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Engineers have to predict the behaviour of various materials when they are 

loaded by mechanical forces. Geotechnical engineers are no different to other 
engineers in this respect : they have to predict the behaviour of soil whereas 
other engineers deal with steel, concrete, wood, plastics or fluids. In describing 
the behaviour of materials, engineers use a number of conceptual 'models' 
which are simplifications of real behaviour. Examples of these models include 
linear elastic solids, perfectly plastic solids and viscous fluids. If we compare the 
behaviour of each engineering material with the appropriate conceptual model, 
then we will always find some differences in detail. However, the important 
point is that the conceptual model is often sufficiently accurate for the purposes 
of engineering analysis and design. Associated with each of the examples listed 
above there is a collection of standard solutions to commonly occurring 
problems to which the engineer can refer (i.e. the theories of elasticity, plasticity 

and fluid mechanics) . 
Soil behaviour conforms less to the models of material behaviour that we 

have mentioned so far than do most engineering materials. This is because soil is 
a two-phase material consisting of solid particles and wa ter. Its response to being 
loaded is inheren tly more complex than the response of steel or concrete, for 

example. Another complicating factor arises because the distribution of soil 
properties in a typical deposit (such as stiffness and strength) is non-uniform. In 
particular, soil properties always vary with the depth below the ground surface 
and this will usually have to be taken into account in engineering design. 
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Terzaghi's effective stress principle was the first conceptual model which 
successfully accounted for the two-phase nature of soil. We believe that the 
theories known as 'Critical State Soil Mechanics' represent a similar step forward 
in describing, understanding and predicting soil behaviour. This book describes 
the critical state theories and contains an 8000-line FORTRAN computer 
program written by the authors. This program, known by the acronym CRISP 
(CRItical State Program), uses the finite element technique and allows 
predictions to be made of ground deformations using critical state theories. It 
differs from most finite element programs used in geotechnics in that it is 
possible to predict the development of deformations with time. When used in 
this way the program enforces continuity of water flow through the soil as well 
as equilibrium of total stresses. Since both critical state soil mechanics and the 
finite element technique have been developed over the last 30 years, we set out 
below a brief account of the development and characteristic features of each 
area. 

During the 1940s and 1950s, Cambridge University Engineering Department 
was at the centre of research into the use of the theory of plasticity for the 
design of steel structures. Part of this research programme involved the full-scale 
testing of steel portal frames, and the late Professor K.H. Roscoe (who was then 
a lecturer in soil mechanics in the department) was asked to assist with the 
design of the foundations. One question which Roscoe was asked to answer was: 
what would be the angular rotation of a concrete footing embedded in the 
ground when the portal frame applied an increasing moment to it? It was 
obvious that none of the existing calculations or theories in soil mechanics could 
answer this question. The theories that were then available dealt either with the 
maximum loads which bodies of soil could carry (i.e. ultimate strength theories) 
or with the prediction of settlements assuming that soil is a linear elastic 
material. What was needed was a theory which could describe the complete 
stress-strain behaviour of soil from small strains (when elasticity might be an 
appropriate description) to larger strains near failure. 

Although Roscoe was certainly not the only person to realise the importance 
of devising an adequate constitutive model for soil, he was unique in the 
methodical way he devoted the next 17 years to establishing a large research 
group which had this as a major objective. During this period a number of 
publications described the progress towards this aim. Roscoe, et al. (I958) set 
out the importance of the concept of the critical void ratio line in describing the 
behaviour of soils. Roscoe and Schofield (1963) present a complete constitutive 
model which is successful in reproducing many important aspects of soil 
behaviour. This model material was given the name 'Cam-clay' by Schofield in 

1965 and the book Critical State Soil Mechanics (Schofield and Wroth, 1968) 
elaborated in some detail the behaviour of the model material Cam-clay and 
compared this with the observed behaviour of real soils. 

Schofield and Wroth approach soil mechanics from a completely different 
direction to most accounts of the subject. They start off with an introduction to 
some of the fundamental ideas of continuum mechanics and the theories of 
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elasticity and plasticity . Subsequently these ideas are combined with a small 
number of assumptions to produce a complete elasto-plastic constitutive model 
of soil behaviour (i.e. Cam-clay). Critical state soil mechanics includes many 
ideas developed by others (e.g. Coulomb, Terzaghi, Rendulic, Hvorslev) but its 
strength is the way that it combines in one theory aspects of soil behaviour 
previously treated in an unconnected fashion. Critical state soil mechanics is now 
being taught on an increasing number of undergraduate and postgraduate courses 
in geotechnical engineering. The major contribution that it currently makes to 
engineering practice comes from the possibility of interpreting and predicting 
basic soil properties. For example, from the results of a series of undrainel 
triaxial tests on a particular soil it is possible to predict how the same soil would 
behave in drained triaxial tests (and vice versa). The critical state soil parameters 
can then be used to arrive at a rational choice of the traditional soil properties 
(angle of friction, undrained shear strength) that are used in geotechnical design. 

Proceeding along the lines described above, however, is only to use part of the 
potential of critical state soil mechanics. Simply reinterpreting basic soil 
properties does not allow (for example) the solution of Roscoe's orig~n~l 
problem of the response of the buried footing. To solve problems such as tl1iS It 
is necessary to develop a calculation procedure which keeps track of the stress­
strain behaviour of many small elements of soil surrounding the footing, 
simultaneously ensuring that the strain and stress state of each small element is 
compatible with and in equilibrium with its neighbours. The finite element 
method furnishes the basic technique which makes this possible. 

The finite element method was introduced during the 1950s as a computer­
based technique for the stress analysis of continuous structures. During the 
1960s the method was extended to non-structural problems such as heat and 
fluid flow. The finite element method has grown to be the most popular 
technique for predicting the behaviour of deformable bodies in civil, mechan.ic~l 
and aeronautical engineering. Its popularity is mostly due to the fact that It IS 
available to engineers as general-purpose computer programs. In principle all the 
engineer has to do is to describe the geometry of the problem at hand togeth 
with details of materail properties and the boundary conditions (e.g. extern,,_ 
loads) for the analysis. Thus in geotechnical engineering the same computer 
program can be used to predict the behaviour of an excavation, foundatio~ ?r 
slope. Until the last few years, relatively few engineers have had access to finIte 
element programs because mainframe or minicomputers were required for their 
operation. Now, however, the continuing fall in the price of computing equip­
ment and the development of more powerful microcomputers will soon put the 
use of finite element techniques within the scope of the majority of civil 

engineers. 
Although the availability of finite element programs greatly extends the 

analytical power available to engineers, there are attendant dangers. Usually the 
engineer using a program has not participated in the programming. This division 
of engineering activity between program writers and users can lead to mistakes 
in engineering analysis and perhaps engineering failures. This is because there is 
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considerable scope for making errors when using a program, either because of a 
lack of understanding of the underlying principles or because of a simple mistake 
in preparing the input data for the program. There is also the possibility of a 
mistake (or 'bug') in the program itself. We believe that the best ways to avoid 
these possible problems are to improve the education of engineers and to make 
available to them the source listing of programs. 

CRISP was developed over a number of years by research workers in the 
Cambridge University Engineering Department Soil Mechanics Group, starting in 
1975. Since 1977 the au thors have been responsible for the developmen t of the 
program, but it is appropriate that we should acknowledge the early 
contribution of Mark Zytynski and the later influence and contributions of 
other members of the group (John Carter, Nimal Seneviratne, Chris Szalwinski 
and Scott Sloan) . Brian Simpson (at Cambridge) and David Naylor (at Swansea) 
were pioneers in implementing critical state models in finite element programs. 
Their conclusions have also guided us . 

We have revised, rewritten, and omitted many parts of the program for its 
publication here, and in doing this we have been guided by the following 
principles: 

(a) 	 the program incorporates the critical state description of soil behaviour in 
a fashion which is as close to the classical presentation of those theories as 
possible. Thus the reader can check the output of the program with hand 
calculations such as those presented in Chapter 2 and other texts on 
critical state soil mechanics. It is possible to think of the program as a 
testing apparatus in a' numerical laboratory where soil structures made of 
Cam-clay can be tested. (The program also contains elastic descriptions of 
soil behaviour which might be used: (i) in preliminary analyses; (ii) in 
conjunction with critical state analyses to assess the importance of non­
linearity; (iii) to provide useful results in their own right - for example a 
consolidation analysis essentially generalises Terzaghi 's one-dimensional 
theory to two dimensions and allows a study of the effects of anisotropic 
permeabilities) ; 

(b) 	 we have included those features appropriate for geotechnical engineering 
analysis which are (generally) not present in other published programs; 

(c) 	 we have written and documented the program so that it is possible to 
incorporate new soil models, element types and analysis options. 

Our intention has been to produce a book which is self-contained in relation to 
the basic theories of continuum mechanics, critical state soil mechanics and 
finite element techniques as they relate to CRISP. The book contains a number 
of comments and some general advice as to when critical state theories might be 
expected to give good (or not so good) results. However, we have not included 
any comparisons of the data of soil tests with the predictions of critical state 
theories. Nor have we attempted to give a comprehensive account of the range of 

geotechnical problems to which finite elements can be applied. The application 
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of advanced analysis techniques such as those described in this book is an area 

where experience is still being accumulated . We refer readers to journals such as 
Ceo techniq ue . 

The authors are grateful to Neil Taylor and Ryan Phillips who read the drafts 

of several chapters and made many useful comments. Computing facilities were 
provided by the Universities of Cambridge and Surrey. The typescript of the 

book was produced using the GCAL text-processing program written by 
Dr. P. Hazel of the Cambridge University Computing Service, who always 
provided quick assistance with hardware and software problems. 

The authors' work on CRISP was supported by various research contracts, in 
particular from the Transport and Road Research Laboratory and British Gas. In 
this connection we would like to thank Myles O'Reilly of the former 
organisation and Malcolm Howe of the latter. Peter Wroth was responsible for 
initiating the project and supervised it in the initial stages. Andrew Schofield 
took over this responsibility, and the au thors are particularly gra teful to him for 
his continued encouragement. It was his idea that the program should be made 
available beyond the environs of Cambridge. 

Finally we must thank those who have used the program (either in their 
academic research or in their profession as engineers) . They have discussed their 
analyses with us, have let us know about the program's shortcomings and have 
told us what they would like it to do. We have learned a lot from them. Thanks 
are also due to Robert Mair, Mike Davies, Marcio Almeida, Osamu Kusakabe, 
Ken Brady, Geoff Leach, Rick Woods, Mark Randolph, Goksel Kutmen, Nobuo 
Takagi, C.Y. Ah-Teck, David Wood, Sarah Springham, R.K.W. Lung, 
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Houlsby, Shandri Nageswaran, Mr. Kwok, H.L. Goh, Dave Airey, Jo1m Mawditt, 
Ian Pyrah, Robin Andrews, Dickie Bassett, chrysanthi Savvidou, Steve Moore, 
. . . to name a few. 

Arul Britto , 

(network address: amb2@Uk.ac.cambridge.phoenix) 

Mike Gunn . 


(network address: mjgl@uk.ac.cambridge .phoenix 

or gunn@Uk.ac.surrey.syse) 


The computer programs described in this book are available on magnetic tape for 
mini-computers, and on floppy disk for IBM PC-compatible micro-computers . 

The software may be purchased from: 

Ellis Horwood Ltd., 

Market Cross House, 


Cooper Street, 

Chichester P019 lEB, 


West Sussex. 


mailto:gunn@Uk.ac.surrey.syse
mailto:mjgl@uk.ac.cambridge.phoenix
mailto:amb2@Uk.ac.cambridge.phoenix


1 

Mechanics 

1.1 COMPUTATIONAL MECHANICS 

Engineers now routinely use computer programs to predict the behaviour of 

buildings, bridges, mechanical components and volumes of soil when they are 
subjected to loads. As argued in the preface, it is important that engineers should 

understand the fundamental assumptions that are made in these analyses so they 
may appreciate and interpret the significance of the computer's numerical 
results. 'Computational mechanics' is the collective name given to the various 
theories and techniques which are involved. Mechanics is one of the oldest 
branches of natural science. (Archimedes (287-212 Be), who was concerne rl 

with the equilibrium of levers and the buoyancy of submersed objects, is usua 
regarded as being the first theoretician in the field.) Some scientists anu 
engineers use the term today to describe the particular subject area of physics 
which deals with the laws governing the behaviour of 'rigid' bodies. Here, 
however,· mechanics is regarded as encompassing such areas as con tinuum 
mechanics, the mechanics of materials, the strength of materials, the mechanics 
of deformable solids and the theories of elasticity and plasticity as well as the 
more traditional area covering the equilibrium or motion of rigid bodies. 

In all branches of engineering the finite element method is becoming 
increasingly popular as a method of solving the systems of partial differential 
equations which describe various physical phenomena. These equations may 

describe the deformation of solid bodies, the flow of fluids or almost any effect 

which can be described by the laws of classical physics. The finite element 

method is advancing on two fronts: firstly it is replacing traditionat" methods of 



Mechanics [Ch.l Sec. 1.2] Continuum MechanicsI,! 
18 19 

analysis and secondly it is opening up new fields for analysis that were 
previously regarded as intractable. The reasons for the popularity of the method 

can easily be identified. A typical finite element program provides a general 
analytical tool which is capable of being applied to a wide range of geometrical 
configurations involving a spatial variation of material properties. Also the 

conceptual subdivision of a continuum into finite elements has a strong appeal 
to most engineers. Of course the advance of finite element analysis is closely 

connected to the increasing availability of digital compu ters for engineering 
analysis. 

The traditional equations of continuum mechanics needs some modification 
when applied to soils. Some of these modifications are straightforward in nature: 
for example, the sign convention for stresses and strains. For most engineering 
materials, tensile stresses and strains are taken to be positive. Soil mechanics 
(and this book) uses the opposite sign convention (Le. compressive stresses and 
strains are positive). For the sake of completeness, and to avoid any possible 
confusion, the next section sets out the basic definitions and equations for an 
elastic material using this sign convention. Other modifications to the equations 
of continuum mechanics require rather more thought. The final section of this 
chapter considers the modifications which are necessary to take account of the 
two-phase nature of soil. Again the basic soil stress-strain behaviour is taken as 
elastic. We must emphasise before passing on that this assumption of elasticity 
is not always adequate. Soil behaviour is markedly non-linear. Chapter 2 explains 
how this behaviour can be explained within the framework of work-hardening 
plasticity. 

1.2 CONTINUUM MECHANICS 

1.2.1 Stresses and equilibrium 

Figs. 1.1 to 1.4 show the essential ideas of the equilibrium of bodies and stresses 
which are assumed in this book. 

Fig. 1.1 shows a body of material that is acted on by a number of forces. If 
the body is in equilibrium then six equations of equilibrium can be written 
which relate the forces acting on the body to one another. Three of these 
equations state that the sums of all the forces in three mutually orthogonal 
directions are zero. The other three equations state that the sums of the 
moments of the forces about three orthogonal axes are also zero. If the body is 
not in statical equilibrium then these equations can be replaced by the 
appropriate forms of Newton's second law of motion. 

Fig. 1.2 shows a planar cut across a similar body of material. Since the part of 
the body on either side of the cut must be in equilibrium there must be internal 

forces acting in the body (Le. across the plane) to maintain the state of 
equilibrium. Using the equations of equilibrium described above, six resultants 
equivalent to this system of forces (three forces and three couples) can be found. 

Considering the forces transmitted across a small area <SA inscribed on this plane, 

it is possible to defme a measure of the local intensity of the internal force 

Fig. 1.1 - Forces acting on a body 

J 

I 

Fig. 1.2 - Internal forces acting in a body 

x 
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system. These are, of course, the internal stresses acting in the material. Taking 
the plane to be perpendicular to the x axis, internal stresses are obtained: 

ax = Limit (-oFx/oA), 
5A ->0 

Txy = Limit (-oFy/oA), 
oA ->0 

Txz = Limit (-oFz/oA). 
oA ->0 

The reader should note that while six force resultants were necessary to describe 
the interaction of the two parts of the body, only three stresses are needed to 
describe the local intensity of forces at one particular point on the surface. This 
is because the force distribution is considered to be essentially continuous, and 
as the small area oA shrinks in size the force distribution over the area 
approaches a constant value. The couples arise from integrating the stresses over 
the cutting plane. 

z '~ 
ax 

-k::
Tyz 

y 

Fig. 1.3 - Definition of stress components 
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To completely define the state of stress at a point in the material it is 
necessary to consider the internal forces acting on three mutually perpendicular 
planes through the point. Thus stress components ay , Tyx and Tyz act on a plane 
perpendicular to the y axis and stress components az , Tzx and Tzy act on a plane 
perpendicular to the z axis. Considering the equilibrium of an infinitesimal cube 

of material (Fig. 1.3): 

Tyz = Tzy , 

TzX = Txz · 

Hence there are six independent components of stress at a point in the material. 
Usually the state of stress in a body is not constant but varies from point to 

point. Considering the equilibrium of an infinitesimal cube of material in a 
varying stress field (Fig. 1.4), the following equations are obtained: 

z 

.. 
0y 

+ aoy .liy-
ay0y 

+ aTXY .lixTxy 

ax 

Tzy 

y 

Fig. 1.4 - Stresses acting in a varying stress field (only stresses appearing in the 
equilibrium equation for the y direction are shown) 

aax aT)'x aTzx--+--+-- =wx, (1.1 ) 
aX ay az 

aTxy aay aTzy--+--+-- =wy , (1.2)
aX ay az 

x 
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arxz aryz aoz--+--+-- =Wz , (1.3)
ax ay az 

where wx , wyand W z are the body forces per unit volume in the directions of 
the x, y and z axis respectively. If the y axis points vertically upwards then the 

body forces corresponding to the self-weight of the soil are Wx = 0, Wy = I 
and W z = 0, where 'Y is the soil's unit weight. 

1.2.2 Displacements and strains (compatibility) 

When a material is strained, a typical point with co-ordinates (x, y, z) moves to a 
new position (x + dx , y + dy~ z + dz ). Except for the case when the body is 
given a rigid-body translation the displacements dx , dy and dz will vary across 
the body (i.e. they will each be functions of x, y and z). 

Fig. 1.5 shows three infinitesimal fibres of length ox, oy and OZ in a material 
and their new locations following straining. The direct strains Ex, Ey and Ez and 

the engineering shear strains 'Yxy, 'Yyz and 'Yzx are given by 

z 

v 

Fig. 1.5 - Definition of displacements 

adx 
E =--- (1.4) 
x ax' 

ady
E =--- (1.5)
Y ay' 
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adz 
Ez = ---, (1.6)az 

ady adx
'Yx =------, (1.7) 

y ax ay 

adz ady
'Y =---- ( 1.8) yz ay az ' 

adx adz 
'Y =---- (1.9)zx az ax . 

Most texts on continuum mechanics or elasticity use the symbols u, v and w 
for displacements. We use dx , dy and dz to avoid confusion with the normal soil 
mechanics convention of u for pore water pressure and v for artificial seepage 

velocity. Note that a side effect of reversing the normal sign convection for 
strains is that a positive shear'strain 'Yxy corresponds to an increase in the angle 
between two fibres initially aligned with the x and y axes (see Fig. 1.6). 

Fig. 1.6 - Positive shear strain for our sign convention 

1.2.3 Elastic stress-strain relations 

If elastic material is stressed in the x direction by a direct stress ax then it 
experiences strains: 

Ex = 0x/E, 

Ey = -vox/E, 

Ez = -vox/E, 

x 
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where E is Young 's modulus (or modulus of elasticity) of the material and v is 
Poisson's ratio. A shear stress Txy gives rise to a shear strain: 

"Ixy = Txy 2(1 + v)/E. 

The effects of three direct stresses and three shear stresses can be superposed to 
give the generalised form of Hooke's Law : 

EX = ox/E - vOy/E - vOz/E, 

Ey = -vox/E + oy/E - vOz/E, 

Ez = -vox/E - vOy/E + oz/E, 

"Ixy =Txy 2(1 + v)/E, 


"Iyz = Tyz 2(1 + v)/E, 


"Izx = Tzx 2(1 + v)/E. 


These equations can be written in matrix form: 


Ex l/E -v/E -v/E 0 0 0 ax 

Ey -v/E l/E -v/E 0 0 0 Oy 

Ez -v/E -v/E l/E 0 0 0 Oz 
(1.10) 

"Ixy 0 0 0 l/G 0 0 Txy 

"Iyz 0 0 0 0 l/G 0 Tyz 

"Izx 0 0 0 0 0 llG Tzx 

where G (which is equal to E/(2(1 + v») is the elastic shear modulus. These 
relations can be inverted to give stresses in terms of strains: 

Ox I-v v v 0 0 0 Ex 

0y v I-v v 0 0 0 Ey 

Oz V v I-v 0 0 0 Ez 

Txy 0 0 0 0.5 -v 0 0 "Ixy 

Tyz 0 0 0 0 0.5 -v 0 "Iy z . ~ 
Tzx 0 0 0 0 0 0.5 -v "Izx 

(1.11 ) 

where 

E 
A=---- -­

(I - 2v) (1 + v) 
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This relation is often written in matrix notation: 

a= DE:. (1.12) 

It is sometimes more convenient to write these equations using the elastic 
parameters G (defined above) and K (the elastic bulk modulus). In fact it can be 
argued (see the next section) that it is preferable to use these parameters when 
defining the elastic properties of soil. K is the elastic modulus which appears in 
the equation relating volumetric strain to change in mean normal stress : 

(ox + Oy + oz)/3 =K(Ex + Ey + Ez) 

where 

E 
K 

3(1 - 2v) 

The D matrix can be written: 

Dl D2 D2 0 0 0 

D2 D\ D2 0 0 0 

D2 D2 D) 0 0 0 

0 0 0 D3 0 0 

0 0 0 0 D3 0 

0 0 0 0 0 D3 

where 

D) =K + (4/3)G, 

D2 = K - (2/3)G, 

D3 = G. 

1.3 SOIL MECHANICS 

1.3.1 Effective stresses 

Saturated soil is a two-phase continuum consisting of solid particles and water in 
the pores. Terzaghi showed that the definition of effective stresses allows a 
rational treatment of the stress-strain behaviour. Effective stresses are defined 
by the equa tions 

I 

°x=ox- u , 


0; = Oy -u, 


OZ' = Oz -U, 


I

Txy = Txy , 

i 
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, 
TZX = TzX , 

where u is the pore water pressure. 
Terzaghi's principle of effective stress states that all measurable effects of a 

change in stress in soils (such as compression, distortion, or a change in shearing 
resistance) are due to changes in effective stresses. Thus changing the pore water 
pressure and normal total stresses by equal amounts produces no strains. 

One consequence of Terzaghi's principle is that when soil (either dry or 
saturated) is to be described by elastic stress-strain relations, the equations must 
refer to effective (ra ther than total) stresses. Thus it is appropriate to write 

a' = D'€' 	 (1.13) 

where the matrix D' contains elastic moduli E' and v' rather than E and v. The 
significance of these 'effective stress parameters' (Le. E' and v') will be discussed 
further below. In geotechnical problems we are frequently interested in strains 
caused by changes in effective stresses and so we rewrite (1.13) as 

00' = D'o€,. 	 (1.14) 

00' and OE represent incremental changes in effective stresses and strains. 

1.3.2 A physical interpretation of effective stress 

A physical interpretation of soil effective stresses will be useful in thinking about 
soil behaviour and in particular the role of effective stresses as defined above. A 
good mental picture of soil structure is a collection of approxima tely spherical 
solid particles surrounded by water. t When loads are applied to the soil, the 
loads are transferred internally through the soil partly by the solid phase and 
partly by the water. Loads transferred by the solid phase are transferred between 
the particles via their points of contact. If a plane is constructed through a 
typical contact point (Fig. 1.7) then eqUilibrium of forces across the plane gives 

Aa = Awu + Asac 

where 

A is the area of the plane 

Aw is the area of the plane across which the force is transmitted 
by the water 

As is the area of the plane across which the force is transmitted 
by the particle contact 

t 	 Of course, neither clays nor most sands are really like this. The point is that the simpli­
fied 'mental picture' is capable of yielding results which are appropriate to real soil 
behaviour. It is not necessary to refine the mental picture to include factors such as 
actual particle shape. 

Sec. 1.3] 	 Soil Mechanics 

.. A 

Fig. 1.7 - Forces acting on a plane through particle contact point 

a is the total stress acting normal to the plane 

u is the pore water pressure 

is the average contact stress between the two particles. 

Now Aw ~ As, i.e. Aw is approximately equal to A, so it is possible to write 

(As/A)ac = a-u 

Thus effective stresses can 'be regarded as the contact forces between soil 
particles averaged over the whole area of the soil. 

1.3.3 Elastic constants for dry soil 

How do we make use of the appropriate 'effective stress moduli' when soil is 
loaded? We shall answer this question by first considering the (relatively) simple 
case of dry soil with air in the pore space. The important poin t to appreciate is 
that the effective stress elastic moduli for soil describe the elastic properties of 
an assemblage of soil particles rather than the elastic moduli of the material 
which makes up the solid phase of the soil. Consider a cylindrical sample of dry 
soil in a triaxial apparatus. Again we think of the soil as being a collection of 
roughly spherical particles, now with elastic properties. t If an all-round total 
pressure is applied to the sample, then the strains can be calculated from (1.14). 

t 	 Even when elastic modelling of soil is appropriate (for example : the calculation of small 
deformations of over-consolidated soils) this mental picture is not quite accurate. 
However, it turns out again that the conclusions we draw from this model are 
appropria te to real soil behaviour. 
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I 
(In this case the effective stresses are the same as the imposed total stresses since 

the pore water pressure is zero.) The shear strains are zero and the volumetric 

strain can be calcula ted from 

oV/V = oo/K'. (1.15) 

An examination of the collection of elastic soil particles would reveal some 

flattening of the contact points between the particles, but apart from this they 
would not change in shape very much. A very small change in volume of the 
particles would be accompanied by a larger change in volume of the void space 
(see Fig. 1.8). Thus the elastic bulk modulus K' is measuring the bulk stiffness 
of the collection of particles rather than the stiffness of the material which 
constitutes those particles . In other words the soil is more 'squashy' than if there 
were no voids presen t. 

r;: - - --- - ----- -;1 
I 
I 
I 

I 
It..:: ____________ ~ 

Fig. 1.8 - Consider a cou<-ction of spherical particles in a 'simple cubic' packing 
(where each sphere is in contact with six neighbours). A 1 % direct strain in three 
directions corresponds to a volumetric strain of 3% in the 'unit cell' and thus the 
overall soil mass. If the particles are rigid, apart from flattening of the contact 
points, then approximately 0.02% of this strain is due to a change in volume of 
the solid particles and the remaining 2.98% is due to a change in volume of the 

void space 

1.3.4 Elastic constants for saturated soil 

Now consider a specimen of saturated soil in a triaxial apparatus. The pore water 
pressure is initially at atmospheric pressure and the drainage tap is turned off 

before the soil is loaded. An all-round total pressure 00 is now applied to the 
triaxial sample. 

If V is the volume of the soil and Vs and Vw the volumes of the solid and 
water phases, then 

( 1.16) 
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Resulting from the change in all-round pressure the soil decreases in volume by 

oV. This overall decrease in volume consists of decreases in the solid and water 

phases 0 Vs and 0 Vw respectively. Clearly: 

(1.17) 

Note that the normal assumption is that saturated soil is incompressible when 
drainage is not allowed. Here, however, we are attempting an accurate analysis of 
the very small changes in volume which take place. These are given by 

oV/V = (lIKu) 00, (1 . ' 

oVw/V= (lIKw)ou, (1.L, 

oVs/V = (lIKs)ou, (1.20) 

where Ku. Kw and Ks are the elastic bulk moduli of the soil composite and the 
two phases (i.e. water and solid) respectively. Equations (1.18) and 0.19) are 

definitions of Ku and Kw. Equation (1.20) perhaps needs some comment: the 
volumetric compression of the solid particles is caused by the increase in pore 
water pressure (see Fig. 1.9). The change in effective stress 00' must be 

consistent with the two equations 

oo=oo'+ou, (1.21) 

oV/V = (l IK ')00'. (1.22) 

Fig. 1.9 - Change in volume of the solid particles is due mainly to the change in 
pore water pressure which acts on them 

Equations (1.17) to (1.22) can be regarded as six equations in six unknowns 

(8 V. 0 Vw, 0 Vs, 00', OU and Ku). Manipulation of the equations gives 

V 1 
Ku=K'+Kw -- . 0.23)

Vw (Kw/Ks) (Vs/Vw) + 1 
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Since the elastic bulk modulus of the grains is about 30 times as large as that of 

water, (1.23) can be written: 

(1.23a) 

A further simplification follows the observation that K' is much smaller than 

Kw : 

(1.23b) 

Here it is convenient to introduce the normal soil mechanics definition of the 

voids ratio: 

e = VwlVs 

and therefore : 

Ku == (1 + l/e)Kw' (1.23c) 

Thus the bulk compressibility of saturated soil is effectively due to the bulk 
compressibility of the water phase alone (but taking account of the fact that 
the water only occupies a certain fraction of the soil volume). The approxi­
mations that we have made in obtaining this result are equivalent to taking 

oV= 0 Vw, 0 Vs = 0, oa' = 0 and ou = oa in equations (1.17) to (1.22) . There­
fore the undrained loading produces no change in the effective stresses: the 
external load is carried by the pore water pressure. 

Now suppose that the drainage tap is opened. The difference in pressure 
between the pore water in the sample and the water outside causes water to 
flow out of the sample . The rate at which this outflow takes place is controlled 
by the pore size of the soil, but eventually the pore water pressure in the sample 
returns to atmospheric pressure. The change in the effective stress is now equal 
to the change in the total stress (oa' == oa) and the volumetric strain can be 
calculated from 

oVIV = oa/K'. 

This equation is identical to (1.15), which gave the volumetric strain for dry soil. 

When calculating the long-term soil strains we must clearly use the effective 

stress elastic properties. Soil is a rather special kind of material when examined 
from the viewpoint of traditional continuum mechanics. This is because the 
elastic volumetric 'strain' associated with the definition of effective bulk 
modulus is due to the disappearance of some water from a small element of soil 
rather than a change in volume of the individual components which make up the 
soil. 

This example demonstrates the difference between two modes of soil 

behaviour which geotechnical engineers often identify. Drained deformation 
takes place when the soil is strained slowly and the water in the soil pores 

escapes as the water pressures return to their original (perhaps hydrostatic) 
values. In undrained deformation the straining takes place sufficiently quickly so 
that the water does not have the time to flow out of the pores, i.e. the soil 
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behaves essentially as an incompressible material. So far we have been looking at 

the volumetric behaviour of soil and we have identified two elastic bulk moduli: 
Ku appropriate for undrained behaviour and K' appropriate for drained 
behaviour. In Table 1.1 we summarise the relationships between the full set of 
eight elastic moduli which describe isotropic behaviour. 

Table 1.1 

Elastic 

constant 

E' (Regarded here as an independent parameter) 
v' (Regarded here as an independent parameter) 
K' =E'/(3(1 - 2v')) 
G' = E'/(2(1 + v')) 

Eu = 1.5E'/(1 + v') (see text) 

0.5 

Infinite 

= G' (see text) 

Since the pore water has no shear stiffness it cannot make a con tribu tion to the 
elastic shear stiffness of the soil. Thus the symbol G(= G ' = G ) is usually usedu 
for shear modulus. Note that this implies E'/(2(1 + v')) = Eu/3, and this 
equation is used to obtain the relationship between E' and Eu quoted in Table 
l.1. 

It should now be possible to appreciate the comment in section 1.2 that K 
and G are elastic properties more appropriate for the description of soil 
behaviour (more appropriate than E and v , that is). G remains the same for 
drained and undrained behaviour, and the effective bulk modulus K' allows the 
calculation of drained volumetric strains. If partially drained behaviour is 
considered (that is before pore pressure equilibrium is finally reached) then G is 

again appropriate for the calculation of shear strains and some value of K 
between K' and infinity could be assumed for the calculation of volumetric 
strains. 

13.5 Flow of water through soils 

The rate of flow of water through soil is controlled by two factors , firstly the 
size of the pores and secondly the gradient of water pressure which is tending to 
cause the flow . These two factors are encompassed in Darcy's Law: 

v = ki 

where 
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v is the 'artificial' velocity of the water (Le. the flow rate divided by 

the whole cross-sectional area through the soil) 

k is the soil permeability (independent of flow rate for a wide range 
of velocities) 

is the hydraulic gradient. 

The definition of hydraulic gradient is shown in Fig. 1.10. Note that the position 
of the datum shown in the figure is arbitrary - only the gradient of hydraulic 
head appears in Darcy's Law. In this book the term 'excess pore pressure' is 
defined as the hydraulic head divided by the bulk density of water: 

z 

!:!.A 
Iw 

V 
B-'" 

os 

A 

L-____~_~___________ X~_~________ 

Fig. 1.10 - Hydraulic gradient = --fjh/os, a positive gradient causing flow from 
A to B 
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Ii = h/rw; (1.24) 

thus it is always possible to calculate the actual pore pressure from an excess 
pore pressure (and vice versa) by an equation of the form 

u=u+z'Yw (1.25) 

where z is the height of the point at which the pore pressure is being measured 
above the arbitrary datum. The reader should note that our definition of 
hydraulic head is the standard one. The definition of excess pore pressure, 
however, differs from that given in some texts on soil mechanics. This different 
arises because it is normal to consider steady seepage problems (where po. 
pressures do not change with time) separately from consolidation problems 
(where pore pressures vary with time). In the former case, hydraulic head is the 
basic varia,ble used in solving the problem whereas excess pore pressures are 
used in the latter case. For the purposes of our finite element formulation we 
need to link together these two quantities and this is done via (1.24) . Consider 
an analysis of a consolidation problem with under-drainage (as in section 3.6.4). 
Using the present definition of excess pore pressure, the final state of steady 
seepage downwards has a linear variation of excess pore pressure. In contrast it 
would often be assumed that the excess pore pressure is the time dependent 
component of the pore pressure which eventually decays to zero. The point to 
note is that both definitions of excess pore pressure satisfy the basic differential 
equation derived by Terzaghi (Terzaghi and Frohlich, 1936): 

au a2 u 
-=c --­at v az 2 ' 

where C v is the coefficient of consolidation. 
Geotechnical engineers often need to predict the distribution of pore 

pressures in a mass of soil under the condition of steady seepage. · The basic 
equation which must be satisfied at all points within the soil is obtained by 
considering the flow of water into and out of an infinitesimal element of so 
(Fig. 1.11 ) (under conditions of steady seepage there must be no voluIT. 

change): 

avx + avy + avz = o. (1.26) 
ax ay az 

The permeability of the soil may be different in the directions of the three 

co-ordinate axes, and the general form of Darcy's Law is 

kx au 
vx =-- -, (1.27) 

'Yw ax 

ky au 
vy =---, (1.28)

'Yw ay 
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kx a2 ii ky a2 ii kz a2 ii av 
-+- - +- - +-=0 (1.31 ) 2 2'Yw ax 'Yw ay2 'Yw az at 

where the last term in this equation is equal to the rate of volumetric strain of a 
soil element. 

This equation together with the equations of differential equilibrium, the 
equations defining effective stresses and the effective stress-strain relations are 
known as Biot's equations of consolidation (Biot, 1941). The one-dimensional 
form of these equations is precisely equivalent to Terzaghi's one-dimensional 
consolida tion theory. 

z 

I 

I 

x 

y 

Fig. 1.11 - flow out of a small element of soil 

I 

I aiiI ; I kz 
Vz =---· (1.29)

'Yw az 

Substituting these relations into the equation of continuity (1.26): 

a2 ii a2 ii a2 ii 
k -+k -+k -=0. (1.30)x ax2 y ay2 z az 2 

For the same permeability in all directions (i.e . kx = ky = kz ) this equation 
reduces to Laplaces equation which governs a number of other physical 
phenomena (e.g. the flow of electricity in a conducting medium and the stresses 
in an elastic bar under a torsional load). 

These equations may be extended to the case of time dependent flow of 
water in soil. The basic equation now becomes 
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Critical State Soil Mechanics 

2.1 INTRODUCTION 

The theories of soil behaviour known as 'critical state soil mechanics' were 
developed from the application of the theory of plasticity to sOil mechanics. It 
is possible to appreciate and use many of the ideas of critical state soil mechanics 
without making much reference to the theory of plasticity. Indeed there is a 
tendency to teach critical sta te soil mechanics in this way because many degree 
courses in civil engineering do not find room for a proper account of plasticity 
theory . We regret this . In our view a real appreciation of critical state soil 
mechanics requires a knowledge of plasticity theory . To understand how soil 
deformations can be predicted (for example by a finite element program such as 
CRISP) using the theories of critical state soil mechanics, familiarity with 
plasticity theory is essential. Hence the first few sections of this chapter are 
devoted to an explanation of some of the fundamental ideas in this theory. 

Fig. 2 .1 shows the stress-strain curve obtained from testing a bar of metal in 
a tension test. Initially the relation between stress and strain is linear (OA in the 

figure). If the bar is unloaded from any point on OA then the stress-strain 
relation for the material follows the same path but in the reverse direction to the 

origin . If the bar is loaded beyond A then subsequent unloading is also 

reversible, even though part of the stress-strain relation is non-linear. However, 

there is a point B beyond which unloading is not reversible: this is called the 
yield point of the material. When the bar is loaded up to the point C and then 
unloaded, the path CD is followed. 00 represents a permanent strain which 
remains on unloading. This permanent strain is known as the plastic strain 
experienced by the metal. 
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Stress 

___~----_ F 

o Srr ain 

Fig. 2.1 - Stress-strain curve typical of many metals 

Up to point B the behaviour of the bar is regarded as being elastic. It is the 

reversibility rather than the linearity which is the important feature of behaviour 
which distinguishes between elastic and plastic straining of a ma terial. However, 
points A and B can often be regarded as being coincident for practical purposes. 
When the material is in a state represented by the point C, the total strain OE is 
made up of the plastic strain 00 and an elastic strain DE which is completely 
recovered on unloading. The slope of the elastic unloading line CD is usually 

very close to the initial elastic loading portion OA. 
Reloading the metal from the point D results in the line DC being followed 

until the point C is reached which is the new yield point of the material. Further 
loading follows a continuation of the original stress-strain curve until the 
maximum stress is reached (point F) when the bar fails. The stress at the point F 
(i.e. FG in the figure) is the strength of the metal in direct tension . This is often 
called the ultimate tensile strength or (UTS). 

Suppose that two similar bars of the same metal are tested. The first has gone 
through a stress cycle OCD, but the second has not. The first bar has a higher 
yield point than the second and thus the material seems to be harder. The 
process of raising the yield poin t is called 'hardening' the ma terial. The amoun t 
that the yield stress is raised is often linked to either the plastic strain or the 
mechanical work that is done on the material. Thus the terms 'strain-hardening' 

and 'work-hardening' are often used to describe this kind of behaviour. 

The type of behaviour described above is typical of an alloy of aluminium 

such as duralumin. Other metals (and soils) display plastic behaviour which is 

broadly similar to that described above, but the behaviour shows some 

differences in detail. Some of these differences are shown in Fig . 2.2 . Fig. 2.2(a) 

shows the phenomenon of an upper yield point which is displayed by low­
carbon steels. Fig. 2.2(b) shows that, when a material is unloaded from tensile 
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Stress 

Strain 

Fig. 2.2(b) - The Bauschinger effect (aYI > ay~) 

Stress 

Strain 

Fig. 2.2(a) - Upper and lower yield points for a mild steel 

Stress 

Strain 

Fig. 2.2(c) - Anelastic behaviour: the shaded area represents an amount of energy 
dissipated during the 'elastic' hysteresis loop 

yielding, it can yield in compression at a lower stress than if it were reloaded in 
tension. This is known as the Bauschinger effect. Fig. 2.2( c) shows the 
phenomenon of anelasticity or elastic hysteresis. A material which has been 
subject to elastic unloading and is then reloaded does not always follow exactly 
the same stress-strain path. The shaded area within the 'hysteresis loop' of the 

" stress-strain curve represents an amount of energy which is dissipated during 
! straining. 

Sec. 2.2] Idealisations of Plastic Behaviour 

2.2 IDEALISATIONS OF PLASTIC BEHAVIOUR 

Plasticity is a very useful feature of the behaviour of metals for anumber of 
reasons. Firstly a large amount of plastic straining before failure (known as 
ductility) signals the imminent collapse of a structure before catastrophic 
failure occurs. Secondly the ability to deform metals plastically under high 
stresses is the basis of many manufacturing processes such as rolling, drawing, 
machining or pressing in dies. Thirdly the complete description of the strength 
of metals within the mathematical theory of plasticity allows buildings and 
mechanical engineering components to be designed to provide a factor of safety 
against overall collapse (rather than designing to prevent some local part of the 
structure from becoming overstressed). 

The plastic behaviour of soils allows a rational treatment of bearing capacities 
of foundations and the failure of slopes, excavations and tunnels. It also allows 
complete description of the stress-strain behaviour of soils so that soil 
deformations can be predicted right up to failure. Admittedly the behaviour of 
soil is more complex than is accounted for by current elasto-plastic models of 
behaviour. However, attempts to produce new mathematical descriptions of soil 
behaviour invariably use the framework of elasto-plasticity. 

In order to predict the behaviour of engineering structures when plastic 
behaviour is involved, the first step is to choose an appropriate idealisation of 
plasticity. In such an idealisation the main features of the behaviour are 
identified and included in the description, but aspects of secondary importance 
are ignored. Fig. 2.3(a) shows the idealisation known as elastic-perfectly plastic. 
Here the first part of the stress-strain curve is linear and elastic until the 
material yields. The material then continues to deform at a constant yield stress. 
In the terminology of plasticity the material exhibits no strain-hardening. Fig. 
2.3(b) shows the simplest way of incorporating strain-hardening into an 
idealisation. When the material yields, the stress-strain curve is still linear but at 
a reduced slope. This type of behaviour is referred to as elastic-linear-strain­
hardening plastic. Sometimes (when only collapse loads are to be considered in a 
calculation) it is convenient to idealise the behaviour as rigid-plastic (see Fig. 
2.3(c)). 

The idealisations of plastic behaviour which have just been described will 
sometimes be suitable to describe the behaviour of soil. (Indeed the rigid-plastic 
idealisation underlies most stability calculations in soil mechanics.) However, soil 
exhibits a rather more complex behaviour than metals, and the main aim of this 
chapter is to describe a more appropriate idealisation. 

To completely describe the stress-strain relations for an elasto-plastic 
material, four different types of statement are required. 

(a) 	 A yield function for the material. This generalises the concept of the yield 
stress described above to two- and three-dimensional stress states. 

(b) 	 A relationship between the directions of the principal plastic strain 
increments and the principal stresses. 

II 
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(c) 	 A flow rule for the material. This specifies the relative magnitudes of the 
incremental plastic strains when the material is yielding. 

(d) 	 A hardening law for the material. This is a relationship between the 
amoun t a material hardens and the plastic strain the rna terial undergoes 
or the work that is done on the material when it is yielding. 

Each kind of statement is considered in more detail in sections 2.3 and 2.4. 

(a) Elastic -perfectly-plastic 

Stress 

Strain 

(b) Elastic, strain-hardening plastic Stress 

(c) Rigid, perfectly-plastic 
Stress 

Strain 

Fig. 2.3 - ldealisations of plastic behaviour 

Sec. 2.3] 	 Yield Functions 

2.3 	YIELD FUNCTIONS 

So far the discussion of plastic behaviour has been limited to the case of uniaxial 
straining - only one stress has been involved in describing the loading applied to 
the material. When a material is subjected to two- or three-dimensional states of 
stress, then whether the material is elastic or plastic will in general depend on all 
the stress components acting (which number six in the fully three-dimensional 
case). When material behaviour is isotropic (same properties in all directions), 
then it is only necessary to consider the values of the principal stresses (oa, 0b, 

and oc). 

2.3.1 	 Yield functions for metals 

For the case of metals, two criteria for 'elastic breakdown' are due to Tresca and 
von Mises. Tresca's criterion states that plastic yielding starts when the 
maximum shear stress reaches a certain value k. This happens when the principal 
stresses satisfy the following equation: 

(2.1) 

This equation can be represented in principal stress space as the surface of a 
prism with a hexagonal cross-section, centred on the hydrostatic (oa = 0b = 0c) 
axis (see Fig. 2.4). When the stress state of an element of material is represented 
as a point inside this surface, the material behaviour is elastic. When the stress 
state is described by a point on the surface, then the material is yielding. (Stress 
states au tside the surface are impossible to attain.) 

Fig. 2.4 - The Tresca yield surface 

von Mises' criterion states that plastic yielding starts when the following 
equation is satisfied: 

(2.2) 
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This criterion is equivalent to plastic yielding starting when the elastic strain 
energy due to shearing reaches a critical value. Here Oy is the yield stress in 
uniaxial tension. (Considering the stress state in uniaxial tension we see that 
Tresca's k = O.5oy.) In principal stress space, (2.2) is equivalent to a cylindrical 
surface (Fig. 2.5) which coincides with the Tresca surface on the edges (Le. 

where Oa = 0b or 0b = Oc or Oc = oa)· 

Hydrostatic 
axis 

Fig. 2.5 - The von Mises yield surface 

In general a yield function for an isotropic material is written: 

f(oa, 0b, Oc) = 0, 

this equation representing a surface in three-dimensional stress space. The Tresca 
and von Mises yield criteria are two examples of the more general form. It is 
conventional to write the yield function in such a way that if one substitutes 
into the function the current stress state, then a negative value of the function 
indicates that behaviour is elastic (inside the yield surface). A zero value of the 
function indicates that yielding is taking place, and by convention positive 
values are not allowed. 

2.3.2 Some yield functions suggested for soils 

Now we turn to a yield surface perhaps more appropriate for soils. In 1773 the 
French engineer Coulomb (Coulomb 1773) introduced in his analysis of the 
thrust acting on a retaining wall the failure condition for soil (usually called the 
Mohr-Coulomb criterion) which is still in wide use: 

T = C + 0 tan ¢. 

Sec. 2.3] Field Functions 

Today, geotechnical engineers prefer to write this equation in terms of effective 
stresses: 

T = c' + 0' tan ¢', (2.3) 

Although this equation is normally interpreted in terms of a Mohr's circle plot, 
we can instead represent this failure criterion in the three-dimensional stress 
space that we have been using to describe the yielding of metals. This is achieved 
by rewriting the equation: 

o{ -o~ =sin¢'(o; +o~ +2c'cot¢') 

where 0 { and 0 ~ are the major and minor principal effective stresses 
respectively. Taking account of the six possible permutations of the magnitudes 

of o~, ob and o~ (i.e. o~ > ob > o~, o~ > o~ > Ob' etc.) six planes are generated 
in (o~, ob' o~) space. Thus the Mohr-Coulomb yield criterion is equivalent to 
the irregular hexagonal pyramid in principal effective stress space shown in Fig. 
2.6. In fact the Mohr-Coulomb criterion represents an incomplete picture of the 
yielding of soils. Firstly, soils show evidence of volumetric yielding under 
isotropic stress changes where Mohr-Coulomb suggests elastic behaviour. 
Secondly, if one follows the normal approach of calculating plastic strains when 
yielding (as used for metals and described in section 2.4.2), then the predictions 
of expansive volumetric strains are unrealistic. 

Hydrostatic 
axis 

jt:-...r"7.L:-------___ 0b 

Fig. 2.6 - The Mohr-Coulomb yield surface 

We conclude this section on yield surfaces with the yield surface proposed by 
Drucker & Prager (1952). For some metal plasticity calculations, von Mises is 
more convenient than Tresca, and so Drucker and Prager believed it might be 

useful to 'round-off the Mohr-Coulomb yield surface to give the conical surface 
for soils shown in Fig. 2.7. This has all the drawbacks of the Mohr-Coulomb 
yield surface and gives a worse fit to the data of soil failure. As a yield surface 
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Hydro sl a lic 
axis 

/ 

Fig. 2.7 - The Drucker-Prager yield surface 

for soils, it does not have much in its favour, and we include it partly to 
'complete the set' and partly because the conical shape reappears in the Cam­
clay model, not as a yield surface, but as the 'critical state cone' (see Chapter 5). 

2.3.3 The hardening law 

The hardening law generalises the concept of the uniaxial yield stress being 
increased by strain-hardening to more general stress states. Hardening a material 
can result in the yield surface either being enlarged or being translated in stress 
space (or perhaps some combination of the two) . These two possibilities are 
illustrated in Fig. 2.8. The former is normally called 'isotropic-hardening' and 

the latter 'kinematic-hardening' . The kinematic-hardening assumption can 
describe behaviour such as the Bauschinger effect described earlier. Although the 
assumption of isotropic-hardening is less realistic for many materials, it is more 
often used because it is simpler to describe mathematically. If the loading 
applied to the material is monotonic , then the assumption of isotropic-hardening 
will be adequate (because the 'opposite ' side of the yield surface is not 
encountered). The hardening law is incorporated into the yield surface equation 
by writing 

tea, h) = 0, (2.4) 

where h is a vector of hardening parameters . The hardening parameters will 
define the size of the yield locus and there will be some prescribed relationship 
between the hardening parameters and the components of the plastic strain (for 
a strain-hardening material). In the simplest case, there may be just one 
hardening parameter, say h" which may be the same as the yield stress in 
uniaxial tension , for example . One particular value of h 1 will be relevant for a 

Sec. 2.4] Plastic Strains 

yield locus of a certain size, and after strain-harding there will be a larger yield 
locus associated with a larger value of hi' 

(a) Isotropic-hardening 

(b) Kinematic-hardening 

00 

Fig. 2.8 - Two methods of describing hardening 

2.4 PLASTIC STRAINS 

2.4.1 Co-incidence of principal axes 

Consider a cube of material which is subjected to principal stresses aa , ab , and 
a c (Fig. 2.9(a». A small incremental shear stress or is now applied to four faces 
of the cube. If the cube deforms elastically then the incremental strains are as 
shown in Fig. 2.9(b). If the cube deforms plastically then the incremental strains 
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are as shown in Fig. 2 .9(c). In elastic behaviour the directions of the principal 
strain increments coincide with the directions of the principal stress increments. 
In plastic behaviour the directions of the principal strain increments coincide 
with the directions of the principal stresses (not the principal stress increments) . 
This coaxiality of the principal strain increments and the principal stresses is 
associa ted with plastic theories describing isotropic material behaviour. 

°b 

~ 

°a ° 

Fig. 2.9(a) - Side v iew of cube °b 

°b 
OT - ....r - -- I 

I I 
I I OTI I 
I I 
I I ­
I 
I 

°a 	 I °a 
OT 	 I

I 
I I 

____ .1L ---, 

II 	 OT 
I , 

°bI 
I 	 Fig. 2.9(b) - Elastic response Fig. 2.9(c) - Plastic response 


to an increment of shear stress to an increment of shear stress 

1 

Fig. 2.9 - Elastic and plastic response of a cube subjected to shear (only the side 
view is shown; 0c is the out-of-plane stress) 

2.4.2 Flow rules 

The flow rule for a plastic material gives the ratios of the plastic strain 
increments when the material is yielding in a particular stress state . Thus a flow 
rule describes the relative sizes of individual strain increments, but not their 
absolute sizes. The flow rule is given mathematical expression by the following 
equation: 

Sec. 2.4] 	 Plastic Strains 

(2.5) 

In this equation, om is known as the plastic multiplier (the reader should note 
that many writers use the symbol dA instead of om: this usage is not applied 
here to avoid confusion with the use of A in critical state soil mechanics). The 
function g is known as the plastic potential. 

The use of a potential function is a natural way of describing a vector 
quantity which depends only on the location of a point in space. A potential 
function is a scalar function of position, and taking the partial derivatives of the 
potential with respect to the co-ordinate axes, a uniquely defined direction is 
obtained. 

The plastic potential g(oa, 0b, oc) = 0 defines a surface in principal stress 
space. If vectors representing plastic strain increments are plotted in stress space, 
then the strain increment vectors are normal to the potential surface (Fig. 2 .10). 

The form of the plastic potential function for a material could be determined 
by performing many careful experiments. However, for many materials, the 
yield function and the plastic potential appear to be the same: 

g(oa, 0b, Gc) =I(Ga, 0b, oc). When g =I it is often said that the condition of 
'normali ty' holds (this is because vectors of plastic strain incremen t are normal 
to the yield locus). Alternatively this situation is sometimes described as being 
one of 'associated' flow, in contrast to the case when g is not equal to I and 
there is said to be 'non-associated' flow. 

Strain increment 
vector 

Plast ic potential 

Fig. 2.10 - The plastic potential 

Hill (1950) discusses the plastic deformation of metal crystal grains and 
comments 'It is likely, therefore, that there is a relation, from a statistical 
average over possible orientations of the grains in a polycrystal, between the 
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plastic potential g and the function lea) defining the yield locus. It is not yet 
known what this should be, theoretically, for any particular metal. 

'It seems, however, tha t the sim pie relation g = / has an especial place in the 
mathematical theory of plasticity, for as will be shown later, certain variational 
principles and uniqueness theorems can then be formula ted.' 

Although normality (g =f) appears to be true for metals, we shall see that 
there has been some discussion (even controversy) as to whether it can be 
applied to soils. 

2.4.3 Drucker's stability postulate 

Drucker (1950, 1951) introduced a 'postulate of stability' which helps in under­
standing the physical significance of normality. The concept of stability is a 

:1: familiar one in the considera tion of engineering systems. Consider, for example, 
the case of a sphere resting on a (possibly non-flat) surface (Fig. 2.11) . If the~I 
surface is concave upwards and the sphere is subjected to a small perturbing 'I 

,I force then the response is stable (when the force is removed, the sphere returns 
to its original position). If, however, the surface is convex upwards, then the 
response is unstable. A flat surface gives a response which is 'neu tral' in terms of 
stability . Note that in each case the sphere is initially in equilibrium; however, 
the stability of the equilibrium is different in each case. 

Drucker considers a system which is in equilibrium in some stress state a and 
which is then loaded by a small extra increment of load oa. Drucker regards the 
incremental stress oa as being due to an external agency (i.e. external to the 
'system' he is considering). Subsequently oa is removed. A stable system is one 
which absorbs work from the external agency, whereas an unstable system 
releases work. If the external agency is incapable of absorbing work from the 
system (for example, if it is supplied by a dead load placed on the system) then 
the system collapses. Schofield and Wroth (1968) illustrate these concepts in 
relation to the loads acting on a triaxial test system for soil, and the reader is 
referred there for a more detailed account. For our purposes it is sufficient to 
note that Drucker's defmition of the stability of equilibrium corresponds to that 
in use in other branches of engineering (e.g. buckling theory in structures) . As 
engineers we would always prefer to be dealing with stable systems which are 
capable of absorbing work if we subject them to small disturbing loads. 

The plastic work done in a small increment of deformation is approximately 
aoeP + (oaoe P)/2.t Drucker shows that his definition of stability corresponds to 
a value of 0ao eP greater than or equal to zero, so Drucker is concerned with the 
sign of the second-order work term. In terms of a uniaxial test, stable 
deformation is equivalent to strain-hardening behaviour, whereas unstable 
deformation corresponds to strain-softening behaviour (see Fig. 2.12). 

A consequence of the definitions of stresses and strains given in Chapter 1 is that the 
mechanical work done (per unit volume of material) is equal to the scalar product of 

I\, 
the vectors of stress and incremental strain components. . 

Sec. 2.4] 

I 

Plastic Strains 

(a) Stable equilibrium 

(b) Unstable equilibrium 

(c) Neutral equilibrium 

Fig. 2.11 - Stability of equilibrium 

- ~6€a 
I I 
I 

Fig. 2.12 - Stable and unstable responses in a tension test 

Why is Drucker's postulate equivalent to normality? Consider a small 
~ncrement o.f stress oa applied to a plastic material which results in hardening, 
I.e. a new YIeld locus is established (Fig. 2.13). In fact this hardening could be 
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Fig. 2.13 - Drucker's stability postulate 

caused by several increments oa, all starting from the same stress state (and 
directed outwards from the initial yield locus). The only possible direction of 
the plastic strain incremen t vector (satisfying Drucker's postulate) is that normal 
to the current yield locus. This is because it would otherwise be possible to find 
a possible oa which made an angle of greater than 90° with Of. 

Drucker introduced his postulate in the context of metal plasticity where 
strain-hardening behaviour is the norm and systems are generally stable. Some 
have criticised the application of his postulate to situations (e.g. soils) where 
strain-softening can occur. We follow Palmer (1973) in asserting that the 
postulate is basically a classification of material response. In section 2.7 .2 we 
shall examine the implications of Drucker's postulate for soil behaviour. 

2.4.4 Frictional systems and plasticity theory 

Systems with frictional interfaces have a certain similarity with perfectly-plastic 
solids. Consider the simple case of a rigid block resting on a plane subject to a 
horizontal force F and a vertical force N (Fig. 2.l4(a)) . When F < jJ.N there is no 
movement and the line F = pN could be identified as a yield locus for the 
system. However, if one plots the incremental 'plastic' displacements for this 
system, it appears that normality does not apply (Fig. 2.14(b )). Drucker (1954) 
considers some cases of systems made of frictional blocks and concludes that 
they must be excluded from his definition of stable plastic systems. 

Now soil strength is often described by a drained angle of friction. Hence the 
question immediately arises: is it legitimate to describe soil as a plastic material 
to which one can apply the principle of normality? Clearly the actual behaviour 
of a particulate medium such as clay or sand is much more complex than that of 
a block sliding on a plane. A possible answer to this question could come from 
performing tests on samples of soil and measuring the plastic strains. If the 
Mohr-Coulomb surface is taken as an appropriate yield surface (to which 

normality can be applied) then yielding should be accompanied by a constant 

Sec. 2.4] Plastic Strains 

F, oy 

Incremental displacement 
vector 

F = /-iN 

N , ox 

~---------------------- N, ox 
(b) 

Fig. 2.14 - Lack of normality in a simple system with fricu'on 


Deviator stress 
 Deviator stress 

€a 

(a) Lighly over-consolidated clays ll;nd loose sands 

(b) Heavily over-consolidated clays and dense sands 

Fig. 2.15 - Typical stress-strain and volumetric strain response of soils when 
sheared in a triaxial apparatus 

rate of negative volumetric strain (Le. expansion of 'dilation '). In fact soils 
sometimes compress when they are sheared; sometimes they dilate; and some­
times they deform at constant volume. A typical pattern of behaviour for loose 
sands or drained tests on lightly over-consolidated clay would be compression 
during the first part of the test followed by eventual deformation at constant 

volume (Fig. 2.15(a)). In contrast, dense to medium-dense sands and heavily 
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over-consolidated clays tend to dilate initially and deform at constant volume 

later in the test (Fig. 2.15(b)). Therefore, at first sight, it seems that normality 
cannot be applied to soils. We shall show , however, that this more complex 

volumetric behaviour of soils can be described by a plastic theory of soil 
deformation that uses the normality prinCiple. 

2.5 CAM-CLAY 

Cam-clay is the name given to an elasto-plastic model of soil behaviour. Thus 

Cam-clay is not a real soil in the sense that one cannot find deposits of it at 

some location in the ground. However, the Cam-clay equations can be used to 
describe many real soils if appropriate material parameters are chosen. 

This section provides a complete description of Cam-clay . It is intended both 
as an introduction and as a ready-reference section to contain all the basic 

equations and definitions . First the symbolic notation used in describing Cam­
clay is reviewed . Then the assumptions governing the relationships between 

volume and applied (isotropic) pressure are described. The critical state concept 
is then covered. Next the equations which govern plastic yielding are given. Later 

sections of the chapter show how the Cam-clay equations can be used to predict 
soil strengths and strains in triaxial tests . For the time being we omit one of the 
most interesting aspects of Cam·day: its theoretical derivation. Thus our initial 
account of Cam-clay is descriptive, and equations are introduced wi thou t an 

attempt at justification . This comes in section 2.7.1. 

2.5.1 Critical state parameters 

Three parameters, p', q and V, describe the sta te of a sample of soil during a 
triaxial test. The parameters are defined: 

o~ + 20;
p' -u, 

3 3 

V is the specific volume, i.e. the volume of soil containing unit 

volume of solid material. (N.B . V = 1 + e, where e is the voids 
ratio.) 

p' is often called the mean normal effective pressure, and q the 'deviator stress'. 

The reader should note that these three parameters will vary during a tesLt The 

progress of a soil sample during a triaxial test can be represented by a series of 

points describing a line in a three-dimensional space with axes p', V and q. 
Different types of test (drained, undrained, compression, extension and so on) 

t UnfortU!lately nearly every book dealing with critical state soil mechanics uses a slightly 
different notation for the same set of parameters. Schofield and Wroth (1968) use P, q 

and v. Atkinson and Bransby (1978) use p', q I and v. We use the same notation as Wood 
(1984). 

Sec. 2.5] Cam-clay 

lead to different test paths in this '(p', V, q) space'. Critical state soil mechanics 

gives us a set of rules for calculating test paths in (P', V, q) space: usually two of 

(p', V, q) are determined by the type of test and there is a simple procedure for 
determining the third. 

We shall also describe the progress of tests with reference to (p', q) and 

(p', V) plots. These simply correspond to two orthogonal views of (p', V, q) 
space (Fig. 2.16) . The reader should also note that in the (p', V) plots, the p' 
axis does not correspond to V = 0: instead the V axis is started at a convenient 
value to illustrate the part of the (p: V) plot which is of interest. 

(a) Three-dimensional (p I, V, q) space 

q 

p' 

v 

(b) (p', q) plot (view in direction A) q 

~-----------------p' 
(c) (p', V) plot (view in direction B) v 

L---____________~__ pl 

Fig. 2.16 - Two orthogonal views of (p " v. q) space 
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There are also four parameters which are soil constants: M, r, K and A. These 
are introduced below. They describe the fundamental properties of soil with a 
given mineralogy. Other parameters are defined in terms of the seven already 
mentioned; for example the stress ratio 'T/ = q/p'. 

Corresponding to the stress parameters p' and q are strain parameters v 
(volumetric strain) and E (deviator strain): 

v= Ea + 2Er, (2.6) 

E=-}(Ea-Er). (2.7) 

v and E describe .the strains from the start of the test: we shall often make use 
of the symbols ov and OE (for strain increments) where 

ov = OEa + 20Er , (2.8) 

OE = -} (OEa - OEr). (2.9) 

The reason for the factor of 2/3 that appears in the definition of shear strain E is 
so that the work done by a small increment of straining is equal to p '8v + qo E. 

Thus the stress and strain parameters correspond to one another in that 
multiplication leads to the correct evaluation of work done in deformation : the 
situation is the same as for stress and strain parameters ax and Ex, etc. (section 
2.4.3). The reader may care to confirm that p'ov+ qOE = a~OEa + 2a;OEr . The 
formula for work done is valid for drained, partially drained or undrained 
deformation; see Schofield and Wroth (1968, section 5.6). 

2.5.2 Volume-pressure relations 

If a sample of soil is subjected to isotropic compression (and swelling) tests, then 
it follows paths in (p', V) plots as shown in Fig. 2.17. This is basically similar to 
the more familiar (a~, e) plots obtained from oedometer tests. In critical state 
theory the virgin compression, swelling and recompression lines are assumed to 
be straight in (In(p '), V) plots with slopes -A and -K respectively, as shown in 
Fig. 2.18. The equation of the isotropic virgin compression line (often called the 
isotropic normal consolidation line) is 

v = N - A In (p') (2.l0) 

where N is a constant for a particular soil. IV is the value of V when In(p') = 0, 
i.e. p' = 1: clearly the value of N depends on the units which are used to 
measure pressure. The units adopted here are kN/m2

, sometimes called kPa 
(kilopascals). Although N is a soil constant, it is related to those already defined 
(N = r + A - K) : this is demonstrated below. The equation of a swelling or 
recompression line is given by 

V = VK - K In (p '). (2.11 ) 

Sec. 2.5] Cam-clay 

v 

p' 

fig. 2.17 - Typical (p " V) plot of isotropic compression, swelling and 
recompression 

In (P') 

Fig. 2.18 -Idealised (lnp·. V) plots in critical state theory 

When moving up Or down one of these 'K-Iines' the soil is over-consolidated. 
Equation (2.l1) is sometimes written as 

VK = V + K In (p '). (2.12) 

The value of VK depends upon which K-line the soil is on, but it stays constant 
while the soil is moving up or down the same line. 

It is convenient here to introduce the parameter Vi\.. The definition of v:\ is 
similar to that of VK : 

Vi\. = V + AIn (p ') . (2.l3) 

We have already encountered one particular A-line, the isotropic normal 
consolidation line, when Vi\. = N. Note that if V and p' are specified, then V 

K 

and Vi\. can always be determined using (2.12) and (2.13). Conversely, if V and 
K 
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VA are known then it is always possible to deduce V and p' (see Fig. 2.19). Thus 
VK and VA can be regarded as a set of parameters describing the soil, which are 

an alternative to V and p'. 
It is worth noting that for very large effective pressures, (2.1 0) predicts values 

of V less than 1 (a physical impossibility). Clearly this equation represents an 

approximation to soil behaviour which is valid in the range of stresses of 

engineering in terest. 

Fig. 2.19 ­

v 

(Inp', V) 

Slope = -K 

Inp' 

Each point in a (In p'. V) plot is uniquely associated with a pair of 
values ( VK' VA) (and vice versa) 

2.5.3 Critical state line 

When soil samples are sheared they approach the Critical State Line (CSL).t The 
equations of the CSL are 

q = Mp', 	 (2.14) 

V = r - AIn (p ') . 	 (2.1S) 

M and r are constants for a particular soil. They determine the slope of the CSL 
in a (p /, q) plot and the location of the CSL in the (p /, V) plot, respectively. t 
Figs. 2.20(a) and 2.20(b) show the CSL in (p/, q) and (p/, V) plots. Note that 
(2.IS) is the equation of a A-line with VA = r. The critical state line represents 
the final state of soil samples in triaxial tests when it is possible to continue to 
shear the sample with no change in imposed stresses or volume of the soil. 

Hence, at the critical state: 

Strictly speaking this statement is true only when the effective stress path obeys the 
relationship Sq/sp' > M or Sq/Sp' < - M. However, this condition applies in all normal 
triaxial tests where one is shearing the sample to failure , 

t 	 Of course, many people pronounce M as the capital English (rather than Greek) letter. 
The reason for this (at rust perhaps surprising) convention is that M represents a 
frictional constant for Cam-clay, and 'Jl' is used widely in mechanics to signify a 
coefficient of friction. 
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Fig. 2.20 - The critical state line in (a) (p', q) plot and (b) (p', V) plot (isotropic 
normal compression line is shown dashed in (b» 
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(2.14) and (2.1S) describe a curved line in three-dimensional (p/, V, q) space 
(Fig. 2.21). 
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Fig. 2.21 - The critical state line in (P', V, q) space is given by the intersection of 
of two planes: q =Mp I and a curved vertical plane V = r - A In (p ') 
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2.5.4 Yielding of Cam-clay 

First consider the (In (p ') , V) plot in Fig. 2.18 rotated anti-clockwise through an 
angle of 90° (Fig. 2.22). This picture is basically the same as that for a linear 

work-hardening metal (Fig. 2.3(b)). However, a significant difference is apparent 

when comparing soils with metals. With soils we are seeing elasto-plastic 

behaviour associated with volumetric strains. The von Mises and Tresca yield 
functions for metal suggest that one can hydrostatically compress metals 
indefinitely without yielding taking place. 

In (P')
Stress ~ 

_-__.--.J.__.L.-____-! ______ __ 

v 
Compressive volumetr ic 
strain 

Fig. 2.22 - Volumetric straining of soils viewed as strain-hardening plastic 
behaviour 

The next part of our description of the yielding of soils considers the effect 
of shearing a sample. Suppose that the state of the soil can initially be 
represented by the point A in a (p', V) plot (Fig. 2 .23). The deviator stress, q, 
is now increased while p' and V remain constant. Subsequently we shall see that 

this is what happens to an over-consolidated sample in an undrained triaxial test. 
As the test proceeds, the state of the sample can be represented by a pOint in the 
three-dimensional (p " V, q) space which lies directly above the original point 
(Fig. 2.24). The sample yields at a point such as B when the value of q is given 
by the following equation: 

Mp' 
q =-- (r + A - K - V - AIn (p ')). (2.16)

(A -K) 

(2 .16) describes a surface in (p', V, q) space. Fig. 2.25 shows an isometric view 
of this surface. When the state of a specimen of soil can be represented by a 
point below the surface, then soil behaviour is elastic . Soil states on the surface 
indicate yielding, and it is impossible for soil samples to exist in states equivalent 
to points above the surface. For this reason the surface is known as the Stable 
State Boundary Surface (SSBS). Another way of writing (2.16) is 

(2.17) 

Sec. 2 .5] Cam-clay 

v 

Fig. 2.23 - Preparation of a soil sample by isotropic normal consolidation and 
then swelling 
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Fig. 2.24 - The yielding of a sample in (p', V, q) space . Sample preparation 
follows the dashed lines which lie in the q = 0 plane. Progress towards yielding is 

then along the vertical path All which is parallel to the q axis. 

(2.17) is probably the most useful form of the equation . Note that when 17 is set 
to zero we recover the equation of the isotropic normal consolidation line (EF in 

Fig. 2 .25). If (2 .14) is substituted into (2.17) then (2 .15) is obtained . On the 
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q 

H 

Fig. 2.25 - The stable state boundary surface in (p'. v. q) space 

other hand, if (2 .15) is substituted into (2.17) then (2.14) is obtained. This 
demonstrates that the CSL lies on the SSBS (GH in Fig. 2.25). 

Although either (2 .16) or (2.17) describes the combination of stresses that 
causes yielding, neither is the equation of a yield surface in the sense introduced 
in section 2.3.3. The reason for this is that V appears in both equations. The 
equation of a yield surface should be in terms of the current stresses together 
with a hardening parameter to ftx the size. V is unable to fulfil the role of a 
hardening parameter because it changes for elastic stress increments inside a 
yield locus. 

Elastic straining underneath the SSBS corresponds to movement along a K­

line, with a corresponding change in V. Thus when an elastic sample is brought 
to the point of yield it must simultaneously lie both on the K-line and on the 
SSBS. Therefore the intersection of the SSBS with the K-line equation gives the 
current yield surface: 

q = Mp'ln (p~/p'). (2.18) 

The form of this yield function is shown in Fig. 2.26. As we have mentioned 
above, elastic straining is governed by the K-line equation, and thus in terms of 
(p', V, q) space the state of the material must remain on an 'elastic wall' (Fig. 

2.27). The 'point' of the yield locus lies on the isotropic normal consolidation 
. i line . p~ is the isotropic pre-consolidation pressure for a soil sample lying on a 

particular K-line (Fig. 2.28). 
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Fig. 2.26 - The Cam·clay yield locus (the yield locus is assumed to be symmetric 
about the p' axis) 
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Fig. 2.27 - Isometric view of an elastic wall 
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Fig. 2.28 - The size of the Cam-clay yield locus is determined by p~, the iso­
tropic consolidation pressure I:: 

2.5.5 Strains 

Total volumetric and shear strains can be expressed as the sum of elastic and 

plastic components: 

e + vP (2.19)v= v , 

e = ee + eP , (2.20) 

and a similar pair of equations is valid for incremental strains: 

(2.21)ov = ove + o'lf', 

oe = oee + oeP . (2.22) 

Cam-clay corresponds to the following assumptions about elastic and plastic 

strains: 

Elastic strains 

ove is calculated from the K-line equation 

O€e = o. 

Plastic strains 

ovP = 0 VK/V 


oeP is calculated from the flow rule: 01Y /oeP = M - 11· 


Sec. 2.6] Triaxial Tests on Cam-clay 

2.6 TRIAXIAL TESTS ON CAM-CLAY 

The equations of the previous section can be used to predict stress paths, shear 
strengths and strains in triaxial tests. 

2.6.1 Preparing the sample 

In each of the following examples the triaxial test sample is prepared by iso­
tropic normal consolidation to p' =p~, followed by swelling to p' =p~ . Fig. 
2 .29 shows the path followed by the specimen in a (p I, V) plot. The value of V 
at the start of the test, Vo, can be calculated from the equations of the isotropic 
NeL and the K-line as follows: 

Vc = N - A In (p~), 

VK = Vc + K In (p~) = Vo + K In (p~); 

hence 

Vo = N - Aln (p~) + K In (P~/p~). (2.23) 

q 

Po' p'c p' 

Fig. 2.29 - Preparing the sample by isotropic normal consolidation and swelling 
establishes the initial yield locus of size p~ 



64 
65 Critical State Soil Mechanics [Ch.2 

In a (p', q) plot, this establishes the initial stress sta te as inside a yield locus 
which intersects the p' axis at p' = p~ (Fig. 2.29). In fact this sample 
preparation procedure has been described previously (but without the 

equations): see Fig. 2.24 for the view in (p', V, q) space . 

2.6.2 Drained compression tests 

In a standard drained compression test the cell pressure ar remains constant and 
the axial stress aa is increased . In this example it is assumed that the pore 

pressure is maintained at a back pressure of zero (Le. atmospheric). Thus the 

Effective Stress Path (ESP) always corresponds with the Total Stress Path (TSP) 
(since p' = p), and the ESP can be determined by considering the total stresses 

acting on the soil sample . On the other hand, if a constant back pressure were 
maintained, then there would always be a constant horizontal offset u between 
the total and effective stress paths. The initial state of the soil in a (p', q) plot is 
(p~, 0). At a later point in the test, ar = p~ and aa = p~ + x (say), so the soil 
sample can now be represented by the point ((p~ " + xI3), x). Thus the ESP for 
the test is a line of slope 3 starting from (p~, 0) (see Fig. 2 .30) . During the 
initial part of the test , before the ESP intersects the current yield locus at B (see 

the (p I, q) plot in Fig. 2.31), the soil behaviour is elastic. After point B the soil 

is yielding and each stress state on BF is associated with a new (enlarged) yield 
locus. Finally, the soil fails when the ESP intersects the CSL (point F in Fig. 
2.31). Note that the yield locus at failure, intersecting the p I axis at H, 
corresponds to the K-line intersecting the isotropic NCL at point H in the (p I, V) 
plot. If one knows the critical state parameters for the soil then it is straight­

forward to calculate the value of p' and q at failure from the intersection of the 

ESP and the CSL: 

q = 3p' - 3p~ 

q=Mp', 

giving p I = 3p~/(3 - M) and q = 3Mp~/(3 - M). 

q 

x 

I 

P 

~~~ 
Fig. 2.30 - Drained ESP for a compression test 
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Fig. 2.31 - Drained compression test on Cam-clay (over-consolidation ratio R :::: 2) 

In the (p I, V) plot in Fig. 2.31 the soil follows the K-line while it is elastic 
(until point B) and then changes direction to move to failure on the CSL at 
point F. Each K-line that the soil crosses corresponds to a yield locus in t' 
(p I, q) plot, although Fig. 2.31 only shows the first and last of these. Since t 
value of p I at failure is known, the value of V can be found from (2.15). Hence 

the volumetric strain to failure can be calculated as (V - V0)/ Vo. 
Now consider a test on a sample which has a higher over-consolidation ratio 

(R = p~/p~) so that its initial state A in the (p I, V) plot is on the left-hand side 
of the CSL in a (p I, V) plot. The progress of this sample in a drained 

compression test is shown in Fig. 2.32. Note that although the ESP appears to 
intersect the CSL in the (p I, q) plot before yielding, in fact it is missing the CSL 
in the three-dimensional (p', V, q) space, as is made clear by examination of the 

test path in the (p " V) plot (Fig. 2.32). After yielding, the state of the sample 
moves back down the ESP to point F on the CSL. This is accompanied by the 

Yiel~ loci 'shrinking' rather than 'growing', as was the case for the sample 
conSIdered earlier. 

I 
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v 

Fig. 2.32 - Drained compression test on a samp!(! of Cam-clay with R == 7 

2.6.3 Calculation of strains in drained tests 

In this section the procedures for calculatin~ the strains in a drain.ed triaxial test 
are set out as a series of itemised steps. Although we have so far only considered 
the standard compression test, these steps can be used to calculate the strains in 
other kinds of test. Basically, the strains are calc\llat~d for a number of 
increments of stress once the sample has yielded. Although there are a few 
situations where it is possible to obtain an analytical expression for the stress­
strain curve (e.g. constant p' tests), in general the procedure described here will 

be required. 

1. 	 Establish starting values of p " q, V and p~. 
2. 	 Calculate values of p' and q when yielding starts. This involves finding the 

intersection point of the drained effective stress path (ESP) and the 
current yield locus. In general one has to solve a non-linear equation 
because of the nature of the yield function. However, this can be done 
fairly quickly by hand by substituting a few values of p I into both the 
yield locus and the ESP equation until the values of q are close. 

Sec. 2.6] 	 Triaxial Tests on Cam-clay 

3. 	 Calculate the (elastic) volumetric strain up to this point. Since elastic shear 
strains are zero, OEa = OEr , and hence OEa = ov/3. 

4. 	 Divide the ESP between the point of first yielding and the intersection 
with the CSL into a number of equal increments (say n). Then repeat the 
following steps for values of i from 1 to n. 

5. 	 Calculate the volumetric strain in increment i from the values of p' and q 
at the start and end of the increment. (Values of V can be obtained from 
the equation of the SSBS.) 

6. 	 Calculate the elastic volumetric strain for this increment from the K-line 
equation. 

7. 	 Calculate the plastic volumetric strain for this increment by subtracting 
the elastic strain calculated in 6. from the strain calculated in 5. 

8. 	 Calculate the shear strain for this increment from the plastic volumetric 
strain and the Cam-day flow rule (use values of p' and q corresponding 
to the start of the increment). 

9. 	 Use the shear strain obtained in 8. and the volumetric strain obtained in 
5. together with the basic definitions of these strains to calcula te 0 Ea and 

OEr · 

10. 	 Add OEa to values calculated for previous increments to obtain a point on 
the q versus Ea plot. 

Fig. 2.33 contrasts the behaviour of the two samples that were considered in the 
previous section. The first strain-hardened after yielding (q increased) and 
exhibited compressive plastic volumetric strains. The second strain-softened 
(q decreased) and exhibited expansive volumetric strains. Note the similarity of 
these results with the experimental behaviour shown in Fig. 2.15. 

2.6.4 Undrained compression tests 

Now we consider the behaviour of a sample of Cam-clay in an undrained 
compression test. The total stress path for this test is identical to the total stress 
path for' the drained case (because the total stress path is specified by the total 
stresses applied to the soil). During the whole of the undrained test, the specific 
volume must remain constant since no water is allowed to flow into or out of 
the soil. Although the total volumetric strain must be zero, elastic and plastic 
components of the strain can be non-zero as long as 

(2.24) 

Before the sample yields, the plastic volumetric strain vP must be zero and 
therefore the elastic volumetric strain must also be zero. If the elastic volumetric 

strain is zero then there can be no change in p'. In other words, the effective 
stress path in the (p " q) plot must be parallel to the q axis. Thus in the three­

dimensional (p', V, q) space, the test path will be vertical before yield takes 

place. When the sample does yield, equal (and opposite in sign) values of vP and 

http:drain.ed
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Fig. 2.33 - Stress-strain response for drained tests 

ve are possible and the test path now follows the constant V cross-section of the 

SSBS until the sample reaches the CSL (Fig. 2.34). 
The final point of the test (and hence the soil 's undrained strength) can be 

calculated by substituting the value of Vo from (2.23) into the critical state line 

equation (2.15). Thus: 

Pf = exp ((r - Vo)/'A), (2 .25) 

and 
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Fig. 2.34 - Undrained compression test on Cam·day (R == 1 .5) 

= (l/2)qf = (l/2)Mpr = (l/2)M exp ((r - Vo)/'A). (2.26)eu 

The pore pressure at the end of the test is given by 

uf=P~ +qr/3-Pr, (2.27) 

whereas the pore pressure at yield is given by 

(2.28) , 

Now consider a soil sample which is more heavily over-consolidated, starting at a 
point in a (p', V) plot such as that shown in Fig. 2.35. This sample also has an 
initial ESP which is vertical (following the same argument as before). Again, on 
yielding, the sample moves over the constant V cross-section of the SSBS until 
the CSL is reached. Initially the sample appears to strain-harden (q increases) but 

towards the end of the test it strain-softens (q decreases) . However, both the 
strain-hardening and the strain-softening are associated with a decrease in the 
size of the yield locus. 

Note that the isometric view of the SSBS shown in Fig. 2.25 was made up of 

constant V-lines and constant p '-lines. Each constant V-line includes (the 
yielding) part of the undrained ESP for samples starting at that value of V. 
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Fig. 2.35 - Undrained compression test on Cam-clay (R = 8) 

Suppose that a sample is initially normally consolidated to a pressure p~. Then 

the initial volume is given by 

Ve = r + A - K - AIn (p~). 

Substituting this value of Ve into the equation of the SSBS (2.16), the following 

equation isobtained: 

Mp' " (2.29)q = In (Pe/P ). 

(1 - K/A) 


(2.29) is the equation of the undrained ESP for a sample initially normally 
consolidated to a pressure p~. Over-consolidated samples at the same initial 
volume Vo = Ve have vertical ESPs until they intersect this line, after which they 

follow the same route to the critical state (Fig. 2.36). 
Note that the undrained ESP has the same basic equation as the yield locus 

(2.18), except that Min (2.18) has been replaced by M/(1 - K/A) in (2.29) and 

p~ in (2.18) has been replaced by p~. In fact the role of p~ or p~ is to flx the 
s,ize of the undrained locus or yield locus respectively, and so the effect of the 
factor 1/(1 - K/A) is to 'stretch' the yield locus in the direction of the q axis to 
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q 

Fig. 2.36 - The undrained surface for Cam-clay 

form the undrained ESP equation. The fact 1 - K/A occurs often when 
undrained tests are considered and so some writers (notably Wroth, 1984) have 
used the symbol A for this ratio. 

The Cam-clay model gives an elegant account of the effect of over­
consolidation on undrained shear strength. Consider a specimen which is 
norm,ally. c.onsolida ted to p~, then allowed to swell back to an isotropic pressure 
?~ ~o, glVlng an. over-consolidation ratio, R = p~/p~. Then from (2.23), the 
lnltlal volume VO IS given by 

Vo = r + A - K - AIn (p~) + K In (R). 

Vo will remain the same during the test and so we can set this expression equal 

to r - A In (PD, where pi is the value of P' at the end of the test. Hence (after 
some manipulation): 

Pf = p~ RA exp (-A) 

and the undrained shear strength Cu is given by 

Cu =(1/2)qf=(1/2)Mpf=(I/2)Mp~ RA exp(-A). (2.30) 

(In fact we have just taken (2.26) one stage further by substituting in the 
appropriate value of Vo.) When R = 1, (2.30) gives the shear strength for a 
normally consolidated sample, so the effect of over-consolidation is expressed in 
the factor R A. The experimental data of Ladd et al. (1977) support this basic 
relationship (see also Wroth, 1984). 

It is also possible to obtain an expression for Skempton's pore pressure 
parameter as a function of the over-consolidation ratio. Substituting (2.29) and 
qf = Mpf into (2.27), the following equation for Skempton's pore pressure 
parameter,A, at failure is then obtained: 

1 1 R- A 


Af =- -- + - exp (A). 
 (2.31 )3 M M 
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2.6.5 	Calculation of strains in undrained tests 

1. 	 Establish starting values of p', q, V and p~. 
2. 	 Calculate the value of q when yielding starts from the equation of the 

current yield locus. (The undrained ESP is vertical inside the yield locus.) 
3. 	 Note that both elastic shear strains are zero (by definition) and elastic 

volumetric strains are zero (because undrained). Hence fa and fr are also 

zero. 
4. 	 Divide the horizontal distance between the initial point and the critical 

state line in the (p', V) plot into a number of equal increments (say n). 
Then repeat the following steps for values of i from 1 to n. 

5. 	 Calculate the values of q at the end of the increment from the equation 

of the SSBS . 
6. 	 Calculate the elastic volumetric strain for this increment from the /{-line 

equation. 
7. 	 The plastic volumetric strain for this increment is equal to minus the 

elastic strain calculated in 6. (The overall volumetric strain increment is 
zero because of undrained behaviour.) 

8. 	 Calculate the shear strain for this increment from the plastic volumetric 
strain and the Cam-clay flow rule (use values of p' and q corresponding 
to the start of the increment). 

9. 	 Use the shear strain obtained in 8. to calculate Ofa and Ofr (using the fact 
that the volumetric strain is zero). 

10. 	 Add Ofa to values calculated for previous increments to obtain a point on 
the q versus fa plot. 

Fig. 2.37 shows plots of q and pore pressure versus fa for the two tests 
considered earlier. Note that although the pore pressure increases linearly with q 
during the initial (elastic) part of each test, following yield the behaviour is 
different, with the first specimen tending to generate positive pore pressures and 
the second negative pore pressures. The first test exhibits q increasing before 
failure, while the second ends with q decreasing. 

2.6.6 	Other types of triaxial test 

The calculations described above for compression tests can easily be extended to 
other types of triaxial test (e.g. extension, constant p', etc.). In drained tests, 
one simply has a total stress path (equivalent to the ESP) inclined a t some other 

angle in the (p', q) plot, and it is a matter of simple geometry to calculate the 

intersection of the ESP with the CSL and the current yield locus. In undrained 
tests, although the total stress path will differ, the effective stress path remains 
the same. The calcula tion of the pore pressure in a test is again just a geometric 
exercise . 

Sec. 2.6] Triaxial Tests on Cam-clay 
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Fig. 2.37 - Stress-strain response for undrained tests 
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2.7 COMMENTS ON CAM-CLA Y 

The general concept of using a hardening plasticity model to describe the str.ess­
strain behaviour of soils was first proposed by Drucker et al. (1957). EssentIally, 
Drucker et at. suggested putting a spherical 'cap~ on the 'Drucker-Prager cone'. 
The cap could be enlarged (accompanied by a smaller enlargement of the cone) 

by hydrostatic loading of the soil. Their paper ~pe~ulates about what happen~ to 
the cap on elastic unloading and during tnaxlal tests, but makes no fIrm 

proposals. The paper expresses doubts as to whether n~rmality should be appl~ed 
to the 'frictional' yielding on the cone (compare sectIOn 2.4.4) . In constructmg 
the critical state models, the Cambridge group took up some of the proposals of 
Drucker et at., and discarded others. In doing so they managed to produce a 
model of soil behaviour which is 'simple' in the sense that the model is derived 

from a small number of basic assumptions, yet the model manages to reproduce 
for the first time an appropriate description of volumetric response under shear. 
What really sets the critical state models apart from other attempts to formulate 

elasto-plastic models for soils is the critical state line. in the (p', V) ~lot. This 
allows a consistent and realistic treatment of both dramed and undramed tests. 
Although the Cam-clay model was at first just proposed for stress ratios less than 
M Schofield and Wroth (1968) extend the proposal for stress ra tios greater than 
M' (as we have done earlier in this chapter). However, they advance good reas~ns 
why the predictions of the model may not be as good in this region (see sectIOn 

2.7.4) .. 

2.7.1 Derivation of Cam-day 


Cam-clay is based on the following assumptions_ 


(a) The isotropic normal consolidation line has an equation: 

v=r+ A-K -Aln(p'), 

and isotropic swelling and recompression lines have equations: 

V=V,,-Kln(p'). (2.11bis) 

r Aand K are soil constants. 

Elastic volumetric strains for Cam-clay are given by the K-line equation.
(b) 
Elastic shear strains are zero (this is equivalent to taking an infinite value 

for the elastic shear modulus, G). 

(c) When Cam-clay is yielding, the plastic work done is given by Mp 'O€p. 

Thus: 
p 'ovP + qO€p = Mp 'O€p. (2.32) 

(2.32) represents a flow rule. Normality can be applied to this relation to(d) 
give the equation of the Cam-clay yield locus. 

The size of the Cam-clay yield locus is fixed by specifmg that the inter­
(e) 
section of the yield locus with the p' axis corresponds to the isotropic 

normal consolidation line . 

Sec. 2.7] Comments on Cam-day 

Although there are experimental data supporting (c) (Roscoe et al ., 1963), there 
is also a strong physical intuition about the nature of the deformation of soil 
underlying (2.32). According to Schofield and Wroth (1968) : 

'Consider a random aggregate of irregular "solid" particles of diverse sizes 
which tear, rub, scratch, chip and even bounce against each other during the 
process of continuous deformation. If the motion were viewed at close range 
we could see a stochastic process of random movements, but we keep our 
distance and see a continuous flow. At close range we would expect to find 
many complicated causes of power dissipation and some damage to particles; 
however, we stand back from the small details and loosely describe the whole 

process of power dissipation as "friction", neglecting the possibilities of 
degradation or of orientation of particles.' 

(2.32) is rearranged: 

ovP q 
-=M-­ (2.33)
O€p p' 

From the condition of normality, the direction of the incremental plastic strain 
vector specified by this equation must intersect the yield locus at a right angle . 
Hence: 

O€p oq
_._=-l. (2.34)
0# op' 

Combining (2 .33) and (2.34), and taking the limit as op' and oq -+ 0, a 
differential equa tion is ob tairred : 

dq q 
-=-M+- (2 .35)
dp' p" 

(2.35) is integrated to obtain the equation of the yield locus. What follows is 
just mathematical manipulation: substitute 17 = q/p' and use the relation 

d17 (, dq ) / '2 (2.36)dp , = P dp' - q (p) 

to substitute for dqJdp', to obtain an equation p'(d17Jdp') =-M which can be 
directly integrated. ((2.36) comes from the standard rule for differentiating a 
quotient.) The resulting equation is 17 = q/p' = - M In (p') + c, where c is a 

constant of integration. The constant of integration is determined using (e) 
above; thus when q/p' = 0, p' = p~, and the Cam-clay yield locus is arrived at: 

q = Mp'ln (p~/p'). (2.18 bis) 

The equation of the SSBS is obtained as follows: consider a sample of Cam-clay 

http:M+-(2.35
http:M-�(2.33
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which is yielding; then the current values of p' and q must satisfy the equation 
of the yield locus. The current value of specific volume, V, is given by 

V = r 	+ "A -I< -"A In (p~) + I< In (p~/p ') . (2.37) 

This equation follows exactly the same reasoning as in section 2.6.1. The next 

step is to eliminate p~ between (2.18) and (2.37), and the result is the equation 

of the SSBS. 

Mp' 
q=-- Cr+"A-I<-V-"Aln(p')), (2.16bis) 

("A -I<) 

or alternatively (the preferred form): 

VA = r + ("A - K) (l -rt/M). 	 (2.17 bis) 

Note that the equations of the critical state line have not been used anywhere in 
the derivation of any of the equations of this section. The assumptions can 
basically be boiled down to two statements: 

1. 	 The work done in plastic deformation is Mp 'OEP, which gives the flow rule 
and by integration the yield locus. 

2. 	 Elastic strains inside the yield locus correspond to movement on a I<-line. 
The size of the yield locus is fixed by the isotropic normal consolidation 
pressure p~ (given a convenient visual interpretation as the yield locus 
'sitting on top of' a I<-Iine in (p " V, q) space). 

From the point of view of the theory of plasticity,!. is the yield function and 
2. is the hardening law. Both assumptions can be varied to produce slightly 
different (but basically similar) models. 

When the rules for calculating strains (from plasticity theory) are applied to 
triaxial samples of Cam-clay, the samples end up in a condition defined by the 
critical state line equations, deforming at constant volume with no change in 
stress. This point is sometimes disguised by the way that critical state soil 
mechanics is taught, where the equations of the critical state line are described 
first (and therefore appear to be basic assumptions in the theory). Although this 

is probably the best way of explaining the the~)fy to initiates, it has the 
unfortunate side-effect of hiding the small number of assumptions which are 

actually needed to produce a sophisticated description of soil behaviour. 

Of course in practice the critical state line was 'discovered' first (Roscoe et 
at., 1958). From the present point of view it can be regarded as a theoretical 

consequence of the Cam-clay assumptions (Roscoe and Schofield, 1963). 

2.7.2 The Cam-clay flow rule 

Cam-clay resolves the dilemma (mentioned in section 2.4.4) about whether the 
principle of normality can be applied to soils. In Cam-clay, normality is applied, 
bu t not to what was previously regarded as the appropriate yield surface (i.e. 
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Mohr-Coulomb or Drucker-Prager). Cam-clay separates the yield surface from 
the failure criterion: it is to the yield surface (i.e. (2.18)) that normality must be 
applied. 

Fig. 2.38 shows the Cam-clay yield locus with superimposed incremental 

strain vectors. When yielding takes place with 1/ < M then there are compressive 
volumetric strains (in drained tests) or there is a tendency to generate positive 
pore pressures. When yielding takes place with 1/ > M then there are dilative 
volumetric strains (in drained tests) or there is a tendency to generate negative 
pore pressures (in undrained tests). In the (p', V) plot, these two different kinds 
of behaviour are associated with soil samples which yield above and below (Of" 

to the right and the left of) the CSL respectively. The former kind of behaviou. 
is termed 'wet' (because the positive pore pressures cause the water to flow out 

of the soil), whereas the latter kind of behaviour is termed 'dry' (because the 
negative pore pressures result in water being sucked into the soil). Thus yielding 
is either 'on the wet side of critical' or 'on the dry side of critical'. 

q 

I 

P 

Fig. 2.38 - The Cam-clay flow rule 

We can go further in distinguishing between wet and dry types of behaviour 

in the light of Drucker's postulate. Because the yield locus always shrinks on the 
dry side and enlarges on the wet side, the second-order work term OUOE P is 
always negative on the dry side (corresponding to unstable behaviour) and is 
always positive on the wet side (corresponding to stable behaviour). In situations 

where the soil is continually sheared in the same direction, the wet side 
behaviour corresponds to strain-hardening and the dry side behaviour 
corresponds to strain-softening (perhaps preceded by some strain-hardening). 
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Critical state soil mechanics gives a good qualitative account of how 
deformation proceeds in both 'wet' and 'dry' clays. Suppose that one particular 
zone in a 'wet' clay has strained more than neighbouring zones. This zone will 

have strain-hardened more than the surrounding soil and will thus be stronger. 
Further deformation takes place around this hardened zone and there is a 

tendency for the soil to deform in a uniform, homogeneous fashion. On the 
other hand, if a zone in 'dry' soil has deformed more than the surrounding soil, 

it will be weaker than the surrounding material. Further deformation will tend 

to be concentrated in this weakened zone, which will continue to strain-soften. 
The latter behaviour describes quite well the progressive formation of rupture 
surfaces in soil. Henkel (1956) made measurements of water contents close to a 
slip surface consistent with the behaviour described above. 

There is often a good match between experimental data for 'wet' clays and 
Cam-clay (or modified Cam-clay) theory. On the 'dry' side, the match is not so 

good and the data of failure are better described by Hvorslev's equation 

(Schofield and Wroth, 1968). Atkinson and Bransby (1978) suggest that soils 
that hit the Hvorslev surface continue yielding until they reach the critical state. 
Although some soils follow this pattern, there are others which do not. Both 
approaches give the same undrained shear strength on the dry side, which tends 
to overpredict observed strengths for some soils. Although the Hvorslevequation 
may be useful in some contexts, our experience is that it does not have any 
advantages over Cam-clay when used with finite elements. 

2.7.3 	Modified Cam-clay 

Although Cam-clay makes a significant step forward in the modelling of soil 
behaviour, there are some aspects of stress-strain modelling where it is deficient. 
Of course, it is not alone in this respect. Every theoretical description of material 
behaviour will have some successes in matching reality and some failures. The 
overall utility of a particular material idealisation will rest primarily with 
whether it successfully models those aspects of material response which are 
pertinent for the problem at hand. 

Modified Cam-clay (Burland, 1965; Roscoe and Burland, 1968) addresses two 

particular dissatisfactions with the original Cam-clay model: the point on the 
yield locus and the predicted value of Ko (the coefficient of earth pressure at 
rest). The objection to the point is to a certain degree aesthetic (it does not look 
right) and to a certain degree based on experimental evidence (the shear strains 
predicted by Cam-clay are too high at low stress ratios)_ In fact there is no 
theoretical objection to yield surfaces with slope discontinuities: Koiter (1953) 
shows that the plastic strain increment vector at such a point must lie within the 
'fan' of possible directions (e.g. see Fig. 2.38 for the condition on the Cam-clay 
point). As we shall see in Chapter 5, Cam-clay predicts a value of Ko = 1 for a 
normally consolidated soil where measured values are normally in the range 0.5 
to 0.7. 

Modified Cam-clay changes the. assumption for dissipated work in Cam-clay 
(i.e. (2.32)) to 
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p'ovP + q8e P =p'V{ovP2 + (M8e P)2}, 	 (2.38) 

and this changes the flow rule to 

(2.39) 

(compared with (2.33)). 
As before, the flow rule can be integrated to give the modified Cam-clay yield 

locus: 

(2.40) 

which is shown in Fig. 2.39. The modified Cam-clay yield locus is elliptical in 

shape: this is the main difference between modified Cam-clay and Cam-clay. 
Because of this different shape of the yield locus the vertical distance between 
the isotropic NCL and the CSL becomes (A. - K) In (2) rather than A. - K. 

q 

p' 

Fig. 2.39 - The modified Cam-clay yield locus is elliptical 

For the sake of completeness we summarise the equations for modified Cam­
clay in the same order as we presented them for Cam-clay in section 2.5. 

(a) 	 Volume-pressure relations: the equation of the isotropic NCL is the same 

as before: 

V=N-A.ln(p'), 	 (2.10 bis) 

but N = r + (A. - K) In (2). The definitions of VA and VK are the same as 

before (equations (2.12) and (2.13)). 
(b) 	 Critical state line: the equations are the same as for Cam-clay (i.e. 

equations (2.14) and (2.15)). 
(c) 	 Yielding: the equation of the SSBS is now 

VA = r + (A. - K) {In (2) - In (1 + (11/M)2 ) } . (2.41) 

(c1) 	 ~trains: the same assumptions as for Cam-clay, with the exception of the 

flow rule which is given by (2.39). 
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The rules for calculating strains given in sections 2.6.3 and 2.6.5 can be used to 
calculate the strains in triaxial tests, provided that the appropriate equations for 

the SSBS and the flow rule are used. 
The established view is that there is not much difference between Cam-clay 

and modified Cam-clay for the purposes of making engineering predictions of 

behaviour. Broadly speaking this is true, but sometimes the difference can be 

more than would be expected. This is basically because of the way material 

parameters are chosen: a matter which is discussed in Chapter 5. 

2.7.4 Cam-clay: out of date? 

Since Cam-clay was proposed in 1963, many deficiencies have been pointed out, 

and many modifications proposed. It is therefore relevant to ask: is Cam-clay 
out of date? We believe that it is not, and that Cam,clay (or modified Cam-clay 
for that matter) will come to be regarded in much the same way as, for example, 
the Mohr-Coulomb failure criterion. We mean this in the sense that Cam-clay 
describes certain aspects of soil behaviour extremely well. Starting from a small 
set of material parameters there are powerful and (relatively) simple calculations 
that can be made. On the other hand, we do not claim that it provides a 
universal explanation of all geotechnical phenomena. 

Laboratory tests on real soils demonstrate aspects of soil behaviour which are 
not predicted by the critical state theories. For example, a soil with a high clay 
fraction which undergoes large relative shear displacements usually exhibits a 
residual shear strength much lower than the critical state (Skempton, 1985). 
Recent laboratory tests using internal strain measuring devices have shown that 
a very wide range of soils has highly non-linear stiffnesses at low strain levels 
(Jardine et at., 1984). Some normally consolidated natural clays fail in 
undrained tests well before the critical state is reached. On the other hand, there 
has been success in using the Cam-clay models in geotechnical predicting, 
particularly where lightly over-consolidated clay is involved, e.g. embankments 
and oil tanks on soft foundations. In most geotechnical problems there will be 
one or two features of the basic soil behaviour which will determine (along with 
the loads in the system) the overall response. These features mayor may not be 
those included in the critical sta te framework. 

Although Cam-clay can be regarded as deficient in some respects, most 
a ttempts to refine theoretical predictions of soil behaviour make use of the 

concepts of critical state soil mechanics, rather than abandoning them 

completely. Perhaps the major area of the development of new constitutive 

equations for soils has been that of cyclic loading, relevant to dynamic loading in 
earthquakes or on offshore structures in the oil industry. Under the action of 

cyclic stresses, pore pressure in soil tends to build up a certain cumulative 
amount in each cycle. If one uses the Cam-clay (or modified Cam-clay) model in 

these circumstances, then the pore pressure increases in the first cycle, but after 
that remains constant. This problem can obviously be circumvented by 
abandoning the assumption of elasticity beneath the SSBS, and this route has 
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been followed by many. Mroz (e .g. Mroz and Norris, 1982) has proposed models 
with smaller yield loci 'nested' inside a larger yield locus. Dafalias (e.g. Dafalias 
and Herrmann, 1982) has proposed a 'bounding surface' model where the 
amount of plastic behaviour associated with a stress point inside the bounding 
surface depends on the distance to an image point on the surface. Another 
model with plasticity inside the traditional yield locus is suggested by Pender 

(1982). More recent models along these lines include a 'continuous plasticity' 
model proposed by Naylor (1985) and the 'spread work function' of Dean 
(I985). Some of these models have the promise of describing better anisotropic 
yielding and dry-side behaviour. 

However, we should point out that all these models are more complicateL 
than Cam-clay. If one of them is going to supplant Cam-clay then the extra 
work involved in doing calculations must be offset both by a better conceptual 
picture and by better numerical predictions. 
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Analysis of Consolidation using 
Finite Elements 

3.1 INTRODUCTION 

In Chapter 1 we presented the underlying assumptions and basic equations of 

Biot's consolidation theory. The system of partial differential equations that was 
obtained described the relationship between total and effective stresses, excess 

pore pressures, strains and artificial seepage velocities at one point in a body of 
soil. These equations were obtained by applying physical balance laws 

(describing equilibrium of stresses and continuity of volumetric strain with 
water flow) to infinitesimally small elements of soil. This chapter shows how the 
finite element method can be used to solve a particular boundary value problem 
where some combination of loads and drainage boundary conditions acts on a 

finite volume of soil. 
Mathematically the solution of a particular problem is equivalent to finding 

some mathematical functions which define the time dependent distribution of 

displacements and excess pore pressure which satisfy the gove~ni~g di.fferential 
equations at all points in the 'domain' of the problem. These dlstnb~t!Ons must 

also satisfy some conditions on the boundary of the problem domalO. For the 
excess pore pressure these boundary conditions will be either prescribed values 

of excess pore pressure or prescribed artificial velocities of water flow. The 
boundary conditions in the case of the stresses will be either prescribed displa~e­
ments or prescribed distributions of stress. Traditional engineering mathematlcs 

is largely concerned with solving problems of this type . Establishing a solution to 
a particular problem involves a lot of mathematical manipulation, and so an 
engineer will normally make use of a 'standard' solution from a book or 
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academic journal. Although there are not many published solutions for 
consolida tion problems, there are many standard solu tions for the rela ted 
equations of elastic stress analysis and steady seepage (see, for example, 
Timoshenko and Goodier (1970) or Poulos and Davis (1974) for stress analysis 
and Han (1962) for seepage). 

Whereas these mathematical or 'analytical' solu tions are exact solutions of 
the relevant equations, the finite element method provides approximate 
solutions of the same systems of equations. The mathematical techniques used 
in obtaining these approximate solu tions are not covered in most engineering 
courses and so we introduce them in this chapter. In our view, successful use of 

the finite elemen t technique is dependent on engineering judgement ra ther than 
knowledge of the mathematics. Indeed we agree with Irons and his co-authors 
(Irons and Ahmad, 1980; Irons and Shrive, 1983) that the teaching of finite 
elements is becoming much too mathematical. The reasons for this trend are 
understandable: the finite element method for elastic stress analysis was 
originally developed on a largely intuitive basis. It is only recently that the 
underlying mathematics has come to be understood. It is possible to identify 
three stages in how finite element techniques for stress analysis have been 
formulated and interpreted over the last three decades : 

(a) 	 the method was regarded as an extension of matrix methods for the 
computerised analysis of structural frames. This method requires a 
'stiffness matrix' describing the stiffness properties of one part of the 
structure. The only difference between a computer program for matrix 
analysis and one for finite element analysis is that the latter uses stiffness 
matrices which describe the stiffness of parts of a continuum. These 
matrices were calculated using structural theorems such as the principle of 
virtual work or Castiglia no 's theorem; 

(b) 	 the method was recognised as an application of the calculus of variations . 
In this classical method of engineering analysis the solu tion to a system of 
differential equations is obtained by converting the problem into an 
equivalent one of minimising a 'functional'. For example, solving a 
problem of elastic stress analysis is equivalent to minimising the total 
poten tial energy of the sys tem; 

(c) 	 the method was recognised as a particular application of Galerkin's 
weighted residual method. Weighted residual methods obtain approximate 
solutions to systems of differential equations by arranging for the 

(hopefully small) error in the solution to be distributed in some manner 
throughout the continuum. 

The important point to emphasise about these three different approaches is that 
each interpretation or formulation leads to an identical set of algebraic equations 

to be solved on the computer. Clearly it is largely a matter of taste how one sets 

up these equations. Weighted residual methods are now in fashion and while 

they are used in the following material we would prefer to be able to use a more 
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direct approach (like the virtual work principle for stress analysis). This is 
because we believe that the earlier approach is easier to understand and develops 
an 'engineering' approach to finite elements rather than relying on the 
mathematics. Unfortunately, there seems to be no direct counterpart of virtual 
work in fluid mechanics problems. However, when we come to transform the 
continuity equation in the standard way (to get it in a form suitable for 
computer solu tion) , we notice a strong similarity with virtual work. Indeed, we 
can regard the continuity equation as being equivalent to a virtual power (or 
work) equation. 

Since the scope of this chapter is wide, we now summarise the material and 
explain its arrangement: 

1. 	 The next section covers the mathematical preliminaries (numerical 
integration, interpolation polynomials, the approximate solution of 
differential equations and Green's theorem in the plane). 

2 . 	 Section 3.3 presents the fundamentals of the 'displacement' (or 'stiffness') 
method of finite element analysis via a simple example using linear elastic 
springs. 

3. 	 Section 3.4 covers the virtual work principle. We include this section 
because we are aware that many engineers find the principle rather 
obscure . However, it turns out to be a very versatile and powerful tool in 
formulating finite element methods as well as the theory of structures. 

4. 	 Section 3.5 describes the basic theory for formulating the stiffness 
matrices of 'displacement' finite elemeQts. This subject matter occupies 
several chapters in other books on finite elements (where the reader is 
referred for a more detailed treatment). 

5. 	 Section 3.6 completes the chapter with a derivation of the finite element 
equations for consolidation analysis, a FORTRAN program implementing 
these equations and some examples of its use . 

3.2 MATHEMATICAL AND NUMERICAL PRELIMINARIES 

3.2.1 Numerical integration 

When there is a need to calculate an integral in a computer program, two 
approaches are possible. The first approach is to take the expression to be 
integrated and to 'integrate the expression by hand'. The resulting formula is 
then coded directly in the computer program. The second approach is to 
perform the integration within the computer program using the techniques of 
'numerical integration' . In the latter approach the integral is calculated as the 
weighted sum of values of the function of some points in the interval. The basic 
technique of numerical integra tion will be illustrated below by considering the 
calculation of areas under curves. Finite element programs usually use numerical 
integration to calculate the coefficients of element stiffness matrices: this is 
done in CRISP and also in the program in section 3.6. 
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First we consider the calculation of the area shown in Fig. 3.1. Mathemat­
ically we write this integration: 

f 
lO 

A = [(x) dx 
o 

fIx) 

10 

~----------------------~----_ x 
10 

Fig. 3.1 - The function/(x) =Jooo _x 2 ) 

where [(x) = yO 00 - X 2). Of course this is simply one quarter of the area of a 
circle of radius ten units (7T102/4 = 78.54). This example is convenient for 
illustrative purposes because none of the methods considered gives the exact 
answer. Thus the example will give a rough idea of the accuracy of the different 
methods. The three methods are known as the trapezoidal rule, Simpson's rule, 
and two-point Gaussian integration. When using one of these methods the 
interval between the limits of integration is split into a number of strips , a~ 
shown in Fig. 3.2. Each method then applies a different formula or 'rule' 
calculate the area, A, of a typical strip which starts at x = Xl and ends at x =X2 
(X2 =X I +h) . 

Trapezoidal: 

2J
X 

A = fix) dx = (h/2) [(x I) + (h/2) [(x 2 ). 
XI 

Simpson: 

A = f 
X 2 

[(x) dx = (h/6) [(xd + (2h/3) [((Xl + x 2)/2) 
Xl 

+ (h/6)[(X2)' 
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((xl 

10 

((x, 1 ((x2 l 

Fig. 3.2 - Separate strips for numerical integration 


Two-point Gaussian integration: 


A = f Xl f(x) dx = (h/2) f(x 1 + h(I - 1/V3)/2) 

Xl 

+ (h/2)f(X2 -h{l-1/V3)/2). 

The presentation of these rules is simplified by the adoption of a co-ordinate 
system which is local to each strip. The local co-ordinate ~ is given by the 

expression 

~=(2X-(XI +X2))/(X2 -Xl); 

thus ~ = -1 when X = X 1 and ~ = 1 when x = X2 (at the midpoint of the strip 
~ = 0). The local and global systems are shown in Fig. 3.3. The integration rules 

are now written as follows. 

• x 

o +1 

Fig. 3.3 - Local co-ordinate system adopted for numerical integration 

Trapezoidal: 


A = h f+1 f(~) d~ = (h/2) f(-1) + (h/2) f(+ 1). 

2 -I 
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Simpson: 

A = -
h f +1 

f(~) d~ = (h/6)f(-1) + (2h/3)f(0) + (h/6)f(+ 1).
2 -I 

Two-point Gaussian integration: 

A = -
h f +1 

f(~) d~ = (h/2) f(-l /V3) + (h/2) f( + 1/V3).
2 -I 

(The h/2 terms come from changing the integration variable, and are equal to 

d.x/d~.) 
Table 3.1 shows the result of applying these three rules with different 

numbers of strips. 

Table 3.1 

Number Trapezoidal Simpson's Two-point 
of strips rule rule Gauss rule 

50.00 74.40 79.61 
2 68.30 77.09 78.91 
4 74.89 78.03 78.67 
8 77.25 78.36 78.59 

16 78.08 78.48 78.56 

The integration rules used in finite element programs are usually based on 
Gauss rules because they give superior accuracy for a given number of function 
evaluations. Another example of the calculation of the area under a curve will 
help explain the superiority of the Gauss rules. Consider the integral 

f6 (5 +x -(3/4)x 2+ (l/8)x3) dx. 
2 

Fig. 3.4 shows the area equivalent to this integral. First we write this integral in 
terms of local co-ordinates: 

2 f+I(5+2~+3~2+~3)d~ . 
-I 

Integrating analytically we obtain A = 24. Applying the trapezoidal rule (using 
one strip) gives the area as 32. The geometric interpretation of the trapezoidal 
rule is quite straightforward: the cubic curve is approximated as a straight line 
and the integral is equal to the area of the trapezium. The principle underlying 
Simpson's rule is similar: only now the curve is approximated as the quadratic 
curve which passes through values of the function at the two end points and the 

-1 
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Fig. 3.4 - f,6(5 + x - (3{4)x 1 + (l{8)x
3 

) d.x 

midpoint of the interval. Applying Simpson's rule, the area is. evaluate~ as ~4. At 
first sight this result is surprising : we have assumed a quadratic approxlma tlOn to 
a cubic curve, yet the exact answer has been obtained for the area beneath the 

curve . In fact this result is not fortuitous - it has happened because we ~ave 
been wise (or perhaps lucky) in the choice of points to 'sample' the function. 

This prompts the question: is there a way of choosing th~ sa~pling or 
integration points to achieve optimum accuracy? As we have ImplIed ~bove, 
the answer is 'yes', and it is the Gauss rules which represent that optimum 

choice. Using the two-point Gauss rule on the above example: the e~act answer 
(24) is again obtained. In general a Gauss rule with n integration pomts exactly 

integrates a polynomial including terms up to the power 2n - 1. 

3.2.2 Interpolation polynomials (shape functions) 

Underlying the derivation of the integration rules described in the previous 

section is the concept of the interpolation polynomial. If one knows the values 
of a function at (say) three separate points in some interval, then it is possible to 

fit a quadratic curve to the three points. 


Consider the general quadratic 


(3 .1) 
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The three coefficients Co, CI and C2 are uniquely determined by the three values 

of the function, and can be obtained by substituting into (3.l) three times and 
solving the resulting equations. In fact one can write down the quadratic straight 
away as 

(X3 -X)(X2 -x) (X3 -X)(XI-X)
/=/1 +/2

(X3 -xd (X2 -xd (X3 -X2) (XI -X2) 

(X2 - X) (X I - X) 
+ /3 (3 .2) 

(X2 -X3) (XI -X3) 

It is possible to see by substituting X = XI etc. that this must be the corr 
equation of the quadratic . An expression in this form is known as a Langragian 
interpolation polynomial, and the idea can clearly be extended to any number of 
points. Expressions of this form arise quite often in finite element theory where 
the nota tion 

is often adopted and each of the Ni is referred to as a 'shape function '. 

3.2.3 Approximate solution of differential equations 

The problem of steady seepage is used to demonstrate the basic technique. The 
problem we choose to solve is that of radial seepage away from a borehole which 
contains water under a pressure which is maintained at a constant value. As 
shown in Chapter I the solution of seepage problems is equivalent to solving the 
partial differential equation known as Laplace's equation subject to the 

appropriate boundary conditions. In the case of cylindrical radial symmetry this 
equation can be written: 

d2 U I du 
- + - - =0. 
dr 2 r dr 

The problem to which a solution is sought is: what is the distribution of ex c,",_~ 

pore pressure in the soil if the internal boundary is maintained at an excess pore 
pressure of 10 kPa and the external boundary is maintained at zero excess pore 
pressure (Fig. 3.S)? The exact solution can be obtained by integrating 
analytically: 

r 10 In (16/r) 
u= -----. 


In (16) 


To find an approximate solution of the problem, the distribution of excess pore 
pressure is represented by a quadratic equation: 

u=Co +clr+c2 r2 . 

As above, this is conveniently written: 
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Excess pore~ 
----- rP''''"'' = 10 i -----------

Borehole 

Fig. 3.5 - Cylindrical steady seepage from a borehole 

(ro-r)(re-r) _ (ro-r)(ri- r) 
u = ui + ue 

(ro - ri) (re - ri) (ro - re) (ri - re) 

(re -r) (ri -r) 
+ Uo 

(re - ro) (ri - ro) 

Adopting the appropriate values (i.e. Ui = 10, Uo = 0, ri = 1, re = 8.5 and 

ro = 16): 

10(16 -r)(8.5 -r) ue(r-1)(16 -r)+ -=..~----..:..--- (3.3)u= 
112.5 56.25 

Since the excess pore pressures on the two boundaries are known, there is 
effectively one value of excess pore pressure (taken for convenience at the mid­
point between the internal and external boundaries) which defines the variation 
throughout the soil. How can a value be assigned to this single unknown to 
furnish a 'good' approximate solution to the problem, bearing in mind that it 

will not be possible to obtain the exact (logarithmic) solution? 
The method to be described for doing this belongs to a group of methods 

known as weighted residual methods. The basic procedure is to take an 
expression for the unknown pore pressure (such as (3.3) above) and to substitute 
it into the differential equation. For each value of r the approximating function 
will not satisfy the differential equation exactly, but there will be an error or 
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residual: R(r). A weighted residual method makes this error as small as possible 
by applying the condition 

f WR devol) = 0, (3.4)
V 

where W is a weighting function: different weighted residual methods make use 
of different weighting functions. 

According to Crandall (1956), Courant was the first to classify the different 
I methods of obtaining approximate solutions to differential equations as 
'weighted residual methods'. We shall make use of the method proposed in 1915 
by Galerkin (Galerkin, 1915), who suggested that the weighting functions W 
should be the same as the interpolation (or shape) functions. Thus we write the 
distribu tion of excess pore pressure as 

u = NiUi + Neue +Nouo, (3.5) 

then the weighting function is taken as 

W=Ni Wi + Ne We + No Wo , (3.6) 

where Wi, We and Wo are arbitrary scalars. 
The weighted residual equation is: 

r W [02 

U + ~ au] rdr = 0, (3 .7)
J V ar2 r or 

which can be written as 

r W~.rr dU] dr = O. (3.8)
Jv dr L dr 

(3.8) is now integrated by parts: 

du wr dUJro _ f dW . rdr = O. (3.9)
[ dr 'j V dr dr 

We now make the substitutions (3.5) and (3.6) for Uand W. 
In general if there are n unknown coefficients to be determined we can obtain 

n equations by letting each of the Wj be 1 in turn (while all other Wj are zero). 

Here, there is just one unknown and so we just substitute W = Nc and ufrom 
(3.3). After a certain amount of (lengthy) manipulation we obtain the solution 

Uc = 190/68. 

Fig. 3.6 shows the comparison between the exact and approximate solutions. 

There are two ways of obtaining a more accurate solution. The first is to include 
more terms in the polynomial: this is the classical approach in engineering 
analysis. The second way is to split the interval into a number of sub-intervals, 
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with lower-order polynomials in each: this is the modern or finite element 
approach. (In fact we introduce finite elements below in a more direct physical 

way.) 

Excess pore 

pressure 

10 

Approximate distribution 


Exact distribution 

8 

,
6 

\. , 
\. 

'\. 
4 

2 

2 4 6 8 10 12 14 16 

Fig. 3.6 _ Comparison of approxima te and exact solu tions for cylindrical seepage 

3.2.4 Zienkiewicz-Green theorem 

When we come to do the integration by parts described above in a two­
dimensional problem we make use of the following standard results 

standard results are 

f fag dxdy =- f g af dxdy + J fgn x dS, (3.10) 
A ax A ax S 

and 

ag r at f.t-dxdy =- J, g-dxdy + fgny dS, (3.11 ) 
.f_A ay :A ay s 

where nx and ny are the direction cosines of the outward normal n to the closed 

curve S surrounding the area A. 
These results are proved in Zienkiewicz (1977), in the form given above. We 

also make use of the three-dimensional version of this theorem, which is 
basicaUy Gauss's divergence theorem with the extra ingredient of integration by 
parts. Zienkiewicz refers to (3.10) and (3.11) as Green's theorem, but the writers 
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of mathematical texts use this name for another result. We believe that these 
formulae have no generally accepted name, and therefore we will call them the 
'Zienkiewicz-Green' theorem. 

3.3 THE DISPLACEMENT METHOD 

3.3.1 General procedure 

This section explains the basic steps of the displacement method of finite 
element analysis. This will be done by considering a simple example where the 
'finite elements' are linear elastic springs. 

Consider the system of interconnected springs shown in Fig. 3.7. The springs 
are assumed to be weightless and are interconnected at nodes which are the 
pOints labelled 1, 2, 3 and 4. Weights can be hung from the nodal points and the 
question which must be answered is: what are the vertical displacements of the 
nodes and the tensions in the springs? The problem is 'statically indeterminate' 
in the terminology of structural mechanics, that is: it is not possible to calculate 
the forces in the springs from the equilibrium equations alone. 

Fig. 3.7 - System of interconnected springs 

In order to find the spring tensions it is necessary to take into account the 
stiffnesses of the individual springs ka, kb, kc and kd relating the tension in each 
spring to its elongation: 
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Td = kd ed· 

To arrive at a solution for this problem, the three fundamental principles of 

structural mechanics (compatibility, material behaviour and equilibrium) are 
applied in turn. What distinguishes the displacement method from other solution 

methods is first the choice of basic unknowns (Le. displacements) and second 

the order in which the three principles are applied. 

Compatiblity: the basic unknowns are defined as the displacements of the nodal 

points (see Fig. 3.7). The equations of compatibility are 

eb = d 3 -d2 , 


e =d4 -d 3 ,
c 

Material behaviour: using the definitions of spring stiffnesses detailed above: 

Ta =ka(d2 -dd, 

Tb =kb(d 3 - d2 ), 

Tc = kc(d4 -d 3 ), 

Td = kd(d4 - d2 ). 

Equilibrium: considering the forces acting at node 2 (see Fig. 3.8): 


Ta = Tb + Td + W2 , 


i.e. 

and rearranging this equation: 


-kad +(k +kb +kd)d2 -kb d 3 -kdd4 = W2 · 

1 a 

Tb w2 Td 

fig. 3.8 - Forces acting on node 2 
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Similar equations can be written for the other nodes, giving four linear 
simultaneous equations in d 1 , d 2 • d 3 and d 4 which can be expressed in matrix 
form: 

-ka : ka + kb + kd: -kb : -kd 
.......... ~I .............................................. ... -," ............... .. 


-kb : kb + kc: -kc 

The square matrix is called the global stiffness matrix for the collection of 
springs. The equation can be written in matrLx notation: 

Kd=W. 

General rules for determining the coefficients in the global stiffness matrix for a 
general arrangement of springs can be stated: 

Rule 1: the diagonal term for node i is made up of the sum of all the individual 
spring stiffnesses that are connected to node i. 

Rule 2: the off-diagonal terms (i, j) and U. i) contain the stiffness of the spring 

connecting node i and node j multiplied by -1. 

An equivalent statement is that the global stiffness matrix consists of the sum of 
matrices of the following form: (where ke is the stiffness of one particular 
spring) 

j 

rke -ke]. 
j L-ke ke 

One of these matrices is added into the global stiffness matrix for each spring in 
the collection. The node numbers i andj indicate where the terms must be added 
(or 'assembled') into the global matrix. These matrices are called the element 
stiffness matrices of each spring, relating nodal displacements to the forces 
exerted on each spring at nodal points. 

[_ke -ke] [d~J [Fi]
ke ke d, Fj 

The forces acting on each nodal point taken to be positive downwards; thus 

Fi = -Te and Fj = Te. 
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3.3.2 	Solving the equations 

To demonstrate the method of solving these equations , the following values are 
adopted: ka = kb = kc = 20, kd = 10, W2 = W4 = 0 and W3 = 1. Thus the 
equations which must be solved are 

(1) 	

[(2) -~~ -~~ -2~ -l~J [:~] [:j
(3) o -20 40 -20 d 3 - 1 ' 

(4) o -10 -20 30 d 4 0 

subject to the boundary condition d , = O. These equations are solved using the 
process known as Gaussian Elimination. The first stage of this process (known as 
forward elimination) is based on the observation that adding an arbitrary 
multiple of one equation to any other equation does not change the solution of 
the set of equations. 

First , however, it is necessary to deal with the boundary condition d I =O. 
There are many alternative methods for doing this, but one of the simplest 

(which is adopted here) is to add a large number (say 106
) to the diagonal term 

of equation (1). This forces this equation to yield a solution of d 1 = O. 
PhYSically the addition of this large number can be interpreted as the connection 
of node 1 to earth with a very stiff spring (with a stiffness of 106

) . 

-20 0 

-20 50 -20[10' 
0 -20 40 -20 1d 3-1~~J{:l
0 -10 	 -20 30 d 0 

Now the process of forward elimination is started: 

(a) 	 Multiples of the first equation are added to the following equations so that 
the coefficients of d 1 in these equations become zero. (This process is 
called eliminating d 1 from the following equations.) In this particular 
example, only equation (2) needs to be modified according to the 

following rule: 

(new equation (2)) = (old equation (2)) + (20/106
) X (equation!)): 

[f 
-20 0 


50 -20 
 -I~J [::} [:J-20 	 40 -20 d 3 1 

-10 	 -20 30 d 4 0 

(b) Multiples of equation (2) are now added to equations (3) and (4) to 
eliminate coefficients of d 2 from those equations: 
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50 -20 	 -10 dzOdlJ 	 [Wj
o 32 -24 d 3 1 

o -24 28 0 ~ ~d4 

The general method being adopted is now apparent: in step (a), terms in column 
1 under the diagonal become zero whereas in step (b), terms in column 2 under 
the diagonal became zero. The matrix is gradually being converted into 'upper 
triangular' form. 

(c) 	 Eliminate coefficient of d 3 from equation (4): 

(new equation (4)) = (old equation (4)) + (24/32) X (equation (3)). 

-20 0 

50 	 -20 -10 d2 0 

0 32 -24 d 3 1 .[r ~~J []0 0 10 d4 3/4 

Forward elimination is now complete. Now the process of back-substitution is 
started. 

(d) 	 Solve for d 4 from the last equation: 

d4 = 3/40. 

(e) 	 Solve for d 3 from the third equation: 

32d3 - 24(3/40) = 1. 


d 3 = 7/80. 


(f) 	 Solve for d 2 from the second equation: 

50d2 - 20(7/80) -10(3/40) = O. 


d 2 = 1/20. 


(g) 	 Solve for d l from the first equation: 

106 d l -20d2 = WI' 

d , = 0 (very nearly). 

From the nodal displacements it is now possible to calculate the spring 
elongations and tensions. 

3.3.3 	A computer program for the displacement method 

Listed below is a FORTRAN program which can be used to analyse collections 
of springs similar to the one considered above. 
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The basic steps of this short program are highlighted by the comments in the 

listing. The identical steps are present in the finite element program for 
consolidation analysis presented later in this chapter, and in CRISP. To use the 

program it is necessary to present it with input data describing the problem to be 
analysed. The input data must be prepared according to the following scheme: 

Data record Contents 	 No. of records 

A NN NS NF NL I 


B NI N2 AK NS 


C NOD FIX NF 


D NOD W NL 


where in record A, NN is the number of nodes, NS is the number of springs, NF 
is the number of nodes with prescribed displacements, and NL is the number of 
loaded nodes. In records of type B, NI and N2 are the node numbers at either 
end of a spring and AK is its stiffness. In records of type C, NOD is the node 
number which is given a prescribed displacement with a value FIX. In records of 
type D, NOD is the node which is loaded with a load W. 

An example data file follows the program listing. 

DIMENSION ST(12.12),RHS(12) 

WRITEC6,100) 


100 FORMATC16HOSPRINGS PROGRAM) 

C********************************I****INITIALISE*********************** 

DO 6 J=l,12 
DO 4 1=1,12 

4 ST CI, J) =0. 
6 RHSCJ )=0. 

C*************************************READ DATA************************ 
READC5,101) NN,NS,NF,NL 

101 	 FORMAT(415) 

IFCNN.LT.O) STOP 

WRITEC6,102) NN,NS,NF,NL 


102 FORMATCllHONOOES ••••• ,I5/11H SPRINGS ••• ,I5/ 

1 llH FIXES••••• ,I5/11H LOADS ••..•• I5) 


C*************************************ASSEMBLE************************* 
00 10 N=l, NS 
READC5,103) Nl,N2,AK 

103 	 FORMATC215,Fl0.0) 

WRITEC6.104) Nl,N2,AK 


104 	 FORMATC215,Fl0.3) 

STCN1,Nl)=STCN1,Nl)+AK 

ST(N2,N2)=STCN2,N2)+AK 

STCN1,N2)=STCN1,N2)-AK 


u 10 STCN2,Nl)=STCN2,Nl)-AK 
C********************I****************FIX NODES********I*************** 

0014 I=l,NF 
READC5,105) NOD,FIX 

105 FORMATCI5,Fl0.0) 

WRITEC6.106) NOO,FIX 


106 FORMATC1X,I5,Fl0.3) 
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STCNOD,NOO)=STCNOD,NOD)+1.0E6 
14 RHSCNOD)=RHSCNOD)+1.0E6*FIX 

C*************************************LOADS ON NODES******************* 
DO 18 I=1,NL 
READC5,1071 NOD,W 

107 FORMATCI5,Fl0.0) 
WRITEC6,106) NOD,W 

18 RHSCNOD)=RHSCNOD)+W 
C*************************************FORWARO ELIMINATION************** 

NNl =NN-l 
DO 30 IQ=l,NNl 
Il=IQ+l 
DO 26 I=Il,NN 
DO 22 J=IQ,NN 

22 STCI,J)=STCI,J)-STCIQ,I)*STCIQ,J)/STCIQ,IQ) 
26 RHSCI)=RHSCI)-STCIQ,I)*RHSCIQ)/STCIQ,IQ) 
30 CONTINUE 

C*************************************BACK SUBSTITUTE****************** 
RHSCNN)=RHSCNN)/STCNN,NN) 
DO 60 II =1 , N N 1 
IQ=NN-II 
Il=IQ+l 
DO 58 I=I1,NN 

58 RHSCIQ)=RHSCIQ)-STCIQ.I)*RHSCI) 
60 RHSCIQ)=RHSCIQ)/STCIQ,IQ) 

C*************************************PRINT DISPLACEMENTS************** 
WRITE(6,109) CRHSCI),I=l,NN) 

109 	 FORMATC14HODISPLACEMENTS/C1X,10E12.4)) 
STOP 
END 

Below are the data which describe the example worked through above: 

A 4 4· 

B 2 20.0 

B 2 3 20.0 

B 3 4 20.0 

B 2 4 10.0 

C 0.0 

D 3 1.0 

Running the program with these data produces the following output: 

SPRINGS PROGRAM 

NODES .... 4 
SPRlNGS . .. 4 
FIXES..... 1 
LOADS .... 

1 2 20.000 

2 3 20.000 
3 4 20.000 
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2 4 10.000 
1 0.000 
3 1.000 


DISPLACEMENTS 


0.1 000E-05 0.5000E-01 0.8750E-01 0.7500E-Ol 

and the reader can see tha t the printed displacemen ts correspond to those 

calculated in the example. 

3.4 VIRTUAL WORK 

The general procedure described above can be used to analyse problems where 
the properties of the individual elements are more complicated than tho'se of the 
elastic springs described above. The overall approach of assembling the 
stiffnesses of individual elements into a global stiffness matrix and solving the 
linear simultaneous equa tions remains precisely the same as that described 
above. This holds true regardless of whether the finite elements represent 

volumes of solid material (i.e. a continuum) or discrete members in a structural 
framework. 

In formulating stiffness matrices for continuum elements, use will be made of 

the principle of virtual work. The principle of virtual work will be used to 
determine the equivalent nodal loads which are in equilibrium with internal 
stresses in the finite elements. Since the virtual work principle is regarded as 
difficult and/or obscure by many engineers, this section discusses the derivation 
of the principle for a plane truss and a continuum. 

3.4.1 Virtual work for a truss 

Fig. 3 .9 shows a plane truss consisting of a collection of pin-ended bars. The 
description of the bars as 'pin-ended' means that an individual bar cannot 
transmit a moment to other bars via the joints at its ends. The joints in the truss 
are numbered from 1 to n (if there are n jOints) so that loads applied to one joint 
can be distinguished from loads applied to other joints by the use of numerical 
subscripts. In the following, one particular joint will be considered and it will be 
referred to as joint i for the sake of generality. Considering the forces acting on 
joint i and resolving horizontally and vertically: 

k 

Fig. 3.9 - Pin-jointed truss 
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Hi + ~'j cos (Xii + Tik cos (Xik + Til cos (Xii + Tim cos (Xim = 0, 

V;' + Tij sin (Xii + Tik sin (Xik + ~'l sin (Xii + Tim sin (Xim = 0, 

where Hi and Vi are the external horizontal and vertical loads acting on the jOint 
and Tij is the tension in the member connecting joint i to jOint j which is 

inclined at an angle (Xij to the horizontal. There are n pairs of equations similar 

to this one (one pair for each joint). The number of terms in each equation 

depends on the number of bars connecting each joint to other jOints in the truss. 
Here it has been assumed that joint i is connected to four joints: j, k, I and m. 

Each equation is now multiplied by a (different) arbitrary number, thus: 

hi(Hi + Tij cos (Xij + Tik cos (Xik + Til cos (Xii + Tim cos (Xim) = 0, 

11'( Vi + Tij sin (Xii + Tik sin (Xik + Til sin (Xii + Tim sin (Xim) = O. 

All the equations are now added together: 

L (hH + vV) + a large number of terms = O. 
join ts 

Examining the form of the 'large number of terms' it can be seen that the 
following four terms appear owing to the existence of the bar connecting joint i 
to joint j: 

... hi Tij cos (Xij + Vi Tij sin (Xij + hi 0i cos (Xii + Vi 0i cos (Xii . .. 

Now Tij = 0i = the tension in the bar connecting joint i to joint j. However, 

cos (Xii = -cos (Xii and sin (Xii = -sin(Xii (see Fig . 3.10). The following series of 
definitions are now made: 

eii =hi cos (Xij + Vj sin (Xii - hi cos (Xij - Vi sin (Xii 

and the equation now becomes 

L (hH+ vV) = LeT. 
join ts bars 

Fig. 3.10 - Geometric relationship used in proof of virtual work for a plane truss 
(cos (Xii = - cos Ciii; sin (Xii = - sin (Xii) 

If in this equation hi is set to one and all the other hs and vs are set to zero, then 

the original equilibrium equation for forces in the horizontal directio'n at joint i 
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is recovered. Any of the original equilibrium equations can be recovered in a 
similar fashion by setting the appropriate h or V to one and the others to zero. 

The equation which has just been derived is in fact the p~in~iple of v~rtual 
work for a pin-jointed truss (or, strictly speaking, the pnnclpal of vIrtual 

displacements). In deriving this principle, however, no reference has been made 
to displacements or work quantities: only the principle of equilibrium has been 

used. Suppose that the 'arbitrary numbers' hi and vi are now taken to be 
horizontal and vertical displacements of joint i. Then the quantity eij which was 
defined above turns out to be precisely the extension of bar ij due to these 
'displacements. This result can be obtained by using Pythagoras's theorem to 
calculate the length of the bar before and after straining and taking the limit of 
the difference when deflections are small. (Alternative methods are using a 
'displacement diagram' or simply resolving the joint displacements along the 
direction of the bar.) The equations giving bar extensions in terms of joint 

displacements are the equations of compatibility for the truss. 
Alternatively the equations of compatibility could have been used instead 

of the equilibrium equations as the starting point in the derivation of the 
principle. The arbitrary numbers which multiply these equations are identified 
as forces, and by selecting particular force system it is possible to recover the 
original compatibility equations (or some combination of them). Deriving the 
principle in this way leads to what is strictly called 'the principle of virtual 
forces'. It is normal to refer to both these principles as the principle of virtual 
work. The essential point to note is that either the set of forces in equilibrium or 
the set of compatible displacements may be 'arbitrary', 'imaginary' or 'virtual' 

(these are the terms tha t are commonly used in this contex t). 
The principle of virtual work is being increasingly used in the theory of 

structures to obtain solutions to redundant frameworks and structures. It is 
replacing the more traditional energy theorems mainly because the analyst only 
has to remember one basic principle rather than a series of different theorems 
(which all depend on virtual work for their proof). The aspect of the principle 
which leads to many regarding it as obscure is the introduction of the word 
'work'. Although it is natural to introduce this term in relation to the product of 
a force and a displacement, it inevitably leads to some confusion as to what this 
'imaginary work' actually represents in practice. In fact, as has been shown 
above, the principle merely represents statements of equilibrium and compati­
bility. The fact that both types of statement can be obtained from one single 
equation is the result of the 'duality' present in definitions of the force and 
displacement systems. This can be seen in the case of the plane truss in the fact 
that the cos (Xij and sin (Xij factors occur in both equilibrium and com~atibility 
equations. The proof of the virtual work principle involves transfernng these 

factors from forces to displacements. 

3.4.2 Virtual work for a continuum 


The starting point is the differential equations of equilibrium for a two­


dimensional continuum: 
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aax aTyx
+ wx , (3.12) 

ax ay 

aTxy ~ay
+ = wy . (3.13) 

ax ay 

These equations are multiplied by arbitrary scalar functions h and v, added 
together and integrated over the area of the continuum: 

x yx YX yJ [h [aa + aT - wx] + v [aT + aa - wyJ] d (area) = O. 
A ax ay . ax ay 

As in the case of the truss, h and v will subsequently be identified with 
horizontal and vertical displacements, but initially they are regarded as arbitrary 
functions (of x andy). 

Terms involving the derivatives of stresses are now integrated using the 
Zienkiewicz-Green theorem. This will be demonstrated by considering the 
integration of the first term in the equation above: 

xf h aa dxdy = - J ah ax dxdy + r haxnx elS. 
A ax A ax Js 

When the arbitrary scalar function h is identified as the horizontal displacement 
dx , the term (ah/ax) is recognised as -ex . Performing similar integrations for all 
terms of this type, the principle of virtual work for a continuum is obtained: 

JfTa d (vol) = J d Trd (area) + Jd T w d (vol). (3 .14) 

In this equation, r is a vector with components Tx = nxax + n Txy and 
Ty =nxTxy +nyoy . These are called 'tractions', and the term Jdfrd(area) 
represents the work done by these tractions on the boundary of the continuum. 
A simple transformation shows that this is equivalent to the work done by the 
direct and shear stresses acting on the inclined boundary. 

In order to emphasise in the virtual work principle that the strains are not 
necessarily caused by the stresses (but can be arbitrary as long as they are 
compatible), it is common to denote the virtual strains and displacements by a 

* * su perposed *: E and d. 
The purpose of this exposition (and the introductory case for the plane truss) 

was to demonstrate that in both cases the principle of virtual work is derived 
directly from the equations of equilibrium (or the equations of compatibility). 
The reason that the virtual work principle is employed in structural analysis 
(rather than the equilibrium equations) is mainly one of convenience. 

However, we draw the reader's attention to the fact that the derivation of the 
principle of virtual work for a continuum followed a very similar course to the 
procedure for applying Galerkin's weighted residual method to the seepage 
problem in section 3.2.3 . Indeed, we could have referred to the arbitrary scalar 
functions h and vas weighting functions, and it is possible to regard (3.14) as a 
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weighted residual statement. The identification of (3.14) as both the virtual 
work principle and a weighted residual statement leads to a physical 
interpretation of what is happening when an approximate solution is obtained 
using this equation. Substituting an approximate stress distribution into the 
equilibrium equations (3.12) and (3.13) gives a residual term which corresponds 
to an error in the body force. Satisfaction of (3.14) ensures that the integral of 
the work done by the (erroneous) body force is locally zero (over an area 
associated with each node in a finite element mesh). Alternatively the statement 

can be regarded as one of local equilibrium, in which the resultants of internal 
stresses, body forces and boundary stresses balance at the nodal points. 

3.5 DISPLACEMENT FINITE ELEMENTS 

3.5.1 The basic formula 

In this section the accoun t 0 f the displacement method is taken one step further 
by considering some 'fmite elements' which are rather more complicated than 

the springs considered in section 3.3. As mentioned previously, the general 
solution procedure remains the same regardless of the type of element 
employed. 

First the basic teclmique for obtaining the stiffness matrix for a finite 
element based on an assumed displacement field is presented. The teclmique is 
then illustrated by deriving element stiffness matrices first for a pin-ended bar 
and second for a triangular element to be used in the analysis of plane strain 

problems. 
The notation used follows that established by Zienkiewicz in his series of 

texts on the finite element method (1967, 1971, 1977) . The first step is to 
express the displacement inside the finite element as a function of the displace­
ments of nodal points and position within the element. This relationship is 
written in matrix notation : 

(3.15) 

where 

and ae is a vector listing aU the nodal displacements associated with an element. 
The matrix N contains the 'shape functions ' for the element. The form of these 
functions for different types of element is discussed below. 

The equations of compatibility are now used to obtain the strains inside the 
element in terms of the nodal displacements. This relationship is normally 
written in matrix notation: 

e = Bae. (3.16) 
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The matrix B is sometimes referred to as the 'strain matrix', but is more often 
simply referred to as the 'B matrix'. 

The next step is to use the elastic stress-strain relation for the material 

(0 = De) to express the stresses inside the elements in terms of the nodal 
displacemen ts: 

a = DBae. (3.17) 

The principle of virtual work is now used to find the nodal forces (Fe) which are 
in equilibrium with this state of internal stress. These nodal forces do not 
represent actual concentrated forces in the body : rather they represel 
resultants in much the same way as engineers use the concepts of an axial force, 
shear force and bending moment to describe the state of stress in a beam. A set 
of virtual nodal displacements applied to the element accompanies a set of 
virtual strains within the element according to the relation 

* * e = B ae. (3.18) 

The principle of virtual work gives 
-

*T Fe = f *Te od(vol). (3.19)a e 
V 

* Substituting for 0 and e using (3.17) and (3 .18) we obtain 

*T *T f T ()a e Fe = a e (B DB) d vol ae , 
V 

and;1can be cancelled to give 

(3.20) 

where 

K = J (BTDB) devol)
V 

is the element of stiffness matrix. 
The equivalent nodal forces Fe balance loads due to self-weight and boundary 

stresses - taking into account overall equilibrium, the resulting equation is 

f (BT DB) d (vol) ae = f NT w d (vol) 
V ~ 

+ f NT l' d (area), (3.21 ) 
S 

where 

r = [::,] 
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[d~] = [(1 - x 'jL) cos a (l - x 'jL) sin a
represents normal and shear stresses acting on an element boundary. Although 


these equations have been developed for a single element, we could equally well (x'jL)cosa (x'IL) sin a] 

(3.24)

have considered a whole mesh of elements in deriving them. Of course, one has 	
dX2[::'Jto use the Nand B matrices for each element in turn when performing an 
dY2integration over the whole mesh. 

(3 .15) above. The B matrix is obtained by
which is the same form as

3.5.2 Example: a plane truss element 
differentiating this equatioh: 

Fig. 3.11 shows one member of a plane truss of length L, inclined at an angle a 

to the x axis. The nodal degrees of freedom are the displacements in the x and 

y directions at the two ends of the element, dx 1, dy 1, dX2 and dy2 . 

X 
I 	 and is given by 

./
/ 	 [-CjL -SIL CjL sIL], 

/' 
/ 	

where C = cos a and S = sin a . 
./ 

The D matrix here simply reduces to Young's modulus, E (0; =E E~) . 

\Y' 

\ 	 ~~ -c~\ 
\ 

CS -C2 


\ 
\ AE CS S2 -CS -S2 


y \ . J(BTDB) devol) = - . c2

\ V L -c2 -CS CS . 

\ 
\ 
\ -CS -S2 CS S2 

\ 

The stiffness matrix of this element is normally obtained using a direct 

equilibrium approach. We have applied the general form (3.20). 

3.5.3 Example: constant strain triangle 

L-_________________ X 	 Fig. 3.12 shows the simplest triangular finite element for continuum analysis. 

The nodal degrees of freedom are the displacements at the vertices of the 

triangle, dX1 , dy1 , dX2 , dy2 , dX3 and dy3 . The displacement at some point in 

Fig. 3.11 - Nodal degrees of freedom for plane truss element 
the element is assumed to have a linear variation: 

In calculating the strain in this element, we are only interested in the displace­


ments along the direction of the element and so we define an axis system local 

dy =C3 +c4 x+csy.

to the element, (x', y'), with the x' axis coincident with the direction of the 

member. The displacement a distance x' along the element is given by 	
The coefficients Co, Cl, etc. are found by substituting the co-ordinates of the 

three nodal points into these expressions. Solving the resulting sets of
(3.22) 

simultaneous equations we obtain 

To obtain the element stiffness matrix we need to obtain this expression in 


terms of degrees of freedom dx 1, dy 1, dX2 and dy2 . This is achieved by noting x Y

dx = -dX1 + -dX2 + 1-~-2:)d( h h x3,

that h h 


d~ = dx cos a + dy sin a (3.23) 

x Y X y)

(which follows from a simple consideration of geometry). 	 dy = -dYI + -dy2 + 
( 1 - h - h dy3 '

h h 
Making thls substitution we obtain 
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, y 

h 

x'--__---------.:a.-______ _ 

h 

Fig. 3.11 - Constant strain triangle 

Thus the shape function matrix N is given by 

o y/h 0 (1 -x/h - y/h) 

x/h 0 y/h o 

Ct 
Applying the normal definitions of strains (1.4), (1.5) and (1.7), the B matrix is 

given by 

0 0 0 I/h 

0 0 -I/h 0 l~hJ . 
-I/h -I/h 0 1/11 I/h 

For a plane strain problem the D matrix relating a to € is given by 

v[-v I -v oo ] . 
(I - 2V;(1 + v) v 

0 0 0.5 -v 

Calculating the element stiffness matrix is a simple matter of calculating the 
matrix product BTDB times the area of the element (h 2/2), since the terms of all 
these matrices are constant. 

The resulting matrix is 

Sec. 3.5] Displacement Finite Elements 

a 0 0 v -a -v 

0 b b 0 -b -b 

0 b b 0 -b -b E 

v 0 0 a -v -a 2(1 + v) (1 - 2v) 

-a -b -b -v C 1/2 

-v -b -b -a 1/2 C 

where a = 1 - v, b = 0.5 - v and c = 1.5 - 2v. 
Note that the terms of this matrix are independent of the dimensions of th' 

element - a property of all element stiffness rna trices for plane strain and plane 
stress analysis tha t can be expected on physical grounds. 

3.5.4 Higher-order elements 

The second element presented in the previous section, usually known as the CST 

(the Constant Strain Triangle), was the first element formulated for continuum 
analysis (Turner et al., 1956). Although it has the virtue of simplicity it is 

currently not regarded as a good choice of element for general use in analyses. 
This is because a large number of CST elements are required to obtain a 
sufficiently accurate representation of non-constant stress fields. Irons and 
Ahmad (1980) demonstrate a number of cases where this element gives poor 

results, even with apparently fine meshes. 
Elements with a higher-order variation of displacement (and hence strain) 

have the advantage that fewer elements are needed to obtain a sufficiently 
accurate solution to problems. However, a higher-order element is more difficult 
to program, more difficult for a program user to understand and uses more 
computer resources than lower-order elements. Despite these disadvantages it is 
generally accepted that the balance of advantage in terms of both computational 
efficiency and ease of use favours the higher-order elements. The element usually 
used for plane strain analyses by CRISP is the linear strain triangle (Fig. 3.12 
Whereas the constant strain triangle has a displacement field which has a lineal 

variation in all directions: 

dx =co +CIX+C2Y, 

dy = C3 +C4 X + csY, 

the linear strain triangle (or LST) has a displacement field which has a quadratic 

varia tion in each direction: 

= Co + clx + C2Y + C3X2 + C4XY + csy2,dx 

dy =C6 +C7X+CSY+C9X2 +c IOXY+Clly 
2

. 

It is convenient to express the shape functions for higher-order elements (such as 
the LST) in terms of co-ordinate systems which are local to the element 
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Fig. 3.13 - Nodal degrees of freedom for linear strain triangle 

concerned. The r~mainder of this section explains the basic techniques for doing 

this. 
First consider the bar element presented in section 3.5.2. To simplify the 

demonstration of a local co-ordinate system, we align the element with the 
global x axis. If the co-ordinates of the ends of the bar are (XI, 0) and (xz, 0) 
then the shape functions for axial displacement of a point (x, 0) on the bar are 

dx =(xz -x)/(xz -xl)dxI + (x-xI)/(xz -xddxz . 

We now introduce the same local co-ordinate system that was adopted in section 
3.2.2 for the numerical integration rules: 

~=(2X-(Xl +xz))/(xz -xd· 

Thus ~ = -1 when x ·= x I and ~ = 1 when x = X2 (at the midpoint of the 
element ~ = 0). The transformation from the global co-ordinate system to the 
local one involves a linear stretch and a translation. 

In terms of the local co-ordinate, the shape functions are 

The same functions are used to transform the local co-ordinate to the global 
one: 

x = 0.5 (1 - nXl + 0.5 (1 + nX2 

(the functions are the same because for the bar the displacement varies linearly 
along the element and the axis transformation is also linear). It should now be 
apparent that the advantage of using the local co-ordinate system is that the 
shape functions of all linear bar elements are now given by the same expression. 
The use of local co-ordinates requires some small modifications to the way the 
stiffness matrix is calculated. Before discussing these changes, the two most 
common forms of local co-ordinates for two-dimensional elements are described. 
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(1,1) 

(1,-1) 
Fig. 3.14 - Local co-ordinates for quadrilateral elements 

Fig. 3.14 shows the system of local co-ordinates (t 17) appropriate for 
rectangular or quadrila teral elements. The local co-ordinates of the vertices of 
the rectangle or quadrilateral are (1,1), (-1,1), (-1, -1) and (1, -1). 
Transformation from local to global co-ordinates is described by the equations 

x = 0.25(1 +~) (1 + 17)X I + 0.25(1 -~) (1 + 17)Xz 

+ 0.25(1 -~) (1 -17)X3 + 0.25(1 + n (1 -17)X4, 

Y = 0.25(1 +~) (1 + 17)YI + 0.25(1 - n(I + 17)Yz 

+ 0.25(1-~)(I -17)Y3 + 0.25(1 +~) (1 -17)Y4' 

The similarity between this system and the one-dimensional system should be 
apparent. 

Fig. 3.l5 shows the system of local co-ordinates appropriate for triangular 
elements. A point within a triangle is defined by three co-ordinates (LI' L z, L3)' 
Only two of these co-ordinates are independent since 

3 

A = area of triangle 

=A 1 +A 2 +A 3 

L, =~1;L2=~2;L3~~3 
A A A 

Fig. 3.15 - Triangular co-ordinates 
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and hence 

L 1 +L2 +L3 =1. 

The advantage of using three co-ordinates for triangular elements is that 

expressions for the shape functions are symmetrical with respect to the nodes. 

Transformation from local to global co-ordinates is given by the equations 

The elements provided in CRISP are triangular (see Fig. 4.1). Triangular 
elements possess the (probably small) theoretical advantage over quadrila terals 
that they give the same variation in displacement in all directions over the 
element. This is because the shape functions contain complete polynomial 
expansions of x and y, and unlike quadrilaterals do not have extra junk' terms. 
In some situations, analyses with triangular elements have succeeded where 
quadrilateral elements have come to grief (e.g. recent work on computing 
elastic-perfectly-plastic collapse loads (Sloan and Randolph, 1982). The shape 
functions for the CST element are the triangular co-ordinates, i.e. N J =L 1, 

N2 = L2 and N 3 = L 3. The shape functions for the LST element are 
Nl = (2L 1 -1)L 1 , N2 = (2L 2 -1)L2, N3 = (2L3 - 1)L3' N4 =4L 1L2, 
Ns = 4L2L3 and N6 = 4L 3L 1 • Shape functions for higher-order elements can be 
obtained by a simple recurrence reiation. While it is convenient to formulate the 
triangular elemen ts in terms of triangular co-ordinates, it is necessary at some 
pOint to change to the (t 1/) local co-ordinates, when the substitutions Ll = t 
L2 = 1/ and L3 = 1 - ~ -1/ are made. 

It is straightforward to calculate the derivatives of these functions with 
respect to the local co-ordinates. Integrating functions within the triangular and 
quadrila teral areas is also straightforward in terms of the local co-ordinates. 
However, in calculating the stiffness matrix it is necessary to obtain derivatives 
with respect to the global co-ordinates (Le. when calculating terms in the B 
matrix). The Jacobian matrix is used to transform between derivatives with 
respect to local and global co-ordinates (see for example the text by Maxwell, 

1954). The Jacobian matrix arises from the chain rule of partial differentiation: 

al al ax al ay
+ 

a~ ,a~ ax a~ ay 

al al ax al ay 
+ , 

a1/ ax a1/ ay a1/ 

and can be written: 
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where the Jacobian matrix J is given by 

ax ay 

a~ a~ 

ax ay 

a1/ a1/ 

In forming the terms of the B matrix, the Jacobian matrix of the inverse relation 
is required (Le. local -+ global rather than global -+ local). It is compu tationally 
easier to calcula te J and then the terms of r 1 and this course is pursued in 
CRISP (see Chapter 7). The other standard result which is used in integrating the 
terms of the stiffness matrix is 

II dxdy =II det (1) d~d1/ 
where det (J) is the determinant of the matrix J. 

As indicated earlier, numerical integration is used to calculate the terms of 
the element stiffness matrices. For two-dimensional numerical integration there 
are 'integration points' within each element where the terms of the matrix 
product BT DB are calculated. 

3.5.5 One-dimensional quadratic element 

As an example of a higher-order element we show how the stiffness matrix of a 
one-dimensional element with a quadratic variation of displacement (and, hence . 
a linear distribution of strain) can be calculated. This element can be regarded a 
a three-noded bar element. Alternatively, it could be regarded as suitable for a 

(rather simple) analysis of layers of soil where there is no straining in either of 
the horizontal directions. The element is shown in Fig. 3.16. The terms of the N 
matrix are given by 

[O.5~(~ - 1) O.5H~ + 1) (I-e)]. 

The transforrna tion between local and global co-ordinates when forming 
derivatives is quite simple in the one-dimensional case: 

adx adx d~ 
Ex =- -­

ax a~ dx 


Hence the terms of the B matrix are 
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h 

Fig. 3.16 - One-dimensional quadratic element 

') (a) (b)
~ [(0.5 -~) -(0.5 + ~) 2~]
h 

Fig. 3.17 - Displacement finite elements deform as in (a) not (b) (displacements
. . are compatible: no gaps open up)

(noting that d~/dx = 2/h). 
Now since €y = €z = 0, ax = (E(l - v)/((1 + v) (l - 2V!))E~. Thus D IS 111 

elements. On the other hand, although the strains will be continuous within
this case a square matrix containing precisely one term (.which IS u.sually know~ 

elements, there will usually be a discontinuity of strains between adjacent
as the one-dimensional modulus). The stiffness matnx for thIS element IS 


therefore given by the integral of the following matrix over the volume of the elements. 


The stress field in an element will be continuous - but may not satisfy the 

t 
element: 


differential equations of equilibrium. Except for very simple problems, stresses 


(0.5 -~) (0.5 -~) -(0.5 - 0 (O.S + ~) 2HO.S - ~)J on either side of element boundaries will not be equal. Equilibrium is satisfied, 


4D -(0.5 + ~) (0.5 - 0 (0.5 + 0 (O.S + ~) -2HO.S +n . however, in an average sense through the equilibrium equations at nodal points 

h2 
where the resultant forces equivalent to internal stress fields balance resultant

2HO.S -~) -2~(0.5 + ~) 4~~ 
forces equivalent to external tractions and body forces. 

The extent to which local stresses appear not to be in equilibrium gives some
To perform this integration, each term in the matrix is integrated betw~en limits 


~ == -1 and ~ = 1, and each resulting term is mul~iplied by ~/2 (the equIvalent of idea of the accuracy of the solu tion. 


det (1) in this case). The matrix resulting from thIS process IS 

DA 
3.6 FINITE ELEMENTS FOR CONSOLIDAnON ANALYSIS 

3h 
3.6J The basic equations 

In this section the basic matrix equations for consolidation analysis by finite
where A is the area of the column of soil. 

derived. The starting point is the differential equations of
elements are 

equilibrium and compatibility that were described in the first chapter. The 
3_5.6 Approximation and accuracy in the displacement method 

equations will be developed for a two-dimensional analysis. To formulate a 

Engineers sometimes regard displacement finite elements as bei~g connected 
three-dimensional analysis it is merely necessary to add the extra terms for 

only at the nodal points in a mesh. This is not a good conceptu~l pIcture of h~w 
variation in the z direction. For the sake of completeness we repeat the 

finite elements behave. Straining displacement elements results In a defor~atIon 
equilibrium equations: 

pattern similar to that shown in Fig. 3.l7(a) rather than Fi~. 3.17(b) (I.e. no 

gaps open up between element sides). This is because the dIsplacement shape aax + aryX 
(3.12biS)

functions are chosen so that there is continuity of displacements between ax ay 
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aTxy aay 
-- + = Wy . (3.l3 bis)

ax ay 
The two-dimensional differential equation of continuity is 

(3.25) 
lW 

To obtain the finite element matrix equations we can apply Galerkin's weighted 
residual method to the equilibrium equations and to the continuity equation in 
turn. In section 3.3 it was shown that for the equilibrium equations the resulting 
equation was equivalent to the principle of virtual work. We now show that 
performing the same kind of operation on the continuity equation yields 
another <Virtual principle'. The first step is to mUltiply the continuity equation 
by an arbitrary scalar which can vary with x and y. We identify this scalar with 
an imaginary or virtual pore pressure. Thus (3.25) is replaced by 

2 2
* . [kx a u- ky a u av]+ - -2 + - d (vol) = O. (3.26)

2JV 
U 

lW ax lW ay at 
Zienkiewicz-Green theorem is now applied to this equation: 

kX a~ au ky a~ au]- J. - - - + - - - d (vol) 
[V lW ax ax lW ay ay 

r * f * av- J( uVn d (area) + u - d (vol) = 0 (3.27) 
s V at 

(where vn is the artificial seepage velocity normal to the boundary). It is this 
equation that could be regarded as the 'principle of virtual power' and could 
form the starting point for obtaining the finite element equations, in much the 
same way as the prinCiple of virtual work can be used to obtain the finite 
element equations for stress analysis. 

We now introduce the finite element discretisation of the problem. The 
displacements are assumed to vary over a finite element mesh according to 

d = Na, (3 .28) 

and the excess pore pressures are assumed to vary over the same mesh according 
to 

u=Nb. (3.29) 

Note that different shape functions are indicated for displacement (matrix N) 
and excess pore pressure (matrix N). For example the displacement may vary in 
a quadra tic fashion and pore pressure in a linear fashion over one element. The 
virtual excess pore pressure is assumed to vary according to the same shape 
functions as the excess pore pressures: 

Sec. 3.6] Finite Elements for Consolidation Analysis 

* -* 
u =Nb. (3.30) 

As usual the strains are given by 

e = Ba, (3.31 ) 

and the gradient of the excess pore pressure is given by 

ou 

ax 


= Eb, (3.32)au 

ay 


where the terms of the E matrix are obtained by differentiating N. A vector m 
is defined: 

(3.33) 

such that 

a = a' + rnu, (3.34) 
and 

(3.35) 

Substituting into (3.27) we have 

*T f -T T d(a) * Jb N rn B d (vol) - - b T ETkE/'V d (vol) b 
V dt V IW 

= bT f NTVn d (area) (3.36)
s 

where k is a permeability matrix: 

[ 
0].kX 

o ky 

The virtual pore pressure can be cancelled from this equation, and making the 
substitutions 

L = f BTrnN d (vol) and <I> = J ETkEhw d (vol) 
V V 

we obtain 

T d(a) f 
L --<I>b= NTvnd(area).

dt s 
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This is a first-order differential equation which we integrate with respect to time, 

from time t to time t + 6.t: 

f
t+~t T d(a) ft+~t 

L -dt-<I> bdt 

t dt t 


t+~t 

= f f NTVn d (area) dt. (3.37) 
t S 

In performing this integration we make the approximation 

t+~t }
f b d t = {(l - e) b I + eb 2 6.t 

t 

where b I = bet) and b2 = bet + 6.t). The value of edefines the way that b varies 
during the time interval; for example, e= +corresponds to a linear variation 

and the trapezoidal integration rule. 
A similar approximation is made for the integration of vn , and after 

substitution (3.37) becomes 

LT [a] ~+~t - <I> {(1-e) b i + e b 2 } 6.t 

= JNT {(1-e) vnl + e vn2 ) 6.t d (area) . (3.38) 

Booker and Small (1975) consider the stability of in tegration schemes using 

different values of eand show that for stability, e ;;?; +. We have adopted a value 
of e= 1. Making that substitution in (3.38), and defming 6.a = aCt + 6.t) - aCt) 

and 6.b = b 2 - b I , we arrive at 

LT 6.a - <I> 6.t . 6.b = <I> 6.t . b I 

+ i NT Vn2 6.t d (area). (3.39) 
S 

Now we turn to the equilibrium equations. Rather than start from the 

differential form we make direct use of the incremental form of virtual work: 

S;T 6.a d (vol) = fd T 6.T d (area) + fd T 6.w d (vol). (3.40) 

Previously we have used the virtual work principle for total stresses. That the 

incremental form is valid follows from the principle of superposition for linear 

elastic systems. In fact the incremental form is also valid for non-linear systems, 
as can be shown by writing the equations in terms of total stresses and sub­

tracting. Now: 

6.a = 6.a' + m 6.u, 

and therefore (noting that 6.u = t:.ii) 

6.a = 6.a' + m 6.u. 
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Using this relation, and making the usual finite element substitutions: 

6.€ = B 6.a, 

* * d =Na, 

t:.ii = N 6.b, 

we obtain 

=;T I NT .6.7 d (area). (3.41 ) 
S 

;T can be cancelled, and using the notation already established: 

K 6.a + L 6.b = 1. NT 6.r d (area) (3.42) 
S 

where 

K = J [BTDB] d (vol). 

Equations (3.39) and (3.42) can be used to establish a solution at time t + 6.t 
from the solution at time t. Thus the solution can be 'marched forward' in time 

from t = O. In summarising, the equations can be written: 

(3.43) 

It is normal to refer to the square matrix in (3.43) as a stiffness matrix, even 

though it multiplies a vector of mixed displacement and pore pressure variables. 
The first equation ih (3.43) represents approximate satisfaction of the 
equilibrium equations and the second equation approximate satisfaction of the 
continuity equation. The right-hand-side term &-1 consists of the normal finite 
element incremental load terms. The right-hand-side term &-2 consists of a load 
term corresponding to a prescribed seepage on the boundary: 

fs NVn2 d (area) 

and an additional term (<I>6.t. bl) which is calculated as the solution proceeds. 

3.6.2 A finite element program for consolidation analysis 

This section shows how the matrix equations derived in the previous section are 

implemented in a computer program . We call this program 'TINY'. The name is 

appropriate because the program has been set up to solve problems with a 

maximum of six elements. Of course, it would not be difficult to lift this 

restriction by making some modifications to the program. The program performs 
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a one-dimensional consolidation analysis using the elemen t shown in Fig. 3.18. 
The basic displacement element is the three-aoded one in section 3.5.5, here 
supplemented by a linear variation in excess pore pressure. Here is a 'subroutine 
hierarchy' for TINY, showing the order in which the various subroutines are 

called and their relation to one another: 

ELDATA 

MAIN 

INCDAT 

ASSMBL-- LSTIFF--C 
SHAPE 

FORMBE 
FIXBC 

SOLVE 
r---SHAPE 

UPOUT--I
--FORMBE 

o Displacement node 

X Pore pressure node 

Fig. 3.18 - Finite element used by TINY for one-dimensional consolidation 

The overall sequence of operations performed by the program is the same as for 
the 'springs' program described earlier. However, routines ASSMBL, FIXBC, 
SOLVE and UPOUT are now in a loop and are executed for every time step or 
increment of the analysis . Routine ASSMBL assembles the global 'stiffness' 
matrices using the 5 X 5 element matrices. The main controlling routine is 
below, and is followed by cross-referenced explanations, a style we shall use for 

all other routines: 

Routine MAIN 

MAIN 1 
CHARACTER*80 TITLE MAIN 2
COMMON IDATI GP(2),W(2),LIN(3) MAIN 3COMMON GAMMAW,H (6), YM(6), POISS(6), PER~l (6) ,DTIME(40) HAIN 4COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) 

MAIN SCOMMON B(3),E(2),DB(3),ES(S,S),FI(2,2),UAXS(2),ERHS(S) MAIN 6COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME 
MAIN 7COMHON NCONN(3,6),NW(13),IBC(4),NINC,NDF,NEL,NG,INC,NE 
MAIN 8 

COM~10N L S, L6 t1AIN 9 
L5=S 
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L6=1 MAIN 10 
NG=2 MAIN 11 
READ(LS,100) TITLE MAIN 12 

100 FORMAT(A) MAIN 13 
WRITE(L6,200) TITLE MAIN 14 

200 FORMAT(1X,20(4H****)/1X,A/1X,20(4H****» MAIN 15 
CALL ELDATA MAIN 16 
READ(LS,*) NOINCB MAIN 17 
WRITE(L6,201) NOINCB ~lAIN 18 

201 	 FORMAT(30H NUMBER OF INCREMENT BLOCKS ,IS) MAIN 19 
CALL ZEROR1(DISPA,20) MAIN 20 
CALL ZEROR3(VARINT,2,2,6) MAIN 21 
DO 80 INCB=1,NOINCB MAIN 22 
WRITE(L6,202) INCB MAIN 2 

202 FORMAT(1X,20(411====)/16H INCREMENT BLOCK,IS/1X,20(4H====» MAIN 2· 
CALL INCDAT MAIN 25 
DO 70 I=1,NINC MAIN 26 
INC=! MAIN 27 
WRITE(L6,203) INC MAIN 28 

203 FORMAT(1X,20(4H++++)/10H INCREMENT,IS/1X,20(4H++++» MAIN 29 
CA.LL ASSMBL MAIN 30 
CALL FIXBC MAIN 31 
CALL SOLVE HAIN 32 
CALL.UPOUT MAIN 33 

70 CONTINUE MAIN 34 
80 CONTINUE MAIN 35 

STOP MAIN 36 
END MAIN 37 

MAIN 12-15 : read and write title for analysis. 
MAIN 16 : subroutine ELDATA reads the element properties (geometry and 

material). 
MAIN 17 -19 : no. of increment blocks. 

MAIN 20 : initialise cumulative displacement/excess pore pressure array. 

MAIN 21 : initialise stresses at integration points. 

MAIN 22 : loop on all increment blocks. 

MAIN 25 : read no. of increments and the time steps for each increment in 

the increment block. 

MAIN 30 : calculate element stiffness matrix and assemble into global stiff 
ness matrix. 

MAIN 31 : apply boundary conditions. 

MAIN 32 : solve for unknowns (displacement/excess pore pressure). 

MAIN 33 : print out results. 

MAIN 34 : end of increment loop. 

MAIN 35 : end of increment block loop. 

Routine ELDATA reads the user's data describing the element properties. The 

program assumes that the elements are in order, starting from the top (or 
bottom) of the layer and numbers the nodes accordingly. Nodes at the mid­
points of elements have only one (displacement) degree of freedom (d.oJ.), 

while nodes at the ends of elements have two d.oJ. (displacement plus excess 
pore pressure). The position of a d.oJ. in the vector RHS (which initially holds 
the load terms, and after solution the nodal incremental displacements and 
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Subroutine INCDA T
incremental excess pore pressures) is called the global variable number (g.v.n.). 

The displacement d.oJ. at node 1 has a g.v.n. of 1; the pressure d.oJ. at .node 1 
SUBROUTINE INCDAT INCD 1

has a g.v.n. of 2; the displacement d.oJ. at node 2 has a g.v.n. of 3; the dlsplace­
COMMON IDATI GP(2),W(2),LIN(3) INCD 2 

ment d.oJ. at node 3 has a g.v.n. of 4; the excess pore pressure d.oJ. at node 3 COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME(40) INCD 3
COMMON SHFND (3), DSD (3) ,CARDSD (3), SI1FNP (2), DSP (2) ,CARDSP (2) INCD 4

Of 5· the displacement d.oJ. at node 4 has a g. .v.n. of. 6; and so on.
has a g.v.n. , COMMON B(3),E(2),DB(3),ES(S,S),FI(2,2),UAXS(2),ERHS(S) INCD S
Array NW is set up so that NW(I) gives the first g.v.n. assoclated wlth node 1. 

COHMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME INCD 6
COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF,NEL,NG,INC,NE INCD 7
COMMON LS,L6 INCD 8
READ(LS,·) NINC INCD 9Subroutine ELDATA 
WRITE(L6,200) NINe INCD 10 

200 FORMAT(38H NUMBER OF INCREMENTS IN THIS BLOCK ;IS) INCD 11ELDT 1
SUBROUTINE ELDATA READ(LS,·) (DTIME(I),I:1,NINC) INCD 12ELDT 2
COMMON IDATI GP(2),W(2),LIN(3) WRITE(L6,201) (DTIMEO),I=1,NINC) INCD 13ELDT 3
COMMON GAMMAW,H(6),¥M(6),POISS(6),PERM(6),DTIME(40) 201 FORMAT(16H TIt1E INCREMENTS/(1X,8E1S.S)) INCD 14ELDT 4
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) BTIME=O.O INCD 1SELDT 5
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) D010N=1,NINC INCD 16ELDT 6
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME 10 BTIME:BTIME+DTIHE(N) INCD 17ELDT 7
COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF,NEL,NG,INC,NE WRITE(L6,203) BTIME INCD 18ELDT 8
COMMON L5,L6 ELDT 9 203 FORMAT(33H TOTAL TIME FOR INCREMENT BLOCK =,E1S.5) INCD 19
READ(L5,*) GAMMAW ELDT 10 READ(LS,·) IBC,BC INCD 20
WRITE(L6,200) GAMMAW WRITE(L6,202) IBC,BC INCD 21ELDT 11

200 FORMAT(10H GAMMAW = ,E15.5) ELDT 12 202 FORMAT(20H BOUNDARY CONDITIONS/1X,I7,3115/1X,4E1S.5) INCD 22 
READ(L5, Ii) NEL ELDT 13 RETURN INCD 23
WRITE(L6,201) NEL ELDT 14 END INCD 24 

201 FORMAT(22H NUMBER OF ELEMENTS = ,IS) 
ELDT 15

DO 10 N=l,NEL ELDT 16
READ(LS, *) H (N), ¥M(N), POISS(N), PERM (N) 

ELDT 17 INCD 19-11 : read and write no. of increments in the increment block (~40) . 
WRITE(L6,202) N,H(N),YM(N),POISS(N),PERM(N) 

ELDT 18 INCD 12-14 : read and write the time steps for each increment.
202 FORMAT(lX,IS,4E1S.5) ELDT 19

10 CONTINUE ELDT 20 INCD 16-17 : calculate the total time step for increment block. 

1=1 ELDT 21 INCD 20-22 : read prescribed boundary conditions and fixity codes for first 
NW( 1)=1 ELOT 22
DO 20 N=1, NEL and last nodes.

ELDT 23
NCONN(1,N)=2·N-1 ELDT 24
NCONN(2,N)=2 liN+1 ELDT 25 Routine ASSMBL calls LSTIFF which calculates the 'stiffness' matrix for
NCONN<3, N)=2 li N ELDT 26
NW(I+1 )=NW(I)+2 ELDT 27 each element and assembles it into the global matrix . It uses the array NW to 
NW(I+2)=NW(I+1)+1 ELDT 28 decide where to put the stiffness terms (NW = Node Where) in the global matrix.

20 1=1+2 ELDT 29
NDF=2+3*NEL ELDT 30 Array LIN(3) contains the number of d.o.f. associated with each element node 

RETURN ELDT 31 (2,2, 1), and so helps ASSMBL to decide how many rows/columns to slot in.
END 

(LIN = element INformation, a mini version of the LINFO array in CRISP.) 

The 'element right-hand-side' terms (ERHS) are slotted in too. 
ELDT 9-11: read and write unit weight of water. 

ELDT 12-14 : read and write no. of elements (~ 6). 
Subrou tine ASSMBL

ELDT 15-19 : read height (or thickness), Young's modulus and Poisson's ratio 

and permeability. SUffROUTINE ASSMBL ASML 1 

: loop on all elements. COMMON IDATI GP(2),W(2),LIN(3) ASML 2ELDT 22 
COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME(40) J\SML 3

ELDT 23-25 : set up element-nodal connectivity list (list of nodes connected 
ASML 4COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP{2)

to each element). COMMON B(3),E(2),DB(3),ES(S,S),FI(2,2),UAXS(2),ERHS(S) ASML S 

ELDT 26-27 : set up g.v.n. for the first variable of each node. COMt10N ST(20,20), RHS(20), DISPA (20), VARINT (2, 2, 6), BC(4) ,XI, BTIME ASML 6 

COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF,NEL,NG,INC,NE ASML 7
ELDT 29 : total no. of d.o.f. (variables). COMMON L5,L6 ASML 8 

CALL ZEROR2(ST,20,20) ASML 9 
CALL ZEROR1(RHS,20) ASML 10

Routine lNCDAT reads the data describing the loads etc. associated with each 
DO 60 N:1,NEL ASML 11 

analysis increment. For ease of data preparation, increments are grouped NE=N ASML 12
CALL LSTIFF ASML 13

together into increment blocks. 
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DO 50 1=1,3 

NODI=NCONN(I,NE) 

IN=LIN(I) 

IK=NW(NODI )-1 


IL=2*(I-1 ) 

DO 50 II=l,IN 

IK=IK+1 

IL=IL+1 

DO 48 J=1,3 

NODJ=NCONN(J,NE) 

IN=LIN(J) 

J K =NW(NODJ )-1 

JL=2*(J-1 ) 

DO 48 J J =1 , J N 

JK=JK+1 

JL=JL+1 


48 ST(IK,JK)=ST(IK,JK)+ES(IL,JL) 

50 RHS(IK)=RHS(IK)+ERHS(IL) 

60 CONTINUE 


RETURN 

END 


ASML 9: initialise global stiffness matrix. 


ASML 10 : initialise RHS load vector. 


ASML 11 : loop on all elements. 

ASML 13 : calculate element stiffness matrix. 
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ASML 14 

AS~lL 15 

ASML 16 

A St~L 17 

ASML 18 

ASML 19 

ASML 20 

ASML 21 

ASML 22 

ASML 23 

ASML 24 

ASML 25 

ASML 26 

ASML 27 

ASML 28 

ASML 29 

ASML 30 

ASML 31 

ASML 32 

ASML 33 

ASML 34 


ASML 14 : slot element stiffness matrix in global rna trix (loop on all rows). 


ASML 15 : node no. 

ASML 16 : no. of d.oJ. of node . 

ASML 17 : global variable number of first d.oJ. of node (= IK + 1). 

ASML 18 : index of the first variable of node (= IL + 1) . 


ASML 19 : loop on all variables of node. 

ASML 20 : global variable number. 

ASML 21 : local variable number. 

ASML 22 : loop on all columns. 


ASML 23 : node no. 

ASML 24 : no. of d.oJ. of node. 

ASML 25 : global variable number of first d.o.f. of node (= JK + 1). 

ASML 26 : index of the first variable of node (= JL + 1). 

ASML 27 : loop on all variables of node . 

ASML 28 : global variable number. 

ASML 29 : local variable number. 

ASML 30 : slot element stiffness matrix into global matrix . 

ASML 31 : assemble element RHS terms into global RHS (load) array. 


ASML 32 : end of element loop. 


Routine LSTIFF calculates the element 'stiffness' matrix for element NE. 
The loop from statement 12 to statement 30 calculates the component parts of 

the stiffness matrix using two-point Gaussian numerical integration. The terms 
of the various matrix products are calculated NG times (NG = no. of Gauss 

points = 2) and are summed. The K and LT terms go straight into ES, but the 
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terms of <I> are stored in a separate matrix FI which is used to produce the pore 
pressure 'loads' from the marching process (cI>.6l. hI) ' Routines SHAPE and 
FORMBE are used to calculate the terms of the N, N, Band E matrices at each 
integration point. 

Subroutine LSTIFF 

SUBROUTINE LSTIFF 	 LSTF 
COMMON IDATI GP(2),W(2),LIN(3) 	 LSTF 2 

COMMON GAMMA\-I,H(6),YM(6),POISS(6),PERM(6),DTIME(40) LSTF 3 

COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) LSTF 4 

COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) LSTF 5 

COMMON ST(20,20),RHS( 20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME LSTF 6 

COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF, NEL,NG,INC, NE LSTF 7 

COMMON L5, L6 	 LSTF 8 

CALL ZEROR2(ES,5,5) 	 LSTF 9 

CALL ZEROR2(FI,2,2) 	 LSTF 10 

CALL ZEROR1(ERHS,5) 	 LSTF 11 

DO 	 40 IG=l,NG LSTF 12 

XI =GP (IG) 	 LSTF 13 

WF=W(IG)*H(NE)/2.0 	 LSTF 14 

CALL SHAPE 	 LSTF 15 

CALL FORMBE 	 LSTF 16 

DO 18 J=1,3 LSTF 17 


18 DB(J)=YM(NE)*(1.0-POISS(NE»/«1.0-2.0*POISS(NE»*(1.0+POISS(NE»)LSTF 18 

1 *B (J ) 


DO 20 J=1,3 

DO 20 I = 1 , 3 


20 	 ES(2*I-1,2·J-1)=ES(2*I-1,2·J-1)+WF*B(I)·DB(J) 

DO 22 1=1,3 

DO 22 J=1,2 

ES (2·1-1, 2*J) =ES (2·1-1, 2*J )+WF*B (I) *SHFNP (J) 


22 	 ES(2*J,2*I-1)=ES(2*I-1,2*J) 
DO 24 1=1,2 
DO 24 J=1,2 

24 FI(I,J)=FI(I,J)+E(I)·E(J)·PERM(NE)·WF/GAMMAW 
40 	 CONTINUE 

DO 50 1=1,2 
DO 50 J =1,2 

50 	 ES (2*1 ,2*J l=-DTIME (INC )·n (I, J) 
DO 54 1=1,2 
N=NCONN (I, NE) 
K=NW(N)+l 

54 	 UAXS(I)=DISPA(K) 
DO 58 1= 1,2 
DO 58 J =1,2 

58 	 ERHS(2·I)=ERHS(2·I)+FI(I,J)·UAXS(J).DTIME(INC) 

IF(NE.NE.1) GOTb 70 

IF(IBC(l).EQ.O) ERHS(l)=BC(l).DTIME(INC)/BTIME 

IF(IBC(3).EQ.0) ERHS(2)=ERHS(2)-DTIME(INC)*BC(3)/GAMMAW 


70 IF(NE.NE.NEL) RETURN 
IF(IBC(2).EQ.O) ERHS(3)=-BC(2).DTIME(INC)/BTIME 
IF(IBC(4).EQ.0) ERHS(4)=ERHS(4)-DTIME(INC).BC(4)/GAMMAW 
RETURN 
END 

LS TF 1 9 

LSTF 20 

LSTF 21 

LSTF 22 

LSTF 23 

LSTF 24 

LSTF 25 

LSTF 26 

LSTF 27 

LSTF 28 

LSTF 29 

LSTF 30 

LSTF 31 

LSTF 32 

LSTF 33 

LSTF 34 

LSTF 35 

LSTF 36 

LSTF 37 

LSTF 38 

LSTF 39 

LSTF 40 

LSTF 41 


. LSTF 42 

LSTF 43 

LSTF 44 

LSTF 45 

LSTF 46 

LSTF 47 

LSTF 48 


LSTF 9-11: initialise element stiffness matrix, flow matrix and element load 
array. 

LSTF 12 : loop on all integration points. 
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LSTF 13 : local co-ordinate of integration point. 
LSTF 14 : weighting factor X Jacobian. 
LSTF 15 : calculate shape functions and derivatives for displacement and 

excess pore pressures. 
LSTF 16 : form Band E matrices. 
LSTF 17-19 : calculate DB matrix. . . T 
LSTF 20-22 : calculate displacement part of stIffness matrlX,B DB. 
LSTF 23-26 : calculate link matrix. 
LSTF 27 -29 : calculate flow matrix <I>. 
LSTF 30 : end of integra tion point loop. 
LSTF 31-33 : multiply <I> by time step. 
LSTF 34-37 : current excess pore pressure (value at the end of previous 

increment). 
LSTF 38-40 : calculate RHS pore pressure terms. 
LSTF 41 : skip ifnot first element.t 
LSTF 42 : add loads proportional to the time step for this increment. 
LSTF 43 : add flow term to the RHS. 
LSTF 44 : skip if not last elemenq 
LSTF 45 : add loads proportional to the time step for this increment. 
LSTF 46 : add flow term to RHS. 

Routine SHAPE calculates the shape functions and their derivatives (with 
respect to both local and 'Cartesian' axes) for displacements and excess pore 
pressures at the poin t with local co-ordinate ~(XI) within an element. 

Subroutine SHAPE 
SHAP 1 

COMMON IDATI GP(2),W(2),LIN(3) SHAP 2 
COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME(40) SHAP 3 
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) SHAP 4 
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) SHAP 5 
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME SHAP 6 
COMMON NCONN (3, 6), NW( 13), IBC(4), NINC, NDF, NEL,NG,INC, NE SHAP 7 
COMMON L5,L6 SHAP 8 
SHFND(1)=XI·(XI-1.0)/2.0 SHAP 9 
SHFND(2 )=X1 *(Xl+1.0 )/2.0 SHAP 10 
SHFND(3)= 1. O-XIIXI 

SUBROUTINE SHAPE 

SHAP 11 
DSD(1)=XI-O.5 SHAP 12 
DSD(2)=Xl+0.5 SHAP 13 
DSD(3)=-2.0·XI SHAP 14 
CARDSD(1)=DSD(1)·2.0/H(NE) SHAP 15 
CARDSD(2)=DSD(2)·2.0/H(NE) SHAP 16 
CARDSD(3)=DSD(3)·2.0/H(NE) SHAP 17 
SHFNP(1)=(1.0-X1)/2.0 SHAP 18 
SHFNP(2)=(1.0+XI)/2.0 SHAP 19 
DSP(1)=-0.5 SHAP 20 
DSP(2)=0.5 SHAP 21 
CARDSP(1)=DSP(1)·2.0/H(NE) SHAP 22 
CARDSP(2)=DSP(2)·2.0/H(NE) SHAP 23 
RETURN SHAP 24 
END SHAP 25 

t The boundary conditions are applied only to the first and last nodes . 
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SHAP 9-11: calculate displacement shape functions. 


SHAP 12-14 : calculate local derivatives of displacement shape functions. 

SHAP 15-17 : calculate Cartesian derivatives of displacement shape functions. 

SHAP 18-19 : calculate excess pore pressure shape functions. 

SHAP 20-21 : calculate local derivatives of excess pore pressure shape functions. 
SHAP 22-23 : calculate Cartesian derivatives of exess pore pressure shape 

functions. 

Routine FORMBE computes values for the Band E matrices, using the 
values just calculated by SHAPE. 

Subroutine FORMBE 

SUBROUTINE FORMBE 
FRMB 1COMMON IDATI GP(2),W(2),LIN(3) 
FRMB 2COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME(40) 
FRMB 3COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) FRMB 4COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) 
FRMB 5COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME 

COMMON NCONN(3,6),NW(13),1BC(4),NINC,NDF,NEL,NG,INC NE 
COHMON L5,L6 ' 
B(1 )=-CARDSD( 1) 
B(2)=-CARDSD(2) 
B(3 )=-CARDSD (3) 
E(l )=CARDSP(1) 
E(2)=CARDSP(2) 
RETURN 

FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 

6 
7 
8 
9 

10 
11 
12 
13 

END FRMB 14 
FRMB 15 

FRMB 9-11: calculate B matrix. 
FRMB 12-13 : calculate E matrix. 

Routine FIXBC 'fixes' the values of variables corresponding to the boundary 
conditions on the top and bottom of the layer. 

Subroutine FIXBC 

SUBROUTINE FIXBC 
FXBC 1COMMON IDATI GP(2),W(2),L1N(3) 
FXBC 2COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME(40) 
FXBC 3COM~10N SHFND(3), DSD(3), CARDSD (3) ,SHFNP (2), DSP (2), CARDSP (2) FXBC 4COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(S) FXBC 5COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BT1ME FXBC 6COHMON NCONN( 3,6), NW( 13), IBC(4), NINC, NDF, NEL, NG, INC, NE 

COMMON L5,L6 FXBC 7 
FXBC 8DO 20 1=1,4 

IF(IBC(I).EQ.O) GOTO 20 9FXBC 
FXBC 10IF(1.EQ.l) N=l 

IF(I.EQ.2) N=NDF-1 FXBC 11 
FXBC 12IF(1.EQ.3) N=2 
FXBCIF (1.EQ.4) N=NDF 13 
FXBC 14IF(IBC(I).NE.l) GOTO 10 
FXBC 15ST(N,N)=ST(N,N)+1.0E18 
FXBC 16RHS(N)=RHS(N)+1.0E18·BC(I)IDTIME(INC)/BTIME

GOTO 20 FXBC 17 
FXBC 18 
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FXBC 19 SOLV 10-16 : Gaussian elimination to reduce global stiffness matrix to 
10 IF(IBC(I).NE.2) GOTO 18 FXBC 20 triangular form. ST(N N)=ST(N,N).,.0E,8 FXBC 21 

RHS(N)=RHS(N).,.0E18*(BC(I)-DISPA(N» FXBC 22 SOLV 18-23 : back-substitution to yield the unknown values. RHS contains the 
IBC (I)= 1 FXBC 23 solved incremental values of displacement/excess pore pressure.
BC(I)=O.O FXBC 211 

GOTO 20 FXBC 25 


18 WRITE(L6,200) I,IBC(I) 
 FXBC 26 Routine UPOUT updates total displacements and excess pore pressures and
200 FORMAT(32H ILLEGAL BOUNDARY CONDITION CODE,215) FXBC 27 prints out effective stresses and pore pressures at integration points. STOP FXBC 28 


20 CONTINUE FXBC 29 

RETURN FXBC 30 

END 


Subroutine UPOUT 
: loop on all variables with possible prescribed boundary

FXBC 9 
conditions. SUBROUTINE UPOUT UOUT 1 

FXBC 10 : skip if variable is not prescribed (indicated by 0). COHHON /DAT/ GP(2),W(2),LIN(3) UOUI 2 
FXBC 11-14 : corresponding global variable number. COHHON GAHHAW, H(6), YH(6), POISS(6), PERH (6), DTIHE (110.) UOUT 3 

COHHON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) UOUT II
FXBC 15 : skip if the incremental value is not prescribed. COHHON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) UOUT 5 
FXBC 16 : add large value to the diagonal term. COHHON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(Il),XI,BTIME UOUT 6 

COHHON NCONN(3,6),NW(13),IBC(Il),NINC,NDF,NEL,NG,INC,NE UOUT 7FXBC 17 : adjust RHS to yield prescribed value.. . COHMON L5,L6 UOUT 8 
FXBC 19 : skip if the cumulative value is not prescnbed (only applIcable to DO 10 N=l,NDF UOUT 9 

10 DISPA(N)=DISPA(N).RHS(N) UOUT 10 excess pore pressure). 
WRlTE(L6, 200) UOUT 11 

FXBC 20 : add large number to diagonal term (the pivot) . 200 FORMAT(1l0H DISPLACEMENTS AND EXCESS PORE PRESSURES/ UOUT 12 
1 51lH NODE INCREMENTAL VALUES ABSOLUTE VALUES/ UOUT 13: adjust RHS to yield prescribed value. FXBC 21 2 58H ---------------- -------------------) UOUT 111 

FXBC 25 NN=1.2*NEL UOUT 15: inadmissible boundary condition code. 
DO 20 N=1,NN UOUT 16 
K1=NW(N) UOUT 17

Routine SOLVE solves the global matrix equations using Gaussian IF(2*(N/2).NE.N) WRITE(L6,201) N,RHS(K'),RHS(K,.,), UOUT 18 
1 DISPA(K1),DISPA(K,.,) UOUT 19elimination. 
IF(2*(N/2).EQ.N) WRITE(L6,202) N,RHS(K1),DISPA(K1) UOUT 20 

201 FORMAT(lX,I5,IlE13.3) UOUT 21 
202 FORMAT(1X,I5,E13.3,13X,E13.3) UOUT 22Subroutine SOL VE 

20 CONTINUE UOUT 23 

SOLV 1 WRITE(L6,203) UOUT 211 
SUBROUTINE SOLVE 203 FORMAT(38H EFFECTIVE STRESSES AND PORE PRESSURES/ UOUT 25SOLV 2 

SOLV 3COMMON /DAT/ GP(2),W(2),LIN(3) 1 38H ELEH I.P. EFF STRESS PORE PRESS) UOUT 26 
COMMON GAMMAW,H(6),YM(6),POISS(6),PERH(6),DTIHE(1l0) SOLV II DO 30 N=1 , N EL UOUT 27 
COHHON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) UOUT 28NE=NSOLV 5COHHON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) UOUT 2(DO 30 IG=l,NGSOLV 6COHMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(Il),XI,BTIHE UOUT 30XI=GP(IG)SOLV 7COHHOtl NCONN (3, 6), NW (13), IBC (II), NINC, NDF, NEL, NG, INC, NE 31CALL SHAPE UOUT 
COMHON L5,L6 CALL FORM BE UOUT 32

SOLV 8 
SOLV 9 

NDF1=NDF-1 10 N1=NCONN(1,NE) UOUT 33SOLV uour 311DO 30 IQ=1,NDF1 N2=NCONN(2,NE)SOLV 11 
Il=IQ.l 12 N3=NCONN <3, NE) UOUT 35SOLV 
DO 26 1=11, NDF SOLV 13 Kl=NW(Nl) uour 36 
DO 22 J=IQ,NDF K2=NW(N2) UOUT 37SOLV 111

22 ST(I,J)=ST(I,J)-ST(IQ,I)*ST(IQ,J)/ST(IQ,IQ) K3=NW(N3) UOUT 38SOLV 15
26 RHS(I)=RHS(I)-ST(IQ,I)*RHS(IQ)/ST(IQ,IQ) VARINT(l,IG,NE)=VARINT(1,IG,NE).YM(NE)*(1.0-POISS(NE» uour 39SOLV 16 
30 CONTINUE 1 /«1.0-2.0*POISS(NE»*(1.0.POISS(NE»)*(B(1)*RHS(Kl) uour 110SOLV 17

RHS(NDF)=RHS(NDF)/ST(NDF,NDF) 2 .B(2)*RHS(K2).B(3)*RHS(K3» UOUT IIISOLV 18 
DO 60 II = 1 , NDF 1 VARINT(2,IG,NE)=VARINT(2,IG,NE).SHFNP(1)*RHS(K1.').SHFNP(2) UOUT 1j2SOLV 19 
IQ=NDF-II 20 1 *RHS(K2.1) UOUT 113SOLV 
11 =IQ.1 WRITE(L6,201l) NE,IG,VARINT(1,IG,NE),VARINT(2,IG,NE) UOUT IlljSOLV 21 

SOLV 22DO 58 I=I1,NDF 2011 FORMAT(lX,215,2E13.3) UOUT 115 
58 RHS(IQ)=RHS(IQ)-ST(IQ,I)*RHS(I) 30 CONTINUE UOUT 116SOLV 23 
60 RHS(IQ)=RHS(IQ)/ST(IQ,IQ) RETURN uour 117SOLV 211 

RETURN END UOUT 118SOLV 25 
END 
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I 
II 
I! 

UOUT 9-10: calculate cumulative values of displacement/excess pore pressure . 

UOUT 16-23 : print out incremental and cumulative values of displacements/ 

excess pore pressures. 

UOUT 27 : loop on all elements to print effective stress and pore pressures 

a t in tegra tion points. 

UOUT 28 : NE - element no. 

UOUT 29 : loop on all integration points. 
UOUT 30 : local co·ordinate of integration point. 
UOUT 31 : calculate shape functions and derivatives. 
UOUT 32 : calculate Band E matrices. 
UOUT 33-35 : nodes of element. 
UOUT 36-38 : g.v.n. of first variable of all nodes. 
UOUT 39-41 : calculate incremental effective stress. 
UOUT 42-43 : calculate incremental excess pore pressure. 
UOUT 44 : print out stresses. 
UOUT 46 : end of integration point and element loop. 

These three subroutines zero 
respectively. 

Subroutine ZERO 

SUBROUTINE ZEROR1(A,N) 
DIMENSION A(N) 
DO 10 I=l,N 

10 A(I)=O.O 
RETURN 
END 
SUBROUTINE ZEROR2(A,M,N) 
DIMENSION A(M,N) 
DO 10 J=l,N 
DO 10 1=1 ,M 

10 A(I,J)=O.O 
RETURN 
END 
SUBROUTINE ZEROR3(A,L,M,N) 
DIMENSION A(L,M,N) 
DO 10 K=l,N 
DO 10 J=l,M 
DO 10 1= 1, L 

10 A(I,J,K)=O.O 
RETURN 
END 

real arrays with one, two and three subscripts 

ZERO 1 
ZERO 2 
ZERO 3 
ZERO 4 
ZERO 5 
ZERO 6 
ZERO 7 
ZERO 8 
ZERO 9 
ZERO 10 
ZERO 11 
ZERO 12 
ZERO 13 
ZERO 14 
ZERO 15 
ZERO 16 
ZERO 17 
ZERO 13 
ZERO 19 
ZERO 20 
ZERO 21 

ZERO 3-4 : zero a one·dimensional REAL array. 

ZERO 9-11: zero a two·dimensional REAL array . 
ZERO 16-19 : zero a three·dimensional REAL array. 

The BLOCK DATA subprogram initialises integration point co·ordinates and 
weights. It also initialises the element information vector LIN. 
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BLOCK DATA BOAT · 1 
COMMON IDATI GP(2),W(2),LIN(3) BOAT 2 
DATA GP (1) ,GP (2) ,W (1) ,W (2)/-0. 57735, .57735,1.0,1. 01 BOAT 3
DATA LIN(1),LIN(2),LIN(3)/2,2,11 BOAT 4
END BOAT 5 

Arrays in common 

GP Gauss point co·ordinates 

W Weights 

LIN Element type data 

Ht Height of elements 

YMt Young's modulus 

POISSt 
 Po iss on 's ra tio 

PERMt Permeability 

SHFND Displacement shape functions 

DSD 
 Derivatives of shape functions w.r.t. local co·ordina te 

CARDSD Cartesian derivatives of shape functions 

SHFNP Pore pressure shape functions 

DSP Local derivatives of excess pore pressures 

CARDSP Cartesian derivatives of excess pore pressure shape functions 

B Strain-displacement matrix 

E E matrix 

DB DXB 

ES Element stiffness matrix 

FI Flow matrix - <P 

UAXS Excess pore pressures 

ERHS Element Right·Hand·Side terms 

STt Global stiffness matrix 
RHSt Global RHS 
DISPAt Global displacement/pore pressure array 
VARINTt Stresses at integration points 
BC Boundary conditions 
NCONNt Element-nodal connectivity 
NWt Global variable number of first d.oJ. of each node 
IBC Code for boundary conditions 

Variables in common 

NINC Number of increments 
NDF Total number of d.oJ. (variables) 
NEL Number of elements 
NG Number of integration points 
INC Current increment 
NE Current element 

t These arrays have been set up for a maximum of 6 elements. 
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GAMMAW Unit weight of water 

XI Local co-ordinate 

BTIME Total time step for increment block 

3.6.3 Input specification for TINY 

Data record Contents No. of records 

A TITLE 

B GAMMAW 

C NEL 

D H YM POISS PERM NEL 

E NOINCB 1 

F NINC NOINCB 

G DTIME(I) . .. DTIME (NINC) NOINCB 

H IBC(I) . . . IBC( 4) BC(I) ... BC(4) NOINCB 

where 

TITLE - Title for analysis 

GAMMAW - Unit weight of water 
NEL Number of elements 
H Height of element 
YM Young's modulus 

POISS Poisson's ratio 

PERM - Permeability 

NOINCB - Number of increment blocks 

NINC - Number of increments in increment block 

DTIME(I) - Time step for Ith increment in block 

IBC(I) o - Displacement d.oJ. at node 1 has appJied stress boundary 

condition = BC(I) (compression +ve) 
I - Displacement d.o.f. at node I is prescribed with incremental 

value equal to BC(l) (applied at constant rate over time of 

increment block) 
2 - Displacement d.o .f. at node I is prescribed to have an abso­

lute value of BC(l) during the first increment of block and 

then kept steady at this value 

IBC(2) Boundary condition for displacement d.oJ. at last node (same 

conventions as above) 

IBC(3) o - Excess pore pressure d.oJ. at node I has prescribed artificial 

seepage velocity of BC(3) (flow in +ve) 
1 - Excess pore pressure d.oJ. at node 1 is prescribed with 

incremental value equal to BC(3) (applied at constant rate 

over time of increment block) 
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2 - Excess pore pressure d.oJ. at node I is prescribed to have an 

absolute value of BC(3) during the first increment of block 
and is then kept steady at this value 

IBC(4) Boundary condition for excess pore pressure d .oJ. at last node 
(same conventions as above) 

In the examples that follow, node I is considered to be at the top of the layer, 

and the last node at the bottom (however, the program is oblivious to this 
difference, and would produce identical results if the opposite convention were 
used) . 

3.6.4 Consolidation analyses 

This section illustrates the use of the TINY program in section 3 .6 .2, and 
explains why the choice of time steps for analyses can require some care. The 
program is used in analysing the following two problems: 

1. One-dimensional Terzaghi consolidation. 
2. Under-drainage. 

The first problem is a layer of thickness 20 m subjected to a vertical pressure. 
This generates a uniform excess pore pressure throughout the layer. Then 
drainage is allowed from both the top and the bottom surfaces. Because of 
symmetry, only the upper half is considered in the analysis (see Fig. 3 .19). The 
mesh is modelled by six elements, with thinner elements adjacent to the top 
drainage surface. This is because of the rapid change in pore pressures near this 
boundary. The following material properties are assumed for the layer, which is 
isotropic and homogeneous. 

., . '. '. 
... .. . . ." 

CD 

@ 

Fig. 3.19 - Finite elements to model Terzaghi one-dimensional consolidation 
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E = 1000 kPa v = 0.25 k = 10-9 m/sec. 

The applied pressure is 10 kPa. The base of the layer is restrained and 
impermeable (corresponding to a pore pressure boundary condition of zero 
flow). The first increment block consists of a single increment in which the 
vertical pressure of 10 kPa is applied and the base is restrained. This causes a 
uniform excess pore pressure of 10 kPa to develop in the layer. 

At this stage, two points need clarification: the pore pressure boundary 

condition and the selection of time steps in the subsequent increment. For 

integration in time, e= 1. Hence the solution is unconditionally stable for any 

size of time steps (Booker and Small, 1975). However, this does not necessarily 
imply that any size of time step is permissible. For the above example, taking 

the unit weight of water is 10 kN/m 3
, cy = 1.2 X 10-7 m 2 /sec. It is possible to 

solve the one-dimensional consolidation problem approximately using parabolic 
isochrones (Schofield and Wroth, 1968). 

Fig. 3.20 illustrates the isochrone moving in from the boundary up to the 
point denoted by A. Points below A have not yet experienced any change in 
pore pressure due to the draining boundary. It can be shown that the time taken, 

t, for this is given by 

I" 
6.0' 

O~------.. 

A -:::::> 
""C.--­ --­

Fig. 3.20 - Pore pressure distribution after flrst time step of analysis with short 
time step 

(3.44) 

where I is the distance to point A from the boundary. If I is the normal distance 
of the first pore pressure node from the boundary then t specifies the minimum 
time step that can be specified. This can be explained in a simple manner. The 
element chosen allows for a linear variation of pore pressure. If a time step 
t I < t is chosen then the drainage would have taken place up to a point (say) B. 
An attempt by the analysis to model this situation closely would generate a pore 
pressure at A equal to ~a' which is greater than the applied vertical pressure. 

In order to compensate for this error, a smaller pore pressure is generated in the 
next node. This results in the zigzag distribution, shown in Fig. 3.20.. A similar 
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limit on the minimum time step has been arrived at by others (Pyrah, 1980; 
Vermeer and Verrujit, 1981). Substituting the values for the chosen mesh, 
t = 6.9 X lOs. Based on this, a time step of 106 is chosen for the first increment. 
It is quite common to use a log scale for time in the plot of settlement (or degree 
of consolidation) against time. As time passes, dissipa tion takes place at a 
reduced rate. It is logical to use progressively larger time steps in the finite 
element analysis. The usual practice is to select a fixed number of time steps (say 

4 or 5) within a log cycle. The following are examples of such a scheme: 

0.1 2 2 5 I 10 10 20 50 I 100 100 200 500 I 

total time 10 100 1000 


2 6 I 10 20 60 I 100 200 600 I 

total time 10 
 100 1000 

For this problem it is also possible to make a simple estimate of the total time 
required for the dissipation of the pore pressures. Using the relationship between 
degree of consolidation and time factor, the time for 90% consolidation is 
calculated to be 0.7 X 109

. Using the above data on the smallest possible time 
step and the total time, the following time steps were chosen for the analysis: 

l. 1.E6 1.E6 2.E6 6.E6 I I.E7 2.E7 6.E7 I I.E8 2.E8 6.E8 I 

1.E9 

Now we come to the question of pore pressure boundary conditions. We have 
found that the best tec~nique is not to apply both loads and pore pressure 
boundary conditions in the same increment. The load was applied in the first 
increment. The appropriate pore pressure boundary condition (drainage from 
top surface) is then applied in the second increment. In order to fix the absolu te 
excess pore pressure, a fixity code of 2 is used. There is more discussion of the 
use of fixity codes 1 and 2 for excess pore pressures in section 9.2. The input 
data for the analysis are as follows: 

Record 
A ***EXAMPLE 1 *** TERZAGHI 1-D CONSOUDATION *** 
B 10. 

'C 6 
D l. I.E3 0.25 I.E-9 
D 1. I.E3 0.25 1.E-9 
D 2. I.E3 0.25 1.E-9 
D 2. I.E3 0.25 I.E-9 
D 2. I.E3 0.25 I.E-9 
D 2. I.E3 0.25 I.E-9 
E 2 
F 1 
G l. 
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H 0 1 0 0 10. O. O. o. 
F 11 F 

~ : G 1.E6 1.E6 2 .E6 6.E6 1.E7 2.E7 6 .E7 
0.2 0.4 0.6 0.8 1.0 1.2 1.4G 1.E8 2.E8 6.E8 1.E9 1.6 

H 0 1 2 0 O. O. O. O. 

Fig. 3.21 shows the computed isochrones compared with the theoretical solution 
20

(based on Fourier series). The comparison is good, bearing in mind the number 

of time steps and elements used in the analysis. Fig. 3.22 shows the degree of 


Theory
consolidation plotted against VTy. Again the comparison is reasonably good. 


40 
 0 TINY 
TINY 

Theory 

60Increment nos. 

80 

0100 

U 

Fig. 3.22 - Plot of degree of consolidation against -,lTv for Terzaghi one­
dimensional consolida tion 

10 15 kPa 

Time step = 103 

Time step = 106 

Fig. 3.21 - Excess pore pressure isochrones for Terzaghi one-dimensional 

consolidation 


In order to demonstrate the discussion on the time step, a separate analysis 


with a lower time step of 103 was carried out, and Fig. 3.23 shows the pore 


pressure distribution at the end of that increment. 


The input data for the next example are as follows: 

Record 

A ***EXAMPLE 2 *** UNDER DRAINAGE *** 

B 10. 


C 6 

D 2. I.E3 0.25 1.E-9 

D 2. I.E3 0.25 l.E-9 

D 2. I.E3 0.25 1.E-9 
 Fig. 3.23 - Comparison of pore pressure distributions for different time steps 
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D 2. I.E3 0.25 I.E-9 

D 1. I.E3 0.25 I.E-9 

0 1. I.E3 0.25 I.E-9 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 E 1 

F 11 

G I.E6 I.E6 2.E6 6.E6 I.E7 2.E7 6.E7 

G I.E8 2.E8 6.E8 I.E9 
 20 

H 0 1 2 O. O. O. -10. 


In this example, the drainage boundary (with rapidly changing pore pressures) is 40 
at the bottom and elements are thinner towards it. However, both top and 
bottom are drainage boundaries. The base of the layer is restrained and is main­
tained at an excess pore pressure of -10 kPa. The top surface is maintained at O. 
The resultant isochrones are plotted and compared against the theoretical 
solution in Fig. 3.24. Again the comparison is good. Fig. 3.25 shows the plot

I 

of degree of consolidation against the YTv. It is worth mentioning that the plot 
of degree of consolidation against yTv is the same for the dissipation of bothI' 

80 

rectangular and triangular pore pressure distributions. In fact it is the sameI 
(Taylor, 1948) for any linear distribution of pore pressure. 

100 

u 

Fig. 3.25 - Plot of degree of consolidation against VTy for under-drainage 
problem 

Fig. 3.24 - Excess pore pressure isochrones for under-drainage 
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Introduction to CRISP 

4.1 INTRODUCTION 

This chapter introduces CRISP (CRItical State Program). The size of problem 
which CRISP can tackle is limited only by the amount of memory and 
processing power of the computer concerned. CRISP has been mounted on 
many different makes of computer, with only minor modifications. We explain 
the programming strategy which has made this possible. Finally we explain the 
basic structure of the program and document the main controlling routines. 

4.1.1 	 SumlUary of facilities 

(a) 	 Types of analysis: 
Undrained, drained or fully-coupled (Biot) consolidation analysis of two­
dimensional plane strain or axisymmetric (with axisymmetric loading) 

solid bodies. 

(b) 	 Soil models: 
Anisotropic elasticity, inhomogeneous elasticity (properties varying wi th 
depth), critical state soil models (Cam-clay, modified Cam-clay). 

(c) 	 Element types: 
Linear strain triangle and cubic strain triangle (with extra pore pressure 
degrees of freedom for a consolidation analysis). 
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(d) 	 Non-linear techniques: 

Incremental (tangent stiffness) approach. Options for updating nodal 
co-ordinates with progress of analysis. () = 1 for integration in time. 

(e) 	 Boundary conditions: 

Element sides can be given prescribed incremental values of displacements 
or excess pore pressures. Loading applied as nodal loads or pressure 
loading on element sides. Automatic calculation of loads simulating 
excavation or construction when elements are removed or added. 

(f) 	 Miscellaneous: 
Stop-restart facility allows analysis to be continued from a previous run. 

4.2 CRISP: HOW IT'S DONE (AND WHY) 

4.2.1 	 Element types 

The library of elements consists of the triangular elements shown in Fig. 4.1. 
The basic element is the six-noded linear strain triangle (LST - element type 2). 
This element and the higher-order Cubic Strain Triangle (CuST - element type 
6) can be used for drained or undrained analysis. The corresponding elements 
for consolidation analyses are element types 3 and 7 respectively. These element 
types have additional degrees of freedom (d.oJ.), namely excess pore pressures. 
The pore pressure nodes are deployed such that the strains and pore pressures 
have the same order of variation across an element. 

The higher-order triangular elements have two attractions. 

1. 	 Fewer elements are needed for the analysis of most problems, making the 
data preparation less arduous. 

2. 	 Under undrained conditions the constraint of no volume change leads to 
'locking' of finite element meshes when low-order elements are used: 
Recent research (Sloan and Randolph, 1982) has shown that these 
problems can be avoided by using higher-order elements (at least LST fOJ 
plane strain and CuST for axisymmetric plane strain). 

On the other hand, there are occasions where the use of a lower-order element 
(Le. LST rather than CuST) can be advantageous: for example, situations where 
the mesh has irregular boundaries or contains several zones of soil with different 
properties. Indiscriminate use of higher-order elements in these circumstances 
can lead to unnecessarily expensive analyses. 

Elements of type 2 can be mixed with elements of type 3, and so can type 6 
with type 7. This may be useful in carrying out a consolidation analysis where 
part of the mesh behaves in a drained manner. 

Using the higher-order elements is just as straightforward as the lower-order 
ones because the program user only has to specify the co-ordinates of the nodes 

at the vertices of triangular elements. Edge and interior nodes are then calculated 
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o d . d - displacement unknown x y 
A U - pore pressure unknown 

2 

3 
3 

(b) LST (consolidation element type 3):(a) LST (element type 2): 6 nodes, 12 d.oJ. 
6 nodes, 15 d.o.r. 

2 

3 
3 

(d) CuST (consolida tion element type 7):
(c) CuST (element type 6): 

22 nodes, 40 d.oJ.
15 nodes, 30 d.oJ. 

Fig.4.1 - Different types of element 

by interpolation, assuming the element has straight sides. However, .elements 
with curved boundaries can be used if the appropriate side node coordmates are 

specified. . 
The program has been designed so that new element types can be added with 

relatively little effort. In particular the incorporation of elements like the three­
noded bar element or the eight-noded quadrilateral element is not difficult. 
These two element types could be mixed with LST elements in a mesh. The only 
restriction on different element types being mixed together is that they should 

have the same number of nodes along the sides (edges). 
In numbering the vertex nodes and the elements in the mesh, gaps in the 

numbering are allowed for; this permits the user to alter some part of the mesh 
without having to re-number the mesh completely. The additional nodes along 
element sides and any inner nodes are assigned numbers by the program. 
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4.2.2 Solution techniques 

When describing finite element techniques in Chapter 3, it was assumed that soil 
response is linear and elastic. The causes of non-linear response can be identified 
as being either geometric non-linearity or material non-linearity. Geometric non­
linearity arises when large deformations of the structure mean that the 
equilibrium equations (based on the undeformed geometry) are no longer 
sufficiently accurate. Material non-linearity arises when the stress-strain relation 
for the material is non-linear (e .g. the Cam-clay relations described in Chapter 2) . 
In general, non-linearity of a system may be due to geometric non-linearity, 
material non-linearity, or both together. Carter (1977; Carter et a/., 1977) 
examined the importance of non-linear geometric effects in geotechnical 
analysis. His general conclusion was that the 'linear' assumption of small strains 
and small displacements is usually satisfactory in the solution of geotechnical 
problems. In the majority of cases the normal infinitesimal strain assumption 
leads to an overestimation of deformations compared to the use of finite 
deformation theory (and hence is pessimistic). Thus in most geotechnical 

. analyses, non-linearity arising from material behaviour is of more importance 
than non-linearity from geometrical effects. 

The small-displacement, small-strain approach is used throughout in this book 
(and in CRISP). Hence we are able to avoid the extra complexity of using the 
strain and stress tensors appropriate to large deformations and strains. The 
program does, however, contain the option of updating the co-ordinates of nodal 
points as the analysis proceeds. In fact this is equivalent to a first approximation 
to an updated Lagrangian formulation (see, for example, Cook, 1981, 
Chapter 13). 

There are a number of techniques for analysing non-linear problems using 
finite elements. CRISP uses the incremental or tangent stiffness approach: the 
user divides the total load acting into a number of small increments (say 50 or 
100 in a typical analysis) and the program applies each of these incremental 
loads in turn. During each increment the stiffness properties appropriate for the 
current stress levels are used in the calculations. If only a few increments are 
used, this method produces a solution which tends to drift away from the true 
or exact solution. This means a stiffer response results for a strain-hardening 
model and the displacements are always under-predicted. In mathematical 
terms we are integrating a differential equation using Euler's method. 

This approach is in contrast to that adopted in the elasto-plastic programs 
used in the analysis of mechanical engineering components or steel structures 
(see, for example, Owen and Hinton, 1980). In these applications it is usual to 
use a larger size of increments (say 10 in a complete analysis) and to correct for 
the error described above by performing iterations within each increment until 
convergence to the non-linear load-displacement curve is obtained. Experience 
with this technique with critical state models has been rather mixed. Some 

claim to have applied the technique with no particular difficulty (e.g. 
Zienkiewicz et a/., 1975; Potts, 1981), but our experience, in common with that 
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of Naylor (1975), is that sometimes there can be problems with convergence, 
and that sometimes the known (analytical) solution cannot be recovered from 
the numerical procedure. Perhaps this is not surprising: in structural mechanics 
problems the zone of plastic behaviour is often restricted to a small part of the 
structure whereas in geotechnical problems the zone of plastic deformation 
frequentl~ occupies the majority or even the whole mesh. 

Clearly there must be some limitation on the maximum increment size when 
using an incremental scheme. Some advice on this is included in Chapter 9. The 
use of an incremental scheme fits in quite well with the scheme for consolidation 
analysis that we have adopted, an incremental time-marching technique with 
() = I, as described in Chapter 3. 

4.2.3 Excavation, construction and increment blocks 

A finite element program intended for geotechnical analysis should be capable 
of analysing problems where soil is excava ted or soil structures (e.g. embank­
ments) are constructed. This is not a standard feature found in finite element 
programs in other branches of engineering. CRISP allows elements to be 
removed to simulate excavation and elements to be added to simulate 
construction. The implied loadings for both these cases are automatically 
calcula ted by the program. 

When performing a non-linear analysis involving excavation or construction, 
the requirement for relatively small applied loads in each increment still applies. 
The obvious way of achieving this is the removal or addition of a large number 
of layers of 'thin' elements. Unfortunately the result is an unacceptable rise in 
the solution cost (due to the large number of elements), and possible numerical 
conditioning problems associated with elements that have large aspect ratios. 
CRISP circumvents this problem by allowing the effect of element removal or 
addition to be spread over several increments in an 'incremen t block'. An 
increment block is just a series of ordinary increments grouped together in the 
input data for the program. Element stiffnesses are always added or removed in 
the first increment of a block, but the associated loads are distributed over all 
the increments in the block. Clearly this procedure introduces an extra degree 
of approximation in modelling, but it has been found to be satisfactory in 
practice . Increment blocks can also be used for the purpose of distributing 
applied boundary loads or prescribed displacements over several increments, 
achieving a certain economy in data preparation. 

4 .2.4 Equilibrium check 

The program incorporates an equilibrium check to ensure that equilibrium is 
satisfied at the end of each increment. In this equilibrium check the stresses in 
the elements currently in the mesh are integrated over the volume to calculate 
the equivalent nodal loads and these are then compared with the external 
loadings. The difference is then expressed as a percentage of the applied loading, 
and is called the error in equilibrium or the out-of-balance load. This form of 
equilibrium check is essential in any analysis using iterative methods or the 
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load increments are sufficiently small, there is no stress correction at the end of 
each increment. This means that the stresses calculated at the end of each 
increment should be consistent with the applied loading. Hence, in theory, an 
initial stress approach. In CRISP, because of the implicit assumption that the 
equilibrium check is not necessary, but in fact it is useful in giving an indication 
of any numerical problems that may arise during the course of an analysis . 

4.2.5 Stop-restart facility 

Non-linear finite element analysis tends to be a time-consuming business (for 
both the computer and the program user). Getting the size of the load 
increments right usually involves re-running the program several times and 
examining the computer output. So that the user does not have to continually 
rerun the analysis from the start each time, a stop-restart facility is provided. 
The program can be requested to store analysis results on a permanent magnetic 
storage medium (i.e . magnetic disk or magnetic tape) and the computer run can 
be restarted. 

Two versions of the stop-restart facility are available. In the first, the results 
of every increment are saved; in the second, results from the last increment only 
are stored. To use the first version one must be able to run a job with two 
magnetic tapes or have access to large amounts of disk space (probably more 
than 10 megabytes). For the second a more modest amount of disk space will 
suffice (say 100 kilobytes) . 


The stop-restart facili ty also makes possible the production of graphical 

displays of the results. A 'post-processing' program is used to read informa tion 

from the stop-restart file. Usually this program will use calls to a local graphics 

library to produce plots and graphical displays on the devices that the user has 

access to. Now that CRISP is being mounted on many different computers, there 

is a tendency to write programs using graphics libraries which are more generally 

available, e.g. GINO from the CAD (Computer Aided Design) centre, Madingley 

Road, Cambridge. 


4.2.6 Frontal solver 

CRISP solves the linear simultaneous stiffness equations using the frontal 
solution method. In essence this is just Gaussian elimination as encountered in 
Chapter 3, bu t programmed in such a way as to minimise operations on zero 
terms and to use minimum computer memory for the stiffness matrix. Our 
version is based on the model program by Irons (1970), modified for variable 
numbers of degrees of freedom at nodal points. The frontal technique starts 
from the observation that in Gaussian elimination one can start eliminating 
variables before the global matrix is fully assembled. 

We introduced the frontal method into our program because it was the only 
way of running reasonably-sized meshes for consolidation analysis on a machine 
with a fixed core store limit. Now that virtual store opera ting systems are wide­
spread, there is an argument that all this complicated programming is not really 
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necessary. Perhaps it is not, but you have to be prepared to wait longer for your 

results. 

4.3 CRISP PORTABILITY AND PROGRAMMING TECHNIQUES 

The following two sections explain why CRISP has proved to be such a portable 
program, and the technique which allows it to handle problems of an arbitrary 

size is described. 

4.3.1 Portability 

CRISP is written in ANSI (American National Standards Institute) standard 
FORTRAN. Because of this the program has been mounted on many different 
manufacturers' computers with relatively little effort. We suspect that most 
engineers writing FORTRAN programs have not heard of the standard, and we 

therefore set out why it is important. 
The FORTRAN programming language was originally developed to run on 

" the IBM704 compu ter in the mid-fifties. Its success led to its adoption by other 
computer manufacturers, who wrote compilers to translate FORTRAN state­
ments into the machine language of their own computers. Since the original 
FORTRAN language contained restrictions owing to the hardware limitations of 
the IBM704 there was a natural move to extend the language on the other 
computers, thereby offering a more powerful programming language (and a more 

saleable product). Unfortunately, the consequence of this was that a FORTRAN 
program written for one computer would be unlikely to run on another 

computer without some modification. 
To overcome these problems, ANSI produced a standard definition of 

FORTRAN in 1966. This language is sometimes called FORTRAN IV, but 
should more properly be called ANSI (1966) Standard FORTRAN. (FORTRAN 
IV is the name of the IBM implementation.) Although computer manufacturers 
made sure that their compilers accepted the standardised language, they did not 
remove the various extensions. Most engineers engaged in programming would 
make use of the manufacturer's FORTRAN reference manual, and so non­
portable programming practices persisted. This is perhaps understandable, 
because FORTRAN 66 still lacked some facilities which make programming 

(and using programs) easier. 
In 1978, ANSI produced a new standard, FORTRAN 77, and at the time of 

writing another new standard, FORTRAN 8X, is under discussion. CRISP 
conforms to the 77 standard, and, apart from a couple of exceptions mentioned 
below, to the 66 standard too. Indeed, the majority of CRISP even avoids some 
FORTRAN 66 constructs which have been known to cause problems on some 
computers. In doing this we have followed the advice of Larmouth (1973a, 
1973b) and Day (1978). The program has also been passed through the PFORT 
verifier (Ryder, 1974). Only those readers who have not had to convert 
FORTRAN programs from running on one machine to running on another will 

find all our precautions pedantic. 
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We take advantage of only two features of FORTRAN 77 not present in the 
1966 standard. The first is the list-directed READ statement (often referred to 
as the free-format READ). The second is the use of CHARACTER variables to 
store textual information. 

If FORTRAN 77 had been fully supported on the Cambridge University 
Computing Service IBM installation before 1984, the reader would probably see 
other FORTRAN 77 statements, such as the block IF construction, in our 

program. (This certainly makes programs more readable and is a definite advance 
on FORTRAN 66.) Readers who intend to modify CRISP for their own 
purposes, or who are going to write their own programs, are advised to use a 
textbook as their main reference, rather than the manufacturer's manual. Katzan c 

(1978) completely covers the 77 standard, including the syntax diagrams from 
the standard. However, its succinct style makes it suitable for experienced 
FORTRAN programmers. A text that is more suitable for relatively 
inexperienced programmers is Monro (1982). Of course; the really dedicated will 
read the standard from ANSI (1978). 

4.3.2 Pseudo-dynamic dimensioning 

Finite element programs written in FORTRAN make use of REAL and 
INTEGER arrays to store the data which they manipulate. Some of these arrays 
will always be the same size each time the program is run (for example an array 

storing an element stiffness matrix). The size of other arrays (for example the 
global stiffness matrix) will depend on the data for the current problem. 

The simplest approach .is to dimension these 'variable length' arrays to a size 
which appears reasonable. In fact this was done in the TINY program in 
Chapter 3, where the arrays were set up to solve a problem with a maximum of 
six elements. However, this approach has two drawbacks. Firstly, a user of the 
program will inevitably want to run a problem which requires larger arrays, 
resulting in a lot of program changes. Secondly, for much of the time a lot of 
space in the arrays will be unused. 

CRISP uses a technique known as 'pseudo-dynamic dimensioning' to avoid 
these pitfalls. To understand this technique, a brief account of how FORTRAN 
implementations allocate storage for arrays will be useful. 

If an array is declared in a subroutine by a statement such as 

DIMENSION XYZ (2,50) 

(and the array is not a dummy argument of the subroutine), then 100 
contiguous storage locations (associated with the subroutine) are reserved. 
Alternatively, an array may be declared as being in a common area of storage 
(using the COMMON statement), which is not associated with any particular 
subroutine. The TINY program in Chapter 3 used this technique to allow its 

various subroutines to access the same arrays. When an array is passed as an 
actual argument to another subroutine, it is the address of the first memory 
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location that is transferred. An array in a subroutine may be given variable 

dimensions, e.g. 

DIMENSION XYZ (NDIM, NN) 

provided that the array and its dimensions are dummy arguments of the sub­
rou tine. Thus one improvemen t over using fixed dimensions in each subrou tine 
is to have fixed dimensions in the main program, and to pass the arrays to 
subroutines as variably dimensioned arrays. Changes to the program now require 
amending the main program only. However, the basic disadvantage of having to 
continually edit the program and of wasted space still remain. 

CRISP overcomes these remaining disadvantages by arranging that all the 
variably dimensioned arrays are allocated as part of one long array. 

Suppose that the following arrays have to be allocated store: 

XYZ (NDIM, NN), NCONN(NTPE, NEL), NQ(NN) 

where 


XYZ co-ordinates of nodes 

NCONN list of nodes associated with each element 

NQ no. of d.oJ. of each node 

NDIM no. of spatial dimensions for analysis (2 for 2-D) 


NTPE no. of nodes associated with each element 


NN total no. of nodes in mesh 

NEL total no. of elements in mesh. 


The arrays are allocated in the same order as above to a single array G: 

G XYZ NCONN NQ 

G 

I 

Ll L2 L3 

where 


Ll = 1 + NDIM * NN 

L2 = L1 + NTPE * NEL 

L3 = L2 + NN 


and 

G(l) is tile first storage location of array XYZ 
G(Ll) is the first storage location of array NCONN 
G(L2) is the first storage location of array NQ 
G(L3) is the first storage location of next array 

(if no futher arrays are present then L3 - 1 serves an index 
to the amount of array G which has been used). 
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The arrays are passed to a subroutine SUBl as follows: 

CALL SUBl (G(l), G(Ll), G(L2), ........ NDIM,NN,NTPE, NEL) 


In the subroutine the arrays appear as dummy arguments and are dimensioned: 

SUBROUTINE SUBI (XYZ,NCONN,NQ, ........ NDIM,NN,NTPE,NEL) 

DIMENSION XYZ (NDIM,NN), NCONN(NTPE,NEL),NQ(NN) 

A disadvan tage of this technique is the long argumen t lists tha t result as the 
indexes for the numerous arrays ' have to be passed from the main ro~tine to 
other routines. Instead of declaring some arrays in the few routines that use 
them, they have to be passed through the intermediate routines which do not 
require them. This to a certain extent gives a complex look to the program. 
However, the benefits more than offset this minor irritation. 

CRISP extends this technique to arrays which would appear to have fixed 
dimensions (e.g. NDIM in the above example). The aim is to make future 
program modi fica tions rela tively straightforward. 

Some arrays of fixed size are used in the program and usually reside in named 
COMMON blocks. Arrays which provide the indexes and numerical integration 
data are initialised in a block data routine. Therefore these arrays cannot be 
allocated store pseudo-dynamically. This would mean that if new element types 
are introduced, the sizes of these arrays have to be altered in all routines which 
reference these arrays. The way round this is to allocate sizes which include 
some spare space. This means additional element types can be included without 
having to change the sizes of these arrays every time. 

Other fixed-length arrays are mainly linked with the number of nodes with 
fixities and the number of nodes with externally applied loads (the loads in fact 
are stored in terms of pressure loads (both normal and shear components) 
applied at nodes along element sides). The required space is dependent on the 
number of nodes (and element sides) which lie along the mesh boundary. The 
sizes of these arrays have been arbitrarily fixed; however, a count is kept of the 
number of entries made, and error/warning messages are printed when array sizes 
are exceeded and clear messages of what has to be done to remedy the situation 
are prin ted. 

4.4. CRISP 

4.4.1 CRISP organisation 

The relationship between the main controlling routines of CRISP is shown 
below: 

MARKZ 

(MAXVAL) 

MAIN - MINIT - MAST -- (SHFTIB)~ CPW 

-ANS 
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The MAIN program is the only routine that needs to be changed if a larger 
version of CRISP is required. For this reason it is kept as short as possible. Many 
users will keep several versions of this rou tine (e.g. small, medium and large), 
and will link in whichever is appropriate for the problem at hand. Routine 
MINIT contains machine independent initialisations, e.g. unit numbers for 
fIles. MAST is the main controlling routine, and its main business is pseudo­

dynamic dimensioning. 
The rest of the program logically falls into three parts, identified by routines 

MARKZ, CPW and ANS, each being called by MAST in turn. (MAXVAL and 
SHFTIB shown above for completeness just carry out housekeeping associated 

with the dynamic arrays.) 
MARKZ is the part of the program that deals with the geometry of the user's 

mesh . MARKZ tries to make the time-consuming business of drawing up (or 
modifying) a mesh easier, by allowing gaps in the numbering systems for 
elements and nodes, automatically generating midside (and where appropriate 
internal) node numbers and co-ordinates. Basically, it is all housekeeping. 

CPW is the part of the program that deals with in situ stresses and material 
parameters. This is an important part of the problem definition which the user 
must attempt to get right, and try to understand the consequences (not every­
thing is independent). 

ANS is the part of the program that performs the analysis. ANS reads the 
loads and other boundary conditions and applies the principles of mechanics. 
Sometimes ANS will seem to produce bizarre results, but this will be because of 
the way that the user has set up the problem. Remember that ANS has a strong 
preference for stable systems. 

4.4.2 The program 

Routine MAIN 

C== = ==:: = = = = == =:: = =:::: = =:: == = = = =:: = ==::= = =:: == === =:::: = ==== =:::: == == = ==::= === === == ==MAI N 1 
C CRISP PROGRAM MAIN 2 
C=:: === === == ===== == === == = ====== = ==== =======::= ::::::===== ==:: ::=::::======= =::::===MAIN 3 
C--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO OOUBLE 
C-------PRECISION. ARRAY G ALWAYS USES ONE NUMERIC STORAGE UNIT 

CC REAL G 6 ' 
MAIN 
MAIN 

MAIN 

4 
5 
6 

COMMON IGVARI G( 500~)) MAIN 7 
C ./ MAIN 8 

LG=55000 MAIN 9 
CALL MINIT(G,LG) 
STOP 

MAIN 
MAIN 

10 
11 

END MAIN 12 

Main 9 : set up size of working array G. 

Routine MINIT 
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C-------PRECISION. ARRAY G ALWAYS USES ONE NUMERIC STORAGE UNIT MNIT 7 
CC REAL G HNIT 8 

DIMENSION G(LG) MNIT 9 
COMMON IDE VICEI IR 1, IR 4, IR 5, IW2, IW4, IW6, IW7, IW 8, IW9 MNIT 
COMMON IPARS I PYI,ALAR,ASMVL,ZERO MNIT 11 
COMMON IPRECSNI NP MNIT 12 

C----------------------------------------------------------------MNIT 13 
CC OPEN(l,FILE='CRISPOLD',FORM='UNFORMATTED') MNIT 14 
CC OPEN(2,FILE='CRISPNEW',FORM='UNFORMATTED') MNIT 15 
CC OPEN(5,FILE='CRISPDAT') MNIT 16 
cc OPEN(6,FILE='CRISPOUT') MNIT 17 
CC OPEN(8,FILE='PLOTDATA' ,FORM= 'UNFORMATTED') MNIT 18 
CC OPEN(7 ,FILE= 'CRISPSOL' ,FORM= 'UNFORHATIED') MNIT 19 

.C.,..,..-----------------------------------------------------------MNIT 
/" C DEVICE NIJMBERS R - READ; W - WRITE. MNIT 21 

./ C MNIT 22 
C DEVICE MNIT 23 
C 1 - STOP/RESTART READ FILE (CONTAINS PREVIOUS RESULTS) MNIT 24 
C 2 - STOP/RESTART WRITE FILE (CONTAINS CURRENT RESULTS) MNIT 25 
C 4 - NOT USED IN'THIS VERSION MNIT 26 
C 5 - INPUT DATA FILE (READ) MNIT 27 
C 6 OUTPUT FILE (WRITE) MNIT 28 
C 7 - OUT OF CORE SOLVER FILE (\~RITE/READ) MNIT 29 
C 8 - PLOT DATA FILE (WRITE) - INFO TO CREATE A PLOT OF MESH MNIT 
C 9 - NOT USED IN THIS VERSION MNIT 31
C-----------------------------------__________________------MNIT 32 

IR1=1 MNIT 33 
IR4=4 HNIT 34 
IR5=5 HNIT 35 
IW2=2 MNIT 36 
IW4=4 MNIT 37 
IW6=6 MNIT 38 
IW7=7 MNIT 39 
IW8=8 MNIT 
IW9=9 MNIT 41 

C----------------------------------------------------___----------MNIT 42 
C NP :: 1 FOR SINGLE PRECISION; NP:: 2 FOR DOUBLE PRECISION MNIT 43 
C-----------------------------------_____________________------MNIT 44 

NP=l MNIT 45 
CC NP::2 MNIT 46 
C---------------------------------------________________--------MNIT 47 
C SET SOME CONSTANTS MNIT 48 
C-------------------------------------------------------------------MNIT 49 

PYI::4.·ATAN(1.) MNIT 
ALAR::l.E+17 t~NIT 51 
ASMVL=1.E-20 MNIT 52 
ZERO=O. MtJIT 53 

C MNIT 54 
WRITE(IW6,900) MNIT 55 

C MNIT 56 
CALL MAST(G,LG) MNIT 57 

C MNIT 58 
RETURN MNIT 59 

900 FORMAT(lH1,120(lH')11 MNIT 
1 l1H CRISP (S1)11 ~1NlT 61 
2 33H PROGRAM LAST MODIF lED ON 27/9/85 MNIT 62 
3 ) MNIT 63 

END MNIT 64 

SUBROUTINE MINIT(G,LG) MNIT 1 MNIT 33-41 : set device numbers. 
C···············.·· •••••• ••••••••••••••••••••••••••••• ••••••• • ••••••••••MNIT 2 

C ROUTINE SETS UP DEVICE NUMBERS AND SOME CONSTANTS MNIT 3 MNIT 50-53 : set some constants. 

C ALSO SETS UP FILES FOR FORTRAN 77 MNIT 4 MNIT 55 : print version no. of program and date. c···················...·..··.·················.·······..................MNIT 
 5
C-------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO OOUBLE f1NIT 6 MNIT 57 : master-con trol routine . 
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Subroutine MAST 

SUBROUTINE MAST(G.LG) MAST 1 

c·····················································••••••••••••••••••MAST 2 


ROUTINE TO SET-UP ARRAY SIZES FOR GEOMETRY AND MAIN PART OF MAST 3 

THE PROGRAM. REAL ARRAYS ARE ALLOCATED ON THE LEFT HAND SIDE MAST ~ 


C OF' ARRAY G AND INTEGER ARRAYS ON THE RIGHT MAST 5 

C····.·····.·.,·· •• ••••••• •••• • ••• ···.·I••••••••••• I•.•••.I •..••••••. I •.MAST 6 


REAL LL 
C--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE 
C-------PRECISION. ARRAY G AL\~AYS USES ONE NUMERIC STORAGE UNIT 
CC REAL G 

CHARACTER'80 TITLE 
DIMENSION G(LG) 
DIMENSION NAD(11 ).KLT(ll ).NTY(10).PR(10.10).PDISLD<3.5). 

1 PRES(3.5).V(5).FXYZ(3).CIP<3).LL(~) 
COMMON ILABEL I TITLE 
COMMON IDEVICEI IR1.IR~.IR5.m2.m~.m6.m7,n{8,IW9 
COMMON IELINF I LINFO(50, 15) 
COMMON IPARS I PYI.ALAR,ASMVL,ZERO 
cmlMON IDEBUGSI ID1.ID2,ID3,ID~.ID5.ID6,ID7.ID8,ID9.ID10 
COMMON lOUT I IBC, IRAC, NVOS. NVOF. NMOS. NMOF. NELOS. NELOF • ISR 
COMHON IPRECSNI NP 
DATA NAD(l ),NAD(2).NAD(3).NAD(4).NAD(5).NAD(6).NAD(7). 

1 NAD(8).r~AD(9).tlAD(10).NAD(1l)1 
2 1.3.3.4.~,12.19,12,12.6.61 

MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
HAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 

7 

8 

9 


10 

11 

12 

13 

1~ 
15 

16 

17 

18 

19 

20 

21 

22 

23 

24 


C------------------------------------------------------------MAST 25 

READ(IR5. 901 )TITLE MAST 26 

WRITE(IW6.903)TITLE MAST 27 

LINK1=1 MAST 28 


CC READ(IR5.·)LINKl MAST 29 

CC WRITE(IW6.906)LINK1 MAST 30 

C MAST 31 


READ (IR 5. • )NVTX. NEL. HXN DV. MXTYP. NDIM. I PLOT MAST 32 

WRITE (IW6. 904 )NVTX. NEL, MXNDV. MXTYP. NDIM. IPLOT MAST 33 

READ(IR5. ~MAX.MUMAX MAST 34 

WRITE (IW6W\lNUMAX. MUMAX MAST 35 

IF(NUMAX.EQ.OlNUMAX=NVTX MAST 36 

IF(MUMAX.EQ.O)MUMAX=NEL MAST 37 


C------------------------------------------------------------~1AST 38 

C NVRS - NUMBER OF STRESS PARAMETERS MAST 39 

C NVRN - NUMBER OF STRAIN AND STRESS COMPONENTS MAST ~O 


C NDZ - INDEX FOR MID-SIDE (EDGE) NODE NUMBERS MAST 41 

C NPL - LENGTH OF ARRAYS NP1. NP2 MAST ~2 


C NMATZ - MAXIMUM ADMISSIBLE MATERIAL ZONE NlIMBER MAST 43 

C LTZ - LARGEST ADMISSIBLE ELEMENT TYPE NUMBER MAST ~4 


C INXL - INDEX TO flO. OF D.O.F. OF FIRST NODE OF ELEMENT MAST ~5 


C IFR - LIST OF NODES IN FRONT (SEE ROUTINES SFWZ,FRONTZ) MAST ~6 


C IFRZ - SIZE OF ARRAY IFR MAST ~7 


C----------------------------------------------------------------MAST 48 

NVRS=7 MAST ~9 


NVRN=~ MAST 50 

IF(NDIM.NE.3)GOTO 10 MAST 51 

NVRS=9 MAST 52 

NVRN=6 MAST 53 


10 NDZ=750 MAST 5~ 


NPL=21 MAST 55 

NI1A TZ =10 MAST 56 

LTZ =7 MAST 57 

IFRZ=300 MAST 58 

INXL=20 MAST 59 


C-------------------------------------------------------------MAST 60 

C NAD - ESTIMATE OF ADDITIONAL NODES PER ELEMENT FOR MAST 61 

C DIFFERENT ELEMENT TYPES MAST 62 

C NDEAD - TOTAL NUMBER OF ADDITIONAL NODES (AN ESTIMATE) MAST 63 

C NDSD - NO. OF DISPLACEMENT NODES ALONG EDGE (EXCLUDE END NODES) MAST 6~ 
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C NEDG - NUMBER OF ELEMENT EDGES + 1 MAST 65 

C NTPE - MAXIMUM NUMBER OF NODES IN ANY ELEMENT MAST 66 

C-------~----_____________________________------------------MAST 67 


C---------TEST FOR MXTYP < LTZ 
IF(MXTYP.GT.O.AND.MXTYP.LE.LTZ)GOTO 20 
WRITE (IW6. 935)MXTYP 

935 FORMAT(/lX,30HINADMISSIBLE VALUE FOR MXTYP =.I5.2X. 
1 14H (ROUTINE MAST» 
STOP 

C 
20 CONTINUE 

C---------MAXM NO. OF EDGES (SIDES) IN AN ELEMENT (2-D) 
NEDZ ==M XN DV 
NDSD=LINFO(7.MXTYP) 
NEDG==LINFO(3.MXTYP)+1 
NDEAD==NAD (MXTYP) 'NEL 
NTPE=LINFO(l,MXTYP)

C-----------------------------________________________________ 

C ESTIMATE THE TOTAL NUMBER OF NODES - NNE 

MAST 68 

MAST 69 

MAST 70 

MAST 71 

HAST 72 

MAST 73 

MAST 7~ 
MAST 75 

MAST 76 

~'AST 77 

MAST 78 

MAST 79 

HAST 80 

MAST 81 


---MAST 82 


MAST 83 

C-----------------------------------______________________________--MAST 8~ 

NNE=NVTX+NDEAD MAST 85 

NNE1==NNE+l MAST 86 

IF(NVTX.GT.NDZ)NDZ=NVTX MAST 87 


C-----------------------------------------------------------------MAST 88 

C NDZ+l IS THE STARTING POINT FOR NODE NUMBERING MAST 89 

C FOR ADDITIONAL NODES MAST 90 

C NNU - ESTIMATE Of MAXIMUM VALUE OF USER NODE NUMBER MAST 91 

C----------------------------------------------------------------MAST 92 


NNU=NDZ+NDEAD MAST 93 

C-----------------------------------------------------------------MAST 94 

C SIZE OF ARRAY ITAB (SEE ROUTINES MIDSID, MIDFQR) MAST 95 

C---------------------------------------------------------------------MAST 96 


LDIM=NDSD+3 MAST 97 

LTAB=NEDG'NEL MAST 98 


C== == === ===== ===== ==== == == = === = == === == = = = == = = = == == === === === = = == ==== === = = = = = === = = = === = = = = =MAST 99 

C---------INDEXES FOR ARRAYS FOR USE IN GEOMETRY PART OF PROGRAM MAST 100 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • ••••• •• ·MAST 101 


C THE FOLLOWING ARRAYS ARE DYNAMICALLY ALLOCATED STORE IN 

C ARRAY G FOR GEOMETRY PART OF THE PROGRAM. REAL ARRAYS ARE 

C ALLOCATED AT THE BEGINNING OF ARRAY G WITH ARRAY INDEX 

C INCREASING. INTEGER ARRAYS ARE ALLOCATED TO THE END OF 

C ARRAY G WITH ARRAY INDEX DECREASING. THIS LEAVES A GAP 

C BETWEEN THE REAL AND INTEGER ARRAYS WHICH IS USED AS A 

C BUFFER (FOR SOLUTION) IN THE MAIN PART OF THE PROGRAM. 

C 

C G(l) G(L 1-1) NODAL COORDINATES ••••••••••••••••• XYZ(NDIM.NNE) 

C G(Ml) - G(LG) ELEMENT-NODAL CONNECTIVITY ••••••• NCONN(NTPE.NEL) 

C G(M2) G(M1-l) MATERIAL PROPERTY NUMBER ................MAT(NEL) 

C G(M3) G(M2-1) ELEMENT TYPE NUMBER •••••••••••••••••••• LTYP(NEL) 

C G(M~) G(M3-1) USER ELEMENT NUMBERS••••••••••••••••• MRELVV(NEL) 

C G(M5) G(M4-1) PROGRAM ELEMENT NUMBERS.............. MREL(MlIMAX) 

C G(M6) G(M5-l) USER NODE NUMBERS .................... NRELVV(NNE) 

C G(M7) - G(M6-l) PROGRAM NODE NUMBERS................... NREL(NNU) 

C G(M8) G(M7-l) INDEX OF FIRST D.O.F. OF NODES......... NW(NNE+l) 

C G(M9) - G(M8-l) NO. OF D.O.F. OF EACH NODE ...............NQ(NNE) 

C G(Ml0) G(M9-l) TABLE OF ELEMENT EDGES ........... ITAB(LDIM. LTAS) 

C G(Mll) - G(M10-1) USER ELEMENT NOS. IN FRONTAL ORDER ••••• MFRU(NEL) 

C G(l112) - G(Mll-l) ELEMENT NO. IN FRONTAL ORDER ••••••••• MFRN(MUMAX) 

C G(M13) - G(M12-1) FRONTAL DESTINATION OF NODES •••••••••• NDEST(NNE) 

C G(M1~) - G(M13-1) NODE NOS. OF ELEMENT ..................NLST(NTPE) 

C G(M15) - G(Ml~-l) LIST OF NODES (AND D.O.F.) IN FRONT. ••• IFR(IFRZ) 

C G(H16) - G(M15-1) INDEX OF ONE END OF ELEMENT EDGE. . . ..... NP1{NPL) 

C G(M17) - G(M16-l) INDEX OF OTHER END OF ELEHENT EDGE. ..... NP2(NPL) 

C 

C IN THE ABOVE 

C 

MAST 
MAST 
MAST 
HAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 
MAST 

102 

103 

104 

105 

106 

107 

108 

109 

110 

11' 

112 

113 

11~ 
115 

116 


117 

118 

119 

120 

121 

122 

123 

12q 
125 

126 

127 

128 

129 

130 


http:1.3.3.4.~,12.19,12,12.6.61
http:PRES(3.5).V(5).FXYZ(3).CIP<3).LL
http:MAST(G.LG
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,. 


C LDIM - MAXIM1I11 NUMBER OF (DISPLACrnENT) NODES ALONG EDGE + 3 MAST 131 

C LTAB - TOTAL NUMBER OF ELEMENT EDGES (ESTIMATE) MAST 132 


MUHAX - MAXIMUM VALUE OF USER ELEMENT NUMBER MAST 133 

C (THIS NEED NOT BL~9UAL TO THE TOTAL NO. OF ELEMENTS) MAST 134 


C NTPE - MAXI~lUM NO. OF lil..QEEyIr~ ANY E:LE~ENT IN MESH MAST 135 

C :' NDIM - NO. OF DIMEN$IOfIS TO-_ Pll.QBLfJL' (? ' OR 3) MAST 136 

C NEL - TOTAL NUMBER OF ELEMENTS IN MESH ' MAST 137 

C tINE - TOTAL NUMBER Of NODES IN MESH <.ESTIt1.AJE) MAST 138 


C NNU - ESTIMATE OF MAXIMUM VALUE OF USER NODE NUMBER MAST 139 

C NPL - LENGTH OF ARRAYS NP1, NP2 MAST 1110 

C••••• ~~ •••••••••••••••••••••••••••••••• * •••• * ••••• • •• *····*·*···**··**·MAST 1111 


1112 

1113 


• (l:211+~'l'!:!lI1:l'f~) i 	 MAST 

LZ=L1 J + '" _ , x \ = Lz MAST'>( ~g.'1
M1=LG-NTPEfNEL+1 ~ ~ MAST 11111 


M2=M1-NEL MAST 1115 

M3=M2-NEL MAST 1116 


Mil =N 3-NE L MAST 1117 


M5=Mll-HUMAX MAST 148 

M6=H5-NNE MAST 149 

M7=M6-NNU MAST 150 


M8=M7-NNE-1 MAST 151 

M9=M8-NNE MAST 152 

M10=M9-LTAB*LDIM MAST 153 

M11=M10-NEL MAST 151J 


M12=M 11-HUMAX t;. r MAST 155 

t~13=M12-NNE r " :? \ \0\. L,6 MAST 156 


, M14=M13-NTPE 	 MAST 157 

.j 	 M15=M 1II-IF RZ MAST 158 


M16=M15-NPL MAST 159 

M17=M16-NPL MAST 160 


HZ=M17 ' c.. MAST 161 


~ IF(Mz)GT~ TO~< 	 162
/. LZ GO 	 MAST 
MORt-;LZ-N 1 MAST 163 

WRITE (IW 90 )MORE MAST 1611 


(S'i'OP\ " -- MAST 165 

~ 	 MAST 166
C 

, 110 KSTO=LG-M~-1;-l MAST 167 

--- l---'. WRITE(IW6~KSTO,LG MAST 168 


C • 
 MAST 169 

CALL MARKZ (tIVTX, NEL, NUHAX,MUMAX, NTPE, MXNDV, NNE, NNE 1, NN, MAST 170 


1 NNU, NNZ, LTAB, LDIM, NDIM, NDF, NDZ, IF RZ, MCORE, MAXNFZ, MAST 171 

2 NPL, LTZ, KLT, NMATZ, INXL, IPLOT, MAST 172 

3 G (1) ,G(M 1), G(M2) ,G (M3) ,G(Mll) ,G (M5) ,G(M6) ,G(M7),G (M8), MAST 173 

II G(M9) ,G(M 10) ,G(M11) ,G(M12) ,G(M 13),G(M 111) ,G(M15), MAST 174 

5 G(M16),G(M17),ND,NCORET,MDZ) MAST 175 

IF(ID8.EQ.0)GOTO 115 MAST 176 

WRITE (IW6, 925 )NNE, NNU, LDIM, LTAB, NTPE, IF RZ, NPL MAST 177 


925 FORMAT(l1X,6HNNE = ,I5,3X,6HNNU = ,I5,3X,7HLDIM = ,3X, MAST 178 

1 7HLTAB = ,I5,3X,7HNTPE = ,I5,3X,7HIFRZ = ,I5,3X,6HNPL ,I5 ) MAST 179 

WRITE(IW6,920)(G(JK),JK=1,L1) MAST 180 


WRITE (IW6, 930) (G (JK), JK =M 17, LG) MAST 181 


920 FORMAT(//lX,4HREAL/(lX,10F10.2/» MAST 182 


930 FORMAT (I /lX, 7HItITEGER/( 1X,2016/» MAST 183 


45 CONTINUE 
 MAST 1811 

MAST 185 


CALL MAXVAL (IW6, KLT, LTZ, NDIM, NVRN, NDMX, NPMX, NIP, NS, NB, NL, MAST 186 


1 NPT ,NSP, NPR, NMT ,MDH, KES, NVPN, LV ,MXEN, MXLD,MXFXT) MAST 187 


C = == = = = == == = = = == = = = == = = = = = = = = == == = = == == = = == = = = = = == === = = == == = ==== = = = = == = =MAST 188 


C----------THE FOLLOWING INDEXES FOR ARRAYS ARE FOR USE IN THE MAST 189 

C----------MAIN (ANALYSIS) PART OF THE PROGRAM MAST 190 

C-----------------------------------------------------------------------MAST 191 

C G(l) - G(L 1-1) COORDINATES OF NODES •••••••••••••••• XYZ(NDIt:1, NN) MAST 192 

C G(L 1) - G(L2-1) INCRrnENTAL DISPLACEMENTS•••••••••••••••• DI (NDF) MAST 193 

C G(L2) - G(L3-1) CUMULATIVE DISPLACEMENTS•••••••••••••••• DA(NDF) MAST 1911 

C G(L3) - G(L4-1) STRESS PARS AT GAUSS POINTS.VARINT(NVRS,NIP,NEL) MAST 195 

C G(Lll) - G(L5-1) INCREMENTAL NODAL LOADS ••••••••••••••••••• P(NDF) MAST 196 


C 

C 	 G(L5) - G(L6-1) CUMULATIVE NODAL LOADS •••••••••••••••••• PT(NDF) MAST 197 

C 	 G(L6) - G(L7-l) NODAL LOADS FOR INCREl1ENTAL BLOCK ••••••• PIB(NDF) MAST 198 


G(L7) - G(L8-l) REACTIONS TO EARTH ••••••••••••••••••••• REAC(NDF) MAST 199 

G(L8) - G(L9-l) OUT OF BALANCE LOADS ••••••••••••••••••• PCOR(NDF) MAST 200 


C G(L9) - G(L10-l) TOTAL EQUILIBRIUM LOADS •••••••••••••••• PEQT(NDF) MAST 201 

C G(L10) - G(L11-1) INCREJ-1ENTAL POINT LOADS •••••••••••••••• XYFT(NDF) MAST 202 

C G(L1l) - G(L12-1) POINT LOADS FOR INCREf1ENTAL BLOCK••••• XYFIB(NDF) MAST 203 

C G(L12) - G(L13-1) STRAIN PARS AT_GAUSS POINTS •••• STR(NVRN,NIP,NEL) MAST 201J 

C G(L13) - G(L111-1) EXCAVATION LOADS FOR INCR BLOCK ••••••• PEXIB(NDF) MAST 205 

C G(L11J) - G(L15-1) EXCAVATION LOADS FOR INCRrnENT ••••••••• PEXI(NDF) MAST 206 

C G(L15) - G(LS1-1) INSITU EQUILIBRIUM POINT LOADS •••••••• PCONI(NDF) MAST 207 

C G(LSl) - G(LS2-1) D (STRESS - STRAIN) MATRIX ••••••••••••• D(NS,NS) MAST 208 


G(LS2) - G(LS3-l) DISP. NODE COORDS. OF ELEMENT. •• ELCOD(NDIM,NDMX) MAST 209 

C G(LS3) - G(LSll-1) DERIVATIVES OF SHAPE FUNS(LOCAL) ••• DS(NDIM,NDMX) MAST 210 

C G(LSll) - G(LS5-l) SHAPE FUNCTIONS••••••••••••••••••••••• SHFN(NDMX) MAST 211 

C G(LS5) - G(LS6-1) CARTESIAN DERIV. OF SHAPE FUNS •• CARTD(NDII1,NDMX) MAST 212 

C G(LS6) - G(LS7-1) STRAIN - DISPLACEMENT MATRIX •••••••••••• B(NS,NB) MAST 213 

C G(LS7) - G(LS8-1) D * B t1ATRIX ......................... . . DB(NS,NB) MAST 211J 

C G(LS8) - G(LS9-1) ELEMENT FORCE MATRIX...............FT(NDIM, NDMX) MAST 215 

C G(LS9) -G(LS10-1) ELEMENT STIFFNESS MATRIX...............SS(NB,NB) MAST 216 

C G(LS10) - G(LC1-1) UPPER TRIANGULAR ELEMENT STIFF MATRIX•••• ES(KES) MAST 217 

C G(LC1) - G(LC2-1) P.P.NODE COORDS OF ELEMENT ••••• ELCODP(NDIM,NPMX) MAST 218 

C G(LC2) - G(LC3-1) PORE PRESSURE GRADIENTS ••••••••••••• E(NDIM,NPMX) MAST 219 

C G(LC3) - G(LCll-1) PERMEABILITY * POREPRES GRADIENTS •• PE(NDIM,NPMX) MAST 220 

C G(LCll) - G(LC5-l) AN ARRAY FOR LINK MATRIX .................. RN(NB) MAST 221 

C G(LC5) - G(LC6-1) AN ARRAY FOR LINK MATRIX •••••••••••••••• AA(NPMX) MAST 222 

C G(LC6) - G(LC7-1) FLOW MATRIX.......................ETE(NPMX,NPMX) MAST 223 

C G(LC7) - G(LC8-1) LINK MATRIX••••••••••••••••••••••••• RLT(NB,NPMX) MAST 221J 

C MAST 225 

C WHERE MAST 226 

C KES - MAXM SIZE OF UPPER TRIANGULAR ELEMENT STIFFNESS MATRIX MAST 227 

C NB - SIZE OF STIFFNESS MATRIX SS ( = NDIM * NDMX ) MAST 228 

C NDF - TOTAL NO. OF D.O.F. IN PROBLEM MAST 229 

C NDIM - DIMENSION OF PROBLEM (2 OR 3) MAST 230 

C NDMX - MAXM NO. OF DISP. NODES IN ANY ELEMENT IN MESH MAST 231 

C NEL - TOTAL NO. OF ELEMENTS IN MESH MAST 232 

C NIP - MAXM NO. OF INTEGRATION POINTS IN ANY ELEMENT IN MESH MAST 23 3 

C NN - TOTAL NO. OF NODES IN MESH HAST 2 311 

C NPMX - MAXM NO. OF PORE-PRESSURE NODES IN ANY ELEMENT IN MESH MAST 2 35 

C NS - SIZE OF D - MATRIX ( = NO. OF STRESS/STRAIN COMPONENTS) MAST 236 

C NVRN - NO. OF STRAIN (AND STRESS) COMPONENTS (NVRN = NS) MAST 237 

C NVRS - NO. OF STRESS COMPONENTS PLUS PARAHETERS CU,P,Q ETC.) MAST 238 

C-----------------------------------------------------------------------MAST 239 

C----------INDEXES FOR REAL ARRAYS - LEFT HAND SIDE - MAST 240 


L1=1+NDIM'NN*NP MAST 2111 

L2=L l+NDF*NP f1AST 21J2 

L3=L2+NDF*NP MAST 2113 


- Lll=L3+NVRS'NIP*NEL'NP MAST 21J1l 

L5=Lll+NDF*NP MAST 21J5 

L6=L5+NDF*NP MAST 21J6 

L 7=L6+NDF*NP MAST 2117 

L8=L 7+NDF*NP MAST 248 

L9=L8+NDF*NP MAST 2119 

L10=L9+NDF'NP MAST 250 

L11=L10+NDF*NP MAST 251 

L12=L11+NDF*NP MAST 252 

L13=L12+NDF*NP MAST 253 

L 14=L 13+NDF'NP MAST 2511 

L 15=L l11+NDfiNP MAST 255 

LS1=L15+NVRN'NIP*NEL*NP MAST 256 

LS2=LS1+NS'NS'NP MAST 257 

LS 3=LS 2+NDIM*N DMX*NP MAST 258 

LSll=LS3+NDIM'NDMX'NP MAST 259 

LS5=LSll+NDMX*NP MAST 260 

LS6=LS5+NDIM*NDMX*NP MAST 261 

LS7=LS6+NS'NB*NP MAST 262 
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LS8=LS7+NS*NB*NP 
LS9=LS8+NDHl*NDMX*NP 
LS 10=LS9+NB*NB*NP 
LC1=LS10+KES*NP 
LC2=LC 1+NDIM*fIPMX*NP 
LC3=LC2+NDIM*NPMX*NP 
LC4=LC3+NDIM*NPMX*NP 
LC5=LC4+NB*NP 
LC6=LC5+NPHX4NP 
LC7=LC6+NPMX*NPHX*NP 
LC8=LC7+NBlltIPMX*NP 
LZ=LC8 

MAST 263 
MAST 264 
MAST 265 
MAST 266 
MAST 267 
MAST 268 
MAST 269 
MAST 270 
HAST 271 
MAST 272 
HAST 273 
HAST 274 

C-----------------------------------------------------------------------HAST 275 
C G(Nl) - G(LG) = 
C G(N2) G(N1-1) 
C G(N3) - G(N2-1) 
C G(N4) - G(N3-1) 
C G(N5) - G(N4-1) 
C G(N6) - G(N5-l) 
C G(N7) - G(N6-1) 
C G(N8) - G(N7-1) 
C G(N9) - G(N8-1) 
C G(N10) - G(N11-1) 
C G(N11) - G(N12-1) 
C G(N12) - G(N11-1) 
C G(N13) - G(N12-1) 
C G(N14) - G(N13-1) 
C G(NSl) - G(N14-1) 
C G(NS2) - G(NS1-1) 
C G(NS3) - G(NS2-1) 
C G(NS4) - G(NS3-l) 
C 
C WHERE 
C 
C IFRZ - LENGTH OF 
C MDFE - MAXM NO. 

ELEHENT-NODAL CONNECTIVITy ••••••• NCON1HNTPE,NEL) MAST 276 

MATERIAL PROPERTY NUMBER •••••••••••••••• ~IAT(NEL) MAST 277 

ELEMENT TYPE NUMBER .................... LTYP(NEL) 
USER ELEMENT NUHBERS.................HRELVV(NEL) 
PROGRAH ELEMENT MUHBERS..............MREL(NUMAX) 
USER NODE NUMBERS..................... NRELVV(NN) 
PROGRAM NODE NUMBERS................... NREL(NNZ) 
INDEX OF FIRST D.O.F. OF NODES ......... NW(NNODl) 
NO. OF D.O.F. OF EACH NODE ................NQ(NN) 
INDICATOR OF ELEMENT CHANGES............ JEL(NELl 
INDICTORS OF RESTRIANED VARIABLES...... IDFX(NDF) 
FROrHAL DESTINATION OF NODES........... NDEST(NN) 
INDEX OF ONE END OF ELEMENT EDGE ........ NP1(NPL) 
INDEX OF OTHER END OF ELEMENT EDGE. ••••• NP2(NPL) 
LIST OF NODES (AND D.O.F.) IN FRONT .... IFR(IFRZ) 
DESTINATION IN FRONT Of ELEMENT D.O.F .. NDL(HDFE) 
INDEX TO POREPRESSURE NODES OF ELEMENT.NWL(NPMX) 
STRESS STATE INDICATOR FOR MODEL5 .. NMOD(NIP,NEL) 
(NOT USED IN THIS VERSION) 

ARRAY IFR 
OF D.O.F. IN ANY ELEMENT IN MESH 

C MUMAX - MAXM VALUE OF USER ELEMENT NUMBER 
C NNZ - MAXM VALUE OF USER NODE NUMBER 
C NNOD1 - NN + 1 

MAST 278 
HAST 279 
MAST 280 
HAST 281 
MAST 282 
MAST 283 
11AST 284 
MAST 285 
MAST 286 
MAST 287 
MAST 288 
MAST 289 
MAST 290 
MAST 291 
MAST 292 
MAST 293 
MAST 294 
MAST 295 
MAST 296 
MAST 297 
MAST 298 
MAST 299 
MAST 300 
MAST 301 

C---------------------------------------------------------------~AST 302 
C----------INDEXES FOR 

NNOD1=NN+1 
N 1 =LG-NTPE *NEL+ 1 
N2=M1-NEL 
N3=N2-NEL 
N4=N3-NEL 
N5=N4~UMAX 
N6=N5-NN 
N7=N6-NNZ 
N8=N7-NNOD1 
N9=N8-NN 
N10=N9-NEL 
N11=N10-NDF 
N12=N11-NN 
N13=N12-NPL 
N14=N13-NPL 
NS1=N14-IFRZ 
NS2=NS1~DFE 
NS3=NS2-NPMX 
NS4=NS3-NIP*NEL 
NZ=NS4 

INTEGER ARRAYS - RIGHT HAND SIDE 	 MAST 303 
MAST 304 
MAST 305 
MAST 306 
MAST 307 
MAST 308 
MAST 309 
MAST 310 
MAST 311 
MAST 312 
MAST 313 
MAST 314 
MAST 315 
MAST 316 
MAST 317 
MAST 318 
MAST 319 
MAST 320 
MAST 321 
MAST 322 
MAST 323 

C-----------'------------------------------------------------..}IAST 324 
C CALCULATE SIZE OF WORKING REGION MAST 325 
C-------------------------------------------------------------------HAST 326 

NWORK=NZ-LZ MAST 327 
KVA RS=LG+LZ-NZ MAST 328 

Sec.4.4J CRISP 

NCOR ET=NCOR ET*NP 

MCORE=MCORE*NP 


CALL SHFTIB(IW6,G(N7),G(M7).NNZ) 

CALL SHFTIB(IW6.G(N8).G(M8).NNOD1) 

CALL SHFTIB<IW6,G(N13).G(M16).NPL) 

CALL SHFTIB(IW6,G(N14).G(M17),NPL) 


CALL C PW(NN. NEL. NDF ,NNOD1. NTPE, NIP. NVRS. NVRN. NDIM. 
1 MUMAX. NDZ. IF RZ. NNZ. NDMX. NPHX. NS. NB. NL. NPR. NMT. 
2 NPT. NSP. NPL.MDFE. «ES. NVPN. INXL.MXEN.MXLD.MXFXT. 
2 LV.MCORE. LINK1. NVTX. ND.MDZ. NEDZ. 

3 G(l ).G(L 1).G(L2).G(L3).G(L4).G(L5).G(L6).G(L7).G(L8). 

3 G(L9).G(L lO).G(L 11 ).G(L 12).G(L 13).G(L 14).G(L 15). 

4 G (LS 1 ) • G (LS 2 ) • G (LS 3 ) • G (LS 4 ) • G (LS 5 ) • G (LS 6 ) • G (LS 7 ) • 

5 G(LS8). G(LS9). G(LS 10), G(LC 1) ,G (LC2), G(LC3) ,G (LC 4), 

6 G(LC5) .G(LC6) ,G(LC7) ,G(Nl) ,G(N2) ,G(N3),G(N4), 

6 G(N5) ,G(N6) ,G(N7) ,G(N8) ,G(N9) ,G(N 10). G(N 11), 

7 G(N 12) ,G (N 13) ,G(N 14 ),G(NS 1) ,G(NS2) ,G{t/S3) .G(NS4), 

8 CIP, LL, V. FXYZ, PR, PDISLD, PRES, NTY, G (LZ), NWORK, 

9 NOIB,TTIME,TGRAV,IUPD,ICOR,IDCHK,INCT) 


C 

CALL ANS(NN.NEL.NDF,NNOD1,NTPE.NIP.NVRS.NVRN.NDU1. 
1 MUMAX.NDZ.IFRZ.NNZ.NDMX.NPHX.NS.NB.NL.NPR,NMT. 
2 NPT,NSP.NPL,MDFE.KES.NVPN.INXL.MXEN.MXLD.MXFXT. 
2 LV.NVTX.ND. 
3 G(1 ).G(Ll).G(L2).G(L3).G(L4).G(L5).G(L6).G(L7).G(L8). 
3 G(L9).G(L 10).G(L 11l.G(L 12).G(L 13).G(L 14).G(L 15). 
4 G (LS 1 ).G(LS2).G(LS3).G(LS4).G(LS5).G(LS6).G(LS7). 
5 G(LS8).G(LS9).G(LS10).G(LCll.G(LC2).G(LC3).G(LC4). 
6 G(LC5).G(LC6).G(LC7 ).G(N l).G(N2) .G(N3) .G(N4). 
6 G(N5).G(N6).G(N7).G(N8).G(N9).G(N10).G(N11). 
7 G(N12).G(N1 3).G(N14).G(NSll.G(NS2).G(NS3).G(NS4). 
8 CIP.LL.V.FXYZ.PR.PDISLD.PRES.NTY.G(LZ).NHORK. 

.ITIME.TGRAV.IUPD.ICOR.IBC.IDCHK.INCT) 
RETURN : 


901 (A) 

903 FORMAT(!lX.A) 
=904 FORMAT(! / 

1 lOX. 46HTOTAL NUMBER OF VERTEX NODES ••••••••••••••••• =. 18/ 
2 10X.46HTOTAL NUMBER OF ELEMENTS..................... =.I8/ 
5 lOX. 46HMAXIMUM NUMBER OF VERTEX NODES IN AN ELEMENT. =. 18/ 
6 lOX. 46HELEMENT TYPE WITH MAXIMUM NUMBER OF NODES •••• =. 18/ 
8 10X.46HNUMBER OF DIMENSIONS IN PROBLEM .............. =.18/ 
9 10X.46HPLOTTING CODE. ............................... =.18//) 

CC906 FORMAT(/lX.14HLINK NUMBER = .16) 
907 FORMAT( 

1 10X.46HMAXIMUM VALUE Of VERTEX NODE NUMBER .......... =.18/ 
/ ' 2 lOX. 46HMAXIMUM VALUE OF ELEMENT NUMBER•••••••••••••• =.18/ /) 
(~~~.AllLl.X,..2.8Jn.NC.REA.S ZE....Qf...~RRAY G BY .I8,1]H FOR GEOMETRY. 

,1 lX.30HPART OF PROGRAl1 (ROlITINE MAST)/) ' 
INCORE::N~M"E-- --',- - .. '. 
NBUFF=NWORK-I1CORE 
WRITE (IW6. 91 5 )LG. KVARS. NWORK. MCORE. N8UFF • INCORE 

C----------ADDITIONAL ARRAYS CREATED IN ROUTINES UPARALIUPOUT 
MOUT=13*NIP*NEL+5*NEL 
MINM=MOUT 
IF(MINM.GT.HCORE)MINM=MCORE 
IF(NWORK.GT.MINM)GOTO 50 
INCLG=MCORE-NWORK 
WRITE(IW6.912)INCLG 
STOP 

50 	 CONTINUE 

IF(NWORK.GE.NCORET)WRITE(IW6,940) 

IF(NWORK.LT.NCORET)WRITE(IW6.950)


C----------------_______________________________________________ 

SHIFT NRELVV.NREL.NW.NP1.NP2 TO NEW LOCATION 

MAST 329 
MAST 330 
~IAST 349 
I1AST 350 
I1AST 351 
MAST 352 
MAST 353 
MAST 354 
MAST 355 
MAST 356 
I·IAST 357 
11AST 358 
~IAST 359 
~IAST 360 
MAST 361 
MAST 362 
MIIST 363 
MAST 364 
MAST 365 
~IAST 366 
MAST 367 
MAST 368 
~IAST 369 
MAST 370 
MAST 371 
MAST 372 
MAST 373 
MAST 374 
MAST 375 
MAST 376 
MAST 377 
MAST 378 
MAST 379 
MAST 380 
MAST 381 
MAST 382 
MAST 383 
MAST 384 
MAST 385 
MAST 386 
MAST 387 
MAST 388 
MAST 389 
MAST 390 
MAST 391 
11AST 392 
MAST 393 
MAST 394 
MAST 395 
MAST 396 
MAST 331 
MAST 332 
MAST 333 
MAST 334 
MAST 335 
MAST 336 
MAST 337 
MAST 338 
MAST 339 
MAST 340 
MAST 341 
MAST 342 
MAST 343 
MAST 344

-..}lAST 345 

11AST 346 

http:ZE....Qf
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MAST 354-366: Routine CPW reads the control data and sets up the in situ

C----------------------------------------------------------------------~~~~ ~~~7 stresses.T
. - - CALL SHFTIBOW6,G(N6),G(M6),NN) 

( 910J FORMAT(/17H ARRAY STORE - USED IN GECt-1ETRY PART OF PROGRMI, MAS 39
8 MAST 368-380: analysis (main) part of the program. Routine ANS is a

MAST 39
HOUT OF ALLOCATED ,I711120(lHI»' . / . 	 ~IAS~ ~~b control routine which sets up and delegates tasks to other

912\~~M~~(~~OX 42HTO PROVIDE MINIMUM CORE TO SOLVE EQUATIONSI 


1 10X,29HINCREASE ~!~~~f_.~~_~~~ .~B~. =:0.10, ~x, 14H (ROUTINE MAST)I I ~~;T 401 con trol 
}
routines to carry ou t the analysis.


I~AST 402
1 lX, 120(lHI» . 

_ 101 MAST 403
915 FORMAT(l11X, 120(lHI)11 

1 10X,51HTOTAL ALLOCATION OF STORE FOR G••••••••••• ········='~101 I1AST 40 1 

A T 405


2 lOX 51HSTORE FOR MAIN ARRAyS ............................. -, 
1


M S 6 	 4.5 CRISP SUBROUTINE HIERARCHY
3 10X '51HWORKING REGION LEFT FOR SOLVING EQUATIONS ......... =, 1101 

MAST 40
- 110/ ST 407
lOX ' 51HMINIMUM CORE TO SOLVE EQUATIONS ................... -,


" 	 FER . = 1101 MA
., , ................... _' 110/ MAST 408 	 Fig. 4.2 shows all the subroutines in CRISP, arranged to show the structure of

5 10X,51HAMOUNT OF STORE LEFT FOR BUF 


~1;i ~~~ the program.
~ ~~~'~;~~~~F~~ ~~i~E~OF~~O~~~~~ET~~L~~~ED·COEFFiCiENTS)i)
• MAST 411

940 FORMAT(/l0X,28HEQUATIONS ARE SOLVED IN-COREll1X, 120(1HI» 
MAST 412

950 FORMATU10X,32HEQUATIONS ARE SOLVED OUT-OF-CORElllX, 120(1H » 

END 	 4.6 ADDING NEW FEATURES 

MAST 26-27 read ti tle of analysis. Many institutions and individuals around the world have versions of CRISP 

MAST 32-37 read and write information on the geometry of the mesh. 
which differ in some respects from the version presented here. Every time we 

NVTX - the total number of vertex nodes in mesh. 
modified the program, we stored in a computer file the actual editing 

NEL - the number of elemen ts in mesh. instructions (together with an explanation of their purpose). We also updated 

NDIM - the number of dimensions to problem. 
the program version number and date of last modification. Unfortunately, we 

MAST 49-59 parameters which govern the size of principle (main) arrays 
did not keep a record of the version given to all those who passed through our 

and which depend on the type of problem being analysed 
office or who wrote in. Inevitably, they changed the version number, so 

(Le. whether 2-D or 3-D) are set up. confusion reigns. 

MAST 80 calculate NDEAD, which is an estimate of the (total) no. of 
The book version will presumably become the most widely distributed, so we 

additional nodes in the mesh (this includes both displace­
call it version S (or CRISP-S). 's' is for standard: originally it was S for small, 

ment and pore pressure nodes) - the latter only for 
bu t really that is not appropriate. Extending the program is not an endeavour to 

consolidation elements. This estimate is intended to be more 
be lightly undertaken, but the explanations in the book are designed to assist. 

than the actual no. of additional nodes. Adding a new soil model is likely to be a popular extension: see Appendix D for 

MAST 85-93 : estimate of total no. of nodes (NNU); this includes the vertex details. 

nodes. 

MAST 142-163 : set up indexes, allocating store to various arrays in G for use 

in the geomtry part of the program. 

geometry part of the program. Calculate nodal co-ordinates
MAST 170-175 : 


of additional nodes and number them, starting with 751. 


Calculate total no. of d.oJ. in mesh. 


MAST 186-187 : set up maximum size of arrays and maximum values 

. 

of 

. 

some 


parameters. 


MAST 241-274 : re-define indexes for various REAL arrays at the begmnmg of 


array G for use in the main part of the program. 


MAST 304-323 : 	 set up indexes for various INTEGER arrays at the end of 


array Gfor use in the main part of the program. 


MAST 327-341 	 calculate size of the working area and determine whether 


there is enough core store for solving equations either in-core 


or out-of-core. 


MAST 348-352 : shift the INTEGER arrays evaluated in the geometry part of 


the program, to new position, for use in the rest of the 


program. 
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RDCOD 

~~~S~~T --.C~~~~~ 
CURE DG- SORT2 
INTPLT 
SIDES 

MAAKZ 	 MIDPOR -SORT2 
CUREDG -SORT2 
NUMSH 
MAKENZ 
CALDOF 
MLAPZ 
SFWZ 
GPOUT 

MAXVAL 

RDPROP ~SORTN2 
CHANGE SHAPERESTRT1RDSTRS EOLIB -FORMB2-CSHAPE 

SHFTlB INSTRS - SHAPE DETMIN 
INSITU EDGLD - LODLST ~ FIXX 

MAKENZ 

CPW 	 i DISTLD- SFRI 

EOLOD ~~;~~ ~~~~~B 
CAMCDE EOLBM - REACT 

MAIN -MINIT~MAST 
'-- ­

CHANGE {SELF-c~~~~~B 
EOLIB -- FORMB2 -rSHAPE 

LOETMIN 

SELl --SELF-C~~~~~B 

EOGLD - LOOLST 
DISTLD -SFRI 
FACTOR 
FIXX 

J
DCON 

FORMB2l: ~~~~~N
ANS 

LOOLSTi' LSTIFF JPC --FORMP - SHFNPP 

MAKENZ 	 IOLIN
MLAPZ 	 FRSLOT OMCM 

SFWZ DCAM 
FRFXLD . LSTiFA 

FRONTZ 	 STOREO -WRTN LSTFSG 

GETEON -RON 
LOOINC PRINTF 

DCON 

~~~NMB2 -C ~~~~~N 

OMCAM 
OCAM 
SHFNPP 

UPARAL-UPOUT ~~~:eMOL~~~~~M 
PRINC 
UPOUT2 

OISTLO - SFRI 
EOLOOiSELF -,- SHAPE 

RESTRN L DETJCB 
EOLBM - REACT 

Fig. 4.2 - Subroutine hierarchy for CRISP-S 

Cam-clay in· Finite Element 
Analysis 

5.1 INTRODUCTION 

Chapter 2 described the critical state soil models entirely in relation to the 
standard triaxial test for soils. Thus it was possible to describe the effective stress 
state of a soil sample by just two stress parameters (p' and q). The reader may 
have wondered (and indeed we did not attempt to explain) why these two 
parameters were chosen. In fact the definitions of p' and q that were given in 
Chapter 2 were simplified versions of the full definitions for general three­
dimensional stress states that we present in section 5.2. To extend the models 
to more general two- and three-dimensional stress states, some additional 
assumptions are necessary. These are also covered in section 5.2. 

How the incremental stress-strain relations are actually implemented in 
CRISP is described in section 5.3. 

When performing a finite element analysis using one of the critical state 
models, a necessary preliminary is to define the in situ stress state. We describe 
how this is done and also give guidance on how the critical state parameters M, 
r, A. and K should be selected in sections 5.4 and 5.5. 

5.2 GENERALISING CAM-CLAY 

5.2.1 Three-dimensional stress states 

To generalise the Cam-clay model to two- and three-dimensional stress states, we 
replace the defmitions ofp , andq given in Chapter 2 by 

5 



163 162 Cam-clay in Finite Element Analysis [Ch. 5 

p' =(a; + a; + 0;)/3, (5.1) 

q = (l/../2)../{(ox -Oy? + (Oy -OZ)2 + (oz -OX)2 

+ 6r;y + 6r;z + 6rix}; 	 (5 .2) 

Note that these definitions reduce to those of Chapter 2 for triaxial stress 
conditions. p' and q are invariants of the effective stress tensor: for a given 
three-dimensional stress state, p' and q will always have the same values regard­

less of the orientation of the reference axes (x, y, z).t Another set of invariants 
of the stress tensor are the principal stresses, and p' and q can be regarded as 
describing the position of a point in principal stress space. The co-ordinates of a 
point (o~, Ob, aD can be decomposed into a distance along the hydrostatic axis 
and a distance from the hydrostatic axis (Fig. 5.1) . (../3)p' is equivalent to the 
distance along the hydrostatic axis, and (../2/../3)q is equivalent to the 
perpendlcular distance from the hydrostatic axis. 

/ 	 Hydrostatic axis 

/ 
/ 

/ 

Fig. 5.1 - The significance of p' and q in principal stress space 

t 	 Quantities describing the state of a material at a point are often described by the 
mathematical entities of scalar, vector or tensor. An example ofa scalar is pore pressure ; 
and example of a vector is a force; an example of a tensor is stress. The difference 
between these entities is the transformation law that is necessary to calculate the entity 
in a co-ordinate system (x', y', z '), given values in an inclined co-ordinate system 
(x. y , z). A brief, yet fairly complete, account of all the relevant mathematics is given in 
Chapter 3 and Appendix A of the text by Richards (1977). Readers without the time or 
stamina to pursue the mathematics of tensors should not be intimidated. To perform a 
two-dimensional transformation of stresses, one can use the Mohr's circle construction. 
Engineers who understand Mohr's circles already know 90% of what there is to know 
about tensors. The rest is just notation. 

Sec. 5.2] 	 Generalising Cam-clay 

In Chapter 2 we were limited to the triaxial plane in principal stress space 
(this is the plane including the oa and hydrostatic axes on which 0b = Oc (= or 
in triaxial tests)). The Cam-clay models are generalised to the whole of principal 
stress space by rotating the yield loci and CSL to give the result shown in Fig. 
5.2. Mathematically this rotation is achieved by using (5.1) as the definition of 
p' and (5.2) as the definition of q for all the Cam-clay (or modified Cam-clay) 
relationships described in Chapter 2. 

a I 
a 

Fig . 5.2 - The Cam-clay yield locus in principal effective stress space 

Thus the CSL in a (p', q) plot becomes the 'critical state cone' in principal 
stress space. Obviously, there is a similarity with the Drucker-Prager cone of 
section 2.3.2, but of course the critical sate cone is a locus of failure points, not 
an elasto-plastic yield surface. 

The generalisation of Cam-clay in this way follows the simplest and most 
mathematically convenient approach. Most of the experimental evidence is that 
the Mohr-Coulomb surface (Fig. 2.6) would be a better generalisation than the 
Drucker-Prager cone (Fig. 2.7) (Bishop, 1966). However, the adoption of the 
Mohr-Coulomb criterion means that the critical state parameter M is dependent 
on the value of the intermediate principal stress. The use of the simpler approach 
means that it is always possible to compare directly finite element calculations 
with an equivalent triaxial test. (But see section 5.4.2.) 
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5.2.2 The 'other' elastic property 

The assumption made for the Cam·day models in Chapter 2 about elastic 
behaviour (volumetric strains given by the K-line equation, zero shear strains) 
causes a small difficulty in implementing the models in a finite element program. 
The assumption of zero shear strains implies an infinite value of the shear 
modulus (G). The most straightforward way of circumventing this difficulty is 
to allow the program to calculate realistic elastic shear strains inside the yield 
locus. In calculating the terms of the D matrix for Cam-clay under the yield 
locus, the effective stress bulk modulus is calculated as 

v:' 
K'= ...!...- (S.3) 

K 

(This equation is obtained by differentiating the equation of the K-line.) The 
second independent elastic property is chosen by using either an assumed 
constant value of v I or an assumed constant value of G. The pros and cons of 
each option are discussed in section SA. The addition of the extra elastic strains 
makes very little difference to the predictions of the Cam-clay models. In triaxial 
tests, drained and undrained stress paths (and therefore soil strengths and pore 
pressures) are unchanged: the only difference is in the strain predictions and this . 
just involves calculating the extra strain component and adding it to those 
already determined. 

5.3 THE INCREMENTAL STRESS-STRAIN RELATIONS 

In order to perform non-linear fmite element analysis using elasto-plastic models 
of soil behaviour, it is necessary to compute the modulus matrix Dep relating an 
increment of strain to an increment of stress: 

(SA) 

Starting from the yield function I(a, h) = 0, and the plastic potential g(a, b) =0, 
there is a piece of standard manipulation to obtain a formula for Dep (e.g. 
Zienkiewicz, 1977) : 

(S.S) 

where a = aglaa = allaa, C = allah and H is a matrix relating changes in 
hardening parameters to changes in the incremental plastic strain: dh = HdEP. 

We have used the symbol DE above to emphasise that this refers to the elastic 
o matrix. The term '0 matrix' has passed into common (finite element) usage in 
much the same way as has the term 'B matrix', following the notation 
established by Zienkiewicz (1967, 1971, 1977). It is quite common to use the 
term '0 matrix' to refer to different matrices (Le. sometimes DE and sometimes 
Dep). The reader must learn to spot which is intended by the context. 

Sec. S3J The Incremental Stress-strain Relations 16S 

We now list the routines which calculate the terms of the 0 matrices in 
CRISP. Although our main intention is to demonstrate how (S.S) is 
implemented in CRISP, it is convenient to start with the two elastic models. 
Comparison of the elastic and elasto-plastic routines shows clearly the extra 
steps necessary for the latter. 

In the rest of the book rou tines have been introduced to the reader in the 
same order as they are called in the program. The D-matrix routines are an 
exception to this, and so the reader may wish to pass over them quickly on a 
first reading. It is possible, however, to make use of these routines independently 
of the rest of the program. We explain why this might be appropriate in the las 
section of this chapter. 

5.3.1 Routine DCON 

Routine DCON calculates the 0 matrix for anisotropic elasticity . The aniso­
tropic elastic properties relate strains to changes in stress via the following 
equations: 

'Yxy = --rxy · (S.6)
Ghv 

We have used suffixes 'h' (for horizontal) and 'v' (for vertical) to clarify how 
this model would be used in a geotechnical analysis. Section 9.2 contains a 
discussion of the significance of the various elastic parameters. The inverse forr 
of (S .6) is inserted into the 0 matrix following Zienkiewicz (1977) . The arra 

J 

PR contains the material properties as specified by the user in the data. 

Routine DeON 

SUBROUTINE DCON(I,IET,NEL,NDIM,NS,NPR,NMT,MAT,PR,D,BK) DeON 1 
c·········· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• "DCON 

2 
C CALCULATES STRESS-STRAIN MATRIX FOR ANISOTROPIC ELASTICITY DCON 3 
C·, ••• • • • •• • •••• • • • ••••••• • •• • •• • • •••• • • • • • ••• • • • ••••••• II II II II •••••••• II II II 'DC 0 N 4

DIMENSION MAT(NEL),D(NS,NS),PR(NPR,NMT) DCON 5 
DeON 6

KM=MATO) DCON 7AN=PR(1,KM)/PR(2,KM) DCON 8
A=PR (2, Kt1) I( (1. D+PR (3, KH))' (1. O-PR C3, KM )-2. O'AN 'PR (4, KM) II DCON 91 PR(4,KM))) DCON 10 
D(1, 1)=A 'AN'( 1. O-AN 'PR (4, KM) IIPR (4, KM)) DCON 11
D(1,2)=AIIAN·PR(4,KM)·(1.0+PR(3,KM)) DCON 12
D(1,3)=A'ANII(PR(3,KM)+AN'PR(4,KM)'PR(4,KM)) DCON 13D(2,1)=D(1,2) DCON 14
D(2,2)=A·(1.0-PR(3,KM)IIPR(3,KM)) DeON 15 
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DCON 16 BK=E/(3.·(1.-2.·PR(4,KM») DLIN 19
D(2,3)=D(1,2) 

DCON 17 D(l,1)=A·(1.-PR(4,KM» 	 DLIN 20
D(3,1)=D(1,3) 

DCON 18 D(l,2)=A·PR(4,KH) 	 DLIN 21
D<3,2)=D(2,3) 

DCON 19 D(1,3)=D(l,2) 	 DLIN 22
D(3,3)=D(1,1) 

DCON 20 D (2,1 )::D(1,2) 	 DLIN 23
D(4,4)=PR(5,KM) 

DCON 21 D (2,2)=D(l, 1) 	 DLIN 211
BK=(D(2, 2)+2. ·D(2, 1) )/3. 

DCON 22 D(2,3)::D(l,3) 	 DLIN 25
IF(NDIM.EQ.2)GOTO 5 

DCON 23 D <3, 1 ) =D (1,3) 	 DLIN 26
D(5,5)=PR(5,KM) 

DCON 24 D(3,2):D(2,3) 	 DLIN 27
D(6,6)=PR(5,KM) 

DC ON 25 D<3,3)=D(l,l) 	 DLIN 28
5 IF(IET.EQ.O) GO TO 20 

DCON 26 D (4 ,11 )=G DLIN 29 

DCON 27 IF(NDIM.EQ.2)GOTO 8 DLIN 30
DO 10 J=1,3 

DCON 28 D(5,5)=G 	 DLIN 31
DO 10 JJ=l,3 

DCON 29 D(6.6)=G 	 DLIN 32
10 D(JJ,J)=D(JJ,J)+PR(7,KM).BK 	

DLINDCON 30 8 IF(IET.EQ.O)RETURN 	 33
20 RETURN 

DCON 31 DO 10 J ::1,3 	 DLIN 311
END 

DO 10 JJ =1,3 DLIN 35 

10 D(JJ,J)::D(JJ,J)+PR(7,KM).BK DLIN 36 

DCON 	 7 : material zone number. RETURN DLIN 37 
END 	 DLIN 38

DCON 	 8 : ratio Eh/Ey = n. 

9-10: E~/[(l + vh) (1 - vh - 2nv~h)].DCON DLIN 11 : material zone number. 


DCON 11-21 : calculate components of elastic D matrix for 2-D. 
OLIN 13-15 : y co-ordinate (or z in axisymmetric problems) of integration 


DCON 23-24 : calculate additional components for 3-0. point. 

DCON 27-29 : add Kw term (o:}(') for drained/undrained analysis during 

: calculate value of Young's modulus at integration point.
DLIN 16
assembly of stiffness matrix (i.e. if lET =1= 0). 

OLIN 17 : calculate shear modulus. 


OLIN 18-29 : calculate elastic D matrix for 2-D. 

5.3.2 Routine DLIN 	 OLIN 31-32: calculate additional components for 3-D. 

l\outine DLIN calculates the D matrix when there is a linear variation of elastic 	
DLIN 34-36 : add Kw term (o:}(') for drained/undrained analysis during 

properties with depth. assembly of stiffness matrix (Le. if lET =1= 0), 


The elastic Young's modulus is given by the equation 


5.3.3 Routine DCAM
E=Eo +m(yo -y). (5.7) 

Routine DCAM calculates the D matrix for Cam-clay, The array VARINT gives
where 

the values of VARiables at INTegration points. The first index of this array gives 

Eo - Young's modulus at a depth Yo. 
seven ,variables for two-dimensional analysis: a~, a;, a;, 7xy , Lt, e (voids ratio) 

m - rate of increase in modulus with depth. and Pc· These variables will, in general, be varying over the whole finite element 

mesh. 

Routine DLIN Routine DCAM 
DLIN 1

SUBROUTINE DLIN (IP, I, lET, NEL, NDIM, NDN, NS, NPR, NMT, 
DLIN 	 SUBROUTINE DC AM (I P, I , lET, NEL, NI P, NVRS, NDIM, NS, NPR, NMT, DC·AM 1

.2 	 DCAM1 ELCOD,SHFN,MAT, D, PR, INDX,BK) 
1 VARINT,MAT,D,PR,ITP,BK) 2

C················ ••••••••••••••••••••••••••••••••••••••••••••••••••••
•••DLIN 3 

C············ ••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••DCAM 

3DLIN 4 	 DCAMC CALCULATES STRESS-STRAIN MATRIX FOR LINEAR ELASTIC 	
C CALCULA TES STRESS-STRAIN MATRIX FOR CAM -CLA Y 11

DLIN 5
C BEHAVIOUR WHEN ELASTIC PROPERTIES VARY LINEARLY WITH DEPTH 

6 C········· •••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••DCAM 

5
C··· •••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••DLIN 
DIMENSION VARINT (NVRS,IHP, NEL), D(NS, NS) ,MAT CNEL) 6DCAM

DLIN 7 DCAMDIMENSION ELCOD (NDIM, NDN ), SHF N(NDN ), D(NS, NS) 
DLIN 8 DIMENSION S(6),A(6),B(6),PR(NPR,NMT) 7 

DIMENSION MAT (NEL), PR (NPR, NMT) DCAM 8DLIN 9
COMMON /PARS / PYI,ALAR,ASMYL,ZERO 	 KM=MAT (1) DC AM 9DLIN 10 

SX::VARINT(l,IP,I) DCAM 10
DLIN 11

KM=MAT(I) 	 SY=VARINT(2,IP,I) DCAM 11
DLIN 12

CC IPA=IP .. INDX SZ=VARINT(3,IP,I) DCAM 12
DLIN 13H=ZERO 	 T leY =VA RIllT (4, IP, I ) DCAM 13DLIN 14

DO 5 IN=l,NDN 	 DCAM 14E::VARINT(NS..2,IP,I)DLIN 15
5 YY =YY +SHFN (IN) ·ELCOD (2, IN) 

PC=ABS(VARINT(NS"3,IP,I» 	 DCAM 15
E=PR (1, I'..M)+PR <3, KM)·(PR (2,KH)-YY) 	 DLIN 16 

DLIN 17 P=(SX+SY+SZ )/3. 	 DCAl1 16
G=E / (2. • ( 1. ..P R (4 , KH) ) ) 

DLIN 18 	 Q2=SX·(SX-S Y) ..s Y· (SY -SZ )+SZ· (Sl -SX )+3. ·TXY .TXY DCAM 17
A=EI( (1. ..PR (4, KM».( 1. -2. ·PR (11, KM») 
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;: 1 

i 1 

I I If(NDIM.EQ.2)GOTO 10 DCAN 18 

i DCAM 19 

! 
 TYZ:VARINT(S,IP.I) DCAM 20 

i 
 TZX:VARINT(6,IP,I) DCAM 21 


Q2=Q2+3.*TYZ'TYZ+3.*TZX'TZX DCAM 22 

10 Q=SQRT(Q2) DCAM 23 


PY=P'EXP(Q/(PR(4.KM)*P» DCAN 24 

BK=(1.+E)*P/PR(l,KM) DCAN 2S 


C-----------------------------------------------------------------------DCAM 26 

C CALCULATE ELASTIC STRESS-STRAIN MATRIX DCAM 27 

C-----------------------------------------------------------------------DCAM 28 


G=PR(S.KM) DCAN 29 

If(G. LT. 1.) G=BK*l. S'( 1. -2. 'PR (S, KM) )/( 1. +PR (S,KM» DCAM 30 


1'1 AL=(J. *BK+4. *G)/3. DCAN 31 

DL=(J. *BK-2. 'G )/3. DCAM 32 


i 

1'1 C DCAM 33 


CALL ZEROR2(D,NS,NS) DCAM 34 

D(l, 1 )=AL DCAM 
 3S 

D(2,1)=DL DC AN 36


!I 	 D(J,l)=DL DC AN 

D(1,2)=DL DCAM 38 

D(2,2)=AL DCAM 
 39 

D(3, 2)=DL DCAM 40
I! 	

37 


D(1,3)=DL 	 DCAM 41

I ~ 

D(2,3)=DL 	 DCAI1 42 
~ D(3,3)=AL DCAM 43 

D (4,4 )=G DCAM 44 

If(NDIM.EQ.2)GOTO 11 DCAM 45 

D(5,5)=G DCAM 46 

D(6.6)=G DCAM 47 


C DCA~l 48 

11 !F(PY.LT.0.99*PC) GO TO 50 DCAM 49 


C-----------------------------------------------------------------------DCAM 50 

C CALCULATE PLASTIC STRESS-STRAIN MATRIX If CURRENT DCAM 51 

C POINT ON YIELD LOCUS AND SET PC NEGATIVE DCAN 52 

C---------------------------------------------------------------------DC AN 53 


VARINT(NS+3,IP.I)=-ABS(VARINT(NS+3,IP,I» 

S(l)=SX-P 

S(2)=SY-P 

S (J )=SZ-P 

S(4)=2.'TXY 

If(NDIM.EQ.2)GOTO 12 

S(S)=2.*TYZ 

S(6)=2.'TZX 


12 	BB=(1.-Q/(PR(4,KM)*P»/(3.'P) 

ITP=O 

If(Q.LT.l.0E-5) GOTO 15 

QMP=Q/(PR(4,KM)'P) 

IF(Qt1P.LT.0.Ol) GOTO 14 

C=1.5/(Q'PR(4,KM)'P) 

GOTO 16 


DCAM 54 

DCAN 55 

DCAM 56 

DCAM 57 

DCAI1 58 

DCAN 59 

DCAN 60 

DCAM 61 

DC AM 62 

DCAM 63 

DCAM 64 

DCAN 65 

DCAM 66 

DCAM 67 

DCAN 68 


C---------------------------------------------------------------------DCAN 69 

C Q/MP IS SMALL. USE fITTED CURVE TO CALCULATE C VALUE DCAM 70 

C---------------------------------------------------------------------DCAM 71 


14 CA=lS3.0302/(PR(4,KM)'*2*PC'*2) DCAN 72 

C=(-2.98*(100.*QMP)**3+3.98*(100.'QMP)**2)*CA DCAM 73 

ITP = 1 DC AM 74 

GOTO 16 DCAM 7S 


C---------------------------------------------------------------DCAM 76 

C Q/MP IS TOO SMALL. USE C VALUE fOR ZERO Q/MP DCAN 77 

C------------------------------------------------------------------DCAM 78 


. 15 C=O. DeAM 79 

ITP=l DCAM 80 


16 A(l)=BB+C*S(l) DC AM 81 

A(2)=BB+C*S(2) DCAM 82 

A(3)=BB+C*S(3) DCAN 83 
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A (4 )=C'S (4) DCAM 84 

IF(NDIM.EQ.2)GOTO 18 
 DCAM 85 

A(5)=C'S(5) 
 DC AN 86 

A(6)=c'S(6) 
 DCAM 87 


C 
 DCAM 88 

18 DO 20 J =1,3 
 DCAM 89 


B(J)=O. 
 DC AM 90 

DO 20 JJ =1,3 
 DCAM 91 


20 B(J)=B(J)+D(J,JJ)'A(JJ) 
 DCAM 92 

B(4)=D(4.4)*A(4) 
 DCAN 93 

If(NDIM.EQ.2)GOTO 2S DCAM 
 94 

B(S)=D(5,5)*A(5) DCAM 
 95 

B(6)=D(6,6)*A(6) 
 DCAN 96 


C 
 DCAM 97 

25 XI=(PR(2,KM)-PR(1,KM»/(1.+E) DCAM 9 


AA=3.'BB/XI DCAM 99 

AB=O. 
 DCAM 100 


C 
 DCAM 101 

D030J=1.NS 
 DeAN 102 


30 AB=AB+A(J)*B(J) 
 DCAM 103 

BETA=AA+AB DCM1 104 

DO 40 J =1, NS DCAM 105 

DO 40 J J = 1 , NS DCAM 106 


40 D(JJ,J)=D(JJ.J)-B(JJ)*B(J)/BETA DC AN 107 

50 If(IET.EQ.O) GOTO 80 DCAN 108 


C DCAM 109 

DO 60 J=1,3 DCAM 110 

DO 60 JJ=l, 3 DCAM 111 


60 D(JJ,J)=D(JJ,J)+PR(7,KM)*BK DCAM 112 

80 RETURN DC AN 113 


END DC AN 114 


DCAM 9 : material zone number. 

DCAM 10-13 : effective stress components for 2-D. 

DCAM 14 : voids ratio (e). 

DCAM 15 : size of current yield locus (p~). 


DeAM 16 : mean normal effective stress (p ') . 

DCAM 17 : q2. 

DCAM 20-21 : additional shear stress components (3-D). 
DCAM 22 : q2 for 3-D. 
DCAM 23 : q. 
DCAM 24 : size of yield locus passing through stress state (not the sam\. 

as current yield locus). 
DCAM 25 : calculate bulk modulus of soil. 
DCAM 29 : shear modulus (or Poisson's ratio if < 1). 
DCAM 30 : calculate shear modulus C. 
DCAM 31-32 : elastic constants. 
DCAM 34 : zero 0 rna trix. 
DCAM 35-44 : elastic D matrix (2-D) . 
DCAM 46-47 : additional components of elastic D matrix for 3-D. 
DCAM 49 : skip if elastic. 
DCAM 54 : make p~ nega tive to indicate yielding. 
DCAM 55-58 : calculate deviatoric stresses for 2-D. 
DCAM 60-61 : additional components for 3-D. 
DCAM 62 : calculate constant part of flow matrix a. 

http:D030J=1.NS
http:IF(Qt1P.LT.0.Ol
http:G=PR(S.KM
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DCAM 63--66 : check if stress state is close to tip along p' axis. 
DCAM 67 --68 : if not, skip after calculating C. 

DCAM 72-75 : calculate C using curve fitting if close to tip. 

DCAM 81-84 : calculate flow matrix a for 2-D. 

DCAM 86-87 : calculate additional components of flow matrix a for 3-0. 

DCAM 89-93 : calculate b = D . a for 2-D. 

DCAM 95-96 : calculate b = D. a for 3-0. 

DCAM 98-99 : calculate hardening parameter c THa. 

DCAM 102-104 : calculate aTDEa -cTHa . 

DCAM 105-107 : calculate Dep matrix. 

DCAM 110-112 : add Kw term for drained/undrained analysis during assembly 


of element stiffness matrix (Le. only if lET =F 0) . 

5.3.4 	Routine DMCAM 

Routine DMCAM calculates the D matrix for modified Cam-clay. 

Routine DMCAM 
1 
2 

SUBROUTINE DMCAM (I P, I, lET, NEL, NIP, NVRS, NDIM, NS, NPR, NMT, DMCM 
1 VARHlT,MAT,D,PR,BK) 	 DMCM 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·····DMCM 3 
C CALCULATES STRESS-STRAIN MATRIX FOR MODIFIED CAM-CLA Y DMCM 4 

", ' 
C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·············DMCM 5 

DIMENSION VARINT(NVRS,NIP,NEL),D(NS,NS),MAT(NEL) 
DIMENSION S(6),A(6),B(6),PR(NPR, NMT) 

C 
KM=MAT(I) 
SX=VARINT(l,IP,I) 
SY=VARINT(2,IP,I) 
SZ=VARINT(3,IP,I) 
TXY=VARINT(4. IP. I) 
E=VARINT(NS+2,IP,I) 
PC=ABS(VARINT (NS+3, IP, I» 
P=(SX+SY+SZ)/3. 
Q2=SX.(SX-SY>+SY.(SY-SZ )+Sz· (SZ-SX )+3. ·TXY*TXY 
IF(NDIM.EQ.2)GOTO 10 

d TYZ=VARINT (5, IP, I) 
TZX=VARINT (6, IP, I) 

j' Q2=Q2+3 ••TYZ.TYZ+3 ••TZX.TZX 
10 Q=SQRT (Q2) 

PY=P+Q.Q/(P.PR (II,KM).PR (II,KM» 
BK=(1.+E).PIPR(l,KM)

C____________________________________~----------------------------------DMCM 26 

C CALCULATE ELASTIC STRESS-STRAIN MATRIX DMCM 27 

C-----------------------------------------------------------------------DMCM 28 


G=PR(5,KM) 	 DMCM 29 
IF(G.LT.1.) G=BK.l.5.(1.-2.·PR(5,KM»/(1.+PR(5,KM» DMCM 30 
AL=(3 ••BK+II ••G)/3. 	 DMCM 31 
DL= <3 ••BK-2 ••G)/3. 	 DMCM 32 

DMCM 33 
DMCM 34CALL ZEROR2(D,NS,NS) 
DMCM 	 35D(l, 1 )=AL 
DMCM 	 36D(2,1 )=DL 
llMCM 	 37D <3,1 )=DL 
DMCM 	 38D(1.2)=DL 
DMCM 	 39D(2,2)=AL 
DMCM 	 40D(3,2)=DL 
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D (1,3 )=DL 	 DHCM III 
D(2,3)=DL 	 DMCM 42 
D(3,3)=AL 	 DMCM 43 
D (4, 4 )=G 	 DMCM 44 
IF(NDIM.EQ.2)GOTO 12 	 DMCM 45 
D (5, 5)=G 	 DMCH 46 
D!6,6)=G 	 OMCM 47 

DMCM 	 4/3 
12 IF (PY. LT. O. 99 ·PC) GO TO 50 D~lCM 49 

C-----------------------------------------------------------------------DMCM 50 
C CALCULATE PLASTIC STR ESS-STRAIN MATRIX IF CURR ENT DMCM 51 
C POINT ON YIELD LOCUS AND ' SET PC NEGATIVE DMCM 52 
C-----------------------------------------------------------------------DMCM 53 

VARINT(NS+3,IP,I)=-ABS(VARINT(NS+3,IP,I» 

PCS=.5·PC 

PB=P/PCS 

S(1)=SX-P 

S(2)=SY-P 

S (3 )=SZ-P 

S(4)=2.*TXY 

IF(NDIM.EQ.2)GOTO 16 

S (5 )=2. *TYZ 

S (6 )=2 ••TZ X 


16 	BB=-2 •• (1.-PB)/(3.*PCS) 

C=3./(PCS.PCS.PR(4,KM)·PR(4,KM» 

A(1)=BB+C.S(l) 

A (2 )=BB+C.S (2) 

A(3)=BB+C.S<3) 

A(4)=C*S(4) 

IF (NDIM. EQ. 2 )GOTO 18 

A(5)=C.S(5) 

A(6)=c.S(6) 


18 	DO 20 J=1,3 

B(J)=O. 

DO 20 JJ=1,3 


20 	B(J)=B(J)+D(J,JJ)·A(JJ) 

B(4)=D(4,4)·A(4) 

IF (NDIM. EQ. 2 )GOTO 25 

B(5)=D(5,5)·A(5) 

B(6)=D(6,6)·A(6) 


25 	XI=(PR(2,KM)-PR(1,KM»/(1.+E) 

AA=-II.·PB·(1.-PB)/(PCS·XI) 

AB=O. 


C 
DO 30 J =1, NS 

30 	AB=AB+A(J )*B(J) 

BETA=AA+AB 

D040J=1,NS 

D040JJ=l,NS 


40 D(JJ,J)=D(JJ,J)-B(JJ)·B(J)/BETA 

50 IF(IET.EQ.O) GOTO 80 


DO 	 60 J=l,3 
DO 60 J J =1, 3 


60 D(JJ, J )=D (JJ, J )+PR (7, KM)·BK 

80 CONTINUE 


CC 	 WRITE(6,801)I,IP,D 
CC801 	 FORMAT(/1X,4HI = ,I5,2X,5HIP ,I5.3X,lHO/(lX,9E14.5» 

RETURN 
END 

DMCM 9 : material zone number. 

DMCM 10-13 : effective stress components for 2-D. 
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DMCMl4 

DMCM 15 

DMCM 16 

DMCM 17 
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: voids ratio (e). 

: size of yield locus (p~). 

: mean normal effective stress (p '). 

: q2. 


DMCM 20-21 : additional shear stress components (3-0). 

DMCM 22 : q2 for 3-0. 

DMCM 23 : q. 

DMCM 24 : size of yield locus passing through stress state (not the same as 

current yield locus). 
DMCM 25 : calculate bulk modulus of soil. 
DMCM 29 : shear modulus (or Poisson's ratio if < I). 
DMCM 30 : calculate shear modulus G. 

DMCM 31-32 : elastic constants. 
DMCM 34 : zero D matrix. 
DMCM 35-44 : elastic D matrix (2·0). 
DMCM 46-47 : additional components of elastic D matrix for 3-0. 

DMCM 49 : skip if elastic. 
DMCM 54 : make p~ negative to indicate yielding. 
DMCM 57-60 : calcula te deviatoric stresses for 2-D. 
DMCM 62-63 : additional components for 3-0. 
DMCM 64 : calculate constant part of flow matrix a. 

DMCM 65 : calculate C. 
DMCM 66-69 : calculate flow matrix a for 2-D. 
DMCM 71-72 : calculate additional components of flow matrix a for 3-0. 

DMCM 74-78 : calculate b = D. a for 2-D. 
DMCM 80-81 : calculate b = D . a for 3-0. 
DMCM 83-84 : calculate hardening parameter cTHa . 
DMCM 87-88: calculate aTDEa -cTHa . 
DMCM 90-92 : calculate Dep matrix. 
DMCM 95-97 : add Kw term for drained/undrained analysis during assembly of 

element stiffness matrix (i.e. only if lET i= 0). 

5.4 DETERMINING THE CAM-CLAY PARAMETERS 

5.4.1 Introduction 

The critical state soil parameters can all be determined from the normal range of 
laboratory tests that are performed on a soil. The approach to the selection of 

parameters will depend on the problem to which the program is to be applied. 
In general the information should be obtained from high-quality laboratory 
tests. This is particularly so when the program is to be used to predict behaviour 
in a field situation. In these circumstances, advanced in situ testing techniques 
(e.g. Wroth, 1984) are desirable in addition to high-quality laboratory tests on 

'undisturbed samples'. 
Of course, sometimes high-quality data will not be available, and the analyst 

must develop a feel for the range of possible parameter values and the influence 
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of the variation of each. In practical and research applications it is quite 
common to perform 'parametric studies', where one performs analyses with 
different parameter values to study the influence of each. 

Some soil tests give information which is not independently specified within 
the critical state framework (but depends on other CSSM parameters and the 
in situ stresses). One example is the undrained shear strength. In these 
circumstances there will usually be some discrepancy between data from 

different sources. Some of this will be due to the quality of the data, and some 

will be due to the fact that despite their sophistication, the critical state models 
are simplified idealisations of real soil behaviour. The .analyst needs to obtain a 
'best fit' between all the available data and the critical state parameters, bearing 
in mind the reliability of each piece of data. Indeed one of the strengths of the 
critical state theories is this ability to review data from different types of soil 
test (Wroth, 1984). 

5.4.2 The frictional constant M 

Triaxial tests (drained and undrained with pore pressure measurement) on iso­
tropically consolidated samples can be used to obtain the frictional constant M. 
A number of tests need to be carried out with different consolidation pressures. 
It is necessary to continue these tests to large strains to ensure that the samples 
are close to the critical state. For the undrained tests the pore pressures should 
be monitored to see that they are not still changing at the end of the test. If they 
are, then the samples have not reached the critical state and these results would 
lead to M being underestimated. 

If one ootains the principal effective stresses at failure, then the drained 
angle of friction ¢' can be obtained from the geometry of a Mohr's circle plot: 
a~/a; = (I + sin ¢')/(1 - sin ¢'). Combining this relation with the definitions of 
p' and q, M(the value of q/p' at failure) is given by 

6 sin ¢' 
M= ---, . (5.8)

3 -sin ¢ 

Of course, it is not necessary to go through the intermediate step of calculating 
¢': we have introduced this to make the relationship of M and ¢' explicit. 
Alternatively, by plotting the q/p' values at failure, the slope of the best-fitting 

straight line is taken as M. If one is testing field samples, a fair amount of scatter 

is to be expected and some 'engineering judgement' is needed here. 

As noted in section 5.2.1, the influence of the intermediate principal stress on 

the soil strength is usually better described by the Mohr-Coulomb equation 

than by the critical state cone. Sometimes the value of M is adjusted slightly to 

take this into account (e.g. a lower value is chosen which will match the soil 

strength in plane strain better when used in the finite element analysis). 

5.4.3 Slopes of the normal consolidation and swelling lines (X and J<) 

These parameters can be obtained from oedometer tests or from triaxial tests on 
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samples either isotropically or with Ko normally consolidated. From the 
theoretical pOint of view, one expects to obtain equal values of A from any 

constant rz compression test. Thus one would expect to get the same value of A 
from an isotropic compression test and a K0 compression test. Because the value 

of Ko changes on one-dimensional unloading (see section 5.5), an oedometer 
capable of horizontal stress measurement is required it K is to be determined 
from one-dimensional unloading rather than isotropic unloading. 

It is standard practice to plot the results of one-dime·~sional compression tests 

in terms of e (voids ratio) against logloa~, where a~ is the effective vertical 
stress. The slope Cc of the normally consolidated line is known as the 
'compression index'. 

A= Cc/2.303. (5.9) 

(2.303 = In (10.) Alternatively A can be directly determined from the slope of 
the compression line in a (In (p '), e) plot. Often K is simply estimated from A, as 
indicated at the end of this section. 

One sometimes finds that the compression line in (In (p') , e) space is curved 
rather than linear. Under these circumstances one has to choose the slope 
appropriate to the stress level believed to be relevant in the problem to be 

analysed. (Note that this will also affect the estimation of r or ecs discussed 
below.) 

It is interesting to note tha t Butterfield (1979) re-plotted the results discussed 
above in In (V)-ln (p') space and obtained linear plots. In fact it is difficult to 
decide on the basis of the available data whether Butterfield's proposal or the 
traditional approach is better. From a theoretical point of view, linear relations 
in (In (e), In (p ')) plots would be preferable, eliminating the possibility of 
negative values of e at high stress levels. This would tidy up one corner of critical 
state theory, but for practical purposes the traditional relations appear to be 
quite satisfactory. 

In fact one can re-formulate the critical state models to incorporate 
Butterfield's suggestion (or any other hardening law). This would involve some 
changes to the finite element program (but not major ones). 

K-lines are usually found to be even more curved than A-lines. In Chapter 2 
we pointed out that although the assumed form of elasticity is adequate for 
many purposes, there are situations (e.g. cyclic loading) where the K·line 
assumption is not adequate. K values are often chosen in the range of one-fifth to 
one-third of A. The data usually indicate a lower (stiffer) value on immediate 

unloading and a higher value at later stages of unloading. 

5.4.4 Location ofCSL in (e, In(p')) plot (e cs = r - 1) 

ecs is defined as the voids ratio on the critical state line for a value of p' = I. 
Note that the parameter describing the location of the CSL in Chapter 2 (f') 

was a specific volume, whereas the parameter required here (e cs ) is a voids ra tio. 
Since specific volumes can always be converted into voids ratios (and vice versa) 
using the relation V = 1 + e, this' should not lead to any confusion. 
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Following on from the determination of M above, the reader might expect 
that ecs would be determined by measuring the moisture contents of several 
triaxial tests at failure. This is rarely done, however, basically because of the 
difficulty in obtaining sufficiently accurate data. In fact once A and K have been 
determined, a value of moisture content at any point on the stable state 
boundary surface will suffice to fix a value of r, using either (2.17) for Cam-clay 
or (2.41) for modified Cam-clay. It is common in fact to determine e in this cs 
way from consolidation data. A side-effect of this procedure is that different 
values of ecs (or f') are obtained for the Cam-clay and modified Cam-clay 
models. This is in contrast to the conventional assessment of the differences 
between Cam-clay and modified Cam-clay when it is assumed that the critical 
sta tes coincide for the two models. 

Fig. 5.3 shows the normal assumption which is made: the CSSM parameters 
M, A, K and r (or ecs ) are assumed to be identiCal for Cam-clay and modified 
Cam-clay. In this case the difference between the two models shows up as 
different isotropic normal consolidation lines. 

Fig. 5.4 shows the result of following the procedure outlined above. Here the 
value of r has been obtained from a moisture content (Le. value of e or V) on 
the isotropic normal consolidation line. This gives different values of r for Cam­
clay and modified Cam-clay and thus two different positions of the critical state 

q 

pi 

v 

I 
P 

Pig. 5.3 - Wlten comparing Cam-clay and modified Cam-clay it is conventionally 
assumed that the models coincide at the critical state. Hence the isotropic normal 

consolidation lines are different 
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q 

p' 

v 

p' 

Fig . 5.4 - If the critical state parameter r is calculated from the moisture content 
of an isotropically normally consolidated sample, then Cam-clay and modified 
Cam-clay have different CSLs in the (p', V) plot. Hence modified Cam-clay gives 

higher undrained shear strengths than Cam-clay 

line in the (In (p I), V) plot. One practical consequence of this approach is that 
the undrained shear strength of a soil (with the same moisture content) is now 

: t 28% greater for modified Cam-clay compared to Cam-clay. It was this fact that 
we were referring to in Chapter 2 when we commented that the difference 
between Cam-clay and modified Cam-clay is often greater than is sometimes 
suggested. The figure of 28% here is based on soil parameters with A= SK: the 

, i ratio of shear strengths is obtained by substituting into (2.26) the two different 

values of r. For other soil parameters, the ratio can be calculated as 1.36 raised 

to the power t\., where 1.36 is half the base of natural logarithms and 

t\. = 1 - KIA, as in Chapter 2. 
If the values of r are obtained from moisture contents from an oedometer 

test then neither the CSL nor the isotropic NCL will coincide for Cam-clay and 

modified Cam-clay. In this case the discrepancy between predictions of 

undrained shear strength will remain, but will not be so large as above. 
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5.4.5 v' or G 

As indicated above, CRISP allows the user to specify either a constant value of 
v' or a constant value of G, Now K' varies with p , (as indica ted by (5.3)), and it 

can be shown that if G is also allowed to vary with p', then the soil is not truly 

elastic. This is because elastic stress cycles are not necessarily reversible 

(Zytynski et al., 1978). Thus it would appear to be preferable from a theoretical 
point of view to assume a constant value of G. The question is: what value of 
G? Experimental evidence indicates that G does vary with stress level. Attempts 

to correlate G with other data suggest a stronger relation withp', thanp~ or cu. 

It is, therefore, usually more convenient to specify a value of v' which means 
tha t G varies in the same way as K'. This is particularly so when analysing a 
problem where there is a significant variation in stress level in the soil. The 
question now is: what value of v'? There are two ways of arriving at a value of 
v". The first is from data of Ko versus OCR, and the second from strain measure­
ments in triaxial tests. The first is the more usual, and gives a value of about 0.3 : 

for many soils: this is related to the consideration of in situ stresses discussed 
below. The second method tends to give lower values of v' (e ,g. 0.12 for London 

clay (Wroth, 1972)). At first, this kind of discrepancy may seem to throw doubt 
on whether it is possible to assign realistic elastic parameters. Techniques for 
accurate measurement of strains recently developed at Imperial College reveal a 
more complex non-linear behaviour in this 'elastic' region of behaviour (Jardine 
et al., 1984). 

It is worth pointing out here that the main strength of the Cam-clay models is 
in the calculation of plastic strains during yielding, as opposed to the elastic 
strains which are calculated for over-consolidated behaviour. Thus for many 
problems the exact assumption made for elastic properties is of only secondary 
importance. On the other hand, there will certainly be some problems where the 
assumptions made here are deficient, and the user should consider incorporating 
some new material idealisation within the yield locus in the program. As we have 
indicated in Chapter 2, this is an ar~ of continuing research. 

5.4.6 Horizontal and vertical permeabilities 

Although permeabilities are not 'Cam-clay parameters', they are considered here 
for completeness. For layered soils it is well known that the horizontal 
permeability is greater tha~ the vertical permeability. The same is true for any 
samples anisotropically (for example Ko) consolidated. In the laboratory, the 
permeability can be determined from oedometer tests . To determine the 

horizontal permeability, a specially modified oedometer with radial drainage is 

required. Oedometers with external radial drainage may be preferable. The 
measuring of permeabilities either in the field or in the laboratory is well 

documented and will not be discussed here. The vertical permeability can also be 

estimated from the coefficient of consolidation (cv) and the coefficient of 

compressibility (mv) from the expression 

(5.10) 

.~- .­
U --t . 



178 
179 [Ch. 5 Cam-clay in Finite Element Analysis 

(In terms of the CSSM parameters, my = A/(p I V), from d~fferentiating t~e 
A-line equation, but since the value of the horizontal stress IS not necessanly 

known direct use of (5.10) is more convenient.) 
In CRISP the permeability is assumed to be constant throughout the analysis. 

Experimental evidence shows that permeability varies :"ith stre~s .level. .A~ the 
voids ratio increases, ' the pore water can flow more easily, and It IS realistiC to 
expect the permeability to increase with increase in voids ratio. Such a relation­

ship can be readily incorporated into the program if sufficient data to support 

this are available for the particular soil being modelled (Almeida, 1984). 

5.5 IN SITU STRESSES 

5.5.1 Introduction 


In section 5.4, various means of obtaining the Cam-clay parameters (i.e. soil 

constants) were described. In this section we discuss how to determine the.str~ss 

parameters, which vary from point to point in the soil. These are the.m sllu 
distribution of a~, a~, U o and p~ for the entire region of the analYSIS. The 

param~ter p~ is only needed for those zones of the mesh wher.e .t~e Cam-clay 
models are used. CRISP uses this information to calculate the 101tlal values of 

voids ratio (e) over those zones. . 
The reason that these in situ stresses are required is that ill an elasto-plastlc 

analysis the stiffness matrix of a finite element will be dependent on the stress 
state within the element. In general the stress state will vary across an element, 
and the stiffness terms are calculated by integrating expressions dependent on 
these varying stresses over the volume of each element. CRISP integrates these 

expressions numerically by 'sampling' the stresses at particular points within the 
element and then using standard numerical integration rules for triangular areas. 

For Cam-clays it is important to try to establish the in situ stress state as 

accurately as possible. This is because the displacements predicted by an analysis 
are quite sensitive to the relative amounts of elastic (over-consolidated)/plastic 

straining that take place. 

5.5.2 	How in situ stresses are set up 

The in situ stresses in the ground are produced by the loadings which the 
geological history of a site imposes on each small element of soil. Many natural 

soils are deposited as mineral particles from water or the atmosphere. As a 
deposit of soil is progressively built up in a series of layers, each small element of 
soil is subjected to a steadily increasing vertical effective stress. Soil in this 
condition is normally consolidated, because each element has never been 
subjected to a greater stress. The erosion of upper layers of the soil will lead to 

unloading of the remaining soil, which therefore becomes over-consolidated. An 
alternative reason for over-consolidation is the raising of the water table (Parry, 
1970). The water table may fall again, or new layers of soil may be deposited, 
and so an element of soil may go through several cycles of loading, unloading 
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and .reloading. In all cases the assumption is made that the soil loading and 
unloading is one dimensional, i.e. no shear stresses develop on vertical or 

horizontal planes. In other words, the principal stress directions are vertical and 
horizontal, and the horizontal stresses are equal. 

There are some situations where this description will not be appropriate. The 
recent engineering history of a site (e .g. excavation, compaction or construction) 
will also affect the in situ stresses of soil elements near to the engineering 
activity. Residual soils which are formed by the in situ weathering of rocks do 
not conform to this picture : they invariably behave as if over-consolidated. 

The calculation of the vertical effective stress is straightforward. The vertical 
total stress at any depth is calculated as the bulk density of the soil multiplied 

by the depth. (A more sophisticated approach is to take into account the 
variation of bulk density with depth, but this is usually not necessary.) From the 
position of the water table, the pore water pressure is calcula ted, and hence the 
vertical effective stress (a~ = a y - u). The calculation of the horizontal effective 

stress is not so straightforward. The coefficient of earth pressure at rest 

(Ko = a~/a~) depends on the stress history of the soil. We describe below some 
methods of estimating Ko, but it is worth pointing out at the start that from 

both the practical and the theoretical points of view, these methods are not 
entirely satisfactory. A prudent engineer would supplement these estimates by 
in situ measurements of the horizontal effective stress using, for example, the 
self-boring pressure meter (Wroth, 1984). 

5.5.3 	Two approaches for in situ stresses 

In an elastic analysis of soil (and sometimes in an elastic-perfectly-plastic 
analysis) it is quite common to set Ko as v'/(l - Vi). This is consistent with the 
condition of zero lateral strain inherent in one-dimensional elastic compression, 
but unfortunately measured laboratory values of v' are not consistent with the 
usual values ofKo believed appropriate for the field. 

Of course this elastic assumption is not to be used for analyses using the 
critical state models, where one-dimensional compression involves plastic 
yielding. When using the Cam-clay models there are basically two approaches for 
determining the in situ stresses: 

(i) 	 an analysis is performed (either using CRISP or by hand) in which a soil 
column is subjected to the stress history which is believed has been applied 
to the soil deposit in practice. This approach has the merit of being 
theoretically consistent with subsequent analysis but it suffers from the 

disadvantage that Cam-clay and, to a lesser extent, modified Cam-clay are 

not very successful in predicting values of Knc (the coefficient of earth 
pressure at rest for normally consolidated SOil): 

(ii) 	 a rather more empirical method is used, based on the data accumulated by 

Wroth (1975). 
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We concentrate on the second approach, which is rather more practical and easy 

to use. However, in the final section we briefly compare Wroth's method with 

the so-caUed 'consistent' approach. 

5.5.4 	Wroth's method 

In Wroth's method the value of Knc is taken as 

Knc = 1 - sin ¢', 	 (5.11 ) 

a simplified version of Jaky's relation (1944). Although there is some theoretical 
analysis underlying this equation, examination of Jaky's paper reveals that the 
relation is deduced for the stress state at the centre of an embankment, where 
there is no necessity for there to be a condition of zero lateral strain. Hence 
(5.11) must be regarded as an empirical relation. However, there is evidence tha t 
(5.11) gives Knc values which match data from laboratory tests (Wroth, 1972). 

Wroth (1975) proposes two alternative relationships between Ko, Knc and 
OCR (OCR = a~m /a~ where a~m is the maximum vertical effective stress 
experienced by a soil element): 

v' 
Ko = OCR Knc - -1--' (OCR - I), (5.12) 

-v 

and 

3(1 -Knc) 3(1 -Ko)j _ [OCR(1 + 2Knc)]
m - -In 	 . (5.13)[ 1 + 2Knc. 1 + 2Ko 1 + 2Ko 

(5.12) is obtained by considering elastic unloading from the normally 
consolidated state, and gives a good fit to the existirig data for a number of soils 
up to an OCR of about 5. The values of v' necessary to fit the observed data 
were determined by Wroth to be in the range 0.254 to 0.371 for eight different 
soils. (5.13) was proposed as valid up to higher values of OCR and was obtained 
from the observation that an unloading plot of q/p' versus In p' is a straight-line 

relationship (Fig. 5.5). m is an empirical constant which Wroth shows is linearly 

related to the Plasticity Index (PI) for a number of soils. Wroth (1976) suggests 

the following equation for estimating m (where direct measurements are not 
available ) : 

m = 0.022875 PI + 1.22, 	 (5.14) 

where PI is in per cent. 
Wroth's method requires a knowledge of the OCR for soil at each depth. The 

standard procedure for obtaining the value of OCR is to test samples of clay in 
an oedometer and carry out one-dimensional consolidation with small load 
increments (Bjerrum, 1973), using the method of Casagrande (1936) to 
determine the vertical pre-consolidation pressure. Samples taken at frequent 

intervals of depth should give the variation of a~m with depth. Hence the over­

consolidation ratio (OCR) with depth can be determined. 

Sec. 5.5] In Situ Stress 

Normal consolidation 

In p' 

Fig. 5.5 - The relation between 7] and In (p') observed for many soils on one­
dimensional loading and unloading 

(5.13) is a non-linear equation and must be solved iteratively to obtain values 
of Ko. This process is possible (if a little tedious) by hand, using a pocket 
calculator. As Wroth (1975) points out, (5.13) is only valid for the first 
unloading from the normally consolidated condition, as the data show that 

reloading does not follow the original unloading stress pa tho In practice, 
however, (5.13) is used irrespective of unloading/reloading cycles tha t may have 
taken place. (Only rarely does one know the details of the soil's previous stress 
history, and in any case some additional empirical relations would be necessary 
to specify what happens on reloading.) 

The basic steps in calculating in situ stresses using Wroth's method can bl'" 
summarised as follows. 

1. 	 Calculate a~ from the bulk density of the soil and the position of the 
water table. 

2. 	 Calculate a~m from an oedometer test. (If no oedometer tests are 

performed for soil at this particular depth, then interpolate between 
neighbouring values of a~m') 

3. 	 Use (5.11) (Jaky's relation) to calculate Knc and hence the horizontal 
effective stress acting when the maximum vertical effective stress (a~m) 
was present. 

4. 	 Calculate values of p' and q corresponding to the maximum stresses found 

in 3. Substitute these values into the equation of the yield locus (either 
(2.18) or (2.40) depending on whether Cam-clay or modified Cam-clay is 
to be used in the subsequent analysis) to calculate the value of p~. 
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q 

180 pi 

-6 Note: numbers shown 

on the stress paths are 

values of OCR 

-80 
CSL 

Fig. 5.6 - Different assumptions for loading and unloading Cam-clay and 
modified Cam-clay one-<iimensionally 

S. 	 Use either (S.12) or (S.13) to calculate the value of Ko from Knc and 
OCR. Hence the in situ horizontal effective stress Ott =Koo~. 

5.5.5 	Different approaches compared 

Fig. S.6 illustrates the effect of following three different approaches for 

estimating the in situ stresses. In each case the soil is loaded to the same effective 

vertical stress and then unloaded. 
The upper stress path is obtained using Wroth's method with (S.13) for 

unloading. Although this stress path is shown to establish a modified Cam-clay 
yield locus, exactly the same stress path is obtained if one is going to use Cam­

clay in the subsequent analysis. 
The modified Cal)1-clay and Cam-clay stress paths were obtained from a 

CRISP analysis. For modified Cam-clay, one can calculate the value of Knc using 
the theory for calculating strains in Chapter 2 (supplemented by the extra elastic 
shear strains). However, it is more straightforward to use CRISP to find the 
theoretical Knc. The analysis was started at from a point on the isotropic normal 
consolidation line at half the final maximum effective vertical stress. After the 

Sec. S.S] 	 In Situ Stress 

initial part of the stress path, which is almost vertical, the stress path bends 
round and follows the constant 17-line corresponding to Knc. The unloading line 
is straight, and in fact is the same as would be obtained using (S .12). The slope 
of the unloading line is given by 3(1 - v')/(1 + v'). The value of v' used here 
was 0.2 , which is slightly lower than the range suggested by Wroth (197S) . If a 
value of v' of -} is used, then the unloading part of the stress path has exactly 
half the slope of the one shown in Fig. S .6. 

The same basic procedure was followed for Cam-clay, producing the lower 
stress path shown in Fig. S.6. The analysis was started quite close to o~m , 
because for most values of the CSSM parameters, Knc = 1 (the incorporation of 
elastic shear strains via v' does not affect this standard result described by 
Schofield and Wroth (1968)) . The unloading part of the stress path involves 
expansive elastic volumetric strains and compressive plastic volumetric strains, 
giving an overall volumetric strain which is expansive. When the OCR is equal to 
8, the soil is close to a state of passive failure at the critical state. 

The in situ stresses obtained by using the Cam-clay models directly lead to 
higher values of Ko (for a given OCR). This is particularly the case for Cam-clay. 
On the other hand, it is possible to take account of information describino the 
complete stress history of the soil (including unloading/reloading cycles) :here 
this is available. A side-effect of using Wroth's method for high values of OCR is 
that the initial stress state in an analysis is near the origin of the (p', q) plot, well 
over on the dry side of the critical state. In the subsequent analysis there will be 
quite a lot of elastic shearing before the soil yields. In an undrained analysis, 
yielding will take place in a region of stress space (i.e. on the dry side of critical) 
where the predictions of the Cam-clay models are known to be not very 
satisfactory. In contrast, using the 'consistent' approach the soil would tend to 
yield nearer the critical state. Thus the response would be closer to elastic­
perfectly-plastic for medium to high over-consolidation ratios. 

Clearly . the actual response of soil in an analysis depends on the stress history 
assumed before the start of the analysis. If the soil is over-consolida ted then the 
predictions of soil deformations in the early part of the analysis will be quite 
sensitive to the assumed unloading relation. On the other hand, if the analysis 
approaches failure then the main factor which influences the results will be the 
value of o~m. We can compare this situation to that for steel structures where 
plastic collapse loads are independent of initial (residual) stresses. Collapse loads 
in geotechnical engineering do depend on the initial stresses, but not necessarily 
on every detail of the stress history . It is likely that many useful calculations can 
be carried out with relatively crude estimations of the in situ stresses, but we 
must admit that there has not been much work (that we are aware of) where the 
effect of different assumptions has been systematically studied. 

5.5.6 	Final commen ts on in situ stresses 

Although CRISP was used to produce the results discussed in the previous 
section, it is not necessary to perform a complete finite element analysis. Use of 
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the D-matrix routines listed earlier in this chapter is possible: calculating 
incremental stress changes for imposed one-dimensional incremental strains 
(updating the current stresses as one proceeds) . 

A further empirical relation between Ko and OCR is due to Parry (I 982): 

Ko = Knc (OCR)1>' . 

(1)' is in radians.) This equation gives values of Ko similar' to (5.13) and its 
. manipulation is slightly more straightforward. 

In this discussion of in situ stresses, we have failed to mention the 
experimental evidence that seems to show a yield locus centred on the 77-line 
corresponding to Knc rather than 77 = O. This observation can be incorporated 

into the critical state framework to produce an anisotropic Cam·clay model 

(Ohta and Wroth, 1976). This model would yield much earlier on passive stress 
paths where the isotropic models we have described continue to shear elastically. 
Yielding on active stress paths will not be much affected, however. We expect 
that this explains why satisfactory predictions are often produced using Cam­
clay where there is positive loading (e.g. under embankments), but unloading 
problems often show too much elastic behaviour. 

No matter how sophisticated the theoretical model, the problem of deciding 
what has happened to the soil at a particular site still remains. We believe that 
the simple one·dimensional loading and unloading idealisation of stress history 
may be appropriate to fewer cases than are commonly supposed. For example, 
Dalton and Hawkins (I982) measured different. values of Oh in different 
directions in the ground using the self·boring pressure meter at an apparently 
undisturbed site. (Up to 50% variation in Oh was detected.) Despite the careful 
allowance that 	was made for instrumentation errors, these findings have not 
been accepted by most geotechnical engineers. We prefer to believe the 
experimental information, even if it does not fit in with our preconceived 
notions of what has happened to the ground in the past. 

Geometry of the Finite 
Element Mesh 

6.1 INTRODUCTION 

Chapter 4 described how the program and the input data can be logically divided 
into three distinct parts: (i) mesh geometry; (ii) material properties and in situ 
stresses; (iii) analysis. 

This chapter deals with part (i). MARKZ is the master control routine for the 
geometry part of the program, and is called by routine MAST as described in 
Chapter 4. 

The subroutine hierarchy (Fig. 6.1) shows the routine MARKZ delegating 
tasks to various routines. A brief explanation of each subroutine listed in thie 
chapter is given below. 

RDCOD 
CONECT r SETI\JP 
MIDSID-----...L SORT2 
CUREDG -- SORT2 
INTPLT 
SIDES 

MARKZ 	 MIDPOR ~-- SORT2 
CUREDG-- SORT2 
NUMSH 
MAKENZ 
CALDOF 
MLAPZ 
SFWZ 
GPOUT 

Fig. 6.1 - Subroutine hierarchy for geometry part of program 

6 
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MARKZ 

RDCOD 
CONECT 

MIDSID 

SORT2 
SETNP 
CUREDG ­

INTPLT ­

SIDES 
MIDPOR 

NUMSH ­

MAKENZ­

CALDOF ­
MLAPZ 
SFWZ 

GPOUT 

BDATAI 

SHFTIB 

MAXV Al ­

Geometry of the Finite Element Mesh [Ch.6 

Control routine for geometry part of program; delegates tasks to 
other routines, 
Reads the node numbers and nodal co·ordina tes of vertex nodes. 
Reads the element number, element type number and material 
zone numbers and the vertex nodes associated with each element. 

Calculates co·ordinates of additional displacement nodes (nodes 
along element sides and element interiors). These nodes are also 
numbered. 
Returns the lower of two node numbers. 
Sets up indexes for element sides for different types of element. 
If the element sides are curved then the nodal co-ordinates 
calculated by MIDSID for the nodes along element sides, assuming 
the sides are straight, will be incorrect. This routine allows the user 
to specify the correct co-ordinates, which replace the co·ordinates 
calculated by the program. 
If a plot of the mesh is required then the overall dimensions of the 
mesh, in order to calculate the scale, are written to a Plot Data 
(PO) file. 
Information to draw element sides are written to PO file. 
Calculates co·ordinates of additional pore pressure nodes (nodes 
along element sides and interiors). The nodes are also assigned 
numbers. 
Information to number the nodes and elements are written to PO 

file for plotting. 
Calculates the degrees of freedom (d.oJ.) of each node. 
Assigns unique global variable numbers to each variable. 
Relevant to the frontal method. Marks last appearance of nodes. 
Calculates the maximum frontwidth and the amount of store 
required for solving the equations . 
Prints out nodal co-ordinates and list of nodes associated with each 
element. 
Block data routine element type dependent parameters and 

integration schemes. 
Shifts a region to a different part of the global array G. 

Sets maximum values and sizes of some arrays. 

6.2 GEOMETRY PART OF THE PROGRAM 

MARKZ delegates tasks to other routines. 

Routine MARKZ 

SUBROUT INE MARKZ (N VTX, NEL, NUMAX, MUMAX, MXNO, MXNOV, NNE, NNE 1, 
1 NN, NNU, NNZ, LTAB, LDIM, NDIM, NDF, NDZ, IFRZ ,MCORE, MNFZ, 

HARK 

MARK 2 
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2 NPL, LTZ, KLT, NMATZ, INXL, IPLOT, MARK 

3 XYZ,NCONN,MAT,LTYP,MRELVV,MREL,NRELVV,NREL,NW,NQ, MARK 4 

4 ITAB,MFRU,MFRN,NOEST,NLST,IFR,NP1,NP2,NO,NCORET,MOZ) MARK 5 


c·········································•••••••••••• •••••••••• •• • •••••MARK 6 

C 11ASTER CONTROL ROUTINE FOR GEOMETRY PART OF THE PROGRAM. MARK 7 

C READS INPUT DATA (COORDINATES AND ELEMENT-NODAL MARK S 

C CONNECTIVITY) AND SETS UP ADDITIONAL ARRAYS. MARK 9 

c···························· ..·... ·.................. ······............MARK 10 


CHARACTER'SO TITLE MARK 11 

DIMENSION XYZ(NOIM,NNE),NCONN(MXNO,NEL),MAT(NEL), MARK 12 


1 LTYP(NELl,MRELVV (NELl,MREL(MUMAX), NRELVV(NNE), MARK 13 

2 IIREL(NNU), NW (NNE 1 ), NQ (NNE), ITAB (LTAB, LOIM) , MF RU (NEll ,MFRN (MUMAX), MARK 14 

3 NDEST(NNE),NLST(MXNO),IFR<IFRZ),NPl(NPL),NP2(NPL),KLT(LTZ) MARK 15 


COMMON 10EVICE/ IR 1, IR4, IR5, IW2, !W4, !W6, !W7, !WS, IW9 MARK 16 

COMMON 10EBUGSI I01,I02,ID3,ID4,I05,I06,I07,IOS,I09,I010 MARK 17 

COMMON ILABEL I TITLE MARK 18 

REAO(IR5,·)I01,I02,I03,I04,I05,ID6,I07,ID8,ID9,ID10 MARK 19 


C-------------------------------------____________________________------MARK 20 

C NSDZ - MAXIMUM NUMBER Of DISPLACEMENT NOD;;:S ALONG EDGE MARK 21 

C NSPZ - MAXUMUM NUMBER OF PORE-PRESSURE NODES ALONG EDGE MARK 22 

C (EXCLUDING END NODES) MARK 23 

C------~--------------------------------___________________________----MARK 24 


REAO(IR5,·)NSOZ,NSPZ,NDCUR,NPCUR MARK 25 

WRITE(IW6,902)NSOZ,NSPZ,NDCUR,NPCUR MARK 26 


C----------------------------------___________________________----------MARK 27 

C READ VERTEX NODE COORDINATES MARK 28

C------------------------------------__________________________________-MARK 29 


CALL RDCOD(IR5,IW6,NNE,NDIM,NNU,NVTX,NUMAX,XYZ,NRELVV,NREL) MARK 30

C------------------------------------_________________________________--MARK 31 


C READ ELEMENT-NODAL CONNECTIVITY MARK 32

C---------------------------------------____________________________----MARK 33 


CALL CONECT(IR5,!W6,MXND,NEL,MUI1AX,NNE,NNU,MXNDV,NCONN, MARK 31l 

1 MAT,LTYP,MRELVV,MREL,NRELVV,NREL,MFRU,MFRN,NLST, MARK 35 

1 LTZ,KLT,NMATZ,NVTX,NUMAX) MARK 36 

IF(ID1.EQ.1)WRITE(IW6,801)NCONN MARK 37 


C-----------------------------------------------------------_______-----MARK 38 

C CALCULATE COORDINATES OF ADDITIONAL NODES MARK 39 

C-----------------------------------------------------------------------MARK 110 


CALL MIDSID(IW6,MXND,NEL,LTAB,LOIM,NNU,NDIM,NNE,NPL, MARK III 

1 XYZ,NCONN,LTYP,MRELVV,NRELVV,NREL,ITAB, MARK 112 

1 NP1,NP2,ND,NN,KRD,NVTX,NDZ,MDZ) MARK 43 


C-----------------------------------------------------------------------MARK 41l 

C READ COORDINATES OF DISPLACEMENT NODES ALONG CURVED SIDES MARK 45 

C NDCUR - NUMBER OF ELEMENT SIDES (WITH DISPLACEMENT NODES) MARK 116 


THAT ARE CURVED. MARK 47 

C--------------------------------------------------------------------- --MARK 118 


IF(NDCUR.EQ.O)GOTO 10 MARK 49 

CALL CUREDG(IR5,n~6,MXND,NEL,NDIM,NNE,LTAB,LOIM,MUMAX,NNU,NPL, MARK 50 


1 XYZ,NCONN,LTYP,MREL,NREL,ITAB,NP1,NP2,NDCUR,1,NSDZ) MARK 51 

10 CONTINUE MARK 52 


C-----------------------------------------------------------------------MARK 53 

C WRITE TITLE AND DIMENSIONS OF MESH TO A PLOT FILE MARK 51l 

C------------------ -----------------------------------------------------MARK 55 


IF (I PLOT. NE. 0 )WRITE (IW 8)T IT LE MARK 56 

IF(IPLOT.NE.O)CALL INTPLT(IW6,IW8,NDIM,NNE,XYZ,ND) MARK 57 


C-----------------------------------------------------------------------MARK 58 

C PLOT ELEMENT SIDES MARK 59 

C-----------------------------------------------------------------------MARK 60 


CALL SIDES(IW6,!W8,LTAB,LDIM,NDIM,NNE,MXND,NEL,XYZ, MARK 61 

1 NCONN,ITAB) "MARK 62 


C----------------------------------------------------------------- ------MARK 63 

C CALCULATE COORDINATES OF ADDITIONAL PORE-PRESSURE NODES MARK 61l 

c-----------------------------------------------------------------------MARK 65 


CALL MIDPOR(IW6,MXND,NEL,LTAB,LDIM,NNU,NDIM,NNE,NPL, MARK 66 

1 XYZ, NCONN, LTYP,MRELVV, NRELVV, NREL, ITAB, MARK 67 


NP1,NP2,NN,KRD,NNZ) HARK 68 
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c------______________________________________________________-----------MARK 69 

C READ COORDINATES OF PORE-PRESSURE NODES ALONG CURVED SIDES MARK 70 
C NPCUR - NUMBER OF ELEMENT SIDES (WITH PORE PRESSURES NODES) MARK 71 
C THAT ARE CURVED. MARK 72 
C--------------------------------------------___________________--------MARK 73 

IF(NPCUR.EQ.O)GO TO 20 MARK 74 
CALL CUREDG(IR5. rw6.MXND, NEL, NDIM, NNE, LTAB. LDIM,MUMAX, NNU. NPL. MARK 75 

1 XYZ.NCONN.LTYP.MREL.NREL.ITAB.NP1.NP2.NPCUR.2,NSPZ) MARK 76 
20 	CONTINUE MARK 77 

NN1=NN+l MARK 78 
IF(ID7.EQ.0)GOTO 22 MARK 79 
WRITE(IW6. 801 )NCONN MARK 80 

801 FORMAT(/1X.5HNCONN/(lX.2015» MARK 81 
WRITE(IW6.802)MREL MARK 82 

802 FORMAT(/lX,IIHMRELI(lX.2015» MARK 83 
WRITE (IW6. 803 )MRELVV MARK 84 

803 FORMAT(/1X.6HMRELVV/(lX.2015» MARK 85 
WRITE(IW6.801l)NREL MARK 86 

8011 FORMAT(/lX.IIHNRELI(lX.2015» MARK 87 
WRITEOw6.805)NRELVV MARK 88 

805 FORMAT(/1X.6HNRELVV/(lX.2015» MARK 89 
WRITE(IW6.806)LTYP MARK 90 

806 FORHAT(/lX.IIHLTYP/(lX.20I5» MARK 91 
WRITE (Iw6. 807 )MAT MARK 92 

807 FORMAT(/1X.3HMAT/(lX.2015» HARK 93 
22 CONTINUE MARK 94C-----------____________________________________________________------MARK 95 

C NUMBER THE MESH t~ARK 96 
C-------------------------------------------------------------------MARK 97 

CALL NUMSH(IW6.IW8.NDIM,NNE.MXND.NEL.MUMAX.NNU. MARK 98 
1 XYZ.NCONN.LTYP.MREL.NREL.NDZ.IPLOT) MARK 99 

c---------------------------------------------------------------------MA R K 100 
C CALCULATE NUMBER OF DEGREES OF FREEDOM FOR EACH NODE MARK 101 
C-------------------------------------------------------------------MARK 102 

CALL MAKENZ(MXND.NEL.NN.NCONN.LTYP.NQ.INXL) MARK 103 
IF(ID7.EQ.l)WRITE(IW6.809)NQ MARK 1011 

809 FORMAT(/1X.2HNQ/(lX.20I5/» MARK 105 
c-------------------------------------------------------------------MARK 106 
C GENERATE GLOBAL NUMBERS FOR ALL D.O.F. MARK 107 
c------------------------------------------------------------------MARK 108 

CALL CALDOFCIw6.NN.NN1.NDF.NW.NQ) MARK 109 
c----------------------------------------------------------------MARK 110 
C MARK LAST APPEARANCE OF ALL NODES MARK 111 
C------------------------------------------------------------------MARK 112 

CALL MLAPZ(MXND.NEL.NN.NCONN.LTYP.NQ) MARK 113 
C-----------------------------------------------------------MARK 114 
C CALCULATE MAXIMUM FRONTWIDTH AND MINIMUM STORE FOR SOLUTION MARK 115 
C--------------------------------------------------------------------MARK 116 

CALL SFWZ(MNFZ.MXND,NEL.NN.MW~AX.NNU.IFRZ.NCONN. MARK 117 
1 LTYP.MREL.NREL.NQ.NDEST.IFR.-l.MCORE.NCORET) ~lABK 118 

C------------------------------------------------ ----------------------MA R K 119 
C PRINT OUT ARRAYS MARK 120 
C-------------------------------------------------------------------MARK 121 

CALL GPOlJ[(Iw6.MXND,NEL.MUMAX.NN,NN1.NDF. MARK 122 
1 NCONN.MAT,LTYP.MRELVV.MREL.NRELVV.NW.NQ.NLST) MARK 123 

C 
RETURN 

902 FORMAT(I 
1 lOX, 116HMAX NUMBER 
2 10X.46HMAX NUl-1BER 
3 10X.1I6HNUMBER OF 
II 10X.1I6HNUMBER OF 
5 1120(lH*)/) 

END 

MARK 1211 
MARK 125 
MARK 126 

OF DISPLAC EJ-IENT NODES ALONG EDGE •• =.181 MARK 127 
OF PORE-PRESSURE NODES ALONG EDGE.=,I81 MARK 128 

CURVED EDGES (DISPLACEMENT) •••••••• =.I81 MARK 129 
CURVED EDGES (PORE-PRESSURE) ••••••• =.I81 MARK 130 

MARK 131 
MARK 132 

Sec. 6.2] 

MARK 19 

MARK 25-26 

MARK 30 

MARK 34-37 

MARK 41-43 
MARK 50-51 

MARK 56-57 

MARK 61-62 

MARK 66-68 

MARK 75 

MARK 79-93 


MARK 98-99 


Geometry Part of the Program 

: read debug option - a set of 10 flags to print out various 
arrays used or calculated in the geometry part of the 
program. 

: read and write details of curved sides - only relevant if there 

are any in the mesh. The normal option is straight-edged 
elements (then all values are set to zero). 

: read vertex node co-ordinates (the user needs to specify only 
co-ordinates of the vertex nodes at this stage of the analysis, 
irrespective of the 'order' of the elements being used). If the 
elements are straight-edged then these are the only co­
ordinates to be specified by the user. Any additional nodes 
(depending on the 'order' of the element) will be calculated 
by the program. 

: read the nodal connectivity list (vertex nodes associated with 
each element). Also read the element type and material zone 
number for each element. 

: calculate the additional (displacement) node co-ordinates. 
: if some element edges are curved, then read the nodal co­

ordinates of displacement nodes along all edges that are 
curved. 

: write title of analysis to Plot Data (PD) file. Calculate the 
overall dimensions of the finite element mesh and write these 
to PD file only if a plot is required. 

: write to PD me informa tion (co-ordinates of nodes at either 
end of all element edges) necessary to draw the mesh. If the 
elemen t edges are curved, write the co-ordinates of the inter­
mediate nodes as well. 

: calculate co-ordinates of additional pore pressure nodes (if 
any). 

: if the element edges are curved, then read the nodal co­
ordinates of pore pressure nodes (if any) along all edges that 
are curved. For example, if the element type is 2 and the 
element edges are curved then there is one additional 

displacement node along each edge. Therefore it is only 
necessary to specify the co-ordinates of the displacement 
node (there are no additional pore pressure nodes along the 
edge for element type 2). 

: print out arrays for debugging (only if the debug flag 107 is 
set to 1). 

: write relevant information to the PO file to number the mesh 
and close the PO file. 

MARK 103-105 : calculate the d.oJ. (no. of variables) for each node. This is 

necessary if different elements sharing a node have different 

d.oJ. (e.g. elements of type 2 and 3 sharing an edge) - print 
array NQ for debugging. 

http:MLAPZ(MXND.NEL.NN.NCONN.LTYP.NQ
http:CALDOFCIw6.NN.NN1.NDF.NW.NQ
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: calculate the total no. of d.oJ. (variables) in the mesh. All MARK 109 
d.oJ. are assigned a unique global variable number (g.v.n.). 
An array NW(NN +1) is set up which gives the g.v .n. of the 

first d.oJ. (variable) of all nodes. All d.oJ. of a node are 
given consecutive numbers. For example, if the g.v.n. of the 
first d.oJ. of node 53 is NW(53) ::; 131, then if node 53 has 
3 d.oJ., the global variable numbers are 131, 132 and 133 
respectively, and for the next node, 54, NW(54)::; 134. 

MARK 113 : mark last appearance of all nodes. 

MARK 117-118 : pre-front routine. Calculate maximum front size and the 

store required to solve equations. 

MARK 122-123 : print out arrays from geometry part of the program. 

The geometry part of the input data consists of the type of elements being used 
in the mesh, the co-ordinates of all vertex nodes and the list of elements and the 
nodes associated with each. This scheme is illustrated by means of a simple 

example (Fig. 6.2). 

23 17 

Mat 
zone 2 

4r---------------~------------------------~~6 

Mat 
zone 1 

~______________~~____--------------------~~3 
2 

Fig. 6.2 - Example problem: six LST elements of type 2 

There are six elements in the mesh: NEL = 6. Each is a six-noded Unear 
Strain Triangle (LST), and the element numbers are shown circled. The vertex 
nodes are in the range 1 to 23 and the total number of vertex nodes is 

represented by NVTX = 8. 

NEL - Number of ELements in mesh 
NVTX - Number of VerTeX nodes in mesh 

In considering the mesh, one has to identify different zones of material 
behaviour. Each zone is identified by a number, and all elements which are 
within that zone are given the same number. At this stage it is sufficient to 
differentiate between the different zones. The question of what type of soil 
behaviour each zone represents is considered in Chapter 7. In the input data, 
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the -material zone number is denoted by IMAT. Each element is also identified 
by an element type number (see Fig. 4.1). 

Note that only the vertex nodes have to be numbered by the user. This eases 
the problem of data preparation as the program numbers all other nodes and 
calculates their co-ordinates. To differentiate between the vertex nodes and the 
other nodes, the additional nodes are numbered, starting with 751. The program 
allows gaps in both element and vertex node numbering. When dealing with large 
finite element meshes (which is the case, most of the time) the meshes may have 
to be modified a number of times and this allows the renumbering to be carried 

out without too much difficulty. 
There are two sets of node and element numbers. One set is assigned by the 

user. The program sets up its own node and element numbers, which are strictly 
for use within the program for reasons of efficiency. The maintenance of these 
two sets of numbers requires two arrays: 

for node numbers - NREL and NRELVV 
for element numbers - MREL and MRELVV 

These are 'cross-reference arrays'. The sizes of these arrays will depend on the 
maximum values of element and node numbers specified by the user and will 
vary from problem to problem. In the above example the maximum element 
number is 14, i.e. MUMAX = 14, and the maximum vertex node number is 23, 
i.e. NUMAX = 23. There are no limits set on the maximum number of elements 
and nodes in any mesh. These are only constrained by the amount of memory 
available on any particular computer. NDIM represents the number of 
dimensions in the problem. NDIM = 2 for all two-dimensional plane strain and 
axisymmetric problems. 

MUMAX - MAXimum value of User eleMent number 

NUMAX - MAXimum value of User vertex Node number 

For the above example the element chosen was the six-noded linear strain 
triangle. The analysis is of the undrained type, and referring to the list of 
different element types (see Fig. 4.1), this element is type 2 . For example, if 
elements of type 2 and 3 are mixed in a mesh, then MXTYP = 3. For the present 
example, the element type with the greatest number of nodes is 2; hence 
MXTYP = 2. Again the maximum number of vertex nodes in any element in the 
mesh is 3; therefore MXNDV = 3. The nodal co-ordinates are input with one line 
of data per vertex node. 

MXTYP - element TYPe with MaXimum number of nodes or d.oJ. 
MXNDV - MaXimum number of Vertex NoDes 
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User 
node number x co-ordinate y co-ordinate 

0.0 0.0 

2 20.0 0.0 

3 40 .0 0.0 

4 0.0 16.0 

5 20.0 16.0 

6 40.0 16.0 

23 30.0 21.0 

17 40.0 21.0 

The user node numbers are entered in an array NRELVV(NN), e.g. 

NRELVV(l) = 1, NRELVV(2) = 2, ... NRELVV(7) = 23, 

NRELVV(8) = 17. 

The last two are the seventh and eighth nodes in the list. The co-ordinates are 
entered in XYZ(NDIM,NN). Note that the indexes to array XYZ are the same as 

for array NRELVV. 

XYl(l, 1) = O. XYl(2, 1) = 0, 

the x and y co-ordinates of the first node in the list. 

XYl(l, 7) = 30. XYl(2, 7) = 21, 

the x andy co-ordinates of the seventh node in the list. 

Here NN is the total number of nodes in the mesh. At this stage the exact value 
of NN is not known. An estimate (NNE) is made, first assuming for example that 
there are three additional nodes in each element. For six elements it is 18. The 
actual num~er will be less because most of the nodes are shared between 

elements. 

NNE = NVTX + NDEAD 

=8 + 18 

= 26 

NDEAD - ADditional number of NoDEs estimated by the program. 

The indexes to array NRELVV are referred to as the program node numbers. 
Array NRELVV gives the 'user' node number for a given 'program' node 
number. The cross-reference array NREL is set up to do just the opposite: given 
a 'user' node number, it specifies the 'program' node number. 

NRELVV(7) = 23 


NREL(23) = 7 


The above tasks are carried out by routine RDCOD. 

Sec. 6.3] Nodal Connectivity 

Routine RDCOD 

SUBROUTINE RUCOD(IR5,IW6,NNE,NDIM,NNU,NVTX,NUMAX,XYZ,NRELVV,NREL) RDCD 1 
C•••••••••••1" ••••••••••••••••••••••••••••••••••••••••* •••••••••••••• * ••RDCD 2 
C ROUTINE TO READ THE COORDINATES Of VERTEX NODES RDCD 
C··················.··· •••••• • ••••••••••••••••••••••••••* ••••••••••••••• RDCD 4 

3 

DIMENSION XYZ(NDIM,NNE),NRELVV(NNE),NREL(NNU) RDCD 5 
C RDCD 6 

WRITE(IW6,900) RDCD 7 
WRITE (IW6, 901) RDCD 8

C-------------------------------_______________________________---------RDCD 9 
C INITIALISE NREL, NRELVV RDCD 10 
C-----------------------------------------------------------------------RDCD 11 

CALL ZEROIl (NRELVV,NNE) RDCD 12 
CALL ZEROI1 (NREL, NNU) RDCD 13 

C-----------------------------------------------------------------------RDCD 14 
C READ ALL VERTEX NODE COORDINATES RDCD 15 
C-----------------------------------------------------------------------R DC D 1 6 

DO 10 J =1, NVTX RDCD 17 
READ(IR5,')K,(XYZ(ID,J),ID=l,NDIM) RDCD 18 
WRITE(IW6,906)K,(XYZ(ID,J),ID=l,NDIM) RDCD 19 
NRELVV(J)=K RDCD 20 

10 NREL(K)=J RDCD 21 
RETURN RDCD 22 

900 fORMAT(//10X,28HCO-ORDINATES Of VERTEX NODES) RDCD 23 
901 fORMAT(/3X,4HNODE,5X,lHX,9X,lHY,9X,lHZI) RDCD 24 
906 FORMAT(lX,I5,3fl0.3) RDCD 25 

END RDCD 26 

RDCD 7-8 : write output header. 
RDCD 12-13 : zero arrays NRELVV and NREL. Array NRELVV stores the 

node numbers (user nos.) in the same sequence as they are read. 
The sequence in which these are read are the program node 
numbers. NREL is the cross-reference array. 

RDCD 17 : loop to read all vertex node co-ordinates. 

RDCD 18-19 : read and wri te the node number and co-ord ina tes. 

RDCD 20 : enter user node number in array NRELVV. 

RDCD 21 : enter program node number in array NREL. 


6.3 NODAL CONNECTIVITY 

The next input data are the node numbers which are associated with each 
element. This link between nodes and elements is referred to as element-nodal 
connectivity. The da ta are as follows: 

Element number Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

1 

2 
3 
4 

11 
14 

5 
5 
5 
5 

6 

2 
4 
2 
3 
6 

17 

5 
1 
3 
6 

23 
23 



194 Geometry of the Finite Element Mesh [Ch.6 

Each element has to be assigned a material zone number (IMAT) and element 
type number (ITYP) (see Fig. 4.l for different element types). Therefore the 
input dat'a are as follows: 

Element Element 

no. type no. 
:, KEL ITYP 
II 
I 1 2 

2 2 
3 2 
4 2 

11 2 
14 2 

Material Node 1 Node 2 Node 3 
zone no . 
IMAT NLST(l) NLST(2) NLST(3) 

1 2 5 
5 4 1 
5 2 3 

1 5 3 6 
2 5 6 23 
2 6 17 23 

As in the case of the nodes, the element numbers (KEL) are entered in array 
MRELW(NEL) as they are read, e.g. 

MRELVV(l) = 1, MRELW(2) = 2, MRELW(5) = 11, 

MRELVV(6) = 14. 

The sixth element in the list has the number 14. A cross-reference array 
MREL(MUMAX) is then set up. For the above example : 

MREL(I) = 1 
MREL(2) = 2 

MREL(Il) = 5 
MREL(14) = 6 . 

This gives the 'program' element numbers for 'user' element numbers. Element 
type number (ITYP) and the material zone number (IMAT) are entered in arrays 
LTYP(NEL) and MAT(NEL) respectively. The indexes to these arrays are the 
same as for the arrays MRELW. These indexes are the position of the elements 
in the input data list. From the input data, it can be seen that elements 1, 2, 3 
and 4 belong to material zone 1, and elements 11 and 14 to material zone 2 
(Fig. 6.2) . 

The numbers marked inside each element near the vertex nodes (in Fig. 6.3) 
are the indexes to the array NLST and NCONN(NTPE,NEL). These indexes 
define the local node numbering, and in the rest of the book they will be 
referred to as the indexes to array NCONN. The indexes can begin at any node, 
but then should follow an anti-clockwise ordering. Specifying the nodes in clock­
wise order results in a negative value for the area of the element and will cause 
the program to stop at a later stage. 

Array NLST(MXNDV) is a temporary array for storing nodes associated with 
each element as they are read . Array NCONN is the nodal connectivity array. 
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23 17 
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2 

Fig. 6.3 - Indexes to array NCONN 

The only difference between NLST and NCONN is that NCONN contains the 
'program' node numbers. 

The contents of array NCONN appear as 

Index to 
Element NCONN Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 

1 1 1 2 5 0 0 0 
2 2 5 4 0 0 0 
3 3 5 2 3 0 0 0 
4 4 5 3 6 0 0 0 

11 5 5 6 7 0 0 0 
14 6 6 8 7 0 0 0 

NCONN(1,5) = 5, NCONN(2,5) = 6 and NCONN(3,5) = 7. These are the first , 
second and third nodes associated with the fifth element (which has the number 
11) in the list; note that the locations 4, 5 and 6 are empty. They have zero 
values at this stage and will be replaced by the edge (side) node numbers when 
they are assigned by the program later. 

The nodes that define the variation of displacements are also used to define 
the element geometry, which is the well known isoparametric formulation. The 
nodes are referred to as 'displacement' nodes in the rest of the book. The lower­
order elements have a linear variation of strain across the element (element types 
2 and 3). For undrained and drained problems, the displacements are the only 

unknowns. 
For coupled consolidation analysis there are additional excess pore pressure 

variables; appropriate element types (3 and 7) will be referred to as 
consolidation elements. The pore pressure nodes are positioned such that the 
variation of excess pore pressure is of the same order as the variation in strain. 
For example, for the cubic strain triangle, nodes 16 to 21 are pore pressure 
nodes (see Fig. 4.1). For 'consolidation' elements the vertex nodes have both 

L 
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displacements and excess pore pressures as variables . The type 3 'consolidation' 

element does not have 'additional' pore pressure nodes. It has three displacement 

nodes and no additional pore pressure nodes (see Fig. 6.4) . Thus, in general, 
different nodes will have different d.oJ. (variables). 

1 (3) 

(3) 2 3 (3) 

(2) 

Fig. 6.4 - Different d.oJ. at different nodes 

The order in which each element is iisted in the input data is the program 
element number by default and it is in fact the order in which the element stiff­
ness terms will be assembled in the FRONTAL method of solution. However, 
the sequence in which the elements were input by the user may not always be 
the optimum sequence for the frontal method. 

At present a number of 'stand-alone' programs and techniques which can 
optimise the element numbering for the frontal method are available (Akin and 
Pardue, 1975; Razzaque, 1980; Sloan and Randolph, 1983) . These programs 
only need the element-nodal connectivity list as input data. Therefore the 
option of specifying an alternative order of the elements, which is less costly for 
the frontal method, has been included . Hence there are two sets of element 
numbers. The first is the arbitrary element numbering specified by the user; the 
second is the element numbering sequence which is better for the frontal 
method. The user has to be aware of the import~nce of having an efficien t 
element numbering. Just as efficient node numbering is very desirable for band 
solvers, efficient element numbering is very desirable for the frontal method to 
keep the cost of compu tation and core-store equipment down. 

In the input data after all the co-ordinates of the vertex nodes have been 
specified, a parameter IRNFR is specified. If this parameter is set to 1 then the 
user will specify an alternative element numbering sequence starting from the 
next data record . It is followed by the element-nodal connectivity list as 
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described before. If IRNFR is set to 0, an alternative element numbering will 
not be provided by the user, and the elements will be assembled in the order 
they are specified in the input data. For the above example, an improved frontal 
sequence could be 

IRNFR 

Element numbers 
2 1 3 4 11 14 

If the alternative element order is not available then IRNFR is set equal to 0 
and the element-nodal connectivity list follows immediately. The list i:.. 
unchanged whether IRNFR = 0 or 1. The alternative numbering, if specified, is 
read into an array MFRU(NEL) in routine CONECT. 

MRFRU(1) = 2 MFRU(2) = 1 '" MFRU(5) = 11 MFRU(6) = 14 

A cross-reference array MFRN(MUMAX) is set up at the same time. 

MFRN(1) = 2 MFRN(2) = 1 MFRN(ll) = 5 MFRN(l4) = 6 

These two arrays are then used to set up the arrays MRELVV(NEL) and 
MREL(MUMAX) while the element-nodal connectivity list is being read. It 
should be noted that the contents of MRELVV(NEL) and MREL(MUMAX) are 
different, depending on whether the optimum element sequence for the frontal 
method has been specified or not. The contents of these arrays are as follows 
(note the difference when an alternative element numbering is not provided): 

MRELVV(1) = 2 MRELVV(2) = 1 MRELVV(3) = 3 
MRELVV(4) = 4 MRELVV(5) = 11 MRELVV(6) = 14 

MREL(I) = 2 MREL(2) = 1 MREL(3) = 3 
MREL(4) = 4 MREL(11) = 5 MREL(14) = 6 

Routine CONECT 

SUBROUTINE CONECT (IR5. IW6.MXND. NEL.MUMAX. NNE. NNU. MXNDV. NCONN. CNCT 
1 MAT. LTYP .MRELVV. MREL. NR ELVV. NREL.MFRU. MFRN. NLST. CN.CT 2 
2 LTZ.KLT.N.MATZ.NVTX.NUMAX) CNCT 3 

CII •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CNCT 4 
SUBROUTINE TO READ ELEMENT-NODAL CONNECTIVITY CNCT 5 

CI ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••CNCT 6 

DII1ENSION NCONN (MXND. NEll .MAT(NEL). LTYP (NEL) .MRELVV (NEL). CNCT 7 
1 MREL(MUMAX).NRELVV(NNE).NREL(N~IU).MFRU(NEL).MFRN(MUMAX). CNCT 8 
1 NLST(MXNDV).KLT(LTZ) CNCT 9 

COMMON /DEBUGSI ID1.ID2.ID3.ID4.ID5.ID6.ID7.IDB.ID9.ID10 CNCT 10 
COMHON IELINF I LINFO(50.15) CNCT 11 

C CNCT 12 
READ(IR5. ')IRNFR CNCT 13 
WRITE(IW6. 901 )IRNFR CNCT 14 
IF(IRNFR.NE.l)GO TO 30 CNCT 15 

c------------------------------------------------­_______________-------CNCT 16 
C READ OPTIMUM FRONTAL ORDER OF ELEMENTS CNCT 17 
C-------------------------------------------------------­__________-----CNCT 18 

WRITE(IW6.902) CNCT 19 
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READ(IR5,A)(MFRU(IL),IL=1,NEL) 

WRITE (IW6, 904) (MFRU (IL), IL=1, NEL) 


CALL ZEROI1(HFRN,MUMAX) 

C 


DO 20 IM=1,IIEL 

LU=MFRU (IM) 


20 MFRN(LU)=IM 


IF (I 06. EQ. 1 )WR ITE (IW6, 930 )MFRN 

C 


30 	CALL ZEROI2(NCONN,MXND,NEL) 

CALL ZEROI1(LTYP,NEL) 

CALL ZEROI1(MAT,NEL) 

CALL ZEROI1(MREL,MUMAX) 


C 

WRITE(IW6,906) 


C 

DO 100 IL=1,NEL 


CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 
CNCT 

C-----------------------------------------------------------------------CNCT 39 

C READ ELEMENT NUMBER, TYPE NUMBER, MATERIAL ZONE NUI1BER AND CNCT 40 

C VERTEX NODE NUMBERS . CNCT 41 

C-----------------------------------------------------------------------CNCT 42 


READ(IR5,A)KEL,ITYP,IHAT,NLST 

WRITE(IW6,909)KEL,ITYP,IMAT,NLST 


NVN=LINFO(2,ITYP) 

C 


MNW=IL 

IF(IRNFR. EQ. 1 )MNW=MFRN(KEL) 


C 

MRELVV(MNW)=KEL 

LTYP(MNW)=ITYP 

MAT(MNW)=IMAT 

MREL(KEL)=MNW 


C 

DO 95 IK=1, NVN 

NUS=NLST(IK) 

NPR=NREL(NUS ) 


95 	 NCOIHl(IK,MNW)=NPR 


100 	CONTINUE 

IF(ID5.EQ.0)GOTO 105 

WRITE(IW6,991 )NCONN 


991 FORMATU1X,5HNCONN/(1X,20I5» 

WRITE(IW6,992)MREL 


992 FORMATU1X,4HMREL/(1X,20I5» 

WRITE(IW6,993)MRELVV 


993 FORMAT U1 X, 6HMRELVV I (1 X, 2015» 

1 05 CONTIN UE 


C 

CALL ZEROI1(KLT,LTZ) 


DO 150 IL=1,NEL 

LT=LTYP(IL) 


150 KLT(LT)=KLT(LTh1 

RETURN 


901 FORMAT(/1X,7HIRNFR =,15) 

902 FORMATU1X, 36HOPTIMISED SOLUTION ORDER OF 

904 FORMAT(1X,20I5) 

906 FORMATU1X,46HELEMENT TYPE MAT 2 


1 18H 6 7 8/) 

909 FORMAT(I5, 2X, 215,1516) 

930 FORMAT(/1X,4HMFRN/(1X,20I5» 


END 


ELEMENTS/) 

CNCT 43 
CNCT 44 
CNCT 45 
CNCT 46 
CNCT 47 
CNCT 48 
CNCT 49 
CNCT 50 
CNCT 51 
CNCT 52 
CNCT 53 
CNCT 54 
CNCT 55 
CNCT 56 
CNCT 57 
CNCT 58 
CNCT 59 
CNCT 60 
CNCT 61 
CNCT 62 
CNCT 63 
CNCT 64 
CNCT 65 
CNCT 66 
CNCT 67 
CNCT 68 
CNCT 69 
CNCT 70 
CNCT 71 
CNCT 72 
CNCT 73 
CNCT 74 
CNCT 75 
CNCT 76 
CNCT 77 
CNCT 78 
CNCT 79 

5, CNCT 80 
CNCT 81 
CNCT 82 
CNCT 83 
CNCT 84 
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CNCT 13-14 : read and write the code IRNFR, which indicates that the user 20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

CNCT 15 

will specify an alternative optimum frontal numbering of 
elements (otherwise the user-specified element sequence will be 
used as the sequence for frontal assembly). 

: skip if alternative element numbers for frontal method are not 
specified. 

CNCT 19- 21 : read and write the alternative element numbering sequence 
which is more efficient for the frontal method. 

CNCT 23 : zero cross-reference of frontal element numbering sequence 
array MFRN. 

CNCT 25 : loop on all elements (in frontal sequence). 
CNCT 26 : new element number. 
CNCT 27 : form cross-reference array MFRN. 
CNCT 29 : debugging Qption - print out array MFRN. 
CNCT 31-34 : zero arrays NCONN (element-nodal connectivity array), LTYP 

(element type array), MAT (element material zone array) and 
MREL(cross-reference array of element number). 

CNCT 38 : loop on all elements. 

CNCT 43--44 : read and write element number (KEL) , element type number 
(ITYP), element material zone number (IMAT), list of vertex 
nodes associated with the element (NLST). 

CNCT 46 : NVN - the number of vertex nodes in element. 

number from array MFRN or use ascending order of element 
number sequence. 

CNCT 49 : if alternative frontal element numbering is available, obtain 

CNCT 51-53 : store element number, element type number and element 
material zone number. 

CNCT 54 : enter in cross-reference array. 
CNCT 56 : loop on all vertex nodes of element. 
CNCT 59 : enter node number in connectivity array NCONN. 
CNCT 61 : end of element loop. 

CNCT 63-68 : print out arrays NCONN, MREL and MRELVV for debugging. 
CNCT 71 : zero array KLT - counter of elements of each type. 
CNCT 73-75 : count the number of elements of each type. 

All the element types provided in this program have additional nodes along the 
element sides (edges). The next stage of the program is to assign numbers to 
these nodes and calculate the co-ordinates by linear interpolation from the 
co-ordinates of nodes a t either end of the element sides. The number of displace­
ment nodes along the sides depends on the order of the element. The lower­
order elements presented here are the linear strain elements, which have one 
node at the midpoint of the side (hence the name 'midside' node). 

The elements are considered in the sequence they appeared in the input data. 
Each side of the element is considered in turn in the anti-clockwise order. An 
entry is made as soon as the nodes along an edge have been numbered and its 
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co-ordinate calculated. The following procedure avoids the possibility of nodes 
being given two different numbers (Le. being numbered twice) when they are 
common to two or more elements. Each side is identified by a unique code 
IHASH = N 1 * 10000 + N2, where N 1 = lower-node and N2 = higher-node 
numbers. Whenever a new edge is encountered, 1 is entered against this code in a 
hash table. The procedure is to consult this entry to see whether nodes along a 
particular edge have already been numbered. 

The terms 'edge' and 'side' are used interchangeably here. The term 'edge' is 

preferred because when extended to three-dimensional elements it remains 
unambiguous whereas 'side' would mean the element 'face'. Since this book 

mainly deals with two-dimensional programming aspects, both words have the 
i same meaning. 5! i 

Once nodes along the sides have been numbered, nodes within element 
interiors, if present, are numbered. This procedure is repeated for all the 
elements. The hash table ITAB contains the information in code form for all the 
element sides which is later used in routine SIDES to create a PD file. CRISP 
does not have any plotting routines, and hence no plots are produced. However, 
it creates the data necessary to produce the plot. A separate program is then 
needed to plot the mesh. (A suitable program is included in Appendix B.) 

6.4 NUMBERING THE ADDITIONAL DISPLACEMENT NODES 

For each element, as nodes along the sides and element interiors are numbered, 
they are entered in the array NCONN after the vertex node numbers. At the 
same time, cross-reference arrays NREL and NRELVV are also updated. 

The routine MIDSID calculates the numbers and co-ordinates of the 
additional (displacement) nodes and also sets up the information necessary to 
plot the mesh. CRISP writes the information necessary to plot the mesh to a 
PD file. The program uses a simple teclmique to scane the element sides. For 
example, if node 53 is connected to nodes 23, 28, 70, 5, 99 and 123 then 
only the sides to nodes 70, 99 and 123 are written to the PD file. This process 
begins with the node with the lowest number (usually 1) and then continued 
in the ascending order. 

The entries made in array ITAB for each element side (IHASH represents the 
code identifying an element side) are always linked to the smaller of the two 
nodes at either end. Since IHASH has a unique value for a given set of two 
nodes, the array ITAB needs only to be scanned in the region allocated to the 
smaller node for the existence of IHASH. If found, this indicates that the co­
ordinates of the displacement nodes along its side have already been calculated. 
Each node is allocated a certain region. Regions of fixed size are allocated for 
different nodes. The region allocated to a node is scanned and all non-zero 
entries are compared with IHASH. A zero entry terminates the scan. If IHASH 
is not found, the location is used to enter the code for the element side, and the 

co-ordinates of nodes along its side are calculated. This technique is known as 
'hashing' (Day, 1972). 

Sec. 6.4] Numbering the Additional Displacement Nodes 

Routine MJDSJD 

SUBROlITINE MIDSID (IW6, MXND, NEL, LTAB, LDIM. NNU, NDIM, NNE, NPL, MSID 
1 XYZ,NCONN,LTYP,MRELVV,NRELVV,NREL,ITAB, MSID 2 
2 NP1,NP2,ND,NN,KRD,NVTX,NDZ,MDZ) MSID 

c·············································· •••••••••••••••••••••••••MSID 
3 
4 

C GENERATES MID-8IDE NODES ALONG EDGE MSID 5 
c·····················,···················.······· ••••••••••••••••••••••MSID 6 

DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),LTYP(NEL), 
1 MRELVV(NEL),NRELVV(NNE),NREL(NNU),ITAB(LTAB,LDIM), 
1 NP1(NPL),NP2(NPL),KNDX(3) 

COMMON IDEBUGSI ID1,ID2,ID3,ID4,ID5,ID6,ID7,ID8,ID9,ID10 
COMMON IELINFI LINFO(50, 15) 
DATA KNDX(1),KNDX(2),KNDX(3)/8,ll,51 

c 
MDZ=O 
KR=NDZ 

K=NVTX 

LDIM 1=LDIM-l 


c 
CALL SETNP(NP1,NP2,NPL) 

c 
WRITE CIW6, 900) 
DO 10 J=l,LDIM 
DO 10 I=l,LTAB 

10 ITAB(I,J)=O 
c 

DO 100 NE=l,NEL 
MUS=MRELVV(NE) 
LT=LTYP(NE) 
NVN =LINFO (2, LT ) 
NEDG=LINFO(J, LT) 
NDSD=LINFO (7, LT) 
INDED=LINFO(14, LT) 

c 
DO 26 IS =1 , HE DG 

CC WRITE(IW6,950)NE,IS 
CC950 FORMAT (1 X, 9HELEMENT =,I5,2X,6HSIDE =,15) 

NL=(IS-l )'NDSD+NVN 

INC8=INDED+IS 

IN1=NPl (INDS) 

IN2=NP2 (INDS) 

N1=NCONN(IN1, NE) 

N2::NCONN (IN2, NE) 


C 
CALL SORT2(Nl,N2,Il,I2) 

IHASH=10000'Il+I2 

IT=5'Il 

GOTO 18 


16 IT=IT+l 
18 	 IF(IT.GT.LTAB) IT=l 


IF(ITAB(IT,l).EQ.IHASH) GOTO 24 

IF(ITAB(IT,l).NE.O) GOTO 16 


C 
MDZ=MDZ+l 

DO 22 IDSD=l, NDSD 


MSID 7 
MSID 8 
MSID 9 
MSID 
MSID 11 
MSID 12 
MSID 13 
MSID 14 
MSID 15 
MSID 16 
MSID 17 
MSID 18 
MSID 19 
MSID 
MSID 21 
MSID 22 
MSID 23 
MSID 24 
MSID 25 
MSID 26 
MSID 27 
MSID 28 
MSID 29 
MSID 
MSID 31 
MSID 32 
MSID 33 
MSID 34 
MSID 35 
MSID 36 
MSID 37 
MSID 38 
MSID 39 
MSID 
MSID 41 
MSID 42 
MSID 43 
MSID 44 
MSID J 

~'SID l, 
MSID 47 
MSID 48 
MSID 49 
MSID 
MSID 51 
MSID 52 
MSID 53 
MSID 54 
MSID 55 

c-----------------------------------------------------------------------MSID 56 
C CALCULATE CO-ORDINATES OF NODES ALONG THE EDGE MSID 57 
C-----------------------------------------------------------------------MSID 58 

K=K+l MSID 59 
KR=KR+l MSID 
IF(KR.LE.NNU)GOTO 19 MSID 61 
WRITE(Iw6,901 ) MsrD 62 
STOP MSID 63 

C MSID 64 
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19 	 NREL(KR)=K 

NRELVV (K )=KR 

IF(K.LE.NNE) GOTO 20 

WRITE(IW6,902)NNE 

STOP 


C 
20 	NLN =NL+IDSD 

NCONN (NLN, tiE )=K 
IPOS=IDSD+1 
ITAB(IT. lPOS )=K 
F 1 =FLOA T (NDSD+ 1-IDSD) IFLOA T (IIDSD+ 1 ) 
F2=1. -F 1 

C 
DO 21 ID=1,NDIM 

21 XYZ(ID,K)=XYZ(ID,N1 )I!F1+XYZ(ID,N2)*F2 
WRITEGW6,904)KR,(XYZ(ID,K),ID=1,NDIM) 

22 CONTINUE 
ITAB(IT, 1 )=IHASH 

MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
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65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

C-----------------------------------------------------I-ISID 83 
C FIRST ELEMENT ALONG EDGE HAS BEEN FOUND MSID 84 
C--------------------------------------------------------1-1SID 85 

ITAB(IT,LDIM1)=1 MSID 86 
C-------------------------------------------------------------I-ISID 87 
C COORDINATES OF NODES ALONG EDGE CALCULATED MSID 88 
C ASSUMING EDGE IS STRAIGHT MSID 89 
C------------------------------------------------------------I-ISID 90 

ITAB(IT,LDIM)=1 
GOTO 26 

C 
24 CONTINUE 

C 
DO 25 IDSD=1,NDSD 
JDSD=NDSD+1-IDSD 
NLJ=NL+JDSD 

25 NCONN(NLJ,NE)=ITAB(IT,IDSD+l) 

MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 
MSID 

91 
92 
93 
94 
95 
96 
97 
98 
99 

C-----------------------------------------------------------I-ISID 100 
C COUNT THE NUMBER OF ELEMENTS SHARING THIS EDGE MSID 101 
C-------------------------------------------------------I-ISID 102 

ITAB(IT,LDIMl)=ITAB(IT,LDIM1l+1 MSID 103 
C MSID 104 

·26 CONTINUE MSID 105 
C MSID 106 

GO TO(90,90,90,90,90,27,27,90,90,90,90),LT MSID 107 
WRITE(IW6,920)MUS,LT MSID 108 
STOP MSID 109 

C------------------------------------------------------------I-ISI D 110 
C CALCULATE CO-ORDINATES OF NODES WITHIN ELEMENTS MSID 11 1 
C-----------------------------------------------------------I-ISID 112 

l, 27 NIND=LINFO(9. LT) 
JLC=LINFO(5 LT)-NIND 

C , 

DO 30 INN=1.NIND 
K=K+1 
KR=KR+1 
IF (K. GT. NNE )WRITE (Iw6. 902 )NNE 
IF (KR. GT. NNU )WRITE (IW6. 901 ) 
NREL (KR )=K 
NRELVV (K )=KR 
JLC=JLC+1 
NCONN(JLC. NE)=K 
INX1 =INN 
INX2=KN DX (I N N) 
NC=NCONN (INX1. NE) 
NM=NCONN(INX2.NE) 

C 
DO 28 ID=1. NDIM 

MSID 113 
MSID 114 
MSID 115 
MSID 116 

MSID 117 
MSID 118 
MSID119 
MSID 120 
MSID 121 
MSID 122 
MSID 123 
MSID 124 
MSID 125 
MSID 126 
MSID 127 
MSID 128 
MSID 129 
MSID 130 

28 XYZ(ID.K)=0.5*(XYZ(ID,NCl+XYZ(ID,NM» 
WRITE(IW6.904 )KR,(XYZ(ID,K),ID=1.NDIM) 

C 
30 CONTINUE 

90 CONTIN UE 


100 CONTINUE 

IF(ID2.EQ.l)WRITE(IW6.910)ITAB

C---------------------______________________

C TOTAL NUMBER OF DISPLACEMENT NODES - ND 
C MAXIMUM USER NO. OF DISPLACEMENT NODE - KRD 

MSID 131 
MSID 132 

MSID 133 
MSID 134 
MSI D 135 
t1SID 136 
MSID 137 

___________------------MSID 138 

~lSID 139 
MSID 140 

C---------------------__________________________________----------MSID 141 

NN=K 

ND=K 

KRD=KR 

RETURN 


900 FORMAT(/l0X.45HCOORDINATES Of DISPLACEMENT NODES ALONG EDGESII 
1 39H NO DE X Y Z/) 

901 fORMATU1X.49HINCREASE NO. OF ADDITIONAL NODES (ROUTINE MIDSID» 
902 fORMAT(/1X.21H***ERROR*·· MORE THAN.I5, 

1 30HNODES IN MESH (ROUTINE MIDSID» 
904 FORMAT(I5.3F12.3) 
910 FORMAT(//1X.4HITAB/(1X.10I10» 
920 fORMAT(/1X.7HELEMENT.I5,2X.22HIS Of UNKNOWN TYPE ···.I5.2X. 

1 16H (ROUTINE MIDSID» 
END 

MSID 15 
MSID 16 
MSID 19 

MSID 22-24 
MSID 26 
MSID 28-32 

MSID 34 
MSID 37 
MSID 38 
MSID 39-40 

MSID 41-42 
MSID 44 
MSID 45 

MSID 50 

MSID 51 

MSID 142 
MSID 143 
MSID 144 
MSID 145 
MSID 146 
MS I D 1 47 
MSID 148 
MSID 149 
MSID 150 
MSID 151 
MSID 152 
MSID 153 
MSID 154 
MSID 155 

: KR - starting number of additional nodes. 
: K - starting program node number of additional nodes. 
: copy arrays NPLl, NPL2 to NPl, NP2 (NPLl, NPL2 are set 

using DATA statements. NPl, NP2 are allocated store dynami­
cally in global array G. TIllS procedure is adopted so tha t in 
case the size (NPL) of these arrays is changed, the changes 
that need to be carried out are minimal. Of course there is the 
duplication of data). 

: zero array ITAB. 
: loop on all elements . 
: obtain element particulars. 

NVN - no. of vertex nodes. 
NEDG - no. of element sides. 

NDSD - no. of additional (displacement) nodes along edge. 
INDED - starting index to arrays NPI, NP2. 

: loop on all edges of the element. 
: index to location of node in NCONN. 
: index to nodes at either end of element side, in NPI and NP2. 
: indexes of nodes at either end in NCONN. 

: nodes at either end of element side. 
: sort the nodes into ascending order. 

: code for element side (consisting of node numbers at either 
end) . 

: start at the beginning if end of array has been reached, and 
make use of the gaps in array ITAB . 

: look for the possibility that nodes along element edge have 
already been numbered; if so, branch off. 
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MSID 52 

MSID 55 

MSID 59 
MSID 60 
MSID 61-62 

MSID 65 
MSID 66 
MSID 67-68 
MSID 71 
MSID 72 
MSrD 73-74 
MSID 75-76 
MSID 78-79 

MSID 81 
MSID 82 
MSID 86 

MSID 91 

MSID 96 

MSID 97-98 
MSID 99 
MSID 103 

MSID 105 
MSID 113 

MSID 114 

MSID 116 
MSID 117 
MSID 118 
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: if nodes along element edge have to be numbered then find a 
location with zero entry. 

: such a location has been found. Loop on all additional 
(displacement) nodes along this edge. 

: program number for the new node. 
: user number for new node. 
: check that no. of nodes does not exceed allocation for array 

NREL. If exceeded, print error message and stop. (The 
allocation for NREL is such that it ought to be more than 

what is required, and hence this should not happen.) 
: enter program node number in array NREL. 
: enter user node number in cross-reference array NRELVV. 
: check that array allocation NRELVV is not exceeded. 
: index of new node in array NCONN. 

: enter new node number in NCONN. 
: index of new node in array ITAB, and enter new node no. 
: calculate interpolation ratios. 

: calculate co-ordinates of new node, using linear interpolation 
on nodes at either end. 

: end of loop on nodes along edge. 
: enter code representing element side in ITAB. 
: enter 1 indicate that nodes along element edge have been 

calculated (the value is also used to count the number of 
elements shared by this side). 

: code to indicate co-ordinates along edge have been calculated 
assuming the edges are straight. 

: for any element edge along which nodal co-ordinates have 
already been calculated. Loop on all nodes along edge 
excluding the ones at either end. 

: indexes to positions of nodes in NCONN and IT AB. 
: enter the node numbers in NCONN. 
: increment counter of elements sharing edge by one. 
: end of loop on all element edges. 

: number of inner nodes (only for element types which have 
them, i.e. skip for the rest). 

: index to node location in NCONN. 
: loop on all inner nodes. 
: program node number. 
: user node number. 

MSID 119-120 : check for array sizes NREL, NRELVV being exceeded. 
MSID 121-122: enter node numbers in NRELand NRELVV. 
MSID 123-124: enter number in NCONN. 
MSID 125-126 : indexes to nodes of element used in interpolating co­

ordinates of inner nodes. t 
MSID 127-128 : node numbers (used for interpolation).t 
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MSID 130-131 : calculate co-ordinates of inner nodes. t 


MSID 136 : end of element loop. 

MSID 137 : print out array ITAB for debugging. 

MSID 142-144 : maximum values of displacement node numbers. (KRD ­

user number; ND, NN - program number.) 

In the above routine, IHASH = Nl * 10000 + N2, where Nl < N2. Routine 
SORT2 sorts the nodes at either end of each element side. 

Routine SORT2 

SUBROUTINE SORT2(N 1, N2, 11,12) SORT 1 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••• "11" ••••••••• "SORT 2 
CROUT INE TO SORT TWO INTEGERS. I1 IS LESS THAN 12 SORT 3 
c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 'SORT 4 

11 =N 1 
I2=N2 
IF (I 1. LT. I2)R ETUR N 
11 =N2 
I2=N 1 
RETURN 
END 

Sort 5-9: sort two nodes; assign 11 to the lower node number. 

SORT 
SORT 
SORT 
SORT 
SORT 
SORT 
SORT 

5 
6 
7 
8 
9 

10 
11 

For a triangular element there are three sides. The nodes at either end of each 
side have the following indexes: 

2 - side 1 

2 3 - side 2 

3 1 - side 3 


Arrays NP1, NP2, NPLl, NPL2 are indexes to array NCONN, and give the 
indexes to the nodes at either end of the element sides. For element type 2 the 
values are 

NPI (1) NPI (2) NPI (3) NP2 (1) NP2 (2) NP2 (3) 

2 3 2 3 

For element types 2, 3, 6 and 7, these indexes are the same. These are entered in 
NP1(1)-NPl(3), NP2(1)-NP2(3). Since all the relevant information is placed in 
a single array, each element type needs a starting index (INDED); therefore 

INDED = 0 for elemen t types 2, 3, 6 and 7. 

INDED is obtained from array LINFO(50, 15) 

I 1-+ element types 
~ element parameters 

t 	 Note: these are specifically for element types 6 and 7 and are currently the only element 
types with inner nodes. Any new element type with inner nodes will require this part of 
the code to be modified. 

I 
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INDED = LINFO(I4, LT) 

where LT = 2 the element type number. The contents of array LINFO are 
explained in section 6.7. 

Routine SETNP sets up the arrays NPI and NP2 for all element types. 

Routine SETNP 

SUBROUTINE SETNP(NP1, NP2, NPL) 	 STNP 1 
2c·····················································..................STNP


C 	 SET UP ARRAYS NP1 AND NP2 WHICH GIVE THE INDEX TO ARRAY STNP 3 
C NCONN fOR NODES AT EITHER END Of EACH ELEMENT EDGE STNP 4 
C····· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• "STNP 5 

DIMENSION NPL1(21),NPL2(21),NPl(NPL),NP2(NPL) 	 STNP 6
C---------------______________________________________________----------STNP . 1 

C INDEXES Of ARRAYS NPL1,NPL2,NP1,NP2 STNP 8 
C INDEX ELEMENT TYPE STNP 9 
C 1 - 3 1, 2, 3, 6, 1 STNP 10 
C 4 - 1 4, 5 STNP 11 
C 4 - 15 8, 9 STNP 12 
C 16 - 21 10,11 STNP 13
C-----------------_________________________________________________-----STNP 14 

DATA NPL 1 (1 ),NPL 1(2),NPL 1(3 ),NPL 1 (4 ),NPL 1 (5), NPL 1(6), NPL 1 (1), 
1 NPL 1 (8 ),NPL 1 (9), NPL 1 (10),NPL 1(11), NPL 1 (12), NPL 1(13),NPL 1 (14), 
2 NPL 1 (15), NPL l( 16), NPL 1(11), NPL l( 18), NPL 1 (19), NPL 1(20), NPL 1(21)1 
3 1,2,3;1,2,3,4,5,6,1,8,1,2,3,4,1,2,3,1,2,31 . 

DATA NPL2C1 ),NPL2(2),NPL2(3),NPL2(4),NPL2(5),NPL2(6),NPL2(1>, 
1 N PL2 (8) ,IIPL2 (9 ) , NPL2 (10), N PL2 (11 ), NPL2 ( 12) , NPL2 ( 1 3), NPL2 ( 14) , 
2 NPL2(15),NPL2(16),NPL2(11),NPL2(1 8 ),NPL2(19),NPL2(20),NPL2(21)1 
32,3,l,2,3.4,1,6,1,8,5,5,6,1,8.2,3,l,lI,4,41 

C 
DO 10 I=1,NPL 
NP1 (I )=NPL 1 (I) 

10 NP2CI)=NPL2(I) 
C 

RETURN 
END 

STNP 
STNP 
STNP 
STNP 
STNP 
STNP 
STNP 
STNP 
STNP 
SINP 
STNP 
STNP 
STNP 
STNP 
STNP 

15 
16 
11 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 

STNP 24-26 : set arrays NPI , NP2 equal to arrays NPLl , NPL2 respectively. 

The normal procedure is to use a mesh with elements having straight sides . 
Sometimes, however, element sides have to be curved in order to properly 
describe the problem being analysed, e.g. circular tunnels or buried pipes. The 
simplest option is provided whereby the user specifies the list of element sides 
and the co-ordinates of the nodes which lie along the curved sides (in the case of 
linear strain elements, this is just one) . Remembering that routine MIDSID has 
already numbered these nodes and calculated their co-ordinates, it is a simple 
matter to identify these nodes and replace their co-ordinates by the ones 
provided by the user. It is achieved in routine CUREDG. 

Routine CUREDG 

SUBROUTINE CUREDG(IR5, rn6,MXND, NEL, NDIM, NNE, LTAB,LDIM, CURE 1 
1 MUMAX,NNU,NPL,XYZ,NCONN,LTYP,MREL,NREL,ITAB, CURE 2 
2 NP1,NP2,NCRED,NDTY,NMX) CURE 3 

C··················· •••••• • •••• •• •••••••••••••••••••••••••••••••••••••••CURE 4 
C ROUTINE TO READ NODAL COORDINATES ALONG CURVED EDGES CURE 5 
C···············••••••••••••••••••••••••••••••••••••••••••••••••••••••••CURE 6 
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DIMENS 10 N XYZ (NDIM, NNE), NCONN (MXND, NEL), LTYP (NEL) ,MREL (MU~lAX), 
1 NREL(NNU),IIAB(LIAB,LDIM),NP1(NPL),NP2(NPL),CD(3,3).CDI(3.3) 

COHMON IELINf 1 LINfO(50, 15) 
C 

IERS=O 
C 

WRITE (IW6, 900) 
DO 200 ISD=1,NCRED 
READ(IR5,·)MU,ND1,ND2,«CD(IU,JU).IU=l,NDIM),JU=l,NMX) 
WRITE(IW6,902)MU,ND1.ND2.«CD(IU,JU),IU=l,NDIM),JU=1,NMX) 

C 
MPR=MREL(MU) 
LT =LTYP (~lPR) 
NDN=LINfO(5, LT) 
NVN =LINfO (2, LT) 
NEDG=LINfO (3, LT) 
N DSD=LINfO (1, LT) 
If(NDTY.EQ.2)NDSD=LINfO(8,LT) 
If(NDSD.GT.O)GOTO 5 
WRITE(IW6,903)MU,NDTY 
GOTO 200 

C 
INDED=LINfO(14,LT) 

C 
K1=NRELCNDl) 
K2=NRELCND2) 

C 
CALL SORT2(K1,K2,I1,I2) 
IHASH=10000'I1+12 
II=5'I1 
GOTO 8 

C 
6 IT=IT+1 
8 If (IT. GT. LTAB) IT=l 

If(ITABCIT,l).EQ.IHASH)GOTO 10 
If(IIAB(IT,1).NE.0)GOTO 6 

C 
C ••• 	EDGE NOT fOUND 

IERS=I£RS+1 
WRITE(IW6,904)ND1,ND2 
GO TO 200 

C 
C ••• NOTE EDGE IS CURVED ­

10 If(NDTY.EQ.2)GOTO 11 
ITAB(IT, LDIM)=2 

C 
11 	 DO 20 IEDG=l,NEDG 

INDS=INDED+IEDG 
IN1 =NP1 (INDS) 
IN2=NP2 (INDS) 
N1=NCONN(IN1,MPR) 
N2=NCONN(IN2,MPR) 

C 

fOR PLOTTING PURPOSES 

IF(K1.EQ.N1.AND.K2.EQ.N2)GOTO 26 
. If(K2.EQ.N1.AND.K1.£Q.N2)GOTO 22 

20 CONTINUE 
C 

WRITE(IW6,90B)MU,ND1,ND2 
GOTO 200 

' 

CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 
CURE 

1 
8 
9 

11 
12 
13 
14 
15 
16 
11 
18 
19 

21 
22 
23 
24 
25 
26 
21 
28 
29 

31 
32 
33 
34 
35 
36 
37 
38 
39 

41 
42 
43 
44 
45 
46 
47 
48 
49 

51 
52 
53 
54 
55 
56 
57 
58 
59 

61 
62 
63 
64 
65 

C-----------------------------------------------------------------------CURE 66 
C CHANGE AROUND COORDINATES If THERE ARE MORE THAN CURE 67 
C ONE NODE AND THE NODES ARE IN THE REVERSE ORDER CURE 68 
C-----------------------------------------------------------------------CURE 69 

22 If(NEDG.LE.1)GOTO 26 CURE 10 
CURE 71 

DO 24 IDSD=l,NDSD CURE 72 
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JBK=NDSD+l-IDSD 
DO 24 ID=l,NDIM 

24 CDT(ID,IDSD)=CD(ID,JBK) 
C 

DO 25 IDSD=l,NDSD 
DO 25 ID= 1., llDIM 

25 CD(ID,IDSD)=CDT(ID,IDSD) 
C 

26 CONTINUE 
NS=llVN \ 
IF(NDTY.EQ.2)~S=NDN 
NL=NS+(IEDG-l )'NDSD 
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CURE 
CURE 

73 
74 

CURE 40 : start from the beginning, if end of array ITAB has been reached 
CURE 75 (the allocation for !TAB is more than is actually required). 
CURE 
CURE 

76 
77 

CURE 41 : the entry for the element side has been found. 

CURE 78 CURE 42 : look for zero entry. 
CURE 
CURE 

79 
80 

CURE 45-47 : IHASH - entry for element edge has not been found (unlikely 

CURE 81 program error) - print out error message. 
CURE 
CURE 

82 
83 

CURE 50-51 : make entry to indicate that the side is curved for plotting 

CURE 84 purposes. It is by-passed if pore pressure nodes are being 
C---------------------------------------------------------------CUR E 85 numbered. 
C CHANGE COORDINATES ALONG CURVED EDGE CURE 86 

C----------------------------------------------------------------CURE 87 CURE 53 : loop on all edges of element to find the side which is curved. 


DO 40 KSD=l,NDSD . 

NLN=NL+KSD 

K=NCONN(NLN,MPR) 


C 
DO 38 ID=l, NDIM 


38 XYZ(ID,K)=CD(ID,KSD) 

40 CONTINUE 


C 

200 CONTINUE 


C 
IF(IERS.EQ.O)RETURN 
WRITE (IW6, 91 0) 
STOP 

900 FORMAT(/1X,32HLIST OF NODES ALONG CURVED EDGES/) 

902 FORMAT(315,6F10.0) 

903 FORMAT(lX,7HELEMENT,I5,2X,18HDOES NOT HAVE TYPE,I4,2X, 


1 33HNODES ALONG SIDE (ROUTINE CUREDG» 
904 FORHAT(/1X,32H"'ERROR" EDGE CONTAINING NODES,215,2X, 

1 9HNOT FOUND) 
908 FORMAT(/lX,7HELEMENT,I5,23H DOES NOT CONTAIN NODES,215) 
910 FORMAT(/1X,36HPROGRAM TERMINATED IN ROUTINE CUREDG) 

END 

CURE 11 : set error count to zero. 

CURE 14 : loop on all elements sides which are curved. 

CURE 15-16 : read and write co-ordinates of nodes along 


(excluding nodes at either end). 
CURE 18- 29 : data dependent on element type. 

MPR 
LT 
NDN 
NVN 
NEDG 

INDED 
CURE 23 : NDSD ­

CURE 24 : NDSD -

- program element number. 
- element type number. 
- total number of displacement nodes in element. minimum and maximum values of the co-ordinates) written to the plot data 
- number of vertex nodes. 
- number of element sides. 

- starting index to arrays NPl, NP2. 
the number of displacement nodes 

(excluding nodes at either end). 
the number of pore pressure nodes 
(excluding nodes at either end). 

CURE 31-32 : program node numbers of nodes at either end. 
CURE 34 : sort the numbers: 11 is the smaller of the two. 
CURE 35 : lHASH - code to identify element side. 

CURE 88 CURE 54 : index for arrays NP1, NP2 for a given edge of a given elemen 
CliRE 89 

CURE 90 type. 

CURE 91 
 CURE 55-56 : indexes to array NCONN, i.e. local node numbers. 
CURE 92 

CURE 93 
 CURE 57-58 : nodes at either end of edge . 
CURE 94 CURE 60 : branch off if nodes match, i.e. they are in the correct anti-
CURE 95 

CURE 96 
 clockwise order. 
CURE 97 CURE 61 : nodes match after being interchanged. 

CURE 98 
 CURE 64-65 : the edge (identified by nodes at either end) specified by userCURE 99 

CURE 100 cannot be found in element (probable user error). 

CURE 101 
 CURE 70 : branch off if the edge contains only one side node.CURE 102 

CURE 103 CURE 72-75 : array CDT contains the rearranged node co-ordinates. 

CURE 104 
 CURE 77-79 : array CD contains the nodal co-ordinates in the correct (anti-
CURE 105 

CURE 106 clockwise) sequence . 

CURE 107 
 CURE 82 : index to local (displacement) node numbers. 
CURE 108 
CURE 109 CURE 83 : index to local (pore pressure) node numbers. 

CURE 84 : index to local (displacement/pore pressure) node numbers. 
CURE 88 : loop on all nodes along edge (excluding end nodes). 
CURE 89-90 : NLN is index (local node no .) and K is the node number. 
CURE 92-93 : replace the nodal co-ordinates . 

curved sides CURE 96 : end of loop on all curved sides. 
CURE 98-99 : if errors have been detected, print message and stop. 

Routine INTPLT scans the co-ordinates of all the displacement nodes and 
est~blishes the size (extent) of the mesh. This is the first information (the 

(PD) file, and it is used by a separate mesh-plotting program to calculate the 
appropriate scale for plotting the mesh. 

along side Routine INTPLT 

along side SUBROlTl'INE INTPLT(IW6,IW8,NDIM,NNE,X¥Z,ND) IPLT 1 
c••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• "1 Pi..T 2 
C ROlTrINE TO CALCULATE DIMENSIONS OF THE PLOT IPLT 3 

c····················..·································.···.······.··..IPLT 4 
DIMENSION XYZ<NDIM, NNE),CODMIN <3 ),CODMAX{]) IPLT 5 
COMMON IPARS I PYI,ALAR,AS1VL,ZERO IPLT 6 

C IPLT 7 



211 210 Geometry of the Finite Element Mesh [Ch. 6 

DO 10 ID=1,NDIM IPLT 
CODMIN (ID)= ALAR IPLT 

10 CODMAX(ID)=-ALAR IPLT 10 
IPLT 11 

DO 30 J=1,ND IPLT 12 

DO 20 ID=1, NDIl~ IPLT 13 
IF (XYZ (I D, J). GT. CODMAX (ID) )CODMAX (ID)=XYZ (lD, J) IPLT 1 ~ 

IF(XYZ(ID,J).LT.CODMIN(ID))CODMIN(ID)=XYZ(ID,J) IPLT 15 
20 COlITINUE IPLT 16 
30 CONTINUE IPLT 17 

IPLT 18 
WRITE (IW8)NDIM IPLT 19 
WRITE (IW8)( CODMAX (I D), 10= 1, NDIM), (CODMIN (I 0),10=1, NDIM) IPLT 20 
RETURN IPLT 21 
END IPLT 22 

IPLT 8-10: initialise the minimum and maximum values of co-ordinates to 
appropriate values. 

IPLT 12 : loop on all displacement nodes. 
IPLT 13-15 : store the minimum and maximum values of nodal co-ordinates. 
IPLT 17 : end of displacement node loop. 

IPLT 19-20 : write the minimum and maximum nodal co-ordinates to a file for 
plotting later (using the mesh-plotting program). 

The data necessary to draw the mesh (i.e. by means of drawing all the element 
sides) and numbering the nodes and the elements are also written to the PO file 
in a standard format. This also applies to instructions such as change of pen 
colour used for plotting. The standard format consists of a set of co-ordinates 
and two integer codes. Two such entries are needed to draw an element side. 

Routine SIDES 

SUBROUTINE SI DES (IW6, IW 8, LTAB, LDIM, NDIM, NNE, MXND, NEL, SIDE 1 
1 XYZ,NCONN,ITAB) SIDE 2 

3 
PLOTS MESH SIDE ~ 

C••••••••••••••••• lI •••••••••••••••••••••••••••••••••••••••••••••••••••••SIDE 

c···············.···........... ········.. ··········.·················...SIDE 


5 
DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),ITAB(LTAB,LDIM),XYZD(3) SIDE 6 

c-----------------------------------------------------------------------SIDE 7 
C LOOP ON ALL EDGES SI DE 8 

C-----------------------------------------------------------------------3 I DE 9 
NSD=LDIM-3 SIDE 10 

c-------------------------------------------------------------------S IDE 11 
C PE N MOVEMENT : 3 - MOVETO : 1 - DRAWTO SIDE 12 
C--------------------------------------------------------------------SIDE 13 

IONE=1 SIDE 1 ~ 

ITHR=3 SIDE 15 
IDUM=O SIDE 16 

C---------------------------------------------------------------------SIDE 1 7 
C DUMMY COORDINATES SIDE 18 

c--------------------------------------------------------------------S I DE 19 
DO 5 ID=1,NDIt1 SIDE 20 

5 XYZD(ID)=O. SIDE 21 

C-----------------------------------------------------------------3 I DE 22 
C PEN COLOUR IS BLACK FOR DRAWING MESH SIDE 23 
C----------------------------------------------------------------------S IDE 2~ 

ICODE =-1 SIDE 25 
WRITE (IW8 lICODE, (XYZD(ID), ID=1, NDm), IDUM SIDE 26 
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C SIDE 27 
DO 20 L=1,LTAB SIDE 28 
IF(ITAB(L,1).EQ.O)GOTO 20 SIDE 29 
N1=ITAB(L,1)/10000 SIDE 30 
N2=ITAB(L,ll-N1·10000 SIDE 31 
WRITE(IW81ITHR, (XYZ(ID,N1),ID=1,NDIM),IDUM SIDE 32 
IF(ITAB(L,LDnn.NE,2)GO TO 15 SIDE 33

C-------------_____________________________________________________----SIDE 3~ 

C DRAW CURVED SIDE - USING STRAIGHT LINES PASSING SIDE 35 
C THROUGH ALL DISPLACE~lENT NODES SIDE 36 
C-------------------------------_________________________________-------SIDE 37 

DO 10 ISD=1. NSD SIDE 38 
ND=ITAB(L, ISD+1) SIDE 39 

10 WRITE(IW8)IONE,(XYZ(ID,ND),ID=1,NDm),IDUM SIDE ~O 
15 WRITE(IW8)IONE,(XYZ(ID.N2),ID=1.NDIM),ID~1 SIDE ~1 
20 CONTINUE SIDE ~2 

RETURN SIDE ~3 
END SIDE ~Ij 

SIDE 10 : no. of nodes along an element edge (excluding end nodes). 

SIDE 14-15 : codes which control pen movements. 

SIDE 20-21 : dummy co-ordinates (used when pen colour is changed). 

SIDE 25-26 : select pen colour (when negative, change pen colour). 


1 - black; 2 - red; 3 - green. Write details to PO file. 
SIDE 28 : loop on all entries of array ITAB (each entry represents an 

element side). 
SIDE 29 : branch off if zero entry (non-zero entry indicates an element 

side). 
SIDE 30-31 : nodes on either end of edge. 
SIDE 32 : write co-ordinates to plot data (PO) file. 
SIDE 33 : branch off if element edge is straight. 
SIDE 38-41 : write intermediate (along element edge) node co-ordinates to PO 

file. 
SIDE 42 : end of loop on ITAB entires. 

6.5 NUMBERING THE ADDITIONAL PORE PRESSURE NODES 

Now the procedure for numbering the additional displacement nodes is repeated 
for numbering the additional pore pressure nodes along element sides and 
element interiors. This is done in routine MIDPOR, which is very similar to the 
routine MIDSID. Only the higher-order (CuST) element uses this routine. All 
linear strain elements have pore pressure variables at the vertex nodes, which give 
a linear variation in pore pressure. These elements do not have additional pore 
pressure nodes. 

This routine repeats the procedure (as in routine MIDSID) for the whole 

mesh, only this time the additional nodes are pore pressure nodes instead of 
displacement nodes. 
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MPOR 65 


MPOR 66
19 NREL(KR)=K 
MPOR 67
NRELVV(K)::KR 
MPOR 68
IF(K.LE.NNE) GOTO 20 

MPOR 69
WRITE(IW6,902)NNE 
MPOR 70 

MPOR 71 


STOP 

C 
MPOR 72
20 NLNP::NLP+IPSD 
MPOR 73
NCONN (NLN P, NE )=K 
MPOR 74
IPOS=IPSD+l 
MPOR 75
!TAB(IT,IPOS)=K 
MPOR 76
F l::FLOAT(NPSD+l-IPSD)/fLOAT(NPSD+l) 
MPOR 77 

MPOR 78 


F2::1.-f 1 


C 
MPORDO 	 21 ID::l,NDIM 
MPOR21 	 XYZ(ID,K)=XYZ(ID,Nl)·fl+XYZ(ID,N2)·F2 
MPOR 81 

MPOR 82 


WRITE (IW6, 904 )KR, (XYZ CID, K), ID::l, NDIM) 
22 CONTINUE 


MPOR 83
C 
MPOR 84
ITAB(IT, 1 )::IHASH 

MPOR 85
ITAB (IT, LDIM 1 )= 1 

HPOR 86
GOTO 26 

MPOR 87
C 
MPOR 88
24 DO 25 IPSD=l,NPSD 

MPOR 89
J PSD =N PSD+1-1 PSD 

MPOR 90
NLPJ=NLP+JPSD 

MPOR 91


25 NCONN(NLPJ,NE)=ITAB(IT,IPSD+l) 
MPOR 92


C 

MPOR 93
!TAB (IT, LDIM 1 )=ITAB(IT, LDIM 1)+ 1 

MPOR 94


C 
MPOR 95
26 CONTINUE 
MPOR 96


C 
MPOR 97
GO TO(90, 90, 90,90,90, 90,27,90, 90,90,90), LT 

98
C----------------------------------------------------------------------~lPOR 
C CALCULATE CO-ORDINATES OF NODES WITHIN ELEMENTS 
c---------------------------------------------------------------- ­

27 NIN P=LINFO (10, LT) 

J P =NDPT -N INP 
C 

DO 80 INP=l,NINP 


K=K+l 

KR::KR+l 

IF (KR. GT. NNU)WRITECIW6, 901 ) 

IF (K. GT. NNE )WRITE (IW6, 902 )NNE 

NREL(KR)=K 

NR ELVV (K )=KR 


JP=JP+1 

NCONN(JP,NE)=K 


C 
DO 40 ID=l, NDIM 

40 SUMCID)::ZERO 

C 
DO 50 IN::l,NVN 


NDE =NCONN (I N, NE) 

DO 50 ID::l,NDIM 


50 SUMCID)::SUM(ID)+XYZ(ID,NDE) 


C 

DO 60 ID::l,NDIM 


60 XYZ(ID, K)::SUM(ID)/fLOAT(NVN) 

WRITE (Iw6, 904 )KR, (XYZ (lD, K), ID::1, NDm) 


C 

80 CONTINUE 


C 

90 CONTINUE 


C 

100 CONTINUE 


99 


_____-MPOR 

. MPOR 

100 

101
MPOR 


MPOR 102 

MPOR 103 

MPOR 104 


MPOR 105 

MPOR 106 

MPOR 107 

MPOR 108 

MPOR 109 

MPOR l' 


MPOR 

MPOR 1, .. 


MPOR 113 

MPOR 114 

MPOR 115 

MPOR 116 


MPOR 117 

MPOR 118 

MPOR 119 

MPOR 120 

MPOR 121 

MPOR 122 


MPOR 123 

MPOR 124 

MPOR 125 

riPOR 126 

MPOR 127 
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Routine MIDPOR 

SUB ROUT INE rHDPOR (IW6, MXND, NEL, LTAB, LDIM, NNU, NDIM, NNE, NPL, MPOR 1 

1 XYZ,NCONN,LTYP,MRELVV,NRELVV,NREL,ITAB,NP1,NP2,NN,KRD,NNZ) MPOR 2 


c···· ••••• ••••••••••••••••••••••••••••••••••••• •••• • ••• • ••• •••••••••••••MPOR 3 

ROlJrINE TO CALCULATE ADDITIONAL PORE-PRESSURE NODES FOR MPOR 4 


C CONSOLIDATION ELEMENTS ( NODES WITH ONLY MPOR 

C EXCESS PORE PRESSURES AS VARIABLES) MPOR 6 


7

C···· •• ••••••• •• ·························!!············!!·......··!!·.·...·MPOR

DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),LTYP(NEL), 
1 M RELVV (NEL), NR ELVV (NNE), NREL (IINU), ITAB (LTAB, LDIM) , 
1 NPl (NPL),NP2(NPL),SUM(3) 

COMMON IELINf / LI NfO (50, 15) 
COMMON IPARS I PYI,ALAR,ASMVL,ZERO 

C 
KR=KRD 
K =NN 
LDIM 1=LDIM-l 

c 
LT::LTYP(1 ) 
IF(LINFO(8,LT).NE.0)WRITE(IW6,900) 

C 
DO 	 10 J = 1, LDIM 
DO 10 1=1, LTAB 

10 ITABCI,J)=O 
C 

DO 100 NE=l,NEL 
MUS=MRELVV(NE) 
LT=LTYP(NE) 
GOTO(100,100,100,100, 100,100,12,100,100, 100, 100),LT 
WRITE(IW6,910)MUS,LT 
STOP 

12 	NDN=LINfO(5,LT) 

NVN=LINFO(2,LT) 

NEDG=LI NFO (3, LT) 

NDPT =LINFO (1, LT) 

INDED=LINFO(14,LT) 

NPSD=LINFO (8, LT) 


C 
DO 26 IS::1, NEDG 
NLP::NDN+(IS-l)'NPSD 
INDS::INDED+IS 
IN1::NP1(INDS) 
IN2=NP2(INDS) 
N 1 =NCONN (I N1, NE) 
N2=NCONN (1112, NE) 

CALL SORT2(N1,N2,I1,I2) 
IHASH=10000'Il+I2 

IT::5·I1 

GOTO 18 


C 

16 IT=IT+1 

18 IF CIT. GT. LTAB) IT:: 1 


IF(ITAB(IT, l),EQ.IHASH) GOTO 

IF(ITAB(IT,l).NE.O) GOTO 16 


C 

DO 22 IPSD::l,NPSD 


24 


MPOR 8 

MPOR 9 

MPOR 
MPOR 11 

MPOR 12 

MPOR 13 

MPOR 14 

HPOR 

MPOR 16 

MPOR 17 

HPOR 18 

MPOR 19 

MPOR 

MPOR 21 

MPOR 22 

MPOR 23 

MPOR 24 


MPOR 

MPOR 26 

MPOR 27 · 

MPOR 28 

MPOR 29 

MPOR 

MPOR 31 

MPOR 32 

MPOR 33 

MPOR 31j 


MPOR 

MPOR 36 

MPOR 37 

MPOR 38 

MPOR 39 

MPOR 

MPOR 41 

MPOR 42 

MPOR 43 

MPOR 44 

MPOR 

MPOR 46 


MPOR 47 

MPOR 48 

MPOR 49 

MPOR 

MPOR 51 

MPOR 52 

MPOR 53 

MPOR 54 

MPOR 

MPOR 56 


C----------------------------------------- - ----------------------------M PO R 57 

C CALCULATE CO-ORDINATES OF NODES ALONG THE EDGE 	 l1POR 58 

C-----------------------------------______________-------------------MPOR 59 


K=K+1 MPOR 

KR=KR+l MPOR 61 

IF(KR.LE.NNU)GOTO 19 	 MPOR 62 

WRlTE(IW6,901 ) 	 MPOR 63 

STOP 	 MPOR 64 
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C 

NN=K 

NNZ=KR 

RETURN 


900 FORMAT(/10X,46HCOORDINATES OF PORE PRESSURE NODES ALONG EDGES/ / 
1 39H NODE X Y ZI) 

901 FORMAT(f1X,49HINCREASE NO. OF ADDITIONAL NODES (ROUTINE tHDPOR)) 
902 FORMAT(/1X, 21Hu·ERROR"· MORE THAN, IS, 

1 30HNODES IN t1ESH (ROUTINE MIDPOR)) 

i 

904 FORMAT(I5,3F12.3)

I f 

910 FORMAT(/1X,7HELEMENT,I5,2X,22HIS OF UNKNOWN TYPE ••• , IS, 2X, 
1 16H(ROUTINE MIDPOR)) 
END 

MPOR 14 
MPOR 15 
MPOR 18-19 
MPOR 21-23 
MPOR 25 
MPOR 28 
MPOR 31-36 

MPOR 38 
MPOR 39 
MPOR 40 
MPOR 41--42 
MPOR 43--44 
MPOR 46 
MPOR 47 

MPOR 52 

MPOR 53 

MPOR 54 

MPOR 56 

MPOR 60 
MPOR 61 
MPOR 62-63 

[Ch.6 

t1POR 131 
MPOR 132 
MPOR 133 
MPOR 134 
MPOR 135 
MPOR 136 
MPOR 137 
MPOR 138 
MPOR 139 
MPOR 140 
MPOR 141 
MPOR 142 
MPOR 143 

: KR - starting user number of additional nodes. 


: K - starting program number of additional nodes. 


: write title - 'co-ordinates of pore pressure nodes'. 

: zero array ITAB. 


: loop on all elements. 


: skip if elemen t type has no additional pore pressure nodes. 
: obtain element particulars. 

NVN 
NEDG 
NDPT 
INDED 
NPSD 

number of vertex nodes . 
number of element sides. 
total number of nodes. 
starting index to arrays NP1 , NP2. 

number of additional (pore pressure) nodes 
along edge. 

: loop on all edges of the element. 
: index to location of new node in NCONN. 

: index to nodes at either end of element side, in NP1, NP2. 
: indexes of nodes at either end in NCONN. 
: nodes at either end of element side. 
: sort the nodes into ascending order. 

: calculate unique code (consisting of node numbers at either 
end) representing the side. 

: start at the beginning, if end of array has been reached, and 
make use of the gaps in array ITAB. 

: look for the possibility that nodes along element edge have 
already been numbered; if so, branch off. 

: if nodes along element edge have to be numbered then find 
a location with zero entry. 

: such a location has been found. Loop on all additional 
(pore pressure) nodes along this edge. 

: program number for the new node. 
: user number for the new node. 

: check that number of nodes does not exceed allocation for 

array NREL. If exceeded, print error message and stop. 
(The allocation for NREL is such that this should not 
happen.) 

Sec. 6.5] 

MPOR 66 
MPOR 67 
MPOR 68-69 
MPOR 72 
MPOR 73 
MPOR 74-75 
MPOR 76-77 
MPOR 79-81 

MPOR 82 
MPOR 84 

MPOR 85 

MPOR 88 

MPOR 89-91 
MPOR 93 
MPOR 95 
MPOR 97-101 t 

MPOR 10lt 

MPOR 104t 

MPOR 105 t 

MPOR 106t 

MPOR 107-108t 
MPOR 109-11 ot 
MPOR 111-112t 
MPOR 114-123t 
MPOR 126t 
MPOR 130 
MPOR 132-133 

Numbering the Additional Pore Pressure Nodes 

: enter program node number in array NREL. 

: enter user node number in cross-reference array NRELVV_ 
: check that array allocation NRELVV is not exceeded. 
: index of new node in array NCONN. 
: enter new node number in NCONN. 
: index of new node in array ITAB, and enter new no. 
: calculate interpolation ratios. 
: calculate co-ordinates of new node, using linear inter­

polation on nodes at either end. 

: end of loop on nodes along edge. 
: enter code representing element side in ITAB. 

: enter 1 to indicate that nodes along element edge have been 

calculated (the value is also used to count the number of 
elements sharing this side). 

: for any element edge along which nodal co-ordinates have 
already been calculated. Loop on all nodes along edges 
excluding the ones at either end. 

: enter the node numbers in NCONN. 
: increment count on no. of elements sharing element side . 
: end of loop on all element edges. 
: no. of inner nodes (only for element types which have 

them; skip for the rest). 
: index to node location in NCONN. 
: loop on all inner nodes. 
: program node number. 

: user node number. 

: check for array sizes NREL, NRELVV being exceeded. 

: enter node number in NREL and NRELVV. 

: enter number in NCONN. 

: calculate co-ordinates of inner node. 

: end of loop on all inner nodes. 

: end of element loop. 

: maximum values of node numbers (all inclusive). 


(NNZ - user number; NN - program number.) 

If the pore pressure nodes lie along a curved side (here again only relevant to 

CuST element) then the user again provides the co-ordinates of these nodes. It 
should b~ remembered that these nodes are different from the displacement 
nodes for a higher-order element like the CuST. Because of simplicity of 
programming, the displacement and pore pressure nodes are dealt with 

t 	 Note : these are specifically for element type 7, which is the only element type with 
inner nodes. Any new element type with inner nodes will require this part of the code to 
be modified . 
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separately. However, the same routine which was used for the displacement 
nodes is used again. 

When exit is made from the routine MIDPOR, all the nodes (pore pressure 
and displacement) have been assigned numbers and their co-ordinates calculated. 
The total number of nodes NN is now known, and the largest user node number 
is NNZ (remembering that the additional nodes were numbered starting from 
751). When the pore pressure nodes were numbered, the user node numbers 
were continued from the point left by the last additional displacement node. For 
example, if 832 was the last displacement node number then 833 is the node 
number of the first pore pressure node. 

At this stage, all the information necessary to number the mesh is written to 
the PO file in routine NUMSH. Still adopting the same format to write the 

information as before, the node co-ordinates and numbers are written. For the 
purpose of numbering the elements, the centroid co-ordinate and element 
number are written to the file. 

Routine NUMSH 

SUBROUTINE NUMSH(Iw6,IW8,NDH1,NNE,MXND,NEL,t-1UMAX,NNU,XYZ, M1SH 1 

1 NCONN,LTYP,MREL,NREL,NDZ,IPLOT) NMSH 2 


c·······································································NMSH 3 

ROUTINE TO NUMBER MESH M1SH 4 


c·······································································NMSH 5 

DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),LTYP(NEL), M1SH 6 


1 MREL(MUMAX),NREL(NNU),XYZD(3),XYZC(3) NMSH 7 

COMMON IDEBUGSI ID1;ID2,ID3,ID4,ID5,ID6,ID7,ID8,ID9,ID10 NMSH 8 

COlmON IELINF I LINFO(50, 15) NMSH 9 


C M1SH 10 

IF(IPLOT.EQ.O)RETURN NMSH 11 


c-----------------------------------------------------------------------NMSH 12 

C NDZ 1 - STARTING VALUE OF USER NUMBER OF EDGE NODES NMSH 13 

c-----------------------------------------------------------------------NMSH 14 


NDZ 1=NDZ+l NMSH 15 

C--------------------------------------------------------------------N~lSH 1 6 


CODE TO INDICATE THAT A NUMBER IS TO BE PLOTTED NMSH 17 

C------------------- ----------------------------------------------- N~1 SH 18 


ICODE=ll NMSH 19 

C-----------------------------------------------------------------NMSH 20 

C DUMM Y COORDINA TES M1SH 21 

C------------------------------------------------------------------NMSH 22 


DO 4 ID=l, NDIM M1SH 23 

4 XYZD(ID)=O. M1SH 24 


I DUM=O NMSH 25 

IZERO=O NMSH 26 


C 	 M1SH 27 

NMSH 28 


I PL=IPLOT NMSH 29 

IF(IPL.EQ.1)GOTO 100 NMSH 30 


5 IF(IPL-3)10,20,30 NMSH 31 

C-------------------------------------_______________________--------NI·1SH 
 32 

C PEN COLOUR IS BLACK FOR VERTEX NODES M1SH 33 

C-------------------------------------------------------------------NMSH 34 


10 	 IPEN=-1 NMSH 35 

WRITE(IW8)IPEN,(XYZD(ID),ID=1,NDIM),IDUM NMSH 36 

NN1=1 NMSH 37 

NN2=NDZ M1SH 38 


NMSH 39 
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12 	DO 15 JR=NN1,NN2 

IF(NREL(JR).EQ.O)GO TO 15 

J =NREL(JR) 

J J=JR 

WRITE(IW8)ICODE,(XYZ(ID,J),ID=1,NDIM),JJ 


15 CONTINUE 
C 


IF(NC.EQ.O)GOTO 100 

NC=O 


NMSH 
NMSH 
NMSH 
M1SH 
NMSH 
M1SH 
M1SH 
NMSH 
NHSH 

40 

41 

42 

43 

44 

45 

46 

47 

48 


C---------------------------------------------------------------NMSH 49 

C PEN COLOUR IS RED FOR EDGE NODES 	 M1SH 50 

C----------------------------------------------------------------------NMSH 51 


20 IPEN=-2 NMSH 52 

WRITE (IW8)I PEN, (XYZ D(ID), ID=l ,NDIM), IDUM M1SH 53 

NN1=NDZl NMSH 5 

NN2=NNU NMSH 5. 

GOTO 12 NMSH 56 


C M1SH 57 

30 IF(IPL.GT.4)GOTO 40 NMSH 58 


NC=1 NMSH 59 

GOTO 10 NMSH 60 


C------------------------------------------------------------------NMSH 61 

C PEN COLOUR IS GREEN FOR ELEMENTS NMSH 62 

C---------------------------------------------------------------------NMSH 63 


40 IPEN=-3 NMSH 64 

WRITE (IW8 )IPEN, (XYZD(ID), ID=l, NDIM) , IDU~I NMSH 65 


C NMSH 66 

DO 50 JR=1,MUMAX NMSH 67 

IF(MREL(JR).EQ.O)GOTO 50 Nl1SH 68 

J =MREL(JR) NMSH 69 


M1SH 70 

DO 35 ID=l, NDIM MISH 71 


35 XYZC(ID)=O. M1SH 72 

C NMSH 73 


LT=LTYP(J) NMSH 74 

NVN=LINFO(2, LT) NMSH 75 


C M1SH 76 

DO 46 I=l,NVN NMSH 77 

L=NCONN(I,J) NMSH 78 

DO 46 ID=l, NDIM NMSH 79 


46 XYZC(ID)=XYZC(ID)+XYZ(ID,L)/FLOAT(NVN) 	 NMSH 80 

C NMSH 81 


JJ =JR M1SH 82 

WRITE(IW8)ICODE,(XYZC(ID),ID=1,NDIM),JJ NMSH 83 


50 CONTINUE 	 M1SH 84 

C M1SH P' 

IPL=IPL-4 NMSH ! 
IF (I PL. GT. 1)GOTO 5 NMSH 8-, 

C--------------------------------------------------------------------NMS H 88 

C CLOSE FILE NMSH 89 

C----------------------------------------------------------------------NMSH 90 


100 HRITE(IW8)IZERO,(XYZD(ID),ID=1,NDIM),IDUM M1SH 91 

RETUR N M1SH 92 

END NMSH 93 


NMSH 15 : starting value of midside nodes (user numbers). 
NMSH 19 : code to indicate a number is to be plotted . 
NMSH 23-24 : dummy co-ordinates (used when pen colour is changed). 
NMSH 29 : plotting code (user specified, request of mesh detail, e.g. 

numbering). 
NMSH 35-36 : select pen colour as black (negative value indicates change in pen 

colour) and write information to PO file. 
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NMSH 37-38 : the range of node numbers includes the vertex nodes. 

NMSH 40-45 : write (displacement) node co-ordinates to PO file. 

NMSH 47 : branch off if no more information on mesh is required. 

NMSH 52-53 : select pen colour as red for nodal numbering and write infor­

mation to PO file . 
NMSH 54-55 : range of midside node numbers. 
NMSH 59 : branch off to plot vertex node numbers. 
NMSH 64-65 : select pen colour as green for plotting element numbers and 

write information to PO file. 
NMSH 67 : loop on all elements. 
NMSH 68 : by-pass if an element number is not used. 
NMSH 71-72 : initialise element centroid co-ordinates. 
NMSH 74-75 : element type number (LT), number of vertex nodes in element 

(NVN). 
NMSH 77-80 : calculate element centroid co-ordinates. 
NMSH 82-84 : write element centroid co-ordinates to PO file . 
NMSH 91 : close file by writing a zero code. 

The remaining tasks for the geometry part of the program are the calculation of 
the total number of degrees of freedom (d.oJ.) and the frontwidth and the core­
store required in solving the equations using the frontal method. The first step is 
to find the number of d.oJ. at each node, considering all the elements connected 
to that node, and this is achieved by MAKENZ. 

Array (NQ(NN) gives the number of d.oJ. of each node. A node may have a 
differing number of d.oJ. from the different elements of which it is a part. This 
can be illustrated by an example (Fig. 6.5): in it, nodes 1 and 5 have 3 d.oJ. 
from the linear strain triangle of type 3. They have dx , dy and it as variables, the 
displacements in x and y directions and the excess pore pressure. From the linear 
strain triangle of type 2 element, the three nodes have 2 d.oJ. (dx and dy only). 
Therefore nodes 1 and 5 have a maximum of 3 d.oJ. This is entered in array 
(NQ(NN). 

The number of d.oJ. is entered against that node number in array NQ. Once 
this task is completed, the total number of d.oJ. in the mesh - NOF - is found 
by summing up the entries in array NQ. 

The number of d.oJ. for each node for different element types is obtained 
from array LINFO(50; 15). The second index is for the element type number 
(LT) . The first 20 entries are allocated to give out general information regarding 
the element type. Entries starting from 21 give the number of d.oJ. for each 
node of an element. (The sequence used for the nodes is the same as in Fig. 4.1.) 

Routine MAKENZ 

SUBROUTINE HAKENZ (HXND, NEL, NN, NCONN, LTYP, NQ, INXL) HKNZ 1 
C·· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·········MKNZ 2 
C SETS UP THE NQ ARRAY WHICH CONTAINS THE NUMBER MKNZ 3 
C a=­ DEGREES Of fREEDOM ASSOCIATED WITH EACH NODE MKNZ 4 

fOR ELEMENTS IN TH IS ASS EM BL Y. MKNZ 5 
c···· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MKNZ 6 
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4 

3 

Fig. 6 .5 - Same nodes with different d.o.f. when mixing different element types 

DIMEt~SION NCONN(MXND,NEL),LTYP(NEL),NQ(NtO MKNZ 7 
COMMON IELINF I LINfO (50,15) t1KNZ 8 

c----------------~------:----------------------------------------------HKNZ 9 
c INXL - INDEX TO NO. Of DEGREES Of fREEDOM Of fIRST NODE Of ELEMENTMKNZ 10 
C (SEE BLOCK DATA ROUTINES BDATA1, MAIN2) MKNZ 11 
C-------------------------------------------------- ---------------------HKNZ 12 

DO 8 J=1,NN MKNZ 13 
8 NQ(J)=O MKNZ 14 

c MKNZ 15 
DO 20 J=1,NEL MKNZ 16 
If(LTYP(J).LT.O) GOTO 20 MKNZ 17 
LT=LTYP(J) MKNZ 18 
NDPT=LINfO(1, LT) MKN Z 19 

C MKNZ 20 
DO 10 1=1, NDPT MKNZ 21 
N DfN =LINfO (1+1 NXL, LT) MKNZ 22 
NOD=NCONN (I, J) MKNZ 23 
If(NDfN.GT.NQ(NOD» NQ(NOD)=NDfN MKNZ 24 

10 CONTINUE MKNZ 25 
20 CONTINUE MKNZ 26 

c MKNZ 27 
RETURN MKNZ 28 
END MKNZ 29 

MKNZ 13-14 : zero the number of d.oJ. of all nodes. 

MKNZ 16 : loop on all elements. 

MKNZ 17 : by-pass if element is not present in the current mesh. 

MKNZ 18 : element type number. 


MKNZ 19 : the total number of nodes in element. 


MKNZ 21 : loop on all nodes of element. 
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MKNZ 22 : the number of d.oJ. of node. 


MKNZ 23 : node number. 


MKNZ 24 : enter if node associated with the current element has a greater 


number of d.o .f. 

MKNZ 25 : end of loop on aU nodes of element. 

MKNZ 26 : end of element loop. 

It is necessary for the purpose of internal housekeeping to assign unique 
numbers to each d.oJ. or variable. This number lies in the range I to NDF and 
will be referred to as the global variable number (g.v.n.) in the rest of the text. 
For simplicity, array NQ is used for this purpose. All the d.o.f. of a particular 
node are given consecutive numbers. Hence it is only necessary to know the 
g.v.n. of the first variable of each node. Array NW is set up to provide this 
information. The first d.oJ. of the tenth node, for example, is given the sum 
total of the d.oJ. of the first 9 nodes + 1. The NW entries will be 

node -+ 2 3 4 5 6 7 8 (9) 

d.oJ. -+ 3 3 3 3 2 222 

g.v.n. -+ 4 7 10 13 15 17 19 (21) 

The last 'non-existent' node serves as a marker; for example, the difference in 
g.v.n. between consecutive node numbers is the d.oJ. of the first numbered 

node. 

number of d.oJ. of node 5 = NW(6) - NW(5) = 15 - 13 = 2 

number of d.oJ. of node 8 = NW(9) - NW(8) = 21 - 19 = 2 

Hence the entry for the last 'non-existent' node will always be NDF + 1. The 
routine which carries out the above calculations is CALDOF. 

Routine CALDOF 

SUBROUTINE CALDOF(IW6,NN,NN1,NDF,NW,NQ) CLDF 1 
c····································································.··CLDF 2 
C ROUTINE TO CALCULATE GLOBAL NUMBER FOR D.O.F. CLDF 3 
C·······································································CLDF 4 

DIMENSION NW(NN1 ),NQ(NN) CLDF 5 
CLDF 6 

NC= 1 CLDF 7 
NW( 1 )=1 CLDF 8 

C CLDF 9 
DO 10 I=1,NN CLDF 10 
NC=NC+NQ(I ) CLDF 11 

10 NH(I+1 )=NC CLDF 12 
C CLDF 13 

NDF=NW(NN1 )-1 CLDF 14 
C CLDF 15 

RETURN CLDF 16 
END CLDF 17 

CLDF 7-8: global variable nos. of first d.oJ. of first node. 
These g.v J1. serve as indexes to arrays P, PT, DI, DA, etc. 

CLDF 10 : loop on all nodes. 
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CLDF 11 : calculate global variable nos. of first d.o.f. of next node (= I + 1). 

CLDF12 : place value in array NW. ' 

CLDF14 : NDF is the total number of d.o.f. in mesh. 


6.6 PRE-FRONTAL ROUTINES 

Routines MLAPZ and SFWZ are the pre-frontal routines. The frontal method is 

described elsewhere in detail (Irons, 1970; Irons and Ahmad, 1980; Hinton and 
Owen, 1977). The function of these two routines is best illustrated by an 
example (Fig. 6.6). 

762 8 766 

763 764 

6 

755 757 

751 2 756 

Fig. 6.6 - Example to illustrate frontal method 

Element Type Mat Nl N2 N3 N4 N5 N6 

1 2 2 5 751 752 753 

2 2 5 4 753 754 755 

3 2 2 3 6 756 757 758 

4 2 2 6 5 758 759 752 

5 2 4 5 8 754 760 761 

6 2 4 8 7 761 762 763 

7 2 5 6 9 759 764 765 

8 2 5 9 8 765 766 760 

These are the input data, and assuming that no alternative efficient element 
numbering has been specified, the midside node numbers are given on the right­
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hand side of the above table. It gives the conteI1ts of the array NCONN, 
translated into user node numbers. The actual midside node number entries in 
NCONN are different, even though the vertex node number ' entries are exactly 
the same. The array is modified so that the node numbers are made negative to 
indica te their last appearances. 

No. of 
elements Nl N2 N3 N4 N5 N6 

1 2 5 -751 752 753 

2 -1 5 4 -753 754 -755 

3 2 -3 6 -756 -757 758 

4 -2 6 5 -758 759 -752 

5 4 5 8 -754 760 761 

6 -4 8 -7 -761 -762 -763 

7 5 --6 9 -759 -764 765 

8 -5 -9 -8 -765 -766 -760 


Considering the above table of element-nodal connectivity in the reverse order, 
the first time a node appears will be its last appearance. This method is used to 
find the last appearance of a node . 

Routine MLAPZ 
SUBROUTINE MLAPZ(MXND,NEL,NN,NCONN,LTYP,NQ) 	 MLPZ 1
c·····..................................................................MLPZ 
 2 


C MARKS LAST APPEARANCES OF NODES BY MAKING THEM NEGATIVE MLPZ 3 

C IN NCONN ARRAY 	 MLPZ 4 

C··· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••t1LPZ 5 


DIMENSION NCONN(MXND,NELl,LTYP(NEL),NQ(NN) MLPZ 6 

COMMON IELINFI LINFO(SO,15) MLPZ 7 


C MLPZ 8 

NEL 1=NEL+1 MLPZ 9 


C MLPZ 10 

DO 30M=1,NN t1LPZ 11 

IF(NQ(M).EQ.O) GOTO 30 MLPZ 12 

DO 20 J =1 , NEL MLPZ 13 

JB=NEL 1-J MLPZ 14 

IF(LTYP(JB).LT.O) GOTO 20 ~lLPZ 15 

LT=LTYP(JB) MLPZ 16 

NDPT=LINFO(1, LT) MLPZ 17 

DO 10 I=1,NDPT MLPZ 18 

IF(NCONN(I,JB).NE.M) GOTO 10 MLPZ 19 

NCONN(I,JB)=-NCONN(I,JB) MLPZ 20 

GOTO 30 MLPZ 21 


10 CONTINUE t1LPZ 22 

20 CONTINUE MLPZ 23 

30 CONTINUE MLPZ 24 


C MLPZ 25 

RETURN MLPZ 26 

END MLPZ 27 


MLPZ 11 : loop on all nodes. 
MLPZ 12 : by-pass if node is not present in the mesh - number of d.oJ. is 

zero (probably due to removal of some elements). 
MLPZ 13 : loop on all elements. 

Sec.6.6J 	 Pre-frontal Routines 

MLPZ 14 : element number in reverse order. 

MLPZ 15 : by-pass if element is not present in mesh. 


MLPZ 16-17 : element type number (LT) and the number of nodes associated 

with the element (NDPT) . 

MLPZ 18 : loop on all nodes associated with the element. 
MLPZ 19 : if node is not found, then by-pass . 
MLPZ 20 : make node number negative to indicate last appearance of node 

in mesh. 
MLPZ 22 : end of loop on all nodes associated with the element. 

MLPZ 23 : end of element loop. 


MLPZ 24 : end of nodal loop. 


Element List of active nodes Nodes which remain active 
assembled after assembly after elimination 

2 5 ill 752 753 2 5 0 752 753 

2 L 2 5 4 752 753 0 2 5 4 752 0 


754 755 	 754 


3 2 5 4 752 6
~ 	 0 2 5 4 752 6 -.- . 

754 7'56 757 758 754 0 0 758 


-~ 

4 	 759 1- 5 4 752 6 759 0 5 4 0 6 

754 0 0 754
12! 


5 759 8 5 4 760 6 759 8 5 4 760 
 6 

lli- 761 0 761 


6 759 8 5 4 760 6 759 8 5 0 760 6 

L ill J..§J:... 
 ~ 

7 	 'ill- 8 5 9 760 ~ 0 8 9 760 0 

2§±- 765 0 765 


8 766 ~ i 2- 760 0 

0 
 ~ 

In routine SFWZ, the program calculates the maximum frontwidth (and the 
core-store required to solve the equations using the frontal method) using the 
last appearances of nodes marked by the rou tine MLAPZ. 

This is illustrated above. Making use of the previous table, after the first 
element is assembled the number of active nodes, which is six, reduces to five 
after the node which is underlined (only 751) is eliminated. The corresponding 
entry on the list on the right-hand side is zero. Scanning through the list of 
active nodes, the maximum number of nodes present at any stage is 10; hence 
the maximum frontwidth is 10 nodes. It is the maximum number of nodes that 
are active at any time. If each node has 2 d.oJ. then the maximum frontwidth 
is 20 d.oJ. 

Routine SFWZ 
SUBROUTINE SFWZ(MNFZ,MXND,NEL,NN,MUMAX,NNZ,IFRZ, . SFWZ 1 


1 NCONN,LTYP,MREL,NREL,NQ,NDEST,IFR,MULT,MCORE,NCORET) SFWZ 2 

C··················································••• ••••••••••••••••• ·SFWZ 3 
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14 	K2=NFZ 

IF(NFZ.GT.MNFZ)MNFZ=NFZ 

GOTO 18 


C 
15 DO 16 KK=K,NFZ 


If(IFR(KK).NE.O) GOTO 17 

16 CONTINUE 


C 
WRITEOw6,905) 

WRITE(IW6,997)J,I 

WRITE(IW6,998)NFZ 

WRITE (Iw6, 999) (IFR (LL), LL=l, NFZ) 

STOP 


17 K 1 =KK 

If(NQ(NA).GT.KK-K) GOTO 11 

K2=K+NQ (NA )-1 


18 NDEST (NA )=K 
C 

DO 19 KK =K, K2 

19 IFR(KK)=NA 

20 CONTIN UE 


ce WRITEOW6,999)(IFR(LL),LL=1,NfZ) 
C--------------------------------------------------------- ____ 
C ELIHINATE NODES fR(}1 FRONT THAT ARE MAKING THEIR LAST APPEARANCES.SFWZ 95 

C----------------------__________________________________---------SfWZ 96 


SFHZ 70 

SFWZ 71 

SFWZ 72 

SFWZ 73 

SFWZ 74 

SFWZ 75 

SFWZ 76 

SFWZ 77 

SFWZ 78 

SfWZ 79 

SFWZ 80 

SFWZ 81 

SFWZ 82 

SFWZ 83 

SFHZ 8' 
SFWZ 8~ 

SFWZ 86 

SFWZ 87 

SFWZ 88 

SFWZ 89 

SFWZ 90 

SFWZ 91 

SFWZ 92 

SFWZ 93 


------SfW Z 94 


j' 
I ' 
) ., 
I I 

I 
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C WORKS OUT FRONT WIDTH FOR SYMMETRIC SOLUTION SFWZ 4 

C USING LAST APPEARANCES MARKED BY SUBROUTINE MLAPZ. SFWZ 5 


c·······.····.·························································.SFWZ 6 

DIMENSION NCONN(MXND,NEL),LTYP(NEL),MREL(MUMAX),NREL(NNZ) 

DIMENSION NQ(NN),NDEST(NN),IFR(IFRZ) 

COMMON /DEVICEI IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 

COMMON /DEBUGS/ ID1,ID2,ID3,ID4,ID5,ID6,ID7,ID8,ID9,ID10 

COMMON /ELINF/ LINFO(50, 15) 


e 
INCORE=O 

C 
DO 6 J=l,NEL 

IF(LTYP(J).LT.O) GOTO 6 

N=NCONN (1, J) 

NA=IABS(N) 

NDFN=NQ(NA) 


DO 	 4 1=1, NDFN 
IFR(I)=NA 

NFZ=NDfN 

MNFZ=NDFN 

NDEST(NA)=l 

GOTO 8 


6 CONTINUE 

WRITE (Iw6, 900) 

STOP 


8 CONTINUE 

SFWZ 7 

SFWZ 8 

SFWZ 9 

SFWZ 

SFWZ 11 

SFWZ 12 

SFWZ 13 

SFWZ 14 

SFWZ 15 

SFWZ 16 

SFWZ 17 

SFWZ 18 

SfWZ 19 

SFWZ 

SFWZ 21 

SfWZ 22 

SFWZ 23 

SfWZ 24 

SFWZ 25 

SFWZ 26 

SFWZ 27 

SFWZ 28 

SFWZ 29 

SFWZ 

SFWZ 31 

SFWZ 32 


C-----------------------------------------------------------------------SFWZ 33 

e CONSIDER EACH ELEMENT IN TURN SFWZ 34 

C-----------------------------------------------------------------------SFWZ 35 


DO 40 J=l,NEL SFWZ 36 

C-----------------------------------------------------------------------SFWZ 37 

C IGNORE a-1ITTED ELEMENTS SFWZ 38 

C-----------------------------------------------------------------------SFWZ 39 


IF(LTYP(J).LT.O) GOTO 40 SFWZ 

C-----------------------------------------------------------------------SFWZ 41 

C CONSIDER EACH NODE OF THIS ELEMENT - DOES IT ALREADY HAVE SFWZ 42 

C A ROW/COLUMN ALLOCATED TO IT IN THE FRONT? SFWZ 43 

C-----------------------------------------------------------------------SfWZ 44 


LT=LTYP(J) SFWZ 45 

NDPT=LINFO(l, LT) SFWZ 46 


SFWZ 47 

DO 20 1=1, NDPT SfWZ 48 

N=NCONNO,J) SFWZ 49 

NA=IABS (N) SFWZ 


C SFWZ 51 

DO 10 K=l,NFZ SFWZ 52 

IF(IFR(K).EQ.NA) GOTO 20 SFWZ 53 


10 CONTINUE SFWZ 54 

C-----------------------------------------------------------------------SFWZ 55 

C FIN D A (LA RGE ENOUGH) GAP OR PUT ON END SFWZ 56 

C-----------------------------------------------------------------------SFWZ 57 


K 1 =1 SFWZ 58 

11 DO 12 K =K 1, Nfl SFWZ 59 


IF(IFR(K).EQ.O) GOTO 15 SFW.Z 

12 CONTINUE SFWZ 61 


C------------------------------------------------------------------SFWZ 62 

C PUT ON END SFWZ 
 63 

C----------------------------------------------------------------------SFW Z 64 


K =NFZ+ 1 

NfZ=NFZ+NQ(NA) 

IF (NFL LE. IFRZ) GOTO 14 

WRITE (IW6, 904 )IFRZ 

STOP 


SfWZ 65 

SFWZ 66 

SFWZ 67 

SFWZ 68 

SFWZ 69 


DO 30 I=l,NDPT 

If(NCONNO,J).GT.O) GOTO 30 


DO 22 K=1,NFZ 

N=NCONN(I,J) 

NA=IABS(N) 

If (NA. EQ. IF R (K» GOTO 23 


22 	CONTINUE 

WRITE(IW6,908) 

STOP 


C 
23 	K2=K+NQ(NA )-1 


NCONN(I,J)=NCONN(I,J)·MULT 

DO 24 KK=K,K2 

INCORE=INCORE+NFZ+4 


24 	IFR(KK):O 

If(K2.LT.NFZ) GOTO 30 


26 	NFZ=NFZ-1 

IF(NFZ.EQ.O) GOTO 30 

IF(IFR(NFZ).EQ.O) GOTO 26 


30 CONTINUE 
C 

IF(ID3.NE.1)GOTO 40 

If( NFZ.GT. 0) WRITE OW6, 999 )(IfR (LL), LL=l, NFZ) 


40 CONTINUE 


WRITE(IW6,910) MNFZ 
C 

IF(ID4.EQ.1)WRITE(IW6,950)NDEST 
MCORE=MNFZ ·(MNFZ+1 )/2+2I1MNFZ+502 
NCORET=MCORE+INCORE 

WRITE(IW6,915)MCORE 

WRITE(IW6,920)INCORE 

RETURN 


900 FORMAT(41H NO ELEMENTS IN SOLUTION! (ROUTINE SFWZ» 
904 FORMAT(48H "·ERROR" TOO MANY DEGREES OF fREEDOM IN 

1 1X,7HEXCEEDS,I5,2X,14H(ROUTINE SfWZ» 

SFWZ 97 

SFWZ 98 


SfWZ 99 

SFln 100 

SfWZ 101 

SfWZ 102 

SFWZ 103 

SFWZ 104 

SFWZ 105 

SfWZ 106 

SFWZ 107 

SFWZ 108 

SfWZ 109 

SFWZ 110 

SfWZ 111 

SFWZ 112 

SFWZ 113 

SfWZ 114 

SFWZ 11 10 


SfWZ 1 


SFWZ 11. 
SfWZ 118 

SFWZ 119 

SFWZ 120 

SFWZ 121 

SFWZ 122 

SFWZ123 
SFWZ 124 

SFWZ 125 

SFWZ 126 

SFWZ 127 

SFWZ 128 

SFWZ 129 

SFWZ 130 

SfWZ 131 

SFWZ 132 

SFWZ 133 


FRONT, SFln 134 

SfWZ 135 


IV 

http:IF(IFR(K).EQ.NA
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905 FORMAT (40H PROGRAM ER ROR - NO NODE ON END OF FRONT I 
1 15H (ROUTINE SFWZ» 

908 FORMAT(53H PROGRAM ERROR - LAST APPEARANCE NODE IS NOT IN FRONT, 
1 2X, ll.iH(ROLJrINE SFWZ» 

910 FORMAT(f36H MAXIMUM FRONT WIDTH FOR SOLUTION = ,14, 
1 19H DEGREES OF FREEDOM) 

915 FORMAT(f1.i4H MINIMUM CORE REQUIRED TO SOLVE EQUATIONS = ,110) 
920 FORMAT(f48H ADDITIONAL CORE REQUIRED FOR INCORE SOLlITION = ,110) 
9S0 FORMAT(f I1X, 5HNDEST/( lX, 20IS» 
997 FORMAT(SH 
998 FORMAT(7H 
999 FORMAT(4H 

END 

SFWZ 13 
SFWZ 15 

SFWZ 16 
SFWZ 17 
SFWZ 18 

SFWZ 19 
SFWZ 21-22 

SFWZ 23 
SFWZ 24 
SFWZ 25 

SFWZ 26-27 

SFWZ 36 
SFWZ 40 
SFWZ 45-46 
SFWZ 48 
SFWZ 49-50 
SFWZ 52-53 

SFWZ 58-61 

SFWZ 65-66 


SFWZ 67-68 


SFWZ 71 
SFWZ 72 

SFWZ 75-76 

J = ,IS,7H I = ,IS) 
NFZ = ,112) 
IFR/(lX,2S15» 

: initialise buffer size for in-core solution of equations. 

[eh.6 

SFWZ 136 
SHIZ 137 
SFWZ 138 
SFWZ 139 
SFWZ 140 
SFWZ ll.il 
SFWZ ll.i2 
SFWZ 143 
SFWZ 144 
SFWZ 14S 
SFWZ 146 
SFWZ 147 
SFWZ 148 

: loop on all elements (this loop is only to find the first node a 
place in the front). 

: by-pass if element is not in current mesh. 
: node number. 
: absolute value of node number (nodes may be making their 

last appearance and can be negative). 
: number of d.o.f. of node. 
: place node number in the front for each d.o.f. of a node (all 

d.oJ. of a particular node are identified by the node number). 
: number of d.oJ. in the front. 
: maximum size of the front. 
: make entry (in array NDEST) to indicate the position of first 

d.oJ. of node in the front. 
: exit from element loop after one node has been placed in the 

front. 
: loop on all elements. 
: by-pass if element is not present in current mesh. 
: element type number and total number of nodes in element. 
: loop on all nodes in element. 
: node number. 

: search the front (i.e. array IFR) to see if node has already been 
allocated store, and if so, branch off. 

: search for gaps (zero entry in IFR) to allocate place in front 
for a node making the first appearance. Branch off if a zero is 
found. 

: no gaps found. Place new node (and its d.oJ.) at the end of 
the front. 

: check that size of array IFR is not exceeded. If so, print out 
message and stop. 

: update size of the front. 

: update maximum size of the front (if the current size is greater 
than the previous maximum). 

: scan the front (array IFR) to find the size of gap (i.e. with 
zero entries) and branch off when a non-zero entry is found. 

Sec. 6.6] Pre-frontal Routines 

SFWZ 79-82 : if end of front cannot be found, print error message and stop 
. (this should.never happen). 

SFWZ 86-87 : check if gap in the front is of sufficient size to accommodate 
all d.o.f. of node appearing for the first time. (All d.oJ. of a 
given node are strung together and take up consecu tive places 

in the front.) Since different nodes may have different number 
of d.oJ. it is necessary to check the size of the gap. The gaps 
in the front have been left by nodes which have been 
eliminated. 

SFWZ 90-91 : place node number (for all d.oJ. of node) in the front. 

SFWZ 92 : end of loop on all nodes of element. 

SFWZ 97 : loop on all nodes of element. 

SFWZ 98 : by-pass if node is not making its last appearance. 

SFWZ 100 : loop on all nodes in the front. Scan the front for node number. 


SFWZ 101-102: node number. 

SFWZ 103 : node has been found. Branch off. 

SFWZ 105-106: node appearing for the last time is not in the front. Print out 


error message and stop (this should never happen). 

SFWZ 108 : find position of last d.oJ. of node in the front. 
SFWZ 109 : multiply node number by MULT. (The node numbers are 

made positive only if the routine has been called 1;>y the 
geometry part of the program, i.e. MULT = -1; otherwise 
MULT = 1.) 

SFWZ 110-112: calculate core requirements for in-core solution. 


SFWZ 113 : by-pass if node eliminated is not at the end of the front. 

SFWZ 115-117: if so, reduce the front and hence NFZ (current size of the 


front). 
SFWZ 119 : end of loop on nodes of element. 
SFWZ 121-122: print ou t list of nodes in current front for debugging. 

SFWZ 123 : end of element loop. 
SFWZ 125 : print maximum front size (the frontwidth). 
SFWZ 127 : contents of nodal destination vector NDEST (gives the 

destination of nodes in the front) are printed for debugging. 


SFWZ 128 : minimum core required to solve the equations . 

SFWZ 129 : total store required to solve all equations in-core. 


SFWZ 130-131: print out core requirements. 


Of course, if one is carrying out a consolidation analysis, the number of d.oJ. 
varies from node to node. The above example, illustrated with simply the node 

numbers, takes a slightly different form. One has to consider the d.oJ. instead of 
the nodes. A list of currently active d.oJ. is maintained in array IFR. If a node 
has 3 d.oJ., the node number is entered in three consecutive places, representing 

the 3 d.oJ. Similarly for a node with 2 d.oJ.: when a node with 2 d.o.f. is 
eliminated, it leaves a gap of size 2. If a new node with 3 d.o.f. is assembled then 
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the current front is scanned from left to right first to find a suitable gap with at 
least three zeroes. Hence the gap of 2 is passed over and the new node and its 
variables are put at the end of the current front, thereby increasing the front­
width momentarily by 3. 

The final task to complete the geometry part of CRISP is to print out the 
complete element-nodal connectivity list, NCONN. Remember that NCONN 

contains the program node numbers . For each element, a temporary array of 
user node numbers is set up, and these are printed along with the element type 
number and material zone number. This is carried out by routine GPOUT. For 
debugging purposes, various arrays can be printed during the course of the 
geometry part of the program. 

Routine GPOUT 

SUBROtrTINE GPOtrT (IW6, MXND, NEL,I1UMAX, NN, NN1, NDF, NCONN, GOtrT 1 
1 MAT,LTYP,MRELVV,MREL,NRELVV,NW,NQ,NLST) GOUT 2 

c·.····································································*GOUT 3 
C ROUTINE TO PRINTOtrT ARRAYS SET-UP IN GECMETRY PART OF PROGRAM GOtrT 4 
C••••••••••• * ••••••••••• ·.·············································*GOUT 5 

DIMENSION NCONN(MXND,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), GOtrT 6 
1 MREL(MUMAX),NRELVV(NN),NW(NNl),NQ(NN),NLST(MXND) GOUT 7 

COMI10N IDEBUGSI ID1,ID2,ID3,ID4,ID5,ID6,ID7,ID8,ID9,ID10 GOUT 8 
COMMON IELINF 1 LIrIFO (50, 15) GOtrT 9 

c GOUT 10 

WRITE (IW6, 902) GOtrT 11 
c GOUT 12 

DO 20 JU=l,MUMAX GOUT 13 
IF(MREL(JU).EQ.O)GOTO 20 GOtrT 14 
MPR =HREL (JU) GOtrT 15 
LT=LTYP(MPR) GOtrT 16 
NDPT=LINFO(l, LT) GOtrT 17 

c GOtrT 18 
DO 10 IN=l,NDPT GOUT 19 
NP=NCONN(IN,MPR) GOtrT 20 

10 NLST(IN)=NRELVV(NP) GOUT 21 
c GOtrT 22 

WRITE (IW6, 906 )JU, LT ,MAT(MPR), (NLST (IN), IN=l, NDPT) GOUT 23 
20 CONTINUE GOUT 24 

c GOUT 25 
IF (ID1 o. EQ. 1 )WRITE (IW6, 908 )(NQ (IN), IN =1, NN) GOUT 26 

C GOUT 27 
IF(ID10.EQ.1)WRITE(IW6,910)(NW(IN),IN=1,NN1) GOtrT 28 

C GOUT 29 
WRITE (IW6, 911 )NN GOUT 30 
WRITE(IW6,912)NDF GOUT 31 

c GOUT 32 
RETURN GOUT 33 

902 FORMAT(1110X,30H ELEMENT MATERIAL TYPE AND, GOUT 34 
115H NODE NUMBERSI11X,7HELEMENT,lX,4HTYPE,2X,3HMAT, GOUT 35 
2 19H 1 2 3 4, GOtrT 36 
3 55H 5 6 7 8 10 11 12 13 14 15, GOUT 37 
4 35H 16 17 18 19 20 21 22/) GOUT 38 

906 FORMAT(I5,2I6,22I5) GOUT 39 
908 FORMAT(/1X,2HNQ/(lX,20I5» GOUT 40 
910 FORMAT(/lX, 2HNW/( lX, 2015» GOUT 41 
911 FORMAT(//25H TOTAL NU~IBER OF NODES = ,18) GOUT 42 
912 FORMAT(/40H TOTAL DEGREES OF FREEDOM IN SOLtrTION ,18) GOUT 43 

END GOtrT 44 
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GOUT 13 : loop on all elemen ts (in the user numbering sequence). 

GOUT 14 : by-pass if element number is not used. 

GOUT 15 : program element number. 

GOUT 16 : element type number. 

GOUT 17 : total number of nodes in element. 

GOUT 19 : loop on all nodes of element. 

GOUT 20 : (program) node number. 

GOUT 21 : place user node number in output list (i.e. array NLST). 

GOUT 23 : print out the element type, material zone number and the list 


of nodes associated with the element. 
GOUT 24 : end of element loop. 
GOUT 26 : print out array NQ, giving the number of d.oJ. of each node for 

debugging . 
GOUT 28 : print out array NW, giving the g.v.n. of the first d .o.f. of each 

node for debugging. 
GOUT 30-31 : write the total number of nodes and d.o.f. in the problem. 

6.7 PROGRAMMING TECHNIQUES 

It was shown earlier that the d.oJ. of each node for all element types are stored 
in a single array which resides in a COMMON block and which is initialised in a 
BLOCK DATA routine. The element type number LT is used an index to this 
array, LINFO. Note that array LINFO is referred to as LIN in the block data 
routine. For example, if one considers the six-noded triangle (LT = 2) then 
LINFO(21, 2)-LINFO(26, 2) contain the values 

2 2 2 222 

meaning that all six nodes have 2 d.oJ. (dx and dy ). In contrast, in the 
'consolidation' cubic strain triangle (LT = 7) the entries LINFO(21. 7)­
LINFO(42, 7) contain 

Location ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
value ~ 3 3 3 222222222 2 2 2 

'-v-' -------------­ '----'~ 

{I} {2} {3} 

Location ~ 16 17 18 19 20 21 22 
value ~ 1 1 1 1 1 1 
~ 

{4} {5} 

where 

{I} are the vertex nodes with 3 d.oJ. (dx , dy and Ii). 
{2} are the displacement nodes along side (edge) with 2 d.oJ. (dx , dy ). 

{3} are the displacement nodes within element with 2 d.oJ. (dx • dy ). 
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{4} are the pore pressure nodes along side with 1 d.oJ. (u). 
{5} are the pore pressure nodes within element with 1 d.oJ. (u). 

Routine BDA TAl 

BLOCK DATA BOAT 
C············· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • BDA T 2 
C DATA PRESENTED BY LIN (FIRST INDEX) 

1 - TOTAL NUMBER Of NODES (DISPLACEMENT + POREPRESSURE). ••••• NDPT 
2 - TOTAL NUMBER Of VERTEX NODES •••••••••••••••••••••••••••••• NVN 
3 - TOTAL NUMBER Of ELEMENT EDGES •••••••••••••••••••••••••••• NEDG 
4 - TOTAL NUMER Of ELEMENT fACES (30). •••••••••.••••••••••••• Nf AC 
5 - TOTAL NUMBER Of DISPLACEMENT NODES •••••••••••••••••••••••• NON 

C 6 - TOTAL NUMBER Of POREPRESSURE NODES •••••••••••••••••••••••• NPN 
C 7 - NO. Of DISPLACEMENT NODES PER EDGE (EXCLUDING END NODES).NDSD 
C a - NO. Of POREPRESSURE NODES PER EDGE (EXCLUDING END NODES). NPSD 
C 9 - NUMBER Of INNER DISPLACEMENT NODES ••••••••••••• • ••••••••• NIND 

10 - NUMBER OF INNER POREPRESSURE NODES •.••••••••••••••••••••• NINP 
11 - NUMBER Of INTEGRATION POINTS •••••••••••••••••••••••••••••• NGP 
12 - INDEX TO WEIGHTS AND INTEGRATION POINT COORDINATES ••••••• INDX 
13 - INDEX TO VERTEX NODES Of ELEMENTS (ARRAY NfC). •••••••••••• INX 

C 14 - INDEX TO NODES ALONG EDGE (ARRAYS NP1, NP2). •••••••••••• INDED 
C 15 - NUMBER Of LOCAL OR AREA COORDINATES•••••••..•••••••••.••••• NL 
C 16 - TOTAL NUMBER Of DEGREES Of fREEDOM (D.O.f.) IN ELEMENT ••• MDfE 
C 17 - CENTROID INTEGRATION POINT NUMBER •••••••••••••••••••••••• NCGP 
C 21 - ONWARDS THE NUMBER Of D.O.f. Of EACH NODE Of ELEMENT. •••• NDfN 
C 
C ELEMENT TYPES (SECOND INDEX) 
C 1 - 3-NODED BAR •••••••••••••••••••• (2-D) •• 

2 - 6-NODED LST TRIANGLE •••••••••••• (2-D) 
C 3 - 6-NODED LST TRIANGLE •••••••••••• (2-D CONSOLIDATION) 
C 4 - 8-NODED QUADRILATERAL. •••••••••• (2-D) •• 
C 5 - 8-NODED QUADRILATERAL. •••••••••• (2-D CONSOLIDATION) •• 
C 6 - 15-NODED CUST TRIANGLE •••••••••• (2-D) 
C 7 - 22-NODED CUST TRIANGLE•••••••••• (2-D CONSOLIDATION) 
C 8 - 20-NODED BRICK •••••••••••••••••• (3-0) •• 
C 9 - 20-NODED BRICK •••••••••••••••••• (3-D CONSOLIDATION) •• 

10 - 10-NODED TETRA-HEDRA •••••••••••• (3-D) •• 
11 - 10-NODED TETRA-HEDRA •••••••••••• (3-0 CONSOLIDATION) •• 

C 
C .. ELEMENT TYPES NOT IMPLEMENTED IN THIS VERSION 

BOAT 3 

BOAT 4 

BOAT 5 

BOAT 6 

BOAT 7 

BOAT 8 

BOAT 9 

BOAT 10 

BOAT 11 

BOAT 12 

BOAT 13 

BOAT 14 

BOAT 15 

BOAT 16 

BOAT 17 

BOAT 18 

BOAT 19 

BOAT 20 

BOAT 21 

BMT II 

BOAT 23 

BOAT 24 

BOAT 25 

BOAT 26 

BOAT 27 

BOAT 28 

BOAT 29 

BOA: 30 

BOAT 31 

BOAT 32 

BOAT 33 

BOAT 34 

BOAT 3S 

BOAT 36 


37C··························.·························· ..................BDAT 

REAL L 
COMMON IELINfl LIN(50,lS) 
COMMON IDATL 1 L(4, 100) 
COMMON IDATW 1 W(100) 
COMMON ISAMP I. POSSP(5),WEIGP(S) 
DATA LIN(1,1),LIN(2,1),LIN(3,1),LIN(4,1),LIN(5,1),LIN(6,1), 

1 LIN(7,1),LIN(8,1),LIN(9,1);LIN(10,1),LIN(11,1),LIN(12,1), 
2 LI N ( 13, 1 ) , LI N ( 1 4, 1 ) , LI N ( lS, 1 ) , LI N ( 1 6, 1 ), LIN ( 17 , 1 ) , 
3 LIN(21,1),LIN(22:1),LIN(23,1)1 
3 3,2,1,1,3,0,1,0,0,0,5,0,0,0,1,6,3,2,2,21 

DATA LIN (1, 2),LIN (2, 2) ,LIN (3,2), LIN (4,2),LIN (5,2) ,LIN(6,2), 
1 LIN (7,2), LIN (8, 2) ,LIN (9,2) ,LIN (10,2), LIN (11,2) ,LIN (12, 2), 
2 LI N ( 1 3, 2) , LI N ( 1 4 , 2) , LI N ( 1 5, 2 ) , LI N ( 1 6, 2) , LI N(17 , 2 ) , 
3 LIN (21,2), LIN (22, 2), LIN(23, 2), LIN (24, 2) ,LIN (25,2) ,LIN (26, 2)1 
46,3,3,1,6,0,1,0,0,0,7,5,0,0,3,12,7,2,2,2,2,2,21 

DATA LIN(1,3),LIN(2,3),LIN(3,3),LIN(4,3),LIN(5,3),LIN(6,3), 
1 LIN (7 , 3 ) , LI N ( 8, 3 ) , LIN ( 9, 3 ) , LIN ( 1 0, 3 ) , LIN (11 , 3 ) , LIN ( 1 2, 3 ) , 
2 LIN(13, 3) ,LIN (14, 3) ,LIN (15,3),LIN (16, 3) ,LIN (17, 3) ,LIN (21, 3), 
3 LIN(22,3),LIN(23,3),LIN(24,3),LIN(25,3),LIN(26,3)1 
46,3,3,1,6,3,1,0,0,0,7,5,0,0,3,15,7,3,3,3,2,2,21 

DATA LIN(1,4),LIN(2,4),LIN(3,4),LIN(4,4),LIN(5,4),LIN(6,4), 

BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 

38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

53 
54 

55 
56 
57 
58 
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1 LIN(7,4),LIN(8,4),LIN(9,4),LIN(10,4),LIN(11,4),LIN(12,4), BOAT ' 59 
2 LI N(13, 4 ) , LI N ( 1 4, 4 ) , LI N ( 15, 4 ) , LI N(16, 4 ) ,LI N ( 17 , 4 ) , BOAT 60 
3 LIN(21,4),LIN(22,4),LIN(23,4),LIN(24,4),LIN(25,4), BOAT 61 
4 LIN(26,4),LIN(27,4),LIN(28,4)1 BOAT 62 
4 8,4,4,1,8,0,1,0,0,0,9,12,4,3,2,16,9,2,2,2,2,2,2,2,21 BOAT 63 

DATA LINCl,5),LIN(2,S),LINC3,S),LIN(4,5),LIN(5,S),LIN(&,S), BOAT 64 
1 LI N(7 , 5 ) , LIN (8, S ) , LIN (9, 5 ) , LI N ( 1 0, 5 ) , LIN (11 , 5 ) , LIN ( 12, 5 ) , BOAT 65 
2 LIN (13,S),LIN (1 4, 5), LIN (15, 5), LIN (16,5), LIN (17,S), BOAT 66 
3 LIN(21,5),LIN(22,5),LIN(23,5),LIN(24,S),LIN(25,5), BOAT 67 
4 LIN(26,5),LIN(27,5),LIN(28,S)1 BOAT &8 
4 8,4,4,1,8,4,1,0,0,0,9,12,4,3,2,20,9,3,3,3,3,2,2,2,21 BOAT 69 

DATA LIN(l,6),LIN(2,6),LIN(3,6),LIN(4,6),LIN(5,6),LIN(6,6), BOAT 70 
1 LIN(7,6),LIN(8,6),LIN(9,6),LIN(10,6),LIN(11,6),LIN(12,6), BOAT 71 
2 LIN(13,6),LIN(14,6),LIN(15,6),LIN(16,6),LIN(17,6), BOAT 72 
3 LIN(21,6),LIN(22,6),LIN(23,6), BOAT 73 
4 LIN(24,6),LIN(25,6),LIN(26,6),LIN(27,6),LIN(28,6),LIN(29,6), BOAT 74 
5 LI1H3 0 ,6),LIN(31,6),LIN(32,6),LIN(33,6),LIN(34,6),LIN(35,6)1 BOAT 75 
51S,3,3,l,15,O,3,O,3,O,16,21,0,O,3,30,16, BOAT 7& 
6 2,2,2,2,2,2,2,2,2,2,2,2,2,2,21 BOAT 77 

DATA LIN(l,7),LIN(2,7),LIN(3,7),LIN(4,7),LIN(S,7), BOAT 78 
1 LIN(6,7),LIN(7,7),LIN(8,7),LIN(9,7),LIN(10,7),LIN(11,7), BOAT 79 
2 LI N ( 1 2, 7 ) , LI N(1 3, 7 ) , LI N ( 1 4 , 7) , LI N ( 1 5, 7) , LI N ( 1 6, 7 ) , LI N ( 1 7, 7) , BOA T 80 
3 LIN(21,7),LIN(22, 7),LIN(23, 7),LIN(24, 7),LIN(2S, 7), BOAT 81 
4 LIN(26,7),LIN(27,7),LIN(28,7),LIN(29,7),LIN(30,7), BOAT 82 
5 LIN(31,7),LINC32,7),LINC33,7),LIN(34,7),LIN(35,7),LIN(36,7), BOAT 83 
6 LIN(37,7),LIN(38,7),LIN(39,7),LIN(40,7),LIN(41,7),LIN( 42,7)1 BOAT 84 
7 22, 3, 3, 1 , 1 5, 10, 3, 2, 3, 1 , 1 6 , 21 , 0, 0, 3, 40, 16, 3, 3, 3, 2, 2, 2 , 2, 2, 2, 2 , 2 , 2 , BOA T 85 
8 2,2, 2, 1, 1 , 1, 1, 1, 1 , 1 1 BOAT 86 

DATA LIN(l,8),llN(2,8),LIN(3,8),LIN(4,8),LIN(5,8),LIN(6,8), BOAT 87 
1 LIN(7,8),LIN(8,8),LIN(9,8),LIN(10,8),LIN(11,8),LIN(12,8), BOAT 88 
2 LIN(13,8),LIN(14,8),LIN(lS,8),LIN(16,8),LIN(17,8), BOAT 89 
3 LIN(21,8),LIN(22,8),LIN(23,8),LIN(24,8),LIN(2S,8), BOAT 90 
4 LIN(26,8),LIN(27,8),LIN(28,8), BOAT 91 
4 LIN(29,8),LIN(30,8),LIN(31,8),LIN(32,8),LIN(33,8),LIN(34,8), BOAT 92 
5 LI N(3S, 8 ) ; LI N(36, 8) , LI N(37, 8) , LI N(38, 8 ) , LI N(39 , 8 ) , LI N(40, 8) 1 BOA T 93 
6 20,8, 12,6,20, 0,1,0,0,0,27,37,4,3,3,60,27,3,3,3,3,3,3,3,3,3,3,3, BOAT 94 
7 3,3,3,3,3,3,3,3,31 . BOAT 95 

DATA LIN(1,9),LIN(2,9),LIN(3,9),LIN(4,9),LIN(5,9), BOAT 96 
1 LIN(6,9),LIN(7,9),LIN(8,9),LIN(9,9),LIN(10,9), BOAT 97 
2 LIN (11 ,9),LIN(12, 9) ,LIN (13,9) ,LIN(14, 9) ,LIN (15, 9) ,LIN(16, 9), BOAT 98 
3 LIN(17,9),LIN(21,9),LIN(22,9),LIN(23,9),LIN(24,9),LIN(25,9), BOAT 99 
4 LIN(26,9),LIN(27,9),LIN(28,9),LIN(29,9),LIN(30,9),LIN(31,9), BOAT 100 
S LIN(3 2 ,9),LIN(33,9),LIN(34 ,9),LIN(3S,9),LIN(36,9),LIN(37,9), BOAT 101 
6 LIN(38,9),LIN(39,9),LIN(40,9)1 BOAT 102 
7 20,8,12,6,20,8,1,0,0,0,27,37,4,3,3,68,27,4,4,4,4,4,4,4,4, BOAT 103 
83,3,3,3,3,3,3,3,3,3,3,31 BOAT 104 

DATA LIN(1,10),LIN(2,10),LIN(3,10),LIN(4,10),LIN(5,10), BOAT 105 
1 LIN(6,10),LIN(7,10),LIN(8,10),LIN(9,10),LIN(10,10), BOAT 106 
2 LHI(11,10),LIN(12, 10),LIN(13, 10),LIN(14, 10),LIN(15, 10), BOAT 107 
3 LIN(16,10),LIN(17,10),LIN(21,10),LIN(22,10),LIN(23,10), BOAT 108 
4 LIN(24,10),LIN(25,10),LIN(26,10),LIN(27,10),LIN(28,10), BOAT 109 
5 QN(29,10),LIN(30,10)1 BOAT 110 
5 10,4,6,4, 10,0,1,0,0,0,4,64,28, 15,4,30,0,3,3,3,3,3,3,3,3,3,31 BOA T 111 

DATA LIN(1,11),LIN(2,11l,LIN(3,11),LIN(4,11l,LIN(5,ll), BOAT 112 
1 LIN(6,11),LIN(7,11),LlN(8,11),LIN(9,11),LIN(10,11), BOAT 113 
2 LIN(11,11),LlN(12,11),LIN(13,11),LIN(14,11),LIN(15,l1), BOAT 114 
3 LIN(16,11l,LIN(17,11),LIN(21,lll,LIN(22,l1),LIN(23,ll), BOAT 11 5 
4 LIN (24,11) ,LIN (25,11 ),LIN(26, 11) ,LIN(27,ll ),LIN (28,11), BOAT 116 
5 LIN(29, 11),LIN(30, 11)1 BOAT. 117 
5 10,4,6,4,10,4,1,0,0,0,4,64,28, 15,4,34,0,4,4,4,4,3,3,3,3,3,31 BOAT 118 

C-----------------------------------------------------------------B OAT 119 
C AREA COORDINATES - LINEAR STRAIN TRIANGLE - ELEMENT TYPE 2,3 BOAT 120 
C-----------------------------------------------------_____--------BDAT 121 

DATA L(l,6),L(2,6),L(3,6),L(1,7),L(2,7),L(3,7),L(l,8),LC2,8), BOAT 122 
1 L(3,8),L(1,9),L(2,9),L(3,9),LC1,10),L(2,10),L(3,10),L(l,11), BOAT 123 
1 L(2,11),L(3,11),L(1,12),L(2,12),L(3,12)1 BOAT 124 
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1 .797426985353087245,.101286507323456343,.101286507323456343 BOAT 125 
1,.101286507323456343,.797426985353087245,.101286507323456343 BOAT 126 
1,.1012865073234563 43,.101286507323456343,.797426985353087245 BOAT 127 
1,.597158717897698279E-01,.470142064105115082,.470142064105115082 BOAT 128 
1,.470142064105115082,.597158717897698279E-01,.470142064105115082 BOAT 129 
1,.470142064105115082,.470142064105115082,.597158717897698279E-01 BOAT 130 
1,.333333333333333329,.333333333333333329,.3333333333333333291 BOAT 131 

c-----------------------------------------------------------------------BDAT 132 
C LOCAL COORDINATES - LINEAR STRAIN QUADRILATERAL - ELEM TYPE 4, 5 BOAT 133 
C-----------------------------------------------------------------------BDAT 134 

DATA L(1,13),L(2,13),L(1,14),L(2,14),L(1,15),L(2,15), 
1 L(1,16),L(2,16),L(1,17),L(2,17),L(1,18),L(2,18), 
1 L(1,19),L(2,19),L(1,20),L(2,20),L(1,21),L(2,21)1 
1 -0.774596669241483,-0.774596669241483, 

0.774596669241483, -0. 774596669241483, 
0.774596669241483, 0.774596669241483, 

1 -0.774596669241483, 0.774596669241483, 
1 0.,-0.774596669241483, 

0.774596669241483,0., 
0., 0.774596669241483, 

-0.774596669241483,0., 
1 0.,0.1 

BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 

135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 

C----------~------------------------------------------------------------BDAT 147 
C AREA COORDINATES - CUBIC STRAIN TRIANGLE - ELEMENT TYPE 6,7 BOAT 148 
C-----------------------------------------------------------------------BDAT 149 

DATA L(1,22),L(2,22),L(3,22),L(1,23),L(2,23),L(3,23),L(1,24), 
1 L(2,24), L(3,24) ,L( 1,25), L(2,25), L(3,25), L(1 ,26),L(2,26), L(3,26), 
1 L(1, 27), L(2, 27 ),L(3, 27),L(1, 28), L(2, 28),L(3, 28), L(1, 29), 

L(2,29),L(3,29)1 
0.898905543365938,0.050547228317031,0.050547228317031, 

1 0.050547228317031,0.898905543365938,0.050547228317031, 
0.050547228317031, o. 050547228317031, o. 898905543365938, 

1 0.658861384496478,0.170569307751761,0. 170569307751761, 
1 0.170569307751761,0.658861384496478,0.170569307751761, 
1 0.170569307751761,0.170569307751761,0.658861384496478, 
1 0.081414823414554,0.459292588292723,0.459292588292723, 
1 0.459292588292723,0.081414823414554,0.4592925882927231 

DATA L(1,30),L(2,30),L(3,30),L(1,31),L(2,31l,L(3,31l, 
1 L(1,32),L(2,32),L(3,32),L(1,33),L(2,33),L(3,33),L(1,34),L(2,34), 
1 L(3,34),L(1,35),L(2,35),L(3,35),L(1,36),L(2,36),L(3,36), 
1 L(1,37),L(2,37),L(3,37)1 

0.459292588292723,0.459292588292723,0.081414823414554, 
0.008394777409958,0.728492392955404,0.263112829634638, 

1 0.008394777409958,0.263112829634638,0.728492392955404, 
1 0.263112829634638,0.008394777409958,0.728492392955404, 

0.728492392955404,0.008394777409958,0.263112829634638, 
0.728492392955404,0.263112829634638,0.008394777409958, 

1 0.263112829634638,0.728492392955404,0.008394777409958, 
1 0.333333333333333,0.333333333333333,0.3333333333333331 

BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 

150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 

C----------------------------------------------------------------------BOAT 174 
C WEIGHTS - LINEAR STRAIN TRIANGLE - ELEMENT TYPE 2,3 BOAT 175 
C-----------------------------------------------------------------------BOAT 176 

DATA W ( 6 ) , W ( 7l ,W ( 8 ) , W ( 9 ) , W ( 10 ) , W ( 11 ) , W ( 1 2 ) I BOAT 177 
1 .062969590272413570,.062969590272413570,.062969590272413570, BOAT 178 
1 .066197076394253089,.066197076394253089,. 066197076394253089, BOAT 179 
1 .1124999999999999961 BOAT 180 

c-------------------------------------------------------------------BOAT 181 
C WEIGHTS - LINEAR STRAIN QUADRILATERAL - ELEMENT TYPE 4,5 BOAT 182 
C---------------------'------------------------------------------------BOAT 183 

DATA W(13),W(14),W(15),W(16),W(17),WC18),W(19),W(20),W(21)1 BOAT 184 
1 0.30864197530864,0.30864197530864, BOAT 185 
1 0.30864197530864,0.30864197530864, BOAT 186 
1 0.49382716049383, O. 49382716049383, BOAT 187 
1 0.49382716049383,0.493827160493e3,O.790123456790121 BOAT 188 

C----------------------------------------------------------------------B DA T 1 89 
C WEIGHTS - CUBIC STRAIN TRIANGLE - ELEMENT TYPE 6,7 BOAT 190 
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C-------------__________________________________________---------------BDAT 191 

DATA W(22),W(23),W(24).W(25),W(26),W(27),W(28),~1(29), BOAT 192 
1 W(30) ,W(31 ) ,W(32),W(33) ,W(34) ,W(35),W(36) ,W(37)1 BOAT 193 
1 .016229248811599,.016229248811599,.016229248811599, BOAT 194 

.051608685267359, .051608685267359, .051608685267359, BOAT 195 

.047545817133642, .047545817133642, .047545817133642, BOAT 196 
1 • 01 3615157087217, .013615157087217,.013615157087217, BOAT 197 
1 .013615157087217,.013615157087217,.013615157087217, BOAT 198 
1 .0721578038388931 BOAT 199 c-----------_________________________________________________________ --B DA T 200 

C ONE-DIMENSIONAL INTEGRATION BOAT 201
C------------------_______________________________________-------------BDAT 202 

DATA POSSP(1 ),POSSP(2),POSSP(3),POSSP(4),POSSP(5)1 BOAT 203 
1 -0.9061798 45938664,-0.538469310105683,0.0, BOAT 2C 
1 0.538469310105683,0.9061798459386641 BOAT 2( 

DATA WEIGP(1 ),W£IGP(2),WEIGP(3),I-IEIGP(4),W£IGP(5)1 BOAT 20b 
1 0.236926885056189, o. 478628670499366, o. 568888888888889, BOAT 207 
1 0.478628670499366,0.2369268850561891 

END 

BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 
BOAT 

43-47 
48-52 
53-57 
58-63 
64-69 
70-77 
78-86 
87-95 
96-104 

BOAT 105-111 
BOAT 112-118 
BOAT 122-131 
BOAT 135-146 
BOAT 150-173 
OBAT 177-180 
BOAT 184-188 
BOAT 192-199 
BOAT 203-208 

Element type information 
1 - 3-noded bart 
2 - 6-noded LST 
3 - 6-noded LST 
4 - 8 noded quadrilateral1" 
5 - 8 noded quadrilateral t 

6 - 15-noded CuST 
7 - 22-noded CuST 
8 - 20-noded brick t 
9 - 20-noded brickt 

: 10 - lO-noded tetrahedrat 

: 11 - lO-noded tetrahedra t 

BOAT 208 
BOAT 209 

(2-0) 
(2-0) 
(2-0 consolidation) 
(2-0) 
(2-0 consolidation) 
(2-0) 
(2-0 consolidation) 
(3-0) 
(3-0 consolidation) 
(3-0) 
(3 -0 consolida tion) 

: area co-ordinates for LST (type = 2, 3). 
: local co-ordinates for element types 4 and 5. 
: area co-ordinates f9r CuST (type = 6, 7). 
: weights for LST (type = 2, 3). 
: weights for element types 4 and 5. 
: weights for CuST (type = 6, 7) . 
: local co-ordinates and weights for one-dimensional 

integration along edges of 2-0 elements. 

Some of the arrays used in the geometry part of the program are required for the 
main part of the program, but not all of them. Also a substantial number of 
additional arrays are required for the main part of the program. As the arrays are 
dimensioned psuedo-dynamicaUy it is necessary to move some of the arrays 
used in the geometry part of the program to fill the gaps left by the outgoing 
arrays and the gaps due to arbitrary size allocation. The arrays to be used in the 

t These elements are not implemented in the program presented here (but see Appendix 
E). 
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main part of the program are allocated store by starting indexes being set up in 
array G. Then the arrays which have already been formed are moved to their 

new locations. This is executed by routine SHFTlB. 

Routine SHFTIB 

SUBROUTINE SHFTIB(IW6,IA,IB,N) SHFT 1 
C•••••••••••••••••••••••••••••••••••• 11 1111.11111111 1111 •••••••••••••••••••••••• ·SHFT 2 
C ROUTINE TO SHIfT AN INTEGER ARRAY BACKWARDS SHFT 3 
C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ······SHFT 4 

DIMENSION IA (N), IB(N) 
COMMON IDEBUGSI ID1,ID2,ID3,ID4,ID5,ID6,ID7,IDB,ID9,ID10 

SHFT 
SHFT 

5 
6 

SHFT 7 

DO 10 I =1, N 
J=N+1-I 

SHFT 
SHFT 

B 
9 

c 
10 IA(J)=IB(J) SHFT 

SHFT 
10 
11 

IF(ID9.EQ.0)RETURN SHFT 12 

WRITE(IW6,900)N,IA 
900 FORMAT(/1X,9HNUMBER 

RETURN 
,I6/(20I61l ) 

SHFT 
SHFT 
SHFT 

13 
14 
15 

END SHFT 16 

SHFT 8: to shift an INTEGER array with N elements to the right; loop on all 

array elements. 
SHFT 9: shift last term first, to avoid over-writing. 

SHFT 10 : shift (transfer) array element. 

The variables (or parameters) which have not been encountered until now are 
described. These govern the size of the arrays. They vary from element type to 
element type. If different element types are mixed then the size of the variables 
is defined as the largest for the mixed group of element types. 

Values of NDMX, NPMX, LV, NIP, NL and MDFE are obtained as the 
maximum values for the different element types present in the mesh. 

NDMX maximum number of displacement nodes in any element. 

NPMX maximum number of pore pressure nodes in any element. 
maximum number of displacement nodes along a side ( edge). 

NL maximum number of area co-ordinates. 

MOFE maximum number of d.oJ. in any element. 

NB maximum number of columns in the B matrix. 

KES maximum number of entries in the upper triangular element stiffness 

matrix. 
ICT The number of 'consolidation' elements in the mesh. 

NVPN The maximum number of variables at any node 
(= NOIM for drained/undrained analyses) 
(= NDrM + 1 for consolidation analyses; the additional variable 

being the excess pore pressure). 

Sec. 6.7] 	 Programming Techniques 235 

These parameters are determined in routine MAXV AL, which scans the different 
element types present in the mesh and selects the largest value for each 
parameter. Not all arrays are allocated store psuedo-dynamicaUy. Some arrays 
have fixed dimensions and these reside in named COMMONs. 

Routine MAXVAL 

SUBROUTINE MAXVAL(IW6, KLT, LTZ, NDIM, NVRN, NDMX, NPMX, NIP, MXVL 1 
1 NS,NB,NL,NPT,NSP,NPR,NMT,HDFE,KES,NVPN,LV,MXEN,MXLD,f1XFXT) MXVL· 2 

C··································································•••••MXVL 3 
C SETS MAXIMUM VALUES AND SIZES OF SOME ARRAYS MXVL 4 
C· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MXVL 5 

DIMENSION KLT(LTZ) MXVL 6 
COMMON IELINF I LINFO(50,15) MXVL 7 
COMMON IPARS I PYI,ALAR,ASMVL,ZERO MXVL B 

C-----------------------------------------------------------------------MXVL 9 
C MXEN,MXLD - SIZE OF ARRAYS IN COMMON BLOCKS PRSLD,PRLDI MXVL 10 
C MXLD - MAXIMUM NUMBER OF ELEMENT EDGES WITH PRESSURE LOADING MXVL 11 
C MXEN - MAXIMUM NUMBER .OF DISPLACEMENT NODES ALONG AN EDGE x 2 MXVL 12 
C MXFXT- MAXIMUM NUMBER OF FIXITIES (SIZE OF ARRAYS MF,TF,DXYT) MXVL 13 
C-----------------------------------------------------------------------MXVL 14 

f1XEN=10 MXVL 15 
MXLD=100 MXVL 16 
MXFXT=200 MXVL 17 

C----------SIZE OF t~ATERIAL PROPERTIES (PR) AND TYPE (NTY) ARRAYS MXVL 18 
NPR=10 MXVL 19 
NMT=10 MXVL 20 

C---------ONE-DIMENSIONAL INTEGRATION - NUMBER OF SAMPLING POINTS MXVL 21 
NSP=5 MXVL 22 

C----------NS - SIZE OF D-MATRIX MXVL 23 
NS=NVRN MXVL 24 

C-----------------------------------------------------------------------MXVL 25 
C NVPN - MAXIM UM NUMBER OF D. O. F. IN ANY NODE MXVL 26 
C ADD 1 (FOR PORE-PRESSURE VARIABLE) MXVL 27 
C IF CONSOLIDATION ELEMENTS ARE PRESENT MXVL 28 
C----------------------------------------------------------------------MXVL 29 

ICT=O MXVL 30 
DO 15 LT=l,LTZ MXVL 31 
KC=KLT(LT) MXVL 32 
GOTO(15, 15, 12, 15, 12, 15, 12, 15, 12, 15,12),LT MXVL 33 
GOTO 15 MXVL 34 

12 ICT=ICT+KC 	 MXVL 35 
15 	CONTIN UE MXVL 36 

NVPN =N DIM MXVL 37 
IF (ICT. NE. 0 )NVPN =NDIM+ 1 MXVL 38 

C-----------------------------------------------------------------------MXVL 39 
C MAXIMUM VALUES OF NDMX,NPMX,LV,NIP,NL,MDFE MXVL 40 
C FOR ANY ELEMENT IN MESH MXVL 41 
C-----------------------------------------------------------------------MXVL 42 

NDMX=O MXVL 43 
C-----------------------------------------------------------------------MXVL 44 
C IN THE ABSENCE OF ANY CONSOLIDATION ELEHENTS IN THE MESH MXVL 45 
C NPMX HILL REMAIN O. IN ORDER TO PREVENT ARRAYS BEING SETUP MXVL 46 
C WITH ZERO DIMENSIONS (IN ROUTINE MAIN2) NPMX IS SET TO 1 t1XVL 47 
C----------------------------------------------------------------------MXVL 48 

NPMX=l MXVL 49 
LV=O MXVL 50 
NIP=O MXVL 51 
NL=O MXVL 52 
MDFE=O MXVL 53 

C HXVL 54 
DO 30 LT=l, LTZ MXVL 55 
IF(KLT(LT).EQ.O)GOTO 30 MXVL 56 
IF (N DMX. LT. LINFO (5, LT) )I<DMX=LINFO(5, LT) 	 HXVL 57 

LV 
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IF(NPMX. LT. LINFO(6, LT))NPMX=LINFO(6, LT) 	 MXVL 58 


IF(LV.LT.LINFO(7,LT»LV=LINFO(7,LT) MXVL 59 

IF (tlIP. LT. LINFO(ll, LT) )NIP=LINFO(ll, LT) MXVL 60 

IF(NL.LT.LINFO(15,LT»NL=LINFO(15,LT) MXVL 61 

IF(HDH.LT.LINFO(16,LT»MDF'E=LINFO(16,LT) MXVL 62 


30 CONTINUE MXVL 63 

C-----------------------------------------------------------------------MXVL 64 

C NB - NUMBER OF COLUMNS IN B - MATRIX MXVL 65 

C KES - SIZE OF UPPER TRIANGULAR ELEMENT STIFFNESS MATRIX ES MXVL 66 

C LV - MAXIMUM NUMBER Of DISPLACEMENT NODES ALONG ELEMENT EDGE MXVL 67 

C-----------------------------------------------------------------------MXVL 68 


NB=NDIM·tlDMX MXVL 69 

KES=MDFE·(MDH+l )/2 ~IXVL 70 

LV=LV+2 MXVL 71 

NPT=LV MXVL 72 


CC WRITE(IW6,900)NDIM,NVPN,NPMX,LV,NIP,NL,MDfE MXVL 73 

CC900 FORMAT (11 X, llH NDIM, 16, 2X, 4HNVPN, 16, 2X, 4HN PMX, 16, 2X, 2HLV, 16, MXVL 74 

CC 1 2X, 3HNIP, 16, 2X, 2HNL, 16, 2X, llHMDH, 16) MXVL 75 

CC WRITE(IW6,910)NDMX,NB,KES,NPT MXVL 76 

CC910 FORMAT(/1X,4HNDMX,I6,2X,2HNB,I6,2X,3HKES,I6,2X,3HNPT,I6) MXVL 77 


RETURN MXVL 78 

END MXVL 79 


MXVL 15-17 : sizes of load/fIxity arrays. 

MXEN - maximum no. of displacement nodes along edge X 2 

(size of array in named COMMON PRSLD and 

PRLDI). 


MXLD - maximum no. of element sides with applied 
pressure loads. 

MXFXT - maximum no. of flxities (size of arrays MF, TF and 
DXYT in named COMMON FIX). 

MXVL 19-20 : size of material properties' array. 
MPR maximum number of properties per material. 
MPT maximum number of different material zones. 

MXVL 22-24 : NSP number of sampling point in one-dimensional numeri­

cal integration along element side. 


NS size of D matrix (= number of stress/strain 


components).

I · MXVL 31 loop on all element types.
I 

MXVL 35 : update count of consolidation elements. 

MXVL 37 : maximum number of variables at any node. 

MXVL 38 : add pore pressure variable if consolidation elements are present. 

MXVL 43-53 : zero element type dependent parameters. 

MXVL 55 : loop on all element types. 


MXVL 56-62 : get the maximum value of the following parameters for element 


"I· 	 types in current mesh. 
NDMX number of displacement nodes. 
NPMX number of pore pressure nodes. 

LV number of displacement nodes along side (at this 
stage excluding nodes at either end). 

NIP number of integration points. 
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NL - number of local/area co-ordinates. 
MDFE - number of d.oJ. in element. 

MXVL 69-72 : calculate sizes. 

NB number of columns in B matrix. 

KES - size (number of terms) of upper triangle of element 
stiffness matrix. 



239 

7 

In Situ Stresses 

7.1 INTRODUCTION 

Chapter 5 dealt with how one could set up the in situ stresses from field data or 
from laboratory measurements of samples. This chapter is about setting up the 
in situ stresses for starting a finite element analysis. In addition to specifying the 
stresses, the user has to specify the in situ boundary conditions and stresses 
acting along any unrestrained boundary . A check is carried out to ensure that 
the element stresses and the external loads are in equilibrium at the in situ stage. 

Fig. 7.1 shows the subrou tine hierarchy with routine CPW acting as the main 
control rou tine. Section 7.2 gives a brief explanation of the subroutines listed in 

this chapter. 

RDPROP SORTN2 
CHANGE SHAPE 

RESTRT RDSTRS [ EOUS - FORMB2 ---r- SHAPE 
INSTRS -SHAPE L DETMIN 

INSITU 	 EDGLD -- LODLST 
FIXX 
MAKENZ 

CPW 

-i
DISTLD -SFRl 

EOLOD 	 SELF------,- SHAPE 
RESTRN L DETJCB 
EOLBM -	 REACTCAMCDE 

Fig. 7.1 - Subroutine hierarchy for in situ part of program 

Sec. 7.2] 	 Subroutine List 

Section 7.3 gives the list of principal arrays which have been allocated store 
psuedo-dynamically in array G, as explained in section 4.3.2. Frequent reference 
is made to these arrays in Chapters 7 and 8. 

Section 7.4 lists the routine CPW, which calls other control routines to carry 
out various tasks. Routine RDPROP reads the control parameters for the 
analysis and the material properties in section 7.5. 

Routine RESTRT reads results written on a magnetic tape or disk file from a 
previous run if the analysis is being restarted. It is appropriate to discuss the 
stop-restart facility at the end of the analysis, and therefore it is dealt with in 
section 8.14. 

In section 7.7, routine INSITU cans routine RDSTRS to read the in situ 
stresses. Routine EQLIB calculates the nodal loads equivalent to the in situ 
stresses. In section 7.8 the external pressure loads which should be in 
equilibrium with the in situ stresses are stored by EDGLD. The boundary 
conditions are read by routine FIXX. In section 7.9, routine EQLOD carries out 
an equilibrium check to ensure that the specified pressure loads are in 
equilibrium with the in situ stresses. 

7.2 SUBROUTINE LIST 

Fig. 7.1 shows the subroutine hierarchy, and here follows a brief explanation of 
each subroutine. 

CPW control routine delegates tasks of setting up the in situ stresses to 
routine INSITU. 

RDPROP - reads control parameters for analysis (Le. no. of increment blocks, 
type of analysis) and material properties. 

RESTRT deals with stopping and restarting an analysis. For a restarted 
analysis, it reads results from a past run (see section 8.14). 

INSITU - control routine reads the in situ stresses and the boundary 
conditions and checks that the in situ stresses are in equilibrium. 

CHANGE - elements removed have their element type number negated (i.e. 
array LTYP). (See section 8.4.) 

RDSTRS reads the in situ stresses specified at in situ nodes and interpolates 
values at integration points. 

SORTN2 to find in situ node with larger y co-ordinate. 
SHAPE - calculates the shape functions and derivatives w.r.t. local co­

ordinates. 
EQUB calcula tes nodal loads equivalent to elemen t stresses. 
FORMB2 - calcula tes B rna trix. 
DETMIN calculates determinant and inverse of Jacobian J. 
INSTRS prints out in situ stresses at each integration point for all elements. 
EDGLD stores pressure loads. 

LODLST stores pressure loads. 

FIXX reads fixities along element sides and stores them node by node. 
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EQLOD 	 control rou tine for equilibrium check. Current stresses must be in 

equilibrium with current loading. 

DISTLD 	 calculates nodal loads equivalent to stresses along boundary. 

SFRI 	 used in numerical integration along element boundary. 

SELF 	 calcula tes nodal loads equivalent to body forces for each element. 

OETJCB 	 calculates Jacobian J and its determinant. 
RESTRN 	 interprets nodal fixities in terms of g.v.n. to identify variables with 

prescribed values. 

EQLBM 	 carries out an equilibrium check. Compares nodal loads equivalent 
to element stresses with nodal loads due to boundary loading and 

self-weight and prints them out. 

REACT calculates reactions to earth for prescribed variables and prints 

them. 

lEROSB rou tines to zero REAL and INTEGER arrays. 

7.3 DEFINITION OF PRINCIPAL ARRAYS 

The principal arrays are now categorised according to the purpose they serve. 

7.3.1 Loads 

P 	 incremental loads assembled from various sources form the Right­
Hand Side (RHS) when the equations are solved. 

PT 	 sum of all incremental loads. 
PIB 	 loads for the incremen tal block from various sources t . 
XYFT -	 sum total of all directly specified nodal poin t loads. 
XYFIB 	 directly specified nodal point loads for increment block. 
PCONI 	 nodal loads equivalent to in situ stresses. 
PCOR out-of-balance or correcting loads (= the difference between external 

loads and loads equivalent to internal stresses). 
PEQT nodal loads equivalent to current stresses. 
PEX! excavation loads due to removal of elements. 

PEXIB excavation for increment block due to removal of elements. 

R reactions at nodes which are restrained or which have prescribed 
displacements. 

PT nodal loads equivalent to stresses in an element. 

7.3.2 Displacements 

DI - incremental displacements/excess pore pressures. 
DA - cumulative displacements/excess pore pressures. 

t 	 Pressure loads on boundaries, body forces and forces due to removal or addition of 
elements. 
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7.3.3 Geometry and transformation 

XYl - x, y and z co-ordinates of all nodes (z only for 3-D). 

SHFN displacement shape functions. 


OS -	 derivatives of shape functions w.r.t. local co-ordinates . 
CARTO Cartesian derivatives of shape functions. 


ELCOO local array of co-ordinates of displacement nodes in element. 

ELCODP local array of co-ordinates of pore pressure nodes in element. 

AA pore pressure shape functions. 


7.3.4 Stresses and strains 

VARINT - stress parameters at all integration points. 

SIR - strains at all integration points. 


7.3.5 Stiffness and flow matrices 

o stress-strain rela tionship (constitu tive mOdel). 

B displacement-strain matrix. 

DB D post-multiplied by B. 


SS - upper triangular part of BTDB (element stiffness matrix). 

ES (SG) - square element stiffness matrix. 


7.3.6 Flow and coupling matrices 

E - multiplies pore pressure to give pore pressure gradients. 

PE - kE 

RN - BTM 


ETE - flow matrix J ETkEhw d (vol). 
V 

RLT - coupling matrix J BTmN d (vol). 
V 

7.3.7 Integer arrays 

NCONN list of nodes associated with each element. 

MAT - material zone numbers for each element. 

LTYP element type numbers for each element. 

MRELVV - user element numbers. 


MREL program element numbers. 

NRELVV - user node numbers. 


NREL - program node numbers. 


NW global variable numbers of first variable of each node. 

NQ - number of d.oJ. of each node. 


JEL - list of element changes (added/removed). 


IDFX identifier of free nodal d.o.f. from restraints (0 - free; 1 - fixed). 

IFR list of nodes currently in front (during solu tion). 

NDEST destination of nodes to front. 

NDL 
 index to front region of stiffness terms. 
NWL local array of element pore pressure d.oJ. 
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identifier of yielded elements (not used in this version). NMOD 
indexes to array NCONN of nodes at either end of element sides. NPl,NP2 

7.4 CONTROLLING ROUTINE 

Routine CPW is the main controlling routine which instructs other control 
routines to carry out various tasks (see Fig. 7.1). Routine RDPROP reads the 
control parameters for the analysis and the material properties. Routine 
RESTRT reads results written to a magnetic tape or disk file from a previous run 
if the analysis is being restarted. Routine RDSTRS reads the in situ stresses, 
boundary conditions and loads which are acting before the analysis is started. 

Routine CPW 

SUBROUTINE CPWCNN,NEL,NDF,NNOD1,NTPE,NIP,NVRS, CPW 1 
1 NVRN,NDIl1,MUMAX,NDZ,IFRZ,NNZ,NDMX,NPMX, CPW 2 
2 NS,NB,NL,NPR,NMT,NPT,NSP,NPL,MDFE,KES,NVPN, CPW 3 
3 INXL,MXEN,HXLD,MXfXT, LV ,MCORE, UNK1, NVTX, ND,MDZ, NEDZ, CPW 4 
4 XYl,DI,DA,VARINT,P,PT,PIB,REAC,PCOR,PEQT,XYFT,XYFIB, CPW 5 
5 STR,PEXIB,PEXI,PCONI,D,ELCOD,OS,SHFN,CARTD,B,DB,FT,SS,ES,ELCODP, CPW 6 
6 E,PE,RN,AA,ETE,RLT, CPW 7 
7 NCONH,MAT,LTYP,MRELVV,MREL,NRELVV,NREL,NW,NQ, CPW 8 
8 JEL,IDFX,NDEST,NP1,NP2,IFR,NDL,NWL,NMOD, CPW 9 
3 CIP,LL,V,FXYZ,PR,PDISLD,PRES,NTY,A,MFZ, CPW 10 
4 NOIB,TTIME,TGRAV,IUPD,ICOR,IDCHK,INCT) CPW 11C.4 • 4 •••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••·········CPW 1 2 ~ 

C MAIN CONTROLUNG ROlITINE - INSITU STRESSES CPW 13I C.44 ••••••••••••• 44 ••••••••••••••••••••••••••••••••••••••••••••••••••••• CPW 14! ,i. 
REAL L, LL 
INTEGER IF 

c--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE 
C--------PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION 
CC REAL A 

DIMENSION XYZCNDIM,NN),DICNDF),DACNDF),VARINTCNVRS,NIP,NEL), 
1 PCNDF),PTCNDF),PIBCNDF),REACCNDF),PCOR(NDF),PEQT(NDF),xyFT(NDF), 
2 XYFIB(NDF),STR(NVRN,NIP,NEL),PEXIB(NDF),PEXICNDF),PCONI(NDF) 

DIMENSION D(NS, NS),ELCOD(NDIM, NDMX),DS(NDIM,NDMX),SHFN(NDMX), 
1 CARTD(NDIM,NDMX),B(NS,NB),DB(NS,NB),FTCNDIM,NDMX), 
2 SSCNB,NB),ES(KES)

DIMENSION ELCODP(NDIM,NPMX),E(NDIM,NPMX),PE(NDIM,NPMX), 
1 RN(NB),AA(NPMX),ETECNPMX,NPMX),RLT(NB,NPMX) 

DIMENSION NCONN (NTPE, NEL) ,MAT (NEL) , LTYP CNEU, MRELVV (NEL), 
1 MR EL(MUMAX), NR ELVV (NN), NR EL (NNZ) ,NW (NNODl ), NQ (NN), JEL (NEL), 
2IDFX(NDF),NDEST(NN),NPl(NPL),NP2(NPL) 

DIMENSION IFR(IFRZ),NDL(MDFE),NWLCNPMX),NMOD(NIP,NEL) 
DIMENSION CIP(NDIM),LL(NL),VCLV),FXYZ(NDIM),PR(NPR,NMT), 

1 PDISLD(NDIM,LV),PRES(NDIM,LV),NTY(NMT),A(MFZ)
C 

COMMON /FLOW / NPLAX 

COMMON /DATL / L(4, 100) 

COMMON /DATW / W(100) 

COMMON /EUNF / LINFO(50, 15) 

COMMON /FIX / DXYT(4,200),MF(200),TF(4,200),NF 
COt1MON /PRSLD / PRESLD(10,100),LEDG(100),NDE1(100),NDE2(100),NLED CPW 40 
COMMON /PRLDI / PRSLDIC10,100),LEDIC100),NDI1(100),NDI2(100),ILOD CPW 41 
COMMON /DEVICE! IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 CPW 42 
COMMON /PARS / PYI,ALAR,ASMVL,ZERO CPW 43 

C----------------------------------------------------------------------_CPW 44 
LINK2 =1 CPW 45 
TTIME=ZERO CPW 46 

Sec. 7.4] Controlling Routine 

READCIR5,·)IDCHK 

WRITECIW6,922)IDCHK 

IF (I DCHK. EQ. 0 )WR!IE (IW6, 930) 

IFCIDCHK.EQ.1)WRITE(IW6,935) 

IF(IDCHK.EQ.2)WRITECIW6,940) 


C----------IF ONLY TO TEST GEOMETRY DATA 
IFCIDCHK.EQ.l)STOP 
IF(LINK1.EQ.LINK2) GO TO 1 
WRITE(IW6,904)LINK1,LINK2 
STOP 

C 
CALL ZEROR3(STR,NVRN,NIP,NEL) 

CC WRITECIW6,910)LINK2 

STOP HERE 

WRITE (IW6, 801 )NN, NEL, NDF, NNOD1, NTPE, NIP, NVRS 

WRITE(IW6,802)NDIM,MUMAX,NDZ,IFRZ,NNZ,NDMX,NPMX 

WRITE(IW6,803)NS,NB,NL,NPR,NMT,NPT,NSP 

WRITE(IW6,804)NPL,MDFE,KES,NVPN INXL MXEN MXLD 

WRITE(IW6,805)MXfXT,LV,MCORE,NVTX,ND' , 


801 FORMAT(/lX,8HNN = ,I5,3X,8HNEL = ,I5,3X,8HNDF ,15, 
1 3X,8HNNODl = ,I5,3X,8HNTPE = ,I5,3X,8HNIP
2 3X,8HNVRS = ,15) = ,15, 

C 
802 FORMAT(/lX,8HNDIM = ,I5,3X,8HMUMAX = ,I5,3X 8HNDZ ,15, 

1 3X,8HIFRZ ,I5,3X,8HNNZ = 15 3X 8HNDMX' - 15 
23X,8HNPMX = ,15) , " -" 

C 
803 FORMAT(/lX,8HNS = ,I5,3X,8HNB = ,15, 3X, 8HNL ,15, 

1 3X,8HNPR = ,I5,3x,8HNMT = ,I5,3X,8HNPT = ,15, 
2 3X,8HNSP = ,15) 

C 
804 FORMAT(/lX,8HNPL ,I5,3X,8HMDFE ,I5,3X,8HKES ,15, 

1 3X,8HNVPN = ,I5,3X,8HINXL = ,I5,3X,8HMXEN = ,15, 
2 3X,8HMXLD = ,15) 

C 
805 FORMAT(/lX,8HMXFXT ,I5,3X,8HLV ,I5,3X,8HMCORE = ,15, 

1 3X,8HNVTX = ,I5,3X,8HND = ,I5//1X,120(lH'» 
C----------------- ­
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C ROUTINE TO RE~~~~~~;~-~;~~~~-~~~-~~~~;~~~-;;~;~;~~~~-----------CPW 85C--------------------------~----------------- CPW 86 
CALL RDPROP(NPR,NMT,NPLAX,NMAT,NOIB,INC~~~~;-~~~----------------cPW 87 

1 IPRIM, IUPD,ICOR,PR,NTY,NDIl1) " CPW 88 
C---------------------------------------------------- CPW 89C STOP/START FACILITY -------------------CPW 90 
C---------------------------------------- CPW

CALL RESTRT (INCS, INCF, NN, NVTX ND NE~~~F---NT--PE---N-I-P-----------------c PW 
91 

1 NV ' , , , , , CPW 92 
RS,NVRN,MUMAX,NNZ,NNOD1,NDIM,MDZ,NEDZ,NL,INXL, 93 

2 NCON .t.l. LTYP, MRELVV, MREL NRELVV NREL NW NMOD CPW 94 
3 XYZ, DA, VARINT, PC OR ,XYF-i-, STR, P~ONI, -i-TI~E, TG~A V) CP~I 95 

C------------- CPW 96C SETUP IN=;i~-;~~;;~;-~~~-~~~~~-;~-~~~~~;~~------------------CPW 97 
C------------------------------------------- CPW 98 

IF(INCS.EQ.l)CALL INSITU(NN,NEL,NDF,NN~~-~~;~-~~;-~~~~-~~;~------CPW 99 
1 ~lUMAX, NNZ, NDZ, NPL, NDMX, NS, NB, NL, LV, NPR: NMT, NPT, NSP,' , ~~ 100 
2 XYZ,DA,VARINT,P,PT,PCOR,PEQT,XYFT,PEXIB,PCONI ELCOD os SHFN CPW 101 
3 CARTD,B,FT,NCONN,MAT,LTYP,MRELVV,MREL,NREL,NW:NQ,JEL IDFX ' CPW 102 
4 NP 1, NP2, NHOD, CIP, LL, V, PR, PDISLD, PRES, NTY, " 103 
5 A,MFZ, INXL,MXEN,MXLD,MXFXT, TGRAV, IPRIM) CPW 104 

C----------------------------------------------- CPW 105
C ROUTINE TO PRINT CAM_CLAY STRESS STATE COD~~----------------------CPW 106 
C------------------------------------------------- CPW 107CALL CAMCDE(IW6) ----------------------CPW

CPW 108 
C CPW 109 

RETURN CPW 110 
CC900 FORMAT(80Al) CPW 111 
CC903 FORMAT(lX,80Al) CPW 112 
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904 	 FORMAT(1110X,32HERROR ---- LINK CODE MISMATCH,215) CPW 113 C---------------------------------------------------------------RDPR 27
CPW 114 INCT=INCS-1 	 RDPR 28CC910 FORMAT(/10X,12HLINK CODE =,15) CPW 115 IF(NDIM.NE.3)GOTO 8 	 RDPR 29CC917 FORMAT(IS) CPW 116 WRITE(IW6.928) 	 RDPR 30CC918 FORMAT(111X, 120(1H·» CPW 117 GOTO 10 	 RDPR 31922 	 FORMAT(/1X,20HDATA CHECK OPTION = ,lSI) 

930 	 FORMAT(lX,32HCOMPLETE ANALYSIS IS CARRIED OUT/) 
CPW 118 8IF(NPLAX.EQ.0)WRITE(IW6,930) RDPR 32 
CPW 119 IF(NPLAX.EQ.l)WRITE(lW6,931) RDPR 3393S FORMAT(1X,30HONLY GEOMETRY DATA ARE CHECKED/) 

IN-SITU STRESSES CHECKED/) 	 CPW 120 10 CONTINUE RDPR 34 
CPW 121940 	 FORHAT(1X,42HGEOt1ETRY DATA AND C-------------_________________________________________-----------RDPR 35 

END C READ OUTPUT REDUCING OPTIONS. THIS OPERATES ON RECORDS RAND T2 RDPR 36C--------------____________________________________________---------RDPR 37 

READ (lR 5, • )lBC. IRAC, NVOS, NVOF , NMOS. NMOF , NELOS, NELOF RDPR 38
CPW 47-48 : read flag to stop analysis. (Allows only part of the input data to WRITE(IW6, 945 )I13C, IRAC, NVOS, NVOF, NMOS, NMOF, NELOS, NELOF RDPR 39C-----------------_____________________________________________---RDPR I'

be checked, without carrying out the complete analysis.) 
C READ MATERIAL PROPERTIES RDPR

CPW 54-55 : check link number (allowing for the possibility that the pro­	 C---------------___________________________ ___________________-------RDPR~ ,,­
gram can be split into two parts; geometry part and main part. CALL ZERClIl2(PR, NPR, NMT) RDPR 43 

C RDPR 44
This ensures correct linkage between the parts). WRITE (lW6, 932) RDPR 45 

CPW 87-88 : read control parameters and material properties. DO 20 I=1,NMAT RDPR 46 
READ(IRS,·)II,NTY(II),(PR(JJ,II),JJ=l,NPR) 	 RDPR 47

CPW 92-95 : stop-restart facility . Write information to a file in magnetic WRITE (lW6, 936)II, NTY (II), (PR (J J, II), JJ=1, NPR) RDPR 48 
tape or in disk. This enables the analysis to be stopped and 20 CONTINUE RDPR 119 

RETURN RDPR 50 
restarted . 922 FORMAT (! RDPR 51 

CPW 99-104: in situ stresses are set up and equilibrium checked at this stage . 1 10X,LJ6HPROBLEM TyPE ••..•..••••.•••••.. .••.•••••••••• =,151 RDPR 52 
2 lOX,1I6HNUMBER OF MATERIALS ..•••••••..•••••••••••••.• =, 151 RDPR 53

CPW 108 : print out Cam-clay codes. 3 lOX, LJ6HNUMBER OF INCREMENT BLOCKS •••..••...• • •••..•. =, 151 RDPR 511 
II 10X,46HSTARTING INCR NUMBER OF ANALYSIS •...••••••.•• =,I51 RDPR 55 
5 10X,46HFINISHING INCR NUMBER OF ANALYSIS ..•.••••.•.. =,I51 RDPR 56 
6 10X,LJ6HNUMBER OF PRIMARY ELEMENT CHANGES •••••••••••• =,I51 RDPR 57 

7.5 	CONTROL PARAMETERS AND MATERIAL PROPERTIES 7 10X,1I6HOPTION TO UPDATE COORDINATES••.•••.••••••.••• =,I51 RDPR 58 
8 lOX, 46HOPTION TO STOP/RESTART ANALYSIS ....•••.. .•... =,151 RDPR 59 
9 1120(1H·)/) RDPR 60Routine RDPROP reads the control parameters for the analysis and also reads 

925 FORMAT(/1X.29HERROR IN NO. Of INCREMENTS = ,15, RDPR 61 
the material properties for the different material zones specified in the mesh. 1 LJX,7HINCS = ,I5.IIX.7HINCf = ,I5,2X,16H(ROUTINE RDPROP» RDPR 62 

928 FORMAT(!/1X.22H3-DIMENSIONAL ANALYSIS) RDPR 63 
930 fORMAT(111X,21HPLANE STRAIN ANALYSIS) RDPR 64 . 

Routine RDPROP 	 931 FORMAT(111X,22HAXI-SYMMETRIC ANALYSIS) RDPR 65 
1 	 932 fORMAT(112LJH MATERIAL PROPERTY TABLE RDPR 66 
\ 1 

SUBROUTINE RDPROP(NPR,NMT,NPLAX,NMAT,NOIB,INCS,INCF.INCT. RDPR 1 1 I1X.23(1H-) 	 RDPR 67 
2 	 2 112X.8HMAT TYPE,5X, 1H1, llX, lH2, l1X, 1H3, 11X.1HLJ, llX.1H5. RDPR 681 IPRIM,IUPD,ICOR,PR.NTY.NDIM) . 	 RDPR

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••• ···············RDPR 	 3 3 11X, 1H6, 11X, 1H7, 11X, 1H8, l1X, 1H9, l1X,2H10/) RDPR 69 
LJ 936 FORMAT(lX,2I5,(10E12.4/» RDPR 70C READ CONTROL OPTIONS AND MATERIAL PROPERTIES 	 RDPR 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·············RDPR 	 5 945 fORMAT(!/120(1H·)1 RDPR 
6 1 lOX, 46HOPTION TO PRINT BOUNDARY CONDITIONS ....•.•••. =.I51 RDPRDIMENSION PR(NPR,NHT).NTY(NMT) 	 RDPR 
7 	 2 lOX, 46HOPTION TO PRINT REACTIONS •..••••..........•.• =.I51 RDPR
COM~10N IDEVICE! IR1.IRLJ.IR5.IW2.IWLJ.IW6,nH.IW8,IW9 RDPR 

I· 	
8 3 10X,46HSTARTING VERTEX NODE NUMBER FOR OUTPUT •...... =.I51 RDPR 74COMMON lOUT I IBC, IRAC, NVOS. NVOF. NMOS, NMOF. NELOS. NELOF. ISR RDPR 
9 	 4 lOX, 46HFINISHING VERTEX NODE NUMBER FOR OUTPUT •..... =,I51 RDPR 75C---------------------------------------------------------------RDPR 10 	 5 10X,46HSTARTING MIDSIDE NODE NUMBER fOR OUTPUT .•.•.. =,I51 RDPR 76C ICOR _ OPTION TO APPLY OUT-OF-BALANCE LOADS AS CORRECTING RDPR 

11 	 6 10X,46HFINISHING MIDSIDE NODE NUMBER FOR OUTPUT •••.. =,I51 RDPR 77C LOADS IN THE NEXT INCREMENT 	 RDPR 12 	 7 10X,46HSTARTING ELEMENT NUMBER FOR OUTPUT .••...•..•. =,I51 RDPR 78C ICOR = 0 _ CORRECTING LOADS ARE NOT APPLIED 	 RDPR 
13 	 8 lOX, 46HfINISHING ELEMENT NUMBER fOR OUTPUT ••• •.•.••• =,151 RDPR 79C ICOR = 1 - CORRECTING LOADS ARE APPLIED 	 RDPR 14 9 1120(lH·)/) 	 RDPR 80

C----------------------------------------------------------------~g~~ 15 END RDPR 81 
ICOR=O RDPR 16 

C 17 ­RDPRREAD(IR5.·)NPLAX.NMAT,NOIB,INCS.INCF,IPRIM.IUPD.ISR 
RDPR 18 

101 RITE (IW6. 922)N PLAX, NMAT. NOIB. INCS, INCF , IPRIM, IUPD, ISR 
RDPR 19

NOINC=INCF-INCS+1 RDPR 20 
IF(NOINC.GT.O)GOTO 5 	 RDPR 15 : any out-of-balance loads are not carried forward to next incre-

RDPR 21
WRITE(IW6,925)NOINC.INCS,INCF RDPR 22 	 ment (could be user specified, if need be).
STOP RDPR 23 RDPR 17-18 : read and write control parameters for analysis. C 	 2LJ5 CONTINUE 	 RDPR 

25 	 RDPR 19-20 : check INCF ~ INCS; otherwise stop.
C----------------------------------------------------------------RDPR 26 RDPR 28 : counter of increments.C INCT - COUNTER OF INCREMENT NUMBER 	 RDPR 
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RDPR 32-33 : print analysis type. 
NPLAX = 0, plane strain 

= 1, axisymmetry. 
RDPR 43 : zero material property array. 
RDPR 46-48 : read in material properties. 

7.6 IN SITU STRESSES AT INTEGRAnON POINTS 

Arrays are set up to store the displacements at the nodes and the current values 
of stresses and strains at the integration points. The in situ stresses have to be 
defined at the integration points at the beginning of the analysis and not at the 

nodes (see Fig. 7.2). For most problems the variation of stresses is linear with 
depth and is constant in the horizontal direction. For most horizontally-laid 
layers the stresses and strength are the same at any given depth. Therefore it is 
sufficient to specify the variation of stresses with depth. Hence the stresses are 
defined at selected depths, probably to define non-linear variation by a series of 
piecewise linear curves. These selected points are defined as in situ nodes. These 
in situ nodes serve as reference points from which the stresses are interpolated. 
These in situ nodes should span the entire primary mesh. An error message will 
be printed if elements lie outside this in situ region. These in situ nodes are not 
to be confused with the nodes of the finite element mesh. 

The stresses at all integration points are calculated by linear interpolation. A 
separate option is available to directly specify the in situ stresses at the 
integration points (for example where the ground has a slope and where the 

stresses are not the same in the horizontal direction) if the stress variation is such 
that the above simple option cannot deal with these specific situations. 

Stress jumps usually in o{.. can still be catered for by this option. In situ nodes 
A and B have the same co-ordinates. However, they have different horizontal 
stresses, as shown in Fig. 7.3. For clarity these are shown slightly apart. The 
vertical stress has to be continuous across CD and should have the same value for 
equilibrium to be satisfied. 

7.7 SETTING UP THE IN SITU STRESSES 

Routine RDSTRS deals with the task of setting up the in situ stresses at the 
integration points. It is not sufficient just to set up the in situ stresses. The 
boundary conditions have to be specified either where element sides are 
restrained or where pressures act. These details are necessary to carry out an 
equilibrium check (see section 7.9) at the in situ stage. 

The program carries out a check that the in situ stresses specified are in 
equilibrium with the loads (pressures) acting on the boundary. This loading is 
not to be confused with the loading applied during the analysis. (This is 
illustrated in some example problems in Chapter 9.) Routines other than 
RDSTRS are called, as shown in Fig. 7.l. The master control routine is INSITU. 

Sec. 7.7] Setting up the In Situ Stresses 

3 

7 integration points 

2 
Linear strain triangle 

3 

16 integration points 

2 
Cubic strain triangle 

Fig. 7.2 ­ Integration scheme 

Layer 1 

C r-------{')s o 

Layer 2 

Fig . 7.3 - A jump in horizontal stresses is permissible 
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i C-----------------------------------------------------------------------INST 64 
Routine INS/TU READ(IR5,*)KT,NI INST 65

l ·' WRITE(IW6,926)KT,NI INST 66I, 
c----------IF NI = 0 USE A DEFAULT VALUE OF 1 TO AVOID ARRAY SIZE OF O. INST 67INSTSUBROUTINE INS ITU (NN, NEL, NDF , NNODI , NTPE, NI P, NDIM, NVRS, IF(NI.EQ.O)NI=l INST 68INST 21 MUMAX,NNZ,NDZ,NPL,NDMX,NS,NB,NL,LV,NPR,NMT,NPT,NSP, C----------ALLOCATE STORE IN ARRAY A FOR SOME TEMPORARY ARRAYS INST 69INST 32 XYZ,DA,VARINT,P,PT,PCOR,PEQT,XYFT,PEXIB,PCONI, Ll=NI*NP+l INST 70INST 4

3 ELCOD, OS, SHF N, CARTD, B, F , NCONN, HAT, LTYP, MRELVV, L2:Ll+NVRS*NI*NP INST 71INST 54 MREL, NR EL, NW, NQ, JEL, IDFX, NP 1, NP2, NHOD,CIP, LL, L3=L2+NI INST 72INST 65 v, PR, PDISLD, PRES, NTY ,A,MFZ, INXL,~1XEN,MXLD,MXFXT, L4=L3+NI INST 73 
6 TGRAVI,IPRIM) C 

INST 7 

C***********************~**************************'********************INST 8 
CALL RDSTRS(NN,NEL,NDF,NNODI MUHAX NTPE NIP NVRS NL NB NS NPR ~~~~ 749C SETUP INSITU STRESSES AND CHECK FOR EQUILIBRIUM INST 1 NMT,NDIM,NDMX,KT,XYZ,VARINT,PEoT,ELCOD,DS,SHFN,' , , , INST;~

C*********************~***********'******************************~******INST 2 CARTD,B,F, NCONN,MAT, LTYP,MRELVV, MREL, NW, NMOD, INST •
REAL LL INST 11 3 CIP,LL,PR,NTY,A(1),A(Ll),A(L2),A(L3),NI) INST 
INTEGER TF INST 12 C-----------------------------------------------------------------------INST 7~

C--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE INST 13 C INITIALISE FIXED LOADS, TOTAL POINT LOADS AND TOTAL DISPLACEMENTS INST 80
C________ PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION INST 14 C NF - NUHBER OF FIXITIES INST 81
CC REAL A INST 15 C---------------------------------------------------------~-------------INST 82.

DIMENSION XYl(NDIM,NN),DA(NDF),VARINT(NVRS,NIP,NEL), INST 16 NF=O INST 83 
1 P(NDF),PT(NDF),PCOR(NOF),PEQT(NDF),XYFT(NDF), INST 17 C INST 84 
2 PEXIB (NDF), PCONI(NDF) INST 18 CALL ZEROR1{PCOR,NDF) INST 85 

DIMENSION ELCOD(NDIM,NDMX),DS(NDIM,NDMX),SHFN(NDMX), INST 19 CALL ZEROR 1(XYFT, NDF) INST 86 
1 CARTD(NDHI, NDMX),B(NS, NB),FOlDIM,NDMX) INST CALL ZEROR 1 (P, NDF) INST 87

DIMENSION NCONN{NTPE,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), INST 21 CALL ZEROR1{DA, NDF) INST 88
1 MREL(MUHAX),NREL(Nrn),NW(NNOD1),NQ(NN),JEL(NEL), INST 22 C------------------------------------------~----------------------------INST 89
2 I DFX OlDn ,NP 1(N PL), NP2 (N PL), r-IMOD (N IP, NEL) INST 23 C READ LOADS IN EQUILIBRIUM WITH IN-SITU STRESSES INST 90 

DIMENSION CIPUlDIM),LL(NU,V(LV),PR(NPR,NMT), INST 24 c-----------------------------------------------------------------------INST 91 
1 PDISLD(NDIM,LV),PRES(NDIM,LV),NTY(NMT),A(MFZ) INST 25 NLED=O INST 92 

COMMON IDE VIC EI IR 1, IR 4, IR 5, IW2, IW4, IW6, IW7, IW 8, IW9 INST 26 TGRAVI=ZERO INST 93 
COMMON IFIX I DXYT(4,200),MF(200),TF(4,200),NF INST 27 IF{KT.EQ.O)GO TO 62 INST 94 
COMMON IPRSLD I PRESLD(10,100),LEDG(100),NDE1(100),NDE2(100),NLED INST 28 C INST 95 
COMMON IPARS I PYI,ALAR, ASMVL,ZERO INST 29 READ (IR 5, *) NLODI, NFXI, TGRA VI INST 96 
COMMON lOUT I IBC,IRAC,NVOS,NVOF,NMOS,NMOF,NELOS,NELOF,ISR INST WRITE(IW6,952)NLODI,NFXI,TGRAVI INST 97 
COMrlON IPRECSNI NP INST 3.1 INST 98CINST 32 

IF(NLODI.EQ.O)GO TO 52 INST 99C INST 33
C----------CODE TO INDICATE STAGE OF THE ANALYSIS WRITE(IW6, 960) INST 100INST 34 

INST 101KSTGE=l C 
CALL ZEROI1(JEL,NEL) DO 50 KL=l,NLODI INST 102

INST 35 
mST 36 

C READ(IR5, *)LNE, ND1, ND2, ( (PDISLD(ID, IV), ID=l, 2),1'1=1, NPT) INST 103 
IF(IPRIM.EQ.O) GO TO 28 INST 37 

WRITE(IW6,964)LNE,ND1,ND2,«PDISLD(ID,IV),ID=1,2),IV=1,NPT) INST 10438C--------------------------------------------------------------_________INST INST 105C39C READ AND REMOVE ELEMENTS TO FORM PRIMARY MESH INST DO 100 1'1=1, NPT INST 106 
C----------------------------------------------------------------_______!NST 

41 DO 100 ID=l,NDIM INST 107 
WRITE(IW6,907) INST I DR =NDIM+ l-ID INST , 
READ(IR5,1f)(JEL(J),J=1,IPRIM) INST 42 

100 PRES(ID,IV)=PDISLD(IDR,IV) INST43WRITE (Iw6, 920) (JEL (J), J =1, IPRIM) INST INST 1._C 


C 45 

INST 44 

DO 110 IV=l,NPT INST 111 
CALL CHANGE (Iw6, 0, IPRIH, NN, NNOD 1, NTPE, NI P, NEL, MUHAX, NNZ, NDF , NDIM, INST 

46 DO 110 ID=l,NDIM INST 112 
1 NVRS, NDlU, NL, NB, NS, NPR, NMT, NPT , NSP, NPl, KYZ, VARINT, P, PEXIB, INST 47 110 PDISLD(ID,IV)=PRES(ID,IV) INST 113 
2 ELCOl), DS, SHFN, CARTD, B, F , NCONN ,MAT, LTYP, MR EL, NREL, INST INST 11448 C 
3 NW,JEL,NP1,NP2,MXEN,LL,PR,ZERO) INST CALL EDGLD(IW6,NEL,NDIM,NTPE,NNZ,MUHAX,NPl,NCONN,LTYP,MREL,NREL, INST 115 

C---------------------------------------------------------------________ INST 49 
1 LNE,ND1,ND2,NP1,NP2,PDISLD,PRES,KL,NPT,1,MXLD) INST 116 

C IN ITIA LI SE PRESSURE LOA os INST 50 CONTINUE INST 11751C----------------------------------------------------------_____________INST 52 IF (NF XI. EQ. 0 )GO TO 62 -INST 11852
28 rmm 1 =NDIM+ 1 INST C-----------------------------------------------------------------------INST 11953

CALL ZEROR1(PCONI,NDF) INST C IN-SITU BOUNDARY CONDITIONS INST 12054
CALL ZEROR2(PRESLD,MXEN,MXLD) INST C-----------------------------------------------------------------------INST 12155
CALL ZEROll(LEDG,MXLD) INST WRITE (IW6, 930) INST 12256
CALL ZEROll(NDE1,HXLD) INST CALL FIXX(IR5,IW6,NEL,NTPE,NDIM,NPL,LV,MUMAX,NNZ,NCONN,LTYP, INST 12357J • CALL ZEROI1(NDE2,MXLD) INST 58 1 MREL,NREL,NP1,NP2,V,NFXI) INST 124 
CALL ZEROll(MF,MXFXT) INST C INST 125 
CALL ZEROI2(TF,NDIM1,MXFXT) INST 59 CALL MAKENZ(NTPE,NEL,NN,NCONN,LTYP,NQ,INXL) INST 126 
CALL ZEROR2(DXYT,NDIM1,MXFXT) INST 60 CALL EQLOD (IW6, NN, NEL, NDF , NNOD 1, NTPE, NDIM, I1UHAX, NNZ, NDZ, NPR, NMT, INST 127 
CALL ZEROI2(NMOD, NIP, NEU INST 61 1 NDMX, NL, NPL, NCONN,MAT, LTYP,MRELVV,MREL,NREL, NW, NQ, JEL, IDFX, INST 128

C---------------------------------------------------------______________INST 62 2 NP1,NP2,XYZ,P,PT,PCOR,PEQT,XYFT,PCONI,ElCOD,DS,SHFN,F,LL,PR, INST 129 
C SET UP IN-SITU STRESS SYSTEM INST 63 



250 251 In Situ Stresses 	 [Ch. 7 

INST 130
NPT, NSP ,MXEN, 2, 0, TGRAVI, IRAC, ZERO, KSTGE) 
INST 131 


C 
 INST 132 

62 RETURN 
 INST 133
907 FORMAT(!/1X,38HLIST OF REMOVED ELEMENTS TO FORM, 

INST 134

1 14H PRIMARY MESH/1X,52(lH-)/) 

IN ST 135 

920 FORMAT(2016/) INST 136

926 FORMAT(//10X,301lIN-SITU STRESS OPTION •••• • ~ •• =,I10 

INST 137
1 110X,30HNUMBER OF IN-SITU NODES •••••• =, I10/) 

INST 138
930 FORMAT(/1X,27HIN-SITU BOUNDARY CONDITIONS/lX,27(lH-)/) 
INST 139 


952 FORMAT (/ INST 140
1 10X,46HNUMBER OF EDGES WITH PRESSURE LOAD ••••••••••• =, 151 

INST 141
2 "iOX,46HNUMBER Of EDGES RESTRAINED•••••••••••••••••• • =,151 
INST 142
3 10X,46HIN-SITU GRAVITY ACCELERATION FIELD • • ••••••••• =,F8.1,2X, 
INST 143 


4 1HGI f) INST 144

960 FORMAT (/1 X, 38HSPECIFIED NODAL VALUES OF SHEAR/NORMAL, 

INST 145

1 19H STRESSES (IN-SITU)/1X,57(lH-)/1X,4HELEM, 

INST 146
2 1X,4HNDE1,2X,4HNDE2,2X,4HSHR1,eX,4HNOR1,8X,4HSHR2,8X,4HNOR2, 
INST 147
3 8X,4HSHR3,8X,4HNOR3,8X,4HSHR4,eX,4HNOR4,8X,4HSHR5,8X,4HNOR5/) 
IllST 148 


964 FORMAT(lX,314,10E12.4) INST 149 

END 


INST 35 	 : zero list of element changes. 
: skip if no changes to the initial mesh. INST 37 


INST 42-43 
 : read and write list of changes to initial mesh. 

45-48 : make all removed elements' type numbers negative in array 
INST 

LTYP. 

INST 53-61 : zero all arrays for current analysis. 
: read and write in situ stress option and number of in situ INST 65-66 


nodes. 

: calculate pointers for some arrays in A for calculating in situ
INST 70-73 


stresses (temporary usage). 


INST 75-78 : calculate in situ stresses. 


INST 83 
 : set coun ter of nodal fixities to zero. 

INST 85-88 	 : zero loads/displacements' arrays. 
: skip if in situ stresses have been set to zero. 
: read and write the no . of loads/fixities to maintain equilibrium 

INST 94 

INST 96-97 


at in situ level. 

INST 99 	 : skip if no pressure loads are applied. 
: loop to read pressure loads (which caused in situ stresses) . INST 102 

: read and write pressure loads prescribed along element sides.
INST 103-104 


INST 106-113 
: change sequence of pressures to suit storing. 

INST 115-116 	: enter pressure loads in PRESLD. 
: end of loop to read pressure loads. 

INST 118 	 : skip if no prescribed fixities. 

INST 123-124 	: read sides which are restrained . 

INST 117 


: calculate d.oJ. of each node and total d.oJ. in mesh. INST 126 

: calculate loads equivalent to in situ stresses and carry out an 

equilibrium check at in situ stage. 
INST 127-130 


7.7.1 Simulation of construction events 

Simulation of a construction event (e.g. an embankment) is modelled by adding 
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a set of elements. To do this, these elements are 'removed' or 'inactivated' (they 
do not take part in the analysis until 'added' or 'reactivated') before the first 
increment. This is done by making the element type numbers (array LTVP) 
negative to identify the elements which have been removed. Routine CHANGE 

does this. These elements do not have any in sit~ stresses. In situ stresses are not 
assigned to elements not present at the beginning of the first increment. The in 
situ region need not enclose these elements . When it comes to setting up the in 
situ stresses, these elements are by-passed . 

Routine CHANGE also calculates the implied loadings due to the removal of 
elements. To differentiate between the above two cases (when to - and when 
not to - calculate the implied loads) a flag IN is used in the argument list. Only 
when this is set to 1 are the implied loadings calculated. A detailed description is 
given in section 8.4. 

7.7.2 Read in situ stresses 

Routine RDSTRS deals with the task of setting up the'in situ stresses at the 
integration points. 

Routine RDSTRS 

SUBROUTINE RDSTRS(NN,NEL,NDF,NNOD1,MUMAX,NTPE,NIP,NVRS,NL,NB,NS, RDST 1 

1 NPR,NMT,NDIM,NDMX,KT,XYZ,VARINT,PEQT,ELCOD,DS,SHFN,CARTD, RDST 2 

2 B,FI,NCONN,MAT,LTYP,MRELVV,MREL,NW,NMOD,CIP,LL,PR,NTY,YI, RDST 3 

3 VAR,NLI,NHI,NI) RDST 4 


c····················································· ··················RDST 5 

C SET UP IN-SITU STRESSES RDST 6 


c····················································· ··················RDST 7 

REAL L, LL RDST 8 

DIMENSION XYZ(NDIM, NN), VARINT(NVRS, NIP, NEL) ,PEQT (NDF) RDST 9 

DIMENSION ELCOD(NDIM,NDMX),DS(NDIM,NDMX),SHFN(NDMX), RDST 10 


1 CARTD(NDIM,NDMX),B(NS,NB),FI(NDIM,NDMX) RDST 11 

DIMENSION NCONN(NTPE, NEL) ,MAT (NEL), LTYP (NEL) ,MRELVV (NEL) RDST 12 

DIMENSION MREL(MUMAX),NW(NNODl ),NMOD(NIP,NEL) RDST 13 

DIMENSION YI(NI),VAR(NVRS,NI),NLI(NI),NHI(NI) RDST 14 

DIMENSION CIP(NDIM),LL(NL),PR(NPR,NMT),NTY(NMT) RDST 15 

COMMON IPARS I PYI,ALAR,ASMVL,ZERO RDST 16 

COMMON IDEVICEI IR1,IR4,IR5,IW2,IW4,TI-l6,IW7,IW8,IW9 RDST 17 

COMMON IFLOW I NPLAX RDST 18 

COMMON IDATL I L(4, 100) RDST 19 

COMMON IELINF / LINFO(50, 15) RDST 20 


c-----------------------------------------------------------------------RDST 21 

C ISTGE - CODE TO INDICATE STAGE OF THE ANALYSIS RDST 22 

c-----------------------------------------------------------------------RDST 23 


ISTGE=l RDST 24 

C-----------------------------------------------------------------------RDST 25 

C INITIALISE VARINT - INTEGRATION POINT VARIABLES RDST 26 

C-----------------------------------------------------------------------RDST 27 


CALL ZEROR3(VARINT,NVRS,NIP,NEL) RDST 28 

C-----·-----------------------------------------------------------------RDST 29 

C INITIALISE PEQT - CONTRIBUTION OF FORCES DUE TO ELEMENT IN-SITU RDST 30 

C STRESSES RDST 31 

c-------------------------------------------------~---------------------RDST 32 


CALL ZEROR1(PEQT,NDF) RDST 33 

IF(KT.EQ.O) WRITE(Il-/6,904) RDST 34 

IF(KT-l) 200,8,82 RDST 35 


C-----------------------------------------------------------------------RDST 36 

C READ NUMBER Of IN-SITU NODAL POINTS RDST 37 
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C-----------------------------------------------------------------------RDST 38 YMIN=YI(NSM)
8 WRITE (IW6, 906) RDST 39 	 RDST 1011YMAX~YI (NLA)

DO 	 10 J~l,NI RDST 110 RDST 105C 
C-----------------------------------------------------------------------RDST III 	 RDST 106

IF(YY.LT.YMIN.OR.YY.GT.YMAX)GO TO 115C READ NODE COORDINATES AND VARIABLES RDST 112 	 RDST 107GO TO 118
C-----------------------------------------------------------------------RDST 113 	 ROST 108C 

READ(IR5,·)IL,YI(IL),(VAR(JJ,IL),JJ~l,NVRS) RDST 1111 	 RDST 109115 CONTINUE
10 WRITE(IW6,910) IL,YI(IL),(VAR(JJ,IL),JJ=l,NVRS) RDST 115 	 RDST 110WRITE (IW6, 950 )JUS, IP

C RDST 116 	 RDST 111GO TO 60 
MI=NI-l RDST 117 	 RDST 112c-----------_____________________________________________---------------RDST 
DO 20 IN~l, MI RDST 118 113 

C DIRECT INTERPOLATION FRG! IN-SITU MESH NODES RDSTN1 =IN RDST 119 	 1111C----------------__________________________________________-------------RDST 
N2=IN.l RDST 50 115

118 DY~YI(JJJ)-YI(JJJ.l) 	 RDST
Yl=YI(Nl) RDST 51 116 
Y2=YI (N2) RDST 52 YR=(yY-YMIN)/DY 	 RDST 117 

C RDST 53 C RDST 118 
CALL SORTN2(Yl, Y2,Nl,N2,NMIN,NMAX) RDST 511 DO 50 I=l,NVRS 	 HOST 119 

50 VARINT(I,IP,J)=VAR(I,NSM).(VAR(I,JJJ)-VAR(I,JJJ+l»'YR RDST 120NLI (IN )=NMIN 	 RDST 55 
CC WRITE(IW6,951)J,IP,(VARINT(IU,IP,J),IU=1,NVRS) 	 RDST 121NH I (IN l=NMAX 	 RDS T 56 

KGO=NTY(KM) RDST 122 
GO TO(60,60,52,52,60,60),KGO RDST 123 

20 CONTINUE RDST 57 
C-----------------------------------------------------------------------RDST 58 
C LOOP ON ALL GECl1ETRY MESH ELEMENTS RDST 59 52 	 P=(VARINT(1,IP,J)+VARINT(2,IP,J).VARINT(3,IP,J»'0.333333 HOST 1211 

PC=VARINT(NS+3,IP,J) RDST 125C-----------------------------------------------------------------------RDST 60 
IF(KGO.NE.3)GO TO 54 	 RDST 126DO 80 J =1, NEL RDST '61 
PU =0.5 'PC RDS T 127 LT=LTYP(J) RDST 62 
GO TO 55 RDST 128IF(LT.LT.O)GOTO 80 	 RDST 63 

511 	 PU=PC/2.7182818 RDST 129CC LT=IABS(LT) 	 RDST 611 
55 	 VARINT(NS+2,IP,J)=PRC3,KM)-PR(1,KM)'ALOG(P)- RDST 130JUS=MRELVV(J) 	 RDST 65 

1 (PR(2,KH)-PR(l,K~!)'ALOG(PU) 	 RDST 131
GO TO(80,22,22,22,22,22,22,22,22,22,22,80,80,80,80),LT RDST 66 

60 	 CONTINUE RDS T 132WRITECHI6,915)JUS,LT 	 RDST 67 
80 CONTINUE 	 RDST 133GOTO 80 	 RDST 68 

GOTO 92 	 RDST 131122 	KM=MAT(J) RDST 69 C------------------______________________________________________------RDST 135 
NGP=LINFO(ll,LT) RDST 70 

C DIRECT SPECIFICATION OF IN-SITU STRESSESS 	 RDST 136NDN~LINFO(5,LT) 	 RDST 71 C---------------__________________________________________________-----RDST 137 
INDX=LINFO(12,LT) 	 RDST 72 

82 	 IF(KT.NE.2)GO TO 92 RDST 138NAC=LINFO(15,LT) 	 RDST 73 
WRITE (IW6, 955) 	 RDST 139RDST 711 

C , .. READ FOR ALL INTEGRATION POINTS 	 HDST 1110DO 30 KN~l,NDN RDST 75 
DO 90 IM=l,NEL RDST 1111NDE=NCONN(KN,J) 	 RDST 76 
READ(IR5, ')MUS 	 RDST 1112DO 	 30 ID=l,NDIM RDST 77 
IL=M REL(MUS) 	 RDS T 111 330 ELCODCID,KN )=XYZ(ID, NDE) 	 RDST 78 
LT=LTYP(IL) 	 RDST 11111C-----------------------------------------------------------------------RDST 79 
NGP=LINFO(11,LT) 	 RDST 1115C LOOP ON ALL INTEGRATION POINTS RDST 80 


C RDST 1116
C-----------------------------------------------------------------------RDST 81 
DO 	 85 IP=l, NGP RDSTDO 	 60 IP=l,NGP RDST 82 1117 
READ(IR5,')(VARINT(JJJ,IP,IL),JJJ=l,NVRS) 	 RDSTC----------------------------------------------------------------------RDST 83 	 1118 

85 WRITE(IW6,960 )(VARINT(JJJ,IP,IL),JJJ=1,NVRS) 	 RDSTC CALCULATE INTEGRATION POINT COORDINATES RDST 811 	 1119 
90 CONTINUE 	 RDS T 150 

IPA=IP.INDX RDST 86 151 
C---------------------------------------------------------------- -----R OST 85 	 ________________________________________-----RDSTC---~-------------------

C CALCULATE EQUILIBRIUM LOADS FOR INSITU STRESSES RDSTDO 	 35 IL=l, NAC RDST 87 152 
C ASSEJo1BLE ELEJo1ENT CONTRIBUTION (FI) INTO PEQT 	 RDST 153 

CALL SHAPECIW6,LL,NAC,DS,SHFN,NDIt1,NDN,LT, 1,JUS) RDST 89 1511 
35 LL(IL)=L(IL,IPA) 	 RDST 88 C---------------------___________________________________________----RDST 

92 CR=l. 	 RDSTC RDST 90 	 155 
IF(NPLAX.EQ.l)CH=2.'PYI 	 RDSTDO 	 110 ID=l,NDIt1 RDST 91 156

C RDST 157SUM=ZERO 	 RDST 92 DO 	 100 J=l,NEL RDST 158 
LT=LTYP(J)C 	 RDST 93 

HOST 159 
IF(LT.LE.O)GO TO 100

DO 	 38 I=l,NDN RDST 911 
HOST 16038 SUM=SUM.SHFN(I)'ELCOD(ID,I) 	 RDST 95 MUS=MRELVV(J) RDST 161 

NDN=LINFO(5, LT)110 CIP(ID)=SUM 	 RDST 96 
HOST 162 


NGP=LINFO (11, LT)

C------------------------------------------------- ----------------- -R OS T 98 


YY=CIP(2) 	 RDST·97 
RDST 163

INDX=LINFO(12,LT) HDST 1611 
NAC =LINFO (15, LT)

C SEARCH FOR RELEVANT IN-SITU LAYEH 	 ROST 99 
RDST 165C--------------------------- - ----------------------------------------- -R OST 1 00 C

DO 115 JJJ=l,MI RDST 101 	 HOST 166 
CALL EQLIB (J ,MUS , LT. NGP, NIP, INDX, NTPE, NEL, NDIM, NN, NDMX, NON,NSM=NLI(JJJ) RDST 102 	 HOST 167 

1 NS, N8, NAC, NVRS, XYZ, VARINT, ELCOD, OS, SHFN, CARTD, B, FI,NLA=NHI(JJJ) RDST 103 	 RDST 168 
2 NCONN,LL,ISTGE) HOST 169 
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C 	
RDST 170 RDST 82 : loop on all integration points. 
RDST 171

CC WRITE(IW6,805)MUS,FI 	 RDST 87-88 : local/area co-ordinates of integration point.
RDST 172

CC805 FORMAT(/1X,2HFI,2X,7HELEMENT = ,I5/(lX,6El~.4» 	 : calculate shape functions SHFN.RDST 89
C--------------------------------------------------------------------RDST 173 

C SLOT EQUILIBRIUM LOADS INTO PEQT RDST 174 
RDST 91-97 : co-ordinates of integration point.

C----------------------------------------------------------------------RDST 175 
RDST 101-105: co-ordinates of nodes at top and bottom of layer.

RDST 176
DO 95 IK=l,NDN

NCOR=NCONN(IK,J) RDST 177 RDST 107 : search for integration point in each in situ layer.


RDST 178
Nl=NW(NCOR)-l 	 : layer in which integration point lies is found. 

C 	
RDST 179 RDST 108

RDST 180 : integration point co-ordinate is outside in situ space.


DO 95 ID=l,NDIM 	 RDST III
RDST 181

95 PEQT(Nl+ID)=PEQT(Nl+ID)+FI(ID,IK) 	 RDST 116 : calculate in terpolation factor.
RDST 182

100 CONTINUE 
RDST 119-120 : interpolate stresses at integration poin t.

C-------------------------------------------------------------------RDST 183
RDST 18~

C OUTPUT EQUILIBRIUM LOADS 	 RDST 122 : material type number.
C-------------------------------------------------------------------RDST 185 

as PU for Cam-
CC WRITE(IW6,985)(PEQT(J2),J2=l,NDF) RDST 186 RDST 125-129: calculate p~ (PC) and critical state value of p I 

RDST 187
C 	 clay models.

CALL INSTRS (IW6, Nil, NEL, NTPE, NI P, NVRS, NDIM, NDMX, NIH, MUHAX, NS, NL, 	 RDST 188

RDST 189 RDST 130- 131: calculate voids ratio .


1 XYZ,VARINT,NCONN,MAT,LTYP,MREL,ELCOD,DS,SHFN,CIP,LL,NTY)

200 CONTINUE 	 RDST 190 
RDST 132 : end of loop on integration points.

RDST 191
RETURN


904 FORMAT(/ I1X, 36HIN-SITU STRESSES ALL SET TO ZERO/lX, 36(lH-» RDST 192 RDST 133 : end of element loop. 

RDST 193

906 FORMAT(111X,19HIN-SITU MESH DATA/lX,19(lH-)1 
RDST 19~ RDST 138-139: direct specification of stresses at integration point. 


1 13X,~HNODE,8X,lHY,10X,2HSX, 10X,2HSY,10X,2HSZ, 
RDST 195 RDST 141 : loop on all elements.


2 9X,3HTXY, lOX, lHU,22X,2HPC/) 

910 FORMAT(lX,I5, 10F12.3) RDST 196 

RDST 147-149: read and write stresses at each integration point.

RDST 197

915 FORMAT(lX,7HELEMENT,I5,2X,18HIS OF UNKNOWN TYPE,I5) 
RDST 198 RDST 150 : end of element loop.

950 FORMAT(lX, ~6HWARNING -- POINT OUTSIDE IN-SITU STRESS SPACE, 

1 2X,9HELEMENT =,I5,2X,~HIP =,I5,2X,16H(ROUTINE RDSTRS» RDST 199 
RDST 158 : calculate loads equivalen t to in situ stresses ' loop on all

RDST 200 	 )CC951 FORMAT(214,7E14.4) 	 elements.RDST 201
955 FORMAT(111X,40HDIRECT SPECIFICATION OF IN-SITU STRESSES 

RDST 202
1 I1X,39(lH-» 	 RDST 160 : skip if element is not present in primary mesh.

RDST 203
960 FORMAT(lX, 10£12.5) 	 RDST 162-165: element type dependent parameters.RDST 20~

CC985 FORMAT(!lX,37H£QUILIBRIUM LOADS FOR INSITU STRESSESI 

CC 1 lX,37(lH-)11(10E12.4» RDST 205 RDST 167-169: calculate loads in equilibrium with stresses in element (into
RDST 206

END FI). 


RDST 176-181: slot FIinto PEQT. 


RDST 182 : end of element loop.

RDST 28 : zero array of stresses. 

RDST 188-189: print out in situ stresses at integration points. 
RDST 33 : zero array PEQT; loads equivalent to in situ stresses. 


RDST 34 : if in situ stresses are zero. 

Routine SORTN2

RDST 35 : branch off, depending on in situ stress option . 

SRTN


RDST 40 : no. of in situ nodes. SUBROUTINE SORTN2(Yl,Y2.Nl,N2,NHIN,NHAX) 1 

specified at in situ nodes. C······.·· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SRT 
2: read and write stresses 	 SRT~RDST 44-45 C ROUTINE TO SORT TWO INTEGERS 3

: no. of in situ layers. C·······.·· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SRTN 
4RDST 47 	 SRTN

NM IN =N 1 5
RDST 49-52 : nodes marking each layer. 

NMAX=N2 SRTN 
6 

RDST 54 : enter nodes in the order of increasing depth. IF(Yl.LT.Y2)RETURN SRTN 
7

NMAX=Nl SRTN 8
RDST 55-56 : sort nodes into top-down sequence. 

NMIN=N2 SRTN 9
RDST 61 : loop on all elements. RETURN SRTN 10

END SRTN 11
RDST 63 : skip if element is not present in primary mesh. 


RDST 66 : skip if element type is not present. 

SRTN 5- 9 : sort two nodes; assign NMAX to the node with larger y value. 

RDST 69-73 : element type dependent parameters. 


NCP no. of integration points. 

7.7.3 Integration point co-ordinates

NDN - no. of displacement nodes in element. 

INDX - index to arrays Wand L for different element types. The shape functions are used to calculate the co-ordinates of the integration 

RDST 75-78 : copy nodal co-ordinates into local array ELCOD. points from the nodal co-ordinates. 
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n 
DS(1,5)=-4.·AC2x(t 1/) = L Ni(t 1/) xi, 	 SHPE 43
DS (1,6 )=4. • (AC 3-AC 1 ) SHPE 	 44

i=l 	 C 
SHPE 	 45(7.1) 	 DS(2,l)=0. SHPE 	 46

DS(2,2)=4.*AC2-1.n 	 SHPE 47
DS(2,3)=-(4.*AC3-1.)yet 1/) = ~ Ni(t 1/) Yi · 	 SflPE 48
DS(2,4)=4.·ACl SHPE 	 49i=l 	 DS(2,5)=4.*(AC3-AC2) SHPE 	 50DS(2,6)=-4.*ACl SHPE 	 51\ 1 Routine SHAPE calculates the values of the shape functions Ni-SHFN(NDN). GO TO 80 

SHPE 52C-----------------------------------------------------------------S! It also calculates the derivatives of the shape functions w .r.t. the local co­	 HPE 53C 	 SHAPE FUNCTIONS AND DERIVATIVES FOR QUADRILATERALS SHPE 54ordinates: aNi/at aNi/a1/, which are placed in array DS(NDIM,NDN). These 	 C--------------------------------------------------------------------SHPE 55quantities are required in the calculation of the B matrix (see routine FORMB2). 
14 CONTINUE 	

SHPE 56WRlTE(I'.-I6,910)MUS,LTDuring the course of the analysis, there are many occasions when only the shape GOTO 80 SHPE 5/
SHPE 	 58C------------------------------------------------------------------Sfunctions are required and not their derivatives. This choice is made by assigning 	 HPE 59C 	 SHAPE FUNCTIONS AND DERIVATIVES FOR CUBIC STRAIN TRIANGLE SHPE 	 601 to the parameter ICODE. If set to 2, derivatives are also calculated. 	 C-----------------------------------------------------------------SHPE 6115 CONTINUE 
SHPE 	 62Cl=32.13.

Routine SHAPE C2=64. SHPE 63
SHPE 	 64C3=128./3. 
SHPE 	 65

C4=128.
SUBROUTINE SHAPE (IW6, LL, NAC, OS, SHF N, NDIM, NDN, LT, ICODE, MUS) 1 	 SHPE 66

SHPE 	 Tll=AC1-0.25c...........................................................············SHPE 	
SHPE 67
2 	 T12=AC1-0.50

C 	 SHPE 68SHAPE FUNCTIONS AND DERIVATIVES FOR DIFFERENT ELEMENT TYPES SHPE 3 	 T13=AC1-0.75C•••••••••••••••••••••••••••••••••••••••••••••••••••••••• ···············SHPE 	
SHPE 694 T21=AC2-0.25

REAL LL SHPE 5 T22=AC2-0.50 
SHPE 70 

DIMENSION LL(NAC),SHFN(NDN),DS(NDIM,NDN) SHPE 6 T23=AC2-0.75 
SHPE 71 

C SHPE 7 T31=AC3-0.25 
SHPE 72 
SHPE 	 73AC l=LL( 1 ) 	 SHPE 8 T32=AC3-0.50 
SHPE 	 74AC2=LL (2) SHPE 9 T33=AC3-0.75

IF(NAC.LT.3)GOTO 10 SHPE 10 C------------------------------------------------------------------SHPE
SHPE 	 75

76AC3=LL(3 ) SHPE 11 C SHAPE FUNCTIONS
IF(NAC.LT.4)GOTO 10 SHPE 12 SHPE 77C----------------------------------------------------------------SHPE 78AC4=LL(4 ) SHPE 13 SHFN(l) =Cl'AC1'Tll*T12*T13


C SHFN (2) =C l'AC2*T21 *T22*T23
SHPE 	 14 SHPE 79 
10 GOTO(ll, 13, 13, 14, 14, 15, 15, 17,17,18,18) ,LT SHPE 15 SHFN(3) =C1'AC3'131*T32*T33 

SHPE 80 

WRITE (IW6, 900 )MUS, LT SHPE 16 SHFN(4) =C3'AC1*AC2*T11'T12 
SHPE 81 

900 FORMAT(!lX,7HELEMENT,I5,2X,22HIS OF UNKNO'.-IN TYPE 	
SHPE 82

"',I5,2X, SHPE 17 	 SHFN(5) =C2'AC1'AC2*T11*T21
1 15H(ROIITINE SHAPE» 	 SHPE 83

SHPE 	 SHFN(6) =C3'AC1'AC2*T21*T22STOP 18 	 SHPE 84
SHPE 	 19 SHFN(7) =C3'AC2'AC3*T21*T22C-----------------------------------------------------______________SHPE 	

SHPE 85
20 SHFN (8) =C2'AC2'AC3*T21'131C SHAPE FUNCTIONS AND DERIVATIVES FOR BAR ELEMENT SHFN(9) =C3'AC2'AC3'T31'T32 

SHPE 86
SHPE 	 21 8~ C--------------------------------------------------------------SHPE 	

SHPE
22 	 SHFN (10 )=c 3 'AC l'AC3*T 31'13211 CONTINUE 	 SHPE 8

SHPE 	 23 SHFN(ll )=C2'AC1'AC3*Tl1*T31
WRITE(HI6,910)MUS,LT 	 SHPE 81:1

SHPE 	 24 SHFN (12 )=C3'AC l'AC3*T 11'T 12 90910 FORMAT(llX,7HELEMENT,I5,2X,14HIS OF TYPE "',I5,2X, 	 SHFN(13)=C4'AC1'AC2'AC3*Tl1 
SHPE

SHPE 	 25 SHPE 	 911 31HNOT IMPLEMENTED (ROUTINE SHAPE» SHPE 26 	 SHFN(14)=C4'AC1'AC2'AC3*T21 SHPE 92GOTO 80 
SHPE 	 27 SHF N(15 )=C4 'AC l'AC2'AC3'13"C--------------------------------------------------------------------SHPE IF (ICOD£. EQ. 1 )GOTO 80 

SHPE 93
28 SHPE 	 94C 	 SHAPE FUNCTIONS AND 'DERIVATIVES FOR LST CC--------------------~-----------------------------------------

SHPE 29 	 SHPE 95
_____-SHPE 30 	 DS (1, 1)=C l' (T 12*T 13'(T 11 +AC 1)+AC 1 *T 11 '(T 13+T12)) SHPE 9613 SHFN(1)=AC1'(2.'AC1-l.) SHPE 	 DS(1,2)= o.31 	 SHPE 97SHFN(2)=AC2'(2.'AC2-1.) 	 SHPE 32 

DS (1,3 )=-C l'(132*T33'(AC 3+131 )+AC3*T 31'(T32+133» SHPE 98SHFN(3 )=AC3'(2. 'AC3-1.) 	 DS(1,4)= C3'AC2'(Tl1*T12+AC1'(Tl1+T12»SHPE 	 33 SHi'E 99SHFN(4)=4.'AC1'AC2 	 DS(1,5)= C2'AC2*T21*(AC1+Tl1)SHPE 	 34 SHPE 100SHFN(5)=4.'AC2'AC3 	 OS(1,6)= C3'AC2'T21*T22SHPE 	 35 SHPE 101SHFN(6)=4.'AC1'AC3 SHPE 36 DS (1,7 )=-C3'AC2'T21 *T22 SHPE 102IF(ICODE.EQ.l)GOTO 80 DS (1,8 )=-C2'AC2*T 21'(AC 3+T 31 )SHPE 	 37 SHPE 103SHPE 	 38 DS (1, 9)=-C3'AC2'(T31 *T32+AC 3' (T31+T32 » SHPE 104DS(1,1)=4.·AC1-1. 	 SHPE 39 DS (1,10 )=-C3*(AC l'AC3'(131 +T32 )-T31 *T32'(AC3-AC 1» SHPE 105DS(1,2)=0. SHPE 40 DS (1, 11)= C2'( AC l'AC3 '(131-T 11 )+T31 *T 11 '(AC3-AC 1) SHPE 106DS(1,3)=-(4.·AC3-1.) SHPE 41 DS (1,12)= C3'(AC l'AC3'(T 11+T 12)+T 11 *T12'(AC3-AC 1» SHPE 107DS(1,4)=4.·AC2 SHPE 42 DS(l, 13)= C4'AC2'(AC1'AC3+Tl1'(AC3-AC1» SHPE 108 
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OS(l, 14)= C4*AC2*T21*(AC3-ACl) SHPE 109 7.7.4 Loads equivalent to in situ stresses 
OS(1,15)=-C4*AC2*(AC1*AC3+T3 1 *(AC1-AC3)) SHPE 110 

C SHPE 111 The nodal loads equivalent to the in situ stresses are calculated in routine EQLlB 
OS (2, 1) = O. SHPE 112 and placed in array F(NDF) for each element, and these are later used in the 
OS(2,2) = Cl*(T221t'f23*(AC2+T21hAC21t'f21*(T22+T23)) SHPE 113 

OS(2,3) =-Cl*(T32*T33*(AC3+T31)+AC3*T31*(T32+T33)) SHPE 114 
 equilibrium calculations. 

OS(2,4) = C3*AC1'Tl1*T12 SHPE 115 

OS(2,5) = C2*AC1*T11*(AC2+T21) SHPE 116 

DS(2,6) = C3*AC1*(T21*T22+AC2'(T21+T22)) SHPE 117 
 F(NDF) = [Fx~l.
DS (2, 7) = C3*(AC2*AC3'(T21+T22hT211t'f22'(AC3-AC2)) SHPE 118 

[ l 
FYI 	

J 
DS (2, 8) = C2*(AC2*AC3'(T31-T21 )+T21'T31'(AC3-AC2)) SHPE 119 

DS (2, 9) =-C3*(AC2'AC3*(T31+T32 hT311t'f32*(AC2-AC3)) SHPE 120 

DS (2, 10)=-C3*AC1*(T31*T32+AC3*(T31+T32))· SHPE 121 

DS(2, 11)=-C2*AClIt'f11*(AC3+T31) SHPE 122 
 aNi aNiDS(2,12)=-C3*AC1*TllIt'f12 SHPE 123 --.oxo + -.TxyO 
DS(2, 13):: Clj*AC11t'f11*(AC3-AC2) SHPE 124 

Fxi T ax ay
= JBi . 00 d (vol) = J 	 . d (vol). DS (2, 14)= C 4 *AC 1* (AC 2*AC 3+T21*( AC 3-AC2) ) 	 SHPE 125 Fyi 	 Ve aNi aNiDS (2,15 )=-C4 I AC 1*(AC2*AC3+T31*(AC2-AC3)) SHPE 126 	 [ - . Oyo + --. TxyoGO TO 80 	 SHPE 127 ay ax

C-----------------------------------------------------------------------SHPE 128 
C SHAPE FUNCTIONS ArlD DERIVATIVES FOR BRICK ELEMENT SHPE 129 
C------------------------------------------------------------------SH PE 130 (7.2)

17 	 CONTINUE SHPE 131 

WRITE(IW6,910)MUS,LT SHPE 132 The Bi matrix is given by 

GOTO 80 SHPE 133 


C--------------------------------------------------------------SHPE 134 aNi 
C SHAPE FUNCTIONS AND DERIVATIVES FOR TETRA-HEDRA SHPE 135 0 
C-----------------------------------------------------------------SHPE 136 ax 

18 CONTIN UE SHPE 137 
WRITE(IW6,910)MUS,LT SHPE 138 aNi
GOTO 80 	 SHPE 139 0

80 CONTINUE 	 SHPE 140 ay
RETURN SHPE 141 

END SHPE 142 t


Ni 
0 

SHPE 8-13 : set up ACl, AC2, etc. equal to the integration point co- x 
ordinates. 

aNi aNi
NL = 3 for two-dimensional triangular elements. 

ay axNL = 2 for two-dimensional quadrilateral elements. 

NL = 3 for three-dimensional elements. 


The calculation
SHPE 15 : branch off for different element types. 

SHPE 23 : shape functions and derivatives for bar element (LT = 1; not T


Fi = JB . 00 d (vol) 	 (7.3)
yet implemented). 

SHPE 31-36 : shape functions for six-noded triangular element (LT = 2,3). is expanded and written in long hand, leaving out all zero multiplications using 
SHPE 39-44 : calculate derivatives w.r. 1. local co-ordinates - aNi/at aNi/a17 

aNi 
(LT = 2, 3). 	 CARTD(l, I) = 

axSHPE 56 : shape functions and derivatives for quadrilateral element 
(LT = 4, 5) - not included in this version. aNi 

SHPE 63-75 : set up constants for LT = 6, 7. 	 CARTD(2, I) (7.4)ay
SHPE 79-93 : shape functions for cubic strain triangle (LT = 6, 7). 


SHPE 96-126 : calculate derivatives w.r.1. local co-ordinates - aNi/at aNi/a17 Ni 

B(3, I)

(LT = 6, 7). x 
SHPE 131 : calculate shape functions and derivatives for brick element I, i denote the ith node. 

(LT = 8,9; not yet implemented). 
SHPE 137 : calculate shape functions and derivatives for tetrahedra t This term is only present for axisymmetric problems, x being the radial distance of the 

element (LT = 10, 11; not yet implemented). integration point. 
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Routine EQLIB EQLB 17-18 : multiplication factor for numerical integration. 
EQLB 20 : zero array F. 

EQLB 22-25 : copy nodal co-ordinates into local array ELCOD. SUBROUTINE EQLIB(JJ,MUS,LT,NGP,NIP,INDX,NTPE,NEL,NDIM,NN,NDMX,NDN,EQLB 1 
1 NS, NB, NAC, NVRS, XYZ, VARINT, ELCOD, OS, SHF N, CARTD, B, F, NCOtm, LL, ISTGE )EQLB 2 


c·······································································EQLB 3 EQLB 27 : loop on all integration points. 

C ROUTINE TO CALCULATE FORCES EQUILIBRATING EQLB 4 
 EQLB 30-31 : integration point co-ordinates.
C ELEMENTAL STRESSES EQLB 
C·······································································EQLB 6 EQLB 32-33 : calculate components of B matrix. 

REAL L, LL EQLB 7 EQLB 34-35 : multiplication factor for numerical integration. 
DIMENSION XYZ(NDIM,NN),VARINT(NVRS,NIP,NEL),ELCOD(NDIM,NDMX), EQLB 8 


1 DS (NDIt1, NDMX), SHFN (NDMX), CARTD (NDIM, NDMX), B(NS, NB), EQLB 9 EQLB 37~41 : total stresses u for 2-D. 

2 F(NDIM,NDMX),LL(NAC),NCONN(NTPE,NEL) EQLB
f 	 EQLB 44-45 : additional stress components for 3-0. 

I' 	 COMMON IPARS I PYI,ALAR,ASMVL,ZERO EQLB 11 


I' 	 EQLB 47-53 : calculate JBTu. d (vol) for 3-0, contribution from integration 
COMMON IDATW I W(100) EQLB 12 


:1 COMMON IDATL / L(4,100) EQLB 13 

I COMMON /FLOW / NPLAX EQLB 14 

'J cmlMON /JACB / XJACI(3,3),DJACB EQLB 
 point. 

!I C EQLB 16 

\1 CR=1. EQLB 17 EQLB 57-60 : calculate f BTu. d (vol) for 2-D, contribution from integration 

I, IF(NPLAX.EQ.1)CR=2.·PYI 	 EQLB 18 


EQLB 19 point.

CALL ZEROR2(F,NDIM,tlDMX) 	 EQLB 

C EQLB 21 EQLB 61 : end of integration point loop. 

DO 20 KN=l,NDN EQLB 22 

NDE=NCONN(KN,JJ) EQLB 23 

DO 20 ID=l,NDIM EQLB 24 


20 ELCOD(ID,KN)=XYZ(ID,NDE) 	 EQLB 
C EQLB 26 7.7.5 B matrix 


DO 60 IP=1, NGP EQLB 27 

I PA=IP+INDX EQL8 28 Routine FORMB2 calculates the B matrix, which is made up of terms aNi/aX, 


C 	 EQLB 29 . 
 aNi/ay. These Cartesian derivatives of shape functions are calculated using theDO 30 IL=1,NAC EQLB 

30 LL(IL)=L(IL,IPA) EQL8 31 chain differen tia tion rule: 


CALL FORt1B2 (JJ, MUS, R, RI, NDIM, ND~lX, NDN, NS, EQLB 32 

1 NB,NAC,ELCOD,DS,SHFN,CARTD,B,LL,LT,IP,ISTGE) EQLB 33 aNi aNi a~ aNi a1'/

F9=CR'DJACB'W(IPA) EQLB 34 	 + -- ,
IF(NPLAX.EQ.1)F9=F9·R 

(7.5) 
EQLB ax a~ ax a1'/ ax 


C EQLB 36 

U=VARINT(NS+1,IP,JJ) 	 EQLB 37 aNi aM a~ aNi a1'/
SIGXT=VARINT(1,IP,JJ)+U 	 EQLB 38 + - ­
SIGYT=VARINT(2,IP,JJ)+u 	 EQLB 39 ay a~ ay a1'/ ay
SIGZT=VARINT(3,IP,JJ)+u EQLB 

TXY=VARINT(4,IP,JJ) EQLB 41 

IF(NDIM.EQ.2)GOTO 35 EQLB 42 aNi a~ a1'/ aNi 


C EQLB 43 

TYZ=VARINT(5,IP,JJ) EQLB 44 ax ax ax a~ 

TZX=VARINT(6,IP,JJ) EQLB (7.6) 


C EQLB 46 aNi a~ a1'/ aNi 

DO 50 IN=1,NDN EQLB 47 -- - - ­
F(1,IN)=F(1,IN)+(CARTD(1,IN)'SIGXT+CARTD(2,IN)'TXY EOLB 48 ay ay ay a1'/ 


1 +CARTD(3,IN)'TZX)'F9 EOLB 49 

F(2, IN )=F (2, IN)+ (CARTD(2, IN) 'SIGYT +CARTD( 1, IN) ·TXY EOLB 


1 +CARTD(3,IN)·TYZ)·F9 EOL8 51 	 The aNi/at aNi/a77 terms are calculated in routine SHAPE. The Jacobian matrix 
F(3,IN)=F(3,IN)+(CARTD(3,IN)'SIGZT+CARTD(2,IN)'TYZ EOLB 52 


J(t 77) is given by
1 +CA RTD( 1, IN) 'TZ X) 'F9 EOLB 53 

50 CONTINUE EOLB 54 


GOTO 60 EOLB 

C EOLB 56 
 Yi35 DO 40 IN=1,NDN EOLB 57 	 nJ= [:; :;
F (1, IN )=F (1, IN )+(CARTD(1, IN )·SIGXT+SHFN(IN)·SIGZT'RT EQLB 58 L 	 (7.7)

1 +CARTD(2,IN)·TXY)·F9 EOLB 59 	 ax ay i=1 
40 F(2, IN )=F (2, IN)+ (CARTD(2, IN) 'SIGYT +CARTD (1, IN) *TXY) 'F9 EOLB 
60 	 CONTINUE EOLB 61 a77 a77 


RETURN EOL8 62 

END 
 EOLB 63 The inverse of the Jacobian matrix is then given by 
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a
y 

-aYJaf/ a~ 
r l 	 (7.8)= =[:! ::J -ax ax .a~ af/ det J 

- - [ -- ­
ay ay af/ a~ 

Knowing this, aNi/aX, aN/ay can be calculated from the above equation. The 

determinant of J is calculated in routine DETMIN. 

Routine FORMB2 

SUBROUTINE FORMB2(J,MUS,R,RI,NDIM,NDMX,NDN,NS,NB,NAC, FRMB 1 
1 ELCOD,DS,SHFN,CARTD,B,LL,LT, IP,ISTGE) FRMB 2 

Cff I f fff ffffffl fl I fffff f ff f fff fff ff ffffff ffffff f flf ffff ffff ffff fff ff ff f fFRMB 3 
C FORMS B HATRIX FROM AREA/LOCAL COOR DS LL (NAC) FRMB 4 
C IN ELEMENT J FOR INTEGRATION POINT IP FRMB 5 
CIf I ff ff ff fff f ffl f fff Iff ff f fff If fffff ff fffff ffff fffflfffff fffff f ff f. ····FRMB 6 

REAL LL 

DIMENSION ELCOD(NDIM,NDMX),DS(NDIM,NDMX),SHFN(NDMX), 


1 CARTD(NDIM,NDMX),B(NS,NB),LL(NAC),XJACM(3,3) 

COMMON /FLOW / NPLAX 

COMMON /PARS / PYI,ALAR,ASMVL,ZERO 

COMMON /OEVICE/ IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 

COMMON /JACB / XJACI(3,3),DJACB
C______________________________________________________ 

C. INITIALISE SHAPE FUNCTION AND DERIVATIVES (LOCAL COOROS) 
C---------------------------------------------------- ­

CALL ZEROR2(DS,NDIM,NDMX) 
CALL ZEROR1(SHFN,NDMX) 
CALL ZEROR2(B,NS,NB) 

C 
CALL SHAPE(IW6,LL,NAC,DS,SHFN,NDIM,NDN,LT,2,MUS) 
CALL ZEROR2(XJACM, NDm, NOIM) 

C 
NDN2=2 fNDN 

C 
DO 15 IDIM=1,NDIM 
DO 15 JDIM=1,NDIM 
SUM=ZERO 

DO 12 IN=1,NDN 

12 SUM=SUM+DS(IDIM,IN)IELCOD(JDIM,IN) 

15 XJACM(IDIM,JDIM)=SUH 


C 

CALL DETMIN(IW6,XJACM,XJACI,NDIM,OJACB,MUS,IP,ISTGE) 


CC WRITE(IW6,902)DJACB 

CC902 FORMAT(9H JACOBIAN,2X,E16.5) 


FRMB 7 
FRMB 8 
FRMB· 9 
FR~lB 10 
FRMB 11 
FRMB 12 
FRHB 13----F RM B 14 

FRMB 15 

C-------------------------------------------------------------FRMB 
38C CALCULATE RADIUS FOR AXI-SYM B MATRIX 	 FRMBC______________________________________________________----F RM B 

R=ZERO 
RI=ZERO 
IF(NPLAX.EQ.O)GOTO 28 

C 
DO 25 IN=1, NDN 

25 R:R+ELCOD(1, IN )fSHFN(IN) 
RI:-1.0/R 

28 	DO 35 IN=1,NDN 

DO 35 ID=1.NDIM 

SUM=ZERO 


FRMB
FRMB 
FRMB 
FIlMB 
FRMB 
FRMB 
FRMB 
FRMB 
FIlMB 
FRMB 
FRMB 
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FRMB 51 
DO 30 JD=1,NDIM FRMB 52 

30 SUM=SUM-OS(JO,IN)fXJACI(IO,JO) FRMB 53 
35 CARTD(IO,IN)=SUM FRMB 54 

FRMB 55 
IF(NOIM.NE.2)GOTO 52 FRMB 56 

C-------------------------------------------------------------------FRMB 57 
C 2 - 0 ELEMENT FRMB 58 
C--------------------------------------------------------------FRMB 59 

DO 50 IN=1, NON FRMB 60 
B(1,IN)=CARTO(1,IN) FRMB 61 
B(2,NON+IN)=CARTO(2,IN) FRMB 62 
IF(NPLAX.EQ.O)GOTO 45 FRMB 63 
B(3,IN)=SHFN(IN)fRI FRMB 64 

45 B(4,NDN+IN)=B(1,IN) FRMB 65 
50 B(4,IN)=B(2,NDN+IN) FRMB 66 

C FRMB 67 
52 IF(NOIM.NE.3)GOTO 62 FRI~B 68 

C-----------------------------------------------------_-----FRMB 69 
C 3 - 0 ELEMENT FRMB 70 
C------------------------------------------------------------------FRMB 71 

DO 60 IN=1, NON 
B(1,IN)=CARTO(1,IN) 
B(2,NON+IN)=CARTO(2,IN) 
B(3, NON2+IN )=CARTD(3, IN) 
B(4,IN)=CARTO(2,IN) 
B(4,NDN+IN)=CARTD(1,IN) 
B(5, NON+IN )=CARTD(3, IN) 
B(5,NON2+IN)=CARTO(2,IN) 
B(6,IN)=CARTO(3,IN) 
B(6,NON2+IN)=CARTO(1,IN) 

60 	 CONTINUE 
C 

62 CONTINUE 
RETURN 
END 

FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FIlMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 

72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

_______	FRMB 
FRMB 
FRMB 
~~: 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 
FRMB 

FRMB 

16 
17 
18 
~~ 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

FRMB 17-19 : zero arrays for shape functions (SHFN), derivatives (DS) and 
strain matrix (B). 

FRMB 21 : calculate shape functions (Nd and derivatives w.r.t. ~ and f/ 
(aN/a~, a~-!af/). 

FRMB 22 : zero Jacobian matrix. 
FRMB 26-32 : calculate components of Jacobian matrix J . 
FRMB 34 : calculate determinant of J and inverse rl. 
FRMB 40 : zero radius R for axisymmetric analysis. 
FRMB 44-45 : calculate radius, R, of integration point. 

FRMB 46 : RI is the inverse of R. 
FRMB 48-54 : calculate Cartesian derivatives of shape functions aN/ax, 

aNi/ay. The negative sign is to allow for the sign convention that 
compressive strains are positive. 

FRMB 60-66 : calculate B matrix for two-dimensional elements. 

FRMB 64 : calculate row 3 of B matrix for axisymmetric elements only. 

FRMB 72-82 : calculate B matrix for three-dimensional elements. 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
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I 

,I 


:J. .1 

I Routine DETMIN DETM 13-16 : calculate inverse rl. 

1 DETM 19-29 : calculate the cofactors of J for the three-dimensional case . 


SUBROUTINE DETMIN(IW6,XJACM,XJACI,NDIM,DJACB,JL,IP,ISTGE) DETM DETM 31-32 : calculate determinant of J.c ••••••••••••••••••••••••••••••• • •••••••·.······························DETM 


C CALCULATES DETERMINANT AND INVERSE OF A SQUARE 3X3 MATRIX DETM DETM 38-40 : calculate inverse, rl. 

C•••••••••••••••••••••••••••••••••••••••••• • ••••• ·······················DETM 4 


DH1ENSION XJACM(3,3),XJACI(3,3) 

COMMON IPARS I PYI,ALAR;ASMVL,ZERO 


C 
IF(NDIM.NE.2)GOTO 20 

DJACB=XJACM(1,1)·XJACM(2,2)-XJACM(1,2)·XJACM(2,1) 

IF(DJACB.GT.ZERO)GOTO 15 

GOTO 60 


C 
15 	XJACI(l, 1)= XJACM(2,2)/DJACB 


XJACI(2,2)= XJACM(l, l)/DJACB 

XJACI(1,2)=-XJACH(l,2)/DJACB 

XJACI(2,1)=-XJACM(2,l)/DJACB 

RETURN 


C 
20 	XJACI (1, 1)= (XJ ACIH2, 2) 'XJACM (3,3 )-XJACM (2,3) ·XJACM (3,2» 


XJACI(1,2)=-(XJACH(1,2).XJACM(3,3)-XJACM(1,3)·XJACM(3,2» 

XJACI (1, 3}:: (XJACIH 1, 2)'XJACM (2, 3)-XJACM( 1, 3)·XJACM(2, 2» 


C 
XJACI(2, 1)=- (XJACM (2,1 )·XJACM <3, 3 )-XJACM (2, 3 )·XJACM (3,1» 
XJACI(2,2)= (XJACM(1,1)'XJACM(3,3)-XJACM(1,3)*XJACM(3,l» 

XJACI(2, 3)=-(XJACM( 1,1 ).XJACt1(2, 3)-XJACM( 1, 3)·XJACM(2, 1» 


XJACI (3,1)= (XJACM(2, 1)'XJACM(3, 2)-XJACM (2, 2)·XJACH(3, 1» 
XJACI(3,2)=-(XJACM(1,l).XJACM(3,2)-XJACM(1,2)·XJACM(3,1» 
XJACI(3,3)= (XJACM(1, 1)'XJACM(2,2)-XJACM(2, 1)·XJACM(1,2» 

C 
DJACB=XJ ACIH 1 ,1) ·XJACI( 1,1 )+XJAn1( 1, 2 ).XJACI(2, 1)+ 


1 XJACH(1,3)·XJACI(3,1l 

IF(DJACB.GT.ZERO)GOTO 32 

GOTO 60 


C 
32 DJACBI=1.0/DJACB 

C 
DO 35 ID=1, NDIM 
DO 35 JD=1,NDIM 

35 XJACI(ID,JD)=XJACI(ID,JD)·DJACBI 
RETURN 

60 WRITE(IW6,900)DJACB,JL,IP 
900 FORMAT(/1X,9HJACOBIAN ,E16.5,3X,10HOF ELEMENT,l6,3X, 

1 17HINTEGRATION POINT,I5,3X,29HIS NEGATIVE (ROUTINE DETI1IN» 
WRITE(IW6,910)ISTGE 

910 FOR~1AT(!1X, 36UCODE TO INDICATE STAGE OF ANALYSIS =,151/ 
1 4X,4HCODE,20X,21HSTAGE OF THE ANALYSISII 
2 6X, 49H 1 - CALLED BY RDSTRS/EQLIB/FORMB2 LOAD EQUIVALENT, 
3 19H TO INSITU STRESSES/6X,33H2 - CALLED BY CHANGE/EQLIB/FORMB2, 
4 32H CALCULATION OF IMPLIED LOADINGS/6X, 
5 34H3 - CALLED BY FRONTZ/LSTIFF/FORMB2, 
6 32H CALCULATION OF STIFFNESS MATRIXI 

7 6X,38H4 - CALLED BY UPOUT/FORMB2 CALCULATION, 

8 1X,24HOF STRAINS. OUTPUT STAGE) 


STOP 
END 

DETM 8 

DETM 9 


DETM 10 


: branch off if not two-dimensional problem. 

5 	 DETM 42-44 : print out warning message if det IJ I< zero . 
DETM 

DETt1 6 DETM 45-54 : print out codes to identify stage of analysis for debugging 

DETI1 7 
 purposes.
DEn1 8 

DETM 9 

OETM 
 7.7.6 Print out in situ stresses 
DEn-1 11 

DETM 12 
 The in situ stresses have been calculated at all integration points. Also calculated 
DETI1 13 

DETI1 14 are the equivalent nodal loads for these stresses. 

DEn1 15 
 The in situ stresses calculated at all integration points are printed out in 
DETI1 16 

DETI1 17 routine INSTRS along with Cam-clay parameters p I, q, p~ and e, the voids ratio. 

DETM 18 

DETM 19 
 Routine INSTRSDETM 

DEn1 21 

DETM 22 


DETM 23 

DEn1 24 
 SUBROUTINE INSTRS(IW6,NN,NEL,NTPE,NIP,NVRS,NDIM, INSR 1 


1 NDMX,NMT,MUMAX,NS,NL,XYZ,VARINT,NCONN,MAT,LTYP, INSR 2
DETI1 25 

DElli 26 
 2 MREL,ELCOD,OS,SHFN,CIP,LL,NTY) 	 INSR 3 
c········...............................................................INSR 4
DETM 27 


C ROUTINE TO PRINT OUT IN-SITU STRESSES
DETI1 28 

C BEFORE THE FIRST INCREMENTDETM 29 

C········ ••••••••••••••••••••••••••••••••••••••••••••• '.'•••••DETM 


DETI1 31 
 REAL L, LL 
DIMENSION XYZ(NDIM,NN),VARINT(NVRS,NIP,NEL)DETM 32 

DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MREL(MUMAX)DETI1 33 

DIMENSION ELCOD(NDIM, NDMX), os (NDIM, NDMX) ,SHFN (NDMX), 

1 CIP(NDIM),LL(NL),NTY(NI1T) 
DETM 34 

DETM 35 

DETI1 36 
 COMMON IELINF I LINFO(50,15) 


COMMON IDATL I L(4,100) 

COMI10N IPARS I PYI,ALAR,ASMVL,ZERO 


DETM 37 

DETI1 38 


C
DETI1 39 


NS1=NS+1DETM 
WRITE (IW6, 900)DETI1 41 


900 FORMAT(/1X,34HINTEGRATIONDETI1 42 

11X,34(1H-)/)DETI1 43 

WRITE (IW6, 901 ) DETM 44 


C
DETI1 45 


DO 	 60 MR=1,MUMAX DETM 46 

IF(MREL(HR).EQ.O)GO TO 60
DETM 47 

J =MREL(MR) DElli 48 

LT=LTYP(J)DETM 49 

IF(LTYP(J).LT.O)GO TO 60
DETI1 
NDN=LINFO(5, LT)

DETI1 51 

NGP=LINFO(ll,LT)

DETI1 52 

I NDX=LINFO (12, LT)

OETI1 53 

NAC :;:LINFO( 15, LT)

OETM 54 

KM=MAT(J)

DETM 55 

KGO=NTY(KM)

OETI1 56 

GO TO (11 , 11, 12, 12, 60, 60), KGO 

WRITE(IW6,910)HR,KGO 

GOTO 60 


11 ICAM=O 


: calculate determinant of Jacobian, J, for two-dimensional 	 GO TO 14 

12 ICAM=1

problems. 14 CONTINUE 

: check if determinant of J is positive. WRITE (6, 902 )MR 

PuINT IN-SITU STRESSES I 


'INSR 5 

.INSR 6 


" •• ".'.'INSR 

7 


INSR 8 

INSR 9 

INSR 10 

INSR 
 11 

INSR 12 

INSR 
 13 

INSR 
 14 

INSR 
 15 

INSR 16 

INSR 17 

INSR 18 

INSR 19 

INSR 20 

INSR 21 

INSR 2, 

INSR 23 

INSR 24 

INSR 25 

INSR 26 

INSR 27 

INSR 28 

INSR 29 

INSR 30 

INSR 31 

INSR 32 

INSR 
 33 

INSR 34 

INSR 
 35 

INSR 36 

INSR 37 

INSR 
 38 

INSR 
 39 

INSR 40 

INSR 41 
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DO 18 KN=l, NDN 
NDE=NCONN (KN, J) 
DO 18 ID=l,NDIM 

18 ELCOD(ID,KN)=XYZ(ID,NDE) 

DO lJO IP=l,NGP 
IPA=IP+INDX 

DO 25 IL=l, NAC 
25 LL(IL)=L(IL,IPA) 

CALL SHAPE (IW6,LL,NAC,DS,SHFN,NDIM,NDN,LT,1,MR) 

C 

DO 35 ID=l,NDIM 

SUM=ZERO 

DO 3C I=l,NDN 


30 SUM=SUM+SHFN(I)·ELCOD(ID,I) 

35 CIP(ID)=SUM 

IF (lCAM. NE. nGO TO 38 
EI =VARINT (NS+2, IP, J) 
PCI=VARINT(NS+3,IP,J) 
PE=(VARINT(l,IP,J)+VARINT(2,IP,J)+VARINT(3,IP,J»·0.333333333 
QE=Q(VARINT(l,IP,J),NS,NDIM) 
WRITE (IW6, 903)IP, (CIP nD), ID=l, NDIM), 

1 (VARINT<IK,IP,J),IK=l,NS1),PE,QE,PCI,EI 
GO TO 40 

38 WRITE (IW6, 903)IP, (CI P (I D), ID= 1, NDIM) , (VARINT (IK, I P, J), IK= 1, NS 1 ) 

40 CONTINUE 
60 CONTINUE 

RETURN 
901 FORMAT(lX,7H ELM-IP,5X,lHX,l1X, 1HY, llX,2HSX; lOX, 

1 2HSY, lOX, 2HSZ , 10X,3HTXY,9X, 1HU,10X,2HPE, 
2 llX,lHQ,10X,2HPC,7X,4HVOID) 

;" 	 902 FORMAT(I4) 
903 FORMAT(lX,I5,10E12.4,F7.4) 
910 FORMAT(lX,7HELEMENT,I5,2X,27HIS OF UNKNOWN MATERIAL TYPE,I5, 

1 2X, 16H (ROUTINE INSTRS» 
END 

INSR 23 : loop on all elements in user number sequence. 

INSR 25 : program element no. (1). 

INSR 27 : skip if element is not present in primary mesh. 

INSR 28-31 : element type dependent parameters. 


NDN - no, of displacement nodes. 
NGP no. of integration points. 

(COMMON PRSLD)INDX starting index to arrays Wand L for different element C OF PRESSURE LOADS AT THE BEGINNING OF EACH INCREMENT 'EDGL 10 
types . c· ••••••••••••••••••••• •• ••• •••••••••••••••••••••••••• ··················EDGL 11 

DU1ENSION NCONN(NTPE,NEL),LTYP(NEL),NP1 (NPL),NP2(NPL) EDGL 12
KM material zone number. DIMENSION NREL(NNZ),MREL(MUMAX) EDGL 13 
KGO material type number. DIMENSION PDISLD(NDIM,NPT),PRES(NDIM,NPT) EDGL llJ 

COMMON IELINF I LINFO(50, 15) EDGL 15
INSR 34-39 : separate elements into two categories, COMMON IPRLDI I PRSLDI(10, 100),LEDI(100),NDI1(100),NDI2(100),ILOD EDGL 16 
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INSR lJ2 
INSR lJ3 INSR 55-59 : calculate integration point co-ordinates. 
INSR 44 INSR 62-65 : calculate following parameters for Cam-clay models only.
INSR lJ5 
INSR 46 EI voids ratio. 
INSR lJ7 PCI pre-consolidation pressure (size of yield locus). 
INSR 48 
INSR 49 PE mean normal effective stress (p '). 
INSR 50 QE deviator stress (q).
INSR 51 

INSR 52 INSR 66-67 : print out for Cam~lay elements. 

INSR 53 	 INSR 69 : print out for non-Cam-clay elements . 
INSR 54 
INSR 55 INSR 70 : end of integration point loop. 
INSR 56 INSR 71 : end of element loop.
INSR 57 
INSR 58 

INSR 59 
ItlSR 60 7.8 PRESSURE LOADS AND BOUNDARY CONDITIONS 
INSR 61 
INSR 62 7 .8.1 Pressure loads 
INSR 63 
INSR 64 The external loads which are in equilibrium with in situ stresses are now read in. 
INSR 65 These loads are specified as pressure loads acting along element side.s which lie
INSR 66 
INSR 67 along the boundary. The pressures along the boundary which are restrained need 
INSR 68 not be specified. It is sufficient to specify the restraint boundary condition along
INSR 69 
INSR 70 these sides. Neither the pressures nor the restraint boundary conditions need to 
INSR 71 be specified along free surfaces. A free surface is defined as any boundary free of
INSR 72 
INSR 73 stress and restraint (e.g. ground surface). 
INSR 74 The pressure loads along loading boundaries are read in routine INSITU 
INSR 75 

INSR 76 Routine EDGLD checks that the element side belongs to the element specified, 

INSR 77 and aligns the nodes to follow the anti-clockwise order. The pressure values are 
INSR 78 
INSR 79 then stored in an array .eRESLD in a named COMMON block PRSLD. 

INSR 80 


Routine EDGLD 

SUBROUTINE EDGLD (H/6, NEL, NDIM, NTPE, NNZ, MUMAX, NPL, NCONN, LTYP, MREL, EDGL 1 
1 NREL,LNE,ND1,ND2,NP1,NP2,PDISLD,PRES,KLOD,NPT,KINS,MXLD) EDGL 2 

C·······································································EDGL 3 
C ROUTINE TO ALIGN NODES ALONG LOADED EDGE IN THE ANTI-CLOCKWISE 'EDGL 4 
C ORDER AND TO STORE THE INFORMATION ·EDGL 5 
C THE PRESSURES AT THE BEGINNING OF AN INCREMENT BLOCK ARE STORED 'EDGL 6 
C IN A TEMPORARY ARRAY COMMON BLOCK PRLDI 'EDGL 7 
C THE RATIOS OF THESE LOADING ARE ADDED TO THE CUMULATIVE LIST 'EDGL 8 
C BLOCK 'EDGL 9 

ICAM = 1, Cam-clay element. 
CALL ZEROR2(PRES,NDIM,NPT)= 0, otherwise. 
NE=MREL (LNE) 

INSR 43-46 : copy nodal co-ordinates into local array ELCOD. LI 1=NREL(ND1) 
LI 2=NREL (ND2)INSR 48 : loop on all integration points. 
LT=LTYP (NE)

INSR 51-52 : local/area co-ordinates of the integration point. IF(LT.GT.O)GOTO 15 
WRITE(IW6,901)NEINSR 53 : calculate shape functions SHFN. 

901 FORMAT (1 X, 7HELEHENT, 16, 2X, 27HNOT 

EDGL 17 
EDGL 18 
EDGL 19 
EDGL 20 
EDGL 21 
EDGL 22 
EDGL 23 
EDGL 24 

PRESENT IN CURRENT MESH, EDGL 25 
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1 1X,16H(ROurINE EDGLD» 

RETURN 


15 	 NEDG=LINFO(3, LT) 

NDSD=LINFO(7, LT) 

NTSD=NDSD+2 

INDED=LINFO (14, LT) 


C 
DO 20 K 1 =1, NEDG 

J1=NP1(K1+INDED) 

J2=NP2(K1+INDED) 

11 =NCONN (J 1 , NE) 

12=NCOIlN(J2,NE) 

IF(Ll1.EQ.l1.AND.LI2.EQ . I2)GO TO 25 

IF(Ll1.EQ.I2:A~D.LI2.EQ.ll)GO TO 21 


20 	 CONTINUE 

WRITE (IW6, 903 )KLOD, LNE, ND1, ND2 


903 FORMAT(/13H •••• ERROR :,15, 17H TH LOAD. 
1 2X,25H DOES NOT CONTAIN NODES :,215, 
2 2X, 15H (ROur IN E EDGLD» 

STOP 

ELEMENT,I5, 

[Ch.7 

EDGL 26 
EDGL 27 
EDGL 28 
EDGL 29 
EDGL 30 
EDGL 31 
EDGL 32 
EDGL 33 

34EDGL 
EDGL 35 

36EDGL 
EDGL 37 
EDGL 38 
EDGL 39 

40EDGL 
41EDGL 

EDGL 42 
EDGL 43 

44EDGL 
EDGL 45 

46C-----------------------------------------------------------------------EDGL 
47C ALIGN NODES IN SEQUENCE 	 EDGL 
48C-----------------------------------------------------------~----------EDGL 
4921 LIT=Ll1 	 EDGL 
50Lll=LI2 	 EDGL 
51LI2=LIT EDGL 

NT=ND1 EDGL 52 
ND1=ND2 EDGL 53 
ND2=NT EDGL 54 

C-----------------------------------------------------------------------EDGL 55 
C PRES - CONTAINS THE PRESSURE COMPONENTS ALIGNED IN SEQUENCE EDGL 56 
C-----------------------------------------------------------------------EDGL 57 

58DO 24 J =1, NTSD 	 EDGL 
JBACK=NTSD+l-J EDGL 59 
DO 24 1=1,2 EDGL 60 

24 PRES(I,J)=PDISLD(I,JBACK) EDGL 61 
GO TO 35 EDGL 62 

EDGL 63C 64 
DO 30 1=1,2 EDGL 

25 DO 30 J =1, NTSD 	 EDGL 
65 

30 PRES(I,J)=PDISLD(I,J) EDGL 66 
C-----------------------------------------------------------------------EDGL 67 
C UPDATE OR READ IN A NEW LIST EDGL 68 
C-------------------------------- ---------------------------------------EDGL 69 

35 IF(KINS.EQ.O)GO TO 40 EDGL 70 
C-----------------------------------------------------------------------EDGL 71 
C PRESSURE LOADS IN EQUILIBRIUM WITH IN-SITU STRESSES EDGL 72 
C NEW LIST - READ DIRECTLY INTO COMMON PRSLD EDGL 73 
C-----------------------------------------------------------------------EDGL 74 

CALL LODLST (IW6, LNE, ND1, ND2, PRES, NDIH, NPT, 1, HXLD) EDGL 75 
GO TO 55 EDGL 76 

C-----------------------------------------------------------------------EDGL 77 
C PRESSURE LOADS FOR NEW INCREMENT BLOCK READ INTO COMMON PRSLDI EDGL 78 
C-----------------------------------------------------------------------EDGL 79 

40 ILOD=KLOD EDGL 80 
LEDI (ILOD) =LNE EDGL 81 
NDll (ILOD)=ND1 EDGL 82 
NDI2(ILOD)=ND2 EDGL 83 
IC=O EDGL 84 
DO 50 IV=l, NTSD EDGL 85 
DO 50 IJ=1,2 EDGL 86 
IC=IC+l EDGL 87 

50 PRSLDI(IC,ILOD)=PRES(IJ,IV) EDGL 88 
55 CONTINUE EDGL 89 

RETURN EDGL 90 
END EDGL 91 

Sec. 7 .8] Pressure Loads and Boundary Conditions 

EDGL 18 : zero array PRES (which temporarily holds the applied pressure 
load). 


EDGL 19 : program element number. 

EDGL 20-21 : program node numbers of nodes at either end . 

EDGL 22 : element type number. 


EDGL 28-31 : element type dependent parameters. 
NEDG no. of element sides (edges). 
NDSD no. of displacement nodes along side (excluding 

nodes at either end). 
NTSD total no. of displacement nodes along side. 
INDED starting index to arrays NP1, NP2. 

EDG L 33-40 : find element side with applied pressure load by comparing nodes 
at either end (normal and reverse sequence). 

EDGL 41-44 : side not found in element; stop. 
EDGL 49-54 : side found; reverse the nodes to conform with anti-clockwise 

sequence. 
EDGL 58-61 : do the same with pressure components. 
EDGL 64-66 : array PRES contains pressure load terms in correct sequence. 
EDG L 70 : skip if load is for an increment block. 
EDGL 75 : read directly into PRESLD in named COMMON PRSLD. 
EDGL 80-88 : read into temporary array PRSLDI in named COMMON PRLDI. 

Routine LODLST 

SUBROUTINE LODLST(IW6,LNE,ND1,ND2,PRES,NDIM,NPT,ILST,MXLD) LDLS 1 

C··········· .. ······································ ..··············....LDLS 2
C ROUTINE TO STORE CUMULATIVE LIST OF APPLIED LDLS 3 
C PRESSURE LOADING ALONG ELEMENT EDGES LDLS 4 

C·····················································.···········.·... ·LDLS 5
DIMENSION PRES(NDIM,NPT) LDLS 6 
COMMON IPRSLD I PRESLD(10, 100),LEDG(100),NDE1(100),NDE2(100),NLED LDLS 7 

C-----------------------------------------------------------------------LDLS 8 
C MXLD - SIZE OF ARRAYS LEDG,NDE1,NDE2,PRESLD (ROUTINE MAXVAL) LDLS S 
C-----------------------------------------------------------------------LDLS 10 
C----------SKIP IF NEW LIST LDLS 11 

IF(NLED.EQ.O.OR.ILST.EQ.l)GO TO 22 	 LDLS 12 
C-----------------------------------------------------------------------LDLS 13 
C SEARCH FOR LNE IN EXISTING LIST LDLS 14 
C--------------------------------------------------------------~--------LDLS 15 

DO 20 J=l,NLED LDLS 16 
IF(LNE.NE.LEDG(J»GO TO 20 LDLS 17 
N1=NDEl(J) LDLS 18 
N2=NDE2(J) LDLS 19 
IF(N1.EQ.ND1.AND.N2.EQ.ND2)GO TO 25 LDLS 20 

20 CONTINUE LDLS 21 
C-----------------------------------------------------------------------LDLS 22 
C ADD NEW EDGE TO THE LIST LDLS 23 
C-----------------------------------------------------------------------LDLS 24 

22 	 NLED=NLED+1 LDLS 25 
IF(NLED.LE.MXLD)GO TO 23 LDLS 26 
WRITE (IW6, 900) LDLS 27 

900 FORMAT(/27H INCREASE SIZE OF ARRAYS IN, LDLS 28 
1 51H COMMON BLOCK PRSLD ALSO SET MXLD IN ROUTINE MAXVALI LDLS 29 

http:IF(Ll1.EQ.l1.AND.LI2.EQ
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LDLS 302 25X, 16H (ROlJfINE LODLS T) ) 
LDLS 31STOP 

32 
GO TO 30 LDLS 33 

c-------------------------------------------------- ---------------------LDLS 34 

C UPDATE EXISTING LIST LDLS 35 
C-----------------------------------------------------------------------LDLS 36 

25 JE=J LDLS 31 
GO TO 35 LDLS 38 

LDLS 39 

23 JE=NLED LDLS 

c 
LDLS 4030 LEDG(JE)=LNE 
LDLS 41NDE1(JE)=ND1 
LDLS 42 
LDLS 43 

NDE2(JE)=ND2 
c 

LDLS 4435 IC=O 

DO 110 IPT=1,NPT 
 LDLS 45 

LDLS 46 

IC=IC+l 
DO 110 IK=1,NDIM 

LDLS 41 
40 PRESLD(IC,JE)=PRESLD(IC,JE)+PRES(IK,IPT) LDLS 48 

RETURN LDLS 49 
LDLS 50END 

LDLS 12 : skip if no existing list; therefore no need to scan. 

LDLS 16 : loop on list of pressure loads. 

LDSL 17 : not this element; look at next one. 

LDLS 18-19: nodes at either end of side. 

LDLS 20 : element side has been found. 

LDLS 21 : end of existing list. 

LDLS 25 : it is a new element side with pressure load. 

LDr...S 27-30 : arr~y size exceeded. Arrays LEDG, NDE1, NDE2 and PRESLD 


have to be increased in size. (Also make changes in all routines in 
which these appear. See Appendix C, which gives the list of 

routines.) 
LDLS 32 : new position at end of list. 
LDLS 37-38 : get the position in existing list; skip, as entries are not altered. 
LDLS 40-42 : enter details for new side. 
LDLS 45-48 : update pressure loads. 

These two routines are also called when there are pressure loads applied along 
element sides in an increment block. Under these circumstances the applied 
pressure loads are stored in a separate set of arrays in named COMMON block 
PRLDI. At the beginning of each increment the ratio of load applied in that 
increment is added to the list of cumulative load array PRESLD. This procedure 
is adopted purely for equilibrium checks done at the end of each increment. 
At any given increment the stresses and the applied loads can be directly 

checked against each other. 

7.8.2 Fixities 

The details of restrained element sides are read in routine FIXX. The input data 
are read element side by element side . The element side is identified by nodes at 
either end, and the direction in which they are restrained is also specified . If an 

Sec. 7.8] Pressure Loads and Boundary Conditions 

element side is fixed in more than one direction then one entry (data record) is 
required per direction. 

The routine checks the correctness ·of the node numbers with the nodes 
associated with the element. The nodal sequence is aligned to follow the anti­

clockwise order about the element centre. Then the fixity information along the 
element side is converted into nodal fixities at all nodes which lie along this 
element side. 

The same routine is called either to restrain elemen t sides or to give the 
element side a prescribed displacement or excess pore pressure. The prescribed 
values are stored in the array DXYT( 4,200). This allows for a maximum of 200 
nodes rather arbitrarily. A maximum of 4 d.oJ. can be fixed at any given node; 
only the first three are used for two-dimensional analysis. 

2 3 4 


x-disp. y-disp. ex. p .p. for 2-D 


where 'ex. p.p' denotes excess pore pressure. TF(4,200) stores the fixity code, 
which can take 1 or 0 for the displacements, and 0, 1 or 2 for the excess pore 
pressure. 

1 - to specify the incremental value of displacement/excess p.p. 
2 - to specify the absolute value of excess pore pressure. 

There is a distinction between restraints and prescribed displacement/excess pore 
pressures. (The restraints are identified by zero values for the prescribed 
variables.) The displacement restraint is self-explanatory. For the excess pore 
pressures, if fixity code 1 is used along a boundary with zero prescribed values to 
represent, say, a draining boundary, then no changes in pore pressure take place. 
In tha t sense it is a pore pressure restrain t. 

It is appropria te to define the terminology used for the excess pore pressures 
because some terms are invented to have a precise meaning in relation to CRISP. 
The hydrostatic pore pressures at rest are referred to as in situ pore pressures. 
Since the program uses an incremental approach, the changes that take place in 
displacements are referred to as incremental displacements - hence the term 
'incremental (excess) pore pressure'. Accumulated displacements over a number 
of increments are cumulative or absolute displacements. Similarly the 
summation of incremental changes to the excess pore pressures are referred to as 
absolute excess pore pressures. Therefore the pore pressures at any instance 
(Le. the total pore pressure) are given by the in situ pore pressure plus the 
absolute excess pore pressure. Therefore the term 'absolute excess pore pressure' 
is simply the accumulated changes in the excess pore pressure over a number of 
increments . 

At the end of each increment block, all the prescribed values are set to zero. 
However, no changes are made to the fixity code of these nodes. Therefore there 
is no 'carryover' from one increment block to the next, i.e . 'no memory' in the 
case of prescribed displacement. However, there is a carryover in the sense that 
previously prescribed values are now fixed to zero. This procedure is adopted so 
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, :; that restraint boundary conditions need not be specified in every increment 24 FV(J)=V(J8ACK) 	 FIXX 59 
: I . GO TO 35 	 FIXX 60block. They need to be specified only once, either with the in situ boundary 

C FIXX 61 
condition or in the first increment block. 25 DO 30 J = 1, NTSD FIXX 62J , 

30 FV(J)=V(J) 	 FIXX 63
C--------------------------_____________________________________--------FIXX 64 

Routine FIXX C IND - LIST OF NODES ALONG EDGE. START WITH END NODES FIXX 65
C--------------------------______________________________________-------FIXX 66 

35 IND(l)=LIl FIXX 67SU8ROlITINE FIXX (IR 5, Iw6, NEL, NTPE, NDIM, NPL, LV, MUMAX, NNZ, NCONN, LTY P, FIXX 1 
IND(NTSD)=LI2 	 FIXX 681 MREL,NREL,NP1,NP2,V,NFX) 	 FIXX 2 IF(NTSD.EQ.2)GO TO 42 FIXX 69 
LC1=NVN+(Kl-1)·NDSD FIXX 70

c••••••••••••••••••••••••••••••••••••••••••••••••••••• ··················FIXX· 3 
C ROlITINE TO MAINTAIN A LIST OF NODAL FIXITIES. INTERPRETS FIXX 4 IF(IVAR.EQ.NDIM1)LC1=LINFO(5,LT)+(Kl-l)·NffiD 	 FIXX 71C FIXITIES ALONG ELEMENT EDGES INTO NODAL FIXITIES FIXX 5 

C-----------------------------------------------------------------------FIXX 7, 
C INTERMEDIATE NODES (IF NTSD=2 NO INTERMEDIATE NODES) FIXX 7"::' 

c••••••••••••••••••••••••••••••••••••••••••••••••••••• ··················FIXX 6 
INTEGER IF 	 FIXX 7 

C-----------------------------------------------------------------------FIXX 74DIMENS ION NCONN (NTPE, NEL) , LTYP (NEL) ,MREL(MUMAX) , NR EL (NNZ) FIXX 8 DO 40 JP=l,NDSD 	 FIXX 75DIMENSION NP1(NPL),NP2(NPL),IND(5),FV(5),V(LV) 	 FIXX 9 ILC=LC1+JP 	 FIXX 76COMMON /FIX / DXYT(4,200),MF(200),TF(4,200),NF FIXX 10 40 IND(JP+l )=NCONN (ILC, NE) 	 FIXX 77COMMON /ELINF / LINFO(50,15) 	 FIXX 11 
C-----------------------------------------------------------------------FIXX 78 
C LOOP ON ALL NODES ALONG EDGE FIXX 79 

C 	 FIXX 12 
NFZ=200 	 FIXX 13 

C-----------------------------------------------------------------------FIXX 80NDIM1=NDIM+l 	 FIXX 14 42 DO 100 KND=l,NTSD 	 FIXX 81IF(NFX.EQ.O)RETURN 	 FIXX 15 I=IND(KND) 	 FIXX 82WRITE(IW6,900) 	 FIXX 16 IF (NF. EQ. 0 )GO TO 58 	 FIXX 83C-----------------------------------------------------------------------FIXX 17 FIXX 84C LOOP ON ALL FIXED EDGES I.E. EDGES WITH PRESCRI8ED FIXX 18 DO 50 J =1, NF 	 FIXX 85C DISPLACEMENT/EXCESS PORE PRESSURES 	 FIXX 19 IF(I.EQ.MF(J»GO TO 55 	 FIXX 86C-----------------------------------------------------------------------FIXX 20 50 CONTINUE 	 FIXX 87DO 200 JX=l, NFX 	 FIXX 21 
C 	 FIXX 88READ(IR5,.)ML,ND1,ND2,IVAR,IFX,V 	 FIXX 22 GO TO 58 	 FIXX 89WRITE(6,902)JX,ML,ND1,ND2,IVAR,IFX,V 	 FIXX 23' 
C-----------------------------------------------------------------------FIXX 90NE=MREL(ML) 	 FIXX 24 C UPDATE EXISTING VALUES 	 FIXX 91

LI1=NREL(ND1) 	 FIXX 25 C-----------------------------------------------------------------------FIXX 92LI2=NREL(ND2) 	 FIXX 26 55 JF=J 	 FIXX 93LT=LTYP(NE) 	 FIXX 27 GO TO 60 	 FIXX 94LT=IA8S(LT) 	 FIXX 28 
C 	 FIXX 95NVN=LINFO(2,LT) 	 FIXX 29 58 NF=NF + 1 	 FIXX 96NEDG=LINFO(3, LT) 	 FIXX 30 IF(NF.LE.NFZ)GO TO 59 	 FIXX 97NDSD=LINFO(7, LT) 	 FIXX 31 WRITE (IW6, 904 ) 	 FIXX 98IF(IVAR.EQ.NDIM1)NDSD=LINFO(8,LT) 	 FIXX 32 STOP 	 FIXX 99NTSD=NDSD+2 	 FIXX 33 59 JF=NF 	 FIXX 100

INDED=LINFO(14, LT) 	 FIXX 34 
FIXX 35 60 	 MF(JF)=I FIXX 101 

TF (IVAR, JF)=IFX FIXX 102
DO 20 Kl=l,NEDG 	 FIXX 36 DXYT(IVAR,JF)=FV(KND) 	 FIXX 1 C 
Jl=NP1(Kl+INDED) 	 FIXX 37 100 CONTINUE 	 FIXX 10 
J2=NP2(Kl+INDED) 	 FIX X 38 200 CONTINUE 	 FIXX 105
I 1 =NCONN (J 1, NE) 	 FIXX 39 RETURN 	 FIXX 106 
I2=NCONN(J2,NE) 	 FIXX 40 900 FORMAT(/lX,4HSIDE,4X,7HELEMENT,3X,5HNODE1,3X,5HNODE2, FIXX 107
IF(LI1.EQ.Il.AND.LI2.EQ.I2)GO TO 25 	 FIXX 41 1 3X, 3HDOF, 3X, llHFIXITY CODE, 6X, 4HVAL 1, 6X, 4HVAL2, 6X, 4HVAL3, FIXX 108
IF(LI1.EQ.I2.AND.LI2.EQ.Il)GO TO 21 	 FIXX 42i' 	 2 6X,4HVAL4,6X,4HVAL5/) FIXX 109

20 CONTINUE 	 FIXX 43I 	 902 FORMAT(lX,I3,4X,I5,5X,I4,4X,I4,5X,I2, 12X,I3,3X,5Fl0.3) FIXX 110 
WRITE(IW6,903)JX,ML,ND1,ND2 	 FIXX 44I' 	 903 FORMAT(/13H •••• ERROR :,I5,19H TH FIXITY. ELEMENT, FIXX 111GOTO 200 	 FIXX 45 

1 15,25H DOES NOT CONTAIN NODES :,2I5,2X,14H(ROUTINE FIXX» FIXX 112C-----------------------------------------------------------____________FIXX 46 
904 FORMAT(/40H INCREASE SIZE OF ARRAYS MF, TF AND DXYT/ FIXX 113C ALIGN END NODES OF EDGE IN CORRECT SEQUENCE. (ANTICLOCKWSIE FIXX 47 

1 lX,34HIN COMMON 8LOCK FIX (ROlITINE FIXX» 	 FIXX 114
C OREDER A80lIT ELEMENT CENTRE) 	 FIXX 48~ ! ! 	 END FIXX 115 
C-----------------------------------------------------------------------FIXX 49 


21 LIT=LI 1 FIXX 50 

LI 1=LI2 FIXX 51 

LI2=LIT FIXX 52 FIXX 13 : maximum size of arrays in named COMMON FIX. 
NT=NDl FIXX 53 FIXX 14 : maximum number of variables at any node (last one being the 
ND1=ND2 FIXX 54 
ND2=NT FIXX 55 pore pressure variable). 

C FIXX 56 FIXX 21 : loop on all sides which have prescribed variables. 
DO 24 J =1, NTSD 	 FIXX 57 
J8ACK=NTSD+l-J 	 FIXX 58 FIXX 22-23 : read and write details of side with prescribed variables. 
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: (program no.) element with side which is fLxed.FIXX 24 
: (program nos.) nodes at either end of side.FIXX 25-26 
: element type no.FIXX 27-28 
: element type dependent parameters.FIXX 29-34 

NVN no. of vertex nodes. 


NEDG no. of sides (edges). 

NDSD no. of displacement nodes along side (excluding 


end nodes). 
NTSD total no. of nodes along side. 

INDED starting index to arrays NPl, NP2. 
: NDSD - no. of pore pressure nodes along side (excludingFIXX 32 

end nodes). 
: loop on all edges of element (to find side which is fix~d).FIXX 36 
: find element side with prescribed variable by companng nodesFIXX 37-42 

at either end (normal and reverse sequence). . 
: side not found in element; consider next side with prescnbedFIXX 44 

variable, after printing message. 
FIXX 50-55 : side found; reverse nodes to conform with anti-clockwise 

sequence. 
57-59 ' : do the same with prescribed values. FIXX 

: array FV contains prescribed values in correct sequence.FIXX 62-63 


FIXX 67-68 
 : enter nodes at either end in IND. 
: skip if no nodes along side. FIXX 69 
: index to array NCONN for nodes along side. FIXX 70-71 
: enter node(s) along side in IND. FIXX 75-77 
: loop on all nodes along side. FIXX 81 
: skip if first node (Le. no existing list). FIXX 83 


FIXX 85-86 
 : scan through existing list. 
: position of node in existing list. FIXX 93 
: new node; add to the end of the list. Increment count on no.FIXX 96-97 


of fixities. 

FIXX 98-99 : if aliocation of array size is exceeded, print message and stop. 
FIXX 101-103: enter details of nodal fixity (fixity code and prescribed values) 

_ pore pressure variable is placed in location NDIM + 1, even 

if it is the only variable at that node. 
: end of loop on all nodes along side. FIXX 104 
: end of loop on all sides with prescribed variables. FIXX 105 

7.9 EQUILIBRIUM CHECK 

Routine EQLOD is the master control routine, which checks the equilibrium of 

internal stresses with external loading. (For convenience, the self-weight loading 

is considered as part of the ex ternalloading.) 

Sec. 7.9] 	 Equilibrium Check 

The first term of (7.9) on the R.H.S. is calculated by routine DISTLD and 

SFRI. The second term is calculated by SELF (making use of SHAPE and 

DETJCB). The third term has already been calculated in routine RDSTRS using 
EQLlB and placed in array PEQT. Routine RESTRN recognises the nodes which 

are restrained. The following calculation is carried out to calculate Pear. 

= rNTrd(area)+ J NTwd(vol)Pear Js V 

i BTa d (vol). 	 (7.9) 
V 

f NTr d (area) - pressure loads along element boundary. 
S 

- self-weight or distributed loads. 

nodal loads equivalent to element stresses summed for 
all elements present in current mesh. 

Pear 	 the error in equilibrium calculated for each nodal point 
except the ones which are either restrained or have 

prescribed values. 

Routine EQLOD 

SUBROUTINE EQLOD(IW6, NN, NEL, NDF, NNOD1, NTPE, NDIM,MUMAX, NNZ, NDZ, NPR, EQLD 
1 NMT, NDMX, NL, NPL, NCONN ,MAT, LTYP, MRELVV, MREL, NREL, NH, NQ, JEL, IDFX, EQLD 
2 NP1,NP2,XYZ,P,PT,PCOR,PEQT,XYFT,PCONI,ELCOD,DS,SHFN,F,LL, EQLD 
3 PR,NPT,NSP,MXEN,IEQOP,ICOR,TGRAV,IRAC,FRACT,KSTGE) EQLD 4 

c 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111 1111 1111111111 1111 1111 IIEQLD 5 
C ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR EQLD 6 

APPLIED LOADING TO CARRY OUT AN EQUILIBRIUM CHECK EQLD 7 
C111111111111111111111111111111111111111111111111111111111111111111111111111111*1111111111111111111111111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEQLD 8 

REAL LL EQLD 9 
DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), EQLD 10 

1 MREL(MUMAX),NREL(NNZ),NW(NNOD1),NQ(NN),JEL(NEL), EQLD 11 
2IDFX(NDF),NP1(NPL),NP2(NPL) EQLD 12 

DIMENSION XYZ(NDIM,NN),P(NDF),PT(NDF),PCOR(NDF),PEQT(NDF), EQLD 13 
1 XYFT(NDF),PCONI(NDF),ELCOD(NDIM,NDMX),DS(NDIM,NDMX),SHFN(NDMX), EQLD 14 
2 F(NDIM,NDMX),LL(NL),PR(NPR,NMT),PRES(10) EQLD 15 

COMMON /PRSLD / PRESLD(10, 100),LEDG(100),NDE1 (100),NDE2(100),NLED EQLD 16 
COMMON /ELINF / LINFO(50, 15) EQLD 17 
COMMON /PARS / PYI,ALAR,ASMVL,ZERO EQLD 18 

C EQLD 19 
CALL ZEROR 1 (PT ,NDF) EQLD 20 

C-----------------------------------------------------------------------EOLD 21 
C (1) PRESSURE LOADING ALONG ELEMENT EDGE EQLD 22 
C-----------------------------------------------------------------------EOLD 23 

IF(NLED.EQ.O.AND.TGRAV.LT.ASMVL)GO TO 62 EOLD 24 
IF(NLED.EQ.O)GO TO 32 EOLD 25 

C EQLD 26 
DO 30 KE=1,NLED EQLD 27 
LNE =LEDG (KE ) EQLD 28 
NE=MBEL(LNE) EOLD 29 
LT=LTYP(NE) 	 EQLD 30 



277 
276 	 In Situ Stresses [Ch. 7 


IF(LT.GT.O)GOTO 10 EQLD 31 

IF(KSTGE.EQ.4)GOTO 30 EQLD 32 

WRITE(IW6,900)LNE EQLD 33 


900 fORMAT(/lX,45H *** ERROR IN SITU PRESSURE LOAD APPLIED TO,lX, EQLD 34 

1 7HELEMEllT,I5,2X,28H\mICH IS NOT PRESENT IN t1ESH, lX, EQLD 35 

2 15H(ROUTINE EQLOD)/) EQLD 36 


GOTO 30 EQLD 37 

10 NDl =NDE 1(KE) EQLD 38 


ND2=NDE2(KE) EQLD 39 

DO 20 KV=l,tUEN EQLD 40 


EQLD 41
20 PRES(KV)=PRESLD(KV,KE) 
C EQLe 42 


CiILL DISTLD (Iwt, tit:, tiEL, NDF , IJNODl , NTPE, NDIM, MU~IAX, NNZ, NPL, XYl, PT, EQLD 43 

1 NCONN,LTYP,MREL,NREL,NW,NP1,NP2,PRES,LNE,ND1,ND2, EQLD 44 

2 NPT,NSP,O,l,l.) EQLD ~65 


30 CONTINUE EQLD 

C-------------------------------------~--------------------------------EQLD 47 

C (2) SELF WEIGHT LOADING EQLD 48 

C-----------------------------------------------------------------------EQLD 49 


32 	 IF(TGRAV.LT.ASMVL) GO TO 62 EQLD 50 

DO 60 KL=l, NEL EQLD 51 

LT=LTYP(KL) EQLD 52 

IF(LT.LT.0)GOT060 EQLD 53 

JK=MRELVV(KL) EOLD 54 

NDN=LINFO(5,LT) EQLD 55 

INDX=LINFO(12, LT) EQLD 56 

NAC::LINFO(15,LT) EQLD 57 

KM=MAT(KL) EQLD 58 


c----------------------------------------------------~------------------EQLD 59 

C FIND IF ELEMENT HAS BEEN ADDED IN THIS INCREMENT BLOCK EQLD 60 

C THEN USE LOAD RATIO FRACT ON GRAVITY LOADING EQLD 61 

C-----------------------------------------------------------------------EQLD 62 


D040IM::l,NEL EQLD 63 

MUS::JEL(IM) EQLD 6Il 

IF(MUS.EQ.O)GO TO 42 EQLD 65 

MPR::MREL(MUS) EQLD 66 

IF(KL.EQ.MPR)GO TO 44 EQLD 67 


40 CONTINUE EQLD 68 

42 FA=1. EQLD 69 


GO TO 115 EQLD 70 

44 FA=FRACT EQLD 71 

45 DENS=PR(8,KM)*TGRAV*FA EQLD 72 


C EQLD 73 

CALL SELF(IW6,KL,NN,NEL,NTPE,NDN,NDIM,NAC,NPR,NMT,XYZ, EQLD 74 


1 ELCOD,DS,SHfN,F,NCONN,MAT,LL,PR,LT,INDX,DENS,JK,KSTGE) EQLD 75 

C EQLD 76 


DO 55 KK=l,NDN EQLD 77 

NCOR=NCONN(KK,KL) EQLD 78 

KKK=NW(NCOR )-1 EQLD 79 


C EQLD 80 

DO 55 ID=l, NDIM EQLD 81 


55 PT(KKK+ID)=PT(KKK+ID)+F(ID,KK) EQLD 82 

60 CONTI NUE EQLD 83 

62 CONTIN UE EQLD 811 


C-----------------------------------------------------------------------EQLD 85 

C ADD CONTRIBUTIONS FRO'1 POINT LOADS EQLD 86 

C-----------------------------------------------------------------------EQLD 87 


DO 70 J =1, NDF EQLD 88 

70 PT(J)=PT(J)+XYFT(J)+PCONI(J) EQLD 89 


c-------------------------------------------------------____________----EQLD 90 

C FIND DOF WHICH ARE RESTRAINED EQLD 91 

C----------~---------------------------------------------_________-----EQLD 92 


CALL RESTRN(NDF,NNOD1,NDIM,NW,IDFX) EQLD 93 

c-----------------------------------------------------------------------EQLD 94 

C EQUILIBRIUM CHECK EQLD 95 


Sec. 7.9] Equilibrium Check 

C----________________________________________________________-----------EQLD 96 


CALL EQLBM(IW6,NN,NNOD1,NDF,NDIM,NNZ,NDZ,NREL,NW,NQ,IDfX, EQLD 97 

1 P,PT,PCOR,PEQT,IEQOP,ICOR,IRAC) EQLD 98 


RETURN EQLD 99 

END EQLD 100 


EQLD 20 : zero total load array (PT). 


: skip if (a) no applied pressure loads and (b) no gravity loading. EQLD 24 

EQLD 25 : skip if no applied pressure loads. 
EQLD 27 : loop on all sides with applied pressure loads. 
EQLD 31 : skip if element with pressure load is present in mesh. 
EQLD 32 : skip check and calculation of equivalent pressure loads 

element has been removed. 

user error). 
EQLD 33-36 : print message if element is not present at in situ stage (probable 

EQLD 38-39 : nodes at either end. 

EQLD 40-41 : values of applied pressure loads. 

EQLD 43-45 : calculate nodal loads from pressure loading and put into PT. 

EQLD 50 : skip if no gravity loads. 

EQLD 51 : loop on all elements. 


EQLD 53 : skip if element is not present in current mesh: 

EQLD 55-57 : NDN - no. of displacement nodes. 


INDX - starting index for arrays Wand L, for different element 
types. 

EQLD 58 : material zone number. 


EQLD 63 : scan array JEL to see if element was added in this block. 

EQLD 65 : zero indicates end of list. 

EQLD 66-67 : element has been added in this block. 

EQLD 69 : use factor of 1 for elements which were already present before 


the start of current block. 
EQLD 71 : use FRACT for added element. 
EQLD 72 : calculate n-y term. 

11 - centrifugal acceleration field. 

EQLD 74-75 : calculate J NTw d (vol). 
V 


EQLD 77 : loop on all nodes of element. 

EQLD 81-82 : slot loads in PT. 

EQLD 83 : end of element loop. 


EQLD 88-89 : add directly specified point loads. 


EQLD 93 : identify (by entering 1 in IDFX against d.o.f.) restrained d.o.f. 

EQLD 97-98 : carry out an equilibrium check. 


Routine EQLOD is called at the in situ stage as well as at the end of each 
increment. 

i 
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7.9.1 Pressure loads 

Routine DISTLD calculates nodal loads equivalent to the current pressure 
loading, and r values are obtained from array PRES. 

Routine DISTLD 

SUBROUTINE DISTLD (IW6, NN, NEL, NDf, NNOD 1, NT PE, :mIM, MUMAX, NNZ, DIST 1 
1 NPL, XYZ, RHS, NCONN, LTYP, MREL, NREL, NW, NPl , NP2, PRES, LNE, DIST 2 
2 ND1,ND2, NPT,NSP, IPRINT,IST,FC) DIST 3 

C" .................................................................. '.'DIST 4 
C ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR SPECIFIED 'DIST 5 
C PRESSURE LOADING ALONG ELEMENT EDGES USING 5 POINT (NSP) 'DIST 6 
C INTEGRATION RULE. INTEGRATES POLYNOMIAL OF ORDER NINE OR LESS 'DIST 7 
C EXACTLY. ARRAYS ILOC,PRES,PEQLD,ELCD,SHF,DERIV ARE 'DIST 8 
C TO CATER FOR A MAXIMUM OF FIVE NODES (NPT) ALONG AN ELEMENT EDGE 'DIST 9 
C (ALL 2-D ELEMENTS UP TO ORDER FIVE). 'DIST 10c····················.·····.····.,.......,.......,...,................ '.DIST 
 11 

DIMENSION NCONN(NTPE,NEL),LTYP(NEU,MREL(MUMAX), 
1 NREL(NNZ),NW(NNOD1),NP1(NPL),NP2(NPL) 

DIMENSION RHS(NDF),XYZ(NDIM,NN),PRES(NDIM,NPT) 
DIMENSION ILOC(5),PSP(2),DSP(2),PEQLD(2,5),ELCD(2,5) 
DIMENSION SHF(5),DERIV(5),PCOM(3) 

COMMON IF LOW I NPLAX 

COMMON IELINF I LINFO(50,15) 

COMMON ISAMP I POSSP(5),WEIGP(5) 

COMMON IPARS I PYI ,ALAR,ASMVL, ZERO 

COMMON ILOADS I FB(2, 15) 

NP=5 

TPI =2. ·PYI 

NE=MREL(LNE) 

LI 1 =NREL(ND1) 

LT=LTYP(NE) 

IF(IST.EQ.1)GOTO 5 

LT=IABS(LT) · 


5 IF(LT.GT.O)GOTO 10 

WRITE(IW6,900)LNE 


900 FORMATU1X,44H .... ERROR : YOU HAVE PUT 
1 8H ELEMENT, 15, 2X, 28HWHICH IS 
2 17H (ROUTINE DISTLD)/) 

RETURN 
10 	NVN=LINFO(2,LT) 


NEDG=LINFO(3, LT) 

NDSD=LINFO(7,LT) 

NTSD=NDSD+2 

INDED=LINFO(14, LT) 


C 
DO 20 K 1 = 1 , NEDG 
Jl=NP1(Kl+INDED) 
J2=NP2(K1+INDED) 
11 =NCONN (J 1, NE) 
IF (LI 1. EQ. I1)GOTO 25 

20 	CONTINUE 

WRITE (Iw6, 903 )LNE, ND1, ND2 


903 FORMATU21H"" ERROR: ELEMENT, 15, 
1 2X,22H DOES NOT HAVE NODES :,215, 
2 3X, 16H (ROUTINE DISTLD)) 

RETURN 

A PRESSURE LOAO ON, 

NOT PRESENT IN MESH, 


C------------------------------------------------------------01ST 52 
C STORE LOCATIONS OF NODE (IN NCONN) IN ARRAY !LOC DIST 53C----------_______________________________________________-DIST 54 

25 	LC1=tlVN+(Jl-l )·NDSD DIST 55 
ILOC(l)=Jl DIST 56 
ILOC (NTSD )=J 2 DIS T 57 
IF(NDSD.EQ.O)GOTO 31 DIST 58 

Sec. 7.9] 	 Equilibrium Check 

c 
DIST 59 

DO 30 JP=l,NDSD DIST 60 
30ILOC(JP+l)=LC1+JP 	 DIST 61 

62 
c----------____________________________________________---------------~DIST 

C SET UP LOCAL ARRAY FOR CO-ORDINATES IN ELCD 	 DIST
C----------_____________________________________________----------------DIST 63 

64 
31 DO 32 KC=l,NTSD DIST 65 

ILC=ILOC(KC) 	 DIST 66 
NDE=NCONN(ILC, NE) DIST 67

C DIST 68 
DO 32 ID=l,NDIM DIST 69 

32 ELCO(ID, KC):XYZ (ID, NDE) 	 DIST 70 
C INITIALISE PEQLD 	 DIST 71 

CALL ZEROR2(PEQLD,NDIM,NP) DIST 72 
73 

C-------------_________________________________________--------------DIST 

C LOOP FOR NUMERICAL INTEGRATION 	 DIST 74 
75 

C--------------------_____________________________________------------DIST 

DO 	 60 ISP=l, NSP DIST 76 
XI=POSSP(ISP) DIST 77 

C----------------------------------------------------------____-----01ST 78 
C EVALUATE SHAPE FUNCTION FOR SAMPLING POINT
C---------------__________________________________________ 

CALL SFR1(IW6,XI,SHF,DERIV,NTSO,LNE,LT) 
C----------CALCULATE COMPONENTS OF THE EQUIVALENT NODAL 

DO 40 IDOF=l,NDIM 
PSP(IDOF)=ZERO 
DSP(IooF)=ZERO 

C 
DO 40 IEDG=l,NTSD 
PSP (IOOF) =PSP (I DOF) +PRES (IOOF , IEDG) .SHF (IEDG) 

40DSP(IooF)=DSP(IDOF)+ELCD(IDOF,IEDG)'DERIV(IEDG) 
C 

DV =WEIGP (ISP) 
IF(NPLAX.EQ.O)GOTO 48 
RAD=O.O 

C 
DO 45 IEDG=l,NTSD 

Ll5 ·RAD=RAD+ELCD(l, IEDG)'SHF(IEDG) 
DV =DV'TPI 'RAD 

48 PCOM(1)=DSP(1)'PSP(2)-DSP(2).PSP(1) 
PCOM(2)=DSP(1)·PSP(1)+DSP(2)·PSP(2) 

C 
DO 50 HDG=l, NTSD 
00 50 ID=l,NDIM 

LOADS 

50 PEQLD(ID,IEDG)=PEQLD(ID,IEDG)+PCOM(ID)'SHF(IEOG)'OV 
C 

60 CONTINUE 
IF (IPRINT. EQ. 1)WRITE (IW6, 905 )LNE, ND1, ND2, 

1 «PEQLD(ID,IP),ID=l,2),IP=l,NTSO) 
905 FORMAT(lX,3I4,10E12.4/) 

DIST
----------DIST 

DIST 
- PEQLD 	 DIST 

DIST 
DIST 
DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 

DIST 
DIST 
DIST 
DIST 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
9 1 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 

C---------------------------------------________________------------DIST 

C SLOT LOADS INTO ARRAY RHS 
C------------------------------------------------ ­

DO 80 IJ=l,NTSD 
JL =1 LOC (IJ) 
NDE=NCONN(JL,NE) 
Nl=NW(NDE)-l 

DO 80 ID=l,NDIM 

FB(ID,JL)=FB(ID,JL)+PEQLD(ID,IJ) 


80 	RHS (N 1+10) =RHS(N 1 +ID)+PEQLD(I 0, IJ ) ·FC 


RETURN 

END 


DIST 110 
____-------------01ST 111 

DIST 112 
DIST 113 
DIST 114 
DIST 115 
OIST 116 

DIST 117 
DIST 118 
DIST 119 
DIST 120 
DIST 121 

DIST 
DIST 
DIST 
DIST 
OIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
01 ST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 
DIST 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

109 
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DIST 24 
DIST 25 

DIST 26 
DIST 27-28 

DIST 29-33 

DIST 35-39 

DIST 41 
DIST 42-43 
DIST 44 
DIST 45 

DIST 47-50 

DrST 56-57 
DrST 60-61 
DIST 65-70 
DIST 76 

DrST 77 


. DrST 81 

DrST 88 
DrST 89 
DrST 91 
DrST 95-96 

DIST 98-99 
DrST 101-103 
DIST 105 
DrST 106-107 
DIST 112-119 

-	 a·Pxi= J. Nj [T 
a~Se a~ 

(7.1 0) 

ax 
Pyi= J. Nj [0 . -+ 7 OY}•. 

Se a~ a~ 
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: program element number. 

: program node number of node at one end of side with pressure 


load. 
: element type number. 
: if 1ST = 0 then calculate loads equivalent to pressure loads 

acting on elements currently being removed. 

: check that the element on which pressure load is put is present 
in mesh. If not, print error message. 

: element type dependent parameters. 

NVN number of vertex nodes in element. 
NEDG number of element edges (sides). 
NDSD number of displacement nodes along element side 

(excluding nodes at either end). 
NTSD number of (displacement) nodes along side (edge). 
INDED starting index to arrays NPl, NP2. 

: loop on all element sides (loop to find side with pressure load). 
: indexes to array NCONN . 
: node at one end. 
: skip if node numbers do not match (this is not the side which 

is loaded). 
: side with pressure load not found in this element; print 

message (probable user error) . 
: store indexes to array NCONN for nodes at either end of side. 
: do the same with side nodes (if any). 
: set up local array with co-ordina tes of nodes along side. 
: loop on all integration points. 
: local co-ordinate of integration point. 
: calculate shape functions . 
: calculate stress components at integration point. 
: calculate derivatives ax/at ay/a~ at integration point. 

: weighting factor. 
: calculate radial distance of integration point (for axisymmetric 

problems). 
: calculate x and y components of load at integration point. 
: calculate nodal loads equivalent to applied pressure_ 
: end of loop on all integration points. 
: print out calculated nodal loads. 
: slot nodal loads in array RHS . 

ax OYJ dt 

Sec. 7.9] 	 Equilibrium Check 

Integration is taken along the loaded element edge Se; ~ is the local co-ordinate 
along the element edge, and takes values between -1 and + 1. 

Routine SFRI calculates the shape functions Ni at sampling points. 
Numerical integration is used to carry out the above calculations. a, 7 are the 
normal and shear values of the applied stress distribution. 

Routine SFR 1 

SUBROUTINE SfR1(IW6,S,SHf,DERIV,NSD,LNE,LT) SfR1 
C*·····································································.SfR1 
C SHAPE fUNCTIONS AND DERIVATIVES fOR ONE-DIMENSIONAL 'SfR 1 
C GAUSSIAN INTEGRATION ALONG ELEMENT EDGE , 'SfR1 
C•••••••••••••••• *•••••••••••••••••••••••••••••························.SfR 1 

DIMENSION SHf(NSD),DERIV(NSD) SfR1 
C----------------------------------------_______________________--------SfR1 

C INITIALISE SfR1 
C-----------------------------------------------------------------------SfR1 

CALL ZEROR 1(SHf , NSD) Sf R 1 
CALL ZEROR1(DERIV,NSD) SfR1 

C SfR1 
GO TO(80,21,31,41,51),NSD SfR1 
WRITE(IW6,900)LNE,LT SfR1 

900 fORMAT(lX,7HELEMENT,I5,2X,7HCF TYPE,I5,2X, SfR1 
1 22HUNKNOWN (ROUTINE SfR1)) SfR1 
STOP SfR1 

C----------------------------------~-----------------------------------SfR1 
C 2 NODES ALONG EDGE 	 Sf R 1 
C-----------------------------------------------------------------------SfR1 

21 CONTINUE SfR1 
WRITE(IW6,910)LT SfR1 

910 fORMAT(/lX, 12HELEl-1ENT TYPE,I5,2X, SfR1 
1 30HNOT IMPLEMENTED (ROUTINE SfR1)) SfR1 

GO TO 80 SfR1 
C-----------------------------------------------------------------------SfR1 
C 3 NODES ALONG EDGE SfRl 
C--------------------------------------------------------------------SfR 1 

31 CONTINUE SfR1 
SHf(l )=0.5'S'(S-1.) SfR1 
SHf (2 ) = ( 1. -S ) • ( 1. +S ) Sf R 1 

1 
2 
3 

6 
7. 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 . 
25 
26 
27 
28 
29 
30 
31 

SHf(])=0.5·S·(S+1.) SfR132 
DERIV(1)=S-0.5 SfR1 33 
DERIV(2)=-2.·S SfRl 34 
DERIV(3)=S+0.5 SfR1 3 
GO TO 80 SfR1 3 

c---------------------------------------------------------------------SfR1 37 
C 4 NODES ALONG EDGE 	 Sf R 1 38 
C----------------------------------------------------------------------SfR1 39 

41 	 CONTINUE SfR1 40 
WRITE(IW6,910)LT SfR1 41 
GO TO 80 SfR1 42 

C----------------------------------------------------------------------SfR1 43 
C 5 NODES ALONG EDGE 	 SfR1 44 
C---------------------------------------------------------------------SfR1 45 

51 	 SO=S SfR1 46 
S l=S+O. 5 SfR1 47 
S2=S-0.5 SfR1 48 
S3=S+1.0 SfR1 49 
S4=S-1.0 SfR1 50 
C 1 =2.13. SfR1 51 
C2=8./3. SfR1 52 
C3=4 . SfR1 53 
SHf(l)= C1'SO'Sl'S2'S4 SfR1 54 
SHf (2 )=-C2'SO'S2'S3'S4 SfR1 55 
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SF Rl 56
SHF ( 3 ) = C 3 ·S 1·S2'S 3·S 4 SFRl 57
SHF (4 )=-C 2'SO-S l'S 3-S4 SFRl 58
SHf(5)= Cl'SO'Sl'S2'S3 

SFRl 59DERIV(l)= Cl'(S2'S4'(Sl+S0)+SO'Sl'(S2+S4 » 
SFRl 60DERIV(2)=-C2'(S2'S4'(S3+S0 )+SO'S3'(S2+S 4 » 
SFRl 61DERIV (3): C3' (S3'S4' (S 1 +S2 )+S l'S2'(S3+S4) ) 
SFR 1 62DERIV (4 )=-C2'(S3 'S4' (S 1 +SO )+S l'SO'(S 3+S4» 
SFRl 63DERIV(5)= Cl'(S2'S3'(Sl+S0)+Sl I SO'(S2+S3» 
SFRl 64 

80 CONTINUE SFRl 65 
RETURN SFR 1 66 
END 

SFRI 13 : branch off depending on no. of displacement nodes. 

SFRI 21-25 : for element types with two nodes along side (no such element 


types in this version). 
SFRI 30-32 : shape functions along element side for LSI. 
SFRI 33-35 : derivatives of shape functions. 
SFRI 40 : shape functions and derivatives for element types with four 

nodes along element side (no such element types in this version). 

SFRI 54-58 : shape functions (CuST). 
SFRI 59-63: derivatives of shape functions (CuST). 

7.9.2 Self-weight loads (body forces) 


The self-weight loads given by 


f 	NTw d (vol) 
V 

are calculated in routine SELF. 

(7.11 )
[;::] = Iv Nn [_~] d (vol). 

e 

Gravity is assumed to act in the direction of the -y axis. 

Routine SELF 

1SUBROUTmE SELF (Iw6, I, NN. NEL. NTPE. NON. NDIM. NAC. NPR, NMT. XYZ, SELF 
21 ELCOD.DS.SHFN.F.NCONN.MAT.LL.PR.LT,INDX,DENS,MUS.KSTGE) SELF 

c••••••••••••••••••••••••••• I ••••••••••••••••••••••••• ··················SELF 3 
4C CALCULATES SELF WEIGHT LOADS 	 SELF 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••··················SELF 5 
6REAL L,LL 	 SELF 
7DIMENSION NCONN (NTPE. NEL) ,MAT(NEL) SELF 

DIMENSION XYZ (NDIM, NN). ELCOD (NDIM, NDN). DS (N DIM, NDN) .SHF N (NDN) , SELF 8 

1 F(NDIM. NDN) .LL(NAC), PR (NPR.I~T).GCOMC3) SELF 9 
10COMMON IELINF I LINFO(50.15) 	 SELF 
11COMMON IDATL I L(4.100) 	 SELF 
12COMMON IDATW I W( 100) 	 SELF 
13COMMON IFLOW I NPLAX 	 SELF 
14COMMON IPARS I PYI,ALAR.ASMVL.ZERO 	 SELF 

SELF 15 
C SELF 16

TPI=2. I PYI 
SELF 17IlGP:LINFO (11, LT) 
SELF 18K=MAT(I) 
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C-----------------------------------------------------------------------SELF 19 
C INITIALISE ARRAY F SELF 20 
C-----------------------------------------------------------------------SELF 21 

CALL ZEROR2(F,NDIM.NDN) SELF 22 
C SELF 23 

IF (DENS. LE. ASMVL )GO TO 100 SELF 24 
GCOM(l)= ZERO SELF 25 
GCOM(2)=-DENS SELF 26 
GCOM(3)= ZERO SELF 27 

C-----------------------------------------------------------------------SELF 28 
C SET UP LOCAL ARRAY FOR CO-ORDINATES SELF 29 
C-----------------------------------------------------------------------SELF 30 

DO 10 KC=l,NON SELF 31 
NDE=NCONN(KC. I) SELF 32 

C SELF 33 
DO 10 ID=l,NDIM SELF 34 

10 ELCOD(ID.KC)=XYZ(ID.NDE) SELF 35 
C-----------------------------------------------------------------------SELF 36 
C LOOP FOR NUMERICAL INTEGRATION SELF 37 
C-----------------------------------------------------------------------SELF 38 

DO 60 IP=l, NGP SELF 39 
IPA=IP+ItlDX SELF 40 

C SELF 41 
DO 35 IL= 1, NAC SELF 42 

35 LL(IL)=L(IL,IPA) SELF 43 
c-----------------------------------------------------------------------SELF 44 
C EVALUATE SHAPE FUNCTION FOR INTEGRATION POINT SELF 115 
C-----------------------------------------------------------------------SELF 46 

CALL SHAPE(IW6.LL,NAC,DS.SHFN.NDIM,NDN,LT.2.MUS) 

CALL DETJCB(IW6,DJACB,NDN.NDIM,ELCOD,DS.IP.MUS.KSTGE) 

DV=DJACB'W(IPA) 

IF(NPLAX.EQ.O)GO TO 45 


C 
RAD=ZERO 

C 
DO 40 IN=l.NDN 

40 RAD=RAD+ELCOD(l.IN)·SHFN(IN) 
DV =DV 'TPI 'RAD 

C 
45 DO 50 IN=l,NDN 

DO 50 ID:1.NDIM 

50 F(ID,IN)=F(ID,IN)+GCOH(ID)'SHFN(IH)-oV 

60 CONTINUE 


100 	CONTINUE 

RETURN 

END 


SELF 17 : number of integration points. 

SELF 18 : material zone number. 

SELF 22 : zero array F, self-weight loads of element. 

SELF 24 : skip, if no self-weight loading. 

SELF 25-27 : earth's gravity acts in the negative y direction. 

SELF 31-35 : copy nodal co-ordinates into local array. 

SELF 39 : loop on all integration points. 

SELF 40 : index to arrays Wand L (IPA is the starting index 

SELF 42-43 : local/area co-ordinates of integration point. 


SELF 47 

SELF 48 

SELF 49 

SELF 50 

SELF 51 

SELF 52 

SELF 53 

SELF 54 

SELF 55 

SELF 56 

SELF 57 

SELF 58 


SlEJI..If 5"ll 

S!ElIF 'iW1D 

SIElIF ffii] 

SIElIF ~ 


SIEIl..F ffii] 

SIElIF I/iAI 


- 1). 

SELF 47 : calculate shape functions and their derivatives w.r.t. local co­
ordinates. 

SELF 48 : calculate Jacobian of transformation. 
SELF 49 : weighting factor. 

http:LINFO(50.15
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SELF 52-55 : calculate radial distance of integration point 

problems only). 
SELF 58-60 : calculate nodal loads equivalent to self-weight. 

F= f NTwd(vol). 
V 


SELF 61 : end of integration point loop. 

Routine DETJCB 

SUBROUTINE DET JCB (Iw6, DJACB, NDN, NDIM, ELCOD, OS, IP, ~1US, KSTGE) DETJ 1 


c••••••••••••••••••••••••••••••••••••••••••••••••••••••• ················DETJ 2 


C CALCULATES DETERMINANT OF JACOBIAN MATRIX ·DETJ 
 3 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ·.···········DE1J ~ 


DIMENSION ELCOD(NDIM,NDN),OS<NDIM,NDN),XJAC(3,3) DETJ 
 5 

6
COMMON IPARS 1 PYI,ALAR,ASMVL,ZERO DETJ 


C---------------------------------------------------------______________DETJ 7 

8
C NXJ - SIZ.E OF ARRAY XJAC DETJ 
9
C-----------------------------------------------------------------------DETJ 
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(axisymme tric 

NXJ=3 
CALL ZEROR2(XJAC, NXJ, NXJ) 

C 
DO 10 ID=1,NDIM 
DO 10 JD=1, NDIM 
DO 10 IN=1,NDN 

10 XJAC(ID,JD)=XJAC(ID,JD)+DS(ID,IN)·ELCOD(JD,IN) 
C 

IF(NDIM.NE.2)GOTO 20 

DJACB =XJAC (1,1) .XJAC(2, 2 )-XJAC ( " 2) ·XJAC(2, 1 ) 

GOTO 50 


C 
20 DJACB=XJAC(1,1)*(XJAC(2,2)·XJAC(3,3)-XJAC(2,3)·XJAC(3,2» 

DJACB=DJACB_XJAC(1,2).(XJAC(2,1).XJAC(3,3)-XJAC(2,3)*XJAC(3,1) 
DJACB=DJACB+XJAC(1,3).(XJAC(2,1).XJAC(3,2)-XJAC(2,2)*XJAC(3,1» 

C 

50 IF(DJACB.GT.ZERO)GO TO 60 


WRITE(IW6,900)DJACB,MUS,IP 

900 FORMAT(1X,10H JACOBIAN ,E16.5,3X,11HIS NEGATIVE,2X, 


1 7HELEMENT,I5,2X,10HINT. POINT,I5,2X,16H(ROUTINE DETJCB» 

c 

WRITE(IW6,910)KSTGE 
910 FORMAT(/1X,36HCODE TO INDIC~TE STAGE OF ANALYSIS =,151/ 


1 ~X.~HCODE,20X,21HSTAGE OF THE ANALYSISII 

1 6X ~6H1 - CALLED BY INSITU/EQLOD/SELF CALCULATION OF, 

2 1X:2~HINSITU SELF WEIGHT LOADS/6X,13H2 - CALLED BY, 
3 lX, ~~HANS/CHAtlGE/SELF LOADS DUE TO ELEMENT CHANGESI 
~ 6X,~~H3 - CALLED BY ANS/SEL1/SELF INCREMENTAL SELF, 
5 lX, 12HWEIGHT LOA DS/6X , 25H~ - CALLED BY UPOUT IEQLOD, 
6 ~5H/SELF SELF WEIGHT LOADS FOR EQUILIBRIUM CHECK) 

STOP 

60 RETURN 


END 


DETJ 11 : zero Jacobian matrix, J. 

DETJ 13-16 : calculate components of Jacobian matrix. 

DETJ 19 : calculate det IJ I for 2-D. 

DETJ 22-24: calculate det IJI for 3-D. 

DETJ 26 : check if det IJI is positive. 

DETJ 27-29 : if not, print error message and stop. 


DETJ 
~~i~ 
DETJ 
DETJ 
DETJ 
DET J 
DETJ 
DETJ 
DET J 
DET J 
DETJ 
DETJ 
DET J 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
DETJ 
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Routines SELF, SHAPE and DETJCB are used in the simulation of construction 
by the addition of elements. These routines also perform the same calculations 
to determine loads equivalent to the self-weight of removed elements. 

The loads equivalent to element stresses are given by 

i BTad(vol) 
V 


and were calculated in routine RDSTRS using routine EQLIB. The loads 
equivalent to the in situ stresses have been summed into PEQT(NDF). 

7.9.3 Restrained nodes 

PCOR, as mentioned, is calculated at all 'free' nodes. Routine RESTRN goes 
through the list of nodal fixities and inserts 1 against all d.oJ. which are either 
restrained or have a prescribed value in array IDFX(NDF). This enables routine 
EQLBM to identify those variables which are free from those with restraints 
or prescribed values. 

Routine RESTRN 

SUBROUTINE RESTRN(NDF,NNOD1,NDIM,NV/,IDFX) RSTR 1 


C··· •• •••••••••••• •• •••••••••••••••••••••••• ••• •••••••• *••••• • ••••••• ··.RSTR 
 2 

C ROUTINE TO IDENTIFY ALL DISPLACEMENT BOUNDARY CONDITIONS RSTR 3 

C WHICH ARE SPECIFIED. ( SET IDFX = 1 FOR ALL DOF RSTR ~ 


C WHICH ARE RESTRAINED.) RSTR 5 

C··· •••• ••••••••••••••••••••••• •••••• • ••••• •• ••••• ········*·············RSTR 6 


INTEGER TF RSTR 7 

DIMENSION NW(NNOD1) ,IDFX(NDF) RSTR 8 

COMMON IFIX I DXYT(~,200),MF(200),TF(~,200),NF RSTR 9 


C-----------------------------------------------------------------------RSTR 10 

C LOOP ON ALL NODES WITH ONE OR MORE FIXITIES RSTR 11 


C-----------------------------------------------------------------------RSTR 12 

DO 10 J =1, NDF RSTR 13 


10 IDFX(J )=0 RSTR 14 


C RSTR 15 

IF(NF.EQ.O)RETURN RSTR 16 

DO ~O IN=1, NF RSTR 17 

NDE=t1F(JN) RSTR 11 

NFS=NW(NDE)-l RSTR 1<, 


C---------------------------------------------------------- -------------RSTR 20 

C BY-PASS IF NODE HAS ONLY PORE-PRESSURE DOF RSTR 21 

C-----------------------------------------------------------------------RSTR 22 


JP=N~I(NDE+1 )-NH(NDE) 
IF(JP.EQ.1)GO TO ~O 

c 

DO 20 JF=1, NDIM 

NCDE=TF (JF, IN) 

IF(NCDE.EQ.O)GO TO 20 

IDFX(NFS+JF)=1 


20 CONTINUE 

~O CONTINUE 


RETURN 

END 


RSTR 23 

RSTR 2~ 


RSTR 25 

RSTR 26 

RSTR 27 

RSTR 28 

RSTR 29 

RSTR 30 

RSTR 31 

RSTR 32 

RSTR 
 33 


10 

11 

12 

13 

1~ 

15 

16 

17 

18 

19 

20 

21 

22 

23 

2~ 

25 

26 

27 

28 

29 

30 

31 

32 

33 

3~ 

35 

36 

37 

38 

39 

~O 

~1 

~2 

RSTR 13-14 : zero array which indicates variables which are restrained or have 
prescribed values. 

RSTR 16 : skip if no fixities (unlikely). 
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RSTR 17 
RSTR 18 
RSTR 19 
RSTR 23 
RSTR 24 
RSTR 26 
RSTR 27 
RSTR 28 

RSTR 29 
RSTR 30 
RSTR 31 
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: loop on all fixities. 
: node with fixity. 
: starting index for g.v.n. 
: number of d.oJ. of node. 
: if only 1 d.oJ., skip (assumed to be the pore pressure variable). 
: loop on all displacement variables of node. 
: fixity code. 
: if d.oJ. is free, skip. 

: enter as fixed/prescribed. 
: end of loop on all displacement d.oJ. of node. 
: end of loop on all fixities. 

7.9.4 Equilibrium check 

Calculation of PCOR at each free node is done in routine EQLBM by consulting 
array IDFX(NDF) to check whether the entry is 0, indicating the d.oJ. is free. 

Routine EQLBM 

SUBROUTINE EQLBM(IW6,NN,NNOD1,NDF,NDIM,NNZ,NDZ,NREL, EQBM 1 
1 NW NQ IDFX,P,PT,PCOR,PEQT,IEQOP,ICOR,IRAC) EQBM 2 

C···· •••• ~ •• ~••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ··EQBM 3 

C CARRIES OUT AN EQUILIBRIUM CHECK EQBM 4 
C CALCULATE AND PRINTOUT UNBALANCED NODAL LOADS EQBM 5 
C•••••••••••••• • •••••••••••••••••••• • ••••••••••••••••••••••• ·.··········EQBM 6 

DIMENSION NREL(NNZ),NW(NNOD1),NQ(NN),IDFX(NDF) EQBM 7 
DIMENSION P(NDF),PT(NDF),PCOR(NDF),PEQT(NDF) EQBM 8 
DIMENSION PAR(6),RMAX(6),TER(3) EQBM 9 
COMMON IPARS I PYI,ALAR,ASMVL,ZERO EQBM 10 

C--------------------------------------------------------EQBI1 11 
C MP - ARRAY SIZE OF PAR, RMAX EQBM 12 
C-------------------------------------------------------------EQBM 13 

MP::6 EQBM 14 
NDIM1::NDIM+1 EQBM 15 
NDIM2::2.NDIM EQBM 16 

IF(IRAC.EQ.l)CALL REACT(IW6,NN,NNOD1,NDF,NDIM,NNZ, ~~~ ~~ 
1 NREL,NI-I,NQ,IDFX,PEQT,PT) 

C-----------------------------------------------------------EQBM 19 
C INCLUDE ALL PORE-PRESSURE TERMS IN THE LIST OF FIXED D.O.F. EQBM 20 
C ALL EXCESS PORE PRESSURE D.O.F. ARE CONSIDERED TO BE FIXED EQBM 21 
C---------------------------------------------------------------EQBM 22 

DO 2 N I:: 1 , N N EQBM 23 
NQL::NQ(NI) EQBM 24 
IF(NQL.NE. 1.AND.NQL.NE.NDIM1)GO TO 2 EQBM 25 
ILC::NW(NI)+NQL-1 EQBM 26 
IDFX(ILC)::l EQBM 27 

2 CONTINUE EQBM 28 
C--------------------------------------------------------------------EQBM 29 
C CALCULATE OUT-OF-BALANCE LOADS FOR ALL FREE D.O.F. EQBM 30 
C---------------------------------------------------------------------EQBM 31 

DO ·5 1K::1, NDF EQBM 32 
IF(IDFX(IK).EQ.1)GOT03 EQBM 33 
PCOR (IK}::PT(IK)-PEQT (IK) EQEM 34 
GO TO 5 EQBM 35 

3 PCOR(IK)::ZERO 	 EQBM 36 
5 CONTINUE EQBM 37 

C---------------------·----------------------------------------------EQBM 38 
C OUTPUT EQUILIBRIUM, OUT -OF -BALANCE AND APPLIED NODAL LOADS EQBM 39 

Sec. 7.9] Equilibrium Check 

C------___________________________________________________--------EQBM 
40IF(IEQOP.EQ.O)GOTO 25 	 EQBM 
41

WRITE (1W6, 900) 	 EQ8M 
42

WRITE(IW6,904) EQBM 

C 
 43 

EQBM 44 
DO 	 20 JR::l,NNZ EQBM 115
IF(NREL(JR).EQ.O)GOTO 20 	 EQBM 

ll6 
J=NREL(JR) 	 EQBM 

47
NQL=NQ(J) 	 EQBM 48 
IF(NQL.LE.1)GOTO 20 	 EQBM 

49 
IF(IEQOP.EQ.1.AND.JR.GT.NDZ)GOTO 20 	 EQBM 50
N 1 =NW(J) 	 EQBM 51 
N2=N1+NDIM-1 	 EQBM 

52
WRITE (IW6, 901 )JR, (P(JJ ),JJ::N1,N2), 	 EQBM 

53 
1 (PT(JJ),JJ::Nl,N2),(PEQT(JJ),JJ=N1,N2),(PCOR(JJ),JJ::Nl,N2) EQBM 54 

20 CONTINUE 	 EQBM 5525 CALL ZEROR1(RMAX,MP) 	 EQBMC---------_________________________________________________-EQBM 	 56 
57

C CALCULATE MAXIMUM OF APPLIED AND OUT-OF-BALANCE EQBM 58 
C LOADS IN ALL DIRECTIONS EQBM
C-------------_________________________________________-----EQBM 	 59 

60 
DO 	 50 IK::1,NN EQBM 61 
NQL=NQ(IK) EQBM 62 
IF(NQL.LE. 1)GOTO 50 	 EQBM 63 
N1::NW{IK) 	 EQBI~ 611 
N2=N l+NDIM-l 	 EQBl1 65 
IC=O EQBM 66

C 
EQBM 67 

DO 	 35 KN=N1, N2 EQBM 68
IC =IC+l EQBM 69
PAR (IC) =PT (KN) EQBM 70 

35 	 PAR(IC+NDIM)=PCOR(KN) EQBM 71
C EQBl1 72 

DO 40 IC=l, NDIM2 EQBM 73 
RV=PAR(IC) 	 EQBl1 74 
IF(ABS(RV).LT.ASMVL)GOTO 40 EQBM 75 
IF (ABS (RV >. GT • RMAX (IC» RMAX (IC hABS (RV) 	 EQBM 76 

40 CONTINUE 	 EQBM 77 
50 CONTINUE 	 EQBM

C-----------___________________________________________---------EQBM 78 
79 

C OUTPUT MAXIMUM OF (1) APPLIED LOADS (2) OUT-OF-BALANCE LOADS EQBM 80 
C IN ALL DIRECTIONS EQBM 81C---------____________________________________________------------EQBM 

WRITE (IW6, 902) 

IWARN=O 

PMAXT=RMAX(l) 

DO 55 ID=2, NDIM 


55 	 IF(RMAX(ID).GT.PMAXT)PMAXT=RMAX(ID) 

IF(PMAXT.LT.ASMVL) GOTO 132 

DO 130 ID=l,NDIM 


130 TER(ID)=100.*RMAX(ID+NDIM)/PMAXT 

GOTO 125 


132 IWARN=l 

DO 135 ID=l, NDIM 


135 TER(ID)::ZERO 

C 

125 	WRITE{Iw6,903) 
WRITE (IW6, 905) 
WRITE(IW6,907)(RMAX(JQ),JQ=1,NDIM2),(TER(ID),ID::1,NDIM) 
IF (IWARN. EQ. 1 )WRITE (IW6, 91 0)

C-------------------__________________________________-----------EQBM 
101 

C ZERO PCOR IF NO CORRECTING LOADS ARE TO BE APPLIED IN NEXT INCR EQBM 102C----------------___________________________________________----------EQBM 
103 

IF (ICOR. NE. 0 )RETURN 	 EQBM 104 
EQBM 105 

EQBM 

EQBI~ 

EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 
EQBM 

82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

http:IF(NQL.LE
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EQBM 87-88 : get maximum value of total load. 
EQBM 89 : if it is negligible then no applied loading. (Could be an 

analysis where displacements are prescribed at bou ndary, 
i.e, displacement or strain controlled analysis.) 

EQBM 90-91 : calculate percentage error in equilibrium (ou t-of-balance 

loads as a percentage of total load) . 
EQBM 94-95 : no applied load. Set it to zero (no way of calculating 

percentage error in load , as no loads have been applied) . 
EQBM 99-100 : prin t percen tage error. 
EQBM 106-107 : if errors in loads are not to be carried forward to nex 

increment , then zero them. 

7.9.5 Reactions 


At all nodes which are restrained or have a prescribed value, 


J NTT d (area) + f NTw d (vol) Pcor F 
s V 

- f BTa d (vol), (7.12) 
V 

and is the reaction-to-earth. These are printed. Again IDFX(NDF) is made use of 
to indicate the d .oJ. which are fixed or have prescribed values. 

Routine REA CT 

SUBROUTINE REACT(IW6,NN,NNOD1,NDF,NDIM,NNZ,NREL,NW,NQ,IDFX,PEQT, RECT 1 
1 PT) RECT 2 

C······*·***···*······· •• ••••••••••••••••••••• •••••• ••••• ••••••••• • •••• ·RECT 3 
C CALCULATES REACTION TO EARTH AT RESTRAINED NODES RECT 4 

C·· •• ••••••••••••••••••••••••••••••••••••••••••• •••••••• •• • •••• ·.·······RECT 5 
DIHEN~ION PEQT (NDF) , PT (NDF) , NW (NNOD1 ), NR EL (N NZ) , NQ (NN), IDFX (NDF ) RECT 6 
DIMENSION R(500),NDENO(500),NDIR(500) RECT 7 

C----------------------------------------------------------------------RECT 8 
C NCT - SIZE OF ARRAYS R, NDENO AND NDIR RECT 
C-----------------------------------------------------------------------RECT 

NCT=500 RECT 11 
C------------ -----------------------------------------------------------RECT 12 
C ICT - COUNTER OF TOTAL NO. OF REACTIONS RECT 13 
C-----------------------------------------------------------------------RECT 14 

ICT=O RECT 15 
C RECT 16 

DO 25 JR=l , NNZ RECT 17 
IF(NREL(JR).EQ.O)GOTO 25 RECT 18 
J=NREL(JR) RECT 19 
NQL=NQ(J) RECT 20 

C-----------------------------------------------------------------------RECT 21 
C , SKIP IF NODE HAS PORE PR ESSUR E D. O. F. ONLY RECT 22 
C----------------------------------------------------------------------RECT 23 

IF (NQL. LE. 1)GOTO 25 RECT 2lJ 
N1=NW(J) RECT 25 
N2=N 1+NDIH-l RECT 26 
IDF=O RECT 27 

C 	 RECT 28 
DO 20 KN =N 1, N2 RECT 29 

IDF=IDF +1 RECT 30 
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DO 140 IK=1,NDF 
140 PCOR(IK)=ZERO 

RETURN , 
goo FORMAT(1167X, 19HLOADS EQUIVALENT TO/9X, 

1 24HINCREMENTAL APPLIED LOAD,7X,18HTOTAL APPLIED LOAD, 
1 10X,16HELEMENT STRESSES, 11X, 19HOUT-OF-BALANCE LOADI 
2 9X, 24 (1H-), 7X, 18(1H-), lOX, 1 6(1H-), 1 lX, 19(1H-» 

901 FORMAT(1X,I5,2X,8E14.4) 

902 FORMAT(!/1X, 17HEQUILIBRIUH CHECK/1X, 17(1H-» 

903 FORMAT(/8X, 20HHAXIMUM APPLIED LOAD,12X, 


1 24HMAXM OUT-OF-BALANCE LOAD, lOX, 
2 31HPERCENTAGE ERROR IN EQUILIBRIUHI 
3 8X,20(1H-), 12X,24(1H-), 10X,31 (1H-)/) 

904 FORHAT(!1X , 5H rlODE,8X, 1HX, 13X, 1HY, 13X, 1HX, 13X, 1HY, 13X , 1HX, 
1 13X, 1HY, 13X, 1HX, 13X, lHYII) 

905 FORMATO lX, 1HX, 15X, 1HY, 16X, 1HX, 15X, 1HY, 17X, 1HX, 15X, 1HY/) 
907 FORMAT(1X,4E16.5,2F16.5) 
910 FORMAT(/40H WARNING •••• NO APPLIED LOADING - CHECK, 

1 1X,49HHHETHER ALL BOUNDARY CONDITIONS ARE DISPLACEHENTS, 
2 2X,15H(ROUTINE EQLBH» 

END 

EQBM 15-16 
EQBM 17-18 

EQBM 23 
EQBM 24 
EQBM 25 
EQBM 27 

EQBM 32 
EQBM 33 
EQ~M 34 
EQBM 36 
EQBM 41 
EQBM 45 
EQBM 47 
EQBM 48 
EQBM 49 

I , 	 EQBM 50 
EQBM 51-52 
EQBM 53-54 

EQBM 61 
EQBM 63 
EQBM 64-65 
EQBM 68 
EQBM 70-71 
EQBM 73-77 
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EQBM 106 

EQBH 107 

EQBH 108 

EQBH 109 

EQBt'l 110 

EQBM 111 

EQBM 112 

EQBt~ 113 

EQBM 114 

EQBM 115 

EQBM 116 

EQBM 117 
EQBM 118 
EQBM 119 
EQBM 120 
EQBM 121 
EQBM 122 
EQBM 123 
EQBM 124 
EQBM 125 
EQBH 126 

: indexes to arrays PAR and RMAX. 
:' calcula te reactions-to-earth at nodes which are restrained (or 

have prescribed displacements). Identified by 1 in array 

IDFX against g.v.n. 
: loop on all nodes. 
: number of d.oJ. of node. 
: if node has only displacement d .oJ., by-pass . 
: enter 1 against pore pressure d .oJ. which are not included in 

the equilibrium check . 
: loop on all d.oJ. 
: by-pass either if restrained or if pore pressure d.oJ. 

: calculate out-of-balance load at d.oJ. 
: enter zero for d.oJ. if restrained or if pore pressure d.oJ. 
: skip if details of equilibrium check are not to be printed. 

: loop on all nodes in user sequence number. 

: program node no. 

: no. of d.oJ. 
: by-pass if node has only pore pressure d .oJ. (it is implicitly 

assumed that if a node has only 1 d.oJ. then that is pore 

pressure d.oJ.). 
: only print details at vertex nodes if IEQOP =1. 

: g.v.n. of first and last displacement d .oJ. of node. 

: print out incremental, out-of-balance, equilibrium and total 


loads. 
: loop on all nodes . 
: skip if node has only pore pressure variable. 
: g.v.n. of first and last displacement d.oJ. of node. 

: loop on all d.oJ. of node. 
: copy total (PT) and out-of-balance (PCOR) loads at node . 

: update maximum values of PT and PCOR. 

I 
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IF(IDFX(KN).NE. l)GOTO 20 
ICT=ICT+l 

IF(ICT.GT.NCT)GOTO 30 

R(ICT)=-(PEQT(KN)-PT(KN» 

NDENO(ICT)=JR 

NDIR (ICT )=IDF 


20 CONTINUE 

25 CONTINUE 


C 
WRITE (IW6, 901 ) 
WRITE (11016,903) (NDENO(JCT), NDIR (JCT), R (JcT) , JCT=l, ICT) 
RETURN 


30WRITE(IW6,906) 

STOP 


901 FORMAT{/ /lX, 18H LIST OF REACTIONS/2X, 17 (lH-)/ 

1 2X,3(4HNODE,4X,9HDIRECTION,7X,8HREACTION,llX)/) 

903 FORMAT(3(lX,I5,5X,I4,5X,E14.4, lOX» 
906 FORMAT(/lX,35HINCREASE ARRAY SIZE OF R,NDENO,NDIR, 

1 lX,16HIN ROUTINE REACT) 
END 

RECT 15 

RECT17 
RECT 18 
RECT 19 
RECT 20 
RECT24 

: counter of total no. of reactions (each variable is 

separa tely). 
: loop on all nodes in user sequence number. 
: skip if user has not used tlus node no. 
: program node number. 
: number of d.oJ. of node. 

[Ch.7 

RECT 31 
RECT 32 
RECT 33 
RECT 34 
RECT 35 
RECT 36 
RECT 37 
RECT 38 
RECT 39 
RECT 40 
RECT 41 
RECT 42 
RECT 43 
RECT 44 
RECT 45 
RECT 46 
RECT 47 
RECT 48 
RECT 49 
RECT 50 

dealt with 

: by-pass if node has only 1 d.oJ. (assumed to be pore pressure 

variable). 
RECT 25-26 : g.v.n. of first and last displacement d.oJ. of node. 
RECT 29 : loop on all displacement d.oJ. (variables). 
RECT 30 : displacement variable no. of node (i.e. 1 or 2). 
RECT 31 : skip if not restrained or prescribed. 
RECT 32 : increment count of reactions by 1. 
RECT 33 : skip if array size is exceeded. 
RECT 34 : calculate reactions-to·earth. 
RECT 35 : enter user node number. 
RECT 36 : enter direction (l - x; 2 - y). 
RECT 37 : end of loop on all displacement d.oJ. of node. 
RECT 38 : end of loop on all nodes. 
RECT 40-41 : print out list of reactions. 

RECT 43-44 : print message to increase array size, and stop. 


7.9.6 Initialising arrays 

A set of routines to zero real and integer arrays of one, two and three 
dimensions is used throughout the program. Whenever an array needs to be 
zeroed, a subroutine call is made to the appropriate routine. 
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Routine ZEROSB 

SUBROUTINE ZEROll(N,LN) 	 ZERO 1 
c**·········*·········*·*···*············· ............**.'..... ' ....... 'ZERO · 2 

C ROUTINE TO INITIALISE A l-DIMENSIONAL INTEGER ARRAY · ZERO 3 
C·················· •• •••• •••• • ••• •••• •••••••••••••••••••••••••••••••••••ZERO 4 

DIMENSION N(LN) 
C 

DO 	 10 I=l,LN 
10 N(I)=O 

RETURN 
END 
SUBROUTINE ZEROI2(N,L1,L2) 

C······································· ••• • •• • ••••••••• ' •• 
C ROUTINE TO INITIALISE A 2-DIMENSIONAL INTEGER ARRAY 

ZERO 5 
ZERO 6 
ZERO 7 
ZERO 8 
ZERO 9 
ZERO 
ZERO 11 

' ••••••• ' ••••	ZERO 12 
ZERO 13 

C··················*································ ••• • ••••• ' •• ' •••• '.'ZERO 14 
DIMENSION N(L 1, L2) ZERO 15 

C ZERO 16 
D010J=l,L2 ZERO 17 
DO 10 I=l,L1 ZERO 18 

10 	N(I, J )=0 ZERO 19 
RETURN ZERO 
END ZERO 21 
SUBROUTINE ZERORl(V,LV) ZERO 22 

C···················································.········ •• • ••••••••ZERO 23 
C ROUTINE TO INITIALISE A l-DIMENSIONAL REAL ARRAY ZERO 24 
C······························.············ ••••• ••• • •••••••••••••••••••ZERO 25 

DIMENSION V(LV) ZERO 26 
C ZERO 27 

DO 10 I=l,LV ZERO 28 
10 	V(I)=O. ZERO 29 

RETURN ZERO 
END ZERO 31 
SUBROUTINE ZEROR2(V,Ll,L2) ZERO 32 

C····································································.··ZERO 33 
C ROUTINE TO WITIALISE A 2-DIt1ENSIONAL REAL ARRAY ZERO 34 
C································································.······ZERO 35 

DIMENSION V(L1,L2) ZERO 36 
C ZERO 37 

DO 10 J=l,L2 ZERO 38 
DO 10 I=l,L1 ZERO 39 

1.0 	 V(I,J)=O. ZERO 
RETURN ZERO 41 
END ZERO 42 
SUBROUTINE ZEROR3(V,Ll,L2,L3) ZERO 43 ' 

C··································*···················.*•• ••• •• • •••••••ZERO 44 
C ROUTINE TO INITIALISE A 3-DIMENSIONAL REAL ARRAY . ZERO 115 
C················*·················*·················· •••·.'••••••••••••ZERO 46 

DIMENSION V(Ll,L2,L3) ZERO 47 
C ZERO 48 

DO 10 K=1,L3 ZERO 49 
DO 10 J=l,L2 ZERO 
DO 10 I =1, L 1 ZERO 51 

10 	V(I,J,K)=O. ZER.o 52 
RETURN ZERO 53 
END ZERO 54 

ZERO 1-54 : zero array in separate routines as follows: 

http:IF(IDFX(KN).NE
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Rou tine name Dimensions Array type 

INTEGER ZEROIl 


2 
 INTEGER ZER0I2 


I REAL ZERORI 


2 REAL ZEROR2 


3 REAL ZEROR3 

Analysis 


8.1 INTRODUCTION 

Having set the in situ stresses, the analysis proper can begin. An equilibrium 
check has also been carried out to make sure that external loads specified by the 
user are equivalent to the element in situ stresses. It should be remembered that 
these (in situ) loads are different from the loading applied during the course of 
the analysis. 

In some analyses the simple option of no initial stresses may have been 
selected. However, in most geotechnical problems the in situ stresses play an 
important role. CRISP stores the current stress state, and this governs behaviol 
under the subsequent loading. This chapter deals with the response of the soil k 

a given loading. 
The loads are divided into steps, called increment blocks. These increment 

blocks in turn are divided into increments. The use of increment blocks is for 
convenience. The analysis can be divided into the following steps : 

(i) calculation of incremental loads ; 
(ii) application of the boundary conditions; 
(iii) assembly of the stiffness matrix; 
(iv) solution of the equations; 
(v) calculation of strains and stresses; 
(vi) ou tpu t of results. 

Section 8.2 explains the use of increment blocks. Section 8.3 presents a brief 

8 
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explanation of the subrou tines listed in this chapter. Section 8.4 deals with the 
calculation of incremental loads. Section 8.S presents the details of the load 
increment loop. Sections 8.6 to 8.8 deal with the calculation of the element 
stiffness matrix and the global stiffness matrix. The frontal solution is dealt with 
in separate sections, 8.9 to 8.12. Section 8.l3 considers the calculation of 
incremental strains and stresses, and the printing out of the various parameters. 
Section 8.14 lists the subroutine which deals with stopping and restarting an 
analysis. 

The previous chapter dealt with the setting up of the in situ stresses and 
satisfying "the equilibrium conditions at that stage. Those readers interested in an 
analysis with zero in situ stresses may have skipped the previous chapter. 
However, a number of routines are common to the in situ part and the analysis 
part of the program~ Where applicable we refer the reader back to the 
explanations in the previous chapter. 

8.2 INCREMENT BLOCKS 

The entire loading is divided into a number of increments. The increments can 
be grouped into a number of increment blocks. As mentioned in Chapter 4, this 
facility is provided for two reasons. 

(i) 	 If the loads for each analysis increment had to be specified separately 
there would be a very large amount of data input needed for most 
problems. Much of this information would be repeated many times (e.g. 
which element sides were being loaded). 

(ii) 	 When performing an excavation (or construction) analysis the program 
calculates the implied loads due to the removal (or addition) of the 
elements specified by the user. These implied loads will often be too large 
to be applied in a single increment when the material behaviour is non­
linear. The use of an increment block spreads these implied loads over 
several increments. (Note that this procedure introduces an extra 
approximation in the modelling of excavations: the stiffness of an element 
is removed entirely in the first increment of a block whereas the loads are 
spread over all increments in the block.) 

8.3 CONTROL ROUTINE 

The master control routine is ANS. This loops around all increment blocks in the 
analysis. This is the outer loop. The inner loop is on all increments within the 
increment block. Each increment block contains at least one increment. 

Routine ANS consists of a series of subroutine calls to various routines, 
delegating tasks to them (Fig. 8.1). A brief explanation of each subroutine 
discussed in this chapter is given below. 

Sec. 8.3] Control Routine 

i 
SELF -----r SHAPE 


CHANGE LDETJCB 

EQUB-- FORMB2"7(" SHAPE 


"DISTLD L DETM/N 

SEL1---SELF ---,-SHAPE 
L DETJCB 


EDGLD--LODLST 

DISTLD --SFRl 

FACTOR 

FIXX 


DCON 
FORMB2 --,- SHAPE 

ANS LDETMIN 
LODLST LSTIFF 	 JPC --- FORMP --SHFNPP 
MAKENZ DLiN 
MLAPZ FRSLOT DMCAM 
SFWZ DCAM 

FRFXLD LSTIFA 
FRONTZ LSTFSG 

STOR EQ - WRTN 
GETEQN-"- RON 

LODINC 	 PRINTF 

DCON 
FORMB2 -,- SHAPE 
OLIN L DETMIN 
DMCAM 
DCAM 
SHFNPP 

UPARAL - UPOUT 	 EVCAM ---r- VARCAM 
STRSEQ L ANGTH 
PRINC 
UPOUT2 

i 
DISTLD--SFRl 

EQLOD 	 SELF ---. SHAPE 
RESTRN L DETJCB 
EQLBM -- REACT 

Fig. 8.1 - Subroutine hierarchy for analysis part of program 

ANS 	 main control routine for analysis. Reads control parameters for 
increment block. Delegates tasks to routines CHANGE, SELl and 
LODINC. 

CHANGE -	 calculates implied loads due to removal and addition of elements. 
SELl 	 calculates nodal loads for self-weight loads. 
FACTOR - reads load ratios, output options and time steps for each increment 

within an increment block. 

LODINC - control routine delegates calculation of stiffness matrices and 

solution of equations to FRONTZ and printing out the results to 
UPOUT (via UPARAL). 

LSTIFF 	 calcula tes element stiffness matrix. 
JPC 	 for consolidation analysis, calculates components of stiffness 

matrix. 
FORMP 	 calculates E matrix (pore pressure gradients), i.e . Cartesian 

derivatives of pore pressure shape functions. 
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SHFNPP 

LSTIFA 

LSTFSG 

FRONTZ ­

FRSLOT ­

FRFXLD ­

PRINTF 

STOREQ 

WRTN 
GETEQN ­

RDN 
UPARAL ­

UPOUT 

EVCAM 
VARCAM­
ANGTH ­
PRINC 
CAMCDE ­

UPOUT2 
STRSEQ 
RESTRT 
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calculates pore pressure shape functions. 

calculates JvBTOB devol) . 

rearranges rows/columns of element stiffness matrix and forms a 

one-dimensional (upper triangular matrix stored columnwise) 


matrix acceptable to FRONTZ. 

calls LSTIFF to calculate the element stiffness matrix, and solves 


the assembled equations using the frontal method. 

slots upper triangular element stiffness matrix in appropriate places 


in the front. 

deals with prescribed displacements and applied loads for nodes 


being elminated. Also prints them out. 

debugging routine to print out element stiffness matrix and stiff­


ness terms and load terms in the front. 

stores contents of the buffer of eliminated coefficients in backing 

store when the buffer fIlls up during frontal solution. 

routine used by STOREQ to write to backing store. 

performs the reverse task to STOREQ. Gets back a bufferful of 

eliminated coefficients from backing store when the buffer 


becomes empty during back-substitution in the frontal solution. 

routine used by GETEQN to read from backing store. 

sets up temporary arrays for storing output tables to be printed in 


UPOUT2. 

output routine. Increments displacements and calculates stress 

increments and prints out the results. Writes results to magnetic 

tape or disk, but in the latter case only if it is the last increment of 

the analysis (used in stopping and restarting an analysis). 

calculates extra stress parameters for Cam-clays. 

assigns codes to indicate stress state for Cam-clays. 


calculates angle 8 in 'IT plane. 

calculates principal stresses in xy plane. 

prints out explanations of codes assigned to identify stress states 


for Cam-clay models only. 

prints out additional stress parameters calculated for Cam-clays. 


calculates forces equilibriating element stresses. 

stop-restart facility (see section 9.2). 


The main task of the routine ANS is to form a single load vector PIB(NDF) from 
the user-specified pressure loads and self-weight loads and to translate restraints/ 
prescribed displacements (including pore pressures) into a list of nodal fixities. 

Within the increment loop, both of these are accessed. Implied loadings due to 
removal of elements (excavation) and addition of elements (construction) are 

also calculated and assembled into PIB(NDF). 

Sec . 8.3] 	 Control Routine 

Routine ANS 

SUBROUTINE ANS(NN,NEL,NDF,NNOD1,NTPE,NIP,NVRS,NVRN,NDIM,MUMAX, ANS 1 

1 NDZ, IF RZ, NNZ, NDMX, NPMX, NS, NB, NL, NPR, NMT, NPT ,NSP, NPL, AN.S 2 


32 MDFE,KES,NVPN,INXL,MXEN,MXLD,MXFXT,LV,NVTX,ND, ANS 

3 XYZ, DI,DA, VARINT, P, PT, PIB,REAC, PCOR, PEOT ,XYFT ,XYFIB, ANS 4 

~ 	 STR, PEXIB, PEXI, PCONI, D, ELCOD, DS, SHF N, CARTD, B, DB,FT, SS, ES, ANS 


ELCODP,E,PE,RN,AA,ETE,RLT, ANS 6 

NCONN, MAT, LTYP ,MRELVV, MREL, NRELVV, NR EL, NW, NO, AIlS 7 

JEL,IDFX,NDEST,NP1,NP2,IFR,NDL,NWL,NHOD, ANS 8 

CIP,LL,V,FXYZ,PR,PDISLD,PRES,NTY,A,MFZ,NOIB, ANS 9 


C········M ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 'ANS
TTIME,TGRAV,IUPD,ICOR,IBC,IDCHK,INCT) ANS 


l' 
C MAIN CONTROLLING ROUTINE 	 ANS 

1j 
REAL L,LL ANS 1~ 
INTEGER TF ANS 

c------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRMl TO DOUBLE ANS 16 

c-------PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION ANS 17 

CC REAL A ANS 18 


DIMENSION XYZ(NDIM,NN),DI(NDF),DA(NDF),VARINT(NVRS,NIP,NEL), ANS 19 

1 P(NDF),PT(NDF),PIB(NDF),REAC(NDF),PCOR(NDF),PEOT(NDF),XYFT(NDF), ANS 

2 XYFIB(NDF),STR(NVRN,NIP,NEL),PEXIB(NDF),PEXI(NDF),PCONI(NDF) ANS 21 


DIMENSION D(NS,NS),ELCOD(NDIM,NDMX),OS(NDIM,NDMX),SHFN(NDMX), ANS 22 

ANS 23
1 CARTD(NDIM,NDMX),B(NS,NB),DB(NS,NB),FT(NDIM,NDMX), 

2 SS(NB,NB),ES(KES) ANS 24 

DIMENSION ELCODP (NDIM, NPMX), E(NDIM, NPMio, PE (NDIM, NPMX), ANS 


1 RN(NB),AA(NPMX),ETE(NPMX,NPMX),RLT(NB,NPMX) ANS 26 

DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), ANS 27 


1 MREL(MUMAX), NRELVV (NN), NR EL (NNZ ) ,NW (NNOD1 ), NO (NN), JEL (tIEL), ANS 28 

2IDFX(NDF),NDEST(NN),NP1(NPL),NP2(NPL) ANS 29 


DIMENSION IF R (IFRZ ), NDL (MDFE) ,NWL (NPMX), NHOD (NIP, NEL) ANS 
DIMENSION CIP (NDIM), LL (NL), V (LV) ,FXYZ (NDIM), PR (NPR, NMT), ANS 31 


ANS 32
1 PDISLD(NDIM,NPT),PRES(NDIM,NPT),NTY(NMT),A(MFZ) 
ANS 33
DIMENSION RINCC(50),DTM(50),IOPT(50) 

COMMON IFLOW I NPLAX ANS 34 

COMMON IDATL I L(~,100) ANS 

COMMON IDATW I W(100) ANS 36 

COMMON ItLINF I LINFO(50,15) ANS 37 

Cot1MON IFIX I DXYT(~,200),MF(200),TF(4,200),NF ANS 38 

COMMON IPRSLD I PRESLD(10,100),LEDG(100),NDE1(100),NDE2(100),NLED ANS 39 

COMMON IPRLDI I PRSLDI(10,100),LEDI(100),NDI1(100),NDI2(100),ILOD ANS 

COMMON IDEVICEI IR1,IR~,IR5,rw2,IW4,IW6,P~7,IW8,IW9 ANS 41 

COMMON IPARS I PYI,ALAR,ASMVL,ZERO ANS I" 


C------------------------------------------------------------------ANS 
C MAXIMUH NUMBER OF INCREMENTS IN A INCREMENT BLOCK ANS 
C---------------------------------------------------------------------ANS 


INCZ=50 ANS 46 

NDIM 1=NDIH+ 1 ANS 47 


10 ANS 48
IF(IDCHK.EQ.O)GOTO 
WRITE (IW6, 907) ANS 49 

STOP ANS 


C-----------------------------------------------------------------------ANS 51 

C START OF INCREMENT LOOP ANS 52 

C----------------------------------------------------------------------ANS 53 


10 DO 250 J=l,NOIB ANS 5~ 


C ANS 

WRITE (IW6, 908) J ANS 56 


C-----------------------------------------------------------------------ANS 57 

C INITIALISE LOAD VECTOR 	 ANS 58 

C--------------------------------------------------~----___------------ANS 59 


CALL ZEROR1(XYFIB,NDF) ANS 

CALL ZEROR l(PIB, NDF) ANS 61 

CALL ZEROR1(PEXIB,NDF) ANS 62 


C 	 ANS 63 


c·········································.···········...... ·...........ANS 
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DO 20 JJ=l,MXEN ANS 64 

DO 20 II=l ,MXLD ANS 65 


20 PRSLDI(II,JJ)=ZERO ANS 66 

ANS 67 


ILOD=O ANS 68 

CALL ZEROl1(JEL,NEL) ANS 69 

CALL ZEROl1 (IOPT, INCZ) ANS 70 

CALL ZEROR1(DTM,INCZ) ANS 71 

CALL ZEROR 1(RINCC, INCZ) ANS 72 

FRACT=ZERO ANS 73 


C------------------------------__------------------------------A NS 74 

C READ INCRE}lENT CONTROL OPTIONS ANS 75 

C---------------------------------------------------------------ANS 76 


READ(IR5,· )lBNO, INC I, INC2, ICHEL, NLOD, ILDF, NFX, IOlITS, ANS 77 

1 IOCD, DTHIE, ITMF, DGRAV ANS 78 

WRITE(IW6,912)IBNO,INC1,INC2,ICHEL,NLOD,ILDF,NfX,IOUTS, ANS 79 


2IOCD,DTIHE,ITMF,DGRAV ANS 80 

NOINC=INC2+1-INC 1 ANS 81 

IF(NOINC.LE.INCZ)GOTO 70 ANS 82 

WRITE(IW6,950)NOINC ANS 83 

STOP . ANS 8lj 


70 If(IBNO.EQ.J) GO TO 72 ANS 85 

WRITE(IW6,913) IBNO,J ANS 86 

STOP ANS 87 


72 IF(ICHEL.EQ.O) GO TO 76 ANS 88 

C-~----------------------------------------------------------ANS 89 

C ALTER GEOMETRY AS SPECIfIED ANS 90 

C---------------------------------------------------------------ANS 91 


WRITE(IW6,914) ANS 92 

READ(IR5,*)(JEL(JJ),JJ=l,ICHEL) ANS 93 

WRITE(IW6,920) (JEL(JJ),JJ=l,ICHEL) ANS 94 


C ANS 95 

CALL CHANGE (IW6, 1 , ICHEL, NN, NNODI ,NTPE, NI P, NEL,MUHAX, NNZ, NDF, NDIM, ANS 96 


1 NVRS, NDMX, NL, NB, NS, NPR, NMT, NPT ,NSP, NPL, XYZ, VARINT, PIB, PEXIB, ANS 97 

2 ELCOD,DS,SHFN,CARTD,B,FT,NCONN,MAT,LTYP,MREL,NREL, ANS 98 

3 NW,JEL,NP1,NP2,MXEN,LL,PR,TGRAV) ANS 99 


C------------------------------------~---------------------ANS 100 

C CALCULATE BODY fORCE LOAD VECTOR ANS 101 

C fOR SElf-WEIGHT LOADING AND GRAVITY LOADING ANS 102 

C---------------------------------------------------------ANS 103 


76 CALL SEL1(IW6, ICHEL,NN,NNOD1,NTPE,NIP,NEL,NDf,MUMAX,NL,NDIM, ANS 104 

1 NDMX,NPR,NMT,XYZ,PIB,ELCOD,DS,SHFN,FT,NCONN,MAT, ANS 105 

2 LTYP, MRELVV, MREL, NW, JEL, LL, PR, NTY, DGRAV) ANS 106 


C-------------------------------------------------------------ANS 107 

C READ LOAD FACTORS, TIME FACTORS AND OlITPUT OPTIONS ANS 108 

C---------------------------------------------------------ANS 109 


CALL FACTOR(IR5,IW6,NOINC,ILDF,IOCD,ITMF, IOlITS, ANS 110 

1 RINCC,DTM,IOPT,DTIME) ANS 111 

If(NLOD.EQ.O)GO TO 95 ANS 112 

IF(NLOD.GT.O)GO TO 82 ANS 113 


C----------------------------------------------------------------A NS 114 

C PRESSURE LOADING ALONG ELEJ-lENT EDGE ANS 115 

C--------------------------------------------------------ANS 116 


WRITE(IW6,1000) ANS 117 

NLDS =IABS (NLOD) ANS 118 

If(NDIM.EQ.2)GOTO 78 ANS 119 

IIRITE (Iw6, 955 ) ANS 120 


955 fORMAT(llX,34HNO OPTION TO CALCULATE NODAL LOADS, IX, ANS 121 

1 50HfROM PRESSURE LOADING IN 3-D PROBLEM (ROUTINE ANS» ANS 122 

STOP ANS 123 


ANS 124 

78 	 DO 80 KLOD=l,NLDS AilS 125 


READ(IR5, *)LNE, ND1, ND2, «PDISLD(ID, IV), ID= 1, NDIM) ,IV=l, NPT) ANS 126 

WRITE (IW6, 1002 )LNE, ND1, ND2, «PDISLD(ID, IV), ID=l, NDIM), IV =1, NPT) ANS 127 


C ANS 128 

DO 100 IV=l,NPT ANS 129 
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DO 100 ID=l,NDIM 

IDR=NDIM+l-ID 


100 PRES(ID,IV)=PDISLD(IDR,IV) 

DO 110 IV=l,NPT 

DO 110 ID=l,NDIM 


110 PDISLD(ID,IV)=PRES(ID,IV) 

CALL EDGLD (II16, NEL, NDIM, NTPE, NNZ, MUMAX, NPL, NCONN, LTYP, MREL, NR EL, 
1 	 LNE,ND1,ND2,NP1,NP2,PDISLD,PRES,KLOD,NPT,0,MXLD) 

CALL DISTLD(IW6,NN,NEL,NDF,NNOD1,NTPE,NDIM,MUMAX,NNZ, 
1 NPL,XYZ,PIB,NCONN,LTYP,MREL,NREL,NW, 
2 NP1,NP2,PRES,LNE,ND1,ND2,NPT,NSP,I,1,1.) 

80 	 CONTINUE 

GO TO 95


C--------------------__________________________________ 

C READ INCREMENTAL POINT LOADS 
C-----------------------_______________________________-------ANS 1/j8


82 WRITE(IW6,916) ANS 149 

C ANS 150 


DO 90 JJ=l,NLOD ANS 
 151 

READ(IR5,*)KK,(FXYZ(ID),ID=l,NDIM) ANS 152 

WRITE(IW6,940)KK,(FXYZ(ID),ID=1,NDIM) ANS 
 153 


C----------NO PROVISION FOR PORE PRESSURE TERMS IN 'APPLIED' NODAL LOADSANS 15/j
FTT=ZERO 

KJ=NREL(KK) 

Nl=NIHKJ)-l 

IDF=NW(KJ+1)-NW(KJ) 

If(IDf.EQ.l)GO TO 84 


C 
DO 	 83 ID=l,NDIM 

83 	 XYFIB(Nl+ID)=fXYZ(ID) 

IF(IDF.EQ.NDIM1)XYFIB(Nl+NDIM1)=fTT 

GO TO 90 


84 XYFIB(Nl+1)=FTT 

90 CONTINUE 


95 	 IF(NfX.EQ.O) GO TO 137
C----------------------------___________________________------"-----ANS 169 

C READ CHANGE TO NODAL fIXITIES 	 ANS 170 

C---------~----------------------------------__________________-----ANS 171 


WRITE (IW·6,931 ) ANS 172 

C MiS 173 


CALL FIXX (IR5, IW6·, NEL, NTPE, NDIM, NPL, LV, MUMAX, NNZ, NCONN, LTYP, ANS 17/j 

1 ~IREL,NREL,NP1,NP2,V,NFX) ANS 
 175 


137 CONTINUE ANS 
 176 

C---------------------------------------________________----------ANS 177 

C START OF INCREMENT LOOP ANS 
 178
C---------------------	 ----------ANS 

DO 200 JS=INC1,INC2 

INCT=INCT+l 

IF(JS.EQ.INCT)GO TO 138 

WRITE(IW6,933)JS,INCT 

STOP 


138 	 JC=JS+l-INCl 
FRACLD=RINCC(JC) 
FRACT=fRACT+fRACLD 
DTIMEI=DTM(JC) 
TTIME=TTIME+DTIMEI 
DGRAVI=FRACLD*DGRAV 
TGRAV=TGRAV+DGRAVI 
IOUT=IOPT(JC) 

-------ANS 
146 


ANS 147 


ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 

130 

131 

132 

133 

13lj 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 


ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 

155 

156 

157 

158 

159 

160 

161 

162 

163 

16/j 

165 

166 

167 

168 


C------------------___________________________________--------------ANS 
193 


FLAG TO INDICATE THE VERY LAST INCREMENT IN CURRENT RUN. ANS 194 

TO ALLOW RESULTS FROM THIS INCREMENT TO BE WRITTEN TO DISK FILE ANS 
 195 


ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 
ANS 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 
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C IF STOP/RESTART OPTION ISR = 1 IS BEING USED. ANS 196 

C-----------------------------------------------------------------------ANS 197 


IWL::O ANS 198 

IF(J.EQ.NOIB.AND.JS.EQ.INC2)IWL=1 ANS 199 


C ANS 200 

CALL LODINC(NN,NEL,NDF,NNOD1,NTPE,NIP,NVRS, ANS 201 


1 tlVRtl,NDIM,MUMAX,NDZ,IFRZ,NNZ,NDMX,NPMX, ANS 202 

2 NS,NB,NL,NPR,NMT,NPT,NSP,NPL,MDFE,KES,NVPN, ANS 203 

3 INXL,MXEN,MXLD,LV,NVTX,ND, MIS 204 

4 XYZ,DI,DA,VARINT,P,PT,PIB,REAC,PCOR,PEQT,XYFT,XYFIB, ANS 205 

5 STR, PEXIB, PEXI, PCONI, D,ELCOD, DS,SHFN,CARTD,B, DB,FT,SS, AIlS 206 

6 ES,ELCODP,E,PE,RN,AA,ETE,RLT, ANS 207 

7 NCONN,MAT,LTYP,MRELVV,MREL,NRELVV,NREL,NW,NQ, ANS 208 

8 JEL,IDFX,NDEST,NP1,NP2,IFR,NDL,NWL,NMOD, ANS 209 

9 CIP,LL,V,FXYZ,PR,PDISLD,PRES,NTY,A,MFZ, ANS 210 

1 DTIMEI,TTIME,DGRAVI,TGRAV,IOUT,JS,J,FRACLD, ANS 211 

2 FRACT,ICOR.IUPD,IBC,NLOD,NLDS,IWL) ANS 212 


C ANS 213 

200 CONTINUE ANS 214 


C-----------------------------------------------------------------------ANS 215 

C ZERO ALL NON-ZERO PRESCRIBED VALUES AilS 216 

C-----------------------------------------------------------------------ANS 217 


IF(NF.EQ.O)GOTO 240 ANS 218 

C ANS 219 


DO 220 JJ=l,MXFXT ANS 220 

DO 220 II=1,4 ANS 221 


220 DXYT(II,JJ)=ZERO ANS 222 

C 
 ANS 223 


ANS 224
240 CONTINUE 

ANS 225
C 


250 CONTINUE ANS 226 

907 FORMAT(/IX,24HANALYSIS NOT CARRIED OUT/) ANS 227 

908 FORMAT(//120(IH::)// ANS 228 


1 1X.43HSTART OF LOAD INCREMENT BLOCK NUMBER , 15/1X, 48 (IH-» ANS 229 

912 FORMAT(/ ANS 230 


llX,23HINCR BLOCK NUMBER .•... ::.I5,4X,23HSTARTING INCR NUMBER .• =,I8/ANS 231 

21X,23HFINISHING INCR NUMBER.=,I5,4X,23HNO. OF ELEMENT CHANGES=,I8/ANS 232 

31X,23HNUMBER OF LOADS ...•.•• ::,I5,4X,23HLOAD RATIO OPTION ..... =,I8/ANS 233 

41X,23HNUMBER OF FIXITIES .... =,I5,4X,23HSTD OUTPUT CODE •.•.... ::,I8/ANS 234 

51X.23HOUTPUT OPTION ....••... =,15, ANS 235 

64X,23HTIHE INCREMENT .....•.• =,Fl0.l/ ANS 236 

71X,23HTIME RATIO OPTION ..... =,I5, ANS 237 

84X,23HINCR IN GRAVITY FIELD.=,Fl0.l/) ANS 238 


913 FORMAT(//lX,26HERROR IN INCR BLOCK NUMBER,216) ANS 239 

914 FORMAT(//28H LIST OF ELEMENT ALTERATIONS/1X,27(lH-)/) ANS 240 

916 FORMAT(//32H LIST OF INCREt1ENTAL NODAL LOADS/1X,31 (lH-)!) ANS 241 

920 FORMAT(lX,1018) ANS 242 

931 FORMAT(/lX.29HPRESCRIBED BOUNDARY CONDITONS/1X,29(lH-)/) ANS 243 

933 FOR~IAT(I/1X,25HERROR IN INCREMENT NUMBER,216,2X,13H(ROUTINE ANS» ANS 244 

940 FORHAT(lX.15,3F8.1) ANS 245 

950 FORMAT(/lX,46HINCREASE SIZE OF ARRAYS RINCC, DTM AND IOPT TO, ANS 246 


1 15, 2X, 28HALSO SET INCZ III ROUTINE ANS) ANS 247 

1000 FORMAT(39H SPECIFIED NODAL VALIJES OF SHEAR/NORMAL, AtlS 248 


1 36H STRESSES AND EQUIVALENT NODAL LOADS/1X,74(lH-)/5HOELEH, ANS 249 

2 lX,4HNDE1,2X,4HNDE2,2X,4HSHR1,8X,4HNOR1,8X,4HSHR2,8X.4HNOR2, ANS 250 

3 8X,4HSHR3,8X,4HNOR3,8X,4HSHR4,8X,4HNOR4,8X,4HSHR5,8X,4HNOR5/ ANS 251 

1 lX, 16H(LOAD DIRECTION),2X,3H(X),9X,3H(Y),9X,3H(X),9X,3H(Y), ANS 252 

2 9X,3H(X),9X,3H(Y),9X,3H(X),9X,3H(Y),9X,3H(X),9X,3H(Y)/) ANS 253 


1002 FORMAT(lX,314,10E12.4) ANS 254 

RETURN ANS 255 

END ANS 256 


C-----------------------------------------------------------------------ANS 257 

FUNCTION Q(A,N,NDIM) ANS 258 

DIMENSION A(N) ANS 259 

Q2=0.5*«A(1 )-A(2»*(A(1 )-A(2»+(A(2)-AO»*(A(2)-A(3» ANS 260 


1 +(AO )-A( 1 »*(AO )-A (1)) 1+3. *A(4 )*A(4) ANS 261 
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IF(NDIM.EQ.2)GOTO 10 

ANS 262
Q2::Q2+3.*A(5)*A(5)+3.*A(6)*A(6) ANS 263
10 Q::SQRT(Q2) 
ANS 264RETURN 

END ANS 265 


C-----;~;~;~;~~~~(~~;;:-~~~)-----------------------------_____________ ~~~ 266 

267 


DIMENSION A(N) ANS 
 268 

E MIS 269


DS 2=0.5 * ( (A (1 )-A (2» *(A (1 )-A (2) l+ (A (2 )-A (3 » *(A (2) -A (3 » ANS 
 2701 +(AO)-A(l» *(AO )-A(l» )+. 75*A(4 )*A(4) ANS 
 271IF(NDIM.EQ.2)GOTO 10 

272


EDS2=EDS2+0.75*A(5)*A(5)+0.75*A(6)*A(6) ~~~ 
 27310 EDS::2.*SQRT(EDS2)/3. 
27lJRETURN ANS 
2'END ANS 

ANS 2', 

ANS 46 : maximum number of increments in a block. 

ANS 54 : loop on all blocks. 

ANS 60-72 : zero arrays dependent on block. 


XYFIB point loads. 

PIB - global load array. 

PEXIB loads due to removal of elements. 

PRSLDI - applied pressure loads. 

JEL element changes. 

IOPI output options. 

DIM time steps. 

RINCC load ratios. 


ANS 77-80 : read and write control parameters for block. 

ANS 81 : calculate no. of increments in block (~ 50). 

ANS 85-86 : check increment block number. 

ANS 88 : skip if no changes to mesh. 

ANS 93-94 : read and write list of element changes. 


ANS 96-99 : make changes to mesh and calculate implied loads. 

ANS 104-106: calculate gravity loading for current block (only if there is ;l 


change in the gravity acceleration field). 

ANS 110-111 : read separate lists of load ratios, output options and time steps 


for each increment in block. 
ANS 112 : skip if no loads have been applied. 

ANS 120-122: applied pressure loads for 3-D are t II d 
ANS 113 : point loads are applied. 

no a owe ; print message 
and stop. 

ANS 125 : loop on all sides with applied pressure loads. 
ANS 126-127: read and write applied pressure loads along element side. 
ANS 129-136: change order of pressure loads to suit program. 
ANS 138-139: enter this in common block after checking. 

PIB. 

ANS 152-153: read and write point loads. 

ANS 141-143 : calcula te nodal loads from the pressure loads and place them in 

ANS 151 : loop to read directly specified point loads. 
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ANS 156 : program node number. 


ANS 157 : g.v.n. of first d.oJ. of node -1. 

ANS 158 : no. ofd.oJ. of node. 


ANS 159 · : skip if it has only 1 d.oJ. (assumed to be pore pressure d.oJ.). 

ANS 161-162 : enter load in XYFIB. 

ANS 165 : enter FTT (this is to permit future changes to allow specifi­

cation of flow rate at the boundary) . 
ANS 168 : skip if no fixities have been specified. 
ANS 174-175: read specified fixities. 
ANS 180 : loop on all increments in block. 
ANS 182-183: check increment number, print message and stop if out of 

sequence. 
ANS 185-192 : update all relevant values for current increment. 
ANS 201-212 : calculations for current increment (assembly/elimination/ 

output). 
ANS 214 : end of block. 
ANS 220-222: set all prescribed values of displacements/pore pressures to zero. 
ANS 260-264: calculate q. 
ANS 270-274: calculate E. 

8.4 LOADS 

8.4.1 Loads of excavation/construction 

Routine CHANGE, which is called by ANS, scans the list of element changes. 
The sign of an entry in array LTYP for each of these elements would indicate 
whether the element is being added (simulating construction) or removed 
(simulating excavation). If the sign of LTYP is negative then the element is being 
added. If it is positive then the element is being removed. 

Elements that are added have zero stresses and no memory of any stress 
history. Therefore these elements cannot have Cam-clay material properties. 
They can only be elastic models of type 1 or 2 (both are linear elastic models). 
An attempt to use critical state models for added elements would lead to an 
error when the D matrix is calculated in the program (e.g. a zero size of yield 
locus passing through current stress state) . 

There is also a restriction on elements that are removed to simulate 
excavation. These should ·not be added again (simulating, for example, refilling 
of an excavated trench). The nodal loads due to the addition of elements are 
given by 

F(NDIM,NDMX) = f NT w d (vol). (8.1 ) 
V 

The nodal loads for the removed elements are given by 
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F(NDIM,NDMX) = Iv BTad (vol) - INT w d (vol) 

- f NT'T d (area), (8.2)S 

where a is the current total stress in the element . 

fV NT w d (vol) is calculated in routine SELF. 

Iv BTa d (vol) is calculated in routine EQUB (see section 7 .7.4). 

f NT;d (area) is calculated in routine DISTLD. 
S 

The element contributions are accumulated in PI(NDF). 

Because of the approximate way in which the excavation process is simulated 
and in ~rder t~ satisfy the equilibrium at the end of each increment, an array 
PEXIB IS requIred. It consists of nodal loads equivalent to the stresses in 
elements which are being removed. Remembering that these elements vanish in 
the first increment of the increment block, this causes an imbalance. If the 
removal of elements is carried out in an increment block with just one increment 
then there is no problem. Nodal loads equal and opposite to element stresses are 
applied to cancel out the stresses in the removed elements. 

~owever, if these loads are spread over a number of increments, this 
ObVIOusly results in an imbalance, as the stresses in the removed elements only 
decrease gradually to zero. Equilibrium will be satisfied at the end of the 

increment block. Array PEXIB provides the balancing loads to maintain the 
correctness of the equilibrium check. 

Routine CHANGE 

SUBROUTINE CHANGE(IW6,IN,NCH,NN,NNOD1,NTPE,NIP,NEL,MUMAX,NNZ,NDF, CHNG 1 
1 NDIM,NVRS,NDMX,NL,NB,NS,NPR,NMT,NPT,NSP,NPL,XYZ,VARINT, CHNG 2 
2 PI,PEXIB,ELCOD,DS,SHFN,CARTD,B,F,NCONN,MAT,LTYP,MREL,NREL, CHNG 3 
3 NW,JEL,NP1,NP2,HXEN,LL,PR,TGRAV) CflNG 4 c·······.·· .............................................................CHNG 5 

C REMOVES/ADDS ELEMEIITS FROMITO GEOMETRY MESH AND CALCULATES CHNG 6 
C IMPLIED LOADS CHNG 7 
c···········............................................................CHNG 8 

REAL LL CHNG 9 
DIMENSION PRES(10) CHNG 10 
DIMENSION XYZ(NDIM,NN),VARINT(NVRS,NIP,NEL),PI(NDF),PEXIB(NDF), CHNG 11 

1 ELCOD (NDIM, NDMX), os (N DIM, NDI~X), SHF N (NDMX), CARTD (NDIM, NDMX), CHNG 12 
2 B(NS, NB) ,F(NDIM, NDMX) ,LL(NL). PR (NPR, N~IT) CHNG 13 

DIMENSION NCONN (NTPE, NEL) ,MAT (NEL), LTYP (NEL) ,MREL(MUMAX), CHNG 14 
1 NREL(NNZ),NW(NNODll,JEL<NEL),NP1(NPL),NP2(NPL) CHNG 15 

COMMON IELINF I LINFO(50,15) CHNG 16 
COMMON IPRSLD I PRESLD(10, 100),LEDG(100),NDEH100),NDE2(100),NLED CHNG 17 
COMMON ILOADS / FB(2, 15) CHNG 18 

C----------------______________________________________________---------CHNG 19 

C ISTGE - CODE TO INDICATE STAGE OF THE ANALYSIS CHNG 20
C-----------____________________________________________---------------CHNG 21 
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ISTGE=2 CHNG 22 

KSTGE =2 CHNG 23
C---------____________________________________________________----------CHNG 


24 

C LOOP ON ALL ELEMENTS WHICH APPEAR IN CHNG 
 25 

C THE LIST OF CHANGES CHNG 26 

C----------------------------------------------------------------------CHNG 27 


DO 150 J=l, NCH CHNG 28 

JK=JEL(J) CHNG 29 

JJ=t·1REL(JK) CHNG 30 


C---------------------------------------------------------------------CIING 31 

C EXCLUDED (REMOVED) ELEMENTS HAVE ELEMENT TYPE NEGATED CHNG 32 

C--------------------------------------------------------------------CHNG 
 33 


LTYP~JJ)=-LTYPWJ) CHNG 34 

LT=LTYP(JJ) CHNG 35 

IJ =ISIGN (1, LT) CHNG 36 


C---------------------------------------------------------------------CHNG 
 37 

C BY-PASS FOR INITIAL HESH CHANGE ONLY CHNG 
 38 

C----------------------------------------------------------------------CHNG 
 39 


IF(IN.EQ.O) GOTO 150 CHNG 40 

LT=IABS(LT) ~HNG 41 

INDX=LINFO(12,LT) CHNG 42 

NDN=LINFO(5,LT) CHNG 43 

NGP=LINFO(ll, LT) CHNG 44 

NAC=LINFO(15,LT) CHNG 45 

K~I=MAT(JJ) CHNG 46 

DENS=PR(8,KM)-TGRAV CHNG 47 

IF(IJ.GT.O) GOTO 125 CHNG 48 


C----------------------------------------------------------------------CHNG 49 

C CALCULATE BOUNDARY FORCES (IN ROUTINE EQLIB) AND SELF-WEIGHT CHNG 50 

C FORC ES (IN ROUT INE SELF) FOR REMOVED ELEMENTS CHNG 51 

C----------------------------------------------------------------------CHNG 52 


CALL EQLIB(JJ,JK,LT,NGP,NIP,INDX,NTPE,NEL,NDIM,NN,NDMX,NDN, CHNG 53 

1 NS,NB,NAC,NVRS,XYZ,VARINT,ELCOD,DS,SHFN, CHNG 54 


CARTD,B,F,NCONN,LL,ISTGEl CHNG 55 

CHNG 56 


DO 10 1=1, NDN CHNG 57 

NCOR=NCONN(I,JJ) CHNG 58 


II =IABS (NCOR) CHNG 59 

N 1 =NW (II )-1 CHNG 60 


C CHNG 61 

DO 10 ID=l, NDIM CHNG 62 

PEXIB(Nl+ID)=PEXIB(Nl+ID)+F(ID,I) CHNG 63 


10 PI(N1+IDl=PI(N1+ID)+F(ID,I) CHNG 64 

DENS=PR(8,KM)lTGRAV CHNG 65 


C CHNG 66 

CALL SELF (IW6, JJ, NN, NEL, NTPE, NDN, NDIM, NAC, NPR, NMT, XYZ, CHNG 67 


1 ELCOD,DS,SHFN,F, NCONN,MAT, LL, PR, LT, INDX, DENS, JK,KSTGE) CHNG 68 

C CHNG 69 


DO 20 KK::: 1, NDN CHNG 70 

NCOR=NCONN(KK,JJ) CHNG 71 

KKK:::NW(NCOR )-1 CHNG 72 


C CHNG 73 

DO 20 ID=l,NDIM CHNG 74 

PEXI8(KKK+ID)=PEXI8(KKK+ID)-F(ID,KK) CHNG 75 


20 PI(KKK+ID)=PI(KKK+ID)-F(ID,KK) CHNG 76 

C-----------------------------------------------------------------------CHNG 77 

C CALCULATE FORCES EQUAL TO 80UNDA RY STR ESSES FOR REMOVED ELEMENTS CHNG 78 

C--------------------------------------------------------------'-------CHNG 79 


DO 80 KE=l, NLED CHNG 80 

LNE:::LEDG(KE) CHNG 81 

IF(LNE.NE.JK)GOTO 80 CHNG 82 

ND1=NDE 1(KE) CHNG 83 

ND2=NDE2(KE) CHNG 84 


C CHNG 85 

DO 60 KV=l,MXEN CHNG 86 


60 PRES(KV)=PRESLD(KV,KE) CHNG 87 
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CALL ZEROR2(F8,2, 15) 
CHNG 88 

CHNG 89 


C 

CALL DISTLD(IW6,NN,NEL,NDF,NNOD1,NTPE,NDIM,MUMAX,NNZ,NPL, CHNG 90 

1 XYZ,PI,NCONN,LTYP,MREL,NREL,NW,NP1,NP2,PREs,LNE.ND1,ND2,NPT. CHNG 91
2 NSP,0,0,-1. l 

CHNG 92 

CHNG 93
DO 70 KK=1, NDN 
CHNG 94
NCOR=NCONN(KK,JJ) 
CHNG 95
KKK=NW(NCOR )-1 
CHNG 96 

CHriG 97 


DO 70 ID=l,NDIM CHNG 98 

70 PEXIB(KKK+ID)=PEXI8(KKK+IDl_F8(ID,KK) CHNG 99 

80 CONTINUE CHNG 100 


GOTO 150 CHNG 101

C---------______________________________________________--------------GHNG 10<' 


C CALCULATE SELF-WEIGHT FORCES FOR ADDED ELEMENTS CHNG 103 

C----------------------------------------___________________________ --GH N G 1 04 


125 CALL SELF(IW6,JJ,NN,NEL,NTPE,NDN,NDIM,NAC,NPR,NMT,XYZ, CHNG 105 

1 ELCOD,DS,SHFN,F,NCONN,MAT,LL,PR,LT,INDX,DENS,JK,KSTGEl CHNG 106 


CHNG 107

DO 140 KK=l, NDN 

CHNG 108

NCOR=NCONN(KK,JJ) 

CHNG 109

KKK=NW(NCORl-1 

CHNG 110 

CHNG 111


DO 140 ID=1,NDIM 
CHNG 112 


140 PI(KKK+ID)=PI(KKK+IDl+F(ID,KK) 
CHNG 113
150 CONTINUE 
CHNG 114
RETURN 
CHNG 115


END 
CHNG 116 


CHNG 28 
 : loop on all elemen ts which appear in the list of changes. 

CHNG 29 : get user element number. 

CHNG 30 : get program element number. 

CHNG 34 : change sign of type number. 

CHNG 36 
 : IJ = -1 for removed element. 


IJ = 1 for added element. 

CHNG 40 
 : skip calculation of implied loads if changes are to the initial 

mesh to form the primary mesh. Note that the primary mesl 
is the mesh in the first increment and the initial mesh is the 
complete mesh defined in the geometry part of program. 

CHNG 42-45 : element type dependent parameters. 
INDX a starting index to arrays Wand L. 
NDN no. of displacement nodes in element. 
NGP no. of integration points in element. 

CHNG 46 : material zone number of element. 
CHNG 47 
 : calculate wy term, where n = centrifugal acceleration field 

and'Y = unit weight of soil. 
CHNG 48 : skip if element is being added. 

CHNG 53-55 : calculate JBTad (vol) for element being removed (entered 

in array F). 
CHNG 57-64 ; slot array F into PI. 
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CHNG 67-68 


CHNG 70-76 

CHNG 80 


CHNG 82 

CHNG 83-84 

CHNG 90-92 

CHNG 94-100 

CHNG 101 


CHNG 105-106 


CHNG 108-113 

CHNG 114 
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: calculate jNTwd(vol) for removed element (entered in 

array F). 
: slot array F into PI. 
: loop to find if element being removed has applied pressure 

load . 
: skip if element not found in list of pressure loads. 

: nodes at either end of element side with pressure load. 
: calcula te equivalent nodal loads for pressure loads. 
: slot load terms in array PEXIB. 
: completion of calculations for current (removed) element. 

: calculate j NT w d (vol) for added element (entered in F) . . 

: slot array F into PI. 

: end of loop on element changes. 


8.4.2 Loads from body forces 

If there is a change in the body forces as in the case of a centrifuge test when the 
speed is changed, then there is a change in the self-weight loads throughout the 
soil mass. This is indicated by the parameter OGRAV, which is defined as a ratio 
of earth's gravity (Le. g). SEll is the routine which controls the calculation of 
the equivalent nodal loads from the change in body force for each element. 
Routine SELF is again used in the calculation of these loads. 

Routine SELl 

SUBROUTINE SELl (IW6,ICHEL,NN,NNOD1,NTPE,NIP,NEL,NDf, SELl 1 

1 MUMAX,NL,NDIM,NDMX,NPR,NMT,XYZ,P,ELCOD,DS,SHFN, SELl 2 

2 F,NCONN,MAT,LTYP,MRELVV,MREL,NW,JEL,LL,PR,NTY,DGRAV) SELl 3 


C· •••••••••••• *ll ••••••••••••••••••••••••••••••••••••••••••••••••••••••••SELl 4 


C CALCULATES SELF -WEIGHT LOAD VECTOR SEL1 5 

C.· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••SEL 1 6 


REAL LL SELl 7 

DIMENSION XYZ(NDIM,NN),P(NDF),ELCOD(NDIM,NDMX), SELl 8 


1 DS(NDIM,NDMX),SHFN(NDMX),F(NDIM,NDMX) SELl 9 

DIMENSION fJCONN (NTPE, NEL) ,MAT (NEL), LTYP (NEL) ,MRELVV (NEL), SEL 1 10 


1 MREL(MUHAX),NW(NNOD1),jEL(NEL) SELl 11 

DIMENSION LL(NL),PR(NPR,NMT),NTY(NMT) SELl 12 

COMMON IELINF I LINFO(50,15) SELl 13 

COMMON IPARS I PYI,ALAR,ASMVL,ZERO SELl 14 


C--------CODE TO INDICATE STAGE OF THE ANALYSIS SEL 1 15 

KSTGE=3 SELl 16 


C------------------------------------------------------------SEL1 17 

C ITERATE FOR ALL ELEMENTS SELl 18 

C-----------------------------------------------------------SEL1 19 


DO 50 J=l,NEL SELl 20 

JK=MRELVV(J) SELl 21 


C-------------------------------------------------------------SEL1 22 

C BY-PASS ADDITION IF ELEMENT NOT IN CURRENT MESH SELl 23 

C-----------------------------------------------------------SELl 24 


LT=LTYP(J) SELl 25 

IF(LT.LT.O)GO TO 50 SELl 26 

GOTO(50, 22, 22, 22, 22, 22, 22,22, 22, 22,22),LT SEL 1 27 

WRITE(IW6,900)JK,LT SELl 28 


900 FORMAT(lX, 7HELEMENT, 15, 2X, 18HIS OF UNKNOWN TYPE,I5, SELl 29 
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1 14H(ROUTINE SELl» 
22 	INDX=LINFO(12,LT) 


NDN =LINFO(5, LT) 

NAC=LINFO(15,LT) 

K=MAT(J) 

DENS=DGRAV·PR(8,K) 

IF(DENS.LE.ASMVL)GO TO 50 


CALL SELFOW6,J,NN,NEL,NTPE,NDN,NDIM NAC NPR NtIT XYZ 
1 ELCOD,DS,SHFN,F,NCONN,MAT,LL,PR,LT,IN~X,DENS,jK,KSTGE)

C 

DO 30 JJ =1, NDN 
IN=NCONN(JJ,J) 
JL=NW(JN )-1 

C 

DO 30 ID=l, NDIM 

30 P(JL+ID):P(JL+IDhFOD,JJ) 

50 	CONTINUE 


RETURN 

END 


SELl 20 : loop on all elements. 
SELl 25 : element type number. 

SELl 26 : skip; element is not present in current mesh. 
SELl 27 : skip if bar element (LT = I). No self-weight. 
SELl 31-33 : element type dependent parameters. 

INOX - starting index to arrays Wand L. 
NON - no. of displacement nodes in element. 

SELl 34 : material zone number. 
SELl 35 : 11"(. 

11 - centrifugal acceleration field. 
"( - unit weight of soil. 

SELl 36 : skip if no self-weight loads. 

SELl 37-38 : calculate nodal loads equivalent to self-weight. 

F = f NT w d (vol). 
V . 


SELl 40--45 : slot F in array PI (in this rou tine called P). 
SELl 46 : end of loop on all elements. 

8.4.3 Load ratios 

SELl 30 

SEL 1 31 

SELl 32 

SELl 
 33 

SEL 1 34 

SEL 1 
 35 

SEL 1 
 36 

SELl 
 37 

SELl 38 

SELl 
 39 

SELl 40 

SELl 41 

SEL 1 42 

SELl 43 

SELl 44 

SELl 45 

SEL 1 46 

SEL 1 47 

SEL 1 48 


The external loads (pressure loads along mesh boundary) are yet to be specified. 

~owever, at. this stage the distribution of the loading between the individual 
mcrements IS read i~. The ou~put options (printing out of displacements, 
stresses, etc.) and the tIme steps (10 a consolidation analysis) are also read in. 

Routine FACTOR 

SUBROUTINE FACTOR (IR5, IW6, NOINC, ILDF, IOCD, ITMF lOUTS FACT 1

1 RINCC, DTM, IOPT, DTIME) ' 	 "FACT 

2

C·lt •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••FACT 

3

C LOAD RATIOS, TIME RATIOS (CONSOLIDATION ANALYSIS) AND OUTPUT FACT 4 

C OPTIONS FOR ALL INCREMENTS IN THE BLOCK 	 FACT 5 
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•••••••••••••••••••••••••••••••••••••••••••••••••••••• ···.·············FACT 6 

C . FACT 7
DU1ENSION RINCC(NOINC), DTM (NOINC) ,IOPT (NOINC) 


COMMON IPARS I PYI,ALAR,ASMVL,ZERO FACT 8 

- --------------------FACT 9
~-----~~~~-~~~-;;;~~~-;;;~~~;~~~~------------- - FACT 10
C ________________________________________________________FACT 11 


-----;~T~~~~~;LOAT(NOINC) FACT 12 


~~ii~~i~~~9~~~0 TO 98 ~~~i ~~ 

READ(IR5,.)(RINCC(IN),IN=1,NOINC) FACT 15 

~~Ii~(;~~,954)(RINCC(IN),IN=1,NOINC) ~~~i ~~ 

98 DO 100 IK=l,NOINC FACT 18 

100 RINCC(IK)=FSTD . FACT 19 


C ----------------------------------------------------------FACT 20 

C-----;.~;~-~~TPUT OPTIONS FACT 21 

C-----------------------------------------------------------------------~~~i ;~ 


122 IF(IOCD.EQ.O)GO TO 127 FACT 24 

WRITE OW6, 960 ) 

READ(IR5,*)(IOPTON),IN=1,llOINC) FACT 25 

WRITE(IW6,964)(IOPT(IN),IN=1,NOINC) FACT 26 

GO TO 131 FACT 27 


C FACT 28 

127 DO 130 IK=l,NOINC FACT 29 

130 IOPT(IK)=IOUTS FACT 30 


C-----------------------------------------------------------------------FACT 31 

C READ TIME RATIOS FOR INCREMENTS FACT 32 

C-----------------------------------------------------------------------FACT 33 


131 IF(DTIME.LT.ASMVL.OR.ITMF.EQ.O)GO TO 132 FA~i 34 

WRITE(IW6,965) FA 35 

READ(IR5,.) (DTM (IN), IN=l, NOINC) FACT 36 

WRlTE(IW6968)(DTM(IN),IN=1,NOINC) FACT 37 


• ' FACT 38

GO TO 136 FACT 39 


C 

132 DO 135 IK=l,NOINC FACT 40 

135 DTM (IK )=FSTD·DTmE FACT 41 

136 CONTINUE FACT 42 


RETURN FACT 43 

948 FORMAT(/1X,34HLIST OF LOAD RATIOS FOR INCREMENTS/1X,34(lH-)/) FACT 44 

954 FORMAT(lX,10F8.1) FACT 45 

960 FORMAT(/lX,35HUST OF OUTPUT CODES FOR INCREMENTS/1X,35(lH-)!) FACT 46 

964 FORMAT(lX,10I6) FACT 47 

965 FORMAT(/1X,33HLIST OF TIME STEPS FOR INCREMENTS/1X,33(lH-)/) FACT 48 

968 FORMAT(lX,8F10.0) FACT 49 


END FACT 50 


FACT 12 : equal load/time ratios. 

FACT 13 : skip if no separate list of load ratios is to be read. 

FACT 15-16 : read separate list of load ratios for each increment. 

FACT 18-19 : equal load ratio for all increments. 

FACT 23 : skip if no separate list of output options is to be read. 

FACT 25 -26 : read separate list of output options for each increment. 

FACT 29-30 : identical standard output option for all increments. 

FACT 34 : skip if no separate list of time steps is to be read or if DTIME 


for the increment block is equal to zero. 
FACT 35-37 : read separate list of time steps for each increment. 
FACT 40-41 : equal time steps for all increments. 

The loading (NLOD), self-weight loads (DGRAV) and prescribed displacements 
(and pore pressures) (NFIX) are specified for the entire increment block, and are 
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applicable to that particular increment block only. The loading and any non-zero 
prescribed displacement for the individual increments are taken as ratios « 1) of 
tha t for the en tire increment block. 

There is no restriction on how these loading and non-zero prescribed displace­
ments are divided among the increments in an increment block. They are equally 
divided between all the increments if ILDF = 0 in record R. However, if the user 
wants to distribute the loading (and non-zero prescribed displacements) 
unevenly between the increments, then by setting ILDF = 1 a separate list of 
load ra tios is read in record T I. (This is generally useful in an analysis where 
large load increments can be applied when the problem is in the elastic state an' 
smaller load increments as plastic yielding takes place.) 

It should be noted that the same ratios R(I) etc. (record Tl) apply to the 
pressure loading (NLOD - record U), the gravity loading (DGRAV - record R) 
and the prescribed displacements (and pore pressures) (NFIX - record V). 

The sum of ratios R(I) must be equal to 1. 

8.4.4 Loads from pressure along mesh boundary 

The external loading is now read by the program. There are two options: the 
user can convert applied pressure loading into equivalent nodal loads and specify 
these directly as nodal loads along with the node numbers, or the user can 
specify the pressure loads (both normal and shear components) along element 
sides. When using the latter option the user in fact is specifying the nodal values 
of the pressure distribution. The second option is the more convenient because 
calculation of equivalent nodal loads is not straightforward for a higher-order 
element like the cubic strain triangle. 

The directly specified nodal loads are stored in an array (XYFIB(NDF)). For 
the specified pressure distributions these are stored in a set of arrays in the form 
they are read in. Later, using routines DISTLD and SFR1, these are converte r' 
into equivalent nodal loads and are added to array PIB. 

8.5 LOAD INCREMENT LOOP 

The control routine LODINC delegates the calculation of the stiffness matrix 
(carried out by routine LSTIFF) and solution to routine FRONTZ, and printing 
out the results to UPOUT (via UPARAL). 

Sections 8.6 to 8.8 deal with the calculation of the element stiffness matrix. 
This is considered separately from the frontal solution routine which is described 
in sections 8.9 to 8.12. Even though the calculation of element stiffnesses and 
elimination using the frontal method take place alternately, this is done for the 
sake of clarity of presentation. 
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C 
LONC 53
130 DO 140 IM=l,NOF 
LDNC 54


XYFT(IM)=XYFT(IM)+XYFIB(IM)IFRACLO 
LDNC 55
140 P(IM)=FRACLOIPIB(IM)+FRACLOIXYFIB(IM) LONC 56
C 
LONC 57


DO 145 IM=l,NOF 	 LONC 
58 


145 PEXI(IM)=(l.0-FRACT)·PEXIB(IM) LONC 

C------------_________________________________________________-------LONC 	 59 


60 

C UPDATE LIST OF PRESSURE LOADING ALONG ELEMENT EDGES . LDNC
C-----------______________________________________________-------------LONC 	 61 
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LODLST 

MAKENZ 

MLAPZ 
LODINC-­

SFWZ 

FRONTZ - LSTIFF 

UPARAL --UPOUT 

Routine LODINC 

SUBROlJf INE LODINC (NN, NEL, NDF , NNOD1, NTPE, NIP, NVRS, 
1 NVRN, NDIM, MUMAX, NDZ, IFRZ, NNZ, NDMX, NPMX, 
2 tiS, NB, NL, NPR, NMT, NPT, NSP, NPL, MDFE, KES, NVPN, 
3INXL,MXEN,MXLD,LV,NVTX,NO, 
4 XYZ, 01, OA, VARINT, P, PT, PIB, REAC, PCOR, PEQT, XYFT, XYFIB, 
5 STR, PEXIB, PEXI, PCONI, 0, ELCOO, DS, SHFN, CARTD, B, DB, 
6 FT,SS,ES,ELCOOP,E,PE,RN,AA,ETE,RLT, 
7 NCONN, MAT, LTYP, MRELVV, M REL, NR ELVV, NR EL, NW, NQ, 
8 JEL,IOFX,NDEST,NP1,NP2,IFR,NOL,NWL,NMOD, 
9 CIP,LL,V,FXYZ,PR,POISLO,PRES,NTY,A,MFZ, 
1 DTIMEI,TTIME,DGRAVI,TGRAV,IOlJf,JS,J,FRACLD, 
2 FRACT,ICOR,IUPO,IBC,NLOO,NLOS,IWL) 

[Ch.8 

IF(NLOO.GE.O)GO TO 162 

C 


DO 160 ISO=l,NLDS 

LNE =LEOI(ISD) 

NOl =NOI 1(ISO) 

N02=NDI2(ISO) 


C I .. ICT=O 
N2D = 2 FOR 11-10 OIMENSIONAL PROBLEMS 

N20=2 

DO 150 IK=l,NPT 

00 150 IJ=l, N2D 

ICT=ICT+l 


150 PRES(IJ,IK)=FRACLDIPRSLOI(ICT,ISO) 

CALL LODLST (IW6, LNE, ND1, N02, PRES, NDIM, NPT, 0, MXLD) 

160 CONTINUE 
162 CONTINUEC----------- ­

LONC 

LDNC 
LONC 
LONC 
LONC 
LONC 

LOtJC 
LONC 
LONC 
LONC 
LDNC 
LDNC 
LDNC 
LDNC 
LDNC . 
LONC-----LONC 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 


LDNC 
LONC 
LONC 

.LONC 
LONC 
LONC 
LONC 
LONC 
LDNC 
LONC 
LONC 
LDNC 

1 


2 

3 

4 

5 

6 

7 

8 

9 


10 

11 

12 


79 

C INITIALISE INCREMENTAL OISPLACEMENTS 	 LONC
C--------------________________________________________________---------LONC 	 80 


81 

CALL ZEROR 1(DI, NDF) 	 LONC 82 


83 

C-----------------___________________________________________-----------LONC 

C PREFRONT 	 LDNC 84 

85 


C-----------________________________________________________--------LONC 

CALL MAKENZ(NTPE,NEL,NN, NCONN, LTYP,NQ,INXL) 	 LDNC 86 

CALL MLAPZ(NTPE,NEL,NN,NCONN,LTYP,NQ) 	 LONC 87 

CALL SFWZ (MNFZ, NT PE, NEL, NN, MUMAX, NNZ, IF RZ, NCON N, LTYP, LONC 88 


1 MREL, NREL, NQ, NOEST, IFR, 1,HCORE, NCORET) LONC 
 89
C-------------------_________________________________________---------LONC 

90 


C SOLVE EQUATIONS USING FRONTAL SOLlJfION 	 LONC 91 

92 


C---------------------____________________________________________ -----LDNC 

MFZN=MFZlNP LONC 93 

CALL FRONTZ (MNFZ, DTIMEI, NN, NN001, NEL, NDF , NTPE, NI P, NPR, NMT, LDNC 
 94 


1 KES, NS, NB, NDIM, NOMX, NVRS, NPMX, INXL ,MOF E, IF RZ, MUMAX, NNZ, NL, LONC 
 95 

2 XYZ,OI,OA, VARINT,P,PCOR,D,ELCOD,OS,SIIFN,CARTO,B,OB,SS,ES, LONC 
 96 

3 ELCOOP,E,PE,RN,AA,ETE,RLT,NCONN,MAT,LTYP,MRELVV,MREL, LDNC 
 97 

4 	 NRELVV, NREL, NW, NQ, IDFX, NDEST, IF R, NOL, NWL, LDNC 98 

5 NMOD,LL,PR,NTY,A,MFZN,FRACLO,IOPBC) LDNC 
 99 


100 

C UPDATE ANO OUTPUT CALCULATIONS LONC 


C----------------------__________________________________-------------LDNC 

101
C-------------------------_______________________________--------------LONC 
102 


CALL UPARAL (TTIME, TGRAV, IOlJf, NN, NO, NN001, IJEL, NDF ,NTPE, NI P, NPT, LONC 
 103 

1 NSP,NPL,NDZ, NVRS,NVRN,NDIM.MUHAX,NNZ,NDMX,NPMX,NS,IJB,N L,INXL, LDNC 
 104 

2 NPR, NMT,MXEN, XYZ, 01, OA, VARINT, P, PT, PCOR, PEQT, XYFT, STR, PEXI, LONC 
 105 

3 PCONI,O,ELCOD,DS,SHFN,CARTO,B,FT,AA,NCONN,MAT,LTYP,MREL,MRELVV,LONC 
 106 


NREL,NW,NQ,JEL,IOFX,NP1,NP2,NWL,NMOD,CIP,LL,PR, LDNC 
 107 

NTY ,A,MFZ, ICOR, IUPO,FRACT, JS, IWL) LONC 
 108
C-------------------------________________________________--------------LONC 

c·· ••••••••••••• • •••••••••••••• • ••••••• •••• ••• ··························LDNC 13 

C LOAO INCREMENT ROlJfINE LONC 14 

C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••I'II I I. I IILONC 
 15 


REAL LL LDNC 16 

C--------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO OOUBLE LDNC 17 

c------PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION LDNC 18 

CC REAL A LDNC 19 


OIMENS 1011 XYZ (N DIM, NN), DI(NDF) ,DA (NDFl , VARINT(NVRS, NIP, NEL) , LONC 20 

1 P (NOF), PT (NOF), PIB (NOF) ,REAC(NOFl ,PCOR (NDF), PEQT (NDF), XYFT (NOF), LONC 21 

2 XYFIB (N DF) ,STR (NVRN, NIP, NEL), PEXIB (NDF), PEXI(NDF), pcorII (NDF) LONC 22 


DIMENSION 0 (NS, NS), ELCOO (N DIM, NOMX), os (N DIM, NOMX), SHF N(N DMX), LONC 23 

1 CARTO(NOIM, NOMX), B( NS, NB) ,DB (NS, NB), FT (NDIM, Nct1X), LONC 24 

2 SS (NB, NB) ,ES (KES) LONC 25 


OIMENS ION ELCODP (NOIM, NPMX), E (N DIM, NPMX), PE (NOIM, NPMX), LONC 26 

1 RN(NB),AA(NPMX),ETE(NPMX,NPMX),RLT(NB,NPMX) LONC 27 

OIMENSION NCONN (NTPE, NEL), MAT (NEL), LTYP (NELl, MRELVV (NEL), LDNC 28 


1 MREL(MUMAX), NRELVV (NN), NREL (NNZ), NW (NNODl ), NQ (NN), JEL(NEL), LONC 29 

2IDFX(NDF),NOEST(NN),NP1(NPL),NP2(NPL) LONC 30 


OIMENSION IFR(IFRZ),NOL(MOFE),NWL(NPMX),NMOD(NIP,NEL) LDNC 31 

OIMENSION CIP (N OIM), LL(NL), V(LV), FXYZ (NOIM) ,PR (NPR, NMT), LDNC 32 


1 POISLO(NOIM,NPT),PRES(NDIM,NPT),NTY(NMT),A(MFZ) LONC 33 

COMMON IPRSLD I PRESLO(10,100),LEDG(lOO),NDE1(100),NOE2(100),NLEO LDNC 34 

COMMON IPRLDI I PRSLDI(10, 100),LEOI(100),NOIl(100),NOI2(100),ILOO LDNC 35 

COMMON 10EVICEI IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 LONC 36 

COMMON IPRECSNI NP LDNC 37 


C LDNC 38 

WRITE(IW6,915~S,J,FRACLO LONC 39 

WRITE(IW6,917)DGRAVI,TGRAV LONC 40 


ii, WRITE(IW6,919)DTIMEI,TTIHE LONC 41 

C---------------------------------------------------------------LONC 42
ij' 
C BOUNDARY CONOITIONS (LOADS AND OISPLACEMENTS) ARE PRINTED LDNC 43 

C EVERY IBC INCREMENTS LONC 44 

C IBC 0 NOT PRINTEO IN ANY INCRE}IENT LDNC 45 

C IBC = 1 PRINTED IN EACH INCREMENT LDNC 46 

C IBC = 10 PRINTEO IN EVERY 10TH INCREMENT LONC 47 

C-----------------------------------------------------------------------LONC 48 


IOPBC=O LONC 49 

IF(IBC.EQ.O)GOTO 130 LONC 50 

NJS=IBCI(JS/IBC) LDNC 51 

IF(NJS.EQ.JS)IOPBC=l LDNC 52 


RETUR N 
915 FORMAT(11120(lH=)11 

1 lX,32HSTART OF LOAD INCREMENT NUMBER ,15, 
2 4X,22HINCRf}IENT BLOCK NUMBER,I5,4X, 13HLOAO 
3 lX, 90 (lH-» 

917 FORMAT(/22H INCR GRAVITY LEVEL = ,E12.4, 
1 24H TOTAL GRAVITY LEVEL = ,E12.4) 

919 	FORMAT(/18H TIME 1NCREMENT = ,E12.4,4X, 15H 
ENO 

109 

LONC 110 

LONC 111 

LONC 112 


RATIO ,F5.21 LDNC 113 

LDNC 114 

LONC 115 

LDNC 1; 6 


TOTAL .TIME ,E12.4 ) 	 LONC 117 

LDNC 118 
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LONC 39-41 : write load ratios, centrifugal acceleration field and time steps 
for current increment. 

[ONC 49-52 : option to print out boundary conditions in selected 
increments. 

LONC 54-56 : increment accumulated point loads by the loads applied in 
curr~nt increment. Also calculate the loads for current 
increment. 

LONC 63 : skip if no pressure loads are present (no need to update list 
of pressure loads). 

LONC 65-74 : loop on all sides with pressure load. 
LONC 75 : enter pressures applied for current increment in PRES. 
LONC 76 : update the cumulative list of pressure loads. 
LONC 77 : end of loop on all sides with pressure loads. 
LONC 82 : zero incremental displacements array. 

LONC 86 : calculate d.oJ. of each node. 
LONC 87 : mark last appearance of nodes in array NCONN. 
LONC 88-89 : calculate maximum frontwidth for current mesh and core 

requirement to solve the equations. 
LONC 94-99 : assemble stiffness matrices, eliminate and solve for unknown 

displacements using the frontal method. 
LONC 103-108 : calculate incremental strains and stresses; update cumulative 

displacements, strains and stresses and print the results. 

The incremenlal loads for the current increment are calculated as a fraction of 
the incremental loads for the increment block. 

PI (NOF) = FRACLO * PIB (NOF). (8.3) 

An equilibrium check is carried out at the end of each increment. Routine 
LOOLST updates the current level of (external) pressure loads. There are two 
lists of pressure loads: one is the current level of accumulated pressure load and 
the other is the pressure loads applied in the current increment block. For each 
increment, the appropriate ratio of pressure loads from that for the increment 
block is added to the current list so that the external pressure loads should equal 
the element stresses at the end of each increment. 

8.6 ELEMENT STIFFNESS MATRIX 

Routine LSTIFF is called to calculate each element stiffness matrix. Routine 
LSTIFF carries out the following calculation. 

~p 

K = l,.; niDiBi IJ I Wi, (8.4) 
i=l 

where i is the integration point. The calculation of the B matrix has been dealt 

Sec. 8 .6] Element Stiffness Matrix 

with in Chapter 7 in detail. The calculation of the 0 matrix has been considered 
in Chapter 5. Depending on the constitutive relationship being used, a different 

routine is called. Routine OCON is a general linear elastic model which deals 
with either isotropic or cross-anisotropic material behaviour. The 0 matrix is 
independent of the stress level and therefore is a constant for a given element. 
Hence it is calculated once for each element outside the integration point loop . 

An 'extended' element stiffness matrix is calculated in a consolidation 
analysis . The technique used in solving the transient problem is known as the 
time-marching method. This has been discussed in section 3.6>2. and the final 
form of the equations are reproduced here: 

[~T ~~Al [~]= [:boAt] (8.5) 

where 

K = J BTDB d (vol), 
V 

L = J BTmNd (vol), 
V 

<I> = J ET ~E d (vol) 

V 'Yw 


Here <I>bo~t is the term which is calculated and added to array PI in routine 
LSTIFF. These terms are only for pore pressure degrees of freedom. bo 
represents the excess pore pressure at the beginning of the current increment 
(these values are in array OA). 

Routine LSTIFF 

SUBROUTINE LSTIFF(K,MUS,INXL,SG,KSG,DTIME,NN,NNOD1,NEL,NDF,NTPE, STIF 
1 NIP, NPR, NMT, NS, NB, NL, NDIM, NDMX, NVRS, NPMX, LT, XYZ, DA, VARINT, P, STIf 
2 D,ELCOD,DS,SHfN,CARTD,B,DB,SS,ELCODP,E,PE,RN,AA,ETE,RLT, STIF 
3 NCONN,MAT,NW,NWL,NMOD,LL,PR,NTY) STIF 

C•••••• 11.11 ••••••••••••••••••••••••• 11 •••••••••• 111111111111 •• 1111 ••••••• 11 ••••• 11' .STIF 5 
C CALCULATION AND ASSEMBLY Of STIfFNESS MATRIX liST IF 6 
C········u••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••STIF 7 

REAL L,LL STIF 8 
DIMENSION PERM(3) STIf 9 
DIMENSION SG (KSG) ,XYZ (NDIM, NN), DA (NDF), VARINT (NVRS, NIP, NEL), STIf 10 

1 P(NDF),D(NS,NS),ELCOD(NDIM,NDMX),DS(NDIM,NDMX), STIF 11 
2 SHfN (NDMX), CARTD (NDIM, NDMX), B(NS, NB), DB(NS, NB), STIf 12 
3 SS (NB, NB) ,ELCODP (NDIM, NPMX), E(N DIM, NPMX), PE (NDIM, NPMX), STIF 13 
~ RN(NB),AA(NPMX),ETE(NPMX,NPMX),RLT(NB,NPMX) STIf 1 ~ 

DIMENSION NCONN(NTPE,NEL),MAT(NEL),NW(NNOD1), STIF 15 
1 NWL(NPMX),NMOD(NIP,NEL),LL(NL),PR(NPR,NMT),NTY(NMT) STIF 16 

COHMON IFLOW I NPLAX STIF 17 
COMMON IDATW I W(100) STIF 18 
COMMON IDATL I L(~,100) STIf 19 
COMMON IPARS I PYI,ALAR,ASMVL,ZERO STIF 20 
COMMON IDEVICEI IR1,IR~,IR5,IW2,IW~,IW6,nv7,IW8,IW9 STIF 21 
COMMON IELINF I LINFO(50, 15) STIF 22 
COMMON IJACB I XJACI(3,3),DJACB STIF 23 
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C--------------------------------------------~~-------------------------STIF 2~ 
STIF 25
CR=1.0 


IF(NPLAX.EQ.l)CR=2.0*PYI 
 STIF 26 

STIF 27 


CALL ZEROR2(SS, NB, NB) 

c--------INITIALISE SS 

STIF 28 

STIF 29
C 

NDN=LINFO(5, LT) STIF 30 

STIF 31
NPN=LINFO(6, LT) 
STIF 32 


INDX=LINFO (12, LT) 

NGP=LINFO (11, LT) 

STIF 33 


NAC=LINFO(15, LT) 
 STIF 3~ 


STIF 35
NDV=NDIM*NDN 

NDPT=LINFO (1, LT) 
 STIF 36 


STIF 37 


WRITE(IW6, 91 O)MUS, LT 

GOTO( l , 1,2, 1,2, 1,2, 1,2, 1,2),LT 

STIF 38 


910 FORMAT(lX, 7HELE}lENT,i5,2X, 18HIS OF UNKNOWN TYPE, 15, STIF 39 


1 2X,16H(ROUTINE LSTIFF» 
 STIF ~O 

STIF ~1STOP 
STIF ~2C 

1 ICPL=O STIF ~3 
IBLK=l STIF ~~ 
NPN =0 STIF ~5 
GOTO 1~ STIF ~6 

2 ICPL=l STIF ~7 
IBLK=O STIF ~8 


C----------INITIALISE RLT .AND ETE STIF ~9 

CALL ZEROR2(RLT, NB, NPHX) STIF 50 

CALL ZEROR2(ETE,NPMX;NPMX) 51 


~~ ~ ~~~C________________________ _____ ___________ _____________________ STIFSTIF 52 


SETUP LOCAL ARRAY OF NIoi AS NWL GIVING THE INDEX 1'0 STIF 53 

PORE-PRESSURE VARIABLES STIF 5~
CC_______________________________________________________-STIF 55 


STIF 56
IPP=O 
C----------INXL - INDEX TO NODAL D.O.F. (SEE ROUTINES BDATA 1, MUVAL) STIF 57 


DO 12 IV=1, NDPT 
 STIF 58 


IQ=LINFO (I V+INXL, LT) STIF 59 

IF(IQ.EQ.NDIM)GO TO 12 STIF 60 

IPP=IPP+l 
 ST'IF 61 

NDE=NCONN(IV,K) STIF 62 

NDE=IABS(NDE) STIF 63 


C----------COORDINATES OF POREPRESSURE NODES OF ELEMENT STIF 6~ 


DO 10 ID=l, NDIM STIF 65 

10 ELCODP(ID,IPP)=XYZ(ID,NDE) STIF 66 


tlWL (I PP )=NW (NDE )+IQ-l STIF 67 

12 CONTINUE 
 STIF 68 


C 
 STIF 69 

1~ KM=MAT(K) STIF 70
C_______________________________________________________________3TIF 


71 

C LOCAL ARRAY OF COORDINATES OF DISPLACEMENT NODES OF ELEMENT STIF 72 

C-------------------------------------------------------------------STIF 73 


DO 20 KtI=l,NDN STIF 7~ 


NDE=llCONN(KN,K) STIF 75 

NDE=IABS (NDE) STIF 76 


STIF 77 

DO 20 ID=l, NDIM STIF 78 


20 ELCOD(ID,KN)=XYZ(ID,NDE) STIF 79 

CC WRlTE(IW6, 801 )ELCOD STIF 80 

CC801 FORMAT(/1X,5HELCOD/(lX,10F6.1» STIF 81 

C STIF 82 


IF (NTY (KM )-2 )26, 28, 28 STIF 83 

C---------CONSTANT ELASTICITY D MATRIX STIF 8~ 


26 CALL DCON(K,IBLK,NEL,NDIM,NS,NPR,NMT;MAT,PR,D,BK) STIF 85 

C--------------------------------------------------------------------STIF 86 

C ITERATE FOR ALL INTEGRATION POINTS STIF 87 

C------------------------------------------------------------STIF 88 


28 DO 80 IP=l,NGP STIF 89 


Sec. 8.6] Element Stiffness Matrix 

IPA=IP+INDX STIF 90 

C 
 STIF 91 


DO 30 IL=l,NAC 
 STIF 92 

30 LL(IL)=L(IL,IPA) STIF 93 


C----------------------------------------_________________-----------STIF 94 


C FORM B MATR IX FOR CURR ENT INTEGRATION POINT STIF 95 

C--------------------------_______________________________------------STIF 96 


ISTGE=3 STIF 97 

CALL FORMB2(K,MUS,R,RI,NDIM,NDMX,NDN,NS, STIF 98 


1 NB,NAC,ELCOD,DS,SHFN,CARTD,B,LL,LT,IP,ISTGE) STIF 99 

F9=CR*DJACB*W(IPA) STIF 100 


STIF 101 

IF(ICPL.EQ.1.)CALL JPC(MUS,NDIM,NPN,NS,NB,NAC, STIF 102 


1 DS, CARTD,B, ELCODP, E, RN, AA, LL, LT, IP, ISTGE) STIF 103 

IF(NPLAX.EQ.l)F9=F9*R STIF 10~ 


KGO=NTY(KM) STIF 105 

GO T0(39,32,33,3~),KGO STIF 106 

WRITE(IW6,900)MUS,KGO STIF 107 


900 FORMAT(lX,7HELE}lENT,I5,2X,27HIS OF UNKNOWN MATERIAL TYPE,I5, STIF 108 

1 16H(ROUTINE LSTIFF» STIF 109 

STOP STIF 110 


C----------------------------------------------------------------------_3TIF 111 

C D MATRIX STIF 112 

C----------------------------------------------------------------STIF 113 


32 CALL DLIN(IP,K, IBLK,NEL,NDIM, NDN,NS,NPR,tIMT, STIF 114 

1 ELCOD,SHFN,MAT,D,PR,INDX,BK) STIF 115 


GO TO 39 STIF 116 


33
1
CAL;A]~~~~~~;:~: ~~~~K~EL, NIP, NVRS, NDIM, NS, NPR, NMT, ;i~ ~ ~ ~ 
GO TO 39 STIF 119 


34 CALL DCAM(IP,K,IBLK,NEL,NIP,NVRS,NDIM,NS,NPR,NMT, STIF 120 

1 VARINT,MAT,D,PR,ITP,BK) STIF 121 


GO TO 39 STIF 122 

C------------------------------------------------------------------_3TIF 123 

C FORM D*B AND B*D*B STIF 124 

C-------------------------------------------------------------------_3TIF 125 


39 CALL LSTIFA(SS,B,D,DB,F9,NS,NB) STIF 126 

c----------------------~-~------------------------------------------_3TIF 127 

C BYPASS IF NOT COUPLED CONSOLIDATION STIF 128 

C-------------------------------------------------------------------_3TIF 129 


IF(ICPL.EQ.O)GO TO 80 STIF 130 

C--------------------------------------------------------------------_3TIF 131 

C FORM PERM*E 'STIF 132 

C----------------------------------------------------------------_3TIF 133 


PERM(l)=PR(9,KM) STIF 13~ 


PERM(2)=PR(10,KM) STIF 135 

PERM(3)=PERM(1) STIF 136 

GAMMAW=PR<7,KM) STrr 137 


c STIF 138 

DO ~O JJ=l, NPN STIr 139 

DO ~O IM=l,NDIM STIF 140 

PE(IM,JJ)=PERM(IM)*E(IM,JJ) STIF 141 


~O CONTIN UE STIF 142 

C-------------------------------------------------------------------_3TIF 1~3 


C FORM ET*PERM*E STIF 14~ 


C-------------------------------------------------------------------~_3TIF 1~5 
00 50 II=l,NPN STIF 1~6 


DO 50 JJ=l, NPN STIF 1~7 


DO 50 KK=l,NDIM STIF 1~8 


50 ETE(II,JJ)=ETE(II,JJ)+E(KK,II)*PE(KK,JJ)*DTIME*F9/GAMMAW STIF 149 

C------------------------------------------------------------------_3TIF 150 

C FORM LT STIF 151 

C---------------------------------------------:..-------------------_3TIF 152 


00 60 II=l,NDV STIF 153 

DO 60 JJ=l,NPN STIF 154 


60 RLT(II, JJ)=RLT (II, JJ)+RN (II )*AA(JJ )*F9 STIF 155 
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C-----------------------------------------------------------------------STIF 156 

C END OF INTEGRATION POINT LOOP STIF 157 

c-----------------------------------------------------------------------STIF 158 


80 CONTINUE STIF 159 


C-----------------------------------------------------------------------STlF 160 

C CALCULATE LOWER HALF OF STIFFNESS MATRIX USING SYMMETRY STIF 161 

C-----------------------------------------------------------------------STIF 162 


DO 82 J J =2 , NB STIF 163 

JJM 1=JJ-1 STIF 161l 


STIF 165 

DO 82 II=1,JJM1 STIF 166 


82 SS (J J, II )=SS (II, JJ) STIF 167 

C-----------------------------------------------------------------------STIF 168 

C FORM STIFFNESS MATRIX SG FROM SS, RLT AND ETE STIF 169 

C-----------------------------------------------------------------------STIF 170 


CALL LSTFSG (SG, KSG, NDF, NB, NDIM, NDMX, NPMX, DA, P,SS, ETE, STIF 171 

1 RLT, NHL, NPN, NDN, LT, ICPL) STIF 172 


c STIF 173 

NR=LINFO(16,LT) STIF 171l 

NT=NR'(NR+1 )/2 STIF 175 


cc CALL PRINTF(IW6,SG, NT, NR, P, NDF, 1) STIF 176 

RETURN 
END 

STIF 28 

STIF 30-36 

STIF 37 


STIF 43-45 


STIF 47-48 


STIF 50-51 


STIF 58 

STIF 61 


STIF 65-66 


STIF 67 


STIF 74 

f: . ' STIF 75-79 


STIF 85 


STIF 89 

STIF 92-93 


STIF 177 

STIF 178 


: zero array SS. 
: set up data (parameters) dependent on element type . 
: branch off, depending on whether element is consolidation 

type or not. 

: drained/undrained element. Set IBLK = 1 to indicate bulk 
modulus of water is to be added to D matrix. 

47-68 only for consolidation elements. 

: consolidation element. Set ICPL = 1 and IBLK = 0 to indicate 
no changes to the D matrix. 

: zero arrays RLT (link matrix) and ETE (flow matrix). 

: loop on all nodes of element. 
: counter of number of pore pressure nodes (and variables). It 

is also the index to array NWL. 
: array ELCODP contains the co-ordinates of nodes of element 

with pore pressure variable. ' 

: array NWL contains the index to NCONN of pore pressure 

variable. 
: loop on all displacement nodes. 
: array ELCOD contains the co-ordinates of displacement nodes 

of element. 

: calculate D matrix for elastic model - only for the one which 

is independent of current stress state or geometry; therefore it 
is calculated only once outside the integration point loop. 

: loop on all integration points. 

: obtain integration point co-ordinates from array L and set up 

LL. 
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STIF 98-99 


STIF 102-103 

STIF 106 


STIF 114-115 

.STIF 117 1L& 

STIF 120-121 

STIF 126 

STIF 130 


STIF 134-136 

STIF 137 


STIF 139-142 


STIF 146-149 


STIF 153-155 

STIF 163-167 

STIF 171-1 72 

STIF 174-176 


Consolidation Component of Stiffness Matrix 

: calculate B matrix. 


: calculate E, Nand mT B stored in E, AA and RN. 

: branch off for different material types. 


(l -linear elastic, 2 - non-homogeneous elastic,) 
'(3 - modified Cam-clay, 4 - Cam-clay). 

: calculate D matrix for elastic model (non-homogeneous). 
: calculate D matrix for modified Cam-clay. 
: calculate D matrix for Cam-clay. 

: calculate B T DB . d (vol) and accumulate in SS. 
: branch off, if not consolidation element. 

134-155 for consolidation elements only. 

: obtain permeabilities in x, y and z directions. 

: unit weight of water. 

: calculate matrix kE as PE. 


: calculate f ET ~ E d (vol) b..t as ETE. 
'Yw 

: calculate L T and place it in RLT. 


: calculate lower triangle of stiffness matrix using symmetry. 

: form stiffness matrix SG from SS, RLT and ETE. 

: print out SG in triangular form for debugging. 


8.7 CONSOLIDA nON COMPONENT OF STIFFNESS MATRIX 

8.7.1 Flow matrix 

Routine JPC calculates the additional components that make up the extended 
element stiffness matrix. 

RoutineJPC 

SUBROUTINE JPC(J,NDIM,NPN,NS,NB,NAC, JPC 1 

1 DS,CARTD,B,ELCODP,E,RN,AA,LL,LT,IP,ISTGE) JPC 2 


c···········••••••••••••••••••••••••••••••••••••••••••••••••••••••••• If ••JPC 3 

C CALCULATES SHAPE FUNCTIONS AND DERIVATIVES JPC Il 

C FOR EXCESS PORE PRESSURE VARIATION JPC 5 

C········ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••JPC 6 


REAL LL JPC 7 

DIMENSION DS(NDIM,NPN),CARTD(NDIM,NPN),B(NS,NB), JPC 8 


1 ELCODP(NDIM,NPN),E(NDIM,NPN),RN(NB),AA(NPN),LLCNAC) JPC 9 

COMMON IFLOW 1 NPLAX JPC 10 

COMMON IPARS 1 PYI,ALAR,ASMVL,ZERO JPC 11 


C JPC 12 

CALL FORMP(J,NDIM,NPN,NAC,DS,AA,CARTD, JPC 13 


1 ELCODP,LL,LT,IP,ISTGE) JPC 11l
C-----------_______________________________________________________-----JPC 15 


C FORM RN JPC 16
C-----------________________________________________________________----JPC 17 


NCOM=NDIt1 JPC 18 

IF(NPLAX.EQ.1.AND.NCOM.EQ.2)NCOH=NDIM+1 JPC 19 


C JPC 20 

DO 30 IB=1,NB JPC 21 

SUM=ZERO JPC 22' 
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JPC 23 FRMP 21-27 : calculate Cartesian derivatives of shape functions aNi/aX, 
JPC 24C 

DO 20 10=1, NCOM aNi/ay.
2520 SUM=SUM+B(ID,IB) JPC 
2630 RN(IB)=SUM JPC 

c-------------- ---------------------------------------------------------JPC 27 Routine SHFNPP calculates the pore pressure shape functions and the 
C FORM E JPC 28 

29 derivatives with respect to the local co-ordinates. 
C-----------------------------------------------------------------------JPC 

30DO 50 IN=l,NPN JPC 

31
DO 50 ID=l,NDIM JPC Routine SHFNPP3250 E(ID,IN)=CARTD(ID,IN) JPC 
33 


END JPC 

RETURN JPC 

34 SUBROUTINE SHFNPP(IW6, LL, NAC, DS,SFP, NDIM, NPN, LT, IFL,MUS) SHPP 
C·································································.·••••SHPP 2 
C SHAPE FUNCTIONS AND DERIVATIVES FOR PORE PRESSURE VARIATION SHPP 3 
C·····················································.·••••••••••••••••SHPPJPC 13-14 : calculate shape functions (fli ) and derivatives (aNi/at aNi/an) for /j 

REAL LL,Ll,L2,L3,L4 SHPP 5 
pore pressure variations (arrays AA, OS). Derivatives W.r.t. DIMENSION SFP(NPN),DS(NDIM,NPN),LL(NAC) SHPP 6 

C SHPP 7 
L 1 =LL< 1 ) SHPP 8 

JPC 21-26 : calculate array RN (= BT m, where B is the strain-displacement L2=LL(2) SHPP 9 
IF(NAC.LT.3)GOTO 10 SHPP 10 

Cartesian co-ordinates (aNi/ax, aNi/ay) (array CARID). 

matrix and mT = [1,1,1,0)) . 
L3=LL<3 ) SHPP 11 

JPC 30-32 : calculate E matrix. (Ei = aNi/ax, aNi/ay.) IF(NAC.LT.4)GOTO 10 SHPP 12 
L4=LL(4 ) SHPP 13 

C SHPP 1/j 
Routine FORMP calculates the Cartesian derivatives of pore pressure shape 10 GOTO(80,80, 13,80,25,80,37,80,49,80,71 ),LT SHPP 15 

WRITE(IW6,900)MUS,LT SHPP 16functions. These are then used in the calculation of the E matrix by routine JPC. 
900 FORliAT (11 X, 7HE LEMENT, 15, 2X, 22H IS OF UN KNOWN TY PE "',15, 2X, SHPP 17 

1 16H (ROUTINE SHFNPP» I SHPP 18 
STOP SHPP 19Routine FORMP C-----------------------------------------------------------------------SHPP 20 

C LINEAR STRAIN TRIANGLE SHPP 21 
1SUBROlJrINE FORM P(J, NDIM, NPN, NAC, DS, SF P, CARTD, FRM P C------------------------------------------------------------------SHPP 22 
21 ELCODP,LL,LT,IP,ISTGE) FRMP 13 IF(IFL.EQ_O)GO TO 23 SHPP 23 

C••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• "FRM P 3 DS(l,1)=1. SHPP 24 
C FORMS CARTD MATRIX FOR AREA COORDS LL(NAC) FRMP DS(1,2)=0_ SHPP 254 

5C IN TRIANGLE J FOR INTEGRATION POINT IP FRMP DS(1,3)=-1. SHPP 26 
C•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• "'FRM P 6 DS(2,1)=0. SHPP 27 

7REAL LL FRMP DS(2,2)=1. SHPP 28 
8DIMEt-iSIOll LL(NAC) FRMP DS(2,3)=-1. SHPP 29 

DIM ENSION DS (NDIM, IIPN y, SF P(NPN ), CARTD (NDIM, NPN ), FRM P C SHPP 309 
101 ELCODP(NDIM,NPN),XJACM(3,3) FRMP 23 SF P(1 ) = L 1 SHP P 31 
11COMMON IDEVICE! IR1,IR4,IR5,IW2,IW4,HI6,IW7,IW8,IW9 FRMP SFP(2 )=L2 SHPP 32
12COMMON IPARS 1 'PYI,ALAR,ASMVL,ZERO FRMP SFP{J )=L3 SHPP 33 
13COMMON IJACB 1 XJACI(3,3),DJACB . FRMP RETURN SHPP 34 
14C-----------------------------------------------------------------------FRMP C----------------------------------------------------------------------SHPP 35 
15C CALCULATE SHAPE FUNCTION AND DERIVATIVES (LOCAL COORDS) FRMP C QUADRILATERAL ELEMENT SHPP 36 
16C-----------------------------------------------------------------------FRMP C----------------------------------------------------------------------SHPP ~7 

CALL SHFNPP(IW6,LL,NAC,DS,SFP,NDIM,NPN,LT, 1,J) FRMP 25 CONTINUE SHPP 38
17 

FRMP 18 
C WRITE(IW6,910)MUS,LT SHPP 39 

FRMP 19
CC WRITE(IW6,902)DJACB 910 FORMAT(l1X, 7HELEMENT, 15, 2X, 14HIS OF TYPE "·,15, 2X, SHPP 40 

FRMP 20 
C 1 32HNOT 1M PLEMENTED (ROUTINE SHFNPP» SHP P 41 

FRMP 21
DO 35 IN=l, NPN RETURN SHPP 42 

FRMP 22
DO 35 ID=l,NDIM C--------------------------------------------------------------~--------SHPP 43

FRMP 23SUM=ZERO C CUBIC VARIATION IN PORE-PRESSURE SHPP /j4
FRMP 24 

C C-----------------------------------------------------------------------SHPp 45 
FRMP 25DO 30 JD=1,NDIM '17 cl=9./2. SHPP 46 
FRMP 2630 SUM=SUM-DS(JD,IN)'XJACI(ID,JD) C2=27./2. SHPP 47 
FRMP 2735 CARTD(ID,IN)=SUM C3=27. SHPP 48 
FHMP 28

RETURN T 11 =L 1-1 • 13. SHP P 49 
FRMP 29CC902 FORMAT(9H JACOBIAN,2X,E16.5) T12=Ll-2./3. SHPP 50
FR!iP 30

END T21=L2-1./3. SHPP 51 
T22=L2-2./3. SHPP 52 
T31 =L3-1.I3. SHPP 53 

FRMP17 : calculate shape functions and derivatives W.r.t. local co-ordinate T32=L3-2.13. SHPP 54 
IF(IFL.EQ.O)GO TO /j0 SHPP 55for pore pressure variation. 

http:T32=L3-2.13
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SHPP 56 
C SHPP 57 

os (1,1 )=C 1*(T 11 *1 1 2+L l' (T 11 +T 12» SHPP 58 
OS(1,2)=0. 

SHPP 59OS (1,3 )=-C 1·(T311fT32+L3·(T31+T32» 
SHPP 60

OS(l,4)=C2.L2.(L 1+Tll) 
SHPP 61

OS (1,5 )=C2·L2·T21 SHPP 62
OS(l,6)=-C2'L2'T21 SHPP 63
OS (1,7 )=-C2'L2'(L3+T31 ) 

SHPP 61l
OS (1,8 ):C2'L3'T31-C 2·L 1· (L3+T31 ) 

SHPP 65OS(1,9)=C2·L3·(L1+Tll)-C2·L1·Tll 
SHPP 66­

OSil,10)=C3'L2*L3-C3'L2'Ll SHPP 67 
C SHPP 68

OS(2,1):O, 
SHPP 69OS (2, 2):C 1· (T21 *T 22+L2' (T21 +T22» 
SHPP 70OS (2, 3 )=-C 1.(T31 *T32+L3·(T31+T32» 
SHPP 71

OS (2,1l )=C2'L l'T 11 
SHPP 72

OS (2, 5 )=C2'L l'(L2+T21 ) 
SHPP 73OS (2, 6)=C2'L3'(L2+T21 )-C2'L2'T21 
SHPP 71lOS (2, 7)=C2·L3·T31-C2·L2·(L3+T31) 
SHPP 75

DS(2,8)=-C2·Ll·(L3+T31 ) SHPP 76
OS (2, 9)=-C2'L 1 *111 

SHPP 77
OS (2,10 )=C 3·L 1.L3-c3·L l'L2 

SHPP 78 
C 

110 SFP(1) =Cl.LllfTl1.T12 SHPP 79 
SFP(2) =Cl.L2.T21*T22 SHPP 80 
SFP(3) =Cl.L3*1311fT32 SHPP 81 
SFP(Il) =C2.Ll.L2*Tll SHPP 82 
SFP(5) =C2.Ll.L2*T21 SHPP 83 
SFP(6) =C2.L2.L3.T21 SHPP 81l 
SFP(7) =C2'L2.L3*T31 SHPP 85 
SF P (8) =C 2.L 1 *L3 'T31 SHP P 86 
SFP(9) =C2.Ll'L3'Tll SHPP 87 
SFP(10)=c3'Ll'L2.L3 SHPP 88 
RETURN SHPP 89 

C----------------------------------------------------------------------SHPP 90 
C BRICK ELEHENT SHPP 91 
C--------------------------------------------------------------------SHPP 92 

119 CONTINUE SHPP 93 
WRITE(Iw6,910)MUS,LT SHPP 91l 
RETURN SHPP 95C__________'_________________--------- _________________________________SHP P 96 

C TETRA-HEORA ELEMENT SHPP 97 
C-----------------------------------------------------------------------SHPP 98 

71 CONTINUE SHPP 99 
WRITE (IW6. 910 )MUS. LT SHPP 100 

80 RETURN SHPP 101 
SHPP 102 

ENO 

SHPP 8-13: set up L1, L2, etc. equal to integration point co-ordinates. 

SHPP 15 : branch off for different element types. 
SHPP 24-29 : calculate derivatives w.r.t. local co-ordinates for linear strain 

triangle (LT = 3) - aNi/at aNi/aTl. 
SHPP 31-33 : calculate shape functions - Ni - for linear strain triangle. 
SHPP 38 : calculate shape functions and derivatives for quadrilateral element 

(not implemented here). 

SHPP 46-54: calculate some constants. 

SHPP 55 : if IFL = 0, only calculate the shape functions for LST element. 

SHPP 57-77 : calculate derivatives W.r.t. local co-ordinates for cubic strain 


triangle (LT = 7) - aNi/at aNi/aTl. 
SHPP 79-88: calculate shape functions for cubic strain triangle (LT = 7) -iii. 
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SHPP 93 : shape functions and derivatives for brick element (not imple­
mented here). 

SHPP 99 : shape functions and derivatives for tetrahedra element (not 
implemented here). 

Routine LSTIFA is called to calculate f BTDB d (vol) from Band DV . 

Routine LSTIFA 

SUBROUTINE LSTIFA(SS,B,O,OB,F9,NS,NB) LSTA 1 
C·······················.···.··.·,··.· ••••• ·····························LSTA 2 
C ROUTINE TO CALCULATE OllB ANO BT'O'B LSTA 3 
C FOR EACH INTEGRATION POINT LSTA Il 
C····,····················*······································,······LSTA 5 

OIMENSION SS(NB,NB),O(NS,NS),OB(NS,NB),B(NS,NB) LSTA 6 
C-----------------------------------------------------------------------LSTA 7 
C FORM O'B LSTA 8 
C-----------------------------------------------------------------------LSTA 9 

CALL ZEROR2(OB,NS,NB) LSTA 10 
c 

DO 20 JJ=l.NB 
LSD 
LSTA i; 

0020 II:l,NS LSTA 13 
DO 20 KK:l, NS LSTA 11l 

20DB(II,JJ):OB(II,JJ)+O(II,KK)'B(KK,JJ) 'LSTA 15 
c-----------------------------------------------------------------------LSTA 16 
C FORM BT'O'B LSTA 17 
c-----------------------------------------------------------------------LSTA 18 

D030JJ=l,NB LSTA 19 
0030 II=l,JJ LSTA 20 
DO 30 KK=l, NS LSTA 21 

30 SS(II.,JJ)=SS(II,JJ)+DB(KK,JJ)*B(KK,II)·F9 LSTA 22 
RETURN LSTA 23 
END LSTA 21l 

LSTA 10 : zero array DB. 

LSTA 12-15 : calculate (DB) matrix. 

LSTA 19-22 : calculate BT(DB) for current integration point and add it to 


SS = ~ BT(DB). 

For consolidation analysis the extended element stiffness matrix is calculated 
from three different matrices (see section 8.8). The latter part of routine 
LSTIFF does this operation, and the technique used is described in the next 
section. 

8.8 USE OF INDEXES IN STIFFNESS CALCULATIONS 

Chapter 6. ~escrib~d the use of indexes for different element types with a single 
array partltIOned 111to a number of regions (each catering for a different element 

type). Then onl~ the starting index was necessary and the generality of the 
program was retal11ed. 

The other area where this index system is heavily relied on is the format'o f 
the element stiffness matrix SG in routine LSTIFF (the array is known aslE~ ~n 

http:SFP(10)=c3'Ll'L2.L3
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routine FRONTZ). As in the case of the global stiffness matrix , all variables 

Cd.o.f.) ofa node are placed together in matrix SG . 
For drained/undrained analysis the stiffness matrix for each node is made up 

of sub-matrices which are or order 2 X 2. The two components are for the two 

directions (x and y for plane strain, rand z for axisymmetric problems) . 

Therefore for a six-noded element (LT = 2), the element stiffness matrix is of 
order 12 X 12. The array SS then completely defines the element stiffness 

matrix. 

(8.6)SS = J BTD B d (vol). 
V 

The B matrix is defined such that the x components of a for all nodes are placed 

together (followed by the y components of a, where dx and ely are the displace­


ments (denoted by u and v in Fig. 8.2) in the x and y directions respectively . 


Hence when the displacement stiffness matrix SS is calculated, it has the same 


structure. 
The matrix SS has NON X NDlM number of rows/columns, where NDIM = 2 

for two-dimensional-problems. This is the number of displacement variables in 

the elements and is equal to the no. of rows/columns in SS. 

+----NDN­

: vi v2 v3: ul u2 u3 

ul 

u2 

u3 IT IT 
(8.7) 

vI 

v2 

v3 ~ F 
Fig. 8 .2 - Matrix SS 

For a LST element (LT = 2, NDN = 6), u2 occupies the 2nd row/column in 

matrix SS and v2 occupies the 2 + NON = 8th row/column. In SG they occupy 

consecutive rows/columns. Therefore when SG is formed from SS the rows/ 
columns have to be interchanged. Remembering that SS is a two-dimensional 
array and SG is · a one-dimensional array storing the upper triangular stiffness 

matrix columnwise, forming SG is not straightforward . 

Sec.8.8J Use of Indexes in Stiffness Calculations 

This part of the program also has to be capable of dealing with different 

element types. The simplest programming technique is to set up a pointer array 

which gives the information of which row/column of array SS goes into which 
row/column of array SG. Again these pointers are different for different element 

types. For example, the first 15 indexes are for two-dimensional 'non­

consolidation' elements - element types 2, 6. For element type 6 (the 15-noded 

cubic strain triangle), all 15 indexes are relevant. The number in brackets next to 
each element type (in routine LSTIFF) is the number of indexes that are 

relevant. For element type 7 the indexes are given by KO(50)-KO(64) . 
To complete the details, one needs the reference point (the starting index 

- 1, i.e . 49 for element type 7), and this is provided by array NXO. Therefore 
NXO(7) = 49. The relevant equations for a consolidation analysis were given in 
section 8.7, using the following notations : 

K SS, 

L RLT, 

<PAt ETE. 

In a consolidation analysis, if a node as 3 d.o.f. (elx • ely. u) then its nodal stiff­
ness is a 3 X 3 sub-matrix. It consists of components from arrays SS, RLT and 
ETE as follows: 

sst sst 
RLTt] 

SS sst RLTt , 
[ 

RLT RLT ETEt 

The rows/columns of array SS represent the displacement stiffness terms. The 
array RLT is a coupling matrix, linking displacement loads to the pore pressure 

variables. Array ETE contains pore pressure stiffness terms . Now it is necessary 

to form the matrix SG from the three matrices SS, RLT and ETE such that all 
variables of a node are placed together. 

Even though forming the SG array from arrays SS, RLT and ETE may appear 
complicated at first sight, it is straightforward when one uses the index system. 

The number of rows in RLT corresponds to the number of displacement d.o.f. , 
and therefore array KO can again be used to point out which row of RLT 
should go into which row of SG. Similarly the number of columns of array RLT 
represents the pore pressure d .o .f. The number of rows/columns of ETE is equal 
to the number of pore pressure d.o.f. The array KP is set in similar lines to array 

KD . It gives the information regarding which row/column of ETE should go into 

which row/column of SG. The same indexes apply to the columns of RLT. 

Arrays KO and KP give different indexes for different element types. They 

are set up exactly in the same manner as arrays W(lOO) and L(4,1 00) in routine 

BOAT A 1. The only difference is that the starting indexes are provided by two 

t Only upper triangular terms need to be considered because of symmetry . 

http:Sec.8.8J


324 325 Analysis 	 [Ch. 8 

local arrays - NXD for displacement variables and NXP for pore pressure 
variables. The reason these are local arrays instead of global arrays is that this is 
the only routine where this information is needed . On the other hand, arrays W 
and L are used in many different parts of the program and serve a global 

requirement. 

KP(1) ...... KP(3) are for LT = 3 LST for 3 p.p. d.o.f. 

KP(8) .. . ... KP(l7) are for LT = 7 CuST for 10 p.p. d.o.f. 

For example, for element type 3 KP(l) = 3. Then row/column 1 of array ETE 
will take up row/column 3 in SG. Similarly KP(2) = 6. Then row/column 2 of 
array ETE will take up row/column 6 of array SG. 

ETE( 1, 1) must be placed in SG(3,3) [SG(6)] 

ETE(2, 2) must be placed in SG(6,6) [SG(21)] 

ETE(1, 2) must be placed in SG(3,6) [SG(l8)] 

ETE(2, 1) must be placed in SG(6,3) t 

In the above, SG gives the row and column number respectively. However, since 
array SG is an upper triangular matrix which is stored columnwise, the value 
within [SG( )] gives the actual position in array SG (this is calculated by the 
program as NIA + NCN in DO loops terminating on labels 140 and 160. 

The arrays E, RN, AA, ETE and RLT have been set up for the maximum 
requirement of element types in the mesh. The sizes are based on the following 
parameters : NDMX X NDIM (where NDMX is the maximum number of displace­
ment nodes) and NPMX (the maximum number of pore pressure d.o.f.) of all the 

elements in the mesh . 

element type 3 : ND2 = 2 X 6 = 12; NPP= 3 


E(3,3) RN(12) AA(3) ETE(3,3) RLT(l2,3) 

element type 7: ND2 = 2 X 15 = 30; NPP = 10 


E(3,1 0) RN(30) AA(10) ETE(1 0,10) RLT(30,10) 

The number of rows in array E is set equal to 3 for the three directions 
respectively (general three-dimensional formulation) under all circumstances. 

Remembering that SG is only an upper triangular matrix then only the upper 
triangular parts of matrices SS and ETE (including the diagonals) are used. 
However, the whole of RLT is needed. The terms from arrays SS and ETE are 
entered in SG, column by column, up to the diagonal term . 

Routine LSTFSG 

SUBROlITINE LSITSG(SG,KSG,NDF,NB,NDIM,NDMX,NPMX,DA,P,SS,ETE, f}1SG 1 

1 RLT,NWL,NPN,NDN,LT,ICPL) FMSG 2 


c ••••• M•••••••••••••••••• Il*'l ** lI.", •• lI ••••• .••••••••••• II •••••••••• II •• ".FMSG 3 


t 	 Since this is in lower triangular matrix it is not considered (because of symmetry, i.e. 

ETE(2,1) =ETE(l,2). 
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FORM ELEMENT STIFFNESS MATRIX SG FROM SS, RLT AND ETE FMSG 4 

c ll ••••••••n •••••••••••••••••••••••••••••••••••••••••••••••••••••••• II···FMSG 5 


. DIMENSION KP(29),KD(911),NXP(15),NXD(15) FMSG 6 

DIMENSION SG (KSG), DA (NDF), P(NDF) ,SS (NB, NB), ETE(NPMX, NPMX), FMSG 7 


1 RLT (NB, NPt~X), NWL(NPMX) f}1SG 8 

COMMON IPARSt IPYI,ALAR,ASMVL,ZERO FMSG 9 


C---------------..:.------------------------_____________-------FMSG 10 


C INDEX TO ROWS/COLUMNS OF SG FOR ROWS/COLUMNS OF ETE FMSG 11 

C INDEX TO COLUMNS OFSG FOE COLU~1NS OF RLT (FOR CONSOLIDATION) FMSG 12 

c---------------------------------------------------------------FMSG 13 

C----------ELEMENT TYPE 3 - LST----------------------------------HISG 14 


DATA KP(1),KP(2),KP(3)1 FMSG 15 

1 3,6,91 FMSG 16 


C----------ELEMENT TYPE 5 - QUADRILATERAL--------------------------FMSG 17 

DATA KP(4),KP(5),KP(6),KP(711 f}1SG 1f 


1 3,6,9,121 FMSG 19 

C---------ELEMENT TYPE 7 - CUST··---------------------------------FMSG 20 


DATA KP (8), KP (9), KP (10), KP (11), KP (12), KP (13), KP (14), KP (15), FMSG 21 

1 KP(16),KP(17)1 FMSG 22 

2 3,6,9,34,35,36,37,38,39,401 f}1SG- 23 


C--------ELEMENT TYPE 9 - BRICK-----------------------------------FMSG 24 

DATA KP(18),KP(19),KP(20),KP(21),KP(22),KP(23),KP(24),KP(25)1 FMSG 25 


2 4,8,12,16,20,24,28,321 f}1SG 26 

C---------ELEMENT TYPE 11 - TETRA-HEDRA---------------------------FMSG 27 


DATA KP(26),KP(27),KP(28),KP(29)1 f}1SG 28 

1 4, a, 12, 161 FMSG 29 


c---------------------------------_-----------------------FMSG 30 

C INDEX TO FIRST DISPLACEJ'1ENT VARIABLE OF EACH NODE IN SG FMSG 31 . 

C INDEX TO ROWS/COLUMNS OF SG FROM ROWS/COLUMNS OF SS FHSG 32 

C INDEX TO ROWS OF SG FOR ROWS OF RLT (FOR CONSOLIDATION ELEMENT) FMSG 33 

c------------------------------------------------------------FMSG 34 

C---------ELEM ENT TYPE 1(2), 2 (6), 4 (8), 6 (15 )-----------------------FMSG 35 


DATA KD( 1) ,KD(2) ,KDO) ,KD(4 ),KD (5),KD (6),KD(7), KD(8), KD(9) ,KD(l 0),Ft1SG 36 

2 KD(11 ),KD(12),KD(13),KD(14),KD(15)1 Ft1SG 37 

3 1,3,5,7,9,11,13,15,17,19,21,23,25,27,291 f}1SG 38 


C--------ELEMENT TYPE 8(20), 10(10)-------------------------------FMSG 39 

DATA KD(16),KD(171,KD(18),KD(19),KD(20),KD(21 ),KD(22),KD(23), f}1SG 40 


1 KD(24),KD(25),KD(26),KD(27),KD(28),KD(29),KDOO),KD01), FMSG 41 

2 KD(2),KDC33),KDC311),KDC35)1 FMSG 42 

3 1,4,7,10,13,16,19,22,25,28,31,34,37,40,1I3,46,49,52,55, 581 f}1SG 43 


C---------ELEMENT TYPE 3(6)------------------------------------------FMSG 44 

DATA KD(6),KD(371,KD08),KD09),KD(40),KD(41)1 FMSG 45 


1 1,4,7,10,12,141 FMSG 46 

C---------ELEMENT TYPE 5(8)--------------------------------------FMSG 47 


DA TA KD (42), KD (43), KD (44), KD (ll 5), KD (4 6), KD (47), KD (48), KD (49)1 FHSG 4P 

1 1,4,7,10,13,15,17,191 FMSG 4 


C----------ELEMENT TYPE 7(15)--------------------------------------FMSG 5L 

DATA KD(50), KD (51), KD (52) ,KD (53), KD(54) ,KD(55), KD(56), KD(571, f}1SG 51 


1 KD(58),KD(59),KD(60),KD(61l,KD(62),KD(63),KD(64)1 FMSG 52 

2 1,4,7,10,12,14,16,18,20,22,211,26,28,30,321 f}1SG 53 


C------ELEMENT TYPE 9(20)---------------------------------------FMSG 54 

DATA KD (65),KD (66) ,KD (67), KD (68), KD (69), KD(70) ,KD (71), KD (72), f}1SG 55 


1 KD (73), KD (74), KD (75), KD (76), KD (77), KD (78), KD (79), KD (80), FHSG 56 

2 KD(81),KD(82),KD(83),KD(84)1 FHSG 57 

3 1,5,9, 13, 17,21,25,29,33,36,39,42,45,48,51,511 ,57,60,63,661 FMSG 58 


C----------ELEMENT TYPE 11 (10 )----------------------------------------FMSG 59 

DATA KD(85),KD(86),KD(87),KD(88),KD(89), Ft1SG 60 


1 KD(90),KD(91),KD(92),KD(93),KD(94)1 FHSG 61 

2 1,5,9,13,17,20,23,26,29,321 FMSG 62 


C----------------------------------------------------------Ft-ISG 63 

C NXP AND NXD GIVE STARTING INDEX TO ARRAYS KP AND KD FMSG 64 

C RESPECTIVELY FOR DIFFERENT ELEl1ENT TYPES FMSG 65 

C----------------------------------------------------------------FMSG 66 


DATA NXP(l ),NXP(2),NXPO),NXP(4),NXP(5),NXP(6),NXP(71, HISG 67 

1 NXP(8),NXP(9),NXP(10),NXP(11)1 FMSG 68 

2 0,0,0,0,3,0,7,0,17,0,251 FMSG 69 
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DATA NXD(1),NXD(2),NXD(3),NXD(4),NXD(5),NXD(6),IlXD(7), ~;~ 70 

71 


1 NXD(8),NXD(9),NXD(10),NXD(11)/ 	 FMSG 72

2 0,0,35,0,41,0,49,15,64,15,84/ ____________________FMSG 

Of ARRAYS KP AND KD __________________________________fMSG 74 

SIZE 


C----------------------------------------------	 73 

C----------	 fMSG 75 

NKP=29 fMSG 76 

NKD =94 ________________________________________fMSG 


C-----------------------------
77 


81SG 78 

INXD=NXD(LT) FMSG 
 79
C_________BYPASS IF NOT COUPLED CONSOLIDATION 	 FMSG 

80 

IF(ICPL. EQ. 0 )GOTO 96 	 __________________FMSG 81 


C---------------------------------------------------- FMSG 82

C COUPLED CONSOLIDATION 	 ___________________FMSG 

83 

C------------------------------------------------- FM SG 
 84 


INXP=NXP(LT) FMSG 
 85

C__________CALCULATE RIGHT HAND SIDE FOR PORE PRESSURES FMSG 

86 

DO 94 II = 1 , NPN fMSG 
 87 

N 1 =NWUII) FMSG 88 

SUM=ZERO fMSG 
 89 


C FMSG 90 

DO 92JJ=1,NPN FMSG 
 91 

N2=NWUJJ) FMSG 
 92 


92 SUM=SUH+ETE(II,JJ)*DA(N2) FMSG 
 93 

94 P(til )=P (N 1 )+SUM 	 ______________________FMSG 94 


C------------------------------------------------	 FMSG 95 

C FORM SG fROM SS 	 ___________________FMSG 96 

C--------------------------------------------------- FMSG 97 


96 DO 150 J=l,NDN FMSG 
 98 

NJ=KD(J+INXD)-l Ft1SG 
 99 


C fMSG 100 

DO 150 JD=1, NDIM 
 FMSG 101 

NJA=NJ+JD 
 fMSG 102 

JA=J+(JD-l )ANDN 
 fMSG 103 

NCN=NJA*(NJA-l)/2 
 fMSG 104 


C fMSG 105 

DO 150 I=l,NDN fMSG 106 

NI=KD(I+INXD)-1 
 FMSG 107 


C FMSG 108 

DO 140 ID=l,NDIM 
 FMSG 109 

NIA=NI+ID 
 FMSG 110 

IA=I+(ID-1 )*NDN 
 fMSG 111 

If(NIA.GT.NJA)GOTO 
 fHSG 112 

LOC=NCN+NIA 
 FMSG 113 

SG(LOC)=SS(IA,JA) 
 ft1SG 114 


140 CONTINUE 
 FMSG 115 

150 CONTIN UE 
 FMSG 116 


c fMSG 117 

If(ICPL.EQ.O)GOTO 200 ____________________________________FMSG 118 


C------------------------------- - FMSG 119 

C SLOT RLT ____________________-fMSG 120 

C------------------------------------------------- FMSG 121 


DO 160 JA=l,NPN FMSG 122 

NJA=KP(JA+INXP) fMSG 123 

NCN=NJAA(NJA-l)/2 FMSG 124 


c FMSG 125 

DO 160 1=1, NDN FMSG 126 

NI=KD(I+INXD)-l FMSG 127 


C FMSG 128 

DO 160 ID=l,NDIM fMSG 129 

NIA=NI+ID FMSG 130 

IA=I+(ID-l)*NDN fMSG 131 

LOC=NIA+NCN fMSG 132 

If(NIA. GT. NJA )LOC=NIA*(NIA-l )/2+NJA FMSG 133 


160 SG(LOC)=RLT(IA,JA) _________________________FMSG 134 


C--------------------------------------------- fMSG 135 

C SLOT ETE 
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C------------------------------·---------------------------------------FMSG 136 

DO 180 JE=l,NPN FHSG 137 

NJ=KP(JE+INXP) FMSG 138 

NCN=NJ*(NJ-l)/2 FMSG 139 


C FMSG 140 

DO 180 IE=l, JE fMSG 141 

NI=KP(IE+INXP) FMSG 142 


180 SG(NI+NCN)=-ETE(IE,JE) 	 FMSG 143 

200 	CONTINUE FMSG 144 


RETURN FMSG 145 

END FMSG 146 


FMSG 80 : branch off, if not a consolidation element. 


FMSG 86-93 : calculate RHS pore pressure load terms. 


FMSG 97-115 : place stiffness matrix SS in appropriate place in upper 

triangular matrix SG (which is a one-dimensional array stored 
columnwise). 

FMSG 117 : branch off, if not a consolidation element. 

FMSG 121-133 : place coupling matrix RLT in appropriate locations in SG. 
FMSG 137-143 : place flow matrix ETE in appropriate locations in SG. 

8.9 	PRE-FRONTAL ROUTINES 

The pre-frontal stage consists of calls to routines MAKENZ, MLAPZ and SFWZ 
respectively. These routines have been dealt with in some detail in Chapter 6, 
and for the sake of completeness are summarised here . 

Routine MAKENZ calculates the d.o.f. of all nodes currently present in the 
mesh. All nodes which are not connected to any of the elements currently 
present in the mesh are assigned zero d .o.f., which is entered in array NQ. This 
permits the program to .skip these nodes when solving the equations and also at 
the output stage. 

The routine MLAPZ marks the last appearance of each node, indicating when 
a node is ready for elimination. This is done by making the node number 
negative in array NCONN in the element in which the node makes its last 
appearance. 

Finally routine SFWZ is called to run through the element list without 
actually calculating the element stiffness matrices but counting the number of 
active variables and assigning places in the front for new variables and simulating 
elimination of variables making their last appearance. This ensures that 
subsequent solving of equations using the frontal method progresses without any 
hitch. The amount of store required for solution and the maximum frontwidth 
are some of the other information calculated in routine SFWZ. This completes 
the pre-frontal stage. 

8.10 FRONTAL SOLUTION 

The routine FRONTZ assembles the element stiffness matrices and the load 
vector and solves for the unknown displacements. It uses the well known frontal 
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method (Irons, 1970) to solve the assembled equations. In this method the il .t 
i . t global stiffness matrix is never fully assembled. 	 .f The frontal working area ELPA(MFlN) is divided into four regions - A, B, C 

I ! 	 and D. The total allocation of ELPA, MFlN is arbitrary. The allocation G(LG) 
in routine MAIN is (usually fixed) based on the size of the problem and the 
limits imposed by the computer system . After store has been allocated for the 
main arrays, the rest of G(LG) is allocated as the working region for the frontal 

matrices. oABC 

MAXPA *(MAXPA+l)/2 MAXPA MAXPA 
~______________~~~(------~)~-------4) ~(----------------~( 

BufferActive front 
ELPA 	 I 2 I 3 4stiffness region I 

---) ­

Active front-] Arra!, ( 

Coeffs. ofloads regIOn 	 fo r ill- ­
conditioning eliminated 

check equations 

Regions A, B, C and 0 are all based on the maximum frontwidth MAXPA . 
Region A caters for a symmetrical matrix to be stored in trian~ular form, 
columnwise, one-dimensionally. The maximum size of the array IS MAXPA 

(rows/columns) . 

MAXPA
& • • •• • ••••2 3 	 4 

x I x x x x 

x 2
x x x 
x 3x x 

x x 4 

x x 

x 	 x 

x MAXPA 

The frontwidth varies from 0 to MAXPA during different stages of the assembly/ 
elimination phase. Therefore regions A, Band C are only full when the front­
width is equal to the maximum frontwidth . Because of the one-dimensional 
storage of a triangular stiffness matrix (region A), each time a row/column is to 
be reduced (operated on) indexes are used for the first and last term (diagonal) 

in a given column. 

If the JGth column is to be reduced then 


MGO = JG * (JG-I)/2 is the total no. of terms up to the (JG-I)th 

column of the region 
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MGl (= MGO+I) is the index of the first term in column JG 

MGl (= MGO+JG) is the index to the last term in column JG 

Routine FRONTZ 

SUBROUTINE FRONTZ (MAXPA,DTIME,NN,NNOD1,NEL,NDF,NTPE,NIP,NPR,NMT, FRNT 1 
1 KES,NS,NB,NDIM,NDMX,NVRS,NPMX,INXL,MDFE,IFRZ,MUMAX,NNZ,NL, FRNT 2 
2 XYZ,DI,DA,VARINT,?,PCOR,D,ELCOD,DS,SHFN,CARTD,B,DB,SS,ES, FRNT 3 
3 ELCODP,E,PE,RN,AA,ETE,RLT,NCONN,MAT,LTYP,MRELVV,MREL, FRNT 4 

NRELVV,NREL,N'.I,NQ,IDFX,NDEST,IFR,NDL,NWL, FRNT 5 
NMOD,LL,PR,NTY,ELPA,MFZN,FRACLD,IOPBC) FRNT 6C•••••• II•••••••••••••••••••••••••••••••••••••••••••••••••• ··············FRNT 7 

C FRONTAL SOLUTION FOR SYMMETRIC MATRICES WITH FRNT 8 
C NDFN DEGREES OF FREEDOM PER NODE FRNT 9C................................................. lf ••••••••••••••••••• ··FRNT 
 10 

REAL LL FRNT 11 
INTEGER TF FRNT 12 
CHARACTER'4 IWR,MBUF FRNT 13 
DIMENSION XYZ(NDIM,NN),DI(NDF),DA(NDF),VARINT(NVRS,NIP,NEL), FRNT 14 

1 P(NDF),PCOR(NDF),D(NS,NS),ELCOD(NDIM,NDMX),DS (NDIM,NDMX), FRNT 15 
2 SHFN(NDMX) ,CARTD(NDIM, NDMX) ,B(NS, NB ) , DB(NS, NB), FRNT 16 
2 SS(NB,NB),ES(KES) FRNT l'r 

DIMENSION ELCODP(NDIM,NPMX),E(NDIM,NPMX),PE(NDIM,NPMX), FRNT 18 
1 RN(NB),AA(NPMX),ETE(NPMX,NPMX),RLT(NB,NPMX) FRNT 19 
DIMENSION NCONN (NTPE, NEL) ,MAT (NEL), LTYP (NEL) ,MRELVV (NEL), FRNT 20 

1 MREL(MUMAX),NRELVV(NN),NREL(NNZ),NW(NNOD1),NQ(NN), FRNT 21 
2 IDFX(NDF),NDEST(NN),IFR(IFRZ),NDL(MDFE),NWL(NPMX),NMOD(NIP,NEL) FRNT 22 

DIMENSION LL(NL),PR(NPR,NMT),NTY(NrH),ELPA(MFZN) FRNT 23 
DIMENSION IBUF(6),MBUF( 6 ),RBUF(3),IWR(4) FRNT 24 
COMMON IFIX 1 DXYT(4,200),MF(200),TF(4,200),NF FRNT 25 
COMMON IELINF 1 LINFO(50,15) FRNT 26 
COMMON IDEVICE/ IR1,IR4,IR5,IW2,IW4,IW6,IW7,I'tI8,IW9 FRNT 27 
COMMON IPARS 1 PYI,ALAR,ASMVL,ZERO 
DATA IWR(1),IWR(2),IWR(3),IWR(4)I' FIX','ED =',' 

C 
KURPA=O 
NPAR=MAXPA'(MAXPA+l)/2 
NBAXO=NPAR+2'MAXPA+l 
IBA=NBAXO 
NVABZ=O 
NBAXZ=MFZN 
INITL=l 
NDIM1=NDIM+l 
IC=O 

C 
C 

IF<IOPBC.EQ.l)WRITE(IW6,910) 

FRNT 28 
LO','AD ='1 FRNT 29 

FRNT 30 
FRNT 31 
FRNT 32 
FRNT 33 
FRNT 34 
FRNT 35 
FRNT 36 
FRNT 37 
FRNT } ' 
FRNT 3'. 
FRNT 40 
FRNT 41 

FRNT 42 
910 FORMAT(1131H PRESCRIBED BOUNDARY CONDITIONS/1X,30(lH-)/) FRNT 43 

C-----------------------------------------------------------------------FRNT 44 
C ZERO LIST OF FIXED D.O.F. FRNT 45 
C-----------------------------------------------------------------------FRNT 46 

CALL ZEROI1 (IDFX, NDF) 	 FRNT 47 
FRNT 48 

DO 10 IJ=l,MFZN fRNT 49 
10 ELPA(IJ)=ZERO fRNT 50 

C-----------------------------------------------------------------------FRNT 51 
C LOOP ON ELEMENTS F RNT 52 
C-----------------------------------------------------------------------FRNT 53 

DO 62 NE=l, NEL fRNT 54 
LT=LTYP(NE) FRNT 55 
IF(LT.LT.O.AND.NE.EQ.NEL)GO TO 61 FRNT 56 
IF(LT.LT.O) GOTO 62 FRNT 57 
MUS=MRELVV(NE) FRNT 58 
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C 	 FRNT 59 

CALL LSTIFf(NE,MUS, INXL, ES, KES, DTIME, NN, NNOD1, NEL, NDF, NTPE, NIP, FRNT 60 


1 tlPR,NMT,NS,NB,NL,NDIM,NDMX,NVRS,NPMX,LT,XYl,DA,VARINT,P, FRNt 61 

2 D, ELCOD, DS,SHFN,CARTD,B, DB,SS, ELCODP,E, PE,RN,AA, ETE, FRNT 62 

3 RLT,NCONN,MAT,NW,NWL,NMOD,LL,PR,NTY) FRNT 63 


C--~----------------------.:.------------------------ --------FRNT 6lJ 

C ASSEMBLE ELEMENT STIfFNESS MATRIX INTO FRONTAL REGION FRNT 65 

C------------------------.-:------------------------------------FRNT 66 


CALL FRSLOT (Nil, NEL, NTP£, KES, MDH, IFRZ, NCONN, NQ, NDEST, IFR, NDL, FRNT 67 

1 ES,ELPA,I1FZN,LT,NE,KURPA,INXL) fRNT 68 


C FRNT 69 

CC CALL PRINTF(IW6,ELPA(1 ),MFZN,KURPA,ELPA(NPAR+l ),KURPA,2) FRNT 70 

C----------------------------------------------------------FRNT 71 

C ASSEl'1BLE RIGHT HAND SIDE 1 FIX DEGREES OF FREEDOM FRNT 72 

C-------------------------------------------------------FRNT 73 


NDPT=LINFO(l, LT) FRNT 7lJ 

CALL FRFXLD (IW6, NN, NNODl ,NEL, NDF, NTPE, NDIM, DA, P, PCOR, FRNT 75 


1 NCONN, NR ELVV, NW, NQ, IDFX, NDEST, ELPA, MFZN, FRACLD, NE, NDPT, NPAR, FRNT 76 

2 IC,IOPBC,IBUF,MBUF,RBUF,IWR) FRNT 77 


CC CALL PRINTF(IW6,ELPA(1 ),MFZN,KURPA,ELPA(NPAR+l ),KURPA,2) FRNT 78 

C------- - ------------------------------------------------------F RNT 79 

C ELIMINATE FRNT 80 

C------------------------------------------------------------FRNT 81 


DO 60 J=l,llDPT FRNT 82 

IF(NCONN(J,NE).GT.O) GOTO 60 FRNT 83 

NA=-NCONN(J,NE) FRNT 8lJ 

NDFN=NQ(NA) FRNT 85 

ND=NDEST(NA l+NDFN-l F RNT 86 


C---------------------------------------------------------F RIlT 87 

C LOOP ON ALL D.O.F. OF NODE BEING ELIMINATED FRNT 88 

C----------------------------------------------------------FRNT 89 


911 


C 
3lJ 

C 

C 

DO 58 JJ=l,NDFN FRNT 90 

NVABZ=NVABZ+l FRNT 91 

NDEQN=IBA+KURPA+lJ FRNT 92 

IF(NDEQN. GT. NBAXZ )CALL STOREQ(ELPA,MFZN, NBAXO, IBA, NDEQN, KURPA, IW7 )FRNT 93 

NPA=ND+l-JJ FRNT 9lJ 

IBDIAG=IBA+NPA FRNT 95 

NDIAG=IBDIAG FRNT 96 

IF(INITL.NLO) NDIAG=NPA·(NPA+1 )/2 FRNT 97 

PIVOT=ELPA(NDIAG) FRNT 98 

ELPA(NDIAG)=ZERO FRNT 99 

IF(ABS(PIVOT).GT.ASMVL) GOTO 3lJ FRNT 100 

WRITE (IW6, 911) 
FORMAT(36H ERROR - ZERO PIVOT 
STOP 

MGZ=O 
JGZ=KURPA 
IBO=IBA 
IF(INITL.EQ.O) IBA=IBA+KURPA 
L 12=2-1NITL 

DO 50 LHSRHS=L 12,2 
IF(LHSRHS.EQ.2) JGZ=l 

DO lJ8 JG=l,JGZ 

IBA=IBA+1 

GOTO (36, lJO), LHSRHS 


36 	MGO=MGZ 

MGZ=HGO+JG 

IF(NPA.GT.JG)GOTO 38 

MG=MGO+NPA 

GOTO lJ2 


38 MG=JG+NPA·(NPA-l )/2 
GOTO lJ2 

FRNT 101 

(ROUTINE FRONTZ» FRNT 102 


FRNT 103 

FRNT 10lJ 

FRNT 105 

FRNT 106 

FRNT 107 

FRNT 108 

FRNT 109 

FRNT 110 

FRNT 111 

FRNT 112 

FRNT 113 

FRNT 11lJ 

FRNT 115 

FRNT 116 

FRNT 117 

FRNT 118 

FRNT 119 

FRNT 120 

FRNT 121 

FRNT 122 

FRNT 123 

FRNT 12lJ 

FRNT 125 
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C 
lJO 	 MGO=NPAR 


MG=MGO+NPA 

HGZ =MGO+KUR PA 


C 
lJ2 	 NDELT=IBO-MGO 

CONST=ELPA (MG) 
ELPA (lBA )=CONST 
IF(ABS(CONST).LT.ASMVL) 
CONST=CONST IPI VOT 
ELPA(MG)=ZERO 
IF(INITL.NE.LHSRHS) GOTO lJlJ 

FRNT 137
MG=NPAR+MAXPA+JG 
FRNT 138


ELPA(MG)=ELPA(MG)+ELPA(MGZ)*ELPA(MGZ) FRNT 139 

FRNT llJO
lJlJ 	 MGl =MGO+l 
FRNT llJl

DO 	 lJ6 I=MG1,MGZ 
FRNT llJ2K=1 +NDELT 
FRNT llJ3

ELPA(I)=ELPA(I)-CONST·ELP~(K) 
FRNT llJlJlJ6 CONTINUE 
FRNT llJ5lJ8 CONTINUE 
FRNT llJ650 CONTINUE 
FRNT llJ7C 

ELPA(IBDIAG)=PIVOT ~~~i llJ8 
llJ9IBA=NDEQN 
150


ELPA(IBA)=FLOAT(KURPA) 	 ~~~i 151

ELPA(IBA-l )=FLOAT(NPA) 	 FRNT 

152 

ELPA(IBA-2)=FLOAT(NW(NA l+NDFN-JJ) 	 FRNT 153

IF(INITL.EQ.O) GOTO 56 	 FRNT 15lJ 


155 

C---------------________________________________________---------FRNT 

C SKIP MORE ON RESOLN FRNT 
C---------------------___________________________________-------------FRNT 156 


" Frontal Solution 

FRNT 126 

FRNT 127 

FRNT 128 

FRNT 129 

FRNT 130 

FRNT 131 

FRNT 132 

FRNT 133
GOTO lJ8 
FRNT 13lJ 

FRNT 135 

FRNT 136 


MG=NPAR+MAXPA+NPA 

CRIT=SQRT(ELPA(MG) )/ABS(PIVOT) 

ELPA(MG)=ZERO 

IF(CRIT.LT. 1.0E8) GOTO 52 

WRITE (IW6, 912) 


912 FORMAT(51H PROBABLE SERIOUS ILL-CONDITIONING 
STOP 

C 

52 IF(CRIT.LT. 1.ElJ.AND.PIVOT.GT.0.) GOTO 5lJ 
CC WRITE(IW6,912) 
CC912 FORMAT(26H POSSIBLE ILL CONDITIONING) 
C 

5lJ CONTINUE 
C 

56 IF(NPA.EQ.KURPA) KURPA=KURPA-l 
IFR(NPA)=O 

58 CONTINUE 
C 


NCONN(J,NE)=-NCONN(J,NE) 

IF(KURPA.GT. NO) GOTO 60 


59 	IF(KURPA.EQ.O)GOTO 60 

IF(IFR(KURPA).GT.O) GOTO 60 

KURPA=KURPA-l 

GOTO 59 


C 
60 CONTINUE 

C 

157 

FRNT 158

FRNT 159 

FRNT 160 

FRNT 161 

FRNT 162 


(ROUTINE FRONTZ» FRNT 163 

FRNT 16lJ 

FRNT 165 

FRNT 166 

FRNT 167 

FRNT 168 

FRNT 169 

FRNT 170 

FRNT 171 

FRNT 172 

FRNT 173 

FRNT 17lJ 

FRNT 175 

FRNT 176 

FRNT 177 

FRNT 178 

FRNT 17 9 

FRNT 180 

FRNT 181 

FRNT 182 

FRNT 183 

FRNT 1811 

FRNT 185 


CC CALL PRINTFUW6,ELPA(1),MFZN,KURPA,ELPA(NPAR+l ),KURPA,2) FRNT 186 

187 


C OUTPUT BUFFER FRNT 


C---------------------________________________________----------FRNT 

188
C-----------------_______________________________________--------------FRNT 
189 


61 	 IF(NE.NE.NEL) GOTO 62 
 FRNT 190

IF(IC.EQ.O) GOTO 62 
 FRNT 191 


C 

http:IF(KURPA.GT
http:IF(CRIT.LT
http:IF(CRIT.LT


332 
333 

, I 

\ 
,; '\, 

Analysis 

IF (IC. EQ. 1. AND. IOPBC. EQ. 1)WRITE (IW6, 921 )IBUF( 1), IBUF(2), 
1 MBUF(1),MBUFC2),RBUF(1) 

921 FORMAT(5H NODE,I5,7H D.O.F.,I3,2A4,E13.4) 
IF(IC.EQ.2.AND.IOPBC.EQ.1)WRITE(IW6,922) (IBUF(2 I IM-1), IBUF(2 I IM), 

1 MBUF(2IIM-1 ),~1BUF(21IM),RBUF(IM),IM=1,2) 
922 FORMAT(2(5H NODE,I5,7H D.O.F.,I 3,2A4,E13. 4,4X» 

62 CONTINUE 
C----------------------------------------------------------____________ 
CC BACK SUBS_________________________________________________________ TITUTE 

--~~-i;(~~~~. EQ. 0) GO TO 80 

IF(IBA.EQ.NBAXO) CALL GETEQN(ELPA,MFZN,NBAXO,IBA,IW7) 

NVABZ=NVABZ-1 

KUR PA=IFIX (ELPA (IBA» 

NPA=IFIX (ELPA (IBA-1 » 

NIC=IFIX(ELPA(IBA-2» 

IBAR=IBA-4 

IBA=IBAR-KURPA 

IBDIAG=IBA+N PA 

PIVOT=ELPA(IBDIAG) 


ELPA(IBDIAG)=ZERO 

CONST=ELPA(IBAR+1) 


C 

DO 72 1=1,KURPA 

K=I+IBA 

CONST=CONST-ELPA(I)*ELPA(K) 


72 CONTINUE 

ELPA(NPA)=CONST/PIVOT 

DI(NIC)=ELPA(NPA) 


C 

ELPA(IBDIAG)=PIVOT 

GOTO 70 


80 	 CONTINUE 

RETURN 

END 


FRNT 31 : KURPA, the current jrontwidth, is zeroed . 

[Ch.8 

FRNT 192 

FRNT 193 

FRNT 194 

FRNT 195 

FRNT 196 

FRNT 197 

FRNT 198 


-fRNT 199 

-fRNTFRNT 200
201 


FRIlT 202 

FRNT 203 

FRNT 204 

FRNT 205 

FRNT 206 

FRNT 207 

FRNT 208 

FRNT 209 

FRNT 210 

FRNT 211

FRNT 212 

FRNT 213 

FRNT 214 

FRNT 215 

FRNT 216 

FRNT 217 

FRNT 218 

FRNT 219 

FRNT 220 

FRNT 221 

FRNT 222 

FRNT 223 

FRNT 224 

FRNT 225 

FRNT 226 

FRNT 227 

FRNT 228 

FRNT 229 


FRNT 32 : size of front - based on maximum frontwidth (= MAXPA). 
FRNT 33 : size of front and active load terms + region for ill-conditioning check 

(= NBAXO). 
FRNT 34 : is the index to last coefficient of equation eliminated last (during the 

elimination phase). Set initial value of IBA which is the index to first 
empty location (given by NBAXO + 1) in buffer region. 

~ A --4-~ B --~C -- ~(----- 0 - - ------+ 

NPAR NBAXO IBA 

ELPA 	 j/l/l/l/lll ] 
) ~--+ ( ) *-'I~ 

Coefficients 
of eliminated 

Active Active , 
stiffness load 	 Array for 

checking equationsterms terms 

ill-conditioning 
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FRNT 35 

FRNT 36 


FRNT 37 


FRNT 38 

FRNT 39 


FRNT 47 


FRNT 54 

FRNT 56 


FRNT 57 

FRNT 60-63 


FRNT 67-68 

FRNT 70 


FRNT 75-77 


FRNT 78 


FRNT 82 

FRNT 83 

FRNT 90 

FRNT 91 

FRNT 92 


FRNT 93 


FRNT 94 


FRNT 95 

FRNT 96 

FRNT 97 


Frontal Solution 

: zero counter of variables eliminated. 
: set NBAXZ equal to the size of working region (size of array 

ELPA). 
: set flag to indicate that solution is initial solution (not a re­
solution). 

: NOIMI =NOIM + 1. 
: zero counter of no. of terms (fbdties/loads) in output buffer 

of boundary conditions (b .c.)/loads. 
: zero global array of indicators of d.o.f. with prescribed 

values. 
: loop on all elements. 
: branch off to print output buffer of b.c./loads (in the event 

that the last element is not present in the current mesh and 
the contents of unfilled output buffer have not been 
printed). 

: by-pass if element is not present in current mesh. 
: calculate element stiffness matrix (also flow and coupling 

matrices for consolidation element), placed in array SG. 
: assemble element stiffness matrix into front. 
: print out contents of active front region (only if debugging). 
: assemble load term or fix d.oJ. of node making last 

appearance. 
: print out contents of front (stiffness and loads) for 

debugging. 

Elimination phase 

: loop on all nodes of element. 
: by-pass if node is not making its last appearance. 
: loop on all d.oJ. of node making last appearance . 
: increment counter of no . of variables (d.o.f.) eliminated. 
: set up new pointer position in buffer to indicate last positio 

of entries for next equation to be eliminated. When each 
equation is eliminated, all coefficients (equals the front­
width) plus four terms are entered in the buffer. Here 
NOEQN points to the last term. 

: buffer cannot accommodate all coefficients of current 
equation being eliminated (NOEQN> NBAXZ). Therefore 
write contents of buffer to backing store. 

: row/column no. of equation to be eliminated (variables of a 
node are eliminated in reverse order , i.e. last variable (d .o.f.) 
is eliminated first). 

: location of pivotal term in buffer. 
: pointer of pivotal term (if re-solu tion) in buffer. 
: for initial solution, index to pivotal term in front region. 
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FRNT 98 
FRNT 99 
FRNT 100 
FRNT 101-102 
FRNT 105 
FRNT 106 
FRNT 107 

FRNT 108 
FRNT 109 

FRNT III 
FRNT 112 
FRNT 114 
FRNT 115 
FRNT 116 

FRNT 118 
FRNT 119 
FRNT 120 

FRNT 121 

FRNT 124 

FRNT 127 
FRNT 128 
FRNT 129 

FRNT 131 
FRNT 132 
FRNT 133 
FRNT 134 

FRNT 135 
FRNT 136 
FRNT 137 

FRNT 138 

Analysis [Ch. 8 

: pivot. 

: replace pivotal term by zero in front. 
: check pivot is not equal to zero. 

: if so, print error message and stop. 

: the index to first term in front is MGZ + 1. 
: no. of columns in front (= frontwidth). 

: remember index of last entry to buffer from equa tion 

eliminated last (IBO + 1 points to the next empty location in 
buffer). 

: if resolution. 

: L12 = 1 for new solu tion; both stiffness and load terms have 
to be reduced. 

: L12 = 2 for re-solution; only load terms have to be reduced. 

: loop on stiffness and load terms, depending on L12. 
: reset lGZ to one column of load terms, if resolution. 

: loop on lGZ columns. 
: position in buffer for the next coefficient. 
: branch off for stiffness and load terms. 

118-124 for reduction of stiffness terms only. 

: index to first term in JGth column is MGO + 1. 
: index to diagonal term in JGth column. 
: branch off if equation eliminated is to the right of equation 

JG. 
: index to coefficient being eliminated (it is along the row part 

of equation NPA). 
: index to coefficient being eliminated (it is on column part of 

equation NPA). 

127-129 for reduction of load terms only. 

: first load term is given by MGO + 1. 

: index to load term of equation being eliminated. 

: index to last load term. 


: a shift (additive) index. 

: coefficient being eliminated - CONST. 

: place CONST in buffer. 


: check if CONST = 0; if so, this is the outer loop by-pass, 

i.e. terms in column lG are not affected. 

: multiplication factor. 
: set pivotal term to zero in fron t. 

: by-pass if no reduction of stiffness terms. 
: index to location in ill-conditioning check region for 

equation JG. 

Sec . 8.10] 

FRNT 139 

FRNT 141 
FRNT 142 
FRNT 143 

FRNT 144 

FRNT 145 
FRNT 146 
FRNT 147 

FRNT 149 

FRNT 150 
FRNT 151 
FRNT 152 
FRNT 153 
FRNT 154 

FRNT 158-159 

FRNT 160 
FRNT 161-170 
FRNT 172-173 

FRNT 175 
FRNT 177 
FRNT 178-181 

FRNT 184 
FRNT 186 

FRNT 190-197 

FRNT 202 
FRNT 203 
FRNT 204 
FRNT 205 
FRNT 206 

FRNT 207 
FRNT 208 
FRNT 209 
FRNT 210 
FRNT 211 

FRNT 213 

FRNT 214 

Frontal Solution 

: add square of diagonal term of equation JG. (ill-conditioning 
check). 

: index to first term in column JG . 

: loop on all terms in column JG . 


: index to terms of equation being eliminated, in buffer. 

: reduce term in column JG. 


: end of inner loop - on all rows in column lG. 

: end of outer loop - on all columns in front. 

: end of LHS/RHS loop. 

: place pivot in the diagonal position in buffer. 


: reset pointer to last entry of current equation in buffer. 

: enter current size of front. 

: index to pivotal term. 


: global variable no. (index to array Dr). 

: by-pass if re-solution. 


: entry corresponding to eliminated equation in ill­

conditioning check region'. 

: reset entry to zero. 


: print out warning messages if equations are ill'conditioned. 

: if eliminated equation was occupying the last row/column 

then reduce front size. 

: end of loop on d.oJ. of node making its last appearance. 

: make node no. positive in NCONN. 


: reduce front size if eliminated variables were at the end of 

front. 

: end of loop on all nodes in element. 

: print out contents of active front (stiffness and load terms). 
Only if program is being debugged. 

: print out contents of b.c./load output buffer, if not empty. 

Back-substitution phase 

: branch off if all unknowns have been solved for. 
: if buffer is empty, get coefficients from backing store. 
: decrement no. of unknowns yet to be solved by one. 
: current size of front (= KURPA). 

: position of equation of unknown variable in front (also the 
index to the pivotal term). 

: global variable number. 

: index to load term of equation is LBAR + 1. 

: index of first coefficient (LBA + 1) of equation. 
: index of diagonal coefficient of equation. 
: get pivot. 

: replace by zero. 

: RHS load term of equation. 
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: loop on all terms (a column of solved unknowns) in front. FRNT 216 
FRNT 217 : index to coefficient in buffer. 

FRNT 218 : reduce RHS term. 
: calculate incremental disiJlacement/excess pore pressureFRNT 221 

(i.e. solve for unknowns). 
: place displacement/excess pore pressure in array D1.FRNT 222 
: place pivotal term in buffer (in case of resolution).FRNT 224 

FRNT 225 : solve next unknown. 

FRNT 227 : end of back-substitution loop; all unknowns solved. 

8.11 	 FRONTAL SOLVER 

The frontal solver in the program uses a one-dimensional array and is for the 
solving of symmetric stiffness matrices only. Therefore only problems of 
material behaviour which obey the associated flow rule can be analysed. The 
solver can handle variable d.oJ. of nodes and is independent of the type of 

element being used. 
The solver also allows for a re-solution facility. However, some modifications 

to the program would be necessary if this was needed. The re-solution facility 
would be useful if the Modified Newton-Raphson approach were required. 
Within the iterative cycle the stiffness remains constant. Therefore the Left­
Hand Side (LHS) stiffness terms are reduced once and can be re-used to solve 
the Right-Hand Side (RHS), which varies from iteration to iteration. CRlSP uses 
an incremental approach (not iterative) and the re-solution facility is not used 
in the presen t version. 

Given below are some of the general features often found in frontal solvers. A 
minimum amount of core (which is calculated in SFWZ) is necessary to solve the 
equations. This is calcula ted as the core required to keep all the stiffness terms, 
load terms and terms for ill-conditioning check when the frontwidth is at its 
maximum. The program is not capable of solving the equations if this minimum 
core is not provided. 

Equations of prescribed displacements are not dealt with any differently from 
the other equations. A large number ALAR is added to the diagonal term, and 
the prescribed value multiplied by ALAR is added to the corresponding RHS 
term. 

There is an ill-conditioning check (Irons, 1968). This check does not involve 
the RHS terms and is based on the reduction in the diagonal term since 

becoming active until it becomes a pivot. 
The use of higher-order elements makes the frontal method more attractive 

compared to band solvers. A point often made is that the nodal numbering is 
irrelevant whereas the element numbering should be efficient for the frontal 
method. In contrast, for band solvers the element numbering is irrelevant 
whereas the nodal numbering must be such that it produces the smallest band­
width. The program should allow for the flexibility of re-numbering either the 

Sec. 8.12] 	 Solu tion of the Equa tions 

nodes or the elements internally or by a separate stand:alone program so that the 
user specified numbers are only used for communicating with the user. 

CRISP does not make any attempt to re-number the elements. The user 
element sequence at input is considered to be the frontal assembly order, if 
alternative element numbering is not provided. An element ordering efficient for 
the frontal method can be read in separately (record G2). This option is 
provided for flexibility and efficiency. Not all finite element meshes have a 
regular grid (or pattern) of elements. An efficient frontal ordering of a finite 
element mesh may not readily be apparent. When preparing the mesh, the user 
may number the elements which are of main interest (for example in a tunnel 
analysis, the elements surrounding the tunnel) first. With this form of input 
option an efficient frontal numbering of elements is uncoupled from the concern 
of the user, who chooses to number the element in a manner convenient to 
him/her. ) 

8.12 SOLUTION OF THE EQUATIONS 

The frontal method begins as soon as the first element stiffness matrix has been 
assembled into the frontal region. The frontal region is made up of a one­
dimensional array partitioned into four different regions. The organisation of 
this mainly depends on the particular implementation. In this particular version 
it is as shown below: 

)1 -(--------*1 ( --*1 ( --* 

2 3 4 
Frontal stiffness Load Ill-conditioning Buffer 

region terms check 

The boundaries are fixed and are based on the maximum frontwidth MAXPA 
which was determined in rou tine SFWZ. 

The element stiffness matrix is assembled into the appropriate locations in 
region 1. The elimination phase begins for all equations which are fully 
assembled. For these equations the corresponding variable is checked to see 
whether it is prescribed. The corresponding load term is also assembled into its 
assigned location in region 2. The coefficients of the complete equation are. 
transferred to the buffer, one by one; at each stage (i.e. for each transfer) the 
relevant column of terms is modified (operated on). The next element is now 
assembled and the whole procedure is repeated. 

The frontal solution step is divided into three parts: 

(i) 	 adding element stiffness matrix into front - routine FRSLOT; 
(ii) 	 dealing with prescribed displacements and applied loads - routine 

FRFXLD; 
(iii) 	 forward elimination and backward substitution - routine FRONTZ. 
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Routine FRSLOT 

For each element in turn (by making a call to routine LSTIFF) the element 

stiffness matrix ES (called SG in routine LSTIFF) is assembled into the .active 
. B th the element stiffness matrix (ES) and the front stiffnessfront reglOn. 0 


region (ELPA(l)-ELPA(NPAR) are upper triangular matrices. 


1
SUB ROUT INE f RSLOT (NN, NEL, NTPE, KES, MDFE, IF RZ, NCONN, NQ, NDEST, FRST 
FZ LT NE KUR PA INXL) FRST 2 


C.... ~ .~~ ~~~~~ ~;~~;~:~ ~~ .. ~ •• ~ .. ~ .... • ~•• .............................. • FR~T 3 

4
C ROUTINE TO SLOT ELEMENT STIfFNESS MATRIX IN APPROPRIATE FR T 


C LOCATIONS (AS INDICATED BY ARRAY NDL) IN FRONTAL REGION FRST 
 5 

6
C...*•••••••••••••••••••••••••••••••••••••••• If •••••••••• ················FRST 
7 

8 


DIMENSION NCONN (NTPE, NEL), NQ (NN), NDEST (NN), IFR (IF RZ) ,NDL (MDFE), ~~~~ 
1 ES (KES), ELPA U1FZ) 	 FRST 9
COMMON IELINF 1 LINFO(50, 15) _________________-FRST 

10

C-------------------------------------------------- FRST 11 

C FIND CURRENT SIZE OF GRANDPA (KURPA) ____________________FRST 12 

C------------------------------------------ FRST 13 


NDPT=LINFO(1,LT) FRST 14 

C 
 FRST 15 


DO 	 10 J=l,NDPT FRST 16

N=NCONN(J,NE) 

FRST 17

NA =IABS (N) 

FRST 18

NDFN =NQ (NA ) 

FRST 19

ND=NDEST(NA )-1 

FRST 20 

C FRST 21


DO 	 6 1=1, NDFN 
FRST 22 


ND=ND+1 FRST 23

6 IFR(ND)=NA 

FRST 24

IF (ND. LT. KURPA) GOTO 10 


FRST 25 

KURPA=ND FRST 
 26
10 CONTINUE 	 _________________FRST 

27

C---------------------------------------------- FRST 

28
C ASSEMBLE ELEMENT STIFFNESS INTO GRANDPA 
29
C--------------------------------------------------------------~~;i 30 


IT=O FRST 
 31 

DO 	 16J=l,NDPT FRST 32 

N=NCONN (J ,NE ) 	 FRST 33 

NA=IABS(N) 	 FRST 34 

ND=NDE~T(NA )-1 __________________________________-FRST 


35 

~----~~~~-=-~~~~~;-;;;;;;~;_;~;. (SEE ROUTINES BDATA 1 AND MAIN2) FRST 36 


C-----------------------------------------------------------------~~~~ 37 


NDFN=LINFO(J+INXL,LT) 

DO 16 JJ=l,NDFN 

IT=IT+1 


16 	NDL(IT)=ND+JJ 


IS=O 

DO 20 J=l,IT 

NDJ=NDL(J) 

KS=NDJ'(HDJ-1 )/2 

DO 20 I=l,J 

IS =IS+1 

NDI=NDL(I) 

IF(NDI.GT.NDJ)GO TO 18 

KX1 =KS+NDI 

GO TO 20 


18 KX1=NDI'(NDI-1)/2+NDJ 

20 ELPA(KX1)=ELPA(KX1)+ES(IS) 


RETUR N 
END 

FRST 
FRST 
FRST 
FRST 

FRST 
FRST 
FRST 
FRST 
FRST 
FRST 
FRST 
FRST 
FRST 
FRST 

FRST 
FRST 
FRST 
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FRST 13 : total number of nodes in element. 


FRST 15 : loop on all nodes in element. 


FRST 21 : loop on all variables (d.oJ.) of node. 

FRST 23 : enter node numbers in the list of active nodes (i.e. nodes which 


are currently in front) . 
FRST 25 : update KURPA if the front has expanded. 
FRST 26 : end of loop on all nodes of element. 
FRST 31 : loop on all nodes of element. 
FRST 32-41 : set up array NOL, which gives the index to front region for the 

rows/columns of array SG (element stiffness matrix). Indicates 
which row/column of SG should go into which row/column of 

the front. 
FRST 43-53 : making use of array NOL, add in all stiffness terms SG into 

active front region in appropriate rows/columns. 

Routine FRFXLD 

This routine deals with fixities (prescribed displacements and excess pore 
pressures) and loads. The DO 25 loop is to find which of the variables (d.o.f. dx • 

dy and u) have prescribed values and to fix them. 

SUBROUT INE FRFXLD (Hl6, NN, NNOD 1, NEL, NDF , NTPE, NDIM, DA, P, PCOR, FXLD 1 


1 NCONN, NRELVV, NW, NQ, IDFX, NDEST, ELPA, MFZ, FRACLD, NE, NDPT, NPAR, IC, FXLD 2 

2 IOPBC,IBUF,MBUF,RBUF,IWR) FXLD 


4 

C ROUTINE TO ASSEMBLE LOAD TERM AND FIX VARIABLES WITH PRESCRIBED FXLD 5 

C VALUES FOR NODES MAKING LAST APPEARANCE FXLD 6 


C······················································.......·.·.......FXLD 3 


7 

INTEGER TF FXLD 8 

CHARACTER'4 IWR,MBUF FXLD 9 

DIMENSION DA (NDF), P(NDF), PCOR (N DF) ,NCONN (tiTPE, NEL) ,NRELVV (N N), FXLD 10 


1 NW(NNODl),NQ(NN),IDFX(NDF),NDEST(NN),ELPA(MFZ) FXLD 11 

DIMENSION IBUF(6),MBUF(6),RBUF(3),IWR(4),NTT(4) FXLD 12 

COMMON IFIX 1 DXYT(4,200),MF(200),TF(4,200),NF FXLD 13 

COMMON IPARS 1 PYI,ALAR,ASMVL,ZERO FXLD 14 


C---------------------------------------------------------------------FXLD 15 

NDIM1=NDIM+1 FXLD 16 

DO 30 I=l,NDPT FXLD 17 

IF(NCONN(I,NE).GT.O) GOTO 30 FXLD 18 

MA=-NCONN(I,NE) FXLD 19 

NUNDE=NRELVV(MA) FXLD 20 


C--------------------------------------------------------------------FXLD 21 

C FIND IF FIXED FXLD 22 

C----------------------------------------------------------------------FXLD 23 


DO 21 J=l,NF FXLD 24 

IF(MA~EQ.MF(J)) GOTO 22 FXLD 25 


21 CONTINUE FXLD 26 

GOTO 26 FXLD 27 


C FXLD 28 

22 DO 19 ID:1, NDIM FXLD 29 

19 NTT(ID)=TF(ID,J) FXLD 30 


KDF=NQ(MA) FXLD 31 

C---------------------------------------------------------------------FXLD 32 

C PORE PjlESSURE VARIABLE IS THE FIRST (WHEN NODE HAS PORE- FXLD 33 

C PRESSURE VARIABLE ONLY) OR LAST (NDIM+l) D.O.F. OF ANY NODE. FXLD 34 

C BUT ALWAYS USE LOCATION NDIM+1 OF ARRAYS NTT AND TF FOR FXLD 35 

C PORE PRESSURE FIXITY FXLD 36 


C·····················································..........··.···.*FXLD 


38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 




________ 
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RBUF(IC)=P(MSO)+PCOR(MSO)C-----------------------------------------------------------------------FXLD 37 IF(IC.EQ.3.AND.IOPBC.EQ.1)WRITE(IW6,910)(IBUF(2 I IM-1),IBUF(2 I IM),
IF(KDF.EQ.l.0R.KDF.EQ.NDIMl )NTTOlDIMl )=TF(NDIM1,J) 

C 
FAC=FRACLD 
LCI=NW(MA) 
MDI=NDEST(r1A) 
DO 25 IDOF=l,KDF 
ISF =0 
NTTI =NTT (IDOF) 
INDX=IooF 

C----------NODE HAS PORE PRESSURE VARIABLE ONLY 
IF(KDF.NE. l)GO TO 23 
NTTI=NTT(NDIMl ) 
INDX=NDIMl 
ISF =NDIM 

23 IF(NTTI.EQ.O)GO TO 25 
tWF=MDI+IDOF-1 
NPA=MDF *(MDF + 1 )/2 
ELPA(NPA)=ELPA(NPA)+ALAR 
NPRF=NPAR+MDF 

c-------------------------------------------------------------- ­

IF(IDOF.NE.KDF)GOTO 24 
IF(NTTI.NE.2)GOTO 24 

FAC=l. 

TF(NDIM1,J)=1 

DXYT(INDX,J)=DXYT(INDX,J)-DA(LCI+IDOF-l) 


24 ELPA(NPRF)=ELPA(NPRF)+DXYT(INDX,J)IALAR*FAC 
CC WRITE(IW6,806)I,IooF 
CC806 FORMAT(/1X,4HI = ,I5,3X,7HIDOF = ,15) 

IC=IC+l 

LC =LCI+I DOF-l 

IDFX (LC)=l 

IBUF(2 IIC-l)=NUNDE 

IBUF(2 IIC)=IDOF+ISF 

MBUF(2*IC-l)=IWR(1) 

MBUF(2*IC)=IWR(2) 

RBUF(IC)=DXYT(INDX,J)IFAC

IF (IC. EQ. 3. AND. IOPBC. EQ. 1)WRITE (IW6, 91 0) crBUF (2*IM-l ), IBUF (2 1 1M), 


1 MBUF (2IIM-l ), MBUF (2 1 1M) ,RBUF (HIl, 1M =1,3) 
910 FORMAT(2(5H NODE,I5,7H D.0.F •• I3.2A4,E13. 4,4X), 

1 5H NODE,I5.7H D.0.F •• I3.2A4,E 13. 4) 

IF(IC.EQ.3)IC=0 

IF (I DOF. NE. 1. AND. looF • NE. NDIr11)GOTO 25 

IF(NTTI.NE.2)GOTO 25 

DXYT (INDX, J )=0. 


25 CONTINUE 
C 

26 	MDEST=NPAR+NDEST(MA)-l 

MSO=NW(MA)-l 

NDFN=NQ(MA) 


C 
DO 27 JJ =1, NDFN 
MDEST =M DEST+ 1 
MSO=MSO+1 
ELPA(MDEST)=ELPA(MDEST)+P(MSO)+PCOR(MSO) 
IF (ABS (P (MSO». LT •ASMVL. AND. ABS (PCOR (~IS0». LT. ASMVL) 
ISF=O 
IF(NDFN.EQ.l)ISF=NDIM 
IC =IC+1 
IBUF (2*IC-1 )=NUNDE 
IBUF(2 I IC)=JJ+ISF 
HBUF (2 IIC-l )=IWR (3) 
MBUF(2*IC)=IWR (4) 

GOTO 27 

FXLD 
FXLD
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 

FXLD 


~~~ ~~ 1 f1BUF(2 I1 !11-1 ),MBUF(2 IIM),RBUF(IM),IM=l,3) 
FXLD 40 IF (IC. EQ. 3 )IC=O 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

27 	 CONTINUE 

30 	 CONTINUE 
RETURN 
END 

FXLD 17 

FXLD 18 
FXLD 24 

FXLD 25 
58 	 FXLD 27C RESET NODAL PORE PRESSURE FIXITY CODE OF 2 BY 1 AND THE FXLD 

C MAGNITUDE TO ZERO FXLD 59 FXLD 29-30 
60C-----------------------------------------------------------------------FXLD 

FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 

FXLD 

61' 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
711 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 

FXLD 

FXLD 
FXLD 
FXLD 

FXLD 
FXLD 
FXLD 
FXLD 

FXLD 

FXLD 
FXLD 
FXLD 

FXLD 
FXLD 

FXLD 

FXLD 

38 

43 
45 
48 

49-51 
52 
53-56 
61 

62 

63-64 
65 
66 

69-76 
77-81 

82 

83-84 

FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 
FXLD 

103 
104 
105 
106 
107 
108 
109 
110 
111 

: loop on all nodes of element to assemble RHS load terms. 
Fix d.oJ. with prescribed values of nodes making last 

appearance. 
: by·pass if node is not making last appearance. 
: scan the list of nodes with (displacement/pore pressure) 

fixities. 
: branch off if node is found in the list of fixities. 

: skip if node is free. 
: copy fixity code of node into array NTT for all displacement 

variables. 
: copy a further code (for excess pore pressure) only if node 

has pore pressure variable. Note that irrespective of whether 
the node has displacement variables or not, the last location 
is always reserved for the pore pressure variable. 

: loop on all d.oJ. of node (making last appearance) . 
: obtain fixity code of d.oJ. 
: if node has only one d.oJ. it is assumed that this is the pore 

pressure variable. 
: set up indexes. 
: by-pass if d.oJ. is free. 
: if fixed, add a large number ALAR to the diagonal term. 
: if d.oJ. is not the last d.o.f. of node (it is to trap the pore 

pressure variable). 
: by-pass if fixity code is not 2 (option to specify absolut( 

value of excess pore pressure) . 
: fixity code 2 is replaced by 1 (load ratio is set to 1). 
: calculate the incremental change in excess pore pressure. 
: add the prescribed value multiplied by a large number ALAR 

to the RHS load term. 
: enter details of prescribed d.o.f. in output buffer. 
: print out contents of buffer, if it is full, and then reset 

pointer. 
: by-pass if not the first d.oJ. or the last (presumably pore 

pressure) d.oJ. of node. 
: by-pass if d.oJ. has not a fixity code 2; otherwise reset 

incremental value (of excess pore pressure) to zero. This 
ensures that no further change in pore pressure takes place, 

in the rest of the analysis. 

http:NODE,I5.7H
http:IF(KDF.NE
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FXLD 85 : end of loop on all d.oJ. of node. 


FXLD 87-89 : calcula te index of load term in active front region. 


FXLD 91 : loop on all d.oJ. of node. 


FXLD 93-94 : enter load term in active load region in front. 


FXLD 95 : branch off if load has negligible value. 


FXLD 98-102 : enter load term in output buffer (only if it is of significant 

value, Le. > 1.E·20). This is to ensure only loads of signifi· 
cant magnitude are printed . 

FXLD 103-106 : print contents of buffer if it is full and reset pointer. 
FXLD 107 : end of loop on all d.oJ. of node. 

Subroutine PRLNTF can be called to print out the contents of the frontal region 
at different stages of the solution , i.e . after assembling an element stiffness 
matrix and after elimination of the variables making their last appearance. The 
output produced can be substantial, and for normal runs it is not recommended 
to do this. Hence all calls to PRINTF have been commented out. But is is useful 
for debugging purposes. 

Routine PRINTF 

SUBROUTINE PRINTF(IW6,ELPA,MFZ,NR,RHS,NRHS,IOPT) PRNT 1
C··.·........ Iflf •••••••••••••••••••••••••••••••••••••••••• 1I •••••• 11 •••••••PRNT 


C PRINTS OUT UPPER TRIANGULAR MATRIX PRNT 
 3
c·········.· I1 

.2 


••••••••••••••••••••••••••••••••••••••••• ·······lI··········PRUT 4 

CHARACTER*4 IFORM,IG , PRNT 5 

DIMENSION RHS(NRHS),BlfFF(10),1FORH(4),IG(10),ELPA(HFZ) PRNT 6 

DATA IFORH(2),1FORM(3),IFORH(4)/'X,10','E12.','4) 'I PRNT 7 

DATA IG(l),1G(2),1G(3),IG(4),IG(5),1G(6),IGC7),IG(8),IG(9) , 1G(10)/PRtlT 8 

l' (1',' (13',' (25',' (37',' (49',' (61',' (73',' (85', PRNT 9 

2 ' ( 97',' (1.09'1 PRNT 10 


C 
 PRNT 11 

IF(IOPT.EQ.l)WRITE(IW6.900) PRNT 12 

IF(IOPT.EQ.2)WR1TE(IW6.901) 
 PRNT 13 

IF(NRHS.EQ.O) RETURN 
 PRNT 14 


C PRNT 15 

NSUB=(NR+9 )/10 
 PRNT 16 


C 
 PRUT 17 

DO 20 JJ =1, NSUB 
 PRNT 18 

J2=10·JJ 
 PRNT 19 

J 1=J 2-9 
 PRNT 20 

IF (J 2. GT. NR)J 2=NR 
 PRNT 21 

WR1TE(IW6,904) Jl,J2 
 PRNT 22 


C 
 PRNT 23 

DO 18 II=l,JJ 
 PRNT 24 

IFORH( 1 )=1G( 1) 
 PRNT 25 

I2=10·II 
 PRNT 26 

11=12-9 
 PRNT 27 

1F(I2.GT.NR)I2=NR 
 PRNT , 28 

WRITE(IW6,905)I1,I2 
 PRNT 29 


C 
 PRNT 30 

DO 16 1=Il,12 
 PRNT 31 

JI =0 
 PRNT 32 

1F(JJ.GT.II) GOTO 12 
 PRNT 33 

J 1 =1 
 PR NT 34 

IF=I-11+1 
 PRNT 35 

IFORH ( 1 )= 1G (IF) 
 PR NT 36 


12 DO 14 J =J 1, J 2 
 PRNT 37 
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J I =J1 +1 
PRNT 3 8 

PRNT


1J=JIf(J-l )/2+1 
39
14 BUFF(JI)=ELPA(1J) 

PRNT 40

WRITE (IW6, 1FORH) (BUFF (K), K=l , JI ) 

PR NT 41
16 CONTINUE 
PRNT 42
C 
PRNT 43
18 CONTINUE 
PRNT 44
C 
PRNT 45


20 CONTIN UE 
PRNT 46


C 
PRNT 47


WR1TE(1W6,910)(RHS(K),K=1,NR) PRNT 4 8 

RETURN 

PRNT 49 

900 FORHAT(lX, 17HELEMENT STIFFNESS) 
 PRNT 50 

901 FORMAT(lX,7HGRANDPA) 

PRNT 5 1 

904 FORMAT(BH COLUMNS,14,3H TO,14) PRNT 52 

905 FORHAT( 5H ROWS,14,3H TO,14) PRNT 53 
910 FORMAT(4H RHS/(lX, 10E12.4» 

PRNT 54 

END 

PRNT 55 


PRNT16 : split the ' matrix into segments of sub·matrices, each 10 X 10 in 

size, convenient for printing. 


PRNT 18 : loop on all column segments. 

PRNT 20-21 
 : first and last column numbers in segment J J; reset 12 to last 

d.oJ. NRHS, if it exceeds NRHS. 
PRNT 22 : write column numbers . 

PRNT 24 : loop on all row segments (up to diagonal segment). 

PRNT 25 
 : select format type (to retain triangular shape of stiffness matrix 

in output). 

PRNT 26-27 : first and last rows in segment II, 11. 

PRNT 28 
 : reset 12 to last d .o.f. if it exceeds NRHS . 

PRNT 29 : write row numbers. 

PRNT 31 : loop on all rows in segment. 

PRNT 32 
 : counter of terms in a row in segment (the output is row by row 


within segment). 

PRNT 33 
 : if above diagonal , retain format type to print full square sub-

matrix (not triangular). 

PRNT 34 : diagonal segment; start row with diagonal term. 

PRNT 35-36 
: new format type to retain triangular shape of matrix in output. 
PRNT 37 : loop on all terms in row I. 
PRNT 40 : enter stiffness term in output buffer. 
PRNT 41 : output a row of terms in segment. 
PRNT 42 : end of loop on all columns in segment. 
PRNT 44 : end of loop on all row segments in a column. 

PRNT 46 : end of loop on all column segments. 

PRNT 48 : print out RHS vector. 


During the course of the solution, if the buffer size is not sufficient to hold all 

the eliminated coefficients then whenever the buffer becomes full (saturated), 

the contents of the buffer are written to a backing store . This is carried out by 
routines STOREQ and WRTN. 

http:1F(JJ.GT.II


344 Analysis [eh. 8 

Routine STOREQ 

SUBROUTINE STOREO(ELPA,MFZ, NBAXO, IBA,NDEQN,KURPA,IW7) STEQ 1 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••• •• ••••• ···········STEO 2 

C WHEN SATURATED WRITES BUFFER TO DISK STEQ 3 

c••••••••••••••••••••••••••••••••••••••••••••••••••••• ··················STEQ 4 


DIMENSION ELPA(MFZ) STEQ 5 

LREC=IBA-NBAXO STEQ 6 

CALL WRTN (IW7, ELPA (NBAXO+ 1 ). LR EC) STEQ 7 

WRITE(IW7) LREC STEQ 8 

IBA=NBAXO STE~ 9 

NDEQN =IBA+KURPA+4 STEQ 10 

RETURN STEQ 11 

END STEQ 12 


STEQ 6: calculate length of record (number of terms to be written to backing 

store) . 
STEQ 7 : write to the backing store the contents of buffer. 

STEQ 8: write the length of record to backing store. 

STEQ 9: reset pointer of last location used in buffer to the first position in 


buffer (as buffer is now empty). 
STEQ 10: pointer of last entry from next equation. 

~ .\ ., 
it: ~ I
1,,,1 Routine WRTN 

, i~ .I!· '. "\ 1 

'1 SUBROUTINE WRTN(N,A,M) WRTN 

\. , C••••••••••••••• *••••••••••••••••••••••••••••••••••••• ··················WRTN 2 

II 3
C WRITES ONE DIMESNIONAL A RRA Y WRTN 

t. . ~!. ~ 
,.1 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••··················WRTN 4 


I Ii ,! DIMENSION A(M) WRTN 5 

WRITE(N) A WRTN 
 6
! .,' 1 7
RETURN WRTNi' :: I 
 WRTll 8
I END 

WRTN 6 : write a on e-dimensional REAL array of given size M to unit N. 

La ter, during back-substitution, the reverse process takes place. If eliminated 
coefficients have been written to the backing store then, while back-substituting, 
if the buffer becomes empty , the next set of entries is retrieved from the backing 

store. This task is carried out by the routines GETEQN and RDN. 

Routine GETEQN 

1
SUBROUTINE GETEQN (ELP fo. , MFZ, NBAXO, IBA, IW7) GTQN 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••··············GTQN 2 


C READS BUFFERFUL WHEN BACK-SUBSTITUTING GTQN 3 

C* ••••••••••••••••••••••••••••••••••••••••••• ~ •••••••••••••••• ··········GTQN 4 


5 

GTQN 6 

GTQN 7 


DIMENSION ELPA(MFZ) GTON 

BACKSPACE IW7 
GTQN 8


READ (IW7) LREC 
GTQN 9
BACKSPACE IW7 
GTQN 10


BACKSPACE IW7 
GTQN II


CALL RDN(IW7,ELPA(NBAXO+l ),LREC) 
GTQN 12


BACKSPAC E IW7 
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I BA =NBAXO+LR EC GTQN 13 

RETUR N GTQN 14 

END GTQN 15 


GTQN 8: read no_ of terms in backing store (length of record). 
GTQN 11 : read back from backing store a bufferful of coefficients. 
GTQN 13 : reset pointer to end of buffer (Le_ the buffer is now full). 

Routine RDN 

SUBROUTINE RDN(N,A,M) RDNt·' 1 

C.···.··· •• ••••• •• • •••••••••••••••••••••••••• ··························.RDNM 2 

C READ ONE DIMENSIONAL ARRAY RDNM 3 

C·.·.···.····.·· •••••••••••••••••••••• • •••• • •••························*RDNM 4 


DIMENSION A(M) RDNM 5 

READ(N) A RDNM 6 

RETURN RDNM 7 

END RDNM 8 


RDNM 6 : read from a file N, a one-dimensional REAL array of length M. 

8J3 CALCULATION OF OUTPUT PARAMETERS 

The following set of calculations is now carried out. Before that, a number of 
arrays containing tables to be printed are allocated store dynamically in the 
region previously used for solving the equations_ This is carried out by routine 
UPARAL. 

Routine UPARAL 

SUBROUTINE UPARAL(TTIME,TGRAV,IOUT,NN,ND,NNOD1,NEL,NDF,NTP[.NIP, UPAR I 

I NPT,NSP,NPL,NDZ,NVRS,NVRN,NDIM,MUMAX,NNZ,NDMX,NPMX,NS,NB,NL,INXL,UPAR 2 

2 NPR,NMT,MXEN,XYZ,DI,DA,VARINT,P,PT,PCOR,PEQT,XYFT,STR,PEXI, UPAR 3 

3 PCONI,D,ELCOD,DS,SHFN,CARTD,B,FT,AA,NCONN,MAT,LTYP,MREL,MRELVV,UPAR 4 

4 NREL,NW,NQ,JEL,IDFX,NP1,NP2,NWL,NMOD,CIP,LL,PR, UPAR 5 

5 NTY,A,MFZ,ICOR,IUPD,FRACT,JS,IWLl UPAR 6 


C···············.··.·•• ··.·.··*·························.···.........···UPAR 
 7 

C ROUTINE TO ALLOCATE ARRAY STORE FOR USE IN UPOUT UPAR 8 

C············· •••••• • ••••• •••••••••••••••••••••••••• •••••••••••••••••• ··UPAR 9 


REAL LL 
C-------USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE 
C-------PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION 
CC REAL A 

DIMENSION XYZ (NDIl1, NN), DI (NDF), DA (NDF), VARINT (NVR S, NIP, NEL), 
1 P (NDF), PT (NDF), PCOR (NDF), PEQT (NDF), XYFT (NDF), 
2 STR(NVRN,NIP,NEL),PEXI(NDF),PCONI(NDF) 

DIMENSION D (NS, NS), ELCOD (NDIM, NDMX), DS (NDIM, NDMX) ,SHFN (NDMX), 
1 CARTD(NDIM,NDMX),B(NS,NB),FT(NDIM,NDMX),AA(NPMX) 

DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), 
I MREL (MUMAX), NR EUNNZ), NW (NNODI ), NQ (NN), JEL (NEll, 
2 IDFX (NDr), NPI (NPL), NP2 (NPLl, NWL(NPMX), NMOD (NIP, NEll 

DIMENSION C I P (NDIM) ,LL(NL), PR (N PR, NMTl, NTY (NMT) ,A (MFZ) 
COMMON IDEVICEI IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 
COMMON IPRECSNI NP 

C 
C--------MAXIMUM NU~'BER OF CAM-CLAY STRESS OUTPUT PARAMETERS 

NCV=10 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 

UPAR 


10 

II 

12 

13 

14 


15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 
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28C=======================================================================UPAR 
C INDEXES ARE FOR ARRAYS USED IN PRINTING OUT CAM-CLAY UPAR 29 

C STRESS PARAMETERS IN SUBROUTINE UPOUT2 UPAR 30 
31 

C A(l) - A(t11-1) = CAM-CLAY STRESS PARAMETERS•••••• VARC(NCV.NIP.NEL)UPAR 32 
C A(Ml) - A(M2-1) CODE TO INDICATE STRESS STATE. ••••• NCODE(NIP.NEL)UPAR 33 
C A(M2) - A(H3-1) INDICATORS OF APPROACHING CS ••••••••• LCS(NIP.NEL)UPAR 34 

A(M3) - A(M4-1) INDICATORS OF NEGATIVE P' ••••••••••• LNGP(NIP.NEL)UPAR 35 
c A(M4) - A(MS-1) ELEMENT PROGRAI1 NUMBERS................NELPR(NEL)UPAR 36 

c A(MS) - A(M6-A) ELEMENT USER NUMBERS................ NELUS(NEL)UPAR 37 
c A(M6) - A(M7-1) INDICATOR OF ELEMENTS WITH CAM-CLAY •••• NELCM(NELlUPAR 38 
c A(M7) - A(M8-1) '" INDICATOR OF ELEMENENTS APPROACH CS •••••• MCS(NELlUPAR 39 
c A(M8) - A(M9-1) = INDICATOR OF ELEMENTS WITH NEGATIVE P' •• MNGP(NEL)UPAR 40 

c-----------------------------------------------------------------------UPAR 

C = == === = = ====== == === =========== = ==== === === = == === = ====== ======= = == == = = == =UPA R 

41 
42NIEL=Nlp.NEL UPAR 

UPAR 43Ml=NCV*NIEL·NP+l 
UPAR 44M2=Ml+NIEL 
UPAR 45 
UPAR 46 

M3=M2+NIEL 
M4=M3+NIEL 

UPAR 47MS=M4+NEL 
UPAR 48M6=MS+NEL 
UPAR 49M7=M6+NEL 
UPAR 50M8=M7+NEL 
UPAR 51M9=M8+NEL 
UPAR 52LZ=M9 


IF(LZ.LE.MFZ)GO TO 10 
 UPAR 53 
UPAR 54WRITE (IH6, 901 )LZ,MFZ 
lIPAR 55901 FORMAT(36H ALLOCATED STORE EXCEEDED; REQUIRED .17. 
UPAR 56 
UPAR 57 

1 2X,9HALLOCATED.2X,I7,2X.1SH(ROUTINE UPOUT» 
STOP 

C U~R 58 

59 

902 FORMAT(/34H ARRAY STORE USED IN ROUTINE UPOUT.I8, UPAR 
10 WRITE(IW6.902)LZ.MFZ VPAR 

60 

1 2X.17HOUT OF ALLOCATED. I7 I) UPAR 61 

CALL UPO UT (TTIME. TGRA V. lOUT. NN. ND. NNODl • NEL. NDF • NTPE. NIP. UPAR 62 

1 N PT ,NSP. NPL. NDZ. NVRS. NVRN. NDIM. MUMAX. NNZ. NDMX. NP~IX. NS. NB. NL. INXL. UPAR 63 

2 NPR. NMT, MXEN. XYl, DI. DA, VARINT. p. PT. PCOR, PEQT. XYFT, STR. PEXI, UPAR 64 

3 PCON I. D. ELCOD. DS. SHFN, CARTD. B. FT. AA. NCONN • MAT. LTYP. MREL. MRELVV. UPAR 65 

4 NREL. NW. NQ. JEL. IDFX. NP 1, NP2. NWL. !.'HOD, CIP, LL. PR. UPAR 66 
67S NTY ,A,MFZ. ICOR, IUPD.FRACT. JS. IWL.NCV, UPAR 

6 A(l l.A(M1).A(M2).A(M3).A(M4l.A(M5).A(M6). UPAR 68 

7 A(M7),A(M8» UPAR 69 
70 

END UPAR 
RETURN UPAR 

71 

UPAR 42-52 : calculate indexes to various arrays to assign them store in array 

A. 
UPAR 53-56 : if size of A is insufficient then print message. 
UPAR 62-69 : calculate incremental strains and stresses and print out results. 

The unknown incremental displacements (this being an incremental method) and 

excess pore pressures are solved for and placed in OI(NDF). In routine UPOUT 
the total displacements are calculated by updating DA(NDF) by DI(NDF). Then 

the incremental strains are calculated. 

b.€ = B b.a. (8.8) 

The cumulative strains in STR(NVRN, NIP, NEL) are incremented by the 

incremental strains. The incremental stresses are then calculated from the 

incremen tal strains. 

Sec.8.13] Calculation of Output Parameters 

b.aI == Depb.€, (8.9) 

a/ == ai-i + b.o/. (8.10) 

The Band D matrices calculated at this stage are essentially the same as when 
they were calculated for the element stiffness matrix. This fact is again made use 

of in some programs by writing the Band D matrices to a file, element by 
element, and reading them back. The main reason for not doing this in CRISP is 
that the order the elements are called in the solution routines can be different 
from the order the results are printed at the output stage. 

The current element stresses in VARINT(NVRS, NIP, NEL) are then 
updated. The nodal loads equivalent to current stresses are calculated according 

to 

PEQT(NDF) = f BTai d (vol) . (8.11 ) 
V 

Also calculated from the boundary stresses and self.weight loading (both 
external) is a set of nodal loads, 

PT(NDF)= f NTwd(vol)+:f NTrd(area). (8.12) 
V S 

In order to satisfy the equilibrium condition, PT = PEQT. This is known as the 
equilibrium check. The procedure is to calculate the difference as PCOR = PT -­
PEQT. The percentage error is defined as 

jPCORlmax% error = ----­ (8.13) 
IPTl max 

This completes the increment. 

Routine UPOUT 

SUB ROUT INE UPOUT (TTIME. TGRA V, lOUT, NN. ND, NNODl ,NEL. NDF • NTPE. NIP. UOUT 1 
1 NPT,NSP.NPL,NDZ,NVRS,NVRN,NDIM,MUMAX,NNZ.NDMX.NPMX,NS.NB.NL.INXL.UOUT 2 
2 NPR. NMT .MXEN.XYZ.DI. DA, VARINT. p. PT. PCOR. PEQT. XYFT ,STR. PEXI. UOUT 3 
3 PCONI.D.ELCOD.DS,SHFN.CARTD,B.FT,AA.NCONN.MAT.LTYP.MREL,MRELVV.UOUT 4 
4 NREL.NW.NQ.JEL.IDFX.NP1.NP2.NWL,NMOD.CIP.LL.PR. UOUT 5 
5 NTY.A.MFZ.ICOR.IUPD.FRACT.JS,IWL,NCV, UOUT 6 
6 VARC,NCODE,LCS,LNGP,NELPR.NELUS,NELCI1,MCS,HNGP) UOUT 7 

c·······································································UOUT 8 
C UPDATE AND OUTPUT ROUTINE UOUT 9 
c·······································································UOUT 10 

REAL L.LL 
INTEGER TF 
DIMENSION XYZ (NDIM. NN). DI (NDF). DA (NDF l. VARINT (NVRS. NIP. NEL). 

1 P (NDF) • PT (NDF). PCOR (NDFl. PEQT (NDf) • XYFT (NDF). 
2 STR (NVRN. NIP. NEL). PEXI (NDF). PCONI (Nor) 

DIMENSION D (NS. NS). ELCOD (NDIM. NDMX). os (NDIM. NDMX). SHF N (NDMX). 
1 CARTD(NDIM.NDMX).B(NS. NB).FT(NDIM.NDMX).AA(NPMX) 
DIMENSION NCONN (NTPE. NELl .MAT(NEL). LTYP (NEL). MRELVV (NEL). 

1 MREL(MUMAX). NREL(NNZ). NW (NNOD1 ). NQ (NN). JEL(NELl. 
2IDFX(NDF).NP1(NPL).NP2(NPL).NWL(NPMX).NMOD(NIP.NEL) 

DIMENSION CIP(NDIM).LL(NL).PR(NPR.NMT).NTY(NMT).A(MFZ) 

DIMENSION VARC(NCV.NIP.NELl.MCS(NEL),MNGP(NEL) 

DIMENSION LCS(NIP.NEL).LNGP(NIP.NEL).NCODE(NIP.NEL) 


UOUT 11 

UOUT 12 

UOUT 13 

UOUT 14 

UOUT 15 

UOUT 16 

UOUT 17 

UOUT 18 

UOUT 19 

UOUT 20 

UOUT 21 

UOUT 22 

UOUT 23 
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DIMENSION NELPR(NEL),NELlf)(NEL),NELCM(NEL) UOUT 24 

DIMENSION ST(6),VARO(6),SS(6).SPA(3).SST(6),ED(2) UOUT 25 

COMMON IDATL I 

COMHON IDA1W I 

COMMON IFLOW I 

COMMON IELl NF I 

COMMON IFIX I 

COMMON IPRSLD I 

COMMON IDEVICEI 

COMMON IPARS I 

COM~lON ICOUNT I 

COMMON lOUT I 

cmlMON IJACB I 


ISTGE=4 

LED=2 

NS 1=NS+1 

NDIH1=NDIM+1 


L(4, 100) uour 26 

W(100) UOUT 27 

NPLAX UOUT 28 

LINFO (50, 15) UOUT 29 

DXYT(4,200),MF(200),TF(4,200),NF UOUT 30 

PRESLD(10, 100),LEDG(100).NDE1<100).NDE2(100),NLED UOUT 31 

IR1,IR4,IR5,IW2.IW4,IW6,IW7,IW8, IW 9 UOUT 32 

PYI,ALAR,ASMVL,ZERO UOUT 33 

NCS, NNGP UOllT 34 

IBC, IRAC, NVOS, NVOF, N~lOS, NMOF, NELOS, NELOF, ISR UOllT 35 

XJACI<3,3),DJACB UOUT 36 


UOllT 37 


UOUT 38 

UOUT 39 

UOllT 40 

UOUT 41 


C-----------------------------------------------------------------------UOUT 42 

C BREAK OUTPUT CODE UOUT 43 

C-----------------------------------------------------------------------UOUT 44 


IOUT4=IOUT /1000 UOUT 45 

IOUT3=(IOUT-l000*IOllT4)/l00 UOUT 46 

IOUT2=(IOUT-l000*IOUT4-100*IOUT 3)/l0 UOUT 47 

IOUT1=(IOUT-l000*IOUT4-100*IOUT3-10*IOUT2) UOUT 48 

IF (lOUT 1. LT. 1)GOTO 4 UOUT 49 

LT1=LTYP(1) UOllT 50 

LT1=IABS(LT1) UOUT 51 

GOTO(l,l,2,l,2,l,2,l,2,l,2),LTl UOUT 52 


1 WRITE(IW6,902) UOUT 53 

GOTO 4 UOUT 54 


2 WRITE(IW6,901) UOUT 55 

C-----------------------------------------------------------------------UOllT 56 

C UPDATE ABSOLlITE DISPLACEMENTS UOUT 57 

C-----------------------------------------------------------------------UOUT 58 


4 CR=l. UOUT 59 

IF(NPLAX.EQ.l)CR=2.*PYI UOUT 60 


C .UOUT 61 


DO 5 KD=l, NDF UOUT 62 

DA(KD)=DA(KD)+DI(KD) UOUT 63 


C UOUT 64 


DO 10 JR=l.NNZ UOUT 65 

IF(NREL(JR).EQ.O)GOTO 10 UOllT 66 

J=NREL(JR) UOUT 67 

NQL=NQ(J) UOUT 68 

IF(NQL.EQ.O) GOTO 10 UOUT 69 

Nl=NW(J) UOUT 70 

IF(IOUT1.EQ.0)GOTO 10 UOUT 71 

IF(IOUT1.EQ.l.AND.JR.GT.NDZ)GOTO 10 UOUT 72 

IF(JR.LT.NDZ)GOTO 6 UOUT 73 

IF(JR.LT.NMOS.OR.JR.GT.NMOF)GOTO 10 UOUT 74 

GOTO 8 UOllT 75 


6 CONTINUE UOUT 76 

IF (JR. LT. IIVOS. OR. JR. GT. NVOF )GOTO 10 UOUT 77 


8 CONTINUE UOllT 78 

C-----------------------------------------------------------------------UOUT 79 

C OUTPUT DISPLACEl1ENTS UOUT 80 

C-----------------------------------------------------------------------UOllT 81 


N2=N l+NQL-l UOUT 82 

IF(NQL.EQ. 3)WRITE(IW6. 900 )JR. (DI (JJ ).JJ=Nl. N2). (C'A(JJ), JJ=Nl. N2) UOllT 83 

IF(NQL.EQ.2)WRITE(IW6,910)JR.(DI<JJ).JJ=Nl.N2).(DA(JJ).JJ=Nl.N2) UOUT 84 

IF (NQL. EQ. 1 )WRITE (IW6, 911)J R. DI (N 1). DA (N 1) UOUT 85 


10 CONTINUE UOUT 86 

IF(IOUT2.EQ.2)WRITE(IW6.904) UOllT 87 

IF(IOllT2.EQ.l)WRITE(IH6.906) UOUT 88 


C UOUT 89 
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CALL Z EROR 1(PT , NDF) UOUT 90 

CALL ZEROR1(PEQT,NDF) UOUT 91
C---------------___________________________________________________-----UOUT 


92 

C INIT IA LISE UOUT 
 93 

C----------------------------------------------------------------------UOUT 94 


DO 18 IM=l.NEL UOUT 
 95 

MCS(IM):O UOUT 96 

MNGP(IM)=O UOllT 
 97 

NELPR(IM)=O UOUT 98 

NELCM(IM)=O UOllT 
 99 

NELUS (IM) =0 UO UT 100 

DO 18 IP=l,NIP UOUT 101 

LCS(IP.IM)=O UOUT 102 


18 LNGP(IP.IM)=O UOUT 103 

C-----------------------------------------------------------------------UOUT 104 

C CALCULATE STRESSES AND STRAINS IN ELEMENTS UOUT 105 

C IEL COUNTER - NO. OF ELEMENTS PROCESSED UOUT 106 

C-----------------------------------------------------------------------UOUT 107 


IEL=O UOUT 108 

NCAM=O UOUT 109 


C UOUT 110 

DO 200 MR=l.MUMAX UOUT 111 

CALL ZEROR1(SST.NS) UOUT 112 


CC D4RN=O UOUT 113 

ICAM=O UOUT 114 

IELST=O UOUT 115 

J =MREL(MR) UOUT 116 


IF(J.EQ.O)GOTO 200 UOUT 117 

LT=LTYP(J) UOUT 118 

IF (LT. LT. 0 )GOTO 200 UOUT 119 

NDN=LINFO(5.LT) UOUT 120 

NGP =LI NFO (11. LT) UOllT 121 

INDX=LINFO(12. LT) UOllT 122 

NPN=LINFO(6. LT) UOUT 123 

NDPT=LINFO(1,LT) UOUT 124 

NAC=LlNFO(15,LT) UOllT 125 


C-----------------------------------------------------------------------UOUT 126 

C SETUP LOCAL NODAL COORDINATES OF ELEMENT UOUT 127 

C----------------------------------------------------------------------UOUT 128 


DO 20 KN=1, NDN UOUT 129 

NDE=NCONN(KN.J) UOUT 130 

DO 20 ID=l,NDIM UOUT 131 


20 ELCOD(ID,KN)=XYZ(lD,NDE) UOUT 132 

C UOUT 133 


GOTO(25.25.23.25,23,25,23,25,23.25,23),LT UOUT 134 

C-----------------------------------------------------------------------UOUT 13: 

C SETUP LOCAL ARRAY OF NW AS NWL GIVING THE INDEX TO UOUT 136 

C POR E-PRESSUR E VA RIABLES UOUT 137 

C----------------------------------------------------------_____________UOUT 138 


23 IPP=O UOUT 139 

DO 24 IV=l,NDPT UOUT 140 

IQ=LINfO(lV+INXL, LT) UOUT 141 

IF(IQ.NE.NDIM1.AND.IQ.NE.1)GOTO 24 UOUT 142 

IPP=IPP+l UOUT 143 

NDE=NCONN (IV. J) UOUT 144 

NWL(IPP)=NW(NDE )+IQ-l UOUT 145 


24 CONTINUE UOUT 146 

25 If (lOUT 2. NE. 2 )GOTO 26 UOUT 147 


IF (MR. GE. NELOS. AND.MR. LE. NELOF )WRlTE (IW6, 908 )MR UOUT 148 

IF(MR.GE.NELOS.AND.MR.LE.NELOF)WRITE(IW6.914) UOUT 149 


26 KM=MAT(J) UOUT 150 

KGO=NTY (KM) UOUT 151 

IF (NTY (KM )-2 )27,28,28 UOUT 152 


27 CALL DCON(J,O.NEL,NDIM,NS,NPR,NMT,MAT,PR,D,BK) UOUT 153 

LELST=l UOUT 154 


28 IEL=IEL+l UOUT 155 


http:NDN=LINFO(5.LT
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NELUS(IEL)=MR UOUT 156 
NELPR(IEL)=J UOUT 157 

C-----------------------------------------------------------------UO UT 158 
C INITIALISE FT UOUT 159 
C------------------------------------------------------------------UO UT 160 

CALL ZEROR2(FT,NDIM,NDN) UOUT 161 
C--------------------------------------------------------------UOUT 162 
C LOOP ON INTEGRATION POINTS UOlIT 163 
C------------------------------------------------------------UOUT 16~ 

DO 125 IP=l,NGP UOUT 165 
IPA=IP+INDX UOUT 166 

C UOUT 167 
DO 35 IL=l,NAC UOlIT 168 

35 LL(IL)=L(IL,IPl\) UOUT 169 
C-------------------------------------------------------------UOUT 170 
C FORM B MATRIX UOUT 171 
C-----------------------------------------------------------------UO UT 172 

CALL FORMB2(J,MR,R,RI,NDIM,NDMX,NDN,NS,NB,NAC,ELCOD,DS, 
1 SHFN,CARTD,B,LL,LT,IP,ISTGE) 

C 
CALL ZEROR1(ST,NS) 

C 
DO ~~ II=l, NDN 

IN=NCONN(II, J) 

Nl=NW(IN) 

N2=N 1+1 

ST(l )=ST( 1 ).CARTD( 1, II )*DI (N 1 ) 

ST (2 )=ST(2)+CARTD(2, II) *DI (N 2) 

ST (3 )=ST (3 ).SHFN (II ) 'DHN 1) 'RI 

ST(~ )=ST(~ )+CARTD(l, II )'DI (N2).CARTD(2, II)*DICN1) 

IF(NDIM.EQ.2)GOTO ~~ 


N3=Nl+2 

ST(3)=ST(3)·CARTD(3,II)·DI(N3) 

ST(5 )=ST(5)+CARTD(3, II )*DI (N2)+CARTD(2, II) 'DI (N3) 

ST (6 )=ST (6 ).CARTD (3, II ) 'DI (N 1 ).CARTD( 1, 11) *DHN 3) 


~~ 	CONTINUE 
C 

ED( 1 )=EDS (STR (1, IP, J), NS, NDIM) 
C 

DO ~5 IS=l, NS 

~5 STR(IS,IP,J)=STR(IS,IP,J)+ST(IS) 


ED(2)=EDS(STR(l,IP,J),IIS,NDIM) 


UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 

UOUT 


173 
17~ 

175 
176 
177 
178 
179 
180 
181 
182 
183 
18~ 

185 
186 
187 
188 
189 
190 
191 
192 
193 
19~ 

195 
196 
197 

C------------------------------------------------------------ -UO lIT 1 98 
C CALCULATE STRESSES UOUT 199 
C------------------------------------------------------------UOUT 200 

GOTO(59,52,53,5~),KGO 

52 CALL DLI N (I P, J, 0, NEL, NDIM, NDN, NS, NPR, IIMT, 
1 ELCOD,SHFN,MAT,D,PR,INDX,BK) 

IELST=l 

GOTO 59 


53 CALL DMCAM(IP,J,O,NEL,NIP,NVRS,NDIM,NS,NPR,NMT,VARINT,MAT,D, 
1 PR,BK) 
GOTO 58 

5~ CALL DCP.MCIP,J,O,NEL,NIP,NVRS,NDIM,NS,NPR,NMT,VARINT,MAT,D,PR, 
1 ITP,BK) 

58 ICAM:l 
C 

59 	DO 60 II=l,NS 

SS (II )=0. 


C 

DO 60 JJ=l, liS 

60 SS(II)=SS(II)+D(II,JJ)'ST(JJ) 


UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOUT 
UOlIT 
UOlIT 
UOUT 
UOlIT 
UOUT 

201 
202 
203 
20~ 

205 
206 
207 
208 
209 
210 
211 
212 
213 
21 ~ 
215 
216 
217 

C---------------------------------------------------------------------UOUT 218 
C UPDA TE ABSOLUTE STRESSES UOlIT 219 
C----------------------------------------------------------------UOUT 220 

DO 65 JJ=l, NS UOUT 221 
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SST(JJ)=SST(JJ)+SS(JJ) UOlIT 222 
VARO(JJ )=VARINT(JJ, IP, J) UOUT 223 

65 VARINT(JJ,IP,J)=VARINT(JJ,IP,J)+SS(JJ) UOUT 22~ 
C----------------------_________________________________----------------UOlIT 225 

C CALCULATE PORE PRESSURES 	 UOUT 226 
C-------------------___________________________________---------UOUT 227 

GOTO(70,70,66,70,66,70,66,70,66,70,66),LT 
66 CALL SHFNPP(IW6,LL,NAC,DS,AA,NDHI,NPN,LT,O,I~R) 

SUM=O. 
C 

DO 68 IC=l, NPN 

IVR=N1-IL(IC) 


68 	SUM=SUM+AA(IC)'DI(IVR) 

V=ST(1)+ST(2).ST(3) 

UI =SUM 

GOTO 72 


70 V=ST(1).ST(2).ST(3) 

UI=PR(7,KM)'V'BK 


72 VARINT(NS.l,IP,J)=VARINT(NS+l,IP,J)+UI 

C 

IF(KGO.NE.3.AND.KGO.NE.~)GOTO 85 

UOUT 228 
UOUT 229 
UOUT 230 
UOUT 231 
UOlIT 232 

UOlIT 233 
UOlIT 23~ 

UOUT 235 
UOUT 236 
UOlIT 237 
UOUT 238 
UOUT 239 
UOUT 2~0 

UOUT 2~1 
UOUT 2~2 

C--------------------_________________________________---------UOlIT 2~3 

C CALCULATE EXTRA VARIABLES FOR CAM-CLAY ONLY UOlIT 2~~ 

C--------------------------------------------____________ OUT 2~5 


C-----------------------___________________________________-----------UOUT 252 

U
CALL EVCAM(VARINT, NEL,IIVRS, NDIM, NIP, IP, J,MR, KM, UOUT 2~6 

1 IEL,NS,NPR,NMT,PR,NTY,NCAM,V,NCODE,LCS,LNGP, UOUT 2~7 
2 MCS,MNGP,NELCM,VARC,NGP,ED,LED) UOUT 2~8 

C 
UOUT 2~9 

85 CALL STRSEQ (J, IP, IPA, NVRS, NIP, NEL, NDN, NDIM, NS, UOUT 250 
1 VARINT,SHFN,CARTD,FT,DJACB,R,RI,CR) UOUT 251 

C OlITPUT ABSOLUTE STRESSES 	 UOUT 253 
C-------------------________________________________________-----------UOlIT 25~ 

CALL PRINC(VARINT(1,IP,J),VARINT(2,IP,J),VARINT(~,IP,J),SPA) 
IF(IOlIT2.EQ.0)GOTO 125 
IFCIOlIT2.EQ.l)GOTO 120 
IKM=IP 

GOTO 122 


120 IFCIOUT2.NE.1.0R.IP.NE.NGP)GOTO 125 

IKM=MR 


C 
122 	DO 12~ ID=l,NDIM 


SUM=ZERO 

C 

DO 123 IN=l,NDN 

123 SUM=SUM.SHFN(IN)·ELCOD(ID,IN) 

12~ CIP(ID)=SUM 


IF (MR. LT. NELDS. OR. MR. GT. NELOF )GOTO 125 

WRITE(IW6,916)IKM,(CIP(ID),ID=1,NDIM), 


1 (VARINT(IK,IP,J),IK=1,NSl),(SPA(JLl,JL=1,3) 

125 CONT INUE 


UOUT 255 
UOUT 256 
UOUT 257 
UOUT 258 
UOUT 259 
UOUT 260 
UOUT 261 
UOlIT 262 
UOUT 263 
UOUT 26~ 

UOlIT 265 
UOUT 266 
UOUT 267 
UOUT 268 
UOUT 269 
UOUT 270 
UOUT 271 
UOUT 272 

C--------------------__________________________________----------UOUT 273 

C ASSEJolBLE EQUILIBRATING NODAL FORCES INTO GLOBAL ARRAY - PEQT UOUT 27~
C----------------------________________________________________-----UOUT 275 

DO 150 IK=l, NDN UOUT 276 
II=NCONN(IK,J) UOlIT 277 
Nl=NW(II)-l UOUT 278 

C UOUT 279 
DO 150 ID=l, NDIM UOUT 280 

150 PEQT(N1+ID)=PEQT(N1+ID)+FT(ID,IK) UOUT 281 
200 CONTINUE UOUT 282

C-------------------------____________________________________----UOUT 283 


C OUTPUT ADDITIONAL PARAMETERS AND WARNING MESSAGES UOUT 28~ 


C FOR CAM-CLA YS UOUT 205

C-----------------------______________________________________------UOUT 286 

CALL UPOUT2(IW6,NEL, NIP, LTYP,MAT, NCAM, IOUT3, IEL, UOUT 287 
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1 NCODE,LCS,LNGP,NELPR,NELUS,NELCH,HCS,MNGP,VARC) UOUT 288 
C-----------------------------------------------------------------------UOUT 289 
C UPDATE NODAL CO-ORDINATES UOUT 290 
C-----------------------------------------------------------------------UOUT 291 

If(IUPD.EQ.O)GOTO 225 UOUT 292 
WRITE(IW6,926) UOUT 293 

C UOUT 294 
DO 220 J =1, ND UOUT 295 
N1=NW(J)-1 UOUT 296 

C UOUT 297 
DO 220 ID=l,NDIH UOUT 298 

220 XYZ(ID,J)=XYZ(ID,J)+DI(N1+ID) UOUT 299 
225 CONTINUE UOUT 300 

C-----------------------------------------.----------------------------UO UT 301 
C OUTPUT EQUILIBRIUM AND OUT-Of-BALANCE NODAL LOADS UOUT 302 
C------------------ ----------------------------------------------------UOUT 303 

DO 230 Hl=l, NDf 
230 PEQT(IH)=PEQT(H1)+PEXI(It1) 

C 
C----------CODE TO INDICATE STAGE Of THE ANALYSIS 

KS TGE =4 
CALL EQLOD(IW6,NN,NEL,NDf,NNOD1,NTPE,NDIH,HUMAX,NNZ,NDZ, 

1 NPR,NHT,NDl1X,NL,NPL,NCONN,MAT,LTYP,MRELVV,HREL,NREL, 
2 NW, NQ, JEL, IDFX, NP1, NP2, XYZ, P, PT, PCOR , PEQT, XYfT, PCONI, ELCOD, 
3 DS,SHfN,fT,LL,PR,NPT,NSP,MXEN,IOUT4, 
4 ICOR,TGRAV,IRAC,fRACT,KSTGE) 

UOUT 304 

UOUT 305 

UOUT 306 

UOUT 307 

UOUT 308 

UOUT 309 

UOUT 310 

UOUT 311 

UOUT 312 

UOUT 313 


C---------------------------------------------------------------------UOUT 314 
C WRITE RESULTS ON SAVE fILE UOUT 315 
C-----------------------------------------------------------------------UOUT 316 

If(ISR.EQ.O)GOTO 250 UOUT 317 
If(ISR.EQ.2)GOTO 240 UOUT 318 
If(ISR.EQ.1.AND.IWL.EQ.1)GOTO 240 UOUT 319 
GOTO 250 UOUT 320 

240 WRITE(IW2) TTIHE,TGRAV,XYZ,VARINT,STR,DA,XYfT,PCOR,PCONI,LTYP,NMODUOUT 321 
WRITE (IW 2) Nf, Hf, IF, DXYT 
WRITE (IW 2) N LED, LEDG, NDE 1, NDE 2, PR ESLD 

C 
250 CONTINUE 

RETURN 
900 fORMAT(lX,15,6E15.5) 
901 fORHAT(! /46H NODAL DISPLACEMENTS AND EXCESS PORE PRESSURES/ 

11X,45(1H-)//26X,11HINCREJ-1ENTAL,36X,8HABSOLUTEI/ 
12X, 4HNODE, 7X, 2HDX, 13X, 2HDY, 13X, 2HDU, 13X, 2HDX, 13X, 2HDY, 13X, 2HDUI) 

902 fORMAT(!/20H NODAL DISPLACEJ-1ENTS/1X,19(lH-)// 
1 18X, 11HINCREJ-1ENTAL, 33X, 8HABSOLUTEI / 
1 2X, 4HNODE, 7X, 2HDX, 13X, 2HDY,28X, 2HDX, 13X, 2HDY/) 

UOUT 322 
UOUT 323 
UOUT 324 
UOUT 325 
UOUT 326 
UOUT 327 
UOUT 328 
UOUT 329 
UOUT 330 
UOUT 331 
UOUT 332 
UOUT 333 

904 fORMAT(/f40H ABSOLUTE STRESSES AT INTEGRATION POINTS/1X,39(lH-)//)UOUT 334 
906 fORMAT(!/30H STRESSES AT ELEMENT CENTROIDS/1X,29(1H-)//8H ELEMENT,UOUT 335 

1 3X,1HX,13X,1HY,11X,2HSX,11X,2HSY,11X,2HSZ,10X,3HTXy,12X,lHU, 
1 10X,5HSIG-1,8X,5HSIG-2,7X,5HTH-XY) 

908 fORHAT(f15H ELEMENT NUHBER,I5/1X,19(lH-» 
910 fORHAT(lX,I5,2E15.5,15X,2E15.5) 
911 fORHAT(lX,I5,30X,E15.5,30X,E15.5) 
914 fORMAT(2X,2HIP, 7X, 1HX, 13X,lHY, 11X,2HSX, 11X,2HSY,11X,2HSZ, 

2 lOX, 3HTXY, 12X, lHU, 1OX, 5HSIG-1, 8X, 5HSIG-2, 7X, 5HTH-XY) 
916 fORHAT(1X,I3,9E13.5,f10.1) 
926 fORHATC/48H WARNING .... THE NODAL CO-ORDINATES ARE UPDATED/) 

END 

UOUT 38 : ISTGE code to indicate stage of the analysis. 

UOUT 336 
UOUT 337 
UOUT 338 
UOUT 339 
UOUT 340 
UOUT 341 
UOUT 342 
UOUT 343 
UOUT 344 
UOUT 345 

UOUT 41 : NDIMI the maximum number of variables in any node 

for consolida tion element. 


UOUT 45-48 : break output code for different tables to be printed. 
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UOUT 50-55 

UOUT 62-63 
UOUT 65 
UOUT 66 
UOUT 67-68 
UOUT 69 

UOUT 70 
UOUT 71-72 
UOUT 74-77 

UOUT 82 
UOUT 83-85 

UOUT 95-103 
UOUT 108 
UOUT 109 

UOUT 111 
UOUT 114 

UOUT 115 
UOUT 116 
UOUT 117 
UOUT 118-119 
UOUT 120-125 

UOUT 129-132 

UOUT 134 
UOUT 140-145 

UOUT 150 
UOUT 151 
UOUT 153 
UOUT 154 
UOUT 155 
UOUT 156-157 

Calculati(m of Output Parameters 

: select appropriate title for displacement table based on first 
element type. 


: update total displacements/excess pore pressures. 

: loop on all nodes (user specified sequence). 

: skip if node was not used . 


: program node number, J; number of d.oJ. of node, NQL. 

: skip if node has no d.o .f. (probably the node does not exist 

in the current mesh, and disappeared when elements 
associated with it had been removed). 

: g.v.n. of first d.o.f. of node. 

: skip, depending on output option for displacement table. 

: skip printing of displacements if out of user requested nodal 
range. 

: g.v.n. of last d .oJ. of node. 

: print out node number, incremental and cumulative displace­
ments, and excess pore pressures. 

: zero output arrays. 


: zero counter of number of elements processed (IEL). 

: zero counter of number of Cam-clay elements processed 


(NCAM). 

: loop on all elements (in the user specified sequence). 
: zero flag to indicate whether current element has Cam-clay 

properties. 

: as above, but for element with elastic properties. 
: program element number. 

: by-pass if element number (MR) was not used. 

: skip if element not present in current mesh . 
: element type dependent parameters. 

NDN 
NGP 
INDX 

NPN 
NDPT 

NAC ­

number of displacement nodes. 
number of integration points. 
starting index to arrays Wand L. 

number of pore pressure nodes. 
total number of nodes. 

number of area/local co-ordinates. 
: set up local array (ELCOD) of co-ordinates of displacement 

nodes in element. 

: by-pass if not a consolidation element. 

: set up local array NWL, which gives the g.v.n. of pore 
pressure variables. 

: material zone number. 

: material type number. 

: calculate D matrix for linear elastic material. 
: set flag to indicate element with elastic properties. 
: increment counter of number of elements processed. 
: enter user element number and program element number. 
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UOUT 165 : loop on all in tegra tion poin ts. 
UOUT 166 : index to arrays Wand L. 
UOUT 168-169 : local/area co-ordinates of integration point. 
UOUT 173-174 : calculate B matrix. 
UOUT 180-181 : g.v.n. of first and last d.oJ. of node. 
UOUT 182-185 : calculate incremental strains for 2-D. 

6.€ = B 6.a. 

UOUT 188-190 : additional components for 3-D. 

UOUT 193 : calculate deviator strain at the beginning of current incre­
ment. 

UOUT 195-1 96 : calculate total strains. 
UOUT 197 : calculate deviator strain at the end of current increment. 
UOUT 202-203 : calculate 0 matrix for non-homogeneous elastic model. 
UOUT 206-207 : calculate 0 matrix for modified Cam-clay. 
UOUT 209-210 : calculate 0 matrix for Cam-clay. 
UOUT 213-217 : calculate incremental effective stresses. 

6.a' = Dep 6.€ . 

UOUT 221-224 : store stresses at the beginning of increment in V ARO and 
calculate current stresses . 

UOUT 228 : skip if not a consolidation element (pore pressures are 
calculated differently) . 

UOUT 229 : calculate shape functions for excess pore pressures. 
UOUT 232-234 : interpolate for excess pore pressure at integration point. 
UOUT 235 : calculate volumetric strain. 
UOUT 236 : excess pore pressure . 

UOUT 238-239 : calculate volumetric strain and excess pore pressure for 
drained/undrained analysis . 

UOUT 240 : update pore pressure . 
UOUT 246-248 : calculate output parameters for Cam-clays. 
UOUT 250-251 : calculate nodal loads (FT) equal to element stresses. 
UOUT 255 : calculate principal stresses inx-y plane - for 2-D only. 
UOUT 258 : integration point number is to be printed. 
UOUT 261 : element number is to be printed. 
UOUT 263-268 : calculate co-ordinates of integration point. 
UOUT 270-271 : output stresses at integration point. 
UOUT 272 : end of integration point loop . 
UOUT 276-281 : slot nodal loads equal to element stresses (FT) in PEQT. 
UOUT 282 : end of loop on elements . 
UOUT 287 -288 : print out additional parameters and warning messages for 

Cam-clays. 
UOUT 295-299 : update nodal co-ordinates by incremental displacements if 

flag IUPD has been set to 1. 
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UOUT 304-305 : add (excavation) loads due to removal of elements to PEQT 
for equilibrium check. 

UOUT 309-313 : to carry out an eqUilibrium check. 

UOUT 321-323 : write results to file on magnetic tape or disk (to use the 
stop-restart facility to continue an analysis) . 

The rest of the output for the current increment can be divided into four parts : 

(i) the nodal displacements (and excess pore pressures); 
(ii) the general stresses a;, a;, a;, Txy, u; 
(iii) the parameters for Cam-clay models ; 

(iv) the out-of-balance loads at the end of this increment. 

Routine EVCAM calculates the parameters for Cam-clay models . 

Routine EVCAM 

SUBROUTINE EVCAM(VARINT,NEL,NVRS,NDIM,NIP,IP,J,MR,K~l,IEL, EVCM 1 
1 NS,NPR,NMT,PR,NTY,NCAM,V,NCODE,LCS,LNGP,MCS,MNGP,NELCM, EVCM . 2 
2 VARC, NGP,ED,LED) EVCM 3 

c··· ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••EVCM 4 
C CALCULATE EXTRA STRESS PARAMETERS fOR CAM-CLAYS EVCM 5c·····..................................................................EVCM 
 6 

DIMENSION VARINT(NVRS,NIP,NEL),NELCM(NEL),PRCNPR,NMT),NTYCNMT) EVCM 7 
DIMENSION VARCC10,NIP,NEL),MCSCNEL),MNGPCNEL) EVCH 8 
DIMENSION LCSCNIP,NEL),LNGPCNIP,NEL),NCODECNIP,NEL),ED(LED) 
COMMON IPARS IPYI,ALAR,ASMVL,ZERO 

EVCM 
EVCM 

9 
10 

COMMON ICOUNT INCS, NNGP EVCM 11C 
EVCt1 12

U=VARINT CNS+1, IP, J) EVCN 13IfCIP . NE.1)GO TO 11 EVCM 14NCS=O EVCN 15NNGP=O EVCN 16 11 ICS=O EVCN 17INGP=O EVCN 18QT=Q(VARINTC1,IP,J),NS,NDIM) EVCM 19 
PE=CVARINTC1,IP,J)+VARINTC2 ,IP,J)+VARINT(3,IP,J»/3. EVCM 20
EV=-V·C1.+VARINTCNS+2,IP,J»+VARINTCNS+2,IP,J) EVCM 21 EE=VARINTCNS+2,IP,J) EVCM 22 
PYE=VARINT(NS+3,IP,J) EVCM 23PCO=ABS CPYE ) EVCN 24 
CALL VARCANCIP,MR,KM,ICS,INGP,IEL,NIP,NEL,NCODE,VARC,PR,NTY, EVCN 25 

1 PE,QT,PCO,PYE,U,EV,EE,PC,ED,LED,NPR,NNT) EVCM 26 VARINTCNS+3,IP,J)=PC EVCN 27 VARINTCNS+2,IP,J)=EE EVCM 28 C EVCN 29 NCS=NCS+ICS EVCM 30IFCICS.EQ.1)LCSCIP,IEL)=IP EVCN 31NNGP=NNGP+INGP 
EVC~l 32If (INGP. EQ. l)LNGP(I P, IE L}=I P EVCN 33CALL ANGTHCVARINT,NEL,NIP,NVRS,IP,J,THETA) Eve N 34

VARCC10,IP,IEL)=THETA EVCM 35C EVCN 36 
IfCNDIM.EQ.3)VARCC10,IP,IEL)=ZERO EVCM 37 If(IP.NE.NGP)RETURN 

EVC~1 38 NCAM =NCAM+ 1 EVCM 39NELCN(IEL)= 1 EVCM 40
If(NCS.NE.O)MCS(IEL)=1 EVCM 41
IfCNNGP.NE.O)NNGPCIEL)=1 EVCN 42
RETURN EVCN 43 
END EVCH 44 
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EVCM 13 : pore pressure. 

EVCM 14 : by-pass if not first integration point. 

EVCM 15-16 : set counters (of integration points) to zero. 


NCS - number of points approaching critical state. 
NNGP - number of points with negative p'. 

EVCM 17-18 : set identifiers to zero. 
EVCM 19-24 : calculate stress parameters. 

EVCM 25-26 
EVCM 27-28 
EVCM 30 

EVCM 31 
EVCM 32 

EVCM 33 
EVCM 34 
EVCM 35 
EVCM 38 
EVCM 39 
EVCM 40 

I : EVCM 41 

EVCM 42 

QT q, deviator stress. 
PE p', mean normal effective stress. 
EV voids ratio, calculated from cumulative strains. 
EE voids ra tio, calcula ted from stress sta te o 
PYE siz.e of current yield locus. 
PCO absolute value of PYE. 

: calculate Cam-clay parameters to be output. 
: update size of yield locus and voids ratio . 
: add critical state flag to counter. 

= 1, if approaching critical state. 
= 0, otherwise. 

[Ch. 8 

: if integration point is approaching critical state, enter number. 
: add negative p' flag to counter. 

= 1, if integration point has negativep'. 
= 0, otherwise. 

: if integration point has negative p' then enter it. 

: calculate angle THETA. 

: enter THETA. 

: if not last integration point then return. 

: increment counter of elements with Cam-clay properties. 

: enter 1 to indicate element has Cam-clay properties. 

: enter 1 to indicate element has integration point(s) approaching 


critical state. 
: enter 1 to indicate element has integration -' point(s) with 

nega tive p '. 

Routine VARCAM 

1SUBROUTINE VARCAM(IP,MR,KM,ICS,INGP,IEL,NIP,NEL,NCODE,VARC,PR, VRCM 
1 NTY, PE, QT, PCO, PYE, U, EV, EE, PC, ED, LED, NPR, NIH) VRCMC••.•.••••••••••••••••••..•••.••••••••••••• if •••••••••••••••• ············VRCM 

2 
3 
4

C ... FOR CAM-CLA YS ONLY "' ·VRCM 
C ... THIS ROUTINE DETERMINES THE CURRENT STRESS STATE AT THE ·VRCM 5 

6C ... END OF THE CURRENT INCREHENT AND USES 1ST TO INDICATE THE ·VRCM 
7C II. STRESS STATE OF THE INTEGRATION POINT WITH REFERENCE 'VRCM 
8C ... TO THE CURRENT YIELD LOCUS ·VRCM 

C ·VRCM 9 
1ST ·VRCM 10 

C ... TYPE CODE FOR STRESS STATES 
_ 0 ·VRCM 11

C ... 0 SOIL IS ELASTIC WITH p>pcs AND Q<M'P 
'VRCM 12- 1C ... 1 SOIL IS ELASTIC WITH P<PCS AND Q<M*P 
'VRCM 13- 2SOIL IS ELASTIC WITH P<PCS AND Q>t-l'Pc··· 2 'VRCM 14

SOIL IS HARDENING WITH P>PCS AND Q<M'P - 3c··· 3 'VRCI1
C •• * 4 SOIL IS SOFTENING WITH P<PCS AND Q>M.p - 4 15 
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C ...C··· 7 
8 

SOIL IS HARDENING WITH 
SOIL IS HARDENING WITH 

p>pcs AND Q>M'P 
P<PCS AND Q>M'P 

- 7 
- 8 

'VRCM 
'VRCM 

16 
17 

CC··· WHERE P - EFFECTIVE MEAN NORMAL STRESS 
'VRCM 
'VRCM 

18 
19 

C ... PCS - CRITICAL STATE VALUE OF P FOR CURRENT YIELD LOCUS *VRC!­1 20 
C ... TYPES 7 AND 8 ARE IMPERMISSIBLE AND ARISE FRQ-1 NUMERICAL 'VRCM 21 
C ... PROBLEMS. 'VRCM 22C·········o••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••.VRCM 23 

DIM ENSION PR (N PR, NMT), NCODE (N IP, NEL), VARC (10, NI P, NEL) VRCM 24 
DIMENSION ED(LED),NTY(NMT) VRCM 25 
COMMON IDEVICEI IR1,IR4,IR5.IW2,IW4,IW6,IW7,IW8,n/9. VRCM 26 

C-----------------------------------------------------------VRCM 27 
C FIND NEW YIELD LOCUS VRCM 28 
C------------------------------------------------------------VRCM 29 

PC=ABS(PYE) 
IF(NTY(KM).NE.3) GO TO 10 

PCS"PC/2. 

PY=PE+QT 'QTI (PE 'PR (4. «}1) 'PR (4, KM) ) 

GO TO 12 

10 PCS=PC/2.7182818 
PY=PE'EXP(QT/(PR(4,K}1)'PE» 

12 CONTINUE 
IF(PY.GT.PC) GO TO 13 

C---------4-1ATERIAL IS EITHER ELASTIC 
IF(PE.GT.PCS) GO TO 14 

C---------MATERIAL IS IN REGION 1 OR 

OR HAS SOFTENED. 

2 OR 4 
IF(QT.GT.0.999·PR(4,«}1)'PE) GO TO 15 

C---------4-1ATERIAL IS IN REGION 2 AND ELASTIC 
IST=1 
GO TO 17 

15 CONTINUE 
C---------I-1ATERIAL IS IN REGION 2 OR 4 

IF(PYE.LT.O.) GO TO 16 
C-------I-1ATERIAL IS ELASTIC AND IN REGION 2 

155 IST::2 
GO TO 17 

16 CONTINUE 
IF(ED(2).LT.ED(1» GOTO 155 

C---------4-1ATERIAL HAS SOFTENED IN REGION 4 
IST=4 

PCS=PCS 'PY IPC 

PC=PY 

GO TO 17 


14 CONTINUE 
C---------MATERIAL IS IN REGION 

IST=O 
GO TO 17 

13 CONTINUE 
C---------MATERIAL HAS HARDENED 

IF(PE.GT.PCS) GO TO 18 
C--------MATERIAL IS IN REGION 

PCS=PCS'PY/PC 
PC=PY 
IST=8 
GO TO 17 

18 CONTINUE 
C---------I-1ATERIAL IS IN REGION 

IF(QT.GT. 1.001·PR(4,KM)·PE) 

0 AND ELASTIC 

8 AND IS INVALID 

3 OR 7 
GO TO 19 

C----------4-1ATERIAL IS IN REGION 3 
PCS=PCS 'PY IPC 
PC=PY 
IST=3 
GO TO 17 

C---------4-1ATERIAL IS IN REGION 7 
19 IST::7 

PC=PY 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 


VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCI1 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCM 

VRCI1 

VRCM 


3( 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
6C 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

73 
74 
7'5 
76 
77 
78 
79 
80 
81 

http:IF(QT.GT
http:IF(PY.GT.PC
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82 

IF(WARN.LT.0.95'PR(4,KM» WARN=O. VRCM 83 

WARN=(WARN-PR(4,KM»/PR(4,K~I) VRCM 84 

IF(ABS(WARN).LT.O.05.AND.PYE.LT.0.) ICS=l VRCM 8S 

C-------------------------------------------------------------VRCM 86 

C CALCULATE NEW VOIDS RATIO VRCt1 87 

17 WARN=QT/PE VRCM 

C______________________________________________________------V RCM 
88 

IF(PE.GT.O.) GO TO 20 VRCM 89 

INGP=l VRCI1 90 

GO TO 21 VRCM 91 

20 EE =PR <3, KH )-PR (1, KM) 'ALOG (PE)- (PR (2, KH )-PR (1, KM» 'ALOG (PCS) VRCI·' 92 

21 CONTINUE VRCM 93 
C VRCI1 94 

VARC(1,IP,IEL)=PE VRCM 95 

VARC(2,IP,IEL)=QT 
VARC(3,IP,IEL)=PE+U 
VARC(4,IP,IEL)=PC 
VARC(S,IP,IEL)=QT/PE 
VARC(6, IP, IEL)=QT I(PE'PR (4, KH» 
VARC(7,IP,IEL)=PY/PCO 
VARC(8,IP,IEL)=EE 
VARC(9,IP,IEL)=EV 
NCODE(IP,IEL)=IST 
RETURN 

VRCI-I 
VRCM 
VRCM 
VRCM 
VRCM 
VRCM 
VRCM 
VROI 
VRCM 
VRCM 

96 
97 
98 
99 

100 
101 
102 
103 
104 
lOS 

END VRC~1 106 

VRCM 30 : absolute value of current yield locus. 

VRCM 31-33 : calcula te critical state value of p' (PCS) and the yield locus 
(PY) passing through the stress state (p', q) for modified 

Cam-clay. 

VRCM 35-36 : do the same for Cam-clay . 

VRCM 38 : skip if yield locus has expanded. 

VRCM 40 : skip if on the wet side. 

VRCM 42 : new stress state is on the dry side; skip if above critical state 

line (CSL) . 

VRCM 44 : stress state is below CSL and on the dry side and is therefore 

elastic; assign value of 1. 

VRCM 48 : on the dry side and above CSL (either elastic or softening) . 

Skip if previously yielded (PYE < 0) . 

VRCM 50 : stress state is elastic, on the dry side and above CSL; assign 

value of 2. 

VRCM 53 : skip if deviator strain has not increased; then probably 

unloading from yielded state to elastic . 

VRCM 55-57 : softening; assign value of 4. Also set PC and PCS to new 

values. 

VRCM 61 : yield locus has not expanded and the stress state is on the 

wet side, i.e. still elastic; assign value of O. 
VRCM 65 : yield locus has expanded; skip if on the wet side. 

VRCM 67-69 : yield locus has expanded, i.e . hardening on the dry side . 

Impermissible stress state; assign value of 8. 

VRCM 73 : on wet side; yield locus has expanded. Skip if above CSL. 

VRCM 75-77 : yield locus has expanded and the stress state is on the wet 

side, i.e. hardening; assign value 3 . 
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VRCM 80-81 : above CSL on wet side; impermissible stress state; assign 
value of 7. 

VRCM 82-85 : calculate 71 to see if stress state is close to the CSL, if so, 
assign 1 to ICS. 

VRCM 89-90 : if p' < 0, assign value of 1 to INGP and skip calculation of 
voids ratio (EE) from stress state. 

VRCM 92 : calculate voids ratio (EE) from current stress state. 
VRCM 95-103 : enter current values of parameters to be printed out. 

PE mean normal effective stress (p '). 

QT deviator stress (q). 

PE+U total stress (p) . 

PC yield locus size. 

QT/PE 71. 


QT/M*PE - 'I1/M . 

PY/PCO yield ratio (YR). 

EE - voids ratio from stress state . 

EV - voids ratio from strains . 


VRCM 104 : enter stress state code 1ST in array NCODE. 

Wher~ver applicable, a set of warning messages is printed from Cam-clays. The 
warnmg messages are as follows: 

(a) integration points are approaching the critical state; 
(b) integration points have negative values for p'. 

For example, for case (a): 

**** ** WARNING *** *** ELEMENT 8 HAS INTEGRATION 

POINTS 2 0 0 0 6 o APPROACHING CRITICAL STATE 

This indicates that out of the seven integration points, the 1st, 2nd and 6th 
are approaching the critical state. 

Before the final part, (iv), of the output is printed, the following message 
may be printed . 

WARNING **** THE NODAL CO-ORDINATES ARE UPDATED 

This warning message is self-explanatory and is printed when IUPD is set equal 

to 1 (in the input data) in order to update the co-ordinates at the end of each 
increment. 

Routine ANGTH 

SUBROUTINE ANGTH(VARINT,NEL,NIP,NVRS,IP,J,THETA) ANGT 1 
C········ft ••••••••••••• o•••••••••••••••••••••••••••••••••••••• ft •••••••••ANGT 2 
C ROUTINE TO CALCULATE ANGLE IN PI PLANE ANGT 3 c······················· ............ ft •••••••••••••••••••••••••••••••••••ANGT 4 


DIMENSION VARINT(NVRS,NIP,NEL) ANGT S 
COMMON IPARS I PYI,ALAR,ASI1VL,ZERO ANGT G 
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ANGT 7 Routine PRINC 
SX=VARINT(l,IP,J) 	 ANGT 8 


ANGT 9
SY=VARINT(2,IP,J) 	 SUBROUTINE PRINC(C,D,E,B) PRNC 
SZ=VARINT(3,IP,J) 	 ANGT 10 C",············,.,",., •• " ••••••••••••••••••••••••••••••• , ••• ,., ••••••PRNC 1 

ANGT 11TXY=VARINT(4,IP,J) 	 C CALCULATES PRINCIPAL STRESSES AND THEIR DIRECTIONS PRNC 
2 

3ANGT 12 	 C········f ••• ' •••• ,., ••••••••"" •••• " •••••••••••• , ••••••• , •••••••••• '.PRNC 4ANGT 13PIBYII=0.25'PYI 	 DIMENSION BO) PRNC
ANGT 14SD=0.5·(SX-SY) 	 C0I1MON IPARS I PYI,ALAR,ASMVL,ZERO PRNC 

5 
6ANGT 15S~l =0.5' (SX+SY) PRNC

RAD=SQRT(SD'SD+TXY'TXY) 	 ANGT 16 AP=C+D 
7 

PRNC 8ANGT 17SIG 1=SI1+RAD 	 AD=C-D PRNC 9ANGT 18SIG3=SI-l-RAD 	 S=SQRT(.25'AD·AD+E·E) PRNC 10ANGT 19DY=SY-SM B(1 )=. 5'AP+S PRNC 11
IF (ABS(TXY). LT. ASMVL. AND.ABS (DY). LT. ASMVL)GOTO ANGT 20 B(2)=.5'AP-S PRNC
THXY2=ATAN2(TXY, DY) 	 ANGT 21 B0 )=90. PRNCANGT 22GOTO 9 IF(ABS(AD).LT.ASMVL) GO TO 2 PRNC 111

8 THXY2=0.5'PYI ANGT 23 B(3)=28.61179·ATAN(2.·E/AD) PR NC 15
9 THXY=0.5'THXY2 ANGT 24 2 RETUR N PRNC 16

THXYD=THXY'180./PYI 	 ANGT 25 END PR NC 17
IF(ABS(THXY).LT.PIBY4)GOTO 10 ANGT 26 
PSIGX=SIGl ANGT 27 
PSIGY=SIG3 ANGT 28 PRNCI0 : radius of Mohr's circle in x-y plane (,.-z for axisymmetry).
GOTO 15 	 ANGT 29 

PRNCII-12 : calculate major and minor principal stresses. 10 	 PSIGX=SIG3 ANGT 30 
PSIGY=SIGl ANGT 31 PRNC 13 : set angle between the x axis and major principal stress direction 

15 	 PSIGZ=SZ ANGT 32 
ANGT 	 to 90° in anticipation of Ox being equal to Oy.C 33 

ANGT J4
SIGX=(PSIGZ-PSIGY)/SQRT(2.) PRNC14 skip if Ox = 0y (the angle is 90°).

SIGY=(2.'PSIGX-PSIGY-PSIGZ)/SQRT(6.) ANGT 35 
cc RADO=SQRT(SIGX'SIGX+SIGY'SIGY) ANGT 36 PRNC15 the angle between x axis and major principal stress direction 

IF(ABS(SIGX).LT.ASHVL.AND.ABS(SIGY).LT.ASMVL)GOTO 20 ANGT 37 (in degrees). 
ANGT 38 


THETA=ATAN2(SIGY,SIGX) ANGT 39 

IF(THETA.LT.ZERO)THETA=2.'PYI+THETA ANGT 40 

THETA=THETA'180./PYI ANGT 41 

GOTO 25 


C 

ANGT 42 Routine CAMCDE
ANGT 43 


20 THETA=ALAR 

C 

ANGT 44 SUBROUTINE CAMCDE(IW6) 	 CAMC 1ANGT 4525 	 CONTINUE C······,.,......,.........,.......,.....,.....,......,.....".......... 'CAMC 
 2ANGT 46 C OUTPUT CODE TO IDENT IFY STR ESS STATE FOR CAM CLAYS CAMC 3ANGT 47RETURN C··,····· f ••••••••••• , •• , ••••••••••••••• ,. , ••••••• , ••• f' •• , •••••••••,' f'CAMC 4 
END ANGT 48 

C CAMC 5 
WRITE(IW6,901) CAMC 6 

ANGT 8-11 : effective stresses. WRITE(IW6,902) CAMC 7 
ANGT 14-19 : calculate principal stresses in x-y plane. WRITE(IW6,903) 	 CAMC 

WRITE(IW6,904) 	 CAMC 
ANGT 20 : check for Mohr's circle being a point; if so, skip. 901 FORMAT(lXII120(lH=)1 CAMC 10 

ANGT 21 : calculate angle between major principal stress direction and 1 130X,40HCODE FOR .STRESS STATE FOR CAM-CLAYS ONLY/30X, CAMC 11 
1 1I0(lH-)1130X,3I1HCODE GIVES THE STRESS STATE OF THE! CAMC 12 

x axis (THXY2 =28xy). 1 30X,39HINTEGRATION POINT WITH REFERENCE TO THEI CAHC 13 
1 30X,20HCURRENT YIELD LOCUS. CAMC 14ANGT 23-24 : calculate 8xy. 
1 IljOX,47H STRESS STATE CODE) 	 CAMC 15 

ANGT 27-28 : major principal stress direction is closer to x axis. 902 FORMAT(30X,46HSOIL IS ELASTIC WITH P>PCS AND Q<M'P 01 CAMC 16 
ANGT30-31 : major principal stress direction is closer to y axis _ 1 30X,46HSOIL IS ELASTIC WITH P<PCS AND Q<ll'P - 11 C~lC 17 

I 1 30X,46HSOIL IS ELASTIC WITH P<PCS AND Q>M'P - 21 CAMC 18 
. r 1 30X,1I6HSOIL IS HARDENING WITH P>PCS AND Q<M'P - 3) CAMC 19ANGT 32 : calcula te intermediate stresses. 

ANGT 34-35 : calculate components of stress in x' and y I directions. 903 FORMAT(30X,1I6HSOIL IS SOFTENING WITH P<PCS AND Q>M'P 41 CAMC 20 
1 30X,46HSOIL IS HARDENING WITH P>PCS AND Q>M'P - 7) CAMC 21

ANGT 37 : check for stress state being co-incident with origin (i.e. stress 904 FORMAT(30X,46HSOIL IS HARDENING WITH P<PCS AND Q>M'P - 81 CAMC 22 
state represents hydrostatic stress conditions). 1 30X,46HSOIL HAS NEGATIVE P - 91 CAMC 23 

130X,1I0HWHERE P - EFFECTIVE MEAN NORMAL STRESS CAMC 24
ANGT 39 : calculate angle between x' axis and the stress state. 

130X,37H PCS - CRITICAL STATE VALUE OF P CAMC 25 
ANGT 40 : if negative, add 21T to bring it into the range 0 to 2 1T. 1 130X,46HTYPES 7 AND 8 ARE IMPERMISSIBLE AND ARISE FROMI CAMC 26 

1 30X,18HNUMERICAL PROBLEMS/) CAMC 27ANGT 41 : 8 in degrees. 
RETURN 	 CAMC 28 

ANGT 44 : if hydrostatic stress state then set 8 to a large value. END 	 CAMC 29 
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CAMC 6-9 : write explanation of stress state code for Cam-clay models only. 

Routine UPOUT2 

SUBROlITINE UPOlIT2(IW6, NEL, NIP, LTYP,MAT, NCAM,IOIJI'3, IEL, UPOT 1 
1 NCODE, LCS, LtIGP, NELPR, NELUS, NELCM, MCS, MNGP, VARC) UPOT 2 

3 
C ... OUTPUT ADDIT IONAL PARAMETERS CAM-CLA YS UPOT 4 
C···· •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••UPOT 

c······················································.................UPOT 


DIMENSION ~'AT(NEL), LTYP (NEL), VARC (10, NIP, NEL) 

DIM ENSION NCODE (N IP, NEL) ,LNGP (N IP, NEL), LCS (N IP, NEL) 

DIM ENS ION NELPR (NEL), NELUS (NEL), NELCM (NEL), HCS (NEL), MNGP (NEL) 

COMMON IELINF I LINFO(50,15) 

COMMON lOUT I IBC, IRAC, NVOS, NVOF ,Nl-lOS, Nt10F , NELOS, NELOF , ISR 


C 
IF(NCAM.EQ.O)GOTO 100 

IF(IOUT3.EQ.0)GOTO 25 

IF(IOUT3.EQ.1)WRITE(IW6,911) 

IF(IOUT3.EQ.1)WRITE(IW6,902) 

IF (IOlIT 3. EQ. 2 )WRITE (IW6, 91 2) 

IF(IOlIT3.EQ.2)WRITE(IW6,901) 


DO 20 ILM=l, IEL 

J =NELPR (ILM) 

IC=NELCM(ILM ) 

IF (IC. NE. 1 )GOTO 20 

MR=NELUS(ILM) 

KM=MAT(J) 

LT=LTYP(J) 

NGP=LINFO (11, LT) 

IF(MR.LT.NELOS.OR.MR.GT.NELOF)GOTO 16 

IF(IOUT3.EQ.1)GOTO 12 

IF(IOlIT3.EQ.2)WRITE(IW6,904)MR 


C 
DO 10 IGP=l,NGP 
WRITE (IW6, 905 lIGP, (VARC (IK, IGP, ILM), IK=l, 10), NCODE (IGP, ILM) 

10 CONTINUE 

GOTO 16 


12 WRlTE{IW6,905)MR, (VARC{IK,NGP,ILM),IK=l,10), 

1 (NCODE(IP,ILM),IP=l,NGP) 


UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 
UPOT 

C-----------------------------------------------------------------------UPOT 37 
C WARNING MESSAGES - CAM-CLAYS UPOT 38 
C-----------------------------------------------------------------------UPOT 39 

16 IF(MCS{IU1l.EQ.O)GOTO 17 UPOT 40 
WRITEOW6,916)MR, (LCS(IP,ILM),IP=l,NGP) UPOT 41 

17 IF(NNGP(ILM).EQ.O)GOTO 20 UPOT 42 
WRITE(IW6,917)MR, (LNGP{IP,ILM),IP=l,NGP) UPOT 43 

20 CONTIlIUE UPOT 44 
GOTO 100 UPOT 45 

C-----------------------------------------------------------------------UPOT 46 
C WARNING MESSAGES (ONLY) FOR CAM-CLAYS UPOT 47 
C-----------------------------------------------------------------------UPOT 48 

25 WRITE (IW6, 935) UPOT 49 
DO 40 ILM=l, IEL UPOT 50 
J=NELPR(ILM) UPOT 51 
IC=NELCM{ILM) UPOT 52 
IF(IC.NE. 1 )GOTO 40 UPOT 53 
MR=NELUS (ILM) UPOT 54 
LT=LTYP(J) UPOT 55 
NGP=LINFO(ll,LT) UPOT 56 
IF(MCS(ILM).EQ.O)GOTO 37 UPOT 57 
WRITE (11016, 916 )MR, (LCS (IP, ILM) ,IP=l, NGP) UPOT 58 

37 IF(t1NGP(ILM).EQ.0)GOTO 40 UPOT 59 
WRITE (1146,917 )MR, (LNGP (I P, ILM) , IP =1, NGP) UPOT 60 

40 CONTINUE UPOT 61 

Sec. 8.13] Calculation of Output Parameters 

100 	CONTINUE 

RETURN 


901 FORMAT(2X,6HEW-IP,6X,2HPE,llX,lHQ,llX,2IfPT,llX, 

1 2HPC,9X,3HETA,5X,5HETA/M,6X,2HYR,4X,6HE-STRS,3X, 

2 6HE-STRN,3X,4HTH-3,2X,3HCDE) 


902 FORMAT(2X,6HELM-IP,6X,2HPE,l1X,lHQ,llX,2HPT,llX, 

1 2liPC, 9X, 3HETA, 5X, 5HETA/M, 6X, 2HYR, 4X, 6HE-STRS, 3X, 

2 6HE-STRN,3X,4HTH-3,2X, 14H 1 2 3 4 5 6 7) 


904 FORMAT(I4) 

905 FORMAT(2X,I4,4E13.5,2F9.3,3X,F6.3,2F9.4,F7. l,2X,812/5X,912) 
CC906 FORMAT(/18H CENTROID STRESSES/1X, 17(lH-)/) 

911 FORt1AT(/33H CAM CLAY PARAMETERS AT CENTROIDSI 
1 1 X , 32 ( 1 H - ) I ) 

912 FORMAT(/42H CAM CLAY PARAMETERS AT INTEGRATION POINTSI 
1 1X,41 (lH-)/) 

916 FORMAT (29H II ••• ·WARNING ...... ELEM ENT ,I3, 
1 24H HAS INTEGRATION POINTS ,712,2711 APPROACHING CRITICAL STATE, 
22X,9I3) 

917 FORMAT(29H •• .. ·*WARNING...... ELH1ENT ,13, 
1 24H HAS INTEGRATION POINTS ,712,18H PE LESS THAN ZERO,2X,913) 

CC925 FORMAT(2X,I4,2E14.5,F10.3,2X, 1613) 
935 FORMAT(!I) 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

END 

UPOT 12 
UPOT 13 
UPOT 14-17 
UPOT 19 
UPOT 20 
UPOT 21 

UPOT 22 
UPOT 23 
UPOT 24-26 

UPOT 31-33 
UPOT 35-36 
UPOT 41 

UPOT 43 

UPOT 44 
UPOT 50 

UPOT 53 
UPOT 54 
UPOT 58 

UPOT 60 

UPOT 61 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 

UPOT 


62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

: skip if no elements with Cam-clay properties. 
: skip if only warning messages are to be printed. 
: write title for output tables. 

: loop on elements that were processed in routine UPOUT. 
: J is program element number. 

: IC is flag to indicate (if set to 1) element with Cam-clay 
properties. 

: skip if element does not have Cam-clay properties. 
: MR is the user element number. 
: element type dependent parameters. 

KM material zone number. 

LT - element type number. 

NCP - number of integration points. 


: write output parameters for all integration points. 
: write output parameters for centroid (last integration point). 
: element with integration point(s) approaching critical state; 

print message. 
: element with integration point(s) with negative pi; print 

message. 

: end of loop on elements. 

: loop on all elements processed in routine UPOUT. 

: by-pass if element does not have Cam-clay properties . 
: MR is the user element number. 

: element with integration pOint(s) 
print message. 

: element with integration poin t(s) 
message. 

: end of loop on elements . 

approaching critical state ; 

with negative pi; print 

http:IF(IC.NE
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STRS 22-23 additional shear stresses for 3-D analysis. A list of reactions-to-earth at the d.oJ. where the displacements are 
STRS 25-32 calculate nodal loads equivalent to stresses in element in 3-Dprescribed is now printed. 

analysis. 

(iv) The final part of the output consists of the incremental applied load, the 
F= J BTad(vol).out-of-balance load, the loads equivalent to element stresses and the total V 

applied load at the nodes. 

STRS 35-38 do the same for 2-D analysis. 


out-of-balance = total applied -loads equivalent to element 

loads loads stresses. (8.14) 


The nodal loads equivalent to current element stresses are calculated by routine 8.14 STOP-RESTART FACILITY 
STRSEQ. 

There are two options in stopping and starting an analysis, as explained in 
section 4.2.5. Option 2 is for use with magnetic tape as results from every Routine STRSEQ 
increment are saved. These data can then be used by post-processor programs to 

SUBROUTINE STRSEQ(JJ,IP,IPA,NVRS,NIP,NEL,NDN,NDIM,NS, STRS 1 produce plots . The geometry data are written first to provide details of the mesh 
1 VARINT,SHFN,CARTD,F,DJACB,R,RI,CR) STRS 2 

C········································R••••••••••••••••••••••••••••••STRS for post-processing. 
3 

C ROUTINE TO CALCULATE FORCES EQUILIBRATING STRS 4 The other option is provided in the absence of a magnetic tape facility and is 
C ELEMENTAL STRESSES (INTEGRATION POINT CONTRIBUTION) STRS 5 solely for stopping and restarting an analysis. This permits a large analysis to C······························· ••••••• ·.~ ••••••••••••••••••••••••••••••STRS 6 

DIMENSIOtl VARI NT (NVRS. NIP, NEL), SHfN (N DN), CARTD (N DHI, NDN) 
DIMENSION F(NDIM,NDN) 
COMMON IDA 1W I W( 100) 
COMMON IFLOW I NPLAX 

C 
F9=CR'DJACB'W(IPA) 
IF(NPLAX.EQ. 1 )F9=F9'R 

C 
U=VARINT(NS.l,IP,JJ) 
SIGXT=VARINT(l,IP,JJ).U 
SIGYT=VARINT(2,IP,JJ).U 
SIGZT=VARINT(3,IP,JJ)+U 
TXY=VARINT(4,IP,JJ) 
IF(NDIM.EQ.2)GOTO 35 

C 
TYZ=VARINT(5,IP,JJ) 
TZX=VARINT(6.IP,JJ) 

C 
DO 30 IN=l.NDN 
F( 1, IN )=F (1, IN).(CARTD(l, IN)'SIGXT+CARTD(2, IN )'TXY 

1 +CARTD(3, IN )'TZX)'F9 
F(2,IN)=F(2,IN)+(CARTD(2,IN)·SIGYT.CARTD(l,IN)·TXY 

1 +CARTD C3, IN ) 'TYZ) 'F9 
F(3,IN)=F(3,IN).(CARTD(3,IN)·SIGZT.CARTD(2,IN)·TYZ 

1 +CARTD (1, IN) 'TZ X) 'F9 
30 CONTINUE 

GOTO 60 
C 

35 DO 40 IN=l,NDN 
F (1, IN)=F(l, IN )+(CARTD(l, IN )'SIGXT+3HfNCIN )'SIGZT'RI 

1 +CARTD(2, IN )'TXY )'F9 
40 F(2,IN)=F(2,IN)+(CARTD(2,IN)'SIGYT+CARTD(l,IN)'TXY)'F9 
60 RETURN 

END 

STRS 12-13 calculate weighting factors. 

STRS 15 pore pressure. 

STRS 16-19 total stresses for 2-D problems. 


STRS 7 be broken down into a number of manageable runs. For a restarted analysis, 
STRS 8 subroutine RESTRT reads the results at the end of the previous run. The results
STRS 9 
STRS 10 at the end of the current run are written to a separate file in routine UPOUT. 
STRS 11 
STRS 12 
STRS 13 Routine RESTRT 
STRS 14 
STRS 15 SUBROUTINE RESTRT(INCS,INCF,NN,NVTX,ND,NEL,NDf,NTPE,NIP, REST 1 
STRS 16 1 NVRS,NVRN,MUMAX,NNZ,NNOD1,NDIM,MDZ,NEDZ,NL,INXL, REST 2 
STRS 17 2 NCONN,LTYP,MRELVV,MREL,NRELVV,NREL,NW,NMOD, REST 3 
STRS 18 3 XYZ,DA,VARINT,PCOR,XYFT,STR,PCONI,TTIME,TGRAV) REST 4 

C••••••••••••••••••••••••••••••••••••••••••••••••••••• ··················REST 5STRS 19 
STRS C STOP/START FACILITY REST 620 
STRS 21 C••••••••••••••••••••••••••••••••••••••••••••••••••••• ··················REST 7 
STRS 22 INTEGER IF REST 8 
STRS 23 DIMENSION NCONN(NTPE,NEL),LTYP(NEL),MRELVV(NEL),MREL(MUMAX), REST 9 
STRS 24 1 NRELVV(NN),NREL(NNZ),NW(NNOD1),NMOD(NIP,NEL) REST 10 
STRS 25 DIMENSION XYZ(NDIM,NN),DA(NDF),VARINT(NVRS,NIP,NEL),PCOR(NDF), REST 
STRS 26 1 XYFT(NDF),STR(NVRN,NIP,NEL),PCONICNDF) REST 
STRS 27 COMMON IDEVICEI IR1,IR4,IR5,IW2,IW4,IW6,IW7,IW8,IW9 REST 
STRS 28 COMMON IFIX I DXYT(4,200),MF(200),IF(4,200),NF REST 14 
STRS 29 COMMON IPRSLD I PRESLD(10,100),LEDG(100),NDE1(100),NDE2(100),NLED REST 15 
STRS 30 COMMON lOUT I IBC, IRAC, NVOS, NVOF ,NMOS, Nl-lOF, NELOS, NELOF ,ISR REST 16 
STRS 31 C 
STRS 32 IF (ISR. EQ. 0 )RETUR N 

STRS 33 C 
STRS 34 IF(ISR.EQ.2)GOTO 20 
STRS 35 C 

STRS 36 IF(ISR.EQ.1)GOTO 10 
STRS 37 WRITE(IW6,910)ISR 
STRS 38 910 FORMAT(/24H "'ERROR : INADMISSIBLE, lX, 
STRS 1 21HSTOP/RESTART OPTION =,15)39 
STRS 40 STOP 

C 
10 	CONTINUE 

IF(INCS.EQ.1)RETURN 

REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 
REST 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

C-------DISK FILE OPTION (ONLY ONE INCREMENT IS READ/WRITTEN) REST 30 
READ CIR 1)TTIME, TGRAV, XYl, VARINT, STR, DA, XYFT, PCOR, PCONI, LTYP, mWD REST 31 
READ CI R 1 ) NF ,MF • IF • DXYT 	 REST 32 

http:IF(NPLAX.EQ
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READ(IR1)NLED,LEDG,NDE1,NDE2,PRESLD REST 33 

RETURN REST 34 


C REST 35 

C--------------------------------------------------------------REST 36 

C STOP/RESTART OPTION SUITABLE WITH TIlO MAGNETIC TAPES. REST 37 

C THE RESULTS FROM ALL PREVIOUS INCREMENTS ARE READ. REST 38 

C---------------------------------------------------------------REST 39 


20 CONTINUE REST 40 

REWIND IH2 REST 41 

IF(INCS.NE. 1)GO TO 22 REST 42 


C----------------------------------------------------------------REST 43 

C WRITE GEOMETRY DATA ON UNIT IH2 FOR A NEW ANALYSIS REST 44 

C-------------------------------------------------------------------REST 45 


WRITE (IW2 )UN, NVTX, ND, NEL, NDF ,NTPE, NI P, NVRS, NVRN, MUMAX, NNZ, MDZ, REST 46 

1 NEDZ,NL,INXL REST 47 

I.RITE (IW2 )NCONN, NR EL, MREL, NR ELVV, MRELVV, NW REST 48 

WRITE (IW2 )XYZ REST 49 

RETURN REST 50 


c--------------------------------------------------------------------REST 51 

C READ GEOMETRY DATA FROM UNIT IR1 AND WRITE TO UNIT IW2 REST 52 

C FOR A RE-STARTED ANALYSIS REST 53 

c-----------------------------------------------------------------REST 54 


22 INCS1=INCS-1 REST 55 

REWIND IR 1 REST 56 

READ(IR1)NNT,NVTXT,NDT,NELT,NDFT,NTPET,NIPT,NVRST,NVRNT, REST 57 


1 MUMAXT,NNZT,MDZT,NEDZT,NLT,INXLT REST 58 

READ(IR1)NCONN,NREL,MREL,NRELVV,MRELVV,NW REST 59 

READ(IR1)XYZ REST 60 

WRITE(IW2)NNT, NVTXT, NOT, NELT, NDFT, NT PET , NIPT, NVRST, NVRNT, REST 61 


1 MUMAXT,NNZT,MDZT,NEDZT,NLT,INXLT REST 62 

WRITE (IW2)NCONN, NREL,MREL, NR ELVV, MRELVV, NWREST 63 

WRITE(IW2)XYZ REST 64 


C--------------------------------------------------------------------REST 65 

C READ STORED RESULTS OF PREVIOUS INCREMENTS FRCM UNIT IR 1 REST 66 

c-------------------------------------------------------------------REST 67 


DO 24 I=1,INCS1 REST 68 

READ (IR 1)TTIME, TGRAV, XYZ, VARINT, STR, DA, XYFT, PCOR, PCONI, LTYP, NHOD REST 69 

READ(JRl)NF,MF,TF,DXYT REST 70 

READ(IR1)I~LED,LEDG,NDE1,NDE2,PRESLD REST 71 


C------------------------------------------------------------------R EST 72 

C AND STORE RESULTS ON UNIT IW2 FOR SUBSEQUENT RUN REST 73 

C-------------------------------------------------------------------REST 74 


WRITE (IW2 )TTIME, TGRAV, XYZ, VARINT, STR, DA, XYFT, PCOR, PCONI, LTYP, NHOD REST 75 

I~RITE(IW2)UF,MF,TF,DXYT REST 76 

WRITE (IW2 )NLED, LEDG, NDE 1, NDE 2, PR ESLD REST 77 


24 CONTINUE REST 78 

REST 79 


RETURN REST 80 

END REST 81 


Stop-restart option = J 
REST 31-33 : if a restarted analysis, read results of last increment of previous 

analysis from disk file. 

Stop-restart option = 2 

REST 42 : if a restarted run , then skip. 


REST 46-49 : write geometric data to unit 2 for a fresh analysis. 


REST 57 -64 : for a restarted run, copy geometric data from unit I to unit 2. 

REST 68 : loop on all previous increments for a restarted run. 

REST 69-77 : copy results from all increments from unit 1 to unit 2. 

REST 78 : end of loop on all previous increments. 


Examples 

9.1 INTRODUCTION 

This chapter deals with the use of CRISP. Section 9.2 contains various hints on 
using the program, which should be read in conjunction with the input 
specifications (Appendix A). Sections 9.3 to 9 .9 describe some example 
problems, including full details of the input data. The examples are chosen 
mainly to illustrate the different features of the program. It is not practical, for 
space reasons, to present completely realistic analysis here, and therefore simple 
situations have been considered and most of the analyses contain one increment. 
Therefore care is needed in interpreting the way the examples are presented. 

9.2 USER'S GUIDE TO INPUT 

9.2.1 	 Introduction 

The input data with which the user must supply the program can be divided into 
the following categories: 

(i) 	 information describing the finite element mesh, i.e. the co-ordinates of 
nodal points associated with each finite element; 

(ii) 	 material properties (and perhaps in situ stresses) associated with each finite 

element; 

(iii) 	 boundary conditions for the analysis (i.e. imposed displacements and 
loads). 

9 

http:IF(INCS.NE
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Experience shows that mistakes in the specification of the finite elemen t mesh 
are often made by program users. These mistakes sometimes result in a mesh 

which is valid so far as the program is concerned bu t is simply not the mesh 

which the user intended. For this reason we have made it possible to produce a 
plot of the finite element mesh together with element and node numbers. This 
allows the program user to detect any errors in the geometric input data before 

embarking on a full analysis. (There is an option to run only the geometric part 

of the program.) 

9.2.2 	General hints 

We believe tha t the following suggestions should assist. 

(i) 	 First solve a problem to which you know the exact answer. It will use 
many of the program options that will be needed for the real analysis, but 
the problem will be simpler. For example, users of our program may find 
it useful to solve a problem of one-dimensional consolidation, or to 
analyse a triaxial test using one of the critical state models or to do a two­
dimensional elastic stress analysis and compare the results with a standard 
theory of elasticity solution. The main point of doing an exercise like this 
is to check that you understand how to operate the program correctly. It 
will also help in giving some idea about the magnitude of suitable time 
steps, load increments and the accuracy obtained from different meshes. 

(ii) 	 When analysing the real problem, ensure that there is an independent 
check of the results. Of course it is impossible to do this precisely (you 
would not be using a program if that were the case), but simple order of 
magnitude checks using conventional methods can identify gross mistakes. 
Repeating the analysis using another program is a good check, but often 
this will not be possible because of the cost or non-availability of another 
program. 

(iii) 	 Study the results of the computer analysis. If doing an analysis with a 
critical state model then plot some effective stress paths. Do the results 
seem to exhibit any strange behaviour, e.g. are there large discrepancies 
between the stresses in neighbouring elements or between successive 
increments? 

9.2.3 	Size of increments 

Great care is needed in selecting increment sizes. The whole loading is divided 
into a number of small load steps, i.e. increments. How many load increments 
should one use? What is the right size of load increment? The answers to these 
questions depend on the problem being solved. However, there are a few guide­
lines. Use as many increments as possible. More incremen ts will be needed for a 
drained analysis compared to an undrained analysis. 

When the overall behaviour is elastic, larger load increments may be used. On 

the wet side of critical state, the soil undergoes hardening and the yield surface 
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expands. If one could limit the load increment size such that the expansion of 
the yield locus is within 5% at any integration point, the results can be expected 

to be reasonable. Within 2% would improve the result. Similarly on the dry side 
the yield locus shrinks in size as plastic yielding takes place. A much tighter 
control is recommended for softening. A parameter called the 'yield ratio ' is 
printed for each integration point. This parameter is defined as the ratio of the 
yield locus size at the end of the current increment to the size at the beginning 
of the current increment. The size of the yield locus is defined by the p~ value, 
the value of p' on the q = 0 axis. 

9.2.4 	User's guide to input 

Record A 

The title is usually set by the user to be descriptive of the subject of the finite 
element analysis. The title appears on the program's plot of the finite element 
mesh as well as near the start of the printed program output. If different meshes 
are used to tackle the same problem then the titles should be different, e.g. 

FOOTING ANALYSIS - MESH 1 - 60 LST ELEMENTS 
and 

FOOTING ANALYSIS - MESH 2 - 100 LST ELEMENTS 

Record B 

Element types (MXTYP) 

Although it is possible to include more than one type of finite element in a 
mesh, normally all elements will be of the same type. The element type is 
defined by MXTYP, which at present can take one of the four values associated 
with the elements shown in Fig. 4.1. 

The variations of displacements (and consequently strains) and, where 
appropriate, pore pressures are summarised in the following table. 

MXTYP Element name Displacemen t Strain 	 Excess pore 
pressure 

2 Linear strain triangle Quadratic Linear N/A 
(LST) 

3 LST with linearly Quadratic LinearLinear 
varying excess pore 

pressure 


6 Cubic strain triangle Quartic Cubic N/A 

(CuST) 


7 	 CuST with cubic Quartic Cubic Cubic 

variation of excess 

pore pressure 
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All the elements are basically standard displacement finite elements, which are 
described in most texts on the finite element method (e.g. Zienkiewicz, 1977). 

Note that NVTX refers to the number of vertex (Le. corner) nodes in the 

finite element mesh . The program automatically generates node numbers and 

co-ordinates for any nodes lying on element sides or within elements. 
Although CRISP allows the user complete freedom in the choice of elemen t 

type, the following recommendations should lead to the selection of an 

appropriate element type: 

plane strain analysis: for drained or undrained analysis, use element type 2(i) 
(linear strain triangle) and for consolidation analysis use element type 3. 

axisymmetric analysis: for drained analysis or consolidation analysis where (ii) 
collapse is not expected then element types 2 and 3 will probably be 
adequate (i.e. the same as (i) above). For undrained analysis or a situation 
where collapse is expected then element types 6 and 7 are recommended. 
Recent research has shown that in axisymmetric analyses the constraint 

of no volume change (which occurs in undrained situations) leads to 

finite element meshes 'locking up' if elements such as the LST are used 

(Sloan and Randolph, 1982). 

How many elements? 

It is difficult to lay down rules for the number of finite elements needed in a 
mesh to analyse a particular problem. The following hints may assist 

inexperienced analysts: 

avoid the pitfall of using too few elements - remember that in the case of(i) 
the linear strain triangle, for example, stresses will vary linearly across the 


element; 

avoid the pitfall of using too many elements - in most situations between
(ii) 
50 and 100 LSTs wi!! be adequate, as will between 20 and 30 CuSTs. 
the mesh should be finer (i.e. elements should be smaller) in regions where(iii) 
rapidly varying strains/stresses are to be expected (e.g. near loaded 

boundaries). 

Mixing different element types 

As mentioned above, the possibility exists of mixing different element types in a 

CRISP analysis. The only element types for which mixing is recommended in 
the current program version are element type 2 with element type 3, and 
element type 6 with element type 7. This could be done in a consolidation 

analysis where part of the continuum is expected to behave in a completely 

drained or completely undrained mode in comparison to the rest. 
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Record C 
The parameters NUMAX and MUMAX need to be specified only if there are gaps 
in the vertex node numbering and element numbering respectively. This 
information is necessary to allocate sizes to arrays which store the node 

numbers. Rather than arbitrarily allocating sizes to these arrays, which imposes 
a limit on the number of vertex nodes and elements, this procedure is preferred. 

Record D 
The normal option is to set all these values to zero. These flags need to be set 
only when the program is being tested (left in for the benefit of users/ 
programmers who may want to change the program, e.g. to incorporate a new 
element type). This feature helps to ensure that the changes made to the 
program are correct. 

This debugging option may also be used to track down any errors in the 
speCification of the finite element mesh (but this is best dealt with by a data­
checking program). 

Record E 
The program calculates the co-ordinates of nodes along sides and elemen t 
interiors by linear interpolation, assuming that the elements are straight-edged. 
However, in some analyses (e.g. circular tunnel, buried pipe) it is more 
appropriate for the element sides to be curved to accurately model the physical 
problem. The program does not have the facility to calculate co-ordina tes of 
nodes assuming that the element sides are curved. This feature is included so that 
(see records I and J) the user can directly specify the co-ordinates along the 

(few) curved sides. 
If all the element sides in the mesh are curved, the user may envisage writing a 

small program to generate the nodal co-ordinates automatically and input as 
described below (records I and J). 

Records I and J are then used to specify the co-ordinates of nodes, for each 
element side. It should be noted that displacement and pore pressure nodes are 
dealt with separately. For element types 2, 6 (non-consolidation elements) and 
also element type 3 (does not have pore pressure nodes along side), NSPZ and 
NPCUR must be set to zero. Records J are then omitted from input. 

If element type 7 is used with curved sides then the user must ensure that the 
co-ordinates of both displacement and pore pressure nodes which are specified 
separately lie along the curved side. 

Records F and H 

Element and nodal numbering 

The program user must assign each element and each vertex node in the finite 
element mesh unique (integer) numbers in the following ranges: 
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I ~ node number ~ 750. 

I ~ 	element number ~ MUMAX (user specified; if equal to 
zero, then NEL). 

It is not necessary for either the node numbers or the element numbers to form 
a complete set of consecutive integers, i.e. there may be 'gaps' in the numbering 
scheme adopted. This facility means that users may modify existing finite 
element meshes by removing elements without the need for renumbering the 
whole mesh. The geometry part of the program assigns numbers in the range 751 
upwards to nodes on element sides and in element interiors. 

Co-ordinate system 

It is recommended that the user adopts a co-ordinate system with the y axis 
pointing upwards (Fig. 9.1). 

v 

x 

fig . 9.1 - Co-ordinate system 

Note the x axis points to the right - if the x axis points to the left then the 
program will calculate element areas and stiffnesses as negative quantities. (This 
recommendation is linked to the program's expectation that element node 
numbers are listed in record H in an anti-clockwise sense. In principle it is 
possible to use a co-ordina te system with the x axis poin ting to the left, but then 
it would be necessary to list element node numbers in a clockwise sense, and a 
different sign convention for shear stresses would be needed in records PI, P3 

and U. 
The user may rotate the co-ordinate system if desired (i.e. so that they axis 

no longer points vertically upwards), but should be noted that the following 
input options for the program will not work in the normal fashion: 

(i) specification of material self-weight loads (excavation, construction and 
gravity increase - records M and R); 

(ii) elastic properties varying linearly with depth (record M); 
(iii) axisymmetric analysis. 
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When the axisymmetric analysis option is selected (record U) it is assumed that 
the y axis is the axis of symmetry (i.e. the x axis is in the radial direction). 

Units 

The user can choose any appropriate length for describing the co-ordinates of 
nodal points. It is important, however, that the units chosen to describe material 
properties, stresses and loads in the program are consistent. In a drained or 
undrained analysis the user can only select the units for two quantities 
independently - the units for describing all other items are then automatically 
determined. Since the unit of length is always determined by the co-ordinate 
data, the user has one choice remaining and this can most simply be regarded as 
relating the units of force that are to be used. For example, if length and force 
units are chosen to be metres (m) and kilonewtons (kN) respectively then 
stresses and elastic moduli must be in kN/m 2 and unit weights must be in kN/m 3 

(see Table 9.1). 

Table 9.1 Consistent set of units 

2 3 4 

Length m mm mm ft 

Force kN N mNt lbf 

Time sec sec sec hr 

Pressure, stress kN/m 2 N/mm2 mN/mm2+ lbf/ft2 

Density kN/m 3 N/mm3 mN/mm 3 lbf/ft 3 

Permeability m/s mm/s mm/s ft/hr 

millinewtons.t 
+ mN/mm 2 and kPa (i.e. kN/m 2 ) are equal in magnitude. 

When a consolidation analysis is performed, suitable units of time must also 
be chosen, and the units chosen for permeability imply certain units for 
increment time steps (e.g. if permeability has units of metres/year then time 
steps will be in units of years). 

Material zone numbers (IMAT) 

The user must assign a zone number (in the range 1 to 10) to each finite 
element. The zone number associates each element with a particular set of 
material properties (record M of program input). Thus if there are three zones of 
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soil with different material properties, zones I and 2 may be modelled by Cam­
clay with distinct material parameters and zone 3 may be modelled by linear 
elastic properties. (Note: 'gaps' in the numbers of zones are not allowed.) 

Records Gland G2 

The frontal method of solving equations requires an efficient element 
numbering. The numbering adopted by the user may not necessarily be the most 
efficient. Inefficient element numbering in any analysis of medium to large sized 
problems may prove to be prohibitively expensive. No attempt is made in the 

program to renumber the elements for efficient use of the frontal method. With 
element renumbering programs (for the frontal method) becoming available, the 
option to specify an alternative frontal sequence of the elements is allowed for 
in records Gl and G2. If this alternative element number is specified 
(IRNFR = 1) by the user then the elements are assembled in the sequence as 
specified in record G2. If no alternative element numbering is provided 
(IRNFR =0) then the elements are assembled in the same sequence as presented 
in records H. However, the results output at the end of analysis (stresses at 
integration points for each element) will be printed in the ascending order of 
element numbering adopted by the user. 

Records 1 and J 

The element number is followed by nodes NI and N2 (which are at either end of 
the side) to identify the element side. Then the nodal co-ordinates of nodes 
along the element side are given in sequence from node NI to N2 (note that the 
co-ordinates of nodes Nl and N2 are not specified). 

The program only uses the pore pressure node co-ordinates for plotting 
purposes. The user should calculate co-ordinates which are consistent with those 
of the displacement nodes on the curved element side. When performing 
calculations involving the pore pressure nodes (e.g. interpolating pore pressures 
inside elements for nodal values) the program makes the implicit assumption 
that the pore pressure nodes are positioned in a definite relation to the displace­
ment nodes (which define the element geometry). The fact that the program 
does not actually need to use these co-ordinates in any calculations might appear 
surprising at first! 

Record K 

The facility to stop the analysis at different stages of the program is useful in 
checking the finite element mesh before launching on a complete analysis. From 
past experience most of the data errors occur in specifying the finite element 
mesh. This intermediate step enables the user to split a complete analysis into 
three distinct parts: (a) geometry, (b) in situ stresses and (c) analysis. 

In view of the costliness of finite element analysis it is sensible to make sure 
that as far as possible no errors in parts (a) and (b) are present before doing the 
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analysis. Some data errors in (c) cannot be readily checked. For example, a value 
of E (Young's modulus) may be incorrectly specified as 300 instead of 3000. 
Some programs may check that E has a positive value. In CRISP, no checks are 
carried out on the material properties. A zero value for permeability in a 
consolidation analysis causes the analysis to fail with a ZERO PIVOT error in 
the solution routine FRONTZ. If the unit weight of water is specified as zero in 
a consolidation analysis the program will terminate with an error message saying 
that there is an attempt to divide by zero, in routine LSTIFF. 

IDCHK = I: the program runs the geometry part of the program and creates a 

plot data (PD) file which is then used by a separate program (mesh-plotting 
program; see Appendix 8) to draw the mesh. 

IDCHK = 2: this will run the geometry part of the program and then setup the 
in situ stresses at all integration points. Also it will carry out an equilibrium 

check to ensure the boundary conditions (restraints and loads) are equal to the 
in situ element stresses. 

Record Ll 

NMAT must be equal to the number of different material zones specified in the 
geometry part of the program . 

INCF;> INCS 

If INCS> I then this analysis is a continuation of a previous analysis (see 
section 9.2.5) and records 0 to Q3 are omitted. 

IPRIM 

CRISP allows soil constructions or excavations to be modelled in an analysis via 
the addition or removal of elements as the analysis proceeds. All the elements 
that appear at any stage in the analysis must have been included in the input 
data for the geometry part of the program. IPRIM is the number of finite 
elements that must be removed to form the primary finite element mesh before 
the analysis is started. 

IUPD 

IUPD = 0: this corresponds to the normal assumption that is made in linear 
elastic finite element programs and also in most finite element programs with 
non-linear material behaviour. External loads and internal stresses are assumed 
to be in equilibrium in relation to the original (i.e. undeformed) geometry of the 

finite element mesh. This is usually. known as the 'small displacement' 
assumption. 

IUPD = I: when this option is used the nodal co-ordinates are updated after each 
increment of the analysis by adding to the co-ordinates the displacements under­
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gone by the nodes during the increment. The stiffness matrix of the continuum 

is then calculated with respect to these new co-ordinates during the next analysis 

increment. The intention of this process is that at the end of the analysis, 

equilibrium will be satisfied in the final (deformed) configura tion. Although this 
approach would seem to be intuitively more appropriate when there are 

significant deformations, it should be noted that it does not constitute a rigorous 

treatment of the large strain-displacement behaviour for which new definitions 

of strains and stresses are required (e .g. Carter et al., 1977). Various research 

workers have examined the influence of a large strain formula tion on the load­

deformation resoonse calculated by the finite element method using elastic­

perfectly-plastic ' models of soil behaviour. The general conclusion seems to be 
that the influence of large strain effects is not very significant for the range of 

material parameters associated with most soils. In most situations the inclusion 

of large strain effects leads to a stiffer load-deformation response near failure 

and some enhancement of the load carrying capacity of the soil. If a program 
user is mainly interested in the estimation of a collapse load using an elastic­

perfectly-plastic soil model than it is probably best to use the small displacement 

approach (i .e. IUPD = 0). Collapse loads can then be compared (and should 

correspond with those obtained from a classical theory of plasticity approach) . 

NOfB 

The analysis is sub-divided into one or more increment blocks. Each increment 
block consists of one or more increments. The use of the increment block is 
adopted for two reasons: (a) removal of elements (excavation) and addition of 
elements (construction) can be carried out over a number of increments and (b) 
with repeated application of loading (or non-zero prescribed displacements) 

increments can be grouped together as an increment block (provided that no 

boundary conditions have changed) thereby reducing the amount of data input. 

Record L2 

This permits the user to reduce the printed output by suppressing the printing of 

nodal loads and boundary conditions and the reactions in each increment by 

setting!BC = 0 and IRAC = 0 respectively. 
The next four parameters control the displacement output of each increment. 

Because there are two separate ranges of numbers, two for vertex nodes and the 

other two are used for midside nodes. 

o~ NVOS ~ NVOF ~ MUMAX 

o~ NMOS ~ NMOF ~ NNZ 

This permits the user to request only the nodal output for nodes within the 

specified ranges. For example, if the user is interested in the vertex nodes 5 to 

10 and other nodes 780 to 790, then NVOS = 5, NVOF = 10, NMOS = 780 and 
NMOF =790. Since these parameters operate in conjunction with the parameter 

Sec. 9 .2] User's Guide to Input 

lOUT in record R, lOUT must be set to 2. If lOUT is set to 1 for the above case, 

no displacements for the midside node are printed (see also explanations for 

parameter lOUT under record R). 

The same option applies to output from elements. The output from only the 

user specified range of elements is printed. Here again this option is affected by 
the parameter lOUT in record R. 

Record M 

The parameters hown in the material properties' table in the input specification 

have the meanings shown below. With a few possible exceptions (mentioned 
later) all the parameters should be regarded as being effective stress properties, 
i.e . they either relate changes in strain to changes in effective stresses or describe 
the soil's strength in terms of the effective stresses that are acting in the soil 

skeleton. 

Anisotropic elastic properties 

The anisotropic elastic properties relate strains to changes in stress via the 

following equations : 

Vhy 1 vtIy 
E =- -a +-a --a 
y Eh x Ey Y Eh z, 

vhh Vyh 1 
E =- -a --a +-a 

Z Eh x Ey Y Eh z, 

'Yxy =--rxy · 
Ghy 

Note that sufflXes 'h' (for horizontal) and 'y' (for vertical) have been adopted 

here to clarify the type of anisotropic properties which the program expects to 

be specified for soil. This is because soil deposits are often formed by a process 
of sedimentation in horizontal layers and the associated soil fabric and stress 

history lead to one set of properties for the x-z (or h) plane (Eh and Vhh) and 

another set relating to the vertical direction (v or y) and the coupling between 

horizontal and vertical directions (Ey , vhh, Vhy, GhY). The significance of these 
properties can be deduced from the above equations, but the following may 

make the meanings clearer: 

an increase in vertical stress leads to an increase in vertical strain !:lay / Ey and 

a tensile strain (vvh/Ev)!:lay (in the absence of any changes in ~orizontal 

stresses). Hence vvh is the Poisson's ratio which gives the ratio of horizontal 

strain to vertical strain caused by a stress increment in the vertical direction 
and a similar statement can be made as to the meaning of Vhv. 
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Note, however, that the program requires only the specification of VYh and not 

vhv . This is because energy/reversibility considerations for an elastic material 

lead to the relationship 

Elastic, linear variation with depth 

The elastic Young's modulus at a depthy is given by theequation 

E=Eo +m(yo -y). 

However, Poisson's ra tio is assumed to be a constant. 

Critical state parameters 

The selection of critical state parameters is discussed in Chapter 5. 

Kw is the bulk modulus of water, which is defined as aK'. When an undrained 

analysis is performed, Kw is normally set to a value between 50 and 500 times 
K' (i.e. a in the range 50 to 500). The reason for this will be made clear 
following a description of how the program uses this value. The effective stress 

law can be written in matrix notation: 

a = a' + mu. 

Here u is the pore water pressure and m is a vector indicating which stress terms 
participate in the effective stress relation. For example, if a fully three­

dimensional stress condition is considered: 

Tz x ] T,a == [ax ay az Txy Tyz 

a 
, 

= [a~ a; az 
, 

Txy Tyz Tzx] T, 

and 

m = [1 a a O]T. 

Suppose an element of soil undergoes an incremental total stress change ~a 

which results in a change of pore pressure till and incremental strains ~€. 

Suppose also that incremental effective stresses are related to incremental strains 

by the relationship 

~a' = D' ~€ 

(0' may describe either an elastic or an elasto-plastic law). The assumption is 
now made that the volumetric strain experienced by the soil is due entirely to a 
change in the volume of pore water. The volumetric strain experienced by the 
soil element can be written as m T ~€, and the volumetric strain experienced by 
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the pore water is equal to [(1 + e)/e] mT~€, where e is the current voids ratio. 
Then the change in pore water pressure is given by 

~u =Kw[(1 +e)/e]mT~€. 

Combining this with the effective stress law and the incremental effective stress­
strain relation, the following equation is obtained: 

~a = D'~€ + m Kw [(1 + e)/e] mT ~€. 

CRISP uses this equation in the following way. 

(i) 	 The program expects in an undrained analysis that the material properties 
supplied relate to changes in effective stress. 

(ii) 	 When calculating the element stiffness matrices the program adds in the 
terms corresponding to the volumetric stiffness of the pore water. 

(iii) 	 Following the solution of the finite element equations the program 
calculates the changes in effective stresses and pore water pressure 
separately. 

In a drained analysis the user sets a = a (Le. Kw = 0) and no changes in pore 
pressure are calcula ted. For elastic material behaviour the above procedure for 
an undrained analysis is equivalent to using a value of Poisson's ratio close to 
0.5. However, the above procedure has the advantage that the pore pressure 
changes are calculated explicitly, and exactly the same technique is valid for an 
elasto-plastic material law. It is well known that in conventional linear elastic 
fmite element analysis the use of a value very close to 0.5 can lead to numerical 
ill-conditioning of the finite element equations. The use of a value of a in the 
range suggested above is equivalent to the use of a value of Poisson's ratio in the 
range 0.49 to 0.499 and should give reasonably accurate results. 

'Y 

'Y is the bulk unit weight of the soil. This value is used by the program when 

(a) 	 calculating implicit loads caused by excavation (removal of elements) or 

construction (addition of elements) sequences 
(b) 	 the gravity acceleration field is increased (or decreased) during an analysis 

(e.g. during geotechnical centrifuge test) (see record R). 

Records 0, PI, P2 and P3 

In an elasto-plastic analysis the stiffness matrix of a finite element will be 
dependent on the stress state within the element. In general the stress state will 
vary across an element and the stiffness terms are calculated by integrating 
expressions dependent on these varying stresses over the volume of each 
element. CRISP integrates these expressions numerically by 'sampling' the 
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; ! 

stresses at particular points within the element and then using standard 
numerical integration rules for triangular areas. 

The purpose of record types 0, PI, P2 and P3 is to enable the program to 
calculate the stresses (and for Cam-clay the size of the yield locus specified by 
p~) before the analysis starts. For the purpose of specifying the in situ stresses 
the mesh is divided into a number of horizontal layers (option I). For most 

problems the in situ stresses do not vary in the horizontal direction, and it is 

assumed that the stresses vary only with depth. Therefore the user specifies a set 
of in situ nodes along a vertical section and the stresses at these points. The in 
situ stresses at the integration points (see Fig. 7.2) are interpolated from the 
stresses specified at the in situ nodes. 

However, for problems where the stresses do vary in the horizontal direction, 
a separate option (option 2: KT = 2) is provided in specifying the stresses. In this 
option (see records P2 and P3) the user has to specify directly the in situ stresses 
at each integration point for all the elements. 

For Cam-clays it is important to try to establish the in situ stress state as 
accurately as possible. This is discussed in Chapter 5 to which the reader is 
referred. 

Records QI, Q2 and Q3 

The user has to specify the external loading (pressure loading along the 
boundary) and self-weight loading (due to body forces) that is in equilibrium 
with the in situ stresses. The zero displacement boundary condition has to be 
specified along the boundary that is su pported (or restrained). In specifying 
these conditions the user must consider the entire boundary of the mesh and 
ensure that along any part of the boundary which is loaded (i.e. not free of 
stress) either the pressure loading or the restraint has to be specified. 

The specified loading is expected to be in equilibrium with the in situ stresses. 
An equilibrium check is carried out, and any imbalance in nodal loads (between 
the external load and in situ stresses) is printed out. 

Record R 

When a non-linear or consolidation analysis performed using CRISP it is 

necessary to divide either the loading or the time span of the analysis (or both if 
there is consolidation with non-linear material properties) into a number of 

increments. Thus if a total stress of 20 kPa is applied to part of the boundary of 
the finite element mesh it might be divided into ten equal increments of 2 kPa, 

each of which is applied in turn. The total number of increments that are 
necessary will vary from problem to problem, but in general about 50 

increments would be required in a drained or undrained analysis using one of the 
Cam-clays which goes as far as collapse. CRISP calculates the incremental 
displacements for each increment using a tangent stiffness approach, i.e. the 
current stiffness properties are based on the stress at the start of each increment. 

',' 
While it is desirable to use as many increments as possible to obtain accurate 
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results, the escalating computer costs that this entails will inevitably mean that 
some compromise is made between accuracy and cost. The recommended way of 
reviewing the results to determine whether enough increments have been used in 

an analysis is to examine the values of yield ratio (YR) at each integration point. 
When plastic hardening is taking place the value of YR gives the ratio the size of 
yield locus following the increment to the size before the increment. Thus a 
value of 1.10 means that the yield locus has grown in size by 10%. Values of 
about 1.02 (0.98, if softening) are generally regarded as leading to sufficiently 
accurate calculations. If values greater than 1.05 (less than 0.95, if softening) 
are seen, then the size of the load increments should be reduced. When one of 

the Cam-clay models is softening (i.e. yielding dry of critical), smaller increments 
(than the size suggested by the above discussion) may be necessary. 

The time intervals for consolidation analysis (DTIME) should be chosen after 
giving consideration to the following factors (see also the discussion in Chapter 3 
relating to the TINY, program): 

(i) 	 the amount of pore pressure dissipation expected within the time step; 
(ii) 	 in a non-linear analysis the increments of effective stress must not be too 

large (Le. the same criteria apply as for a drained or undrained analysis); 

(iii) 	 it is a good idea to use the same number of increments in each log cycle of 
time (thUS for linear elastic analysis the same number of time increments 
would be used in carrying the analysis forward from one day to ten days as 
from ten days to hundred days). Not less than three time st(:!ps should be 
used per log cycle of time (for a log base of ten). Thus a suitable scheme 
might be: 

Increment no. DTIME Total time 

1 1 
2 2 
3 3 5 
4 5 10 
5 10 20 
6 30 50 
7 50 100 
8 100 200 

9 300 500 
10 500 1000 

This scheme would be modified slightly near the start and end of an 
analysis (see below); 

(iv) 	 if a very small time increment is used near the start of the analysis then 
the finite element equations will be ill-conditioned; 

(v) 	 when a change in pore pressure boundary condition is applied the 

associated time step should be large enough to allow the effect of 
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consolidation to be experienced by those nodes in the mesh with excess 
pore pressure variables that are close to the boundary. If this is not done 
then the solution will predict excess pore pressures that show oscillations 

(both in time and in space). 

The application of (v) will often mean that the true undrained response will not 

be captured in the solution. The following procedure, however, usually leads to 

satisfactory results: 

(a) 	 apply loads in the first increment (or first few increments for a non-linear 
analysis), but do not introduce any pore pressure boundary conditions; 

(b) 	 introduce the excess pore pressure boundary conditions in the increment 
following the application of the loads. 

Boundary conditions (NLOD, NFIX, ILDF, ITMF) 

CRISP allows the user to describe a sequence of increments as an 'increment 

block '. This facility is provided for two reasons. 

(i) 	 If the loads for each analysis increment had to be specified separately 

there would be a very large amount of data input needed for most 
. problems. Much 	of this information would be repeated many times (e.g. 
which element sides were being loaded). 

(ii) 	 When performing an excavation (or construction) analysis the program 
calculates the implied loadings due to the removal (or addition) of the 
elements specified by the user. These implied loadings will often be too 
large to be applied in a single increment when the material behaviour is 

non-linear. The use of an increment block spreads these implied loads 
over several increments. (Note that this procedure introduces an extra 
approximation in the modelling of excavations: the stiffness of an 
element is removed entirely in the first increment of a block, whereas the 
loads are spread over all increments in the block.) 

The program user should note the significance of specifying incrementa/loads in 
the input data. The total loads acting at any particular time are given by adding 
together all the previous incremental loads. Thus if part of the mesh is loaded 
and then subsequently these loads are removed, it will be necessary to specify 
negative incremental loads. Total loads and total fixities remain in force from 
incremental block to incremental block if there is no action to remove them. 

The following example is intended to clarify these points for a consolidation 
analysis: 

(a) 	 part of the boundary of a soil mass is loaded with a load of ten units (this 
is applied in ten equal increments); 
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(b) 	 consolidation takes place for some period of time (over ten increments); 
(c) 	 the load is removed from the boundary of the soil mass in five equal 

increments; 
(d) 	 consolidation takes place with no total load acting. 

Loads 

Incremental load Total load 
Increment no. applied acting 

1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 1 9 

10 1 10 
11 0 10 
12 0 10 

21 -2 8 
22 -2 6 
23 -2 4 
24 -2 2 
25 -2 0 
26 0 0 
27 0 0 
28 0 0 
29 0 0 
30 0 0 

etc. 

One possible way of translating this sequence of loading into input data would 

be to make increments I to 10 the first increment block with an incremental 

load of 10 units and 10 load factors equal to 0.1. The second increment block 
(increments 11 to 20) would have no incremental loads and the third 
(increments 21 to 25) would have an incremental load of - 10 with 5 load 
factors equal to 0.2. 
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DGRAV 

DGRAV is used in problems in which the material's self-weight is increased 
during an analysis (e.g. in the 'wind-up' stage of a centrifuge test, increasing 
centrifugal acceleration can be regarded as having this effect). 

Records R, Tl, U and V 

The loading (NLOD), self-weight loads (DGRAV) and prescribed displacements 
(NFIX) are specified for the entire increment block, and are applicable to that 
particular increment block. The loading and any non-zero prescribed displace­

ment 	 for the individual increments are taken as ratios « 1) of that for the 
increment block. 

There is no restriction on how these loading and non-zero prescribed displace­
ments are divided among the increments in an increment block. They are equally 
divided between all the increments if ILDF =0 in record R. However, if the user 
wants to distribute the loading (and non-zero prescribed displacements) 
unevenly between the increments, then by setting ILDF = 1 a separate list of 
load ratios is read in record Tl. (This is generally useful in an analysis where 
large load increments can be applied when the problem is in the elastic state and 
smaller load increments as plastic yielding takes place.) 

I t should be noted that the same ratios R(I) etc. (record T 1) apply to the 
pressure loading (NLOD - record U), the gravity loading (DGRA V - record R) 
and the prescribed displacements (NFIX - record V). 

The sum of ratios R(I) must be equal to l. However, some of these ratios 
can take zero values, as illustrated in the example given under record T3. 

Records Rand T3 

In a consolida tion analysis the time increment DTIME (>0) is specified for the 
entire increment block. If ITMF = 0 in record R then DTIME is equally divided 
among all the increments in the increment block. However, if ITMF = 1 then the 
user directly specifies (in record T3) the time increments for each increment. 
Unlike the load ratios R(I) etc. (in record Tl) these are actual time steps for the 
increments and not ratios. None of these can be zero, and for reasons of 
consistency, DTIME in record R must be set equal to the sum of all the time 
steps in the incremen t block. 

The use of records Tl and T3 is illustrated by an example . In a consolidation 
analysis of 100 secs total duration spread over 9 increments, the load is gradually 
applied in 3 secs and the subsequent transient response is required. 

(a) 	 First the example is used to illustrate the use of a single increment block. 
This option is not applicable if there is a change in pore pressure 
boundary condition at the end of the loading phase. Then option (b) must 
be used. 
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in record R 

IBNO INCA INCB ICHEL NLOD ILDF NFIX lOUT 
1 9 0 

IOCD DTIME ITMF DGRAV 
100 0 

in record Tl 

R(1) R(2) R(3) R(4) R(5) R(6) R(7) R(8) R(9) 
0.33 0.33 0.34 0 0 0 0 0 

in record T3 

DTM(1) DTM(2) DTM(3) DTM(4) DTM(5) DTM(6) 
1 1 1 52 10 

DTM(7) DTM(8) DTM(9) 
10 20 50 

. (b) 	 As an alternative, the analysis could be split into two increment blocks. In 
the first increment block the loading is applied, whereas in the second, 
consolidation takes place with no change in the load. 

record R 

IBNO INCA INCB ICHEL NLOD ILDF NFIX lOUT 
1 3 0 0 
2 4 9 0 0 

10CD DTIME ITMF DGRAV 
3. 0 0 

97. 0 

record Tl 

not present for both increment blocks (ILDF =0 in record R) 

record T3 

DTM(1) DTM(2) DTM(3) DTM(4) DTM(S) DTM(6) 

incr block 1 not present (ITMF =0 in record R) 
incr block 2 2 5 10 10 20 50 

record V 

Displacement fixity: 

Any displacement fixities (i.e. zero prescribed displacements) only need to be 
specified once, either at the in situ stage (in the presence of in situ stresses) or 
in the first increment block. Once specified, these zero displacement (or pore 
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pressure) fixities remain in effect during the rest of the analysis. Therefore these 
need not be re-specified for each and every increment block. 

Pore pressure fixity 2: 
When a fixity code of I is used, the incremental changes of excess pore pressures 

along element sides are treated in exactly the same fashion as incremental 

displacements . When the incremental change in the excess pore pressure that 

needs to be prescribed is known (for example along a drainage boundary or 

along a boundary where a known pressure head is applied) then a fixity code of 

I is used. However, if the pore pressures have changed from the in situ values 

probably owing to loading or unloading then it is not possible to lmow the 

incremental changes in the pore pressures beforehand. Then the user has to 
prescribe the absolute value of the pore pressure using the fixity code of 2. But 
in CRISP it is not possible to fix the absolute value of the pore pressure directly. 
This has to be done indirectly by fixing the absolute value of excess pore 

pressure. Remembering that 

abs p.p. = in situ p.p. + abs excess p.p. 

abs excess p.p. = abs p.p. - in SilU p.p. 

This is illustrated with an example (Fig. 9.2): consider a excavation of a trench 
in a saturated clay. The trench is excavated in layers of 2 m; assuming the unit 
weight of water is 10 kN/m3 the in situ values of pore pressure at nodes 1, 2 and 
3 are, respectively, 0, 20 and 40 kPa. For node 2, after excavating the first layer, 
the absolute pore pressure = O. Therefore absolute excess pore pressure = 0 ­
20 = -20 kPa. Similarly after two layers have been excavated the absolute 

excess pore pressure along the base (at a depth of 4 m) and at nodes 6 and 3 is 

4 
0------­

5 tL----------7t 2 

61o:::....----------J3 

In situ pore 

pressure 

Fig. 9.2 - Example to illustrate pore pressure fixities 

Sec. 9.3] Linear Elastic: One-dimensional Consolida tion 

given by 0 - 40 = -40 kPa . This particular feature often causes confusion to 
the user. The most common mistake is to incorrectly fix the absolute excess 

pore pressure to 0 using a fixity code of 2. 

9.2.5 Stop-restart facility 

CRISP can be stopped and restarted, allowing a lengthy analysis to be split into 
a number of shorter analyses. This facility is particularly useful for reviewing and 
perhaps altering the size of load increments without having to repeat the entire 

analysis. 
The input data for a starting run is exactly the same as for a normal run 

except that ISR (record Ll) is set to 1 or 2 rather than zero. When a run is 
restarted ISR is set to I or 2 and records 0 to Q3 are omitted from the input 
data (in this case the details of the current stresses are read from the restart file). 

A value of INCS > I on record Ll indicates that this is a restarted run. INCS 

must follow on in sequence from the previous analysis. When ISR = 1 it is only 
possible to restart the analysis from the last increment of a previous run . When 
ISR = 2 it is possible to restart from any previous increment. Mixing ISR = I 
and ISR = 2 in a series of runs is not permitted. The results from a previous run 

are always read from unit IRI and the results from the current run are stored on 
unit IW2. As mentioned in section 4.2.5 restart files for ISR = 2 will be large 
and probably require use of magnetic tapes. 

9.3 LINEAR ELASTIC: ONE:DIMENSIONAL CONSOLIDATION 

The first example is identical to the one-dimensional consolidation analyses 
performed by the TINY program in section 3.6.4. The mesh (Fig. 9.3) consists 
of 12 LST elements, and the depths of the LST elemen ts are the same as in 
section 3.6.4. The input data for CRISP are given in Fig. 9.4. The boundary 
conditions are illustrated in Fig. 9.5 . Since the problem is one dimensional, the 
problem type could be chosen as either plane strain or axisymme try. In fact a 
plane strain analysis is performed. The mesh is prevented from moving in the 
lateral direction. This reduces the problem to its one-dimensional form. The base 
of the mesh is restrained, which is also an impermeable boundary. The top is a 

free-draining boundary. 
A uniform load of 10 kPa is applied to the surface in the first increment 

block, which consists of a single increment. The pore pressure boundary 
condition corresponding to the top drainage surface is applied in the next 

increment. Exactly the same time steps are used as in section 3.6.4. The second 

increment block contains II increments. It should be emphasized again that 

loading is specified in one increment and the relevant pore pressure boundary 
conditions are specified in the next increment. This applies only to pore pressure 

boundary conditions. In general, either a loading is applied to a node (possibly 
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I 


'-I 
L2 0 0 1 14 0 0 1 12,II M 1 1 1.E3 1.E3 0.25 0.25 0.4E3 0 10. o. 1. E-9 1. E-9 , I 	 3 

, i 0 0 0 


5 6 R 1 0 -1 0 13 11 0 1. 0 O. 

U 2 O. 10. O. 10. O. 10. 


1 V 
 1 1 3 1 O. O. O.

- l V 2 2 4 1 O. O. O. 


;i 8 	 V 3 3 5 O. o. O. 

V 4 4 6 O. O. o. 

V 5 5 7 O. o. O. 

V 6 6 8 o. o. o. 


9 10 V 7 7 9 o. o. o. 
V 8 8 10 O. O. o. 
V 9 9 11 O. O. O. 
V 10 10 12 O. o. o.11 12 
V 11 11 13 O. o. o. 
V 12 12 14 O. O. o. 
V 12 13 14 2 1 O. O. O. 

"'---------" 14 R 2 2 12 0 0 0 1 11 0 2.E9 1 o. 
T3 1. E6 1. E6 2.E6 6.E6 .1.E7 2.E7 6.E7 
T3 1. E8 2.E8 6.E8 1. E9Fig. 9.3 - Mesh for Terzaghi I-D consolidation (12 LST elements of type 3) 
V 1 2 3 2 _ O. O. O. 

record Fig . 9.4 - Input data for Terzaghi I-D consolidation 
A ONE DIMENSIONAL TERZAGHI CONSOLIDATION 
B 14 12 3 3 2 0 
C 0 0 
D 0 0 0 0 0 0 0 0 0 0 

E 0 0 0 0 

F 1 o. 10. 

F 2 1. 10. 

F 3 o. 9. 

F 4 1. 9. 

F .5 o. 8. 

F 6 1. 8. 

F 7 o. 6. 

F 8 1. 6. 

F 9 o. 4. 

F 10 1. 4. 

F 11 O. 2. 

F 12 1. 2. 

F 13 o. o. 

F 14 1. O. 

Gl 0 

H 1 3 2 1 3 

H 2 3 3 4 2 

H 3 3 4 3 5 

H 4 3 5 6 4 

H 5 3 6 5 7 

H 6 3 7 8 6 Fig. 9.5 - Boundary conditions for Terzaghi I-D consolidation 
H 7 3 8 7 9 
H 8 3 9 10 8 
H 9 3 10 9 11 zero) or it is restrained. Loads are applied, and only have effect on free nodes. 
H 10 3 11 12 10 There is no point in applying a load to a restrained node or a node with
H 11 3 12 11 13 

H I 

I . 12 3 13 14 12 
 prescribed displacements (the effect would be the same as applying no load at 
K 0 all - think of a giant hand restraining a node or moving it by a ' prescribed 
Ll 0 2 12 0 0 0 amount). 
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The time step for the increment in which load is applied is chosen such that 
no dissipation would be expected. The choice of time steps was discussed in 
section 3.6.4. Exactly the same results were obtained as presented in Chapter 3, 

confirming that both programs are similar (Fig. 9.6). 

TINY 

Theory 

Increment nos. 

Fig. 9.6 - Plot of degree of consolidation against Tv for Terzaghi I-D 
consolidation 

9.4 ELASTIC ANALYSES 

The next series of examples is chosen to illustrate different aspects of CRISP. A 
single mesh as shown in Fig. 9.7 is used in all the examples . It consists of 80 LST 
elements and 54 vertex nodes. 

The problem considered is a linear elastic layer of finite depth subjected to a 
uniform circular surface pressure . The following material properties have been 

chosen for the elastic layer: 

E = 3000 kPa, v = 0.25 (hence G = 1200 kPa). 

The applied pressure is 30 kPa . The boundary condition for the mesh is as 

follows : the outer vertical boundary is restrained in the x direction and is 

assumed to be smooth, i.e. free to move in the y direction. The base of the layer 
is assumed to be rough and hence is restrained in both x and y directions. The y 
axis, being the axis of symmetry, is restrained in the x direction but is free to 

move in the y direction (Fig. 9.8). In fact in axisymmetric problems it is not 

Sec. 9.4] Elastic Analyses 
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F 18 4.000 10.000 
F 19 6.000 0.000 
F 20 6.000 3.000 
F 21 6.000 6.000 
F 22 6.000 8.000 
F 23 6.000 9.000 
F 24 6.000 10.000 
F 25 8.000 0.000 
F 26 8.000 3.000 
F 27 8.000 6.000 

't 
., 

i! 

F 
F 
F 

28 
29 
30 

8.000 
8.000 
8.000 

8.000 
9.000 

10.000 
F 31 12.000 0.000 
F 32 12.000 3.000 
F 33 12.000 6.000 
F 34 12.000 8.000 
F 35 12.000 9.000 
F 36 12.000 10.000 
F 37 20.000 0.000 

Fig . 9.8 - Boundary conditions used in analysis 
F 
F 

38 
39 

20.000 
20.000 

3.000 
6.000 

F 40 20.000 8.000 
necessary to restrain the (Lxis of symmetry but this was done here . The mesh F 41 20.000 9.000 

represents a radial section of the axisymmetric problem. All calculations are 

carried out over a full rotation (2n)of this radial section. 

F 
F 
F 

42 
43 
44 

20.000 
30.000 
30.000 

10.000 
0.000 
3.000 

F 45 30.000 6.000 

9.4.1 Linear elastic ­ drained analysis F 
F 

46 
47 

30.000 
30.000 

8.000 
9.000 

The first anlysis is a drained one. Since Kw = cr.K', ~,which is the 7th material 
property · in the list of material properties, is set to zero. All other material 

F 
F 
F 

48 
49 
50 

30.000 
40.000 
40.000 

10.000 
0.000 
3.000 

properties are set to zero except for the elastic properties. Since this is a linear F 51 40.000 6.000 

elastic analysis, the load is applied in a single increment. The input data are given F 52 40.000 8.000 

in Fig. 9.9. F 
F 

53 
54 

40.000 
40.000 

9.000 
10.000 

record Gl 0 

A CIRCULAR LOAD ON AN ELASTIC FOUNDATION 1 2 1 7 2 
B 
C 
D 
E 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 

54 
0 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

eo 3 
0 
0 0 
0 0 

0.000 
0.000 
0.000 
0.0'00 
0.000 
0.000 
2.000 
2.000 
2.000 
2.000 
2.000 
2.000 
4.000 
4.000 
4.000 
4.000 

2 2 

0 0 
0 

0.000 
3.000 
6.000 
8.000 
9.000 

10.000 
0.000 
3.DOO 
6.000 
8.000 
9.000 

10.000 
0.000 
3.000 
6.000 
8.000 

8 

0 0 0 0 0 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

· 1 

2 
2 
3 
3 
4 
4 
5 
5 
6 
7 
8 
8 
9 
9 

10 
10 
11 
11 
12 
13 

7 
8 
8 
9 
9 

10 
10 
11 
11 
13 
13 
14 
14 
15 
15 
16 
16 
17 
17 
19 

8 
3 
9 
4 

10 
5 

11 
6 

12 
8 

14 
9 

15 
10 
16 
11 
17 
12 
18 
14 

F 17 4.000 9.000 H 22 2 14 19 20 



394 Examples [Ch.9 
Sec. 9.4] Elastic Analyses 395 

H 
H 

23 
24 

2 
2 

14 
15 

20 
20 

15 
21 L2 0 0 6 18 771 787 0 0 

H 
H 

25 
26 

2 
2 

15 
16 

21 
21 

16 
22 

M 
0 

1 
0 

1 
0 

3.E3 3.E3 0.25 0.25 1.2E3 O. o. O. O. O. 

H 
H 
H 

27 
28 
29 

2 
2 
2 

16 
17 
17 

22 
22 
23 

17 
23 
18 

R 
U 
U 

10 
20 

1 
6 

12 

0 
12 
18 

-2 0 26 
0.0 30.0 
0.0 30.0 

2 0 0.0 0 0.0 
0.0 30.0 0.0 30.0 
0.0 30.0 0.0 30.0 

H 30 2 18 23 24 v 1 1 2 1 . O. O. O. 
H 31 2 19 25 20 v 3 2 3 1 O. O. O. 
H 32 2 20 25 26 V 5 3 4 1 O. O. O. 
H 33 2 20 26 21 V 7 4 5 O. O. O. 
H 31l 2 21 26 27 V 9 5 6 1 O. O. O. 
H 35 2 21 27 22 V 1 7 1 O. O. O. 
H 36 2 22 27 28 V 1 7 2 O. O. O. 
H 37 2 22 28 23 V 11 7 13 1 O. O. O. 
H 38 2 23 28 29 V 11 7 13 2 o. O. O. 
H 39 2 23 29 24 V 21 13 19 1 O. O. O. 
H 110 2 21l 29 30 V 21 13 19 2 O. O. O. 
H 41 2 25 31 26 V 31 19 25 1 O. O. O. 
H 112 2 26 31 32 V 31 19 25 2 O. O. O. 
H 43 2 26 32 27 V III 25 31 1 O. O. O. 
H 44 2 27 32 33 V 41 25 31 2 O. O. O. 
H 45 2 27 33 28 V 51 31 37 1 O. O. O. 
H 
H 

46 
47 

2 
2 

28 
28 

33 
34 

34 
29 

V 
V 

51 
61 

31 
37 

37 
43 

2 
1 

O. 
O. 

O. 
O. 

O. 
O. 

H 48 2 29 34 35 V 61 37 43 2 O. O. O. 
H 49 2 29 35 30 V 71 43 49 1 o. O. O. 
H 50 2 30 35 36 V 71 43 49 2 O. O. O. 
H 51 2 31 37 32 V 72 49 50 O. O. O. 
H 52 2 32 37 38 V 74 50 51 O. O. O. 
H 53 2 32 38 33 V 76 51 52 O. O. O. 
H 54 2 33 38 39 V 78 52 53 O. O. O. 
H 55 2 33 39 34 V 80 53 54 o. O. O. 
H 
H 

56 
57 

2 
2 

34 
34 

39 
40 

40 
35 

J:ig. 9.9 - Input data for linear elastic (drained) analysis 

H 
H 

58 
59 

2 
2 

35 
35 

40 
41 

41 
36 The calculated central and edge settlements by CRISP are 55 and 30 mm 

H 60 2 36 41 42 respectively. Poulos (1967) has presented theoretical solutions which give a 
H 
H 
H 

61 
62 
63 

2 
2 
2 

37 
38 
38 

43 
43 
44 

38 
44 
39 

central displacement of 55 mm for a layer of the same thickness. In a separate 
solution for a rough-based layer but with v = 0.3 the theory predicts 52 mm for 

H 
H 
H 
H 

64 
65 
66 
67 

2 
2 
2 
2 

39 
39 
40 
40 

44 
45 
45 
46 

45 
40 
46 
41 

the central displacement and 27 mm for the edge settlement (Milovic, 1970). 
Harr (1966) (see Table 5.1 of Poulos and Davis, 1974) has also presented an 
approximate solution, which gives an edge settlement of 31 mm for the above 

H 
H 
H 

68 
69 
70 

2 
2 
2 

41 
41 
42 

46 
47 
47 

47 
112 
48 

problem. The comparison is good and the reader can see the authors following 
their own advice in section 9.2 in calibrating the program against solutions. 

H 71 2 43 49 44 
H 
H 

72 
73 

2 
2 

44 
44 

49 
50 

50 
45 

9.4.2 Non-homogeneous elastic model ­ drained analysis 

H 74 2 45 50 51 In this analysis the variation of Young's modulus is as shown in Fig. 9.1 O. A 
H 
H 
H 

75 
76 
77 

2 
2 
2 

45 
46 
46 

51 
51 
52 

ll6 
52 
47 

value of 2000 kPa is assumed at the surface and there is a linear increase to 4000 
kPa at the base of the layer. This gives an average E value of 3000 kPa, which is 

H 
H 
H 

78 
79 
80 

2 
2 
2 

47 
47 
48 

52 
53 
53 

53 
48 
54 

the same as that for the linear elastic analysis. The only difference to the input is 
the material properties (record M), which are as follows: 

K 0 
L1 0 0 Record 

M 11 2 2000. 10. 200. 0.25 O. O. O. O. O. O. 
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y 	 equal to 30 kPa and is applied in the first increment over a time step of 11. The 
(m) 

top surface is assumed to be a drainage boundary and all other boundaries are 
I ' assumed to be impermeable. The pore pressure boundary condition is applied ' 
I' by using a fixity code of 2 along element sides on the suiface. In the second 

increment block, which consists of 9 increments, the following time steps were 10 ~----~~--~~------~~----
used. 

1000Q 10000. 20000. 60000. . 

100000. 200000. 600000. 
1000000. 2000000. 

The input data are shown in Fig. 9.11. 

record 
A CIRCULAR LOAD ON AN ELASTIC FOUNDATlON '- CONSOLIDATION 
B 54 80 . 3 3 2 8 

I 

o ~----~----~------.------r-------- C 0 0
I 1000 2000 3000 4000 E (kPa) D 0 0 0 0 0 0 0 0 
 0 0

I E 0 0 0 0 

1 Fig. 9.10 - Variation of Young's modulus with depth for non-homogeneous F 0.000 0.000 


elastic model 	 F 2 0.000 3 .. 000 -Ii F 3 0.000 6.000 
Poisson's ratio is assumed constant throughout and equal to 0.25. The central ..........Ii ..........
ii displacement was calculated to be 64 mm. 

F 54 40.000 10.000'I 	 0Gl

'I 9.4.3 Linear elasti~ - undrained analysis 
 H 1 3 1 7 2 

H 2 3 2 7 8
The only difference between an undrained analysis and a drained analysis is that.'II; 3 3 8 3 


.!I the undrained analysis requires the specificati.on of the parameter a. This is used H 
H 

4 3 .J 
2 

8 9 

. ]J in the calculation of an equivalent bulk modulus for water within the program. 	 H 5 3 3 9 4 

. .........
"" If A value of 100 is chosen and the only difference to the input data is record M. , ~ iI 	 .......... 

~ Ii H 80 3 48 53 54 


Record K 0
• I 
I 	 Ll 2 1 10 0 0 1Mil 1 3000. 3000. 0.25 0 .25 1200. O. 100. O. O. . O.I 	

L2 0 0 1 50 771 787 1 40 
M 1 3.E3 3.E3 0.25 0.25 1.2E3 0; 10. o. 1.E-8 1.E-8 

The calculated central settlement is 33 mm. 	 0 0 0 
R 1 1 1 0 -2 0 26 12 0 1.0 0 0.0 

U 10 6 12 0.0 30.0 0.0 30.0 0.0 30.09.4.4 Linear elastic - consolidation analysis 
U 20 12 18 0.0 30.0 0.0 30.0 0.0 30.0 

The elastic parameters are the same as for the drained analysis. The additional V 1 1 2 1 1 o. o. o. 
V 3 2 3 1 o. o. o.

parameters that need to be specified are the unit weight of water, which is taken 
V 5 3 4 o. o. o. 

as 10 kN/m 3 , and the permeabilities in the x and y directions, which are taken as ............. 
equal to 10-8 m/s. . ............ 

V 76 51 52 1 o. o. o. 
7th property = IW = 10 kN/m 3, V 78 52 53 o. o. o. 

V 80 53 54 1 o. O. o. 
9th property = kx = 10-8 mIs, R 2 2 10 0 0 0 8 12 0 4.E6 1 0.0 

T3 1. E4 1. E4 2.E4 6.E4 1. E5 2.E5 6.E5 1.E6 2.E6 
10th property = ky = 10-8 m/s. V 10 6 12 3 2 o. o. o~ 

V 20 12 18 3 2 o. o. o. 
The initial stresses are assumed to be zero as in the case of the previous analyses. V 30 18 24 3 2 o. O. O. 
Because this is a consolidation analysis, the element type is 3 . Again the load is V 40 24 30 3 2 o. o. o. 

http:specificati.on
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V 50 30 36 3 2 O. O. O. 

V 60 36 42 3 2 O. O. O. 

V 70 42 48 3 2 O. O. O. 

V 80 48 54 3 2 O. O. O. 


Fig. 9.11 - Input data for consolidation analysis 

At the end of the 10th increment it was found that not all excess pore 
pressures have dissipated. In this run the results of the 10th increment (i.e. the 
last increment) had been written to a disk file because the stop-restart facility 

was being used (see record L1). It was decided to continue the analysis and 
apply a further 4 increments with the following time steps. 

6000000 10000000 20000000 60000000 

The nodal co-ordinates and element-nodal connectivitylist are always included 
in the input data. Therefore the input data for the restarted run are the same as 

far as the first A to K records are concerned. The rest of the input data are 
shown in Fig. 9.l2. It should be noted that ISR = 1 in record L1 to indicate that 
the option to stop-restart the analysis is being used, and INCS is set to 11 to 
indicate that results at the end of increment 10 are stored in a disk file. For a 
restarted analysis, records 0 to Q3 are omitted. The boundary conditions need 
not be specified again, as there are no changes to them. 

record 
K 0 

-L 1 1 1 11 14 0 0 1 
L2 0 0 1 50 771 787 1 40 
M 1 3.£3 3.£3 0.25 0.25 .1.2E3 O. 10. O. 1. E-!3 1.E-8 
R 1 11 14 0 0 0 0 12 0 9.6£7 1 0.0 
T3 6.£6 1. E7 2.£7 6.E7 

Fig. 9.12 - Input data for restarted consolidation analysis 

The results from 	 the drained, undrained and consolidation analyses are 
compared in Fig. 9.13, where the average settlement is plotted against 
loglo (time). As one would expect, the immediate settlement in the, 
consolidation analysis is equal to the one obtained from the undrained analysis. 
After all the pore pressures are dissipated, the final settlement is equal to the 
one from the drained analysis. Also shown in this figure is the settlement from 

the drained analysis using the non-homogeneous elastic model. 
Booker and Randolph (1984) present theoretical solutions for the 

consolidation of a semi-infinite elastic medium under a uniform surface loading 
over a circular area. They define the degree of consolidation as U: 

wet) - w(O-!-)
U= . (9.l)

w(oo) - w(O-!-) , 

where wet) is the average settlement of the loaded area at time t . This solution is 
compared in Fig. 9.14 with the CRISP results in a plot of cv t/a 2 against U, 
where a is the radius of the loaded area. The comparison is fairly good for the 
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10 

0.01 

0.02 

- --- Undrained (LE) 

0.03 


Consolidation 

C\../ 

0.04 


Drained (LE) 


0.05 	1------ Drained 


(non ·homogeneous) 


Average senlement 
(m) 

Fig. 9.13 - Comparison of average settlement in different types of analysis 

0.001 0.01 0 .1 1.0 10 

o 	 Theory k)( • k y 

(Booker and Randolph. 1984) 
20 

• Theory k x = lOOk y 


40 
 (Booker and Randolph. 1984) 

CRISP results 

60 

o 


80 


100 

u 

Fig. 9.14 - Comparison of finite element results with theory 
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case kx = ky bearing in mind that the CRISP results are for a layer of finite 
thickness. In a separate analysis, kx = 100ky , and the comparison is reasonable. 
Booker and Randolph give the final central settlement as 75 mm. This is the 

same result as given by Poulos and Davis (I974) for an elastic half-space. By 

deducting the settlement at a depth equal to the thickness of the layer used in 

the CRISP analysis, a value of 66 mm was obtained. This can be compared with 

the CRISP result of 55 mm. 

9.5 UNDRAINED ANALYSIS - CAM-CLAY 

9.S.1 Undrained analysis - normally consolida ted clay 

To illustrate the use of the critical state model, first the 10m layer is assumed to 
be one-dimensionally normally consolidated. An initial stress state of a typical 

poin t is denoted by A in Fig. 9.15. The point A lies on the Kn c line as well as on 
the yield locus. 

q 

~----------------------------~------_p' 

Fig. 9.15 - In situ stress state for one-dimensionally normally consolidated soil 

The principal difference from the earlier elastic analysis is the specification of 

initial stresses. In an elastic analysis the initial stresses do not affect the results in 
any way and hence usually are taken as zero. If one considers a point at a depth 

'of 10 m and taking the unit weight of saturated soil and water as 20 and 10 
kN/m 3 respectively, 

av = 20 X 10 = 200 kPa, Uo = 10 X 10 kPa, a~ = 100 kPa. 

The value of Knc which is needed for the calculation of ah is calculated from the 

following e.xpression due to Jaky (1944): 

Knc = 1 ­ sin (¢'), (5.11 bis) 

where ¢' is calculated from the equation(c.f. ego (5.8)) 

, 3M 
sin(¢ )=--. 

6+M 
(9.2) 

Sec. 9.5] Undrained Analysis - Cam·day 

The Cam-clay parameter M was taken as 0.888, which gave Knc = 0.613 . This in 

turn gave ah = 61.3 kPa. This gives 

q = 100 - 61.3 = 38.7 kPa, 

p' = (I 00 + 2 X 61.3)/3 = 74.2 kPa. 

The size of the yield locus (i.e. p~) is calculated from the expression of the Cam­
clay yield locus, since the stress state lies on the surface. 

q = Mp' In (p~/p '). (9.3) 

Substituting the above values gives p~ = 133 .5 . All the stresses are equal to zer 
along the surface, and the variation is linear with depth . 

The other Cam-clay parameters were chosen to be 

K = 0.062, A= 0.161; r = 2.759. 

The part of the' input data different from that for the linear elastic analysis is 

given in Fig. 9.16. Note that the displacement boundary conditions are specified 
along with the initial stresses. 

record 
A CIRCULAR LOAD ON N.C. CAM-CLAY u* UNDRAINED 

Ll 1 5 30 0 0 ,1 
L2 0 0 6 18 771 787 5 30 

'M 4 0.062 0.161 1. 759 0.888 0.25 o. 100. 20. o. D_ 
O 1 2 
Pl o. 61.3 100.0 61.3 o. 100. o. 133.5 
Pl 2 10. o. o. o. o. o. o. o . . 
Ql 0 26 1. 
Q3 1 1 2 o. o. o. 
Q3 3 2 3 o. o. o. 
Q3 5 3 4 o. o. o. 

............. 

...... ....... 
Q3 76 51 52 o. o. o. 
Q3 78 52 53 1 o. o. o. 
Q3 80 53 54 1 1 o. o. o. 
R 1 5 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 222 
U 10 6 12 0.0 1.0 0.0 1.0 0.0 1.0 
U 20 12 18 0.0 1.0 0.0 1.0 0.0 . 1.0 
R 2 6 10 0 -2 0 0 0 0.0 0 0.0 
T2 112 12 12 12 222 
U 10 6 12 0.0 5.0 0.0 5.0 , 0.0 5.0 
U 20 12 18 0.0 5.0 0.0 5.0 0.0 5.0 
R 3 11 15 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 222 
U 10 6 12 0.0 5.0 0. 0 5.0 0.0 5.0 
U 20 12 18 0.0 5.0 0.0 5.0 0.0 5.0 
R 4 16 20 0 -2 0 0 0 0.0 0 0.0 
T2 112 12 12 12 222 
U 10 6 12 0.0 5.0 0.0 5.0 0.0 5.0 
U 20 12 18 0.0 5.0 0.0 5.0 0.0 5.0 
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R 5 21 30 0 -2 0 0 0 0.0 0 0.0 

T2 112 12 12 12 222 

U 10 6 12 0.0 5.0 0.0 5.0 0.0 5.0 

U 20 12 18 0.0 5.0 0.0 5.0 0.0 5.0 


Fig. 9.16 - Input data for undrained analysis (normally consolidated - Cam-clay) 

Small load steps of 0.2 kPa are chosen for the first 5 increments. As soon as 

any load is applied, plastic yielding takes place. Then the loads are increased at 

the rate of 1 kPa per increment up to 16 kPa. A further 10 increments of 0.5 
kPa are finally applied. The central settlement is plotted against the vertical 
pressure in Fig. 9.17. Large settlements take place which increase fairly steadily 
as more load is applied. Fig. 9.18 shows the region approaching the critical state. 

Vertical 
pressure 
(kPa) 

Cam·clay 80 
over·consol idated 

(undrained) 

70 

Cam·clay 
over·consol idated 
(drained) 

60 

50 

40 

30 

20 	 Cam·clay 
normally 
consolidated 
(undrained) 

10 

0.01 0.02 0.03 0.04 0.05 

Central settlement 

Fig. 9.17 - Comparison of pressure curves for different soil models 

Sec. 9.5] Undrained Analysis - Cam-clay 

Region approaching 
critical state 

Fig. 9.18 - Region approaching critical state for normally consolidation soil 

9.5.2 Undrained analysis - over-consolidated clay 

The analysis conducted above is perhaps a little unrealistic. The strength is zero 
at the surface and increases linearly with depth. According to the theoretical 

analysis of Davis and Booker (1973) a rigid perfectly-plastic solid with this 
strength distribution will support only very small loads. From a practical point 
of view one would not expect to be able to put much load on such an extremely 
soft deposit. In real situations, attempts will be made to either lower the water 
table or pre-consolidate by applying dead loads. It is perhaps more realistic to 

consider an over-consolidated clay. The initial stress state, where the clay layer 
has been subjected to a vertical pressure of 50 kPa which was subsequently 
removed, is considered. The OCR at a depth of h metres is then given by 

50 + "t'h 
OCR=--­ (9.4)')'Ill 

The OCR at a depth of 10 m is then = (50 + 10 X 10)/100 = 1.5. A number of 
empirical relationships have been proposed for the relationship between Ko and 

OCR (Wroth, 1975; Parry, 1982). The procedure by Wroth (1975) was discussed 
in section 5.5.3 and his equation for lightly over-consolidated clays is adopted 

here. The top 1 m is heavily over-consolidated and a linear variation is assumed 

for ah. The distributions of ah and a~ are shown in Fig. 9.19. The passive failure 
line is also indicated in that figure. 

The calculation of the size of yield locus is as in the previous analysis but 

using the maximum stresses experienced. For example, considering the stress 
state at the base of the layer, the maximum vertical effective stress is 150 kPa. 
The horizontal effective stress is 92 kPa. 
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Fig. 9.19 - In situ stress distribution in analysis 

q 	 = 150 - 92 = 58, 

p' = (150 + 2 X 92)/3 = 111.3. 

Using the Cam-clay yield locus , p~ = 200.25. For the surface, o~m = 50 kPa and 
Ohm = 30.7. This gives a value of 66.75 for p~. Because the horizontal effective 
stress distribution is approximated to bea bilinear curve, only three in situ nodes 

are needed to define it. The input data are shown in Fig. 9.20. 
The initial response is elastic. Since the layer is over-consolidated and the test 

pa ths are undrained (i.e . vertical within the yield locus until yielding takes 

place), quite large load steps can be applied. 
The initial yielding takes place around 40 kPa. In fact a single load increment 

of 40 kPa could have been applied. At the onset of yielding, small load steps are 

required. Increments of I kPa are sufficiently small enough under these 
circumstances. The softening again leads to a large settlement. The load-settle­
ment curve is shown in Fig. 9.17. Even though the first yielding takes place 
around 40 kPa it is not until about 55 kPa that any deviation from the elastic 
response is noticeable. Beyond 65 kPa, significant yielding/softening takes 

place, which is accompanied by large settlements. Fig. 9.21 shows the yielding 

zones at different stages of the loading. 

Sec. 9 .5] . Undrained Analysis - Cam·day 

record 
A CIRCULAR LOAD ON O.C. CAM-CLAY *** UNDRAINED 

............. 

.......... ... 
L1 1 1 5 1 141 a a 1 
L2 0 0 6 18 771 787 5 30 
M 
a 

4 0.062 0.161 1. 759 0.888 0.25 
3 

O. 100. 20. O. O. 

P1 O. 75.0 100.0 75.0 O. 100. O. 201. 0 
P1 2 9. 19.9 10. 19.9 O. 10. O. 80.4 
P1 3 10. O. O. O. O. o. O. 66.75 

............. 

......... .... 
R 1 1 0 -2 0 0 222 0 0.0 0 0.0 
V 10 6 12 0.0 40.0 0.0 40.0 0.0 40.0 
V 20 12 18 0.0 40.0 0.0 40.0 0.0 40.0 
R 2 2 11 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 102 12 102 12 102 222 
U 10 6 12 0.0 10.0 0.0 10.0 0.0 10.0 
U 20 12 18 0.0 10.0 0.0 10.0 0.0 10.0 
R 3 12 21 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 102 12 102 12 102 222 
U 10 6 12 0.0 10.0 0.0 10.0 0.0 10.0 
U 20 12 18 0.0 10.0 0.0 10.0 0.0 10.0 
R 4 22 31 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 102 12 102 12 102 222 
U 10 6 12 0.0 10.0 0.0 10.0 0.0 10.0 
U 20 12 18 0.0 10.0 0.0 10.0 0.0 10.0 
R 5 32 41 0 -2 0 0 0 1 0.0 0 0.0 
T2 112 12 12 12 102 12 102 12 102 222 
U 10 6 12 0.0 10.0 0.0 10.0 0.0 10.0 
U 20 12 18 0.0 . 10.0 0.0 10.0 0.0 10.0 

Fig. 9.20 - Input data for undrained analysis (over-consolidated - Cam-clay) 

1::::: :1 Softening 

Fig. 9.21(a)- Zone of yielding after 61 increments (62 kPa) (C I 
consolidated, undrained) am-c ay, over­
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Fig. 9.21(b) - Zone approaching critical state after 80 increments (81 kPa vertical 
pressure) (Cam ·day, over-consolidated, undrained) 

The stress paths for element centroids 16 and 19 are shown in Fig. 9.22. The 
effective stress paths are vertically upwards as predicted by theory. There is no 
change in p , until yielding. 

9.6 DRAINED ANALYSIS ~ MODIFIED CAM-CLAY 

In order to demonstrate a drained analysis, the modified Cam-clay (MCC) model 
is used. The stress history of over-consolidation is assumed to be the same as in 
the previous example. However, because of the difference in the yield locus the 
values of p~ will be different. 

The Cam-clay parameters are assumed to be the same as in the previous 
analysis except for the parameter f. For the Cam-clay model, f was taken as 
2.759 and this gives a value of 2.858 for N. By assuming that both yield locii 
meet at the isotropic consolidation line the value of r is calculated as follows : 

r=N-(A-K) X In (2). (9.5) 

, I This yields a value of 2.789 for the MCC model. 
~ A total load of 40 kPa was applied over the first 10 increments (Fig. 9.23). 

The initial response is elastic. The load-displacement curve is shown in Fig. 
9.17 . Even though the first yielding does not take place until about 40 kPa the 
response is curved upward. This is because of the increase in p' and since the 
effective bulk modulus is assumed to be 

K' = (l + e)p' 
(9 .6) 

K 

Sec, 9.6] Drained Analysis - Modified Cam-clay 407 

q 
(kPa) 

CSL 

30 
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20 

10 
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10 20 30 40 

rec()rd 
A 

Fig. 9.22 - Effective stress paths (Cam-clay, undrained) 

CIRCULAR LOAD ON O.C. MOD CAM-CLAY *** DRAINED 

Ll 
L2 
M 
0 
Pl 
Pl 
Pl 

R 
T2 
U 
U 

1 1 1 10 0 0 1 
0 0 6 18 771 787 5 30 

3 0.062 0.161 1.789 0.888 0.25 o. o. 
3 

1 o. 75.0 100.0 75.0 o. 100. o. 150.1 
2 9. 19.9 10. 19.9 o. 10. O. 60.0 
3 10. o. O. o. O. o. o. 50.0 

............ 

........... 
1 10 0 -2 0 0 0 1 0.0 0 0.0 

112 12 102 12 102 12 102 12 102 222 
10 6 12 0.0 40.0 0.0 40.0 0.0 40.0 
20 12 18 0.0 40.0 0.0 40.0 0.0 40.0 

20. o. o. 

Fig. 9.23 - Input data for drained analysis (over-consolidated - MCC) 

and there is a stiffening effect as the load builds up . Then a change of slope takes 
place around 50 kPa with increased settlements. 

The zone of yielding is shown in Fig. 9.24. 
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Fig. 9.24 - Zone of yielding/hardening (modified Cam-clay, drained analysis) 

9 .7 EMBANKMENT CONSTRUCTION 

This problem is to illustrate the feature in the program to add elements. The 

details of the mesh, boundary conditions and properties of the elastic 
foundation are the same as in the drained analysis in section 904 .1. The emban~­

ment is modelled by 16 LST elements of type 2. This is also a drained analysis. 

However, this is ~ plane strain analysis (N"PLAX = 0 in record L1). The y axis is 

an axis of symmetry and the embankment is restrained in t.he x direction along 

this axis. The embankment is assigned a material zone number of 2. However , its 
material properties are the same as the elastic layer. The bulk unit weight of the 
embankment is taken as 20 kN/m3

. The in situ stresses are again set to zero. To 
indicate that body forces under ear.th 's gravity are acting, DGRAV= 1 in record 

R. The input data are shown in Fig. 9 .25 . 

recnrd 
A AN EMBANKMENT ON AN ELASTIC FOUNDATION 
B 63 96 3 2 2 8 
C 0 0 
D 0 0 0 0 0 0 0 0 0 0 
E 0 0 0 0 
F 1 0.000 0.000 
F 2 0.000 3.000 
F 3 0.000 6.000 

.... ............ 

..... ... ......... 
F 52 40.000 8.000 
F 53 40.000 9.000 
F 54 40.000 10.000 
F 55 0.000 11.000 

Sec.9.7J 
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 ., 
F I 

F 
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G1 

H 
H 
H 
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H 
H 

H 

H 

H 

H 
H 
H 
H 
H 
H 
H :: 

H 

H 

H 

H 

K 

L1 
L2 
M 
M 2 
N 
N 
0 
R 
S 
s 
V 
v 
V 

V 
V 
V 
V 
V 

Embankment Construction 

56 0.000 12.000 
57 2.000 11.000 
58 2.000 12.000 
59 4.000 11.000 
60 4.000 12.000 
61 6.000 11. 000 
62 6.000 11. 500 
63 8.000 11.000 
0 
1 2 1 7 2 
2 2 2 7 8 

2 2 8 

...... . ....... 

.............. 
78 2 1 117 52 53 
79 2 1 47 53 48 
80 2 1 48 53 54 
81 2 2 6 12 57 
82 2 2 6 57 55 
83 2 2 12 18 59 
84 2 2 12 59 57 
85 2 2 18 24 61 
86 . 2 2 18 61 59 
87 2 2 24 30 63 
88 2 2 24 63 61 
89 2 2 30 36 63 
90 2 2 55 57 58 
91 2 2 55 58 56 
92 2 2 57 59 60 
93 2 2 57 60 58 
94 2 2 59 61 62 
95 2 2 59 62 60 
96 2 2 61 63 62 
0 
0 2 1 1 1 16 0 
0 0 6 18 771 787 5 30 

3.E3 3.E3 0.25 0.25 1.2E3 o. 
1 3.E3 3.E3 0.25 0.25 1.2E3 O. 

81 82 83 84 85 86 87 ·88 89 90 
91 92 93 94 95 96 
0 0 

1 1 16 0 0 28 2 0 0.0 0 1.0 
81 82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 

1 1 2 0; o. o. 
3 2 3 o. o. o. 
5 3 4 o. O. o. 

.............. 

............. 
76 51 52 o~ O. o. 
78 52 53 O. o. o. 
80 53 54 o. O. o. 
82 6 55 o. o. o . 
91 55 56 O. O. O. 

o. 
o. 

o. 
20. 

o. 
O. 

O. 
O. 

Fig. 9 .25 - Input data for embankment construction analysis 
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Elements 81 to 96 which represent the embankment (Fig. 9.26) are removed 

a t the beginning (record N), and IPRIM == 16 in record Ll, the number of 
elements being removed. These elements are added in the first increment block. 

Fig. 9.27 shows the surface settlement of the elastic layer. 

Fig. 9.26 - Elements used in modelling embankment 

0.05 

0.10 

0.15 

Settlement 
(metres) 

Fig. 9.27 - Surface settlement profile under embankment loading 

If this was an analysis with a non-linear model the loading due to the weight 
of embankment in general would be applied in a number of increments. For 
example, if it is taken as 10 increments, only the following records need to be 

changed. record Ll to indicate there are 10 increments. 

Record 

LlIO 2 I 10 16 0 0 

Record 

R I 1 10 16 0 0 28 2 0 O. 0 1. 

Then the loading will be applied in 10 equal increments. 

Sec. 9 .8] Excavation 

9.8 EXCAVATION 

As in the case of the embankment construction in section 9.7 this example is to 
illustrate the feature to remove elements. The details of the mesh and elastic 
properties are the same as in that example. This analysis is an axisymmetric 
drained analysis. 

The simulation of an excavation process is carried out by removing the 
following elements (see Fig. 9.28). 

5 6 7 8 9 10 15 16 17 18 19 20 

Fig . 9.28 - Elements removed in the simulation of an excavation event 

The in situ stresses have to be specified for this example. Ko is taken as 0.61 to 
calculate the initial stresses. To indicate that the in situ stresses were generated 
under earth's gravity, TGRAVI == 1 (record Ql). The input data are shown in 

Fig. 9.29. 

record 
A EXCAVATION IN ~N ELASTIC FOUNDATION 
B 54 80 3 2 2 0 

................ 

..... .... ... .... 
K 0 
Ll 1 1 1 0 0 1 
L2 0 0 6 18 771 787 5 30 
M 1 3.E3 3.E3 0.25 0.25 1. 2E3 o. o. 20. o. o. 
0 1 2 
Pl o. 61. 100. 61. o. 100. o. o. 
Pl 2 10. o. o. o. o. o. o. o. 
Ql 0 26 1. 
Q3 
Q3 
Q3 

1 
2 
3 

2 
3 
4 

o. 
o. 
o. 

o. 
o. 
o. 

o. 
o. 
o. 

............. 

............. 
Q3 
Q3 
Q3 
V 

16 
18 
80 
80 

51 
52 
53 
53 

52 
53 
54 
54 1 

O. 
o. 
o. 

1 

o. 
o. 
o. 

o. 

o. 
o. 
o. 
o. o. 

R 1 1 1 12 0 0 0 2 0 0.0 0 0.0 
S 5 6 7 8 9 10 15 16 17 18 19 20 

Fig. 9.29 - Input data for excavation analysis 
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The elements are removed in the first increment block in a single increment 
(ICHEL = 12 in record R). The list of elements removed is specified in record S. 
Earth's gravity is already acting at the in situ stage and hence DGRAV = O. As 
explained in section 9.7 the loads due to the excavation could have been applied 
over a number of increments. The displacements around the excavation are 
shown in Fig. 9.30. 

' , I 
r 
r 
I 

, I 
II I 

0.1 metres -~: 
~ _______ ...J 

Fig. 9.30 - Displacements around an excavation 

9.9 UNDRAINED TRIAXIAL TEST 

Fig. 9.31 shows the mesh, which consists of 2 CuSt elements (type 6). Because 
stress conditions are uniform, arbitary dimensions are assumed. The use of two 
LST elements (element type 2) would probably be adequate for this analysis, 
but CuST elements are used (element type 6) to demonstrate this higher-order 
element (which is often to be preferred for axisymmetric analysis (see section 
9.2)). There are four vertex nodes in the mesh. 

The soil sample is isotropically consolidated to 200 kPa and then isotropically 
unloaded to a mean normal stress of 150 kPa. A standard undrained compression 
test is then carried out. The Cam-clay parameters selected for the soil are as 
follows: 

A = 0.30, K = 0.05, M = 1.0, r - 1 = 2.953, 

As this is an undrained analysis, the bulk modulus of water 
complete the data on material properties. 

(1+e)p'
Effective bulk modulus of soil = ---- . 

K 

, (1+1.5517)150
K =----­

0.05 

= 7655 kPa. 

v' = 0.3. 

is required to 

Sec. 9.9] Undrained Triaxial Test 

v 

c o4 
(0.0,1.0) 3 (1.0, 1.0) 

o o 

o 

o 

(1.0.0) 
-----o.._x 

1, A 2. B 

Fig. 9.31 - Undrained triaxial test on over-consolidated clay 

In general, the bulk modulus of water is taken as 100 K' (7.655 X lOs kPa). In 
the analysis presented here, a is taken as 65, which gives a value of 5.0 X lOs 
kPa for the bulk modulus of water. More than 50 load increments are 
recommended for a finite element analysis which simulates a triaxial test. The 
purpose of the example presented here is to demonstrate the capabilities of the 
program. Therefore only six load increments are used for illustrative purposes. A 
strain-controlled test is considered here with 0.5% axial strain in each increment, 
leading to a total axial strain of 3%. 

AB is restricted to move hOrizontally ' and AC is restricted to move vertically . 
CD is displaced vertically downwards to simulate a strain-controlled test. 
Differerit ou tpu t options are specified in each increment. 

The results of the analysis are plotted in q:€ a, U :€a and q:p' space (Fig. 9.32). 
These are compared with the theoretical solution and also with an analysis using 
a large number of increments. These differences between theory and predictions 
are due to the large increment size which was used solely for illustrative 
purposes. During the second increment the yield ratio (YR) is on average abou t 
1.12, i.e. the yield locus has grown in size by 12%. Stricter control on YR is 
recommended so that the change in size of the yield locus is not more than 1% 
(i.e. YR 1.01 or 0.99). These results emphasise the importance in selecting the 
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size of load increment: as shown here, large load increments may lead to 
erroneous results. The input data to the program are given in Fig. 9.33. 

q 
(kPa) 

120 _----- ________ 6 Increments 

Theory, 50 increments 

80 

40 

3 

u 
(kPa)

80 

40 

4 

CSL 

120 FE (6 increments) . 

80 

40 

120 160 p' (kPa) 

.Fig. 9.32 - Comparison of theoretical and finite element results 

40 80 

Sec.9.l0] Interpretation of Analyses using Cam-clay 

9.10 INTERPRETATION OF ANALYSES USING CAM-CLAY 

To make the interpretation of the results of analyses easier, the stress state of 
each integration point is assigned a number by CRISP. This indicates whether 
yielding is taking place and if so, whether the soil is hardening or softening. The 
different numerical codes are illustrated in Fig. 9 .33(a). 

Also of interest to the analyst is the amount by which the yield locus is 
expanding or contracting when yielding is taking place. This information is given 
by the yield ra tio (YR) parameter which appears in the printed ou tpu t: 

YR=£L 
P~o 

where P~o is the pre-consolidation pressure at the start of the load increment 
and P~ is the pre-consolidation pressure at the end of the load increment 
(assuming that the sample has yielded). 

If the soil is yielding and hardening then values of YR slightly greater than 
one will be seen. Values of YR less than one mean that either the soil is behaving 
elastically or the soil is yielding and softening. Fig. 9 .33(b) illustrates some of 
the different possibilities where the initial yield locus always corresponds to p~o . 
Soil in initial states B I and Cl yields (and hardens) to points B2 and C2. 
Although Cl is initially elastic and Bl is already yielding, both stress changes 
lead to the same value of YR (== P~B/P~o). Soil which remains elastic (e.g. Al to 

A2 in Fig. 9.33(b)) has a YR which is calculated by constructing a fictitious 
yield locus through the current stress point to give the P~ value 

(YR =P~ A/P~o)· 
Examples of the use of the critical state models can be found in a number of 

publications. For example Mair et al. (1981) and Seneviratne & Gunn (1985) 
compare finite element predictions with tests on model tunnels. Bassett et al. 
(1981) and Almeida et al. (1986)) compare data from centrifuged model 
embankments with finite element analyses. These latter analyses clearly 
demonstra te how the strengthening of a clay founda tion can be explained by a 
finite element model which combines a critical state soil model with 
consolidation following the stages of construction. In analyses such as these the 
basic mode of behaviour of different points in the soil mass can first be traced 
by examining values of 171M, YR and the numerical codes as the analysis 
progresses. Stress paths (i.e. p', q plots) of interesting points are then drawn. At 
present this is done by hand but (we hope) it will soon be an option in post­
processing programs. 

http:Sec.9.l0
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recnrd 
A * UNDRAINED TRIAXIAL TEST * MODIFIED CAM-CLAY * 
B 4 2 3 6 2 8 
C 0 0 

D 0 0 0 0 0 0 0 0 0 0 
,E 0 0 0 0" 

F 1 o. o. 

F 2 1. o. 

F 3 1. 1. 

F 4 o. 1. 

G1 0 
H 1 6 2 3 
H 2 6 3 4 
K 0 
L1 '1 1 1 6 0 0 0 
L2 1 1 1 4 751 768 1 2 
~1 3 0.05 0.3 2.9535 1.0 0.3 0 65. 0 0 0 
0 1 2 
P1 1 o. 150. 150. 150. o. o. o. 200. 
P1 2 1. 150. 150. 150. o. O. O. 200. 
01 2 2 o. 
02 1 2 3 o. 150. o. 150. o. 150. o. 150. o. 150. 
02 2 4 3 G. 150. o. 150. o. 150. o. 150. O. 150. 
03 1 2 2 1 o. o. ' o. o. o. 
03 2 1 4 1 1 o. o. o. o. o. 
R 1 1 6 0 0 0 0 1 o. 0 o. 
T2 1221 1211 121 1112 121 1222 
U 2 4 3 2 -0.03 -0.03 -0.03 -0.03 -0.03 

Fig. 9.33 - Input data for undrained triaxial test - MCC 

Appendix A: 
Input specification 

A.l DATA FORMAT 

The data for the program are free format and the particular data items must 
appear in the correct order on a data record. The term 'record' describes the data 
which would be typed in via a computer terminal and occupies one line of a 
computer disk file (the normal method of preparation) or punched card. Unless 
specified otherwise it should be assumed that one record of data is represented 
by a single line of input or a punched card. The data items are separated by one 
or more spaces. For the sake of clarity, users should use at least two spaces. In 
fact, the data specified in a 'record', for example record D, could be spread over 
any number of lines, the only restriction being that they should be in the correct 
order. 

For example, let the input for data record D be 

0 0 0 0 0 o ' 
This could have been inpu t by 

line 1 0 0 0 

line 2 0 

line 3 0 0 


However, this usage is recommended only when it is absolutely necessary, 
because checking the input data for errors is made easier if each record of data 
is confined to a single line of input. 
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Data items are indicated below by mnemonic names, i.e. names which suggest 4 - mesh and all node numbers 

the data item required by the program. The FORTRAN naming convention is 5 - mesh and element numbers 

used: names beginning with the letters I, J, K, L, M and N show that the 6 mesh, vertex numbers and element numbers 

program is expecting an INTEGER data item, whereas names beginning with 7 mesh, midside numbers and element numbers 

any other letter show that the program is expecting a REAL data item. 8 mesh and all numbers 

INTEGER data items must not contain a decimal point, but REAL data items 

may optionally do so. REAL data items may be entered in the FORTRAN t Record C (one only) 

exponent format if desired, i.e. 0.001 I may be entered as I.IE-3 . Individual 

data items must not contain spaces. 
NUMAX MUMAX 

NUMAX+ maximum value of user vertex node number
A.2 INPUT DATA 

MUMAX+ - maximum value of user element number 

In this section, t indicates extra explanation in section 9.2. 

t Record A (one only) 

t Record D (one only) 

TITLE (up to 80 characters) 

101 102 ID3 .. . .................. 1010 

TITLE - title for the analysis 

IDl ... IOIO debugging option. To print out various arrays in geometry part 

t Record B (one only) of program, when testing the program. 

o no printout 

1 - list of arrays printed are given below: if set to l, the 

NVTX NEL MXNDV MXTYP NDIM IPLOT following are printed: 

ID I print NCONN after exit from routine CONECT which reads input data 

NVTX number of vertex nodes in the mesh of list of nodes connected to each element (routine MARKZ) 

NEL - number of elements in the mesh 102 print ITAB after co-ordinates of all displacement nodes along element 

MXNOV maximum number of vertex nodes in any element sides have been calculated (routine MIOSIO) 

MXTYP element type with most number of total nodes (per element) in 103 print IFR after all variables have been allocated places in FRONT 

mesh (rou tine SFWZ) 

2 linear strain triangle (LST) with displacements unknown 104 - print NOEST after all variables have been allocated places in FRONT 

3 linear strain triangle (LST) with displacements and excess (routine SFWZ) 

pore pressures unknown (linear variation in pore pressure) print NCONN, MREL, NRELVV after all vertex node co-ordinates and
105 ­

6 cubic strain triangle (CuST) with displacements unknown element-nodal connectivity have been read (routine CONECT) 

7 - cubic strain triangle (CuST) with displacements and excess ID6 print MFRN (optimum frontal order of elements specified by the user); 

pore pressures unknown (cubic variation in pore pressure) only relevant if IRNFR = I (routine CONECT) 

NDIM - number of dimensions to problem 107 print NCONN, MREL, MRELVV, NREL, NRELVV, LTYP, MAT, NQ 

2 - two-dimensional problem after all nodes have been numbered and co-ordinates calculated (routine 

IPLOT - plotting option parameter with the following possible values: MARKZ) 

o - no plotting 

1 - unnumbered mesh 

mesh and vertex node numbers2 -
:j: Use of 0 is only applicable if user node and element numbers begin with 1 and there are 

3 - mesh and midside node numbers no gaps in the numbering. 
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ID8 - print contents of array G (both INTEGER and REAL parts are printed 
separately - routine MAST) 

ID9 print out INTEGER arrays which have been shifted (routine SHFTIB) 
ID I 0 - print NQ and NW (routine GPOUT) 

in order to avoid lots of output, all the values must be set to zero for 
normal runs (this option is used only when debugging the program) 

t Record E (one only) 

NSDZ NSPZ NDCUR NPCUR 

These four parameters are only relevant if the element sides are curved and the 
user intends to specify the co-ordinates of nodes along these sides '; otherwise 
(default option) all four variables must be set to O. 

NSDZ - Number of nodes along element Sides excluding end nodes 
(Displacement nodes) 

NSPZ - Number of nodes along element Sides excluding end nodes (excess 
Pore pressure nodes) 

NDCUR - Number of CURved sides (Displacement nodes) 
NPCUR - Number of CURved sides (Pore pressure nodes) 

t Record F (NVTX records) 

NODE X Y 

NODE - vertex node number 
X - x co-ordina te of node 
Y - y co-ordinate of node 

tRecord GI (one only) 

IRNFR 

IRNFR - option to specify separate list of optimum frontal numbering of 
elements 

- read separate list (see record G2) 
2 - use the sequence in which elements are read (see record H) 

Sec. A.2] Input Data 

t Record G2 - only included if IRNFR =I in record G I 

MFRU(I) MFRU(2) ...... _ . . .. MFRU(NEL) . 

MFRU(l) ... MFRU(NEL) - optimum frontal numbering of elements 

t Record H (NEL records) 

KEL ITYP IMAT N1 N2 N3 

KEL - element number 
ITYP - element type number 

2 - 6-noded LST (2-D) 
3 - 6-noded LST (2-D consolidation) 
6 - 15-noded CuST (2-D) 
7 - 22-noded CuST (2-D consolidation) 

IMAT - rna terial zone number in the range 1 to lO 
NI , N2, N3 - vertex node numbers listed in anti-clockwise order 

t Record I (NDCUR records - only included if NDCUR > 0) 

MU NDI ND2 Xl YI X2 Y2.. . .. XN YN 

MU - element number 

NDl,ND2 - nodes at either end of element side 

XI,Yl ') 

X2,Y2 { 
 - nodal co-ordinates of curved element side for displacement nodes 

- NSDZ (excluding end nodes) ::::: ~ 
XN,YN , 

t Record J (NPCUR records - only included if NPCUR > 0) (for consolida tion 
elements o'nly)+ 

MU NDI ND2 Xl YI X2 Y2 .... ' XN YN 

MU - 'element number 

NDI,ND2 - nodes at either end of element side 


XI,Yl ) 

X2,Y2 ( 
 - nodal co-ordinates of curved element side for pore pressure nodes 

- NSPZ (excluding end nodes) ::::: \ 
XN,YN / 


:t: Not required for element type 3. 
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t Record K (one only) 

IDCHK 

IDCHK -	 option to stop analysis at different stages 
o 	 run complete analysis 

run geometry part of the program (enables the mesh to be 
plotted and checked) 

2 	 run geometry part of the program, read in situ stresses and 
boundary conditions and carry out an equilibrium check 

t Record L1 (one only) 

NPLAX NMAT NOIB INCS INCF IPRIM IUPD ISR 

NPLAX - plane strain/axisymmetric analysis option 
o - plane strain 
1 - axisymmetric 

NMAT number of material zones 
NOIB total number of increment blocks 
INCS increment number at start of analysis 
INCF increment number at finish of analysis 
IPRIM number of elements to be removed to form primary mesh 
IUPD - geometry updating option 

o - co-ordinates are not updated after each increment 
1 - co-ordinates are updated after each increment 

ISR 	 stop-restart option 
o - stop-restart facility is not used 
1 - limited stop-restart option (analysis can only be restarted and 

continued from where the previous run was stopped). 
Conveniently used with a disk file 

2 - full stop-restart option making use of two magnetic tapes. 
Analysis can be restarted from any increment in the past 

t Record L2 (one only) 

!BC IRAC NVOS . NVOF NMOS NMOF NELOS NELOF 

!BC 	 boundary conditons output option 
o - boundary conditions are not printed 
1 - boundary conditions are printed 

IRAC 	 reactions output option 
o reactions are not printed 

1 - reactions are printed 


Sec. A.2] 	 Input Data 

NVOS - starting vertex node number for output+ 

NVOF - finishing vertex node number of output+ 

NMOS - starting midside node number for output + 

NMOF - finishing midside node number for output + 

NELOS - starting element number for output+ 

NELOF - finishing element number for output+ 


t Record M (NMA T records) 

MAT NTY P(I) P(2) .... . P(IO) 

MAT - material zone number - all elemen ts given the same number in record 
H will have the following properties (maximum of 10 different zones) 

NTY - material property type as in the table below: 

1 elastic, anisotropic 

2 elastic, linear variation with depth 

3 modified Cam-clay 

4 Cam·clay 


NTY 
Property 2 3 4 S 

P(I) 	 Eh Eo K K 

P(2) 	 Ev Yo A. A. 

P(3) 	 vhh m r-l r-l 

P(4) 	 vvh v M M 

peS) 	 Ghv 0 G or v I G or v 
I 

P(6) 	 0 0 0 0 

P(7) 	 ~ 0 for drained, a for undrained, 'Yw for consolidation--7 

P(8) 'Y 
P(9) ~ kx for consolidation, 0 for drained or undrained ---+ 

P(lO) 	 ~ ky for consolidation , 0 for drained or undrained ---+ 

+ This allows one to reduce the output and print out the results for nodes and elements 
:vhich are within a specified range. This option is applied on the output codes specified 
In record R. 

I ~ 
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t Record N - only included if IPRIM > 0 

JEL(1) JEL(2) ..... JEL(IPRIM) 

JEL(1) etc. - list of element numbers to be removed to form mesh at start of 
analysis 

tRecord 0 (one only) - records 0 to Q3 are omitted for a restarted analysis 
using the stop-restart facility 

KT NI 

KT in situ stress option 

o - set in situ stresses to zero 

interpolate in situ stresses from a given set of nodes representing 
layers 

2 direct specification of in situ stresses at all integration points 
NI the number of in situ nodes:!: (giving NI-l in situ layers) 

t Record PI (NI records) - only included if KT = 1 

IL YI V(I) V(2) V(7) 

IL - in situ node number § 

YI - y co-ordinate of in situ node 
V(l) ax 

I 

V(2) - a; 
V(3) - a; 
V(4) - Txy 

V(5) - U 

V(6) - 0 
V(7) - p~ (zero, if not Cam-clay) 

Record P2 (only included if KT =2) 

There are NEL sets of records P2 and P3 - one set for each element 

MUS - element number 

:j: These in situ nodes are not to be confused with the nodes in the finite element mesh. 
These in situ nodes serve as reference points for in terpola ting in situ stresses. 

§ Records PI must be input in ascending order of in situ node numbers. No gaps are 
allowed in the in situ node numbers. 

Sec. A .2} Input Data 

Record P3 (NGP records - only included if KT =2)+ 

VAR(I) VAR(2) . . . . ........ . .. VAR(7) 


VAR(l) ... VAR(7) - stress parameters a t each in tegra tion poin t (a ~, al~' a;, 
Txy, u, e, p~) where ­
e - voids ratio 

p~ - pre-consolidation pressure 

for all models other than the Cam-clays, e and 
p~ must be set to zerO 

Record Ql § (one only - omit if in situ stresses are set to zero, i.e. KT = 0, in 
record 0) 

NLODI NFXI TGRAVI 

NLODI - number of element sides with pressure loading (which is in equili­
brium with the in situ stresses) 

NFXI number of element sides with fixities in the mesh 
TGRAVI in situ gravity acceleration field - 0, 1 or n 

Record Q2§ (NLODI records - only included if NLODI > 0) 

L Nl N2 Tl S1 T3 . S3 T2 S2 

- linear strain triangle 

see record U(b) for details 

L N1 N2 Tl Sl T3 S3 T4 S4 T5 S5 T2 S2 

- cubic strain triangle 

see record U (b) for details 

:\: NGP - the number of integration points and one line of data for each integration point. 
= 7 (for LST element types 2, 3) 
= 16 (for CuST element types 6. 7) 

Records QI, Q2 and Q3 are omitted if in situ stresses are all set to zero (i.e. KT = 0 in 
record 0). 
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Record Q3:j: (NFXI records - only included if NFXI > 0) 

ML 	 NDI ND2 IVAR IFX 0 0 0 

-linear strain triangle 

ML 	 NDI ND2 IVAR IFX 0 0 0 0 0 

- cubic strain triangle 

ML -	 element number 

ND 1 t 	 node numbers at the end of element side which is fIxed 
ND2 f 
IVAR 	 the variable that is fIxed 


1 - x displacement 


2 - Y displacement 

IFX -	 fixity code = 1 

Record R (one only, but the group of records R to V is repeated for each 
increment block, i.e. NOIB times) 

IBNO INCA INCB ICHEL NLOD ILDF NFIX lOUT IOCD 
: DTIlv~E ITMF DGRAV 

IBNO - increment block number 

INCA - increment number at the start of the current increment block 
(INCA ~ INCS) 

INCB increment number at the end of the current increment block 
(INCB ~ INCF) 

lCHEL number of elements to be added/removed for the current incre­
ment block 

NLOD number of incremental nodal loads or (if NLOD is negative) the 
number of element sides with pressure loading 

ILDF load ratios 

o 	 the loading is equally distributed over the INCB-INCA+1 
increments 

read separate list of load ratios for each increment (record 
TI) 

NFlX number of element sides with prescribed value of the variable 
lOUT standard output for~this increment block - a four-digit number 

abcd where (see also record L2) 

t Records Q1, Q2 and Q3 are omitted if in situ stresses are all set to zero (i.e. KT =0 in 
record 0). 
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a -	 out-of-balance loads 

o no out-of-balance loads 

1 - out-of-balance loads at vertex nodes 
2 - out-of-balance loads at all nodes 

b - extra parameters for Cam-clay models only 
o - no output 

1 - parameters at element centroids t 

2 - parameters at all integration points 
c -	 option for general stresses 

o no stresses printed 

1 - stresses at element centroids t 

2 - . stresses at all integration points 
d -	 option for nodal displacements 

o no displacements printed 

1 - displacements at vertex nodes 
2 - displacements at all nodes 

IOCD 	 output option 

o 	 standard output given by lOUT for each increment in the 
increment block 

read 	 separate list of output options for each increment 
(record T2) 


DTIME time increment for consolidation analysis 

ITMF time increments 


o 	 time increment DTIME is equally divided between all the 
increments in the increment block 

read separate list of time steps for each increment (record 
T3) 

DGRAV 	 - in'crement in gravity acceleration field 

= (!:J.n - change in number of gravities) 

note: the number of increments in the increment block 
NOlNC (= lNCB - INCA + 1) must not exceed 50. 

Record S -	 only included if ICHEL > 0 

JEL(I) JEL(2) '" JEL(ICHEL) 

JEL( I) etc. - list of element numbers which are added/removed in this 
increment block 

t 	 Centroid is the last integration point in the element (it is the 7th in LST and the 16th in 
CuST). 
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Record Tl - only included if ILDF = 1 

R(l) R(2). .. R(NOINC) 

R(l) etc. - the ratio of incremental loads to be applied in each increment 

Record T2 - only included if IOCD = I 

IOPT(l) IOPT(2) ... IOPT(NOINC) 

IOPT(l) etc. - the output options for each increment 

Record T3 - only included if ITMF = I 

DTM( I) DTM(2). .. DTM(NOINC) 

DTM(l) etc. - the time steps for each increment (these are not ratios) 

where NOINC = INCB - INCA + 1 

tRecord U (NLOD records) 

(a) 	 NLOD> 0 

N DFX DFY 

N - node number 

DFX - increment of x force 

DFY 	- increment ofy force 

(b) 	 NLOD < 0 

L NI N2 TI Sl T3 S3 T2 S2 

- linear strain triangle 

L N! N2 TI Sl T3 S3 T4 S4 T5 S5 T2 S2 

I - cubic strain triangle 
II 

L - element number 

NI 


- node numbers at end of the loaded element side 
N2 
TI - increment of shear stress at N I 
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Sl - increment of normal stress at N I 
T3,T4,T5 - increment of shear stress at edge nodes 3, 4 and 5 (see Fig. A.I) 
S3,S4,S5 - increment of normal stress at edge nodes 3,4 and 5 
T2 - increment of shear stress at N2 
S2 - increment of normal stress at N2 

sign convention for stresses: 

shear strec;ses which act in an anti-clockwise direction abou t element centroid are 
positive. Normal stresses - compressive stresses are positive 

Record V (NFIX records) 

ML 	 NDI ND2 IVAR IFX VI V3 V2 (a) 

ML 	 NDI ND2 IVAR IFX VI V3 V4 V5 V2 (b) 

ML 	 ND! ND2 IVAR IFX VI V2 0 (c) 

ML 	 ND! ND2 IVAR IFX VI V3 V4 V2 0 (d) 

ML - element number 
ND I ,ND2 - node numbers at the end of fixed element side 
IVAR - the variable that is prescribed 

1 - x displacement 

2 - y displacement 

3 - excess pore pressure 


IFX - fIxity code 
I - incremental value of variable 
2 - absolute value of excess pore pressure 

VI, V2 - prescribed value at end nodes 
V3, V 4, V5 - prescribed values at nodes along element side (excluding end 

nodes) 

(a) 	 displacement fIxity 
linear strain triangle - element types 2 and 3 
IVAR= I or2;IFX=! 

(b) 	 displacement fIxity 
cubic strain triangle"""" element types 6 and 7. 
IVAR = I or 2; IFX = I 
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(c) 	 excess pore pressure fixity Record No. of Read in Data 
linear strain triangle - element type 3 type records subroutine 
IVAR = 3; IFX = 1 or 2 

(d) 	 Excess pore pressure fixity K CPW IDCHK 
cubic strain triangle - element type 7 L1 RDPROP NPLAX NMAT NOIB INCS INCF 
IVAR = 3; IFX = 1 or 2 IPRIM IUPD ISR 

L2 RDPROP 	 IBC IRAC NVOS NVOF NMOF 
NELOS NELOF 

M NMAT RDPROP MAT NTY P(1) P(2) ... P(10) 
N 1 INSITU JEL(I) JEL(2) ... JEL(IPRIM)

V2 	 V2 o INSITU KT NI 

PI NI RDSTRS IL YI V(1) V(2) . .. V(7) 

P2 NEL RDSTRS MUS 

P3 NGP*NEL RDSTRS V AR(1) V AR(2) ....... V AR(7) 


Vl 	 Vl 
QI I INSITU 	 NLODI NFXI TGRAVI(a)LT=2,3 (b)LT::6,7 
Q2 NLODI INSITU L N1 N2 TI Sl T3 S3 T2 S2 

orNI N2 T1 Sl T3 S3 T4 S4 
T5 S5 T2 S2 

Q3 NFXI FIXX ML NDI ND2 IVAR IFX 0 0 0 
or ML NDI ND2 IVAR IFX 0 

o 0 
R 	 ANS IBNO INCA INCB ICHEL NLOD 

ILDF NFIX lOUT IOCD DTIME 
Vl 	 Vl ITMF DGRAV 

(c) LT = 3 	 (d)LT=7 
S ANS 	 JEL(I) JEL(2) ... JEL(ICHEL) 

Fig. A.l - Displacement and pore pressure fixities 	 TI FACTOR R(l) R(2) ... R(NOINC)t 
T2 I FACTOR IOPT(1) IOPT(2) .. IOPT(NOINC)t 
T3 I FACTOR DTM(1) DTM(2) DTIM(NOINC)t 
U NLOD ANS N DFX DFYA.3 	 DATA SUMMARY 

or L N1 N2 TI Sl T3 S3 T2 S2 
or L NI N2 TI Sl T3 S3 T4 S4 

Record No. of Read in Data T5 S5 T2 S2 
type records subroutine V NFIX FIXX 	 ML NDI ND2 IVAR IFX VI V3 

V2 
A MAST TITLE or ML NDI ND2 IVAR IFX VI 
B MAST NVTX NEL MXNDV NDIM IPLOT V3 V4 V5 V2 
C MAST NUMAX MUMAX or ML ND1 ND2 IVAR IFX VI 
D MARKZ ID1 ID2 103 a ........... ID10 V2 0 
E 1 MARKZ NSDZ NSPZ NDCUR NPCUR or ML NDI ND2 IVAR IFX VI 
F NVTX RDCOD NODE X Y V3 V4 V2 0 
G1 CONECT IRNFR 
G2 CONECT MFRU(1) MFRU(2) MFRU(NEL) t NOINC = INCB - INCA + l. 
H NEL CONECT KEL ITYP IMAT NI N2 N3 N.B. The group of records R to V is repeated NOm times. 
I NDCUR CUREDG MU ND1 ND2 Xl Y1 XN YN 
J NPCUR CUREDG MU ND1 ND2 Xl Y1 ... XN YN 
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Appendix B: 	Mesh-plotting 
using GIN0-F 

I' 

B.t INFORMATION WRITTEN TO PLOT DATA FILE 

The data written to the Plot Data (PO) file on unit 8 by CRISP provide all the 
information necessary to draw the mesh and number the nodes and elements. 
The contents of the PO file are different for different values of IPLOT (record B 
of input data). Therefore if different types of plot are required - for example 
an unnumbered mesh or mesh with only element numbers - then it would 
require two separate runs of CRISP with appropriate values for the parameter 
IPLOT. The mesh-plotting program only interprets the information written to 
the PO file and has no control over the different types of plot as available in 
CRISP. 

The information written to the PO file has the following format: 

NDIM 


COOMAX(lO), 10 = I,NOIM. COOMIN(IO), 10 = I,NDIM. 


followed by a number of records of the form 

INTI XYZ(lO), 10 = I, NOIM. INT2 

For two-dimensional problems, NOIM = 2. 

COOMAX and COOMIN contain the maximum and minimum values of the 
nodal co-ordinates. These define the extent of the mesh and are used in 
calculating a default scale for the plot. 
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XYZ(NOIM) is either the nodal co-ordinates or the element centroid co­
ordinates. 

INTI is a control code. 

If negative, indicates change of pen colour. 

-1 Black. Used in drawing element sides and to plot vertex 
node numbers. 

-2 Red . Used to plot midside node numbers. 
-3 Green. Used to plot element numbers . 

. If INTI = 11 then a number is to be plotted . 
If INTI =3 indicates MOVE the pen to the position 

XYZ(NOIM). 
If INTI =1 indicates DRAW to the position XYZ(NOIM). 
If INTI =0 indicates end of PO file . 

INT2 is a node or an element number or a dummy integer. 

When INTI is negative it indicates a change of pen colour. The rest of the 
record is then ignored. 

When INTI is either 1 or 3 the value INT2 is ignored, i.e . ~hen drawing 
element sides. 

When INTI = 11 then the number given by INT2 is plotted at the position 
given by XYZ(NOIM). 

Therefore two records are needed to draw an element side. 
The first record will then contain INTI = 3 with the co-ordinates of one end 

of the element side. The second record will contain INTI = 1 with the co­
ordinates of the other end of the element side. 

The option to choose a scale and whether or not to rotate the plot in the 
plotter space is controlled by the input to the mesh-plotting program. 

B.2 MESH-PLOTTING PROGRAM 

A listing of the program which makes use of the GINO-F routines and plots the 
mesh is given below. This program was used in the Cambridge University 
computer, an IBM 3081. Slight changes may be necessary to run it in other 
installations. 

It reads the PO file from unit IRP (set to 1) , which was created by CRISP. 
The following file containing control data is read from unit IR5 (set to 5) . The 
control data consist of 

record 1 101 - the debug flag. If set to 1, prints out the data in the PD file. 
This option is only used when something goes wrong and no plot is 
produced. The normal option is to set to O. 
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record 2 IROTPL - option to rotate plot. If set to 1, the plot is rotated 
C RECORD 1 - ID1 (DEBUG OPTION PRINT INFO READ FROM PLOT DATA FILE)

through 90°. This option can be used to make better use of the READ(IR5, ·)1D1 
plotting region, i.e. if the mesh has y dimension greater than x WRITE(IW6,922)ID1 

922 FORMAT(/10X,15HDEBUG OPTION = ,18/)dimension . Otherwise set to O. 
. I C RECORD 2 - IROTP L 

" i C ••* IROTPL (IF EQ 1) - ROTATE PLOT BY 90 DEGREES (AC DIRECTION) 
The plotting region requested is 300 X 250 mm. This can easily be altered . The READ(IR5,*)IROTPL 

WRITE(IW6,930)IROTPLmesh itself is plotted within a region of 250 X 200 mm. This leaves a gap of 25 930 FORMAT(! I 

mm all around the mesh to allow for node numbers to be plotted. 
 1 10X,46HROTATION OF PLOT ............................ =,I8!) 

Routine INTPLT initialises the plotter and deals with the positioning and C'" SIZE OF REGION REQUESTED FOR PLOT IS 300 X 250 MM 
C **. DEFAULT SIZE OF PLOT IS 250 X 200 MMrotation of the plot. 
C'" 	 (THIS GIVES A 25 MM SPACE ALL AROUND THE MESH)

Routine WIDTH calculates the number of digits in the element or node PLOTL=250. 

number. PLOTW=200. 


Note that the plotting options (vertex node numbers, midside node numbers C 

IF(IROTPL.NE.1)GOTO 35 

and element numbers) have been specified using IPWT in record B of input da'ta AW=XW 

to CRISP. If a different type of plot is required (e.g. an unnumbered mesh) then XW=YW 


YW=AW
CRISP has to be re-run with the appropriate value for IPLOT in record B. 
C 

35 SCALM=PLOTW/XW 
SCALY=PLOTLlYWCHARACTER·80 ITITLE 
IF(SCALY.LT.SCALM)SCALM=SCALYDIMENSION CMIN(2),CMAX(2),CD(2) C
C··············································*······•••••••••••••••••• 

WRITE(IW6,940)SCALMC 	 PROGRAM TO PLOT FINITE ELEMENT MESH FROM CRISP PROGRAM 940 FORMAT(C 	 USING GINO-F GRAPHICS 

1 10X,46HSCALE FOR PLOT.............................. =,F9.3/)
C 	 IRP - FILE CONTAINING PLOT DATA C
C 	 IR5 - FILE CONTAINING CONTROL DATA FOR PLOT 

CALL INTPLT(IW8,IROTPL,SCALM,XLN,YLN,PLOTL,PLOTW)C 	 IW6 - OUTPUT FILE (TO PRINTER) CC·····························""",··"·,·,,·,·,,,·,.,", .. ,.".,",., 	 C ,., READ PLOT INFO FROM FILEPIBY2=2.·ATAN(1.) 
10 READ(IRP)ICODE,(CD(ID),ID=1,NDIM),NPIBY6=PIBY2/3. IF(ID1.EQ.0)GOTO 12THETA=(5./6.)·PIBY6 

WRITE(IW6,910)ICODE,~CD(ID),ID=1,NDIM),NIRP=1 
910 FORMAT(1X,I5,2F8.1,I8)IR5=5 12 CONTINUEIW6=6 

IF(ICODE.EQ.O)GOTO 99IW8=8 
C IF(ICODE.GT.O)GOTO 15 

C '*' IF ICODE IS NEGATIVE CHANGE PEN COLOURREAD OR P )lTITLE 
C'" 	 SELECT PEN COLOURC 
C , •• 	IN GINO-F PEN COLOUR FOR GREEN IS 5 AND NOT 3 AS IN IBM 3081 

ICODE=IABS(ICODE)
READ ORP) NDIM 
WRITE(IW6,909)NDIM IF(ICODE.EQ.3)ICODE=5909 FORMAT(111X,6HNDIM =,14/) CALL PENSEL(ICODE,IDUM,IDUM)READ(IRP)(CMAX(ID),ID=1,NDIM),(CMIN(ID),ID=1,NDIM) GOTO 10
WRITE(IW6,912)(CMAX(ID),ID=1,NDIM),(CMIN(ID),ID=1,NDIM) C 

912 FORMAT(/1X,15HPLOT DIMENSIONS/(6F8.1» 15 IF(ICODE.GT.10)GOTO 25

C C *,. DRAW ELEMENT SIDE


XW=CMAX(1)-CMIN(1) IPEN=ICODE-1YW=CMAX(2)-CMIN(2) 
C 	 IF(IPEN.EQ.2)CALL MOVT02(CD(1),CD(2» 

IF(IPEN.EQ.O)CALL LINT02(CD(1),CD(2» WRITE(IW6,950)XW,YW GOTO 10
950 FORMAT(/1X,4HXW =,F8.2,2X,4HYW =,F8.2) C"· 	PLOT NUMBER WITH OFFSETC 

C *., 	IF ICODE IS GT 10 - PLOT NUMBERXLN=CMIN(1) 
25 CALL MOVT02(CD(1),CD(2»YLN=CMIN(2) 

C 	 CC CALL MOVBY2(XCS,YCS) 

C"· PLOT NUMBER
C , •• 	READ PLOT CONTROL PARAMETERS 

CALL WIDTIHN,NW) 



436 	 Appendix B 

CALL CHAINT(N,NW) 
GOTO 10 

C *** CLOSE STREAM, PACKAGE 
99 	 CALL DEVEND 


STOP 

END 

SUBROUTINE INTPLT(IW8,IROTPL,SCALM,XLN,YLN,PLOTL,PLOTW) 


C*********************************************************************** 
C INITIALISE PLOTTER 
C*********************************************************************** 
C 
C *** THE FOLLOWING STATEMENT IS FOR OTHER INSTALLATIONS, 
C *** NOT REQUIRED IN IBM 3081 
CC CALL HP7220 
C *** THE FOLLOWING STATEMENT IS FOR IBM 3081 

CALL GINPLT 

PLOTL=PLOTL+50. 

PLOTW=PLOTW+50. 

CALL DEVPAP(PLOTL,PLOTW,1) 


C 
CALL MOVT02(0.,0.) 
CALL UNITS( 1.0) 

C 
CHAHIG=2.5 
CHA\HD=1.5 

C 
IF(IROTPL.EQ.1)GOTO 20 
CALL HOVT02(0.,10.) 
CALL CHASIZ(CHAWID,CHAHIG) 
CALL SCALE(SCALM) 
ZX=25./SCALM-XLN 
ZY=25./SCALM-YLN 
CALL SHIFT2(ZX,ZY) 
RETURN 

20 	 CONTINUE 

CALL CHAANG(90.) 

CALL MOVT02(240.,10.) 

CALL CHAARR(ITITLE,20,4) 

CALL CHASIZ(CHAWID,CHAHIG) 

CALL SCALE(SCALM) 

ZX=210./SCALM+YLN 

ZY=-(XLN-25./SCALM) 

CALL SHIFT2(ZX,ZY) 

CALL ROTAT2(90.) 

CALL MOVT02(XLN,YLN) 

RETURN 

END 

SUBROUTINE WIDTH(N,NW) 


C 
Hl=O 
NC=N 

C 
10 	 NC=NC/10 

IW=IW+1 

IF(NC.GT.O)GOTO 10 

NW=IW 

RETURN 

END 


Appendix C: Explanations of 
error and warning messages 

ANS 

(a) ERROR IN INCR BLOCK NUMBER NA NB 

The increment block numbers must be in sequence. The program has an internal 
counter and it expects the increment block number to be NB, but in the data 
input it has the number NA (probable user error). 

(b) ERROR IN INCREMENT NUMBER INC! INC2 (ROUTINE ANS) 

When reading the control parameters for the current increment block the firs, 
and last increments are read as INC! and INC2~ INC! must be in sequence (if 
this is not the first increment block in the analysis, INC! must have the value 
next to the last inc rem en t in the previous block) and if it is not equal to the 
counter witrun the program, the above message is printed. The above message 

will also appear when INC2 < INCl. 

(c) When the number of increments in a block exceeds the allocated 50, the 

following message is printed: 

INCREASE SIZE OF ARRAYS RINCC, DTM AND IOPT TO NH 

ALSO SET INeZ IN ROUTINE ANS 

INCZ must be set equal to the actual number of increments (NH in this 
example) in addition to the array sizes being increased in routine ANS. 
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CUREDG 

(a) 	 ***ERROR** EDGE CONTAINING NODES NI N2 NOT FOUND 

Each element side is given a unique code IHASH (= 10000 * 11 + 12, 11 and 12 

being the (program) node numbers at either end with 11 < 12) when the 
program calculates the co-ordinates of the nodes along the side. This code is 
entered in the first column of array ITAB(LTAB,LDIM). When the user specifies 
the nodal co-ordinates along the curved element sides, as a first step the code 
for the element side is calculated and the above array is scanned to find it. If it is 
not found then the above message is printed (probable user error in specifying 
the nodes N 1 and N2). 

(b) ELEMENT MI DOES NOT CONTAIN NODES Nl N2 

When the user specifies the co-ordinates of nodes along curved element sides 
he/she identifies the element side by the element number and the nodes at either 
end of the side. When either or both these nodes (N 1 and N2) are not found in 
element Ml, this statement appears (probable user error). 

(c) If errors of category (a) or (b) have been encountered, the program is 
stopped after the input data of nodal co-ordinates along curved sides have been 
read, with the following message. 

PROGRAM TERMINATED IN ROUTINE CUREDG 

DETJCB 

JACOBIAN Rl IS NEGATIVE. ELEMENT Ml INT. POINT N 
(ROUTINE DETJCB) 

When the determinant ~f the Jacobian matrix is negative this message is printed. 
The value of the determinant is Rl. This is followed by a code to indicate at 
what stage of the analysis this error occurred. 

DETMIN 

JACOBIAN Rl OF ELEMENT M INTEGRATION POINT N IS 
NEGATIVE (ROUTINE DETMIN) 

The determinant of the Jacobian matrix of element M at integration point N is 
negative. This is followed by a code to indicate at what stage of the analysis this 

error occurred. This is mainly for the benefit of the programmer when testing 
the program. This message with a code of 1 probably means an error in 
specifying the mesh geometry. Check whether the nodes associated with an 
element are specified in the anti-clockwise order. Also check whether the co­
ordinates of the nodes have been specified correctly. 
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DISTLD 

**** ERROR: ELEMENT M DOES NOT HAVE NODES: N1 N2 

(ROUTINE DISTLD) 

The nodes N 1, N2 are used to identify the side of element M which has a 

pressure loading. This message should not be printed, since before entering this 
rou tine a check is carried out to find whether nodes N 1 and N2 belong to 
element M. Therefore this message can only mean a program error. 

EDGLD . 

(a) 	 ELEMENT Ml NOT PRESENT IN CURRENT MESH (ROUTINE 
EDGLD) 

The element with the pressure loaded side does not exist in the current mesh 
(probable user error). 

(b) The error message is the same as issued by routine DISTLD and is printed 
when data errors are detected. 

EQLBM 

WARNING **** NO APPUED LOADING - CHECK WHETHER ALL 
BOUNDARY CONDITIONS ARE DISPLACEMENTS (ROUTINE 
EQLBM) 

This is a precautionary message to draw attention to the fact that no load of any 
significant magnitude has been applied in the current increment. Probably the 
analysis is displacement controlled. 

FIXX 

(a) 	 ***** ERROR: LTH FIXITY. ELEMENT M DOES NOT 
CONTAIN NODES: N 1 N2 (ROUTINE FIXX) 

This is output when either or both of the nodes Nl, N2 are not present in 
element M. This error is encountered when reading the list of fixities and it is the 
Lth fixity. 

(b) When more than 200 fixities have been specified the following message is 
printed. The size of arrays MF, TF and DXYT has to be increased. 

INCREASE SIZE OF ARRAYS MF, TF AND DXYT 

IN COMMON BLOCK FIX (ROUTINE FIXX) 


This message is printed as soon as the number of fixities exceeds 200, but does 
not say by how much the array sizes have to be increased. The COMMON 
statement labelled FIX appears in the following routines and a change in size of 
the arrays means altering all these routines: 
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ANS CPW FIXX FRFXLD FRONTZ INSITU RESTRN 

RESTRT UPOUT 

The parameter MXFXT must be set to the new size of the arrays in routine 
MAXVAL. 

FRONTZ 

(a) 	 PROBABLE SERIOUS ILL-CONDITIONING (ROUTINE FRONTZ) 

This is an indication of possible numerical problems, for example when a very 
stiff structure is lightly sprung to earth. 

(b) 	 ERROR - ZERO PIVOT (ROUTINE RONTZ) 

This happens when the diagonal stiffness term of the unknown equation which is 
about to be eliminated is found to be equal to zero. The above message can be 
expected when the permeabilities have been incorrectly set to zero in the 
material property table or when the time increment has been specified aszero in 
a consolidation analysis. Otherwise check that elastic parameters have not been 
inadvertently specified as zero. 

INSTRS 

ELEMENT M IS OF UNKNOWN MATERIAL TYPE L (ROUTINE 
INSTRS) 

Check that the material type number of element M is within the permissible 
range. 

LODLST 

The size of arrays LEDG, NOEl, NDE2 and PRESLD is set at 100. If more than 
100 element sides are subjected to pressure load inthe input data, the following 
message is printed. 

INCREASE SIZE OF ARRAYS IN COMMON BLOCK PRSLD 
ALSO SET MXLD IN ROUTINE MAXVAL (ROUTINE LODLST) 

The value of MXLD in rou tine MAXVAL must be set to the new (increased) size 
of these arrays. The above arrays occur in the following routines and they have 
to be changed: 

ANS CPW EQLOD INSITU LODINC LODLST RESTRT UPOUT 

LSTIFF 

If the program stops in routine LSTIFF with a message that an attempt has been 
made to divide by zero then in a consolidation analysis check that PR(7,KM), 
the unit weight of water, is not specified as zero in the input data. In a 
supposedly non-consolidation analysis, check for the presence of consolidation 
elements (types 3 and 7 in 2-D) in the input data. 
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MAST 

INADMISSIBLE VALUE FOR MXTYP LT (ROUTINE MAST) 

MXTYP (in record B) is out of the admissible range 1 to 7. 

INCREASE SIZE OF ARRAY G BY Nl FOR GEOMETRY 
PART OF PROGRAM (ROUTINE MAST) 

The array allocation G(55000) is insufficient for the geometry part of the 
program. The size of G must be increased by the specified amount in routine 
MAIN. 

TO PROVIDE MINIMUM CORE TO SOLVE EQUATIONS 
INCREASE SIZE OF ARRAY G BY = NJ (ROUTINE MAST) 

TO PROVIDE MINIMUM CORE TO SOLVE EQUATIONS 

INCREASE SIZE OF ARRAY G BY = Nl IN MAIN (ROUTINE MAST) 


L---___-----II-LI 
I~ principal ~_ minimum-+- additional c~re for _____1r-- arrays -~l core tn·core solution 

The situation is illustrated in the above figure. Nl is the amount by which the 
size of array G has to be increased in routine MAIN. Note that this only provides 
the minimum core, and the equations are solved out-of-core. 

MIDPOR and MIDSID 

The following two statements appear when the estimated allocation for the 
additional nodes has been exceeded. The first statement is for the user node 
numbers and the second is for the program node numbers. These messages are 
unlikely to be printed, because the estimated allocation for the additional node: 
is always much higher than the actual number. 

(a) 	 INCREASE NO. OF ADDITIONAL NODES (ROUTINE MIDPOR or 
MIDSID) 

(b) 	 *** ERROR *** MORE THAN NNE NODES IN MESH 

RDPROP 

ERROR IN NO. OF INCREMENTS =NI INCS =N2 INCF =N3 
(ROUTINE RDPROP) 

This message is printed when the increment at the finish of the analysis (N3) is 
less than the increment number at start of the analysis (N2). 
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RDSTRS 

WARNING - POINT OUTSIDE IN-SITU STRESS SPACE 


(ROUTINE RDSTRS) 


The above message is followed by the (program) element number and the 
integration point number. This happens when the in situ region (defined by a set 
of layers) does not cover the entire region of the primary mesh. 

REACT 

INCREASE ARRAY SIZE OF R, NDENO, NDIR IN ROUTINE REACT 

When the number of reactions exceeds 150, this message is printed. The array 
size of R, NDENO and NDIR must be increased, and NCT must be set equal to 
this new size. 

SFWZ 

(a) 	 NO ELEMENTS IN SOLUTION: (ROUTINE SFWZ) 

When no elemen ts are left in the mesh (possibly due to user error; elements 

removed incorrectly) this message appears. 

(b) 	 *** ERROR ** TOO MANY DEGREES OF FREEDOM IN FRONT 
EXCEEDS IFRZ (ROUTINE SFWZ) 

The allocation for maximum frontwidth is IFRZ and is set equal to 300 in 
routine MAST. If the maximum frontwidth exceeds 300 this message is printed. 
The allocation for the maximum frontwidth (lFRZ) must be increased in routine 

MAST. 

(c) 	 PROGRAM ERROR - NO NODE ON END OF FRONT 

(ROUTINE SFWZ) 


The message is unlikely to appear. When the FRONT shrinks owing to variables 
being eliminated from the end of the FRONT, the FRONT size is re-calculated. 
This message would indicate a program error. 

(d) PROGRAM ERROR - LAST APPEARANCE NODE IS NOT IN FRONT 

This is also an unlikely error. 

SHAPE 

(a) 	 ELEMENT M ISOF UNKNOWN TYPE *** LT 

(ROUTINE SHAPE) 


When a request is made to calculate shape functions for inadmissible element 
types, this message is printed. 
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(b) 	 ELEMENT M IS OF TYPE LT NOT IMPLEMENTED 
(ROUTINE SHAPE) 

This message is printed when a request is made to calculate shape functions for 
element types which have not been implemented. 

SHFNPP 

(the messages are the same as for routine SHAPE) 

UPOUT 

WARNING **** THE NODAL CO-ORDINATES ARE UPDATED 

This is just to tell the user that the above option is being used. 
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Appendix D': Incorporation of 
a new soil model 

Relatively few changes are necessary for incorporating a new soil model into 
CRISP. The soil model is assigned a material type number in the range 1 to 10, 
which has not been previously allocated. The user provides the routine (for 
example DSOILN) which calculates the 0 matrix for a given stress state. For the 
purpose of illustration the new model is assigned material type number 5. The 
ma terial constants can be specified in one data record cosisting of 10 values. In 
general this is sufficient to specify all the material constants. The data record is 
laid out as follows. 

MAT NTY P(l) P(2) ...... P(IO) 

where 

MAT is the material zone number; all elements given the same number 
will have the following properties. 

NTY is the material type number, wlDch is specific for each soil model. 
P(l )-P(6) are user·defined soil parameters; these could be E, v' or C. 
P(7) ofor drained, ~ for undrained, 'Yw for consolidation. 
P(S) 'Y soil density (weight/unit volume). 
P(9) kx for consolidation, 0 for drained or undrained. 
P(lO) ky for consolidation, 0 for drained or undrained. 

'If more material constants are required to be specified, additional parameters 
can be read. The material constants that are read are placed in PR(NPR,NMT) 
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and the material type numbers in NTY(NMT). The 0 matrix is needed only 
twice during the analysis: once to calculate the stiffness matrix (called by 
routine LSTIFF) and once to calculate the incremental stresses from strains 
(called by routine UPOUT). When the 0 matrix has to be calculated, a sub. 
routine call is made; the stresses and other parameters are passed as arguments. 
In return, the routine calculates the components of the 0 matrix and puts them 
in array D(NS,NS). 

The user can select the arguments when a subroutine call is made to the 
routine DSOILN. 

CALL DSOILN (IP,K,IBLK,NEL,NIP,NVRS,NDIM,NS, 

I NPR,NMT,Y ARINT,MAT,D,PR,IPLSTK,BK) 


The first statement of routine DSOILN is then 

SUBROUTINE DSOILN(I7,I,IET,NEL,NIP,NVRS,NDIM,NS, 

1 NPR,NMT,VARINT,MAT,D,PR,IPLSTK,BK) 


IP,I7 integration point 
K,I element number 
IBLK,IET code to indicate whether to add bulk modulus of water to the stiff­

ness terms or not 

NEL total number of elements 

NIP the maximum number of integration points in any element 

NVRS number of stress components and parameters 

NDIM number of dimensions to problem 

NS number of stress/strain components 

NMT allowable number of different material zones 

VARINT current stress parameters 

MAT material zone numbers of elements 

IPLSTK return code set by routine. O-elastic, I-plastic 

BK bulk modulus of soil 


This is followed by the relevant comment statements about the model. Then 
comes the DIMENSION and COMMON statements. 

DIMENSION MAT(NEL),VARINT(NVRS,NIP ,NEL) 
DIMENSION D(NS,NS),PR(NPR,NMT) 

The' following subrou tines need changing to incorporate the new soil model: 

MAST MAXVAL LSTIFF RDSTRS UPOUT UPOUT2 

MAST 

No changes are necessary to this routine if the new soil model does not require 
more than 10 material constants. If the new model r~quires (say) 12 material 
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constants, the size of array PR is changed from 

PR(10,10) to PR(12,10) 

Note that 12 material constants must then be provided for all material models in 
the data (zeroes being added for the present models). 

MAXVAL 

If the size of array PR has been changed in routine MAST then statement 

NPR = 10 

is replaced by 

NPR = 12 

LSTIFF 

A statement call is made to the routine which calculates the D matrix when the 
stiffness terms are to be calculated. The statement 

GOTO(39,32,33,34), KGO 

is replaced by 

GOTO(39,32,33,34,35),KGO 

and the following statements are included: 

GOTO 39 

35 CALL DSOILN(IP,K,lBLK,NEL,NIP,NVRS,NDlM,NS,NPR,NMT, 
1 VARINT,MAT,D,PR,IPLSTK,BK) 

before the statement 

39 CALL LSTIFA(SS, B, D, DB, F9, NS, NB) 

RDSTRS 

From values specified at in situ nodes, the stresses at integration points are inter­
polated. For Cam-clay models the voids ratio is calculated from p' and p~. For 

elastic models, no extra parameters are calculated. If the new model is a linear. , 
elastic model (of type number 5) then no changes need to be made to routine 

RDSTRS. If the new soil model is a version of the critical state model then any 
relevant calculations can be carried out, as clone for Cam-clays, between state­
ments. 

GO TO(60,60,52,52,60,60), KGO 

and 

60 CONTINUE 

This can be done by using the following statement: 

GO TO(60,60,52,52,55,60), KGO 
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and then inserting 

GOTO 60 

55 CONTINUE 


< calculations for new model> 

before the statement 

60 CONTINUE 

UPOUT 

This routine calls routines that calculate the D matrix to evaluate the stress 
increments from the strain increments. The changes are similar to the ones 
made to routine LSTIFF. The statement 

GOTO(59,52,53,54), KGO 

is replaced by 

GOTO(59,52,53,54,55), KGO 

and the following statements are included 

GOTO 59 

55 CALL DSOILN(IP,1 ,O,NEL,NIP,NVRS,NDIM,NS,NPR,NMT, 
1 VARINT ,MAT,D,PR,IPLSTK,BK) 

IELST = 1 or ICAM = 1 

- the last if the new model is a critical state model - before statement 

59 DO 60 II == 1, NS 

The stresses calculated in these routines are output in two tables: 

(a) 	 contains the general stresses a~, a;, a;, 7xy , U, Or, aIlr and ()xy (7yz and 
7zx for 3-D); . 

(b) 	 contains stress parameters relevant to the particular model, e.g. for Cam­

clays p', q, p~, estrs, estrn, codes. estrs and estrn are the voids ratios 
calculated from the stress state and from the volumetric strains 
respectively. The codes are the numbers indicating the type of Cam-clay 
behaviour (see section 9.10). 

The parameters in category (a) are printed for all types of soil model. However, 

the parameters in category (b) are calculated by routines specific to particular 
models, i.e. for Cam-clay models - routines EVCAM and VARCAM. 

These additional parameters are output in routine UPOUT2. Therefore if the 

new soil model reqUires additional parameters to be ou tput then the user has to 
provide the relevant routines for his/her new model; further changes are then 
necessary to routines UPOUT and UPOUT2. 
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These additional parameters for each integration point may be stored in array 
VARC(NCV,NIP,NEL) until they can be output by routine UPOUT2. If more' 
parameters are required per integration poin t , NCV (at present equal to 10) can 

be increased in rou tine UPARAL. If codes are required to issue warning messages 
then the following arrays can be used. 

LCS(NIP,NEL), LNGP(NIP,NEL) 

MCS(NEL),MNGP(NEL) 

NCODE(NIP,NEL),NELCM(NEL) 

Array NELCM(NEL) is used to identify the different material types that require 
additional output parameters. 

I - Cam-clays 

therefore the new soil model can be assigned the number 2. 

In summarising it can be said that if the new soil model is an elastic model 
which does not require additional material constants to be read or additional 
parameters to be output then" only routines LSTIFF and UPOUT need to be 

changed. If additional input data (material constants) are required then changes 
are also necessary to routines MAST and MAXV AL. Further changes are 
necessary if additional output parameters are to be printed. The user then has to 
provide new routines to calculate these output parameters. 

Appendix E: Incorporation ofa 
new element type 

E.1 INTRODUCTION 

Almost any new element type could be incorporated into CRISP. Three element 
types are discussed below for the purposes of illustrating the basic techniques. 
They are listed in the order of increasing difficulty to incorporate. The eight- " 
noded quadrilateral can be incorporated more readily than the 20-noded brick 
element. The three-noded beam element would require major reorganisa tion 
because of its additional d.o.f. being rotation, whereas it is tacitly assumed for 
two-dimensional analysis that the third d.oJ., if present, is excess pore pressure. 

The use of a beam element with consolidation elements would require 
modification the way the d.o.f. of a node are identified. 

(i) 8-noded quadrilaterals. 
(ii) 20-noded brick element. 
(iii) 3-noded beam element (with bending stiffness). 

It should be pointed out that the way CRISP has been written makes the 
incorporation of elements (i) and (ii) fairly straightforward. Tentatively the 

following element type numbers have been allocated for elements (i) and (ii). 

Element Type number 

8-noded quadrilateral ........... 
 4 


8-noded quadrilateral (consolidation) 
 5 


20-noded brick. . . . . . . . . . . . . . . . 8 

20-noded brick ..... (consolidation) 9 
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Element type information has been included in block data routine BDAT Al for 
the above elements. The local node numbering assumed in setting up the data for 
the new elements is shown in Fig. E.1. Before incorporating a new element type 
the user should understand how array LINFO is organised in routine BDAT Al 
and how this information is used in the rest of the program. 

o d x , d y, dz - displacement unknowns 

A U - excess .pore pressure unknown 

4 7 3 4 7 3 

8 6 8 6 

5 2 5 2 

(a) (b) 

15 7 8 15 7 

4 4 (.f3----f-~~-~ 14 

6 
12 / 

./ 

/..0/17 
/ 

/ 

/ 


99 2 

(c) (d) 

Fig. E.1 - Different element types 

(a) LSQ (element type 4): 8 nodes, 16 d.o.f. 
(b) LSQ (element type 5) - consolidation: 8 nodes, 20 d .oJ. 
(c) LSB (element type 8): 20 nodes, 60 d.o.f. 
(d) LSB (element type 9) - consolidation: 20 nodes, 68 d.o.f. 

All vertex or corner nodes are numbered first (these are local node numbers 
which are different from the node numbers assigned in the input data). The node 
numbers for nodes along element edges or sides and element interiors then 

Sec. E.2] Element Type Dependent Data 

follow. This sequence of numbering adopted and set in BDA TA 1 is used in the 
rest of the program. For example, in routine MIDSIO for element type 4, 
information set in SETNP gives the vertex nodes at either end of node 5 as 1 and 
2. This is then used in calculating the co-ordinates of node 5. 

E.2 ELEMENT TYPE DEPENDENT DATA 

If we consider element type 9, which is the 20-noded brick element used for 
consolidation analysis, the vertex nodes 1 to 8 have 4 d.o.f. (displacements in x, 
y, z directions and the excess pore pressure). Nodes 9 to 20 have only 3 d.oJ. 
(the displacements). 

The element type information is stored in the LINFO array in routine 
BDATA1. Row 9 (the row assigned to each element is its type number) is 
allocated to this element; that is each element is allocated a row of LINFO. 

LINFO 
column 
entry Explanation 

The total number of nodes (including pore pressure nodes) is 20. 
NDPT =20. 


2 Total number of vertex or corner nodes is 8. NVN =8. 

3 Total number of element edges is 12. NEOC =12. 

4 The element has 6 faces. NFAC = 6. 


Note that for all two-dimensional elements, NFAC = 1. 
5 The number of displacement nodes is 20. NON == 20. 
6 There are 8 nodes with pore pressure variables. NPN == 8. 
7 There is only one displacement node along each edge, at the mid­

point. NDSD == 1. 
8 Even though there is a node at the midpoint of each edge it does not 

have a pore pressure variable. NPSD == O. 
9 There are no inner displacement nodes. NIND == O. 

10 There are no inner pore pressure nodes. NINP =O. 
11 The number of integration points is 27 if using the 3 X 3 X 3 scheme. 

NCp:: 27. 
12 Index to the weights (array W) and local co-ordinates (array L). 

Different regions of these arrays are allocated to different element 
types as follows: 

W(l) - W(5) for 3-noded bar - any scheme up to 5 point 
W(6) W(l2) for LST elements - 7-point scheme 
W(l3) W(2l) for quadrilaterals - 3 X 3 scheme 
W(22) W(37) for CuST elements - 16-point scheme 
W(38) W(64) for 20-noded brick - 3 X 3 X 3 scheme 

All that is needed is a pointer to indicate the last location allocated 
to the previous element type. For the case of the 20-noded brick 
elements it is 37 . NDX =37. 
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LINFO 

column 

entry 	 Explanation 

13 	 Index to vertex nodes (not used in the present version). INX =O. 
14 	 Index to nodes along element edges. This gives the starting index to 

arrays NPI and NP2 which are set up in routine SETNP. In order to 
calcula te the co-ordinates of nodes along element edges it is necessary 
to know which nodes are at either end. Arrays NPI and NP2 give the 
local node numbers (which are the index to array NCONN) for each 
element edge. Different regions of NPI and NP2 are allocated to 
different element types (similar to arrays Wand L) and this provides 
the starting index. 

For example, node 18 is the midside node along edge 10. 
NPl(INDED + 10) =2; NP2(INDED + 10) =6. This means that nodes 
2 and 6 are at either end of node 18. INDED is the starting index for 
different element types. For the brick element it is 3. INDED =3. 

15 The number of local co-ordinates is 3 (t 7] and n. NL =3. 
16 Total number of d.oJ. in element. 

8 vertex nodes have 4 d.oJ., each giving 8 X 4 =32 d.o.f. 
12 midside nodes have 3 d.o.f., each giving 12 X 3 =36 d.o.f. 

The total number of d.o.f. is 68. MDFE = 68. This is used in 
calculating the size of the element stiffness matrix (see routine 
MAXVAL). 

17 	 Centroid integration point. The last integration point, which is 27, is 
situated a t the centroid of the element. This is used in outputting 
representa tive values of stresses and strains of an element. However, 
not all integration schemes have an integration point at the centroid. 
Under these circumstances the last integration point is used here. 
NCGP =27. If the integration scheme used has an integration point at 
the centroid it is assigned the last number for convenience. 

21 	 onwards. Each entry gives the number of d.oJ. of each node as 
labelled in Fig. E.l. 

Node number to 8 9 to 20 
Location in LINFO 21 to 28 29 to 40 

d.oJ. 4 3 

Local co-ordinates 

The integration points have been numbered as shown in Fig. E.2 . The order in 
which they have been numbered is not important. However, once numbered, the 
same sequence is implicitly assumed in different parts of the program and it 
should be consistent with the initial numbering. The local co-ordinates are stored 
in a region allocated in array L. 
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2 
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Fig. E.2 - Integration points 

For example, 1-(1,38), 1-(2,38) and L(3,38) are the t 7] and ~ co-ordinates of 
integration point 1. 1-(1,39), 1-(2,39) and 1-(3,39) are the t 7] and ~ co-ordinates 
of integration point 2, and so on. Note that the quadrilateral elements have only 
two local co-ordinates ~ and 7]. Then only L(1 ,IP), L(2,IP) need to be set. 

Weighting factors 

The array W is set up in a similar manner to array L. Array W gives the weighting 
factors for each integration point shown in Fig. E.2. 

W(38) is the weighting factor for IP =1 
W(39) is the weighting factor for IP = 2 and so on. 
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E.3 INCORPORATION OF 8-NODED QUADRILATERALS 

The only routines which need changing are as follows: 

SHAPE - include displacement shape functions and derivatives W.r.t. local co­
ordinates for element types 4 and 5. This replaces the WRITE(IW6, 

910) statement. 

The displacement shape functions are as follows : 

N1 =-(n'-1)(~~-1)(1 +~~+~n/4 


N2 = (~~ - 1) (H + 1) (1 - ~~ + ~n/4 


N3 = (~~ + 1) (H + 1) (~~ + ~~ - 1)/4 

N4 = - (~~ + 1) (~~ -1) (~~ - ~~ - 1)/4 

N5 = (~~ + 1) (~~ + 1) (~~ - 1)/2 

N6 = -(~~ + 1) (~~ + 1) (~~ -1)/2 

N7 = - (~~ + 1) (H + 1) (~~ - 1 )/2 

N8 = (~~ -1) (~~ + 1) (~~ -1)/2 


SHFNPP - include pore pressure shape functions and derivatives w.r.t. local 
co-ordinates for element type 5. This replaces the WRITE(IW6,91 0) 

sta tement. 

The pore pressure shape functions are as follows : 

M1 = (~~ -1) (~~ - 1)/4 

M2 = -(~~ + 1) (~~ -1)/4 

M3 = (~~ + 1) (~~ + 1)/4 

M4 = - (H - 1) en + 1)/4 


The internal node numbering used is fairly important (see Fig. E.1). All other 
node co-ordinates are calculated from the vertex nodes. For example, the co­
ordinates of node 5 are calculated from the co-ordinates of nodes 1 and 2. The 
data NP1 and NP2 set in routine ~ETNP give the nodes at either end of the first 
edge as 1 and 2. The node along the side 1-2 is numbered first after the vertex 
nodes because it is assigned a number 5. 

E.4 INCORPORATION OF 20-NODED BRICK ELEMENTS 

The list of subroutines which need changing is listed below: 

BDATAI 

Include appropriate data in arrays Wand L in designated locations using the 

DAT A statements. 

W(38) . . . W(64) - weighting factors 

L(1,38) ... L(3,64) -local co-ordinates 


(see Table 8.1 , p . 198, of Zienkiewicz, 1977) 

Sec . E.4] Incorporation of 20-noded Brick Elements 

MAST 

If both element types 8 and 9 are to be used then set LTZ = 9. 

SETNP 

Arrays NPI and NP2 have already been set up to identify each element edge by 
the nodes at either end (see Fig. E.1) . 

SHAPE 

Include appropriate shape function statements and derivatives W.r.t. local co­
ordinates for element types 8 and 9. (These should be consistent with the node 
numbering in Fig. E.1.) 

SHFNPP 

Include pore pressure shape functions for element type 9 only. (These should be 
consistent with the node numbering in Fig. E.1.) 

FIXX 

The rou tine FIXX can only handle two-dimensional elements. Therefore FIXX 
is renamed as FIXX2, and all call statements CALL FIXX(.....) are replaced by 
IF(NDIM.EQ.2) CALL FIXX2( ..... ). The routines INSITU and ANS are the 
only ones which call routine FIXX. 

This statement is followed by the statement 

IF(NDIM.EQ.3) CALL FIXX3(........ ) 


Routine FIXX3, which is for the 20-noded brick element, is listed in section E.7 . 
General changes that need to be carried out to routines EQLBM, INSTRS and 

UPOUT for implementing the three-dimensional analysis option are as shown 
below. 

The header and write statements in these routines at present only cater for 
two-dimensional elements. All write statements listed below (identified by the 
format statements) should be preceded by IF(NDIM.EQ.2) and a further write 
statement added for the three-dimensional case preceded by IF(NDIM.EQ.3). 
This is illustrated for the UPOUT routine. 

The changes to routine UPOUT are as follows: 

1 WRITE(IW6,902) 

GOTO 6 


2 WRITE(IW6,901) 

GOTO 6 


3 WRITE(IW6,933) 

GOTO 6 


4 WRITE( IW6, 934 )

C----------------------------------------------------------------------­
C UPDATE ABSOLUTE DISPLACEMENTS 
C----------------------------------------------------------------------­
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C-----------------------------------_____________ 
N2=N1+NQL-1 

IF(NDIM.EQ.3)GOTO 9 

IF(NQL.EQ.3)WRITE(IW6,900)JR,(DI(JJ),JJ=N1,N2),(DA(JJ),JJ=N1,N2) 

IF(NQL.EQ.2)WRITE(IW6,910)JR,(DI(JJ),JJ=N1,N2),(DA(JJ),JJ=N1,N2) 

IF(NQL. EQ. 1)WRITE (H/6, 9·11 )J R, DI(N1), DA (N1) 

GOTO 10 


9 	CONTINUE 
IF(NQL.EQ.4)WRITE(IW6,940)JR,(DI(JJ),JJ=N1,N2),(DA(JJ),JJ=N1,N2) 
IF( NQL. EQ. 3 )WRITE(IW6, 941)J R, (DI(J J), ,I J=N 1, N2), (DA (JJ), JJ =N1, N2) 

10 	 CONTINUE 

IF(NDIM.EQ.3)GOTO 12 

IF(IOUT2.EQ.2)WRITE(IW6,904) 

IF(IOUT2.EQ.1)WRITE(IW6,906) 

GOTO 14 


C 
12 	 CONTINUE 


IF(IOUT2.EQ.2)WRITE(IW6,904) 

IF(IOUT2.EQ.1)WRITE(IW6,936) 


C 
14 CONTINUE 

IF(MR.LT.NELOS.OR.MR.GT.NELOF)GOTO 26 

WRITE(IW6,908)MR 

IF(NDIM.EQ.2)WRITE(IW6,914) 

IF(NDIM.EQ.3)WRITE(IW6,944) 


933 FORMAT(1120H NODAL DISPLACEMENTS/1X,19(lH-)11 
1 18X,11HINCREMENTAL,51X,8HABSOLUTEII 
1 2X,4HNODE,7X,2HDX,13X,2HDY,13X,2HDZ,28X,2HDX,13X,2HDY, 13X,2HDZ/) 

934 FORMAT(1146H NODAL DISPLACEMENTS AND EXCESS PORE PRESSURESI 

1 1X,45(lH-)1126X,11HINCREMENTAL,51X,8HABSOLUTEII 

1 2X,4HNODE,7X,2HDX,13X,2HDY,13X,2HDZ,13X,2HDU, 

1 13X,2HDX,13X,2HDY,13X,2HDZ,13X,2HDU/) 


936 fORMATUI30H STRESSES AT ELEMENT CENTROIDS/1X,29(lH-)118H ELENENT, 
1 3X,lHX,13X,lHY,12X,lHZ,11X,2HSX,11X,2HSY,11X,3HSZ,11X,3HTXY, . 
1 11X,3HTYZ,10X,3HTZX,11X,lfIU) 

940 FORMAT(lX,I5,8E15.5) 
941 FORMAT(lX,I5,3E15.5,15X,3E15.5) 
944 fORMAT(2X,2HIP,7X,lHX,12X,lHY,12X,lHZ,11X,2HSX, 

1 11X,2HSY,11X,2HSZ,10X,3HTXY,10X,3HTYZ,10X,3HTZX,9X,lHU) 

The complete list of changes is as follows. 

Routine No. of new Format Explana tions 

wri te sta temen ts statements 

EQLBM 6 	 900 header for out-of-balance loads. 
904 header for out-of-balance loads. 
901 ou tpu t statemen t. 

903 header for overall equilibrium 
check. 

905 header for overall equilibrium 
check. 

907 output equilibrium check. 
INSTRS 2 901 header for stresses. 

903 ou tput stresses. 
UPOUT 7 	 901 header for displacements. 

902 header for displacements. 
910 output displacements. 
911 output displacements. 
906 header for stresses. 
914 output element number. 
916 ou tpu t stresses. 

E.5 INCORPORAnON OF ANY OTHER ELEMENT TYPE 

At present, array LINFO has IS rows allowing for new element types to be 
incorporated. Tentatively the first 11 rows have already been allocated to 
different element types. A new element type that is different from any element 
in the current library could be assigned type number 12, and the next one the 
number 13, and so on. If a new element with type number greater than 15 is 
introduced then the number of rows in array LINFO should be increased to 20. 
This change should be made to all routines which access this array which resides 
in named common ELINF. (See Appendix F, which gives the list of subroutines 
which contain the common block ELINF.) 

Here follows a list of subroutines which need to be changed. 

BDATAI 

Add element type dependent data to following arrays: 

LINFO (I2, ) - define elemen t type 
L( , ) -local co-ordinates of integration points. 
W( ) - weighting factors 

MAST 

The maximum admissible type number has been set to 7 in routine MAST, i.e. 

LTZ = 7. If a new element type 12 is introduced then set LTZ = 12 in routine 

MAST. 
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Increase the size of arrays NAD and KLT to 12. Set NAD(l2) to the number 
of additional nodes in the element (= total number of nodes minus vertex nodes) 
at the end of the existing DATA statement. 

SETNP 

Increase the size of arrays NPLl and NPL2 to required amount and set NPL to 

the increased value in routine MAST. Add relevant entries to NPLl and NPL2 in 
the DATA sta tement. A separate entry is used for each element edge, and NPLl 
gives the local node number of the node at one end and NPL2 the one at the 

other end. The total number of entries for an element equals the number of 
edges or sides the element has. 

MIDPOR and MIDSID 

Changes are only required if new elements have inner displacement or pore 
pressure nodes. For example, see the CuST element type. 

LSTFSG 

For consolidation elements with type number greater than 11, arrays KP and KD 

have to be extended to provide data regarding the new element type. These 
should be consistent with the node numbering in Fig. E.l. These arrays are used 
in reorganising the rows/columns so that all d.oJ. of a particular element occupy 
consecutive rows/columns in array SG. 

The following is a list of routines which have GOTO statements where the 
range is the admissible element type numbers. Therefore in general there are 11 
possible destinations, depending on the element type. A new entry should be 
added (if LT > 11) to this statement corresponding to the new element type in 
each routine where the GO TO statement appears. 

Subroutine LT range Remarks on destination 

MAXVAL 11 12 ­ for consolidation elements. 
11 - for non-consolidation elements. 

MIDSID 11 27 ­ nodes with inner node (I.e. CuST). 
90 ­ other elements. 

MIDPOR 11 12 ­ elements with inner pore pressure 
nodes, i.e. euST of type 9. 

100 ­ all other elements. 
11 27 ­ elements with inner pore pressure 

nodes. 
90 ­ all other element types. 

RDSTRS 15 replace 80 to 22 for new element type. 
SHAPE 11 add shape functions at appropriate place and 

delete WRITE statement. 
SEll 11 22 for all 2-D and 3-D elements. 

Sec. E.6] Changing the Integration Scheme 

Subroutine LT range Remarks on destination 

LSTIFF 11 1 - non-consolidation elements. 
2- consolidation elements. 

SHFNPP 11 80 - non-consolidation elements. Add pore 
pressure shape function statements. 

UPOUT 11 1 - non-consolidation elements. 
2- consolida tion elemen ts. 

11 25 - non-consolidation elements. 
23 - consolidation elements. 

11 66 - consolidation elements. 
70 - non-consolidation elements. 

Element type dependent information has been set up in the following routines. 

Routine 	 Arrays Remarks 

BDATAI 	 UNFO Define element type. 
L Local co-ordinates. 
W Weighting factors. 

MAST NAD,KLT Number of additional nodes in each element. 
SETNP NPl, NP2 Local node numbers at either end of each edge or 

side. 
LSTFSG KP,KD 	 Used in reorganising element stiffness matrix with 

consecutive rows/columns assigned to all d.o.f. of 
a node. 

E.6 CHANGING THE I~TEGRAnON SCHEME 

Under certain circumstances reduced integration using a 2 X 2 scheme is 
preferable to the full · 3 X 3 integration scheme for the 8-noded quadrilaterals. 
The present version is set up for the full integration scheme. In order to use the 
2 X 2 scheme, the following changes need to be carried out in routine BDATAI. 

Replace 9 in LINFO(ll,4) and LINFO(lI ,5) by 4 

There is no integration point at the centroid for the 2 X 2 scheme; therefore the 
results at the last integration point are outpuLThen 

W(l3)-(W(l6) are used for the weighting factors. 

L( ,13)-L( ,16) are used for the local co-ordinafes for the 

integration points. 

However, if the user would like both integration schemes available then the 

element with the 2 X 2 integ~ation scheme can be introduced as a new element 

type (for example 12). This would need changes to other routines as well (see 
section E.5). 
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E.7 	 NEW SUBROUTINE FOR 3-D ELEMENT: 20-NODEO BRlCK 

SUBROUTINE FIXX3(IR5,IW6,NEL,NTPE,NDIM,NPL,LV,NCONN,LTYP,MUMAX, 
1 NNZ,NP1,NP2;MREL,NREL,V,NFX)

C.*.**•••• *.****•• ** •• *.**.*******.**.* •• ** •••*** ••***.***.****.*.fi.***. 
C ROUTINE TO MAINTAIN A LIST OF NODAL FIXITIES. INTERPRETS 
C FIXITIES ALONG (3-D) ELEMENT FACE INTO NODAL FIXITIES. 
C AT PRESENT TO CATER FOR THE 3-D BRICK ELEMENTS ONLY. 
C·******···*******··****·*··******·*************************.** •• *.***** 

INTEGER TF 

DIMENSION NCONN( NTP E, NEL) , L TYP( NEL) ,MREL( MUHAX), NREL( NNZ) 

DIMENSION IND(8),FV(8),V(LV),NP1(NPL).NP2(NPL) 

DIMENSION KX(~8),NDU(8),NDP(8),NXC(~) , NXM(~),KNL(8) 


COMMON /FIX / DXYT(~,200),MF(200),TF(~,200),NF 


COMMON /ELINF / LINFO(50,15) 

C----------------------------·----------------------------------­
C ARRAY KX(~8) GIVES THE INDEX TO ARRAY NCONN FOR THE FOUR 
C CORNER NODES OF EACH FACE OF THE ELEMENT FOLLOWED BY THE 
C fUDSIDE NODES. 
C----------------------------------··----------------------­

DATA KX(1),KX(2),KX(3),KX(~),KX(5),KX(6),KX(7),KX(8),KX(9), 
1 	KX ( 10) , KX ( 1 1 ) , KX ( 12), KX ( 13 ) , KX ( 14) , KX ( 15) , KX ( 16) , KX ( 17) , 

KX(18),KX(19),KX(20),KX(21),KX(22),KX(23),KX(24),KX(25), 
KX(26),KX(27),KX(2B),KX(29),KX(30),KX(31),KX(32),KX(33) , 
KX(34),KX(35),KX(36),KX(37),KX(38),KX(39),KX(40),KX(41), 
KX (42), KX (43) , KX (44) , KX (45) , KX (~6) , KX (~7), KX (48)/ 
1,2,3,4,9,10,11,12,6,5,8,7,13,16,15,14,1,5,6,2,17,13,18,9, 
2,6,7,3,18,14,19,10,4,3,7,8,11,19,15,20,5,1,~,8,17,12,20,16/ 

C 
DO 5 IU=1, 8 
KNL(IU)=O 
NDU(IU) =0 
NDP(IU)=O 

5 CONTINUE 
C 

NFZ=200 

NDIM1 =NDH1+ 1 

IF(NFX.EQ.O)RETURN 

WRITEOW6,900)


C----------------------------------------------------- ­
C IF NEW 3-D EL~lENT TYPES ARE ADDED THEN NC, NFCD 
C AND LVL (= NFCD) SHOULD BE OBTAINED FROM ARRAY LINFO 
C IN ORDER TO HAKE THE ROUTINE GENERAL. 
C-------- NC - NUMBER OF VERTEX NODES ON ELEHENT FACE 
C---------- NFCD - TOTAL NUMBER OF DISPLACEHENT NODES ON FACE 

NC=4 

NFCD=8 


C-----------------------------------------------------------­
C LOOP ON ALL FACES WITH FIXITIES I.E. FACES WITH PRESCRIBED 
C DISPLACEMENT/EXCESS PORE PRESSURES. 

C-------------------------------------------------------------------­
LVL=NFCD 

DO 200 JX=1, NFX 

READ(IR5,*)ML,(NDU(J),J=1,NC),IVAR,IFX,(FV(K),K=1,LVL) 

WRITE(IW6,910)JX,ML,(NDU(J),J=1,NC),IVAR,IFX,(FV(K),K=1,LVL) 

NE=HREL(ML) 


C 
DO 30 IN=1,NC 
ND=NDUON) 

Sec. E.7] New Subroutine for 3-D Element : 20-noded Brick 

30 	 NDP(IN)=NREL(ND) 
C 

LT=LTYP(NE) 

LT= IABS(L T) 


NFAC=LINFO(4,LT) 

C---------- LOOP ON ALL FACES OF ELEMENT. 
C---------- TO IDENTIFY THE FACE OF THE ELEMENT WITH 
C----------- PRESCRIBED VALUES. 

DO 90 IFAC=1,NFAC 

ISX=NFCD*(IFAC-1) 


C----------- GET INDEXES OF NODES TO NCONN 
DO 40 IN=l,NC 
NXC(IN)=KX(ISX+IN) 

C---------- IF NOT PORE-PRESSURE D.O.F., ADDITIONAL NODES ALONG EDGE 
C----------- ARE PRESENT 

IF(IVAR.NE.NDIM1)NXM(IN)=KX(ISX+NC+IN) 
40 CONTINUE 

C---------- GET VERTEX NODES OF FACE FROM NCONN 
DO 50 IN=l,NC 
IP=NXCON) 

50 KNL(IN)=NCONN(IP,NE) 
C-------- LOOP ON ALL STARTING NODES. 
C--------- TRY TO MATCH THE NODES SPECIFIED BY THE USER 
C--------- WITH THE NODES ON EACH FACE. EACH NODE IN
C--------- TURN IS CONSIDERED AS A STARTING NODE. 

DO BO IS= 1, NC 

ISV=IS 


C-------- TRY MATCHING THE NODES 
DO 60 IN=l,NC 
IF(NDP(IN).NE.KNL(IN»GOTO 65 

60 	 CONTINUE 
GOTO 95 

C---------START WITH THE NEXT NODE. THE SEQUENCE OF 
C-------THE NODES ARE STILL THE SAME 

65 CALL ALTER(IW6,KNL,NC) 

80 CONTINUE 

90 CONTINUE 


C---------- FACE NOT FOUND 
WRITE(IW6,930)JX,ML,(NDU(J),J=1,NC) 

C 
GOTO 200 

C 
95 	 IF(ISV.EQ.1)GOTO 105 


IS1=ISV-1 

C--------- SORT THE INDEXES TO MATCH WITH NODE SEQUENCE KNL 

DO 100 IM=1,IS1 
CALL ALTER(IW6,NXC,NC) 
IF(IVAR.NE.NDIM1)CALL ALTER(IW6,NXM,NC) 

100 CONTINUE 
C--------- IF PORE PRESSURE FIXITY 

105 CONTINUE 
IF(IVAR.NE.NDIM1)GOTO 125 

C 
DO 120 IL=1,NC 

IP=NXC(IL) 


120 	 IND(IL)=NCONN(IP,NE) 

NSDN=NC 

GOTO 132 


C---------- IF DISPLACEMENT FIXITY 
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125 DO 130 IL=l,NC 
IM=NXC(IL) 
IN=NXM(IL) 

900 FORMAT(/1X,45HERROR * ARRAY CONTAINS LESS THAN 
1 40HMEMBERS (ROUTINE ALTER) CALLED BY FIXX3) 

RETURN 

OR EQUAL TO ,I5.2X. 

IND(2*IL-l)=NCONN(IM,NE) END 
130 IND(2*IL)=NCONN(IN,NE) 

NSDN=NFCD 
132 CONTINUE

C------------------.-----------------------------­
C LOOP ON ALL NODES ALONG FACE 
C-------------------------------------------------­

142 DO 180 KND=l,NSDN 
I=IND(KND) 
IF(NF.EQ.O)GO TO 158 

C 
DO 150 J=l, NF 
IF(I.EQ.MF(J))GO TO 155 

150 CONTINUE 
C 

GO TO 158
C-------_----------------------------------------------­
C UPDATE EXISTING VALUES 
C---------------------------------------------­

155 JF=J 
GO TO 160 

C 
158 NF=NF+l 

IF(NF.LE.NFZ)GO TO 159 
WRITE(IW6,940) 
STOP 

159 JF=NF 
160 MF(JF)=I 

TF( IVAR,JF)=IFX 
DXYT(IVAR,JF)=FV(KND) 

180 CONTINUE 
200 CONTINUE 

RETURN 
900 FORMAT(/19X,16H •••••• NODES •••.• ,8X,6HFIXITYI 

1 lX,4HFACE,4X,7HELEMENT,3X,16Hl 2 3 4, 
1 3X,3HDOF,3X,4HCODE,5X,4HVAL1,5X,4HVAL2,5X,4HVAL3, 
2 5X,4HVAL4,5X,4HVAL5,5X,4HVAL6,5X,4HVAL7,5X,4HVAL8/) 

910 FORMAT(lX,I3,4X,I5,3X,I4,lX,I4,lX,I4,lX,I4,4X,I2,3X,I3,3X,8F9.3) 
930 FORMAT(/1X,20H*·*·* ERROR: FIXITY,I4,2X,8HIN LIST.,3X, 

1 7HELEMENT,I5,2X,29HDOES NOT HAVE FACE WITH NODES,4I5) 
940 FORMAT(/40H INCREASE SIZE OF ARRAYS MF, TF AND DXYTI 

1 lX,35HIN COMMON BLOCK FIX (ROUTINE FIXX3)) 
END 
SUBROUTINE ALTER(IW6,IM,N) 

C--------- ROUTINE TO SHIFT ARRAY FORWARD BY ONE PLACE 
DIMENSION IM(N) 

C 
IF(N.LE.l)GOTO 100 
NMl =N-l . 
IMT=IM( 1) 

C 
DO 10 K=1,NM1 

10 IM(K)=IM(K+1) 
IM(N)=IMT 
RETURN 

100 vIRITE( IW6, 900)N 



GVAR DATW DEVICE FIX LABEL PRLDI SAMP PRECSN JACB 
SUBROUTINE DAITL \ DEBpGS EL~NF I FLpW PAFS PRSLD lOUT COUNT I LOADS 

I I I I 

ANGTH 
ANS x X X X X X X X X X 
BDATAI X X X X 
CALDOF 
CAMCDE 
CHANGE X X X 
CONECT X X 
CPW X X X X X X x X X 
CUREDG X 
DCAM 
DCON 
DETJCB X 
DETMIN X 
DISTLD X X X X X 
DUN X 
DMCAM 
EDGLD X X 
EQLBM X 
EQUB X X X X X 
EQLOD X X X 
EVCAM X X 
FACTOR X 
FIXX x X 
FORMB2 X X X X 
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. .t>.GVAR DATW DEVICE FIX LABEL PRLDI SAMP ·PRECSN JACB Q'\ 

SUBROUTINE DATL DEBUGS ELlNF FLOW PARS PRSLD OUT COUNT DS 
Q'\ 

, , , , , , ILOtI I I 
FORMP X X X 
FRFXLD X X 
FRONTZ X X X X 
FRSLOT X 
GETEQN 
GPOUT X X 
INSITU X X X X X X 
INSTRS X X X 

"0
> 

INTPLT X "0 

JPC 
(II 

X X =' Q.. 
LODINC X X X X x· 
LODLST X ~ 

LSTFSG X 
LSTIFA 
LSTIFF X X X X X X X 
MAIN X 
MAKENZ X 
MARKZ X X X 
MAST X X X X X X 
MAXVAL X X 
MIDPOR X X 
MIDSID X X 
MINIT X X X 

GVAR DATW DEVICE FIX LABEL PRLDI SAMP PRECSN JACB 

SUBROUTINE DATL DEBUGS ELlNF FLOW PARS PRSLD OUT COUNT DS 


I I ., , , , , , ILOt

MLAPZ X 
NUMSH X X 
PRINC X 
PRINTF 
RDCOD 
RDN 

RDPROP X X 
RDSTRS X X X X X 
REACT 

>RESTRN X "0 
"0 
(IIRESTRT X X X X =' 
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. . X Appendix G: Some notes on 
running CRISP 

·X 

G.1 FILES USEDX ·X 

Logical unit no . Description 

·X 


In restarted analysis this is an unformatted magnetic tape or 
disk file which contains the results of previous analysis 

. . X X (otherwise set to a dummy file). 
2 This is used if this analysis is to be subsequently restarted. It 

·XX ·X 	 is an unformatted magnetic tape or disk file which contains 
(if applicable) the results of any previous analysis plus the 
results of the current analysis (set to a dummy file if thi 
option is not used). 

5 The data input. 
X · X 6 Printed output. 

7 An unformatted scratch disk file. 

·X 8 Data output required to produce a plot of the finite element 
mesh. An unforma tted disk file. 

G.2 SOIL-STRUCTURE INTERACTION 

The single-precision version of CRISP cannot be used for soil-structure inter­
action problems if the stiffness of the structure is several orders higher than the 
stiffness of the soil. If sensible answers are not obtained even with a reduced 
stiffness for the structure, the calculation needs to be carried out in double 
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precision. Numerical problems with CRISP may be evident by large equilibrium 

errors or by wildly varying pore pressures in undrained/consolidation analyses. 
Equilibrium errors in any analysis should be less than 5% (in most cases less than 
1%). Therefore any error larger than 5% may indicate numerical problems. 

G.3 	 UNDRAINED/CONSOLIDAnON ANALYSIS 

Undrained analysis 

In undrained analysis an equivalent bulk modulus of water is added to the soil 
stiffness terms. In such an analysis, if the results appear to be meaningless or if 

the pore pressures generated fluctuate wildly from integration point to 
integration point then the analysis should be repeated with a lower bulk 
modulus of water. In most cases the true undrained behaviour can still be 
captured with a low value of the bulk modulus of water. However, too Iowa 
value would cause the behaviour to be partially drained. Sometimes the use of a 
finer mesh will improve the results. In some problems oscillations persist and in 
these cases our experience is that the centroidal values in the triangular elements 
are most reliable. 

Consolidation analysis 

If there is any sign of oscillations in the increment in which loading is applied (at 
the beginning of an analysis) then this is an indication of too small a time step. 
The analysis should be repeated with a larger time step for the load increment. 

G.4 	EQUILIBRIUM ERRORS AT IN SITU STAGE 

If there are signitlcant equilibrium errors at the in situ stage when in situ stresses 
have been specifIed it indicates only errors in input data. It means that the in 
situ stresses are not consistent with the applied boundary loads and displacement 
fixities. Make sure that either the displacement or the stress boundary condition 
is specitled along the mesh boundary except for any free boundary (for example, 
the ground surface is free of any fixities or loads). 

If the in situ s.tresses include the gravitational effects (as in an analysis of field 
situation) then PR(8,KM) should be the bulk unit weight of soil consistent with 
the vertical in situ stresses. Also set TG RAVI =1 to record Q1. 

If an element side which should have been restrained is left out inadvertently 
in the list of fixities it would also result in equilibrium errors. 

For 	an analysis which does not include the effect of earth's gravity (i.e. 
triaxial test, where it is negligible and the vertical stresses are uniform every­
where at the start), TGRAVI =0 and the bulk unit weight of soil need not be 
specified. 

Sec. G.7] Conversion of Single-precision Version to Double Precision 471 

G.S 	 LARGE ANALYSIS 

The capacity of the program to analyse a problem with a large number of 
elements is enhanced by simply increasing the size of array G in routine MAIN . 

The size of some arrays which are fixed rather arbitrarily may also have to be 

increased (the relevant subroutines will issue a message when there is a need) . 

The arrays are as follows. 

(a) COMMON/PRSLD/PRESLD(1 O,lOO),LEDG(1 OO),NDEl(1 00), . 
NDE2(100),NLED. 

(b) COMMON /PRLDI/ PRSLDI(10,100),LEDI(100),NDI1(100),NDI2(100), 

ILOD. 
(c) COMMON/FIX/DXYT(4,200),MF(200),TF(4,200),NF. 
(d) DIMENSION R(500),NDENO(500),NDIR(500) in routine REACT. 

The first three common statements appear in a number of routines, and if it is 
necessary to increase the size of these arrays then all such occurrences have to be 

changed accordingly. 
For example, if the sizes of arrays are increased to cater for up to 400 .nodes 

with fixities, then 

COMMON /FIX/ DXYT(4,200),MF(200),TF(4,200),NF 

is replaced by 

COMMON /FIX/ DXYT(4,400),MF(400),TF(4,400),NF 

in all routines in which this statement appears. The list of routines in which this 
statement appears is in ·Appendix F. Further changes may be necessary, as 

indicated in Appendix C. 

G.6 	 ANALYSING SMALL PROBLEMS 

When testing the program with a small number of elements the core requirement 
could be reduced by decreasing the size of array G in routine MAIN to about 

10000. 

COMMON /GVAR/ G(10000) 

LG = 10000 

G.? 	CONVERSION OF SINGLE-PRECISION VERSION TO DOUBLE 

PRECISION 

Add in the following statement to all the routines: 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
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Convert all REAL constants to double precision (including the ones in routines 
BDATAI and MINIT) by adding DO. 

Set NP = 2 and comment out NP = 1 in routine MINIT. 

NP= 2 
CC NP = 1 

Remove the CC in the following statements in the following routines. 

REAL G - in routines MAST, MAIN, MINIT 

REAL A - in routines ANS, CPW, INSITU, LODINC, UPARAL 
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M 
magnetic~pe, 145,242,365 

material non-linearity, 143 

material properties, 244, 423 

material zone number, 191,373,423 

material zones, 244 

mesh, 190,370,390,418 

mesh plotting, 209, 432-436 


program, 433 

midside node, 199 

mixing different element types, 370 

modified Cam-clay, 78 

Mohr-Coulomb yield criterion, 42,163, 


173 


N 
Newton-Raphson method, 336 

nodal fixities, 285 

non-linear technique, 141 

non-associated flow, 47 

non-homogeneous, 395 

normal consolidation line, 173 -174 


isotropic, 54 

normality, 47 -5 0 

numerical integra tion 


in CRISP (over triangles), 246-247 

in TINY, 124-125 

introduction, 84-88 

of loads on element sides, 281 

points 


global co-ordinates, 255 

local co-ordinates, 230-233 


weights, 230-233 


o 
OCR,180 

oedometer, 177, 181 

one dimensional finite elements, 113­

114,120 

out-of-balance loads, 289,364 

output options, 376,422-423 

ou tpu t parameters, 345 

over-consolida tion ra tio 


effect on undrained shear strength, 

71 


isotropic, 65 

one dimensional, 180 


p 

permeability, 33, 177 

permeability matrix, 117 

PD (see plot data) 

plane strain, 370 

plastic potential, 47-48 

plastic strain 


calculation, Cam-clay, 67 

definition, 36-37 


plasticity 

basic phenomena, 36-38 

beneath the yield surface, 80-81 

idealisations,39-40 


plot data, 200, 209, 216,432 

Poisson's ratio, 176 -177, 182 

pore prt;ssure 


excess, definition, 32-33 

fixities, 386, 429 

in triaxial tests, 69, 71 

nodes, 211 

shape functions, 116,318-319 


portability, 146 

pre-frontal routines, 327 

prescribed 


displacement, 271 

excess pore pressure, 271, 386-387 

variables, 96,273,337 


pressure loads, 267, 27 8 

primary mesh, 246, 254,266,375,422 

program element number, 194 

program node number, 192, 195 , 228 

programming technique, 146, 229, 323 

pseudo-<iynamic dimensioning, 


147-149,233,235,239 


Q 
quadrila terals, 142,454 

R 
reactions, 289 

reduced integration, 459 

removal of elements, 376, 424,427 

restart facility, 365, 387 

restrained nodes, 285 -286 

restraints, definition, 271 


(see also fixities) 


S 

seepage 

basic equations, 33 

approximate solution (radial), 89-92 


self-weight loads, 282, 306, 384 

shape functions, 88, 124 


for constant strain triangle, 107 -1 08 

for linear strain triangle, 112 

for one dimensional quadratic 


element, 113 

for plane truss element, 107 
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shear modulus 

definition, 24,31 

for use with Cam-clay, 176-177 


shear strain 

deviator, 54 

'engineering, 22-23 


sign convention, 263, 429 

Simpson's rule, 85 

soil-structure interaction, 469 

solution techniques, 142-143 

specific volume, 52 

springs, 93 -1 00 

springs program, 98-99 

SSBS (see stable state boundary surface) 

stability 


Drucker's postulate, 48-50 

of yielding in Cam-clay, 77 -78 


stable state boundary surface 

Cam-clay, 58-60,76 

modified Cam-clay, 79 


stop -restart facility, 145 

strain 


calcula tion in triaxial tests 

drained, 66-67 

undrained, 72 


definition, 22-23 

elastic, 36-37, 62 

matrix, 105 

plastic, 36-37,62 

shear, 22-23 

volumetric, 35, 64 


strain-hardening, 37,44-45,48-49, 
64,69 


strain-softening, 48 -49, 69 

stress 


definition, 20 

equilibrium, 21-22 

invariants, 162 


stress state code, 359, 362 

stress-strain relations 


anisotropic elastic, 165,377-378 

elasto-plastic, 39-40 


expressed in matrix form, 164 

isotropic elastic, 23-25 


subroutine hierarchy, 185, 238, 295 

subroutine list, 186, 239, 295 

swelling (I() lines, 173 


T 

tangent stiffness, 380 

tensors, 162 

T~rzaghi 

effective stress principle, 26 

consolidation equation, 33 


time increment, 384 

time steps for consolidation analysis, 


134,135,381-382 

time-marching, 144,313 


total stress pa ths in triaxial tests, 64, 67 

tractions, 103 

trapezoidal rule, 85 

Tresca yield criterion, 41-42 

triangular co-ordinates, 111-112 

triangular elements, 141 

triaxial tests 


CRISP analysis, 412 

on Cam-clay 


drained, 63 -67 

undrained, 67-72 


to determine soil constants, 173 


u 
underdrainage analysis example, 136­

139 

undrained analyses by CRISP 


Cam-clay foundation, 400 

elastic foundation, 396 

over-consolidated clay foundation, 


403 

triaxial test, 412 


undrained behaviour, 30-31 

undrained compression, 67 

undrained shear strength, 68-69, 71, 


176 

undrained traixial test 


analysed by CRISP, 412 

on Cam-clay, 67-72 


units, 373 

unstable behaviour, 48-50 

user element num ber, 194 

user node number, 192 


v 

vertex nodes, 190, 191 

virtual work, 83 -84 


for a continuum, 102-104 

for a truss, 100-102 


volumetric strain, 378 

definition, 35, 54 

elastic, in Cam-clay, 62 

plastic, in Cam-clay, 62 


von Mises yield criterion, 41-42 


w 
warning messages, 437-443 

weighted residual methods, 83, 90-91 


(see also Galerkin's method) 

Wroth's method for in situ stresses, 180 


y 

yield function, 41-45 

Cam-clay, 60, 74-78 

Drucker-Prager, 43-44 

modified Cam-clay, 79 
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Mohr-Coulomb, 42-43 

Tresca,41-42 
von Mises,41-42 

yield ratio, 369,381,413,415-416 
yielding of Cam-clay, 58,64-70,407 

z 
Zienkiewicz-Green theorem, 92-93 

zone numbers, 373, 423 ' 
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SETNP 206 STOREQ 344 
SFR1 281 STRSEQ 364 
SFWZ 223 UPARAL 345 
SHAPE 256 UPOUT 347 
SHFNPP 319 UPOUT2 362 
SHFTIB 234 VARCAM 356 
SIDES 210 WRTN 344 
SORT2 205 ZEROSB 291 
SORTN2 255 

Variables/ Arrays 
(page numbers given below refer to explanations as to the purpose of each variable/array) 

AA 241 LV 234 
B 241 MAT 194 
CARTD 241 MAXPA 328 

Program Index 
D 
DB 
DI,DA 

241 
241 
346 

MCORE 
MCS 
MDFE 

225 
346 
234 

DS 241 MFRN 197 
DTM 301 MFRU 197 
DXYT 271 MFZN 328 
E 241 MNGP 346 
ED 350 MREL 194 
ELCOD 241 MRELVV 194 
ELCODP 241 MUMAX 190 
ELPA 328 MXEN 236 
ES 321 MXFXT 236 

Routines ETE 323 MXLD 236 
ANGTH 
ANS 
BDATA1 
CALDOF 
CAMCDE 
CHANGE 
CONECf 
CPW 
CUREDG 
DC AM 
DCON 
DETJCB 
DETMIN 
DISTLD 
DLIN 
Drv1CAM 
EDGLD 
EQLBM 
EQLIB 
EQLOD 
EVCAM 
FACTOR 
FIXX 
FORMB2 
FORMP 
FRFXLD 
FRONTZ 
FRSLOT 
GETEQN 
GPOUT 

359 
297 
230 
220 
361 
303 
197 
242 
206 
167 
165 
284 
264 
278 
166 
170 
267 
286 
260 
275 
355 
307 
272 
262 
318 
339 
329 
338 
345 
228 

INSITU 
INSTRS 
INTPLT 
JPC 
LODINC 
LODLST 
LSTFSG 
LSTIFA 
LSTIFF 
MAIN 
MAKENZ 
MARKZ 
MAST 
MAXVAL 
MIDPOR 
MIDSID 
MINIT 
MLAPZ 
NUMSH 
PRINC 
PRINTF 
RDCOD 
RDN 
RDPROP 
RDSTRS 
REACT 
RESTRN 
RESTRT 
SELl 
SELF 

248 
265 
209 
317 
310 
269 
324 
321 
313 
150 
218 
186 
152 
235 
212 
201 
151 
222 
216 
361 
342 
193 
345 
244 
251 
289 
285 
365 
306 
282 

FT 
FV 
FXYZ 
IDFX 
IFR 
IFRZ 
INCZ 
IND 
INDED 
INDX 
INXL 
IOPT 
!TAB 
JEL 
KD 
KES 
KLT 
KM 
KP 
L 
LCS 
LDIM 
LED 
LEDG 
LINFO 
LL 
LNGP 
LTAB 
LTYP 
LTZ 

240 
274 
299 
285 
227 
152 
297 
274 
205 
254 
152 
301 
200 
241 
324 
155 
199 
266 
324 
283 
346 
153 
355 
270 
229 
283 
346 
153 
194 
152 

MXND 
MXNDV 
MXTYP 
NAD 
NB 
NCGP 
NCODE 
NCONN 
NCV 
ND 
NDE1,NDE2 
NDEAD 
NDEST 
NDF 
NDFN 
NDIM 
NDL 

" NDMX 
NDN 
NDPT 
NDSD 
NDZ 
NEDG 
NEDZ 
NEL 
NF 
NGP 
NIND 
NINP 
NIP 

(see NTPE) 
190 
190 
152 
234 
230 
359 
194 
345 
205 
270 
192 
226 
220 
230 
154 
339 
234 
254 
214 
152 
152 
269 
153 
190 
273 
254 
230 
230 
236 
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NL 237 NXP 
NLED 270 P 
NLST 194 PCONI 
NMATZ 152 PCOR 
NMOD 242 PE 
NMT 236 PEQT 
NN 192 PERM 
NNE 192 PEXI 
NNOD1 156 PEXIB 
NNU 158 PIB 
NNZ 216 POSSP 
NP1,NP2 205 PRES 
NPL 203 PRESLD 
NPLl,NPL2 205 PT 
NPLAX 246 REAC 
NPMX 234 RINCC 
NPN 230 RLT 
NPR 236 RN 
NPSD 214 SG 
NPT 236 SHFN 
NQ 218 SS 
NREL 192 STR 
NRELVV 192 TF 
NS 236 V 
NSP 236 VARC 
NTPE 154 VARINT 
NUMAX 190 W 
NVN 199 WEIGP 
NVPN 234 XJAC 
NVRN 346 XJACI 
NVRS 152 XJACM 
NVTX 190 XYFIB 
NW 220 XYFT 
NWL 353 XYZ 
NXD 324 

324 
154 
240 

· 347 
241 
347 
315 
240 
303 
296 
279 
269 
250 
241 
240 
301 
241 
241 
241 
241 
241 
346 
271 
273 
346 
347 
453 
279 
284 
263 
262 
309 
240 
192 

A 

Ahmad 83,109,221 
Akin 196 
Almeida 178,415 
Atkinson 52, 78 

B 
Biot 35 
Bishop 163 
Bjerrum 180 
Booker 118,134,143,376,398,400, 

403 
Bransby 52, 78 
Britto 415 
Burillnd 78,80,177 
Butterfield 174 

C 
Carter 143,376 
Casagrande 180 
Castigliano 83 
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Coulomb 42 
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D 

Dafalias 81 
Dalton 184 
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laky 180,181,400 
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Katzan 147 

Koiter 78 
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Ladd 71 

Laplace 89 

Larmouth 146 

Lewis 143 
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Mair 415 

Martin · 109 

Maxwell 112 

Milovic 395 

Monro 147 

Mroz 81 
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Naylor 81,143 
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Nova 177 
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Ohta 184 

O'Reilly 415 

Owen 143,221 

p 
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Pardue 196 

Parry 178,183,403,415 
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