CRITICAL STATE SOIL MECHANICS VIA FINITE ELEMENTS

ELLIS HORWOOD SERIES IN CIVIL ENGINEERING
Series Editors: Professor R. T. Severn and Dr. R. Sellin, Department of Civil Engineering, University of Bristol

A. M. BRITTO, B.Sc., Ph.D.

Department of Engineering
University of Cambridge
M. J. GUNN, M.A., Dip. Comp. Sci.

Department of Civil Engineering
University of Surrey

ELLIS HORWOOD LIMITED
Publishers - Chichester
Halsted Press: a division of JOHN WILEY \& SONS

First published in 1987 by

ELLIS HORWOOD LIMITED

Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England
The publisher's colophon is reproduced from James Gillison's drawing of the ancient Market Cross, Chichester.

Distributors:

Australia and New Zealand
JACARANDA WILEY LIMITED
GPO Box 859, Brisbane, Queensland 4001, Australia
Canada:
JOHN WILEY \& SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada
Europe and Africa:
JOHN WILEY \& SONS LIMITED
Baffins Lane, Chichester, West Sussex, England
North and South America and the rest of the world:
Halsted Press: a division of
JOHN WILEY \& SONS
605 Third Avenue, New York, NY 10158, USA
© 1987 A.M.Britto and M.J. Gunn/Elis Horwood Limited
-
British Library Cataloguing in Publication Data
Britto, A.M.
Critical state soil mechanics via finite elernents. -
Ellis Horwood serics in civil engineerin
. Soil mechanics - Data processing

- Tite clama

Library of Congress Card No. 86-33791
ISBN 0-85312-937-1 (Ellis Horwood Limited)
SEN 0-470-20816-3 (Halsted Press)
Printed in Great Britain by Unwin Bros. of Woking

COPYRIGHT NOTICE

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-copying recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross House, Cooper Street, Chichester, West Sussex, England

Table of Conten $\dagger \sim$

1 Mechanics
1 Computational mechanics171.2 Continuum mechanics18
1.2.1 Stresses and equilibrium 18
1.2.2 Displacements and strains (compatibility)1.2.3 Elastic stress-strain relations1.3 Soil mechanics25
1.3.1 Effective stresses 25
1.3.2 A physical interpretation of effective stress26
1.3.3 Elastic constants for dry soil 27
13.4 Elastic constants for saturated soil 28
1.3.5 Flow of water through soils $\overline{3} 1$
2 Critical state soil mechanics 36
2.1 Introduction
Idealisations of plastic behaviour 39
2.3 Yield functions 41
2.3.1 Yield functions for metals 41
2.3.2 Some yield functions suggested for soils44
2.4 Plastic strains 45
2.4.1 Co-incidence of principal axes
2.4.2 Flow rules 46
2.4.3 Drucker's stability postulate 48
2.4.4 Frictional systems and plasticity theory 50
2.5 Cam-clay 52
2.5.1 Critical state parameters 52
2.5.2 Volume-pressure relations 56
2.5.3 Critical state line 56
2.5.4 Yielding of Cam-clay 58
2.5.5 Strains 62
2.6 Triaxial tests on Cam-clay 63
2.6.1 Preparing the sample 63
2.6.2 Drained compression tests
66
66
2.6.4 Undrained compression tests 67
2.6.5 Calculation of strains in undrained tests 72
2.6.6 Other types of triaxial test 72
2.7 Comments on Cam-clay 74
2.7.1 Derivation of Cam-clay 74
2.7.2 The Cam-clay flow rule 76
78
2.7.3 Modified Cam-clay 80
Analysis of consolidation using finite elements
3.1 Introduction 82
3.2 Mathematical and numerical preliminaries 84
3.2.1 Numerical integration 84
3.2.2 Interpolation polynomials (shape functions) 88
3.2.3 Approximate solution of differential equations92
3.3 The displacement method 93
3.3.1 General procedure 93
3.3.2 Solving the equations 96
3.3.3 A computer program for the displacement method 98
3.4 Virtual work 100
3.4.1 Virtual work for a truss 100
3.4.2 Virtual work for a continuum 102
3.5 Displacement finite elements 104
3.5.1 The basic formula 104
3.5.2 Example: a plane truss element 106
3.5.3 Example: constant strain triangle 107
3.5.4 Higher-order elements 109
3.5.5 One-dimensional quadratic element 113
3.6 Finite elements for consolidation analysis 115
3.6 .1 The basic equations 115
3.6.2 A finite element program for consolidation analysis 119
3.6.3 Input specification for TINY 132
3.6.4 Consolidation analyses 133
4 Introduction to CRISP
4.1 Introduction 140
4.1.1 Summary of facilities 140
4.2 CRISP: how it's done (and why) 141
4.2.1 Element types 141
4.2.2 Solution techniques 142
4.2.3 Excavation, construction and increment blocks 144
4.2.4 Equilibrium check 144
4.2.5 Stop-restart facility 145
4.2.6 Frontal solver 145
4.3 CRISP portability and programming techniques 146
4.3.1 Portability 146
4.3.2 Pseudo-dynamic dimensioning 147
4.4 CRISP 149
4.4.1 CRISP organisation 149
4.4.2 The program 150
4.5 CRISP subroutine hierarchy 159
4.6 Adding new features 159
5 Cam-clay in finite element analysis
5.1 Introduction 161
5.2 Generalising Cam-clay 161
5.2.1 Three-dimensional stress states 161
5.2.2 The 'other' elastic property 16 16
5.3 The incremental stress-strain relations 164
5.3.1 Routine DCON 165
5.3.2 Routine DLIN 166
5.3.3 Routine DCAM 167
5.3.4 Routine DMCAM 170
5.4 Determining the Cam-clay parameters 172
5.4.1 Introduction 172
5.4.2 The frictional constant M 173
5.4.3 Slopes of the normal consolidation and swelling lines (λ and κ) 173
5.4.4 Location of CSL in $\left(e, \ln \left(p^{\prime}\right)\right)$ plot $\left(e_{\mathrm{cs}}=\Gamma-1\right)$ 174
5.4.5 ν or G 176
5.4.6 Horizontal and vertical permeabilities 177
5.5 In situ stresses 178

| 5.5.2 How in situ stresses are set up | 178 |
| :--- | :--- | ---: |
| 5.5.3 Two approaches for in situ stresses | 179 |
| 5.5.4 Wroth's method | 180 |
| 5.5.5 Different approaches compared | 182 |
| 5.5.6 Final comments on in situ stresses | 183 |
| | |
| | |
| metry of the finite element mesh | 185 |
| Introduction | 186 |
| Geometry part of the program | 193 |
| Nodal connectivity | 200 |
| Numbering the additional displacement nodes | 211 |
| Numbering the additional pore pressure nodes | 221 |
| Pre-frontal routines | 229 |

7 In situ stresses
7.1 Introduction 238
7.2 Subroutine list 239
7.3 Definition of principal arrays 240
7.3.1 Loads 240
7.3.2 Displacements 240
7.3.3 Geometry and transformation 241
7.3.4 Stresses and strains 241
7.3.5 Stiffness and flow matrices 241
7.3.6 Flow and coupling matrices 241
7.3.7 Integer arrays 241
7.4 Controlling routine 242
7.5 Control parameters and material properties 244
7.6 In situ stresses at integration points 246
7.7 Setting up the in situ stresses 246
7.7.1 Simulation of construction events 250

251
7.7.3 Integration point co-ordinates 255
7.7.4 Loads equivalent to in situ stresses 259
7.7.5 B matrix 261
7.7.6 Print out in situ stresses 265
7.8 Pressure loads and boundary conditions 267
7.8.1 Pressure loads 267
7.8.2 Fixities 270
7.9 Equilibrium check 274
7.9.1 Pressure loads 278
7.9.2 Self-weight loads (body forces) 282
7.9.3 Restrained nodes 285
7.9.4 Equilibrium check 286
79.5 Reactions 289
7.9.6 Initialising arrays 290
8 Analysis
8.1 Introduction 293
8.2 Increment block 294
8.3 Control routine 29
8.4 Loads 302
8.4.1 Loads of excavation/construction 302
8.4.2 Loads from body forces $30 f$
8.4.3 Load ratios 307
8.4.4 Loads from pressure along mesh boundary 309
8.5 Load increment loop 309
8.6 Element stiffness matrix 312
8.7 Consolidation component of stiffness matrix 317
8.7.1 Flow matrix 317
8.8 Use of indexes in stiffness calculations 321
8.9 Pre-frontal routines 327
8.10 Frontal solution 327
8.11 Frontal solver 336
8.12 Solution of the equations 337
8.13 Calculation of output parameters 345
8.14 Stop-restart facility 365
9 Examples
9.1 Introduction 367
9.2 User's guide to input 367
9.2.1 Introduction 367
9.2.2 General hints 368
9.2.3 Size of increments 368
9.2.4 User's guide to input 36
9.2.5 Start-stop facility 38.
9.3 Linear elastic: one-dimensional consolidation 387
9.4 Elastic analyse 390
9.4.1 Linear elastic - drained analysis 392
9.4.2 Non-homogeneous elastic model - drained analysis 395
9.4.3 Linear elastic - undrained analysis 396
9.4.4 Linear elastic - consolidation analysis 396
9.5 Undrained analysis - Cam-clay 400
9.5.1 Undrained analysis - normally consolidated clay 400
9.5.2 Undrained analysis - over-consolidated clay 403
9.6 Drained analysis - modified Cam-clay 406
9.7 Embankment construction 408
9.8 Excavation 411
9.9 Undrained triaxial test 412
Appendix A: Input specification 417
Appendix B: Mesh-plotting program using GINO-F 432
Appendix C: Explanations of error and warning messages 437
Appendix D: Incorporation of a new soil model 444
Appendix E: Incorporation of a new element type 449
Appendix F: Common block usage in small CRISP 464
Appendix G: Some notes on running CRISP 469
References 473
Subject Index 478
Program Index 484
Author Index 487

Preface

Engineers have to predict the behaviour of various materials when they are loaded by mechanical forces. Geotechnical engineers are no different to other engineers in this respect: they have to predict the behaviour of soil whereas other engineers deal with steel, concrete, wood, plastics or fluids. In describing the behaviour of materials, engineers use a number of conceptual 'models' which are simplifications of real behaviour. Examples of these models include linear elastic solids, perfectly plastic solids and viscous fluids. If we compare the behaviour of each engineering material with the appropriate conceptual model, then we will always find some differences in detail. However, the important point is that the conceptual model is often sufficiently accurate for the purposes of engineering analysis and design. Associated with each of the examples listed above there is a collection of standard solutions to commonly occurring problems to which the engineer can refer (i.e. the theories of elasticity, plasticity and fluid mechanics).

Soil behaviour conforms less to the models of material behaviour that we have mentioned so far than do most engineering materials. This is because soil is a two-phase material consisting of solid particles and water. Its response to being loaded is inherently more complex than the response of steel or concrete, for example. Another complicating factor arises because the distribution of soil properties in a typical deposit (such as stiffness and strength) is non-uniform. In particular, soil properties always vary with the depth below the ground surface and this will usually have to be taken into account in engineering design.

Terzaghi's effective stress principle was the first conceptual model which successfully accounted for the two-phase nature of soil. We believe that the theories known as 'Critical State Soil Mechanics' represent a similar step forward in describing, understanding and predicting soil behaviour. This book describes the critical state theories and contains an 8000 -line FORTRAN computer program written by the authors. This program, known by the acronym CRISP (CRItical State Program), uses the finite element technique and allows predictions to be made of ground deformations using critical state theories. It differs from most finite element programs used in geotechnics in that it is possible to predict the development of deformations with time. When used in this way the program enforces continuity of water flow through the soil as well as equilibrium of total stresses. Since both critical state soil mechanics and the finite element technique have been developed over the last 30 years, we set out below a brief account of the development and characteristic features of each area.

During the 1940s and 1950s, Cambridge University Engineering Department was at the centre of research into the use of the theory of plasticity for the design of steel structures. Part of this research programme involved the full-scale testing of steel portal frames, and the late Professor K.H. Roscoe (who was then a lecturer in soil mechanics in the department) was asked to assist with the design of the foundations. One question which Roscoe was asked to answer was: what would be the angular rotation of a concrete footing embedded in the ground when the portal frame applied an increasing moment to it? It was obvious that none of the existing calculations or theories in soil mechanics could answer this question. The theories that were then available dealt either with the maximum loads which bodies of soil could carry (i.e. ultimate strength theories) or with the prediction of settlements assuming that soil is a linear elastic material. What was needed was a theory which could describe the complete stress-strain behaviour of soil from small strains (when elasticity might be an appropriate description) to larger strains near failure.

Although Roscoe was certainly not the only person to realise the importance of devising an adequate constitutive model for soil, he was unique in the methodical way he devoted the next 17 years to establishing a large research group which had this as a major objective. During this period a number of publications described the progress towards this aim. Roscoe, et al. (1958) set out the importance of the concept of the critical void ratio line in describing the behaviour of soils. Roscoe and Schofield (1963) present a complete constitutive model which is successful in reproducing many important aspects of soil behaviour. This model material was given the name 'Cam-clay' by Schofield in 1965 and the book Critical State Soil Mechanics (Schofield and Wroth, 1968) elaborated in some detail the behaviour of the model material Cam-clay and compared this with the observed behaviour of real soils.

Schofield and Wroth approach soil mechanics from a completely different direction to most accounts of the subject. They start off with an introduction to some of the fundamental ideas of continuum mechanics and the theories of
elasticity and plasticity. Subsequently these ideas are combined with a small number of assumptions to produce a complete elasto-plastic constitutive model of soil behaviour (i.e. Cam-clay). Critical state soil mechanics includes many ideas developed by others (e.g. Coulomb, Terzaghi, Rendulic, Hvorslev) but its strength is the way that it combines in one theory aspects of soil behaviour previously treated in an unconnected fashion. Critical state soil mechanics is now being taught on an increasing number of undergraduate and postgraduate courses in geotechnical engineering. The major contribution that it currently makes to engineering practice comes from the possibility of interpreting and predicting basic soil properties. For example, from the results of a series of undraine, triaxial tests on a particular soil it is possible to predict how the same soil would behave in drained triaxial tests (and vice versa). The critical state soil parameters can then be used to arrive at a rational choice of the traditional soil properties (angle of friction, undrained shear strength) that are used in geotechnical design.

Proceeding along the lines described above, however, is only to use part of the potential of critical state soil mechanics. Simply reinterpreting basic soil properties does not allow (for example) the solution of Roscoe's original problem of the response of the buried footing. To solve problems such as this it is necessary to develop a calculation procedure which keeps track of the stressstrain behaviour of many small elements of soil surrounding the footing, simultaneously ensuring that the strain and stress state of each small element is compatible with and in equilibrium with its neighbours. The finite element method furnishes the basic technique which makes this possible.
The finite element method was introduced during the 1950s as a computerbased technique for the stress analysis of continuous structures. During the 1960s the method was extended to non-structural problems such as heat and fluid flow. The finite element method has grown to be the most popular technique for predicting the behaviour of deformable bodies in civil, mechanical and aeronautical engineering. Its popularity is mostly due to the fact that it is available to engineers as general-purpose computer programs. In principle all the engineer has to do is to describe the geometry of the problem at hand togeth with details of materail properties and the boundary conditions (e.g. externa, loads) for the analysis. Thus in geotechnical engineering the same computer program can be used to predict the behaviour of an excavation, foundation or slope. Until the last few years, relatively few engineers have had access to finite element programs because mainframe or minicomputers were required for their operation. Now, however, the continuing fall in the price of computing equipment and the development of more powerful microcomputers will soon put the use of finite element techniques within the scope of the majority of civil engineers.

Although the availability of finite element programs greatly extends the analytical power available to engineers, there are attendant dangers. Usually the engineer using a program has not participated in the programming. This division of engineering activity between program writers and users can lead to mistakes in engineering analysis and perhaps engineering failures. This is because there is
considerable scope for making errors when using a program, either because of a lack of understanding of the underlying principles or because of a simple mistake in preparing the input data for the program. There is also the possibility of a mistake (or 'bug') in the program itself. We believe that the best ways to avoid these possible problems are to improve the education of engineers and to make available to them the source listing of programs.

CRISP was developed over a number of years by research workers in the Cambridge University Engineering Department Soil Mechanics Group, starting in 1975. Since 1977 the authors have been responsible for the development of the program, but it is appropriate that we should acknowledge the early contribution of Mark Zytynski and the later influence and contributions of other members of the group (John Carter, Nimal Seneviratne, Chris Szalwinski and Scott Sloan). Brian Simpson (at Cambridge) and David Naylor (at Swansea) were pioneers in implementing critical state models in finite element programs. Their conclusions have also guided us.

We have revised, rewritten, and omitted many parts of the program for its publication here, and in doing this we have been guided by the following principles:
(a) the program incorporates the critical state description of soil behaviour in a fashion which is as close to the classical presentation of those theories as possible. Thus the reader can check the output of the program with hand calculations such as those presented in Chapter 2 and other texts on critical state soil mechanics. It is possible to think of the program as a testing apparatus in a numerical laboratory where soil structures made of Cam-clay can be tested. (The program also contains elastic descriptions of soil behaviour which might be used: (i) in preliminary analyses; (ii) in conjunction with critical state analyses to assess the importance of nonlinearity; (iii) to provide useful results in their own right - for example a consolidation analysis essentially generalises Terzaghi's one-dimensional theory to two dimensions and allows a study of the effects of anisotropic permeabilities);
(b) we have included those features appropriate for geotechnical engineering analysis which are (generally) not present in other published programs;
(c) we have written and documented the program so that it is possible to incorporate new soil models, element types and analysis options.

Our intention has been to produce a book which is self-contained in relation to the basic theories of continuum mechanics, critical state soil mechanics and finite element techniques as they relate to CRISP. The book contains a number of comments and some general advice as to when critical state theories might be expected to give good (or not so good) results. However, we have not included any comparisons of the data of soil tests with the predictions of critical state theories. Nor have we attempted to give a comprehensive account of the range of geotechnical problems to which finite elements can be applied. The application
of advanced analysis techniques such as those described in this book is an area where experience is still being accumulated. We refer readers to journals such as Géotechnique.
The authors are grateful to Neil Taylor and Ryan Phillips who read the drafts of several chapters and made many useful comments. Computing facilities were provided by the Universities of Cambridge and Surrey. The typescript of the book was produced using the GCAL text-processing program written by Dr. P. Hazel of the Cambridge University Computing Service, who always provided quick assistance with hardware and software problems.
The authors' work on CRISP was supported by various research contracts, in particular from the Transport and Road Research Laboratory and British Gas. In this connection we would like to thank Myles O'Reilly of the former organisation and Malcolm Howe of the latter. Peter Wroth was responsible for initiating the project and supervised it in the initial stages. Andrew Schofield took over this responsibility, and the authors are particularly grateful to him for his continued encouragement. It was his idea that the program should be made available beyond the environs of Cambridge.

Finally we must thank those who have used the program (either in their academic research or in their profession as engineers). They have discussed their analyses with us, have let us know about the program's shortcomings and have told us what they would like it to do. We have learned a lot from them. Thanks are also due to Robert Mair, Mike Davies, Marcio Almeida, Osamu Kusakabe, Ken Brady, Geoff Leach, Rick Woods, Mark Randolph, Goksel Kutmen, Nobuo Takagi, C.Y. Ah-Teck, David Wood, Sarah Springham, R.K.W. Lung, Trish Hensley, Hans Vaziri, Muni ram Budhu, K.S. Ravindran, Kevin Stone, Guy Houlsby, Shandri Nageswaran, Mr. Kwok, H.L. Goh, Dave Airey, John Mawditt, Ian Pyrah, Robin Andrews, Dickie Bassett, chrysanthi Savvidou, Steve Moore, . . . to name a few.

Arul Britto,
(network address: amb2@uk.ac.cambridge.phoenix)
Mike Gunn.
(network address: mjgl@uk.ac.cambridge.phoenix or gunn@uk.ac.surrey.syse)

The computer programs described in this book are available on magnetic tape for mini-computers, and on floppy disk for IBM PC-compatible micro-computers. The software may be purchased from:

Ellis Horwood Ltd.,
Market Cross House,
Cooper Street,
Chichester PO19 IEB,
West Sussex.

Mechanics

1.1 COMPUTATIONAL MECHANICS

Engineers now routinely use computer programs to predict the behaviour of buildings, bridges, mechanical components and volumes of soil when they are subjected to loads. As argued in the preface, it is important that engineers should understand the fundamental assumptions that are made in these analyses so they may appreciate and interpret the significance of the computer's numerical results. 'Computational mechanics' is the collective name given to the various theories and techniques which are involved. Mechanics is one of the oldest branches of natural science. (Archimedes ($287-212 \mathrm{BC}$), who was concerner with the equilibrium of levers and the buoyancy of submersed objects, is usua regarded as being the first theoretician in the field.) Some scientists anu engineers use the term today to describe the particular subject area of physics which deals with the laws governing the behaviour of 'rigid' bodies. Here, however, mechanics is regarded as encompassing such areas as continuum mechanics, the mechanics of materials, the strength of materials, the mechanics of deformable solids and the theories of elasticity and plasticity as well as the more traditional area covering the equilibrium or motion of rigid bodies.

In all branches of engineering the finite element method is becoming increasingly popular as a method of solving the systems of partial differential equations which describe various physical phenomena. These equations may describe the deformation of solid bodies, the flow of fluids or almost any effect which can be described by the laws of classical physics. The finite element method is advancing on two fronts: firstly it is replacing traditional methods of
analysis and secondly it is opening up new fields for analysis that were previously regarded as intractable. The reasons for the popularity of the method can easily be identified. A typical finite element program provides a general analytical tool which is capable of being applied to a wide range of geometrical configurations involving a spatial variation of material properties. Also the conceptual subdivision of a continuum into finite elements has a strong appeal to most engineers. Of course the advance of finite element analysis is closely connected to the increasing availability of digital computers for engineering analysis.

The traditional equations of continuum mechanics needs some modification when applied to soils. Some of these modifications are straightforward in nature: for example, the sign convention for stresses and strains. For most engineering materials, tensile stresses and strains are taken to be positive. Soil mechanics (and this book) uses the opposite sign convention (i.e. compressive stresses and strains are positive). For the sake of completeness, and to avoid any possible confusion, the next section sets out the basic definitions and equations for an elastic material using this sign convention. Other modifications to the equations of continuum mechanics require rather more thought. The final section of this chapter considers the modifications which are necessary to take account of the two-phase nature of soil. Again the basic soil stress-strain behaviour is taken as elastic. We must emphasise before passing on that this assumption of elasticity is not always adequate. Soil behaviour is markedly non-linear. Chapter 2 explains how this behaviour can be explained within the framework of work-hardening plasticity.

1.2 CONTINUUM MECHANICS

1.2.1 Stresses and equilibrium

Figs. 1.1 to 1.4 show the essential ideas of the equilibrium of bodies and stresses which are assumed in this book.

Fig. 1.1 shows a body of material that is acted on by a number of forces. If the body is in equilibrium then six equations of equilibrium can be written which relate the forces acting on the body to one another. Three of these equations state that the sums of all the forces in three mutually orthogonal directions are zero. The other three equations state that the sums of the moments of the forces about three orthogonal axes are also zero. If the body is not in statical equilibrium then these equations can be replaced by the appropriate forms of Newton's second law of motion.

Fig. 1.2 shows a planar cut across a similar body of material. Since the part of the body on either side of the cut must be in equilibrium there must be internal forces acting in the body (i.e. across the plane) to maintain the state of equilibrium. Using the equations of equilibrium described above, six resultants equivalent to this system of forces (three forces and three couples) can be found. Considering the forces transmitted across a small area δA inscribed on this plane, it is possible to define a measure of the local intensity of the internal force

Fig. 1.1 - Forces acting on a body

system. These are, of course, the internal stresses acting in the material. Taking the plane to be perpendicular to the x axis, internal stresses are obtained:

$$
\begin{aligned}
\sigma_{x} & =\operatorname{Limit}_{\delta A \rightarrow 0}\left(-\delta F_{x} / \delta A\right), \\
\tau_{x y} & =\operatorname{Limit}_{\delta A \rightarrow 0}\left(-\delta F_{y} / \delta A\right), \\
\tau_{x z} & =\operatorname{Limit}_{\delta A \rightarrow 0}\left(-\delta F_{z} / \delta A\right) .
\end{aligned}
$$

The reader should note that while six force resultants were necessary to describe the interaction of the two parts of the body, only three stresses are needed to describe the local intensity of forces at one particular point on the surface. This is because the force distribution is considered to be essentially continuous, and as the small area δA shrinks in size the force distribution over the area approaches a constant value. The couples arise from integrating the stresses over the cutting plane.

Fig. 1.3 - Definition of stress components

To completely define the state of stress at a point in the material it is necessary to consider the internal forces acting on three mutually perpendicular planes through the point. Thus stress components $\sigma_{y}, \tau_{y x}$ and $\tau_{y z}$ act on a plane perpendicular to the y axis and stress components $\sigma_{z}, \tau_{z x}$ and $\tau_{z y}$ act on a plane perpendicular to the z axis. Considering the equilibrium of an infinitesimal cube of material (Fig. 1.3):

$$
\begin{aligned}
\tau_{x y} & =\tau_{y x} \\
\tau_{y z} & =\tau_{z y} \\
\tau_{z x} & =\tau_{x z}
\end{aligned}
$$

Hence there are six independent components of stress at a point in the material.
Usually the state of stress in a body is not constant but varies from point to point. Considering the equilibrium of an infinitesimal cube of material in a varying stress field (Fig. 1.4), the following equations are obtained:

$$
\tau_{z y}
$$

Fig. 1.4 - Stresses acting in a varying stress ficld (only stresses appearing in the equilibrium equation for the y direction are shown)

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}=w_{x} \tag{1.1}\\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}=w_{y} \tag{1.2}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}=w_{z} \tag{1.3}
\end{equation*}
$$

where w_{x}, w_{y} and w_{z} are the body forces per unit volume in the directions of the x, y and z axis respectively. If the y axis points vertically upwards then the body forces corresponding to the self-weight of the soil are $w_{x}=0, w_{y}=-\gamma$ and $w_{z}=0$, where γ is the soil's unit weight.

1.2.2 Displacements and strains (compatibility)

When a material is strained, a typical point with co-ordinates (x, y, z) moves to a new position $\left(x+d_{x}, y+d_{y}, z+d_{z}\right)$. Except for the case when the body is given a rigid-body translation the displacements d_{x}, d_{y} and d_{z} will vary across the body (i.e. they will each be functions of x, y and z).

Fig. 1.5 shows three infinitesimal fibres of length $\delta x, \delta y$ and δz in a material and their new locations following straining. The direct strains $\epsilon_{x}, \epsilon_{y}$ and ϵ_{z} and the engineering shear strains $\gamma_{x y}, \gamma_{y z}$ and $\gamma_{z x}$ are given by

Fig. 1.5 - Definition of displacements

$$
\begin{align*}
\epsilon_{x} & =-\frac{\partial d_{x}}{\partial x} \tag{1.4}\\
\epsilon_{y} & =-\frac{\partial d_{y}}{\partial y} \tag{1.5}
\end{align*}
$$

$$
\begin{align*}
\epsilon_{z} & =-\frac{\partial d_{z}}{\partial z} \tag{1.6}\\
\gamma_{x y} & =-\frac{\partial d_{y}}{\partial x}-\frac{\partial d_{x}}{\partial y} \tag{1.7}\\
\gamma_{y z} & =-\frac{\partial d_{z}}{\partial y}-\frac{\partial d_{y}}{\partial z} \tag{1.8}\\
\gamma_{z x} & =-\frac{\partial d_{x}}{\partial z}-\frac{\partial d_{z}}{\partial x} \tag{1.9}
\end{align*}
$$

Most texts on continuum mechanics or elasticity use the symbols u, v and w for displacements. We use d_{x}, d_{y} and d_{z} to avoid confusion with the normal soil mechanics convention of u for pore water pressure and v for artificial seepage velocity. Note that a side effect of reversing the normal sign convection for strains is that a positive shear strain $\gamma_{x y}$ corresponds to an increase in the angle between two fibres initially aligned with the x and y axes (see Fig. 1.6).

Fig. 1.6 - Positive shear strain for our sign convention

1.2.3 Elastic stress-strain relations

If elastic material is stressed in the x direction by a direct stress σ_{x} then it experiences strains:

$$
\begin{aligned}
& \epsilon_{x}=\sigma_{x} / E \\
& \epsilon_{y}=-\nu \sigma_{x} / E \\
& \epsilon_{z}=-\nu \sigma_{x} / E
\end{aligned}
$$

where E is Young's modulus (or modulus of elasticity) of the material and ν is Poisson's ratio. A shear stress $\tau_{x y}$ gives rise to a shear strain:

$$
\gamma_{x y}=\tau_{x y} 2(1+\nu) / E
$$

The effects of three direct stresses and three shear stresses can be superposed to give the generalised form of Hooke's Law:

$$
\begin{aligned}
\epsilon_{x} & =\sigma_{x} / E-\nu \sigma_{y} / E-\nu \sigma_{z} / E \\
\epsilon_{y} & =-\nu \sigma_{x} / E+\sigma_{y} / E-\nu \sigma_{z} / E \\
\epsilon_{z} & =-\nu \sigma_{x} / E-\nu \sigma_{y} / E+\sigma_{z} / E \\
\gamma_{x y} & =\tau_{x y} 2(1+\nu) / E \\
\gamma_{y z} & =\tau_{y z} 2(1+\nu) / E \\
\gamma_{z x} & =\tau_{z x} 2(1+\nu) / E
\end{aligned}
$$

These equations can be written in matrix form:

$$
\left[\begin{array}{c}
\epsilon_{x} \tag{1.10}\\
\epsilon_{y} \\
\epsilon_{z} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{z x}
\end{array}\right]=\left[\begin{array}{cccccc}
1 / E & -\nu / E & -\nu / E & 0 & 0 & 0 \\
-\nu / E & 1 / E & -\nu / E & 0 & 0 & 0 \\
-\nu / E & -\nu / E & 1 / E & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / G & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / G & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / G
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{z x}
\end{array}\right]
$$

where G (which is equal to $E /(2(1+\nu))$) is the elastic shear modulus. These relations can be inverted to give stresses in terms of strains:
$\left[\begin{array}{c}\sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{x y} \\ \tau_{y z} \\ \tau_{z x}\end{array}\right]=\left[\begin{array}{cccccc}1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.5-\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.5-\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.5-\nu\end{array}\right]\left[\begin{array}{c}\epsilon_{x} \\ \epsilon_{y} \\ \epsilon_{z} \\ \gamma_{x y} \\ \gamma_{y z} \\ \gamma_{z x}\end{array}\right]$.
where

$$
A=\frac{E}{(1-2 \nu)(1+\nu)}
$$

This relation is often written in matrix notation:

$$
\begin{equation*}
\sigma=\mathbf{D} \epsilon \tag{1.12}
\end{equation*}
$$

It is sometimes more convenient to write these equations using the elastic parameters G (defined above) and K (the elastic bulk modulus). In fact it can be argued (see the next section) that it is preferable to use these parameters when defining the elastic properties of soil. K is the elastic modulus which appears in the equation relating volumetric strain to change in mean normal stress:

$$
\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / 3=K\left(\epsilon_{x}+\epsilon_{y}+\epsilon_{z}\right)
$$

where

$$
K=\frac{E}{3(1-2 v)} .
$$

The D matrix can be written:

$$
\left[\begin{array}{llllll}
D_{1} & D_{2} & D_{2} & 0 & 0 & 0 \\
D_{2} & D_{1} & D_{2} & 0 & 0 & 0 \\
D_{2} & D_{2} & D_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & D_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & D_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & D_{3}
\end{array}\right]
$$

where

$$
\begin{aligned}
& D_{1}=K+(4 / 3) G, \\
& D_{2}=K-(2 / 3) G, \\
& D_{3}=G .
\end{aligned}
$$

1.3 SOIL MECHANICS

1.3.1 Effective stresses

Saturated soil is a two-phase continuum consisting of solid particles and water in the pores. Terzaghi showed that the definition of effective stresses allows a rational treatment of the stress-strain behaviour. Effective stresses are defined by the equations

$$
\begin{aligned}
\sigma_{x}^{\prime} & =\sigma_{x}-u, \\
\sigma_{y}^{\prime} & =\sigma_{y}-u, \\
\sigma_{z}^{\prime} & =\sigma_{z}-u, \\
\tau_{x y}^{\prime} & =\tau_{x y},
\end{aligned}
$$

$$
\begin{aligned}
\tau_{y z}^{\prime} & =\tau_{y z} \\
\tau_{z x}^{\prime} & =\tau_{z x}
\end{aligned}
$$

where u is the pore water pressure.
Terzaghi's principle of effective stress states that all measurable effects of a change in stress in soils (such as compression, distortion, or a change in shearing resistance) are due to changes in effective stresses. Thus changing the pore water pressure and normal total stresses by equal amounts produces no strains.

One consequence of Terzaghi's principle is that when soil (either dry or saturated) is to be described by elastic stress--strain relations, the equations must refer to effective (rather than total) stresses. Thus it is appropriate to write

$$
\begin{equation*}
\sigma^{\prime}=\mathrm{D}^{\prime} \epsilon \tag{1.13}
\end{equation*}
$$

where the matrix D^{\prime} contains elastic moduli E^{\prime} and ν^{\prime} rather than E and ν. The significance of these 'effective stress parameters' (i.e. E ' and ν ') will be discussed further below. In geotechnical problems we are frequently interested in strains caused by changes in effective stresses and so we rewrite (1.13) as

$$
\begin{equation*}
\delta \sigma^{\prime}=\mathrm{D}^{\prime} \delta \epsilon . \tag{1.14}
\end{equation*}
$$

$\delta \sigma^{\prime}$ and $\delta \epsilon$ represent incremental changes in effective stresses and strains.

1.3.2 A physical interpretation of effective stress

A physical interpretation of soil effective stresses will be useful in thinking about soil behaviour and in particular the role of effective stresses as defined above. A good mental picture of soil structure is a collection of approximately spherical solid particles surrounded by water. ${ }^{\dagger}$ When loads are applied to the soil, the loads are transferred internally through the soil partly by the solid phase and partly by the water. Loads transferred by the solid phase are transferred between the particles via their points of contact. If a plane is constructed through a typical contact point (Fig. 1.7) then equilibrium of forces across the plane gives

$$
A \sigma=A_{\mathrm{w}} u+A_{\mathrm{s}} \sigma_{\mathrm{c}}
$$

where
A is the area of the plane
$A_{\mathrm{w}} \quad$ is the area of the plane across which the force is transmitted by the water
$A_{\mathrm{s}} \quad$ is the area of the plane across which the force is transmitted by the particle contact
\dagger Of course, neither clays nor most sands are really like this. The point is that the simplified 'mental picture' is capable of yielding results which are appropriate to real soil behaviour. It is not necessary to refine the mental picture to include factors such as actual particle shape.

Fig. 1.7 - Forces acting on a plane through particle contact point
$\sigma \quad$ is the total stress acting normal to the plane
$u \quad$ is the pore water pressure
$\sigma_{\mathrm{c}} \quad$ is the average contact stress between the two particles.
Now $A_{\mathrm{w}} \gg A_{\mathrm{s}}$, i.e. A_{w} is approximately equal to A, so it is possible to write
$\left(A_{\mathrm{s}} / A\right) \sigma_{\mathrm{c}}=\sigma-u$
Thus effective stresses can be regarded as the contact forces between soil particles averaged over the whole area of the soil.

1.3.3 Elastic constants for dry soil

How do we make use of the appropriate 'effective stress moduli' when soil is loaded? We shall answer this question by first considering the (relatively) simple case of dry soil with air in the pore space. The important point to appreciate is that the effective stress elastic moduli for soil describe the elastic properties of an assemblage of soil particles rather than the elastic moduli of the material which makes up the solid phase of the soil. Consider a cylindrical sample of dry soil in a triaxial apparatus. Again we think of the soil as being a collection of roughly spherical particles, now with elastic properties. ${ }^{\dagger}$ If an all-round total pressure is applied to the sample, then the strains can be calculated from (1.14).
\dagger Even when elastic modelling of soil is appropriate (for example: the calculation of small deformations of over-consolidated soils) this mental picture is not quite accurate. However, it turns out again that the conclusions we draw from this model are appropriate to real soil behaviour.
(In this case the effective stresses are the same as the imposed total stresses since the pore water pressure is zero.) The shear strains are zero and the volumetric strain can be calculated from

$$
\begin{equation*}
\delta V / V=\delta \sigma / K^{\prime} \tag{1.15}
\end{equation*}
$$

An examination of the collection of elastic soil particles would reveal some flattening of the contact points between the particles, but apart from this they would not change in shape very much. A very small change in volume of the particles would be accompanied by a larger change in volume of the void space (see Fig. 1.8). Thus the elastic bulk modulus K^{\prime} is measuring the bulk stiffness of the collection of particles rather than the stiffness of the material which constitutes those particles. In other words the soil is more 'squashy' than if there were no voids present.

Fig. 1.8 - Consider a coiuction of spherical particles in a 'simple cubic' packing (where each sphere is in contact with six neighbours). A 1% direct strain in three directions corresponds to a volumetric strain of 3% in the unit cell and thus the points, then approximately 0.02% of this strain is due to a change in volume of the solid particles and the remaining 2.98% is due to a change in volume of the
void space

1.3.4 Elastic constants for saturated soil

Now consider a specimen of saturated soil in a triaxial apparatus. The pore water pressure is initially at atmospheric pressure and the drainage tap is turned off before the soil is loaded. An all-round total pressure $\delta \sigma$ is now applied to the triaxial sample.
If V is the volume of the soil and V_{s} and V_{w} the volumes of the solid and water phases, then

$$
\begin{equation*}
V=V_{\mathrm{s}}+V_{\mathrm{w}} . \tag{1.16}
\end{equation*}
$$

Resulting from the change in all-round pressure the soil decreases in volume by δV. This overall decrease in volume consists of decreases in the solid and water phases δV_{s} and δV_{w} respectively. Clearly:

$$
\begin{equation*}
\delta V=\delta V_{\mathrm{s}}+\delta V_{\mathrm{w}} \tag{1.17}
\end{equation*}
$$

Note that the normal assumption is that saturated soil is incompressible when drainage is not allowed. Here, however, we are attempting an accurate analysis of the very small changes in volume which take place. These are given by

$$
\begin{align*}
\delta V / V & =\left(1 / K_{\mathrm{u}}\right) \delta \sigma, \\
\delta V_{\mathrm{w}} / V & =\left(1 / K_{\mathrm{w}}\right) \delta u, \\
\delta V_{\mathrm{s}} / V & =\left(1 / K_{\mathrm{s}}\right) \delta u, \tag{1.20}
\end{align*}
$$

where $K_{\mathrm{u}}, K_{\mathrm{w}}$ and K_{s} are the elastic bulk moduli of the soil composite and the two phases (i.e. water and solid) respectively. Equations (1.18) and (1.19) are definitions of K_{u} and K_{w}. Equation (1.20) perhaps needs some comment: the volumetric compression of the solid particles is caused by the increase in pore water pressure (see Fig. 1.9). The change in effective stress $\delta \sigma^{\prime}$ must be consistent with the two equations

$$
\begin{align*}
\delta \sigma & =\delta \sigma^{\prime}+\delta u, \tag{1.21}\\
\delta V / V & =\left(1 / K^{\prime}\right) \delta \sigma^{\prime} . \tag{1.22}
\end{align*}
$$

Fig. 1.9 - Change in volume of the solid particles is due mainly to the change in pore water pressure which acts on them

Equations (1.17) to (1.22) can be regarded as six equations in six unknowns ($\delta V, \delta V_{\mathrm{w}}, \delta V_{\mathrm{s}}, \delta \sigma^{\prime}, \delta u$ and K_{u}). Manipulation of the equations gives

$$
\begin{equation*}
K_{\mathrm{u}}=K^{\prime}+K_{\mathrm{w}} \frac{V}{V_{\mathrm{w}}} \frac{1}{\left(K_{\mathrm{w}} / K_{\mathrm{s}}\right)\left(V_{\mathrm{s}} / V_{\mathrm{w}}\right)+1} \tag{1.23}
\end{equation*}
$$

Since the elastic bulk modulus of the grains is about 30 times as large as that of water, (1.23) can be written:

$$
\begin{equation*}
K_{\mathrm{u}}=K^{\prime}+K_{\mathrm{w}}\left(V / V_{\mathrm{w}}\right) \tag{1.23a}
\end{equation*}
$$

A further simplification follows the observation that K^{\prime} is much smaller than K_{w} :

$$
\begin{equation*}
K_{\mathrm{u}}=K_{\mathrm{w}}\left(V / V_{\mathrm{w}}\right) \tag{1.23b}
\end{equation*}
$$

Here it is convenient to introduce the normal soil mechanics definition of the voids ratio:

$$
e=V_{\mathrm{w}} / V_{\mathrm{s}}
$$

and therefore:

$$
\begin{equation*}
K_{\mathrm{u}}=(1+1 / e) K_{\mathrm{w}} \tag{1.23c}
\end{equation*}
$$

Thus the bulk compressibility of saturated soil is effectively due to the bulk compressibility of the water phase alone (but taking account of the fact that the water only occupies a certain fraction of the soil volume). The approximations that we have made in obtaining this result are equivalent to taking $\delta V=\delta V_{w^{\prime}}, \delta V_{\mathrm{S}}=0, \delta \sigma^{\prime}=0$ and $\delta u=\delta \sigma$ in equations (1.17) to (1.22). Therefore the undrained loading produces no change in the effective stresses: the external load is carried by the pore water pressure.

Now suppose that the drainage tap is opened. The difference in pressure between the pore water in the sample and the water outside causes water to flow out of the sample. The rate at which this outflow takes place is controlled by the pore size of the soil, but eventually the pore water pressure in the sample returns to atmospheric pressure. The change in the effective stress is now equal to the change in the total stress $\left(\delta \sigma^{\prime}=\delta \sigma\right)$ and the volumetric strain can be calculated from

$$
\delta V / V=\delta \sigma / K^{\prime}
$$

This equation is identical to (1.15), which gave the volumetric strain for dry soil. When calculating the long-term soil strains we must clearly use the effective stress elastic properties. Soil is a rather special kind of material when examined from the viewpoint of traditional continuum mechanics. This is because the elastic volumetric 'strain' associated with the definition of effective bulk modulus is due to the disappearance of some water from a small element of soil rather than a change in volume of the individual components which make up the soil.

This example demonstrates the difference between two modes of soil behaviour which geotechnical engineers often identify. Drained deformation takes place when the soil is strained slowly and the water in the soil pores escapes as the water pressures return to their original (perhaps hydrostatic) values. In undrained deformation the straining takes place sufficiently quickly so that the water does not have the time to flow out of the pores, i.e. the soil
behaves essentially as an incompressible material. So far we have been looking at the volumetric behaviour of soil and we have identified two elastic bulk moduli: K_{u} appropriate for undrained behaviour and K^{\prime} appropriate for drained behaviour. In Table 1.1 we summarise the relationships between the full set of eight elastic moduli which describe isotropic behaviour.

Table 1.1

Elastic constant	
E^{\prime}	(Regarded here as an independent parameter)
ν^{\prime}	(Regarded here as an independent parameter)
K^{\prime}	$=E^{\prime} /\left(3\left(1-2 \nu^{\prime}\right)\right)$
G^{\prime}	$=E^{\prime} /\left(2\left(1+\nu^{\prime}\right)\right)$
E_{u}	$=1.5 E^{\prime} /\left(1+\nu^{\prime}\right)($ see text $)$
ν_{u}	0.5
K_{u}	Infinite
G_{u}	$=G^{\prime}($ see text $)$

Since the pore water has no shear stiffness it cannot make a contribution to the elastic shear stiffness of the soil. Thus the symbol $G\left(=G^{\prime}=G_{\mathrm{u}}\right)$ is usually used for shear modulus. Note that this implies $E^{\prime} /\left(2\left(1+\nu^{\prime}\right)\right)=E_{\mathfrak{u}} / 3$, and this equation is used to obtain the relationship between E^{\prime} and E_{u} quoted in Table 1.1.

It should now be possible to appreciate the comment in section 1.2 that K and G are elastic properties more appropriate for the description of soil behaviour (more appropriate than E and ν, that is). G remains the same for drained and undrained behaviour, and the effective bulk modulus K^{\prime} allows the calculation of drained volumetric strains. If partially drained behaviour is considered (that is before pore pressure equilibrium is finally reached) then G is again appropriate for the calculation of shear strains and some value of K between K^{\prime} and infinity could be assumed for the calculation of volumetric strains.

1.3.5 Flow of water through soils

The rate of flow of water through soil is controlled by two factors, firstly the size of the pores and secondly the gradient of water pressure which is tending to cause the flow. These two factors are encompassed in Darcy's Law:

$$
v=k i
$$

v is the 'artificial' velocity of the water (i.e. the flow rate divided by the whole cross-sectional area through the soil)
k is the soil permeability (independent of flow rate for a wide range of velocities)
$i \quad$ is the hydraulic gradient.
The definition of hydraulic gradient is shown in Fig. 1.10. Note that the position of the datum shown in the figure is arbitrary - only the gradient of hydraulic head appears in Darcy's Law. In this book the term 'excess pore pressure' is defined as the hydraulic head divided by the bulk density of water:

Fig. 1.10 - Hydraulic gradient $=-\delta h / \delta s$, a positive gradient causing flow from A to B

$$
\begin{equation*}
\bar{u}=h / \gamma_{\mathrm{w}} ; \tag{1.24}
\end{equation*}
$$

thus it is always possible to calculate the actual pore pressure from an excess pore pressure (and vice versa) by an equation of the form

$$
\begin{equation*}
\bar{u}=u+z \gamma_{w} \tag{1.25}
\end{equation*}
$$

where z is the height of the point at which the pore pressure is being measured above the arbitrary datum. The reader should note that our definition of hydraulic head is the standard one. The definition of excess pore pressure, however, differs from that given in some texts on soil mechanics. This differen arises because it is normal to consider steady seepage problems (where por pressures do not change with time) separately from consolidation problems (where pore pressures vary with time). In the former case, hydraulic head is the basic variable used in solving the problem whereas excess pore pressures are used in the latter case. For the purposes of our finite element formulation we need to link together these two quantities and this is done via (1.24). Consider an analysis of a consolidation problem with under-drainage (as in section 3.6.4). Using the present definition of excess pore pressure, the final state of steady seepage downwards has a linear variation of excess pore pressure. In contrast it would often be assumed that the excess pore pressure is the time dependent component of the pore pressure which eventually decays to zero. The point to note is that both definitions of excess pore pressure satisfy the basic differential equation derived by Terzaghi (Terzaghi and Frohlich, 1936):

$$
\frac{\partial \bar{u}}{\partial t}=c_{v} \frac{\partial^{2} \bar{u}}{\partial z^{2}}
$$

where c_{v} is the coefficient of consolidation.
Geotechnical engineers often need to predict the distribution of pore pressures in a mass of soil under the condition of steady seepage. The basic equation which must be satisfied at all points within the soil is obtained by considering the flow of water into and out of an infinitesimal element of so (Fig. 1.11) (under conditions of steady seepage there must be no volum. change):

$$
\begin{equation*}
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0 \tag{1.26}
\end{equation*}
$$

The permeability of the soil may be different in the directions of the three co-ordinate axes, and the general form of Darcy's Law is

$$
\begin{align*}
& v_{x}=-\frac{k_{x}}{\gamma_{w}} \frac{\partial \bar{u}}{\partial x} \tag{1.27}\\
& v_{y}=-\frac{k_{y}}{\gamma_{w}} \frac{\partial \bar{u}}{\partial y} \tag{1.28}
\end{align*}
$$

Fig. 1.11 - flow out of a small element of soil

$$
\begin{equation*}
v_{z}=-\frac{k_{z}}{\gamma_{w}} \frac{\partial \bar{u}}{\partial z} \tag{1.29}
\end{equation*}
$$

Substituting these relations into the equation of continuity (1.26):

$$
\begin{equation*}
k_{x} \frac{\partial^{2} \bar{u}}{\partial x^{2}}+k_{y} \frac{\partial^{2} \bar{u}}{\partial y^{2}}+k_{z} \frac{\partial^{2} \bar{u}}{\partial z^{2}}=0 . \tag{1.30}
\end{equation*}
$$

For the same permeability in all directions (i.e. $k_{x}=k_{y}=k_{z}$) this equation reduces to Laplaces equation which governs a number of other physical phenomena (e.g. the flow of electricity in a conducting medium and the stresses in an elastic bar under a torsional load).

These equations may be extended to the case of time dependent flow of water in soil. The basic equation now becomes

$$
\begin{equation*}
\frac{k_{x}}{\gamma_{\mathrm{w}}} \frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{k_{y}}{\gamma_{\mathrm{w}}} \frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{k_{z}}{\gamma_{\mathrm{w}}} \frac{\partial^{2} \bar{u}}{\partial z^{2}}+\frac{\partial v}{\partial t}=0 \tag{1.31}
\end{equation*}
$$

where the last term in this equation is equal to the rate of volumetric strain of a soil element.

This equation together with the equations of differential equilibrium, the equations defining effective stresses and the effective stress-strain relations are known as Biot's equations of consolidation (Biot, 1941). The one-dimensional form of these equations is precisely equivalent to Terzaghi's one-dimensional consolidation theory.

2

Critical State Soil Mechanics

2.1 INTRODUCTION

The theories of soil behaviour known as 'critical state soil mechanics' were developed from the application of the theory of plasticity to soil mechanics. It is possible to appreciate and use many of the ideas of critical state soil mechanics without making much reference to the theory of plasticity. Indeed there is a tendency to teach critical state soil mechanics in this way because many degree courses in civil engineering do not find room for a proper account of plasticity theory. We regret this. In our view a real appreciation of critical state soil mechanics requires a knowledge of plasticity theory. To understand how soil deformations can be predicted (for example by a finite element program such as CRISP) using the theories of critical state soil mechanics, familiarity with plasticity theory is essential. Hence the first few sections of this chapter are devoted to an explanation of some of the fundamental ideas in this theory.
Fig. 2.1 shows the stress-strain curve obtained from testing a bar of metal in a tension test. Initially the relation between stress and strain is linear (OA in the figure). If the bar is unloaded from any point on OA then the stress-strain relation for the material follows the same path but in the reverse direction to the origin. If the bar is loaded beyond A then subsequent unloading is also r reversible, even though part of the stress-strain relation is non-linear. However, there is a point B beyond which unloading is not reversible: this is called the yield point of the material. When the bar is loaded up to the point C and then unloaded, the path CD is followed. OD represents a permanent strain which remains on unloading. This permanent strain is known as the plastic strain experienced by the metal.

Fig. 2.1 - Stress-strain curve typical of many metals

Up to point B the behaviour of the bar is regarded as being elastic. It is the reversibility rather than the linearity which is the important feature of behaviour which distinguishes between elastic and plastic straining of a material. However, points A and B can often be regarded as being coincident for practical purposes. When the material is in a state represented by the point C , the total strain OE is made up of the plastic strain OD and an elastic strain DE which is completely recovered on unloading. The slope of the elastic unloading line CD is usually very close to the initial elastic loading portion OA.

Reloading the metal from the point D results in the line DC being followed until the point C is reached which is the new yield point of the material. Further loading follows a continuation of the original stress-strain curve until the maximum stress is reached (point F) when the bar fails. The stress at the point F (i.e. FG in the figure) is the strength of the metal in direct tension. This is often called the ultimate tensile strength or (UTS).

Suppose that two similar bars of the same metal are tested. The first has gone through a stress cycle OCD, but the second has not. The first bar has a higher yield point than the second and thus the material seems to be harder. The process of raising the yield point is called 'hardening' the material. The amount that the yield stress is raised is often linked to either the plastic strain or the mechanical work that is done on the material. Thus the terms 'strain-hardening' and 'work-hardening' are often used to describe this kind of behaviour

The type of behaviour described above is typical of an alloy of aluminium such as duralumin. Other metals (and soils) display plastic behaviour which is broadly similar to that described above, but the behaviour shows some differences in detail. Some of these differences are shown in Fig. 2.2. Fig. 2.2(a) shows the phenomenon of an upper yield point which is displayed by lowcarbon steels. Fig. 2.2(b) shows that, when a material is unloaded from tensile

Fig. 2.2(b) - The Bauschinger effect ($\sigma_{Y_{1}}>\sigma_{Y_{2}}$)

Fig. 2.2(a) - Upper and lower yield points for a mild steel

Fig. 2.2(c) - Anelastic behaviour: the shaded area represents an amount of energy dissipated during the 'elastic' hysteresis loop
yielding, it can yield in compression at a lower stress than if it were reloaded in tension. This is known as the Bauschinger effect. Fig. 2.2(c) shows the phenomenon of anelasticity or elastic hysteresis. A material which has been subject to elastic unloading and is then reloaded does not always follow exactly the same stress-strain path. The shaded area within the 'hysteresis loop' of the stress-strain curve represents an amount of energy which is dissipated during straining.

2.2 IDEALISATIONS OF PLASTIC BEHAVIOUR

Plasticity is a very useful feature of the behaviour of metals for a number of reasons. Firstly a large amount of plastic straining before failure (known as ductility) signals the imminent collapse of a structure before catastrophic failure occurs. Secondly the ability to deform metals plastically under high stresses is the basis of many manufacturing processes such as rolling, drawing, machining or pressing in dies. Thirdly the complete description of the strength of metals within the mathematical theory of plasticity allows buildings and mechanical engineering components to be designed to provide a factor of safety against overall collapse (rather than designing to prevent some local part of the structure from becoming overstressed).

The plastic behaviour of soils allows a rational treatment of bearing capacities of foundations and the failure of slopes, excavations and tunnels. It also allows complete description of the stress-strain behaviour of soils so that soil deformations can be predicted right up to failure. Admittedly the behaviour of soil is more complex than is accounted for by current elasto-plastic models of behaviour. However, attempts to produce new mathematical descriptions of soil behaviour invariably use the framework of elasto-plasticity
In order to predict the behaviour of engineering structures when plastic behaviour is involved, the first step is to choose an appropriate idealisation of plasticity. In such an idealisation the main features of the behaviour are identified and included in the description, but aspects of secondary importance are ignored. Fig. 2.3(a) shows the idealisation known as elastic-perfectly plastic. Here the first part of the stress-strain curve is linear and elastic until the material yields. The material then continues to deform at a constant yield stress. In the terminology of plasticity the material exhibits no strain-hardening. Fig. 2.3 (b) shows the simplest way of incorporating strain-hardening into an idealisation. When the material yields, the stress-strain curve is still linear but at a reduced slope. This type of behaviour is referred to as elastic-linear-strainhardening plastic. Sometimes (when only collapse loads are to be considered in a calculation) it is convenient to idealise the behaviour as rigid-plastic (see Fig. 2.3(c)).

The idealisations of plastic behaviour which have just been described will sometimes be suitable to describe the behaviour of soil. (Indeed the rigid-plastic idealisation underlies most stability calculations in soil mechanics.) However, soil exhibits a rather more complex behaviour than metals, and the main aim of this chapter is to describe a more appropriate idealisation.

To completely describe the stress-strain relations for an elasto-plastic material, four different types of statement are required.
(a) A yield function for the material. This generalises the concept of the yield stress described above to two- and three-dimensional stress states.
(b) A relationship between the directions of the principal plastic strain increments and the principal stresses.
(c) A flow rule for the material. This specifies the relative magnitudes of the incremental plastic strains when the material is yielding.
(d) A hardening law for the material. This is a relationship between the amount a material hardens and the plastic strain the material undergoes or the work that is done on the material when it is yielding.

Each kind of statement is considered in more detail in sections 2.3 and 2.4 .
(a) Elastic-perfectly-plastic

(b) Elastic, strain-hardening plastic

Stress

(c) Rigid, perfectly-plastic

Fig. 2.3 - Idealisations of plastic behaviour

2.3 YIELD FUNCTIONS

So far the discussion of plastic behaviour has been limited to the case of uniaxial straining - only one stress has been involved in describing the loading applied to the material. When a material is subjected to two- or three-dimensional states of stress, then whether the material is elastic or plastic will in general depend on all the stress components acting (which number six in the fully three-dimensional case). When material behaviour is isotropic (same properties in all directions), then it is only necessary to consider the values of the principal stresses ($\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}$, and σ_{c}).

2.3.1 Yield functions for metals

For the case of metals, two criteria for 'elastic breakdown' are due to Tresca and von Mises. Tresca's criterion states that plastic yielding starts when the maximum shear stress reaches a certain value k. This happens when the principal stresses satisfy the following equation:

$$
\begin{equation*}
\operatorname{Max}\left(\left|\sigma_{\mathrm{a}}-\sigma_{\mathrm{b}}\right|, \quad\left|\sigma_{\mathrm{b}}-\sigma_{\mathrm{c}}\right|, \quad\left|\sigma_{\mathrm{c}}-\sigma_{\mathrm{a}}\right|\right)=2 k \tag{2.1}
\end{equation*}
$$

This equation can be represented in principal stress space as the surface of a prism with a hexagonal cross-section, centred on the hydrostatic ($\sigma_{\mathrm{a}}=\sigma_{\mathrm{b}}=\sigma_{\mathrm{c}}$) axis (see Fig. 2.4). When the stress state of an element of material is represented as a point inside this surface, the material behaviour is elastic. When the stress state is described by a point on the surface, then the material is yielding. (Stress states outside the surface are impossible to attain.)

Fig. 2.4 - The Tresca yield surface
von Mises' criterion states that plastic yielding starts when the following equation is satisfied:

$$
\begin{equation*}
\left(\sigma_{\mathrm{a}}-\sigma_{\mathrm{b}}\right)^{2}+\left(\sigma_{\mathrm{b}}-\sigma_{\mathrm{c}}\right)^{2}+\left(\sigma_{\mathrm{c}}-\sigma_{\mathrm{a}}\right)^{2}=2 \sigma_{\mathrm{Y}}^{2} \tag{2.2}
\end{equation*}
$$

This criterion is equivalent to plastic yielding starting when the elastic strain energy due to shearing reaches a critical value. Here σ_{Y} is the yield stress in uniaxial tension. (Considering the stress state in uniaxial tension we see that Tresca's $k=0.5 \sigma_{\mathrm{Y}}$.) In principal stress space, (2.2) is equivalent to a cylindrical surface (Fig. 2.5) which coincides with the Tresca surface on the edges (i.e. where $\sigma_{\mathrm{a}}=\sigma_{\mathrm{b}}$ or $\sigma_{\mathrm{b}}=\sigma_{\mathrm{c}}$ or $\sigma_{\mathrm{c}}=\sigma_{\mathrm{a}}$).

Fig. 2.5 - The von Mises yield surface
In general a yield function for an isotropic material is written:

$$
f\left(\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}, \sigma_{\mathrm{c}}\right)=0,
$$

this equation representing a surface in three-dimensional stress space. The Tresca and von Mises yield criteria are two examples of the more general form. It is conventional to write the yield function in such a way that if one substitutes into the function the current stress state, then a negative value of the function indicates that behaviour is elastic (inside the yield surface). A zero value of the function indicates that yielding is taking place, and by convention positive values are not allowed.

2.3.2 Some yield functions suggested for soils

Now we turn to a yield surface perhaps more appropriate for soils. In 1773 the French engineer Coulomb (Coulomb 1773) introduced in his analysis of the thrust acting on a retaining wall the failure condition for soil (usually called the Mohr-Coulomb criterion) which is still in wide use:

Today, geotechnical engineers prefer to write this equation in terms of effective stresses:

$$
\begin{equation*}
\tau=c^{\prime}+\sigma^{\prime} \tan \phi^{\prime} . \tag{2.3}
\end{equation*}
$$

A.lthough this equation is normally interpreted in terms of a Mohr's circle plot, we can instead represent this failure criterion in the three-dimensional stress space that we have been using to describe the yielding of metals. This is achieved by rewriting the equation

$$
\sigma_{1}^{\prime}-\sigma_{3}^{\prime}=\sin \phi^{\prime}\left(\sigma_{1}^{\prime}+\sigma_{3}^{\prime}+2 c^{\prime} \cot \phi^{\prime}\right)
$$

where σ_{1}^{\prime} and σ_{3}^{\prime} are the major and minor principal effective stresses respectively. Taking account of the six possible permutations of the magnitudes of $\sigma_{\mathrm{a}}^{\prime}, \sigma_{\mathrm{b}}^{\prime}$ and $\sigma_{\mathrm{c}}^{\prime}$ (i.e. $\sigma_{\mathrm{a}}^{\prime}>\sigma_{\mathrm{b}}^{\prime}>\sigma_{\mathrm{c}}^{\prime}, \sigma_{\mathrm{a}}^{\prime}>\sigma_{\mathrm{c}}^{\prime}>\sigma_{\mathrm{b}}^{\prime}$, etc.) six planes are generated in ($\sigma_{\mathrm{a}}^{\prime}, \sigma_{\mathrm{b}}^{\prime}, \sigma_{\mathrm{c}}^{\prime}$) space. Thus the Mohr-Coulomb yield criterion is equivalent to the irregular hexagonal pyramid in principal effective stress space shown in Fig. 2.6. In fact the Mohr-Coulomb criterion represents an incomplete picture of the yielding of soils. Firstly, soils show evidence of volumetric yielding under isotropic stress changes where Mohr-Coulomb suggests elastic behaviour. Secondly, if one follows the normal approach of calculating plastic strains when yielding (as used for metals and described in section 2.4.2), then the predictions of expansive volumetric strains are unrealistic.

Fig. 2.6 - The Mohr-Coulomb yield surface

We conclude this section on yield surfaces with the yield surface proposed by Drucker \& Prager (1952). For some metal plasticity calculations, von Mises is more convenient than Tresca, and so Drucker and Prager believed it might be useful to 'round-off' the Mohr-Coulomb yield surface to give the conical surface for soils shown in Fig. 2.7. This has all the drawbacks of the Mohr-Coulomb yield surface and gives a worse fit to the data of soil failure. As a yield surface

Fig. 2.7 - The Drucker-Prager yield surface
for soils, it does not have much in its favour, and we include it partly to 'complete the set' and partly because the conical shape reappears in the Camclay model, not as a yield surface, but as the 'critical state cone' (see Chapter 5).

2.3.3 The hardening law

The hardening law generalises the concept of the uniaxial yield stress being increased by strain-hardening to more general stress states. Hardening a material can result in the yield surface either being enlarged or being translated in stress space (or perhaps some combination of the two). These two possibilities are illustrated in Fig. 2.8. The former is normally called 'isotropic-hardening' and the latter 'kinematic-hardening'. The kinematic-hardening assumption can describe behaviour such as the Bauschinger effect described earlier. Although the assumption of isotropic-hardening is less realistic for many materials, it is more often used because it is simpler to describe mathematically. If the loading applied to the material is monotonic, then the assumption of isotropic-hardening will be adequate (because the 'opposite' side of the yield surface is not encountered). The hardening law is incorporated into the yield surface equation by writing

$$
\begin{equation*}
f(\sigma, \mathrm{~h})=0 \tag{2.4}
\end{equation*}
$$

where h is a vector of hardening parameters. The hardening parameters will define the size of the yield locus and there will be some prescribed relationship between the hardening parameters and the components of the plastic strain (for a strain-hardening material). In the simplest case, there may be just one hardening parameter, say h_{1}, which may be the same as the yield stress in uniaxial tension, for example. One particular value of h_{1} will be relevant for a
yield locus of a certain size, and after strain-harding there will be a larger yield locus associated with a larger value of h_{1}.
(a) Isotropic-hardening

(b) Kinematic-hardening

Fig. 2.8 - Two methods of describing hardening

2.4 PLASTIC STRAINS

2.4.1 Co-incidence of principal axes

Consider a cube of material which is subjected to principal stresses $\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}$, and σ_{c} (Fig. 2.9(a)). A small incremental shear stress $\delta \tau$ is now applied to four faces of the cube. If the cube deforms elastically then the incremental strains are as shown in Fig. 2.9(b). If the cube deforms plastically then the incremental strains
are as shown in Fig. 2.9(c). In elastic behaviour the directions of the principal strain increments coincide with the directions of the principal stress increments. In plastic behaviour the directions of the principal strain increments coincide with the directions of the principal stresses (not the principal stress increments). This coaxiality of the principal strain increments and the principal stresses is associated with plastic theories describing isotropic material behaviour.

Fig. 2.9(b) - Elastic response
to an increment of shear stress

Fig. 2.9(c) - Plastic response
to an increment of shear stress

Fig. 2.9 - Elastic and plastic response of a cube subjected to shear (only the side view is shown; σ_{c} is the out-of-plane stress)

2.4.2 Flow rules

The flow rule for a plastic material gives the ratios of the plastic strain increments when the material is yielding in a particular stress state. Thus a flow rule describes the relative sizes of individual strain increments, but not their absolute sizes. The flow rule is given mathematical expression by the following equation:

$$
\begin{equation*}
\delta \epsilon^{\mathrm{p}}=\delta m \frac{\partial g}{\partial \sigma} \tag{2.5}
\end{equation*}
$$

In this equation, δm is known as the plastic multiplier (the reader should note that many writers use the symbol $d \lambda$ instead of δm : this usage is not applied here to avoid confusion with the use of λ in critical state soil mechanics). The function g is known as the plastic potential.

The use of a potential function is a natural way of describing a vector quantity which depends only on the location of a point in space. A potential function is a scalar function of position, and taking the partial derivatives of the potential with respect to the co-ordinate axes, a uniquely defined direction is obtained.

The plastic potential $g\left(\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}, \sigma_{\mathrm{c}}\right)=0$ defines a surface in principal stress space. If vectors representing plastic strain increments are plotted in stress space, then the strain increment vectors are normal to the potential surface (Fig. 2.10).

The form of the plastic potential function for a material could be determined by performing many careful experiments. However, for many materials, the yield function and the plastic potential appear to be the same: $g\left(\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}, \sigma_{\mathrm{c}}\right)=f\left(\sigma_{\mathrm{a}}, \sigma_{\mathrm{b}}, \sigma_{\mathrm{c}}\right)$. When $g=f$ it is often said that the condition of 'normality' holds (this is because vectors of plastic strain increment are normal to the yield locus). Alternatively this situation is sometimes described as being one of 'associated' flow, in contrast to the case when g is not equal to f and there is said to be 'non-associated' flow.

Fig. 2.10 - The plastic potential

Hill (1950) discusses the plastic deformation of metal crystal grains and comments 'It is likely, therefore, that there is a relation, from a statistical average over possible orientations of the grains in a polycrystal, between the
plastic potential g and the function $f(\sigma)$ defining the yield locus. It is not yet known what this should be, theoretically, for any particular metal.
'It seems, however, that the simple relation $g=f$ has an especial place in the mathematical theory of plasticity, for as will be shown later, certain variational principles and uniqueness theorems can then be formulated.'

Although normality ($g=f$) appears to be true for metals, we shall see that there has been some discussion (even controversy) as to whether it can be applied to soils.

2.4.3 Drucker's stability postulate

Drucker (1950, 1951) introduced a 'postulate of stability' which helps in understanding the physical significance of normality. The concept of stability is a familiar one in the consideration of engineering systems. Consider, for example, the case of a sphere resting on a (possibly non-flat) surface (Fig. 2.11). If the surface is concave upwards and the sphere is subjected to a small perturbing force then the response is stable (when the force is removed, the sphere returns to its original position). If, however, the surface is convex upwards, then the response is unstable. A flat surface gives a response which is 'neutral' in terms of stability. Note that in each case the sphere is initially in equilibrium; however, the stability of the equilibrium is different in each case.

Drucker considers a system which is in equilibrium in some stress state σ and which is then loaded by a small extra increment of load $\delta \sigma$. Drucker regards the incremental stress $\delta \sigma$ as being due to an external agency (i.e. external to the 'system' he is considering). Subsequently $\delta \sigma$ is removed. A stable system is one which absorbs work from the external agency, whereas an unstable system releases work. If the external agency is incapable of absorbing work from the system (for example, if it is supplied by a dead load placed on the system) then the system collapses. Schofield and Wroth (1968) illustrate these concepts in relation to the loads acting on a triaxial test system for soil, and the reader is referred there for a more detailed account. For our purposes it is sufficient to note that Drucker's definition of the stability of equilibrium corresponds to that in use in other branches of engineering (e.g. buckling theory in structures). As engineers we would always prefer to be dealing with stable systems which are capable of absorbing work if we subject them to small disturbing loads.
The plastic work done in a small increment of deformation is approximately $\sigma \delta \epsilon^{\mathrm{p}}+\left(\delta \sigma \delta \epsilon^{\mathrm{p}}\right) / 2 .^{\dagger}$ Drucker shows that his definition of stability corresponds to a value of $\delta \sigma \delta \epsilon^{\mathrm{p}}$ greater than or equal to zero, so Drucker is concerned with the sign of the second-order work term. In terms of a uniaxial test, stable deformation is equivalent to strain-hardening behaviour, whereas unstable deformation corresponds to strain-softening behaviour (see Fig. 2.12).
\dagger A consequence of the definitions of stresses and strains given in Chapter 1 is that the mechanical work done (per unit volume of material) is equal to the scalar product of the vectors of stress and incremental strain components.

(a) Stable equilibrium

(b) Unstable equilibrium

(c) Neutral equilibrium

Fig. 2.11 - Stability of equilibrium

Fig. 2.12 - Stable and unstable responses in a tension test

Why is Drucker's postulate equivalent to normality? Consider a small increment of stress $\delta \sigma$ applied to a plastic material which results in hardening i.e. a new yield locus is established (Fig. 2.13). In fact this hardening could be

Fig. 2.13 - Drucker's stability postulate
caused by several increments $\delta \sigma$, all starting from the same stress state (and directed outwards from the initial yield locus). The only possible direction of the plastic strain increment vector (satisfying Drucker's postulate) is that normal to the current yield locus. This is because it would otherwise be possible to find a possible $\delta \sigma$ which made an angle of greater than 90° with $\delta \epsilon$.

Drucker introduced his postulate in the context of metal plasticity where strain-hardening behaviour is the norm and systems are generally stable. Some have criticised the application of his postulate to situations (e.g. soils) where strain-softening can occur. We follow Palmer (1973) in asserting that the postulate is basically a classification of material response. In section 2.7.2 we shall examine the implications of Drucker's postulate for soil behaviour.

2.4.4 Frictional systems and plasticity theory

Systems with frictional interfaces have a certain similarity with perfectly-plastic solids. Consider the simple case of a rigid block resting on a plane subject to a horizontal force F and a vertical force N (Fig. 2.14(a)). When $F<\mu N$ there is no movement and the line $F=\mu N$ could be identified as a yield locus for the system. However, if one plots the incremental 'plastic' displacements for this system, it appears that normality does not apply (Fig. 2.14(b)). Drucker (1954) considers some cases of systems made of frictional blocks and concludes that they must be excluded from his definition of stable plastic systems.

Now soil strength is often described by a drained angle of friction. Hence the question immediately arises: is it legitimate to describe soil as a plastic material to which one can apply the principle of normality? Clearly the actual behaviour of a particulate medium such as clay or sand is much more complex than that of a block sliding on a plane. A possible answer to this question could come from performing tests on samples of soil and measuring the plastic strains. If the Mohr-Coulomb surface is taken as an appropriate yield surface (to which normality can be applied) then yielding should be accompanied by a constant

Fig. 2.14 - Lack of normality in a simple system with friction

(b) Heavily over-consolidated clays and dense sand

Fig. 2.15 - Typical stress-strain and volumetric strain response of soils when sheared in a triaxial apparatus
rate of negative volumetric strain (i.e. expansion of 'dilation'). In fact soils sometimes compress when they are sheared; sometimes they dilate; and sometimes they deform at constant volume. A typical pattern of behaviour for loose sands or drained tests on lightly over-consolidated clay would be compression during the first part of the test followed by eventual deformation at constant volume (Fig. 2.15(a)). In contrast, dense to medium-dense sands and heavily
over-consolidated clays tend to dilate initially and deform at constant volume later in the test (Fig. 2.15(b)). Therefore, at first sight, it seems that normality cannot be applied to soils. We shall show, however, that this more complex volumetric behaviour of soils can be described by a plastic theory of soil deformation that uses the normality principle.

2.5 CAM-CLAY

Cam-clay is the name given to an elasto-plastic model of soil behaviour. Thus Cam-clay is not a real soil in the sense that one cannot find deposits of it at some location in the ground. However, the Cam-clay equations can be used to describe many real soils if appropriate material parameters are chosen.

This section provides a complete description of Cam-clay. It is intended both as an introduction and as a ready-reference section to contain all the basic equations and definitions. First the symbolic notation used in describing Camclay is reviewed. Then the assumptions governing the relationships between volume and applied (isotropic) pressure are described. The critical state concept is then covered. Next the equations which govern plastic yielding are given. Later sections of the chapter show how the Cam-clay equations can be used to predict soil strengths and strains in triaxial tests. For the time being we omit one of the most interesting aspects of Cam-clay: its theoretical derivation. Thus our initial account of Cam-clay is descriptive, and equations are introduced without an attempt at justification. This comes in section 2.7.1.

2.5.1 Critical state parameters

Three parameters, p^{\prime}, q and V, describe the state of a sample of soil during a triaxial test. The parameters are defined:

$$
\begin{aligned}
& p^{\prime}=\frac{\sigma_{\mathrm{a}}^{\prime}+2 \sigma_{\mathrm{r}}^{\prime}}{3}=\frac{\sigma_{\mathrm{a}}+2 \sigma_{\mathrm{r}}}{3}-u \\
& q=\sigma_{\mathrm{a}}^{\prime}-\sigma_{\mathrm{r}}^{\prime}=\sigma_{\mathrm{a}}-\sigma_{\mathrm{r}}
\end{aligned}
$$

V is the specific volume, i.e. the volume of soil containing unit volume of solid material. (N.B. $V=1+e$, where e is the voids ratio.)
p^{\prime} is often called the mean normal effective pressure, and q the 'deviator stress'. The reader should note that these three parameters will vary during a test. ${ }^{\dagger}$ The progress of a soil sample during a triaxial test can be represented by a series of points describing a line in a three-dimensional space with axes p^{\prime}, V and q. Different types of test (drained, undrained, compression, extension and so on)
\dagger Unfortunately nearly every book dealing with critical state soil mechanics uses a slightly different notation for the same set of parameters. Schofield and Wroth (1968) use p, q and ν. Atkinson and Bransby (1978) use p^{\prime}, q^{\prime} and ν. We use the same notation as Wood (1984).
lead to different test paths in this ' $\left(p^{\prime}, V, q\right)$ space'. Critical state soil mechanics gives us a set of rules for calculating test paths in $\left(p^{\prime}, V, q\right)$ space: usually two of (p^{\prime}, V, q) are determined by the type of test and there is a simple procedure for determining the third.

We shall also describe the progress of tests with reference to $\left(p^{\prime}, q\right)$ and $\left(p^{\prime}, V\right)$ plots. These simply correspond to two orthogonal views of $\left(p^{\prime}, V, q\right)$ space (Fig. 2.16). The reader should also note that in the (p^{\prime}, V) plots, the p^{\prime} axis does not correspond to $V=0$: instead the V axis is started at a convenient value to illustrate the part of the (p^{\prime}, V) plot which is of interest.
(a) Three-dimensional (p^{\prime}, V, q) space

(b) $\left(p^{\prime}, q\right)$ plot (view in direction A)
q

(c) (p^{\prime}, V plot (view in direction B)

Fig. 2.16 - Two orthogonal views of $\left(p^{\prime}, V, q\right)$ space

There are also four parameters which are soil constants: $\mathrm{M}, \Gamma, \kappa$ and λ. These are introduced below. They describe the fundamental properties of soil with a given mineralogy. Other parameters are defined in terms of the seven already mentioned; for example the stress ratio $\eta=q / p^{\prime}$.

Corresponding to the stress parameters p^{\prime} and q are strain parameters v (volumetric strain) and ϵ (deviator strain):

$$
\begin{align*}
& v=\epsilon_{\mathrm{a}}+2 \epsilon_{\mathrm{r}} \tag{2.6}\\
& \epsilon=\frac{2}{3}\left(\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{r}}\right) . \tag{2.7}
\end{align*}
$$

v and ϵ describe the strains from the start of the test: we shall of ten make use of the symbols δv and $\delta \epsilon$ (for strain increments) where

$$
\begin{align*}
& \delta v=\delta \epsilon_{\mathrm{a}}+2 \delta \epsilon_{\mathrm{r}} \tag{2.8}\\
& \delta \epsilon=\frac{2}{3}\left(\delta \epsilon_{\mathrm{a}}-\delta \epsilon_{\mathrm{r}}\right) \tag{2.9}
\end{align*}
$$

The reason for the factor of $2 / 3$ that appears in the definition of shear strain ϵ is so that the work done by a small increment of straining is equal to $p^{\prime} \delta v+q \delta \epsilon$. Thus the stress and strain parameters correspond to one another in that multiplication leads to the correct evaluation of work done in deformation: the situation is the same as for stress and strain parameters σ_{x} and ϵ_{x}, etc. (section 2.4.3). The reader may care to confirm that $p^{\prime} \delta v+q \delta \epsilon=\sigma_{\mathrm{a}}^{\prime} \delta \epsilon_{\mathrm{a}}+2 \sigma_{\mathrm{r}}^{\prime} \delta \epsilon_{\mathrm{r}}$. The formula for work done is valid for drained, partially drained or undrained deformation; see Schofield and Wroth (1968, section 5.6).

2.5.2 Volume-pressure relations

If a sample of soil is subjected to isotropic compression (and swelling) tests, then it follows paths in (p^{\prime}, V) plots as shown in Fig. 2.17. This is basically similar to the more familiar ($\sigma_{\mathrm{v}}^{\prime}, e$) plots obtained from oedometer tests. In critical state theory the virgin compression, swelling and recompression lines are assumed to be straight in $\left(\ln \left(p^{\prime}\right), V\right)$ plots with slopes $-\lambda$ and $-\kappa$ respectively, as shown in Fig. 2.18. The equation of the isotropic virgin compression line (often called the isotropic normal consolidation line) is

$$
\begin{equation*}
V=N-\lambda \ln \left(p^{\prime}\right) \tag{2.10}
\end{equation*}
$$

where N is a constant for a particular soil. N is the value of V when $\ln \left(p^{\prime}\right)=0$, i.e. $p^{\prime}=1$: clearly the value of N depends on the units which are used to measure pressure. The units adopted here are $\mathrm{kN} / \mathrm{m}^{2}$, sometimes called kPa (kilopascals). Although N is a soil constant, it is related to those already defined $(N=\Gamma+\lambda-\kappa)$: this is demonstrated below. The equation of a swelling or recompression line is given by

$$
\begin{equation*}
V=V_{\kappa}-\kappa \ln \left(p^{\prime}\right) \tag{2.11}
\end{equation*}
$$

Fig. 2.17 - Typical (p^{\prime}, V plot of isotropic compression, swelling and recompression

Fig. 2.18 - Idealised ($\ln p^{\prime}, V$ plots in critical state theory
When moving up or down one of these ' κ-lines' the soil is over-consolidated. Equation (2.11) is sometimes written as

$$
\begin{equation*}
V_{\kappa}=V+\kappa \ln \left(p^{\prime}\right) \tag{2.12}
\end{equation*}
$$

The value of V_{κ} depends upon which κ-line the soil is on, but it stays constant while the soil is moving up or down the same line.

It is convenient here to introduce the parameter V_{λ}. The definition of V_{λ} is similar to that of V_{κ} :

$$
\begin{equation*}
V_{\lambda}=V+\lambda \ln \left(p^{\prime}\right) \tag{2.13}
\end{equation*}
$$

We have already encountered one particular λ-line, the isotropic normal consolidation line, when $V_{\lambda}=N$. Note that if V and p^{\prime} are specified, then V_{κ} and V_{λ} can always be determined using (2.12) and (2.13). Conversely, if V_{κ} and
V_{λ} are known then it is always possible to deduce V and p^{\prime} (see Fig. 2.19). Thus V_{κ} and V_{λ} can be regarded as a set of parameters describing the soil, which are an alternative to V and p^{\prime}.

It is worth noting that for very large effective pressures, (2.10) predicts values of V less than 1 (a physical impossibility). Clearly this equation represents an approximation to soil behaviour which is valid in the range of stresses of engineering interest.

Fig. 2.19 - Each point in a $\left(\ln p^{\prime}, V\right)$ plot is uniquely associated with a pair of values (V_{K}, V_{λ}) (and vice versa)

2.5.3 Critical state line

When soil samples are sheared they approach the Critical State Line (CSL). ${ }^{\dagger}$ The equations of the CSL are

$$
\begin{align*}
& q=\mathrm{M} p^{\prime} \tag{2.14}\\
& V=\Gamma-\lambda \ln \left(p^{\prime}\right) \tag{2.15}
\end{align*}
$$

M and Γ are constants for a particular soil. They determine the slope of the CSL in a $\left(p^{\prime}, q\right)$ plot and the location of the CSL in the ($\left.p^{\prime}, V\right)$ plot, respectively. ${ }^{\ddagger}$ Figs. 2.20(a) and 2.20(b) show the CSL in $\left(p^{\prime}, q\right)$ and ($\left.p^{\prime}, V\right)$ plots. Note that (2.15) is the equation of a λ-line with $V_{\lambda}=\Gamma$. The critical state line represents the final state of soil samples in triaxial tests when it is possible to continue to shear the sample with no change in imposed stresses or volume of the soil. Hence, at the critical state:
\dagger Strictly speaking this statement is true only when the effective stress path obeys the relationship $\delta q / \delta p^{\prime}>\mathrm{M}$ or $\delta q / \delta p^{\prime}<-\mathrm{M}$. However, this condition applies in all normal triaxial tests where one is shearing the sample to failure
\ddagger Of course, many people pronounce M as the capital English (rather than Greek) letter The reason for this (at first perhaps surprising) convention is that M represents a frictional constant for Cam-clay, and ' μ ' is used widely in mechanics to signify a coefficient of friction.

Fig. 2.20 - The critical state line in (a) (p^{\prime}, q) plot and (b) (p^{\prime}, V) plot (isotropic normal compression line is shown dashed in (b)

$$
\frac{\delta v}{\delta \epsilon}=0 ; \quad \frac{\delta q}{\delta \epsilon}=0 ; \quad \frac{\delta p^{\prime}}{\delta \epsilon}=0
$$

(2.14) and (2.15) describe a curved line in three-dimensional (p^{\prime}, V, q) space (Fig. 2.21).

Fig. 2.21 - The critical state line in (p^{\prime}, V, q) space is given by the intersection of of two planes: $q=M p^{\prime}$ and a curved vertical plane $V=\Gamma-\lambda \ln \left(p^{\prime}\right)$

2.5.4 Yielding of Cam-clay

First consider the $\left(\ln \left(p^{\prime}\right), V\right)$ plot in Fig. 2.18 rotated anti-clockwise through an angle of 90° (Fig. 2.22). This picture is basically the same as that for a linear work-hardening metal (Fig. 2.3(b)). However, a significant difference is apparent when comparing soils with metals. With soils we are seeing elasto-plastic behaviour associated with volumetric strains. The von Mises and Tresca yield functions for metal suggest that one can hydrostatically compress metals indefinitely without yielding taking place.

Compressin
strain
Fig. 2.22 - Volumetric straining of soils viewed as strain-hardening plastic behaviour
The next part of our description of the yielding of soils considers the effect of shearing a sample. Suppose that the state of the soil can initially be represented by the point A in a (p^{\prime}, V) plot (Fig. 2.23). The deviator stress, q, is now increased while p^{\prime} and V remain constant. Subsequently we shall see that this is what happens to an over-consolidated sample in an undrained triaxial test. As the test proceeds, the state of the sample can be represented by a point in the three-dimensional (p^{\prime}, V, q) space which lies directly above the original point (Fig. 2.24). The sample yields at a point such as B when the value of q is given by the following equation:

$$
\begin{equation*}
q=\frac{M p^{\prime}}{(\lambda-\kappa)}\left(\Gamma+\lambda-\kappa-V-\lambda \ln \left(p^{\prime}\right)\right) . \tag{2.16}
\end{equation*}
$$

(2.16) describes a surface in (p^{\prime}, V, q) space. Fig. 2.25 shows an isometric view of this surface. When the state of a specimen of soil can be represented by a point below the surface, then soil behaviour is elastic. Soil states on the surface indicate yielding, and it is impossible for soil samples to exist in states equivalent to points above the surface. For this reason the surface is known as the Stable State Boundary Surface (SSBS). Another way of writing (2.16) is

$$
\begin{equation*}
V_{\lambda}=\Gamma+(\lambda-\kappa)(1-\eta / \mathrm{M}) . \tag{2.17}
\end{equation*}
$$

Fig. 2.23 - Preparation of a soil sample by isotropic normal consolidation and then swelling

Fig. 2.24 - The yielding of a sample in $\left(p^{\prime}, V, q\right)$ space. Sample preparation follows the dashed lines which lie in the $q=0$ plane. Progress towards yielding is then along the vertical path AB which is parallel to the q axis.
(2.17) is probably the most useful form of the equation. Note that when η is set to zero we recover the equation of the isotropic normal consolidation line (EF in Fig. 2.25). If (2.14) is substituted into (2.17) then (2.15) is obtained. On the

Fig. 2.25 - The stable state boundary surface in (p^{\prime}, V, q) space
other hand, if (2.15) is substituted into (2.17) then (2.14) is obtained. This demonstrates that the CSL lies on the SSBS (GH in Fig. 2.25).
Although either (2.16) or (2.17) describes the combination of stresses that causes yielding, neither is the equation of a yield surface in the sense introduced in section 2.3.3. The reason for this is that V appears in both equations. The equation of a yield surface should be in terms of the current stresses together with a hardening parameter to fix the size. V is unable to fulfil the role of a hardening parameter because it changes for elastic stress increments inside a yield locus.

Elastic straining underneath the SSBS corresponds to movement along a κ line, with a corresponding change in V. Thus when an elastic sample is brought to the point of yield it must simultaneously lie both on the κ-line and on the SSBS. Therefore the intersection of the SSBS with the κ-line equation gives the current yield surface:

$$
\begin{equation*}
q=\mathrm{M} p^{\prime} \ln \left(p_{\mathrm{c}}^{\prime} / p^{\prime}\right) \tag{2.18}
\end{equation*}
$$

The form of this yield function is shown in Fig. 2.26. As we have mentioned above, elastic straining is governed by the κ-line equation, and thus in terms of (p ', V, q) space the state of the material must remain on an 'elastic wall' (Fig. 2.27). The 'point' of the yield locus lies on the isotropic normal consolidation line. p_{c}^{\prime} is the isotropic pre-consolidation pressure for a soil sample lying on a particular κ-line (Fig. 2.28).

Fig. 2.26 - The Cam-clay yield locus (the yield locus is assumed to be symmetric about the p^{\prime} axis)

Fig. 2.27 - Isometric view of an elastic wall

Fig. 2.28 - The size of the Cam-clay yield locus is determined by p_{c}^{\prime}, the isotropic consolidation pressure

2.5.5 Strains

Total volumetric and shear strains can be expressed as the sum of elastic and plastic components:

$$
\begin{align*}
& v=v^{\mathrm{e}}+v^{\mathrm{p}}, \tag{2.19}\\
& \epsilon=\epsilon^{\mathrm{e}}+\epsilon^{\mathrm{p}}, \tag{2.20}
\end{align*}
$$

and a similar pair of equations is valid for incremental strains

$$
\begin{align*}
& \delta v=\delta v^{\mathrm{e}}+\delta v^{\mathrm{p}}, \tag{2.21}\\
& \delta \epsilon=\delta \epsilon^{\mathrm{e}}+\delta \epsilon^{\mathrm{p}} . \tag{2.22}
\end{align*}
$$

Cam-clay corresponds to the following assumptions about elastic and plastic strains:

Elastic strains

$$
\begin{aligned}
& \delta v^{\mathrm{e}} \text { is calculated from the } \kappa \text {-line equation } \\
& \delta \epsilon^{\mathrm{e}}=0 .
\end{aligned}
$$

Plastic strains

$$
\delta v^{p}=\delta V_{\kappa} / V
$$

$\delta \epsilon^{\mathrm{P}}$ is calculated from the flow rule: $\delta \vartheta^{\mathrm{p}} / \delta \epsilon^{\mathrm{P}}=\mathrm{M}-\eta$.

2.5 TRIAXIAL TESTS ON CAM-CLAY

The equations of the previous section can be used to predict stress paths, shear strengths and strains in triaxial tests.

2.6.1 Preparing the sample

In each of the following examples the triaxial test sample is prepared by iso tropic normal consolidation to $p^{\prime}=p_{\mathrm{c}}^{\prime}$, followed by swelling to $p^{\prime}=p_{0}^{\prime}$. Fig. 2.29 shows the path followed by the specimen in a (p^{\prime}, V) plot. The value of V at the start of the test, V_{0}, can be calculated from the equations of the isotropic NCL and the κ-line as follows:

$$
\begin{aligned}
& V_{\mathrm{c}}=N-\lambda \ln \left(p_{\mathrm{c}}^{\prime}\right) \\
& V_{\kappa}=V_{\mathrm{c}}+\kappa \ln \left(p_{\mathrm{c}}^{\prime}\right)=V_{0}+\kappa \ln \left(p_{0}^{\prime}\right)
\end{aligned}
$$

hence

$$
\begin{equation*}
V_{0}=N-\lambda \ln \left(p_{\mathrm{c}}^{\prime}\right)+\kappa \ln \left(p_{\mathrm{c}}^{\prime} / p_{0}^{\prime}\right) \tag{2.23}
\end{equation*}
$$

Fig. 2.29 - Preparing the sample by isotropic normal consolidation and swelling establishes the initial yield locus of size p_{c}^{\prime}

In a $\left(p^{\prime}, q\right)$ plot, this establishes the initial stress state as inside a yield locus which intersects the p^{\prime} axis at $p^{\prime}=p_{c}^{\prime}$ (Fig. 2.29). In fact this sample preparation procedure has been described previously (but without the equations): see Fig. 2.24 for the view in (p^{\prime}, V, q) space.

2.6.2 Drained compression tests

In a standard drained compression test the cell pressure σ_{r} remains constant and the axial stress σ_{a} is increased. In this example it is assumed that the pore pressure is maintained at a back pressure of zero (i.e. atmospheric). Thus the Effective Stress Path (ESP) always corresponds with the Total Stress Path (TSP) (since $p^{\prime}=p$), and the ESP can be determined by considering the total stresses acting on the soil sample. On the other hand, if a constant back pressure were maintained, then there would always be a constant horizontal offset u between the total and effective stress paths. The initial state of the soil in a $\left(p^{\prime}, q\right)$ plot is $\left(p_{0}^{\prime}, 0\right)$. At a later point in the test, $\sigma_{\mathrm{r}}=p_{0}^{\prime}$ and $\sigma_{a}=p_{0}^{\prime}+x$ (say), so the soil sample can now be represented by the point $\left(\left(p_{0}^{\prime}+x / 3\right), x\right)$. Thus the ESP for the test is a line of slope 3 starting from ($p_{0}^{\prime}, 0$) (see Fig. 2.30). During the initial part of the test, before the ESP intersects the current yield locus at B (see the (p^{\prime}, q) plot in Fig. 2.31), the soil behaviour is elastic. After point B the soil is yielding and each stress state on BF is associated with a new (enlarged) yield locus. Finally, the soil fails when the ESP intersects the CSL (point F in Fig. 2.31). Note that the yield locus at failure, intersecting the p^{\prime} axis at H , corresponds to the κ-line intersecting the isotropic NCL at point H in the $\left(p^{\prime}, V\right)$ plot. If one knows the critical state parameters for the soil then it is straightforward to calculate the value of p^{\prime} and q at failure from the intersection of the ESP and the CSL:

$$
\begin{aligned}
& q=3 p^{\prime}-3 p_{0}^{\prime} \\
& q=\mathrm{M} p^{\prime}
\end{aligned}
$$

giving $p^{\prime}=3 p_{0}^{\prime} /(3-\mathrm{M})$ and $q=3 \mathrm{M} p_{0}^{\prime} /(3-\mathrm{M})$.

Fig. 2.30 - Drained ESP for a compression test

Fig. 2.31 - Drained compression test on Cam-clay (over-consolidation ratio $R=2$)

In the (p^{\prime}, V) plot in Fig. 2.31 the soil follows the κ-line while it is elastic (until point B) and then changes direction to move to failure on the CSL at point F. Each κ-line that the soil crosses corresponds to a yield locus in t^{\prime} $\left(p^{\prime}, q\right)$ plot, although Fig. 2.31 only shows the first and last of these. Since t value of p^{\prime} at failure is known, the value of V can be found from (2.15). Hence the volumetric strain to failure can be calculated as $\left(V-V_{0}\right) / V_{0}$.
Now consider a test on a sample which has a higher over-consolidation ratio ($R=p_{\mathrm{c}}^{\prime} / p_{0}^{\prime}$) so that its initial state A in the (p^{\prime}, V) plot is on the left-hand side of the CSL in a (p^{\prime}, V) plot. The progress of this sample in a drained compression test is shown in Fig. 2.32. Note that although the ESP appears to intersect the CSL in the (p^{\prime}, q) plot before yielding, in fact it is missing the CSL in the three-dimensional (p^{\prime}, V, q) space, as is made clear by examination of the test path in the (p^{\prime}, V) plot (Fig. 2.32). After yielding, the state of the sample moves back down the ESP to point F on the CSL. This is accompanied by the yield loci 'shrinking' rather than 'growing', as was the case for the sample considered earlier.

Fig. 2.32 - Drained compression test on a sample of Cam-clay with $R=7$

2.6.3 Calculation of strains in drained tests

In this section the procedures for calculating the strains in a drained triaxial test are set out as a series of itemised steps. Although we have so far only considered the standard compression test, these steps can be used to calculate the strains in other kinds of test. Basically, the strains are calculated for a number of increments of stress once the sample has yielded. Although there are a few situations where it is possible to obtain an analytical expression for the stressstrain curve (e.g. constant p^{\prime} tests), in general the procedure described here will be required.

1. Establish starting values of p^{\prime}, q, V and p_{c}^{\prime}.
2. Calculate values of p^{\prime} and q when yielding starts. This involves finding the intersection point of the drained effective stress path (ESP) and the current yield locus. In general one has to solve a non-linear equation because of the nature of the yield function. However, this can be done fairly quickly by hand by substituting a few values of p^{\prime} into both the yield locus and the ESP equation until the values of q are close.
3. Calculate the (elastic) volumetric strain up to this point. Since elastic shear strains are zero, $\delta \epsilon_{\mathrm{a}}=\delta \epsilon_{\mathrm{r}}$, and hence $\delta \epsilon_{\mathrm{a}}=\delta v / 3$.
4. Divide the ESP between the point of first yielding and the intersection with the CSL into a number of equal increments (say n). Then repeat the following steps for values of i from 1 to n.
5. Calculate the volumetric strain in increment i from the values of p^{\prime} and q at the start and end of the increment. (Values of V can be obtained from the equation of the SSBS.)
6. Calculate the elastic volumetric strain for this increment from the κ-line equation.
7. Calculate the plastic volumetric strain for this increment by subtracting the elastic strain calculated in 6 . from the strain calculated in 5 .
8. Calculate the shear strain for this increment from the plastic volumetric strain and the Cam-clay flow rule (use values of p^{\prime} and q corresponding to the start of the increment).
9. Use the shear strain obtained in 8. and the volumetric strain obtained in 5 . together with the basic definitions of these strains to calculate $\delta \epsilon_{\mathrm{a}}$ and δe_{r}.
10. Add $\delta \epsilon_{\mathrm{a}}$ to values calculated for previous increments to obtain a point on the q versus ϵ_{a} plot.

Fig. 2.33 contrasts the behaviour of the two samples that were considered in the previous section. The first strain-hardened after yielding (q increased) and exhibited compressive plastic volumetric strains. The second strain-softened (q decreased) and exhibited expansive volumetric strains. Note the similarity of these results with the experimental behaviour shown in Fig. 2.15.

2.6.4 Undrained compression tests

Now we consider the behaviour of a sample of Cam-clay in an undrained compression test. The total stress path for this test is identical to the total stress path for the drained case (because the total stress path is specified by the total stresses applied to the soil). During the whole of the undrained test, the specific volume must remain constant since no water is allowed to flow into or out of the soil. Although the total volumetric strain must be zero, elastic and plastic components of the strain can be non-zero as long as

$$
\begin{equation*}
v^{\mathrm{p}}+v^{\mathrm{e}}=0 \tag{2.24}
\end{equation*}
$$

Before the sample yields, the plastic volumetric strain v^{p} must be zero and therefore the elastic volumetric strain must also be zero. If the elastic volumetric strain is zero then there can be no change in p^{\prime}. In other words, the effective stress path in the (p^{\prime}, q) plot must be parallel to the q axis. Thus in the threedimensional $\left(p^{\prime}, V, q\right)$ space, the test path will be vertical before yield takes place. When the sample does yield, equal (and opposite in sign) values of v^{p} and

Fig. 2.33 - Stress-strain response for drained tests
v^{e} are possible and the test path now follows the constant V cross-section of the SSBS until the sample reaches the CSL (Fig. 2.34).

The final point of the test (and hence the soil's undrained strength) can be calculated by substituting the value of V_{0} from (2.23) into the critical state line equation (2.15). Thus:

$$
\begin{equation*}
p_{\mathrm{f}}^{\prime}=\exp \left(\left(\Gamma-V_{0}\right) / \lambda\right) \tag{2.25}
\end{equation*}
$$

and

Fig. 2.34 - Undrained compression test on Cam-clay ($R=1.5$)

$$
\begin{equation*}
c_{u}=(1 / 2) q_{\mathrm{f}}=(1 / 2) \mathrm{M} p_{\mathrm{f}}^{\prime}=(1 / 2) \mathrm{M} \exp \left(\left(\Gamma-V_{0}\right) / \lambda\right) \tag{2.26}
\end{equation*}
$$

The pore pressure at the end of the test is given by

$$
\begin{equation*}
u_{\mathrm{f}}=p_{0}^{\prime}+q_{\mathrm{f}} / 3-p_{\mathrm{f}}^{\prime} \tag{2.27}
\end{equation*}
$$

whereas the pore pressure at yield is given by

$$
\begin{equation*}
u_{\mathrm{y}}=q_{\mathrm{y}} / 3 \tag{2.28}
\end{equation*}
$$

Now consider a soil sample which is more heavily over-consolidated, starting at a point in a (p^{\prime}, V) plot such as that shown in Fig. 2.35. This sample also has an initial ESP which is vertical (following the same argument as before). Again, on yielding, the sample moves over the constant V cross-section of the SSBS until the CSL is reached. Initially the sample appears to strain-harden (q increases) but towards the end of the test it strain-softens (q decreases). However, both the strain-hardening and the strain-softening are associated with a decrease in the size of the yield locus.

Note that the isometric view of the SSBS shown in Fig. 2.25 was made up of constant V-lines and constant p^{\prime}-lines. Each constant V-line includes (the yielding) part of the undrained ESP for samples starting at that value of V.

Fig. 2.35 - Undrained compression test on Cam-clay ($R=8$)

Suppose that a sample is initially normally consolidated to a pressure p_{e}^{\prime}. Then the initial volume is given by

$$
V_{\mathrm{e}}=\Gamma+\lambda-\kappa-\lambda \ln \left(p_{\mathrm{e}}^{\prime}\right)
$$

Substituting this value of V_{e} into the equation of the SSBS (2.16), the following equation is obtained:

$$
\begin{equation*}
q=\frac{\mathrm{M} p^{\prime}}{(1-\kappa / \lambda)} \ln \left(p_{\mathrm{e}}^{\prime} / p^{\prime}\right) \tag{2.29}
\end{equation*}
$$

(2.29) is the equation of the undrained ESP for a sample initially normally consolidated to a pressure p_{e}^{\prime}. Over-consolidated samples at the same initial volume $V_{0}=V_{\mathrm{e}}$ have vertical ESPs until they intersect this line, after which they follow the same route to the critical state (Fig. 2.36).
Note that the undrained ESP has the same basic equation as the yield locus (2.18), except that M in (2.18) has been replaced by $M /(1-\kappa / \lambda)$ in (2.29) and p_{c}^{\prime} in (2.18) has been replaced by p_{e}^{\prime}. In fact the role of p_{e}^{\prime} or p_{c}^{\prime} is to fix the size of the undrained locus or yield locus respectively, and so the effect of the factor $1 /(1-\kappa / \lambda)$ is to 'stretch' the yield locus in the direction of the q axis to

Fig. 2.36 - The undrained surface for Cam-clay
form the undrained ESP equation. The fact $1-\kappa / \lambda$ occurs often when undrained tests are considered and so some writers (notably Wroth, 1984) have used the symbol Λ for this ratio.

The Cam-clay model gives an elegant account of the effect of overconsolidation on undrained shear strength. Consider a specimen which is normally consolidated to p_{c}^{\prime}, then allowed to swell back to an isotropic pressure of p_{0}^{\prime}, giving an over-consolidation ratio, $R=p_{\mathrm{c}}^{\prime} / p_{0}^{\prime}$. Then from (2.23), the initial volume V_{0} is given by

$$
V_{0}=\Gamma+\lambda-\kappa-\lambda \ln \left(p_{\mathrm{c}}^{\prime}\right)+\kappa \ln (R)
$$

V_{0} will remain the same during the test and so we can set this expression equal to $\Gamma-\lambda \ln \left(p_{\mathrm{f}}^{\prime}\right)$, where p_{f}^{\prime} is the value of p^{\prime} at the end of the test. Hence (after some manipulation):

$$
p_{\mathrm{f}}^{\prime}=p_{0}^{\prime} R^{\Lambda} \exp (-\Lambda)
$$

and the undrained shear strength c_{u} is given by

$$
\begin{equation*}
c_{\mathrm{u}}=(1 / 2) q_{\mathrm{f}}=(1 / 2) \mathrm{M} p_{\mathrm{f}}^{\prime}=(1 / 2) \mathrm{M} p_{0}^{\prime} R^{\Lambda} \exp (-\Lambda) \tag{2.30}
\end{equation*}
$$

(In fact we have just taken (2.26) one stage further by substituting in the appropriate value of V_{0}.) When $R=1,(2.30)$ gives the shear strength for a normally consolidated sample, so the effect of over-consolidation is expressed in the factor R^{Λ}. The experimental data of Ladd et al. (1977) support this basic relationship (see also Wroth, 1984).

It is also possible to obtain an expression for Skempton's pore pressure parameter as a function of the over-consolidation ratio. Substituting (2.29) and $q_{\mathrm{f}}=\mathrm{M} p_{\mathrm{f}}^{\prime}$ into (2.27), the following equation for Skempton's pore pressure parameter, A, at failure is then obtained:

$$
\begin{equation*}
A_{\mathrm{f}}=\frac{1}{3}-\frac{1}{\mathrm{M}}+\frac{R^{-\Lambda}}{\mathrm{M}} \exp (\Lambda) \tag{2.31}
\end{equation*}
$$

2.6.5 Calculation of strains in undrained tests

1. Establish starting values of p^{\prime}, q, V and p_{c}^{\prime}.
2. Calculate the value of q when yielding starts from the equation of the current yield locus. (The undrained ESP is vertical inside the yield locus.)
3. Note that both elastic shear strains are zero (by definition) and elastic volumetric strains are zero (because undrained). Hence ϵ_{a} and ϵ_{r} are also zero.
4. Divide the horizontal distance between the initial point and the critical state line in the (p^{\prime}, V) plot into a number of equal increments (say n). Then repeat the following steps for values of i from 1 to n.
5. Calculate the values of q at the end of the increment from the equation of the SSBS.
6. Calculate the elastic volumetric strain for this increment from the κ-line equation.
7. The plastic volumetric strain for this increment is equal to minus the elastic strain calculated in 6 . (The overall volumetric strain increment is zero because of undrained behaviour.)
8. Calculate the shear strain for this increment from the plastic volumetric strain and the Cam-clay flow rule (use values of p^{\prime} and q corresponding to the start of the increment).
9. Use the shear strain obtained in 8 . to calculate $\delta \epsilon_{\mathrm{a}}$ and $\delta \epsilon_{\mathrm{r}}$ (using the fact that the volumetric strain is zero).
10. Add $\delta \epsilon_{\mathrm{a}}$ to values calculated for previous increments to obtain a point on the q versus ϵ_{a} plot.

Fig. 2.37 shows plots of q and pore pressure versus ϵ_{a} for the two tests considered earlier. Note that although the pore pressure increases linearly with q during the initial (elastic) part of each test, following yield the behaviour is different, with the first specimen tending to generate positive pore pressures and the second negative pore pressures. The first test exhibits q increasing before failure, while the second ends with q decreasing.

2.6.6 Other types of triaxial test

The calculations described above for compression tests can easily be extended to other types of triaxial test (e.g. extension, constant p^{\prime}, etc.). In drained tests, one simply has a total stress path (equivalent to the ESP) inclined at some other angle in the $\left(p^{\prime}, q\right)$ plot, and it is a matter of simple geometry to calculate the intersection of the ESP with the CSL and the current yield locus. In undrained tests, although the total stress path will differ, the effective stress path remains the same. The calculation of the pore pressure in a test is again just a geometric exercise.

Fig. 2.37 - Stress-strain response for undrained tests

2.7 COMMENTS ON CAM-CLAY

The general concept of using a hardening plasticity model to describe the stressstrain behaviour of soils was first proposed by Drucker et al. (1957). Essentially, Drucker et al. suggested putting a spherical 'cap' on the 'Drucker-Prager cone', The cap could be enlarged (accompanied by a smaller enlargement of the cone) by hydrostatic loading of the soil. Their paper speculates about what happens to the cap on elastic unloading and during triaxial tests, but makes no firm proposals. The paper expresses doubts as to whether normality should be applied to the 'frictional' yielding on the cone (compare section 2.4.4). In constructing the critical state models, the Cambridge group took up some of the proposals of Drucker et al., and discarded others. In doing so they managed to produce a model of soil behaviour which is 'simple' in the sense that the model is derived from a small number of basic assumptions, yet the model manages to reproduce for the first time an appropriate description of volumetric response under shear What really sets the critical state models apart from other attempts to formulate elasto-plastic models for soils is the critical state line in the (p^{\prime}, V) plot. This allows a consistent and realistic treatment of both drained and undrained tests. Although the Cam-clay model was at first just proposed for stress ratios less than M, Schofield and Wroth (1968) extend the proposal for stress ratios greater than M (as we have done earlier in this chapter). However, they advance good reasons why the predictions of the model may not be as good in this region (see section 2.7.4).

2.7.1 Derivation of Cam-clay

Cam-clay is based on the following assumptions.
(a) The isotropic normal consolidation line has an equation:

$$
V=\Gamma+\lambda-\kappa-\lambda \ln \left(p^{\prime}\right),
$$

and isotropic swelling and recompression lines have equations:

$$
\begin{equation*}
V=V_{\kappa}-\kappa \ln \left(p^{\prime}\right) . \tag{2.11bis}
\end{equation*}
$$

Γ, λ and κ are soil constants.
(b) Elastic volumetric strains for Cam-clay are given by the κ-line equation. Elastic shear strains are zero (this is equivalent to taking an infinite value for the elastic shear modulus, G).
(c) When Cam-clay is yielding, the plastic work done is given by $M p^{\prime} \delta \epsilon^{\mathrm{p}}$. Thus:

$$
\begin{equation*}
p^{\prime} \delta v^{\mathrm{p}}+q \delta \epsilon^{\mathrm{p}}=\mathrm{M} p^{\prime} \delta \epsilon^{\mathrm{p}} \tag{2.32}
\end{equation*}
$$

(d) (2.32) represents a flow rule. Normality can be applied to this relation to give the equation of the Cam-clay yield locus.
(e) The size of the Cam-clay yield locus is fixed by specifing that the intersection of the yield locus with the p^{\prime} axis corresponds to the isotropic normal consolidation line.

Although there are experimental data supporting (c) (Roscoe et al., 1963), there is also a strong physical intuition about the nature of the deformation of soil underlying (2.32). According to Schofield and Wroth (1968):
"Consider a random aggregate of irregular "solid" particles of diverse sizes which tear, rub, scratch, chip and even bounce against each other during the process of continuous deformation. If the motion were viewed at close range we could see a stochastic process of random movements, but we keep our distance and see a continuous flow. At close range we would expect to find many complicated causes of power dissipation and some damage to particles; however, we stand back from the small details and loosely describe the whole process of power dissipation as "friction", neglecting the possibilities of degradation or of orientation of particles.'

(2.32) is rearranged:

$$
\begin{equation*}
\frac{\delta v^{\mathrm{p}}}{\delta \epsilon^{\mathrm{p}}}=\mathrm{M}-\frac{q}{p^{\prime}} \tag{2.33}
\end{equation*}
$$

From the condition of normality, the direction of the incremental plastic strain vector specified by this equation must intersect the yield locus at a right angle. Hence:

$$
\begin{equation*}
\frac{\delta \epsilon^{p}}{\delta v^{p}} \cdot \frac{\delta q}{\delta p^{\prime}}=-1 \tag{2.34}
\end{equation*}
$$

Combining (2.33) and (2.34), and taking the limit as δp^{\prime} and $\delta q \rightarrow 0$, a differential equation is obtained:

$$
\begin{equation*}
\frac{\mathrm{d} q}{\mathrm{~d} p^{\prime}}=-\mathrm{M}+\frac{q}{p^{\prime}} . \tag{2.35}
\end{equation*}
$$

(2.35) is integrated to obtain the equation of the yield locus. What follows is just mathematical manipulation: substitute $\eta=q / p$ 'and use the relation

$$
\begin{equation*}
\frac{\mathrm{d} \eta}{\mathrm{~d} p^{\prime}}=\left(p^{\prime} \frac{\mathrm{d} q}{\mathrm{~d} p^{\prime}}-q\right) /\left(p^{\prime 2}\right) \tag{2.36}
\end{equation*}
$$

to substitute for $\mathrm{d} q / \mathrm{d} p^{\prime}$, to obtain an equation $p^{\prime}\left(\mathrm{d} \eta / \mathrm{d} p^{\prime}\right)=-\mathrm{M}$ which can be directly integrated. ((2.36) comes from the standard rule for differentiating a quotient.) The resulting equation is $\eta=q / p^{\prime}=-\mathrm{M} \ln \left(p^{\prime}\right)+c$, where c is a constant of integration. The constant of integration is determined using (e) above; thus when $q / p^{\prime}=0, p^{\prime}=p_{\mathrm{c}}^{\prime}$, and the Cam-clay yield locus is arrived at:

$$
q=\mathrm{M} p^{\prime} \ln \left(p_{\mathrm{c}}^{\prime} / p^{\prime}\right)
$$

(2.18 bis)

The equation of the SSBS is obtained as follows: consider a sample of Cam-clay
which is yielding; then the current values of p^{\prime} and q must satisfy the equation of the yield locus. The current value of specific volume, V, is given by

$$
\begin{equation*}
V=\Gamma+\lambda-\kappa-\lambda \ln \left(p_{\mathrm{c}}^{\prime}\right)+\kappa \ln \left(p_{\mathrm{c}}^{\prime} / p^{\prime}\right) \tag{2.37}
\end{equation*}
$$

This equation follows exactly the same reasoning as in section 2.6.1. The next step is to eliminate p_{c}^{\prime} between (2.18) and (2.37), and the result is the equation of the SSBS.

$$
\begin{equation*}
q=\frac{\mathrm{M} p^{\prime}}{(\lambda-\kappa)}\left(\Gamma+\lambda-\kappa-V-\lambda \ln \left(p^{\prime}\right)\right) \tag{2.16bis}
\end{equation*}
$$

or alternatively (the preferred form):

$$
\begin{equation*}
V_{\lambda}=\Gamma+(\lambda-\kappa)(1-\eta / \mathrm{M}) \tag{2.17bis}
\end{equation*}
$$

Note that the equations of the critical state line have not been used anywhere in the derivation of any of the equations of this section. The assumptions can basically be boiled down to two statements:

1. The work done in plastic deformation is $\mathrm{M} p^{\prime} \delta \epsilon^{\mathrm{p}}$, which gives the flow rule and by integration the yield locus.
2. Elastic strains inside the yield locus correspond to movement on a κ-line. The size of the yield locus is fixed by the isotropic normal consolidation pressure p_{c}^{\prime} (given a convenient visual interpretation as the yield locus 'sitting on top of' a κ-line in (p^{\prime}, V, q) space).

From the point of view of the theory of plasticity, 1. is the yield function and 2 . is the hardening law. Both assumptions can be varied to produce slightly different (but basically similar) models.

When the rules for calculating strains (from plasticity theory) are applied to triaxial samples of Cam-clay, the samples end up in a condition defined by the critical state line equations, deforming at constant volume with no change in stress. This point is sometimes disguised by the way that critical state soil mechanics is taught, where the equations of the critical state line are described first (and therefore appear to be basic assumptions in the theory). Although this is probably the best way of explaining the theory to initiates, it has the unfortunate side-effect of hiding the small number of assumptions which are actually needed to produce a sophisticated description of soil behaviour.

Of course in practice the critical state line was 'discovered' first (Roscoe et al., 1958). From the present point of view it can be regarded as a theoretical consequence of the Cam-clay assumptions (Roscoe and Schofield, 1963).

2.7.2 The Cam-clay flow rule

Cam-clay resolves the dilemma (mentioned in section 2.4.4) about whether the principle of normatity can be applied to soils. In Cam-clay, normality is applied, but not to what was previously regarded as the appropriate yield surface (i.e.

Mohr-Coulomb or Drucker-Prager). Cam-clay separates the yield surface from the failure criterion: it is to the yield surface (i.e. (2.18)) that normality must be applied.

Fig. 2.38 shows the Cam-clay yield locus with superimposed incremental strain vectors. When yielding takes place with $\eta<\mathrm{M}$ then there are compressive volumetric strains (in drained tests) or there is a tendency to generate positive pore pressures. When yielding takes place with $\eta>M$ then there are dilative volumetric strains (in drained tests) or there is a tendency to generate negative pore pressures (in undrained tests). In the (p^{\prime}, V) plot, these two different kinds of behaviour are associated with soil samples which yield above and below (orto the right and the left of) the CSL respectively. The former kind of behaviou. is termed 'wet' (because the positive pore pressures cause the water to flow out of the soil), whereas the latter kind of behaviour is termed 'dry' (because the negative pore pressures result in water being sucked into the soil). Thus yielding is either 'on the wet side of critical' or 'on the dry side of critical'.

Fig. 2.38 - The Cam-clay flow rule

We can go further in distinguishing between wet and dry types of behaviour in the light of Drucker's postulate. Because the yield locus always shrinks on the dry side and enlarges on the wet side, the second-order work term $\delta \sigma \delta \epsilon^{\mathrm{p}}$ is always negative on the dry side (corresponding to unstable behaviour) and is always positive on the wet side (corresponding to stable behaviour). In situations where the soil is continually sheared in the same direction, the wet side behaviour corresponds to strain-hardening and the dry side behaviour corresponds to strain-softening (perhaps preceded by some strain-hardening).

Critical state soil mechanics gives a good qualitative account of how deformation proceeds in both 'wet' and 'dry' clays. Suppose that one particular zone in a 'wet' clay has strained more than neighbouring zones. This zone will have strain-hardened more than the surrounding soil and will thus be stronger. Further deformation takes place around this hardened zone and there is a tendency for the soil to deform in a uniform, homogeneous fashion. On the other hand, if a zone in 'dry' soil has deformed more than the surrounding soil, it will be weaker than the surrounding material. Further deformation will tend to be concentrated in this weakened zone, which will continue to strain-soften. The latter behaviour describes quite well the progressive formation of rupture surfaces in soil. Henkel (1956) made measurements of water contents close to a slip surface consistent with the behaviour described above.

There is often a good match between experimental data for 'wet' clays and Cam-clay (or modified Cam-clay) theory. On the 'dry' side, the match is not so good and the data of failure are better described by Hvorslev's equation (Schofield and Wroth, 1968). Atkinson and Bransby (1978) suggest that soils that hit the Hvorslev surface continue yielding until they reach the critical state. Although some soils follow this pattern, there are others which do not. Both approaches give the same undrained shear strength on the dry side, which tends to overpredict observed strengths for some soils. Although the Hvorslev equation may be useful in some contexts, our experience is that it does not have any advantages over Cam-clay when used with finite elements.

2.7.3 Modified Cam-clay

Although Cam-clay makes a significant step forward in the modelling of soil behaviour, there are some aspects of stress-strain modelling where it is deficient. Of course, it is not alone in this respect. Every theoretical description of material behaviour will have some successes in matching reality and some failures. The overall utility of a particular material idealisation will rest primarily with whether it successfully models those aspects of material response which are pertinent for the problem at hand.

Modified Cam-clay (Burland, 1965; Roscoe and Burland, 1968) addresses two particular dissatisfactions with the original Cam-clay modef: the point on the yield locus and the predicted value of K_{0} (the coefficient of earth pressure at rest). The objection to the point is to a certain degree aesthetic (it does not look right) and to a certain degree based on experimental evidence (the shear strains predicted by Cam-clay are too high at low stress ratios). In fact there is no theoretical objection to yield surfaces with slope discontinuities: Koiter (1953) shows that the plastic strain increment vector at such a point must lie within the 'fan' of possible directions (e.g. see Fig. 2.38 for the condition on the Cam-clay point). As we shall see in Chapter 5, Cam-clay predicts a value of $K_{0}=1$ for a normally consolidated soil where measured values are normally in the range 0.5 to 0.7 .

Modified Cam-clay changes the assumption for dissipated work in Cam-clay (i.e. (2.32)) to

$$
\begin{equation*}
p^{\prime} \delta v^{\mathrm{p}}+q \delta \epsilon^{\mathrm{p}}=p^{\prime} \sqrt{ }\left\{\delta v^{\mathrm{p} 2}+\left(\mathrm{M} \delta \epsilon^{\mathrm{p}}\right)^{2}\right\} \tag{2.38}
\end{equation*}
$$

and this changes the flow rule to

$$
\begin{equation*}
\frac{\delta v^{\mathrm{p}}}{\delta \epsilon^{\mathrm{p}}}=\frac{\mathrm{M}^{2}-\eta^{2}}{2 \eta} \tag{2.39}
\end{equation*}
$$

(compared with (2.33)).
As before, the flow rule can be integrated to give the modified Cam-clay yield locus:

$$
\begin{equation*}
q^{2}+\mathrm{M}^{2} p^{\prime 2}=\mathrm{M}^{2} p^{\prime} p_{\mathrm{c}}^{\prime} \tag{2.40}
\end{equation*}
$$

which is shown in Fig. 2.39. The modified Cam-clay yield locus is elliptical in shape: this is the main difference between modified Cam-clay and Cam-clay. Because of this different shape of the yield locus the vertical distance between the isotropic NCL and the CSL becomes $(\lambda-\kappa) \ln (2)$ rather than $\lambda-\kappa$.

Fig. 2.39 - The modified Cam-clay yield locus is elliptical
For the sake of completeness we summarise the equations for modified Camclay in the same order as we presented them for Cam-clay in section 2.5.
(a) Volume-pressure relations: the equation of the isotropic NCL is the same as before:

$$
V=N-\lambda \ln \left(p^{\prime}\right),
$$

(2.10 bis)
but $N=\Gamma+(\lambda-\kappa) \ln (2)$. The definitions of V_{λ} and V_{κ} are the same as before (equations (2.12) and (2.13)).
(b) Critical state line: the equations are the same as for Cam-clay (i.e. equations (2.14) and (2.15)).
(c) Yielding: the equation of the SSBS is now

$$
\begin{equation*}
V_{\lambda}=\Gamma+(\lambda-\kappa)\left\{\ln (2)-\ln \left(1+(\eta / M)^{2}\right)\right\} . \tag{2.41}
\end{equation*}
$$

(d) Ștrains: the same assumptions as for Cam-clay, with the exception of the flow rule which is given by (2.39).

The rules for calculating strains given in sections 2.6.3 and 2.6 .5 can be used to calculate the strains in triaxial tests, provided that the appropriate equations for the SSBS and the flow rule are used.
The established view is that there is not much difference between Cam-clay and modified Cam-clay for the purposes of making engineering predictions of behaviour. Broadly speaking this is true, but sometimes the difference can be more than would be expected. This is basically because of the way material parameters are chosen: a matter which is discussed in Chapter 5.

2.7.4 Cam-clay: out of date?

Since Cam-clay was proposed in 1963, many deficiencies have been pointed out, and many modifications proposed. It is therefore relevant to ask: is Cam-clay out of date? We believe that it is not, and that Cam-clay (or modified Cam-clay for that matter) will come to be regarded in much the same way as, for example, the Mohr-Coulomb failure criterion. We mean this in the sense that Cam-clay describes certain aspects of soil behaviour extremely well. Starting from a small set of material parameters there are powerful and (relatively) simple calculations that can be made. On the other hand, we do not claim that it provides a universal explanation of all geotechnical phenomena.

Laboratory tests on real soils demonstrate aspects of soil behaviour which are not predicted by the critical state theories. For example, a soil with a high clay fraction which undergoes large relative shear displacements usually exhibits a residual shear strength much lower than the critical state (Skempton, 1985). Recent laboratory tests using internal strain measuring devices have shown that a very wide range of soils has highly non-linear stiffnesses at low strain levels (Jardine et al., 1984). Some normally consolidated natural clays fail in undrained tests well before the critical state is reached. On the other hand, there has been success in using the Cam-clay models in geotechnical predicting, particularly where lightly over-consolidated clay is involved, e.g. embankments and oil tanks on soft foundations. In most geotechnical problems there will be one or two features of the basic soil behaviour which will determine (along with the loads in the system) the overall response. These features may or may not be those included in the critical state framework.

Although Cam-clay can be regarded as deficient in some respects, most attempts to refine theoretical predictions of soil behaviour make use of the concepts of critical state soil mechanics, rather than abandoning them completely. Perhaps the major area of the development of new constitutive equations for soils has been that of cyclic loading, relevant to dynamic loading in earthquakes or on offshore structures in the oil industry. Under the action of cyclic stresses, pore pressure in soil tends to build up a certain cumulative amount in each cycle. If one uses the Cam-clay (or modified Cam-clay) model in these circumstances, then the pore pressure increases in the first cycle, but after that remains constant. This problem can obviously be circumvented by abandoning the assumption of elasticity beneath the SSBS, and this route has
been followed by many. Mroz (e.g. Mroz and Norris, 1982) has proposed models with smaller yield loci 'nested' inside a larger yield locus. Dafalias (e.g. Dafalias and Herrmann, 1982) has proposed a 'bounding surface' model where the amount of plastic behaviour associated with a stress point inside the bounding surface depends on the distance to an image point on the surface. Another model with plasticity inside the traditional yield locus is suggested by Pender (1982). More recent models along these lines include a 'continuous plasticity' model proposed by Naylor (1985) and the 'spread work function' of Dean (1985). Some of these models have the promise of describing better anisotropic yielding and dry-side behaviour.
However, we should point out that all these models are more complicate than Cam-clay. If one of them is going to supplant Cam-clay then the extra work involved in doing calculations must be offset both by a better conceptual picture and by better numerical predictions.

Analysis of Consolidation using Finite Elements

3.1 INTRODUCTION

In Chapter 1 we presented the underlying assumptions and basic equations of Biot's consolidation theory. The system of partial differential equations that was obtained described the relationship between total and effective stresses, excess pore pressures, strains and artificial seepage velocities at one point in a body of soil. These equations were obtained by applying physical balance laws (describing equilibrium of stresses and continuity of volumetric strain with water flow) to infinitesimally small elements of soil. This chapter shows how the finite element method can be used to solve a particular boundary value problem where some combination of loads and drainage boundary conditions acts on a finite volume of soil.

Mathematically the solution of a particular problem is equivalent to finding some mathematical functions which define the time dependent distribution of displacements and excess pore pressure which satisfy the governing differential equations at all points in the 'domain' of the problem. These distributions must also satisfy some conditions on the boundary of the problem domain. For the excess pore pressure these boundary conditions will be either prescribed values of excess pore pressure or prescribed artificial velocities of water flow. The boundary conditions in the case of the stresses will be either prescribed displacements or prescribed distributions of stress. Traditional engineering mathematics is largely concerned with solving problems of this type. Establishing a solution to a particular problem involves a lot of mathematical manipulation, and so an engineer will normally make use of a 'standard' solution from a book or
academic journal. Although there are not many published solutions for consolidation problems, there are many standard solutions for the related equations of elastic stress analysis and steady seepage (see, for example, Timoshenko and Goodier (1970) or Poulos and Davis (1974) for stress analysis and Harr (1962) for seepage).

Whereas these mathematical or 'analytical' solutions are exact solutions of the relevant equations, the finite element method provides approximate solutions of the same systems of equations. The mathematical techniques used in obtaining these approximate solutions are not covered in most engineering courses and so we introduce them in this chapter. In our view, successful use of the finite element technique is dependent on engineering judgement rather than knowledge of the mathematics. Indeed we agree with Irons and his co-authors (Irons and Ahmad, 1980; Irons and Shrive, 1983) that the teaching of finite elements is becoming much too mathematical. The reasons for this trend are understandable: the finite element method for elastic stress analysis was originally developed on a largely intuitive basis. It is only recently that the underlying mathematics has come to be understood. It is possible to identify three stages in how finite element techniques for stress analysis have been formulated and interpreted over the last three decades:
(a) the method was regarded as an extension of matrix methods for the computerised analysis of structural frames. This method requires a 'stiffness matrix' describing the stiffness properties of one part of the structure. The only difference between a computer program for matrix analysis and one for finite element analysis is that the latter uses stiffness matrices which describe the stiffness of parts of a continuum. These matrices were calculated using structural theorems such as the principle of virtual work or Castigliano's theorem;
(b) the method was recognised as an application of the calculus of variations. In this classical method of engineering analysis the solution to a system of differential equations is obtained by converting the problem into an equivalent one of minimising a 'functional'. For example, solving a problem of elastic stress analysis is equivalent to minimising the total potential energy of the system;
(c) the method was recognised as a particular application of Galerkin's weighted residual method. Weighted residual methods obtain approximate solutions to systems of differential equations by arranging for the (hopefully small) error in the solution to be distributed in some manner throughout the continuum.

The important point to emphasise about these three different approaches is that each interpretation or formulation leads to an identical set of algebraic equations to be solved on the computer. Clearly it is largely a matter of taste how one sets up these equations. Weighted residual methods are now in fashion and while they are used in the following material we would prefer to be able to use a more
direct approach (like the virtual work principle for stress analysis). This is because we believe that the earlier approach is easier to understand and develops an 'engineering' approach to finite elements rather than relying on the mathematics. Unfortunately, there seems to be no direct counterpart of virtual work in fluid mechanics problems. However, when we come to transform the continuity equation in the standard way (to get it in a form suitable for computer solution), we notice a strong similarity with virtual work. Indeed, we can regard the continuity equation as being equivalent to a virtual power (or work) equation.

Since the scope of this chapter is wide, we now summarise the material and explain its arrangement:

1. The next section covers the mathematical preliminaries (numerical integration, interpolation polynomials, the approximate solution of differential equations and Green's theorem in the plane).
2. Section 3.3 presents the fundamentals of the 'displacement' (or 'stiffness') method of finite element analysis via a simple example using linear elastic springs.
3. Section 3.4 covers the virtual work principle. We include this section because we are aware that many engineers find the principle rather obscure. However, it turns out to be a very versatile and powerful tool in formulating finite element methods as well as the theory of structures.
4. Section 3.5 describes the basic theory for formulating the stiffness matrices of 'displacement' finite elements. This subject matter occupies everal chapters in other books on finite elements (where the reader is referred for a more detailed treatment).
5. Section 3.6 completes the chapter with a derivation of the finite element equations for consolidation analysis, a FORTRAN program implementing these equations and some examples of its use.

3.2 MATHEMATICAL AND NUMERICAL PRELIMINARIES

3.2.1 Numerical integration

When there is a need to calculate an integral in a computer program, two approaches are possible. The first approach is to take the expression to be integrated and to 'integrate the expression by hand'. The resulting formula is then coded directly in the computer program. The second approach is to perform the integration within the computer program using the techniques of 'numerical integration'. In the latter approach the integral is calculated as the weighted sum of values of the function of some points in the interval. The basic technique of numerical integration will be illustrated below by considering the calculation of areas under curves. Finite element programs usually use numerical integration to calculate the coefficients of element stiffness matrices: this is done in CRISP and also in the program in section 3.6.

First we consider the calculation of the area shown in Fig. 3.1. Mathematically we write this integration:

Fig. 3.1 - The function $f(x)=\sqrt{ }\left(100-x^{2}\right)$
where $f(x)=\sqrt{ }\left(100-x^{2}\right)$. Of course this is simply one quarter of the area of a circle of radius ten units $\left(\pi 10^{2} / 4=78.54\right)$. This example is convenient for illustrative purposes because none of the methods considered gives the exact answer. Thus the example will give a rough idea of the accuracy of the different methods. The three methods are known as the trapezoidal rule, Simpson's rule, and two-point Gaussian integration. When using one of these methods the interval between the limits of integration is split into a number of strips, as shown in Fig. 3.2. Each method then applies a different formula or 'rule' calculate the area, A, of a typical strip which starts at $x=x_{1}$ and ends at $x=x_{2}$ $\left(x_{2}=x_{1}+h\right)$.

Trapezoidal:

$$
A=\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=(h / 2) f\left(x_{1}\right)+(h / 2) f\left(x_{2}\right)
$$

Simpson:

$$
A=\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=(h / 6) f\left(x_{1}\right)+(2 h / 3) f\left(\left(x_{1}+x_{2}\right) / 2\right)
$$

$$
+(h / 6) f\left(x_{2}\right)
$$

Fig. 3.2 - Separate strips for numerical integration

Two-point Gaussian integration:

$$
\begin{aligned}
A= & \int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=(h / 2) f\left(x_{1}+h(1-1 / \sqrt{ } 3) / 2\right) \\
& +(h / 2) f\left(x_{2}-h(1-1 / \sqrt{ } 3) / 2\right)
\end{aligned}
$$

The presentation of these rules is simplified by the adoption of a co-ordinate system which is local to each strip. The local co-ordinate ξ is given by the expression

$$
\xi=\left(2 x-\left(x_{1}+x_{2}\right)\right) /\left(x_{2}-x_{1}\right)
$$

thus $\xi=-1$ when $x=x_{1}$ and $\xi=1$ when $x=x_{2}$ (at the midpoint of the strip $\xi=0$). The local and global systems are shown in Fig. 3.3. The integration rules are now written as follows.

Fig. 3.3-Local co-ordinate system adopted for numerical integration

Trapezoidal:

$$
A=\frac{h}{2} \int_{-1}^{+1} f(\xi) \mathrm{d} \xi=(h / 2) f(-1)+(h / 2) f(+1)
$$

Simpson:

$$
A=\frac{h}{2} \int_{-1}^{+1} f(\xi) \mathrm{d} \xi=(h / 6) f(-1)+(2 h / 3) f(0)+(h / 6) f(+1)
$$

Two-point Gaussian integration:

$$
A=\frac{h}{2} \int_{-1}^{+1} f(\xi) \mathrm{d} \xi=(h / 2) f(-1 / \sqrt{ } 3)+(h / 2) f(+1 / \sqrt{ } 3)
$$

(The $h / 2$ terms come from changing the integration variable, and are equal to $\mathrm{d} x / \mathrm{d} \xi$.)

Table 3.1 shows the result of applying these three rules with different numbers of strips.

Table 3.1

Number of strips	Trapezoidal rule	Simpson's rule	Two-point Gauss rule
1	50.00	74.40	79.61
2	68.30	77.09	78.91
4	74.89	78.03	78.67
8	77.25	78.36	78.59
16	78.08	78.48	78.56

The integration rules used in finite element programs are usually based on Gauss rules because they give superior accuracy for a given number of function evaluations. Another example of the calculation of the area under a curve will help explain the superiority of the Gauss rules. Consider the integral

$$
\int_{2}^{6}\left(5+x-(3 / 4) x^{2}+(1 / 8) x^{3}\right) \mathrm{d} x
$$

Fig. 3.4 shows the area equivalent to this integral. First we write this integral in terms of local co-ordinates:

$$
2 \int_{-1}^{+1}\left(5+2 \xi+3 \xi^{2}+\xi^{3}\right) d \xi
$$

Integrating analytically we obtain $A=24$. Applying the trapezoidal rule (using one strip) gives the area as 32 . The geometric interpretation of the trapezoidal rule is quite straightforward: the cubic curve is approximated as a straight line and the integral is equal to the area of the trapezium. The principle underlying Simpson's rule is similar: only now the curve is approximated as the quadratic curve which passes through values of the function at the two end points and the

Fig. $3.4-\int_{8}^{6}\left(5+x-(3 / 4) x^{2}+(1 / 8) x^{3}\right) \mathrm{d} x$
midpoint of the interval. Applying Simpson's rule, the area is evaluated as 24. At first sight this result is surprising: we have assumed a quadratic approximation to cubic curve, yet the exact answer has been obtained for the area beneath the curve. In fact this result is not fortuitous - it has happened because we have been wise (or perhaps lucky) in the choice of points to 'sample' the function. This prompts the question: is there a way of choosing the sampling or integration points to achieve optimum accuracy? As we have implied above, the answer is 'yes', and it is the Gauss rules which represent that optimum choice. Using the two-point Gauss rule on the above example, the exact answer (24) is again obtained. In general a Gauss rule with n integration points exactly integrates a polynomial including terms up to the power $2 n-1$.

3.2.2 Interpolation polynomials (shape functions)

Underlying the derivation of the integration rules described in the previous section is the concept of the interpolation polynomial. If one knows the values of a function at (say) three separate points in some interval, then it is possible to fit a quadratic curve to the three points.

Consider the general quadratic

$$
\begin{equation*}
f=c_{0}+c_{1} x+c_{2} x^{2} \tag{3.1}
\end{equation*}
$$

The three coefficients c_{0}, c_{1} and c_{2} are uniquely determined by the three values of the function, and can be obtained by substituting into (3.1) three times and solving the resulting equations. In fact one can write down the quadratic straight away as

$$
\begin{align*}
f= & f_{1} \frac{\left(x_{3}-x\right)\left(x_{2}-x\right)}{\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right)}+f_{2} \frac{\left(x_{3}-x\right)\left(x_{1}-x\right)}{\left(x_{3}-x_{2}\right)\left(x_{1}-x_{2}\right)} \\
& +f_{3} \frac{\left(x_{2}-x\right)\left(x_{1}-x\right)}{\left(x_{2}-x_{3}\right)\left(x_{1}-x_{3}\right)} . \tag{3.2}
\end{align*}
$$

It is possible to see by substituting $x=x_{1}$ etc. that this must be the corr equation of the quadratic. An expression in this form is known as a Langragian interpolation polynomial, and the idea can clearly be extended to any number of points. Expressions of this form arise quite often in finite element theory where the notation

$$
f=f_{1} N_{1}+f_{2} N_{2}+f_{3} N_{3}
$$

is often adopted and each of the N_{i} is referred to as a 'shape function'.

3.2.3 Approximate solution of differential equations

The problem of steady seepage is used to demonstrate the basic technique. The problem we choose to solve is that of radial seepage away from a borehole which contains water under a pressure which is maintained at a constant value. As shown in Chapter 1 the solution of seepage problems is equivalent to solving the partial differential equation known as Laplace's equation subject to the appropriate boundary conditions. In the case of cylindrical radial symmetry this equation can be written:

$$
\frac{\mathrm{d}^{2} \bar{u}}{\mathrm{~d} r^{2}}+\frac{1}{r} \frac{\mathrm{~d} \bar{u}}{\mathrm{~d} r}=0
$$

The problem to which a solution is sought is: what is the distribution of excuo pore pressure in the soil if the internal boundary is maintained at an excess pore pressure of 10 kPa and the external boundary is maintained at zero excess pore pressure (Fig. 3.5)? The exact solution can be obtained by integrating analytically:

$$
\pi=\frac{10 \ln (16 / r)}{\ln (16)}
$$

To find an approximate solution of the problem, the distribution of excess pore pressure is represented by a quadratic equation:

$$
\bar{u}=c_{0}+c_{1} r+c_{2} r^{2} .
$$

As above, this is conveniently written:

Fig. 3.5 ~ Cylindrical steady seepage from a borehole

$$
\begin{aligned}
& \bar{u}= \bar{u}_{i} \\
& \frac{\left(r_{0}-r\right)\left(r_{c}-r\right)}{\left(r_{0}-r_{i}\right)\left(r_{c}-r_{i}\right)}+\bar{u}_{c} \frac{\left(r_{0}-r\right)\left(r_{i}-r\right)}{\left(r_{0}-r_{c}\right)\left(r_{i}-r_{c}\right)} \\
&+\bar{u}_{0} \frac{\left(r_{c}-r\right)\left(r_{i}-r\right)}{\left(r_{c}-r_{0}\right)\left(r_{i}-r_{0}\right)} .
\end{aligned}
$$

Adopting the appropriate values (i.e. $\bar{u}_{i}=10, \bar{u}_{0}=0, r_{i}=1, r_{c}=8.5$ and $r_{0}=16$):

$$
\begin{equation*}
\bar{u}=\frac{10(16-r)(8.5-r)}{112.5}+\frac{\bar{u}_{c}(r-1)(16-r)}{56.25} . \tag{3.3}
\end{equation*}
$$

Since the excess pore pressures on the two boundaries are known, there is effectively one value of excess pore pressure (taken for convenience at the midpoint between the internal and external boundaries) which defines the variation throughout the soil. How can a value be assigned to this single unknown to furnish a 'good' approximate solution to the problem, bearing in mind that it will not be possible to obtain the exact (logarithmic) solution?
The method to be described for doing this belongs to a group of methods known as weighted residual methods. The basic procedure is to take an expression for the unknown pore pressure (such as (3.3) above) and to substitute it into the differential equation. For each value of r the approximating function will not satisfy the differential equation exactly, but there will be an error or
residual: $R(r)$. A weighted residual method makes this error as small as possible by applying the condition

$$
\begin{equation*}
\int_{V} W R \mathrm{~d}(\mathrm{vol})=0 \tag{3.4}
\end{equation*}
$$

where W is a weighting function: different weighted residual methods make use of different weighting functions.
According to Crandall (1956), Courant was the first to classify the different methods of obtaining approximate solutions to differential equations as 'weighted residual methods'. We shall make use of the method proposed in 1915 by Galerkin (Galerkin, 1915), who suggested that the weighting functions w should be the same as the interpolation (or shape) functions. Thus we write the distribution of excess pore pressure as

$$
\begin{equation*}
\bar{u}=N_{i} \bar{u}_{i}+N_{c} \bar{u}_{c}+N_{0} \bar{u}_{0}, \tag{3.5}
\end{equation*}
$$

then the weighting function is taken as

$$
\begin{equation*}
W=N_{i} W_{i}+N_{c} W_{c}+N_{0} W_{0}, \tag{3.6}
\end{equation*}
$$

where W_{i}, W_{c} and W_{0} are arbitrary scalars.
The weighted residual equation is:

$$
\begin{equation*}
\int_{V} W\left[\frac{\partial^{2} \bar{u}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \bar{u}}{\partial r}\right] r \mathrm{~d} r=0, \tag{3.7}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\int_{V} W \frac{\mathrm{~d}}{\mathrm{~d} r}\left[r \frac{\mathrm{~d} \bar{u}}{\mathrm{~d} r}\right] \mathrm{d} r=0 \tag{3.8}
\end{equation*}
$$

(3.8) is now integrated by parts:

$$
\begin{equation*}
\left[W r \frac{\mathrm{~d} \bar{u}}{\mathrm{~d} r}\right]_{r_{i}}^{r_{0}}-\int_{V} \frac{\mathrm{~d} W}{\mathrm{~d} r} \frac{\mathrm{~d} \bar{u}}{\mathrm{~d} r} \cdot r \mathrm{~d} r=0 . \tag{3.9}
\end{equation*}
$$

We now make the substitutions (3.5) and (3.6) for \bar{u} and W.
In general if there are n unknown coefficients to be determined we can obtain n equations by letting each of the W_{j} be 1 in turn (while all other W_{j} are zero). Here, there is just one unknown and so we just substitute $W=N_{\mathrm{c}}$ and \vec{u} from (3.3). After a certain amount of (lengthy) manipulation we obtain the solution

$$
\bar{u}_{\mathrm{c}}=190 / 68 .
$$

Fig. 3.6 shows the comparison between the exact and approximate solutions. There are two ways of obtaining a more accurate solution. The first is to include more terms in the polynomial: this is the classical approach in engineering analysis. The second way is to split the interval into a number of sub-intervals,
with lower-order polynomials in each: this is the modern or finite element approach. (In fact we introduce finite elements below in a more direct physical way.)

Fig. 3.6 - Comparison of approximate and exact solutions for cylindrical seepage

3.2.4 Zienkiewicz-Green theorem

When we come to do the integration by parts described above in a twodimensional problem we make use of the following standard results standard results are

$$
\begin{equation*}
\int_{A} f \frac{\partial g}{\partial x} \mathrm{~d} x \mathrm{~d} y=-\int_{A} g \frac{\partial f}{\partial x} \mathrm{~d} x \mathrm{~d} y+\int_{S} f g n_{x} \mathrm{~d} S \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A} f \frac{\partial g}{\partial y} \mathrm{~d} x \mathrm{~d} y=-\int_{A} g \frac{\partial f}{\partial y} \mathrm{~d} x \mathrm{~d} y+\int_{S} f g n_{y} \mathrm{~d} S \tag{3.11}
\end{equation*}
$$

where n_{x} and n_{y} are the direction cosines of the outward normal n to the closed curve S surrounding the area A.

These results are proved in Zienkiewicz (1977), in the form given above. We also make use of the three-dimensional version of this theorem, which is basically Gauss's divergence theorem with the extra ingredient of integration by parts. Zienkiewicz refers to (3.10) and (3.11) as Green's theorem, but the writers
of mathematical texts use this name for another result. We believe that these formulae have no generally accepted name, and therefore we will call them the 'Zienkiewicz--Green' theorem.

3.3 THE DISPLACEMENT METHOD

3.3.1 General procedure

This section explains the basic steps of the displacement method of finite element analysis. This will be done by considering a simple example where the 'finite elements' are linear elastic springs.

Consider the system of interconnected springs shown in Fig. 3.7. The springs are assumed to be weightless and are interconnected at nodes which are the points labelled $1,2,3$ and 4 . Weights can be hung from the nodal points and the question which must be answered is: what are the vertical displacements of the nodes and the tensions in the springs? The problem is 'statically indeterminate' in the terminology of structural mechanics, that is: it is not possible to calculate the forces in the springs from the equilibrium equations alone.

Fig. 3.7-System of interconnected springs
In order to find the spring tensions it is necessary to take into account the stiffnesses of the individual springs $k_{\mathrm{a}}, k_{\mathrm{b}}, k_{\mathrm{c}}$ and k_{d} relating the tension in each spring to its elongation:

$$
\begin{aligned}
& T_{\mathrm{a}}=k_{\mathrm{a}} e_{\mathrm{a}} \\
& T_{\mathrm{b}}=k_{\mathrm{b}} e_{\mathrm{b}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\mathrm{c}}=k_{\mathrm{c}} e_{\mathrm{c}} \\
& T_{\mathrm{d}}=k_{\mathrm{d}} e_{\mathrm{d}}
\end{aligned}
$$

To arrive at a solution for this problem, the three fundamental principles of structural mechanics (compatibility, material behaviour and equilibrium) are applied in turn. What distinguishes the displacement method from other solution methods is first the choice of basic unknowns (i.e. displacements) and second the order in which the three principles are applied.
Compatiblity: the basic unknowns are defined as the displacements of the nodal points (see Fig. 3.7). The equations of compatibility are

$$
\begin{aligned}
& e_{\mathrm{a}}=d_{2}-d_{1} \\
& e_{\mathrm{b}}=d_{3}-d_{2} \\
& e_{\mathrm{c}}=d_{4}-d_{3} \\
& e_{\mathrm{d}}=d_{4}-d_{2}
\end{aligned}
$$

Material behaviour: using the definitions of spring stiffnesses detailed above:

$$
\begin{aligned}
& T_{\mathrm{a}}=k_{\mathrm{a}}\left(d_{2}-d_{1}\right) \\
& T_{\mathrm{b}}=k_{\mathrm{b}}\left(d_{3}-d_{2}\right) \\
& T_{\mathrm{c}}=k_{\mathrm{c}}\left(d_{4}-d_{3}\right) \\
& T_{\mathrm{d}}=k_{\mathrm{d}}\left(d_{4}-d_{2}\right)
\end{aligned}
$$

Equilibrium: considering the forces acting at node 2 (see Fig. 3.8):

$$
T_{\mathrm{a}}=T_{\mathrm{b}}+T_{\mathrm{d}}+W_{2}
$$

i.e.

$$
k_{\mathrm{a}}\left(d_{2}-d_{1}\right)=k_{\mathrm{b}}\left(d_{3}-d_{2}\right)+k_{\mathrm{d}}\left(d_{4}-d_{2}\right)+W_{2}
$$

and rearranging this equation:

$$
-k_{\mathrm{a}} d_{1}+\left(k_{\mathrm{a}}+k_{\mathrm{b}}+k_{\mathrm{d}}\right) d_{2}-k_{\mathrm{b}} d_{3}-k_{\mathrm{d}} d_{4}=W_{2}
$$

Fig. 3.8 - Forces acting on node 2

Similar equations can be written for the other nodes, giving four linear simultaneous equations in d_{1}, d_{2}, d_{3} and d_{4} which can be expressed in matrix form:

The square matrix is called the global stiffness matrix for the collection of springs. The equation can be written in matrix notation:

$K d=W$

General rules for determining the coefficients in the global stiffness matrix for a general arrangement of springs can be stated:

Rule 1: the diagonal term for node i is made up of the sum of all the individual spring stiffnesses that are connected to node i.

Rule 2: the off-diagonal terms (i, j) and (j, i) contain the stiffness of the spring connecting node i and node j multiplied by -1 .

An equivalent statement is that the global stiffness matrix consists of the sum of matrices of the following form: (where k_{e} is the stiffness of one particular spring)

$$
\left.\begin{array}{c}
i \\
i \\
i \\
j
\end{array} \begin{array}{c}
j \\
{\left[\begin{array}{r}
k_{\mathrm{e}}
\end{array}\right.} \\
-k_{\mathrm{e}} \\
k_{\mathrm{e}}
\end{array}\right]
$$

One of these matrices is added into the global stiffness matrix for each spring in the collection. The node numbers i and j indicate where the terms must be added (or 'assembled') into the global matrix. These matrices are called the element stiffness matrices of each spring, relating nodal displacements to the forces exerted on each spring at nodal points.

$$
\left[\begin{array}{rr}
k_{\mathrm{e}} & -k_{\mathrm{e}} \\
-k_{\mathrm{e}} & k_{\mathrm{e}}
\end{array}\right]\left[\begin{array}{l}
d_{i} \\
d_{j}
\end{array}\right]=\left[\begin{array}{l}
F_{i} \\
F_{j}
\end{array}\right]
$$

The forces acting on each nodal point taken to be positive downwards; thus

$$
F_{i}=-T_{\mathrm{e}} \quad \text { and } \quad F_{j}=T_{\mathrm{e}}
$$

3.3.2 Solving the equations

To demonstrate the method of solving these equations, the following values are adopted: $k_{\mathrm{a}}=k_{\mathrm{b}}=k_{\mathrm{c}}=20, k_{\mathrm{d}}=10, W_{2}=W_{4}=0$ and $W_{3}=1$. Thus the equations which must be solved are
(1)
(4)

$$
\left[\begin{array}{rrrr}
20 & -20 & 0 & 0 \tag{2}\\
-20 & 50 & -20 & -10 \\
0 & -20 & 40 & -20 \\
0 & -10 & -20 & 30
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{c}
W_{1} \\
0 \\
1 \\
0
\end{array}\right],
$$

subject to the boundary condition $d_{1}=0$. These equations are solved using the process known as Gaussian Elimination. The first stage of this process (known as forward elimination) is based on the observation that adding an arbitrary multiple of one equation to any other equation does not change the solution of the set of equations.

First, however, it is necessary to deal with the boundary condition $d_{1}=0$. There are many alternative methods for doing this, but one of the simplest (which is adopted here) is to add a large number (say 10^{6}) to the diagonal term of equation (1). This forces this equation to yield a solution of $d_{1}=0$. Physically the addition of this large number can be interpreted as the connection of node 1 to earth with a very stiff spring (with a stiffness of 10^{6}).

$$
\left[\begin{array}{rrrr}
10^{6} & -20 & 0 & 0 \\
-20 & 50 & -20 & -10 \\
0 & -20 & 40 & -20 \\
0 & -10 & -20 & 30
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{c}
W_{1} \\
0 \\
1 \\
0
\end{array}\right]
$$

Now the process of forward elimination is started:
(a) Multiples of the first equation are added to the following equations so that the coefficients of d_{1} in these equations become zero. (This process is called eliminating d_{1} from the following equations.) In this particular example, only equation (2) needs to be modified according to the following rule:
(new equation (2)) $=($ old equation $(2))+\left(20 / 10^{6}\right) \times($ equation 1$\left.)\right)$:

$$
\left[\begin{array}{rrrr}
10^{6} & -20 & 0 & 0 \\
0 & 50 & -20 & -10 \\
0 & -20 & 40 & -20 \\
0 & -10 & -20 & 30
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{c}
W_{1} \\
0 \\
1 \\
0
\end{array}\right]
$$

(b) Multiples of equation (2) are now added to equations (3) and (4) to eliminate coefficients of d_{2} from those equations:
(new equation (3)) $=($ old equation (3) $)+(20 / 50) \times($ equation (2) $)$
(new equation (4)) $=($ old equation (4)) $+(10 / 50) \times($ equation $(2))$.

$$
\left[\begin{array}{crrr}
10^{6} & -20 & 0 & 0 \\
0 & 50 & -20 & -10 \\
0 & 0 & 32 & -24 \\
0 & 0 & -24 & 28
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{c}
W_{1} \\
0 \\
1 \\
0
\end{array}\right] .
$$

The general method being adopted is now apparent: in step (a), terms in column 1 under the diagonal become zero whereas in step (b), terms in column 2 under the diagonal became zero. The matrix is gradually being converted into 'uppes triangular' form.
(c) Eliminate coefficient of d_{3} from equation (4):
(new equation (4)) $=($ old equation $(4))+(24 / 32) \times($ equation $(3))$.

$$
\left[\begin{array}{rrrr}
10^{6} & -20 & 0 & 0 \\
0 & 50 & -20 & -10 \\
0 & 0 & 32 & -24 \\
0 & 0 & 0 & 10
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right]=\left[\begin{array}{l}
w_{1} \\
0 \\
1 \\
3 / 4
\end{array}\right]
$$

Forward elimination is now complete. Now the process of back-substitution is started.
(d) Solve for d_{4} from the last equation:

$$
d_{4}=3 / 40
$$

(e) Solve for d_{3} from the third equation:

$$
\begin{aligned}
32 d_{3} & -24(3 / 40)=1 . \\
d_{3} & =7 / 80 .
\end{aligned}
$$

(f) Solve for d_{2} from the second equation:

$$
\begin{aligned}
50 d_{2} & -20(7 / 80)-10(3 / 40)=0 . \\
d_{2} & =1 / 20
\end{aligned}
$$

(g) Solve for d_{1} from the first equation:

$$
\begin{aligned}
10^{6} d_{1} & -20 d_{2}=W_{1} \\
d_{1} & =0(\text { very nearly })
\end{aligned}
$$

From the nodal displacements it is now possible to calculate the spring elongations and tensions.

3.3.3 A computer program for the displacement method

Listed below is a FORTRAN program which can be used to analyse collections of springs similar to the one considered above.

The basic steps of this short program are highlighted by the comments in the listing. The identical steps are present in the finite element program for consolidation analysis presented later in this chapter, and in CRISP. To use the program it is necessary to present it with input data describing the problem to be analysed. The input data must be prepared according to the following scheme:

Data record	Contents				No. of records
A	NN	NS	NF	NL	1
B	N1	N2	AK	NS	
C	NOD	FIX		NF	
D	NOD	W			NL

where in record A, NN is the number of nodes, NS is the number of springs, NF is the number of nodes with prescribed displacements, and NL is the number of loaded nodes. In records of type $\mathrm{B}, \mathrm{N} 1$ and N 2 are the node numbers at either end of a spring and AK is its stiffness. In records of type C, NOD is the node number which is given a prescribed displacement with a value FIX. In records of type D, NOD is the node which is loaded with a load W

An example data file follows the program listing.
DIMENSION ST(12,12),RHS(12) WRITE $(6,100)$
100 FORMAT (16HOSPRINGS PROGRAM)
************************************INITIALISE*********************)
DO $6 \mathrm{~J}=1,12$
DO $4 \quad I=1,12$
4 ST $(I, J)=0$.
$6 \operatorname{RHS}(J)=0$.
 $\operatorname{READ}(5,101)$ NN, NS, NF, NL
101 FORMAT(4I5)
0) STOP

WRITE $(6,102) \mathrm{NN}, \mathrm{NS}, \mathrm{NF}, \mathrm{NL}$
102 FORMAT (11 HONODES......I5/11H SPRINGS....I5
11 1H FIXES.,I5/11H LOADS......, I5
*************************************ASSEMBL
DO $10 \mathrm{~N}=1$, NS
$\operatorname{READ}(5,103) \mathrm{N} 1, \mathrm{~N} 2, \operatorname{AK}$
03 FORMAT(2I5,F10.0)
WRITE $(6,104)$ N1, N2,AK
4 FORMAT(2I5,F10.3)
$\mathrm{ST}(\mathrm{N} 1, \mathrm{~N} 1)=\mathrm{ST}(\mathrm{N} 1, \mathrm{~N} 1)+\mathrm{AK}$
$\mathrm{ST}(\mathrm{N} 2, \mathrm{~N} 2)=\mathrm{ST}(\mathrm{N} 2, \mathrm{~N} 2)+\mathrm{AK}$
ST(N1,N2)=ST(N1,N2)-AK
$10 \mathrm{ST}(\mathrm{N} 2, \mathrm{~N} 1)=\mathrm{ST}(\mathrm{N} 2, \mathrm{~N} 1)-\mathrm{AK}$
C"***********************************FIX NODES********************** DO $14 \mathrm{I}=1, \mathrm{NF}$
$\operatorname{READ}(5,105)$ NOD,FIX
105 FORMAT(I5,F10.0) WRITE $(6,106)$ NOD,FIX
106 FORMAT(1X,I5,F10.3)
$\mathrm{ST}(\mathrm{NOD}, \mathrm{NOD})=\mathrm{ST}(\mathrm{NOD}, \mathrm{NOD})+1.0 \mathrm{E} 6$
14 RHS(NOD) $=$ RHS (NOD) $+1.0 E 6 *$ FIX
C***************
DO $18 \mathrm{I}=1$, NL
$\operatorname{READ}(5,107)$ NOD,W
107 FORMAT(I5,F10.0)
WRITE $(6,106)$ NOD,W
18 RHS (NOD) $=$ RHS (NOD $)+W$
C**************************************FORWARD ELIMINATION*************
$\mathrm{NN} 1=\mathrm{NN}-1$
DO 30 IQ $=1$, NN 1
$I 1=I Q+1$
DO $26 I=I 1$, NN
DO $22 \mathrm{~J}=\mathrm{IQ}$, NN
$22 \operatorname{ST}(I, J)=S T(I, J)-S T(I Q, I) * S T(I Q, J) / S T(I Q, I Q)$
$26 \operatorname{RHS}(I)=\operatorname{RHS}(I)-S T(I Q, I) * R H S(I Q) / S T(I Q, I Q)$
30 CONTINUE
C************************************BACK SUBSTITUTE*****************
RHS (NN) $=$ RHS (NN) $/ \mathrm{ST}(\mathrm{NN}, \mathrm{NN})$
DO $60 \mathrm{II}=1$, NN 1
$\mathrm{IQ}=\mathrm{NN}-\mathrm{II}$
DO $58 \mathrm{I}=\mathrm{I} 1$, N
$58 \operatorname{RHS}(\mathrm{IQ})=\mathrm{RHS}(\mathrm{IQ})-\mathrm{ST}(\mathrm{IQ}, \mathrm{I}) * \operatorname{RHS}(\mathrm{I})$
60 RHS (IQ) $=\mathrm{RHS}(\mathrm{IQ}) / \mathrm{ST}(\mathrm{IQ}, \mathrm{IQ})$
C*************************************PRINT DISPLACEMENTS************* WRITE(6,109) (RHS(I), $\mathrm{I}=1, \mathrm{NN}$)
109 FORMAT(14HODISPLACEMENTS/(1X,10E12.4))
END

Below are the data which describe the example worked through above:

A	4	4.	1	1
B	1	2	20.0	
B	2	3	20.0	
B	3	4	20.0	
B	2	4	10.0	
C	1	0.0		
D	3	1.0		

Running the program with these data produces the following output

SPRINGS PROGRAM		
NODES	4	
SPRINGS. . .	4	
FIXES.	1	
LOADS . . .	1	
1	2	20.000
2	3	20.000
3	4	

2	4	
1		10.000
3		0.000
1.000		

DISPLACEMENTS
$0.1000 \mathrm{E}-05 \quad 0.5000 \mathrm{E}-01 \quad 0.8750 \mathrm{E}-01 \quad 0.7500 \mathrm{E}-01$
and the reader can see that the printed displacements correspond to those calculated in the example.

3.4 VIRTUAL WORK

The general procedure described above can be used to analyse problems where the properties of the individual elements are more complicated than those of the elastic springs described above. The overall approach of assembling the stiffnesses of individual elements into a global stiffness matrix and solving the linear simultaneous equations remains precisely the same as that described above. This holds true regardiess of whether the finite elements represent volumes of solid material (i.e. a continuum) or discrete members in a structural framework.

In formulating stiffness matrices for continuum elements, use will be made of the principle of virtual work. The principle of virtual work will be used to determine the equivalent nodal loads which are in equilibrium with internal stresses in the finite elements. Since the virtual work principle is regarded as difficult and/or obscure by many engineers, this section discusses the derivation of the principle for a plane truss and a continuum.

3.4.1 Virtual work for a truss

Fig. 3.9 shows a plane truss consisting of a collection of pin-ended bars. The description of the bars as 'pin-ended' means that an individual bar cannot transmit a moment to other bars via the joints at its ends. The joints in the truss are numbered from 1 to n (if there are n joints) so that loads applied to one joint can be distinguished from loads applied to other joints by the use of numerical subscripts. In the following, one particular joint will be considered and it will be referred to as joint i for the sake of generality. Considering the forces acting on joint i and resolving horizontally and vertically:

Fig. 3.9 - Pin-jointed truss

$$
\begin{aligned}
& H_{i}+T_{i j} \cos \alpha_{i j}+T_{i k} \cos \alpha_{i k}+T_{i l} \cos \alpha_{i l}+T_{i m} \cos \alpha_{i m}=0, \\
& V_{i}+T_{i j} \sin \alpha_{i j}+T_{i k} \sin \alpha_{i k}+T_{i l} \sin \alpha_{i l}+T_{i m} \sin \alpha_{i m}=0,
\end{aligned}
$$

where H_{i} and V_{i} are the external horizontal and vertical loads acting on the joint and $T_{i j}$ is the tension in the member connecting joint i to joint j which is inclined at an angle $\alpha_{i j}$ to the horizontal. There are n pairs of equations similar to this one (one pair for each joint). The number of terms in each equation depends on the number of bars connecting each joint to other joints in the truss. Here it has been assumed that joint i is connected to four joints: j, k, l and m.

Each equation is now multiplied by a (different) arbitrary number, thus:

$$
\begin{aligned}
& h_{i}\left(H_{i}+T_{i j} \cos \alpha_{i j}+T_{i k} \cos \alpha_{i k}+T_{i l} \cos \alpha_{i l}+T_{i m} \cos \alpha_{i m}\right)=0 \\
& v_{i}\left(V_{i}+T_{i j} \sin \alpha_{i j}+T_{i k} \sin \alpha_{i k}+T_{i l} \sin \alpha_{i l}+T_{i m} \sin \alpha_{i m}\right)=0
\end{aligned}
$$

All the equations are now added together:

$$
\sum_{\text {ioints }}(h H+v V)+\text { a large number of terms }=0 .
$$

Examining the form of the 'large number of terms' it can be seen that the following four terms appear owing to the existence of the bar connecting joint i to joint j :

$$
\ldots h_{i} T_{i j} \cos \alpha_{i j}+v_{i} T_{i j} \sin \alpha_{i j}+h_{j} T_{j i} \cos \alpha_{j i}+v_{j} T_{j i} \cos \alpha_{j i} \ldots
$$

Now $T_{i j}=T_{j i}=$ the tension in the bar connecting joint i to joint j. However, $\cos \alpha_{i j}=-\cos \alpha_{j i}$ and $\sin \alpha_{i j}=-\sin \alpha_{j i}$ (see Fig. 3.10). The following series of definitions are now made:

$$
e_{i j}=h_{j} \cos \alpha_{i j}+v_{j} \sin \alpha_{i j}-h_{i} \cos \alpha_{i j}-v_{i} \sin \alpha_{i j}
$$

and the equation now becomes

$$
\sum_{\text {joints }}(h H+v V)=\sum_{\text {bars }} e T
$$

Fig. 3.10 - Geometric relationship used in proof of virtual work for a plane truss $\left(\cos \alpha_{i j}=-\cos \alpha_{j i} ; \sin \alpha_{i j}=-\sin \alpha_{j i}\right)$

If in this equation h_{i} is set to one and all the other h s and $v s$ are set to zero, then the original equilibrium equation for forces in the horizontal direction at joint i
is recovered. Any of the original equilibrium equations can be recovered in a similar fashion by setting the appropriate h or v to one and the others to zero The equation which has just been derived is in fact the principle of virtual work for a pin-jointed truss (or, strictly speaking, the principal of virtual displacements). In deriving this principle, however, no reference has been made to displacements or work quantities: only the principle of equilibrium has been used. Suppose that the 'arbitrary numbers' h_{i} and v_{i} are now taken to be horizontal and vertical displacements of joint i. Then the quantity $e_{i j}$ which was defined above turns out to be precisely the extension of bar $i j$ due to these displacements. This result can be obtained by using Pythagoras's theorem to calculate the length of the bar before and after straining and taking the limit of the difference when deflections are small. (Alternative methods are using a 'displacement diagram' or simply resolving the joint displacements along the direction of the bar.) The equations giving bar extensions in terms of joint displacements are the equations of compatibility for the truss.
Alternatively the equations of compatibility could have been used instead of the equilibrium equations as the starting point in the derivation of the principle. The arbitrary numbers which multiply these equations are identified as forces, and by selecting particular force system it is possible to recover the original compatibility equations (or some combination of them). Deriving the principle in this way leads to what is strictly called 'the principle of virtua forces'. It is normal to refer to both these principles as the principle of virtua work. The essential point to note is that either the set of forces in equilibrium or the set of compatible displacements may be 'arbitrary', 'imaginary' or 'virtual' (these are the terms that are commonly used in this context)

The principle of virtual work is being increasingly used in the theory of structures to obtain solutions to redundant frameworks and structures. It is replacing the more traditional energy theorems mainly because the analyst only has to remember one basic principle rather than a series of different theorems (which all depend on virtual work for their proof). The aspect of the principle which leads to many regarding it as obscure is the introduction of the word work'. Although it is natural to introduce this term in relation to the product of force and a displacement, it inevitably leads to some confusion as to what this 'imaginary work' actually represents in practice. In fact, as has been shown above, the principle merely represents statements of equilibrium and compatibility. The fact that both types of statement can be obtained from one single equation is the result of the 'duality' present in definitions of the force and displacement systems. This can be seen in the case of the plane truss in the fact that the $\cos \alpha_{i j}$ and $\sin \alpha_{i j}$ factors occur in both equilibrium and compatibility equations. The proof of the virtual work principle involves transferring these factors from forces to displacements.

3.4.2 Virtual work for a continuum

The starting point is the differential equations of equilibrium for a twodimensional continuum

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}=w_{x} \tag{3.12}\\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}=w_{y} . \tag{3.13}
\end{align*}
$$

These equations are multiplied by arbitrary scalar functions h and v, added together and integrated over the area of the continuum:

$$
\int_{A}\left[h\left[\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}-w_{x}\right]+v\left[\frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}-w_{y}\right]\right] \mathrm{d}(\text { area })=0
$$

As in the case of the truss, h and v will subsequently be identified with horizontal and vertical displacements, but initially they are regarded as arbitrary functions (of x and y).

Terms involving the derivatives of stresses are now integrated using the Zienkiewicz-Green theorem. This will be demonstrated by considering the integration of the first term in the equation above:

$$
\int_{A} h \frac{\partial \sigma_{x}}{\partial x} \mathrm{~d} x \mathrm{~d} y=-\int_{A} \frac{\partial h}{\partial x} \sigma_{x} \mathrm{~d} x \mathrm{~d} y+\int_{S} h \sigma_{x} n_{x} \mathrm{~d} S
$$

When the arbitrary scalar function h is identified as the horizontal displacement d_{x}, the term $(\partial h / \partial x)$ is recognised as $-\epsilon_{x}$. Performing similar integrations for all terms of this type, the principle of virtual work for a continuum is obtained:

$$
\begin{equation*}
\iint_{\epsilon}{ }^{T} \sigma d(v o l)=\int d^{T} \tau d(a r e a)+\int d^{T} w d(v o l) . \tag{3.14}
\end{equation*}
$$

In this equation, τ is a vector with components $\tau_{x}=n_{x} \sigma_{x}+n_{y} \tau_{x y}$ and $\tau_{y}=n_{x} \tau_{x y}+n_{y} \sigma_{y}$. These are called 'tractions', and the term $\int \mathrm{d}^{\mathrm{T}} \tau \mathrm{d}$ (area) represents the work done by these tractions on the boundary of the continuum. A simple transformation shows that this is equivalent to the work done by the direct and shear stresses acting on the inclined boundary.

In order to emphasise in the virtual work principle that the strains are not necessarily caused by the stresses (but can be arbitrary as long as they are compatible), it is common to denote the virtual strains and displacements by a superposed $*: \stackrel{*}{\epsilon}$ and $\stackrel{*}{\mathrm{~d}}$.

The purpose of this exposition (and the introductory case for the plane truss) was to demonstrate that in both cases the principle of virtual work is derived directly from the equations of equilibrium (or the equations of compatibility). The reason that the virtual work principle is employed in structural analysis (rather than the equilibrium equations) is mainly one of convenience.
However, we draw the reader's attention to the fact that the derivation of the principle of virtual work for a continuum followed a very similar course to the procedure for applying Galerkin's weighted residual method to the seepage problem in section 3.2.3. Indeed, we could have referred to the arbitrary scalar functions h and v as weighting functions, and it is possible to regard (3.14) as a
weighted residual statement. The identification of (3.14) as both the virtual work principle and a weighted residual statement leads to a physical interpretation of what is happening when an approximate solution is obtained using this equation. Substituting an approximate stress distribution into the equilibrium equations (3.12) and (3.13) gives a residual term which corresponds to an error in the body force. Satisfaction of (3.14) ensures that the integral of the work done by the (erroneous) body force is locally zero (over an area associated with each node in a finite element mesh). Alternatively the statement can be regarded as one of local equilibrium, in which the resultants of internal stresses, body forces and boundary stresses balance at the nodal points.

3.5 DISPLACEMENT FINITE ELEMENTS

3.5.1 The basic formula

In this section the account of the displacement method is taken one step further by considering some 'finite elements' which are rather more complicated than the springs considered in section 3.3. As mentioned previously, the general solution procedure remains the same regardless of the type of element employed.

First the basic technique for obtaining the stiffness matrix for a finite element based on an assumed displacement field is presented. The technique is then illustrated by deriving element stiffness matrices first for a pin-ended bar and second for a triangular element to be used in the analysis of plane strain problems.

The notation used follows that established by Zienkiewicz in his series of texts on the finite element method (1967, 1971, 1977). The first step is to express the displacement inside the finite element as a function of the displacements of nodal points and position within the element. This relationship is written in matrix notation:

$$
\begin{equation*}
\mathrm{d}=\mathrm{Na} \mathrm{a}_{\mathrm{e}} \tag{3.15}
\end{equation*}
$$

where

$$
\mathbf{d}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
$$

and a_{e} is a vector listing all the nodal displacements associated with an element. The matrix N contains the 'shape functions' for the element. The form of these functions for different types of element is discussed below.

The equations of compatibility are now used to obtain the strains inside the element in terms of the nodal displacements. This relationship is normally written in matrix notation:

$$
\begin{equation*}
\epsilon=\mathrm{Ba} \mathrm{a}_{\mathrm{e}} \tag{3.16}
\end{equation*}
$$

The matrix B is sometimes referred to as the 'strain matrix', but is more often simply referred to as the ' B matrix'.
The next step is to use the elastic stress-strain relation for the material ($\sigma=\mathbf{D} \epsilon$) to express the stresses inside the elements in terms of the nodal displacements:

$$
\begin{equation*}
\sigma=\mathrm{DBa}_{\mathrm{e}} \tag{3.17}
\end{equation*}
$$

The principle of virtual work is now used to find the nodal forces $\left(F_{e}\right)$ which are in equilibrium with this state of internal stress. These nodal forces do not represent actual concentrated forces in the body: rather they represes resultants in much the same way as engineers use the concepts of an axial force, shear force and bending moment to describe the state of stress in a beam. A set of virtual nodal displacements applied to the element accompanies a set of virtual strains within the element according to the relation

$$
\begin{equation*}
\stackrel{*}{\epsilon}=\mathrm{B} \stackrel{*}{\mathrm{a}} \mathrm{e} . \tag{3.18}
\end{equation*}
$$

The principle of virtual work gives

$$
\begin{equation*}
\stackrel{*}{\mathrm{a}_{\mathrm{e}}^{\mathrm{T}}} \mathrm{~F}_{\mathrm{e}}=\int_{V}^{-} \stackrel{*}{\epsilon}_{\mathrm{T}}^{\mathrm{T}} \sigma(\mathrm{vol}) \tag{3.19}
\end{equation*}
$$

Substituting for σ and $\stackrel{*}{\epsilon}$ using (3.17) and (3.18) we obtain

$$
\stackrel{*}{\mathrm{a}}_{\mathrm{e}}^{\mathrm{T}} \mathrm{~F}_{\mathrm{e}}=\stackrel{*}{\mathrm{a}_{\mathrm{e}}^{\mathrm{T}}} \int_{V}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{DB}\right) \mathrm{d}(\mathrm{vol}) \mathrm{a}_{\mathrm{e}}
$$

and ${ }_{\mathbf{a}}^{\mathrm{e}}{ }_{\mathrm{e}}^{\mathrm{T}}$ can be cancelled to give

$$
\begin{align*}
\mathrm{F}_{\mathrm{e}} & =\int_{V}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{DB}\right) \mathrm{d}(\mathrm{vol}) \mathrm{a}_{\mathrm{e}} \\
& =\mathrm{K} \mathrm{a}_{\mathrm{e}} \tag{3.20}
\end{align*}
$$

where

$$
K=\int_{V}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{DB}\right) \mathrm{d}(\text { vol })
$$

is the element of stiffness matrix.
The equivalent nodal forces F_{e} balance loads due to self-weight and boundary stresses - taking into account overall equilibrium, the resulting equation is

$$
\begin{align*}
\int_{V}\left(B^{\mathrm{T}} \mathrm{DB}\right) \mathrm{d}(\text { vol }) \mathrm{a}_{\mathrm{e}}= & \int_{V} \mathbf{N}^{\mathrm{T}} \mathrm{wd}(\text { vol }) \\
& +\int_{S} \mathbf{N}^{\mathrm{T}} \tau \mathrm{~d} \text { (area) } \tag{3.21}
\end{align*}
$$

where

$$
\tau=\left[\begin{array}{l}
\sigma_{\mathrm{n}} \\
\tau_{\mathrm{nt}}
\end{array}\right]
$$

represents normal and shear stresses acting on an element boundary. Although these equations have been developed for a single element, we could equally well have considered a whole mesh of elements in deriving them. Of course, one has to use the N and \mathbf{B} matrices for each element in turn when performing an integration over the whole mesh.

3.5.2 Example: a plane truss element

Fig. 3.11 shows one member of a plane truss of length L, inclined at an angle α to the x axis. The nodal degrees of freedom are the displacements in the x and y directions at the two ends of the element, $d_{x_{1}}, d_{y_{1}}, d_{x_{2}}$ and $d_{y_{2}}$.

Fig. 3.11 - Nodal degrees of freedom for plane truss element
In calculating the strain in this element, we are only interested in the displacements along the direction of the element and so we define an axis system local to the element, $\left(x^{\prime}, y^{\prime}\right)$, with the x^{\prime} axis coincident with the direction of the member. The displacement a distance x^{\prime} along the element is given by

$$
\begin{equation*}
d_{x}^{\prime}=\left(1-x^{\prime} / L\right) d_{x 1}^{\prime}+\left(x^{\prime} / L\right) d_{x_{2}}^{\prime} \tag{3.22}
\end{equation*}
$$

To obtain the element stiffness matrix we need to obtain this expression in terms of degrees of freedom $d_{x 1}, d_{y_{1}}, d_{x_{2}}$ and $d_{y_{2}}$. This is achieved by noting that

$$
\begin{equation*}
d_{x}^{\prime}=d_{x} \cos \alpha+d_{y} \sin \alpha \tag{3.23}
\end{equation*}
$$

(which follows from a simple consideration of geometry).
Making this substitution we obtain

$$
\begin{align*}
{\left[d_{x}^{\prime}\right]=} & {\left[\begin{array}{ll}
\left(1-x^{\prime} / L\right) \cos \alpha & \left(1-x^{\prime} / L\right) \sin \alpha \\
& \left(x^{\prime} / L\right) \cos \alpha \\
\left(x^{\prime} / L\right) \sin \alpha
\end{array}\right] }
\end{align*}\left[\begin{array}{l}
d_{x 1} \tag{3.24}\\
d_{y 1} \\
d_{x 2} \\
d_{y 2}
\end{array}\right]
$$

which is the same form as (3.15) above. The B matrix is obtained by differentiating this equation:

$$
\epsilon_{x}^{\prime}=-\frac{\mathrm{d}\left(d_{x}^{\prime}\right)}{\mathrm{d} x^{\prime}}
$$

and is given by

$$
\left[\begin{array}{llll}
-C / L & -S / L & C / L & S / L
\end{array}\right]
$$

where $C=\cos \alpha$ and $S=\sin \alpha$.
The \mathbf{D} matrix here simply reduces to Young's modulus, $E\left(\sigma_{x}^{\prime}=E \epsilon_{x}^{\prime}\right)$.

$$
\int_{V}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{DB}\right) \mathrm{d}(\mathrm{vol})=\frac{A E}{L}\left[\begin{array}{rrrr}
C^{2} & C S & -C^{2} & -C S \\
C S & S^{2} & -C S & -S^{2} \\
-C^{2} & -C S & C^{2} & C S \\
-C S & -S^{2} & C S & S^{2}
\end{array}\right]
$$

The stiffness matrix of this element is normally obtained using a direct equilibrium approach. We have applied the general form (3.20).

3.5.3 Example: constant strain triangle

Fig. 3.12 shows the simplest triangular finite element for continuum analysis. The nodal degrees of freedom are the displacements at the vertices of the triangle, $d_{x 1}, d_{y_{1}}, d_{x_{2}}, d_{y_{2}}, d_{x 3}$ and $d_{y_{3}}$. The displacement at some point in the element is assumed to have a linear variation:

$$
\begin{aligned}
& d_{x}=c_{0}+c_{1} x+c_{2} y \\
& d_{y}=c_{3}+c_{4} x+c_{5} y
\end{aligned}
$$

The coefficients c_{0}, c_{1}, etc. are found by substituting the co-ordinates of the three nodal points into these expressions. Solving the resulting sets of simultaneous equations we obtain

$$
\begin{aligned}
& d_{x}=\frac{x}{h} d_{x_{1}}+\frac{y}{h} d_{x_{2}}+\left(1-\frac{x}{h}-\frac{y}{h}\right) d_{x_{3}}, \\
& d_{y}=\frac{x}{h} d_{y_{1}}+\frac{y}{h} d_{y_{2}}+\left(1-\frac{x}{h}-\frac{y}{h}\right) d_{y_{3}} .
\end{aligned}
$$

Fig. 3.12 - Constant strain triangle

Thus the shape function matrix N is given by

$$
\left[\begin{array}{cccccc}
x / h & 0 & y / h & 0 & (1-x / h-y / h) & 0 \\
0 & x / h & 0 & y / h & 0 & (1-x / h-y / h)
\end{array}\right]
$$

Applying the normal definitions of strains (1.4), (1.5) and (1.7), the B matrix is given by

$$
\left[\begin{array}{cccccc}
-1 / h & 0 & 0 & 0 & 1 / h & 0 \\
0 & 0 & 0 & -1 / h & 0 & 1 / h \\
0 & -1 / h & -1 / h & 0 & 1 / h & 1 / h
\end{array}\right]
$$

For a plane strain problem the \mathbf{D} matrix relating σ to ϵ is given by

$$
\frac{E}{(1-2 \nu)(1+\nu)}\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 0.5-\nu
\end{array}\right]
$$

Calculating the element stiffness matrix is a simple matter of calculating the matrix product \mathbf{B}^{T} DB times the area of the element ($h^{2} / 2$), since the terms of all these matrices are constant.

The resulting matrix is

$$
\left[\begin{array}{rrrrrr}
a & 0 & 0 & \nu & -a & -\nu \\
0 & b & b & 0 & -b & -b \\
0 & b & b & 0 & -b & -b \\
\nu & 0 & 0 & a & -\nu & -a \\
-a & -b & -b & -\nu & c & 1 / 2 \\
-\nu & -b & -b & -a & 1 / 2 & c
\end{array}\right] \frac{E}{2(1+\nu)(1-2 \nu)}
$$

where $a=1-\nu, b=0.5-\nu$ and $c=1.5-2 \nu$.
Note that the terms of this matrix are independent of the dimensions of thr element - a property of all element stiffness matrices for plane strain and plane stress analysis that can be expected on physical grounds.

3.5.4 Higher-order elements

The second element presented in the previous section, usually known as the CST (the Constant Strain Triangle), was the first element formulated for continuum analysis (Turner et al., 1956). Although it has the virtue of simplicity it is currently not regarded as a good choice of element for general use in analyses. This is because a large number of CST elements are required to obtain a sufficiently accurate representation of non-constant stress fields. Irons and Ahmad (1980) demonstrate a number of cases where this element gives poor results, even with apparently fine meshes.

Elements with a higher-order variation of displacement (and hence strain) have the advantage that fewer elements are needed to obtain a sufficiently accurate solution to problems. However, a higher-order element is more difficult to program, more difficult for a program user to understand and uses more computer resources than lower-order elements. Despite these disadvantages it is generally accepted that the balance of advantage in terms of both computational efficiency and ease of use favours the higher-order elements. The element usually used for plane strain analyses by CRISP is the linear strain triangle (Fig. 3.12 Whereas the constant strain triangle has a displacement field which has a linea variation in all directions:

$$
\begin{aligned}
& d_{x}=c_{0}+c_{1} x+c_{2} y, \\
& d_{y}=c_{3}+c_{4} x+c_{5} y,
\end{aligned}
$$

the linear strain triangle (or LST) has a displacement field which has a quadratic variation in each direction:

$$
\begin{aligned}
& d_{x}=c_{0}+c_{1} x+c_{2} y+c_{3} x^{2}+c_{4} x y+c_{5} y^{2} \\
& d_{y}=c_{6}+c_{7} x+c_{8} y+c_{9} x^{2}+c_{10} x y+c_{11} y^{2}
\end{aligned}
$$

It is convenient to express the shape functions for higher-order elements (such as the LST) in terms of co-ordinate systems which are local to the element

Fig. 3.13 - Nodal degrees of freedom for linear strain triangle
concerned. The remainder of this section explains the basic techniques for doing this.

First consider the bar element presented in section 3.5.2. To simplify the demonstration of a local co-ordinate system, we align the element with the global x axis. If the co-ordinates of the ends of the bar are $\left(x_{1}, 0\right)$ and $\left(x_{2}, 0\right)$ then the shape functions for axial displacement of a point $(x, 0)$ on the bar are

$$
d_{x}=\left(x_{2}-x\right) /\left(x_{2}-x_{1}\right) d_{x_{1}}+\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right) d_{x 2}
$$

We now introduce the same local co-ordinate system that was adopted in section 3.2.2 for the numerical integration rules:

$$
\xi=\left(2 x-\left(x_{1}+x_{2}\right)\right) /\left(x_{2}-x_{1}\right)
$$

Thus $\xi=-1$ when $x=x_{1}$ and $\xi=1$ when $x=x_{2}$ (at the midpoint of the element $\xi=0$). The transformation from the global co-ordinate system to the local one involves a linear stretch and a translation.

In terms of the local co-ordinate, the shape functions are

$$
d_{x}=0.5(1-\xi) d_{x 1}+0.5(1+\xi) d_{x 2}
$$

The same functions are used to transform the local co-ordinate to the global one:

$$
x=0.5(1-\xi) x_{1}+0.5(1+\xi) x_{2}
$$

(the functions are the same because for the bar the displacement varies linearly along the element and the axis transformation is also linear). It should now be apparent that the advantage of using the local co-ordinate system is that the shape functions of all linear bar elements are now given by the same expression. The use of local co-ordinates requires some small modifications to the way the stiffness matrix is calculated. Before discussing these changes, the two most common forms of local co-ordinates for two-dimensional elements are described.

Fig. 3.14 shows the system of local co-ordinates (ξ, η) appropriate for rectangular or quadrilateral elements. The local co-ordinates of the vertices of the rectangle or quadrilateral are $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$. Transformation from local to global co-ordinates is described by the equations

$$
\begin{aligned}
x= & 0.25(1+\xi)(1+\eta) x_{1}+0.25(1-\xi)(1+\eta) x_{2} \\
& +0.25(1-\xi)(1-\eta) x_{3}+0.25(1+\xi)(1-\eta) x_{4}, \\
y= & 0.25(1+\xi)(1+\eta) y_{1}+0.25(1-\xi)(1+\eta) y_{2} \\
& +0.25(1-\xi)(1-\eta) y_{3}+0.25(1+\xi)(1-\eta) y_{4} .
\end{aligned}
$$

The similarity between this system and the one-dimensional system should be apparent.

Fig. 3.15 shows the system of local co-ordinates appropriate for triangular elements. A point within a triangle is defined by three co-ordinates $\left(L_{1}, L_{2}, L_{3}\right)$ Only two of these co-ordinates are independent since

Fig. 3.15 - Triangular co-ordinates

$$
A_{1}+A_{2}+A_{3}=A
$$

and hence

$$
L_{1}+L_{2}+L_{3}=1
$$

The advantage of using three co-ordinates for triangular elements is that expressions for the shape functions are symmetrical with respect to the nodes. Transformation from local to global co-ordinates is given by the equations

$$
\begin{aligned}
& x=L_{1} x_{1}+L_{2} x_{2}+L_{3} x_{3} \\
& y=L_{1} y_{1}+L_{2} y_{2}+L_{3} y_{3}
\end{aligned}
$$

The elements provided in CRISP are triangular (see Fig. 4.1). Triangular elements possess the (probably small) theoretical advantage over quadrilaterals that they give the same variation in displacement in all directions over the element. This is because the shape functions contain complete polynomial expansions of x and y, and unlike quadrilaterals do not have extra 'junk' terms. In some situations, analyses with triangular elements have succeeded where quadrilateral elements have come to grief (e.g. recent work on computing elastic-perfectly-plastic collapse loads (Sloan and Randolph, 1982). The shape functions for the CST element are the triangular co-ordinates, i.e. $N_{1}=L_{1}$, $N_{2}=L_{2}$ and $N_{3}=L_{3}$. The shape functions for the LST element are $N_{1}=\left(2 L_{1}-1\right) L_{1}, \quad N_{2}=\left(2 L_{2}-1\right) L_{2}, \quad N_{3}=\left(2 L_{3}-1\right) L_{3}, \quad N_{4}=4 L_{1} L_{2}$, $N_{5}=4 L_{2} L_{3}$ and $N_{6}=4 L_{3} L_{1}$. Shape functions for higher-order elements can be obtained by a simple recurrence relation. While it is convenient to formulate the triangular elements in terms of triangular co-ordinates, it is necessary at some point to change to the (ξ, η) local co-ordinates, when the substitutions $L_{1}=\xi$, $L_{2}=\eta$ and $L_{3}=1-\xi-\eta$ are made.
It is straightforward to calculate the derivatives of these functions with respect to the local co-ordinates. Integrating functions within the triangular and quadrilateral areas is also straightforward in terms of the local co-ordinates. However, in calculating the stiffness matrix it is necessary to obtain derivatives with respect to the global co-ordinates (i.e. when calculating terms in the B matrix). The Jacobian matrix is used to transform between derivatives with respect to local and global co-ordinates (see for example the text by Maxwell, 1954). The Jacobian matrix arises from the chain rule of partial differentiation:

$$
\begin{aligned}
& \frac{\partial f}{\partial \xi}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \xi} \\
& \frac{\partial f}{\partial \eta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \eta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \eta}
\end{aligned}
$$

and can be written

$$
\left[\begin{array}{l}
\frac{\partial f}{\partial \dot{\xi}} \\
\frac{\partial f}{\partial \eta}
\end{array}\right]=\mathbf{J}\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

where the Jacobian matrix \mathbf{J} is given by

$$
\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]
$$

In forming the terms of the \mathbf{B} matrix, the Jacobian matrix of the inverse relation is required (i.e. local \rightarrow global rather than global \rightarrow local). It is computationally easier to calculate \mathbf{J} and then the terms of J^{-1} and this course is pursued in CRISP (see Chapter 7). The other standard result which is used in integrating the terms of the stiffness matrix is

$$
\int f \mathrm{~d} x \mathrm{~d} y=\int f \operatorname{det}(J) \mathrm{d} \xi \mathrm{~d} \eta
$$

where $\operatorname{det}(J)$ is the determinant of the matrix J.
As indicated earlier, numerical integration is used to calculate the terms of the element stiffness matrices. For two-dimensional numerical integration there are 'integration points' within each element where the terms of the matrix product $\mathrm{B}^{\mathrm{T}} \mathrm{DB}$ are calculated.

3.5.5 One-dimensional quadratic element

As an example of a higher-order element we show how the stiffness matrix of a one-dimensional element with a quadratic variation of displacement (and, hence a linear distribution of strain) can be calculated. This element can be regarded a a three-noded bar element. Alternatively, it could be regarded as suitable for a (rather simple) analysis of layers of soil where there is no straining in either of the horizontal directions. The element is shown in Fig. 3.16. The terms of the \mathbf{N} matrix are given by

$$
\left[0.5 \xi(\xi-1) \quad 0.5 \xi(\xi+1) \quad\left(1-\xi^{2}\right)\right]
$$

The transformation between local and global co-ordinates when forming derivatives is quite simple in the one-dimensional case:

$$
\epsilon_{x}=-\frac{\partial d_{x}}{\partial x}=-\frac{\partial d_{x}}{\partial \xi} \frac{\mathrm{~d} \xi}{\mathrm{~d} x}
$$

Hence the terms of the B matrix are

Fig. 3.16 - One-dimensional quadratic element

$$
\frac{2}{h}[(0.5-\xi) \quad-(0.5+\xi) \quad 2 \xi]
$$

(noting that $\mathrm{d} \xi / \mathrm{d} x=2 / h$).
Now since $\epsilon_{y}=\epsilon_{z}=0, \sigma_{x}=(E(1-\nu) /((1+\nu)(1-2 \nu))) \epsilon_{x}$. Thus \mathbf{D} is in this case a square matrix containing precisely one term (which is usually known as the one-dimensional modulus). The stiffness matrix for this element is therefore given by the integral of the following matrix over the volume of the element:

$$
\frac{4 D}{h^{2}}\left[\begin{array}{ccc}
(0.5-\xi)(0.5-\xi) & -(0.5-\xi)(0.5+\xi) & 2 \xi(0.5-\xi) \\
-(0.5+\xi)(0.5-\xi) & (0.5+\xi)(0.5+\xi) & -2 \xi(0.5+\xi) \\
2 \xi(0.5-\xi) & -2 \xi(0.5+\xi) & 4 \xi \xi
\end{array}\right]
$$

To perform this integration, each term in the matrix is integrated between limits $\xi=-1$ and $\xi=1$, and each resulting term is multiplied by $h / 2$ (the equivalent of $\operatorname{det}(\mathbf{J})$ in this case). The matrix resulting from this process is

$$
\frac{D A}{3 h}\left[\begin{array}{rrr}
7 & 1 & -8 \\
1 & 7 & -8 \\
-8 & -8 & 16
\end{array}\right]
$$

where A is the area of the column of soil.

3.5.6 Approximation and accuracy in the displacement method

Engineers sometimes regard displacement finite elements as being connected only at the nodal points in a mesh. This is not a good conceptual picture of how finite elements behave. Straining displacement elements results in a deformation pattern similar to that shown in Fig. 3.17(a) rather than Fig. 3.17(b) (i.e. no gaps open up between element sides). This is because the displacement shape functions are chosen so that there is continuity of displacements between

(a)

(b)

Fig. 3.17 - Displacement finite elements deform as in (a) not (b) (displacements are compatible: no gaps open up)
elements. On the other hand, although the strains will be continuous within elements, there will usually be a discontinuity of strains between adjacent elements.

The stress field in an element will be continuous - but may not satisfy the differential equations of equilibrium. Except for very simple problems, stresses on either side of element boundaries will not be equal. Equilibrium is satisfied, however, in an average sense through the equilibrium equations at nodal points where the resultant forces equivalent to internal stress fields balance resultant forces equivalent to external tractions and body forces.
The extent to which local stresses appear not to be in equilibrium gives some idea of the accuracy of the solution.

3.6 FINITE ELEMENTS FOR CONSOLIDATION ANALYSIS

3.6.1 The basic equations

In this section the basic matrix equations for consolidation analysis by finite elements are derived. The starting point is the differential equations of equilibrium and compatibility that were described in the first chapter. The equations will be developed for a two-dimensional analysis. To formulate a three-dimensional analysis it is merely necessary to add the extra terms for variation in the z direction. For the sake of completeness we repeat the equilibrium equations:

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}=w_{x} \tag{3.12bis}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}=w_{y} . \tag{3.13bis}
\end{equation*}
$$

The two-dimensional differential equation of continuity is

$$
\begin{equation*}
\frac{k_{x}}{\gamma_{w}} \cdot \frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{k_{y}}{\gamma_{w}} \cdot \frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial v}{\partial t}=0 . \tag{3.25}
\end{equation*}
$$

To obtain the finite element matrix equations we can apply Galerkin's weighted residual method to the equilibrium equations and to the continuity equation in turn. In section 3.3 it was shown that for the equilibrium equations the resulting equation was equivalent to the principle of virtual work. We now show that performing the same kind of operation on the continuity equation yields another 'virtual principle'. The first step is to multiply the continuity equation by an arbitrary scalar which can vary with x and y. We identify this scalar with an imaginary or virtual pore pressure. Thus (3.25) is replaced by

$$
\begin{equation*}
\int_{V} \stackrel{*}{u} \cdot\left[\frac{k_{x}}{\gamma_{\mathrm{w}}} \frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{k_{y}}{\gamma_{\mathrm{w}}} \frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{\partial v}{\partial t}\right] \mathrm{d}(\operatorname{vol})=0 \tag{3.26}
\end{equation*}
$$

Zienkiewicz-Green theorem is now applied to this equation:

$$
\begin{align*}
& -\int_{V}\left[\frac{k_{x}}{\gamma_{\mathrm{w}}} \frac{\partial u^{*}}{\partial x} \frac{\partial \bar{u}}{\partial x}+\frac{k_{y}}{\gamma_{\mathrm{w}}} \frac{\partial^{*}}{\partial y} \frac{\partial \bar{u}}{\partial y}\right] \mathrm{d}(\text { vol }) \\
& -\int_{S} u^{*} v_{\mathrm{n}} \mathrm{~d}(\text { area })+\int_{V}^{*} u^{*} \frac{\partial v}{\partial t} \mathrm{~d}(\text { vol })=0 \tag{3.27}
\end{align*}
$$

(where v_{n} is the artificial seepage velocity normal to the boundary). It is this equation that could be regarded as the 'principle of virtual power' and could form the starting point for obtaining the finite element equations, in much the same way as the principle of virtual work can be used to obtain the finite element equations for stress analysis.

We now introduce the finite element discretisation of the problem. The displacements are assumed to vary over a finite element mesh according to

$$
\begin{equation*}
\mathrm{d}=\mathrm{Na} \tag{3.28}
\end{equation*}
$$

and the excess pore pressures are assumed to vary over the same mesh according to

$$
\begin{equation*}
\bar{u}=\overline{\mathrm{N}} \mathbf{b} \tag{3.29}
\end{equation*}
$$

Note that different shape functions are indicated for displacement (matrix N) and excess pore pressure (matrix $\overline{\mathbf{N}}$). For example the displacement may vary in a quadratic fashion and pore pressure in a linear fashion over one element. The virtual excess pore pressure is assumed to vary according to the same shape functions as the excess pore pressures:

$$
\begin{equation*}
\stackrel{*}{u}=\overline{\mathrm{N}} \mathrm{~b} . \tag{3.30}
\end{equation*}
$$

As usual the strains are given by

$$
\begin{equation*}
\epsilon=\mathrm{Ba} \tag{3.31}
\end{equation*}
$$

and the gradient of the excess pore pressure is given by

$$
\left[\begin{array}{l}
\frac{\partial \bar{u}}{\partial x} \tag{3.32}\\
\frac{\partial \bar{u}}{\partial y}
\end{array}\right]=\mathbf{E} \mathrm{b}
$$

where the terms of the E matrix are obtained by differentiating $\overline{\mathrm{N}}$. A vector m is defined:

$$
\mathrm{m}=\left[\begin{array}{l}
1 \tag{3.33}\\
1 \\
0
\end{array}\right]
$$

such that

$$
\begin{equation*}
\sigma=\sigma^{\prime}+m u \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\mathrm{m}^{\mathrm{T}} \boldsymbol{\epsilon} . \tag{3.35}
\end{equation*}
$$

Substituting into (3.27) we have

$$
\begin{align*}
& \stackrel{*}{\mathrm{~b}}^{\mathrm{T}} \int_{V} \overline{\mathbf{N}}^{\mathrm{T}} \mathbf{m}^{\mathrm{T}} \mathrm{~B} \mathrm{~d}(\text { vol }) \frac{\mathrm{d}(\mathbf{a})}{\mathrm{d} t}-\stackrel{\mathrm{b}}{ }^{\mathrm{T}} \int_{V} \mathrm{E}^{\mathrm{T}} \mathrm{kE} / \gamma_{\mathrm{w}} \mathrm{~d}(\text { vol }) \mathrm{b} \\
& \quad=\text { b }^{\mathrm{T}} \int_{S} \overline{\mathbf{N}}^{\mathrm{T}} v_{\mathrm{n}} \mathrm{~d} \text { (area) } \tag{3.36}
\end{align*}
$$

where k is a permeability matrix:

$$
\left[\begin{array}{cc}
k_{x} & 0 \\
0 & k_{y}
\end{array}\right] .
$$

The virtual pore pressure can be cancelled from this equation, and making the substitutions

$$
\mathbf{L}=\int_{V} \mathbf{B}^{\mathrm{T}} \mathrm{~m} \overline{\mathbf{N}} \mathrm{~d}(\text { vol }) \quad \text { and } \quad \Phi=\int_{V} \mathbf{E}^{\mathrm{T}} \mathrm{kE} / \gamma_{\mathrm{W}} \mathrm{~d}(\text { vol })
$$

we obtain

$$
\mathbf{L}^{\mathrm{T}} \frac{\mathrm{~d}(\mathbf{a})}{\mathrm{d} t}-\Phi \mathbf{b}=\int_{S} \overline{\mathbf{N}}^{\mathrm{T}} v_{\mathrm{n}} \mathrm{~d}(\text { area) }
$$

This is a first-order differential equation which we integrate with respect to time, from time t to time $t+\Delta t$

$$
\begin{align*}
\int_{t}^{t+\Delta t} & \mathrm{~L}^{\mathrm{T}} \frac{\mathrm{~d}(\mathrm{a})}{\mathrm{d} t} \mathrm{~d} t-\Phi \int_{t}^{t+\Delta t} \mathrm{~b} \mathrm{~d} t \\
= & \int_{t}^{t+\Delta t} \int_{S} \overline{\mathrm{~N}}^{\mathrm{T}} v_{\mathrm{n}} \mathrm{~d} \text { (area) } \mathrm{d} t \tag{3.37}
\end{align*}
$$

In performing this integration we make the approximation

$$
\int_{t}^{t+\Delta t} \mathrm{~b} \mathrm{~d} t=\left\{(1-\theta) \mathrm{b}_{1}+\theta \mathbf{b}_{2} \quad \Delta t\right\}
$$

where $\mathrm{b}_{1}=\mathrm{b}(t)$ and $\mathrm{b}_{2}=\mathrm{b}(t+\Delta t)$. The value of θ defines the way that b varies during the time interval; for example, $\theta=\frac{1}{2}$ corresponds to a linear variation and the trapezoidal integration rule.

A similar approximation is made for the integration of v_{n}, and after substitution (3.37) becomes

$$
\begin{align*}
\mathbf{L}^{\mathrm{T}} & {[\mathrm{a}]_{t}^{t+\Delta t}-\Phi\left\{(1-\theta) \mathrm{b}_{1}+\theta \mathrm{b}_{2}\right\} \Delta t } \\
& =\int \mathrm{N}^{\mathrm{T}}\left\{(1-\theta) v_{\mathrm{n} 1}+\theta v_{\mathrm{n} 2}\right\} \Delta t \mathrm{~d} \text { (area) } . \tag{3.38}
\end{align*}
$$

Booker and Small (1975) consider the stability of integration schemes using different values of θ and show that for stability, $\theta \geqslant \frac{1}{2}$. We have adopted a value of $\theta=1$. Making that substitution in (3.38), and defining $\Delta \mathrm{a}=\mathrm{a}(t+\Delta t)-\mathrm{a}(t)$ and $\Delta b=b_{2}-b_{1}$, we arrive at

$$
\begin{align*}
\mathbf{L}^{\mathrm{T}} \Delta \mathrm{a} & -\Phi \Delta t \cdot \Delta \mathrm{~b}=\Phi \Delta t \cdot \mathrm{~b}_{1} \\
& +\int_{S} \mathrm{~N}^{\mathrm{T}} v_{\mathrm{n} 2} \Delta t \mathrm{~d}(\text { are } \mathrm{a}) \tag{3.39}
\end{align*}
$$

Now we turn to the equilibrium equations. Rather than start from the differential form we make direct use of the incremental form of virtual work:

$$
\begin{equation*}
\int_{\epsilon}^{*} \mathrm{~T} \Delta \sigma \mathrm{~d}(\mathrm{vol})=\iint_{\mathrm{d}}^{*} \mathrm{~T} \Delta \tau \mathrm{~d}(\text { area })+\int_{\mathrm{d}}^{*} \mathrm{~T} \Delta \mathrm{wd}(\mathrm{vol}) . \tag{3.40}
\end{equation*}
$$

Previously we have used the virtual work principle for total stresses. That the incremental form is valid follows from the principle of superposition for linear elastic systems. In fact the incremental form is also valid for non-linear systems, as can be shown by writing the equations in terms of total stresses and subtracting. Now:

$$
\Delta \sigma=\Delta \sigma^{\prime}+m \Delta u
$$

and therefore (noting that $\Delta u=\Delta \bar{u}$)

$$
\Delta \sigma=\Delta \sigma^{\prime}+\mathrm{m} \Delta \bar{u} .
$$

Using this relation, and making the usual finite element substitutions

$$
\begin{aligned}
\Delta \epsilon & =B \Delta \mathrm{a} \\
\stackrel{*}{\mathrm{~d}} & =N_{\mathrm{a}}^{*}, \\
\Delta \bar{u} & =\bar{N} \Delta \mathrm{~b},
\end{aligned}
$$

we obtain

$$
\begin{align*}
& { }^{*} \mathrm{~T} \quad \int_{v} \mathrm{~B}^{\mathrm{T}} \mathrm{DB} \mathrm{~d}(\text { vol }) \Delta \mathrm{a}+{ }^{*} \mathrm{a} \mathrm{~T} \int\left(\mathrm{~B}^{\mathrm{T}} \mathrm{~m} \overline{\mathrm{~N}}\right) \mathrm{d}(\text { vol }) \cdot \Delta \mathrm{b} \\
& \quad={ }_{\mathrm{a}}{ }^{\mathrm{T}} \int_{S} \mathrm{~N}^{\mathrm{T}} \cdot \Delta \tau \mathrm{~d}(\text { area }) . \tag{3.41}
\end{align*}
$$

${ }_{\mathrm{a}}{ }^{\mathrm{T}}$ can be cancelled, and using the notation already established:

$$
\begin{equation*}
\mathrm{K} \Delta \mathrm{a}+\mathrm{L} \Delta \mathrm{~b}=\int_{S} \mathrm{~N}^{\mathrm{T}} \Delta \boldsymbol{T} \mathrm{~d}(\text { area) } \tag{3.42}
\end{equation*}
$$

where

$$
K=\int\left[B^{T} D B\right] d(v o l)
$$

Equations (3.39) and (3.42) can be used to establish a solution at time $t+\Delta t$ from the solution at time t. Thus the solution can be 'marched forward' in time from $t=0$. In summarising, the equations can be written:

$$
\left[\begin{array}{cc}
\mathrm{K} & \mathbf{L} \tag{3.43}\\
\mathrm{~L}^{\mathrm{T}} & -\Phi \Delta t
\end{array}\right]\left[\begin{array}{c}
\Delta \mathrm{a} \\
\Delta \mathrm{~b}
\end{array}\right]=\left[\begin{array}{c}
\Delta \mathrm{r}_{1} \\
\Delta \mathrm{r}_{2}
\end{array}\right]
$$

It is normal to refer to the square matrix in (3.43) as a stiffness matrix, even though it multiplies a vector of mixed displacement and pore pressure variables. The first equation in (3.43) represents approximate satisfaction of the equilibrium equations and the second equation approximate satisfaction of the continuity equation. The right-hand-side term Δr_{1} consists of the normal finite element incremental load terms. The right-hand-side term $\Delta \mathbf{r}_{2}$ consists of a load term corresponding to a prescribed seepage on the boundary:

$$
\int_{S} \overline{\mathbf{N}} v_{\mathrm{n} 2} \mathrm{~d} \text { (area) }
$$

and an additional term $\left(\Phi \Delta t . \mathbf{b}_{1}\right)$ which is calculated as the solution proceeds.

3.6.2 A finite element program for consolidation analysis

This section shows how the matrix equations derived in the previous section are implemented in a computer program. We call this program 'TINY'. The name is appropriate because the program has been set up to solve problems with a maximum of six elements. Of course, it would not be difficult to lift this restriction by making some modifications to the program. The program performs
a one-dimensional consolidation analysis using the element shown in Fig. 3.18. The basic displacement element is the three-noded one in section 3.5.5, here supplemented by a linear variation in excess pore pressure. Here is a 'subroutine hierarchy' for TINY, showing the order in which the various subroutines are called and their relation to one another:

Fig. 3.18 - Finite element used by TINY for one-dimensional consolidation
The overall sequence of operations performed by the program is the same as for the 'springs' program described earlier. However, routines ASSMBL, FIXBC, SOLVE and UPOUT are now in a loop and are executed for every time step or increment of the analysis. Routine ASSMBL assembles the global 'stiffness' matrices using the 5×5 element matrices. The main controlling routine is below, and is followed by cross-referenced explanations, a style we shall use for all other routines:

Routine MAIN

CHARACTER*80 TITLE	MAIN	1
COMMON /DAT/ GP(2),W(2), LIN(3)	MAIN	2
COMMON GAMMAW, H (6), YM (6), POISS (6), PERM (6), DTIME (40)	Main	3
COMMON SHFND (3), DSD (3), $\operatorname{CARDSD}(3), \operatorname{SHFNP}(2), \operatorname{DSP}(2), \operatorname{CARDSP}(2)$	MAIN	4
	Main MAIN	5 6
COMMON ST(20,20), RHS (20), DISPA (20), VARINT ($2,2,6$), BC (4), XI, BTIME	MAIN	7
COMMON $\operatorname{NCONN}(3,6), N W(13)$, IBC (4), NINC, NDF, NEL, NG, NNC, NE	MAIN	8
COMMON L5,L6	MAIN	9
L5 5		

```
    L6=1
        NG=2 (L5,100) TITLE
100 RORMAT(A)
WRITE(L6,200) TITLE
200 FORMAT(1X,20(4H****)/1X,A/1X,20(4H****))
    CALL ELDATA
    READ(L5,*) NOINCB
WRITE(L6,201) NOINCB INCREMENT BLOCKS =,I5)
    CALL ZEROR1(DISPA,20)
    CALL ZEROR3(VARINT,2,2,6)
    DO }80\mathrm{ INCB=1,NOINCB
    WRITE(L6,202) INCB
202 FORMAT(1X,20(4H====)/16H INCREMENT BLOCK,I5/1X,20(4H====)
    CALL INCDAT
    DO 70 I=1,NINC
    INC=I
    WRITE (L6,203) INC
203 FORMAT (1X,20(4H++++)/10H INC REMENT,I5/1X,20(4H++++))
    CALL ASSMBL
    call Solve
    CALL UPOUT
7 0 \text { continue}
80 CONTINUE
    STOP
```

$\begin{array}{ll}\text { MAIN } & 10 \\ \text { MAIN } & 11\end{array}$
MAIN 12
$\begin{array}{ll}\text { MAIN } & 13 \\ \text { MAIN } & 14\end{array}$
$\begin{array}{ll}\text { MAIN } & 14 \\ \text { MIN } & 15\end{array}$
$\begin{array}{ll}\text { MAIN } & 14 \\ \text { MAIN } & 15 \\ \text { MAIN } & 16\end{array}$
$\begin{array}{ll}\text { MAIN } & 15 \\ \text { MAIN } & 16\end{array}$
$\begin{array}{ll}\text { MAIN } & 16 \\ \text { MAIN } & 17\end{array}$
$\begin{array}{ll}\text { MAIN } & 17 \\ \text { MAIN } & 18\end{array}$
$\begin{array}{ll}\text { MAIN } & 18 \\ \text { MAIN } & 19 \\ \text { MAIN } & 20\end{array}$
$\begin{array}{ll}\text { MAIN } & 19 \\ \text { MAIN } & 20 \\ \text { MAIN }\end{array}$

MAIN	20
MAIN	21

$\begin{array}{ll}\text { MAIN } & 22 \\ \text { MAIN } & 2\end{array}$
MAIN 2
$\begin{array}{ll}\text { MAIN } & 2 . \\ \text { MAIN } & 25\end{array}$
$\begin{array}{ll}\text { MAIN } & 25 \\ \text { MAIN } & 26 \\ \text { MAIN } & 26\end{array}$
MAIN 27
$\begin{array}{ll}\text { MAIN } & 27 \\ \text { MAIN } & 28 \\ \text { MAIN } & 29\end{array}$
MAIN 29
$\begin{array}{ll}\text { MAIN } & 30\end{array}$
MAIN 3
MAIN 31
$\begin{array}{ll}\text { MAIN } & 31 \\ \text { MAIN } & 32\end{array}$
MAIN
$\begin{array}{ll}\text { MAIN } & 33 \\ \text { MAIN } & 34 \\ \text { MAIN } & 35\end{array}$
$\begin{array}{ll}\text { MAIN } & 34 \\ \text { MAIN } & 35 \\ \text { MAIN } & 36\end{array}$
MAIN 30
MAIN 37

MAIN 12-15 : read and write title for analysis.
MAIN 16 : subroutine ELDATA reads the element properties (geometry and material).
MAIN 17-19 : no. of increment blocks.
MAIN 20 : initialise cumulative displacement/excess pore pressure array.
MAIN 21 : initialise stresses at integration points.
MAIN 22 : loop on all increment blocks.
MAIN 25 : read no. of increments and the time steps for each increment in : read no. of incremen
the increment block.
MAIN 30 : calculate element stiffness matrix and assemble into global stiff ness matrix.
MAIN 31 : apply boundary conditions.
MAIN 32 : solve for unknowns (displacement/excess pore pressure).
MAIN 33 : print out results.
MAIN 34 : end of increment loop.
MAIN 35 : end of increment block loop.
Routine ELDATA reads the user's data describing the element properties. The program assumes that the elements are in order, starting from the top (or bottom) of the layer and numbers the nodes accordingly. Nodes at the midpoints of elements have only one (displacement) degree of freedom (d.o.f.), while nodes at the ends of elements have two d.o.f. (displacement plus excess pore pressure). The position of a d.o.f. in the vector RHS (which initially holds the load terms, and after solution the nodal incremental displacements and
incremental excess pore pressures）is called the global variable number（g．v．n．）． The displacement d．o．f．at node 1 has a g．v．n．of 1 ；the pressure d．o．f．at node 1 has a g．v．n．of 2 ；the displacement d．o．f．at node 2 has a g．v．n．of 3 ；the displace－ ment d．o．f．at node 3 has a g．v．n．of 4 ；the excess pore pressure d．o．f．at node 3 has a g．v．n．of 5 ；the displacement d．o．f．at node 4 has a g．v．n．of 6 ；and so on Array NW is set up so that NW（I）gives the first g．v．n．associated with node I．

Subroutine ELDATA

SUbroutine eldata
COMMON／DAT／GP（2），W（2），LIN（3）
COMMON DATM GP（ 6 ），YM（6），POISS（ 6 ），PERM（6），DTIME（40）
COMMON $\operatorname{SHFND}(3), \operatorname{DSD}(3), \operatorname{CARDSD}(3), \operatorname{SHFNP}(2), D S P(2), \operatorname{CARDSP}(2)$
COMMON B（3），E（2），DB（3），ES（5，5），FI（2，2），UAXS（2），ERHS（5）
COMMON ST（20，20），RHS（20），DISPA（20），VARINT（ $2,2,6), \mathrm{BC}(4), \mathrm{XI}, \mathrm{BTIME}$
COMMON NCONN（3，6），NH（13），IBC（4），NINC，NDF ，NEL，NG，INC，NE
COMMON L5，L6
READ（L5，＊）GAMMAW
Format（10h GamMAW $=$, E15．5）
$\operatorname{read}(L 5, *)$ nel
WRITE $(L 6,201)$ NEL
201 FORMAT（22H NUMBER OF ELEMENTS $=, 15)$
DO $10 \mathrm{~N}=1$ ，NEL
$\operatorname{READ}(L 5, *) H(N), Y M(N), \operatorname{POISS}(N), \operatorname{PERM}(N)$
WRITE（L6，202） $\mathrm{N}, \mathrm{H}(\mathrm{N}), \mathrm{YM}(\mathrm{N}), \operatorname{POISS}(\mathrm{N}), \operatorname{PERM}(\mathrm{N})$
2 Format（1X，I5，4E 15．5）
$\mathrm{I}=1$
$\mathrm{I}=1$
$\mathrm{NW}(1)=1$
DO $20 \mathrm{~N}=1$ ，NEL
$\operatorname{NCONN}(1, N)=2^{*} N-1$
$\operatorname{NCONN}(2, N)=2^{*} N+1$
$\operatorname{NCONN}(3, N)=2 * N$
$N W(I+1)=N W(I)+2$
$20 \mathrm{I}=\mathrm{I}+2$
NDF $=2+3$＊NEL
return

En
ELDT 9－11 ：read and write unit weight of water．
ELDT 12－14 ：read and write no．of elements $(\leqslant 6)$ ．
ELDT 15－19 ：read height（or thickness），Young＇s modulus and Poisson＇s ratio ELDT $15-19$ and permeability．
ELDT 22 ：loop on all elements．
ELDT 23－25 ：set up element－nodal connectivity list（list of nodes connected to each element）．
ELDT 26－27 ：set up g．v．n．for the first variable of each node．
ELDT 29 ：total no．of d．o．f．（variables）．
Routine INCDAT reads the data describing the loads etc．associated with each analysis increment．For ease of data preparation，increments are grouped together into increment blocks．

Subroutine INCDAT

SUBROUTINE INCDAT

COMMON／DAT／GP（2），W（2），LIN（3）
COMMON GAMMAW H（6），YM（6），POISS（6），PERM（6），DTIME（40） COMMON $\operatorname{SHFND}(3), \operatorname{DSD}(3), \operatorname{CARDSD}(3), \operatorname{SHFNP}(2), \operatorname{DSP}(2)$, CARDSP（2） COMMON B（3），E（2），DB（3），ES（5，5），FI（2，2），UAXS（2），ERHS（5） COMMON ST（20，20），RHS（20），DISPA（20），VARINT $(2,2,6)$, BC（4），XI，BTIME COMMON NCONN（3，6），NW（13），IBC（4），NINC，NDF，NEL，NG，INC ，NE COMMON L5，L6 READ（L5，＊）NINC
200 FORMAT（ 38 H NUMBER OF INCREMENTS IN THIS BLOCK $=$, I5） $\operatorname{READ}(L 5, *)$（DTIME（I），$I=1$ ，NINC）
201 FORMAT（16H TIME INCREMENTS／（1X，8E15．5） BTIME $=0.0$
DO $10 \mathrm{~N}=1$ ，NINC
－ BTIME $=$ BTIME + DTIME（N
WRITE $(L 6,203)$ bTIME
203 FORMAT（33H TOTAL TIME FOR INCREMENT BLOCK $=$ ，E15．5） WRITE（L6，202）IBC，BC
202 FORMAT（2OH BOUNDARY CONDITIONS／1X，17，3I15／1X，4E15．5） RETUR
END
INCD 19－11：read and write no．of increments in the increment block $(\leqslant 40)$ INCD 12－14 ：read and write the time steps for each increment
INCD 16－17 ：calculate the total time step for increment block．
INCD 20－22 ：read prescribed boundary conditions and fixity codes for first and last nodes．

Routine ASSMBL calls LSTIFF which calculates the＇stiffness＇matrix for each element and assembles it into the global matrix．It uses the array NW to decide where to put the stiffness terms（NW＝Node Where）in the global matrix． Array $\operatorname{LIN}(3)$ contains the number of d．o．f．associated with each element node $(2,2,1)$ ，and so helps ASSMBL to decide how many rows／columns to slot in （LIN＝eLement INformation，a mini version of the LINFO array in CRISP．） The＇element right－hand－side＇terms（ERHS）are slotted in too．

Subroutine ASSMBL

SUBROUTINE ASSMBL	ASML
COMMON／DAT／GP（2），W（2），LIN（3）	ASML
COMMON GAMMAW，H（6），YM（6），POISS（6），PERM（6），DTIME（40）	ASML
COMMON SHFND（3），DSD（3），CARDSD（3）， $\operatorname{SHFNP}(2), \operatorname{DSP}(2), \operatorname{CARDSP}$（2）	L
	ML
COMMON ST（ 20,20 ，，RHS（20），DISPA（20），VARINT（ $2,2,6$ ），BC（ 4 ），XI，BT IME	ASML
COMMON NCONN（3，6），NW（13），IBC（4），NINC，NDF，NEL，NG，INC，NE	ASML
COMMON L5，L6	ASML
Call 2 EROR2（ST，20，20）	ASM
CALL $\mathrm{ZEROR1}$（RHS，20）	ASML
DO $60 \mathrm{~N}=1$ ，NEL	ASML
$\mathrm{NE}=\mathrm{N}$	ASML
CALL LSTiff	ASML

ASML 9 : initialise global stiffness matrix.
ASML 10 : initialise RHS load vector.
ASML 11 : loop on all elements.
ASML 13 : calculate element stiffness matrix
ASML 14 : slot element stiffness matrix in global matrix (loop on all rows).
ASML 15 : node no.
ASML 16 : no. of d.o.f. of node.
ASML 17 : global variable number of first d.o.f. of node $(=I K+1)$
ASML 18 : index of the first variable of node $(=I L+1)$.
ASML 19 : loop on all variables of node
ASML 20 : global variable number.
ASML 21 : local variable number.
ASML 22 : loop on all columns.
ASML 23 : node no.
ASML 24 : no. of d.o.f. of node.
ASML 25 : global variable number of first d.o.f. of node (= JK + 1)
ASML 26 : index of the first variable of node $(=\mathrm{JL}+1)$.
ASML 27 : loop on all variables of node.
ASML 28 : global variable number.
ASML 29 : local variable number.
ASML 30 : slot element stiffness matrix into global matrix.
ASML 31 : assemble element RHS terms into global RHS (load) array
ASML 32 : end of element loop.
Routine LSTIFF calculates the element 'stiffness' matrix for element NE. The loop from statement 12 to statement 30 calculates the component parts of the stiffness matrix using two-point Gaussian numerical integration. The terms of the various matrix products are calculated NG times (NG = no. of Gauss points $=2$) and are summed. The K and L^{T} terms go straight into ES, but the
terms of Φ are stored in a separate matrix FI which is used to produce the por pressure 'loads' from the marching process ($\Phi \Delta t . \mathbf{b}_{1}$). Routines SHAPE and FORMBE are used to calculate the terms of the N, \bar{N}, \mathbf{B} and \mathbf{E} matrices at each integration point.

Subroutine LSTIFF
SUBROUTINE LSTIFF
COMMON /DAT/ GP(2),W(2), LIN(3)

COMMON /DAT/ GP(2),W(2),LIN(3)
COMMON GAMMAW, H (6), YM (6), POISS (6), PERM (6), DTIME (40)
COMMON B(3),E(2),DB(3),ES (5,5),FI(2,2) $1 \mathrm{BAXS}(2), \operatorname{EPHS}(5)$ (2)
COMMON ST $(20,20)$, RHS (20), DISPA (20), VARINT $(2,2,6), B C(4)$
COMMON NCONN $(3,6)$, NH (13), IBC (4) , NINC, NDF , NEL, NG, INC (NE , XI, BT IME
COMMON L5, L6
CALL ZEROR2(ES,5,5)
CALL ZEROR2(FI,2,2)
CALL ZEROR1(ERHS,5)
$\mathrm{XI}=\mathrm{GP}(\mathrm{IG})$
$W F=W(I G) * H(N E) / 2$.
CALL SHAPE
CALL FORMB
DO $18 \mathrm{~J}=1,3$
$D B(J)=Y M(N)$ DO $20 \mathrm{~J}=1$,
DO $20 \quad \mathrm{I}=1,3$
$20 \operatorname{ES}\left(2^{*} \mathrm{I}-1,2^{*} \mathrm{~J}-1\right)=\mathrm{ES}\left(2^{*} \mathrm{I}-1,2^{*} \mathrm{~J}-1\right)+\mathrm{WF}{ }^{*} \mathrm{~B}(\mathrm{I}) * \mathrm{DB}(\mathrm{J})$ DO $22 I=1,3$ DO $22 \mathrm{~J}=1,2$
$\operatorname{ES}(2 * I-1,2 * J)=E S(2 * I-1,2 * J)+W F * B(I) * \operatorname{SHFNP}(J)$
$2 \operatorname{ES}\left(2^{*} J, 2^{*} I-1\right)=\operatorname{ES}\left(2^{*} I-1,2^{*} J\right)$ DO $24 \quad \mathrm{I}=1$, 2
$24 \mathrm{FI}(\mathrm{I}, \mathrm{J})=\mathrm{FI}(\mathrm{I}, \mathrm{J})+\mathrm{E}(\mathrm{I}) * E(\mathrm{~J}) * P E R M(\mathrm{NE}) * \mathrm{WF} / \mathrm{GAMMA}$
40 CONTINUE
$\begin{array}{lll}\text { D } 50 & =1,2 \\ \text { DO } 50 \\ \mathrm{~J}=1,2\end{array}$
$50 \operatorname{ES}(2 * I, 2 * J)=-\operatorname{DTIME}(\operatorname{INC}) * F I(\mathrm{I}, \mathrm{J})$
DO $54 \quad I=1,2$
$\mathrm{N}=\mathrm{NCONN}(\mathrm{I}$,
$\mathrm{K}=\mathrm{NW}(\mathrm{N})+1$
$54 \operatorname{UAXS}(\mathrm{I})=\mathrm{DISPA}(\mathrm{K}$
DO $58 \mathrm{I}=1$, 2
DO $58 \mathrm{~J}=1$, 2
$58 \operatorname{ERHS}(2 * I)=\operatorname{ERHS}(2 * I)+F I(I, J) * U A X S(J) * \operatorname{DTIME}(\operatorname{INC})$ IF (NE.NE.1) GOTO 70
$\operatorname{IF}(\operatorname{IBC}(1)$.EQ.0) ERHS (1)=BC(1)*DTIME (INC)/BTIME
 IF (NE.NE.NEL) RETURN (3) $=-$ BC (2)*DTIME (INC)/BTIME (IBC (4).EQ.0) ERHS(4)=ERHS(4)-DTIME (INC)*BC(4)/GAMMAW END
$\begin{array}{ll}\text { LSTF } & 29 \\ \text { LSTF } & 30\end{array}$
$\begin{array}{ll}\text { LSTF } & 30 \\ \text { STF } & 31\end{array}$
$\begin{array}{ll}\text { LSTF } & 31 \\ \text { LSTF } & 32\end{array}$
$\begin{array}{ll}\text { LSTF } & 32 \\ \text { STF } & 33\end{array}$
STF 34
$\begin{array}{ll}\text { LSTF } & 34 \\ \text { LSTF } & 35 \\ \text { LSTF } & 36\end{array}$
$\begin{array}{ll}\text { STF } & 36 \\ \text { STF } & 37\end{array}$
$\begin{array}{ll}\text { LSTF } & 37 \\ \text { LSTF } & 38\end{array}$
$\begin{array}{ll}\text { LSTF } & 38 \\ \text { LSTF } & 39\end{array}$
$\begin{array}{ll}\text { LSTF } & 39 \\ \text { STF } & 40\end{array}$
$\begin{array}{ll}\text { LSTF } & 40 \\ \text { LSTF } & 41\end{array}$
$\begin{array}{ll}\text { LSTF } & 41 \\ \text { LSTF } & 42\end{array}$
$\begin{array}{ll}\text { LSTF } & 42 \\ \text { LSTF } & 43\end{array}$
$\begin{array}{ll}\text { LSTF } & 43 \\ \text { LSTF } & 44\end{array}$
$\begin{array}{ll}\text { STF } & 44 \\ \text { STF } & 45\end{array}$
$\begin{array}{ll}\text { LSTF } & 45 \\ \text { LSTF } & 46\end{array}$
$\begin{array}{ll}\text { STF } & 46 \\ \text { STF } & 47\end{array}$
$\begin{array}{ll}\text { LSTF } & 47 \\ \text { LSTF } & 48\end{array}$

LSTF 9-11: initialise element stiffness matrix, flow matrix and element load array.
LSTF 12 : loop on all integration points

LSTF 13 : local co-ordinate of integration point.
LSTF 14 : weighting factor X Jacobian.
LSTF 15 : calculate shape functions and derivatives for displacement and excess pore pressures.
LSTF 16 : form B and E matrices.
LSTF 17-19: calculate DB matrix.
LSTF 20-22: calculate displacement part of stiffness matrix, B T DB.
LSTF 23-26 : calculate link matrix.
LSTF 27-29: calculate flow matrix Φ.
LSTF 30 : end of integration point loop.
LSTF 31-33: multiply Φ by time step.
LSTF 34-37: current excess pore pressure (value at the end of previous increment).
LSTF 38-40 : calculate RHS pore pressure terms.
LSTF 41 : skip if not first element. ${ }^{\dagger}$
LSTF 42 : add loads proportional to the time step for this increment.
LSTF 43 : add flow term to the RHS.
LSTF 44 : skip if not last element. \dagger
LSTF 45 : add loads proportional to the time step for this increment.
LSTF 46 : add flow term to RHS.
Routine SHAPE calculates the shape functions and their derivatives (with respect to both local and 'Cartesian' axes) for displacements and excess pore pressures at the point with local co-ordinate $\xi(\mathrm{XI})$ within an element.

Subroutine SHAPE

subroutine shape
COMMON /DAT/ GP(2),W(2),LIN(3)
COMMON GAMMAW, H(6),YM(6), POISS (6), PERM (6), DTIME (40)
COMMON $\operatorname{SHFND}(3), \operatorname{DSD}(3), \operatorname{CARDSD}(3), \operatorname{SHFNP}(2), \operatorname{DSP}(2), \operatorname{CARDSP}(2)$
COMMON B(3),E(2),DB(3),ES (5,5), FI (2,2), UAXS (2), ERHS (5)
COMMON ST (20, 20), RHS (20), DISPA (20), VARINT $(2,2,6), \operatorname{BC}(4), X I, B T I M E$
COMMON NCONN (3,6), NW (13), IBC (4), NINC, NDF, NEL, NG, INC , NE
COMMON L5, L6
$\operatorname{SHFND}(1)=X I *(X I-1,0) / 2.0$
$\operatorname{SHFND}(2)=X I *(X I+1.0) / 2.0$
SHFND (3) $=1.0-\mathrm{XI} * \times I$
$\operatorname{DSD}(1)=X I-0.5$
$\operatorname{DSD}(2)=X I+0.5$
$\operatorname{DSD}(3)=-2.0 * x I$
$\operatorname{CARDSD}(1)=\operatorname{DSD}(1) * 2.0 / H(N E)$
$\operatorname{CARDSD}(2)=\operatorname{DSD}(2) * 2.0 / H(N E)$
$\operatorname{CARDSD}(3)=\operatorname{DSD}(3) * 2.0 / H(\operatorname{NE})$
$\operatorname{SHFNP}(1)=(1.0-\mathrm{KI}) / 2.0$
$\operatorname{SHFNP}(2)=(1,0+X I) / 2.0$
$\operatorname{DSP}(1)=-0.5$
$\operatorname{DSP}(2)=0.5$
$\operatorname{CARDSP}(1)=\operatorname{DSP}(1) * 2.0 / H(N E)$
CARDSP(2) $=\operatorname{DSP}(2) * 2.0 / H(N E)$
RETURN

SHAP 9-11: calculate displacement shape functions.
SHAP 12-14 : calculate local derivatives of displacement shape functions.
SHAP 15-17 : calculate Cartesian derivatives of displacement shape functions.
SHAP 18-19: calculate excess pore pressure shape functions.
HAP 20-21 : calculate local derivatives of excess pore pressure shape functions functions. Cartesian derivatives of exess pore pressure shap

Routine FORMBE computes values for the B and E matrices, using the values just calculated by SHAPE.

Subroutine FORMBE

Ubroutine formbe		
COMMON /DAT/ GP (2),W(2), LIN(3)	FRMB	
COMMON GAMMAW, H (6), YM (6), POISS (6), PERM (6), DTIME (40)	FRMB	
COMMON SHFND (3), DSD (3), CARDSD (3), SHFNP (2), DSPP(2), CARDSP (2)	FRMB	
COMMON B (3), E(2), DB (3), ES (5,5), FI (2,2$)$, UAXS (2), ERHS (5)	FRMB	
	FRMB	
COMMON L5, L6	FRMB	
$\mathrm{B}(1)=-\operatorname{CARDSD}(1)$	FRMB	
$B(2)=-\operatorname{CARDSD}(2)$	FRMB	
$B(3)=-\operatorname{ARDSD}(3)$	FRMB	10
$E(1)=\operatorname{CardSP}(1)$	FRMB	1
$E(2)=\operatorname{CARDSP}(2)$	FRMB	12
RETURN	FRMB	13
END	FRMB	14
	FRMB	15

FRMB 9-11: calculate B matrix
FRMB 12-13 : calculate E matrix.
Routine FIXBC 'fixes' the values of variables corresponding to the boundary conditions on the top and bottom of the layer.

Subroutine FIXBC

$10 \operatorname{IF}(\operatorname{IBC}(\mathrm{I}) . \mathrm{NE} .2)$ GOTO 18
$\operatorname{ST}(N, N)=\operatorname{ST}(N, N)+1.0 E 18(\mathrm{NC}(\mathrm{I})-\operatorname{DISPA}(N))$
BC(I) $=1$
$\mathrm{BC}(\mathrm{I})=0.0$
GOTO 20
18 WRITE(L6,200) I, IBC(I)
200 FORMAT (32H ILLEGAL BOUNDARY CONDITION CODE,2I5)
STOP
20 CONTIN
CONTINUE
RETURN
RETU
END
FXBC : loop on all variables with possible prescribed boundary conditions.
FXBC 10 : skip if variable is not prescribed (indicated by 0).
FXBC 11-14: corresponding global variable number.
FXBC 15 : skip if the incremental value is not prescribed.
FXBC 16 : add large value to the diagonal term.
FXBC 17 : adjust RHS to yield prescribed value.
FXBC 19 : skip if the cumulative value is not prescribed (only applicable to (XBC 19 excess pore pressure).
FXBC 20 : add large number to diagonal term (the pivot).
FXBC 21 : adjust RHS to yield prescribed value.
FXBC 25 : inadmissible boundary condition code.
Routine SOLVE solves the global matrix equations using Gaussian elimination.

Subroutine SOLVE

SUBROUTINE SOLVE	SoLV
COMMON /DAT/ GP(2),W(2), LIN (3)	SOLV
COMMON GAMMAW, H (6), YM (6), POISS (6), PERM (6), DTIME (40)	Solv
COMMON SHFND (3), DSD (3), $\operatorname{CARDSD}(3), \operatorname{SHFNP}(2), \operatorname{DSP}(2), \operatorname{CARDSP}(2)$	Solv
	SOLV
	SOLV
COMMON $\operatorname{MCONN}(3,6), \mathrm{NW}(13), \operatorname{IBC}(4), \mathrm{NINC}, \mathrm{NDF}, \mathrm{NEL}, \mathrm{G}, \mathrm{NC}, \mathrm{N}$	SOLV
COMMON L5, L6	SOLV
NDF $1=$ NDF-1	SOLV
D 30 IQ $=1, \mathrm{NDF} 1$	Solv
$\mathrm{I} 1=\mathrm{IQ}+1$	SOLV
DO 26 I=I1, NDF	SoLv
DO $22 \mathrm{~J}=\mathrm{IQ}, \mathrm{NDF}$	SoLv
$22 \mathrm{ST}(\mathrm{I}, \mathrm{J})=\mathrm{ST}(\mathrm{I}, \mathrm{J})-\mathrm{ST}(\mathrm{IQ}, \mathrm{I}) * S T(\mathrm{IQ}, \mathrm{J}) \mathrm{ST}(\mathrm{IQ}, \mathrm{IQ})$	SoLV
$26 \mathrm{RHS}(\mathrm{I})=\mathrm{RHS}(\mathrm{I})-\mathrm{ST}(\mathrm{IQ}, \mathrm{I}) * \mathrm{RHS}(\mathrm{IQ}) / \mathrm{ST}(\mathrm{IQ}, \mathrm{IQ})$	Solv
30 CONTINUE	SOLV
RHS (NDF) $=$ RHS (NDF)/ST(NDF, NDF)	SOLV
DO 60 II $=1$, NDF 1	Solv
IQ $=$ NDF-II	SOLV
$\mathrm{I}=\mathrm{IQ}+1$	Solv
DO $58 \mathrm{I}=\mathrm{I} 1$, NDF	SOLV
58 RHS (IQ)=RHS(IQ)-ST(IQ,I)*RHS(I)	SOLV
$60 \mathrm{RHS}(\mathrm{IQ})=\mathrm{RHS}(\mathrm{IQ}) / \mathrm{ST}$ (IQ, IQ	SOLV
RETURN	SOLV

RETURN
END

SOLV 10-16: Gaussian elimination to reduce global stiffness matrix to triangular form.
SOLV 18-23 : back-substitution to yield the unknown values. RHS contains the solved incremental values of displacement/excess pore pressure.

Routine UPOUT updates total displacements and excess pore pressures and prints out effective stresses and pore pressures at integration points.

Subroutine UPOUT

SUBROUTINE UPOUT
COMMON /DAT/ GP(2),W(2),LIN(3)
COMMON GAMMAW, H(6), YM(6), POISS (6), PERM (6), DTIME (40.)
COMMON SHFND (3), DSD (3), CARDSD (3), SHFNP (2), DSP (2) , CARDSP (2)
COMMON $\mathrm{B}(3), \mathrm{E}(2), \mathrm{DB}(3), \operatorname{ES}(5,5), \mathrm{EI}(2,2), \mathrm{UAXS}(2)$, ERHS (5)
COMMON ST
COMMON ST (20,20), RHS (20), DISPA(20), VARINT ($2,2,6$), BC (4), XI, BTIME COMMON NCONN (3, 6), NW(13) IBC (4), NINC, NDF, NEL, NG, INC, NE
DO $10 \mathrm{~N}=1$, NDF
$10 \operatorname{DISPA}(\mathrm{~N})=\operatorname{DISPA}(\mathrm{N})+\mathrm{RHS}(\mathrm{N})$ WRITE (L6, 200)

258 H
$\mathrm{NN}=1+2$ *NEL
DO $20 \mathrm{~N}=1$, NN
$\mathrm{K} 1=\mathrm{NW}(\mathrm{N})$
IF (2*(N/2).NE.N) WRITE (L6, 201) N,RHS(K1), RHS(K1+1),
1 DISPA(K1), DISPA(K1+1)
$\operatorname{IF}(2 *(N / 2)$.EQ.N $)$ WRITE $(L 6,202) N, \operatorname{RHS}(K 1), \operatorname{DISPA}(K 1)$
201 FORMAT (1X, I5, 4E13.3)
202 FORMAT(1X, I5, E13.3.13X, E13.3)
WRITE (L6, 203)
203 FORMAT(38 H EFFECTIVE STRESSES AND PORE PRESSURES/ 38 H ELEM I.p. Eff STRESS PORE PRESS)
DO 30
$N E=N$
NE N
DO 30 IG $=1$, NG
XI =GP (IG)
CALL SHAPE
CALL FORMBE
$\mathrm{N} 1=\mathrm{NCONN}(1, \mathrm{NE})$
$\mathrm{N} 2=\operatorname{NCONN}(2, \mathrm{NE})$
$\mathrm{N} 3=\operatorname{NCONN}(3, \mathrm{NE})$
$K 1=N W(N 1)$
$\mathrm{K} 2=\mathrm{NW}(\mathrm{N} 2)$
$\mathrm{K} 3=\mathrm{NW}\left(\mathrm{N}_{3}\right)$
$\operatorname{VARINT}(1, I G, N E)=\operatorname{VarinT}(1, I G, N E)+Y M(N E) *(1.0-P O I S S(N E))$
$1 /((1.0-2.0 * P O I S S(N E)) *(1.0+$ POISS (NE) $)) *(B(1) *$ RHS (K 1$)$
VARINT(2,IG,NE) VA)
1 *RHS (K2 $2+1$)
WRITE (L6, 204) NE, IG, VARINT (1, IG, NE), VARINT (2, IG, NE $)$
204 FORMAT(1X,215,2E13.3)
30 CONTINUE
RETU

UOUT 9-10 : calculate cumulative values of displacement/excess pore pressure.
UOUT 16-23 : print out incremental and cumulative values of displacements/ excess pore pressures.
UOUT 27 : loop on all elements to print effective stress and pore pressures at integration points.
UOUT 28 : NE - element no.
UOUT 29 : loop on all integration points.
UOUT 30 : local co-ordinate of integration point.
UOUT 31 : calculate shape functions and derivatives.
UOUT 32 : calculate \mathbf{B} and \mathbf{E} matrices.
UOUT 33-35 : nodes of element.
UOUT 36-38 : g.v.n. of first variable of all nodes.
UOUT 39-41: calculate incremental effective stress.
UOUT 42-43 : calculate incremental excess pore pressure.
UOUT 44 : print out stresses.
UOUT 46 : end of integration point and element loop.
These three subroutines zero real arrays with one, two and three subscripts respectively.

Subroutine ZERO

SUBROUTINE 2EROR1(A,N)	2ERO
DIMENSION A(N)	zero
Do $10 \mathrm{I}=1, \mathrm{~N}$	2ERO
$10 \mathrm{~A}(\mathrm{I})=0.0$	zero
return	zero
END	zero
SUbroutine zerorz (a, M, N)	2ERO
DIMENSION A(M,N)	2ERO
DO $10 \mathrm{~J}=1, \mathrm{~N}$	2ERO
DO $10 \mathrm{I}=1, \mathrm{M}$	2ERO 10
$10 \mathrm{~A}(\mathrm{I}, \mathrm{J})=0.0$	ZERO 11
return	zero 12
END	2ERO 13
SUbroutine zeror3 (A,L,M,N)	ZERO 14
DIMENSION A (L, M, N)	2ERO 15
DO $10 \mathrm{~K}=1, \mathrm{~N}$	2ERO 16
DO $10 \mathrm{~J}=1, \mathrm{M}$	2ERO 17
DO $10 \mathrm{I}=1, \mathrm{~L}$	ZERO 13
$10 \mathrm{~A}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0.0$	2ERO 19
RETURN	ZERO 20
END	ZERO 21

ZERO 3-4 : zero a one-dimensional REAL array.
ZERO 9-11: zero a two-dimensional REAL array.
ZERO 16-19: zero a three-dimensional REAL array.
The BLOCK DATA subprogram initialises integration point co-ordinates and weights. It also initialises the element information vector LIN.

```
BLOCK DATA
COMMON /DAT/ GP(2),W(2),LIN(3)
DATA \(\operatorname{LIN}(1), \operatorname{LIN}(2), \operatorname{LIN}(3) / 2,2,1\)
END
BDAT.
BDAT 2
Bdat
BDAT
```

Arrays in common

GP	- Gauss point co-ordinates
W	- Weights
LIN	- Element type data
H^{\dagger}	- Height of elements
YM ${ }^{\dagger}$	- Young's modulus
POISS ${ }^{\dagger}$	- Poisson's ratio
PERM ${ }^{\dagger}$	- Permeability
SHFND	- Displacement shape functions
DSD	- Derivatives of shape functions w.r.t. local co-ordinate
CARDSD	- Cartesian derivatives of shape functions
SHFNP	- Pore pressure shape functions
DSP	- Local derivatives of excess pore pressures
CARDSP	- Cartesian derivatives of excess pore pressure shape functions
B	- Strain-displacement matrix
E	- E matrix
DB	- D \times B
ES	- Element stiffness matrix
FI	- Flow matrix - Φ
UAXS	- Excess pore pressures
ERHS	- Element Right-Hand-Side terms
ST^{\dagger}	- Global stiffness matrix
RHS ${ }^{\dagger}$	- Global RHS
DISPA ${ }^{\dagger}$	- Global displacement/pore pressure array
VARINT ${ }^{\dagger}$	- Stresses at integration points
BC	- Boundary conditions
NCONN ${ }^{\dagger}$	- Element-nodal connectivity
NW^{\dagger}	- Global variable number of first d.o.f. of each node
IBC	- Code for boundary conditions

Variables in common
NINC - Number of increments
NDF - Total number of d.o.f. (variables)
NEL - Number of elements
NG - Number of integration points
INC - Current increment
NE - Current element
\dagger These arrays have been set up for a maximum of 6 elements.

GAMMAW - Unit weight of water
XI

- Local co-ordinate

BTIME - Total time step for increment block
3.6.3 Input specification for TINY

Data record	Contents	No. of records
A	TITLE	1
B	GAMMAW	1
C	NEL	1
D	H YM POISS PERM	NEL
E	NOINCB	1
F	NINC	NOINCB
G	DTIME(1) \ldots DTIME (NINC)	NOINCB
H	IBC(1) \ldots IBC(4)	BC(1) \ldots BC(4)

where
TITLE - Title for analysis
GAMMAW - Unit weight of water
NEL - Number of elements
$\mathrm{H} \quad$ - Height of element
YM - Young's modulus
POISS - Poisson's ratio
PERM - Permeability
NOINCB - Number of increment blocks
NINC - Number of increments in increment block
DTIME(I) - Time step for Ith increment in block
$\operatorname{IBC}(1)-0-$ Displacement d.o.f. at node 1 has applied stress boundary condition $=\mathrm{BC}(1)$ (compression +ve)
1 - Displacement d.o.f. at node 1 is prescribed with incremental value equal to $B C(1)$ (applied at constant rate over time of increment block)
2 - Displacement d.o.f. at node 1 is prescribed to have an absolute value of $\mathrm{BC}(1)$ during the first increment of block and then kept steady at this value

- Boundary condition for displacement d.o.f. at last node (same conventions as above)
$I B C(3) \quad-0-$ Excess pore pressure d.o.f. at node 1 has prescribed artificial seepage velocity of $B C(3)$ (flow in +ve)
1 - Excess pore pressure d.o.f. at node 1 is prescribed with incremental value equal to $\mathrm{BC}(3)$ (applied at constant rate over time of increment block)

2 - Excess pore pressure d.o.f. at node 1 is prescribed to have an absolute value of $\mathrm{BC}(3)$ during the first increment of block and is then kept steady at this value

- Boundary condition for excess pore pressure d.o.f. at last node (same conventions as above)

In the examples that follow, node 1 is considered to be at the top of the layer, and the last node at the bottom (however, the program is oblivious to this difference, and would produce identical results if the opposite convention were used).

3.6.4 Consolidation analyses

This section illustrates the use of the TINY program in section 3.6.2, and explains why the choice of time steps for analyses can require some care. The program is used in analysing the following two problems:

1. One-dimensional Terzaghi consolidation.
2. Under-drainage.

The first problem is a layer of thickness 20 m subjected to a vertical pressure This generates a uniform excess pore pressure throughout the layer. Then drainage is allowed from both the top and the bottom surfaces. Because of symmetry, only the upper half is considered in the analysis (see Fig. 3.19). The mesh is modelled by six elements, with thinner elements adjacent to the top drainage surface. This is because of the rapid change in pore pressures near this boundary. The following material properties are assumed for the layer, which is isotropic and homogeneous.

Fig. 3.19 - Finite elements to model Terzaghi one-dimensional consolidation

$$
E=1000 \mathrm{kPa} \quad \nu=0.25 \quad k=10^{-9} \mathrm{~m} / \mathrm{sec} .
$$

The applied pressure is 10 kPa . The base of the layer is restrained and impermeable (corresponding to a pore pressure boundary condition of zero flow). The first increment block consists of a single increment in which the vertical pressure of 10 kPa is applied and the base is restrained. This causes a uniform excess pore pressure of 10 kPa to develop in the layer.

At this stage, two points need clarification: the pore pressure boundary condition and the selection of time steps in the subsequent increment. For integration in time, $\theta=1$. Hence the solution is unconditionally stable for any size of time steps (Booker and Small, 1975). However, this does not necessarily imply that any size of time step is permissible. For the above example, taking the unit weight of water is $10 \mathrm{kN} / \mathrm{m}^{3}, c_{\mathrm{v}}=1.2 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}$. It is possible to solve the one-dimensional consolidation problem approximately using parabolic isochrones (Schofield and Wroth, 1968).

Fig. 3.20 illustrates the isochrone moving in from the boundary up to the point denoted by A. Points below A have not yet experienced any change in pore pressure due to the draining boundary. It can be shown that the time taken, t, for this is given by

Fig. 3.20 - Pore pressure distribution after first time step of analysis with short time step

$$
\begin{equation*}
l=\sqrt{ }\left(12 c_{\mathrm{v}} t\right) \tag{3.44}
\end{equation*}
$$

where l is the distance to point A from the boundary. If l is the normal distance of the first pore pressure node from the boundary then t specifies the minimum time step that can be specified. This can be explained in a simple manner. The element chosen allows for a linear variation of pore pressure. If a time step $t_{1}<t$ is chosen then the drainage would have taken place up to a point (say) B An attempt by the analysis to model this situation closely would generate a pore pressure at A equal to $\Delta \sigma^{\prime}$ which is greater than the applied vertical pressure. In order to compensate for this error, a smaller pore pressure is generated in the next node. This results in the zigzag distribution, shown in Fig. 3.20. A similar
imit on the minimum time step has been arrived at by others (Pyrah, 1980; Vermeer and Verrujit, 1981). Substituting the values for the chosen mesh, $t=6.9 \times 10^{5}$. Based on this, a time step of 10^{6} is chosen for the first increment. It is quite common to use a log scale for time in the plot of settlement (or degree of consolidation) against time. As time passes, dissipation takes place at a reduced rate. It is logical to use progressively larger time steps in the finite lement analysis. The usual practice is to select a fixed number of time steps (say 4 or 5) within a log cycle. The following are examples of such a scheme:

For this problem it is also possible to make a simple estimate of the total time required for the dissipation of the pore pressures. Using the relationship between degree of consolidation and time factor, the time for 90% consolidation is calculated to be 0.7×10^{9}. Using the above data on the smallest possible time step and the total time, the following time steps were chosen for the analysis:

1. | 1.E6 1.E6 2.E6 6.E6 | 1.E7 2.E7 6.E7 | 1.E8 2.E8 6.E8 |

| 1.E9

Now we come to the question of pore pressure boundary conditions. We have found that the best technique is not to apply both loads and pore pressure boundary conditions in the same increment. The load was applied in the first increment. The appropriate pore pressure boundary condition (drainage from top surface) is then applied in the second increment. In order to fix the absolute excess pore pressure, a fixity code of 2 is used. There is more discussion of the use of fixity codes 1 and 2 for excess pore pressures in section 9.2. The input data for the analysis are as follows:

Record	
A	***EXAMPLE $1^{* * *}$ TERZAGHI 1-D CONSOLIDATION ***
B	10.
${ }^{\text {C }}$	6
D	1. 1.E3 0.25 1.E-9
D	1. 1.E3 0.25 1.E-9
D	2. 1.E3 0.25 1.E-9
E	2
F	1
G	1.

H	0	1	0	0	10	0.	0.	0.		
F	11									
G	$1 . \mathrm{E} 6$	$1 . \mathrm{E} 6$	$2 . \mathrm{E} 6$	$6 . \mathrm{E} 6$	$1 . \mathrm{E} 7$	$2 . \mathrm{E} 7$	$6 . \mathrm{E} 7$			
G	$1 . \mathrm{E} 8$	$2 . \mathrm{E} 8$	$6 . \mathrm{E} 8$	$1 . \mathrm{E} 9$						
H	0	1	2	0	0.	0.	0.	0.		

Fig. 3.21 shows the computed isochrones compared with the theoretical solution (based on Fourier series). The comparison is good, bearing in mind the number of time steps and elements used in the analysis. Fig. 3.22 shows the degree of consolidation plotted against $\sqrt{ } T_{\mathrm{V}}$. Again the comparison is reasonably good.

——Theory

Fig. 3.21-Excess pore pressure isochrones for Terzaghi one-dimensional
In order to demonstrate the discussion on the time step, a separate analysis with a lower time step of 10^{3} was carried out, and Fig. 3.23 shows the pore pressure distribution at the end of that increment.

The input data for the next example are as follows:

Record

A

***EXAMPLE 2 *** UNDER DRAINAGE ***

10.

6
2. 1.E3 0.25 1.E-9
2. 1.E3 0.25 1.E-9
2. 1.E3 0.25 1.E-9

Fig. 3.22-Plot of degree of consolidation against $\sqrt{ } T_{\mathrm{v}}$ for Terzaghi one dimensional consolidation

Fig. 3.23 - Comparison of pore pressure distributions for different time steps

```
D 2. 1.E3 0.25 1.E-9
D 1. 1.E3 0.25 1.E-9
D 1. 1.E3 0.25 1.E-9
E 1
F
G 1.E6 1.E6 2.E6 6.E6 1.E7 2.E7 6.E7
G 1.E8 2.E8 6.E8 1.E9
H
```

In this example, the drainage boundary (with rapidly changing pore pressures) is at the bottom and elements are thinner towards it. However, both top and bottom are drainage boundaries. The base of the layer is restrained and is maintained at an excess pore pressure of -10 kPa . The top surface is maintained at 0 . The resultant isochrones are plotted and compared against the theoretical solution in Fig. 3.24. Again the comparison is good. Fig. 3.25 shows the plot of degree of consolidation against the $\sqrt{ } T_{\mathrm{v}}$. It is worth mentioning that the plot of degree of consolidation against $\sqrt{ } T_{\mathrm{v}}$ is the same for the dissipation of both rectangular and triangular pore pressure distributions. In fact it is the same (Taylor, 1948) for any linear distribution of pore pressure.

Fig. 3.24 - Excess pore pressure isochrones for under-drainage

Fig. 3.25 - Plot of degree of consolidation against $\sqrt{ } T_{\mathrm{v}}$ for under-drainage problem

Introduction to CRISP

4.1 INTRODUCTION

This chapter introduces CRISP (CRItical State Program). The size of problem which CRISP can tackle is limited only by the amount of memory and processing power of the computer concerned. CRISP has been mounted on many different makes of computer, with only minor modifications. We explain the programming strategy which has made this possible. Finally we explain the basic structure of the program and document the main controlling routines.

4.1.1 Summary of facilities

(a) Types of analysis:

Undrained, drained or fully-coupled (Biot) consolidation analysis of twodimensional plane strain or axisymmetric (with axisymmetric loading) solid bodies.
(b) Soil models:

Anisotropic elasticity, inhomogeneous elasticity (properties varying with depth), critical state soil models (Cam-clay, modified Cam-clay).
(c) Element types:

Linear strain triangle and cubic strain triangle (with extra pore pressure degrees of freedom for a consolidation analysis).
(d) Non-linear techniques:

Incremental (tangent stiffness) approach. Options for updating nodal co-ordinates with progress of analysis. $\theta=1$ for integration in time.
(e) Boundary conditions:

Element sides can be given prescribed incremental values of displacements or excess pore pressures. Loading applied as nodal loads or pressure loading on element sides. Automatic calculation of loads simulating excavation or construction when elements are removed or added.
(f) Miscellaneous:

Stop-restart facility allows analysis to be continued from a previous run.

4.2 CRISP: HOW IT'S DONE (AND WHY)

4.2.1 Element types

The library of elements consists of the triangular elements shown in Fig. 4.1. The basic element is the six-noded linear strain triangle (LST - element type 2). This element and the higher-order Cubic Strain Triangle (CuST - element type 6) can be used for drained or undrained analysis. The corresponding elements for consolidation analyses are element types 3 and 7 respectively. These element types have additional degrees of freedom (d.o.f.), namely excess pore pressures. The pore pressure nodes are deployed such that the strains and pore pressures have the same order of variation across an element.

The higher-order triangular elements have two attractions.

1. Fewer elements are needed for the analysis of most problems, making the data preparation less arduous.
2. Under undrained conditions the constraint of no volume change leads to 'locking' of finite element meshes when low-order elements are used: Recent research (Sloan and Randolph, 1982) has shown that these problems can be avoided by using higher-order elements (at least LST for plane strain and CuST for axisymmetric plane strain).

On the other hand, there are occasions where the use of a lower-order element (i.e. LST rather than CuST) can be advantageous: for example, situations where the mesh has irregular boundaries or contains several zones of soil with different properties. Indiscriminate use of higher-order elements in these circumstances can lead to unnecessarily expensive analyses.

Elements of type 2 can be mixed with elements of type 3, and so can type 6 with type 7. This may be useful in carrying out a consolidation analysis where part of the mesh behaves in a drained manner.

Using the higher-order elements is just as straightforward as the lower-order ones because the program user only has to specify the co-ordinates of the nodes at the vertices of triangular elements. Edge and interior nodes are then calculated

Fig. 4.1 - Different types of element

by interpolation, assuming the element has straight sides. However, element with curved boundaries can be used if the appropriate side node coordinates are specified.

The program has been designed so that new element types can be added with relatively little effort. In particular the incorporation of elements like the threenoded bar element or the eight-noded quadrilateral element is not difficult. These two element types could be mixed with LST elements in a mesh. The only restriction on different element types being mixed together is that they should have the same number of nodes along the sides (edges).

In numbering the vertex nodes and the elements in the mesh, gaps in the numbering are allowed for; this permits the user to alter some part of the mesh without having to re-number the mesh completely. The additional nodes along element sides and any inner nodes are assigned numbers by the program.

4.2.2 Solution techniques

When describing finite element techniques in Chapter 3 , it was assumed that soil response is linear and elastic. The causes of non-linear response can be identified as being either geometric non-linearity or material non-linearity. Geometric nonlinearity arises when large deformations of the structure mean that the equilibrium equations (based on the undeformed geometry) are no longer sufficiently accurate. Material non-linearity arises when the stress-strain relation for the material is non-linear (e.g. the Cam-clay relations described in Chapter 2). In general, non-linearity of a system may be due to geometric non-linearity, material non-linearity, or both together. Carter (1977; Carter et al., 1977) examined the importance of non-linear geometric effects in geotechnical analysis. His general conclusion was that the 'linear' assumption of small strains and small displacements is usually satisfactory in the solution of geotechnical problems. In the majority of cases the normal infinitesimal strain assumption leads to an overestimation of deformations compared to the use of finite deformation theory (and hence is pessimistic). Thus in most geotechnical analyses, non-linearity arising from material behaviour is of more importance than non-linearity from geometrical effects.

The small-displacement, small-strain approach is used throughout in this book (and in CRISP). Hence we are able to avoid the extra complexity of using the strain and stress tensors appropriate to large deformations and strains. The program does, however, contain the option of updating the co-ordinates of nodal points as the analysis proceeds. In fact this is equivalent to a first approximation to an updated Lagrangian formulation (see, for example, Cook, 1981, Chapter 13).

There are a number of techniques for analysing non-linear problems using finite elements. CRISP uses the incremental or tangent stiffness approach: the user divides the total load acting into a number of small increments (say 50 or 100 in a typical analysis) and the program applies each of these incremental loads in turn. During each increment the stiffness properties appropriate for the current stress levels are used in the calculations. If only a few increments are used, this method produces a solution which tends to drift away from the true or exact solution. This means a stiffer response results for a strain-hardening model and the displacements are always under-predicted. In mathematical terms we are integrating a differential equation using Euler's method.

This approach is in contrast to that adopted in the elasto-plastic programs used in the analysis of mechanical engineering components or steel structures (see, for example, Owen and Hinton, 1980). In these applications it is usual to use a larger size of increments (say 10 in a complete analysis) and to correct for the error described above by performing iterations within each increment until convergence to the non-linear load-displacement curve is obtained. Experience with this technique with critical state models has been rather mixed. Some claim to have applied the technique with no particular difficulty (e.g. Zienkiewicz et al., 1975; Potts, 1981), but our experience, in common with that
of Naylor (1975), is that sometimes there can be problems with convergence and that sometimes the known (analytical) solution cannot be recovered from the numerical procedure. Perhaps this is not surprising: in structural mechanics problems the zone of plastic behaviour is often restricted to a small part of the structure, whereas in geotechnical problems the zone of plastic deformation frequently occupies the majority or even the whole mesh.

Clearly there must be some limitation on the maximum increment size when using an incremental scheme. Some advice on this is included in Chapter 9. The use of an incremental scheme fits in quite well with the scheme for consolidation analysis that we have adopted, an incremental time-marching technique with $\theta=1$, as described in Chapter 3.

4.2.3 Excavation, construction and increment blocks

A finite element program intended for geotechnical analysis should be capable of analysing problems where soil is excavated or soil structures (e.g. embankments) are constructed. This is not a standard feature found in finite element programs in other branches of engineering. CRISP allows elements to be removed to simulate excavation and elements to be added to simulate construction. The implied loadings for both these cases are automatically calculated by the program.

When performing a non-linear analysis involving excavation or construction, the requirement for relatively small applied loads in each increment still applies. The obvious way of achieving this is the removal or addition of a large number of layers of 'thin' elements. Unfortunately the result is an unacceptable rise in the solution cost (due to the large number of elements), and possible numerical conditioning problems associated with elements that have large aspect ratios. CRISP circumvents this problem by allowing the effect of element removal or addition to be spread over several increments in an 'increment block'. An increment block is just a series of ordinary increments grouped together in the input data for the program. Element stiffnesses are always added or removed in the first increment of a block, but the associated loads are distributed over all the increments in the block. Clearly this procedure introduces an extra degree of approximation in modelling, but it has been found to be satisfactory in practice. Increment blocks can also be used for the purpose of distributing applied boundary loads or prescribed displacements over several increments, achieving a certain economy in data preparation.

4.2.4 Equilibrium check

The program incorporates an equilibrium check to ensure that equilibrium is satisfied at the end of each increment. In this equilibrium check the stresses in the elements currently in the mesh are integrated over the volume to calculate the equivalent nodal loads and these are then compared with the external loadings. The difference is then expressed as a percentage of the applied loading, and is called the error in equilibrium or the out-of-balance load. This form of equilibrium check is essential in any analysis using iterative methods or the
load increments are sufficiently small, there is no stress correction at the end of each increment. This means that the stresses calculated at the end of each increment should be consistent with the applied loading. Hence, in theory, an initial stress approach. In CRISP, because of the implicit assumption that the equilibrium check is not necessary, but in fact it is useful in giving an indication of any numerical problems that may arise during the course of an analysis.

4.2.5 Stop-restart facility

Non-linear finite element analysis tends to be a time-consuming business (for both the computer and the program user). Getting the size of the load increments right usually involves re-running the program several times and examining the computer output. So that the user does not have to continually rerun the analysis from the start each time, a stop-restart facility is provided The program can be requested to store analysis results on a permanent magnetic storage medium (i.e. magnetic disk or magnetic tape) and the computer run can be restarted
Two versions of the stop-restart facility are available. In the first, the results of every increment are saved; in the second, results from the last increment only are stored. To use the first version one must be able to run a job with two magnetic tapes or have access to large amounts of disk space (probably more than 10 megabytes). For the second a more modest amount of disk space will suffice (say 100 kilobytes).

The stop-restart facility also makes possible the production of graphical displays of the results. A 'post-processing' program is used to read information from the stop-restart file. Usually this program will use calls to a local graphics library to produce plots and graphical displays on the devices that the user has access to. Now that CRISP is being mounted on many different computers, there is a tendency to write programs using graphics libraries which are more generally available, e.g. GINO from the CAD (Computer Aided Design) centre, Madingley Road, Cambridge.

4.2.6 Frontal solver

CRISP solves the linear simultaneous stiffness equations using the frontal solution method. In essence this is just Gaussian elimination as encountered in Chapter 3, but programmed in such a way as to minimise operations on zero terms and to use minimum computer memory for the stiffness matrix. Our version is based on the model program by Irons (1970), modified for variable numbers of degrees of freedom at nodal points. The frontal technique starts from the observation that in Gaussian elimination one can start eliminating variables before the global matrix is fully assembled.
We introduced the frontal method into our program because it was the only way of running reasonably-sized meshes for consolidation analysis on a machine with a fixed core store limit. Now that virtual store operating systems are wide spread, there is an argument that all this complicated programming is not really
necessary. Perhaps it is not, but you have to be prepared to wait longer for your results.

4.3 CRISP PORTABILITY AND PROGRAMMING TECHNIQUES

The following two sections explain why CRISP has proved to be such a portable program, and the technique which allows it to handle problems of an arbitrary size is described.
4.3.1 Portability

CRISP is written in ANSI (American National Standards Institute) standard FORTRAN. Because of this the program has been mounted on many different manufacturers' computers with relatively little effort. We suspect that most engineers writing FORTRAN programs have not heard of the standard, and we therefore set out why it is important.

The FORTRAN programming language was originally developed to run on the IBM704 computer in the mid-fifties. Its success led to its adoption by other computer manufacturers, who wrote compilers to translate FORTRAN statements into the machine language of their own computers. Since the original FORTRAN language contained restrictions owing to the hardware limitations of the IBM704, there was a natural move to extend the language on the other computers, thereby offering a more powerful programming language (and a more saleable product). Unfortunately, the consequence of this was that a FORTRAN program written for one computer would be unlikely to run on another computer without some modification.

To overcome these problems, ANSI produced a standard definition of FORTRAN in 1966. This language is sometimes called FORTRAN IV, but should more properly be called ANSI (1966) Standard FORTRAN. (FORTRAN IV is the name of the IBM implementation.) Although computer manufacturers made sure that their compilers accepted the standardised language, they did not remove the various extensions. Most engineers engaged in programming would make use of the manufacturer's FORTRAN reference manual, and so nonportable programming practices persisted. This is perhaps understandable, because FORTRAN 66 still lacked some facilities which make programming (and using programs) easier.

In 1978, ANSI produced a new standard, FORTRAN 77, and at the time of writing another new standard, FORTRAN 8 X , is under discussion. CRISP conforms to the 77 standard, and, apart from a couple of exceptions mentioned below, to the 66 standard too. Indeed, the majority of CRISP even avoids some FORTRAN 66 constructs which have been known to cause problems on some computers. In doing this we have followed the advice of Larmouth (1973a, 1973b) and Day (1978). The program has also been passed through the PFORT verifier (Ryder, 1974). Only those readers who have not had to convert FORTRAN programs from running on one machine to running on another will find all our precautions pedantic.

We take advantage of only two features of FORTRAN 77 not present in the 1966 standard. The first is the list-directed READ statement (often referred to as the free-format READ). The second is the use of CHARACTER variables to store textual information.

If FORTRAN 77 had been fully supported on the Cambridge University Computing Service IBM installation before 1984, the reader would probably see other FORTRAN 77 statements, such as the block IF construction, in our program. (This certainly makes programs more readable and is a definite advance on FORTRAN 66.) Readers who intend to modify CRISP for their own purposes, or who are going to write their own programs, are advised to use a textbook as their main reference, rather than the manufacturer's manual. Katzan (1978) completely covers the 77 standard, including the syntax diagrams from the standard. However, its succinct style makes it suitable for experienced FORTRAN programmers. A text that is more suitable for relatively inexperienced programmers is Monro (1982). Of course; the really dedicated will read the standard from ANSI (1978).

4.3.2 Pseudo-dynamic dimensioning

Finite element programs written in FORTRAN make use of REAL and INTEGER arrays to store the data which they manipulate. Some of these arrays will always be the same size each time the program is run (for example an array storing an element stiffness matrix). The size of other arrays (for example the global stiffness matrix) will depend on the data for the current problem.

The simplest approach is to dimension these 'variable length' arrays to a size which appears reasonable. In fact this was done in the TINY program in Chapter 3, where the arrays were set up to solve a problem with a maximum of six elements. However, this approach has two drawbacks. Firstly, a user of the program will inevitably want to run a problem which requires larger arrays, resulting in a lot of program changes. Secondly, for much of the time a lot of space in the arrays will be unused.

CRISP uses a technique known as 'pseudo-dynamic dimensioning' to avoid these pitfalls. To understand this technique, a brief account of how FORTRAN implementations allocate storage for arrays will be useful.

If an array is declared in a subroutine by a statement such as

DIMENSION XYZ $(2,50)$

(and the array is not a dummy argument of the subroutine), then 100 contiguous storage locations (associated with the subroutine) are reserved. Alternatively, an array may be declared as being in a common area of storage (using the COMMON statement), which is not associated with any particular subroutine. The TINY program in Chapter 3 used this technique to allow its various subroutines to access the same arrays. When an array is passed as an actual argument to another subroutine, it is the address of the first memory
location that is transferred. An array in a subroutine may be given variable dimensions, e.g.

DIMENSION XYZ (NDIM, NN)

provided that the array and its dimensions are dummy arguments of the sub routine. Thus one improvement over using fixed dimensions in each subroutine is to have fixed dimensions in the main program, and to pass the arrays to subroutines as variably dimensioned arrays. Changes to the program now require amending the main program only. However, the basic disadvantage of having to continually edit the program and of wasted space still remain.

CRISP overcomes these remaining disadvantages by arranging that all the variably dimensioned arrays are allocated as part of one long array
Suppose that the following arrays have to be allocated store:
XYZ (NDIM, NN), NCONN(NTPE, NEL), NQ(NN)

where

XYZ - co-ordinates of nodes
NCONN - list of nodes associated with each element
NQ - no. of d.o.f. of each node
NDIM - no. of spatial dimensions for analysis (2 for 2-D)
NTPE - no. of nodes associated with each element
NN - total no. of nodes in mesh
NEL - total no. of elements in mesh.
The arrays are allocated in the same order as above to a single array G :

G

G

where
$\mathrm{Ll}=1+\mathrm{NDIM}$ * NN
$\mathrm{L} 2=\mathrm{L} 1+\mathrm{NTPE} * \mathrm{NEL}$
$\mathrm{L} 3=\mathrm{L} 2+\mathrm{NN}$
and
$G(1)$ is the first storage location of array XYZ $\mathrm{G}(\mathrm{L} 1)$ is the first storage location of array NCONN
$\mathrm{G}(\mathrm{L} 2)$ is the first storage location of array NQ
$G(L 3)$ is the first storage location of next array
(if no futher arrays are present then L3-1 serves an index to the amount of array G which has been used).

The arrays are passed to a subroutine SUBI as follows:
CALL SUB1 (G(1), G(L1), G(L2), NDIM,NN,NTPE, NEL)

In the subroutine the arrays appear as dummy arguments and are dimensioned:
SUBROUTINE SUB1 (XYZ,NCONN,NQ, \qquad . NDIM,NN,NTPE,NEL)

DIMENSION XYZ (NDIM,NN), NCONN(NTPE,NEL),NQ(NN)
A disadvantage of this technique is the long argument lists that result, as the indexes for the numerous arrays have to be passed from the main routine to other routines. Instead of declaring some arrays in the few routines that use them, they have to be passed through the intermediate routines which do not require them. This to a certain extent gives a complex look to the program. However, the benefits more than offset this minor irritation.

CRISP extends this technique to arrays which would appear to have fixed dimensions (e.g. NDIM in the above example). The aim is to make future program modifications relatively straightforward

Some arrays of fixed size are used in the program and usually reside in named COMMON blocks. Arrays which provide the indexes and numerical integration data are initialised in a block data routine. Therefore these arrays cannot be allocated store pseudo-dynamically. This would mean that if new element types are introduced, the sizes of these arrays have to be altered in all routines which reference these arrays. The way round this is to allocate sizes which include some spare space. This means additional element types can be included without having to change the sizes of these arrays every time.

Other fixed-length arrays are mainly linked with the number of nodes with fixities and the number of nodes with externally applied loads (the loads in fact are stored in terms of pressure loads (both normal and shear components) applied at nodes along element sides). The required space is dependent on the number of nodes (and element sides) which lie along the mesh boundary. The sizes of these arrays have been arbitrarily fixed; however, a count is kept of the number of entries made, and error/warning messages are printed when array sizes are exceeded and clear messages of what has to be done to remedy the situation are printed.

4.4. CRISP

4.4.1 CRISP organisation

The relationship between the main controlling routines of CRISP is shown below:

The MAIN program is the only routine that needs to be changed if a larger version of CRISP is required. For this reason it is kept as short as possible. Many users will keep several versions of this routine (e.g. small, medium and large), and will link in whichever is appropriate for the problem at hand. Routine MINIT contains machine independent initialisations, e.g. unit numbers for files. MAST is the main controlling routine, and its main business is pseudodynamic dimensioning.

The rest of the program logically falls into three parts, identified by routines MARKZ, CPW and ANS, each being called by MAST in turn. (MAXVAL and SHFTIB shown above for completeness just carry out housekeeping associated with the dynamic arrays.)

MARKZ is the part of the program that deals with the geometry of the user's mesh. MARKZ tries to make the time-consuming business of drawing up (or modifying) a mesh easier, by allowing gaps in the numbering systems for elements and nodes, automatically generating midside (and where appropriate internal) node numbers and co-ordinates. Basically, it is all housekeeping.

CPW is the part of the program that deals with in situ stresses and material parameters. This is an important part of the problem definition which the user must attempt to get right, and try to understand the consequences (not everything is independent).

ANS is the part of the program that performs the analysis. ANS reads the loads and other boundary conditions and applies the principles of mechanics. Sometimes ANS will seem to produce bizarre results, but this will be because of the way that the user has set up the problem. Remember that ANS has a strong preference for stable systems.

4.4.2 The program

Routine MAIN

Main 9 : set up size of working array G

Routine MINIT

subroutine minit (G, LG)

C ALSO SETS UP FILES FOR FORTRAN 77

MNIT 33-41 : set device numbers.
MNIT 50-53 : set some constants.
MNIT 55 : print version no. of program and date.
MNIT 57 : master-control routine

Subroutine MAST

	SUBROUT INE MAST (G, LG)	MAST	1
C**MAST			
C	rout ine to set-up array Sizes for geometry and main part of	MAST	3
c	the program. real arrays are allocated on the left hand side	Mast	4
C**MAST			
	REAL LL	MAST	7
C--	---use the following statement after converting program to double	MAST	8
C--	----Precision. array g alway uses one numeric storage unit	MAST	9
CC	real g	MAST	
	Character*80 title	MAST	11
	DIMENSION G (LG)	MAST	12
	DIMENSION NAD (11), $\mathrm{KLT}(11), \mathrm{NTY}(10), \operatorname{PR}(10,10), \operatorname{PDISLD}(3,5)$,	Mast	13
	$1 \operatorname{PRES}(3,5), \mathrm{V}(5), \mathrm{FXYZ}(3), \mathrm{CIP}(3), \mathrm{LL}(4)$	MAST	14
	common /Label / Title	MAST	15
	COMMON /DEVICE/ IR 1, IR4, IR5, IW2, IW4, IW6, IW7, IW8, TW9	MAST	16
	COMmon /elinf / Linfo (50,15)	MAST	17
	COMMON /PARS / PYi,alar,asmul, Zero	MAST	18
	COMMON /DEBUGS/ ID1, ID2, ID3, ID4, ID5, ID6, ID7, ID8, ID9, ID10	mast	19
	COMMON /OUT / IBC, IRAC, NVOS, NVOF, MMOS, MMOF, NELOS, NELOF, ISR	MAST	20
	COMMON /PRECSN/ NP	MAST	21
	DATA $\operatorname{NAD}(1), \operatorname{NAD}(2), \operatorname{NAD}(3), \operatorname{NAD}(4), \operatorname{NAD}(5), \operatorname{NAD}(6), \operatorname{NAD}(7)$,	MAST	22
	$1 \mathrm{NAD}(8), \operatorname{NAD}(9), \operatorname{NAD}(10), \operatorname{NAD}(11) /$	MAST	23
	2 1,3,3,4, 4, 12, 19, 12, 12, 6, 6/	MAST	
		MAST	25
	READ (IR5, 901) TITLE	MAST	26
	WRITE (IW6, 903) TITLE	MAST	27
	LINK $1=1$	MAST	28
CC	READ (IR5, *)LINK1	MAST	29
cc	WRITE (IW6, 906)LINK 1	MAST	30
c		Mast	31
	READ (IRS, *) NVTX, NEL, MXNDV, MXTYP, NDIM, IPLOT	MAST	32
	WRITE (IW6, 904) NVTX, NEL, MXNDV, MXTYP, NDIM, IPLOT	MAST	33
	read (IR5, *)Numax, Mumax	MAST	34
	WRITE (IW6, 907) Numax, mumax	MAST	35
	IF (NUMAX.EQ.0)NUMAX $=$ NVTX	MAST	36
	IF (MUMAX.EQ.0)MUMAX $=$ NEL	MAST	37
c-		- MAST	38
c	nvrs - Number of stress parameters	MAST	39
c	nvRn - number of strain and stress components	MAST	40
c	NDZ - Index for mid-side (EdGE) NODE numbers	MAST	41
c	npl - Length of arrays np1, nP2	MAST	42
c	nMatz - maximum admissible material zone nimber	MAST	43
c	ltz - Largest admissible element type number	MAST	44
c	INXL - INDEX TO HO. OF D.O.F. OF FIRST NODE OF ELEMENT	MAST	45
c	ifr - List of nodes in front (See routines Sfwz, frontz)	Mast	46
${ }_{c}^{\mathrm{C}}$	ifrz - Size of array ifr	MAST	47
		- MAST	48
	nvas=7	MAST	49
	NVRN=4	MaSt	50
	IF (NDIM. NE. 3)GOTO 10	MAST	51
	NVRS $=9$	MAST	52
	NVRN=6	MAST	53
	NDZ $=750$	MAST	54
	NPL $=21$	MAST	55
	NMATZ $=10$	MAST	56
	LTZ $=7$	MAST	57
	IFRZ $=300$	MAST	58
	INXL $=20$	MAST	59
		-MAST	60
c	nad - estimate of additional nodes per element for	MAST	61
c	DIFFERENT ELEMENT TYPES	MAST	62
c	ndead - total number of additional nodes (an estimate)	MAST	63
	ndSd - no. of displacement nodes along edge (exclude end nodes)	MAST	64

```
LDIM - MAXIMUM NUMBER OF (DISPLACEMENT) NODES ALONG EDGE + 3
LTAB - TOTAL NUMBER OF ELEmENT EDGES (ESTIMATE)
MUMAX - MAXIS (THEED NOT BE EQUAL TO THE TOTAL NO. OF ELEMENTS)
NTPE - MAXIMUM NO. OF NODES, IN ANY ELEMENT IN MESH
NDIM - NO. OF DIMENSIONS TO. PROBLEM (2 OR 3)
NEL
NNE - TOTAL NUMBER OF NODES IN MESH (ESTIMATE)
```



```
***MAST }14
    : LL= 1+NNE*NDIM*(PP)
```



```
    M2=M1-NEL
    M3 M2-NEL 
    M4=M3-NEL
    MSM4-MUMAX
    M7=M6-NNU
    M8=M7-NNE-1
    M9=M8-NNE
    M9=M8-NNE 
    M11=M10-NEL
    M12=M112-MUMAX
f M14=M13-NTPE
    M15=M14-IFRZ
    M16=M15-NPL
    M17=M16
```



```
    MORE=LZ-MEL
    WRITE (IWG, 90, MORE
    STOP
40 KSTO=LG-MZ+LZZ-1
L-WO WRTO=LG-MZ+LZ-1
    CALL MARKZ (NVTX, NEL,NUMAX,MUMAX, NTPE,MXNDV,NNE, NNE 1,NN,
        NNU, NHZ, LTAB, LDIM, NDIM, NDF, NDZ, IF RZ, MCORE,MAXNFZ,
        NPL,LTZ,KLT,MMATZ,INXL,IPLOT,G(M5),G(M6),G(M7),G(M8),
        3 G(1),G(M1),G(M2),G(M3),G(M4),G(M5),G(M6),G(MT),G(M8),
        5 G(M16),G(M17),ND,NCORET,MDZ)
    IF(ID8.EQ.0)GOTO 45
    WRITE (IW6,925)NNE, NNU, LDIM, LTAB, NTPE, IF RZ, NPL
925 FORMAT(/1X,6HNNE =,15,3X,6HNN =,15,3X,7HLDIM =,3X,
5 FORMAT(/1X,6HNNE =,15,3X,6HNN =,15,3X,7HLDIM =,3X,
    WRITE (IW6,920)(G(JK),JK=1,L1)
    20 FORMAT (//1X,4HREAL/(1X,10F10.2/))
920 FORMAT(//1X,4HREAL/(1X,10F 10.2/))
45 continue
CALL MAXVAL (IW6, KLT, LTZ , NDIM, NVRN, NDMX, NPMX, NIP, NS, NB, NL,
        NPT, NSP, NPR, MMT, MDFE, KES, NVPN, LV, MXEN, MXLD, MXF XT)
NEL - TOTAL NUMBER OF ELEMENTS IN MESH
C NNU - ESTIMATE OF MAXIMUM VALUE OF USER NODE NUMBER
    MAST 137
    M13=M12-NNE 
    IF(MZ,GT{LZ)GO TO 40
    WRHTE (IW6,920)(G(JK),JK=1,L1)

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & & 263 \\
\hline \multicolumn{2}{|r|}{} & MAST & 264 \\
\hline \multicolumn{2}{|r|}{LS \(10=L S 9+N B * N B * N P\)} & MAST & 265 \\
\hline \multicolumn{2}{|r|}{LC \(1=L\) L \(10+\) KES *NP} & MAST & 266 \\
\hline \multicolumn{2}{|r|}{LC \(2=L C 1+\) NDIM*NPMX*NP} & MAST & 267 \\
\hline \multicolumn{2}{|r|}{LC 3 LC \(2+\) NDIM**PMX*NP} & MAST & 268 \\
\hline \multicolumn{2}{|r|}{LC4 \(=\) LC 3+NDIM*NPMX*NP} & MAST & 269 \\
\hline \multicolumn{2}{|r|}{LC \(5=L C 4+N B * N P\)} & mast & 270 \\
\hline \multicolumn{2}{|r|}{LC6 \(=\) LC \(5+N P M X * N P\)} & MAST & 271 \\
\hline \multicolumn{2}{|r|}{LC7 \(=\) LC 6+NPMX*NPMX*NP} & MAST & 272 \\
\hline \multicolumn{2}{|r|}{LC8 \(=L C 7+\) NB*NPMX*NP} & MAST & 273 \\
\hline \multicolumn{2}{|r|}{LZ \(=\) LC8} & MAST & 274 \\
\hline \multicolumn{2}{|l|}{C---------1.} & MAST & 275 \\
\hline c & \(\mathrm{G}(\mathrm{N} 1)-\mathrm{G}(\mathrm{LG})=\) ELEMENT-NODAL CONNECTIVITY.......NCONA(NTPE, NEL) & MAST & 276 \\
\hline c &  & MaSt & 277 \\
\hline c &  & Mast & 278 \\
\hline c &  & MAST & 279 \\
\hline c & \(\mathrm{G}(\mathrm{NS})-\mathrm{G}\left(\mathrm{N}^{4-1)}\right.\) = PROGRAM ELEMENT MUMBERS.............. MREL(NUMAX) & MAST & 280 \\
\hline c &  & MAST & 281 \\
\hline c & \(\mathrm{G}(\mathrm{N} 7)-\mathrm{G}(\mathrm{N} 6-1)=\) PROGRAM NODE NUMBERS....................NREL(NNZ) & MAST & 282 \\
\hline c & \(G(N 8)-G(N 7-1)=\) INDEX OF FIRST D.O.F. OF NODES..........NW (NNOD1) & MAST & 283 \\
\hline c & \(\mathrm{G}(\mathrm{N} 9)-\mathrm{G}(\mathrm{N} 8-1)=\mathrm{NO} . \mathrm{OF}\) D.O.F. OF EACH NODE................NQ(NN) & MAST & 284 \\
\hline c & \(\mathrm{G}(\mathrm{N} 10)-\mathrm{G}(\mathrm{N} 11-1)=\) INDICATOR OF ELEMENT CHANGES............JEL(NEL) & Mast & 285 \\
\hline & \(\mathrm{G}(\mathrm{N} 11)-\mathrm{G}(\mathrm{N} 12-1)=\) INDICTORS OF RESTRIANED VARIABLES......idFX(NDF) & MAST & 286 \\
\hline & \(\mathrm{G}(\mathrm{N} 12)-\mathrm{G}\left(\mathrm{N}^{\text {1-1-1 }}\right.\) ) \(=\) FRONTAL DESTINATION OF NODES...........NDEST(NN) & MAST & 287 \\
\hline & \(\mathrm{G}(\mathrm{N} 13)-\mathrm{G}(\mathrm{N} 12-1)=\) INDEX OF ONE END OF ELEMENT EDGE.........NP1(NPL) & MAST & 288 \\
\hline & \(\mathrm{G}(\mathrm{N} 14)-\mathrm{G}(\mathrm{N} 13-1)=\) INDEX OF OTHER END OF ELEMENT EDGE......NP2(NPL) & MAST & 289 \\
\hline & \(\mathrm{G}(\mathrm{NS} 1)-\mathrm{G}\left(\mathrm{N}^{14-1)}\right.\) ) LIST OF NODES (AND D.O.F.) IN FRONT.... IFR(IFRZ) & MAST & 290 \\
\hline & \(\mathrm{G}(\mathrm{NS} 2)-\mathrm{G}(\mathrm{NS} 1-1)=\) DESTINATION IN FRONT OF ELEMENT D.O.F...NDL (MDFE) & MAST & 291 \\
\hline & \(\mathrm{G}(\mathrm{NS} 3)-\mathrm{G}(\) (SS2-1) \(=\) INDEX TO POREPRESSURE NODES OF ELEMENT. NWL (NPMX) & MAST & 292 \\
\hline & G(NS4) - G(NS3-1) = STRESS STATE INDICATOR FOR MODEL5..NMOD(NIP, NEL) & MAST & 293 \\
\hline & (not used in this version) & MAST & 294 \\
\hline c & WHERE & MAST & 295 \\
\hline c & & MAST & 296 \\
\hline & ifrz - Length of array ifr & MAST & 297 \\
\hline c & MDFE - MaxM NO. OF d.o.f. In any element in mesh & MAST & 298 \\
\hline c & mumax - maxm value of user element number & MAST & 299 \\
\hline c & nNZ - maxm value of user node number & MAST & 300 \\
\hline c & NNOD1-NN + 1 & MAST & 301 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & MAST & 302 \\
\hline & & MAST & 303 \\
\hline \multicolumn{2}{|l|}{C--------INDEXES FOR INTEGER arrays - right hand side} & MAST & 304 \\
\hline \multicolumn{2}{|r|}{N \(1=L \mathrm{LG-NTPE}\) * \(\mathrm{NEL}+1\)} & MAST & 305 \\
\hline \multicolumn{2}{|r|}{N2=M1-NEL} & MAST & 306 \\
\hline \multicolumn{2}{|r|}{\(N 3=N 2-N E L\)
\(N 4\)} & MAST & 307 \\
\hline \multicolumn{2}{|r|}{N4=N3-NEL} & MAST & 308 \\
\hline \multicolumn{2}{|r|}{N \(5=\) N \(4-M\) UMAX} & MAST & 309 \\
\hline \multicolumn{2}{|r|}{\(N 6=N 5-N N\)} & MAST & 310 \\
\hline \multicolumn{2}{|r|}{N7 \(=\) N6-NNZ} & MAST & 311 \\
\hline \multicolumn{2}{|r|}{N8=N7-NNOD1} & MAST & 312 \\
\hline \multicolumn{2}{|r|}{\(\mathrm{N} 9=\mathrm{N} 8-\mathrm{NN}\)} & MAST & 313 \\
\hline \multicolumn{2}{|r|}{N \(10=\mathrm{N} 9-\mathrm{NEL}\)} & MAST & 314 \\
\hline \multicolumn{2}{|r|}{\(\mathrm{N} 11=\mathrm{N} 10-\mathrm{NDF}\)} & Mast & 315 \\
\hline \multicolumn{2}{|r|}{\(\mathrm{N} 12=\mathrm{N} 11-\mathrm{NN}\)} & MAST & 316 \\
\hline \multicolumn{2}{|r|}{N \(13=\mathrm{N} 12-\mathrm{NPL}\)} & MAST & 317 \\
\hline \multicolumn{2}{|r|}{N \(14=\) N \(13-\mathrm{NPL}\)} & mast & 318 \\
\hline \multicolumn{2}{|r|}{NS \(1=\mathrm{N} 14-\mathrm{IFR} 2\)} & MAST & 319 \\
\hline \multicolumn{2}{|r|}{NS2=NS 1-MDFE} & MAST & 320 \\
\hline \multicolumn{2}{|r|}{NS 3-NS2-NPMX} & MAST & 321 \\
\hline \multicolumn{2}{|r|}{NS4 \(=\) NS 3-NIP*NEL} & MAST & 322 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{NZ \(=\) NS 4}} & MAST & 323 \\
\hline & & MAST & 324 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{calculate size of working region}} & MAST & 325 \\
\hline & & MAST & 326 \\
\hline & NWORK \(=\) N \(2-L 2\) & MAST & 327 \\
\hline & KVARS=LG & MAST & \\
\hline
\end{tabular}

NWORK \(=N Z-L Z\)
KVARS \(=L G+L Z-N Z\) MAST 32

\section*{NCORET \(=\) NCORET*NP}

CALL SHFTIB(IW6,G(N7),G(M7), NNZ)
CALL SHFTI (IW6,G(N8),G(M8), NNOD1)
CALL SHFTIB(IW6,G(N13),G(M16),NPL)
CALL CPW(NN, NEL, NDF, NNOD1, NTPE, NIP, NVRS, NVRN, NDIM
MUMAX, NDZ, IF RZ, NNZ , NDMX, NPMX, NS, NB, NL, NPR NMT
NPT, NSP, NPL, MDFE, KES, NVPN, INXL, MXEN, MXLD, MXF XT
LV,MCORE, LINK 1, NVTX, ND, MDZ , NEDZ,
\(G(1), G(L 1), G(L 2), G(L 3), G(L 4), G(L 5), G(L 6), G(L 7), G(L 8)\),
\(G(L 9), G(L 10) G(L)\),
\(G(L 9), G(L 10), G(L 11), G(L 12), G(L 13), G(L 14), G(L 15)\),
\(G(L S 1), G(L S 2), G(L S 3), G(L S 4), G(L S 5), G(L S 6) G(L S 7)\)
\(\mathrm{G}(\mathrm{LS} 8), \mathrm{G}(\mathrm{LS} 9), \mathrm{G}(\mathrm{LS} 10), \mathrm{G}(\mathrm{LS} 4), \mathrm{G}(\mathrm{LS} 5), \mathrm{G}(\mathrm{LS} 6), \mathrm{G}(\mathrm{LS} 7)\),
\(G(L C 5), G(L C 6), G(L C 7), G(N 1), G(N 2), G(N 3), G(N 4)\)
\(G(N 5), G(N 6), G(N 7), G(N 8), G(N 9), G(N 10), G(N 13)\)
\(G(N 12), G(N 13), G(N 14), G(N S 1), G(N S 2), G(N S 3), G(N S 4)\),
CIP, LL, V, FXYZ, PR, PDISLD, PRES, NTY,G(LZ), NWORK
CALL ANS (NN, NEL, NDF, NNOD1, NTPE, NIP, NVRS, NVRN, NDIM
MUMAX, NDZ , IF RZ, NNZ, NDMX, NPMX, NS, NB , NL, NPR, NMT,
NPT, NSP, NPL, MDFE, KES, NVPN, INXL, MXEN, MXLD, MXF XT,
LV, NVTX, ND,
\(G(i), G(L 1), G(L 2), G(L 3), G(L 4), G(L 5), G(L 6), G(L 7), G(L 8)\),
\(G(L S 1), G(L S 2), G(L S 3), G(L S 4), G(L S 5), G(L S 6), G(L S 7)\),
\(\mathrm{G}(\mathrm{LS} 8), \mathrm{G}(\mathrm{LS} 9), \mathrm{G}(\mathrm{LS} 10), \mathrm{G}(\mathrm{LC} 1), \mathrm{G}(\mathrm{LC} 2), \mathrm{G}(\mathrm{LC} 3), \mathrm{G}(\mathrm{LC} 4)\),
\(G(L C 5), G(L C 6), G(L C 7), G(N 1), G(N 2), G(N 3), G(N 4)\),
\(G(N 5), G(N 6), G(N 7), G(N 8), G(N 9), G(N 10), G(N 11)\),
\(\mathrm{G}(\mathrm{N} 12), \mathrm{G}(\mathrm{N} 13), G(N 14), G(N S 1), G(N S 2), G(N S 3), G(N S 4)\),
HOTB TTIME TGRAV,
9. HETURN, TTIME, TGRAV, IUPD, ICOR, IBC, IDCHK, INCT)

903 FORTMAT (A)
903 FORMAT (/1X,A)
904 FORMAT///
1 10X, 46 HT
1 10X,46HTOTAL NUMBER OF VERTEX NODES \(\qquad\)
10X,46HTOTAL NUMBER OF ELEMENTS
................. ...,
.
\(=18 /\)
I8/
5 10X,46HMAXIMUM NUMBER OF VERTEX NODES IN AN ELEMENT \(=18 /\)
\(=, 18 /\)
\(=, 18 \%\)
8 10x,46HELEMENT TYPE WITH MAXIMUM NUMBER OF NODES.......
9 10x,46HPLOTTING CODE.................................................... \(88 / /\)
CC906 FORMAT(/1X,14HLINK NUMBER \(=\), I6)
907 FORMATS
1 10x, 46HMaXimum value of vertex node number \(\qquad\) \(=, I 81\)
 1 TX, 3OHPART OF PROGRAM (ROUTINE MAST)/) INCORE=NCDRETAMCORE
NBUFF \(=\) NHORK-MCORE
WRITE (IW6
WRITE (IW5, 915)LG, KVARS, NWORK, MCORE, NBUFF, INC ORE

\section*{MOUT \(=13{ }^{*} N I P * N E L+5 * \mathrm{NEL}\)}

IF (MINM. GT.MCORE)MINM=MCORE
IF (NWORK.GT.MINM)GOTO 50
INCLG \(=\) MCORE-NWORK
\(\underset{\text { STITE }}{\text { WRIWG, } 912 \text { )INCLG }}\)
50 continue
IF (NWORK.GE. NCORET)WRITE (IW6, 940)
IF (NWORK.LT. NCORET)WRITE (IW6, 950)
SHIFT NRELVV, NREL, NW, NP1, NP2 TO NEW LOCATION

MAST 329 MAST 330 MAST 349
MAST 350 MAST
MAST
351 MAST
MAST
MAST MAST 353
MAST
354 MAST 354
MAST
355 MAST 355
MAST 356 \begin{tabular}{l} 
MAST 356 \\
MAST 357 \\
\hline
\end{tabular} MAST 357
MAST 358 MAST 359 \(\begin{array}{ll}\text { MAST } & 359 \\ \text { MAST } \\ 360\end{array}\) MAST 361 MAST 362
MAST 363 MAST 363
MAST 364 MAST 364 \begin{tabular}{l} 
MAST \\
MAST 366 \\
\hline
\end{tabular} MAST 367 MAST 368
MAST 369
MAST MAST 369
MAST 370 MAST
MAST
371
MAST
372 MAST 372 MAST 373 MAST 374
MAST 375
MAST 376 MAST 375 MAST 376 MAST
MAST
378
MAST 379 MAST 378
MAST 379
MAST 380 MAST 38 MAST 38
MAST 382 MAST 382
MAST 38
MST MAST 384 MAST 385 MAST 386 \begin{tabular}{l} 
MAST 387 \\
MAST 388 \\
\hline
\end{tabular} MAST 388
MAST 389 MAST 389 MAST 391 MAST 392 MAST 393 MAST 394
MAST 395 MAST 395
MAST 396 MAST 396 MAST 332 MAST 333 MAST 334 MAST 335
MAST 336 MAST 336
MAST 337 MAST 337
MAST 338 MAST 339 MAST 340 MAST 341 MAST 342 MAST 343
MAST
344


MAST 26-27 : read title of analysis.
MAST 32-37 : read and write information on the geometry of the mesh. NVTX - the total number of vertex nodes in mesh.
NEL - the number of elements in mesh.
NDIM -- the number of dimensions to problem.
MAST 49-59 : parameters which govern the size of principle (main) arrays and which depend on the type of problem being analysed (i.e. whether 2-D or 3-D) are set up.

MAST 80 calculate NDEAD, which is an estimate of the (total) no. of additional nodes in the mesh (this includes both displacement and pore pressure nodes) - the latter only for consolidation elements. This estimate is intended to be more than the actual no. of additional nodes.
MAST 85-93 : estimate of total no. of nodes (NNU); this includes the vertex nodes.
MAST 142-163 : set up indexes, allocating store to various arrays in G for use
MAST 170-175: geometry part of the program. Calculate nodal co-ordinate of additional nodes and number them, starting with 751. Calculate total no. of d.o.f. in mesh.
MAST 186-187 : set up maximum size of arrays and maximum values of some parameters.
MAST 241-274: re-define indexes for various REAL arrays at the beginning of array \(G\) for use in the main part of the program.
MAST 304-323 : set up indexes for various INTEGER arrays at the end of array \(G\) for use in the main part of the program.
MAST 327-341: calculate size of the working area and determine whether there is enough core store for solving equations either in-core or out-of-core.
MAST 348-352: shift the INTEGER arrays evaluated in the geometry part of the program, to new position, for use in the rest of the program.

MAST 354-366: Routine CPW reads the control data and sets up the in situ stresses.
MAST 368-380 : analysis (main) part of the program. Routine ANS is a control routine which sets up and delegates tasks to other control routines to carry out the analysis.

\subsection*{4.5 CRISP SUBROUTINE HIERARCHY}

Fig. 4.2 shows all the subroutines in CRISP, arranged to show the structure of the program.

\subsection*{4.6 ADDING NEW FEATURES}

Many institutions and individuals around the world have versions of CRISP which differ in some respects from the version presented here. Every time we modified the program, we stored in a computer file the actual editing instructions (together with an explanation of their purpose). We also updated the program version number and date of last modification. Unfortunately, we did not keep a record of the version given to all those who passed through our office or who wrote in. Inevitably, they changed the version number, so confusion reigns.

The book version will presumably become the most widely distributed, so we call it version \(S\) (or CRISP-S). ' \(S\) ' is for standard: originally it was \(S\) for small, but really that is not appropriate. Extending the program is not an endeavour to be lightly undertaken, but the explanations in the book are designed to assist. Adding a new soil model is likely to be a popular extension: see Appendix D for details.


Fig. 4.2 - Subroutine hierarchy for CRISP-S

\section*{Cam-clay in Finite Element Analysis}

\subsection*{5.1 INTRODUCTION}

Chapter 2 described the critical state soil models entirely in relation to the standard triaxial test for soils. Thus it was possible to describe the effective stress state of a soil sample by just two stress parameters ( \(p^{\prime}\) and \(q\) ). The reader may have wondered (and indeed we did not attempt to explain) why these two parameters were chosen. In fact the definitions of \(p^{\prime}\) and \(q\) that were given in Chapter 2 were simplified versions of the full definitions for general threedimensional stress states that we present in section 5.2. To extend the models to more general two- and three-dimensional stress states, some additional assumptions are necessary. These are also covered in section 5.2.

How the incremental stress-strain relations are actually implemented in CRISP is described in section 5.3.

When performing a finite element analysis using one of the critical state models, a necessary preliminary is to define the in situ stress state. We describe how this is done and also give guidance on how the critical state parameters M, \(\Gamma, \lambda\) and \(\kappa\) should be selected in sections 5.4 and 5.5.

\subsection*{5.2 GENERALISING CAM-CLAY}

\subsection*{5.2.1 Three-dimensional stress states}

To generalise the Cam-clay model to two- and three-dimensional stress states, we replace the definitions of \(p^{\prime}\) and \(q\) given in Chapter 2 by
\[
\begin{align*}
p^{\prime}= & \left(\sigma_{x}^{\prime}+\sigma_{y}^{\prime}+\sigma_{z}^{\prime}\right) / 3,  \tag{5.1}\\
q= & (1 / \sqrt{ } 2) \sqrt{ }\left\{\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}\right. \\
& \left.+6 \tau_{x y}^{2}+6 \tau_{y z}^{2}+6 \tau_{z x}^{2}\right\} . \tag{5.2}
\end{align*}
\]

Note that these definitions reduce to those of Chapter 2 for triaxial stress conditions. \(p^{\prime}\) and \(q\) are invariants of the effective stress tensor: for a given three-dimensional stress state, \(p^{\prime}\) and \(q\) will always have the same values regardless of the orientation of the reference axes \((x, y, z) .^{\dagger}\) Another set of invariants of the stress tensor are the principal stresses, and \(p^{\prime}\) and \(q\) can be regarded as describing the position of a point in principal stress space. The co-ordinates of a point ( \(\sigma_{\mathrm{a}}^{\prime}, \sigma_{\mathrm{b}}^{\prime}, \sigma_{\mathrm{c}}^{\prime}\) ) can be decomposed into a distance along the hydrostatic axis and a distance from the hydrostatic axis (Fig. 5.1). ( \(\sqrt{3}\) ) \(p^{\prime}\) is equivalent to the distance along the hydrostatic axis, and \((\sqrt{2} / \sqrt{ } 3) q\) is equivalent to the perpendicular distance from the hydrostatic axis.


Fig. 5.1 - The significance of \(p^{\prime}\) and \(q\) in principal stress space
\(\dagger\) Quantities describing the state of a material at a point are often described by the mathematical entities of scalar, vector or tensor. An example of a scalar is pore pressure and example of a vector is a force; an example of a tensor is stress. The difference between these entities is the transformation law that is necessary to calculate the entity in a co-ordinate system ( \(x^{\prime}, y^{\prime}, z^{\prime}\) ), given values in an inclined co-ordinate system ( \(x, y, z\) ). A brief, yet fairly complete, account of all the relevant mathematics is given in Chapter 3 and Appendix A of the text by Richards (1977). Readers without the time or stamina to pursue the mathematics of tensors should not be intimidated. To perform a two-dimensional transformation of stresses, one can use the Mohr's circle construction. Engineers who understand Mohr's circles already know \(90 \%\) of what there is to know about tensors. The rest is just notation.

In Chapter 2 we were limited to the triaxial plane in principal stress space (this is the plane including the \(\sigma_{\mathrm{a}}\) and hydrostatic axes on which \(\sigma_{\mathrm{b}}=\sigma_{\mathrm{c}}\left(=\sigma_{\mathrm{r}}\right.\) in triaxial tests)). The Cam-clay models are generalised to the whole of principal stress space by rotating the yield loci and CSL to give the result shown in Fig. 5.2. Mathematically this rotation is achieved by using (5.1) as the definition of \(p^{\prime}\) and (5.2) as the definition of \(q\) for all the Cam-clay (or modified Cam-clay) relationships described in Chapter 2.


Fig. 5.2 - The Cam-clay yield locus in principal effective stress space
Thus the CSL in a \((p\) ', q) plot becomes the 'critical state cone' in principal stress space. Obviously, there is a similarity with the Drucker-Prager cone of section 2.3.2, but of course the critical sate cone is a locus of failure points, not an elasto-plastic yield surface.
The generalisation of Cam-clay in this way follows the simplest and most mathematically convenient approach. Most of the experimental evidence is that the Mohr-Coulomb surface (Fig. 2.6) would be a better generalisation than the Drucker-Prager cone (Fig. 2.7) (Bishop, 1966). However, the adoption of the Mohr-Coulomb criterion means that the critical state parameter M is dependent on the value of the intermediate principal stress. The use of the simpler approach means that it is always possible to compare directly finite element calculations with an equivalent triaxial test. (But see section 5.4.2.)

\subsection*{5.2.2 The 'other' elastic property}

The assumption made for the Cam-clay models in Chapter 2 about elastic behaviour (volumetric strains given by the \(\kappa\)-line equation, zero shear strains) causes a small difficulty in implementing the models in a finite element program. The assumption of zero shear strains implies an infinite value of the shear modulus ( \(G\) ). The most straightforward way of circumventing this difficulty is to allow the program to calculate realistic elastic shear strains inside the yield locus. In calculating the terms of the \(D\) matrix for Cam-clay under the yield locus, the effective stress bulk modulus is calculated as
\[
\begin{equation*}
K^{\prime}=\frac{V p^{\prime}}{\kappa} . \tag{5.3}
\end{equation*}
\]
(This equation is obtained by differentiating the equation of the \(\kappa\)-line.) The second independent elastic property is chosen by using either an assumed constant value of \(\nu^{\prime}\) or an assumed constant value of \(G\). The pros and cons of each option are discussed in section 5.4. The addition of the extra elastic strains makes very little difference to the predictions of the Cam-clay models. In triaxial tests, drained and undrained stress paths (and therefore soil strengths and pore pressures) are unchanged: the only difference is in the strain predictions and this just involves calculating the extra strain component and adding it to those already determined.

\subsection*{5.3 THE INCREMENTAL STRESS-STRAIN RELATIONS}

In order to perform non-linear finite element analysis using elasto-plastic models of soil behaviour, it is necessary to compute the modulus matrix \(\mathrm{D}_{\mathrm{e} p}\) relating an increment of strain to an increment of stress:
\[
\begin{equation*}
\Delta \sigma=\mathrm{D}_{\mathrm{ep}} \Delta \epsilon \tag{5.4}
\end{equation*}
\]

Starting from the yield function \(f(\sigma, \mathbf{h})=0\), and the plastic potential \(g(\sigma, \mathbf{h})=0\), there is a piece of standard manipulation to obtain a formula for \(D_{\text {ep }}\) (e.g. Zienkiewicz, 1977):
\[
\begin{equation*}
\mathbf{D}_{\mathrm{ep}}=\left[1-\frac{\mathrm{D}_{\mathrm{E}} a a^{\mathrm{T}}}{a^{\mathrm{T}} \mathbf{D}_{\mathrm{E}} a-c^{\mathrm{T}} H a}\right] \quad \mathrm{D}_{\mathrm{E}} \tag{5.5}
\end{equation*}
\]
where \(a=\partial g / \partial \sigma=\partial f / \partial \sigma, c=\partial f / \partial h\) and \(H\) is a matrix relating changes in hardening parameters to changes in the incremental plastic strain: \(\mathrm{dh}=H \mathrm{~d} \epsilon^{\mathrm{p}}\).

We have used the symbol \(D_{\mathrm{E}}\) above to emphasise that this refers to the elastic D matrix. The term 'D matrix' has passed into common (finite element) usage in much the same way as has the term ' \(B\) matrix', following the notation established by Zienkiewicz (1967, 1971, 1977). It is quite common to use the term ' D matrix' to refer to different matrices (i.e. sometimes \(\mathrm{D}_{\mathrm{E}}\) and sometimes \(\mathrm{D}_{\mathrm{ep}}\) ). The reader must learn to spot which is intended by the context.

We now list the routines which calculate the terms of the D matrices in CRISP. Although our main intention is to demonstrate how (5.5) is implemented in CRISP, it is convenient to start with the two elastic models Comparison of the elastic and elasto-plastic routines shows clearly the extra steps necessary for the latter.

In the rest of the book routines have been introduced to the reader in the same order as they are called in the program. The D-matrix routines are an exception to this, and so the reader may wish to pass over them quickly on a first reading. It is possible, however, to make use of these routines independently of the rest of the program. We explain why this might be appropriate in the las section of this chapter.

\subsection*{5.3.1 Routine DCON}

Routine DCON calculates the D matrix for anisotropic elasticity. The anisotropic elastic properties relate strains to changes in stress via the following equations:
\[
\begin{align*}
\epsilon_{x} & =\frac{1}{E_{\mathrm{h}}} \sigma_{x}-\frac{\nu_{\mathrm{vh}}}{E_{\mathrm{v}}} \sigma_{y}-\frac{\nu_{\mathrm{hh}}}{E_{\mathrm{h}}} \sigma_{z} \\
\epsilon_{y} & =-\frac{\nu_{\mathrm{hv}}}{E_{\mathrm{h}}} \sigma_{x}+\frac{1}{E_{\mathrm{v}}} \sigma_{y}-\frac{\nu_{\mathrm{hv}}}{E_{\mathrm{h}}} \sigma_{z} \\
\epsilon_{z} & =-\frac{\nu_{\mathrm{hh}}}{E_{\mathrm{h}}} \sigma_{x}-\frac{\nu_{\mathrm{vh}}}{E_{\mathrm{v}}} \sigma_{y}+\frac{1}{E_{\mathrm{h}}} \sigma_{z} \\
\gamma_{x y} & =\frac{1}{G_{\mathrm{hv}}} \tau_{x y} . \tag{5.6}
\end{align*}
\]

We have used suffixes ' \(h\) ' (for horizontal) and ' \(v\) ' (for vertical) to clarify how this model would be used in a geotechnical analysis. Section 9.2 contains a discussion of the significance of the various elastic parameters. The inverse forr of (5.6) is inserted into the \(\mathbf{D}\) matrix following Zienkiewicz (1977). The arra, PR contains the material properties as specified by the user in the data.
Routine DCON
SUBROUT TNE DCON(I, IET, NEL, NDIM, NS, NPR, NMT, MAT, PR, D, BK )
C CALCULATES STRESS-STRAIN MATRIX FOR ANISOTROPIC ELASTICITY

C DIMENS ION MAT (NEL), D(NS,NS), PR (NPR, MMT)
KM=Mat(I)
\(A N=P R(1, K M) / P R(2, K M)\)
\(A=\operatorname{PR}(2, K M) /((1.0+P R(3, K M)) *(1.0-P R(3, K M)-2.0 * G N * P R(4, K M) *\)
\(1 \mathrm{PR}(4, \mathrm{KM}))\) )
\(\mathrm{D}(1,1)=A^{*} \mathrm{AN}^{2}\)
D (1, 1) =A*AN* (1.0-AN*PR (4,KM)*PR(4,KM))
\(D(1,2)=A * A N * P R(4, K M) *(1,0+P R(3, K M))\)
\(D(1,3)=A * A N *(P R(3, K M)+A N * P R(4, K M) * P R(4, K M))\)
\(D(2,1)=D(1,2)\)
\(D(2,2)=A^{*}(1.0-\operatorname{PR}(3, K M) * P R(3, K M))\)
IF(IET.EQ.0) GO TO 20
DO 10 J=1,3
MO
```



```
M DO 10 JJ=1,3
```

```
D (2,3)=D(1,2)
```

```
D (2,3)=D(1,2)
D (3,1)=D(1,3)
D (3,1)=D(1,3)
D (3,3)=D (1,1)
D (3,3)=D (1,1)
D(4,4)=PR(5, KM)
D(4,4)=PR(5, KM)
BK=(D(2,2)+2.*D(2,1))/3.
BK=(D(2,2)+2.*D(2,1))/3.
F(NDIM.EQ.2)GOTO
F(NDIM.EQ.2)GOTO
D (5,5)=PR (5, KM)
```

D (5,5)=PR (5, KM)

```
```

END

DCON 7 : material zone number.
DCON 8 : ratio $E_{\mathrm{h}} / E_{\mathrm{V}}=n$.
DCON 9-10: $E_{\mathrm{v}}^{\prime} /\left[\left(1+\nu_{\mathrm{h}}\right)\left(1-\nu_{\mathrm{h}}-2 n \nu_{\mathrm{vh}}^{2}\right)\right]$
DCON 11-21 : calculate components of elastic \mathbf{D} matrix for 2-D
DCON 23-24 : calculate additional components for 3-D.
DCON 27-29 : add K_{w} term (αK^{\prime}) for drained/undrained analysis during assembly of stiffness matrix (i.e. if IET $\neq 0$).

5.3.2 Routine DLLN

Routine DLIN calculates the \mathbf{D} matrix when there is a linear variation of elastic properties with depth

The elastic Young's modulus is given by the equation

$$
\begin{equation*}
E=E_{0}+m\left(y_{0}-y\right) . \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{0} & \text { - Young's modulus at a depth } y_{0} . \\
m & \text { rate of increase in modulus with depth. }
\end{aligned}
$$

Routine DLIN

SUBROUTINE DLIN(IP, I, IET, NEL, NDIM, NDN, NS, NPR, NMT,
C
C BEHA VIOUR WHEN ELASTIC PROPERTIES VARY LINEARLY WITH DEPTH
C BEHA VIOUR WHEN ELASTIC PROPERTIES VARY LINEARLY WITH DEPTH dimension elcod (ndim, NDN), SHFN(NDN), D(NS, NS)
DIMENSION MAT (NEL), PR (NPR, NMT)
COMMON /PARS / PYI, ALAR, ASMVL, ZERO
C \quad KM=mat (I)
CC IPA $=I P+I N D X$
IPA $=1 P+1$
$Y Y$ Z ZERO
DO 5 IN $=1$, NDN
$5 \mathrm{YY}=\mathrm{YY}+\operatorname{SHFN}(\mathrm{IN}) * \operatorname{ELCOD}(2, \mathrm{IN})$
$E=P R(1, K M)+P R(3, K M) *(P R(2, K M)-Y Y)$
$\mathrm{G}=\mathrm{E} /(2 . *(1 .+\mathrm{PR}(4, \mathrm{KM}))$)
$A=E((1,+P R(4, K M)) *(1,-2, * P R(4, K M)))$

DLIN

DLIN

BK=E/(3.*(1.-2.*PR(4, KM))	DLIN	19
$D(1,1)=A *(1 .-P R(4, K M))$	DLIN	20
$D(1,2)=A * P R(4, k M)$	DLIN	21
$D(1,3)=D(1,2)$	DLIN	22
$D(2,1)=D(1,2)$	DLIN	23
$D(2,2)=D(1,1)$	DLIN	24
$D(2,3)=D(1,3)$	DLIN	25
$D(3,1)=D(1,3)$	DLIN	26
$D(3,2)=D(2,3)$	DLIN	27
$D(3,3)=D(1,1)$	DLIN	28
$D(4,4)=G$	DLIN	29
IF (NDIM.EQ.2)GOTO 8	DLIN	30
D $(5,5)=G$	DLIN	31
$D(6,6)=G$	DLIN	32
8 If (IET.EQ.0)RETURN	DLIN	33
DO $10 \mathrm{~J}=1,3$	DLIN	34
DO $10 \mathrm{JJ}=1,3$	DLIN	35
$0 \mathrm{D}(\mathrm{JJ}, \mathrm{J})=\mathrm{D}(\mathrm{JJ}, \mathrm{J})+\mathrm{PR}(7, \mathrm{KM}) * \mathrm{BK}$	DLIN	36
RETURN	DLIN	37

DLIN 11 : material zone number.
DLIN 13-15 : y co-ordinate (or z in axisymmetric problems) of integration point.
DLIN 16 : calculate value of Young's modulus at integration point.
DLIN 17 : calculate shear modulus.
DLIN 18-29: calculate elastic D matrix for 2-D
DLIN 31-32: calculate additional components for 3-D
DLIN 34-36: add K_{w} term (αK^{\prime}) for drained/undrained analysis during assembly of stiffness matrix (i.e. if IET $\neq 0$)

5.3.3 Routine DCAM

Routine DCAM calculates the D matrix for Cam-clay. The array VARINT gives the values of VARiables at INTegration points. The first index of this array gives seven variables for two-dimensional analysis: $\sigma_{x}^{\prime}, \sigma_{y}^{\prime}, \sigma_{z}^{\prime}, \tau_{x y}, u, e$ (voids ratio) and p_{c}^{\prime}. These variables will, in general, be varying over the whole finite element mesh.

Routine DCAM

	IF (NDIM.EQ.2)GOTO 10	DCAM	18
C $\begin{aligned} & \\ & \\ & \\ & 10\end{aligned}$		dCAM	19
	TYZ $=$ VARINT ($5, I P, I)$	DCAM	20
	TZX $=$ VARINT $(6, I P, I)$	dCAM	21
	Q2 $=$ Q2+3.*TYZ*TYZ $+3 . * T Z$ X ${ }^{\text {T } 2 X ~}$	DCAM	22
	$\mathrm{Q}=$ SQRT (Q2)	dCAM	23
	$\mathrm{PY}=\mathrm{P} * \operatorname{EXP}(\mathrm{Q} /(\mathrm{PR}(4, \mathrm{KM}) * \mathrm{P}) \mathrm{)}$	DCAM	24
	BK $=(1 .+E) * P / P R(1, K M)$	dCAM	25
c-		DCAM	6
c	calculate elastic stress-Strain matrix	DCAM	27
c.		dCAM	28
	$\mathrm{G}=\mathrm{PR}(5, \mathrm{KM})$	DCAM	29
	IF(G.LT.1.) G=BK*1.5*(1.-2.*PR(5,KM))/(1.+PR(5,KM)	DCAM	30
	$\mathrm{AL}=\left(3 .{ }^{*} \mathrm{BK}+4 . * \mathrm{G}\right) / 3$.	DCAM	31
	$\mathrm{DL}=(3 . * \mathrm{BK}-2 . * \mathrm{G}) / 3$.	DCAM	32
c		DCAM	33
	Call zeror2(D, NS, NS)	DCAM	34
	$\mathrm{D}(1,1)=\mathrm{AL}$	DCAM	35
	$\mathrm{D}(2,1)=\mathrm{DL}$	DCAM	36
	$D(3,1)=D L$	DCAM	37
	$D(1,2)=D L$	DCAM	38
	$\mathrm{D}(2,2)=\mathrm{AL}$	dCAM	39
	$D(3,2)=\mathrm{DL}$	dCAM	40
	$D(1,3)=D L$	dCAM	41
	$\mathrm{D}(2,3)=\mathrm{DL}$	DCAM	42
	$D(3,3)=\mathrm{AL}$	dCAM	43
	$D(4,4)=G$	dCAM	44
	IF (NDIM.EQ.2)GOTO 11	DCAM	45
	$D(5,5)=G$	dCAM	45
	$D(6,6)=G$	dCAM	47
C		DCAM	48
	If (PY.LT.O.99*PC) GO TO 50	dCAM	49
c-cc		DCAM	50
	Calculate plastic stress-Strain matrix if current	DCAM	51
	point on yield locus and set pc negative	DCAM	52
C--.-		DCAM	53
	Varint (NS $+3, \mathrm{IP}, \mathrm{I}$) $=-\operatorname{ABS}$ (Varint ($\mathrm{NS}+3, \mathrm{IP}, \mathrm{I}$))	dСam	54
	$\mathrm{S}(1)=S \mathrm{~S}-\mathrm{P}$	DCAM	55
	$\mathrm{S}(2)=S Y-\mathrm{P}$	DCAM	56
	S (3) $=$ SZ-P	DCAM	57
	$\mathrm{S}(4)=2 . *$ TXY	DCAM	58
	IF (NDIM.EQ.2)GOTO 12	DCAM	59
	$\mathrm{S}(5)=2 . * T Y Z$	DCAM	60
	$S(6)=2 . * T Z X$	dСАM	61
	$\mathrm{BB}=(1 .-\mathrm{Q} /(\mathrm{PR}(4, \mathrm{KM}) * \mathrm{P})$)/(3.*P)	DCAM	62
	ITP $=0$	DCAM	63
	IF (Q.LT. 1.OE-5) GOTO 15	DCAM	64
	QMP $=Q /(\operatorname{PR}(4, K M) * P)$	DCAM	65
	IF (QMP.LT. O.01) GOTO 14	DCAM	66
	$\mathrm{C}=1.5 /(\mathrm{Q} * \mathrm{PR}(4, \mathrm{KM}) * \mathrm{P})$	dCAM	67
	GOTO 16	DCAM	68
c--CC		-DCAM	69
	Q/MP is small. use fitted curve to calculate c value	dCam	70
		-DCAM	71
14	CA $=153.0302 /(\operatorname{PR}(4, K M) * * 2 * P C * * 2)$	DCAM	72
	$\mathrm{C}=(-2.98 *(100 . * \mathrm{QMP}) * * 3+3.98 *(100 . * \mathrm{MP}) * * 2) * \mathrm{CA}$	dCAM	73
	ITP $=1$	DCAM	74
	GOTO 16	DCAM	75
		dCAM	76
c	Q/MP IS too small.use c value for zero q/mp	DCAM	77
		-DCAM	78
15	$\mathrm{C}=0$.	DCAM	79
	ITP $=1$	DCAM	80
16	$\mathrm{A}(1)=\mathrm{BB}+\mathrm{C}$ * (1)	DCAM	81
	$\mathrm{A}(2)=B B+C * S(2)$	DCAM	82
	$\mathrm{A}(3)=B B+C * S(3)$	DCAM	83

```
A(4)=C*S(4)}\begin{array}{l}{A($)}\\{\mathrm{ IF NDIM.EQ.2)GOTO 18}}\\{A(5)=C*S(5)}\\{A(6)=C*S(6)}
C 18 DO 20 J=1,3
B(J)=0.
    DO 20 JJ=1,3
\(20 B(J)=B(J)+D(J, J J) * A(J J)\)
\(B(4)=D(4,4) * A(4)\)
IF (NDIM.EQ. 2) GOTO 25
\(B(5)=D(5,5) * A(5)\)
\(25 \mathrm{XI}=(\operatorname{PR}(2, K M)-\operatorname{PR}(1, \mathrm{KM})) /(1 .+E)\) \(A A=3\). *BB/XI \(A B=0\)
DO \(30 \mathrm{~J}=1\), NS
\(30 \mathrm{AB}=\mathrm{AB}+\mathrm{A}(\mathrm{J}) * B(\mathrm{~J}\)
\(B E T A=A A+A B\)
\(\begin{array}{lll}\text { DO } & 40 \mathrm{~J}=1 \text {, NS } \\ \text { DO } & 40 \mathrm{JJ}=1 \text {, NS }\end{array}\)
\(40 \mathrm{D}(\mathrm{JJ}, \mathrm{J})=\mathrm{D}(\mathrm{JJ}, \mathrm{J})-\mathrm{B}(\mathrm{JJ}) * B(\mathrm{~J}) / \mathrm{BETA}\)
50 IF (IET.EQ.O) GOTO 80
DO \(60 \mathrm{~J}=1,3\)
\(60 \quad D(J J, J)=D(J J, J)+P R(7, K M) * B K\)
80 RETURN
END
c

DCAM 9 : material zone number.
DCAM 10-13 : effective stress components for 2-D.
DCAM 14 : voids ratio (e).
DCAM 15 : size of current yield locus \(\left(p_{c}^{\prime}\right)\)
DCAM 16 : mean normal effective stress \(\left(p^{\prime}\right)\)
DCAM \(17: q^{2}\)
DCAM 20-21 : additional shear stress components (3-D)
DCAM \(22: q^{2}\) for 3-D.
DCAM \(23: q\).
DCAM 24 : size of yield locus passing through stress state (not the sam as current yield locus).
DCAM 25 : calculate bulk modulus of soil.
DCAM 29 : shear modulus (or Poisson's ratio if \(<1\) ).
DCAM 30 : calculate shear modulus \(G\)
DCAM 31-32 : elastic constants
DCAM 34 : zero D matrix.
DCAM 35-44 : elastic D matrix (2-D).
DCAM 46-47 : additional components of elastic \(\mathbf{D}\) matrix for 3-D
DCAM 49 : skip if elastic.
DCAM 54 : make \(p_{\mathrm{c}}^{\prime}\) negative to indicate yielding.
DCAM 55-58 : calculate deviatoric stresses for 2-D
DCAM 60-61 : additional components for 3-D
DCAM 62 : calculate constant part of flow matrix \(a\).

DCAM 63-66 : check if stress state is close to tip along \(p^{\prime}\) axis.
DCAM 67-68 : if not, skip after calculating \(C\).
DCAM 72-75 : calculate \(C\) using curve fitting if close to tip.
DCAM 81-84 : calculate flow matrix \(a\) for 2-D.
DCAM 86-87 : calculate additional components of flow matrix \(a\) for 3-D.
DCAM 89-93 : calculate \(b=\mathrm{D} . a\) for 2-D.
DCAM 95-96 : calculate \(b=\) D. \(a\) for 3-D.
DCAM 98-99 : calculate hardening parameter \(c^{\mathrm{T}} H a\)
DCAM 102-104 : calculate \(a^{\mathrm{T}} \mathrm{D}_{\mathrm{E}} a-c{ }^{\mathrm{T}} H a\).
DCAM 105-107 : calculate \(\mathrm{D}_{\text {ep }}\) matrix.
DCAM 110-112 : add \(K_{\text {w }}\) term for drained/undrained analysis during assembly of element stiffness matrix (i.e. only if IET \(\neq 0\) ).

\subsection*{5.3.4 Routine DMCAM}

Routine DMCAM calculates the D matrix for modified Cam-clay.

\section*{Routine DMCAM}

SUBROUTINE DMCAM(IP, I, IET, NEL, NIP, NVRS, NDIM, NS, NPR, NMT,
1 VARINT, MAT, D, PR, BK)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{D \((1,3)=D L\)} & \multirow[t]{2}{*}{DMCM} & 41 \\
\hline & \(D(2,3)=D L\) & & & & 42 \\
\hline & \(\mathrm{D}(3,3)=\mathrm{AL}\) & & & DMCM & 43 \\
\hline & D \((4,4)=G\) & & & DMCM & 44 \\
\hline & IF (NDIM. EQ & 2)GOTO 12 & & DMCM & 45 \\
\hline & D \((5,5)=G\) & & & DMCM & 46 \\
\hline & \(D(6,6)=G\) & & & DMCM & 47 \\
\hline C & & & & DMCM & 48 \\
\hline 12 & IF (PY.lT. 0 & 99*PC) Go T0 50 & & DMCM & 49 \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}_{\mathrm{C}}\)} & & & & DMCM & 50 \\
\hline & Calculate & PLASTIC STRESS-STRAIN & matrix if current & DMCM & 51 \\
\hline C & POINT ON & YIELD LOCUS AND SET & PC NEGATIVE & DMCM & 52 \\
\hline c & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\(\operatorname{VarinT}(N S+3, \mathrm{IP}, \mathrm{I})=-\operatorname{ABS}(\mathrm{Varint}(\mathrm{NS}+3, \mathrm{IP}, \mathrm{I})\) )}} & -DMCM & 53 \\
\hline & & & & DMCM & 54 \\
\hline \multicolumn{4}{|c|}{PCS \(=.5 * P \mathrm{C}\)} & DMCM & 55 \\
\hline \multicolumn{4}{|c|}{\(\mathrm{PB}=\mathrm{P} / \mathrm{PCS}\)} & DMCM & 56 \\
\hline \multicolumn{4}{|c|}{\(\mathrm{S}(1)=\mathrm{SX}-\mathrm{P}\)} & DMCM & 57 \\
\hline \multicolumn{4}{|c|}{\(S(2)=S Y-P\)} & DMCM & 58 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(S(3)=S Z-P\)}} & DMCM & 59 \\
\hline & & & & DMCM & 60 \\
\hline \multicolumn{4}{|c|}{IF (NDIM.EQ.2)GOTO 16} & DMCM & 61 \\
\hline \multicolumn{4}{|c|}{\(\mathrm{S}(5)=2 . *\) TYZ} & DMCM & 62 \\
\hline & \multicolumn{3}{|l|}{S(6) 2 2.*TZX} & DMCM & 63 \\
\hline \multirow[t]{2}{*}{16} & BB=-2.* (1. & -PB)/(3.*PCS) & & DMCM & 64 \\
\hline & \multicolumn{3}{|l|}{\(\mathrm{C}=3.1(\mathrm{PCS} * \mathrm{PCS} * P R(4, \mathrm{KM}) * \mathrm{PR}(4, \mathrm{KM})\) )} & DMCM & 65 \\
\hline \multicolumn{4}{|c|}{\(\mathrm{A}(1)=8 \mathrm{~B}+\mathrm{C} * \mathrm{~S}^{(1)}\)} & DMCM & \\
\hline \multicolumn{4}{|c|}{\(A(2)=B B+C * S(2)\)} & DMCM & \\
\hline \multicolumn{4}{|c|}{\(A(3)=8 B+C * S(3)\)} & DMCM & 68 \\
\hline \multicolumn{4}{|c|}{\(\mathrm{A}(4)=C * S(4)\)} & DMCM & \\
\hline \multicolumn{4}{|c|}{IF (NDIM. EQ.2)GOTO 18} & DMCM & 70 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(A(5)=C * S(5)\)
\(A(6)=C * S(6)\)}} & DMCM & 71 \\
\hline & & & & DMCM & \\
\hline \multicolumn{4}{|l|}{C} & DMCM & 73 \\
\hline \multirow[t]{3}{*}{18} & Do \(20 \mathrm{~J}=1\), 3 & & & DMCM & 74 \\
\hline & \(B(\mathrm{~J})=0\). & & & DMCM & 75 \\
\hline & D \(20 \mathrm{JJ}=1\) & & & DMCM & 76 \\
\hline \multirow[t]{4}{*}{20} & \(\mathrm{B}(\mathrm{J})=\mathrm{B}(\mathrm{J})+\mathrm{D}\) & D(J, JJ)*A(JJ) & & DMCM & 77 \\
\hline & \(B(4)=D(4,4\) & )*(4) & & DMCM & 78 \\
\hline & IF (NDIM.EQ & 2)goto 25 & & DMCM & \\
\hline & \(B(5)=D(5,5\) & )*A(5) & & DMCH & 80 \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(B(6)=D(6,6){ }^{\text {A }}\) ( 6 )}} & DMCM & \\
\hline & & & & DMCM & \\
\hline \multirow[t]{3}{*}{25} & \(\mathrm{XI}=\mathrm{PRR}(2, \mathrm{~K}\) & M) \(-\operatorname{PR}(1, \mathrm{KM})) /(1 .+E)\) & & DMCM & \\
\hline & \(A A=-4 . * P B *\) & \((1,-P B) /(P C S * X I)\) & & DMCM & \\
\hline & \(A B=0\). & & & DMCM & 85 \\
\hline \multicolumn{4}{|l|}{c} & DMCM & \\
\hline \multirow{4}{*}{30} & DO \(30 \mathrm{~J}=1\), & & & DMCM & 87 \\
\hline & \(A B=A B+A(J)\) & * \({ }_{\text {B }}(\mathrm{J})\) & & DMCM & 88 \\
\hline & \(B E T A=A A+A B\) & & & DMCM & 89 \\
\hline & DO \(40 \mathrm{~J}=1\), & & & DMCM & \\
\hline & DO \(40 \mathrm{JJ=1}\) & , NS & & DMCM & 91 \\
\hline 40 & D(JJ, J) = ( & JJ, J)-B(JJ)*B(J)/BETA & & DMCM & 92 \\
\hline 50 & IF (IET.EQ. & 0) GOTO 80 & & DMCM & 93 \\
\hline \multicolumn{4}{|c|}{} & DMCM & 94 \\
\hline & DO \(60 \mathrm{~J}=1\), & & & DMCM & 95 \\
\hline & DO \(60 \mathrm{JJ}=1\) & & & DMCM & 96 \\
\hline 60 & \multicolumn{3}{|l|}{\(D(J J, J)=D(J J, J)+P R(7, K M) * B K\)} & DMCM & 97 \\
\hline 80 & cont inue & & & DMCM & 98 \\
\hline \multicolumn{2}{|l|}{cc \(\operatorname{WRITE}(6,8\)} & 1)I,IP, D & & DMCM & 99 \\
\hline \multirow[t]{3}{*}{cc801} & FORMat (/1X & , \(4 \mathrm{HI}=, 15,2 \mathrm{X}, 5 \mathrm{HIP}=, \mathrm{IS}\) & , 3X, 1HD/( \(1 \mathrm{X}, 9 \mathrm{E} 14.5\) ) & DMCM & 100 \\
\hline & RETURN & & & DMCM & 101 \\
\hline & END & & & DMCM & \\
\hline
\end{tabular}

DMCM 9 : material zone number
DMCM 10-13 : effective stress components for 2-D.

DMCM 14 : voids ratio (e)
DMCM 15 : size of yield locus ( \(p_{\mathrm{c}}^{\prime}\) ).
DMCM 16 : mean normal effective stress \(\left(p^{\prime}\right)\)
DMCM \(17: q^{2}\).
DMCM 20-21: additional shear stress components (3-D).
DMCM \(22: q^{2}\) for 3-D.
DMCM \(23: q\).
DMCM 24 : size of yield locus passing through stress state (not the same as current yield locus).
DMCM 25 : calculate bulk modulus of soil
DMCM 29 : shear modulus (or Poisson's ratio if \(<1\) ).
DMCM 30 : calculate shear modulus \(G\).
DMCM 31-32: elastic constants.
DMCM 34 : zero \(D\) matrix.
DMCM 35-44 : elastic \(D\) matrix (2-D).
DMCM 46-47 : additional components of elastic \(D\) matrix for 3-D.
DMCM 49 : skip if elastic.
DMCM 54 : make \(p_{\mathrm{c}}^{\prime}\) negative to indicate yielding.
DMCM 57-60: calculate deviatoric stresses for 2-D.
DMCM 62-63: additional components for 3-D.
DMCM 64 : calculate constant part of flow matrix \(a\).
DMCM 65 : calculate \(C\).
DMCM 66-69 : calculate flow matrix \(a\) for 2-D.
DMCM 71-72: calculate additional components of flow matrix \(a\) for 3-D.
DMCM 74-78: calculate \(b=D\). \(a\) for 2-D.
DMCM 80-81 : calculate \(b=D . a\) for 3-D.
DMCM 83-84 : calculate hardening parameter \(c^{\mathrm{T}} H a\).
DMCM 87-88 : calculate \(a^{\mathrm{T}} \mathrm{D}_{\mathrm{E}} a-c^{\mathrm{T}} H a\).
DMCM 90-92 : calculate \(D_{\text {ep }}\) matrix.
DMCM 95-97 : add \(K_{\mathrm{w}}\) term for drained/undrained analysis during assembly of element stiffness matrix (i.e. only if IET \(\neq 0\) ).

\subsection*{5.4 DETERMINING THE CAM-CLAYPARAMETERS}

\subsection*{5.4.1 Introduction}

The critical state soil parameters can all be determined from the normal range of laboratory tests that are performed on a soil. The approach to the selection of parameters will depend on the problem to which the program is to be applied. In general the information should be obtained from high-quality laboratory tests. This is particularly so when the program is to be used to predict behaviour in a field situation. In these circumstances, advanced in situ testing techniques (e.g. Wroth, 1984) are desirable in addition to high-quality laboratory tests on 'undisturbed samples'.

Of course, sometimes high-quality data will not be available, and the analyst must develop a feel for the range of possible parameter values and the influence
of the variation of each. In practical and research applications it is quite common to perform 'parametric studies', where one performs analyses with different parameter values to study the influence of each.

Some soil tests give information which is not independently specified within the critical state framework (but depends on other CSSM parameters and the in situ stresses). One example is the undrained shear strength. In these circumstances there will usually be some discrepancy between data from different sources. Some of this will be due to the quality of the data, and some will be due to the fact that despite their sophistication, the critical state models are simplified idealisations of real soil behaviour. The analyst needs to obtain a 'best fit' between all the available data and the critical state parameters, bearing in mind the reliability of each piece of data. Indeed one of the strengths of the critical state theories is this ability to review data from different types of soil test (Wroth, 1984).

\subsection*{5.4.2 The frictional constant \(M\)}

Triaxial tests (drained and undrained with pore pressure measurement) on isotropically consolidated samples can be used to obtain the frictional constant M . A number of tests need to be carried out with different consolidation pressures. It is necessary to continue these tests to large strains to ensure that the samples are close to the critical state. For the undrained tests the pore pressures should be monitored to see that they are not still changing at the end of the test. If they are, then the samples have not reached the critical state and these results would lead to M being underestimated.

If one obtains the principal effective stresses at failure, then the drained angle of friction \(\phi^{\prime}\) can be obtained from the geometry of a Mohr's circle plot: \(\sigma_{\mathrm{a}}^{\prime} / \sigma_{\mathrm{r}}^{\prime}=\left(1+\sin \phi^{\prime}\right) /\left(1-\sin \phi^{\prime}\right)\). Combining this relation with the definitions of \(p^{\prime}\) and \(q, \mathrm{M}\) (the value of \(q / p^{\prime}\) at failure) is given by
\[
\begin{equation*}
M=\frac{6 \sin \phi^{\prime}}{3-\sin \phi^{\prime}} \tag{5.8}
\end{equation*}
\]

Of course, it is not necessary to go through the intermediate step of calculating \(\phi^{\prime}\) : we have introduced this to make the relationship of M and \(\phi^{\prime}\) explicit. Alternatively, by plotting the \(q / p^{\prime}\) values at failure, the slope of the best-fitting straight line is taken as M . If one is testing field samples, a fair amount of scatter is to be expected and some 'engineering judgement' is needed here.
As noted in section 5.2.1, the influence of the intermediate principal stress on the soil strength is usually better described by the Mohr-Coulomb equation than by the critical state cone. Sometimes the value of M is adjusted slightly to take this into account (e.g. a lower value is chosen which will match the soil strength in plane strain better when used in the finite element analysis).
5.4.3 Slopes of the normal consolidation and swelling lines ( \(\lambda\) and \(\kappa\) )

These parameters can be obtained from oedometer tests or from triaxial tests on
samples either isotropically or with \(K_{0}\) normally consolidated. From the theoretical point of view, one expects to obtain equal values of \(\lambda\) from any constant \(\eta\) compression test. Thus one would expect to get the same value of \(\lambda\) from an isotropic compression test and a \(K_{0}\) compression test. Because the value of \(K_{0}\) changes on one-dimensional unloading (see section 5.5), an oedometer capable of horizontal stress measurement is required it \(\kappa\) is to be determined from one-dimensional unloading rather than isotropic unloading.

It is standard practice to plot the results of one-dimensional compression tests in terms of \(e\) (voids ratio) against \(\log _{10} \sigma_{v}^{\prime}\), where \(\sigma_{v}^{\prime}\) is the effective vertical stress. The slope \(C_{c}\) of the normally consolidated line is known as the 'compression index'.
\[
\begin{equation*}
\lambda=C_{\mathrm{c}} / 2.303 \tag{5.9}
\end{equation*}
\]
(2.303 \(=\ln (10\).\() Alternatively \lambda\) can be directly determined from the slope of the compression line in a \(\left(\ln \left(p^{\prime}\right), e\right)\) plot. Often \(\kappa\) is simply estimated from \(\lambda\), as indicated at the end of this section.

One sometimes finds that the compression line in \(\left(\ln \left(p^{\prime}\right), e\right)\) space is curved rather than linear. Under these circumstances one has to choose the slope appropriate to the stress level believed to be relevant in the problem to be analysed. (Note that this will also affect the estimation of \(\Gamma\) or \(e_{\mathrm{cs}}\) discussed below.)

It is interesting to note that Butterfield (1979) re-plotted the results discussed above in \(\ln (V)=\ln \left(p^{\prime}\right)\) space and obtained linear plots. In fact it is difficult to decide on the basis of the available data whether Butterfield's proposal or the traditional approach is better. From a theoretical point of view, linear relations in ( \(\left.\ln (e), \ln \left(p^{\prime}\right)\right)\) plots would be preferable, eliminating the possibility of negative values of \(e\) at high stress levels. This would tidy up one corner of critical state theory, but for practical purposes the traditional relations appear to be quite satisfactory.

In fact one can re-formulate the critical state models to incorporate Butterfield's suggestion (or any other hardening law). This would involve some changes to the finite element program (but not major ones).
\(\kappa\)-lines are usually found to be even more curved than \(\lambda\)-lines. In Chapter 2 we pointed out that although the assumed form of elasticity is adequate for many purposes, there are situations (e.g. cyclic loading) where the \(\kappa\)-line assumption is not adequate. \(\kappa\) values are often chosen in the range of one-fifth to one-third of \(\lambda\). The data usually indicate a lower (stiffer) value on immediate unloading and a higher value at later stages of unloading.
5.4.4 Location of CSL in \(\left(e, \ln \left(p^{\prime}\right)\right)\) plot \(\left(e_{\mathrm{cs}}=\Gamma-1\right)\)
\(e_{\mathrm{CS}}\) is defined as the voids ratio on the critical state line for a value of \(p^{\prime}=1\).
Note that the parameter describing the location of the CSL in Chapter 2 ( \(\Gamma^{\prime}\) ) was a specific volume, whereas the parameter required here \(\left(e_{\text {cs }}\right)\) is a voids ratio. Since specific volumes can always be converted into voids ratios (and vice versa) using the relation \(V=1+e\), this should not lead to any confusion.

Following on from the determination of \(M\) above, the reader might expect that \(e_{\text {cs }}\) would be determined by measuring the moisture contents of several triaxial tests at failure. This is rarely done, however, basically because of the difficulty in obtaining sufficiently accurate data. In fact once \(\lambda\) and \(\kappa\) have been determined, a value of moisture content at any point on the stable state boundary surface will suffice to fix a value of \(\Gamma\), using either (2.17) for Cam-clay or (2.41) for modified Cam-clay. It is common in fact to determine \(e_{\text {cs }}\) in this way from consolidation data. A side-effect of this procedure is that different values of \(e_{\text {cs }}\) (or \(\Gamma\) ) are obtained for the Cam-clay and modified Cam-clay models. This is in contrast to the conventional assessment of the differences between Cam-clay and modified Cam-clay when it is assumed that the critical states coincide for the two models.
Fig. 5.3 shows the normal assumption which is made: the CSSM parameters \(\mathrm{M}, \lambda, \kappa\) and \(\Gamma\) (or \(e_{\mathrm{cs}}\) ) are assumed to be identical for Cam-clay and modified Cam-clay. In this case the difference between the two models shows up as different isotropic normal consolidation lines.

Fig. 5.4 shows the result of following the procedure outlined above. Here the value of \(\Gamma\) has been obtained from a moisture content (i.e. value of \(e\) or \(V\) ) on the isotropic normal consolidation line. This gives different values of \(\Gamma\) for Camclay and modified Cam-clay and thus two different positions of the critical state


Fig. 5.3 - When comparing Cam-clay and modified Cam-clay it is conventionally assumed that the models coincide at the critical state. Hence the isotropic normal consolidation lines are different


Fig. 5.4-If the critical state parameter \(\Gamma\) is calculated from the moisture content of an isotropically normally consolidated sample, then Cam-clay and modified Cam-clay have different CSLs in the ( \(\mu^{\prime}, V\) ) plot. Hence modified Cam-clay gives higher undrained shear strengths than Cam-clay
line in the \(\left(\ln \left(p^{\prime}\right), V\right)\) plot. One practical consequence of this approach is that the undrained shear strength of a soil (with the same moisture content) is now \(28 \%\) greater for modified Cam-clay compared to Cam-clay. It was this fact that we were referring to in Chapter 2 when we commented that the difference between Cam-clay and modified Cam-clay is often greater than is sometimes suggested. The figure of \(28 \%\) here is based on soil parameters with \(\lambda=5 \kappa\) : the ratio of shear strengths is obtained by substituting into (2.26) the two different values of \(\Gamma\). For other soil parameters, the ratio can be calculated as 1.36 raised to the power \(\Lambda\), where 1.36 is half the base of natural logarithms and \(\Lambda=1-\kappa / \lambda\), as in Chapter 2

If the values of \(\Gamma\) are obtained from moisture contents from an oedometer test then neither the CSL nor the isotropic NCL will coincide for Cam-clay and modified Cam-clay. In this case the discrepancy between predictions of undrained shear strength will remain, but will not be so large as above.

\subsection*{5.4.5 \(\nu^{\prime}\) or \(G\)}

As indicated above, CRISP allows the user to specify either a constant value of \(\nu^{\prime}\) or a constant value of \(G\). Now \(K^{\prime}\) varies with \(p^{\prime}\) (as indicated by (5.3)), and it can be shown that if \(G\) is also allowed to vary with \(p^{\prime}\), then the soil is not truly elastic. This is because elastic stress cycles are not necessarily reversible (Zytynski et al., 1978). Thus it would appear to be preferable from a theoretical point of view to assume a constant value of \(G\). The question is: what value of \(G\) ? Experimental evidence indicates that \(G\) does vary with stress level. Attempts to correlate \(G\) with other data suggest a stronger relation with \(p^{\prime}\), than \(p_{\mathrm{c}}^{\prime}\) or \(c_{\mathrm{u}}\).
It is, therefore, usually more convenient to specify a value of \(\nu^{\prime}\) which means that \(G\) varies in the same way as \(K^{\prime}\). This is particularly so when analysing a problem where there is a significant variation in stress level in the soil. The question now is: what value of \(\nu^{\prime}\) ? There are two ways of arriving at a value of \(\nu^{\prime}\). The first is from data of \(K_{0}\) versus OCR, and the second from strain measurements in triaxial tests. The first is the more usual, and gives a value of about \(0.3=\) for many soils: this is related to the consideration of in situ stresses discussed below. The second method tends to give lower values of \(\nu^{\prime}\) (e.g. 0.12 for London clay (Wroth, 1972)). At first, this kind of discrepancy may seem to throw doubt on whether it is possible to assign realistic elastic parameters. Techniques for accurate measurement of strains recently developed at Imperial College reveal a more complex non-linear behaviour in this 'elastic' region of behaviour (Jardine et al., 1984).

It is worth pointing out here that the main strength of the Cam-clay models is in the calculation of plastic strains during yielding, as opposed to the elastic strains which are calculated for over-consolidated behaviour. Thus for many problems the exact assumption made for elastic properties is of only secondary importance. On the other hand, there will certainly be some problems where the assumptions made here are deficient, and the user should consider incorporating some new material idealisation within the yield locus in the program. As we have indicated in Chapter 2, this is an area of continuing research.

\subsection*{5.4.6 Horizontal and vertical permeabilities}

Although permeabilities are not 'Cam-clay parameters', they are considered here for completeness. For layered soils it is well known that the horizontal permeability is greater than the vertical permeability. The same is true for any samples anisotropically (for example \(K_{0}\) ) consolidated. In the laboratory, the permeability can be determined from oedometer tests. To determine the horizontal permeability, a specially modified oedometer with radial drainage is required. Oedometers with external radial drainage may be preferable. The measuring of permeabilities either in the field or in the laboratory is well documented and will not be discussed here. The vertical permeability can also be estimated from the coefficient of consolidation \(\left(c_{v}\right)\) and the coefficient of compressibility \(\left(m_{\mathrm{v}}\right)\) from the expression
\[
\begin{equation*}
k_{\mathrm{v}}=c_{\mathrm{v}} m_{\mathrm{v}} \gamma_{\mathrm{w}} \tag{5.10}
\end{equation*}
\]
(In terms of the CSSM parameters, \(m_{v}=\lambda /\left(p^{\prime} V\right)\), from differentiating the \(\lambda\)-line equation, but since the value of the horizontal stress is not necessarily known, direct use of (5.10) is more convenient.)

In CRISP the permeability is assumed to be constant throughout the analysis, Experimental evidence shows that permeability varies with stress level. As the voids ratio increases, the pore water can flow more easily, and it is realistic to expect the permeability to increase with increase in voids ratio. Such a relation ship can be readily incorporated into the program if sufficient data to support this are available for the particular soil being modelled (Almeida, 1984).

\subsection*{5.5 IN SITU STRESSES}

\subsection*{5.5.1 Introduction}

In section 5.4, various means of obtaining the Cam-clay parameters (i.e. soil constants) were described. In this section we discuss how to determine the stress parameters, which vary from point to point in the soil. These are the in situ distribution of \(\sigma_{\mathrm{v}}^{\prime}, \sigma_{\mathrm{h}}^{\prime}, u_{0}\) and \(p_{\mathrm{c}}^{\prime}\) for the entire region of the analysis. The parameter \(p_{c}^{\prime}\) is only needed for those zones of the mesh where the Cam-clay models are used. CRISP uses this information to calculate the initial values of voids ratio ( \(e\) ) over those zones.

The reason that these in situ stresses are required is that in an elasto-plastic analysis the stiffness matrix of a finite element will be dependent on the stress state within the element. In general the stress state will vary across an element, and the stiffness terms are calculated by integrating expressions dependent on these varying stresses over the volume of each element. CRISP integrates these expressions numerically by 'sampling' the stresses at particular points within the element and then using standard numerical integration rules for triangular areas.
For Cam-clays it is important to try to establish the in situ stress state as accurately as possible. This is because the displacements predicted by an analysis are quite sensitive to the relative amounts of elastic (over-consolidated)/plastic straining that take place.

\subsection*{5.5.2 How in situ stresses are set up}

The in situ stresses in the ground are produced by the loadings which the geological history of a site imposes on each small element of soil. Many natural soils are deposited as mineral particles from water or the atmosphere. As a deposit of soil is progressively built up in a series of layers, each small element of soil is subjected to a steadily increasing vertical effective stress. Soil in this condition is normally consolidated, because each element has never been subjected to a greater stress. The erosion of upper layers of the soil will lead to unloading of the remaining soil, which therefore becomes over-consolidated. An alternative reason for over-consolidation is the raising of the water table (Parry, 1970). The water table may fall again, or new layers of soil may be deposited, and so an element of soil may go through several cycles of loading, unloading
and reloading. In all cases the assumption is made that the soil loading and unloading is one dimensional, i.e. no shear stresses develop on vertical or horizontal planes. In other words, the principal stress directions are vertical and horizontal, and the horizontal stresses are equal.

There are some situations where this description will not be appropriate. The recent engineering history of a site (e.g. excavation, compaction or construction) will also affect the in situ stresses of soil elements near to the engineering activity. Residual soils which are formed by the in situ weathering of rocks do not conform to this picture: they invariably behave as if over-consolidated.

The calculation of the vertical effective stress is straightforward. The vertical total stress at any depth is calculated as the bulk density of the soil multiplied by the depth. (A more sophisticated approach is to take into account the variation of bulk density with depth, but this is usually not necessary.) From the position of the water table, the pore water pressure is calculated, and hence the vertical effective stress ( \(\left.\sigma_{v}^{\prime}=\sigma_{v}-u\right)\). The calculation of the horizontal effective stress is not so straightforward. The coefficient of earth pressure at rest ( \(K_{0}=\sigma_{\mathrm{h}}^{\prime} / \sigma_{\mathrm{v}}^{\prime}\) ) depends on the stress history of the soil. We describe below some methods of estimating \(K_{0}\), but it is worth pointing out at the start that from both the practical and the theoretical points of view, these methods are not entirely satisfactory. A prudent engineer would supplement these estimates by in situ measurements of the horizontal effective stress using, for example, the self-boring pressure meter (Wroth, 1984).

\subsection*{5.5.3 Two approaches for in situ stresses}

In an elastic analysis of soil (and sometimes in an elastic--perfectly-plastic analysis) it is quite common to set \(K_{0}\) as \(\nu^{\prime} /\left(1-\nu^{\prime}\right)\). This is consistent with the condition of zero lateral strain inherent in one-dimensional elastic compression, but unfortunately measured laboratory values of \(\nu^{\prime}\) are not consistent with the usual values of \(K_{0}\) believed appropriate for the field.

Of course this elastic assumption is not to be used for analyses using the critical state models, where one-dimensional compression involves plastic yielding. When using the Cam-clay models there are basically two approaches for determining the in situ stresses:
(i) an analysis is performed (either using CRISP or by hand) in which a soil column is subjected to the stress history which is believed has been applied to the soil deposit in practice. This approach has the merit of being theoretically consistent with subsequent analysis but it suffers from the disadvantage that Cam-clay and, to a lesser extent, modified Cam-clay are not very successful in predicting values of \(K_{\mathrm{nc}}\) (the coefficient of earth pressure at rest for normally consolidated soil):
(ii) a rather more empirical method is used, based on the data accumulated by Wroth (1975).

We concentrate on the second approach, which is rather more practical and easy to use. However, in the final section we briefly compare Wroth's method with the so-called 'consistent' approach.

\subsection*{5.5.4 Wroth's method}

In Wroth's method the value of \(K_{\mathrm{nc}}\) is taken as
\[
\begin{equation*}
K_{\mathrm{nc}}=1-\sin \phi^{\prime} \tag{5.11}
\end{equation*}
\]
a simplified version of Jaky's relation (1944). Although there is some theoretical analysis underlying this equation, examination of Jaky's paper reveals that the relation is deduced for the stress state at the centre of an embankment, where there is no necessity for there to be a condition of zero lateral strain. Hence (5.11) must be regarded as an empirical relation. However, there is evidence that (5.11) gives \(K_{n c}\) values which match data from laboratory tests (Wroth, 1972).

Wroth (1975) proposes two alternative relationships between \(K_{0}, K_{\mathrm{nc}}\) and OCR \(\left(\mathrm{OCR}=\sigma_{\mathrm{vm}}^{\prime} / \sigma_{\mathrm{v}}^{\prime}\right.\) where \(\sigma_{\mathrm{vm}}^{\prime}\) is the maximum vertical effective stress experienced by a soil element):
\[
\begin{equation*}
K_{0}=\mathrm{OCR} K_{\mathrm{nc}}-\frac{\nu^{\prime}}{1-\nu^{\prime}}(\mathrm{OCR}-1) \tag{5.12}
\end{equation*}
\]
and
\[
\begin{equation*}
m\left[\frac{3\left(1-K_{\mathrm{nc}}\right)}{1+2 K_{\mathrm{nc}}}-\frac{3\left(1-K_{0}\right)}{1+2 K_{0}}\right]=\ln \left[\frac{\mathrm{OCR}\left(1+2 K_{\mathrm{nc}}\right)}{1+2 K_{0}}\right] \tag{5.13}
\end{equation*}
\]
(5.12) is obtained by considering elastic unloading from the normally consolidated state, and gives a good fit to the existing data for a number of soils up to an OCR of about 5 . The values of \(\nu^{\prime}\) necessary to fit the observed data were determined by Wroth to be in the range 0.254 to 0.371 for eight different soils. (5.13) was proposed as valid up to higher values of OCR and was obtained from the observation that an unloading plot of \(q / p^{\prime}\) versus \(\ln p^{\prime}\) is a straight-line relationship (Fig. 5.5). \(m\) is an empirical constant which Wroth shows is linearly related to the Plasticity Index (PI) for a number of soils. Wroth (1976) suggests the following equation for estimating \(m\) (where direct measurements are not available):
\[
\begin{equation*}
m=0.022875 \mathrm{PI}+1.22 \tag{5.14}
\end{equation*}
\]
where PI is in per cent.
Wroth's method requires a knowledge of the OCR for soil at each depth. The standard procedure for obtaining the value of OCR is to test samples of clay in an oedometer and carry out one-dimensional consolidation with small load increments (Bjerrum, 1973), using the method of Casagrande (1936) to determine the vertical pre-consolidation pressure. Samples taken at frequent intervals of depth should give the variation of \(\sigma_{\mathrm{vm}}^{\prime}\) with depth. Hence the overconsolidation ratio (OCR) with depth can be determined.


Fig. 5.5 - The relation between \(\eta\) and \(\ln \left(p^{\prime}\right)\) observed for many soils on onedimensional loading and unloading
(5.13) is a non-linear equation and must be solved iteratively to obtain values of \(K_{0}\). This process is possible (if a little tedious) by hand, using a pocket calculator. As Wroth (1975) points out, (5.13) is only valid for the first unloading from the normally consolidated condition, as the data show that reloading does not follow the original unloading stress path. In practice, however, (5.13) is used irrespective of unloading/reloading cycles that may have taken place. (Only rarely does one know the details of the soil's previous stress history, and in any case some additional empirical relations would be necessary to specify what happens on reloading.)

The basic steps in calculating in situ stresses using Wroth's method can br summarised as follows.
1. Calculate \(\sigma_{v}^{\prime}\) from the bulk density of the soil and the position of the water table.
2. Calculate \(\sigma_{\mathrm{vm}}^{\prime}\) from an oedometer test. (If no oedometer tests are performed for soil at this particular depth, then interpolate between neighbouring values of \(\sigma_{v m}^{\prime}\).)
3. Use (5.11) (Jaky's relation) to calculate \(K_{\mathrm{nc}}\) and hence the horizontal effective stress acting when the maximum vertical effective stress ( \(\sigma_{v m}^{\prime}\) ) was present.
4. Calculate values of \(p^{\prime}\) and \(q\) corresponding to the maximum stresses found in 3. Substitute these values into the equation of the yield locus (either (2.18) or (2.40) depending on whether Cam-clay or modified Cam-clay is to be used in the subsequent analysis) to calculate the value of \(p_{c}^{\prime}\).


Fig. 5.6-Different assumptions for loading and unloading Cam-clay and modified Cam-clay one-dimensionally
5. Use either (5.12) or (5.13) to calculate the value of \(K_{0}\) from \(K_{\mathrm{nc}}\) and OCR. Hence the in situ horizontal effective stress \(\sigma_{\mathrm{h}}^{\prime}=K_{0} \sigma_{\mathrm{v}}^{\prime}\).

\subsection*{5.5.5 Different approaches compared}

Fig. 5.6 illustrates the effect of following three different approaches for estimating the in situ stresses. In each case the soil is loaded to the same effective vertical stress and then unloaded.

The upper stress path is obtained using Wroth's method with (5.13) for unloading. Although this stress path is shown to establish a modified Cam-clay yield locus, exactly the same stress path is obtained if one is going to use Camclay in the subsequent analysis.

The modified Cam-clay and Cam-clay stress paths were obtained from a CRISP analysis. For modified Cam-clay, one can calculate the value of \(K_{\mathrm{nc}}\) using the theory for calculating strains in Chapter 2 (supplemented by the extra elastic shear strains). However, it is more straightforward to use CRISP to find the theoretical \(K_{\mathrm{nc}}\). The analysis was started at from a point on the isotropic normal consolidation line at half the final maximum effective vertical stress. After the
initial part of the stress path, which is almost vertical, the stress path bends round and follows the constant \(\eta\)-line corresponding to \(K_{\mathrm{nc}}\). The unloading line is straight, and in fact is the same as would be obtained using (5.12). The slope of the unloading line is given by \(3\left(1-\nu^{\prime}\right) /\left(1+\nu^{\prime}\right)\). The value of \(\nu^{\prime}\) used here was 0.2 , which is slightly lower than the range suggested by Wroth (1975). If a value of \(\nu^{\prime}\) of \(\frac{1}{3}\) is used, then the unloading part of the stress path has exactly half the slope of the one shown in Fig. 5.6.

The same basic procedure was followed for Cam-clay, producing the lower stress path shown in Fig. 5.6. The analysis was started quite close to \(\sigma_{v m}^{\prime}\), because for most values of the CSSM parameters, \(K_{n c}=1\) (the incorporation of elastic shear strains via \(\nu^{\prime}\) does not affect this standard result described by Schofield and Wroth (1968)). The unloading part of the stress path involves expansive elastic volumetric strains and compressive plastic volumetric strains, giving an overall volumetric strain which is expansive. When the OCR is equal to 8 , the soil is close to a state of passive failure at the critical state.

The in situ stresses obtained by using the Cam-clay models directly lead to higher values of \(K_{0}\) (for a given OCR). This is particularly the case for Cam-clay. On the other hand, it is possible to take account of information describing the complete stress history of the soil (including unloading/reloading cycles) where this is available. A side-effect of using Wroth's method for high values of OCR is that the initial stress state in an analysis is near the origin of the ( \(p^{\prime}, q\) ) plot, well over on the dry side of the critical state. In the subsequent analysis there will be quite a lot of elastic shearing before the soil yields. In an undrained analysis, yielding will take place in a region of stress space (i.e. on the dry side of critical) where the predictions of the Cam-clay models are known to be not very satisfactory. In contrast, using the 'consistent' approach the soil would tend to yield nearer the critical state. Thus the response would be closer to elastic-perfectly-plastic for medium to high over-consolidation ratios.

Clearly the actual response of soil in an analysis depends on the stress history assumed before the start of the analysis. If the soil is over-consolidated then the predictions of soil deformations in the early part of the analysis will be quite sensitive to the assumed unloading relation. On the other hand, if the analysis approaches failure then the main factor which influences the results will be the value of \(\sigma_{\mathrm{vm}}^{\prime}\). We can compare this situation to that for steel structures where plastic collapse loads are independent of initial (residual) stresses. Collapse loads in geotechnical engineering do depend on the initial stresses, but not necessarily on every detail of the stress history. It is likely that many useful calculations can be carried out with relatively crude estimations of the in situ stresses, but we must admit that there has not been much work (that we are aware of) where the effect of different assumptions has been systematically studied.

\subsection*{5.5.6 Final comments on in situ stresses}

Although CRISP was used to produce the results discussed in the previous section, it is not necessary to perform a complete finite element analysis. Use of
the D-matrix routines listed earlier in this chapter is possible: calculating incremental stress changes for imposed one-dimensional incremental strains (updating the current stresses as one proceeds).

A further empirical relation between \(K_{0}\) and OCR is due to Parry (1982):
\[
K_{0}=K_{\mathrm{nc}}(\mathrm{OCR})^{\Phi^{\prime}} .
\]
( \(\phi^{\prime}\) is in radians.) This equation gives values of \(K_{0}\) similar to (5.13) and its manipulation is slightly more straightforward.
In this discussion of in situ stresses, we have failed to mention the experimental evidence that seems to show a yield locus centred on the \(\eta\)-line corresponding to \(K_{\mathrm{nc}}\) rather than \(\eta=0\). This observation can be incorporated into the critical state framework to produce an anisotropic Cam-clay model (Ohta and Wroth, 1976). This model would yield much earlier on passive stress paths where the isotropic models we have described continue to shear elastically. Yielding on active stress paths will not be much affected, however. We expect that this explains why satisfactory predictions are often produced using Camclay where there is positive loading (e.g. under embankments), but unloading problems often show too much elastic behaviour.

No matter how sophisticated the theoretical model, the problem of deciding what has happened to the soil at a particular site still remains. We believe that the simple one-dimensional loading and unloading idealisation of stress history may be appropriate to fewer cases than are commonly supposed. For example, Dalton and Hawkins (1982) measured different. values of \(\sigma_{\mathrm{h}}^{\prime}\) in different directions in the ground using the self-boring pressure meter at an apparently undisturbed site. (Up to \(50 \%\) variation in \(\sigma_{h}^{\prime}\) was detected.) Despite the careful allowance that was made for instrumentation errors, these findings have not been accepted by most geotechnical engineers. We prefer to believe the experimental information, even if it does not fit in with our preconceived notions of what has happened to the ground in the past.

\section*{Geometry of the Finite Element Mesh}

\subsection*{6.1 INTRODUCTION}

Chapter 4 described how the program and the input data can be logically divided into three distinct parts: (i) mesh geometry; (ii) material properties and in situ stresses; (iii) analysis
This chapter deals with part (i). MARKZ is the master control routine for the geometry part of the program, and is called by routine MAST as described in Chapter 4.
The subroutine hierarchy (Fig. 6.1) shows the routine MARKZ delegating tasks to various routines. A brief explanation of each subroutine listed in this chapter is given below.


MARKZ－Control routine for geometry part of program；delegates tasks to other routines．
RDCOD－Reads the node numbers and nodal co－ordinates of vertex nodes．
CONECT－Reads the element number，element type number and material zone numbers and the vertex nodes associated with each element．
MIDSID－Calculates co－ordinates of additional displacement nodes（nodes along element sides and element interiors）．These nodes are also numbered．
SORT2－Returns the lower of two node numbers．
SETNP－Sets up indexes for element sides for different types of element．
CUREDG－If the element sides are curved then the nodal co－ordinates calculated by MIDSID for the nodes along element sides，assuming the sides are straight，will be incorrect．This routine allows the user to specify the correct co－ordinates，which replace the co－ordinates calculated by the program．
INTPLT－If a plot of the mesh is required then the overall dimensions of the mesh，in order to calculate the scale，are written to a Plot Data （PD）file．
SIDES－Information to draw element sides are written to PD file．
MIDPOR－Calculates co－ordinates of additional pore pressure nodes（nodes along element sides and interiors）．The nodes are also assigned numbers．
NUMSH－Information to number the nodes and elements are written to PD file for plotting．
MAKENZ－Calculates the degrees of freedom（d．o．f．）of each node．
CALDOF－Assigns unique global variable numbers to each variable．
MLAPZ－Relevant to the frontal method．Marks last appearance of nodes．
SFWZ－Calculates the maximum frontwidth and the amount of store required for solving the equations．
GPOUT－Prints out nodal co－ordinates and list of nodes associated with each element．
BDATA1－Block data routine element type dependent parameters and integration schemes．
SHFTIB－Shifts a region to a different part of the global array G．
MAXVAl－Sets maximum values and sizes of some arrays．

\section*{6．2 GEOMETRY PART OF THE PROGRAM}

MARKZ delegates tasks to other routines．
Routine MARKZ

2 NPL，LTZ，KLT，MMATZ，INXL，IPLOT
3 XYZ，NCONN，MAT，LTYP，MRELVV，MREL，NRELVV，NREL，NW，NQ，

\(\begin{array}{llll}\text { c MASTER CONTROL ROUTINE FOR GEOMETRY PART OF TAE PROGRAM．MARK } \\ \text { c } & \text { READS } \operatorname{INPUT} \text { DATA（COORDNA TES AND ELEMENT－NODAL }\end{array}\)
C CONECTIVITY）AND SETS UP ADDITIONAL ARRAYS． CHARACTER＊80 TITLE
DIMENSION XYZ（NDIM，NNE），NCONN（MXND，NEL），MAT（NEL），
1 LTYP（NEL），MRELVV（NEL），MREL（MUMAX），NRELVV（NNE），
2 NREL（NNU），NW（NNE1），NQ（NNE），ITAB（LTAB，LDIM），MFRU（NEL），MFRN（MUMAX）
3 NDEST（NNE），NLST（MXND），IFR（IFRZ），NP 1（NPL），NP2（NPL），KL．T（LTZ ）
COMMON DEVICE／IR1，IR 4，IR5，IW2，IW4 IW6，IW7 IW8 IW
COMMON／DEBUGS／ID1，ID2，ID3，ID4，ID5，ID6，ID7，ID8，ID9，ID
COMMON／LABEL／TITLE
READ（IR5，＊）ID1，ID2，ID3，ID4，ID5，ID6，ID7，ID8，ID9，ID10
C－NSDZ－MAXIMUM NUMBER Of DISPLACEMENT NODES ALONG EDGE
NSPL－MAXUMUM NUMBER OF PORE－PRESSURE NODES ALONG EDGE
\({ }_{c}^{c}-\frac{\text {（EXCLUDING END NODES）}}{\text { READ（IR5，＊）NSDZ，NSPZ，NDCUR，NPCUR }}\)

CALL RDCOD（IR5，TW6，NNE，NDIM，NNU，NVTX，NUMAX，XYZ，NRELVV，NREL）

1 MAT，LTYP，MRELVV，MREL，NRELVV，NREL，MFRU，MFRN，NLST，
IF（ID1．EQ．1）WRITE（IW6，801）NCONN



IF（NDCUR．EQ．0）GOTO 10 ，NDEL，NDIM，NNE，LTAB，LDIM，MUMAX，NNU NPL
CAL
10 continue

IF（IPLOT NE O）CALL INTPIT（IW6，IW8，NDIM，NNE，XYZ，ND）

\begin{tabular}{llll}
\(C\) & PLOT ELEMENT SIDES & MARK & 58 \\
\hline
\end{tabular}



CALL MIDPOR（IW6，MXND，NEL，LTAB，LDIM，NNU，NDIM，NNE，NPL，
1 NP1，NP2，NN，KRD，NNZ ）
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[b]{2}{*}{READ COORDINATES OF PORE-PRESSURE NODES ALONG CURVED SIdES} & K & 69 \\
\hline & & Mark & 70 \\
\hline & nfCur - number of element sides (with pore pressures nodes) & mark & 71 \\
\hline c & \multirow[t]{2}{*}{THAT ARE CURVED.} & mark & 72 \\
\hline \multirow[t]{8}{*}{} & & mar & 73 \\
\hline &  & Mark & 74 \\
\hline & \multirow[t]{2}{*}{CALL CUREDG(IR5, IW6, MXND, NEL, NDIM, NNE, LTAB, LDIM, MUMAX, hNU, NPL, XYZ, NCONN, LTYP, MREL, NREL, ITAB, NP1, NP2, NPCUR, 2, NSPZ)} & MARK & 75 \\
\hline & & Mark & 76 \\
\hline & continue & Mark & 7 \\
\hline & NN1=NN +1 & Mark & 78 \\
\hline & IF(ID7.EQ.0)GOTO 22 & MaRK & 79 \\
\hline & WRITE (IW6, 801)NCONN & Mark & 80 \\
\hline \multirow[t]{2}{*}{801} & FORMAT(/1X,5HNCONN/(1X,2015)) & Mark & 81 \\
\hline & WRITE (IW6, 802)MREL & MARK & 82 \\
\hline \multirow[t]{2}{*}{802} & FORMAT (/1X, 4HMREL/(1x, 2015)) & MARK & 83 \\
\hline & WRITE (IW6, 803)MRELVV & MARK & 84 \\
\hline \multirow[t]{2}{*}{803 F} & FORMAT (/1X, 6 HMRELVV/( \(1 \mathrm{X}, 2015\) )) & MARK & 85 \\
\hline & WRITE (IW6, 804)NREL & MARK & 86 \\
\hline \multirow[t]{2}{*}{804} & FORMAT (/1X, 4HNREL/(1x,2015)) & mark & 87 \\
\hline & WRITE (IW6, 805 ) NRELVV & MARK & 88 \\
\hline \multirow[t]{2}{*}{805} & FORMAT (/1X, 6HNRELVV/(1X,2015)) & mark & 89 \\
\hline & WRITE (IW6, 806)LTYP & Mark & 90 \\
\hline \multirow[t]{2}{*}{806 F} & FORMAT (/1X,4HLTYP/(1x,20I5)) & MARK & 91 \\
\hline & WRITE (IW6, 807) Mat & Mark & 92 \\
\hline \multirow[t]{2}{*}{807 F} & FORmat (/1X, 3HMAT/(1X,2015)) & mark & 93 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{22 Continue}} & MARK & 94 \\
\hline & & -MARK & 95 \\
\hline & number the mesh & Mark & 96 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{CALL NUMSH (IW6, IW8, NDIM, NNE, MXND, NEL, MUMAX, NNU, 1 XYZ, NCONN, LTYP, MREL, NREL, NDZ, IPLOT)}} & MARK & 97
98 \\
\hline & & Mark & 99 \\
\hline & \multirow[b]{2}{*}{calculate number of degrees of freedom for each node} & & \\
\hline & & Mark & 101 \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CALL MAKENZ (MXND, NEL, NN, NCONN, LTYP, NQ, INXL)} & -MARK & 102 \\
\hline & & Mark & 103 \\
\hline & IF (ID7.EQ.1)WRITE (IW6, 809)NQ & mark & 104 \\
\hline \multirow[t]{2}{*}{} & FORMAT(/1X, 2HNQ/(1X, 20I5/)) & Mark & 105 \\
\hline & & -MARK & 106 \\
\hline & Generate global numbers for all d.o.f. & MARK & 107 \\
\hline & \multirow[t]{2}{*}{CALL CALDOF (IW6, NN, NN1, NDF, NW, NQ)} & -Mark & 108 \\
\hline & & mark & 109 \\
\hline & MARK LAST APPEARANCE OF ALL NODES & -MARK & 110 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{CALL MLAPZ (MXND, NEL, NN, NCONN, LTYP, NQ)}} & -MARK & 112 \\
\hline & & Mark & 113 \\
\hline & \multirow[b]{2}{*}{Calculate maximum fronthidth and minimum store for solution} & Mark & 114 \\
\hline & & mark & 115 \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{CALL SFWZ (MNFZ, MXND, NEL, NN, MUYAX, NNU, IF RZ, NCONN, 1 LTYP, MREL, NREL, NQ, NDEST, IF R, -1, MCORE, NCORET)}} & MARK & 116 \\
\hline & & mark & 117 \\
\hline & & Mark & 118 \\
\hline & & -MARK & 119 \\
\hline & Print out arrays & MARK & 120 \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{CALL GPOUT (IW6, MXND, NEL, MUMAX, NN, NN1, NDF,}} & -MARK & 121 \\
\hline & & MARK & 122 \\
\hline & 1 nconn, Mat, LTYP, MRELVV, Mrel, nReLVV, Mh, NQ, NLST) & mark & 123 \\
\hline \(c\) & & MARK & 124 \\
\hline & RETURN & MARK & 125 \\
\hline 902 F & format(/ & Mark & 126 \\
\hline & 1 10x,46Hmax number of displacement nodes along edie.. \(=\), \(18 /\) & Mark & 127 \\
\hline & 2 10X,46mmax number of pore-Pressure nodes along edge. \(=\), \(18 /\) & Mark & 128 \\
\hline & 3 10X,46HNUMBER OF CURVED EDGES (DISPLACEMENT)......... \(=\), \(18 /\) & MARK & 129 \\
\hline & 4 10X,46Hnumber of curved edges (pore-pressure)....... \(=\), \(18 /\) & MARK & 130 \\
\hline & 5 /120(1 \({ }^{*}\) ) /) & MARK & 131 \\
\hline & END & Mark & 132 \\
\hline
\end{tabular}

MARK 19
: read debug option - a set of 10 flags to print out various arrays used or calculated in the geometry part of the program.
MARK 25-26 : read and write details of curved sides - only relevant if there are any in the mesh. The normal option is straight-edged elements (then all values are set to zero).
MARK 30
: read vertex node co-ordinates (the user needs to specify only co-ordinates of the vertex nodes at this stage of the analysis, irrespective of the 'order' of the elements being used). If the elements are straight-edged then these are the only coordinates to be specified by the user. Any additional nodes (depending on the 'order' of the element) will be calculated by the program.
MARK 34-37 : read the nodal connectivity list (vertex nodes associated with each element). Also read the element type and material zone number for each element.
MARK 41-43 : calculate the additional (displacement) node co-ordinates.
MARK 50-51 : if some element edges are curved, then read the nodal coordinates of displacement nodes along all edges that are curved.
MARK 56-57 : write title of analysis to Plot Data (PD) file. Calculate the overall dimensions of the finite element mesh and write these to PD file only if a plot is required.
MARK 61-62 : write to PD file information (co-ordinates of nodes at either end of all element edges) necessary to draw the mesh. If the element edges are curved, write the co-ordinates of the intermediate nodes as well.
MARK 66-68 : calculate co-ordinates of additional pore pressure nodes (if any).
MARK 75 : if the element edges are curved, then read the nodal coordinates of pore pressure nodes (if any) along all edges that are curved. For example, if the element type is 2 and the element edges are curved then there is one additional displacement node along each edge. Therefore it is only necessary to specify the co-ordinates of the displacement node (there are no additional pore pressure nodes along the edge for element type 2).
MARK 79-93 : print out arrays for debugging (only if the debug flag ID7 is set to 1 ).
MARK 98-99 : write relevant information to the PD file to number the mesh and close the PD file.
MARK 103-105 : calculate the d.o.f. (no. of variables) for each node. This is necessary if different elements sharing a node have different d.o.f. (e.g. elements of type 2 and 3 sharing an edge) - print array NQ for debugging

MARK 109 : calculate the total no. of d.o.f. (variables) in the mesh. All d.o.f. are assigned a unique global variable number (g.v.n.). An array \(N W(N N+1)\) is set up which gives the g.v.n. of the first d.o.f. (variable) of all nodes. All d.o.f. of a node are given consecutive numbers. For example, if the g.v.n. of the first d.o.f. of node 53 is \(N W(53)=131\), then if node 53 has 3 d.o.f., the global variable numbers are 131, 132 and 133 respectively, and for the next node, \(54, \mathrm{NW}(54)=134\).
MARK 113 : mark last appearance of all nodes.
MARK 117-118 : pre-front routine. Calculate maximum front size and the store required to solve equations.
MARK 122-123 : print out arrays from geometry part of the program.
The geometry part of the input data consists of the type of elements being used in the mesh, the co-ordinates of all vertex nodes and the list of elements and the nodes associated with each. This scheme is illustrated by means of a simple example (Fig. 6.2).


Fig. 6.2-Example problem: six LST elements of type 2
There are six elements in the mesh: NEL \(=6\). Each is a six-noded Linear Strain Triangle (LST), and the element numbers are shown circled. The vertex nodes are in the range 1 to 23 and the total number of vertex nodes is represented by NVTX \(=8\).

NEL - Number of ELements in mesh
NVTX - Number of VerTeX nodes in mesh
In considering the mesh, one has to identify different zones of material behaviour. Each zone is identified by a number, and all elements which are within that zone are given the same number. At this stage it is sufficient to differentiate between the different zones. The question of what type of soil behaviour each zone represents is considered in Chapter 7. In the input data,
the material zone number is denoted by IMAT. Each element is also identified by an element type number (see Fig. 4.1).

Note that only the vertex nodes have to be numbered by the user. This eases the problem of data preparation as the program numbers all other nodes and calculates their co-ordinates. To differentiate between the vertex nodes and the other nodes, the additional nodes are numbered, starting with 751 . The program allows gaps in both element and vertex node numbering. When dealing with large finite element meshes (which is the case, most of the time) the meshes may have to be modified a number of times and this allows the renumbering to be carried out without too much difficulty.
There are two sets of node and element numbers. One set is assigned by the user. The program sets up its own node and element numbers, which are strictly for use within the program for reasons of efficiency. The maintenance of these two sets of numbers requires two arrays:
\[
\begin{aligned}
& \text { for node numbers }- \text { NREL and NRELVV } \\
& \text { for element numbers - MREL and MRELVV }
\end{aligned}
\]

These are 'cross-reference arrays'. The sizes of these arrays will depend on the maximum values of element and node numbers specified by the user and will vary from problem to problem. In the above example the maximum element number is 14 , i.e. \(M U M A X=14\), and the maximum vertex node number is 23 , i.e. NUMAX \(=23\). There are no limits set on the maximum number of elements and nodes in any mesh. These are only constrained by the amount of memory available on any particular computer. NDIM represents the number of dimensions in the problem. NDIM \(=2\) for all two-dimensional plane strain and axisymmetric problems.

MLIMAX - MAXimum value of User eleMent number
NUMAX - MAXimum value of User vertex Node number
For the above example the element chosen was the six-noded linear strain triangle. The analysis is of the undrained type, and referring to the list of different element types (see Fig. 4.1), this element is type 2. For example, if elements of type 2 and 3 are mixed in a mesh, then MXTYP \(=3\). For the present example, the element type with the greatest number of nodes is 2 ; hence MXTYP \(=2\). Again the maximum number of vertex nodes in any element in the mesh is 3 ; therefore MXNDV \(=3\). The nodal co-ordinates are input with one line of data per vertex node.

MXTYP - element TYPe with MaXimum number of nodes or d.o.f. MXNDV - MaXimum number of Vertex NoDes
User
node number \(\quad x\) co-ordinate \(\quad y\) co-ordinate

The user node numbers are entered in an array NRELVV(NN), e.g.
\[
\begin{aligned}
& \operatorname{NRELVV}(1)=1, \quad \operatorname{NRELVV}(2)=2, \ldots \operatorname{NRELVV}(7)=23 \\
& \operatorname{NrELVV}(8)=17
\end{aligned}
\]

The last two are the seventh and eighth nodes in the list. The co-ordinates are entered in XYZ(NDIM,NN). Note that the indexes to array XYZ are the same as for array NRELVV.
\[
X Y Z(1,1)=0 . \quad X Y Z(2,1)=0
\]
the \(x\) and \(y\) co-ordinates of the first node in the list
\[
X Y Z(1,7)=30 . \quad X Y Z(2,7)=21
\]
the \(x\) and \(y\) co-ordinates of the seventh node in the list.
Here NN is the total number of nodes in the mesh. At this stage the exact value of NN is not known. An estimate (NNE) is made, first assuming for example that there are three additional nodes in each element. For six elements it is 18 . The actual number will be less because most of the nodes are shared between elements.
\[
\begin{aligned}
\text { NNE } & =\text { NVTX }+ \text { NDEAD } \\
& =8+18 \\
& =26
\end{aligned}
\]

NDEAD - ADditional number of NoDEs estimated by the program.
The indexes to array NRELVV are referred to as the program node numbers. Array NRELVV gives the 'user' node number for a given 'program' node number. The cross-reference array NREL is set up to do just the opposite: given a 'user' node number, it specifies the 'program' node number.
\[
\begin{aligned}
& \operatorname{NRELVV}(7)=23 \\
& \operatorname{NREL}(23)=7
\end{aligned}
\]

The above tasks are carried out by routine RDCOD.

Routine RDCOD
SUBROUTINE RLCOD(IR5, TW6, NNE, NDIM, NNU, NVTX, NUMAX, XYZ, NRELVV, NREL) RDCD C*****************************************************************RDCD C ROUTINE TO READ THE COORDINATES OF VERTEX NODES R RDCD DIMENSION XYZ(NDIM, NNE) NRELV(NE) NBEL(NNU) ****************RDCD
\begin{tabular}{ll} 
c \(\quad\) DRIMENSION XYZ(NDIM,NNE),NRELVV(NNE),NREL(NNU) & RDCD \\
& RDCD
\end{tabular}
WRITE (IW6, 900)
WRITE (IW6, 901)

CALL ZEROI1(NREL, NNU) RDCD


        WRITE (IW6, 906 )K, (XYZ (ID, J), ID \(=1\), NDIM)
        NRELVV(J)=K
    \(10 \operatorname{NREL}(\mathrm{~K})=\mathrm{J}\)
        RETURN
O FORMAT
    900 FORMAT ( \(/ 110 \mathrm{X}, 28\) HCO-ORDINATES OF VERTEX NODES )
    901 FORMAT( \(/ 3 \mathrm{X}, 4 \mathrm{HNODE}, 5 \mathrm{X}, 1 \mathrm{HX}, 9 \mathrm{XX}, 1 \mathrm{HY}, 9 \mathrm{X}, \mathrm{HZ} /\) )
    906 FORMAT(1X, 15,3F10.3)
        FORM
END
1
2
3
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

RDCD 7--8 : write output header.
RDCD 12-13 : zero arrays NRELVV and NREL. Array NRELVV stores the node numbers (user nos.) in the same sequence as they are read The sequence in which these are read are the program node numbers. NREL is the cross-reference array.
RDCD 17 : loop to read all vertex node co-ordinates.
RDCD 18-19 : read and write the node number and co-ordinates.
RDCD 20 : enter user node number in array NRELVV.
RDCD 21 : enter program node number in array NREL.

\subsection*{6.3 NODAL CONNECTIVITY}

The next input data are the node numbers which are associated with each element. This link between nodes and elements is referred to as element-nodal connectivity. The data are as follows:

Element number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Each element has to be assigned a material zone number (IMAT) and element type number (ITYP) (see Fig. 4.1 for different element types). Therefore the input data are as follows:
\begin{tabular}{lllllc}
\begin{tabular}{l} 
Element \\
no.
\end{tabular} & \begin{tabular}{l} 
Element \\
type no. \\
KTYP
\end{tabular} & \begin{tabular}{l} 
Material \\
zone no.
\end{tabular} & Node 1 & Node 2 & Node 3 \\
IMAT & NLST(1) & NLST(2) & NLST(3) \\
1 & 2 & 1 & 1 & 2 & 5 \\
2 & 2 & 1 & 5 & 4 & 1 \\
3 & 2 & 1 & 5 & 2 & 3 \\
4 & 2 & 1 & 5 & 3 & 6 \\
11 & 2 & 2 & 5 & 6 & 23 \\
14 & 2 & 2 & 6 & 17 & 23
\end{tabular}

As in the case of the nodes, the element numbers (KEL) are entered in array \(\operatorname{MRELVV}(N E L)\) as they are read, e.g.
\[
\begin{aligned}
& \operatorname{MRELVV}(1)=1, \quad \operatorname{MRELVV}(2)=2, \quad \ldots \quad \operatorname{MRELVV}(5)=11 \\
& \operatorname{MRELVV}(6)=14
\end{aligned}
\]

The sixth element in the list has the number 14. A cross-reference array MREL(MUMAX) is then set up. For the above example:
\[
\begin{aligned}
& \operatorname{MREL}(1)=1 \\
& \operatorname{MREL}(2)=2
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{MREL}(11)=5 \\
& \operatorname{MREL}(14)=6
\end{aligned}
\]

This gives the 'program' element numbers for 'user' element numbers. Element type number (ITYP) and the material zone number (IMAT) are entered in arrays LTYP(NEL) and MAT(NEL) respectively. The indexes to these arrays are the same as for the arrays MRELVV. These indexes are the position of the elements in the input data list. From the input data, it can be seen that elements \(1,2,3\) and 4 belong to material zone 1 , and elements 11 and 14 to material zone 2 (Fig. 6.2).

The numbers marked inside each element near the vertex nodes (in Fig. 6.3) are the indexes to the array NLST and NCONN(NTPE,NEL). These indexes define the local node numbering, and in the rest of the book they will be referred to as the indexes to array NCONN. The indexes can begin at any node, but then should follow an anti-clockwise ordering. Specifying the nodes in clockwise order results in a negative value for the area of the element and will cause the program to stop at a later stage.

Array NLST(MXNDV) is a temporary array for storing nodes associated with each element as they are read. Array NCONN is the nodal connectivity array.


The only difference between NLST and NCONN is that NCONN contains the 'program' node numbers.

The contents of array NCONN appear as

\section*{Index to}

Element NCONN Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
\begin{tabular}{rrrrrlll}
1 & 1 & 1 & 2 & 5 & 0 & 0 & 0 \\
2 & 2 & 5 & 4 & 1 & 0 & 0 & 0 \\
3 & 3 & 5 & 2 & 3 & 0 & 0 & 0 \\
4 & 4 & 5 & 3 & 6 & 0 & 0 & 0 \\
11 & 5 & 5 & 6 & 7 & 0 & 0 & 0 \\
14 & 6 & 6 & 8 & 7 & 0 & 0 & 0
\end{tabular}
\(\operatorname{NCONN}(1,5)=5, \operatorname{NCONN}(2,5)=6\) and \(\operatorname{NCONN}(3,5)=7\). These are the first, second and third nodes associated with the fifth element (which has the number 11) in the list; note that the locations 4,5 and 6 are empty. They have zero values at this stage and will be replaced by the edge (side) node numbers when they are assigned by the program later.

The nodes that define the variation of displacements are also used to define the element geometry, which is the well known isoparametric formulation. The nodes are referred to as 'displacement' nodes in the rest of the book. The lowerorder elements have a linear variation of strain across the element (element types 2 and 3). For undrained and drained problems, the displacements are the only unknowns.
For coupled consolidation analysis there are additional excess pore pressure variables; appropriate element types (3 and 7) will be referred to as consolidation elements. The pore pressure nodes are positioned such that the variation of excess pore pressure is of the same order as the variation in strain. For example, for the cubic strain triangle, nodes 16 to 21 are pore pressure nodes (see Fig. 4.1). For 'consolidation' elements the vertex nodes have both
displacements and excess pore pressures as variables. The type 3 'consolidation' element does not have 'additional' pore pressure nodes. It has three displacement nodes and no additional pore pressure nodes (see Fig. 6.4). Thus, in general, different nodes will have different d.o.f. (variables).
(3)


Fig. 6.4 - Different d.o.f. at different nodes

The order in which each element is listed in the input data is the program element number by default and it is in fact the order in which the element stiffness terms will be assembled in the FRONTAL method of solution. However, the sequence in which the elements were input by the user may not always be the optimum sequence for the frontal method.

At present a number of 'stand-alone' programs and techniques which can optimise the element numbering for the frontal method are available (Akin and Pardue, 1975; Razzaque, 1980; Sloan and Randolph, 1983). These programs only need the element-nodal connectivity list as input data. Therefore the option of specifying an alternative order of the elements, which is less costly for the frontal method, has been included. Hence there are two sets of element numbers. The first is the arbitrary element numbering specified by the user; the second is the element numbering sequence which is better for the frontal method. The user has to be aware of the importance of having an efficient element numbering. Just as efficient node numbering is very desirable for band solvers, efficient element numbering is very desirable for the frontal method to keep the cost of computation and core-store equipment down.

In the input data after all the co-ordinates of the vertex nodes have been specified, a parameter IRNFR is specified. If this parameter is set to 1 then the user will specify an alternative element numbering sequence starting from the next data record. It is followed by the element-nodal connectivity list as
described before. If IRNFR is set to 0 , an alternative element numbering will not be provided by the user, and the elements will be assembled in the order they are specified in the input data. For the above example, an improved frontal sequence could be

IRNFR
Element numbers
\[
\begin{array}{cccccc}
2 & 1 & 3 & 4 & 11 & 14
\end{array}
\]

If the alternative element order is not available then IRNFR is set equal to 0 and the element-nodal connectivity list follows immediately. The list \(i\) i unchanged whether \(\operatorname{IRNFR}=0\) or 1 . The alternative numbering, if specified, is read into an array MFRU(NEL) in routine CONECT.
\[
\operatorname{MRFRU}(1)=2 \quad \operatorname{MFRU}(2)=1 \quad \ldots \quad \operatorname{MFRU}(5)=11 \quad \operatorname{MFRU}(6)=14
\]

A cross-reference array MFRN(MUMAX) is set up at the same time.
\[
\operatorname{MFRN}(1)=2 \quad \operatorname{MFRN}(2)=1 \quad \operatorname{MFRN}(11)=5 \quad \operatorname{MFRN}(14)=6
\]

These two arrays are then used to set up the arrays MRELVV(NEL) and MREL(MUMAX) while the element-nodal connectivity list is being read. It should be noted that the contents of MRELVV(NEL) and MREL(MUMAX) are different, depending on whether the optimum element sequence for the frontal method has been specified or not. The contents of these arrays are as follows (note the difference when an alternative element numbering is not provided):
\begin{tabular}{|c|c|c|}
\hline \(\operatorname{MRELVV}(1)=2\) & \(\operatorname{MRELVV}(2)=1\) & \(\operatorname{MRELVV}(3)=3\) \\
\hline \(\operatorname{MRELVV}(4)=4\) & \(\operatorname{MRELVV}(5)=11\) & \(\operatorname{MRELVV}(6)=14\) \\
\hline \(\operatorname{MREL}(1)=2\) & \(\operatorname{MREL}(2)=1\) & MREL(3) \(=3\) \\
\hline \(\operatorname{MREL}(4)=4\) & \(\operatorname{MREL}(11)=5\) & \(\operatorname{MREL}(14)=6\) \\
\hline
\end{tabular}

Routine CONECT


READ (IR5, *) (MFRU(IL), \(\mathrm{IL}=1\), NEL)
WRTE
WRITE (IW6, 904 ) (MFRU (IL), IL \(=1\), NEL)
CALL ZEROI 1 (MFRN,MUMAX)
DO 20 IM=1, NEL
LU=MFRU (IM)
IF (ID6.EQ.1) WRITE (IW6, 930)MFRN
30 CaLL Zeroir (nConn, MXND, NeL)
CALL ZEROI 1 (LTYP, NEL)
Call zeroil (MAT, nel)
CALL ZEROI1 (MREL, MUMAX)
c WRTTE (IW6, 906
C DO 100 IL=1, NEL
C READ ELEMENT NUMBER, TYPE NUMBER, MATERIAL ZONE NUMBER AND VERTEX NODE NUMBERS
READ (IR5,*)KEL, ITYP, IMAT, NLST
WRITE (IW6, 909) KEL, ITYP, IMAT, NLST
c \(\quad \operatorname{NVN}=\operatorname{LINFO}(2\), ITYP \()\)
C \(\quad\) MNW \(=I L\)
\(\operatorname{IF}(I R N F R . E Q .1) M N W=M F R N(K E L)\)
C \(\operatorname{MRELVV}(M N H)=K E L\)
\(\operatorname{LTYP}(M N W)=\) ITYP
\(\operatorname{LTYP}(M N W)=I T Y P\)
MAT \((M N W)=I M A T\)
\(\operatorname{MREL}(\mathrm{KEL})=\mathrm{MNW}\)
C DO 95 IK \(=1\), NVN NUS \(=\) NLST
NPR
(IK
95 NCONN(IK, MNW) \(=\) NPR
o continue
IF (IDS.EQ. O)GOTO 105
WRITE (IW6, 997 )NCONN
991 FORMAT (/1X,5HNCONN/(1X,2015))
WRITE (IW6, 992)MREL
WRITE (IW6, 993 )MRELV
93 FORMAT(/1X,6HMRELVV/(1X,20I5)
105 CONTINUE
call zeroi f(KLt,ltz)
DO 150 IL \(=1\), NEL LT=LTYP (IL)
\(150 \mathrm{KLT}(\mathrm{LT})=\mathrm{KLT}(\mathrm{LT})+1\) RETURN
301 FORMAT(/1X, 7 HIRNFR \(=\),I5)
02 FORMAT(/1X, 36HOPTIMISED SOLUTION ORDER OF ELEMENTS/)
(x, 2015)
format ( \(/ 1 \mathrm{X}, 46\) HELEMENT TYPE MAT
\(118 \mathrm{H} \quad 6 \quad 7 \quad 8 /\) )
909 FORMAT (IS,2X,215, 15I6)
930 FORMAT (/1X, 4HMFRN/(1X, 20I5))
END
co－ordinate calculated．The following procedure avoids the possibility of nodes being given two different numbers（i．e．being numbered twice）when they are common to two or more elements．Each side is identified by a unique code \(\mathrm{IHASH}=\mathrm{N} 1 * 10000+\mathrm{N} 2\) ，where \(\mathrm{N} 1=\) lower－node and \(\mathrm{N} 2=\) higher－node numbers．Whenever a new edge is encountered， 1 is entered against this code in a hash table．The procedure is to consult this entry to see whether nodes along a particular edge have already been numbered．

The terms＇edge＇and＇side＇are used interchangeably here．The term＇edge＇is preferred because when extended to three－dimensional elements it remains unambiguous whereas＇side＇would mean the element＇face＇．Since this book mainly deals with two－dimensional programming aspects，both words have the same meaning．

Once nodes along the sides have been numbered，nodes within element interiors，if present，are numbered．This procedure is repeated for all the elements．The hash table ITAB contains the information in code form for all the element sides which is later used in routine SIDES to create a PD file．CRISP does not have any plotting routines，and hence no plots are produced．However， it creates the data necessary to produce the plot．A separate program is then needed to plot the mesh．（A suitable program is included in Appendix B．）

\section*{6．4 NUMBERING THE ADDITIONAL DISPLACEMENT NODES}

For each element，as nodes along the sides and element interiors are numbered， they are entered in the array NCONN after the vertex node numbers．At the same time，cross－reference arrays NREL and NRELVV are also updated．

The routine MIDSID calculates the numbers and co－ordinates of the additional（displacement）nodes and also sets up the information necessary to plot the mesh．CRISP writes the information necessary to plot the mesh to a PD file．The program uses a simple technique to scane the element sides．For example，if node 53 is connected to nodes \(23,28,70,5,99\) and 123 then only the sides to nodes 70,99 and 123 are written to the PD file．This process begins with the node with the lowest number（usually 1 ）and then continued in the ascending order．

The entries made in array ITAB for each element side（IHASH represents the code identifying an element side）are always linked to the smaller of the two nodes at either end．Since IHASH has a unique value for a given set of two nodes，the array ITAB needs only to be scanned in the region allocated to the smaller node for the existence of IHASH．If found，this indicates that the co－ ordinates of the displacement nodes along its side have already been calculated． Each node is allocated a certain region．Regions of fixed size are allocated for different nodes．The region allocated to a node is scanned and all non－zero entries are compared with IHASH．A zero entry terminates the scan．If IHASH is not found，the location is used to enter the code for the element side，and the co－ordinates of nodes along its side are calculated．This technique is known as ＇hashing＇（Day，1972）．
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Routine MIDSID} \\
\hline & SUBROUT INE MIDSID（IW6，MXND，NEL，LTAB，LDIM，NNU，NDIM，NNE，NPL， & MSID \\
\hline & 1 XYZ，NCONN，LTYP，MRELVV，NRELVV，NREL，itab， & MSID \\
\hline & 2 NP 1，NP2，ND，NN，KRD，NVTX，NDZ，MDZ ） & MSID \\
\hline \multicolumn{3}{|l|}{} \\
\hline & GENERATES MID－SIde nodes along edge & MSID \\
\hline \multicolumn{3}{|l|}{} \\
\hline &  & MSID \\
\hline & 1 MRELVV（NEL）， NRELVV （NNE），NREL（NNU），itab（LTAB，LDIM）， & MSID \\
\hline & 1 NP1（NPL），NP2（NPL），KNDX（3） & MSID \\
\hline & COMMON／DEBUGS／ID1，ID2，ID3，ID4，ID5，ID6，ID7，ID8，ID9，ID10 & MSID \\
\hline & COMMON／ELINF／LINFO（50，15） & MSID \\
\hline & DATA \(\operatorname{KNDX}(1), \mathrm{KNDX}(2), \mathrm{KNDX}(3) / 8,11,5 /\) & MSID \\
\hline \multirow[t]{5}{*}{C} & & MSID \\
\hline & \(M D Z=0\) & MSID \\
\hline & KR \(=\) NDZ & MSID \\
\hline & \(\mathrm{K}=\mathrm{NVTX}\) & MSID \\
\hline & LDIM \(1=\) LDIM -1 & MSID \\
\hline C & & MSID \\
\hline & CALL SETNP（NP1，NP2，NPL） & MSID \\
\hline \multirow[t]{4}{*}{C} & & MSID \\
\hline & WRITE（IW6，900） & MSID \\
\hline & D \(10 \mathrm{~J}=1\) ，LDIM & MSID \\
\hline & D \(10 \mathrm{I}=1\) ，LTAB & MSID \\
\hline 10 & \(\operatorname{ITAB}(\mathrm{I}, \mathrm{J})=0\) & MSID \\
\hline \multirow[t]{8}{*}{C} & & MSID \\
\hline & DO \(100 \mathrm{NE}=1\) ，NEL & MSID \\
\hline & MUS \(=\) MRELVV（NE） & MSID \\
\hline & LT＝LTYP（ NE ） & MSID \\
\hline & NVN＝LINFO（2，LT ） & MSID \\
\hline & NEDG＝LINFO（ \(3, \mathrm{LT}\) ） & MSID \\
\hline & NDSD＝LINFO（7，LT） & MSID \\
\hline & INDED＝LINFO（14，LT ） & MSID \\
\hline C & & MSID \\
\hline & DO 26 IS \(=1\) ，NEDG & MSID \\
\hline CC & WRITE（TW6， 950 ）NE，IS & MSID \\
\hline \multirow[t]{7}{*}{CC950} & FORMAT（1X，9HELEMENT \(=\) ， \(15,2 \mathrm{X}, 6 \mathrm{HSIDE}=\) ，I5） & MSID \\
\hline & \(N L=(\) IS－1）＊NDSD + NVN & MSID \\
\hline & INDS＝INDED + IS & MSID \\
\hline & IN1＝NP1（INDS） & MSID \\
\hline & IN2＝NP2（INDS） & MSID \\
\hline & \(\mathrm{N} 1=\mathrm{NCONN}(\mathrm{IN} 1, \mathrm{NE})\) & MSID \\
\hline & \(\mathrm{N} 2=\mathrm{NCONN}(\mathrm{IN} 2, \mathrm{NE})\) & MSID \\
\hline \multirow[t]{5}{*}{c} & & MSID \\
\hline & Call sort2 \({ }^{\text {（ } 1, ~ N 2, ~ I 1, ~ I 2) ~}\) & MSID \\
\hline & IHASH \(=10000 *\) I \(1+\) I2 & MSID \\
\hline & IT \(=5{ }^{\text {T }} 1\) & MSID \\
\hline & GOTO 18 & MSID \\
\hline c & & MSID \\
\hline 16 & \(\mathrm{IT}=\mathrm{IT}+1\) & MSID \\
\hline \multirow[t]{3}{*}{} & IF（IT．GT．LTAB） \(\mathrm{IT}=1\) & MSID \\
\hline & IF（ITAB（IT，1）．EQ．IHASH）GOTO 24 & MSID \\
\hline & If（ITAB（IT，1）．NE．0）GOTO 16 & MSID \\
\hline c & & MSID \\
\hline & \(M D Z=M D Z+1\) & MSID \\
\hline & Do 22 IDSD \(=1\) ，NDSD & MSID \\
\hline &  & －MSID \\
\hline c & Calculate co－ordinates of nodes along the edge & MSID \\
\hline & \(K=K+1\) & －MSID \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) & MSID \\
\hline & \(\mathrm{KR}=\mathrm{KR}+1\) & MSID \\
\hline & IF（KR．LE．NNU）GOTO 19 & MSID \\
\hline & WRITE（IW6，901） & MSID \\
\hline & STOP & MSID \\
\hline c & & MSID \\
\hline
\end{tabular}

2 NP 1 ，NP 2 N，LTYP，MRELVV，NRELVV，NREL，ITAB，GENERATES MID－SIDE NODES ALONG EDGE

DIMENS ION XYZ（NDIM，NNE），NCONN（MXND，NEL），LTYP（NEL），
（NPLV（NEL），NRELVV（NNE），NREL（NNU），ITAB（LTAB，LDIM）
COMMONL），NP2（NPL），KNDX（3）
DATA KNDX（1）KNDXFO（50，15）
\(\mathrm{MDZ}=0\)
\(\mathrm{KR}=\mathrm{NDZ}\)
\(K=\) NVTX
CALL SETNP（NP1，NP2，NPL）
WRITE（IW6，900）
DO \(10 \mathrm{~J}=1\) ，LDIM
\(10 \operatorname{ITAB}(\mathrm{I}, \mathrm{J})=0\)
DO 100 NE \(=1\), NEL
MUS \(=M R E L V V(N E)\)
LT＝LTYP（NE）
\(\mathrm{NVN}=\mathrm{LINFO}(2, L T)\)
\(\mathrm{NEDG}=\operatorname{LINFO}(3, L T)\)
NEDG＝LINFO（3，LT）
INDED＝LINFO（14，LT）
DO 26 IS \(=1\) ，NEDG
CC
CC950
FORMAT
WRIX （IW，9HELEMENT \(=, 15,2 X, 6\) HSIDE \(=\), I5）
\(N L=(I S-1){ }^{N} N D S D+N V N\)
IN \(1=\) NP1（INDS
IN2＝NP2（INDS）
N \(1=\operatorname{NCONN}(I N 1\),
\(\mathrm{N} 2=\mathrm{NCONN}(\mathrm{IN} 2, \mathrm{NE})\)
CALL SORT2（N \(1, \mathrm{~N} 2, \mathrm{I} 1, \mathrm{I} 2\) ）
IT \(=5\) I 11
GOTO 18
\(16 \mathrm{IT}=\mathrm{IT}+1\)
18 IF （IT．GT．LTAB） \(\mathrm{IT}=1\)
IF（ITAB（IT 1）．NE D）GOTO 16
\(M D Z=M D Z+1\) MSID MSID
C CALCULATE CO－ORDINATES OF NODES ALONG THE EDGE

IF（KR．LE．NNU）GOTO 19
WRITE（IW6，901）
c
\(19 \operatorname{NREL}(\mathrm{KR})=\mathrm{K}\) NRELVV(K)=KR
IF (K.LE.NNE) GOTO 20 WRITE (IW6, 902)NNE STOP
C 20 NLN \(=\) NL TIDS
NLS \(=N L+1 D S D\)
\(\operatorname{NCONN}(N L N, N E)=K\)
NCOS
IPSLD
IDS +1
\(\operatorname{ITAB}(I T, I P O S)=K\)
F1=FLOAT(NDSD +1 -IDSD)/FLOAT(NDSD +1 )
\(\mathrm{F} 2=1 .-71\)
c
DO 21 ID \(=1\), NDIM
XYZ (ID,K)=XYZ(TD,N1)*F \(1+X Y Z(I D, N 2) * F 2\)
WRITE(IW6, 904)KR, (XYZ(ID, K), ID \(=1\), NDIM \()\)
continue

C- ITAB(IT, LDIM 1 ) 1
C COORDINATES OF NODES ALONG E
C
ASSUMING EDGE IS STRAICHT
ITAB(IT,
GOTO 26
c 24 continue
c DO 25 IDSD \(=1\), NDSD
JDSD \(=\) NDSD +1 , - NDS
NLJ=NL+JDSD


c. \(\quad\) (TAB (IT, LDIM1) \(=\operatorname{ITAB}(I T, \operatorname{LDIM} 1)+1\)

C 26 Continue
WRITE (IW6, 920 )MUS, LT
WRITE
STOP

27 NIND=LINFO(9
\(\mathrm{JLC}=\mathrm{LINFO}(5, \mathrm{LT})\)-NIND
DO 30 INN \(=1\), NIND
\(K=K+1\)
\(\mathrm{KR}=\mathrm{KR}+1\)
(KF (K.GT. NNE )WRITE (IW6, g02)NNE
IF (KR.GT.NNU)WRITE (IW6, 901)
VREL (KR) \(=\mathrm{K}\)
NRELVV (K) \(=\) KR
\(\mathrm{JLC}=\mathrm{JLC}+1\)
\(\operatorname{NCONN}(J L C\), HE \()=K\)
INX1=INN
INX2=KNDX (INN)
\(N C=\operatorname{CCONN}(I N X 1, N E)\)
\(N M=N C O N N(I N X 2\)
DO 28 ID \(=1\), NDIM
\(\begin{array}{ll}\text { MSID } & 103 \\ \text { MSID } & 104\end{array}\)
MSID 105
MSID 106
MSID 107 \begin{tabular}{ll} 
MSID & 107 \\
MSID & 108 \\
\hline
\end{tabular} MSID 109 \begin{tabular}{c} 
MSID 111 \\
MSI \\
\hline
\end{tabular}
 \(\begin{array}{ll}\text { MSID } 112 \\ \text { MSID } & 113\end{array}\) MSID 113 \begin{tabular}{ll} 
MSID 114 \\
MSID & 115 \\
\hline
\end{tabular} MSID 116 MSID 117 MSID 118 MSID 119 MSID 120 \begin{tabular}{ll} 
MSID \\
\hline
\end{tabular} \(\begin{array}{ll}\text { MSID } & 122 \\ \text { MSID } & 123\end{array}\) MSID 124 MSID 125 MSID 126 \(\begin{array}{ll}\text { MSID } 127 \\ \text { MS ID } & 128 \\ \text { MSI }\end{array}\) \(\begin{array}{ll}\text { MSID } 128 \\ \text { MSID } & 129\end{array}\) MSID 130
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{WRITE (IW6, 904 )KR, (XYZ (ID, K), ID \(=1\), NDIM \()\)} & & \\
\hline & & MSI & 132 \\
\hline \multicolumn{2}{|l|}{C 0 continue} & MSID & 133 \\
\hline & Contine & MSID & 134 \\
\hline & cont inve & MSID & 135 \\
\hline \multirow[t]{2}{*}{100} & Continue & MSID & 136 \\
\hline & \multirow[t]{2}{*}{IF (ID2.EQ. 1) WRITE (IW6, 910)ITAB} & MSID & 37 \\
\hline & & & \\
\hline & \multirow[t]{2}{*}{maximum user no. of displacement node - Krd} & MS & 139 \\
\hline \multirow[t]{5}{*}{} & & MSID & 140 \\
\hline & NN=K & MSID & 141 \\
\hline & ND=K & MSID & 143 \\
\hline & KRD \(=\) KR & MSID & 144 \\
\hline & RETURN & MSID & 145 \\
\hline \multirow[t]{2}{*}{} & FORMAT (/10x,45HCOORDINATES OF displacement nodes along edges// & MSID & 146 \\
\hline &  & MSI & 147 \\
\hline & FORMAT(/1X, 49HINCREASE NO. Of ADDITIONAL NODES (ROUTINE MIDS ID)) & MSI & 48 \\
\hline \multirow[t]{2}{*}{} &  & MSI & 149 \\
\hline & ( 3OHNODES IN MESH (ROUTINE MIDSID)) & MSID & 150 \\
\hline \multirow[t]{2}{*}{} & FORMAT (I5, 3F 12.3) & MSID & 151 \\
\hline & FORMAT (/ 1X, \(4 \mathrm{HITAB/}\) / \(1 \mathrm{X}, 10 \mathrm{I} 10\) ) & MSID & 152 \\
\hline \multirow[t]{2}{*}{} & FORMAT (/1X, 7 HELEMENT , 15, 2x, 22 HIS OF UNKNOWN TYPE ***, 15, 2 X , & MSID & 153 \\
\hline & END & MSID & 154 \\
\hline
\end{tabular}

MSID 15
MSID 16
MSID 19

MSID 22-24
MSID 26
MSID 28-32

\section*{MSID 34}

MSID 37
MSID 38
MSID 39-40
MSID 41-42
MSID 44
MSID 45
MSID 50
MSID 51
: KR - starting number of additional nodes.
: K - starting program node number of additional nodes.
: copy arrays NPL1, NPL2 to NP1, NP2 (NPL1, NPL2 are set using DATA statements. NP1, NP2 are allocated store dynamically in global array \(G\). This procedure is adopted so that in case the size (NPL) of these arrays is changed, the changes that need to be carried out are minimal. Of course there is the duplication of data).
: zero array ITAB.
: loop on all elements.
obtain element particulars.
NVN - no. of vertex nodes.
NEDG - no. of element sides.
NDSD - no. of additional (displacement) nodes along edge.
INDED - starting index to arrays NP1, NP2.
INDED - starting index to arrays
: loop on all edges of the element.
index to location of node in NCONN.
: index to nodes at either end of element side, in NP1 and NP2. : indexes of nodes at either end in NCONN. : nodes at either end of element side.
sort the nodes into ascending order.
code for element side (consisting of node numbers at either end).
start at the beginning if end of array has been reached, and make use of the gaps in array ITAB.
look for the possibility that nodes along element edge have already been numbered; if so, branch off.

MSID 52 : if nodes along element edge have to be numbered then find a location with zero entry.
MSID 55 : such a location has been found. Loop on all additional (displacement) nodes along this edge.
MSID 59 : program number for the new node.
MSID 60 : user number for new node.
MSID 61-62 : check that no. of nodes does not exceed allocation for array NREL. If exceeded, print error message and stop. (The allocation for NREL is such that it ought to be more than what is required, and hence this should not happen.)
MSID 65 : enter program node number in array NREL.
MSID 66 : enter user node number in cross-reference array NRELVV.
MSID 67-68 : check that array allocation NRELVV is not exceeded.
MSID 71 : index of new node in array NCONN.
MSID 72 : enter new node number in NCONN.
MSID 73-74 : index of new node in array ITAB, and enter new node no.
MSID 75-76 : calculate interpolation ratios.
MSID 78-79 : calculate co-ordinates of new node, using linear interpolation on nodes at either end
MSID 81 : end of loop on nodes along edge.
MSID 82 : enter code representing element side in ITAB.
MSID 86 : enter 1 indicate that nodes along element edge have been calculated (the value is also used to count the number of elements shared by this side).
MSID 91 : code to indicate co-ordinates along edge have been calculated assuming the edges are straight.
MSID 96 : for any element edge along which nodal co-ordinates have already been calculated. Loop on all nodes along edge excluding the ones at either end.
MSID 97-98 : indexes to positions of nodes in NCONN and ITAB
MSID 99 : enter the node numbers in NCONN.
MSID 103 : increment counter of elements sharing edge by one
MSID 105 : end of loop on all element edges.
MSID 113 : number of inner nodes (only for element types which have them, i.e. skip for the rest).
MSID 114 : index to node location in NCONN
MSID 116 : loop on all inner nodes.
MSID 117 : program node number
MSID 118 : user node number.
MSID 119-120 : check for array sizes NREL, NRELVV being exceeded.
MSID 121-122 : enter node numbers in NREL and NRELVY.
MSID 123-124 : enter number in NCONN.
MSID 125-126 : indexes to nodes of element used in interpolating coordinates of inner nodes. \({ }^{\dagger}\)
MSID 127-128 : node numbers (used for interpolation). \({ }^{\dagger}\)

MSID 130-131 : calculate co-ordinates of inner nodes. \({ }^{\dagger}\)
MSID 136 : end of element loop.
MSID 137 : print out array ITAB for debugging.
MSID 142-144: maximum values of displacement node numbers. (KRD user number; ND, NN - program number.)

In the above routine, \(\mathrm{IHASH}=\mathrm{N} 1 * 10000+\mathrm{N} 2\), where \(\mathrm{N} 1<\mathrm{N} 2\). Routine SORT2 sorts the nodes at either end of each element side.

Routine SORT2
SUBROUTINE SORT2(N1, N2,I1,I2) SORT
C ROUTINE TO SORT TWO Integers. I1 IS LESS than I2 SORT
C ROUTINE TO SORT TWO INTEGERS. I1 IS LESS THAN I2
\(\mathrm{I} 1=\mathrm{N} 1\)
\(\mathrm{I} 2=\mathrm{N} 2\)
IF (I 1. LT. I2) RETURN
\(I 1=\mathrm{N} 2\)
\(\mathrm{I} 2=\mathrm{N} 1\)
I2 \(2=\mathrm{N} 1\)
RND

Sort 5-9: sort two nodes; assign I1 to the lower node number
For a triangular element there are three sides. The nodes at either end of each side have the following indexes:
\[
\begin{array}{ll}
1 & 2 \text { - side } 1 \\
2 & 3 \text { - side } 2 \\
3 & 1 \text {-side } 3
\end{array}
\]

Arrays NP1, NP2, NPL1, NPL2 are indexes to array NCONN, and give the indexes to the nodes at either end of the element sides. For element type 2 the values are
\begin{tabular}{cccccc}
\(\mathrm{NP} 1(1)\) & \(\mathrm{NP} 1(2)\) & \(\mathrm{NP} 1(3)\) & \(\mathrm{NP} 2(1)\) & \(\mathrm{NP} 2(2)\) & \(\mathrm{NP} 2(3)\) \\
1 & 2 & 3 & 2 & 3 & 1
\end{tabular}

For element types 2, 3, 6 and 7 , these indexes are the same. These are entered in \(\mathrm{NP} 1(1)-\mathrm{NP} 1(3), \mathrm{NP} 2(1)-\mathrm{NP} 2(3)\). Since all the relevant information is placed in a single array, each element type needs a starting index (INDED); therefore
\[
\mathrm{INDED}=0 \text { for element types } 2,3,6 \text { and } 7
\]

INDED is obtained from array \(\operatorname{LINFO}(50,15)\)

\section*{\({ }^{\rightarrow}\) element types}
element parameters
\(\dagger\) Note: these are specifically for element types 6 and 7 and are currently the only element types with inner nodes. Any new element type with inner nodes will require this part of the code to be modified.

\section*{\(\operatorname{INDED}=\operatorname{LINFO}(14, L T)\)}
where LT \(=2\) the element type number. The contents of array LINFO are explained in section 6.7.

Routine SETNP sets up the arrays NP1 and NP2 for all element types.
Routine SETNP


STNP 24-26 : set arrays NP1, NP2 equal to arrays NPL1, NPL2 respectively.
The normal procedure is to use a mesh with elements having straight sides. Sometimes, however, element sides have to be curved in order to properly describe the problem being analysed, e.g. circular tunnels or buried pipes. The simplest option is provided whereby the user specifies the list of element sides and the co-ordinates of the nodes which lie along the curved sides (in the case of linear strain elements, this is just one). Remembering that routine MIDSID has already numbered these nodes and calculated their co-ordinates, it is a simple matter to identify these nodes and replace their co-ordinates by the ones provided by the user. It is achieved in routine CUREDG.

\section*{Routine CUREDG}

SUBROUT INE CUREDG (IR5, IW6, MXND, NEL, NDIM, NNE, LTAB, LDIM,
MUMAX, NNU, NPL, XYZ, NCONN, LTYP, MREL, NREL, ITAB,
2 NP1, NP2, NCRED, NDTY, NMX

\footnotetext{
c routine to read nodal coordinates along curved edges
} Cure

DIMENSION XYZ(NDIM, NNE), NCONN(MXND,NEL),LTYP(NEL),MREL(MUNAX) NREL(NNU), HTAB(LTAB, LDIM),NPI(NPL),NP2(NPL),CD (3,3),CDT(3,3) COMMON /ELINf / LINFO(50, 15)

WRITE (IW6, 900)
DO 200 ISD \(=1\), NCRED
READ (IR5, *)MU, ND1, ND2, ((CD (IU, JU), IU \(=1\), NDIM \(), J U=1\), NMX \()\)
HTE (IW6, 902 )MU, ND1, ND2, ((CD(IU, JU), IU \(=1\), NDIM ), \(J U=1\), NMX)
\(M P R=M R E L(M U)\)
LT \(=\operatorname{LTYP}(\mathrm{MPR})\)
\(\left.\begin{array}{l}\text { NDN } \\ \text { NVN }=\operatorname{LINFO} \\ \text { ( } 2, L T\end{array}\right)\)
NEDG =LINFO (3,LT)
NDSD=LINFO(7,LT)
IF (NDTY.EQ. 2 ) NDSD \(=\operatorname{LINFO}(8, \mathrm{LT})\)
WRITE (IW6, 903)MU NDTY
GOTO 200
5 Inded \(=\operatorname{LINFO}(14, \operatorname{LT})\)
K1=NREL(ND1)
\(\mathrm{K} 1=\mathrm{NREL}(\mathrm{ND} 1)\)
\(\mathrm{K} 2=\mathrm{NREL}(\mathrm{ND} 2)\)
CALL SORT2(K 1, K2, I1, I2)
IHASH \(=10000\) *I \(1+12\)
IT =5*I
c
\(6 \mathrm{IT}=\mathrm{IT}+1\)
\(8 \mathrm{IF}(\mathrm{IT} . \mathrm{GT} . \mathrm{LTAB}) \mathrm{IT}=\)
IF (ITAB(IT, 1).EQ. IHASH)GOTO 10
If (ITAB(IT,1).NE.0)Goto 6
C
C
* Edge not found

IERS \(=\) ELERS +1
WRITE (IW6, 904)ND1, ND2
GO TO 200
c *** note edge is curved - for plotting purposes
10 IF (NDTY.EQ. 2 )GOTO 1 ITAB(IT, LDIM) \(=2\)

11 DO 20 IEDG \(=1\), NEDC INDS \(=\) INDED + IED
IN1 \(1=N\) P1 (INDS)
IN1=NP1 (INDS)
IN2=NP2 (INDS)
\(1=\) NCONN (IN 1, MPR
\(\mathrm{N} 2=\mathrm{NCONN}(\mathrm{IN} 2, \mathrm{MPR})\)
IF (K1.EQ.N1.AND.K2.EQ.N2)GOTO 26
(KF(K2.EQN1.AND.K1.EQ.N2)GOTO 22
20 CONTINUE
WRITE (IW6, 908 )MU, ND1, ND2

Change around coordinates if there are more tha one node and the nodes are in the reverse order

\footnotetext{
22 If (nedg. LE. 1)GOTO 26
}

DO 24 IDSD \(=1\), NDSD
\begin{tabular}{|c|c|c|c|}
\hline & JBK=NDSD \(+1-\mathrm{IDSD}\) & CURE & 73 \\
\hline & DO 24 ID \(=1\), NDIM & CURE & 74 \\
\hline 24 C & CDT (ID, IDSD \()=C D(I D, J B K)\) & CURE & 75 \\
\hline \multirow[t]{3}{*}{c} & & CURE & 76 \\
\hline & DO 25 IDSD \(=1\), NDS \({ }^{\text {d }}\) & CURE & 77 \\
\hline & DO 25 ID \(=1\). , HDIM & CURE & 78 \\
\hline 25 C & CD(ID, IDSD \()=\) CDT (ID, IDSD ) & CURE & 79 \\
\hline C & & CURE & 80 \\
\hline 26 & continue & CURE & 81 \\
\hline & NS=HVN & CURE & 82 \\
\hline & IF (NDTY.EQ.2) NS = NDN & CURE & 83 \\
\hline & NL=NS+(IEDG-1)*NDSD & CURE & 84 \\
\hline & & CURE & 85 \\
\hline c & CHANGE COORDINATES ALONG CURVED EDGE & CURE & 86 \\
\hline \multirow[t]{4}{*}{C---} & & CURE & 87 \\
\hline & DO \(40 \mathrm{KSD}=1\), NDSD & CURE & 88 \\
\hline & NLN \(=\mathrm{NL}+\mathrm{KSD}\) & CURE & 89 \\
\hline & \(K=N C O N N(N L N, M P R)\) & CURE & 90 \\
\hline C & & CURE & 91 \\
\hline & DO 38 ID \(=1\), NDIM & cure & 92 \\
\hline & XYZ (ID, K) \(=\) CD (ID, KSD ) & CURE & 93 \\
\hline 40 C & continue & CURE & 94 \\
\hline c & & CURE & 95 \\
\hline \multirow[t]{5}{*}{200} & continue & CURE & 96 \\
\hline & & CURE & 97 \\
\hline & If (iers.eq.0)return & CURE & 98 \\
\hline & WRITE(IW6,910) & CURE & 99 \\
\hline & stop & cure & 100 \\
\hline 900 F & FORMAT(/1X,32hlist of nodes along curved edges/) & CURE & 101 \\
\hline 902 F & FORMAT (3I5, 6F 10.0) & CURE & 102 \\
\hline & Format ( \(1 \mathrm{X}, 7 \mathrm{HELEMENT}, \mathrm{I} 5,2 \mathrm{X}, 18 \mathrm{HDOES}\) NOT have type, \(14,2 \mathrm{X}\), 33HNODES ALONG SIDE (ROUT INE CUREDG)) & CURE & 103 \\
\hline \multirow[t]{2}{*}{904 F} & format (/1X, 32H**ERROR** EDGE CONTAINING NODES, \(215,2 \mathrm{X}\), & cure & 105 \\
\hline & 9HNOT FOUND) & CURE & 106 \\
\hline \multirow[t]{3}{*}{908} & Format (/1X,7HELEMENT,15,23H DOES NOT COntain nodes, 2I5) & CURE & 107 \\
\hline & Format (/1x,36hprogram terminated in routine curedg) & CURE & 108 \\
\hline & END & & 109 \\
\hline
\end{tabular}

CURE 11 : set error count to zero.
CURE 14 : loop on all elements sides which are curved.
CURE 15-16: read and write co-ordinates of nodes along curved sides (excluding nodes at either end).
CURE 18-29: data dependent on element type.
MPR - program element number.
LT - element type number.
NDN - total number of displacement nodes in element.
NVN - number of vertex nodes.
NEDG - number of element sides.
INDED - starting index to arrays NP1, NP2.
CURE 23 : NDSD - the number of displacement nodes along side (excluding nodes at either end).
CURE 24 : NDSD - the number of pore pressure nodes along side (excluding nodes at either end)
CURE 31-32 : program node numbers of nodes at either end.
CURE 34 : sort the numbers: I1 is the smaller of the two.
CURE 35 : IHASH - code to identify element side.

CURE 40 : start from the beginning, if end of array ITAB has been reached (the allocation for ITAB is more than is actually required).
CURE 41 : the entry for the element side has been found.
CURE 42 : look for zero entry.
CURE 45-47 : IHASH - entry for element edge has not been found (unlikely program error) - print out error message.
CURE 50-51 : make entry to indicate that the side is curved for plotting purposes. It is by-passed if pore pressure nodes are being numbered.
CURE 53 : loop on all edges of element to find the side which is curved.
CURE 54 : index for arrays NP1, NP2 for a given edge of a given elemen type.
CURE 55-56 : indexes to array NCONN, i.e. local node numbers.
CURE 57-58: nodes at either end of edge.
CURE 60 : branch off if nodes match, i.e. they are in the correct anticlockwise order.
CURE 61 : nodes match after being interchanged.
CURE 64-65 : the edge (identified by nodes at either end) specified by user cannot be found in element (probable user error).
CURE 70 : branch off if the edge contains only one side node.
CURE 72-75 : array CDT contains the rearranged node co-ordinates.
CURE 77-79 : array CD contains the nodal co-ordinates in the correct (anticlockwise) sequence.
CURE 82 : index to local (displacement) node numbers.
CURE 83 : index to local (pore pressure) node numbers.
CURE 84 : index to local (displacement/pore pressure) node numbers.
CURE 88 : loop on all nodes along edge (excluding end nodes).
CURE 89-90 : NLN is index (local node no.) and K is the node number.
CURE 92-93 : replace the nodal co-ordinates.
CURE 96 : end of loop on all curved sides.
CURE 98-99 : if errors have been detected, print message and stop.
Routine INTPLT scans the co-ordinates of all the displacement nodes and establishes the size (extent) of the mesh. This is the first information (the minimum and maximum values of the co-ordinates) written to the plot data (PD) file, and it is used by a separate mesh-plotting program to calculate the appropriate scale for plotting the mesh.

\section*{Routine INTPLT}


\section*{\(\operatorname{CODMIN}(I D)=A L A R\)}
\(\begin{aligned} & \text { CODMN } \\ & 0\text { CODMAX (ID })\end{aligned}=-\operatorname{ALAR}\)
DO \(30 \mathrm{~J}=1\), ND
DO 20 ID \(=1\), NDIM
(XYZ (ID,J).GT.CODMAX (ID))CODMAX(ID)=XYZ(ID, J)
IF (XYZ (ID, J).LT. CODMIN(ID))CODMIN(ID)=XYZ(ID, J)
20 CONTINUE
c
WRITE (IW8)NDIM
WRITE(IW8)(CODMAX (ID), ID=1, NDIM) , (CODMIN(ID),ID \(=1\), NDIM \()\) END

IPLT \(8-10\) : initialise the minimum and maximum values of co-ordinates to appropriate values. loop on all displacement nodes.
IPLT 13-15 : store the minimum and maximum values of nodal co-ordinates
IPLT 17 : end of displacement node loop.
IPLT 19-20 : write the minimum and maximum nodal co-ordinates to a file for plotting later (using the mesh-plotting program).

The data necessary to draw the mesh (i.e. by means of drawing all the element sides) and numbering the nodes and the elements are also written to the PD file in a standard format. This also applies to instructions such as change of pen colour used for plotting. The standard format consists of a set of co-ordinates and two integer codes. Two such entries are needed to draw an element side.

Routine SIDES
SUBROUTINE SIDES(IW6, IW8. LTAB, LDIM, NDIM, NNE, MXND, NEL,

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{7}{*}{c} & & SIdE \\
\hline & DO \(20 \mathrm{~L}=1, \mathrm{LTAB}\) & SIDE \\
\hline & IF (ITAB(L, 1).EQ.0)GOTO 20 & SIDE \\
\hline & \(\mathrm{N} 1=\operatorname{ITAB}(\mathrm{L}, 1) / 10000\) & SIDE \\
\hline & \(\mathrm{N} 2=\mathrm{ITAB}(\mathrm{L}, 1)-\mathrm{N} 1 * 10000\) & SIDE \\
\hline & WRITE(IW8)ITHR, (XYZ (ID, N1), ID \(=1\), NDIM \()\), 1 DUM & SIDE \\
\hline & IF(ITAB(L,LDIM).NE.2)GO TO 15 & SIDE \\
\hline c & DRAW CURVED SIDE - US ING STRAIGHT LINES PASSING & SIdE \\
\hline c & THROUGH ALL DISPLACEMENT NODES & SIDE \\
\hline \multirow{8}{*}{10
15
20} & & SIDE \\
\hline & DO 10 ISD \(=1\). NSD & SIDE \\
\hline & \(\mathrm{ND}=\mathrm{ITAB}(\mathrm{L}, \mathrm{ISD}+1)\) & SIDE \\
\hline & WRITE (IW8)IONE, (XYZ (ID, ND ), ID=1,NDIM), IDUM & SIdE \\
\hline &  & SIDE \\
\hline & continue & SIde \\
\hline & RETURN & SIde \\
\hline & END & SIDE \\
\hline
\end{tabular}

SIDE 10 : no. of nodes along an element edge (excluding end nodes).
SIDE 14-15: codes which control pen movements.
SIDE 20-21: dummy co-ordinates (used when pen colour is changed).
SIDE 25-26 : select pen colour (when negative, change pen colour).
1 - black; 2 - red; 3 - green. Write details to PD file.
SIDE 28 : loop on all entries of array ITAB (each entry represents an element side).
SIDE 29 : branch off if zero entry (non-zero entry indicates an element side).
SIDE 30-31 : nodes on either end of edge
SIDE 32 : write co-ordinates to plot data (PD) file
SIDE 33 : branch off if element edge is straight.
SIDE 38-41 : write intermediate (along element edge) node co-ordinates to PD file.
SIDE 42 : end of loop on ITAB entires.

\subsection*{6.5 NUMBERING THE ADDITIONAL PORE PRESSURE NODES}

Now the procedure for numbering the additional displacement nodes is repeated for numbering the additional pore pressure nodes along element sides and element interiors. This is done in routine MIDPOR, which is very similar to the routine MIDSID. Only the higher-order (CuST) element uses this routine. All linear strain elements have pore pressure variables at the vertex nodes, which give a linear variation in pore pressure. These elements do not have additional pore pressure nodes.

This routine repeats the procedure (as in routine MIDSID) for the whole mesh, only this time the additional nodes are pore pressure nodes instead of displacement nodes

c
\(19 \operatorname{NREL}(\mathrm{KR})=\mathrm{K}\) \(\operatorname{NRELVV}(K)=K R\) IF (K.LE.NNE) GOTO 20 WRITE (IW6, 902)NN
STOP
\(20 \mathrm{NLNP}=\mathrm{NLP}+\mathrm{IPSD}\)
\(\operatorname{NCONN}(N L N P, N E)=K\)
TAB(IT, IPOS)
F1=FLOAT(NPSD \(+1-\) IPSD)/FLOAT(NPSD +1 )
F2 \(=1 .-F 1\)
c
DO 21 ID \(=1\), NDIM
XYZ(ID, K) \(=\mathrm{XYZ}\) (ID, N1)*F1+XYZ(ID, N2)*F2
WRITE (IW6, 904 )KR, (XYZ (ID, K), ID \(=1\), NDIM
continue
\(\operatorname{ITAB}(I T, 1)=\) IHASH
\(\operatorname{ITAB(IT}, \operatorname{LDIM} 1)=1\)
\(\operatorname{ITAB}(\operatorname{IT}, \operatorname{LDIM} 1)=1\) GOTO 26

24 DO 25 IPSD \(=1\), NPSD \(\mathrm{JPSD}=\) NPSD \(+1-I P S D\)
\(\mathrm{NPJ}=\mathrm{LLP}+\mathrm{JPSD}\)
\(\left.25 \begin{array}{l}\text { NLPJ }=\text { NLP } \\ \text { NCONN }(N L P J, N E)\end{array}\right)=I T A B(I T, I P S D+1)\)
\(\operatorname{ITAB}(\operatorname{IT}, \operatorname{LDIM} 1)=\operatorname{ITAB}(\operatorname{IT}, \operatorname{LDIM} 1)+1\)
26 CONTINUE
GO TO (90, 90, 90, 90, 90, 90, 27,90, 90,90,90), LT
GO TO (90, 90, 90, 90, 90, 90, 27,90, 90,90,90), LT MPOR


27 NINP=LINFO(10,LT) MPOR 101
        \(K=K+1\)
\(K R=K R+1\)
\(\begin{array}{ll}\text { MPOR } & 05 \\ \text { MPOR } & 106\end{array}\)
    IF (KR. GT. NNU)WRITE (TW6, 901)
    \(\begin{array}{ll}\text { MPOR } & 107 \\ \text { MPOR }\end{array}\)
    IF (KR. GT. NNU)WRITE (IW6, 901)
IF (K.GT. NNE)WRITE (IW6, SO2)NNE
\(\begin{array}{lll}\text { MPOR } & 108\end{array}\)
MPOR 109
        NREL (KR) \(=K\)
        RELVV (K) \(=\) K
        \(\mathrm{JP}=\mathrm{JP}+1\)
        \(\mathrm{JP}=\mathrm{JP}+1\)
\(\mathrm{NCONN}(J P, N E)=K\)
    DO 40 ID \(=1\), NDIM
\(40 \operatorname{SUM}(I D)=Z E R O\)
DO 50 IN \(=1\), NVN
        NDE \(=\mathrm{NCONN}(I N, N E)\)
        DO 50 ID 1 , NDIM
0 SUM (ID) \(=\) SUM (ID) + XYZ (ID, NDE)
C 0060 ID \(=1\) NDTM
    \(60 \mathrm{XYZ}(\mathrm{ID}, \mathrm{K})=\) SUM (ID)/FLOAT(NVN)
        WRITE (IW6, 904)KR, (XYZ (ID, K), ID= 1 , NDIM)

C 80 continue
90 continue
\[
\text { DO } 50 \text { IN } 1 \text {, NVN }
\]

C 100 continue
```

c
NN=K
MPOR 131
NN=K
MPOR 132
RETURN
900 FORMAT (/10X,46HCOORDIMATES OF PORE PRESSURE NODES ALONG EDGES//
1 39H NODE X,46HCOORDNATES XF Y R I/)
901 FORMAT (/1X,49HINCREASE NO. OF ADDITIONGL NODES (ROUTINE MIDPOR))
902 FORMAT (/1X, 21H***ERROR*** MORE THAN,I5
1 3OHNODES IN MESH (ROUTINE MIDPOR))
904 FORMAT (I5, 3F12.3)
910 FORMAT(/1X,7HELEMENT, 15, 2X,22HIS OF UNKNOWN TYPE ***,I5, 2X,
1 16H(ROUTINE MIDPOR)
| 16H
MPOR 133
MPOR 134
MPOR 136
MPOR 137
MPOR 138
MPOR 139
MPOR 141
MPOR }14
MPOR 143

```
: KR - starting user number of additional nodes.
MPOR 15 : K - starting program number of additional nodes
MPOR 18-19 : write title - 'co-ordinates of pore pressure nodes'.
MPOR 21-23 : zero array ITAB
: loop on all elements
MPOR 28
MPOR 31-36
MPOR 39
MPOR 40
index to nodes at either end of element side, in NP1, NP2
MPOR 41
MPOR 43-44
MPOR 46
MPOR \(47 \quad\) : calculate unique code (consisting of node numbers at either end) representing the side.
MPOR 52 : start at the beginning, if end of array has been reached, and make use of the gaps in array ITAB.
MPOR 53 : look for the possibility that nodes along element edge have already been numbered; if so, branch off.
MPOR 54 : if nodes along element edge have to be numbered then find a location with zero entry.
MPOR 56 : such a location has been found. Loop on all additional (pore pressure) nodes along this edge
MPOR 60 : program number for the new node.
MPOR 61 : user number for the new node.
MPOR 62-63 : check that number of nodes does not exceed allocation for array NREL. If exceeded, print error message and stop (The allocation for NREL is such that this should not happen.)

MPOR 66
MPOR 67
MPOR 68-69
MPOR 72
MPOR 73
MPOR 74-75
MPOR 76-77
MPOR 79-81

MPOR 82
MPOR 84
MPOR 85

MPOR 88

MPOR 89-91
MPOR 93
MPOR 95
MPOR 97-101 \({ }^{\dagger}\)
MPOR \(102^{\dagger}\)
MPOR \(104^{\dagger}\)
MPOR \(105^{\dagger}\)
MPOR \(106^{\dagger}\)
MPOR 107-108
MPOR 109-110
MPOR 111-112 \({ }^{\dagger}\)
MPOR 114-123
MPOR \(126^{\dagger}\)
MPOR 130
MPOR 132-133
enter program node number in array NREL.
enter user node number in cross-reference array NRELVV
check that array allocation NRELVV is not exceeded.
index of new node in array NCONN.
enter new node number in NCONN.
index of new node in array ITAB, and enter new no.
calculate interpolation ratios.
calculate co-ordinates of new node, using linear interpolation on nodes at either end.
end of loop on nodes along edge
enter code representing element side in ITAB.
enter 1 to indicate that nodes along element edge have been calculated (the value is also used to count the number of elements sharing this side).
for any element edge along which nodal co-ordinates have already been calculated. Loop on all nodes along edges excluding the ones at either end.
enter the node numbers in NCONN.
increment count on no. of elements sharing element side. end of loop on all element edges.
: no. of inner nodes (only for element types which have them; skip for the rest).
index to node location in NCONN
: loop on all inner nodes.
program node number.
: user node number.
check for array sizes NREL, NRELVV being exceeded. enter node number in NREL and NRELVV.
: enter number in NCONN.
calculate co-ordinates of inner node.
end of loop on all inner nodes.
end of element loop.
: maximum values of node numbers (all inclusive).
(NNZ - user number; NN - program number.)

If the pore pressure nodes lie along a curved side (here again only relevant to CuST element) then the user again provides the co-ordinates of these nodes. It should be remembered that these nodes are different from the displacement nodes for a higher-order element like the CuST. Because of simplicity of programming, the displacement and pore pressure nodes are dealt with
\(\dagger\) Note: these are specifically for element type 7, which is the only element type with Note: these are specifically inner nodes.
separately. However, the same routine which was used for the displacement nodes is used again.

When exit is made from the routine MIDPOR, all the nodes (pore pressure and displacement) have been assigned numbers and their co-ordinates calculated. The total number of nodes NN is now known, and the largest user node number is NNZ (remembering that the additional nodes were numbered starting from 751 ). When the pore pressure nodes were numbered, the user node numbers were continued from the point left by the last additional displacement node. For example, if 832 was the last displacement node number then 833 is the node number of the first pore pressure node.

At this stage, all the information necessary to number the mesh is written to the PD file in routine NUMSH. Still adopting the same format to write the information as before, the node co-ordinates and numbers are written. For the purpose of numbering the elements, the centroid co-ordinate and element number are written to the file.

\section*{Routine NUMSH}

SUBROUT INE NUMSH (IW6, TW8, NDIM, NNE, MXND, NEL, MUMAX, NNU, XYZ,
1 NCONN, LTYP, MREL, NREL, NDZ, IPLOT)
C ROUTINE TO NUMBER MESH

DIMENSION XYZ (NDIM, NNE), NCONN(MXND, NEL), LTYP(NEL),
1 MREL (MUMAX), NREL (NNU), XYZD (3), XYZC (3)
COMMON /DEPUGS/ ID1, ID2, ID3, ID4, ID5, ID6, ID7, ID8, ID9, ID10 COMMON /ELINF / LINFO \((50,15)\)
If(IPLOT.EQ.0)RETURN
NDZ 1 - STARTING VALUE OF USER NUMBER OF EDGE NODES


\begin{tabular}{|c|c|c|}
\hline & ICODE \(=11\) & NMSH \\
\hline c--- & & NMSH \\
\hline D & dummy Coordinates & MMSH \\
\hline C---- & & NMSH \\
\hline & DO 4 ID \(=1\), NDIM & MMSH \\
\hline X & XYZD (ID) \(=0\). & MMSH \\
\hline & I DUM \(=0\) & NMSH \\
\hline & IZERO \(=0\) & NMSH \\
\hline c & & NMSH \\
\hline & NC \(=0\) & NMSH \\
\hline & I PL=IPLOT & MMSH \\
\hline & IF(IPL.EQ.1)GOTO 100 & NMSH \\
\hline & IF (IPL-3)10,20,30 & NMSH \\
\hline c- & & - MMSH \\
\hline C P & pen colour is black for vertex nodes & MMSH \\
\hline & & NMSH \\
\hline 10 & I PEN=-1 & NMSH \\
\hline & WRITE (IW8)IPEN, (XYZD (ID), ID \(=1\), NDIM), IDUM & NMSH \\
\hline & NN \(1=1\) & NMSH \\
\hline & NN2 \(=\) NDZ & NMSH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{12 Do 15 JR=NN 1 , NN2} & NMSH & 40 \\
\hline & If ( \(\mathrm{NREL}(\mathrm{JR}) . \mathrm{EQ} .0\) GO TO 15 & NMSH & 41 \\
\hline & \(\mathrm{J}=\) NREL (JR) & NMSH & 42 \\
\hline & JJ=JR & NMSH & 43 \\
\hline & WRITE (IW8)ICODE, (XYZ (ID, J), ID=1, NDIM), JJ & NMSH & 44 \\
\hline 15 & Continue & MMSH & 45 \\
\hline \multirow[t]{4}{*}{\(\mathrm{C} \quad \mathrm{I}\)} & & NMSH & 46 \\
\hline & IF(NC.EQ.O)GOTO 100 & NMSH & 47 \\
\hline & NC \(=0\) & MMSH & 48 \\
\hline & & NMSH & 49 \\
\hline & Pen colour is red for edge nodes & MMSH & 50 \\
\hline \multirow[t]{6}{*}{} & & -NMSH & 51 \\
\hline & IPEN=-2 & NMSH & 52 \\
\hline & WRITE(IW8)IPEN, (XYZD(ID), ID=1,NDIM), IDUM & NMSH & 53 \\
\hline & NN1 \(=\) NDZ 1 & NMSH & 5 \\
\hline & NN2=NNU & NMSH & 5. \\
\hline & GOTO 12 & NMSH & 56 \\
\hline C & & MMSH & 57 \\
\hline \multirow[t]{3}{*}{30 If} & IF (IPL.GT.4)GOTO 40 & nMSH & 58 \\
\hline & NC=1 & NMSH & 59 \\
\hline & goto 10 & NMSH & 60 \\
\hline & & -NMSH & 61 \\
\hline C P & PEN COLOUR IS GREEN FOR ELEMENTS & NMSH & 62 \\
\hline \multirow[t]{2}{*}{\(\mathrm{C}-\mathrm{-}\)} & & -MMSH & 63 \\
\hline & IPEN \(=-3\) & NMSH & 64 \\
\hline & WRITE(IW8)IPEN, (XYZD(ID ), ID = 1, NDIM), IDUM & NMSH & 65 \\
\hline \multirow[b]{4}{*}{I} & & NMSH & 66 \\
\hline & DO \(50 \mathrm{JR}=1\), Mumax & NMSH & 67 \\
\hline & IF (MREL(JR).EQ.O)GOTO 50 & NHSH & 68 \\
\hline & \(\mathrm{J}=\mathrm{MREL}\) (JR) & NMSH & 69 \\
\hline c & & MMSH & 70 \\
\hline & DO 35 ID \(=1\), NDIM & MMSH & 71 \\
\hline \(35 \times\) & XYZC(ID) \(=0\). & NMSH & 72 \\
\hline \multirow[t]{3}{*}{L
N} & & NMSH & 73 \\
\hline & LT=LTYP(J) & NMSH & 74 \\
\hline & NVN=LINFO \((2, L T)\) & NMSH & 75 \\
\hline \multirow[t]{4}{*}{D} & & NMSH & 76 \\
\hline & DO \(46 \mathrm{I}=1\), NVN & NMSH & 77 \\
\hline & \(\mathrm{L}=\mathrm{NCONN}(\mathrm{I}, \mathrm{J})\) & NMSH & 78 \\
\hline & DO 46 ID \(=1\), NDIM & MMSH & 79 \\
\hline 46 x & XYZC(ID) \(=\) XYZC(ID)+XYZ (ID, L)/FLOAT (NVN) & NMSH & 80 \\
\hline c & & MMSH & 81 \\
\hline & JJ = JR & MMSH & 82 \\
\hline & WRITE (IW8)ICODE, (XYZC (ID), ID = 1, NDIM), JJ & NMSH & 83 \\
\hline 50 & continue & NMSH & 84 \\
\hline c & & NMSH & 8 \\
\hline & IPL=IPL -4 & NMSH & \& \\
\hline & If (IPL.GT. 1 )GOTO 5 & NMSH & 87 \\
\hline c---- & & -NMSH & 88 \\
\hline c & close file & NMSH & 89 \\
\hline \multirow{4}{*}{C-100} & & -NMSH & 90 \\
\hline & WRITE(IW8)IZERO, (XYZD (ID), ID=1, NDIM), IDUM & MMSH & 91 \\
\hline & return & MMSH & 92 \\
\hline & END & NMSH & 93 \\
\hline
\end{tabular}

NMSH 15 : starting value of midside nodes (user numbers).
NMSH 19 : code to indicate a number is to be plotted.
NMSH 23-24: dummy co-ordinates (used when pen colour is changed).
NMSH 29 : plotting code (user specified, request of mesh detail, e.g numbering).
NMSH 35-36 : select pen colour as black (negative value indicates change in pen colour) and write information to PD file.

NMSH 37-38: the range of node numbers includes the vertex nodes.
NMSH 40-45 : write (displacement) node co-ordinates to PD file.
NMSH 47 : branch off if no more information on mesh is required
NMSH 52-53 : select pen colour as red for nodal numbering and write information to PD file.
NMSH 54-55 : range of midside node numbers.
NMSH 59 : branch off to plot vertex node numbers.
NMSH 64-65: select pen colour as green for plotting element numbers and write information to PD file.
NMSH 67 : loop on all elements.
NMSH 68 : by-pass if an element number is not used.
NMSH 71-72 : initialise element centroid co-ordinates.
NMSH 74-75 : element type number (LT), number of vertex nodes in element (NVN).
NMSH 77-80: calculate element centroid co-ordinates.
NMSH 82-84 : write element centroid co-ordinates to PD file.
NMSH 91 : close file by writing a zero code.
The remaining tasks for the geometry part of the program are the calculation of the total number of degrees of freedom (d.o.f.) and the frontwidth and the corestore required in solving the equations using the frontal method. The first step is to find the number of d.o.f. at each node, considering all the elements connected to that node, and this is achieved by MAKENZ.

Array (NQ(NN) gives the number of d.o.f. of each node. A node may have a differing number of d.o.f. from the different elements of which it is a part. This can be illustrated by an example (Fig. 6.5): in it, nodes 1 and 5 have 3 d.o.f. from the linear strain triangle of type 3 . They have \(d_{x}, d_{y}\) and \(\bar{u}\) as variables, the displacements in \(x\) and \(y\) directions and the excess pore pressure. From the linear strain triangle of type 2 element, the three nodes have 2 d.o.f. ( \(d_{x}\) and \(d_{y}\) only) Therefore nodes 1 and 5 have a maximum of 3 d.o.f. This is entered in array (NQ(NN).

The number of d.o.f. is entered against that node number in array NQ. Once this task is completed, the total number of d.o.f. in the mesh - NDF - is found by summing up the entries in array NQ.

The number of d.o.f. for each node for different element types is obtained from array \(\operatorname{LINFO}(50 ; 15)\). The second index is for the element type number (LT). The first 20 entries are allocated to give out general information regarding the element type. Entries starting from 21 give the number of d.o.f. for each node of an element. (The sequence used for the nodes is the same as in Fig. 4.1.) Routine MAKENZ



Fig. 6.5 - Same nodes with different d.o.f. when mixing different element types


MKNZ 13-14 : zero the number of d.o.f. of all nodes.
MKNZ 16 : loop on all elements.
MKNZ 17 : by-pass if element is not present in the current mesh.
MKNZ 18 : element type number.
MKNZ 19 : the total number of nodes in element.
MKNZ 21 : loop on all nodes of element.

MKNZ 22 : the number of d.o.f. of node
MKNZ 23 : node number
MKNZ 24 : enter if node associated with the current element has a greater number of d.o.f.
MKNZ 25 : end of loop on all nodes of element.
MKNZ 26 : end of element loop.

It is necessary for the purpose of internal housekeeping to assign unique numbers to each d.o.f. or variable. This number lies in the range I to NDF and will be referred to as the global variable number (g.v.n.) in the rest of the text. For simplicity, array NQ is used for this purpose. All the d.o.f. of a particular node are given consecutive numbers. Hence it is only necessary to know the g.v.n. of the first variable of each node. Array NW is set up to provide this information. The first d.o.f. of the tenth node, for example, is given the sum total of the d.o.f. of the first 9 nodes +1 . The NW entries will be
\[
\begin{array}{llllrrrrrr}
\text { node } \rightarrow 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & (9) \\
\text { d.o.f. } \rightarrow 3 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & \\
\text { g.v.n. } \rightarrow 1 & 4 & 7 & 10 & 13 & 15 & 17 & 19 & (21)
\end{array}
\]

The last 'non-existent' node serves as a marker; for example, the difference in g.v.n. between consecutive node numbers is the d.o.f. of the first numbered node.
number of d.o.f. of node \(5=N W(6)-N W(5)=15-13=2\)
number of d.o.f. of node \(8=N W(9)-N W(8)=21-19=2\)
Hence the entry for the last 'non-existent' node will always be NDF +1 . The routine which carries out the above calculations is CALDOF

\section*{Routine CALDOF}


CLDF 7-8: global variable nos. of first d.o.f. of first node
These g.v.n. serve as indexes to arrays P, PT, DI, DA, etc.
CLDF 10 : loop on all nodes.

CLDF 11 : calculate global variable nos. of first d.o.f. of next node \((=I+1)\).
CLDF 12 : place value in array NW.
CLDF 14 : NDF is the total number of d.o.f. in mesh

\subsection*{6.6 PRE-FRONTAL ROUTINES}

Routines MLAPZ and SFWZ are the pre-frontal routines. The frontal method is described elsewhere in detail (Irons, 1970; Irons and Ahmad, 1980; Hinton and Owen, 1977). The function of these two routines is best illustrated by an example (Fig. 6.6).


Fig. 6.6 - Example to illustrate frontal method
\begin{tabular}{llllll|lll} 
Element & Type & Mat & N1 & N2 & N3 & N4 & N5 & N6 \\
\\
\hline 1 & 2 & 1 & 1 & 2 & 5 & 751 & 752 & 753 \\
2 & 2 & 1 & 1 & 5 & 4 & 753 & 754 & 755 \\
3 & 2 & 1 & 2 & 3 & 6 & 756 & 757 & 758 \\
4 & 2 & 1 & 2 & 6 & 5 & 758 & 759 & 752 \\
5 & 2 & 1 & 4 & 5 & 8 & 754 & 760 & 761 \\
6 & 2 & 1 & 4 & 8 & 7 & 761 & 762 & 763 \\
7 & 2 & 1 & 5 & 6 & 9 & 759 & 764 & 765 \\
8 & 2 & 1 & 5 & 9 & 8 & 765 & 766 & 760
\end{tabular}

These are the input data, and assuming that no alternative efficient element numbering has been specified, the midside node numbers are given on the right-
hand side of the above table. It gives the contents of the array NCONN, translated into user node numbers. The actual midside node number entries in NCONN are different, even though the vertex node number entries are exactly the same. The array is modified so that the node numbers are made negative to indicate their last appearances.
\begin{tabular}{lrrrrrr}
\begin{tabular}{l} 
No. of \\
elements
\end{tabular} & N 1 & N 2 & N 3 & N 4 & N5 & N6 \\
\hline 1 & 1 & 2 & 5 & -751 & 752 & 753 \\
2 & -1 & 5 & 4 & -753 & 754 & -755 \\
3 & 2 & -3 & 6 & -756 & -757 & 758 \\
4 & -2 & 6 & 5 & -758 & 759 & -752 \\
5 & 4 & 5 & 8 & -754 & 760 & 761 \\
6 & -4 & 8 & -7 & -761 & -762 & -763 \\
7 & 5 & -6 & 9 & -759 & -764 & 765 \\
8 & -5 & -9 & -8 & -765 & -766 & -760
\end{tabular}

Considering the above table of element-nodal connectivity in the reverse order, the first time a node appears will be its last appearance. This method is used to find the last appearance of a node.

Routine MLAPZ


MLPZ 14 : element number in reverse order
MLPZ 15 : by-pass if element is not present in mesh.
MLPZ 16-17 : element type number (LT) and the number of nodes associated with the element (NDPT).
MLPZ 18 : loop on all nodes associated with the element.
MLPZ 19 : if node is not found, then by-pass.
MLPZ 20 : make node number negative to indicate last appearance of node in mesh.
MLPZ 22 : end of loop on all nodes associated with the element.
MLPZ 23 : end of element loop.
MLPZ 24 : end of nodal loop.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Element assembled & \multicolumn{6}{|c|}{List of active nodes after assembly} & \multicolumn{6}{|c|}{Nodes which remain active after elimination} \\
\hline 1 & 1 & 2 & 5 & 751 & 752 & 753 & 1 & 2 & 5 & 0 & 752 & 753 \\
\hline 2 & \[
75 \frac{1}{4}
\] & \[
\begin{array}{r}
2 \\
755 \\
\hline
\end{array}
\] & 5 & 4 & 752 & 753 & \[
\begin{array}{r}
0 \\
754
\end{array}
\] & 2 & 5 & 4 & 752 & 0 \\
\hline 3 & \[
75 \frac{3}{4}
\] & \[
\begin{array}{r}
2 \\
756 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5 \\
757 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4 \\
758
\end{array}
\] & 752 & 6 & 0
754 & 2 & 5
0 & \[
\begin{array}{r}
4 \\
758
\end{array}
\] & 752 & - 6 \\
\hline 4 & \[
\begin{aligned}
& 759 \\
& 754
\end{aligned}
\] & \[
\frac{2}{0}
\] & \[
\begin{aligned}
& 5 \\
& 0
\end{aligned}
\] & \[
\begin{array}{r}
4 \\
758 \\
\hline
\end{array}
\] & 752 & 6 & \[
\begin{aligned}
& 759 \\
& 754
\end{aligned}
\] & 0 & 5 & 4 & 0 & 6 \\
\hline 5 & \[
\begin{array}{r}
759 \\
754 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8 \\
761
\end{array}
\] & 5 & 4 & 760 & 6 & \[
\begin{array}{r}
759 \\
0
\end{array}
\] & 8
761 & 5 & 4 & 760 & 6 \\
\hline 6 & \[
\begin{array}{r}
759 \\
7
\end{array}
\] & \[
\begin{array}{r}
8 \\
761 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5 \\
762 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\frac{4}{3} \\
\hline
\end{array}
\] & 760 & 6 & 759 & 8 & 5 & 0 & 760 & 6 \\
\hline 7 & \[
\frac{759}{764}
\] & \[
\begin{array}{r}
8 \\
765
\end{array}
\] & 5 & 9 & 760 & 6 & 0 & \[
\begin{array}{r}
8 \\
765
\end{array}
\] & 5 & 9 & 760 & 0 \\
\hline 8 & \[
\frac{766}{0}
\] & \[
\underline{8}
\] & \(\underline{5}\) & \(\underline{2}\) & & 0 & & & & & & \\
\hline
\end{tabular}

In routine SFWZ, the program calculates the maximum frontwidth (and the core-store required to solve the equations using the frontal method) using the last appearances of nodes marked by the routine MLAPZ.

This is illustrated above. Making use of the previous table, after the first element is assembled the number of active nodes, which is six, reduces to five after the node which is underlined (only 751) is eliminated. The corresponding. entry on the list on the right-hand side is zero. Scanning through the list of active nodes, the maximum number of nodes present at any stage is 10 ; hence the maximum frontwidth is 10 nodes. It is the maximum number of nodes that are active at any time. If each node has 2 d.o.f. then the maximum frontwidth is 20 d.o.f.
Routine SFWZ
SUBROUTINE SFWZ (MNFZ, MXND, NEL, NN, MUMAX, NNZ, IF RZ,
NCONN, LTYP, MREL, MREL, NQ, NDEST, IFR, MUT T, MCORE, NCORET)
\begin{tabular}{|c|c|c|c|}
\hline & WORKS OUT FRONT WIDTH FOR SYMMETRIC SOLUTION & SFWz & 4 \\
\hline & US ING LAST appearances marked by subrout ine mlapz． & SFWZ & 5 \\
\hline & \multicolumn{3}{|l|}{C＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊SFWZ} \\
\hline & DIMENSION NCONN（MXND，NEL），LTYP（NEL），MREL（MIMAX ），NREL（NNZ） & SFWZ & 7 \\
\hline & DIMENSION NQ （NH），NDEST（NN），IFR（IFRZ） & SFWz & 8 \\
\hline & COMMON／DEVICE／IR1，IR4，IR5，IW2，IW4，TW6，IW7，IW8，IW9 & SFWZ & 9 \\
\hline & COMMON／DEBUGS／ID1，ID2，ID3，ID4，ID5，ID6，ID7，ID8，ID9，ID10 & SFWZ & 10 \\
\hline & COMMON／ELINF／LINFO（50，15） & SFWZ & 11 \\
\hline & & SFWZ & 12 \\
\hline & INCORE＝0 & SFW2 & 13 \\
\hline \multirow[t]{5}{*}{c} & C \({ }^{\text {d }}\) & SFW2 & 14 \\
\hline & DO \(6 \mathrm{~J}=1\) ，NEL & SFWZ & 15 \\
\hline & IF（LTYP（J）．LT．0）GOTO 6 & SFWZ & 16 \\
\hline & \(\mathrm{N}=\mathrm{NCONN}(1, \mathrm{~J})\) & SFWZ & 17 \\
\hline & \(N A=\operatorname{IABS}(N)\) & SFWZ & 18 \\
\hline & NDF \(=\)＝ NQ （ MA ） & SFWZ & 19 \\
\hline \multirow[t]{7}{*}{c} & & SFWZ & 20 \\
\hline & DO \(4 \mathrm{I}=1\) ，NDF N & SFWZ & 21 \\
\hline & \(4 \mathrm{IFR}(\mathrm{I})=\mathrm{NA}\) & SFWZ & 22 \\
\hline & NFZ \(=\) NOFN & SFWZ & 23 \\
\hline & \(\mathrm{MNFZ}=\mathrm{NDFN}\) & SFWZ & 24 \\
\hline & \(\operatorname{NDEST}(\mathrm{NA})=1\) & SFWZ & 25 \\
\hline & GOto 8 & SFWZ & 26 \\
\hline & 6 continue & SFWZ & 27 \\
\hline \multirow[t]{2}{*}{c} & & SFW2 & 28 \\
\hline & WRITE（IW6，900） & SFWZ & 29 \\
\hline & STOP & SFWZ & 30 \\
\hline & & SFWZ & 31 \\
\hline & 8 Continue & SFWZ & 32 \\
\hline \multirow[t]{3}{*}{C} & & SFWZ & 33 \\
\hline & CONSIDER EACH ELEMENT IN TURN & SFWZ & 34 \\
\hline & －－－－－－－－－－－－－－－ & SFWZ & 35 \\
\hline & DO \(40 \mathrm{~J}=1\) ，NEL & SFWZ & 36 \\
\hline & & SFWZ & 37 \\
\hline \multirow[t]{3}{*}{} & IGNore omitted elements & SFWZ & 38 \\
\hline & & －SFW2 & 39 \\
\hline & If（LTyP（J）．LT．0）Goto 40 & SFWZ & 40 \\
\hline & & －SFWZ & 41 \\
\hline & CONSIDER EACH NODE OF THIS ELEMENT－Does it already have & SFWZ & 42 \\
\hline \multirow{4}{*}{c} & A ROW／COLUMN ALLOCATED TO IT IN THE FRONT ？ & SFW2 & 43 \\
\hline & & SFWZ & \\
\hline & LT＝LTYP（J） & SFW2 & 45 \\
\hline & NDPT \(=\) LINFO（1，LT \()\) & SFWZ & 46 \\
\hline \multirow[t]{4}{*}{c} & & SFWZ & 47 \\
\hline & DO \(20 \mathrm{I}=1\) ，NDPT & SFWZ & 48 \\
\hline & \(\mathrm{N}=\mathrm{NCONN}(\mathrm{I}, \mathrm{j})\) & SFWZ & 49 \\
\hline & \(N A=\operatorname{IabS}(\mathrm{N})\) & SFWZ & 50 \\
\hline \multirow[t]{4}{*}{c} & & SFWZ & 51 \\
\hline & DO \(10 \mathrm{~K}=1\) ，NFZ & SFWZ & 52 \\
\hline & IF（IFR（K）．EQ．NA）GOTO 20 & SFWZ & 53 \\
\hline & 10 continue & SFW2 & 54 \\
\hline \multicolumn{2}{|l|}{c－－－－－－－－－－} & －SFWZ & 55 \\
\hline & cind a（Large enovih）gap or put on end & SFWZ & 56 \\
\hline \multirow[t]{5}{*}{} & －－ & －SFWZ & 57 \\
\hline & K1＝1 & SFWZ & 58 \\
\hline & 11 DO \(12 \mathrm{~K}=\mathrm{K} 1\) ，NFZ & SFWZ & 59 \\
\hline & IF（IFR（K）．EQ．0）GOTO 15 & SFWZ & 60 \\
\hline & 12 Continue & SFWZ & 61 \\
\hline & c & －SFWZ & 62 \\
\hline & c PUT ON END & SFWZ & 63 \\
\hline & & －SFWZ & 64 \\
\hline & \(\mathrm{K}=\mathrm{HFZ}+1\) & SFWZ & 65 \\
\hline & NFZ \(=\mathrm{NFZ}+\mathrm{NQ}(\mathrm{NA}\) ） & SFWZ & 66 \\
\hline & IF（NFZ．LE．IFRZ）GOTO 14 & SFWZ & 67 \\
\hline & WRITE（IW6，904）IFRZ & SFWZ & 68 \\
\hline & STOP & SFWZ & 69 \\
\hline
\end{tabular}
c
\(14 \mathrm{~K} 2=\mathrm{NFZ}\)
IF（NFZ ．GT．MNFZ \()\) MNFZ \(=\) NFZ
GOTO 18
\(c\)
15 DO 16 KK＝K，NF2
IF（IFR（KK）．NE．0）GOTO 17
16 continue
WRITE（IW6，905）
WRITE（IW6，997）J，I
WRITE（IW6，999）（IFR（LL），LL＝1，NFZ）
stop
C \(\quad 17 \mathrm{~K} 1=\mathrm{KK}\)
IF（NQ（NA）．GT．KK－K）GOTO 11
\(K 2=K+N Q(N A)-1\)
c
Do 19 KK＝K，K2
19 IFR \((K K)=N\)
20 CONTINUE
CC
WRITE（IW6，999）（IFR（LL）LL 1 ，NFZ）
 Do \(30 I=1\) ，NDPT
IF（NCONN（I，J）．GT．0）GOTO 30
DO \(22 \mathrm{~K}=1\) ，NFZ
\(\mathrm{N}=\mathrm{NCONNS}(\mathrm{I}, \mathrm{J})\)
\(\mathrm{NA}=\operatorname{IABS}(\mathrm{N})\)
\(2 \begin{aligned} & \text { IF（NA．EQ．IFR（K））GOTO } 23 \\ & \text { CONTINUE }\end{aligned}\)
22 CONTINUE
WRITE（IW6，908）
\(23 \mathrm{~K} 2=\mathrm{K}+\mathrm{NQ}(\mathrm{NA})-1\)
NCONN \((\mathrm{I}, \mathrm{J})=\operatorname{HCONN}(\mathrm{I}, \mathrm{J}) * M U L T\)
DO \(24 \mathrm{KK}=\mathrm{K}, \mathrm{K} 2\)
\(24 \begin{aligned} & \text { INCORE }=\text { INCORE }+N F Z+4 \\ & \operatorname{IFR}(K K)=0\end{aligned}\) IF（K2．LT．
\(26 \mathrm{NFZ}=\mathrm{NFZ}-1\)
IF（NFZ．EQ．0）Goto 30
IF（IFR（NFZ）．EQ．O）GOTO 26
30 Continue
IF（ID3．NE．1）GOTO 40
IF（NFZ．GT．0）WRITE（IW6，و99）（IFR（LL），LL＝1，NFZ）
40 CONTINUE
WRITE（IW6，910）MNFZ
IF（ID4．EQ． 1 ）WRITE（IW6，950）NDEST
MCORE \(=M N F Z^{*}(M N F Z+1) / 2+2^{*}\) MNFZ +50
NCORET \(=\) MCORE + INCORE
WRITE（IW6，915）MCORE WRITE（IW6，920）INCOR RETURN
900 Format（41h no elements in solution ！（routine sfwz））
FORMAT（48H＊＊＊ERROR＊＊TOO MANY DEGREES OF FREEDOM IN FRONT， 1 1X， 7 HEXCEEDS， \(15,2 \mathrm{X}, 14\) H（ROUT INE SFWZ））


べコロ \(\begin{array}{ll}\text { SFWZ } & 97 \\ \text { SFWZ } & 98\end{array}\)
\(\begin{array}{ll}\text { SFWZ } \\ \text { SFWZ } \\ \text { SFWZ } & 1109\end{array}\)
\(\begin{array}{ll}\text { SFWZ } & 110 \\ \text { SFWZ }\end{array}\)
\(\begin{array}{ll}\text { SFWZ } & 111 \\ \text { SFWZ } & 112\end{array}\)

SFWZ 1
\(\begin{array}{ll}\text { SFWZ } & 11, \\ \text { SFWZ } & 118 \\ \text { SFWZ } & 119\end{array}\)
\(\begin{array}{ll}\text { SFWZ } & 121 \\ \text { SFWZ } & 122 \\ \text { SWI }\end{array}\)
\(\begin{array}{ll}\text { SFWZ } & 122 \\ \text { SFWZ } 123\end{array}\)
SFWZ 124
SFWZ 125
\(\begin{array}{ll}\text { SFWL } \\ \text { SFWZ } & 125 \\ \text { SFWZ } & 127\end{array}\)
\(\begin{array}{ll}\text { SFWZ } & 127 \\ \text { SFWZ } & 128\end{array}\)
SFWL
SFWZ
129
\(\begin{array}{lll}\text { SFFL } & 129 \\ \text { SFWZ } & 130\end{array}\)
SFWZ 131
SFWZ 132
\(\begin{array}{ll}\text { SFWZ } & 133 \\ \text { SFWZ } & 134\end{array}\)
SFWZ 135
\begin{tabular}{|c|c|}
\hline 905 FORMAT ( 40 H PROGRAM ERROR - NO NODE ON END OF FRONT/ & SFWZ 136 \\
\hline 1 15H (ROUTINE SFWZ)) & SFWZ 137 \\
\hline 908 Format (53h program error - last appearance node is not in front, & SFWZ 138 \\
\hline \(12 \mathrm{X}, 14 \mathrm{H}\) (ROUT InE SFWZ) ) & SFWZ 139 \\
\hline 910 FORMAT(/36H MAXIMUM FRONT WIDTH FOR SOLUTION = , I4, & SFWZ 140 \\
\hline 1 19H DEGREES Of FREEDOM) & SFWZ 141 \\
\hline 915 FORMAT (/444 MINIMUM CORE REQUIRED TO SOLVE EQUATIONS \(=\), I10) & SFWZ 142 \\
\hline 920 FORMAT( \(/ 48 \mathrm{H}\) ADDITIONAL CORE REQUIRED FOR INCORE SOLUTION = , I 10 ) & SFWZ 143 \\
\hline 950 FORMAT(//1X, 5HNDEST/(1X, 2015)) & SFWZ 144 \\
\hline 997 Format (5H J = , 15,7H I = , 15) & SFWZ 145 \\
\hline 998 Format (7H NFZ = , I12) & SFWZ 146 \\
\hline 999 Format (4h ifr/(1X,25I5)) & SFWZ 147 \\
\hline END & SFWZ 148 \\
\hline
\end{tabular}

SFWZ 13 : initialise buffer size for in-core solution of equations
SFWZ 15 : loop on all elements (this loop is only to find the first node a place in the front).
SFWZ 16 : by-pass if element is not in current mesh.
SFWZ 17 : node number.
SFWZ 18 : absolute value of node number (nodes may be making their absolute value of node number (nodes may be making their last appearance and can be negative).
SFWZ 19 : number of d.o.f. of node.
SFWZ 21-22 : place node number in the front for each d.o.f. of a node (all d.o.f. of a particular node are identified by the node number).

SFWZ 23 : number of d.o.f. in the front.
SFWZ 24 : maximum size of the front.
SFWZ 25 : make entry (in array NDEST) to indicate the position of first d.o.f. of node in the front.

SFWZ 26-27 : exit from element loop after one node has been placed in the front.
SFWZ 36 : loop on all elements.
SFWZ 40 : by-pass if element is not present in current mesh.
SFWZ 45-46 : element type number and total number of nodes in element.
SFWZ 48 : loop on all nodes in element.
SFWZ 49-50 : node number.
SFWZ 52-53 : search the front (i.e. array IFR) to see if node has already been allocated store, and if so, branch off.
SFWZ 58-61 : search for gaps (zero entry in IFR) to allocate place in front for a node making the first appearance. Branch off if a zero is found.
SFWZ 65-66 : no gaps found. Place new node (and its d.o.f.) at the end of the front.
SFWZ 67-68 : check that size of array IFR is not exceeded. If so, print out message and stop.
SFWZ 71 : update size of the front.
SFWZ 72 : update maximum size of the front (if the current size is greater than the previous maximum).
SFWZ 75-76 : scan the front (array IFR) to find the size of gap (i.e. with zero entries) and branch off when a non-zero entry is found.

SFWZ 79-82 : if end of front cannot be found, print error message and stop (this should never happen).
SFWZ 86-87 : check if gap in the front is of sufficient size to accommodate all d.o.f. of node appearing for the first time. (All d.o.f. of a given node are strung together and take up consecutive places in the front.) Since different nodes may have different number of d.o.f. it is necessary to check the size of the gap. The gaps in the front have been left by nodes which have been eliminated.
SFWZ 90-91 : place node number (for all d.o.f. of node) in the front.
SFWZ 92 : end of loop on all nodes of element.
SFWZ 97 : loop on all nodes of element.
SFWZ 98 : by-pass if node is not making its last appearance.
SFWZ \(100:\) loop on all nodes in the front. Scan the front for node number. SFWZ 101-102: node number.
SFWZ 103 : node has been found. Branch off.
SFWZ 105-106: node appearing for the last time is not in the front. Print out error message and stop (this should never happen).
SFWZ 108 : find position of last d.o.f. of node in the front.
SFWZ 109 : multiply node number by MULT. (The node numbers are made positive only if the routine has been called by the geometry part of the program, i.e. \(\operatorname{MULT}=-1\); otherwise MULT = 1.)
SFWZ 110-112: calculate core requirements for in-core solution.
SFWZ 113 : by-pass if node eliminated is not at the end of the front.
SFWZ 115-117: if so, reduce the front and hence NFZ (current size of the front).
SFWZ 119 : end of loop on nodes of element.
SFWZ 121-122: print out list of nodes in current front for debugging.
SFWZ 123 : end of element loop.
SFWZ 125 : print maximum front size (the frontwidth).
SFWZ 127 : contents of nodal destination vector NDEST (gives the destination of nodes in the front) are printed for debugging.
SFWZ 128 : minimum core required to solve the equations.
SFWZ 129 : total store required to solve all equations in-core.
SFWZ 130-131: print out core requirements.

Of course, if one is carrying out a consolidation analysis, the number of d.o.f. varies from node to node. The above example, illustrated with simply the node numbers, takes a slightly different form. One has to consider the d.o.f. instead of the nodes. A list of currently active d.o.f. is maintained in array IFR. If a node has 3 d.o.f., the node number is entered in three consecutive places, representing the 3 d.o.f. Similarly for a node with 2 d.o.f.: when a node with 2 d.o.f. is eliminated, it leaves a gap of size 2 . If a new node with 3 d.o.f. is assembled then
the current front is scanned from left to right first to find a suitable gap with at least three zeroes. Hence the gap of 2 is passed over and the new node and its variables are put at the end of the current front, thereby increasing the frontwidth momentarily by 3 .

The final task to complete the geometry part of CRISP is to print out the complete element-nodal connectivity list, NCONN. Remember that NCONN contains the program node numbers. For each element, a temporary array of user node numbers is set up, and these are printed along with the element type number and material zone number. This is carried out by routine GPOUT. For debugging purposes, various arrays can be printed during the course of the geometry part of the program.

Routine GPOUT

SUbrout ine gpout (iw6, MXND, NEL, MUMAX, NN, NN1, NDF, NCONN,
1 MAT, LTYP, MRELVV, MREL, NRELVV, NW, NQ, NLST

洋
DIMENSION NCONN(MXND, NEL), MAT (NEL), LTYP(NEL), MRELVV (NEL),
MREL(MUMAX), NRELVV (NN), NW(NN1), NQ(NN), NLST (MXND)
MREL(MUMAX), NRELVV (NN), NW (NN1), NQ (NN), NLST (MXND)


C Write (IW6,902)
C DO 20 JU \(=1\), MUMAX IF (MREL(JU).EQ.0)Goto 20
LT \(=\) LTYP (MPR)
NDPT \(=\operatorname{LINF} 0(1\), LT \()\)
DO 10 IN \(=1\), NDPT \(N P=N C O N N(I N, M P R)\)
\(N L S T(I N)=N R E L V(N P)\)
10 NLST(IN)=NRELVV(NP)
WRITE(IW6, 906) JU,LT,MAT(MPR),(NLST(IN), IN=1, NDPT
20 CONTINUE
C IF (ID10.EQ.1)WRITE (IW6, 908) (NQ (IN), IN = 1, NN )
c \(\operatorname{IF}\) (ID10.EQ. 1 )WRITE (IW6,910)(NW(IN), IN = 1, NN 1 )
WRITE (IW6, 911)NN WRITE (IW6, 912)NDF
RETURN
RETURN
902 FORMAT \(/ / 10 X, 30 H ~ E L E M E N T ~ M A T E R I A L ~ T Y P E ~ a n d, ~\)

\(\begin{array}{llllllllllll}2 & 19 \mathrm{H} & 1 & 2 & 3 & 4, & \\ 3 & 55 \mathrm{H} & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 3 & 5 \mathrm{H} & 15,\end{array}\)
\(\begin{array}{lrrrrrrrr}3 & 55 \mathrm{H} & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 125 \mathrm{H} & 16 & 17 & 18 & 19 & 20 & 21 & 22 /)\end{array}\)
906 FORMAT (I5, 216, 2215)
908 FORMAT ( \(/ 1 \mathrm{X}, 2 \mathrm{HNQ} /(1 \mathrm{X}, 2015\) ))
910 FORMAT ( \(/ 1 \times, 2\) HNW \(/(1 X, 2015)\) FORMAT \(/ / 125 \mathrm{H}\) TOTAL NUMBER OF NODES \(=, 18\) )
912 format (/40H total degrees of freedom in Solution =, i8)
END

GOUT 13 : loop on all elements (in the user numbering sequence).
GOUT 14 : by-pass if element number is not used.
GOUT 15 : program element number.
GOUT 16 : element type number.
GOUT 17 : total number of nodes in element.
GOUT 19 : loop on all nodes of element.
GOUT 20 : (program) node number.
GOUT 21 : place user node number in output list (i.e. array NLST).
GOUT 23 : print out the element type, material zone number and the list of nodes associated with the element.
GOUT 24
GOUT 26
print out array NQ, giving the number of d.o.f. of each node for debugging.
GOUT 28 : print out array NW, giving the g.v.n. of the first d.o.f. of each node for debugging.
GOUT 30-31 : write the total number of nodes and d.o.f. in the problem.

\subsection*{6.7 PROGRAMMING TECHNIQUES}

It was shown earlier that the d.o.f. of each node for all element types are stored in a single array which resides in a COMMON block and which is initialised in a BLOCK DATA routine. The element type number LT is used an index to this array, LINFO. Note that array LINFO is referred to as LIN in the block data routine. For example, if one considers the six-noded triangle ( \(\mathrm{LT}=2\) ) then \(\operatorname{LINFO}(21,2)-\operatorname{LINFO}(26,2)\) contain the values
\(\begin{array}{llllll}2 & 2 & 2 & 2 & 2\end{array}\)
meaning that all six nodes have 2 d.o.f. ( \(d_{x}\) and \(d_{y}\) ). In contrast, in the 'consolidation' cubic strain triangle \((L T=7)\) the entries \(\operatorname{LINFO}(21.7)-\) \(\operatorname{LINFO}(42,7)\) contain


where
\(\{1\}\) are the vertex nodes with 3 d.o.f. \(\left(d_{x}, d_{y}\right.\) and \(\left.\bar{u}\right)\).
\(\{2\}\) are the displacement nodes along side (edge) with 2 d.o.f. \(\left(d_{x}, d_{y}\right)\).
\(\{3\}\) are the displacement nodes within element with 2 d.o.f. \(\left(d_{x}, d_{y}\right)\).
\(\{4\}\) are the pore pressure nodes along side with 1 d.o.f. \((\bar{u})\).
\(\{5\}\) are the pore pressure nodes within element with 1 d.o.f. \((\bar{u})\).

\section*{Routine BDATAI}

\section*{block data}

BDAT


DATA \(\operatorname{LIN}(1,4), \operatorname{LIN}(2,4), \operatorname{LIN}(3,4), \operatorname{LIN}(4,4), \operatorname{LIN}(5,4), \operatorname{LIN}(6,4)\).



Element type information
BDAT 43-47 : 1 - 3-noded bar \({ }^{\dagger}\) (2-D)
BDAT 48-52 : 2 - 6-noded LST (2-D)
BDAT 53-57:3-6-noded LST (2-D consolidation)
BDAT 58-63: 4-8 noded quadrilatera \({ }^{\dagger}\)
BDAT 64-69:5-8 noded quadrilateral \({ }^{\dagger}\)
BDAT 70-77 : 6-15-noded CuST
BDAT 78-86 : 7-22-noded CuST
BDAT 87-95 : 8-20-noded brick \({ }^{\dagger}\)
BDAT 96-104 : 9-20-noded brick \({ }^{\dagger}\)
(3-D consolidation)

BDAT 12 131 : \(11-10\)-noded tetrahedra \({ }^{\dagger}\) (3-D consolidation)
BDAT 122-131 : area co-ordinates for LST (type \(=2,3\) ).
BDAT 135-146 : local co-ordinates for element types 4 and 5.
BDAT 150-173 : area co-ordinates for CuST (type \(=6,7\) )
DBAT 177-180 : weights for LST (type \(=2,3\) ).
BDAT 184-188: weights for element types 4 and 5.
BDAT 192-199 : weights for CuST (type \(=6,7\) ).
BDAT 203-208 : local co-ordinates and weights for one-dimensional integration along edges of 2-D elements.

Some of the arrays used in the geometry part of the program are required for the main part of the program, but not all of them. Also a substantial number of additional arrays are required for the main part of the program. As the arrays are dimensioned psuedo-dynamically it is necessary to move some of the arrays used in the geometry part of the program to fill the gaps left by the outgoing arrays and the gaps due to arbitrary size allocation. The arrays to be used in the

\footnotetext{
These elements are not implemented in the program presented here (but see Appendix
} E).
main part of the program are allocated store by starting indexes being set up in array \(G\). Then the arrays which have already been formed are moved to their new locations. This is executed by routine SHFTIB.

\section*{Routine SHFTIB}

SUBROUY INE SHFTIB(IW6, IA, IB,N)
C ROUTINE TO SHIFT AN INTEGER ARRAY BACKWARDS
DIMENSION IA (N).IB(N)
COMMON /DEBUGS/ID1, ID2, ID3, ID4. ID5. ID6, ID7, ID8, ID9, ID10
c
\(\sum_{\substack{\text { Do } \\ J=N+1-I}} \mathrm{I}=1\),
\(\mathrm{J}=\mathrm{N}+1-\mathrm{I}\)
\(0 \mathrm{IA}(\mathrm{J})=\mathrm{IB}(\mathrm{J}\)
IF(ID9.EQ.0)RETUR WRITE (IW6, 900 ) N, IA
900 FORMAT (/1X, 9HNUMBER \(=.16 /(2016 /))\) RETUR
END

SHFT 8: to shift an INTEGER array with N elements to the right; loop on all array elements.
SHFT 9 : shift last term first, to avoid over-writing
SHFT 10 : shift (transfer) array element

The variables (or parameters) which have not been encountered until now are described. These govern the size of the arrays. They vary from element type to element type. If different element types are mixed then the size of the variables is defined as the largest for the mixed group of element types.

Values of NDMX, NPMX, LV, NIP, NL and MDFE are obtained as the maximum values for the different element types present in the mesh.

NDMX - maximum number of displacement nodes in any element.
NPMX - maximum number of pore pressure nodes in any element.
LV - maximum number of displacement nodes along a side (edge).
NL - maximum number of area co-ordinates.
MDFE - maximum number of d.o.f. in any element.
NB - maximum number of columns in the \(B\) matrix.
KES - maximum number of entries in the upper triangular element stiffness matrix.
ICT - The number of 'consolidation' elements in the mesh.
NVPN - The maximum number of variables at any node (= NDIM for drained/undrained analyses)
(= NDIM +1 for consolidation analyses; the additional variable being the excess pore pressure).

These parameters are determined in routine MAXVAL, which scans the different element types present in the mesh and selects the largest value for each parameter. Not all arrays are allocated store psuedo-dynamically. Some arrays have fixed dimensions and these reside in named COMMONs.

\begin{tabular}{|c|c|c|c|}
\hline & IF (NPMX.LT.LINFO(6,LT) )NPMX \({ }^{\text {L }}\) LINFO(6,LT) & MXVL & 58 \\
\hline & IF(LV.LT.LINFO(7,LT) LLV \(=\operatorname{LiNFO}(7, L T\) ) & mxvL & 59 \\
\hline & IF (MIP.LT.LINFO(11, LT ) )NIP = LINFO(11,LT) & MXVL & 60 \\
\hline & IF (NL.LT.LINFO(15, LT ) ) NL=LINFO(15, LT) & MXVL & 61 \\
\hline & IF (MDFE. LT. LINFO( \(16, \mathrm{LT}\) ) ) MDF E=LINFO(16, LT ) & MXVL & 62 \\
\hline 30 & continue & MXVL & 63 \\
\hline & & MXVL & 64 \\
\hline c & nB - number of colimns in b - Matrix & MXVL & 65 \\
\hline C & KES - Size of upper triangular element stiffness matrix es & MXVL & 66 \\
\hline c & lv - Maximum number of displacbuent nodes along element edge & MXVL & 67 \\
\hline & & MXVL & 68 \\
\hline & NB \(=\) NDIM*NDMX & MXVL & 69 \\
\hline & KES \(=M \mathrm{MFE}\) \# (MDFE +1 )/2 & MXVL & 70 \\
\hline & LV \(=\mathrm{L} \mathrm{V}+2\) & MXVL & 71 \\
\hline & NPT \(=\) LV & MXVL & 72 \\
\hline CC & WRITE (IW6, 900)NDIM, NVPN, NPMX, LV, NIP, NL, MDFE & MXVL & 73 \\
\hline CC900 & FORMAT (/1X, 4HNDIM, I6, 2 X , 4HNVPN, I6, 2 X , 4HNPMX, I6, \(2 \mathrm{X}, 2 \mathrm{LLV}\), I6, & MXVL & 74 \\
\hline CC 1 &  & MXVL & 75 \\
\hline CC & WRITE (IW6, 910) NDMX, NB, KES, NPT & MXVL & 76 \\
\hline CC910 &  & MXVL & 77 \\
\hline & RETURN & MXVL & 78 \\
\hline & END & MXVL & 79 \\
\hline
\end{tabular}

MXVL 15-17 : sizes of load/fixity arrays.
MXEN - maximum no. of displacement nodes along edge \(\times 2\) (size of array in named COMMON PRSLD and PRLDI).
MXLD - maximum no. of element sides with applied pressure loads.
MXFXT - maximum no. of fixities (size of arrays MF, TF and DXYT in named COMMON FIX).
MXVL 19-20 : size of material properties' array.
MPR - maximum number of properties per material.
MPT - maximum number of different material zones.
MXVL 22-24 : NSP - number of sampling point in one-dimensional numerical integration along element side.
NS - size of \(D\) matrix (= number of stress/strain components).
MXVL 31 : loop on all element types.
MXVL 35 : update count of consolidation elements.
MXVL 37 : maximum number of variables at any node.
MXVL 38 : add pore pressure variable if consolidation elements are present.
MXVL 43-53 : zero element type dependent parameters.
MXVL 55 : loop on all element types.
MXVL 56-62 : get the maximum value of the following parameters for element types in current mesh.
NDMX - number of displacement nodes.
NPMX - number of pore pressure nodes.
LV - number of displacement nodes along side (at this stage excluding nodes at either end).

\section*{NL - number of local/area co-ordinates}

MDFE - number of d.o.f. in element.
MXVL 69-72 : calculate sizes
NB - number of columns in \(B\) matrix
KES - size (number of terms) of upper triangle of element stiffness matrix.

\section*{7}

\section*{In Situ Stresses}

\subsection*{7.1 INTRODUCTION}

Chapter 5 dealt with how one could set up the in situ stresses from field data or from laboratory measurements of samples. This chapter is about setting up the in situ stresses for starting a finite element analysis. In addition to specifying the stresses, the user has to specify the in situ boundary conditions and stresses acting along any unrestrained boundary. A check is carried out to ensure that the element stresses and the external loads are in equilibrium at the in situ stage.
Fig. 7.1 shows the subroutine hierarchy with routine CPW acting as the main control routine. Section 7.2 gives a brief explanation of the subroutines listed in this chapter.


Fig. 7.1 - Subroutine hierarchy for in situ part of program

Section 7.3 gives the list of principal arrays which have been allocated store psuedo-dynamically in array G , as explained in section 4.3.2. Frequent reference is made to these arrays in Chapters 7 and 8.
Section 7.4 lists the routine CPW, which calls other control routines to carry out various tasks. Routine RDPROP reads the control parameters for the analysis and the material properties in section 7.5 .
Routine RESTRT reads results written on a magnetic tape or disk file from a previous run if the analysis is being restarted. It is appropriate to discuss the stop-restart facility at the end of the analysis, and therefore it is dealt with in section 8.14 .
In section 7.7, routine INSITU calls routine RDSTRS to read the in situ stresses. Routine EQLIB calculates the nodal loads equivalent to the in situ stresses. In section 7.8 the external pressure loads which should be in equilibrium with the in situ stresses are stored by EDGLD. The boundary conditions are read by routine FIXX. In section 7.9 , routine EQLOD carries out an equilibrium check to ensure that the specified pressure loads are in equilibrium with the in situ stresses.

\subsection*{7.2 SUBROUTINE LIST}

Fig. 7.1 shows the subroutine hierarchy, and here follows a brief explanation of each subroutine

CPW - control routine delegates tasks of setting up the in situ stresses to routine INSITU.
RDPROP - reads control parameters for analysis (i.e. no. of increment blocks, type of analysis) and material properties.
RESTRT - deals with stopping and restarting an analysis. For a restarted analysis, it reads results from a past run (see section 8.14).
INSITU - control routine reads the in situ stresses and the boundary conditions and checks that the in situ stresses are in equilibrium.
CHANGE - elements removed have their element type number negated (i.e. array LTYP). (See section 8.4.)
RDSTRS - reads the in situ stresses specified at in situ nodes and interpolates values at integration points.
SORTN2 - to find in situ node with larger \(y\) co-ordinate
SHAPE - calculates the shape functions and derivatives w.r.t. local coordinates.
EQLIB - calculates nodal loads equivalent to element stresses.
FORMB2 - calculates B matrix.
DETMIN - calculates determinant and inverse of Jacobian J.
INSTRS - prints out in situ stresses at each integration point for all elements.
EDGLD - stores pressure loads.
LODLST - stores pressure loads.
FIXX - reads fixities along element sides and stores them node by node.

EQLOD - control routine for equilibrium check. Current stresses must be in equilibrium with current loading.
DISTLD - calculates nodal loads equivalent to stresses along boundary.
SFR1 - used in numerical integration along element boundary.
SELF - calculates nodal loads equivalent to body forces for each element
DETJCB - calculates Jacobian \(\mathbf{J}\) and its determinant.
RESTRN - interprets nodal fixities in terms of g.v.n. to identify variables with prescribed values.
EQLBM - carries out an equilibrium check. Compares nodal loads equivalent to element stresses with nodal loads due to boundary loading and self-weight and prints them out.
REACT - calculates reactions to earth for prescribed variables and prints them.
ZEROSB - routines to zero REAL and INTEGER arrays.

\subsection*{7.3 DEFINITION OF PRINCIPAL ARRAYS}

The principal arrays are now categorised according to the purpose they serve

\subsection*{7.3.1 Loads}

P - incremental loads assembled from various sources form the RightHand Side (RHS) when the equations are solved
PT - sum of all incremental loads
PIB - loads for the incremental block from various sources \({ }^{\dagger}\).
XYFT - sum total of all directly specified nodal point loads.
XYFIB - directly specified nodal point loads for increment block.
PCONI - nodal loads equivalent to in situ stresses.
PCOR - out-of-balance or correcting loads ( \(=\) the difference between external loads and loads equivalent to internal stresses).
PEQT - nodal loads equivalent to current stresses.
PEXI - excavation loads due to removal of elements.
PEXIB - excavation for increment block due to removal of elements
R - reactions at nodes which are restrained or which have prescribed displacements.
FT - nodal loads equivalent to stresses in an element.

\subsection*{7.3.2 Displacements}

DI - incremental displacements/excess pore pressures.
DA - cumulative displacements/excess pore pressures.
\(\dagger\) Pressure loads on boundaries, body forces and forces due to removal or addition of elements.

\subsection*{7.3.3 Geometry and transformation}

XYZ \(\quad-x, y\) and \(z\) co-ordinates of all nodes ( \(z\) only for 3-D)
SHFN - displacement shape functions.
DS \(\quad\) - derivatives of shape functions w.r.t. local co-ordinates.
CARTD - Cartesian derivatives of shape functions.
ELCOD - local array of co-ordinates of displacement nodes in element.
ELCODP - local array of co-ordinates of pore pressure nodes in element.
AA - pore pressure shape functions.
7.3.4 Stresses and strains

VARINT - stress parameters at all integration points.
STR - strains at all integration points.

\subsection*{7.3.5 Stiffness and flow matrices}

D - stress-strain relationship (constitutive model).
B - displacement-strain matrix.
DB - D post-multiplied by B.
SS - upper triangular part of \(\mathrm{B}^{\mathrm{T}} \mathrm{DB}\) (element stiffness matrix).
ES (SG) - square element stiffness matrix

\subsection*{7.3.6 Flow and coupling matrices}

E - multiplies pore pressure to give pore pressure gradients.
PE - kE
RN - \(\boldsymbol{B}^{\mathrm{T}} \mathbf{M}\)
ETE - flow matrix \(\int_{V} E^{T} k E / \gamma \omega \mathrm{d}(\) vol \()\).
RLT - coupling matrix \(\int_{V} B^{T} m \bar{N} d(v o l)\).

\subsection*{7.3.7 Integer arrays}

NCONN - list of nodes associated with each element.
MAT - material zone numbers for each element.
LTYP - element type numbers for each element.
MRELVV - user element numbers.
MREL - program element numbers.
NRELVV - user node numbers.
NREL - program node numbers.
NW - global variable numbers of first variable of each node.
NQ - number of d.o.f. of each node.
JEL - list of element changes (added/removed).
IDFX - identifier of free nodal d.o.f. from restraints ( \(0-\) free; 1 - fixed)
IFR - list of nodes currently in front (during solution)
NDEST - destination of nodes to front
NDL - index to front region of stiffness terms.
NWL - local array of element pore pressure d.o.f.

NMOD - identifier of yielded elements (not used in this version).
NP1,NP2 - indexes to array NCONN of nodes at either end of element sides.

\subsection*{7.4 CONTROLLING ROUTINE}

Routine CPW is the main controlling routine which instructs other control routines to carry out various tasks (see Fig. 7.1). Routine RDPROP reads the control parameters for the analysis and the material properties. Routine RESTRT reads results written to a magnetic tape or disk file from a previous run if the analysis is being restarted. Routine RDSTRS reads the in situ stresses, boundary conditions and loads which are acting before the analysis is started.

Routine CPW
```

SUBROUTINE CPW(NN,NEL, NDF, NNOD1,NTPE,NIP,NVRS,
1 NVRN, NDIM, MUMAX,NDZ, IFRZ, NNZ, NDMX,NPMX,
2 NS, NB, NL, NPR, NMT, NPT, NSP, NPL, MDFE, KES, NVPN,
3 INXL,MXEN,MXLD,MXFXT, LV,MCORE, LINK 1, NVTX, ND, MDZ, NEDZ
XYZ,DI,DA, VARINT,P,PT,PIB,REAC,PCOR, PEQT,XYFT,XYFIB, 'S, ES, ELCODP,
STR, PEXIB, PEXI, PCONI, D, ELCOD, DS,SHFN,CARTD,B,DB,FT,SS, ES, ELCODP,
E,PE,RN,AA, ETE, RLT,
M,
8 JEL, IDFX, NDEST, NP1, NP2, IFR, NDL, NWL, NMOD,
3 CIP, LL,V,FXYZ, PR, PDISLD, PRES, NTY, A, MFZ,
CPW
C*)
C MAIN CONTROLLING ROUTINE - INSITU STRESSES
REAL L,LL
INTEGER TF - LOWING STATEMENT afTER CONVERTING PROGrAM TO DOUBLE

```

```

CC REAL A
DIMENSION XYZ(NDIM,N(),DI(NOF),DA), PCOR(NDF),PEQT(NDF),XYFT(NDF)
1 P(NDF),PT (NDF),PIB (NDI,REAC) PEXIB(NDF), PEXI (NDF), PCONI(NDF)
DIMENSION D(NS,NS), ELCOD(NDIM, NDMX), DS (NDIM, NDMX),SHFN(NDMX),
1 CARTD(NDIM, NDMX),B(NS,NB),DB(NS,NB),FT(NDIM,NDMX),
2 SS(NB,NB),ES(KES)
DIMENSION ELCODP(NDIM, NPMX), E(NDIM, NPMX), PE (NDIM, NPMX),
DIMENSI RN(NB),AA(NPMX), ETE (NPMX, NPMX),RLT (NB, NPMX)
DIMENS ION NCONN(NTPE, NEL),MAT (NEL),LTYP(NEL),MRELVV(NEL),
1 MREL(MUMAX),NRELVV(NN),NREL (NNL),NN(NIN
DIMENSION IFR(IFRZ),NDL (MDFE),NNL(NPMX),NMOD(NIP,NEL)
DIMENSION CIP(NDIM),LL(NL),V(LV),FXYZ(NDIM),PR(NPR,MMT),
DIMENSLD(NDIM,LV), PRES (NDIM,LV),NTY(NMT), A(MFZ)
C COMMON/FLOW / NPLAX
COMMON /DATL /L(4,100)
COMMON /DATW /W(100)
COMMON /ELINF
COMMON /FIX / DXYT(4,200),MF(200),TF(4,200),NF0),NE2(100),NLED CPW
CMMON /PRSLD / PRESLD(10,100),LEDG(100),NDE 1(100),NDE2(100), NLED CFW
COMMON /PRLDI / PRSLDI (10,100),LEDI(100),NDI 1(100),NDI2(100),1LOD CPM
COMMON /DEVICE/ IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9
COMMON /PARS / PYI,ALAR,ASMVL,ZERO

```

READ (IR5,*)IDCHK
WRITE (IW6, 922)IDCH
IF (IDCHK.EQ.0) WRITE (IW6, 930)
IF (IDCHK.EQ. 1) WRITE (IW6, 935)
IF(IDCHK.EQ.2)WRITE (IW6,940)
C-----IF ONLY TO TEST GEOMETRY DATA STOP HERE IF (IDCHK.EQ.1)STOP
F(LINK1, EQ.LINK2) GO TO
WRITE (IW6, 904 )LINK 1, LINK2
STOP
1 CALL ZEROR3(STR, NVRN,NIP, NEL)
CC WRITE(IW6,910)LINK2
WRITE (IW6, 801 ) NN, NEL, NDF, NNOD 1, NTPE, NIP, NVRS WRITE (IW6, 802) NDIM, MUMAX, NDZ, IFRZ, NNZ, NDMX, NPMX WRITE (IW6, 803) NS, NB, NL, NPR, NMT, NPT, NSP WRITE (IW6, 804) NPL, MDFE, KES, NVPN, INXL, MXEN, MXLD
WRITE (IW6, 805) MXFXT, LV, MCORE, NVTX WRITE (IW6, 805)MXFXT, LV, MCORE, NVTX, ND

801 format (/1X, 8HNN \(=, 15,3 \mathrm{X}, 8 \mathrm{HNEL}=, \mathrm{I} 5,3 \mathrm{X}, 8 \mathrm{HNDF}=, 15\), \(13 \mathrm{X}, 8 \mathrm{BNNOD}=, 15,3 \mathrm{X}, 8 \mathrm{BNTPE}=.15,3 \mathrm{X}, 8 \mathrm{HNIP}=, 15\), \(23 \mathrm{X}, 8 \mathrm{HNVRS}=, \mathrm{IS})\)
C 802 FORMAT ( \(/ 1 \mathrm{X}, 8\) BNDIM \(=, 15,3 \mathrm{X}\), BHMUMAX \(=, I 5,3 \mathrm{X}, 8\) HNDZ \(=, I 5\), \(13 \mathrm{X}, 8 \mathrm{HIFRZ}=, \mathrm{IS}, 3 \mathrm{X}\)
\(3 \mathrm{XX}, 8 \mathrm{HNPMX}=, \mathrm{IS})\)
\({ }^{C} 803\) format (/1X, 8HNS
 2 3X, BHNSP \(=\), ,I5)
C 804 FORMAT \(/ 11 \mathrm{X}, 8 \mathrm{HNPL}=, 15,3 \mathrm{X}, 8 \mathrm{HMDFE}=, 15,3 \mathrm{X}, 8 \mathrm{HKES}=, \mathrm{I} 5\), 1 \(3 \mathrm{X}, 8 \mathrm{HNVPN}=, 15,3 \mathrm{=}, 8 \mathrm{HINXL}=, 15,3 \mathrm{X}, 8 \mathrm{BHMEN}=, 15\),
\(3 \mathrm{X}, 8 \mathrm{HMXLD}=, 15)\)
\(3 \mathrm{X}, 8 \mathrm{BMXLD}=, 15\) )
C 805 FORMAT( \(/ 1 \mathrm{X}, 8 \mathrm{HMXXXT}=, 15,3 \mathrm{X}, 8 \mathrm{HLV}=, 15,3 \mathrm{X}, 8 \mathrm{HMCORE}=, \mathrm{I} 5\),
\(\left.13 \mathrm{X}, 8 \mathrm{HNVTX}=, I 5,3 \mathrm{X}, 8 \mathrm{HND}=, I 5 / / 1 \mathrm{X}, 120\left(1 \mathrm{H}^{*}\right)\right)\)

1 IPRIM, IUPD, ICOR, PR, NTY, NDIM)
CPW

CALL RESTRT (INCS, INCF, NN, NVTX, ND, NEL, NDF, NTPE, NIP,
NVRS, NVRN, MUMAX, NNZ , NNOD 1, NDIM, MDZ NEDZ NL, INXL
NCONN, LTYP, MRELVV, MREL, NRELVV, NREL, NH, NMOD,'
3 XYZ, DA, VARINT, PCOR, XYFT, STR, PCONI, TTIME, TGRA V)

(INCS. EQ. 1 CALL INSITU (NN, NEL, NDF, NNOD 1, NTPE, NIP, NDIM,
MUMAX, NNZ, NDZ, NPL, NDMX, NS, NB, NL, LV, NPR, NMT, NPT, NSP
XYY, DA, VARIN, P, PT, PCOR, PEQT, XYFT, PEXIB, PCONI, ELCOD, DS, SHFN,
CARTD, B, FT, NCONN, MAT, LTYP, MRELVV, MREL, NREL, NW, NQ, JEL, IDFX,
NP 1, NP2, NMOD, CIP, LL, V, PR, PDISLD, PRES, NTY,
A, MF2, INXL, MXEN,MXLD, MXFXT, TGRAV, IPRIM)

\begin{tabular}{|c}
CPW \\
CPW \\
\(-\quad \mathrm{CPW}\)
\end{tabular}

C return
C900 FORMAT (80A1)
CC 903 FORMAT (1X, 80A1)

904 FORMAT (//10X, 32HERROR ---- LINK CODE MISMATCH,2I5)
CC910 FOBMAT(/10X, 12HLINK CODE =,I5)
CC917 FORMAT (I5)
C918 FORMAT (//1X, 120(1H*))
922 FORMAT (/1X, 2OHDATA CHECK OPTION \(=\), I5/)
930 FORMAT ( \(1 \mathrm{X}, 32\) COMPLETE ANALYSIS IS CARRIED OUT/)
940 FORMAT( \(1 X, 42\) HGEOMETRY DATA AND IN-SITU STRESSES CHECKED/) END

CPW 47-48 : read flag to stop analysis. (Allows only part of the input data to be checked, without carrying out the complete analysis.)
CPW 54-55 : check link number (allowing for the possibility that the program can be split into two parts; geometry part and main part. This ensures correct linkage between the parts)
CPW 87-88 : read control parameters and material properties.
CPW 92-95 : stop-restart facility. Write information to a file in magnetic tape or in disk. This enables the analysis to be stopped and restarted.
CPW 99-104: in situ stresses are set up and equilibrium checked at this stage. CPW 108 : print out Cam-clay codes

\subsection*{7.5 CONTROL PARAMETERS AND MATERIAL PROPERTIES}

Routine RDPROP reads the control parameters for the analysis and also read the material properties for the different material zones specified in the mesh.

Routine RDPROP



RDPR 15 : any out-of-balance loads are not carried forward to next increment (could be user specified, if need be).
RDPR 17-18: read and write control parameters for analysis.
RDPR 19-20 : check INCF \(\geqslant\) INCS; otherwise stop.
RDPR 28 : counter of increments.

RDPR 32-33 : print analysis type.
\[
\begin{aligned}
\text { NPLAX } & =0, \text { plane strain } \\
& =1, \text { axisymmetry } .
\end{aligned}
\]

RDPR 43 : zero material property array.
RDPR 46-48 : read in material properties.

\subsection*{7.6 IN SITU STRESSES AT INTEGRATION POINTS}

Arrays are set up to store the displacements at the nodes and the current values of stresses and strains at the integration points. The in situ stresses have to be defined at the integration points at the beginning of the analysis and not at the nodes (see Fig. 7.2). For most problems the variation of stresses is linear with depth and is constant in the horizontal direction. For most horizontally-laid layers the stresses and strength are the same at any given depth. Therefore it is sufficient to specify the variation of stresses with depth. Hence the stresses are defined at selected depths, probably to define non-linear variation by a series of piecewise linear curves. These selected points are defined as in situ nodes. These in situ nodes serve as reference points from which the stresses are interpolated. These in situ nodes should span the entire primary mesh. An error message will be printed if elements lie outside this in situ region. These in situ nodes are not to be confused with the nodes of the finite element mesh.

The stresses at all integration points are calculated by linear interpolation. A separate option is available to directly specify the in situ stresses at the integration points (for example where the ground has a slope and where the stresses are not the same in the horizontal direction) if the stress variation is such that the above simple option cannot deal with these specific situations.

Stress jumps usually in \(\sigma_{\mathrm{h}}^{\prime}\) can still be catered for by this option. In situ nodes \(A\) and \(B\) have the same co-ordinates. However, they have different horizontal stresses, as shown in Fig. 7.3. For clarity these are shown slightly apart. The vertical stress has to be continuous across \(C D\) and should have the same value for equilibrium to be satisfied.

\subsection*{7.7 SETTING UP THE IN SITU STRESSES}

Routine RDSTRS deals with the task of setting up the in situ stresses at the integration points. It is not sufficient just to set up the in situ stresses. The boundary conditions have to be specified either where element sides are restrained or where pressures act. These details are necessary to carry out an equilibrium check (see section 7.9) at the in situ stage.

The program carries out a check that the in situ stresses specified are in equilibrium with the loads (pressures) acting on the boundary. This loading is not to be confused with the loading applied during the analysis. (This is illustrated in some example problems in Chapter 9.) Routines other than RDSTRS are called, as shown in Fig. 7.1. The master control routine is INSITU.


Cubic strain triangle
Fig. 7.2 - Integration scheme


Fig. 7.3 - A jump in horizontal stresses is permissible


3 NPT, NSP, MXEN, 2, 0, TGRAVI, IRAC, ZERO, KSTGE )
INST 130

114 H PRIMARY MESH/1X,52(1H-)/)
20 FORMAT(2016/)
926 FORMAT ( \(/ / 10 X, 30\) HIN -SITU STRESS OPT ION......... \(=\), I 10
1 /10x, 3OHNLMBER OF IN-SITU NODES...... =, I10/)
930 FORmat (/1X, \(27 \mathrm{HIN-SITU}\) bOUNDARY CONDIT IONS \(/ 1 \mathrm{X}, 27(1 \mathrm{H}-) /\) )
952 FORMAT (/

 4 1HG/()
960 FORMAT (/1X, 38HSPECIFIED NODAL VALUES OF SHEAR/NORMAL
1 19H STRESSES (IN-SITU)/1X, \(57(1 H-) / 1 X\), UHELEM,,
2 1X, 4HNDE 1, 2X, 4HNDE2, 2X, 4HSHR \(1,2 X, 4 H N O R 1,8 X, 4 H S H R 2,8 X, 4 H N O R 2\),
3 8X, \(4 H S H R 3,8 X, 4 H N O R 3,8 X, 4 H S H R 4,2 X, 4 H N O R 4,8 X, 4 H S H R 5,8 X, 4 H N O R 5 /)\)
964 FORIAT(1X,314, 10E12.4)

INST
INST 37 : skip if no changes to the initial mesh.
INST 42-43 : read and write list of changes to initial mesh.
INST 45-48 : make all removed elements' type numbers negative in array LTYP.
INST 53-61 : zero all arrays for current analysis.
INST 65-66 : read and write in situ stress option and number of in situ nodes.
INST 70-73 : calculate pointers for some arrays in A for calculating in situ stresses (temporary usage).
INST 75-78 : calculate in situ stresses.
INST 83 : set counter of nodal fixities to zero.
INST 85-88 : zero loads/displacements' arrays.
INST 94 : skip if in situ stresses have been set to zero.
INST 96-97 : read and write the no. of loads/fixities to maintain equilibrium at in situ level.
INST 99 : skip if no pressure loads are applied.
INST 102 : loop to read pressure loads (which caused in situ stresses).
INST 103-104 : read and write pressure loads prescribed along element sides.
INST 106-113 : change sequence of pressures to suit storing.
INST 115-116 : enter pressure loads in PRESLD.
INST 117 : end of loop to read pressure loads.
INST 118 : skip if no prescribed fixities.
INST 123-124: read sides which are restrained.
INST 126 : calculate d.o.f. of each node and total d.o.f. in mesh.
INST 127-130: calculate loads equivalent to in situ stresses and carry out an equilibrium check at in situ stage.
7.7.1 Simulation of construction events

Simulation of a construction event (e.g. an embankment) is modelled by adding
a set of elements. To do this, these elements are 'removed' or 'inactivated' (they do not take part in the analysis until 'added' or 'reactivated') before the first increment. This is done by making the element type numbers (array LTYP) negative to identify the elements which have been removed. Routine CHANGE does this. These elements do not have any in situ stresses. In situ stresses are not assigned to elements not present at the beginning of the first increment. The in situ region need not enclose these elements. When it comes to setting up the in situ stresses, these elements are by-passed.

Routine CHANGE also calculates the implied loadings due to the removal of elements. To differentiate between the above two cases (when to -- and when not to - calculate the implied loads) a flag IN is used in the argument list. Only when this is set to 1 are the implied loadings calculated. A detailed description is given in section 8.4.

\subsection*{7.7.2 Read in situ stresses}

Routine RDSTRS deals with the task of setting up the-in situ stresses at the integration points.

\section*{Routine RDSTRS}

SUBROUTINE RDSTRS (NN, NEL, NDF, NNOD 1 , MUMAX, NTPE, NIP, NVRS, NL, NB, NS, 1 NPR, NMT, NDIM, NDMX, KT, XYZ, VARINT, PEQT, ELCOD, DS, SHFN, CARTD, 2 B, FI, NCONN, MAT, LTYP, MRELVV, MREL, NW, MMOD, CIP, LL, PR, NTY, YI,
( \(A R\), NLI, NHI,NI)

C******************************************************************RST
REAL L,LL
DIMENS \(\operatorname{LON}\) XYZ(NDIM, NN), VARINT(NVRS, NIP, NEL) , PEQT (NDF)
DIMENSION ELCOD (NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX),
1 CARTD(NDIM, NDMX), B(NS, NB), FI (NDIM, NDMX)
DIMENS ION NCONN(NTPE, NEL), MAT (NEL), LTYP(NEL), MRELVV (NEL)
DIMENSION MREL (MUMAX), NW (NNOD1), NMOD (NIP, NEL)
DIMENSION YI (NI), VAR(NVRS, NI), NLI (NI), NHI (NI)
DIMENSION CIP (NDIM), LL (NL), PR (NPR, NMT), NTY (NMT)
COMMON /DEVICE/ IR11, IR 4, IR5, IW2, IW4
, IW2, IW4, IW6, IW7, IW8, IW9
COMMON /DATL /L(4,100)
COMMON /ELINF / LINFO (50,15)


ISTGE \(=1 \quad\) RDST
c INITIALISE VARINT - INTEGRATION POINT VARIABLES

\(\begin{array}{ll}\text { C } & \text { Intialise peqt - CONTRIBUTION OF FORCES DUE TO } \\ \text { C } \\ \text { SLRESESEST }\end{array}\)
CALL ZEROR1 (PEQT, NDF) IF (KT.EQ.0) WRITE (IW6, 904) IF (KT-1) 200, 8, 82
C READ NUMBER OF IN-SITU NODAL POINTS
\begin{tabular}{|c|c|c|c|}
\hline & & -RDST & 38 \\
\hline & WRITE (IW6,906) & RDST & 39 \\
\hline & DO \(10 \mathrm{~J}=1\), NI & RDST & 40 \\
\hline c & & RDST & 41 \\
\hline c & Read node coordinates and variables & RDST & 42 \\
\hline C--- & & -RDST & 43 \\
\hline & READ (IR5, *)IL, YI (IL) , (Var (JJ, IL), JJ=1, NVRS) & RDS T & 44 \\
\hline 10 & WRITE (IW6, 910) IL, YI (IL), (VAR(JJ, IL), JJ=1, NVRS) & RDST & 45 \\
\hline c & & RDST & 46 \\
\hline & MI \(=\) NI-1 & RDST & 47 \\
\hline & DO \(20 \mathrm{IN}=1\), MI & RDST & 48 \\
\hline & \(\mathrm{N} 1=\mathrm{IN}\) & RDST & 49 \\
\hline & N2=IN+1 & RDST & 50 \\
\hline & \(\mathrm{Y} 1=\mathrm{YI}(\mathrm{N} 1\) ) & RDST & 51 \\
\hline & \(\mathrm{Y} 2=\mathrm{YI}(\mathrm{N} 2\) ) & RDST & 52 \\
\hline C & & RDST & 53 \\
\hline & CaLL SORTNべ (Y \(1, Y 2, N 1, N 2\), NMIN, NMAX) & RDST & 54 \\
\hline & NLI (IN) = NMIN & RDST & 55 \\
\hline & NHI (IN ) = NMAX & RDST & 56 \\
\hline 20 & continue & RDST & 57 \\
\hline c---- & & RDST & 58 \\
\hline c & LOOP ON ALL GEOMETRY MESH ELEMENTS & RDST & 59 \\
\hline & & & \\
\hline & DO \(80 \mathrm{~J}=1\), NEL & RDST & 61 \\
\hline & LT \(=\operatorname{LTYP}\) ( J ) & RDST & 62 \\
\hline & IF (LT.LT.0)GOTO 80 & RDST & 63 \\
\hline CC & LT =IABS (LT) & RDST & \\
\hline & \(J U S=M R E L V V(J)\) & RDST & 65 \\
\hline & GO TO (80, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 80, 80, 80, 80) , LT & RDST & 66 \\
\hline & WRITE (IW6,915)JUS, LT & RDST & 67 \\
\hline & GOTO 80 & RDST & 68 \\
\hline 22 & KM=MAT (J) & RDST & 69 \\
\hline & NGP=LINFO (11,LT) & RDST & 70 \\
\hline & NDN \(=\operatorname{LINFO}\) ( \(5, \mathrm{LT}\) ) & RDST & 71 \\
\hline & INDX \(=\operatorname{LINFO}(12, \mathrm{LT}\) ) & RDST & 72 \\
\hline & NAC=LINFO(15,LT) & RDST & 73 \\
\hline C & & RDST & 74 \\
\hline & DO \(30 \mathrm{KN}=1\), NDN & RDST & 75 \\
\hline & \(N D E=N C O N N(K N, J)\) & RDST & 76 \\
\hline & DO 30 ID \(=1\), NDIM & RDST & 77 \\
\hline 30 & ELCOD (ID, KN ) =XYZ (ID, NDE ) & RDST & 78 \\
\hline c-- & & & 79 \\
\hline c & LOOP ON ALL integration points & RDST & 80 \\
\hline \[
\mathrm{c}-
\] & DO \(60 \mathrm{IP}=1\), NGP & RDDST & 81 \\
\hline c & & RDST & 83 \\
\hline c & calculate integration point coordinates & RDST & 84 \\
\hline c & & -RDST & 85 \\
\hline & \(I P A=I P+I N D X\) & RDST & 86 \\
\hline & DO \(35 \mathrm{IL}=1\), NAC & RDST & 87 \\
\hline 35 & \(L L(I L)=L\) (IL, IPA \()\) & RDST & 88 \\
\hline & CALL SHAPE (IW6, LL, NAC, DS, SHFN, NDIM, NDN, LT, 1, JUS ) & RDST & 89 \\
\hline c & & RDST & 90 \\
\hline & DO 40 ID \(=3\), NDIM & RDST & 91 \\
\hline & SUM \(=\) ZERO & RDST & 92 \\
\hline c & & RDST & 93 \\
\hline & DO \(38 \mathrm{I}=1\), NDN & RDST & 94 \\
\hline 38 & SUM \(=\) SUM + SHFN (I)*ELCOD (ID, I) & RDST & 95 \\
\hline 40 & CIP (ID) \(=\) SUM & RDST & 96 \\
\hline & YY \(=C I P(2)\) & RDST & 97 \\
\hline c- & & -RDST & 98 \\
\hline c & Search for relevant in-situ layer & RDST & 99 \\
\hline c & & -RDST & 100 \\
\hline & DO 45 JJJ=1,MI & RDST & 101 \\
\hline & NSM = NLI (JJJ) & RDST & 102 \\
\hline & NLA \(=\) NHI (JJJ) & RDST & 103 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{YMIN \(=\) YI (NSM)
YMAX \(=\) YI (NLA}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{RDST 104}} \\
\hline & & & \\
\hline \multirow[t]{2}{*}{C} & \multirow[b]{2}{*}{IF (YY.LT. YMIN. OR. YY.GT. MMAX)GO TO 45 GO TO 48} & & \\
\hline & & RDS & T 10 \\
\hline \multirow{5}{*}{45} & GO TO 48 & RDS & T 108 \\
\hline & 5 Continue & RDS & T 10 \\
\hline & & RDS & T 110 \\
\hline & G0 TO 60 ( \({ }^{\text {a }}\) & RDS & T \\
\hline & & RDS & T 112 \\
\hline c & DIRECT INTERPOLATION FROM IN-SITU MESH NODES & RDS & 113 \\
\hline & DIEEC & RDS & T 11 \\
\hline \multirow[t]{2}{*}{} & DY=YI (JJJ)-YI (JJJ +1) & RDS & 115 116 \\
\hline & YR \(=(\mathrm{YY}-\mathrm{YMIN}) / \mathrm{DY}\) & RDS & T 117 \\
\hline \multirow[t]{2}{*}{C} & & RDS & T 118 \\
\hline & DO \(50 \mathrm{I}=1\), NVRS & RDS & 119 \\
\hline \multirow[t]{3}{*}{50} & Varint (I, IP, J) = Var \((\mathrm{I}, \mathrm{NSM})+(\operatorname{VaR}(\mathrm{I}, \mathrm{JJJ})-\operatorname{Var}(\mathrm{I}, \mathrm{JJJ}+1)) * Y \mathrm{Pr}\) & RDS & 120 \\
\hline & WRITE (IW6, 951) J, IP, (VARINT (IU, IP, J), IU \(=1\), NVRS)
KGO & RDS & T 121 \\
\hline & & RDS & 122 \\
\hline \multirow[t]{6}{*}{52} & G0 TO (60,60,52,52,60,60), KGO & RDS & 123 \\
\hline &  & RDS & 124 \\
\hline & & RDS & 125 \\
\hline & IF (KGO.NE. 3)GO TO 54 & RDS & 126 \\
\hline & PU \(=0.5 * \mathrm{PC}\) & RDS & 127 \\
\hline & Co 10.5 & RDS & 28 \\
\hline \multirow[t]{2}{*}{} & PU=PC/2. 7182818 & RDS & 129 \\
\hline & VARINT (NS \(+2, \mathrm{IP}, \mathrm{J})=\mathrm{PR}(3, \mathrm{KM})-\mathrm{PR}(1, \mathrm{KM}) * \operatorname{ALOG}(\mathrm{P})-\) & RDS & 30 \\
\hline &  & RDS & 131 \\
\hline \multirow[t]{3}{*}{80} & continue & RDS & 132 \\
\hline & \multirow[t]{2}{*}{GOTO 92} & RDS & 133 \\
\hline & & RDS & 134 \\
\hline & \multirow[t]{2}{*}{direct specification of in-Situ stressess} & RDS & 135 \\
\hline \multirow[t]{2}{*}{} & & RDS & 136 \\
\hline & IF (KT. NE. 2) GO TO 92 & RDS & 137 \\
\hline & WRITE (IW6, 955) 92 & RDS & 138 \\
\hline \multirow[t]{6}{*}{C ***} & READ For All integration points & RDS & 139 \\
\hline & DO 90 IM \(=1\), NEL & RDS & 140 \\
\hline & READ (IR5, *) MUS & RDS & 142 \\
\hline & IL=MREL(MUS) & RDS & 143 \\
\hline & LT=LTYP(IL) & RDS & 144 \\
\hline & NGP=LINFO(11,LT) & RDST & 145 \\
\hline & & RDS \(T\) & 146 \\
\hline & DO \(85 \mathrm{IP}=1\), NGP & RDST & 147 \\
\hline & READ (IR5,*) (Varint (JJJ, IP, IL), JJJ = 1 , NVRS) & RDSI & 148 \\
\hline & WRITE(IW6, 960) (VARINT (JJJ, IP, IL ), JJJ \(=1\), NVRS) & RDST & 149 \\
\hline & Continue & RDST & 150 \\
\hline & \multirow[t]{2}{*}{CaLculate equilibriom loads for insitu stresses} & RDST & 151 \\
\hline & & RDST & 152 \\
\hline & ASSEMBLE ELEMENT CONTRIBUTION (FI) INTO PEQT & RDST & 153 \\
\hline & & RDST & 154 \\
\hline & CR=7. & RDST & 155 \\
\hline \multirow[t]{10}{*}{C} & IF (NPLAX.EQ.1)CR=2.*PYI & RDST & 156 \\
\hline & & RDS T & 157 \\
\hline & DO \(100 \mathrm{~J}=1\), NEL & RDST & 158 \\
\hline & LT \(=\operatorname{LTYP}\) ( J ) & RDST & 159 \\
\hline & IF (LT.LE.0)GO TO 100 & RDST & 160 \\
\hline & MUS =MRELVV(J) & RDST & 161 \\
\hline & NDN \(=\operatorname{LINFO}(5, \mathrm{LT}\) ) & RDST & 162 \\
\hline & NGP=LINFO(11,LT) & RDST & 163 \\
\hline & INDX \(=\operatorname{LINFO}(12, L T)\) & RDST & 164 \\
\hline & NAC \(=\operatorname{LINF} 0(15, \mathrm{LT}\) ) & RDST & 165 \\
\hline & & RDST & 166 \\
\hline & CALL ERLIB (J, MUS, LT, NGP, NIP, INDX, NTPE, NEL, NDIM, NN, NDMX, NDN, & RDST & 167 \\
\hline & NS, NB, NAC, NVRS, XYZ, VARINT, ELCOD, DS, SHFN, CARTD, B, FI, & RDST & 168 \\
\hline & NCONN,LL, ISTGE) & RDST & 169 \\
\hline
\end{tabular}

\begin{tabular}{lll} 
RDST & 28 & : zero array of stresses. \\
RDST & 33 & : zero array PEQT; loads equivalent to in situ stresses.
\end{tabular}

RDST 34 : if in situ stresses are zero.
RDST 35 : branch off, depending on in situ stress option.
RDST 40 : no. of in situ nodes.
RDST 44-45 : read and write stresses specified at in situ nodes.
RDST 47 : no. of in situ layers.
RDST 49-52 : nodes marking each layer.
RDST 54 : enter nodes in the order of increasing depth.
RDST 55-56 : sort nodes into top-down sequence.
RDST 61 : loop on all elements.
RDST 63 : skip if element is not present in primary mesh.
RDST 66 : skip if element type is not present.
RDST 69-73 : element type dependent parameters.
NGP - no. of integration points.
NDN - no. of displacement nodes in element.
INDX - index to arrays \(W\) and \(L\) for different element types.
RDST 75-78 : copy nodal co-ordinates into local array ELCOD.

RDST 82 : loop on all integration points
RDST 87-88: local/area co-ordinates of integration point.
RDST 89 : calculate shape functions SHFN.
RDST 91-97 : co-ordinates of integration point.
RDST 101-105: co-ordinates of nodes at top and bottom of layer.
RDST 107 : search for integration point in each in situ layer.
RDST 108 : layer in which integration point lies is found.
RDST 111 : integration point co-ordinate is outside in situ space.
RDST 116 : calculate interpolation factor.
RDST 119-120: interpolate stresses at integration point.
RDST 122 : material type number
RDST 125-129: calculate \(p_{\mathrm{c}}^{\prime}\) (PC) and critical state value of \(p^{\prime}\) as PU for Camclay models.
RDST 130-131: calculate voids ratio.
RDST 132 : end of loop on integration points
RDST 133 : end of element loop.
RDST 138-139: direct specification of stresses at integration point
RDST 141 : loop on all elements.
RDST 147-149: read and write stresses at each integration point
RDST 150 : end of element loop.
RDST 158 : calculate loads equivalent to in situ stresses; loop on all elements.
RDST 160 : skip if element is not present in primary mesh.
RDST 162-165: element type dependent parameters.
RDST 167-169: calculate loads in equilibrium with stresses in element (into FI).
RDST 176-181 : slot FI into PEQT.
RDST 182 : end of element loop.
RDST 188-189: print out in situ stresses at integration points.
Routine SORTN2


SRTN 5-9 : sort two nodes; assign NMAX to the node with larger \(y\) value.

\subsection*{7.7.3 Integration point co-ordinates}

The shape functions are used to calculate the co-ordinates of the integration points from the nodal co-ordinates.
\[
\begin{align*}
& x(\xi, \eta)=\sum_{i=1}^{n} N_{i}(\xi, \eta) x_{i} \\
& y(\xi, \eta)=\sum_{i=1}^{n} N_{i}(\xi, \eta) y_{i} \tag{7.1}
\end{align*}
\]

Routine SHAPE calculates the values of the shape functions \(N_{i}-\) SHFN(NDN). It also calculates the derivatives of the shape functions w.r.t. the local coordinates: \(\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta\), which are placed in array DS(NDIM,NDN). These quantities are required in the calculation of the B matrix (see routine FORMB2). During the course of the analysis, there are many occasions when only the shape functions are required and not their derivatives. This choice is made by assigning 1 to the parameter ICODE. If set to 2 , derivatives are also calculated.

Routine SHAPE

SUBROUT INE SHAPE (IW6,LL, NAC, DS, SHFN, NDIM, NDN, LT, ICODE, MUS)

\(\operatorname{DS}(1,2)=0\).
DS \((1,4)=4, *\) AC2



SHPE \(8-13\) : set up \(\mathrm{AC} 1, \mathrm{AC} 2\), etc. equal to the integration point coordinates.
\(\mathrm{NL}=3\) for two-dimensional triangular elements.
\(\mathrm{NL}=2\) for two-dimensional quadrilateral elements.
\(\mathrm{NL}=3\) for three-dimensional elements
SHPE 15 : branch off for different element types.
SHPE 23 : shape functions and derivatives for bar element (LT \(=1\); not yet implemented).
SHPE 31-36: shape functions for six-noded triangular element ( \(\mathrm{LT}=2,3\) ).
SHPE 39-44 : calculate derivatives w.r.t. local co-ordinates \(-\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta\) ( \(\mathrm{LT}=2,3\) ).
SHPE 56 : shape functions and derivatives for quadrilateral element ( \(\mathrm{LT}=4,5\) ) - not included in this version.
SHPE 63-75 : set up constants for LT \(=6,7\).
SHPE 79-93 : shape functions for cubic strain triangle (LT \(=6,7\) ).
SHPE 96-126: calculate derivatives w.r.t. local co-ordinates \(-\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta\) ( \(\mathrm{LT}=6,7\) ).
SHPE 131 : calculate shape functions and derivatives for brick element ( \(\mathrm{LT}=8,9\); not yet implemented)
SHPE 137 : calculate shape functions and derivatives for tetrahedra element (LT \(=10,11 ;\) not yet implemented).

\subsection*{7.7.4 Loads equivalent to in situ stresses}

The nodal loads equivalent to the in situ stresses are calculated in routine EQLIB and placed in array \(F(N D F)\) for each element, and these are later used in the equilibrium calculations.
\[
\begin{align*}
& \mathrm{F}(\mathrm{NDF})=\left[\begin{array}{c}
F_{x i} \\
F_{y i}
\end{array}\right] \\
& {\left[\begin{array}{l}
F_{x i} \\
F_{y i}
\end{array}\right]=\int \mathrm{B}_{i}^{\mathrm{T}} \cdot \sigma_{0} \mathrm{~d}(\mathrm{vol})=\int_{V_{\mathrm{e}}}\left[\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \cdot \sigma_{x 0}+\frac{\partial N_{i}}{\partial y} \cdot \tau_{x y 0} \\
\frac{\partial N_{i}}{\partial y} \cdot \sigma_{y 0}+\frac{\partial N_{i}}{\partial x} \cdot \tau_{x y 0}
\end{array}\right] \mathrm{d}(\mathrm{vol}) .} \tag{7.2}
\end{align*}
\]

The \(\mathrm{B}_{i}\) matrix is given by
\[
\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial x} & 0 \\
0 & \frac{\partial N_{i}}{\partial y} \\
\frac{N_{i}}{x} & 0 \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}
\end{array}\right]
\]

The calculation
\[
\begin{equation*}
\mathrm{F}_{i}=\int \mathrm{B}^{\mathrm{T}} \cdot \sigma_{0} \mathrm{~d}(\mathrm{vol}) \tag{7.3}
\end{equation*}
\]
is expanded and written in long hand, leaving out all zero multiplications using
\[
\operatorname{CARTD}(1, \mathrm{l})=\frac{\partial N_{i}}{\partial x}
\]
\[
\begin{equation*}
\operatorname{CARTD}(2, \mathrm{I})=\frac{\partial N_{i}}{\partial y} \tag{7.4}
\end{equation*}
\]
\[
=\frac{N_{i}}{x}
\]
\[
\mathrm{B}(3, \mathrm{I})
\]
\(\mathrm{I}, i\) denote the \(i\) th node.
\(\dagger\) This term is only present for axisymmetric problems, \(x\) being the radial distance of the integration point.

\section*{Routine EQLIB}

SUBROUTINE EQLIB(JJ,MUS, LT, NGP, NIP, INDX, NTPE, NEL, NDIM, NN, NDMX, NDN, EQLB 1 NS, NB, NAC, NVRS, XYZ, VARINT, ELCOD, DS, SHFN, CARTD, B, F, NCONN, LL, ISTGE )EQLB a*****WH* C ROUTINE TO CALCULATE FORCES EQUILIBRATING
C
ELEMENTAL STRESSES
real L,LL
DIMENSION XYZ (NDIM, NN), VARINT (NVRS, NIP, NEL), ELCOD(NDIM, NDMX),
1 DS (NDIM, NDMX), SHFN(NDMX), CARTD(NDIM, NDMX), B(NS, NB),
2 F(NDIM, NDMX), LL (NAC), NCONN(NTPE, NEL)
COMMON /PARS / PYI, ALAR, ASMVL, ZERO
COMMON /DATW / W(100)
COMMON /FLOW / NPLAX
COMMON /JACB / XJACI (3,3),DJACB
CR=1.
IF (NPLAX.EQ.1)CR=2.*PYI
C CALL ZERORZ(F,NDIM, NDMX)
DO \(20 \mathrm{KN}=1\), NDN
\(N D E=\operatorname{NCONN}(K N, J J)\)
DO 20 ID \(=1\), NDIM
\(20 \operatorname{ELCOD}(\mathrm{ID}, \mathrm{KN})=\mathrm{XYZ}(\mathrm{ID}, \mathrm{NDE})\)
DO \(60 \mathrm{IP}=1\), NG P
\(I P A=I P+I N D X\)
DO 30 IL= 1 , NAC
\(30 \mathrm{LL}(\mathrm{IL})=\mathrm{L}(\mathrm{IL}, \mathrm{IPA})\)
CALL FORMB2 (JJ, MUS, R, RI, NDIM, NDMX, NDN, NS,
1 NB, NAC, ELCOD, DS, SHFN, CARTD, B, LL, LT, IP, ISTGE
F9=CR*DJACB*W(IPA)
IF (NPLAX.EQ. 1 )
C \(\quad U=\operatorname{Varint}(N S+1, I P, J J)\)
SICXT=VARINT ( 1, IP, JJ) \(+U\)
SIGYT \(=\operatorname{VARINT}(2, I P, J J)+U\)
SIGZT = VARINT ( 3, IP, JJ \()+U\)
IF (NDIM.EQ.2)GOTO 35
c
TYZ \(=\operatorname{VARINT}(5, I P, J J)\)
TZX \(=\) VARINT ( \(6, I P, \mathrm{JJ}\) )
DO 50 IN \(=1\), NDN
\(F(1, \mathrm{IN})=\mathrm{F}(1, \mathrm{IN})+(\operatorname{CARTD}(1, \mathrm{IN}) * \operatorname{SIGXT}+\operatorname{CARTD}(2, \mathrm{IN}) * T X Y\)
\(1 \quad+\operatorname{CARTD}(3\), IN \() * T Z X) * F 9\)
\(F(2, I N)=F(2, I N)+(\operatorname{CARTD}(2, I N) * S I G Y T+\operatorname{CARTD}(1, I N) * T X Y\)
\(F(3, I N)=F(3\), IN \()+(\operatorname{CARTD}(3, I N) * S I G Z T+C A R T D(2, I N) * T Y 2\)
50 continue
GOTO 60
C 35 DO 40 IN \(=1\), NDN
\(F(1, I N)=F(1, I N)+(\operatorname{CARTD}(1, I N) * S I G X T+S H F N(I N) * S I G Z T * R T\)
\(1 \quad+\) CARTD ( \(2, I N) * T X Y) *\) F9
\(40 \mathrm{~F}(2, \mathrm{IN})=\mathrm{F}(2, \mathrm{IN})+(\operatorname{CARTD}(2, \mathrm{IN}) * \operatorname{SIGYT}+\operatorname{CARTD}(1, \mathrm{IN}) * T X Y) * F 9\)
60 continue

EQLB 17-18 : multiplication factor for numerical integration.
EQLB 20 : zero array \(F\).
EQLB 22-25 : copy nodal co-ordinates into local array ELCOD.
EQLB 27 : loop on all integration points.
EQLB 30-31 : integration point co-ordinates
EQLB 32-33 : calculate components of B matrix.
EQLB 34-35 : multiplication factor for numerical integration
EQLB 37-41: total stresses \(\sigma\) for 2-D.
EQLB 44-45 : additional stress components for 3-D.
EQLB 47-53 : calculate \(\int B^{T} \sigma . d(v o l)\) for 3-D, contribution from integration point.
EQLB 57-60: calculate \(\int \mathrm{B}^{\mathrm{T}} \boldsymbol{\sigma} . \mathrm{d}(\mathrm{vol})\) for 2 -D, contribution from integration point.
EQLB 61 : end of integration point loop.

\section*{\(77.5 B\) matrix}

Routine FORMB2 calculates the B matrix, which is made up of terms \(\partial N_{i} / \partial x\), \(\partial N_{i} / \partial y\). These Cartesian derivatives of shape functions are calculated using the chain differentiation rule:
\[
\begin{align*}
& \frac{\partial N_{i}}{\partial x}=\frac{\partial N_{i}}{\partial \xi} \quad \frac{\partial \xi}{\partial x}+\frac{\partial N_{i}}{\partial \eta} \frac{\partial \eta}{\partial x} \\
& \frac{\partial N_{i}}{\partial y}=\frac{\partial N_{i}}{\partial \xi} \quad \frac{\partial \xi}{\partial y}+\frac{\partial N_{i}}{\partial \eta} \frac{\partial \eta}{\partial y} \\
& {\left[\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right]} \tag{7.6}
\end{align*}
\]

The \(\partial N_{i} / \partial \xi, \partial N_{i} / \partial \eta\) terms are calculated in routine SHAPE. The Jacobian matrix \(\mathbf{J}(\xi, \eta)\) is given by
\[
J=\left[\begin{array}{ll}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]=\sum_{i=1}^{n}\left[\begin{array}{ccc}
\frac{\partial N_{i}}{\partial \xi} & x_{i} & \frac{\partial N_{i}}{\partial \xi} \\
y_{i} \\
\frac{\partial N_{i}}{\partial \eta} x_{i} & \frac{\partial N_{i}}{\partial \eta} y_{i}
\end{array}\right]
\]

The inverse of the Jacobian matrix is then given by
\[
\mathbf{J}^{-1}=\left[\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x}  \tag{7.8}\\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]=\frac{1}{\operatorname{det} \boldsymbol{J}}\left[\begin{array}{ll}
\frac{\partial y}{\partial \eta} & \frac{-\partial y}{\partial \xi} \\
\frac{-\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi}
\end{array}\right]
\]

Knowing this, \(\partial N_{i} / \partial x, \partial N_{i} / \partial y\) can be calculated from the above equation. The determinant of J is calculated in routine DETMIN.

\section*{Routine FORMB2}


\section*{Routine DETMIN}


DETM 8 : branch off if not two-dimensional problem.
DETM 9 : calculate determinant of Jacobian, \(\mathbf{J}\), for two-dimensional problems.
DETM 10 : check if determinant of \(\mathbf{J}\) is positive.

DETM 13-16 : calculate inverse \(\mathbf{J}^{-1}\)
DETM 19-29: calculate the cofactors of \(\mathbf{J}\) for the three-dimensional case
DETM 31-32: calculate determinant of J.
DETM 38-40 : calculate inverse, \(\mathbf{J}^{-1}\).
DETM 42-44 : print out warning message if det \(|\mathrm{J}|<\) zero.
DETM 45-54 : print out codes to identify stage of analysis for debugging purposes.

\subsection*{7.7.6 Print out in situ stresses}

The in situ stresses have been calculated at all integration points. Also calculated are the equivalent nodal loads for these stresses.

The in situ stresses calculated at all integration points are printed out in routine INSTRS along with Cam-clay parameters \(p^{\prime}, q, p_{\mathrm{c}}^{\prime}\) and \(e\), the voids ratio.

Routine INSTRS

```

DO }18\textrm{KN}=1,\textrm{NDN
NDE =NCONN(KN,J)
DO }18\mathrm{ ID =1,NDIM (ID, NDE)
c
DO 40 IP=1,NGP
IPA=IP+INDX
DO 25 IL=1,NAC
25 LL(IL)=L(IL,IPA)
CALL SHAPE (IW6, LL, NAC, DS, SHFN, NDIM, NDN, LT, 1,MR)
DO 35 ID=1,NDIM
SUM=ZERO
DO 3C I=1,NDN
30 SUM=SUM+SHFN(I)*ELCOD(ID,I)
35CIP(ID)=SUM
If(ICAM.NE.!)GO TO 38
EI=VARINT(NS+2,IP,J)
PE=(VARINT (1,IP, J)+VARINT (2,IP,J)+VARINT (3,IP,J))*0.333333333
QE=Q(VARINT (1,IP,J),NS,NDIM)
WRITE (IW6,903)IP, (CIP(ID),ID=1, NDIM)
(VARINT(IK,IP,J), IK=1,NS1), PE,QE, PCI, EI
go to 40
38 WPITE(TH6,903)IP, (CIP(ID), ID=1, NDIM), (VARINT (IK, IP, J),IK=1, NS1)
40 CONTINUE
6 0 CONTINUE
RETURN
901 FORMAT (1X, 7H ELM-IP, 5X, 1HX, 11X, 1HY, 11X, 2HSX,10X,
I 2HSY,10X, 2HSZ,10X, ЗHTXY, 9X, 1HU,10X,2HPE,
11X,1HO, 10X,2HPC,7X, 4HVOID)
92 FORMAT (I 4)

```

```

910 FORMAT'(1X, 7HELEMENT, I5, 2X, 27HIS OF UNKNOWN MATERIAL TYPE,15,
1 2X,16H(ROUTINE INSTRS)
END

```

INSR 23 : loop on all elements in user number sequence.
INSR 25 : program element no. (J).
INSR 27 : skip if element is not present in primary mesh.
INSR 28-31 : element type dependent parameters.
NDN - no. of displacement nodes
NGP - no. of integration points.
INDX - starting index to arrays W and L for different element types
KM - material zone number.
KGO - material type number.
INSR 34-39 : separate elements into two categories.
ICAM \(=1\), Cam-clay element.
\(=0\), otherwise.
NSR 43-46 : copy nodal co-ordinates into local array ELCOD.
INSR 48 : loop on all integration points.
INSR 51-52: local/area co-ordinates of the integration point.
INSR 53 : calculate shape functions SHFN.

INSR 55-59 : calculate integration point co-ordinates.
INSR 62-65 : calculate following parameters for Cam-clay models only.
EI - voids ratio.

PCI - pre-consolidation pressure (size of yield locus)
PE - mean normal effective stress ( \(p^{\prime}\) ).
QE - deviator stress \((q)\).
INSR 66-67: print out for Cam-clay elements.
INSR 69 : print out for non-Cam-clay elements.
INSR 70 : end of integration point loop.
INSR 71 : end of element loop.

\subsection*{7.8 PRESSURE LOADS AND BOUNDARY CONDITIONS}

\subsection*{7.8.1 Pressure loads}

The external loads which are in equilibrium with in situ stresses are now read in. These loads are specified as pressure loads acting along element sides which lie along the boundary. The pressures along the boundary which are restrained need not be specified. It is sufficient to specify the restraint boundary condition along these sides. Neither the pressures nor the restraint boundary conditions need to be specified along free surfaces. A free surface is defined as any boundary free of stress and restraint (e.g. ground surface).

The pressure loads along loading boundaries are read in routine INSITU. Routine EDGLD checks that the element side belongs to the element specified, and aligns the nodes to follow the anti-clockwise order. The pressure values are then stored in an array PRESLD in a named COMMON block PRSLD.

\section*{Routine EDGLD}

SUBROUTINE EDGLD(IW6, NEL, NDIM, NTPE, NNZ, MUMAX, NPL, NCONN, LTYP,MREL, EDGL
NREL, LNE, ND1, ND2, NP1, NP2, PDISLD, PRES, KLOD, NPT, KINS, MXLD)
c********\#***************世*************************************
ROUTINE TO ALIGN NODES ALONG LOADED EDGE IN THE ANTI-CLOCKWISE HE PRESSURES AT THE BEGUNNNG OF
in a temporary aray common block paincrmment block are stored he ratios of these toading are adidd (COMMON BLOCK PRSLD)
(COMMON BLOCK PRSLD)
**************************************
DIMENSION NCONN(NTPE, NEL), LTYP(NEL), NP1 (NPL) ,NP2(NPL)
dmension nrel (nnz), Mrel(mumax)
DIMENSION PDISLD (NDIM, NPT) , PRES (NDIM, NPT)
COMMON /ELINF/LINFO(50,15)
COMMON /PRLDI / PRSLDI (10, 100), LEDI (100), NDI1 (100) , NDI 2(100), ILOD
CALL ZEROR2(PRES, NDIM, NPT)
NE = MREL (LNE)
\(\mathrm{LI} 1=\operatorname{NREL}(\mathrm{ND} 1)\)
\(\mathrm{LI} 2=\mathrm{NREL}\) (ND2)
LT=LTYP(NE)
If(LT.GT.0)GOTO 15
WRITE (IW6, 901)NE
901 FORMAT ( \(1 \mathrm{X}, 7 \mathrm{HELEMENT}, 16,2 \mathrm{X}\), 27hNOT PRESENT IN CURRENT MESH,

1 1X, 16H(ROUTINE EDGLD)
RETURN
15 NEDG=LINFO (3,LT)
DSD \(=\operatorname{LINFO}(7, L T)\)
NTSD \(=\) NDS \(D+2\)
NDED \(=\operatorname{LINFO}(14, L T)\)
\(1=\) NP 1 ( \(K 1+\) INDED \()\)
J2=NP2(K1+INDED)
\(\mathrm{I} 1=\operatorname{NCONN}(\mathrm{J} 1, \mathrm{NE})\)
\(12=\operatorname{NCONN}(\mathrm{J} 2, \mathrm{NE}\) )
IF (LI 1.EQ.II.AND.LI2.EQ.I2)GO TO 25
20 CONTINUE
WRITE (IW6, 903 )KLOD, LNE, ND1, ND2
903 FORMAT(/13H
\(12 \mathrm{X}, 25 \mathrm{H}\) DOES NOT CONTAIN NODES :,2I5,
2 2X,15H(ROUT INE EDGLD))
STOP


1 LIT \(=\) LI
LI2=LIT
NT \(=\) ND 1
ND \(1=\) ND
ND2
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{C Pres - Contains the pressure components aligned in sequence}} \\
\hline & & & \\
\hline
\end{tabular}

DO \(24 \mathrm{~J}=1\), NTSD
JBACK \(=\) NTSD +1
DO \(24 \mathrm{I}=1,2\)
\(24 \operatorname{PRES}(I, J)=\operatorname{PDISLD}(I, J B A C K)\)
GO TO 35
C 25 DO \(30 \mathrm{~J}=1\), NTSD
DO \(30 \mathrm{I}=1,2\)
\(30 \operatorname{PRES}(\mathrm{I}, \mathrm{J})=\operatorname{PDISLD}(\mathrm{I}, \mathrm{J})\)
c UPDATE OR READ IN A NEW LIST
35 IF (KINS.EQ.0)GO TO 40


PRESSURE LOADS IN EQUILIBRIUM WITH IN-SITU
NEW LIST - READ DIRECTLY INTO COMMON PRSLD
CALL LODLST (IW6, LNE, ND1, ND2, PRES, NDIM, NPT, 1 , MXLD GO TO 55
c Pressure loads for new increment block read into common prsldi
40 ILOD \(=K L O D\)
LEDI (ILOD) \(=\) LNE
NDI 1 (ILOD) \(=\) ND1
NDI2 (ILOD) \(=\) ND2
IC \(=0\)
DO 50 IV \(=1\), NTSD
DO \(50 \mathrm{IJ}=1\)
IC \(=\mathrm{IC}+1\)
50 PRSLDI (IC, ILOD)=PRES (IJ,IV)
55 CONTINUE
RETUR
END

EDGL 18 : zero array PRES (which temporarily holds the applied pressure load).
EDGL 19 : program element number.
EDGL 20-21 : program node numbers of nodes at either end.
EDGL 22 : element type number.
EDGL 28-31 : element type dependent parameters. NEDG - no. of element sides (edges).
NDSD - no. of displacement nodes along side (excluding nodes at either end).
NTSD - total no. of displacement nodes along side. INDED - starting index to arrays NP1, NP2.
EDGL 33-40 : find element side with applied pressure load by comparing nodes at either end (normal and reverse sequence).
EDGL 41-44 : side not found in element; stop.
EDGL 49-54 : side found; reverse the nodes to conform with anti-clockwise sequence.
EDGL 58-61: do the same with pressure components.
EDGL 64-66 : array PRES contains pressure load terms in correct sequence.
EDGL 70 : skip if load is for an increment block.
EDGL 75 : read directly into PRESLD in named COMMON PRSLD.
EDGL 80-88 : read into temporary array PRSLDI in named COMMON PRLDI.

\section*{Routine LODLST}

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{2 25X, 16 H (ROUTINE LODLST) )
STOP} & LDLS & 30 \\
\hline & LDLS & 31 \\
\hline \(23 \mathrm{JE}=\) NLED & LDLS & 32 \\
\hline GO TO 30 & LDLS & 33 \\
\hline \multirow[t]{2}{*}{} & LDLS & 34 \\
\hline & LDLS & 35 \\
\hline & LDLS & 36 \\
\hline \multirow[t]{3}{*}{\(\cdots \begin{gathered}25 \mathrm{JE}=\mathrm{J} \\ \text { c } \\ \mathrm{GO} \text { TO } 35\end{gathered}\)} & LDLS & 37 \\
\hline & LDLS & 38 \\
\hline & LDLS & 39 \\
\hline \multirow[t]{4}{*}{30 LEDG(JE) \(=\) LNE} & LDLS & 40 \\
\hline & LDLS & 41 \\
\hline & LDLS & 42 \\
\hline & LDLS & 43 \\
\hline \(35 \mathrm{IC}=0\) & LDLS & 44 \\
\hline DO 40 IPT \(=1\), NPT & LDLS & 45 \\
\hline DO 40 IK \(=1\), NDIM & LDLS & 46 \\
\hline \(\mathrm{IC}=\mathrm{IC}+1\). & LDLS & 47 \\
\hline 40 PRESLD (IC, JE) \(=\) PRESLD (IC, JE)+PRES (IK, IPT) & LDLS & 48 \\
\hline return & LDLS & 49 \\
\hline End & LDLS & 50 \\
\hline
\end{tabular}

LDLS 12 : skip if no existing list; therefore no need to scan.
LDLS 16 : loop on list of pressure loads.
LDSL 17 : not this element; look at next one.
LDLS 18-19: nodes at either end of side.
LDLS 20 : element side has been found.
LDLS 21 : end of existing list.
LDLS 25 : it is a new element side with pressure load.
LDLS 27-30 : array size exceeded. Arrays LEDG, NDE1, NDE2 and PRESLD have to be increased in size. (Also make changes in all routines in which these appear. See Appendix C, which gives the list of routines.)
LDLS 32 : new position at end of list.
LDLS 37-38: get the position in existing list; skip, as entries are not altered.
LDLS 40-42 : enter details for new side.
LDLS 45-48 : update pressure loads.
These two routines are also called when there are pressure loads applied along element sides in an increment block. Under these circumstances the applied pressure loads are stored in a separate set of arrays in named COMMON block PRLDI. At the beginning of each increment the ratio of load applied in that increment is added to the list of cumulative load array PRESLD. This procedure is adopted purely for equilibrium checks done at the end of each increment. At any given increment the stresses and the applied loads can be directly checked against each other.

\subsection*{7.8.2 Fixities}

The details of restrained element sides are read in routine FIXX. The input data are read element side by element side. The element side is identified by nodes at either end, and the direction in which they are restrained is also specified. If an
element side is fixed in more than one direction then one entry (data record) is required per direction.

The routine checks the correctness of the node numbers with the nodes associated with the element. The nodal sequence is aligned to follow the anticlockwise order about the element centre. Then the fixity information along the element side is converted into nodal fixities at all nodes which lie along this element side

The same routine is called either to restrain element sides or to give the element side a prescribed displacement or excess pore pressure. The prescribed values are stored in the array \(\operatorname{DXYT}(4,200)\). This allows for a maximum of 200 nodes rather arbitrarily. A maximum of 4 d.o.f. can be fixed at any given node; only the first three are used for two-dimensional analysis.
\[
\begin{array}{cccl}
1 & 2 & 3 & 4 \\
x \text {-disp. } & y \text {-disp. } & \text { ex.p.p. } & - \text { for 2-D }
\end{array}
\]
where 'ex. p.p' denotes excess pore pressure. \(\mathrm{TF}(4,200)\) stores the fixity code, which can take 1 or 0 for the displacements, and 0,1 or 2 for the excess pore pressure.
\[
1 \text { - to specify the incremental value of displacement/excess p.p. }
\]

2 - to specify the absolute value of excess pore pressure.
There is a distinction between restraints and prescribed displacement/excess pore pressures. (The restraints are identified by zero values for the prescribed variables.) The displacement restraint is self-explanatory. For the excess pore pressures, if fixity code 1 is used along a boundary with zero prescribed values to represent, say, a draining boundary, then no changes in pore pressure take place. In that sense it is a pore pressure restraint.

It is appropriate to define the terminology used for the excess pore pressures because some terms are invented to have a precise meaning in relation to CRISP. The hydrostatic pore pressures at rest are referred to as in situ pore pressures. Since the program uses an incremental approach, the changes that take place in displacements are referred to as incremental displacements - hence the term 'incremental (excess) pore pressure'. Accumulated displacements over a number of increments are cumulative or absolute displacements. Similarly the summation of incremental changes to the excess pore pressures are referred to as absolute excess pore pressures. Therefore the pore pressures at any instance (i.e. the total pore pressure) are given by the in situ pore pressure plus the absolute excess pore pressure. Therefore the term 'absolute excess pore pressure' is simply the accumulated changes in the excess pore pressure over a number of increments.

At the end of each increment block, all the prescribed values are set to zero. However, no changes are made to the fixity code of these nodes. Therefore there is no 'carry over' from one increment block to the next, i.e. 'no memory' in the case of prescribed displacement. However, there is a carry over in the sense that previously prescribed values are now fixed to zero. This procedure is adopted so
that restraint boundary conditions need not be specified in every increment block. They need to be specified only once, either with the in situ boundary condition or in the first increment block

Routine FIXX
SUBROUTINE FIXX(IR5, IW6, NEL, NTPE, NDIM, NPL, LV, MUMAX, NNZ, NCONN, LTYP, FIXX 1 MREL, NREL, NP 1, NP2, V, NFX)
c*******************************************************************FIXX
ROUTINE TO MAINTAIN A LIST OF NODAL FIXITIES. INTERPRETS
C FITTIES ALONG ELEEATE EDGES INTO NODAL FIXITIES integer tr
DIMENS ION NCONN(NTPE NEL) , TYP(NEL) MREL (MUMAX) NREL (NNZ) DIMENSION NP1 (NPL) , NP2 (NPL) , IND(5) ,FV(5) ,V(LV)
COMMON /FIX COMMON /ELINF / LINFO(50,15)

NFZ \(=200\)
NDIM \(1=\) NDIM 1
IF (NFX.EQ.0)RETUR
WRITE (IW6,900)

LOOP ON ALL FIXED EDGES I.E. EDGES
DISPLACEMENT/EXCESS PORE PRESSURES
DO \(200 \mathrm{JX}=1, \mathrm{NFX}\), ND , IVAR, TFX, V
READ (IR5,*)ML, ND 1, ND2, IVAR, IF X, V
WRITE (6,902)JX, ML, ND1, ND2, IVAR, IFX, V
WRITE \((6,902)\)
NE \(=\) MREL
NE \(=\) MREL (ML)
LI2 \(=\) NREL(ND2)
LT=LTYP(NE)
\(\mathrm{LT}=\mathrm{IABS}(\mathrm{LT})\)
NVN \(=\operatorname{LINFO}(2, \mathrm{LT})\)
NEDG=LINFO(3,LT)
IF (IVAR.EQ. NDIM1)NDSD=LINFO (8,LT)
NTSD \(=\) NDSD +2
\(\operatorname{INDED=LINFO}(14, L T)\)
C DO \(20 \mathrm{~K} 1=1\), NEDG
\(\mathrm{J} 1=\mathrm{NP} 1(\mathrm{~K} 1+\) INDED \()\)
\(\mathrm{I} 1=\mathrm{NCONN}(\mathrm{J} 1, \mathrm{NE})\)
\(\mathrm{I} 2=\mathrm{NCONN}(\mathrm{J} 2, \mathrm{NE})\)
IF(LI1.EQ.I1.AND.LI2.EQ.I2)GO TO 25
IF(LI1.EQ.I2.AND.LI2.EQ.I1)GO TO 21
20 conTInue
WRITE (IW6, 903) JX, ML, ND1, ND2
GOTO 200
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(24 \mathrm{FV}(\mathrm{J})=\mathrm{V}(\mathrm{JBACK})\)
GO T0 35}} & FIXX & 59 \\
\hline & & FIXX & 60 \\
\hline \multicolumn{2}{|r|}{\multirow{4}{*}{\(25 \mathrm{DO} 30 \mathrm{~J}=1, \mathrm{NTSD}\)
\(30 \mathrm{FV}(\mathrm{J})=\mathrm{V}(\mathrm{J})\)}} & FIXX & 61 \\
\hline & & FIXX & 62 \\
\hline & & FIXX & 63 \\
\hline & & -FIXX & 64 \\
\hline c & ind - List of nodes along edge. start with end nodes & FIXX & 65 \\
\hline \multirow{6}{*}{35} & & -FIX & 66 \\
\hline & IND(1)=LI 1 & FIXX & 67 \\
\hline & IND (NTSD) =LI2 & FIXX & 68 \\
\hline & IF (NTSD.EQ.2)GO T0 42 & FIXX & 69 \\
\hline & LC \(1=\mathrm{NVN}+(\mathrm{K} 1-1) * \mathrm{NDSD}\) & FIXX & 70 \\
\hline & IF (IVAR. EQ. NDIM 1)LC \(1=\operatorname{LINFO}(5, \mathrm{LT})+(\mathrm{K} 1-1) * \mathrm{NDSD}\) & FIXX & 71 \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{INTERMEDIATE NODES (IF NTSD \(=2\) NO INTERMEDIATE NODES)} & FIX & \\
\hline & & FIXX & 75 \\
\hline \multirow[t]{4}{*}{} & & -FIXX & 74 \\
\hline & DO \(40 \mathrm{JP}=1\), NDSD & FIXX & 75 \\
\hline & ILC \(=\) LC \(1+\mathrm{JP}\) & FIXX & 76 \\
\hline & IND (JP+1) \(=\) NCONN (ILC, NE ) & FIXX & 77 \\
\hline & & FIXX & 78 \\
\hline \multirow[t]{2}{*}{} & LOOP ON ALL NODES ALONG EDGE & FIXX & 79 \\
\hline & & FIXX & 80 \\
\hline \multirow[t]{3}{*}{42} & DO \(100 \mathrm{KND}=1, \mathrm{NTSD}\) & FIXX & 81 \\
\hline & \(\mathrm{I}=\mathrm{IND}(\mathrm{KND}\) ) & FIXX & 82 \\
\hline & IF (NF.EQ.O)GO TO 58 & FIXX & 83 \\
\hline \multirow[t]{3}{*}{C} & & FIXX & 84 \\
\hline & DO \(50 \mathrm{~J}=1\), NF & FIXX & 85 \\
\hline & IF (I.EQ.MF(J) )GO TO 55 & FIXX & 86 \\
\hline \multirow[t]{3}{*}{50} & continue & FIXX & 87 \\
\hline & & FIXX & 88 \\
\hline & \multirow[t]{2}{*}{GO TO 58} & FIXX & 89 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & FIXX & 90 \\
\hline & & FIXX & 91 \\
\hline & & FIXX & 92 \\
\hline \multirow[t]{2}{*}{} & & FIXX & 93 \\
\hline & GO TO 60 & FIXX & 94 \\
\hline \multirow[t]{5}{*}{C 58} & & FIXX & 95 \\
\hline & \(\mathrm{NF}=\mathrm{NF}+1\) & FIXX & 96 \\
\hline & IF ( \(\mathrm{FF} . \mathrm{LE}\), NFZ CO O TO 59 & FIXX & 97 \\
\hline & WRITE (IW6, 904 ) & FIXX & 98 \\
\hline & STOP & FIXX & 99 \\
\hline 59 & \(\mathrm{JF}=\mathrm{NF}\) & FIXX & 100 \\
\hline \multirow[t]{3}{*}{60} & \(\mathrm{MF}(\mathrm{JF})=\mathrm{I}\) & FIXX & 101 \\
\hline & TF (IVAR, JF ) \(=\) IF \(X\) & FIXX & 102 \\
\hline & DXYT (IVAR, JF) \(=\mathrm{FV}\) (KND) & FIXX & 10 \\
\hline 100 & continue & FIXX & 10 \\
\hline \multirow[t]{2}{*}{200} & continue & FIXX & 105 \\
\hline & RETURN & FIXX & 106 \\
\hline \multirow[t]{3}{*}{} & FORMAT (/1X, 4HSIDE, 4X, 7HELEMENT, 3X, 5HNODE 1, 3X, 5HNODE2, & FIXX & 107 \\
\hline & \(13 \mathrm{X}, 3 \mathrm{HDOF}, 3 \mathrm{X}, 11 \mathrm{HF}\) IXITY CODE, \(6 \mathrm{X}, 4 \mathrm{HVAL} 1,6 \mathrm{X}, 4 \mathrm{HVAL} 2,6 \mathrm{X}, 4 \mathrm{HVAL} 3\), & FIXX & 108 \\
\hline & 2 6X, 4HVAL4, \(6 \mathrm{X}, 4 \mathrm{HVAL5} /\) ) & FIXX & 109 \\
\hline \multirow[t]{3}{*}{902 F
903 F
1} & FORMAT ( \(1 \mathrm{X}, \mathrm{I} 3,4 \mathrm{X}, \mathrm{I5}, 5 \mathrm{X}, \mathrm{I4}, 4 \mathrm{X}, \mathrm{I} 4,5 \mathrm{~S}, \mathrm{I2}, 12 \mathrm{X}, \mathrm{I3}, 3 \mathrm{X}, 5 \mathrm{~F}\) 10.3) & FIXX & 110 \\
\hline & FORMAT (/13H **** ERROR :, 15, 19H TH FIXITY. ELEMENT, & FIXX & 111 \\
\hline & 1 I5,25H DOES NOT CONTAIN NODES :, 2I5, 2X, 14 H (ROUTINE FIXX)) & FIXX & 112 \\
\hline \multirow[t]{3}{*}{} & FORMAT (/4OH INCREASE SIZE OF array mp, TF and dxyt/ & FIXX & 113 \\
\hline & 1 1X, 34hin common block fix (routine fixx)) & FIXX & 114 \\
\hline & END & FIXX & \\
\hline
\end{tabular}

FIXX 13 : maximum size of arrays in named COMMON FIX.
FIXX 14 : maximum number of variables at any node (last one being the pore pressure variable)
FIXX 21 : loop on all sides which have prescribed variables.
FIXX 22-23 : read and write details of side with prescribed variables.

FIXX 24 : (program no.) element with side which is fixed.
FIXX 25-26 : (program nos.) nodes at either end of side.
FIXX 27-28 : element type no.
FIXX 29-34 : element type dependent parameters
NVN - no. of vertex nodes.
NEDG - no. of sides (edges)
NDSD - no. of displacement nodes along side (excluding end nodes).
NTSD - total no. of nodes along side.
INDED - starting index to arrays NP1, NP2.
FIXX 32 . NDSD - no. of pore pressure nodes along side (excluding end nodes).
FIXX 36 : loop on all edges of element (to find side which is fixed).
FIXX 37-42 : find element side with prescribed variable by comparing nodes
at either end (normal and ride not found in element; consider next side with prescribed variable, after printing message.
FIXX 50-55 : side found; reverse nodes to conform with anti-clockwise
sequence
IXX \(57-59\) : do the same with prescribed values.
FIXX 62-63 : array FV contains prescribed values in correct sequence
IXX 67-68 : enter nodes at either end in IND
FIXX 69 : skip if no nodes along side.
FIXX 70-71 : index to array NCONN for nodes along side
FIXX 75-77 : enter node(s) along side in IND.
FIXX 81 : loop on all nodes along side.
FIXX 83 : skip if first node (i.e. no existing list).
FIXX 85-86 : scan through existing list.
FIXX 93
FIXX 96-97
position of node in existing list of fixities.
FIXX 98-99 : if aliocation of array size is exceeded, print message and stop.
FIXX 101-103: enter details of nodal fixity (fixity code and prescribed values) - pore pressure variable is placed in location NDIM +1 , even if it is the only variable at that node
FIXX 104 : end of loop on all nodes along side.
FIXX 105 : end of loop on all sides with prescribed variables.

\subsection*{7.9 EQUILIBRIUM CHECK}

Routine EQLOD is the master control routine, which checks the equilibrium of internal stresses with external loading. (For convenience, the self-weight loading is considered as part of the external loading.)

The first term of (7.9) on the R.H.S. is calculated by routine DISTLD and SFR1. The second term is calculated by SELF (making use of SHAPE and DETJCB). The third term has already been calculated in routine RDSTRS using EQLIB and placed in array PEQT. Routine RESTRN recognises the nodes which are restrained. The following calculation is carried out to calculate \(P_{\text {cor }}\).
\[
\begin{align*}
P_{\text {cor }}= & \int_{S} \mathrm{~N}^{\mathrm{T}} \tau \mathrm{~d}(\text { area })+\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\text { vol }) \\
& -\int_{V} \mathrm{~B}^{\mathrm{T}} \sigma \mathrm{~d}(\text { vol }) . \tag{7.9}
\end{align*}
\]
\(\int_{S} N^{\mathrm{T}} \tau\) d (area) - pressure loads along element boundary.
\(\int_{V} N^{\mathrm{T}} \mathbf{w d}(\) vol \() \quad-\) self-weight or distributed loads.
\(\int_{V} \mathrm{~B}^{\mathrm{T}} \sigma \mathrm{d}(\mathrm{vol}) \quad\) - nodal loads equivalent to element stresses summed for all elements present in current mesh.
- the error in equilibrium calculated for each nodal point except the ones which are either restrained or have prescribed values.

Routine EQLOD
SUBROUTINE EQLOD (IW6, NN, NEL, NDF, NNOD 1, NTPE, NDIM, MUMAX, NNZ, NDZ, NPR, EQLD 1 NMT, NDMX, NL, NPL, NCONN, MAT, LTYP, MRELVV, MREL, NREL, NN, NQ, JEL, IDFX, EQLD 2 NP1, NP2, XYZ, P, PT, PCOR, PEOT, XYFT, PCONI, ELCOD, DS, SHFN, F, LL,
3 PR, NPT, NSP, MXEN, IEQOP, ICOR, TGRAV, IRAC, FRACT, KSTGE)

\section*{C ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR
C APPLIED LOADING TO CARRY OUT AN EQUIIDRRIUM CHECK}

APPLIED LOADING TO CARRY OUT AN EQUILIBRIUM CHECK EQL


REAL LL
DIMENSION NCONN (NTPE, NEL) , MAT (NEL) , LTYP(NEL), MRELVV (NEL),
1 MREL (MUMAX), NREL(NNZ), NW (NNOD1), NQ (NN), JEL(NEL),
2 IDFX(NDF), NP1 (NPL), NP2 (NPL)
DIMENSION XYZ(NDIM, NN), P(NDF), PT(NDF), PCOR(NDF), PEQT (NDF),
\(1 \operatorname{XYFT}(N D F), \operatorname{PCONI}(N D F), E L C O D(N D I M, N D M X), D S(N D I M, N D M X), S H F N(N D M X)\),
2 F (NDIM, NDMX), LL (NL), PR (NPR, NMT), PRES ( 10 )
COMMON /PRSLD / PRESLD (10, 100), LEDG(100), NDE 1 (100), NDE 2(100), NLED COMMON /ELINF / \(\operatorname{LINFO}(50,15)\)
COMMON /PARS / PYI,ALAR,ASMV, ZERO EQLD
CALL ZEROR1(PT,NDF) EQLD
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{c (1) PRESSURE LOADING ALONG ELEMENT EDGE EQLD}} \\
\hline & \\
\hline
\end{tabular}


30 KE=1 NLED
LNE \(=L E D G\) (KE
\(\mathrm{NE}=\mathrm{MBEL}(\mathrm{MNE})\)
\(\mathrm{T}=\operatorname{LTYP}(\mathrm{NE})\)

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{CALL EQLBM (IW6, NN, NNOD1, NDF, NDIM, NNZ, NDZ, NREL, NW, NQ, IDFX 1 P, PT, PCOR, PEQT, IEQOP, ICOR, IRAC ) RETURN} & & 96 \\
\hline & EQLD & 97 \\
\hline & EQLD & 8 \\
\hline END & EOLD & \\
\hline
\end{tabular}

EQLD 20 : zero total load array (PT).
EQLD 24 : skip if (a) no applied pressure loads and (b) no gravity loading.
EQLD 25 : skip if no applied pressure loads.
EQLD 27 : loop on all sides with applied pressure loads.
EQLD 31 : skip if element with pressure load is present in mesh.
EQLD 32 : skip check and calculation of equivalent pressure loads element has been removed.
EQLD 33-36 : print message if element is not present at in situ stage (probable user error).
EQLD 38-39: nodes at either end.
EQLD 40-41 : values of applied pressure loads.
EQLD 43-45 : calculate nodal loads from pressure loading and put into PT.
EQLD 50 : skip if no gravity loads.
EQLD 51 : loop on all elements.
EQLD 53 : skip if element is not present in current mesh
EQLD 55-57 : NDN - no. of displacement nodes.
INDX - starting index for arrays \(W\) and \(L\), for different element types.
EQLD 58 : material zone number
EQLD 63 : scan array JEL to see if element was added in this block.
EQLD 65 : zero indicates end of list.
EQLD 66-67 : element has been added in this block
EQLD 69 : use factor of 1 for elements which were already present before the start of current block.
EQLD 71 : use FRACT for added element.
EQLD 72 : calculate \(n \gamma\) term.
\(n\)-centrifugal acceleration field.
EQLD 74-75 : calculate \(\int_{V} N^{\mathrm{T}} \mathrm{w} d\) (vol).
EQLD 77 : loop on all nodes of element.
EQLD 81-82: slot loads in PT.
EQLD 83 : end of element loop.
EQLD 88-89 : add directly specified point loads.
EQLD 93 : identify (by entering 1 in IDFX against d.o.f.) restrained d.o.f.
EQLD 97-98 : carry out an equilibrium check.
Routine EQLOD is called at the in situ stage as well as at the end of each increment.

\subsection*{7.9.1 Pressure loads}

Routine DISTLD calculates nodal loads equivalent to the current pressure loading, and \(\tau\) values are obtained from array PRES

\section*{Routine DISTLD}

SUBROUTINE DISTLD(IWG, iN, NEL, NDF, NNOD 1, NTPE, \&DIM, MUMAX, NNZ,
1 NPL, XYZ, RHS, NCONN, LTYP, MREL, NREL, NN, NP1, NP2, PRES, LNE,

ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR SPECIFIED
PRESSURE LOADING ALONG ELEMENT EDGES USING 5 POINT (NSP)
integration rule. integrates polynomial of order nine or less
EXaCTLY. arrays iloc, pres, peqLD, ELCD, ShF, deriv are
TO CATER FOR A MAXIMUM OF FIVE NODES (NPT) ALONG AN ELEMENT EDGE
(ALL Z-D ELEMENTS UP TO ORDER FIVE)

DIMENSION NCONN(NTPE, NEL), LTYP(NEL), MREL(MUMAX),
NREL(NNZ), NW (NNOD1), NP1 (NPL), NP2 (NPL)
DIMENSION RHS (NDF), XYZ (NDIM, NN), PRES (NDIM, NPT)
\(\operatorname{DIMENSION} \operatorname{ILOC}(5), \operatorname{PSP}(2), \operatorname{DSP}(2), \operatorname{PEQLD}(2,5), \operatorname{ELCD}(2,5)\)
IMENSION SHF (5), DERIV (5), PCOM (3)
OMMON /FLOW / NPLAX
OMMON /ELINF / LINFO (50,15)
COMMON SPAMP POSSP (5), WEIGP(5)
COMMON /LOADS / FB(2,15)
\(\mathrm{NP}=5\)
TPI \(=2, *\) PYI
NE \(=\) MrEL (LNE)
LI \(1=\) NREL(ND1)
LT=LYP(NE)
IF (IST.EQ. 1 ) GOT
LT =IABS(LT).
IF (LT. GT.0)GOTO 10
WRITE(IW6, 900)LNE
900 Format (/1X, \(44 \mathrm{H} * * *\) error : you have put a pressure load on,
1
2 8 ELEMENT, I5, \(2 \mathrm{X}, 28 \mathrm{HWHICH}\) IS NOT PRESENT IN MESH

RETURN 17H (ROUTINE DISTLD)/)
\(10 \operatorname{NVN}=\operatorname{LINFO}(2, \operatorname{LT})\)
ESD \(=\operatorname{LINFO}(3, L T)\)
TSD \(=\) NDSD +2
DO \(20 \mathrm{~K} 1=1\), NEDG
J1=NP1 (K \(1+\) INDED)
\(32=\) NP2 (K \(1+\) +NDED)
\(1=N C O N N(11, N E)\)
IF (LI 1.EQ.II)GOTO 25
20 continue
HRITE (IW6, 903 )LNE, ND1, ND2
903 FORMAT (/21H **** ERROR : ELEMENT, I5,
\(12 \mathrm{X}, 22 \mathrm{H}\) DOES NOT HAVE NODES :,215,
RETURN
store locations of node (IN nconn) in array iloc

ILOC (1)=J)
IF (NDSD.EQ.O)GOTO 31


59 DIST 59 DIST 61 -DIST 62
        (2)
        DO 50 IEDG \(=1\), NTS
        PEQLD(ID, IEDG) \(\operatorname{PEQLD}(I D, I E D G)+P C O M(I D) * S H F(I E D G) * D V\)
    60 continue
        IF (IPRINT.EQ.1)WRITE(IW6,905)LNE,ND1, ND2,
    (PEQLD(ID,IP), ID=1,2), IP=1, NTSD)

DO \(80 \quad I J=1\), NTSD
\(\mathrm{JL}=\mathrm{ILOC}(\mathrm{IJ})\)
NDE \(=\) NCONN (JL, NE
DO 80 ID \(=1\), NDIM

DIST 24 : program element number
DIST 25 : program node number of node at one end of side with pressure load.
DIST 26 : element type number.
DIST 27-28 : if IST \(=0\) then calculate loads equivalent to pressure loads acting on elements currently being removed.
DIST 29-33 : check that the element on which pressure load is put is present in mesh. If not, print error message.
DIST 35-39 : element type dependent parameters.
NVN - number of vertex nodes in element.
NEDG - number of element edges (sides).
NDSD - number of displacement nodes along element side (excluding nodes at either end).
NTSD - number of (displacement) nodes along side (edge). INDED - starting index to arrays NP1, NP2.
DIST 41 : loop on all element sides (loop to find side with pressure load).
DIST 42-43
DIST 44 indexes to array NCONN.

DIST 45 : skip if node numbers do not match (this is not the side which is loaded).
DIST 47-50 : side with pressure load not found in this element; print message (probable user error).
DIST 56-57 : store indexes to array NCONN for nodes at either end of side.
DIST 60-61 : do the same with side nodes (if any).
DIST 65-70 : set up local array with co-ordinates of nodes along side.
DIST 76 : loop on all integration points.
DIST 77 : local co-ordinate of integration point.
DIST 81 : calculate shape functions.
DIST 88 : calculate stress components at integration point.
DIST 89 : calculate derivatives \(\partial x / \partial \xi, \partial y / \partial \xi\) at integration point.
DIST 91 : weighting factor.
DIST 95-96 : calculate radial distance of integration point (for axisymmetric problems).
DIST 98-99 : calculate \(x\) and \(y\) components of load at integration point.
DIST 101-103 : calculate nodal loads equivalent to applied pressure.
DIST 105 : end of loop on all integration points.
DIST 106-107 : print out calculated nodal loads.
DIST 112-119 : slot nodal loads in array RHS.
\[
\begin{align*}
& P_{x i}=\int_{S_{\mathrm{e}}} N_{i}\left[\tau \cdot \frac{\partial x}{\partial \xi}-\sigma \cdot \frac{\partial y}{\partial \xi}\right] \mathrm{d} \xi \\
& P_{y i}=\int_{S_{\mathrm{e}}} N_{i}\left[\sigma \cdot \frac{\partial x}{\partial \xi}+\tau \cdot \frac{\partial y}{\partial \xi}\right] \mathrm{d} \xi \tag{7.10}
\end{align*}
\]

Integration is taken along the loaded element edge \(S_{\mathrm{e}} ; \xi\) is the local co-ordinate along the element edge, and takes values between -1 and +1 .

Routine SFR1 calculates the shape functions \(N_{i}\) at sampling points. Numerical integration is used to carry out the above calculations. \(\sigma, \tau\) are the normal and shear values of the applied stress distribution.

\section*{Routine SFR 1}



SFRI 13 : branch off depending on no. of displacement nodes.
SFR1 21-25: for element types with two nodes along side (no such element types in this version).
SFR1 30-32 : shape functions along element side for LST.
SFR1 33-35: derivatives of shape functions.
SFR1 40 : shape functions and derivatives for element types with four nodes along element side (no such element types in this version) SFR1 54-58: shape functions (CuST).
SFR1 59-63: derivatives of shape functions (CuST).
7.9.2 Self-weight loads (body forces)

The self-weight loads given by
\[
\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\mathrm{vol})
\]
are calculated in routine SELF.
\[
\left[\begin{array}{c}
P_{x i}  \tag{7.11}\\
P_{y i}
\end{array}\right]=\int_{V_{\mathrm{e}}} N_{i} \gamma\left[\begin{array}{r}
0 \\
-1
\end{array}\right] \mathrm{d}(\mathrm{vol}) .
\]

Gravity is assumed to act in the direction of the \(-y\) axis
Routine SELF
\begin{tabular}{|c|c|c|}
\hline SUBROUTINE SELF (IW6, I, NN, NEL, NTPE, NDN, NDIM, NAC, NPR, NMT, XYZ, 1 ELCOD DS, SHFN, F, NCONN, MAT, LL, PR, LT, INDX, DENS, MUS, KSTGE) & \begin{tabular}{l}
SELF \\
SELF
\end{tabular} & 1
2 \\
\hline  & ELF & 3 \\
\hline Calculates self weicht loads & SELF & \\
\hline C****************************** & ELF & 5 \\
\hline REAL L, LL & SELF & 7 \\
\hline DIMENSION NCONN(NTPE, NEL), MAT(NEL) & SELF & 8 \\
\hline DIMENSION XYZ (NDIM, NN ), ELCOD (NDIM, NDN), DS (NDIM, NDN), SHFN(NDN), & SELF & 9 \\
\hline \(1 \mathrm{~F}(\mathrm{NDIM}, \mathrm{NDN}), \mathrm{LL}(\mathrm{NAC}), \mathrm{PR}(\mathrm{NPR}, \mathrm{NMT}), \mathrm{GCOM}(3)\) & SELF & 10 \\
\hline COMMON /ELINF / LINFO(50, 15 ) & SELF & \\
\hline COMMON /DATL / W \({ }^{\text {Com }} 100\) ) & SELF & 12 \\
\hline COMMON /FLOW / NPLAX & SELF & 13 \\
\hline COMMON /PARS / PYI,ALAR,ASMVL,ZERO & SELF & 14 \\
\hline c & SEIE & 16 \\
\hline TPI =2.*PYI & SEIF & 17 \\
\hline NGP=LINFO(11, LT \()\) & SELF & 18 \\
\hline \(\mathrm{K}=\mathrm{MAT}\) ( I ) & & 1 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { TPI }=2 . * \text { *PI } \\
& \text { NGP }=\text { LINFO( } \\
& \mathrm{K}=\mathrm{MAT}(\mathrm{I})
\end{aligned}
\]


SELF 17 : number of integration points.
SELF 18 : material zone number.
SELF 22 : zero array \(F\), self-weight loads of element.
SELF 24 : skip, if no self-weight loading.
SELF 25-27 : earth's gravity acts in the negative \(y\) direction.
SELF 31-35 : copy nodal co-ordinates into local array.
SELF 39 : loop on all integration points.
SELF 40 : index to arrays \(W\) and L (IPA is the starting index -1 ).
SELF 42-43: local/area co-ordinates of integration point.
SELF 47 : calculate shape functions and their derivatives w.r.t. local co ordinates.
SELF 48 : calculate Jacobian of transformation
SELF 49 : weighting factor

SELF 52-55 : calculate radial distance of integration point (axisymmetric problems only).
SELF 58-60: calculate nodal loads equivalent to self-weight.
\[
F=\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\mathrm{vol})
\]

SELF 61 : end of integration point loop
Routine DETJCB

SUBROUT INE DETJCB(IW6, DJACB, NDN, NDIM, ELCOD, DS, IP, MUS, KSTGE)


C CALCULATES DETERMINANT OF JACOBIAN MATRIX
DIMENSION ELCOD (NDIM, NDN), DS (NDIM, NDN), XJAC ( 3,3 )
COMMON /PARS / PYI,ALAR,ASMVL,ZERO
DETJ
DETJ


C NXJ - SIZE OF array XJAC
CALL ZEROR2(XJAC, NXJ, NXJ)
DETJ 10
DO 10 ID=1, NDIM
DO \(10 \mathrm{JD}=1\), NDIM
DO \(10 \mathrm{IN}=1\), NDN
DO
IF (NDIM.NE.2)GOTO 20
\(\mathrm{DJACB}=X J A C(1,1) * X J A C(2,2)-X J A C(1,2) * X J A C(2,1)\) GOTO 50
c \(20 \operatorname{DJACB}=\mathrm{XJAC}(1,1) *(X J A C(2,2) * X J A C(3,3)-X J A C(2,3) * X J A C(3,2))\) \(\operatorname{DJACB}=\operatorname{DJACB}-X J A C(1,2) *(X \operatorname{JAC}(2,1) * X \operatorname{JAC}(3,3)-X \operatorname{JAC}(2,3) * X \operatorname{JAC}(3,1))\) DJCB-DJACB+גJAC \((1,3)\) (x
50 IF (DJACB.GT. 2 EROIGO TO 60
WRITE (IW6, 900)DJACB, MUS, IP
FORMAT \(1 \mathrm{X}, 10 \mathrm{H}\) JACOBIAN, E16. \(5,3 \mathrm{X}, 11 \mathrm{HIS}\) NEGATIVE, 2 X ,
900 FORMAT ( \(1 \mathrm{X}, 10 \mathrm{H}\) JACOBINN, POINT, \(55,2 \mathrm{X}, 16 \mathrm{H}\) (ROUTINE DETJCB)
WRITE(IW6,910)KSTGE
910 format (/1X, 36HCODE TO INDICATE STAGE OF analysis \(=\), i5//
1 4X, 4 HCODE, 20X, 21 HSTAGE OF THE ANALYSIS//
\(16 \mathrm{X}, 46 \mathrm{H} 1\) - CALLED BY INSITU/EQLOD/SELF CALCULATION OF
\(21 \mathrm{X}, 2 \mathrm{HHINSITU}\) SELF WEIGHT LOADS \(/ 6 \mathrm{X}, 13 \mathrm{H} 2\) - CALLED BY
\(31 \times, 44 H A N S / C H A N G E / S E L F\) LOADS DUE TO ELEMENT CHANGES
\(46 \mathrm{X}, 44 \mathrm{H} 3\) - CALLED BY ANS/SEL1/SELF INCRMENTAL SELF
6 45H/SELF SELF WEIGHT LOADS FOR EQUILIBRIUM CHECK)
STOP
\(60 \underset{\text { END }}{\text { RETURN }}\)
END

DETJ 11 : zero Jacobian matrix, \(\mathbf{J}\)
DETJ 13-16 : calculate components of Jacobian matrix.
DETJ 19 : calculate det \(|\mathbf{J}|\) for 2-D.
DETJ 22-24 : calculate det \(|J|\) for 3-D.
DETJ 26 : check if det \(|J|\) is positive.
DETJ 27-29: if not, print error message and stop.

Routines SELF, SHAPE and DETJCB are used in the simulation of construction by the addition of elements. These routines also perform the same calculations to determine loads equivalent to the self-weight of removed elements.

The loads equivalent to element stresses are given by
\[
\int_{V} B^{\mathrm{T}} \sigma \mathrm{~d}(\mathrm{vol})
\]
and were calculated in routine RDSTRS using routine EQLIB. The loads equivalent to the in situ stresses have been summed into PEQT(NDF).

\subsection*{7.9.3 Restrained nodes}

PCOR, as mentioned, is calculated at all 'free' nodes. Routine RESTRN goes through the list of nodal fixities and inserts 1 against all d.o.f. which are either restrained or have a prescribed value in array IDFX(NDF). This enables routine EQLBM to identify those variables which are free from those with restraints or prescribed values.

\section*{Routine RESTRN}
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE RESTRN(NDF, NNOD1, NDIM, NW, IDFX) & RSTR & 1 \\
\hline \multicolumn{4}{|l|}{C*******************************************************************RSTR} \\
\hline & ROUTINE TO IDENTIFY ALL DISPLACEMENT BOUNDARY CONDITIONS & RSTR & 3 \\
\hline c & Which are specified. ( SET IdFX \(=1\) for all dof & RSTR & 4 \\
\hline c & which are restrained.) & RSTR & 5 \\
\hline \multicolumn{4}{|l|}{C****************************************************************RSTR} \\
\hline & INTEGER TF & RSTR & 7 \\
\hline & DIMENS ION NW(NNOD1), IDF X (NDF) & RSTR & 8 \\
\hline & COMMON/FIX / DXYT (4, 200), MF (200), TF ( 4,200 ), NF & RSTR & 9 \\
\hline & & & \\
\hline \multirow[t]{2}{*}{c} & LOOP ON ALL NODES WITH ONE OR MORE FIXITIES & RSTR & 11 \\
\hline & & RSTR & 12 \\
\hline & DO \(10 \mathrm{~J}=1\), NDF & RSTR & 13 \\
\hline \multirow[t]{2}{*}{c 10} & \(\operatorname{IDFX}(\mathrm{J})=0\) & RSTR & 14 \\
\hline & & RSTR & 15 \\
\hline \multirow{4}{*}{c} & IF ( NF . EQ.O)RETURN & RSTR & 16 \\
\hline & DO \(40 \mathrm{JN}=1, \mathrm{NF}\) & RSTR & 17 \\
\hline & NDE \(=\mathrm{MF}\) ( JN ) & RSTR & 18 \\
\hline & NFS \(=\) NW ( NDE ) -1 & RSTR & is \\
\hline \multirow[t]{2}{*}{\({ }_{c} \mathrm{C}\)} & & -RSTR & 20 \\
\hline & bY-PASS IF NODE HAS ONLY PORE-PRESSURE DOF & RSTR & 21 \\
\hline \multirow[t]{3}{*}{} & & -RSTR & 22 \\
\hline & \(J P=\mathrm{NW}(\mathrm{NDE}+1)-\mathrm{NH}\) (NDE) & RSTR & 23 \\
\hline & IF (JP.EQ.1)GO TO 40 & RSTR & 24 \\
\hline \multirow[t]{5}{*}{c} & & RSTR & 25 \\
\hline & DO 20 JF \(=1\), NDIM & RSTR & 26 \\
\hline & NCDE \(=\operatorname{TF}(\mathrm{JF}, \mathrm{JN}\) ) & RSTR & 27 \\
\hline & IF (NCDE.EQ.0)GO TO 20 & RSTR & 28 \\
\hline & IDFX ( \(\mathrm{NFS}+\mathrm{JF}\) ) \(=1\) & RSTR & 29 \\
\hline 20 & cont inue & RSTR & 30 \\
\hline \multirow[t]{3}{*}{40} & CONTINUE & RSTR & 31 \\
\hline & RETURN & RSTR & 32 \\
\hline & END & RSTR & 33 \\
\hline
\end{tabular}

RSTR 13-14: zero array which indicates variables which are restrained or have prescribed values.
RSTR 16 : skip if no fixities (unlikely).

RSTR 17 : loop on all fixities
RSTR 18 : node with fixity.
RSTR 19 : starting index for g.v.n.
RSTR 23 : number of d.o.f. of node.
RSTR 24 : if only 1 d.o.f., skip (assumed to be the pore pressure variable)
RSTR 26 : loop on all displacement variables of node.
RSTR 27 : fixity code
RSTR 28 : if d.o.f. is free, skip.
RSTR 29 : enter as fixed/prescribed.
RSTR 30 : end of loop on all displacement d.o.f. of node.
RSTR 31 : end of loop on all fixities

\subsection*{7.9.4 Equilibrium check}

Calculation of PCOR at each free node is done in routine EQLBM by consulting array IDFX(NDF) to check whether the entry is 0 , indicating the d.o.f. is free.

Routine EQLBM
\begin{tabular}{|c|c|c|c|}
\hline &  & \multirow[t]{2}{*}{EQBM} & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{1 NW, NQ, IDF X, P, PT, PCOR, PEQT, IEQOP, ICOR, IRAC )}} \\
\hline & & & \\
\hline C & Carries out an equilibrium check & EQBM & \\
\hline & Calculate and printout unbalanced nodal loads & EQBM & \\
\hline \multicolumn{4}{|l|}{C********************\#***************************************EQBM} \\
\hline & DIMENSION NREL(NNZ), NW (NNOD 1), NQ (NN), IDFX (NDF) & EQBM & \\
\hline & DIMENSION P(NDF), PT (NDF), PCOR (NDF), PEQT (NDF) & EQBM & \\
\hline & dimension Par (6), RMAX (6), \(\operatorname{ter}\) (3) & EQBM & \\
\hline & COMMON /PARS / PYi,ALAR,ASMVL,zero & EQBM & 10 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & EQBI & 11 \\
\hline & & EQBM & 12 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & EQBM & \\
\hline & & EQBM & \\
\hline \multicolumn{2}{|r|}{NDIM \(1=\) NDIM +1} & EQBM & 15 \\
\hline \multicolumn{2}{|r|}{NDIM \(2=2 *\) HDIM} & EQBM & 16 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{IF (IRAC.EQ. 1)CALL REACT (IW6, NN, NNOD1, NDF, NDIM, NNZ, 1 NREL, NH, NQ, IDFX, PEQT, PT )}} & EQBM & 17 \\
\hline & & EQBM & 18 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & & 19 \\
\hline & & EQBM & 20 \\
\hline & & EQBM & 21 \\
\hline & & & \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{NQL \(=\) NQ ( NI )}} & EQBM & \\
\hline & & EQBM & \\
\hline \multicolumn{2}{|r|}{IF (NQL.NE. 1.AND. NQL.NE. NDIM1)GO TO 2} & EQBM & 25 \\
\hline \multicolumn{2}{|r|}{\(\mathrm{ILC}=\mathrm{NW}(\mathrm{NI})+\mathrm{NQL}-1\)} & EQBM & 26 \\
\hline \multicolumn{2}{|r|}{IDFX (ILC) \(=1\)} & EQBM & 27 \\
\hline \multicolumn{2}{|r|}{2 continue} & EQBM & 28 \\
\hline \multicolumn{2}{|l|}{} & EQBM & 29 \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{CALCULATE OUT-OF-BALANCE LOADS FOR ALL FREE D.O.F.} & EQBM & 30 \\
\hline & & EQBM & 31 \\
\hline \multicolumn{2}{|l|}{C--C.-C. 5 IK \(=1\) ND} & EQBM & 32 \\
\hline & IF (IDFX(IK).EQ.1) GO TO 3 & EQBM & 33 \\
\hline & PCOR (IK) =PT (IK)-PEQT (IK) & EQPM & 34 \\
\hline & go to 5 & EQBM & 35 \\
\hline & 3 PCOR (IK)=2ERO & EQBM & 36 \\
\hline & 5 Continue & EQBM & 37 \\
\hline & & EQBM & 38 \\
\hline & OUTPUT EQUILIBRIUM, OUT-OF-BALANCE AND APPLIED NODAL LOADS & EQBM & 39 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & IF (IECOP.EQ.0)GOTO 25 & EQBM & 40 \\
\hline & WRITE (IW6,900) & EQBM & 4 \\
\hline & WRITE (IW6, 904 ) & EQBM & 4 \\
\hline c & & EqBM & 43 \\
\hline & DO 20 JR=1, NHZ & EQBM & 4 \\
\hline & IF (NREL (JR).EQ.0)GOTO 20 & EQBM & 45 \\
\hline & \(\mathrm{J}=\mathrm{NREL}\) ( JR ) & EQBM & 46 \\
\hline & NQL=NQ(J) & EQBM & 47 \\
\hline & IF (NQL.LE. 1 )Goto 20 & EQBM & 48 \\
\hline & IF (IEQOP.EQ. 1. AND. JR. GT. NDZ )GOTO 20 & EQBM & 49 \\
\hline & \(\mathrm{N} 1=\mathrm{NW}(\mathrm{J})\) & EQBM & 51 \\
\hline & N2 \(=\) N1+NDIM -1 & EQbm & 52 \\
\hline & \({ }_{1}^{\text {WRITE }}\) ( \(\left.\operatorname{PT}(\mathrm{IW6} 5), 901\right) \mathrm{JR},(\mathrm{P}(\mathrm{JJ}), \mathrm{JJ}=\mathrm{N} 1, \mathrm{~N} 2)\), & EQBM & 53 \\
\hline &  & EQBM & 54 \\
\hline 25 & CaLl zeror 1 (rmax, mp) & EQBM & 55 \\
\hline \multirow[b]{3}{*}{} & & EQBM & 56 \\
\hline & Calculate maximum of applied and out-OF-balance & EQBM & 57 \\
\hline & & EQBM & 58 \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& c \\
& c
\end{aligned}
\]} & LOADS IN ALL DIRECTIONS & EQBM & 59 \\
\hline & DO 50 IK=1, NK & EQBM & 60 \\
\hline & NQL \(=\) NQ (IK) \({ }^{\text {a }}\) & EQBM & 61 \\
\hline & IF (NQL.LE. 1 )Goto 50 & EQBM & 62 \\
\hline & \(\mathrm{N} 1=\mathrm{Nh}(\mathrm{IK})\) & EQBM & 63 \\
\hline & N2=N \(1+\) NDIM-1 & EQBM & 65 \\
\hline & \(\mathrm{IC}=0\) & EQBM & 66 \\
\hline \multirow[b]{4}{*}{35} & & EQBM & 67 \\
\hline & DO \(35 \mathrm{KN}=\mathrm{N} 1, \mathrm{~N} 2\) & EQBM & 68 \\
\hline & \(\mathrm{IC}=\mathrm{IC}+1\) & EQBM & 69 \\
\hline & \(\operatorname{PAR}(1 \mathrm{C})=\mathrm{PT}(\mathrm{KN})\) & EQBM & 70 \\
\hline 35 & \(\operatorname{PAR}(\mathrm{IC}+\) NDIM \()=\operatorname{PCOR}(\mathrm{KN})\) & EQBM & 71 \\
\hline & & EQBM & 72 \\
\hline & DO 40 IC \(=1\), NDIM2 & EQBM & 73 \\
\hline & \(\mathrm{R}=\) PAR (IC) & EQBM & 74 \\
\hline & IF (ABS (RV).LT.ASMVL)GOTO 40 & EQBM & 75 \\
\hline & IF (ABS (RV).GT. \(\mathrm{RMAX}(\mathrm{IC})\) )RMAX (IC) \(=\) ABS (RV) & еQbM & 76 \\
\hline & continue & EQBM & 77 \\
\hline & Continue & EQBM & 78 \\
\hline \(c\) & OUT PUT MAXIMUM OF (1) APPLIED LOADS (2) OUT - & QBM & 79 \\
\hline \(c \quad\) & IN ALL DIRECTIONS & EQBM & 80 \\
\hline & & EQBM & 81 \\
\hline \multirow[b]{6}{*}{I} & WRITE (IW6, 902 ) & EQBM & 82 \\
\hline & & EQBM & 83 \\
\hline & & EQBM & 84 \\
\hline & IWABN \(=0\) & EQBM & 85 \\
\hline & PMAXT \(=\) RMAX (1) & EQBM & 86 \\
\hline & DO 55 ID=2, NDIM & EQBM & 87 \\
\hline \multirow[t]{3}{*}{55 I} & IF (RMAX (ID).GT. PMAXT)PMAXT=RMAX (ID) & EQBM & 88 \\
\hline & IF (PMAXT.LT.ASMVL) GOTO 132 & EQBM & 89 \\
\hline & DO 130 ID \(=1\), NDIM & EQBM & 90 \\
\hline \multirow[t]{2}{*}{130 T} & TER (ID) \(=100\) * \({ }^{\text {PMAX (ID }+ \text { NDIM }}\) )/PMAXT & EQBM & 91 \\
\hline & GOTO 125 & EQBM & 92 \\
\hline 132 & IWARN=1 & EQbm & 93 \\
\hline & DO 135 ID \(=1\), NDIM & EQbM & 94 \\
\hline 135 & TER(ID) \(=2\) ERO & EQBM & 95 \\
\hline \multirow[b]{6}{*}{125} & & EQBM & 96 \\
\hline & WRITE (IW6, 903) & EQBM & 97 \\
\hline & WRITE (IW6,905) & EQBM & 9 \\
\hline & WRITE (IW6, 907) (RMAX (JQ), JQ = 1, NDIM2), (TER (ID), ID \(=1\), NDIM) & EQBM & 9 \\
\hline & IF (IWARN. EQ. 1)WRITE (IW6, 910) & EQBM & \\
\hline &  & EQBM & \\
\hline & zero pcor if no correcting loads are to be applied in next incr & EQBM & \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{IF (ICOR. NE. 0 ) RETURN}} & EQBM & \\
\hline & & EQBM & \\
\hline & & EQBM & 105 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DO 140 IK \(=1\), NDF & EQBM 106 \\
\hline 140 PCOR (IK) CER O & EQBM 107 \\
\hline RETURN & EQBM 108 \\
\hline 900 FORMAT (//67X, 19 HLOADS EQUIVALENT TO/9X, & EQBM 109 \\
\hline 124 HINC REMENTAL APPLIED LOAD, \(7 \mathrm{X}, 18 \mathrm{HTOTAL}\) APPLIED LOAD, & EQBM 110 \\
\hline 1 10x, 16HELEMENT STRESSES, 11x, 19HOUT-OF-baLANCE LOAD/ & EQBM 111 \\
\hline \(29 \mathrm{X}, 24(1 \mathrm{H}-), 7 \mathrm{X}, 18(1 \mathrm{H}-), 10 \mathrm{X}, 16(1 \mathrm{H}-), 11 \mathrm{X}, 19(1 \mathrm{H}-)\) ) & EQBM \\
\hline 901 Format ( \(1 \mathrm{X}, 15,2 \mathrm{X}, 8 \mathrm{E} 14.4\) ) & BM \\
\hline 902 FORMAT(//1X, 17HEQUILIBRIUM CHECK/1X, 17(1H-)) & EQBM 114 \\
\hline 903 FORMAT ( \(/ 8 \mathrm{X}, 20 \mathrm{HMAXIMUM}\) APPLIED LOAD, 12 X , & \(\begin{array}{ll}\text { EQBM } & 115 \\ \text { EQBM } & 116\end{array}\) \\
\hline 124 HMAXM OUT-OF-BALANCE LOAD, 10X, & EQBM 116 \\
\hline 2 31HPERCENTAGE ERROR IN EQUILIBRIUM/ & EQBM 117 \\
\hline \(38 \mathrm{X}, 20(1 \mathrm{H}-), 12 \mathrm{X}, 24(1 \mathrm{H}-), 10 \mathrm{X}, 31(1 \mathrm{H}-) /\) ) & EQBM 118 \\
\hline 904 Format (/1X, 5H Hode , 8X, 1HX, 13X, 1HY, 13X, 1HX, 13X, 1HY, \(13 \mathrm{X}, 1 \mathrm{HX}\), & EQBM 119 \\
\hline \(113 \mathrm{X}, 1 \mathrm{HY}, 13 \mathrm{X}, 1 \mathrm{HX}, 13 \mathrm{X}, 1 \mathrm{HY} / / \mathrm{\prime}\) & EQBM 120 \\
\hline 905 format (11X, 1HX, 15X, 1HY, \(16 \mathrm{X}, 1 \mathrm{HX}, 15 \mathrm{X}, 1 \mathrm{HY}, 17 \mathrm{X}, 1 \mathrm{HX}, 15 \mathrm{X}, 1 \mathrm{HY} /\) ) & EQBM 121 \\
\hline 907 FORMAT ( \(1 \mathrm{X}, 4 \mathrm{E}\) 16.5, 2 F 16.5 ) & EQBM 122 \\
\hline 910 FORMAT(/4OH WARNING **** NO APPLIED LOADING - ChECK, & EQBM 123 \\
\hline \(11 \mathrm{x}, 4 \mathrm{ghwhether} \mathrm{all} \mathrm{boundary} \mathrm{conditions} \mathrm{are} \mathrm{displacements}\), & EQQM 124 \\
\hline 2 2x, 15H(ROUTINE EQLBM)) & EQBM 125 \\
\hline END & EQBM 126 \\
\hline
\end{tabular}

EQBM 15-16 : indexes to arrays PAR and RMAX.
EQBM 17-18 : calculate reactions-to-earth at nodes which are restrained (or have prescribed displacements). Identified by 1 in array IDFX against g.v.n.
EQBM 23 : loop on all nodes.
EQBM 24 : number of d.o.f. of node.
EQBM 25 : if node has only displacement d.o.f., by-pass.
EQBM 27 : enter 1 against pore pressure d.o.f. which are not included in the equilibrium check.
EQBM 32
EQBM 33
EQBM 34
skip if details of equilibrium check are not to be printed
EQBM 45 : loop on all nodes in user sequence number.
EQBM 47 : program node no
EQBM 48 : no. of d.o.f.
EQBM 49 : by-pass if node has only pore pressure d.o.f. (it is implicitly assumed that if a node has only 1 d.o.f. then that is pore pressure d.o.f.).
EQBM 50
EQBM 51-52 : g.v.n. of first and last displacement d.o.f. of node. only print details at vertex nodes if IEQOP \(=1\).

EQBM 53-54 : print out incremental, out-of-balance, equilibrium and total loads.
EQBM 61 : loop on all nodes.
EQBM 63 : skip if node has only pore pressure variable.
EQBM 64-65 : g.v.n. of first and last displacement d.o.f. of node.
EQBM 68 : loop on all d.o.f. of node.
EQBM 70-71 : copy total (PT) and out-of-balance (PCOR) loads at node.
EQBM 73-77 : update maximum values of PT and PCOR.

EQBM 87-88 : get maximum value of total load
EQBM 89 : if it is negligible then no applied loading. (Could be an analysis where displacements are prescribed at boundary, i.e. displacement or strain controlled analysis.)

EQBM 90-91 : calculate percentage error in equilibrium (out-of-balance loads as a percentage of total load).
EQBM 94-95 : no applied load. Set it to zero (no way of calculating percentage error in load, as no loads have been applied).
EQBM 99-100 : print percentage error.
EQBM 106-107 : if errors in loads are not to be carried forward to nex increment, then zero them.

\subsection*{7.9.5 Reactions}

At all nodes which are restrained or have a prescribed value,
\[
\begin{align*}
P_{\text {cor }} \equiv & \int_{S} \mathrm{~N}^{\mathrm{T}} \tau \mathrm{~d}(\text { area })+\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\text { vol }) \\
& -\int_{V} \mathrm{~B}^{\mathrm{T}} \sigma \mathrm{~d}(\text { vol }), \tag{7.12}
\end{align*}
\]
and is the reaction-to-earth. These are printed. Again IDFX(NDF) is made use of to indicate the d.o.f. which are fixed or have prescribed values.

Routine REACT
SUBROUTINE REACT (IW6, NN, NNOD1, NDF, NDIM, NNZ, NREL, NW, NQ, IDFX, PEQT, RECT

C CALCULATES REACTION TO EARTH AT RESTRAINED NODES
 DIMENSION PEQT (NDF), PT (NDF), NW (NNOD1), NREL(NNZ), NQ(NN), IDFX(NDF) RECT DIMENSION R (500), NDENO (500), NDIR (500)
\begin{tabular}{ll}
\(C\) \\
\(C\) & NCT - SIZE OF ARRAYS \(R\), NDENO AND NDIR \\
RECT
\end{tabular}
NCT \(=500\) RECT

ICT=0
C RECT
\begin{tabular}{ll} 
DO \(25 \mathrm{JR}=1, \mathrm{NNZ}\) & R \\
\(\mathrm{IF}(\mathrm{NREL}(\mathrm{JR}) . \mathrm{EQ} .0)\) GOTO 25 & \(R\) \\
\(\mathrm{~J}=\mathrm{NREL}(\mathrm{JR})\) & R \\
\(\mathrm{NQL}=\mathrm{NQ}(\mathrm{J})\) & R
\end{tabular}

IF (nQL.LE. 1) GOTO 25
        \(\mathrm{N} 1=\mathrm{NW}(\mathrm{J})\)
\(\mathrm{N} 2=\mathrm{N} 1+\mathrm{NDIM}-1\)
        \(\mathrm{IDF}=0\)

C \(20 \mathrm{KN}=\mathrm{N} 1, \mathrm{~N}\)
\[
\begin{aligned}
& D 0 \quad 20 \mathrm{KN}=\mathrm{N} 1 \\
& \mathrm{IDF}=\mathrm{IDF}+1
\end{aligned}
\]

\section*{IF (IDFX(KN).NE. 1)Goto 2}

ICT=ICT+1
(ICT) \(=-(P E O T\) (KN \()-\operatorname{PT}(K N)\)
(ICT) \(=-(\) PEQT \((\mathrm{KN})-\mathrm{PT}(\mathrm{KN}))\)
NDIR (ICT) \(=1\) ID
20 continue
c
WRITE (IW6, 901)
WRITE (IW6, 901)
WRITE (IW6, 903) (NDENO(JCT), NDIR (JCT), R(JCT) , JCT \(=1\), ICT)
WRITE
RETURN
WRITE (IW6, 906 )
stop
901 FORMAT (//1X, 18 H LIST OF REACTIONS \(/ 2 \mathrm{X}, 17(1 \mathrm{H}-)\) )
\(12 \mathrm{X}, 3(4 \mathrm{HNODE}, 4 \mathrm{X}\), 9HDIRECTION, 7X, 8HREACTION, 11X)/)
903 FORMAT(3(1X, I5,5X, I4, 5X, E14.4, 10X))
906 FORMAT (/1X, 35HINCREASE ARRAY SIZE OF R, NDENO, NDIR,
16 16 HIN routine react
END
: counter of total no. of reactions (each variable is dealt with separately).
RECT 17 : loop on all nodes in user sequence number
RECT 18 : skip if user has not used this node no.
RECT 19 : program node number.
RECT 20 : number of d.o.f. of node.
RECT 24 : by-pass if node has only 1 d.o.f. (assumed to be pore pressure variable).
RECT 25-26 : g.v.n. of first and last displacement d.o.f. of node
RECT 29 : loop on all displacement d.o.f. (variables).
RECT 30 : displacement variable no. of node (i.e. 1 or 2 ).
RECT 31 : skip if not restrained or prescribed.
RECT 32 : increment count of reactions by 1.
RECT 33 : skip if array size is exceeded.
RECT 34 : calculate reactions-to-earth.
RECT 35 : enter user node number.
RECT 36 : enter direction \((1-x ; 2-y)\).
RECT 37 : end of loop on all displacement d.o.f. of node
RECT 38 : end of loop on all nodes.
RECT 40-41 : print out list of reactions.
RECT 43-44 : print message to increase array size, and stop.

\section*{Routine ZEROSB}


ZERO 1-54 : zero array in separate routines as follows:

Array type
\begin{tabular}{ll} 
INTEGER & ZEROI1 \\
INTEGER & ZEROI2 \\
REAL & ZEROR1 \\
REAL & ZEROR2 \\
REAL & ZEROR3
\end{tabular}


\section*{Analysis}

\subsection*{8.1 INTRODUCTION}

Having set the in situ stresses, the analysis proper can begin. An equilibrium check has also been carried out to make sure that external loads specified by the user are equivalent to the element in situ stresses. It should be remembered that these (in situ) loads are different from the loading applied during the course of the analysis.

In some analyses the simple option of no initial stresses may have been selected. However, in most geotechnical problems the in situ stresses play an important role. CRISP stores the current stress state, and this governs behavio under the subsequent loading. This chapter deals with the response of the soil tu a given loading.

The loads are divided into steps, called increment blocks. These increment blocks in turn are divided into increments. The use of increment blocks is for convenience. The analysis can be divided into the following steps:
(i) calculation of incremental loads;
(ii) application of the boundary conditions;
(iii) assembly of the stiffness matrix;
(iv) solution of the equations;
(v) calculation of strains and stresses;
(vi) output of results.

Section 8.2 explains the use of increment blocks. Section 8.3 presents a brief
explanation of the subroutines listed in this chapter. Section 8.4 deals with the calculation of incremental loads. Section 8.5 presents the details of the load increment loop. Sections 8.6 to 8.8 deal with the calculation of the element stiffness matrix and the global stiffness matrix. The frontal solution is dealt with in separate sections, 8.9 to 8.12 . Section 8.13 considers the calculation of incremental strains and stresses, and the printing out of the various parameters. Section 8.14 lists the subroutine which deals with stopping and restarting an analysis.

The previous chapter dealt with the setting up of the in situ stresses and satisfying the equilibrium conditions at that stage. Those readers interested in an analysis with zero in situ stresses may have skipped the previous chapter. However, a number of routines are common to the in situ part and the analysis part of the program, Where applicable we refer the reader back to the explanations in the previous chapter.

\subsection*{8.2 INCREMENT BLOCKS}

The entire loading is divided into a number of increments. The increments can be grouped into a number of increment blocks. As mentioned in Chapter 4 , this facility is provided for two reasons.
(i) If the loads for each analysis increment had to be specified separately there would be a very large amount of data input needed for most problems. Much of this information would be repeated many times (e.g. which element sides were being loaded).
(ii) When performing an excavation (or construction) analysis the program calculates the implied loads due to the removal (or addition) of the elements specified by the user. These implied loads will often be too large to be applied in a single increment when the material behaviour is nonlinear. The use of an increment block spreads these implied loads over several increments. (Note that this procedure introduces an extra approximation in the modelling of excavations: the stiffness of an element is removed entirely in the first increment of a block whereas the loads are spread over all increments in the block.)

\subsection*{8.3 CONTROL ROUTINE}

The master control routine is ANS. This loops around all increment blocks in the analysis. This is the outer loop. The inner loop is on all increments within the increment block. Each increment block contains at least one increment.

Routine ANS consists of a series of subroutine calls to various routines, delegating tasks to them (Fig. 8.1). A brief explanation of each subroutine discussed in this chapter is given below.


Fig. 8.1 - Subroutine hierarchy for analysis part of program
ANS - main control routine for analysis. Reads control parameters for increment block. Delegates tasks to routines CHANGE, SEL1 and LODINC.
CHANGE - calculates implied loads̄ due to removal and addition of elements. SEL1 - calculates nodal loads for self-weight loads.
FACTOR - reads load ratios, output options and time steps for each increment within an increment block.
LODINC - control routine delegates calculation of stiffness matrices and solution of equations to FRONTZ and printing out the results to UPOUT (via UPARAL).
LSTIFF - calculates element stiffness matrix.
JPC - for consolidation analysis, calculates components of stiffness matrix.
FORMP - calculates E matrix (pore pressure gradients), i.e. Cartesian derivatives of pore pressure shape functions.

SHFNPP - calculates pore pressure shape functions.
LSTIFA - calculates \(\int_{V} B^{\mathrm{T}} \mathrm{DB} \mathrm{d}(\mathrm{vol})\).
LSTFSG - rearranges rows/columns of element stiffness matrix and forms a one-dimensional (upper triangular matrix stored columnwise) matrix acceptable to FRONTZ.
FRONTZ - calls LSTIFF to calculate the element stiffness matrix, and solves the assembled equations using the frontal method.
FRSLOT - slots upper triangular element stiffness matrix in appropriate places in the front.
FRFXLD - deals with prescribed displacements and applied loads for nodes being elminated. Also prints them out.
PRINTF - debugging routine to print out element stiffness matrix and stiff ness terms and load terms in the front.
STOREQ - stores contents of the buffer of eliminated coefficients in backing store when the buffer fills up during frontal solution
WRTN - routine used by STOREQ to write to backing store.
GETEQN - performs the reverse task to STOREQ. Gets back a bufferful of eliminated coefficients from backing store when the buffer becomes empty during back-substitution in the frontal solution.
RDN - routine used by GETEQN to read from backing store.
UPARAL - sets up temporary arrays for storing output tables to be printed in UPOUT2.
UPOUT - output routine. Increments displacements and calculates stress increments and prints out the results. Writes results to magnetic tape or disk, but in the latter case only if it is the last increment of the analysis (used in stopping and restarting an analysis).
EVCAM - calculates extra stress parameters for Cam-clays.
VARCAM - assigns codes to indicate stress state for Cam-clays.
ANGTH - calculates angle \(\theta\) in \(\pi\) plane.
PRINC - calculates principal stresses in \(x y\) plane.
CAMCDE - prints out explanations of codes assigned to identify stress states for Cam-clay models only.
UPOUT2 - prints out additional stress parameters calculated for Cam-clays.
STRSEQ - calculates forces equilibriating element stresses.
RESTRT - stop-restart facility (see section 9.2).
The main task of the routine ANS is to form a single load vector PIB(NDF) from the user-specified pressure loads and self-weight loads and to translate restraints/ prescribed displacements (including pore pressures) into a list of nodal fixities. Within the increment loop, both of these are accessed. Implied loadings due to removal of elements (excavation) and addition of elements (construction) are also calculated and assembled into \(\operatorname{PIB}(N D F)\).

Routine ANS
\begin{tabular}{|c|c|c|}
\hline SUBROUTINE ANS (NN, NEL, NDF, MNOD1, NTPE, NIP, NVRS, NVRN, NDIM, MUMAX, & ANS & 1 \\
\hline \multirow[t]{2}{*}{} & NS & 2 \\
\hline & NS & 3 \\
\hline 3 XYZ, DI, DA, VARINT, P, PT, PIB, REAC, PCOR, PEQT, XYFT, XYFIB, & ANS & 4 \\
\hline \multirow[t]{2}{*}{4 STR, PEXIB, PEXI, PCONI, D, ELCOD, DS, SHFN, CARTD, B, DB, FT, SS, ES,} & ANS & 5 \\
\hline & ANS & 6 \\
\hline 2 NCONN, MAT, LTYP, MRELVV, MREL, NRELVV, NREL, NW, NQ, & ANS & 7 \\
\hline 3 JEL, IDFX, NDEST, NP1, NP2, IFR, NDL, NWL, MMOD, & ANS & 8 \\
\hline 4 CIP, LL, V, FXYZ, PR, PDISLD, PRES, NTY , A, MFZ, NOIB, & ANS & 9 \\
\hline 5 TTIME, TGRAV, IUPD, ICOR, IBC, IDCHK, INCT) & ANS & 10 \\
\hline \multicolumn{2}{|l|}{} & \(1^{\text {. }}\) \\
\hline main controlling routine & ANS & 1 \\
\hline C********************************) & & 13 \\
\hline REAL L,LL & ANS & 14 \\
\hline INTEGER TF & ANS & 15 \\
\hline C-------USE the following statement after converting program to double & ANS & 16 \\
\hline c-------Precision. array a always uses one numeric storage location & ANS & 17 \\
\hline CC real a & ans & 18 \\
\hline DIMENSION XYZ (NDIM, NN), DI (NDF), DA (NDF), VARINT (NVRS, NIP, NEL), & ANS & 19 \\
\hline 1 P (NDF), PT (NDF), PIB (NDF), REAC (NDF), PCOR (NDF), PEQT (NDF), XYFT (NDF), & ANS & 20 \\
\hline 2 XYFIB(NDF), STR(NVRN,NIP, NEL), PEXIB(NDF), PEXI(NDF), PCONI(NDF) & ANS & 21 \\
\hline DIMENSION D(NS, NS), ELCOD (NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX), & ANS & 22 \\
\hline \(1 \begin{aligned} & \text { CARTD (NDIM, NDMX } \\ & 2 \\ & \text { SS } \\ & \text { (NB }\end{aligned}\) & ANS & 23 \\
\hline 2 SS(NB,NB),ES(KES) & ANS & 24 \\
\hline \multirow[t]{2}{*}{1 RN(NB), AA(NPMX), ETE (NPMX, NPMX), RLT (NB, NPMX)} & ANS & 25 \\
\hline & ans & 26 \\
\hline DIMENSION NCONN (NTPE, NEL), MAT (NEL), LTYP(NEL) , MRELVV (NEL), & ANS & 27 \\
\hline 1 MREL (MUMAX), NRELVV (NN), NREL (NNZ), NW (NNOD1), NQ (NN), JEL (HEL), & ANS & 28 \\
\hline \(21 \mathrm{DFX}(\mathrm{NDF}), \mathrm{NDEST}(\mathrm{NN}), \mathrm{NP} 1\) (NPL), NP2 (NPL) & ANS & 29 \\
\hline DIMENSION IFR(IFRZ), NDL (MDFE) , NWL (NPMX), MMOD (NIP, NEL) & Ans & 30 \\
\hline DIMENSION CIP (NDIM), LL (NL), V (LV), FXYZ (NDIM), PR (NPR, NMT), & ANS & 31 \\
\hline 1 PDISLD (NDIM, NPT), PRES (NDIM, NPT), NTY (NMT), A (MFZ & ANS & 32 \\
\hline DIMENSION RINCC (50), \(\operatorname{DTM}\) (50), IOPT (50) & ANS & 33 \\
\hline COMMON /FLOW / NPLAX & ANS & 34 \\
\hline COMMON /DATL / L ( 4,100 ) & ANS & 35 \\
\hline COMMON /DATW / W(100) & ANS & 36 \\
\hline COMMON /ELINF / LINFO(50, 15) & ANS & 37 \\
\hline COMMON /FIX / DXYT (4, 200), MF (200), TF ( 4,200 ), NF & ANS & 38 \\
\hline COMMON /PRSLD / PRESLD (10, 100), LEDG(100), NDE 1 (100), NDE2(100), NLED & ANS & 39 \\
\hline  & ANS & 40 \\
\hline COMMON /DEVICE/ IR 1, IR4, IR5, IW2, IW4, IW6, IW7, IW8, IW9 & ANS & 41 \\
\hline COMMON /PARS / PYI,ALAR,ASMVL,ZERO & ANS & " \\
\hline  & & \\
\hline \multirow[t]{2}{*}{maximum number of increments in a increment block} & ANS & 4. \\
\hline & -ANS & 45 \\
\hline INCZ \(=50\) & ANS & 46 \\
\hline NDIM \(1=\) NDIM +1 & ANS & 47 \\
\hline IF (IDCHK.EQ.0)GOTO 10 & ANS & 48 \\
\hline WRITE(IW6,907) & ANS & 49 \\
\hline STOP & ANS & 50 \\
\hline \multirow[t]{2}{*}{} & & 51 \\
\hline & ANS & 52 \\
\hline & -ANS & 53 \\
\hline 10 DO \(250 \mathrm{~J}=1\), NOIB & ANS & 54 \\
\hline C \({ }^{\text {c }}\) & ANS & 55 \\
\hline WRITE(IW6,908) J & ANS & 56 \\
\hline & -ANS & 57 \\
\hline c INITIALISE LOAD VECTOR & ANS & 58 \\
\hline & -ANS & 59 \\
\hline CALL \(\mathrm{ZEROR1}\) (XYFIB, NDF) & ANS & 60 \\
\hline CALL ZEROR \({ }^{\text {( } P \text { IB, NDF }}\) ) & ANS & 61 \\
\hline CaLL 2 EROR1(PEXIb, NDF) & ANS & 62 \\
\hline C & ANS & 63 \\
\hline
\end{tabular}

DO \(20 \mathrm{JJ}=\mathrm{i}, \mathrm{MXEN}\)
PRSLDI (II, JJ) \(=2\) ERO
c
ILOD=0
CALL ZEROIT (JEL, NEL)
CALL ZEROR1(DTM, INCZ) CALL ZEROR1(RINCC, INCZ) FRACT=ZERO

READ (IR5, *) IBNO, INC 1, INC 2, ICHEL, NLOD, ILDF, NF X, IOUTS,
IOCD, DTIME, ITMF, DGRAV
WRITE (IW6, 912 IIBNO, INC 1, INC 2, ICHEL, NLOD, ILDF, NFX, IOUTS,
IOCD, DTIME, ITMF, DGRAV
NOINC \(=\) INC \(2+1\)-INC 1
IF (NOINC.LE.INCZ)GOTO 70
HRITE (IW6, 950) NOINC
STOP
70 IF (IBNO.EQ.J) GO TO 72 WRITE (IW6,913) IBNO, J
2 IF (ICHEL.EQ.0) GO TO 76


WRITE (IW6, 914 )
(JEL (JJ) JJ=1, ICHEL)
WRITE (IW6,920) (JEL (JJ), JJ=1, ICHEL)
CALL CHANGE (IW6, 1, ICHEL, NN, NNOD 1, NTPE, NIP, NEL, MUMAX, NN2, NDF, NDIM
1 NVRS, NDMX, NL, NB, NS, NPR, NMT, NPT, NSP, NPL, XYZ, VARINT, PIB, PEXIB
2 ELCOD, DS, SHFN, CARTD, B, FT, NCONN,MAT, LTYP, MREL, NREL,
CALCULATE BODY FORCE LOAD VECTOR
FOR SELF-WEIGHT LOADING AND GRAVITY LOADING

FOR SELF-HEIGHT LOADING AND GRAVITY LOADING
76 CALL SEL1 (IW6, ICHEL, NN, NNOD 1, NTPE, NIP, NEL, NDF, MUMAX, NL, NDIM,
1 NDMX, NPR, NMT, XYZ, PIB, ELCOD, DS, SHFN, FT, NCONN, MAT,
read load factors, time factors and output options
CALL FACTOR (IR5, IW6, NOINC, ILDF, IOCD, ITMF, IOUTS,
RINCC, DTM, IOPT, DTIME
IF (NLOD.EQ.O)GO TO 95
IF (NLOD.GT.O)GO TO 82
C- Pressure loading along elbment edae
WRITE (IW6, 1000)
IF (NOIM.EQ. 2 )GOTO 78
URITE (IW6,955)
955 FORMAT (/1X, 34 hno option to calculate nodal loads, 1 X , 50hFrom pressure loading in 3-d proslem (routine ans)) STOP

78 DO 80 KLOD \(=1\), NLDS
READ (IR5,*)LNE, ND1, ND2, ((PDISLD(ID, IV), ID \(=1\), NDIM) , IV \(=1\), NPT ) WRITE(IW6, 1002 )LNE, ND1, ND2, ( (PDISLD (ID, IV), ID \(=1\), NDIM), IV \(=1\), NPT )
DO 100 IV \(=1\), NPT

D0 \(100 \quad I D=1\), NDIM
IDR \(=\) NDI \(M+1-I D\)
100 PRES (ID, IV) \(=\) PDISLD (IDR,IV)
\(\begin{array}{lll}\text { DO } & 110 \text { IV }=1 \text {, NPT } \\ \text { DO } & 110 \text { ID }=1 \text { NDIM }\end{array}\)
110 PDISLD(ID, IV) \(=\) PRES (ID,IV)
CALL EDGLD (IW6, NEL, NDIM, NTPE, NN2, MUMAX, NPL, NCONN, LTYP, MREL, NREL,
c
CALL DISTLD(IW6,NN, NEL, NDF, NNOD1,NTPE,NDIM,MUMAX,NN2,
NPL, XYZ, PIB, NCONN, LTYP, MREL, NREL, NW,
2 NP1,NP2, PRES, LNE, ND 1, ND2, NPT, NSP, \(1,1,1\).
80 CONTINUE
GO TO 95


82 WRITE (IW6,916)
DO \(90 \mathrm{JJ}=1\), NLOD
READ (IR5,*)KK, (FXYZ (ID), ID=1, NDIM)
WRITE (IW6, 940 )KK, (FXYZ (ID), ID \(=1\), NDIM
------NO PROVISION FOR PORE PRESSURE TERMS IN 'applied' NODAL AN KJ \(=\) NREL (KK)
\(\mathrm{N} 1=\mathrm{Nu}(\mathrm{KJ})-1\)
\(\operatorname{IDF}=\mathrm{NW}(\mathrm{KJ}+1)-\mathrm{NW}(\mathrm{KJ})\)
IF (IDF.EQ.1) GO TO 84
DO 83 ID \(=1\),NDIM
XYFIB (N1+ID) \(=\mathrm{FXYZ}\) (ID) IF (IDF.EQ. ND
GO TO 90
\(84 \operatorname{XYFIB}(\mathrm{~N} 1+1)=\mathrm{FTT}\)
90 continue
c \(95 \operatorname{IF}(\) nfx.eq.0) GO TO 137
C READ CHANGE TO NODAL FIXITIES

WRITE (IW'6,931)
CALL FIXX(IR5, IW6, NEL, NTPE, NDIM, NPL, LV, MUMAX, NN2, NCONN, LTYP 1 MREL, NREL, NP 1, NP2,\(V\), NFX
\(\underset{\text { C }}{137 \text { CONTINUE }}\)
DO 200 JS=INC 1, INC2
INCT \(=\) INCT +1
IF (JS.EQ. INCT)GO TO 138
WRITE (IW6, 933) JS, INC
\(138 \mathrm{JC}=\mathrm{JS}+1\)-INC1
FRACLD=RINCC (JC)
FRACT \(=\) F RACT + FRACLD
DTIMEI \(=\) DTM (JC)
TTIME =TTIME + DTIMEI
DGRAVI =FRACLD*DGRA
IOUT =IOPT (JC)
flag to indicate the very last increment in curbent bun
TO ALLOW RESULTS FROM THIS INCREMENT TO BE WRITTEN TO DISK FILE


IF (NDIM.EQ.2)GOTO 10
\(\mathrm{Q} 2=\mathrm{Q} 2+3 . * \mathrm{~A}(5) * \mathrm{~A}(5)+3 . * \mathrm{~A}(6) * \mathrm{~A}(6)\)
\(10 \mathrm{Q}=\mathrm{SQRT}\) (Q2)
RETUR
END
FUNCTION EDS (A, N, NDIM)
DIMENSION A(N)
\(\operatorname{EDS} 2=0.5 *((A(1)-A(2)) *(A(1)-A(2))+(A(2)-A(3)) *(A(2)-A(3)\)
\(1+(A(3)-A(1)) *(A(3)-A(1)))+.75 * A(4) * A(4)\)
IF (NDIM.EQ.2)GOTO 10
\(\operatorname{EDS} 2=\operatorname{EDS} 2+0.75 * A(5) * A(5)+0.75 * A(6) * A(6)\)
10 EDS \(=2\). *SQRT(EDS 2 )/3.
END

\section*{ANS 26 \\ \(\begin{array}{ll}\text { ANS } & 263 \\ \text { ANS } & 264 \\ \text { ANS } & 265\end{array}\) \\ \(\begin{array}{ll}\text { ANS } & 265 \\ \text { ANS } & 266\end{array}\) \\ \(\begin{array}{lll}\text { ANS } & 267 \\ \text { ANS } & 26\end{array}\) \\ \(\begin{array}{ll}\text { ANS } & 268 \\ \text { ANS } & 26 \\ & 27\end{array}\) \\ \(\begin{array}{ll}\text { ANS } & 27 \\ \text { ANS } & 27 \\ \text { ANS } & 27 \\ \text { ANS } & 27\end{array}\) \\ \(\begin{array}{ll}\text { ANS } & 2 \\ \text { ANS } & 2 \\ & 2\end{array}\)}

ANS 46 : maximum number of increments in a block.
ANS 54 : loop on all blocks
ANS 60-72 : zero arrays dependent on block.
XYFIB - point loads.
PIB - global load array.
PEXIB - loads due to removal of elements.
PRSLDI - applied pressure loads.
JEL - element changes.
IOPT - output options.
DTM - time steps.
RINCC - load ratios
ANS 77-80 : read and write control parameters for block.
ANS 81 : calculate no. of increments in block \((\leqslant 50)\).
ANS 85-86 : check increment block number.
ANS 88 : skip if no changes to mesh.
ANS 93-94 : read and write list of element changes.
ANS 96-99: make changes to mesh and calculate implied loads.
ANS 104-106: calculate gravity loading for current block (only if there is a change in the gravity acceleration field)
ANS 110-111: read separate lists of load ratios, output options and time steps for each increment in block.
ANS 112 : skip if no loads have been applied.
ANS 113 : point loads are applied
ANS 120-122: applied pressure loads for 3-D are not allowed; print message and stop.
ANS 125 : loop on all sides with applied pressure loads.
ANS 126-127: read and write applied pressure loads along element side.
ANS 129-136: change order of pressure loads to suit program.
ANS 138-139: enter this in common block after checking.
ANS 141-143: calculate nodal loads from the pressure loads and place them in PIB.

ANS 151 : loop to read directly specified point loads.
ANS 152-1 53 : read and write point loads.

ANS 156 : program node number.
ANS 157 : g.v.n. of first d.o.f. of node -1 .
ANS 158 : no. of d.o.f. of node.
ANS 159 : skip if it has only 1 d.o.f. (assumed to be pore pressure d.o.f.).
ANS 161-162: enter load in XYFIB.
ANS 165 : enter FTT (this is to permit future changes to allow specification of flow rate at the boundary).
ANS 168 : skip if no fixities have been specified.
ANS 174-175: read specified fixities.
ANS \(180 \quad\) : loop on all increments in block
ANS 182-183: check increment number, print message and stop if out of sequence.
ANS 185-192: update all relevant values for current increment.
ANS 201-212: calculations for current increment (assembly/elimination/ output).
ANS 214 : end of block.
ANS 220-222: set all prescribed values of displacements/pore pressures to zero. ANS 260-264: calculate \(q\).
ANS 270-274: calculate \(\epsilon\).

\subsection*{8.4 LOADS}

\subsection*{8.4.1 Loads of excavation/construction}

Routine CHANGE, which is called by ANS, scans the list of element changes. The sign of an entry in array LTYP for each of these elements would indicate whether the element is being added (simulating construction) or removed (simulating excavation). If the sign of LTYP is negative then the element is being added. If it is positive then the element is being removed.

Elements that are added have zero stresses and no memory of any stress history. Therefore these elements cannot have Cam-clay material properties. They can only be elastic models of type 1 or 2 (both are linear elastic models). An attempt to use critical state models for added elements would lead to an error when the \(D\) matrix is calculated in the program (e.g. a zero size of yield locus passing through current stress state).

There is also a restriction on elements that are removed to simulate excavation. These should not be added again (simulating, for example, refilling of an excavated trench). The nodal loads due to the addition of elements are given by
\[
\begin{equation*}
\mathrm{F}(\mathrm{NDIM}, \mathrm{NDMX})=\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\mathrm{vol}) \tag{8.1}
\end{equation*}
\]

The nodal loads for the removed elements are given by
\[
\begin{align*}
\mathrm{F}(\mathrm{NDIM}, \mathrm{NDMX})= & \int_{V} \mathrm{~B}^{\mathrm{T}} \sigma \mathrm{~d}(\text { vol })-\int \mathrm{N}^{\mathrm{T}} w \mathrm{~d}(\text { vol }) \\
& -\int_{S} N^{\mathrm{T}} \tau \mathrm{~d} \text { (area) } \tag{8.2}
\end{align*}
\]
where \(\sigma\) is the current total stress in the element.
\(\int_{V} N^{\mathrm{T}} w \mathrm{~d}(\mathrm{vol}) \quad\) is calculated in routine SELF.
\(\int_{V} \mathbf{B}^{\mathrm{T}} \sigma \mathrm{d}(\mathrm{vol}) \quad\) is calculated in routine EQLIB (see section 7.7.4).
\(\int_{S} N^{\mathrm{T}} \tau \mathrm{d}\) (area) is calculated in routine DISTLD.
The element contributions are accumulated in PI (NDF).
Because of the approximate way in which the excavation process is simulated and in order to satisfy the equilibrium at the end of each increment, an array PEXIB is required. It consists of nodal loads equivalent to the stresses in elements which are being removed. Remembering that these elements vanish in the first increment of the increment block, this causes an imbalance. If the removal of elements is carried out in an increment block with just one increment then there is no problem. Nodal loads equal and opposite to element stresses are applied to cancel out the stresses in the removed elements.

However, if these loads are spread over a number of increments, this obviously results in an imbalance, as the stresses in the removed elements only decrease gradually to zero. Equilibrium will be satisfied at the end of the increment block. Array PEXIB provides the balancing loads to maintain the correctness of the equilibrium check.

\section*{Routine CHANGE}
\[
\begin{aligned}
& \text { SUBROUT INE CHANGE (IW6, IN, NCH, NN, NNOD 1, NTPE, NIP, NEL, MUMAX, NNZ, NDF, CHNG } \\
& 1 \text { NDIM, NVRS, NDMX, NL, NB, NS, NPR, MMT, NPT, NSP, NPL, XYZ, VARTNT. }
\end{aligned}
\]
\[
\begin{aligned}
& 1 \text { NDIM, NVRS, NDMX, NL, NB, NS, NPR, NMT, NPT, NSP, NPL XYZ VARIN, } \\
& 2 \text { PI, } \\
& \text { PEXIB }
\end{aligned}
\]
c IMPLIED LOADS
REAL LL
DIMENSTON PRES (10)

DIMENSION PRES (10)
DIMENSION XYZ (NDIM, NN), VARINT (NVRS, NIP, NEL), PI (NDF), PEXIB(NDF),
1 ELCOD (NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX), CARTD (NDIM, NDMX)
2 B(NS, NB), \(F(N D I M, N D M X), L L(N L), P R(N P R, N M T)\)
DIMENS ION NCONN (NTPE, NEL), MAT (NEL), LTYP (NEL
1 NREL (NNZ), NH (NNOD1), JEL (NEL), NP 1 (NPL), NP2 (NPL)
COMMON /ELINF / LINFO (50, 15)

COMMON /LOADS / FB( 2,15 ) 100 ), LEDG(100), NDE \(1(100)\), NDE2(100), NLED CHNG 17



CALL \(\operatorname{ZEROR2(FB,2,15)}\)
CALL DISTLD(IW6, NN, NEL, NDF, NNOD 1, NTPE, NDIM, MUMAX, NNZ, NPL XYZ, PI, NCONN, LTYP, MREL, NREL, NH, NP1, NP2, PRES, LNE, ND1, ND2, NPT

Do \(70 \mathrm{KK}=1\), NDN
NCOR \(=\operatorname{MCONN}(K K, J J)\)
\(\mathrm{KKK}=\mathrm{NW}(\mathrm{NCOR})-1\)
DO 70 ID \(=1\), NDIM
70 PEXIB(KKK+ID) \(=\operatorname{PEXIB}(K K K+I D)-F B(I D, K K)\)
80 CONTINUE


1 ELCOD, DS, SHFN,F, NCONN,MAT, LL, PR, LT, INDX, DENS, JK, KSTGE )
DD \(140 \mathrm{KK}=1\), NDN
NCOR=NCONN (KK, JJ)
DO 140 ID \(=1\), NDIM
\(140 \mathrm{PI}(\mathrm{KKK}+\mathrm{ID})=\mathrm{PI}(\mathrm{KKK}+\mathrm{ID})+\mathrm{F}(\mathrm{ID}, \mathrm{KK})\)
150 continue
RETUR
END
END

CHNG 28 : loop on all elements which appear in the list of changes
CHNG 29 : get user element number.
CHNG 30 : get program element number
CHNG 34 : change sign of type number.
CHNG \(36: I J=-1\) for removed element
IJ \(=1\) for added element
skip calculation of implied loads if changes are to the initial mesh to form the primary mesh. Note that the primary mest is the mesh in the first increment and the initial mesh is the complete mesh defined in the geometry part of program.
CHNG 42-45 : element type dependent parameters.
INDX - a starting index to arrays \(W\) and \(L\).
NDN - no. of displacement nodes in element.
CHNG 46
NGP - no. of integration points in element.
CHNG 46 : naterial zone number of element
CHNG 47 : calculate \(n \gamma\) term, where \(n=\) centrifugal acceleration field and \(\gamma=\) unit weight of soil.
CHNG 48 : skip if element is being added
CHNG 53-55 : calculate \(\int \mathrm{B}^{\mathrm{T}} \sigma \mathrm{d}\) (vol) for element being removed (entered in array \(F\) ).
CHNG 57-64 : slot array F into PI.

CHNG 67-68 : calculate \(\int \mathrm{N}^{\mathrm{T}} \mathrm{wd}\) (vol) for removed element (entered in \(\operatorname{array} \mathrm{F}\) ).
CHNG 70-76 : slot array F into PI.
CHNG \(80 \quad\) : loop to find if element being removed has applied pressure load.
CHNG 82 : skip if element not found in list of pressure loads
CHNG 83-84 : nodes at either end of element side with pressure load.
CHNG 90-92 : calculate equivalent nodal loads for pressure loads.
CHNG 94-100: slot load terms in array PEXIB.
CHNG 101 : completion of calculations for current (removed) element.
CHNG 105-106 : calculate \(\int \mathrm{N}^{\mathrm{T}} \mathrm{wd}\) (vol) for added element (entered in F )
CHNG 108-113 : slot array F into PI.
CHNG 114 : end of loop on element changes

\subsection*{8.4.2 Loads from body force}

If there is a change in the body forces as in the case of a centrifuge test when the speed is changed, then there is a change in the self-weight loads throughout the soil mass. This is indicated by the parameter DGRAV, which is defined as a ratio of earth's gravity (i.e. g). SEL1 is the routine which controls the calculation of the equivalent nodal loads from the change in body force for each element. Routine SELF is again used in the calculation of these loads.

\section*{Routine SELI}


114 (ROUTINE SEL1)
\(22 \operatorname{INDX}=\operatorname{LINFO}(12, L T)\)
NDN \(=\operatorname{LINFO}(5, L T)\)
\(K=\operatorname{Mat}(\mathrm{d})\)
DENS \(=\) DGRA \(V\) *PR \((8, K)\)
IF (DENS. LE, ASMVL)GO TO 50
\({ }^{\text {CALL }}\) SELF (IW6, J, NN, NEL, NTPE, NDN, NDIM, NAC, NPR, NMT, XYZ,
LLCOD, DS, SHFN, F, NCONN, MAT, LL, PR,LT, INDX, DENS, JK, KSTGE)
DO \(30 \mathrm{JJ}=1\), NDN
\(J N=\operatorname{NCONN}(J, J, J)\)
\(\mathrm{JL}=\mathrm{NW}(\mathrm{JN})-1\)
DO 30 ID \(=1\), NDIM
\(30 P(J L+I D)=P(J L+I D)+F(I D, J J)\)
50 continue
RETUR
END

SELl 20 : loop on all elements.
SELl 25 : element type number
SELl 26 : skip; element is not present in current mesh.
SELI 27 : skip if bar element (LT =1). No self-weight.
SELl 31-33 : element type dependent parameters
INDX - starting index to arrays \(W\) and \(L\) NDN - no. of displacement nodes in element.
SELI 34 material zone number
SELI 35 : \(n \gamma\)
\(n\)-centrifugal acceleration field.
\(\gamma\) - unit weight of soil.
SELl 36 : skip if no self-weight loads.
SEL1 37-38: calculate nodal loads equivalent to self-weight
\[
\mathrm{F}=\int_{V} \mathrm{~N}^{\mathrm{T}} \mathrm{wd}(\text { vol })
\]

SELI 40-45 : slot F in array PI (in this routine called P).
SELI 46 : end of loop on all elements

\subsection*{8.4.3 Load ratios}

The external loads (pressure loads along mesh boundary) are yet to be specified However, at this stage the distribution of the loading between the individual increments is read in. The output options (printing out of displacements, stresses, etc.) and the time steps (in a consolidation analysis) are also read in

\section*{Routine FACTOR}

> SUBROUT INE FACTOR (IR5, IW6, NOINC, ILDF, IOCD, ITMF, IOUTS

1 RINCC, DTM, IOPT, DTIME

C OPTIONS FOR ALL INCREMENTS IN THE BLOCK


FACT 12 : equal load/time ratios.
FACT 13 : skip if no separate list of load ratios is to be read.
FACT 15-16 : read separate list of load ratios for each increment.
FACT 18-19: equal load ratio for all increments.
FACT 23 : skip if no separate list of output options is to be read.
FACT 25-26 : read separate list of output options for each increment.
FACT 29-30: identical standard output option for all increments.
FACT 34 : skip if no separate list of time steps is to be read or if DTIME for the increment block is equal to zero.
FACT 35-37 : read separate list of time steps for each increment.
FACT 40-41 : equal time steps for all increments.
The loading (NLOD), self-weight loads (DGRAV) and prescribed displacements (and pore pressures) (NFIX) are specified for the entire increment block, and are
applicable to that particular increment block only. The loading and any non-zero prescribed displacement for the individual increments are taken as ratios \((<1)\) of that for the entire increment block.

There is no restriction on how these loading and non-zero prescribed displacements are divided among the increments in an increment block. They are equally divided between all the increments if ILDF \(=0\) in record R. However, if the user wants to distribute the loading (and non-zero prescribed displacements) unevenly between the increments, then by setting ILDF \(=1\) a separate list of load ratios is read in record Tl . (This is generally useful in an analysis where large load increments can be applied when the problem is in the elastic state an smaller load increments as plastic yielding takes place.)

It should be noted that the same ratios \(R(I)\) etc. (record \(T 1\) ) apply to the pressure loading (NLOD - record U), the gravity loading (DGRAV - record R) and the prescribed displacements (and pore pressures) (NFIX - record V).

The sum of ratios \(R(I)\) must be equal to 1 .

\subsection*{8.4.4 Loads from pressure along mesh boundary}

The external loading is now read by the program. There are two options: the user can convert applied pressure loading into equivalent nodal loads and specify these directly as nodal loads along with the node numbers, or the user can specify the pressure loads (both normal and shear components) along element sides. When using the latter option the user in fact is specifying the nodal values of the pressure distribution. The second option is the more convenient because calculation of equivalent nodal loads is not straightforward for a higher-order element like the cubic strain triangle.

The directly specified nodal loads are stored in an array (XYFIB(NDF)). For the specified pressure distributions these are stored in a set of arrays in the form they are read in. Later, using routines DISTLD and SFR1, these are converte, into equivalent nodal loads and are added to array PIB

\subsection*{8.5 LOAD INCREMENT LOOP}

The control routine LODINC delegates the calculation of the stiffness matrix (carried out by routine LSTIFF) and solution to routine FRONTZ, and printing out the results to UPOUT (via UPARAL).

Sections 8.6 to 8.8 deal with the calculation of the element stiffness matrix This is considered separately from the frontal solution routine which is described in sections 8.9 to 8.12 . Even though the calculation of element stiffnesses and elimination using the frontal method take place alternately, this is done for the sake of clarity of presentation.
\begin{tabular}{|c|c|}
\hline \multirow{6}{*}{LODINC -} & -LODLST \\
\hline & - MAKENZ \\
\hline & - MLAPZ \\
\hline & - SFWZ \\
\hline & - FRONTZ - LSTIFF \\
\hline & - UPARAL _ UPOUT \\
\hline
\end{tabular}

Routine LODINC
SUBROUTINE LODINC(NN, NEL, NDF, NNOD1, NTPE, NIP, NVRS,
1 NVRN, NDIM, MUMAX, ND2, IF RZ, NNZ, NDMX, NPMX,
2 NS, NB, NL, NPR, NMT, NPT, NSP, NPL
4 XYZ, DI, DA, VARINT, P, PT, PIB, REAC, PCOR, PEQT, XYFT, XYFIB
5 STR, PEXIB, PEXI, PCONI, D, ELCOD, DS, SHFN, CARTD,B, DB,
6 FT,SS, ES, ELCODP, E, PE, RN, AA, ETE, RLT,
7 NCONN, MAT, LTYP, MRELVV, MREL, NRELVV, NREL, NW, NQ,
8 JEL, IDF X, NDEST, NP 1, NP2, IF R, NDL, NWL, MMOD,
1 DTIMEI, TTIME, DGRAVI, TGRAV, IOUT, JS, J, FRACLD
2 FRACT, ICOR, IUPD, IBC, NLOD, NLDS, IWL)

\section*{c LOAD INCREMENT ROUTINE}

REAL LL
--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE
CC REAL A \(\quad\) DIMENSION XYZ (NDIM,NN), DI (NDF), DA (NDF), VARINT(NVRS, NIP, NEL),
1 P (NDF), \(\mathrm{PT}(\mathrm{NDF}\) ), \(\mathrm{PIB}(\mathrm{NDF})\), \(\mathrm{REAC}(\mathrm{NDF}), \mathrm{PCOR}\) (NDF), PEQT (NDF), XYFT (NDF)
2 XYFIB (NDF), STR (NVRN, NIP, NEL), PEXIB (NDF), PEXI (NDF), PCONI (NDF)
DIMENSION D(NS, NS), ELCOD(NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX),
1 CARTD(NDIM, NDMX), 2
DIMENS ION ELCODP (NDIM, NPMX ) E (NDIM, NPMX ), PE (NDIM, NPMX)
1 RN(NB), AA (NPMX), ETE (NPMX, NPMX), RLT (NB, NPMX)
DIMENSION NCONN(NTPE, NEL), MAT (NEL), LTYP (NEL), MRELVV (NEL),
1 MREL (MUMAX), NRELVV(NN), NREL (NNL), NH (NNOD1), NQ (NN), JEL(NEL),
2 IDFX(NDF), NDEST(NN),NP1 (NPL), NP2 (NPL)
DIMENS ION IFR(IFRR), NDL(MDFE), NWL (NPMX), NMOD(NIP, NEL)
DIMENSION CIP (NDIM), LL (NL), V (LV), FXYZ(NDIM), PR (NPR, MMT),
COMMON /PRSLD / PRESLD(10,100), LEDG(100),NDE 1(100), NDE2(100), NLED LD COMMON /PRLDI / PRSLDI (10, 100),LEDI (100), NDI \(1(100)\),NDI2(100), ILOD LDNC COMMON /DEVICE/ IR 1, IR4, IR5, IW2, IW4, IW6, IW7, IW8, IW9
COMMON /PRECSN/ NP
WRITE (IW6, 915) JS, J, FRACLD
WRITE (IW6, 917)DGRAVI, TGRAV
WRITE (IW6,919)DTIMEI,
WRITE(IW6,919)DTIMEI, TTIME
boundary conditions (LOADS and displacements) are printed
EVERY IBC INCREMENTS
IBC \(=0\) NOT PRINTED IN ANY INCREMENT
IBC \(=1\) PRINTED IN EACH INCREMENT

F(IBC.EQ.0)GOTO 130
NJS \(=I B C *\) (JS/IBC)
IF (NJS.EQ, JS)IOPBC=
c

XYFT(IM)=XYFT(IM)+XYFIB(IM)*FRACLD
\(c^{140 \mathrm{P}(\mathrm{IM})=\mathrm{FRACLD} * \mathrm{PIB}(I M)+F R A C L D * X Y F I B(I M)}\)
DO 145 IM=1,NDF
\(145 \operatorname{PEXI}\) (IM) \(=(1.0-\) FRACT)*PEXIB (IM)

IF(NLOD.GE.0)GO TO 162
DO 160 ISD \(=1\), NLDS
NE \(=\) LEDI (ISD)
ND1 \(=\) NDI 1 (ISD)
ND2 \(=\) NDI 2 (ISD)
ICT=0
C *** N2D \(=2\) FOR TWO DIMENSIONAL PROBLEMS
\(N 2 \mathrm{D}=2\)
DO \(150 \quad \mathrm{IK}=1\), NPT
D \(150 \quad I J=1\), N2D
150 PRES (IJ, IK) = F RACLD*PRSLDI (ICT, ISD)
CALL LODLST (IW6, LNE, ND1, ND2, PRES, NDIM, NPT, 0, MXLD)
160 CONTINUE
c-
c InITIALISE INCREMENTAL


CALL MAKENZ (NTPE, NEL, NN, NCONN, LTYP, NQ, INXL)
ALL MLAPZ (NTPE, NEL, NN, NCONN, LTYP, NQ)
MREL (MEL NQ NE, NEL, NN, MUMAX, NNZ, IFRZ, NCONN, LTYP,


CALL FRONTZ (MNF 2, DTIMEI, NN, NNOD1, NEL, NDF, NTPE, NIP, NPR, NMT,
KES, NS, NB, NDIM, NDMX, NVRS, NPMX, INXL, MDFE, IFRZ, MUMAX, NNZ, NL
2 XYZ, DI, DA, VARINT, P, PCOR, D, ELCOD, DS, SIFN, CARTD,B, DB, SS, ES,
ELCODP, E, PE, RN, AA, ETE, RLT, NCONN, MAT, LTYP, MRELVV', MREL,
5 NMOD, LL, PR, NTY, A, MFZN, FRACLD, IOPBC)
UPDATE AND OUTPUT CALCULATIONS
CALL UPARAL (TTIME, TGRAV, IOUT, NN, ND, NNOD1, HEL, NDF, NTPE, NIP, NPT,
NSP, NPL, NDL, NVRS, NVRN, NDIM, MUMAX, NNZ , NDMX, NPMX, NS, HB, NL, INXL LDDNC
LDNC

3 PCR, NMT, MXEN, XYZ, DI, DA, VARINT, P, PT, PCOR, PEQT, XYFT, STR, PEXI,
4 NREL, NW, NQ, JEL, IDF X, NP1, NP2, NWL, NMOD, CIP, LL, PR,
5 NTY, A, MFZ, ICOR, IUPD, FRACT, JS, IWL)
RETURN
915 FORMAT(//120(1H=)//
1 1X,32HSTART OF LOAD INCREMENT NUMBER , I5
2 4x,22hincrement block number, i5,4x, 13hLoad ratio \(=\), F5.21 \(31 \mathrm{X}, 90(1 \mathrm{H}-)\) )
1244 TOLAL INCR GRAVITY LEVEL \(=\), E12.4,
for Molal gravity Level \(=\),E12.4)
END

LDNC 39-41 : write load ratios, centrifugal acceleration field and time steps for current increment.
LDNC 49-52 : option to print out boundary conditions in selected increments.
LDNC 54-56 : increment accumulated point loads by the loads applied in current increment. Also calculate the loads for current increment.
LDNC 63 : skip if no pressure loads are present (no need to update list of pressure loads).
LDNC 65-74
LDNC 75
eop on all sides with pressure load.
LDNC 75 : enter pressures applied for current increment in PRES
LDNC 76 : update the cumulative list of pressure loads.
LDNC 77 : end of loop on all sides with pressure loads.
LDNC 82 : zero incremental displacements array.
LDNC 86 : calculate d.o.f. of each node
LDNC 87 : mark last appearance of nodes in array NCONN.
LDNC 88-89 : calculate maximum frontwidth for current mesh and core requirement to solve the equations.
LDNC 94-99 : assemble stiffness matrices, eliminate and solve for unknown displacements using the frontal method.
LDNC 103-108 : calculate incremental strains and stresses; update cumulative displacements, strains and stresses and print the results.

The incremental loads for the current increment are calculated as a fraction of the incremental loads for the increment block.
\[
\begin{equation*}
\text { PI }(N D F)=F R A C L D * P I B(N D F) . \tag{8.3}
\end{equation*}
\]

An equilibrium check is carried out at the end of each increment. Routine LODLST updates the current level of (external) pressure loads. There are two lists of pressure loads: one is the current level of accumulated pressure load and the other is the pressure loads applied in the current increment block. For each increment, the appropriate ratio of pressure loads from that for the increment block is added to the current list so that the external pressure loads should equal the element stresses at the end of each increment.

\subsection*{8.6 ELEMENT STIFFNESS MATRIX}

Routine LSTIFF is called to calculate each element stiffness matrix. Routine LSTIFF carries out the following calculation.
\[
\begin{equation*}
K=\sum_{i=1}^{\mathrm{NGP}} \mathbf{B}_{i}^{\mathrm{T}} \mathrm{D}_{i} \mathbf{B}_{i}|\mathbf{J}| w_{i} \tag{8.4}
\end{equation*}
\]
where \(i\) is the integration point. The calculation of the \(\mathbf{B}\) matrix has been dealt
with in Chapter 7 in detail. The calculation of the \(\mathbf{D}\) matrix has been considered in Chapter 5. Depending on the constitutive relationship being used, a different routine is called. Routine DCON is a general linear elastic model which deals with either isotropic or cross-anisotropic material behaviour. The \(D\) matrix is independent of the stress level and therefore is a constant for a given element. Hence it is calculated once for each element outside the integration point loop.

An 'extended' element stiffness matrix is calculated in a consolidation analysis. The technique used in solving the transient problem is known as the time-marching method. This has been discussed in section 3.6.2. and the final form of the equations are reproduced here:
\[
\left[\begin{array}{ll}
\mathbf{K} & \mathrm{L}  \tag{8.5}\\
\mathbf{L}^{T} & -\Phi \Delta t
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta a \\
\Delta b
\end{array}\right]=\left[\begin{array}{l}
\mathbf{P} \\
\Phi \mathbf{b}_{0} \Delta t
\end{array}\right]
\]
where
\[
\begin{aligned}
K & =\int_{V} B^{T} D B d(v o l) \\
L & =\int_{V} E^{T} m \bar{N} d(v o l) \\
\Phi & =\int_{V} E^{T} \frac{\mathrm{k}}{\gamma_{\mathrm{w}}} \mathrm{Ed}(\mathrm{vol})
\end{aligned}
\]

Here \(\Phi \mathrm{b}_{0} \Delta t\) is the term which is calculated and added to array PI in routine LSTIFF. These terms are only for pore pressure degrees of freedom. \(b_{0}\) represents the excess pore pressure at the beginning of the current increment (these values are in array DA).

\section*{Routine LSTIFF}
\begin{tabular}{|c|c|}
\hline SUPROUT INE LSTIFF(K, MUS, INXL, SG, KSG, DTIME, NN, NNOD 1 , NEL, NDF, NTPE, & STIF \\
\hline 1 NIP, NPR, NMT, NS, NB, NL, NDIM, NDMX, NVRS, NPMX, LT, XYZ, DA, VARINT, P, & IF \\
\hline 2 D, ELCOD, DS, SHF N, CARTD, B, DB, SS, ELCODP, E, PE, RN, AA, ETE, RLT, & STIF \\
\hline 3 NCONN, MAT, NH, NWL, MMOD, LL, PR, NTY) & STIF \\
\hline **************************** & STIF \\
\hline CaLCulation and assembly of stiffness matrix & *STIF \\
\hline ***************** & STIF \\
\hline REAL L, LL & STIF \\
\hline DIMENSION PERM(3) & STIF \\
\hline DIMENSION SG(KSG), XYZ(NDIM, NN), DA (NDF), VARINT (NVRS, NIP, NEL), & STIF \\
\hline 1 P (NDF), D(NS, NS ), ELCOD (NDIM, NDMX), DS (NDIM, NDMX), & Stif 11 \\
\hline 2 SHFN(NDMX), CARTD (NDIM, NDMX), B (NS, NB), DB (NS, NB), & STIF \\
\hline 3 SS (NB, NB) , ELCODP (NDIM, NPMX), E (NDIM, NPMX), PE (NDIM, NPMX), & STIF 13 \\
\hline 4 RN( NB ), AA ( NPMX ), ETE ( NPMX , NPMX), RLT ( NB , NPMX) & STIF \\
\hline dimension nconn (ntPe, nel), Mat (nel), Nw (NNOD1), & STIF 15 \\
\hline 1 NWL (NPMX), MMOD(NIP, NEL), LL (NL) , PR (NPR, NMT ) , NTY (NMT) & STIF \\
\hline COMMON /FLOW / NPLAX & STIF \\
\hline COMMON /DATW / W(100) & STIF 18 \\
\hline COMMON /DATL /L \((4,100)\) & STIF 19 \\
\hline COMMON /PARS / PYi,ALAR, ASMVL,ZERO & STIF 20 \\
\hline COMMON /DEVICE/ IR 1, IR 4, IR5, IW2, IW4, TW6, IW7, IW8, IW9 & STIF 21 \\
\hline COMMON /ELINF / LINFO ( 50,15 ) & STIF 22 \\
\hline COMMON /JACB / XJACI \((3,3)\), DJACB & STIF 23 \\
\hline
\end{tabular}
\[
\begin{aligned}
& C \\
& c
\end{aligned}
\]
c CALCULATION AND ASSEMBLY OF STIFFNESS MATRIX
    -
    DIMENSION SG(KSG), XYZ(NDIM, NN), DA(NDF), VARINT(NVRS, NIP, NEL),
    SHFN(NDMX), CARTD (NDIM, NDMX), B(NS, NB), DB (NS, NB),
    3 SS (NB, NB), ELCODP (NDIM, NPMX), E(NDIM, NPMX), PE (NDIM, NPMX),
    RN(NB), AA (NPMX), ETE (NPMX, NPMX), RLT (NB, NPMX)
    NWL (NPMX), NMOD (NIP, NEL) , LL (NL) , PR (NPR, NMT) , NTY (NMT)
    OMMON /DATW / W(100)
    OMMON /PARS / PYI,ALAR, ASMVL,ZERO
    OMMON /ELINF / LINFO \((50,15\)
    COMMON /JACB / XJACI (3, 3), DJACB

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(I P A=I P+I N D X\)}} & STIF & 90 \\
\hline & & STIf & 91 \\
\hline & DO \(30 \mathrm{IL}=1, \mathrm{NAC}\) & STIf & 92 \\
\hline & LL(IL) \(=\mathrm{L}(\mathrm{IL}, \mathrm{IPA}\) ) & STIF & 93 \\
\hline & & SIff & 94 \\
\hline \multirow[t]{2}{*}{\({ }_{c}\)} & FORM a matrix for current integration point & STIf & 95 \\
\hline & & STIf & 96 \\
\hline \multirow[t]{4}{*}{} & ISTGE = 3 & STIf & 97 \\
\hline & CALL FORMB2 ( \(\mathrm{K}, \mathrm{MUS}\), R, RI, NDIM, NDMX, NDN, NS, & STIf & 98 \\
\hline & 1 NB, NAC, ELCOD, DS, SHFN, CARTD, B, LL, LT, IP, ISTGE ) & Stif & 99 \\
\hline & F9 \(=\) CR*DJACB*W(IPA) & Stif & 100 \\
\hline \multirow[b]{7}{*}{1
K
K
G} & & STIF & 101 \\
\hline & IF (ICPL.EQ. 1) CALL JPC (MUS, NDIM, NPN, NS, NB, NAC, & STIF & 102 \\
\hline & 1 DS, CARTD, B, ELCODP, E, RN, AA, LL, LT, IP, IS TGE ) & STIF & 103 \\
\hline & IF (NPLAX.EQ. 1)F9FF9*R & STIf & 104 \\
\hline & KGO \(=\) NTY (KM) & STIF & 105 \\
\hline & GO TO(39, 32, 33, 34), KGO & STIf & 106 \\
\hline & WRITE (IW6, 900)MUS, KGO & STIF & 107 \\
\hline \multirow[t]{3}{*}{900 F \({ }_{1}\)} & Format (1X, 7helement, i5, 2 X , 27 his Of unknown material type, i5, & STIf & 108 \\
\hline & 1 16H(ROUTINE LSTIFF)) & STIF & 109 \\
\hline & STOP & STIF & 110 \\
\hline \multirow[t]{2}{*}{C----} & & STIF & 111 \\
\hline & D Matrix & STIF & 112 \\
\hline \multirow[t]{4}{*}{} & & STIF & 113 \\
\hline & CALL DLIN(IP, K, IBLK, NEL, NDIM, NDN, NS, NPR, IMT, & STIF & 114 \\
\hline & 1 ELCOD, SHFN,MAT, D, PR, INDX, BK) & STIF & 115 \\
\hline & GO T0 39 & STIF & 116 \\
\hline \multirow[t]{3}{*}{} & CALL DMCAM & Stif & 117 \\
\hline & 1 VARINT, MAT, D, PR, BK) & STIF & 118 \\
\hline & GO TO 39 & STIF & 119 \\
\hline \multirow[t]{4}{*}{} & CALL DCAM (IP, K, IBLK, NEL, NIP, NVRS, NDIM, NS, NPR, NMT, & STIF & 120 \\
\hline & 1 Varint, mat, D, PR, ITP, BK) & STIF & 121 \\
\hline & GO TO 39 & STIF & 122 \\
\hline & & ST IF & 123 \\
\hline \multirow[t]{2}{*}{} & FORM D*B AND B*D*B & STIF & 124 \\
\hline & & STIF & 125 \\
\hline \multirow[t]{2}{*}{} & CALL LSTIFA(SS, B, D, DB, F9, NS, NB ) & STIF & 126 \\
\hline & & -STIF & 127 \\
\hline \multirow[t]{2}{*}{} & BYPASS IF NOT COUPLED CONSOLIDATION & STIF & 128 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & -STIF & 129 \\
\hline & IF(ICPL.EQ.0)GO TO 80 & STIF & 130 \\
\hline \multirow[t]{2}{*}{\({ }_{C}^{C-}\) F} & & -STIF & 131 \\
\hline & FORM PERM*E & STIF & 132 \\
\hline \multirow[t]{5}{*}{} & & STIF & 133 \\
\hline & \(\operatorname{PERM}(1)=\operatorname{PR}(9, \mathrm{KM})\) & STIF & 134 \\
\hline & \(\operatorname{PERM}(2)=\operatorname{PR}(10, \mathrm{KM})\) & STIf & 135 \\
\hline & \(\operatorname{PERM}(3)=\operatorname{PERM}(1)\) & STIF & 136 \\
\hline & GAMMALS \(=\) PR ( \(7, \mathrm{KM}\) ) & STIF & 137 \\
\hline \multirow[t]{5}{*}{C \(\begin{array}{r}\text { P } \\ \\ \\ \\ 40 \\ 40 \\ \hline\end{array}\)} & & STIF & 138 \\
\hline & DO \(40 \mathrm{JJ}=1, \mathrm{NPN}\) & STIF & 139 \\
\hline & DO 40 IM \(=1\), NDIM & Stif & 140 \\
\hline & \(\operatorname{PE}\) (IM, JJ \(=\operatorname{PERM}\) (IM)*E (IM, JJ ) & STIF & 141 \\
\hline & continue & STIF & 142 \\
\hline & & -STIF & 143 \\
\hline C F & FORM ET*PERM*E & STIF & 144 \\
\hline c- & & -STIF & 145 \\
\hline & DO \(50 \mathrm{II}=1\), NPN & STIF & 146 \\
\hline & DO \(50 \mathrm{JJ}=1\), NPN & STIF & 147 \\
\hline & DO \(50 \mathrm{KK}=1\), NDIM & STIF & 148 \\
\hline 50 & ETE (II, JJ) \(=\) ETE (II, JJ ) + ( \(\mathrm{KK}, \mathrm{II}\) )*PE (KK, JJ)*DT TME*FG/GAMMAW & STIF & 149 \\
\hline & & STIF & 150 \\
\hline C F & FORM LT & STIF & 151 \\
\hline & & STIF & 152 \\
\hline & D0 60 II =1,NDV & STIF & 153 \\
\hline & DO \(60 \mathrm{JJ}=1\), NPN & Stif & 154 \\
\hline 60 R & \(\operatorname{RLT}(\mathrm{II}, \mathrm{JJ})=\mathrm{RLT}(\mathrm{II}, \mathrm{JJ})+\mathrm{RN}(\mathrm{II}) *\) AA (JJ)*F9 & STIF & 155 \\
\hline
\end{tabular}


STIF 28 : zero array SS.
STIF 30-36 : set up data (parameters) dependent on element type.
STIF 37 : branch off, depending on whether element is consolidation type or not.

STIF 43-45 : drained/undrained element. Set IBLK \(=1\) to indicate bulk modulus of water is to be added to \(\mathbf{D}\) matrix.
47-68 only for consolidation elements.
STIF 47-48 : consolidation element. Set ICPL \(=1\) and IBLK \(=0\) to indicate no changes to the D matrix.
STIF 50-51 : zero arrays RLT (link matrix) and ETE (flow matrix).
STIF 58 : loop on all nodes of element.
STIF 61 : counter of number of pore pressure nodes (and variables). It is also the index to array NWL.
STIF 65-66 : array ELCODP contains the co-ordinates of nodes of element with pore pressure variable.
STIF 67 : array NWL contains the index to NCONN of pore pressure variable.
STIF 74 : loop on all displacement nodes.
STIF 75-79 : array ELCOD contains the co-ordinates of displacement nodes of element.
STIF 85 : calculate D matrix for elastic model - only for the one which is independent of current stress state or geometry; therefore it is calculated only once outside the integration point loop.
STIF 89 : loop on all integration points.
STIF 92-93 : obtain integration point co-ordinates from array \(L\) and set up LL.

STIF 98-99 : calculate B matrix
STIF 102-103 : calculate E, \(\bar{N}\) and \(\mathrm{m}^{\mathrm{T}}\) B stored in E, AA and RN
STIF 106
: branch off for different material types.
(1-linear elastic, 2 - non-homogeneous elastic,)
( 3 -modified Cam-clay, 4 -Cam-clay).
STIF 114-115 : calculate D matrix for elastic model (non-homogeneous).
STIE 117-118 : calculate D matrix for modified Cam-clay.
STIF 120-121 : calculate D inatrix for Cam-clay.
STIF \(126:\) calculate B \(^{\mathrm{T}}\) DB . d (vol) and accumulate in SS.
STIF 130 : branch off, if not consolidation element.
134-155 for consolidation elements only.
STIF 134-136: obtain permeabilities in \(x, y\) and \(z\) directions.
STIF 137 : unit weight of water.
STIF 139-142 : calculate matrix kE as PE.
STIF 146-149: calculate \(\int \mathbf{E}^{T} \frac{\mathbf{k}}{\gamma_{\mathrm{w}}} \mathbf{E d}(\mathrm{vol}) \Delta t\) as ETE.
STIF 153-155 : calculate \(\mathrm{L}^{\mathrm{T}}\) and place it in RLT.
STIF 163-167 : calculate lower triangle of stiffness matrix using symmetry.
STIF 171-172 : form stiffness matrix SG from SS, RLT and ETE.
STIF 174-176 : print out SG in triangular form for debugging.

\subsection*{8.7 CONSOLIDATION COMPONENT OF STIFFNESS MATRIX} 8.7.1 Flow matrix

Routine JPC calculates the additional components that make up the extended element stiffness matrix.

Routine JPC
SUBROUTINE JPC(J, NDIM, NPN, NS, NB, NAC,


C CALCULATES SHAPE FUNCTIONS AND DERIVATIVES
c FOR EXCESS PORE PRESSURE VARIATION JPC
*****************************k*********************************JPC
REAL LL
DIMENSION DS (NDIM, NPN), CARTD (NDIM, NPN ) ,B(NS, NB),
DIMENSION DS (NDIM, NPN ), CARTD (NDIM, NPN ), B(NS, NB),
1 ELCODP(NDIM, NPN ), E(NDIM, NPN ),RN(NB),AR(NPN),LL(NAC)
COMMON /FLOW / NPLAX
c CALL FORMP(J, NDIM, NPN, NAC, DS, AA, CARTD,



IF (NPLAX.EQ. 1, AND. NCOM.EQ.2)NCOM \(=\) NDIM + ?
C
DO \(301 \mathrm{IB}=1\)
SUM \(=Z \mathrm{Z}\) RO
\(\begin{array}{ll}\text { JPC } & 20 \\ \text { JPC } & 21\end{array}\)
\begin{tabular}{|c|c|c|}
\hline c & & JPC \\
\hline & DO 20 ID \(=1, \mathrm{NCOM}\) & JPC \\
\hline 20 & SUM \(=\) SUM \(+B\) (ID, IB) & JPC \\
\hline 30 & \(\mathrm{RN}(\mathrm{IB})=\) SUM & JPC \\
\hline & FORM E & JPC \\
\hline \multirow{5}{*}{50} & & JPC \\
\hline & DO 50 IN 1 1, NPN & JPC \\
\hline & DO 50 ID \(=1\), NDIM & JPC \\
\hline & \(\mathrm{E}(\mathrm{ID}, \mathrm{IN})=\mathrm{CaRTD}(\mathrm{ID}, \mathrm{IN})\) & JPC \\
\hline & RETURN & JPC \\
\hline
\end{tabular}

JPC 13-14 : calculate shape functions \(\left(\bar{N}_{i}\right)\) and derivatives \(\left(\partial \bar{N}_{i} / \partial \xi, \partial \bar{N}_{i} / \partial \eta\right)\) for pore pressure variations (arrays AA, DS). Derivatives w.r.t. Cartesian co-ordinates ( \(\partial \bar{N}_{i} / \partial x, \partial \bar{N}_{i} / \partial y\) ) (array CARTD).
JPC 21-26 : calculate array \(R N\left(=B^{T} m\right.\), where \(B\) is the strain-displacement matrix and \(\left.\mathrm{m}^{\mathrm{T}}=[1,1,1,0]\right)\).
JPC 30-32 : calculate E matrix. \(\left(E_{i}=\partial \bar{N}_{i} / \partial x, \partial \bar{N}_{i} / \partial y\right.\).)
Routine FORMP calculates the Cartesian derivatives of pore pressure shape functions. These are then used in the calculation of the \(E\) matrix by routine JPC.

Routine FORMP


FRMP 17 : calculate shape functions and derivatives w.r.t. local co-ordinate for pore pressure variation.

FRMP 21-27: calculate Cartesian derivatives of shape functions \(\partial \bar{N}_{i} / \partial x\) \(\partial \bar{N}_{i} / \partial y\).

Routine SHFNPP calculates the pore pressure shape functions and the derivatives with respect to the local co-ordinates.

\section*{Routine SHFNPP}
 **************************************************************SHPP S REAL LL, LIONS SFP(NPN),DS (NDIM,NPN),LL(NAC)

L1=LL(1)
\(\mathrm{L}=\mathrm{LL}(2)\)
IF (NAC.LT. 3)GOTO 10
L3 3 LL ( 3 )
IF (NAC. LT. 4 ) GOto 10
L4=LL (4)
C \(10 \operatorname{GOTO}(80,80,13,80,25,80,37,80,49,80,71\) ), LT WRITE (IW6, 900 ) MUS, LT
900 FORIAAT(/1X,7HELEMENT, I5, 2X,22HIS OF UNKNOWN TYPE ***,15, 2 X 1 16H(ROUTINE SHFNPP)) STOP


13 IF (IFL.EQ.0)GO TO 23 \(\operatorname{DS}(1,1)=1\). \(\operatorname{DS}(1,2)=0\).
\(\operatorname{DS}(1,3)=-1\).
\(\operatorname{DS}(1,3)=-1\).
\(\operatorname{DS}(2,1)=0\).
\(\operatorname{DS}(2,2)=1\).
DS \((2,3)=-1\).
C \(23 \mathrm{SFP}(1)=\mathrm{L} 1\) \(S F P(2)=L 2\)
\(S F P(3)=L 3\) \(\operatorname{SFP}(3)=L 3\)
RETURN


WRITE (IW6, 910)MUS, LT
910 FORMAT(/1X, 7HELEMENT, \(15,2 \mathrm{X}, 14 \mathrm{HIS}\) OF TYPE \(* * *, 15,2 \mathrm{X}\), 1 32HNOT IMPLEMENTED (ROUTINE SHFNPP))

\section*{c cubic variation in pore-pressure}
\(37 \begin{aligned} & \mathrm{C} 1=9.12 . \\ & \mathrm{C} 2=27.12 .\end{aligned}\)
\(c 2=27.12\).
C3=27.
T \(11=\mathrm{L} 1-1 . / 3\).
\(\mathrm{T} 122 \mathrm{~L} 1-2.13\).
\(\mathrm{T} 12=\mathrm{L} 1-2 . / 3\).
\(\mathrm{T} 21=\mathrm{L} 2-1.13\).
T \(22=\mathrm{L} 2-2.13\).
\(31=L 3-1 . / 3\)
T \(32=\mathrm{L} 3-2.13\).
IF (IFL.EQ.0)GO To 40 \(\qquad\)

SHPP 93
: shape functions and derivatives for brick element (not implemented here).
SHPP 99 : shape functions and derivatives for tetrahedra element (not implemented here).

Routine LSTIFA is called to calculate \(\int_{V} B^{T} \mathbf{D B} d(\) vol \()\) from \(B\) and \(\mathbf{D}\).
Routine LSTIFA


LSTA 10 : zero array DB.
LSTA 12-15 : calculate (DB) matrix.
LSTA 19-22 : calculate \(\mathrm{B}^{\mathrm{T}}(\mathrm{DB})\) for current integration point and add it to \(S S=\Sigma B^{T}(D B)\).

For consolidation analysis the extended element stiffness matrix is calculated from three different matrices (see section 8.8). The latter part of routine LSTIFF does this operation, and the technique used is described in the next section.

\subsection*{8.8 USE OF INDEXES IN STIFFNESS CALCULATIONS}

Chapter 6 described the use of indexes for different element types with a single array partitioned into a number of regions (each catering for a different element type). Then only the starting index was necessary and the generality of the program was retained.

The other area where this index system is heavily relied on is the formation of the element stiffness matrix SG in routine LSTIFF (the array is known as ES in
routine FRONTZ). As in the case of the global stiffness matrix, all variables (d.o.f.) of a node are placed together in matrix SG.

For drained/undrained analysis the stiffness matrix for each node is made up of sub-matrices which are or order \(2 \times 2\). The two components are for the two directions ( \(x\) and \(y\) for plane strain, \(r\) and \(z\) for axisymmetric problems). Therefore for a six-noded element \((L T=2)\), the element stiffness matrix is of order \(12 \times 12\). The array SS then completely defines the element stiffness matrix.
\[
\begin{equation*}
\mathrm{SS}=\int_{V} \mathrm{~B}^{\mathrm{T}} \mathrm{DB} \mathrm{~d}(\text { vol }) \tag{8.6}
\end{equation*}
\]

The B matrix is defined such that the \(x\) components of a for all nodes are placed together (followed by the \(y\) components of a, where \(d_{x}\) and \(d_{y}\) are the displacements (denoted by \(u\) and \(v\) in Fig. 8.2) in the \(x\) and \(y\) directions respectively. Hence when the displacement stiffness matrix SS is calculated, it has the same structure.

The matrix SS has NDN \(\times\) NDIM number of rows/columns, where NDIM \(=2\) for two-dimensional problems. This is the number of displacement variables in the elements and is equal to the no. of rows/columns in SS.


Fig. 8.2 - Matrix SS

For a LST element ( \(\mathrm{LT}=2, \mathrm{NDN}=6\) ), \(u 2\) occupies the 2 nd row/column in matrix SS and \(v 2\) occupies the \(2+\mathrm{NDN}=8\) th row/column. In SG they occupy consecutive rows/columns. Therefore when SG is formed from SS the rows/ columns have to be interchanged. Remembering that SS is a two-dimensional array and SG is a one-dimensional array storing the upper triangular stiffness matrix columnwise, forming \(S G\) is not straightforward.

This part of the program also has to be capable of dealing with different element types. The simplest programming technique is to set up a pointer array which gives the information of which row/column of array SS goes into which row/column of array SG. Again these pointers are different for different element types. For example, the first 15 indexes are for two-dimensional 'nonconsolidation' elements - element types 2,6 . For element type 6 (the 15 -noded cubic strain triangle), all 15 indexes are relevant. The number in brackets next to each element type (in routine LSTIFF) is the number of indexes that are relevant. For element type 7 the indexes are given by \(\mathrm{KD}(50)-\mathrm{KD}(64)\).
To complete the details, one needs the reference point (the starting index - 1, i.e. 49 for element type 7), and this is provided by array NXD. Therefore \(\operatorname{NXD}(7)=49\). The relevant equations for a consolidation analysis were given in section 8.7 , using the following notations:
\[
\begin{aligned}
\mathrm{K} & =\mathrm{SS}, \\
\mathrm{~L} & =\mathrm{RLT}, \\
\Phi \Delta t & =\mathrm{ETE} .
\end{aligned}
\]

In a consolidation analysis, if a node as 3 d.o.f. \(\left(d_{x}, d_{y}, \bar{u}\right)\) then its nodal stiffness is a \(3 \times 3\) sub-matrix. It consists of components from arrays SS, RLT and ETE as follows:
\[
\left[\begin{array}{lll}
\mathrm{SS}^{\dagger} & \mathrm{SS}^{\dagger} & \mathrm{RLL}^{\dagger} \\
\mathrm{SS} & \mathrm{SS}^{\dagger} & \mathrm{RLL}^{\dagger} \\
\mathrm{RLT} & \mathrm{RLT}^{\dagger} & \mathrm{ETE}^{\dagger}
\end{array}\right],
\]

The rows/columns of array SS represent the displacement stiffness terms. The array RLT is a coupling matrix, linking displacement loads to the pore pressure variables. Array ETE contains pore pressure stiffness terms. Now it is necessary to form the matrix SG from the three matrices SS, RLT and ETE such that all variables of a node are placed together.

Even though forming the SG array from arrays SS, RLT and ETE may appear complicated at first sight, it is straightforward when one uses the index system. The number of rows in RLT corresponds to the number of displacement d.o.f., and therefore array KD can again be used to point out which row of RLT should go into which row of SG. Similarly the number of columns of array RLT represents the pore pressure d.o.f. The number of rows/columns of ETE is equal to the number of pore pressure d.o.f. The array KP is set in similar lines to array KD. It gives the information regarding which row/column of ETE should go into which row/column of SG. The same indexes apply to the columns of RLT.
Arrays KD and KP give different indexes for different element types. They are set up exactly in the same manner as arrays \(W(100)\) and \(L(4,100)\) in routine BDATA1. The only difference is that the starting indexes are provided by two
local arrays - NXD for displacement variables and NXP for pore pressure variables. The reason these are local arrays instead of global arrays is that this is the only routine where this information is needed. On the other hand, arrays W and \(L\) are used in many different parts of the program and serve a global requirement.
\[
\begin{aligned}
& \mathrm{KP}(1) \ldots \ldots \mathrm{KP}(3) \text { are for } \mathrm{LT}=3 \text { LST for } 3 \text { p.p. d.o.f. } \\
& \mathrm{KP}(8) \ldots \ldots \mathrm{KP}(17) \text { are for } \mathrm{LT}=7 \mathrm{CuST} \text { for } 10 \text { p.p. d.o.f. }
\end{aligned}
\]

For example, for element type \(3 \mathrm{KP}(1)=3\). Then row/column 1 of array ETE will take up row/column 3 in \(S G\). Similarly \(\operatorname{KP}(2)=6\). Then row/column 2 of array ETE will take up row/column 6 of array SG.
\(\operatorname{ETE}(1,1)\) must be placed in \(\operatorname{SG}(3,3)\) [ \(\operatorname{SG}(6)\) ]
\(\operatorname{ETE}(2,2)\) must be placed in \(\operatorname{SG}(6,6)\) [SG(21)]
\(\operatorname{ETE}(1,2)\) must be placed in \(\operatorname{SG}(3,6)\) [ \(\mathrm{SG}(18)]\)
\(\operatorname{ETE}(2,1)\) must be placed in \(\operatorname{SG}(6,3){ }^{\dagger}\)
In the above, SG gives the row and column number respectively. However, since array \(S G\) is an upper triangular matrix which is stored columnwise, the value within \([S G(\quad)]\) gives the actual position in array \(S G\) (this is calculated by the program as NIA + NCN in DO loops terminating on labels 140 and 160 .

The arrays E, RN, AA, ETE and RLT have been set up for the maximum requirement of element types in the mesh. The sizes are based on the following parameters: NDMX \(\times\) NDIM (where NDMX is the maximum number of displacement nodes) and NPMX (the maximum number of pore pressure d.o.f.) of all the elements in the mesh.
\begin{tabular}{lll} 
element type 3: & \(\mathrm{ND} 2=2 \times 6=12 ;\) & \(\mathrm{NPP}=3\) \\
\(\mathrm{E}(3,3) \operatorname{RN}(12)\) & \(\mathrm{AA}(3) \operatorname{ETE}(3,3)\) & \(\operatorname{RLT}(12,3)\) \\
element type 7: & \(\mathrm{ND} 2=2 \times 15=30 ;\) & \(\mathrm{NPP}=10\) \\
\(\mathrm{E}(3,10) \operatorname{RN}(30)\) & \(\mathrm{AA}(10) \operatorname{ETE}(10,10)\) & \(\operatorname{RLT}(30,10)\)
\end{tabular}

The number of rows in array \(E\) is set equal to 3 for the three directions respectively (general three-dimensional formulation) under all circumstances.

Remembering that \(S G\) is only an upper triangular matrix then only the upper triangular parts of matrices SS and ETE (including the diagonals) are used. However, the whole of RLT is needed. The terms from arrays SS and ETE are entered in \(S G\), column by column, up to the diagonal term.

\section*{Routine LSTFSG}

SUBrout ine LStr SG (SG, KSG, NDF, NB, NDIM, NDMX, NPMX, DA, P, SS, ETE, 1 RLT, NHL, NPN, NDN, LT, ICPL)
C*****************************************************************MSG 3
Since this is in lower triangular matrix it is not considered (because of symmetry, i.e \(\operatorname{ETE}(2,1)=\operatorname{ETE}(1,2)\).

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{DATA \(\operatorname{NXD}(1), \operatorname{NXD}(2), \operatorname{NXD}(3), \operatorname{NXD}(4), \operatorname{NXD}(5), \operatorname{NXD}(6), \operatorname{NXD}(7)\),} & FMSG & 70 \\
\hline & FMSG & 71 \\
\hline \(1 \quad \operatorname{NXD}(8), \operatorname{NXD}(9), \operatorname{NXD}(10), \operatorname{NXD}(11) /\) & FMSG & 72 \\
\hline \(0,0,35,0,41,0,49,15,64,15,84 /\) & FMSG & 73 \\
\hline  & -FMSG & 74 \\
\hline C-------- SIZE OF ARRAYS KP AND KD & FMSG & 75 \\
\hline NKP =29 & FMSG & 76 \\
\hline \multirow[t]{2}{*}{C NKD \(=94\)} & FMSG & 77 \\
\hline & musg & 78 \\
\hline INXD \(=\) NXD (LT) & FMSG & 79 \\
\hline \multirow[b]{2}{*}{IF(ICPL.EQ.0)GOTO 96} & FMSG & 80 \\
\hline & FMSG & 81 \\
\hline  & FMSG & 82 \\
\hline C COUPLED CONSLIDAT- & FMSG & 83 \\
\hline INXP = NXP (LT) & FMSG & 84
85 \\
\hline \multirow[t]{2}{*}{C-------- \(94 \mathrm{II}=1\), NPN} & FMSG & 86 \\
\hline & FMSG & 87 \\
\hline \(\mathrm{N} 1=\mathrm{NWL}\) (II) & FMSG & 88 \\
\hline SUM \(=\) ZERO & FMSG & 89 \\
\hline C Do min & FMSG & 90 \\
\hline DO \(92 \mathrm{JJ}=1\), NPN & FMSG & 91 \\
\hline N2=NWL(JJ) & FMSG & 92 \\
\hline \(92 \mathrm{SUM}=\mathrm{SUM}+\mathrm{ETE}(\mathrm{II}, \mathrm{JJ}) * \mathrm{DA}(\mathrm{N} 2)\) & FMSG & 93 \\
\hline \multirow[t]{2}{*}{\(94 \mathrm{P}(\mathrm{H} 1)=\mathrm{P}(\mathrm{N} 1)+\) SUM} & FMSG & 94 \\
\hline & FMSG & 95 \\
\hline c FORM SG FROM SS & FMSG & 96 \\
\hline c------------------1 & FMSG & 97 \\
\hline \multirow[t]{2}{*}{\(96 \begin{aligned} & \text { DO } 150 \mathrm{~J}=1, \mathrm{NDN} \\ & \mathrm{NJ}=\mathrm{KD}(\mathrm{J}+\mathrm{INXD})-1\end{aligned}\)} & FMSG & 98 \\
\hline & FMSG & 99 \\
\hline C \({ }^{\text {c }} 150\) JD \(=1\) NDIM & FMSG & 100 \\
\hline DO 150 JD \(=1\), NDIM & FMSG & 101 \\
\hline \(\mathrm{HJA}=\mathrm{NJ}+\mathrm{JD}\) & FMSG & 102 \\
\hline \(\mathrm{JA}=\mathrm{J}+(\mathrm{JD}-1) * N D N\) & FMSG & 103 \\
\hline \(N C N=N J A *(R J A-1) / 2\) & FMSG & 104 \\
\hline \multirow[b]{2}{*}{DO \(150 \mathrm{I}=1\), NDN} & FMSG & 105 \\
\hline & FMSG & 106 \\
\hline \(N \mathrm{I}=\mathrm{KD}(\mathrm{I}+\mathrm{INXD})-1\) & FMSG & 107 \\
\hline \multirow[b]{2}{*}{DO 140 ID \(=1\), NDIM} & FMSG & 108 \\
\hline & FMSG & 109 \\
\hline \(N I A=N I+I D\) & FMSG & 110 \\
\hline \(I A=I+(I D-1) * N D N\) & FMSG & 111 \\
\hline If (NIA.CT. NJA)GOTO 140 & FMSG & 112 \\
\hline LOC \(=\) NCN + NIA & FMSG & 113 \\
\hline \(\mathrm{SG}(\mathrm{LOC})=\mathrm{SS}(\mathrm{IA}, \mathrm{JA})\) & FMSG & F 114 \\
\hline 140 CONTINUE & FMSG & 115 \\
\hline 150 continue & FMSG & 116 \\
\hline \multirow[t]{2}{*}{c IF (ICPL.EQ.O)GOTO 200} & FMSG & 117 \\
\hline & FMSG & 118 \\
\hline \multirow[b]{2}{*}{c SLOT RLT} & FMSG & G 119 \\
\hline & -FMSG & 120 \\
\hline C------------1.-NP & FMSG & G 121 \\
\hline & FMSG & G 122 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& N J A=K P(J A+I N X P) \\
& N C N=N J A *(N J A-1) / 2
\end{aligned}
\]} & FMSG & G 123 \\
\hline & FMSG & G 124 \\
\hline DO \(160 \mathrm{I}=1\) NDN & FMSG & G 125 \\
\hline D0 \(160 I=1\), NDN & FMSG & G 126 \\
\hline \multirow[t]{2}{*}{NI \(=\mathrm{KD}(1+1 \mathrm{NXD})-1\)} & FMSC & G 127 \\
\hline & fMSG & G 128 \\
\hline DO 160 ID \(=1\), NDIM & FMSC & G 129 \\
\hline NIA \(=\) NI +ID & FMSC & G 130 \\
\hline \(\underline{I} A=1+(I D-1) * N D N\) & FMSC & G 131 \\
\hline  & FMSC & G 132 \\
\hline IF (NIA. GT. NJA L LOC \(=\) NIA \({ }^{*}(\mathrm{NIA}-1) / 2+N J A\) & FMSC & G 133 \\
\hline \(160 \mathrm{SG}(\mathrm{LOC})=\) RLT (IA, JA) & -mas & G 134 \\
\hline & FMSC & SG 135 \\
\hline c SLOT ETE & & \\
\hline
\end{tabular}


FMSG 80 : branch off, if not a consolidation element.
FMSG 86-93 : calculate RHS pore pressure load terms.
FMSG \(97-115\) : place stiffness matrix SS in appropriate place in upper triangular matrix SG (which is a one-dimensional array stored columnwise).
FMSG 117 : branch off, if not a consolidation element
FMSG 121-133 : place coupling matrix RLT in appropriate locations in SG.
FMSG 137-143 : place flow matrix ETE in appropriate locations in SG.

\subsection*{8.9 PRE-FRONTAL ROUTINES}

The pre-frontal stage consists of calls to routines MAKENZ, MLAPZ and SFWZ respectively. These routines have been dealt with in some detail in Chapter 6, and for the sake of completeness are summarised here.

Routine MAKENZ calculates the d.o.f. of all nodes currently present in the mesh. All nodes which are not connected to any of the elements currently present in the mesh are assigned zero d.o.f., which is entered in array NQ. This permits the program to skip these nodes when solving the equations and also at the output stage.

The routine MLAPZ marks the last appearance of each node, indicating when a node is ready for elimination. This is done by making the node number negative in array \(N C O N N\) in the element in which the node makes its last appearance.

Finally routine SFWZ is called to run through the element list without actually calculating the element stiffness matrices but counting the number of active variables and assigning places in the front for new variables and simulating elimination of variables making their last appearance. This ensures that subsequent solving of equations using the frontal method progresses without any hitch. The amount of store required for solution and the maximum frontwidth are some of the other information calculated in routine SFWZ. This completes the pre-frontal stage.

\subsection*{8.10 FRONTAL SOLUTION}

The routine FRONTZ assembles the element stiffness matrices and the load vector and solves for the unknown displacements. It uses the well known frontal
method (Irons, 1970) to solve the assembled equations. In this method the global stiffness matrix is never fully assembled.
The frontal working area ELPA (MFZN) is divided into four regions - A, B, C and D. The total allocation of ELPA, MFZN is arbitrary. The allocation G(LG) in routine MAIN is (usually fixed) based on the size of the problem and the limits imposed by the computer system. After store has been allocated for the main arrays, the rest of \(\mathrm{G}(\mathrm{LG})\) is allocated as the working region for the frontal matrices.

A
B C
C
D
MAXPA* \((\) MAXPA +1\() / 2\) MAXPA MAXPA

ELPA


Regions A, B, C and D are all based on the maximum frontwidth MAXPA. Region A caters for a symmetrical matrix to be stored in triangular form, columnwise, one-dimensionally. The maximum size of the array is MAXPA (rows/columns).
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & \(\ldots\) & \(\ldots\) & \(\ldots\) & MAXPA \\
x & x & x & x & \(\cdot\) & \(\cdot\) & x & 1 \\
& x & x & x & \(\cdot\) & \(\cdot\) & x & 2 \\
& & x & x & \(\cdot\) & \(\cdot\) & x & 3 \\
& & & x & \(\cdot\) & \(\cdot\) & x & 4 \\
& & & & x & \(\cdot\) & x & \(\cdots\) \\
& & & & & x & x & \(\cdots\) \\
& & & & & & x & MAXPA
\end{tabular}

The frontwidth varies from 0 to MAXPA during different stages of the assembly elimination phase. Therefore regions \(A, B\) and \(C\) are only full when the front width is equal to the maximum frontwidth. Because of the one-dimensional storage of a triangular stiffness matrix (region A), each time a row/column is to be reduced (operated on) indexes are used for the first and last term (diagonal) in a given column.

If the JGth column is to be reduced then
\(\mathrm{MGO}=\mathrm{JG} *(\mathrm{JG}-1) / 2\) is the total no. of terms up to the (JG-1)th column of the region

MG1 (= MG0+1) is the index of the first term in column JG
\(\mathrm{MGZ}(=\mathrm{MG} 0+\mathrm{JG})\) is the index to the last term in column JG

\section*{Routine FRONTZ}

SUBROUTINE FRONTZ (MAXPA, DTIME, NN, NNOD1, NEL, NDF, NTPE, NIP, NPR, NM
KES, NS, NB, NDIM, NDMX, NVRS, NPMX, INXL, MDFE, IF RZ, MUMAX, NNZ, NL
XYZ, DI, DA, VARINT, P, PCOR, D, ELCOD DS SHEN CARTD B, DB , SS, ES,
3 ELCODP, E, PE, RN, AA, ETE, RLT, NCONN, MAT, LTYP, MRELVV, MREL,
4 NRELVV, NREL, Ni, NQ, IDFX, NDEST, IFR, NDL, NHL,
5 NMOD, LL, PR, NTY, ELPA, MFZN, FRACLD, IOPBC)
F
C FRONTAL SOLUT ION FOR SYMMETRIC MATRICES WITH FRNT
FREEDDM PER NODE
REAL LL
INTEGER
Character* 4 IWR, MbuF
DIMENSION XYZ (NDIM, NN), DI (NDF), DA(NDF), VARINT (NVRS, NIP, NEL),
1 P(NDF), PCOR (NDF), D(NS, NS), ELCOD(NDIM, NDMX), DS (NDIM, NDMX),
2 SHFN(NDMX), CARTD(NDIM, NDMX), B(NS, NB), DB(NS, NB),
2 SS (NB, NB), ES (KES)
IMENSION ELCODP (NDIM, NPMX) E(NDIM, NPMX), PE (NDIM, NPMX).
RN(NB), AA (NPMX), ETE (NPMX, NPMX), RLT (NB, NPMX)
DIMENSION NCONN(NTPE, NEL), MAT (NEL), LTYP (NEL), MRELVV (NEL)
1 MREL (MUMAX), NRELVV (NN), NREL (NNZ), NW (NNOD1), NQ (NN),

DIMENSION IBUF(6), MBUF (6), RBUF (3), IWR(4)
COMMON /FIX / DXYT (4,200), MF(200),TF (4,200),NF
COMMON /ELINF / LINFO 50,15 )
COMMON /DEVICE/ IR 1, IR4, IR5, IW2, IW4, TW6, IW7, TW8, IW9
COMMON /PARS / PYI,ALAR, ASMVL, ZERO

PAR \(=M A X P A *(M A X P A+1) / 2\)
BBAXO \(=\) NPAR +
IBA \(=\) NBAXO
\(\mathrm{VABZ}=0\)
NBAXZ \(=M F Z N\)
INITL \(=1\)
INITL \(=1\)
NDIM \(1=\) NDIM +1
NDIM \(1=\) NDIM +1
IC \(=0\)
c
\(c\)
IF (IOPBC. EQ. 1 )WRITE (IW6, 910)

CALL ZEROI 1(IDFX, NDF)





FRNT 31 : KURPA, the current frontwidth, is zeroed.
FRNT 32 : size of front - based on maximum frontwidth (= MAXPA)
FRNT 33 : size of front and active load terms + region for ill-conditioning check (= NBAX0).
FRNT 34 : is the index to last coefficient of equation eliminated last (during the elimination phase). Set initial value of IBA which is the index to first empty location (given by NBAX0 +1 ) in buffer region.


FRNT 35 : zero counter of variables eliminated.
FRNT 36 : set NBAXZ equal to the size of working region (size of array ELPA).
FRNT 37 : set flag to indicate that solution is initial solution (not a resolution).
RRNT \(38 \quad\) NDIM1 \(=\) NDIM +1
FRNT 39 : zero counter of no. of terms (fixities/loads) in output buffer of boundary conditions (b.c.)/loads.
FRNT 47 : zero global array of indicators of d.o.f. with prescribed values.
FRNT 54 : loop on all elements.
FRNT 56 : branch off to print output buffer of b.c./loads (in the event that the last element is not present in the current mesh and the contents of unfilled output buffer have not been printed).
FRNT 57 : by-pass if element is not present in current mesh.
FRNT 60-63 : calculate element stiffness matrix (also flow and coupling matrices for consolidation element), placed in array SG.
FRNT 67-68 : assemble element stiffness matrix into front.
FRNT 70 : print out contents of active front region (only if debugging)
FRNT 75-77 : assemble load term or fix d.o.f. of node making last appearance.
FRNT 78 : print out contents of front (stiffness and loads) for debugging.

\section*{Elimination phase}

FRNT 82
FRNT 83
FRNT 90
FRNT 91
FRNT 92

FRNT 93

FRNT 94

FRNT 95
FRNT 96
FRNT 97
: loop on all nodes of element.
: by-pass if node is not making its last appearance.
: loop on all d.o.f. of node making last appearance.
: increment counter of no. of variables (d.o.f.) eliminated.
: set up new pointer position in buffer to indicate last positio of entries for next equation to be eliminated. When each equation is eliminated, all coefficients (equals the frontwidth) plus four terms are entered in the buffer. Here NDEQN points to the last term.
buffer cannot accommodate all coefficients of current equation being eliminated (NDEQN \(>\) NBAXZ). Therefore write contents of buffer to backing store.
row/column no. of equation to be eliminated (variables of a node are eliminated in reverse order, i.e. last variable (d.o.f.)
is eliminated first)
location of pivotal term in buffer
pointer of pivotal term (if re-solution) in buffer.
: for initial solution, index to pivotal term in front region.

\section*{FRNT 98 : pivot}

FRNT 99 : replace pivotal term by zero in front.
FRNT 100 : check piyot is not equal to zero.
FRNT 101-102 : if so, print error message and stop.
FRNT 105 : the index to first term in front is MGZ +1
FRNT 106 : no. of columns in front (= frontwidth).
FRNT 107 : remember index of last entry to buffer from equation eliminated last (IBO +1 points to the next empty location in buffer).
FRNT 108 : if resolution.
FRNT \(109:\) L.12 = 1 for new solution; both stiffness and load terms have to be reduced.
L12 = 2 for re-solution; only load terms have to be reduced,
FRNT 111 : loop on stiffness and load terms, depending on L12.
FRNT 112 : reset JGZ to one column of load terms, if resolution.
FRNT 114 : loop on JGZ columns.
FRNT 115 : position in buffer for the next coefficient.
FRNT 116 : branch off for stiffness and load terms
118-124 for reduction of stiffness terms only.

\section*{FRNT 118 : index to first term in JG th column is \(\mathrm{MG} 0+1\).}

FRNT 119 : index to diagonal term in JGth column.
FRNT 120 : branch off if equation eliminated is to the right of equation JG.
FRNT 121 : index to coefficient being eliminated (it is along the row part of equation NPA).
FRNT 124 : index to coefficient being eliminated (it is on column part of equation NPA).

127-129 for reduction of load terms only.

\section*{FRNT 127}

FRNT 128
FRNT 129

\section*{FRNT 131}

FRNT 1
FRNT 133
FRNT 134 check if CONST \(=0\); if so, this is the outer loop by-pass, i.e. terms in column JG are not affected

FRNT 135 : multiplication factor
FRNT 136 : set pivotal term to zero in front.
FRNT 137 : by-pass if no reduction of stiffness terms
FRNT 138 : index to location in ill-conditioning check region for equation JG.

FRNT 139 : add square of diagonal term of equation JG. (ill-conditioning check).
FRNT 141 : index to first term in column JG
FRNT 142 : loop on all terms in column JG
FRNT 143 : index to terms of equation being eliminated, in buffer.
FRNT 144 : reduce term in column JG.
FRNT 145 : end of inner loop - on all rows in column JG.
FRNT 146
FRNT 147
FRNT 149
FRNT 150
RRNT 151
FRNT 152
FRNT 153
FRNT 154
FRNT 158-159
by-pass if re-solution
entry corresponding to eliminated equation in ill conditioning check region'.
FRNT 160 : reset entry to zero
FRNT 161-170 : print out warning messages if equations are ill-conditioned
FRNT 172-173 : if eliminated equation was occupying the last row/column then reduce front size.
FRNT 175 : end of loop on d.o.f. of node making its last appearance
FRNT 177 : make node no. positive in NCONN.
FRNT 178-181 : reduce front size if eliminated variables were at the end of front.
FRNT 184 : end of loop on all nodes in element
FRNT 186 : print out contents of active front (stiffness and load terms) Only if program is being debugged.
FRNT 190-197 : print out contents of b.c./load output buffer, if not empty.
\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Back-substitution phase } \\
FRNT 202 & : branch off if all unknowns have been solved for. \\
FRNT 203 & : if buffer is empty, get coefficients from backing store. \\
FRNT 204 & : decrement no, of unknowns yet to be solved by one. \\
FRNT 205 & : current size of front (= KURPA). \\
FRNT 206 & : position of equation of unknown variable in front (also the \\
& index to the pivotal term). \\
FRNT 207 & : global variable number. \\
FRNT 208 & : index to load term of equation is IBAR + 1. \\
FRNT 209 & : index of first coefficient (IBA + 1) of equation. \\
FRNT 210 & : index of diagonal coefficient of equation. \\
FRNT 211 & : get pivot. \\
FRNT 213 & :replace by zero. \\
FRNT 214 & :RHS load term of equation.
\end{tabular}

FRNT 216 : loop on all terms (a column of solved unknowns) in front.
FRNT 217 : index to coefficient in buffer.
FRNT 218
FRNT 221
FRNT 222
FRNT 224
FRNT 225
FRNT 227
reduce RHS term
calculate incremental displacement/excess pore pressure (i.e. solve for unknowns).
: place displacement/excess pore pressure in array DI.
: place pivotal term in buffer (in case of resolution). solve next unknown.
: end of back-substitution loop; all unknowns solved.

\subsection*{8.11 FRONTAL SOLVER}

The frontal solver in the program uses a one-dimensional array and is for the solving of symmetric stiffness matrices only. Therefore only problems of material behaviour which obey the associated flow rule can be analysed. The solver can handle variable d.o.f. of nodes and is independent of the type of element being used.

The solver also allows for a re-solution facility. However, some modifications to the program would be necessary if this was needed. The re-solution facility would be useful if the Modified Newton-Raphson approach were required. Within the iterative cycle the stiffness remains constant. Therefore the LeftHand Side (LHS) stiffness terms are reduced once and can be re-used to solve the Right-Hand Side (RHS), which varies from iteration to iteration. CRISP uses an incremental approach (not iterative) and the re-solution facility is not used in the present version.

Given below are some of the general features often found in frontal solvers. A minimum amount of core (which is calculated in SFWZ) is necessary to solve the equations. This is calculated as the core required to keep all the stiffness terms, load terms and terms for ill-conditioning check when the frontwidth is at its maximum. The program is not capable of solving the equations if this minimum core is not provided.

Equations of prescribed displacements are not dealt with any differently from the other equations. A large number ALAR is added to the diagonal term, and the prescribed value multiplied by ALAR is added to the corresponding RHS term.

There is an ill-conditioning check (Irons, 1968). This check does not involve the RHS terms and is based on the reduction in the diagonal term since becoming active untili it becomes a pivot.

The use of higher-order elements makes the frontal method more attractive compared to band solvers. A point often made is that the nodal numbering is irrelevant whereas the element numbering should be efficient for the frontal method. In contrast, for band solvers the element numbering is irrelevant whereas the nodal numbering must be such that it produces the smallest bandwidth. The program should allow for the flexibility of re-numbering either the
nodes or the elements internally or by a separate standalone program so that the user specified numbers are only used for communicating with the user.

CRISP does not make any attempt to re-number the elements. The user element sequence at input is considered to be the frontal assembly order, if alternative element numbering is not provided. An element ordering efficient for the frontal method can be read in separately (record G2). This option is provided for flexibility and efficiency. Not all finite element meshes have a regular grid (or pattern) of elements. An efficient frontal ordering of a finite element mesh may not readily be apparent. When preparing the mesh, the user may number the elements which are of main interest (for example in a tunnel analysis, the elements surrounding the tunnel) first. With this form of input option an efficient frontal numbering of elements is uncoupled from the concern of the user, who chooses to number the element in a manner convenient to him/her.

\subsection*{8.12 SOLUTION OF THE EQUATIONS}

The frontal method begins as soon as the first element stiffness matrix has been assembled into the frontal region. The frontal region is made up of a onedimensional array partitioned into four different regions. The organisation of this mainly depends on the particular implementation. In this particular version it is as shown below:
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline  & & \(\longleftarrow\) & \\
\hline \[
1
\] & 2 & 3 & 4 \\
\hline Frontal stiffness region & Load terms & Ill-conditioning check & Buffer \\
\hline
\end{tabular}

The boundaries are fixed and are based on the maximum frontwidth MAXPA which was determined in routine SFWZ.

The element stiffness matrix is assembled into the appropriate locations in region 1. The elimination phase begins for all equations which are fully assembled. For these equations the corresponding variable is checked to see whether it is prescribed. The corresponding load term is also assembled into its assigned location in region 2. The coefficients of the complete equation are transferred to the buffer, one by one; at each stage (i.e. for each transfer) the relevant column of terms is modified (operated on). The next element is now assembled and the whole procedure is repeated.

The frontal solution step is divided into three parts:
(i) adding eiement stiffness matrix into front - routine FRSLOT;
(ii) dealing with prescribed displacements and applied loads - routine FRFXLD;
(iii) forward elimination and backward substitution - routine FRONTZ.

\section*{Routine FRSLOT}

For each element in turn (by making a call to routine LSTIFF) the element stiffness matrix ES (called SG in routine LSTIFF) is assembled into the active front region. Both the element stiffness matrix (ES) and the front stiffness region (ELPA(1)-ELPA(NPAR) are upper triangular matrices.


FRST 13 : total number of nodes in element.
FRST 15 : loop on all nodes in element.
FRST 21 : loop on all variables (d.o.f.) of node.
FRST 23 : enter node numbers in the list of active nodes (i.e. nodes which are currently in front).
FRST 25 : update KURPA if the front has expanded.
FRST 26 : end of loop on all nodes of element.
FRST 31 : loop on all nodes of element.
FRST 32-41 : set up array NDL, which gives the index to front region for the rows/columns of array \(S G\) (element stiffness matrix). Indicates which row/column of \(S G\) should go into which row/column of the front.
FRST 43-53 : making use of array NDL, add in all stiffness terms SG into active front region in appropriate rows/columns.

\section*{Routine FRFXLD}

This routine deals with fixities (prescribed displacements and excess pore pressures) and loads. The DO 25 loop is to find which of the variables (d.o.f. \(d_{x}\), \(d_{y}\) and \(\bar{u}\) ) have prescribed values and to fix them.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{IF (KDF.EQ. \(1, \mathrm{OR}\). KDF.EQ. NDIM 1 ) NTT (NDIM1) \(=\) TF (NDIM \(1, \mathrm{~J}\) )}} & FXLD & 38 \\
\hline & & FXLD & 39 \\
\hline \multirow[b]{7}{*}{F
L
M
D
I
N
I} & FAC \(=\) F RACLD & FXLD & 40 \\
\hline & LCI \(=\mathrm{NW}\) ( MA ) & FXLD & 41 \\
\hline & MDI \(=\) NDEST (MA) & FXID & 42 \\
\hline & DO 25 IDOF \(=1\), KDF & FXLD & 43
44 \\
\hline & \(\underline{I S F}=0\) & FXXLD & 45 \\
\hline & NTTI \(=\) NTT (IDOF) & FXXD & 45 \\
\hline & INDX \(=1\) DOF & FXID & 47 \\
\hline c---- & -----NODE HAS PORE PRESSURE VARIABLE ONLY & \[
\begin{aligned}
& \text { FXLD } \\
& \text { FXLD }
\end{aligned}
\] & 48 \\
\hline & \begin{tabular}{l}
IF (KDF.NE. 1)GO TO 23 \\
NTTI =NTT (NDIM1)
\end{tabular} & FXLD & 49 \\
\hline & INDX=NDIM1 & FXLD & 50 \\
\hline & ISF \(=\) NDIM & FXLD & 51 \\
\hline \multirow[t]{6}{*}{23} & If (NTTI.EQ.0)GO TO 25 & FXLD & 52 \\
\hline & \(M D F=M D I+I D O F-1\) & FXLD & 53 \\
\hline & NPA \(=\) MDF \(*(M D F+1) / 2\) & FXLD & 54 \\
\hline & ELPA (NPA) = ELPA (NPA) +ALAR & FXLD & 55 \\
\hline & NPRF \(=\) NPAR + MDF & FXLD & 56 \\
\hline & & & 58 \\
\hline c-
C
c & \multirow[t]{2}{*}{RESET NODAL PORE PRESSURE FIXITY CODE OF 2 by 1 AND THE
MAGNITUDE TO ZERO} & & \\
\hline \multirow[t]{6}{*}{\({ }_{\text {C }}^{\text {C }}\)} & & FXLD & 59 \\
\hline & IF (IDOF.NE.KDF)GOTO 24 & FXLD & 61 \\
\hline & \multirow[t]{2}{*}{IF (NTTI. NE. 2 )GOTO 24} & FXLD & 62 \\
\hline & & FXLD & 63 \\
\hline & \begin{tabular}{l}
\(\mathrm{FAC}=1\). \\
TF (NDIM1, J) \(=1\)
\end{tabular} & FXLD & 64 \\
\hline &  & FXLD & 65 \\
\hline 24 & ELPA (NPRF) \(=E L P A(N P R F)+\) DXYT (INDX, J)*ALAF*FAC & FXLD & 66 \\
\hline \multirow[t]{12}{*}{CC 806} & WRITE (IW6, 806)I, IDPF & FXLD & 67 \\
\hline & \multirow[t]{2}{*}{FORMAT( \(/ 1 \mathrm{X}, 4 \mathrm{HI}=, \mathrm{I}, 3 \mathrm{X}, 7 \mathrm{HIDOF}=, \mathrm{IS})\)
\(\mathrm{IC}=\mathrm{IC}+1\)} & FXLD & \\
\hline & & FXLD & 69 \\
\hline & LC \(=\) LCI + I DOF-1 & & \\
\hline & \multirow[t]{2}{*}{IDF \(\mathrm{X}(\mathrm{LC})=1\)
IBUF \((2 * I C-1)=\) NUNDE} & FXLD & 72 \\
\hline & & FXLD & 72 \\
\hline & \begin{tabular}{l}
\(\operatorname{IBUF}(2 * I C-1)=\) NUNDE \\
\(\operatorname{IBUF}(2 * I C)=\) IDOF + ISF
\end{tabular} & FXLD & 73 \\
\hline & \(\operatorname{IBUF}(2 * I C)=I D O F+1 S F\)
\(\operatorname{MBUF}(2 * I C-1)=\operatorname{IWR}(1)\) & FXLD & 75 \\
\hline & \(\operatorname{MBUF}(2 * I C-1)=I W R(1)\)
\(\operatorname{MBUF}(2 * I C)=\operatorname{IWR}(2)\) & FXLD & 75 \\
\hline &  & FXLD & 77 \\
\hline & IF (IC.EQ.3.AND. IOPBC.EQ. 1 ) WRITE (IW6, 910) (IBUF (2*IM-1), IBUF (2*IM), & & 78 \\
\hline & \(1 \mathrm{MBUF}(2 * I M-1), \operatorname{MBUF}(2 * I M), \operatorname{RBUF}(1 M), I M=1,3)\) & FXLD
FXLD & 78 \\
\hline 910 & \multirow[t]{2}{*}{15 H NODE, I5, 7 H D. O.F., I3, 2A \(4, \mathrm{E13.4}\) )} & FXLD & 80 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & FXLD & 81 \\
\hline & & FXLD & 82 \\
\hline \multicolumn{2}{|r|}{IF (IDDF.NE. 1.AND. IDOF.NE.NDIMT)GOTO 25} & FXLD & 83 \\
\hline & DXYT (INDX, J) \(=0\). & FXLD & 84 \\
\hline \multicolumn{2}{|r|}{25 CONTINUE \({ }^{\text {d }}\)} & FXLD & 85 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{26 MDEST = NPAR+NDEST (MA)-1}} & & \\
\hline & & FXLD & 88 \\
\hline & MSO \(=\) NW(MA)-1 & FXLD & 88 \\
\hline & NDFN=NQ(MA) & FXLD & 90 \\
\hline \multirow[t]{11}{*}{c} & DO \(27 \mathrm{JJ}=1\), NDFN & FXLD & 91 \\
\hline & MDEST \(=\) MDEST +1 & FXLD & 92 \\
\hline & MSO=MSO+1 & FXLD & 93 \\
\hline & ELPA \((M D E S T)=E L P A(M D E S T)+P(M S O)+P C O R(M S O) ~\) & FXLD & 94 \\
\hline & IF (ABS (P (MSO)).LT.ASMVL. AND.ABS (PCOR (MSO)).LT. ASMVL) GOTO 27 & FXXD & 95 \\
\hline & \(\mathrm{ISF}=0\) & & 97 \\
\hline & IF (NDFN.EQ.1)ISF = NDIM & FXID & 98 \\
\hline & IC \(=1 \mathrm{C}+1\) & FXLD & 99 \\
\hline & \(\operatorname{IBUF}(2 * I C-1)=\) NUNDE & FXLD & 100 \\
\hline & \(\operatorname{IBUF}(2 * \operatorname{IC})=\operatorname{JJ}+\operatorname{ISF}\) & FXLD & 101 \\
\hline & \(\operatorname{MBUF}(2 * I C)=\operatorname{IWR}(4)\) & FXLD & 102 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & RBUF (IC) \(=\mathrm{P}\) (MSO) +PCOR (MSO) & FXLD 103 \\
\hline & IF(IC.EQ. 3.AND.IOPBC.EQ.1)WRITE (IW6, 910)(IBUF(2*IM-1), IBUF (2*IM), & FXLD 104 \\
\hline & \(\left.1 \mathrm{MBUF}\left(2^{*} \mathrm{IM}-1\right), \operatorname{MBUF}\left(2^{*} \mathrm{IM}\right), \operatorname{RBUF}(\mathrm{IM}), \mathrm{IM}=1,3\right)\) & FXLD 105 \\
\hline & IF (IC.EQ.3)IC=0 & FXID 106 \\
\hline & 7 cont inue & FXLD 107 \\
\hline c & & FXLD 108 \\
\hline & 30 continue & FXLD 109 \\
\hline & return & FXLD 110 \\
\hline & END & FXLD 111 \\
\hline
\end{tabular}

FXLD 17 : loop on all nodes of element to assemble RHS load terms. Fix d.o.f. with prescribed values of nodes making last appearance.
FXLD 18
FXLD 24
node is not making last appearance.

FXLD 25 : branch off if node is found in the list of fixities
FXLD 27 : skip if node is free.
FXLD 29-30 : copy fixity code of node into array NTT for all displacement variables.
FXLD 38 : copy a further code (for excess pore pressure) only if node has pore pressure variable. Note that irrespective of whether the node has displacement variables or not, the last location is always reserved for the pore pressure variable.
FXLD 43
FXLD 45
FXLD 48

FXLD 49-51
FXLD 52
FXLD 53-56
FXLD 61
obtain fixity code of d.o.f
if node has only one d.o.f. it is assumed that this is the pore pressure variable

FXLD 62

FXLD 63-64
FXLD 65
FXLD 66

FXLD 69--76
FXLD 77-81
FXLD 82 : by-pass if not the first d.o.f. or the last (presumably pore pressure) d.o.f. of node.
FXLD 83-84
: by-pass if d.o.f. has not a fixity code 2 ; otherwise reset incremental value (of excess pore pressure) to zero. This ensures that no further change in pore pressure takes place, in the rest of the analysis

FXLD 85 : end of loop on all d.o.f. of node.
FXLD 87-89 : calculate index of load term in active front region.
FXLD 91 : loop on all d.o.f. of node.
FXLD 93-94 : enter load term in active load region in front.
FXLD 95 : branch off if load has negligible value.
FXLD 98-102 : enter load term in output buffer (only if it is of significant value, i.e. \(>1\).E-20). This is to ensure only loads of significant magnitude are printed.
FXLD 103-106 : print contents of buffer if it is full and reset pointer.
FXLD 107 : end of loop on all d.o.f. of node.
Subroutine PRLNTF can be called to print out the contents of the frontal region at different stages of the solution, i.e. after assembling an element stiffness matrix and after elimination of the variables making their last appearance. The output produced can be substantial, and for normal runs it is not recommended to do this. Hence all calls to PRINTF have been commented out. But is is useful for debugging purposes.

Routine PRINTF


\section*{Routine STOREQ}


STEQ 6 : calculate length of record (number of terms to be written to backing store).
STEQ 7 : write to the backing store the contents of buffer.
STEQ 8 : write the length of record to backing store.
STEQ 9 : reset pointer of last location used in buffer to the first position in buffer (as buffer is now empty).
STEQ 10 : pointer of last entry from next equation

Routine WRTN


WRTN 6: write a one-dimensional REAL array of given size \(M\) to unit \(N\).
Later, during back-substitution, the reverse process takes place. If eliminated coefficients have been written to the backing store then, while back-substituting, if the buffer becomes empty, the next set of entries is retrieved from the backing store. This task is carried out by the routines GETEQN and RDN.

Routine GETEQN

IBA \(=\) NBAXO 0 LREC

RETUR
END

\(\begin{array}{ll}\text { GTQN } & 13 \\ \text { GTON } & 14\end{array}\)
 GTQN 15

GTQN 8: read no. of terms in backing store (length of record).
GTQN 11 : read back from backing store a bufferful of coefficients
GTQN 13 : reset pointer to end of buffer (i.e. the buffer is now full)

\section*{Routine RDN}
SUBROUT INE RDN (N, A, M)
C**************************************************************RDNM
CEAD ONE DIMENSIONAL ARRAY
C

RDNM 6 : read from a file N , a one-dimensional REAL array of length M .

\subsection*{8.13 CALCULATION OF OUTPUT PARAMETERS}

The following set of calculations is now carried out. Before that, a number of arrays containing tables to be printed are allocated store dynamically in the region previously used for solving the equations. This is carried out by routine UPARAL.

Routine UPARAL
SUBROUT INE UPARAL (TT IME, TGRAV, IOUT, NN. ND, NNOD1, NEL, NDF, NTPE, NIP, UPAR 1 NPT, NSP, NPL, NDZ, NVRS, NVRN, NDIM, MUMAX, NNZ, NDMX, NPMX, NS, NB, NL, IN
2 NPR, NMT, MXEN, XYZ, DI. DA, VARINT, P, PT, PCOR, PEQT, XYFT, STR, PEXI,
3 PCONI, D, ELCOD, DS, SHFN, CARTD, B,FT, AA, NCONN, MAT, LTYP, MREL, MRELVV, UPAR
4 NREL, NW, NQ, JEL, IDF X, NP1, NP2, NWL, MMOD, CIP, LL, PR
C*************************************************************UPAR \(\quad\) UROTINE TO ALLOCATE ARRAY STORE FOR USE IN UPOUT
REAL LL
U*UPAR
---USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DPAR
----PRECTSION ARRAY A ALWAYS USES ONE NUMERIC STORAGE TO DOUBLE
cent and array a always uses one numeric storace lccation
DIMENSION XYZ(NDIM, NN),DI (NDF), DA(NDF), VARINT(NVRS, NIP, NEL)
\(1 \mathrm{P}(\mathrm{NDF}), \mathrm{PT}(\mathrm{NDF}), \mathrm{PCOR}(\mathrm{NDF}), \mathrm{PEQT}(\mathrm{NDF}), \mathrm{XYFT}(\mathrm{NDF})\)
2 STR (NVRN, NIP, NEL) , PEXI (NDF), PCONI (NDF)
DIMENS ION D(NS, NS ), ELCOD (NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX).
1 CARTD (NDIM, NDMX), B(NS, NB), FT (NDIM, NDMX), AA (NPMX)
DIMENS ION NCONN (NTPE, NEL), MAT (NEL), LTYP (NEL), MRELVV (NEL)
1 MREL (MUMAX), NREL(NNZ), NW(NNOD1), NQ (NN), JEL(NEL),
IDENSION CIP (NDIM) LL (NL) PR (NPR NMT) NTY (NMT) NEL ) COMMON /DEVICE/ IR 1, IR4, IR5, IW2, IW4, TW6, IW7, IW8, IW9 COMMON /PRECSN/ NP
\begin{tabular}{l}
C \\
C \\
C \\
\hline
\end{tabular}
-----maximum number of cam-clay stress output parameters NCV=10


UPAR 42-52 : caiculate indexes to various arrays to assign them store in array A.

UPAR 53-56 : if size of A is insufficient then print message.
UPAR 62-69 : calculate incremental strains and stresses and print out resuits.
The unknown incremental displacements (this being an incremental method) and excess pore pressures are solved for and placed in DI(NDF). In routine UPOUT the total displacements are calculated by updating \(\operatorname{DA}(N D F)\) by \(\mathrm{DI}(\mathrm{NDF})\). Then the incremental strains are calculated.
\[
\begin{equation*}
\Delta \epsilon=\mathrm{B} \Delta \mathrm{a} \tag{8.8}
\end{equation*}
\]

The cumulative strains in STR(NVRN, NIP, NEL) are incremented by the incremental strains. The incremental stresses are then calculated from the incremental strains.
\[
\begin{align*}
\Delta \sigma_{i}^{\prime} & =\mathrm{D}_{\mathrm{ep}} \Delta \epsilon  \tag{8.9}\\
\sigma_{i}^{\prime} & =\sigma_{i-i}^{\prime}+\Delta \sigma_{i}^{\prime} . \tag{8.10}
\end{align*}
\]

The B and D matrices calculated at this stage are essentially the same as when they were calculated for the element stiffness matrix. This fact is again made use of in some programs by writing the B and D matrices to a file, element by element, and reading them back. The main reason for not doing this in CRISP is that the order the elements are called in the solution routines can be different from the order the results are printed at the output stage.

The current element stresses in VARINT(NVRS, NIP, NEL) are then updated. The nodal loads equivalent to current stresses are calculated according to
\[
\begin{equation*}
\operatorname{PEQT}(\mathrm{NDF})=\int_{V} \mathrm{~B}^{\mathrm{T}} \sigma_{i} \mathrm{~d}(\mathrm{vol}) \tag{8.11}
\end{equation*}
\]

Also calculated from the boundary stresses and self-weight loading (both external) is a set of nodal loads,
\[
\begin{equation*}
\mathrm{PT}(\mathrm{NDF})=\int_{V} \mathbf{N}^{\mathrm{T}} \mathrm{w} \mathrm{~d}(\mathrm{vol})+: \int_{S} \mathbf{N}^{\mathrm{T}} \tau \mathrm{~d}(\text { area }) \tag{8.12}
\end{equation*}
\]

In order to satisfy the equilibrium condition, \(\mathrm{PT}=\mathrm{PEQT}\). This is known as the equilibrium check. The procedure is to calculate the difference as \(\mathrm{PCOR}=\mathrm{PT}-\) PEQT. The percentage error is defined as
\[
\begin{equation*}
\% \text { error }=\frac{\left.\mathrm{iPCOR}\right|_{\max }}{|\mathrm{PT}|_{\max }} \tag{8.13}
\end{equation*}
\]

This completes the increment.

\section*{Routine UPOUT}

SUBROUT INE UPOUT (TTIME, TGRAV, IOUT, NN, ND, NNOD1, NEL, NDF, NTPE, NIP,
1 NPT, NSP, NPL, NDZ, NVRS, NVRN. NDIM, MUMAX, NNZ, NDMX, NPMX, NS, NB, NL, IN
NPR, NMT, MXEN, XYZ, DI , DA , VARINT, P, PT, PCOR, PEQT, XYFT, STR, PEXI
PCONI, D, ELCOD, DS, SHFN, CARTD, B FT, AA NCONN MAT, LTYP MREL MRELV UOUT
4 NREL, NW, NQ, JEL, IDFX, NP 1, NP2, NW L, NMOD CIP, LL, PR,
NTY, A, MFZ, ICOR, IUPD, FRACT, JS, IWL, NCV,
6 VARC, NCODE, LCS, LNGP, NELPR, NELUS, NELCM, MCS, MNGP)
C******************************************************************* UOUT U U U
C UPDATE AND OUTPUT ROUTINE
real L.ll
INTEGER TF
1 P(NDF), PT (NDF), PCOR(NDF), PEQT(NDF), XYFT (NDF),
2 STR (NVRN, NIP, NEL), PEXI (NDF), PCONI (NDF
DIMENS ION D(NS, NS), ELCOD (NDIM, NDMX), DS (NDIM, NDMX), SHFN(NDMX),
1 CARTD (NDIM, NDMX), B(NS, NB), FT (NDIM, NDMX), AA(NPMX)
DIMENSION NCONN(NTPE, NEL), MAT (NEL), LTYP (NEL), MRELVV (NEL),
2 MREL(MUMAX), NREL(NNL), NW (NNOD1), NQ(NN), NEL(NEL),
DIMENSION CIP(NDIM), LL(NL), PR (NPR, MMT), NTY (NMT), A(MFL)
DIMENSION VARC(NCV, NIP, NEL), MCS (NEL), MNGP (NEL)
DIMENSION LCS (NIP, NEL), LNGP(NIP, NEL), NCODE (NIP, NEL)
\begin{tabular}{|c|c|c|c|}
\hline & dimension NeLpr (NEL), NELUS (NEL), NELCM(NEL) & vout & 24 \\
\hline & DIMENSION ST (6), VARO (6), SS (6), SPA(3), SST (6), ED (2) & vout & 25 \\
\hline & COMMON /DATL /L(4, 100) & vout & 26 \\
\hline & COMMON /DATW / W(100) & yout & 27 \\
\hline & COMMON /FLOW / NPLAX & vout & 28 \\
\hline & COMMON /ELINF / LINFO ( 50,15 ) & vout & \\
\hline & COMMON /FIX / DXYT (4,200), MF (200).TF (4, 200), NF & vo & \\
\hline & COMMON /PRSLD / PRESLD (10, 100), LEDG(100), NDE 1(100), NDE2 (100), NL & vout & 31 \\
\hline & COMMON /DEVICE/ IR1, IR4, IR5, TW2, IW4, IW6, IW7, IW8, IW9 & vout & 32 \\
\hline & COMMON /PARS / PYI, ALAR, ASMVL, ZERO & vout & \\
\hline & COMMON /COUNT / NCS, NNGP
COMMON /OUT / IBC, IRAC, NVOS, NVOF, NMOS, NMOF, NELOS, NELOF, ISR & Uout & 34
35 \\
\hline & COMMON /JACB / XJACI ( 3,3 ), DJACB & vout & 36 \\
\hline c & & UOUT & 37 \\
\hline C & ISTGE \(=4\) & vout & 38 \\
\hline & LED \(=2\) & UOUT & 39 \\
\hline & NS \(1=\mathrm{NS}+1\) & vout & \\
\hline & NDIM \(1=\) NDIM +1 & Uout & \\
\hline \({ }_{C}\) C--- & BREAK OUTPUT CODE & yout & 43 \\
\hline c----- & & UOU & 44 \\
\hline & Iour \(4=\) IOUT/1000 & vout & 45 \\
\hline & IOUT \(3=(\) IOUT \(-1000 *\) IOUT 4\() / 100\) & UT & \\
\hline & IOUT \(2=(\) IOUT \(-1000 *\) IOUT \(4-100 *\) IOUT 3)/10 & vout & \\
\hline & IOUT 1 = (IOUT 1000 IOUT 4-100*IOUT 3-10*IOUT2) & vout & 48 \\
\hline & If (IOUT 1.LT. 1)GOTO 4 & vout & \\
\hline & LT1=LTYP(1) & vout & \\
\hline & LT1 \(=\) IABS (LT 1 ) & vout & \\
\hline & GOTO(1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2), LT 1 & vout & \\
\hline & WRITE (IW6, 902 ) GOTO 4 & vout & 54 \\
\hline & 2 WRITE (IW6, 901) & UOUT & 55 \\
\hline & & UOUT & 57 \\
\hline c & UPDATE ABSOLUTE DISPLACEMENS & vout & \\
\hline & \(4 \mathrm{CR}=1\). & UOUT & \\
\hline & IF (NPLAX.EQ.1)CR=2.*PYI & yout & 60 \\
\hline c & & UOUT & \\
\hline & DO \(5 \mathrm{KD}=1\), NDF & UOUT & 62 \\
\hline & \(5 \mathrm{DA}(\mathrm{KD})=\mathrm{DA}(\mathrm{KD})+\mathrm{DI}(\mathrm{KD})\) & UOUT & 63 \\
\hline c & & vout & \\
\hline & DO \(10 \mathrm{JR}=1, \mathrm{NNZ}\) & UOUT & \\
\hline & IF (NREL(JR).EQ.0)GOTO 10 & vout & \\
\hline & \(J=\) NREL (JR) & vout & \\
\hline & NQL \(=\) NQ(J) & vout & \\
\hline & IF (NQL.EQ.O) GOTO 10 & vout & 70 \\
\hline & N1=NW(J) & vout & \\
\hline & IF (IOUT 1.EQ.0)GOTO 10 & vout & \\
\hline & IF (IOUT 1.EQ. 1, AND. JR. GT. NDZ ) GOTO 10 & vout & 72 \\
\hline & IF (JR.LT.NDZ)GOT0 6 & UOUT & 7 \\
\hline & IF (JR.LT.NMOS.OR.JR.GT.NMOF )GOTO 10 & vout & \\
\hline & GOTO 8 & vout & \\
\hline & 6 Continue & vout & \\
\hline & IF (JR.LT. nVos. or. JR.GT.NVOF)GOTO 10 & vout & \\
\hline & 8 continue & vout & \\
\hline & & vout & \\
\hline C & OUTPUT DISPLACBIENTS & Uout & \\
\hline & N2=N1+NQL-1 & vout & \\
\hline & IF (NQL.EQ. 3 ) WRITE (IW6, 900)JR, (DI (JJ), JJ=N1, N2), (CA (JJ), JJ=N1, N 2 ) & vout & \\
\hline & IF(NQL.EQ.2)WRITE(IW6,910)JR, (DI(JJ), JJ=N1, N2), (DA (JJ), JJ=N1, N2) & vout & \\
\hline & IF (NQL.EQ.1)WRITE (IW6, 911)JR, DI (N1), DA (N1) & vout & \\
\hline & 10 continue & vout & \\
\hline & IF (IOUT2.EQ.2)WRITE (IW6,904) & vout & 87 \\
\hline c & IF (IOUT2.EQ. 1)WRITE (IW6, 906) & vout & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline NELUS (IEL)=Mr & UOUT 156 \\
\hline NELPR(IEL) \(=\) J & UOUT 157 \\
\hline & yout 158 \\
\hline c Initialise ft & Unut 159 \\
\hline  & UOUT 160 \\
\hline CALL 2 EROR2(FT, NDIM, NDN) & UOUT 161 \\
\hline & UOUT 162 \\
\hline C LOOP ON INTEGRATION POINTS & vout 163 \\
\hline c & UOUT 164 \\
\hline D 125 IP \(=1\), NGP & UOUT 165 \\
\hline \(I P A=I P+I N D X\) & UOUT 166 \\
\hline C & UOUT 167 \\
\hline DO \(35 \mathrm{IL}=1\), NAC & vout 168 \\
\hline \(35 \mathrm{LL}(\mathrm{IL})=\mathrm{L}(\mathrm{IL}, \mathrm{IPA})\) & UOUT 169 \\
\hline & UOUT 170 \\
\hline C FORM B Matrix & UOUT 171 \\
\hline & UOUT 172 \\
\hline CALL FORMB2 (J, MR, R, RI, NDIM, NDMX, NDN, NS, NB, NAC, ELCOD, DS, & Uout 173 \\
\hline 1 SFFN.CARTD, B, LL, LT, IP, ISTGE) & UOUT 174 \\
\hline C & yout 175 \\
\hline Call zeror 1 (St, NS ) & UOUT 176 \\
\hline C & UOUT 177 \\
\hline DO \(44 \mathrm{IL}=1, \mathrm{NDN}\) & UOUT 178 \\
\hline IN \(=\) NCONN(II, \({ }^{\text {) }}\) & UOUT 179 \\
\hline N1=NW(IN) & UOUT 180 \\
\hline \(\mathrm{N} 2=\mathrm{N} 1+1\) & UOUT 181 \\
\hline ST(1) \(=\operatorname{ST}(1)+\operatorname{CARTD}(1, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 1)\) & vout 182 \\
\hline ST (2) \(=\operatorname{ST}(2)+\operatorname{CARTD}(2, \mathrm{II}) * \operatorname{DI}(\) N2 \()\) & UOUT 183 \\
\hline ST(3) =ST(3)+SHFN(II)*DI (N1)*RI & UOUT 184 \\
\hline \(\operatorname{ST}(4)=\operatorname{ST}(4)+\operatorname{CARTD}(1, \mathrm{II}) * D I(N 2)+\operatorname{CaRTD}(2, I 1) * D I(N 1)\) & UOUT 185 \\
\hline IF (NDIM.EQ.2)GOTO 44 & UOUT 186 \\
\hline \(\mathrm{N} 3=\mathrm{N} 1+2\) & UOUT 187 \\
\hline ST(3) \(=\) ST(3)+CARTD (3,II)*DI(N3) & Uout 188 \\
\hline \(\operatorname{ST}(5)=\operatorname{ST}(5)+\operatorname{CaRTD}(3, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 2)+\operatorname{CaRTD}(2, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 3)\) & Uout 189 \\
\hline \(\operatorname{ST}(6)=\operatorname{ST}(6)+\operatorname{CaRTD}(3, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 1)+\operatorname{CaRTD}(1, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 3)\) & UOUT 190 \\
\hline 44 continue & Uout 191 \\
\hline c & UOUT 192 \\
\hline ED(1) \(=\operatorname{EDS}(\operatorname{STR}(1, \mathrm{IP}, \mathrm{J}), \mathrm{NS}, \mathrm{NDIM})\) & vout 193 \\
\hline C & UOUT 194 \\
\hline DO 45 IS \(=1\), NS & UOUT 195 \\
\hline \(45 \mathrm{STR}(\mathrm{IS}, \mathrm{IP}, \mathrm{J})=\mathrm{STR}(\mathrm{IS}, \mathrm{IP}, \mathrm{J})+\mathrm{ST}\) (IS ) & UOUT 196 \\
\hline \(\operatorname{ED}(2)=\operatorname{EDS}(\mathrm{STR}(1, \mathrm{IP}, \mathrm{J}), \mathrm{NS}, \mathrm{NDIM})\) & UOUT 197 \\
\hline & Uout 198 \\
\hline c calculate stresses & UOUT 199 \\
\hline & uout 200 \\
\hline GOTO (59, 52, 53, 54) , KGO & vovt 201 \\
\hline 52 CALL DLIN(IP, J, O, NEL, NDIM, NDN, NS, NPR, MMT, & uout 202 \\
\hline 1 ELCOD, SHFN, MAT, D, PR, INDX, BK) & uout 203 \\
\hline IELST \(=1\), & vout 204 \\
\hline Goto 59 & uout 205 \\
\hline 53 CALL DMCAM(IP, J, O, NEL, NIP, NVRS, NDIM, NS, NPR, MMT, VARINT, MAT, D, & your 206 \\
\hline 1 PR, 1 K ) & UOUT 207 \\
\hline GOTO 58 & UOUT 208 \\
\hline 54 CALL DCAM(IP, J, O, NEL, NIP, NVRS, NDIM, NS, NPR, nMt, VARINT, MAT, D, PR, & nout 209 \\
\hline 1 ITF, BK) & vout 210 \\
\hline 58 ICAM \(=1\) & vout 211 \\
\hline C & Uout 212 \\
\hline \(59 \mathrm{DO} 60 \mathrm{II}=1\), NS & vout 213 \\
\hline \(\mathrm{SS}(\mathrm{II})=0\). & UOUT 214 \\
\hline C & UOUT 215 \\
\hline DO \(60 \mathrm{JJ}=1\), NS & UOUT 216 \\
\hline \(60 \mathrm{SS}(\mathrm{II})=\mathrm{SS}(\mathrm{II})+\mathrm{D}(\mathrm{II}, \mathrm{JJ}) * S T(\mathrm{JJ})\) & Uout 217 \\
\hline C- & Uout 218 \\
\hline c UPDATE AbSOLUTE STresses & UOUT 219 \\
\hline C----------------1. & -uout 220 \\
\hline
\end{tabular}
        158UOUT 161
\[
\text { UT } 163
\]
\[
\begin{array}{r}
104 \\
-165
\end{array}
\]
\[
\text { UOUT } 166
\]
\[
\begin{array}{r}
167 \\
168
\end{array}
\]
\[
\begin{aligned}
& \text { OUT } 170 \\
& \text { OUT } 171
\end{aligned}
\]

SHEN: WOUT 173
CALL 2 EROR1 1 ST, NS
\(\mathrm{N} 1=\mathrm{NH}(\mathrm{IN})\)
\(\mathrm{N} 2=\mathrm{N} 1+1\)
\(\operatorname{ST}(2)=\operatorname{ST}(2)+\operatorname{CARTD}(1, \operatorname{II}) * D I(N 1\)
\(\operatorname{ST}(3)=\operatorname{ST}(3)+\operatorname{SHFN}(I I) * D I(N 1) * R I\)
IF (NDIM.EQ. 2 )GOTO 44
\(\mathrm{N} 3=\mathrm{N} 1+2\)
\(\operatorname{ST}(5)=\operatorname{ST}(5)+\operatorname{CARTD}(3, \mathrm{II}) * \operatorname{DI}(N 2)+\operatorname{CARTD}(2, I I) * D I(N 3)\)
\(\operatorname{ST}(6)=\operatorname{ST}(6)+\operatorname{CARTD}(3, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 1)+\operatorname{CARTD}(1, \mathrm{II}) * \operatorname{DI}(\mathrm{~N} 3)\)
44 Continue
(I), IP, J),NS, NDIM

DO 45 IS \(=1\), NS
ED(2)=EDS (ST

52 CALL \(59,52,53,54\) ), KGO
your 201
ELCOD SHFN, MAT, D, PR INDX, BX)
uout 203
vour 204
CALL DMCAM(IP, J, O, NEL, NIP, NVRS, NDIM, NS, NPR, MMT, VARINT, MAT, D
 vour 208 vout 209 vour 211 vout 212 OOUT 213 vout 215 YOUT 218

\begin{tabular}{|c|c|c|}
\hline 1 & NCODE, LCS, LNGP, NELPR, NELUS, NELCM, MCS, MNGP, VARC) & UOUT 288 \\
\hline \multirow[t]{2}{*}{} & UPDATE NODAL CO-ORDINATES & UOUT 290 \\
\hline & & OUT 291 \\
\hline \multirow[t]{2}{*}{} & If(IUPD.EQ.0)GOTO 225 & UOUT 292 \\
\hline & WRITE (IW6, 926) & UOUT 293 \\
\hline \multirow[t]{4}{*}{\(c \quad \mathrm{C}\)} & & UOUT 294 \\
\hline & DO \(220 \mathrm{~J}=1\), ND & UOUT 295 \\
\hline & \(N 1=N W(J)-1\) & UOUT 296 \\
\hline & & UOUT 297 \\
\hline c & D 220 ID=1,NDIM & UOUT 298 \\
\hline & XYZ (ID, J) =XYZ (ID, J) +DI (N 1+ID) & UOUT 299 \\
\hline 225 & Continue & UOUT 300 \\
\hline \multirow[t]{2}{*}{} & OUTPUT EQUILIBRIUM AND OUT-OF-BALANCE NODAL LOADS & UOUT 302 \\
\hline & & jout 303 \\
\hline \multirow[t]{3}{*}{\[
c^{230}
\]} & DO 230 IM \(=1\), NDF & vout 304 \\
\hline & \(\operatorname{PEQT}(\mathrm{IM})=\mathrm{PEQT}(\mathrm{IM})+\mathrm{PEXI}(\mathrm{IM})\) & vout 305 \\
\hline & & Uout 306 \\
\hline \multirow[t]{7}{*}{} & ---code to indicate stage of the amalysis & vout 307 \\
\hline & KSTGE \(=4\) & jout 308 \\
\hline & CALL EQLOD (IW6, NN, NEL, NDF, NNOD1, NTPE, NDIM, MUMAX, NN2, NDZ, & Uout 309 \\
\hline & 1 NPR, NMT, NDMX, NL, NPL, NCONN, MAT, LTYP, MRELVV, MREL, NREL, & UOUT 310 \\
\hline & 2 NW, NQ, JEL, IDF X, NP 1, NP2, XYZ , P, PT, PCOR, PEQT, XYF T, PCONI, ELCOD, & Vout 311 \\
\hline & 3 DS, SHFN, FT, LL, PR, NPT, NSP, MXEN, IOUT 4 , & UOUT 312 \\
\hline & 4 ICOR, TGRAV, IRAC, FRACT, KSTGE & UOUT 313 \\
\hline \multirow[t]{2}{*}{} & Write result 0 O Save file & vout 315 \\
\hline & Write results on save file & Uout 316 \\
\hline \multirow[t]{4}{*}{} & IF (ISR.EQ.0)GOTO 250 & UOUT 317 \\
\hline & IF (ISR.EQ.2)GOTO 240 & UOUT 318 \\
\hline & If (ISR.EQ.1.AND.IWL.EQ. 1 )GOTO 240 & U0ut 319 \\
\hline & GOTO 250 ( & UOUT 320 \\
\hline \multirow[t]{3}{*}{240} & WRITE (IW2) TTIME, TGRAV, XYZ, VARINT, STR, DA, XYFT, PCOR, PCONI, & 321 \\
\hline & WRITE (IW2) NF, MF, TF, DXYT & UOUT 322 \\
\hline & WRITE(IW2) NLED, LEDG, NDE 1, NDE 2, PRESLD & vout 323 \\
\hline \multirow{3}{*}{250} & & \\
\hline & COntinue & vour 326 \\
\hline &  & vout 327 \\
\hline \multirow[t]{3}{*}{} & FORMAT (//46H NODAL DISPLACEMENTS AND EXCESS PORE PRESSURES/ & yout 328 \\
\hline & \(11 \mathrm{X}, 45(1 \mathrm{H}-) / / 26 \mathrm{X}, 1\) HILNCREMENTAL, 36 X , 8HABSOLUTE// & Uout 329 \\
\hline & 12X, 4HNODE, 7 X , 2HDX, 13X, 2HDY, 13X, 2HDU, 13X, 2HDX, 13X, 2HDY, 13X, 2HDU/) & UOUT 330 \\
\hline \multirow[t]{3}{*}{902} & FORMAT (//20H NODAL DISPLACEMENTS/1X,19(1H-)// & Uout 331 \\
\hline & \(118 \mathrm{X}, 11 \mathrm{HINCREMENTAL}, 33 \mathrm{X}, 8 \mathrm{HABSOLUTE//}\) & vour 332 \\
\hline & \(12 \mathrm{X}, 4 \mathrm{HNODE}, 7 \mathrm{X}, 2 \mathrm{ZHD}, 13 \mathrm{X}, 2 \mathrm{HDY}, 28 \mathrm{X}, 2 \mathrm{HDX}, 13 \mathrm{X}, 2 \mathrm{LHDY/})\) & Vout 333 \\
\hline 904 & FORMAT (//40H AbSOLUTE STRESSES AT INTEGRATION POINTS/1X, 39 (1H-)//) & ) yout 334 \\
\hline \multirow[t]{2}{*}{906} & FORMAT(//30H STRESSES AT ELEMENT CENTROIDS/1X, 29(1H-)//8H ELEMENT, & , vout 336 \\
\hline &  & vout 337 \\
\hline &  & UOUT 338 \\
\hline 910 & FORMAT (1X, I5, 2E 15.5, 15X, 2E 15.5) & UOUT 339 \\
\hline 911 & FORMAT (1X, 15, 30X, E15.5, 30X, E15.5) & vout 340 \\
\hline \multirow[t]{2}{*}{914} & FORMAT (2X, 2HIP, 7X, 1HX, 13X, 1HY, 11 X , 2HSX, 11 X , 2HSY, \(11 \mathrm{X}, 2 \mathrm{HSZ}\), & yout 342 \\
\hline & 2 10X, \(3 \mathrm{HTXY}, 12 \mathrm{X}, 1 \mathrm{HU}, 10 \mathrm{X}, 5 \mathrm{HSIG}-1,8 \mathrm{X}, 5 \mathrm{HSIG}-2,7 \mathrm{X}, 5 \mathrm{HTH}-\mathrm{XY}\) ) & \\
\hline & FORMAT( \(1 \mathrm{X}, \mathrm{I} 3,9 \mathrm{E} 13.5, \mathrm{~F} 10.1\) ) & yout 344 \\
\hline 926 & format (/48H Warhing **** the nodal co-ordinates are updated ) & vout 345 \\
\hline
\end{tabular} 288
289

UOUT 38 : ISTGE - code to indicate stage of the analysis.
UOUT 41 : NDIM1 - the maximum number of variables in any node for consolidation element.
UOUT 45-48 : break output code for different tables to be printed.

UOUT 50-55 : select appropriate title for displacement table based on first element type.
UOUT 62-63 : update total displacements/excess pore pressures.
UOUT 65 : loop on all nodes (user specified sequence).
UOUT 66 : skip if node was not used
UOUT 67-68 : program node number, J; number of d.o.f. of node, NQL.
UOUT 69 : skip if node has no d.o.f. (probably the node does not exist in the current mesh, and disappeared when elements

UOUT \(70 \quad\) : g.v.n. of first d.o.f. of node.
UOUT 71-72 : skip, depending on output option for displacement table.
UOUT 74-77 : skip printing of displacements if out of user requested nodal
UOUT 82 range.
UOUT 83-85 : print out node number, incremental and cumulative displacements, and excess pore pressures.
UOUT 95-103 : zero output arrays.
UOUT 108 : zero counter of number of elements processed (IEL).
UOUT 109 : zero counter of number of Cam-clay elements processed (NCAM).
UOUT 111 : loop on all elements (in the user specified sequence).
UOUT 114 : zero flag to indicate whether current element has Cam-clay properties.
UOUT 115 : as above, but for element with elastic properties
UOUT 116 : program element number.
UOUT 117 : by-pass if element number (MR) was not used.
UOUT 118-119 : skip if element not present in current mesh.
UOUT 120-125 : element type dependent parameters.
NDN - number of displacement nodes
NGP - number of integration points.
INDX - starting index to arrays W and L
NPN - number of pore pressure nodes.
NDPT - total number of nodes.
NAC - number of area/local co-ordinates.
UOUT 129-132 : set up local array (ELCOD) of co-ordinates of displacement nodes in element.
UOUT 134 : by-pass if not a consolidation element.
UOUT 140-145 : set up local array NWL, which gives the g.v.n. of pore pressure variables.
UOUT 150 : material zone number.
UOUT 151 : material type number.
UOUT 153 : calculate D matrix for linear elastic material.
UOUT 154 : set flag to indicate element with elastic properties.
UOUT 155 : increment counter of number of elements processed.
UOUT 156-157 : enter user element number and program element number.

UOUT 165 : loop on all integration points.
UOUT 166 : index to arrays \(W\) and L.
UOUT 168-169: local/area co-ordinates of integration point.
UOUT 173-174 : calculate B matrix.
UOUT 180-181 : g.v.n. of first and last d.o.f. of node.
UOUT 182-185 : calculate incremental strains for 2-D.
\[
\Delta \epsilon=B \Delta \mathrm{a} .
\]

UOUT 188-190 : additional components for 3-D
UOUT 193 : calculate deviator strain at the beginning of current increment.
UOUT 195-196 : calculate total strains.
UOUT 197 : calculate deviator strain at the end of current increment.
UOUT 202-203 : calculate D matrix for non-homogeneous elastic model.
UOUT 206-207 : calculate D matrix for modified Cam-clay.
UOUT 209-210 : calculate D matrix for Cam-clay.
UOUT 213-217 : calculate incremental effective stresses.
\[
\Delta \sigma^{\prime}=\mathrm{D}_{\mathrm{ep}} \Delta \epsilon
\]

UOUT 221-224 : store stresses at the beginning of increment in VARO and calculate current stresses.
UOUT 228 : skip if not a consolidation element (pore pressures are calculated differently).
UOUT 229 : calculate shape functions for excess pore pressures.
UOUT 232-234 : interpolate for excess pore pressure at integration point.
UOUT 235 : calculate volumetric strain.
UOUT 236 : excess pore pressure.
UOUT 238-239 : calculate volumetric strain and excess pore pressure for drained/undrained analysis.
JOUT 240 : update pore pressure
UOUT 246-248 : calculate output parameters for Cam-clays
UOUT 250-251 : calculate nodal loads (FT) equal to element stresses.
UOUT 255 : calculate principal stresses in \(x-y\) plane - for 2-D only.
UOUT 258 : integration point number is to be printed.
UOUT 261 : element number is to be printed.
UOUT 263-268 : calculate co-ordinates of integration point
UOUT 270-271 : output stresses at integration point.
UOUT 272 : end of integration point loop.
UOUT 276-281 : slot nodal loads equal to element stresses (FT) in PEQT.
UOUT 282
UOUT 287-288 : print out additional parameters and warning messages fo Cam-clays.
UOUT 295-299 : update nodal co-ordinates by incremental displacements if flag IUPD has been set to 1 .

UOUT 304-305 : add (excavation) loads due to removal of elements to PEQT for equilibrium check.
UOUT 309-313 : to carry out an equilibrium check.
UOUT \(321-323\) : write results to file on magnetic tape or disk (to use the stop-restart facility to continue an analysis).

The rest of the output for the current increment can be divided into four parts
(i) the nodal displacements (and excess pore pressures);
(ii) the general stresses \(\sigma_{x}^{\prime}, \sigma_{y}^{\prime}, \sigma_{z}^{\prime}, \tau_{x y}, u\);
(iii) the parameters for Cam-clay models;
(iv) the out-of-balance loads at the end of this increment.

Routine EVCAM calculates the parameters for Cam-clay models.
Routine EVCAM


EVCM 13 : pore pressure.
EVCM 14 : by-pass if not first integration point.
EVCM 15-16: set counters (of integration points) to zero.
NCS - number of points approaching critical state.
NNGP - number of points with negative \(p^{\prime}\).
EVCM 17-18: set identifiers to zero.
EVCM 19-24 : calculate stress parameters.
QT - \(q\), deviator stress.
PE - \(p^{\prime}\), mean normal effective stress.
EV - voids ratio, calculated from cumulative strains.
EE - voids ratio, calculated from stress state.
PYE - size of current yield locus.
PCO - absolute value of PYE.
EVCM 25-26 : calculate Cam-clay parameters to be output.
EVCM 27-28: update size of yield locus and voids ratio.
EVCM 30
add critical state flag to counter.
\(=1\), if approaching critical state.
\(=0\), otherwise.
EVCM 31 : if integration point is approaching critical state, enter number.
EVCM 32 : add negative \(p^{\prime}\) flag to counter.
\(=1\), if integration point has negative \(p\)
\(=0\), otherwise .
EVCM 33 : if integration point has negative \(p^{\prime}\) then enter it.
EVCM 34 : calculate angle THETA.
EVCM 35 : enter THETA
EVCM 38 : if not last integration point then return.
EVCM 39 : increment counter of elements with Cam-clay properties.
EVCM 40 : enter 1 to indicate element has Cam-clay properties.
EVCM 41 : enter 1 to indicate element has integration point(s) approaching critical state.
EVCM 42 : enter 1 to indicate element has integration point(s) with negative \(p^{\prime}\).

\section*{Routine VARCAM}

*** 7 SOIL IS HARDENING WITH P>PCS AND QM*P -7



DIMENSION ED (LED), NTY(NMT)
COMMON /DEVICE/ IR 1, IR 4, IR5, IW2, IW4, IW6, TW7, IW8, IW9.
\begin{tabular}{|c|c|}
\hline  & CM \\
\hline COMMON CDEVICE/ IR 1, IR 4, IR5, IW2, IW4, IW6, IW7, IW8, IW9. & VRCM \\
\hline
\end{tabular}

        IF (NTY (KM).NE.3) GO TO 30
        PCS \(=P C / 2\)
        \(\mathrm{PY}=\mathrm{PE}+\mathrm{QT}\) *QT/(PE*PR(4,KM)*PR(4,KM))
    GO TO 12
    10 PCS \(=\) PC/2. 7182818
    PY=PE*EXP(QT/(PR(4,KM)*PE))
    12 continue
\[
2 \begin{gathered}
2 \text { CONTINUE } \\
\text { IF }\langle P Y . G T .
\end{gathered}
\]
\[
\text { IF (PY.GT.PC) GO To } 13
\]
\[
\begin{aligned}
& \text { IF(PE.GT.PCS) GO TO } 14
\end{aligned}
\]

IF (OT GT MATERLIS IN REGION 1 OR 2 OR
IST=1 MATERIAL IS IN REGION 2 AND ELASTIC
GO TO 17
15 continue
if(pye.lt.0.) GO TO REGION 2 OR IF (PYE.LT.O.) GO TO 16
c-menterial is elastic and in region 2
GO TO 17
36 continue
IF(ED(2).LT.ED(1)) GOTO 155

PCS=PCS*PY/PC
\(\mathrm{PC}=\mathrm{PY}\)
14 continue
 GO TO
c--.-MALERIAL has hardened
```

PCS=PCS*PY/PC

```
\begin{tabular}{l}
\(\mathrm{PCS}=\mathrm{PY}\) \\
PC \\
\hline
\end{tabular}
IST=8
GO TO 17
18 CONTINUE \(C\) MATERIAL IS IN REGION 3 OR
IF (QT.GT. 1.001*PR (4, KM)*PE) GO TO 19
PCS \(=\) PCS *PY/PC
\(\mathrm{PC}=\mathrm{PY}\)
IST=3
GO TO 17
19 IST \(=7\) - 7 MATERIAL IS IN REGION 7
\(P C=P Y\)
VRCM 25


VRCM 30 : absolute value of current yield locus.
VRCM 31-33 : calculate critical state value of \(p^{\prime}\) (PCS) and the yield locus (PY) passing through the stress state \(\left(p^{\prime}, q\right)\) for modified Cam-clay.
VRCM 35-36 : do the same for Cam-clay.
VRCM 38 : skip if yield locus has expanded.
VRCM 40 : skip if on the wet side
VRCM 42 : new stress state is on the dry side; skip if above critical state
VRCM 44 : stress state is below CSL and on the dry side and is therefore elastic; assign value of 1 .
VRCM 48 : on the dry side and above CSL (either elastic or softening).
VRCM \(50 \quad\) : stress state is elastic, on the dry side and above CSL; assign value of 2 .
VRCM 53 : skip if deviator strain has not increased; then probably unloading from yielded state to elastic.
VRCM 55-57 : softening; assign value of 4. Also set PC and PCS to new values.
VRCM 61 : yield locus has not expanded and the stress state is on the wet side, i.e. still elastic; assign value of 0 .
VRCM 65 : yield locus has expanded; skip if on the wet side
VRCM 67-69 : yield locus has expanded, i.e. hardening on the dry side. Impermissible stress state; assign value of 8 .
VRCM 73 : on wet side; yield locus has expanded. Skip if above CSL.
VRCM 75-77 : yield locus has expanded and the stress state is on the wet side, i.e. hardening; assign value 3 .

VRCM 80-81 : above CSL on wet side; impermissible stress state; assign value of 7 .
VRCM 82-85 : calculate \(\eta\) to see if stress state is close to the CSL, if so, assign 1 to ICS
VRCM 89-90 : if \(p^{\prime}<0\), assign value of 1 to INGP and skip calculation of voids ratio (EE) from stress state.
VRCM 92 : calculate voids ratio (EE) from current stress state.
VRCM 95-103 : enter current values of parameters to be printed out.
PE - mean normal effective stress ( \(p^{\prime}\) ).
QT - deviator stress \((q)\).
\(\mathrm{PE}+\mathrm{U} \quad\) - total stress \((p)\)
PC - yield locus size
QT/PE - \(\eta\).
QT/M*PE - \(\eta / \mathrm{M}\).
PY/PCO - yield ratio (YR).
EE - voids ratio from stress state.
EV - voids ratio from strains.
VRCM 104 : enter stress state code IST in array NCODE.
Wherever applicable, a set of warning messages is printed from Cam-clays. The warning messages are as follows:
(a) integration points are approaching the critical state;
(b) integration points have negative values for \(p^{\prime}\).

For example, for case (a):
****** WARNING ****** ELEMENT 8 HAS INTEGRATION
POINTS \(1 \begin{array}{llllllll} & 2 & 0 & 0 & 0 & 6 & 0 & \text { APPROACHING CRITICAL STATE }\end{array}\)
This indicates that out of the seven integration points, the 1 st, 2 nd and 6 th are approaching the critical state.

Before the final part, (iv), of the output is printed, the following message may be printed.

\section*{WARNING **** THE NODAL CO-ORDINATES ARE UPDATED}

This warning message is self-explanatory and is printed when IUPD is set equal to 1 (in the input data) in order to update the co-ordinates at the end of each increment.

\section*{Routine ANGTH}
\begin{tabular}{|c|c|}
\hline SUbroutine angth(Varint, nel, Nip, MVRS, iP, J, Theta) & \({ }_{\text {* }}^{\text {ANGT }}\) ANT \\
\hline routine to calculate angle in pi plane & ANGT \\
\hline  & angt \\
\hline DIMENSION VARINT (NVRS, NIP, NEL) & ANGT \\
\hline COMMON /PARS / PYi,ALAR,ASMVL,ZERO & ANG \\
\hline
\end{tabular}
```

SX=VARINT(1,IP,J)
SY=VARINT (2,IP,J)
SZ VARINT (3,IP,J)
TXY=VARIMT(4,IP,J)
PIBY4=0.25*PYI
SD=0.5*(SX-SY)
RAD =SQRT (SD*SD +TXY*TXY)
SIG1=SM+RAD
SIG3=SM-RAD
IF(ABS(TXY).LT.ASMVL.AND.ABS(DY).LT.ASMVL)GOTO 8
THXYZ=ATAN2(TXY,DY)
GOTO 9
8 THXYZ=0.5*PYI
9 THXY=0.5*THXY2
THXYD=THXY*180./PYI
IF(ABS(THXY).LT.PIBY4)GOTO 10
PSIGX=SIG1
GOTO }1
10 PSIGX=SIG
PSIGY=SIG
15 PSIGZ=SZ
SIGX=(PSIGZ-PSIGY)/SQRT(2.)
IGY=(2 *PSIGX-PSIGY-PSIGZ)/SORT(6)
RADO=SQRT(SIGX*SIGX+SIGY*SIGY)
IF(ABS (SIGX).LT.ASMVL.AND.ABS(SIGY).LT.ASMVL)GOTO 20
c
THETA=ATAN2(SIGY,SIGX)
IF(THETA.LT.ZERO)THETA=2.*PYI +THETA
HETA=THETA*180./PYI
GOTO 25
C 20 THETA=ALAR
25 CONTINUE
c
RETURN
END

```

ANGT 8-11: effective stresses.
ANGT 14-19: calculate principal stresses in \(x-y\) plane.
ANGT 20 : check for Mohr's circle being a point; if so, skip.
ANGT 21 : calculate angle between major principal stress direction and \(x\) axis \(\left(\mathrm{THXY} 2=2 \theta_{x y}\right)\)
ANGT 23-24: calculate \(\theta_{x y}\).
ANGT 27-28: major principal stress direction is closer to \(x\) axis.
ANGT30-31 : major principal stress direction is closer to \(y\) axis.
ANGT 32 : calculate intermediate stresses.
ANGT 34-35: calculate components of stress in \(x^{\prime}\) and \(y^{\prime}\) directions.
ANGT 37 : check for stress state being co-incident with origin (i.e. stress state represents hydrostatic stress conditions).
ANGT 39 : calculate angle between \(x^{\prime}\) axis and the stress state.
ANGT \(40 \quad:\) if negative, add \(2 \pi\) to bring it into the range 0 to \(2 \pi\).
ANGT \(41: \theta\) in degrees.
ANGT 44 : if hydrostatic stress state then set \(\theta\) to a large value.

\section*{Routine PRINC}


PRNC 10 : radius of Mohr's circle in \(x-y\) plane ( \(r-z\) for axisymmetry).
PRNC 11-12: calculate major and minor principal stresses.
PRNC 13 : set angle between the \(x\) axis and major principal stress direction to \(90^{\circ}\) in anticipation of \(\sigma_{x}\) being equal to \(\sigma_{y}\).
PRNC 14 : skip if \(\sigma_{x}=\sigma_{y}\) (the angle is \(90^{\circ}\) ).
PRNC 15 : the angle between \(x\) axis and major principal stress direction (in degrees).

\section*{Routine CAMCDE}


CAMC 6-9 : write explanation of stress state code for Cam-clay models only.
Routine UPOUT2


100 continue RETURN
901 FORMAT (2X, 6HELM-IP, \(6 \mathrm{X}, 2 \mathrm{HPE}, 11 \mathrm{X}, 1 \mathrm{HQ}, 11 \mathrm{X}, 2 \mathrm{HPT}, 11 \mathrm{X}\),
1 2HPC, \(9 \mathrm{X}, 3 \mathrm{HETA}, 5 \mathrm{X}, 5 \mathrm{HETA} / \mathrm{M}, 6 \mathrm{X}, 2 \mathrm{HYR}, 4 \mathrm{X}, 6 \mathrm{HE}-\mathrm{STRS}, 3 \mathrm{X}\),
2 6HE-STRN, 3 X, 4HTH-3, 2X, 3 HCDE )
1 2HPC, \(9 \mathrm{X}, 3 \mathrm{HETA}, 5 \mathrm{X}, 5 \mathrm{HETA} / \mathrm{M}, 6 \mathrm{X}, 2 \mathrm{HYR}, 4 \mathrm{X}, 6 \mathrm{HE}-\mathrm{STRS}, 3 \mathrm{X}\)
, IPC, \(9 \mathrm{X}, 3 \mathrm{BETA}, 5 \mathrm{X}, 5 \mathrm{HE}\) TA/M, \(6 \mathrm{X}, 2\) HYR, \(4 \mathrm{X}, 6\) HE-STRS, 3 X ,
904 FORMAT (I4)
905 FORMAT (2X, I4, 4E 13.5, 2F9.3, 3X,F6.3, 2F9.4, F7. 1, 2X, 8I2/5X, 912
906 FORMAT ( \(/ 18 \mathrm{H}\) CENTROID STRESSES/1X, \(17(1 \mathrm{H}-) /\) )
11 FORMAT (/33H CAM CLAY PARAMETERS at CENTROIDS
912 format (/42H Ca
\(11 \mathrm{X}, 41(1 \mathrm{H}-) / \mathrm{)}\)
916 FCRMAT(29H ******WARNING***** ELEMENT . I3.
124 H HAS Integration points , 7I2, 27 H approaching critical state,
2 2X,913)
17 FORMAT (29H ******WARNING****** ELEMENT , I3
25 24H HAS INTEGRATION POINTS, 7I2, 18H PE LESS THAN ZERO, \(2 \mathrm{X}, 9 \mathrm{I} 3\) )
935 format (//)
END

UPOT 12 : skip if no elements with Cam-clay properties.
UPOT 13 : skip if only warning messages are to be printed.
UPOT 14-17 : write title for output tables.
UPOT 19 : loop on elements that were processed in routine UPOUT.
UPOT \(20 \quad: \mathrm{J}\) is program element number.
UPOT 21 : IC is flag to indicate (if set to 1 ) element with Cam-clay
properties.
UPOT 22 : skip if element does not have Cam-clay properties.
UPOT \(23:\) MR is the user element number.
UPOT 24-26 : element type dependent parameters.
KM - material zone number.
LT - element type number.
NGP - number of integration points.
UPOT 31-33 : write output parameters for all integration points.
UPOT 35-36 : write output parameters for centroid (last integration point).
UPOT 41 : element with integration point(s) approaching critical state; print message.
UPOT 43 : element with integration point(s) with negative \(p^{\prime}\); print message.
UPOT 44 : end of loop on elements.
UPOT 50 : loop on all elements processed in routine UPOUT.
UPOT 53 : by-pass if element does not have Cam-clay properties.
UPOT \(54:\) MR is the user element number.
UPOT 58 : element with integration point(s) approaching critical state print message.
UPOT 60 : element with integration point(s) with negative \(p^{\prime}\); print
message.
UPOT 61 : end of loop on elements.

A list of reactions-to-earth at the d.o.f. where the displacements are prescribed is now printed.
(iv) The final part of the output consists of the incremental applied load, the out-of-balance load, the loads equivalent to eiement stresses and the total applied load at the nodes.
out-of-balance \(=\) total applied - loads equivalent to element
\[
\begin{array}{lll}
\text { loads } & \text { loads } & \text { stresses. } \tag{8.14}
\end{array}
\]

The nodal loads equivalent to current element stresses are calculated by routine STRSEQ.

\section*{Routine STRSEQ}

SUBROUT INE STRSEQ(JJ, IP. IPA, NVRS, NIP, NEL, NDN, NDIM, NS
\begin{tabular}{|c|c|c|}
\hline & 1 VARINT, SHFN, CARTD, F, DJACB, R, RI, CR ) & STRS
STRS \\
\hline \multicolumn{3}{|l|}{C*******************************************************************STRS} \\
\hline & ROUTINE TO Calculate forces eouilibrating & STRS \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline & DIMENSION VARINT (NVRS, NIP, NEL).SHFN(NDN).CARTD(NDIM, NDN) & STRS \\
\hline & DIMENSION F(NDIM, NDN) & STRS \\
\hline & COMMON /DATW / \(\mathrm{H}(100)\) & Strs \\
\hline & COMMON /FLOH / NPLAX & STRS \\
\hline \(\checkmark\) & & STRS \\
\hline & F9=CR*DJACB*W(IPA) & STRS \\
\hline & IF(NPLAX.EQ.1)F9=F9*R & STRS \\
\hline c & & StRS \\
\hline & U =Varint (NS+1. IP.JJ) & STRS \\
\hline & S IGXT \(=\) VARINT ( \(1.18, \mathrm{JJ}\) ) + U & Strs \\
\hline & SIGYT = VARINT ( \(2, I\) IP, JJ) + U & STRS \\
\hline & SIGZT = VARINT ( 3, IP, JJ ) + \({ }^{\text {l }}\) & Strs \\
\hline & TXY =VARINT (4, IP, JJ) & STRS \\
\hline & IF (NDIM.EQ.2)GOTO 35 & STRS \\
\hline C & & STRS \\
\hline & TYZ \(=\) VARINT ( \(5, \mathrm{IP}, \mathrm{JJ}\) ) & STRS \\
\hline & TZX=VARINT (6.IP, JJ) & STRS \\
\hline c & & STRS \\
\hline & DO 30 IN \(=1\). NDN & STRS \\
\hline & \(F(1, I N)=F(1, I N)+(\operatorname{CARTD}(1, \mathrm{IN}) * S I G X T+C A R T D(2, I N) * T X Y\) & STRS \\
\hline & 1 + 1 CARTD (3. IN ) *TZX)*F9 & STRS \\
\hline & \(\mathrm{F}(2, \mathrm{IN})=\mathrm{F}(2, \mathrm{IN})+(\operatorname{CARTD}(2, \mathrm{IN}) * \operatorname{SIGYT}+\operatorname{CARTD}(1, \mathrm{IN}) * T X Y\) & STRS \\
\hline & 1 +CARTD (3, IN ) *TYZ)*F9 & STRS \\
\hline & \(F(3.1 N)=F(3, I N)+(\operatorname{CARTD}(3, \mathrm{IN}) * S I G Z T+\operatorname{CARTD}(2, \mathrm{IN}) * \mathrm{TYZ}\) & STRS \\
\hline & \(1{ }^{\text {a }}\) +CARTD (1,IN)*TZX)*F9 & STRS \\
\hline & continue & STRS \\
\hline & GOTO 60 & STRS \\
\hline \multirow[b]{2}{*}{35} & & STRS \\
\hline & DO 40 IN = 1, NDN & STRS \\
\hline &  & STRS \\
\hline &  & STRS \\
\hline & \(\mathrm{F}(2, \mathrm{IN})=\mathrm{F}(2, \mathrm{IN})+(\mathrm{CARTD}(2, \mathrm{IN}) * S \mathrm{IGYT}+\mathrm{CARTD}(1, \mathrm{IN}) * \mathrm{TXY}) * F \mathrm{~F}\) & STRS \\
\hline \multirow[t]{2}{*}{} & RETUR \(N\) & STRS \\
\hline & END & STRS \\
\hline
\end{tabular}

STRS 12-13: calculate weighting factors
STRS 15 : pore pressure.
STRS 16-19 : total stresses for 2-D problems.

STRS 22-23 : additional shear stresses for 3-D analysis.
STRS 25-32: calculate nodal loads equivalent to stresses in element in 3-D analysis.
\[
\mathrm{F}=\int_{V} B^{\mathrm{T}} \sigma \mathrm{~d}(\mathrm{vol})
\]

STRS 35-38: do the same for 2-D analysis.

\subsection*{8.14 STOP-RESTART FACILITY}

There are two options in stopping and starting an analysis, as explained in section 4.2.5. Option 2 is for use with magnetic tape as results from every increment are saved. These data can then be used by post-processor programs to produce plots. The geometry data are written first to provide details of the mesh for post-processing.

The other option is provided in the absence of a magnetic tape facility and is solely for stopping and restarting an analysis. This permits a large analysis to be broken down into a number of manageable runs. For a restarted analysis, subroutine RESTRT reads the results at the end of the previous run. The results at the end of the current run are written to a separate file in routine UPOUT.

\section*{Routine RESTRT}

SUBROUTINE RESTRT(INCS, INCF,NN, NVTX,ND, NEL, NDF, NTPE,NIP,
1 NVRS, NVRN,MUMAX, NNZ, NNOD1, NDIM, MDZ, NEDZ, NL, INXL,
2 NCONN, LTYP, MRELVV, MREL, NRELRV, NREL, NW, NMOD,
3 XYZ, DA, VARINT, PCOR, XYFT, STR, PCONI, TTME, TGRAV
C
C*******P /START FACILITY
INTEGER TF
IMENSION NCONN (NTPE, NEL), LTYP(NEL), MRELVV(NEL), MREL(MUMAX),
NRELVV (NN), NREL (NNZ), NH (NNOD1), NMOD (NIP, NEL)
DIMENSION XYZ(NDIM, NN), DA (NDF), VARINT (NVRS, NIP, NEL), PCOR (NDF),
1 XYFT (NDF), STR (NVRN, NIP, NEL), PCONI (NDF)
COMMON /DEVICE/ IR1, IR4, IR5, IW2, IW4, IW6, IW7, IW8, IW9
COMMON /FIX / \(\operatorname{DXYT}(4,200), \operatorname{MF}(200), \operatorname{TF}(4,200)\), NF REST
COMMON /PRSLD / PRESLD(10 100)
COMMON /OUT / IBC, IRAC, NVOS, NVOF, NMOS, NMOF, NELOS, NELOF, ISR \begin{tabular}{lll} 
& \\
\hline
\end{tabular}
C IF (ISR.EQ.0)RETURN
C IF(ISR.EQ.2)GOTO 20
IF(ISR.EQ.1)GOTO 10
WRITE (IW6, 910)ISR
910 FORMAT (/24H ***ERROR : inadmISSIBLE, 1 x ,
\(\stackrel{1}{\text { STOP }}\)
C 10 continue
IF (INCS. EQ. 1 )RETURN
-------DISK FILE OPTION (ONLY ONE INCREMENT IS READ/WRITTEN) READ (IR 1) TTIME, TGRAV, XYZ, VARINT, STR, DA, XYFT, PCOR, PCONI, LTYP, NMOD READ (IR1) \(\mathrm{NF}, \mathrm{MF}, \mathrm{TF}, \mathrm{DXYT}\)


Stop-restart option \(=1\)
REST 31-33 : if a restarted analysis, read results of last increment of previous analysis from disk file.

Stop-restart option \(=2\)
REST 42 if a restarted run, then skip.
REST 46-49 : write geometric data to unit 2 for a fresh analysis.
REST 57-64 : for a restarted run, copy geometric data from unit 1 to unit 2. REST 68 : loop on all previous increments for a restarted run.
REST 69-77 : copy results from all increments from unit 1 to unit 2
REST 78 : end of loop on all previous increments.

Examples

\subsection*{9.1 INTRODUCTION}

This chapter deals with the use of CRISP. Section 9.2 contains various hints on using the program, which should be read in conjunction with the input specifications (Appendix A). Sections 9.3 to 9.9 describe some example problems, including full details of the input data. The examples are chosen mainly to illustrate the different features of the program. It is not practical, for space reasons, to present completely realistic analysis here, and therefore simple situations have been considered and most of the analyses contain one increment Therefore care is needed in interpreting the way the examples are presented.

\subsection*{9.2 USER'S GUIDE TO INPUT}

\subsection*{9.2.1 Introduction}

The input data with which the user must supply the program can be divided into the following categories:
(i) information describing the finite element mesh, i.e. the co-ordinates of nodal points associated with each finite element;
(ii) material properties (and perhaps in situ stresses) associated with each finite element;
(iii) boundary conditions for the analysis (i.e. imposed displacements and loads).

Experience shows that mistakes in the specification of the finite element mesh are often made by program users. These mistakes sometimes result in a mesh which is valid so far as the program is concerned but is simply not the mesh which the user intended. For this reason we have made it possible to produce a plot of the finite element mesh together with element and node numbers. This allows the program user to detect any errors in the geometric input data before embarking on a full analysis. (There is an option to run only the geometric part of the program.)

\subsection*{9.2.2 General hints}

We believe that the following suggestions should assist.
(i) First solve a problem to which you know the exact answer. It will use many of the program options that will be needed for the real analysis, but the problem will be simpler. For example, users of our program may find it useful to solve a problem of one-dimensional consolidation, or to analyse a triaxial test using one of the critical state models or to do a twodimensional elastic stress analysis and compare the results with a standard theory of elasticity solution. The main point of doing an exercise like this is to check that you understand how to operate the program correctly. It will also help in giving some idea about the magnitude of suitable time steps, load increments and the accuracy obtained from different meshes.
(ii) When analysing the real problem, ensure that there is an independent check of the results. Of course it is impossible to do this precisely (you would not be using a program if that were the case), but simple order of magnitude checks using conventional methods can identify gross mistakes. Repeating the analysis using another program is a good check, but often this will not be possible because of the cost or non-availability of another program
(iii) Study the results of the computer analysis. If doing an analysis with a critical state model then plot some effective stress paths. Do the results seem to exhibit any strange behaviour, e.g. are there large discrepancies between the stresses in neighbouring elements or between successive increments?

\subsection*{9.2.3 Size of increments}

Great care is needed in selecting increment sizes. The whole loading is divided into a number of small load steps, i.e. increments. How many load increments should one use? What is the right size of load increment? The answers to these questions depend on the problem being solved. However, there are a few guidelines. Use as many increments as possible. More increments will be needed for a drained analysis compared to an undrained analysis.

When the overall behaviour is elastic, larger load increments may be used. On the wet side of critical state, the soil undergoes hardening and the yield surface
expands. If one could limit the load increment size such that the expansion of the yield locus is within \(5 \%\) at any integration point, the results can be expected to be reasonable. Within \(2 \%\) would improve the result. Similarly on the dry side the yield locus shrinks in size as plastic yielding takes place. A much tighter control is recommended for softening. A parameter called the 'yield ratio' is printed for each integration point. This parameter is defined as the ratio of the yield locus size at the end of the current increment to the size at the beginning of the current increment. The size of the yield locus is defined by the \(p_{\mathrm{c}}^{\prime}\) value, the value of \(p^{\prime}\) on the \(q=0\) axis.

\subsection*{9.2.4 User's guide to input}

\section*{Record \(A\)}

The title is usually set by the user to be descriptive of the subject of the finite element analysis. The title appears on the program's plot of the finite element mesh as well as near the start of the printed program output. If different meshes are used to tackle the same problem then the titles should be different, e.g.
\[
\text { FOOTING ANALYSIS - MESH } 1-60 \text { LST ELEMENTS }
\]
and
FOOTING ANALYSIS - MESH 2 - 100 LST ELEMENTS

\section*{Record \(B\)}

Element types (MXTYP)
Although it is possible to include more than one type of finite element in a mesh, normally all elements will be of the same type. The element type is defined by MXTYP, which at present can take one of the four values associated with the elements shown in Fig. 4.1.
The variations of displacements (and consequently strains) and, where appropriate, pore pressures are summarised in the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline MXTYP & Element name & Displacement & Strain & Excess pore pressure \\
\hline 2 & Linear strain triangle
(LST) & Quadratic & Linear & N/A \\
\hline 3 & LST with linearly varying excess pore pressure & Quadratic & Linear & Linear \\
\hline 6 & Cubic strain triangle (CuST) & Quartic & Cubic & N/A \\
\hline 7 & CuST with cubic variation of excess pore pressure & Quartic & Cubic & Cubic \\
\hline
\end{tabular}

All the elements are basically standard displacement finite elements, which are described in most texts on the finite element method (e.g. Zienkiewicz, 1977)

Note that NVTX refers to the number of vertex (i.e. corner) nodes in the finite element mesh. The program automatically generates node numbers and co-ordinates for any nodes lying on element sides or within elements.
Although CRISP allows the user complete freedom in the choice of element type, the following recommendations should lead to the selection of an appropriate element type
(i) plane strain analysis: for drained or undrained analysis, use element type 2 (linear strain triangle) and for consolidation analysis use element type 3 .
(ii) axisymmetric analysis: for drained analysis or consolidation analysis where collapse is not expected then element types 2 and 3 will probably be adequate (i.e. the same as (i) above). For undrained analysis or a situation where collapse is expected then element types 6 and 7 are recommended. Recent research has shown that in axisymmetric analyses the constraint of no volume change (which occurs in undrained situations) leads to finite element meshes 'locking up' if elements such as the LST are used (Sloan and Randolph, 1982).

\section*{How many elements?}

It is difficult to lay down rules for the number of finite elements needed in a mesh to analyse a particular problem. The following hints may assist inexperienced analysts:
(i) avoid the pitfall of using too few elements - remember that in the case of the linear strain triangle, for example, stresses will vary linearly across the element;
(ii) avoid the pitfall of using too many elements - in most situations between 50 and 100 LSTs will be adequate, as will between 20 and 30 CuSTs.
(iii) the mesh should be finer (i.e. elements should be smaller) in regions where rapidly varying strains/stresses are to be expected (e.g. near loaded boundaries).

\section*{Mixing different element types}

As mentioned above, the possibility exists of mixing different element types in a CRISP analysis. The only element types for which mixing is recommended in the current program version are element type 2 with element type 3, and element type 6 with element type 7. This could be done in a consolidation analysis where part of the continuum is expected to behave in a completely drained or completely undrained mode in comparison to the rest.

\section*{Record C}

The parameters NUMAX and MUMAX need to be specified only if there are gaps in the vertex node numbering and element numbering respectively. This information is necessary to allocate sizes to arrays which store the node numbers. Rather than arbitrarily allocating sizes to these arrays, which imposes a limit on the number of vertex nodes and elements, this procedure is preferred.

\section*{Record D}

The normal option is to set all these values to zero. These flags need to be set only when the program is being tested (left in for the benefit of users/ programmers who may want to change the program, e.g. to incorporate a new element type). This feature helps to ensure that the changes made to the program are correct.
This debugging option may also be used to track down any errors in the specification of the finite element mesh (but this is best dealt with by a datachecking program).

\section*{Record E}

The program calculates the co-ordinates of nodes along sides and element interiors by linear interpolation, assuming that the elements are straight-edged. However, in some analyses (e.g. circular tunnel, buried pipe) it is more appropriate for the element sides to be curved to accurately model the physical problem. The program does not have the facility to calculate co-ordinates of nodes assuming that the element sides are curved. This feature is included so that (see records I and J) the user can directly specify the co-ordinates along the (few) curved sides.

If all the element sides in the mesh are curved, the user may envisage writing a small program to generate the nodal co-ordinates automatically and input as described below (records I and J).
Records I and J are then used to specify the co-ordinates of nodes, for each element side. It should be noted that displacement and pore pressure nodes are dealt with separately. For element types 2,6 (non-consolidation elements) and also element type 3 (does not have pore pressure nodes along side), NSPZ and NPCUR must be set to zero. Records J are then omitted from input.
If element type 7 is used with curved sides then the user must ensure that the co-ordinates of both displacement and pore pressure nodes which are specified separately lie along the curved side.

\section*{Records \(F\) and \(H\)}

Element and nodal numbering
The program user must assign each element and each vertex node in the finite element mesh unique (integer) numbers in the following ranges:

\section*{\(1 \leqslant\) node number \(\leqslant 750\).}
\(1 \leqslant\) element number \(\leqslant\) MUMAX (user specified; if equal to zero, then NEL).

It is not necessary for either the node numbers or the element numbers to form a complete set of consecutive integers, i.e. there may be 'gaps' in the numbering scheme adopted. This facility means that users may modify existing finite element meshes by removing elements without the need for renumbering the whole mesh. The geometry part of the program assigns numbers in the range 751 upwards to nodes on element sides and in element interiors.

Co-ordinate system
It is recommended that the user adopts a co-ordinate system with the \(y\) axis pointing upwards (Fig. 9.1).


Fig. 9.1 - Co-ordinate system

Note the \(x\) axis points to the right - if the \(x\) axis points to the left then the program will calculate element areas and stiffnesses as negative quantities. (This recommendation is linked to the program's expectation that element node numbers are listed in record \(H\) in an anti-clockwise sense. In principle it is possible to use a co-ordinate system with the \(x\) axis pointing to the left, but then it would be necessary to list element node numbers in a clockwise sense, and a different sign convention for shear stresses would be needed in records P1, P3 and \(U\).
The user may rotate the co-ordinate system if desired (i.e. so that the \(y\) axis no longer points vertically upwards), but should be noted that the following input options for the program will not work in the normal fashion:
(i) specification of material self-weight loads (excavation, construction and gravity increase - records M and R );
(ii) elastic properties varying linearly with depth (record M);
(iii) axisymmetric analysis.

When the axisymmetric analysis option is selected (record Ll) it is assumed that the \(y\) axis is the axis of symmetry (i.e. the \(x\) axis is in the radial direction).

\section*{Units}

The user can choose any appropriate length for describing the co-ordinates of nodal points. It is important, however, that the units chosen to describe material properties, stresses and loads in the program are consistent. In a drained or undrained analysis the user can only select the units for two quantities independently - the units for describing all other items are then automatically determined. Since the unit of length is always determined by the co-ordinate data, the user has one choice remaining and this can most simply be regarded as relating the units of force that are to be used. For example, if length and force units are chosen to be metres ( m ) and kilonewtons ( kN ) respectively then stresses and elastic moduli must be in \(\mathrm{kN} / \mathrm{m}^{2}\) and unit weights must be in \(\mathrm{kN} / \mathrm{m}^{3}\) (see Table 9.1).

Table 9.1 Consistent set of units
\begin{tabular}{lllll}
\hline & 1 & 2 & 3 & 4 \\
\hline Length & m & mm & mm & ft \\
Force & kN & N & \(\mathrm{mN}^{\dagger}\) & lbf \\
Time & sec & sec & sec & hr \\
\hline Pressure, stress & \(\mathrm{kN} / \mathrm{m}^{2}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \(\mathrm{mN} / \mathrm{mm}^{2} \ddagger\) & \(\mathrm{lbf} / \mathrm{ft}^{2}\) \\
Density & \(\mathrm{kN} / \mathrm{m}^{3}\) & \(\mathrm{~N} / \mathrm{mm}^{3}\) & \(\mathrm{mN} / \mathrm{mm}^{3}\) & \(\mathrm{lbf} / \mathrm{ft}^{3}\) \\
Permeability & \(\mathrm{m} / \mathrm{s}\) & \(\mathrm{mm} / \mathrm{s}\) & \(\mathrm{mm} / \mathrm{s}\) & \(\mathrm{ft} / \mathrm{hr}\) \\
\hline
\end{tabular}
\(\ddagger \mathrm{mN} / \mathrm{mm}^{2}\) and kPa (i.e. \(\mathrm{kN} / \mathrm{m}^{2}\) ) are equal in magnitude.

When a consolidation analysis is performed, suitable units of time must also be chosen, and the units chosen for permeability imply certain units for increment time steps (e.g. if permeability has units of metres/year then time steps will be in units of years).

\section*{Material zone numbers (IMAT)}

The user must assign a zone number (in the range 1 to 10) to each finite element. The zone number associates each element with a particular set of material properties (record \(M\) of program input). Thus if there are three zones of
soil with different material properties, zones 1 and 2 may be modelled by Camclay with distinct material parameters and zone 3 may be modelled by linear elastic properties. (Note: 'gaps' in the numbers of zones are not allowed.)

\section*{Records G1 and G2}

The frontal method of solving equations requires an efficient element numbering. The numbering adopted by the user may not necessarily be the most efficient. Inefficient element numbering in any analysis of medium to large sized problems may prove to be prohibitively expensive. No attempt is made in the program to renumber the elements for efficient use of the frontal method. With element renumbering programs (for the frontal method) becoming available, the option to specify an alternative frontal sequence of the elements is allowed for in records G1 and G2. If this alternative element number is specified ( \(\operatorname{IRNFR}=1\) ) by the user then the elements are assembled in the sequence as specified in record G2. If no alternative element numbering is provided (IRNFR \(=0\) ) then the elements are assembled in the same sequence as presented in records \(H\). However, the results output at the end of analysis (stresses at integration points for each element) will be printed in the ascending order of element numbering adopted by the user.

\section*{Records I and \(J\)}

The element number is followed by nodes N 1 and N 2 (which are at either end of the side) to identify the element side. Then the nodal co-ordinates of nodes along the element side are given in sequence from node N1 to \(N 2\) (note that the co-ordinates of nodes N 1 and N 2 are not specified).
The program only uses the pore pressure node co-ordinates for plotting purposes. The user should calculate co-ordinates which are consistent with those of the displacement nodes on the curved element side. When performing calculations involving the pore pressure nodes (e.g. interpolating pore pressures inside elements for nodal values) the program makes the implicit assumption that the pore pressure nodes are positioned in a definite relation to the displacement nodes (which define the element geometry). The fact that the program does not actually need to use these co-ordinates in any calculations might appear surprising at first!

\section*{Record K}

The facility to stop the analysis at different stages of the program is useful in checking the finite element mesh before launching on a complete analysis. From past experience most of the data errors occur in specifying the finite element mesh. This intermediate step enables the user to split a complete analysis into three distinct parts: (a) geometry, (b) in situ stresses and (c) analysis.

In view of the costliness of finite element analysis it is sensible to make sure that as far as possible no errors in parts (a) and (b) are present before doing the
analysis. Some data errors in (c) cannot be readily checked. For example, a value of \(E\) (Young's modulus) may be incorrectly specified as 300 instead of 3000 . Some programs may check that \(E\) has a positive value. In CRISP, no checks are carried out on the material properties. A zero value for permeability in a consolidation analysis causes the analysis to fail with a ZERO PIVOT error in the solution routine FRONTZ. If the unit weight of water is specified as zero in a consolidation analysis the program will terminate with an error message saying that there is an attempt to divide by zero, in routine LSTIFF.
\(\operatorname{IDCHK}=1\) : the program runs the geometry part of the program and creates a plot data (PD) file which is then used by a separate program (mesh-plotting program; see Appendix B) to draw the mesh.

IDCHK \(=2\) : this will run the geometry part of the program and then setup the in situ stresses at all integration points. Also it will carry out an equilibrium check to ensure the boundary conditions (restraints and loads) are equal to the in situ element stresses.

\section*{Record Ll}

NMAT must be equal to the number of different material zones specified in the geometry part of the program.

INCF \(\geqslant\) INCS
If \(\operatorname{INCS}>1\) then this analysis is a continuation of a previous analysis (see section 9.2.5) and records \(O\) to Q3 are omitted.

\section*{IPRIM}

CRISP allows soil constructions or excavations to be modelled in an analysis via the addition or removal of elements as the analysis proceeds. All the elements that appear at any stage in the analysis must have been included in the input data for the geometry part of the program. IPRIM is the number of finite elements that must be removed to form the primary finite element mesh before the analysis is started

\section*{IUPD}

IUPD \(=0\) : this corresponds to the normal assumption that is made in linear elastic finite element programs and also in most finite element programs with non-linear material behaviour. External loads and internal stresses are assumed to be in equilibrium in relation to the original (i.e. undeformed) geometry of the finite element mesh. This is usually. known as the 'small displacement assumption.

IUPD \(=1\) : when this option is used the nodal co-ordinates are updated after each increment of the analysis by adding to the co-ordinates the displacements under-
gone by the nodes during the increment. The stiffness matrix of the continuum is then calculated with respect to these new co-ordinates during the next analysis increment. The intention of this process is that at the end of the analysis, equilibrium will be satisfied in the final (deformed) configuration. Although this approach would seem to be intuitively more appropriate when there are significant deformations, it should be noted that it does not constitute a rigorous treatment of the large strain-displacement behaviour for which new definitions of strains and stresses are required (e.g. Carter et al., 1977). Various research workers have examined the influence of a large strain formulation on the loaddeformation response calculated by the finite element method using elastic-perfectly-plastic models of soil behaviour. The general conclusion seems to be that the influence of large strain effects is not very significant for the range of material parameters associated with most soils. In most situations the inclusion of large strain effects leads to a stiffer load-deformation response near failure and some enhancement of the load carrying capacity of the soil. If a program user is mainly interested in the estimation of a collapse load using an elastic-perfectly-plastic soil model than it is probably best to use the small displacement approach (i.e. \(\mathrm{IUPD}=0\) ). Collapse loads can then be compared (and should correspond with those obtained from a classical theory of plasticity approach).

\section*{NOIB}

The analysis is sub-divided into one or more increment blocks. Each increment block consists of one or more increments. The use of the increment block is adopted for two reasons: (a) removal of elements (excavation) and addition of elements (construction) can be carried out over a number of increments and (b) with repeated application of loading (or non-zero prescribed displacements) increments can be grouped together as an increment block (provided that no boundary conditions have changed) thereby reducing the amount of data input.

\section*{Record L2}

This permits the user to reduce the printed output by suppressing the printing of nodal loads and boundary conditions and the reactions in each increment by setting IBC \(=0\) and \(I R A C=0\) respectively.

The next four parameters control the displacement output of each increment. Because there are two separate ranges of numbers, two for vertex nodes and the other two are used for midside nodes.
> \(0 \leqslant\) NVOS \(\leqslant\) NVOF \(\leqslant\) MUMAX
> \(0 \leqslant \mathrm{NMOS} \leqslant \mathrm{NMOF} \leqslant \mathrm{NNZ}\)

This permits the user to request only the nodal output for nodes within the specified ranges. For example, if the user is interested in the vertex nodes 5 to 10 and other nodes 780 to 790 , then NVOS \(=5, \mathrm{NVOF}=10, \mathrm{NMOS}=780\) and NMOF \(=790\). Since these parameters operate in conjunction with the parameter

IOUT in record \(R\), IOUT must be set to 2 . If IOUT is set to 1 for the above case, no displacements for the midside node are printed (see also explanations for parameter IOUT under record \(R\) ).

The same option applies to output from elements. The output from only the user specified range of elements is printed. Here again this option is affected by the parameter IOUT in record \(R\).

\section*{Record M}

The parameters hown in the material properties' table in the input specification have the meanings shown below. With a few possible exceptions (mentioned later) all the parameters should be regarded as being effective stress properties, i.e. they either relate changes in strain to changes in effective stresses or describe the soil's strength in terms of the effective stresses that are acting in the soil skeleton.

\section*{Anisotropic elastic properties}

The anisotropic elastic properties relate strains to changes in stress via the following equations:
\[
\begin{aligned}
\epsilon_{\mathrm{x}} & =\frac{1}{E_{\mathrm{h}}} \sigma_{x}-\frac{\nu_{\mathrm{vh}}}{E_{\mathrm{v}}} \sigma_{y}-\frac{\nu_{\mathrm{hh}}}{E_{\mathrm{h}}} \sigma_{z}, \\
\epsilon_{y} & =-\frac{\nu_{\mathrm{hv}}}{E_{\mathrm{h}}} \sigma_{x}+\frac{1}{E_{\mathrm{v}}} \sigma_{y}-\frac{v_{\mathrm{hv}}}{E_{\mathrm{h}}} \sigma_{z} \\
\epsilon_{z} & =-\frac{\nu_{\mathrm{hh}}}{E_{\mathrm{h}}} \sigma_{x}-\frac{\nu_{\mathrm{vh}}}{E_{\mathrm{v}}} \sigma_{y}+\frac{1}{E_{\mathrm{h}}} \sigma_{z} \\
\gamma_{x y} & =\frac{1}{G_{\mathrm{hv}}} \tau_{x y}
\end{aligned}
\]

Note that suffixes ' \(h\) ' (for horizontal) and ' \(v\) ' (for vertical) have been adopted here to clarify the type of anisotropic properties which the program expects to be specified for soil. This is because soil deposits are often formed by a process of sedimentation in horizontal layers and the associated soil fabric and stress history lead to one set of properties for the \(x-z\) (or h) plane ( \(E_{\mathrm{h}}\) and \(\nu_{\mathrm{hh}}\) ) and another set relating to the vertical direction (v or \(y\) ) and the coupling between horizontal and vertical directions ( \(E_{\mathrm{v}}, \nu_{\mathrm{hh}}, \nu_{\mathrm{hv}}, G_{\mathrm{hv}}\) ). The significance of these properties can be deduced from the above equations, but the following may make the meanings clearer:
an increase in vertical stress leads to an increase in vertical strain \(\Delta \sigma_{y} / E_{\mathrm{v}}\) and a tensile strain \(\left(\nu_{\mathrm{vh}} / E_{\mathrm{v}}\right) \Delta \sigma_{\mathrm{y}}\) (in the absence of any changes in horizontal stresses). Hence \(\nu_{\mathrm{vh}}\) is the Poisson's ratio which gives the ratio of horizontal strain to vertical strain caused by a stress increment in the vertical direction and a similar statement can be made as to the meaning of \(\nu_{\mathrm{hv}}\).

Note, however, that the program requires only the specification of \(\nu_{\mathrm{vh}}\) and not \(\nu_{\mathrm{h} v}\). This is because energy/reversibility considerations for an elastic material lead to the relationship
\[
\frac{\nu_{\mathrm{hv}}}{E_{\mathrm{h}}}=\frac{\nu_{\mathrm{vh}}}{E_{\mathrm{v}}} .
\]

Elastic, linear variation with depth
The elastic Young's modulus at a depth \(y\) is given by the equation
\[
E=E_{0}+m\left(y_{0}-y\right)
\]

However, Poisson's ratio is assumed to be a constant.
Critical state parameters
The selection of critical state parameters is discussed in Chapter 5.

\section*{\(\alpha\)}
\(K_{\mathrm{w}}\) is the bulk modulus of water, which is defined as \(\alpha K^{\prime}\). When an undrained analysis is performed, \(K_{\mathrm{w}}\) is normally set to a value between 50 and 500 times \(K^{\prime}\) (i.e. \(\alpha\) in the range 50 to 500 ). The reason for this will be made clear following a description of how the program uses this value. The effective stress law can be written in matrix notation:
\[
\sigma=\sigma^{\prime}+\mathrm{m} u
\]

Here \(u\) is the pore water pressure and \(m\) is a vector indicating which stress terms participate in the effective stress relation. For example, if a fully threedimensional stress condition is considered:
\[
\left.\begin{array}{rl}
\sigma & =\left[\begin{array}{cccccc}
\sigma_{x} & \sigma_{y} & \sigma_{z} & \tau_{x y} & \tau_{y z} & \tau_{z x}
\end{array}\right]^{\mathrm{T}}, \\
\sigma^{\prime} & =\left[\begin{array}{lllll}
\sigma_{x}^{\prime} & \sigma_{y}^{\prime} & \sigma_{z}^{\prime} & \tau_{x y} & \tau_{y z}
\end{array} \tau_{z x}\right.
\end{array}\right]^{\mathrm{T}},
\]
and
\[
\mathrm{m}=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} .
\]

Suppose an element of soil undergoes an incremental total stress change \(\Delta \sigma\) which results in a change of pore pressure \(\Delta u\) and incremental strains \(\Delta \epsilon\). Suppose also that incremental effective stresses are related to incremental strains by the relationship
\[
\Delta \sigma^{\prime}=\mathbf{D}^{\prime} \Delta \epsilon
\]
( \(\mathbf{D}^{\prime}\) may describe either an elastic or an elasto-plastic law). The assumption is now made that the volumetric strain experienced by the soil is due entirely to a change in the volume of pore water. The volumetric strain experienced by the soil element can be written as \(\mathrm{m}^{\mathrm{T}} \Delta \epsilon\), and the volumetric strain experienced by
the pore water is equal to \([(1+e) / e] \mathrm{m}^{\mathrm{T}} \Delta \epsilon\), where \(e\) is the current voids ratio. Then the change in pore water pressure is given by
\[
\Delta u=K_{\mathrm{w}}[(1+e) / e] \mathrm{m}^{\mathrm{T}} \Delta \epsilon .
\]

Combining this with the effective stress law and the incremental effective stressstrain relation, the following equation is obtained:
\[
\Delta \sigma=\mathbf{D}^{\prime} \Delta \epsilon+\mathrm{m} K_{\mathrm{w}}[(1+e) / e] \mathrm{m}^{\mathrm{T}} \Delta \epsilon
\]

CRISP uses this equation in the following way.
(i) The program expects in an undrained analysis that the material properties supplied relate to changes in effective stress.
(ii) When calculating the element stiffness matrices the program adds in the terms corresponding to the volumetric stiffness of the pore water.
(iii) Following the solution of the finite element equations the program calculates the changes in effective stresses and pore water pressure separately.

In a drained analysis the user sets \(\alpha=0\) (i.e. \(K_{\mathrm{w}}=0\) ) and no changes in pore pressure are calculated. For elastic material behaviour the above procedure for an undrained analysis is equivalent to using a value of Poisson's ratio close to 0.5 . However, the above procedure has the advantage that the pore pressure changes are calculated explicitly, and exactly the same technique is valid for an elasto-plastic material law. It is well known that in conventional linear elastic finite element analysis the use of a value very close to 0.5 can lead to numerical ill-conditioning of the finite element equations. The use of a value of \(\alpha\) in the range suggested above is equivalent to the use of a value of Poisson's ratio in the range 0.49 to 0.499 and should give reasonably accurate results.
\(\gamma\)
\(\gamma\) is the bulk unit weight of the soil. This value is used by the program when
(a) calculating implicit loads caused by excavation (removal of elements) or construction (addition of elements) sequences
(b) the gravity acceleration field is increased (or decreased) during an analysis (e.g. during geotechnical centrifuge test) (see record R ).

\section*{Records \(O, P 1, P 2\) and P3}

In an elasto-plastic analysis the stiffness matrix of a finite element will be dependent on the stress state within the element. In general the stress state will vary across an element and the stiffness terms are calculated by integrating expressions dependent on these varying stresses over the volume of each element. CRISP integrates these expressions numerically by 'sampling' the
stresses at particular points within the element and then using standard numerical integration rules for triangular areas.

The purpose of record types \(\mathrm{O}, \mathrm{P} 1, \mathrm{P} 2\) and P 3 is to enable the program to calculate the stresses (and for Cam-clay the size of the yield locus specified by \(p_{\mathrm{c}}^{\prime}\) ) before the analysis starts. For the purpose of specifying the in situ stresses the mesh is divided into a number of horizontal layers (option 1). For most problems the in situ stresses do not vary in the horizontal direction, and it is assumed that the stresses vary only with depth. Therefore the user specifies a set of in situ nodes along a vertical section and the stresses at these points. The in situ stresses at the integration points (see Fig. 7.2) are interpolated from the stresses specified at the in situ nodes.

However, for problems where the stresses do vary in the horizontal direction, a separate option (option \(2: \mathrm{KT}=2\) ) is provided in specifying the stresses. In this option (see records P2 and P3) the user has to specify directly the in situ stresses at each integration point for all the elements.

For Cam-clays it is important to try to establish the in situ stress state as accurately as possible. This is discussed in Chapter 5 to which the reader is referred.

\section*{Records Q1, Q2 and Q3}

The user has to specify the external loading (pressure loading along the boundary) and self-weight loading (due to body forces) that is in equilibrium with the in situ stresses. The zero displacement boundary condition has to be specified along the boundary that is supported (or restrained). In specifying these conditions the user must consider the entire boundary of the mesh and ensure that along any part of the boundary which is loaded (i.e. not free of stress) either the pressure loading or the restraint has to be specified.

The specified loading is expected to be in equilibrium with the in situ stresses. An equilibrium check is carried out, and any imbalance in nodal loads (between the external load and in situ stresses) is printed out.

\section*{Record \(R\)}

When a non-linear or consolidation analysis performed using CRISP it is necessary to divide either the loading or the time span of the analysis (or both if there is consolidation with non-linear material properties) into a number of increments. Thus if a total stress of 20 kPa is applied to part of the boundary of the finite element mesh it might be divided into ten equal increments of 2 kPa , each of which is applied in turn. The total number of increments that are necessary will vary from problem to problem, but in general about 50 increments would be required in a drained or undrained analysis using one of the Cam-clays which goes as far as collapse. CRISP calculates the incremental displacements for each increment using a tangent stiffness approach, i.e. the current stiffness properties are based on the stress at the start of each increment. While it is desirable to use as many increments as possible to obtain accurate
results, the escalating computer costs that this entails will inevitably mean that some compromise is made between accuracy and cost. The recommended way of reviewing the results to determine whether enough increments have been used in an analysis is to examine the values of yield ratio (YR) at each integration point. When plastic hardening is taking place the value of YR gives the ratio the size of yield locus following the increment to the size before the increment. Thus a value of 1.10 means that the yield locus has grown in size by \(10 \%\). Values of about 1.02 ( 0.98 , if softening) are generally regarded as leading to sufficiently accurate calculations. If values greater than 1.05 (less than 0.95 , if softening) are seen, then the size of the load increments should be reduced. When one of the Cam-clay models is softening (i.e. yielding dry of critical), smaller increments (than the size suggested by the above discussion) may be necessary.

The time intervals for consolidation analysis (DTIME) should be chosen after giving consideration to the following factors (see also the discussion in Chapter 3 relating to the TINY. program):
(i) the amount of pore pressure dissipation expected within the time step;
(ii) in a non-linear analysis the increments of effective stress must not be too large (i.e. the same criteria apply as for a drained or undrained analysis);
(iii) it is a good idea to use the same number of increments in each log cycle of time (thus for linear elastic analysis the same number of time increments would be used in carrying the analysis forward from one day to ten days as from ten days to hundred days). Not less than three time steps should be used per \(\log\) cycle of time (for a \(\log\) base of ten). Thus a suitable scheme might be:
\begin{tabular}{|c|c|c|}
\hline Increment no. & DTIME & Total time \\
\hline 1 & 1 & 1 \\
\hline 2 & 1 & 2 \\
\hline 3 & 3 & 5 \\
\hline 4 & 5 & 10 \\
\hline 5 & 10 & 20 \\
\hline 6 & 30 & 50 \\
\hline 7 & 50 & 100 \\
\hline 8 & 100 & 200 \\
\hline 9 & 300 & 500 \\
\hline 10 & 500 & 1000 \\
\hline
\end{tabular}

This scheme would be modified slightly near the start and end of an analysis (see below);
(iv) if a very small time increment is used near the start of the analysis then the finite element equations will be ill-conditioned;
(v) when a change in pore pressure boundary condition is applied the associated time step should be large enough to allow the effect of
consolidation to be experienced by those nodes in the mesh with excess pore pressure variables that are close to the boundary. If this is not done then the solution will predict excess pore pressures that show oscillations (both in time and in space).

The application of (v) will often mean that the true undrained response will not be captured in the solution. The following procedure, however, usually leads to satisfactory results:
(a) apply loads in the first increment (or first few increments for a non-linear analysis), but do not introduce any pore pressure boundary conditions;
(b) introduce the excess pore pressure boundary conditions in the increment following the application of the loads.

\section*{Boundary conditions (NLOD, NFIX, ILDF, ITMF)}

CRISP allows the user to describe a sequence of increments as an 'incremen block'. This facility is provided for two reasons.
(i) If the loads for each analysis increment had to be specified separately there would be a very large amount of data input needed for most problems. Much of this information would be repeated many times (e.g. which element sides were being loaded).
(ii) When performing an excavation (or construction) analysis the program calculates the implied loadings due to the removal (or addition) of the elements specified by the user. These implied loadings will often be too large to be applied in a single increment when the material behaviour is non-linear. The use of an increment block spreads these implied loads over several increments. (Note that this procedure introduces an extra approximation in the modelling of excavations: the stiffness of an element is removed entirely in the first increment of a block, whereas the loads are spread over all increments in the block.)

The program user should note the significance of specifying incremental loads in the input data. The total loads acting at any particular time are given by adding together all the previous incremental loads. Thus if part of the mesh is loaded and then subsequently these loads are removed, it will be necessary to specify negative incremental loads. Total loads and total fixities remain in force from incremental block to incremental block if there is no action to remove them.

The following example is intended to clarify these points for a consolidation analysis:
(a) part of the boundary of a soil mass is loaded with a load of ten units (this is applied in ten equal increments);
(b) consolidation takes place for some period of time (over ten increments);
(c) the load is removed from the boundary of the soil mass in five equal increments;
(d) consolidation takes place with no total load acting.

Loads
\begin{tabular}{|c|c|c|}
\hline Increment no. & \(\frac{\text { Incremental load }}{\text { applied }}\) & \(\frac{\text { Total load }}{\text { acting }}\) \\
\hline 1 & 1 & 1 \\
\hline 2 & 1 & 2 \\
\hline 3 & 1 & 3 \\
\hline 4 & 1 & 4 \\
\hline 5 & 1 & 5 \\
\hline 6 & 1 & 6 \\
\hline 7 & 1 & 7 \\
\hline 8 & 1 & 8 \\
\hline 9 & 1 & 9 \\
\hline 10 & 1 & 10 \\
\hline 11 & 0 & 10 \\
\hline 12 & 0 & 10 \\
\hline . & . & . \\
\hline . & . & - \\
\hline . & . & . \\
\hline 21 & -2 & 8 \\
\hline 22 & -2 & 6 \\
\hline 23 & -2 & 4 \\
\hline 24 & -2 & 2 \\
\hline 25 & -2 & 0 \\
\hline 26 & 0 & 0 \\
\hline 27 & 0 & 0 \\
\hline 28 & 0 & 0 \\
\hline 29 & 0 & 0 \\
\hline 30 & 0 & 0 \\
\hline
\end{tabular}
etc.

One possible way of translating this sequence of loading into input data would be to make increments 1 to 10 the first increment block with an incremental load of 10 units and 10 load factors equal to 0.1 . The second increment block (increments 11 to 20) would have no incremental loads and the third (increments 21 to 25 ) would have an incremental load of -10 with 5 load factors equal to 0.2.

\section*{DGRAV}

DGRAV is used in problems in which the material's self-weight is increased during an analysis (e.g. in the 'wind-up' stage of a centrifuge test, increasing centrifugal acceleration can be regarded as having this effect)

\section*{Records \(R, T 1, U\) and \(V\)}

The loading (NLOD), self-weight loads (DGRAV) and prescribed displacements (NFIX) are specified for the entire increment block, and are applicable to that particular increment block. The loading and any non-zero prescribed displacement for the individual increments are taken as ratios \((<1)\) of that for the increment block.
There is no restriction on how these loading and non-zero prescribed displacements are divided among the increments in an increment block. They are equally divided between all the increments if ILDF \(=0\) in record R. However, if the user wants to distribute the loading (and non-zero prescribed displacements) unevenly between the increments, then by setting ILDF \(=1\) a separate list of load ratios is read in record T1. (This is generally useful in an analysis where large load increments can be applied when the problem is in the elastic state and smaller load increments as plastic yielding takes place.)

It should be noted that the same ratios \(R(\mathrm{I})\) etc. (record \(\mathrm{T}_{1}\) ) apply to the pressure loading (NLOD - record U), the gravity loading (DGRAV - record R) and the prescribed displacements (NFIX - record V).
The sum of ratios \(R(I)\) must be equal to 1 . However, some of these ratios can take zero values, as illustrated in the example given under record T 3 .

\section*{Records \(R\) and \(T 3\)}

In a consolidation analysis the time increment DTIME \((>0)\) is specified for the entire increment block. If ITMF \(=0\) in record R then DTIME is equally divided among all the increments in the increment block. However, if ITMF \(=1\) then the user directly specifies (in record T3) the time increments for each increment Unlike the load ratios \(\mathrm{R}(\mathrm{I})\) etc. (in record T ) these are actual time steps for the increments and not ratios. None of these can be zero, and for reasons of consistency, DTIME in record R must be set equal to the sum of all the time steps in the increment block

The use of records T 1 and T 3 is illustrated by an example. In a consolidation analysis of 100 secs total duration spread over 9 increments, the load is gradually applied in 3 secs and the subsequent transient response is required.
(a) First the example is used to illustrate the use of a single increment block. This option is not applicable if there is a change in pore pressure boundary condition at the end of the loading phase. Then option (b) must be used.

(b) As an alternative, the analysis could be split into two increment blocks. In the first increment block the loading is applied, whereas in the second, consolidation takes place with no change in the load
record \(R\)
\begin{tabular}{cccccccc} 
IBNO & INCA & INCB & ICHEL & NLOD & ILDF & NFIX & IOUT \\
1 & 1 & 3 & 0 & - & 0 & - & - \\
2 & 4 & 9 & 0 & - & 0 & - & - \\
IOCD & DTIME & ITMF & DGRAV & & & \\
- & 3. & 0 & 0 & & & & \\
- & 97. & 1 & 0 & & & &
\end{tabular}
record \(T 1\)
not present for both increment blocks (ILDF \(=0\) in record R )
record T3
DTM(1) DTM(2) DTM(3) DTM(4) DTM(5) DTM(6)
incr block 1 not present (ITMF \(=0\) in record R )
\(\begin{array}{lllllll}\text { incr block } 2 & 2 & 5 & I 0 & 10 & 20 & 50\end{array}\)
record V
Displacement fixity:
Any displacement fixities (i.e. zero prescribed displacements) only need to be specified once, either at the in situ stage (in the presence of in situ stresses) or in the first increment block. Once specified, these zero displacement (or pore
pressure) fixities remain in effect during the rest of the analysis. Therefore these need not be re-specified for each and every increment block.

Pore pressure fixity 2 :
When a fixity code of 1 is used, the incremental changes of excess pore pressures along element sides are treated in exactly the same fashion as incremental displacements. When the incremental change in the excess pore pressure that needs to be prescribed is known (for example along a drainage boundary or along a boundary where a known pressure head is applied) then a fixity code of 1 is used. However, if the pore pressures have changed from the in situ values probably owing to loading or unloading then it is not possible to know the incremental changes in the pore pressures beforehand. Then the user has to prescribe the absolute value of the pore pressure using the fixity code of 2 . But in CRISP it is not possible to fix the absolute value of the pore pressure directly. This has to be done indirectly by fixing the absolute value of excess pore pressure. Remembering that
\[
\text { abs p.p. }=\text { in situ p.p. }+ \text { abs excess p.p. }
\]
abs excess p.p. \(=\) abs p.p. - in situ p.p.
This is illustrated with an example (Fig. 9.2): consider a excavation of a trench in a saturated clay. The trench is excavated in layers of 2 m ; assuming the unit weight of water is \(10 \mathrm{kN} / \mathrm{m}^{3}\) the in situ values of pore pressure at nodes 1,2 and 3 are, respectively, 0,20 and 40 kPa . For node 2, after excavating the first layer, the absolute pore pressure \(=0\). Therefore absolute excess pore pressure \(=0-\) \(20=-20 \mathrm{kPa}\). Similarly after two layers have been excavated the absolute excess pore pressure along the base (at a depth of 4 m ) and at nodes 6 and 3 is


Fig. 9.2 - Example to illustrate pore pressure fixities
given by \(0-40=-40 \mathrm{kPa}\). This particular feature often causes confusion to the user. The most common mistake is to incorrectly fix the absolute excess pore pressure to 0 using a fixity code of 2 .

\subsection*{9.2.5 Stop-restart facility}

CRISP can be stopped and restarted, allowing a lengthy analysis to be split into a number of shorter analyses. This facility is particularly useful for reviewing and perhaps altering the size of load increments without having to repeat the entire analysis.

The input data for a starting run is exactly the same as for a normal run except that ISR (record Ll ) is set to 1 or 2 rather than zero. When a run is restarted ISR is set to 1 or 2 and records \(O\) to Q3 are omitted from the input data (in this case the details of the current stresses are read from the restart file).

A value of INCS \(>1\) on record Ll indicates that this is a restarted run. INCS must follow on in sequence from the previous analysis. When ISR \(=1\) it is only possible to restart the analysis from the last increment of a previous run. When \(\operatorname{ISR}=2\) it is possible to restart from any previous increment. Mixing ISR \(=1\) and \(\operatorname{ISR}=2\) in a series of runs is not permitted. The results from a previous run are always read from unit IR1 and the results from the current run are stored on unit IW2. As mentioned in section 4.2 .5 restart files for \(\operatorname{ISR}=2\) will be large and probably require use of magnetic tapes.

\subsection*{9.3 LINEAR ELASTIC: ONE-DIMENSIONAL CONSOLIDATION}

The first example is identical to the one-dimensional consolidation analyses performed by the TINY program in section 3.6.4. The mesh (Fig. 9.3) consists of 12 LST elements, and the depths of the LST elements are the same as in section 3.6.4. The input data for CRISP are given in Fig. 9.4. The boundary conditions are illustrated in Fig. 9.5. Since the problem is one dimensional, the problem type could be chosen as either plane strain or axisymmetry. In fact a plane strain analysis is performed. The mesh is prevented from moving in the lateral direction. This reduces the problem to its one-dimensional form. The base of the mesh is restrained, which is also an impermeable boundary. The top is a free-draining boundary.

A uniform load of 10 kPa is applied to the surface in the first increment block, which consists of a single increment. The pore pressure boundary condition corresponding to the top drainage surface is applied in the next increment. Exactly the same time steps are used as in section 3.6.4. The second increment block contains 11 increments. It should be emphasized again that loading is specified in one increment and the relevant pore pressure boundary conditions are specified in the next increment. This applies only to pore pressure boundary conditions. In general, either a loading is applied to a node (possibly


Fig. 9.3 - Mesh for Terzaghi 1-D consolidation (12 LST elements of type 3)


Fig. 9.4 - Input data for Terzaghi 1-D consolidation


Fig. 9.5 - Boundary conditions for Terzaghi 1-D consolidation
zero) or it is restrained. Loads are applied, and only have effect on free nodes. There is no point in applying a load to a restrained node or a node with prescribed displacements (the effect would be the same as applying no load at all - think of a giant hand restraining a node or moving it by a prescribed amount).

The time step for the increment in which load is applied is chosen such that no dissipation would be expected. The choice of time steps was discussed in section 3.6.4. Exactly the same results were obtained as presented in Chapter 3, confirming that both programs are similar (Fig. 9.6).
- TiNY


Fig. 9.6 - Plot of degree of consolidation against \(T_{\mathrm{v}}\) for Terzaghi 1-D consolidation

\subsection*{9.4 ELASTIC ANALYSES}

The next series of examples is chosen to illustrate different aspects of CRISP. A single mesh as shown in Fig. 9.7 is used in all the examples. It consists of 80 LST elements and 54 vertex nodes.

The problem considered is a linear elastic layer of finite depth subjected to a uniform circular surface pressure. The following material properties have been chosen for the elastic layer:
\[
E=3000 \mathrm{kPa}, \quad \nu=0.25 \quad \text { (hence } G=1200 \mathrm{kPa} \text { ). }
\]

The applied pressure is 30 kPa . The boundary condition for the mesh is as follows: the outer vertical boundary is restrained in the \(x\) direction and is assumed to be smooth, i.e. free to move in the \(y\) direction. The base of the layer is assumed to be rough and hence is restrained in both \(x\) and \(y\) directions. The \(y\) axis, being the axis of symmetry, is restrained in the \(x\) direction but is free to move in the \(y\) direction (Fig. 9.8). In fact in axisymmetric problems it is not



Fig. 9.8 - Boundary conditions used in analysis
necessary to restrain the axis of symmetry but this was done here. The mesh represents a radial section of the axisymmetric problem. All calculations are carried out over a full rotation \((2 \pi)\) of this radial section.

\subsection*{9.4.1 Linear elastic - drained analysis}

The first anlysis is a drained one. Since \(K_{\mathrm{w}}=\alpha K^{\prime}, \alpha\), which is the 7th material property. in the list of material properties, is set to zero. All other material properties are set to zero excepi for the elastic properties. Since this is a linear elastic analysis, the load is applied in a single increment. The input data are given in Fig. 9.9
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline rec & & & & & & & & & \\
\hline A & \multicolumn{2}{|l|}{Circular load on} & \multirow[t]{2}{*}{\({ }_{3}\)} & an elastic & \multicolumn{3}{|l|}{FOUNDATION} & & \\
\hline B & 54 & 803 & & 22 & 8 & & & & \\
\hline c & 0 & 0 & & & & & & & \\
\hline D & 0 & 00 & 0 & 00 & 0 & 0 & 0 & 0 & 0 \\
\hline E & 0 & 00 & 0 & 0 & & & & & \\
\hline F & 1 & 0.000 & & 0.000 & & & & & \\
\hline F & 2 & 0.000 & & 3.000 & & & & & \\
\hline F & 3 & 0.000 & & 6.000 & & & & & \\
\hline \(F\) & 4 & 0.000 & & 8.000 & & & & & \\
\hline F & 5 & 0.000 & & 9.000 & & & & & \\
\hline F & 6 & 0.000 & & 10.000 & & & & & \\
\hline F & 7 & 2.000 & & 0.000 & & & & & \\
\hline F & 8 & 2.000 & & 3.000 & & & & & \\
\hline \(F\) & 9 & 2.000 & & 6.000 & & & & & \\
\hline F & 10 & 2.000 & & 8.000 & & & & & \\
\hline F & 11 & 2.000 & & 9.000 & & & & & \\
\hline F & 12 & 2.000 & & 10.000 & & & & & \\
\hline F & 13 & 4.000 & & 0.000 & & & & & \\
\hline F & 14 & 4.000 & & 3.000 & & & & & \\
\hline F & 15 & 4.000 & & 6.000 & & & & & \\
\hline F & 16 & 4.000 & & 8.000 & & & & & \\
\hline F & 17 & 4.000 & & 9.000 & & & & & \\
\hline
\end{tabular}





\footnotetext{

}




Fig. 9.9 - Input data for linear elastic (drained) analysis
The calculated central and edge settlements by CRISP are 55 and 30 mm respectively. Poulos (1967) has presented theoretical solutions which give a central displacement of 55 mm for a layer of the same thickness. In a separate solution for a rough-based layer but with \(\nu=0.3\) the theory predicts 52 mm for the central displacement and 27 mm for the edge settlement (Milovic, 1970). Harr (1966) (see Table 5.1 of Poulos and Davis, 1974) has also presented an approximate solution, which gives an edge settlement of 31 mm for the above problem. The comparison is good and the reader can see the authors following their own advice in section 9.2 in calibrating the program against solutions.

\subsection*{9.4.2 Non-homogeneous elastic model - drained analysis}

In this analysis the variation of Young's modulus is as shown in Fig. 9.10. A value of 2000 kPa is assumed at the surface and there is a linear increase to 4000 kPa at the base of the layer. This gives an average \(E\) value of 3000 kPa , which is the same as that for the linear elastic analysis. The only difference to the input is the material properties (record M), which are as follows:

Record
M | 12 2000. 10. 200. 0.25 0. 0. 0. 0. 0. 0


Fig. 9.10 - Variation of Young's modulus with depth for non-homogeneous elastic model

Poisson's ratio is assumed constant throughout and equal to 0.25 . The central displacement was calculated to be 64 mm .

\subsection*{9.4.3 Linear elastic - undrained analysis}

The only difference between an undrained analysis and a drained analysis is that the undrained analysis requires the specification of the parameter \(\alpha\). This is used in the calculation of an equivalent bulk modulus for water within the program. A value of 100 is chosen and the only difference to the input data is record M .

\section*{Record}
\(\left.\begin{array}{l|lllllllllll}\text { M } & 1 & 1 & 3000 & 3000 & 0.25 & 0.25 & 1200 & 0 . & 100 . & 0 . & 0 .\end{array}\right)\).
The calculated central settlement is 33 mm .

\subsection*{9.4.4 Linear elastic - consolidation analysis}

The elastic parameters are the same as for the drained analysis. The additional parameters that need to be specified are the unit weight of water, which is taken as \(10 \mathrm{kN} / \mathrm{m}^{3}\), and the permeabilities in the \(x\) and \(y\) directions, which are taken as equal to \(10^{-8} \mathrm{~m} / \mathrm{s}\).
\[
\begin{aligned}
& 7 \text { th property }=\gamma_{w}=10 \mathrm{kN} / \mathrm{m}^{3} \text {, } \\
& 9 \text { th property }=k_{x}=10^{-8} \mathrm{~m} / \mathrm{s} \text {, } \\
& 10 \text { th property }=k_{y}=10^{-8} \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]

The initial stresses are assumed to be zero as in the case of the previous analyses. Because this is a consolidation analysis, the element type is 3. Again the load is
equal to 30 kPa and is applied in the first increment over a time step of 1 s . The top surface is assumed to be a drainage boundary and all other boundaries are assumed to be impermeable. The pore pressure boundary condition is applied by using a fixity code of 2 along element sides on the surface. In the second increment block, which consists of 9 increments, the following time steps were used.
\[
\begin{array}{rrrr}
10000 . & 10000 & 20000 . & 60000 . \\
& 100000 . & 200000 . & 600000 . \\
& 1000000 & 2000000 . &
\end{array}
\]

The input data are shown in Fig. 9.11.

\begin{tabular}{l:llllllll}
V & & 50 & 30 & 36 & 3 & 2 & 0. & 0. \\
V & & 60 & 36 & 42 & 3 & 2 & 0. & 0. \\
V & F & 70 & 42 & 48 & 3 & 2 & 0. & 0. \\
V & & 80 & 48 & 54 & 3 & 2 & 0. & 0. \\
& 0.
\end{tabular}

Fig. 9.11 - Input data for consolidation analysis
At the end of the 10 th increment it was found that not all excess pore pressures have dissipated. In this run the results of the 10 th increment (i.e. the last increment) had been written to a disk file because the stop-restart facility was being used (see record L1). It was decided to continue the analysis and apply a further 4 increments with the following time steps.

\section*{\(600000010000000 \quad 2000000060000000\)}

The nodal co-ordinates and element-nodal connectivity list are always included in the input data. Therefore the input data for the restarted run are the same as far as the first A to K records are concerned. The rest of the input data are shown in Fig. 9.12. It should be noted that ISR \(=1\) in record Ll to indicate that the option to stop-restart the analysis is being used, and INCS is set to 11 to indicate that results at the end of increment 10 are stored in a disk file. For a restarted analysis, records O to Q3 are omitted. The boundary conditions need not be specified again, as there are no changes to them.
\[
\begin{array}{lllllllllllll}
\text { record } & 0 & & & & & & & & & & & \\
\mathrm{~K} & : & 0 & 11 & 14 & 0 & 0 & i & & & & \\
\hdashline \mathrm{~L} 1 & 1 & 1 & 1 & & 50 & 771 & 787 & 1 & 40 & & & \\
\mathrm{~L} & 1 & 0 & 0 & 1 & 50 & \\
\mathrm{M} & 1 & 1 & 3 . E 3 & 3 . E 3 & 0.25 & 0.25 & 1.2 E 3 & 0 . & 10 . & 0 . & 1 . \mathrm{E}-8 & 1 . \mathrm{E}-8 \\
\mathrm{R} & 1 & 11 & 14 & 0 & 0 & 0 & 0 & 12 & 0 & 9.6 \mathrm{E} & 1 & 0.0 \\
\mathrm{~T} 3 & 6 . E 6 & 1 . E 7 & 2 . E 7 & 6 . E 7 & & & & & & & \\
\end{array}
\]

Fig. 9.12 - Input data for restarted consolidation analysis
The results from the drained, undrained and consolidation analyses are compared in Fig. 9.13, where the average settlement is plotted against \(\log _{10}\) (time). As one would expect, the immediate settlement in the, consolidation analysis is equal to the one obtained from the undrained analysis. After all the pore pressures are dissipated, the final settlement is equal to the one from the drained analysis. Also shown in this figure is the settlement from the drained analysis using the non-homogeneous elastic model.

Booker and Randolph (1984) present theoretical solutions for the consolidation of a semi-infinite elastic medium under a uniform surface loading over a circular area. They define the degree of consolidation as \(U\) :
\[
\begin{equation*}
U=\frac{w(t)-w(0+)}{w(\infty)-w(0+)} \tag{9.1}
\end{equation*}
\]
where \(w(t)\) is the average settlement of the loaded area at time \(t\). This solution is compared in Fig. 9.14 with the CRISP results in a plot of \(c_{\mathrm{v}} t / a^{2}\) against \(U\), where \(a\) is the radius of the loaded area. The comparison is fairly good for the


Fig. 9.13 - Comparison of average settlement in different types of analysis

case \(k_{x}=k_{y}\), bearing in mind that the CRISP results are for a layer of finite thickness. In a separate analysis, \(k_{x}=100 k_{y}\), and the comparison is reasonable. Booker and Randolph give the final central settlement as 75 mm . This is the same result as given by Poulos and Davis (1974) for an elastic half-space. By deducting the settlement at a depth equal to the thickness of the layer used in the CRISP analysis, a value of 66 mm was obtained. This can be compared with the CRISP result of 55 mm .

\subsection*{9.5 UNDRAINED ANALYSIS - CAM-CLAY}

\subsection*{9.5.1 Undrained analysis - normally consolidated clay}

To illustrate the use of the critical state model, first the 10 m layer is assumed to be one-dimensionally normally consolidated. An initial stress state of a typical point is denoted by A in Fig. 9.15. The point A lies on the \(K_{\mathrm{nc}}\) line as well as on the yield locus.


Fig. 9.15 - In situ stress state for one-dimensionally normally consolidated soil
The principal difference from the earlier elastic analysis is the specification of initial stresses. In an elastic analysis the initial stresses do not affect the results in any way and hence usually are taken as zero. If one considers a point at a depth of 10 m and taking the unit weight of saturated soil and water as 20 and 10 \(\mathrm{kN} / \mathrm{m}^{3}\) respectively,
\[
\sigma_{\mathrm{v}}=20 \times 10=200 \mathrm{kPa}, \quad u_{0}=10 \times 10 \mathrm{kPa}, \quad \sigma_{\mathrm{v}}^{\prime}=100 \mathrm{kPa}
\]

The value of \(K_{\mathrm{nc}}\) which is needed for the calculation of \(\sigma_{\mathrm{h}}^{\prime}\) is calculated from the following expression due to Jaky (1944):
\[
\begin{equation*}
K_{\mathrm{nc}}=1-\sin \left(\phi^{\prime}\right) \tag{5.11bis}
\end{equation*}
\]
where \(\phi^{\prime}\) is calculated from the equation (c.f. eg. (5.8))
\[
\begin{equation*}
\sin \left(\phi^{\prime}\right)=\frac{3 M}{6+M} \tag{9.2}
\end{equation*}
\]

The Cam-clay parameter M was taken as 0.888 , which gave \(K_{\mathrm{nc}}=0.613\). This in turn gave \(\sigma_{\mathrm{h}}^{\prime}=61.3 \mathrm{kPa}\). This gives
\[
\begin{aligned}
q & =100-61.3=38.7 \mathrm{kPa} \\
p^{\prime} & =(100+2 \times 61.3) / 3=74.2 \mathrm{kPa}
\end{aligned}
\]

The size of the yield locus (i.e. \(p_{\mathrm{c}}^{\prime}\) ) is calculated from the expression of the Camclay yield locus, since the stress state lies on the surface.
\[
\begin{equation*}
q=\mathrm{M} p^{\prime} \ln \left(p_{\mathrm{c}}^{\prime} / p^{\prime}\right) \tag{9.3}
\end{equation*}
\]

Substituting the above values gives \(p_{\mathrm{c}}^{\prime}=133.5\). All the stresses are equal to zer along the surface, and the variation is linear with depth.

The other Cam-clay parameters were chosen to be
\[
\kappa=0.062, \quad \lambda=0.161 ; \quad \Gamma=2.759 .
\]

The part of the input data different from that for the linear elastic analysis is given in Fig. 9.16. Note that the displacement boundary conditions are specified along with the initial stresses.

```

R [: 5: 21 30 0
T2 :lllllll
U
U \

```

Fig. 9.16 - Input data for undrained analysis (normally consolidated - Cam-clay)
Small load steps of 0.2 kPa are chosen for the first 5 increments. As soon as any load is applied, plastic yielding takes place. Then the loads are increased at the rate of 1 kPa per increment up to 16 kPa . A further 10 increments of 0.5 kPa are finally applied. The central settlement is plotted against the vertical pressure in Fig. 9.17. Large settlements take place which increase fairly steadily as more load is applied. Fig. 9.18 shows the region approaching the critical state.


Fig. 9.17 - Comparison of pressure curves for different soil models


Region approachin Region appro
critical state

Fig. 9.18 - Region approaching critical state for normally consolidation soil

\subsection*{9.5.2 Undrained analysis - over-consolidated clay}

The analysis conducted above is perhaps a little unrealistic. The strength is zero at the surface and increases linearly with depth. According to the theoretical analysis of Davis and Booker (1973) a rigid perfectly-plastic solid with this strength distribution will support only very small loads. From a practical point of view one would not expect to be able to put much load on such an extremely soft deposit. In real situations, attempts will be made to either lower the water table or pre-consolidate by applying dead loads. It is perhaps more realistic to consider an over-consolidated clay. The initial stress state, where the clay layer has been subjected to a vertical pressure of 50 kPa which was subsequently removed, is considered. The OCR at a depth of \(h\) metres is then given by
\[
\begin{equation*}
\mathrm{OCR}=\frac{50+\gamma^{\prime} h}{\gamma^{\prime} h} \tag{9.4}
\end{equation*}
\]

The OCR at a depth of 10 m is then \(=(50+10 \times 10) / 100=1.5\). A number of empirical relationships have been proposed for the relationship between \(K_{0}\) and OCR (Wroth, 1975 ; Parry, 1982). The procedure by Wroth (1975) was discussed in section 5.5 .3 and his equation for lightly over-consolidated clays is adopted here. The top 1 m is heavily over-consolidated and a linear variation is assumed for \(\sigma_{\mathrm{h}}^{\prime}\). The distributions of \(\sigma_{\mathrm{h}}^{\prime}\) and \(\sigma_{\mathrm{v}}^{\prime}\) are shown in Fig. 9.19. The passive failure line is also indicated in that figure.

The calculation of the size of yield locus is as in the previous analysis but using the maximum stresses experienced. For example, considering the stress state at the base of the layer, the maximum vertical effective stress is 150 kPa . The horizontal effective stress is 92 kPa .


Fig. 9.19 - In situ stress distribution in analysis
\[
\begin{aligned}
q & =150-92=58 \\
p^{\prime} & =(150+2 \times 92) / 3=111.3
\end{aligned}
\]

Using the Cam-clay yield locus, \(p_{\mathrm{c}}^{\prime}=200.25\). For the surface, \(\sigma_{\mathrm{vm}}^{\prime}=50 \mathrm{kPa}\) and \(\sigma_{\mathrm{hm}}^{\prime}=30.7\). This gives a value of 66.75 for \(p_{\mathrm{c}}^{\prime}\). Because the horizontal effective stress distribution is approximated to be a bilinear curve, only three in situ nodes are needed to define it. The input data are shown in Fig. 9.20.

The initial response is elastic. Since the layer is over-consolidated and the test paths are undrained (i.e. vertical within the yield locus until yielding takes place), quite large load steps can be applied.

The initial yielding takes place around 40 kPa . In fact a single load increment of 40 kPa could have been applied. At the onset of yielding, small load steps are required. Increments of 1 kPa are sufficiently small enough under these circumstances. The softening again leads to a large settlement. The load-settlement curve is shown in Fig. 9.17. Even though the first yielding takes place around 40 kPa it is not until about 55 kPa that any deviation from the elastic response is noticeable. Beyond 65 kPa , significant yielding/softening takes place, which is accompanied by large settlements. Fig. 9.21 shows the yielding zones at different stages of the loading.

\section*{reonrd}
a i circular load on o.c. cam-clay *** undrained
. . . . . . . . . . . . .
\begin{tabular}{l|lllllllll}
L 1 & 1 & 1 & 1 & 5 & 1 & 41 & 0 & 0 & 1
\end{tabular}
\(\begin{array}{l:llllllll}\mathrm{L} 2 & 0 & 0 & 6 & 18 & 771 & 787 & 5 & 30\end{array}\)
\(\begin{array}{l:lllllllllllll}\mathrm{M} & 1 & 1 & 4 & 0.062 & 0.161 & 1.759 & 0.888 & 0.25 & 0 . & 100 . & 20 . & 0 . & 0 .\end{array}\)
\(\begin{array}{l:lllllllll}\text { P1 } & 1 & 0 . & 75.0 & 100.0 & 75.0 & 0 . & 100 . & 0 . & 201.0\end{array}\)
\begin{tabular}{l:rrrrrrrrr} 
P1 & 2 & 9. & 19.9 & 10. & 19.9 & 0. & 100. & 0. & 201.0 \\
P1 & 3 & 10. & 0. & 0. & 0. & 0. & 0 & 0 & 10. \\
\hline
\end{tabular}
..................
\(\begin{array}{l:llllllllllll}R & 1 & 1 & 1 & 0 & -2 & 0 & 0 & 222 & 0 & 0.0 & 0 & 0.0\end{array}\)
\(\begin{array}{l:rrrrrrrrrr}\mathrm{v} & 10 & 6 & 12 & 0.0 & 40.0 & 0.0 & 40.0 & 0.0 & 40.0 \\ \mathrm{v} & 20 & 12 & 18 & 0.0 & 40.0 & 0.0 & 40.0 & 0.0 & 40.0\end{array}\)
\(\checkmark \quad \begin{array}{llllllllll}20 & 12 & 18 & 0.0 & 40.0 & 0.0 & 40.0 & 0.0 & 40.0\end{array}\)
\(\begin{array}{lllllllllllll}2 & 2 & 11 & 0 & -2 & 0 & 0 & 0 & 1 & 0.0 & 0 & 0.0\end{array}\)
\begin{tabular}{l|llllllllll}
12 & 112 & 12 & 12 & 12 & 102 & 12 & 102 & 12 & 102 & 222
\end{tabular}
\(\begin{array}{l:lllllllll}u & 10 & 12 & 12 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0 \\ \mathbf{u} & 20 & 12 & 18 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
\(\begin{array}{l:lllllllllll}R & 3 & 12 & 21 & 0 & -2 & 0 & 0 & 0 & 1 & 0.0 & 0\end{array} 0.0\)
\(\begin{array}{l:llllllllll}\text { T2 } & 112 & 12 & 12 & 12 & 102 & 12 & 102 & 12 & 102 & 222\end{array}\)
\(\begin{array}{llllllllll}10 & 6 & 12 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
\(\begin{array}{llllllllll}20 & 12 & 18 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
\(\begin{array}{l:llllllllllll}R & 4 & 22 & 31 & 0 & -2 & 0 & 0 & 0 & 1 & 0.0 & 0 & 0.0\end{array}\)
\(\begin{array}{l:llllllllll}\mathrm{T} & 112 & 12 & 12 & 12 & 102 & 12 & 102 & 12 & 102 & 222\end{array}\)
\(\begin{array}{lllllllllll}10 & 6 & 12 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
: \begin{tabular}{lllllllllll}
20 & 12 & 18 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0 \\
\hline
\end{tabular}
: \(\begin{array}{lllllllllllll}5 & 32 & 41 & 0 & -2 & 0 & 0 & 0 & 1 & 0.0 & 0 & 0.0\end{array}\)
\(\begin{array}{l:llllllllll}2 & 112 & 12 & 12 & 12 & 102 & 12 & 102 & 12 & 102 & 222\end{array}\)
\(\begin{array}{l:lrllllllll}u & 10 & 6 & 12 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
\(\begin{array}{lllllll}10.0 & 0.0 & 10.0 & 0.0 & 10.0 & 0.0 & 10.0\end{array}\)
Fig. 9.20 - Input data for undrained analysis (over-consolidated - Cam-clay)


Fig. 9.21(a) - Zone of yielding after 61 increments ( 62 kPa ) (Cam-clay, over-

\% \% m Critical state
\(\because \because\) Softening

Fig. 9.21 (b) - Zone approaching critical state after 80 increments ( 81 kPa vertical pressure) (Cam-clay, over-consolidated, undrained)

The stress paths for element centroids 16 and 19 are shown in Fig. 9.22. The effective stress paths are vertically upwards as predicted by theory. There is no change in \(p^{\prime}\) until yielding.

\subsection*{9.6 DRAINED ANALYSIS - MODIFIED CAM-CLAY}

In order to demonstrate a drained analysis, the modified Cam-clay (MCC) model is used. The stress history of over-consolidation is assumed to be the same as in the previous example. However, because of the difference in the yield locus the values of \(p_{\mathrm{c}}^{\prime}\) will be different.

The Cam-clay parameters are assumed to be the same as in the previous analysis except for the parameter \(\Gamma\). For the Cam-clay model, \(\Gamma\) was taken as 2.759 and this gives a value of 2.858 for \(N\). By assuming that both yield locii meet at the isotropic consolidation line the value of \(\Gamma\) is calculated as follows:
\[
\begin{equation*}
\Gamma=N-(\lambda-\kappa) \times \ln (2) \tag{9.5}
\end{equation*}
\]

This yields a value of 2.789 for the MCC model.
A total load of 40 kPa was applied over the first 10 increments (Fig. 9.23). The initial response is elastic. The load-displacement curve is shown in Fig. 9.17. Even though the first yielding does not take place until about 40 kPa the response is curved upward. This is because of the increase in \(p^{\prime}\) and since the effective bulk modulus is assumed to be
\[
\begin{equation*}
K^{\prime}=\frac{(1+e) p^{\prime}}{\kappa} \tag{9.6}
\end{equation*}
\]


Fig. 9.22 - Effective stress paths (Cam-clay, undrained)
record
a CIRCULAR LOAD ON O.C. MOD CAM-CLAY *** DRAINED
..............
\[
\begin{array}{l|llllllll}
\text { L1 } & 1 & 1 & 1 & 1 & 10 & 0 & 0 & 1 \\
\text { L2 } & 0 & 0 & 0 & 18 & 771 & 787 & 5 & 30
\end{array}
\]
\[
\begin{array}{l:lllllllllllll}
\mathrm{L} 12 & 1 & 1 & 1 & & & & & & & & & & \\
\mathrm{~L} 2 & & 0 & 0 & 0 & 18 & 771 & 787 & 5 & 30 \\
\mathrm{M} & 1 & 3 & 0.062 & 0.161 & 1.789 & 0.888 & 0.25 & 0 . & 0 . & 20 . & 0 . & 0 .
\end{array}
\]
\[
\begin{array}{l:llllllllll}
\mathrm{M} & 1 & 3 & 0.062 & 0.161 & 1.789 & 0.888 & 0.25 & 0 . & 0 \\
0 & 1 & 3 & & & & & & \\
\mathrm{P} 1 & 1 & 0 . & 75.0 & 100.0 & 75.0 & 0 . & 100 . & 0 . & 150.1 \\
\mathrm{P} 1 & 2 & 9 . & 19.9 & 10 . & 19.9 & 0 . & 10 . & 0 . & 60.0
\end{array}
\]
\[
\begin{array}{c|cccccccc}
P 1 & 2 & 9 . & 19.9 & 10 . & 19.9 & 0 . & 10 . & 0 . \\
P 1 & 3 & 10 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . \\
P 0.0 & 50.0
\end{array}
\]
\(\begin{array}{llllllllllllll}\mathrm{R} & \mathrm{I} & 1 & 1 & 10 & 0 & -2 & 0 & 0 & 0 & 1 & 0.0 & 0 & 0.0\end{array}\)
\(\begin{array}{l:llllllllll}\text { T2 } & 112 & 12 & 102 & 12 & 102 & 12 & 102 & 12 & 102 & 222\end{array}\)
\(\begin{array}{r:rrrrrrrrr}\mathrm{U} & 10 & 6 & 12 & 0.0 & 40.0 & 0.0 & 40.0 & 0.0 & 40.0 \\ \mathrm{U} & 20 & 12 & 18 & 0.0 & 40.0 & 0.0 & 40.0 & 0.0 & 40.0\end{array}\)

Fig. 9.23 - Input data for drained analysis (over-consolidated - MCC)
and there is a stiffening effect as the load builds up. Then a change of slope takes place around 50 kPa with increased settlements.

The zone of yielding is shown in Fig. 9.24.


Fig. 9.24 - Zone of yielding/hardening (modified Cam-clay, drained analysis)

\section*{97 EMBANKMENT CONSTRUCTION}

This problem is to illustrate the feature in the program to add elements. The details of the mesh, boundary conditions and properties of the elastic foundation are the same as in the drained analysis in section 9.4.1. The embank ment is modelled by 16 LST elements of type 2. This is also a drained analysis However, this is a plane strain analysis (NPLAX \(=0\) in record L1). The \(y\) axis is an axis of symmetry and the embankment is restrained in the \(x\) direction along this axis. The embankment is assigned a material zone number of 2 . However, it material properties are the same as the elastic layer. The bulk unit weight of the embankment is taken as \(20 \mathrm{kN} / \mathrm{m}^{3}\). The in situ stresses are again set to zero. To indicate that body forces under earth's gravity are acting, DGRAV \(=1\) in record R. The input data are shown in Fig. 9.25.



Fig. 9.25 - Input data for embankment construction analysis

Elements 81 to 96 which represent the embankment (Fig. 9.26) are removed at the beginning (record N ), and IPRIM \(=16\) in record L 1 , the number of elements being removed. These elements are added in the first increment block. Fig. 9.27 shows the surface settlement of the elastic layer.


Fig. 9.26 - Elements used in modelling embankment


If this was an analysis with a non-linear model the loading due to the weight of embankment in general would be applied in a number of increments. For example, if it is taken as 10 increments, only the following records need to be changed. record L1 to indicate there are 10 increments.

Record
\[
\begin{array}{l|llllllll}
\mathrm{L} \mid & 0 & 2 & 1 & 1 & 10 & 16 & 0 & 0
\end{array}
\]

\section*{Record \\ \begin{tabular}{l|llllllllllll}
\(R\) & 1 & 1 & 10 & 16 & 0 & 0 & 28 & 2 & 0 & 0. & 0 & 1.
\end{tabular}}

Then the loading will be applied in 10 equal increments.

\subsection*{9.8 EXCAVATION}

As in the case of the embankment construction in section 9.7 this example is to illustrate the feature to remove elements. The details of the mesh and elastic properties are the same as in that example. This analysis is an axisymmetric drained analysis.

The simulation of an excavation process is carried out by removing the following elements (see Fig. 9.28).
\(\begin{array}{llllllllllll}5 & 6 & 7 & 8 & 9 & 10 & 15 & 16 & 17 & 18 & 19 & 20\end{array}\)


Fig. 9.28 - Elements removed in the simulation of an excavation event

The in situ stresses have to be specified for this example. \(K_{0}\) is taken as 0.61 to calculate the initial stresses. To indicate that the in situ stresses were generated under earth's gravity, TGRAVI \(=1\) (record Q1). The input data are shown in Fig. 9.29.
```

record
A EXCavation in an elastic foundation
B [allllll
L1 :
L2 [:llllllllllllllllll
0 1 2
P1 1 1 0. 61. 100. 61. 0. 100. 0. 0.
P1 : 2 10. 0. % 0. 0. 0. 0. 0. 0. 0.
Q1 :
Q3 :
lllllllllll
Q3 [:lllllllllll
ll
l l:cclllllllllllllll
S :

```

The elements are removed in the first increment block in a single increment (ICHEL \(=12\) in record R ). The list of elements removed is specified in record S . Earth's gravity is already acting at the in situ stage and hence DGRAV \(=0\). As explained in section 9.7 the loads due to the excavation could have been applied over a number of increments. The displacements around the excavation are shown in Fig. 9.30.


Fig. 9.30 - Displacements around an excavation

\subsection*{9.9 UNDRAINED TRIAXIAL TEST}

Fig. 9.31 shows the mesh, which consists of 2 CuSt elements (type 6). Because stress conditions are uniform, arbitary dimensions are assumed. The use of two LST elements (element type 2 ) would probably be adequate for this analysis, but CuST elements are used (element type 6) to demonstrate this higher-order element (which is often to be preferred for axisymmetric analysis (see section 9.2)). There are four vertex nodes in the mesh.

The soil sample is isotropically consolidated to 200 kPa and then isotropically unloaded to a mean normal stress of 150 kPa . A standard undrained compression test is then carried out. The Cam-clay parameters selected for the soil are as follows:
\[
\lambda=0.30, \quad \kappa=0.05, \quad M=1.0, \quad \Gamma-1=2.953, \quad \nu^{\prime}=0.3 .
\]

As this is an undrained analysis, the bulk modulus of water is required to complete the data on material properties.

Effective bulk modulus of soil \(=\frac{(1+e) p^{\prime}}{\kappa}\).
\[
\begin{aligned}
K^{\prime} & =\frac{(1+1.5517) 150}{0.05} \frac{1}{2} \\
& =7655 \mathrm{kPa}
\end{aligned}
\]


In general, the bulk modulus of water is taken as \(100 K^{\prime}\left(7.655 \times 10^{5} \mathrm{kPa}\right)\). In the analysis presented here, \(\alpha\) is taken as 65 , which gives a value of \(5.0 \times 10^{5}\) kPa for the bulk modulus of water. More than 50 load increments are recommended for a finite element analysis which simulates a triaxial test. The purpose of the example presented here is to demonstrate the capabilities of the program. Therefore only six load increments are used for illustrative purposes. A strain-controlled test is considered here with \(0.5 \%\) axial strain in each increment, leading to a total axial strain of \(3 \%\).

AB is restricted to move horizontally and AC is restricted to move vertically. \(C D\) is displaced vertically downwards to simulate a strain-controlled test. Different output options are specified in each increment.

The results of the analysis are plotted in \(q: \epsilon_{\mathrm{a}}, u: \epsilon_{\mathrm{a}}\) and \(q: p^{\prime}\) space (Fig. 9.32). These are compared with the theoretical solution and also with an analysis using a large number of increments. These differences between theory and predictions are due to the large increment size which was used solely for illustrative purposes. During the second increment the yield ratio (YR) is on average about 1.12 , i.e. the yield locus has grown in size by \(12 \%\). Stricter control on YR is recommended so that the change in size of the yield locus is not more than \(1 \%\) (i.e. YR 1.01 or 0.99 ). These results emphasise the importance in selecting the
size of load increment: as shown here, large load increments may lead to erroneous results. The input data to the program are given in Fig. 9.33.




Fig. 9.32 - Comparison of theoretical and finite element results

\subsection*{9.10 INTERPRETATION OF ANALYSES USING CAM-CLAY}

To make the interpretation of the results of analyses easier, the stress state of each integration point is assigned a number by CRISP. This indicates whether yielding is taking place and if so, whether the soil is hardening or softening. The different numerical codes are illustrated in Fig. 9.33(a).

Also of interest to the analyst is the amount by which the yield locus is expanding or contracting when yielding is taking place. This information is given by the yield ratio (YR) parameter which appears in the printed output:
\[
\mathrm{YR}=\frac{p_{\mathrm{y}}^{\prime}}{p_{\mathrm{co}}^{\prime}}
\]
where \(p_{\mathrm{co}}^{\prime}\) is the pre-consolidation pressure at the start of the load increment and \(p_{y}^{\prime}\) is the pre-consolidation pressure at the end of the load increment (assuming that the sample has yielded).

If the soil is yielding and hardening then values of YR slightly greater than one will be seen. Values of YR less than one mean that either the soil is behaving elastically or the soil is yielding and softening. Fig. 9.33(b) illustrates some of the different possibilities where the initial yield locus always corresponds to \(p_{\mathrm{co}}^{\prime}\). Soil in initial states Bl and C 1 yields (and hardens) to points B 2 and C 2 . Although C 1 is initially elastic and B 1 is already yielding, both stress changes lead to the same value of \(Y R\left(=p_{y B}^{\prime} / p_{C o}^{\prime}\right)\). Soil which remains elastic (e.g. A1 to A2 in Fig. 9.33(b)) has a YR which is calculated by constructing a fictitious yield locus through the current stress point to give the \(p_{y}^{\prime}\) value \(\left(\mathrm{YR}=p_{\mathrm{yA}}^{\prime} / p_{\mathrm{co}}^{\prime}\right)\).
Examples of the use of the critical state models can be found in a number of publications. For example Mair et al. (1981) and Seneviratne \& Gunn (1985) compare finite element predictions with tests on model tunnels. Bassett et al. (1981) and Almeida et al. (1986)) compare data from centrifuged model embankments with finite element analyses. These latter analyses clearly demonstrate how the strengthening of a clay foundation can be explained by a finite element model which combines a critical state soil model with consolidation following the stages of construction. In analyses such as these the basic mode of behaviour of different points in the soil mass can first be traced by examining values of \(\eta / M, Y R\) and the numerical codes as the analysis progresses. Stress paths (i.e. \(p^{\prime}, q\) plots) of interesting points are then drawn. At present this is done by hand but (we hope) it will soon be an option in postprocessing programs.
```

* undrained triaxial test * modified cam-clay *
4
0}0
0}0
1. 0.
1. 1.
6
1
llllllllllll
1.0}0.30065.0000
0. 150. 150. 150. 0. 0. 0. 200
llllllllll
2 2 3 0. 150. 0. 150. 0. 150. 0. 150. 0. 150.
llllllllllllll

```

```

 2
 1221 1211 121 1112 121 1222. 0 0
2}\begin{array}{llllllllllll}{4}\&{3}\&{2}\&{1}\&{-0.03}\&{-0.03}\&{-0.03}\&{-0.03}\&{-0.03}

```

Fig. 9.33 - Input data for undrained triaxial test - MCC

\section*{Appendix A: Input specification}

\begin{abstract}
A. 1 DATA FORMAT

The data for the program are free format and the particular data items must appear in the correct order on a data record. The term 'record' describes the data which would be typed in via a computer terminal and occupies one line of a computer disk file (the normal method of preparation) or punched card. Unless specified otherwise it should be assumed that one record of data is represented by a single line of input or a punched card. The data items are separated by one or more spaces. For the sake of clarity, users should use at least two spaces. In fact, the data specified in a 'record', for example record D, could be spread over any number of lines, the only restriction being that they should be in the correct order.

For example, let the input for data record D be
\end{abstract}
\[
\begin{array}{llllllllll}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}
\]

This could have been input by
\[
\begin{array}{lllll}
\text { line 1 } & 0 & 0 & 1 & 0 \\
\text { line 2 } & 1 & 0 & 1 & \\
\text { line 3 } & 1 & 1 & 0 & 0
\end{array}
\]

However, this usage is recommended only when it is absolutely necessary, because checking the input data for errors is made easier if each record of data is confined to a single line of input.

Data items are indicated below by mnemonic names, i.e. names which suggest the data item required by the program. The FORTRAN naming convention is used: names beginning with the letters \(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}\) and N show that the program is expecting an INTEGER data item, whereas names beginning with any other letter show that the program is expecting a REAL data item INTEGER data items must not contain a decimal point, but REAL data items may optionally do so. REAL data items may be entered in the FORTRAN exponent format if desired, i.e. 0.0011 may be entered as \(1.1 \mathrm{E}-3\). Individual data items must not contain spaces.

\section*{A. 2 INPUT DATA}

In this section, \(\dagger\) indicates extra explanation in section 9.2
\({ }^{\dagger}\) Record A (one only)

TITLE
(up to 80 characters)

TITLE - title for the analysis
\({ }^{\dagger}\) Record B (one only)

\section*{NVTX NEL MXNDV MXTYP NDIM IPLOT}

\section*{NVTX - number of vertex nodes in the mesh}

NEL - number of elements in the mesh
MXNDV - maximum number of vertex nodes in any element
MXTYP - element type with most number of total nodes (per element) in mesh
2 - linear strain triangle (LST) with displacements unknown
3 - linear strain triangle (LST) with displacements and excess pore pressures unknown (linear variation in pore pressure) 6 - cubic strain triangle (CuST) with displacements unknown
7 - cubic strain triangle (CuST) with displacements and excess pore pressures unknown (cubic variation in pore pressure)
NDIM
- number of dimensions to problem

2 - two-dimensional problem
IPLOT - plotting option parameter with the following possible values 0 - no plotting
1 - unnumbered mesh
2 - mesh and vertex node numbers
3 - mesh and midside node numbers

4 - mesh and all node numbers
5 - mesh and element numbers
6 - mesh, vertex numbers and element numbers
7 - mesh, midside numbers and element numbers
8 - mesh and all numbers
\({ }^{\dagger}\) Record C (one only)

\section*{NUMAX MUMAX}

NUMAX \({ }^{\ddagger}\) - maximum value of user vertex node number
MUMAX \({ }^{\ddagger}\) - maximum value of user element number
\(\dagger\) Record D (one only)
ID1 ID2 ID3
ID10

IDl ...ID10 - debugging option. To print out various arrays in geometry part of program, when testing the program.
0 - no printout
1 - list of arrays printed are given below: if set to 1 , the following are printed:
ID1 - print NCONN after exit from routine CONECT which reads input data of list of nodes connected to each element (routine MARKZ)
ID2 - print ITAB after co-ordinates of all displacement nodes along elemen sides have been calculated (routine MIDSID)
ID3 - print IFR after all variables have been allocated places in FRONT (routine SFWZ)
ID4 - print NDEST after all variables have been allocated places in FRONT (routine SFWZ)
ID5 - print NCONN, MREL, NRELVV after all vertex node co-ordinates and element-nodal connectivity have been read (routine CONECT)
ID6 - print MFRN (optimum frontal order of elements specified by the user); only relevant if IRNFR \(=1\) (routine CONECT)
ID7 - print NCONN, MREL, MRELVV, NREL, NRELVV, LTYP, MAT, NQ after all nodes have been numbered and co-ordinates calculated (routine MARKZ)
\(\mp\) Use of 0 is only applicable if user node and element numbers begin with 1 and there are no gaps in the numbering

ID8 - print contents of array G (both INTEGER and REAL parts are printed separately - routine MAST)
ID9 - print out INTEGER arrays which have been shifted (routine SHFTIB)
ID10 - print NQ and NW (routine GPOUT)
in order to avoid lots of output, all the values must be set to zero for normal runs (this option is used only when debugging the program)
\({ }^{\dagger}\) Record E (one only)

> NSDZ NSPZ NDCUR NPCUR

These four parameters are only relevant if the element sides are curved and the user intends to specify the co-ordinates of nodes along these sides; otherwise (default option) all four variables must be set to 0 .
NSDZ - Number of nodes along element Sides excluding end nodes (Displacement nodes)
NSPZ - Number of nodes along element Sides excluding end nodes (excess Pore pressure nodes)
NDCUR - Number of CURved sides (Displacement nodes)
NPCUR - Number of CURved sides (Pore pressure nodes)
\({ }^{\dagger}\) Record F (NVTX records)
```

NODE X Y

```

NODE - vertex node number
\(\mathrm{X} \quad-x\) co-ordinate of node
\(\mathrm{Y} \quad-y\) co-ordinate of node

\section*{\({ }^{\dagger}\) Record G1 (one only)}

\section*{IRNFR}

IRNFR - option to specify separate list of optimum frontal numbering of elements
1 - read separate list (see record G2)
2 - use the sequence in which elements are read (see record H )
\({ }^{\dagger}\) Record G2 - only included if IRNFR \(=1\) in record G1
\[
\operatorname{MFRU}(1) \quad \operatorname{MFRU}(2) \quad . . . . . . . . . . \text {. . MFRU(NEL) }
\]
\(\operatorname{MFRU}(1)\)... MFRU(NEL) - optimum frontal numbering of elements
\({ }^{\dagger}\) Record H (NEL records)
KEL ITYP IMAT N1 N2 N3

\section*{KEL - element number}

ITYP - element type number
\[
\begin{array}{ll}
2-6 \text {-noded LST } & \text { (2-D) } \\
3-6 \text {-noded LST } & \text { (2-D consolidation) } \\
6-15 \text {-noded CuST } & \text { (2-D) } \\
7-22 \text {-noded CuST } & \text { (2-D consolidation) }
\end{array}
\]

IMAT - material zone number in the range 1 to 10
N1, N2, N3 - vertex node numbers listed in anti-clockwise order
\({ }^{\dagger}\) Record I (NDCUR records - only included if NDCUR \(>0\) )
\[
\begin{array}{llllllll}
\mathrm{MU} & \mathrm{ND} 1 & \mathrm{ND} 2 & \mathrm{X} 1 & \mathrm{Y} 1 & \mathrm{X} 2 & \mathrm{Y} 2 & \ldots . .
\end{array}
\]

MU - element number

ND1,ND2 -- nodes at either end of element side
X1,Y1
\(\mathrm{X} 2, \mathrm{Y} 2(\) - nodal co-ordinates of curved element side for displacement nodes
\(\cdots\)... \(\quad\) NSDZ (excluding end nodes)
XN,YN
\({ }^{\dagger}\) Record J (NPCUR records - only included if NPCUR \(>0\) ) (for consolidation elements only \()^{\ddagger}\)
\[
M \mathrm{ND} 1 \quad \mathrm{ND} 2 \mathrm{X} 1 \quad \mathrm{Y} 1 \quad \mathrm{X} 2 \quad \mathrm{Y} 2 \ldots \ldots \mathrm{XN} \quad \mathrm{YN}
\]
MU - element number

ND1,ND2 - nodes at either end of element side
\(\mathrm{X} 1, \mathrm{Y} 1\)
X2,Y2 - nodal co-ordinates of curved element side for pore pressure nodes
\(\cdots\) ( \(\quad\) NSPZ (excluding end nodes)
XN YN
\(\ddagger\) Not required for element type 3 .

\section*{\({ }^{\dagger}\) Record K (one only)}

\section*{IDCHK}

IDCHK - option to stop analysis at different stages
0 - run complete analysis
1 - run geometry part of the program (enables the mesh to be plotted and checked)
2 - run geometry part of the program, read in situ stresses and boundary conditions and carry out an equilibrium check
\({ }^{\dagger}\) Record L1 (one only)

NPLAX NMAT NOIB INCS INCF IPRIM IUPD ISR

NPLAX - plane strain/axisymmetric analysis option
0 - plane strain
1 - axisymmetric
NMAT - number of material zones
NOIB - total number of increment blocks
INCS - increment number at start of analysis
INCF - increment number at finish of analysis
IPRIM - number of elements to be removed to form primary mesh
IUPD - geometry updating option
0 - co-ordinates are not updated after each increment
1 - co-ordinates are updated after each increment
ISR - stop-restart option
0 - stop-restart facility is not used
1 - limited stop-restart option (analysis can only be restarted and continued from where the previous run was stopped).
Conveniently used with a disk file
2 - full stop-restart option making use of two magnetic tapes. Analysis can be restarted from any increment in the past
\({ }^{\dagger}\) Record L2 (one only)

IBC IRAC NVOS NVOF NMOS NMOF NELOS NELOF
IBC - boundary conditons output option
0 - boundary conditions are not printed
1 - boundary conditions are printed
IRAC - reactions output option
0 - reactions are not printed
1 - reactions are printed

NVOS - starting vertex node number for output \({ }^{\ddagger}\)
NVOF - finishing vertex node number of output \({ }^{\ddagger}\)
NMOS - starting midside node number for output \(\ddagger\)
NMOF - finishing midside node number for output \({ }^{\ddagger}\)
NELOS - starting element number for output \({ }^{\ddagger}\)
NELOF - finishing element number for output \({ }^{\ddagger}\)
\({ }^{\dagger}\) Record M (NMAT records)
\[
\text { MAT NTY } \quad P(1) \quad P(2) \quad \ldots . \quad P(10)
\]

MAT - material zone number - all elements given the same number in record H will have the following properties (maximum of 10 different zones)
NTY - material property type as in the table below
1 - elastic, anisotropic
2 - elastic, linear variation with depth
3 - modified Cam-clay
4 - Cam-clay
\begin{tabular}{llllll}
\hline \begin{tabular}{l} 
NTY \\
Property
\end{tabular} & 1 & 2 & 3 & 4 & 5 \\
\hline \(\mathrm{P}(1)\) & \(E_{\mathrm{h}}\) & \(E_{0}\) & \(\kappa\) & \(\kappa\) \\
\(\mathrm{P}(2)\) & \(E_{\mathrm{V}}\) & \(y_{0}\) & \(\lambda\) & \(\lambda\) \\
\(\mathrm{P}(3)\) & \(\nu_{\mathrm{hh}}\) & \(m\) & \(\Gamma-1\) & \(\Gamma-1\) \\
\(\mathrm{P}(4)\) & \(\nu_{\mathrm{vh}}\) & \(\nu\) & M & M \\
\(\mathrm{P}(5)\) & \(G_{\mathrm{h} \nu}\) & 0 & \(G\) or \(\nu^{\prime}\) & \(G\) or \(\nu^{\prime}\) \\
\(\mathrm{P}(6)\) & 0 & 0 & 0 & 0 \\
\(\mathrm{P}(7)\) & \(\longleftarrow 0\) for drained, \(\alpha\) for undrained, \(\gamma_{\mathrm{w}}\) for consolidation \(\longrightarrow\) \\
\(\mathrm{P}(8)\) & \(\longleftarrow\) \\
\(\mathrm{P}(9)\) & \(\longleftarrow k_{x}\) for consolidation, 0 for drained or undrained \(\longrightarrow\) \\
\(\mathrm{P}(10)\) & \(\leftarrow k_{y}\) for consolidation, 0 for drained or undrained \(\longrightarrow\) \\
\hline
\end{tabular}
\(\ddagger\) This allows one to reduce the output and print out the results for nodes and element which are within a specified range. This option is applied on the output codes specified in record R .
\({ }^{\dagger}\) Record N - only included if IPRIM \(>0\)
JEL(1) JEL(2) ..... JEL(IPRIM)

JEL(1) etc. - list of element numbers to be removed to form mesh at start of analysis
\({ }^{\dagger}\) Record O (one only) - records O to Q3 are omitted for a restarted analysis using the stop-restart facility
\[
\mathrm{KT} \quad \mathrm{~N}
\]

KT - in situ stress option
0 - set in situ stresses to zero
1 - interpolate in situ stresses from a given set of nodes representing layers
2 - direct specification of in situ stresses at all integration points
NI - the number of in situ nodes \({ }^{\ddagger}\) (giving NI-1 in situ layers)
\({ }^{\dagger}\) Record P1 (NI records) - only included if \(\mathrm{KT}=1\)

IL YI \(\quad \mathrm{V}(1) \quad \mathrm{V}(2) \ldots \quad \mathrm{V}(7)\)
IL - in situ node number \({ }^{\S}\)
YI \(-y\) co-ordinate of in situ node
\(\mathrm{V}(1)-\sigma_{x}^{\prime}\)
\(\mathrm{V}(2)-\sigma_{y}^{\prime}\)
\(\mathrm{V}(3)-\sigma_{z}^{\prime}\)
\(\mathrm{V}(4)-\tau_{x y}\)
\(V(5)-u\)
\(V(6)-0\)
\(\mathrm{V}(7)-p_{\mathrm{c}}^{\prime}\) (zero, if not Cam-clay)
Record \(\mathbf{P} 2\) (only included if \(K T=2\) )
There are NEL sets of records P2 and P3 - one set for each element

MUS

\section*{MUS - element number}
\(\ddagger\) These in situ nodes are not to be confused with the nodes in the finite element mesh These in situ nodes serve as reference points for interpolating in situ stresses.
§ Records P1 must be input in ascending order of in situ node numbers. No gaps are allowed in the in situ node numbers.

Record P3 (NGP records - only included if KT \(=2)^{\ddagger}\)
\(\operatorname{VAR}(1) \ldots \operatorname{VAR}(7)-\) stress parameters at each integration point \(\left(\sigma_{x}^{\prime}, \sigma_{y}^{\prime}, \sigma_{z}^{\prime}\right.\), \(\tau_{x y}, u, e, p_{\mathrm{c}}\) ) where
\(e^{-}\)voids ratio
\(p_{\mathrm{c}}^{\prime}\) - pre-consolidation pressure
for all models other than the Cam-clays, \(e\) and \(p_{\mathrm{c}}^{\prime}\) must be set to zero

Record Q1 \({ }^{\S}\) (one only - omit if in situ stresses are set to zero, i.e. KT \(=0\), in record O)
```

NLODI NFXI TGRAVI

```

NLODI - number of element sides with pressure loading (which is in equilibrium with the in situ stresses)
NFXI - number of element sides with fixities in the mesh
TGRAVI - in situ gravity acceleration field \(-0,1\) or \(n\)

Record Q2§ (NLODI records - only included if NLODI \(>0\) )

- cubic strain triangle
see record \(U(b)\) for details
\(\ddagger\) NGP - the number of integration points and one line of data for each integration point \(=7\) (for LST element types 2, 3)
§ Records Q1, Q2 and Q3 are omitted if in situ stresses are all set to zero (i.e. \(\mathrm{KT}=0\) in record 0 )

Record Q \(^{\ddagger}\) (NFXI records - only included if NFXI \(>0\) )
\[
\begin{array}{llllllll}
\text { ML } & \text { ND1 } & \text { ND2 } & \text { IVAR } & \text { IFX } & 0 & 0 & 0
\end{array}
\]
- linear strain triangle
\(\begin{array}{llllllllll}\mathrm{ML} & \mathrm{ND} 1 & \mathrm{ND} 2 & \text { IVAR } & \mathrm{IFX} & 0 & 0 & 0 & 0 & 0\end{array}\)
- cubic strain triangle

ML - element number
\(\left.\begin{array}{l}\text { ND1 } \\ \text { ND2 }\end{array}\right\}\) - node numbers at the end of element side which is fixed
IVAR - the variable that is fixed
\(1-x\) displacement
\(2-y\) displacement
IFX - fixity code \(=1\)
Record \(R\) (one only, but the group of records \(R\) to \(V\) is repeated for each increment block, i.e. NOIB times)
\[
\begin{aligned}
& \text { IBNO INCA INCB ICHEL NLOD ILDF NFIX IOUT IOCD } \\
& \text { :DTIM, ITMF DGRAV }
\end{aligned}
\]

IBNO - increment block number
INCA - increment number at the start of the current increment block (INCA \(\geqslant\) INCS)
INCB - increment number at the end of the current increment block ( \(\mathrm{INCB} \leqslant \mathrm{INCF}\) )
ICHEL - number of elements to be added/removed for the current increment block
NLOD - number of incremental nodal loads or (if NLOD is negative) the number of element sides with pressure loading
ILDF - load ratios
0 - the loading is equally distributed over the INCB-INCA+1 increments
1 - read separate list of load ratios for each increment (record T1)
NFIX - number of element sides with prescribed value of the variable
IOUT - standard output for this increment block - a four-digit number abcd where (see also record L2)
\(\ddagger\) Records Q1, Q2 and Q3 are omitted if in situ stresses are all set to zero (i.e. \(\mathrm{KT}=0\) in record O ).
a - out-of-balance loads 0 - no out-of-balance loads
1 - out-of-balance loads at vertex nodes
2 - out-of-balance loads at all nodes
b - extra parameters for Cam-clay models only
0 - no output
1 - parameters at element centroids \({ }^{\ddagger}\)
2 - parameters at all integration points
c - option for general stresses
0 - no stresses printed
1 - stresses at element centroids \({ }^{\ddagger}\)
2 - stresses at all integration points
d - option for nodal displacements
0 - no displacements printed
1 - displacements at vertex nodes
2 - displacements at all nodes
IOCD - output option
0 - standard output given by IOUT for each increment in the increment block
1 - read separate list of output options for each increment (record T2)
DTIME - time increment for consolidation analysis
ITMF - time increments
0 - time increment DTIME is equally divided between all the increments in the increment block
1 - read separate list of time steps for each increment (record T3)
DGRAV - increment in gravity acceleration field
\(=(\Delta n-\) change in number of gravities \()\)
note: the number of increments in the increment block
NOINC ( \(=\) INCB - INCA +1 ) must not exceed 50.

Record S - only included if ICHEL>0
JEL(1) JEL(2) ... JEL(ICHEL)

JEL(1) etc. - list of element numbers which are added/removed in this increment block
\(\ddagger\) Centroid is the last integration point in the element (it is the 7 th in LST and the 16 th in CuST).

Record \(\mathrm{T} 1-\) only included if ILDF \(=1\)
\[
R(1) \quad R(2) \quad \ldots \quad R(N O I N C)
\]
\(R(1)\) etc. - the ratio of incremental loads to be applied in each increment
Record T2 - only included if IOCD \(=1\)
\[
\operatorname{IOPT}(1) \quad \operatorname{IOPT}(2) \quad \ldots \quad \operatorname{IOPT}(\mathrm{NOINC})
\]

IOPT(1) etc. - the output options for each increment
Record T3 - only included if ITMF = 1
\[
\operatorname{DTM}(1) \quad \text { DTM }(2) \quad \ldots \text { DTM (NOINC) }
\]

DTM(1) etc. - the time steps for each increment (these are not ratios)
\[
\text { where } \mathrm{NOINC}=\mathrm{INCB}-\mathrm{INCA}+1
\]
\(\dagger\) Record U (NLOD records)
(a) \(\mathrm{NLOD}>0\)
\[
\mathrm{N} \quad \mathrm{DFX} \quad \mathrm{DFY}
\]

N - node number
DFX - increment of \(x\) force
DFY - increment of \(y\) force
(b) \(\mathrm{NLOD}<0\)

- linear strain triangle

- cubic strain triangle
\begin{tabular}{ll} 
L & - element number \\
N1 & - node numbers at end of the loaded element side \\
N2 & - increment of shear stress at N1
\end{tabular}

S1 - increment of normal stress at N1
T3,T4,T5 - increment of shear stress at edge nodes 3, 4 and 5 (see Fig. A.1)
S3,S4,S5 - increment of normal stress at edge nodes 3, 4 and 5
T2 - increment of shear stress at N2
S2 - increment of normal stress at N2
sign convention for stresses:
shear stresses which act in an anti-clockwise direction about element centroid are positive. Normal stresses - compressive stresses are positive

Record V (NFIX records)
ML ND1 ND2 IVAR IFX V1 V3 V2
ML ND1 ND2 IVAR IFX V1 V3 V4 V5 V2
\[
\begin{array}{llllllll|}
\text { ML } & \text { ND1 } & \text { ND2 } & \text { IVAR } & \text { IFX } & \text { V1 } & \text { V2 } & 0 \tag{c}
\end{array}
\]
\[
\begin{array}{llllllllll}
\text { ML } & \text { ND1 } & \text { ND2 } & \text { IVAR } & \text { IFX } & \text { V1 } & \text { V3 } & \text { V4 } & \text { V2 } & 0 \tag{d}
\end{array}
\]

ML - element number
ND1,ND2 - node numbers at the end of fixed element side
IVAR - the variable that is prescribed
\(1-x\) displacement
\(2-y\) displacement
3 - excess pore pressure
IFX - fixity code
1 - incremental value of variable
2 - absolute value of excess pore pressure
V1, V2 - prescribed value at end nodes
V3, V4, V5 - prescribed values at nodes along element side (excluding end nodes)
(a) displacement fixity
linear strain triangle - element types 2 and 3 \(\operatorname{IVAR}=1\) or \(2 ; \mathrm{IFX}=1\)
(b) displacement fixity
cubic strain triangle - element types 6 and 7 \(\operatorname{IVAR}=1\) or \(2 ; \operatorname{IFX}=1\)
(c) excess pore pressure fixity
linear strain triangle - element type 3
\(\operatorname{IVAR}=3 ; \mathrm{IFX}=1\) or 2
(d) Excess pore pressure fixity
cubic strain triangle - element type 7
\(\operatorname{IVAR}=3 ; \operatorname{IFX}=1\) or 2


Fig. A. 1 - Displacement and pore pressure fixities
A. 3 DATA SUMMARY
\begin{tabular}{|c|c|c|c|c|}
\hline Record type & No. of records & Read in subroutine & Data & \\
\hline A & 1 & MAST & TITLE & \\
\hline B & 1 & MAST & NVTX NEL MXNDV & NDIM IPLOT \\
\hline C & 1 & MAST & NUMAX MUMAX & \\
\hline D & 1 & MARKZ & ID1 ID2 ID3 & ID10 \\
\hline E & 1 & MARKZ & NSDZ NSPZ NDCUR & NPCUR \\
\hline F & NVTX & RDCOD & NODE X Y & \\
\hline G1 & 1 & CONECT & IRNFR & \\
\hline G2 & - & CONECT & MFRU(1) MFRU(2) & MFRU(NEL) \\
\hline H & NEL & CONECT & KEL ITYP IMAT N1 & N2 N3 \\
\hline 1 & NDCUR & CUREDG & MU ND1 ND2 X1 Y1 & ... XN YN \\
\hline J & NPCUR & CUREDG & MU ND1 ND2 X1 Y1 & XN YN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Record type & No. of records & Read in subroutine & Data \\
\hline K & 1 & CPW & IDCHK \\
\hline L1 & 1 & RDPROP & NPLAX NMAT NOIB INCS INCF IPRIM IUPD ISR \\
\hline L2 & 1 & RDPROP & IBC IRAC NVOS NVOF NMOF NELOS NELOF \\
\hline M & NMAT & RDPROP & MAT NTY P(1) P(2) ... P(10) \\
\hline N & 1 & INSITU & JEL(1) JEL(2) ... JEL(IPRIM) \\
\hline O & 1 & INSITU & KT NI \\
\hline P1 & NI & RDSTRS & IL YI V(1) V(2) ... V(7) \\
\hline P2 & NEL & RDSTRS & MUS \\
\hline P3 & NGP*NEL & RDSTRS & VAR(1) VAR(2) ....... VAR(7) \\
\hline Q1 & 1 & INSITU & NLODI NFXI TGRAVI \\
\hline Q2 & NLODI & INSITU & \begin{tabular}{llllllllr} 
L & N1 & N2 & T1 & S1 & T3 & S3 & T2 & S2 \\
or N 1 & N 2 & T 1 & S 1 & T 3 & S 3 & T 4 & S 4 \\
T 5 & S 5 & T 2 & S 2 & & & &
\end{tabular} \\
\hline Q3 & NFXI & FIXX & ML ND1 ND2 IVAR IFX \(0 \quad 0 \quad 0\) or ML ND1 ND2 IVAR IFX 0 00 \\
\hline R & 1 & ANS & \begin{tabular}{llllr} 
IBNO & INCA & INCB & ICHEL & NLOD \\
ILDF & NFIX & IOUT & IOCD & DTIME \\
ITMF & DGRAV & &
\end{tabular} \\
\hline S & 1 & ANS & JEL(1) JEL(2) ... JEL(ICHEL) \\
\hline T1 & 1 & FACTOR & \(\mathrm{R}(1) \quad \mathrm{R}(2) \quad \ldots \mathrm{R}(\text { NOINC })^{\dagger}\) \\
\hline T2
T3 & 1 & \begin{tabular}{l}
FACTOR \\
FACTOR
\end{tabular} & \[
\begin{array}{llll}
\text { IOPT(1) } & \text { IOPT(2) } & \text { IOPT(NOINC) } & \\
\text { DTM(1) } & \text { DTM(2) } & \ldots & \text { DTIM(NOINC) }
\end{array}
\] \\
\hline U3 & NLOD & FACTOR & DTM (1)
NTM DT 2 ) \\
\hline & & & \begin{tabular}{llllllllll} 
or & L & N 1 & N 2 & T 1 & S 1 & T 3 & S 3 & T 2 & S 2 \\
or & L & N 1 & N 2 & T 1 & S 1 & T 3 & S 3 & T 4 & S 4 \\
T 5 & S 5 & T 2 & S 2 & & & & &
\end{tabular} \\
\hline V & NFIX & FIXX & ```
ML ND1 ND2 IVAR IFX V1 V3
V2
or ML ND1 ND2 IVAR IFX V1
    V3 V4 V5 V2
or ML ND1 ND2 IVAR IFX V1
        V2 0
or ML ND1 ND2 IVAR IFX V1
    V3 V4 V2 0
``` \\
\hline
\end{tabular}
\(\dagger\) NOINC \(=I N C B-I N C A+1\).
N.B. The group of records R to V is repeated NOIB times.

\section*{Appendix B: Mesh-plotting using GINO-F}

\section*{B. 1 INFORMATION WRITTEN TO PLOT DATA FILE}

The data written to the Plot Data (PD) file on unit 8 by CRISP provide all the information necessary to draw the mesh and number the nodes and elements. The contents of the PD file are different for different values of IPLOT (record B of input data). Therefore if different types of plot are required - for example an unnumbered mesh or mesh with only element numbers - then it would require two separate runs of CRISP with appropriate values for the parameter IPLOT. The mesh-plotting program only interprets the information written to the PD file and has no control over the different types of plot as available in CRISP.

The information written to the PD file has the following format:

\section*{NDIM}

CODMAX(ID), \(I D=1\), NDIM. \(\quad\) CODMIN(ID), \(I D=1\), NDIM.
followed by a number of records of the form
INT1 XYZ(ID), ID \(=1\), NDIM. \(\quad \operatorname{INT} 2\)

\section*{For two-dimensional problems, NDIM \(=2\)}

CODMAX and CODMIN contain the maximum and minimum values of the nodal co-ordinates. These define the extent of the mesh and are used in calculating a default scale for the plot.

XYZ(NDIM) is either the nodal co-ordinates or the element centroid co ordinates.
INT1 is a control code
If negative, indicates change of pen colour
-1 - Black. Used in drawing element sides and to plot vertex node numbers.
-2 - Red. Used to plot midside node numbers.
- 3 - Green. Used to plot element numbers.

If \(\mathrm{INT1}=11\) then a number is to be plotted.
If \(\operatorname{INTl}=3\) indicates MOVE the pen to the position XYZ(NDIM).
If \(\operatorname{INT} 1=1\) indicates DRAW to the position XYZ(NDIM).
If \(\operatorname{INT} 1=0\) indicates end of PD file.
INT2 is a node or an element number or a dummy integer
When INT1 is negative it indicates a change of pen colour. The rest of the record is then ignored.

When INT1 is either 1 or 3 the value \(\operatorname{INT2}\) is ignored, i.e. when drawing element sides.

When \(\operatorname{INT} 1=11\) then the number given by \(\operatorname{INT} 2\) is plotted at the position given by XYZ(NDIM)

Therefore two records are needed to draw an element side.
The first record will then contain \(\operatorname{INT1}=3\) with the co-ordinates of one end of the element side. The second record will contain INT1 \(=1\) with the coordinates of the other end of the element side.

The option to choose a scale and whether or not to rotate the plot in the plotter space is controlled by the input to the mesh-plotting program

\section*{B. 2 MESH-PLOTTING PROGRAM}

A listing of the program which makes use of the GINO-F routines and plots the mesh is given below. This program was used in the Cambridge University computer, an IBM 3081. Slight changes may be necessary to run it in other installations.

It reads the PD file from unit IRP (set to 1), which was created by CRISP. The following file containing control data is read from unit IR5 (set to 5). The control data consist of
record 1 ID1 - the debug flag. If set to 1, prints out the data in the PD file, This option is only used when something goes wrong and no plot is produced. The normal option is to set to 0 .
record 2 IROTPL - option to rotate plot. If set to 1 , the plot is rotated through \(90^{\circ}\). This option can be used to make better use of the plotting region, i.e. if the mesh has \(y\) dimension greater than \(x\) dimension. Otherwise set to 0 .

The plotting region requested is \(300 \times 250 \mathrm{~mm}\). This can easily be altered. The mesh itself is plotted within a region of \(250 \times 200 \mathrm{~mm}\). This leaves a gap of 25 mm all around the mesh to allow for node numbers to be plotted.

Routine INTPLT initialises the plotter and deals with the positioning and rotation of the plot.

Routine WIDTH calculates the number of digits in the element or node number.

Note that the plotting options (vertex node numbers, midside node numbers and element numbers) have been specified using IPLOT in record B of input data to CRISP. If a different type of plot is required (e.g. an unnumbered mesh) then CRISP has to be re-run with the appropriate value for IPLOT in record B.

\section*{CHARACTER*80 ITITLE}

\section*{DIMENSION CMIN(2), CMAX(2), CD(2)}

C PROGRAM TO PLOT FINITE ELEMENT MESH FROM CRISP PROGRAM USING GINO-F GRAPHICS
IRP - FILE CONTAINING PLOT DATA
IR5 - FILE CONTAINING CONTROL DATA FOR PLOT
C IW6 - OUTPUT FILE (TO PRINTER)
C***
PIBY2 \(=2 .{ }^{*} \operatorname{ATAN}(1\).
PIBY6 \(=\) PIBY2
PIBY6=PIBY2/3.
THETA \(=(5.16)\).\(* PIBY6\)
IRP \(=1\)
IR5 \(=5\)
IW6 \(=6\)
c
- READ (IRP)ITITLE

READ (IRP) NDIM
WRITE(IW6,909)NDIM
909 FORMAT(//1X,6HNDIM \(=, 14 /\))
\(\operatorname{READ}(I R P)(C M A X(I D), I D=1\), NDIM),\((C M I N(I D), I D=1, N D I M)\)
WRITE(IW6,912)(CMAX(ID),ID \(=1\), NDIM), (CMIN(ID), ID \(=1\), NDIM)
912 FORMAT(/1X,15HPLOT DIMENSIONS/(6F8.1))
XW \(=\operatorname{CMAX}(1)-\operatorname{CMIN}(1)\)
C
WRITE (IW6, 950) XW, YW
950
WRITE(IW6,950)XW, YW
c
\(\mathrm{XLN}=\operatorname{CMIN}(1)\) YLN \(=\operatorname{CMIN}(2)\)
C
*** READ PLot control parameters

C RECORD 1- ID1 (DEBUG OPTION : PRINT INFO READ FROM PLOT DATA FILE) READ(IR5,*)ID1
WRITE(IW6,922)ID1
922 FORMAT(/10X, 15HDEBUG OPTION \(=\), I8/)
C \(\mathrm{C}^{*}\) R \(\mathrm{RECORD}^{2}\) IROTPL (IROTPL
C *** IROTPL (IF EQ 1) - ROTATE PLOT BY 90 DEGREES (AC DIRECTION) READ(IR5,*)IROTPL WRITE(IW6,930)IROTPL
930 FORMAT (//
1 10X,46HROTATION OF PLOT.

C *** DEFAULT SIZE OF PLOT IS \(250 \times 200\) MM
c** (THIS GIVES a 25 MM SPACE all around the mesh) LOTL=250.
c
IF(IROTPL.NE.1)GOTO 35
AW \(=X W\)
\(X W=Y W\)
C
35 SCALM=PLOTW/XW SCALY=PLOTL/YW
IF(SCALY.LT. SCALM)SCALM=SCALY
WRITE(IW6,940)SCALM
940 FORMAT (
1 10X,46HSCALE FOR PLOT... =,F9.3/)
CALL INTPLT(IW8, IROTPL, SCALM, XLN, YLN, PLOTL, PLOTW)
C *** READ PLOT INFO FROM FILE
10 READ (IRP) ICODE, (CD(ID),ID \(=1\),NDIM), N IF(ID1.EQ.0)GOTO 12
WRITE(IW6,910)ICODE, (CD(ID), ID \(=1\), NDIM),\(N\)
910 FORMAT(1X,I5,2F8.1,I8)
12 CONTINUE
IF(ICODE.EQ.0)GOTO 99
IF(ICODE.GT.0)GOTO 15
C *** IF ICODE IS NEGATIVE CHange Pen COLOUR
C*** SELECT PEN COLOUR
C *** IN GINO-F PEN COLOUR FOR GREEN IS 5 AND NOT 3 AS IN IBM 3081 ICODE \(=I A B S(I C O D E)\)
IF (ICODE.EQ.3)ICODE=5
CALL PENSEL(ICODE, IDUM, IDUM)
GOTO 10
C
15 IF (ICODE.GT. 10)GOTO 25
C *** DRAW ELEMENT SIDE
IPEN=ICODE-1
IF(IPEN.EQ.2)CALL MOVTO2(CD(1), CD(2))
IF(IPEN.EQ.0)CALL LINTO2(CD(1),CD(2))
GOTO 10
C *** PLOT NUMBER WITH OFFSET
C *** IF ICODE IS GT 10 - PLOT NUMBER
25 CALL MOVTO2(CD(1),CD(2))
CC CALL MOVBY2 (XCS, YCS \()\)
C *** PLOT NUMBER
CALL WIDTH(N,NW)

CaLL CHAINT(N,NW) GOTO 10
*** CLOSE STREAM, PACKAGE
99 CALL DEVEND
STOP
SUBROUTINE INTPLT(IW8, IROTPL, SCALM, XLN, YLN, PLOTL, PLOTW)
C***********************
C INITIALISE PLOTTER
C
C *** THE FOLLOWING STATEMENT IS FOR OTHER INSTALLATIONS,
\(C^{* * *}\) NOT REQUIRED IN IBM 3081
CC CALL HP7220
CC *** THL FOLLOWING STATEMENT IS FOR IBM 3081
CALL GINPLT
PLOTL \(=\) PLOTL +50
PLOTW=PLOTW+50.
CALL DEVPAP(PLOTL, PLOTW, 1)
C
CALL MOVTO2(0.,0.)
CALL UNITS (1.0)
C CHAHIG=2.5
CHAWID \(=1.5\)
C
IF (IROTPL.EQ.1)GOTO 20
CALL MOVTOZ(0.,10.)
CALL CHASIZ (CHAWID, CHAHIG)
CALL SCALE(SCALM)
2X=25./SCALM-XLN
CALL SHIFT2 (ZX,ZY)
RETURN
20 CONTINUE
CaLL CHAang (90.)
CALL MOVTO2(240.,10.)
CALL CHAARR (ITITLE, 20,4)
CALL CHASIZ (CHAWID, CHAHIG)
CALL SCALE(SCALM)
ZX \(=210 . /\) SCALM + YLN
CY=-(XLN-25./SCALM)
CALL ROTAT2(90.)
CALL MOVTO2(XLN, YLN)
RETURN
END
SUBROUTINE WIDTH(\(\mathrm{N}, \mathrm{NW}\))
C
\(I W=0\)
\(N C=N\)
C \(10 \mathrm{NC}=\mathrm{NC} / 10\) IW \(=\mathrm{IW}+1\)
IF(NC.GT.0)GOTO 10
NW=IW
RETURN
END

\section*{Appendix C: Explanations of error and warning messages}

\section*{ANS}
(a) ERROR IN INCR BLOCK NUMBER NA NB

The increment black numbers must be in sequence. The program has an internal counter and it expects the increment block number to be NB, but in the data input it has the number NA (probable user error).
(b) ERROR IN INCREMENT NUMBER INC1 INC2 (ROUTINE ANS)

When reading the control parameters for the current increment block the firs. and last increments are read as \(\mathrm{INC1}\) and \(\mathrm{INC2}\). \(\mathrm{INC1}\) must be in sequence (if this is not the first increment block in the analysis, INC1 must have the value next to the last increment in the previous block) and if it is not equal to the counter within the program, the above message is printed. The above message will also appear when INC2 \(<\) INC1.
(c) When the number of increments in a block exceeds the allocated 50 , the following message is printed:

INCREASE SIZE OF ARRAYS RINCC, DTM AND IOPT TO NH ALSO SET INCZ IN ROUTINE ANS
INCZ must be set equal to the actual number of increments (NH in this example) in addition to the array sizes being increased in routine ANS.

\section*{CUREDG}
(a) ***ERROR** EDGE CONTAINING NODES N1 N2 NOT FOUND

Each element side is given a unique code IHASH \((=10000 * \mathrm{I} 1+\mathrm{I} 2, \mathrm{I} 1\) and I 2 being the (program) node numbers at either end with \(\mathrm{I} 1<\mathrm{I} 2\)) when the program calculates the co-ordinates of the nodes along the side. This code is entered in the first column of array ITAB(LTAB,LDIM). When the user specifies the nodal co-ordinates along the curved element sides, as a first step the code for the element side is calculated and the above array is scanned to find it. If it is not found then the above message is printed (probable user error in specifying the nodes N 1 and N 2).
(b) ELEMENT M1 DOES NOT CONTAIN NODES N1 N2

When the user specifies the co-ordinates of nodes along curved element sides he/she identifies the element side by the element number and the nodes at either end of the side. When either or both these nodes (N 1 and N 2) are not found in element M1, this statement appears (probable user error).
(c) If errors of category (a) or (b) have been encountered, the program is stopped after the input data of nodal co-ordinates along curved sides have been read, with the following message.

PROGRAM TERMINATED IN ROUTINE CUREDG

\section*{DETJCB}

\section*{JACOBIAN R1 IS NEGATIVE. ELEMENT M1 INT. POINT N (ROUTINE DETJCB)}

When the determinant of the Jacobian matrix is negative this message is printed. The value of the determinant is R1. This is followed by a code to indicate at what stage of the analysis this error occurred.

\section*{DETMIN}

JACOBIAN Rl OF ELEMENT M INTEGRATION POINT N IS NEGATIVE (ROUTINE DETMIN)
The determinant of the Jacobian matrix of element M at integration point N is negative. This is followed by a code to indicate at what stage of the analysis this error occurred. This is mainly for the benefit of the programmer when testing the program. This message with a code of 1 probably means an error in specifying the mesh geometry. Check whether the nodes associated with an element are specified in the anti-clockwise order. Also check whether the coordinates of the nodes have been specified correctly.

\section*{DISTLD}

\section*{**** ERROR : ELEMENT M DOES NOT HAVE NODES : N1 N2 (ROUTINE DISTLD)}

The nodes \(\mathrm{N} 1, \mathrm{~N} 2\) are used to identify the side of element M which has a pressure loading. This message should not be printed, since before entering this routine a check is carried out to find whether nodes N1 and N2 belong to element M . Therefore this message can only mean a program error.

\section*{EDGLD}
(a) ELEMENT M1 NOT PRESENT IN CURRENT MESH (ROUTINE EDGLD)
The element with the pressure loaded side does not exist in the current mesh (probable user error).
(b) The error message is the same as issued by routine DISTLD and is printed when data errors are detected.

EQLBM
WARNING **** NO APPLIED LOADING - CHECK WHETHER ALL \(^{\text {W }}\) BOUNDARY CONDITIONS ARE DISPLACEMENTS (ROUTINE EQLBM)
This is a precautionary message to draw attention to the fact that no load of any significant magnitude has been applied in the current increment. Probably the analysis is displacement controlled.

\section*{FIXX}
(a) \(\quad * * * * *\) ERROR : LTH FIXITY. ELEMENT M DOES NOT CONTAIN NODES : N1 N2 (ROUTINE FIXX)
This is output when either or both of the nodes N1, N2 are not present in element M. This error is encountered when reading the list of fixities and it is the Lth fixity.
(b) When more than 200 fixities have been specified the following message is printed. The size of arrays MF, TF and DXYT has to be increased.

INCREASE SIZE OF ARRAYS MF, TF AND DXYT
IN COMMON BLOCK FIX (ROUTINE FIXX)
This message is printed as soon as the number of fixities exceeds 200 , but does not say by how much the array sizes have to be increased. The COMMON statement labelled FIX appears in the following routines and a change in size of the arrays means altering all these routines:

ANS CPW FIXX FRFXLD FRONTZ INSITU RESTRN RESTRT UPOUT
The parameter MXFXT must be set to the new size of the arrays in routine MAXVAL.

\section*{FRONTZ}
(a) PROBABLE SERIOUS ILL-CONDITIONING (ROUTINE FRONTZ)

This is an indication of possible numerical problems, for example when a very stiff structure is lightly sprung to earth.
(b) ERROR - ZERO PIVOT (ROUTINE RONTZ)

This happens when the diagonal stiffness term of the unknown equation which is about to be eliminated is found to be equal to zero. The above message can be expected when the permeabilities have been incorrectly set to zero in the material property table or when the time increment has been specified as zero in a consolidation analysis. Otherwise check that elastic parameters have not been inadvertently specified as zero.

\section*{INSTRS}

ELEMENT M IS OF UNKNOWN MATERIAL TYPE L (ROUTINE INSTRS)
Check that the material type number of element \(M\) is within the permissible range.

LODLST
The size of arrays LEDG, NDE1, NDE2 and PRESLD is set at 100. If more than 100 element sides are subjected to pressure load in the input data, the following message is printed.

\section*{INCREASE SIZE OF ARRAYS IN COMMON BLOCK PRSLD \\ ALSO SET MXLD IN ROUTINE MAXVAL (ROUTINE LODLST)}

The value of MXLD in routine MAXVAL must be set to the new (increased) size of these arrays. The above arrays occur in the following routines and they have to be changed:

ANS CPW EQLOD INSITU LODINC LODLST RESTRT UPOUT

\section*{LSTIFF}

If the program stops in routine LSTIFF with a message that an attempt has been made to divide by zero then in a consolidation analysis check that \(\operatorname{PR}(7, K M)\), the unit weight of water, is not specified as zero in the input data. In a supposedly non-consolidation analysis, check for the presence of consolidation elements (types 3 and 7 in 2-D) in the input data.

\section*{MAST}

INADMISSIBLE VALUE FOR MXTYP LT (ROUTINE MAST)
MXTYP (in record B) is out of the admissible range 1 to 7 .

\section*{INCREASE SIZE OF ARRAY G BY NI FOR GEOMETRY PART OF PROGRAM (ROUTINE MAST)}

The array allocation \(G(55000)\) is insufficient for the geometry part of the program. The size of \(G\) must be increased by the specified amount in routine MAIN.

TO PROVIDE MINIMUM CORE TO SOLVE EQUATIONS INCREASE SIZE OF ARRAY G BY = N1 (ROUTINE MAST)

TO PROVIDE MINIMUM CORE TO SOLVE EQUATIONS INCREASE SIZE OF ARRAY G BY = N1 IN MAIN (ROUTINE MAST)

The situation is illustrated in the above figure. N 1 is the amount by which the size of array \(G\) has to be increased in routine MAIN. Note that this only provides the minimum core, and the equations are solved out-of-core.

\section*{MIDPOR and MIDSID}

The following two statements appear when the estimated allocation for the additional nodes has been exceeded. The first statement is for the user node numbers and the second is for the program node numbers. These messages are unlikely to be printed, because the estimated allocation for the additional node: is always much higher than the actual number.
(a) INCREASE NO. OF ADDITIONAL NODES (ROUTINE MIDPOR or MIDSID)
(b) *** ERROR *** MORE THAN NNE NODES IN MESH

\section*{RDPROP}

\section*{ERROR IN NO. OF INCREMENTS \(=\mathrm{N} 1\) INCS \(=\mathrm{N} 2\) INCF \(=\mathrm{N} 3\) (ROUTINE RDPROP)}

This message is printed when the increment at the finish of the analysis (N3) is less than the increment number at start of the analysis (N2).

\section*{RDSTRS}

WARNING - POINT OUTSIDE IN-SITU STRESS SPACE (ROUTINE RDSTRS)
The above message is followed by the (program) element number and the integration point number. This happens when the in situ region (defined by a set of layers) does not cover the entire region of the primary mesh.

\section*{REACT}

INCREASE ARRAY SIZE OF R, NDENO, NDIR IN ROUTINE REACT
When the number of reactions exceeds 150 , this message is printed. The array size of R, NDENO and NDIR must be increased, and NCT must be set equal to this new size.

SFWZ
(a) NO ELEMENTS IN SOLUTION : (ROUTINE SFWZ)

When no elements are left in the mesh (possibly due to user error; elements removed incorrectly) this message appears.
(b) *** ERROR ** TOO MANY DEGREES OF FREEDOM IN FRONT EXCEEDS IFRZ (ROUTINE SFWZ)

The allocation for maximum frontwidth is IFRZ and is set equal to 300 in routine MAST. If the maximum frontwidth exceeds 300 this message is printed. The allocation for the maximum frontwidth (IFRZ) must be increased in routine MAST.
(c) PROGRAM ERROR - NO NODE ON END OF FRONT (ROUTINE SFWZ)
The message is unlikely to appear. When the FRONT shrinks owing to variables being eliminated from the end of the FRONT, the FRONT size is re-calculated. This message would indicate a program error.
(d) PROGRAM ERROR - LAST APPEARANCE NODE IS NOT IN FRONT This is also an unlikely error.

SHAPE
(a) ELEMENT M IS OF UNKNOWN TYPE *** LT (ROUTINE SHAPE)
When a request is made to calculate shape functions for inadmissible element types, this message is printed.
(b) ELEMENT M IS OF TYPE LT NOT IMPLEMENTED (ROUTINE SHAPE)
This message is printed when a request is made to calculate shape functions for element types which have not been implemented.

\section*{SHFNPP}
(the messages are the same as for routine SHAPE)

\section*{UPOUT}

WARNING **** THE NODAL CO-ORDINATES ARE UPDATED
This is just to tell the user that the above option is being used.

\section*{Appendix D: Incorporation of a new soil model}

Relatively few changes are necessary for incorporating a new soil model into CRISP. The soil model is assigned a material type number in the range 1 to 10 , which has not been previously allocated. The user provides the routine (for example DSOILN) which calculates the D matrix for a given stress state. For the purpose of illustration the new model is assigned material type number 5 . The material constants can be specified in one data record cosisting of 10 values. In general this is sufficient to specify all the material constants. The data record is laid out as follows.

MAT NTY \(P(1) \quad P(2) \ldots \ldots . \quad P(10)\)
where
MAT is the material zone number; all elements given the same number will have the following properties.
NTY is the material type number, which is specific for each soil model.
\(\mathrm{P}(1)-\mathrm{P}(6) \quad\) are user-defined soil parameters; these could be \(E, \nu^{\prime}\) or \(G\).
\(\mathrm{P}(7) \quad 0\) for drained, \(\alpha\) for undrained, \(\gamma_{\mathrm{w}}\) for consolidation.
\(\mathrm{P}(8) \quad \gamma\) soil density (weight/unit volume).
\(\mathrm{P}(9) \quad k_{x}\) for consolidation, 0 for drained or undrained.
\(\mathrm{P}(10) \quad k_{y}\) for consolidation, 0 for drained or undrained.
If more material constants are required to be specified, additional parameters can be read. The material constants that are read are placed in PR(NPR,NMT)
and the material type numbers in \(\mathrm{NTY}(\mathrm{NMT})\). The \(\mathbf{D}\) matrix is needed only twice during the analysis: once to calculate the stiffness matrix (called by routine LSTIFF) and once to calculate the incremental stresses from strains (called by routine UPOUT). When the D matrix has to be calculated, a subroutine call is made; the stresses and other parameters are passed as arguments. In return, the routine calculates the components of the \(\mathbf{D}\) matrix and puts them in array \(\mathrm{D}(\mathrm{NS}, \mathrm{NS})\).

The user can select the arguments when a subroutine call is made to the routine DSOILN.

CALL DSOILN (IP,K,IBLK,NEL,NIP,NVRS,NDIM,NS
1 NPR,NMT,VARINT,MAT,D,PR,IPLSTK,BK)
The first statement of routine DSOILN is then
SUBROUTINE DSOILN(I7,I,IET,NEL,NIP,NVRS,NDIM,NS, 1 NPR,NMT,VARINT,MAT,D,PR,IPLSTK,BK)
\(\begin{array}{ll}\text { IP,I7 } & \text { integration point } \\ \text { K,I }\end{array}\)
lement number
NEL \(\quad \begin{aligned} & \text { ness terms or not } \\ & \text { total number of elements }\end{aligned}\)
NIP the maximum number of integration points in any element
NVRS number of stress components and parameters
NDIM number of dimensions to problem
NS number of stress/strain components
NMT
VARINT
IPLSTK return code set by routine. 0-elastic, 1-plastic
BK

This is followed by the relevant comment statements about the model. Then comes the DIMENSION and COMMON statements.
```

DIMENSION MAT(NEL),VARINT(NVRS,NIP,NEL)
DIMENSION D(NS,NS),PR(NPR,NMT)

```

The following subroutines need changing to incorporate the new soil model:
MAST MAXVAL LSTIFF RDSTRS UPOUT UPOUT2

\section*{MAST}

No changes are necessary to this routine if the new soil model does not require more than 10 material constants. If the new model requires (say) 12 material
constants, the size of array \(P R\) is changed from
\[
\operatorname{PR}(10,10) \text { to } \operatorname{PR}(12,10)
\]

Note that 12 material constants must then be provided for all material models in the data (zeroes being added for the present models).

\section*{MAXVAL}

If the size of array PR has been changed in routine MAST then statement
\[
\mathrm{NPR}=10
\]
is replaced by
\[
\mathrm{NPR}=12
\]

\section*{LSTIFF}

A statement call is made to the routine which calculates the \(\mathbf{D}\) matrix when the stiffness terms are to be calculated. The statement
\[
\operatorname{GOTO}(39,32,33,34), \mathrm{KGO}
\]
is replaced by
GOTO \((39,32,33,34,35), \mathrm{KGO}\)
and the following statements are included:

\section*{GOTO 39}

35 CALL DSOILN(IP,K,IBLK,NEL,NIP,NVRS,NDIM,NS,NPR,NMT, 1 VARINT,MAT,D,PR,IPLSTK,BK)
before the statement
39 CALL LSTIFA(SS, B, D, DB, F9, NS, NB)

\section*{RDSTRS}

From values specified at in situ nodes, the stresses at integration points are interpolated. For Cam-clay models the voids ratio is calculated from \(p^{\prime}\) and \(p_{\mathrm{c}}^{\prime}\). For elastic models, no extra parameters are calculated. If the new model is a linear elastic model (of type number 5) then no changes need to be made to routine RDSTRS. If the new soil model is a version of the critical state model then any relevant calculations can be carried out, as done for Cam-clays, between statements.

GO TO \((60,60,52,52,60,60)\), KGO
and
60 CONTINUE
This can be done by using the following statement:
GO TO (60,60,52,52,55,60), KGO
and then inserting
\[
55 \begin{aligned}
& \text { GOTO } 60 \\
& \\
& \text { CONTINUE } \\
& \\
& \\
& \\
& \\
& <\text { calculations for new model }>
\end{aligned}
\]
.
before the statement
60 CONTINUE

\section*{UPOUT}

This routine calls routines that calculate the \(\mathbf{D}\) matrix to evaluate the stress increments from the strain increments. The changes are similar to the ones made to routine LSTIFF. The statement

GOTO \((59,52,53,54), \mathrm{KGO}\)
is replaced by
\(\operatorname{GOTO}(59,52,53,54,55), \mathrm{KGO}\)
and the following statements are included

\section*{GOTO 59}

55 CALL DSOILN(IP,J,0,NEL,NIP,NVRS,NDIM,NS,NPR,NMT,
1 VARINT,MAT,D,PR,IPLSTK,BK)
\(\operatorname{IELST}=1\) or \(\mathrm{ICAM}=1\)
- the last if the new model is a critical state model - before statement

59 DO \(60 \mathrm{II}=1\), NS
The stresses calculated in these routines are output in two tables:
(a) contains the general stresses \(\sigma_{x}^{\prime}, \sigma_{y}^{\prime}, \sigma_{z}^{\prime}, \tau_{x y}, u, \sigma_{\mathrm{I}}, \sigma_{I I I}\) and \(\theta_{x y}\left(\tau_{y z}\right.\) and \(\tau_{z x}\) for 3-D);
(b) contains stress parameters relevant to the particular model, e.g. for Camclays \(p^{\prime}, q, p_{\mathrm{c}}^{\prime}, e_{\text {strs }}, e_{\text {strn }}\), codes. \(e_{\text {strs }}\) and \(e_{\text {strn }}\) are the voids ratios calculated from the stress state and from the volumetric strains respectively. The codes are the numbers indicating the type of Cam-clay behaviour (see section 9.10).

The parameters in category (a) are printed for all types of soil model. However, the parameters in category (b) are calculated by routines specific to particular models, i.e. for Cam-clay models - routines EVCAM and VARCAM.

These additional parameters are output in routine UPOUT2. Therefore if the new soil model requires additional parameters to be output then the user has to provide the relevant routines for his/her new model; further changes are then necessary to routines UPOUT and UPOUT2.

These additional parameters for each integration point may be stored in array VARC(NCV,NIP,NEL) until they can be output by routine UPOUT2. If more parameters are required per integration point, NCV (at present equal to 10) can be increased in routine UPARAL. If codes are required to issue warning messages then the following arrays can be used.

LCS(NIP,NEL), LNGP(NIP,NEL)
MCS(NEL),MNGP(NEL)
NCODE(NIP,NEL),NELCM(NEL)
Array NELCM(NEL) is used to identify the different material types that require additional output parameters.

\section*{1-Cam-clays}
therefore the new soil model can be assigned the number 2 .
In summarising it can be said that if the new soil model is an elastic model which does not require additional material constants to be read or additional parameters to be output then only routines LSTIFF and UPOUT need to be changed. If additional input data (material constants) are required then changes are also necessary to routines MAST and MAXVAL. Further changes are necessary if additional output parameters are to be printed. The user then has to provide new routines to calculate these output parameters.

\title{
Appendix E: Incorporation of a new element type
}

\section*{E. 1 INTRODUCTION}

Almost any new element type could be incorporated into CRISP. Three element types are discussed below for the purposes of illustrating the basic techniques. They are listed in the order of increasing difficulty to incorporate. The eight noded quadrilateral can be incorporated more readily than the 20 -noded brick element. The three-noded beam element would require major reorganisation because of its additional d.o.f. being rotation, whereas it is tacitly assumed for two-dimensional analysis that the third d.o.f., if present, is excess pore pressure. The use of a beam element with consolidation elements would require modification the way the d.o.f. of a node are identified.
(i) 8 -noded quadrilaterals.
(ii) 20 -noded brick element.
(iii) 3 -noded beam element (with bending stiffness)

It should be pointed out that the way CRISP has been written makes the incorporation of elements (i) and (ii) fairly straightforward. Tentatively the following element type numbers have been allocated for elements (i) and (ii).
Element

Type number
8-noded quadrilateral 4
8 -noded quadrilateral (consolidation) 5
20-noded brick 8
20-noded brick (consolidation) 9

Element type information has been included in block data routine BDATA1 for the above elements. The local node numbering assumed in setting up the data for the new elements is shown in Fig. E.1. Before incorporating a new element type the user should understand how array LINFO is organised in routine BDATA1 and how this information is used in the rest of the program.

O \(d_{x}, d_{y}, d_{z}-\) displacement unknowns
^ \(\overline{\mathbf{u}}\) - excess pore pressure unknown

(a)

(c)

(b)

Fig. E. 1 - Different element types
(a) LSQ (element type 4): 8 nodes, 16 d.o.f.
(b) LSQ (element type 5) - consolidation: 8 nodes, 20 d.o.f.
(c) LSB (element type 8): 20 nodes, 60 d.o.f.
(d) LSB (element type 9) - consolidation: 20 nodes, 68 d.o.f.

All vertex or corner nodes are numbered first (these are local node numbers which are different from the node numbers assigned in the input data). The node numbers for nodes along element edges or sides and element interiors then
follow. This sequence of numbering adopted and set in BDATA1 is used in the rest of the program. For example, in routine MIDSID for element type 4 information set in SETNP gives the vertex nodes at either end of node 5 as 1 and 2. This is then used in calculating the co-ordinates of node 5 .

\section*{E. 2 ELEMENT TYPE DEPENDENT DATA}

If we consider element type 9 , which is the 20 -noded brick element used for consolidation analysis, the vertex nodes 1 to 8 have 4 d.o.f. (displacements in \(x\) \(y, z\) directions and the excess pore pressure). Nodes 9 to 20 have only 3 d.o.f (the displacements).

The element type information is stored in the LINFO array in routine BDATA1. Row 9 (the row assigned to each element is its type number) is allocated to this element; that is each element is allocated a row of LINFO.
LINFO
column
entry

Explanation
1 The total number of nodes (including pore pressure nodes) is 20 . NDPT \(=20\).
2 Total number of vertex or corner nodes is 8. NVN \(=8\).
3 Total number of element edges is 12 . \(\mathrm{NEDG}=12\).
4 The element has 6 faces. NFAC \(=6\).
Note that for all two-dimensional elements, \(\mathrm{NFAC}=1\).
5 The number of displacement nodes is 20 . NDN \(=20\).
\(6 \quad\) There are 8 nodes with pore pressure variables. \(\quad\) NPN \(=8\).
7 There is only one displacement node along each edge, at the midpoint. \(\quad\) NDSD \(=1\).
Even though there is a node at the midpoint of each edge it does not have a pore pressure variable. \(\quad \mathrm{NPSD}=0\).
9 There are no inner displacement nodes. NIND \(=0\).
10 There are no inner pore pressure nodes. NINP \(=0\).
11 The number of integration points is 27 if using the \(3 \times 3 \times 3\) scheme. NGP \(=27\).
12 Index to the weights (array W) and local co-ordinates (array L). Different regions of these arrays are allocated to different element types as follows:
\(W(1)\) - W(5) for 3-noded bar - any scheme up to 5 point
\(W(6)-W(12)\) for LST elements -7 -point scheme
\(W(13)-W(21)\) for quadrilaterals \(-3 \times 3\) scheme
\(W(22)-W(37)\) for CuST elements -16 -point scheme
\(W(38)-W(64)\) for 20 -noded brick \(-3 \times 3 \times 3\) scheme
All that is needed is a pointer to indicate the last location allocated to the previous element type. For the case of the 20 -noded brick elements it is 37 . \(\mathrm{NDX}=37\).

LINFO
column

\section*{entry}
ex to vertex nodes (not used in the present version). INX \(=0\) Index to nodes along element edges. This gives the starting index to arrays NP1 and NP2 which are set up in routine SETNP. In order to calculate the co-ordinates of nodes along element edges it is necessary to know which nodes are at either end. Arrays NP1 and NP2 give the local node numbers (which are the index to array NCONN) for each element edge. Different regions of NP1 and NP2 are allocated to different element types (similar to arrays \(W\) and \(L\)) and this provides the starting index.

For example, node 18 is the midside node along edge 10 . \(\mathrm{NP} 1(\) INDED +10\()=2 ; \mathrm{NP} 2(\) INDED +10\()=6\). This means that nodes 2 and 6 are at either end of node 18 . INDED is the starting index for different element types. For the brick element it is 3 . INDED \(=3\).
The number of local co-ordinates is \(3(\xi, \eta\) and \(\zeta) . \quad \mathrm{NL}=3\).
Total number of d.o.f. in element.
8 vertex nodes have 4 d.o.f., each giving \(8 \times 4=32\) d.o.f.
12 midside nodes have 3 d.o.f., each giving \(12 \times 3=36\) d.o.f.
The total number of d.o.f. is 68. MDFE \(=68\). This is used in calculating the size of the element stiffness matrix (see routine MAXVAL).
Centroid integration point. The last integration point, which is 27 , is situated at the centroid of the element. This is used in outputting representative values of stresses and strains of an element. However, not all integration schemes have an integration point at the centroid. Under these circumstances the last integration point is used here. \(\mathrm{NCGP}=27\). If the integration scheme used has an integration point at the centroid it is assigned the last number for convenience.
onwards. Each entry gives the number of d.o.f. of each node as labelled in Fig. E.1.
\begin{tabular}{lrrrrrr}
Node number & 1 & to & 8 & 9 & to & 20 \\
Location in LINFO & 21 & to & 28 & 29 & to & 40 \\
d.o.f. & & 4 & & 3 &
\end{tabular}

\section*{Local co-ordinate}

The integration points have been numbered as shown in Fig. E.2. The order in which they have been numbered is not important. However, once numbered, the same sequence is implicitly assumed in different parts of the program and it should be consistent with the initial numbering. The local co-ordinates are stored in a region allocated in array L .

8-noded quadrilateral
\[
\text { Fig. E. } 2 \text { - Integration points }
\]

For example, \(L(1,38), \mathrm{L}(2,38)\) and \(\mathrm{L}(3,38)\) are the \(\xi, \eta\) and \(\zeta\) co-ordinates of integration point 1 . \(\mathcal{L}(1,39), \mathcal{L}(2,39)\) and \(L(3,39)\) are the \(\xi, \eta\) and \(\zeta\) co-ordinates of integration point 2 , and so on. Note that the quadrilateral elements have only two local co-ordinates \(\xi\) and \(\eta\). Then only L(1,IP), L(2,IP) need to be set.

\section*{Weighting factor}

The array \(W\) is set up in a similar manner to array L. Array \(W\) gives the weighting factors for each integration point shown in Fig. E.2.
\(\mathrm{W}(38)\) is the weighting factor for \(\mathrm{IP}=1\)
\(\mathrm{W}(39)\) is the weighting factor for \(\mathrm{IP}=2\) and so on.

\section*{E. 3 INCORPORATION OF 8-NODED QUADRILATERALS}

The only routines which need changing are as follows
SHAPE - include displacement shape functions and derivatives w.r.t. local coordinates for element types 4 and 5 . This replaces the WRITE(IW6, 910) statement.

The displacement shape functions are as follows:
\[
\begin{aligned}
& \mathrm{N} 1=-(\zeta \zeta-1)(\xi \xi-1)(1+\xi \xi+\zeta \zeta) / 4 \\
& \mathrm{~N} 2=(\zeta \zeta-1)(\xi \xi+1)(1-\xi \xi+\zeta \zeta) / 4 \\
& \mathrm{~N} 3=(\zeta \zeta+1)(\xi \xi+1)(\xi \xi+\zeta \zeta-1) / 4 \\
& \mathrm{~N} 4=-(\zeta \zeta+1)(\xi \xi-1)(\zeta \zeta-\xi \xi-1) / 4 \\
& \mathrm{~N} 5=(\zeta \zeta+1)(\xi \xi+1)(\xi \xi-1) / 2 \\
& \mathrm{~N} 6=-(\xi \xi+1)(\zeta \zeta+1)(\zeta \zeta-1) / 2 \\
& \mathrm{~N} 7=-(\zeta \zeta+1)(\xi \xi+1)(\xi \xi-1) / 2 \\
& \mathrm{~N} 8=(\xi \xi-1)(\zeta \zeta+1)(\zeta \zeta-1) / 2
\end{aligned}
\]

SHFNPP - include pore pressure shape functions and derivatives w.r.t. local co-ordinates for element type 5. This replaces the WRITE(IW6,910) statement.

The pore pressure shape functions are as follows:
\[
\begin{aligned}
& \text { M1 }=(\xi \xi-1)(\zeta \zeta-1) / 4 \\
& \text { M2 }=-(\xi \xi+1)(\zeta \zeta-1) / 4 \\
& \text { M3 }=(\xi \xi+1)(\zeta \zeta+1) / 4 \\
& \text { M4 }=-(\xi \xi-1)(\zeta \zeta+1) / 4
\end{aligned}
\]

The internal node numbering used is fairly important (see Fig. E.1). All other node co-ordinates are calculated from the vertex nodes. For example, the coordinates of node 5 are calculated from the co-ordinates of nodes 1 and 2. The data NP1 and NP2 set in routine ©ETNP give the nodes at either end of the first edge as 1 and 2 . The node along the side \(1-2\) is numbered first after the vertex nodes because it is assigned a number 5 .

\section*{E. 4 INCORPORATION OF 20-NODED BRICK ELEMENTS}

The list of subroutines which need changing is listed below:

\section*{BDATA 1}

Include appropriate data in arrays \(W\) and \(L\) in designated locations using the DATA statements.
\(W(38) \ldots \quad W(64)\) - weighting factors
L \((1,38) \ldots \quad 4(3,64)\) - local co-ordinates
(see Table 8.1, p. 198, of Zienkiewicz, 1977)

\section*{MAST}

If both element types 8 and 9 are to be used then set LTZ \(=9\).

SETNP
Arrays NP1 and NP2 have already been set up to identify each element edge by the nodes at either end (see Fig. E.1)

\section*{SHAPE}

Include appropriate shape function statements and derivatives w.r.t. local coordinates for element types 8 and 9 . (These should be consistent with the node numbering in Fig. E.1.)

\section*{SHFNPP}

Include pore pressure shape functions for element type 9 only. (These should be consistent with the node numbering in Fig. E.1.)

\section*{FIXX}

The routine FIXX can only handle two-dimensional elements. Therefore FIXX is renamed as FIXX2, and all call statements CALL FIXX(. . . .) are replaced by IF(NDIM.EQ.2) CALL FIXX2(.....). The routines INSITU and ANS are the only ones which call routine FIXX.

This statement is followed by the statement
IF(NDIM.EQ.3) CALL FIXX3(.)

Routine FIXX3, which is for the 20 -noded brick element, is listed in section E.7. General changes that need to be carried out to routines EQLBM, INSTRS and UPOUT for implementing the three-dimensional analysis option are as shown below.

The header and write statements in these routines at present only cater for two-dimensional elements. All write statements listed below (identified by the format statements) should be preceded by IF (NDIM.EQ.2) and a further write statement added for the three-dimensional case preceded by IF(NDIM.EQ.3). This is illustrated for the UPOUT routine.

The changes to routine UPOUT are as follows:
1 WRITE (IW6,902)
GOTO 6
WRITE (IW6,901)
GOTO 6
3 WRITE (IW6,933)
GOTO 6
4 WRITE(IW6,934)
..............................
\(\qquad\)
\(\mathrm{N} 2=\mathrm{N} 1+\mathrm{NQL}-1\)
F(NDIM.EQ.3)GOTO 9
IF (NOL.EQ. 3)WRITE (IW6, 900) JR, (DI (JJ) , JJ=N1, N2), (DA (JJ) , JJ =N1, N2)
IF (NQL.EQ.2)WRITE (IW6,910)JR, (DI (JJ), JJ=N1,N2), (DA(JJ), JJ=N1,N2) F(NQL.EQ.1)WRITE (IW6,911)JR,DI(N1), DA(N1)
OTO 10
9 Continue
IF (NQL.EQ.4)WRITE (IW6, 940)JR, (DI(JJ), JJ=N1, N2), (DA(JJ), JJ=N1, N2) IF (NQL.EQ.3)WRITE (IW6,941)JR, (DI(JJ), IJ=N1,N2), (DA (JJ), JJ =N1,N2)
10 CONTINUE
IF (NDIM EQ 3)GOTO 12
IF (IOUT2.EQ.2) WRITE(IW6,904)
IF (IOUT2.EQ.1) WRITE (IW6,906) GOTO 14
c
12 CONTINUE
IF(IOUT2.EQ.2)WRITE (IW6,904)
IF(IOUT2.EQ.1)WRITE(IW6,936)
14 continue
\[
\text { - } \cdot \text {. } \cdot \text {. }
\]
.

IF (MR.LT.NELOS.OR.MR.GT.NELOF)GOTO 26
WRITE (IW6,908)MR
IF(NDIM.EQ.2)WRITE (IW6,914)
IF(NDIM.EQ.3)WRITE(IW6,944)
...................

933 FORMAT(//20H NODAL DISPLACEMENTS/1X,19(1H-)//
1 18X,11HINCREMENTAL,51X,8HABSOLUTE//
\(12 \mathrm{X}, 4 \mathrm{HNODE}, 7 \mathrm{X}, 2 \mathrm{HDX}, 13 \mathrm{X}, 2 \mathrm{HDY}, 13 \mathrm{X}, 2 \mathrm{HDZ}, 28 \mathrm{X}, 2 \mathrm{HDX}, 13 \mathrm{X}, 2 \mathrm{HDY}, 13 \mathrm{X}, 2 \mathrm{HDZ} /\)
934 FORMAT(//46H NODAL DISPLACEMENTS AND EXCESS PORE PRESSURES/
\(11 \mathrm{X}, 45(1 \mathrm{H}-) / / 26 \mathrm{X}, 11 \mathrm{HINCREMENTAL}, 51 \mathrm{X}, 8 \mathrm{HABSOLUTE} / /\)
1 2X,4HNODE,7X,2HDX,13X,2HDY,13X,2HDZ,13X,2HDU,
1 13X,2HDX,13X,2HDY,13X,2HDZ,13X,2HDU/)
936 FORMAT (//30H STRESSES AT ELEMENT CENTROIDS/1X,29(1H-)//8H ELEMENT,
\(13 \mathrm{X}, 1 \mathrm{HX}, 13 \mathrm{X}, 1 \mathrm{HY}, 12 \mathrm{X}, 1 \mathrm{HZ}, 11 \mathrm{X}, 2 \mathrm{HSX}, 11 \mathrm{X}, 2 \mathrm{HSY}, 11 \mathrm{X}, 3 \mathrm{HSZ}, 11 \mathrm{X}, 3 \mathrm{HTXY}\)
1 11X,3HTYZ,10X,3HTZX,11X,1HU)
940 FORMAT(1 X, I5,8E15.5)
41 FORMAT(1X,I5,3E15.5,15X,3E15.5)
944 FORMAT(\(2 \mathrm{X}, 2 \mathrm{HIP}, 7 \mathrm{X}, 1 \mathrm{HX}, 12 \mathrm{X}, 1 \mathrm{HY}, 12 \mathrm{X}, 1 \mathrm{HZ}, 11 \mathrm{X}, 2 \mathrm{HSX}\),
1 11X,2HSY, 11X,2HSZ, 10X, 3HTXY, 10X, 3 HTY , 10X \(, 3 \mathrm{HTZX}, 9 \mathrm{X}, 1 \mathrm{HU})\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Routine} & No. of new & Format & Explanations \\
\hline & write statements & statements & \\
\hline \multirow[t]{6}{*}{EQLBM} & \multirow[t]{6}{*}{6} & 900 & header for out-of-balance loads. \\
\hline & & 904 & header for out-of-balance loads. \\
\hline & & 901 & output statement. \\
\hline & & 903 & header for overall equilibrium \\
\hline & & 905 & header for overall equilibrium check. \\
\hline & & 907 & output equilibrium check. \\
\hline \multirow[t]{2}{*}{INSTRS} & \multirow[t]{2}{*}{2} & 901 & header for stresses. \\
\hline & & 903 & output stresses. \\
\hline \multirow[t]{7}{*}{UPOUT} & \multirow[t]{7}{*}{7} & 901 & header for displacements. \\
\hline & & 902 & header for displacements. \\
\hline & & 910 & output displacements. \\
\hline & & 911 & output displacements. \\
\hline & & 906 & header for stresses. \\
\hline & & 914 & output element number. \\
\hline & & 916 & output stresses. \\
\hline
\end{tabular}

\section*{E. 5 INCORPORATION OF ANY OTHER ELEMENT TYPE}

At present, array LINFO has 15 rows allowing for new element types to be incorporated. Tentatively the first 11 rows have already been allocated to different element types. A new element type that is different from any element in the current library could be assigned type number 12, and the next one the number 13, and so on. If a new element with type number greater than 15 is introduced then the number of rows in array LINFO should be increased to 20 This change should be made to all routines which access this array which resides in named common ELINF. (See Appendix F, which gives the list of subroutines which contain the common block ELINF.)

Here follows a list of subroutines which need to be changed.

\section*{BDATAI}

Add element type dependent data to following arrays:
LINFO (12,) - define element type
\(L(, \quad)\)-local co-ordinates of integration points.
W() - weighting factors

\section*{MAST}

The maximum admissible type number has been set to 7 in routine MAST, i.e \(\mathrm{LTZ}=7\). If a new element type 12 is introduced then set \(\mathrm{LTZ}=12\) in routine MAST.

Increase the size of arrays NAD and KLT to 12. Set NAD(12) to the number of additional nodes in the element (= total number of nodes minus vertex nodes) at the end of the existing DATA statement.

\section*{SETNP}

Increase the size of arrays NPL1 and NPL2 to required amount and set NPL to the increased value in routine MAST. Add relevant entries to NPL1 and NPL2 in the DATA statement. A separate entry is used for each element edge, and NPLl gives the local node number of the node at one end and NPL2 the one at the other end. The total number of entries for an element equals the number of edges or sides the element has.

\section*{MIDPOR and MIDSID}

Changes are only required if new elements have inner displacement or pore pressure nodes. For example, see the CuST element type.

\section*{LSTFSG}

For consolidation elements with type number greater than 11, arrays KP and KD have to be extended to provide data regarding the new element type. These should be consistent with the node numbering in Fig. E.1. These arrays are used in reorganising the rows/columns so that all d.o.f. of a particular element occupy consecutive rows/columns in array SG.

The following is a list of routines which have GOTO statements where the range is the admissible element type numbers. Therefore in general there are 11 possible destinations, depending on the element type. A new entry should be added (if \(\mathrm{LT}>11\)) to this statement corresponding to the new element type in each routine where the GOTO statement appears.
\begin{tabular}{|c|c|c|}
\hline Subroutine & LT range & Remarks on destination \\
\hline \multirow[t]{2}{*}{MAXVAL} & \multirow[t]{2}{*}{11} & 12 - for consolidation elements. \\
\hline & & 11 - for non-consolidation elements. \\
\hline \multirow[t]{2}{*}{MIDSID} & \multirow[t]{2}{*}{11} & 27 - nodes with inner node (i.e. CuST). \\
\hline & & 90 - other elements. \\
\hline \multirow[t]{5}{*}{MIDPOR} & \multirow[t]{3}{*}{11} & 12 - elements with inner pore pressure \\
\hline & & nodes, i.e. CuST of type 9 . \\
\hline & & 100 - all other elements. \\
\hline & \multirow[t]{2}{*}{11} & 27 - elements with inner pore pressure nodes. \\
\hline & & 90 - all other element types. \\
\hline RDSTRS & 15 & replace 80 to 22 for new element type. \\
\hline SHAPE & 11 & add shape functions at appropriate place and \\
\hline & & delete WRITE statement. \\
\hline SEL1 & 11 & 22 for all 2-D and 3-D elements. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Subroutine & LT range & Remarks on destination \\
\hline LSTIFF & 11 & \begin{tabular}{l}
1 - non-consolidation elements. \\
2 - consolidation elements.
\end{tabular} \\
\hline SHFNPP & 11 & 80 - non-consolidation elements. Add pore pressure shape function statements. \\
\hline UPOUT & 11 & \begin{tabular}{l}
1 - non-consolidation elements. \\
2 - consolidation elements.
\end{tabular} \\
\hline & 11 & \begin{tabular}{l}
25 - non-consolidation elements. \\
23 -- consolidation elements.
\end{tabular} \\
\hline & 11 & \begin{tabular}{l}
66 - consolidation elements. \\
70 - non-consolidation elements.
\end{tabular} \\
\hline
\end{tabular}

Element type dependent information has been set up in the following routines.
\begin{tabular}{|c|c|c|}
\hline Routine & Arrays & Remarks \\
\hline \multirow[t]{3}{*}{BDATA1} & LiNFO & Define element type. \\
\hline & L & Local co-ordinates. \\
\hline & W & Weighting factors. \\
\hline MAST & NAD, KLT & Number of additional nodes in each element. \\
\hline SETNP & NP1, NP2 & Local node numbers at either end of each edge or side. \\
\hline LSTFSG & KP, KD & Used in reorganising element stiffness matrix with consecutive rows/columns assigned to all d.o.f. of a node. \\
\hline
\end{tabular}

\section*{E. 6 CHANGING THE INTEGRATION SCHEME}

Under certain circumstances reduced integration using a \(2 \times 2\) scheme is preferable to the full \(3 \times 3\) integration scheme for the 8 -noded quadrilaterals. The present version is set up for the full integration scheme. In order to use the \(2 \times 2\) scheme, the following changes need to be carried out in routine BDATA1.

Replace 9 in \(\operatorname{LINFO}(11,4)\) and \(\operatorname{LINFO}(11,5)\) by 4
There is no integration point at the centroid for the \(2 \times 2\) scheme; therefore the results at the last integration point are output. Then
\[
\begin{array}{ll}
W(13)-(W(16) & \text { are used for the weighting factors. } \\
L(, 13)-L(16) & \begin{array}{l}
\text { are used for the local co-ordinates for the } \\
\text { integration points. }
\end{array}
\end{array}
\]

However, if the user would like both integration schemes available then the element with the \(2 \times 2\) integration scheme can be introduced as a new element type (for example 12). This would need changes to other routines as well (see section E.5).

\section*{E. 7 NEW SUBROUTINE FOR 3-D ELEMENT: 20-NODED BRICK} SUBROUTINE FIXX3(IR5, IW 6, NEL, NTPE, NDIM, NPL, LV, NCONN,LTYP,MUMAX, \(\underset{* *) ~}{\text { 1 NNZ }}\)
C ROUTINE TO MAINTAIN A LIST OF NODAL FIXITIES. INTERPRETS
C FIXITIES ALONG (3-D) ELEMENT FACE INTO NODAL FIXITIES.
C AT PRESENT TO CATER FOR THE 3-D BRICK ELEMENTS ONLY.

\section*{INTEGER TF}

DIMENSION NCONN(NTPE, NEL), LTYP(NEL), MREL(MUMAX), NREL(NNZ)
DIMENSION IND(8), FV(8),V(LV),NP1(NPL),NP2(NPL)
DIMENSION KX (48), NDU (8), NDP (8), NXC (4), NXM (4), KNL (8)
COMMON /FIX / \(\operatorname{DXYT}(4,200), \operatorname{MF}(200), \operatorname{TF}(4,200), N F\)
COMMON /ELINF/ \(\operatorname{LINFO}(50,15)\)
C ARRAY KX (48) GIVES THE INDEX TO ARRAY NCONN FOR THE FOUR
CORNER NODES OF EACH FACE OF THE ELEMENT FOLLOWED BY THE C MIDSIDE NODES.

DATA KX(1),KX(2),KX(3),KX(4),KX(5),KX(6),KX(7),KX(8),KX(9)
\(1 K X(10), K X(11), K X(12), K X(13), K X(14), K X(15), K X(16), K X(17)\)
1 KX(18),KX(19),KX(20),KX(21),KX(22),KX(23),KX(24),KX(25),
\(1 \operatorname{KX}(26), K X(27), K X(28), K X(29), K X(30), K X(31), K X(32), K X(33)\),
1 KX(42), KX(43),KX(44),KX(45),KX(46),KX(47),KX(48)/
1 1, 3, 4, \(10,11,12,6,5,7,13,16,15,14,1,5,6,2,17,13,18,9\)
1 1,2,3,4,9,10,11,12,6,5,8,7,13,16,15,14,1,5,6,2,17,13,18,9,
DO \(5 \mathrm{IU}=1,8\)
\(\mathrm{KNL}(I U)=0\)
\(\operatorname{NDU}(I U)=0\)
5 CONTINUE
\(\mathrm{FF} 2=200\)
NDIM1 \(=\) NDIM +1
IF (NFX.EQ.0)RETURN
WRITE(IW6,900)
C IF NEW 3-D ELEMENT TYPES ARE ADDED THEN NC, NFCD
c AND LVL (\(=\) NFCD) SHOULD BE OBTAINED FROM ARRAY LINFO
IN ORDER TO MAKE THE ROUTINE GENERAL.
--一一-- NC - NUMBER OF VERTEX NODES ON ELEMENT FACE \(N C=4\)
\(N F C D=8\)
C LOOP ON ALL FACES WITH FIXITIES I.E. FACES WITH PRESCRIBED
C DISPLACEMENT/EXCESS PORE PRESSURES.

\section*{LVL \(=\mathrm{NFCD}\)}

DO 200 JX \(=1\), NFX
READ (IRS,*)ML, (NDU(J), \(J=1, N C), \operatorname{IVAR}, \operatorname{IFX},(F V(K), K=1, L V L)\)
WRITE (IW6, 910) JX, ML, (NDU(J) , J=1, NC), IVAR, IFX, (FV (K) , K=1, LVL)
NE=MREL(ML)
c
DO \(30 \mathrm{IN}=1\), NC
\(N D=N D U(I N)\)

30 NDP(IN) \(=\) NREL (ND)
\(\mathrm{LT}=\mathrm{LTYP}(\mathrm{NE})\)
NFAC=LINFO (4,
\(\qquad\) TO ID ALL FACES OF ELEMENT.
\(\qquad\) TO IDENTIFY the face of the element with
DO 90 IFAC \(=1\), NFAC
ISX \(=N F C D^{*}(\) IFAC-1)
C---------- GET INDEXES OF NODES TO NCONN
DO 40 IN=1,NC
NXC(IN) \(=\mathrm{KX}(\) ISX + IN \()\)
C-_-_O_ ARE PRESENT IF (IVAR ARE PRESENT
40 CONTINUE . NDIM1) NXM (IN) \(=K X(I S X+N C+I N)\)
C_-_-_ GET VERTEX NODES OF FACE FROM NCONN
DO 50 IN \(=1\), NC
\(\mathrm{IP}=\mathrm{NXC}(\mathrm{IN})\)
\(50 \mathrm{KNL}(\mathrm{IN})=\mathrm{NCONN}(\mathrm{IP}, \mathrm{NE})\)LOOP ON ALL STARTING NODES.TRY TO MATCH THE NODES SPECIFIED by the user ITH THE NODES ON EACH FACE. EACH NODE in

DO 80 IS \(=1\), NC
\(I S V=I S\)
C-_-_-_- TRY MATCHING THE NODES
DO 60 IN \(=1\), NC
IF(NDP(IN).NE.KNL(IN))GOTO 65
60 CONTINUE
GOTO 95
C_-_-_-_START WITH THE NEXT NODE. THE SEQUENCE OF
--_-_-_THE NODES ARE STILL THE SAME
65 CALL ALTER(IW6, KNL, NC)
80 CONTINUE
--_ FACE NOT FOUND
WRITE(IW6,930)JX,ML, (NDU(J) , \(\mathrm{J}=1, \mathrm{NC})\)
GOTO 200
95 IF(ISV.EQ.1)GOTO 105 IS1 \(=I S V-1\)
C_-_-_- SORT THE INDEXES TO MATCH WITH NODE SEQUENCE KNL DO 100 IM \(=1\), IS
Call ALTER(IW6,NXC, NC)
IF(IVAR.NE.NDIM1)CALL ALTER(IW6,NXM,NC)
100 CONTINUE
------- IF PORE PRESSURE FIXITY
105 CONTINUE
IF (IVAR.NE.NDIM1)GOTO 125
DO 120 IL=1,NC \(\mathrm{IP}=\mathrm{NXC}(\mathrm{IL})\)
\(120 \operatorname{IND}(\) IL \()=N \operatorname{CONN}(I P, N E)\) NSDN = NC
GOTO 132
____-_-_ IF DISPLACEMENT FIXITY

125 DO 130 IL=1,NC
IM \(=\) NXC (IL)
\(\operatorname{IN}=\operatorname{NXM}(I L)\)
\(\operatorname{IND}\left(2^{*} \operatorname{IL}-1\right)=\operatorname{NCONN}(I M, N E)\)
130 IND (2*IL) \(=\) NCONN(IN,NE)
NSDN \(=\) NFCD
CONTINUE
LOOP ON ALL NODES ALONG FACE
142 DO \(180 \mathrm{KND}=1\), NSDN
\(\mathrm{I}=\mathrm{IND}\) (KND)
IF(NF.EQ.O)GO TO 158
C
IF(I.EQ.MF(J))GO TO 155
150 CONTINUE
C

\(155 \mathrm{JF}=\mathrm{J}\)
GO TO 160
\(158 \mathrm{NF}=\mathrm{NF}+1\)
IF(NF.LE.NFZ)GO TO 159
WRITE(IW6,940)
STOP
\(\mathrm{JF}=\mathrm{NF}\)
\(159 \mathrm{JF}=\mathrm{NF}\)
\(160 \mathrm{MF}(\mathrm{JF})=\mathrm{I}\)
\(\operatorname{MF}(J F)=I\)
\(\operatorname{TF}(\operatorname{IVAR}, J F)=\operatorname{IFX}\)
DXYT(IVAR, JF) \(=\mathrm{FV}\) (KND)
180 CONTINUE
200 CONTINUE
RETURN
900 FORMAT (\(/ 19 \mathrm{X}, 16 \mathrm{H}\). NODES. \(8 \mathrm{BX}, 6 \mathrm{HF}\) IXITY/
1 1X,4HFACE, \(4 \mathrm{X}, 7 \mathrm{HELEMENT}, 3 \mathrm{X}, 16 \mathrm{H} 1223\), 2 ,
3X,3HDOF, \(3 X\),
10 FOPMAT (1
910 FORMAT \(1 \mathrm{X}, 13,4 \mathrm{X}, 15,3 \mathrm{X}, 14,1 \mathrm{X}, \mathrm{I4}, 1 \mathrm{X}, \mathrm{I4}, 1 \mathrm{X}, \mathrm{I} 4,4 \mathrm{X}, 12,3 \mathrm{X}, \mathrm{I} 3,3 \mathrm{X}, 8 \mathrm{~F} 9.3\))
O 1 THELEMENT \(2 X\) LS
FORMAT(/4OH INCREASE SIZE OF ARRAYS MF, TF AND DXYT/
1 1X,35HIN COMMON BLOCK FIX (ROUTINE FIXX3))
END
SUBROUTINE ALTER(IW6,IM,N)
--_-_ ROUTINE TO SHIFT ARRAY FORWARD BY ONE PLACE
DIMENSION IM(N)
IF(N.LE. 1)GOTO 100
NM1 \(=\mathrm{N}-1\)
c \(I M T=I M(1)\)

DO \(10 \mathrm{~K}=1\), NM 1
\(\operatorname{IM}(K)=\operatorname{IM}(K+1)\)

100 WRITE(IW6,900)N

900 FORMAT(\(/ 1 \mathrm{X}, 45\) HERROR * ARRAY CONTAINS LESS THAN OR EQUAL TO , I5, 2 X , 140 HMEMBERS (ROUTINE ALTER) CALLED BY FIXX3)
RETURN
REND

GVAR DATW DEVICE FIX LABEL PRLDI SAMP PRECSN JACB
SUBROUTINE
FORMP DATL DEBUGS \(\square\) ELINF FIX

LSTESG
X \(\dot{\mathrm{X}}\)
\(\dot{\mathrm{X}} \quad \dot{\mathrm{X}} \quad . \quad \dot{\mathrm{X}} \quad . \quad \dot{\mathrm{X}}\)
\[
\dot{\mathrm{X}}
\]

MAIN X
MAKENZ MARKZ
MAST \(\begin{array}{ccc}\cdot & \mathrm{X} \\ \dot{\mathrm{X}} & \mathrm{X} & \mathrm{X}\end{array}\)

MAXVAL
MIDPOR MIDSID
MINIT
\begin{tabular}{cc}
\(\dot{\mathrm{X}}\) & \(\cdot\) \\
X & X \\
\(\cdot\) & X \\
\(\cdot\) & X \\
\(\cdot\) & \(\cdot\) \\
\(\cdot\) & X
\end{tabular}
X X
\(\begin{array}{ccc}\cdot & \cdot & \mathrm{X} \\ \dot{\mathrm{X}} & \cdot & \mathrm{X} \\ & \cdot & \mathrm{X}\end{array}\)
X X
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{GVAR} & \multicolumn{4}{|l|}{DATW DEVICE} & \multicolumn{2}{|l|}{FIX} & LABEL & PRLDI & SAMP & PRECSN & JACB \\
\hline SUBROUTINE & DATL & 1 & DEBUGS & & \(\stackrel{\text { ELINF }}{1}\) & 1 & FLOW & | PARS & \(\mid \stackrel{\text { PRSLD }}{ }\) & | OUT & \(\mid\) COUNT & | LOADS \\
\hline MLAPZ & . & . & . & . & X & . & . & . . & . . & - . & - . & . . \\
\hline NUMSH & . & . & X & . & X & . & . & . . & - . & .. & . . & . . \\
\hline PRINC & . & . & . & . & . & . & . & X & . . & . . & . . & . . \\
\hline PRINTF & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline RDCOD & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline RDN & . & . & . & . & . & . & . & - . & . . & - . & . \({ }^{\text {. }}\) & . . \\
\hline RDPROP & . & . & . & X & . & . & . & . . & . . & X & . . & \(\cdots \quad\). \\
\hline RDSTRS & X & . & . & X & X & . & X & X & . . & . . & . . & . . \\
\hline REACT & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline RESTRN & . & . & . & . & . & X & . & . . & . . & . & . . & . . \\
\hline RESTRT & . & . & . & X & . & X & . & . . & X & X & . . & . . \\
\hline SELF & X & X & . & . & X & . & X & X & . . & . . & . . & . . \\
\hline SEL1 & . & . & . & . & X & . & . & X & . . & . . & . . & . . \\
\hline SETNP & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline SFR1 & . & . & . & . & - & . & . & . . & . . & . . & . . & . . \\
\hline SFWZ & . & . & X & X & X & . & . & . . & . . & . . & . . & . \({ }^{\text {a }}\) \\
\hline SHAPE & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline SHFNPP & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline SHFTIB & . & . & X & . & . & . & . & . . & \(\cdots\). & . . & . . & . . \\
\hline SIDES & . & . & . & . & . & . & . & . . & . . & . . & . . & \\
\hline SORTN2 & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline SORT2 & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline STORQ & . & . & . & . & . & . & . & . . & . . & . . & . . & . . \\
\hline
\end{tabular}

\title{
Appendix G: Some notes on running CRISP
}

\section*{G. 1 FILES USED}

\author{
Logical unit no. Description
}

1 In restarted analysis this is an unformatted magnetic tape or disk file which contains the results of previous analysis (otherwise set to a dummy file).
2 This is used if this analysis is to be subsequently restarted. It is an unformatted magnetic tape or disk file which contains (if applicable) the results of any previous analysis plus the results of the current analysis (set to a dummy file if th: option is not used).
5 The data input.

\section*{Printed output.}

An unformatted scratch disk file.
Data output required to produce a plot of the finite element mesh. An unformatted disk file.

\section*{G. 2 SOIL-STRUCTURE INTERACTION}

The single-precision version of CRISP cannot be used for soil-structure interaction problems if the stiffness of the structure is several orders higher than the stiffness of the soil. If sensible answers are not obtained even with a reduced stiffness for the structure, the calculation needs to be carried out in double
precision. Numerical problems with CRISP may be evident by large equilibrium errors or by wildly varying pore pressures in undrained/consolidation analyses. Equilibrium errors in any analysis should be less than \(5 \%\) (in most cases less than \(1 \%\)). Therefore any error larger than \(5 \%\) may indicate numerical problems.

\section*{G. 3 UNDRAINED/CONSOLIDATION ANALYSIS}

\section*{Undrained analysis}

In undrained analysis an equivalent bulk modulus of water is added to the soil stiffness terms. In such an analysis, if the results appear to be meaningless or if the pore pressures generated fluctuate wildly from integration point to integration point then the analysis should be repeated with a lower bulk modulus of water. In most cases the true undrained behaviour can still be captured with a low value of the bulk modulus of water. However, too low a value would cause the behaviour to be partially drained. Sometimes the use of a finer mesh will improve the results. In some problems oscillations persist and in these cases our experience is that the centroidal values in the triangular elements are most reliable.

Consolidation analysis
If there is any sign of oscillations in the increment in which loading is applied (at the beginning of an analysis) then this is an indication of too small a time step. The analysis should be repeated with a larger time step for the load increment.

\section*{G. 4 EQUILIBRIUM ERRORS AT IN SITU STAGE}

If there are significant equilibrium errors at the in situ stage when in situ stresses have been specified it indicates only errors in input data. It means that the in situ stresses are not consistent with the applied boundary loads and displacement fixities. Make sure that either the displacement or the stress boundary condition is specified along the mesh boundary except for any free boundary (for example, the ground surface is free of any fixities or loads).

If the in situ stresses include the gravitational effects (as in an analysis of field situation) then PR(8,KM) should be the bulk unit weight of soil consistent with the vertical in situ stresses. Also set TGRAVI \(=1\) to record Q1.

If an element side which should have been restrained is left out inadvertently in the list of fixities it would also result in equilibrium errors.

For an analysis which does not include the effect of earth's gravity (i.e. triaxial test, where it is negligible and the vertical stresses are uniform everywhere at the start), TGRAVI \(=0\) and the bulk unit weight of soil need not be specified.

\section*{G. 5 LARGE ANALYSIS}

The capacity of the program to analyse a problem with a large number of elements is enhanced by simply increasing the size of array \(G\) in routine MAIN.

The size of some arrays which are fixed rather arbitrarily may also have to be increased (the relevant subroutines will issue a message when there is a need). The arrays are as follows.
(a) \(\operatorname{COMMON} / \operatorname{PRSLD} / \operatorname{PRESLD}(10,100), \operatorname{LEDG}(100), \operatorname{NDE} 1(100)\), NDE2(100),NLED
(b) COMMON /PRLDI/ PRSLDI(10,100), LEDI(100),NDI1(100),NDI2(100), ILOD.
(c) COMMON/FIX/DXYT(4,200),MF(200),TF(4,200),NF.
(d) DIMENSION R(500), NDENO(500), NDIR(500) in routine REACT.

The first three common statements appear in a number of routines, and if it is necessary to increase the size of these arrays then all such occurrences have to be changed accordingly

For example, if the sizes of arrays are increased to cater for up to 400 nodes with fixities, then

COMMON /FIX/ DXYT(4,200),MF(200),TF(4,200),NF

\section*{is replaced by}

COMMON /FIX/ DXYT(4,400), \(\operatorname{MF}(400), \mathrm{TF}(4,400), \mathrm{NF}\)
in all routines in which this statement appears. The list of routines in which this statement appears is in Appendix F. Further changes may be necessary, as indicated in Appendix C.

\section*{G. 6 ANALYSING SMALL PROBLEMS}

When testing the program with a small number of elements the core requirement could be reduced by decreasing the size of array \(G\) in routine MAIN to about 10000.

COMMON /GVAR/G(10000)
\[
\mathrm{LG}=10000
\]
G. 7 CONVERSION OF SINGLE-PRECISION VERSION TO DOUBLE PRECISION

Add in the following statement to all the routines

Convert all REAL constants to double precision (including the ones in routines BDATAl and MINIT) by adding DO

Set NP = 2 and comment out NP = 1 in routine MINIT
\[
\begin{array}{ll}
& \mathrm{NP}=2 \\
\mathrm{CC} & \mathrm{NP}=1
\end{array}
\]

Remove the CC in the following statements in the following routines.
REAL G - in routines MAST, MAIN, MINIT
REAL A - in routines ANS, CPW, INSITU, LODINC, UPARAL

\section*{References}

Akin, J.E. \& Pardue, R.M. (1975), Element resequencing for frontal solution, Mathematics of finite elements, Academic Press, London, 535-541.
Almeida, M.S.S. (1984), Stage constructed embankments on soft clays, PhD thesis, Cambridge University.
Almeida, M.S.S., Britto, A.M. \& Parry R.H.G. (1986), Numerical modelling of a centrifuged embankment on soft clay, Canadian Geotechnical Journal, 23, 103-114.
Atkinson, J.H. \& Bransby, P.L. (1978), The mechanics of soils, McGraw-Hill, London.
Bassett, R.H., Davies, M.C.R., Gunn, M.J. \& Parry, R.H.G. (1981), Centrifugal models to evaluate numerical methods, Proc. 10th ICSMFE, Stockholm.
Biot, M.A. (1941), General theory of three dimensional consolidation, J. Appl. Phys., 12, 155-164.
Bishop, A.W. (1966), The strength of soils as engineering materials, (6th Rankine Lecture), Géotechnique, 16, 91-128.
Bjerrum, L. (1973), Geotechnical problems involved in foundations of structures in the North Sea, Géotechnique, 23, 319-358.
Booker, J.R. \& Randolph, M.F. (1984), Consolidation of a cross-anisotropic soil medium, Quarterly Journal of Mechanics and Applied Mathematics, 37, 479-495.
Booker, J.R. \& Small, J.C. (1975), An investigation of the stability of numerical solutions of Biot's equations of consolidation, Int. J. Solids \& Structures, 11, 907-911.

Burland, J.B. (1965), The yielding and dilation of clay, Correspondence, Géotechnique, 15, 211-214.
Butterfield, R. (1979), A natural compression law for soils (an advance on \(\left.e-\log p^{\prime}\right)\), Géotechnique, 29, 469-480.
Carter, J.P. (1977), Finite deformation theory and its application to elastoplastic soils, PhD thesis, Sydney University.
Carter, J.P., Small, J.C. \& Booker, J.R. (1977), A theory of finite elastic consolidation, Int. J. Solids \& Structures, 13, 467-478.
Casagrande, A. (1936), The determination of the pre-consolidation load and its practical significance, Proc. 1st Int. Conf. Soil Mech., Cambridge, Mass., 3, 60-64.
Cook, R.D. (1981), Concepts and applications of finite element analysis, 2nd edition, Wiley, New York.
Coulomb, C.A. (1773), Essai sur une application des regles de maximis et minimis à quelques problems de statique, relatifs à l'architecture, Mem. Math. Phys. (divers Savans), Vol. 23. See also Heyman, J. (1972), Coulomb's memoir on statics: an assay in the history of civil engineering, Cambridge University Press.
Crandall, S.H. (1956), Engineering analysis, McGraw-Hill.
Dafalias, Y.F. \& Herrman, L.R. (1982), Bounding surface formulation of soil plasticity, Chapter 10 in Soil Mechanics - transient and cyclic loads (ed. by Pande G.N. \& Zienkiewicz O.C.), Wiley, 253-282.
Dalton, J.C.P. \& Hawkins, P.G. (1982), Fields of stress - some measurements of the in situ stress in a meadow in the Cambridgeshire countryside, Ground Engineering, 15, 15-23.
Davis, E.H. \& Booker, J.R. (1973), The effect of increasing strength with depth on the bearing capacity of clays, Géotechnique, 23, 551-563.
Day, A.C. (1972), Fortran techniques, Cambridge University Press, Cambridge. Day, A.C. (1978), Compatible fortran, Cambridge University Press, Cambridge. Dean, E.T.R. (1985), Development of Cam-clay - first progress report - the spread work function, Cambridge University Engineering Department.
Drucker, D.C. (1950), Some implications of work hardening and ideal plasticity, Quart. Appl. Math., 7, 411-418.
Drucker, D.C. (1951), A more fundamental approach to stress--strain relations, Proc. 1st U.S. Nat. Cong. for Applied Mechanics, ASME; 487-491.
Drucker, D.C. (1954), Coulomb friction, plasticity, and limit loads, J. Appl. Mech., 21, 71-74.
Drucker, D.C., Gibson, R.E. \& Henkel, D.J. (1957), Soil mechanics and workhardening theories of plasticity, A.S.C.E., 11, 338-346.
Drucker, D.C. \& Prager, W. (1952), Soil mechanics and plastic analysis or limit design, Quart. Appl. Math., 10, 157-165.
Galerkin, B.G. (1915), Series solution of some problems of elastic equilibrium of rods and plates, (Russian), Vestn. Inzh. Tech., 19, 897-908.
Harr, M.E. (1962), Groundwater and seepage, McGraw-Hill, New York.

Harr, M.E. (1966), Foundations of theoretical soil mechanics, McGraw-Hill, New York.
Henkel, D.J. (1956), Discussion on 'Earth movement affecting L.T.E. railway in deep cutting east of Uxbridge', Proc. I.C.E., Part II, 5, 320-323, London.
Hill, R. (1950), The mathematical theory of plasticity, Oxford University Press. Hinton, E. \& Owen D.R.J. (1977) Finite Element Programming, Academic Press. Irons, B.M. (1968), Roundoff criteria in direct stiffness solutions, AIA A Journal, 6, 1308-1312.
Irons, B.M. (1970), A frontal solution program for finite element analysis, Int. J. Num. Meth. Eng., 12, 5-32.
Irons, B.M. \& Ahmad, S. (1980), Techniques of finite elements, Ellis Horwood, Chichester.
Irons, B.M. \& Shrive, N. (1983), Finite element primer, Ellis Horwood, Chichester.
Jaky, J. (1944), The coefficient of earth pressure at rest, Magyar Mernok es Epitesz Egylet Kozlonye.
Jardine, R.J., Symes, M.J. \& Burland, J.B. (1984), The measurement of soil stiffness in the triaxial apparatus, Géotechnique, 34, 323-340.
Katzan, H. (1978), Fortran 77, Van Nostrand Reinhold, New York.
Koiter, W.T. (1953), Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface, Q. Appl. Math., 11, 350.

Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F. \& Poulos, H.G. (1977), Stressdeformation and strength characteristics: state of the art report. Proc. 9th ICSMFE, 2, 421-494, Tokyo.
Larmouth, J. (1973a), Serious Fortran, Software - Practice and Experience, 6, 87-107.
Larmouth J. (1973b), Serious Fortran - part 2, Software - Practice and Experience, 6, 197-225.
Mair, R.J., Gunn, M.J. \& O’Reilly, M.P. (1981), Ground movements around shallow tunnels in soft clay, Proc. 10th ICSMFE, Stockholm.
Maxwell, E.A. (1953), An analytical calculus, volume 3, Cambridge University Press, Cambridge.
Milovic, D.M. (1970), Contraintes et déplacements dans une couche élastique d'épaisseur limitée, produits par une foundation circulaire, le Génie civil. T.147, No. 5, 281--285.

Monro, D.M. (1982), Fortran 77, Edward Arnold, London.
Mroz, Z. \& Norris, V.A. (1982), Elastoplastic and viscoplastic constitutive models for soils with application to cyclic loading, Chapter 8 in Soil Mechanics - transient and cyclic loads (ed. by Pande G.N. \& Zienkiewicz O.C.), Wiley, 173-217.

Naylor, D.J. (1975), Non-linear finite element models for soil, PhD thesis, University College of Swansea.
Naylor, D.J. (1985), A continuous plasticity version of the critical state model, Int. Jnl. Num. Meth. in Eng., 21, 1187-1 204.

Ohta, H. \& Wroth, C.P. (1976), Anisotropy and stress reorientation in clay under load, Proc. 2nd Int. Conf. Num. Meth. in Geomechanics, ASCE, 319-328.
Owen, D.R.J. \& Hinton, E. (1980), Finite elements in plasticity: theory and practice, Pineridge Press, Swansea.
Palmer, A.C. (1973), Contribution to discussion, Proc. Symp. on the Role of Plasticity in Soil Mechanics, Cambridge, 44-45.
Parry, R.H.G. (1970), Overconsolidation in soft clay deposits, Géotechnique, 20, 442-446.
Parry, R.H.G. (1982), Private communication.
Pender, M.J. (1982), A model for the cyclic loading of overconsolidated soil, Chapter 11 in Soil Mechanics - transient and cyclic loads (ed. by Pande, G.N. \& Zienkiewicz O.C.), Wiley, 283-331.
Potts, D.M. (1981) Private communication.
Poulos, H.G. (1967), Stresses and displacements in an elastic layer underlain by a rough rigid base, Géotechnique, 17, 378-410.
Poulos, H.G. \& Davis, E.H. (1974), Elastic solutions for soil and rock mechanics, Wiley, New York.
Pyrah, I.C. (1980), The solution of two dimensional consolidation problems, Proc. symposium on Computer applications to geotechnical problems in highway engineering, P.M. Geotechnical Analysis Ltd, Cambridge.
Razzaque, A. (1980), Automatic reduction of frontwidth for finite element analysis, Int. J. Num. Meth. Eng., 15, 1315-1324.
Roscoe, K.H. \& Burland, J.B. (1968), On the generalised stress-strain behaviour of 'wet clay', Engineering plasticity, Cambridge University Press.
Roscoe, K.H. \& Schofield, A.N. (1963), Mechanical behaviour of an idealised 'wet clay', Proc. 2nd European Conf. Soil Mech., 47-54.
Roscoe, K.H., Schofield, A.N. \& Thurairajah, A. (1963), Yielding of clays in states wetter than critical, Géotechnique, 13, 211-240.
Roscoe, K.H., Schofield, A.N. \& Wroth, C.P. (1958), On the yielding of soils, Géotechnique, 8, 22-53.
Ryder, B.G.(1974), The PFORT verifier, Software - practice and experience, 6, 359-377.
Schofield, A.N. \& Wroth, C.P. (1968), Critical state soil mechanics, McGraw-Hill, London.
Seneviratne, H.N. \& Gunn, M.J. (1985), Predicted and observed time-dependent deformations around shallow model tunnels in soft clay, Proc. 5th Int. Conf. Num. Meth. in Geomechanics, Nagoya, Japan.
Skempton, A.W. (1985), Residual strength of clays in landslides, folded strata and the laboratory, Géotechnique, 35, 3-18.
Sloan, S.W. \& Randolph, M.F. (1982), Numerical prediction of collapse loads using finite element methods, Int. J. Num. Anal. Meth. Geomech., 6, 47-76.
Sloan, S.W. \& Randolph, M.F. (1983), Automatic element reordering for finite element analysis with frontal solution schemes, Int. J. Num. Meth. Eng., 19, 1153-1181.

Taylor, D.W. (1948), Fundamentals of soil mechanics, Wiley, New York.
Terzaghi, K. \& Frohlich, O.K. (1936), Theory of settlement of clay layers, Deutike, Leipzig,
Timoshenko, S.P. \& Goodier, J.N. (1970), Theory of elasticity, 3rd edition, McGraw-Hill, New York.
Turner, M. J., Clough, R. W., Martin, H. V. \& Topp, L. J. (1956), Stiffness and deflection analysis of complex structures, J. Aero. Sci., 23, 805-823.
Vermeer, P.A. \& Verrujit, A. (1981), An accuracy condition for consolidation by finite elements, Int. J. Num. Anal. Meth. Geomech., 5, 1-14.
Wood, D.M. (1984), On stress parameters, Géotechnique, 34, 282-287.
Wroth, C.P. (1971), Some aspects of the elastic behaviour of overconsolidated clay, Proc. Roscoe memorial symposium, Foulis, 347-361.
Wroth, C.P. (1975), In-situ measurement of initial stresses and deformation characteristics, Proc. of the Speciality Conf. in In-situ Measurement of Soil Properties, ASCE, Rayleigh, North Carolina, June, 181-230.
Wroth, C.P. (1984), The interpretation of in situ soil tests (24th Rankine Lecture), Géotechnique, 34, 449-489.
Zienkiewicz, O.C. (1967), The finite element method in structural and continuum mechanics, McGraw-Hill.
Zienkiewicz, O.C. (1971), The finite element method in engineering science, McGraw-Hill.
Zienkiewicz, O.C. (1977), The finite element method, McGraw-Hill, London.
Zienkiewicz, O.C., Humpheson, C. \& Lewis, R.W. (1975), Associated and nonassociated visco-plasticity and plasticity in soil mechanics, Géotechnique, 25, 671-689.
Zytynski, M., Randolph, M.F., Nova, R. \& Wroth, C.P. (1978), Short communication: modelling the unloading-reloading behaviour of soils, Int. J. Num. Anal. Meth. Geomech., 2, 87-94.

\section*{Subject Index}

\section*{A}
bsolute displacements, 271
absolute excess pore pressure, 271, 386 angle of friction
drained, 43, 173
anisotropic elasticity
stress-strain relations, 377-378
D matrix, 165-166
D matrix,
ANSI, 146-7
approximate solutions of differential equations, \(83,89-93\)
ascmbly of stiff ness matrix, 95, 123,
ssociated flow, 47-50
in Cam-clay, 74-80
xisymmetric analysis
choice of element type, 370 co-ordinate system, 372-373 examples, 390-408
B
B matrix
constant strain triangle, 108
calculated in CRISP, 261-26
definition, 104-105
one dimensional quadratic element 113-114
plane truss element, 107
ack substitution, \(97,128-129,332\),
335-336

Bauschinger effect, 38, 44
Biot's equations of consolidation, 35
Block data, 229-233
body forces, 21-22, 306-307 (see also
self-weight loads)
oundary conditions
available in CRISP, 14
at in situ stage, 246
fixing a prescribed d.o.f., 96,267
specification in data, 380-383, 428-430
brick element, 448-456, 460-463
buffer, 296, 328, 343
bulk modulus
definition, 25
elastic, for Cam-clay, 164, 406
for dry soil/drained behaviour, 27-28
for saturated soil, 28-31
of water, 29,378

\section*{C}

Cam-clay
basic equations, 52-62
derivation, 74-76
D matrices calculated, 167-172
modified, 78-80
parameters, \(172,265,355,412\)
chain rule of partial differentiation,
112-113, 261
oaxiality, 45-46
oefficient of consolidation, 33 coefficient of earth pressure at rest, 179-81, 183
common blocks used in different routines, 464-468
ompatibility, 22-23, 94
compression index
critical state, 54
cricalstion 17
conventional, 174
ompression \((\lambda)\) line
nes, 54-56
compression tests (see triaxial tests)
consolidation
nalysis, 373, 396, 470
In's equations, 35
Biot's equations,
elements, 195,233
finite element equations, 115-119
Terzaghi analyses
by CRISP, 387-390
by TINY, 133-139
Terzaghi's equation, 33
constant strain triangle, 107
construction, 144, 250, 302, 372, 376, 408
continuity equation, 34
control parameters, 244
control routine, 242, 294
co-ordinate system, 372
coupling matrix, 323
critical state
cone, 163
constants, 54, 172-177
line, 56-57, 174
parameters, 51, 172-177, 378
ross-reference array, 191, 192, 197
CSL (sern
curved sides, 206, 371, 42

\section*{D.}
matrix
calculated by CRISP, 165-172 elasto-plastic, 164
for undrained analysis, 378-379
isotropic elastic, 25
Darcy's law, 31-32, 33-3
data format, 417-418
data summary, 430 -431
definition of principal arrays, 240
degrees of freedom, \(218,227,229\)
derivatives of shape functions, 256
261,319
deviator strain, 54
deviator stress, 52, 162
dilation, 51
isplacement
definition, 22
fixity, 385,429
method, 93-100, 104
nodes, 200
d.o.f. (see degrees of freedom)
double precision, 471
rained analysis by CRISP
modified Cam-clay foundation, 406-
408
lastic foundation, 392-396
drained angle of friction, 43,173
drained behaviour, 30
drained compression test, 64
Drucker-Prager yield criterion, 43, 163
Druckers' stability postulate, 48-50
and Cam-clay, 77-78

\section*{E}
effective stress
definition, 25-26
physical interpretation, 26-27
effective stress paths in triaxial tests drained, 64
elastic analyses using CRISP, 390-400
astic bulk modulus (see bulk modulus
lastic bulk modulus (see bulk modulus,
elastic)
elastic constants
anisotropic, \(165,377-378\)
dry soil, 27-28
isotropic, 23-25
linear variation with depth, 166-167
saturated soil, 28-31
lastic perfectly plastic, 39
elastic shear modulus, 24,31
elastic wall, 60-61
elasto-plasticity
basic phenomena, 36-38
idealisations, 39-40
lement stiffness matrix
calculated in CRISP, 312-314
constant strain triangle, 109
extended (including consolidation
terms), 119, 313
plane truss element, 107
spring, 95
standard formula, 105
one dimensional quadratic element, 114
element type data, 451
lement types, 141, 369
element-nodal connectivity, 193, 197,
222, 228
lements added, 251
elements removed, 251
embankment, 250, 408-410, 415
engineering snear strain, 22-23
equation of continuity, 34
equilibrium, \(18,48,94,303\)
calculations, 259
cleck, 144, 274-275, 286, 347, 380
errors, 275, 470
of nodal forces, 94,115
of stresses, 21-22
error messages, 437-443
excavation, 144, 302, 372, 376, 41
excess pore pressure
boundary conditions, 132-133,
386-387
definition, 32-33

F
files, 469
fixities
applied by CRISP, 339-342
applied by TINY, 127-128
displacements, 385
excess pore pressures, 386-387
method of application, 96
flow matrix, 317
Cam-clay 76
modified Cam-clay, 79
FORTRAN-66, 147
FORTRAN-66, 147
FORTRAN-77, 146, 147
forward elimination, \(96-97,128-129\) 330-335
free draining boundary, 387
free nodes, 285
free surface, 267
frictional systems and plasticity, 50
frictional constant M, 56, 173
frontal technique
order of assembling elements, 196
pre-frontal stage, 221-228
reasons for use in CRISP, 145
solution routines, 327-345
specifying new solution order, 374 frontwidth, \(218,223,328\)

\section*{G}

Galerkin's method, 83, 91, 103, 116 Gauss rule, 85, 86-88
Gaussian elimination, 96-100, 145 Gaussian integration, 85, 86-88
in TINY, 124-125
geometric non-linearity, 143 global stiffness matrix, \(95,123,328\) global variable number, 121-122, 220 g.v.n., 121-122, 220

\section*{H}
hash table, 200
hashing, 200
higher-order elements, 109-114, 141-
142, 215
Hooke's law, 24
hydraulic gradient, 32

\section*{I}
ill-conditioning check, 336
impermeable boundary, 387
in situ boundary conditions, 380
in situ nodes, 246, 380,424
in situ print out, 265
in situ stresses, 178-184, 242, 251,
\[
380,424
\]
incorporation of new facilities element type, 449
soil model, 444
increment block, 144, 294, 376
increment size, 368
incremental
displacements, 346
loads, 382
strains, 346
stresses, 346
indexes to NCONN, 205
indexes used in stiffness calculations,
\[
321-324
\]
initialising arrays, 290
input data, 418 s, 29
integer arrays, 2
integration
by parts, \(91,92-93\)
numerical (see numerical integration)
Gaussian, 85, 86-88
point co-ordinates, 255
points, 113, 246-247
with respect to time, 118
isotropic hardening, 44
J
Jacobian, 113, 264, 284
Jacobian matrix, 112-113, 261

\section*{K}
kinematic hardening, 44

\section*{L}

Lagrangian formulation, 143
Laplace's equation, 34
linear strain triangle, 141, 190
link matrix, 323
load increment loop, 309
load ratios, 307
loads
equivalent to in situ stresses, 259
from body sources, 306
from construction, 302
from excavation,
from stresses, 309
from tractions, 309
from pressures, 30
incremental, 382
local co-ordinates, \(86,110-113\)

\section*{M}
magnetic tape, \(145,242,36\)
material non-linearity, 143
material properties, 244,423
material zone number, 191, 373, 423
material zones, 244
mesh, 190, \(370,390,418\)
mesh plotting, 209, 432-436
program, 433
mixing different element types, 370 mixing different element
Mohr-Coulomb yield criterion, 42,163 ,
173
N
Newton-Raphson method, 336
nodal fixities, 285
non-linear technique, 14
non-associated hous, 395
normal consolidation line, 173-174
isotropic, 54
normality, 47-50
in CRISP (over triangles), 246-247
in TINY, 124-125
introduction, 84--88
of loads on element sides, 281
points
global co-ordinates, 255
local co-ordinates, 230-233
weights, 230-233

\section*{O}

OCR, 180
edometer 177, 181
ene dimensional finite elements, 113 114, 120
ut-of-balance loads, 289, 364
output options, 376, 422-423
output parameters, 345
ver-consolidation ratio
effect on undrained shear strength 71
sotropic, 65
one dimensional, 180
permeability, 33,17
permeability matrix, 117
PD (see plot data)
plane strain, 370
plastic potential, 47-48
plastic strain
calculation, Cam-clay, 67
definition, 36-37
plasticity
basic phenomena, 36-38
beneath the yield surface, \(80-81\)
idealisations, 39-40
plot data, 200, 209, 216, 432
Poisson's ratio, 176-177, 182
pore pressure
excess, definition, 32-33
fixities, 386,429
in triaxial tests, 69, 71
nodes, 211
shape functions, 116, 318-319
portability, 146
pre-frontal routines, 327

\section*{prescribed}
displacement, 271
excess pore pressure, 27
variables, \(96,273,33\)
pressure loads, 267 , 254, 265, 375, 42 program element number, 194 program node number, 192, 195, 228 programming technique, \(146,229,323\) pseudo-dynamic dimensioning,

147-149, 233, 235, 239

\section*{Q}
quadrilaterals, 142,454
R
reactions, 289
eactions, 289 , 459
removal of elements, \(376,424,427\)
restart facility, 365,387
restrained nodes, 285-286
restraints, definition, 271
(see also fixities)
S
seepage
asic equations,
elf-weight loads, \(282,306,384\)
shape functions, 88,124
for constant strain triangle, 107-108
for linear strain triangle, 112
for one dimensional quadratic
element, 113
for plane truss element, 107
shear modulus
definition, 24, 31
for use with Cam-clay, 176-177
shear strain
deviator, 54
engineering, 22-23
ign convention, 263, 429
Simpson's rule, 85
soil-structure interaction, 469
solution techniques, 142-143
specific volume, 52
prings, 93-100
springs program, 98-99
SSBS (see stable state boundary surface)
tability
Drucker's postulate, 48-50
of yielding in Cam-clay, 77-78
table state boundary surface
Cam-lay, \(58-60,76\)
Cam-clay, \(88-60,7\)
modinied Ca m-clay, 79
strain
calculation in triaxial tests
drained, 66-67
undrained, 72
definition, \(22-23\)
elastic, \(36-37,62\)
matrix, 105
plastic, \(36-37,62\)
shear, 22-23
volumetric, 35,64
strain-hardening, 37, 44-45, 48-49,
64,69
strain-softening, 48-49, 69
stress
definition, 20
equilibrium, 21-22
invariants, 162
stress state code, 359,362
stress-strain relations
anisotropic elastic, 165, 377-378
elasto-plastic, 39-40
expressed in matrix form, 164
isotropic elastic, 23-25
subroutine hierarchy, 185, 238, 295
swelling (\(\kappa\)) lines, 173

\section*{T}
tangent stiffness, 380
tensors, 162
Terzaghi
effective stress principle, 26
consolidation equation, 33 time increment, 384
time steps for consolidation analysis,
134, 135, 381-382
time-marching, 144,313
total stress paths in triaxial tests, 64, 67
tractions, 103
trapezoidal rule, 8
Tresca yield criterion, 41-42
triangular co-ordinates, 111-11
triangular elements, 141
triaxial tests
CRISP analysis, 412
on Cam-clay
drained, 63-67
undrained, 67-72
to determine soil constants, 173
U
underdrainage analysis example, 136139
ndrained analyses by CRIS
Cam-clay foundation, 400
elastic foundation, 396
over-consolidated clay foundation
\[
403
\]
triaxial test, 412
undrained behaviour, 30-31
undrained compression, 67
undrained shear strength, 68-69, 71 ,
176
undrained traixial test
analysed by CRISP, 412
on Cam-clay, 67-72
units, 373
unstable behaviour, 48-50 user element number, 194 user node number, 192

\section*{V}
vertex nodes, 190, 191
virtual work, 83-84
for a continuum, 102-104
for a truss, \(100-102\)
volumetric strain, 378
definition, 35,54
elastic, in Cam-clay, 62
von Mises yield criterion, 41-42
W
warning messages, 437-443
weighted residual methods, 83, 90-91 (see also Galerkin's method)
Wroth's method for in situ stresses, 180

\section*{Y}
yield function, 41-45
Cam-clay, 60, 74-78
Drucker-Prager, 43-44
modified Cam-clay, 79
```

    Mohr-Coulomb, 42-43
    Tresca, 41-42
    von Mises, 41-42
    yield ratio $369,381,413,415-416$
yielding of Cam-clay, 58, 64-70, 407
Z

```
Zienkiewicz-Green theorem, 92-93
zone numbers, 373, 423

\section*{Program Index}
\begin{tabular}{llll}
Routines & & & \\
ANGTH & 359 & INSITU & 248 \\
ANS & 297 & INSTRS & 265 \\
BDATA1 & 230 & INTPLT & 209 \\
CALDOF & 220 & JPC & 317 \\
CAMCDE & 361 & LODINC & 310 \\
CHANGE & 303 & LODLST & 269 \\
CONECT & 197 & LSTFSG & 324 \\
CPW & 242 & LSTIFA & 321 \\
CUREDG & 206 & LSTIFF & 313 \\
DCAM & 167 & MAIN & 150 \\
DCON & 165 & MAKENZ & 218 \\
DETJCB & 284 & MARKZ & 186 \\
DETMIN & 264 & MAST & 152 \\
DISTLD & 278 & MAXVAL & 235 \\
DLIN & 166 & MIDPOR & 212 \\
DMCAM & 170 & MIDSID & 201 \\
EDGLD & 267 & MINIT & 151 \\
EQLBM & 286 & MLAPZ & 222 \\
EQLIB & 260 & NUMSH & 216 \\
EQLOD & 275 & PRINC & 361 \\
EVCAM & 355 & PRINTF & 342 \\
FACTOR & 307 & RDCOD & 193 \\
FIXX & 272 & RDN & 345 \\
FORMB2 & 262 & RDPROP & 244 \\
FORMP & 318 & RDSTRS & 251 \\
FRFXLD & 339 & REACT & 289 \\
FRONTZ & 329 & RESTRN & 285 \\
FRSLOT & 338 & RESTRT & 365 \\
GETEQN & 345 & SEL1 & 306 \\
GPOUT & 228 & &
\end{tabular}
\begin{tabular}{llll}
SETNP & 206 & STOREQ & 344 \\
SFR1 & 281 & STRSEQ & 364 \\
SFWZ & 223 & UPARAL & 345 \\
SHAPE & 256 & UPOUT & 347 \\
SHFNPP & 319 & UPOUT2 & 362 \\
SHFTB & 234 & VARCAM & 356 \\
SIDES & 210 & WRTN & 344 \\
SORT2 & 205 & & 291 \\
SORTN2 & 255 & &
\end{tabular}

Variables/Arrays
(page numbers given below refer to explanations as to the purpose of each variable/array)
\begin{tabular}{llll}
& & LV & 234 \\
AA & 241 & MAT & 194 \\
B & 241 & MAXPA & 328 \\
CARTD & 241 & MCORE & 225 \\
D & 241 & MCS & 346 \\
DB & 241 & MDFE & 234 \\
DI,DA & 346 & MFRN & 197 \\
DS & 241 & MFRU & 197 \\
DTM & 301 & MFZN & 328 \\
DXYT & 271 & MNGP & 346 \\
E & 241 & MREL & 194 \\
ED & 350 & MRELVV & 194 \\
ELCOD & 241 & MUMAX & 190 \\
ELCODP & 241 & MXEN & 236 \\
ELPA & 328 & MXFXT & 236 \\
ES & 321 & MXLD & 236 \\
ETE & 323 & MXND & \((s e e\) \\
FT & 240 & MXNDE) \\
FV & 274 & MXTYP & 190 \\
FXYZ & 299 & NAD & 190 \\
IDFX & 285 & NB & 152 \\
IFR & 227 & NCGP & 234 \\
IFRZ & 152 & NCODE & 359 \\
INCZ & 297 & NCONN & 194 \\
IND & 274 & NCV & 345 \\
INDED & 205 & ND & 205 \\
INDX & 254 & NDE1,NDE2 & 270 \\
INXL & 152 & NDEAD & 192 \\
IOPT & 301 & NDEST & 226 \\
ITAB & 200 & NDF & 220 \\
JEL & 241 & NDFN & 230 \\
KD & 324 & NDIM & 154 \\
KES & 155 & NDL & 339 \\
KLT & 199 & NDMX & 234 \\
KM & 266 & NDN & 254 \\
KP & 324 & NDPT & 214 \\
L & 283 & NDSD & 152 \\
LCS & 346 & NDZ & 152 \\
LDIM & 153 & NEDG & 269 \\
LED & 355 & NEDZ & 153 \\
LEDG & 270 & NEL & 190 \\
LINFO & 229 & NF & 273 \\
LL & 283 & NGP & 254 \\
LNGP & 346 & NIND & 230 \\
LTAB & 153 & NINP & 230 \\
LTYP & 194 & & 236 \\
LTZ & 152 & & \\
& & & \\
& & & \\
\hline
\end{tabular}

\title{
Author Index
}
\begin{tabular}{|c|c|}
\hline A & Davis 83, 395, 400,403 \\
\hline Ahmad 83, 109, 221 & Day 146, 200 \\
\hline Akin 196 & Dean 81 \\
\hline Almeida 178,415 & Drucker 43, 48, 50, 74 \\
\hline Atkinson 52, 78 & \\
\hline & F \\
\hline B & Foott 71 \\
\hline Biot 35 & Frohlich 33 \\
\hline Bishop 163 & \\
\hline Bjerrum 180 & G \\
\hline \[
\begin{aligned}
& \text { Booker } 118,134,143,376,398,400, \\
& 403
\end{aligned}
\] & Galerkin 83, 91 \\
\hline Bransby 52, 78 & Gibson 74 \\
\hline Brito 415 & Goodier 83 \\
\hline Burland 78, 80, 177 & Gunn 415 \\
\hline Butterfield 174 & \\
\hline & H \\
\hline C & Harr 83, 395 \\
\hline Carter 143, 376 & Hawkins 184 \\
\hline Casagrande 180 & Henkel 74,78 \\
\hline Castigliano 83 & Herrmann 81 \\
\hline Clough 109 & Hill 47 \\
\hline Cook 143 & Hinton 143, 221 \\
\hline Coulomb 42 & Humpheson 143 \\
\hline Crandall 91 & Hvorslev 78 \\
\hline D & I \\
\hline Dafalias 81 & Irons \(83,109,145,221,328,336\) \\
\hline Dalton 184 & Ishihara 71 , \\
\hline
\end{tabular}

J
Jaky 180, 181,400 Jardine 80.177
K
Katzan 147
Koiter 78
L
Ladd 71
Laplace 89
Larmouth 1
M
Mair 415
Martin 109
Maxwell 112
Milovic 395
Monro 14
Mroz 81
N
Naylor 81, 143 Norris 81 Nova 177
0
Ohta 184
O'Reilly 415
Owen 143, 22
Owen 143, 221
P
Palmer 50
Pardue 196
Parry 178, 183, 403, 415
Parry 178,
Pender 81
Pender 81
Potts 143
Poulos 71, 83, 395, 400 Prager 43 Pyrah 135

R
Randolph 112, 141, 177, 196, 370, 398,400
Razzaque 196
Razhards 162
Roscoe 75, 76, 78
Roscoe 75,
Ryder 146
S
Schlosser 71
Schofield \(48,52,54,75,76,76,78\), 134, 183
Seneviratne
Shrive 83
Skempton 80
Sloan 112, 141, 196, 370
Small 118,143,376
Symes 80,177
T
Taylor 138
Terzaghi \(25,33,35,389\)
Terzaghi 25, 33
Thurairajah 75
Thurairajah 75
Topp 109
Turner 109

Vermeer 135
Verrujit 135
W
Wood 52
Wroth \(48,52,54,71,74,75,76,78\), \(134,172,173,177,179,180,181\), \(182,183,184,403\)

\section*{Z}

Zienkiewicz 92, 103, 104, 116,143, 164,370, 454
Zytynski 177
```

