
t (9.149)

The �-integration in eq. 9.148 results in nonzero terms only for m = 0, and Kn is
defined in eq. 9.108.

Finally, the moment about the y-axis (positive in the counterclockwise direc-
tion) due to the respective horizontal and vertical forces in eqs. 9.146 and 9.148 is
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Figure 9.22. Non-Dimensional Horizontal Force on a Truncated Vertical Cylinder. The solid
curves are obtained from the van Oortmerssen (1971) expression in eq. 9.85. The data points •
result from the Garrett (1971) expression in 9.147, where the peak values of these are denoted
by ◦. The non-dimensional force notation, Γ , is defined in eq. 9.151.

obtained from

MyG = �
�

i

〈
−

2�∫
0

0∫
−d

∂Φ2|r=a

∂t
a cos(�)zdzd� +

2�∫
0

a∫
0

∂Φ1|z=−d

∂t
r2 cos(�)drd�

〉


(9.150)

The substitution of the displacement potential expressions and the subsequent inte-
grations is left to the reader because, in the following paragraphs, we present com-
parisons of the forces only.

(4) Results of the Approximate and Garrett Forces

Following McCormick and Cerquetti (2004), results obtained from the approximate
force expressions in eqs. 9.86 and 9.95 are compared with the respective Garrett
(1971) expressions in eqs. 9.147 and 9.149. The conditions used in the comparisons
are those used in the Garrett paper. The force amplitudes are presented in non-
dimensional forms, where the forces are divided by the buoyant force of a passing
wave of infinite length, that is,

Γ (ka) ≡ F

�g
HI

2
�a2

. (9.151)

The horizontal force results are presented in Figure 9.22, where the following values
apply:

Figure 9.22a: h = 1.5a, d = 0.5a, (h − d)/a = 1
Figure 9.22b: h = 1.5a, d = a, (h − d)/a = 0.5
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Figure 9.23. Non-Dimensional Vertical Force Results. The solid curves are obtained from the
McCormick and Cerquetti (2004) expression in eq. 9.95 combined with that in eq. 9.98. The
data points • result from the Garrett (1971) expression in eq. 9.147. The non-dimensional
force notation, Γ , is defined in eq. 9.151.

Figure 9.22c: h = 0.75a, d = 0.25a, (h − d)/a = 0.5
Figure 9.22d: h = 0.75a, d = 0.5a, (h − d)/a = 0.25

In Figure 9.23, the dimensionless vertical force results are presented for the
following conditions:

Figure 9.23a: h = 1.5a, d = 0.5a, (h − d)/a = 1
Figure 9.23b: h = 1.5a, d = a, (h − d)/a = 0.5
Figure 9.23c: h = 0.75a, d = 0.25a, (h − d)/a = 0.5
Figure 9.23d: h = 0.75a, d = 0.5a, (h − d)/a = 0.25

The ka range for each of these figures is from 0 to 5. From the Chakrabarti chart
in Figure 9.8, we see that this range takes us well into the diffraction force region
identified as ka > 0.5.

In Figure 9.22, the curves of van Oortmerssen (1971) are seen to agree with
the Garrett (1971) data for ka > 1. For ka > 1.5, the curves essentially coalesce.
Again, according to the Chakrabarti chart in Figure 9.8, the diffraction force range
is ka > 0.5. We see that the qualitative agreement over this range is quite good.
However, the quantitative agreement somewhat lacks in 0.5 < ka < 1.

The vertical force results in Figure 9.23, comparing data obtained from Garrett
(1971) and from eq. 9.95 (combined with the expression in eq. 9.98), show good
qualitative agreement for all depth, draft, and radius relationships considered. The
quantitative results are satisfactory over the entire ka range, with the best agreement
where ka > 2.
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Figure 9.24. Schematic Sketches of an
Offshore Floating Platform. The legs have
diameters that are of the order of mag-
nitude of the wavelength of the incident
waves. The wave force on each leg is then
primarily a diffraction force. The braces
are of relatively small diameter, and are
subject to viscous and inertial forces. See
the Chakrabarti diagram in Figure 9.8.

The advantage of the using the approximate expressions of van Oortmerssen
(1971) and McCormick and Cerquetti (2004) in predicting the respective horizontal
and vertical force on a vertical, truncated circular cylinder in waters of finite depth
is that the expressions are analytical in nature and relatively easy to apply to engi-
neering projects, particularly in the conceptual design phase. In addition, because of
their simplicity the expressions are readily usable in the analysis of wave forces on
truncated cylinders in random seas. The subject of random wave forces is discussed
in Section 9.3.

In the next section, our attention is focused on the scattering effects of multiple
vertical cylinders in waters of finite depth.

I. Scattering Effects of Large-Diameter Leg Arrays

Semi-submerged offshore structures are platforms supported by three or more large
legs. The legs usually have circular cross-sections, although other cross-sectional
geometries have been used. A sketch of a four-leg semi-submersible is presented
in Figure 9.24 for the sake of discussion. The legs of the structure are normally
supported by fully submerged pontoons when the structure is onsite in an opera-
tional mode. When in transit from the yard to the site, the pontoons are floating
and the legs are entirely above the waterplane. There are also floating structures
that are totally supported by buoyant vertical legs, that is, the legs “stand alone”
without pontoons and the submerged ends of the legs are free. The free-leg configu-
ration might be found on a tension-leg platform (TLP). The paper by Söylemez and
Yilmaz (2004) contains a discussion of the hydrodynamic design of a TLP, and is
recommended for those readers interested in this type of structure. The motions of
the TLP are discussed in Chapter 10.

In addition to the legs of the structure, small-diameter cylinders are positioned
between both leg pairs and the pontoons to give both longitudinal and transverse
support. These support structures are known as braces or cross-braces, and are illus-
trated in Figure 9.24. In a typical operational seastate, the legs mostly experience
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Figure 9.25. Leg Orientation for a Fixed, Four-Leg Structure. The orientation sketch is for the
submerged portion of the legs, that is, extending from the waterplane to the flat, horizontal
bed.

diffraction forces, whereas the braces experience Morison-type forces, that is, vis-
cous and inertial forces discussed in Sections 9.2C and 9.2D.

In this section, we confine our discussion to the sheltering influence on wave-
induced diffraction forces on a leg of a bed-mounted, multi-leg structure. That is,
our interest is in the diffraction forces on a component leg due to the cumulative
wave effects of wave scattering from the neighboring legs of the structure. The anal-
ysis present is analytical, and is amenable to calculations using spreadsheets. Wave
forces on large-diameter, vertical cylinders in waters of finite depth can also be stud-
ied using various numerical techniques such as the finite-element method (FEM),
the boundary-element method (BEM), or the volume-of-fluid method (VOF). The
reader is referred to the book by Faltinsen (1990) for an excellent introduction to
the application of numerical methods to load analyses on ships and offshore struc-
tures. We differentiate analytical and numerical techniques as follows: Analytical
techniques are those involving either exact or numerical solutions of differential or
integral equations. For example, the approximate solution of a differential equation
might be obtained by using the Runga-Kutta method, presented in Appendix B.
Numerical hydrodynamic techniques involve the FEM, the BEM, or the VOF pre-
viously mentioned. Numerical techniques are the tools of the general field known as
CFD and, as such, are computationally intensive.

Consider the sketch in Figure 9.25, where four vertical circular legs of a fixed
platform are shown without braces. The legs are arranged in a rectangular pattern,
where the leg centers are separated length-wise by Lj-k and width-wise by Wj-k. The
subscripts refer to the numbers of the leg pairs. Initially, an incident wave is scat-
tered by Leg 1 in the sketch. Two wave systems exist just leeward of Leg 1, those
being the incident wave system and the scattered wave system from Leg 1. Both sys-
tems then encounter the other legs, and subsequent scattering wave systems result
at each leg. In turn, these scattered waves are scattered again by the neighboring
legs, and so forth. One can see that the wave field within the region defined by the
legs rapidly becomes rather unwieldy and difficult to analyze.
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Figure 9.26. Orientation for a Fixed, Three-Leg Structure. The orientation sketch is for the
submerged portion of the legs, that is, extending from the waterplane to the bed. The scat-
tered waves are shown as plane waves, following the approximation of McIver and Evans
(1984). The x-y coordinate system is fixed, where the x is the onshore coordinate and y is the
longshore coordinate. The X-Y coordinate system is determined by the wave direction, where
the X-coordinate is in the wave direction and Y the crest-wise coordinate. The s-coordinates
are in the direction of the arriving scattered waves originating at neighboring legs or
caissons.

In this section, the approximate analysis of McIver and Evans (1984) is pre-
sented. Our choice of this analysis is based on the simplicity of the analysis and the
relatively good agreement with more accurate analyses. The McIver-Evans scat-
tered plane-wave approximation is an extension of that of Simon (1982). For those
readers interested in more exact analyses, the software called WAMIT is recom-
mended. This software was developed by Prof. J. N. Newman and his colleagues at
the Massachusetts Institute of Technology, and is one of the most accurate of the
computational hydrodynamic tools available. For a description of WAMIT, see Lee
(1995).

To visualize the primary and secondary scattering, consider three arbitrarily
spaced vertical legs each having a radius, a, sketched in Figure 9.26. The legs are
exposed to linear, monochromatic waves. Following McIver and Evans (1984),
assume that the wave crests of the scattered waves from one leg arriving at a
neighboring leg have crest lines that are approximately rectilinear. In other words,
the scattered waves are approximately plane waves. The results of the assumption
improve as the distance between the legs increases and becomes large compared to
the radius, for example, Rj−k � a.

We begin our analysis of the wave field and the resulting forces and moments
on the legs by considering a structure supported by two legs, Legs j and k, sketched
in Figure 9.27. In that figure, the approximately planar scattered waves from Leg j
arrive at Leg k at a celerity cj-k, and those from Leg k arrive at Leg j at a celerity
ck-j. These waves are again scattered and as part of the secondary scattering return
to legs of origin. The process continues with tertiary scattering, and so on. Note that
the sea bed is assumed to be flat and horizontal so that the wavelengths (�) and
celerities of the scattered systems are equal in magnitude to those of the incident
waves. The velocity potential for the incident and scattered waves from Leg j can
be represented by the MacCamy-Fuchs expression in eq. 9.68. The second term of
that expression represents the scattered waves. For an isolated Leg j, the velocity



9.2 Wave-Induced Forces on Submerged and Surface-Piercing Bodies 327

csj−k

y
Y

X

x

j

k

a

a

Sk − j

cI

rj

j

j

j rk
k

k

k Sj−k

Rj − k

P

βj− k
(βj −k − βI)

Figure 9.27. Incident and Approximated
Scattered Plane Waves. The separation
length Rj-k of Legs j and k is assumed to
be much greater than the radius a to use
the plane-wave approximation, following
McIver and Evans (1984). The point P is
referred to as a field point.

MacCamy-Fuchs potential (denoted by the subscript MF) is

� j,MF = − HI

2
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where the notation Z(z) is introduced for the purpose of brevity. It should be noted
that eq. 9.152 can also be written in terms of a summation from −∞ to +∞, as
is done by McIver and Evans (1984). Our choice of the semi-infinite summation is
consistent with the MacCamy-Fuchs analysis presented in Section 9.2E. In Figure
9.27, the velocity potential of the scattered waves from Leg j is assumed to be
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(9.153)

where the radial distance rj and the angle � j are defined in Figure 9.27. The triangle
formed by r j , rk, and Rj-k has interior angles of � j , � − �k, and between sides rj and
rk, �k − � j . In the sum eq. 9.153, the Addition Theorem for Bessel functions [see
eq. 21.8–70 in Korn and Korn (2000)] can be used to replace the product of the
Hankel and the cosine functions as
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The combination of eqs. 9.153 and 9.154 yields
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(9.155)

According to McIver and Evans (1984), for large values of the separation dis-
tance Rj−k, the Hankel function in eqs. 9.154 and 9.155 can be well represented
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by the approximation
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Combine the expressions in eqs. 9.155 and 9.156, and assume that kRj−k � 1 so that
the order-of-magnitude term (the last term) in eq. 9.156 is negligible. The result is
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� −Z(z)�
{ ∞∑

m=0

im+1εm
J ′

m(ka)

H(1)
m

′
(ka)

H(1)
m (kRj−k)

∞∑
n=−∞

in Jn(krk) cos[n�k]e−i
t

}

− Z(z)�
{ ∞∑

m=0

im+1εm
J ′

m(ka)

H(1)
m

′
(ka)

H(1)
m (kRj−k)

×
∞∑

n=−∞
in+1 (mn + n2/2)

kRj−k
Jn(krk) cos[n�k]e−i
t

}
(9.157)

The second line of this equation represents scattered plane-wave potential (�j-P1)
from Leg j at Leg k. The reader can verify this by noting that the m-summation
of the second line of eq. 9.157 is a constant multiplied by the imaginary number,
i, and for the negative index values in the n-summation, J−n(krk) can be replaced
by (−1)n Jn(krk). The potential � j −P1 is then of the form of the incident plane-wave
velocity potential in eq. 9.61b. The second line of the equation is called the plane-
wave approximation of the scattered potential at Leg k, as termed by Simon (1982)
and McIver and Evans (1984). McIver and Evans (1984) introduce a first correction
to the plane-wave approximation by including the third line of eq. 9.157, represented
by �j-P2.

When eq. 9.157 is applied at the center of Leg k (that is, where the field point P
is at the center of Leg k), the value of rk is zero and the only nonzero value of Jn(0)
is for n = 0. The resulting scattered wave at Leg k originating at Leg j is represented
by the following velocity potential:

� j−k � −Z(z)�
{ ∞∑

m=0

im+1εm
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(9.158)

This plane wave is also scattered, and the secondary scattered wave from Leg k
arriving at Leg j has a potential � j−k− j . In summary, at Leg j the velocity potential
represents that of the incident wave (�I) and the scattered wave (�Sj) resulting from
the incident wave, the primary scattered waves (�N− j ,) due to the incident wave
at the N neighboring legs and the corresponding scattered waves (�SN− j ,), the sec-
ondary scattered waves (� j−N− j ,) from the neighboring legs and the corresponding
scattered waves (�Sj-N-j,), and so on. The potential at Leg j is then

� j = �I + �Sj = �1− j + · · · + �N−1 + �S1− j + · · · + �SN− j

+ � j−1− j + · · · + � j−N− j + �Sj−1− j + · · · + �Sj−N− j + · · · (9.159)

The scattered waves mentioned here are represented in the respective rows of
eq. 9.159. Note, that the first line is the MacCamy-Fuchs velocity potential in
eq. 9.152. The potential at each of the neighboring legs has the form of the expres-
sion in eq. 9.159.
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Figure 9.28. Waterplanes of In-Line and Trans-
verse Leg Structures. For both orientations, inci-
dent wave angle �I = 0. In (a), the in-line leg ori-
entation angle is �1−2 = 0. For (b), the transverse
orientation angle is �1−2 = �/2.

The goal of this section is to discuss the effects of scattering on the wave-
induced forces on fixed, multi-leg structures. To this end, we confine our attention
to the two specific orientations of a two-leg platform in Figure 9.28. The first of
these (the in-line orientation in Figure 9.28a) is that where a vertical plane through
the wave crest is normal to the vertical plane containing the centers of the legs.
We refer to these respective planes as the crest plane and the centerplane. This in-
line orientation is a case of pure sheltering because the leeward leg (Leg 2 in Figure
9.28a) is not directly exposed to the incident wave, that is, Leg 2 is in the shadow
of Leg 1. The second case is that where the crest plane and centerplane are parallel
(the transverse orientation in Figure 9.28b). For both cases, assume that the wave
approaches the shoreline directly, and that the origins of the inertial (x,y) and wave
(X,Y) coordinate systems are both fixed on Leg 1. These two assumptions are made
simply to reduce the “bookkeeping” in the analysis. For the in-line orientation in
Figure 9.28a, the angles in Figure 9.27 are as follows:

incident wave angle————-�I = 0
in-line leg orientation———–�1–2 = 0
variable angles——————-� 1 = �1

For the transverse orientation in Figure 9.28b, the angles are

incident wave angle————-�I = 0
in-line leg orientation———–�1–2 = �/2
variable angles——————-� 1 = �1

Consider the situation sketched in Figure 9.28a where the legs are in-line.
Again, the leeward leg (Leg 2) is sheltered because the leg is in the shadow of Leg 1.
If the distance R1–2 is relatively large compared to the leg radius a (a condition
required to have scattered plane waves at Leg 2), then the incident wave nearly
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reforms over R1−2 and, as a result, Leg 2 directly encounters the incident wave.
Without a loss in generality, we can assume that there is an incident semi-infinite,
shallow-water wave group traveling over a bed of uniform depth, h. Because of the
shallow-water assumption, the celerity and group velocity are approximately equal,
according to eq. 3.64b. Furthermore, because the bed is uniform, the scattered-wave
celerity is equal in magnitude to the incident wave celerity, that is, cS = cI = c. The
shallow-water wave group assumption allows us to study the scenario of events from
the time that the leading wave of the group arrives at Leg 1. Let that time be ta = 0.
The scattered plane wave resulting from this incident wave encounter arrives at Leg
2 at a time tb = R1−2/c. In turn, this wave results in a scattered wave that arrives back
at Leg 1 at time tc = 2R1−2/c, and so forth. The heights of the successive scattered
plane waves are reduced as time increases due to diffraction. From the MacCamy-
Fuchs analysis, the first two of these wave heights are obtained from eq. 9.69. The
expression for the initially scattered wave height from that equation applied at
Leg 1 is

Hs1(r1, �1) = − H1

2
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(9.160)

where H(1)
m is the Hankel function of the first kind. Applying this expression at r1 =

R1−2 results in the following expression for the height of the primary scattered wave
originating at Leg 1 and arriving at Leg 2:
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where, again, R1−2 � a. In terms of the coordinate system at Leg 2, the free-surface
displacement representing the incident scattered wave from Leg 1 and the newly
scattered wave at Leg 2 is
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From this equation, the scattered plane wave from Leg 2 arriving at Leg 1 (where
r2 = R1−2 and �2 = 180◦) has a height of

H1−2−1 = H1−2
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The reader can see the progression of events as time increases.
Because the energy of the incident wave is distributed among an increasing

number of scattered waves as time increases, the wave heights of the successive scat-
tered waves decrease. This reduction in the scattered wave heights results in a cor-
responding wave force reduction over time. After some time, say tq, the additional
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Table 9.1. Force scenario for the in-line leg orientation over 0 ≤ t ≤ 3R1−2/c

Time Force on Leg 1 Force on Leg 2

ta = 0 FI + FS1 = F1,MF at t = 0 0
(the MacCamy-Fuchs force in
eqs. 9.71 and 9.85)

tb = R1−2/c FI + FS1at tb FI + FS1 +F1−2 + FS1−2 at tb

tc = 2R1−2/c FI + FS1 + F1−2−1 + FS1−2−1 at tc FI + FS1+F1−2 + FS1−2 at tc

td = 3R1−2/c FI + FS1 +F1−2−1+ FS1−2−1 at td FI + Fs 1 + F1−2 + FS1−2

+ F1−2−1−2 + FS1−2−1−2 at td

scattered-wave forces on a leg become negligible for a specific incident wave group.
Notations for the forces on Leg 1 and Leg 2 over the time period 0 ≤ t ≤ 3R1−2/c
are listed in Table 9.1. In the table, FI is the force on Leg 1 due to the incident
wave, FS1 is the force on Leg 1 due to the scattering of the incident wave, and F1–2

is the force on Leg 2 resulting from the scattered plane wave from Leg 1. The latter
wave results in both a scattered wave force FS1–2 on Leg 2 and a secondary scattered
plane wave traveling to Leg 1 resulting in a force F1–2-1, and so forth. In general, the
notation S in the force subscript identifies the scattered-wave force component on
the leg in question. The subscripts not containing S are identified with the scattered
plane waves incident on the leg.

Because of the scattered plane-wave approximation, the MacCamy-Fuchs force
expression of eqs. 9.71 and 9.85 can be applied each time a scattered wave arrives
at a leg. As discussed in the previous paragraph, the wave heights will change, as
will the phase relationships. These wave height and phase differences are illustrated
in Example 9.9, where a two-leg, in-line orientation is discussed. The mathemati-
cal expressions for the wave forces are now formulated by applying the MacCamy-
Fuchs relationship to each force pair in Table 9.1.

The expression for the MacCamy-Fuchs force on Leg 1 (at ta + t = t) is

(FI + FSI)|ta+t = (FI + FSI)|t = 2
�gHI
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k2
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from eq. 9.71, where the expressions for �(ka) and the phase angle (ka) are found
in eqs. 9.72 and 9.73, respectively. In Table 9.1, the force on Leg 2 at time ta + tb +
t = 0 + tb + t = R1−2/c + t is

(FI + FSI + F1−2 + FS1−2)|tb+t

= 2
�gHI

k2
tanh(kh)�(ka) sin[
(tb + t) − (ka)]

+ 2
�gH1−2

k2
tanh(kh)�(ka) sin[
(tb + t) − (ka)] (9.165)

where the wave height H1−2 is obtained from eq. 9.161. The reader can see the pro-
gression of forces on the legs as time increases. In eq 9.165, the phase angle is


tb + (ka) = 

R1−2

c
+ (ka) (9.166)
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The scattered plane-wave technique is demonstrated in Example 9.9. In that exam-
ple, a platform is supported by two legs in waters of finite depth. The geometry at
the waterplane resembles that in Figure 9.28a. The first correction of McIver and
Evans (1984) is not included in the analysis. That is, in the analysis the scattered
waves from one leg to its neighbor are represented by potentials of the form of �j-P1

in eq. 9.157, neglecting the effects of the �j-P2-type waves.

EXAMPLE 9.9: WAVE-INDUCED FORCES ON AN IN-LINE, TWO-LEG PLATFORM A work
platform is placed in 10 m of water. The platform is supported by two 5-m-
diameter legs, the centers of which are separated by 25 m. The wave-leg orienta-
tion is in-line and the waves approach the shoreline directly, as in Figure 9.28a.
The incident waves in deep water have a 1-m height and a 5-sec period. To facili-
tate our analysis, the origins of the inertial and wave coordinate systems (x-y and
X-Y) are located at the center of the seaward leg, Leg 1, again, as in Figure 9.28a.
Referring to Figure 9.27, the notation and parametric values for this problem
are as follows:

leg radius——————————a = D/2 = 2.5 m
water depth—————————h = 10 m
leg index numbers——————–j,k = 1,2
leg separation————————R1–2 = 25 m
incident wave angle——————�I = 0◦

in-line leg orientation—————�1–2 = 0◦

variable angles————————�1, �2 = �2 + 1
deep-water wave height————H0 � 1 m
wave period—————————T = 5 sec
deep-water wavelength————–�0 gT2/2� � 39.0 m (eq. 3.36)

The incident wave height (HI) at the site must be determined. For this
example, the waves are assumed to be both linear and purely shoaled. To deter-
mine the wave height at the site, we must first determine the wavelength �-value.
This value is obtained by numerically solving eqs. 3.31 or 3.79, as in Example 3.2.
The incident wave height is then determined from the shoaling coefficient in eq.
3.78. The incident wave properties at the site are found to be the following:

wavelength at the site—————� � 36.6 m (from 3.31 or 3.79)
wave number at the site————k = 2�/� � 0.1717 m−1

celerity magnitude at the site——c = �/T � 7.32 m/s
incident wave height at the site—HI � 2.88 m (from eq. 3.78)

For the wave property values and the leg geometry, ka � 0.429, kR1–2 � 4.30,
and kh � 1.72. The wave height of the primary scattered wave at Leg 2 is the
real part of the expression in eq. 9.161, that is,

H1−2 = − HI

2
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{0.014141 + 0.000038 + 0.000000 + · · ·} � 0.014179 m (9.167)
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Figure 9.29. Non-Dimensional Wave Force on Legs versus Leg Separation. Here, the con-
tinuous line represents the Spring-Monkmeyer (1974) exact analysis, × the Simon (1982)
plane-wave approximation, and • the McIver-Evans (1984) first correction of the plane-wave
approximation.

where Neumann’s symbol is ε0 = 1 and εm = 2 for m > 0. The numerical values
in eq. 9.167 are a bit spurious because we wish to demonstrate the convergence
of the series. The derivatives of the Bessel functions of the first kind in the equa-
tion are expressed by

J ′
m(ka) = k

[
Jm(ka) − 1

ka
Jm+1(ka)

]
(9.168)

The general forms of the coefficients in eq. 9.167 are

E2m = [J2m(kR1−2)J ′
2m(ka) + Y2m(kR1−2)Y′

2m(ka)]

[J ′
2m

2(ka) + Y′
2m

2(ka)]
(9.169)

and

G2m+1 = [J2m+1(kR1−2)Y′
2m+1(ka) − Y2m+1(kR1−2)J ′

2m+1(ka)]

[J ′
2m+1

2(ka) + Y′
2m+1

2(ka)]
(9.170)

From the numerical values in eq. 9.167, we see that the height of the scat-
tered wave height is approximately two orders of magnitude less than the
incident wave height, and the series rapidly converges as m increases. The
respective amplitude function (eq. 9.72) and phase angle (eq. 9.73) values are
�(ka) � 0.066054 and (ka) � 0.01038 rad. Finally, the absolute value of the
force amplitude on Leg 2 at time tb(= R1−2/c � 3.42s) is approximately 2.647
× 105 N from eq. 9.165. Because the force components in the equation are
proportional to the incident and scattered wave heights, we see that the force
amplitude due to the incident wave is 2.610 × 105 N and the scattered wave
contribution to the total force is 3.7 × 103 N.

McIver and Evans (1984) present non-dimensional force results for three leg
orientations. Those are the in-line two-leg structure sketched in Figure 9.28a, a
triangular-configured three-leg structure, and a star-configured five-leg structure.
The results for the in-line orientation of the two-leg system are presented in Figures
9.29 and 9.30. In the former figure, the absolute value of the force divided by the
MacCamy-Fuchs force is presented as a function of kR1−2 for the weather and lee-
ward legs, whereas in the latter figure, the force ratio is presented as a function if
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Figure 9.30a. Non-Dimensional Wave
Force on Leg 1 versus Leg Radius. Here,
the continuous line represents the Spring
and Monkmeyer (1974) exact analysis, ×
the Simon (1982) plane-wave approx-
imation, and • the McIver and Evans
(1984) first correction of the plane-wave
approximation.

ka. For these leg configurations, results obtained from the exact analysis of Spring
and Monkmeyer (1974), the plane-wave analysis of Simon (1982) demonstrated in
Example 9.9, and the McIver-Evans first correction to the plane-wave analysis are
compared.

In Figure 9.29, we see that the results obtained from the plane-wave analy-
sis converge on the results obtained from the Spring-Monkmeyer exact method as
kR1−2 increases. The effect of the McIver-Evans first correction to the plane-wave
analysis is evident for kR1−2 < 2 for Leg 1 and for kR1−2 < 3 for Leg 2. For the con-
ditions in Example 9.9, kR1−24.29 � and |F2|/2, MF � 0.986, which agree with the
values in Figure 9.29b. The wavy nature of the curves is due to the constructive and
destructive interference of the wave components between the legs. That is, a crest
from one wave system will be superimposed on a crest from another wave system
for the former, and a crest-trough combination produces the latter depending on the
separation distance of the legs.

The McIver-Evans results in Figure 9.30 show the effects of the separation dis-
tance of the legs on the wave-induced forces. For the forces on Leg 1 in Figure 9.30a,
we see that the results from the three analytical methods converge for ka > 1.2. No
convergence is seen in Figure 9.30b for Leg 2. The forces predicted by the Simon
(1982) plane-wave method are the most conservative over the ka range in this fig-
ure. As in Figure 9.29, the effects of constructive and destructive interference are
evident.

For engineering analyses, the results in Figures 9.29 and 9.30 demonstrate that
the plane-wave analysis of Simon (1982) is quite good. The results show that the
maximum disagreement is within 5% for both the separation-to-wavelength results
in the former figure and the radius-to-wavelength results of the latter.

9.3 Wave-Induced Forces and Moments on Bodies in Random Seas

Three types of wave-induced forces are discussed previously in this chapter, those
being viscous-pressure forces, inertia forces, and diffraction forces. In the next chap-
ter dealing with wave-induced motions of fixed and floating structures, all three
types of wave loading are considered. The regimes of these forces are shown in the
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Figure 9.30b. Non-Dimensional Wave Force on Leg 2 versus Leg Radius. – represents the
Spring and Monkmeyer (1974) exact analysis, × the Simon (1982) plane-wave approximation,
and • the McIver and Evans (1984) first correction of the plane-wave approximation.

Chakrabarti force diagram of Figure 9.8 for surface-piercing, circular, cylindrical
bodies. In that figure, the three force regimes are defined in terms of the Keulegan-
Carpenter number (KC) and the non-dimensional body radius (ka = 2�a/�). From
eqs. 9.45 through 9.47, the relationships for the Keulegan-Carpenter number are
found to be

KC = umaxT
D

� H
D

�

tanh(kh)
⇒

KC|deep � �H
D

= �H
2a

KC|shallow � HT
2D

√
g
h

(9.171)

The results in Figure 9.8 imply that bodies having small radii compared to the
wave height are primarily subjected to viscous-pressure forces, large-radius bodies
in long-period waves experience dominant inertial forces, and diffraction forces are
dominant on large-radius bodies in short-period waves.

In ocean engineering and naval architecture hydrodynamics, there are three
flow phenomena that can be random in nature. On the smallest scale, the random
nature of turbulence must be considered. Turbulence can cause problems associated
with underwater sound generation. For example, the intense turbulent pressure fluc-
tuations on a ship panel can cause high-frequency vibrations of the panel which, in
turn, produce near-field sound. Moving up in scale, the vortex shedding from braces
of offshore towers can be random if the free-stream flow is random. This is a prob-
lem associated with structural-brace vibrations and cable strumming, the former dis-
cussed in the next chapter. Finally, on the largest scale of interest to ocean engineers
and naval architects, random surface waves must be considered. These are discussed
in Chapter 5, and are of interest here. As discussed in Chapter 5, wind waves result
from wind turbulence over the free surface of the sea, and because of the nature of
their generation, are random. The height and length of the wind waves increase due
to the combined actions of wind shear and wind pressure gradients.

In this section, we study the random natures of the viscous pressure, inertia, and
diffraction forces. The viscous-pressure and inertia forces are found in the Mori-
son equation, eq. 9.49. The earliest studies of the random force components of the
Morison equation include those of Borgman (1965) and Bretschneider (1965, 1967).
The Borgman study concentrates on the spectral natures of the forces, whereas the
Bretschneider studies focus on the probabilistic natures. Other studies of the Mori-
son forces include those of Borgman (1981), Bostrom and Overvik (1986), Isaac-
son, Baldwin, and Niminsk (1991), Burrows et al. (1997), Najafian et al. (2000), and
O’Kane, Troesch and Thiagarajan (2002). In addition, an excellent summary paper
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Figure 9.31. Wave and Force Spectral Data from Field Measurements. These curves result
from measurements reported by Wiegel, Beebe, and Moon (1957), as reported by Borgman
(1965). The specifics of the measurements are also found in Chapter 11 of the book by Wiegel
(1964). The force data were obtained at z = – 1.92 m on a 0.305-m-diameter vertical pile in
14.9 m of water. The forces were measured over a 0.305-m length of the pile. The units of
force spectral density, SF(f), indicate that the spectrum is that of the force per unit length.

devoted to wave-induced forces on jack-up structures is that of Cassidy, Eatock Tay-
lor, and Houlsby (2001). The literature on random diffraction forces is not as exten-
sive as that on the Morison-type forces. Most of the recent works are numerical in
nature, and will not be discussed herein. An analytic expression for random diffrac-
tion forces based on the MacCamy-Fuchs equation is developed later in the chapter.

The random nature of the sea is discussed and analyzed in Chapter 5. Much of
the statistical background needed for the discussions in the present section can be
found in that chapter. As discussed in Chapter 5, the randomness of a sea is charac-
terized by the wave height (H) and the wave period (T). Although much attention
is paid to the probabilistic distribution of H, the distributions of the wavelength
(�), the corresponding wave number (k = 2�/�), and the circular wave frequency
(
 = 2�/T) are as important in determining the forces and moments induced by
random waves.

A. Spectral Nature of Wave-Induced Viscous-Pressure and Inertia Forces

The Borgman (1965) random-wave force analysis was inspired, in part, by a conclu-
sion of Professor Robert L. Wiegel of the University of California, Berkeley. Wiegel
and his colleagues made a number of wave force measurements at a near-shore
site off the coast of Davenport, California. From the data, Wiegel concluded that
the spectral density of wave forces was similar to the spectral density of the waves
producing those forces. The wave spectral density is introduced and discussed in
Chapter 5 of this book. Some, but not all, of the results of the Davenport study are
reported by Wiegel, Beebe, and Moon (1957). The force and wave spectra from one
data set (November 5, 1953) of the Davenport study are presented in Figure 9.31.
This data set was given to Borgman by Wiegel, and is not presented in numerical
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form in the referenced paper. One can see that the spectral shapes are similar, and
almost identical for wave frequencies ( f ) less than 0.7 Hz. Other data presented by
Wiegel, Beebe, and Moon (1957) also show a strong similarity of the spectra for the
lower frequencies. We note that the wave period, T, is the inverse of the wave fre-
quency, f. The strong spectral similarity occurs for T > 1.4 sec in the data in Figure
9.31. The spectral similarity can then be assumed to exist in the range of wave peri-
ods that are of prime interest to ocean engineers.

Based on the results of the study described by Wiegel, Beebe, and Moon (1957),
Borgman (1965) writes that the force spectral density for the drag and inertial forces
(per unit vertical length of a pile) in Morison’s equation, eq. 9.49, can essentially be
represented by products of transfer functions and the wave spectral density at a site.
Following Borgman (1965), the spectral form of Morison’s equation can be written
as

SF ( f )|z � 〈(2� f )2Kd + (2� f )4Ki
〉 cosh2[k(z + h)]

sinh2(kh)
S( f ) ≡ T( f )|zS( f ) (9.172)

where T( f )|z is the transfer function and S(f) is the wave spectral density. The drag
parameter is defined as

Kd = 8
�

(
Cd

1
2

� A′
projurms|z

)2

(9.173)

In eq. 9.173, urms |z is the root-mean-square value of the horizontal velocity compo-
nent at a depth z. According to Borgman (1965), the value of the mean-square of
the horizontal velocity is obtained from

u2|z = u2
rms|z = 2

∞∫
0

(2� f )2 cosh2[k(z + h)]

sinh2(kh)
S( f )df (9.174)

Also in eq. 9.172 is the inertial parameter, defined as

Ki = (Ci �∨′
disp)2 (9.175)

In eq. 9.173, A′
proj is the projected area of the pile per unit length, and in eq. 9.175,

V′
disp is the displaced volume of the pile per unit length. For a circular cylinder, the

former is simply D, and the latter is �D2/4, where D is the pile diameter. The wave
number (k) and wave frequency ( f ) are related by the dispersion relationship in eq.
3.30. In the form needed here, that relationship is

k tanh (kh) = 4�2 f 2

g
= 4�2

gT2
(9.176)

The values of k are obtained numerically. One such numerical solution is presented
in Example 3.3. In the Borgman (1965) analysis, the drag term is represented by a
series expansion, and only the first term of the expansion appears in eq. 9.172. So,
the expression of the spectral density of the drag force in eq. 9.172 is a first approx-
imation to the drag-force spectral density. The accuracy of this approximation is
further discussed in Example 9.10.

In eq. 9.172, the wave spectral density in the frequency domain is used. The
relationship of the frequency spectral density and that in the period domain is

S( f ) = −S(T)
dT
df

= 1
f 2

S(T) = T2S(T) (9.177)
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This expression results from eqs. 5.44a and 5.44b. The values of S( f) can be obtained
directly from onsite measurements of the wave heights and periods, as discussed
in Section 5.7, or by using an empirical formula, as discussed in Section 5.8. The
Pierson-Moskowitz spectrum (eq. 5.63) can be used directly in the Borgman (1965)
analysis if the average wind speed at the site is known. If the Brestschneider spectral
formula in eq. 5.59 is used, the relationship in eq. 9.177 is slightly modified according
to the relationships in eq. 5.68. The relationship in the frequency domain for these
two empirical spectral formulas is

S( f ) = T2SPM(T) = 1
8

T2SB(T) (9.178)

where the subscript PM refers to the Pierson-Moskowitz formula in eq. 5.63 and the
subscript B refers to the Bretschneider formula.

EXAMPLE 9.10: PREDICTED AND MEASURED WAVE AND FORCE SPECTRA ON A CIR-

CULAR PILE In this example, a data set of the Wiegel, Beebe, and Moon (1957)
study of a vertical circular pile having a diameter of 0.324 m and located in 14.9
m of water is used to determine the wave and force spectra. This data set is ana-
lyzed by Borgman (1965). The force data were measured at z = −1.92 m, and
the measured wave and force spectra are presented in Figure 9.31. Borgman
finds that the root-mean-square value of the horizontal velocity, the least-
square fitted values of the drag, and inertial coefficients at z = −1.92 m are
urms |z=−1.92m � 0.334 m/s, Cd � 1.88, and Ci � 1.73, respectively. For these val-
ues, the drag parameter in eq. 9.173 is Kd � 2.47 × 104 N2s2/m4, and the inertial
parameter of eq. 9.175 is Ki � 1.69 × 104 N2s4/m4. The force spectral density
expression in eq. 9.172 is then

SF ( f )|z=−1.92 m � 〈9.75 × 105 f 2 + 2.63 × 107 f 4〉cosh2(13.0 k)

sinh2(14.9k)
S( f )

where the wave spectral density values, S( f ), at the site are measured. The units
of the force-per-unit-depth spectral density on the vertical element of the pile
are N2-s/m2. Note that the units of the total-force spectral density over the entire
pile would be N2-s. The relationship between k and f is found in the dispersion
relationship in eq. 9.176. Values obtained from the force-spectrum expression
and the measured values are presented in Figure 9.32. One can see from the
results in that figure that the agreement is rather good over the lower frequency
range, 0 < f < 0.7. Again, this would be the frequency range of primary interest
in engineering problems.

The results presented in Example 9.10 give us confidence in the ability of the
expression in eq. 9.172 to predict the force spectral density using measured wave
spectra. We now turn our attention to the probabilistic aspects of wave-induced
forces. Of particular interest in engineering applications is the maximum statistical
wave force that might be encountered at a site. The information used in this discus-
sion is from the papers of Bretschneider (1965, 1967).

B. Probabilistic Nature of the Viscous-Pressure and Inertia Wave Forces

The studies of Borgman (1965) and Bretschneider (1965) were both presented at the
Coastal Engineering Conference at Santa Barbara, California. The at-sea data used
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Figure 9.32. Measured and Predicted Force Spectra. These curves result from measurements
reported by Wiegel, Beebe, and Moon (1957), as reported by Borgman (1965). The measured
wave spectrum corresponding to this data set is shown in Figure 9.31 as is the force spectrum.
The measured force data were obtained at z = −1.92 m on a 0.305-m length of a 0.305-m-
diameter vertical pile in 14.9 m of water. The force spectra shown represent those of the
force per unit length of pile.

by both investigators were those of Professor Robert Wiegel and his colleagues
obtained near the coast of Davenport, California. The focus of the Bretschneider
(1965, 1967) study was on the probability of the wave-induced viscous-pressure and
inertial forces, referred to as the Morison forces because these are the forces in the
Morison equation, eq. 9.49. Results of this study are used herein. In more recent
times, the large majority of studies has been devoted to the Morison forces on
compliant structures. For example, see the works of Issacson, Baldwin, and Niwin-
ski (1991) and Burrows et al. (1997). Taylor and Rajagopalan (1983) present the
results of a definitive study of the load spectra on compliant slender structures. The
wave-structure interaction of compliant structures in random seas is discussed in
Chapter 10.

As shown in Figure 5.7, the Rayleigh probability distribution is found to agree
rather well with the probability distribution of the wave height data presented in
Figure 5.2. The distribution of the free surface corresponding to the data in Figure
5.2 would be expected to be Gaussian, as discussed in Section 5.6. This Gaussian-
Rayleigh relationship was first shown by Longuet-Higgins (1952) to apply to random
seas having wave spectra of narrow band. We refer to such a sea as being Gaussian.
From the classic book by Crandall and Mark (1963), a narrow-band process is “a
stationary random process whose mean square spectral density S(
) has significant
values only in a band or range of frequencies whose width is small compared with
the magnitude of the center frequency of the band.” In other words, the energy of
the sea is confined to a relatively small band of wave frequencies.

When a sea is not Gaussian, other probability distributions must be found. As
discussed in Section 5.5, a general formula for the cumulative probability of occur-
rence is that of Weibull (1951). Following Bretschneider (1965), we apply the two-
parameter Weibull formula to the wave heights when considering non-Gaussian
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sea. That formula is

P(0 < H ≤ HJ ) = 1 − e−C( HJ
Hrms )

m

(9.179)

In this expression, the parameters are C and m, and are determined empirically. The
corresponding probability density of the wave heights is

p(HJ ) = Cm

(
Hm−1

J

Hm
rms

)
e−C( HJ

Hrms )
m

(9.180)

We note that when C = 1 and m = 2, the expression in eq. 9.180 is the Rayleigh
probability density in eq. 5.19.

In Section 5.4D, the expression for the most-probable maximum wave height
corresponding to a Rayleigh distribution is presented. Following the logic of that
section, the most-probable maximum wave height corresponding to a Weibull dis-
tribution of wave heights is found from

Hmax = Hrms

[
1
C

ln(NM)
]1/m

(9.181)

where NM is the (statistical) number of waves occurring over M years. According to
Bretschneider (1965), the statistical number of waves passing a site can be obtained
from

NM = N1 M � tM

Ts
= M

t1
Ts

� M
t1

Tavg
(9.182)

In this expression, tM is the length of time of interest and Ts is the significant wave
period (approximately equal to the average period, Tavg, as in eq. 5.51), both mea-
sured in seconds. If we continually measure waves over one year, then M = 1 and t1
� 3.15 × 107 sec. The statistical wave periods are discussed in Section 5.8A of this
book. In the remainder of this section, we assume that the wave climate is Gaussian.
The corresponding probability density is that of Rayleigh in eq. 5.19.

As discussed previously, our interest is in the relationships of the probabilities
of the sea and the probabilities of the associated wave-induced viscous-pressure and
inertia forces and moments. For a deterministic sea, these forces are in the Morison
equation, eq. 9.49. When applied to a cylinder having a circular cross-section, the
Morison equation is

F ′ = F ′
d + F ′

i = Cd
1
2

�u|u|D + Ci �
Du
Dt

�
D2

4
(9.183)

In this expression, the subscript d identifies the drag or viscous-pressure force, the
subscript i identifies the inertia force, and the prime (′) indicates that the forces
are per unit length of cylinder. Assuming that the waves are linear, as described in
Section 3.2, the maximum values of the component forces are the following: The
maximum drag force is

F ′
dmax = Cd

1
2

� D
{

�

T
cosh[k(z + h)]

sinh(kh)

}2

H2 ≡ K1(z)H2 (9.184)

which is in phase with the wave, and the maximum inertia force is

F ′
i imax = Ci ��

D2

4

(
2

�2

T2

)
cosh[k(z + h)]

sinh(kh)
≡ K2(z)H (9.185)

This force is 90◦ out of phase with the passing wave.
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Assume that Cd, Ci, T, and the wave number k in eqs. 9.184 and 9.185 are aver-
aged. By making this assumption, we can relate the probability densities of the
force components and the wave heights. Statistically, the assumption concerning
the period implies that there is no correlation between H and T. In reality, the force
coefficients do change in time and there is a correlation between H and T. For the
purpose of this discussion, the assumption is satisfactory. The assumption allows us
to obtain the average maximum drag force and the root-mean-square inertia force.
These respective forces are

F ′
d max −a = K1(z)H2

rms (9.186)

where the subscript a identifies the average value, and

F ′
i max −r = K2(z)Hrms (9.187)

where r identifies the root-mean-square.
Because the probability densities of H and H2 are the same, the probability

densities of the maximum force components are obtained from

p(F ′
d max)dF ′

d max = p(F ′
i max)dF ′

i max = p(H)dH (9.188)

where, from eq. 9.184,

dF ′
d max

dH
= 2K1(z)H (9.189)

and, from eq. 9.185,

dF ′
i max

dH
= K2(z) (9.190)

In eq. 9.188, assume a Rayleigh probability density for the wave heights, as
expressed in eq. 5.19, that is,

p(H) = 2
(

H
H2

rms

)
e−( H

Hrms )2

(9.191)

Again, this expression is identical with the Weibull expression in eq. 9.180 when C
= 1 and m = 2. By combining eqs. 9.184, 9.189, and 9.191 in the drag relationship
of eq. 9.188, one obtains the following expression for the drag probability density
function:

p(F ′
d max) = 1

F ′
d max −a

e
− F ′

d max
F ′

d max −a (9.192)

Similarly, the expression for the inertia probability density function is found to be

p(F ′
i max) = 2F ′

i max

F ′2
i max −r

e
−
(

F ′
i max

F ′
i max −r

)2

(9.193)

The respective expressions in eqs. 9.192 and 9.193 yield the following cumulative
probabilities of occurrence:

P(0 ≤ F ′
d max) = 1 − e− F ′

d max
F ′

d max−a (9.194)

and

P(0 ≤ F ′
i max) = 1 − e−

(
F ′

i max
F ′

i max−r

)2

(9.195)
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Just as the most-probable maximum wave height for a sample of NM waves is found
from eq. 5.25 for a Gaussian-Rayleigh sea to be

Hmax|M = Hrms

√
ln(NM) (9.196)

we find that the most-probable maximum drag force is

F ′
d(max)|M = F ′

d max −a ln(NM) (9.197)

and that the most-probable maximum inertia force is

F ′
i(max)|M = F ′

i max−r

√
ln(NM) (9.198)

In the following example, the predicted and measured probabilities of occurrence
for a data set of Wiegel, Beebe, and Moon (1957) is presented.

EXAMPLE 9.11: PROBABILITIES OF OCCURRENCE FOR THE MAXIMUM DRAG FORCE

ON A CIRCULAR PILE The force time trace for a sample of a data set presented by
Wiegel, Beebe, and Moon (1957) and analyzed by Bretschneider (1965, 1967)
shows that the in-line force (in the direction of wave travel) is approximately
in phase with the free-surface displacement [�(t)] of the wave. In Figure 9.13,
we see that the drag force is in phase with �(t) and the inertial force is 90◦ out
of phase. The time trace is then indicative of a dominant drag force on the pile
element. Because of this, Wiegel, Beebe, and Moon (1957) report only the drag
coefficient values for the data set in question.

For the data set, Bretschneider (1965, 1967) finds the following: h � 14.6 m,
z � −1.68 m, D = 0.305 m, Hrms � 2.90 m, F ′dmax−a � 80.0 N, and Tavg � 14.5
sec. We choose here to use the root-mean-square period in our analysis rather
than the average value. From eq. 5.51, we find that the approximate relation-
ship between the root-mean-square period and the average period is Trms �
1.039Tavg � 15.2 sec. The value of the wave number based on this period is
k = 0.0361 m−1 from the dispersion equation, eq. 3.31. Due to scatter in the
data, Bretschneider introduces the correlation drag coefficient, defined as

Cd−rms ≡ F ′
d max −a

1
2 ��Du2

rms

∣∣∣∣
z

(9.199)

For the data under consideration, Bretschneider uses Cd−rms � 0.75. Also in
eq. 9.199 is urms, which is the root-mean-square of the horizontal particle veloc-
ity and is considered to be a measured quantity here. Bretschneider also defines
the correlation inertial coefficient as

Ci−rms ≡ F ′
i−rms

��
D2

4

(
du
dt

)
rms

∣∣∣∣∣∣∣∣∣
z

(9.200)

This is not needed in this example because the dominant force is the drag.
The measured probability of occurrence values presented by Bretschneider

(1965, 1967) and those obtained from eq. 9.194 are presented in Figure 9.33. In
that figure, we see that the agreement is excellent for maximum drag force value
≥ 67 N.
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Figure 9.33. Measured and Predicted Probabilities of Wave-Force Occurrence. The conditions
given in Example 9.11 are h � 14.6 m, z � −1.68 m, D = 0.305 m, Hrms � 2.90 m, F �dmax−a �
80.0 N, and Trms � 15.2 sec. The force is drag-dominant because the force and free-surface
displacement are in phase.

In the next example, the data used in Example 9.11 are used to determine the
100-year design force on both the cylindrical element and the entire wetted cylinder.

EXAMPLE 9.12: MOST-PROBABLE MAXIMUM FORCE FOR THE 100-YEAR STORM In
Example 9.11, we compare the measured and empirically determined probabil-
ities of occurrence for the wave-induced drag force on a segment of a vertical
circular cylinder. The empirical formula for the probability is that of eq. 9.194.
The assumptions leading to the formula are, first, that the sea is Gaussian hav-
ing Rayleigh-distributed wave heights, and second, that the wave heights and
periods are not correlated. In the analysis of the Wiegel, Beebe, and Moon
(1957) data analyzed by Bretschneider (1965, 1967), the following values are
used: h � 14.6 m, z � −1.68 m, D = 0.305 m, Hrms � 2.90 m, F ′

dmax−a � 80.0 N,
Cd−rms � 0.75, and Tavg � 14.5 sec. In this problem, we shall determine the 100-
year drag force on the cylinder.

First, the statistical number of waves encountered by the cylinder must be
determined. From eq. 9.186, that number is

N100 � 100
t1

Tavg
= 100

3.1536 × 107

14.5
� 2.17 × 108

For this value and the measured F ′
dmax−a, the most probable maximum wave

force on the segment is 1.351 × 103 N from eq. 9.197. This force value is about
19.2 times greater than that of the average maximum wave force.

Assume that the 100-year wave is sinusoidal and has an amplitude of
0.5Hmax|100 ≡ a100. Integrate eq. 9.197 over the wetted height of the cylinder,
that is, the integration is from the mud line (z = –h) to the wave amplitude
(z = a100). The value of the 100-year wave height, Hmax|100, is obtained
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Figure 9.34. Sketch of a Large-Diameter,
Gravity-Type, Cylindrical Structure Rest-
ing on a Spread Footing in a Random Sea.
The forces shown are the total diffrac-
tion force, Fx, and the diffraction force
per unit height, F �x .

from eq. 9.196. The resulting most-probable maximum force is then

Fd(max)|100 = ln(N100)

a100∫
−h

F A′
d max −a(z)dz

= ln(N100)
2

Cd−rms� D
�2

T2
rms

H2
rms

sinh2(kh)

a100∫
−h

cosh2[k(z + h)]dz

= ln(N100)
8

Cd−rms� D�2 H2
rms

kT2
rms sinh2(kh)

{2k(a100 + h) + sinh[2k(a100 + h)]}

� 4.28 × 104 N (9.201)

The corresponding overturning moment about the mud line, positive in the
counterclockwise direction, is

Md(max)|100 = − ln(N100)

a100∫
−h

(z + h)F ′
d max −a(z)dz

= − ln(N100)
16

Cd−rms� D�2 H2
rms

k2T2
rms sinh2(kh)

{[2k(a100 + h) sinh[2k(a100 + h)]

− cosh[2k(a100 + h)] + 2k2(a100 + h)2}
� −5.20 × 105 N–m (9.202)

Finally, the probabilistic center of force beneath the SWL is determined from

z100 = − Md(max)|100

Fd(max)|100
− h � −2.45 m (9.203)

From this, the center of force is also about 12.15 m above the mud line.

In the next section, we focus our attention on the diffraction forces in random
seas. This discussion would be applicable to some large tension-leg platforms, semi-
submersible structures, and monolithic structures resting on the sea bed in wind-
generated seas. An example of the latter structure is sketched in Figure 9.34. As
discussed previously in this chapter, diffraction forces on large vertical, circu-
lar, cylindrical structures would be dominant where, as shown in Figure 9.8, the
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Keulegan-Carpenter number (KC) in eq. 9.171 is small and the wave number radius
(ka) is large.

C. Random Nature of Diffraction Forces on a Fixed, Vertical Circular Cylinder

Consider the large-diameter, vertical, circular cylinder sketched in Figure 9.34. The
structure in that figure is a gravity-type structure resting on a spread footing in an
irregular sea. The stability of the structure depends on both the weight and the posi-
tion of the center of gravity. In the design of such structures, the pressure on the
soil-structure interface is uniform. In regular seas, where the waves are linear, the
horizontal diffraction wave force on the cylinder is well predicted by the MacCamy-
Fuchs equation, eq. 9.71. In this discussion, the following form of that equation is
used:

Fx = 2
�gH

k2
� tanh(kh) sin[
t−(ka)] = Qx H sin[
t−] (9.204)

where H is the incident wave height, and �(ka) is defined in eq. 9.72 and (ka) in
eq. 9.73. Using the expression in the last equality of this equation, we first determine
the spectral density of the diffraction force. The probabilistic nature of the force is
then analyzed.

The time-averaged mean-square of the force expression in eq. 9.204 is

< F2
x >= Q2

x(ka)
H2

2
(9.205)

In this expression, we use the notation < > to indicate time-averaging over one wave
period. Following the method presented in Section 5.7A devoted to wave spectra,
the spectral density of the diffraction force is

SFx( f ) = 4Q2
x(ka)S( f ) (9.206)

where S(f) is the wave spectral density.
Small-scale experimental diffraction force data are normally obtained using

methods similar to those reported by Wiegel, Beebe, and Moon (1957), Burrows
et al. (1997), and Najafian et al. (2000). That is, a horizontal element of the structure
is isolated and fitted with some type of transducer. Surface-pressure measurements
are more common in experimental diffraction force studies, such as that described
by Akyildiz (2002). For full-scale studies on large-diameter cylinders, the data are
normally obtained from surface-pressure measurements, and the force values are
obtained by integrating the pressures around the circumference line upon which the
pressure transducers are positioned. To compare the measured diffraction forces on
a large-diameter cylindrical tower with those obtained from the MacCamy-Fuchs
equation, the following modified form of that equation is required:

Fx|z = −
za∫

zb

2�∫
0

p|r=a cos(�)ad�dz

= 2
�gHI

k2

{
sinh(kza) − sinh(kzb)

cosh(kh)

}
�(ka) sin[
t − (ka)]

= qx(ka)HI sin[
t − (ka)] (9.207)
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Figure 9.35. Sketch of a Surveillance Platform
Resting on a Spread Footing Foundation in
Examples 9.13 and 9.14.

where za and zb are the respective upper and lower extent of the force gauge. Also
in eq. 9.207 is the amplitude function,

qx(ka) = 2
�g
k2

{
sinh(kza) − sinh(kzb)

cosh(kh)

}
�(ka)) (9.208)

The expression in eq. 9.207 is that of the diffraction force on a gauge of length za − zb

whose center is located at z. Again, �(ka) in eqs. 9.207 and 9.208 is defined in
eq. 9.72, and (ka) in eq. 9.207 is defined in eq. 9.73. The expression for the spectral
density of the diffraction force on a segment of a vertical cylinder of radius a is

SFx( f )|z = 4q2
x(ka)S( f ) (9.209)

This expression is similar in form to that in eq. 9.206.
In Example 9.13, the expression in eq. 9.206 is applied to a large vertical tower

resting on a flat bed in waters of finite depth. In the example, the Bretschneider
(1963) spectral formula in eq. 5.59 is used to represent the sea.

EXAMPLE 9.13: DIFFRACTION FORCES ON MONOLITHIC GRAVITY STRUCTURE To
curtail smuggling activities, a series of monolithic observation towers are
designed to be deployed approximately 1 km from the coast where the design
water depth (h) is 30 m. The circular, cylindrical towers support platforms
equipped with a variety of electronic surveillance devices and rest on circular
spread footings having radii (R) of 20 m. One such tower is sketched in Figure
9.35. Referring to that sketch, the 40-m-high tower is hollow, having an out-
side diameter (DO = 2aO) of 10 m and an inside diameter (DI) of 8 m. During
deployment of the tower, the ends of the structure are capped to allow it to be
towed to the site while floating with the axis of symmetry horizontal. During
deployment, holes in the end plates are opened and the chamber is flooded.
Additional ballast is also added at the base of the vertical tower. The structure
is made of steel-reinforced marine concrete. The total dry weight of the plat-
form, tower, and footing is W = 2.5 × 108 N, and the center of gravity is located
ZCG = 15 m above the mud line, as sketched in Figure 9.35. The deep-water
wave field seaward of a site has a 2.0-m average wave height (H0avg) and a 5.84-
sec average wave period (Tavg). Our interest is in the wave-induced force over
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Figure 9.36. Deep-Water Spectrum, Site Wave Spectrum, and Corresponding Force Spectrum
from Example 9.13. In Figure 9.36a, the deep-water spectrum is denoted by � and the
spectrum at the site by �. The deep-water spectrum is obtained from the Bretschneider
(1963) formula, eq. 5.59, where S0(T) = SB0(T)/8. The spectrum at the site is obtained from
S(T) = K2

S S0(T), where KS is the shoaling coefficient in eq. 3.78. The force spectrum in Figure
9.36b is obtained from eq. 9.210.

a period range of 2 sec ≤ T ≤ 10 sec. Over the 30-m bottom contour, the wave-
length (�) must be less than or equal to about 126 m for the diffraction-dominant
range of kao ≥ 0.5 in Figure 9.8. This wavelength value corresponds to a period
value of approximately 9.45 sec. For T ≤ 9.45 sec, then, the diffraction forces
are dominant.

We choose to predict the spectrum of the deep-water wave field by using
the Bretschneider formula in eq. 5.59. The resulting deep-water spectral den-
sity values are shown in Figure 9.36. Because the waves of period greater than
6 sec are in intermediate water at a site, we modify the deep-water Bretschnei-
der formula by multiplying it by the square of the shoaling coefficient in eq. 3.78.
Furthermore, the relationship between the wave spectral density in eq. 9.206
and the Bretschneider formula is S(T) = SB(T)/8. The force spectral density at
the site is then

SFx(T) = 1
2

K2
S Q2

x(ka)SB0(T)

= 2
�2g2

k4
�2 sinh2(kh)

[kh + sinh(kh) cosh(kh)]
SB0(T) (9.210)

The deep-water wave spectrum, S0(T) = SB0(T)/8, and the wave spectrum at
the site, S(T) = K2

SS0(T), are presented in Figure 9.36a, and the corresponding
force spectrum obtained from eq. 9.210 is presented in Figure 9.36b. Because
of the moderate water-depth value (h = 30 m), the effects of shoaling are small
for the given wave conditions. The maximum change in the spectrum from deep
water to the site is about 5%.

We now focus our attention on the probabilistic aspects of random diffraction
forces. To do this, we use the method of Bretschneider (1965, 1967) outlined in
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Section 9.3B as applied to the wave-induced inertial forces. Begin by considering
the expression for the maximum MacCamy-Fuchs diffraction force. As is done for
the inertial force expression in eqs. 9.185, write the force amplitude of eq. 9.200 as

Fx max = 2
�g
k2

� tanh(kh)H ≡ K3 H (9.211)

The root-mean-square of the maximum diffraction force is then

Fx max −r = K3 Hrms (9.212)

Assuming a Rayleigh probability distribution of the wave heights, we can write

p(Fx max)dFx max = p(H)dH = 2
H

H2
rms

e−( H
Hrms )2

dH (9.213)

By replacing H and Hrms in the last term of this equation according to eqs. 9.211 and
9.212, respectively, we obtain the following expression for the probability density of
the diffraction forces:

p(Fx max) = dP(Fx max)
dFx max

= 2
(

Fx max

F2
x max −r

)
e−
(

Fx max
Fx max −r

)2

(9.214)

where P(Fxmax) is the probability function of the maximum diffraction force.
Because K3 is a function of the wave number and, therefore, the period, we assume
that the value of this parameter is that at the average wave period, that is, K3 =
K3(Tavg).

From the last equality in eq. 9.214, the cumulative probability of occurrence is

P(0 ≤ Fx max < Fx max −J ) =
Fx max −J∫

0

p(Fx max)dFx max = 1 − e−
(

Fx max −J
Fx max −r

)2

(9.215)

where Fxmax−J is a force value of interest. Similarly, the cumulative probability of
exceedance is

P(Fx max −J ≤ Fx max < ∞) =
∞∫

Fx max −J

p(Fx max)dFx max = e−
(

Fx max −J
Fx max −r

)2

(9.216)

From this expression, the extreme wave force over M years can be determined, as
is done for the extreme wave heights in Section 5.4. For the Rayleigh-distributed
diffraction forces, the most-probable maximum diffraction force in M years is
obtained from

Fx max|M = Fx max −r

√
ln(N1 M) (9.217)

In this expression, N1 is the (statistical) number of waves occurring over one year.
From the relationship in eq. 9.182, N1 M t1 � Tavg . The application of the expression
in eq. 9.217 is demonstrated in Example 9.14.

EXAMPLE 9.14: EXTREME DIFFRACTION FORCES ON A MONOLITHIC GRAVITY STRUC-

TURE Our interest here is in the extreme diffraction force and the correspond-
ing overturning moment on the structure sketched in Figure 9.35. The design
conditions at the site are those in Example 9.13. Those are h = 30 m, R = 20 m,
DO = 2aO = 10 m, W = 2.5 × 108 N, and Z = 15 m. Referring to the discussion
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in Section 5.7B, the mean-square of the maximum diffraction force is obtained
from the following integral of the expression in eq. 9.210:

Fx max −r =

√√√√√
∞∫

0

SFx(T)dt =

√√√√√1
2

∞∫
0

[K2
S Q2

x(ka)SB0(T)]dT

=

√√√√√
∞∫

0

2
�2g2

k4
�2 sinh2(kh)

[kh+ sinh(kh) cosh(kh)]

[
3.437

H2
0avg

T4
avg

T3e−0.675
(

T
Tavg

)4
]

dT

(9.218)

For the 2.0-m, 5.84-sec average deep-water waves, the numerical integration of
the term under the last radical gives an approximate root-mean-square wave
force of 7.46 × 105 N.

From eq. 9.182, the statistical number of waves for the first year is N1 �
5.4 × 106. For year M, the probable maximum diffraction force in Newtons is

Fx max|M = 7.46 × 105
√

ln(5.4 × 105 M)

For the average wave period of 5.84 sec, the center of pressure for the diffraction
force is obtained from eq. 9.75. From that equation, the expression for the height
of the center of pressure above the bed is

Z|cp = 1
k

[
kh + 1

sinh(kh)
− 1

tanh(kh)

]
(9.219)

For the site conditions, this expression yields approximately 22.0 m. The force
causing the wave-induced moment about the right edge of the footing in Figure
9.35 is

Fx max|M = 7.46 × 105
√

ln(5.4 × 105 M) >
WR
Z|cp

� 2.27 × 108 N

For the 100-year wave (M = 100), the maximum force is approximately
3.00 × 106 N, and for the 1,000-year wave, the force is approximately 3.26 ×
106 N. We conclude then that the structural reliability of the tower as designed
is satisfactory.

9.4 Closing Remarks

In this chapter, the natures of wave-induced forces in both deterministic and random
seas are discussed. In addition, the concept of added mass has been introduced. It
is shown that the dominance of the viscous-pressure, inertial, or diffraction forces
depends on the values of both the ratio of the characteristic dimension of a structure
and the wavelength and, in addition, on the Keulegan-Carpenter number. Motions
excited by the wave forces have not been discussed. In the next chapter, the wave-
induced motions of fixed and floating bodies are discussed. The reader is encouraged
to consult the references to obtain more detailed discussions of each of the topics
covered in this chapter.



10 Introduction to Wave-Structure Interaction

In this chapter, basic analyses of the interactions of waves and compliant fixed and
floating structures are presented. The reason for discussing both fixed and floating
structures in a single chapter is that several of the analytical techniques are common
to both. As in the previous chapters, the structural geometries studied here are those
that can be dealt with on an analytical basis. The analyses of wave interactions with
complicated structural geometries require the use of numerical techniques, such as
finite-element analysis. Such situations are not addressed herein. The initial discus-
sions of each type of structure are based on the assumption that the incident wave
field is composed of regular, linear waves. These discussions are followed by con-
siderations of structural motions in irregular (random), linear seas. Depending on
water depth at the site, the wind fetch, and the wind duration, the irregular-wave
analyses presented in Chapter 5 can be used for seas having a Beaufort Wind Force
Scale up to 5. Sea states are used to quantify the severity of a sea, and are discussed
in Chapter 1. The various sea-state scales are presented in Table 1.2.

10.1 Basic Concepts

As introduced in Section 9.2, the ambient water mass excited by an unsteadily mov-
ing body is called the added mass. The magnitude of the added mass is proportional
to the inertial reaction force on the body resulting from the body motions. When
the body moves close to the free surface, waves are also created. These waves carry
energy away from the body, which leads to the damping of the body motions. This
damping component is called radiation damping. For surface-piercing bodies that
are under way, the motion-produced waves are of two types. These are called diver-
gent waves and transverse waves. Because ships are the largest class of such bodies,
the waves are collectively known as ship waves. Divergent waves are attached to
the ship, whereas transverse waves follow the ship, advancing at the speed of the
ship. The creation of these ship waves results in a resistance force on the ship called
wave drag. This topic is not discussed herein. The reader is referred to the text by
Newman (1977) for the specifics of wave drag.

The concepts of added mass and radiation damping are associated with oscil-
latory motions of both fixed and floating structures. Both of these are related to
the reaction forces, or hydrodynamic forces, that act on the moving structures. A
knowledge of the nature of wave-structure interactions is needed to determine the

350
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Figure 10.1. Floating Vertical, Circular Cylin-
der Constrained to Heave. The staff through
the center of the cylinder is assumed to be
rigid and of relatively small diameter when
compared to a. The frictional resistance to
the heaving motion between the cylinder and
the staff is negligible. Each of the two linear-
elastic mooring lines is represented by the
spring constant kS.

magnitudes of hydrodynamic forces. To gain this knowledge, a simple (but practical)
structural model is used throughout this chapter. That model is a vertical, circular
cylinder of finite draft constrained to heave in waters of finite depth, as sketched
in Figure 10.1. In our discussions, we assume that the incident waves are linear, as
discussed in Chapter 3, and are relatively long compared to the radius of the body.
Mathematically, the latter assumption is expressed as ka = (2�/�)a � 1, where k is
the wave number, � is the wavelength, and a is the radius of the cylinder.

A. Equations of Motion

When one refers to an equation of motion, what is normally referred to is an equa-
tion expressing Newton’s second law of motion. That is, the time rate of change of
linear momentum of a body must equal the sum of the external forces on the body.
The equation of motion for a purely heaving floating body (such as the cylinder
sketched in Figure 10.1) is

m
d2z
dt2

= − awz
d2z
dt2

− brz
dz
dt

− bvz

(
dz
dt

) ∣∣∣∣
(

dz
dt

)∣∣∣∣
N

(10.1)
− bpz

dz
dt

− �g Awpz − Nks z + Fzo cos (
t + az)

In this equation, the inertial force (time rate of change of linear momentum) of the
heaving body is on the left side. On the right side, the respective terms are (1) the
inertial reaction force of the water, where awz is the added mass, (2) the radiation
damping force, where brz is the radiation damping coefficient, (3) the viscous damp-
ing force, where bvz is the viscous damping coefficient and N, for our purposes, is
either 0 or 1, (4) the damping due to power take-off, where bpz is the power take-
off coefficient, (5) the hydrostatic restoring force, where Awp is the waterplane area
when the body is at rest, (6) the mooring restoring force, where ks is the effective
mooring spring constant of each line, and N is the number of lines, and (7) the wave-
induced vertical force, where Fzo is the force amplitude. Also in the force term are

 = 2�/T, the circular wave frequency, where T is the wave period, and �z, the
phase angle between the wave and the wave-induced heaving force. The first six
terms on the right side of eq. 10.1 are negative because they represent some sort
of opposition to the heaving motions of the body, whereas the last term is pos-
itive because the waves cause the body motions. As discussed in Chapter 2, the
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hydrostatic restoring force is equal to the weight of the displaced water, as in eq. 2.1.
For the circular cylinder sketched in Figure 10.1, the waterplane area is Awp = �a2.

The power (N) of the velocity in the viscous damping term depends on the type
of flow causing the viscous damping. For our cylinder, if the relative flow about the
body is laminar, then N = 0. If the relative flow is turbulent, then N = 1. For the
latter, the equation of motion is nonlinear. For the turbulent condition, the viscous
damping term in eq. 10.1 is bvz(dz/dt)|dz/dt |, where the absolute value of the veloc-
ity is required to preserve the direction of the force, as in the Morison equation dis-
cussed in Section 9.2D. For the purposes of this book, a linearized form of the equa-
tion of motion is preferred. So, the turbulent viscous-damping term is replaced by an
equivalent linear damping term. The value of bvz in eq. 10.1 is obtained by equating
the viscous drag force in eq. 10.1 to that in eq. 9.48. The result is bvz = 1/2�Cd Ad,
where � is the mass density of the fluid, Cd is the drag coefficient, and Ad is the
projected area. The notation is that used in Chapter 2.

The power take-off damping represented by the coefficient bpz in eq. 10.1 rep-
resents a somewhat special case. In wave-energy conversion, this term might rep-
resent a linear-inductance electrical generator wired to the power grid onshore, as
discussed by Omholt (1978), McCormick (1983) McCormick et al. (1981), Mueller,
Baker, and Spooner (2000), Ivanova et al. (2003), and Baker, Mueller, and Brook-
ing (2003). This is not the most efficient method of wave energy conversion, but
it does present a rather interesting way of attenuating wave heights for shoreline
protection, as discussed by McCormick, Lazarus, and Speight (2004).

Before applying eq. 10.1 to the vertical circular cylinder in Figure 10.1, let us
rearrange the equation to be in the standard form of the differential equation of
motion. We shall use the linearized form of the equation, where the viscous damp-
ing in the equation is represented by a generic linearized damping coefficient, bvN.
When the flow is turbulent (where N = 1 in eq. 10.1), this coefficient is an equivalent
linear damping coefficient, bv, discussed later in this chapter. The equivalent linear
equation of heaving motion is

(m + awz)
d2z
dt2

+ (brz + bvz + bpz)
dz
dt

+ (�g Awp + Nks)z = Fz(t)
(10.2)

= Fzo cos(
t + �z)

The form of the equation in eq. 10.2 has a well-known steady-state solution, which
is discussed later in this section. The steady-state solution of eq. 10.2 can be written
as

z = Zcos(
t + �z − εz) (10.3)

where Z is the heaving amplitude and εz is the phase angle between the heaving
response of the cylinder and the wave-induced force.

B. Added Mass and Radiation Damping

In Section 9.2, the concept of the added mass is introduced. The discussion in that
section is focused on the water mass affected by the presence of a body in an acceler-
ating fluid, such as a body in waves. Here, our interest is in the mass of water affected
by the body motions, also called the added mass. As stated previously in the chap-
ter, the body motions also result in a transfer energy to the sea, and the transferred
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Radiation Due to Heaving and Surging
Motions, Respectively. Both types of radiation
are outward; however, the heaving monopole
radiation is symmetric with respect to the y-
axis, and the surging dipole radiation is asymm-
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energy flux is away from the body. This results in an energy loss to the body motion.
The resulting damping effect on the body motion is called the radiation damping.

The best way to introduce the added mass and radiation damping is to consider
the cylinder sketched in Figure 10.1 as a radial wave maker. That is, assume that the
cylinder is in calm water and undergoing forced vertical motions having a circular
frequency of 
 = 2�/T, where T is the oscillation period and, hence, the period of
the generated waves. The general theory of wave makers is well discussed in the
book of Dean and Dalrymple (1984). The waves created by the heaving motions
of the cylinder are sketched in Figure 10.2a. Waves created by an oscillating surge
motion of the cylinder would resemble those sketched in Figure 10.2b. In acoustics
and electromagnetics, these respective wave patterns are referred to as being cre-
ated by a monopole source and a dipole source. See the books by Joos (1986) and
Lighthill (1996).

To obtain mathematical expressions for the added mass and radiation damping,
we must obtain a potential function representing the water particle motions excited
by the body motions. For the vertical circular cylinder of finite draft in water of finite
depth, Yeung (1981) presents a comprehensive analysis of the hydrodynamic reac-
tion forces and moments for the planar motions of surge, heave, and pitch. Here,
we use approximations of the long-wave equations of Yeung and neglect the high-
frequency evanescent waves created by the heaving motions of the cylinder. The
evanescent waves created by floating-body motions are discussed in Chapter 11.
The long-wave assumption makes use of the vertically integrated form of the poten-
tial, that is, the potential function is essentially depth-averaged. Referring to Figure
10.2 for notation, for the stated conditions, Yeung’s vertically integrated velocity
potential for particle motions under the heaving cylinder is

�z (r,t) � −i
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t
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(10.4)
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where � = 0.5772157 is Euler’s constant. The last approximation (the second line in
eq. 10.4) is based on Yeung’s assumptions that � � a, and that a is the same order of
magnitude as h. In eq. 10.4, Z is the heaving amplitude. The functions H(1)

0 (ka) and

H(1)
1 (ka) are Hankel functions of the first kind of zero order and first order, respec-

tively. See Abramowitz and Stegun (1965) for both the details of these functions
and the approximation of these functions leading to the second line of the equation.
From the linearized Bernoulli’s equation (eq. 3.70), the hydrodynamic pressure on
the bottom of the cylinder due to the vertically integrated velocity potential is

pdyn|z=−d = −�
∂�z

∂t
= −i
��z (10.5)

This pressure is integrated over the bottom of the cylinder to obtain the hydrody-
namic reaction force. The result is

Fz (t) =
2�∫

0

a∫
0

pdyn rdrd� = −awz

(
−
2 Z

2
e−i
t

)
− brz


(
−i


Z
2

e−i
t
)

(10.6)

= −awz
d2z
dz2

− brz
dz
dt

By combining the results in eqs. 10.4 through 10.6, we find the expressions for
the added mass (hydrodynamic inertial coefficient), awz, and the radiation damp-
ing coefficient, brz. Those are

awz = ��a3
{

a
8 (h − d)

− a
2h

[
� + ln

(
ka
2

)]}
(10.7)

and

brz = ��a3

�a
4h

1{
1 + (ka)2

[
�

2
−� − ln

(
ka
2

)]} (10.8)

respectively. These equations show that both the added mass and radiation damping
coefficient are dependent on the wave number, k = 2�/�, and because of the disper-
sion relationship in eq. 3.30, they are functions of the circular frequency of motion,

. However, only the added mass depends on the buoy draft, d, and water depth, h.
Results obtained from the approximate expressions for the added mass in eq. 10.7
and the radiation damping coefficient in eq. 10.8 are presented in Figures 10.3 and
10.4, respectively, for the conditions given in Example 10.1. McCormick and Krae-
mer (2006) show that values obtained by the application of the long-wave approxi-
mations of Yeung (1981) compare well with experimental data over an appropriate
wave-number range.

C. Equivalent Viscous Damping Coefficient

Comparing the forms of the equation of motion in eqs. 10.1 and 10.2, we see that
the viscous damping coefficient, bvz, in eq. 10.1 has been replaced by an equivalent
linear damping coefficient, bvN, in eq. 10.2. When the exponent N = 0 in eq. 10.1, the
damping is due to a fully laminar flow. When the flow is turbulent, N = 1. The rela-
tionship between the two coefficients is established by assuming that the nonlinear
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ρπa3Figure 10.3. Non-Dimensional Added Mass as a Func-
tion of ka in Example 10.1.

motions are approximately sinusoidal. Neglect the phase angles in eq. 10.3 for now,
and assume that the linear and nonlinear heaving displacements are both Zcos(
t).
With this assumption, we also assume that the energies lost by both the linear and
nonlinear motions over one period are approximately equal. The resulting energy
relationship, assuming N = 1, is

z(T)∫
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bvz
dz
dt

dz =
T∫

0

bvz

(
dz
dt

)2

dt = �
Z2bvz

(10.9)
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2 Z3bvz

From this equation, we find the relationship between the two damping coefficients.
The resulting equivalent linear viscous damping coefficient expression is

bvz = 8
3




�
Zbvz (10.10)
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Figure 10.4. Non-Dimensional Radiation Damping as a Function of ka in Example 10.1.
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For a body in long waves, approximate values of the velocity-squared, viscous damp-
ing coefficient can be obtained from experimental values of the steady-state exper-
imental drag coefficient, Cd, such as those reported by Hoerner (1965). As stated
previously, the relationship between the nonlinear coefficient and the drag coeffi-
cient is

bvz � 1
2

�Cd Ad (10.11)

where Ad is, again, the projected area. For our heaving circular cylinder, that area
is Ad = �a2, where a is the radius.

D. Steady-State Solution of the Heaving Equation

The equation of motion in eq. 10.2 has the same form as that describing the forced
vibrations of a linear spring-mass system (for example, see Zill, 1986). If the viscous
damping is due to turbulence, then N = 1 in eq. 10.1, and the equivalent damping
coefficient in eq. 10.10 can be used. The steady-state solution of eq. 10.2 for this
damping condition is

z = Zcos(
t + �z − εz) =
Fzo

(�g Awp + Nks)√(
1 − 
2


2
n

)2

+
[
2





n

(brz + bvz + bpz)
bcz

]2
cos(
t + �z − εz)

(10.12)

Three new terms appear in this equation, which are the following: The natural heav-
ing frequency is mathematically represented by


n = 2�

Tnz
=
√

�g Awp + Nks

m + awz
(10.13)

Here, Tnz is the natural heaving period. The critical damping coefficient is

bcz = 2
√

(m + awz)(�g Awp + Nks) (10.14)

Last, the phase angle between the force and motion is expressed mathematically as

εz = tan−1
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n

(brz + bvz + bpz)
bcz(

1−
2


2
n

)

 (10.15)

Note that the values of the added mass and linearized damping coefficients all
depend on the wave excitation frequency. Furthermore, the natural circular fre-
quency, critical damping, and phase angle depend on these coefficients and, subse-
quently, depend on the wave frequency.

In the following example, the effect of the equivalent damping coefficient for
turbulent flow losses is illustrated.

EXAMPLE 10.1: HEAVING MOTION OF A CAN BUOY A 1-m-diameter (D = 2a = 1 m)
can buoy having a 2.5-m height is constrained to heave in 4 m (h = 4 m) of
salt water (see the sketch in Figure 10.1). The mass density of the salt water is
� = 1.03 × 103 kg/m3. Ballast is added to the buoy to cause it to float with a
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1-m draft (d = 1 m). The weight of the buoy is then �g�a2d � 7.94 × 103 N and
its mass (m) is approximately 809 kg. When a single mooring line is attached,
the draft of the buoy is d + �d = 1.5 m. The unstretched mooring line length is
�S = 2.4 m, so the stretched line length is ��S = (h − d − �d − �S) = 0.1 m, and
the effective spring constant of the line is kS = TS/��S = 3.97 × 104 N/m, where
the tension in the line is then TS = �g�a2�d � 3.97 × 103 N.

The buoy is subjected to linear waves having a height H = 1 m and a period
T = 7 sec. The circular wave frequency is then 
 = 2�/T � 0.898 rad/s. We
must determine the length of this wave from eq. 3.31 using the method of suc-
cessive approximations, as illustrated in Example 3.3. The result is � � 41.4 m.
For this wavelength, ka = 2�a/� � 0.0759, which well satisfies our long-wave
assumption. From the curves in Figure 9.23, we see that the ka value is relatively
small. We can use the approximate vertical formula in eq. 9.97 to represent the
wave-induced heaving force, that is,

Fz (t) = �g�a2�(t) = �g�a2 H
2

cos (
t) = Fzo cos (
t) (10.16)

The force amplitude is then Fzo � 3.97 × 103 N. Under the conditions stated,
we see that the force is in-phase with the incident wave, that is, �z = 0 in
eqs. 10.1 and 10.2.

For ka = 0.0759, we find in Figure 10.3 that the non-dimensional added mass
is awz/��a3 � 0.195, and in Figure 10.4, the non-dimensional radiation damp-
ing value is brz/��a3
 � 0.0958. The added mass is then awz � 78.7 kg, and
the radiation damping coefficient is brz � 34.8 N-s-m−1. Assuming a drag coef-
ficient (Cd in eq. 10.11) value of approximately 1 for the heaving cylinder, the
time-averaged (nonlinear) turbulent damping coefficient is bvz = 1/2�Cd�a2 �
405 N-s2-m−2. The equivalent turbulent drag coefficient from eq. 10.10 is bvz �
308(Z/2), having units of N-s-m−1.

With the numerical values of the coefficients in eq. 10.2, the natural circular
frequency of the heaving motions is 
n � 7.32 rad/s from eq. 10.13. The critical
damping coefficient from eq. 10.14 is bcz � 6.50 × 103 N-s-m−1.

Because the equivalent viscous damping is linearly proportional to the
heaving amplitude, the amplitude of the heaving motion is obtained from eq.
10.13, where the equivalent viscous damping is replaced by the expression in
eq. 10.10. The result is

Z =
Fzo

(�g Awp + Nks)√(
1 − 
2


2
n
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+
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2




n

(brz + bvz)
bcz

]2
(10.17)

where the power take-off damping coefficient is not yet considered here, that is,
bpz = 0. If the two damping components in eq. 10.17 are of the same order of
magnitude, then the equation must be solved numerically. If either of the damp-
ing terms can be neglected, then eq. 10.17 can be solved exactly. For the condi-
tions given, the numerical solution of eq. 10.17 yields a motion amplitude of Z �
0.083 m. The equivalent viscous damping coefficient is then bvz � 25.5 N-s-m−1.
We see that this value is about the same as the radiation damping coefficient,
brz � 34.8 N-s-m−1. Finally, the frequency ratio is 
/
n � 0.123, which is well
below the resonance condition of 
/
nz = 1.
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In the following section, it is shown how values of the damping coefficient and,
in addition, the added mass and radiation damping coefficient are obtained experi-
mentally.

E. Determination of Added Mass and Resonant Damping Coefficients
in Calm Water

The natures of the added mass and radiation damping are discussed in Section
10.1B, and that of the velocity-square viscous damping is discussed in Section 10.1C.
The problem addressed here is how to experimentally determine the magnitudes
of the added mass and damping coefficients. To illustrate the techniques, we again
use the vertical, circular cylinder constrained to heave in waters of finite depth, such
as that sketched in Figure 10.1. The radiation pattern resulting from the heaving
motions is sketched in Figure 10.2a.

There are two types of experiments that are used to determine the added mass
and damping coefficients. The first is a calm-water test, where the body is initially
displaced and released. From the resulting motions, the logarithmic decrement (a
measure of the decay rate) is determined. The second experiment is in waves, where
the absorbed wave power over a range of frequencies is studied. The damping in a
resonant mechanical system is inversely proportional to the half-power frequency
bandwidth, as discussed later in this chapter.

It must be noted that the experimental methods mask the frequency depen-
dence of both the added mass and the damping coefficients. Hence, the values for
the coefficients are approximate.

In this subsection, we shall discuss the logarithmic decrement method. Consider
the freely floating, vertical, circular cylinder in Figure 10.2a. In calm water, the body
is raised to a height ZO and released. The resulting linear motions are predicted
from the solution of the following homogeneous equation:

(m + awz)
d2z
dz2

(brz + bvz)
dz
dt

+ �g Awpz = 0 (10.18)

Comparing eqs. 10.2 and 10.18, we see in eq. 10.18 that the power take-off damp-
ing coefficient, spring constant, and forcing function are absent because the body is
freely floating after its release. The viscous damping is represented by the equivalent
viscous damping coefficient in eq. 10.10. The solution of the homogeneous equation
in eq. 10.18, subject to the initial condition z(0) = Zo, is

z(t) = Zoe− 1
2 ( brz+bvz

m+awz )t cos (
dzt) (10.19)

Here, 
dz = 2�/Tdz is the damped, natural circular frequency of the decayed heav-
ing motion, and Tdz is the damped natural period. The time response of the heaving
body would resemble that sketched in Figure 10.5. The time-dependent amplitude
of the motion is then

|zmax(t j )| ≡ Zj = Zoe− brz+bvz
2(m+awz) t j ≡ Zoe−�z
nzt j (10.20)

where, referring to Figure 10.5, t j = jTd/2 ( j = 1, 2, . . .) is the time corresponding
to a maximum displacement. The natural circular frequency is found in eq. 10.13,
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Figure 10.5. Time-Response of a Freely
Floating, Damped, Heaving Circular
Cylinder.

where the spring constant (kS) is zero for the unmoored body. From the relationship
between the exponents in eq. 10.20, we find the expression for the resonant damping
ratio to be

�z ≡ brz + bvz

bcz
= brz + bvz

2
√

�g Awp (m + awz)
(10.21)

that is, �z is the ratio of the damping to the critical damping. The expression for the
damped natural frequency is found from the combinations of eqs. 10.20 and 10.21.
The result is


dz = 2�
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2
�g Awp
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−
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brz + bvz

2 (m + awz)

]2

= 
nz

√
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z (10.22)

When the expression under the radical sign is positive (�z < 1), the motions are
under-damped and will be oscillatory, as sketched in Figure 10.5. When the radi-
cand equals zero (�z = 1), then the motions are critically damped, and the cylinder
simply returns to its resting position after being released. Finally, when �z > 1 in
eq. 10.22, the expression in the equation is imaginary and the motions are over-
damped. That is, the cylinder returns to its resting position less rapidly than for the
critically damped case.

Returning to eq. 10.20, the ratio of two successive amplitudes is

Zj

Zj+1
= e−�z
nz(t j −t j+1) = e�z
nz

(
Tdz

2

)
= e�z� 
nz


dz = e
� �z√

(1−�2
z) (10.23)

The exponent of the last term is called the logarithmic decrement, that is,

ln
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Zj+1

)
= �

�z√(
1 − �2

z

) (10.24)

From this equation, the damping ratio in eq. 10.21 is

�z ≡ brz + bvz

bcz
≡ bz

bcr
= ln (Zj/Zj+1)√

�2 + [ln (Zj/Zj+1)]2
(10.25)

By measuring two consecutive amplitudes of the damped heaving motion, we can
then determine the value of the combined damping coefficient, bz.
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Figure 10.6. Sketch of Experimental Set-up to Determine the Added Mass and Damping.

The damped natural period (Tdz) is experimentally determined, as can be seen
in Figure 10.5. In eq. 10.22, we combine this measured period value and that of
the damping ratio (�z in eq. 10.25) to determine the value of the undamped natu-
ral frequency, 
nz. Using this frequency value in eq. 10.13, we find that the added
mass is

awz = �g Awp


2
nz

−m (10.26)

One final note: As seen in Figures 10.3 and 10.4, respectively, the added mass
and the linear damping coefficients are functions of the wave number (k) and, there-
fore, frequency. If ballast is added to the cylinder, the draft will increase and the
natural frequency will change. This change will subsequently alter the values of the
added mass and damping coefficients.

EXAMPLE 10.2: EXPERIMENTAL DETERMINATION OF HEAVING ADDED MASS AND

DAMPING LOGARITHMIC DECREMENT METHOD In a study similar to that con-
ducted by McCormick, Coffey, and Richardson (1982), motions of a heaving
vertical cylinder are studied in a 2.5-m-wide wave tank having a 1.5 m depth.
The experimental set-up is sketched in Figure 10.6. A cylinder having a 0.1-
m radius (a = 0.1 m) and a 1-m draft (d = 1 m) is located in the center of the
tank. In still water, the cylinder is given a 0.3-m displacement (ZO) and released.
The subsequent time response is similar to that sketched in Figure 10.5. The
damped natural period (Td) is found to be 2.12 sec. The first two amplitude val-
ues (Z1 and Z2) are 0.220 m and 0.170 m, respectively. From these values, the
damped natural circular frequency (
dz) is 2.96 rad/s and the approximate val-
ues of the logarithmic decrement from eq. 10.24 and the corresponding damping
ratio (�z) values from eq. 10.25 are, respectively, 0.258 and 0.0824. Note that
the value of the logarithmic decrement based on the initial displacement and the
first amplitude (ZO and Z1) will be somewhat greater because the initial motions
are nonlinear. So, when using the linear equations derived in this section, it is
best to use the larger time-value measured double amplitudes, that is, Zj and
Zj+1, where j ≥ 1. The undamped natural frequency (
nz) is 2.95 rad/s from eq.
10.22. Because the total damping is small, we see that there is little difference
between 
nz and 
dz. The added mass can now be determined from eq. 10.26,
where the mass of the structure (m) must equal the mass of the displaced water
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in that equation. The water in the tank is fresh water having a mass-density (�)
of 103 kg/m3. Therefore, the displaced mass is approximately 31.42 kg, and the
added mass is awz = 3.99 kg. For this experiment, the ratio of the added mass to
the body mass is awz/m � 0.127.

The critical damping coefficient (bcz) for the unmoored cylinder is 209 N-
s/m from eq. 10.14. The total linear damping coefficient is then bz = bcz�z �
17.2 N-s/m. The damping ratio is then �z � 0.082.

F. Bandwidth Determination of Damping in Wave-Induced Heaving Motions

When our vertical, circular cylinder is exposed to monochromatic waves, it is bene-
ficial to consider the rate at which wave energy is both absorbed and subsequently
dissipated due to both radiation and viscosity. The time rate of change of the energy
is the power, so our attention here is focused on the power gained and lost by the
body.

The analysis of the power of the floating cylinder is straightforward. Because
power equals the product of force and velocity, multiply the linear equation of
motion (eq. 10.2) by the heaving velocity to obtain a time-dependent power equa-
tion. The heaving velocity is the time-derivative of the expression in eq. 10.3. The
time-averaged power over one wave period is found to be

1
T

T∫
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bz

(
dz
dt

)2

dt = 1
T

T∫
0

(
dz
dt

)
Fzo cos (
t + �z) dt

= 1
2


2 Z2bz = 1
2

Fzo
Zsin (εz − �z) [cos (�z) − sin (�z)] (10.27)

= Pbz = Pwz

Here, the damping coefficient bz represents all of the linear damping coefficients
in eq. 10.2, where Pbz is the power dissipated by the damping. The available wave
power is represented by Pwz. We note that in the time-averaging process, the inertial
and restoring terms of eq. 10.3 vanish because the incident linear waves and the
induced body motions are sinusoidal. The phase angle εz, introduced in eq. 10.3
and expressed in eq. 10.15, is the phase angle between the motions of the cylinder
and the wave force. Physically, eq. 10.27 expresses the fact that the power lost to
radiation and viscous damping (Pbz) over one wave period must equal the power
supplied by the wave (Pwz).

Assume that the incident waves are relatively long compared to the radius of the
cylinder. That is, we assume that the values of the wavelength � and the radius a are
such that ka � 1. By making this assumption, the dominant wave force is hydrostatic
due to the addition and loss of the hydrostatic force caused by the respective rise and
fall of the free surface, �(t). The wave-induced force is then

Fzo cos (
t + �z) = Fzo [cos (
t) cos (�z) − sin (
t) sin (�z)] � �g Awp�(t)

= �g Awp
H
2

cos (
t) (10.28)

From this equation, we see that the exciting force is approximately in phase with
the wave, that is, the phase angle is �z � 0. The resulting power dissipated by the
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damping in eq. 10.27 is
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(10.29)
The expression for εz in this equation is obtained from eq. 10.15, and the expression
for the damping ratio, �z, is found in eq. 10.25. At resonance, 
 = 
nz and εz = 90◦.
The resonant absorbed-power expression is then

Pbzn = 1
2


2
nzbzn Z2

n � 1
2

Fzo
nzZn (10.30)

The term “absorbed power” refers to that power lost to damping.
Consider the case where the power absorbed by the heaving circular cylinder

is one half of the absorbed-power value of the resonant value of eq. 10.30. The
combination of eqs. 10.17 and 10.29 with 0.5-times eq. 10.30 yields the half-power
relationship. From this combination, one obtains
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(10.31)
Here the frequency, 
, is that for which Pbz = Pbzn/2. The approximation results
from the assumption that the damping does not vary significantly over the frequency
band |
nz − 
|. Hence, � � �zn. The solution of eq. 10.31 for the frequency ratio
is


2


2
nz

= 1 + 2�2
zn ± 2�zn

√
1 + �2

zn � 1 ± 2�zn (10.32)

Here, the approximation is made on the assumption that the motions are lightly
damped, that is, (�zn)2 � 1. The two half-power frequencies resulting from the
approximation are then the lower band frequency,


1 = 
nz

√
1−2�zn (10.33)

and the upper band frequency,


2 = 
nz

√
1 + 2�zn (10.34)

From these relationships, we obtain
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With the assumption that the lower and upper band frequencies are equidistant
from the resonant frequency, we find that the half-power bandwidth is


2 − 
1 = 2�zn
nz (10.36)

By measuring the half-power bandwidth, we have a method of approximately deter-
mining the resonant damping (�zn) of the wave-induced motions of our floating
body. Again, we note that the damping ratio value obtained from eq. 10.36 is
approximate, as the ratio is actually frequency-dependent, that is, the damping value
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will vary as the excitation frequency varies. The half-power bandwidth method is
illustrated in the following example.

EXAMPLE 10.3: EXPERIMENTAL DETERMINATION OF DAMPING IN WAVE-INDUCED

HEAVING-HALF-POWER BANDWITH METHOD In the study of the wave-induced
motions of a vertical, circular cylinder described in Example 10.2, a series of
tests is conducted where the cylinder is subjected to incident waves of 0.03-m
height and various frequencies. The measured double amplitude at resonance
(where 
 = 
nz = 2.95 rad/s) is 0.109 m. The approximate damping coeffi-
cient can be determined from the measured half-power bandwidth. That is,
by determining the upper and lower frequencies corresponding the cases where
the power lost due to both radiation and viscosity is equal to one half of the
power lost at the resonant frequency, the damping ratio can be determined from
eq. 10.36. It has been noted that the damping coefficients due to both radia-
tion and viscosity are frequency-dependent. Hence, by using the expression in
eq. 10.36 to determine the damping, we are neglecting the frequency behavior.
Results of the experiment are presented in Figure 10.7, where the ratio of the
absorbed power and the resonant absorbed power are presented as a function
of the frequency ratio. The half-power bandwidth ratio is shown to be about
0.082.

Although the frequency dependence of the total damping is masked in the
experimental study, we can include the frequency dependence in the theoret-
ical equations. Consider the time-averaged power absorbed by the body by
the damping. Combining the results of eqs. 10.15 and 10.17 with eq. 10.29, the
expression for the absorbed power of the heaving body is

Pbz � 1
2

Fzo
Zsin (εz) = F2
zo
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If our interest in the oscillating buoy was in wave power conversion, we would
include the damping coefficient representing the energy conversion system in
our damping ratio, �z. Returning to the experimental study, we plot the nor-
malized absorbed power as a function of the frequency ratio, that is
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The results of the approximation are presented in Figure 10.7, where data
obtained at the U.S. Naval Academy are presented. In that figure, we see that
the half-power frequency bandwidth (
2 − 
1) is approximately 0.082 
nz. From
eq. 10.36, the resonant damping ratio is

�zn ≡ bz

bcz
= 1

2

(

2 − 
1


nz

)
� 0.041 (10.39)
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Figure 10.7. Normalized Absorbed Power Res-
ponse as a Function of Frequency Ratio. The half-
power bandwidth ratio is approximately 0.082.
From eq. 10.36, the damping ratio is approx-
imately 0.041. This value is used in eq. 10.38
to obtain the theoretical curve (see Example
10.3). The experimental data were obtained at
the Hydrodynamics Laboratory of the U.S. Naval
Academy.

In Example 10.2, our calm-water damping ratio values are 0.258 and 0.0824.
The initial displacement in the calm-water tests is 0.3 m. The motions in the first
oscillations for this relatively large initial displacement are nonlinear. As time
increases in Figure 10.6, the motions become linear, and the damping in the
system approaches the value in eq. 10.39. Because the critical damping coeffi-
cient (bcz) for the unmoored cylinder is 209 N-s/m from Example 10.2, the total
damping value is bz � 8.36 N-s/m.

The damping value obtained from the data in Example 10.3 is the total damp-
ing, that is, the damping term, bz, represents the sum of the radiation and viscous
damping as in eq. 10.25. We now address the problem of determining the radiation
damping. This is done in Example 10.4.

EXAMPLE 10.4: EXPERIMENTAL DETERMINATION OF COMPONENT DAMPING COEFFI-

CIENTS The circular cylinder in Examples 10.2 and 10.3 is now forced to heave
in calm water by attaching an electrical oscillator to the top of the cylinder.
Again, the radius (a) of the cylinder is 0.1 m, and the draft is 1 m. The water
depth is 1.5 m. The frequency of the oscillator equals the undamped natural
frequency, which from Example 10.2 is 
nz = 2.95 rad/s. The magnitude of the
force is adjusted so that the amplitude of the heaving motions is that measured
in the wave study in Example 10.3, that is Zn = 0.035 m. Referring to the sketch
in Figure 10.6b, a wave gauge is placed in the center of the tank at a distance of
1 m from the centerline of the cylinder. This distance corresponds to a value of
x, equal to ten times the radius of the cylinder. At this position, a radiated wave
height (Hr) of 0.002 m is measured. From eq. 3.72, the corresponding energy
flux of the wave is

Przn = �g
H2

r

8
cg (2�x) � 1000 (9.81)

0.0022

8
(1.67) 2�1.0 � 0.0527 Watts

(10.40)
= 1

2

2brzn Z2

n = 1
8

(2.95)2 brzn (0.109)2

where the group velocity (cg) is obtained from eq. 3.63, and the crest width is the
circumference of the circular wave front of radius x = 1.0 m. The second line in
eq. 10.40 comes from eq. 10.27. Solving for the radiation damping coefficient,
we obtain brzn � 4.01 N-s/m.
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The equivalent viscous damping coefficient is the difference between the
total damping coefficient (from Example 10.3) and the radiation damping coef-
ficient, that is, bzn − brzn = (8.36 − 4.01) N-s/m = 4.35 N-s/m. Assume that the
total damping does not vary significantly over the narrow bandwidth. Finally,
the nonlinear viscous damping coefficient is found by solving the expression in
eq. 10.10 at the resonant frequency. The resulting coefficient value is bvzn �
31.88 N-s2/m2.

Several notes on the experiment described in Example 10.4 are the following:
First, the position of the gauge should be at least one body diameter (D = 2a) from
the center of the cylinder to avoid distorting the reaction forces caused by the small
waves reflected from the gauge. Second, the gauge should not be placed close to a
tank wall because reflected waves will also be detected by the gauge. Therefore, the
best location for the gauge is in the center of the tank. Third, side beaches can be
positioned adjacent to the tank walls to absorb most of the radiated wave energy,
thereby minimizing side-wall reflection. Most side beaches have an effective fre-
quency band over which they are most efficient. Thus, care must be taken to ensure
that the frequencies of motion of the body are within this band.

10.2 Power Take-Off

The damping coefficient representing the power take-off is bpz in eqs. 10.1 and
10.2. The application of the power take-off concept to the float sketched in Fig-
ure 10.1 would depend on the purpose of the system. For example, the float might
be a self-contained wave measurement system attached to a pier. By self-contained,
we mean that the electronics and power take-off system are in the float. The power
take-off is then designed to convert the kinetic energy of the wave-induced heav-
ing motion of the float into electrical energy, which in turn powers the electronic
measurement system.

To determine the effects of the power take-off, let the damping coefficient bz

in the power expression of eq. 10.27 be the sum of the linear damping coefficients
representing the radiation damping (brz), the equivalent velocity-squared viscous
damping (bvz), and the power take-off (bpz). The time-averaged damping power is
found to be

Pp = Pwz − Prz − Pvz = 1
2


2bpzZ2

(10.41)
= 1

2
Fzo
Zsin (εz − �z) [cos (�z) − sin (�z)] − 1

2

2 (brz + bvz) Z2

The average is over one wave period. In eq. 10.41, the P-terms are the component
powers. Again, the available wave power is represented by Pwz. For a given wave
frequency, the maximum power extracted from the system from this equation occurs
when dPp/dZ = 0. Before solving this relationship for Z, it should be noted that the
long-wave radiation damping coefficient (brz) of Yeung (1981) in eq. 10.8 is inde-
pendent of the amplitude Z. The equivalent viscous damping coefficient of eq. 10.10
is a linear function of Z. Assume that the system is in long waves (ka � 1) so that
�z = 0 as in eq. 10.28. Again, this assumption physically means that the wave and
wave-induced force are in phase. By replacing bvz in eq. 10.41 by the expression in
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eq. 10.10, the maximum power take-off is obtained when the amplitude is

Zp−max = − �

8


brz

bvz
+ 1

2

√
�2

16
2

b2
rz

b2
vz

+ 1
2

�


2bvz
Fzo sin (εz) (10.42)

If the cylinder is of deep draft (d), then the viscous losses are dominant, and the
maximum power occurs when

Zp−max =
√

�

8
1


2bvz
Fzo sin (εz) (10.43)

If the cylinder is of shallow draft, then the radiation damping is significant, and the
maximum power occurs when

Zp−max = 1

bz

Fzo sin (εz) (10.44)

The maximum power that can be extracted from this wave-induced heaving motion
is obtained from eq. 10.41, where the amplitude is represented by eqs. 10.42, 10.43,
or 10.44, whichever is appropriate.

For a wave-energy conversion system, one additional requirement is placed on
the heaving motions, that is, the motions should be tuned to the frequency of a
design incident wave. In other words, the natural heaving frequency in eq. 10.13
should be equal to the incident wave frequency. In that equation, we see properties
of the float that can be changed or adjusted in the tuning process. These changes
would be in the design phase of the project and would be focused on the water-
plane area (Awp), the number (N) of tension lines, and the spring constant (kS) of
the lines and the floating mass (m). As can be seen in the long-wave expression
of Yeung (1981) in eq. 10.7, the added mass changes with changes in both geom-
etry and frequency. So, if the system is designed for wave-energy conversion,
eq. 10.13 can be used in the conceptual design of the system.

In the following example, the time-averaged heaving power of the heaving cylin-
der of Example 10.1 is converted into electricity using a linear inductance system.

EXAMPLE 10.5: POWER TAKE-OFF OF A HEAVING CIRCULAR CYLINDER AT

RESONANCE The cylinder in Example 10.1 has an internal linear inductance
power take-off system designed to charge a battery system that, in turn, pow-
ers several navigation aids including a light on the top of the fixed staff and a
fog horn. For this application, the system is as sketched in Figure 10.8, where
no mooring lines are used (kS = 0). The draft of the unmoored body is 1 m,
as stated in Example 10.1. For the resonant condition where 
 = 
n, we shall
determine the optimal power available to the linear inductance system. See
Ivanova et al. (2003) for the description of a linear inductance system applied
to wave energy extraction.

The frequency of interest in this application is the natural circular frequency
of the heaving motions, 
n. The incident wave height for this frequency is mea-
sured to be 0.5 m. Because the body is unmoored, the value of the added mass
differs from that in Example 10.1. For the cylinder having a 1-m draft in 4 m of
water, the added mass is awz � 77.0 kg from eq. 10.7, and the radiation damp-
ing coefficient is again brz � 38.4 N-s/m from eq. 10.8. The system is designed
to be in resonance with the incident wave, so the phase angle between the
wave-induced force and the heaving motions is εz = 90◦ from eq. 10.15. From
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Figure 10.8. Wave-Powered Navigation Aid. The bar magnets are placed vertically in the float
about the inductance coil, which is attached to the fixed, vertical staff. See McCormick et al.
(1981) for details of the inductance power take-off system.

Example 10.1, the nonlinear viscous damping coefficient is brz � 405 N-s2/m2.
The wave-force amplitude is Fzo � 1.98 × 103 N for the 0.5-m wave from
eq. 10.16. The natural circular frequency is 
nz � 2.99 rad/s, and the critical
damping is bcz � 2.65 × 103 N-s/m. With the parametric values, the optimal
heaving amplitude is

Zp−max|opt = − �
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+ 1

2
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2
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rz
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+ 1
2

�


2
nzbvz

Fzo � 0.453 m (10.45)

The optimal power available to the linear inductance system is Pp = 886 W from
eq. 10.41. Note that for the 0.5-m, 2.10-sec incident wave, the power per crest
width is P′ = 522 W/m from eq. 3.72. Due to diffraction focusing, the effec-
tive capture crest width (�) of the wave is Pp/P′ � 1.70 m. Physically, the 1-
m-diameter buoy having resonant-heaving motions captures the power of the
wave from a crest width that, in this case, is 1.7 times the diameter.

In Example 10.5, the concept of the capture width (wcw) is introduced. This is an
equivalent crest width from which the power of the incident wave that is captured by
the floating body. The wave power is transferred along the crest by the phenomenon
of diffraction, which is discussed in Section 6.4. Some wave-energy analysts refer to
this phenomenon as diffraction focusing. In terms of linear wave properties, the
capture width is mathematically defined by

wcw ≡ Pp

P′ = Pp

1
8

�gH2cg

(10.46)

Here, cg is the group velocity, defined in eq. 3.62 and presented in eq. 3.63. The
wave power per crest width is P′. The diffraction-focusing phenomenon is a major
consideration in the design of wave-energy conversion systems, as discussed by
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Falnes (2002). For an overview of wave-energy conversion techniques, the reader
is referred to the book by McCormick (2007) and the book edited by John Brooke
(2003).

10.3 Random Motions

In Chapter 5, the random nature of the sea is discussed. In that chapter, we assume
that seas are composed of superimposed sine waves having various heights and peri-
ods that pass a site randomly in time and are distributed randomly in space. When
either a floating structure or a fixed compliant structure is located at an ocean site,
each component of the wave field will produce a force on the structure that can
result in a motion. The design goals are to minimize these wave-induced motions
if the structure is a ship or some type of production facility, and to maximize the
motions if the structure is a component of a wave-energy conversion system. To
achieve either of these design goals, we must have a good understanding of the
wave-structure interaction in random seas. In this section, we introduce the analyt-
ical method used to describe this interaction, and apply the analysis to a heaving
buoy in random waves for the purpose of illustration. The statistical description of
the waves is taken from Chapter 5.

Consider the motions of a deep-water spar buoy in a random sea. The nota-
tion for this buoy is the same as that for the vertical, circular cylinder sketched in
Figure 10.1, where h = ∞. Assume that the forcing function is due to random waves.
Again, for the purpose of illustration, also assume that the component wavelengths
are an order of magnitude greater than the radius (a) of the buoy. Because of the
latter assumption, ka < 0.3 and the vertical wave-induced force on the buoy is quasi-
hydrostatic.

For this discussion, assume that the added mass for the heaving motions of the
deep-draft spar buoy is independent of frequency and is represented by

awz � 2
3

��a3 (10.47)

which equals the mass displaced by a hemisphere having a diameter equal to that
of the spar. This formula has been used in the conceptual design phase of cylin-
drical spar buoys (for example, see the paper by Bhattacharyya, Sreekumar, and
Idichandy, 2002). The reader is also encouraged to consult the book by Patel (1989)
for an additional discussion on the concept of the added mass. For the long-wave
approximation of Yeung (1981) plotted in Figure 10.3, it can be seen that the expres-
sion in eq. 10.47 is approximately valid where 0 < ka < 0.01. The damping coeffi-
cient used here is the Yeung (1981) long-wave expression in eq. 10.8 and plotted
in Figure 10.4. For 0 < ka < 0.01, the radiation damping coefficient is well approxi-
mated by

brz � 0.1��a3
 (10.48)

The use of the approximate expressions for the added mass in eq. 10.47 and the
radiation damping in eq. 10.48 are for demonstration purposes only.

The linear heaving motions of the body excited by monochromatic waves are
represented by eq. 10.2, where in this case the radiation damping coefficient is
brz � bvz + bpz and the mooring spring constant is ks = 0. With these assumptions,
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eq. 10.2 can be written as(
m + 2

3
��a3

)
d2z
dz2

+ 0.1��a3

dz
dt

+ �g Awpz = �[Fzoe−iwt ] � �
[

�g Awp
H
2

e−i
t
]

(10.49)

In this equation, the notation � is used to identify the real part of the term. The
steady-state solution of eq. 10.49 can be written as

z = �[Z(
)e−i
t ] = 1
2

[Z(
)e−i
t + Z∗(
)ei
t ] (10.50)

In eq. 10.50, Z(
) is the frequency-dependent complex heaving amplitude and
Z∗(
) represents its complex conjugate. That is, if Z(
) = Z�(
) + iZ�(
), then
Z∗(
) = Z�(
) − iZ�(
). The combination of eqs. 10.49 and 10.50 yields the fol-
lowing expression for the complex heaving amplitude:
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(10.51)

where H(
) is called the amplitude response function. The function is also known as
the admittance, the frequency response function, and the harmonic response func-
tion. The amplitude response function is complex and the wave height is real. The
last equality in eq. 10.51 is a special case, where the excitation is due only to the
hydrostatic force of the passing long wave.

Our interest is in both the statistical averages and the extreme values of the
body displacements. The statistical methodology used to obtain these is presented
in Chapter 5, where the statistics of random wave fields are discussed. Consider first
the mean-square response of the heaving motions of the spar buoy, defined by

z2 = z2
rms = lim

T→∞
1
T

T∫
0

z2dt � 1
T

T∫
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)
2
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8

The last equality comes from eq. 5.35a. In eq. 10.52, T is the time interval. Also in
eq. 10.52 are the root-mean-square response (zrms) and the root-mean-square dis-
placement of the free surface (�rms). The integral term containing the limit notation
is the true mean-square, and those without the limit are approximations. Confidence
in the approximation increases as the time interval (T) of the data measurement
increases. Although eqs. 10.49 through 10.52 apply to heaving motions in monochro-
matic waves, we shall use the expressions in eqs. 10.51 and 10.52 in the following
paragraphs devoted to heaving motions in random seas.

In Section 5.7, we find that the energy content of a sea can be represented by
the wave spectral density, S(T). This property of the sea is introduced in eq. 5.37
in terms of a discrete wave period, Ti = 2�/
i , and the wave heights associated
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with that period, Hj(i). If we further assume that there are a number of such wave
periods, then the expression in eq. 5.37 leads to the expression for the root-mean-
square wave height expression in eq. 5.40. Because there are an infinite number of
wave periods, the integral expression of eq. 5.41 is obtained in the limiting process.

Our goal is to obtain an expression for the mean-square heaving response of the
vertical circular cylinder in terms of the wave spectral density. The expression for
the mean-square heaving response of our vertical cylinder can be written in terms
of the probability density of the motion amplitude, p(Z), and the amplitude spectral
density, Sz(Z). To determine these functions, we use a common property of the
cumulative probability of occurrence of eq. 5.3. That is, the cumulative probabilities
of occurrence of the excitation (the waves) and the heaving response must satisfy
the following relationship:

1 = P(0 < H ≤ ∞) =
∞∫

0

p(H)dH

(10.53)

= P(0 < Z ≤ ∞) =
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0

p(Z)dZ =
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0

p(Z)
dZ
dH

dH =
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0

p(Z)
H(
)

2
dH

where the derivative, dZ/dH, is obtained from eq. 10.51. In eq. 10.53, the notation
p(Z) is that for the probability density. From eq. 10.53, we find that the relationship
between the probability density of the heaving response and the waves is

p(Z) = 2
H(
)

p(H) (10.54)

The mean-square amplitude response of the body can now be expressed as
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= C
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4
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∣∣H(T)2
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4
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In this equation, SJ(
) is the frequency spectral density of the wave field, the sub-
script J is generic (used to identify the wave spectral formula), and the coefficient C
is a constant that depends on the relationship between the spectral density and the
mean-square of the wave height. Note that T in the last line is the wave period and
not the time interval, T, in eq. 10.52. If the Bretschneider (1963) spectral formula
of eq. 5.59 is selected, then J = B and C = 1. When the Pierson and Moskowitz
(1964) formula of eq. 5.63 is used, then J = PM and C = 8. The last relationship in
eq. 10.55 results from the relationship of the circular wave frequency and the wave
period, 
 = 2�/T. In Chapter 5, the wave spectra are in the period domain and not
the frequency domain. For this reason, it is useful to express the amplitude response
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function as a function of the wave period. From eq. 10.51, we find

H(T) = 1(
1 − T2

nz
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− i0.4

Tnz
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��2a3
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(10.56)

where the critical damping coefficient of eq. 10.14 for this discussion is

bcz − 2

√(
m + 2

��a3

3

)
(�g�a2) (10.57)

In summary, the equations presented are based on the assumptions that the heaving
motions of the freely floating, vertical, circular cylinder are excited by randomly
occurring long waves (� � a), where the radiation damping is much greater than
the sum of the viscous damping and the damping due to any power take-off. The
analysis of the resulting heaving motions is illustrated in Examples 10.6 and 10.7.

EXAMPLE 10.6: ROOT-MEAN-SQUARE HEAVING RESPONSE OF UNDERDAMPED

MOTIONS OF A CAN BUOY IN A RANDOM SEA The 0.5-m-radius can buoy in Exam-
ple 10.1 is now located in deep water (h = ∞), where the mass density of the salt
water is � = 1.03 × 103 kg/m3. Ballast is added to the buoy to cause it to float
with a 1-m draft (d = 1 m). The weight of the buoy equals that of the displaced
water, �g�a2d � 7.94 × 103 N, and the body mass (m) is approximately 809 kg.
There are no tension lines attached to the buoy. The critical damping coefficient
value is bcz � 5.48 × 103 N-s/m from eq. 10.57, and the natural heaving period is
Tn � 2.17 from eq. 10.13. The buoy is subjected to a long-wave random sea con-
sisting of linear waves, where the average height is Havg = 1.5 m and the average
period is Tavg = 7 sec. These are the same sea conditions as those in Example
5.14 and in Figure 5.23. In that figure are the results of the application of the
Bretschneider spectral formula (eq. 5.59) applied to deep water and to the site
conditions. The Bretschneider formula for the stated wave conditions is

SB(T) = H2
rms p(T) = 3.437

H2
avg

T4
avg

T3e−0.675
(

T
Tavg

)4

� 3.22 × 10−3T3e−2.81×10−4T4

(10.58)

The absolute value of the amplitude response function for the can buoy is
found to be

HABS(T) ≡ ∣∣H(T)
∣∣ = √H(T)H∗(T) � 1√(

1 − 4.71
T2

)2

+ 0.0405
T4

(10.59)

from eq. 10.56. Results obtained from eqs. 10.58 and 10.59 are presented in
Figure 10.9 as functions of T/Tnz. In that figure, one sees that the can buoy is
de-tuned from the waves, in that the peak amplitude response is well away from
the modal period, which is the period of the peak spectral value (see eq. 5.45).
The peak-value amplitude response function (approximately 23.4 occurring at
T = Tnz) is relatively large because the damping (assumed to be only due to
radiation) is small. When T = Tnz, we find that the ratio of the radiation damp-
ing coefficient and the critical damping coefficient is approximately 0.0214, that
is, the radiation damping loss is about 2.14% of the critical value. The amplitude
response function for this condition is said to be resonance-dominated.
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Figure 10.9. Normalized Bretschneider Wave
Spectrum and Amplitude Response Function
versus Period Ratio for Example 10.6. The
Bretschneider spectrum is normalized by using
the modal period of eq. 5.45, the value of which
is approximately 7.19 sec. The absolute value
of the amplitude response function is normal-
ized by using its value at the natural heaving
period, which is about 2.17 sec. The peak val-
ues for the wave spectrum and response func-
tion are approximately 0.565 m2/s and 23.4,
respectively.

The combination of the last expressions in eqs. 10.58 and 10.59 with the
mean-square expression in eq. 10.55 (where C = 1 because we are using
the Bretschneider spectral formula) results in the following expression for
the mean-square response of the buoy:
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(10.60)

For our parametric values, the mean-square response value is approximately
2.05 m2, and the root-mean-square of the heaving amplitude in this sea is Zrms �
1.43 m. Because of the complexity of the integrand expression, we have chosen
to use a simple numerical integration method to obtain the result. In this, we
have used the trapezoidal rule. The value of the period increment (�T) used
here is 0.1 sec. Note that there are a number of numerical integration methods
available. Because of its simplicity, the trapezoidal formula is widely used by
practicing naval architects and ocean engineers. For example, see Chapter 25 of
Abramowitz and Stegun (1965).

In the next example, the highly damped heaving motions of a can buoy in a
long-wave random sea are analyzed. The damping is due to a horizontal circular
plate suspended below the buoy.

EXAMPLE 10.7: ROOT-MEAN-SQUARE AND EXTREME HEAVING AMPLITUDES OF

HIGHLY DAMPED MOTIONS OF A CAN BUOY IN A RANDOM SEA An inertial damp-
ing plate is attached to a 1-m-diameter (2aP = 1 m) can buoy in deep water, as
sketched in Figure 10.10. The sea at this site is that described in Example 10.6,
that is, the wave period spectrum is predicted by the Bretschneider formula
in eq. 10.58 where Havg = 1.5 m and Tavg = 7 sec. The inertial damping plate is
horizontal and is well below the free surface. The net weight (dry weight minus
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Figure 10.10. Can Buoy with an Attached Inertial Damping Plate in Deep Water.

buoyancy) of the buoy-leg-plate structure causes the buoy to have a draft (d)
of 3 m. The mass of the buoy system, equal to the displaced mass of water,
is m = ��a2d � 2.43 × 103 kg, where � = 1.03 × 103 kg/m3 is the mass density
of salt water. From tests of the system in a large tank prior to deployment,
the heaving motions are found to be damped such that bz � 0.7bcz, that is, the
mean value of the damping is 70% of the critical damping. Also from these tests,
the total added mass (awz) of the buoy plus plate is found to be 500 kg. From
eq. 10.13, we find that the natural heaving period is Tn � 3.82 sec. For the highly
damped heaving motions, the amplitude response function is

H(T) = 1(
1 − T2

nz

T2

)
+ i2

bz

bcz

Tnz

T

� 1(
1 − 14.6

T2

)
+ i2(0.7)

3.82
T

From eq. 10.55, we obtain

H(T)H∗(T) = H2
ABS(T) − 1(

1 − 14.6
T2

)2

+ 28.6
T2

The wave spectrum and the amplitude response function, HABS(T), are plotted
in Figure 10.11. The peak value of HABS(T) occurs at a wave period of approx-
imately 33 sec because of the high damping. That is, the amplitude response
function is damping-dominated, as opposed to that of Example 10.6, which
is resonance-dominated. Because the peak value of HABS(T) occurs at a high
wave period, the two normalized functions are presented as functions of T/To

in Figure 10.11, where To is the modal period of the wave spectrum. From an
expression similar to that in eq. 10.60, the mean-square heaving amplitude of
the system is approximately 0.453 m2, and the corresponding root-mean-square
value is Zrms � 0.673 m.
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Figure 10.11. Normalized Bretschnei-
der Wave Spectrum and Amplitude
Response Function for Example 10.7.
The Bretschneider spectrum is normal-
ized by using the modal period (To) of
eq. 5.45, which is approximately 7.19 sec,
whereas the absolute value of the ampli-
tude response function is normalized by
using its maximum value, which occurs
at a period of about 33 sec. The peak val-
ues for the wave spectrum and response
function are approximately 0.565 m2/s
and 1.00, respectively.

To determine the extreme heaving amplitude of the buoy, we first associate
a probability function to the amplitude. Noting that the Bretschneider spec-
tral formula is based on the assumption of Rayleigh-distributed wave heights,
the Rayleigh probability density function of eq. 5.19 is used as a model for the
probability distribution of the amplitude. The result is

p(Z) = 2Z

Zrms
2 e−
(

z
zrms

)2

� 2Z
0.6732

e−
(

z
0.673

)2

� 4.416Ze−2.208Z2
(10.61)

The corresponding probability of occurrence needed to determine the extreme
or maximum heaving amplitude is

P(Zmax < Z ≤ ∞) =
∞∫

Zmax

p(Z)dZ = e−
(

Zmax
Zrms

)2

� e−2.208Z2
max � 1

NM
(10.62)

The last term in this equation is the ratio of the observed maximum amplitude
(there can only be one maximum) over a measured sample, NM, at the site,
where M is the number of years during which the measurements are made.
Because each passing wave is assumed to cause a heaving motion, we can
determine the number of observations over one year (NM = N1) by noting that
the average wave period is 7 sec. The one-year sample based on the average
wave period is N1 = (60/7) × 60 × 24 × 365 � 4.505 × 106. By rearranging the
expression in eq. 10.62, we find that the expression for the expected maximum
heaving amplitude over one year is

Zmax|M=1 = Zrms

√
ln(NM)|M=1

� 0.673
√

ln(4.50 × 106) � 2.63 m (10.63)

For the Rayleigh-distributed wave heights at the site, we find that the expected
extreme wave height over one year is Hmax � 6.98 m from eq. 5.25. So, the free-
board of the buoy greater than Hmax/2 – Zmax = 0.86 m to prevent the deck
becoming awash. In reality, the deck of this can buoy would be several meters
above the SWL to prevent the buoy from being a navigation hazard.
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Several notes concerning this section: The random sea is assumed to be com-
posed of long waves, that is, the wavelengths (�) of the component waves are
assumed to be much greater than the buoy radius, a. The excitation of the heaving
motions is then hydrostatic in nature, and the short-wave effects, such as diffraction,
are neglected. Furthermore, both the sea and the resulting motions are assumed to
be linear. These somewhat idealistic assumptions are made simply to facilitate the
discussion of motions excited by random waves. The equations presented can be
used by engineers to obtain good first approximations of the forces and motions.
For additional reading on the subject of random phenomena, the books by Bendat
and Piersol (1971) and Lutes and Sarkami (1997) are recommended.

10.4 Closing Remarks

A segment of the readers might consider some of the topics in this chapter to be
a little too “basic.” For most readers, the material of the chapter is considered to
be more a review rather than an introduction. Many of the mathematical expres-
sions are the foundations for those found in Chapter 11, where the respective wave-
structure interactions of floating bodies are discussed.



11 Wave-Induced Motions of Floating Bodies

Equipped with the basic analytical methods presented in Chapters 9 and 10, the
wave-induced motions of floating bodies are discussed in this chapter. In Chapter 12,
the final chapter of this book, those methods are applied to the wave-structure inter-
actions of fixed structures. In this book, fixed structures are those that are either rest-
ing on the sea bed or directly supported by foundations in the bed. Floating bodies
include ships, floating platforms, buoys, and other specialized bodies that are either
under way or maintained in position by moorings. The motion of ships in waves is
a topic in the field of naval architecture referred to as seakeeping. Thorough cover-
ages of seakeeping are found in the writings of Korvin-Kroukovsky (1961), Newman
(1977), Bhattacharyya (1978), Lloyd (1989), and Faltinsen (1990, 2005) among oth-
ers. Floating bodies discussed in this chapter that are not normally under way are
referred to herein as ocean engineering bodies, as opposed to ships. The geometry of
an ocean engineering body normally has two vertical planes of symmetry, whereas
ships have one, called the centerplane.

In this chapter, the degrees of freedom (surge, sway, heave, roll, pitch, and yaw)
of a floating body are introduced and the coupled heaving and pitching motions
are analyzed. The stability of a body in calm water is first discussed. Methods of
motion analysis are then introduced that lend themselves to both analytical and
simple numerical solutions. Body motions in waves are analyzed using the linear
strip theory. This method has its foundation in fluid mechanics, and its application
to floating bodies was first done by A. Krylov (1896), according to Pedersen (2000).
The strip theory was revised over a half-century later by Korvin-Kroukovsky (1955).
As presented by that author, the method was later corrected and refined by Korvin-
Kroukovsky and Jacob, (1957). The work of these authors was, in turn, modified by
Motora (1964). Those papers describe the application of the strip theory to the pla-
nar motions of ships in regular seas. The theory was expanded by Salvesen, Tuck,
and Faltinsen (1970). That work is considered to be the cornerstone of contem-
porary ship-motion analysis using the strip theory. An excellent review of the lin-
ear strip theory is presented by Bishop and Price (1979). There have been several
formulations of nonlinear strip theories. One of these is the “quadratic theory” of
Jensen and Pedersen (1978).

The flows involved in the linear strip theory are two-dimensional and, hence, the
hydrodynamic analyses presented are also two-dimensional. Following an introduc-
tion to body motions, several methods for obtaining the hydrodynamic coefficients

376
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Figure 11.1. Floating, Vertical, Circular Cylinder in Calm Water. Note that the waterplane
area for the rotationally displaced cylinder is elliptical. In (a) i,j,k are unit vectors, and � is
the freeboard.

are presented. The first two of these methods are analytical, and are based on the
assumption of irrotational flow excited by the body motion. The last method is the
Green’s function method, which is numerical in nature. Because of the intent of
the book, the latter method is simply outlined.

Moorings and their effect on the body motions are then considered. Two types
of moorings are discussed. The first is slack mooring, where the orientation of the
mooring line is dependent on the cable weight and any current that might exist.
The second is tension mooring, where the geometry of the deployed mooring line is
essentially rectilinear. The tension in the line depends on both the buoyancy of the
moored body and the mass density of the cable.

A note to the reader: The analytical techniques in this section were developed
some time ago. These techniques are used today in analyses and are presented
herein for their educational value.

11.1 Hydrostatic Considerations – Initial Stability

The hydrostatic theorem due to the observations of Archimedes is presented in
Section 2.1. In Chapter 10, the hydrostatic restoring force inclusion in the equa-
tion of heaving motions of a floating, vertical, circular cylinder is discussed. We now
direct our attention to the stability of a floating body. The vertical circular cylinder
sketched in Figure 11.1 is used in the following development to demonstrate the
applicability of the derived equations.

A surface ship will capsize because of a rolling instability. This occurrence of
the instability depends on the relative moments of the hydrostatic restoring force
and the displaced center of gravity of the ship. Although the analysis of the pitching
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motion of a ship is similar to that for rolling, pitching instabilities do not normally
occur because of the large ship length-to-wavelength ratio. An excellent discussion
of the hydrostatic considerations of ships is found in the book by Jensen (2001).

Consider the circular, cylindrical buoy in calm water sketched in Figure 11.1,
where the cylinder is shown in the designed (initial) condition in Figure 11.1a, and in
the displaced condition in Figure 11.1b. In the design condition, the axis of symmetry
is co-linear with the vertical axis, z. In Figure 11.1a, we see that the diameter of the
cylinder is D = 2a, where a is the radius, and the draft is d. The waterplane (the
displaced water area at the SWL) is a circle for this body in the design condition.
The waterplane area is then Ac = �a 2 = �D2/4. When the body is given an angular
displacement, �, the waterplane becomes an ellipse, with a major axis of D/[cos(�)]
and a minor axis of D. The waterplane area of the displaced cylinder becomes Ae =
�D2/[4cos(�)]. For the floating cylinder, we have chosen to use the subscript c to
identify the circular design waterplane area, and e to identify the displaced elliptical
waterplane area. When the body is displaced, there are both a lost buoyancy, due
to the part of the body that leaves the water (on the right side of the y-axis), and
a gained buoyancy, due to the part that enters the water (on the left side). The net
gain in buoyancy (Fgain) must be equal in magnitude to the net loss (Floss) because
the displaced volumes are equal for this body. The line of action of a buoyant-force
component is at a distance s from the vertical axis. Because the component forces
are equal, there is no net change in the buoyant force (FB) acting on the body. We
know that the buoyant force must equal the weight of the displaced water (referred
to as the displacement). For the body to be in static equilibrium, as sketched in
Figure 11.1a, the buoyant force and the weight of the body are both equal and co-
linear. The expression for the buoyant force is then given by

FB = −W = (�g∨)k =
(

�g�
D2

4
d
)

k = (�g�a2d)k (11.1)

Here, k is the unit vector in the vertical direction, and ∨ is the volume of the dis-
placed water.

When the body is displaced, the center of buoyancy, B, moves to the point B′,
as shown in Figure 11.1b. This new position is the centroid of the displaced water
volume. The horizontal distance between B and B′ is XB. The line of action of the
buoyant force intersects with the centerline of the body at M, which is called the
metacenter. The metacentric height (GM) is defined at the distance between G and
M. For the displaced body, we can relate this distance to the displacement angle as

GM = XB

sin(�)
∓ GB (11.2)

The negative sign is used when the center of gravity (G) is above the center of
buoyancy (B), and the positive sign when G is below B. The distance GB = |OG −
OB| is known because it is a design input.

To determine the horizontal shift (XB) of the center of buoyancy, consider the
sketch in Figure 11.2. In the figure, the displaced water volumes are shown. To facil-
itate the analysis, the x- and z-axes have been rotated through the angle � in this
sketch so that the circular waterplane is horizontal. Referring to Figure 11.2 for
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notation, the magnitudes of the gained and lost buoyancies in the displaced condi-
tion are

|Fgain| = |Floss| = �g
∫ ∫

Ac/2

�tan(�)dAc

= �g

a∫
0

�tan(�)2�d� = 2�g

a∫
0

�tan(�)
√

a2 − �2d� = 2
3

�ga3tan(�) (11.3)

In this equation, the first line is generic, having applicability to any surface-piercing
body, whereas the second line applies to the cylinder sketched in Figure 11.1. The
local coordinates (�, �) are in the undisturbed waterplane, which is a circle of
radius a. In Figure 11.2, the elemental area of the circle is dAc, and that of the dis-
placed elliptical water plane is dAe. Note that in the design condition, there is no
curvature of the body surface in the axial direction at the waterplane. The body is
said to be wall-sided under this condition. Although the gained and lost buoyancies
cancel each other, they each produce buoyant moments, the sum of which equals
the moment of the displaced buoyant force in eq. 11.2. The buoyant moment about
the point B in Figure 11.1b is then obtained from

∫ ∫
Ac

(�g�)�tan(�)dAccos(�) = �g

a∫
−a

�2(2
√

a2 − �2)d�sin(�) = �g�
a4

4
sin(�)

= �gIysin(�) = FB XB = (�g∨)XB (11.4)
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In this equation, Iy is the second moment of the waterplane area with respect to the
y-axis. For the circular cylinder in Figures 11.1 and 11.2, Iy = �a4/4. The expression
for XB is obtained from eq. 11.4. The resulting expression is

XB = Iy

∨ sin(�) (11.5)

The combination of this expression with that in eq. 11.2, eliminating XB, results in
the following expression for the metacentric height:

GM = Iy

∨ ∓ GB (11.6)

This equation applies to any floating body, where again Iy is the second moment of
the waterplane area with respect to the y-axis. The negative sign (−) in eq. 11.6 is
used when G is above B in Figure 11.1, and the positive sign (+) when B is above
G. Referring to Figure 11.1b, we see the following are the conditions of stability for
the body:

(a) When GM > 0, the body is stable, and will return to the design position when
released.

(b) When GM = 0, the body is neutrally stable, and will not move when released.
(c) When GM < 0, the body is unstable, and will capsize when released.

EXAMPLE 11.1: ROLL STABILITY OF A CAN BUOY A 0.305-m-diameter can buoy is
1.83 m in height. The buoy is designed to be a channel marker over the New
York Bight. The salt water at the site has a mass density (�) of 1030 kg/m3.. The
unballasted weight of the uniform, unballasted buoy is 445 N. A ballast weight
of 445 N is added with its center of gravity 0.0305 m above the base (K) of
the buoy. For the ballasted buoy, the draft is d = W/(�g�a2) � 1.21 m. Hence,
the freeboard (�) is 0.62 m; this is the vertical distance from the SWL to the
deck. The position of the center of gravity (G) is 0.737 m below the SWL. This
is found by taking moments of the ballast and buoy weights about the origin
(O) of the coordinate system in Figure 11.1. The center of buoyancy (B) is at
z = −d/2 = −0.605 m, and above G. In eq. 11.6, the positive sign then applies.
For the circular waterplane, the second moment of area is Iy � 4.25 × 10−4 m4.
From eq. 11.6, the metacentric height is GM = 0.137 m. Because GM > 0, the
buoy is stable.

The transverse stability of a barge is discussed and illustrated in Example
11.11. The hydrostatic restoring force and moment terms in the coupled equa-
tions of the heaving and pitching motions of a floating body in waves are derived
later in this chapter.

11.2 Floating Body Motions

Consider the floating deep-submergence vehicle (DSV) sketched in Figure 11.3. As
illustrated, there are six degrees of freedom. Those are the three rectilinear motions
called surging (motion in the x-direction), swaying (motion in the y-direction), and
heaving (motion in the z-direction), and the three angular motions called rolling
(motion about the x-axis), pitching (motion about the y-axis), and yawing (motion
about the z-axis). Three of the degrees of freedom (heaving, rolling, and pitching)
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Figure 11.3. Degrees of Freedom of a Floating Body. The velocity potentials associated with
the waves produced by the body motions are as follows: surge (�1), sway (�2), heave (�3), roll
(�4), pitch (�5), and yaw (�6). Here, the body is a deep-submergence vehicle (DSV). Because
the design of the DSV hull is based on full-submergence operation, the motions while on the
free surface can be quite large, making life for the crew quite uncomfortable.

are oscillatory in nature because they are subject to either a gravitational restor-
ing force (heaving) or a gravitational restoring moment (rolling and pitching). As a
result, there are natural periods of motion associated with these oscillatory motions.
We could consider these motions analogous to a spring-mass-damper system, as dis-
cussed in Chapter 10. In that context, one would consider the floating structure to
be to a system having a soft spring because the restoring force due to gravity is rela-
tively small compared to the inertial force of the floating body. The relatively small
force ratio results in a rather large natural period and, as a result, the motions of
floating bodies are excited by passing waves. See eq. 10.13, which relates both the
natural frequency and period of the heaving cylinder (sketched in Figure 10.1) to
both the body geometry and the tension-mooring lines.

A. Boundary Condition on the Body

The boundary condition on the floating body, referred to herein as the body con-
dition, is the requirement that the normal velocity component of water particles
adjacent to a body must be equal to the normal velocity component of the body.
The analytical technique used here to obtain the body condition is rather standard
in the field of fluid dynamics. According to Lamb (1932), the origin of the technique
appears to be in a work by Thomson (1848). In the following paragraphs, we discuss
the technique and apply it to several body shapes of interest.

The geometry of any three-dimensional moving body, floating or fixed, can be
represented in functional form as

S(x, y, z, t) = 0 (11.7)

We refer to this in this book as the body function. The time, t, appears in the function
because the body is in motion. The total time-derivative of the body function is

DS
Dt

= ∂S
∂t

+ V ·∇S = ∂S
∂t

+ u
∂S
∂x

+ v
∂S
∂y

+ w
∂S
∂z

= ∂S
∂t

+ V · n|∇S| = 0 (11.8)

Here, V = ui + v j + wk is the velocity of the adjacent water particles, and n =
∇S/|∇S| is the normal unit vector on the wetted body surface, outward to the fluid
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and inward to the body. One can see that the relationship for the unit vector is
obtained directly from the equation. As in eq. 2.65, the notation D( )/Dt is used to
represent the total time-derivative. The expression for the normal velocity compo-
nent of the fluid on the surface is obtained from the last equality in eq. 11.8. The
result is

V · n = (ui + v j + wk) · ∇S
|∇S| =

(
u

∂S
∂x

+ v
∂S
∂y

+ w
∂S
∂z

)(
1

|∇S|
)

= −
∂S
∂t

|∇S| (11.9)

Assuming that the flow about the body is irrotational, the fluid velocity components
can be written in terms of the velocity potential. For irrotational flow, the body
condition then results in

∂�

∂x

∣∣∣∣
s

∂S
∂x

+ ∂�

∂y

∣∣∣∣
s

∂S
∂y

+ ∂�

∂z
∂S
∂z

∣∣∣∣
s
= −∂S

∂t
(11.10)

To illustrate the application of eqs. 11.9 and 11.10, the body condition is applied
to a semi-submerged, heaving sphere in the following example.

EXAMPLE 11.2: BODY CONDITION FOR A SEMI-SUBMERGED, HEAVING SPHERE The
equation for a semi-submerged, floating sphere (wetted hemisphere) sketched
in Figure 11.4 is

x2 + y2 + z2 = a2, z < 0 (11.11)

The sphere is forced to heave with a circular frequency 
. For this reason, let us
isolate the z-coordinate and write eq. 11.11 as

z =
√

a2 − x2 − y2 + Zoe−i
t , z < 0 (11.12)

The body function of eq. 11.7 is then

S(x, y, z, t) = z −
√

a2 − x2 − y2 − Zoe−i
t = 0 (11.13)

Here, the amplitude of the body motion is Zo. The body condition for the semi-
submerged, floating sphere in Figure 11.4 is found by combining the expression
in eq. 11.13 with that in eq. 11.10. The result is

∂�

∂x
x
z

+ ∂�

∂y
y
z

+ ∂�

∂z
= − z

a
Vz (11.14)

Note that the only imposed velocity is the heaving velocity, Vz = dz/dt =
−i
Zoe−i
t , where Zo is the motion amplitude.
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Figure 11.5. Planar Displacements of a Strip on a Wetted Boat Hull over Time t. The center of
gravity of the body is denoted as G. The axis of rotation (not shown) is through G and parallel
to the y-axis. The hull velocity, U, is constant. In the figure for t > 0, we see that the vertical
velocity component with respect to the water, due to the hull velocity, is in the negative Z
direction.

In the books of Stoker (1957) and Dean and Dalrymple (1984), the methodol-
ogy of this subsection is used to determine both the free-surface and seafloor condi-
tions. In Chapter 3, these boundary conditions are derived by using more heuristic
approaches.

B. Heaving and Pitching Equations of Motion

Consider the x-z planar motions of the surface craft sketched in Figure 11.5. These
motions are surging, heaving, and pitching of the vessel. In the derivations that fol-
low, we consider the surging motions to be of second order compared to heaving
and pitching, and our attention is focused on the heaving and pitching motions.
However, the craft is traveling in the x-direction at a velocity U, as shown. As
sketched in Figure 11.5b, a body coordinate system (X, Z) connected to the body is
introduced on the waterline above the center of gravity of the body. The equations
of motion for the heaving and pitching are written in terms of the body coordinate
system.

If we have a model of the vessel sketched in Figure 11.5, we would find that a
forced heaving displacement of the model would also result in an angular (pitching)
displacement. Similarly, if we pushed down on the shroud of the propeller to force a
pitching displacement, a heaving displacement would also occur. In other words, for
that particular hull shape, the heaving and pitching motions are said to be coupled.
The coupled equations of motion are obtained by applying Newton’s second law of
motion, which describes the heaving motions of a moored can buoy (see eq. 10.1).
The respective equations of motion for a heaving and pitching floating body are

m
d2z
dt2

= Fh + Fv + F
 = Fh + Fv + (Fw + FwZ + Fa + Fr ) (11.15a)
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and

IY
d2�

dt2
= Mh + Mv + M
 = Mh + Mv + (Mw + MwZ + Ma + Mr) (11.16a)

In eq. 11.15, m is the mass of the body, Fh is the hydrostatic restoring force, Fv is the
viscous damping force, and F
 is the sum of the hydrodynamic forces. The hydrody-
namic forces include the wave-induced force (Fw), the wave-body interaction force
(FwZ), the inertial reaction force, (Fa), and the radiation damping force (Fr). The
inertial reaction and radiation damping forces are reactions to the body motions.
The hydrodynamic force components are discussed in Section 11.3. In eq. 11.16, IY

is the body mass moment of inertia with respect to the axis (Y) through the center
of gravity and parallel to the y-axis, and the moments corresponding to the forces in
eq. 11.15 are identified by M.

We distinguish between body properties and area properties by using italicized
letters to identify the former and nonitalicized letters for the latter. For example,
the mass-moment of inertia of a body is represented by IY, and the second moment
of area by IY. The y-axis is fixed on the free surface. The terms on the right side of
eq. 11.16a are the counterclockwise moments about the Y-axis corresponding to the
forces in eq. 11.15a. The Y-axis is not shown in Figure 11.5.

Equations 11.15a and 11.16a can be rearranged and written respectively as the
following second-order, coupled equations of motion for heaving and pitching:

(m + aw)
d2 Z
dt

+ b
dZ
dt

+ cZ + d
d2�

dt2
+ e

d�

dt
+ f� = Fw(t) (11.15b)

where aw is the added mass (the mass of water excited by the body motions), and

(IY + Aw)
d2�

dt2
+ B

d�

dt
+ C� + D

d2 Z
dt2

+ E
dZ
dt

+ FZ = Mw(t) (11.16b)

where Aw is the added-mass moment of inertia. Note that the script “w” is associ-
ated with the added mass, whereas the subscript “w” identifies wave properties. The
coefficients in these two equations are defined in the next section. To do so, the strip
theory is used, as presented by Korvin-Kroukovsky and Jacobs (1957).

C. Introduction to Strip Theory

Consider the boat traveling at a velocity U in the x-direction, as sketched in Fig-
ure 11.5a. Referring to that sketch, the strip is a section of the wetted hull having
a horizontal elemental thickness equal to the differential d� . The strip is located
at a horizontal distance � from the center of gravity (G). The vertical coordinate
attached to the waterline above G is Z, and the transverse coordinate is Y. We can
imagine that the wetted part of the body is composed of an infinite number of these
strips all glued together. The skin of the strip under consideration has curvature in
a plane parallel to the y-z plane, as sketched in Figures 11.5a. The keel depth of
the strip is d� at a distance � from the center of gravity. The maximum value of this
depth is the draft, d. The width of the strip at the waterplane (where Z = 0) is B� (�),
and the maximum width is the beam, B. Strip theory is a method for determining the
hydrodynamic forces on a floating body by, first, determining those forces on a strip,
and then summing (integrating) the forces over the length of the body.

Following Korvin-Kroukovsky and Jacobs (1957), the hydrodynamic force, F
,
is composed of three separate forces. These are the wave-induced force, the force
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due to the body motions, and the force due to the wave-body interaction. The hydro-
dynamic forces can be obtained by using one of several methods. In this book, we
present three such methods. The first is the analytical method of Lewis (1929), which
is based on the motions of a body in a potential flow, as discussed in Section 9.2. This
method leads to an added-mass expression that is independent of the excitation
frequency. Because Lewis was interested in the vibrations of ships, the method is
most applicable to motions at high frequencies. Actually, the frequency can be con-
sidered to be infinite and, therefore, no radiation damping coefficient results from
this analysis. The second method is, again, based on potential theory, and results
in both frequency-dependent added mass and radiation damping coefficients. The
last method is called Green’s function method, and is a numerical technique for
most practical body shapes. The method applies to strips of any shape. For in-depth
discussions of the latter method, see Anderson and Wuzhou (1984) and Wang and
Miner (1989), among others. As stated previously, when the forces on the strip have
been defined, they are integrated over the hull length to obtain the total force on
the body and corresponding moment.

The goal of this section is to mathematically describe the coupled heaving and
pitching motions of a floating body by focusing on a strip of the hull. If the body
in question is a typical buoy, then the form of the hull is symmetric with respect to
the X-Y and Y-Z planes. For a boat hull, the symmetry is with respect to only the
X-Z plane (the centerplane), such as the boat hull sketched in Figure 11.5a. We shall
assume Y-Z body symmetry in the derivation of the equations of motions. For any
floating body shape, the waterline length is L in the X-direction. The notation for
the draft of a ship used by naval architects is normally T. Because this represents the
wave period in this book, d is used to represent the draft. Again, the strip is located
at a fixed distance � from the center of gravity, G. The center of gravity for this body
is at a distance, OG, below the waterplane. For the displaced body, the rotational
axis is Y, originating at G and parallel to the y-axis and the Y-axis.

Begin the analysis by considering the forced, X-Z planar motions of the boat
hull in calm water, sketched in Figure 11.5. We concentrate on the motions of the
center of gravity (G) of the hull and the strip. In Figure 11.5b, the strip is shown at
rest at time t = 0, and displaced at t > 0 in Figure 11.5c. The motions experienced
by the strip are assumed to be heaving in the Z-direction and pitching about an axis
through the center of gravity (G).

The vertical displacement of the point P on the back face of the strip is

�(�, t) = Z(t) + � sin[�(t)] � Z(t) + ��(t) (11.17)

Here, � = �(t) is the counterclockwise pitching angle about Y (through G). The
approximation in eq. 11.17 arises from the assumption that �(t) is small. In the
approximation, the angle is in radians. We note that there is a small horizontal dis-
placement, which is �[1 − cos(�]. Because of the small value of the pitching angle,
this displacement approximately equals zero. Our interest is in the relative motions
of the body with respect to the still water. Referring to Figure 11.5c, the vertical
velocity of the point P on the strip, with respect to the still water, is

VZ (�, t) = ∂�

∂t
= dZ

dt
+ � cos(�)

d�

dt
+ d�

dt
sin(�) � dZ

dt
+ �

d�

dt
− U� (11.18)

The term containing the speed of the craft, U, is in the words of Korvin-Kroukovsky
and Jacobs (1957), the “vertical velocity due to the instantaneous angle of trim �”
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(see Figure 11.5c). The approximate vertical acceleration of P with respect to the
adjacent water is

∂VZ

∂t
= ∂2�

∂t2
� d2 Z

dt2
+ d�

dt
d�

dt
+ �

d2�

dt2
− U

d�

dt
= d2 Z

dt2
+ �

d2�

dt2
− 2U

d�

dt
(11.19)

Here, the relative velocity due to the time-derivative of � is d�/dt = −U.
The forces on the body and the corresponding moments about the center of

gravity are derived in generic forms in the following paragraphs. An introduction to
these motion-induced forces is found in Chapter 10.

(1) Hydrostatic Restoring Force and Moment

Consider, again, the sketches in Figure 11.5. Assuming calm water, the hydrostatic
restoring force on the displaced strip in Figure 11.5c is

dFh = �g�(t) B� (�) d� � �g (Z + ��) B� (�) d� (11.20)

Here, the displacement expression is in eq. 11.17 and B� (�) is the breadth of the strip
in the waterplane. If the strip is wall-sided (having vertical sides at the waterplane),
then the strip breadth is not a function of time. The wall-sided condition is assumed
herein. The hydrostatic force on the body is obtained by integrating the expression
in eq. 11.20 over the body length, L. For the boat hull in Figure 11.5a, the resulting
hydrostatic force expression is

Fh = −�g

�fwd∫
−�aft

B� (�) d� Z − �g

�fwd∫
−�aft

B� (�) �d�� = −ch Z − fh� (11.21)

In this equation, the body length at the SWL is L = �aft + �fwd, where �aft and �fwd

are the respective distances between the center of gravity, G, and the stern and bow
at the waterline. The corresponding hydrostatic moment about G is

Mh = −�g

�fwd∫
−�aft

B� (�) �d� Z − �g

�fwd∫
−�aft

B� (�) �2d�� = −Fh Z − Ch� (11.22)

Again, the positive moment direction is in the counterclockwise direction, as is the
case for all moments in this book. The negative signs in eqs. 11.21, and 11.22 fol-
low from eqs. 11.15 and 11.16. The last equalities in the force and moment equa-
tions are introduced to show the association with the coefficients in eqs. 11.15b and
11.16b. Because the breadth B� (�) is a design input, the coefficients of Z and � are
known.

(2) Viscous Damping Force and Moment

The second force type is the damping due to the combination of viscosity and radi-
ation. The natures of the viscous damping force and the radiation damping force
are quite different, the former being nonlinear whereas the latter is linear and dis-
cussed later in this section. To facilitate the derivation of the strip theory, the viscous
force is represented by the equivalent linear viscous damping coefficient, derived in
Section 10.1C (see eq. 10.10). By doing so, we avoid the problems associated with
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the nonlinear (velocity-squared) viscous damping. The elemental, equivalent linear
viscous damping force on the strip is then represented by

dFv = b′
v
∂�

∂t
d� = b′

v

(
dZ
dt

+ �
d�

dt
− U�

)
d� (11.23)

In this expression, b′
v(� , 
e) is the equivalent, linear viscous damping coefficient per

unit length. The prime (′) indicates that the parameter in question is per unit length
along the hull (see Figures 11.5 and 11.6). The subscript v refers to the viscous damp-
ing. As demonstrated in Section 10.1C, the equivalent linear damping coefficient is
a function of the excitation frequency, 
e, which is the frequency of encounter if the
body is under way. Concerning this circular frequency: If the body is advancing with
the wave at a velocity of U, as in Figures 11.5a and 11.6a, the relative velocity of the
body with respect to the wave is the difference between the wave celerity, c, and U.
The frequency of encounter is then 
e = k(c − U), where k = 2�/� is the wave num-
ber. See Bhattacharyya (1978) for an excellent discussion of this frequency. More is
written of the frequency of encounter in Section 11.3B(1). Returning to the viscous
damping, the total viscous-damping force on the body in eq. 11.15a is expressed by

Fv(
e, t) = −
�fwd∫

−�aft

b′
v(�, 
e)d�

dZ
dt

−
�fwd∫

−�aft

b′
v(�, 
e) �d�

d�

dt
+ U

�fwd∫
−�aft

b′
v(�, 
e) d��

= −bv
dZ
dt

− ev
d�

dt
− fv� (11.24)

The corresponding radiation damping moment in eq. 11.24 is

Mv(
e, t) = −
�fwd∫

−�aft

b′
v(�, 
e) �d�

dZ
dt

−
�fwd∫

−�aft

b′
v(�, 
e) �2d�

d�

dt
+ U

�fwd∫
−�aft

b′
v(�, 
e) �d��

= −Ev
dZ
dt

− Bv
d�

dt
− Cv� (11.25)

Note that viscous damping in the paper of Korvin-Kroukovsky and Jacobs (1957)
is neglected. The reason for this is that viscous damping is normally considered to
be much less than the radiation damping for small heaving and pitching motions.
There are a number of situations in ocean engineering and naval architecture where
viscosity cannot be neglected. One example is when a ship is fitted with bilge keels
to introduce roll damping. Depending on the orientation of these hull appendages,
bilge keels can be the cause of significant damping in both heaving and pitching.

The radiation damping coefficient, b′
r, discussed later in the chapter, is due to

the creation of traveling waves by the body motions. This damping component is
included in the respective hydrodynamic force and moment in eqs. 11.15 and 11.16.
Later in the chapter, we shall assume that the radiation damping is much greater
than the viscous damping, as is normally done.

(3) Hydrodynamic Forces and Moments

As stated previously, there are three hydrodynamic forces considered. The first is
the wave-induced force. The second force is the reaction force of the ambient water
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Figure 11.6. Notation for a Strip of an Advancing Ship in Linear Waves. The wave celerity,
c, is in the direction of the ship velocity, U. This condition is known as a following sea, as
opposed to a head sea, where the directions of the vectors are opposite. The vertical velocity,
Vw(t), is that of the free surface. Also in (b) are the unit vectors j, k, and n. The origin of x,y,z
is fixed on the waterplane, and the origins of � and Y are at the center of gravity (G) of the
ship. The planar coordinate system fixed to the strip is Y� , Z� .

due to the motions of the body. The third force is that resulting from the wave-body
interaction. In the derivations of these forces herein, we shall rely on the analyses of
Korvin-Kroukovsky and Jacobs (1957).

Exciting Force: Consider a craft in a following sea, where the waves and the boat
travel in the same direction, as in Figure 11.6. The exciting force is the sum of the
wave force (Fw) and the wave-body interaction force (FwZ). These exciting-force
components are derived in Sections 11.3C(1) and 11.3C(3), respectively. The excit-
ing force is represented by

FW(
e, t) =
�fwd∫

−�aft

F ′
W(�, 
e, t) d� = Fw(
e, t) + FwZ(
e, t)

=
�fwd∫

−�aft

{F ′
w(�, 
e, t) + F ′

wZ(�, 
e, t)}d� (11.26)

The mathematical description of a traveling wave in Chapter 3 is in terms of the
inertial coordinates, x, y, and z. However, the force is determined by integrating
over the body coordinate � , where x = Ut ± � . This relationship assumes that G
was at x = 0 at t = 0. The velocity potential describing the flow induced by the
passing wave is discussed in Section 11.3.
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Returning to eq. 11.26, F ′
W(�, 
e, t) is the exciting force per unit body length, the

components of which are derived later in this chapter. The corresponding moment
about the center of gravity (G) is

MW(
e, t) = Mw(
e, t) + MwZ(
e, t) =
�fwd∫

−�aft

F ′
W(�, 
e, t) �d� (11.27)

In eqs. 11.27 and 11.28, the subscript W is introduced to represent the sum of the
forces associated with the wave encounter.

Inertial Reaction Force: The inertial reaction force on the strip is due to the time
rate of change of linear momentum of the ambient water caused by the strip
motions. This force is expressed by

∂

(
a′

w

∂�

∂t

)
∂t

d� =
[
∂a′

w

∂t
∂�

∂t
+ a′

w

∂2�

∂t2

]
d� =

[
∂a′

w

∂�

d�

dt
∂�

∂t
+ a′

w

∂2�

∂t2

]
d�

=
[
−U

∂a′
w

∂�

(
dZ
dt

+ �
d�

dt
− U�

)
+ a′

w

(
d2 Z
dt2

+ �
d2�

dt2
− 2U

d�

dt

)]
d�

(11.28)

The vertical velocity and acceleration relationships are from eqs. 11.18 and 11.19,
and d�/dt = −U, as before. The added mass per unit length of the body is repre-
sented by aw

′(�, 
e). The respective inertial-reaction force in eq. 11.15 and the total
inertial moment in eq. 11.16 are

Fa =
�fwd∫

−�aft

F ′
a� (�, 
e, t)d� = −

�fwd∫
−�aft

a′
w(�, 
e)d�

d2 Z
dt2

+ U

�fwd∫
−�aft

∂a′
w

∂�
d�

dZ
dt

−
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−�aft

a′
w(�, 
e)�d�

d2�

dt2
+ U


2

�fwd∫
−�aft

a′
w(�, 
e)d� +

�fwd∫
−�aft

∂a′
w

∂�
�d�


 d�

dt

− U2
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−�aft

∂a′
w

∂�
d��

≡ −aw

d2 Z
dt2

− ba
dZ
dt

− da
d2�

dt2
− ea

d�

dt
− fa� = −aw

d2 Z
dt2
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d2�

dt2
− ea

d�

dt
+ 0

(11.29)

and

Ma =
�fwd∫

−�aft

F ′
a� �d� = −

�fwd∫
−�aft

a′
w�d�

d2 Z
dt2

+ U

�fwd∫
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−
�fwd∫

−�aft

a′
w�2d�

d2�

dt2
+ 2U

�fwd∫
−�aft

a′
w�d�

d�

dt
+ U

�fwd∫
−�aft

∂a′
w

∂�
�2d�

d�

dt
− U2

�fwd∫
−�aft

∂a′
w

∂�
�d��

≡ −Da
d2 Z
dt2

− Ea
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dt2
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d�

dt
− Ca� (11.30)
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The subscript a identifies a quantity that is dependent on the added mass. Note that
in these equations, the integrals of spatial derivatives of the added mass over the
hull length vanish because the added mass equals zero at the bow and the stern. The
integrals of the moments of these derivatives do not vanish. Hence, ba = fa = 0 in eq.
11.29, as shown. The determination of the two-dimensional added-mass expressions
is discussed in the Section 11.3.

Radiation Damping Force: The last of the hydrodynamic forces is the radiation
damping force. This force results from the loss of energy by the floating body to two
systems of radiated waves created by the body motions. For the two-dimensional
case, these waves must satisfy the radiation condition at y = ±∞. Simply put, this
condition is that the radiated waves must be outward-bound at an infinite distance
away from the body. The radiation damping force is assumed to be linear in that
it is proportional to the vertical velocity of the strip raised to the first power. This
assumption is valid in most practical cases. We can represent the radiation damping
force by

Fr(
e, t) = −
�fwd∫

−�aft

b′
r
∂�

∂t
d� =

�fwd∫
−�aft

b′
r(�, 
e) d�

dZ
dt

−
�fwd∫

−�aft

b′
r(�, 
e) �d�

d�

dt

+ U

�fwd∫
−�aft

b′
r(�, 
e) d��

= −br
dZ
dt

− er
d�

dt
− fr� (11.31)

In this expression, b′
r(�, 
e) is the radiation damping coefficient per unit length. The

corresponding radiation damping moment in eq. 11.31 is

Mr (
e, t) = −
�fwd∫

−�aft

b′
r(�, 
e) �d�

dZ
dt

−
�fwd∫

−�aft

b′
r(�, 
e) �2d�

d�

dt
+ U

�fwd∫
−�aft

b′
r(�, 
e) �d��

= −Er
dZ
dt

− Br
d�

dt
− Cr� (11.32)

We see that both the radiation damping force and moment are frequency-
dependent. As is the case for the added mass, the radiation damping is discussed
in Section 11.3.

D. Coupled Heaving and Pitching Equations of Motion

The response forces in eq. 11.15a, the heaving equation of motions, and the corre-
sponding response moments in eq. 11.16a, the pitching equation of motion, have
now been defined. These linearized equations describe the coupled heaving and
pitching motions of a floating body traveling at a constant velocity (U) in the
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x-direction. Those respective equations are written as

(m + aw)
d2 Z
dt

+ (bv + br)
dZ
dt

+ ch Z + da
d2�

dt2
+ (ev + er + ea)

d�

dt
+ (fh + fv + fr)�

= Fw(
e, t) (11.33)

where m is the mass of the body, and

(IY + Aw)
d2�

dt2
+ (Bv + Br + Ba)

d�

dt
+ (Ch + Cv + Cr + Ca)� + Da

d2 Z
dt2

+ (Ev + Er + Ea)
dZ
dt

+ Fh Z = Mw(
e, t) (11.34)

Again, IY is the mass moment of inertia with respect to the athwart-ships axis (Y)
through the center of gravity, and 
e is the frequency of encounter discussed in
Section 11.3C(2). The generic expressions for the coefficients in these equations are
found in eqs. 11.21 through 11.32. The coupling terms are those having the d, e,
and f coefficients in eq. 11.33, and the D, E, and F coefficients in eq. 11.34. More is
written of the coupling terms in Section 11.3 and in the examples presented later in
this chapter. The coefficients in eqs. 11.33 and 11.34 are tabulated in Table 11.1.

Concerning the coefficients: When a body is symmetric with respect to the cen-
ter of gravity (G in Figure 11.6), then the added mass (a′

w), body breadth (B� ),
and viscous and radiation damping terms (b′

v and b′
r) are all even functions of the

variable � . The products of these terms and � are odd functions, as are the spatial
derivatives of the functions. Hence, the integrations of the odd functions over the
body length equal zero for a symmetric body. Furthermore, when the body is both
symmetric and not under way (U = 0), then all of the coupling terms vanish. That
is, the heaving and pitching motions of a symmetric body at rest are uncoupled.

A note concerning the notation in eqs. 11.33 and 11.34: When more than two
degrees of freedom are considered, it is common practice to use index notation. If
we designate the coordinates x, y, z as x1, x2, x3 and the rotational angles � , �, 

as x4, x5, x6 in Figure 11.3, then the coefficients in the six equations of motion are
ai,j, where the first subscript indicates direction of motion of the equation and the
second subscript indicates the coupled direction. For example, the first coefficient
in eq. 11.34 would be a5,5, and the fourth coefficient would by a5,3. The first coeffi-
cient then is for the motions in the �-direction (about the y-axis) due to the motions
in the �-direction. The fourth coefficient is for the motions in the �-direction due
to the motions in the z-direction. For planar motions, such as surging, heaving, and
pitching, the notation used in eqs. 11.33 and 11.34 is preferable.

Faltinsen (1974) presents the variations in the coefficients in Table 11.1 due to
both Ogilvie and Tuck (1969) and Salvesen, Tuck, and Faltinsen (1970). As previ-
ously written, the latter contains the version of the strip theory that is considered
to be the preferred version today. As noted in these papers and in that of Loukakis
and Sclavounos (1978), the strip theory is not valid near the ends of a floating body.

In the next section, expressions for the respective hydrodynamic forces Fw, Fa,
and Fr in eqs. 11.26 and 11.33, and their associated moments, are considered in more
detail.
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Table 11.1. Coefficients in the coupled heaving and pitching equations of motion
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11.3 Two-Dimensional Hydrodynamics – Vertical Body Motions

In this section, two-dimensional analyses of the hydrodynamic forces on a verti-
cally moving strip are presented. The analyses result in hydrodynamic coefficients
for the strip. The hydrodynamic coefficients are approximated by closed mathemat-
ical forms, as are the body shapes under consideration. Such body shapes include
the wedge, the conic sections, and the Lewis forms. The latter is introduced in
Section 9.2A(2). The method is based on the potential theory of fluid mechanics,
where the flow is considered to be irrotational. See Sections 2.3 and 9.2 for the
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derivations of some of the equations used in this section. In deriving the hydro-
dynamic coefficients, we follow the methodology of Korvin-Kroukovsky and Jacobs
(1957). Essentially, the method involves the potential describing the flow about a
two-dimensional body in an infinite fluid. To account for the free surface, half of the
flow field is used, that half being beneath the free surface. This method was mod-
ified by Motora (1964), who presents correction factors to improve the analysis of
the free-surface effects. In addition to the heaving and pitching motions, Motora
(1964) analyzes the hydrodynamic coefficients for the swaying of the strip.

After defining the form of the strip using the Lewis conformal mapping method
presented in Chapter 9, the wave-induced force on the strip is derived assuming that
the body is fixed in a moving sea. Then, the hydrodynamic forces due to the body
motions in a calm sea are derived.

In the determination of the added mass of the vertically moving Lewis form,
the method of Landweber and Macagno (1957) is used. Finally, the wave-body
interaction forces are determined. These correspond to the coefficients presented
by Korvin-Kroukovsky and Jacobs (1957).

A. Strip Geometries – Lewis Forms

The Lewis two-dimensional body shapes, or Lewis forms, are introduced in Sec-
tion 9.2A(2) of this book. In that section, it is shown how bodies of certain forms
moving in infinite ideal fluids can be represented using the conformal mapping tech-
nique employed by Lewis (1929). In this section, we demonstrate the use of the
technique in representing floating two-dimensional bodies with application to the
strip theory. For discussions of the conformal mapping applications to floating bod-
ies, the reader is referred to the papers of Landweber and Macagno (1957, 1959,
1967), Porter (1960), Macagno (1968), von Kerczek and Tuck (1969), and Faltinsen
(1974). In addition, the books of Bishop and Price (1979) and Lloyd (1989) contain
informative discussions of the Lewis forms.

In the following derivations, there are two complex planes to be considered. The
first of these we refer to as the transform plane or � -plane. The second plane is called
the physical plane or z-plane. The flow in the � -plane is conformally transformed to
a flow in the z-plane. An excellent discussion of the basics of conformal mapping is
found in the book by Schinzinger and Laura (2003).

Consider the horizontal motions of the strip in Figure 11.7b. The horizontal
velocity of the strip is VY(t) in Figure 11.7b. As stated previously, the strip geometry
of interest is a Lewis form. From Section 9.2A, a section of the submerged portion
of a craft, such as that sketched in Figure 11.7b, can be defined by coordinates sim-
ilar to those in eq. 9.34, where the radius of the transformed circle is a, as in Fig-
ure 9.7. Referring to Figures 11.7b and 11.7c, the Y- and Z-coordinates are known
as the physical coordinates. From the transformation resulting from eq. 9.27, the
physical coordinates can be written in terms of � = Rei � = ε + i� in Figure 11.7a.
The transformed complex variable, � , can also be written in terms of z. We are map-
ping the exterior points on the bodies in Figure 11.7 using a special case of a Laurent
series from the theory of complex variables. As a result, we can write the following
expressions for the transform pair:

z = Y + i Z = � + A1

�
+ A3

� 3

=
(

R + A1

R

)
cos(�) + A3

R3
cos(3�) + i

[(
R − A1

R

)
sin(�) − A3

R3
sin(3�)

]
(11.35a)
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Figure 11.7. Circle Transformed into a Lewis-Form Strip. The Lewis parametric values are
A1 = 0 and A3 = −0.111 in eqs. 11.35 and 11.36, as in the report of Wendel (1956). The Lewis
(1929) method can be used to determine the flows about both horizontally moving strips, as
in (b) and vertically moving strips, as in (c).

and

� = z − A1

z
−
(

A2
1 + A3

)
z3

(11.35b)

In this equation, A1 and A3 are called the Lewis parametric constants or, simply,
Lewis parameters. Both constants are real. The angular values of � = 0, �/2, �,
3�/2, and 2� in Figure 11.7a correspond to the same angular values of � in Fig-
ures 11.7b and 11.7c. Later, our focus is on the range of � that corresponds to the
submerged strip. That is, if Z = 0 is designated as the free surface, then the range
of interest for the angular variable is � ≤ � ≤ 2� in Figures 11.7b and 11.7c. From
eq. 11.35, the maximum values of the body coordinates respectively correspond to
� = 0 and � = �/2, where R = a. In the paper of Lewis (1929), the unit circle (a =
1) is transformed. Here, the radius, a, is retained in the derivations of the various
equations to remind the reader of the dimensional units of the variables. Following
the method of Lewis (1929), the resulting expressions for the maxima are

Ymax =
(

a + A1

a
+ A3

a3

) ∣∣∣∣
a=1

= 1 + A1 + A3 (11.36a)

and

Zmax =
(

a − A1

a
+ A3

a3

) ∣∣∣∣
a=1

= 1 − A1 + A3 (11.36b)

We note that these maxima depend on our choice of a and the design choices of
the Lewis parameters, A1 and A3. We see that A1 has units of (length)2, whereas A3

has units of (length)4. The expressions in eqs. 11.35 and 11.36 are used to determine
the shape of the strip. Equations 11.36a and 11.36b can be simultaneously solved to
obtain expressions for the Lewis parameters in terms of the maximum body coordi-
nates in the physical plane. However, this is somewhat misleading because the selec-
tion of A1 and A3 determine the body shape. To illustrate: If A1 = 0 and A3 	= 0, then
the maxima in eqs. 11.36a and 11.36b are equal for any finite value of A3. For exam-
ple, the strip geometry in Figure 11.8b corresponds to A1 = 0 and A3 = −0.111. For
these Lewis parametric values, one finds that Ymax = Zmax, as expected. The strip
geometry in Figure 11.8b is also used by Wendel (1954) as an application of the
Lewis (1929) conformal mapping method.
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Figure 11.8. Lewis Form Strip for which A1 = 0 and A3 = −0.111. The coordinate system
attached to the strip is Y� , Z� , and the coordinates of the strip are obtained from eqs. 11.38a
and 11.38b, multiplied by the scale factor in eq. 11.40b. The design breadth of the strip is
B� (�) = 4 m, and the design keel depth is d� (�) = 2 m. From Example 11.3, the area (S� ) of
the strip is approximately 7.66 m2.

The expressions for the maxima in eq. 11.36 can be incorporated in eq. 11.35 to
obtain the coordinates of any point in the flow field of the z-plane. The results are

Y = R
[(

1 + A1

R2

)
cos(�) + A3

R4
cos(3�)

]

= Ymax

(1 + A1 + A3)
R
[(

1 + A1

R2

)
cos(�) + A3

R4
cos(3�)

]
(11.37a)

Here, the coefficient in the second equality must be equal to 1 from eq. 11.36a.
Similarly, the vertical coordinate is

Z = R
[(

1 − A1

R2

)
sin(�) − A3

R4
cos(3�)

]

= Zmax

(1 − A1 + A3)
R
[(

1 − A1

R2

)
sin(�) − A3

R4
sin(3�)

]
(11.37b)

The coordinates of the strip profile at a longitudinal position of � are then

Z� ≡ Z(�, �) |R=a=1 = Zmax

(1 − A1 + A3)
[(1 − A1) sin(�) − A3 sin(3�)] (11.38a)

and

Y� ≡ Y(�, �)|R=a=1 = Ymax

(1 + A1 + A3)
[(1 + A1) cos(�) + A3 cos(3�)] (11.38b)
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Referring to Figure 11.8a, the subscript � identifies the longitudinal position of the
strip with respect to the center of gravity, G. The coefficients introduced in eq. 11.38
are obtained from eq. 11.36.

The area of the strip (or sectional area) can be obtained using the expressions in
eq. 11.38. The displaced Lewis-form area is obtained from

S� =
∣∣∣∣∣∣

Ymax∫
−Ymax

Z� dY�

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2�∫
�

Z�
dY�

d�
d�

∣∣∣∣∣∣ (11.39a)

The substitution of the coordinates in eq. 11.38 into the last integrand of this equa-
tion results in

S� =
∣∣∣∣∣−�

2
Ymax Zmax

(
1 − A2

1 − 3A2
3

)
[
(1 + A3)2 − A2

1

]
∣∣∣∣∣ (11.39b)

We note, again, that the nonitalicized letters, such as S, are associated with area
properties.

To apply eqs. 11.38 and 11.39 to a physical body, the expressions in the equa-
tions must be multiplied by a scale factor. To create the scale factor, we note that the
ratio 2Ymax/Zmax must equal to the breadth-to-keel-depth ratio, B�/d� , of the desired
strip. That is, using the results in eq. 11.36, we find B�/d� = 2Ymax/Zmax = 2(1 +
A1 + A3)/(1 − A1 + A3). By rearranging these equalities, the following expression
for the scale factor is obtained:

CSF−a = B�

2Ymax −a
= B�

2a
(

1 + A1

a2
+ A3

a4

) = d�

Zmax −a
= d�

a
(

1 − A1

a2
+ A3

a4

) (11.40a)

Note that the value of the scale factor depends on our choice of the value of the
radius a. Following Lewis (1929), we use the unit circle, a = 1. Although the resulting
expression appears to be dimensional, it is not. The resulting scale factor, as used in
the remainder of the chapter, is

CSF ≡ CSF−1 = B�

2Ymax
= B�

2(1 + A1 + A3)
= d�

Zmax
= d�

(1 − A1 + A3)
(11.40b)

EXAMPLE 11.3: LEWIS SHIP-SHAPE SECTION (STRIP) The shape in Figure 11.8b
corresponds to Lewis-parameter values of A1 = 0 and A3 = −0.111; hence, the
breadth-to-keel-depth ratio is B�/d� = 2Ymax/Zmax = 2, using the expressions in
eq. 11.36. Our goal is to design a floating body having breadth of B� = 4 m
that is uniform from the bow to the stern. Because of the chosen values of
A1 and A3, the keel-depth value is d� = 2 m. The scale factor in eq. 11.40b is
CSF = B�/(1.778) = d�/(0.889) � 2.25. Multiplying the expressions in eq. 11.38
by the scale factor, the following coordinate expressions of the Lewis form are
obtained:

Y� = B�

2Ymax

Ymax

(1 − 0.111)
[cos(�) − 0.111 cos(3�)]

= B�

1.778
[cos(�) − 0.111 cos(3�)] , � ≤ � ≤ 2� (11.41a)



11.3 Two-Dimensional Hydrodynamics – Vertical Body Motions 397

and

Z� = d�

Zmax

Zmax

(1 − 0.111)
[sin(�) + 0.111 sin(3�)]

= d�

0.889
[sin(�) + 0.111 sin(3�)] , � ≤ � ≤ 2� (11.41b)

The area of the strip (S� ), obtained by multiplying eq. 11.39 by the scale factor
squared (C2

SF), is approximately 7.66 m2. This strip is sketched in Figure 11.8b.

We must note that the results of the analysis of von Kerczek and Tuck (1969)
give us some caution as to the practicality of some of the geometries resulting from
the method of Lewis (1929). In Appendix 2 of the von Kerczek-Tuck paper, the
authors classify the Lewis forms as re-entrant, bulbous, tunneled-bulbous, and con-
ventional. The last of these types include ship-shapes, such as those in Figures 11.6
through 11.8. However, the first three types are somewhat unconventional, at least
in their application to the strip theory. The classification of Lewis forms by von Ker-
czek and Tuck (1969) is based on two non-dimensional geometrical groups. The
first of these is the ratio of the half-breadth to keel depth, called here the maxima
coefficient. This coefficient is

Cmax(�) = B�

2d�
= Ymax

Zmax
= 1 + A1 + A3

1 − A1 + A3
(11.42)

where the expressions for the maxima in eq. 11.36 are those resulting from the trans-
formation of the unit circle (where a = 1). Note that von Kerczek and Tuck (1969)
refer to the ratio in eq. 11.42 as the half-beam-to-draft ratio.

The second is the sectional area coefficient,

Carea(�) = S�

B� d�
= �

4

[
1 − A2

1 − 3A2
3

(1 + A3)2 − A2
1

]
(11.43)

obtained from eq. 11.39. The boundaries of the conventional Lewis forms, in
terms of the non-dimensional parameters in eqs. 11.42 and 11.43, are presented in
Figure 11.9.

In Appendix III of the paper by Lewis (1929), the author derives the expression
for the added mass of a section with “sharp bilges.” This analysis involves a Schwarz
(or Schwarz-Christoffel) transformation leading to body coordinates in terms of
elliptic integrals. This type of transformation is used to analyze sectional shapes hav-
ing sharp edges. For a rather thorough discussion of the Schwarz-Christoffel trans-
formation, see the book by Ablowitz and Fokas (1997). The sharp-bilge analysis of
Lewis (1929) is presented in Appendix F of this book.

Once the geometry of the strip has been defined, our attention is directed
toward the complex velocity potential describing the flow adjacent to the strip.
Following Korvin-Kroukovsky and Jacobs (1957), there are three velocity poten-
tials of interest. Those represent the flow due to a passing wave, the flow induced
by the body (strip) motions and, lastly, the wave-body interaction. The potentials
are needed to determine the corresponding dynamic pressure distributions over the
wetted surface of the strip. The potentials for these are presented in the next section.
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Figure 11.9. Validity Range for the Maxima and Sectional-Area Coefficients for Lewis Forms.
The respective expressions for Cmax and Carea are in eqs. 11.42 and 11.43. The two data points
(• and �) respectively correspond to the Lewis form in Example 11.3, where Cmax = 1 and
Carea � 0.957, and to a semicircular strip, where Cmax = 1 and Carea � �/4. For the latter, A1 =
A3 = 0. The validity range is due to von Kerczek and Tuck (1969).

B. Velocity Potentials

In hydrodynamic analyses, when the flow can be considered to be irrotational, then
the defining variable is the velocity potential. As previously written, the veloc-
ity potential representing the flow induced by the combination of the wave field
and the wave-induced body motions, according to Korvin-Kroukovsky and Jacobs
(1957), consists of three components. These are the incident-wave potential, the
body-motion induced potential, and the wave-body interaction potential. In the fol-
lowing subsections, these component potentials are discussed. By establishing the
mathematical forms of these potentials, the pressure distribution on the strip and
the corresponding vertical force can be determined.

(1) Incident Wave Potential

Referring to the sketch in Figure 11.6b, we consider the velocity potential describing
the flow induced by a linear traveling wave at the strip located at � . From eq. 3.24,
the free-surface displacement can be written as

� = H
2

cos[k(x − ct)] = H
2

cos[k(±Ut + � − ct)]

= H
2

cos[k� − (c ∓ U)t] = H
2

cos(k� − 
et) (11.44)

The velocity potential due to the passing wave is given in eq. 3.23. That potential at
the strip can be written as

�w(�, Z, t) = g

e

H
2

cosh[k(Z� + h)]
cosh (kh)

sin(k� − 
et) (11.45)

The origin of the x,y,z coordinate system is fixed in space on the calm-water surface.
The origin of the � ,Y,Z coordinate system is on the waterplane above the center of
gravity, G, of the vessel and moves with either a forward speed (U) or backward
speed (−U) in the x-direction. Also in eqs. 11.44 and 11.45 are the incident wave
height (H), the wave number (k = 2�/�), and the water depth (h).
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In eqs. 11.44 and 11.45, the apparent wave frequency, called the circular fre-
quency of encounter, is


e = 
 ∓ kU = k(c ∓ U) = 2�

�

(
�

T
∓ U

)
= 2�

Te
(11.46)

We see that this frequency depends on the velocity of the wave (the celerity, c) and
the velocity (U) of the body. If the body is at rest, then the frequency is simply that
of the wave, 
 = kc. When the body is traveling in the same direction as the wave,
as sketched in Figure 11.6a, the condition is called a following sea. The frequency of
encounter in this case is 
e = 2�/Te = 
 − kU = k(c − U), where Te is the period of
encounter. When the body and the wave travel in opposite directions, the frequency
of encounter is 
e = k(c + U), and the condition is called a head sea. By rearrang-
ing the terms in the frequency-of-encounter expression, we find Te = T/(1 ∓ U/c).
Finally, when the body and the wave have the same velocity, the period of encounter
becomes infinite because the body simply rides with the wave. Numerical values of
the frequency of encounter are found in Example 11.5. The frequency of encounter
does not affect the geometric properties of the wave. In the paragraphs that follow,
a following-sea condition is assumed.

The vertical component of the wave-induced velocity of the water particle at �

(where Z = Z� ) is obtained from

Vwz(�, Z� , t) = ∂�w

∂ Z�
= k

g

e

H
2

sinh[k(Z� + h)]
cosh(kh)

sin(k� − 
et) (11.47)

Referring to Figure 11.6b, the vertical velocity component of the particles on the
waterline at either side of the strip is assumed to be equal to the vertical velocity of
the free surface, as in eq. 3.3. From this assumption, we can write

Vwz(�, 0, t) ≡ Vw� = kg

e

H
2

tanh(kh) sin(k� − 
et) = 
2


e

H
2

sin(k� − 
et)

=
(





e

)2
∂�

∂t
(11.48)

The third equality results from the application of the dispersion relationship in
eq. 3.30. That is, the hyperbolic tangent has been replaced by 
2/kg.

Following Korvin-Kroukovsky and Jacobs (1957), the expression for the velo-
city potential in eq. 11.45 is used to determine the wave-induced force on the strip.
Furthermore, the velocity expression in eq. 11.47 is needed to determine the wave-
structure interaction pressure and force. This force is analogous to the diffraction
force discussed in Sections 9.2 and 10.4.

(2) Vertical Motions of Lewis Forms – Velocity Potential and Stream Function

From Chapter 9, the primary advantage of conformal mapping is that the form of
the complex potential (w) is the same in both the ς -plane and the z-plane. Hence,
when we transform the flow about a fixed circular cylinder of radius a in the ς -plane
to the z-plane, the portion of the potential corresponding to the flow about the a-
circle has the same form in both planes. Advantage is taken of this property in the
following derivation.
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Figure 11.10. Transformation of a Vertical
Flow about the a-Circle in the � -plane to
Vertical Flow about a Lewis Form in the
z-plane. The flow in the � -plane is rotated
by eq. 11.49. Note that the subscript �
signifies that the coordinates are in the
z-plane of the strip, as in eq. 11.38.

To transform the flow about the a-circle in the � -plane to obtain the flow excited
by the vertical motions of a strip in still water in the z-plane, an intermediate confor-
mal relationship is needed. The focus of attention here is on the complex potential
at any point in the fluid where R ≥ a. Then, as sketched in Figure 11.10a, the flow
about the a-circle in the � -plane and about the body in the z-plane are both rotated
through an angle of −�/2. As in Figure 11.10b, the strip is moving in the Z� (or z)
direction with a scaled velocity VZ(t), that is, the velocity in Figures 11.7a and 11.7c
is multiplied by the scale factor in eq. 11.40. Following Section 5.17 of the book by
Milne-Thomson (1955), to rotate the flows in the � -plane and z-plane so that the
body is traveling in the negative �- and z-directions, respectively, we introduce the
intermediate complex variables

� = Rei(�+ �
2 ) = i�

z = iz (11.49)

The plane in Figure 11.10a is called an intermediate plane. The relationship
between this plane and the physical plane is similar to that in eq. 11.25, where �

is replaced by � . Again, the flow is rotated through an angle of −�/2 to obtain flow
in the � -plane. The analysis then proceeds as before.

In determining the velocity potential about vertically moving Lewis forms in a
free surface, we use some of the aspects of the analysis of Landweber and Macagno
(1957). Those investigators present analyses of both horizontally moving strips and
vertically moving strips, as respectively sketched in Figures 11.7b and 11.7c. The
Landweber-Macagno technique can be used to analyze the potential flow about
bodies having other than Lewis forms. Landweber and Macagno (1957) begin by
assuming that the relationship between z and � is the following infinite series:

z = Y + i Z = A0� + A1

�
+ A2

� 2
+ A3

� 3
· · · = A0� +

∞∑
n=1

An�−n (11.50)

As in eq. 11.35, the coefficients, An, are real numbers. The series in eq. 11.50 repre-
sents a body having symmetry about the real axis. Bodies having double symmetry
(about both the flow axis and the axis normal to the flow axis) are represented by
expansions that include only the odd powers of � . The Lewis forms are included in
this group. In the paragraphs that follow, we confine our attention to the analysis of
the vertically moving strip having Lewis forms. Hence, the transformation described
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by eq. 11.35 is assumed. Horizontal (swaying) motions of strips having Lewis forms
are discussed in Section 11.5.

In Chapter 9, eq. 9.37 is the complex velocity potential describing the flow field
about a horizontally moving Lewis form. The form of the potential is similar to that
representing the rotated flows in Figure 11.10. Again, the rotation is accomplished
by using eq. 11.49. The complex potential for the vertically moving Lewis form in
Figure 11.10b is then

wZ

CSF−a
= (�Z + i�Z)

1
CSF−a

= (w� − iVZz)

=
[

VZ

(
i� + a2

i�

)
− iVZ

(
� + A1

�
+ A3

� 3

)] ∣∣∣∣
�=−i�

= −VZ

[
1
R

(a2 + A1) sin(�) + A3

R3
sin(3�)

]

− iVZ

[
1
R

(a2 + A1) cos(�) + A3

R3
cos(3�)

]
(11.51)

Concerning the second term in the second equality in this equation: The scaled
velocity, VZ = VZ(t), originally in the positive direction of the real axis in the z-
plane, is rotated according to iVZ. Also, the scale factor, CSF-a, is that in eq. 11.40a.
The results in eq. 11.51 are the same as those of Landweber and Macagno (1957).
Those investigators take a somewhat different approach to obtain the complex
velocity potential.

From eq. 11.51, the scaled velocity potential is

�Z = −CSF−a VZ

[
1
R

(a2 + A1) sin(�) + A3

R3
sin(3�)

]
(11.52)

We note that �Z = 0 on the Y-axis, where � = 0. This is a condition that is normally
met by velocity potentials representing flows produced by bodies undergoing high-
frequency vertical oscillations. The stream function in eq. 11.51 is

	 Z = −CSF−a VZ

[
1
R

(a2 + A1) cos(�) + A3

R3
cos(3�)

]
(11.53)

These expressions contain the undesignated radius, a, for a vertically oscillating
strip, a = a(t). This time-dependency of the transformed radius is a factor in deter-
mining the dynamic pressure on the oscillating strip, discussed later in this chapter.
For this reason, we delay the assumption that the transformed circle is a unit circle
(a = 1) until the final form of the dynamic pressure is determined. In addition, when
a is not designated, the scale factor in eq. 11.40a must be used.

To check the validity of the analysis, we apply the respective expressions for the
velocity potential and stream function in eqs. 11.52 and 11.53 to a floating, horizontal
circular cylinder in the following example.

EXAMPLE 11.4: VELOCITY POTENTIAL AND STREAM FUNCTION FOR A HEAVING

CIRCULAR STRIP When the floating body of interest is a circular cylinder, the
Lewis constants are A1 = A3 = 0. We shall transform the a-circle, where R = a.
If D is the diameter of the cylinder, the scale factor in eq. 11.40a is CSF−a =
D/2a. The velocity potential in eq. 11.52 for the flow adjacent to the body is
then

�Z|R=a = −VZ(t)
D
2

sin(�), � ≤ � ≤ 2� (11.54)
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From eq. 11.52, the corresponding stream function for this flow is

	 Z|R=a=1 = −VZ(t)
D
2

cos(�), � ≤ � ≤ 2� (11.55)

Compare these respective expressions with those in eqs. 9.18 and 9.19, where
in the Chapter 9 equations, r = a = D/2. We find that the respective equations
are not identical because the body motion for the cylinder in this example is in
the positive imaginary-axis direction, whereas in Figure 9.5 the body motion is
in the negative real-axis direction. Note that the results in eqs. 11.54 and 11.55
are also obtained when a = 1.

(3) Velocity Potential for the Wave-Body Interaction

The interaction of the motions of the wave and the body motions can be mathemati-
cally represented by the wave-body interaction potential, �wZ. In three-dimensional
analyses, this is analogous to the diffraction potential. In two dimensions, we have
chosen not to use this terminology because diffraction involves wave energy being
transferred along the crest, which is a three-dimensional phenomenon. See Section
6.4 for a discussion of wave diffraction.

Following Korvin-Kroukovsky and Jacobs (1957), the velocity potential expres-
sion describing the wave-body interaction is based on the form of eq. 11.51. In
place of the strip velocity VZ(t), the vertical component of the wave-induced par-
ticle velocity, −Vw(�, Z� , t), is used, which is obtained from eq. 11.47. The resulting
expression for the wave-body interaction potential at the strip is

�wZ = Vw(t)CSF−a

[
1
R

(a2 + A1) sin(�) + A3

R3
sin(3�)

]

= k
g


e

H
2

sinh[k(Z� + h)]
cosh(kh)

sin(k� − 
et) · (11.56)

CSF−a

[
1
R

(a2 + A1) sin(�) + A3

R3
sin(3�)

]
, � ≤ � ≤ 2�

Physically, this potential describes the flow field excited by the strip traveling in the
negative Z� direction with a velocity equal to the vertical particle velocity in a wave.

(4) Total Velocity Potential

The total potential describing the flow about the strip at a distance � from the center
of gravity, including the free surface, is

�� = �w + �Z + �wZ (11.57)

The potentials on the right side of the equation are given in eqs. 11.45, 11.52, and
11.56, respectively.

In the following section, the potential in eq. 11.57 is used to determine the
dynamic pressure distributions on the strip and the resulting vertical forces.

C. Hydrodynamic Pressures and Forces on the Strip in Deep Water

The dynamic pressure on the strip is found by combining the total velocity potential
in eq. 11.57 with the linearized Bernoulli’s equation, eq. 3.70. This pressure, called
the hydrodynamic pressure, is due to the combination of the flow adjacent to the
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strip, the relative motions of the strip and water particles, and the strip motions. At
any point on the strip surface, the resulting hydrodynamic pressure is

p� = (pw + pZ + pwZ)|R=a=1 = −�
∂��

∂t

∣∣∣∣
R=a=1

= −�
∂

∂t
(�w + �Z + �wZ)|R=a=1

(11.58)
Our interest is in both the pressure distribution on the strip and the resulting forces
on the strip. To obtain these, we consider separately the contributions of each of
the velocity potentials in eq. 11.58. Note that the partial time-derivatives of body-
motion potential, �Z, and wave-body interaction potential, �wZ, are taken prior to
the application of the pressure on the surface, as is discussed by Korvin-Kroukovsky
and Jacobs (1957). The reason for this is that the radius (a) of the transformed cir-
cle in the � -plane is a function of time because the strip in the z-plane moves with
respect to the physical axes, that is, in the � -plane, a = a(t). This is not the case
for the potential, �w, in the wave-induced pressure expression because the strip is
assumed to be fixed in the passing wave.

(1) Wave-Induced Pressure and Force

The pressure distribution on the edge of the fixed strip [where a 	= a(t)] due to the
passing incident wave is obtained from

pw(�, Z� , t)|R=a = −�
∂�w(�, Z� , t)

∂t

∣∣∣∣
R=a

= �g
H
2

cosh[k(Z� + h)]
cosh(kh)

∣∣∣∣
R=a

cos(k� − 
et)

= �g
H
2

{
1 + 1

2!
[k(Z� + h)]2 + 1

4!
[k(Z� + h)]4 + · · ·

} ∣∣∣∣
R=a

× cos(k� − 
et)
cosh(kh)

(11.59)

In the last equality, the frequency of encounter, 
e, has been replaced by the
following-sea equivalent (
 − kU) found in eq. 11.46. The series representation of
the hyperbolic-cosine ratio in the second line of this equation is introduced to facil-
itate the integration required to determine the vertical force on the strip. From this
point on, we shall follow Korvin-Kroukovsky and Jacobs (1957) by assuming that
the floating body is in deep water. The ratio of the hyperbolic functions in deep
water is approximated by

cosh[k(Z� + h)]
cosh(kh)

∣∣∣∣
h→∞

� sinh[k(Z� + h)]
cosh(kh)

∣∣∣∣
h→∞

� ek0 Z� = 1 + 1
1!

(k0 Z� ) + 1
2!

(k0 Z� )2 + · · · (11.60)

The wave-induced pressure distribution over the edge of the strip in deep water is
then obtained from

pw| h→∞
R=a

� �g
H0

2
ek0 Z� |R=a cos(k0� − 
et) = �g

∞∑
j=0

(k0 Z� )
j!

j ∣∣∣∣
R=a

H
2

cos(k0� − 
et)

= �g�0(�, 
e, t) +
∞∑
j=1

(k0 Z� )
j!

j ∣∣∣∣
R=a

�0(�, 
e, t) (11.61)

where Z� |R=a is the vertical dimensional coordinate of the strip surface in the
plane of the strip. The notation for the respective deep-water wave number and



404 Wave-Induced Motions of Floating Bodies

deep-water wave height are k0(= 2�/�0) and H0, which are used throughout this
book. In the second line of eq. 11.61, we see that the first term is simply the hydro-
static pressure due to the deep-water free-surface displacement, �0(� ,
e,t). As noted
by Korvin-Kroukovsky and Jacobs (1957) and Motora (1964), the last term is a mod-
ification to the hydrostatic pressure due to the exponential variation of the particle
motions with depth. This is known as the Smith effect.

The coordinates of the Lewis form are obtained by applying eq. 11.38 at R =
a = 1 and multiplying the result by the scale factor in eq. 11.40b. The resulting scaled
coordinate expressions are

Y� |a=1 = CSF [(1 + A1) cos(�) + A3 cos(3�)]

= B�

2

[
(1 + A1) cos(�) + A3 cos(3�)

1 + A1 + A3

]
, � ≤ � ≤ 2� (11.62a)

and

Y� |a=1 = CSF [(1 − A1) sin(�) − A3 sin(3�)]

= T�

[
(1 − A1) sin(�) − A3 sin(3�)

1 − A1 + A3

]
, � ≤ � ≤ 2� (11.62b)

Again, the strip is assumed to be rigidly fixed in the passing wave, so these coordi-
nates are not time-dependent as far as the passing wave is concerned. The expres-
sion for the scale factor, CSF, is in eq. 11.40b.

Referring to Figure 11.11, where s is the coordinate alongside the strip, the ver-
tical component of the wave-induced force on the strip is

F ′
wz(�, 
e, t) ≡ dFwz

d�
=
∫

pw|R=a=1 cos(�)ds

=

B�
2∫

− B�
2

pw|R=a=1dY� |R=a=1 =
2�∫

�

pw|R=a=1
dY�a

d�
d� |R=a=1 (11.63a)

The combination of this expression with those in eqs. 11.61 and 11.62b results in
the following expression for the vertical wave-induced force per unit length in deep
water:

F ′
wz(�, 
e, t)|h→∞ = �g

H0

2
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2�∫
�

[
1 + 1

1!
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]
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2
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{
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[
1 − A2
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3
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·
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1
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1

)
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3
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− 1
15

A3
(
1 − 6A1 + 5A2

1

)− 9
35

A2
3(5 − 7A1)

]]
· · ·
}

= �gB� �0(1 + CSmith) (11.63b)

The Smith correction factor, CSmith, results from the grouping of the frequency-
dependent (wave number dependents) terms in the expansion. The Smith effect
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Figure 11.11. Notation for the Force on a Vertically
Oscillating Strip.

and the Smith correction factor are discussed by Bhattacharyya (1978), Bishop and
Price (1979), Jensen (2001), and others. As previously mentioned, the hydrostatic
pressure on the strip is modified by the Smith effect to account for the variation of
the pressure with depth position on the strip. The wave-induced force in eq. 11.63b
is based on the assumption that the wave field is not affected by the presence of
the body. This is known as the Froude-Krilov hypothesis, and the force is called the
Froude-Krilov force. The hypothesis is named after two nineteenth-century investi-
gators, W. Froude in England and A. Krylov in Russia. In some Western writings,
the last name of the latter investigator is spelled either “Krilov” or “Kryloff.” Both
Froude and Krylov concluded that if the body dimensions are small when compared
to the wavelength, then the pressure field of the wave is not affected by the presence
of the body. The works of these pioneer researchers and others are described by S.
N. Blagoveshchensky. The book by Blagoveshchensky was first published in Rus-
sian in 1954. In 1962, a translation of the book by L. Landweber was published (see
Blagoveshchensky, 1962). Finally, we note that because the potential �wZ is included
in the analysis, the Froude-Krilov assumption concerning the body-to-wavelength
size relationship need not be made.

The expression in eq. 11.63b is now combined with eqs. 11.26 and 11.27 to obtain
the respective wave-induced force and moment on the floating body. To perform
the integrations in eqs. 11.26 and 11.27, the functional relationship between the keel
draft (d� ) and the distance (�) from the center of gravity of the body must be spec-
ified, assuming that the values of the Lewis constants, A1 and A3, are uniform over
the length of the body, that is, neither A1 nor A3 are functions of � . In eq. 11.63b,
we follow Korvin-Kroukovsky and Jacobs (1957), and retain only those terms con-
taining (k0d� )n where n ≤ 2 for all of the forces concerned. For application to a
semicircular strip, those authors show good agreement with experimental data with
this assumption.

In the next example, the wave-induced vertical force in eq. 11.63b is applied to
both a semicircular strip (where A1 = A1 = 0) and a strip having the shape of that
in Figure 11.8 (where A1 = 0 and A3 < 0). Our choice of the semicircular shape to
illustrate the applicability of the equations is due to the fact that this strip geometry
is used by Korvin-Kroukovsky and Jacobs (1957), Motora (1964), and others in their
strip-theory derivations.

EXAMPLE 11.5: WAVE-INDUCED VERTICAL FORCES ON TWO STRIP GEOMETRIES An
ocean engineer has been tasked to design a long, stiffened oil bladder for deep-
water operation. Two sectional areas are to be compared for this task, those
being a Lewis form strip in Figure 11.8b and a semicircular strip in Figure 11.12.
The design values for the Lewis form are given in Figure 11.8b. The two strips
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Figure 11.12. Notation for a Semicircular Strip in a
Passing Wave.

are to displace the same water volume, hence, the strip areas of the two must be
approximately equal to 7.66 m2. This value is obtained from eq. 11.39. Referring
to the sketch in Figure 11.12, the diameter (D) of the semicircular strip corre-
sponding to the sectional area is approximately 4.42 m. The operational design
sea is one having a wave height (H0) of 1.5 m and a period (T) of 7 sec in deep
water. For this wave-period value, the deep-water wavelength (�0) is approx-
imately 76.5 m, and the corresponding wave number (k0) is approximately
0.0821 m−1 (see eq. 3.31). The design towing speed (U) of the bladder is 1 m/s
(3.28 ft/s � 1.94 knots). The respective periods of encounter for head-sea and
following-sea conditions are approximately 6.41 sec and 7.70 sec from eq. 11.46.

Our interest here is in the maximum wave-induced Froude-Krilov force on
the strips when the strips are fixed. For the semicircular strip, the Lewis param-
eters are A1 = A3 = 0 in the wave-induced force expression in eq. 11.63b. The
expression for the wave-induced vertical force on the semicircular strip from
eq. 11.63b is approximated by

F ′
wz(�, 
e, t)|cir � �gD�0(�, 
e, t)

[
1 − �k0 D

8
+ (k0 D)2

12

]
(11.64)

where the salt water mass density (�) is approximately 1,030 kg/m3. For the
chosen Lewis form in Figure 11.8b, A1 = 0 and A3 = −0.111 in eq. 11.63b, and
the load-waterline breadth and draft are B� = 4 m and d� = 2 m, respectively.
That force equation is then approximately

F ′
wz(�, 
e, t)|h→∞ = �gB� �0

[
1 − �k0d�

4

(
(1 − 3A2

3)

1 + A2
3

)

+ (k0d� )2

21

(
7 − 20A3

3

)
(
1 + A2

3

)
(1 + A3)

· · ·
]

(11.65)

In both force equations, the series in the brackets are truncated at the second-
degree terms, as is done by Korvin-Kroukovsky and Jacobs (1957). The maxi-
mum values for each occur when the cosine term equals 1, or when a crest passes
(�0 = H0/2), as expected. The peak forces on the semicircular strip at the pass-
ing of a wave crest are approximately 29,090 N/m. For the Lewis form, the peak
forces are approximately 26,900 N/m. The respective hydrostatic forces on the
semicircle and Lewis form (from the first terms in the brackets of eqs. 11.64 and
11.65) are 33,500 N/m and 30,300 N/m. From these results, we conclude then
that the Smith correction factor reduces the predicted wave-induced hydrostatic
force on a strip.

One final note: The maximum and hydrostatic force values are based on the
assumption that the bodies are approximately wall-sided at the waterline, that
is, the sides of the strip at the waterline are vertical.



11.3 Two-Dimensional Hydrodynamics – Vertical Body Motions 407

Having derived the wave-induced pressure on a strip, we can now write the
general expressions for the total wave-induced force and moment in eqs. 11.26 and
11.27, respectively. These depend on the variations with � of the breadth of the body
at the waterplane [B� = B� (�)] and the keel depth [d� = d� (�)]. Both of these must
be specified. Special cases are dealt with later in the chapter.

(2) Motion-Induced Pressure and Force

The velocity potential representing the flow about the vertically moving, Lewis-form
strip in calm water is presented in eq. 11.52. That potential is now combined with the
corresponding dynamic pressure component of eq. 11.58 to obtain the dynamic pres-
sure due to the vertical body motion. In obtaining this pressure, we must account for
the time dependence of a. That is, because the submerged area of the strip varies in
time, the radius of the transformed a-circle must also vary. Noting then that a = a(t),
the time-derivative of the motion-induced velocity potential in eq. 11.52 is

∂�Z

∂t
= −CSF−a

{
∂VZ

∂t

[
1
R

(a2 + A1) sin(�) + A3

R3
sin(3�)

]
+ VZ

2a
R

da
dt

sin(�)
}
,

� ≤ � ≤ 2� (11.66)

where the scale factor, CSF-a, is defined in eq. 11.40a. The derivation of the time-
derivative of a is as follows: Following Korvin-Kroukovsky and Jacobs (1957), we
express the derivative in terms of the resting sectional area (S�-a) presented in eq.
11.39. The first term of the third line of that equation is used here. In terms of S� ,
the time-derivative of a is

da
dt

= da
d�

d�

dt
= − tan(�)U

=
(

da
dS�−a

)(
dS�−a

d�

)(
d�

dt

)
= 1

�C2
SF−aa

(
1 + A2

1

a4
+ 9

A2
3

a8

) (dS�−a

d�

)
(−U)

(11.67)

In this expression, da/dS�−a is obtained from eq. 11.39, and the angle � is that
between the bottom (keel) and the longitudinal (x) direction. The sectional area at
each �-value has the same form but different dimensions. Hence the Lewis parame-
ters (A1 and A3) are independent of � but a is not. We note that the time-derivative
of the radius, a, vanishes when either the sectional area (strip area) is uniform from
the bow to the stern or the body is not under way. To obtain the derivative da/dS�−a ,
write the sectional area expression in eq. 11.39 incorporating the scaling constant in
eq. 11.40a. The resulting area expression is

S�−a =
∣∣∣∣∣−�

2
C2

SF−aa2

(
1 − A2

1

a4
− 3

A2
3

a8

)∣∣∣∣∣ (11.68)

It is important to remember that the scale factor, CSF-a, is constant in both time and
space. Hence, the a appearing in eq. 11.40a is the design value that is independent
of time. After taking the derivative, da/dS�−a , the unit value of a can be applied.
The derivative dS�−a/d� in eq. 11.67 is a design parameter, as is illustrated in the
following example.
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Figure 11.13. Sketch of the Oil Bladder in Example 11.6.

EXAMPLE 11.6: SPATIAL VARIATION OF A SEMICIRCULAR SECTIONAL AREA From
the results in Example 11.5, the ribbed oil bladder having a circular-cylinder
section has been selected. This decision is based on fabrication rather than the
magnitude of the wave-induced force. Referring to the sketches in Figure 11.13,
the design dimensions of the semi-submerged body at any position � are B� =
D(�) = 2r(�) at the waterplane and d� = 1

2 D(�) = r(�) on the centerplane,
where the diameter of any section is D(�) and the radius is r(�). The maxi-
mum strip radius is ro at � = 0, and the length of the floating bladder is L. The
bladder is ballasted such that the center of gravity is at the center of the water-
plane. As stated earlier in this section, the circular cylinder is represented by
the Lewis form equations when A1 = A3 = 0. As sketched in Figure 11.13, the
design profile in the vertical centerplane is elliptic. The body is symmetric with
respect to the x-axis. For this geometry, the strip area (sectional area) at � is
obtained from

S�−a(�) =
∣∣∣−�

2
C2

SF−aa2
∣∣∣ = �r2

2
= �

2
r2

0

(
1 − 4

�2

L2

)
(11.69)

The spatial derivative of the area is then

dS�−cir

d�
= �r

dr
d�

= �r tan(�) = −4�
( r0

L

)2
� (11.70)

In this equation, the trim angle, �, is that between the longitudinal tangent to
the strip side and the x-axis, as in Figure 11.14. In that figure, the trim angle is
shown at the centerplane of the body. The results in eq. 11.70 can now be com-
bined with eq. 11.67 to obtain the time-derivative of the radius of the a-circle
in the � -plane. For the body having semicircular strips, where A1 = A3 = 0,
the result is

da
dt

∣∣∣∣
cir

=
(

da
dS�−cir

)(
dS�−cir

d�

)(
d�

dt

)
= 1

�CSF−ar
(�r tan(�))(−U) (11.71)
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Figure 11.14. Notation for a Strip Having
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for the semicircular strip, CSF−aa = r. Multiplying eq. 11.71 by CSF-a, and incor-
porating the results in eq. 11.70, we obtain

dr
dt

= dr
d�

d�

dt
= −U tan(�) = 4U

r0

L2

�√
1 − 4

�2

L2

(11.72)

The relationship between the first and third terms in this equation are those
obtained by Korvin-Kroukovsky and Jacobs (1957). Again, the time-derivative
of a vanishes when the vessel either has a horizontal keel from stem to stern
(� = 0) or when the body is not under way (U = 0).

The dynamic pressure resulting from the body motion in deep, still water is

pz|h→∞
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= −�
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This expression results from the combination of eqs. 11.66 and 11.67. The spatial
derivative of the sectional area (dS�−a/d�) is a design parameter for which a = 1,
and the scale factor (CSF ≡ CSF−1) is from eq. 11.40b. To obtain the vertical force
due to the vertical motions of the strip, integrate the expression in eq. 11.73 over the
angle � from � to 2� as
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]
(11.74)
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In the second and third lines, the vertical velocity (VZ) and acceleration (dVZ/dt)
are written in terms of the heaving and pitching displacements according to
eqs. 11.18 and 11.19, respectively. The coefficient of the first term in the last line of
eq. 11.74 is an inertial coefficient, and that of the second term is a velocity-induced
damping coefficient. Note that the term (1 + A1) is (a + A1/a), where a = 1. Hence,
the units of the damping term are force per length, as expected.

Because the first term in the last two lines in eq. 11.74 is an inertial-reaction
force, a′

wZ is the vertical motion-induced added mass per unit body length. Compar-
ing the last two lines of the equation, we see that the added-mass expression for a
Lewis form is

a′
wZ(�) = �

�

2
C2

SF

[
(1 + A1)2 + 3A2

3

]
= ��

B� d�

4

[
(1 + A1)2 + 3A2

3

]
[
(1 + A3)2 − A2

1

] (11.75)

The relationships between the scale factor (CSF), the breadth of the strip (B� ), and
the keel depth (d� ) are found in eq. 11.40b. The added-mass expression is that
obtained by Landweber and Macagno (1957). Note that the added-mass expres-
sion in eq. 11.75 is not a function of the frequency of encounter (
e). As stated by
Landweber and Macagno (1957) and others, this added-mass condition corresponds
to an infinite motion frequency or a zero motion period. The expression in eq. 11.75
is used as an approximation for high-frequency motions. The frequency-dependent
added-mass expressions are discussed later in this chapter.

We are operating under the assumption that the Lewis parameters (A1 and A3

in eq. 11.35) do not vary with the hull coordinate, � . We make this assumption for
the purpose of demonstration. The reader can see that a hull form can be made up of
different Lewis sectional forms, where A1 and A3 vary with � . The calculated com-
ponent force on each strip is numerically integrated over the hull length to obtain
the total force component on the hull.

EXAMPLE 11.7: MOTION-INDUCED VERTICAL FORCES ON TWO STRIP GEOMETRIES

Our goal is to determine the motion-induced forces on the circular cylinder and
the Lewis form in Example 11.5. See Figures 11.12 and 11.8b, respectively, for
these shapes. The body motions will have the same period as the incident wave
in Example 11.5, that is, the period of motion is 7 sec. The diameter of the
semicircular strip is D = 4.42 m, and the breadth and keel depth of the Lewis
form are B� = 4 m and d� = 2 m, respectively. The relative water speed (U) in
the x-direction is 1 m/s which is the design towing speed. The sectional (strip)
areas for each geometry are independent of � . As a result, � = 0 from stem to
stern.

For the semicircle, the Lewis parametric values are A1 = A3 = 0. These
values combined with the motion-induced force expression in eq. 11.74 results
in
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� 7.90 × 103
[

d2 Z
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D2�

dt2
− 2U

d�

dt

]
(11.76)
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in Newtons per meter. The second line is the expression derived by Korvin-
Kroukovsky and Jacobs (1957). In this equation, the scale factor is CSF |cir =
D/2 � 2.21 from eq. 11.40b. Note that the scale factor is non-dimensional
because it is the ratio of the radius of the strip to the radius (a = 1)
of the unit circle. The added mass (per unit length) for the semicircular strip
is approximately 7.90 × 103 N-s2/m/m. This value is obtained from eq. 11.75,
where A1 = 0, A3 = 0, CSF |cir = D/2, B� = D and d� = D/2.

The respective velocity and acceleration terms result from eqs. 11.18
and 11.19. For the Lewis form, A1 = 0 and A3 = −0.111, and the scale fac-
tor is CSF |Lew = B�/[2(1 + A3)] = d�/(1 + A3) � 2.25. The force expression in
eq. 11.73 is

dFZ

d�
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Lew
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� 8.49 × 103
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d2 Z
dt2
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d2�

dt2
− 2U

d�

dt

]
(11.77)

in N/m, assuming � � 1, 030 kg/m3 for salt water. The added mass (per unit
length) for the Lewis form is seen to approximately be 8.49 × 103 N–s2/m/m.
Comparing the results in eqs. 11.76 and 11.77, we see that the value of the
motion-induced added mass per unit body length is greater for the Lewis form.

(3) Wave-Body Interaction Pressure and Force on a Strip

The velocity potential representing the flow resulting from the wave-body interac-
tion at the strip is found in eq. 11.56. The dynamic pressure expression resulting
from the flow is

pwz|R=a = −�
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}
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sin(�) + A3
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sin(3�)
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− 2UVwz tan(�) sin(�)
}
, � ≤ � ≤ 2� (11.78)

The expression for the scale factor, CSF−a, is found in eq. 11.40a. The time-derivative
of a is found in eq. 11.67. Again, the subscript wZ is used to identify the wave-
body interaction variables, and the subscript wz identifies the vertical velocity of
the wave-induced water particle motions. In eq. 11.78 are the wave-induced, verti-
cal, particle velocity (Vwz) from eq. 11.47 and the time-derivative of that velocity.
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For this deep-water application, that velocity is obtained from
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where the Z� expression is from eq. 11.35a applied at R = a. The time-derivative of
the velocity is
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(11.80)

where the frequency of encounter, 
e, for a following sea equals 
 − k0U �
0.815 rad/s, according to eq. 11.45 for the deep-water conditions. In these equations,
the expression for the coordinate Z� is found in eq. 11.38b, and the deep-water
dispersion relationship in eq. 3.31 is introduced, where k0g = 
2. As in the wave-
induced pressure expression in eq. 11.61, the ratio of the hyperbolic functions is,
first, approximated for deep water, and then the resulting expression is replaced by
a series expansion. The series expansion facilitates the integration of the pressure
over the strip. As is the custom, the subscript 0 in eq. 11.79 identifies deep-water
wave properties. Hence, the deep-water free-surface expression in eq. 11.44 is

�0 = H0

2
cos(k0� − 
et) (11.81)

The second-order time-derivative of this expression appears in eq. 11.80.
The wave-body interaction force per unit length is obtained by integrating the

pressure expression in eq. 11.78 over the wetted surface of the strip, where the
respective velocity and acceleration terms in that equation are found in eqs. 11.79
and 11.80. This integration results in the following expression for the vertical wave-
body interaction force on the strip:
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The a’s have been included to remind the reader of the dimensions. When a = 1, as
done by Lewis (1929), the resulting expressions become dimensionally vague. The
first term in the last line of eq. 11.82 is an inertia-type term, whereas the second term
in that line is a damping-type (quasi-damping) term. For this reason, the notations
for the respective coefficients are introduced. The second term vanishes under two
conditions. The first condition is the body is at rest (U = 0), and the second is a uni-
form keel depth (� = 0) from bow to stern. Concerning the expansions: The series
representation of the exponential functions in eqs. 11.79 through 11.81 are Maclau-
rin series. As such, the expansions of the function are about k0 Z� = 0. Physically,
this corresponds to a zero frequency condition.

Let us include only two terms in the series in eq. 11.82 ( j = 0, 1), and determine
approximate expressions for the coefficients in the last line of that equation. The
results are
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and
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Again, the a’s are retained in these equations so that the reader can see that the
expressions are dimensionally correct. In an application of the equations, such as in
the next example, the analysis is facilitated by letting a = 1, that is, the unit circle
is transformed. The coefficients in eqs. 11.83 and 11.84 can be a function of � if the
sectional geometry changes along the body length. That is, the Lewis parameters
(A1 and A3) can vary over the length, as is the case of a ship.

EXAMPLE 11.8: WAVE-BODY INTERACTION FORCES ON TWO STRIP GEOMETRIES

Consider the problem described in Example 11.5, where an ocean engineer has
been tasked to design a long, stiffened oil bladder for deep-water operation,
designed to be towed at a speed (U) of 1 m/s in a head sea. We assume here
that the body is at rest (U = 0 and 
e = 
 = 2�/7 � 0.898 rad/s), and that the
sectional (strip) dimensions are uniform from bow to stern; hence, � = 0 in
eq. 11.84. As a result, the damping-type component of the force equation equals
zero. Again, the two sectional areas to be compared are the Lewis form in
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Figure 11.8b and the semicircular strip in Figure 11.12. In Example 11.5, we
find that the strip areas of the two strip geometries are approximately equal to
7.66 m2. The diameter (D) of the semicircular strip is approximately 4.42 m,
and the breadth (B� ) and keel depth (d� ) of the Lewis form are 4 m and 2 m,
respectively. The forces of interest are those in a deep-water swell, where the
wave height (H0) is 1.5 m and the period (T) is 7 sec. From Example 11.5, the
deep-water wavelength (�0) is approximately 76.5 m, and the wave number (k0)
is approximately 0.0821 m−1. From eq. 11.40b, the scale factors are D/2 for the
semicircular strip and B�/[2(1 + A3)] = d�/(1 + A3) for the Lewis form, where
A3 = −0.111.

The combination of eqs. 11.82 through 11.84 applied to each strip geometry
yields the following expressions for the wave-body interaction force: For the
semicircular strip at rest, this force is
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(11.85)

The added mass (a′
wZ) in eq. 11.75 is introduced in the second line of the equa-

tion. We also note that the vertical acceleration of the free surface with respect
to the traveling body is −
2�0. For the Lewis form, the wave-body interaction
force is
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(11.86)

In eq. 11.86, the scale factor is CSF−a = D/2 = 2.21, and CSF = d�/0.889 � 2.25.
These values are obtained by applying the Lewis parametric values to eq.
11.40b. By comparing the last terms of eqs. 11.85 and 11.86, we see that the
added mass of the force on the Lewis form is greater than that on the semicircle.
It is also interesting to note that the coefficients of the free-surface acceleration
are equal to the product of the infinite-frequency added mass and a truncated
expansion where, in each case, the value of the expansion is about the same for
both geometries for the given conditions.
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Figure 11.15. Forced Vertical Motions of a Strip in Calm Water. The vertical displacement of
the strip at any time is Z(t).

As suggested by Jacobs (1958), Motora (1964) essentially assumes that the
motions of an infinitely long body subjected to beam waves are proportional to
the motions of the free-surface motions at the centerplane. With this assumption,
the summation in eq. 11.82 becomes a correction factor to the added mass, which
accounts for the wave-induced particle motions. Motora applies the analysis to the
uncoupled heaving and swaying motions of the body with some success.

D. Radiation Damping

When a body moves in a still body of water, waves are created. According to the
wave-maker theory, as described by Dean and Dalrymple (1984), there are two
types of waves resulting from the body motions. For a given body, these are traveling
waves, which carry energy away from the body, and a series of standing, evanescent
waves, which are attached to the body. The frequencies of the evanescent waves
are larger than that of the traveling waves. Hence, if the body motions are excited
by low-frequency (high-period) incident waves, then the effects of the evanescent
waves can be neglected.

Consider an experimental study where a model of a uniform cross-section is
forced to oscillate vertically in a long tank. Although this is a heaving motion, we
can apply the results to the strip theory because derivations in the theory are based
on the near-vertical motions of the strip. The section sketched in Figure 11.14 is
representative of any section of the model. The frequencies of oscillation and the
depth of the tank are such that the waves created by the model motions are deep-
water waves. In this experiment, the body is “smooth” so that the viscous damping
is much less than the radiation damping. Our goal is to determine the expression for
the radiation damping coefficient.

The displacement of the model in Figure 11.15 is Z(t), and is assumed to be sinu-
soidal in time. The period of oscillation is either the wave period (T) or the period of
encounter (Te). The latter is defined in eq. 11.45. If we are modeling a floating body
that is under way, such as a ship traveling at a design speed, U, the period of motion
in the design condition is the period of encounter. This period is used herein in the
derivation of the expression for the radiation-damping coefficient. The force on a
strip of the model due to the creation of the waves by the body motions is b′

r� dZ/dt,
where b′

r� is the radiation-damping coefficient per unit body length. When this force
is multiplied by the vertical velocity, dZ/dt , and the resulting expression is inte-
grated over the period (Te), the result is the averaged power lost by the body over



416 Wave-Induced Motions of Floating Bodies

the period. This power can be equated to the average power radiated from both
sides of the body. The wave power is analogous to the energy flux obtained from
eq. 3.73. The resulting power expression is then

2P′
r = 1

Te

Te∫
0

b′
r

(
dZ
dt

)2

dt = 1
2

b′
r


2 Z2
o = 1

2
b′

rV
2

o

= 2

[
�gH2

r0cr0

16

]
= �g2 H2

r0Te

16�
= �g2 H2

r0

8
e
(11.87)

The factor of 2 in the wave expressions accounts for the radiation on both sides
of the body. In eq. 11.87, the respective deep-water wave height and celerity of these
waves are Hr0 and cr0.

The frequency of the radiated waves is the same as that of the forcing function,
that is, the frequency of encounter (
e) in eq. 11.45. From eq. 11.87, the heaving
radiation damping coefficient (per unit length) is
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e
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3
e

R2
Z (11.88)

This equation includes the ratio of the radiated-wave amplitude and the body-
motion amplitude, that is, RZ ≡ (Hr0/2)/Zo.

Various mathematical expressions for RZ have been derived. Some of these
include those of Holstein (1937), Havelock (1942), Ursell (1954), Tasai (1959), and
Yamamoto, Fujino, and Fukasawa (1980). One of the RZ-expressions is that of
Yamamoto, Fujino, and Fukasawa (1980), referred to herein as the YFF formula,
that is,

Rz ≡ Hr0/2
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= 2e− 
2
e

g Zref sin
(


2
e

g
b�

)
(11.89)

according to Petersen and Marnæs (1989). In eq. 11.89, Zref is a reference draft
of the wetted surface of the section, and B� is the breadth. The reference draft,
Zref = S�/B� , has been used by a number of investigators over the years. Hence,
for a rectangular section having a draft, d� , we see that Zref = d� . The expression in
eq. 11.89 has the same form as that of Havelock (1942), where the Havelock expres-
sion is obtained by placing a source distribution on the bottom of the section. The
Havelock method is introduced in Sections 11.6A and 11.6B.

In the following example, the radiation damping coefficients for two strip shapes
are presented. These coefficients result from the combination of the expressions in
eqs. 11.88 and 11.89, where Zref = S�/B� , where S� is a sectional area, and where
B� is the breadth of the section at � .

EXAMPLE 11.9: RADIATION DAMPING COEFFICIENTS USING THE YFF FORMULA Com-
pare the radiation damping values of the semicircular strip and the Lewis form
discussed in Example 11.5, where the amplitude ratio is obtained using the
YFF formula, eq. 11.89. The Lewis form is sketched in Figure 11.8b. In the
example, both shapes are subject to deep-water waves having a 7-sec period,
and are towed at a speed U = 1 m/s (3.28 ft/s � 1.94 knots) in a following
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sea. The corresponding wavelength (�0) and wave number (k0) are approxi-
mately 76.5 m and 0.0821 m−1, respectively. From Example 11.5, the sectional
area is approximately 7.66 m2, where the diameter of the semicircle (D� ) is
approximately 4.42 m, the breadth of the Lewis form is 4.00 m, and the draft
of the Lewis form is 2.00 m. The respective wavelength-to-breadth ratios for
these shapes are then 17.31 and 19.13. For these values, the reference draft
for the semicircle is Zref |cir = S�/D = 1.73 m, and that of the Lewis form is
Zref |Lew = S�/B� = 1.92 m. The amplitude ratios for the two shapes are

RZ|cir= H0/2
Z0

|cir=2e
−k0

S�
D� sin(k0 D� ) � 0.616 (11.90)

and

RZ|Lew= H0/2
Z0

|Lew=2e
−k0

S�
B� sin(k0 B� ) � 0.551 (11.91)

Because the design towing speed (U) of the bladder is 1 m/s (≡ 3.28 ft/s �
1.94 knots), the period of encounter for the following-sea condition is approxi-
mately 7.70 sec from eq. 11.45. The radiation-damping coefficient values for the
respective circular and Lewis form sections, obtained from eq. 11.88, are

b′
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3
e
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(0.816)3 (0.616)2 � 6.92 × 104 N–s/m (11.92)

and
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(0.816)3 (0.551)2 � 5.54 × 104 N–s/m

(11.93)
When the bodies are not under way, then the frequency in the equations is that
of the incident wave, approximately 0.898 rad/s. For this frequency, the respec-
tive damping coefficients are 5.19 × 104 N–s/m and 4.16 × 104 N–s/m. Hence, in
a following sea, the radiation damping decreases with U. It is also interesting to
note that the vertically oscillating semicircular strip is a stronger radiator than
the Lewis form for the same sectional area.

An amplitude ratio formula that is directly applicable to the Lewis forms (dis-
cussed in Section 11.3A) is that of Tasai (1959). According to Pedersen (2000) and
Jensen (2001), the Tasai formula is
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(11.94)

where ς is an integration variable. This equation must be solved numerically for
bodies for which A1 and A3 are not equal to zero. The combination of eqs. 11.88
and 11.94 is applied to the semi-submerged circular cylinder in the next example.

EXAMPLE 11.10: RADIATION DAMPING COEFFICIENT USING THE TASAI FORMULA

Assuming deep water, eqs. 11.88 and 11.94 are now applied to the semi-
submerged circular cylinder (where the Lewis parameters are A1 = A3 = 0) to
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obtain the radiation damping coefficient. The amplitude ratio obtained from
eq. 11.94 is
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(11.95a)

In this equation, the diameter of the body at a position � is D� = 2r� = 4.42 m,
and si() and ci() are sine and cosine integrals, respectively. See Abramowitz and
Stegun (1965) for details of these functions. Consider the case when the body is
at rest in the 7-sec waves. For this case, the frequency of encounter is replaced
by the circular wave frequency, that is, 
e → 
 = 2�/T � 0.898 rad/s. For this
condition, we rewrite eq. 11.95a in terms of the product of the deep-water wave
number (k0 = 
2/g) and the radius of the body (r� ) at the longitudinal position,
� . The result is

RZ|cir = 2k0r� {1 + k0r[cos(k0r� )si(k0r� ) − sin(k0r� )ci(k0r� )]} (11.95b)

From Abramowitz and Stegun (1965), the sine and cosine integrals can be rep-
resented by the following respective expressions:

si(k0r� ) = −f(k0r� ) cos(k0r� ) − g(k0r� ) sin(k0r� ) (11.96)

and

ci(k0r� ) = f(k0r� ) sin(k0r� ) − g(k0r� ) cos(k0r� ) (11.97)

For the f- and g-functions, the following approximations are valid over 1 ≤
k0r� < ∞:

f(k0r� ) � 1
(k0r� )

[
(k0r� )4 + 7.241163 (k0r� )2 + 2.463936

(k0r� )4 + 9.068580 (k0r� )2 + 7.157455

]
(11.98a)

and
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(k0r� )4 + 12.723684 (k0r� )2 + 15.723606

]
(11.98b)

Unfortunately, for the 7-sec wave, k0r� � 0.182 < 1, so we cannot use the
approximate formulas in eq. 11.98. Instead, the computed values of the sine and
cosine integrals found in the book by Abramowitz and Stegun (1965) are used.
For the 7-sec wave, the values of the sine and cosine integrals are approximately
−1.39 and −1.14, respectively. The amplitude ratio from eq. 11.95b is then
approximately 0.285. For this value, the approximate value of the radiation-
damping coefficient in eq. 11.94 is 1.11 × 104 N-s/m. This value is approximately
one sixth that found in Example 11.9, eq. 11.92, which is 6.92 × 104 N-s/m. Later
in this chapter, the theoretical values of the added-mass and radiation-damping
coefficients are compared with those found experimentally by Vugts (1968).

In addition to the equations for the amplitude ratios in eqs. 11.89 and 11.94,
and the radiation damping coefficient presented in eq. 11.88, Havelock (1927, 1942)
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presents an integral method of estimating the radiation damping for a ship section
(strip). This method is discussed later in this chapter. The Havelock method involves
placing a source distribution at some depth on the centerline of the strip which,
in turn, creates a wave system similar to that in the wavemaker theory. Korvin-
Kroukovsky and Jacobs (1957) use the results of Havelock (1942) to obtain an
expression for the radiation-damping coefficient, b′

r. After introducing the source
method in two dimensions, Havelock (1942) applies his analysis to a whole ship. He
considers two cases, those being pure heaving and pure pitching. In determining
the radiation-damping coefficient, Havelock determines the time rate of change of
the energy lost to these motions, and equates that energy property to the energy flux
of the traveling waves created by the body motions.

Expressions for the vertical-motion hydrodynamic coefficients used in the
Korvin-Kroukovsky and Jacobs (1957) strip theory have now been defined. The
sectional added mass for the Lewis forms in eq. 11.75 is seen to be independent
of frequency. However, the radiation damping coefficient in eq. 11.88 is frequency-
dependent. Later in this chapter, the added-mass coefficient (modified to include
frequency dependence) and radiation-damping expressions are applied to the exper-
imental data of Vugts (1968).

11.4 Coupled Heaving and Pitching Motions Based on Strip Theory

The equations of motion for coupled heaving and pitching bodies in waves are found
in eqs. 11.33 and 11.34. There are a number of methods available to solve the cou-
pled linear system represented by these equations. These methods are discussed in
the book by Zill (1986) and others. The coefficients in the equations of motion are
represented collectively, as in eqs. 11.15b and 11.16b. This reduces the bookkeeping
in the derivations in this section and in Section 11.4. The heaving equation of motion
is then

(m + aw)
d2 Z
dt

+ (bv + br)
dZ
dt

+ ch Z + da
d2�

dt2
+ (ev + er + ea)

d�

dt
+ (fh + fv + fr) �

≡ (m + aw)
d2 Z
dt2

+ b
dz
dt

+ ch Z + da
d2�

dt2
+ e

d�

dt
+ f� = Fw (we, t) (11.99)

Similarly, the pitching equation of motion is

(IY + Aw)
d2�

dt2
+ (Bv + Br + Ba)

d�

dt
+ (Ch + Cv + Cr + Ca) � + Da

d2 Z
dt2

+ (Ev + Er + Ea)
dZ
dt

+ FhZ

≡ (IY + Aw)
d2�

dt2
+ B

d�

dt
+ C� + Da

d2 Z
dt2

+ E
dZ
dt

+ FZ = Mw(
e, t) (11.100)

The last three terms on the left side of each equality of these equations are the cou-
pling terms. The subscripted coefficients are defined in Table 11.1. In the following
analysis, the second lines of eqs. 11.99 and 11.100 are used for the sake of brevity.
The body mass in eq. 11.99 is represented by m, and the mass-moment of inertia of
the body in eq. 11.100 is IY. At this point, the reader is reminded that the origin of
the coordinate system x, y, z is a fixed point on the calm-water surface, whereas X,
Y, Z are on the calm-water surface above the center of gravity (G) of the body (see
Figures 11.5 and 11.6). Furthermore, Y is through G and parallel to y and Y.
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The exciting force in eq. 11.99 is the sum of the wave-induced force discussed in
Section 11.3C(1), eq. 11.63b, and the wave-body interaction force derived in Section
11.3C(3), eq. 11.82. That heaving force, introduced in eq. 11.26, is

FW(
e, t) |h→∞ =
�fwd∫

−�aft

(F ′
wz + F ′

wz) � =
�fwd∫

−�aft

{
a′

wz
∂2�0

∂t2
+ b′

wz
∂�0

∂t

+ �gB� (1 + CSmith) �0

}
d�

=
�fwd∫

−�aft

{[−a′
wz
2

e + �gB� (1 + CSmith)
]

cos (k0� − 
et)

+ b′
wz
e sin (k0� − 
et)

}H0

2
d�

= Fwc cos(
et) + Fws sin(
et) = Fwo cos(
et + �F ) (11.101)

where in deep water, the wave-induced force expression is in eq. 11.63b, and the
wave-body interaction force is in eq. 11.82. The parametric constants in the last line
are

Fwc =
�fwd∫

−�aft

{[−a′
wz
2

e + �gB� (1 + CSmith)
]

cos(k0�) + b′
wz
e sin(k0�)

]}
d� (11.102)

and

Fws =
�fwd∫

−�aft

{[−a′
wz
2

e + �gB� (1 + CSmith)
]

sin(k0�) − b′
wz
e cos (k0�)

]}
d� (11.103)

Also in the last line of eq. 11.101 are the force amplitude,

Fwo =
√

F2
wc + F2

ws (11.104)

and the phase angle between the wave and the force,

�F = − tan−1
(

Fws

Fwc

)
(11.105)

The exciting moment in eq. 11.100 is the sum of the moments corresponding to the
force components in eqs. 11.63b and 11.82. The pitching moment about the center
of gravity corresponding to the total heaving force in eq. 11.101 is

Mw(
e, t) |+|h→∞ =
�fwd∫

−�aft

(F ′
wz + F ′

wz) �d�

=
�fwd∫

−�aft

{[−a′
wZ
2

e + �gB� (1 + CSmith)
]

cos(k0� − 
et)

+ b′
wz
e sin(k0� − 
et)

}H0

2
�d�

= Mwc cos(
et) + Mws sin(
et) = Mwo cos(
et + �M) (11.106)
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As is the case for all moments in this book, the positive moment direction is in the
counterclockwise direction. In eq. 11.106, the parametric coefficients are

Mwc =
�fwd∫

−�aft

{[−a′
wz


2
e + �gB� (1 + CSmith)

]
cos(k0�) + b′

wz
e sin(k0�)
]}

�d�

(11.107)
and

Mws =
�fwd∫

−�aft

{[−a′
wz
2

e + �gB� (1 + CSmith)
]

sin(k0�) − b′
wz
e cos(k0�)

]}
�d�

(11.108)
Also in eq. 11.106 are the moment amplitude,

Mwo =
√

M2
wc + M2

ws (11.109)

and the phase angle between the wave and the moment,

�M = − tan−1
(

Mws

Mwc

)
(11.110)

There are several methods that can be used to solve the equations of motion
in eqs. 11.99 and 11.100. Two of these are the operator method, as suggested by
McCormick (1973), which is a time-domain solution. The second method uses the
complex notation, and is a frequency-domain solution. These methods are described
in the book by Zill (1986) and other books on linear differential equations. The
time-domain solutions of the homogeneous equations of eqs. 11.112 and 11.113
result in two fourth-degree, linear auxiliary equations. The time-domain solutions of
eqs. 11.94 and 11.95 are presented in the following paragraphs.

Write the respective heaving and pitching equations in eqs. 11.99 and 11.100
using operator notation as

L11 Z + L12� = Fw(
e, t) (11.111)

and

L21 Z + L22� = Mw(
e, t) (11.112)

From the second lines of eqs. 11.99 and 11.100, the operators in these equations are

L11 ≡ (m + aw)
d2

dt2
+ b

d
dt

+ ch (11.113)

L12 ≡ da
d2

dt2
+ e

d
dt

+ f (11.114)

L21 ≡ Da
d2

dt2
+ E

d
dt

+ F (11.115)

and

L22 ≡ (IY + Aw)
d2

dt2
+ B

d
dt

+ C (11.116)
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Rewrite eqs. 11.111 and 11.112 in matrix form as[
L11

L21

L12

L22

]{
Z
�

}
=
{

Fw(
e, t)
Mw(
e, t)

}
(11.117)

By using Cramer’s rule for linear equations, we obtain∣∣∣∣L11

L21

L12

L22

∣∣∣∣ Z =
∣∣∣∣ Fw L12

Mw L22

∣∣∣∣ (11.118)

and ∣∣∣∣L11

L21

L12

L22

∣∣∣∣ � =
∣∣∣∣ L11 Fw

L22 Mw

∣∣∣∣ (11.119)

The expanded forms of eqs. 11.118 and 11.119 are, respectively,

(L11 L22 − L12 L21) Z = L22 Fw − L12 Mw (11.120)

and

(L11 L22 − L12 L21) � = L11 Mw − L21 Fw (11.121)

In eqs. 11.118 through 11.121, the frequency and time dependencies of the displace-
ments, forces, and moments are assumed. Equations 11.120 and 11.121 are fourth-
order, linear differential equations that can be solved by using well-established
methods.

The following example is presented to give the reader an idea of the magnitudes
of the force, moment, and displacements a floating body would experience in linear
waves. The static stability of the body is also considered.

EXAMPLE 11.11: TRANSVERSE STABILITY AND PLANAR MOTIONS OF A BARGE IN

LINEAR WAVES Referring to Figure 11.16a, a barge having a rectangular water-
plane is designed to carry dredged sand over deep water where the average wave
height is 1.5 m and the average period is 7 sec. The deep-water wavelength (�0)
is approximately 76.5 m, and the approximate wave number (k0) value is about
8.21 × 10−2 m−1. The length (L) of the barge is 40 m, the beam (Bmax) is 4 m,
and the draft (dmax) is 2 m. When fully loaded, the sectional area of the barge
is the Lewis form sketched in Figures 11.8b and 11.16b, and is uniform over the
barge length. The sectional area (S� ) is 7.66 m2, and is obtained from eq. 11.39,
where the Lewis parameters are A1 = 0 and A3 = −0.111. The displacement
(the weight of the displaced water) of the loaded barge in salt water is W �
3.10 × 106 N, or about 316 metric tons. One metric ton (or tonne) equals 103 kg.
The center of gravity (G) due to the barge structure, ballast, and sand is located
1.5 m below the waterline (see Figure 11.16b). The mass moment of inertia (IY)
with respect to the Y-axis through G is approximately 4.22 × 107 N-m-s2/rad.

Transverse Stability: Although our interest is in x-y planar motions of the barge,
for the sake of safety, we must first consider the transverse stability of the loaded
barge in a calm-water condition. A discussion of the stability of floating bodies
is presented in Section 11.1. The goal is to ensure that the barge will not capsize
due to the relative positions of the center of gravity (G) and the center of buoy-
ancy (B). For the barge in question, the sectional area is uniform from the bow
to the stern. The center of buoyancy will be at the depth of the center of area of
any strip. From a course in statics, the centroid of the displaced volume of water
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Figure 11.16. Displaced Barge Having a Uniform Lewis Form Sectional Area over the Length
in Example 11.11. In (b) are the origin of the coordinate system (O), the center of area of
buoyancy (B), and the center of gravity (G). The Lewis parameters for the strip are A1 = 0
and A3 = −0.111. As shown, there are four coordinate systems. Those are x,y,z (fixed to the
waterplane), X,Y,Z (fixed to the waterplane above G), � ,Y,Z (fixed to G), and Y� ,Z� (fixed
to the strip). The spatial variable � is then the directed distance from G to the strip.

is found by dividing the first moment of volume (with respect to the X-axis in
Figure 11.16a) by the displaced volume. Hence, the position center of buoyancy
is at a depth determined from

OB =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�fwd∫
�aft

2�∫
�

Z�

2
(Z� )

dY�

d�
d�d�

�fwd∫
�aft

2�∫
�

Z�
dY�

d�
d�d�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�fwd∫
�aft

[
1
2

2�∫
�

Z2
�

dY�

d�
d�

]
d�

∨

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� 1

2

(
14, 510 (40)

7.66 (40)

)
� 0.947 m (11.122)

In this equation, ∨ is the displaced water volume, which equals the product of
the Lewis form area (S� = 7.66 m2) an the body length (L = 40 m). Again, for
the Lewis form in Figure 11.16b, A1 = 0 and A3 = −0.111, and the position of the
center of buoyancy (B) is at � = X = 0, and at a distance OB � 0.947 m from
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the free surface. As previously stated, the center of gravity due to the weight
of the barge and sand load is OG = 1.5 m below the free surface. Hence, G is
below B and GB = |OG − OB| = 0.553 m. The metacentric height is obtained
from eq. 11.6, where the positive sign (+) in that equation is used because G is
below B. For the barge having a rectangular waterplane area, the metacentric
height for the barge in question is

GM|barge � IX

V
+ GB =

LB3
max

12
Smax L

+ GB � 1.25 m (11.123)

Here, IX is the second moment of the rectangular waterplane area with respect
to the x-axis. Because the metacentric height is greater than zero, the body has
transverse stability. If our interest was in the longitudinal stability (about the Y-
axis), the second moment of area in eq. 11.123 would be IY. One final note: The
subscript “max” is used for the beam, keel depth, and sectional area because all
are uniform from bow to stern. For a ship shape, Bmax would be the beam of the
ship.

Heaving and Pitching Motions: To determine the heaving and pitching
responses of the barge, we must determine the coefficients in Table 11.1. The
integrands in the table involve the added mass, radiation-damping coefficients,
linear-equivalent viscous damping coefficient, body breadth, and the speed of
the body. The flow is assumed to be inviscid, the body is not under way, and the
added mass, radiation-damping coefficient, and breadth of the body are invari-
ant over the body length. As a result, the spatial derivatives of these quantities
vanish in the coefficient expressions and, consequently, all of the coupling terms
vanish. Physically, the barge can experience a displacement in one degree of
freedom without having a displacement occur in the other degree of freedom.

We now determine the coefficients in the uncoupled equations of motions.
From eq. 11.75, the added mass per unit length for the barge is

a′
w(�) ≡ a′

w = ��
Bmaxdmax

4

(
1 + 3A2

3

)
(1 + A3)2 � 8.49 × 103 kg/m (11.124)

The remaining coefficients are presented in Table 11.2. Combining this added-
mass value with the first relationship in Table 11.1 yields the added mass of
the barge. That value is aa = a′

w L � 3.40 × 105 kg = 340 tonne, and is the first
relationship in Table 11.2. The added mass is then slightly larger than the mass
of the ship, which is 316 tonne. Because the added mass per unit length is not
a function of the longitudinal position, we remove � from the notation, as in
eq. 11.124.

The damping of the vertical motions of the strip is due to the radiation on
both sides of the strip. The radiation damping coefficient in eq. 11.88, combined
with the YFF amplitude-ratio formula in eq. 11.89a, results in

b′
r(�) ≡ b′

r = 4
�g2


3
e

−2k0
Smax
Bmax sin2

(
k0

Bmax

2

)
� 1.070 × 104 N–s/m2 (11.125)



11.4 Coupled Heaving and Pitching Motions Based on Strip Theory 425

Table 11.2. Coefficients for the coupled heaving and pitching motions in
Example 11.11

m � 3.16 × 105 kg or N-S2/m lY � 4.22 × 107 N-m-s2/rad

aw = a′
w L � 3.40 × 105 kg or N-s2/m Aw = a′

w

L3

12
� 4.53 × 107 N-m-s2/rad

bv = 0 Ba = 0
br = b′

r L � 4.28 × 105 N-s/m Bv = 0

ch = �gBmax L � 1.62 × 106 N/m Br = b′
r

L3

12
� 5.71 × 107 N-m-s/rad

da = 0 Ca = 0

ea = 0 Ch = �gBmax
L3

12
� 2.16 × 108 N-m/rad

ev = 0 Cv = 0
er = 0 Cr = 0
fh = 0 Da = 0
fv = 0 Ea = 0
fr = 0 Ev = 0
Fw(
, t) � 6.31 × 105 cos(0.898t) N Er = 0

Fh = 0
Mw(
, t) � 8.58 × 106 sin(0.898t) N-m

The total radiation damping coefficient for the barge is br = b′
rL � 4.28 ×

105 N–s/m, and is the third relationship in Table 11.2.
The hydrostatic restoring coefficients, ch in heave and Ch in pitch, depend

on the breadth of the strip. Because the breadth is uniform over the length of
the barge, we replace B� by Bmax, the beam of the barge. For the 4-m beam,
the hydrostatic restoring coefficient for the heaving motions is ch = �gBmax L �
1.62 × 106 N/m, and is the fourth relationship in Table 11.2.

The excitation force in eq. 11.99, consisting of the wave force and the wave-
body interaction force, is represented by the fourth equality in eq. 11.101. The
expression for the heave-exiting force acting on the stationary (but not fixed)
Lewis form barge in deep water is

Fw(
, t)|h→∞ =
L
2∫

− L
2

(F ′
wZ + F ′

wz)d� �
20m∫

−20m

(−7.17 × 103
2 + 4.04 × 104)
(

H0

2

)

× cos(k� − 
t) d�

= (−7.17 × 103
2 + 4.04 × 104)
(

H0

k0

)
sin
(

k0
L
2

)
sin(
t)

= Fwo cos(
t) � 6.31 × 105 cos(0.898t) , N (11.126)

The values of the coefficients for the vertical wave force component (F ′
wz) and

the wave-body interaction force (F ′
wZ) are from Examples 11.5 and 11.8, respec-

tively. The body is not under way (U = 0), and the strip geometry is uniform
from bow to stern (� = 0). For either of these conditions, b′

wZ = 0 in eq. 11.84.
In addition, because the body is symmetric about the midsection (where � = 0),
the force amplitude Fws in eqs. 11.101 and 11.103 is also equal to zero. Subse-
quently, in eq. 11.101, the phase angle �F in eq. 11.105 is equal to zero, meaning
that the force is in phase with the wave.
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From eq. 11.106, the corresponding pitch-excitation moment is

Mw(
, t)|h→∞

=
L
2∫

− L
2

(F ′
wZ + F ′

wz)�d�

= [−a′
wZ
2 + �gB� (1 + CSmith)]

H0

2

20m∫
−20m

cos (k0� − 
t) �d�

= [−a′
wZ
2 + �gB� (1 + CSmith)

] H0

k2
0

[
sin
(

k0
L
2

)
− k0

L
2

cos
(

k0
L
2

)]
sin (
t)

= Mws sin (
t) = Mwo cos
(


t − �

2

)
� 8.58 × 106 sin(0.898t), N–m (11.127)

As is the case of all moments in this book, the pitch-excitation moment is pos-
itive in the counterclockwise direction. The phase angle between the wave and
exiting moment in eq. 11.110 is equal to −�/2, that is, the moment lags the wave
by 90◦.

Applying the results in Table 11.2 to eqs. 11.99 and 11.100 results in the
following respective uncoupled equations of motion:

(m + aw)
d2 Z
dt2

+ br
dZ
dt

+ ch Z

= Fwo cos(
t)

= (6.56 × 105)
d2 Z
dt2

+ (4.28 × 105)
dZ
dt

+ (1.62 × 106)Z

= 6.31 × 105 cos(0.898t) N (11.128)

and

(IY + Aw)
d2�

dt2
+ Br

d�

dt
+ Ch�

= Mwo cos(
t)

= (8.75 × 107)
d2�

dt2
+ (5.71 × 107)

d�

dt
+ (2.16 × 108)�

= 8.58 × 106 sin(0.898t) N–m (11.129)

The steady-state solution of eq. 11.128 yields the expression for the uncou-
pled heaving response, that is,

Z(
, t) =
Fwo

ch
cos(
t− ∈Z)√(

1 − 
2


2
Zn

)2

+
(

2




Zn

br

bcr

)2
= Zo cos(
t− ∈Z)

� 0.390
cos(
t − 0.340)√

(1 − 0.406
2)2 + 0.0700
2

∣∣∣∣

�0.898rad

’ meters (11.130)

where Zo is the heaving amplitude. Also in this equation are the following:

Static Heaving Displacement: This is the displacement that would occur if
a static vertical force equal to the amplitude of the wave-induced force was
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applied to the center of gravity. This is obtained from eq. 11.130 when 
 = 0.
The result is

Zstat = |Fwo|
ch

� 0.390 m (11.131)

Undamped Natural Heaving Frequency: This frequency is a function of the
hydrostatic restoring coefficient and the inertial coefficient. Physically, it is the
natural heaving frequency that the body would experience if released from a
static displacement if no damping is present. Mathematically, this frequency is


Zn = 2�

TZn
=
√

ch

m + aw

� 1.57 rad/s (11.132)

Critical Damping in Heave: This is the limit damping coefficient value for which
heaving oscillations exist. It is obtained from

bcr = 2
√

ch(m + aw) � 2.06 × 106 N–s/m (11.133)

That is, when br < bcr, the body will experience at least one heaving cycle when
released from a static position. When br = bcr, the system is said to be critically
damped. More is written of this condition later in this section.

Phase Angle in Heave: The phase angle is that between the body motion and
the wave-induced force, that is

∈Z |
�0.898 rad/s = tan−1




2




Zn

br

bcr

1− 
2


2
Zn



∣∣∣∣

�0.898 rad/s

� tan−1
(

0.265


1 − 0.406
2

) ∣∣∣∣

�0.898 rad/s

� 0.340 rad (11.134)

From eq. 11.132, the approximate natural heaving period value is 4.00 sec. We
note that the pitching period is somewhat below the average wave period of the
sea, which is 7 sec. Comparing the value of the critical damping in eq. 11.133
with the radiation damping value of 4.28 × 105 N-s/m in Table 11.2, we see that
the heaving motions of the barge are underdamped. Concerning the phase angle
expression eq. 11.134: When a resonance condition occurs, where 
 = 
Zn, the
phase angle is �Z = 90◦. That is, the motions lag the wave-induced force by 90◦.
For the given conditions, the resulting phase angle between the wave-induced
force and the heaving motions obtained from eq. 11.134 is about 0.338 rad, or
18.9◦. The heaving amplitude (Zo) is found to be approximately 0.546 m.

The solution of the pitching equation of motion in eq. 11.129 results in the
following expression for the uncoupled pitching response of the barge:

�(
,t) =
Mwo

Ch
cos(
t− ∈�)√(

1 − 
2


2
�n

)2

+
(

2




�n

Br

Bcr

)2
�o cos(
t− ∈�)

� 0.0397
cos(
t − 0.339)√

(1 − 0.405
2)2 + 0.0699
2
, radians (11.135)
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where �o is the pitching amplitude. Also, in eq. 11.135 are the following:

Static Pitching-Angle Displacement:

�h = |Mwo|
Ch

� 0.0397 rad (11.136)

Natural Pitching Frequency:


�n = 2�

T�n
=
√

Ch

IY + Aw

� 1.57 rad/s (11.137)

Critical Damping in Pitch:

Bcr = 2
√

Ch(IY + Aw) � 2.75 × 108 N–m–s/rad (11.138)

Phase Angle in Pitch: This is the phase angle between the pitching displacement
and the wave-induced pitching moment. It is obtained from

∈� = tan−1
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�n

Br

Bcr

1 − 
2


2
�n



∣∣∣∣

�0.898 rad/s

� tan−1
(

0.264


1 − 0.406
2

) ∣∣∣∣

�0.898 rad/s

� 0.339 rad (11.139)

The physical meanings of the terms in eqs. 11.136 through 11.139 are analogous
to those in eqs. 11.131 through 11.134. The approximate natural pitching period
value is 4.00 sec, which is the same as that for the heaving motions. Also, because
the damping coefficient value in Table 11.2 (5.71 × 107 N-m-s/rad) is much less
than Bcr, the pitching motions of the barge are underdamped. Finally, the phase
angle obtained from eq. 11.139 is approximately 0.339 rad, or 19.4◦, which is
about the same as that for the heaving motions. The pitching amplitude (�n) is
approximately 3.19◦.

The results for the barge having symmetry with respect to the x-z and y-z planes
described in Example 11.11 are for uncoupled body motions. That is, a displace-
ment can be imposed in either heave or pitch when the barge is in calm water with-
out causing a displacement in the other mode. For coupled motions, a displace-
ment in one mode will produce a displacement in the other mode. A ship shape
having symmetry only with respect to the x-z plane experiences coupled motions.
When the motions are uncoupled, the heaving and pitching motions are analogous
to a forced spring-mass-damper system, as we can see from the nonhomogeneous,
second-order, linear differential equations in eqs. 11.128 and 11.129. From the solu-
tions of these equations, we define the respective magnification factors for the heav-
ing and pitching motions as

ZZ ≡ Zo

Fwo/ch
= 1√(

1 − 
2


2
Zn

)2

+
(

2




Zn

bZ

bcr

)2
= 1√(

1 − 
2


2
Zn

)2

+
(

2




Zn
�Z

)2

(11.140)
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and

Z� ≡ �0

Mwo/Ch
= 1√(

1 − 
2


2
�n

)2

+
(

2




�n

B�

Bcr

)2
= 1√(

1 − 
2


2
�n

)2

+
(

2




�n
��

)2

(11.141)

In these equations, the � represents the damping ratio for each mode, and is defined
as the ratio of the damping to critical damping, that is, �Z = bZ/bcr in eq. 11.140,
and �� = B�/Bcr in eq. 11.141. The magnification factor equations can be plotted
as a function of the frequency ratio, 
/
n, where 
n is the undamped natural fre-
quency of the motion of interest. A generic magnification factor is plotted in Figure
11.17a. In eqs. 11.140 and 11.141, we see that the value of the magnification factor
is infinite at resonance (when 
 = 
n) when the system is undamped (� = 0). The
physical interpretation of this is that the system at resonance continues to store the
supplied energy without losing any of the energy to damping. For the curves in Fig-
ure 11.17a corresponding to finite damping, the peak values in the curves occur at
frequencies less than the resonant frequency. The peak value occurs at the damped
natural frequency, which is obtained from


d = 
n

√
1 − �2 (11.142)

This expression is obtained by letting the derivative of the magnification factor with
respect to the frequency ratio be equal to zero, and solving for the value of the
frequency ratio.

In addition to the magnification factors, the respective phase angles for the
heaving and pitching motions in eqs. 11.134 and 11.139 are seen to be functions
of the frequency ratio, and also to depend on the damping ratio. The generic phase
angle (�) is plotted in Figure 11.17b as a function of the generic frequency ratio
(
/
n). For low values of the frequency ratio (
/
n), we see that the phase angle
between the body motions and the wave-induced force approaches zero. The force
and the body are then nearly in phase. The condition is referred to as wave-riding.
For the heaving motions, the body and the free surface of the wave rise and fall
with the same amplitudes and at the same velocities under a wave-riding condition.
For the pitching motions, the average slope of the free surface at any time and the
pitching angle are equal. At the other end of the frequency range, we see that the
high-frequency waves do not excite body motions. Note that curves similar to those
in Figure 11.17 can be found in books on mechanical vibrations.

Some design ramifications of the equations describing the undamped natural
frequencies and the critical damping coefficients are evident. Both the undamped
natural frequencies in eqs. 11.132 and 11.137 and the critical damping coefficients in
eqs. 11.133 and 11.139 are seen to depend on the restoring coefficient and the total
inertial coefficients. The restoring coefficient, in turn, depends on the waterplane
area. By decreasing the waterplane area, the value of the undamped natural fre-
quency is reduced. Hence, altering the waterplane area can be used to de-tune the
heaving and pitching motions from the sea. This fact led to the creation of a class of
both floating structures and marine vehicles called small-waterplane-area platforms
and ships. The motions of the body can also be de-tuned by increasing the inertial
coefficient in the heaving and pitching equations of motion. Usually, the mass of the
structure is specified. This is an input value that normally relates to the purpose of
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Figure 11.17. Generic Magnification Factor and Phase Angle as Functions of Frequency Ratio.
The parameter � is the ratio of the linear damping and critical damping coefficients for the
motion of interest (see eqs. 11.140 and 11.141). The curves apply to the uncoupled heaving
and pitching of any floating body having x-z and y-z symmetries that are not under way.
Resonance (
/
n = 1) is a condition to be avoided in the design of barges, but is a desirable
condition in wave-energy conversion. See McCormick (2007) for a discussion of resonant
wave-energy conversion techniques.

the body. Although the body mass is usually fixed in the conceptual design phase,
the added-mass component of the inertial coefficient is available as a design tool.
For a Lewis form, the frequency-independent added mass per unit body length is
presented in eq. 11.83. Because this is a shape-dependent parameter, the hull geom-
etry can be modified to change the added-mass value and, subsequently, that of the
natural frequency. In reality, the dynamically based design of floating structures is
more complex. The natural frequency expressions in eqs. 11.132 and 11.139 are of
value in the conceptual design phase of the design process.

The forces on bodies in random seas are discussed in Section 9.3, and the nature
of the motions induced by random-wave forces is introduced in Section 10.3. The
discussion in Section 10.3 concerns single-degree-of-freedom systems. The barge in
Example 11.11, experiencing uncoupled heaving and pitching motions, is such a sys-
tem. The analysis of random waves is introduced in Chapter 5. To apply the tech-
niques in Section 10.3 to the uncoupled motions of a floating body, one must define
the amplitude response function, as in eq. 10.51. Then, simply follow the analytical
procedure following that equation. For ship motions in random or “confused” seas,
St. Denis and Pierson presented a classical analytical approach to the problem in
1953 (see St. Denis and Pierson, 1953). Twenty years later, to commemorate the
publication of the St. Denis-Pierson paper, the H-7 Panel of the Society of Naval
Architects and Marine Engineers (SNAME) sponsored a symposium to update the
science and technology involved in the prediction of ship motions in random seas.
The results are presented in the publication by SNAME (1974). The book by Price
and Bishop (1974) is also recommended for those readers interested in the motions
of ships in random seas.
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In the next section, the added-mass and radiation-damping coefficient expres-
sions are compared with the experimental results of Vugts (1968).

11.5 Experimental and Theoretical Hydrodynamic Coefficient Data

To establish a range of applicability of the Lewis form added-mass coefficients and
determine the accuracy of the radiation-damping coefficient expressions, we apply
the expressions to the experimental conditions of Vugts (1968). The two sectional
geometries chosen for this comparison are the rectangular section and the semi-
circular section. The added-mass expression for the former is found in Appendix H.
For both geometries, a modifier is applied to account for the frequency dependence
of the added-mass coefficients.

A. Modification of the Lewis Added-Mass Coefficients to Include
Frequency Dependence

We find in Section 11.3D that the radiation-damping coefficient for a strip depends
on the frequency of excitation of the vertical motions of the strip. However, the
added-mass coefficients in eq. 11.75 and in Appendix H determined by Lewis (1929)
are independent of the motion frequency for any strip geometry. To modify the
Lewis coefficients to account for the frequency, the coefficients can be multiplied
by a frequency coefficient (k4). The non-dimensional frequency coefficient is thor-
oughly discussed by Petersen (2000). Also, see Ursell (1949), Tasai (1959), Korvin-
Kroukovsky (1955), Korvin-Kroukovsky and Jacobs (1957), and others for discus-
sions of k4. Following Petersen (2000), the added-mass coefficient that accounts for
the frequency effects is

a′
w(�, 
) = �S� k2k4 (11.143)

where 
 is the excitation frequency. Here, S� is the sectional (strip) area. Also in
eq. 11.143 is the shape parameter (k2). This parameter is defined as the frequency-
independent added mass divided by the displaced mass for a given strip. For the
Lewis form described in Section 11.3A, that parameter is

k2 =
[
(1 + A1)2 + 3A2

3

]
[
(1 + A3)2 − A2

1

] (11.144)

where A1 and A3 are the Lewis parametric constants introduced in eq. 11.35. For
the rectangular strip of breadth B� = 2b� and draft d� , as presented in Appendix H,
the shape parameter is

k2 = C2
�

2

(
b�

d�

)
(11.145)

Here, the value of coefficient C2 depends on the whether or not the body is fully
submerged and the water depth. From Petersen (2000), the frequency coefficient
(k4) in eq. 11.143 is found to have various expressions, depending on the range of
values of

q(
) ≡ 
2 B�

2g
(11.146)
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Table 11.3. Expression for the frequency coefficient, k4, after Petersen (2000)

For d�/B� ≤ 6.1, the following apply:

(a) 0 < q ≤ qa ,

k4a = − 8
�

ln
[

0.795
(

1 + 2d�

B�

)
q
]

(11.147)

where

qa = − 1.3503(
d�

B�

)−0.9846

+ 2.3567

+ 0.5497 (11.148)

(b) qa < q ≤ 1.388,

k4b = 0.2367q2 − 0.4944q + 0.8547 + 0.01
q + 0.0001

(11.149)

(c) 1.388 < q ≤ 7.31,

k4c = 0.4835 +
√

−0.0484 + 0.0504q − 0.001q2 (11.150)

(d) 7.31 < q,

k4d = 1 (11.151)

For d�/B� > 6.1: qa = 0, and

k4b = k4b, where 0 < q ≤ 1.388
k4c = k4c, where 1.388 < q ≤ 7.31
k4d = k4d, where 7.31 < q (11.152)

From Petersen (2000), we present validity ranges for k4 in terms of q(
) in
Table 11.3. In that table, we see that the applicability ranges of k4 depend, first,
on the draft-to-breadth ratio (d�/B� ) of the strip. For the two Lewis forms in
Example 11.8 (the semicircle, where A1 = A3 = 0, and that for which A1 = 0 and
A3 = −0.111), d�/B� = 0.5 < 6.1 for both, and k4a through k4b in Table 11.3 apply.

B. Vertical Motions of a Rectangular Section

In this section, the added-mass and radiation-damping coefficients for a strip having
a rectangular geometry are presented. The experimental data are from Vugts (1968),
and the theoretical data result from the applications of eq. 11.143 for the added-mass
coefficient and eq. 11.88 for the radiation-damping coefficient. In eq. 11.143, the
results in eqs. 11.147 and 11.149 through 11.152 in Table 11.3 are can be substituted.
In eq. 11.88, the amplitude ratio in eq. 11.89 is included, where Zref = S�/B� = d� for
the rectangular strip. The rectangular model studied by Vugts (1968) had a breadth
(B� ) of 0.4 m and a draft (d� ) of 0.2 m. Hence, d�/B� = 0.5 < 6.1 in Table 11.3. For
the experiment, the upper bound of q(
) for k4a is qa � 0.238. The coefficient in the
shape parameter expression in eq. 11.145 is C2 = 0.75 from Appendix H, assuming
that the rectangular body is in deep water.

The non-dimensional added-mass results for the rectangular strip are presented
in Figure 11.18, and the radiation damping results are found in Figure 11.19. In both
figures, the abscissa is q1/2 = 


√
(B�/2g). In Figure 11.18, we see that the results

of combining eqs. 11.143, 11.145, and the frequency coefficient (k4) expressions
in Table 11.3, although somewhat predicting the behavior of the non-dimensional
added mass, improve the agreement over only a small range of q1/2. For the rectan-
gular strip, one can conclude that the application of the frequency coefficient lacks in
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awZFigure 11.18. Added-Mass Coefficients for
a Heaving Rectangular Section. For the
rectangular section, the beam (B� ) is 0.4 m,
and the draft (d� ) is 0.2 m. Also, see the
results in Figure 11.25.

achieving the goal of improving the agreement between the predicted and observed
added mass. For the higher frequency range, 


√
(B�/2g) > 1.50, the added mass

for the rectangular section is well predicted by the infinite frequency expression in
Appendix H. The behavior of the non-dimensional radiation-damping coefficient is
well predicted by the combination of eqs. 11.88 and 11.89, although the predicted
and observed peak values vary by about 33%. It should be noted that the viscous
effects and flow separation at the corners of the rectangular geometry are included
in the experimental data, but not in the analytical curves. According to Vugts (1968),
“The influence of viscosity is negligible, perhaps with the exception of large bulb-
shaped sections where separation may occur at the upper side of the bulb.”

C. Vertical Motions of a Semicircular Section

The semicircular section studied by Vugts (1968) had a radius (r� ) of 0.15 m. Hence,
for this model, B� = 0.30 m and d� = 0.15 m. This combination results in d�/B� =
0.5 < 6.1, and the frequency coefficient, k4a, is used for qa ≤ 0.238 (obtained from eq.
11.148). It is interesting to note that the k4 segments in Table 11.3 are the same for
both the rectangular strip, discussed previously, and the semicircular strip because
d�/B� and q have the same numerical values for each of the bodies studied by Vugts
(1968).

The predicted and observed non-dimensional added-mass values for semicir-
cular geometry are presented in Figure 11.20, and the non-dimensional radiation-
damping coefficient results are found in Figure 11.21. In Figure 11.20, the agree-
ment between the theoretical and experimental values is quite good, except for one
experimental data point. It should be noted that Vugts (1968) states that “in the low
frequency range (


√
(B/2g) < 0.5) deviations appear, especially in the added mass.
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Figure 11.19. Radiation Damping Co-
effients for a Heaving Rectangular Section.
For the rectangular section, the beam
(B� ) is 0.4 m, and the draft (d� ) is 0.2 m.
The theoretical curve is also predicted
by the Havelock (1942) amplitude-ratio
expression in eq. 11.166.
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Figure 11.20. Added-Mass Coeffients for
a Heaving Semicircular Section. For the
semicircular section, the diameter (D� ) is
0.3 m and, hence, the radius (R� ) is 0.15 m.

This is due to experimental inaccuracies.” The agreement between the analytical
and experimental radiation coefficient results in Figure 11.21 is excellent.

From the results presented in this section, one can conclude that the Lewis for-
mula is satisfactory for predicting the added mass for sections undergoing high-
frequency vertical oscillations. When modified for low to moderate frequencies,
where the Lewis formulas for the Lewis forms and the rectangular sections in
Appendix H are multiplied by the frequency coefficient (k4) expressions in Ta-
ble 11.3, the added mass results are mixed, depending on the geometry of the body.

In the next section, the singularity method of determining the hydrodynamic
coefficients is introduced. The method includes the frequency dependence of the
added-mass and radiation-damping coefficients.

11.6 Singularity Method of Determining Hydrodynamic Coefficients

As discussed in the previous section, the added-mass expressions obtained by using
the analysis of Lewis (1929) are not frequency-dependent. This is also discussed
in Sections 9.2A(2) and 11.3. Physically, this frequency independence is commonly
interpreted as the strip oscillating at an infinite frequency. In Section 11.5, a fre-
quency coefficient (k4), well described by Petersen (2000), is introduced to account
for the frequency dependence, with a modicum of success. We now direct our atten-
tion to another analytical method for the determination of the added-mass and
radiation-damping coefficients for arbitrary frequencies.

There are a number of methods designed to predict the frequency depen-
dence of the hydrodynamic coefficients (added mass and radiation damping). These
include both analytical and numerical techniques. The analytical techniques are
of primary interest here, and include those of Havelock (1942), Ursell (1954),
Korvin-Kroukovsty and Jacobs (1957), Grim (1960), Motora (1964), Frank (1967),
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Figure 11.21. Radiation-Damping Co-
effients for a Heaving Semicircular Sec-
tion. For the semicircular section, the
diameter (D� ) is 0.3 m and, hence, the
radius (R� ) is 0.15 m.
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Figure 11.22. Y-Z Planar Motions of a Strip in Deep Water. The body motions create waves
that are radiated away from the body. Because the body is of infinite length and moves uni-
formly over its length, the subscript � is not needed to identify the coordinates (Y,Z) attached
to the strip, as is done in the previous sections. The geometrical shape of the wetted surface of
the strip is denoted by the function S(Y,Z,t). The waves on the left side produced by the ver-
tical (heaving) motions are in-phase with those on the right side. For the horizontal (swaying)
and angular (rolling) motions, the waves on the sides are 180◦ out of phase.

and others. Havelock (1942) represents the strip by a distribution of sources with a
goal of determining the energy lost to the strip motions due to radiation damping. In
addition, Havelock (1927, 1942), Ursell (1954), and Frank (1967) introduce integral
forms of the velocity potentials representing the distribution of these singularities in
their derivations. For three-dimensional motions, Yeung (1981) presents an expan-
sion method incorporating the Fourier series. His application is to swaying, heaving,
and rolling truncated circular cylinders.

As in Section 11.3, the problem is to determine the velocity potential describing
the flow excited by the body motions. In this section, the integral method of Have-
lock (1942) is presented. The Havelock papers are also found in the collection of
that author’s papers edited by Wigley (1963). For simple sectional (strip) geome-
tries, such as the rectangle and the semicircle, the method leads to quasi-analytical
expressions for the added-mass and radiation-damping coefficients. Frank (1967)
applies the source-distribution technique to several of these strip geometries. For
more complicated sectional geometries, the method must be combined with numer-
ical techniques.

Excellent summaries of the various analytical methods applied to the strip
theory are found in the reports of McTaggart (1996), Phelps (1997), and Petersen
(2000), and in the papers by Fossen and Smogeli (2004) and Arribas and Fernádez
(2006).

In the following derivations, the body is assumed to be excited artificially with-
out regard to incident waves. This assumption is in line with the analyses of Have-
lock (1942), Ursell (1954), and Frank (1967), and the experiments of Vugts (1968).
The excitations produce inertial reactions of the ambient water and losses in energy
due to radiation. Referring to the strip in Figure 11.22, when the body motions are
vertical, then the radiated wave pattern is symmetric with the centerplane, or X-Z
plane. When the motions are horizontal, then the created wave patterns are asym-
metric with respect to the centerplane. The vertical motions of the section (or strip)
could be considered to be due to either the heaving or small-angle pitching of the
body or a combination thereof, as in Section 11.3. Similarly, horizontal motions of
the strip could be due to either swaying, small-amplitude yawing, or a combination
of the two. Only the vertical motions are discussed in detail herein.
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Figure 11.23. Submerged, Pulsating Source. The source at (0, −Zs) has
a time-dependent strength, M(t) = Moe−i
t, where 
 is the circular
frequency of the pulsation. As is shown, the negative source (sink) at
the image point above the horizontal axis is 180◦ out of phase in time
with the submerged source. Over one half of a period (T = 2�/
), the
source becomes a sink, and vise versa.

Referring to the arbitrary strip geometry sketched in Figure 11.22, we begin
by assuming that the strip is forced to oscillate vertically, the motions producing
monochromatic, linear waves that radiate away from the body. The waves, sketched
in Figure 11.22, are right-running in the positive Y-direction and left-running in the
negative direction. The strip can be considered to be that of an infinitely long cylin-
der and of uniform cross-section; hence, the analysis presented is two-dimensional.
In Figure 11.22, the d� is the draft, or keel depth, of the body.

To derive the expressions for the frequency-dependent added-mass and
radiation-damping coefficients for an oscillating body in the free surface, the velo-
city potential describing the motion-excited flow must be determined. In the fol-
lowing subsections, the singularity method of Havelock (1942), which results in an
integral form of the potential, is described.

A. The Source Pair

To introduce the reader to the singularity method, we present a portion of one of the
earlier analyses employing singularities and their images in hydrodynamic analyses,
that of Havelock (1927, 1942). The Havelock analyses demonstrate how the method
of images (the coupling of a submerged singularity and its out-of-phase image) can
be used to determine the properties of waves created by submerged bodies. Our
goal is to demonstrate how to derive an integral expression for a velocity potential
at a point in the flow field at a distance from a singularity located at a depth beneath
a free surface. The singularity, used here to demonstrate the method, is a pulsating
source of strength M(t) = Moe−i
t at a point (0, −Zs) in Figure 11.23, where 
 is the
circular frequency of the pulsation. In addition, a source that is out of phase with the
submerged pulsating source is located at (0, Zs). The subscript s identifies properties
and dimensions related to the two sources. See the book by Katz and Plotkin (2001),
among others, for a discussion of other applications of singularities in flow analyses.

The velocity potential representing the two sources mentioned in the last para-
graph and sketched in Figure 11.23 is

�s = Moe−i
t ln

[√
Y2 + (Z + Zs)2√
Y2 + (Z − Zs)2

]
= Mo

2
e−i
t ln

[
Y2 + (Z + Zs)2

Y2 + (Z − Zs)2

]
(11.153)

where, again, the subscript s identifies the source properties. We recall from Chap-
ter 2 that a source of negative strength is a sink. Hence, each source becomes
a sink over half of a pulsation period. From the expression in eq. 11.153, the
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following expression for the vertical velocity is obtained:

∂�s

∂ Z
= Moe−i
t

{[
Z + Zs

Y2 + (Z + Zs)2

]
−
[

Z − Zs

Y2 + (Z + Zs)2

]}
(11.154)

Applying eqs. 11.153 and 11.154 at Z = 0, the waterline conditions for velocity
potential and the vertical velocity are obtained. For the out-of-phase source pair,
these conditions are

�s |Z=0 = 0 and
∂�s

∂ Z

∣∣∣∣
Z=0

= 2Moe−i
t
(

Zs

Y2 + Z2
s

)
(11.155)

It is interesting to note that the velocity potential for the Lewis forms in eq. 11.52
vanishes along Z = 0, where � = 0 in that equation. This is a condition associated
with infinite-frequency body oscillations. Because a free surface is assumed to exist,
we introduce an additional velocity potential to represent the generated waves. This
potential associated with the free surface can be written in a generalized integral
form as

�fs = e−i
t

∞∫
0

F(k)ekZ cos(kY)dk (11.156)

Here, the subscript fs identifies the free-surface potential. In eq. 11.156, F(k) rep-
resents the to-be-determined free-surface function associated with the waves pro-
duced by the source pair. The other terms in the integrand of eq. 11.156 result from
our knowledge of linear surface waves obtained from Chapter 3. We can also rep-
resent the velocity potential in eq. 11.153 in an integral form similar to that in eq.
11.156. Using the integral relationship found on p. 493, number 3.951(3), of the book
by Gradshteyn and Ryzhik (1980), we can express the potential in eq. 11.153 as

�s = Moe−i
t

∞∫
0

1
k

[
e−k(Zs−Z) − e−k(Zs+Z)] cos(kY)dk (11.157)

This equivalent integral expression is valid provided that both (Zs + Z) and (Zs −
Z) are greater than zero. Physically, this condition is satisfied between the sources in
Figure 11.23. The purpose of representing the source pairs by integral expressions is
to determine the free-surface function, F(k); hence, this condition is not considered
to be a limiting restriction. The complete velocity potential representing the source
pairs and the free surface is the sum of those in eqs. 11.156 and 11.157, that is,

� = Moe−i
t

∞∫
0

1
k

{
(e−k(Zs−Z) − e−k(Zs+Z)} cos(kY)dk + e−i
t

∞∫
0

F(k)ekZ cos(kY)dk

(11.158)
Combine the velocity potential in eq. 11.158 with eq. 3.7, the linearized free-surface
condition. In the resulting expression, assume that the sum of the integrands equals
zero. From this assumption, the following is obtained:

F(k) = −2Mo
e−kZs

(k − k0)
(11.159)

where k0 = 
2/g is the deep-water wave number. For the out-of-phase source pair
and resulting free-surface flows, the velocity potential expression in eq. 11.158
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becomes

� = �s + �fs = Mo

2
e−i
t ln

[
Y2 + (Z + Zs)2

Y2 + (Z − Zs)2

]
− 2Moei
t

∞∫
0

e−k(Zs−Z)

k − k0
cos(kY)dk

(11.160)

This is the first equation in the paper by Havelock (1942). The free-surface integral
in eq. 11.160 appears in one form or another in a number of seakeeping analyses
based on singularity distributions. For example, see the paper by Grim (1960). The
inclusion of the alternative form of Havelock’s free-surface integral is beyond the
scope of this book.

The free-surface displacement to the right of the source pair in Figure 11.23 is
found by combining eqs. 3.6 and 11.160, noting that the source potential (�s) van-
ishes on the SWL. The resulting free-surface displacement expression is

�(Y, t)|Y≥0 = −�
[

1
g

∂�
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z�0

]
= −�
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g
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g
Moe−i
t
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0
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k − k0 + i
cos(kY)dk



〉

= 2�



g
Moe−kZS cos(k0Y − 
t)

− 2



g
Mo

∞∫
0

e−k0Y

k2 + k2
0

[kcos(kZs) − k0 sin(kZs)] sin(
t)dk (11.161)

The last equality of the equation is the result of a contour integration. That is, in
the integral of the second line of eq. 11.161, k is treated as a complex variable. The
artifice,  > 0, is introduced in the second line of eq. 11.161 by Havelock (1942)
to provide a singular point off of the imaginary axis. The importance of the equa-
tion for our purposes is not in the result per se, but in the physical meaning of the
results of the last equality. As indicated by the time functions, the first term of that
equality represents a traveling right-running wave, whereas the last integral repre-
sents standing evanescent waves. The expression for the traveling-wave component
is of particular interest in determining the radiation damping of a heaving body, as
demonstrated later in this section.

In the next sections, the point velocity potential in eq. 11.160 is used in determin-
ing the reaction forces on a rectangular strip undergoing oscillatory vertical motions.

B. Distributed Sources – Rectangular Strip

We now apply the singularity method to a rectangular strip by distributing the
sources over the bottom and top of the strip, as sketched in Figure 11.24. The for-
mulation of the equations is best done using this simplest of strip geometries. The
evaluation of the resulting motion-induced forces on other strip geometries must be
done numerically. The velocity potential representing the source distribution over
the bottom of the rectangular section in the figure is

� = �S + �FS =
b�∫

−b�

�s |Z=−d�
dy +

b�∫
−b�

�fs|Z=−d�
dy (11.162)
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Figure 11.24. Source Distribution Representation for a Vertically Oscillating Rectangular
Strip. This model is used by Havelock (1942) to obtain an approximate relationship for the
radiation-damping coefficient for a ship having a rectangular section. According to Havelock,
the model is valid when the radiated wavelength is greater than the beam, B� .

where the source-distribution potential component, identified by the subscript S, is

�S = Mo
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and the free-surface potential component, identified by the subscript FS, is

�FS = −2Moe−i
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(11.164)

Here, we note that the sequence of the integrations can be interchanged without
affecting the outcome. The last line of eq. 11.164 results from the application of the
partial fractions technique for simplifying the integrand. The integrals in eq. 11.164
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Bξ = 2bξ Bξ = 2bξ

dξ dξ

(a) ω → ∞ (b) ω → 0

Figure 11.25. Strip and Image Motions Corresponding to Extreme Frequencies. After New-
man (1977).

can be solved numerically. The integral in last line of eq. 11.164 can be expressed in
terms of exponential integrals. The use of that alternative form of the wave-number
integrals is outside the scope of this book.

Concerning the method of images, Newman (1977) gives physical interpreta-
tions for the two limiting frequency conditions for heaving and swaying bodies.
Those limiting conditions are 
 → ∞ and 
 → 0. The former is the case for which
the Lewis (1929) formulas apply. The condition for which 
 → ∞ corresponds to
the out-of-phase source distributions shown in Figure 11.25b. For this condition, the
strip and its image are moving in phase, that is, both bodies are either rising or
falling, as illustrated in Figure 11.24a. When 
 → 0, the source distributions are in
phase, and the resulting strip and image motions are out of phase, as illustrated in
Figure 11.25b. The combined strip and its image resemble a pulsating body. The
added mass corresponding to this condition must be infinite because the entire
unbounded liquid is excited by the motions. An excellent discussion of the limit-
ing frequency conditions is presented by Bishop and Price (1979).

In the following subsection, the velocity potential expression in eq. 11.163 is
used to determine the infinite-frequency added mass of the vertically oscillating
rectangular strip. Then, the potential expression in eq. 11.164 is used to obtain the
properties of the motion-induced waves well away from the body and, thereby, to
determine the radiation-damping coefficient, br� , in eq. 11.88. Later in the chap-
ter, the velocity potential representing these far-field waves is combined with the
Haskind relationships to determine the exciting force on the heaving strip.

(1) Alternative Infinite-Frequency Added Mass of a Heaving Rectangular Strip

The analysis leading to the Lewis (1929) added-mass expression for a “sharp-bilge”
body is outlined in Appendix G of this book. The assumption used in that analysis
is that the body is oscillating in some mode with an infinite frequency. One applica-
tion of the analysis is to the heaving strip having a rectangular geometry, which is
the geometry of a barge section. Other results obtained from the Lewis (1929) the-
ory are found in Appendix H. The equations resulting from the Lewis sharp-bilge
analysis are in terms of elliptic integrals. Because of this, the equations are not con-
ducive to what we might call “field analyses.” As an alternative to the Lewis analy-
sis, the source-distribution method, described by Havelock (1942) and Frank (1967),
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can be used to obtain expressions for the infinite-frequency added mass. In the fol-
lowing paragraphs, we demonstrate this method by applying the source-distribution
method to the infinite-frequency heaving motions of a rectangular strip. The alterna-
tive analysis results in a closed-form expression for the added mass. The alternative
added-mass expression is applied to the experimental conditions of Vugts (1968).
The results of the application are then compared to those obtained from the Lewis
analysis and the experimental results.

Consider an infinite-frequency heaving of the rectangular strip, sketched in
Figures 11.24a and 11.25a. To mathematically represent the body, the source dis-
tributions sketched in Figure 11.24b are used. The velocity potential for the source
distribution shown in Figure 11.24a is presented in eq. 11.163. Because the condition
of an infinite frequency implies a zero wavelength, the velocity potential in eq. 11.64
does not enter into the derivation. Hence, only the source potential in eq. 11.163 is
used here. Combine the potential in eq. 11.163 with the dynamic pressure expression
in the linearized Bernoulli’s equation to obtain the dynamic pressure on the bottom
of the rectangular strip in Figure 11.24. The result is
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(11.165)

Before integrating this result over the bottom of the strip in Figure 11.24b, we must
first specify the strength of the source distribution. To do so, we use the results of
Katz and Plotkin (2001), that is, let the strength of the source distribution be MSo =
Vo/�. By substituting this expression in eq. 11.165, the complex vertical reaction
force (per unit body length) is obtained by integrating the dynamic pressure over
the bottom of the strip. The result is
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Figure 11.26. Comparison of Theoretical and Experimental Heaving Added-Mass Coefficients
for a Rectangular Strip. The Vugts (1968) data correspond to the highest test frequency. The
models studied had a beam (B� = 2b� ) of 0.4 m. After McCormick and Hudson (2009).

The term in the first bracket of the last line of the equation is the complex vertical
acceleration of the body. The vertical reaction force magnitude obtained from the
expression is
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Here, a′
w is the added mass (per unit length) for a heaving rectangular strip heaving

with an infinite frequency, and 
Vo is the amplitude of the heaving acceleration. The
expression for the infinite-frequency added mass for a rectangular strip (section) is
then
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This is a closed-form expression that can be used to obtain approximate values for
high-frequency vertical motions of a rectangular strip. Results obtained from the
application of this added-mass expression to the experimental data of Vugts (1968)
are presented in Figure 11.26. The Vugts data correspond to the highest experimen-
tal frequency studied. The results are presented in non-dimensional form, where the
added mass divided by the mass of the displaced water is presented as a function of
the draft-to-semi-beam ratio. Also in Figure 11.26 are the results of the application
of the Lewis (1929) analysis, as outlined in Appendix G. The results in Figure 11.26
are after the technical note by McCormick and Hudson (2009).

EXAMPLE 11.12: ALTERNATIVE EXPRESSION FOR THE ADDED MASS FOR A HEAV-

ING RECTANGULAR STRIP Consider the lowest draft-to-beam ratio of the
rectangular-section models studied by Vugts (1968). In Figure 11.24a, this
value is seen to be d�/b� = 0.25. From the Vugts paper, the highest test
frequency data for this section corresponds to the frequency parameter value
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Figure 11.27. Vugts Added-Mass Coefficients for a Rectangular Section. The Vugts (1968)
data are for three beam-to-draft ratios, B�/d� = 2b�/d� = 2, 4, and 8. The data points below



√
(b/d� ) = 0.25 are omitted because of scatter. After McCormick and Hudson (2009).

of 

√

(b�/g) � 1.7. Let us apply the Vugts results to a barge deployed in salt
water (� = 1.03 × 103 kg/m3) having a beam (B� = 2b� ) of 3 m and a draft (d� )
of 0.375 m. From the frequency parameter value, the heaving frequency for this
barge is approximately 4.35 rad/s. The heaving period is then about 1.44 sec.
The non-dimensional added-mass value (obtained from the application of
eq. 11.168 to the rectangular barge section) is approximately 4.29, whereas the
experimental value is about 3.1. The predicted added-mass value is 9.94 ×
103 kg/m, and that corresponding to the experimental value is 7.18 × 103 kg/m.
The percentage difference in the values is about 38.4%. The Lewis result in
Figure 11.26 overpredicts the added mass by approximately 26%. In Figure
11.26, it can be seen that the agreement between the theory and experiment
increases with d�/b� . The Vugts (1968) data actually have a trend toward larger
added-mass values, as can be seen in Figure 11.27. The draft-to-half-beam
(B�/d� ) value for that figure is 1. From this trend, one can conclude that the
agreement between theory and experiment is somewhat better than that in
Figure 11.26.

Vugts’ (1968) non-dimensional added-mass data over a frequency-parameter
range of 0.25 ≤ 


√
(b�/g) ≤ 1.71 are presented in Figure 11.27 with the results from

eq. 11.168 and the Lewis (1929) analysis in Appendix G. The experimental data
below 


√
(b�/g) = 0.25 were omitted from the figure due to scatter. Furthermore,

the data presented by Vugts (1968) for each b�/d� value are for three different
motion amplitudes. However, the data appear to be insensitive to the amplitudes
studied. From the results in Figure 11.27, one can see that the added-mass values
corresponding to an infinite-frequency excitation overpredict the values by as much
as 40% over the finite frequency range. This observation appears to hold true for
the three beam-to-draft ratios studied, B�/d� = 2b�/d� = 2, 4, and 8.
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(2) Radiation Damping of a Heaving Rectangular Strip

In the last equality of eq. 11.161, it is seen that there are two wave components
resulting from a pulsating source pair situated on the vertical axis. The first term
in the equality represents traveling waves, and the second represents evanescent,
standing waves. Well away from the vertical axis, the evanescent wave system is of
second order, and can be neglected. Consider now the far-field waves excited by
the vertical motions of the rectangular strip in Figure 11.24a. Following Havelock
(1942), the free-surface displacement well away from the body due to the distributed
sources over the bottom of the heaving rectangular strip in the figure is

�r0(Y, t)|Y�b�
= Hr0

2
cos(k0Y − 
t) = 2�




g
MFSoe−k0d�

b�∫
−b�

cos[k0(Y − Yp) − 
t]dYp

= 4
�

g



k0
MFSoe−k0d� sin(k0b� ) cos(k0Y − 
t) (11.169)

where Hr0 is the deep-water height of the radiated wave and k0 is the deep-water
wave number. The waves are generated by the motions of the strip having a dis-
placement described by eq. 11.17 and a vertical velocity obtained from eq. 11.18.
In the present situation, the strip is oscillating in pure heave. Hence, the strip dis-
placement at any time is

�(t) = Z0e−i
t (11.170)

where Zo is the amplitude of the heaving motion. The heaving velocity is then

VZ(t) = d�

dt
= Voe−i
t = −i
Zoe−
t (11.171)

Following Havelock (1942), the source strength for the free surface is MFSo =
Vo/2�. The reader should note that this strength is half that for the infinite-
frequency condition discussed in the previous section. The reason for this difference
in the source strength is as follows: Well away from the body on the free surface,
the vertical motions of the strip and its image appear to be those of a doublet or
dipole; hence, the choice of the strength expression. The substitution of the source
strength expression into eq. 11.169 results in an expression from which the ratio of
the radiated-wave amplitude and the body-motion amplitude can be obtained. That
heaving amplitude ratio is

RZ ≡ Hr0/2
Z0

= 2e−k0d� sin(k0b� ) (11.172)

which is analogous to the expression in eq. 11.89. The Havelock radiation damping
coefficient is obtained by replacing the heaving amplitude ratio in eq. 11.88 by the
expression in eq. 11.172 to obtain

b′
r = �g2


3
R2

Z = 4
�g2


3
e−2k0d� sin2(k0b� ) (11.173)

Compare this equation with the combination of eqs. 11.88 and 11.89. We see that Zref

in eq. 11.89 is d� in eq. 11.173, and the frequency-of-encounter expression (
e
2/g)

in eq. 11.89 has been replaced by the deep-water wave number (k0) in eq. 11.173.
Results obtained from the application of eq. 11.173 to the Vugts (1968) experimental
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data are the same as those in Figure 11.19. In that figure, we see that the experimen-
tal and theoretical results agree rather well. Hence, we can have some confidence in
the singularity method in predicting the radiation-damping coefficient.

The energy flux or radiated power due to the vertical oscillations of the rectan-
gular strip is obtained from eq. 3.73 applied to the traveling-wave term in the free-
surface expression in eq. 11.161, where Y � b� in Figure 11.24a. Using the MFSo

expression in eq. 11.169 and combining the results with the energy flux expression
in eq. 11.87 results in the following expression for the radiated wave power per unit
length (in the X-direction):
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As in eq. 11.87, the factor of 2 results from the fact that waves are created on both
sides of the Z-axis, as illustrated in Figure 11.24a. The last equality in eq. 11.171 is
that of Havelock (1942).

EXAMPLE 11.13: RADIATION DAMPING COEFFICIENT FOR A HEAVING RECTANGULAR

STRIP As in Example 11.12, we consider the lowest draft-to-breadth ratio of the
rectangular-section models studied by Vugts (1968), which is d�/b� = 0.25. Let
the body in that example be oscillating in salt water at a frequency correspond-
ing to the frequency parameter value of 


√
(b�/g) � 1.7. The barge in Example

11.12 has a beam (B� = 2b� ) of 3 m and a draft (d� ) of 0.375 m. The heaving
period is approximately 1.44 sec. The value of the damping coefficient from eq.
11.173 from these conditions is approximately 0.738 N-s/m. The approximate
heaving amplitude ratio value from eq. 11.172 is 0.0249.

In summary, the importance of the singularity method is that it can be used to
numerically determine the hydrodynamic forces on bodies of any geometry by dis-
tributing the singularities along the wetted surface of the body. We have chosen the
rectangular geometry for the strip to illustrate. Other geometries simply require
defining Z = f (Y) for the body in question and then performing the required
integrations.

In addition to a source as the singularity, a doublet can also be used. In three-
dimensional analyses, the singularities include sources and multipoles. According to
Frank (1967), the use of multipole distributions to represent heaving floating bodies
in contemporary seakeeping analyses began with Ursell (1949). For a discussion of
the coupling of multipoles expansions and conformal mapping techniques applied
to strip theory, the paper by Grim (1960) is recommended.

It should also be noted here that for the infinite frequency condition, such as that
for the use of the Lewis (1929) forms and the source-distribution method leading to
the added-mass expression in eq. 11.168, the deep-water wave number (k0) also is
infinite. Hence, the free-surface potential in eq. 11.164 vanishes, leaving only the
distributed-source potential in eq. 11.163.

In the following section, the expression for the potential for the far-field radi-
ated waves is used to determine the forces on the oscillating body. This is possible
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because of the works of both Haskind (1957) and Newman (1962b). Again, the rect-
angular strip is used to illustrate the application of the method.

11.7 Two-Dimensional Haskind Force Relationships

In the early 1960s, a simplified method of prediction of wave forces and moments
on relatively large, fixed, and movable bodies was introduced to engineers in the
Western Hemisphere when a paper by Haskind (1957) was translated by Newman
(1962a). In his analysis, Haskind (1957) assumes that the wave-induced fluid motions
are irrotational and, by doing so, is able to take advantages of Green’s theorem.
See Appendix C for the derivation of Green’s theorem. In a follow-on study, New-
man (1962b) obtained the results of Haskind using a slightly different approach.
The Haskind relationships are widely used by naval architects and ocean engineers.
In this section, the derivation of the Haskind relationships is both outlined and
discussed.

According to Newman (1962b), for bodies of arbitrary geometry, the Haskind
(1957) method allows us to derive the expressions for the wave-induced forces and
moments on floating and submerged bodies in terms of the far-field velocity poten-
tials representing waves produced by the forced motions. The derived expressions
do not depend on the diffraction potential or on the disturbance of the incident
waves by the presence of the body. Prior to the introduction of the Haskind method,
the Froude-Krylov approach was widely used, where no alteration of the wave field
by the presence of the body was assumed. The Haskind force relationships give the
analyst a method for determining the exciting forces on bodies that would normally
be intractable. In the following paragraphs, the basics of the Haskind analysis, as
given by Newman (1962b), are presented. The method is then applied to the oscilla-
tory vertical motions of a rectangular strip, using the motion-induced far-field radi-
ated waves discussed in previous the section.

A. Newman’s Formulation

Consider any two-dimensional floating body exposed to deep-water waves. Accord-
ing to Newman (1962b), there are two independent problems to solve. Those are the
diffraction problem caused by the (assumed linear) waves moving past the body, and
the radiation problem caused by the forced oscillations of the body in calm water.
Begin by assuming that the flow in the ambient fluid is irrotational and that the
oscillations are small. The velocity potentials representing the incident waves, the
wave diffraction, and the radiated wave obey the basic equations of hydrodynamics.
Hence, for the body in Figure 11.28, any of these velocity potentials can be repre-
sented by

� = � (Y, Z) e−i
t (11.175)

This potential must satisfy the equation of continuity in the form of Laplace’s equa-
tion, eq. 3.8, that is,

∇2� = ∇2� = 0 (11.176)
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Figure 11.28. Strip Geometry for the Derivation of the Haskind Relationships. The pseudo-
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In addition, the linear free-surface condition in eq. 3.7 must be satisfied by the poten-
tial. That condition is (

∂�

∂ Z
− k0�
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Z=��0

= 0 (11.177)

Here, k0 = 
2/g is the deep-water wave number.
Our interest is in a strip having an arbitrary geometry, such as that sketched in

Figure 11.28. As is done in eq. 11.7, let the two-dimensional body in that figure be
described by the function

Sbody(Y, Z, t) = Sbody (Y, Z) − soe−i
t = 0, 0 ≤ Y < b� (11.178)

In this expression, so is the amplitude of body motion when the body is excited in
calm water. For example, if the body is excited in heave, then so = Zo. The velocity
potential representing the flow then must satisfy the following body condition, as in
eq. 11.8, that is,

DSbody

Dt
≡ ∂Sbody

∂t
+ VSbody · ∇Sbody

= ∂Sbody

∂t
+ ∇�Sbody · n|∇Sbody| = ∂Sbody

∂t

+
(

∂�

∂Y
j + ∂�

∂ Z
k
)

|Sbody · n|∇Sbody| = 0 (11.179)

The subscript body identifies a function applied to the wetted strip boundary, and j
and k are the unit vectors in the respective horizontal and vertical directions.

The water motions beneath the incident and reflected waves are represented by
the respective velocity potentials, �I and �R. Note that in the three-dimensional
case, we would be dealing with both wave reflection and diffraction. The combi-
nation of the two in three-dimensional analyses is normally combined in what is
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termed the diffraction potential, �D. Returning to the two-dimensional flow, the
velocity potential representing the wave excitation is

�e ≡ �I + �R = (�I + �R) e−i
t (11.180)

Later in this section, this potential is used to determine the exciting force on the
body. Because the body is fixed, the combination of the velocity potentials in
eq. 11.180 and the boundary condition in eq. 11.179 results in

∂�e

∂n

∣∣∣∣
Sbody

= ∂�I

∂n

∣∣∣∣
Sbody

+ ∂�R

∂n

∣∣∣∣
Sbody

= 0 (11.181)

When the body is excited in still water, as in Section 11.6, the radiation velocity
potentials due to the swaying (Y), heaving, (Z) and rolling (� ), illustrated in Figure
11.21, are represented by �Y, �Z, and �� , respectively. The velocity potential at
any point in the fluid is the sum of these, that is,

�Y + �Z + �� = (�Y + �Z + �� ) e−i
t (11.182)

For three-dimensional problems, we would include the velocity potentials associ-
ated with the surging (�X), pitching, (��) and yawing (�) motions of the float-
ing body, as illustrated in Figure 11.3. In seakeeping analysis in the field of naval
architecture, the subscripts of the velocity potentials are usually numerical. That
is, �0 represents the incident-wave velocity potential, �1, �2, . . . , and �6 represent
the respective potentials due to the surging, swaying, . . . , and yawing motions and,
lastly, �7 represents the potential due to wave diffraction and reflection. Because
the motions considered herein are two-dimensional, the alphabetical system is
used.

The total flow field due to the incident and reflected waves and the waves ex-
cited by the body motions can be represented by the following velocity potential:

� = �I + �R + �Y + �Z + �� = �e + �Y + �Z + �� (11.183)

We can express the spatial derivative of each of the motion-induced potentials as

∂� j

∂n
= ∂� j

∂qj

∂qj

∂n
= Vj

∂qj

∂n
(11.184)

In this equation, qj = Y ( j = 2), Z ( j =3), or � ( j = 4) for the two-dimensional (strip)
application.

In the two-dimensional situation, the component potentials in eq. 11.183 satisfy
the radiation condition, where an outgoing traveling wave exists as Y → ±∞. For a
three-dimensional situation, the radiation condition is that the outgoing waves van-
ish as r = √

(X2 + Y2) → ∞. The incident wave potential, �i, does not satisfy the
condition in three dimensions. All of the potentials in eq. 11.183 must individually
satisfy the free-surface condition in eq. 11.177. Finally, from eq. C8 in Appendix C,
each of the component velocity potentials satisfies Green’s theorem, mathematically
represented by∫

S

{
�j

∂�k

∂n
− �k

∂�j

∂n

}
ds =

∫ ∫
A
{�j∇2�k − �j∇2�k}dA= 0 (11.185)

where j and k represent any of the potentials in eq. 11.183. In the integral of eq.
11.185, s is the curvilinear coordinate along the boundary of the fluid of area A.
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Referring to Figure 11.28, we see that the boundary of A is

S = Sbody + S−Y + S−∞ + S−Z + S∞ + SY (11.186)

Assume that the waves are in deep water and that the boundary S−Z is well below
the influence of the body motion and the free surface.

The dynamic pressure on a strip boundary due to the excitation potential �e

(defined in eq. 11.180) is

Pe|Sbody = −�
∂�e

∂t

∣∣∣∣
Sbody

= i
��e|Sbody e−i
t = i
��e|Sbody (11.187)

This expression is from the linearized Bernoulli’s equation in eq. 3.70. Referring to
the sketch in Figure 11.28, we can write the expressions for the excitation forces and
rolling moment (per unit length) as follows: In the horizontal direction, the force is
obtained from

F ′
Y = −

∫
Sbody

pe|Sbody sin(�)ds = i
�

∫
Sbody

�e|Sbody sin(�)dse−i
t (11.188)

In the vertical direction, the force expression is

F ′
Z =

∫
Sbody

pe|Sbody cos(�)ds = −i
�

∫
Sbody

�e|Sbody cos(�)dse−i
t (11.189)

The moment about the X-axis, positive in the counterclockwise direction, is

M′
� =

∫
Sbody

pe|S[Y cos(�) + Zsin(�)]ds

= −i
�

∫
S

�e|Sbody [Y cos(�) + Zsin(�)]dse−i
t (11.190)

We note here that the coordinate Z is negative on the wetted boundary. Hence, on
the body in Figure 11.28, a negative (clockwise) moment results from the Z-term in
eq. 11.190. The sine and cosine terms in eqs. 11.188 through 11.190 can be written in
terms of the radiation potentials of eq. 11.182. This is done by noting

∂�Y

∂n
= ∂�Y

∂Y
∂Y
∂n

= VYo
∂Y
∂n

= −VYO sin(�) ⇒ sin(�) = − 1
VYO

∂�Y

∂n
(11.191)

and
∂�Z

∂n
= ∂�Z

∂ Z
∂ Z
∂n

= VZo
∂ Z
∂n

= VZO cos(�) ⇒ cos(�) = 1
VZO

∂�Z

∂n
(11.192)

In these last two equations, the amplitudes of the respective horizontal and verti-
cal body motions are VYo and VZo. By replacing the sine and cosine expressions in
eqs. 11.188 through 11.190 with the expressions in eqs. 11.191 and 11.192, we obtain

F ′
Y = −i


�

VYo

∫
Sbody

�e|Sbody

∂�Y

∂n
dse−i
t = −i


�

VYo

∫
Sbody

(�I + �R)|Sbody

∂�Y

∂n
dse−i
t

(11.193)

F ′
Z = −i


�

VZo

∫
Sbody

�e|Sbody

∂�Z

∂n
dse−i
t = −i


�

VZo

∫
Sbody

(�I + �R)|Sbody

∂�Z

∂n
dse−i
t

(11.194)
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and

M ′
� = −i
�

∫
Sbody

�e|Sbody

(
Y

VZo

∂�Z

∂n
− Z

VYo

∂�Y

∂n

)
dse−i
t

= −i
�

∫
Sbody

(�I + �R) |Sbody

(
Y

VZo

∂�Z

∂n
− Z

VYo

∂�Y

∂n

)
dse−i
t (11.195)

The velocity potential representing the reflected wave can be eliminated by
using the results of Green’s theorem in eq. 11.185. As a result, we can make the
following substitution in the integrand of eqs. 11.193 through 11.195:∫

Sbody

�R
∂�j

∂n
ds =

∫
Sbody

�j
∂�R

∂n
ds = −

∫
Sbody

�j
∂�I

∂n
ds (11.196)

Here, the last equality is a result of the boundary condition in eq. 11.181. The sub-
stitution changes the respective eqs. 11.193 through 11.195 to

F ′
Y = −i


�

VYo

∫
Sbody

(
�I

∂�Y

∂n
− �Y

∂�I

∂n

) ∣∣∣∣
Sbody

dse−i
t (11.197)

F ′
Z = −i


�

VZo

∫
Sbody

(
�I

∂�Z

∂n
− �Z

∂�I

∂n

) ∣∣∣∣
Sbody

dse−i
t (11.198)

and

M′
� = −i
�

∫
Sbody

[(
�I

∂�Z

∂n
− �Z

∂�I

∂n

) ∣∣∣∣
Sbody

Y
VZo

−
(

�I
∂�Y

∂n
− �Y

∂�I

∂n

) ∣∣∣∣
Sbody

Z
VYo

]
dse−i
t (11.199)

Following Newman (1962b), we note that Green’s theorem applies to the entire
control area, A, in Figure 11.28. We have previously noted that in deep water there is
no motion at the boundary S−Z. Furthermore, because of the linearized free-surface
condition in eq. 11.177, eq. 11.185 is satisfied on the far-field boundaries, S−Y and
SY. Hence, to fully satisfy Green’s theorem, the following must hold true:

∫
Sbody

(
�I

∂�j

∂n
− �j

∂�I

∂n

) ∣∣∣∣
Sbody

ds +
0∫

−∞

(
�I

∂�−
j

∂Y
− �−

j
∂�I

∂Y

) ∣∣∣∣
Y→−∞

dZ

+
0∫

−∞

(
�I

∂�+
j

∂Y
− �+

j
∂�I

∂Y

) ∣∣∣∣
Y→∞

dZ = 0 (11.200)

Here, the superscripts − and + identify the waves traveling away from the body
on the respective left and right sides in Figure 11.28. Replacing the body integrals
in eqs. 11.197 through 11.199 with the far-field integrals dictated by this equation,
we obtain what we term the Haskind force relationships. For two-dimensional situ-
ations, these are the following:

Horizontal Force:

F ′
Y = i


�

VYo

0∫
−∞

[(
�I

∂�−
Y

∂Y
− �−

Y
∂�I

∂Y

) ∣∣∣∣
Y→−∞

+
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�I
∂�+

Y

∂Y
− �+

Y
∂�I

∂Y

) ∣∣∣∣
Y→∞

]
dZe−i
t

(11.201)
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Vertical Force:

F ′
Z = i
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VZo

0∫
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(11.202)
Rolling Moment:

M′
� = −i
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(11.203)

B. Wave-Induced Vertical Force on Rectangular Section

To illustrate the use of the Haskind force relationships, consider the vertical motions
of the rectangular strip sketched in Figure 11.24. The vertical force acting on the
strip is obtained from eq. 11.202. In that equation, two velocity potentials appear.
The first is that of the incident wave. For a right-running incident wave in deep
water, the velocity potential from eq. 3.29 is found to be

�I = φIe−i
t = −i
H0

2
g



ek0 Zei(k0Y−
t) (11.204)

The second potential in eq. Eq 11.202 is the radiation potential resulting from verti-
cal body motions. Well away from the body (in the far field) the waves are outgoing,
and the potentials can be written as

�±
Z = φ±

Ze−i
t = −i
Hr0

2
g



ek0 Ze±i(k0Y∓
t)

= −i[2Zoe−k0d� sin(k0b� )]
g



ek0 Ze±i(k0Y∓
t) (11.205)

The relationship between the wave height of the radiated wave and the amplitude
of the body displacement is that of Yamamoto, Fujino, and Fukasawa (1980) found
in eq. 11.89. In that equation, the reference draft, Zref = S�/B� = d� when applied
to a rectangular section. The replacements of the spatial velocity potentials in eq.
11.202 by the expressions in eqs. 11.204 and 11.205 and the subsequent integration
of the result produces the following expression for the vertical force on the vertically
oscillating rectangular strip:

F ′
Z = −�gH0

e−k0d�

k0
sin(k0b� )e−i
t (11.206)

A note on this formula: The formula is derived by considering the vertical strip
motions excited by beam waves. Hence, there is reflection, and in the three-
dimensional case, there is diffraction. For a body in a head or following sea, the
diffraction effects are near the bow and stern of the body.

EXAMPLE 11.14: WAVE-INDUCED FORCES ON A HEAVING RECTANGULAR STRIP Con-
sider again the barge in Examples 11.12 and 11.13. The section of the barge is
rectangular, having a beam of (B� = 2b� ) of 3 m and a draft (d� ) of 0.375 m.
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The barge is subjected to monochromatic beam waves in deep water having a
height of 1.5 m and a period of 7 sec. The deep-water wavelength of the inci-
dent wave is approximately �0 � gT2/2� � 76.5 m. Hence, the wave number
is k0 � 2�/�0 � 0.0821 m−1. Our interest is in the wave-induced vertical force
on the rectangular strip of the barge. From eq. 11.206, we find that the wave-
induced vertical force is

F ′
Z = −�gH0

e−k0d�

k0
sin(k0b� )e−i
t � −2.20 × 104e−i0.898t

(
N
m

)

Compare this value to the hydrostatic wave force, which is

F ′
Z0 = −�g

H0

2
(2b� ) e−i
t � −2.27 × 104e−i0.898t

(
N
m

)

One can see that the force amplitude due to the Haskind equation is slightly less
than the hydrostatic wave force. The reason for this good agreement of the two
is that the deep-water wavelength is over an order of magnitude greater than
the beam (2b� ) of the strip.

11.8 Closing Remarks

The formulations presented in this chapter are primarily based on the wave-induced
floating body motions as determined by strip theory. The focus is on the vertical
motions of a strip, which in turn leads to the hydrodynamic coefficients in the cou-
pled equations of motions for a heaving and pitching body. The strip theory does
have its failings, particularly when predicting the hydrodynamic coefficients near
the bow and stern of a body, where diffraction effects are significant. The reason for
the concentration on the strip theory is that a good understanding of the physical
phenomena can be obtained by following the derivations involved in the theory.
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12.1 Compliant Structures

Fixed ocean structures fall into three major types: rigid structures, compliant struc-
tures, and spread-footing structures. There are also two hybrid types of structures,
called the tension-leg platform (TLP), which is a floating body held in place by high-
tension mooring lines, and the articulated-leg platform (ALP), which is a quasi-rigid
cylindrical hull attached to a universal joint on a sea-bed foundation. Rigid struc-
tures are usually designed for near-shore operations. Drilling structures used to tap
the oil deposits in the shallow near-shore waters are normally of this type. As oil
exploration moved further offshore, rigid structures became expensive and their
cost-effectiveness decreased. To reduce drilling costs in the deeper water, compli-
ant towers were constructed. One such structure is the Lena guyed tower, which was
deployed in the Gulf of Mexico in waters of about 300 m in the 1980s. One advantage
of the compliant structure is that its foundation is much less expensive compared to
that of the rigid structure. The reason for this economy is that the wave loads are
partially absorbed by the elasticity of the structure. In the North Sea, where severe
storms occur over the entire year and the waters are relatively shallow, the spread-
footing structure has been used to tap oil and gas deposits beneath the sea bed.
These structures are monolithic structures, and simply rest on the bed. The struc-
tural load is distributed over the soil, reducing the normal load on the bed. As a
result, the structures are stable, even on unconsolidated soils.

The three components of wave loads on fixed structures are the viscous-pressure
(drag) forces, the inertia forces, and the diffraction forces, all discussed in Chap-
ter 9. The occurrences of these forces depend on two ratios involving the charac-
teristic dimension of a structure and the wave properties. As discussed in Chapter
9, for a specific vertical, surface-piercing, circular cylinder, the wave force regimes
are presented in the Chakrabarti (1975) diagram in Figure 9.8. In that figure,
the non-dimensional parameters are the Keulegan-Carpenter number of eq. 9.46
(KC = umaxT/D) and ka = kD/2. In these parameters, umax is the maximum hori-
zontal particle velocity (obtained from eq. 3.49), T is the wave period, k = 2�/� is
the wave number (where � is the wavelength), and D = 2a is the diameter of the
structure (a being the radius of the cylinder). From Figure 9.8, the rigid and compli-
ant structures composed of small-diameter legs and cross-braces would be normally

453
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Figure 12.1. Four Configurations for a Deep-Water Compliant Tower. In (a), neutrally buoy-
ant tension lines (tethers) are used to limit the movements of the tower. The tension in the
lines is controlled by deck winches. This configuration is referred to as a “guyed tower.” In
(b), we see the “flexible tower,” a buoyant collar that is used to increase the vertical tension
in the platform legs. In (c), the legs are encased in skirt piles designed to stiffen the lower part
of the structure. The upper portion of the tower is compliant, but is rigidly connected to the
top of the skirt piles. The articulated-leg platform (ALP) in (d) is attached to a spread-footing
foundation by a universal joint, which is the tower’s point of articulation.

subject to both drag and inertial forces. The large-diameter monolithic structures
are subject to inertial and diffraction forces.

The purpose of this chapter is to present the basics of the wave-structure-bed
interactions associated with moored, rigid, and compliant ocean structures. Con-
cerning the first of these: In addition to the tension moorings, the effects of slack
moorings are also discussed. An understanding of mooring mechanics is important
in the design of offshore structures. Tall compliant offshore towers in moderately
deep water might have mooring lines attached below the tower platform in a fail-
safe design. For example, the offshore tower sketched in Figure 12.1a is compliant
because its height-to-width ratio (assuming a rectangular cross-section) is extremely
large. When the tower is subjected to a wave spectrum having a high energy content
in the neighborhood of the natural bending frequency of the structure, the platform
might experience large deflections. To reduce the deflection, the designer can attach
tension moorings, as sketched in Figure 12.1a; attach a buoyant collar, as in Fig-
ure 12.1b; or weld “skirt piles” to the legs, as illustrated in Figure 12.1c. The problem
with the collars is that more of the wave loads are transferred to the foundation. In
turn, this drives up the cost of the system. In Figure 12.1d is an ALP that is connected
to a spread-footing foundation by a universal joint. The hull of the ALP is relatively
rigid, but the structure is compliant in that it is allowed to rotate due to the univer-
sal joint. In this case, there is no moment at the foundation due to the loads on the
surface-piercing tower. As discussed by Maus, Finn, and Danaczko (1986), Bayazi-
toglu, Jones, and Hruska (1987), and Will, Morrison, and Calkins (1988), one of the
purposes of designing in structural compliance is to relieve the load on the founda-
tion, thereby reducing the overall cost of the structure. The section by Chakrabarti,
Capanoglu, and Halyard (2005) in the handbook edited by Chakrabarti (2005) is
recommended to the reader. In that chapter is an extensive discussion on the vari-
ous configurations of offshore structures.
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Figure 12.2. Simplified Schematic of a
SeaStar-Type Tension-Leg Platform (TLP).
A tower and working decks (not shown) are
located on the top of the hull. This con-
figuration is referred to as either a mono-
column TLP or a mini-TLP. A SeaStar
TLP deployed in the Gulf of Mexico is
described by Kibbee and Snell (2002). Two
SeaStar prototypes and two one-fiftieth
models of these prototypes are described by
Bhattacharyya, Sreekumar, and Idichandy
(2003).

12.2 Basic Mooring Configurations

As written in the preamble of this chapter, there are two classifications of moor-
ing systems. The first incorporates taut (high-tension) moorings, where the tension
in the line is affected by the net weight (weight minus buoyancy) of the mooring
line, the buoyancy of the attached body, and a winch designed to control the ten-
sion. The second type of mooring system involves a slack mooring, where the line
tension is due to the net weight of the line. The effective weight of a slack line is
often increased by inserting heavy chains at various locations along the line length.
Tension lines are designed to minimize the wave-induced motions of the structure,
whereas slack moorings are designed to allow some structural motion. The practical
aspects of mooring systems are discussed by Brown (2005) in the handbook edited
by Chakrabarti (2005). In addition, the paper by Low and Langley (2008) is recom-
mended for a discussion of the dynamics of slack-mooring systems.

A. Taut Moorings

A tension-leg platform (TLP) is a floating platform held in its design configuration
by taut moorings (high-tension moorings) called tethers. The draft of a TLP is due
to the platform weight, equipment, ballast, and the tension in the mooring lines.
The tension in the lines is usually controlled by winches. The TLP is designed to
have little or no heaving or pitching motions in the design sea, but is allowed to
surge. Depending on the wave direction, the platform might also experience sway
and yaw.

Consider the class of TLP called the “SeaStar,” which is designed to be deployed
in depths of 215 m to 1,000 m. The system is similar to that sketched in Fig-
ure 12.2. In that figure are three lines attached to three “pontoons.” The pontoon
configuration inspired the naming of the system. The pontoons are attached to a hull
that is a vertical, circular, cylindrical hull. Atop the cylindrical hull (but not shown)
are a tower, working decks, and equipment. The tethers for this TLP are neutrally
buoyant. This design feature allows the tension to be uniform along the line length.
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Figure 12.3. Notation for a Mooring Line
under Tension. Shown are (a) the relaxed
line, (b) the stretched line, and (c) an ele-
ment of the stretched line. In Figure (c) are
sketched the longitudinal and radial dis-
placements. One can see that the longitu-
dinal strain (�s/s) is positive and the radial
strain (�r/r) is negative. The latter is con-
sidered to be of second order and, there-
fore, negligible.

For discussions of the SeaStar, see the papers by Kibbee and Snell (2002) and Bhat-
tacharyya, Sreekumar, and Idichandy (2003). Later in the chapter, the SeaStar con-
figuration is used for the purpose of illustration.

The line profile is a function of the net weight (weight minus buoyancy) of the
line. For the mooring line configuration of the fixed tower in Figure 12.1a, the lines
are neutrally buoyant, that is, the net weight of each line is zero. As a result, the
lines are straight. For a line having a positive net weight (negative buoyancy), lines
would “sag” and the tension in the line would vary over the length.

Our goal here is to determine the form of the effective spring constant (Ks) of a
neutrally buoyant tether, such as those sketched in Figures 12.1a and 12.2. Referring
to Figure 12.3, the relaxed tether length is �, as sketched in Figure 12.3a. When under
an axial load (T), the tether is elongated by an amount ��, as in Figure 12.b. For the
entire cable, we can then express the modulus of elasticity (Young’s modulus) as

Es ≡ axial stress
axial strain

= �ss

�s
= T/�r2

��/�
= T/As

��/�
(12.1)

Here, the subscript s identifies the properties associated with the effective spring
effect of the tether, and the effective cross-sectional area is As. From eq. 12.1, we
obtain the extension or elongation of the tether, which is

�� = T�

Es�r2
= T�

Es As
(12.2)

The spring constant for a single mooring line or tether is then

Ks = tension
elongation

= T
��

= Es�r2

�
(12.3)

In many applications, the tether is not homogeneous from the structure to the
anchor, either materially or geometrically. For the nonhomogeneous tether, it is



12.2 Basic Mooring Configurations 457

beneficial to work with a “local” spring constant by considering the element in
Figure 12.3c. In this case, the local length, s, and the elongation, �s, replace � and
��, respectively, in eqs. 12.1 and 12.2. We note in Figure 12.3c that the radius of the
cable is reduced when the tension (T) is applied. The radial strain, �r/r , is small,
and can be neglected in our analysis. This negative radial strain is a result of the
conservation of mass.

EXAMPLE 12.1: TENSION IN A SEASTAR TETHER In the paper by Bhattacharyya,
Sreekumar, and Idichandy (2002), the specifics of two SeaStar prototypes are
given (see Figure 12.2 for the SeaStar configuration). A unit is to be deployed
in 215 m of water, and the other in 1,000 m. Bhattacharyya, Sreekumar, and
Idichandy (2002) also give the particulars of one-fiftieth scale models of the pro-
totypes. From Section 2.7, the length-scale factor is nL = 1/50. Here, we shall
determine the effective spring constant of the prototype having a three-tether
mooring configuration, where the water depth (h) is 215 m. The tethers are neu-
trally buoyant.

As the reader can imagine, the tethers and the anchors must be set in place
before being connected to the platform. Because the tethers are neutrally buoy-
ant, buoyant collars are attached to the top of the lines to produce a relatively
small axial tension that ensures a vertical tether profile. The platform is subse-
quently positioned over the vertical lines, ballasted such that the pontoons are
fully submerged, and the lines are attached. The ballast is then reduced, causing
the tethers to be in tension. For the deployment of a three-tethered structure in
215 m of water, the following values are used for each tether:

(a) Relaxed length (�): 175 m
(b) Effective tether area (As): 1 m2 (diameter � 1.128 m)
(c) Modulus of elasticity (Es): 2 × 1011 N/m2

(d) Pre-Tension (T): 1,333 metric tons (tonne), the tonne is usually defined in
mass units (1,000 kg)

In eqs. 12.1 through 12.3, the units must be in terms of force. Hence, in force
units, a tonne is 9,810 N. The tension in a tether is one third of the difference
between the displacement (displaced water weight) and the dry weight of the
structure.

By substituting these values in eq. 12.2, we find that the elongation (��) of
the tether is approximately 0.0114 m. From eq. 12.3, the spring constant (Ks)
is about 1.15 × 109 N/m (1.17 × 105 tonne/m). Note that the mooring stiffness
is large to ensure the previously stated design goals. Those goals are to mini-
mize both the heaving and pitching motions of the TLP in a design sea. From
the small elongation value, the reader can see that the radial strain (�r/r) is
negligible.

Later in this chapter, the TLP is discussed in more detail. For that structure,
the combination of waves and wind will cause the structure to surge. Because of
the high tension in a tether, the modal frequencies will be large when compared to
those of the sea. Although those frequencies should be well away from the high-
energy portion of the wave-force spectrum, they can be in the high-energy portion
of the vortex-shedding spectrum for the tether. In the design of such moorings, the
cable response should be de-tuned from these spectra.
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Mooring Buoy
Rope or Synthetic Line

Synthetic Line or Chain

Clump Anchor

SWL

Figure 12.4. Static Slack Mooring Configurations. Whether in air or fully submerged, the free
portions of the lines have a catenary shape. The actual shape is a function of the net weight
(weight minus buoyancy) of the line. The term “line” is generic as used herein.

In the next section, slack moorings are discussed. As noted previously, if a moor-
ing system has a positive net weight (negative buoyancy), then there will be some
sag in the cable, although the tension in the line might be large. Slack moorings are
those having both a line tension and a profile that are dictated by the weight line
intensity (net weight per unit length of line).

B. Slack Moorings

When significant horizontal motions of a moored floating body are allowed, the
body will be slack moored. Two such moorings are sketched in Figure 12.4. In that
figure, the bow and stern mooring configurations are identical because the condi-
tion shown is in static equilibrium. Hence, there are no wind, wave, or current loads
with which to contend. In this chapter, our concern is only with wave-induced cable
tensions.

The analysis of the effects of steady currents on a slack line, based on works
in the 1950s, 1960s, and mid-1970s, is presented by McCormick (1973). The often-
referenced paper by Niedzwecki and Casarella (1976) addresses the practical
aspects of deep-water moorings. More recent papers covering such topics as lin-
ear and nonlinear statics and dynamics of moorings, and the applications thereof,
include those of Chiou and Leonard (1991), Brown and Mavrakos (1999), Smith
and MacFarlane (2001), and Jordánr and Beltrán-Aguedo (2004).

In the discussions that follow, the term line is a generic term representing rope,
synthetic lines, or chain. For the lines sketched in Figure 12.4, the shapes are those
of catenaries because their elevation profiles are dictated by the net weights (weight
minus buoyancy) of the lines. A catenary has the shape of a hyperbolic cosine. The
derivation of the equations associated with a catenary can be found in books cover-
ing either linear differential equations or mechanics (statics).

As in the previous section, our goal is to determine the effective spring constant
of the line to determine the effects of the line on the motions of the moored body.
To do so, consider the inelastic line in static equilibrium, as sketched in Figure 12.5.
The eye points are at (0,0) and (X2,Z2), where the origin of the X,Y,Z coordinate
system is at the left eye of the mooring. The position of the vertex of the mooring
line is X1,Z1. As is the case in the prior chapters, the origin of the x,y,z system is
fixed at a point on the SWL, as in Figure 12.2 and elsewhere throughout the text.
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Complete Catenary

Z

FZ

FX

(X1, Z1)

(X2, Z2)

(W' − B' ) �c

X �c(0, 0) α0

dZ
α

d X

Eye

T2

α2

ds

c c

Figure 12.5. Notation for an Inelastic Slack Line in Equilibrium. The net weight (W′
c�c) is the

line weight (W′
c�c) minus the line buoyancy (B′

c�c).

The horizontal equilibrium condition for the line is

T2 cos(�2) = T0 cos(�0) = T
dX
ds

= FX (12.4)

Here, the tension and angle without subscripts represent any point on the line, and
the horizontal force component of the eye located at the origin is FX. The differ-
ential of the line coordinate, s, is shown in Figure 12.5. The vertical equilibrium
condition is

FZ + T2 sin(�2) = (W ′
c − B′

c)�c (12.5)

where FZ is the vertical force of the eye at the origin. The relationships in eq. 12.4
show that the horizontal component of the tension is uniform over the length of the
line. Also, FX is in the opposite direction of the horizontal tension component at
the right eye. In eq. 12.5, the weight density per line length is W′

c, and the buoyancy
of the line per unit length is B′

c. For brevity, let the net weight per unit length be
represented by W′

c, that is, W′
c = W′

c − B′
c. The length of the line is �c. It is well

known that the segment of the line sketched in Figure 12.5 is a segment of a catenary.
From the analysis of the catenary in Figure 12.5, the following relationships are

found:

dZ
dX

= sinh
(

W ′
c

FX
X + Ca

)
= tan(�) (12.6)

where Ca is a to-be-determined constant. The integration of this equation results in
the following expression for the vertical coordinate of any point along the centerline
of the catenary:

Z = FX

W ′
c

cosh
(

W ′
c

FX
X + Ca

)
+ Cb (12.7)

Here, the constant Cb is to be determined. In this equation, there are three
unknowns, FX, Ca, and Cb. In addition, the position (X1, Z1) of the vertex of the
line is not known. We have three conditions that can be applied to eq. 12.7 and its
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spatial derivative because the eye locations at (0, 0) and (X2, Z2) are specified and
the spatial derivative at the vertex equals zero. Applying these conditions, we find
that eq. 12.7 becomes

Z = FX

W ′
c

{
cosh

[
W ′

c

FX
(X − X1)

]
− 1
}

− Z1 (12.8)

In this equation, X1, Z1, and FX are to be determined. To accomplish this, we must
use the cable axial coordinate, s. The origin of s is at the left side eye in Figure 12.5.
From that figure, we see that the differential of this variable is

ds
dX

=
√

1 +
(

dZ
dX

)2

=
√

1 + sinh2
[

W ′
c

FX
(X − X1)

]
= cosh

[
W ′

c

FX
(X − X1)

]
(12.9)

This equation can be integrated over the known length (�c) of the cable. The result
is

�c = FX

W ′
c

{
sinh

[
W ′

c

FX
(X2 − X1)

]
+ sinh

(
W ′

c

FX
X1

)}
(12.10)

Now, apply eq. 12.8 to both the left and right eyes in Figure 12.5, and combine the
results by eliminating Z1. The result is

Z2 = FX

W ′
c

{
cosh

[
W ′

c

FX
(X2 − X1)

]
− cosh

(
W ′

c

FX
X1

)}
(12.11)

Equations 12.10 and 12.11 comprise a system of two equations having two
unknowns, FX and X1, because Z2 and �c are input (design) values. The two equa-
tions are both transcendental with respect to these unknowns; hence, the equations
must be solved numerically. The process can be somewhat simplified by taking
advantage of the relationships between the hyperbolic functions. Specifically, we
can eliminate one of these using cosh2( ) = 1 + sinh2( ). Then, after several manip-
ulations, we obtain two transcendental relationships. The first of these is

1
2

(
W ′

c

FX

)2 (
�2

c − Z2
2

) = cosh
(

W ′
c

FX
X2

)
− 1 (12.12)

which can be numerically solved for the horizontal tension component (FX). With
this force value, the vertex coordinate, X1, is obtained from either eq. 12.10 or 12.11.
We can rewrite the latter equation as

W ′
c

FX
�c = sinh

(
W ′

c

FX
X2

)√
1 + sinh2

(
W ′

c

FX
X1

)
+
[

1 − cosh
(

W ′
c

FX
X2

)]
sinh

(
W ′

c

FX
X1

)
(12.13)

Substitution of the X1-value into eq. 12.8 results in the vertical coordinate (Z1) of the
vertex. The solutions of eqs. 12.12 and 12.13 can be obtained by using the method of
successive approximations. See Example 3.3 of Section 3.3 for an application of this
numerical method.
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(a) Physical Model

(b) Equivalent Spring-Mass System

∆X2 ∆X2

KsX
m

KsX

MOORING DOLPHIN

Figure 12.6. Equivalent Spring-Mass Representation of a Moored Body between Two Dol-
phins. For this mooring system, the springs representing the moorings are in parallel. Hence,
the equivalent spring constant for the system is the sum of the component spring constants.
The mooring dolphins in the figure are vertical.

The effective horizontal spring constant (KsX) of the slack line for the motions
in the horizontal direction is obtained by taking the spatial derivative of the expres-
sion in eq. 12.12. The result is

KsX = dFX

dX2
=

F2
X sinh

(
W′

c

FX
X2

)

FXX2 sinh
(

W′
c

FX
X2

)
− W ′

c

(
�2

c − Z2
2

) (12.14)

Again, FX is obtained from eq. 12.12, and Z2 is a design value.
The line tension at any point can now be determined by combining eqs. 12.4 and

12.9. From this combination, the tension is obtained from

T = FX
ds
dX

= FX

cos(�)
= FX cosh

[
W ′

c

FX
(X − X1)

]
(12.15)

From this equation, we see that the maximum tension for the line configuration in
Figure 12.5 occurs where |(X − X1)| is maximum. When the right eye (at X2) is above
the left eye (at X = 0), as in the figure, then the maximum tension occurs at the right
eye. The maximum tension multiplied by a safety factor is used to determine the
design strength of the line.

EXAMPLE 12.2: EFFECTIVE SPRING CONSTANT FOR SLACK LINE Consider a deck
barge having a length of 82 m, a beam of 10 m, a draft of 1 m, and a free-
board (waterline-to-deck height) of 3 m. The barge is moored as sketched in Fig-
ure 12.6. The mooring attachments to the dolphins are 2 m above the waterline.
Hence, the vertical distance (Z2) between the mooring attachments is 1 m.

The barge is moored using three-strand manila rope having a diameter
of 7.64 cm (3-in line). Manila rope has been popular in marine applications
because of its cost and availability. The net weight per unit length (W′

c) is about
35 N/m. As we shall determine, the line is entirely in air, where the buoyancy is
negligible. As a result, the net weight is equal to the material weight (W ′

c = W ′
c ).

We should also note that manila rope absorbs water; hence, W ′
c for a wet

rope will increase by about 25%. The mooring dolphins are 25 m forward and
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aft of the barge. Hence, in eq. 12.9, X2 = 25 m. The free length (�c) of each line
is 25.5 m.

Our first task is to determine the horizontal force component, FX in
eq. 12.12. This is easily done by using the method of successive approximations,
as in Example 3.3 of Section 3.3. The horizontal force (FX), determined numeri-
cally, is approximately 12.64 × 103 N. The horizontal position (X1) of the vertex
of the line is about 11.05 m, from eq. 12.13. When this value is combined with
eq. 12.8, the vertical position of the vertex with respect to the left eye is approx-
imately 1.66 m. Hence, the vertex is 0.34 m above the SWL. Equation 12.15 can
now be used to obtain the tension in the line at any point. Applying this equa-
tion to the right eye, where X2 = 25 m, one obtains T � 12.67 × 103 N. Because
of the relatively close values of �c and Z2, there is little sag in the line, and the
apex of the line is effectively at X = 0, where Z = 0. Finally, the effective hor-
izontal spring constant is Ks X � 527 N/m. For the system shown in Figure 12.6,
the springs in the effective system are in parallel. The equivalent spring constant
for the parallel effective springs is the sum of the component constants. Hence,
the parallel spring constant for the two-line mooring system is

Ksp = 2KsX � 1.05 × 103 N
m

(12.16)

For the stated barge dimensions, the spring system would be considered
to be “soft.” The significance of this statement will be addressed later in the
chapter. The equilibrium angle of the mooring line at the barge (X = X2) can
be determined from eq. 12.15. With the values of horizontal force and horizontal
position of the vertex of the line, the angle at the barge is �2 � 4.0◦.

For the inelastic line, the tension and the effective spring constant will
change with a change in the line diameter. For a line composed of inelastic
spiral-wound strands, the line will partially unwind as the tension in the line
is increased. The resulting restoring torsion in the line can be analyzed by using
an analogous solid line that is elastic.

For a fully submerged line, our choice of lines would be either a chain or a
synthetic or a combination of both. For example, consider the barge moored as in
Figure 12.7. In that figure, we see that the forward and after mooring buoys are
coupled to embedded anchors using chains and synthetic lines. Because the profile
of the mooring-line component is determined solely by the net weight, each com-
ponent shape is a portion of a catenary. Equations 12.4 through 12.15 can then be
applied to each line component, with the conditions at the shackles acting as bound-
ary conditions.

Assuming that the mooring-buoy mass (mm) is negligible compared to the
barged mass (m), the series spring constant for the mooring system on either side
of the barge is obtained from

1
Kss

= 1
Ks0a

+ 1
Ksab

+ 1
Ksbm

+ 1
Ksm

(12.17)

from the theory of vibrations. For example, see the book by Thomson and Dahleh
(1997). The determination of the component spring constants requires the solution
of simultaneous equations. Those equations are eqs. 12.10 and 12.11 applied to each
mooring-line component. For the left side of the barge in Figure 12.7, we note that
the origin of the mooring system is not at the anchor. Rather, it is the point where
the anchor chain rises from the sea bed. As the barge and mooring buoy move to
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(a) Physical Model

(b) Equivalent Spring-Mass System

∆X0 ∆Xa ∆Xb ∆Xm ∆X
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Figure 12.7. Fully Submerged Mooring Configuration. The mooring buoys are attached to an
embedded anchor with chain-synthetic-chain systems. The effective springs are in series.

the right, the chain lift-off point (also called the touchdown point) moves to the left.
This point can be fixed in place by attaching a clump anchor to the chain at the
touchdown point. An empirical model of this type of mooring system is presented
by Han and Grosenbaugh (2004). To apply eqs. 12.6 through 12.15 to the compound
anchor mooring, the vertex points of the complete catenaries (Figure 12.5) must
be determined for each component, as must the horizontal force component (FX).
When the system is at equilibrium, FX is the same at the cable eyes, shackles, and
anchor for the mooring-line components in series.

The mooring configurations sketched in Figures 12.4, 12.6, and 12.7 are not
fail-safe. That is, if the bow mooring fails, then the resulting barge motions could
result in extensive damage. Safety can be increased by designing redundancy into
the mooring system. This is done by adding mooring lines to both the bow and stern.
To illustrate, four identical moorings are shown in Figure 12.8a. Hence, the swing of
the barge following the failure of one of the component lines would be controlled
by the remaining lines.

Our interest is in the equivalent spring constant of the redundant mooring sys-
tem. Consider the deformation of the line shown at an angle � to the X-direction
in Figure 12.8b. The line is stretched because of the horizontal barge displacement,
�X, which is assumed to be relatively small. Let the horizontal length of a compo-
nent line be � . The angle of the stretched line is � − ��. So, the horizontal compo-
nent of the stretch in the line is �� , which must be determined. From the geometry
in Figure 12.8b, we find

d�

d�
� 1

�
tan(�) (12.18)

This is found be passing to the limit, where �� → d� and the product d�(d�) is
negligible. Using this relationship, we find the relationship between the barge dis-
placement and the stretch in the line, that is,

dx
d�

� 1
cos(�)

(12.19)
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(a) Physical Model

(b) Analytical Models for a Single Line
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Figure 12.8. Redundant Mooring Configuration. The additional bow and stern lines increase
the safety of the system. In the theory of structures, a “redundant member” is one that can be
removed without causing the structure to fail in a design condition. The use of the term here
is not quite the same.

From the force relationships in Figure 12.8b, the following is obtained:

KsX ≡ dFX

dX
� F� sin(�)

d�

dX
+ cos(�)

dF�

dX
= F�

�

sin2(�)
cos(�)

a + Ks� cos2(�) (12.20)

This is the effective spring constant for motions of the barge in the X-direction.
The horizontal force, F� , and the effective spring constant, Ks � , are found from
eqs. 12.10, 12.11, and 12.14, where the known horizontal length, � , replaces X2 in
those equations. Note that the position of the vertex in the line must also be deter-
mined from these equations. For the barge movement in the X-direction, the effec-
tive spring constant for the redundantly moored system is

KX = 4KsX (12.21)

The same methodology is used to determine the effective parallel spring constant,
KY, for displacements in the Y-direction. Both springs KX and KY are needed for
waves or currents obliquely approaching the barge. For this case, the barge would
rotate about its vertical axis. Hence, the barge would experience surging (X), sway-
ing (Y), and yawing motions (about the Z-axis).

EXAMPLE 12.3: EFFECTIVE SPRING CONSTANT FOR A BARGE MOORED WITH FOUR

SLACK LINES The barge in Example 12.2 is now moored with four identical
manila lines, where each line has the same dimensions as those in the example.
Each line is at an angle � = 30◦ to the X-direction. From Example 12.2, the line
diameter is 7.64 cm, and the net weight per unit length (W′

c) is about 35 N/m.
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The mooring dolphins are 25 m from the barge. Hence, in eq. 12.9, � = 25 m.
Again, the length (�c) of each line is 25.5 m. The horizontal force (FX), from
Example 12.2, is 12.64 × 103 N, and the horizontal position (�1) of the vertex of
the line is at the mooring dolphin. The tension in each line is T � 12.67 × 103 N,
and the horizontal spring constant in a line in the static equilibrium condition is
Ks� � 527 N/m. With this value, KsX � 456 N/m, and the effective parallel spring
constant for the mooring system is KX � 1.82 × 103 N/m.

We have only touched on the subject of moorings. The topic has many facets
that are not discussed herein. The quasi-static analysis of two-dimensional mooring
lines in steady currents is presented in the book by McCormick (1973). For two-
dimensional moorings lines experiencing unsteady and random loading, the paper
by Sannasiraj, Sundar, and Sundaravadivelu (1997) is recommended. For contem-
porary design considerations of mooring systems, the reader is referred to the paper
by Grosenbaugh et al. (2002). Finally, the writings of Brown (2005) are strongly
recommended for a comprehensive discussion of the practical aspects of moorings.

12.3 Soil-Structure Interactions

In this section, two types of soil-structure interactions are discussed. First, embed-
ded structures, such as drilled piles and suction anchors, are discussed. These struc-
tures are used to resist both the high-tension vertical and lateral loads due to taut
moorings. The second type of structure is the spread-footing structure, which is
designed to uniformly spread a large vertical load over a large bed area. The sub-
ject of marine geotechnology is rather complicated because most sea-bed soils react
in a nonlinear manner when excited by structural motions. A good introduction
to the subject of soil-structure interactions in and on the sea bed is presented by
McClelland (1969) in the handbook edited by Myers, Holm, and McCallister (1969).
Comprehensive discussions of both the analysis and design of pile foundations are
presented by Poulos and Davis (1980) and Reese (2003). The latter appears in the
book edited by Wilson (2003). Offshore structures having large spread footings are
normally referred to as gravity-base structures, or more simply, gravity structures.
These and other marine structures are topics discussed by Gerwick (1999). The
basics of dynamics of spread-footing-type structures can be found in the writings of
Moan, Syvertsen, and Haver (1977), Wolf and Song (1999), McCormick and Hud-
son (2001), Hudson (2001), and McQuillan (2002). The studies leading to the 2001
publications were directed at the motions of grounded ships. Note that in the follow-
ing, nonitalicized letters are used to represent soil properties, and italicized letters
represent the properties of the structure.

Soils support structures and partially resist structural motions due to cohesion,
due to molecular bonding, and due to friction, which depends on the normal load
on the soil-structure interface. These are represented in the shear or soil strength,
which is mathematically obtained from the Coulomb equation,

�s = cs +  tan(�s) (12.22)

In this equation are the apparent cohesion (cS), the normal stress or pressure ()
on the shear plane, and the friction angle (�s). This angle is also referred to as the
angle of repose. For a discussion of the significance of this angle in noncohesive
soils (where cs = 0), the paper by Modaressi and Evesque (2001) is recommended.
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Figure 12.9. Elastoplastic Soil Behavior Model and Real-Soil Behavior. The soil resistance (p)
is non-dimensionalized by the product of the effective elastic modulus (ks) of the soil and the
pile diameter (D). For the elastoplastic soil model, the non-dimensional resistance is shown
as a function of the ratio of the soil displacement (Xs) and D. Note that the nonitalicized
letters are used to identify sea-bed properties.

The types of soils composing an offshore bed are clays, sands, and silts. For clays, the
first term in eq. 12.22 is dominant, whereas the second term is dominant for sands.
According to McClelland (1969), the ranges of these parameters in the equation are
0.03 ≤ cs ≤ 0.08 for clays, and 30◦ ≤ �s ≤ 40◦ for sand. Again, note that nonitali-
cized letters are used to represent the sea-bed properties.

The analytical difficulties in marine geotechnology arise because of the change
in the soil properties with depth, and the plasticity of bed materials. For clays, the
cohesion increases with depth due to the weight of the material. For sands, the aver-
age pores (voids) between the grains decrease in size with depth. These changes are
further compounded by the possible layering of materials. For example, one might
encounter a thick layer of silt over a clay base. To determine the makeup of the sea
bed, core samples must be taken. Soundings should also complement the coring.

In the following subsections, embedded structures and spread-footing struc-
tures are discussed. The associated soil mechanics are analyzed using basic methods.
That is, the plastic behavior of the soil is approximated by an elastoplastic model.
The elastoplastic and plastic behaviors of a soil are illustrated in Figure 12.9a. The
assumed soil reaction on a vertical circular cylinder of diameter D is presented in
Figure 12.9b. In that figure, the soil resistance (p) is proportional to the soil displace-
ment (Xs) up to the ultimate or yield value. Then, the soil is assumed to deform
plastically. The soil resistance for the elastoplastic soil can be represented as

p = Ns D�s, where Xs > Xyield (plastic) (12.23a)

and

p = ksXs, where Xs ≤ Xyield (elastic) (12.23b)

In eq. 12.23a, Ns is a force coefficient, ks is the effective elastic modulus (obtained
from Figure 12.9b), and �s is the soil strength defined in eq. 12.22. Equation 12.23
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Table 12.1. Parametric values for soft clay and sand, after
Dawson (1980)

Soft clay Sand

a (N/m2) 9.6 × 103∗ –

b (N/m3) 1.6 × 103∗ –

D(m) 0.323∗ 0.610∗∗

EI (N–m2) 3.15 × 107∗ 1.61 × 108∗∗

ks(N/m2) 2.20 × 107 8.30 × 106

Ns 3.5 2.5

�s(degrees) – 39∗∗

�s and (N/m3) – 1.04 × 104∗∗

Rpas – 4.40

∗ Matlock (1970).
∗∗ Reese, Cox, and Koop (1974).

applies to either soft clays or sand. The soil displacement Xyield is that at the tran-
sition from the elastic to plastic behaviors. Dawson (1980) applies the elastoplas-
tic model to solid surrounding deeply driven piles. In the following paragraphs, we
draw on the Dawson paper for information on both soft clays and sand.

From Dawson (1980), the undrained shear strength in eq. 12.23 for soft clays
can be written as

�s|clay = a + bZ (12.24)

where, using the Dawson notation, a and b are called the shear strength constants.
From this relationship, we see that the soil resistance for a soft clay is found to
increase with depth from a surface value of a. The transition response of the soil at a
soil depth Zs can be found from the combination of eqs. 12.23 and 12.24. The result
is

Xyield|clay = Ns D
ks

(a + bZs) (12.25)

Following Dawson (1980), the shear or soil strength for sands can be written as

�s|sand = Rpas�sandZs (12.26)

where Rpas is the Rankine passive earth coefficient from soil mechanics and � sand is
the weight-density of the sand. In terms of the friction angle, �s in eq. 12.22, the
Rankine passive earth coefficient is

Rpas = 1 + sin(�s)
1 − sin(�s)

(12.27)

The combination of eqs. 12.26 and 12.27 with the soil resistance for the elastoplastic
sand results in the following transition-response expression:

Xyield|sand = Ns DRpas�sand

ks
Zs (12.28)

Drawing on information in the papers by Matlock (1970) and Reese, Cox, and Koop
(1974), Dawson (1980) presents both constants and parametric values for a soft clay
and sand. Those values are presented in Table 12.1. With the information on the
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Figure 12.10. Notation and Conditions for Two Classes of Embedded Foundation Structures.

soils and soil response, the relationships between the pile deformation and the soil
resistance (p) are discussed in the following subsection.

A. Embedded Structures

Marine foundations are composed of piles, spread footings, and combinations of
the two. All foundations are embedded to some extent, some more so than oth-
ers. Referring to the sketches of vertical circular cylindrical structures in Fig-
ure 12.10, a structure can be slightly embedded (d � D), moderately embedded (d
� D), or deeply embedded (d � D). The first of these is the spread-footing struc-
ture, as sketched in Figure 12.10a. A spread-footing structure is designed to uni-
formly distribute a vertical load over a large bed area, thereby reducing the normal
stress on the bed. The soil resistance to the vertical load is dominated by the normal
stress over the base, and the frictional resistance on the side of the structure, which is
negligible. The resistance to sliding is by the friction at the horizontal soil-structure
interface. Most deeply embedded structures are piles, as sketched in Figure 12.10b.
These structures are subjected to significant frictional resistance on the embedded
sides, and end-bearing resistance. If the pile penetrates to a solid surface, then the
end-bearing resistance will be dominant. In this section, our attention is focused on
the pile. The discussions of Poulos and Davis (1980) and Reese (2003) are recom-
mended for thorough coverages of the practical aspects of piles.

The forces on offshore structures can be classified as short-term static (quasi-
steady winds), long-term static (steady water currents), cyclic (waves and vortex
shedding), and dynamic (earthquakes). An offshore structure might experience sev-
eral of these simultaneously. For example, a semi-submersible structure moored in
the Florida Current during a hurricane would be exposed to severe wind loads on
the platform and superstructure, strong ocean currents on the legs and pontoons,
and high surface waves. The resulting forces and moments (long-term static and
cyclic) would be resisted by the moorings and anchoring system.
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Figure 12.11. Two-Zone Reaction Model. Refer-
ring to Figure 12.9b, the soil displacement caused
by the pile deformation is Xyield at Z = Zs, the
interface of the plastic and elastic zones.

For piled structures, Reese (1984) reports the following: The static equations
from structural mechanics do not work well for the computation of bending deflec-
tions in soils due to cyclic lateral loads. However, the static equations can be used
to handle the axial loads on piles. The most accurate analytical methods for soil-pile
interactions are numerical. For example, see Ellis and Springman (2001). The goal
of this section is to introduce the reader to soil-structure interactions. Hence, we
shall confine our discussion to analytical techniques. One such technique is that dis-
cussed by Dawson (1980), who presents an accurate, simplified analysis of offshore
piles exposed to cyclic loads in soft clays and sand. The analysis presented herein is
modeled on that presented in the Dawson paper.

Begin by considering a deeply embedded circular cylinder. By deeply embed-
ded, we mean that the cylinder extends far enough into the bed so that the structural
displacement below some depth is negligible. Following Dawson (1980), assume that
the elastic and plastic ranges in Figure 12.9 correspond to the deep-soil zone and the
subsurface-soil zone, respectively, as illustrated in Figure 12.11. The thickness of the
subsurface plastic zone is d1. To facilitate the analysis, the bed coordinate Z = z + h
is introduced in Figure 12.11, where z is the coordinate on the SWL and h is the
water depth, as in previous chapters. Hence, the plastic zone is 0 ≤ Z ≤ Zs, and the
elastic zone is Z > Zs. For a prismatic pile (having a uniform cross-section over
the length of the pile), the bending equation is

EpileIY
d4X
dZ4

= −p(Z) (12.29)

This equation applies to both the plastic and elastic zones in Figures 12.9 and 12.11.
In the equation, the flexural rigidity is the product of the modulus of elasticity
(Young’s modulus), Epile, and the second moment of area, IY. The mathematical
form of the soil resistance, p(Z), depends on both the bed material and the zone of
interest in Figure 12.11.
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(1) Bending Deflection in the Plastic Zone

The soil resistance in the plastic (yield) zone can be represented by

p(Z) = P + QZ (12.30)

This relationship applies to both soft clays and sand. According to Dawson (1980),
the parameters in eq. 12.30 for a pile of diameter D in soft clay are

Pclay = Ns Da, Qclay = Ns Db (12.31)

and in sand, the parameters are

Psand = 0, Qsand = Ns DRpas�sand (12.32)

The first equality in eq. 12.32 comes from the assumption that the sand is non-
cohesive. The force coefficient (Ns) is introduced in eq. 12.23, and the Rankine pas-
sive earth coefficient (Rpas) is obtained from eq. 12.27. See Table 12.1 for values of
these coefficients.

Combine eqs. 12.29 and 12.30 and integrate the resulting expression with respect
to Z. From beam theory, as discussed by Gere (2001) and others, the first integration
results in the shear force, and the second integration produces the bending moment.
We can apply the results of the integrations to the head of the pile in Figure 12.11,
where the applied force and moment are F0 and M0, respectively. These are the
boundary conditions, represented mathematically by

EpileIY
d3Xpile

dZ3

∣∣∣∣
Z=0

= F0

EpileIY
d2Xpile

dZ2

∣∣∣∣
Z=0

= M0 (12.33)

Two additional integrations of eq. 12.29, using the soil-resistance expression in
eq. 12.30, yield the expression for the pile displacement in the plastic zone. That
expression is

Xpile|Z<Zs = 1
EpileIY

(
− P

24
Z4 − Q

120
Z5 + F0

6
Z3 + M0

2
Z2 + Ca Z + Cb

)
(12.34)

In this equation are two additional constants (Ca and Cb), which are to be deter-
mined. The pile slope at any point in the plastic zone, from eq. 12.34, is

dXpile

dZ

∣∣∣∣
Z<Zs

= 1
EpileIY

(
−P

6
Z3 − Q

24
Z4 + F0

2
Z2 + M0Z + Ca

)
(12.35)

Using the displacement expression in eq. 12.34, the respective shear force and bend-
ing moment expressions evaluated at Z = Zs are

EpileIY
d3Xpile

dZ3

∣∣∣∣
Z=Zs

= −FZs = −EpileIY

(
− PZs − Q

2
Z2

s + F0

)

EpileIY
d2Xpile

dZ2

∣∣∣∣
Z=Zs

= MZs = EpileIY

(
− P

2
Z2

s − Q
6

Z3
s + F0 Zs + M0

)
(12.36)

where Zs, FZs, and MZs are unknowns at this point in the analysis.
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(2) Bending Deflection in the Elastic Zone

The soil resistance in the elastic zone in Figure 12.9b is mathematically represented
by

p(Z)|Z>Zs = ksXs, where Xs ≤ Xyield (12.37)
The combination of this expression with the differential equation in eq. 12.29
results in

EpileIY
d4Xpile

dZ4

∣∣∣∣
Z>Zs

= −ksXs, where Xs ≤ Xyield (12.38)

Note that Xpile and Xs are here the same in that a displacement of the pile is assumed
to equal a corresponding displacement of the soil at the pile’s surface. Equa-
tion 12.38 can be solved using operator notation, where dnX/dZn ≡ Dn. The result-
ing algebraic equation is factored, and the components are algebraically solved. This
procedure reduces the order of the resulting differential equations to n = 2, and the
equations can be solved using the standard techniques discussed in books on ordi-
nary differential equations. From Dawson (1980), the solution of eq. 12.38 is

Xpile|Z>Zs = 1
EpileIY

e
−
(

ks
EpileIY

)1/4

(Z−Zs)
{

Cc cos

[(
ks

EpileIY

)1/4

(Z − Zs)

]

+ Cd sin

[(
ks

EpileIY

)1/4

(Z − Zs)

]}
(12.39)

where Zs is the depth of the plastic zone below the mud line. We note that both pile
displacement in eq. 12.39 and its derivative vanish if Z → ∞, as expected. According
to Dawson (1980), for the deeply driven pile, the total depth of the pile (d in Fig-
ure 12.10) must satisfy

d ≥ Zs + 3
(

EpileIY

ks

)1/4

(12.40)

The slope of the pile in the elastic zone is the derivative of the deflection in eq. 12.39,
that is,
dXpile

dZ

∣∣∣∣
Z>Zs

= − 1
EpileIY

(
ks

EpileIY

)1/4

e
−
(

ks
EpileIY

)1/4
(Z−Zs)

·
{

Cc cos

[(
ks

EpileIY

)1/4

(Z − Zs)

]
+ Cd sin

[(
ks

EpileIY

)1/4

(Z − Zs)

]}

(12.41)

We now use the displacement expression in eq. 12.39 to obtain the shear force and
bending moment in the pile at Z = Zs. The process is similar to that in obtaining
eq. 12.35. The result is

EpileIY
d3Xpile

dZ3

∣∣∣∣
Z=Zs

= −FZs = −2
(

ks

EpileIY

)3/4

(Cc + Cd)

EpileIY
d2Xpile

dZ2

∣∣∣∣
Z=Zs

= MZs = −2
(

ks

EpileIY

)1/2

Cd (12.42)

(3) Complete Bending Solution

There are five parametric constants to be determined. Those are the thickness of the
plastic zone, Zs, the constants Ca and Cb in eq. 12.34, and the constants Cc and Cd
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in eq. 12.39. Hence, five equations are required to solve the problem. We find that
four of the five required equations apply to the pile at the depth of the interface of
the plastic and elastic zones. That is, at Z = Zs, the following equalities apply: the
pile displacements obtained from eqs. 12.34 and 12.39, the pile slopes obtained from
eqs. 12.35 and 12.41, the shear forces predicted by the first lines in eqs. 12.36 and
12.42, and the bending moments predicted by the second lines in eqs. 12.36 and
12.42. The last equation depends on the sea bed material. For soft clays, that equa-
tion is eq. 12.25 applied at Z = Zs, and for sand, eq. 12.28 is applied at Z = Zs .

The following are determined from the solution of the simultaneous equations:
In eq. 12.34, the constants are

Cc = 1
2

(
EpileIY

ks

)1/2
[

MZs −
(

EpileIY

ks

)1/4

FZs

]
(12.43)

and

Cd = −1
2

(
EpileIY

ks

)1/2

MZs (12.44)

The shear force (FZs) and bending moment (MZs) at the interface of the elastic and
plastic zones are found in

2(P + QZs) =
(

ks

EpileIY

)1/4
[(

ks

EpileIY

)1/4

MZs − FZs

]
(12.45)

where P and Q depend on the soil type. For soft clays, these parameters are found
in eq. 12.31, and in eq. 12.32 for sand. This equation with those in eq. 12.36 comprise
three equations with three unknowns, those being Zs, FZs, and MZs. By replacing
the force and moment in eq. 12.45 by the expressions in eq. 12.36, we obtain the
following expression for the interfacial depth:

2(P + QZs) = (EpileIY)3/4k1/4
s

[(
ks

EpileIY

)1/4 (
−P

2
Z2

s − Q
6

Z3
s + F0Zs + M0

)

−
(
−PZs − Q

2
Z2

s + F0

)]
(12.46)

For a give-soil (soft clay or sand), this cubic equation in Zs can be solved using the
method of successive approximations described in Section 3.3, Example 3.3. With
the value of Zs known, the shear force and bending moment at the interface are
found from eq. 12.36. In turn, these values are substituted into eqs. 12.43 and 12.44
to obtain the values of Cc and Cd. Finally, the coefficients in the pile-displacement
expression in eq. 12.34 are found to be

Ca = −1
2

(
EpileIY

ks

)1/2
[

2
(

ks

EpileIY

)1/4

MZs − FZs

]
+ P

6
Z3

s + Q
24

Z4
s − F0

2
Z2

s − M0Zs

(12.47)

and

Cb = 1
2

(
EpileIY

ks

)1/2
[

1 + 2
(

ks

EpileIY

)1/4

Zs

]
MZs

−1
2

(
EpileIY

ks

)3/4
[

1 +
(

ks

EpileIY

)1/4

Zs

]
FZs − P

8
Z4

s − Q
30

Z5
s + F0

3
Z3

s + M0

2
Z2

s

(12.48)
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Figure 12.12. Moment, Force, and Displacement Relationships: Deeply Driven Pile in Soft
Clay. The data are those of Matlock (1970) and are presented in Table 12.1 for the 0.323-m
pile. The cyclic load, applied at Z = 0.305 m, has an amplitude of 6.00 × 104 N. The interface
in Figure 12.12a is at Z = Zs � 6.40 m. See Dawson (1980) for a further discussion.

(4) Comparison of Analysis and Data

Dawson (1980) applies the analysis to the field measurements of Matlock (1970) in
a soft clay, and to the field measurements of Reese, Cox, and Koop (1974) in sand.
The data for the soils for these two studies are presented in Table 12.1. In the studies,
hollow piles were used, where the outside diameter of the Matlock pile was 0.323 m,
and that of the Reese pile was 0.610 m. For this pile cross-section, the second
moment of area is IY = �(D4

out − D4
in)/64, where the respective diameters are the

outer diameter and the inner diameter of the pipe cross-section. The results of the
Dawson (1980) analysis and the field data are presented in Figures 12.12 and 12.13.
The data in Table 12.1 and in these figures can be considered to be examples, in that
the data are not presented in non-dimensional forms. The importance of the results
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Figure 12.13. Moment, Force, and Displacement Relationships: Deeply Driven Pile in Sand.
The data are those of Reese, Cox, and Koop (1974) and are presented in Table 12.1 for the
0.610-m pile. The cyclic load, applied at Z = 0.305 m, has an amplitude of 2.44 × 105 N. The
interface in Figure 12.12a is at Z = Zs � 2.13 m. See Dawson (1980) for a further discussion.
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Figure 12.14. Sketches of a Single-Tower Gravity Structure. The caisson is normally a concrete
structure, whereas the tower is made of concrete and steel. The motions illustrated in (b) are
sliding (X), heaving (Z), and rocking (�).

in the figures is that the analytical points and the field data for both the soft clay and
the sand agree rather well. For this reason, we can have confidence in the analysis.

The paper by Dawson (1980) is both concise and well written. The reader is
encouraged to consult this paper for further discussions on both the analysis and the
field data of Matlock (1970) and Reese, Cox, and Koop (1974).

B. Spread Footings – Gravity Structures

The discovery of oil beneath the Gulf of Mexico, the North Sea, and other mod-
erately deep bodies of water fostered a type of offshore structure called a gravity
structure. This type of structure is characterized by a large flat interface with the
sea bed. Referring to the sketch in Figure 12.14a, the gravity structure is normally
characterized by a large caisson resting on the bed. The top of the caisson is well
beneath the free surface of the water. Because of this design feature, the caisson
experiences relatively small wave-induced forces. According to Moan, Syvertsen,
and Haver (1977), the height of the caisson is between h/3 and h/2, where h is the
water depth (see Figure 12.14). Extending from the top of the caisson and extend-
ing through the free surface is a tower, designed to both support a platform and to
protect drilling equipment from the environment. One such platform is the Drau-
gen CONDEEP platform, installed in 1993 in 250 m of water. Other configurations
include the two-tower Oseberg A CONDEEP platform, installed in 1988 in about
110 m of water, and the three-tower Sleipner A CONDEEP platform, installed in
1993 in about 80 m of water. The CONDEEP configurations have multicomponent
caissons, where each component comprising the caisson can be independently bal-
lasted.

The primary motions of a gravity structure are normally classified as sliding (Xx)
and rocking (�y) with, possibly, some heaving (Zz), as illustrated in Figure 12.14b.
A combination of motions applied to a grounded ship can result in migration in the
direction of the incident waves, as discussed by Hudson (2001). In what follows, the
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Figure 12.15. Equivalent Spring-Mass Damper Systems for Soil Reactions to Gravity Structure
Motions. The motions are assumed to be linear, as discussed by Moan, Syvertsen, and Haver
(1977) and by Wolf (1988, 1994). The springs and dampers for the respective sliding, heaving,
and rocking motions are identified by Xx, Zz, and �y in the subscripts. The model footing in
(a) has a uniform width (into the page).

ramifications of the gravity-structure motions on the soil are discussed. In the analy-
sis, a sea-bed coordinate system is used, where the horizontal coordinate is Xx = x,
and the vertical coordinate is Zz = z + h. Note that in the discussion of embedded
structures, the downward vertical coordinate is used. That is, the vertical bed coordi-
nate in Figures 12.12 and 12.13 is Z = −Zz. Our goal here is to determine the forms
of the soil-related components in the equations of motion of the structure.

The motions of the gravity structure illustrated in Figure 12.14b excite the bed
material, which in turn contributes to both the stiffness and the damping terms in
the equations of motion. The exciting forces and moment are assumed to be cyclic
in nature. The responses of the bed are assumed to be quasi-linear, in that each
can be represented by equivalent spring-mass damper systems, as illustrated in Fig-
ure 12.15b. In that figure are the effective soil spring constants (Ksx, Ksz, and Ks�)
and soil damping coefficients (Csx, Csz, and Cs�) for the sliding, heaving, and rock-
ing motions. Any constants and coefficients related to these respective motions are
identified by Xx, Zz, and �y in the subscripts.

Following Moan, Syvertsen, and Haver (1977), the determination of the spring
constant and damping coefficients begins with the stress-strain relationship. For
embedded structures, this relationship is the elastoplastic relationship shown in
Figure 12.9. For the spread footing, the initial stress-strain relationship is assumed to
be linear. That is, the stress on the soil at the soil-structure interface is proportional
to the strain in the soil. The soil is then treated as a linear, isotropic elastic half-space
(extending to Zz = −∞ over −∞ < Xx < ∞). In the analysis that follows, we shall
assume that the heaving motions are of second order when compared to the slid-
ing and rocking motions and, therefore, can be neglected. Furthermore, the spread
footing has a rectangular horizontal plane having a breadth B in the x-direction.
The width of the footing into the plane is considered to be much greater than the
breadth. As a result, the analysis is essentially two-dimensional.

For the sliding and rocking motions of a spread footing, the damping constants
are restoring coefficients that can be related to the soil properties following the
approximate methods of Wolf (1988, 1994), as done by McCormick and Hudson
(2001). For the situation in Figure 12.15, excluding the heaving motions, the follow-
ing apply:
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Sliding Motions: The sliding spring constant (soil rectilinear stiffness coefficient) is

Ksx = Gs
(
1 + 5�2

s

)
(12.49)

where Gs is the shear modulus of the soil and �s is the soil Poisson’s ratio. In terms
of the effective modulus of elasticity of the soil (Es), the shear modulus is

Gs = Es

2(1 + �s)
(12.50)

The damping coefficient for sliding (soil rectilinear damping coefficient) is related
to the sliding spring constant as

Csx � 1
2

Ksx B(2 − 2.2�s)
√

�s

Gs
(12.51)

In this equation, B is the breadth of the spread footing, �s is Poisson’s ratio for the
soil, and � s is the mass density of the soil. Concerning the soil mass excited by the
sliding motion: Wolf (1988) states that the inertial reaction due to the sliding soil
mass is of second order if the embedment depth (d) is much less than B/2. This is
the case for the offshore spread-footing structure and is assumed herein.

Rocking Motions: The rocking spring constant (soil rotational stiffness coefficient)
is obtained from

Ks� � �s
B2

4

[
2.38 +

(
2

d
B

)
+ 1.2

(
2

d
B

)2
]

(12.52)

The expression for the rocking damping coefficient (soil rotational damping coeffi-
cient) is

Cs� � 1
2

Ks� B
√

�s

Gs

[
0.11 + 0.35

(
2

d
B

)
+ 0.1

(
2

d
B

)2
]

(12.53)

The inertial reaction to the rocking motions is proportional to the soil mass-moment
of inertia, which is obtained from

Is� � 0.15
�sKs� B

Gs
(12.54)

The approximate expressions in eqs. 12.51 through 12.54 are used by McCormick
and Hudson (2001) and Hudson (2001) with some success in predicting the motions
and migration of a grounded ship. In the studies leading to those writings, the
geometry of the ship section used in both the experiments and theoretical analy-
ses was rectangular, and was uniform across the wave tank. Hence, the study was
two-dimensional in nature, and similar to that sketched in Figure 12.15a.

In the following sections, the information presented in Part A of this section is
used in the analysis of the wave-induced motion of a TLP. This is followed by the
application of the equations in Part B to spread-footing structures.

12.4 Motions of a Tension-Leg Platform (TLP)

In the preamble of Section 12.2, the mini-TLP SeaStar is described. According to
Bhattacharyya, Sreekumar, and Idichandy (2003), the SeaStar configuration “com-
bines the simplicity of a spar and (the) favorable response features of a TLP.” The
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are at an angle of � to the vertical axis. Finally, in (d) the moored spar is rotated due to an
applied moment, My. The forces Fx and Fz are due to a passing wave and the change in the
displacement.

authors also distinguish between the spar and a TLP as follows: The spar has a deep-
draft cylindrical hull, and may have an inner opening exposed to the sea. The open-
ing is referred to as a “moon pool.” The TLP is a shallow-draft body equipped with
pontoons. The paper by Kibbee and Snell (2002) contains an excellent discussion of
the various TLP configurations, including that of the SeaStar. The purpose of this
section is to introduce the reader to the coupling of large floating platforms, taut
moorings, and embedment foundations. These are essentially the components of a
TLP.

Consider a vertical, circular, cylindrical, spar-type hull that is moored by two
(Ns = 2) flexible lines in tension, as sketched in Figure 12.16. The spar is subject
to incident linear waves of height H and period T. Before considering the influ-
ence of the wave, we first analyze the effects on the mooring-line displacements by
considering the phases shown in Figure 12.16. In Figure 12.16a, the unmoored spar
and the relaxed lines are sketched. The lines are considered to be slightly buoy-
ant so that they are vertical in the relaxed condition. With respect to the incident
wave direction, the lines are attached at the forward and after positions on the bot-
tom of the spar. In Figure 12.16a, the displacement (equal to the spar weight) is
W = �g�d0 D2/4, where d0 is the draft and D is the diameter. The relaxed lines
have a relaxed length �0 and a radius of r. In the moored equilibrium condition in
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Figure 12.16b, the line length is �, and the line radius is approximately r. The radial
strain in the line is of second order, as discussed in Section 12.2A.

A. Tethers

From the orientation of the tethers (mooring lines) sketched in Figure 12.16c, the
following geometric relationships are obtained:

sin(�) = x
� + ��

(12.55)

and

cos(�) = � + z
� + ��

(12.56)

In these equations, x is the surging displacement and z is the set-down. Also, for
the equilibrium orientation in Figure 12.16b and displaced orientation of the spar in
Figure 12.16c, and from the definition of the modulus of elasticity, we can write

Es = T0�0

�r2(��0)
= T��0

�r2(��)
(12.57)

Rearrange this equation to obtain the expression for the tension in the line when
the body is displaced as sketched in Figure 12.16c, that is,

T� = Es�r2
(

��

�0

)
� T0 = Es�r2

(
��0

�0

)
(12.58)

The approximation is valid if the angular displacement (�) is small. We note here
that both the additional draft (�d0) and the line stretch (��0) are specified in the
design. As a result, all of the terms in eqs. 12.57 and 12.58 are known. In eqs. 12.55
through 12.58, the line stretch in Figure 12.16c is

�� = � + z
cos(�)

− � (12.59)

where z is the heaving displacement.
In Figure 12c, the spar is displaced horizontally and vertically. However, the

centerline of the spar remains vertical. For a TLP, this is the design orientation.
As sketched, the displaced mooring lines are at an angle (�) to the vertical. This
orientation results in both an increased line tension and stretch in each line. The net
vertical force component of the line tension results in the vertical displacement, z.
As in eq. 12.58, there is an additional tension in the line due to the additional stretch
��, as sketched in Figure 12.16c. Finally, there will be a rotation of the spar, as
sketched in Figure 12.16d. The angle from the vertical direction of the spar rotation
is �. For a TLP, � � 0 by design. This condition is assumed in the analysis presented
herein. Our goal is to determine the expressions for the effective spring constants
for the surging and heaving motions of the spar.

The horizontal component of the tension in the mooring lines sketched in
Figure 12.16c is

T�x = T� sin(�) = T�

x
(� + ��)

� T�

�
x =

(
T0

�0 + ��0

)
x = Ksxx (12.60)

where Ksx = T�/(�0 + ��0) is the horizontal spring constant. The last approxima-
tion is based on the assumption that the tension in Figures 12.16b and 12.16c are
approximately equal.
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The vertical component of the additional tension is

Tz = T� cos(�) = Es�r2 ��

�
cos(�) = Es�r2

�
[� − � cos(�) + z]

� Es�r2

�
z =

( Es�r2

�0 + ��0

)
z = Kszz (12.61)

The last equality contains the vertical spring constant, Ksz = Es�r2/�, where � =
�0 + ��0. The assumption leading to the approximation in eq. 12.60 is that the angle
� is small, an assumption used in the remainder of this section.

With the spring constants defined, the linear heaving and swaying motions of
the spar-type TLP can now be addressed. For those interested in the derivation of
the spring constants for all degrees of freedom of a taut-moored body, the book of
Patel (1989) is recommended. Patel includes the nonlinearities resulting from finite
values of � and the subsequent coupling of the motions.

EXAMPLE 12.4: EFFECTIVE SPRING CONSTANTS FOR A TLP Consider a SeaStar type
of TLP, as sketched in Figures 12.2 and 12.17. We model the TLP after one of
the prototypes analyzed by Bhattacharyya, Sreekumar, and Idichandy (2003),
referred to as Prototype A by those investigators. Prototype A is to be moored
in 215 m of water (h = 215 m).

The tethers are composed of steel strands; hence, the tethers are not neu-
trally buoyant. From Bhattacharyya, Sreekumar, and Idichandy (2003), the
tethers have the following dimensions and properties:

(a) Relaxed length (�0): 175 m
(b) Tether area (As): 0.0876 m2 (r � 0.167 m)
(c) Modulus of elasticity (Es): 2 × 1011 N/m2

(d) Pre-tension (3T0): 4,000 metric tons (tonne) or 3.924 × 107 N
(e) Total three-tether weight: 360 metric tons or 3.532 × 106 N

The Prototype A SeaStar sketched in Figure 12.17 displaces 16,355 metric
tons (1.604 × 108 N) of salt water when deployed, and weighs 12,355 metric tons
(1.212 × 108 N). The difference in the displacement and the weight is then the
previous pre-tension value. From the first equality in eq. 12.57, the stretch in
the tethers when the system is deployed is approximately ��0 = T0�0/Es As �
0.392 m. Hence, � � �0 = 175 m.

From eqs. 12.60 and 12.61, the respective horizontal and vertical spring
constants are found to be Ksx = T0/� � 22.4 × 104 N/m and Ksz = Es�r2/� �
1.001 × 108 N/m. From these results, we see that the moored TLP is extremely
“stiff” in heave.

B. Soil Reactions

The spar-type TLP sketched in Figure 12.16 is moored to two embedment-type
anchors. These can be treated simply as deeply driven piles. Hence, the soil-
structure interactions are those described in Section 12.3A. See Figure 12.11 for the
reaction to the lateral load on such a structure. To include the soil reactions in the
time-dependent forces induced by the TLP motions is a bit difficult. For practical
purposes, one can assume that the time-dependent vertical reaction of the soil is
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Figure 12.17. TLP Configuration in Example 12.4. In (a), the steel tethers are shown in their
pre-deployment length. In (b), the SeaStar model is shown in elevation in the deployed con-
figuration. The areal view of the TLP is sketched in (c).

of second order when compared to the equilibrium reaction. That is, in Fig-
ures 12.16b and 12.16c, the vertical soil reactions are approximately the same. How-
ever, the soil reactions to the lateral loads should be included. Again, for prac-
tical purposes, we see in Figure 12.12 (clay) and 12.13 (sand) that the soil pile
displacements at the groundline for respective pile diameters of 0.323 m and 0.610 m
are relatively small for applied lateral loads of about 5 tonnes for the former and
approximately 250 tonnes for the latter. Hence, as a first approximation, the time
dependency of the pile at the groundline can be neglected. As a result, the point of
attachment of the mooring line and the embedment anchor is considered to be fixed
in time.

C. Wave-Induced Forces

Turning our attention to the moored spar in Figure 12.16c, we must determine the
type of force that is dominant in a sea. For the circular cylindrical spar, we use
the Chakrabarti (1975) results presented in Figure 9.8. That figure shows the domi-
nance ranges of the drag, inertial, and diffraction forces as determined by the
Keulegan-Carpenter number (KC = umaxT/D) and the dimensionless radius (ka =
kD/2 = 2�a/�) of the surface-piercing circular cylinder. In the KC expression are
the maximum horizontal particle velocity (umax) in the wave, the wave period
(T), and the diameter (D = 2a), whereas in the ka expression are the wave
number (k) and radius (a). The maximum particle velocity is presented in eq. 9.53.
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For linear waves, that velocity expression is

umax = �
H
T

cosh[k(z + h)]
sinh(kh)

(12.62)

The reader should be reminded that when the structure is exposed to extreme
waves, the choice of the wave theory to be used in the analysis is influenced by
the results presented in Figure 4.1. Assume that the TLP is moored in deep-water
waves. As a result of this assumption, the approximate Keulegan-Carpenter num-
ber in eq. 9.46 can be used, that is, KC � �H0/D, where the subscript “0” identifies
deep-water wave properties.

The two extremes in Figure 9.8 are the cases corresponding to KC ≥ 100, where
ka � 0.01, and KC � 0.01, where ka ≥ 0.5. In the figure, we see that the former
corresponds to a dominant drag force, and the latter corresponds to a dominant
diffraction force.

(1) Drag Force

The drag force is dominant when the wavelength is much greater than the body
length. For the spar, the length is the diameter. The drag force acting on the sphere
is expressed by

Fd(t) = 1
2

� D

0∫
−d

(u|u|)x=0CdDdz � 1
2

� DCdD

0∫
−d

(u|u|)x=0dz (12.63)

The first approximation is due to the application of the horizontal velocity expres-
sion at the centerline of the structure, and the variation of the free-surface displace-
ment is negligible. The second approximation results from Figure 2.15, where the
drag coefficient (CdD) is approximately constant on the upper bound of the uncer-
tainty band for log10(ReD) values greater than 4. Here, we assume CdD � 1. Using
the linear wave formula in eq. 3.49, the horizontal velocity expression in eq. 12.63
is

u|x=0 = �
H
T

cosh[k(z + h)]
sinh(kh)

cos(
t) = umax cos(
t) (12.64)

The combination of eqs. 12.63 and 12.64 results in the following expression for the
wave-induced drag force:

Fd(t) = 1
32

� DH2 
2

k
1

sinh2(kh)
{2kd + sinh(2kh)[1 − cosh(2kd)]

+ cosh(2kh) sinh(2kd)} cos(
t)|cos(
t)|
= Fdo cos(
t)|cos(
t)| (12.65)

where Fdo is the force amplitude function. Again, CdD � 1 is assumed. The approx-
imate drag-force expression for a taut-moored spar (sketched in Figure 12.16b) in
deep-water waves is

Fdo(t) = 1
16

�gDH2
0 [1 − cosh(2k0d) + sinh(2k0d)] cos(
t)|cos(
t)|

= Fdo0 cos(
t)|cos(
t)| (12.66)



482 Wave-Induced Motions of Compliant Structures

In this equation, we have used the results obtained from applying the dispersion
relationship of eq. 3.31 to deep water. From the second equality in that equation,

2/k0 = g.

The drag-force expressions in eqs. 12.65 and 12.66 are nonlinear in time. When
the sea is composed of random long waves, it is advantageous to replace the nonlin-
ear drag force with an equivalent linear force. To obtain the equivalent linear force,
we use an analytical technique that is similar to that in Section 10.1C. In that section,
a method is presented to obtain the equivalent linear damping coefficient for viscous
damping. The application of the technique to the wave-induced drag force is done
by equating the energies supplied by both the nonlinear force and equivalent linear
force over one wave period. Assume that the swaying displacement in Figure 12.16
is x = xosin(
t). Following the thought process leading to eq. 10.9, we can write the
following energy equation:

x(T)∫
x(0)

Fddx =
T∫

0

Fd
dx
dt

dt =
T∫

0

Fdo cos(
t)
dx
dt

dt = Fdo�xo =
x(T)∫

x(0)

Fddx

= 4

T/4∫
0

Fd
dx
dt

dt = 4

T/4∫
0

Fdo
xo cos3(
t)dt = 8
3

Fdoxo (12.67)

Note that the amplitudes of the linear force and nonlinear force are, respectively,
Fdo and Fdo. In eq. 12.67 is the relationship between the two force amplitudes. The
resulting expression for the equivalent linear drag force for a spar moored in deep
water is

Fd0 = Fdo0 cos(
t)

� 8
3�

Fdo0 cos(
t) = 1
6�

�gDH2
0 [1 − cosh(2k0d) + sinh(2k0d)] cos(
t) (12.68)

The subscript “0” indicates deep water, as is done throughout the book.

(2) Diffraction Force

From the results of Chakrabarti (1975) in Figure 9.8, the diffraction force is dom-
inant for the spar in Figure 12.16 if the spar diameter satisfies D ≥ �/2�. As is
shown in Figure 9.22, the force and moment approximations of van Oortmerssen
(1971) for vertical truncated cylinders in the diffraction force range are rather good.
The approximation is based on the MacCamy-Fuchs (1954) analysis of the horizon-
tal diffraction force presented in Section 9.2E. Here, we use the deep-water force
expression in eq. 9.85 applied to deep water, which is

FxMF0 = 2
�gH0

k2
0

�(k0a) sin[
t − (k0a)] (12.69)

where a is the radius of the spar, the subscript x refers to the direction, and
the subscript MF identifies the expression as that of MacCamy and Fuchs. From
eq. 9.72, the function �(k0a) is

�(k0a) = 1√[
J0(k0a) − 1

k0a
J1(k0a)

]2

+
[

Y0(k0a) − 1
k0a

Y1(k0a)
]2

(12.70)
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where the J and Y terms are Bessel functions of the first and second kind, respec-
tively. See Appendix A for a discussion of these functions. The phase angle (k0a)
in eq. 12.69 is obtained from eq. 9.73. Applied to deep water, the phase angle is

(k0a) = tan−1




J0(k0a) − 1
k0a

J1(k0a)

Y0(k0a) − 1
k0a

Y1(k0a)


 (12.71)

See Figures 9.17 and 9.18 for the behaviors �(k0a) and (k0a), respectively.
From the van Oortmerssen (1971) expression in eq. 9.86, the horizontal diffrac-

tion force on a truncated circular cylinder of draft d (in Figure 12.16) in deep water is
obtained by multiplying the force expression in eq. 12.69 by a ratio of draft-integral
and depth-integral. The result is the following deep-water diffraction force expres-
sion:

F(x0) �

0∫
−d

ek0(z+h)dz

0∫
−∞

ek0(z+h)dz

FxMF0 = (1 − e−k0d)FxMF0 (12.72)

D. Hydrodynamic Coefficients for a Spar

The large-diameter vertical, circular cylinder is a basic component of many offshore
structures. As discussed by Agarwal and Jain (2003), the spar type of structure is
essentially a vertical cylinder. The hydrodynamic coefficients (added mass and radi-
ation damping) for surging, heaving, and pitching motions of a vertical cylinder
of finite draft are derived in the paper by Sabuncu and Calisal (1981) and Yeung
(1981), among others. The Yeung analysis follows that of Garrett (1971) presented
in Section 9.2H(3). Garrett predicts the wave-induced forces on a fixed circular,
cylindrical dock. Using the Garrett method, Yeung (1981) applies the boundary
conditions associated with the planar motions of the vertical, circular cylinder. The
Yeung analysis is applied to the motions of cylinders in proximity to reflecting walls
by Teng, Ning, and Zhang (2004). Those authors also give a rather complete deriva-
tion of the single-cylinder equations. In the subsections that follow, analyses of the
reaction forces are presented that are somewhat simplified.

In the heaving analysis that follows, the method used by McCormick (1982)
is modified for application in waters of finite depth. That method is based on the
Lindsay (1960) Green’s function approach to the problem. For the surging motion
analyzed herein, the cylindrical wave maker theory of Dalrymple and Dean (1972)
is modified using the van Oortmerssen (1971) approximation method, presented
in Section 9.2H(1). The van Oortmerssen method is used to determine the wave-
induced diffraction forces on truncated cylinders in that section. In Figure 9.22,
results obtained using the approximation and the exact analysis of Garrett (1971)
are presented. From the good agreement in that figure, some confidence can be
gained in the approximation method. The analysis of the coupling of the surging
and pitching motions is not presented because, for motions of large spar-type plat-
forms in operational seas, the coupling is of second order.
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Figure 12.18. Radiation Due to Heaving, Surging, and Pitching Motions. The radiation pat-
terns shown are predicted by the theory of Yeung (1981).

(1) Heaving Added Mass and Radiation Damping

As previously mentioned, Yeung (1981) uses a separation-of-variables technique
in solving for the velocity potentials representing the flows excited by the surging,
heaving, and pitching motions of a truncated, vertical circular cylinder, as sketched
in Figure 12.18. The analytical regions used by Yeung (1981) and others are sketched
in Figure 12.19. Here, a somewhat simplified approach is taken in the determination
of the added-mass and radiation-damping coefficients.

Consider two points on the bottom face of a heaving circular, cylindrical hull in
Figure 12.20. The first point, 0, is the source of the pressure disturbance that passes
point 1, located at a distance s from 0 on the face. For the hull having a heaving
velocity of Vzoe−i
t , the velocity potential for the excited fluid at point 0 is

d�1 = Vzo

2�
e−i
t eiks

s
cosh[k(h − d)]

cosh(kh)
dA0 (12.73)

The term 1/s is the Green’s function, described in Appendix D. The ratio of the two
hyperbolic signs comes from the expression in eq. 3.29, which is the equation for
the velocity potential describing the flow in linear waves. The area element, dA0,
surrounds the source point (0), as shown in Figure 12.20. The velocity potential at 1

b. Plan Viewa. Elevation View
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h
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Figure 12.19. Analytical Regions for the
Added Mass and Radiation Damping Analy-
ses. For the heaving motions in Figure 12.18a,
the radiated waves in Regions 2 and 3 are in
phase. For the respective surging and pitch-
ing motions in Figures 12.18b and 12.18c, the
radiated waves in these regions are 180◦ out
of phase.
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Figure 12.20. Notation for Heaving Added-Mass
and Radiation-Damping Coefficient Derivations.

resulting from all of the source points on the bottom face is

�1 = Vzo

2�
e−i
t cosh[k(h − d)]

cosh(kh)

∫
A0

eiks

s
dA0

= Vzo

2�
e−i
t cosh[k(h − d)]

cosh(kh)
�

k
{H0(2kr) + i[1 − J0(2kr)]} (12.74)

The function H0(2kr) is called a Struve function of zero order, and J0(2kr) is a Bessel
function of the first kind, zero order, as described in Appendix A. From Abramowitz
and Stegun (1965), the Struve function is defined as

H0(2kr) = 2
�

[
(2kr) − (2kr)3

12 · 32
+ (2kr)5

13 · 33 · 53
− · · ·

]
(12.75)

Details of the integration in eq. 12.74 are presented by Lindsay (1960).
The dynamic pressure at point 1, from Bernoulli’s equation, is

p1 = −�
∂�1

∂t
= i
�

Vzo

2�

cosh[k(h − d)]
cosh(kh)

ei
t �

k
{H0(2kr) + i[1 − J0(2kr)]} (12.76)

Hence, the reaction force due to heaving is

Fz =
∫

A
p1dA= i
�

Vzo

k
cosh[k(h − d)]

cosh(kh)
e−i
t

a∫
0

2�r{H0(2kr) + i[1 − J0(2kr)]}dr

= −��a
1
k2

cosh[k(h − d)]
cosh(kh)

H1(2ka)i
Vzoe−i
t + 


k
��a2 cosh[k(h − d)]

cosh(kh)

×
[

1 − J1(2kr)
ka

]
Vzoe−i+++

= −awzi
Vzoe−i
t + brzVzoe−i
t (12.77)

Here, from Abramowitz and Stegun (1965), the Struve function of order one is

H1(2kr) = 2
�

[
(2kr)2

12 · 3
− (2kr)4

12 · 32 · 5
+ · · ·

]
(12.78)

The last line of eq. 12.77 contains the heaving added-mass coefficient, which is

awz = ��a
1
k2

cosh[k(h − d)]
cosh(kh)

H1(2ka) (12.79)
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and the heaving radiation-damping coefficient,

brz = 


k
��a2 cosh[k(h − d)]

cosh(kh)

[
1 − J1(2ka)

ka

]
(12.80)

In the following example, eqs. 12.79 and 12.80 are applied to a vertical, circular
cylindrical hull.

EXAMPLE 12.5: ADDED-MASS AND RADIATION-DAMPING COEFFICIENTS FOR A HEAV-

ING VERTICAL CYLINDRICAL HULL IN WATER OF FINITE DEPTH A vertical, circular
cylindrical hull having a radius (a) of 20 m and a draft (d) of 10 m is forced to
heave in 100 m of water. The heaving period (T) is 9 sec. For this period, the
deep-water wavelength is approximately 126 m from eq. 3.36. Because this value
is less than twice the water depth, the waves created by the motion are in deep
water. The product of the wave number (k) and the hull radius is approximately
1.0. For this hull, the added mass obtained from eq. 12.79 is about 0.312 × 107 kg,
and the radiation-damping coefficient value is about 4.64 × 106 N-s/m from
eq. 12.80. The displaced mass of the resting hull is 1.29 × 107 kg in salt water,
where the mass density is assumed to be � = 1.03 × 103 kg/m3.

For the circular, cylindrical hull, eqs. 12.79 and 12.80 are applied over a ka
range from 0 to 1. This range corresponds to long waves. The resulting hydro-
dynamic coefficients (added mass and radiation damping) are presented in
Figure 12.21 in dimensionless forms.

(2) Surging Added Mass and Radiation Damping

The hydrodynamic coefficients for a surging, circular cylinder have been analyzed
by Yeung (1981), Bhatta and Rahman (2003), and others. Here, we shall present
an approximate method based on the van Oortmerssen (1971) technique, presented
in Section 9.2H. Results from the approximate analysis are compared with those
obtained from the Yeung (1981) analysis.

Begin by assuming that the surging cylinder in Figure 12.18b extends from just
above the sea bed through the free surface, that is, d � h. Physically, this is equiv-
alent to the cylindrical wave maker termed by Dalrymple and Dean (1972) and
Dean and Dalrymple (1984) as one experiencing “piston motions.” For the cylin-
drical wave maker, the velocity potential describing the flow excited by a cylindrical
wave maker is obtained by using a separation of variables method to solve Laplace’s
equation, eq. 3.8. The resulting potential expression is

�(r, �, z, t) =
{

C0 H(1)
1 (kr) cosh[k(z + h)]

+
∞∑

n=1

CnK1(Knr) cos[Kn(z + h)]

}
cos(�)e−i
t (12.81)

In this equation, C0 and Cn (n = 1, 2, . . . ) are to-be-determined constants, H(1)
1 (kr) is

a first-order Hankel function of the first kind, and K1(Knr) is a first-order modified
Bessel function of the second kind. These functions are discussed in Appendix A.
The first of the two terms on the right represent an outgoing traveling wave, and
the second term represents an infinite number of standing evanescent waves that
are attached to the body. The wave number (k) for the traveling wave system is
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Figure 12.21. Dimensionless Added-Mass
and Radiation-Damping Coefficients for
the Heaving, Circular, Cylindrical Hull in
Example 12.5. Referring to Figure 12.18a,
the radius (a) of the heaving cylinder is
20 m, the draft (d) is 10 m, and the water
depth (h) is 100 m.

determined from the dispersion equation, eq. 3.31, that is,


2 = kgtanh(kh) (12.82)

Similarly, for the standing wave system, the analogous expression is


2 = −Kngtan(Knh) (12.83)

where, again, n = 1, 2, . . . . The constants, C0 and Cn, in eq. 12.81 are determined
by first applying the boundary condition at the body surface, where r = a. Then,
the orthogonality condition due to eqs. 12.82 and 12.83 is applied. The boundary
condition is mathematically described by

∂�

∂r

∣∣∣∣
r=a

= vr |r=a = Vx(t) cos(�) = Vxoe−iwt cos(�) (12.84)

Here, Vxo is the amplitude of the surging velocity (Vx), which is uniform in the ver-
tical direction. Because the body motion is uniform with respect to z, that variable
does not appear in the relationship. Applying the orthogonality condition to the
expression resulting from the combination of eqs. 12.81 through 12.84 results in the
following expressions for the constants:

C0 = 4Vxo sinh(kh)

dH(1)
1 (kr)
dr

∣∣∣∣
r=a

[2kh + sinh(2kh)]

= 4aVxo sinh(kh)[
kaH(1)

0 (ka) − H(1)
1 (ka)

]
[2kh + sinh(2kh)]

= 4aVxo sinh(kh)
[2kh + sinh(2kh)]

{
[ka J0(ka) − J1(ka)] − i[kaY0(ka) − Y1(ka)]

[ka J0(ka) − J1(ka)]2 + [kaY0 − Y1(ka)]2

}
= (C0� + iC0�)aVxo (12.85)

and

Cn = − 4Vxo sin(Knh)
dK1(Knr)

dr

∣∣∣∣
r=a

[2Knh + sin(2Knh)]

= − 4aVxo sin(Knh)
[KnaK0(Kna) − K1(Kna)][2Knh + sin(2Knh)]

= CnaVxo (12.86)

Note that the Hankel functions, H(1)
N (ka), in eq. 12.85 are complex functions, related

to the Bessel functions of the first and second kinds by H(1)
N (ka) = JN(ka) + iYN(ka),
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where N is the order of the function. The modified Bessel functions, JN(KNa), in
eq. 12.86 are real functions. We shall see the significance of these observations in
the added-mass and radiation-damping expressions. The velocity potential in eq.
12.81 is now completely defined.

The combination of the velocity potential in eq. 12.81 and the dynamic pressure
results in the pressure distribution over the cylinder, that is,

pdyn|r=a = −�
∂�

∂t
= i�
�|r=a

= i�


{
C0 H(1)

1 (ka) cosh[k(z + h)]

+
∞∑

n=1

CnK1(Kna) cos[Kn(z + h)]

}
cos(�)e−i
t (12.87)

This expression is now integrated over h to obtain the hydrodynamic force on the
surging, cylindrical wave maker, which is

Fxh =
2�∫

0

0∫
−h

pdyn|r=aa cos(�)dzd�

= i�
a

2�∫
0

0∫
−h

{
C0 H(1)

1 (ka) cosh[k(z + h)]

+
∞∑

n=1

CnK1(Kna) cos[Kn(z + h)]

}
cos2(�)dzd�e−i
t

= i�
�a2Vxo

{
C0

H(1)
1 (ka)

k
sinh(kh) +

∞∑
n=1

Cn
K1(Kna)

Kn
sin(Knh)

}
e−i
t (12.88)

The reader should note the relationships of C0 and C0 and of Cn and Cn in eq. 12.88.
The force in eq. 12.88 is the reaction force on a vertical, circular cylinder oscillating
in the surging mode. The cylinder extends to the sea bed.

We now apply the van Oortmerssen (1971) approximation to the wave maker.
Physically, the approximation is based on the assumption that the ratio of the inte-
grals of the pressures over the truncated cylinder and over the cylinder extending
to the sea bed is proportional to the corresponding wave-force ratio (see eq. 9.86).
Here, we are dealing with the reaction forces due to the surging motions.

Replacing the MacCamy-Fuchs (1954) force (FxMF) in eq. 9.86 by the expression
in eq. 12.88, we obtain the following expression for the approximate hydrodynamic
surging force on a circular, cylindrical spar:

Fxd �

0∫
−d

cosh[k(z + h)]dz

0∫
−h

cosh[k(z + h)]dz

Fxh = sinh(kh) − sinh[k(h − d)]
sinh(kh)

Fxh

= −awx
dVx

dt
− brxVx = −(−i
awx + brx)Vx = (i
awx − brx)Vxoe−i
t (12.89)
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The second line relates the hydrodynamic force to the added-mass (awx) and the
radiation-damping coefficients (brx). The negative signs in that line result from the
motion-induced force being reactionary.

The expressions for the respective approximate surge added-mass and
radiation-damping coefficients are obtained by combining eqs. 12.79, 12.80, 12.82,
and 12.83 to obtain

aax = ��a2

{
sinh(kh) − sinh[k(h − d)]

sinh(kh)

}
·

{[Co� J1(ka) − Co�Y1(ka)]} sinh(kh)
k

+
∞∑

n=1

CnK1(Knh)
sin(Knh)

Kn

(12.90)

and

brx = ��a2 


k
{sinh(kh) − sinh[k(h − d)]}[Co�Y1(ka) + Co� J1(ka)] (12.91)

We note that the summation, which is a real term, does not appear in the radiation-
damping coefficient, as would be expected, because the energy lost to the motion is
to the traveling wave system.

To test the accuracy of the approximations in eqs. 12.90 and 12.91, both equa-
tions are applied to a cylinder extending from the free surface to a point just above
the sea bed. This is a case studied by Yeung (1981). The cylindrical wave maker
in question is in a water depth equal to five times the cylinder radius (h = 5a).
The non-dimensional added-mass and radiation-damping coefficients obtained from
eqs. 12.90 and 12.91, respectively, are presented with those obtained from the Yeung
analysis in Figure 12.22. In Figure 12.22a, the “one-term solution” for the added
mass refers to the application of eq. 12.90 without any of the terms in the summation.
Physically, this solution neglects the traveling waves created by the surging motions.
The “three-term solution” in Figure 12.22a shows the effect of including the first two
terms in the summation. These terms correspond to two of the evanescent stand-
ing waves attached to the body. As more terms in the summation are included, the
agreement between the results from the “exact theory” of Yeung (1981) and the
approximate expression in eq. 12.90 improves.

In Figure 12.22b, the radiation-damping coefficient values are presented. One
can see that the agreement between the eq. 12.91 results and those obtained from the
Yeung analysis are rather good. Note that the value of the draft van Oortmerssen
(1971) correction factor (on the first line of eq. 12.89) is unity in this application
because the wave maker extends down to just above the sea bed. Over the ka-range
in Figure 12.22, the results are quite good. Hence, in the conceptual design phase of
an engineering design, eqs. 12.90 and 12.91 are considered to be satisfactory.

With the information presented in this section, we are now prepared to analyze
the design planar motion of a TLP.

E. Surging Motions in Regular Seas

Referring to the sketches in Figures 12.16b and 12.16c, we see that the primary
motion of a TLP is surging. The heaving motion is of second order because the
stiffness in the tethers is large, making the natural “springing” frequency due to
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the lines rather high, and well away from those of the high-energy waves. See the
numerical values in Example 12.4. In that example, we see that the spring constant
for the heaving motions is of the order of 108 N/m, and that of the surging motion is
of the order of 104 N/m. For heaving, the tethers are extremely stiff.

The surging equation of motion for the TLP is

(m+ awx)
d2x
dt2

+ brx
dx
dt

+ bvx

(
dx
dt

) ∣∣∣∣
(

dx
dt

) ∣∣∣∣+ NKsxx = Fx(
, t) = Fxo sin(
t + �x)

(12.92)

In this equation are the mass of the structure (m), the added mass (awx) excited by
the surging motions, the radiation-damping coefficient (brx), the viscous-damping
coefficient (bvx), the number (N) of mooring lines, each line having a spring con-
stant (Ksx), the wave-force amplitude (Fxo), and the phase angle (�x) between the
passing wave and the wave force. Note that in the equation, the wave force has been
linearized, as is done in Section 12.4C(1). The viscous-damping term can also be
replaced by an equivalent viscous-damping coefficient, as is done for the heaving
motion of the cylinder in Figure 10.1. That is, following the energy analysis leading
to eq. 10.10, we can write the equivalent linear viscous-damping coefficient as

bvx = 8
3




�
xobvx (12.93)

where 
 is the wave frequency and xo is the surging amplitude.

EXAMPLE 12.6: SURGING MOTIONS OF A TLP Consider again the SeaStar sketched
in Figure 12.17 to be subject to waves having a height (H) of 2 m and a period
(T) of 8 sec, as sketched in Figure 12.23. From Chapter 3, the deep-water wave-
length (�0) corresponding to this period is approximately 100 m, which is less
than the water depth (h) of 215 m. Hence, the SeaStar is moored in deep-water
waves because h/� > 1/2.

From Example 12.4, we find that the relaxed tether length (�0) is 175 m, the
weight (W ) of the structure is 1.212 × 108 N, and the surge spring constant is
Ksx = T0/� � 7.474 × 104 N/m. The mass of the structure is m = W/g � 1.24 ×
107 kg.

For the sake of completeness, Figure 4.1 is used to check on the valid-
ity of the linear wave theory in this application. According to Le Méhauté
(1969), the linear theory presented in Chapter 3 can be used because the Ursell
number, UR from Ursell (1953), is much less than unity, that is, as defined in
Figure 4.1, UR ≡ H�2/2h3 � 0.1 � 1. However, we note that for the coordinate
values in that figure, the deep-water Stokes’ second-order theory presented in
Sections 4.2 through 4.4 would be apropos. We shall follow the Le Méhauté
recommendation here, and use Airy’s linear wave theory.

We must also determine the types of wave-induced forces that are domi-
nant. To do so, we consult the Chakrabarti diagram in Figure 9.8, where the
deep-water Keulegan-Carpenter number value is KC = 2�H0/a � 1.26 and
ka � 0.628. In Figure 9.8, we see that these values correspond to the region of the
diffraction force. The MacCamy-Fuchs equation for the horizontal diffraction
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Figure 12.23. Sketch of the SeaStar-Type TLP in
Example 12.6 (Not to Scale).

force, eq. 9.71, is modified for use here. Applied to deep water, the MacCamy-
Fuchs horizontal force is

FxMF � 2
�gH0a2

(k0a)2




tanh(k0h)√[
J0(k0a) − 1

k0a
J1(k0a)

]2

+
[

Y0(k0a) − 1
k0a

Y1(k0a)
]2




× sin[
t − (k0a)]

= FxMFo(
)
H0

2
sin[
t − (k0a)] (12.94)

where, on the second line, the force amplitude function, FxMFo(
), appears. This
function will be of use in the analysis of the surging response in a random sea.
From Chapter 9, the expression for the phase angle between the wave and the
force is

(k0a) = tan−1




J0(k0a) − 1
k0a

J1(k0a)

Y0(k0a) − 1
k0a

Y1(k0a)


 (12.95)

To apply the MacCamy-Fuchs analysis, we simply change the lower limit of
the z-integration in eq. 9.71 from −h to −d. When this is done, the modified
MacCamy-Fuchs equation is

Fx � 4
�ga2

(k0a)2

{
tanh(k0h) − sinh[k0(h − d)

cosh(k0h)

}
√[

J0(k0a) − 1
k0a

J1(k0a)
]2

+
[

Y0(k0a) − 1
k0a

Y1(k0a)
]2




× H0

2
sin[
t − (k0a)]

= Fxo(
) sin[
t − (k0a)] = Fxo(
)
H0

2
sin[
t − (k0a)] (12.96)
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As is similar to eq. 12.94, the frequency-dependent amplitude function, Fxo(
),
is introduced for later use. In Figure 12.24 are the surge-force amplitude for the
SeaStar hull, obtained from eq. 12.96, and the MacCamy-Fuchs force amplitude
for a bed-resting hull having the same radius, obtained from eq. 12.94. In that
figure, the force amplitudes are presented as functions of the wave period, T.
One can see that the peak diffraction force on the TLP occurs at about 8.5 sec,
where the diffraction force is approximately 2.76 × 106 N. The value of the
phase angle, (k0a) in eq. 12.96, is approximately 0.253 radians, or about 14.5◦.
This is the phase angle between the force and wave; hence, � = −(k0a) in eq.
12.92, the equation of the surging motion.

We now must determine the values of the added-mass and the radiation-
damping coefficients. For the values given, ka � 0.6288, kh � 13.52, and the
non-dimensional added-mass coefficient value is awx/(��a2h) � 0.2297. The
non-dimensional radiation-damping coefficient value is brx/(��a2h
) � 0.0751.
Hence, surge added mass is awx � 1.60 × 107 kg, and the surge radiation-
damping coefficient is brx � 4.10 × 106 N-s/m. The hydrostatic restoring coeffi-
cient in eq. 12.86 is �g�a2 � 3.17 × 106 N/m.

The horizontal particle velocity on the free surface as a crest passes
is obtained from eq. 3.49. In deep water, the maximum particle velocity is
umax � 0.7848 m/s. The Reynolds number in eq. 2.108 for this velocity is ReD =
umax D/� � 1.31 × 107, where the kinematic viscosity of salt water is about
1.2 × 10−6 m2/s at 14◦C. For this Reynolds number value in Figure 2.15, we are in
a region where there are no experimental data. Hence, because of the behav-
ior of the drag coefficient up to ReD = 106 in that figure, we can assume a drag
coefficient value CdD � 1.0. If the velocity was applied over the entire hull, the
drag force would be about 2.54 × 105 N, which is two orders of magnitude less
than the maximum diffraction force. For this reason, we neglect the viscous drag
effects on the motion, and the coefficient in eq. 12.93 can be neglected.

We can now write eq. 12.92, the equation of the surging motion, in terms of
its numerical coefficients as

[(1.24 + 1.60) × 107]
d2x
dt2

+ [4.10 × 106]
dx
dt

+ [3(7.474 × 104)]x

= [2.76 × 106] sin(
t − 0.253)

The units of this equation are Newtons. The surging equation of motion
is similar to the heaving equation in eq. 10.2. The expression for the surging
displacement as a function of time is then similar to that for the heaving dis-
placement in eqs. 10.3 and 10.12.

In expressions analogous to those in eqs. 10.13 through 10.15, respectively,
we find the natural surging frequency is


nx = 2�

Tnx
=
√

NKsx

m + awx

�
√

3(7.474 × 104)
(1.24 + 1.60) × 107

� 0.0888
rad

s
(12.97)

From this expression, the natural surging period is Tnx � 70.7 sec. It is worth
noting here that the similar equation for the heaving natural period, using the
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Figure 12.24. Diffraction Surge-Force Ampli-
tude as a Function of Wave Period. The condi-
tions associated with the force plot are given
in Example 12.6. The structure is the hull of
the TLP, SeaStar, where the draft is d = 40 m.
For reference, the MacCamy-Fuchs diffrac-
tion force on a bed-resting cylinder (d = h)
exposed to the same wave is shown. For wave
periods less than 16.6 sec, deep-water wave
conditions can be assumed.

added-mass results obtained from eq. 12.79 and the heaving spring constant
value in Example 12.4, is approximately 3.0 rad/s. For this value, the heaving
natural period value is slightly greater than 2.0 sec.

The critical damping coefficient for the surging motions is

bcx = 2
√

(m + awx)(NKs)

� 2.52 × 106 N–s
m

(12.98)

The critical damping ratio value is then brx/bcx � 1.62. Because this value is
greater than 1, the surging motions are over-damped. The expression for the
force-motion phase angle is

�x = tan−1




2




nx

brx

bcx(
1 − 
2


2
nx

)



� −20.4◦ � −0.356 rad (12.99)

The surging motion displacement expression is similar to that for heaving in eq.
10.12. With the values in eqs. 12.97 through 12.99, the surging motion displace-
ment is found to be

x = Xo sin(
t +  − �x) =
Fxo

(NKsx)√(
1 − 
2


2
nx

)2

+
[

2




nx

(brx)
bcrz

]2
sin(
t +  − �x)

� Xo sin(0.785t − 0.253 + 0.356) � 0.158 sin(0.785t + 0.103) (12.100)

Hence, the surging motion amplitude is Xo � 0.158 m.
For the actual SeaStar mini-TLP, Bhattacharyya, Sreekumar, and

Idichandy (2003) theoretically find that the surging amplitude is about 0.9 m in
a 2-m, 20-sec sea. We note that the 20-sec period is closer to the natural surging
period of the system, which is 70.7 sec. Hence, a larger amplitude is expected.
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Using the equations in this example, the amplitude that we find is about 0.415 m.
Bhattacharyya, Sreekumar, and Idichandy (2003) use a finite-element computer
code and assume a Morison-type of wave loading, discussed in Section 9.2D.

One final note: The surging force on a TLP will be resisted by the piled founda-
tion. The advantage of the TLP is that there is little or no bending moment act-
ing at the connection of the tether and the pile, although there will be bending
moments below the soil-water interface due to the soil reactions. The lack of a bend-
ing moment at the connection results in a reduced cost of the foundation, which is
normally a large component of the total cost of an offshore structure.

The TLP is a structure normally used in extremely deep water. For waters of
moderate depth, the articulated-leg platform (ALP) is used. This structure is dis-
cussed in the next section.

F. Surging Motions in Random Seas

The basics of wave-induced motions of fixed and floating bodies in random seas
is presented in Section 10.3. In this section, those basics are applied to the surg-
ing motions of a TLP. We have a choice in the domains of our analysis between
the frequency domain, as discussed in Section 10.3, and the time domain. For the
latter, numerical techniques are best, whereas for the former, quasi-analytical tech-
niques can be effectively used. For a discussion of the two domain analyses applied
to the TLP, the paper by Pradnyana and Taylor (1997) is strongly recommended.
The paper by Vandiver (1981) is also recommended as an excellent introductory dis-
cussion of the analysis of the motions of taut-moored bodies (including the TLP) in
random seas. In that paper, the author demonstrates how the Haskind relationships
presented in Section 11.7 can be used to analyze the body motions in a directional
random sea.

Here, we begin by writing the surging solution in eq. 12.100 in the complex form
as

x(
, t) = X(
)e−i
t (12.101)

where X(
) is the complex amplitude. Similarly, let the forcing function in the ran-
dom sea be written as

Fx(
, t) = Fxo(
)e−i
t = Fxo(
)
H0(
)

2
e−i
t (12.102)

In eqs. 12.101 and 12.102, the real parts of the complex expressions are assumed.
The combination of eqs. 12.92, 12.101, and 12.102 yields the following expression
for the complex surging amplitude:

X(
) =
Fxo(
)
NKxs(

1 − 
2


2
nx

)
− i2





nx

brx

bcx

= H(
) = Fxo(
)
NKsx

= H(
)
Fxo(
)
NKsx

H0(
)
2

(12.103)

where H(
) is the amplitude response function, bcx is the critical damping in eq.
12.98, and 
nx is the natural circular frequency for the surging motions in eq. 12.97.
Also in eq. 12.103 is the frequency-dependent wave height, H0(
). We can now write
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the expression for the mean-square surging response as

x2 = x2
rms = lim

T→∞
1
T

T∫
0

x2dt = 1
2
|X2(
)| = H(
)H∗(
)

Fxo(
)Fxo(
)∗

(NKsx)2
lim

T→∞
1
T

T∫
0

�2dt

= H(
)H∗(
)
Fxo(
)Fxo(
)∗

(NKsx)2
�2

rms = |H(
)|2 |Fxo(
)|2
(NKsx)2

H2
0

8
(12.104)

As is the case in eq. 10.52, the integration is over a time interval, T. This is not to
be confused with the wave period, T. In eq. 12.104 is the root-mean-square surg-
ing response, xrms. The relationship between �rms and the mean-square of the wave
height comes from eq. 5.35a. Also, from 5.35b, the relationship between the root-
mean-square free-surface displacement and the root-mean-square deep-water wave
height is found to be

�rms = Hrms

2
√

2
� 0.3536Hrms = 0.3536

√
H2

0 (12.105)

In eqs. 12.102 through 12.104, the form of the frequency-dependent force amplitude
function, Fxo(
), depends on the nature of the force. For the conditions in Example
12.6, we find that the diffraction force is dominant. From eq. 12.96, we then find
the following expression for the absolute value of the diffraction force amplitude
function, which is

|Fxo(
)| = 4
�ga2

(k0a)2

{
tanh(k0h) − sinh[k0(h − d)]

cosh(k0h)√[
J0(k0a) − 1

k0a
J1(k0a)

]2
+
[
Y0(k0a) − 1

k0a
Y1(k0a)

]2
(12.106)

In the following example, the root-mean-square surging response of a TLP is deter-
mined.

EXAMPLE 12.7: ROOT-MEAN-SQUARE SURGE RESPONSE OF MOTIONS OF A TLP At
the open-ocean site in Example 5.6, we find the following wave-height averages:

Havg = 1.5 m, Hrms = 1.69 m

The associated significant wave height expression of eq. 5.24 yields Hs = 2.39 m,
and the corresponding one-year extreme wave height value is Hmax = 6.63 m
from eq. 5.25. Consider the case at this site where the average wave period
(Tavg) is 8 sec, as in Example 12.6. For the root-mean-square wave height of
1.69 m, the root-mean-square surge displacement of the SeaStar in Example
12.6 is

xrms = |H(
)| |Fxo(
)|
(NKsx)

Hrms

2
√

2
� 0.0128

2.75 × 106

3(7.474 × 104)
1.69

2
√

2
� 0.0938 m (12.107)

where the surge amplitude response function, from eq. 12.103, is

H(
) =
[(

1 − 
2


2
nx

)
− i2





nx

brx

bcx

]−1

=
[(

1 − T 2
nx

T 2

)
− i2

Tn

T
brx

bcx

]−1

=
[

1 −
(

70.7
8

)2

− i2
(

70.7
8

)
4.10 × 106

2.52 × 106

]−1

(12.108)

From this expression, |H(
)| � 0.0128.
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Following the methodology leading to eq. 10.55, the spectral density of the
surge response can be written in terms of the spectral density of the wind-generated
sea as

Sx(
) = H(
)H∗(
)S(
) = |H2(
)|S(
) (12.109)

where S(
) is the wind-wave spectral density in the circular frequency domain. It
is advantageous to perform our surge motion analysis in the period domain. The
relationship between the frequency and period spectral densities is

S(
) = −S(T)
dT
d


= T 2

2�
S(T) (12.110)

Noting that 
 = 2� f = 2�/T, the first equality comes from eq. 5.44b. The generic
expression for the wind-wave spectral density in the period domain is presented in
eq. 5.44a, that is,

S(T) = ABT3e−BBT4
(12.111)

In this expression, the coefficients A and B depend on the spectral formula used. For
example, for the Bretschneider formula, discussed in Section 5.8B and presented in
eq. 5.59, the coefficients are, from eq. 5.60,

AB = 3.437
H2

avg

T4
avg

(12.112)

and from eq. 5.61,

BB = 0.675

(
1

T4
avg

)
(12.113)

In the period domain, the spectral density of the surge response is then obtained by
combining the expressions in eq. 12.109, 12.110, and 12.111 to obtain

Sx(T) = |H2(
)|S(T) = |H2(T)|ABT3e−BBT4
(12.114)

This results from the fact that the energies in both the frequency and period domains
must be equal. The surge amplitude response function, H(
) = H(T), is found in
eq. 12.108. The spectral density of the response is a measure of the energy absorbed
in the surging motion of the TLP.

EXAMPLE 12.8: SPECTRAL DENSITY OF THE SURGE RESPONSE OF MOTIONS OF A TLP

For the wind-generated sea conditions in Example 12.7, the respective average
wave height (Havg) and average wave period (Tavg) are 1.5 m and 8.0 sec. For
these conditions, the coefficients for the Bretschneider spectral density formula,
respectively presented in eqs. 12.112 and 12.113, are AB = 1.888 × 10−3 m2/s4

and BB � 1.648 × 10−4 s−4. The amplitude response function from eq. 12.108 is

H(T) =
[(

1− T 2
nx

T 2

)
− i2

Tnx

T
brx

bcx

]−1

=
[

1−
(

70.7
T

)2

− i2
(

70.7
T

)
4.10 × 106

2.52 × 106

]−1

(12.115)

The surge response spectral density expression from eq. 12.114 is

Sx(T) � 1.888 × 10−3T 2e−1.648×10−4T4

(
1 − 5.00 × 103

T 2

)2

+ 5.293 × 104

T 2

(12.116)



498 Wave-Induced Motions of Compliant Structures

1.0

0.5

0.0
0 1 2

T/To

S(T )
Sx(T )
Sx(To)S(To)

Figure 12.25. Normalized Wave and Surge Response Spectra for the Conditions in Ex-
ample 12.8.

The peak value of the wave spectrum is approximately 0.50 m2/s, which occurs at
the modal period (period of the spectral peak) in eq. 5.45. For the Bretschneider
spectral formula, that period is

To =
(

3
4BB

)1/4

=
(

3
4

T 4
avg

(0.675)

)1/4

� 1.03Tavg (12.117)

For the 8-sec average period, the modal period value is approximately 8.24 sec.
At the modal period, the peak spectral value is S(To) � 0.494 m2/s. The peak
value of the surge response spectrum is approximately 1.124 × 10−3 m2/s. This
value occurs at a wave period of T � 10.0 sec. The peak value of the surge
response shows that relatively little energy is being absorbed by the motions
when compared with that of the incident wave. Using the peak spectral values
to normalize the wave and surge-response spectra, the results of eqs. 12.111
(combined with the Bretschneider coefficients in eqs. 12.112 and 12.113) and
12.116 are plotted in Figure 12.25 as functions of T/To. One can see that the
spectral shapes are similar. The response shape is broad because the radiation
damping is relatively large, that is, the TLP acts as a good wave maker.

In this section, a number of the concepts that are presented in the previous
chapters are applied to the surging motion of a TLP. This compliant type of structure
is ideal for demonstrating the application of many of these concepts.

12.5 Motions of an Articulated-Leg Platform (ALP)

As written previously, offshore operations in moderate to extreme depths are
expensive. One of the major costs of an offshore structure is that of the foundation.
The foundation requirements can be somewhat reduced by designed compliance
of some type for the structural design. Discussed in the previous section, The TLP
is a compliant structure normally intended for deep-water operations. For moder-
ate water depths, the articulated-leg platform (ALP) is sometimes chosen. See the
sketch of an ALP in Figure 12.1d.

The use of the ALP in offshore oil production dates back to the 1970s. From that
era, the papers by Chakrabarti and Cotter (1979, 1980) and Kokkinowrachos and
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Mitzlaff (1981) are noteworthy. The nonlinearities in the motions of the ALP are
analyzed by Choi and Lou (1991), Kim and Chen (1994), Nagamanit and Ganap-
athy (1996), and Islamia and Ahrnad (2003). In addition, a rather interesting dis-
cussion on a motion control system of an ALP is found in the paper by Suneja
and Datta (1998). As is shown by Liaw, Shankar, and Chua (1989) and others, the
motions of an ALP are not planar. Depending on the magnitude and type of exciting
force (drag, inertia, or diffraction), the nonplanar motions can be significant. If pass-
ing energetic waves produce high-energy vortices, then large out-of-plane motions
might occur. The purpose of this section is to introduce the reader to the ALP. For
this reason, the motion analysis is confined to the x-z plane.

Referring to Figure 12.26, assume that each of the components of the ALP
is positively buoyant. So, for a component j, we assume that Bj > Wj , where the
notations are for the respective buoyant force and the weight of the component.
Although the angular (or “rocking”) displacement (�) from the vertical is exagger-
ated in Figure 12.26b, it is assumed to be small enough so that the tower is out of
the water. The equation of angular motion is that which represents the moments
about the ball joint that connects the ALP to the spread-footing foundation. For the
system having J components, with the Jth component being the tower, the rocking
equation of motion is

 J∑
j=1

Iyj +
J−1∑
j=1

Awyj


 d2�

dt2
+

J−1∑
j=1

(Bryj + Bvyj)
d�

dt

+
J−1∑
j=1

[(Bj − Wj )� j − W5�5] sin(�)

=
J−1∑
j=1

Mj �

 J∑

j=1

Iyj+
J−1∑
j=1

Awyj


 d2�

dt2
+

J−1∑
j=1

(Bryj + Bvyj)
d�

dt

+
J−1∑
j=1

[(Bj − Wj )� j − W5�5]� =
J−1∑
j=1

Fj (
, t)� j (12.118)

For the sketch in Figure 12.26, J = 5. In the second line of eq. 12.118, the small-angle
assumption is made to linearize the equation. Also in the second line is the force
term, which is averaged over the component. The terms in eq. 12.118 are described
in the following paragraphs.

Iyj is the mass moment of inertia of the jth component with respect to the ball
joint. Each component is assumed to be a solid vertical circular cylinder. The mass
moment of inertia with respect to a line through the center of the body that is par-
allel to the y-axis is

Iyj = 1
12

Wj

g

(
L2

j + 3a2
j

)
(12.119)

where Lj is the height of the component and aj is the component radius. The moment
of inertia about an axis through the ball joint is obtained using the parallel-axis
theorem. For the jth component, the moment of inertia in eq. 12.118 is

Iyj = Wj

g
�2

j + IYj = Wj

g
�2

j + 1
12

Wj

g

(
L2

j + 3a2
j

)
(12.120)
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Figure 12.26. Schematic Drawing of an ALP and Mathematical Model. The ALP is assumed to
be stiff, having only wave-induced rigid-body motions. The water depth is h = � + �4 + d/2,
assuming that the center of mass and buoyancy of the wetted portion of the tower are at
z = −d/2. It is also noted that the positive angular displacement is in the counterclockwise
direction, as is the norm.

The centers of mass and buoyancy of the j = 4 component are assumed to be at d/2
(not shown) above the SWL. That is, the tower portion of the structure is partially
dry and partially wet, where the center of mass of the tower is at d above the SWL.

The second inertial term in eq. 12.118 is the sum of the component added-mass
moment of inertia terms. We can modify the analysis presented in Section 12.4D(2)
to obtain these terms and the moment due to the radiation damping, which is the
third summation from the left side of eq. 12.118. We begin by writing the moment
about the ball joint due to the force in eq. 12.88. Refer to the sketch in Figure 12.27
for the notation used in the analysis. In that figure, we see the height (�) of the ball
joint above the sea bed. In the analysis, assume that this height has a small value and
can, therefore, be omitted. With this assumption, the moment on the component of
the ALP is obtained from

Mjxh = −
2�∫

0

� j + Lj
2∫

� j − Lj
2

pdyn|r=a j Za j cos(�)dZd�

� − i�
a2
j

2�∫
0

� j + Lj
2∫

� j − Lj
2

{
C0(i
Z�o)H(1)

1 (ka j )Zcosh(kZ)

+
∞∑

n=1

Cn(i
Z�o)K1(Kna j )Zcos(Kn Z)

}
cos2(�)dZd�e−i
t (12.121a)

We note that the velocity amplitude (Vxo) in eq. 12.89 has been replaced by i
Z�o,
where �o is the amplitude of the angular displacement. As in Figure 12.26, the angu-
lar displacement is positive in the counterclockwise direction. The velocity ampli-
tude occurs in eq. 12.89 due to aVxoC0 = C0 and aVxoCn = Cn. The substitution is



12.5 Motions of an Articulated-Leg Platform (ALP) 501

z

x

aj

Lj

dFjxh i

h

SWL

Z = z + h − δ

�j

δ

Figure 12.27. Notation for the Hydrodynamic Force Analysis of an
ALP Component.

required because the linear velocity of the ALP increases with the variable Z above
the ball joint. Upon integration, the hydrodynamic rocking moment expression is
found to be

Mjxh = −�
2�a2
j �o

{
C0 H(1)

1 (ka j ) f0(k� j ) +
∞∑

n=1

CnK1(Kna j ) fn(Kn� j )

}
e−
t

= −�
2�a2
j �o

{
(C0� + iC0�)[J1(ka j ) + iY1(ka j )] f0(k� j )

+
∞∑
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CnK1(Kna j ) fn(Kn� j )

}
e−i
t

= Awyj
d2�

dt2
Bryj

d�

dt
= −(i
2Awyj + 
Bryj )�
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Bryj )�oe−i
t (12.121b)

where
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(12.122)
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and where

fn(Kn� j ) = 1
K3

n

{[
K2

n

(
� j + Lj

2

)2

− 2
]

sin
[

Kn

(
� j + Lj

2

)]

+ 2Kn

(
� j + Lj

2

)
cos
[

Kn

(
� j + Lj

2

)]

−
[

K2
n

(
� j − Lj

2

)2

− 2
]

sin
[

Kn

(
� j − Lj

2

)]

− 2Kn

(
� j − � j

2

)
cos
[

Kn

(
� j − Lj

2

)]}
(12.123)

In the last line of eq. 12.121b are the added-mass moment of inertia,

Awyj j = ��a2
j

{
[C0� J1(ka j ) − C0�Y1(ka j )] f0(k� j ) +

∞∑
n=1

CnK1(Kna j ) fn(Kn� j )

}

(12.124)

and the radiation-damping moment coefficient,

Bryj = ��a2
j 
[C0� J1(ka j ) + C0�Y1(ka j )] f0(k� j ) (12.125)

The latter is found in the angular-velocity-dependent terms in eq. 12.118.
The viscous damping term in eq. 12.118, the second of the angular-velocity

dependent terms, is the result of linearization of the viscous-damping force. Assum-
ing that the wave-induced rocking motions of the ALP are approximately sinusoidal,
we can use the equivalent linear damping coefficient for each component. Our inter-
est is in the moment of the drag force per unit height of the component. From
eq. 12.93, for the jth component, the elemental equivalent linear viscous-damping
coefficient can be obtained. The elemental viscous-force moment acting on the com-
ponent is

dMvxj = −ZdFvxj � −Z
(

bvxj
dVxj

dt

)
= −Z

(
8
3




�
Z�obvxj

)
Z

d�

dt

= −Z3
(

8
3




�
�o

1
2

�CdDj Dj

)
d�

dt
dZ = −Z3

(
8
3




�
�o�CdDj a j

)
d�

dt
dZ (12.126)

where the linear displacement amplitude (xo) in eq. 12.93 has been replaced by
−Z�o. The units of the nonlinear damping coefficient, bvxj, are N-s2/m2. The rela-
tionship of the nonlinear damping coefficient and the drag coefficient (CdDj) in
eq. 2.78, as used here, is

bvxj = 1
2

�CdDj Dj dZ = �CcDj a j dZ (12.127)

Here, the projected area element of the component is DjdZ. The behavior of the
drag coefficient with respect to the Reynolds number based on diameter is pre-
sented in Figure 2.15. Values obtained from that figure are satisfactory for quasi-
steady flows, as might be experienced in long-period waves. Many design engineers
assume a drag coefficient value of CdDj � 1.0. This assumption is due to the relatively
constant behavior of the upper bound of drag-coefficient values over the Reynolds
number range of approximately 5 × 102 to 2 × 105 in Figure 2.15. As in Figure 9.9,
the drag coefficient has been found to depend on the Keulegan-Carpenter number,



12.5 Motions of an Articulated-Leg Platform (ALP) 503

SWL

Buoyant Collar

Ball Joint

Embedded 
  Spread Footing 
          Foundation

Tower

z

c0

x
L5 = 18.1 m

L4 = 15.0 m

L3 = 75.2 m

L2 = 25.5 m

L1 = 7.7 m

H0

h = 141.5 m �6 = 170.0 m

ZFigure 12.28. Sketch of the ALP Studied
by Suneja and Datta (1998). The ALP is
not proportionally drawn. Furthermore,
the moment arm (�6) of the tower is larger
than that shown.

KC in eq. 9.45. For our deep-water assumption, the approximation of KC in
eq. 9.46 can be used. An excellent discussion of this dependence is found in Chap-
ter 3 of the book by Sarpkaya and Isaacson (1981). The integration of eq. 12.126 over
the height of the jth component results in the following expression for the viscous-
damping moment:

Mvyj = −
(

2
3




�
�o�CdDj a j

)[(
� j + Lj

2

)4

−
(

� j − Lj

2

)4
]

d�

dt
= −Bvyj

d�

dt
= −Bvyj�o

d�

dt

(12.128)

Here, Bvyj is the viscous-damping coefficient found in eq. 12.118.
The hydrostatic restoring moment terms in eq. 12.118 are simply the net buoy-

ancies of the submerged components. It is assumed that the free-surface effect on
the buoyancy of the surface-piercing component, component 4 in Figure 12.26, is of
second order for the ALP.

The diameter of an ALP might be found to be somewhat smaller than the leg
diameter of a TLP. As a result, the type of the wave-induced force on the ALP might
be drag- or inertia-dominant. We shall examine this by considering the ALP studied
by Suneja and Datta (1998). The purpose of the study leading to that paper is to
model an active control system for an ALP, designed to be deployed in 141.5 m of
water. The ball joint (referred to as a “universal joint” by the authors) is located at
the mud line. Hence, � = 0 in Figure 12.26. Referring to the sketch in Figure 12.28,
the components in that figure have the following diameters: D1 = 2.3 m, D2 = 10.5 m,
D3 = 6.3 m, D4 = 15.0 m, and D5 = D6 = 6.0 m. Component 5 pierces the free surface
and has a height of L5 = 18.1 m, as shown in the figure. The tower is 57 m above the
SWL, and is Component 6.

For our illustration, we shall assume that the sea has an average wave height
of 1.5 m and an average period of 8 sec. For this wave period in 141.5 m of water,
the wave conditions are those in deep water. Hence, the wavelength (�0) is approx-
imately 100 m. For these conditions, the motions of the ALP are determined. Using
the Chakrabarti (1975) diagram in Figure 9.8, the type of wave-induced forces on the
structure are first determined. To use the diagram, we need the Keulegan-Carpenter
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Table 12.2. Weights and buoyant forces of the Suneja and Datta
(1998) ALP in Figure 12.28

Diameter Length Weight Buoyant
Component (m) (m) (N) Force (N)

1 2.3 7.7 840 320
2 10.5 25.5 40,140 24,700
3 6.3 75.2 22,580 23,390
4 15.0 15.0 7,210 27,170
5 6.0 18.1 1,740 5,220
6 6.0 57.0 6,540 0

——— ———
79,050 80,800

number value of eq. 9.45, which is approximated for deep-water waves in eq. 9.46.
That is, in Figure 9.8,

KC| j � �H0

D
= 1.5

�

Dj
(12.129)

The average wave excites water-particle motions to a depth of �0/2 � 50 m. Further-
more, the wave-induced force on Components 1, 2, and 3 in Figure 12.28 would be
expected to be rather small because the wave-induced particle velocity at the bot-
tom of Component 4 is about 12.5% of that on the free surface, according to linear
theory. Hence, for the average wave properties, we can focus on the wave-induced
forces on Components 4 and 5.

The component diameters for the ALP in Figure 12.28 are presented in
Table 12.2. The Keulegan-Carpenter number values for Components 4 and 5 are
KC4 � 0.314 and KC5 � 0.785. The corresponding wave number-diameter products
are k0a4 � 0.471 and k0a5 � 0.188. In Figure 9.8, these values indicate that forces are
primarily a combination of drag and inertia forces. As a result, the wave-induced
forces on the ALP can be represented by the Morison equation, presented in Sec-
tion 9.2D. The Woodmond-Clyde (1980) report contains a thorough discussion of
this equation. The force per unit length of the vertical cylindrical components in
Figures 12.26 and 12.28 is obtained from eq. 9.49. In terms of the component radius,
aj, the Morison equation is

dFj

dz
= dFj

dZ
�
{

CdDj �a j u|u| + Ci j ��a2
j
∂u
∂t

} ∣∣∣∣
x=0

(12.130)

The drag coefficient (CdDj) is obtained from Figure 9.9 for the value of the
Keulegan-Carpenter number (KC), and the inertial coefficient (Cij) is obtained from
Figure 9.10. The horizontal velocity, u, is determined from eq. 3.49. Applied to deep
water at the axis of the structure, this equation is

u|x=0 = 

H0

2
ekz cos(
t) = 


H0

2
ek(Z−h+�) cos(
t) (12.131)

The application of eq. 12.130 at the centerline of the ALP is based on the assumption
that the spatial variation of the horizontal velocity around the structure is small. The
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combination of the velocity expression in eq. 12.131 and eq. 12.130, results in the
following form of the Morison equation:

dFj

dZ
= dFdj

dZ
+ dFi j

dZ

� CdDj

1
4

�a j 

2 H2

0 e2k(Z−h+�)|cos(
t)| cos(
t) − Ci j
1
2

��a2
j 


2 H0ek(Z−h+∂) sin(
t)

(12.132)

The effects of the relative motion of the body and fluid are accounted for in
eq. 12.118, the equation of motion, because the added mass and viscous damping
are included in the �-terms of the equation. The drag force on the vertical cylinder
in Example 9.5 is shown as a function of time in Figure 9.12. In that figure, the drag
curve resembles a distorted cosine curve. Because of the similarities between the
two curves, we can linearize the drag term in the Morison equation by using the
same technique that is used in deriving the equivalent viscous-damping coefficient
expression in eq. 10.10. See Section 10.1C for the details. What is assumed is that the
time-averaged energies associated with the nonlinear drag and the linearized drag
are equal, as in eq. 10.9. Mathematically, we can express time-average energies per
unit component length as


�(T)∫
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dFdj
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d�(
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4
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H2
0 e2k(Z−h+�) (12.133)

The water-particle displacement is � , and is represented by eq. 3.53. Hence, the
time-derivative of � is simply the horizontal particle speed u about the centerline of
the structure. The last two terms in eq. 12.133 are the linear equivalent terms, where
CdDj is the equivalent linear drag coefficient. From the second line of eq. 12.133, the
expression for the equivalent linear drag coefficient is found to be

CdDj = 4
3�

CdDj 
H0ek(Z−h+�) (12.134)

The reader should note that CdDj has dimensions of m/s. The linearized Morison
equation for the jth component of the structure in Figure 12.28 is then

dFj
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(12.135)

It might trouble the reader that the deep-water wave conditions, identified by the
subscript 0, and the water depth, h, are in the same equations. Within the region
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of the free surface where the wave effects are pronounced, Z − h (= z) is finite
provided that h is finite. Also note that if the ball joint is displaced above the sea
bed by an amount �, then the ball-joint coordinate is related to the free-surface
coordinate by Z = z + h − �.

For the jth component, we can now write the moment of the linearized wave-
induced moment about the ball joint as

Mj =
� j + Lj

2∫
� j − Lj

2

dFj

dZ
ZdZ = Mdoj cos(
t) + Mioj sin(
t) = Moj sin(
t + ��)

� 1
12�
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2

k2
0

H2
0 e2k(� j −h+�)[(2k0� j − 1) sinh(k0Lj )

+ k0 Lj cosh(k0Lj )] cos(
t)

− 1
4

Ci j ��a2
j

2

k2
0

H0ek(� j − j+�)
[

(k0� j − 1) sinh
(

k0
Lj

2

)

+ k0
Lj

2
cosh

(
k0

Lj

2

)]
sin(
t) (12.136)

The drag- and inertial-moment amplitudes are simply the coefficients of the time
functions. The phase angle in eq. 12.136 is

�� = tan−1
(Mdoj

Mioj

)
(12.137)

and the amplitude of the wave-induced moment is

Moj =
√

M2
doj + M2

ioj (12.138)

From the second line of eq. 12.118, the linearized rocking equation of motion for
the ALP is
 J∑

j=1

Iyj +
J−1∑
j=1

Awyj


 d2�

dt2
+

J−1∑
j=1

(Bryj + Bvyj )
d�

dt
+

J−1∑
j=1

[(Bj − Wj )� j − W5�5]�

=
J−1∑
j=1

Moj sin(
t + ��) (12.139)

where the wave-induced moment is due to the linearized Morison equation forces.
All of the terms in eq. 12.139 are known.

In the following, the analysis presented in this section is applied to the ALP
studied by Gernon and Lou (1987).

EXAMPLE 12.9: WAVE-INDUCED MOTIONS OF AN ALP Gernon and Lou (1987) per-
form a motion analysis on a single-component ALP designed as a single-point
mooring and oil terminal for ships. Because there is only one component, the
terms in Figure 12.26 having the subscript 1 apply. Because of this, the sub-
scripts can be omitted. The ALP is in a water depth (h) of 91.4 m. The axis of
rotation of the ball joint is at � = 3 m above the sea bed. There is little free board;
hence, we can neglect the weight of the structure above the SWL. The respective
length and diameter of the hull are L1 ≡ L = 88.4 m and D1 ≡ D = 2a = 6.1 m.



12.5 Motions of an Articulated-Leg Platform (ALP) 507

The weight and buoyancy of the structure are W1 ≡ W = 4,877 metric tons and
B1 ≡ B = 5,080 metric tons, respectively. The center of gravity of the hull is
� = 44.2 m above the ball joint. Our interest is in the angular motion in a 1.5-m,
8-sec sea, as in Example 12.8. For the water depth of h = 91.4 m, the wavelength
(�) is obtained from the dispersion equation, eq. 3.31, by using the method of
successive approximations, as illustrated in Example 3.3. The wavelength value
is found to be approximately 99.9 m. One half of this is about 50 m < h. Hence,
our deep-water assumption is valid.

From eq. 12.120, the mass moment of inertia with respect to the ball-joint
axis is Iy � 1.30 × 109 N-m-s2/rad. The added-mass moment of inertia and the
radiation-damping moment coefficients are now determined from eqs. 12.124
and 12.125, respectively. In those equations are the functions in eqs. 12.122
and 12.123. For this problem, we note that � = L/2. Hence, the second lines in
eqs. 12.122 and 12.123 both vanish. The added-mass moment of inertia is found
to be Awy � 1.32 × 109 N-m-s2/rad, and the radiation-damping moment coeffi-
cient is Bry � 5.89 × 107 N-m-s/rad.

The linearized viscous-damping moment coefficient in eq. 12.128, which
depends on the wave properties, is

Bvy = Bvy�o =
(2

3



�
�aL4

)
�oCdD

� 2.53.197 × 109�oCdD � 3.54 × 109�o (12.140)

The units for this coefficient are N-m-s/rad. We note that the amplitude of the
rocking angle, �o, in eq. 12.140 is to be determined. This is addressed later in
the example. The value of the drag coefficient, CdD � 1.4, is obtained from Fig-
ure 9.9 for the deep-water Keulegan-Carpenter number value of KC|deep �
0.773.

The restoring coefficient in eq. 12.139 is simply (B − W)� = (203)44.2
tonne-meters per radian, or approximately 8.80 × 107 N-m/rad.

The last term to be determined in the equation of motion, eq. 12.139, is the
linearized wave-induced moment of eq. 12.136. In the last line of that equation,
we again note that � = L/2 = 44.2 m. The components of the moment amplitude
are

Mdo = 1
12�

CdD�a

2

k2
0

H2
0 e2k(�−h+�)[(2k0� − 1) sinh(k0L) + k0Lcosh(k0L)]

� 2.05 × 105 N–m (12.141)

and
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2

)
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2
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2
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= 4.70 × 106 N–m (12.142)

In eq. 12.141, the drag coefficient is 1.4 for KC = 0.773, as previously stated.
The inertial coefficient value for this KC-value is Cj � 1.2 from Figure 9.10.
Comparing the results in the last two equations, we see that the inertia force is
more than an order of magnitude greater than the drag force. This is as expected
from the Chakrabarti diagram, Figure 9.8. From the drag- and inertia-moment
amplitudes in eqs. 12.141 and 12.142, respectively, the phase angle in eq. 12.137
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is approximately −2.50◦, and the wave-induced moment amplitude of eq. 12.138
is approximately 4.70 × 106 N-m.

For the single-component ALP in the Gernon and Lou (1987) paper, we
can now write the rocking equation of motion, eq. 12.139, as

(Iy + Awy)
d2�

dt2
+ (Bry + Bvy)

d�

dt
+ [(B − W)�]� = Mo sin(
t + ��)
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d2�

dt2
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d�

dt
+ [(B − W)�]� = Mo sin(
t + ��) (12.143)

Replacing the coefficients in the second line of this equation by their numerical
values results in

(1.30 × 109 + 1.32 × 109)
d2�

dt2
+ (5.89 × 107 + 3.54 × 109�o)

d�

dt
+ (8.80 × 107)�
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� 4.70 × 106 sin
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0.785t − 2.50o

180◦ �

)
� 4.70 × 106 sin(0.785t − 0.0139�)

In the damping term, we note the presence of the rocking angular amplitude,
�o. With the exception of the presence of �o, the equation of motion with
the numerical coefficients is similar to that in eq. 10.2. Hence, as in eqs. 10.12
through 10.14, we can determine the rocking angular response, natural rock-
ing frequency, critical damping, and the phase angle between the wave-induced
moment and the response of the ALP. The rocking angular response of the ALP
is obtained from

� = �0 sin(
t + ��− ∈�)

=
M0
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1 − 
2


2
n�
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+
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2




n�
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sin(
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In this equation are the natural circular frequency,


n� = 2�

Tn�
=
√
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Iy + Awy

� 0.183
rad

s
(12.145)

and the critical damping,

Bcy = 2
√

(Iy + Awy)[(B − W)�] � 1.44 × 108 N–m–s
rad

(12.146)

From eq. 12.144, the rocking angular amplitude is
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2


2
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(12.147)
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This equation is solved by using the method of successive approximations, as in
Example 3.3 in the determination of the wavelength from the dispersion equa-
tion, eq. 3.31. The result in eq. 12.147 shows that response at the 8-sec wave
period is extremely small well away from the natural period, Tn� � 34.3 sec,
from eq. 12.145.

At resonance, where T = Tn� or 
 = 
n, we find that �o � 0.0258 rad.
For this amplitude, the amplitude of the horizontal displacement at the SWL
is xo|z=0 = L�o � 2.28 m. The average linear speed at the SWL is L�o/Tn� �
0.0665 m/s. The ratio of the total damping to critical damping [(Bry + Bvy)/Bcr ]
at resonance is approximately 1.04; hence, the system is slightly over-damped.
The magnification factor (� in eq. 12.147) at resonance is approximately 0.175.

Finally, the phase angle between the wave-induced moment and the motion
for the ALP in the 8-sec waves is

�� = tan−1




2




n�

(Bry + Bvy�o)
Bcy(

1 − 
2


2
n�

)

 � −0.474 rad � −27.2◦ (12.148)

The study of Gernon and Lou (1987) includes the dynamics of a ship moored to
the ALP, and the dynamics of the mooring hawser.

It should be emphasized that the advantage of the ALP is that there is no over-
turning moment transferred to the foundation. This results in a significant reduction
in the material and engineering costs of the structure.

12.6 Motions of Flexible Towers

This section is devoted to the prediction of wave-induced motions of the class of
compliant towers called a flexible offshore tower (FOT). This type of tower has a
fixed pile foundation, such as sketched in Figure 12.1b. The FOT is one of the com-
pliant tower concepts discussed by Maus, Finn, and Danaczko (1986). Those authors
define a compliant tower as “a slender, tubular steel structure, with a relatively con-
stant cross section over its height. In contrast to a rigid jacket or gravity structure, it
is designed such that the fundamental natural period (sway period) is greater than
the periods of ocean waves, i.e., greater than about 25 sec.” From Figure 12.1b,
the reader can see that the foundation must be designed to resist an overturning
moment. However, this moment is far less than that of an equivalent rigid tower
because the inertia of the tower resulting from the compliance resists the wave loads.
Like the TLP, this type of tower resulted from our thirst for oil taking us into deeper
waters to exploit the resource. The deployment philosophies of this type of struc-
ture, the TLP, and others are presented by Regg et al. (2000). The primary purpose
of that publication is to address the environmental issues associated with offshore
structures. In addition, the papers of Bayazitoglu, Jones, and Hruska (1987), and
Will, Morrison, and Calkins (1988) address the design philosophy of the compliant
tower. Again, we shall concentrate on a version of the FOT having a fixed pile base.
As a result of the fixed base, the dynamics of the tower are similar to those of a
cantilevered beam.

There are numerous papers devoted to mathematical modeling and testing of
compliant towers. Those include the papers of Foster (1967), Edge and Mayer
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Figure 12.29. Sketch of an Idealized Flexible Tower with a Fixed Pile Base. The analytical
model in (b) is a lumped-mass model of the tower. This model is used for both the bending
motions and the swaying motions of the tower.

(1969), Vugts and Hayes (1979), Arockiasamy et al. (1983), Hanna (1988), Ng and
Vickery (1989), Molin and Legras (1990), Sellers and Niedzwecki (1992), and Bishi
and Jain (1998).

The motion analysis of a FOT depends, naturally, on the structural design.
In Figure 12.29a and in the remainder of this section, assume that all of the ele-
ments are tubular and are of small outside diameter. If the horizontal elements
are relatively stiff and short when compared to the vertical members (L j � Lj ),
then the structural motions can be analyzed using the lumped-mass method. In this
case, we concentrate the mass of each panel (bay or frame) on the horizontal mem-
ber above the panel, as in Figure 12.29b. The structure can be treated as a quasi-
space frame where the bending mode would be dominant. The restoring of the dis-
placed panel to its original shape is due to the axial displacements of the vertical
members, where the members on the elongated side of the platform displacement
are in tension, and those on the other side would be in compression.

If the horizontal members in Figure 12.29a are approximately of the same stiff-
ness and length of the vertical members, then the motions might be building type,
where the vertical member is always at right angles to the horizontal members at the
nodes. For this condition, each vertical member can be considered to be two joined
cantilevers, where a zero-bending-moment condition is at the mid-height of the ver-
tical member. Thomson and Dahleh (1998) analyze several situations involving this
type of motion.

An interesting variation in the geometry of the FOT is the tension-restrained
articulated platform (TRAP), discussed and analyzed by Sellers and Niedzwecki
(1992). This structure is composed of large, vertical, stiff segments (not panels) that
are connected by pins at the points of articulation. Referring to the ALP sketched
in Figure 12.26, the TRAP can be visualized by imagining that each segment in that
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Figure 12.30. Panel Deformation in Pure Bending. The vertical members (leg members) in
pure bending are deformed equally. That is, the axial strain values for the right and left mem-
bers are equal. The axial forces acting on the bottom horizontal (cross) member are shown.
These forces produce a counterclockwise moment on the bottom cross member.

figure is pinned to the adjacent segment. At each pin is a rotational spring constant.
The analysis of the TRAP is presented in some detail later in this section.

A. Effective Spring Constants

In each of the cases described, the major structural task is defining the effective
spring constants. These are linear spring constants for the quasi-space frame struc-
ture, rotational spring constants for the TRAP, and a combination of the two for the
building-type motions.

For pure bending of a quasi-space-frame type of structure, as in Figure 12.30,
where the stiff horizontal (or cross) member experiences a rigid-body rotation, the
restoring forces, Fz, are the axial forces along the centerlines of the vertical mem-
bers. For the axial strain, �L/L, the axial spring constant in a vertical member is

Ksz = Fz

�L
= EAy

L
(12.149)

Here, E is Young’s modulus for the member material, and Ay is the cross-sectional
area of the vertical (leg) member. Sample values of E are presented in Table 12.3.
The restoring moment due to the combined axial loads in the four leg members is

Myz = 2
(

2Fz
L
2

)
= 2FzL = 2EAy

L
L

(�L) � EAy
L2

L
sin(�) � EAy

L2

L
� = Ks��

(12.150)

Table 12.3. Mid-range specific weights and Young’s modulus
values for structural materials

Material Weight density (N/m3) E(N/m2)

Low Carbon Steel 77,100 2.00 × 1011

Stainless Steel 78,700 1.93 × 1011

Aluminum 26,700 0.73 × 1011

Titanium 44,100 1.10 × 1011
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Figure 12.31. Panel Deflection under Shear. The horizontal or cross members are stiff, and do
not either deform or rotate. The upper and lower half of the legs act as cantilevered members.
In the right side sketch are the bending moment, My, and the shear force, Fx, acting on the
vertical (leg) member.

Here, L represents both the effective width and the effective breadth of the structure
having a square cross-section, as sketched in Figure 12.30. The angle � is measured
from the vertical direction, and is positive in a clockwise direction. The coefficient of
the last equality is the effective bending, rotational spring constant for the four-leg
unit, that is,

Ks� = EAy
L2

L
(12.151)

From this expression, we see that the structure stiffens as either L increases or
L decreases. Note that the two-dimensional, two-leg structural components are
referred to herein as panels. These are also referred to as bays and frames by some
authors. The three-dimensional, four-leg components are referred to herein as units.
If the panel is subjected to a shear load, then the deformation will resemble that in
Figure 12.31. This could be considered to be a panel in a building-type motion. Each
vertical member in the unit can be considered to be composed of two cantilevered
members, one extending from the upper horizontal member and the other extend-
ing from the lower horizontal member. As such, the bending moment is zero at the
center of the vertical member. Assuming that the deflection is resisted by the shear,
we can write the shear force as

Fx = 12EIy

L3
X = 1

4
Ksx (12.152)

as derived in books on both strength of materials and vibrations. For example, see
p. 173 of Thomson and Dahleh (1998). In eq. 12.152, XM is the relative displacement
related to the bending moment of the upper node. That is, if the node in question
is the nth node, then X = XMn − XMn−1. In eq. 12.154 is the effective shear spring
constant for a four-leg unit,

Ksx = 48EIy

L3
(12.153)

For a structure having N vertical members per unit and undergoing a shear deflec-
tion such as in Figure 12.31, the spring constant is

Ksx = N
12EIy

L3
(12.154)
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Figure 12.32. Expressions for the Second
Moment of Area (Iyn) for Various Leg
Cross-Sections.

For example, see the book by Crede (1965). In eqs. 12.152 through 12.154 is the sec-
ond moment of area, Iy, with respect to the horizontal bending axis, y. Expressions
for typical member cross-sections are presented in Figure 12.32.

The insertion of diagonal members, as sketched in Figure 12.29a, stiffens the
structure because both bending and shear deformations axially and transversely
deform these members. To illustrate, consider the diagonal members in the shear
situation sketched in Figure 12.33. These members have the same cross-section
and material of the vertical members. Assume that the deformations of the trans-
verse members are predominately axial. The axial force expression in the transverse
member is similar to that in eq. 12.152. For the horizontal deflection shown in
Figure 12.33, the axial force in the diagonal member 1 is

Fα1 = 12EIy

Lα3
�α1 = 12EIy

L3
sin3(�)��1 � 12EIy

L3
sin3(�)X cos(�) (12.155)

Here, the diagonal axial change is ��1. The component of the axial force in the x-
direction is

Fα1x = Fα1 cos(�) � 12EIy

L3
sin3(�)X cos2(�) = 3EIy

L3
sin(�) sin(2�)X = Ksα

4
X

(12.156)

The last equality defines the diagonal spring constant. For the box-shaped unit,
the structural unit is assumed to have two parallel 1-diagonals and two parallel 2-
diagonals. Hence, for the unit shown in Figure 12.33, the effective, horizontal, spring
constant for the system of diagonals is

Ksα = 12EIy

L3
sin(�) sin(2�) (12.157)
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αFigure 12.33. Deformation of Diagonal Members
in a Shear Deflection of a Panel. There will be some
bending of the diagonals. For analytical purposes,
the deformations of the diagonals are assumed to
be axial, and the changes in the angle � during the
deformation are considered to be small. For a flex-
ible offshore tower in deep water, these assump-
tions are valid.
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Figure 12.34. Lumped-Mass Model of a Flexible Offshore Tower.

With the expressions of the spring constants now defined, we can proceed with the
analysis of the FOT.

B. Analysis of the Motions of a Flexible Offshore Tower (FOT)

Consider the FOT in Figure 12.34a. The lumped-mass analysis is based on the model
sketched in Figures 12.34b and c, where the shear forces and bending moments on a
leg of the n-unit are sketched in Figure 12.34c. As can be seen in Figure 12.34b, there
are both horizontal and rotational displacements of the lumped mass, mn. Those are
the horizontal displacement, Xn, and the rotational displacement, �n. The lumped
mass includes the structural mass, mn, and the added mass, awn, averaged about the
node. In Figure 12.34c, the shear force and bending moment on the top of the nth
leg are identified by the subscript a, and those resisting the force and moment on the
adjacent upper leg are denoted by the subscript b. Our interest is in the first bending
mode and the swaying (shear) mode. For a four-leg structure having units that are
identical, except for that at the base of the structure and that supporting the plat-
form, we can assume that the spring constants for these respective modes are given
by eqs. 12.151 and 12.153, respectively. The analysis of each mode is done inde-
pendently, and the displacements resulting from each mode can simply be added
together to obtain the total displacement. That is, in terms of the moment displace-
ment, XM, and the shear displacement, XF, the total displacement of the nth nodeis

Xn = Xn−1 + Ln�n−1 + XnM + XnF (12.158)

Here, the assumption is made that the angular displacement, �n−1, is small if the
nodes are relatively close together. This is the case when the leg-member length,
Ln, is small when compared to the overall height, �, of the tower. The notation is
defined in Figure 12.34.

Concerning the modes: Referring to Figure 12.35, the swaying mode is one for
which the tower is assumed to respond in a pure shear deflection, as illustrated in
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Figure 12.35. Simplified Models of the Modal Deflections of a Flexible Tower with a Fixed
Base. The models are discussed by Maus, Finn, and Danaczko (1986). The sway mode deflec-
tion at any point above mass mn is Xn(z,t), whereas the bending mode deflection at the same
position is Xn(z,t). These deflections are due to the spatially averaged, wave-induced force
(Fn) applied to mn. The truss geometry is one having square panels; hence, the height and
width are both L. The cross-section at any Z is square. The linear spring constant and linear
damping coefficient for the N-2 node are shown. The hydrodynamic damping is assumed to
be much greater than the structural damping.

Figure 12.35c. This mode is considered to be the fundamental mode, or design mode.
For the displacement shown in Figure 12.35c, the horizontal cross members shorten
under compression but remain horizontal, as sketched in Figure 12.31. The bending
mode is illustrated in Figure 12.35d. In this case, the right vertical members are in
tension, whereas the left vertical members are in compression for the horizontal
forces acting at the cross members. Ideally, for pure bending there are no forces in
the cross members. Furthermore, if diagonal members are used, there are no forces
on these members in the pure bending mode. The horizontal cross members in pure
bending do not remain parallel to each other, as sketched in Figure 12.30.

In the analysis of the tower motion, assume that the vertical, horizontal, and
diagonal members are all of the same material, and all are tubular members having
an outside diameter, Dout, and an inside diameter, Din. See Figure 12.32b for the
cross-sectional geometry of a member and the second moment of area (Iyn) of this
cross-section.

(1) Swaying Motions of a FOT

Consider the compliant tower in Figure 12.35. The masses of the various tower pan-
els are lumped, as sketched in Figure 12.35b. In the analysis, the masses are con-
sidered to be concentrated on a vertical line through the centers of the horizontal
members. This assumed mass orientation allows us to use the lumped-mass method
in determining the motions of the tower. This is a vibration analysis method that
is well described by Thomson and Dahleh (1998), and is presented in most books
devoted to mechanical and structural vibrations. The tower in Figure 12.35a is on an
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extended pile foundation. This is referred to as a fixed base, and as such the piles are
considered to be both rigid and rigidly fixed in the soil. In other words, the tower is
“clamped” at the base.

Because the purpose here is to both discuss and demonstrate the analytical
method used in determining the tower motions, a simple design is considered where
diagonal members are omitted. The horizontal cross-section of the tower is also
assumed to be square. Two such panels are sketched in the left side of the tower
in Figure 12.35a. In that sketch, the horizontal wave-induced force component on
panel n is Fn. This force is the sum of the spatially averaged horizontal wave-induced
forces acting on the horizontal and vertical members. Over the latter, the forces are
averaged from L/2 above node n to L/2 below the node for each leg. The equivalent
lumped-mass model for the swaying motions is sketched in Figure 12.35b. In that fig-
ure, we see that the lumped masses (composed of the structural mass of the panel
and the added mass) are positioned along the vertical centerline of the structure at
the levels of the cross members or nodes. The legs of each panel are represented in
the model by a single flexure having a spring constant, Ksx, also referred to as the
stiffness of the flexure.

The tower is rigidly attached to the base and free to move where z > −h + �,
where � is the height of the foundation above the mud line. Assume here that � is
negligible, and let the coordinate (Z) of the tower have its origin at z = −h. Hence,
Z = z + h. For the lumped mass, mn, the swaying nodal equation of motion is

mn
d2Xn

dt2
+ Csxn

dXn

dt
+ Ksxn(Xn − Xn−1) − Ksx(n+1)(Xn+1 − Xn) = Fn (12.159)

This equation shows the coupling of the modal motions due to the spring constants.
The damping coefficient, Csxn, represents only the hydrodynamic damping (radia-
tion and viscosity). In this derivation, the structural damping is assumed to be of sec-
ond order when compared to the hydrodynamic damping. Like the restoring force,
the structural damping is a relative quantity for each node. That is, the structural
damping force depends on the difference in the velocities of the adjacent modes.

For the system having uniform panels from the foundation to the tower,
eq. 12.159 simplifies to

mn
d2Xn

dt2
+ Csxn

dXn

dt
+ Ksx(2Xn − Xn+1 − Xn−1) = Fn (12.160)

In this expression, the spring constant is that in eq. 12.153. For the entire tower
consisting of N identical panels, we can write the following swaying matrix equation
of motion:

[m]
{

d2X
dt2

}
+ [Csx]

{
dX
dt

}
+ [Ksx]{X} = {F} (12.161)

The mass matrix, [m], represents the structural mass of the tower and the added
mass. The damping matrix, [Csx], represents the hydrodynamic damping, assuming
that the structural damping is of second order. Equation 12.161 represents a system
of linear, second-order differential equations. This type of equation also results from
the bending motions of a FOT, as discussed in the next section. Before presenting
the solutions of an equation of the form of eq. 12.161, the determination of the
fundamental frequency of the swaying motions are first discussed.
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If the nodal masses and the panels in eq. 12.35 are approximately uniform from
the base to platform, the undamped modal frequencies can be determined by using
the numerical analysis technique known as difference equations. Essentially, this
is the same method leading to eqs. 12.158 and 12.160 with the assumption that the
nodal masses and spring constants are the same for all panels. This assumption for
a flexible tower in deep water is valid, as is demonstrated later in an example. To
determine the modal frequencies for such a structure, we consider the tower to be in
calm water, so that there is no wave-induced force. We also assume that the damp-
ing is zero over the structure. Assume that the top of the platform is slightly dis-
placed and then released. We know that the tower will oscillate at specific frequen-
cies. Following Thomson (1965), we can then assume that Xn = Xnoe−i
t . Under our
assumptions, eq. 12.160 becomes

m
d2Xn

dt2
+ Ksx(2Xn − Xn+1 − Xn−1)

= [−
2mXno + Ksx(2Xno − X(n+1)o − X(n−1)o)]e−i
t = 0 (12.162)

The coefficient of the exponential function must be identically zero and, as such, can
be rearranged as

X(n+1)o − 2
[

1 − 
2
(

m
2Ksx

)]
Xno + X(n−1)o

= ei(n+1)� − 2
[

1 − 
2
(

m
2Ksx

)]
ein� + ei(n−1)� = 0 (12.163)

where Xno = en� , and so on. The angle, � , is determined from the following rela-
tionships obtained from the last equality, where

ein� + e−in�

2
= cos(n�) = 1 − 
2 m

2Ksx
(12.164)

and, therefore,


2 m
2Ksx

= 1 − cos2(n�) = 2 sin2
(n�

2

)
(12.165)

In these equations, n = 0 at the base where X0 = 0, assuming a “clamped” condition.
At the platform, n = N. From eq. 12.163, the platform displacement is found to be

XN = XN−1

1 − 
2
mN

2Ksx

� XN−1

1 − 
2
m

2Ksx

(12.166)

Here, the platform mass, mN, is assumed to be approximately equal to the effective
mass, m (structural mass plus added mass), at a node. Apply the last equalities in
eqs. 12.164 and 12.165 to the tower panel, and solve simultaneously. Then, from
eq. 12.165 the circular modal frequency expressions are obtained from


nx = 2

√
Ksx

m
sin
[

(2n − 1)�

2(2N + 1)

]
(12.167)

for the swaying motions of the tower. Note that the subscript n identifies the mode,
whereas n is used in Figure 12.35 to identify a panel.

EXAMPLE 12.10: FIRST MODAL SWAYING FREQUENCY OF A FOT A FOT is to be
placed in 800 m of water. The cross-section of the steel tower is a 75 m × 75 m
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Dout = 0.305 m

Dout  = 5 m

72 m
4 m

4 m

Din = 0.203 m

Din = 3.375 m

Figure 12.36. Sketch of the Cross-Section of the FOT in Example 12.10. There are 72 legs and
10 panels. The tower weight is 50,000 tonnes.

square, and is uniform from the base to the platform. See the cross-sectional
layout in Figure 12.36. The platform is supported by 72 legs having an outside
diameter of 0.304 m, an inside diameter of 0.203 m, and a length of 75 m. Hence,
between the SWL and the base there are (N =) 40 panels. Between the four cor-
ner legs, there are 17 evenly distributed legs. The effective length of the segment
leg is 15 m. The corner legs are horizontally separated along a cross member by
72 m. Hence, the centerlines of the intermediate legs are separated by 4 m. The
tower mass is 80,000 metric tons and is evenly distributed over 40 panels, where
the top panel is partially dry and supports the platform. The horizontal cross
members have an outside diameter of 5 m.

The effective mass of each panel is 2.00 × 106 kg, and the added mass,
assuming a Lewis-form inertial coefficient of unity (Ci = 1 in eq. 9.44) for both
the legs and the cross members, is approximately 3.11 × 106 kg. The added mass
includes all of the legs, and two of the four cross members at each node. Hence,
the effective mass for a panel is m � 5.11 × 106 kg. For the steel legs, E = 2.00 ×
1011 N/m2 from Table 12.3, and the second moment of area for the leg cross-
section is Iy = 3.31 × 10−4 m4 from Figure 12.32b. With these values, the spring
constant for the legs is

Ksxn = 72
12EIy

L3
� 1.70 × 107 N

m

from eq. 12.154. The first-modal swaying circular frequency from eq. 12.167 is

1 � 0.136 rad/s. The corresponding swaying period is then T1 = 
1/2� �
46.2 sec. This period is well away from the high-energy spectra of wind-
generated seas.

The displacement of the platform atop the 40-panel FOT in Example 12.10
requires the solution of a 40 × 40 matrix equation. Let us modify the design of
the structure in the example so that only three springs are used for the compliance.
This is done in the following example.

EXAMPLE 12.11: FIRST MODAL SWAYING FREQUENCY OF A THREE-PANEL FOT The
tower in Example 12.10 is modified such that the base of the tower is cross-
braced using relatively stiff, small-diameter diagonals to a height of 35 m above
the mudline. Referring to the sketch in Figure 12.37, at Z = 35 m the first set of
72 compliant legs are placed, each of which is 15 m between clamped connec-
tions to the cross members. The steel legs have an outside diameter of 0.305 m
and an inside diameter of 0.203 m, as in Example 12.10. The cross-sectional lay-
out is similar to that in Figure 12.36. Above the braced foundation, the weight
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240 m

240 m

240 m

15 m

35 m

15 m

15 m

m3

m2

ksx

ksx

ksx

SWL
c0

Z

m1 = m1 + aw1

Figure 12.37. Sketch of the Shear Deflection of the
Three-Panel FOT in Example 12.11. As in Exam-
ple 12.10, there are 72 compliant legs connecting to
each 235-m-high panel.

of the structure is 75,000 metric tons, and is evenly distributed to three sections.
The Lewis-form added-mass coefficient for the legs and wave-facing horizon-
tal members is Ci = 1. The added mass of each section is primarily due to the
two 5-m (outside diameter) horizontal members in the y-direction. There are
twelve structural components per panel in Figure 12.37. For a nodal section, the
added mass is then

awn = 12
[
2Ci �

�

4
D2

out(L − 2Dcross) + 72Ci �
�

4
D2

leg Lleg

]
(12.168)

The numerical value obtained from this equation is 4.20 × 107 kg, or 42,000
tonnes. As sketched in Figure 12.30, L is the width of the square cross-section.
The mass (mn) of a panel is 25,000 tonnes. The total effect mass of the panel
is then mn = 6.70 × 107 kg. From Example 12.10, the spring constant for the
swaying motions is Ksxn = 1.7 × 107 N/m. The total panel mass and spring
constant values in eq. 12.167 result in a first-modal natural frequency of 
1 �
0.224 rad/s. The corresponding swaying period is then T1 = 
1/2� � 28.0 sec. In
eq. 12.167, the number of panels is N = 3, as sketched in Figure 12.37. A com-
parison of the first modal period with that in Example 12.10 shows that the
period has been significantly reduced by reducing the nodes from forty to three
by rigidly bracing the structure.

(2) Bending Motions of a TRAP

In this section, we analyze the motions of the flexible tower called the tension-
restrained articulated platform (TRAP) that was proposed by the offshore indus-
try for operation in deep water, according to Sellers and Niedzwecki (1992). By
“deep,” it is meant that the water depth (h) is of the order of 1,000 m. According to
Sellers and Niedzwecki (1992), the TRAP “combines the proven technology of steel
jacket construction with an interior tensioned cable design which allows articulation
at several different elevations.” Those authors present a rather complete motion
analysis of the structure. They derive the equations of motion of the structure using
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Figure 12.38. Sketch of an Articulated Tension-Restrained Articulated Platform (TRAP).
Each segment of the tri-articulated TRAP is tubular, having a cross-section such as that
sketched in Figure 12.32b. The wave-induced force, Fn, and the hydrodynamic damping force,
FCn, are results of the integrations of pressures over the segment length, Ln.

the Lagrange equations. The TRAP is essentially a tower having multiple segments
connected by rotational springs at the points of articulation, where the segments are
connected by pins in the two-dimensional analysis. For a three-dimensional analy-
sis, the pins would be replaced by ball joints or swivels. In the Sellers-Niedzwecki
analysis, the springs represent any type of restoring mechanism, including buoy-
ancy. The version of the TRAP that is studied here is sketched in Figure 12.38.
This is a simplified version of that used in the Sellers-Niedzwecki analysis. Sellers
and Niedzwecki (1992) use a “tri-articulated design” for the purpose of demonstra-
tion. Their segments are not assumed to be uniform in the axial direction because
“the uneven distribution of equipment, buoyancy tanks, deck loads, ballast, etc. may
be incorporated into the model.” The Sellers-Niedzwecki analysis does not include
damping. Linear damping is included in the derivation that follows but not in the
application, the reason being that the inclusion of damping in the TRAP motions,
or for that matter, the motions of any multi-articulated tower, requires extensive
matrix manipulations. If damping would be included, the complexity of the matrix
algebra would be a distraction.

The model sketched in Figure 12.38 is assumed to consist of uniform segments,
where each segment is a capped, tubular structure having a cross-section, such as
that sketched in Figure 12.32b. Hence, the centers of gravity and the centers of
buoyancy are at the same locations on the centerlines of each segment. The bending
matrix equation of motion for the TRAP is

[Iy]
{

d2�

dt2

}
+ [C�]

{
d�

dt

}
+ [Ks�]{�} = {M} (12.169)

In this equation, the [Iy] is the inertial matrix, [C�] is the damping matrix, [Ks�]
is the restoring matrix (which includes the buoyancy terms), and {M} is the wave-
induced moment matrix. Except for the damping matrix, the derivation of the terms
comprising the inertial, restoring, and moment matrices are derived by Sellers and
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Niedzwecki (1992) in detail. The respective matrices applied to the TRAP configu-
ration in Figure 12.38 are defined as follows:

Inertial Matrix: From the Sellers-Niedzwecki analysis, the expression for the inertial
matrix is

[Iy] =




I1 + m1
L2

1

4
+ m2L2

1 + m3L2
1 m2L1

L2

2
+ m3L1L2 m3L1

L3

2

m2L1
L2

2
+ m3L1L2 I2 + m2 + L2

2

4
+ m3L2

2 m3L2
L3

2

m3L1
L3

2
m3L2

L3

2
I3 + m3

L2
3

4




(12.170a)

Later in this section, it will be more convenient to write the inertial matrix as

[Iy] =




I11 I12 I13

I12 I22 I23

I13 I23 I33


 (12.170b)

In eq. 12.170a, mn is the structural mass plus the added mass of the segment. Also in
eq. 12.170a, In is the sum of the respective structural mass moment of inertia (with
respect to the horizontal line parallel to the y-axis through the n-pin) and the added-
mass moment of inertia. Following Sellers and Niedzwecki (1992), assume that the
inertial coefficient in eq. 9.26 has a value of 1. Hence, the respective effective mass
for the circular cylindrical segment is

mn = mn +awn = �s�
D2

n

4
Ln +Cin��

D2
n

4
Ln � �

D2
n

4
Ln(�s +�) = ��

D2
n

4
Ln

(
�s

�
+ 1
)

(12.171)

Here, � is the mass density of the ambient water, �S is the mass density of the struc-
tural material, and Cin is the inertial coefficient. For a circular cylinder, Cin = 1, as
in Section 9.2A(1). The mass moment of inertia with respect to the rotational axis
through a pin is

In = Iyn + Ayn � ��
D2

n

48
L3

n(�s + �) = ��
D2

n

48
L3

n

(
�s

�
+ 1
)

(12.172)

In this expression, Iyn is the mass moment of inertia of the segment, and Ayn is
the added-mass moment of inertia about the pin n-axis. The expression is based
on the assumption that Dn � Ln. The mass-density ratio (�S/�) can be considered
to be a measure of the buoyancy, as is done by Sellers and Niedzwecki (1992). It
should be noted here that the ratio of the freeboard (� − h) to the water depth (h)
is relatively small in practical applications; hence, we assume that eqs. 12.171 and
12.172 apply to all of the segments, as written. There will be some error introduced
in the overestimation of the added-mass terms for the top segment.

Damping Matrix: Here, we assume that the damping is linear, and the linear damp-
ing coefficient for the segment n is C�n. Because the damping is not included in the
paper of Sellers and Niedzwecki (1992), the damping terms are derived here. The
nature of the damping is discussed later in this section. Referring to Figure 12.38b
for notation, the generalized moments about the pins due to the damping forces in



522 Wave-Induced Motions of Compliant Structures

Lagrange’s equation are

MC1 = {FC1LC1 + FC2LC2 + FC3LC3 + FC2L1 cos(�2 − �1)

+ FC3L1 cos(�3 − �1) + FC3L2 cos(�3 − �2)}
(12.173)MC2 = {FC2LC2 + FC3LC3 + FC3L2 cos(�3 − �2)}

MC3 = FC3LC3

We note that the positive-moment direction is clockwise because the positive-angle
direction is the same. In this equation, FCn is the net damping force on a segment
acting at a point LCn above pin n. As is normally done, the angles are assumed to
be small enough to allow the approximation cos(�n − �n1) � 1. The negative signs
appear in eq. 12.173 because the positive moment direction is counterclockwise. The
linearized damping forces are obtained from

FCn = C�n

Ln∫
0

vn(�n)d�n =C�n

Ln∫
0

�nd�n
d�n

dt
= C�n

L2
n

2
d�n

dt
(12.174)

where C�n is the linearized damping coefficient. The coordinate, � n, has its origin
at the n-pin connecting the segments in Figure 12.38b. The moment arms of the
damping forces about the pins connecting the segments are obtained from

LCn = |MCn|
FCn

=

Ln∫
0

� 2d�

Ln∫
0

�d�

= 2
3

Ln (12.175)

The combination of eqs. 12.173 through 12.175 results in the damping matrix in
eq. 12.169,

[C�] =




C�1
L3

1

3
C�2

L2
2

2

(
L1 + 2

3
L2

)
C�3

L2
3

2

(
L1 + L2 + 2

3
L3

)

0 C�2
L3

2

3
C�3

L2
3

2

(
L2 + 2

3
L3

)

0 0 C�3
L3

3

3




(12.176)

There are two sources of the linear damping. These are equivalent linear viscous
damping, discussed in Section 10.1C, and radiation damping, discussed in Section
12.4D. The coefficients representing the former depend on the effective angular
amplitude at a position on the segment. The radiation-damping coefficients depend
on the dimensions of the cylinder, the wave number (and circular wave frequency),
and the water depth. For both types of damping, finite-element analysis (FEA) is
best suited to the analysis. This method is beyond the scope of this book. Hence, as
is done by Sellers and Niedzwecki (1992), the damping is neglected.

Restoring Matrix: As previously written, the restoring matrix represents both the
rotational springs and the segment buoyancy. The respective notation for these are
Ks�n and �n. The latter equals �g∨n, where ∨n is the displaced volume of segment
n. For the circular cylindrical segments in Figure 12.38, �n = �g�Ln D2

n/4. The force
acts through the center of the displaced water mass, Ln/2 above pin n, as does the
weight of the segment. Hence, the net buoyancy acting on segment n is

FBn = �n − Wn (12.177)
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With this notation, the restoring matrix for the TRAP in Figure 12.38 is

[Ks�] =




[
FB1

L1

2
+ (FB2 + FB3)L2 −Ks�2 0

+Ks�1 + Ks�2

]

−Ks�2

[
FB2

L2

2
+ FB3L2 −Ks�3

+Ks�2 + Ks�3

]

0 −Ks�3

[
FB3

L3

2
+ Ks�3

]




(12.178a)

Similar to the inertial matrix, it is advantageous to write the restoring matrix as

[Ks�] =

 K11 −K12 0

−K12 K22 −K23

0 −K23 K33


 (12.178b)

Wave-Induced Moment Matrix: For the TRAP sketched in Figure 12.38a, the wave-
induced moment matrix is

{M} =




FW1 LW1 + FW2L1 + FW3 L1

FW2 LW2 + FW3L2

FW3 LW3


 =




MW1

MW2

MW3


 (12.179)

We must now determine the nature of the wave force (FWn) on segment n. This
force acts at a distance LWn above pin n. To determine the force, we rely on the
Chakrabarti diagram in Figure 9.8. As are other compliant towers, the TRAP is
designed to resonate with long-period waves. Hence, in Figure 9.8 the assumption
that kDn/2 is small is valid. For an operational condition, kDn/2 is of the order of
magnitude of 1. The Keulegan-Carpenter number for deep-water waves is KC �
�H0/Dn. The outer diameter of the structure in operational conditions would nor-
mally be much greater than the height of the deep-water wave. For these conditions,
we see that the wave-induced force can be either inertial or diffractive in nature, or
a combination of the two. In this derivation, we assume that the force is inertial for
the purpose of demonstration.

The inertial force per unit length, as in the Morison equation, eq. 9.49, is

F ′
Wn = Cin�

∂Vn(�n, t)
∂t

∨′
n < TB : vspacespace = ”2pt”/ > (12.180)

Here, Vn(� n,t) is the water-particle velocity normal to the segment at a distance � n

above the pin, Cin is the inertial coefficient, and ∨′ = �g�D2
n/4 (the volume per unit

length) for the segment volume (see Figure 12.38). For small angular motions, as is
assumed, Vn(�n, t) � u(�n, t). That is, the normal velocity is approximately equal to
the horizontal particle velocity at z = −zn + �n, where zn ≥ 0 is the depth of pin n,
and 0 ≤ �n ≤ Ln, We can then approximate the wave-induced force in eq. 12.180 by

F ′
Wn ≡ dFWn

d�n
� Cin�

∂u(�, t)
∂t

∣∣∣∣ x=0
z=zn+�n

�
D2

n

4
� 1

8
Cin��D2

n
2 H0e−k0(zn−�n)e−i
t

(12.181)
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Here, the complex deep-water approximation for the horizontal particle velocity
is used, that is, the cosine expression in eq. 3.49 is the real part of e−i
t . The total
wave force over the entire n-segment is

F Wn � Cin�g�D2
n H0e−k0zn [ek0 Ln − 1]e−i
t = FWnoe−i
t (12.182)

The center of the force on segment n is obtained from

LWn =

Ln∫
0

�nek0�n d�n

Ln∫
0

ek0�n d�n

= 1
k0

[
ek0 Ln (k0Ln − 1) + 1

ek0 Ln − 1

]
(12.183)

Angular Response Matrix: The response matrix is the following column matrix:

{�} =



�1

�2

�3


 =




�1o

�2o

�3o


 e−i
t = {�o}e−i
t (12.184)

Hence, the respective angular velocity and acceleration matrices are −i
{�o} and
−
2{�o}.

The undamped natural periods of the TRAP motions are found from the
undamped, homogeneous form of eq. 12.169. Assuming an oscillatory motion, the
homogeneous, undamped equation of motion for the TRAP is

[Iy]
{

d2�

dt2

}
+ [Ks�]{�} = −
2

m[Iy]{�o} + [Ks�]{�o} = {0} (12.185)

The frequency 
m is the modal frequency. A nontrivial solution of the equations
comprising the matrix equation, eq. 12.185, is obtained only if the determinant of
the coefficient matrices vanishes. That is,

|[Ks�] − 
2
m[Iy]| = 0 (12.186)

The expansion of this matrix equation results in a third-order algebraic equation in

2

m called the characteristic equation. The three roots (
2
1, 
2

2, and 
2
3) of the equa-

tions are the eigenvalues.
For the undamped, monochromatic wave-induced motions of the three-segment

TRAP, the equation of motion is obtained from eq. 12.169, where [C�] = [0] and
the forces in the moment matrix of eq. 12.179 are represented by those in eq. 12.182.
The response matrix is that in eq. 12.184. The resulting equation is

{[Ks�] − 
2[Iy]}{�o}e−i
t = {Mo}e−i
t =



MW1o

MW2o

MW3o


 e−i
t (12.187a)

Here, 
 = 2�/T is the circular wave frequency, where T is the wave period. This
matrix equation represents the following system of equations:

(K11 − 
2 I11)�1o − (K12 + 
2 I12)�2o − 
2 I13�3o = MW1o

− (K12 + 
2 I12)�1o + (K22 − 
2 I22)�2o − (K23 + 
2 I23)�3o = MW2o

− 
2 I13�1o − (K23 + 
2 I23)�2o + (K33 − 
2 I33)�3o = MW3o (12.187b)

From this system of equations, we can solve simultaneously for the angular ampli-
tudes (�1o, �2o, and �3o). From these amplitude values, the general modal shapes
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Figure 12.39. Modal Shapes for a Three-Segment TRAP.

resemble those sketched in Figure 12.39. Results of a parametric study of the three-
segment TRAP by Sellers and Niedzwecki (1992) are presented in Figure 12.40. In
the following example, some parametric values studied by those authors are used
in eq. 12.187, and the resulting angular deflections of the three-segment TRAP are
obtained.

EXAMPLE 12.12: DEFLECTION OF A TRAP IN A DESIGN SEA A three-segment
TRAP is to be deployed at a site where the averaged wave height at the site is
Havg = 1.00 m. The design wave is one having an expected maximum height
corresponding to a 100-year storm. Assuming a Gaussian-Rayleigh sea, as dis-
cussed in Chapter 5, the highest expected wave height at the site over 100 years
is

Hmax = Hrms

√
ln(NM) = 2√

�
Havg

√
ln(NM)

= 2√
�

(1)
√

ln(6 × 106 × 100) � 5.07 m

from eq. 5.25. At the site, the average wave period at the site is Tavg � 8.00 sec.
From eq. 5.51, the root-mean-square wave period is approximately 8.31 sec. The
average wavelength is obtained from eq. 5.56. For the 8.00-sec average wave
period, the average wavelength at the deep-water site is

�0avg = g
2�

T2
avg � 99.9 m (12.188)

The wave number corresponding to this value is k0avg = 2�/�0avg � 0.0629 m−1.
For the average wave period, only the top segment (n = 3) will be subject to
the design wave because L3 > �0avg/2. For the design wave, a three-segment
TRAP is to be deployed, where the parametric values are those in Figure 12.40a.
Referring to Figure 12.38, the height (�) of the TRAP above the sea bed is
330 m, and each segment length (Ln) is 110 m. The three segments are identical.
Hence, we can replace Ln by L and Dn by D in the analysis. Each segment has
a circular cross-section with an outside diameter of 10 m. For this diameter,
k0avg D/2 � 0.314. The deep-water Keulegan-Carpenter number from eq. 9.46 is
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KCn � �Hmax/D � 1.59. From the Chakrabarti diagram in Figure 9.8, we see
that the wave-induced forces are primarily due to both inertia and drag. Because
less than 10% of the force is drag according to Figure 9.8, we shall assume that
the inertial force is dominant. The inertial force on the top segment is

FW3 � 1
8

Cin�g�D2 Hmaxe−k0avgz3 [ek0avgz3 − 1]e−i
t

= FW3oe−i
t � 2.00 × 106
e−i0.758t , Newtons (12.189)

Here, the inertial coefficient is Cin = 1, assuming a Lewis form [see Section
9.2A(1)]. Pin 3 in Figure 12.38 is at a depth of z3 = 85 m. The force expression
is slightly different than that in eq. 12.182, in that the integration of the force is
over z3 rather than L. The reason is that the freeboard (L− z3 = 25 m) is not
negligible when compared to L = 110 m. The center of the force on segment 3
is obtained from a slight modification of the expression in eq. 12.190. That is,
because of the significant freeboard, the location of the center of the force is

LW3 =

z3∫
0

�nek0avg�3 d�3

z3∫
0

ek0avg�3 d�3

= 1
k0avg

[
ek0avgz3 (k0z3 − 1) + 1

ek0avgz3 − 1

]
� 69.5 m (12.190)

above pin 3. The wave-induced moment about pin 3 is then

MW3 = FW3LW3 = MW3oe−i0.786t � 1.39 × 108
e−i0.786t N-m (12.191)

Let the mass-density ratio (�S/�) value be 0.25, as in Figure 12.40a. Hence,
the TRAP is positively buoyant. Because the three segments of the TRAP are
assumed to be identical, a segment’s total mass and moment-of-inertia terms in
eqs. 12.171 and 12.172 are, respectively,

mn ≡ m = ��
D2

4
L
(

�S

�
+ 1
)

� 8.90 × 106
(

�S

�
+ 1
)

= 1.11 × 107 kg

(12.192)
and

In ≡ I = Iy + Ay = ��
D2

48
L3
(

�S

�
+ 1
)

= m
L2

12
� 1.12 × 1010 N-m-s

rad
(12.193)

where D = 10 m, L = 110 m, and �S/� = 0.25. The inertial matrix in eq. 12.170a
is then

[Iy] = 2
(

m
L2

12

)14 9 3
9 8 3
3 3 2




� 2.24 × 1010


14 9 3

9 8 3
3 3 2


 N–m–s

rad
(12.194)
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Figure 12.40. Period Predictions for Parametric Variations of a Three-Segment TRAP. These
results are part of those presented by Sellers and Niedzwecki (1992). The material mass
density is denoted by � S, and that of the salt water is denoted by � . The value of the latter is
approximately 1,030 kg/m3. The density ratios show the effect of the net buoyancy, where the
respective values of 2.0, 1.0, and 0.25 correspond to structures that are negatively buoyant,
neutrally buoyant, and positively buoyant.
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From eq. 12.177, the net buoyancy for each of the identical segments is

FB = � − W = �g�
D2

4
L− �Sg�

D2

4
L = mg

(
1 − �s

�

)
(

1 + �s

�

) � 6.55 × 107 N

(12.195)
In Figure 12.40a, we see that the spring constant values are Ks�1 = 5.423 ×
1013 N-m/rad, Ks�2 = 5.423 × 1012 N-m/rad, and Ks�3 = 5.423 × 1011 N-m/rad.
The substitution of these values and those of the buoyant force of eq. 12.194
results in the following restoring matrix for the three-segment TRAP:

[Ks�]


5.97 × 1013 −5.42 × 1012 0.00

−5.42 × 1012 5.98 × 1012 −5.423 × 1011

0.00 −5.423 × 1011 5.46 × 1011


 N–m

rad

The angular amplitudes can now be determined because all of the coeffi-
cients are defined in eq. 12.187b. From the solution of the simultaneous equa-
tions, we obtained �1 � 2.54 × 10−6 rad, �2 � 2.79 × 10−5 rad, and �3 �
2.82 × 10−4 rad. If the spring constants are reduced by two orders of magni-
tude to Ks�1 = 5.423 × 1011 N-m/rad, Ks�2 = 5.423 × 1010 N-m/rad, and Ks�3 =
5.423 × 109 N-m/rad, then the amplitudes increase to �1 � 1.18 × 10−4 rad,

�2 � 1.34 × 10−3 rad, and �3 � 1.62 × 10−2 rad. The latter value is about 1◦.
It is of interest to see what the linear deflection of the platform is for this soft-
spring condition. For pins 2 and 3, the rectilinear amplitudes in the x-direction
are X2 � L�1 � 0.0130 m and X3 � L�2 � 0.147 m. The platform amplitude is
Xp � L�3 � 1.780 m. The total deflection of the platform is then the sum of the
three, or about 1.940 m. The total horizontal excursion of the platform over one
design period (8 sec) is 3.88 m. Hence, the average horizontal velocity of the
platform is 0.485 m/s � 0.5 m/s. This might make some workers on the platform
a little uncomfortable.

12.7 Closing Remarks

As in the previous chapters, we have attempted to present the analytical “tools”
that are needed to deal with problems involved with both moorings and compliant
structures. In some cases, the examples might appear to be a little unrealistic to the
reader. This is probably due to the simplicity of the examples. The author believes
that simplicity is required for basic learning. The readers that have a firm grasp of
the materials presented in this section will be able to apply those materials to far
more complex situations.



Appendices

A. Bessel Functions

The Bessel functions are solutions to a second-order differential equation called
Bessel’s equation. That equation is

x2 d2 y
dx2

+ x
dy
dx

+ (x2 − v2)y = 0 (A1)

where v is real constant. This equation is often encountered in the analyses of phys-
ical phenomena involving waves. The equation is named after Friedrich Bessel, a
mathematician whose work was published in the nineteenth century. The general
solution of eq. A1 is found by assuming a summation solution of the form

y =
∞∑

k=0

Cj xk+r (A2)

where r = ±v. If v is a positive integer, n, then the solution of eq. A1 is the nth-order
Bessel function of the first kind, which is

Jn(x) =
∞∑

k=0

(−1)k

k!(n + k)!

(x
2

)n+2k
(A3)

For our purposes, the integer order (n) is satisfactory. A second solution of eq. A1
is called the Bessel function of the second kind, and is defined as

Yn(x) = Jn(x) cos(nx) − J−1(x)
sin(nx)

(A4)

A third type of solution of eq. A1 results from linear combinations of the first two.
This type of solution is called the Hankel function, after Hermann Hankel, a nine-
teenth century German mathematician. There are actually two Hankel functions,
those being the Hankel functions of the first and second kinds, which are, respec-
tively,

H(1)
n (x) = Jn(x) + iYn(x) (A5)

and

H(2)
n (x) = Jn(x) − iYn(x) (A6)

529
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Figure A1. Bessel Functions of the First and Second Kinds, Zero and First Orders.

Of particular interest are the zeroth-order (n = 0) and first-order (n = 1) functions.
The behaviors of these functions can be seen in Figure A1.

As is shown by Abramowitz and Stegun (1965), a Bessel function of these orders
can be well approximated by polynomials over specific ranges of x. Subroutines for
the Bessel function of the first and second kinds of any integer order are included
in commercially available spreadsheets. Results obtained by a spreadsheet are pre-
sented in Figure A1, where the Bessel functions of the first and second kinds of both
zero and first order are presented for argument values up to 10.

B. Runga-Kutta Solution of Differential Equations

Occasionally, we encounter a differential equation that cannot be solved using
the standard analytical solution methods. For these equations, there exists an excel-
lent numerical procedure is that called the Runga-Kutta method. The name of the
method comes from the co-founders of the method, Carl Rung and Wihelm Kutta,
who were mathematicians of the nineteenth and twentieth centuries. The method
is based on a differential equation of the first order. As is shown here, it can also
be applied to differential equations of higher order. The derivation of the Runga-
Kutta method can be found in Section 4.11 of the book by Adey and Brebbia
(1983).

Consider the first-order differential equation,

dy
dx

= f (x, y) (B1)

This function y = g(x) is associated with the curve in Figure B1. This is an initial-
value problem, where the y-value at x0 in the figure is known, that is, y(x0) = y0.

The discrete y-values are separated by �x = h, which is a constant determined by
the analyst. From the figure, we see that xN = Nh. The fourth-order Runga-Kutta
formula for the solution of eq. B1 is

yn+1 = yn + h
6

(ka + 2kb + 2kc + kd) + O[h5] (B2)
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Figure B1. Discretized Arbitrary Function Illustrating
Runga-Kutta Method.

One can see that the accuracy of the equation increases as h decreases. In this equa-
tion are

ka = f (xn, yn)

kb = f
(

xn + h
2

, yn + h
ka

2

)

kc = f
(

xn + h
2

, yn + h
kb

2

)
kd = f (xn + h, yn + hkc) (B3)

where the function, f(x,y), is known from eq. B1.
As shown by Adey and Brebbia (1983), the fourth-order Runga-Kutta method

can be applied to higher-order functions. Those authors demonstrate the method by
applying the method to a second-order differential equation. This is also done here.
Consider a second-order equation of the form

d2 y
dx2

+ A(y)
dy
dx

+ B(y) x = C(x) (B4)

Here, the functions A(y), B(y), and C(x) are defined. We can replace the second-
order term by a first-order equivalent term as

d2 y
dx2

= d
dy

(
dy
dx

)
= d�

dx
= f(x, y, �) (B5)

The combination of eqs. B4 and B5 yields

d�

dx
+ A(y)� + B(y)x = C(x) (B6)

This equation can also be written in the form of eq. B1, where

d�

dx
= f(y, �, x) = C(x) − A(y)� − B(y)x (B7)

The fourth-order Runga-Kutta solution of this equation is similar to that in eq. B2,
that is,

�n+1 ≡ dyn+1

dx
= �n + h

6
(�a + 2�b + 2�c + �d) + O[h5] (B8)
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As derived by Adey and Brebbia (1983), the relationships between the k and the �
are

ka = f (xn, yn, �n)

kb = f
(

xn + h
2
, yn + h

ka

2
, �n + h

�a

2

)

kc = f
(

xn + h
2
, yn + h

kb

2
, �n + h

�b

2

)
(B9)

kd = f (xn + h, yn + hkc, �n + h�c)

where the �-terms are

�a = f(xn, yn, �n)

�b = f
(

xn + h
2
, yn + h

ka

2
, �n + h

�a

2

)

�c = f
(

xn + h
2
, yn + h

kb

2
, �n + h

�b

2

)
(B10)

�d = f(xn + h, yn + hkc, �n + h�c)

Here, the functional relationship f(x, y, �) is defined in eq. B7. The approximate
solution of the second-order differential equation in eq. B4 is now complete.

C. Green’s Theorem

George Green, who lived between 1793 and 1833, gave us several analytical tools
that are most useful in water-wave mechanics and, more generally, in the general
area of potential theory. Two of these tools of interest to us are Green’s theorem and
Green’s function. Green’s first writings were directed toward electricity and mag-
netism; however, later in his brief career, he wrote papers on water waves, acoustical
waves, optics, and other topics in mechanics. His writings can be found in his col-
lected works edited by Ferrers (1871). In the Preface, Ferrers writes that the most
important of Green’s papers was that delivered in 1828, “An Essay on the Math-
ematical Analysis of the Theories of Electricity and Magnetism,” in which Green
introduced the term potential to “denote the result obtained by adding together the
masses of all the particles of a system, each divided by its distance from a given
point,” in the words of Ferrers. In this appendix, Green’s theorem is discussed, and
in Appendix D, Green’s function is introduced.

C1. Three-Dimensional Green’s Theorem

Green’s theorem, the derivation of which can be found in books covering topics of
vector analysis, relates surface integrals and line integrals. To derive this theorem,
we begin with the divergence theorem of Gauss. The best way to introduce this theo-
rem is to consider a flow issuing from a volume ∨ defined by the surface area S with
a velocity vector

V = ui + v j + wk (C1)

where u,v,w are the components in the respective x,y,z coordinate directions,
and i,j,k are the associated unit vectors. By paraphrasing Karamcheti (1966), the
divergence theorem applied to fluid mechanics can be physically interpreted as
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follows: The outflow of a vector field (V) through a closed surface (S) equals the
volume integral of the divergence of the vector field over the region enclosed by S.
Mathematically, we can write this as∫ ∫ ∫

∨
∇ · Vd∨ =

∫ ∫
s
V · ndS (C2)

Now, let us represent the velocity vector by two functions, F and G, that are contin-
uous and can be twice-differentiated in space. We require that

V = ∇� = G∇F = F∇G (C3)

where ∇, the Cartesian operator del, is defined as

∇ ≡ ∂

∂x
i + ∂

∂y
j + ∂

∂z
k (C4)

The combination of the expression in eq. C2 and first equality in eq. C3 yields∫ ∫ ∫
∨
{∇G · ∇F + G∇2 F}d∨ =

∫ ∫
s

G
∂ F
∂n

dS (C5)

Here, n is the outward unit normal vector on the surface (S) of the volume (∨).
Similarly, the second equality of eq. C3 combined with eq. C2 yields∫ ∫ ∫

∨
{∇F · ∇G + F∇2G}d∨ =

∫ ∫
s

F
∂G
∂n

dS (C6)

The right sides of eqs. C5 and C6 result from the following identities: ∇( ) · dS =
∇( ) · ndS = [∂( )/∂n]dS. Subtract eq. C6 from eq. C5 to obtain∫ ∫ ∫

∨
{G∇2 F − F∇2G}d∨ =

∫ ∫
s

{
G

∂ F
∂n

− F
∂G
∂n

}
dS (C7)

This is one form of Green’s theorem, called Green’s theorem of the second form.
The theorem is used in diffraction theory and in other wave-structure interaction
problems.

C2. Two-Dimensional Green’s Theorem

In the analyses of the diffraction of water waves and the forces on two-dimensional
bodies, it is advantageous to use the two-dimensional Green’s theorem. In this case,
the left side of eq. C7 becomes an integral over the surface area, S, and the right side
becomes an integral over the boundary, s, of S. The resulting equation is∫ ∫

s
{G∇2 F − F∇2G}dS =

∫
s

{
G

∂ F
∂n

− F
∂G
∂n

}
ds (C8)

Here, s is the linear coordinate along the boundary line. See the applied mathe-
matics book by Dettman (1962) or the low-speed aerodynamics book by Katz and
Plotkin (2001) for the details leading to eq. C8.

C3. Green’s Theorem Applied to an Irrotational Flow

By representing the velocity vector by the potential function, the flow is assumed to
be irrotational. As introduced in eq. 2.38, the relationship between the velocity and
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the velocity potential is

V = G∇F = F∇G =
{ ∇�, two dimensions

∇�, three dimensions
(C9)

Assume that the functions F, G, �, and � are all continuously differentiable and har-
monic everywhere. The latter assumption refers to their satisfying Laplace’s equa-
tion, eq. 2.41. Because of the harmonic assumption, and because there are no singu-
lar points in the region of interest, eq. C7 becomes∫ ∫

s

{
G

∂ F
∂n

− F
∂G
∂n

}
dS = 0 (C10)

for a three-dimensional irrotational flow. For a two-dimensional irrotational flow,
eq. C8 under the harmonic assumption is∫

s

{
G

∂ F
∂n

− F
∂G
∂n

}
ds = 0 (C11)

D. Green’s Function

George Green introduced the function bearing his last name in An Essay on the
Application of Mathematical Analysis to the Theories of Electricity and Magnetism,
written in 1828. This paper and others by Green are found in his mathematical
papers, edited by Ferrers (1871). Green first applied his function to the conduction
of electricity.

Green’s function, called an auxiliary function or a resolving kernel, is a very use-
ful tool used to solve certain types of equations. This method of solution is called the
integral equation method. The reader is referred to the excellent books by Lindsay
(1960) and Dettman (1962) for more thorough discussions of the Green’s function
and integral equations.

D1. Three-Dimensional Green’s Function

(1) Three-Dimensional Flow Source

Consider the sketch in Figure D1, where an incompressible flow is issuing from the
three-dimensional point source, P. In that figure, point P is located in the volume
bounded by the surface area, S1. The fluid travels to a point Q located on the interior
of S1. In Figure 2.18b, we find that the velocity potential for such a three-dimensional
point source is

�source = −M
R

= −MGsource (D1)

where M is the strength of the source, and

Gsource = 1
R

(D2)

is called the Green’s function for the point source. Note the differences in the radius
notation here and in Figure 2.18. By comparing the expressions in eqs. D1 and D2,
the reader can see that the Green’s function represents a source of unit strength.
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Figure D1. Three-Dimensional Point Source within an Enclosed
Volume.

The form of the Green’s function in eq. D2 is that first introduced by Green. This
form satisfies the Laplace equation in the volume ∨a except at point P because a
singularity exists at the point R = 0. That is, in ∨a, Laplace’s equation in spherical
coordinates is

∇2Gsource

∣∣∣
R>0

= 1
R2

(
R2 dGsource

dR

) ∣∣∣
R>0

= 0 (D3)

and is identically satisfied by the expression in eq. D2. The Green’s function in
eq. D2 also satisfies Laplace’s equation everywhere in volume ∨b because there are
no singularities in the external volume.

Let us focus on the Green’s function in eq. D2, and let G ≡ Gsource in eq. C3.
Because Gsource is the spatially variable part of a potential function and satisfies
eq. D3, the function F in eq. C3 must also be a potential-type function. This function
must also satisfy Laplace’s equation, that is,

∇2 F = 0 (D4)

The reader can prove this by taking the divergence of the vector in eq. C3 and set-
ting the resulting expression equal to zero, as that expression is the equation of
continuity for an incompressible flow, eq. 2.21.

We obtain the solution of eq. D4 by using the integral equation approach. Begin
by applying Green’s formula in eq. D4. Again, because the origin of R is at the
source point P (a singularity point), that point is excluded from the integrations of
eq. C7 within volume ∨a. To exclude the point P, let the point be encased in a small
sphere having a radius R and a surface area S2, as shown in Figure D1. The surface
areas S1 and S2 then define the interior volume, ∨a. We now can write eq. C7 in
terms of F and Gsource (= 1/R) as∫ ∫ ∫

∨a

[(
1
R

)
∇2 F − F∇2

(
1
R

)]
d∨ =

∫ ∫
s1

[(
1
R

)
∂ F
∂ R

− F
∂(1/R)

∂ R

]
dS

+
∫ ∫

s2

[(
1
R

)
∂ F
∂R

− F
∂(1/R)

∂R

]
dS (D5)

Because of the results in eqs. D3 and D7, the left side of eq. D5 must equal zero.
Comparing the expressions in eqs. C7 and D5, we see that the derivative in the
inward normal direction to the spherical surface, S2, is ∂( )/∂n = −∂( )/∂ R|R=R. If

 is a solid angle associated with dS|2 of the surface of the sphere encasing P, then
the differential surface element is dS2 = R2d
. The requirements of the function F
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are that both F and ∂ F/∂ R must be finite as R → 0. Because of these requirements,
eq. D5 becomes

∫
S1

[(
1
R

)
∂ F
∂ R

− F
∂(1/R)

∂ R

]
dS − lim

R→0




4�∫
0

[(
1
R

)
∂ F
∂R

− F
∂(1/R)

∂R

]
R2d





=
∫
S1

[(
1
R

)
∂ F
∂ R

− F
∂(1/R)

∂ R

]
dS − 4�FP = 0 (D6)

where FP is the value of F at R = 0. From the last equality of eq. D6, the value of F
at point P is found to be

FP = 1
4�

∫
S1

[(
1
R

)
∂ F
∂ R

− F
∂(1/R)

∂ R

]
dS (D7)

In the region that is external to the volume ∨a, we see that eq. C7 is identically zero
because there are no singularities in ∨b.

From eq. D7, we can calculate the value of the function F at any point of the
internal flow field by knowing the boundary values of F and ∂F/∂n on S1. We have
arrived at this by using the Green’s function in eq. D2. The boundary values depend
on the properties of the surface. The surface can be totally reflective or partially
or totally absorbent. These are discussed in Chapter 6 in the section devoted to
diffraction, and also in Chapter 11 in the discussion of the frequency-dependent
hydrodynamic coefficients.

(2) Three-Dimensional Wave Source

The source potential can also be oscillatory, representing a wave being radiated
outward from the origin of R located at P. In that case, the potential assumes the
form of

�wave = − M
R

ei(kR−
t) = −MGwavee−i
t (D8)

where the Green’s function for the wave is

Gwave = 1
R

eikR (D9)

For this form of the Green’s function, Laplace’s equation is not satisfied. Instead,
the function must satisfy the Helmholtz equation,

[∇2Gwave + k2Gwave]|R>0 = 0 (D10)

which must be satisfied everywhere in the internal wave field except at the singular
point (P) and at all points in the external region.

D2. Two-Dimensional Green’s Function

If our interest is in the two-dimensional form of Green’s theorem in eq. C8, then
the Green’s function needed to solve the integral equation is different than that in
eq. D2. To illustrate, consider the two-dimensional flow from the point P in
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Figure D2. Flow from a Two-Dimensional Point Source in an
Enclosed Surface Area.

Figure D2. Similar to that in Figure 2.9b, the velocity potential for a two-
dimensional source flow is

�source = Q
2�

ln(r) = Q
2�

Gsource (D11)

where the two-dimensional Green’s function is

Gsource = ln(r) (D12)

Gsource satisfies the Laplace equation in two dimensions. Now, combine the expres-
sion in eq. D12 with the integral eq. C8. Following the same solution process leading
to eq. C10, the point P is now enclosed in a circle of radius r and circumference C2..
The interior surface area of the circle is �r2 and the line element of integration is rdθ,
where θ is the planar angle from an arbitrary direction. The solution of the resulting
integral equation is ∫

C1

[
ln(kr)

∂ F
∂r

− F
∂ ln(kr)

∂r

]
dC + 2�FP = 0 (D13)

So, the expression for the function F at the singular point, P, is

FP = 1
2�

∫
C1

[
ln(kr)

∂ F
∂r

− F
∂ ln(kr)

∂r

]
dC (D14)

By the introduction of the Green’s function of eq. D12, the value of F at any point
on the surface is known if the boundary values of F and ∂ F/∂r on C1 are known.

E. Solutions of Laplace’s Equation

In Section 2.3B, the equation of continuity for an incompressible, irrotational flow
is derived. The result of this derivation is Laplace’s equation, eq. 2.41. Of interest
here are the equation in the Cartesian-coordinate form,

∇2� = ∂2�

∂x2
+ ∂�2

∂y2
+ ∂2�

∂z2
= 0 (E1)

and in the polar-coordinate form,

∇2� = ∂2�

∂r2
+ 1

r
∂�

∂r
+ 1

r2

∂2�

∂�2
+ ∂2�

∂z2
= 0 (E2)

Refer to the sketch in Figure E1 for notation. Both of the expressions of Laplace’s
equation are elliptic partial differential equations and, as such, can be solved using
product solutions.
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Figure E1. Coordinate Systems and Notation for Laplace’s
Equation.

E1. Cartesian Coordinates

For eq. E1, assume a product solution for the three-dimensional velocity potential
of the form

� = X(x)Y(y)Z(z)T(t) (E3)

Combining this expression with that in eq. E1 results in the following separated
equation:

1
X

d2 X
dx2

+ 1
Y

d2Y
dy2

+ 1
Z

d2 Z
dz2

= 0 (E4)

This equation can be rewritten as

1
X

d2 X
dx2

+ 1
Y

d2Y
dy2

= − 1
Z

d2 Z
dz2

= K2 (E5)

Here, K is a parameter. Using this parameter, K, the separated equation can also be
written as

1
X

d2 X
dx2

− K2 = − 1
Y

d2Y
dy2

= N2 (E6)

where N is a second parameter. The number of solutions of the ordinary differen-
tial equations in x, y, and z depends on the both the natures and values of K and
N. These parameters can be real, imaginary, or equal to 0. For a two-dimensional
problem in the x-z plane, such as the case of the linear wave analysis presented in
Section 3.2, N = 0.

For the sake of illustration, let us consider the two-dimensional Laplace’s equa-
tion, where the two-dimensional velocity potential is represented by �. In the x-z
plane, eq. E5 is

1
X

d2 X
dx2

= − 1
Z

d2 Z
dz2

= K2 (E7)

When K is real (= K), the general solution for the velocity potential is

�� = A cosh(Kx + CAx) cos(Kz + CAz)T(t) (E8)

In this equation, the subscript � signifies that K (= K) is real. The constants A, CAx,
and CAz are to be determined. When K is imaginary (= iK), the solution is

�� = B cos(Kx + CBx) cosh(Kz + CBz)T(t) (E9)

where the subscript � signifies that K is imaginary, and B, CBx, and CBz are to be
determined. Finally, when K = 0, the solution is

�O = (AxOx + BxO)(AzOz + BzO) (E10)
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Because Laplace’s equation is linear, the solutions in eqs. E8 through E10 can be
superimposed to form a general solution. The result is

� = �� + �� + �o

= [A cosh(Kx + CAx) cos(Kz + CAz) + B cos(Kx + CBx) cosh(Kz + CBz)

+ (AxOx + BxO)(AzOz + BzO)]T(t) (E11)

The constants and parameters in this equation are determined by applying the
boundary conditions. For example, the seafloor is normally assumed to be horizon-
tal beneath the free surface and beneath floating bodies. So, the vertical velocity
component of the water particles adjacent to the seafloor must vanish if the seafloor
is fixed. Mathematically, this can be written as

∂�

∂z
|z=−h = K[−A cosh(Kx + CAx) sin(−Kh + CAz)

+ B cos(Kx + CBx) sinh(−Kh + CBz)]T(t)

+ AzO(AxOx + BxO)T(t) = 0 (E12)

To avoid a trivial solution, CAx = CAz = Kh and AzO = 0. The resulting velocity
potential expression is

� = {A cosh(Kx + CAx) cos[K(z + h)]

+ B cos(Kx + CBx) cos[K(z + h)]

+ (AxOx + BxO)}T(t) (E13)

Note that the constants in the last line of this equation are the results of consolida-
tion of AxO BzO and AzO BzO.

E2. Cylindrical Coordinates

Assume a product solution of Laplace’s equation of the form

� = P(r)B(�)Z(z)T(t) (E14)

The substitution of this expression for the velocity potential in eq. E2 leads to the
following separated equation:

1
P

d2P
dr2

+ 1
rP

dP
dr

+ 1
r2B

d2B
d�2

+ 1
Z

d2Z
dz2

= 0 (E15)

The z-term can be found by rearranging eq. E15 as

1
P

d2P
dr2

+ 1
rP

dP
dr

+ 1
r2B

d2B
d�2

= − 1
Z

d2Z
dz2

= K2 (E16)

where, again, the parameter, K, can be real, imaginary, or equal to zero. To obtain
the r- and �-solutions, rewrite eq. E16 as

r2

P
d2P
dr2

+ r
P

dP
dr

− K2r2 = − 1
B

d2B
d�2

= M2 (E17)

where M is a constant. The physics of the problems of interest to us require that M be
either real or equal to zero. Because of this, the �-solution will be either sinusoidal
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or a first-degree function of x. The r-solution is obtained from

r2 d2P
dr2

+ r
dP
dr

− (K2r2 + M2)P = 0 (E18)

This is a form of the Bessel differential equation (see Abamowitz and Stegun, 1964).
Again, the reader should remember that K can be real, imaginary, or equal to zero.
When K is imaginary, the solution of eq. E18 involves the Bessel functions, and
when K is real, the solution is composed of the modified Bessel functions, IM(Kr)
and KM(Kr). The solution for the velocity potential in cylindrical coordinates, sub-
ject to the seafloor condition, is

� = {[AI IM(Kr) + AK KM(Kr)] cos[K(z + h)]

+ [BJ JM(Kr) + BYYM(Kr)]}cosh[K(z + h)]} cos(M� + C�)T(t) (E19)

The coefficients of the Bessel functions and the phase angle are determined by the
boundary conditions.

F. Fourier Transforms

The book by Tolstov (1962), among others, is recommended for a thorough discus-
sion of the Fourier series and the Fourier transform. The derivations of the equa-
tions contained here are found in that reference. In addition, Tolstov presents excel-
lent examples and applications of the equations.

Consider the known function f(z). For example, this might be the distribution
of the horizontal velocity caused by a passing wave. The Fourier transform of the
function is defined as

F (�) = 1√
2�

∞∫
−∞

f (z)e−i� zdz (F1)

and the inverse transform of F (�) is

f (z) = 1√
2�

∞∫
−∞

F (�)e−iz� d� (F2)

The exponential terms in the integrands can also be written in terms of sinusoidal
functions as

e±iz� = cos(z�) ± i sin(z�) (F3)

We can combine eqs. F1 and F2 and arrive at the following relationship:

f (z) = 1
2�

∞∫
−∞

f (�)




∞∫
−∞

ei�(z−�)d�


d� (F4)

This relationship is used in a number of the analyses of the hydrodynamics of float-
ing bodies (for example, see the paper by Havelock, 1929). That paper can also be
found in the bound collection of Havelock’s papers edited by Wigley (1963).
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Figure G1. Potential and Physical Planes
Used in the Lewis (1929) Analysis in
Transforming a Parallel Flow into Flow
about a Fixed Body.

G. Lewis Sharpe-Bilge Analysis

Here, using the Lewis (1929) conformal mapping technique, we derive the veloc-
ity potential for a heaving rectangle. For a thorough discussion of conformal map-
ping, the text by Schinzinger and Laura (2003) is recommended. Lewis uses the
Schwarz (now, the Schwarz-Christoffel) transformation in his analysis. Referring
to Figure G1, the complex variables used in the analysis are those in the potential
plane (w = � + i	 ), where � is the velocity potential and 	 is the stream function,
and the physical plane (z = x + iy). The rectilinear flow in the potential plane (par-
allel to the �-axis) is transformed into a flow about a polygonal boundary (in the
x-direction) by

dz
dw

= (w − �1)
�1
�

−1(w − �2)
�2
�

−1 · · · (w − �N)
�N
�

−1 (G1)

Applying this equation to the rectangular boundary sketched in Figure G1b, we
find �1 = �4 = �/2 and �2 = �3 = 3�/2, where the angles are measured positively in
the counterclockwise direction. We specify that the velocity potential values in Fig-
ure G1a are the following point values of the velocity potential: �1 = −p, �2 =
−q, �3 = q, and �4 = p. Where �1 = 0 in Figure G1b, the angle is �, so that point in
eq. G1 is represented by the number 1. Note that Lewis (1929) specifies that p = 1 in
his analysis. The arbitrary value of this potential point used herein is to avoid confu-
sion on the units of the quantities. With the potential point values, the expression in
eq. G1 applied to Figure G1 is

dz
dw

= (w + p)− 1
2 (w + q)

1
2 (w − q)

1
2 (w − p)− 1

2 =
√

w2 − q2√
w2 − p2

(G2)

Upon integration, we find

z = x + iy = C
∫ √

w2 − q2√
w2 − p2

dw = C
∫ √

q2 − w2√
p2 − w2

dw (G3)

Here, the to-be-determined constant, C, has units of time over length.
Following Lewis (1929), our interest is in the rectangular boundary that corre-

sponds to 	 = 0 in Figure G1a. On the body, the complex potential is w|	 =0 = �.

Combine this with eq. G3 and integrate along the sides of the body in the first
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quadrant of Figure G1b. Along the top from y = 0 to x = � < q, where y = d, we
obtain

z = C

�∫
0

√
�2 − q2√
�2 − p2

d� = C

�∫
0

√
q2 − �2

p2 − �2
d�

= Cp
{

E
[

sin−1
(

�

q

)
, Q
]

− (1 − Q2)F
[

sin−1
(

�

q

)
, Q)

]}
(G4)

Here, Q = q/p. The functions E(ε, Q) and F(ε, Q) are called elliptic integrals
of the first and second kind, respectively. See Gradshteyn and Ryzhik (1980) or
Abramowitz and Stegun (1965) for discussions of these functions. In the last inte-
gral in eq. G4, we note that � < q < p. Hence, the integral is real. The integration
method is presented by Lewis (1929), and a similar integral is found in Section 3.169
of the book by Gradshteyn and Ryzhik (1980).

Now, integrate the product of i = √−1 and eq. G3 along the right side of the
solid in Figure G1b from q to �, where x = b, to obtain

z = −C

�∫
q

√
�2 − q2√
p2 − �2

d� = −Cp




E


sin−1




p
�

√√√√√ �2

p2
− Q2

1 − Q2


 ,
√

1 − Q2




− q2

p2
F


sin−1




p
�

√√√√√ �2

p2
− Q2

1 − Q2


 ,
√

1 − Q2


− 1

�

√(
1 − �2

p2

)(
�2

p2
− Q2

)


(G5)

The integral on the top line of this equation also appears in Section 3.169 of Grad-
shteyn and Ryzhik (1980).

The half-breadth of the body in Figure G1b is b. At x = b and y = d, eq. G4
yields

b = Cp
[

E
(�

2
, Q
)

− (1 − Q2)F
(�

2
, Q
)]

= Cp[E(Q) − (1 − Q2)K(Q)] (G6)

In this equation are the complete elliptic integrals of the first and second kind, which
are K(Q) ≡ F(�/2, Q) and E(Q) ≡ E(�/2, Q), respectively.

Apply eq. G5 at x = b and y = d to obtain

d = −Cp
[

E
(�

2
,
√

1 − Q2
)

− Q2 F
(�

2
,
√

1 − Q2
)]

= Cp[E(
√

1 − Q2)

−Q2K(
√

1 − Q2)] (G7)

We note that the product Cp can be treated as a single constant, C. Hence, eqs. G6
and G7 are a system of two equations with two unknowns, the latter being C and Q.
These parameters can be determined by solving eqs. G6 and G7 simultaneously.
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As shown by Abramowitz and Stegun (1965), for a parameter Q, where 0 ≤
Q ≤ 1, the complete elliptic integrals in eqs. G6 and G7 are well approximated by

K(Q) � [1.38629 + 0.11197(1 − Q) + 0.07252(1 − Q)2]

+ [0.5 + 0.12134(1 − Q) + 0.02887(1 − Q)2] ln
(

1
1 − Q

)
(G8)

and

E(Q) � [1 + 0.46301(1 − Q) + 0.10778(1 − Q)2]

+ [0.24527(1 − Q) + 0.04124(1 − Q)2] ln
(

1
1 − Q

)
(G9)

To determine the low-frequency added mass of the body in motion, we begin by
focusing our attention on the portion of the body in the first quadrant of Figure
G1b. When the body in Figure G1b moves in the positive y-direction in a still fluid,
the flow is represented by the velocity potential � , which is � − Ux, and the stream
function �. As before, the velocity potential component � represents the flow
about the body when the body is fixed in a flow that is parallel to the y-axis at
x = ±∞. The velocity potential representing the parallel flow is −Ux. The kinetic
energy of the flow adjacent to the moving body is

E′
k = 1

2
�

∫ ∫
S
(∇�)2dS = −1

2
�

∫
�d�|s

= 1
2

�

∫
�

∂�

∂s
|sds = −1

2
�

∫
�

∂�

∂n
|sds (G10)

The relationship of the integrals in the second row of eq. G10 results from the
Cauchy-Riemann relationships, where s is the coordinate tangent to the body sur-
face and n is the outward normal coordinate. On the side at y = b and 0 < z < T in
the first quadrant of Figure G1b, ds = dy and

− ∂�

∂n
|y=b = ∂�

∂y
|y=b = U (G11)

Along the first-quadrant side, the application of eq. G10 using the results in eq. G11
yields

E′
k| x=b

0<y<d
= −1

2
�

d∫
0

(� − Ub)(−U)dy = 1
2

�U

d∫
0

�dy − 1
2

�dbU2 = 1
2

a′
wxU2 (G12)

Here, a′
wx is the added mass (per unit length) excited by the motions in the

x-direction. Because the top of the body is parallel to the motion direction, the
kinetic energy per unit length equals zero over the top. All that remains is to deter-
mine the potential �. To do so, the differential form of the expression leading to
eq. G5 is used. That is, on the right side of the body,

dz|s = ds = −C

√
�2 − q2√
p2 − �2

d� (G13)
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The combination of this expression with the last integral of eq. G12 results in the
following total kinetic energy per unit length of the entire body:

4E′
k| x=b

0<y<d
= 4


1

2
�UC

q∫
0

�

√
�2 − q2√
p2 − �2

d� − 1
2

�bdU2




= 4
[

1
2

�UC
�

4
(p2 − q2) − 1

2
�bdU2

]

= 1
2

a′
wxU2 (G14)

The integration is performed by substituting the variable t =
√

(p2 − �2). The
expression for the low-frequency added mass of the total two-dimensional body is

a′
wx = �

[�

U
C(p2 − q2) − 4bd

]
= �

[�

U
Cp2(1 − Q2) − 4bd

]
(G15)

If we assume that the body in the lower half of the plane is both submerged and
oscillating such that there is little reaction on the free surface (where y = 0), then
the added-mass expression for the motions of the half-submerged body is one half
that in eq. (G15), or

a′
wx = �

2

[�

U
C(p2 − q2) − 4bd

]
= �

2

[�

U
Cp2(1 − Q2) − 4bd

]
(G16)

We have used the arbitrary p as the upper bound of the potential on the body.
Lewis (1929) lets p = 1, thereby setting the reference for the potential values on the
body. By following Lewis, eqs. G6, G7, and G15 have two unknown parameters, C
and Q, that are determined by the simultaneous solutions of eqs. G6 and G7. The
reason for maintaining the p-notation throughout the derivations herein is to be
conscious of the units in each of the equations.

For this case, we set p = 1 in eqs. G6 and G7 and isolate the constant C in both
to obtain

C = b
E(Q) − (1 − Q2)K(Q)

(G17)

H. Infinite-Frequency Added-Mass Expressions

In the following sections, the infinite-frequency added-mass expressions are
presented. Most of the expressions presented in this appendix are presented by
Brennen (1982).

H1. Two-Dimensional Added Mass

(1) Motions in an Infinite Liquid

In Figure H1 are four basic two-dimensional shapes: The straight line, circle, ellipse,
and rectangle. These are assumed to be in a liquid having no bounds. The motions
of the shapes are rectilinear with a speed, V, and moving with an angular speed,

. For these shapes, the added mass and added-mass moment of inertia (both per
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V

a. Line b. Circle c. Ellipse d. Rectangle
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a

Figure H1. Four Basic Two-Dimensional Shapes Undergoing Rectilinear and Angular
Motions.

unit length into the page) are give by Wendel (1956). The expressions are the
following:

Line or Two-Dimensional Flat Plate in Figure H1a:
Added Mass per Unit Length (Attributed to Horace Lamb by Kurt Wendel):

a′
w = ��a2 (H1)

Added-Mass Moment of Inertia per Unit Length:

A′
w = 1

8
��a4 (H2)

Circle in Figure H1b:
Added Mass per Unit Length:

a′
w = ��R

2
(H3)

Added-Mass Moment of Inertia per Unit Length:

A′
w = 0 (H4)

Ellipse in Figure H1c:
Added Mass per Unit Length (Attributed to Horace Lamb by Kurt Wendel):

a′
w = ��a2 (H5)

Added-Mass Moment of Inertia per Unit Length:

A′
w = 1

8
��(a2 − b2)2 (H6)

Rectangle in Figure H1d:
Added Mass per Unit Length:

a′
w = Ca��a2 (H7)

Added-Mass Moment of Inertia per Unit Length:

A′
w = CA��b4 (H8)

In these expressions, the values of the coefficients Ca and CA depend on the ratio
a/b. The values presented by Wendel (1956) are as follows:

a/b = 0.10 0.20 0.50 1.00 2.00 5.00 10.00
Ca = 2.23 1.98 1.70 1.51 1.36 1.21 1.14
CA = 0.147 0.15 0.15 0.234 0.15 0.15 0.147
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Figure H2. Two-Dimensional Motions of Rectangular Sections in a Rigid Free Surface.

(2) Motions of a Rectangular Section in Liquid with a Free Surface

In Figure H2a is a sketch of a rectangular section undergoing both heaving and
rolling motions in a liquid having a free surface and an infinite depth. In Figure H2b
is the sketch of rectangular section swaying in a liquid of infinite depth. In Fig-
ure H2c, the sketched rectangular section is shown heaving in a liquid of finite
depth. The added mass and added-mass moment of inertia expressions (both
per unit length into the page) for rectangular section motions in Figure H2 are
presented.

Heaving and Pitching in a Liquid of Infinite Depth in Figure H2a:
Added Mass per Unit Length [From Lewis (1929) in Appendix G]:

a′
w = 3

4
��

(
B
2

)2

, where d = B
2

(H9)

Added-Mass Moment of Inertia per Unit Length [From Wendel (1956)]:

A′
w = 0.117��

(
B
2

)4

, where d = B
2

(H10)

Swaying in a Liquid of Infinite Depth in Figure H2b:
Added Mass per Unit Length [From Wendel (1956)]:

a′
w = 1

4
��

(
B
2

)2

, where d = B
2

(H11)

Heaving in a Liquid of Finite Depth in Figure H2c:
Added Mass per Unit Length:

a′
w = Ca��

(
B
2

)2

, where d = B
2

(H12)

The values of C� are presented here for depth-to-draft ratios:

(h−d)
d = ∞ 2.60 1.80 1.50 0.50 0.25
Ca = 0.755 0.83 0.89 1.00 1.35 2.00

The values associated with (h − d)/d = ∞, 2.60, and 1.80 are from Wendel (1956),
and the remaining are due to the Lewis (1929) analysis.
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Figure H3. Circular and Rectangular Plates Moving Rectilinearly in an Infinite Liquid.

H2. Three-Dimensional Added Mass

(1) Flat Plate Motions in an Infinite Liquid

A circular plate is sketched in Figure H3a, and a rectangular plate is shown in Fig-
ure H3b. For both plates, the thicknesses are considered to be much smaller that
the planar dimensions. That is, if the plate thickness is t, then t � R in Figure H3a
and t � a and b in Figure H3b. The added-mass expressions for these plates are as
follows:

Circular Plate in Figure H3a:
Added Mass [From Lamb (1932)]:

a′
w = 8

3
��R3 (H13)

Rectangular Plate in Figure H3b:
Added Mass [From Kennard (1967)]:

a′
w = CA

1
4

��a2b (H14)

The values of CA are presented here for aspect ratio, 2a/b:

2a/b = ∞ 4.00 3.50 3.00 2.50 2.00 1.50 1.00
CA = 1.00 1.00 1.00 1.00 0.953 0.840 0.860 0.478

These values are also reported by Brennan (1982). It is interesting to note that the
added mass for the circular plate is four times that of the sphere having the same
radius and moving in an infinite fluid, as presented in eq. H15.

(2) Motions of a Sphere in an Infinite Liquid and beneath a Free Surface

In Figure H4a is sketched a sphere undergoing rectilinear motions in an infinite
liquid. In Figure H4b, the liquid has a free surface and is infinitely deep (h = ∞).
The center of the sphere is at a depth of d ≥ 0. For both spheres in Figure H4, R is
the radius of the sphere and D is the diameter. The added-mass expressions for the
two conditions are as follows:

Sphere in an Infinite Liquid in Figure H4a:
Added Mass [From Lamb (1932)]:

a′
w = 2

3
��R3 (H15)
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Figure H4. Vertical Motions of a Sphere in an Infinite Liquid and Beneath a Free Surface.

Sphere beneath a Free Surface in Figure H4b:
Added Mass per Unit Length [From Kennard (1967)]:

a′
w = Ca

2
3

��R3 (H16)

The values of C� are presented here for depth-to-diameter ratio, d/D:

d/D = 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
CA = 0.50 0.88 1.08 1.16 1.18 1.18 1.16 1.12 1.04 1.00

These values are also reported by Brennan (1982). Comparing the C�-value for
d/D = 4.50, we see that the value is the same as it would be in eq. H15, that is,
C� = 1.00. Hence, we conclude that the free-surface effect on the added mass is
negligible for d/D ≥ 4.50.

H3. Frequency-Dependent Added Mass

The previous sections are devoted to the added mass of basic shapes oscillating at
infinite frequency. For the derivations of finite-frequency added-mass expressions,
the book by Falnes (2002) is recommended.
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Index

absorption coefficient, 167, 168
acceleration

convective, 21, 293
local, 21, 293

accretion, 246, 258
added mass, 280–289, 350, 351, 384, 389, 392, 419,

544–548
circular cylinder accelerating in a fixed fluid,

281, 282, 514, 545
circular cylinder fixed in an accelerating fluid,

281, 282–283
coefficient, 283, 289, 431, 442–443
flat plates in an infinite fluid, 547
heaving cylinder, 352–354, 355, 358, 359, 360,

368, 369, 424, 425, 432–433, 485, 486–487
Lewis form, 281, 283–289, 409–410, 413, 415,

431–432, 519, 544
sphere, 547–548
surging cylinder, 489, 490, 491, 493

added-mass moment of inertia, 384, 389, 392, 419,
500, 502, 544, 545, 546

Airy’s (linear) wave theory, 47–52, 81, 181,
222–223, 491

amplitude coefficient, 180, 495–497
amplitude response function, 369, 370, 371, 372,

373, 374, 430, 496–497
anchor

clump, 463
embedment, 463, 479

angular response matrix, 524–525
Archimedes’ Principle, 7
articulated-leg platform (ALP), 453, 454, 498–509
axially symmetric flow, 30, 35–37

backrush, 171, 225
beach grass, 259, 264
beach nourishment, 259, 264
Beaufort wind-force scale, 4
berm, 260
berm line, 260, 261
Bernoulli’s equation, 22, 49, 66, 77, 274, 277, 279,

283, 441, 449

Bessel equation, 175, 529, 540
Bessel function, 175, 299, 300, 301, 302, 313, 316,

333, 485, 486, 487, 488, 529–530
Additional Theorem, 327

body function, 381, 447, 449
boundary element method (BEM), 325
boundary layer, 25–26, 134, 142, 150–151
brace, 325
breaker depth index, 229, 230
breaking condition, 104, 107–108
breaking height index, 226, 228
breaking indices, 226
breaking waves, 45, 104, 111, 188, 224, 245

collapsing, 226, 227, 232, 254
plunging, 226, 227, 232, 242, 254
spilling, 226, 227, 232, 233, 254
surging, 226, 227, 232, 233, 254

breakwater, 259, 264, 266
head, 266
trunk, 266

Bretschneider spectral formula, 137, 140–141,
142–144, 157, 158, 370, 371, 372, 374, 497

cap width, 267
capture width, 367
catenary, 458, 459
Cauchy-Riemann equations, 18, 20, 57, 59, 93,

287, 543
cavitation, 23–24
center of buoyancy, 378, 422–424
center of pressure, 276, 279, 296, 308, 344, 349
Chakrabarti (wave force) diagram, 290, 324, 491,

503, 507, 523, 526
characteristic equation, 524
circular cylinder

cavitation, 23–24
diffraction mass coefficient, 305
drag force, 291, 293–294, 340–342
dynamic pressure, 22–24
element, 301
embedded, 299
group, 325–334, 335

575



576 Index

circular cylinder (cont.)
heaving, 351–362, 366–367, 368–375, 405–407
hydrostatic pressure, 8
inertial (horizontal) force, 291, 293, 340–342,

344
irrotational flow, 19–21, 298
overturning moment, 309
stability, 377, 378, 379, 380
truncated, 298, 307–324, 351–362, 366–367,

368–375, 380, 499–506
vertical force and resulting moment, 310–311

circular pile
horizontal drag and inertial forces, 294–297,

342
circulation, 15–16
cnoidal theory, 73, 92–101, 111, 277
complex velocity potential, 285, 287, 541
computational fluid dynamics method (CFD), 325
cofferdam

diffraction force, 303
diffraction moment, 304

CONDEEP platform, 474
conformal mapping, 285, 393–394, 399–401
continuity equation, 11–14, 173, 198, 312, 535
convection (particle), 88–91
Cramer’s rule, 422
critical damping coefficient, 358, 359, 360, 361,

371, 427, 428, 494, 508
cumulative frequency of occurrence, 116, 117
cumulative probability of occurrence, 116–117,

125, 128, 339–340, 341, 348

damped natural frequency and period
heaving, 359, 428, 430
pitching, 429–430

damping coefficient
hydrodynamic, 516
wave-induced, 413

damping matrix, 516, 521–522
damping ratio

heaving, 359, 360, 362, 363, 428, 430
decision tree, 262–263, 264, 428–430
design life, 266
deep-submergence vehicle, 8–11
difference equation method, 517
diffraction, 3, 162, 188–212, 213, 259, 297–298, 330,

448, 451
diffraction coefficient, 200–204, 211, 212
diffraction focusing, 367
diffraction force, 289, 302, 308, 325, 331, 332–334,

345, 399, 453, 481, 482–483, 492–493, 496
diffraction moment, 302, 308
diffraction parameter, 211, 212
dispersion, 3
dispersion equation, 53, 214, 315, 337, 399, 487,

509
displacement (displaced water weight), 8, 378
displacement potential, 312–313, 314, 315, 316, 317
doublet

two-dimensional, 18
three-dimensional, 32

drag coefficient, 27, 39–40, 291, 292, 293, 297, 342,
343, 352, 356, 357, 481, 493

drag parameter, 337, 338
dune, 260, 264
duration, 137

critical, 147, 149
minimum, 148

dynamic free-surface condition, 48–49, 79, 105,
275

eigenvalue, 524
elliptic integrals, 542, 543, 544
energy,

flow, 22
intensity, 134, 135, 154, 159–160
kinetic, 22
potential, 22
total, 22

equation(s) of motion, 351–352, 368–369, 390–391,
419, 426, 491, 499, 508, 516–517

coupling terms, 419, 516
matrix, 516, 520, 524

erosion, 246, 258
error function, 131–132
Euler’s constant, 354
Euler’s equations, 22, 173
expected life, 262

fetch, 2–3, 137
minimum, 2, 3, 148

finite element method (FEM), 325, 350
flanking, 260
flexible offshore tower (FOT), 509–519
flexural rigidity, 469
Fourier transform, 540
freeboard, 380
Fresnell diffraction, 197
Fresnell integrals, 197, 199–200
Fresnell Kirchhoff diffraction formula, 195
frequency coefficient, 431–432, 434
frequency of encounter, 387, 391, 399, 412
frequency, modal, 517–518, 524
frequency parameter, 443, 445
friction factor, 169–171, 250, 255
Froude-Krylov force, 405–406, 446
Froude-Krylov hypothesis, 305, 405
Froude number, 38, 269
Froude scaling, 38–42

gabion, 168, 169
gamma function, 128, 129, 137, 139, 152, 155, 156,

157
Garrett’s analysis, 312–324

horizontal force, 321, 322, 323
overturning moment, 321–322
vertical force, 321, 322

gravity structure, 344, 345, 346
Green’s function, 194, 195, 448, 532
Green’s theorem, 193–194, 287, 450, 532–534,

536
groin, 259, 261
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groin field, 259, 260, 263, 264
group velocity, 63, 68, 70, 163, 220

Hagen-Poiseuille flow, 14
half-power bandwidth, 358, 361–364
Hankel function, 194, 300, 301, 319, 327, 353, 354,

529
hard stabilization, 258, 262
Haskind force relationships, 446–451
Havelock’s free-surface integral, 438
Healy’s formula, 167–168
heaving amplitude, 356, 357, 358, 359, 360, 366,

367, 369
heaving motions, 380, 381, 383–384, 390–391, 448,

484, 484–486, 546
heaving response, 356, 358

maximum, 374
mean square, 369, 372
root-mean-square, 369, 371, 372, 373, 374

Helmholtz equation, 162, 190–191, 193, 198,
536

Hudson formula, 266, 269
Hunt formula, 233, 261
Huygens’ principle, 189–190, 194, 298
Huygens-Fresnel principle, 192–197
hydrodynamic force, 449

circular cylinder, 283, 354, 409, 485–486,
488

Lewis form, 403–411
rectangular strip, 441–443

hydrodynamic pressure, 409, 441, 449, 485, 488
hydromechanics, 7
hydrostatic equation, 8, 174
hydrostatic pressure, 7–8, 22, 66
hydrostatic restoring (buoyant) force, 351, 383,

384, 386, 419, 426, 427, 493, 504, 522–523,
528

hydrostatic restoring moment, 383, 384, 386, 419,
426

hydrostatics, 7–11

inertial coefficient, 283, 291, 292, 293, 297, 342,
504, 507, 519, 523, 526

inertial force, 289, 292, 334–342, 453
inertial matrix, 520–521, 526
inertial parameter, 337, 338
International Sea-State Scale, 4
irrotational flow, 14, 48, 213, 382
ISSC spectral formula, 137
ITTC spectral formula, 137

Jacobian elliptic function, 95
jetty, 259, 266
JONSWAP spectral formula, 138, 144–145

Keulegan-Carpenter number, 289–290, 291–292,
294, 295, 335, 480–481, 491, 503–504, 507, 523,
526

kinetic energy, 282, 287
kinematic free-surface condition, 48, 78, 80
Korteweg-de Vries equation, 95

Kronecker delta, 319

laminar flow, 13–14, 25, 352
Laplace’s equation, 16, 50, 78, 80, 190, 214, 278,

299, 446, 535, 536, 537–540
lateral mixing, 247–251
layer thickness, 267
left-running waves, 51
Lena guyed tower, 453
Lewis transformation, 285, 392–398, 541–542
Lighthill force, 293
linear wave potential, 52
linearized free-surface condition, 49, 193, 214, 217,

312, 383, 447
littoral drift, 246
littoral transport, 246
littoral zone, 225
logarithmic decrement method, 358–361
long-wave equations, 161, 171, 172–174, 179–180
longshore transport, 224
longshore velocity, 246–255, 260
longshore volume flow rate, 255–257
low-frequency condition, 289
lumped-mass method, 510, 514–519

MacCamy-Fuchs analysis, 297–305, 306, 308,
327–328, 330, 331, 333, 345, 482, 491, 492, 493,
494

Mach angle, 151–152
Mach number, 152
Mach-stem effect, 165
Maclaurin series, 79
magnification factor,

heaving, 428–430
pitching, 429–430, 509

mass matrix, 516–517
McCabe Wave Pump (MWP), 153–155
Miche’s formula, 104, 106–108
metacenter, 378
metacentric height, 378, 380, 424
method of images, 56, 273, 436
mild-slope equation, 162, 188, 212–223

differential form, 216
integral form, 216

modal period, 138, 498, 527
momentum equation, 173, 389
momentum flux, 241
mooring dolphin, 461, 464, 465
moorings

slack, 377, 453, 458–465
in parallel, 461, 462
in series, 462, 463
tension, 377, 453, 455–458

Morison equation, 292–297, 337, 339, 340, 352,
504–505, 523–524

Morison forces, 292, 293, 295, 325, 339, 340, 506,
523–524

Morison moment, 295
m-th moment, 137

narrow-band process, 339
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natural frequency
heaving, 356, 356, 357, 359, 360, 362, 363, 427
pitching, 428, 508
surging, 493

Navier-Stokes equations, 21–22
Neumann’s symbol, 299, 300, 309, 333
Newman’s force relationships formulation,

446–451

oblique reflection, 164–166
floating offshore platform, 324
orthogonals, 68–69, 185, 212, 219, 235, 239, 246

OTEC (ocean thermal energy conversion),
27–30

overtopping, 178, 267
overturning moment, 344, 509

particle displacement
linear waves, 59–61
nonlinear waves, 86–88, 97, 102

Pierson-Moskowitz spectral formula, 138,
141–144, 370

pitching, 380, 381, 383–384, 390–391, 448, 484,
546

plane-wave approximation, 328
porosity, 169
porosity factor, 245
power take-off, 351, 352, 357, 358, 365–368

linear inductance, 366–367
pressure coefficient, 25
pressure hull, 9–11
probability density function

drag force, 341
heaving response, 370, 374
inertial force, 341
wave properties, 118–119, 125, 140, 156, 157,

340, 341, 348, 370
probability of exceedance, 126
probability of occurrence

heaving response, 374
wave heights, 124–125

probability of success, 262

radial wave-maker, 353
radiation

Havelock amplitude ratio, 444
Tasai amplitude ratio, 416–417
YFF amplitude ratio, 416
dipole, 353
monopole, 353

radiation damping, 415–419, 444–446, 484–485
radiation damping coefficient, 351, 352–354, 355,

356, 357, 358, 359, 368, 387, 390, 392, 416, 417,
419, 424–425, 433, 444, 486, 486, 487, 489, 490,
491, 493, 502, 507

radiation stress, 224, 234–240, 246, 247, 248
Rayleigh probability density function, 124–125,

130, 156, 267, 339, 341, 343, 348, 374
rectangular cylinder (caisson)

diffraction force, 305–307
equivalent radius, 306

mass coefficient, 306
radiation damping, 416, 440–446

reflection coefficient, 167, 168, 169, 172, 184, 185,
203, 211, 219, 221, 233, 234

refraction, 161, 185–188, 213, 231
refraction coefficient, 186–187
resonance, heaving, 357, 358, 352, 364, 366–367,

371, 373
restoring matrix, 520, 522–534, 527–528
revetment, 259, 264
Reynolds number, 26–27, 38–41, 294, 493
Reynolds scaling, 38–41
Reynolds stress, 237
right-running wave, 51
rolling, 380, 381, 448
rotational flow, 14
rubble-mound structures, 263–272

damage, 270
foundation stone, 265, 266
mat, 265
primary armor stone, 265, 266
probability of failure, 262, 270–271
reliability, 268–271, 272
secondary armor stone, 265
shield stone, 265, 266
toe stone, 265, 266

Runga-Kutta method, 325, 530–532
runup, 104, 175, 178, 179, 188, 225, 233, 245, 260,

261, 267

safety factor, 10–11, 461
sand dune, 259
sand fillet, 259
scale factor

area, 397–398
length, 38, 39–42, 269, 396–397, 401, 413, 414
time, 39–40, 269–270
velocity, 40–41, 269
force, 40
pressure, 41
power, 41–42
reliability, 270

scattering, 289, 297, 324–334
sea-floor condition, 48, 50, 78, 80, 312, 383, 539
seas

developing, 2, 3
fetch-limited, 2, 3, 144–145, 147–150
fully developed, 2, 3, 137
Gaussian-Rayleigh, 129–133, 339, 525
irregular, 134, 350
long-term, 133, 143
random, 115, 134, 334–336, 350, 492
wind-generated, 134, 137–138, 141–143

SeaStar tension-leg platform, 455, 457, 491–495
second moment of area, 513
sectional area, 396, 408–411, 423, 546
sediment volume transport rate, 256, 257
set-down, 224, 235, 240–246, 254
set-up, 224, 225, 235, 240–246
shadow zone, 188, 259, 261, 298, 329
shape parameter, 431–432
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shear modulus, 476
sheltering, 325
ship

broaching, 277, 474
grounded, 277, 474

shoaling, 68–72, 161, 220, 226
shoaling coefficient, 68, 70–71, 91, 181, 212, 213,

221, 222–223, 242
sine and cosine integrals, 418
Smith correction factor, 404
Snell’s law, 185–188, 217, 239, 247
soft stabilization, 258, 262
soil

clay properties, 467, 470, 472, 473, 480
cohesive, 465
Coulomb equation, 465
damping coefficient, 476
effective elastic modulus, 466
elastic, 466, 471, 473
elastoplastic, 466
friction angle, 465, 466, 467
mass-moment of inertia, 476
plastic, 466, 470, 473
Rankine passive earth coefficient, 467
resistance, 466
sand properties, 467, 470, 472, 473, 478
strength, 465, 467

solitary wave theory, 74, 101–104, 108–111,
276–280

Sommerfeld radiation condition, 192, 208, 313,
448

source and sink
line, 34–35
two-dimensional, 19, 416, 436–440, 441, 444,

445, 536–537
three-dimensional, 32, 534–536

spar buoy, 477, 483–486, 488, 489
spectral density, 3, 134–137

directional (wave), 150–155
force, 337, 338, 339, 345, 347, 348
frequency domain (wave), 138, 336, 337–338,

370, 497
long-term (wave), 158
point (wave), 150, 497, 498
surging response, 497
time domain (wave), 138, 347, 369, 370, 371,

497
sphere

potential flow about, 31–33
heaving motions, 382

spread footing structure, 344, 345, 346, 474
spreading function, 152–153
spreading parameter, 152–153
spring constant (equivalent), 351, 352, 356, 357,

456–457, 461, 462, 463–465, 475, 478–479, 491,
511–514

spring-mass-damper system, 475
stability (initial rolling), 377–380

conditions, 380, 422–424
stability coefficient, 266
stagnation point, 20, 23

stagnation streamline, 20, 23
states of nature, 262
Stokes second-order theory, 86–88, 491
Stokes stream function, 31, 57
Stokes (expansion) theory, 73, 76–86, 111
strain

longitudinal, 456
radial, 456–457, 478

stream function, 17–19, 30–31, 287, 401–402
stream function theory, 73
stress

longitudinal, 456
radial, 456

strip theory, 376, 383, 392–431, 434–436
structural damping, 516
structures

articulated-leg platform (ALP), 453, 454,
498–509

compliant, 453, 454
embedded, 465, 458–474, 468
flexible offshore tower (FOT), 509–519
modal shape, 524–525
piles, 468, 469–473
rigid, 453
rocking, 475, 476, 501, 507–508
sliding, 475, 476, 476
spread-footing (gravity based), 453, 454, 465,

468, 474–476
tension-leg platform (TLP), 453, 455, 476–478,

491–498
tension-restrained articulated platform

(TRAP), 529–528
strumming (cable), 291
Struve function, 485
successive approximation method, 54–55, 178,

462, 472, 507
superposition, 19–21, 56, 167
surf similarity parameter or Iribarren number,

162, 224, 231–232, 234, 245, 261
surf zone, 104, 224, 225, 234, 235, 242, 246, 247
surging, 380, 381, 448, 484, 486–498
swash-line, 240, 254
swash zone, 225, 242
swaying, 380, 381, 448, 515–519, 546

tension (line), 461, 478–479
tension-leg platform (TLP), 324, 476–483, 491–498
tension-restrained articulated platform (TRAP),

529–528
tethers, 478, 479
tombolo, 261
transfer function, 337
transmission coefficient, 167, 170, 221
trapezoidal rule, 372
Trieste, 9
trim angle, 408
trochoidal theory, 73, 232
turbulent flow, 25, 352

Ursell parameter, 74–75, 99, 103, 295, 491
uprush, 171, 224, 225
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velocity potential, 16–17, 81–83, 214, 216, 274, 287,
298–299, 300, 301, 309, 327–328, 353, 398,
401–402, 436–439, 446–448, 449, 451, 484–485,
487, 534, 536, 537, 538–540

volume of fluid method (VOF), 325
viscosity, 25
viscous damping coefficient

equivalent linear, 352, 354–356, 357, 358, 359,
387, 392, 419, 425, 482, 493, 502–503, 507

nonlinear, 352, 354–355, 482, 491, 505–506
viscous-pressure force, 289, 290, 291, 334–342,

344, 351, 453, 481–482
vortex shedding, 27, 30, 291, 457, 468
virtual mass, 281

wake, 25
wall-sided body, 379, 406
wave energy conversion, 42, 67, 366
wave

antinode, 57, 166
celerity or phase velocity, 47, 51, 52, 83, 279
energy flux or wave power, 66–68, 68, 154–155,

163, 170, 185, 220, 246, 247, 361, 365, 368,
415–416, 445

frequency, 52, 336, 351
group, 61–63
induced force, 275, 280, 292, 293, 351, 352, 356,

357, 361, 388–389, 411–415, 419–421, 425–426,
449–452, 516

induced moment, 275, 280, 365, 419–421,
425–426, 449–451, 506, 526

induced moment matrix, 523–524
kinetic energy, 64–65
node, 57, 166
number, 52, 315, 351
period, 49, 351
potential energy, 64–65
reflection, 56–59, 161, 162, 164, 211, 278, 448,

450, 451
riding, 429
solitary, 101
statistics, long-term, 156–158
statistics, short-term, 158
steepness, 47, 58, 75, 106, 168, 212, 234, 274, 276
total energy, 65

wave height, 47
average, 119, 123, 126, 127, 128, 129, 140, 145,

343, 346, 496
design, 265, 266, 267, 268
extreme, 127, 267, 340, 342, 343

mean square, 120, 123, 128, 135, 136–137, 145
most probable, 118, 157
root-mean-square, 120, 127, 128, 129, 133, 135,

136–137, 142, 341, 348, 496
significant, 120–122, 123–124, 126–127, 146, 147,

149, 150, 266
variance, 120, 123

wave period
average, 119, 123, 139, 140, 146, 147, 149, 267,

343, 346, 371
mean square, 139
modal, 3, 135, 138, 146, 371
peak, 138, 146, 147
root-mean-square, 139, 146
significant, 120–122, 139, 341, 342

wavelength, 47, 351, 525
deep water, 55, 268
root-mean-square, 140
shallow water, 55

waves
capillary, 2, 45
deep water, 53, 60, 63, 65, 66–67, 83–84, 89, 90,

140, 238, 267, 290, 315, 335, 412, 435, 486, 491
evanescent, 315, 353, 415, 438
far-field, 440, 447
intermediate water, 53, 60, 63, 89, 158–160
linear, 45, 290
long, 92, 171, 173
nonlinear, 45, 74–76
regular, 115
scattered, 208
shallow water, 53, 61, 63, 65, 66–67, 84–85, 91,

92, 173, 180–181, 238, 275, 279, 290, 303–304,
307, 330, 335

spectrum, 2, 135
standing, 56–59, 274, 276, 415, 438
Weber number, 38
wind-generated, 1–4, 45–47

wave-body interaction force, 412, 414, 425
wave-structure interaction, 350, 411–415
Weibull probability distribution, 127–129, 156,

270–271, 339
weight-to-buoyancy ratio, 10–11
white cap, 46, 47

yawing, 380, 381, 448
Young’s modulus (modulus of elasticity), 456, 457,

469, 470, 471, 476, 478, 479, 511, 512, 513, 514

zero up-crossing method, 115
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