ELLIS HORWOOD SERIES IN CIVIL ENGINEERING

Series Editors: Professor R. T. Severn and Dr. R. Sellin, Department of
Civil Engineering, University of Bristol

Bhatt, P Programming the Matrix Analysis of Skeletal Structures
Blockley, D.I., The Nature of Structural Design and Safety
Britto, A.M. & Gunn, M J Critical State Soil Mechanics via Finite Elements
Bljuger, F: . Design of Precast Concrete Structures
Calladine, C.R. S . Plasticity for Engineers
h Carmlchael D.G. N Structural Modelling and Optimization
Carmichael, D.G. Engineering Queues in Construction and Mining

.. Cyras, A.A. Mathematical Models for the Analysis and Optimisation of Elastoplastic Systems
. Dowlmg A.P. & Ffowcs-Williams, J.E. Sound and Sources of Sound

[Edwards; A.D. & Baker G Prestressed Concrete
- Farkas, 7. Optimum Design of Metal Structures
Graves- Smith, T.R. ‘ Linear Analysis of Frameworks
Hendry, A. W. Smha B. A & Davies, S.R. Introduction to Load Bearing Brickwork Design
Heyman, J.. ... The Masonry Arch
Holmes, M. & Martin, L. H. Analysis and Desi ‘%n of Structural Connections:
einforced Concrete and Steel

Irons, B. & Ahmad, S. Techniques of Finite Elements
Irons, B. & Shrive, N.G. Finite Element Primer
Jordaan, 1.J. Probability for Engineering Decisions: A Bayesian Approach
Kwiecinski, M., Plastic Design of Reinforced Slab-beam Structures
Lencastre, A. Handbook of General Hydraulics
May, J.O. Roofs and Roofing
Megaw, T.M. & Bartlett, J. Tunnels: Planning, Design, Construction
Melchers, R.E. Structural Reliability Analysis and Prediction
Mrazik, A., Skaloud, M. & Tochacek, M. Plastic Design of Steel Structures
Pavlovic, M. Thin Plates and Shells: Theory and Applications
Shaw, E. Engineering Hydrology
Spillers, W.R. Introduction to Structures
Szabo, K. & Kollar, L. Structural Design of Cable-suspended Roofs
White, R.G. & Walker, J.G. Noise and Vibration

AT AT iy S a1

By T

o 5 N ey sy ETy .

A ey rar b L T £

AT T

e
S

e R —

CRITICAL STATE
SOIL MECHANICS
VIA FINITE
ELEMENTS

A. M. BRITTO, B.sc., Ph.D.
Department of Engmeermg
niversity of Cambridge

and

M. J. GUNN, M.A., Dip. Comp. Sci.
Department of Civil Engineering
University of Surrey

ELLIS HORWOOD LIMITED
Publishers - Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto

i L

First published in 1987 by

ELLIS HORWOOD LIMITED

Market Cross House, Cooper Street,
Chichester, West Sussex, PO19 1EB, England

The publisher’s colephon is reproduced from James Gillison’s drawing of the ancient Market

Cross, Chichester.

Distributors:

Australia and New Zealand:
JACARANDA WILEY LIMITED

GPO Box 859, Brisbane, Queensland 4001, Australia
Canada:

JOHN WILEY & SONS CANADA LIMITED

22 Worcester Road, Rexdale, Ontario, Canada
Europe and Africa:

JOHN WILEY & SONS LIMITED

Baffins Lane, Chichester, West Sussex, England
North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, NY 10158, USA

©1987 A M. Britto and M.J. Gunn/Ellis Horwood Limited

. =

British Library Cataloguing in Publication Data
Britto, A.M.

Critical state soil mechanics via finite elements. ~
(Ellis Horwood series in civil engineering)

1. Soil mechanics — Data processing

2. Finite element method — Data processing

1. Title IL. Gunn, M.J.

624.1’3136°01515353 TA710

Library of Congress Card No. 86-33791

ISBN 0-85312-937-1 (Ellis Horwood Limited)
ISBN 0-470-20816-3 (Halsted Press)

Printed in Great Britain by Unwin Bros. of Woking

COPYRIGHT NOTICE

All Rights Reserved. No part of this gublﬁcation may be reproduced, stored in a retrieval

system, or transmitted, in any form or

House, 6ooper Street, Chichester, West Sussex, England.

, d 3 Yy any means, electronic, mechanical, photo-copying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market

0SS

Preface

Table of Contentf-

1 Mechanics

1.1
1.2

Computational mechanics

Continuum mechanics

1.2.1 Stresses and equilibrium

1.2.2 Displacements and strains (compatibility)
1.2.3 Elastic stress—strain relations

Soil mechanics

1.3.1 Effective stresses

1.3.2 A physical interpretation of effective stress
1.3.3 Elastic constants for dry soil

1.3.4 Elastic constants for saturated soil

1.3.5 Flow of water through soils

2 Critical state soil mechanics

2.1
2.2
23

Introduction

Idealisations of plastic behaviour

Yield functions

2.3.1 Yield functions for metals

7232 Some yield functions suggested for soils
2.3.3 The hardening law

36
39
41
41
42
44

2.4

2.5

2.6

2.7

Contents

Plastic strains

2.4.1 Co-incidence of principal axes

2.4.2 Flow rules

2.4.3 Drucker’s stability postulate

2.4.4 Frictional systems and plasticity theory
Cam-clay

2.5.1 Critical state parameters

2.5.2 Volume—pressure relations

2.5.3 Critical state line

2.5.4 Yielding of Cam-clay

2.5.5 Strains

Triaxial tests on Cam-clay

2.6.1 Preparing the sample

2.6.2 Drained compression tests

2.6.3 Calculation of strains in drained tests
2.6.4 Undrained compression tests

2.6.5 Calculation of strains in undrained tests
2.6.6 Other types of triaxial test
Comments on Cam-clay

2.7.1 Derivation of Cam-clay

2.7.2 The Cam-<lay flow rule

2.7.3 Modified Cam-clay

2.7.4 Cam-clay: out of date?

Analysis of consolidation using finite elements

3.1
32

33

34

3.5

Introduction

Mathematical and numerical preliminaries

3.2.1 Numerical integration

3.2.2 Interpolation polynomials (shape functions)
3.2.3 Approximate solution of differential equations
3.2.4 Zienkiewicz — Green theorem

The displacement method

3.3.1 General procedure

3.3.2 Solving the equations

3.3.3 A computer program for the displacement method

Virtual work

3.4.1 Virtual work for a truss

3.4.2 Virtual work for a continuum
Displacement finite elements

3.5.1 The basic formula

3.5.2 Example: a plane truss element
3.5.3 Example: constant strain triangle
3.5.4 Higher-order elements

3.5.5 One-dimensional quadratic element

45
45
46
48
50
52
52
54
56
58
62
63
63
64
66
67
72
72
74
74
76
78
80

82
84
84
88
89
92
93
93
96
98
100
100
102
104
104
106
107
109
113

3.5.6 Approximation and accuracy in the displacement method 114

3.6

Contents

Finite elements for consolidation analysis
3.6.1 The basic equations

3.6.2 A finite element program for consolidation analysis

3.6.3 Input specification for TINY
3.6.4 Consolidation analyses

Introduction to CRISP

4.1

4.2

4.3

44

4.5
4.6

Introduction

4.1.1 Summary of facilities

CRISP: how it’s done (and why)

4.2.1 Element types

4.2.2 Solution techniques

4.2.3 Excavation, construction and increment blocks
4.2.4 Equilibrium check

4.2.5 Stop-—restart facility

4.2.6 Frontal solver

CRISP portability and programming techniques
4.3.1 Portability

4.3.2 Pseudo-dynamic dimensioning

CRISP

4.4.1 CRISP organisation

4.4.2 The program

CRISP subroutine hierarchy

Adding new features

Cam-clay in finite element analysis

S.1
5.2

5.3

54

5.5

Introduction

Generalising Cam-clay

5.2.1 Three-dimensional stress states
5.2.2 The ‘other’ elastic property
The incremental stress—strain relations
5.3.1 Routine DCON

5.3.2 Routine DLIN

5.3.3 Routine DCAM

5.3.4 Routine DMCAM
Determining the Cam-clay parameters
5.4.1 Introduction

5.4.2 The frictional constant M

5.4.3 Slopes of the normal consolidation and swelling lines

(X and k)

5.4.4 Location of CSLin (e, In(p")) plot (ecs ="' — 1)

545 v'orG

5.4.6 Horizontal and vertical permeabilities
In situ stresses

5.5.1 Introduction

115
115
119
132
133

140
140
141
141
142
144
144
145
145
146
146
147
149
149
150
159
159

161
161
161
164
164
165
166
167
170
172
172
173

173
174
176
177
178
178

Contents

5.5.2 How in situ stresses are set up
5.5.3 Two approaches for in situ stresses
5.5.4 Wroth’s method

5.5.5 Different approaches compared
5.5.6 Final comments on in situ stresses

6 Geometry of the finite element mesh

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3

7.4
7.5
7.6
7.7

7.8

7.9

Introduction

Geometry part of the program

Nodal connectivity

Numbering the additional displacement nodes
Numbering the additional pore pressure nodes
Pre-frontal routines

Programming techniques

In situ stresses

Introduction

Subroutine list

Definition of principal arrays

7.3.1 Loads

7.3.2 Displacements

7.3.3 Geometry and transformation
7.3.4 Stresses and strains

7.3.5 Stiffness and flow matrices

7.3.6 Flow and coupling matrices

7.3.7 Integer arrays

Controlling routine

Control parameters and material properties
In situ stresses at integration points
Setting up the in sifu stresses

7.7.1 Simulation of construction events
7.7.2 Read in situ stresses

7.7.3 Integration point co-ordinates
7.7.4 Loads equivalent to in situ stresses
7.1.5 B matrix

7.7.6 Print out in situ stresses

Pressure loads and boundary conditions
7.8.1 Pressure loads

7.8.2 Fixities

Equilibrium check

7.9.1 Pressure loads

7.9.2 Self-weight loads (body forces)
7.9.3 Restrained nodes

7.9.4 Equilibrium check

178
179
180
182
183

185
186
193
200
211
221
229

238
239
240
240
240
241
241
241
241
241
242
244
246
246
250
251
255
259
261
265
267
267
270
274
278
282
285
286

Contents

7.9.5 Reactions
7.9.6 Initialising arrays

8 Analysis
8.1 Introduction
8.2 Increment blocks
8.3 Control routine
8.4 Loads
8.4.1 Loads of excavation/construction
8.4.2 Loads from body forces
8.4.3 Load ratios
8.4.4 Loads from pressure along mesh boundary
8.5 Load increment loop
8.6 Element stiffness matrix
8.7 Consolidation component of stiffness matrix
8.7.1 Flow matrix
8.8 Use of indexes in stiffness calculations
8.9 Pre-frontal routines
8.10 Frontal solution
8.11 Frontal solver
8.12 Solution of the equations
8.13 Calculation of output parameters
8.14 Stop-—restart facility
9 Examples
9.1 Introduction
9.2 User’s guide to input
9.2.1 Introduction
9.2.2 General hints
9.2.3 Size of increments
9.2.4 User’s guide to input
9.2.5 Start—stop facility
9.3 Linear elastic: one-dimensional consolidation
9.4 Elastic analyses
9.4.1 Linear elastic — drained analysis
9.4.2 Non-homogeneous elastic model — drained analysis
9.4.3 Linear elastic — undrained analysis
9.4.4 Linear elastic — consolidation analysis
9.5 Undrained analysis — Cam-clay
9.5.1 Undrained analysis — normally consolidated clay
9.5.2 Undrained analysis — over-consolidated clay
9.6 Drained analysis — modified Cam-clay
9.7 Embankment construction
9.8 Excavation
9.9 Undrained triaxial test

289
290

293
294
294
302
302
30¢
307
309
309
312
317
317
321
327
327
336
337
345
365

367
367
367
368
368
3¢

38.
387
390
392
395
396
396
400
400
403
406
408
411
412

10 Contents

Appendix A: Input specification

Appendix B: Mesh-plotting program using GINO-F
Appendix C: Explanations of error and warning messages
Appendix D: Incorporation of a new soil model
Appendix E: Incorporation of a new element type
Appendix F: Common block usage in small CRISP
Appendix G: Some notes on running CRISP

References

Subject Index

Program Index

Author Index

417
432

437

49

469

473

478

487

Preface

Engineers have to predict the behaviour of various materials when they are
loaded by mechanical forces. Geotechnical engineers are no different to other
engineers in this respect: they have to predict the behaviour of soil whereas
other engineers deal with steel, concrete, wood, plastics or fluids. In describing
the behaviour of materials, engineers use a number of conceptual ‘models’
which are simplifications of real behaviour, Examples of these models include
linear elastic solids, perfectly plastic solids and viscous fluids. If we compare the
behaviour of each engineering material with the appropriate conceptual model,
then we will always find some differences in detail. However, the important
point is that the conceptual model is often sufficiently accurate for the purposes
of engineering analysis and design. Associated with each of the examples listed
above there is a collection of standard solutions to commonly occurring
problems to which the engineer can refer (i.e. the theories of elasticity, plasticity
and fluid mechanics).

Soil behaviour conforms less to the models of material behaviour that we
have mentioned so far than do most engineering materials. This is because soil is
a two-phase material consisting of solid particles and water. Its response to being
loaded is inherently more complex than the response of steel or concrete, for
example. Another complicating factor arises because the distribution of soil
properties in a typical deposit (such as stiffness and strength) is non-uniform. In
particular, soil properties always vary with the depth below the ground surface
and this will usually have to be taken into account in engineering design.

12 Preface

Terzaghi’s effective stress principle was the first conceptual model which
successfully accounted for the two-phase nature of soil. We believe that the
theories known as ‘Critical State Soil Mechanics’ represent a similar step forward
in describing, understanding and predicting soil behaviour. This book describes
the critical state theories and contains an 8000-line FORTRAN computer
program written by the authors. This program, known by the acronym CRISP
(CRItical State Program), uses the finite element technique and allows
predictions to be made of ground deformations using critical state theories. It
differs from most finite element programs used in geotechnics in that it is
possible to predict the development of deformations with time. When used in
this way the program enforces continuity of water flow through the soil as well
as equilibrium of total stresses. Since both critical state soil mechanics and the
finite element technique have been developed over the last 30 years, we set out
below a brief account of the development and characteristic features of each
area.

During the 1940s and 1950s, Cambridge University Engineering Department
was at the centre of research into the use of the theory of plasticity for the
design of steel structures. Part of this research programme involved the full-scale
testing of steel portal frames, and the late Professor K.H. Roscoe (who was then
a lecturer in soil mechanics in the department) was asked to assist with the
design of the foundations. One question which Roscoe was asked to answer was:
what would be the angular rotation of a concrete footing embedded in the
ground when the portal frame applied an increasing moment to it? It was
obvious that none of the existing calculations or theories in soil mechanics could
answer this question. The theories that were then available dealt either with the
maximum loads which bodies of soil could carry (i.e. ultimate strength theories)
or with the prediction of settlements assuming that soil is a linear elastic
material. What was needed was a theory which could describe the complete
stress—strain behaviour of soil from small strains (when elasticity might be an
appropriate description) to larger strains near failure.

Although Roscoe was certainly not the only person to realise the importance
of devising an adequate constitutive model for soil, he was unique in the
methodical way he devoted the next 17 years to establishing a large research
group which had this as a major objective, During this period a number of
publications described the progress towards this aim. Roscoe, ef al. (1958) set
out the importance of the concept of the critical void ratio line in describing the
behaviour of soils. Roscoe and Schofield (1963) present a complete constitutive
model which is successful in reproducing many important aspects of soil
behaviour. This model material was given the name ‘Cam-clay’ by Schofield in
1965 and the book Critical State Svil Mechanics (Schofield and Wroth, 1968)
elaborated in some detail the behaviour of the model material Cam-clay and
compared this with the observed behaviour of real soils.

Schofield and Wroth approach soil mechanics from a completely different
direction to most accounts of the subject. They start off with an introduction to
some of the fundamental ideas of continuum mechanics and the theories of

Preface 13

elasticity and plasticity. Subsequently these ideas are combined with a small
number of assumptions to produce a complete elasto-plastic constitutive model
of soil behaviour (i.e. Cam-clay). Critical state soil mechanics includes many
ideas developed by others (e.g. Coulomb, Terzaghi, Rendulic, Hvorslev) but its
strength is the way that it combines in one theory aspects of soil behaviour
previously treated in an unconnected fashion. Critical state soil mechanics is now
being taught on an increasing number of undergraduate and postgraduate courses
in geotechnical engineering. The major contribution that it currently makes to
engineering practice comes from the possibility of interpreting and predicting
basic soil properties. For example, from the results of a series of undraine:
triaxial tests on a particular soil it is possible to predict how the same soil would
behave in drained triaxial tests (and vice versa). The critical state soil parameters
can then be used to arrive at a rational choice of the traditional soil properties
(angle of friction, undrained shear strength) that are used in geotechnical design.

Proceeding along the lines described above, however, is only to use part of the
potential of critical state soil mechanics. Simply reinterpreting basic §oi1
properties does not allow (for example) the solution of Roscoe’s orig{ngl
problem of the response of the buried footing. To solve problems such as this it
is necessary to develop a calculation procedure which keeps track of the stress—
strain behaviour of many small elements of soil surrounding the footing,
simultaneously ensuring that the strain and stress state of each small element is
compatible with and in equilibrium with its neighbours. The finite element
method furnishes the basic technique which makes this possible.

The finite element method was introduced during the 1950s as a computer-
based technique for the stress analysis of continuous structures. During the
1960s the method was extended to non-structural problems such as heat and
fluid flow. The finite element method has grown to be the most popular
technique for predicting the behaviour of deformable bodies in civil, mechanical
and aeronautical engineering. Its popularity is mostly due to the fact that it is
available to engineers as general-purpose computer programs. In principle all the
engineer has to do is to describe the geometry of the problem at hand togeth
with details of materail properties and the boundary conditions (e.g. externa.
loads) for the analysis. Thus in geotechnical engineering the same computer
program can be used to predict the behaviour of an excavation, foundation or
slope. Until the last few years, relatively few engineers have had access to finite
element programs because mainframe or minicomputers were required for their
operation. Now, however, the continuing fall in the price of computing equip-
ment and the development of more powerful microcomputers will soon put the
use of finite element techniques within the scope of the majority of civil
engineers.

Although the availability of finite element programs greatly extends the
analytical power available to engineers, there are attendant dangers. Usually the
engineer using a program has not participated in the programming, This division
of engineering activity between program writers and users can lead to mistakes
in engineering analysis and perhaps engineering failures. This is because there is

14 Preface

considerable scope for making errors when using a program, either because of a
lack of understanding of the underlying principles or because of a simple mistake
in preparing the input data for the program. There is also the possibility of a
mistake (or ‘bug’) in the program itself. We believe that the best ways to avoid
these possible problems are to improve the education of engineers and to make
available to them the source listing of programs.

CRISP was developed over a number of years by research workers in the
Cambridge University Engineering Department Soil Mechanics Group, starting in
1975. Since 1977 the authors have been responsible for the development of the
program, but it is appropriate that we should acknowledge the -early
contribution of Mark Zytynski and the later influence and contributions of
other members of the group (John Carter, Nimal Seneviratne, Chris Szalwinski
and Scott Sloan). Brian Simpson (at Cambridge) and David Naylor (at Swansea)
were pioneers in implementing critical state models in finite element programs,
Their conclusions have also guided us.

We have revised, rewritten, and omitted many parts of the program for its
publication here, and in doing this we have been guided by the following
principles:

(a) the program incorporates the critical state description of soil behaviour in
a fashion which is as close to the classical presentation of those theories as
possible. Thus the reader can check the output of the program with hand
calculations such as those presented in Chapter 2 and other texts on
critical state soil mechanics, It is possible to think of the program as a
testing apparatus in a'numerical laboratory where soil structures made of
Cam-clay can be tested. (The program also contains elastic descriptions of
soil behaviour which might be used: (i) in preliminary analyses; (ii) in
conjunction with critical state analyses to assess the importance of non-
linearity; (iii) to provide useful results in their own right — for example a
consolidation analysis essentially generalises Terzaghi’s one-dimensional
theory to two dimensions and allows a study of the effects of anisotropic
permeabilities);

(b) we have included those features appropriate for geotechnical engineering
analysis which are (generally) not present in other published programs;

(¢) we have written and documented the program so that it is possible to
incorporate new soil models, element types and analysis options.

Our intention has been to produce a book which is self-contained in relation to
the basic theories of continuum mechanics, critical state soil mechanics and
finite element techniques as they relate to CRISP. The book contains a number
of comments and some general advice as to when critical state theories might be
expected to give good (or not so good) results, However, we have not included
any comparisons of the data of soil tests with the predictions of critical state
theories. Nor have we attempted to give a comprehensive account of the range of
geotechnical problems to which finite elements can be applied. The application

Preface 15

of advanced analysis techniques such as those described in this book is an area
where experience is still being accumulated. We refer readers to journals such as
Géotechnique.

The authors are grateful to Neil Taylor and Ryan Phillips who read the drafts
of several chapters and made many useful comments. Computing facilities were
provided by the Universities of Cambridge and Surrey. The typescript of the
book was produced using the GCAL text-processing program written by
Dr. P. Hazel of the Cambridge University Computing Service, who always
provided quick assistance with hardware and software problems.

The authors’ work on CRISP was supported by various research contracts, in
particular from the Transport and Road Research Laboratory and British Gas. In
this connection we would like to thank Myles O’Reilly of the former
organisation and Malcolm Howe of the latter. Peter Wroth was responsible for
initiating the project and supervised it in the initial stages. Andrew Schofield
took over this responsibility, and the authors are particularly grateful to him for
his continued encouragement. It was his idea that the program should be made
available beyond the environs of Cambridge.

Finailly we must thank those who have used the program (either in their
academic research or in their profession as engineers). They have discussed their
analyses with us, have let us know about the program’s shortcomings and have
told us what they would like it to do. We have learned a lot from them. Thanks
are also due to Robert Mair, Mike Davies, Marcio Almeida, Osamu Kusakabe,
Ken Brady, Geoff Leach, Rick Woods, Mark Randolph, Goksel Kutmen, Nobuo
Takagi, C.Y. Ah-Teck, David Wood, Sarah Springham, R.K.W. Lung,
Trish Hensley, Hans Vaziri, Muni ram Budhu, K.S. Ravindran, Kevin Stone, Guy
Houlsby, Shandri Nageswaran, Mr. Kwok, H.L. Goh, Dave Airey, John Mawditt,
lan Pyrah, Robin Andrews, Dickie Bassett, chrysanthi Savvidou, Steve Moore,
...toname a few.

Arul Britto,
(network address: amb2@uk.ac.cambridge.phoenix)

Mike Gunn.
(network address: mjgl@uk.ac.cambridge.phoenix
or gunn@uk.ac.surrey.syse)

The computer programs described in this book are available on magnetic tape for
mini-computers, and on floppy disk for IBM PC-compatible micro-computers.
The software may be purchased from:

Ellis Horwood Ltd.,
Market Cross House,
Cooper Street,
Chichester PO19 1EB,
West Sussex.

mailto:gunn@Uk.ac.surrey.syse
mailto:mjgl@uk.ac.cambridge.phoenix
mailto:amb2@Uk.ac.cambridge.phoenix

T Mg

Mechanics

1.1 COMPUTATIONAL MECHANICS

Engineers now routinely use computer programs to predict the behaviour of
buildings, bridges, mechanical components and volumes of soil when they are
subjected to loads. As argued in the preface, it is important that engineers should
understand the fundamental assumptions that are made in these analyses so they
may appreciate and interpret the significance of the computer’s numerical
results. ‘Computational mechanics’ is the collective name given to the various
theories and techniques which are involved. Mechanics is one of the oldest
branches of natural science. (Archimedes (287—-212 BC), who was concerned
with the equilibrium of levers and the buoyancy of submersed objects, is usua
regarded as being the first theoretician in the field.) Some scientists ana
engineers use the term today to describe the particular subject area of physics
which deals with the laws governing the behaviour of ‘rigid’ bodies. Here,
however, mechanics is regarded as encompassing such areas as continuum
mechanics, the mechanics of materials, the strength of materials, the mechanics
of deformable solids and the theories of elasticity and plasticity as well as the
more traditional area covering the equilibrium or motion of rigid bodies.

In all branches of engineering the finite element method is becoming
increasingly popular as a method of solving the systems of partial differential
equations which describe various physical phenomena. These equations may
describe the deformation of solid bodies, the flow of fluids or almost any effect
which can be described by the laws of classical physics. The finite element
method is advancing on two fronts: firstly it is replacing traditional methods of

18 Mechanics [Ch.1

analysis and secondly it is opening up new fields for analysis that were
previously regarded as intractable. The reasons for the popularity of the method
can easily be identified. A typical finite element program provides a general
analytical tool which is capable of being applied to a wide range of geometrical
configurations involving a spatial variation of material properties. Also the
conceptual subdivision of a continuum into finite elements has a strong appeal
to most engineers. Of course the advance of finite element analysis is closely
connected to the increasing availability of digital computers for engineering
analysis.

The traditional equations of continuum mechanics needs some modification
when applied to soils. Some of these modifications are straightforward in nature:
for example, the sign convention for stresses and strains. For most engineering
materials, tensile stresses and strains are taken to be positive. Soil mechanics
(and this book) uses the opposite sign convention (i.e. compressive stresses and
strains are positive). For the sake of completeness, and to avoid any possible
confusion, the next section sets out the basic definitions and equations for an
elastic material using this sign convention. Other modifications to the equations
of continuum mechanics require rather more thought. The final section of this
chapter considers the modifications which are necessary to take account of the
two-phase nature of soil. Again the basic soil stress—strain behaviour is taken as
elastic. We must emphasise before passing on that this assumption of elasticity
is not always adequate. Soil behaviour is markedly non-linear. Chapter 2 explains
how this behaviour can be explained within the framework of work-hardening
plasticity.

1.2 CONTINUUM MECHANICS
1.2.1 Stresses and equilibrium

Figs. 1.1 to 1.4 show the essential ideas of the equilibrium of bodies and stresses
which are assumed in this book.

Fig. 1.1 shows a body of material that is acted on by a number of forces. If
the body is in equilibrium then six equations of equilibrium can be written
which relate the forces acting on the body to one another. Three of these
equatjons state that the sums of all the forces in three mutually orthogonal
directions are zero. The other three equations state that the sums of the
moments of the forces about three orthogonal axes are also zero. If the body is
not in statical equilibrium then these equations can be replaced by the
appropriate forms of Newton’s second law of motion.

Fig. 1.2 shows a planar cut across a similar body of material. Since the part of
the body on either side of the cut must be in equilibrium there must be internal
forces acting in the body (i.e. across the plane) to maintain the state of
equilibrium. Using the equations of equilibrium described above, six resultants
equivalent to this system of forces (three forces and three couples) can be found.
Considering the forces transmitted across a small area §4 inscribed on this plane,
it is possible to define a measure of the local intensity of the internal force

Sec. 1.2]

Continuum Mechanics

Fig. 1.1 — Forces acting on a body

Fig. 1.2 - Internal forces acting in a body

i

20 Mechanics [Ch. 1

system. These are, of course, the internal stresses acting in the material. Taking
the plane to be perpendicular to the x axis, internal stresses are obtained:

0y = Limit (—8Fy/6A4),
§A—0

Txy = Limit (—8F,/64),
§A—0

Ty, = Limit (—8F;/84).
§A—0

The reader should note that while six force resultants were necessary to describe
the interaction of the two parts of the body, only three stresses are needed to
describe the local intensity of forces at one particular point on the surface. This
is because the force distribution is considered to be essentially continuous, and
as the small area 64 shrinks in size the force distribution over the area
approaches a constant value. The couples arise from integrating the stresses over
the cutting plane.

zy

Txz \

v

Fig. 1.3 — Definition of stress components

Sec. 1.2] Continuum Mechanics 21

To completely define the state of stress at a point in the material it is
necessary to consider the internal forces acting on three mutually perpendicular
planes through the point. Thus stress components 0y, 7y x and 7, act on a plane
perpendicular to the y axis and stress components 0, 7;x and 7,y act on a plane
perpendicular to the z axis. Considering the equilibrium of an infinitesimal cube
of material (Fig. 1.3):

Txy = Tyx,
Tyz = Tzy,
Tzx = Txz-

Hence there are six independent components of stress at a point in the material.

Usually the state of stress in a body is not constant but varies from point to
point. Considering the equilibrium of an infinitesimal cube of material in a
varying stress field (Fig. 1.4), the following equations are obtained:

z |

ar
zy
T,y v bz
0z

do
—_— —————————— rt——————————— Oy + _"5y

xy
ax

zy

v

Fig. 1.4 — Stresses acting in a varying stress ficld (only stresses appearing in the
equilibrium equation for the y direction are shown)

00 0Ty OT
_x+).k+ zZX =Wx, (11)
ox oy oz

a7 90 oT
Xy 2y T =wy, (1.2)
ax oy 0z

22 Mechanics [Ch.1

ar oT a0
Xz, Tyr 7

=w,, (1.3

0x)% oz z)
where wy, w, and w; are the body forces per unit volume in the directions of
the x, y and z axis respectively. If the y axis points vertically upwards then the
body forces corresponding to the self-weight of the soil are wy =0, w), =—y
and w, = 0, where v is the soil’s unit weight.

1.2.2 Displacements and strains (compatibility)

When a material is strained, a typical point with co-ordinates (x, y, z) moves to a
new position (x +dy, y +dy', z +d;). Except for the case when the body is
given a rigid-body translation the displacements dy, d and d, will vary across
the body (i.e. they will each be functions of x, y and z).

Fig. 1.5 shows three infinitesimal fibres of length 8x, 8y and 6z in a material
and their new locations following straining. The direct strains €y, €, and €; and
the engineering shear strains vxy, vyz and vz are given by

2 d

x

d= dy

/ dl

SXL/"’/A\
oy

y

Fig. 1.5 — Definition of displacements

ad,
€L = —) 1.4
x . (1.4)
ad
Y
€, =— s 1.5
= (L5)

Sec. 1.2] : Continuum Mechanics 23
ad
&=-— (1.6)
ad ad
y X
=——t 1.7
Txy ox oy (.7
ad, ad,
=2 1.8
YT e
ad, dd,
= 1.9
Yax oz ox (1.9)

Most texts on continuum mechanics or elasticity use the symbols «, v and w
for displacements. We use dy, d), and d; to avoid confusion with the normal soil
mechanics convention of u for pore water pressure and v for artificial seepage
velocity. Note that a side effect of reversing the normal sign convection for
strains is that a positive shear ‘strain vy, corresponds to an increase in the angle
between two fibres initially aligned with the x and y axes (see Fig. 1.6).

=

Fig. 1.6 — Positive shear strain for our sign convention

- 1.2.3 Elastic stress—strain relations

If elastic material is stressed in the x direction by a direct stress o, then it
experiences strains:

€x = Ox/E,
€y = —voy/E,

€, = —voy/E,

24 Mechanics [Ch.1

where £ is Young's modulus (or modulus of elasticity) of the material and v is
Poisson’s ratio. A shear stress Txy gives rise to a shear strain:

Txy = Txy 200+ V)/E

The effects of three direct stresses and three shear stresses can be superposed to
give the generalised form of Hooke’s Law:

€x = 0x/E —vo,[E —vo,/E,
€y = —vox/E + 6, /E —va,/E,
€; = —voy[E —voy,[E + o, /E,

Yxy = Txy 21 +)/E,

Tyz =Tyz 21 +V)/E,

Yox = Tzx 2(1 + V)/E.

These equations can be written in matrix form:

[ey | (1/E —v/E —v/E 0 0 0‘} (o,
€y —v/E 1/E —v/E 0 0 0 ay
—yE —v[E 1]E 0 o
e | _|7vF E U : (1.10)
Ty 0 0 0 /G 0 0 Ty
Vyz 0 0 0 0 1/G Tyz
23 | o 0 0 0 0 UG | | 7ax|

where G (which is equal to E/(2(1 + »))) is the elastic shear modulus. These
relations can be inverted to give stresses in terms of strains:

[ox] rl —v v v 0 0 0 T ey]
gy v 1—» v 0 0 0 €y
oz | v v 1—v 0 0 0 €
Txy 0 0 0 05—v 0 0 Txy
Tyz 0 0 0 0 0.5—v 0 Yyz
| Tzx | L 0 0 0 0 0 0.5—v | Tzx |
(1.11)
where
E

A= —
(1 =2 (1 +v)

Sec. 1.3] Soil Mechanics 25

This relation is often written in matrix notation:

o = De. (1.12)
It is sometimes more convenient to write these equations using the elastic
parameters G (defined above) and K (the elastic bulk modulus). In fact it can be
argued (see the next section) that it is preferable to use these parameters when
defining the elastic properties of soil. K is the elastic modulus which appears in
the equation relating volumetric strain to change in mean normal stress:

(ox + oy +0;)3=K(ex + ¢y +¢;)

where
P
3(1 —2v)
The D matrix can be written:
(D, D, D, 0 0 0
D, D, D, 0 0
D, D, D, 0 0
Dy 0 0]
0 D; 0
L0 0 0 0 0 DL

where
D, =K +(4/3)G,
D, =K —(2/3)G,
D3 =G.

1.3 SOIL MECHANICS

1.3.1 Effective stresses

Saturated soil is a two-phase continuum consisting of solid particles and water in
the pores. Terzaghi showed that the definition of effective stresses allows a
rational treatment of the stress—strain behaviour. Effective stresses are defined
by the equations

Oy =0y —U,
oy =0y, —U,
o, =0, —u,
’ —_—

Txy = Txy,

26 Mechanics [Ch. 1

?

Tyz =Tyzs
! —_

Tzx = Tzx»

where u is the pore water pressure.

Terzaghi’s principle of effective stress states that all measurable effects of a
change in stress in soils (such as compression, distortion, or a change in shearing
resistance) are due to changes in effective stresses. Thus changing the pore water
pressure and normal total stresses by equal amounts produces no strains.

One consequence of Terzaghi’s principle is that when soil (either dry or
saturated) is to be described by elastic stress—strain relations, the equations must
refer to effective (rather than total) stresses. Thus it is appropriate to write

6'=D'e (1.13)

where the matrix D' contains elastic moduli E' and v’ rather than £ and v. The
significance of these ‘effective stress parameters’ (i.e. £’ and »") will be discussed
further below. In geotechnical problems we are frequently interested in strains
caused by changes in effective stresses and so we rewrite (1.13) as

50’ =D'Se. (1.14)

80' and 8€ represent incremental changes in effective stresses and strains.

1.3.2 A physical interpretation of effective stress

A physical interpretation of soil effective stresses will be useful in thinking about
soil behaviour and in particular the role of effective stresses as defined above. A
good mental picture of soil structure is a collection of approximately spherical
solid particles surrounded by water.” When loads are applied to the soil, the
loads are transferred internally through the soil partly by the solid phase and
partly by the water. Loads transferred by the solid phase are transferred between
the particles via their points of contact. If a plane is constructed through a
typical contact point (Fig. 1.7) then equilibrium of forces across the plane gives

Ao =A4Awu+ A0,
where
A is the area of the plane

Ay is the area of the plane across which the force is transmitted
by the water

Ag is the area of the plane across which the force is transmitted
by the particle contact

1 Of course, neither clays nor most sands are really like this. The point is that the simpli-
fied ‘mental picture’ is capable of yielding results which are appropriate to real soil
behaviour. It is not necessary to refine the mental picture to include factors such as
actual particle shape.

Sec. 1.3] Soil Mechanics 27

Fig. 1.7 — Forces acting on a plane through particle contact point

o is the total stress acting normal to the plane
u is the pore water pressure
gc is the average contact stress between the two particles.

Now A4y, > A4, i.e. Ay, is approximately equal to 4, so it is possible to write
(As/A)oc =0 —u

Thus effective stresses can be regarded as the contact forces between soil
particles averaged over the whole area of the soil.

1.3.3 Elastic constants for dry soil

How do we make use of the appropriate ‘effective stress moduli’ when soil is
loaded? We shall answer this question by first considering the (relatively) simple
case of dry soil with air in the pore space. The important point to appreciate is
that the effective stress elastic moduli for soil describe the elastic properties of
an assemblage of soil particles rather than the elastic moduli of the material
which makes up the solid phase of the soil. Consider a cylindrical sample of dry
soil in a triaxial apparatus., Again we think of the soil as being a collection of
roughly spherical particles, now with elastic properties.T If an all-round total
pressure is applied to the sample, then the strains can be calculated from (1.14).

1 Even when elastic modelling of soil is appropriate (for example: the calculation of small
deformations of over-consolidated soils) this mental picture is not quite accurate.
However, it turns out again that the conclusions we draw from this model are
appropriate to real soil behaviour.

i

28 Mechnanics [Ch. 1

(In this case the effective stresses are the same as the imposed total stresses since
the pore water pressure is zero.) The shear strains are zero and the volumetric
strain can be calculated from

SV/V =50/K" (1.15)

An examination of the collection of elastic soil particles would reveal some
flattening of the contact points between the particles, but apart from this they
would not change in shape very much. A very small change in volume of the
particles would be accompanied by a larger change in volume of the void space
(see Fig. 1.8). Thus the elastic bulk modulus K ' is measuring the bulk stiffness
of the collection of particles rather than the stiffness of the material which
constitutes those particles. In other words the soil is more ‘squashy’ than if there
were no voids present.

Fig. 1.8 — Consider a coucction of spherical particles in a ‘simple cubic’ packing

(where each sphere is in contact with six neighbours). A 1% direct strain in three

directions corresponds to a volumetric strain of 3% in the ‘unit cell’ and thus the

overall soil mass. If the particles are rigid, apart from flattening of the contact

points, then approximately 0.02% of this strain is due to a change in volume of

the solid particles and the remaining 2.98% is due to a change in volume of the
void space

1.3.4 Elastic constants for saturated soil

Now consider a specimen of saturated soil in a triaxial apparatus. The pore water
pressure is initially at atmospheric pressure and the drainage tap is turned off
before the soil is loaded. An all-round total pressure §o is now applied to the
triaxial sample.

If V is the volume of the soil and Vg and Vy, the volumes of the solid and
water phases, then

V=V, + V. (1.16)

Sec. 1.3] Soil Mechanics 29

Resulting from the change in all-round pressure the soil decreases in volume by
8V. This overall decrease in volume consists of decreases in the solid and water
phases § Vg and 8 Vy, respectively. Clearly:

SV =5V, +56V,. (1.17)

Note that the normal assumption is that saturated soil is incompressible when
drainage is not allowed. Here, however, we are attempting an accurate analysis of
the very small changes in volume which take place. These are given by

sV/V =(1/Ky) 80, (1.
8Vw/V =(1/Ky)ou, (1.1,
V[V =(1/Ks)bu, (1.20)

where Ky, Ky and K are the elastic bulk moduli of the soil composite and the
two phases (i.e. water and solid) respectively. Equations (1.18) and (1.19) are
definitions of K, and K. Equation (1.20) perhaps needs some comment: the
volumetric compression of the solid particles is caused by the increase in pore
water pressure (see Fig. 1.9). The change in effective stress 50’ must be
consistent with the two equations

S0=080"+bu, (1.21)
SVIV =(1/K"Y60". (1.22)

Fig. 1.9 — Change in volume of the solid particles is due mainly to the change in
pore water pressure which acts on them

Equations (1.17) to (1.22) can be regarded as six equations in six unknowns
8V, 6V, 8V, 50", 5u and K,,). Manipulation of the equations gives
1

14
Ky =K'+ Ky— . (1.23)
b Y Vi (Ku/Ks) (Vs/ Vi) + 1

30 Mechanics [Ch. 1

Since the elastic bulk modulus of the grains is about 30 times as large as that of
water, (1.23) can be written:

Ky =K'+ Ky(V[Vy). (1.232)

A further simplification follows the observation that XK' is much smaller than
Ky:

Ky =Ky(V/Vy). (1.23b)

Here it is convenient to introduce the normal soil mechanics definition of the
voids ratio:

e=Vy/Vs
and therefore:
Ky=(+1/e)Ky. (1.23¢)

Thus the bulk compressibility of saturated soil is effectively due to the bulk
compressibility of the water phase alone (but taking account of the fact that
the water only occupies a certain fraction of the soil volume). The approxi-
mations that we have made in obtaining this result are equivalent to taking
§V=56Vy,8V,=0,60 =0 and du = &0 in equations (1.17) to (1.22). There-
fore the undrained loading produces no change in the effective stresses: the
external load is carried by the pore water pressure.

Now suppose that the drainage tap is opened. The difference in pressure
between the pore water in the sample and the water outside causes water to
flow out of the sample. The rate at which this outflow takes place is controlled
by the pore size of the soil, but eventually the pore water pressure in the sample
returns to atmospheric pressure. The change in the effective stress is now equal
to the change in the total stress (5¢' = 50) and the volumetric strain can be
calculated from

SV/V =80/K .

This equation is identical to (1.15), which gave the volumetric strain for dry soil.
When calculating the long-term soil strains we must clearly use the effective
stress elastic properties. Soil is a rather special kind of material when examined
from the viewpoint of traditional continuum mechanics. This is because the
elastic volumetric ‘strain’ associated with the definition of effective bulk
modulus is due to the disappearance of some water from a small element of soil
rather than a change in volume of the individual components which make up the
soil.

This example demonstrates the difference between two modes of soil
behaviour which geotechnical engineers often identify. Drained deformation
takes place when the soil is strained slowly and the water in the soil pores
escapes as the water pressures return to their original (perhaps hydrostatic)
values. In undrained deformation the straining takes place sufficiently quickly so
that the water does not have the time to flow out of the pores, i.e. the soil

Sec. 1.3] Soil Mechanics 31

behaves essentially as an incompressible material, So far we have been looking at
the volumetric behaviour of soil and we have identified two elastic bulk moduli:
Ky appropriate for undrained behaviour and K’ appropriate for drained
behaviour. In Table 1.1 we summarise the relationships between the full set of
eight elastic moduli which describe isotropic behaviour.

Table 1.1
Elastic
constant
E' (Regarded here as an independent parameter)
v’ (Regarded here as an independent parameter)
K’ =E'I(3(1 —2")
G' =E/2(1 +v")
Ey =1.5E'I(1 +v") (see text)
vy 0.5
Ky, Infinite
Gy =G’ (see text)

Since the pore water has no shear stiffness it cannot make a contribution to the
elastic shear stiffness of the soil. Thus the symbol G(= G ' = Gy) is usually used
for shear modulus. Note that this implies £'/(2(1 +»')) = E,/3, and this
equation is used to obtain the relationship between £ and E,, quoted in Table
1.1.

It should now be possible to appreciate the comment in section 1.2 that K
and G are elastic properties more appropriate for the description of soil
behaviour (more appropriate than £ and v, that is). G remains the same for
drained and undrained behaviour, and the effective bulk modulus K’ allows the
calculation of drained volumetric strains. If partially drained behaviour is
considered (that is before pore pressure equilibrium is finally reached) then G is
again appropriate for the calculation of shear strains and some value of X
between K' and infinity could be assumed for the calculation of volumetric
strains.

1.3.5 Flow of water through soils

The rate of flow of water through soil is controlled by two factors, firstly the
size of the pores and secondly the gradient of water pressure which is tending to
cause the flow. These two factors are encompassed in Darcy’s Law:

v=ki

where

32 ’ Mechanics (Ch. 1 Sec. 1.3] Soil Mechanics 33

v s the ‘artificial’ velocity of the water (i.e. the flow rate divided by
the whole cross-sectional area through the soil)

|

=h/vw; (1.24)

{
J
4
i o .
1§
1[: k is the soil permeability (independent of flow rate for a wide range thus it is alwaysdp9551ble to ;alculate t}}e actfu:ﬁ pfore pressure from an excess
“a: ; of velocities) . pore pressure (and vice versa) by an equation of the form
f“ i is the hydraulic gradient. 1 u=utzyy (1.25)
il
! The definition of hydraulic gradient is shown in Fig. 1.10. Note that the position] where z is the height of the point at which the pore pressure is being measured

above the arbitrary datum. The reader should note that our definition of
hydraulic head is the standard one. The definition of excess pore pressure,
however, differs from that given in some texts on soil mechanics. This differen-
arises because it is normal to consider steady seepage problems (where po.
i pressures do not change with time) separately from consolidation problems
(where pore pressures vary with time). In the former case, hydraulic head is the
basic variable used in solving the problem whereas excess pore pressures are
used in the latter case. For the purposes of our finite element formulation we
need to link together these two quantities and this is done via (1.24). Consider
—_ an analysis of a consolidation problem with under-drainage (as in section 3.6.4).
Using the present definition of excess pore pressure, the final state of steady
seepage downwards has a linear variation of excess pore pressure. In contrast it
would often be assumed that the excess pore pressure is the time dependent
ug component of the pore pressure which eventually decays to zero. The point to
Tw : note is that both definitions of excess pore pressure satisfy the basic differential
{ equation derived by Terzaghi (Terzaghi and Frohlich, 1936):
du 3*u

of the datum shown in the figure is arbitrary — only the gradient of hydraulic
i : head appears in Darcy’s Law. In this book the term ‘excess pore pressure’ is
}rﬂ defined as the hydraulic head divided by the bulk density of water:

Sh

ot “ oz’

where ¢y is the coefficient of consolidation,
Za Geotechnical engineers often need to predict the distribution of pore
Tw : pressures in a mass of soil under the condition of steady seepage. The basic
equation which must be satisfied at all points within the soil is obtained by
considering the flow of water into and out of an infinitesimal element of sc
(Fig. 1.11) (under conditions of steady seepage there must be no volum
change):

] av ov
% 9% %y (1.26)

A ! ox ay 0z

4 “s i The permeability of the soil may be different in the directions of the three
" co-ordinate axes, and the general form of Darcy’s Law is

J:- EN 5
j f ke

Uy =—— —, (1.27)
Yw 0OX

] o X i=

1N Fig. 1.10 — Hydraulic gradient = —6h/ss, a positive gradient causing flow from ! v, = _k_y ili 1.28
14 AtoB . ‘ i’ Yw O ’ (129

34 Mechanics [Ch. 1

V, + 9v,.82
ot

N

v, + Ov, .8x]

ax

|

\ sy
/”’Jy ayy

y

Fig. 1.11 — flow out of a small element of soil

k, ou
vy=—— —. 1.29
s (1.29)
Substituting these relations into the equation of continuity (1.26):

. a’zI+k 6217+k ?u 0
— — —=0. 1.30
Toaxt Y ayr 7 a2 (1.30)
For the same permeability in all directions (i.e. ky = ky = k;) this equation
reduces to Laplaces equation which governs a number of other physical
phenomena (e.g. the flow of electricity in a conducting medium and the stresses
in an elastic bar under a torsional load).

These equations may be extended to the case of time dependent flow of
water in soil. The basic equation now becomes

3l
ey

)
s]
i

-

1 (TR i T

o b

- Hyi < [A ha o

“~
3

v A A E e

Frige {4 b et

24 AT T et i -
SR Do

Y

PP b L Pl A e B

b

Sec. 1.3] Soil Mechanics 35

ky 8%u ky, 3*u k, ’u dv
A e A i B)

yw 8xP yw P yw 32 Bt (30
where the last term in this equation is equal to the rate of volumetric strain of a
soil element.

This equation together with the equations of differential equilibrium, the
equations defining effective stresses and the effective stress—strain relations are
known as Biot’s equations of consolidation (Biot, 1941). The one-dimensional
form of these equations is precisely equivalent to Terzaghi’s one-dimensional
consolidation theory.

Critical State Soil Mechanics

2.1 INTRODUCTION

The theories of soil behaviour known as ‘critical state soil mechanics’ were
developed from the application of the theory of plasticity to soil mechanics. It
is possible to appreciate and use many of the ideas of critical state soil mechanics
without making much reference to the theory of plasticity. Indeed there is a
tendency to teach critical state soil mechanics in this way because many degree
courses in civil engineering do not find room for a proper account of plasticity
theory. We regret this. In our view a real appreciation of critical state soil
mechanics requires a knowledge of plasticity theory. To understand how soil
deformations can be predicted (for example by a finite element program such as
CRISP) using the theories of critical state soil mechanics, familiarity with
plasticity theory is essential, Hence the first few sections of this chapter are
devoted to an explanation of some of the fundamental ideas in this theory.

Fig. 2.1 shows the stress—strain curve obtained from testing a bar of metal in
a tension test. Initially the relation between stress and strain is linear (OA in the
figure). If the bar is unloaded from any point on OA then the stress—strain
relation for the material follows the same path but in the reverse direction to the
origin. If the bar is loaded beyond A then subsequent unloading is also
reversible, even though part of the stress—strain relation is non-linear. However,
there is a point B beyond which unloading is nor reversible: this is called the
yield point of the material. When the bar is loaded up to the point C and then
unloaded, the path CD is followed. OD represents a permanent strain which
remains on unloading. This permanent strain is known as the plastic strain
experienced by the metal.

=

= pth

Sec. 2.1] Introduction 37
Stress |
F
C

; .
h H
! |
[}
B : |
' 1
A : !
i |
! 1
! i

I
|
' i
1]
] 1
t 1
. X
' |

1

D E |G
(0] Strain

Fig. 2.1 — Stress—strain curve typical of many metals

Up to point B the behaviour of the bar is regarded as being elastic. It is the
reversibility rather than the linearity which is the important feature of behaviour
which distinguishes between elastic and plastic straining of a material. However,
points A and B can often be regarded as being coincident for practical purposes.
When the material is in a state represented by the point C, the total strain OE is
made up of the plastic strain OD and an elastic strain DE which is completely
recovered on unloading. The slope of the elastic unloading line CD is usually
very close to the initial elastic loading portion OA.

Reloading the metal from the point D results in the line DC being followed
until the point C is reached which is the new yield point of the material. Further

‘loading follows a continuation of the original stress—strain curve until the

maximum stress is reached (point F) when the bar fails. The stress at the point F
(i.e. FG in the figure) is the strength of the metal in direct tension. This is often
called the ultimate tensile strength or (UTS).

Suppose that two similar bars of the same metal are tested. The first has gone
through a stress cycle OCD, but the second has not. The first bar has a higher
yield point than the second and thus the material seems to be harder. The
process of raising the yield point is called ‘hardening’ the material. The amount
that the yield stress is raised is often linked to either the plastic strain or the
mechanical work that is done on the material. Thus the terms ‘strain-hardening’
and ‘work-hardening’ are often used to describe this kind of behaviour.

The type of behaviour described above is typical of an alloy of aluminium
such as duralumin. Other metals (and soils) display plastic behaviour which is
broadly similar to that described above, but the behaviour shows some
differences in detail. Some of these differences are shown in Fig. 2.2. Fig. 2.2(a)
shows the phenomenon of an upper yield point which is displayed by low-
carbon steels. Fig. 2.2(b) shows that, when a material is unloaded from tensile

38 Critical State Soil Mechanics [Ch.2

Stress

Strain

Fig. 2.2(b) — The Bauschinger effect (ay, > oy;)

Stress

Ov1

Strain

Ov2

Fig. 2.2(a) — Upper and lower yield points for a mild steel

Stress

Strain

Fig. 2.2(c) ~ Anelastic behaviour: the shaded area represents an amount of energy

dissipated during the ‘elastic’ hysteresis loop
yielding, it can yield in compression at a lower stress than if it were reloaded in
tension. This is known as the Bauschinger effect. Fig. 2.2(c) shows the
phenomenon of anelasticity or elastic hysteresis. A material which has been
subject to elastic unloading and is then reloaded does not always follow exactly
the same stress—strain path. The shaded area within the ‘hysteresis loop’ of the
stress—strain curve represents an amount of energy which is dissipated during
straining.

Sec. 2.2] Idealisations of Plastic Behaviour 39

2.2 IDEALISATIONS OF PLASTIC BEHAVIOUR

Plasticity is a very useful feature of the behaviour of metals for a number of
reasons. Firstly a large amount of plastic straining before failure (known as
ductility) signals the imminent collapse of a structure before catastrophic
failure occurs. Secondly the ability to deform metals plastically under high
stresses is the basis of many manufacturing processes such as rolling, drawing,
machining or pressing in dies. Thirdly the complete description of the strength
of metals within the mathematical theory of plasticity allows buildings and
mechanical engineering components to be designed to provide a factor of safety
against overall collapse (rather than designing to prevent some local part of the
structure from becoming overstressed).

The plastic behaviour of soils allows a rational treatment of bearing capacities
of foundations and the failure of slopes, excavations and tunnels. It also allows
complete description of the stress—strain behaviour of soils so that soil
deformations can be predicted right up to failure. Admittedly the behaviour of
soil is more complex than is accounted for by current elasto-plastic models of
behaviour. However, attempts to produce new mathematical descriptions of soil
behaviour invariably use the framework of elasto-plasticity.

In order to predict the behaviour of engineering structures when plastic
behaviour is involved, the first step is to choose an appropriate idealisation of
plasticity. In such an idealisation the main features of the behaviour are
identified and included in the description, but aspects of secondary importance
are ignored. Fig. 2.3(a) shows the idealisation known as elastic—perfectly plastic.
Here the first part of the stress—strain curve is linear and elastic until the
material yields. The material then continues to deform at a constant yield stress.
In the terminology of plasticity the material exhibits no strain-hardening. Fig.
2.3(b) shows the simplest way of incorporating strain-hardening into an
idealisation. When the material yields, the stress—strain curve is still linear but at
a reduced slope. This type of behaviour is referred to as elastic—linear-strain-
hardening plastic. Sometimes (when only collapse loads are to be considered in a
calculation) it is convenient to idealise the behaviour as rigid-plastic (see Fig.
2.3(c)).

The idealisations of plastic behaviour which have just been described will
sometimes be suitable to describe the behaviour of soil. (Indeed the rigid-plastic
idealisation underlies most stability calculations in soil mechanics.) However, soil
exhibits a rather more complex behaviour than metals, and the main aim of this
chapter is to describe a more appropriate idealisation.

To completely describe the stress—strain relations for an elasto-plastic
material, four different types of statement are required.

(a) A yield function for the material. This generalises the concept of the yield
stress described above to two- and three-dimensional stress states.

(b) A relationship between the directions of the principal plastic strain
increments and the principal stresses.

40 Critical State Soil Mechanics [Ch.2

(c) A flow rule for the material. This specifies the relative magnitudes of the
incremental plastic strains when the material is yielding.

(d) A hardening law for the material. This is a relationship between the
amount a material hardens and the plastic strain the material undergoes
or the work that is done on the material when it is yielding.

Each kind of statement is considered in more detail in sections 2.3 and 2.4.

(a) Elastic—perfectly-plastic
Stress

Strain
(b) Elastic, strain-hardening plastic Stress
Strain
(c) Rigid, perfectly-plastic
Stress
Y
4
)
Strain

Fig. 2.3 — Idealisations of plastic behaviour

)
&
St

Sec. 2.3] Yield Functions 4]

2.3 YIELD FUNCTIONS

So far the discussion of plastic behaviour has been limited to the case of uniaxial
straining — only one stress has been involved in describing the loading applied to
the material. When a material is subjected to two- or three-dimensional states of
stress, then whether the material is elastic or plastic will in general depend on all
the stress components acting (which number six in the fully three-dimensional
case). When material behaviour is isotropic (same properties in all directions),
then it is only necessary to consider the values of the principal stresses (g, oy,
and o¢).

2.3.1 Yield functions for metals

For the case of metals, two criteria for ‘elastic breakdown” are due to Tresca and
von Mises. Tresca’s criterion states that plastic yielding starts when the
maximum shear stress reaches a certain value k. This happens when the principal
stresses satisfy the following equation:

Max (lo; —opl, lop —ocl, loc—a,)) = 2%. (2.1)

This equation can be represented in principal stress space as the surface of a
prism with a hexagonal cross-section, centred on the hydrostatic (o, = oy, = 0¢)
axis (see Fig. 2.4). When the stress state of an element of material is represented
as a point inside this surface, the material behaviour is elastic. When the stress
state is described by a point on the surface, then the material is yielding. (Stress
states outside the surface are impossible to attain.)

Hydrostatic
axis

e
=

)
A\

%y

Fig. 2.4 — The Tresca yield surface

von Mises’ criterion states that plastic yielding starts when the following
equation is satisfied:

(02— 0p)* + (05 —0c)* + (0c —0a)" =2 0. (2.2

42 Critical State Soil Mechanics [Ch.2

This criterion is equivalent to plastic yielding starting when the elastic strain
energy due to shearing reaches a critical value. Here oy is the yield stress in
uniaxial tension. (Considering the stress state in uniaxial tension we see that
Tresca’s k = 0.50vy.) In principal stress space, (2.2) is equivalent to a cylindrical
surface (Fig. 2.5) which coincides with the Tresca surface on the edges (i.e.
where 0, = 0p OI 0 = O¢ OI O¢ = 0a)-

Hydrostatic
axis

Fig. 2.5 — The von Mises yield surface

In general a yield function for an isotropic material is written:

f(oa) Ob, OC) = O’

this equation representing a surface in three-dimensional stress space. The Tresca
and von Mises yield criteria are two examples of the more general form, It is
conventional to write the yield function in such a way that if one substitutes
into the function the current stress state, then a negative value of the function
indicates that behaviour is elastic (inside the yield surface). A zero value of the
function indicates that yielding is taking place, and by convention positive
values are not allowed.

2.3.2 Some yield functions suggested for soils

Now we turn to a yield surface perhaps more appropriate for soils. In 1773 the
French engineer Coulomb (Coulomb 1773) introduced in his analysis of the
thrust acting on a retaining wall the failure condition for soil (usually called the
Mohr—Coulomb criterion) which is still in wide use:

7=c + 0tan ¢.

Sec. 2.3] Field Functions 43

Today, geotechnical engineers prefer to write this equation in terms of effective
stresses:

r=c'+o¢'tang’, 2.3)

Although this equation is normally interpreted in terms of a Mohr’s circle plot,
we can instead represent this failure criterion in the three-dimensional stress
space that we have been using to describe the yielding of metals. This is achieved
by rewriting the equation:

0, —03 =sin¢ (0, +03+ 2 cotg’)

where o, and o3 are the major and minor principal effective stresses
respectively. Taking account of the six possible permutations of the magnitudes
of o, oy and o, (i.e. o, > 0y, > 0/, 0, > 0. > 0y, etc.) six planes are generated
in (0,, 0y, o) space. Thus the Mohr—Coulomb yield criterion is equivalent to
the irregular hexagonal pyramid in principal effective stress space shown in Fig.
2.6. In fact the Mohr—Coulomb criterion represents an incomplete picture of the
yielding of soils. Firstly, soils show evidence of volumetric yielding under
isotropic stress changes where Mohr—Coulomb suggests elastic behaviour,
Secondly, if one follows the normal approach of calculating plastic strains when
yielding (as used for metals and described in section 2.4.2), then the predictions
of expansive volumetric strains are unrealistic.

Hydrostatic
axis

Fig. 2.6 — The Mohr—Coulomb yield surface

We conclude this section on yield surfaces with the yield surface proposed by
Drucker & Prager (1952). For some metal plasticity calculations, von Mises is
more convenient than Tresca, and so Drucker and Prager believed it might be
useful to ‘round-off” the Mohr—Coulomb yield surface to give the conical surface
for soils shown in Fig. 2.7. This has all the drawbacks of the Mohr—Coulomb
yield surface and gives a worse fit to the data of soil failure. As a yield surface

44 Critical State Soil Mechanics [Ch.2

Hydrostatic
axis

Fig. 2.7 — The Drucker—Prager yield surface

for soils, it does not have much in its favour, and we include it partly to
‘complete the set’ and partly because the conical shape reappears in the Cam-
clay model, not as a yield surface, but as the ‘critical state cone’ (see Chapter 5).

2.3.3 The hardening law

The hardening law generalises the concept of the uniaxial yield stress being
increased by strain-hardening to more general stress states. Hardening a material
can result in the yield surface either being enlarged or being translated in stress
space (or perhaps some combination of the two). These two possibilities are
illustrated in Fig. 2.8. The former is normally called ‘isotropic-hardening’ and
the latter ‘kinematic-hardening’. The kinematic-hardening assumption can
describe behaviour such as the Bauschinger effect described earlier. Although the
assumption of isotropic-hardening is less realistic for many materials, it is more
often used because it is simpler to describe mathematically. If the loading
applied to the material is monotonic, then the assumption of isotropic-hardening
will be adequate (because the ‘opposite’ side of the yield surface is not
encountered). The hardening law is incorporated into the yield surface equation
by writing

f(e,h) =0, 24

where h is a vector of hardening parameters. The hardening parameters will
define the size of the yield locus and there will be some prescribed relationship
between the hardening parameters and the components of the plastic strain (for
a strain-hardening material). In the simplest case, there may be just one
hardening parameter, say /,, which may be the same as the yield stress in
uniaxial tension, for example. One particular value of A, will be relevant for a

-

Sec. 2.4] Plastic Strains 45

yield locus of a certain size, and after strain-harding there will be a larger yield
locus associated with a larger value of 4, .

(a) Isotropic-hardening

Ob

(b) Kinematic-hardening 0y

Fig. 2.8 — Two methods of describing hardening

2.4 PLASTIC STRAINS

2.4.1 Co-incidence of principal axes

Consider a cube of material which is subjected to principal stresses o4, oy, and
oc (Fig. 2.9(a)). A small incremental shear stress 67 is now applied to four faces
of the cube. If the cube deforms elastically then the incremental strains are as
shown in Fig. 2.9(b). If the cube deforms plastically then the incremental strains

46 Critical State Soil Mechanics [Ch. 2

are as shown in Fig. 2.9(c). In elastic behaviour the directions of the principal
strain increments coincide with the directions of the principal stress increments.
In plastic behaviour the directions of the principal strain increments coincide
with the directions of the principal stresses (nor the principal stress increments).
This coaxiality of the principal strain increments and the principal stresses is
associated with plastic theories describing isotropic material behaviour.

%
E—— e
g g,
a
Fig. 2.9(a) — Side view of cube 0y

5T

I i
[

Cdl
e

%

Fig. 2.9(b) — Elastic response
to an increment of shear stress

Fig. 2.9(c) — Plastic response
to an increment of shear stress

Fig. 2.9 — Elastic and plastic response of a cube subjected to shear (only the side
view is shown; o is the out-of-plane stress)

2.4.2 Flow rules

The flow rule for a plastic material gives the ratios of the plastic strain
increments when the material is yielding in a particular stress state. Thus a flow
rule describes the relative sizes of individual strain increments, but not their
absolute sizes. The flow rule is given mathematical expression by the following
equation:

b2 (e

3

S daitiz S

PR (R =) SR e S = TRy I 1

Sec. 2.4] Plastic Strains 47

b)
Sep=6m—g. (2.5)
o0

In this equation, 6m is known as the plastic multiplier (the reader should note
that many writers use the symbol dA instead of 6m: this usage is not applied
here to avoid confusion with the use of A in critical state soil mechanics). The
function g is known as the plastic potential.

The use of a potential function is a natural way of describing a vector
quantity which depends only on the location of a point in space. A potential
function is a scalar function of position, and taking the partial derivatives of the
potential with respect to the co-ordinate axes, a uniquely defined direction is
obtained.

The plastic potential g(o,, oy, 0c) = 0 defines a surface in principal stress
space. If vectors representing plastic strain increments are plotted in stress space,
then the strain increment vectors are normal to the potential surface (Fig. 2.10).

The form of the plastic potential function for a material could be determined
by performing many careful experiments. However, for many materials, the
yield function and the plastic potential appear to be the same:
8(0a, 0v, 0¢) = f(0a, 0p, 0c). When g =/ it is often said that the condition of
‘normality’ holds (this is because vectors of plastic strain increment are normal
to the yield locus). Alternatively this situation is sometimes described as being
one of ‘associated’ flow, in contrast to the case when g is not equal to f and
there is said to be ‘non-associated’ flow.

ay,. b€,

v
-
- Strain increment
vector

Plastic potential a,, b€

Fig. 2.10 — The plastic potential

Hill (1950) discusses the plastic deformation of metal crystal grains and
comments ‘It is likely, therefore, that there is a relation, from a statistical
average over possible orientations of the grains in a polycrystal, between the

i
i
i

48 Critical State Soil Mechanics [Ch. 2

plastic potential g and the function f(o) defining the yield locus. It is not yet
known what this should be, theoretically, for any particular metal.

‘It seems, however, that the simple relation g = f has an especial place in the
mathematical theory of plasticity, for as will be shown later, certain variational
principles and uniqueness theorems can then be formulated.’

Although normality (g = f) appears to be true for metals, we shall see that
there has been some discussion (even controversy) as to whether it can be
applied to soils.

2.4.3 Drucker’s stability postulate

Drucker (1950, 1951) introduced a ‘postulate of stability” which helps in under-
standing the physical significance of normality. The concept of stability is a
familiar one in the consideration of engineering systems. Consider, for example,
the case of a sphere resting on a (possibly non-flat) surface (Fig. 2.11). If the
surface is concave upwards and the sphere is subjected to a small perturbing
force then the response is stable (when the force is removed, the sphere returns
to its original position). If, however, the surface is convex upwards, then the
response is unstable. A flat surface gives a response which is ‘neutral’ in terms of
stability. Note that in each case the sphere is initially in equilibrium; however,
the stability of the equilibrium is different in each case.

Drucker considers a system which is in equilibrium in some stress state o and
which is then loaded by a small extra increment of load 0. Drucker regards the
incremental stress §0 as being due to an external agency (i.e. external to the
‘system’ he is considering). Subsequently §¢ is removed. A stable system is one
which absorbs work from the external agency, whereas an unstable system
releases work. If the external agency is incapable of absorbing work from the
system (for example, if it is supplied by a dead load placed on the system) then
the system collapses. Schofield and Wroth (1968) illustrate these concepts in
relation to the loads acting on a triaxial test system for soil, and the reader is
referred there for a more detailed account. For our purposes it is sufficient to
note that Drucker’s definition of the stability of equilibrium corresponds to that
in use in other branches of engineering (e.g. buckling theory in structures). As
engineers we would always prefer to be dealing with stable systems which are
capable of absorbing work if we subject them to small disturbing loads.

The plastic work done in a small increment of deformation is approximately
08eP + (6066")/2.T Drucker shows that his definition of stability corresponds to
a value of §05€P greater than or equal to zero, so Drucker is concerned with the
sign of the second-order work term. In terms of a uniaxial test, stable
deformation is equivalent to strain-hardening behaviour, whereas unstable
deformation corresponds to strain-softening behaviour (see Fig. 2.12).

+ A consequence of the definitions of stresses and strains given in Chapter I is that the
mechanical work done (per unit volume of material) is equal to the scalar product of
the vectors of stress and incremental strain components.

+

Sec. 2.4] Plastic Strains 49

(a) Stable equilibrium

(b) Unstable equilibrium

(c) Neutral equilibrium

Fig. 2.11 - Stability of equilibrium

Fig. 2.12 — Stable and unstable responses in a tension test

Why is Drucker’s postulate equivalent to normality? Consider a small
increment of stress §o applied to a plastic material which results in hardening
le. a new yield locus is established (Fig. 2.13). In fact this hardening could be

50 Critical State Soil Mechanics (Ch.2

—

s

Fig. 2.13 — Drucker’s stability postulate

caused by several increments 8o, all starting from the same stress state (and
directed outwards from the initial yield locus). The only possible direction of
the plastic strain increment vector (satisfying Drucker’s postulate) is that normal
to the current yield locus. This is because it would otherwise be possible to find
a possible 8¢ which made an angle of greater than 90° with Se.

Drucker introduced his postulate in the context of metal plasticity where
strain-hardening behaviour is the norm and systems are generally stable. Some
have criticised the application of his postulate to situations (e.g. soils) where
strain-softening can occur. We follow Palmer (1973) in asserting that the
postulate is basically a classification of material response. In section 2.7.2 we
shall examine the implications of Drucker’s postulate for soil behaviour.

2.4.4 Frictional systems and plasticity theory

Systems with frictional interfaces have a certain similarity with perfectly-plastic
solids. Consider the simple case of a rigid block resting on a plane subject to a
horizontal force F and a vertical force N (Fig. 2.14(a)). When F < uN there is no
movement and the line F = uN could be identified as a yield locus for the
system. However, if one plots the incremental ‘plastic’ displacements for this
system, it appears that normality does not apply (Fig. 2.14(b)). Drucker (1954)
considers some cases of systems made of frictional blocks and concludes that
they must be excluded from his definition of stable plastic systems.

Now soil strength is often described by a drained angle of friction. Hence the
question immediately arises: is it legitimate to describe soil as a plastic material
to which one can apply the principle of normality? Clearly the actual behaviour
of a particulate medium such as clay or sand is much more complex than that of
a block sliding on a plane. A possible answer to this question could come from
performing tests on samples of soil and measuring the plastic strains. If the
Mohr—Coulomb surface is taken as an appropriate yield surface (to which
normality can be applied) then yielding should be accompanied by a constant

Sec. 2.4] Plastic Strains 51
i Sy

Incremental displacement

vector
* F = unN
I
|

N, 6x
F, 8y
N, 6x

(a) (b)
Fig. 2.14 — Lack of normality in a simple system with friction

Deviator stress Deviator stress

€ €
a
(a) Lighly over-consolidated clays qnd loose sands

v v

(b) Heavily over-consolidated clays and dense sands

Fig. 2.15 — Typical stress—strain and volumetric strain response of soils when
sheared in a triaxial apparatus
rate of negative volumetric strain (i.e. expansion of ‘dilation’). In fact soils
sometimes compress when they are sheared; sometimes they dilate; and some-
times they deform at constant volume. A typical pattern of behaviour for loose
sands or drained tests on lightly over-consolidated clay would be compression
during the first part of the test followed by eventual deformation at constant
volume (Fig. 2.15(a)). In contrast, dense to medium-dense sands and heavily

52 Critical State Soil Mechanics [Ch.2

over-consolidated clays tend to dilate initially and deform at constant volume
later in the test (Fig. 2.15(b)). Therefore, at first sight, it seems that normality
cannot be applied to soils. We shall show, however, that this more complex
volumetric behaviour of soils can be described by a plastic theory of soil
deformation that uses the normality principle.

2.5 CAM-CLAY

Cam-clay is the name given to an elasto-plastic model of soil behaviour. Thus
Cam-clay is not a real soil in the sense that one cannot find deposits of it at
some location in the ground. However, the Cam-clay equations can be used to
describe many real soils if appropriate material parameters are chosen. }

This section provides a complete description of Cam-clay. It is intended both
as an introduction and as a ready-reference section to contain all the basic
equations and definitions. First the symbolic notation used in describing Cam-
clay is reviewed. Then the assumptions governing the relationships between
volume and applied (isotropic) pressure are described. The critical state concept
is then covered. Next the equations which govern plastic yielding are given. Later
sections of the chapter show how the Cam-clay equations can be used to predict
soil strengths and strains in triaxial tests. For the time being we omit one of the
most interesting aspects of Cam<lay: its theoretical derivation. Thus our initial
account of Cam-clay is descriptive, and equations are introduced without an
attempt at justification. This comes in section 2.7.1.

2.5.1 Critical state parameters

Three parameters, p’, ¢ and V, describe the state of a sample of soil during a
triaxial test. The parameters are defined:

0, +20f 04+ 20;
= = — U

3 3

r

>

! ’
q =03 —0pr =03 0y,

V' is the specific volume, i.e. the volume of soil containing unit
volume of solid material. (N.B. V"'=1 + e, where e is the voids
ratio.)

p' is often called the mean normal effective pressure, and ¢ the ‘deviator stress’.
The reader should note that these three parameters will vary during a test.” The
progress of a soil sample during a triaxial test can be represented by a series of
points describing a line in a three-dimensional space with axes p’ V and q.
Different types of test (drained, undrained, compression, extension and so on)

7 Unfortunately nearly every book dealing with critical state soil mechanics uses a slightly
different notation for the same set of parameters. Schofield and Wroth (1968) use p, q
and v. Atkinson and Bransby (1978) use p', ¢’ and v. We use the same notation as Wood
(1984).

Sec. 2.5] Cam-<lay 53

lead to different test paths in this (p', V, ¢) space’. Critical state soil mechanics
gives us a set of rules for calculating test paths in (p', ¥, ¢) space: usually two of
(£', V, q) are determined by the type of test and there is a simple procedure for
determining the third.

We shall also describe the progress of tests with reference to (P’ q) and
(p', V) plots. These simply correspond to two orthogonal views of (p’, V, ¢)
space (Fig. 2.16). The reader should also note that in the (p", V) plots, the p'
axis does not correspond to ¥ = 0: instead the V¥ axis is started at a convenient -
value to illustrate the part of the (p V) plot which is of interest.

(a) Three-dimensional (p’, V, q) space

B P g

et

p
v
(b) (p’, q) plot (view in direction A) q
J— pl
(c) (p', V) plot (view in direction B) v
o’

Fig. 2.16 — Two orthogonal views of (p’, V, q) space

54 Critical State Soil Mechanics [Ch.2

There are also four parameters which are soil constants: M, [, k and \. These
are introduced below. They describe the fundamental properties of soil with a
given mineralogy. Other parameters are defined in terms of the seven already
mentioned; for example the stress ratio n = q/p .

Corresponding to the stress parameters p' and g are strain parameters v
(volumetric strain) and e (deviator strain):

V=€, + 2¢;, (2.6)
e=7 (ea —€r). @.7)

v and € describe the strains from the start of the test: we shall often make use
of the symbols 6v and &€ (for strain increments) where

§v=2_5¢, + 20€;, (2.8)
e =3 (8¢, — Bey). (2.9)

The reason for the factor of 2/3 that appears in the definition of shear strain € is
so that the work done by a small increment of straining is equal to p'8v + g8e.
Thus the stress and strain parameters correspond to one another in that
multiplication leads to the correct evaluation of work done in deformation: the
situation is the same as for stress and strain parameters o, and ey, etc. (section
2.4.3). The reader may care to confirm that p'$v+ gbe = 0,6¢, + 20,8 ¢,. The
formula for. work done is valid for drained, partially drained or undrained
deformation;see Schofield and Wroth (1968, section 5.6).

2.5.2 Volume—pressure relations

If a sample of soil is subjected to isotropic compression (and swelling) tests, then
it follows paths in (p', V) plots as shown in Fig. 2.17. This is basically similar to
the more familiar (oy, €) plots obtained from oedometer tests. In critical state
theory the virgin compression, swelling and recompression lines are assumed to
be straight in (In(p"), V) plots with slopes —X and —« respectively, as shown in
Fig. 2.18. The equation of the isotropic virgin compression line (often called the
isotropic normal consolidation line) is

V=N—2X (p) (2.10)

where oV is a constant for a particular soil. NV is the value of ¥ when In(p") =0,
i.e. p'=1: clearly the value of V depends on the units which are used to
measure pressure. The units adopted here are kN/m?, sometimes called kPa
(kilopascals). Although MV is a soil constant, it is related to those already defined
(N=TI+X—k): this is demonstrated below. The equation of a swelling or
recompression line is given by

V=V,—kIn(p. (2.11)

i

Sec. 2.5] Cam-clay 55

1]

P

Fig. 2.17 - Typical (p', V) plot of isotropic compression, swelling and
recompression

in (p')

Fig. 2.18 — Idealised (In p’, V) plots in critical state theory

When moving up or down one of these ‘«-lines’ the soil is over-consolidated.
Equation (2.11) is sometimes written as

Vi=V+rln(p"). (2.12)

The value of ¥, depends upon which -line the soil is on, but it stays constant
while the soil is moving up or down the same line.

It is convenient here to introduce the parameter V. The definition of Vy is
similar to that of V :

Va=V+xn(p"). (2.13)

We have already encountered one particular A-line, the isotropic normal
consolidation line, when V) =N. Note that if ¥ and p” are specified, then V,
and V) can always be determined using (2.12) and (2.13). Conversely, if V¥, and

56 Critical State Soil Mechanics [Ch.2

V are known then it is always possible to deduce ¥ and p' (see Fig. 2.19). Thus
V. and V¥, can be regarded as a set of parameters describing the soil, which are
an alternative to ¥ and p’.

It is worth noting that for very large effective pressures, (2.10) predicts values
of V¥ less than 1 (a physical impossibility). Clearly this equation represents an
approximation to soil behaviour which is valid in the range of stresses of

engineering interest.

1
2%
Slope = —\
Vk inp’, v
Slope = —«

In p'

Fig. 2.19 — Each point in a (Inp’, ¥) plot is uniquely associated with a pair of
values (¥, V) (and vice versa)

2.5.3 Critical state line

When soil samples are sheared they approach the Critical State Line (CSL).T The
equations of the CSL are

qg=Mp’, (2.19)
V=L—AIn(p"). (2.15)

M and I" are constants for a particular soil. They determine the slope of the CSL
in a (p', q) plot and the location of the CSL in the (p' V) plot, respectively.?
Figs. 2.20(a) and 2.20(b) show the CSL in (p’, ¢) and (p', V) plots. Note that
(2.15) is the equation of a Aline with V) =TI". The critical state line represents
the final state of soil samples in triaxial tests when it is possible to continue to
shear the sample with no change in imposed stresses or volume of the soil.
Hence, at the critical state:

t Strictly speaking this statement is true only when the effective stress path obeys the
relationship 5¢/6p' > M or 8q/6p' < — M. However, this condition applies in all normal

triaxial tests where one is shearing the sample to failure.

t Of course, many people pronounce M as the capital English (rather than Greek) letter.
The reason for this (at first perhaps surprising) convention is that M represents a
frictional constant for Cam-clay, and ‘u’ is used widely in mechanics to signify a
coefficient of friction,

A

+bniabrn i ALY A POR b M L)

S P

o TR s

Wil o
buraEln

Sec. 2.5] Cam-clay 57

(b)

) .
P p
Fig. 2.20 — The critical state line in (a) (p', ¢) plot and (b) (p’, V) plot (isotropic

normal compression line is shown dashed in (b))

5v 5 5p’ -

2 My

b€ Se de
(2.14) and (2.15) describe a curved line in three-dimensional (p’, ¥, ¢) space
(Fig. 2.21).

q
\
\
\
\
7
P

The critical
state line

Fig. 2.21 — The critical state line in (p’, ¥, q) space is given by the intersection of
of two planes: ¢ =Mp' and a curved vertical plane ¥ =T —xln (p")

58 Critical State Soil Mechanics [Ch.2

2.5.4 Yielding of Cam-clay

First consider the (In(p '), V) plot in Fig. 2.18 rotated anti-clockwise through an
angle of 90° (Fig. 2.22). This picture is basically the same as that for a linear
work-hardening metal (Fig. 2.3(b)). However, a significant difference is apparent
when comparing soils with metals. With soils we are seeing elasto-plastic
behaviour associated with volumetric strains. The von Mises and Tresca yield
functions for metal suggest that one can hydrostatically compress metals
indefinitely without yielding taking place.

in (")

Stress

—— e — - —

______ -
v Compressive volumetric
strain
Fig. 2.22 — Volumetric straining of soils viewed as strain-hardening plastic

behaviour

The next part of our description of the yielding of soils considers the effect
of shearing a sample, Suppose that the state of the soil can initially be
represented by the point A in a (p’, V) plot (Fig. 2.23). The deviator stress, g,
is now increased while p’ and ¥ remain constant. Subsequently we shall see that
this is what happens to an over-consolidated sample in an undrained triaxial test.
As the test proceeds, the state of the sample can be represented by a point in the
three-dimensional (p', ¥, q) space which lies directly above the original point
(Fig. 2.24). The sample yields at a point such as B when the value of ¢ is given
by the following equation:

’

T
(2.16) describes a surface in (p', V, q) space. Fig. 2.25 shows an isometric view
of this surface. When the state of a specimen of soil can be represented by a
point below the surface, then soil behaviour is elastic. Soil states on the surface
indicate yielding, and it is impossible for soil samples to exist in states equivalent
to points above the surface. For this reason the surface is known as the Stable
State Boundary Surface (SSBS). Another way of writing (2.16) is

Vo =T+ (A —k) (1 —n/M). (2.17)

T+A—k—V—=AIn(p"). (2.16)

Sec. 2.5] Cam-lay 59

1

p

Fig. 2.23 — Preparation of a soil sample by isotropic normal consolidation and
then swelling

Fig. 2.24 — The yielding of a sample in (p’, V, g) space. Sample preparation
follows the dashed lines which lie in the ¢ = 0 plane, Progress towards yielding is
then along the vertical path AB which is parallel to the g axis.

(2.17) is probably the most useful form of the equation. Note that when 7 is set
to zero we recover the equation of the isotropic normal consolidation line (EF in
Fig. 2.25). If (2.14) is substituted into (2.17) then (2.15) is obtained. On the

ST

60 Critical State Soil Mechanics [Ch.2

Fig. 2.25 — The stable state boundary surface in (p’, V, ¢q) space

other hand, if (2.15) is substituted into (2.17) then (2.14) is obtained. This
demonstrates that the CSL lies on the SSBS (GH in Fig. 2.25).

Although either (2.16) or (2.17) describes the combination of stresses that
causes yielding, neither is the equation of a yield surface in the sense introduced
in section 2.3.3. The reason for this is that V appears in both equations. The
equation of a yield surface should be in terms of the current stresses together
with a hardening parameter to fix the size. ¥ is unable to fulfil the role of a
hardening parameter because it changes for elastic stress increments inside a
yield locus.

Elastic straining underneath the SSBS corresponds to movement along a -
line, with a corresponding change in V. Thus when an elastic sample is brought
to the point of yield it must simultaneously lie both on the k-line and on the
SSBS. Therefore the intersection of the SSBS with the k-line equation gives the
current yield surface:

g=Mp'In(pip"). (2.18)
The form of this yield function is shown in Fig. 2.26. As we have mentioned
above, elastic straining is governed by the k-line equation, and thus in terms of
(p', V, q) space the state of the material must remain on an ‘elastic wall’ (Fig.
2.27). The ‘point’ of the yield locus lies on the isotropic normal consolidation
line. p¢ is the isotropic pre-consolidation pressure for a soil sample lying on a
particular k-line (Fig. 2.28).

-5'*:'7‘. A

[EET

Sec. 2.5] Cam-clay

Fig. 2.26 — The Cam-clay yield locus (the yield locus is assumed to be symmetric
about the p ' axis)

v

Fig. 2.27 — Isometric view of an elastic wall

61

-

! .‘_' 3
! = ..
1 62 Critical State Soil Mechanics (Ch.2 g Sec. 2.6] - Triaxial Tests on Cam-clay 63
i) g
: | v E 2.6 TRIAXIAL TESTS ON CAM-CLAY
1 ‘ The equations of the previous section can be used to predict stress paths, shear
\ W strengths and strains in triaxial tests.
"| i‘ 2.6.1 Preparing the sample
il _' In each of the following examples the triaxial test sample is prepared by iso-
ill ; tropic normal consolidation to p’ = p¢, followed by swelling to p’ = pg. Fig.
11!1 o 2.29 shows the path followed by the specimen in a (p', V) plot. The value of V
‘ at the start of the test, V, can be calculated from the equations of the isotropic
g NCL and the k-line as follows:
2 Ve =N—X\in (p}),
E 3 Vie=Vetrln(pe)=Vo +xln(ps);
1 B
i hence
! ! 5 ’ I 1
Pe ° i Vo =N—Xln(pc) + « In (pe/po). (2.23)
Fig. 2.28 — The size of the Cam-clay yield locus is determined by pg, the iso- é :
tropic consolidation pressure % A3 g
2.5.5 Strains - g
Total volumetric and shear strains can be expressed as the sum of elastic and ‘%
plastic components: "
o
v=2%+ P , (2.19) =
e=c®+eP, (2.20) 3
and a similar pair of equations is valid for incremental strains: :
e -
5 = 50° + 8P, (221) =
be= e+ 5P, (2.22)
Cam-clay corresponds to the following assumptions about elastic and plastic
strains:
Elastic strains
§7¢ is calculated from the k-line equation
5e® =0.
Plastic strains p

§P =5V, JV

Fig. 2.29 — Preparing the sample by isotropic normal consolidation and swelling
5¢P is calculated from the flow rule: 7P /8P =M —n.

establishes the initial yield locus of size p.,

64 Critical State Soil Mechanics [Ch.2

In a (p' g) plot, this establishes the initial stress state as inside a yield locus
which intersects the p' axis at p'=p¢ (Fig. 2.29). In fact this sample
preparation procedure has been described previously (but without the
equations): see Fig. 2.24 for the view in (p" V. q) space.

2.6.2 Drained compression tests

In a standard drained compression test the cell pressure oy remains constant and
the axial stress o, is increased. In this example it is assumed that the pore
pressure is maintained at a back pressure of zero (i.e. atmospheric). Thus the
Effective Stress Path (ESP) always corresponds with the Total Stress Path (TSP)
(since p' = p), and the ESP can be determined by considering the total stresses
acting on the soil sample. On the other hand, if a constant back pressure were
maintained, then there would always be a constant horizontal offset u between
the total and effective stress paths. The initial state of the soil in a (p', q) plot is
(po, 0). At a later point in the test, oy =po and o, = po + x (say), so the soil
sample can now be represented by the point ((p4™+ x/3), x). Thus the ESP for
the test is a line of slope 3 starting from (po, 0) (see Fig. 2.30). During the
initial part of the test, before the ESP intersects the current yield locus at B (see
the (p' q) plot in Fig. 2.31), the soil behaviour is elastic. After point B the soil
is yielding and each stress state on BF is associated with a new (enlarged) yield
locus. Finally, the soil fails when the ESP intersects the CSL (point F in Fig.
2.31). Note that the yield locus at failure, intersecting the p' axis at H,
corresponds to the k-line intersecting the isotropic NCL at point H in the (p V)
plot. If one knows the critical state parameters for the soil then it is straight-
forward to calculate the value of p' and ¢ at failure from the intersection of the
ESP and the CSL:

q=3p" —3po
q=Mp’,
giving p’ = 3p6 /(3 — M) and ¢ = 3Mp,/(3 —M).

q

-

©

i § -

Fig. 2.30 — Drained ESP for a compression test

S ok,

2 g

T

P LT Y

Sec. 2.6] Triaxial Tests on Cam-clay 65

Fig. 2.31 — Drained compression test on Cam-clay (over-consolidation ratio R =2)

In the (p' V) plot in Fig. 2.31 the soil follows the k-line while it is elastic
(until point B) and then changes direction to move to failure on the CSL at
point F. Each «-line that the soil crosses corresponds to a yield locus in t’
(2" q) plot, although Fig. 2.31 only shows the first and last of these. Since 1
value of p’ at failure is known, the value of ¥ can be found from (2.15). Hence
the volumetric strain to failure can be calculated as (V' — V4)/Vs.

Now consider a test on a sample which has a higher over-consolidation ratio
(R =p¢/pg) so that its initial state A in the (p', V) plot is on the left-hand side
of the CSL in a (p' V) plot. The progress of this sample in a drained
compression test is shown in Fig. 2.32. Note that although the ESP appears to
intersect the CSL in the (p', q) plot before yielding, in fact it is missing the CSL
in the three-dimensional (p', V, q) space, as is made clear by examination of the
test path in the (p’, V) plot (Fig. 2.32). After yielding, the state of the sample
moves back down the ESP to point F on the CSL. This is accompanied by the
yield loci ‘shrinking’ rather than ‘growing’, as was the case for the sample
considered earlier. l

66 Criticial State Soil Mechanics [Ch.2

Fig. 2.32 — Drained compression test on a sample of Cam<lay with R =7

2.6.3 Calculation of strains in drained tests

In this section the procedures for calculating the strains in a drained triaxial test
are set out as a series of itemised steps. Although we have so far only considered
the standard compression test, these steps can be used to calculate the strains in
other kinds of test. Basically, the strains are calculated for a number of
increments of stress once the sample has yielded. Although there are a few
situations where it is possible to obtain an analytical expression for the stress—
strain curve (e.g. constant p’ tests), in general the procedure described here will
be required.

Establish starting values of p’, ¢, V and p¢.

2. Calculate values of p' and g when yielding starts. This involves finding the
intersection point of the drained effective stress path (ESP) and the
current yield locus. In general one has to solve a non-linear equation
because of the nature of the yield function. However, this can be done
fairly quickly by hand by substituting a few values of p' into both the
yield locus and the ESP equation until the values of ¢ are close.

—

e

S

~ g

 I=BNSEF Ae

gL b L

i

LABMETO ks

N

S

SRR

LLL‘.‘.,: 13

Il

Sec. 2.6] Triaxial Tests on Cam-clay 67

3. Calculate the (elastic) volumetric strain up to this point. Since elastic shear
strains are zero, 8¢, = 8¢;, and hence de, = 6v/3.

4. Divide the ESP between the point of first yielding and the intersection
with the CSL into a number of equal increments (say #). Then repeat the
following steps for values of i from 1 to n,

5. Calculate the volumetric strain in increment ;/ from the values of p' and ¢
at the start and end of the increment. (Values of V can be obtained from
the equation of the SSBS.)

6. Calculate the elastic volumetric strain for this increment from the k-line
equation.

7. Calculate the plastic volumetric strain for this increment by subtracting
the elastic strain calculated in 6. from the strain calculated in 5.

8. Calculate the shear strain for this increment from the plastic volumetric
strain and the Cam-clay flow rule (use values of p’ and g corresponding
to the start of the increment).

9. Use the shear strain obtained in 8, and the volumetric strain obtained in
5. together with the basic definitions of these strains to calculate ¢, and
S€;.

10. Add &€, to values calculated for previous increments to obtain a point on
the g versus €, plot.

Fig. 2.33 contrasts the behaviour of the two samples that were considered in the
previous section. The first strain-hardened after yielding (¢ increased) and
exhibited compressive plastic volumetric strains. The second strain-softened
(¢ decreased) and exhibited expansive volumetric strains. Note the similarity of
these results with the experimental behaviour shown in Fig. 2.15.

2.5.4 Undrained compression tests

Now we consider the behaviour of a sample of Cam-clay in an undrained
compression test. The total stress path for this test is identical to the total stress
path for the drained case (because the total stress path is specified by the total
stresses applied to the soil). During the whole of the undrained test, the specific
volume must remain constant since no water is allowed to flow into or out of
the soil. Although the total volumetric strain must be zero, elastic and plastic
components of the strain can be non-zero as long as

w4+ 0% =0. (2.24)

Before the sample yields, the plastic volumetric strain ©P must be zero and
therefore the elastic volumetric strain must also be zero. If the elastic volumetric
strain is zero then there can be no change in p'. In other words, the effective
stress path in the (p', g) plot must be parallel to the ¢ axis. Thus in the three-
dimensional (p’ V, q) space, the test path will be vertical before yield takes
place. When the sample does yield, equal (and opposite in sign) values of vP and

http:drain.ed

68 Critical State Soil Mechanics [Ch. 2

300 +

200 +

100

0.1 0.2 0.3

—0.02 - R=17
—0.01 4

0.01 4 0.1 0.2 0.3

0.02 -
0.03 4
0.04 4
0.05

Fig. 2.33 — Stress—strain response for drained tests

2 are possible and the test path now follows the constant ¥ cross-section of the
SSBS until the sample reaches the CSL (Fig. 2.34).

The final point of the test (and hence the soil’s undrained strength) can be
calculated by substituting the value of V, from (2.23) into the critical state line
equation (2.15). Thus:

pi = exp (0 — Vo)/N), (2.25)

and

HAT BN

[I e
| = B RO B

Sec. 2.6] Triaxial Tests on Cam-clay 69

Fig. 2.34 — Undrained compression test on Cam<lay (R = 1.5)

ey =(1/2)ap=(1/2)Mpg = (1/2)M exp (' = Vo)/N). (2.26)
The pore pressure at the end of the test is given by

ug =pg +q¢/3 —pf, (2.27)
whereas the pore pressure at yield is given by

uy =qy/3. (2.28)

Now consider a soil sample which is more heavily over-consolidated, starting at a
point in a (p’, V) plot such as that shown in Fig. 2.35. This sample also has an
initial ESP which is vertical (following the same argument as before). Again, on
yielding, the sample moves over the constant V cross-section of the SSBS until
the CSL is reached. Initially the sample appears to strain-harden (g increases) but
towards the end of the test it strain-softens (¢ decreases). However, both the
strain-hardening and the strain-softening are associated with a decrease in the
size of the yield locus.

Note that the isometric view of the SSBS shown in Fig. 2.25 was made up of
constant V-ines and constant p'-lines. Each constant V-line includes (the
yielding) part of the undrained ESP for samples starting at that value of V.

70 Critical State Soil Mechanics [Ch.2

i

P

Fig. 2.35 — Undrained compression test on Cam-<lay (R = 8)

Suppose that a sample is initially normally consolidated to a pressure pe. Then
the initial volume is given by

Ve=T+X—k—Aln(pe)

Substituting this value of V. into the equation of the SSBS (2.16), the following
equation is obtained:

Mp'

= ———In(pe/p)- (2.29)
(I —«/N)

q

(2.29) is the equation of the undrained ESP for a sample initially norm-alvly
consolidated to a pressure Pe. Over-consolidated samples at the same initial
volume V, = V. have vertical ESPs until they intersect this line, after which they
follow the same route to the critical state (Fig. 2.36).

Note that the undrained ESP has the same basic equation as the yield locus
(2.18), except that M in (2.18) has been replaced by M/(1 — k/N) in (2.29) and
pé in (2.18) has been replaced by pe. In fact the role of pe or pe is to fix the
size of the undrained locus or yield locus respectively, and so the effect of the
factor 1/(1 —k/A) is to ‘stretch’ the yield locus in the direction of the ¢ axis to

Sec. 2.6] Triaxial Tests on Cam-clay 71

CSL

'

P

Fig.2.36 — The undrained surface for Cam-<lay

form the undrained ESP equation. The fact 1 —k/A occurs often when
undrained tests are considered and so some writers (notably Wroth, 1984) have
used the symbol A for this ratio.

The Cam-clay model gives an elegant account of the effect of over-
consolidation on undrained shear strength. Consider a specimen which is
normally consolidated to p¢, then allowed to swell back to an isotropic pressure

of pg, giving an over-consolidation ratio, R = p//pg. Then from (2.23), the
initial volume ¥} is given by

Vo =T+ X—k—XIn(pe) +« In (R).

V, will remain the same during the test and so we can set this expression equal

to I'— X In (pf), where pf is the value of p' at the end of the test. Hence (after
some manipulation):

pi=ps R exp (—A)

and the undrained shear strength ¢, is given by
co = (1/2)qp = (1/2)Mp{ = (1/2)Mpg R™ exp (—A). (2.30)

(In fact we have just taken (2.26) one stage further by substituting in the
appropriate value of V5.) When R =1, (2.30) gives the shear strength for a
normally consolidated sample, so the effect of over-consolidation is expressed in
the factor R”. The experimental data of Ladd et al. (1977) support this basic
relationship (see also Wroth, 1984).

It is also possible to obtain an expression for Skempton’s pore pressure
parameter as a function of the over-consolidation ratio. Substituting (2.29) and
gp =Mp{ into (2.27), the following equation for Skempton’s pore pressure
parameter, A, at failure is then obtained:

Af =

|-

1 . R™& "
- — €eXx .
3 v P) (2.31)

72 Critical State Soil Mechanics [Ch.2

2.6.5 Calculation of strains in undrained tests

1. Establish starting values of p ' q, Vand p.

2. Calculate the value of ¢ when yielding starts from the equation of the
current yield locus. (The undrained ESP is vertical inside the yield locus.)

3. Note that both elastic shear strains are zero (by definition) and elastic
volumetric strains are zero (because undrained). Hence €, and ¢; are also
zero.

4. Divide the horizontal distance between the initial point and the critical
state line in the (p’ V) plot into a number of equal increments (say n).
Then repeat the following steps for values of i from 1 to n.

5. Calculate the values of g at the end of the increment from the equation
of the SSBS.

6. Calculate the elastic volumetric strain for this increment from the k-line
equation.

7. The plastic volumetric strain for this increment is equal to minus the
elastic strain calculated in 6. (The overall volumetric strain increment is
zero because of undrained behaviour.)

8. Calculate the shear strain for this increment from the plastic volumetric
strain and the Cam-clay flow rule (use values of p' and ¢ corresponding
to the start of the increment).

9. Use the shear strain obtained in 8. to calculate 8¢, and &¢; (using the fact
that the volumetric strain is zero).

10. Add ée, to values calculated for previous increments to obtain a point on
the g versus €, plot.

Fig. 2.37 shows plots of g and pore pressure versus €, for the two tests
considered earlier. Note that although the pore pressure increases linearly with g
during the initial (elastic) part of each test, following yield the behaviour is
different, with the first specimen tending to generate positive pore pressures and
the second negative pore pressures. The first test exhibits g increasing before
failure, while the second ends with g decreasing.

2.6.6 Other types of triaxial test

The calculations described above for compression tests can easily be extended to
other types of triaxial test (e.g. extension, constant p', etc.). In drained tests,
one simply has a total stress path (equivalent to the ESP) inclined at some other
angle in the (p’,) plot, and it is a matter of simple geometry to calculate the
intersection of the ESP with the CSL and the current yield locus. In undrained
tests, although the total stress path will differ, the effective stress path remains
the same. The calculation of the pore pressure in a test is again just a geometric
exercise.

For—

Sec. 2.6] Triaxial Tests on Cam-clay 73

T T T —T T T T €
0.01 0.02 0.03 0.04 0.05 0.06 0.07
v R =15

G
LESREL

e

.‘_ 42
At Tl NSl =

0.01 0.02

Fig. 2.37 — Stress—strain response for undrained tests

74 Critical State Soil Mechanics [Ch.2

27 COMMENTS ON CAM-CLAY

The general concept of using a hardening plasticity model to describe the stress—
strain behaviour of soils was first proposed by Drucker ef al. (1957). Essentially,
Drucker et al. suggested putting a spherical ‘cap’ on the ‘Drucker—Prager cone’.
The cap could be enlarged (accompanied by a smaller enlargement of the cone)
by hydrostatic Joading of the soil. Their paper speculates about what happens to
the cap on elastic unloading and during triaxial tests, but makes no firm
proposals. The paper expresses doubts as to whether normality should be applied
to the “frictional’ yielding on the cone (compare section 2.4.4). In constructing
the critical state models, the Cambridge group took up some of the proposals of
Drucker et al., and discarded others. In doing so they managed to produce a
model of soil behaviour which is ‘simple” in the sense that the model is derived
from a small number of basic assumptions, yet the model manages to reproduce
for the first time an appropriate description of volumetric response under shear.
What really sets the critical state models apart from other attempts to formulate
elasto-plastic models for soils is the critical state line in the (p’, V) plot. This
allows a consistent and realistic treatment of both drained and undrained tests.
Although the Cam-clay model was at first just proposed for stress ratios less than
M, Schofield and Wroth (1968) extend the proposal for stress ratios greater than

" M (as we have done earlier in this chapter). However, they advance good reasons

why the predictions of the model may not be as good in this region (see section
2.74).

2.7.1 Derivation of Cam-clay

Cam-clay is based on the following assumptions.

(a) The isotropic normal consolidation line has an equation:
V=D+A—k—Aln(p"),
and isotropic swelling and recompression lines have equations:
V=V,—«ln(p"). (2.11 bis)
I", A and « are soil constants.
(b) Elastic volumetric strains for Cam-clay are given by the k-line equation.
Elastic shear strains are zero (this is equivalent to taking an infinite value
for the elastic shear modulus, G).
(c) When Cam-<lay is yielding, the plastic work done is given by Mp'5€P.
Thus:
p'5vP + qBeP = Mp '8eP. (2.32)

(d) (2.32) represents a flow rule. Normality can be applied to this relation to
give the equation of the Cam-clay yield locus.

(¢) The size of the Cam-clay yield locus is fixed by specifing that the inter-
section of the yield locus with the p' axis corresponds to the isotropic
normal consolidation line.

Sec. 2.7] Comments on Cam-clay 75

Although there are experimental data supporting (¢) (Roscoe ef al., 1963), there
is also a strong physical intuition about the nature of the deformation of soil
underlying (2.32). According to Schofield and Wroth (1968):

‘Consider a random aggregate of irregular “solid” particles of diverse sizes
which tear, rub, scratch, chip and even bounce against each other during the
process of continuous deformation. If the motion were viewed at close range
we could see a stochastic process of random movements, but we keep our
distance and see a continuous flow. At close range we would expect to find
many complicated causes of power dissipation and some damage to particles;
however, we stand back from the small details and loosely describe the whole
process of power dissipation as ‘“friction”, neglecting the possibilities of
degradation or of orientation of particles.’ :

(2.32) is rearranged:
5P q

=M
5P o (2.33)

From the condition of normality, the direction of the incremental plastic strain

vector specified by this equation must intersect the yield locus at a right angle.
Hence:

5eP 8q
— - =-1
sP op’ (2.34)

Combining (2.33) and (2.34), and taking the limit as &p' and 8 =0, a
differential equation is obtaimed:

d_a

o ot (235)
.(2.35) is integrated to obtain the equation of the yield locus. What follows is
just mathematical manipulation: substitute = g/p’ and use the relation

dn _ (. 4 n
W P;*q /(p) (2.36)

to substitute for dg/dp’, to obtain an equation p'(dn/dp’) = —M which can be
directly integrated. ((2.36) comes from the standard rule for differentiating a
quotient.) The resulting equation is 7 =¢/p'=—MIn(p") + ¢, where ¢ is a
constant of integration. The constant of integration is determined using (e)
above; thus when g/p’ =0, p' = p¢, and the Cam-clay yield locus is arrived at:

g=Mp'In(pep"). (2.18 bis)

The equation of the SSBS is obtained as follows: consider a sample of Cam-clay

http:M+-(2.35
http:M-�(2.33

i

76 Critical State Soil Mechanics [Ch.2

which is yielding; then the current values of p' and ¢ must satisfy the equation
of the yield locus. The current value of specific volume, V| is given by

V=L+X—k—Xn(pe) +kIn(pe/p’). (2.37)

This equation follows exactly the same reasoning as in section 2.6.1. The next
step is to eliminate p. between (2.18) and (2.37), and the result is the equation
of the SSBS. :

q= Mo T+A—k—V—=2AIn(p"), (2.16 bis)
(A —x)
or alternatively (the preferred form):
Vi =T+ (A —k) (1 —n/M). (2.17 bis)

Note that the equations of the critical state line have not been used anywhere in
the derivation of any of the equations of this section. The assumptions can
basically be boiled down to two statements:

1. The work done in plastic deformation is Mp '8¢P, which gives the flow rule
and by integration the yield locus.
2. Elastic strains inside the yield locus correspond to movement on a k-line.

The size of the yield locus is fixed by the isotropic normal consolidation
pressure p. (given a convenient visual interpretation as the yield locus
sitting on top of” a k-line in (p', V, q) space).

From the point of view of the theory of plasticity, 1. is the yield function and
2. is the hardening law. Both assumptions can be varied to produce slightly
different (but basically similar) models. :

When the rules for calculating strains (from plasticity theory) are applied to
triaxial samples of Cam<lay, the samples end up in a condition defined by the
critical state line equations, deforming at constant volume with no change in
stress. This point is sometimes disguised by the way that critical state soil
mechanics is taught, where the equations of the critical state line are described
first (and therefore appear to be basic assumptions in the theory). Although this
is probably the best way of explaining the theory to injtiates, it has the
unfortunate side-effect of hiding the small number of assumptions which are
actually needed to produce a sophisticated description of soil behaviour.

Of course in practice the critical state line was ‘discovered’ first (Roscoe et
al., 1958). From the present point of view it can be regarded as a theoretical
consequence of the Cam-clay assumptions (Roscoe and Schofield, 1963).

2.7.2 The Cam<lay flow rule

Cam-clay resolves the dilemma (mentioned in section 2.4.4) about whether the
principle of normality can be applied to soils. In Cam-clay, normality is applied,
but not to what was previously regarded as the appropriate yield surface (i.e.

“‘
[y
A

Sec. 2.7] Comments on Cam-clay 77

Mohr—Coulomb or Drucker—Prager). Cam-clay separates the yield surface from
the failure criterion: it is to the yield surface (i.e. (2.18)) that normality must be
applied.

Fig. 2.38 shows the Cam-clay yield locus with superimposed incremental
strain vectors. When yielding takes place with n <M then there are compressive
volumetric strains (in drained tests) or there is a tendency to generate positive
pore pressures. When yielding takes place with n>>M then there are dilative
volumetric strains (in drained tests) or there is a tendency to generate negative
pore pressures (in undrained tests). In the (p, V) plot, these two different kinds
of behaviour are associated with soil samples which yield above and below (or
to the right and the left of) the CSL respectively. The former kind of behaviou.
is termed ‘wet’ (because the positive pore pressures cause the water to flow out
of the soil), whereas the latter kind of behaviour is termed ‘dry’ (because the
negative pore pressures result in water being sucked into the soil). Thus yielding
is either ‘on the wet side of critical” or ‘on the dry side of critical’.

q

Fig. 2.38 — The Cam-clay flow rule

We can go further in distinguishing between wet and dry types of behaviour
in the light of Drucker’s postulate. Because the yield locus always shrinks on the
dry side and enlarges on the wet side, the second-order work term §08eP is
always negative on the dry side (corresponding to unstable behaviour) and is
always positive on the wet side (corresponding to stable behaviour). In situations
where the soil is continually sheared in the same direction, the wet side
behaviour corresponds to strain-hardening and the dry side behaviour
corresponds to strain-softening (perhaps preceded by some strain-hardening).

78 Critical State Soil Mechanics {Ch.2

Critical state soil mechanics gives a good qualitative account of how
deformation proceeds in both ‘wet’ and ‘dry’ clays. Suppose that one particular
zone in a ‘wet’ clay has strained more than neighbouring zones. This zone will
have strain-hardened more than the surrounding soil and will thus be stronger.
Further deformation takes place around this hardened zone and there is a
tendency for the soil to deform in a uniform, homogeneous fashion. On the
other hand, if a zone in ‘dry’ soil has deformed more than the surrounding soil,
it will be weaker than the surrounding material, Further deformation will tend
to be concentrated in this weakened zone, which will continue to strain-soften.
The latter behaviour describes quite well the progressive formation of rupture
surfaces in soil. Henkel (1956) made measurements of water contents close to a
slip surface consistent with the behaviour described above.

There is often a good match between experimental data for ‘wet’ clays and
Cam-clay (or modified Cam-clay) theory. On the ‘dry’ side, the match is not so
good and the data of failure are better described by Hvorslev’s equation
(Schofield and Wroth, 1968). Atkinson and Bransby (1978) suggest that soils
that hit the Hvorslev surface continue yielding until they reach the critical state.
Although some soils follow this pattern, there are others which do not. Both
approaches give the same undrained shear strength on the dry side, which tends
to overpredict observed strengths for some soils. Although the Hvorslev equation
may be useful in some contexts, our experience is that it does not have any
advantages over Cam-clay when used with finite elements.

2.7.3 Modified Cam-clay

Although Cam-clay makes a significant step forward in the modelling of soil
behaviour, there are some aspects of stress—strain modelling where it is deficient.
Of course, it is not alone in this respect. Every theoretical description of material
behaviour will have some successes in matching reality and some failures. The
overall utility of a particular material idealisation will rest primarily with
whether it successfully models those aspects of material response which are
pertinent for the problem at hand.

Modified Cam-clay (Burland, 1965; Roscoe and Burland, 1968) addresses two
particular dissatisfactions with the original Cam-clay model: the point on the
yield locus and the predicted value of K, (the coefficient of earth pressure at
rest). The objection to the point is to a certain degree aesthetic (it does not look
right) and to a certain degree based on experimental evidence (the shear strains
predicted by Cam-clay are too high at low stress ratios). In fact there is no
theoretical objection to yield surfaces with slope discontinuities: Koiter (1953)
shows that the plastic strain increment vector at such a point must lie within the
‘fan’ of possible directions (e.g. see Fig. 2.38 for the condition on the Cam-clay
point). As we shall see in Chapter 5, Cam-clay predicts a value of K, =1 fora
normally consolidated soil where measured values are normally in the range 0.5
to 0.7.

Modified Cam-clay changes the assumption for dissipated work in Cam-clay
(i.e.(2.32)) 10 ’

-

Sec. 2.7] Comments on Cam-clay 79
p'8vP + gseP = p'\/{6vP? + (M5€P)?), (2.38)
and this changes the flow rule to
svP M —q?
- =1 (2.39)
§eP 2n

(compared with (2.33)).
As before, the flow rule can be integrated to give the modified Cam-clay yield
locus:

> +Mp"? =Mp'p! (2.40)
which is shown in Fig. 2.39. The modified Cam-lay yield locus is elliptical in
shape: this is the main difference between modified Cam-clay and Cam-clay.

Because of this different shape of the yield locus the vertical distance between
the isotropic NCL and the CSL becomes (A — k) In(2) rather than A — «.

a

]

D
Fig. 2.39 — The modified Cam-lay yield locus is elliptical

For the sake of completeness we summarise the equations for modified Cam-
clay in the same order as we presented them for Cam-clay in section 2.5.

(a) Volume—pressure relations: the equation of the isotropic NCL is the same
as before:

V=N—XIn(p'), (2.10 bis)

but N =T+ (A —«) In(2). The definitions of ¥} and ¥V are the same as
before (equations (2.12) and (2.13)).

(b) Critical state line: the equations are the same as for Cam-clay (i.e.
equations (2.14) and (2.15)).

(c) Yielding: the equation of the SSBS is now

Vi =T+ —«) {In(2)—In (1 + @/M)?*)}. (2.41)

(d) Strains: the same assumptions as for Cam-clay, with the exception of the
flow rule which is given by (2.39).

—

80 Critical State Soil Mechanics [Ch.2

The rules for calculating strains given in sections 2.6.3 and 2.6.5 can be used to
calculate the strains in triaxial tests, provided that the appropriate equations for
the SSBS and the flow rule are used.

The established view is that there is not much difference between Cam-clay
and modified Cam-clay for the purposes of making engineering predictions of
behaviour. Broadly speaking this is true, but sometimes the difference can be
more than would be expected. This is basically because of the way material
parameters are chosen: a matter which is discussed in Chapter 5.

2.74 Cam-clay: out of date?

Since Cam-clay was proposed in 1963, many deficiencies have been pointed out,
and many modifications proposed. It is therefore relevant to ask: is Cam-clay
out of date? We believe that it is not, and that Cam-clay (or modified Cam-clay
for that matter) will come to be regarded in much the same way as, for example,
the Mohr—Coulomb failure criterion. We mean this in the sense that Cam-clay
describes certain aspects of soil behaviour extremely well. Starting from a small
set of material parameters there are powerful and (relatively) simple calculations
that can be made. On the other hand, we do not claim that it provides a
universal explanation of all geotechnical phenomena.

Laboratory tests on real soils demonstrate aspects of soil behaviour which are
not predicted by the critical state theories. For example, a soil with a high clay
fraction which undergoes large relative shear displacements usually exhibits a
residual shear strength much lower than the critical state (Skempton, 1985).
Recent laboratory tests using internal strain measuring devices have shown that
a very wide range of soils has highly non-linear stiffnesses at low strain levels
(Jardine et al., 1984). Some normally consolidated natural clays fail in
undrained tests well before the critical state is reached. On the other hand, there
has been success in using the Cam-clay models in geotechnical predicting,
particularly where lightly over-consolidated clay is involved, e.g. embankments
and oil tanks on soft foundations. In most geotechnical problems there will be
one or two features of the basic soil behaviour which will determine (along with
the loads in the system) the overall response. These features may or may not be
those included in the critical state framework.

Although Cam-clay can be regarded as deficient in some respects, most
attempts to refine theoretical predictions of soil behaviour make use of the
concepts of critical state soil mechanics, rather than abandoning them
completely. Perhaps the major area of the development of new constitutive
equations for soils has been that of cyclic loading, relevant to dynamic loading in
earthquakes or on offshore structures in the oil industry. Under the action of
cyclic stresses, pore pressure in soil tends to build up a certain cumulative
amount in each cycle. If one uses the Cam-clay (or modified Cam-clay) model in
these circumstances, then the pore pressure increases in the first cycle, but after
that remains constant. This problem can obviously be circumvented by
abandoning the assumption of elasticity beneath the SSBS, and this route has

ot
W dip

in

L L

o Bl

Ll

¥

LT N

Loy

A el L et N

g

e

Sec. 2.7] Comments on Cam-clay 81

been followed by many. Mroz (e.g. Mroz and Norris, 1982) has proposed models
with smaller yield loci ‘nested’ inside a larger yield locus. Dafalias (e.g. Dafalias
and Herrmann, 1982) has proposed a ‘bounding surface’ model where the
amount of plastic behaviour associated with a stress point inside the bounding
surface depends on the distance to an image point on the surface. Another
model with plasticity inside the traditional yield locus is suggested by Pender
(1982). More recent models along these lines include a ‘continuous plasticity’
model proposed by Naylor (1985) and the ‘spread work function’ of Dean
(1985). Some of these models have the promise of describing better anisotropic
yielding and dry-side behaviour.

However, we should point out that all these models are more complicatec
than Cam-clay. If one of them is going to supplant Cam-clay then the extra
work involved in doing calculations must be offset both by a better conceptual
picture and by better numerical predictions.

Analysis of Consolidation using
Finite Elements

3.1 INTRODUCTION

In Chapter 1 we presented the underlying assumptions and basic equations of
Biot’s consolidation theory. The system of partial differential equations that was
obtained described the relationship between total and effective stresses, excess
pore pressures, strains and artificial seepage velocities at one point in a body of
soil. These equations were obtained by applying physical balance laws
(describing equilibrium of stresses and continuity of volumetric strain with
water flow) to infinitesimally small elements of soil. This chapter shows how the
finite element method can be used to solve a particular boundary value problem
where some combination of loads and drainage boundary conditions acts on a
finite volume of soil.

Mathematically the solution of a particular problem is equivalent to finding
some mathematical functions which define the time dependent distribution of
displacements and excess pore pressure which satisfy the governing differential
equations at all points in the ‘domain’ of the problem. These distributions must
also satisfy some conditions on the boundary of the problem domain. For the
excess pore pressure these boundary conditions will be either prescribed values
of excess pore pressure or prescribed artificial velocities of water flow. The
boundary conditions in the case of the stresses will be either prescribed displace-
ments or prescribed distributions of stress. Traditional engineering mathematics
is largely concerned with solving problems of this type. Establishing a solution to
a particular problem involves a lot of mathematical manipulation, and so an
engineer will normally make use of a ‘standard’ solution from a book or

A
7

N A A

el

beiagiitiat

Sec. 3.1} Introduction 83

academic journal. Although there are not many published solutions for
consolidation problems, there are many standard solutions for the related
equations of elastic stress analysis and steady seepage (see, for example
Timoshenko and Goodier (1970) or Poulos and Davis (1974) for stress analysi;
and Harr (1962) for seepage).

Whereas these mathematical or ‘analytical’ solutions are exact solutions of
the relevant equations, the finite element method provides approximate
solutions of the same systems of equations. The mathematical techniques used
in obtaining these approximate solutions are not covered in most engineering
courses and so we introduce them in this chapter. In our view, successful use o?
the finite element technique is dependent on engineering judgement rather than
knowledge of the mathematics. Indeed we agree with Irons and his co-authors
(Irons and Ahmad, 1980; Irons and Shrive, 1983) that the teaching of finite
elements is becoming much too mathematical. The reasons for this trend are
understandable: the finite element method for elastic stress analysis was
originally developed on a largely intuitive basis. It is only recently that the
underlying mathematics has come to be understood. It is possible to identify
three stages in how finite element techniques for stress analysis have been
formulated and interpreted over the last three decades:

(a) the method was regarded as an extension of matrix methods for the
computerised analysis of structural frames. This method requires a
‘stiffness matrix’ describing the stiffness properties of one part of the
structure. The only difference between a computer program for matrix
analysis and one for finite element analysis is that the latter uses stiffness
matrices which describe the stiffness of parts of a continuum. These
matrices were calculated using structural theorems such as the principle of
virtual work or Castigliano’s theorem;

(b) the method was recognised as an application of the calculus of variations.
In this classical method of engineering analysis the solution to a system of
differential equations is obtained by converting the problem into an
equivalent one of minimising a ‘functional’. For example, solving a
problem of elastic stress analysis is equivalent to minimising the total
potential energy of the system;

(c) the method was recognised as a particular application of Galerkin’s
weighted residual method. Weighted residual methods obtain approximate
solutions to systems of differential equations by arranging for the
(hopefully small) error in the solution to be distributed in some manner
throughout the continuum.

The important point to emphasise about these three different approaches is that
each interpretation or formulation leads to an identical set of algebraic equations
to be solved on the computer. Clearly it is largely a matter of taste how one sets
up these equations. Weighted residual methods are now in fashion and while
they are used in the following material we would prefer to be able to use a more

84 Analysis of Consolidation using Finite Elements [Ch.3

direct approach (like the virtual work principle for stress analysis). This is
because we believe that the earlier approach is easier to understand and develops
an ‘engineering’ approach to finite elements rather than relying on the
mathematics. Unfortunately, there seems to be no direct counterpart of virtual
work in fluid mechanics problems. However, when we come to transform the
continuity equation in the standard way (to get it in a form suitable for
computer solution), we notice a strong similarity with virtual work. Indeed, we
can regard the continuity equation as being equivalent to a virtual power (or

work) equation.
Since the scope of this chapter is wide, we now summarise the material and

explain its arrangement:

1. The next section covers the mathematical preliminaries (numerical
integration, interpolation polynomials, the approximate solution of
differential equations and Green’s theorem in the plane).

2. Section 3.3 presents the fundamentals of the ‘displacement’ (or “stiffness’)
method of finite element analysis via a simple example using linear elastic
springs.

3 Section 3.4 covers the virtual work principle. We include this section
because we are aware that many engineers find the principle rather
obscure, However, it turns out to be a very versatile and powerful tool in
formulating finite element methods as well as the theory of structures.

4. Section 3.5 describes the basic theory for formulating the stiffness
matrices of ‘displacement’ finite elements. This subject matter occupies
several chapters in other books on finite elements (where the reader is
referred for a more detailed treatment). _

5 Section 3.6 completes the chapter with a derivation of the finite element
equations for consolidation analysis, a FORTRAN program implementing
these equations and some examples of its use.

3.2 MATHEMATICAL AND NUMERICAL PRELIMINARIES

3.2.1 Numerical integration

When there is a need to calculate an integral in a computer program, two
approaches are possible. The first approach is to take the expression to be
integrated and to ‘integrate the expression by hand’, The resulting formula is
then coded directly in the computer program. The second approach is to
perform the integration within the computer program using the techniques of
‘numerical integration’. In the latter approach the integral is calculated as the
weighted sum of values of the function of some points in the interval. The basic
technique of numerical integration will be illustrated below by considering the
calculation of areas under curves. Finite element programs usually use numerical
integration to calculate the coefficients of element stiffness matrices: this is
done in CRISP and also in the program in section 3.6.

E_—.r-.v

==

|5V RS S = i T

Ry " i

Sec. 3.2] Mathematical and Numerical Preliminaries 85

First we consider the calculation of the area shown in Fig. 3.1. Mathemat-
ically we write this integration:

A= fomf(xmx

f(x)

10

Fig. 3.1 — The function f(x) = /(100 — x?)

where f(x) =+/(100 —x?). Of course this is simply one quarter of the area of a
circle of radius ten units (w10%*/4 = 78.54). This example is convenient for
illustrative purposes because none of the methods considered gives the exact
answer. Thus the example will give a rough idea of the accuracy of the different
methods. The three methods are known as the trapezoidal rule, Simpson’s rule,
and two-point Gaussian integration. When using one of these methods the
interval between the limits of integration is split into a number of strips, as
shown in Fig. 3.2. Each method then applies a different formula or ‘rule’
calculate the area, A, of a typical strip which starts at x =x, and ends at x = x,
(x2 =x, +h).

Trapezoidal:

A

L ") dx = (h]2) £(e0) + (hf2) fxa).

Simpson:

hN
It

fj’f(x) dx = (hf6) f(x,) + (243) f((x, +x,)/2)

+ (h[6) f(x2).

|

—

B . ..

86 Analysis of Consolidation using Finite Elements [Ch.3
f(x)
m 17T
flxq) fix,)

Xy Xy 10 X

Fig. 3.2 — Separate strips for numerical integration
Two-point Gaussian integration:
X, -
A= 76 dx = (]2 [y + R0 = 1V3)2)
Xy
+(h[2) f(x2 —h(1 = 1N/3)[2).

The presentation of these rules is simplified by the adoption of a.co-ordinate
system which is local to each strip. The local co-ordinate is given by the
expression

£=(2x—(x; +x,))(x2 —x1);

thus §=—1 whenx =x, and £ =1 when x = x, (at the midpoint of the strip
£ = 0). The local and global systems are shown in Fig. 3.3. The integration rules
are now written as follows.

l'_7 {~ { —— |
-1 0 +1

Fig. 3.3 — Local co-ordinate system adopted for numerical integration

Trapezoidal:

A= 2 (a9 ae= @ e+ e,

ol

S RS e P it s B

SR

Jzz
5 -
o]

Z a2 L

TR Nl b - BASELAP Ui

Sec. 3.2] Mathematical and Numerical Preliminaries 87

Simpson:
ho o+
A= = [7@ 0 = (16 S-1) + (2413) F0) + (4/6) S+ 1)
-1
Two-point Gaussian integration:

h +1
A== f £(§) dE = (h]2) f(—1/3) + (1[2) f(+ 1]/3).

(The hj2 terms come from changing the integration variable, and are equal to
dx/dE.)

Table 3.1 shows the result of applying these three rules with different
numbers of strips.

Table 3.1

Number Trapezoidal Simpson’s Two-point
of strips rule rule Gauss rule

1 50.00 74.40 79.61

2 68.30 77.09 7891

4 74.89 78.03 78.67

8 77.25 78.36 78.59

16 78.08 78.48 78.56

The integration rules used in finite element programs are usually based on
Gauss rules because they give superior accuracy for a given number of function
evaluations. Another example of the calculation of the area under a curve will
help explain the superiority of the Gauss rules. Consider the integral

fﬁ (5 +x —(3/4)x? + (1/8)x?) dx.

Fig. 3.4 shows the area equivalent to this integral. First we write this integral in
terms of local co-ordinates:

2 [Ts et e a

Integrating analytically we obtain A = 24. Applying the trapezoidal rule (using
one strip) gives the area as 32. The geometric interpretation of the trapezoidal
rule is quite straightforward: the cubic curve is approximated as a straight line
and the integral is equal to the area of the trapezium. The principle underlying
Simpson’s rule is similar: only now the curve is approximated as the quadratic
curve which passes through values of the function at the two end points and the

[—
femsass

88 Analysis of Consolidation using Finite Elements [Ch.3

f(x)

T T T T

1 2 3 4 5 6 X

Fig. 3.4 — f, (5 +x — (3/4)x* + (1/8)x?) dx

midpoint of the interval. Applying Simpson’s rule, the area is'evaluate(% as 24. At
first sight this result is surprising: we have assumed a quadratic approximation to
a cubic curve, yet the exact answer has been obtained for the area beneath the
curve. In fact this result is not fortuitous — it has happened because we have
been wise (or perhaps lucky) in the choice of points to ‘sample’ the fur.mtlon.
This prompts the question: is there a way of choosing thg samplmg or
integration points to achieve optimum accuracy? As we have implied gbove,
the answer is ‘yes’, and it is the Gauss rules which represent that optimum
choice. Using the two-point Gauss rule on the above example: the e).(act answer
(24) is again obtained. In general a Gauss rule with # integration points exactly
integrates a polynomial including terms up to the power 2n — 1.

3.2.2 Interpolation polynomials (shape functions)
Underlying the derivation of the integration rules described in the previous
section is the concept of the interpolation polynomial. If one knows the .values
of a function at (say) three separate points in some interval, then it is possible to
fit a quadratic curve to the three points.

Consider the general quadratic

f=co+eyx+ext. (ERY)

i) s]

%A LEESRUTN P RRTNTE D OIEE b AW

Sec. 3.2] Mathematical and Numerical Preliminaries 89

The three coefficients cq, ¢, and ¢, are uniquely determined by the three values
of the function, and can be obtained by substituting into (3.1) three times and
solving the resulting equations. In fact one can write down the quadratic straight
away as

f=1, (x3 —x) (x2 —Xx) i, (x3 —x) (x,—x)
(x3 —x1) (x2 —x,) (x3 —x2) () —X3)
+f, (x2 —x) (x; —x) (.2)

(xy —x3) (%, -—x3).

It is possible to see by substituting x =x, etc. that this must be the corr
equation of the quadratic. An expression in this form is known as a Langragian
interpolation polynomial, and the idea can clearly be extended to any number of
points. Expressions of this form arise quite often in finite element theory where
the notation

f=HN+ N, +f3 N,

is often adopted and each of the NV; is referred to as a ‘shape function’.

3.2.3 Approximate solution of differential equations

The problem of steady seepage is used to demonstrate the basic technique. The
problem we choose to solve is that of radial seepage away from a borehole which
contains water under a pressure which is maintained at a constant value. As
shown in Chapter 1 the solution of seepage problems is equivalent to solving the
partial differential equation known as Laplace’s equation subject to the
appropriate boundary conditions. In the case of cylindrical radial symmetry this
equation can be written:
d?u 1 du
—_—t - — =
dr? rodr
The problem to which a solution is sought is: what is the distribution of excu..
pore pressure in the soil if the internal boundary is maintained at an excess pore
pressure of 10 kPa and the external boundary is maintained at zero excess pore
pressure (Fig. 3.5)? The exact solution can be obtained by integrating
analytically:

101In (16/r)
In(16)

>~
u=

To find an approximate solution of the problem, the distribution of excess pore
pressure is represented by a quadratic equation:

U=co+cr+ecyrt.

As above, this is conveniently written:

e

e S i P R e L R S e S e R R L R R T e

90 Analysis of Consolidation using Finite Elements [Ch.3

Excess porer\‘

pressure = 10

——————————— —_———

Borehole

Excess pore
pressure = 0

Fig. 3.5 ~ Cylindrical steady seepage from a borehole

(ro=r)(@e—=r) - (o =N~
 —— +u£‘ -

(ro —re) (ri = 7e)

_ (e —Di—r
ri (re=ni—n) _

(re —ro) (ri — 7o)
Adopting the appropriate values (ie. u; =10, Uy =0, =1, r,=38.5 and
ro =16):
10(16 —r) (8.5 —1r) . u(r—1(16—r)
112.5 56.25 '

(3.3)

u=

Since the excess pore pressures on the two boundaries are known, there is
effectively one value of excess pore pressure (taken for convenience at the mid-
point between the internal and external boundaries) which defines the variation
throughout the soil. How can a value be assigned to this single unknown to
furnish a ‘good’ approximate solution to the problem, bearing in mind that it
will not be possible to obtain the exact (logarithmic) solution?

The method to be described for doing this bélongs to a group of methods
known as weighted residual methods. The basic procedure is to take an
expression for the unknown pore pressure (such as (3.3) above) and to substitute
it into the differential equation. For each value of 7 the approximating function
will not satisfy the differential equation exactly, but there will be an error or

2] oA TRy, y T Vb R by
I S g cr el st ek ke e e v L et i SRR e el

PN ¥

Ay

P

R

Ty 5 mehi il ive

Sec. 3.2] Mathematical and Numerical Preliminaries 9]

residual: R(r). A weighted residual method makes this error as small as possible
by applying the condition

fVWR d(vol) = 0, G.4)

where W is a weighting function: different weighted residual methods make use
of different weighting functions.

- According to Crandall (1956), Courant was the first to classify the different
methods of obtaining approximate solutions to differential equations as
‘weighted residual methods’. We shall make use of the method proposed in 1915
by Galerkin (Galerkin, 1915), who suggested that the weighting functions W
should be the same as the interpolation (or shape) functions. Thus we write the
distribution of excess pore pressure as

u = Nuj + Noug + Noug, (3.5)
then the weighting function is taken as
W= N;W; + Ne W, + NoWo, (3.6)

where W;, W, and W, are arbitrary scalars.
The weighted residual equation is:

fwl:azﬂ+l <')sz|d .
— + — — | rdr=
1 ar? r ar ’ G0
which can be written as
w d du dr=0
—|r — r=0.
v dr dr (-8)
(3.8) is now integrated by parts:
Y di]“ aw
r—| - — —— -rdr=0.
dr v v dr dr (3:9)

We now make the substitutions (3.5) and (3.6) for u and W.

In general if there are n unknown coefficients to be determined we can obtain
n equations by letting each of the W; be 1 in turn (while all other W; are zero).
Here, there is just one unknown and so we just substitute W =N; and u from
(3.3). After a certain amount of (lengthy) manipulation we obtain the solution

u. = 190/68.

Fig. 3.6 shows the comparison between the exact and approximate solutions.
There are two ways of obtaining a more accurate solution. The first is to include
more terms in the polynomial: this is the classical approach in engineering
analysis. The second way is to split the interval into a number of sub-intervals,

92 Analysis of Consolidation using Finite Elements [Ch.3

with lower-order polynomials in each: this is the modern or finite element
approach. (In fact we introduce finite elements below in a more direct physical

way.)

Excess pore

pressure
10
\ — — — Approximate distribution
\ ——— Exact distribution
8 -
6 ~
4
2 |
T T T T T T T
2 4 6 8 10 12 14 16 r

Fig. 3.6 — Comparison of approximate and exact solutions for cylindrical seepage

3.2.4 Zienkiewicz—Green theorem

When we come to do the integration by parts described above in a two-

dimensional problem we make use of the following standard results -

standard results are
g of
—dxdy=— —dxdy + | fgnydS, (3.10)
fAfax g Lgax J:S x
and
og of
—dxdy =— g—dxdy + | fgnydS, (3.11)
vaay 7 -L oy J:S 7

where n, and nyA are the direction cosines of the outward normal n to the closed
curve S surrounding the area 4.

These results are proved in Zienkiewicz (1977), in the form given above. We
also make use of the three-dimensional version of this theorem, which is
basically Gauss’s divergence theorem with the extra ingredient of integration by
parts. Zienkiewicz refers to (3.10) and (3.11) as Green’s theorem, but the writers

i

.

SRECY ETRSSEENRT) R T Y SRS

3

Cad

o

At PV

) f
< 1}
U

|

Sec. 3.3] The Displacement Method 93

of mathematical texts use this name for another result. We believe that these
formulae have no generally accepted name, and therefore we will call them the
‘Zienkiewicz—Green’ theorem.

3.3 THE DISPLACEMENT METHOD
3.3.1 General procedure

This section explains the basic steps of the displacement method of finite
element analysis. This will be done by considering a simple example where the
‘finite elements’ are linear elastic springs.

Consider the system of interconnected springs shown in Fig. 3.7. The springs
are assumed to be weightless and are interconnected at nodes which are the
points labelled 1, 2, 3 and 4. Weights can be hung from the nodal points and the
question which must be answered is: what are the vertical displacements of the
nodes and the tensions in the springs? The problem is ‘statically indeterminate’
in the terminology of structural mechanics, that is: it is not possible to calculate
the forces in the springs from the equilibrium equations alone.

4
dal

Fig. 3.7 — System of interconnected springs

In order to find the spring tensions it is necessary to take into account the
stiffnesses of the individual springs k,, ky, k¢ and kq relating the tension in each
spring to its elongation:

Ty =k, ey,

Ty =ky ey,

N

! 94 Analysis of Consolidation using Finite Elements [Ch.3
T, = ke ec,
Td = kd eq.

To arrive at a solution for this problem, the three fundamental .p.rin.ciples of
structural mechanics (compatibility, material behaviour and equilibrium) ?re
applied in turn. What distinguishes the displacemei.zt me.thod from other solution
methods is first the choice of basic unknowns (i.e. displacements) and second
the order in which the three principles are applied.

Compatiblity: the basic unknowns are defined as the displacements of the nodal
i points (see Fig. 3.7). The equations of compatibility are

d’ e, =d, —dy,
‘ll' ey =dy —da,
- fll e. =dq —ds,
’L: eq =dq —ds.

it Material behaviour: using the definitions of spring stiffnesses detailed above:
. T, = ka(d: — 1),
‘ Ty = ky(ds — d2),
1 ' Te = ke(ds —d3),
T4 = ka(ds —d2).
Equilibrium: considering the forces acting at node 2 (see Fig. 3.8):

Tasz+Td+W2,

ie.

ka(dy —dy) = kp(ds —d2) T ka(da —dy)t W,
and rearranging this equation:

| —kydy + (kg + Ky + kg)dr —kpds —kads = Wi

| T

!

T, W, Ty

Fig. 3.8 — Forces acting on node 2

Sl e

i

Al WA md 1

TG

.

stz A1

it B

O PEEREESTES

e e

rhi

- WA

Wl b it Ve et e

Sec. 3.3] The Displacement Method 95

Similar equations can be written for the other nodes, giving four linear

simultaneous equations in d,, d;, d; and d4 which can be expressed in matrix
form:

kgt —k, : : d, W,
—k, 'g";éa'ir'zég;i}c;"i”"—';;l;"é""—‘zé;“ a4 | |,
""" D ke ke tke s ke |[ds | |ws
T T Dk ket ks ||da | |Wa

The square matrix is called the global stiffness matrix for the collection of
springs. The equation can be written in matrix notation:

Kd=W,

General rules for determining the coefficients in the global stiffness matrix for a
general arrangement of springs can be stated:

Rule I: the diagonal term for node / is made up of the sum of all the individual
spring stiffnesses that are connected to node i.

Rule 2: the off-diagonal terms (i, j) and (j, /) contain the stiffness of the spring
connecting node / and node j multiplied by —1.

An equivalent statement is that the global stiffness matrix consists of the sum of
matrices of the following form: (where k. is the stiffness of one particular
spring) :

i J

i| ke —ke

J ke ke .
One of these matrices is added into the global stiffness matrix for each spring in
the collection. The node numbers i and j indicate where the terms must be added
(or ‘assembled’) into the global matrix. These matrices are called the element

stiffness matrices of each spring, relating nodal displacements to the forces
exerted on each spring at nodal points.

ke —ke d; _ Fy
—ke ke d; Fj ’
The forces acting on each nodal point taken to be positive downwards; thus

Fi=-T, and Fj=T..

T ————T T 4

‘.‘._

et

Fi R S b

T R T e TR v S

:;5
;
i
L
I
5
2]

96 Analysis of Consolidation using Finite Elements [Ch.3

3.3.2 Solving the equations

To demonstrate the method of solving these equations, the following values are
adopted: ky =ky =k, =20, kq =10, W, = W5 =0 and W; = 1. Thus the
equations which must be solved are

(1) 20 —20 0 01[4, W,
) —20 50 -20 —10||a| |0
3) 0 —20 40 —20||ds| |1 |
(4) 0 —10 —20 30]|d, 0

subject to the boundary condition d; = 0. These equations are solved using the
process known as Gaussian Elimination. The first stage of this process (known as
forward elimination) is based on the observation that adding an arbitrary
multiple of one equation to any other equation does not change the solution of
the set of equations.

First, however, it is necessary to deal with the boundary condition d, = 0.
There are many alternative methods for doing this, but one of the simplest
(which is adopted here) is to add a large number (say 10°) to the diagonal term
of equation (1). This forces this equation to yield a solution of d, =0.
Physically the addition of this large number can be interpreted as the connection
of node 1 to earth with a very stiff spring (with a stiffness of 10°).

10° —20 0 4, W
—20 50 =20 —10{|dy| |0
0 —20 40 —20/||ds|
0 —10 =20 30]|d 0

Now the process of forward elimination is started:

(a) Multiples of the first equation are added to the following equations so that
the coefficients of d, in these equations become zero. (This process is
called eliminating d, from the following equations.) In this particular
example, only equation (2) needs to be modified according to the
following rule:

(new equation (2)) = (old equation (2)) + (20/10%) X (equation 1)):
10° —20 0 01[4<, W,
0 50 —20 —10|]d, 0
0 20 40 —20(|d;
0 -—10 —20 30] [da 0

(b) Multiples of equation (2) are now added to equations (3) and (4) to
eliminate coefficients of d, from those equations:

4 bmtin e AP b | Ly

%3
ik

[e

Sec. 3.3] The Displacement Method 97

(new equation (3)) = (old equation (3)) + (20/50) X (equation (2))
(new equation (4)) = (old equation (4)) + (10/50) X (equation (2)).

10 =20 0 d, W,
0 50 —0 —10||d, 0
0 0 32 —24||ds] |1

0 0 —24 28] |d, 0

The general method being adopted is now apparent: in step (a), terms in column
1 under the diagonal become zero whereas in step (b), terms in column 2 under
the diagonal became zero. The matrix is gradually being converted into ‘uppet
triangular’ form.

(c) Eliminate coefficient of d from equation (4):

(new equation (4)) = (old equation (4)) + (24/32) X (equation (3)).

10° —20 0 0] [d; .
0 50 —20 —10| |4, 0
0 0 32 —24||d,s Tl
0 0 0 10] |4, 3/4

Forward elimination is now complete. Now the process of back-substitution is
started.

(d) Solve for d, from the last equation:
ds = 3/40.
(e) Solve for d, from the third equation:
32d5 —24(3/40) = 1.
dy =17/80.
(f) Solve for d, from the second equation:
50d, —20(7/80) — 10(3/40) = 0.
d, = 1/20.
(g) Solve for d; from the first equation:
10%d, —20d, = W,.
d, = 0 (very nearly).

From the nodal displacements it is now possible to calculate the spring
elongations and tensions.

3.3.3 A computer program for the displacement method

Listed below is a FORTRAN program which can be used to analyse collections
of springs similar to the one considered above.

98 Analysis of Consolidation using Finite Elements [Ch.3 : ' Sec. 3.3] The Displacement Method 99
The basic steps of this short program are highlighted by the comments in the a ST (NOD, NOD) =ST(NOD, NOD)+1.0E6
listing. The identical steps are present in the finite element program for 14 RHS(NOD)=RHS(NOD)+1.0E6*FIX
consolidation analysis presented later in this chapter, and in CRISP. To use the CHERMYZRYRIRRUUNIAXAULAAARAAINANLANRAILOADS ON NODESHH*XYNRUIRRAX U xux ¥4
’ : : DO 18 I=1,NL
program it is necessary to present it with input data describing the problem to be : READ(5,107) NOD,W
' analysed. The input data must be prepared according to the following scheme: 4 107 FORMAT(IS,F10.0)
il WRITE(6,106) NOD,W
([} 18 RHS(NOD)=RHS(NOD)+W
4 | i Data record Contents No. of records : CHEXRERAXREEAREXRR R KRR RRRXER RN RNARKRRCORWARD ELTIMINATIONS %% %% 553K % % %% %
§! lj‘; ’ NN1=NN-1
4 A NN NS NF NL 1 : DO 30 IQ=1,NN1
: NN A t 5
\ 5 =11,
3 |l C NOD FIX NF : DO 22 J=IQ,NN
£ D NOD W NL ;) 22 ST(I,J)=ST(I,J)-ST(IQ,I)*ST(IQ,J)/ST(IQ,IQ)
!‘; 0 2ie 26 RHS(I)=RHS(I)-ST(IQ,I)*RHS(IQ)/ST(IQ,IQ)
}i 30 CONTINUE
? | C*l*!i*li**ﬂ*li*i*ll***il{*ii*l*ll!**iBAcK SUBSTITUTE*l**i********i‘***
¥ 'l yvhere in record A, NN is 'the numbAer of Qodes, NS is the numbér of springs, NF RHSCNN)=RHS (NN) /ST (NN, NN)
q I is the number of nodes with prescribed displacements, and NL is the number of g0 DO 60 II=1,NN1
2 loaded nodes. In records of type B, NI and N2 are the node numbers at either R IQ=NN-II
E il | end of a spring and AK is its stiffness. In records of type C, NOD is the node §iee ;(1):;3*} 11NN
I h i . . . R “ =
i number which is given a prescribed displacement with a value FIX. In records of §TEN 58 RHS(IQ):RH'S(IQ)-ST(IQ,I)“RHS(I)
! type D, NOD is the node which is loaded with a load W. % 60 RHS(IQ)=RHS(IQ)/ST(IQ,IQ)
| i An example data file follows the program listing I‘ CHREBRREERRHNE R RENR RN NN RXN RN RXNN KX XRXDRTNT DISPLACEMENTSH¥H %Kk XXX 8% %%
’ § WRITE(6,109) (RHS(I),I=1,NN)
‘ DIMENSION ST(12.12) RHS(12) < 109 FORMAT(14HODISPLACEMENTS/(1X,10E12.4))
’ ’ ¥ STOP
WRITE(6,100) END
100 FORMAT(16HOSPRINGS PROGRAM) :
5: i3} Ci&i!ll*'!‘***iiii‘.‘l*i*lli*!li*l*l'i*INITIALISE***i{!*ﬁ*{ii*i*ii!*iii* L
f- | DO 6 J=1,12 Below are the data which describe the example worked through above:
i DO 4 I=1,12 i
R 4 ST(I,J)=0. 4 Al a4 4 1 1
IR 6 RHS(J)=0. . B 12 20.0
iR CHMBE RN R ERRRR RN RN R RN N NN R RRNNNREAD DATARFENE NN RN NN NN *] .
i READ(5,101) NN, NS, NF,NL - g B |2 3 20.0
{1 101 FORMAT(A4I5) 4
[IF(NN.LT.0) STOP g B 3 4 200
! WRITE(6,102) NN,NS,NF,NL 1
B 102 FORMAT(11HONODES.....,I5/11H SPRINGS...,I5/ B2 4 100
i 1 11H FIXES.....,I5/11H LOADS..... ,I5) § Io 1 00
Clll{!i!l{ii!ll‘!I{liiili!!!I{l'l'!{{*i!ASSmBLEil"*!!li*lii*i*iiilﬁ*ii! : :
DO 10 N=1,NS % D| 3 10

READ(5,103) N1,N2,AK

103 FORMAT(215,F10.0) = Running the program with these data produces the following output:
WRITE(6,104) N1,N2,AK

e s ey g o

104 FORMAT(2I5,F10.3)
ST(N1,N1)=ST(N1,N1)+AK 4 SPRINGS PROGRAM
ST(N2,N2)=ST(N2,N2)+AK it NODES 4
| ST(N1,N2)=ST(N1,N2)-AK 4
g 10 ST(N2,N1)=ST(N2,N1)-AK :‘»;i SPRINGS. ... 4
£ CHEMR MR NN RMII XNXNN MR MRNETY NODESH ¥ 334 6 36 0 30306360006 3 0636 3 30 f FIXES. 1
i DO 14 I=1,NF 3 LOADS 1
¢ READ(5,105) NOD,FIX .= 0 TToTTmr s
f 105 FORMAT(IS,F10.0) i 1 2 20.000
i WRITE(6,106) NOD,FIX 2 3 20.000
| 106 FORMAT(1X,I5,F10.3) 3 4 20.000

1A | et L

|

A T

100 Analysis of Consolidation using Finite Elements [Ch.3
2 4 10.000
1 0.000
3 1.000
DISPLACEMENTS

0.1000E-05 0.5000E-01 0.87S0E-01 0.7500E-01

and the reader can see that the printed displacements correspond to those
calculated in the example.

3.4 VIRTUAL WORK

The general procedure described above can be used to analyse problems where
the properties of the individual elements are more complicated than those of the
elastic springs described above. The overall approach of assembling the
stiffnesses of individual elements into a global stiffness matrix and solving the
linear simultaneous equations remains precisely -the same as that described
above. This holds true regardless of whether the finite elements represent
volumes of solid material (i.e. a continuum) or discrete members in a structural
framework.

In formulating stiffness matrices for continuum elements, use will be made of
the principle of virtual work. The principle of virtual work will be used to
determine the equivalent nodal loads which are in equilibrium with internal
stresses in the finite elements. Since the virtual work principle is regarded as
difficult and/or obscure by many engineers, this section discusses the derivation
of the principle for a plane truss and a continuum.

3.4.1 Virtual work for a truss

Fig. 3.9 shows a plane truss consisting of a collection of pin-ended bars. The
description of the bars as ‘pin-ended’ means that an individual bar cannot
transmit a moment to other bars via the joints at its ends. The joints in the truss
are numbered from 1 to n (if there are n joints) so that loads applied to one joint
can be distinguished from loads applied to other joints by the use of numerical
subscripts. In the following, one particular joint will be considered and it will be
referred to as joint 7 for the sake of generality. Considering the forces acting on
joint 7 and resolving horizontally and vertically:

k i

Fig. 3.9 — Pin-jointed truss

ahs

Sec. 3.4] Virtual Work 101

H; + Tjj cos oy + Ty cos ey + Ty cos oy + Tjpy cos Qi =0,

Vi + Tjj sin i + Ty sin oy + Ty sin &y + Ty sin @, =0,
where H; and V; are the external horizontal and vertical loads acting on the joint
and Tj; is the tension in the member connecting joint i to joint j which is
inclined at an angle a;; to the horizontal. There are n pairs of equations similar
to this one (one pair for each joint). The number of terms in each equation
depends on the number of bars connecting each joint to other joints in the truss.

Here it has been assumed that joint i is connected to four joints: j, &, / and m.
Each equation is now multiplied by a (different) arbitrary number, thus:

hi (H; + T cos oy + Tig cos oy + Ty cos ajy + Ty cos aim) =0,
% (Vi + Tjj sin ejj + Ty sin g + Typ sin oy + Ty sin) = 0.
All the equations are now added together:

2> (hH +vV) + alarge number of terms = 0.

joints

Examining the form of the ‘arge number of terms’ it can be seen that the
following four terms appear owing to the existence of the bar connecting joint ¢
to joint j:

.« Tjj cos oy + v; Tjj sin oy + 1y T cos o + v Tji cos i . ..

Now Tj; = Tj; = the tension in the bar connecting joint i to joint ;. However,
cos ajj = —cos aj; and sin a;; = —sina;; (see Fig. 3.10). The following series of
definitions are now made:

ejj = h/' COs @;j + v; sin ajj — h; cos Q;j — V; sin ajj
and the equation now becomes

> (hH+ V)= eT.

joints bars

Fig.3.10 — Geometric relationship used in proof of virtual work for a plane truss
(cos aj = — €05 jj; sin o = — sin o)

If in this equation 4; is set to one and all the other As and s are set to zero, then
the original equilibrium equation for forces in the horizontal direction at joint J

'_?_ i
';' p!'f | i
3l 102 Analysis of Consolidation using Finite Elements Ch.3 ! _
% 14 Yy & (Sec. 3.4] Virtual Work 103
1 .
W ,)
11
o
I .) .
it is recovered. Any of the original equilibrium equations can be recovered in a 30 ar
i i similar fashion by setting the appropriate & or v to one and the others to zero. oy 22X (.12
35 i The equation which has just been derived is in fact the principle of virtual ox ay 12)
il work for a pin-jointed truss (or, strictly speaking, the principal of virtual 37, 30
i displacements). In deriving this principle, however, no reference has been made | a—y + -2 = Wwy. (.13)
L to displacements or work quantities: only the principle of equilibrium has been | X oy
" i used. Suppose that the ‘arbitrary numbers’ hi and v; are now taken to be These equations are multiplied by arbitrary scalar functions 4 and v, added
1 ! horizontal and vertical displacements of joint i. Then the quantity e;; which was together and integrated over the area of the continuum:
1] defined above turns out to be precisely the extension of bar jj due to these
] I ‘displacements. This result can be obtained by using Pythagoras’s theorem to f n 90y + OTyy 0Ty x a0y,
- A ax w0 v + —= —wy| |d(area) =0.

calculate the length of the bar before and after straining and taking the Limit of

I ¢ ox a
I the difference when deflections are small. (Alternative methods are using a Y

e e e & e L et) £
— —

‘displacement diagram’ or simply resolving the joint displacements along the
direction of the bar.) The equations giving bar extensions in terms of joint
displacements are the equations of compatibility for the truss.

Alternatively the equations of compatibility could have been used instead
of the equilibrium equations as the starting point in the derivation of the
principle. The arbitrary numbers which multiply these equations are identified
as forces, and by selecting particular force system it is possible to recover the
original compatibility equations (or some combination of them). Deriving the
principle in this way leads to what is strictly called ‘the principle of virtual
forces’. It is normal to refer to both these principles as the principle of virtual
work. The essential point to note is that either the set of forces in equilibrium or
the set of compatible displacements may be ‘arbitrary’, ‘imaginary’ or ‘virtual’
(these are the terms that are commonly used in this context).

The principle of virtual work is being increasingly used in the theory of
structures to obtain solutions to redundant frameworks and structures. It is
replacing the more traditional energy theorems mainly because the analyst only
has to remember one basic principle rather than a series of different theorems
(which all depend on virtual work for their proof). The aspect of the principle
which leads to many regarding it as obscure is the introduction of the word
‘work’. Although it is natural to introduce this term in relation to the product of
a force and a displacement, it inevitably leads to some confusion as to what this
‘imaginary work’ actually represents in practice. In fact, as has been shown
above, the principle merely represents statements of equilibrium and compati-
bility. The fact that both types of statement can be obtained from one single
equation is the result of the ‘duality’ present in definitions of the force and
displacement systems. This can be seen in the case of the plane truss in the fact
that the cos a;; and sin &;j factors occur in both equilibrium and compatibility
equations. The proof of the virtual work principle involves transferring these
factors from forces to displacements.

3.4.2 Virtual work for a continuum

The starting point is the differential equations of equilibrium for a two-
dimensional continuum:

o e e

{-‘,l : As in the case of the truss, # and v will subsequently be identified with

horizontal and vertical displacements, but initially they are regarded as arbitrary
functions (of x and y).

Terms involving the derivatives of stresses are now integrated using the
Zienkjewicz—Green theorem. This will be demonstrated by considering the
integration of the first term in the equation above:

00y oh
h—dxdy =— —
‘[4 ax 4 J:q ax Ox dxdy + Lhoxnx ds.

When the arbitrary scalar function A is identified as the horizontal displacement
dy, the terr.n (8h/0x) is recognised as —e, . Performing similar integrations for all
terms of this type, the principle of virtual work for a continuum is obtained:

€ Lo d(vol) = J.dTTd(area) + dew d (vol). (3.14)

In this equation, 7 is a vector with components Ty =nyoy +ny7yx), and
Ty = NxTxy +n,0,. These are called ‘tractions’, and the term fd%’-rd(area)
represents the work done by these tractions on the boundary of the continuum.
A simple transformation shows that this is equivalent to the work done by the
direct and shear stresses acting on the inclined boundary.

In order to emphasise in the virtual work principle that the strains are not
necessar-ily caused by the stresses (but can be arbitrary as long as they are
compatible), 1& is common to denote the virtual strains and displacements by a
superposed *: € and d.

The purpose of this exposition (and the introductory case for the plane truss)
was to demonstrate that in both cases the principle of virtual work is derived
directly from the equations of equilibrium (or the equations of compatibility)
The reason that the virtual work principle is employed in structural analysisl
(rather than the equilibrium equations) is mainly one of convenience.

However, we draw the reader’s attention to the fact that the derivation of the
principle of virtual work for a continuum followed a very similar course to the
procedure for applying Galerkin’s weighted residual method to the seepage
problem in section 3.2.3. Indeed, we could have referred to the arbitrary scalar
functions 4 and v as weighting functions, and it is possible to regard (3.14) as a

AR O e S e S S s

i pa

- iz

104 Analysis of Consolidation using Finite Elements [Ch. 3

weighted residual statement. The identification of (3.14) as both the virtual
work principle and a weighted residual statement leads to a physical
interpretation of what is happening when an approximate solution is obtained
using this equation. Substituting an approximate stress distribution into the
equilibrium equations (3.12) and (3.13) gives a residual term which corresponds
to an error in the body force. Satisfaction of (3.14) ensures that the integral of
the work done by the (erroneous) body force is locally zero (over an area
associated with each node in a finite element mesh). Alternatively the statement
can be regarded as one of local equilibrium, in which the resultants of internal
stresses, body forces and boundary stresses balance at the nodal points.

3.5 DISPLACEMENT FINITE ELEMENTS
3.5.1 The basic formula

In this section the account of the displacement method is taken one step further
by considering some ‘finite elements’ which are rather more complicated than
the springs considered in section 3.3. As mentioned previously, the general
solution procedure remains the same regardless of the type of element
employed.

First the basic technique for obtaining the stiffness matrix for a finite
element based on an assumed displacement field is presented. The technique is
then illustrated by deriving element stiffness matrices first for a pin-ended bar
and second for a triangular element to be used in the analysis of plane strain
problems.

The notation used follows that established by Zienkiewicz in his series of
texts on the finite element method (1967, 1971, 1977). The first step is to
express the displacement inside the finite element as a function of the displace-
ments of nodal points and position within the element. This relationship is
written in matrix notation:

d = Nag, (3.15)

o)

and a, is a vector listing all the nodal displacements associated with an element.
The matrix N contains the ‘shape functions’ for the element. The form of these
functions for different types of element is discussed below.

The equations of compatibility are now used to obtain the strains inside the
element in terms of the nodal displacements, This relationship is normally
written in matrix notation:

€ =Ba,. (3.16)

where

RN
b

Sec. 3.5] Displacement Finite Elements 105

The matrix B is sometimes referred to as the ‘strain matrix’, but is more often
simply referred to as the ‘B matrix’.

The next step is to use the elastic stress—strain relation for the material
(0 =De) to express the stresses inside the elements in terms of the nodal
displacements:

¢ =DBa,. (3.17)

The principle of virtual work is now used to find the nodal forces (F¢) which are
in equilibrium with this state of internal stress. These nodal forces do not
represent actual concentrated forces in the body: rather they represes
resultants in much the same way as engineers use the concepts of an axial force,
shear force and bending moment to describe the state of stress in a beam. A set
of virtual nodal displacements applied to the element accompanies a set of
virtual strains within the element according to the relation

* *

€ = Bae. (3.18)
The principle of virtual work gives

al Fo= [¢Tod(vol). (3.19)

14

Substituting for ¢ and ¢ using (3.17) and (3.18) we obtain

il Fo=ad | (BTDB) d(vol)a,,

v
* T .

and ae can be cancelled to give

Fe= | (BTDB)d(vol)a,

14
=Kag, (3.20)

where

K= fV (BT DB) d (vol)

is the element of stiffness matrix.,
The equivalent nodal forces Fe balance loads due to self-weight and boundary
stresses — taking into account overall equilibrium, the resulting equation is

fV(BTDB) d(vol) ag = fp NTw d (vol)

n fs NT7 d (area), (3.21)

where

[

106 Analysis of Consolidation using Finite Elements [Ch. 3

represents normal and shear stresses acting on an element boundary. Although
these equations have been developed for a single element, we could equally well
have considered a whole mesh of elements in deriving them. Of course, one has
to use the N and B matrices for each element in turn when performing an
integration over the whole mesh.

3.5.2 Example: a plane truss element

Fig. 3.11 shows one member of a plane truss of length L, inclined at an angle
to the x axis. The nodal degrees of freedom are the displacements in the x and
y directions at the two ends of the element, dxy, dyy, dx2 and dy, .

Fig.3.11 — Nodal degrees of freedom for plane truss element

In calculating the strain in this element, we are only interested in the displace-
ments along the direction of the element and so we define an axis system local
to the element, (x',y"), with the x' axis coincident with the direction of the
member. The displacement a distance x' along the element is given by

dy = (1 —x/L)dyy + (/L) dxz. (322)
To obtain the element stiffness matrix we need to obtain this expression in
terms of degrees of freedom dyy, dy 1, dx2 and dy,. This is achieved by noting
that

dy=dycosa+dysina (3.23)

(which follows from a simple consideration of geometry).
Making this substitution we obtain

L |
i
':
i1
o i
&
o Y
A
1=
1
1

Sec. 3.5] Displacement Finite Elements 107

[de] =10 —x/L)cosa (1 —x'/L)sina | dy,
(x/L)ycose (x'/L)sin q] dy,
dys

dy,

(3.24)

which is the same form as (3.15) above. The B matrix is obtained by
differentiating this equation:
d(dx)

dx:

€x

and is given by
[-¢/L —S/L C/L S/L],

where C = cos aand S = sin .
The D matrix here simply reduces to Young’s modulus, £ (0 = £ €).

¢t ¢S —C* —<S
cs S* —cs —S?
—C* —¢cs C* CS
—CSs —$* ¢s @ S?

 (BTDB) d (vol) = 4E
v L

The stiffness matrix of this element is normally obtained using a direct
equilibrium approach. We have applied the general form (3.20).

3.5.3 Example: constant strain triangle
Fig. 3.12 shows the simplest triangular finite element for continuum analysis.
The nodal degrees of freedom are the displacements at the vertices of the
triangle, dyy, dy1, dya2, dy2, dy3 and dy3. The displacement at some point in
the element is assumed to have a linear variation:

dy =co teyx teyy,

dy =c3 tcax +oesy.
The coefficients ¢g, ¢, etc. are found by substituting the co-ordinates of the

three nodal points into these expressions. Solving the resulting sets of
simultaneous equations we obtain

X ¥y X y
dy = ;d)ﬂ + ;a’“ + <1 - ; - "‘)dxs,

O 57 R T

108 Analysis of Consolidation using Finite Elements [Ch.3

9,2

o — — — . —— o

T

1

h

Fig. 3.12 — Constant strain triangle

Thus the shape function matrix N is given by
xth 0 y/h 0 (1—x/h—ylh) 0
0 x/h O yh 0 (1 —x/h—y/hy|
Applying the normal definitions of strains (1.4), (1.5) and (1.7), the B matrix is
given by
—1/h 0 0 0 L/ O
0 0 0 -1k 0 1/h
0 —1/h —1/h 0 1/h 1/h
For a plane strain problem the D matrix relating o to € is given by
1—v 1 0
1 —v 0
0 0.5—v»

£
(1—22) (1 +v)

Calculating the element stiffness matrix is a simple matter of calculating the
matrix product BIDB times the area of the element (h%/2), since the terms of all
these matrices are constant.

The resulting matrix is

Sec. 3.5] Displacement Finite Elements 109
[a 0 0 v o—a =V
0 b b 0 —b —b
0 b b 0 —b —b E
v 0 0 a v —a | 21+v)(1—2w)
-2 b b c 1/2
L—v —b —b —a 1/2 c_|

wherea=1—»,b=05—vandc=1.5—2v.

Note that the terms of this matrix are independent of the dimensions of thr
element — a property of all element stiffness matrices for plane strain and plane
stress analysis that can be expected on physical grounds.

3.5.4 Higher-order elements

The second element presented in the previous section, usually known as the CST
(the Constant Strain Triangle), was the first element formulated for continuum
analysis (Turner et al., 1956). Although it has the virtue of simplicity it is
currently not regarded as a good choice of element for general use in analyses.
This is because a large number of CST elements are required to obtain a
sufficiently accurate representation of non-constant stress fields. Irons and
Ahmad (1980) demonstrate a number of cases where this element gives poor
results, even with apparently fine meshes.

Elements with a higher-order variation of displacement (and hence strain)
have the advantage that fewer elements are needed to obtain a sufficiently
accurate solution to problems. However, a higher-order element is more difficult
to program, more difficult for a program user to understand and uses more
computer resources than lower-order elements. Despite these disadvantages it is
generally accepted that the balance of advantage in terms of both computational
efficiency and ease of use favours the higher-order elements. The element usually
used for plane strain analyses by CRISP is the linear strain triangle (Fig. 3.12
Whereas the constant strain triangle has a displacement field which has a linea
variation in all directions:

dy =cotecyx+cry,
dy =c3 +eax +csy,

the linear strain triangle (or LST) has a displacement field which has a quadratic
variation in each direction:

dy=co+e,x+e,y+esxt+eaxy+esy?,
dy =cg+erx gy +eox® +epoxy +oy?

It is convenient to express the shape functions for higher-order elements (such as
the LST) in terms of co-ordinate systems which are local to the element

-
]

S e e

T R T B

B s o L g

eSS

TR

110 Analysis of Consolidation using Finite Elements [Ch.3

dx2

Fig. 3.13 — Nodal degrees of freedom for linear strain triangle

concerned. The remainder of this section explains the basic techniques for doing
this.

First consider the bar element presented in section 3.5.2. To simplify the
demonstration of a local co-ordinate system, we align the element with the
global x axis. If the co-ordinates of the ends of the bar are (x,, 0) and (x,, 0)
then the shape functions for axial displacement of a point (x, 0) on the bar are

dy = (x2 —x)[(x2 —x)dyxy + (x —x1)/(x2 —x)dx2.

We now introduce the same local co-ordinate system that was adopted in section
3.2.2 for the numerical integration rules:

£=(2x —(x; +x2))/(x2 —x1).

Thus § =—1 when x=x, and £ =1 when x =x, (at the midpoint of the
element £ =0). The transformation from the global co-ordinate system to the
local one involves a linear stretch and a translation.

In terms of the local co-ordinate, the shape functions are

dy =0.5(1 —£)dyy +0.5(1 +) dys.

The same functions are used to transform the local co-ordinate to the global
one:

x=05(0—-8x,+05(1+§&x,

(the functions are the same because for the bar the displacement varies linearly
along the element and the axis transformation is also linear). It should now be
apparent that the advantage of using the local co-ordinate system is that the
shape functions of all linear bar elements are now given by the same expression.
The use of local co-ordinates requires some small modifications to the way the
stiffness matrix is calculated. Before discussing these changes, the two most
common forms of local co-ordinates for two-dimensional elements are described.

Sec. 3.5] Displacement Finite Elements 111

(1,1)

(=11}

(=1.-1)

. 1,-1)
Fig.3.14 — Local co-ordinates for quadrilateral elements

Fig. 3.14 shows the system of local co-ordinates (¢, m) appropriate for
rectangular or quadrilateral elements. The local co-ordinates of the vertices of
the rectangle or quadrilateral are (1, 1), (-1, 1), (=1, =1) and (1, —1).
Transformation from local to global co-ordinates is described by the equations

x=025(1 + £ (1 +n)x; +0.25(1 —£) (1 + n)x,
+0.25(1 —£) (1 —m)x3 +0.25(1 + £) (1 — n)xs,

y=025(1+ & (1 +n)y, +0.25(1 —£) (1 + n)y,
+0.25(1 =& (1 —n)y3 +0.25(1 + £) (1 —n)ys,.

The similarity between this system and the one-dimensional system should be
apparent.

Fig. 3.15 shows the system of local co-ordinates appropriate for triangular
elements. A point within a triangle is defined by three co-ordinates (Ly, Ly, Ls).
Only two of these co-ordinates are independent since

3

A = area of triangle
= A, + A,y +A3
Li=Ayily =Ay Ly = Ay

A A A

Fig. 3.15 — Triangular co-ordinates

R

e
e

S S AL B R et

e b T 14 49 S i e 4, e

L

e e

+
i

112 Analysis of Consolidation using Finite Elements [Ch.3

AI +A2 +A3 =4
and hence
L +L, +L;=1.

The advantage of using three co-ordinates for triangular elements is that
expressions for the shape functions are symmetrical with respect to the nodes.
Transformation from local to global co-ordinates is given by the equations

x=Lx, +Lyxy +L3x3,

y=Lyy+ Ly, +L3ys.

The elements provided in CRISP are triangular (see Fig. 4.1). Triangular
elements possess the (probably small) theoretical advantage over quadrilaterals
that they give the same variation in displacement in all directions over the
element. This is because the shape functions contain complete polynomial
expansions of x and y, and unlike quadrilaterals do not have extra §unk’ terms.
In some situations, analyses with triangular elements have succeeded where
quadrilateral elements have come to grief (e.g. recent work on computing
elastic—perfectly-plastic collapse loads (Sloan and Randolph, 1982). The shape
functions for the CST element are the triangular co-ordinates, i.e. Ny =L,
N, =L, and Nj; =L;. The shape functions for the LST element are
Ny=QL, =1L\, Ny=(2L, =1Ly, N3=Q2L3;—1)Ls, Ny=4L L,,
Ns =4L,L3 and Ny = 4L;L,. Shape functions for higher-order elements can be
obtained by a simple recurrence relation. While it is convenient to formulate the
triangular elements in terms of triangular co-ordinates, it is necessary at some
point to change to the (¢, 1) local co-ordinates, when the substitutions L, = §,
L, =mand L3 =1 —§ —n are made.

It is straightforward to calculate the derivatives of these functions with
respect to the local co-ordinates. Integrating functions within the triangular and
quadrilateral areas is also straightforward in terms of the local co-ordinates.
However, in calculating the stiffness matrix it is necessary to obtain derivatives
with respect to the global co-ordinates (i.e. when calculating terms in the B
matrix). The Jacobian matrix is used to transform between derivatives with
respect to local and global co-ordinates (see for example the text by Maxwell,
1954). The Jacobian matrix arises from the chain rule of partial differentiation:

of of ax+ of oy
9t dx 9t 3y oF
of o ax . af dy
am dox 9m dy on

and can be written:

el - J 2 HoL eI g]
B s s ot e TP SRR I PR Ry
. W Al S T o ralt

Sec. 3.5] Displacement Finite Elements 113
of of
of ox
=]
o o
on oy

where the Jacobian matrix J is given by

ox 9y
o ot
ox dy
on oo

In forming the terms of the B matrix, the Jacobian matrix of the inverse relation
is required (i.e. local — global rather than giobal —~ local). It is computationally
easier to calculate J and then the terms of J™' and this course is pursued in
CRISP (see Chapter 7). The other standard result which is used in integrating the
terms of the stiffness matrix is

Jrdxdy =1 det (7) dtdn

where det (J) is the determinant of the matrix J,

As indicated earlier, numerical integration is used to calculate the terms of
the element stiffness matrices, For two-dimensional numerical integration there
are ‘integration points’ within each element where the terms of the matrix
product BTDB are calculated.

3.5.5 One-dimensional quadratic element

As an example of a higher-order element we show how the stiffness matrix of a
one-dimensional element with a quadratic variation of displacement (and, hence.
a linear distribution of strain) can be calculated. This element can be regarded a

a three-noded bar element. Alternatively, it could be regarded as suitable for a
(rather simple) analysis of layers of soil where there is no straining in either of
the horizontal directions. The element is shown in Fig. 3.16. The terms of the N
matrix are given by

(058E—1) 05EE+1) (1—#)].
The transformation between local and global co-ordinates when forming
derivatives is quite simple in the one-dimensional case:
ddy ody d

T % dx’

Hence the terms of the B matrix are

€x =

AT -

e T O TSRS TS

e

114 Analysis of Consolidation using Finite Elements [Ch.3

WAL

Fig. 3.16 — One-dimensional quadratic element

2
Y (05—§ —(0.5+E) 2]
1

(noting that dg/dx = 2/h). o

Now since €, =€ =0, 0x = (EQ —»)/(1 +») (1 —21)-)))6.)(. Thus D is in
this case a square matrix containing precisely one term (which is usually knowp
as the one-dimensional modulus). The stiffness matrix for this element is
therefore given by the integral of the following matrix over the volume of the
element:

05— 05-%) —(05-805+% 2§00.5—8)
3{3 —(0.5+£)(0.5—%) (0.5+§)(05+%) —2§(0.5 + £)
28(0.5 —§) —28(0.5+ %) 4EE
To perform this integration, each term in the matrix is integrated between limits

g=—1land £=1,and each resulting term is multiplied by h/2 (the equivalent of
det (J) in this case). The matrix resulting from this process is

7 1 -8
ol
lg -8 16

where A is the area of the column of soil.

3.5.6 Approximation and accuracy in the displacement method

Engineers sometimes regard displacement finite elements as beir}g connected
only at the nodal pointsin a mesh. This is not a good conceptual picture of h.ow
finite elements behave. Straining displacement elements results in a deformation
pattern similar to that shown in Fig. 3.17(a) rather than Fig. 3.17(b) (i.e. no
gaps open up between element sides). This is because the displacement shape
functions are chosen so that there is continuity of displacements between

e

A THPC VIR AR) SR

A I

t’,..a

13

eV
r L

Sec. 3.6] Finite Elements for Consolidation Analysis 115

(a) (b)

Fig. 3.17 — Displacement finite elements deform as in (a) not (b) (displacements
are compatible: no gaps open up)

elements. On the other hand, although the strains will be continuous within
elements, there will usually be a discontinuity of strains between adjacent
elements.

The stress field in an element will be continuous — but may not satisfy the
differential equations of equilibrium. Except for very simple problems, stresses
on either side of element boundaries will not be equal. Equilibrium is satisfied,
however, in an average sense through the equilibrium equations at nodal points
where the resultant forces equivalent to internal stress fields balance resultant
forces equivalent to external tractions and body forces.

The extent to which local stresses appear not to be in equilibrium gives some
idea of the accuracy of the solution.

3.6 FINITE ELEMENTS FOR CONSOLIDATION ANALYSIS
3.6.1 The basic equations

In this section the basic matrix equations for consolidation analysis by finite
elements are derived. The starting point is the differential equations of
equilibrium and compatibility that were described in the first chapter. The
equations will be developed for a two-dimensional analysis. To formulate a
three-dimensional analysis it is merely necessary to add the extra terms for
variation in the z direction. For the sake of completeness we repeat the
equilibrium equations:

40y ATy
— ° = Wy, 9 bis
ax 3y x (3.12 bis)

116 Analysis of Consolidation using Finite Elements [Ch.3

oT a0
—2L L=, (3.13 bis)
ox oy

The two-dimensional differential equation of continuity is
ke DUk V¥

— — = 0. 3.25
Tw ax? Yw ayz or ()

To obtain the finite element matrix equations we can apply Galerkin’s weighted
residual method to the equilibrium equations and to the continuity equation in
turn. In section 3.3 it was shown that for the equilibrium equations the resulting
equation was equivalent to the principle of virtual work. We now show that
performing the same kind of operation on the continuity equation yields
another ‘virtual principle’. The first step is to multiply the continuity equation
by an arbitrary scalar which can vary with x and y. We identify this scalar with
an imaginary or virtual pore pressure. Thus (3.25) is replaced by

. ky 3*u ky, 3'u 3w
f,,. = — + XL — + — | do)=0. (3.26)
v Yo 0x% vy WP Ot

Zienkiewicz—Green theorem is now applied to this equation:

ke ou ok, ou ou
— — — — + = — — |d(vol)
V|vw Ox ox Yw Oy 0y

* « 0V
- f 1 v, d(area) + f u — d(vol)=0 (3.27)
S y ot

(where v, is the artificial seepage velocity normal to the boundary). It is this
equation that could be regarded as the ‘principle of virtual power’ and could
form the starting point for obtaining the finite element equations, in much the
same way as the principle of virtual work can be used to obtain the finite
element equations for stress analysis.

We now introduce the finite element discretisation of the problem. The
displacements are assumed to vary over a finite element mesh according to

d = Na, (3.28)

and the excess pore pressures are assumed to vary over the same mesh according
to

u=Nb. (3.29)

Note that different shape functions are indicated for displacement (matrix N)
and excess pore pressure (matrix N). For example the displacement may vary in
a quadratic fashion and pore pressure in a linear fashion over one element. The
virtual excess pore pressure is assumed to vary according to the same shape
functions as the excess pore pressures:

Sec. 3.6] Finite Elements for Consolidation Analysis 117
* ok
u = Nb. (3.30)
As usual the strains are given by
€=Ba, (3.31)
and the gradient of the excess pore pressure is given by
du
ox
~ | =Eb,
o (3.32)
ay

where the terms of the E matrix are obtained by differentiating N. A vector m
is defined:

1
m=]|1|, (3.33)
0
such that
c=0'+mu, (3.34)
and
v=mTe. (3.35)
Substituting into (3.27) we have
8T [NTmTB d (vol) d@) g [ETkE}y,, d (vol) b
14 Code 14 Tw
=pT J; NT‘U,, d (area) (3.36)

where k is a permeability matrix:

ke 0
0 k|

The virtual pore pressure can be cancelled from this equation, and making the
substitutions

_ [pTor
L= fV BTmN d (vol) and & = fV E"KE/vy, d (vol)

we obtain

L7 4@

—®b= | NI
dr LN v, d(area).

118 Analysis of Consolidation using Finite Elements [Ch.3

This is a first-order differential equation which we integrate with respect to time,
from time ¢ to time ¢ + Ar:

t+ AL d(a t+At
f LT—th—d)f bdt
t dt t

t+AL —T
= I f N*v, d (area) dt. (3.37)
t N

In performing this integration we make the approximation

1+A

J,

where b, = b(z) and b, = b(¢ + Ar). The value of § defines the way that b varies
during the time interval; for example, § = + corresponds to a linear variation
and the trapezoidal integration rule.

A similar approximation is made for the integration of vy, and after
substitution (3.37) becomes

!
bdr={(1—0)b, +0b, Ar}

LT [a] (57 = &{(1—0) b, + 0 by} Ar
_ fNT (1 —6)v,, +6v,,) At d (area). (3.38)

Booker and Small (1975) consider the stability of integration schemes using
different values of 6 and show that for stability, § > 5. We have adopted a value
of 8 = 1. Making that substitution in (3.38), and defining Aa = a(r + Ar) — a(r)
and Ab =b, —b,, we arrive at

LTAa—® Ar- Ab=® Ar - b,

+ | NTop; Ard (area). (3.39)
S

Now we turn to the equilibrium equations. Rather than start from the
differential form we make direct use of the incremental form of virtual work:

[£7 a0 d (vol) = [4T a7 d (area) + [&T aw d (vo). (3.40)

Previously we have used the virtual work principle for total stresses. That the
incremental form is valid follows from the principle of superposition for linear
elastic systems. In fact the incremental form is also valid for non-linear systems,
as can be shown by writing the equations in terms of total stresses and sub-
tracting. Now:

Ao = Ac' + m Au,
and therefore (noting that Au = Au)
Ac = Ag' +m Au.

e s s e

SSald
AR

R

i

b
ar

et

\l
A1

Sec. 3.6] Finite Elements for Consolidation Analysis 119

Using this relation, and making the usual finite element substitutions:

Ae = B Aa,
* *
d=Na,

Au =N Ab,

we obtain

al f BTDB d (vol) Aa + ;Tf (BTmN) d (vol) . Ab
[

! T
=a N* . At d (area). 3.41
J; () ()

a¥ can be cancelled, and using the notation already established:

K Aa+L Ab = fs NT Ar d (area) (3.42)

where
K= [[BTDB] d (vol).

Equations (3.39) and (3.42) can be used to establish a solution at time ¢ + Ar
from the solution at time ¢, Thus the solution can be ‘marched forward’ in time
from ¢ = 0. In summarising, the equations can be written:

K L Aa B Ar, 34
LT —ear| [ab| |an | (3.43)

It is normal to refer to the square matrix in (3.43) as a stiffness matrix, even
though it multiplies a vector of mixed displacement and pore pressure variables,
The first equation in (3.43) represents approximate satisfaction of the
equilibrium equations and the second equation approximate satisfaction of the
continuity equation. The right-hand-side term Ar; consists of the normal finite
element incremental load terms. The right-hand-side term Ar, consists of a load
term corresponding to a prescribed seepage on the boundary:

f Nvy,, d (area)
N
and an additional term (At . b,) which is calculated as the solution proceeds.

3.6.2 A finite element program for consolidation analysis

This section shows how the matrix equations derived in the previous section are
implemented in a computer program. We call this program ‘TINY’. The name is
appropriate because the program has been set up to solve problems with a
maximum of six elements. Of course, it would not be difficult to lift this
restriction by making some.modifications to the program. The program performs

120 Analysis of Consolidation using Finite Elements {Ch.3 Sec. 3.6] Finite Elements for Consolidation Analysis 121
a one-dimensional consolidation analysis using the element shown in Fig. 3.18. lﬁgi; mﬂf }?
The basic displacement element is the three-noded one in section 3,5b.5, here READ(LS, 100) TITLE MAIN 12
. U] isa tine 100 FORMAT(A) MAIN 13
supplemented by a linear variation in excess pore pressure Here is a ‘subrou
PP > 4 ing th der in which the various subroutines are WRITE(L6,200) TITLE MAIN 14
hierarchy’ for TINY, showing the or 200 FORMAT (1X,20 (UH¥®%%)/1X A/1X,20 (4H#*%%)) MAIN 15
ir relation to one another: CALL ELDATA MAIN 16
called and their rela - READ(LS,*) NOINCB MAIN 17
—— ELDATA WRITE(L6,201) NOINCB MAIN 18
201 FORMAT(30H NUMBER OF INCREMENT BLOCKS = ,I5) MAIN 19
__ INCDAT CALL ZEROR1(DISPA,20) MAIN 20
SHAPE CALL ZEROR3(VARINT,2,2,6) MAIN 21
. ASSMBL —— LSTIFF —— DO 80 INCB=1,NOINCB MAIN 22
MAIN — | FORMBE WRITE(L6,202) INCB MAIN 2
L— FIXBC 202 FORMAT (1X,20(4H====)/16H INCREMENT BLOCK,IS/1X,20(4H=z=2)) MAIN 2.
CALL INCDAT MAIN 25
SOLVE DO 70 I=1,NINC MAIN 26
SHAPE INC=I MAIN 27
UPOUT — WRITE (L6,203) INC MAIN 28
—— FORMBE 203 FORMAT (1X, 20 (4H++++)/10H INCREMENT,I5/1X,20 (4H++++)) MAIN 29
CALL ASSMBL MAIN 30
CALL FIXBC MAIN 31
T CALL SOLVE MAIN 32
: CALL UPOUT MAIN 33
O Displacement node 70 CONTINUE MAIN 3k
80 CONTINUE MAIN 35
node SToP MAIN 36
> Pore pressure no END MAIN 37
{ '
MAIN 1215 : read and write title for analysis.
MAIN 16 : subroutine ELDATA reads the element properties (geometry and
material).
MAIN 1719 : no. of increment blocks.
L MAIN 20 : initialise cumulative displacement/excess pore pressure array.
) MAIN 21 : initialise stresses at integration points,
Fig. 3.18 — Finite element used by TINY for one-dimensional consolidation MAIN 22 loop on all increment blocks.
The overall sequence of operations performed by the program is the same as for MAIN 25 :read no. of increments and the time steps for each increment in
the ‘springs’ program described earlier. However, routines ASSMBL, FIXBC, the increment block.' ' . .
SOLVE and UPOUT are now in a loop and are executed for every time step or MAIN 30 : calculate element stiffness matrix and assemble into global stiff
increment of the analysis. Routine ASSMBL assembles the global ‘stiffnesf .ness matrix. -
matrices using the 5 X 5 element matrices. The main controlling routine is MAIN 31 : apply boundary condl?lons.
bel d is followed by cross-referenced explanations, a style we shall use for MAIN 32 : solve for unknowns (displacement/excess pore pressure).
© 0“;1’ an tines: MAIN 33 : print out results,
all other routines: MAIN 34 : end of increment loop.
MAIN 35 : end of increment block loop.
Routine MAIN
vaIN 1 Routine ELDATA reads the user’s data describing the element properties. The
CHARACTE“;?? gig—f W(2).LIN (D) MAIN 2 program assumes that the elements are in order, starting from the top (or
D , , . .
gg::gﬂ GAMMAW, H(6),YM(6),POISS(6), PERM (6),DTIME(40) :ﬁi: 2 bottom) of the layer and numbers the nodes accordingly. Nodes at the mid-
COMMON SHFND(%;.)DSDgg;.gg}zgsg(f;i?fg(ﬁzigs(ggzééﬁgf(*gs)"(2) VAN S points of elements have only one (displacement) degree of freedom (d.o.f.),
gg::g: 2;%;6?20):R,{szé)'DIgPA'(ZO)'{,ARiNT(g,2,6)',Bc(u),x1.BTIME MAIN 6 while nodes at the ends of elements have two d.o.f. (displacement plus excess
COMMON NCONN(3,6),NW(13),IBC(4),NINC, NDF, NEL,NG, INC, NE :ﬁ: g pore pressure). The position of a d.o.f. in the vector RHS (which initially holds
COMMON L5,L6 MAIN 9 the load terms, and after solution the nodal incremental displacements and

L5=5

|

122 Analysis of Consolidation using Finite Elements {Ch.3

incremental excess pore pressures) is called the global variable number (gvn).
The displacement d.o.f. at node 1 has a g.v.n. of 1; the pressure d.o.f. atlnode 1
has a g.v.n. of 2; the displacement d.of. at node 2 has a g.v.n. of 3; the displace-
ment d.o.f. at node 3 has a gv.n. of 4; the excess pore pressure d.o.f. at node 3
has a g.v.n. of §; the displacement d.o.f. at node 4 has a g.v.n. of 6;and so on.
Array NW is set up so that NW(1) gives the first g.v.n. associated with node 1.

Subroutine ELDATA
]
SUBROUTINE ELDATA 2y L18(3) Etg; !
COMMON /DAT/ GP(2),W(2),)
COMMON GAMMAW,H (6),YM(6),POISS(6),PERM(6),DTIME(40) Etg 3
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP (2),CARDSP (2) fLoT
CoMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) ELOT 9
COMMON ST(20,20),RHS(20),DISPA(ZO),VARINT(Z,2.6),BC(H),XI,BTIME ELoT ¢
COMMON NCONN(3,6),NW(13),IBC(4), NINC, NDF, NEL, NG, INC, NE ELoT 7
COMMON L5, L6 et 8
READ(LS,*) GAMMAW et 2
WRITE(L6,200) GAMMAW ELDT 10
200 FORMAT (10H GAMMAW = ,E15.5) eLor 1
READ (LS, ¥) NEL) ELDT 12
WRITE(L6,201) NEL ELDT 13
201 FORMAT(22H NUMBER OF ELEMENTS = ,I5) ELOT 1%
DO 10 N=1,NEL
READ(L5,®) H(N),YM(N),POISS(N), PERM(N) E;IL?; 1$
WRITE(L6,202) N,H(N),YM(N),POISS(N),PERM(N) ELDT 17
202 FORMAT (1X,I5,4E15.5) e
10 CONTINUE ELT e
5;1(1) 1 ELDT 21
: ELDT 22
DO 20 N=1,NEL eLor 22
NCONN (1, N)=2%N=1 EL>T 23
NCONN (2, N)=2¥N+1 fLot 2
NCONN(3,N)=2%N eor 2
NW(I+1)=NW(I)+2 ELDT 28
2 r;wgze):nw(lum ELoT 21
DFe ELDT 29
NDF =2+3*NEL ELot 2
]:;EEURN ELDT 31

ELDT 9—I1 : read and write unit weight of water.

ELDT 12—14 : read and write no. of elements (<6). . '

ELDT 15-19 : read height (or thickness), Young’s modulus and Poisson’s ratio
and permeability.

ELDT 22 : loop on all elements. '

ELDT 23-25 : set up element—nodal connectivity list (list of nodes connected
to each element).

ELDT 26—27 : set up g.v.n. for the first variable of each node.

ELDT 29 total no. of d.o.f. (variables).

Routine INCDAT reads the data describing the loads etc. associated with each
analysis increment. For ease of data preparation, increments are grouped
together into increment blocks.

5

Sec. 3.6] Finite Elements for Consolidation Analysis 123

Subroutine INCDAT

SUBROUTINE INCDAT

INCD 1
COMMON /DAT/ GP(2),W(2),LIN(3) INCD 2
COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME (40) INGD 3
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP (2) IND 4
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),URXS(2),ERHS(5) IND 5
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME INCD 6
COMMON NCONN(3,6),NW(13), IBC(4),NINC, NDF,NEL,NG, INC, NE INCD 7
COMMON L5, L6 INCD 8
READ(L5, %) NINC INCD 9
WRITE(L6,200) NINC INCD 10
200 FORMAT(38H NUMBER OF INCREMENTS IN THIS BLOCK = ,I5) INCD 11
READ(LS,*) (DTIME(I),I=1,NINC) INCD 12
WRITE(L6,201) (DTIME(I),I=1,NINC) INCD 13
201 FORMAT (16H TIME INCREMENTS/(1X,8E15.5)) INCD 14
BTIME=0.0 INCD 15

DO 10 N=1,NINC INCD 16

10 BTIME=BTIME+DTIME (N) INCD 17
WRITE(L6,203) BTIME INCD 18
203 FORMAT(33H TOTAL TIME FOR INCREMENT BLOCK =,E15.5) INCD 19
READ(LS, *) IBC,BC INCD 20
WRITE (L6,202) IBC,BC INCD 21
202 FORMAT(20H BOUNDARY CONDITIONS/1X,I7,3I15/1X,4E15.5) INCD 22
RETURN INCD 23
END INCD 24

INCD 19—11 : read and write no. of increments in the increment block (<40).

INCD 1214 : read and write the time steps for each increment.

INCD 16-17 : calculate the total time step for increment block.

INCD 2022 : read prescribed boundary conditions and fixity codes for first
and last nodes.

Routine ASSMBL calls LSTIFF which calculates the ‘stiffness’ matrix for
each element and assembles it into the global matrix. It uses the array NW to
decide where to put the stiffness terms (NW = Node Where) in the global matrix,
Array LIN(3) contains the number of d.o.f. associated with each element node
(2,2, 1), and so helps ASSMBL to decide how many rows/columns to slot in.
(LIN = eLement INformation, a mini version of the LINFO array in CRISP.)
The ‘element right-hand-side’ terms (ERHS) are slotted in too.

Subroutine ASSMBL
SUBROUTINE ASSMBL ASML 1
COMMON /DAT/ GP(2),W(2),LIN(3) ASML 2
COMMON GAMMAW ,H(6),YM(6),POISS(6),PERM(6),DTIME(40) ASML 3
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) ASML 4
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) ASML 5
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME ASML 6
COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF,NEL,NG,INC,NE ASML 7
COMMON L5,L6 ASML 8
CALL ZEROR2(ST,20,20) ASML 9
CALL ZEROR1(RHS,20) ASML 10
DO 60 N=1,NEL ASML 11
NE=N ASML 12
CALL LSTIFF ASML 13

i ?_
i . L 14
! 124 Analysis of Consolidation using Finite Elements [Ch.3 ‘ 1 Sec. 3.6] Finite Elements for Consolidation Analysis 125
1
Ll
E : .
{ @ i
t _ y L . . Ly
i 5 ﬁgui’fnéééﬁx . ﬁg:t :5 : terms of fb are’stored in a separaFe matrix FI which is used to produce the pore
§ INSLINCI) ASML 10 pressure ‘loads’ from the marching process (PA?. b,). Routines SHAPE and
! i i IK =NW (NODI) =1 ASML 17 ; FORMBE are used to caiculate the terms of the N, N, B and E matrices at each
] IL=2%(I-1) ASML 18 i integrati i
i 50 50 II=1,IN ASHL 19 (s integration point.
1L IK=1Ka1 ASML 20 i
i IL=IL+1 ASML 2 1 .
£ b0 48 J=1,3 ASML 22 1 Subroutine LSTIFF
¢ £l NODJ=NCONN (J, NE) ASML 23 § 0k
B IN=LIN(J) ASML 24 g1 SUBROUTINE LSTIFF ST 1
1 JK=NW(NODJ) =1 ASML 25 1 COMMON /DAT/ GP(2),W(2),LIN(3) LSTF 2
i JL=2%(J=1) ASML 26 COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6), DTIME (40) LSTF 3
I DO 48 JJ=1,JN ASML 27 ; COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) LSTF 4
i | JK=JK+1 ASML 28 { i COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS (5) LSTF 5
| JL=JL+1 ASML 29 b, COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME LSTF 6
48 ST(IK,JK)=ST(IK,JK)+ES(IL,JL) ASML 30 §=a COMMON NCONN(3,6),NW(13),IBC(4),NINC,NDF, NEL, NG, INC, NE LSTF 7
50 RHS (IK)=RHS (IK)+ERHS(IL) ASML 31 j COMMON L5, L6 LSTF 8
60 CONTINUE ASML 32 4 CALL ZEROR2(ES,5,5) LSTF 9
1 RETURN ASML 33 v X CALL ZEROR2(FIX,2,2) LSTF 10
’ END ASML 34 U CALL ZEROR1(ERHS,5) LSTE 11
; : DO 40 IG=1,NG LSTF 12
8 XI=GP(IG) LSTF 13
ASML 9 : initialise global stiffness matrix. i ziii(ég;;x;(m)/z.o LSTF 14
ASML 10 : initialise RHS load vector. %’ CALL FORMBE ll:gg :2
| ASML 11 : loop on all elements. DO 18 J=1,3 LSTF 17
r i ASML 13 ; calculate element stiffness matrix. 5! 181DB£;EE)YM(NE)'(1.0—POISS(NE))/((1.0-2.0*POISS(NE)) *(1.0+POISS(NE)))LSTF 18
i ASML 14 : slot element stiffness matrix in global matrix (loop on all rows). 1k DO 20 J=1,3 tgg ;g
. . 4 5 DO 20 I=1,3 LSTF 21
b} ASML 15 : node no. ¥ 20 ES(2*I-1,2%J-1)=ES(2*I-1,2%J~1)+WF *B(I)*DB(J) LSTF 52
;: ASML 16 : no. of d.o.f. of node. § o DO 22 I=1,3 LSTF 23
i ASML 17 : global variable number of first d.o.f. of node (= IK + 1). § 05 bo 22 J=1,2 LSTF 24
: ¢ - . - § ES(2%I-1,2%J)=ES(2%I=1,2%]) +WF *B (1) *SHFNP (J) LSTF 25
i ASML 18 : index of the first variable of node (= IL + 1). a B 22 ES(2%J,2%I-1)=ES(2%1-1,2%J) LSTF 26
d ASML 19 : loop on all variables of node. : gg 23 5=:§ LSTF 27
. ; } = =1, LS
i ASML 20 : global variable number. fie 24 FI(X,J)=FI(I,d)+E(I)*E(J)*PERM (NE) *WE /GAMMAW Lsg 53
I 3! ASML 21 : local variable number. t = 40 CONTINUE LSTF 30
e ASML 22 : loop on all columns. d Do 50 1=1,2 LSTF 31
L3l R DO 50 J=1,2 LSTF 32
¢l ASML 23 : node no. 3 50 ES(2%I,2%J)=-DTIME (INC)¥FI(I,J) LSTF 33
&3 ASML 24 : no. of d.o.f. of node. é"_,: ﬁSNggNﬁI’ﬁE) LSTF 34
b i ASML 25 : global variable number of first d.o.f, of node (= JK + 1). i; K=NW(N) o1 ,E§§§ ;2
; ASML 26 : index of the first variable of node (= JL + 1). 1% 54 ggxgélif?lz““‘) LSTF 37
‘ ASML 27 : loop on all variables of node. i DO 58 Ja1.2 11:2]1:1; gz
: ASML 28 : global variable number. ; 58 fg!(i:éZ;é):[;:RHS(_Z'I)*FI(I,J)'UAXS(J)'DTIME(INC) LSTF 40
; . . 3 .NE.1) GOTO 70 LSTF 41
! ASML 29 : local variable n.umber. o _ §id IF(IBC(1).EQ.0) ERHS(1)=BC(1)*DTIME (INC)/BTIME LSTF 42
I ASML 30 : slot element stiffness matrix into global matrix. v IF (IBC(3).EQ.0) ERHS(2)=ERHS(2)-DTIME (INC)*BC(3)/GAMMAW LSTF 43
b !) . i 70 IF(NE.NE.NEL) RETURN LSTF 4%
b ASML 31 : assemble element RHS terms into global RHS (load) array. 1 IF (IBC(2).EQ.0) ERHS(3)=—BC (2)*DTIME (INC)/BTIME LSTF 45
B ASML 32 : end of element loop. 5% IF (IBC(4).EQ.0) ERHS(4)=ERHS(4)-DTIME (INC)*BC(4)/GAMMAW LSTF 46
i & RETURN LSTF 47
B . . o END LSTF 48
iti i Routine LSTIFF calculates the element ‘stiffness’ matrix for element NE. B
f The loop from statement 12 to statement 30 calculates the component parts of z
E the stiffness matrix using two-point Gaussian numerical integration. The terms g LSTF 9-11 : initialise element stiffness matrix, flow matrix and element load
il of the various matrix products are calculated NG times (NG = no. of Gauss £ array.
’ | points = 2) and are summed. The K and LT terms go straight into ES, but the ‘f 0 LSTF 12 : loop on all integration points.
i 335
il L
B i

SE—L

|

126

LSTF 13
LSTF 14
LSTF 15

LSTF 16
LSTF 17-19

LSTF 2022 :
LSTF 2326 :
: calculate flow matrix ®.

: end of integration point loop.
LSTF 31-33:
LSTF 34-37 :

LSTF 27-29
LSTF 30

LSTF 3840 :
 skip if not first element.

: add loads proportional to the time step for this increment.
: add flow term to the RHS.

: skip if not last element.}

: add loads proportional to the time step for this increment.
: add flow term to RHS.

LSTF 41
LSTF 42
LSTF 43
LSTF 44
LSTF 45
LSTF 46

Analysis of Consolidation using Finite Elements [Ch.3

: local co-ordinate of integration point.
: weighting factor X Jacobian,
: calculate shape functions and derivatives for displacement and

€XCess pore pressures.

: form B and E matrices.
: calculate DB matrix.

calculate displacement part of stiffness matrix,_BTDB.
calculate link matrix.

multiply € by time step.

current excess pore pressure (value at the end of previous
increment).

calculate RHS pore pressure terms.

Routine SHAPE calculates the shape functions and their derivatives (with
respect to both local and ‘Cartesian’ axes) for displacements and excess pore
pressures at the point with local co-ordinate £(XI) within an element.

Subroutine SHAPE
SUBROUTINE SHAPE SHAP 1
COMMON /DAT/ GP(2),W(2),LIN(3) SHAP 2
COMMON GAMMAW ,H(6),YM(6),POISS(6),PERM(6),DTIME (40) SHAP 3
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) SHAP 4
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) SHAP 5
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI ,BTIME SHAP 6
COMMON NCOMNN(3,6),Nw(13),IBC(4),NINC, NDF, NEL,NG, INC, NE SHAP 7
COMMON LS, L6 SHAP 8
SHEND(1)=XI¥*(XI-1.0)/2.0 SHAP 9
SHFND(2)=XI*(XI+1.0)/2.0 SHAP 10
SHEND(3)=1.0-XI*XI SHAP 11
DSD(1)=XI-0.5 SHAP 12
DSD(2)=XI+0.5 SHAP 13
DSD(3)=-2.0%XI SHAP 14
CARDSD (1)=DSD(1)*2,0/H(NE) SHAP 15
CARDSD (2)=DSD(2)%2.0/H(NE) SHAP 16
CARDSD(3)=DSD(3)#2.0/H(NE) SHAP 17
SHFNP (1)=(1.0-XI)/2.0 SHAP 18
SHFNP(2)=(1.0+X1)/2.0 SHAP 19
DSP(1)=-0.5 SHAP 20
DSP(2)=0.5 SHAP 21
CARDSP(1)=DSP(1)#*2,0/H(NE) SHAP 22
CARDSP(2)=DSP(2)#2.0/H(NE) SHAP 23
RETURN SHAP 24
END SHAP 25

1t The boundary conditions are applied only to the first and last nodes.

Sy e S ey 8.

e R ol R R P P

B i S s S ———— T EEEE————.

Sec. 3.6] Finite Elements for Consolidation Analysis 127

SHAP 9-11 : calculate displacement shape functions.

SHAP 12—14 : calculate local derivatives of displacement shape functions

SHAP 1517 : calculate Cartesian derivatives of displacement shape funct'ions

SHAP 18-19 : calculate excess pore pressure shape functions. .

SHAP 20-21 : calculate local derivatives of excess pore pressure shape functions

SHAP 22-23 : calculate Cartesian derivatives of exess pore pressure shape.
functions,

Routine FORMBE computes values for the B and £ matrices using the
values just calculated by SHAPE. ,

Subroutine FORMBE

SUBROUTINE FORMBE FRI
COMMON /DAT/ GP(Z),W(Z),LIN(3) FR:S ;
COMMON GAHMAW,H(G),YH(G),POISS(6),PERH(6) DTIME (4

0) F
COMMON SHFND(3),DSD(B),CARDSD(B),SHFNP(Z):DSP(Z),CARDSP(Z) ngg 3
COMMON B(3).5(2),DB(3).ES(5,5),FI(2,2),UAXS(2),ERHS(5) FRMB 5
gg::g: :géﬁﬁzgog,)ﬁﬂs(m),DISPA(ZO),VARINT(2,2,6),BC(H) XI,BTIME FRMB 6

NW(13),IBC(4),NINC, NDF, NEL !
COMMON L5,L6 T ! ’ PNGLING, NE E:HB .
B(1)==~CARDSD(1) v ;
B(Z):—CARDSD(Z) ;"RMB ;
B(3)=-CARDSD(3) RMB ot
E(1)=CARDSP(1) FiMn 19
E(2)=CARDSP(2) FRD 15
RETORN Fue 13
END
FRMB 15

FRMB 9-11 : calculate B matrix.
FRMB 12—13 : calculate £ matrix.

R9utine FIXBC ‘fixes’ the values of variables corresponding to the boundary
conditions on the top and bottom of the layer.

Subroutine FIXBC
SUBROUTINE FIXBC FXBC 1
COMMON /DAT/ GP(2),W(2),LIN(3) FXBC 2
COMMON GAMMAW ,H(6),YM(6),POISS(6),PERM(6), DT IME (40) FXBC 3
COMMON SHFND(3),DSD(3),CARDSD (3),SHFNP(2),DSP (2), CARDSP (2) FXBC 4
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2), ERHS (5) FXBC 5
COMMON ST(20,20),RHS(20), DISPA(20), VARINT(2,2,6),BC (4),XI , BTIME FXBC 6
ggs:gs E(SIONg(B,6),NH(13),IBC(L&),NINC.NDF.NEL,NG,INC,NE ' FXBC 7
L
,

DO 20 I=1,4 fae 5
IF(IBC(I).EQ.0) GOTO 20 g;((gg 19
IF(I.EQ.1) N=1 FXBC :
IF(I.EQ.2) N=NDF-1 FXBC :l
IF(I.EQ.3) N=2 FXBC :
IF (I.EQ.Y4) N=NDF FXBC 11134
IF(IBC(I).NE. 1) GOTO 10 FXBC 1
ST(N,N)=ST(N,N)+1.0E18 FXBC 12
RHS (N)=RHS (N)+1,0E18 ¥BC (1) ¥DTIME (INC)/BTIME FXBC
GOTO 20 FXBC ;Z

arpemmim s ams aLs -

b T A

128 Analysis of Consolidation using Finite Elements

10 IF(IBC(I).NE.2) GOTO 18
ST(N.N):ST(N,N)+1.0E18
RHS(N)=RHS (N)+1 LOE18%(BC (1)-DISPA(N))
IBC(I)=1
BC(I)=0.0
GOTO 20

18 WRITE(L6,200) I,IBC(I)

200 FORMAT(32H ILLEGAL BOUNDARY CONDITION CODE, 215)

STOP

CONTINUE

RETURN

END

2

o

FXBC 9 :loop on all
conditions.

FXBC 10 : skip if variable is not prescribed (indicated by 0).

FXBC 11—14 : corresponding global variable number.

FXBC 15 : skip if the incremental value is not prescribed.

FXBC 16 - add large value to the diagonal term.

FXBC 17 - adjust RHS to yield prescribed value.

A Skt AR B

i
|
|
!
,
|
|
|
i

FXBC 19 - skip if the cumulative value is not prescribed (only applicable to
excess pore pressure).

FXBC 20 - add large number to diagonal term (the pivot).

FXBC 21 : adjust RHS to yield prescribed value.

FXBC 25 . inadmissible boundary condition code.

Routine SOLVE solves the global matrix equations using
elimination.

Subroutine SOLVE

SUBROUTINE SOLVE

COMMON /DAT/ GP(2),W(2),LIN(3)

COMMON GAMMAW ,H(6),YM(6),POISS(6),PERM(6),DTIME(H0)
COMMON SHEND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2)
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5)
COMMON ST(20,20) ,RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME
COMMON NCONN(3,6), M (13), IBC(#), NINC,NDF, NEL,NG, INC, NE
COMMON L5,L6

NDF 1=NDF -1

DO 30 IQ=1,NDF1

11=1Q+1

DO 26 1=I1,NDF

DO 22 J=IQ,NDF

22 ST(I,d)=ST(I,J)-ST(IQ,I)*ST(1Q,d)/ST(1Q,IQ)

26 RHS(I)=RHS(I)-ST(IQ,I)*RHS(IQ)/ST(IQ,IQ)

30 CONTINUE

RHS (NDF) =RHS (NDF) /ST (NDF , NDF)

DO 60 II=1,NDF1

1Q=NDF-11I

11=1Q+1

DO 58 I=I1,NDF

58 RHS (IQ)=RHS(IQ)-ST(IQ,I)*RHS(I)

60 RHS(IQ)=RHS(IQ)/ST(IQ,IQ)

RETURN

END

[Ch.

FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC
FXBC

Gaussian
sow 1
sow 2
sov 3
SOLV 4
SOV 5
sow 6
SoLV 7
SOLV 8
sSoLv 9
SOV 10
sov 11
SO 12
soLv 13
SOV 14
soLv 15
SOLV 16
SoLV 17
soLv 18
SOLV 19
SOLV 20
soLv 21
SOLV 22
soLv 23
SOLV 24
SOLV 25

3

19

20
21

22
23
24
25
26
27
28
29
30

variables with possible prescribed boundary

Sec. 3.6] Finite Elements for Consolidation Analysis

SOLV 10—16 : Gaussian elimination to reduce global stiffness matrix to

triangular form,

SOLV 18--23 : back-substitution to yield the unknown values. RHS contains the
solved incremental values of displacement/excess pore pressure,

Routine UPOUT updates total displacements and excess pore pressures and
prints out effective stresses and pore pressures at integration points.

Subroutine UPOUT

i
18
{
|
1
:
i
\
|
:
{

SUBROUT INE UPOUT UouT 1
COMMON /DAT/ GP(2),W(2),LIN(3) vout 2
COMMON GAMMAW,H(6),YM(6),POISS(6),PERM(6),DTIME (40) UouT 3
COMMON SHFND(3),DSD(3),CARDSD(3),SHFNP(2),DSP(2),CARDSP(2) UoUT 4
COMMON B(3),E(2),DB(3),ES(5,5),FI(2,2),UAXS(2),ERHS(5) uouT S
COMMON ST(20,20),RHS(20),DISPA(20),VARINT(2,2,6),BC(4),XI,BTIME UOUT 6
COMMON NCONN(3,6),NW(13),IBC(4),NINC, NDF, NEL,NG, INC, NE UouT 7
COMMON L5,L6 uouT 8
DO 10 N=1,NDF uouT 9

10 DISPA(N)=DISPA(N)+RHS(N) UOUT 10
WRITE(L6,200) UouT 11

200 FORMAT(40H DXSPLACEMENTS AND EXCESS PORE PRESSURES/ UouT 12

1 S4H NODE INCREMENTAL VALUES ABSOLUTE VALUES/ UouT 13

2 58H) UOUT 14
NN=1+2*NEL UouT 15

DO 20 N=1,NN UOUT 16
K1=NW(N) UouT 17

IF (2%(N/2).NE.N) WRITE(L6,201) N,RHS(K1),RHS(K1+1), UouT 18

1 DISPA(K1),DISPA(K1+1) UouT 19

IF (2%(N/2).EQ.N) WRITE(L6,202) N,RHS(K1),DISPA(K1) UouUT 20

201 FORMAT (1X,I5,4E13.3) uouT 21
202 FORMAT(1X,I5,E13.3,13X,E13.3) UouUT 22
20 CONTINUE uout 23
WRITE(L6,203) UOUT 24
203 FORMAT (38H EFFECTIVE STRESSES AND PORE PRESSURES/ UoUT 25
1 38H ELEM I.P. EFF STRESS PORE PRESS) UOUT 26
DO 30 N=1,NEL UouT 27
NE=N UOUT 28

DO 30 IG=1,NG UOUT 2¢
XI=GP (IG) UOUT 30
CALL SHAPE uouT 31
CALL FORMBE UOUT 32
N1=NCOMN(1,NE) UOUT 33
N2=NCONN(2,NE) UOUT 34
N3=NCONN (3, NE) UOUT 35
K1=NW(N1) UouT 36
K2=NW(N2) UouT 37
K3=NW(N3) UoUT 38

* VARINT(1,IG,NE)=VARINT(1,IG,NE)+YM(NE)*(1,0-POISS(NE)) UouT 39

1 /((1.0-2.0%POISS(NE))*(1.0+POISS(NE)))*(B(1)¥RHS (K1) UOUT 40

2 +B(2)*RHS(K2)+B(3)*RHS(K3)) : UOUT 41
VARINT(2,1IG,NE)=VARINT(2,IG,NE)+SHFNP (1) *RHS (K1+1)+SHENP(2) UoUT 42

1 ¥RHS (K2+1) UOUT 43
WRITE(L6,204) NE,IG,VARINT(1,IG,NE),VARINT(2,IG,NE) UOUT 44
204 FORMAT(1X,215,2E13.3) UOUT 45
30 CONTINUE UOUT 46
RETURN UOUT 47
END UOUT 48

e

sras

ESwecree—erravmoTE

130 Analysis of Consolidation using Finite Elements [Ch.3

UOUT 9-10 : calculate cumulative values of displacement/excess pore pressure.

UOUT 16-23 : print out incremental and cumulative values of displacements/
excess pore pressures.

UOUT 27 : loop on all elements to print effective stress and pore pressures
at integration points.

UOouT 28 : NE — element no.

UOUT 29 : loop on all integration points.

UOUT 30 - local co-ordinate of integration point.

UOUT 31 : calculate shape functions and derivatives.

UOUT 32 : calculate B and E matrices.

UOUT 33-35 : nodes of element.

UOQUT 36—38 : g.v.n. of first variable of all nodes.

UOUT 39—41 : calculate incremental effective stress.

UOUT 42—43 : calculate incremental excess pore pressure.

UOUT 44 : print out stresses.

UOUT 46 : end of integration point and element loop.

These three subroutines zero real arrays with one, two and three subscripts

respectively.

Subroutine ZERO
SUBROUTINE ZEROR1(A,N) ZERO 1
DIMENSION A(N) ZERO 2
DO 10 I=1,N ZERO 3

10 A(1)=0.0 ZERO 4
RETURN ZERO 5
END ZERO 6
SUBROUTINE ZEROR2(A,M,N) ZERO 7
DIMENSION A(M,N) ZERO 8
DO 10 J=1,N ZERO 9
DO 10 I=1,M ZERO 10

10 A(I,J)=0.0 ZERO 11
RETURN ZERO 12
END ZERO 13
SUBROUTINE ZEROR3(A,L,M,N) ZERO 14
DIMENSION A(L,M,N) ZERO 15
DO 10 K=1,N ZERO 16
DO 10 J=1,M ZERO 17
DO 10 I=1,L ZERO 18

10 A(I,J,K)=0.0 ZERO 19
RETURN : ZERO 20
END ZERO 21

ZERO 3—4 :zeroaone-dimensional REAL array.

ZERO 9-11 : zero a two-dimensional REAL array.

ZERO 16—19 : zero a three-dimensional REAL array.

The BLOCK DATA subprogram initialises integration point co-ordinates and

weights. It also initialises the element information vector LIN.

e s e A e R

IRy

Sec. 3.6] Finite Elements for Consolidation Analysis
BLOCK DATA BDAT -
COMMON /DAT/ GP(2),W(2),LIN(3) BDAT
DATA GP(1),GP(2),W(1),W(2)/-0.57735,.57735,1.0,1.0/ BDAT
DATA LIN(1),LIN(2),LIN(3)/2,2,1/ BDAT
END BDAT

Arrays in common

GP — Gauss point co-ordinates

w — Weights

LIN — Element type data

Hf — Height of elements

yMmf — Young’s modulus

POISSt — Poisson’s ratio

PERM!T — Permeability

SHFND — Displacement shape functions

DSD — Derivatives of shape functions w.r.t. local co-ordinate

CARDSD — Cartesian derivatives of shape functions

SHENP — Pore pressure shape functions

DSP — Local derivatives of excess pore pressures

CARDSP — Cartesian derivatives of excess pore pressure shape functions

B — Strain—displacement matrix

E — E matrix

DB — DXB

ES — Element stiffness matrix

FI — Flow matrix — @

UAXS — Excess pore pressures

ERHS — Element Right-Hand-Side terms

stt — Global stiffness matrix

RHS' — Global RHS

DISPAT — Global displacement/pore pressure array

VARINTT — Stresses at integration points

BC — Boundary conditions

NCONN' — Element—nodal connectivity

Nwt — Global variable number of first d.o.f. of each node

IBC — Code for boundary conditions

Variables in common

NINC — Number of increments
NDF — Total number of d.o.f. (variables)
NEL — Number of elements

NG — Number of integration points
INC — Current increment
NE — Current element

T These arrays have been set up for a maximum of 6 elements.

131

VI Ew N -

S\

132 Analysis of Consolidation using Finite Elements [Ch.3

GAMMAW — Unit weight of water
XI — Local co-ordinate
BTIME — Total time step for increment block

3.6.3 Input specification for TINY

Data record Contents No. of records

A TITLE 1

B GAMMAW 1

C NEL 1

D H YM POISS PERM NEL

E NOINCB 1

F NINC NOINCB

G DTIME(1) ... DTIME (NINC) NOINCB

H IBC(1)...IBC(4) BC(1)...BC(4) NOINCB

where

TITLE — Title for analysis

GAMMAW — Unit weight of water

NEL — Number of elements

H — Height of element

YM — Young’s modulus

POISS — Poisson’s ratio

PERM — Permeability

NOINCB — Number of increment blocks

NINC — Number of increments in increment block

DTIME(I) — Time step for Ith increment in block

IBC(1) — 0 — Displacement d.o.f. at node 1 has applied stress boundary
condition = BC(1) (compression +ve)

] — Displacement d.o.f. at node 1 is prescribed with incremental
value equal to BC(1) (applied at constant rate over time of
increment block)

2 — Displacement d.o.f. at node 1 is prescribed to have an abso-
Jute value of BC(1) during the first increment of block and
then kept steady at this value

IBC(2) — Boundary condition for displacement d.o.f. at last node (same
conventions as above)
IBC(3) — 0 — Excess pore pressure d.o.f. at node 1 has prescribed artificial

seepage velocity of BC(3) (flow in +ve)

1 — Excess pore pressure d.o.f. at node 1 is prescribed with
incremental value equal to BC(3) (applied at constant rate
over time of increment block)

Sec. 3.6] Finite Elements for Consolidation Analysis 133

2 — Excess pore pressure d.o.f. at node 1 is prescribed to have an
absolute value of BC(3) during the first increment of block
and is then kept steady at this value

IBC(4) — Boundary condition for excess pore pressure d.o.f. at last node

(same conventions as above)

In the examples that follow, node 1 is considered to be at the top of the layer,
and the last node at the bottom (however, the program is oblivious to this
difference, and would produce identical results if the opposite convention were
used).

3.6.4 Consolidation analyses

This section illustrates the use of the TINY program in section 3.6.2, and
explains why the choice of time steps for analyses can require some care. The
program is used in analysing the following two problems:

1. One-dimensional Terzaghi consolidation.
2. Under-drainage.

The first problem is a layer of thickness 20 m subjected to a vertical pressure.
This generates a uniform excess pore pressure throughout the layer. Then
drainage is allowed from both the top and the bottom surfaces. Because of
symmetry, only the upper half is considered in the analysis (see Fig. 3.19). The
mesh is modelled by six elements, with thinner elements adjacent to the top
drainage surface. This is because of the rapid change in pore pressures near this -
boundary. The following material properties are assumed for the layer, which is
isotropic and homogeneous.

O
@
19

TR

Fig. 3.19 — Finite elements to model Terzaghi one-dimensional consolidation

]

Ty E

134 Analysis of Consolidation using Finite Elements [Ch.3

E=1000kPa »=025 k=10"° m/sec.

The applied pressure is 10 kPa. The base of the layer is restrained and
impermeable (corresponding to a pore pressure boundary condition of zero
flow). The first increment block consists of a single increment in which the
vertical pressure of 10 kPa is applied and the base is restrained. This causes a
uniform excess pore pressure of 10 kPa to develop in the layer.

At this stage, two points need clarification: the pore pressure boundary
condition and the selection of time steps in the subsequent increment. For
integration in time, § = 1. Hence the solution is unconditionally stable for any
size of time steps (Booker and Small, 1975). However, this does not necessarily
imply that any size of time step is permissible. For the above example, taking
the unit weight of water is 10 kN/m?3, ¢, = 1.2 X 107" m?/sec. It is possible to
solve the one-dimensional consolidation problem approximately using parabolic
isochrones (Schofield and Wroth, 1968).

Fig. 3.20 illustrates the isochrone moving in from the boundary up to the
point denoted by A. Points below A have not yet experienced any change in
pore pressure due to the draining boundary. It can be shown that the time taken,
t, for this is given by

0
Xzee] /B
A\§\::>
~<:"—--_—
5\\\

Fig.3.20 — Pore pressure distribution after first time step of analysis with short
time step

1=+/(12¢,1), (3.44)

where / is the distance to point A from the boundary. If / is the normal distance
of the first pore pressure node from the boundary then ¢ specifies the minimum
time step that can be specified. This can be explained in a simple manner. The
element chosen allows for a linear variation of pore pressure. If a time step
t; <t is chosen then the drainage would have taken place up to a point (say) B.
An attempt by the analysis to model this situation closely would generate a pore
pressure at A equal to Ag' which is greater than the applied vertical pressure.
In order to compensate for this error, a smaller pore pressure is generated in the
next node. This results in the zigzag distribution, shown in Fig. 3.20. A similar

L

Sec. 3.6] Finite Elements for Consolidation Analysis 135

limit on the minimum time step has been arrived at by others (Pyrah, 1980;
Vermeer and Verrujit, 1981). Substituting the values for the chosen mesh,
£=16.9 X 10°. Based on this, a time step of 10 is chosen for the first increment.
It is quite common to use a log scale for time in the plot of settlement (or degree
of consolidation) against time. As time passes, dissipation takes place at a
reduced rate. It is logical to use progressively larger time steps in the finite
element analysis. The usual practice is to select a fixed number of time steps (say

4 or 5) within a log cycle. The following are examples of such a scheme:

01 | 1225 [10102050 | 100 100 200 500 |
total time 10 100 1000

1 | 1 2 6] 10 20 60| 100 200 600
total time 10 100 1000

For this problem it is also possible to make a simple estimate of the total time
required for the dissipation of the pore pressures. Using the relationship between
degree of consolidation and time factor, the time for 90% consolidation is
calculated to be 0.7 X 10°. Using the above data on the smallest possible time
step and the total time, the following time steps were chosen for the analysis:

l. | 1.LE6 1.E6 2.E6 6.E6 | 1.E7 2.E7 6.E7 | 1.E8 2.E8 6.E8 |

| 1.E9

Now we come to the question of pore pressure boundary conditions. We have
found that the best technique is not to apply both loads and pore pressure
boundary conditions in the same increment. The load was applied in the first
increment. The appropriate pore pressure boundary condition (drainage from
top surface) is then applied in the second increment. In order to fix the absolute
excess pore pressure, a fixity code of 2 is used. There is more discussion of the
use of fixity codes 1 and 2 for excess pore pressures in section 9.2. The input
data for the analysis are as follows:

Record
A ***EXAMPLE 1 *** TERZAGHI 1-D CONSOLIDATION #**
B 10.
-C 6
D 1. 1.E3 0.25 1.E-9
D 1. 1.E3 0.25 1.E9
D 2. 1.E3 025 1.E9
D 2. 1.E3 025 1.E9
D 2. 1.E3 0.25 1.E9
D 2. 1.E3 0.25 1.E9
E 2
F 1
G 1.

e R i

S

P RS A3

P —————

136 Analysis of Consolidation using Finite Elements [Ch.3
H 0100 10. 0. 0. O.
F 11
G 1.E6 1.E6 2.E6 6.E6 1.E7 2.E7 6.E7
G 1.E8 2.E8 6.E8 1.E9
H 0120 0 0. 0 O

Fig. 3.21 shows the computed isochrones compared with the theoretical solution
(based on Fourier series). The comparison is good, bearing in mind the number
of time steps and elements used in the analysis. Fig. 3.22 shows the degree of
consolidation plotted against /Ty. Again the comparison is reasonably good.

. TINY

———— Theory

Increment nos.

Fig.3.21 — Excess pore pressure isochrones for Terzaghi one-dimensional
consolidation
In order to demonstrate the discussion on the time step, a separate analysis
with a lower time step of 10° was carried out, and Fig. 3.23 shows the pore
pressure distribution at the end of that increment.
The input data for the next example are as follows:

Record
A ***EXAMPLE 2 *** UNDER DRAINAGE *#**
B 10.
C 6
D 2. 1.E3 0.25 1.E9
D 2. 1.E3 0.25 1.E9
D 2. 1.E3 0.25 1.E9

s] o S

Sec. 3.6] Finite Elements for Consolidation Analysis 137

20

40

60

80

100

%

Fig.3.22 — Plot of degree .Of consolidation against \/Tv for Terzaghi one-
dimensional consolidation

— — = Time step = 103

Time step = 108

Fig. 3.23 — Comparison of pore pressure distributions for different time steps

138 Analysis of Consolidation using Finite Elements [Ch.3
D 2. 1.E3 0.25 1.E9
D 1. 1.E3 025 1.E9
D 1. 1.E3 0.25 1.E9
E 1
F 11
G 1.E6 1.E6 2.E6 6.E6 1.E7 2E7 6.E7
G 1.E8 2.E8 6E8 1.E9
H

01 1 2 0 0. 0 -10.

In this example, the drainage boundary (with rapidly changing pore pressures) is
at the bottom and elements are thinner towards it. However, both top and
bottom are drainage boundaries. The base of the layer is restrained and is main-
tained at an excess pore pressure of —10 kPa. The top surface is maintained at 0.
The resultant isochrones are plotted and compared against the theoretical
solution in Fig. 3.24. Again the comparison is good. Fig. 3.25 shows the plot
of degree of consolidation against the +/Ty. It is worth mentioning that the plot
of degree of consolidation against /Ty is the same for the dissipation of both
rectangular and triangular pore pressure distributions. In fact it is the same
(Taylor, 1948) for any linear distribution of pore pressure.

Theory

TINY

< Incremerit nos.

Fig. 3.24 — Excess pore pressure isochrones for under-drainage

-
|
3
it
i
|
 §
1
A
<
'

BT RIS

Se

20

40

60:

80

100

c. 3.6] Finite Elements for Consolidation Analysis 139
, 7-\/
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
T T T T T T T
—— Theory
L o TINY
o
o
| o

Fig.3.25 — Plot of degree of consolidation against \/Tv for under-drainage

problem

s e AP - 3 et

Introduction to CRISP

4.1 INTRODUCTION

This chapter introduces CRISP (CRltical State Program). The size of problem
which CRISP can tackle is limited only by the amount of memory and
processing power of the computer concerned. CRISP has been mounted on
many different makes of computer, with only minor modifications. We explain
the programming strategy which has made this possible. Finally we explain the
basic structure of the program and document the main controlling routines.

4.1.1 Summary of facilities

(a) Types of analysis:
Undrained, drained or fully-coupled (Biot) consolidation analysis of two-
dimensional plane strain or axisymmetric (with axisymmetric loading)
solid bodjes.

(b) Soil models:
Anisotropic elasticity, inhomogeneous elasticity (properties varying with
depth), critical state soil models (Cam-clay, modified Cam-clay).

(c) Element types:
Linear strain triangle and cubic strain triangle (with extra pore pressure
degrees of freedom for a consolidation analysis).

Sec. 4.2] CRISP: How it’s done (and why) 141

(d) Non-linear techniques:
- Incremental (tangent stiffness) approach. Options for updating nodal
co-ordinates with progress of analysis. # = 1 for integration in time.

(e) Boundary conditions:
Element sides can be given prescribed incremental values of displacements
or excess pore pressures. Loading applied as nodal loads or pressure
loading on element sides. Automatic calculation of loads simulating
excavation or construction when elements are removed or added.

(f) Miscellaneous:
Stop—restart facility allows analysis to be continued from a previous run.

4.2 CRISP: HOW IT’S DONE (AND WHY)
4.2.1 Element types

The library of elements consists of the triangular elements shown in Fig, 4.1.
The basic element is the six-noded linear strain triangle (LST — element type 2).
This element and the higher-order Cubic Strain Triangle (CuST — element type
6) can be used for drained or undrained analysis. The corresponding elements
for consolidation analyses are element types 3 and 7 respectively. These element
types have additional degrees of freedom (d.o.f.), namely excess pore pressures.
The pore pressure nodes are deployed such that the strains and pore pressures
have the same order of variation across an element.
The higher-order triangular elements have two attractions.

1. Fewer elements are needed for the analysis of most problems, making the
data preparation less arduous. .

2. Under undrained conditions the constraint of no volume change leads to
‘locking’ of finite element meshes when low-order elements are used:
Recent research (Sloan and Randolph, 1982) has shown that these
problems can be avoided by using higher-order elements (at least LST for
plane strain and CuST for axisymmetric plane strain).

On the other hand, there are occasions where the use of a lower-order element
(i.e. LST rather than CuST) can be advantageous: for example, situations where
the mesh has irregular boundaries or contains several zones of soil with different
properties. Indiscriminate use of higher-order elements in these circumstances
can lead to unnecessarily expensive analyses.

Elements of type 2 can be mixed with elements of type 3, and so can type 6
with type 7. This may be useful in carrying out a consolidation analysis where
part of the mesh behaves in a drained manner.

Using the higher-order elements is just as straightforward as the lower-order
ones because the program user only has to specify the co-ordinates of the nodes
at the vertices of triangular elements. Edge and interior nodes are then calculated

=y

T Lo

142 Introduction to CRISP [Ch. 4

1 O d,. dy — displacement unknown]
Ao u — pore pressure unknown

3

(b) LST (consolidation element type 3):

LST (element type 2): 6 nodes, 12 d.o.f.
@ ¢ 6 nodes, 15 d.o.f.

(d) CuST (consolidation element type 7):
22 nodes, 40 d.o.f.

(c) CuST (element type 6):
15 nodes, 30 d.o.f.

Fig. 4.1 — Different types of element

the element has straight sides. However, elements

by interpolation, assuming ('
; : be used if the appropriate side node coordinates are

with curved boundaries can
Spe;ltfleei}ogram has been designed so that new element types can b-e added with
relatively little effort. In particular the incorporation of element‘s like th.e three-
noded bar element or the eight-noded quadrilateral element is not difficult.
These two element types could be mixed with LST elements in a mesh. The only
restriction on different element types being mixed together is that they should
have the same number of nodes along the sides (edges). ‘

In numbering the vertex nodes and the elements in the mesh, gaps in the
numbering are allowed for; this permits the user to alter son.le. part of the mesh
without having to re-number the mesh completely. The additional nodes along
element sides and any inner nodes are assigned numbers by the program.

Sec. 4.2] CRISP: How it’s done (and why) 143

4.2.2 Solution techniques

When describing finite element techniques in Chapter 3, it was assumed that soil
response is linear and elastic. The causes of non-linear response can be identified
as being either geometric non-linearity or material non-linearity. Geometric non-
linearity arises when large deformations of the structure mean that the
equilibrium equations (based on the undeformed geometry) are no longer
sufficiently accurate. Material non-linearity arises when the stress—strain relation
for the material is non-linear (e.g. the Cam-clay relations described in Chapter 2).
In general, non-linearity of a system may be due to geometric non-linearity,
material non-linearity, or both together. Carter (1977; Carter et al., 1977)
examined the importance of non-linear geometric effects in geotechnical
analysis. His general conclusion was that the ‘linear’ assumption of small strains
and small displacements is usually satisfactory in the solution of geotechnical
problems. In the majority of cases the normal infinitesimal strain assumption
leads to an overestimation of deformations compared to the use of finite
deformation theory (and hence is pessimistic). Thus in most geotechnical
analyses, non-linearity arising from material behaviour is of more importance

“than non-linearity from geometrical effects.

The small-displacement, small-strain approach is used throughout in this book
(and in CRISP). Hence we are able to avoid the extra complexity of using the
strain and stress tensors appropriate to large deformations and strains. The
program does, however, contain the option of updating the co-ordinates of nodal
points as the analysis proceeds. In fact this is equivalent to a first approximation
to an updated Lagrangian formulation (see, for example, Cook, 1981,
Chapter 13).

There are a number of techniques for analysing non-linear problems using
finite elements. CRISP uses the incremental or tangent stiffness approach: the
user divides the total load acting into a number of small increments (say 50 or
100 in a typical analysis) and the program applies each of these incremental
loads in turn. During each increment the stiffness properties appropriate for the
current stress levels are used in the calculations. If only a few increments are
used, this method produces a solution which tends to drift away from the true
or exact solution. This means a stiffer response results for a strain-hardening
model and the displacements are always under-predicted. In mathematical
terms we are integrating a differential equation using Euler’s method.

This approach is in contrast to that adopted in the elasto-plastic programs
used in the analysis of mechanical engineering components or steel structures
(see, for example, Owen and Hinton, 1980). In these applications it is usual to
use a larger size of increments (say 10 in a complete analysis) and to correct for
the error described above by performing iterations within each increment until
convergence to the non-linear load—displacement curve is obtained. Experience
with this technique with critical state models has been rather mixed. Some
claim to have applied the technique with no particular difficulty (e.g.
Zienkiewicz et al., 1975; Potts, 1981), but our experience, in common with that

NERE—

B ——

144 Introduction to CRISP [Ch. 4

of Naylor (1975), is that sometimes there can be problems with convergence,
and that sometimes the known (analytical) solution cannot be recovered from
the numerical procedure. Perhaps this is not surprising: in structural mechanics
problems the zone of plastic behaviour is often restricted to a small part of the
structure, whereas in geotechnical problems the zone of plastic deformation
frequently occupies the majority or even the whole mesh.

Clearly there must be some limitation on the maximum increment size when
using an incremental scheme. Some advice on this is included in Chapter 9. The
use of an incremental scheme fits in quite well with the scheme for consolidation
analysis that we have adopted, an incremental time-marching technique with
6 =1, as described in Chapter 3.

4.2.3 Excavation, construction and increment blocks

A finite element program intended for geotechnical analysis should be capable
of analysing problems where soil is excavated or soil structures (e.g. embank-
ments) are constructed. This is not a standard feature found in finite element
programs in other branches of engineering. CRISP allows elements to be
removed to simulate excavation and elements to be added to simulate
construction. The implied loadings for both these cases are automatically
calculated by the program.

When performing a non-linear analysis involving excavation or construction,
the requirement for relatively small applied loads in each increment still applies.
The obvious way of achieving this is the removal or addition of a large number
of layers of ‘thin’ elements. Unfortunately the result is an unacceptable rise in
the solution cost (due to the large number of elements), and possible numerical
conditioning problems associated with elements that have large aspect ratios.
CRISP circumvents this problem by allowing the effect of element removal or
addition to be spread over several increments in an ‘increment block’. An
increment block is just a series of ordinary increments grouped together in the
input data for the program. Element stiffnesses are always added or removed in
the first increment of a block, but the associated loads are distributed over all
the increments in the block. Clearly this procedure introduces an extra degree
of approximation in modelling, but it has been found to be satisfactory in
practice. Increment blocks can also be used for the purpose of distributing
applied boundary loads or prescribed displacements over several increments,
achieving a certain economy in data preparation.

4.2.4 Equilibrium check

The program incorporates an equilibrium check to ensure that equilibrium is
satisfied at the end of each increment. In this equilibrium check the stresses in
the elements currently in the mesh are integrated over the volume to calculate
the equivalent nodal loads and these are then compared with the external
loadings. The difference is then expressed as a percentage of the applied loading,
and is called the error in equilibrium or the out-of-balance load. This form of
equilibrium check is essential in any analysis using iterative methods or the

Sec. 4.2] CRISP: How it’s done (and why) 145

load increments are sufficiently small, there is no stress correction at the end of
each increment. This means that the stresses calculated at the end of each
.increment should be consistent with the applied loading. Hence, in theory, an
initial stress approach. In CRISP, because of the implicit assumption that ,the
equilibrium check is not necessary, but in fact it is useful in giving an indication
of any numerical problems that may arise during the course of an analysis.

4.2.5 Stop—restart facility

Non-linear finite element analysis tends to be a time-consuming business (for
both the computer and the program user). Getting the size of the load
increments right usually involves re-running the program several times and
examining the computer output. So that the user does not have to continually
rerun the analysis from the start each time, a stop—restart facility is provided.
The program can be requested to store analysis results on a permanent magnetic
storage medium (i.e. magnetic disk or magnetic tape) and the computer run can
be restarted.

Two versions of the stop—restart facility are available. In the first, the results
of every increment are saved;in the second, results from the last increment only
are stored. To use the first version one must be able to run a job with two
magnetic tapes or have access to large amounts of disk space (probably more
than 10 megabytes). For the second a more modest amount of disk space will
suffice (say 100 kilobytes).

The stop—restart facility also makes possible the production of graphical
displays of the results. A ‘post-processing’ program is used to read information
from the stop—restart file. Usually this program will use calls to a local graphics
library to produce plots and graphical displays on the devices that the user has
access to. Now that CRISP is being mounted on niany different computers, there
is a tendency to write programs using graphics libraries which are more generally
available, e.g. GINO from the CAD (Computer Aided Design) centre, Madingley
Road, Cambridge.

4.2.6 Frontal solver

CRISP solves the linear simultaneous stiffness equations using the frontal
solution method. In essence this is just Gaussian elimination as encountered in
Chapter 3, but programmed in such a way as to minimise operations on zero
terms and to use minimum computer memory for the stiffness matrix. Our
version is based on the model program by Irons (1970), modified for variable
numbers of degrees of freedom at nodal points. The frontal technique starts
from the observation that in Gaussian elimination one can start eliminating
variables before the global matrix is fully assembled.

We introduced the frontal method into our program because it was the only
way of running reasonably-sized meshes for consolidation analysis on a machine
with a fixed core store limit. Now that virtual store operating systems are wide-
spread, there is an argument that all this complicated programming is not really

£l

146 Introduction to CRISP [Ch. 4

necessary. Perhaps it is not, but you have to be prepared to wait longer for your
results.

4.3 CRISP PORTABILITY AND PROGRAMMING TECHNIQUES

The following two sections explain why CRISP has proved to be such a portable
program, and the technique which allows it to handle problems of an arbitrary
size is described.

4.3.1 Portability

CRISP is written in ANSI (American National Standards Institute) standard
FORTRAN. Because of this the program has been mounted on many different
manufacturers’ computers with relatively little effort. We suspect that most
engineers writing FORTRAN programs have not heard of the standard, and we
therefore set out why it is important.

The FORTRAN programming language was originally developed to run on
the IBM704 computer in the mid-fifties. Its success led to its adoption by other
computer manufacturers, who wrote compilers to translate FORTRAN state-
ments into the machine language of their own computers. Since the original
FORTRAN language contained restrictions owing to the hardware limitations of
the IBM704, there was a natural move to extend the language on the other
computers, thereby offering a more powerful programming language (and a more
saleable product). Unfortunately, the consequence of this was that a FORTRAN
program written for one computer would be unlikely to run on another
computer without some modification.

To overcome these problems, ANSI produced a standard definition of
FORTRAN in 1966. This language is sometimes called FORTRAN IV, but
should more properly be called ANSI (1966) Standard FORTRAN. (FORTRAN
IV is the name of the IBM implementation.) Although computer manufacturers
made sure that their compilers accepted the standardised language, they did not
remove the various extensions. Most engineers engaged in programming would
make use of the manufacturer’s FORTRAN reference manual, and so non-
portable programming practices persisted. This is perhaps understandable,
because FORTRAN 66 still lacked some facilities which make programming
(and using programs) easier.

In 1978, ANSI produced a new standard, FORTRAN 77, and at the time of
writing another new standard, FORTRAN 8X, is under discussion. CRISP
conforms to the 77 standard, and, apart from a couple of exceptions mentioned
below, to the 66 standard too. Indeed, the majority of CRISP even avoids some
FORTRAN 66 constructs which have been known to cause problems on some
computers. In doing this we have followed the advice of Larmouth (1973a,

1973b) and Day (1978). The program has also been passed through the PFORT
verifier (Ryder, 1974). Only those readers who have not had to convert
FORTRAN programs from running on one machine to running on another will
find all our precautions pedantic.

T

o

el

Sec. 4.3] CRISP Probability and Programming Techniques 147

We take advantage of only two features of FORTRAN 77 not present in the
1966 standard. The first is the list-directed READ statement (often referred to
as the free-format READ). The second is the use of CHARACTER variables to
store textual information,

If FORTRAN 77 had been fully supported on the Cambridge University
Computing Service IBM installation before 1984, the reader would probably see
other FORTRAN 77 statements, such as the block IF construction, in our
program. (This certainly makes programs more readable and is a definite advance
on FORTRAN 66.) Readers who intend to modify CRISP for their own
purposes, or who are going to write their own programs, are advised to use a
textbook as their main reference, rather than the manufacturer’s manual. Katzan °
(1978) completely covers the 77 standard, including the syntax diagrams from
the standard. However, its succinct style makes it suitable for experienced
FORTRAN programmers. A text that is more suitable for relatively

inexperienced programmers is Monro (1982). Of course; the really dedicated will
read the standard from ANSI (1978).

4.3.2 Pseudo-dynamic dimensioning

Finite element programs written in FORTRAN make use of REAL and
INTEGER arrays to store the data which they manipulate. Some of these arrays
will always be the same size each time the program is run (for examplé an array
storing an element stiffness matrix). The size of other arrays (for example the
global stiffness matrix) will depend on the data for the current problem.

The simplest approach is to dimension these ‘variable length’ arrays to a size
which appears reasonable. In fact this was done in the TINY program in
Chapter 3, where the arrays were set up to solve a problem with a maximum of
six elements. However, this approach has two drawbacks. Firstly, a user of the
program will inevitably want to run a problem which requires larger arrays,
resulting in a lot of program changes. Secondly, for much of the time a lot of
space in the arrays will be unused.

CRISP uses a technique known as ‘pseudo-dynamic dimensioning’ to avoid
these pitfalls. To understand this technique, a brief account of how FORTRAN
implementations allocate storage for arrays will be useful.

If an array is declared in a subroutine by a statement such as

DIMENSION XYZ (2, 50)

(and the array is not a dummy argument of the subroutine), then 100
contiguous storage locations (associated with the subroutine) are reserved.
Alternatively, an array may be declared as being in a common area of storage
(using the COMMON statement), which is not associated with any particular
subroutine. The TINY program in Chapter 3 used this technique to allow its
various subroutines to access the same arrays. When an array is passed as an
actual argument to another subroutine, it is the address of the first memory

148 Introduction to CRISP [Ch. 4

location that is transferred. An array in a subroutine may be given variable
dimensions, e.g.

DIMENSION XYZ (NDIM, NN)

provided that the array and its dimensions are dummy arguments of the sub-
routine. Thus one improvement over using fixed dimensions in each subroutine
is to have fixed dimensions in the main program, and to pass the arrays to
subroutines as variably dimensioned arrays. Changes to the program now require
amending the main program only. However, the basic disadvantage of having to
continually edit the program and of wasted space still remain.

CRISP overcomes these remaining disadvantages by arranging that all the
variably dimensioned arrays are allocated as part of one long array.

Suppose that the following arrays have to be allocated store:

XYZ (NDIM, NN), NCONN(NTPE, NEL), NQ(NN)

where

XYZ — co-ordinates of nodes

NCONN — list of nodes associated with each element

NQ — no. of d.o.f. of each node

NDIM — no. of spatial dimensions for analysis (2 for 2-D)
NTPE — no. of nodes associated with each element

NN — total no. of nodes in mesh

NEL — total no. of elements in mesh.

The arrays are allocated in the same order as above to a single array G:

G XYZ NCONN NQ

G
| i I |
1 L1 L2 L3
where
Ll = 1+ NDIM * NN
12 =L1+ NTPE * NEL
L3 =12+ NN
and

G(1) is the first storage location of array XYZ
G(L1) is the first storage location of array NCONN
G(L2) is the first storage location of array NQ
G(L3) is the first storage location of next array

(if no futher arrays are present then L3 — 1 serves an index

to the amount of array G which has been used).

Sec. 4.4] CRISP 149

The arrays are passed to a subroutine SUBI as follows:

CALL SUBI (G(1),G(L1),G(L2),........ NDIM,NN ,NTPE, NEL)
In the subroutine the arrays appear as dummy arguments and are dimensioned:
SUBROUTINE SUBI (XYZNCONNNQ, NDIM,NN,NTPE,NEL)

DIMENSION XYZ (NDIM,NN), NCONN(NTPE ,NEL),NQ(NN)

A disadvantage of this technique is the long argument lists that result, as the
indexes for the numerous arrays have to be passed from the main routine to
other routines. Instead of declaring some arrays in the few routines that use
them, they have to be passed through the intermediate routines which do not
require them. This to a certain extent gives a complex look to the program.
However, the benefits more than offset this minor irritation.

CRISP extends this technique to arrays which would appear to have fixed
dimensions (e.g. NDIM in the above example). The aim is to make future
program modifications relatively straightforward.

Some arrays of fixed size are used in the program and usually reside in named
COMMON blocks. Arrays which provide the indexes and numerical integration
data are initialised in a block data routine. Therefore these arrays cannot be
allocated store pseudo-dynamically. This would mean that if new element types
are introduced, the sizes of these arrays have to be altered in all routines which
reference these arrays. The way round this is to allocate sizes which include
some spare space. This means additional element types can be included without
having to change the sizes of these arrays every time.

Other fixed-length arrays are mainly linked with the number of nodes with
fixities and the number of nodes with externally applied loads (the loads in fact
are stored in terms of pressure loads (both normal and shear components)
applied at nodes along element sides). The required space is dependent on the
number of nodes (and element sides) which lie along the mesh boundary. The
sizes of these arrays have been arbitrarily fixed; however, a count is kept of the
number of entries made, and error/warning messages are printed when array sizes
are exceeded and clear messages of what has to be done to remedy the situation
are printed.

4.4. CRISP
4.4.1 CRISP organisation

The relationship between the main controlling routines of CRISP is shown

below: MARKZ

—— (MAXVAL)
MAIN —— MINIT MAST (SHFTIB)
—— CPW

L ANS

P e ———_ s

P S S —

150 Introduction to CRISP [Ch. 4

The MAIN program is the only routine that needs to be changed if a larger
version of CRISP is required. For this reason it is kept as short as possible. Many
users will keep several versions of this routine (e.g. small, medium and large),
and will link in whichever is appropriate for the problem at hand. Routine
MINIT contains machine independent initialisations, e.g. unit numbers for
files. MAST is the main controlling routine, and its main business is pseudo-
dynamic dimensioning.

The rest of the program logically falls into three parts, identified by routines
MARKZ, CPW and ANS, each being called by MAST in turn. (MAXVAL and
SHFTIB shown above for completeness just carry out housekeeping associated
with the dynamic arrays.)

MARKZ is the part of the program that deals with the geometry of the user’s
mesh. MARKZ tries to make the time-consuming business of drawing up (or
modifying) a mesh easier, by allowing gaps in the numbering systems for
elements and nodes, automatically generating midside (and where appropriate
internal) node numbers and co-ordinates. Basically, it is all housekeeping.

CPW is the part of the program that deals with in situ stresses and material
parameters, This is an important part of the problem definition which the user
must attempt to get right, and try to understand the consequences (not every-
thing is independent).

ANS is the part of the program that performs the analysis. ANS reads the
loads and other boundary conditions and applies the principles of mechanics.
Sometimes ANS will seem to produce bizarre results, but this will be because of
the way that the user has set up the problem. Remember that ANS has a strong
preference for stable systems.

4.4.2 The program

Routine MAIN
1
2
3
USE THE FOLLOWING STATEMENT ASTER CONVERTING PROGRAM TO DOUBLE MAIN U
PRECISION. ARRAY G ALWAYS USES ONE NUMERIC STORAGE UNIT MAIN 5
CC REAL G ~. MAIN 6
COMMON /GVAR/ G (55000))] MAIN 7
c > MAIN 8
LG=55000 . MAIN 9
CALL MINIT(G,LG) MAIN 10
STOP MAIN 11
END) MAIN 12

Main 9 : set up size of working array G.

Routine MINIT
SUBROUTINE MINIT(G,LG) MNIT 1
Cllill‘iili‘il*'§iI*il!llIliliillIIl‘lllllllIllilIll'll*.llllll'!illlillMNIT 2
c ROUTINE SETS UP DEVICE NUMBERS AND SOME CONSTANTS MNIT 3
c ALSO SETS UP FILES FOR FORTRAN 77 MNIT 4
ClilllIlIlll!lllliillll'!li!Ili‘lllllllIllllllllliil‘llIllllll!lli!llillMNI‘r 5
C------—USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE MNIT 6

i
H
¥
4
1
]
i
¥
{
|
i

R

Sec. 4.4] CRISP
Commme e PRECISION., ARRAY G ALWAYS USES ONE NUMERIC STORAGE UNIT MNIT
cc REAL G MNIT
DIMENSION G(LG) MNIT
COMMON /DEVICE/ IR1,IRY,IR5,IW2,IW4, W6, IN7, IW8, IW9 MNIT
COMMON /PARS / PYI,ALAR,ASMVL,ZERO MNIT
COMMON /PRECSN/ NP MNIT
c MNIT
cc OPEN(1,FILE='CRISPOLD"',FORM="UNFORMATTED") MNIT
cc OPEN(2,FILE="'CRISPNEW',FORM="UNFORMATTED") MNIT
cc OPEN(5,FILE='CRISPDAT') MNIT
cc OPEN(6,FILE="'CRISPOUT ") MNIT
cc OPEN(8,FILE="PLOTDATA',FORM="UNFORMATTED ') MNIT
cc OPEN(7,FILE="CRISPSOL',FORM = '"UNFORMATTED') MNIT
c -MNIT
c DEVICE NUMBERS R - READ ; W - WRITE . MNIT
c MNIT
c DEVICE MNIT
c 1 - STOP/RESTART READ FILE (CONTAINS PREVIOUS RESULTS) MNIT
c 2 - STOP/RESTART WRITE FILE (CONTAINS CURRENT RESULTS) MNIT
c 4 - NOT USED IN THIS VERSION MNIT
c 5 ~ INPUT DATA FILE (READ) MNIT
c 6 —~ OUTPUT FILE (WRITE) MNIT
C 7 - OUT OF CORE SOLVER FILE (WRITE/READ) MNIT
c 8 - PLOT DATA FILE (WRITE) - INFO TO CREATE A PLOT OF MESH MNIT
c 9 - NOT USED IN THIS VERSION MNIT
c MNIT
IR1=1 MNIT
IRY4=Y MNIT
IR5=5 MNIT
IW2:=2 MNIT
IWh=y MNIT
IW6=6 MNIT
IW7=7 MNIT
1W8=8 MNIT
IW9= MNIT
c MNIT
c NP = 1 FOR SINGLE PRECISION; NP = 2 FOR DOUBLE PRECISION MNIT
c MNIT
NP=1 MNIT
cc NP=2 MNIT
c -MNIT
c SET SOME CONSTANTS MNIT
c MNIT
PYI=U4.*ATAN(1.) MNIT
ALAR=1.E+17 MNIT
ASMVL=1,E-20 MNIT
ZER0=0. MNIT
c MNIT
WRITE(IW6,900) MNIT
c MNIT
CALL MAST(G,LG) MNIT
[MNIT
RETURN MNIT
900 FORMAT (1H1, 120(1H%)// MNIT
1 11H CRISP (S1)// MNIT
2 334 PROGRAM LAST MODIFIED ON 27/9/85 MNIT
3) MNIT
END MNIT

MNIT 33—41 : set device numbers.

MNIT 50—53 : set some constants.

MNIT 55 : print version no. of program and date.
MNIT 57 : master-control routine.

151

St s e i P e s Il

152 Introduction to CRISP) [Ch. 4
Subroutine MAST
SUBROUT INE MAST(G,LG) MAST 1
Cl‘illllli!li!il‘iliikllllil!!llli!lik!lllKl&!KIl!&!lli!l!l!l!ii!illllllHAsT 2
o ROUTINE TO SET-UP ARRAY SIZES FOR GEOMETRY AND MAIN PART OF MAST 3
o THE PROGRAM, REAL ARRAYS ARE ALLOCATED ON THE LEFT HAND SIDE MAST U4
c OF ARRAY G AND INTEGER ARRAYS ON THE RIGHT MAST 5
CIIl!l!llllililllll‘l!&!ll!lli!lllli!lll*!llllllll!lllikii}illl!Il&illllMAST 6
REAL LL MAST 7
[JS———— USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE MAST 8
o PRECISION. ARRAY G ALWAYS USES ONE NUMERIC STORAGE UNIT MAST 9
cc REAL G . MAST 10
CHARACTER*80 TITLE MAST 11
DIMENSION G(LG) MAST 12
DIMENSION NAD(11),KLT(11),NTY(10),PR(10,10),PDISLD(3,5), MAST 13
1 PRES(3,5),V(5),FXYZ(3),CIP(3),LL(4) MAST 14
COMMON /LABEL / TITLE MAST 15
COMMON /DEVICE/ IR1,IRY4,IRS,IW2,IWH, IW6, TW7,IW8, W9 MAST 16
COMMON /ELINF / LINFO(50,15) MAST 17
COMMON /PARS / PYI,ALAR,ASMVL,ZERO MAST 18
COMMON /DEBUGS/ ID1,1D2,1D3,IDU,IDS,ID6,ID7,1D8,ID9,ID10 MAST 19
COMMON /OUT / IBC, IRAC, NVOS, NVOF, NMOS, NMOF , NELOS, NELOF , ISR MAST 20
COMMON /PRECSN/ NP MAST 21
DATA NAD(1),NAD(2),NAD(3),NAD(4),NAD(5),NAD(6),NAD(T), MAST 22
1 NAD(8),NAD(9),NAD(10),NAD(11)/ MAST 23
21,3,3,4,4,12,19,12,12,6,6/ MAST 24
c MAST 25
READ(IRS5,901)TITLE MAST 26
WRITE(IW6, 903)TITLE MAST 27
LINK1=1 MAST 28
cc READ(IRS, *)LINK1 MAST 29
cc WRITE (IW6, 906)LINK1 MAST 30
c MAST 31
READ(IRS,*)NVTX, NEL,MXNDV,MXTYP, NDIM, IPLOT MAST 32
WRITE(IW6, 904)NVTX, NEL,MXNDV,MXTYP, NDIM, IPLOT MAST 33
READ(IRS,{EE%MAX,MUMAX MAST 34
WRITE (IW6]907)NUMAX, MUMAX MAST 35
IF (NUMAX.EQ.GINUMAX=NVTX MAST 36
IF (MUMAX.EQ.0)MUMAX=NEL MAST 37
c MAST 38
c NVRS - NUMBER OF STRESS PARAMETERS MAST 39
c NVRN - NUMBER OF STRAIN AND STRESS COMPONENTS MAST 40
c NDZ - INDEX FOR MID-SIDE (EDGE) NODE NUMBERS MAST U1
c NPL - LENGTH OF ARRAYS NP1,NP2 MAST 42
c NMATZ - MAXIMUM ADMISSIBLE MATERIAL ZONE MUMBER MAST U3
c LTZ - LARGEST ADMISSIBLE ELEMENT TYPE NUMBER MAST 44
c INXL - INDEX TO NO. OF D.O.F. OF FIRST NODE OF ELEMENT MAST 45
Cc IFR - LIST OF NODES IN FRONT (SEE ROUTINES SFWZ,FRONTZ) MAST U6
c IFRZ - SIZE OF ARRAY IFR MAST 47
c MAST 48
NVRS=7 MAST 49
NVRN=Y4 MAST 50
IF (NDIM.NE. 3)GOTO 10 MAST 51
NVRS=9 MAST 52
NVRN=6 MAST 53
10 NDZ=750 MAST 54
NPL=21 MAST 55
NMATZ =10 MAST 56
LTZ =7 MAST 57
IFRZ=300 MAST 58
INXL=20 MAST 59
c -MAST 60
c NAD -~ ESTIMATE OF ADDITIONAL NODES PER ELEMENT FOR MAST 61
c DIFFERENT ELEMENT TYPES MAST 62
o NDEAD - TOTAL NUMBER OF ADDITIONAL NODES (AN ESTIMATE) MAST 63
c NDSD - NO. OF DISPLACEMENT NODES ALONG EDGE (EXCLUDE END NODES) MAST 64

7Y W =t3s

Sec. 4.4] CRISP
C NEDG - NUMBER OF ELEMENT EDGES + 1 MAST
C NTPE - MAXIMUM NUMBER OF NODES IN ANY ELEMENT MAST
C - - MAST
Crmm e TEST FOR MXTYP < LTZ MAST
IF (MXTYP,GT.O0.AND.MXTYP.LE.LTZ)GOTO 20 MAST

WRITE (IW6, 935)MXTYP MAST

935 FORMAT(/1X, 30HINADMISSIBLE VALUE FOR MXTYP =,I5,2X, MAST

1 14H(ROUTINE MAST)) MAST

STOP MAST

c MAST
20 CONTINUE MAST
C——-r—==—-MAXM NO. OF EDGES (SIDES) IN AN ELEMENT (2-D) MAST
NEDZ=MXNDV MAST
NDSD=LINFO(7,MXTYP) MAST
NEDG=LINFO(3,MXTYP)+1 MAST
NDEAD=NAD (MXTYP) *NEL MAST
NTPE=LINFO(1,MXTYP) MAST

c MAST
c ESTIMATE THE TOTAL NUMBER OF NODES - NNE MAST
C MAST
NNE=NVTX+NDEAD MAST

NNE 1=NNE+1 MAST

IF (NVTX.GT.NDZ)NDZ=NVTX , MAST

c MAST
C NDZ+1 IS THE STARTING POINT FOR NODE NUMBERING MAST
C FOR ADDITIONAL NODES MAST
o} NNU -~ ESTIMATE OF MAXIMUM VALUE OF USER NODE NUMBER MAST
c -MAST
NNU=NDZ+NDEAD MAST

C MAST
c SIZE OF ARRAY ITAB (SEE ROUTINES MIDSID, MIDPOR) MAST
C -MAST
LDIM=NDSD+3 MAST
LTAB=NEDG*NEL MAST

C ==MAST
Ce-=—-——-INDEXES FOR ARRAYS FOR USE IN GEOMETRY PART OF PROGRAM MAST
C‘!Il!!lllll!llIIllll‘!“lIIlIlilllIllllIllllllili!!illl!llll‘!!Iiﬁiill!iMAST
C THE FOLLOWING ARRAYS ARE DYNAMICALLY ALLOCATED STORE IN MAST
o} ARRAY G FOR GEOMETRY PART OF THE PROGRAM. REAL ARRAYS ARE MAST
c ALLOCATED AT THE BEGINNING OF ARRAY G WITH ARRAY INDEX MAST
c INCREASING. INTEGER ARRAYS ARE ALLOCATED TO THE END OF MAST
c ARRAY G WITH ARRAY INDEX DECREASING. THIS LEAVES A GAP MAST
o} BETWEEN THE REAL AND INTEGER ARRAYS WHICH IS USED AS A MAST
C BUFFER (FOR SOLUTION) IN THE MAIN PART OF THE PROGRAM. MAST
C MAST
C G(1) = G(L1-1) = NODAL COORDINATES .viieneesnn eeeeeo XYZ(NDIM,NNE) MAST
c G(M1) - G(LG) = ELEMENT-NODAL CONNECTIVITY.......NCONN(NTPE,NEL) MAST
C G(M2) - G(M1-1) = MATERIAL PROPERTY NUMBER........ssse.o..MAT(NEL) MAST
C G(M3) = G(M2-1) = ELEMENT TYPE NUMBER.........c0eveese.. LTYP(NEL) MAST
C G(M4) - G(M3-1) = USER ELEMENT NUMBERS..... weeeeseeees MRELVV(NEL) MAST
C G(M5) - G(M4-1) = PROGRAM ELEMENT NUMBERS. veeeesMREL(MUMAX) MAST
c G(M6) = G(M5-1) = USER NODE NUMBERS.:.euveeveesoesssss o NRELVV(NNE) MAST
C G(M7) - G(M6-1) = PROGRAM NODE NUMBERS.:.......coeeeesqsse NREL(NNU) MAST
C G(M8) ~ G(M7-1) = INDEX OF FIRST D.O.F. OF NODES. «. o NW(NNE+1) MAST
C G(M9) - G(M8-1) = NO. OF D.O.F. OF EACH NODE......euveee0.. .NQ(NNE) MAST
C G(M10) ~ G(M9-1) = TABLE OF ELEMENT EDGES...........ITAB(LDIM,LTAB) MAST
C G(M11) - G(M10-1) = USER ELEMENT NOS. IN FRONTAL ORDER.....MFRU(NEL) MAST
C G(M12) - G(M11-1) = ELEMENT NO. IN FRONTAL ORDER.........MFRN(MUMAX) MAST
C G(M13) - G(M12-1) = FRONTAL DESTINATION OF NODES.. .NDEST(NNE) MAST
C G(M14) - G(M13-1) = NODE NOS. OF ELEMENT.,........ weeesess NLST(NTPE) MAST
C G(M15) - G(M14=1) = LIST OF NODES (AND D.O.F.) IN FRONT....IFR(IFRZ) MAST.
C G(M16) - G(M15-1) = INDEX OF ONE END OF ELEMENT EDGE........NP1(NPL) MAST
C G(M1T) = G(M16=1) = INDEX OF OTHER END OF ELEMENT EDGE......NP2(NPL) MAST
C MAST
[IN THE ABOVE MAST
C MAST

153

105
106
107
108
109
110
1
11z
13
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130

http:1.3.3.4.~,12.19,12,12.6.61
http:PRES(3.5).V(5).FXYZ(3).CIP<3).LL
http:MAST(G.LG

e R =P i AR

P

154 Introduction to CRISP [Ch. 4
c LDIM - MAXIMUM NUMBER OF (DISPLACEMENT) NODES ALONG EDGE + 3 MAST 131
c LTAB - TOTAL NUMBER OF ELEMENT EDGES (ESTIMATE) MAST 132
c MUMAX - MAXIMUM VALUE OF USER ELEMENT NUMBER MAST 133
c (THIS NEED NOT BE EQUAL TO THE TOTAL NO. OF ELEMENTS) MAST 131
c NTPE - MAXIMUM NO. OF (NODES TN ANY ELEMENT IN MESH MAST 135
C NDIM - NO. OF DIMENSIONS TO_PROBLEM(27OR 3) MAST 136
¢ °NEL - TOTAL NUMBER OF ELEMENTS IN MESH' MAST 137
c NNE - TOTAL NUMBER OF NODES IN MESH (ESTIMATE) MAST 138
c NNU - ESTIMATE OF MAXIMUM VALUE OF USER NODE NUMBER MAST 139
c NPL - LENGTH OF ARRAYS NP1,NP2 MAST 140
C‘I“‘*_!i“**‘l!ll"l‘.‘i‘*..il'lll.lll‘l‘.‘"il“‘"“"‘Illl“.““l‘*‘lMAST ‘|u1
Lk reigEmpIH*(E) ; MAST 132
LZ=L1v ! ey _ 7 MAST 143
M1=LG-NTPE*NEL+1 D ax(E AR Lz MAST 144
M2=M1-NEL MAST 145
M3:=M2-NEL MAST 146
MU=M3-NEL MAST 147

M5 =M 4-MUMAX MAST 148
M6=M5-NNE MAST 149

! M7=M6-NNU MAST 150
| MB=MT-NNE-1 MAST 151
M9=MB—NNE MAST 152

' M10=M9-LTAB*LDIM MAST 153
b M11=MI0-NEL MAST 154
M122M11-MUMAX Mz, .61, L MAST 155

M 13=M12-NNE Y wsA - MAST 156
M14=M13-NTPE MAST 157
M15=M14-IFRZ MAST 158
M16=M15-NPL MAST 159
MAT=M16-NPL MAST 160
MZ=M17T - MAST 161

1F (Mz)et {L2)G0 TO(EE} MAST 162
MOREZLZMZL1 ' MAST 163

WRITE (IW€, 908 MORE MAST 164

ST0 & MAST 165

c <:::E> MAST 166
' 40 KSTO=LG-MZ#LZ-1 MAST 167
L~ WRITE(IW6§910)KSTO,LG MAST 168
c . MAST 169
CALL MARKZ (NVTX, NEL, NUMAX, MUMAX, NTPE , MXNDV , NNE, NNE 1, NN, MAST 170

1 NNU,NNZ,LTAB, LDIM, NDIM, NDF , NDZ , IF RZ, MCORE,, MAXNFZ , MAST 171

2 NPL,LTZ,KLT,NMATZ,INXL,IPLOT, MAST 172

3 G(1),G(M1),G(M2),G(M3),G(MU),G(M5),G(M6),G(MT),G(MB), MAST 173

4 G(M9),G(MT0),G(M11),G(M12),G(M13),G(M14),G(K15), MAST 174

5 G(M16),G(M17),ND, NCORET,MDZ) MAST 175
IF (ID8.EQ.0)GOTO 45 MAST 176

WRITE (IW6, 925 NNE, NNU, LDIM, LTAB, NTPE, IFRZ, NPL MAST 177

925 FORMAT(/1X, 6HNNE = ,I5,3X,6HNNU = ,I5,3X,7HLDIM = ,3X, MAST 178
1 THLTAB = ,I5,3X,THNTPE = ,1I5,3X,THIFRZ = ,15,3X,6HNPL = MAST 179

WRITE (IW6, 920) (G (JK), JK=1,L1) MAST 180

WRITE (IW6,930) (G (JK),JK=M17,LG) MAST 181

920 FORMAT (//1X, YHREAL/(1X, 10F 10.2/)) MAST 182
930 FORMAT (//1X, THINTEGER/(1X,2016/)) MAST 183
45 CONTINUE MAST 184

¢ MAST 185
CALL MAXVAL (IW6,KLT,LTZ , NDIM, NVRN, NDMX, NPMX, NIP, NS, NB, NL, MAST 186

1 NPT,NSP,NPR, NMT,MDFE,KES, NVPN, LV, MXEN, MXLD,MXFXT) MAST 187
szz=s==z=zz=======z=z=z==z===z==z=z=====MAST 188
Cmmm _THE FOLLOWING INDEXES FOR ARRAYS ARE FOR USE IN THE MAST 189
I MAIN (ANALYSIS) PART OF THE PROGRAM MAST 190
c MAST 191
€ G(1) = G(L1-1) = COORDINATES OF NODES......es.snsn- .. XYZ(NDIM, NN) MAST 192
€ G(L1) - G(L2-1) = INCREMENTAL DISPLACEMENTS.. v....DL(NDF) MAST 193
C G(L2) - G(L3-1) = CUMULATIVE DISPLACEMENTS....... s ...DA(NDF) MAST 194
€ G(L3) = G(L4=1) = STRESS PARS AT GAUSS POINTS.VARINT(NVRS,NIP,NEL) MAST 195
C G(LH) = G(L5=1) = INCREMENTAL NODAL LOADS.......eeeveee.....P(NDF) MAST 196

?
)
I

Sec. 4.4] CRISP

COO0OO0O0 0000000000000 0000000000000 00

G(LS) - G(L6-1) = CUMULATIVE NODAL LOADS....... vesesaaass o PT(NDF)
G(L6) - G(L7~1) = NODAL LOADS FOR INCREMENTAL BLOCK...... . PIB(NDF)
G(LT) - G(L8-1) = REACTIONS TO EARTH..... teseetesananaas LREAC(NDF)
G(L8) ~ G(L9-1) = OUT OF BALANCE LOADS.....00veass weeee..PCOR(NDF)
G(L9) - G(L10-1) = TOTAL EQUILIBRIUM LOADS ... PEQT (NDF)
G(L10) - G(L11-1) = INCREMENTAL POINT LOADS....coevececncan XYFT(NDF)
G(L11) - G(L12-1) = POINT LOADS FOR INCREMENTAL BLOCK.....XYFIB(NDF)
G(L12) - G(L13-1) = STRAIN PARS AT_GAUSS POINTS....STR(NVRN,NIP,NEL)
G(L13) - G(L14-1) = EXCAVATION LOADS FOR INCR BLOCK.......PEXIB(NDF)
G(L14) - G(L15-1) EXCAVATION LOADS FOR INCREMENT...... .+ «PEXI(NDF)
G(L15) - G(LS1-1) INSITU EQUILIBRIUM POINT LOADS........ PCONI(NDF)
G(LS1) - G(LS2-1) = D (STRESS - STRAIN) MATRIX........ «e...D(NS,NS)

G(LS2) - G(LS3-1)
G(LS3) - G(LSUu-1)
G(LSu) -~ G(LS5-1)
G(LS5) - G(LS6-1)

DISP. NODE COORDS. OF ELEMENT...ELCOD(NDIM, NDMX)
DERIVATIVES OF SHAPE FUNS(LOCAL)...DS(NDIM, NDMX)
SHAPE FUNCTIONS. .vvuveuenineeeeanansas cSHEN(NDMX)
CARTESIAN DERIV. OF SHAPE FUNS..CARTD(NDIM,NDMX)

G(LS6) - G(LS7-1) = STRAIN - DISPLACEMENT MATRIXB(NS,NB)
G(LS7) - G(LS8-1) D * BMATRIX.....vvnn.n . . DB(NS, NB)
G(LS8) - G(LS9-1) ELEMENT FORCE MATRIX..... «eo o FT(NDIM, NDMX)
G(LS9) -G(Ls10-1) ELEMENT STIFFNESS MATRIX eeves...SS(NB,NB)
G(LS10) — G(LC1-1) = UPPER TRIANGULAR ELEMENT STIFF MATRIX....ES(KES)

G(LC1) - G(LC2-1) = P.P.NODE COORDS OF ELEMENT.....ELCODP(NDIM, NPMX)
G(LC2) - G(LC3-1) = PORE PRESSURE GRADIENTS.....veecuse. E (NDIM, NPMX)
G(LC3) - G(LCY4-1) = PERMEABILITY * POREPRES GRADIENTS..PE (NDIM,NPMX)
G(LCY4) - G(LC5-1) = AN ARRAY FOR LINK MATRIX.....e0eeeveuese.s RN(NB)
G(LC5) - G(LC6-1) = AN ARRAY FOR LINK MATRIX.... . . «AA(NPMX)
G(LC6) ~ G(LC7-1) = FLOW MATRIX..evuvuusennsoassansss ETE(NPMX, NPMX)
G(LCT7) — G(LC8-1) = LINK MATRIX...eoveurnenna cescenen «+.RLT(NB, NPMX)
WHERE

KES - MAXM SIZE OF UPPER TRIANGULAR ELEMENT STIFFNESS MATRIX

NB ~ SIZE OF STIFFNESS MATRIX SS (= NDIM ¥® NDMX)

NDF - TOTAL NO. OF D.O.F. IN PROBLEM

NDIM - DIMENSION OF PROBLEM (2 OR 3)

NDMX - MAXM NO. OF DISP. NODES IN ANY ELEMENT IN MESH

NEL - TOTAL NO. OF ELEMENTS IN MESH

NIP — MAXM NO. OF INTEGRATION POINTS IN ANY ELEMENT IN MESH

NN - TOTAL NO. OF NODES IN MESH

NPMX - MAXM NO. OF PORE-PRESSURE NODES IN ANY ELEMENT IN MESH

NS - SIZE OF D - MATRIX (= NO. OF STRESS/STRAIN COMPONENTS)

NVRN - NO. OF STRAIN (AND STRESS) COMPONENTS (NVRN = NS)
NVRS - NO, OF STRESS COMPONENTS PLUS PARAMETERS (U,P,Q ETC.)

MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST

--------- INDEXES FOR REAL ARRAYS - LEFT HAND SIDE
L1=1+NDIM*NN*NP
L2=L1+NDF *NP
L3=L2+NDF ¥NP

- LY4=L3+NVRS*NIP*NEL*NP
L5=L4+NDF *NP
L6=L5+NDF *NP
LT7=L6+NDF *NP
LB8=L7+NDF *NP
L9=L8+NDF *NP
L10=L9+NDF*NP
L 11=L10+NDF ¥NP
L12=L11+NDF *NP
L13=L12+NDF ¥NP
L14=L13+NDF *NP
L 15=L 14+NDF *NP
LS1=L15+NVRN*NIP*NEL*NP
LS2:zLS 1+NS*NS*NP
LS3=LS2+NDIM¥NDMX¥NP
LS4=LS3+NDIM*NDMX*NP
LSS5=LS4+NDMX*NP
LS6=LS5+NDIM*NDMX*NP
LST=LS6+NS *NB*NP

MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST
MAST

155

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2u8
249
250
251
252
253
254
255
256
257
258
259
260
261
262

TN e Y) A T

PR e

ey e b e o 2 ey B 4

OO0 0000000000000 0000000

s X2 Ke]

56 Introduction to CRISP [Ch. 4
LSBzLST7+NS*NB*NP MAST 263
LS9=LS8+NDIM¥NDMX*NP MAST 264
LS10=LS9+NB*NB*NP MAST 265
LC1=LS 10+KES *NP MAST 266
LC2=LC 1+NDIM*HPMX*NP MAST 267
LC3=LC2+NDIM*NPMX®NP MAST 268
LCY=LC3+NDIM*NPMX*NP MAST 269
LC5=LCU+NB*NP MAST 270
LC6=LCS+NPMX*NP MAST 271
LCT7=LC6+NPMX¥NPMX *NP MAST 272
LC8=LCT+NBXNPMX*NP MAST 273
Lz=LC8 MAST 274

MAST 275

G(N1) — G(LG) = ELEMENT-NODAL CONNECTIVITY.......NCONN(NTPE,NEL) MAST 276
G(N2) - G(N1-1) = MATERIAL PROPERTY NUMBER.. ..MAT(NEL) MAST 277
G(N3) - G(N2-1) = ELEMENT TYPE NUMBER..... ..LTYP(NEL) MAST 278
G(N4) - G(N3-1) = USER ELEMENT NUMBERS.... . .MRELVV(NEL) MAST 279
G(NS5) - G(N4=1) = PROGRAM ELEMENT MUMBERS. .MREL(NUMAX) MAST 280
G(N6) = G(N5-1) = USER NODE NUMBERS....... .NRELVV(NN) MAST 281
G(NT) = G(N6-1) = PROGRAM NODE NUMBERS........... ..NREL(NNZ) MAST 282
G(N8) - G(N7-1) = INDEX OF FIRST D.O.F. OF NODES.. ..NW(NNOD1) MAST 283
G(N9) - G(N8-1) = NO. OF D.O.F. OF EACH NODE.....NQ(NN) MAST 284
G(N10) - G(N11-1) = INDICATOR OF ELEMENT CHANGES.... .JEL(NEL) MAST 285
G(N11) - G(N12-1) = INDICTORS OF RESTRIANED VARIABLES......IDFX(NDF) MAST 286
G(N12) = G(N11-1) = FRONTAL DESTINATION OF NODES...........NDEST(NN) MAST 287
G(N13) - G(N12-1) = INDEX OF ONE END OF ELEMENT EDGE........NP1(NPL) MAST 288
G(N14) — G(N13-1) = INDEX OF OTHER END OF ELEMENT EDGE...... NP2(NPL) MAST 289
G(NS1) = G(N14=1) = LIST OF NODES (AND D.O.F.) IN FRONT....IFR(IFRZ) MAST 290
G(NS2) - G(NS1~1) = DESTINATION IN FRONT OF ELEMENT D.O.F..NDL(MDFE) MAST 291
G(NS3) - G(NS2-1) = INDEX TO POREPRESSURE NODES OF ELEMENT.NWL(NPMX) MAST 292
G(NS4) - G(NS3-1) = STRESS STATE INDICATOR FOR MODELS..NMOD(NIP,NEL) MAST 293
(NOT USED IN THIS VERSION) MAST 294

WHERE MAST 295
MAST 296

IFRZ -~ LENGTH OF ARRAY IFR MAST 297
MDFE - MAXM NO. OF D.O.F. IN ANY ELEMENT IN MESH MAST 298
MUMAX - MAXM VALUE OF USER ELEMENT NUMBER MAST 299
NNZ - MAXM VALUE OF USER NODE NUMBER MAST 300
NNOD1 - NN + 1 MAST 301
-MAST 302

—————————— INDEXES FOR INTEGER ARRAYS ~ RIGHT HAND SIDE MAST 303
NNOD1=NN+1 MAST 304
N1=LG-NTPE*NEL+1 MAST 305
N2=M1-NEL MAST 306
N3=N2-NEL MAST 307
NU4=N3-NEL MAST 308
NS=N4-MUMAX MAST 309
N6=N5-NN MAST 310
N7=N6-NNZ MAST 311
N8=N7-NNOD1 MAST 312
N9=N8-NN MAST 313
N10=N9-NEL MAST 314
N11=N10-NDF MAST 315
N12=N11-NN MAST 316
N13=N12-NPL MAST 317
N14=N13-NPL MAST 318
NS 1=N1U-IFRZ MAST 319
NS2=NS1-MDFE MAST 320
NS3=NS2-NPMX MAST 321
NS4=NS3-NIP*NEL MAST 322
NZ=NS4 MAST 323

MAST 324
CALCULATE SIZE OF WORKING REGION MAST 325
MAST 326
NWORK=NZ-LZ MAST 327
KVARS=LG+LZ~NZ MAST 328

Sec.

P S

XN TV W N =

4.4] CRISP

NCORET=NCORET*NP
MCORE=MCORE*NP

CALL SHFTIB(IW6,G(N7),G(M7),NNZ)

CALL SHFTIB(IW6,G(N8),G(M8),NNOD1)
CALL SHFTIB(IW6,G(N13),G(M16),NPL)
CALL SHFTIB(IW6,G(N14),G(M17),NPL)

CALL CPW(NN,NEL,NDF,NNOD1,NTPE,NIP,NVRS,NVRN,NDIM,
MUMAX, NDZ, IF RZ, NNZ , NDMX, NPMX, NS, NB, NL, NPR, NMT,
NPT, NSP, NPL,MDFE, KES, NVPN, INXL ,MXEN,MXLD, MXFXT,
LV,MCORE, LINK1,NVTX, ND,MDZ, NEDZ,

G(L9),G(L10),G(L11),G6(L12),G(L13), G(L14),G(L15),
G(LS1) G(LS2),G(LS3),G(LSU),G(LS5),G(LS6), G(LS7)
G(Ls8),G(Ls9),G(LS10),G(LC1),G(LC2),G(LC3), G(LCY),
G(LC5),G(LC6),G(LCT),G(NT),G(N2),G(N3), G(NU),
G(N5),G(N6),G(NT), G(NB) G(N9),G(N10),G(N11),
G(N12) G(N13),G(N14),G(NS1),G(NS2),G(NS3),G(NS4),
CIP,LL,V,FXYZ,PR,PDISLD, PRES, NTY,G(LZ), NWORK,
NOIB TTIME TGRAV, IUPD, ICOR, IDCHK, INCT)

VNI EWWN N —

CALL ANS(NN,NEL, NDF, NNOD1, NTPE, NIP, NVRS, NVRN, NDIM,
MUMAX, NDZ, IFRZ, NNZ, NDMX, NPMX, NS, NB, NL, NPR, NMT,

G(1),G(L1), G(L2) G(L3),G(LY),G(L5),G(L6),G(LT),G(L8)

NPT, NSP, NPL,MDFE, KES, NVPN, INXL ,MXEN,MXLD, MXFXT,
Lv, NVTX ND,
G(1),G(L1),G(L2),G(L3),G(LY),G(L5),G(L6),G(LT), G(L8),
G(L9),G(L10),G(L11),G(L12),G(L13),G(L14),G(L15),
G(LS1),G(LS2),G(LS3),G(LSY),G(LS5),G(LS6), G(Ls7),
GQ%)G&N)GQMO)MWI)MW2)MK3)MKM
G(LC5),G(LC6),G(LCT),G(N1),G(N2), G(N3),G(NU),
G(N5),G(N6),G(N7),G(N8),G(N9),G(N10),G(N11),
G(N12), G(NI3) G(N14),G(NS1),G(NS2), G(NS3) G(NS4),
CIP,LL,V,FXYZ,PR, PDISLD, PRES, NTY, G(LZ) NWORK,
,TTIME.TGRAV,IUPD,ICOR.IBC,IDCHK.INCT)

RETURN }
901)
903 FORMAT(/1X,A)
904 FORMAT(//

ey ——

———a

10X, 46HNUMBER OF DIMENSIONS IN PROBLEM

, 187

2 10X, 46HMAXIMUM VALUE OF ELEMENT NUMBER.......
27§/FORMAIj(1X,2&HINCBEASE‘SIZE OF ARRAY G BY .18, 13H FOR GEOMETRY,
177X, 30HPART OF PROGRAM (ROUTINE MAST)/;“*ﬁ‘-x“""“_————-—————\

Cmmmmmme e ADDITIONAL ARRAYS CREATED IN ROUTINES UPARAL/UPOUT

O

1 10X, 46HTCTAL NUMBER OF VERTEX NODES,......... =, 18/
2 10X, 46HTOTAL NUMBER OF ELEMENTS...... , 187
5 10X, 46HMAXIMUM NUMBER OF VERTEX NODES IN AN ELEMENT.=, 18/
6 10X, 46HELEMENT TYPE WITH MAXIMUM NUMBER OF NODES....=,I8/
8
9

10X, 46HPLOTTING CODE.evvurvun... sesens

CC906 FORMAT(/1X, T4HLINK NUMBER = ,I6)
907 FORMAT(

1 10X, 46HMAXIMUM VALUE OF VERTEX NODE NUMBER. .

INCORE= NCORET-MCORE
NBUFF =NWORK—MCORE
WRITE(IW6,915)LG,KVARS, NWORK,MCORE, NBUFF , INCORE

MOUT =13 *NIP¥NEL+5 *NEL

MINM=MOUT

IF (MINM.GT.MCORE)MINM=MCORE

IF (NWORK. GT .MINM)GOTO 50
INCLG=MCORE~NWORK

WRITE (IW6,912)INCLG

STOP

CONTINUE

IF (NWORK. GE. NCORET)WRITE (IW6,940)
IF (NWORK. LT. NCORET)WRITE (IW6, 950)

,1877)

, 187
,1877)

157

MAST 329
MAST 330
MAST 349
MAST 350
MAST 351
MAST 352
MAST 353
MAST 35U
MAST 355
MAST 356
MAST 357
MAST 358
MAST 359
MAST 360
MAST 361
MAST 362
MAST 363
MAST 364
MAST 365
MAST 366
MAST 367
MAST 368
MAST 369
MAST 370
MAST 371
MAST 372
MAST 373
MAST 374
MAST 375
MAST 376
MAST 377
MAST 378
MAST 379
MAST 380
MAST 381

MAST 382
MAST 383
MAST 3814
MAST 385
MAST 386
MAST 387
MAST 388
MAST 389
MAST 390
MAST 391

MAST 392
MAST 393
MAST 394
MAST 395

MAST 396

MAST 331

MAST 332
MAST 333
MAST 334

MAST 335
MAST 336

MAST 337

MAST 338

MAST 339

MAST 340

MAST 341
MAST 342

MAST 303

MAST 344

v o

SHIFT NRELVV,NREL,NW,NP1,NP2 TO NEW LOCATION

-MAST 345

MAST 346

http:ZE....Qf
http:LV.NVTX.ND
http:Sec.4.4J

e i

158

Introduction to CRISP [Ch. 4

-MAST 347

C
.. CALL SHFTIB(IW6,G(N6),G(M6),NN) MAST 348

{910/ FORMAT (47H ARRAY STORE - USED IN GEOMETRY PART OF PROGRAM, MAST 397
©71 17,2X,17HOUT OF ALLOCATED ,17//120(1H¥)) MAST 398
912 FORMAT(/10X, 42HTO PROVIDE MINIMUM CORE TO SOLVE EQUATIONS/ MAST 399

1 10X,29HI§Q§§A§E;§IZE OF ARRAY G BY =,110,2X, 14H(ROUTINE MAST)// MAST 400

1 1X,120(1H¥))

MAST 401

915 FORMAT(//1X,120(1H¥)// MAST 402

NoWw EZwN =

10X, 51HTOTAL ALLOCATION OF STORE FOR Guvievvennaansannces =,110/ MAST 403
10X,51HSTORE FOR MAIN ARRAYS.............................:,110/ MAST 404
10X, 51HWORKING REGION LEFT FOR SOLVING EQUATIONS......... =,110/ MAST 405
10X,51HMINIMUM CORE TO SOLVE EQUATIONS...................:,I10/ MAST 406
10X, 51HAMOUNT OF STORE LEFT FOR BUFFER.sseeccctoccnoccne- =,110/ MAST 407
10X,51HSIZE OF BUFFER FOR IN-CORE SOLUTION. +evuevsnannass=, 110/ MAST 408
10X,51H(BUFFER SIZE TO STORE ALL THE REDUCED COEFFICIENTS)/) MAST 409

940 FORMAT (/10X , 28HEQUATIONS ARE SOLVED IN-CORE//1X,120(1H*)) MAST 410
950 FORMAT (/10X, 32HEQUATIONS ARE SOLVED OUT—OF —CORE//1X, 120(1H*)) MAST 411

END

MAST 2627
MAST 32-37

MAST 49-59

MAST 80

MAST 85-93

MAST 142163 :

MAST 170—175 :

MAST 186—187 :

MAST 241-274:

MAST 304323 :

MAST 327341 :

MAST 348-352:

MAST 412

. read title of analysis.
- read and write information on the geometry of the mesh.

NVTX — the total number of vertex nodes in mesh.
NEL — the number of elements in mesh.
NDIM — the number of dimensions to problem.

: parameters which govern the size of principle (main) arrays

and which depend on the type of problem being analysed
(i.e. whether 2-D or 3-D) are set up.

- calculate NDEAD, which is an estimate of the (total) no. of

additional nodes in the mesh (this includes both displace-
ment and pore pressure nodes) — the latter only for
consolidation elements. This estimate is intended to be more
than the actual no. of additional nodes.

. estimate of total no. of nodes (NNU); this includes the vertex

nodes.

set up indexes, allocating store to various arrays in G for use
in the geomtry part of the program.

geometry part of the program. Calculate nodal co-ordinates
of additional nodes and number them, starting with 751.
Calculate total no. of d.o.f. in mesh.

set up maximum size of arrays and maximum values of some
parameters.

re-define indexes for various REAL arrays at the beginning of
array G for use in the main part of the program.

set up indexes for various INTEGER arrays at the end of
array G for use in the main part of the program.

calculate size of the working area and determine whether
there is enough core store for solving equations either in-core
or out-of-core.

shift the INTEGER arrays evaluated in the geometry part of
the program, to new position, for use in the rest of the
program.

Sec. 4.5] Adding New Features 159

MAST 354366 : Routine CPW reads the control data and sets up the in situ
stresses.

MAST 368380 : analysis (main) part of the program. Routine ANS is a
control routine which sets up and delegates tasks to other
control routines to carry out the analysis.

I

4.5 CRISP SUBROUTINE HIERARCHY

Fig. 4.2 shows all the subroutines in CRISP, arranged to show the structure of
the program.

4.6 ADDING NEW FEATURES

Mapy institutions and individuals around the world have versions of CRISP
which differ in some respects from the version presented here. Every time we
modified the program, we stored in a computer file the actual editing
instructions (together with an explanation of their purpose). We also updated
tl?e program version number and date of last modification. Unfortunately, we
did not keep a record of the version given to all those who passed through’our
office or who wrote in. Inevitably, they changed the version number, so
confusion reigns. ,
The book version will presumably become the most widely distributed, so we
call it version S (or CRISP-S). ‘S’ is for standard: originally it was S for’ small
but really that is not appropriate. Extending the program is not an endeavour t<;
be lightly undertaken, but the explanations in the book are designed to assist.

gddi?g a new soil model is likely to be a popular extension: see Appendix D for
etails.

PR

P

e S A V7N

I | E

! :

H
I
! .

- 160 Introduction to CRISP [Ch. 4
i ! |
1 - RDCOD
L I CONECT SETNP

MIDSID —ESOFITZ
I CUREDG—SORT2
FINTPLT
FSIDES

r MARKZ —erDPOR —SORT2
- CUREDG — SORT2
FNUMSH
FMAKENZ
I CALDOF
F MLAPZ

[F SFWZ

l. i GPOUT

3 L MAXVAL

: r RDPROP SORTNZ

Vi CHANGE SHAPE i

i F RESTRT RDSTRS EQLIB — FORMBZT SHAPE 15

i - SHFTIB INSTRS —— SHAPE DETMIN g T‘

I FINSITU EDGLD —— LODLST %)

! FIXX

MAKENZ
- CPW DISTLD—— SFR1
EQLOD SELF —*[SHAPE
‘. 3 RESTRN DETJCB
| | . L camcoe EEQLBM — REACT (‘am Cla : l A e E

1 MAIN —MINIT—MAST — - ln lnlte lel I l t

hu S y
i SELF—ESHAPE en

R - CHANGE —{ DETJCB A 1 ‘

EQLIB FORMB2 SHAPE
— nalysis
F SEL1 SELF SHAPE

| L oerace o '

¢l | E06LD — LODLST .

\L L DISTLD —SFR1
t' ‘:Il F FACTOR
{ Iw. FFIXX

f‘ DCON
[FORMB2 SHAPE
1 L ans j T oermin 5.1 INTRODUCTION

E | r LODLST LSTIFF JrC FORMP —— SHFNPP
i FMAKENZ - cps .

: 1 :SMFLV?;Z FRSLOT oun Chapter 2 described the critical state soil models entirely in relation to the
i1 ™ FREXLD ocAw standard triaxial test for soils. Thus it was possible to describe the effective stress
4 \ STOREQ — WATN LSTFSG state of a soil sample by just two stress parameters (p' and g). The reader may
: | . GETEQN — RON have wondered (and indeed we did i

: i not attempt to explain) wh
; LODINC — PRINTF p n) w y these two

i-- | ocon parameters were chosen. In fact the definitions of p’ and ¢ that were given in

F | oum Toetmin Chapter 2 were simplified versions of the full definitions for general three-

B! DCAM dimensional stress states that we present in section 5.2. To extend the models

{3 SHFNPP 1 H
1 IE—— N chat —vAncam to more general two- and three-dimensional stress states, some additional

} STRSEQ NG i i H

i | sTRSE ANGTH assumptions are necessary, These are also covered in section 5.2.

1. UPOUT2 i i i i i
i1 ero — e How- the 1flcrerpental. stress—strain relations are actually implemented in

1 EQLOD—‘FSELF — sHape CRISP is described in section 5.3,

RESTRN DETJCB . .

i EQLEM — REACT When performing a finite element analysis using one of the critical state
1 models,. a'necessary prehmipary i§ to define the in situ stress state. We describe
L} Fig. 4.2 — Subroutine hierarchy for CRISP-S how this is done and also give guidance on how the critical state parameters M,

| T", X and k should be selected in sections 5.4 and 5.5.

5.2 GENERALISING CAM-CLAY
5.2.1 Three-dimensional stress states

To generalise the Cam-clay model to two- and three-dimensional stress states, we
replace the definitions of p’ and g given in Chapter 2 by

162 Cam-clay in Finite Element Analysis [Ch. 5

p'=(ox + oy +03)/3, (5.1)
q=(NDV{(ox —0y)* +(0y —0z)" + (07 —0x)

+ 673y + 675, + 672). (5.2)

Note that these definitions reduce to those of Chapter 2 for triaxial stress
conditions. p’ and q are invariants of the effective stress tensor: for a given
three-dimensional stress state, p’ and g will always hqve the same values regard-
less of the orientation of the reference axes (x, ¥, z).! Another set of invariants
of the stress tensor are the principal stresses, and p' and g can be regarded as
describing the position of a point in principal stress space. The co-ordinates of a
point (6,, op, 6¢) can be decomposed into a distance along the hydrostatic axis
and a distance from the hydrostatic axis (Fig. 5.1). (/3)p' is equivalent to the
distance along the hydrostatic axis, and (v/2/A/3)q is equivalent to the
perpendicular distance from the hydrostatic axis.

7
Oc

» Hydrostatic axis

[/

Ga’
Fig. 5.1 — The significance of p" and ¢ in principal stress space

1 Quantities describing the state of a material at a point are often described by the
mathematical entities of scalar, vector or tensor. An example of a scalar is pore pressure;
and example of a vector is a force; an example of a tensor is stress. The difference
between these entities is the transformation law that is necessary to calculate the entity
in a co-ordinate system (x', y', z'), given values in an inclined co-ordinate system
(x, ¥, z). A brief, yet fairly complete, account of all the relevant mathematics is given in
Chapter 3 and Appendix A of the text by Richards (1977). Readers without the time or
stamina to pursue the mathematics of tensors should not be intimidated. To perform a
two-dimensional transformation of stresses, one can use the Mohr’s circle construction.
Engineers who understand Mohr's circles already know 90% of what there is to know
about tensors. The rest is just notation.

e L ——

e i e

v

P

L
|2

RTHEE = 3 P TR LR e Ty T

Sec. 5.2] Generalising Cam-clay 163

In Chapter 2 we were limited to the triaxial plane in principal stress space
(this is the plane including the 0, and hydrostatic axes on which ¢p, = oc(=o0;
in triaxial tests)). The Cam-clay models are generalised to the whole of principal
stress space by rotating the yield loci and CSL to give the result shown in Fig.
5.2, Mathematically this rotation is achieved by using (5.1) as the definition of
p' and (5.2) as the definition of q for all the Cam-clay (or modified Cam-clay)
relationships described in Chapter 2.

o/

Fig. 5.2 — The Cam-clay yield locus in principal effective stress space

Thus the CSL in a (p’, ¢) plot becomes the ‘critical state cone’ in principal
stress space. Obviously, there is a similarity with the Drucker—Prager cone of
section 2.3.2, but of course the critical sate cone is a locus of failure points, not
an elasto-plastic yield surface.

The generalisation of Cam-clay in this way follows the simplest and most
mathematically convenient approach. Most of the experimental evidence is that
the Mohr—Coulomb surface (Fig. 2.6) would be a better generalisation than the
Drucker—Prager cone (Fig. 2.7) (Bishop, 1966). However, the adoption of the
Mohr—Coulomb criterion means that the critical state parameter M is dependent
on the value of the intermediate principal stress. The use of the simpler approach
means that it is always possible to compare directly finite element calculations
with an equivalent triaxial test. (But see section 5.4.2.)

=TT

TR

o

s

AT

e
by
{ &
e
Wl

164 Cam-clay in Finite Element Analysis [Ch.5

5.2.2 The ‘other’ elastic property

The assumption made for the Cam-clay models in Chapter 2 about elastic
behaviour (volumetric strains given by the «-line equation, zero shear strains)
causes a small difficulty in implementing the models in a finite element program.
The assumption of zero shear strains implies an infinite value of the shear
modulus (G). The most straightforward way of circumventing this difficulty is
to allow the program to calculate realistic elastic shear strains inside the yield
locus. In calculating the terms of the D matrix for Cam-clay under the yield
locus, the effective stress bulk modulus is calculated as
,
K'= V_p (5.3)
K
(This equation is obtained by differentiating the equation of the k-line.) The
second independent elastic property is chosen by using either an assumed
constant value of »' or an assumed constant value of G. The pros and cons of
each option are discussed in section 5.4. The addition of the extra elastic strains
makes very little difference to the predictions of the Cam-clay models. In triaxial
tests, drained and undrained stress paths (and therefore soil strengths and pore

pressures) are unchanged: the only difference is in the strain predictions and this

just involves calculating the extra strain component and adding it to those
already determined.

5.3 THE INCREMENTAL STRESS—STRAIN RELATIONS

In order to perform non-linear finite element analysis using elasto-plastic models
of soil behaviour, it is necessary to compute the modulus matrix De, relating an
increment of strain to an increment of stress:

Ao = Dep Ae. (5.4)

Starting from the yield function f(g, h) = 0, and the plastic potential g(o, h) =0,
there is a piece of standard manipulation to obtain a formula for De, (e.g.
Zienkiewicz, 1977):

Dy ac’ D (5.5)
Dep = |1 — —x———=—| Dy, :
ep aTDEa —cTHa K

where a = dg/d0 = 3f/dg, ¢ = 3f/oh and H is a matrix relating changes in
hardening parameters to changes in the incremental plastic strain: dh = HdeP.

We have used the symbol Dg above to emphasise that this refers to the elastic
D matrix. The term ‘D matrix’ has passed into common (finite element) usage in
much the same way as has the term ‘B matrix’, following the notation
established by Zienkiewicz (1967, 1971, 1977). It is quite common to use the
term ‘D matrix’ to refer to different matrices (i.e. sometimes Dg and sometimes
Dep). The reader must learn to spot which is intended by the context.

Sec. 5.3] The Incremental Stress—strain Relations 165

We now list the routines which calculate the terms of the D matrices in
CRISP. Although our main intention is to demonstrate how (5.5) is
implemented in CRISP, it is convenient to start with the two elastic models.
Comparison of the elastic and elasto-plastic routines shows clearly the extra
steps necessary for the latter.

In the rest of the book routines have been introduced to the reader in the
same order as they are called in the program. The D-matrix routines are an
exception to this, and so the reader may wish to pass over them quickly on a
first reading. It is possible, however, to make use of these routines independently
of the rest of the program. We explain why this might be appropriate in the las’
section of this chapter,

5.3.1 Routine DCON

Routine DCON calculates the D matrix for anisotropic elasticity. The aniso-
tropic elastic properties relate strains to changes in stress via the following
equations:

. = 10 Vvha Yhh
= —0p— Rg,— M,
B, B E G
Vhy 1 Vhv
€y =—"—_——0x+ —0oy— —0,
En Ey Ey
== hg !
z = T T I gz,
En © E, 7’ B
1
Txy = T Txy- 5.6
Gry (5.6)

We have used suffixes ‘h’ (for horizontal) and “’ (for vertical) to clarify how
this model would be used in a geotechnical analysis. Section 9.2 contains a
discussion of the significance of the various elastic parameters. The inverse forr
of (5.6) is inserted into the D matrix following Zienkiewicz (1977). The arra,
PR contains the material properties as specified by the user in the data,

Routine DCON
SUBROUTINE DCON(I,IET,NEL,NDIM,NS, NPR, NMT,MAT, PR, D,BK) DCON 1
Ciiii'*iiill!.ﬂllIlI!llﬂlllllllIIIIllllllIlI!Iilllllll!l*ilﬂ!lllill!!l!I'DCON 2
c CALCULATES STRESS-STRAIN MATRIX FOR ANISOTROPIC ELASTICITY DCON 3
Clllﬁ‘llllllllllllll!IllllllllIlIl'l‘lIil“‘lllI!!‘!Illil"llllllIllll!!!DcON u
DIMENSION MAT(NEL),D(NS,NS),PR(NPR, NMT) DCON 5
c DCON 6
KM=MAT(I) DCON 7
AN=PR(1,KM) /PR (2, KM) DCON 8
A=PR(2,KM)/((1,0+PR(3,KM)) #(1.0-PR(3,KM)-2. OXANPR (4, KM)* DCON g
1 PR(4,KM))) . DCON 10
D(1,1)=A%AN*(1,0~AN*PR (4, KM) *PR (4, KM)) DCON 11
D(1,2)=A%AN*PR (4, KM) *(1.0+PR(3,KM)) DCON 12
D(1,3)=A¥AN*(PR(3,KM)+AN*PR (4, KM)*PR (4, KM)) DCON 13
D(2,1)=D(1,2) DCON 14

D(2,2)=A%*(1.0-PR(3,KM) *PR(3,KM)) DCON 15

166 Cam-clay in Finite Element Analysis [Ch. 5
D(2,3)=D(1,2) DCON 16
D(3,1)=D(1,3) DCON 17
D(3,2)=D(2,3) DCON 18
D(3,3)=D(1,1) DCON 19
D (4, 4)=PR(5, kM) DCON 20
BK=(D(2,2)+2.*D(2,1))/3. DCON 21
IF (NDIM.EQ.2)GOTO 5 DCON 22
D(5,5)=PR(5,KH) DCON 23
D(6,6)=PR(5,KM) DCON 24

5 IF(IET.EQ.0) GO TO 20 DCON 25

c DCON 26
DO 10 J=1,3 DCON 27
DO 10 JJ=1,3 DCON 28

10 D(JJ,)=D(JJ, J)+PR(7,KM)*BK DCON 29

20 RETURN DCON 30

END DCON 31
DCON 7 : material zone number.

DCON 8 : ratio Ep/Ey = n.

DCON 9—10 : Ey/[(1 + vp) (1 —vp — 2n03p)].

DCON 11—21 : calculate components of elastic D matrix for 2-D.

DCON 23—24 : calculate additional components for 3-D. :

DCON 27-29 : add K,, term (aK') for drained/undrained analysis during
assembly of stiffness matrix (i.e. if IET # 0).

532 Routine DLIN

Routine DLIN calculates the D matrix when there isa linear variation of elastic

properties with depth.
The elastic Young’s modulus is given by the equation
E=Eo,+m(yo =) (5.7
where i

Ey — Young’s modulus at a depth y,.

m — rate of increase in modulus with depth.

Routine DLIN
SUBROUTINE DLIN(IP,I,IET,NEL,NDIM,NDN,NS,NPR, NMT, DLIN 1
1 ELCOD, SHFN,MAT, D, PR, INDX,BK) DLIN 2
c"‘li‘ili!!iﬁlli!lllii*il.*‘*iii"!IlIIi'ﬁIﬂllIli.IIlllllllli‘.lillllilDLIN 3
c CALCULATES STRESS-STRAIN MATRIX FOR LINEAR ELASTIC DLIN 4
c BEHAVIOUR WHEN ELASTIC PROPERTIES VARY LINEARLY WITH DEPTH DLIN 5
C‘i‘“ll‘.l‘li“illii“iiﬁi‘i*i‘iilll'!i‘.iiliill!ilii‘l‘li'l“i!ii‘!iilDLIN 6
DIMENSION ELCOD(NDIM, NDN),SHFN(NDN),D(NS,NS) DLIN 7
DIMENSION MAT(NEL),PR(NPR, NMT) DLIN 8
COMMON /PARS / PYI,ALAR,ASMVL,ZERO DLIN 9
c DLIN 10
KM=MAT (1) DLIN 11
cc IPA=IP+INDX DLIN 12
YY=ZERO DLIN 13
DO 5 IN=1,NDN DLIN 14
5 YY=YY+SHFN(IN)*ELCOD(2, IN) DLIN 15
E=PR(1,KM)+PR (3,KM)*(PR (2, KM)-YY) DLIN 16
G=E/(2.%(1.+PR(4,KM))) DLIN 17

AzE/((1.+PR(Y,KM)) *(1. -2, *PR(4,KM))) DLIN 18

g odpas 1

1
|

Sec. 5.3] The Incremental Stress—strain Relations 167
BK=E/ (3. %(1.-2. *PR(4,KM))) DLIN 19
D(1,1)=A%(1.-PR(4,KM)) DLIN 20
D(1,2)=A%PR (4,KM) DLIN 21
D(1,3)=D(1,2) DLIN 22
D(2,1)=D(1,2) DLIN 23
D(2,2)=D(1,1) DLIN 24
D(2,3)=D(1,3) DLIN 25
D(3,1)=D(1,3) DLIN 26
D(3,2)=D(2,3) DLIN 27
D(3,3)=D(1,1) DLIN 28
D(4,4)=G DLIN 29
IF (NDIM.EQ.2)GOTO 8 DLIN 30
D(5,5)=G DLIN 31
D(6,6)=G DLIN 32

8 IF(IET.EQ.0)RETURN DLIN 33
DO 10 J=1,3 DLIN 34
DO 10 JJ=1,3 DLIN 35

10 D(JJ, J)=D(JJ, J)+PR(T, KM) *BK DLIN 36
RETURN DLIN 37
END DLIN 38

DLIN 11 : material zone number.

DLIN 13—-15:y co-ordinate (or z in axisymmetric problems) of integration

point.

DLIN 16 : calculate value of Young’s modulus at integration point.

DLIN 17 : calculate shear modulus.

DLIN 18-29 : calculate elastic D matrix for 2-D.

DLIN 31-32 : calculate additional components for 3-D.

DLIN 34-36 :add K, term (aK') for drained/undrained analysis during
assembly of stiffness matrix (i.e. if IET 5 0).

5.3.3 Routine DCAM

Routine DCAM calculates the D matrix for Cam-clay. The array VARINT gives
the values of VARiables at INTegration points. The first index of this array gives
seven ’variables for two-dimensional analysis: oy, 0y, 07, Txy, &, € (voids ratio)
and p¢. These variables will, in general, be varying over the whole finite element
mesh.

Routine DCAM

SUBROUTINE DCAM(IP,I,IET,NEL,NIP,NVRS,NDIM,NS,NPR,NMT, DCAM 1
1 VARINT,MAT, D, PR, ITP,BK) DCAM 2
ClllIlﬂil‘lil!iii'lllilil!ilii‘ii'lll|Illliili!l!l‘iiiilil!il!i!iliiiil!DCAM 3
c CALCULATES STRESS-STRAIN MATRIX FOR CAM-CLAY DCAM &
c!ﬂ"“lllliii‘!llIlllIi!!ll!ll.!IlIlliillil!ill!.!liillliiiI.!i‘illl!lIDCAM 5
DIMENSION VARINT (NVRS,NIP,NEL),D(NS,NS),MAT(NEL) DCAM 6
DIMENSION S(6),A(6),B(6),PR(NPR,NMT) DCAM 7
c DCAM 8
KM=MAT (1) . DCAM 9
SX=VARINT(1,IP, 1) DCAM 10
SY=VARINT(2,IP,I) DCAM 11
SZ=VARINT(3,IP,I) DCAM 12
TXY=VARINT (4,1IP,I) DCAM 13
E=VARINT (NS+2, IP,I) DCAM 14
PC=ABS (VARINT (NS+3,IP,I)) DCAM 15
P=(SX+SY+5Z)/3. DCAM 16
Q2=SX*(SX-SY)+SY#(SY-SZ)+SZ*(SZ-SX)+3, ¥TXY *TXY DCAM 17

]
] 168 Cam-clay in Finite Element Analysis [Ch.S | Sec. 5.3] The Incremental Stress—strain Relations 169
|
|
i
| 4 IF (NDIM,EQ.2)GOTO 10 DCAM 18 i A(U)=C*S(4) DCAM 84
‘ c DCAM 19 IF (NDIM.EQ. 2)GOTO 18 DCAM 85
TYZ=VARINT(5,IP,I) DCAM 20 A(5)=C*s(5) DCAM 86
TZX=VARINT(6,IP,I) DCAM 21 A(6)=C*S(6) DCAM 87
Q2:Q2+3. *TYZ*TYZ+3. *TZX*TZX DCAM 22 ¢ DCAM 88
10 Q=SQRT(Q2) DCAM 23 } 18 DO 20 J=1,3 DCAM 89
PY=P*EXP(Q/(PR(4,KM)*P)) DCAM 24 i B(J)=0. DCAM 90
i BK=(1.+E)*P/PR(1,KM) DCA‘; ;2 DO 20 JJ=1,3 DCAM 91
. c DCA : 20 B(J)=B(J)+D(J,JJ)*A(JI) DCAM 92
i c CALCULATE ELASTIC STRESS-STRAIN MATRIX DCAM 27 - B(4)=D (4, 4)*ACH) DCAM 93
c DCAM 28 IF (NDIM.EQ.2)GOTO 25 DCAM 94
G=PR(5,KM) DCAM 29 B(5)=D(5,5)*A(5) DCAM 95
IF(G.LT.1.) G=BK*1,5%(1.-2.%PR(5,KM))/(1.+PR(5,KM)) DCAM 30 B(6)=D(6,6)*A(6) DCAM 96
AL=(3. *BK+4.%G)/3. DCAM 31 : c DCAM 97
DL=(3. ¥BK-2.%G)/3. DCAM 32 | 25 XI=(PR(2,KM)-PR(1,KM))/(1.+E) DCAM 9.
| c « beam 33 AA=3.%BB/XI DCAM 99
- CALL ZEROR2(D, NS, NS) DCAM 3‘51 . AB=0. DCAM 100
I D(1,1)=AL DCAM 3 . c DCAM 101
i D(2,1)=DL bCaM 36 DO 30 J=1,NS DCAM 102
D(3,1)=DL DCaM 37 30 AB=AB+A(J)*B(J) DCAM 103
D(1,2)=DL DCAM 38 BETA=zAA+AB DCAM 104
D(2,2)=AL DCAM 39 1 DO 40 J=1,NS DCAM 105
D(3,2)=DL DCAM 40 DO 40 JJ=1,NS DCAM 106
D(1,3)=DL beaM 41 40 D(JJ,J)=D(JJ,J)-B(JJ)*B(J)/BETA DCAM 107
D(2,3)=DL gg:’:{ 3§ 50 IF(IET.EQ.0) GOTO 80 ggﬁ: lgg
D(3,3)=AL c 1
D(4,4)=G DCAM 44 DO 60 J=1,3 DCAM 110
IF (NDIM.EQ. 2)GOTO 11 DCAM 45] DO 60 JJ=1,3 DCAM 111
D(5,5)=G DCAM 46 60 D(JJ, J)=D(JJ,J)+PR(T7,KM)*BK DCAM 112
D(6,6)=G gg:’; 3; 80 RETURN DCAM 113
¢ END DCAM 114
11 IF(PY.LT.0.99*PC) GO TO S0 Dg:ﬁ ug
c DCAM 50 . .
c CALCULATE PLASTIC STRESS-STRAIN MATRIX IF CURRENT DCAM 51 DCAM 9 : mater~1a1 zone number,
¢ POINT ON YIELD LOCUS AND SET PC NEGATIVE DCAM 52 DCAM 10-13 : effective stress components for 2-D.
i ¢ DCAM 53 ~ Lo .
f VARINT (NS+3, IP, I)=—ABS (VARINT (NS+3,1P, 1)) DCAM 54 | DCAM 14 : v'01ds ratio (e). . ,
| S(1)=SX-P DCAM 55 j DCAM 15 : size of current yield locus (p¢).
{ gg;fgg‘g o 28 DCAM 16 : mean normal effective stress (p).
S (h)=2. ¥TXY pean 20 : DCAM 17 1 q2.
i gé’;?;”;??iemom 12 DCAM 60 DCAM 20-21 :additional shear stress components (3-D).
I S$(6)=2.%TZX DCAM 61 DCAM 22 : g% for 3-D.
i 12 BB=(1.-Q/(PR(Y,KM)*P))/(3.*P) Do gg { DCAM 23 1q.
4 ITP=0 3 .))
‘ IF(Q.LT.1.0E-5) GOTO 15 Dg:: 2‘54 DCAM 24 : size of yield locus passing through stress state (not the sam.
i | ??’:sg;(ﬁ(g'g’:;'g&_o " AV f as current yield locus).
! C=1.5/(Q*PR (N, KM)¥P) DCAM 27 | DCAM 25 : calculate bulk modulus of soil.
g j GOTO 16 gg:ﬂ 62 4 DCAM 29 : shear modulus (or Poisson’s ratio if < 1).
: c
i c Q/MP IS SMALL.USE FITTED CURVE TO CALCULATE C VALUE DCAM 70 DCAM 30 : calculate shear modulus G.
< ¢ gc:: ;”2 DCAM 31-32 : elastic constants.
B 14 CA=153,0302/ (PR (4,KM) ¥¥2%pCH#2) C | DO 34) D .
. C=(~2.98%(100. ¥QMP) ¥¥3+3, 98 ¥(100. *QMP) ¥ ¥2) *CA DCAM 73 AM : zero D matrix.
| 17P-1 pear 7 DCAM 35—44 : elastic D matrix (2-D).
: c goro 16 DCAM 76 ! DCAM 4647 : additional components of elastic D matrix for 3-D.
: € Q/MP IS TOO SMALL.USE C VALUE FOR ZERO Q/MP e b DCAM 49 : skip if elastic.
|' ; ¢ 15 coo. DCAM 79 DCAM 54 : make p¢ negative to indicate yielding.
E | . ITP=1 gg:: g? DCAM 55-58 : calculate deviatoric stresses for 2-D.
! 16 A(1)=BB+C¥*S (1) L
H A(2;=BB*ClS(2) DCAM 82 . DCAM 60-61 :additional components for 3-D.,
|

g A(3)=BB+C*S(3) DCAM 83 DCAM 62 : calculate constant part of flow matrix a.

http:D030J=1.NS
http:IF(Qt1P.LT.0.Ol
http:G=PR(S.KM

=l

P N S

o s T L o

p e

170

DCAM 6366
DCAM 6768
DCAM 72-75
DCAM 81-84
DCAM 86-87
DCAM 89-93
DCAM 95-96
DCAM 98-99
DCAM 102-104
DCAM 105-107
DCAM 110112

Cam-clay in Finite Element Analysis [Ch.S

- check if stress state is close to tip along p" axis.

: if not, skip after calculating C.

- calculate C using curve fitting if close to tip.

: calculate flow matrix a for 2-D.

: calculate additional components of flow matrix a for 3-D.
: calculate b = D . a for 2-D. "

: calculate b = D . a for 3-D.

: calculate hardening parameter ¢THa.

- calculate aTDEa —cTHa.

: calculate Dep matrix.

:add K, term for drained/undrained analysis during assembly

of element stiffness matrix (i.e. only if IET # 0).

5.34 Routine DMCAM
Routine DMCAM calculates the D matrix for modified Cam<lay.

Routine DMCAM
SUBROUTINE DMCAM(IP, I, IET,NEL,NIP,NVRS,NDIM,NS,NPR,NMT, DMCM 1
1 VARINT,MAT,D, PR, BK) DMCM 2
C!Illlilllli!illI!iiillllilillllillilllllllli!!i!!llIllllillllllIII&IIIIDM(_:M 3
c CALCULATES STRESS-STRAIN MATRIX FOR MODIFIED CAM-CLAY DMCM U
C!liilil!illl!!li!il!iilliiiliiiil!lllil!l!ﬁ!!il!l!ill!lll!lllﬁlilliilliDMcM 5
DIMENSION VARINT(NVRS,NIP,NEL),D(NS,NS),MAT(NEL) DMCM 6
DIMENSION S(6),A(6),B(6),PR(NPR, NMT) DMCM 7
c DMCM 8
KM=MAT(I) DMCM 9
SX=VARINT(1,IP,I) DMCM 10
SY=VARINT (2, IP,I) DMCM 11
SZ=VARINT (3, IP,I) DMCM 12
TXY =VARINT (4, IP,I) DMCM 13
E=VARINT (NS+2, IP,I) DMCM 14
PC=ABS(VARINT (NS+3,IP,I)) DMCM 15
P=(SX+5Y+SZ)/3. DMCM 16
Q2=SX¥*(SX-SY)+SY#(SY-SZ)+SZ*(SZ-SX)+3. ¥TXY *TXY DMCM 17
IF (NDIM.EQ.2)GOTO 10 DMCM 18
c DMCM 19
TYZ=VARINT (5, IP,I) DMCM 20
TZX=VARINT (6, IP,I) DMCM 21
Q2:=Q2+3. *TYZ*TYZ+3. *TZX¥*TZX DMCM 22
10 Q=SQRT(Q2) DMQM 23
PY=P+Q¥Q/(P*PR (4, KM)*PR(4,KM)) DMCM 24
BK=(1.+E)*P/PR(1,KM) DMCM 25
c DMCM 26
c CALCULATE ELASTIC STRESS-STRAIN MATRIX DMCM 27
c DMCM 28
G=PR(5,KM) DMCM 29
IF(G.LT.1.) G=BK¥1.,5%(1.-2.%PR(5,KM))/(1.+PR(5,KM)) DMCM 30
AL=(3.*BK+4.*G)/3. DMCM 31
DL= (3, *BK-2.*G)/3. DMCM 32
c DMCM 33
CALL ZEROR2(D,NS,NS) DMCM 34
D(1,1)=AL DMCM 35
D(2,1)=DL DMCM 36
D(3,1)=DL DMCM 37
D(1,2)=DL DMCM 38
D(2,2)=AL DMCM 39
D(3,2)=DL DMCM 40

i
!

Sec. 5.3] The Incremental Stress—strain Relations 171
D(1,3)=DL DMCM 41
D(2,3)=DL DMCM 42
D(3,3)=AL DMCM 43
D(4,4)=G DMCM 44
IF (NDIM. EQ.2)GOTO 12 DMCM us§
D(5,5)=G DMCM 46
D(6,6)=G DMCM 47
c : DMCM U8
12 IF(PY.LT.0.99%*PC) GO TO 50 DMCM 49
C DMCM 50
c CALCULATE PLASTIC STRESS-STRAIN MATRIX IF CURRENT DMCM 51
c POINT ON YIELD LOCUS AND SET PC NEGATIVE DMCM 52
¢ DMCM 53
VARINT(NS+3, IP, I)=—ABS (VARINT (NS+3, IP, 1)) DHMCM 54
PCS=.5%PC DMCM 55
PB=P/PCS DMCM 56
S(1)=SX-P DMCM 57
S(2)=8Y-P DMCM 58
S(3)=5Z-P DMCM 59
S(4)=2. *TXY DMCM 60
IF (NDIM.EQ.2)GOTO 16 DMCM 61
S(5)=2. ¥TYZ DMCM 62
S(6)=2.*TZX DMCM 63
16 BB=-2.*(1.-PB)/(3.%PCS) DMCM 64
C=3./(PCS*PCS*PR (4,KM) *PR (4, KM)) DMCM 65
A(1)=BB+C*sS(1) DMCM 66
A(2)=BB+C¥S(2) DMCM 67
A(3)=BB+C¥*S(3) DMCM 68
A(4)=CHS(4) DMCM 69
IF (NDIM.EQ.2)GOTO 18 DMCM 70
A(5)=C¥*S(5) DMCM 71
A(6)=C*S(6) DMCM 72
c DMCM 73
18 DO 20 J=1,3 DMCM T4
B(J)=0. DMCM 75
DO 20 JJ=1,3 DMCM 76
20 B(J)=B(J)+D(J,JJ)*AJJ) DMCM 77
B(4)=D(4,4)*A(H) DMCM 78
IF (NDIM.EQ.2)GOTO 25 DMCM 79
B(5)=D(5,5)*A(5) DMCH 80
B(6)=D(6,6)*A(6) DMCM 81
c DMCM 82
25 XI=(PR(2,KM)-PR(1,KM))/(1.4E) DMCM 83
AA=-Y4, ¥PB¥(1,-PB)/(PCS¥*XI) DMCM 84
AB=0. DMCM 85
c DMCM 86
DO 30 J=1,NS DMCM 87
30 AB=AB+A(J)¥B(J) DMCM 88
BETA=AA+AB DMCM 89
DO 40 J=1,NS DMCM 90
DO 40 JJ=1,NS DMCM 91
40 D(JJ,J)=D(JJ,J)-B(JJ)*B(J)/BETA DMCH g2

50 IF(IET.EQ.0) GOTO 80 DMCM 93

c DMCM 94
DO 60 J=1,3 DMCM 95
DO .60 JJ=1,3 DMCM 96

60 D(JJ,J)=D(JJ,J)+PR(T7,KM)*BK DMCM 97

80 CONTINUE DMCM 98

CC WRITE(6,801)I,IP,D DMCM 99

CC801 FORMAT (/1X,4HI = ,I5,2X,SHIP = ,I5,3X, 1HD/(1X,9E14.5)) DMCM 100
RETURN DMCM 101
END DMCM 102

DMCM 9 : material zone number.

DMCM 10-13 : effective stress components for 2-D.

http:II,KM).PR
http:PY=P+Q.Q/(P.PR

172 Cam-clay in Finite Element Analysis [Ch.5
DMCM 14 : voids ratio (e).

DMCM 15 : size of yield locus (p¢).

DMCM 16 : mean normal effective stress (p").

DMCM 17 :q°.

DMCM 20—21 : additional shear stress components (3-D).

DMCM 22 : ¢* for 3-D.

DMCM 23 1q.

DMCM 24 : size of yield locus passing through stress state (not the same as
' current yield locus).

DMCM 25 : calculate bulk modulus of soil.

DMCM 29 : shear modulus (or Poisson’s ratio if < 1).

DMCM 30 : calculate shear modulus G.

DMCM 31-32 : elastic constants.

DMCM 34 : zero D matrix.

DMCM 35—44 : elastic D matrix (2-D).

DMCM 46—47 : additional components of elastic D matrix for 3-D.
DMCM 49 : skip if elastic.

DMCM 54 : make p¢ negative to indicate yielding.

DMCM 57—60 : calculate deviatoric stresses for 2-D.

DMCM 62—63 : additional components for 3-D.

DMCM 64 : calculate constant part of flow matrix a.

DMCM 65 : calculate C.

DMCM 66—69 : calculate flow matrix a for 2-D.

DMCM 71—72 : calculate additional components of flow matrix a for 3-D.
DMCM 74—78 : calculate b = D . a for 2-D.

DMCM 80—81 : calculate & = D . a for 3-D.

DMCM 83—84 : calculate hardening parameter cTHa.

DMCM 8788 : calculate a' Dga — ¢ Ha.

DMCM 9092 : calculate Dep matrix.

DMCM 95-97 : add K, term for drained/undrained analysis during assembly of

element stiffness matrix (i.e. only if IET 5 0).

5.4 DETERMINING THE CAM-CLAY PARAMETERS

5.4.1 Introduction

T S L Ty e -

The critical state soil parameters can all be determined from the normal range of
laboratory tests that are performed on a soil. The approach to the selection of
parameters will depend on the problem to which the program is to be applied.
In general the information should be obtained from high-quality laboratory
tests. This is particularly so when the program is to be used to predict behaviour
in a field situation. In these circumstances, advanced in sifu testing techniques
(e.g. Wroth, 1984) are desirable in addition to high-quality laboratory tests on
‘undisturbed samples’.

Of course, sometimes high-quality data will not be available, and the analyst
must develop a feel for the range of possible parameter values and the influence

Sec. 5.4] Determining the Cam-clay Parameters 173

of the variation of each. In practical and research applications it is quite
common to perform ‘parametric studies’, where one performs analyses with
different parameter values to study the influence of each.

Some soil tests give information which is not independently specified within
the critical state framework (but depends on other CSSM parameters and the
in situ stresses). One example is the undrained shear strength. In these
circumstances there will usually be some discrepancy between data from
different sources. Some of this will be due to the quality of the data, and some
will be due to the fact that despite their sophistication, the critical state models
are simplified idealisations of real soil behaviour. The.analyst needs to obtain a
‘best fit’ between all the available data and the critical state parameters, bearing
in mind the reliability of each piece of data. Indeed one of the strengths of the
critical state theories is this ability to review data from different types of soil
test (Wroth, 1984).

5.4.2 The frictional constant M

Triaxial tests (drained and undrained with pore pressure measurement) on iso-
tropically consolidated samples can be used to obtain the frictional constant M.
A number of tests need to be carried out with different consolidation pressures.
It is necessary to continue these tests to large strains to ensure that the samples
are close to the critical state. For the undrained tests the pore pressures should
be monitored to see that they are not still changing at the end of the test. If they
are, then the samples have not reached the critical state and these results would
lead to M being underestimated.

If one obtains the principal effective stresses at failure, then the drained
angle of friction ¢’ can be obtained from the geometry of a Mohr’s circle plot:
0a/0; = (1 + sin ¢")/(1 —sin ¢'). Combining this relation with the definitions of
p' and g, M (the value of ¢/p' at failure) is given by

VR AL (5.8)
3 —sin¢
Of course, it is not necessary to go through the intermediate step of calculating
¢': we have introduced this to make the relationship of M and ¢’ explicit.
Alternatively, by plotting the g/p" values at failure, the slope of the best-fitting
straight line is taken as M. If one is testing field samples, a fair amount of scatter
is to be expected and some ‘engineering judgement’ is needed here.

As noted in section 5.2.1, the influence of the intermediate principal stress on
the soil strength is usually better described by the Mohr—Coulomb equation
than by the critical state cone. Sometimes the value of M is adjusted slightly to
take this into account (e.g. a lower value is chosen which will match the soil
strength in plane strain better when used in the finite element analysis).

5.4.3 Slopes of the normal consolidation and swelling lines (A and «)

These parameters can be obtained from oedometer tests or from triaxial tests on

174 Cam-<clay in Finite Element Analysis [Ch.5

samples either isotropically or with K, normally consolidated. From the
theoretical point of view, one expects to obtain equal values of A from any
constant n compression test. Thus one would expect to get the same value of A
from an isotropic compression test and a K, compression test. Because the value
of Ky changes on one-dimensional unloading (see section 5.5), an oedometer
capable of horizontal stress measurement is required it x is to be determined
from one-dimensional unloading rather than isotropic unloading.)

It is standard practice to plot the results of one-dimensional compression tests
in terms of e (voids ratio) against log;o0y, where gy is the effective vertical
stress. The slope C; of the normally consolidated line is known as the
‘compression index’.

A= Cg/2.303. (5.9)

(2.303 =1In(10.) Alternatively X can be directly determined from the slope of
the compression line ina (In(p"), €) plot. Often is simply estimated from X, as
indicated at the end of this section.

One sometimes finds that the compression line in (In(p"), €) space is curved
rather than linear. Under these circumstances one has to choose the slope
appropriate to the stress level believed to be relevant in the problem to be
analysed. (Note that this will also affect the estimation of I" or e discussed
below.)

It is interesting to note that Butterfield (1979) re-plotted the resuits discussed
above in In(¥)—In(p") space and obtained linear plots. In fact it is difficult to
decide on the basis of the available data whether Butterfield’s proposal or the
traditional approach is better. From a theoretical point of view, linear relations
in (In(e), In(p')) plots would be preferable, eliminating the possibility of
negative values of e at high stress levels. This would tidy up one corner of critical
state theory, but for practical purposes the traditional relations appear to be
quite satisfactory.

In fact one can re-formulate the critical state models to incorporate
Butterfield’s suggestion (or any other hardening law). This would involve some
changes to the finite element program (but not major ones).

k-lines are usually found to be even more curved than A-lines. In Chapter 2
we pointed out that although the assumed form of elasticity is adequate for
many purposes, there are situations (e.g. cyclic loading) where the k-line
assumption is not adequate. x values are often chosen in the range of one-fifth to
one-third of . The data usually indicate a lower (stiffer) value on immediate
unloading and a higher value at later stages of unloading.

5.4.4 Location of CSLin (e, In(p")) plot (ecs =" —1)

ecs is defined as the voids ratio on the critical state line for a value of p' = 1.

Note that the parameter describing the location of the CSL in Chapter 2 (I)
was a specific volume, whereas the parameter required here (ec) is a voids ratio.
Since specific volumes can always be converted into voids ratios (and vice versa)
using the relation ¥ =1 + e, this'should not lead to any confusion.

Sec, 5.4] Determining the Cam-clay Parameters 175

Following on from the determination of M above, the reader might expect
that ecs would be determined by measuring the moisture contents of several
triaxial tests at failure. This is rarely done, however, basically because of the
difficulty in obtaining sufficiently accurate data. In fact once X and x have been
determined, a value of moisture content at any point on the stable state
boundary surface will suffice to fix a value of T, using either (2.17) for Cam-clay
or (2.41) for modified Cam-clay. It is common in fact to determine ecs in this
way from consolidation data. A side-effect of this procedure is that different
values of e.s (or I') are obtained for the Cam<lay and modified Cam-clay
models. This is in contrast to the conventional assessment of the differences
between Cam-clay and modified Cam-clay when it is assumed that the critical
states coincide for the two models.

Fig. 5.3 shows the normal assumption which is made: the CSSM parameters
M, A, k and T (or e;) are assumed to be identical for Cam-clay and modified
Cam-clay. In this case the difference between the two models shows up as
different isotropic normal consolidation lines.

Fig. 5.4 shows the result of following the procedure outlined above. Here the
value of I' has been obtained from a moisture content (i.e. value of e or ¥) on
the isotropic normal consolidation line. This gives different values of T for Cam.
clay and modified Cam<lay and thus two different positions of the critical state

q

1
P

Fig. 5.3 — When comparing _Cam{lay and modified Cam-clay it is conventionally
assumed that the models coincide at the critical state. Hence the isotropic normal
consolidation lines are different

176 Cam-clay in Finite Element Analysis [Ch.5

©

Fig. 5.4 — If the critical state parameter I is calculated from the moisture content

of an isotropically normally consolidated sample, then Cam-clay and modified

Cam-clay have different CSLs in the (p’, V') plot. Hence modified Cam-clay gives
higher undrained shear strengths than Cam-clay

line in the (In(p"), V) plot. One practical consequence of this approach is that
the undrained shear strength of a soil (with the same moisture content) is now
28% greater for modified Cam-clay compared to Cam-clay. It was this fact that
we were referring to in Chapter 2 when we commented that the difference
between Cam-clay and modified Cam-clay is often greater than is sometimes
suggested. The figure of 28% here is based on soil parameters with A = 5k: the
ratio of shear strengths is obtained by substituting into (2.26) the two different
values of I". For other soil parameters, the ratio can be calculated as 1.36 raised
to the power A, where 1.36 is half the base of natural logarithms and
A =1—«/\, asin Chapter 2.

If the values of " are obtained from moisture contents from an oedometer
test then neither the CSL nor the isotropic NCL will coincide for Cam-clay and
modified Cam-clay. In this case the discrepancy between predictions of
undrained shear strength will remain, but will not be so large as above.

Sec. 5.4] Determining the Cam-clay Parameters 177

S45vor G

As indicated above, CRISP allows the user to specify either a constant value of
v’ or a constant value of G. Now K ' varies with p’ (as indicated by (5.3)), and it
can be shown that if G is also allowed to vary with p’, then the soil is not truly
elastic. This is because elastic stress cycles are not necessarily reversible
(Zytynski et al., 1978). Thus it would appear to be preferable from a theoretical
point of view to assume a constant value of G. The question is: what value of
G? Experimental evidence indicates that G does vary with stress level. Attempts
to correlate G with other data suggest a stronger relation with p’, than p(, or ¢,.

It is, therefore, usually more convenient to specify a value of »* which means
that G varies in the same way as K'. This is particularly so when analysing a
problem where there is a significant variation in stress level in the soil. The
question now is: what value of »'? There are two ways of arriving at a value of
v". The first is from data of K, versus OCR, and the second from strain measure-
ments in triaxial tests. The first is the more usual, and gives a value of about 0.3~
for many soils: this is related to the consideration of in situ stresses discussed
below. The second method tends to give lower values of v (e.g. 0.12 for London
clay (Wroth, 1972)). At first, this kind of discrepancy may seem to throw doubt
on whether it is possible to assign realistic elastic parameters. Techniques for
accurate measurement of strains recently developed at Imperial College reveal a
more complex non-linear behaviour in this ‘elastic’ region of behaviour (Jardine
etal., 1984).

It is worth pointing out here that the main strength of the Cam-clay models is
in the calculation of plastic strains during yielding, as opposed to the elastic
strains which are calculated for over-consolidated behaviour. Thus for many
problems the exact assumption made for elastic properties is of only secondary
importance. On the other hand, there will certainly be some problems where the
assumptions made here are deficient, and the user should consider incorporating
some new material idealisation within the yield locus in the program. As we have
indicated in Chapter 2, this is an area of continuing research.

5.4.6 Horizontal and vertical permeabilities

Although permeabilities are not ‘Cam-clay parameters’, they are considered here
for completeness. For layered soils it is well known that the horizontal
permeability is greater than the vertical permeability. The same is true for any
samples anisotropically (for example K,) consolidated. In the laboratory, the
permeability can be determined from oedometer tests. To determine the
horizontal permeability, a specially modified oedometer with radial drainage is
required.. Oedometers with external radial drainage may be preferable. The
measuring of permeabilities either in the field or in the laboratory is well
documented and will not be discussed here. The vertical permeability can also be
estimated from the coefficient of consolidation (¢y) and the coefficient of
compressibility (s2,) from the expression

ky = cymyvw. (5.10)

eTsprETsn e

S

178 Cam-clay in Finite Element Analysis [Ch.5

(In terms of the CSSM parameters, my =:/(p'V), from d%fferentiating t'he
Mline equation, but since the value of the horizontal stress is not necessarily
known, direct use of (5.10) is more convenient.) .

In CRISP the permeability is assumed to be constant throughout the analysis.
Experimental evidence shows that permeability varies _vith stre.ss .level. .As. the
voids ratio increases, the pore water can flow more easily, and it is reallstx(; to
expect the permeability to increase with increase in. voids'rz.atlo. Such a relation-
ship can be readily incorporated into the program if sufﬂcgnt data to support
this are available for the particular soil being modelled (Almeida, 1984).

5.5 IN SITU STRESSES

5.5.1 Introduction

In section 5.4, various means of obtaining the Cam-clay paramet'ers (i.e. soil
constants) were described. In this section we discuss how to determine the‘ strc.:ss
parameters, which vary from point to point in the soil. These are the in situ

- distribution of o), of, 4, and p¢ for the entire region of the analysis. The

parameter p, is only needed for those zones of the mesh wher.e ~t}A1e Cam-clay
models are used. CRISP uses this information to calculate the initial values of
voids ratio (e) over those zones. ‘

The reason that these in situ stresses are required is that in an elasto-plastic
analysis the stiffness matrix of a finite element will be dependent on the stress
state within the element. In general the stress state will vary across an element,
and the stiffness terms are calculated by integrating expressions dependent on
these varying stresses over the volume of each element. CRISP ix?tegrat_es _these
expressions numerically by ‘sampling’ the stresses at particular pmflts within the
element and then using standard numerical integration rules for friangular areas.

For Cam-lays it is important to try to establish the in sifu stress state a.s
accurately as possible. This is because the displacements predicted Aby an analyS}s
are quite sensitive to the relative amounts of elastic (over-consolidated)/plastic
straining that take place.

5.5.2 How in situ stresses are set up

The in situ stresses in the ground are produced by the loadings which the
geological history of a site imposes on each small element of soil. Many natural
soils are deposited as mineral particles from water or the atmosphere. As a
deposit of soil is progressively built up in a series of layers,. each small elém'ent qf
soil is subjected to a steadily increasing vertical effective stress. Soil in this
condition is normally consolidated, because each element has never been
subjected to a greater stress. The erosion of upper layers of the soil vyxll lead to
unloading of the remaining soil, which therefore becomes over-censolidated. An
alternative reason for over-consolidation is the raising of the water table (Parry,
1970). The water table may fall again, or new layers of soil may be deposited,
and so an element of soil may go through several cycles of loading, unloading

Sec. 5.5] In Situ Stress 179

and reloading. In all cases the assumption is made that the soil loading and
unloading is one dimensional, i.e. no shear stresses develop on vertical or
horizontal planes. In other words, the principal stress directions are vertical and
horizontal, and the horizontal stresses are equal.

There are some situations where this description will not be appropriate. The
recent engineering history of a site (e.g. excavation, compaction or construction)
will also affect the in situ stresses of soil elements near to the engineering
activity. Residual soils which are formed by the in situ weathering of rocks do
not conform to this picture: they invariably behave as if over-consolidated.

The calculation of the vertical effective stress is straightforward. The vertical
total stress at any depth is calculated as the bulk density of the soil multiplied
by the depth., (A more sophisticated approach is to take into account the
variation of bulk density with depth, but this is usually not necessary.) From the
position of the water table, the pore water pressure is calculated, and hence the
vertical effective stress (oy = oy —u). The calculation of the horizontal effective
stress is not so straightforward. The coefficient of earth pressure at rest
(Ko = op/0,) depends on the stress history of the soil. We describe below some
methods of estimating K, but it is worth pointing out at the start that from
both the practical and the theoretical points of view, these methods are not
entirely satisfactory. A prudent engineer would supplement these estimates by
in situ measurements of the horizontal effective stress using, for example, the
self-boring pressure meter (Wroth, 1984).

5.5.3 Two approaches for in situ stresses

In an elastic analysis of soil (and sometimes in an elastic—perfectly-plastic
analysis) it is quite common to set K¢ as »'/(1 —»"). This is consistent with the
condition of zero lateral strain inherent in one-dimensional elastic compression,
but unfortunately measured laboratory values of v’ are not consistent with the
usual values of K, believed appropriate for the field.

Of course this elastic assumption is not to be used for analyses using the
critical state models, where one-dimensional compression involves plastic
yielding. When using the Cam-clay models there are basically two approaches for
determining the in situ stresses:

(i) an analysis is performed (either using CRISP or by hand) in which a soil
column is subjected to the stress history which is believed has been applied
to the soil deposit in practice. This approach has the merit of being
theoretically consistent with subsequent analysis but it suffers from the
disadvantage that Cam-clay and, to a lesser extent, modified Cam-clay are
not very successful in predicting values of K. (the coefficient of earth
pressure at rest for normally consolidated soil):

(ii) a rather more empirical method is used, based on the data accumulated by
Wroth (1975).

180 Cam-clay in Finite Element Analysis [Ch. 5

We concentrate on the second approach, which is rather more practical and easy
to use. However, in the final section we briefly compare Wroth’s method with

the so-called ‘consistent’ approach.

5.5.4 Wroth’s method

In Wroth’s method the value of K. is taken as
Kpe=1—sing’, (5.11)

a simplified version of Jaky’s relation (1944). Although there is some theoretical
analysis underlying this equation, examination of Jaky’s paper reveals that the
relation is deduced for the stress state at the centre of an embankment, where
there is no necessity for there to be a condition of zero lateral strain. Hence
(5.11) must be regarded as an empirical relation. However, there is evidence that
(5.11) gives K¢ values which match data from laboratory tests (Wroth, 1972).

Wroth (1975) proposes two alternative relationships between Ky, K¢ and
OCR (OCR = 0yn /oy where oy, is the maximum vertical effective stress
experienced by a soil element):

’

14
Ko = OCR Kpe = ——— (OCR—1), (5.12)
-V

and

3(1—Kne) 301 —Ko) OCR(1 + 2K pe)
m — =l |———2¢1 (5.13)
|+ 2K e 1+ 2K, | + 2K,

(5.12) is obtained by considering elastic unloading from the normally
consolidated state, and gives a good fit to the existing data for a number of soils
up to an OCR of about 5. The values of »' necessary to fit the observed data
were determined by Wroth to be in the range 0.254 to 0.371 for eight different
soils. (5.13) was proposed as valid up to higher values of OCR and was obtained
from the observation that an unloading plot of q/p" versus In p’ is a straight-line
relationship (Fig. 5.5). m is an empirical constant which Wroth shows is linearly
related to the Plasticity Index (PI) for a number of soils. Wroth (1976) suggests
the following equation for estimating m (where direct measurements are not
available):

m =0.022875 PI + 1.22, ‘ (5.14)

where Pl is in per cent.

Wroth’s method requires a knowledge of the OCR for soil at each depth. The
standard procedure for obtaining the value of OCR is to test samples of clay in
an oedometer and carry out one-dimensional consolidation with small load
increments (Bjerrum, 1973), using the method of Casagrande (1936) to

determine the vertical pre-consolidation pressure. Samples taken at frequent .

intervals of depth should give the variation of gyy, with depth. Hence the over-
consolidation ratio (OCR) with depth can be determined.

Sec. 5.5] In Situ Stress 181

7

Normal consolidation

oo

Unloading

Slope: —
m

Fig. 5.5 — The relation between n and In (p') observed for many soils on one-
dimensional loading and unloading

(5.13) is a non-linear equation and must be solved iteratively to obtain values
of Ko. This process is possible (if a little tedious) by hand, using a pocket
calculator. As Wroth (1975) points out, (5.13) is only valid for the first
unloading from the normally consolidated condition, as the data show that
reloading does not follow the original unloading stress path. In practice,
however, (5.13) is used irrespective of unloading/reloading cycles that may have
taken place. (Only rarely does one know the details of the soil’s previous stress
history, and in any case some additional empirical relations would be necessary
to specify what happens on reloading.)

The basic steps in calculating in sifu stresses using Wroth’s method can br
summarised as follows.

1. Calculate gy from the bulk density of the soil and the position of the
water table,

2. Calculate oyy from an oedometer test. (If no oedometer tests are
performed for soil at this particular depth, then interpolate between
neighbouring values of oy .)

3. Use (5.11) (Jaky’s relation) to calculate K, and hence the horizontal
effective stress acting when the maximum vertical effective stress (oym)
was present.

4. Calculate values of p’ and g corresponding to the maximum stresses found
in 3. Substitute these values into the equation of the yield locus (either
(2.18) or (2.40) depending on whether Cam-clay or modified Cam-clay is
to be used in the subsequent analysis) to calculate the value of p¢.

e
T

182 Cam-clay in Finite Element Analysis [Ch.S

Wroth {empirical)

60
N
&
404 *\z‘(\
¥ g Modified
T Cam-clay
20+ e
T 15
/”" 3 . g
_________ ‘ >
180 p’
A Cém~clay

—204]

—404

Note: numbers shown
on the stress paths are
values of OCR

-804

Fig. 5.6 — Different assumptions for loading and unloading Cam<lay and
modified Cam-clay one-dimensionally

S, Use either (5.12) or (5.13) to calculate the value of Ko from Ky and
OCR. Hence the in situ horizontal effective stress oy = K 0Oy.

5.5.5 Different approaches compared

Fig. 5.6 illustrates the effect of following three different approaches for
estimating the in situ stresses. In each case the soil is loaded to the same effective
vertical stress and then unloaded.

The upper stress path is obtained using Wroth’s method with (5.13) for
unloading. Although this stress path is shown to establish a modified Cam-clay
yield locus, exactly the same stress path is obtained if one is going to use Cam-
clay in the subsequent analysis.

The modified Cam-clay and Cam<lay stress paths were obtained from a
CRISP analysis. For modified Cam-clay, one can calculate the value of Ky using
the theory for calculating strains in Chapter 2 (supplemented by the extra elastic
shear strains). However, it is more straightforward to use CRISP to find the
theoretical K, c. The analysis was started at from a point on the isotropic normal
consolidation line at half the final maximum effective vertical stress. After the

Sec. 5.5] In Situ Stress 183

initial part of the stress path, which is almost vertical, the stress path bends
round and follows the constant n-line corresponding to K,¢. The unloading line
is straight, and in fact is the same as would be obtained using (5.12). The slope
of the unloading line is given by 3(1 —»")/(1 + »"). The value of v’ used here
was 0.2, which is slightly lower than the range suggested by Wroth (1975).1fa
value of v’ of 5 is used, then the unloading part of the stress path has exactly
half the slope of the one shown in Fig. 5.6.

The same basic procedure was followed for Cam-clay, producing the lower
stress path shown in Fig. 5.6. The analysis was started quite close to oy,
because for most values of the CSSM parameters, K, = 1 (the incorporation of
elastic shear strains via v’ does not affect this standard result described by
Schofield and Wroth (1968)). The unloading part of the stress path involves
expansive elastic volumetric strains and compressive plastic volumetric strains,
giving an overall volumetric strain which is expansive. When the OCR is equal to
8, the soil is close to a state of passive failure at the critical state.

The in situ stresses obtained by using the Cam-clay models directly lead to
higher values of K, (for a given OCR). This is particularly the case for Cam-clay.
On the other hand, it is possible to take account of information describing the
complete stress history of the soil (including unloading/reloading cycles) where
this is available. A side-effect of using Wroth’s method for high values of OCR is
that the initial stress state in an analysis is near the origin of the (p', ¢) plot, well
over on the dry side of the critical state. In the subsequent analysis there will be
quite a lot of elastic shearing before the soil yields. In an undrained analysis,
yielding will take place in a region of stress space (i.e. on the dry side of critical)
where the predictions of the Cam-clay models are known to be not very
satisfactory. In contrast, using the ‘consistent’ approach the soil would tend to
yield nearer the critical state. Thus the response would be closer to elastic—
perfectly-plastic for medium to high over-consolidation ratios.

Clearly .the actual response of soil in an analysis depends on the stress history
assumed before the start of the analysis. If the soil is over-consolidated then the
predictions of soil deformations in the early part of the analysis will be quite
sensitive to the assumed unloading relation. On the other hand, if the analysis
approaches failure then the main factor which influences the results will be the
value of oyy,. We can compare this situation to that for steel structures where
plastic collapse loads are independent of initial (residual) stresses. Collapse loads
in geotechnical engineering do depend on the initial stresses, but not necessarily
on every detail of the stress history. It is likely that many useful calculations can
be carried out with relatively crude estimations of the in siru stresses, but we
must admit that there has not been much work (that we are aware of) where the
effect of different assumptions has been systematically studied.

5.5.6 Final comments on in situ stresses

Although CRISP was used to produce the results discussed in the previous
section, it is not necessary to perform a complete finite element analysis. Use of

184 Cam-clay in Finite Element Analysis [Ch.5

the D-matrix routines listed earlier in this chapter is possible: calculating
incremental stress changes for imposed one-dimensional incremental strains
(updating the current stresses as one proceeds).

A further empirical relation between K, and OCR is due to Parry (1982):

Ko = Kne (OCR)?.

(' is in radians.)) This equation gives values of K, similar to (5.13) and its
manipulation is slightly more straightforward.

In this discussion of in situ stresses, we have failed to mention the
experimental evidence that seems to show a yield locus centred on the n-line
corresponding to K. rather than n = 0. This observation can be incorporated
into the critical state framework to produce an anisotropic Cam-clay model
(Ohta and Wroth, 1976). This model would yield much earlier on passive stress
paths where the isotropic models we have described continue to shear elastically.
Yielding on active stress paths will not be much affected, however. We expect
that this explains why satisfactory predictions are often produced using Cam-
clay where there is positive loading (e.g. under embankments), but unloading
problems often show too much elastic behaviour.

No matter how sophisticated the theoretical model, the problem of deciding
what has happened to the soil at a particular site still remains. We believe that
the simple one-dimensional loading and unloading idealisation of stress history
may be appropriate to fewer cases than are commonly supposed. For example,
Dalton and Hawkins (1982) measured different. values of oy in different
directions in the ground using the self-boring pressure meter at an apparently
undisturbed site. (Up to 50% variation in oy, was detected.) Despite the careful
allowance that was made for instrumentation errors, these findings have not
been accepted by most geotechnical engineers. We prefer to believe the
experimental information, even if it does not fit in with our preconceived
notions of what has happened to the ground in the past.

e ——

Geometry of the Finite
Element Mesh

6.1 INTRODUCTION

Chapter 4 described how the program and the input data can be logically divided
into three distinct parts: (i) mesh geometry; (ii) material properties and in situ
stresses; (iii) analysis.

This chapter deals with part (i). MARKZ is the master control routine for the
geometry part of the program, and is called by routine MAST as described in
Chapter 4.

The subroutine hierarchy (Fig. 6.1) shows the routine MARKZ delegating
tasks to various routines. A brief explanation of each subroutine listed in thic
chapter is given below.

RDCOD
LCONECT SETNP
FMIDSID SORT2
SORT2

SORT2
SORT2

MARKZ

rMIDPOR
FCUREDG
FNUMSH
FMAKENZ
FCALDOF
~MLAPZ
-SFWZ
-GPOUT

Fig. 6.1 — Subroutine hierarchy for geometry part of program

186

MARKZ -

RDCOD —
CONECT —

MIDSID —

SORT2 -

SETNP —
CUREDG —

INTPLT —

SIDES —
MIDPOR —
NUMSH -
MAKENZ —
CALDOF —
MLAPZ —
SFwz -
GPOUT -
BDATAI —

SHFTIB -
MAXVAI —

Geometry of the Finite Element Mesh [Ch.6

Control routine for geometry part of program; delegates tasks to
other routines,

Reads the node numbers and nodal co-ordinates of verrex nodes.
Reads the element number, element type number and material
zone numbers and the vertex nodes associated with each element.
Calculates co-ordinates of additional displacement nodes (nodes
along element sides and element interiors). These nodes are also
numbered.

Returns the lower of two node numbers.

Sets up indexes for element sides for different zypes of element.

If the element sides are curved then -the nodal co-ordinates
calculated by MIDSID for the nodes along element sides, assuming
the sides are straight, will be incorrect. This routine allows the user
to specify the correct co-ordinates, which replace the co-ordinates
calculated by the program.

If a plot of the mesh is required then the overall dimensions of the
mesh, in order to calculate the scale, are written to a Plot Data
(PD) file.

Information to draw element sides are written to PD file.
Calculates co-ordinates of additional pore pressure nodes (nodes
along element sides and interiors). The nodes are also assigned
numbers.

Information to number the nodes and elements are written to PD
file for plotting.

Calculates the degrees of freedom (d.o.f.) of each node.

Assigns unique global variable numbers to each variable,

Relevant to the frontal method. Marks last appearance of nodes.
Calculates the maximum frontwidth and the amount of store
required for solving the equations.

Prints out nodal co-ordinates and list of nodes associated with each
element.

Block data routine element type dependent parameters and
integration schemes.

Shifts a region to a different part of the global array G.

Sets maximum values and sizes of some arrays.

6.2 GEOMETRY PART OF THE PROGRAM

MARKZ delegates tasks to other routines.

Routine MARKZ

SUBROUT INE MARKZ (NVTX, NEL, NUMAX, MUMAX, MXND, MXNDV, NNE, NNE1, MARK 1
1 NN, NNU, NNZ, LTAB,LDIM, NDIM, NDF , NDZ , IF RZ ,MCORE, MNFZ, MARK 2

Sec. 6.2] Geometry Part of the Program
2 NPL,LTZ,KLT,NMATZ, INXL, IPLOT, MARK
3 XYZ, NCONN,MAT, LTYP,MRELVV,MREL, NRELVV, NREL , NW, NQ, MARK
4 ITAB,MFRU,MFRN, NDEST,NLST, IFR, NP1, NP2, ND, NCORET, MDZ) MARK
C*l'l'li!!lllIIII.iiIIliﬁiilllllllll‘llllﬁil’llllllil[llli!!lliI...lllll!IIMARK
c MASTER CONTROL ROUTINE FOR GEOMETRY PART OF THE PROGRAM. MARK
c READS INPUT DATA (COORDINATES AND ELEMENT-NODAL MARK
c CONNECTIVITY) AND SETS UP ADDITIONAL ARRAYS. MARK
C.i‘llllliillllllllllil.!!illlﬂﬂlilllllllllllll!.iillll’!ll.'llllililllllMARK
CHARACTER*80 TITLE MARK
DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),MAT (NEL), MARK
1 LTYP(NEL) ,MRELVV (NEL) ,MREL (MUMAX) , NRELVV (NNE), MARK
2 NREL(NNU),NW(NNE1),NQ(NNE), ITAB(LTAB,LDIM) ,MFRU (NEL) ,MFRN (MUMAX), MARK
3 NDEST(NNE),NLST(MXND), IFR(IFRZ),NP1(NPL),NP2(NPL),KLT (LTZ) MARK
COMMON /DEVICE/ IRT, IR, IR5,IW2, TWh,IW6, W7, W8, W9 MARK
COMMON /DEBUGS/ ID1,ID2,ID3,ID4,ID5,ID6,1D7,1D8,ID9, ID10 MARK
COMMON /LABEL / TITLE MARK
READ(IRS,*)ID1,1D2, ID3, ID4, IDS, ID6, ID7, ID8, 1D, ID10 MARK
c MARK
c NSDZ - MAXIMUM NUMBER OF DISPLACEMENT NODEZS ALONG EDGE MARK
c NSPZ ~ MAXUMUM NUMBER OF PORE-PRESSURE NODES ALONG EDGE MARK
c (EXCLUDING END NODES) MARK
c MARK
READ(IRS, *)NSDZ, NSPZ, NDCUR, NPCUR MARK
WRITE (IW6, 902)NSDZ , NSPZ,, NDCUR,, NPCUR MARK
c MARK
c READ VERTEX NODE COORDINATES MARK
c MARK
CALL RDCOD(IR5,IW6,NNE, NDIM, NNU, NVTX, NUMAX, XYZ , NRELVY, NREL) MARK
c MARK
¢ READ ELEMENT-NODAL CONNECTIVITY MARK
c MARK
CALL CONECT(IR5, IW6,MXND, NEL,MUMAX, NNE, NNU,MXNDV, NCONN, MARK
1 MAT,LTYP,MRELVV,MREL,NRELVV, NREL,MFRU,MFRN, NLST, MARK
1 LTZ,KLT, NMATZ, NVTX, NUMAX) MARK
IF (ID1.EQ. 1)WRITE(IW6, 801)NCONN MARK
c -MARK
c CALCULATE COORDINATES OF ADDITIONAL NODES : MARK
c MARK
CALL MIDSID(IW6,MXND,NEL,LTAB, LDIM, NNU,NDIM, NNE, NPL, MARK
1 XYZ,NCONN,LTYP,MRELVV,NRELVV,NREL, ITAB, MARK
1 NP1,NP2,ND,NN,KRD,NVTX,NDZ,MDZ) MARK
c MARK
c READ COORDINATES OF DISPLACEMENT NODES ALONG CURVED SIDES MARK
c NDCUR - NUMBER OF ELEMENT SIDES (WITH DISPLACEMENT NODES) MARK
¢ THAT ARE CURVED. MARK
c MARK
IF (NDCUR.EQ.0)GOTO 10 : MARK
CALL CUREDG(IRS, IW6,MXND,NEL,NDIM,NNE, LTAB, LDIM,MUMAX, NNU,NPL, MARK
1 XYZ,NCONN,LTYP,MREL,NREL, ITAB, NP1, NP2, NDCUR, 1, NSDZ) MARK
10 CONTINUE MARK
¢ MARK
c WRITE TITLE AND DIMENSIONS OF MESH TO A PLOT FILE MARK
C MARK
IF (IPLOT.NE. 0)WRITE (IN8)TITLE MARK
IF (IPLOT.NE.0)CALL INTPLT(IW6,IW8, NDIM, NNE,XYZ,ND) MARK
c MARK
¢ PLOT ELEMENT SIDES MARK
c MARK
CALL SIDES (IW6,IW8, LTAB,LDIM, NDIM, NNE, MXND, NEL, XYZ, MARK
1 NCONN,ITAB) "MARK
c MARK
c CALCULATE COORDINATES OF ADDITIONAL PORE-PRESSURE NODES MARK
Cc MARK
CALL MIDPOR (IW6,MXND, NEL,LTAB,LDIM, NNU, NDIM, NNE, NPL, MARK
1 XYZ,NCONN,LTYP,MRELVV, NRELVV, NREL, ITAB, MARK
1 NP1,NP2,NN,KRD,NNZ) MARK

187

LR T

=LA

188 Geometry of the Finite Element Mesh [Ch.6

c MARK 69

c READ COORDINATES OF PORE-PRESSURE NODES ALONG CURVED SIDES MARK 70

c NPCUR - NUMBER OF ELEMENT SIDES (WITH PORE PRESSURES NODES) MARK 71

c THAT ARE CURVED. MARK 72

c MARK 73

IF (HPCUR.EQ.0)GO TO 20 MARK 74

CALL CUREDG(IRS,IW6,MXND,NEL, NDIM, NNE, LTAB,LDIM,MUMAX, NNU,NPL, MARK 75

1 XYZ,NCONN,LTYP,MREL,NREL, ITAB, NP1, NP2, NPCUR, 2, NSPZ) MARK 76

20 CONTINUE MARK 77

NN1=NN+1 MARK 73

IF (ID7.EQ.0)GOTO 22 MARK 79

WRITE (IW6, 801)NCONN MARK 80

801 FORMAT(/1X,SHNCONN/(1X,2015)) MARK 81

WRITE (IW6, 802)MREL MARK 82

802 FORMAT (/1X, 4HMREL/(1X, 20I5)) MARK 83

WRITE (IW6, 803)MRELVV MARK 84

803 FORMAT (/1X, 6HMRELVV/(1X,2015)) MARK 85

WRITE (IW6, 804)NREL MARK 86

804 FORMAT (/1X, 4HNREL/(1X, 20I5)) MARK 87

WRITE (IW6, 805 NRELVV MARK 88

805 FORMAT (/1X, 6HNRELVV/(1X,20I5)) MARK 89

WRITE (IW6, BO6)LTYP MARK 90

806 FORMAT (/1X, 4HLTYP/(1X,2015)) MARK 91

WRITE (IW6, 807)MAT MARK 92

807 FORMAT (/1X, 3HMAT/ (1X, 2015)) MARK 93

22 CONTINUE MARK 94

c MARK 95

c NUMBER THE MESH MARK 96

c MARK 97

CALL NUMSH(IW6,IW8,NDIM,NNE,MXND, NEL,MUMAX, NNU, MARK 98

1 XYZ,NCONN,LTYP,MREL,NREL,NDZ, IPLOT) MARK 99

c MARK 100

c CALCULATE NUMBER OF DEGREES OF FREEDOM FOR EACH NODE MARK 101

Commmm MARK 102

CALL MAKENZ (MXND, NEL, NN, NCONN, LTYP, NQ, INXL) MARK 103

IF (ID7.EQ. 1)WRITE (IW6, 809)NQ MARK 104

809 FORMAT (/1X, 2HNQ/(1X, 20I5/)) MARK 105

¢ MARK 106

c GENERATE GLOBAL NUMBERS FOR ALL D.O.F. MARK 107

¢ MARK 108

CALL CALDOF (IW6, NN, NN1, NDF, N, NQ) MARK 109

c MARK 110

c MARK LAST APPEARANCE OF ALL NODES MARK 111

c MARK 112

CALL MLAPZ(MXND, NEL, NN, NCONN, LTYP,NQ) MARK 113

c “MARK 114

c CALCULATE MAXIMUM FRONTWIDTH AND MINIMUM STORE FOR SOLUTION M:gi 112
¢ M

CALL SFWZ(MNFZ,MXND, NEL,NN,MUMAX, NNU, IF RZ , NCONN, MARK 117

1 LTYP,MREL,NREL,NQ,NDEST, IFR, -1,MCORE, NCORET) MARK 118

c MARK 119

c PRINT OUT ARRAYS MARK 120

c MARK 121

CALL GPOUT (IW6,MXND, NEL,MUMAX, NN, NN1, NDF, MARK 122

1 NCONN,MAT,LTYP,MRELVV,MREL, NRELVV, N, NQ, NLST) MARK 123

c MARK 124

RETURN MARK 125

902 FORMAT (/ MARK 126

1 10X, U46HMAX NUMBER OF DISPLACEMENT NODES ALONG EDGE..=,I8/ MARK 127

2 10X, 46HMAX NUMBER OF PORE-PRESSURE NODES ALONG EDGE.=,18/ MARK 128

3 10X, 46HNUMBER OF CURVED EDGES (DISPLACEMENT)........=,I18/ MARK 129

4 10X,46HNUMBER OF CURVED EDGES (PORE-PRESSURE).......=,18/ MARK 130

5 /120(1H*)/) MARK 131

END MARK 132

L e

Corr Pa T

T I P}

Sec. 6.2]

MARK 19

MARK 25-26

MARK 30

MARK 34-37

MARK 41-43
MARK 50-51

MARK 56-57

MARK 61-62

MARK 6668

MARK 75

MARK 79-93

MARK 98-99

MARK 103-105 :

Geometry Part of the Program 189

:read debug option — a set of 10 flags to print out various

arrays used or calculated in the geometry part of the
program,

:read and write details of curved sides — only relevant if there

are any in the mesh. The normal option is straight-edged
elements (then all values are set to zero).

: read vertex node co-ordinates (the user needs to specify only

co-ordinates of the vertex nodes at this stage of the analysis,
irrespective of the ‘order’ of the elements being used). If the
elements are straight-edged then these are the only co-
ordinates to be specified by the user. Any additional nodes
(depending on the ‘order’ of the element) will be calculated
by the program.

: read the nodal connectivity list (vertex nodes associated with

each element). Also read the element type and material zone
number for each element,

: calculate the additional (displacement) node co-ordinates.
:if some element edges are curved, then read the nodal co-

ordinates of displacement nodes along all edges that are
curved.

s write title of analysis to Plot Data (PD) file. Calculate the

overall dimensions of the finite element mesh and write these
to PD file only if a plot is required.

: write to PD file information (co-ordinates of nodes at either

end of all element edges) necessary to draw the mesh. If the
element edges are curved, write the co-ordinates of the inter-
mediate nodes as well.

: calculate co-ordinates of additional pore pressure nodes (if

any).

:if the element edges are curved, then read the nodal co-

ordinates of pore pressure nodes (if any) along all edges that
are curved. For example, if the element type is 2 and the
element edges are curved then there is one additional
displacement node along each edge. Therefore it is only
necessary to specify the co-ordinates of the displacement
node (there are no additional pore pressure nodes along the
edge for element type 2).

* print out arrays for debugging (only if the debug flag ID7 is

set to 1).

. write relevant information to the PD file to number the mesh

and close the PD file,

calculate the d.o.f. (no. of variables) for each node. This is
necessary if different elements sharing a node have different
d.o.f. (e.g. elements of type 2 and 3 sharing an edge) — print
array NQ for debugging.

http:MLAPZ(MXND.NEL.NN.NCONN.LTYP.NQ
http:CALDOFCIw6.NN.NN1.NDF.NW.NQ

iz
P

T T T

ITTT

—prnpeTT

190 Geometry of the Finite Element Mesh [Ch. 6

MARK 109 - calculate the total no. of d.o.f, (variables) in the mesh. All
d.of. are assigned a unique global variable number (g.v.n.).
An array NW(NN+1) is set up which gives the g.v.n. of the
first d.o.f. (variable) of all nodes. All d.o.f. of a node are
given consecutive numbers. For example, if the g.v.n. of the
first d.o.f. of node 53 is NW(53) = 131, then if node 53 has
3 d.o.f., the global variable numbers are 131, 132 and 133
respectively, and for the next node, 54, NW(54) = 134.

MARK 113 : mark last appearance of all nodes.

MARK 117—118 : pre-front routine. Calculate maximum front size and the
store required to solve equations.

MARK 122-123 : print out arrays from geometry part of the program.

The geometry part of the input data consists of the type of elements being used
in the mesh, the co-ordinates of all vertex nodes and the list of elements and the
nodes associated with each. This scheme is illustrated by means of a simple
example (Fig. 6.2).

23 17

) Mat
2
] @ zone

@ @ Mat
@ @ zone 1

2
Fig. 6.2 — Example problem: six LST elements of type 2

There are six elements in the mesh: NEL = 6. Each is a six-noded Linear
Strain Triangle (LST), and the element numbers are shown circled. The vertex
nodes are in the range 1 to 23 and the total number of vertex nodes is
represented by NVTX = 8.

NEL — Number of ELements in mesh
NVTX — Number of VerTeX nodes in mesh

In considering the mesh, one has to identify different zones of material
behaviour. Each zone is identified by a number, and all elements which are
within that zone are given the same number. At this stage it is sufficient to
differentiate between the different zones. The question of what type of soil
behaviour each zone represents is considered in Chapter 7. In the input data,

= Ees PSS R

i

T AT S
PR

Sec. 6.2] Geometry Part of the Program 191

the -material zone number is denoted by IMAT. Each element is also identified
by an element type number (see Fig. 4.1).

Note that only the vertex nodes have to be numbered by the user. This eases
the problem of data preparation as the program numbers all other nodes and
calculates their co-ordinates. To differentiate between the vertex nodes and the
other nodes, the additional nodes are numbered, starting with 751. The program
allows gaps in both element and vertex node numbering. When dealing with large
finite element meshes (which is the case, most of the time) the meshes may have
to be modified a number of times and this allows the renumbering to be carried
out without too much difficulty.

There are two sets of node and element numbers. One set is assigned by the
user. The program sets up its own node and element numbers, which are strictly
for use within the program for reasons of efficiency. The maintenance of these
two sets of numbers requires two arrays:

for node numbers — NREL and NRELVV
for element numbers — MREL and MRELVV

These are ‘cross-reference arrays’. The sizes of these arrays will depend on the
maximum values of element and node numbers specified by the user and will
vary from problem to problem. In the above example the maximum element
number is 14, i.e. MUMAX = 14, and the maximum vertex node number is 23,
i.e. NUMAX = 23, There are no limits set on the maximum number of elements
and nodes in any mesh. These are only constrained by the amount of memory
available on any particular computer., NDIM represents the number of
dimensions in the problem. NDIM = 2 for all two-dimensional plane strain and
axisymmetric problems.

MUMAX — MAXimum value of User eleMent number .
NUMAX — MAXimum value of User vertex Node number

For the above example the element chosen was the six-noded linear strain
triangle. The analysis is of the undrained type, and referring to the list of
different element types (see Fig. 4.1), this element is type 2. For example, if
elements of type 2 and 3 are mixed in a mesh, then MXTYP = 3. For the present
example, the element type with the greatest number of nodes is 2; hence
MXTYP = 2. Again the maximum number of vertex nodes in any element in the
mesh is 3; therefore MXNDV = 3. The nodal co-ordinates are input with one line
of data per vertex node.

MXTYP — element TYPe with MaXimum number of nodes or d.o.f.
MXNDV — MaXimum number of Vertex NoDes

U

b

LE

192 Geometry of the Finite Element Mesh [Ch.6
User
node number x co-ordinate - » co-ordinate
1 0.0 0.0
2 20.0 0.0
3 40.0 0.0
4 0.0 16.0
5 20.0 16.0
6 40.0 16.0
23 30.0 21.0
17 - 40.0 21.0

The user node numbers are entered in an array NRELVV(NN), e.g.
NRELVV(1)= 1, NRELVV(2)=2,...NRELVV(7) = 23,
NRELVV(8) = 17.

The last two are the seventh and eighth nodes in the list. The co-ordinates are
entered in XYZ(NDIM,NN). Note that the indexes to array XYZ are the same as
for array NRELVV.

XYZ(1,1)=0. XYZ(2,1)= 0,

the x and y co-ordinates of the first node in the list.
XYZ(1,7)=30. XYZ(2,7)=121,

the x and y co-ordinates of the seventh node in the list.

Here NN is the total number of nodes in the mesh. At this stage the exact value
of NN is not known. An estimate (NNE) is made, first assuming for example that
there are three additional nodes in each element. For six elements it is 18. The
actual number will be less because most of the nodes are shared between

elements.
NNE = NVTX + NDEAD
=8+18
=26
NDEAD - ADditional number of NoDEs estimated by the program.
The indexes to array NRELVYV are referred to as the program node numbers.
Array NRELVV gives the ‘user’ node number for a given ‘program’ node

number. The cross-reference array NREL is set up to do just the opposite: given
a ‘user’ node number, it specifies the ‘program’ node number.

NRELVV(7) = 23
NREL(23) = 7

The above tasks are carried out by routine RDCOD.

Sec. 6.3] Nodal Connectivity 193

Routine RDCOD
SUBROUTINE RDCOD(IRS, IW6,NNE, NDIM,NNU, NVTX, NUMAX, XYZ, NRELVV, NREL) RDCD 1
Cl.lllll"llil‘lllllIll!illlllil!liIlIlllllIIIII"ll‘lilllllll!!il!llll'RDcD 2
c ROUTINE TO READ THE COORDINATES OF VERTEX NODES RDCD 3
Cl..lI‘Illlll'lllKIIllill‘lll*iﬂ.lilllIIﬂ'ﬁI‘l!ll!!lllllilllll'lllll‘EIIRDCD y
DIMENSION XYZ(NDIM,NNE),NRELVV(NNE), NREL(NNU) RDCD 5
C RDCD 6
WRITE(IW6,900) RDCD 7
WRITE(IW6,901) RDCD 8
C RDCD 9
c INITIALISE NREL, NRELVV RDCD 10
C RDCD 11
CALL ZEROIT(NRELVV,NNE) RDCD 12
CALL ZEROI1(NREL,NNU) RDCD 13
c RDCD 14
c READ ALL VERTEX NODE COORDINATES RDCD 15
c RDCD 16
DO 10 J=1,NVTX RDCD 17
READ(IRS, *)K, (XYZ(ID,J),ID=1, NDIM) RDCD 18
WRITE(IW6,906)K, (XYZ(ID,J),ID=1, NDIM) RDCD 19
NRELVV (J)=K RDCD 20
10 NREL(K)=J RDCD 21
RETURN RDCD 22
900 FORMAT(//10X, 28HCO-ORDINATES OF VERTEX NODES) RDCD 23
901 FORMAT(/3X, 4HNODE, 5X, 1HX, 9X, THY, 9X, THZ/) RDCD 24
906 FORMAT(1X, IS, 3F10,3) RDCD 25
END RDCD 26

RDCD 7-8 : write output header.

RDCD 12-13 : zero arrays NRELVV and NREL. Array NRELVYV stores the
node numbers (user nos.) in the same sequence as they are read.
The sequence in which these are read are the program node
numbers. NREL is the cross-reference array.

RDCD 17 : loop to read all vertex node co-ordinates.

RDCD 18-19 : read and write the node number and co-ordinates.

RDCD 20 . enter user node number in array NRELVV.

RDCD 21 : enter program node number in array NREL.

6.3 NODAL CONNECTIVITY

The next input data are the node numbers which are associated with each
element. This link between nodes and elements is referred to as element—nodal
connectivity. The data are as follows:

Element number Nodel Node2 Node3 Node4 Node$5 Node 6

1 i 2 5 - - -
2 5 4 1 - - -
3 5 2 3 - - —
4 5 3 6 - - —
11 5 6 23 - - —
14 6 17 23 - - -

194 Geometry of the Finite Element Mesh [Ch.6 '

Each element has to be assigned a material zone number (IMAT) and element
type number (ITYP) (see Fig. 4.1 for different element types). Therefore the
input data are as follows:

Element Element Material Node I Node2 Node3
no. type no. Zone no.
KEL ITYP IMAT NLST(1) NLST(2) NLST(3)

5
1
3
6
23
23 4

Bom s W -
SIS SN
OO — e
N L o D o =
=< 0N W RS

1
1 1

As in the case of the nodes, the element numbers (KEL) are entered in array
MRELVV(NEL) as they are read, e.g.

MRELVV(1)=1, MRELVV(2)=2, ... MRELVV(S)=11, :
MRELVV(6) = 14.

The sixth element in the list has the number 14. A cross-reference array
MREL(MUMAX) is then set up. For the above example:

MREL(1) =1
MREL(2) =2

MREL(11) = §
MREL(14) = 6.

This gives the ‘program’ element numbers for ‘user’ element numbers. Element
type number (ITYP) and the material zone number (IMAT) are entered in arrays
LTYP(NEL) and MAT(NEL) respectively. The indexes to these arrays are the
same as for the arrays MRELVV, These indexes are the position of the elements
in the input data list. From the input data, it can be seen that elements 1, 2, 3
and 4 belong to material zone 1, and elements 11 and 14 to material zone 2
(Fig. 6.2).
The numbers marked inside each element near the vertex nodes (in Fig. 6.3)
are the indexes to the array NLST and NCONN(NTPENNEL). These indexes
define the local node numbering, and in the rest of the book they will be
referred to as the indexes to array NCONN. The indexes can begin at any node,
but then should follow an anti-clockwise ordering. Specifying the nodes in clock- :
wise order results in a negative value for the area of the element and will cause £
the program to stop at a later stage. y
Array NLST(MXNDV) is a temporary array for storing nodes associated with
each element as they are read. Array NCONN is the nodal connectivity array.

Sec. 6.3] Nodal Connectivity 195
23 17
3 3 2
©)
. © L
‘2 AN 318
3
, @ ® ,
1 212 3
1 3

Fig. 6.3 — Indexes to array NCONN

The only difference between NLST and NCONN is that NCONN contains the
‘program’ node numbers.
The contents of array NCONN appear as

Index to
Element NCONN Node 1 Node 2 Node3 Node4 Node S5 Node 6

1 1 1 2 5 0 0 0
2 2 5 4 1 0 0 0
3 3 5 2 3 0 0 0
4 4 5 3 6 0 0 0
11 5 5 6 7 0 0 0
14 6 6 8 7 0 0 0

NCONN(1,5) =5, NCONN(2,5) = 6 and NCONN(3,5) = 7. These are the first,
second and third nodes associated with the fifth element (which has the number
11) in the list; note that the locations 4, 5 and 6 are empty. They have zero
values at this stage and will be replaced by the edge (side) node numbers when
they are assigned by the program later.

The nodes that define the variation of displacements are also used to define
the element geometry, which is the well known isoparametric formulation. The
nodes are referred to as ‘displacement’ nodes in the rest of the book. The lower-
order elements have a linear variation of strain across the element (element types
2 and 3). For undrained and drained problems, the displacements are the only
unknowns.

For coupled consolidation analysis there are additional excess pore pressure
variables; appropriate element types (3 and 7) will be referred to as
consolidation elements. The pore pressure nodes are positioned such that the
variation of excess pore pressure is of the same order as the variation in strain.
For example, for the cubic strain triangle, nodes 16 to 21 are pore pressure
nodes (see Fig. 4.1). For ‘consolidation’ elements the vertex nodes have both

196 Geometry of the Finite Element Mesh [Ch.6

displacements and excess pore pressures as variables. The type 3 ‘consolidation’
element does not have ‘additional’ pore pressure nodes. It has three displacement
nodes and no additional pore pressure nodes (see Fig. 6.4). Thus, in general,
different nodes will have different d.o.f. (variables).

1 ()

(2 6 5 (2

(3 2

FIYe}
w
)

(2)

Fig. 6.4 — Different d.o.f. at different nodes

The order in which each element is listed in the input data is the program
element number by default and it is in fact the order in which the element stiff-
ness terms will be assembled in the FRONTAL method of solution. However,
the sequence in which the elements were input by the user may not always be
the optimum sequence for the frontal method.

At present a number of ‘stand-alone’ programs and techniques which can
optimise the element numbering for the frontal method are available (Akin and
Pardue, 1975; Razzaque, 1980; Sloan and Randolph, 1983). These programs
only need the element—nodal connectivity list as input data. Therefore the
option of specifying an alternative order of the elements, which is less costly for
the frontal method, has been included. Hence there are two sets of element
numbers. The first is the arbitrary element numbering specified by the user; the
second is the element numbering sequence which is better for the frontal
method. The user has to be aware of the importance of having an efficient
element numbering. Just as efficient node numbering is very desirable for band
solvers, efficient element numbering is very desirable for the frontal method to
keep the cost of computation and core-store equipment down.

In the input data after all the co-ordinates of the vertex nodes have been
specified, a parameter IRNFR is specified. If this parameter is set to 1 then the
user will specify an alternative element numbering sequence starting from the
next data record. It is followed by the element—nodal connectivity list as

Sec. 6.3] Nodal Connectivity 197

described before. If IRNFR is set to 0, an alternative element numbering will
not be provided by the user, and the elements will be assembled in the order

they are specified in the input data. For the above example, an improved frontal
sequence could be

IRNFR
1

Element numbers
2 1 3 4 11 14

If the alternative element order is not available then IRNFR is set equal to 0
and the element—nodal connectivity list follows immediately. The list i.
unchanged whether IRNFR = 0 or 1. The alternative numbering, if specified, is
read into an array MFRU(NEL) in routine CONECT.

MRFRU(1) =2 MFRU(2) = 1 MFRU(5) = 11 MFRU(6) = 14
A cross-reference array MERN(MUMAX) is set up at the same time.
MFRN(1)=2 MFRN(2)=1 MFRN(11)=5 MFRN(14)=6

These two arrays are then used to set up the arrays MRELVV(NEL) and
MREL(MUMAX) while the element—nodal connectivity list is being read. It
should be noted that the contents of MRELVV(NEL) and MREIL(MUMAX) are
different, depending on whether the optimum element sequence for the frontal
method has been specified or not. The contents of these arrays are as follows
(note the difference when an alternative element numbering is not provided):

MRELVV(1) =2 MRELVV(2) = 1 MRELVV(3) = 3
MRELVV(4) = 4 MRELVV(5) = 11 MRELVV(6) = 14
MREI(1) = 2 MREL(2) =1 MREL(3) =3
MREL(4) =4 MREL(11) =5 MREL(14) =6
Routine CONECT
SUBROUTINE CONECT (IRS,IW6,MXND,NEL,MUMAX, NNE, NNU,MXNDV, NCONN, CNCT
1 MAT,LTYP,MRELVV,MREL, NRELVV, NREL,MFRU, MFRN, NLST, CNCT 2
2 LTZ,KLT, NMATZ , NVTX, NUMAX) CNCT 3
c!ll‘lIIlll!IIi‘II!llill‘lI'l!lI"ll‘!ﬂl“lliilIIIIllII‘I‘]I'!]!!"“!II'CNCT u
c SUBROUTINE TO READ ELEMENT-NODAL CONNECTIVITY CNCT 5
Cl'!llllI!I‘Illll!!ilIll!!illll'illlllllll‘llllllllll'lllllll‘lllllll!llc”c‘r 6
DIMENSION NCONN(MXND,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL), CNCT 7
1 MREL(MUMAX),NRELVV (NNE),NREL (NNU) ,MFRU(NEL) ,MF RN (MUMAX), CNCT 8
1 NLST(MXNDV),KLT (LTZ) CNCT 9
COMMON /DEBUGS/ ID1,ID2,1D3,IDU,IDS, ID6, ID7, ID8, ID9, ID10 CNCT 10
COMMON /ELINF / LINFO(50,15) CNCT 11
CNCT 12
READ(IRS, *) IRNFR CNCT 13
WRITE(IW6,901)IRNFR CNCT 14
IF (IRNFR.NE. 1)GO TO 30 CNCT 15
c CNCT 16
c READ OPTIMUM FRONTAL ORDER OF ELEMENTS CNCT 17
c CNCT 18
WRITE(IW6,902) CNCT 19

T

198 Geometry of the Finite Element Mesh [Ch.6
READ (IRS, *) (MFRU(IL),IL=1,NEL) CNCT 20

WRITE (IW6, 904) (MFRU(IL), IL=1,NEL) CNCT 21

¢ CNCT 22
CALL ZEROI 1 (MFRN,MUMAX) CNCT 23

c) CNCT 24
DO 20 IM=1,HEL CNCT 25
LU=MFRU (IM) CNCT 26

20 MFRN(LU)=IM CNCT 27

c CNCT 28
IF (ID6. EQ. 1)WRITE (IW6, 930)MFRN CNCT 29

c CNCT 30
30 CALL ZEROI2(NCONN,MXND,NEL) CNCT 31
CALL ZEROI1(LTYP,NEL) CNCT 32

CALL ZEROI1(MAT,NEL) CNCT 33

CALL ZEROI1(MREL,MUMAX) CNCT 34

c CNCT 35
WRITE (IW6, 906) CNCT 36

c CNCT 37
DO 100 IL=1,NEL CNCT 38

c CNCT 39
c READ ELEMENT NUMBER, TYPE NUMBER, MATERIAL ZONE NUMBER AND CNCT 40
c VERTEX NODE NUMBERS ‘ CNCT 41
c CNCT 42
READ(IRS, *)KEL,ITYP, IMAT,NLST CNCT 43

WRITE (IW6,909)KEL, ITYP, IMAT, NLST CNCT U4

c CNCT 45
NVN=LINFO(2, ITYP) CNCT 46-

c CNCT 47
MNW=IL CNCT 48

IF (IRNFR. EQ. 1)MNW =MFRN (KEL) CNCT 49

c CNCT 50
MRELVV (MNW) =KEL CNCT 51

LTYP (MNW)=ITYP CNCT 52

MAT (MNW) =IMAT CNCT 53

MREL (KEL) =MNW CNCT 54

c CNCT 55
DO 95 IK=1,NVN CNCT 56

NUS =NLST(IK) CNCT 57
NPR=NREL (NUS) CNCT 58

95 NCONN(IK,MNW)=NPR CNCT 59

c CNCT 60
100 CONTINUE CNCT 61
IF (ID5.EQ.0)GOTO 105 CNCT 62

WRITE (IW6, 991)NCONN CNCT 63

991 FORMAT (/1X, SHNCONN/(1X, 2015)) CNCT 64
WRITE (IW6, 992)MREL CNCT 65

992 FORMAT(/1X, UHMREL/(1X, 20I5)) CNCT 66
WRITE (IW6, 993)MRELVV CNCT 67

993 FORMAT (/1X, 6HMRELVV/(1X, 2015)) CNCT 68
105 CONTINUE CNCT 69

c CNCT 170
CALL ZEROI1(KLT,LTZ) CNCT T1

c CNCT 72
DO 150 IL=1,NEL CNCT 73
LT=LTYP(IL) CNCT 74

150 KLT(LT)=KLT (LT)+1 CNCT 75
RETURN CNCT 76

901 FORMAT(/1X,THIRNFR =,15) CNCT 77
902 FORMAT(/1X, 36HOPTIMISED SOLUTION ORDER OF ELEMENTS/) CNCT 78
904 FORMAT(1X, 2015) CNCT 79
906 FORMAT(/1X,46HELEMENT TYPE MAT 1 2 3 y CNCT 80
1184 6 7 8/) CNCT 81

909 FORMAT (IS5, 2X, 215, 1516) CNCT 82
930 FORMAT (/1X, 4HMFRN/(1X, 2015)) CNCT 83
END CNCT 84

Sec. 6.3]

CNCT 13-14:

CNCT 15
CNCT 1921 :
CNCT 23

CNCT 25
CNCT 26
CNCT 27
CNCT 29
CNCT 31-34:

CNCT 38
CNCT 43—44 :

CNCT 46
CNCT 49

CNCT 51-53 :

CNCT 54
CNCT 56
CNCT 59
CNCT 61
CNCT 63-68 :
CNCT 71
CNCT 73-75 :

Nodal Connectivity 199

read and write the code IRNFR, which indicates that the user
will specify an alternative optimum frontal numbering of
elements (otherwise the user-specified element sequence will be
used as the sequence for frontal assembly).

: skip if alternative element numbers for frontal method are not

specified.
read and write the alternative element numbering sequence
which is more efficient for the frontal method.

1 zero cross-reference of frontal element numbering sequence

array MFRN.

: loop on all elements (in frontal sequence).
: new element number.

: form cross-reference array MFRN,

: debugging option — print out array MFRN,

zero arrays NCONN (element—nodal connectivity array), LTYP
(element type array), MAT (element material zone array) and
MREL (cross-reference array of element number).

: loop on all elements.

read and write element number (KEL), element type number
(ITYP), element material zone number (IMAT), list of vertex
nodes associated with the element (NLST).

: NVN — the number of vertex nodes in element,
:if alternative frontal element numbering is available, obtain

number from array MFRN or use ascending order of element
number sequence.

store element number, element type number and element
material zone number.

: enter in cross-reference array.

: loop on all vertex nodes of element.

: enter node number in connectivity array NCONN.
: end of element loop.

print out arrays NCONN, MREL and MRELVV for debugging.

: zero array KLT — counter of elements of each type.

count the number of elements of each type.

All the element types provided in this program have additional nodes along the
element sides (edges). The next stage of the program is to assign numbers to
these nodes and calculate the co-ordinates by linear interpolation from the
co-ordinates of nodes at either end of the element sides. The number of displace-
ment nodes along the sides depends on the order of the element. The lower-
order elements presented here are the linear strain elements, which have one
node at the midpoint of the side (hence the name ‘midside’ node).

The elements are considered in the sequence they appeared in the input data.
Each side of the element is considered in turn in the anti-clockwise order. An
entry is made as soon as the nodes along an edge have been numbered and its

-

200 Geometry of the Finite Element Mesh [Ch.6

co-ordinate calculated. The following procedure avoids the possibility of nodes
being given two different numbers (i.e. being numbered twice) when they are
common to two or more elements. Each side is identified by a unique code
IHASH = N1 * 10000 + N2, where N1 =lower-node and N2 = higher-node
numbers. Whenever a new edge is encountered, 1 is entered against this code in a
hash table. The procedure is to consult this entry to see whether nodes along a
particular edge have already been numbered.

The terms ‘edge’ and ‘side’ are used interchangeably here. The term ‘edge’ is
preferred because when extended to three-dimensional elements it remains
unambiguous whereas ‘side’ would mean the element ‘face’. Since this book
mainly deals with two-dimensional programming aspects, both words have the
same meaning.

Once nodes along the sides have been numbered, nodes within element
interiors, if present, are numbered. This procedure is repeated for all the
elements. The hash table ITAB contains the information in code form for all the
element sides which is later used in routine SIDES to create a PD file. CRISP
does not have any plotting routines, and hence no plots are produced. However,
it creates the data necessary to produce the plot. A separate program is then
needed to plot the mesh. (A suitable program is included in Appendix B.)

6.4 NUMBERING THE ADDITIONAL DISPLACEMENT NODES

For each element, as nodes along the sides and element interiors are numbered,
they are entered in the array NCONN after the vertex node numbers. At the
same time, cross-reference arrays NREL and NRELVYV are also updated.

The routine MIDSID calculates the numbers and co-ordinates of the
additional (displacement) nodes and also sets up the information necessary to
plot the mesh. CRISP writes the information necessary to plot the mesh to a
PD file. The program uses a simple technique to scane the element sides. For
example, if node 53 is connected to nodes 23, 28, 70, 5, 99 and 123 then
only the sides to nodes 70, 99 and 123 are written to the PD file. This process
begins with the node with the lowest number (usually 1) and then continued
in the ascending order.

The entries made in array ITAB for each element side (IHASH represents the
code identifying an element side) are always linked to the smaller of the two
nodes at either end. Since IHASH has a unique value for a given set of two
nodes, the array ITAB needs only to be scanned in the region allocated to the
smaller node for the existence of IHASH. If found, this indicates that the co-
ordinates of the displacement nodes along its side have already been calculated.
Each node is allocated a certain region. Regions of fixed size are allocated for
different nodes. The region allocated to a node is scanned and all non-zero
entries are compared with IHASH. A zero entry terminates the scan. If IHASH
is not found, the location is used to enter the code for the element side, and the
co-ordinates of nodes along its side are calculated. This technique is known as
‘hashing’ (Day, 1972).

Sec. 6.4] Numbering the Additional Displacement Nodes
Routine MIDSID

SUBROUTINE MIDSID(IW6,MXND,NEL,LTAB,LDIM, NNU, NDIM, NNE, NPL, MSID
1 XYZ,NCONN, LTYP,MRELVV, NRELVV, NREL, ITAB, MSID
2 NP1,NP2,ND, NN,KRD, NVTX, NDZ,MDZ) MSID
C!Ii!!lll!llIlIIlllIIl*lIIIllll!llilll.llllﬁll!lllI!Illlﬂilillilllli*lllMsiD
c GENERATES MID-SIDE NODES ALONG EDGE MSID
c'l‘llll"l‘llll'llllliI.IIIIIII'.II"IIIIIﬁlill‘llllIIlIIIIIIl""II."HSID
DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),LTYP(NEL), MSID
1 MRELVV(NEL),NRELVV (NNE),NREL (NNU), ITAB(LTAB,LDIM), MSID
1 NP1(NPL),NP2(NPL),KNDX (3) MSID
COMMON /DEBUGS/ ID1,ID2,ID3,1D4,IDS, ID6, IDT, ID8, IDY, ID10 MSID
COMMON /ELINF/ LINFO(50,15) MSID
DATA KNDX(1),KNDX(2),KNDX(3)/8,11,5/ MSID
c MSID
MDZ =0 MSID
KR=NDZ MSID
K =NVTX MSID
LDIM1=LDIM=1 MSID
c MSID
CALL SETNP(NP1,NP2,NPL) MSID
c MSID
WRITE (IW6, 900) MSID
DO 10 J=1,LDIM MSID
DO 10 I=1,LTAB MSID
10 ITAB(I,J)=0 MSID
c MSID
DO 100 NE=1,NEL MSID
MUS =MRELVV (NE) MSID
LT=LTYP(NE) MSID
NVN=LINFO(2,LT) MSID
NEDG=LINFO(3,LT) MSID
NDSD=LINFO(7,LT) MSID
INDED=LINFO(14,LT) MSID
c MSID
DO 26 IS=1,NEDG MSID
CC WRITE(IW6, 950)NE, IS MSID
CC950 FORMAT(1X, 9HELEMENT =,I5,2X,6HSIDE =,I5) MSID
NL=(IS-1)*NDSD+NVN MSID
INDS=INDED+IS MSID
IN1=NP1(INDS) MSID
IN2=NP2 (INDS) MSID
N1=NCONN(IN1, NE) MSID
N2=NCONN(IN2, NE) MSID
Cc MSID
CALL SORT2(N1,N2,11,12) MSID
THASH=10000#I 1412 MSID
IT=5%11 MSID
GOTO 18 MSID
c MSID
16 IT=IT+1 MSID
18 IF(IT.GT.LTAB) IT=1 MSID
IF (ITAB(IT, 1).EQ. IHASH) GOTO 24 MSID
IF(ITAB(IT,1).NE.0) GOTO 16 MSID
C MSID
MDZ =MDZ +1 MSID
DO 22 IDSD=1,NDSD MSID
c MSID
c CALCULATE CO-ORDINATES OF NODES ALONG THE EDGE MSID
c -MSID
K=K+1 MSID
KR=KR+1 MSID
IF (KR. LE. NNU)GOTO 19 MSID
WRITE(IW6,901) MSID
STOP MSID
c MSID

201

CwVwmNOUV EWN =

O ILUNVUNUNUNIVVIEEE S “EFEFEFWWWWWWWWWWRANNRNNNNRNNMNA 2 = o o aa oo
w N OV DNV FWRN = OWoo= EWN2O0WVWOENOUVNEWN 200NN SWN =200~ & Wi o

PRSI —

202 Geometry of the Finite Element Mesh [Ch. 6
19 NREL(KR)=K MSID 65
NRELVV (K)=KR MSID 66
IF(K.LE.NNE) GOTO 20 MSID 67

WRITE (IW6, 902)NNE MSID 68

STOP MSID 69

c MSID 70
20 NLN=NL+IDSD MSID 71
NCONN (NLN, NE)=K MSID 72
IPOS=IDSD+1 MSID 73
ITAB(IT, IPOS)=K MSID 74

F 1=FLOAT (NDSD+1-IDSD)/FLOAT (NDSD+1) MSID 75
F2s1,-F1 MSID 76

¢ MSID 77
DO 21 ID=1,NDIM MSID 78

21 XYZ(ID,K)=XYZ(ID,N1)*F 1+XYZ(ID,N2)¥F2 MSID 79
WRITE (IW6, 904 KR, (XYZ(ID,K),ID=1,NDIM) MSID 80

22 CONTINUE MSID 81
ITAB(IT, 1)=IHASH MSID 82

c -MSID 83
c FIRST ELEMENT ALONG EDGE HAS BEEN FOUND MSID 8
c HSID 85
ITAB(IT,LDIM1)=1 MSID 86

¢ MSID 87
c COORDINATES OF NODES ALONG EDGE CALCULATED MSID 88
c ASSUMING EDGE IS STRAIGHT MSID 89
¢ -HSID 90
ITAB(IT,LDIM)=1 MSID 91

GOTO 26 MSID 92

c MSID 93
28 CONTINUE MSID 94

c MSID 95
DO 25 IDSD=1,NDSD MSID 96
JDSD=NDSD+1-IDSD MSID 97

NLJ =NL+JDSD MSID 98

25 NCONN(NLJ,NE)=ITAB(IT, IDSD+1) MSID 99

c NSID 100
C COUNT THE NUMBER OF ELEMENTS SHARING THIS EDGE MSID 101
c MSID 102
ITAB(IT,LDIM1)=ITAB(IT,LDIM1)+1 MSID 103

c MSID 104
26 CONTINUE MSID 105

c MSID 106
G0 T0(90, 90, 90,90, 90,27, 27,90, 90, 90, 90), LT MSID 107

WRITE (IW6, 920)MUS, LT MSID 108

STOP MSID 109

¢ MSID 110
C CALCULATE CO-ORDINATES OF NODES WITHIN ELEMENTS MSID 111
c MSID 112
27 NIND=LINFO(9,LT) MSID 113
JLC=LINFO(5,LT)-NIND MSID 114

c MSID 115
DO 30 INN=1,NIND MSID 116

K=K+1 MSID 117
KR=KR+1 MSID 118

IF (K. GT. NNE WRITE (IW6, 902 NNE MSID 119

IF (KR. GT. NNUDWRITE (IW6, 901) MSID 120

NREL (KR)=K MSID 121
NRELVV (K)=KR MSID 122
JLC=JLC+T MSID 123

NCONN (JLC, NE)=K MSID 124
INXT=INN MSID 125
INX2=KNDX (INN) MSID 126
NC=NCONN (INX1, NE) MSID 127
NM=NCONN(INX2, NE) MSID 128

¢ MSID 129
DO 28 ID=1,NDIM MSID 130

Sec. 6.4] Numbering the Additional Displacement Nodes 203
28 XYZ(ID,K)=0.5%(XYZ(ID,NC)+XYZ(ID,NM)) MSID 131
WRITE (IW6, 904)KR, (XYZ(ID,K),ID=1, NDIM) MSID 132

c MSID 133

30 CONTINUE MSID 134
90 CONTINUE MSID 135
100 CONTINUE MSID 136

IF (ID2.EQ. 1)WRITE (IW6,910)ITAB MSID 137

c MSID 138

c TOTAL NUMBER OF DISPLACEMENT NODES - ND MSID 139

c MAXIMUM USER NO. OF DISPLACEMENT NODE — KRD MSID 140

c MSID 141

NN=K MSID 142

ND=K MSID 143

i KRD=KR MSID 144
RETURN MSID 145

900 FORMAT (/10X, 4SHCOORDINATES OF DISPLACEMENT NODES ALONG EDGES// MSID 146

1 39H NODE X Y 2/) MSID 147

901 FORMAT(/1X, 49HINCREASE NO. OF ADDITIONAL NODES (ROUTINE MIDSID)) MSID 148

902 FORMAT(/1X, 21H**¥ERROR®*% MORE THAN, IS, MSID 149

1 30HNODES IN MESH (ROUTINE MIDSID)) MSID 150

904 FORMAT(I5,3F12.3) MSID 151

910 FORMAT(//1X, 8HITAB/(1X,10110)) MSID 152

920 FORMAT(/1X, THELEMENT, 15, 2X,22HIS OF UNKNOWN TYPE ¥*¥ I5,2X, MSID 153

1 16H(ROUTINE MIDSID)) MSID 154

i END MSID 155

MSID 15 : KR — starting number of additional nodes.

MSID 16 : K — starting program node number of additional nodes.

MSID 19 : copy arrays NPL1, NPL2 to NP1, NP2 (NPL1, NPL2 are set
using DATA statements. NP1, NP2 are allocated store dynami-
cally in global array G. This procedure is adopted so that in
case the size (NPL) of these arrays is changed, the changes
that need to be carried out are minimal. Of course there is the
duplication of data).

MSID 22-24 : zero array ITAB.

) MSID 26 : loop on all elements.
MSID 28-32 : obtain element particulars,
NVN —no. of vertex nodes.
NEDG —no. of element sides.
NDSD —no. of additional (displacement) nodes along edge.
INDED — starting index to arrays NPI, NP2,

MSID 34 : loop on all edges of the element.

MSID 37 : index to location of node in NCONN.

MSID 38 . index to nodes at either end of element side, in NP1 and NP2,

MSID 39-40 : indexes of nodes at either end in NCONN.

MSID 41-42 : nodes at either end of element side.

MSID 44 : sort the nodes into ascending order.

MSID 45 : code for element side (consisting of node numbers at either
end).

3 MSID 50 s start at the beginning if end of array has been reached, and
J make use of the gaps in array ITAB.
MSID Si “look for the possibility that nodes along element edge have

already been numbered;if so, branch off.

e ™

204

MSID 52

MSID 55

MSID 59
MSID 60
MSID 61-62

MSID 65
MSID 66
MSID 67-68
MSID 71
MSID 72
MSID 73-74
MSID 75-76
MSID 78-79

MSID 81
MSID 82
MSID 86

MSID 91

MSID 96

MSID 97-98
MSID 99
MSID 103
MSID 105
MSID 113

MSID 114
MSID 116
MSID 117
MSID 118
MSID 119-120
MSID 121-122

MSID 123—124 :

MSID 125-126

MSID 127128

Geometry of the Finite Element Mesh [Ch. 6

. if nodes along element edge have to be numbered then find a
location with zero entry.

:such a location has been found. Loop on all additional
(displacement) nodes along this edge.

: program number for the new node.

: user number for new node.

: check that no. of nodes does not exceed allocation for array
NREL. If exceeded, print error message and stop. (The
allocation for NREL is such that it ought to be more than
what is required, and hence this should not happen.)

: enter program node number in array NREL.

: enter user node number in cross-reference array NRELVV.

: check that array allocation NRELVV is not exceeded.

: index of new node in array NCONN.

: enter new node number in NCONN,

: index of new node in array ITAB, and enter new node no.

: calculate interpolation ratios.

: calculate co-ordinates of new node, using linear interpolation
on nodes at either end.

: end of loop on nodes along edge.

: enter code representing element side in ITAB.

:enter | indicate that nodes along element edge have been
calculated (the value is also used to count the number of
elements shared by this side).

: code to indicate co-ordinates along edge have been calculated
assuming the edges are straight.

: for any element edge along which nodal co-ordinates have
already been calculated. Loop on all nodes along edge
excluding the ones at either end.

: indexes to positions of nodes in NCONN and ITAB.

: enter the node numbers in NCONN,

: increment counter of elements sharing edge by one.

: end of loop on all element edges.

: number of inner nodes (only for element types which have
them, i.e. skip for the rest).

: index to node location in NCONN.

: loop on all inner nodes.

. program node number.

> user node number.

: check for array sizes NREL, NRELVV being exceeded.

: enter node numbers in NREL and NRELVV.

enter number in NCONN.

tindexes to nodes of element used in interpolating co-
ordinates of inner nodes.

: node numbers (used for interpolation).'r

Sec. 6.4]

MSID 130—131 : calculate co-ordinates of inner nodes.
MSID 136 : end of element loop.
MSID 137 : print out array ITAB for debugging,.

Numbering the Additional Displacement Nodes

205

MSID 142—144 : maximum values of displacement node numbers. (KRD —

user number; ND, NN — program number.)

In the above routine, IHASH = N1 * 10000 + N2, where N1<N2. Routine

SORT?2 sorts the nodes at either end of each element side.

Routine SORT2

SUBROUTINE SORT2(N1,N2,I1,I2) SORT
ORI D0 IE I IGO0 I IO I I RN MR NN RRSORT
C ROUTINE TO SORT TWO INTEGERS. I1 IS LESS THAN I2 SORT
CRMNMN MMM IR NI NI NN NN NN N E NN RN RNNR R RURRESORT
I1=N1 SORT
I2=N2 SORT
IF(I1.LT.I2)RETURN SORT
I1=N2 SORT
I2=N1 SORT
RETURN SORT
END SORT

Sort 5-9: sort two nodes;assign I1 to the lower node number.

cwoNoOVEWN =

-

For a triangular element there are three sides. The nodes at either end of each

side have the following indexes:

1 2 —sidel
2 3 —side 2
3 1 —side3

Arrays NP1, NP2, NPL1, NPL2 are indexes to array NCONN, and give the
indexes to the nodes at either end of the element sides. For element type 2 the

values are

NPI(1) NP1(2) NPI(3) NP2(l) NP2(2) NP2(3)

1 2 3 2 3 1

For element types 2, 3, 6 and 7, these indexes are the same. These are entered in
NP1(1)-NP1(3), NP2(1)—NP2(3). Since all the relevant information is placed in
a single array, each element type needs a starting index (INDED); therefore

INDED = 0 for element types 2,3, 6 and 7.
INDED is obtained from array LINFO(50, 15)

I element types
element parameters

t Note: these are specifically for element types 6 and 7 and are currently the only element
types with inner nodes. Any new element type with inner nodes will require this part of

the code to be modified.

1

L Ei b

206 Geometry of the Finite Element Mesh [Ch.6

INDED = LINFO(14, LT)

where LT = 2 the element type number. The contents of array LINFO are
explained in section 6.7.
Routine SETNP sets up the arrays NP1 and NP2 for all element types.

Routine SETNP
SUBROUTINE SETNP(NP1, NP2, NPL) STNP 1
Clliliiiiiilill!ﬂlil‘iil!iiii!llillﬂliiillll!‘ﬁ!i!*‘i‘*i*ﬁ‘illﬁl!i!iliilSTNP 2
c SET UP ARRAYS NP1 AND NP2 WHICH GIVE THE INDEX TO ARRAY STNP 3
C NCONN FOR NODES AT EITHER END OF EACH ELEMENT EDGE STNP 4
C‘ﬂlKllll'liiilliliii*!!.il!&lli!lllll[iililiilllllllIlﬁlll!ilillli!lillSTNp 5
DIMENSION NPL1(21),NPL2(21),NP1(NPL),NP2(NPL) STNP 6
c STNP . 7
c INDEXES OF ARRAYS NPL1,NPL2,NP1,NP2 STNP 8
c INDEX ELEMENT TYPE STNP 9§
C 1- 3 1, 2,3 6, 7 STNP 10
c y - 7 4, 5 STNP 11
c y - 15 8, 9 STNP 12
c 16 - 21 10,11 STNP 13
c STNP 14
DATA NPL1(1),NPL1(2),NPL1(3),NPL1(4),NPL1(5),NPL1(6),NPL1(T7), STNP 15
1 NPL1(8),NPL1(9),NPL1(10),NPL1(11),NPL1(12),NPL1(13),NPL1(14), STNP 16
2 NPL1(15),NPL1(16),NPL1(17),NPL1(18),NPL1(19),NPL1(20),NPL1(21)/ STINP 17
31,2,3;1,2,3,4,5,6,7,8,1,2,3,4,1,2,3,1,2,3/) STNP 18
DATA NPL2(1),NPL2(2),NPL2(3),NPL2(4),NPL2(5),NPL2(6),NPL2(7), STNP 19

1 NPL2(8),NPL2(9),NPL2(10),NPL2(11),NPL2(12),NPL2(13),NPL2(14), STNP 20
2 NPL2(15),NPL2(16),NPL2(17),NPL2(18),NPL2(19),NPL2(20),NPL2(21)/ STNP 21

32,31,2,3,4,1,6,7,8,5,5,6,7,8,2,3, 1,4, 4,4/ STNP 22

c STNP 23
DO 10 I=1,NPL STNP 24
NP1(I)=NPL1(I) STNP 25

10 NP2(I)=NPL2(I) STNP 26

C STNP 27
RETURN STNP 28

END STNP 29

STNP 24-26 : set arrays NP1, NP2 equal to arrays NPL1, NPL2 respectively.

The normal procedure is to use a mesh with elements having straight sides.
Sometimes, however, element sides have to be curved in order to properly
describe the problem being analysed, e.g. circular tunnels or buried pipes. The
simplest option is provided whereby the user specifies the list of element sides
and the co-ordinates of the nodes which lie along the curved sides (in the case of
linear strain elements, this is just one). Remembering that routine MIDSID has
already numbered these nodes and calculated their co-ordinates, it is a simple
matter to identify these nodes and replace their co-ordinates by the ones
provided by the user. It is achieved in routine CUREDG.

Routine CUREDG
SUBROUTINE CUREDG(IRS, TW6,MXND,NEL, NDIM, NNE, LTAB,LDIM, CURE 1
1 MUMAX, NNU, NPL, XYZ, NCONN, LTYP ,MREL, NREL, ITAB, CURE 2
2 NP1,NP2, NCRED, NDTY, NMX) CURE 3
CiiiiiiiliiiiiillillIiI!l!iiIli!!Iilliilll!!ll!iiiiil}ilﬁﬁllliiili!li[l}CURE y
c ROUTINE TO READ NODAL COORDINATES ALONG CURVED EDGES CURE 5
cllIlli“‘ﬁ"llillllilil"illlllllliiii!i!‘illlIl'"'!“i!iiliili‘l‘l“i‘CURE 6

Sec. 6.4]

O

g

OO0

o

%
1

2

w

@ O

*
0

DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),LTYP(NEL),MREL(MUMAX),
1 NREL(NNU), ITAB(LTAB, LDIM),NP1(NPL),NP2(NPL),CD(3,3),CDT(3,3)

COMMON /ELINF / LINFO(50,15)
IERS=0

WRITE (IW6,900)
DO 200 ISD=1,NCRED

READ (IRS, *)MU, ND1,ND2, ((CD(IU,JU),IU=1,NDIM),JU=1, NMX)
WRITE(IW6, 902 MU, ND1,ND2, ((CD(IU,JU),IU=1,NDIM),JU=1, NMX)

MPR=MREL (MU)

LT=LTYP(MPR)

NDN=LINFO(5,LT)
NVN=LINFO(2,LT)
NEDG=LINFO(3,LT)
NDSD=LINFO(7,LT)
IF(NDTY.EQ.2)NDSD=LINFO(8,LT)
IF(NDSD,GT.0)GOTO 5
WRITE(IW6,903)MU, NDTY

GOTO 200

INDED=LINFO(14,LT)

K1=NREL(ND1)
K2=NREL (ND2)

CALL SORT2(K1,K2,I1,I2)
IHASH=10000%I1+I2
IT=5%*I1

GOTO 8

IT=IT+1

IF(IT.GT.LTAB)IT=1

IF (ITAB(IT, 1).EQ, IHASH)GOTO 10
IF(ITAB(IT,1).NE.0)GOTO 6

EDGE NOT FOUND
IERS=IERS+1 .
WRITE (IW6, 904)ND1, ND2
GO TO 200

NOTE EDGE IS CURVED - FOR PLOTTING PURPOSES
IF (NDTY.EQ.2)GOTO 11
ITAB(IT,LDIM)=2

DO 20 IEDG=1,NEDG
INDS =INDED+IEDG
IN1=NP1(INDS)
IN2=NP2 (INDS)
N1=NCONN(IN1,MPR)
N2=NCONN (IN2,MPR)

IF(K1.EQ.N1.AND.K2,EQ.N2)GOTO 26

- IF (K2.EQ.N1.AND.K1.EQ.N2)GOTO 22

o

CONTINUE

WRITE(IW6, 908)MU, ND1, ND2
GOTO 200

Numbering the Additional Displacement Nodes

CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE

"CURE

CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE
CURE

CHANGE AROUND COORDINATES IF THERE ARE MORE THAN
ONE NODE AND THE NODES ARE IN THE REVERSE ORDER

CURE
CURE
CURE

2

n

IF (NEDG.LE. 1)GOTO 26

DO 24 IDSD=1,NDSD

CURE
CURE
CURE
CURE

207

e g i g Wy AT e S

208 Geometry of the Finite Element Mesh [Ch.6
JBK=NDSD+1-IDSD CURE 73
DO 24 ID=1,NDIM CURE T4
24 CDT(ID,IDSD)=CD(ID, JBK) CURE 75
c CURE 76
DO 25 IDSD=1,NDSD ‘ CURE 177
DO 25 ID=1,HNDIM CURE 78
25 ¢D(ID,IDSD)=CDT(ID, IDSD) . CURE 79
c CURE 80
26 CONTINUE CURE 81
NS=NUN \ CURE 82
IF (NDTY.EQ. 2)NS =NDN CURE 83
NL=NS+(IEDG-1)*NDSD CURE 84
¢ CURE 85
c CHANGE COORDINATES ALONG CURVED EDGE CURE 86
c CURE 87
DO 40 KSD=1,NDSD ' CURE 88
NLN=NL+KSD CURE 89
K =HCONN (NLN,MPR) CURE 90
c CURE 91
DO 38 ID=1,NDIM CURE 92
38 XYZ(ID,K)=CD(ID,KSD) CURE 93
40 CONTINUE CURE 94
C CURE 95
200 CONTINUE CURE 96
c CURE 97
IF (IERS. EQ.0)RETURN CURE 98
WRITE (IW6,910) CURE 99
STOP CURE 100
900 FORMAT (/1X,32HLIST OF NODES ALONG CURVED EDGES/) CURE 101
902 FORMAT (315,6F 10.0) CURE 102
903 FORMAT (1X, THELEMENT, I5, 2X, 18HDOES NOT HAVE TYPE,I#4,2X, CURE 103
1 33HNODES ALONG SIDE (ROUTINE CUREDG)) CURE 104
904 FORMAT (/1X, 32H**¥ERROR*® EDGE CONTAINING NODES,2I5,2X, CURE 105
1 GHNOT FOUND) CURE 106
908 FORMAT(/1X, THELEMENT,15,23H DOES NOT CONTAIN NODES,?215) CURE 107
910 FORMAT (/1X, 36HPROGRAM TERMINATED IN ROUTINE CUREDG) CURE 108
END CURE 109
CURE 11 : set error count to zero.
CURE 14 : loop on all elements sides which are curved.
CURE 15-16 :read and write co-ordinates of nodes along curved sides
(excluding nodes at either end).
CURE 18-29 : data dependent on element type,
MPR — program element number.
LT — element type number.
NDN — total number of displacement nodes in element.
NVN — number of vertex nodes.
NEDG — number of element sides.
INDED — starting index to arrays NP1, NP2.
CURE 23 :NDSD —the number of displacement nodes along side
(excluding nodes at either end).
CURE 24 :NDSD —the number of pore pressure nodes along side
(excluding nodes at either end).
CURE 31-32 : program node numbers of nodes at either end.
CURE 34 - sort the numbers: I1 is the smaller of the two.
CURE 35 : IHASH — code to identify element side.

!
|
\
i

Sec. 6.4]

CURE 40

CURE 41
CURE 42
CURE 45-47

CURE 50-51

CURE 53
CURE 54

CURE 55-56
CURE 57-58
CURE 60

CURE 61
CURE 64—65

CURE 70
CURE 72-75
CURE 77-79

CURE 82
CURE 83
CURE 84
CURE 88
CURE 89-90
CURE 92-93
CURE 96
CURE 98-99

Numbering the Additional Displacement Nodes 209

:start from the beginning, if end of array ITAB has been reached
(the allocation for ITAB is more than is actually required).

: the entry for the element side has been found.

: look for zero entry.

: IHASH — entry for element edge has not been found (unlikely
program error) — print out error message.

:make entry to indicate that the side is curved for plotting
purposes. It is by-passed if pore pressure nodes are being
numbered.

: loop on all edges of element to find the side which is curved.
:index for arrays NP1, NP2 for a given edge of a given elemen

type.

: indexes to array NCONN, i.e. local node numbers.
: nodes at either end of edge.
:branch off if nodes match, i.e. they are in the correct anti-

clockwise order,

: nodes match after being interchanged.
: the edge (identified by nodes at either end) specified by user

cannot be found in element (probable user error).

: branch off if the edge contains only one side node.
:array CDT contains the rearranged node co-ordinates.
:array CD contains the nodal co-ordinates in the correct (anti-

clockwise) sequence.

: index to local (displacement) node numbers.

: index to local (pore pressure) node numbers.

- index to local (displacement/pore pressure) node numbers.
: loop on all nodes along edge (excluding end nodes).

: NLN is index (local node no.) and K is the node number.

: replace the nodal co-ordinates.

: end of loop on all curved sides.

tif errors have been detected, print message and stop.

Routine INTPLT scans the co-ordinates of all the displacement nodes and
establishes the size (extent) of the mesh. This is the first information (the
minimum and maximum values of the co-ordinates) written to the plot data

(PD) file, and

it is used by a separate mesh-plotting program to calculate the

appropriate scale for plotting the mesh.

Routine INTPLT
SUBROUTINE INTPLT(IW6,IW8,NDIM,NNE,XYZ,ND) IPLT 1
cl'lll““.l'5"'lii!!Illlll‘il!lllllIil!lll'llliilllllllilllllilllll!lll'IPLT 2
c ROUTINE TO CALCULATE DIMENSIONS OF THE PLOT IPLT 3
Clllliili“‘ﬂ'l“l!"!Ill’l'Iiﬂ'l!l‘lllllll!liilll'“'."!l"Ill!*llll‘ﬁ“IPLT y
DIMENSION XYZ (NDIM,NNE),CODMIN(3),CODMAX(3) IPLT 5
COMMON /PARS / PYI,ALAR,ASMVL,ZERO IPLT 6
c IPLT 7

210 Geometry of the Finite Element Mesh [Ch.6

DO 10 ID=1,NDIM IPLT 8

CODMIN(ID)= ALAR IPLT 9

10 CODMAX(ID)=-ALAR IPLT 10

c : IPLT 11

DO 30 J=1,ND IPLT 12

DO 20 ID=1,NDIM IPLT 13

IF(XYZ(ID,J).GT.CODMAX(ID))CODMAX(ID)=XYZ(ID,J) IPLT 14

IF(XYZ(ID,J).LT.CODMIN(ID))CODMIN (ID)=XYZ(ID,J) IPLT 15

20 CONTINUE IPLT 16
30 CONTINUE IPLT 17 -

c IPLT 18

WRITE (IW8)NDIM IPLT 19

WRITE (IW8)(CODMAX(ID),ID=1,NDIM), (CODMIN(ID),ID=1, NDIM) IPLT 20

RETURN IPLT 21

END IPLT 22

[PLT 8-10 : initialise the minimum and maximum values of co-ordinates to
appropriate values.

IPLT 12 : loop on all displacement nodes.

IPLT 13—15 : store the minimum and maximum values of nodal co-ordinates.

IPLT 17 : end of displacement node loop.

IPLT 19—20 : write the minimum and maximum nodal co-ordinates to a file for
plotting Jater (using the mesh-plotting program).

The data necessary to draw the mesh (i.e. by means of drawing all the element
sides) and numbering the nodes and the elements are also written to the PD file
in a standard format. This also applies to instructions such as change of pen
colour used for plotting. The standard format consists of a set of co-ordinates
and two integer codes. Two such entries are needed to draw an element side.

Routine SIDES
SUBROUTINE SIDES(IW6,IW8,LTAB,LDIM,NDIM, NNE,MXND, NEL, SIDE 1
1 XYZ,NCONN, ITAB) SIDE 2
Cl!!llll!l!!llllIiiii!llllli!!lill!llll!!lllilllll!ili!iillllllilillllIlSIDE 3
c PLOTS MESH SIDE 4
Clil'lil!Ii!l'lliiiilllIllill!l!!lillllllllllllllllillllllllllllllliiiiﬁSIDE S
DIMENSION XYZ(NDIM,NNE),NCONN(MXND,NEL),ITAB(LTAB,LDIM),XYZD(3) SIDE 6
c SIDE 7
c LOOP ON ALL EDGES SIDE 8
c SIDE 9
NSD=LDIM~3 SIDE 10
c -SIDE 11
c PEN MOVEMENT : 3 — MOVETO : 1 — DRAWTO SIDE 12
c SIDE 13
IONE=1 SIDE 14
ITHR=3 SIDE 15
IDUM=0 SIDE 16
c SIDE 17
c DUMMY COORDINATES SIDE 18
c SIDE 19
DO 5 ID=1,NDIM SIDE 20
5 XYZD(ID)=0. SIDE 21
c SIDE 22
c PEN COLOUR IS BLACK FOR DRAWING MESH SIDE 23
c SIDE 24
ICODE=-1 SIDE 25
WRITE (IW8)ICODE, (XYZD(ID),ID=1,NDIM), IDUM SIDE 26

3
|
|

Sec. 6.5] Numbering the Additional Pore Pressure Nodes 211

c SIDE 27

DO 20 L=1,LTAB SIDE 28

IF (ITAB(L,1).EQ.0)GOTO 20 SIDE 29

N1=ITAB(L,1)/10000 SIDE 30

N2=ITAB(L, 1)-N1%10000 SIDE 31

WRITE(IW8)ITHR, (XYZ(ID,N1),ID=1,NDIM), IDUM SIDE 32

IF (XTAB(L,LDIM).NE,2)GO TO 15 SIDE 33

c SIDE 34

c DRAW CURVED SIDE - USING STRAIGHT LINES PASSING SIDE 35

c THROUGH ALL DISPLACEMENT NODES SIDE 36

c SIDE 37

DO 10 ISD=1,NSD SIDE 38

ND=ITAB(L, ISD+1) SIDE 39

10 WRITE(IW8)IONE, (XYZ(ID,ND),ID=1,NDIM), IDUM SIDE 40

15 WRITE(IW8)IONE, (XYZ(ID,N2),ID=1,NDIM), IDUM SIDE 41

20 CONTINUE SIDE 42

RETURN SIDE 43

END SIDE 44
SIDE 10 : no. of nodes along an element edge (excluding end nodes).

SIDE 14-15 : codes which control pen movements.
SIDE 2021 : dummy co-ordinates (used when pen colour is changed).
SIDE 25-26 : select pen colour (when negative, change pen colour).

1 —black; 2 —red; 3 — green. Write details to PD file.

SIDE 28 :loop on all entries of array ITAB (each entry represents an
element side).

SIDE 29 : branch off if zero entry (non-zero entry indicates an element
side).

SIDE 30-31 : nodes on either end of edge.

SIDE 32 . write co-ordinates to plot data (PD) file.

SIDE 33 : branch off if element edge is straight.

SIDE 38—41 : write intermediate (along element edge) node co-ordinates to PD
file.

SIDE 42 : end of loop on ITAB entires.

6.5 NUMBERING THE ADDITIONAL PORE PRESSURE NODES

Now the procedure for numbering the additional displacement nodes is repeated
for numbering the additional pore pressure nodes along element sides and
element interiors. This is done in routine MIDPOR, which is very similar to the
routine MIDSID, Only the higher-order (CuST) element uses this routine. All
linear strain elements have pore pressure variables at the vertex nodes, which give
a linear variation in pore pressure. These elements do not have additional pore
pressure nodes.

This routine repeats the procedure (as in routine MIDSID) for the whole
mesh, only this time the additional nodes are pore pressure nodes instead of
displacement nodes.

T TS T

212 Geometry of the Finite Element Mesh [Ch.6
Routine MIDPOR

SUBROUT INE MIDPOR (IW6,MXND,NEL,LTAB, LDIM, NNU, NDIM, NNE, NPL, MPOR 1

1 XYZ, NCONN,LTYP,MRELVV, NRELVV, NREL, ITAB, NP1, NP2, NN, KRD, NNZ) MPOR 2

Cllli!ll!!llﬁli!!!i!"ll.!!‘llli'llli!!l‘l‘llIIllllIlll!!!“llﬁillllllllMPOR 3

[ROUTINE TO CALCULATE ADDITIONAL PORE-PRESSURE NODES FOR MPOR 4

c CONSOLIDATION ELEMENTS (NODES WITH ONLY MPOR 5

c EXCESS PORE PRESSURES AS VARIABLES) MPOR 6

Cill!ilil‘ll!i‘lil!l’llKlﬁﬁilllilll!!!l!!l!“llliii!llllill!!!*llli!!l!&ilMPOR 7

DIMENSION XYZ(NDIM, NNE),NCONN(MXND,NEL),LTYP(NEL), MPOR 8

1 MRELVV (NEL),NRELVV (NNE), NREL (NNU), ITAB(LTAB,LDIM), MPOR 9

1 NP1(NPL),NP2(NPL),SUM(3) MPOR 10

COMMON /ELINF -/ LINFO(50,15) MPOR 11

COMMON /PARS / PYI,ALAR,ASMVL,ZERO MPOR 12

c MPOR 13

KR=KRD MPOR 14

K=NN MPOR 15

LDIM1=LDIM-1 MPOR 16

c MPOR 17

LT=LTYP(}) MPOR 18

IF (LINFO(8,LT).NE.O)WRITE(IW6,900) MPOR 19

c MPOR 20

DO 10 J=1,LDIM MPOR 21

DO 10 I=1,LTAB MPOR 22

10 ITAB(I,J)=0 MPOR 23

C MPOR 2U

DO 100 NE=1,NEL MPOR 25

MUS =MRELVV (NE) MPOR 26

LT=LTYP(NE) MPOR 27

GOT0(100, 100, 100, 100, 100, 100, 12, 100, 100, 100, 100), LT MPOR 28

WRITE(IW6, 910)MUS,LT MPOR 29

STOP MPOR 30

12 NDN:=LINFO(S5,LT) MPOR 31

NVN=LINFO(2,LT) MPOR 32

NEDG=LINFO(3,LT) MPOR 33

NDPT=LINFO(1,LT) MPOR 34

INDED=LINFO(14,LT) MPOR 35

NPSD=LINFO(8,LT) MPOR 36

c MPOR 37

DO 26 IS=1,NEDG MPOR 38

NLP=NDN+(IS-1)*NPSD MPOR 39

INDS=INDED+IS MPOR 40

IN1=NP1(INDS) MPOR 41

IN2=NP2(INDS) MPOR 42

N1=NCONN (IN1, NE) MPOR 43

N2:=NCONN (IN2, NE) MPOR Ui

c MPOR 45

CALL SORT2(N1,N2,11,I2) MPOR 46

THASH=10000%I 1412 MPOR 47

IT=5%I1 MPOR 48

GOTO 18 MPOR 49

c MPOR 50

16 IT=IT+1 MPOR 51

18 IF(IT.GT.LTAB) IT=1 MPOR 52

IF (ITAB(IT, 1).EQ.IHASH) GOTO 24 MPOR 53

IF (ITAB(IT, 1).NE.O) GOTO 16 MPOR 54

c MPOR 55

DO 22 IPSD=1,NPSD MPOR 56

C MPOR 57

C CALCULATE CO-ORDINATES OF NODES ALONG THE EDGE MPOR 58

c MPOR 59

K=K+1 MPOR 60

KR=KR+1 MPOR 61

IF (KR. LE. NNU)GOTO 19 MPOR 62

WRITE(IW6,901) MPOR 63

STOP MPOR

A .- 8

{
|

Sec. 6.5]

19 NREL(KR)=K
NRELVV(K)=KR
IF (K.LE.NNE) GOTO 20
WRITE (IW6, 902)NNE
STOP

20 NLNP=NLP+IPSD
NCONN(NLNP, NE)=K
IPOS=IPSD+1
ITAB(IT, IPOS)=K
F 1=FLOAT (NPSD+1-IPSD)/FLOAT (NPSD+1)
F2=1,-F1

DO 21 ID=1,NDIM
21 XYZ(ID,K)=XYZ(ID,N1)*¥F1+XYZ(ID,N2)*F2
WRITE (IW6, 904 KR, (XYZ(ID,K),ID=1, NDIM)
22 CONTINUE

ITAB(IT, 1)=IHASH
ITAB(IT,LDIM1)=1
GOTO 26
24 DO 25 IPSD=1,NPSD
JPSD=NPSD+1-IPSD
NLPJ=NLP+JPSD
25 NCONN(NLPJ,NE)=ITAB(IT,IPSD+1)
ITAB(IT,LDIM1)=ITAB(IT,LDIM1)+1
26 CONTINUE

Go T0(90, 90, 90, 99, 90, 99, 27, 9¢, 90, 90, 90), LT

Numbering the Additional Pore Pressure Nodes

213

MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR

-MPOR

CALCULATE CO-ORDINATES OF NODES WITHIN ELEMENTS

MPOR
-MPOR

27 NINP=LINFO(10,LT)
JP=NDPT-NINP

DO 80 INP=1,NINP

K=K+1

KR=KR+1

IF (KR, GT.NNU)WRITE(IW6,901)
IF (K.GT.NNE)WRITE (IW6,S02)NNE
NREL (KR)=K

NRELVV (K)=KR

JP=JP+1

NCONN(JP,NE)=K

DO 40 ID=1,NDIM
40 SUM(ID)=2ERO

DO 50 IN=1,NVN
NDE =NCONN(IN, NE)
DO 50 ID=1,NDIM
50 SUM(ID)=SUM(ID)+XYZ(ID,NDE)
DO 60 ID=1,NDIM
60 XYZ(ID,K)=SUM(ID)/FLOAT(NVN)
WRITE (IW6, 904)KR, (XYZ(ID,K),ID=1, NDI¥)
80 CONTINUE
90 CONTINUE

100 CONTINUE

MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR

65
66
67
68
69
70
al
72
73
T4
75
76
7
78

81
82
83
84
85
86
87
88
89
90
Al
92
93
ou
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
1-

MPOR

MPOR

MPOR

MPOR

MPOR

MPOR

MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR
MPOR

1.
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130

214 Geometry of the Finite Element Mesh [Ch.6
c MPOR 131
NN=K MPOR 132
NNZ =KR MPOR 133
RETURN MPOR 134
900 FORMAT (/10X, 46HCOORDIMATES OF PORE PRESSURE NODES ALONG EDGES// MPOR 135
1 39H NODE X Y /) MPOR 136
901 FORMAT(/1X,4SHINCREASE NO. OF ADDITIONAL NODES (ROUTINE MIDPOR)) MPOR 137
902 FORMAT(/1X,21H**¥ERROR*¥** MORE THAN,IS, MPOR 138
1 30HNODES IN MESH (ROUTINE MIDPOR)) MPOR 139
904 FORMAT (IS, 3F12.3) MPOR 140
910 FORMAT(/1X, THELEMENT, I5, 2X, 22HIS OF UNKNOWN TYPE **¥ IS5, 2X, MPOR 141
1 16H(ROUTINE MIDPOR)) MPOR 142
END MPOR 143
MPOR 14 : KR — starting user number of additional nodes.
MPOR 15 : K — starting program number of additional nodes.
MPOR 18-19 : write title — ‘co-ordinates of pore pressure nodes’.
MPOR 21-23 : zero array ITAB.
MPOR 25 : loop on all elements.
MPOR 28 : skip if element type has no additional pore pressure nodes.
MPOR 31-36 : obtain element particulars.
NVN — number of vertex nodes.
NEDG — number of element sides.
NDPT — total number of nodes.
INDED - starting index to arrays NP1, NP2.
NPSD — number of additional (pore pressure) nodes
along edge.
MPOR 38 : loop on all edges of the element.
MPOR 39 : index to location of new node in NCONN.
MPOR 40 : index to nodes at either end of element side, in NP1, NP2,
MPOR 41-42 :indexes of nodes at either end in NCONN.
MPOR 4344 : nodes at either end of element side.
MPOR 46 : sort the nodes into ascending order.
MPOR 47 : calculate unique code (consisting of node numbers at either
end) representing the side.
MPOR 52 : start at the beginning, if end of array has been reached, and
make use of the gaps in array ITAB.
MPOR 53 : look for the possibility that nodes along element edge have
already been numbered; if so, branch off.
MPOR 54 : if nodes along element edge have to be numbered then find
a location with zero entry.
MPOR 56 :such a location has been found. Loop on all additional
(pore pressure) nodes along this edge.
MPOR 60 : program number for the new node.
MPOR 61 : user number for the new node.
MPOR 62-63 : check that number of nodes does not exceed allocation for

array NREL. If exceeded, print error message and stop.
(The allocation for NREL is such that this should not
happen.)

e

———is,

e LS SRR R

Sec. 6.5]

MPOR 66
MPOR 67
MPOR 68—69
MPOR 72
MPOR 73
MPOR 7475
MPOR 76-77
MPOR 79-81

MPOR 82
MPOR 84
MPOR 85

MPOR 88

MPOR 89-91
MPOR 93
MPOR 95
MPOR 971017

MPOR 1027
MPOR 1047
MPOR 1057

MPOR 1067
MPOR 107-108"
MPOR 109—110"
MPOR 111-112f
MPOR 114-—-123F
MPOR 1267
MPOR 130
MPOR 132133

Numbering the Additional Pore Pressure Nodes 215

: enter program node number in array NREL.

- enter user node number in cross-reference array NRELVV.

- check that array allocation NRELVV is not exceeded.

- index of new node in array NCONN.

- enter new node number in NCONN.

- index of new node in array ITAB, and enter new no.

: calculate interpolation ratios.

: calculate co-ordinates of new node, using linear inter-

polation on nodes at either end.

: end of loop on nodes along edge.
: enter code representing element side in ITAB.
- enter 1 to indicate that nodes along element edge have been

calculated (the value is also used to count the number of
elements sharing this side).

: for any element edge along which nodal co-ordinates have

already been calculated. Loop on all nodes along edges
excluding the ones at either end.

: enter the node numbers in NCONN.

- increment count on no. of elements sharing element side.

: end of loop on all element edges.

- no. of inner nodes (only for element types which have

them; skip for the rest).

- index to node location in NCONN.
: loop on all inner nodes.
: program node number.

: user node number.

- check for array sizes NREL, NRELVV being exceeded.
- enter node number in NREL and NRELVV.

: enter number in NCONN.

: calculate co-ordinates of inner node.

: end of loop on all inner nodes.

: end of element loop.

- maximum values of node numbers (all inclusive).

(NNZ — user number; NN — program number.)

If the pore pressure nodes lie along a curved side (here again only relevant to
CuST element) then the user again provides the co-ordinates of these nodes. It
should be remembered that these nodes are different from the displacement
nodes for a higher-order element like the CuST. Because of simplicity of
programming, the displacement and pore pressure nodes are dealt with

+ Note: these are specifically for element type 7, which is the only element type with
inner nodes. Any new element type with inner nodes will require this part of the code to

be modified.

e (8

¢y

{
§ 216 Geometry of the Finite Element Mesh (Ch. 6 Sec. 6.5] Numbering the Additional Pore Pressure Nodes 217
!
il
1 separately, However, the same routine which was used for the displacement 3 12 DO 15 JR=NNT, NN2 NMSH 40
Y nodes is used again. | IF(NREL(JR).EQ.0)GO TO 15 NMSH 41
i o . § J=NREL(JR) NMSH 42
| When exit is made from the routine MIDPOR, all the nodes (pore pressure J J1=JR WMSH 43
E and displacement) have been assigned numbers and their co-ordinates calculated.] WRITE (IW8)ICODE, (XYZ(ID,J),ID=1,NDIM),JJ NMSH 44
: 15 CONTINUE MMSH 45
The total number of nodes NN is now known, and the largest user node number i ¢ > NMSH 46
is NNZ (remembering that the additional nodes were numbered starting from] IF (NC.EQ.0)GOTO 100 NMSH 47
! { = NMSH 4
751). When the pore pressure nodes were numbered, the user node numbers ! c ne=0 NMSH ug
were continued from the point left by the last additional displacement node. For c PEN COLOUR IS RED FOR EDGE NODES NMSH 50
. . . | NMSH 51
example, if 832 was the last displacement node number then 833 is the node 1 ¢ 50 IPENo? NMgH 22
number of the first pore pressure node. ; WRITE(IW8)IPEN, (XYZD(ID),ID=1,NDIM),IDUM MMSH 53
At this stage, all the information necessary to number the mesh is written to 1 m;f:ﬁﬁ ::iﬂ 2
| the PD file in routine NUMSH. Still adopting the same format to write the p GOTO 12 NMSH 56
. .))) - c MMSH 57
‘information as befox.e, the node co-ordinates and n'umbers are written. For the E 30 IF(IPL.GT. 4)GOTO 40 WMSH 58
purpose of numbering the elements, the centroid co-ordinate and element { NC=1 NMSH 59
er are writte e ¢ GOTO 10 NMSH 60
number are written to the file. : c NMSH €1
. i c PEN COLOUR IS GREEN FOR ELEMENTS MMSH 62
; 1 c NMSH 63
Routine NUMSH ! 20 IPEN-—3 \HsH el
: WRITE (IW8)IPEN, (XYZD(ID),ID=1,NDIM), IDUM NMSH 65
! c NMSH 66
SUBROUTINE NUMSH(IW6, W8, NDIM, NNE,MXND, NEL,MUMAX, NNU, XYZ, MMSH 1 -! DO 50 JR=1,MUMAX NMSH 67
1 NCONN,LTYP,MREL, NREL, NDZ, IPLOT) NMSH 2 1 IF (MREL(JR).EQ.0)GOTO 50 NMSH 68
CRMEH NI RN RN RN NR R RN RN AR RN RN RRR RN RN REANMSH 3 4 J=MREL (JR) NMSH 69
c ROUTINE TO NUMBER MESH NMSH 4 i ¢ MMSH 70
CHEMRIMENRN MR ER R RN RIRRER RN ER RN RERR NN AN R NRRRERNRARNRRRRRANA RN RR AR REREINMSH 5 3 DO 35 ID=1,NDIM NMSH 71
| DIMENSION XYZ (NDIM, NNE),NCONN(MXND,NEL),LTYP(NEL), MMSH 6 i 35 XYZC(ID)=0. MMSH 72
; 1 MREL(MUMAX),NREL (NNU),XYZD(3),XYZC(3) NMSH 7 H ¢ NMSH 73
[COMMON /DEBUGS/ ID1,1D2,ID3,ID4,ID5,ID6,ID7,ID8,IDY, ID10 NMSH 8 3 LT=LTYP(J) NMSH 74
i COMMON /ELINF / LINFO(50,15) NMSH 9 ¥ NVN=LINFO(2,LT) NMSH 75
| c NMSH 10 rs c NMSH 76
L IF (IPLOT. EQ.O)RETURN NMSH 11 L DO 46 I=1,NVN NMSH 77
i c NMSH 12 /] L=NCONN(I,J) NMSH 78
it c NDZ1 - STARTING VALUE OF USER NUMBER OF EDGE NODES NMSH 13 1 DO 46 ID=1,NDIM NMSH 79
] ¢ NMSH 14 ; 46 XYZC(ID)=XYZC(ID)+XYZ(ID,L)/FLOAT (NVN) NMSH 80
f NDZ 1=NDZ+1 NMSH 15 4 c MMSH - 81
| c NMSH 16 | JJ=JR MMSH 82
! c CODE TO INDICATE THAT A NUMBER IS TO BE PLOTTED NMSH 17 4 WRITE (IW8)ICODE, (XYZC(ID),ID=1,NDIM),JJ NMSH 83
1 c NMSH 18 3 50 CONTINUE NMSH 84
! ICODE=11 NMSH 19 c NMSH - &
{ c NMSH 20 ! IPL=IPL-4 NMSH ¢
| c DUMMY COORDINATES NMSH 21 IF(IPL.GT.1)GOTO 5 NMSH 87
i ¢ NMSH 22 ¢ NMSH 88
! DO 4 ID=1,NDIM MMSH 23 ! c CLOSE FILE MMSH 89
{ 4 XYZD(ID)=0. NMSH 24 : c NMSH 90
i IDUM=0 NMSH 25 { 100 WRITE(IW8)IZERO, (XYZD(ID),ID=1,NDIM), IDUM MSH 91
i 1ZERO=0 NMSH 26 it RETURN ' iHSH 92
i c MSH 27 i END NMSH 93
NC=0 NMSH 28
| IPL=IPLOT NMSH 29 1
! IF (IPL.EQ.1)GOTO 100 NMSH 30 : NMSH 15 : starting value of midside nodes (user numbers).
5 IF(IPL-3)10,20,30 NMSH 31 | — .
i c SR NMSH 32 i NMSH 19 : code to indicate a number is to be plotted.
; c PEN COLOUR IS BLACK FOR VERTEX NODES MISH 33 i NMSH 23-24 : dummy co-ordinates (used when pen colour is changed).
c NMSH 34 . o .
: 10 IPEN=—1 NMSH 35 t NMSH 29 : plotting code (user specified, request of mesh detail, e.g.
i WRITE (IW8)IPEN, (XYZD(ID),ID=1, NDIM), IDUM NMSH 36 i numbering).
‘ NN1=1 NMSH - o ;
NN2-NDZ NMSH 3; i NMSH 35-36 : select pen colour as black (negative value indicates change in pen
= ¥ . . .
c MMSH 39 colour) and write information to PD file.

i
L
i
i
|

218 Geometry of the Finite Element Mesh [Ch.6

NMSH 37-38 : the range of node numbers includes the vertex nodes.

NMSH 4045 : write (displacement) node co-ordinates to PD file.

NMSH 47 : branch off if no more information on mesh is required.

NMSH 52-53 : select pen colour as red for nodal numbering and write infor-
mation to PD file.

NMSH 5455 : range of midside node numbers.

NMSH 59 : branch off to plot vertex node numbers.

NMSH 64—65 : select pen colour as green for plotting element numbers and
write information to PD file.

NMSH 67 : loop on all elements,

NMSH 68 : by-pass if an element number is not used.

NMSH 71-72 : initialise element centroid co-ordinates.

NMSH 74—75 : element type number (LT), number of vertex nodes in element
(NVN).

NMSH 77-80 : calculate element centroid co-ordinates.

NMSH 8284 : write element centroid co-ordinates to PD file.

NMSH 91 : close file by writing a zero code.

The remaining tasks for the geometry part of the program are the calculation of
the total number of degrees of freedom (d.o.f.) and the frontwidth and the core-
store required in solving the equations using the frontal method. The first step is
to find the number of d.o.f. at each node, considering all the elements connected
to that node, and this is achieved by MAKENZ.

Array (NQ(NN) gives the number of d.o.f. of each node. A node may have a
differing number of d.o.f. from the different elements of which it is a part. This
can be illustrated by an example (Fig. 6.5): in it, nodes 1 and S have 3 d.o.f.
from the linear strain triangle of type 3. They have dy, d), and u as variables, the
displacements in x and y directions and the excess pore pressure. From the linear
strain triangle of type 2 element, the three nodes have 2 d.o.f. (dy and dy, only).
Therefore nodes 1 and 5 have a maximum of 3 d.o.f. This is entered in array
(NQ(NN).

The number of d.o.f. is entered against that node number in array NQ. Once
this task is completed, the total number of d.o.f. in the mesh — NDF — is found
by summing up the entries in array NQ,

The number of d.o.f. for each node for different element types is obtained
from array LINFO(50; 15). The second index is for the element type number
(LT). The first 20 entries are allocated to give out general information regarding
the element type. Entries starting from 21 give the number of d.o.f. for each
node of an element. (The sequence used for the nodes is the same as in Fig. 4.1.)

Routine MAKENZ

SUBROUTINE MAKENZ (MXND, NEL, NN, NCONN,LTYP, NQ, INXL) MKNZ 1
CMEI I NI RRRRRRNN N RRR AR NN RRRN RN ERRRR RN RNRRRRRRMUNZ 2
C SETS UP THE NQ ARRAY WHICH CONTAINS THE NUMBER MKNZ 3
C OF DEGREES OF FREEDOM ASSOCIATED WITH EACH NODE MKNZ 4
o FOR ELEMENTS IN THIS ASSEMBLY. MKNZ 5
(R T VA

-

i Ny

T L) s TR o |

LA [e W 2 SO)

Sec. 6.5] Numbering the Additional Pore Pressure Nodes

3

Fig. 6.5 — Same nodes with different d.o.f. when mixing different element types

DIMENSION NCONN(MXND,NEL),LTYP(NEL),NQ(NN) MKNZ
COMMON /ELINF/ LINFO(50,15) MKNZ

c : ' MKNZ
c INXL - INDEX TO NO. OF DEGREES OF FREEDOM OF FIRST NODE OF ELEMENTMKNZ
c (SEE BLOCK DATA ROUTINES BDATA1, MAIN2) MKNZ
c MKNZ
DO § J=1,NN MKNZ

8 NQ(J)=0 MKNZ

c MKNZ
DO 20 J=1,NEL i MKNZ
IF(LTYP(J).LT.0) GOTO 20 MKNZ
LT=LTYP(J) MKNZ
NDPT=LINFO(1,LT) MKNZ

c MKNZ
DO 10 I=1,NDPT MKNZ
NDFN=LINFO (I+INXL,LT) MKNZ
NOD=NCONN(I, J) MKNZ

IF (NDFN.GT.NQ(NOD)) NQ(NOD)=NDFN MKNZ

10 CONTINUE MKNZ

20 CONTINUE MKNZ

c MKNZ
RETURN MKNZ

END MKNZ

MKNZ 13—14 : zero the number of d.o.f. of all nodes.

MKNZ 16 : loop on all elements.

MKNZ 17 : by-pass if element is not present in the current mesh.
MKNZ 18 : element type number.

MKNZ 19 : the total number of nodes in element.

MKNZ 21 : loop on all nodes of element.

219

220 Geometry of the Finite Element Mesh [Ch.6

MKNZ 22 : the number of d.o.f. of node.

MKNZ 23 : node number.

MKNZ 24 : enter if node associated with the current element has a greater
number of d.o.f.

MKNZ 25 : end of loop on all nodes of element.

MKNZ 26 : end of element loop.

It is necessary for the purpose of internal housekeeping to assign unique
numbers to each d.o.f. or variable, This number lies in the range I to NDF and
will be referred to as the global variable number (g.v.n.) in the rest of the text.
For simplicity, array NQ is used for this purpose. All the d.o.f. of a particular
node are given consecutive numbers. Hence it is only necessary to know the
gv.n. of the first variable of each node. Array NW is set up to provide this
information. The first d.o.f. of the tenth node, for example, is given the sum
total of the d.o.f. of the first 9 nodes + 1. The NW entries will be

node -1 2 3 4 5 6 7 8 (9

dof. -3 3 3 3 2 2 2 2

gvn. > 1 4 7 10 13 15 17 19 (21)
The last ‘non-existent’ node serves as a marker; for example, the difference in
g.v.n, between consecutive node numbers is the d.o.f. of the first numbered
node.

number of d.o.f. of node 5 = NW(6) —NW(5)=15—13=2
number of d.o.f. of node § = NW(9) —NW(8) =21—19=2

Hence the entry for the last ‘non-existent’ node will always be NDF + 1. The
routine which carries out the above calculations is CALDOF.

Routine CALDOF

SUBROUTINE CALDOF (IW6, NN,NN1, NDF, NW, NQ) CLDF 1

I Iy e T I T T Tl]
c ROUTINE TO CALCULATE GLOBAL NUMBER FOR D.O.F. CLDF 3
CRMIIIINRI I NI I NI NI MMM NN NN RN KRN RR RN R RN NNRR NN NNRNAC[DF Y
DIMENSION NW(NN1),NQ(NN) CLDF 5

c CLDF 6
NC=1 CLDF 7
NW(1)=1 CLDF 8

o CLDF 9
DO 10 I=1,NN CLDF 10
NC=NC+NQ(I) CLDF 11

10 NW(I+1)=NC CLDF 12

c CLDF 13
NDF =NW (NN1)-1 CLDF 14

c CLDF 15
RETURN CLDF 16

END CLDF 17

CLDF 7-8 : global variable nos. of first d.o.f. of first node.
These g.v.n. serve as indexes to arrays P, PT, DI, DA, etc.
CLDF 10 :loop on all nodes.

i £ It el b

SR

et gt

[t etmsaina e it
. v W !

Sec. 6.6] Pre-frontal Routines 221

CLDF I1 : calculate global variable nos. of first d.o.f. of next node (=1+ 1).
CLDF 12 : place value in array NW. ’
CLDF 14 : NDF is the total number of d.o.f. in mesh.

6.6 PRE-FRONTAL ROUTINES

Routines MLAPZ and SFWZ are the pre-frontal routines. The frontal method is
described elsewhere in detail (Irons, 1970; Irons and Ahmad, 1980; Hinton and
Owen, 1977). The function of these two routines is best illustrated by an
example (Fig. 6.6).

7 762 8 766 9
N o o N
763 P 764
4 D 6
755 @ 753 ® 752 758 ¢ 757
® ®
1 721 2 7’:6 3

Fig. 6.6 — Example to illustrate frontal method

Element Type Mat NI N2 N3 N4 N5 N6
1 2 1 1 2 5 751 752 753
2 2 1 1 5 4 753 754 755
3 2 1 2 3 6 756 757 758
4 2 1 2 6 5 758 759 752
5 2 1 4 5 8 754 760 761
6 2 1 4 8 7 761 762 763
7 2 1 5 6 9 759 764 765
8 2 1 5 9 8 765 766 760

These are the input data, and assuming that no alternative efficient element
numbering has been specified, the midside node numbers are given on the right-

o e e T st 38

222 Geometry of the Finite Element Mesh [Ch.6

hand side of the above table. It gives the contents of the array NCONN,
translated into user node numbers. The actual midside node number entries in
NCONN are different, even though the vertex node number entries are exactly
the same. The array is modified so that the node numbers are made negative to
indicate their last appearances.

No. of

elements NI N2 N3 N4 N5 N6
1 1 2 5 —751 752 753
2 —1 S 4 =753 754 —755
3 2 —3 6 —756 —757 758
4 —2 6 5 —758 759 —752
5 4 5 8 ~754 760 761
6 —4 8 —7 =761 —762 —763
7 5 —6 9 =759 =764 765
8) -9 —8 —765 —766 —760

Considering the above table of element—nodal connectivity in the reverse order,
the first time a node appears will be its last appearance. This method is used to
find the last appearance of a node.

Routine MLAPZ
SUBROUTINE MLAPZ(MXND, NEL, NN, NCONN,LTYP, NQ) MLPZ 1
cll‘iilil‘lilllK!lﬂl‘i‘lﬂ!lIIlllIilil!l‘l’lil.‘iill.l*lii‘i“i!‘*i‘!!lliMLPZ 2
c MARKS LAST APPEARANCES OF NODES BY MAKING THEM NEGATIVE MLPZ 3
¢ IN NCONN ARRAY MLPZ U
cIlllllIl'i‘*liillilillllllllil!iIlill’lllllllillllll!iiﬁl"!!lllil{.llll!MLPZ 5
DIMENSION NCONN(MXND,NEL),LTYP(NEL),NQ(NN) MLPZ 6
COMMON /ELINF/ LINFO(50,15) MLPZ 7
c MLPZ 8
NEL1=NEL+1 MLPZ 9
c MLPZ 10
DO 30 M=1,NN MLPZ 11
IF (NQ(M).EQ.0) GOTO 30 MLPZ 12
DO 20 J=1,NEL MLPZ 13
JB=NEL1-J MLPZ 14
IF (LTYP(JB).LT.0) GOTO 20 MLPZ 15
LT=LTYP(JB) MLPZ 16
NDPT=LINFO(1,LT) MLPZ 17
DO 10 I=1,NDPT MLPZ 18
IF (NCONN(I, JB).NE.M) GOTO 10 MLPZ 19
NCONN(I, JB)=—NCONN(I, JB) MLPZ 20
GOTO 30 MLPZ 21
10 CONTINUE MLPZ 22
20 CONTINUE MLPZ 23
30 CONTINUE MLPZ 24
¢ MLPZ 25
RETURN MLPZ 26
END MLPZ 27
MLPZ 11 : loop on all nodes.
MLPZ |2 : by-pass if node is not present in the mesh — number of d.o.f. is

zero (probably due to removal of some elements).
MLPZ 13 : loop on all elements.

iy

R el W rwE

I3

L

Sec. 6.6] Pre-frontal Routines 223
MLPZ 14 : element number in reverse order.
MLPZ 15 : by-pass if element is not present in mesh.

MLPZ 1617 : element type number (LT) and the number of nodes associated
with the element (NDPT),

MLPZ 18 : loop on all nodes associated with the element.

MLPZ 19 : if node is not found, then by-pass.

MLPZ 20 : make node number negative to indicate last appearance of node
in mesh.

MLPZ 22 : end of loop on all nodes associated with the element.

MLPZ 23 : end of element loop.

MLPZ 24 : end of nodal loop.

Element List of active nodes Nodes which remain active

assembled after assembly after elimination

1 1 2 5 751 752 153 1 2 s 0 752 753

2 1 2 5 4 752 1753 0 2 5 4 752 0
754 1755 754

3 3 2 S 4 752 6 0 2 5 4 752 _ 6-..

N 754 756 757 158 754 0 0 758

4 759 2 5 752 6 759 0 S 4 0 6
754 0 0 758 754

5 759 8 5 4 760 6 759 8 5 4 760 6
754 761 0 761

6 759 8 S 4 760 6 759 8 5 0 760 6
7 761 762 763

7 759 8 5 9 760 6 0 8 § 9 760 0
76 765 0 765

8 766 8 5 9 760 0
0 765

In routine SFWZ, the program calculates the maximum frontwidth (and the
core-store required to solve the equations using the frontal method) using the
last appearances of nodes marked by the routine MLAPZ.

This is illustrated above. Making use of the previous table, after the first
element is assembled the number of active nodes, which is six, reduces to five
after the node which is underlined (only 751) is eliminated. The corresponding
entry on the list on the right-hand side is zero. Scanning through the list of
active nodes, the maximum number of nodes present at any stage is 10; hence
the maximum frontwidth is 10 nodes. It is the maximum number of nodes that
are active at any time. If each node has 2 d.o.f. then the maximum frontwidth
is 20 d.o.f.

Routine SFWZ
SUBROUTINE SFWZ(MNFZ,MXND,NEL, NN,MUMAX, NNZ, IFRZ, SFWZ 1
1 NCONN,LTYP,MREL,NREL,NQ, NDEST, IFR,MULT, MCORE, NCORET) SFWZ 2

cllllllllll!illil!illililllllllllillil'ilillllllllllllllllllllllliilli!'SFwZ 3

http:Sec.6.6J

224 Geometry of the Finite Element Mesh [Ch. 6
c WORKS OUT FRONT WIDTH FOR SYMMETRIC SOLUTION SFWZ " 4
c USING LAST APPEARANCES MARKED BY SUBROUTINE MLAPZ. SFWZ 5
Clliil’lllllII’!lIIl&!ll'!liiIlllllIil’l‘lllil!ll.llllIlllllIvliilllllllllll'stZ‘ 6
DIMENSION NCONN(MXND,NEL),LTYP(NEL),MREL(MUMAX),NREL(NNZ) SFWZ 7
DIMENSION NQ(N¥),NDEST(NN),IFR(IFRZ) SFWZ 8
COMMON /DEVICE/ IR1,IR4,IR5,IW2,IW4, W6, IWT, W8, W9 SFWZ 9
COMMON /DEBUGS/ ID1,1D2,1D3,ID4,IDS5,ID6,ID7,ID8, ID9, ID10 SFWZ 10
COMMON /ELINF/ LINFO(50,15) SFWZ 11

c SFWZ 12
INCORE=0 SFWZ' 13

c SFWZ 14
DO 6 J=1,NEL SFWZ 15
IF(LTYP(J).LT.0) GOTO 6 SFWZ 16
N=NCONN(1,J) SEWZ 17
NA=IABS(N) SFWZ 18
NDFN=NQ(NA) SFWZ 19

c SFWZ 20
DO 4 I=1,NDFN SFWZ 21

Y IFR(I)=NA SFWZ 22
NFZ=NDFN SFWZ 23

MNFZ =NDFN SFWZ 24
NDEST(NA)=1 SFWZ 25

GOTO 8 SFWZ 26

6 CONTINUE SFWZ 27

c SFWZ 28
WRITE (IW6,900) SFWZ 29

STOP SFWZ 30

c SFWZ 31
8 CONTINUE SFWZ 32

[+ -SFWZ 33
c CONSIDER EACH ELEMENT IN TURN SFWZ 34
c SFWZ 35
DO 40 J=1,NEL SFWZ 36

c SFWZ 37
c IGNORE OMITTED ELEMENTS SFWZ 38
c SFWZ 39
IF(LTYP(J).LT.0) GOTO 40 SFWZ 10

c SFWZ 41
c CONSIDER EACH NODE OF THIS ELEMENT — DOES IT ALREADY HAVE SFWZ 42
c A ROW/COLUMN ALLOCATED TO IT IN THE FRONT ? SFWZ 43
c SFWZ 4l
LT=LTYP(J) SFWZ 45
NDPT=LINFO(1,LT) SFWZ U6

C SFWZ 47
DO 20 I=1,NDPT SFWZ 48
N=NCONN(I,J) SFWZ 49
NA=IABS(N) SFWZ 50

I SFWZ 51
DO 10 K=1,NFZ SFWZ 52
IF(IFR(K).EQ.NA) GOTO 20 SFWZ 53

10 CONTINUE SFWZ 54

I SFWZ 55
c FIND A (LARGE ENOUGH) GAP OR PUT ON END SFWZ 56
Cc SFWZ 57
K1=1 SFWZ 58

11 DO 12 K=K1,NFZ SFWZ 59

IF (IFR(K).EQ.0) GOTO 15 SFWZ 60

12 CONTINUE SFWZ 61

c SFWZ 62
c PUT ON END SFWZ 63
c SFWZ 6l
K=NFZ+1 SFWZ 65
NFZ=NFZ+NQ(NA) SFWZ 66
IF(NFZ.LE.IFRZ) GOTO 14 SFWZ 67
WRITE(IW6,904)IFRZ SFWZ 68

STOP SFWZ 69

Sec. 6.6] Pre-frontal Routines

NN e Ny

14 K2=NFZ
IF(NFZ.GT.MNFZ)MNFZ=NFZ
GOTO 18

15 DO 16 KK=K,NFZ
IF(IFR(KK).NE.O) GOTO 17
16 CONTINUE

WRITE(IW6,905)
WRITE(IW6,997)J,1

WRITE (IW6, 998)NFZ
WRITE(IW6,999)(IFR(LL),LL=1,NFZ)
STOP

17 K1=KK
IF(NQ(NA).GT.KK-K) GOTO 11
K2=K+NQ(NA)-1

18 NDEST(NA)=K

DO 19 KK=K,K2
19 IFR(KK)=NA
20 CONTINUE

C WRITE(IW6,999) (IFR(LL),LL=1,NFZ)

SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ

ELIMINATE NODES FROM FRONT THAT ARE MAKING THEIR LAST APPEARANCES.

SFWZ
SFWZ
SFWZ

DO 30 I=1,NDPT
IF (NCONN(I,J).GT.0) GOTO 30

DO 22 K=1,NFZ

N=NCONN(I,J)

NA=IABS(N)

IF(NA.EQ.IFR(K)) GOTO 23
22 CONTINUE

WRITE(IW6,908)

STOP

23 K2=K+NQ(NA)-1
NCONN(I, J)=NCONN(I,J)*MULT
DO 24 KK=K,K2
INCORE=INCORE+NFZ+4

24 IFR(KK)=0
IF(K2.LT.NFZ) GOTO 30

26 NFZ=NFZ-1
IF(NFZ.EQ.0) GOTO 30
IF (IFR(NFZ).EQ.0) GOTO 26

30 CONTINUE

IF(ID3.NE. 1)GOTO 40
IF(NFZ.GT.0) WRITE(IW6,999)(IFR(LL),LL=1,NFZ)
40 CONTINUE

WRITE(IW6,910) MNFZ

IF(ID4.EQ. 1)WRITE (IW6, 950 INDEST
MCORE=MNFZ * (MNFZ+1)/2+2 ¥™MNFZ+502
NCORET=MCORE+INCORE
WRITE (IW6, 915)MCORE
WRITE(IW6, 920)INCORE
RETURN
900 FORMAT(41H NO ELEMENTS IN SOLUTION ! (ROUTINE SFWZ))
904 FORMAT(U8BH **¥ERROR** TOO MANY DEGREES OF FREEDOM IN FRONT,
1 1X, THEXCEEDS, I5, 2X, 14H(ROUTINE SFWZ))

SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ
SFWZ

225

70

72
73
TH
75
76
77
78
79
80
8
82
83
8/
8.
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
11°

11,

118
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135

http:IF(IFR(K).EQ.NA

226 Geometry of the Finite Element Mesh [Ch.6
905 FORMAT (40H PROGRAM ERROR - NO NODE ON END OF FRONT/ SFWZ 136
1 15H (ROUTINE SFWZ)) SFWZ 137
908 FORMAT (53H PROGRAM ERROR - LAST APPEARANCE NODE IS NOT IN FRONT, SFWZ 138
12X, 14H (ROUTINE SFWZ)) SFWZ 139
910 FORMAT(/36H MAXIMUM FRONT WIDTH FOR SOLUTION = ,I4, SFWZ 140
1 19H DEGREES OF FREEDOM) SFWZ 141
915 FORMAT (/44H MINIMUM CORE REQUIRED TO SOLVE EQUATIONS = ,I10) SFWZ 142
920 FORMAT(/48H ADDITIONAL CORE REQUIRED FOR INCORE SOLUTION = ,I10) SFWZ 143
950 FORMAT(//1X,5HNDEST/(1X,20I5)) SFWZ 144
997 FORMAT(SH J = ,I5,7TH I = ,I5) SFWZ 145
998 FORMAT(7H NFZ = ,I12) SFWZ 146
999 FORMAT(4H IFR/(1X,2515)) SFWZ 147
END SFWZ 148

SFWZ 13 : initialise buffer size for in-core solution of equations.

SFWZ 15 : loop on all elements (this loop is only to find the first node a
place in the front).

SFWZ 16 . by-pass if element is not in current mesh.

SFWZ 17 : node number.

SFWZ 18 : absolute value of node number (nodes may be making their
last appearance and can be negative).

SFWZ 19 : number of d.o.f. of node.

SFWZ 21-22 : place node number in the front for each d.o.f. of a node (all
d.o.f. of a particular node are identified by the node number).

SFWZ 23 : number of d.o.f. in the front.

SFWZ 24 : maximum size of the front.

SFWZ 25 : make entry (in array NDEST) to indicate the position of first
d.o.f. of node in the front.

SFWZ 26-27 : exit from element loop after one node has been placed in the
front.

SFWZ 36 : loop on all elements.

SFWZ 40 : by-pass if element is not present in current mesh.

SFWZ 45-46 : element type number and total number of nodes in element.

SFWZ 48 : loop on all nodes in element.

SFWZ 49-50 :node number.

SFWZ 52-53 :search the front (i.e. array IFR) to see if node has already been
allocated store, and if so, branch off.

SFWZ 58-61 :search for gaps (zero entry in IFR) to allocate place in front
for a node making the first appearance. Branch off if a zero is
found.

SFWZ 65-66 :no gaps found. Place new node (and its d.o.f.) at the end of
the front.

SFWZ 67-68 : check that size of array IFR is not exceeded. If so, print out
message and stop.

SFWZ 71 : update size of the front.

SEWZ 72 . update maximum size of the front (if the current size is greater
than the previous maximum).

SFWZ 75-76 :scan the front (array IFR) to find the size of gap (i.e. with

zero entries) and branch off when a non-zero entry is found.

e |

Sec. 6.6] Pre-frontal Routines 227

SFWZ 79-82 :if end of front cannot be found, print error message and stop
-(this should never happen).

SFWZ 86—87 : check if gap in the front is of sufficient size to accommodate

- all d.o.f. of node appearing for the first time. (All d.o.f. of a
given node are strung together and take up consecutive places
in the front.) Since different nodes may have different number
of d.o.f. it is necessary to check the size of the gap. The gaps
in the front have been left by nodes which have been
eliminated.

SFWZ 90-91 : place node number (for all d.o.f. of node) in the front.

SFWZ 92 : end of loop on all nodes of element.

SFWZ 97 : loop on all nodes of element.

SFWZ 98 : by-pass if node is not making its last appearance.

SFWZ 100 : loop on all nodes in the front. Scan the front for node number.

SFWZ 101—-102: node number.

SFWZ 103 : node has been found. Branch off.

SFWZ 105—106: node appearing for the last time is not in the front. Print out
error message and stop (this should never happen).

: find position of last d.o.f. of node in the front.

: multiply node number by MULT. (The node numbers are
made positive only if the routine has been called by the
geometry part of the program, i.e. MULT = —1; otherwise
MULT = 1.) :

SFWZ 110—112: calculate core requirements for in-core solution.

SFWZ 113 : by-pass if node eliminated is not at the end of the front.

SFWZ 115-117:if so, reduce the front and hence NFZ (current size of the

front).

SFWZ 119 : end of loop on nodes of element.

SFWZ 121-122: print out list of nodes in current front for debugging.

SFWZ 108
SFWZ 109

SFWZ 123 : end of element loop.

SFWZ 125 : print maximum front size (the frontwidth).

SFWZ 127 : contents of nodal destination vector NDEST (gives the
destination of nodes in the front) are printed for debugging.

SFWZ 128 : minimum core required to solve the equations.

SFWZ 129 : total store required to solve all equations in-core.

SFWZ 130—131: print out core requirements.

Of course, if one is carrying out a consolidation analysis, the number of d.o.f.
varies from node to node. The above example, illustrated with simply the node
numbers, takes a slightly different form. One has to consider thé d.o.f. instead of
the nodes. A list of currently active d.o.f. is maintained in array IFR. If a node
has 3 d.o.f., the node number is entered in three consecutive places, representing
the 3 d.o.f. Similarly for a node with 2 d.o.f.: when a node with 2 d.o.f. is
eliminated, it leaves a gap of size 2. If a new node with 3 d.o.f. is assembled then

e oS — T

o e

228 Geometry of the Finite Element Mesh [Ch.6

the current front is scanned from left to right first to find a suitable gap with at
least three zeroes. Hence the gap of 2 is passed over and the new node and its
variables are put at the end of the current front, thereby increasing the front-
width momentarily by 3.

The final task to complete the geometry part of CRISP is to print out the
complete element—nodal connectivity list, NCONN. Remember that NCONN
contains the program node numbers. For each element, a temporary array of
user node numbers is set up, and these are printed along with the element type
number and material zone number. This is carried out by routine GPOUT. For
debugging purposes, various arrays can be printed during the course of the
geometry part of the program.

Routine GPOUT

SUBROUT INE GPOUT (IW6,MXND, NEL,MUMAX, NN, NN1, NDF, NCONN, GOUT 1

1 MAT,LTYP,MRELVV,MREL, NRELVV, NW, NQ, NLST) GOUT 2
cl'iIIII!!!'I’!I“!‘I‘Illll!llI!Iilll!!il!iiiilllllilili!l‘l..!llllll!lll!i{;ou’r 3
c ROUTINE TO PRINTOUT ARRAYS SET-UP IN GEOMETRY PART OF PROGRAM GOUT U4
Cliilllii'llililllll-llIIlll!llll.lll’il’iiil!Iiiillllll‘llI'IIIlIllllli!ll}GoUT 5
DIMENSION NCONN(MXND,NEL),MAT (NEL),LTYP(NEL),MRELVV(NEL), GOUT 6

1 MREL(MUMAX),NRELVV (NN),NW(NN1),NQ(NN), NLST (MXND) Gour 7
COMMON /DEBUGS/ ID1,1D2,1D3, IDY, IDS5, ID6, ID7, ID8,ID9, ID10 GOUT 8
COMMON /ELINF / LINFO(50,15) GOUT 9

c . GOUT 10
WRITE (IW6,902) GouT 11

c GOUT 12
DO 20 JU=1,MUMAX GOuT 13

IF (MREL(JU).EQ.0)GOTO 20 GOUT 14
MPR=MREL (JU) GOUT 15
LT=LTYP(MPR) GOUT 16
NDPT=LINFO(1,LT) Gour 17

c GOUT 18
DO 10 IN=1,NDPT GOUT 19
NP=NCONN (IN,MPR) GOUT 20

10 NLST(IN)=NRELVV(NP) GOUT 21

c GouT 22
WRITE (IW6,906)JU,LT,MAT(MPR), (NLST(IN),IN=1,NDPT) GOUT 23

20 CONTINUE GOUT 24

c GouT 25
IF(ID10.EQ. 1)WRITE(IW6,908) (NQ(IN),IN=1,NN) GOUT 26

c GOUT 27
IF(ID10.EQ. 1)WRITE (IW6,910) (NW(IN), IN=1,NN1) GouT 28

c GOUT 29
WRITE (IW6,911)NN GOUT 30

WRITE (IW6,912)NDF GOUT 31

c GOUT 32
RETURN GOUT 33

902 FORMAT(//10X,30H ELEMENT MATERIAL TYPE AND, GOUT 3U

1 15H NODE NUMBERS//1X, THELEMENT, 1X, YHTYPE, 2X, 3HMAT, GoUT 35

2 19H 1 2 3 u, GouT 36

3 55H 5 6 7 8 9 10 11 12 13 14 15, GOUT 37

y 358 16 17 18 19 20 21 22/) GOUT 38

906 FORMAT(IS,216,22I5) GOUT 39
908 FORMAT (/1X, 2HNQ/(1X, 2015)) GOUT 40
910 FORMAT(/1X, 2HNW/ (1X, 2015)) GOUT 41
911 FORMAT(//25H TOTAL NUMBER OF NODES = ,I8) GOUT 2
912 FORMAT(/40H TOTAL DEGREES OF FREEDOM IN SOLUTION = ,18) GOUT 43
END GOUT 4y

~ oy |

Sec. 6.7] Programming Techniques 229

GOUT 13 : loop on all elements (in the user numbering sequence).

GOUT 14 : by-pass if element number is not used.

GOUT 15 : program element number.

GOUT 16 : element type number.

GOUT 17 : total number of nodes in element.

GOUT 19 : loop on all nodes of element.

GOUT 20 : (program) node number.

GOUT 21 : place user node number in output list (i.e. array NLST).

GOUT 23 : print out the element type, material zone number and the list
of nodes associated with the element.

GOUT 24 : end of element loop.

GOUT 26 : print out array NQ, giving the number of d.o.f. of each node for
debugging.

GOUT 28 . print out array NW, giving the g.v.n, of the first d.o.f. of each

node for debugging.
GOUT 30-31 : write the total number of nodes and d.o.f. in the problem.

6.7 PROGRAMMING TECHNIQUES

It was shown earlier that the d.o.f. of each node for all element types are stored
in a single array which resides in a COMMON block and which is initialised in a
BLOCK DATA routine. The element type number LT is used an index to this
array, LINFO. Note that array LINFO is referred to as LIN in the block data
routine. For example, if one considers the six-noded triangle (LT = 2) then
LINFO(21, 2)—LINFO(26, 2) contain the values

2 2 2 2 2 2

meaning that all six nodes have 2 d.o.f. (dx and d). In contrast, in the
‘consolidation’ cubic strain triangle (LT =7) the entries LINFO(21.7)—
LINFO(42, 7) contain

Location—> 1 2 3
value > 333

Location—~> 16 17 18 19 20 21 22
value - 1 1 1 1 1 1 1
\M/

{4) {s}
where
{1} are the vertex nodes with 3 d.o.f. (dy, d, and).

{2} are the displacement nodes along side (edge) with 2 d.o.f. (dy, dy).
{3 } are the displacement nodes within element with 2 d.o.f. (dy, d)).

Geometry of the Finite Element Mesh

{4} are the pore pressure nodes along side with 1 d.o.f. (u).

{5}

are the pore pressure nodes within element with 1 d.o.f. («).

Routine BDATAI

BLOCK DATA

[Ch. 6

BDAT

CN M3 03360306 03 06O DI 0T 0606 I 00U I I NN NN RN NN NN NN NN NN NRBDAT

C
C
C
c
C
C
C
c
C
C
C
c
C
c
C
C
c
C
C
c
c
C
C
c
C
c
C
C
c
C
C
C
C
C
C

DATA PRESENTED BY LIN (FIRST INDEX)

1 - TOTAL NUMBER OF NODES (DISPLACEMENT + POREPRESSURE)......NDPT
2 - TOTAL NUMBER OF VERTEX NODES...... cectveeacsssnascssncasas NVN
3 - TOTAL NUMBER OF ELEMENT EDGES...... teeeersecstacanstaanaas NEDG
4 - TOTAL NUMER OF ELEMENT FACES (3D).... NFAC
5 - TOTAL NUMBER OF DISPLACEMENT NODES. teeeeeeaannn seeeeasNDN
6 - TOTAL NUMBER OF POREPRESSURE NODES........eeves. seeevaeasNPN
7 - NO. OF DISPLACEMENT NODES PER EDGE (EXCLUDING END NODES).NDSD
8 - NO. OF POREPRESSURE NODES PER EDGE (EXCLUDING END NODES).NPSD
9 - NUMBER OF INNER DISPLACEMENT NODES........ [«...NIND
10 - NUMBER OF INNER POREPRESSURE NODES.......... ceeresaasaas NINP
11 — NUMBER OF INTEGRATION POINTS.......eoveinaananns ceeesees..NGP

12 - INDEX TO WEIGHTS AND INTEGRATION POINT COORDINATES.......INDX

13 — INDEX TO VERTEX NODES OF ELEMENTS (ARRAY NFC).....uvenn.n.

14 - INDEX TO NODES ALONG EDGE (ARRAYS NP1, NP2)............. INDED
15 - NUMBER OF LOCAL OR AREA COORDINATES.........cieenneenns e

16 - TOTAL NUMBER OF DEGREES OF FREEDOM (D.O.F.) IN ELEMENT..,MDFE
17 - CENTROID INTEGRATION POINT NUMBER........ teeees...NCGP
21 - ONWARDS THE NUMBER OF D.O.F. OF EACH NODE OF ELEMENT NDFN

ELEMENT TYPES (SECOND INDEX)
1 - 3-NODED BAR cheesaaas (2-D) ke

2 - 6-NODED LST TRIANCLE........... (2-D)

3 = 6-NODED LST TRIANGLE.....s......(2-D CONSOLIDATION)

4 — 8-NODED QUADRILATERAL........... (2-D) *x
5 — 8-NODED QUADRILATERAL.....cu.o.. (2-D CONSOLIDATION) **
6 - 15-NODED CUST TRIANGLE..........(2-D)

7 = 22-NODED CUST TRIANGLE.......... (2-D CONSOLIDATION)

8 — 20-NODED BRICK....eeeuasn Cheeees (3-D) b
9 — 20-NODED BRICK.......... veve.e..(3-D CONSOLIDATION) ¥¥
10 - 10-NODED TETRA-HEDRA............(3-D) *x
11 - 10-NODED TETRA-HEDRA..... Ceeeees (3-D CONSOLIDATION) **

%% ELEMENT TYPES NOT IMPLEMENTED IN THIS VERSION

REAL L

COMMON /ELINF/ LIN(50,15)

COMMON /DATL / L(4,100)

COMMON /DATW / W(100)

COMMON /SAMP / POSSP(5),WEIGP(5)

DATA LIN(1,1),LIN(2,1),LIN(3,1),LIN(4,1),LIN(5,1),LIN(6,1),
1 LIN(7,1),LIN(8,1),LIN(S,1),LIN(C10,1),LIN(11,1),LIN(12,1),
2 LIN(13,1),LIN(14,1),LIN(15,1),LIN(16,1),LIN(17,1),

3 LIN(21,1),LIN(22,1),LIN(23,1)/
33,2,1,1,3,0,1,0,0,0,5,0,0,0,1,6,3,2,2,2/

DATA LIN(1,2),LIN(2,2),LIN(3,2),LIN(4,2),LIN(5,2),LIN(6,2),
1 LIN(7,2),LIN(8,2),LIN(9,2),LIN(10,2),LIN(11,2),LIN(12,2),
2 LIN(13,2),LIN(14,2),LIN(15,2),LIN(16,2),LIN(17,2),

3 LIN(21,2),LIN(22,2),LIN(23,2),LIN(24,2),LIN(25,2),LIN(26,2)/
4°6,3,3,1,6,0,1,0,0,0,7,5,0,0,3,12,7,2,2,2,2,2,2/

DATA LIN(1,3),LIN(2,3),LIN(3,3),LIN(4,3),LIN(5,3),LIN(6,3),
1 LIN(7,3),LIN(8,3),LIN(9,3),LIN(10,3),LIN(11,3),LIN(12,3),
2 LIN(13,3),LIN(14,3),LINC15,3),LIN(16,3),LIN(17,3),LIN(21,3),
3 LIN(22,3),LIN(23,3),LIN(24,3),LIN(25,3),LIN(26,3)/
46,3,3,1,6,3,1,0,0,0,7,5,0,0,3,15,7,3,3,3,2,2,2/

DATA LIN(1,4),LIN(2,4),LIN(3,4),LIN(4,4),LIN(5,4),LIN(6,4),

BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT

F 03006 T 0 I 0 N NI NN NN NN RN RN RN NN NEN NN AR NR A RRNNRERRNRBDAT

BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT

W= =W —

L LA

Sec. 6.7]

o

oW =

[N C, I I S UV S ey

oo =W =

Programming Techniques

LIN(7,4),LIN(8,4),LIN(9,4),LINC10,4),LINC11,4),LINC12,4)
LIN(13,4),LIN(14,4),LIN(15,4),LIN(16,4),LINC17,4),
LIN(21,4),LIN(22,4),LIN(23,4),LIN(24,4),LIN(25,4),
LIN(26,4),LIN(27,4),LIN(28,4)/
8,4,4,1,8,0,1,0,0,0,9,12,4,3,2,16,9,2,2,2,2,2,2,2,2/

DATA LIN(1,5),LIN(2,5),LIN(3,5),LIN(4,5),LIN(5,5),LIN(6,5),

1 LIN(7,5),LIN(8,5),LIN(9,5),LIN(10,5),LIN(11,5),LIN(12,5),

2 LIN(13,5),LIN(14,5),LIN(15,5),LIN(16,5),LIN(17,5),

3 LIN(21,5),LIN(22,5),LIN(23,5),LIN(24,5),LIN(25,5),

. 4 LIN(26,5),LIN(27,5),LIN(28,5)/

4 8,4,4,1,8,4,1,0,0,0,9,12,4,3,2,20,9,3,3,3,3,2,2,2,2/

DATA LIN(1,6),LIN(2,6),LIN(3,6),LIN(4,6),LIN(5,6),LIN(6,6),
LIN(7,6),LIN(8,6),LIN(9,6),LIN(10,6),LIN(11,6),LIN(12,6)
LIN(13,6),LIN(14,6),LIN(15,6),LIN(16,6),LIN(17,6),
LIN(21,6),LIN(22,6),LIN(23,6),
LIN(24,6),LIN(25,6),LIN(26,6),LIN(27,6),LIN(28,6),LIN(29,6),
LIN(30,6),LIN(31,6),LIN(32,6),LIN(33,6),LIN(34,6),LIN(35,6)/
15,3,3,1,15,9,3,0,3,0,16,21,0,0,3, 30, 16,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2/

DATA LIN(1,7),LIN(2,7),LIN(3,7),LIN(4,7),LIN(5,7),
LIN(6,7),LIN(7,7),LIN(8,7),LIN(9,7),LIN(10,7),LIN(11,7),
LIN(12,7),LIN(13,7),LIN(14,7),LIN(15,7),LIN(16,7),LIN(1T,7),
LIN(21,7),LIN(22,7),LIN(23,7),LIN(24,7),LIN(25,7),
LIN(26,7),LIN(27,7),LIN(28,7),LIN(29,7),LIN(30,7),
LIN(31,7),LIN(32,7),LIN(33,7),LIN(34,7),LIN(35,7),LIN(36,7),
LIN(37,7),LIN(38,7),LIN(39,7),LIN(40,7),LIN(41,7),LIN (42,7)/

2,2,2,1,1,1,1,1,1,1/

DATA LIN(1,8),LIN(2,8),LIN(3,8),LIN(4,8),LIN(5,8),LIN(6,8),
LIN(7,8),LIN(8,8),LIN(9,8),LIN(10,8),LIN(11,8),LIN(12,8),
LIN(13,8),LIN(14,8),LIN(15,8),LIN(16,8),LIN(17,8),
LIN(21,8),LIN(22,8),LIN(23,8),LIN (24, 8),LIN(25,8),
LIN(26,8),LIN(27,8),LIN(28,8),
LIN(29,8),LIN(30,8),LIN(31,8),LIN(32,8),LIN(33,8),LIN(34,8),
LIN(35,8);LIN(36,8),LIN(37,8),LIN(38,8),LIN(39,8),LIN(40,8)/

~NownETWwN =

3,3,3,3,3,3,3,3, 3/

DATA LIN(1,9),LIN(2,9),LIN(3,9),LIN(4,9),LIN(S5,9),
LIN(6,9),LIN(7,9),LIN(8,9),LIN(9, 9),LIN(10,9),
LIN(11,9),LIN(12,9),LIN(13,9),LIN(14,9),LIN(15,9),LIN(16,9),
LIN(17,9),LIN(21,9),LIN(22,9),LIN(23,9),LIN(24,9),LIN(25,9),
LIN(26,9),LIN(27,9),LIN(28,9),LIN(29,9),LIN(30,9),LIN(31,5),
LIN(32,9),LIN(33,9),LIN(34,9),LIN(35,9),LIN(36,9),LIN(37,9),
LIN(38,9),LIN(39,9),LIN(H0,9)/
20,8,12,6,20,8,1,0,0,0,27,37,4,3,3,68,27,4,4,4, 4,4, 4, 4,4,
3,3,3,3,3,3,3,3,3,3,3,3/

DATA LIN(1,10),LIN(2,10),LIN(3,10),LIN(4,10),LIN(5,10),
LIN(6,10),LIN(7,10),LIN(8,10),LIN(9,10),LIN(10,10),
LIN(11,10),LIN(12,10),LIN(13,10),LIN(14,10),LIN(15,10),
LIN(16,10),LIN(17,10),LIN(21,10),LIN(22,10),LIN(23, 10),
LIN(24,10),LIN(25,10),LIN(26,10),LIN(27,10),LIN(28, 10),
LIN(29,10),LIN(30,10)/
10,4,6,4,10,0,1,0,0,0,4,64,28,15,4,30,0,3,3,3,3,3,3,3,3,3,3/

DATA LIN(1,11),LIN(2,11),LIN(3,11),LIN(4,11),LIN(5,11),
LIN(6,11),LIN(7,11),LIN(8,11),LIN(9,11),LIN(10,11),
LIN(11,11),LIN(12,11),LIN(13,11),LINC14,11),LIN(15,11),
LIN(16,11),LIN(17,11),LIN(21,11),LIN(22,11),LIN(23,11),
LIN(24,11),LIN(25,11),LIN(26,11),LIN(27,11),LIN(28,11),
LIN(29,11),LIN(30,11)/
10,4,6,4,10,4,1,0,0,0,4,64,28,15,4,34,0,4,4,4,4,3,3,3,3,3,3/

VT EWN = NV EW N =

VU EwN =

20,8,12,6,20,0,1,0,0, O 27,37,4,3,3,60,27,3,3,3,3,3,3,3,3,3,3, 3,

BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT

22,3,3,1,15,10,3,2,3,1,16,21,0,0, 3, 40, 16,33, 3, 3,2, 2,2, 2,2,2,2,2,2,BDAT

BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT
BDAT

AREA COORDINATES - LINEAR STRAIN TRIANGLE - ELEMENT TYPE 2,3

BDAT
BDAT

baTa L(1,6),L(2,6),L(3,6),L01,7),L(2,7),L(3,7),L(1,8),L(2,8),
1L(3,8),L(1,9),L(2,9),L(3,9),L(1,10),L(2,10),L(3,10),L(1,11),
1 L(,11),L(@3,11),L01,12),L(2,12),L(3,12)/

BDAT
BDAT
BDAT
BDAT

231

110
1M
112
13
14
115
116
117
118
119
120
121
122
123
124

R

232 Geometry of the Finite Element Mesh [Ch.6
1 .797426985353087245, .101286507323456343,.101286507323456343 BDAT 125
1,.101286507323456343, .797426985353087245,.101286507323456343 BDAT 126
1,.101286507323456343,.101286507323456343, .797426985353087245 BDAT 127
1,.597158717897698279E-01, .470142064105115082, . 470142064105115082 BDAT 128
1,.470142064105115082, .597158717897698279E~01, . 470142064105115082 BDAT 129
1,.470142064105115082, . 470142064105115082, .597158717897698279E~01 BDAT 130
1,.333333333333333329,.333333333333333329,.333333333333333329/ BDAT 1%;

c BDAT 1

C LOCAL COORDINATES — LINEAR STRAIN QUADRILATERAL - ELEM TYPE 4, S BDAT 133

o BDAT 134

DATA L(1,13),L(2,13),L(1,14),L(2,14),L(1,15),L(2,15), BDAT 135
1L(1,16),L(2,16),L(1,17),L(2,17),L(1,18),L(2,18), BDAT 136
1L(1,19),L(2,19),L(1,20),L(2,20),L(1,21),L(2,21)/ BDAT 137
1 -0.774596669241483,-0.774596669241483, BDAT 138
1 0.774596669241483,-0.774596669241483, BDAT 139
1 0.774596669241483, 0.774596669241483, BDAT 140
1 -0.774596669241483, 0.774596669241483, BDAT 141
1 0.,-0.774596669241483, BDAT 142
1 0.774596669241483,0., BDAT 143
1 0., 0.774596669241483, BDAT 144
1 -0.774596669241483,0., BDAT 145
1 0.,0./ BDAT 146

c . BDAT 147

c AREA COORDINATES - CUBIC STRAIN TRIANGLE - ELEMENT TYPE 6,7 BDAT 148

c BDAT 149

DATA L(1,22),L(2,22),L(3,22),L(1,23),L(2,23),L(3,23),L(1,24), BDAT 150
1 L(2,24),L(3,24),L(1,25),L(2,25),L(3,25),L(1,26),L(2,26),L(3,26), BDAT 151
1L(1,27),L(2,27),L(3,27),L(1,28),L(2,28),L(3,28),L(1,29), BDAT 152
1 L(2,29),L(3,29)/ BDAT 153
1 0.898905543365938, 0. 050547228317031,0.050547228317031, BDAT 154
1 0.050547228317031,0.898905543365938,0.050547228317031, BDAT 155
1 0.050547228317031,0.050547228317031,0.898905543365938, BDAT 156
1 0.658861384496478,0.170569307751761,0. 170569307751761, BDAT 157
1 0.170569307751761,0.658861384496478,0. 170569307751761, BDAT 158
1 0.170569307751761,0.170569307751761,0.658861384496478, BDAT 159
1 0.081414823414554,0.459292588292723,0. 459292588292723, BDAT 160
1 0.459292588292723,0.081414823414554,0, 459292588292723/ BDAT 161

DATA L(1,30),L(2,30),L(3,30),L(1,31),L(2,31),L(3,31), BDAT 162
1L(1,32),L(2,32),L(3,32),L(1,33),L(2,33),L(3,33),L(1,34),L(2,34), BDAT 163
1 L(3,34),L(1,35),L(2,35),L(3,35),L(1,36),L(2,36),L(3,36), BDAT 164
1 L(1,37),L(2,37),L(3,37)/ BDAT 165
1 0.459292588292723,0.459292588292723,0.081414823414554, BDAT 166
1 0.008394777409958,0.728492392955404,0.263112829634638, BDAT 167
1 0.008394777409958,0.263112829634638,0.728492392955404, BDAT 168
1 0.263112829634638,0.008394777409958,0.728492392955404, BDAT 169
1 0.728492392955404,0.008394777409958,0.263112829634638, BDAT 170
1 0.728492392955404,0,263112829634638,0.008394777409958, BDAT 171
1 0.263112829634638,0.728492392955404,0.008394777409958, BDAT 172
1 0.333333333333333,0.333333333333333,0.333333333333333/ BDAT 173

C BDAT 174

c WEIGHTS ~ LINEAR STRAIN TRIANGLE -~ ELEMENT TYPE 2,3 BDAT 175

c BDAT 176

DATA W(6),W(7),W(B),W(9),W(10),W(11),W(12)/ BDAT 177
1 .062969590272413570, .062969590272413570, . 062969590272413570, BDAT 178
1 .066197076394253089,.066197076394253089, .066197076394253089, BDAT 179
1 .112499999999999996/ BDAT 180

c BDAT 181
c WEIGHTS - LINEAR STRAIN QUADRILATERAL - ELEMENT TYPE 4,5 BDAT 132
c 3 BDAT 183

DATA W(13),W(14),W(15),W(16),W(17),W(18),W(19),W(20),W(21)/ BDAT 184

1 0.30864197530864,0.30864197530864, BDAT 185
1 0.30864197530864,0.30864197530864, BDAT 186
1 0.49382716049383,0.49382716049383, BDAT 187

1 0.49382716049383,0.49382716049383,0.79012345679012/ BDAT 188

c BDAT 189
c WEIGHTS - CUBIC STRAIN TRIANGLE - ELEMENT TYPE 6,7 BDAT 190

vt

it

Sec. 6.7] Programming Techniques 233

¢ BDAT 191
DATA W(22),W(23),W(24),W(25),W(26),W(27),W(28),1(29), BDAT 192
1 W(30),W(31),W(32),W(33),W(34),W(35),W(36),W(37)/ BDAT 193
1 .016229248811599,.016229248811599, , 01622924881 1599, BDAT 194
1 .051608685267359, .051608685267359, . 051608685267359, BDAT 195
T .047545817133642, . O4T545817133642, , O47545817133642, BDAT 196
1 .013615157087217,.013615157087217,.013615157087217, BDAT 197
1 .013615157087217,.013615157087217, . 013615157087217., BDAT 198
1.072157803838893/ BDAT 199

¢ BDAT 200

c ONE-DIMENSIONAL INTEGRATION BDAT 201

¢ BDAT 202
DATA POSSP(1),POSSP(2),POSSP (3),POSSP (4), POSSP(5)/ BDAT 203
1 -0.906179845938664, -0.538469310105683, 0.0, BDAT 2
1 0.538469310105683, 0. 906179845938664/ BDAT 2(
DATA WEIGP(1),WEIGP(2),WEIGP(3),WEIGP(4),WEIGP(5)/ BDAT 206
10.236926885056189,0. 478628670499366,0. 568586888888889, BDAT 207
1 0.478628670499366,0.236926885056189/ BDAT 208
END BDAT 209

Element type information

BDAT 43—47 : 1— 3.noded bar (2-D)

BDAT 48-52 2 — 6-noded LST (2-D)

BDAT 53-57 3 — 6-noded LST (2-D consolidation)

BDAT 58-63 : 4 — 8noded quadrilaterall (2.D)

BDAT 64—69 S — 8 noded quadrilateral (2-D consolidation)

BDAT 70-77 6 — 15-noded CuST (2-D)

BDAT 78-86 7 —22-noded CuST (2-D consolidation)

BDAT 87-95 : 8 —20-noded brick’ (3D)

BDAT 96-104 : 9 —20-noded brick! (3-D consolidation)

BDAT 105-111
BDAT 112118
BDAT 122-131
BDAT 135146
BDAT 150-173
DBAT 177-180
BDAT 184--188
BDAT 192-199
BDAT 203-208

: 10 — 10-noded tetrahedral (3-D)

: 11 — 10-noded tetrahedra® (3-D consolidation)
- area co-ordinates for LST (type = 2, 3).

: local co-ordinates for element types 4 and 5.

: area co-ordinates for CuST (type =6, 7).

: weights for LST (type = 2, 3).

: weights for element types 4 and S.

: weights for CuST (type = 6, 7).

:local co-ordinates and weights for one-dimensional

integration along edges of 2-D elements.

Some of the arrays used in the geometry part of the program are required for the
main part of the program, but not all of them. Also a substantial number of
additional arrays are required for the main part of the program. As the arrays are
dimensioned psuedo-dynamically it is necessary to move some of the arrays
used in the geometry part of the program to fill the gaps left by the outgoing
arrays and the gaps due to arbitrary size allocation. The arrays to be used in the

t These elements are not implemented in the program presented here (but see Appendix

E).

il

234 Geometry of the Finite Element Mesh [Ch.6

main part of the program are allocated store by starting indexes being set up in
array G. Then the arrays which have already been formed are moved to their
new locations. This is executed by routine SHFTIB.

Routine SHFTIB
SUBROUTINE SHETIB(IW6,IA,IB,N) SHFT 1
C"!"lllll'llli"ll"lli‘lll‘Iil“lIllﬂlllllllllllll"li!lll‘llllllllIISHFT 2
c ROUTINE TO SHIFT AN INTEGER ARRAY BACKWARDS SHFT 3
Cllllllllllliili!illiIiiliIllilllll!llli'll!!llllIllIlilllilli!!i!lillllSHFT u
DIMENSION IA(N),IB(N)) SHFT 5
COMMON /DEBUGS/ ID1,ID2,ID3,ID4,ID5, ID6, ID7,ID8, ID9, ID10 SHFT 6
c SHFT 7
DO 10 I=1,N SHFT 8
J=N+1-1 SHFT 9
10 TA(J)=IB(J) SHFT 10
c SHFT 11
IF (1D9.EQ.0)RETURN SHFT 12
WRITE (IW6, 900N, IA SHFT 13
900 FORMAT (/1X, 9HNUMBER = ,16/(2016/)) SHET 14
RETURN SHFT 15
END SHFT 16

SHFT 8 : to shift an INTEGER array with N elements to the right;loop on all
array elements.

SHFT 9 : shift last term first, to avoid over-writing.

SHFT 10 : shift (transfer) array element.

The variables (or parameters) which have not been encountered until now are
described. These govern the size of the arrays. They vary from element type to
element type. If different element types are mixed then the size of the variables
is defined as the largest for the mixed group of element types.

Values of NDMX, NPMX, LV, NIP, NL and MDFE are obtained as the
maximum values for the different element types present in the mesh.

NDMX — maximum number of displacement nodes in any element.

NPMX — maximum number of pore pressure nodes in any element.

LV — maximum number of displacement nodes along a side (edge).

NL — maximum number of area co-ordinates.

MDFE — maximum number of d.o.f. in any element.

NB — maximum number of columns in the B matrix.

KES — maximum number of entries in the upper triangular element stiffness
matrix.

ICT — The number of ‘consolidation’ elements in the mesh.

NVPN — The maximum number of variables at any node

(= NDIM for drained/undrained analyses)
(= NDIM + | for consolidation analyses; the additional variable
being the excess pore pressure).

g -
: ol

R

Sec. 6.7] Programming Techniques 235

These parameters are determined in routine MAXVAL, which scans the different
element types present in the mesh and selects the largest value for each
parameter. Not all arrays are allocated store psuedo-dynamically. Some arrays
have fixed dimensions and these reside in named COMMONSs.

Routine MAXVAL
SUBROUTINE MAXVAL (IW6,KLT,LTZ,NDIM, NVRN,NDMX, NPMX, NIP, MXVL 1
1 NS, NB,NL,NPT,NSP,NPR, NMT,MDFE, KES, NVPN,LV,MXEN, MXLD,MXF XT) MXVL 2
Cii!llllllil!!illllll!llllllllIliI!Illlilli!illli!Iil&lliﬂllllilﬁll!!lllMXVL 3
c SETS MAXIMUM VALUES AND SIZES OF SOME ARRAYS MXVL 4
CiilillIlilllli“llilllllillllIllliIiiiﬁlliiIlN!!llllIlll’llllkl!lillli!lMXVL 5
DIMENSION KLT(LTZ) MXVL 6
COMMON /ELINF / LINFO(50,15) MXVL 7
COMMON /PARS / PYI,ALAR,ASMVL,ZERO MXVL 8
c -MXVL 9
c MXEN,MXLD - SIZE OF ARRAYS IN COMMON BLOCKS PRSLD,PRLDI MXVL 10
c MXLD - MAXIMUM NUMBER OF ELEMENT EDGES WITH PRESSURE LOADING MXVL 11
c MXEN - MAXIMUM NUMBER OF DISPLACEMENT NODES ALONG AN EDGE x 2 MXVL 12
c MXFXT- MAXIMUM NUMBER OF FIXITIES (SIZE OF ARRAYS MF,TF,DXYT) MXVL 13
c MXVL 14
MXEN=10 MXVL 15
MXLD=100 MXVL 16
MXFXT=200 MXVL 17
o O— SIZE OF MATERIAL PROPERTIES (PR) AND TYPE (NTY) ARRAYS MXVL 18
NPR=10 MXVL 19
NMT=10 MXVL 20
C—==—————-—ONE-DIMENSIONAL INTEGRATION - NUMBER OF SAMPLING POINTS MXVL 21
NSP=5 MXVL 22
Commmmm s NS - SIZE OF D-MATRIX MXVL 23
NS=NVRN MXVL 24
c MXVL 25
[NVPN -~ MAXIMUM NUMBER OF D.0.F. IN ANY NODE MXVL 26
c ADD 1 (FOR PORE-PRESSURE VARIABLE) MXVL 27
c IF CONSOLIDATION ELEMENTS ARE PRESENT MXVL 28
c MXVL 29
ICT=0 MXVL 30
DO 15 LT=1,LTZ MXVL 31
KC=KLT (LT) MXVL 32
GoTO(15,15,12,15,12,15,12,15,12,15, 12),LT MXVL 33
GOTO 15 MXVL 34
12 ICT=ICT+KC MXVL 35
15 CONTINUE MXVL 36
NVPN=NDIM MXVL 37
IF (ICT. NE. O)NVPN=NDIM+1 MXVL 38
c MXVL 39
c MAXIMUM VALUES OF NDMX,NPMX,LV,NIP,NL,MDFE MXVL 40
C FOR ANY ELEMENT IN MESH MXVL 41
C MXVL 42
NDMX=0 MXVL 43
c MXVL 4y
c IN THE ABSENCE OF ANY CONSOLIDATION ELEMENTS IN THE MESH MXVL 45
c NPMX WILL REMAIN O. IN ORDER TO PREVENT ARRAYS BEING SETUP MXVL 46
c WITH ZERO DIMENSIONS (IN ROUTINE MAIN2) NPMX IS SET TO 1 MXVL 47
c MXVL 48
NPMX=1 MXVL 49
LV=0 . MXVL S0
NIP=0 MXVL 51
NL=0 MXVL 52
MDFE=0 MXVL 53
¢ MXVL 54
DO 30 LT=1,LTZ MXVL 55
IF(KLT(LT).EQ.0)GOTO 30 MXVL 56
IF (NDMX.LT.LINFO(5, LT))NDMX=LINFO(5,LT) : MXVL 57

| 41
|

i% ‘;
b

e

236 Geometry of the Finite Element Mesh [Ch.6
IF (NPMX. LT, LINFO(6, LT)INPMX=LINFO(6, LT) ' MXVL 58
IF(LV,LT. LINFO(7,LT))LV=LINFO(7,LT) MXVL 59
IF (NIP.LT.LINFO(11,LT))NIP=LINFO(11,LT) MXVL 60
IF (NL.LT.LINFO(15,LT))NL=LINFO(15,LT) MXVL 61
IF (MDFE. LT. LINFO(16, LT))MDFE=LINFO(16,LT) MXVL 62

30 CONTINUE MXVL 63

c MXVL 64

c NB - NUMBER OF COLUMNS IN B - MATRIX MXVL 65

c KES - SIZE OF UPPER TRIANGULAR ELEMENT STIFFNESS MATRIX ES MXVL 66

c LV - MAXIMUM NUMBER OF DISPLACEMENT NODES ALONG ELEMENT EDGE MXVL 67

c MXVL 68
NB=NDIM*NDMX MXVL 69
KES=MDFE* (MDFE+1)/2 MXVL 70
LV=LV+2 MXVL Tt
NPT=LV MXVL 72

CC WRITE(IW6,900)NDIM, NVPN,NPMX, LV, NIP, NL,MDFE MXVL 73

CC900 FORMAT(/1X,4HNDIM, 16, 2X, 4HNVPN, 16, 2X, 4HNPMX, I6, 2X, 2HLV, I6, MXVL 74

cC 1 2X,3HNIP,I6,2X,2HNL,16,2X, sHMDFE,16) MXVL 75

CC WRITE(IN6,910)NDMX, NB, KES, NPT MXVL 76

CCY10 FORMAT (/1X, LHNDMX, 16, 2X, 2HNB, I6, 2X, 3HKES, 16, 2X, 3HNPT, I6) MXVL 77
RETURN MXVL 78
END MXVL 79

MXVL 15-17 : sizes of load/fixity arrays.

MXEN — maximum no. of displacement nodes along edge X 2
(size of array in named COMMON PRSLD and
PRLDI).
MXLD — maximum no. of element sides with applied
pressure loads.
MXFXT — maximum no. of fixities (size of arrays MF, TF and
DXYT in named COMMON FIX).
MXVL 19-20 : size of material properties’ array.
MPR — maximum number of properties per material.
MPT — maximum number of different material zones.
MXVL 22—-24 : NSP — number of sampling point in one-dimensional numeri-
) cal integration along element side.
NS —size of D matrix (= number of stress/strain
components).

MXVL 31 loop on all element types.

MXVL 35 : update count of consolidation elements,

MXVL 37 : maximum number of variables at any node.

MXVL 38 : add pore pressure variable if consolidation elements are present.

MXVL 43-53 : zero element type dependent parameters.

MXVL 55 : loop on all element types.

MXVL 56—62 : get the maximum value of the following parameters for element

types in current mesh.
NDMX — number of displacement nodes.

NPMX — number of pore pressure nodes.

Lv — number of displacement nodes along side (at this
stage excluding nodes at either end).

NIP — number of integration points.

ko T b e A e

PP i et oy b e it

Sec. 6.7]

MXVL 69-72 :

Programming Techniques 237

NL ~— number of local/area co-ordinates.

MDFE — number of d.o.f. in element.

calculate sizes.

NB — number of columns in B matrix.

KES — size (number of terms) of upper triangle of element
stiffness matrix,

In Situ Stresses

7.1 INTRODUCTION

Chapter 5 dealt with how one could set up the in situ stresses from field data or
from laboratory measurements of samples. This chapter is about setting up the
in situ stresses for starting a finite element analysis. In addition to specifying the
stresses, the user has to specify the in situ boundary conditions and stresses
acting along any unrestrained boundary. A check is carried out to ensure that
the element stresses and the external loads are in equilibrium at the in situ stage.

Fig. 7.1 shows the subroutine hierarchy with routine CPW acting as the main
control routine. Section 7.2 gives a brief explanation of the subroutines listed in
this chapter.

r RDPROP SORTN2
CHANGE SHAPE
FRESTRT RDSTRS EQL!IB — FORMB2 SHAPE
INSTRS —SHAPE DETMIN
FINSITU EDGLD —— LODLST
FIXX
MAKENZ
CcPwW DISTLD — SFR1
EQLOD SELF SHAPE
RESTRN DETJCB
~CAMCDE EQLBM — REACT

Fig. 7.1 — Subroutine hierarchy for in situ part of program

B Y

Sec. 7.2] i Subroutine List 239

Section 7.3 gives the list of principal arrays which have been allocated store
psuedo-dynamically in array G, as explained in section 4.3.2. Frequent reference
is made to these arrays in Chapters 7 and 8.

Section 7.4 lists the routine CPW, which calls other control routines to carry
out various tasks. Routine RDPROP reads the control parameters for the
analysis and the material properties in section 7.5.

Routine RESTRT reads results written on a magnetic tape or disk file from a
previous run if the analysis is being restarted. It is appropriate to discuss the
stop—restart facility at the end of the analysis, and therefore it is dealt with in
section 8.14.

In section 7.7, routine INSITU calls routine RDSTRS to read the in situ
stresses. Routine EQLIB calculates the nodal loads equivalent to the in situ
stresses. In section 7.8 the external pressure loads which should be in
equilibrium with the in situ stresses are stored by EDGLD. The boundary
conditions are read by routine FIXX. In section 7.9, routine EQLOD carries out
an equilibrium check to ensure that the specified pressure loads are in
equilibrium with the in situ stresses.

7.2 SUBROUTINE LIST

Fig. 7.1 shows the subroutine hierarchy, and here follows a brief explanation of
each subroutine.

CPW — control routine delegates tasks of setting up the in situ stresses to
routine INSITU,

RDPROP — reads control parameters for analysis (i.e. no. of increment blocks,
type of analysis) and material properties.

RESTRT — deals with stopping and restarting an analysis. For a restarted
analysis, it reads results from a past run (see section 8.14).

INSITU - control routine reads the in situ stresses and the boundary
conditions and checks that the in situ stresses are in equilibrium.

CHANGE — elements removed have their element type number negated (i.e.
array LTYP), (See section 8.4.)

RDSTRS — reads the in situ stresses specified at in sifu nodes and interpolates
values at integration points.

SORTN2 — to find in situ node with larger y co-ordinate.

SHAPE — calculates the shape functions and derivatives w.r.t. local co-
ordinates.
EQLIB — calculates nodal loads equivalent to element stresses.

FORMB2 — calculates B matrix.

DETMIN — calculates determinant and inverse of Jacobian J.

INSTRS — prints out in sifu stresses at each integration point for all elements.
EDGLD - stores pressure loads.

LODLST — stores pressure loads.

FIXX — reads fixities along element sides and stores them node by node.

240 In Situ Stresses

EQLOD — control routine for equilibrium check. Current stresses must be in

equilibrium with current loading.
DISTLD — calculates nodal loads equivalent to stresses along boundary.
SFR1 — used in numerical integration along element boundary.

SELF — calculates nodal loads equivalent to body forces for each element.

DETJCB — calculates Jacobian J and its determinant.

RESTRN — interprets nodal fixities in terms of g.v.n. to identify variables with

prescribed values.

EQLBM — carries out an equilibrium check. Compares nodal loads equivalent
to element stresses with nodal loads due to boundary loading and

self-weight and prints them out.

REACT — calculates reactions to earth for prescribed variables and prints

them.
ZEROSB — routines to zero REAL and INTEGER arrays.

7.3 DEFINITION OF PRINCIPAL ARRAYS

The principal arrays are now categorised according to the purpose they serve.

7.3.1 Loads

P — incremental loads assembled from various sources form the Right-
Hand Side (RHS) when the equations are solved.

PT — sum of all incremental loads.

PIB — loads for the incremental block from various sources! .

XYFT - sum total of all directly specified nodal point loads.
XYFIB — directly specified nodal point loads for increment block.
PCONI — nodal loads equivalent to in situ stresses.

PCOR — out-of-balance or correcting loads (= the difference between external
loads and loads equivalent to internal stresses).

PEQT — nodal loads equivalent to current stresses.

PEXI — excavation loads due to removal of elements.

PEXIB — excavation for increment block due to removal of elements.

R — reactions at nodes which are restrained or which have prescribed
displacements.

FT — nodal loads equivalent to stresses in an element.

7.3.2 Displacements

DI — incremental displacements/excess pore pressures.
DA — cumulative displacements/excess pore pressures.

+ Pressure loads on boundaries, body forces and forces due to removal or addition of

elements.

SR e P

Ty
T RS

Sec. 7.3] Definition of Principal Arrays 241
7.3.3 Geometry and transformation
XYZ — X,y and z co-ordinates of all nodes (z only for 3-D).
SHFN — displacement shape functions.
DS — derivatives of shape functions w.r.t. local co-ordinates.
CARTD — Cartesian derivatives of shape functions.
ELCOD — local array of co-ordinates of displacement nodes in element.
ELCODP — local array of co-ordinates of pore pressure nodes in element.
AA — pore pressure shape functions.
7.3.4 Stresses and strains
VARINT — stress parameters at all integration points.
STR — strains at all integration points.
7.3.5 Stiffness and flow matrices
D — stress—strain relationship (constitutive model).
B — displacement—strain matrix.
DB — D post-multiplied by B.
SS — upper triangular part of BTDB (element stiffness matrix).
ES (SG) — square element stiffness matrix.
7.3.6 Flow and coupling matrices
E — multiplies pore pressure to give pore pressure gradients,
PE — kE
RN — BTM
ETE — flow matrix f ETkE/yw d (vol).
v
RLT — coupling matrix f B mN d (vol).
v
7.3.7 Integer arrays
NCONN — list of nodes associated with each element.
MAT — material zone numbers for each element.
LTYP — element type numbers for each element.
MRELVV — user element numbers.
MREL — program element numbers,
NRELVV — user node numbers,
NREL — program node numbers.
NW — global variable numbers of first variable of each node,
NQ — number of d.o.f. of each node.
JEL — list of element changes (added/removed).
IDFX — identifier of free nodal d.o.f. from restraints (0 — free; 1 — fixed).
IFR — list of nodes currently in front (during solution).
NDEST — destination of nodes to front.
NDL — index to front region of stiffness terms,
NWL — local array of element pore pressure d.o.f,

242 In Situ Stresses [Ch.7

NMOD — identifier of yielded elements (not used in this version).

NP1 NP2 — indexes to array NCONN of nodes at either end of element sides.

7.4 CONTROLLING ROUTINE

Routine CPW is the main controlling routine which instructs other control
routines to carry out various tasks (see Fig. 7.1). Routine RDPROP reads the
control parameters for the analysis and the material properties. Routine
RESTRT reads results written to a magnetic tape or disk file from a previous run
if the analysis is being restarted. Routine RDSTRS reads the in situ stresses,

boundary conditions and loads which are acting before the analysis is started.

Routine CPW

SUBROUTINE CPW (NN, NEL, NDF, NNOD1,NTPE, NIP, NVRS, CPW

1 NVRN,NDIM,MUMAX, NDZ, IFRZ, NNZ , NDMX, NPMX, cPW

2 NS, NB, NL, NPR, NMT, NPT, NSP, NPL, MDFE, KES, NVPN, CPW

3 INXL,MXEN,MXLD,MXFXT,LV,MCORE, LINK1, NVTX, ND,MDZ, NEDZ, CPW

4 XYz, DI, DA, VARINT, P, PT, PIB, REAC, PCOR, PEQT, XYFT, XYF1IB, CPW

5 STR,PEXIB,PEXI,PCONI,D,ELCOD,DS,SHFN,CARTD,B,DB,FT,SS,ES,ELCODP, cPW

6 E,PE,RN,AA, ETE,RLT, CcPwW

7 NCONN,MAT,LTYP,MRELVV,MREL,NRELVV, NREL, N, NQ, CPW

8 JEL,IDFX, NDEST, NP1, NP2, IFR, NDL, NWL, NMOD, CPH

3 CIP,LL,V,FXYZ,PR,PDISLD, PRES, NTY,A,MFZ, CcPW

4 NOIB,TTIME,TGRAV, IUPD, ICOR, IDCHK, INCT) CPW
Cl‘lIIlIIillllll*iil'llliIIIIIillIIII.II'IIIIIII|Il‘lllliIl'lllllllli!!l!cw
c MAIN CONTROLLING ROUTINE - INSITU STRESSES CPW
Cllll!llllllllllilllIlllllllII!llIlllllllilIlilllllilIlliillllllllll'lllc]’w
REAL L,LL CPW
INTEGER TF CPW
Co————__USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE cPH
PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION CPW

CC REAL A CPW
DIMENSION XYZ(NDIM,NH),DI(NDF),DA(NDF),VARINT (NVRS,NIP,NEL), CPW

1 P(NDF),PT(NDF),PIB(NDF),REAC(NDF),PCOR(NDF).PEQT(NDF),XYFT(NDF), CPW

2 XYFIB(NDF),STR(NVRN, NIP, NEL) , PEXIB(NDF), PEXI (NDF), PCONI(NDF) CPW
DIMENSION D{NS,NS),ELCOD(NDIM, NDMX),DS (NDIM, NDMX),SHF N (NDMX), CPW

1 CARTD (NDIM, NDMX),B(NS, NB),DB(NS, NB) ,FT (NDIM, NDMX), CcPW

2 SS(NB,NB),ES(KES) cPW
DIMENSION ELCODP(NDIM,NPMX),E(NDIM, NPMX),PE (NDIM, NPMX), cPW

1 RN(NB),AA(NPMX),ETE (NPMX, NPMX) ,RLT (NB, NPMX) cow
DIMENSION NCONN(NTPE,NEL),MAT (NEL),LTYP(NEL),MRELVV(NEL), CPW

1 MREL (MUMAX) , NRELVV (NN , NREL (NNZ) , Nd (NNOD1), NQ (NN, JEL (NEL), CcPU

> IDFX(NDF),NDEST(NN),NP1(NPL),NP2(NPL) : CcPW
DIMENSION IFR(IFRZ),NDL (MDFE),NHL(NPMX),NMOD(NIP,NEL) CPW
DIMENSION CIP(NDIM),LL(NL),V(LV),FXYZ(NDIM),PR(NPR,MHT), cPW

1 PDISLD(NDIM,LV),PRES (NDIM,LV),NTY (NMT),A(MFZ) cPW

c CPW
COMMON /FLOW / NPLAX CPW
COMMON /DATL / L(%,100) CPW
COMMON /DATW / W(100) cPW
COMMON /ELINF / LINFO(50,15) CPW
COMMON /FIX 7 DXYT(4,200),MF(200),TF (4,200),NF cPW

COMMON /PRSLD / PRESLD(‘IO,100),LEDG(100),NDE1(100),NDE2(‘IOO),NLED CPW
COMMON /PRLDI / PRSLDI(10,100).LEDI(100),NDI1(100),ND12(100),ILOD CPW

COMMON /DEVICE/ IR1,IRH,IRS,IHZ,IW‘I,IW6,IH7,IW8,IW9 CPW
COMMON /PARS / PYI,ALAR,ASMVL,ZERO CPW
C —CPW
LINK2:=1 CPW
TTIME=ZERO CPW

Voo =wh =

g

ST

Sec. 7.4] Controlling Routine
READ (RS, *) IDCHK
WRITE (IW6, 922)IDCHK Co
IF (IDCHK.EQ. 0)WRITE (IW6, 930) oty
IF (IDCHK.EQ. 1)WRITE (IW6, 935) Ch
IF (IDCHK.EQ. 2)WRITE (IW6, 940) ng
I IF ONLY TO TEST GEOMETRY DATA STOP HERE iy
IF (IDCHK.EQ. 1)STOP chu
IF(LINK1.EQ.LINK2) GO TO 1 oty
WRITE(IW6, 904)LINK1, LINK2 Pty
STOP s
. CPw
1 CALL ZEROR3(STR,NVRN,NIP,NEL) oo
CC WRITE(IW6,910)LINK2 cr
WRITE (IW6, 801)NN, NEL, NDF , NNOD1, NTPE,, NIP, NVRS ggﬁ
WRITE (IW6, 802)NDIM, MUMAX, NDZ, IFRZ , NNZ , NDMX, NPMX CPW
WRITE(IW6, 803)NS, NB, NL, NPR, NMT, NPT, NSP CPu
WRITE(IWG, 804)NPL,MDFE, KES, NVPN,, INXL , MXEN, MXLD cP
. WRITE(IW6, 805 JMXFXT,LV,MCORE, NVTX, ND Epﬂ
8011FC3);MS'£,5§(1))[();8HNN = ,I5,3X,8HNEL = ,I5,3X,8HNDF = ,I5 (éi:
, = ,15,3X,8HNTPE = ,I5,3X,8HNIP = '
2 3X,BHNVRS = ,I5) IR BT =T gx
c
802 FORMAT(/1X,8HNDIM = ,I5,3X,8HMUMAX = ,I5,3X,8HNDZ = ,I5 g?:
1 3X,8HIFRZ = ,I5,3K,8HNNZ = ,15,3X,BHNDHX = ,I5,
2 3X,BHNPMX = ,I5) T g};:r
c
803 FORMAT(/1X, 8H - oty
FORMAT (11X, NsI5 ~ éés,%x,auna = ,I5,3X,84NL = ,I5, cPW
, =, 15, NMT = ,I5,3X,8HNPT =
2 3,BHNSP = ,15) e cru
c
80‘41F(3)§Mg:'g\/,;:((,8HNPL = ,15,3X,8HMDFE = ,I5,3X,8HKES = ,IS5, gx
, = ,15,3X%,8HINXL = ,I5,3X g
2 3X,BHMXLD = ,I5) S BN = 15 534’
c
805 FORMAT(/1X, 8HMXFXT = ,I5,3X,8HLV = C
, , = ,I5,3K,8HMCORE = ,1
. 13X, 8HNVIX = ,15,3X,BHND = ,I5//1X,120(1H¥)) > ggg
¢
g ROUTINE TO READ CONTROL OPTIONS AND MATERIAL PROPERTIES oty
CALL RDPROP (NPR, NMT, NPLAX, NMAT, NOIB, INCS, INC ol
, ,NOIB, INCS, INCF, INCT
. 1 IPRIM,IUPD, ICOR, PR, NTY, NDIM) T crm
c STOP/START FACILITY Em
c
C
CALL RESTRT(INCS, INCF, NN, NVTX, ND, NEL, NDF, NTPE, NIP, c::t‘:
1 NVRS, NVRN,MUMAX, NNZ, NNOD1, NDIM,MDZ, NEDZ, NL, INXL, P
2 NCONN,LTYP,MRELVV,MREL,NRELVV, NREL, NW, NMOD, CcPH
. 3 XYz,DA,VARINT,PCOR,XYFT,STR, PCONI, TTIME, TGRAV) CPW
g SETUP IN-SITU STRESSES AND CHECK FOR EQUILIBRIUM E:‘d
CPW
IF (INCS.EQ. 1)CALL INSITU(NN,NEL,NDF, NNOD1,NTPE, NIP, NDIM, NVRS Py
1 MUMAX,NNZ,NDZ, NPL, NDMX, NS, NB, NL, LV, NPR,, NMT, NPT, NSP, ' CcPi
2 XYz,DA,VARINT,P, PT, PCOR, PEQT, XYFT, PEXIB, PCONI, ELCOD, DS, SHFN, CPW
3 CARTD,B,FT,NCONN,MAT, LTYP,MRELVV, MREL, NREL, N, NQ, JEL, IDFX CPW
¥ NP1,NP2,NMOD,CIP,LL,V,PR, PDISLD, PRES, NTY, ’ CPW
. 5 A,MFZ, INXL,MXEN,MXLD,MXFXT,TGRAV, IPRIM) CP
C
((:: ROUTINE TO PRINT CAM-CLAY STRESS STATE CODES cx
CALL CAMCDE (IW6) E?J
c
RETURN Chu
CC900 FORMAT (80A1) cri
€C903 FORMAT (1X, 80A1) gx

243

u7
ug
u9
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
66
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

qu
95
96
97
98
99
100
101
102
103
04
105
106
107
108
109
110
111
112

[Ch.7

244 In Situ Stresses
904 FORMAT(//10X,32HERROR —--- LINK CODE MISMATCH,2I5) CPz H?:

€C910 FORMAT(/10X, 12HLINK CODE =, I5) E?’w n

€C917 FORMAT(I5) oo

€C918 FORMAT(//1X,120(1H*)) cpi 110

922 FORMAT (/1X,20HDATA CHECK OPTION = ,I5/) n

930 FORMAT(1X, 32HCOMPLETE ANALYSIS IS CARRIED OUT/) CPU

935 FORMAT(1X, 30HONLY GEOMETRY DATA ARE CHECKED/) cPW 119

oll0 FORMAT(1X, 42HGEOMETRY DATA AND IN-SITU STRESSES CHECKED/) ggw 13?
END

CPW 47-48 : read flag to stop analysis. (Allows only part of the input data to
be checked, without carrying out the complete analysis.)

CPW 54-—55 :check link number (allowing for the possibility that the pro-
gram can be split into two parts; geometry part and main part.
This ensures correct linkage between the parts).

CPW 87-88 : read control parameters and material properties.

CPW 92-95 :stop—restart facility. Write information to a file in magnetic
tape or in disk. This enables the analysis to be stopped and
restarted.

CPW 99--104 : in sifu stresses are set up and equilibrium checked at this stage.

CPW 108 : print out Cam-clay codes.

75 CONTROL PARAMETERS AND MATERIAL PROPERTIES

Routine RDPROP reads the control parameters for the analysis and also reads

the material properties for the different material zones specified in the mesh.

Routine RDPROP

SUBROUTINE RDPROP (NPR, NMT, NPLAX, NMAT, NOIB, INCS, INCF,INCT, RDPR

1 IPRIH,IUPD,ICOR,PR,N’I‘Y,NDIM)
Cl!!!ll!i!l‘ﬁlI!ll!lllllllilllIlllllllli

RDPR
JH NI NN RN R RN NNNERRRDPR

c READ CONTROL OPTIONS AND MATERIAL PROPERTIES RDPR

C!!lIl!!i‘llI!'Ii!‘llIi!l‘llli‘!iill'ii‘ll!

!li“il!li‘lil!i!!!i“ll!ll‘lRDPR

DIMENSION PR(NPR,NMT),NTY(NMT) f;gl;g
COMMON /DEVICE/ IR1,IRY4,IRS5,IW2,IWH, ™6, TW7,IW8, TW9
COMMON /0UT / IBC,IRAC,NVOS, NVOF , NMOS, NMOF , NELOS, NELOF , ISR 51[));11
C
C ICOR - OPTION TO APPLY OUT-OF -BALANCE LOADS AS CORRECTING R][;l;? ::?
c LOADS IN THE NEXT INCREMENT F;DPR I
c ICOR = 0 - CORRECTING LOADS ARE NOT APPLIED R 13
= - ARE APPLIED
(é ICOR = 1 CORRECTING LOADS ARE 1
RDPR 15
c reo=0 RDPR 16
READ(IRS,*)NPLAX, MMAT, NOIB, INCS, INCF,IPRIM, IUPD, ISR RDPR 1';
HRITE(IW6,922)NPLAX,NMAT,NOI_B,INCS,INCF,IPRIM,IUPD,ISR l;gl;ﬁ e
NOINC=INCF-INCS+1 %
IF (NOINC.GT.0)GOTO 5 e 21
WRITE (IW6, 925)NOINC, INCS, INCF A 2
SToF RDPR 23
RDPR 24
5 CONTINUE o o
¢ RDPR 26

INCT - COUNTER OF INCREMENT NUMBER

WOV EWN =

ment (could be user specified, if need be).

RDPR 17—18 : read and write control parameters for analysis.
RDPR 19-20 : check INCF = INCS; otherwise stop.
RDPR 28

: counter of increments.

Sec. 7.5] Control Parameters and Material Properties 245
c RDPR 27
INCT=INCS-1 RDPR 28
IF (NDIM. NE. 3)GOTO 8 RDPR 29
WRITE (IW6,928) RDPR 30
GOTO 10 RDPR 31
8 IF(NPLAX.EQ.O)WRITE (IW6,930) RDPR 32
IF (NPLAX.EQ. 1)WRITE(IW6,931) RDPR 33
10 CONTINUE RDPR 34
c RDPR 35
c READ OUTPUT REDUCING OPTIONS. THIS OPERATES ON RECORDS R AND T2 RDPR 36
¢ -RDPR 37
READ(IRS, ¥)IBC, IRAC, NVOS, NVOF , NMOS,, NMOF , NELOS, NELOF RDPR 38
WRITE(IW6, 945)IBC, IRAC, NVOS, NVOF , NMOS, NMOF , NELOS, NELOF RDPR 39
¢ --RDPR ”
c READ MATERIAL PROPERTIES RDPR
c RDPR .
CALL ZEROR2(PR, NPR, NMT) RDPR 43
c RDPR 44
WRITE (IW6, 932) RDPR 45
DO 20 I=1,NMAT . RDPR 46
READ(IRS5, *)II,NTY(II), (PR(JJ,II),JJ=1,NPR) RDPR 47
WRITE (IW6, 936)IT,NTY(II), (PR(JJ,II),JJ=1,NPR) RDPR 48
20 CONTINUE RDPR 49
RETURN RDPR 50
922 FORMAT(/ RDPR 51
1 10X, B6HPROBLEM TYPE. .. euesvusensrensnnsrenneasesneses, 15/ RDPR 52
2 10X, 46HNUMBER OF MATERIALS......eeoerevneneecnaassess=, 15/ RDPR 53
3 10X, 46HNUMBER OF INCREMENT BLOCKS.....veeeeeesnnsean=,15/ RDPR 54
4 10X,46HSTARTING INCR NUMBER OF ANALYSIS.............z,I5/ RDPR 55
5 10X, 46HF INISRING INCR NUMBER OF ANALYSIS............z,I5/ RDPR 56
6 10X,46HNUMBER OF PRIMARY ELEMENT CHANGES.......... 5,15/ RDPR 57
7 10X, 46HOPTION TO UPDATE COORDINATES............ veeeez, 157 RDPR 58
8 10X, 46HOPTION TO STOP/RESTART ANALYSIS..............=,15/ RDPR 59
9 /120(1H*)/) RDPR 60
925 FORMAT(/1X, 29HERROR IN NO. OF INCREMENTS = ,I5, RDPR 61
1 4X,7THINCS = ,I5,4X,THINCF = ,I5,2X, 16H(ROUTINE RDPROP)) RDPR 62
928 FORMAT(//1X, 22H3-DIMENSIONAL ANALYSIS)) RDPR 63
930 FORMAT(//1X,21HPLANE STRAIN ANALYSIS) RDPR 64 -
931 FORMAT(//1X,22HAXI-SYMMETRIC ANALYSIS) RDPR 65
932 FORMAT(//2UH MATERIAL PROPERTY TABLE RDPR 66
1 /1X, 23 (1H=) RDPR 67
2 //2X,8HMAT TYPE,SX, 1H1,11X, 1H2, 11X, 1H3, 11X, 1HY4, 11X, 1HS, RDPR 68
3 11X, 1H6, 11X, TH7, 11X, 1H8, 11X, 1H9, 11X, 2H10/) RDPR 69
936 FORMAT(1X,2I5, (10E12.4/)) RDPR 70
945 FORMAT(//120(1H*)/ RDPR ™
1 10X, 46HOPTION TO PRINT BOUNDARY CONDITIONS..........=,I5/ RDPR
2 10X, 46HOPTION TO PRINT REACTIONS...eueorsvavuonnns RDPR
3 10X, 46HSTARTING VERTEX NODE NUMBER FOR OUTPUT..... RDPR 74
4 10X, 46HF INISHING VERTEX NODE NUMBER FOR OUTPUT.... RDPR 75
5 10X, 46HSTARTING MIDSIDE NODE NUMBER FOR OUTPUT.... RDPR 76
6 10X, 46HF INISHING MIDSIDE NODE NUMBER FOR OUTPUT... RDPR 77
7 10X, 46HSTARTING ELEMENT NUMBER FOR OUTPUT......... RDPR 78
8 10X, 46HF INISHING ELEMENT NUMBER FOR OUTPUT..........z,15/ RDPR 79
9 /120(1H%)/) RDPR 80
END RDPR 81
RDPR 15 :any out-of-balance loads are not carried forward to next incre-

246 In Situ Stresses [Ch.7

RDPR 32-33 : print analysis type.
NPLAX = 0, plane strain
= 1, axisymmetry.
RDPR 43 : zero material property array.
RDPR 46—48 : read in material properties.

7.6 IN SITU STRESSES AT INTEGRATION POINTS

Arrays are set up to store the displacements at the nodes and the current values
of stresses and strains at the integration points, The in sifu stresses have to be
defined at the integration points at the beginning of the analysis and not at the
nodes (see Fig. 7.2). For most problems the variation of stresses is linear with
depth and is constant in the horizontal direction. For most horizontally-laid
layers the stresses and strength are the same at any given depth. Therefore it is
sufficient to specify the variation of stresses with depth. Hence the stresses are
defined at selected depths, probably to define non-linear variation by a series of
piecewise linear curves, These selected points are defined as in situ nodes. These
in situ nodes serve as reference points from which the stresses are interpolated.
These in situ nodes should span the entire primary mesh. An error message will
be printed if elements lie outside this in situ region. These in situ nodes are not
to be confused with the nodes of the finite element mesh.

The stresses at all integration points are calculated by linear interpolation. A
separate option is available to directly specify the in situ stresses at the
integration points (for example where the ground has a slope and where the
stresses are not the same in the horizontal direction) if the stress variation is such
that the above simple option cannot deal with these specific situations.

Stress jumps usually in oy, can still be catered for by this option. In situ nodes
A and B have the same co-ordinates. However, they have different horizontal
stresses, as shown in Fig. 7.3. For clarity these are shown slightly apart. The
vertical stress has to be continuous across CD and should have the same value for
equilibrium to be satisfied.

7.7 SETTING UP THE IN SITU STRESSES

Routine RDSTRS deals with the task of setting up the in sifu stresses at the
integration points. It is not sufficient just to set up the in situ stresses. The
boundary conditions have to be specified either where element sides are
restrained or where pressures act. These details are necessary to carry out an
equilibrium check (see section 7.9) at the in situ stage.

The program carries out a check that the in situ stresses specified are in
equilibrium with the loads (pressures) acting on the boundary. This loading is
not to be confused with the loading applied during the analysis. (This is
illustrated in some example problems in Chapter 9.) Routines other than
RDSTRS are called, as shown in Fig. 7.1. The master control routine is INSITU.

Sec. 7.7] Setting up the In Situ Stresses
1
3
7 integration points
2)
Linear strain triangle
1
16 integration points
2
Cubic strain triangle
Fig. 7.2 — Integration scheme
oy, R l
I Layer 1
A
c B
, Layer 2

|
|
|
|
|

Fig. 7.3 ~ A jump in horizontal stresses is permissible

247

] 248 In Situ Stresses

Routine INSITU

[Ch.7

.
SUBROUTINE INSITU(NN,NEL,NDF,NNOD1,NTPE,NIP,NDIM, NVRS, INST
1 MUMAX, NNZ , NDZ, NPL , NDMX, NS, NB, NL, LV, NPR, NMT, NPT, NSP, INST
il 2 XYz, DA, VARINT, P, PT, PCOR, PEQT, XYFT, PEXIB, PCONI, INST
ﬁ‘. 3 ELCOD, DS, SHFN,CARTD, B, F, NCONN,MAT, LTYP, MRELVV, INST
i U MREL, NREL, NW,NQ, JEL, IDFX, NP1, NP2, NMOD, CIP, LL, INST
. 5 v, PR, PDISLD, PRES, NTY, A, MFZ,, INXL,MXEN,MXLD, MXFXT, INST
i 6 TGRAVI, IPRIM) INST
Ly Cli!l*lllll!l!l!llllil!!*lliillii*llll!!i!lll!!i!!l!*lllllillll!lllllii!l“s‘l‘
i o SETUP INSITU STRESSES AND CHECK FOR EQUILIBRIUM INST
f i c&!l!l!&i&lﬁll!iil!iilli!&!!!lKllllliil!liﬁlll!!!iil!ll!lK!llllll*ii!!llINST
=1l REAL LL INST
(i INTEGER TF INST
il Cmmmmmmm __USE THE FOLLOWING STATEMENT AFTER CONVERTING PROGRAM TO DOUBLE INST
ﬂ]ﬁ e PRECISION. ARRAY A ALWAYS USES ONE NUMERIC STORAGE LOCATION INST
S cC REAL A INST
i DIMENSION XYZ(NDIM,NN),DA(NDF),VARINT (NVRS,NIP,NEL), INST
| 1 P(NDF),PT (NDF), PCOR (NDF) , PEQT (NDF), XYFT(NDF), INST
| 2 PEXIB(NDF),PCONI(NDF) INST
i: DIMENSION ELCOD(NDIM,NDMX),DS (NDIM,NDMX),SHFN(NDMX), INST
i 1 CARTD(NDIM, NDMX),B(NS,NB),F (NDIM, NDMX) INST
I DIMENSION NCONN (NTPE, NEL) ,MAT (NEL),LTYP(NEL) ,MRELVV (NEL), INST
i 1 MREL (MUMAX) , NREL (NKZ) , N (NNOD 1), NQ(NN), JEL (NEL), INST
i > IDFX(NDF),NP1(NPL),NP2(NPL), NMOD(NIP, NEL) INST
il - DIMENSION CIP(NDIM),LL(NL),V(LV),PR(NPR,NMT), INST
il 1 PDISLD(NDIM,LV),PRES (NDIM,LV),NTY (NMT),A(MFZ) INST
}*h COMMON /DEVICE/ IR1,IRY,IRS,IW2,IW4, IW6,IW7, W8, IHI INST
| B COMMON /FIX / DXYT (4,200),MF(200),TF (4,200), NF INST
o COMMON /PRSLD / PRESLD(10, 100),LEDG(100), NDE 1(100),NDE2(100), NLED INST
' COMMON /PARS / PYI,ALAR,ASMVL,ZERO INST
COMMON /OUT / IBC, IRAC, NVOS, NVOF , NMOS, NMOF , NELOS, NELOF , ISR INST
COMMON /PRECSN/ NP INST
i c INST
| ! [CODE TO INDICATE STAGE OF THE ANALYSIS INST
Loy KSTGE=1 INST
CALL ZEROI1(JEL,NEL) INST
C INST
IF(IPRIM.EQ.0) GO TO 28 INST
c INST
c READ AND REMOVE ELEMENTS TO FORM PRIMARY MESH INST
c INST
WRITE (IW6, 907) INST
READ(IRS, ¥) (JEL(J),J=1,IPRIM) INST
WRITE (IW6,920)(JEL(J),J=1, IPRIM) INST
) c INST
CALL CHANGE(IWB,O,IPRIM,NN,NNOD1,NTPE,NIP,NEL,MUMAX,NNZ,NDF,NDIM, INST
1 NVRS,NDMX,NL,NB,NS,NPR,NMT,NPT,NSP,NPL,XYZ,VARINT,P,PEXIB, INST
2 ELCOD,DS,SHFN,CARTD,B,F,NCONN,MAT, LTYP,MREL, NREL, INST
3 NW,JEL,NP1,NP2,MXEN,LL,PR,ZERO) INST
c INST
c INITIALISE PRESSURE LOADS INST
c INST
28 NDIM1=NDIM+1 INST
CALL ZEROR1(PCONI, NDF) INST
CALL ZEROR2(PRESLD,MXEN,MXLD) INST
CALL ZEROI1(LEDG,MXLD) INST
CALL ZEROI1(NDE1,MXLD) INST
CALL ZEROI1(NDEZ2,MXLD) INST
CALL ZEROI1(MF,MXFXT) INST
CALL ZEROIZ(TF,NDIM1,MXFXT) INST
CALL ZEROR2(DXYT,NDIM1,MXFXT) INST
CALL ZEROI2(NMOD,NIP,NEL) INST
c- INST
INST

c SET UP IN-SITU STRESS SYSTEM

WO EWD =

RIS

Sec. 7.7] Setting up the In Siru Stresses 249
c
READ (IR5, *)KT, NI ner e
WRITE(IW6, 926)KT, NI iSZ; 22
[oJ— I-l;-(-EIEQN(I));Iolusa A DEFAULT VALUE OF 1 TO AVOID ARRAY SIZE OF 0. INST 67
Commmmm e e ALLOCATE STORE IN ARRAY A FOR SOM T 6o
T
CrhLLoc E TEMPORARY ARRAYS INST 69
L2L 1+NVRS NI *NP aT
L3=L2+NI e 12
L4=L3+NI i:2¥ ;g
c
CALL RDSTRS(NN,N et 1
1 , NEL, NDF , NNOD1,MUMAX, NTPE, NIP, NVRS, NL, NB, NS, NPR, INST 75
NMT, NDIM, NDMX, KT, XYZ, VARINT, PEQT, ELCOD, DS, SHFN, INST 76
2 CARTD,B,F,NCONN,MAT, LTYP,MRELVV, MREL, NW , NMOD, INST °
. 3 CIP,LL,PR,NTY,A(1),A(L1),A(L2),A(L3),NI) INST
c INITIALISE FIXED LOADS, TOTAL POINT L T 80
OADS AND TOTAL DISPLACEMENT
g NF - NUMBER OF FIXITIES : i:gg g?
— . INST 82,
. INST 83
CALL ZEROR1(PCOR, NDF) . %:§¥ gg
CALL ZEROR1(XYFT, NDF) INST 86
CALL ZERORT(P,NDF) INST 87
CALL ZEROR1(DA, NDF) INST 88
c
INST
g READ LOADS IN EQUILIBRIUM WITH IN-SITU STRESSES INST gg
- INST 91
TGRATL ner 2
=ZERO INST 93
IF(KT.EQ.0)GO TO 62 INST 94
c
INS
READ(IRS, *)NLODI, NFXI, TGRAVI IHS£ 32
WRITE (IW6, 952)NLODI , NFXI , TGRAVI INST 97
c
I
IF (NLODI.EQ.0)GO TO 52 1:§§ gg
WRITE (IW6,960) INST 100
c
DO 50 KL=1,NLODI §:§$ 18;
READ(IRS, *)LNE, ND1,ND2, ((PDISLD(ID,IV),ID=1,2),IV=1,NPT) INST 103
. WRITE (IW6, 964)LNE, ND1,ND2, ((PDISLD(ID,IV),ID=1,2),IV=1,NPT) INST 104
DO 100 IV=1,NPT §E§¥ 132
DO 100 ID=1,NDIM INST 107
IDR=NDIM+1-ID INST 7
100 PRES (ID,IV)=PDISLD(IDR,IV) INST
c INST 1..
DO 110 IV=1,NPT INST 111
DO 110 ID=1,NDIM INST 112
110 PDISLD(ID,IV)=PRES(ID,IV) INST 113
CALL EDGLD(IW6 INT 15
IW6, NEL, NDIM, NTPE, NNZ ,MUMAX, NPL , NCONN, LTYP,MREL, NREL, INST 115
1 LNE,ND1,ND2,NP1,NP2,PDISLD, PRES,KL, NPT, 1,MXLD) INST 116
50 CONTINUE INST
52 IF(NFXI.EQ.0)GO TO 62 INST 1:;
c
s
c IN-SITU BOUNDARY CONDITIONS izsg 1;2
c
| CALL FIXX(IRS,IW6, NEL, NTPE,NDIM, NPL, LV, MUMAX, NNZ , NCONN, LTYP, INST 123
. 1 MREL,NREL,NP1,NP2,V,NFXI) INST 124
INST
CALL MAKENZ (NTPE, NEL, NN, NCONN, LTYP, NQ, INXL) INST 152

1CALL EQLOD(IW6, NN, NEL, NDF , NNOD 1, NTPE, NDIM, MUMAX, NNZ, NDZ , NPR, NMT INST 127
: NDMX, NL, NPL, NCONN,MAT, LTYP,MRELVV,MREL, NREL, NW, NQ, JEL, IDFX, ’ INST 128
NP1,NP2,XYZ, P, PT, PCOR, PEQT, XYFT, PCONI, ELCOD, DS, SHFN,F, LL, PR, INST 129

250 In Situ Stresses [Ch. 7

3 NPT,NSP,MXEN,Z,O,TGRAVI,IRAC,ZERO,KSTGE) INST 130

C INST 131
62 RETURN INST 132
907 FORMAT(//1X,38HLIST OF REMOVED ELEMENTS TO FORM , INST 133
1 148 PRIMARY MESH/1X,52(1H=)/) INST 134
920 FORMAT(2016/) INST 135
926 FORMAT (//10X, 30HIN-SITU STRESS OPTION.... INST 136
/10X, 30HNUMBER OF IN-SITU NODES......= INST 137

930 FORMAT(/1X 27HIN-SITU BOUNDARY CONDITIONS/1X 27(1H=)7) INST 138
952 FORMAT(/ INST 139
1 10X, 46HNUMBER OF EDGES WITH PRESSURE LOAD...........-,IS/ INST 140

2 10X, 46HNUMBER OF EDGES RESTRAINED........ I T INST 141

3 10X,46HIN-SITU GRAVITY ACCELERATION FIELD.:,FB 1,2X, INST 142

4 1HG//) INST 143
960 FORMAT(/1X, 38HSPECIFIED NODAL VALUES OF SHEAR/NORMAL, INST 144
1 19H STRESSES (IN-SITU)/1X,ST(1H-)/1X, Y4HELEM, INST 145

2 1X,UHNDE1, 2X, 4HNDE2, 2X, 4HSHR 1, X, 4HNOR1, 8X, UHSHR2, BX, LHNORZ2, INST 146

3 8X, 4HSHR3, 8X, UHNOR3, 8X, 4HSHRA, X, 4HNORY, 8X, 4HSHRS, 8X, 4HNORS/) INST 147

964 FORMAT(1X,3I4,10E12,4) INST 148
END INST 149
INST 35 : zero list of element changes.
INST 37 - skip if no changes to the initial mesh.

INST 42-43 :read and write list of changes to initial mesh.
INST 45-48 : make all removed elements’ type numbers negative in array
‘ LTYP.

INST 53—61 :zero all arrays for current analysis.

INST 65-66 :read and write in situ stress option and number of in situ
nodes.

INST 70—73 : calculate pointers for some arrays in A for calculating in situ
stresses (temporary usage).

INST 75-78 : calculate in situ stresses.

INST 83 - set counter of nodal fixities to zero.
INST 85-88 : zeroloads/displacements’ arrays.
INST 94 : skip if in situ stresses have been set to zero.

INST 96-97 :read and write the no. of loads/fixities to maintain equilibrium
at in situ level.

INST 99 : skip if no pressure loads are applied.

INST 102 - loop to read pressure loads (which caused in situ stresses).

INST 103—104 : read and write pressure loads prescribed along element sides.

INST 106—113 : change sequence of pressures to suit storing.

INST 115—116 : enter pressure loads in PRESLD.

INST 117 - end of loop to read pressure loads.

INST 118 : skip if no prescribed fixities.

INST 123—124 : read sides which are restrained.

INST 126 - calculate d.o.f. of each node and total d.o.f. in mesh.

INST 127—130 : calculate loads equivalent to in sifu stresses and carry out an
equilibrium check at in situ stage.

7.7.1 Simulation of construction events

Simulation of a construction event (e.g. an embankment) is modelled by adding

AR e e P 3 ¢ Yt b

Sec. 7.7] Setting up the In Situ Stresses 251

a set of elements. To do this, these elements are ‘removed’ or ‘inactivated’ (they
do not take part in the analysis until ‘added’ or ‘reactivated’) before the first
increment. This is done by making the element type numbers (array LTYP)
negative to identify the elements which have been removed. Routine CHANGI;
does this. These elements do not have any in situ stresses. In situ stresses are not
a_ssigneq to elements not present at the beginning of the first increment. The in
S{tu region need not enclose these elements. When it comes to setting up the in
situ stresses, these elements are by-passed.

Routine CHANGE also calculates the implied loadings due to the removal of
elements. To differentiate between the above two cases (when to — and when
not to — calculate the implied loads) a flag IN is used in the argument list. Only
“{hen this is set to | are the implied loadings calculated. A detailed description is
given in section 8.4,

7.7.2 Read in situ stresses

Routine RDSTRS deals with the task of setting up the-in situ stresses at the
integration points.

Routine RDSTRS
SUBROUTINE RDSTRS(NN,NEL,NDF,NNOD1,MUMAX, NTPE, NIP,NVRS,NL,NB,NS, RDST 1
1 NPR,NMT,NDIM,NDMX,KT,XYZ,VARINT, PEQT, ELCOD, DS, SHFN, CARTD, " RosT 2
2 B,FI,NCONN,MAT,LTYP,MRELVV, MREL, NW, NMOD,CIP,LL, PR, NTY, YI RDST 3
3 VAR,NLI,NHI,NI) B RDST 4
CilIIIll!lIllilillll!llilllliiililll!'ill!lllllll“lll!lllllillll!llll!lRDST 5
c SET UP IN-SITU STRESSES RDST 6
C!!II*lil!llll!lllllllﬁli"ﬁ'*I‘!!llll'il!llI“l‘lll“llilllllliiilIl!!IRDST 7
REAL L,LL RDST 8
DIMENSION XYZ(NDIM,NN),VARINT(NVRS,NIP,NEL),PEQT (NDF) " RDST 9
DIMENSION ELCOD(NDIM,NDMX),DS (NDIM, NDMX),SHFN(NDMX), RDST 10
1 CARTD(NDIM, NDMX),B(NS, NB) ,FI (NDIM, NDMX) RDST 11
DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MRELVV(NEL) RDST 12
DIMENSION MREL (MUMAX),NW(NNOD1),NMOD(NIP,NEL) RDST 13
DIMENSION YI (NI),VAR(NVRS,NI),NLI(NI),NHI(NI) RDST 14
DIMENSION CIP(NDIM),LL(NL),PR(NPR,NMT),NTY(NMT) RDST 15
COMMON /PARS / PYI,ALAR,ASMVL,ZERO RDST 16
COMMON /DEVICE/ IR1,IRY4,IRS,IW2, WL, TW6,IW7, IW8, W9 RDST 17
COMMON /FLOW / NPLAX RDST 18
COMMON /DATL / L(4,100) RDST 19
COMMON /ELINF / LINFO(50,15) . RDST 20
c RDST 21
c ISTGE - CODE TO INDICATE STAGE OF THE ANALYSIS RDST 22
C R
ISTGE=1 Rgg 23
c RDST 25
g INITIALISE VARINT — INTEGRATION POINT VARIABLES RDST 26
R
CALL ZEROR3(VARINT,NVRS, NIP,NEL) Rgg gg
c
c INITIALISE PEQT - CONTRIBUTION OF FORCES DUE TO foet o0
ELEMENT IN-SITU RDST 30
c STRESSES RDST 31
c
CALL ZEROR1(PEQT, NDF) ggg §§
IF (KT.EQ.0) WRITE (IW6,904) RDST 34
IF (KT-1) 200, 8,82 RDST 35
c RDST 36
o READ NUMBER OF IN-SITU NODAL POINTS RDST 37

! 252 In Situ Stresses [Ch.7 il Sec. 7.7] Setting up the In Siru Stresses 253
!

l g

c RDST 38 s s YMIN=YI(NSM) RDST 104

8 WRITE (IW6,906) RDST 39 AR YMAX=YI (NLA) RDST 105

_ DO 10 J=1,NI RDST 40 c RDST 106

| c RDST 41 v IF (YY.LT. YMIN.OR. YY.GT. YMAX)GO TO 45 RDST 107

c READ NODE COORDINATES AND VARIABLES RDST 42 : GO TO 48 RDST 108

¢ RDST 43 c RDST 109

READ(IRS,*)IL, YI(IL),(VAR(JJ,IL),JJ=1,NVRS) RDST 44 45 CONTINUE RDST 110

! 10 WRITE(IW6,910) IL,YI(IL),(VAR(JJ,IL),JJ=1,NVRS) RDST 45 : WRITE (IW6, 950)JUS, IP RDST 111

‘ c RDST 46 t GO TO 60 RDST 112

‘ MI=NI-1 RDST 47 c RDST 113

| DO 20 IN=1,MI RDST 48 c DIRECT INTERPOLATION FROM IN-SITU MESH NODES RDST 114

[N1=IN RDST 49 d| c RDST 115

i N2=IN+1 RDST 50 : 3 48 DY=YI(JJJ)-YI(JJJ+1) RDST 116

‘ Y1=YI(N1) RDST 51 S8 YR=(YY-YMIN)/DY RDST 117

(il Y2=YI(N2) RDST 52 B c RDST 118

i c RDST 53 i DO 50 I=1,NVRS RDST 119

CALL SORTNZ(Y1,Y2,N1,N2, NMIN, NMAX) RDST 51 i 50 VARINT(I,IP,J)=VAR(I,NSM)+(VAR(L,JJJ)=VAR(T, JJJ+1))*YR RDST 120

M NLI(IN)=NMIN RDST 55 . CC WRITE(IW6,951)J,IP,(VARINT(IU,IP,J),IU=1,NVRS) RDST 121

f NHI(IN)=NMAX RDST 56 2 e KGO=NTY (KM) : RDST 122

ki 20 CONTINUE I:DST 57 i Go TO0(60,60,52,52, 60, 60),KGO RDST 123

it c RDST 58 52 P=(VARINT(1,IP,J)+VARINT(2,IP,J)+VARINT(3,IP,J))*0.333333 RDST 124

{ c LOOP ON ALL GEOMETRY MESH ELEMENTS RDST 59 PC=VARINT(NS+3,1IP,J) RDST 125

¢ RDST 60 ; IF (KGO. NE. 3)GO TO 54 RDST 126

DO 80 J=1,NEL RDST 761 z PU=0.5%pPC RDST 127

LT=LTYP(J) RDST 62 = GO TO 55 RDST 128

IF(LT.LT.0)GOTO 80 RDST 63 p| S4 PU=PC/2.7182818 RDST 129

cec LT=IABS(LT) RDST 64 : 55 VARINT (NS+2,IP,J)=PR(3,KM)—PR (1,KM)*ALOG(P)- RDST 130

JUS=MRELVV(J) RDST 65 : 1(PR(2,KM)~PR (1,KM)) *ALOG (PU) RDST 131

GO TO(80,22,22,22,22,22,22,22,22,22,22,80,80,80,80),LT RDST 66 60 CONTINUE RDST 132

WRITE(IW6,915)JUS . LT RDST 67 : 80 CONTINUE RDST 133

GOTO 80 RDST 68 y = GOTO 92 RDST 134

22 KM=MAT(J) RDST 69 | c RDST 135

NGP=LINFO(11,LT) RDST 70 g c DIRECT SPECIFICATION OF IN-SITU STRESSESS RDST 136

b NDN=LINFO(5,LT) RDST 71 : c RDST 137

| INDX=LINFO(12,LT) RDST 72 82 IF(KT.NE.2)GO TO 92 RDST 138

() NAC=LINFO(15,LT) RDST 73 gl 3 WRITE (IW6, 955) RDST 139

iy c) RDST 74 . C **X READ FOR ALL INTEGRATION POINTS RDST 140

i DO 30 KN=1,NDN RDST 75 g s DO 90 IM=1,NEL RDST 141

& }DE =NCONN (KN , J) RDST 76 READ (IR5, *)MUS RDST 142

| DO 30 ID=1,NDIM RDST 77 IL=MREL(MUS) RDST 143

: 30 ELCOD(ID,KN)=XYZ(ID,NDE) RDST 78 o LT=LTYP(IL) RDST 144

‘) c RDST 79 21 NGP=LINFO(11,LT) RDST 145

‘ c LOOP ON ALL INTEGRATION POINTS RDST 80 c RDST 146

¢ RDST 81 4 DO 85 IP=1,NGP RDST 147

) DO 60 IP=1,NGP RDST 82 : READ(IR5,*) (VARINT(JJJ,IP,IL),JJJ=1,NVRS)" RDST 148

X ¢ RDST 83 h } 85 WRITE(IW6,960) (VARINT(JJJ, IP,IL),JJJ=1,NVRS) RDST 149

' c CALCULATE INTEGRATION POINT COORDINATES RDST B8Y4 ; 90 CONTINUE RDST 150

. e RDST 85 I i RDST 151

‘ IPA=TP+INDX RDST 86 i c CALCULATE EQUILIBRIUM LOADS FOR INSITU STRESSES RDST 152

DO 35 IL=1,NAC RDST 87 : c ASSEMBLE ELEMENT CONTRIBUTION (FI) INTO PEQT RDST 153

35 LL(IL)=L(IL,IPA) RDST 88 il c RDST 154

CALL SHAPE (IW6,LL,NAC,DS, SHF N, NDIM, NDN, LT, 1, JUS) RDST 89 2 92 CR=1. . RDST 155

c RDST 90 IF(NPLAX.EQ.1)CR=2, *PYI RDST 156

DO 40 ID=1,NDIM RDST 91 o RDST 157

SUM=ZERO RDST 92 5 DO 100 J=1,NEL RDST 158

c RDST 93 LT=LTYP(J) RDST 159

DO 38 I=1,NDN RDST 94 IF(LT.LE.0)GO TO 100 RDST 160

38 SUM=SUM+SHEN (1)*ELCOD(ID, I) RDST 95 MUS=MRELVV (J) RDST 167

10 CIP(ID)=SUM RDST 96 NDN=LINFO(5,LT) RDST 162

YY=CIP(2) RDST . 97 : NGP=LINFO(11,LT) RDST 163

c RDST 98 3 INDX=LINFO(12,LT) RDST 164

c SEARCH FOR RELEVANT IN-SITU LAYER RDST 99 NAC=LINFO(15,LT) RDST 165

c RDST 100 c RDST 166

DO 45 Jd=1,MI RDST 101 '.- CALL EQLIB(J,MUS,LT,NGP,NIP, INDX,NTPE, NEL, NDIM, NN, NDMX, NDN, RDST 167

NSM=NLI(JJJ) RDST 102 1 NS,NB,NAC,NVRS,XYZ,VARINT, ELCOD, DS, SHFN, CARTD, B, FI, RDST 168

NLA=NHI(JJJ) RDST 103 : 2 NCONN,LL, ISTGE) RDST 169

254 In Situ Stresses [Ch.7
c RDST 170
CC WRITE(IWG,805)MUS,FI RDST 171
CC805 FORMAT(/1X, 2HFI,2X, THELEMENT = ,I5/(1X,6E14.4)) RDST 172
¢ RDST 173
c SLOT EQUILIBRIUM LOADS INTO PEQT RDST 174
c RDST 175
DO 95 IK=1,NDN RDST 176
NCOR=NCONK (IK, J) RDST 177
N1=NW (NCOR)-1 RDST 178
¢ RDST 179
DO 95 ID=1,NDIM RDST 180
95 PEQT (N1+ID)=PEQT (N1+ID)+FI(ID,IK) RDST 181
100 CONTINUE RDST 182
c RDST 183
c OUTPUT EQUILIBRIUM LOADS RDST 18M
¢ RDST 185
cc WRITE (IW6, 985 (PEQT (§2),J2=1, NDF) RDST 186
c RDST 187
CALL INSTRS(IH6, NN, NEL, NTPE, NIP, NVRS, NDIM, NDMX, NUT, MUMAX, NS, NL, RDST 168
1\ XYZ,VARINT,NCONN,MAT,LTYP,MREL,ELCOD, DS, SHFN,CIP, LL, NTY) RDST 189
200 CONTINUE RDST 190
RETURN RDST 191
904 FORMAT(//1X,36HIN-SITU STRESSES ALL SET TO ZERO/1X,36(1H=)) RDST 192
906 FORMAT(//1X, 19HIN-SITU MESH DATA/1X,19(1H-)/ RDST 193
1 /3X, UHNODE, 8X, 1HY, 10X, 2HSX, 10X, 2HSY, 10X, 2452, RDST 194
2 OX, 3HTXY, 10X, 1HU, 22X, 2HPC/) . RDST 195
910 FORMAT(1X,15,10F12.3) RDST 196
915 FORMAT(1X, 7THELEMENT, I5,2X, 18HIS OF UNKNOWN TYPE,I5) RDST 197
950 FORMAT(1X,Y6HWARNING —- POINT OUTSIDE IN-SITU STRESS SPACE, RDST 198
12X, QHELEMENT =,I5,2X, NHIP =,15,2X,16H(ROUTINE RDSTRS)) RDST 199
€C951 FORMAT (214,7E14.4) RDST 200
955 FORMAT(//1X, 40HDIRECT SPECIFICATION OF IN-SITU STRESSES RDST 201
1 /1X,39(1H=)) RDST 202
960 FORMAT(1X, 10E12.5) RDST 203
€C985 FORMAT(/1X, 3THEQUILIBRIUM LOADS FOR INSITU STRESSES/ RDST 204
cC 1 1X,37T(WH-)//(10E12.4)) RDST 205
END RDST 206
RDST 28 - zero array of stresses.
RDST 33 : zero array PEQT; loads equivalent to in situ stresses.
RDST 34 - if in situ stresses are zero.
RDST 35 - pranch off, depending on in sifu stress option.
RDST 40 : no. of in situ nodes.
RDST 44-45 :read and write stresses specified at in situ nodes.

RDST 47 : no. of in situ layers.

RDST 49-52 : nodes marking each layer.

RDST 54 - enter nodes in the order of increasing depth.
RDST 55-56 : sort nodes into top-down sequence.

RDST 61 : loop on all elements.
RDST 63 - skip if element is not present in primary mesh.
RDST 66 : skip if element type is not present.
RDST 69—73 : element type dependent parameters.
NGP — no. of integration points.
NDN — no. of displacement nodes in element.

INDX — index to arrays W and L for different element types.

RDST 75-78 : copy nodal co-ordinates into local array ELCOD.

- A

Sa s

Tasdis

Sec.7.7] Setting up the In Situ Stresses 255

RDST 82 : loop on all integration points.

RDST 87-88 : local/area co-ordinates of integration point.
RDST 89 : calculate shape functions SHFN.

RDST 91-97 : co-ordinates of integration point.

RDST 101-105: co-ordinates of nodes at top and bottom of layer.

RDST 107 : search for integration point in each in situ layer.
RDST 108 : layer in which integration point lies is found.

RDST 111 : integration point co-ordinate is outside in situ space
RDST 116 : calculate interpolation factor. .

RDST 119-120: interpolate stresses at integration point.

RDST 122 : material type number.

RDST 125—129: calculate p; (PC) and critical state value of p' as PU for Cam-
clay models.

RDST 130—131: calculate voids ratio.

RDST 132 : end of loop on integration points.

RDST 133 : end of element loop.

RDST 138-139: direct specification of stresses at integration point

RDST 141 : Joop on all elements, ‘

RDST 147—149: read and write stresses at each integration point.

RDST 150 : end of element loop.

RDST 158 : calculate loads equivalent to in situ stresses; loop on all
elements.

RDST 160

: skip if element is not present in primary mesh.

RDST 162165 element type dependent parameters.

RDST 167—169: calculate loads in equilibrium with stresses in element (into
FI).

RDST 176—181: slot Flinto PEQT.

RDST 182 : end of element loop.

RDST 188—189: print out in situ stresses at integration points.

Routine SORTNZ2
SUBROUTINE SORTN2(Y1,Y2,N1,N2, NMIN,NMAX) SR
Cilllli’llll'llllll’ﬁll.lI!‘ili’iiilll!’Ill‘i'iiiiil”llllllIilll*”ll'KSRTN)
C ROUTINE TO SORT TWO INTEGERS SRTN :
Cl'!!!'!'l!iliillllll!llil![lIl!llllllIi!ililiiliil!lllililiK!iillll!Iil iy 3
NMIN=N1 bl
NMAX=N2 ?SN .
IF (Y1.LT.Y2)RETURN SRT: :
NMAX=N1 SRT ;
NMIN=N2 SRT:: ;
RETURN SRTN 13
END SRTN 11

SRTN 5-9 : sort two nodes; assign NMAX to the node with larger y value.

7.7.3 Integration point co-ordinates

The shape functions are used to calculate the co-ordinates of the integration
points from the nodal co-ordinates.

li | 256 In Situ Stresses [Ch.7

xEm)= 3 Nig,n) x;,

i=1

(7.1)
y(,n)= Zi Ni(E,m) i

: E Routine SHAPE calculates the values of the shape functions /;—SHFN(NDN).

Y It also calculates the derivatives of the shape functions w.r.t. the local co-

; ordinates: 9N;/0, dN;/dn, which are placed in array DS(NDIM,NDN). These

] quantities are required in the calculation of the B matrix (see routine FORMB2).

i | During the course of the analysis, there are many occasions when only the shape

: functions are required and not their derivatives. This choice is made by assigning
1 to the parameter ICODE. If set to 2, derivatives are also calculated.

I
([Routine SHAPE
|
|
[SUBROUTINE SHAPE (IW6,LL,NAC, DS, SHFN, NDIM, NDN, LT, ICODE, MUS) SHPE 1
,.;' ' Cillklilllll&llillilIIIillllll!lllIlllllllllil!illiIi!lll!lll!li!llllllisHpE 2
;‘| c SHAPE FUNCTIONS AND DERIVATIVES FOR DIFFERENT ELEMENT TYPES SHPE 3
A1 | Cliilﬂililiilllllﬁli!iiIlkliiIlililillili}lllllll!Illlllllll&lilillllllISHPE Y
o | REAL LL SHPE 5
i DIMENSION LL(NAC),SHFN(NDN),DS (NDIM,NDN) SHPE 6
Kl | c SHPE 7
‘ AC1=LL(1) SHPE 8
AC2:LL(2) SHPE 9
I IF (NAC.LT.3)GOTO 10 SHPE 10
L AC3=LL(3) . SHPE 11
IF (NAC.LT. 4)GOTO 10 SHPE 12
: ACH=LL(4) SHPE 13
: c SHPE 14
! 10 GOTO(11, 13,13, 14, 14,15, 15,17, 17,18, 18),LT SHPE 15
) WRITE (IW6, 900)MUS, LT SHPE 16
‘ 900 FORMAT(/1X,THELEMENT,I5,2X,22HIS OF UNKNOWN TYPE *#* 15 2%, SHPE 17
I - 1 15H(ROUTINE SHAPE)) SHPE 18
STOP SHPE 19
; c SHPE 20
3 i c SHAPE FUNCTIONS AND DERIVATIVES FOR BAR ELEMENT SHPE 21
i c -SHPE 22
T 11 CONTINUE SHPE 23
WRITE (IW6, 910)MUS, LT SHPE 24
910 FORMAT(/1X, THELEMENT, I5,2X, TUHIS OF TYPE ¥**¥ I5, 2X, SHPE 25
1 31HNOT IMPLEMENTED (ROUTINE SHAPE)) SHPE 26
GOTO 80 SHPE 27
c SHPE 28
c SHAPE FUNCTIONS AND DERIVATIVES FOR LST SHPE 29
. c . -SHPE 30
: 13 SHFN(1)=AC1%(2.%AC1-1.) SHPE 31
| SHFN(2)=AC2%(2.%AC2-1.) SHPE 32
' SHFN(3)=AC3%(2.*AC3-1.) SHPE 33
SHEN (U)=4. *AC 1%AC2 SHPE 34
SHEN(5)=4, *AC2%AC3 SHPE 35
SHFN(6)=U., *AC 1%AC3 SHPE 36
IF (ICODE. EQ. 1)GOTO 80 SHPE 37
c SHPE 38
DS(1,1)=4. *AC1-1, SHPE 39
DS(1,2)=0. SHPE U0
DS (1,3)==(4.*AC3-1,) SHPE 41
SHPE 42

DS(1,4)=4.%AC2

it g i o it 5 g o g i £ e s e

Sec. 7.7] Setting up the In Situ Stresses

DS(1,5)=-4,*ac2
c DS (1,6)=4.%(AC3-ACT) 2::5
DS (2,1)=0. 2:5;
DS(2,2)=4,*ac2-1, SHPE
DS (2,3)=~(4.%AC3-1.) SHPE
DS (2,4)=4.*%AC1 SHPE
DS (2,5)=U.*(AC3-AC2) SHPE
DS (2,6)==U4, *AC1 SHPE
c GO TO 80 SHPE
g SHAPE FUNCTIONS AND DERIVATIVES FOR QUADRILATERALS 2:;’;
14 CONTINUE —gggg
WRITE(IW6,910)MUS, LT SHPE
c GOTO 80 SHPE
C SHAPE FUNCTI e
¢ ONS AND DERIVATIVES FOR CUBIC STRAIN TRIANGLE SHPE
15 CONTINUE ::gg
C1=32./3. SHPE
C2:=64, SHPE
€3=128./3. SHPE
C4=128, SHPE
T11=AC1-0.25 SHPE
T12:AC1-0.50 SHPE
T13=AC1-0.75 SHPE
T21=AC2-0.25 SHPE
T22=AC2-0.50 SHPE
T23=AC2-0.75 SHPE
T31=AC3-0.25 SHPE
T32=AC3-0.50 SHPE
c T33=AC3-0.75 SHPE
g SHAPE FUNCTIONS ::gg
SHEN(1) =CT*AC1¥T 11%T12%T13 g:i’,g
SHEN(2) =C1%AC2¥T21%T22%T23 SHPE
SHFN(3) =C1¥AC3%T31%T32#T33 SHPE
SHFN(4) =C3*AC1*¥AC2%T11%T 12 SHPE
SHEN(5) =C2*AC1*AC2*T 11%T21 SHPE
SHEN(6) =C3*AC1¥AC2¥T21%T22 SHPE
SHEN(7) =C3*AC2¥*AC3*T21%T22 SHPE
SHFN(8) =C2*AC2¥*AC3¥T21%#T31 SHPE
SHEN(9) =C3®AC2*AC3*T31%T32 SHPE
SHFN (10)=C3*AC1¥AC3*T 31%T32 SHPE
SHFEN(11)=C2*AC1¥AC3¥T11#T 31 SHPE
SHFN(12)=C3*%AC1¥AC3*T11%T 12 SHPE
SHFN(13)=CL*AC1*AC2¥AC3*T 11 SHPE
SHEN (14)=C4*AC 1#AC2*AC3*#T 21 SHPE
SHEN(15)=C4¥*AC1*AC2*AC3*T 3T SHPE
IF (ICODE.EQ. 1)GOTO 80 SHPE
C SHPE
DS(1,1):Cl‘(T12"l‘13'(T11+AC1)+AC1"’I‘11*(T13+T12)) SHPE
DS(1,2)= 0. SHPE
DS (1,3)=~C 1%#(T32*T33%(AC3+T31)+AC3*T31%(T324T33)) SHPE
DS(1,4)= C3¥AC2*(T11¥#T12+AC1#(T114T12)) SHPE
DS(1,5)= C2®AC2*T21%(AC1+T11) SHPE
DS(1,6)= C3*AC2%T21%T22 SHPE
DS(1,7)=~C3¥AC2#T21#T 22 SHPE
DS(1,8)=-C2¥AC2*T21#(AC3+T31) SHPE
DS (1,9)=-C3#AC2%(T31%T32+AC3*%(T31+T32)) SHPE
DS (1,10)=-C3*(AC 1¥AC3#(T31+4T32)-T 31 *T32%(AC3-AC1)) SHPE
DS(1,11)= C2%(AC1*AC3*%(T31-T11)+T31¥T11%(AC3-AC1)) SHPE
DS (1,12)= C3®(ACT¥*AC3*(T11+T12)+T11*T12%(AC3-AC1)) SHPE
DS(1,13)= CU¥AC2¥#(AC1¥AC3+T11%(AC3-AC1)) SHPE

257

43

45
46
u7
48
49
50
51

52
53
54

55
56
57

58
59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74

75

76
77
78
79
80

87

83
8u
85
86
8"

8y
90
91
92
93
ou
95
96
97
98
99
100
101
102
103
104
105
106
107
108

258 In Situ Stresses [Ch.7
DS (1, 14)= CU¥AC2*T21%(AC3-ACT) SHPE 109
DS (1, 15)=~C4*AC2%(ACT1#AC3+T31¥(AC1~AC3)) SHPE 110
c . SHPE 111
DS(2,1) = O. SHPE 112
DS(2,2) = C1%(T22¥T23%(AC2+T21)+AC2¥T21#(T22+T23)) SHPE 113
DS(2,3) =—C1%(T32*T33%(AC3+T31)+AC3*T31*(T32+T33)) SHPE 114
DS(2,4) = C3*ACI*T11*T12 SHPE 115
DS(2,5) = C2¥ACT¥T11¥(AC2+T21) SHPE 116
DS(2,6) = CI*ACT*(T21*T22+AC2%(T214T22)) SHPE 117
DS(2,7) = C3¥(AC2*AC3*(T21+T22)+T21¥T22%(AC3-AC2)) SHPE 118
DS(2,8) = C2%(AC2*AC3¥(T31-T21)+T214T31#(AC3-AC2)) SHPE 119
DS(2,9) =-C3%(AC2¥AC3*(T31+T32)+T31¥T32*(AC2-AC3)) SHPE 120
DS(2,10)=-C3*AC1#(T31¥T32+AC3*(T31+T32)) ' SHPE 121
DS (2, 11)=-C2¥AC1#T 11%(AC3+T31) SHPE 122
DS(2,12)=-C3¥AC1¥T11#T12 SHPE 123
DS(2,13)= CUL*ACT¥T11%(AC3-AC2) SHPE 124
DS(2,14)= CY*ACT#(AC2*AC3+T21*(AC3=AC2)) SHPE 125
DS (2, 15)=-CL¥AC 1#(AC2*AC3+T31%(AC2-AC3)) SHPE 126
GO TO 80 SHPE 127
c SHPE 128
c SHAPE FUNCTIONS AND DERIVATIVES FOR BRICK ELEMENT SHPE 129
c SHPE 130
17 CONTINUE SHPE 131
WRITE (IW6,970)MUS, LT SHPE 132
GOTO 80 SHPE 133
c —SHPE 134
c SHAPE FUNCTIONS AND DERIVATIVES FOR TETRA-HEDRA SHPE 135
c SHPE 136
18 CONTINUE SHPE 137
WRITE(IW6, 910)MUS, LT SHPE 138
GOTO 80 SHPE 139
80 CONTINUE SHPE 140
RETURN SHPE 141
END SHPE 142
SHPE 8-—-13 :set up ACl, AC2, etc. equal to the integration point co-
ordinates.
NL = 3 for two-dimensional triangular elements.
NL = 2 for two-dimensional quadrilateral elements.
NL = 3 for three-dimensional elements.
SHPE 15 . branch off for different element types.
SHPE 23 : shape functions and derivatives for bar element (LT = 1; not
yet implemented).
SHPE 31-36 :shape functions for six-noded triangular element (LT = 2, 3).
SHPE 39-—44 : calculate derivatives w.r.t. local co-ordinates - d/N;/d§, aV;/on
(LT =2,3).
SHPE 56 : shape functions and derivatives for quadrilateral element
(LT =4, 5) — not included in this version.
SHPE 63-75 : setup constants for LT =6,7.
SHPE 79-93 : shape functions for cubic strain triangle (LT = 6, 7).
SHPE 96-126 : calculate derivatives w.r.t. local co-ordinates — dN;/3¢, dN;/dn
(LT=6,7).
SHPE 131 : calculate shape functions and derivatives for brick element
(LT = 8, 9; not yet implemented).
SHPE 137 : calculate shape functions and derivatives for tetrahedra

element (LT = 10, 11;not yet implemented).

o s e

s bl et e e b i

Sec. 7.7] Setting up the In Situ Stresses 259

7.7.4 Loads equivalent to in situ stresses

The nodal loads equivalent to the in sifu stresses are calculated in routine EQLIB
and placed in array F(NDF) for each element, and these are later used in the
equilibrium calculations.

F.:
F(NDF)= | *
Fyi
oN; N AN;
. 0Oxp — -Txyo
Fy T oax Y
= | By .00 d(vol) =
iy B 06 d (vol) fVe o e d (vol).
a_y.Uyo + a—x.Txyo
(7.2)
The B; matrix is given by
~8Ni -
— 0
ox
aN;
O —
ay
N; i
— 0
x
oN; aN;
ay ox
The calculation
Fr= [BT g, d (vol) (1.3)
is expanded and written in long hand, leaving out all zero multiplications using
aN;
CARTD(1,]) = —,
ox
CARTD(2, I) oN;
. o (7.4)
N;
B(3,1) = —,
x

I, i denote the ith node.

1 This term is only present for axisymmetric problems, x being the radial distance of the
integration point.

260 In Situ Stresses

Routine EQLIB

[Ch. 7

SUBROUTINE EQLIB(JJ,MUS,LT,NGP,NIP,INDX,NTPE,NEL,NDIM, NN, NDMX, NDN,EQLB

1 NS, NB, NAC, NVRS, XYZ, VARINT, ELCOD, DS, SHFN,CARTD, B, F, NCONN, LL, ISTGE)EQLB
I A R T L e

c ROUTINE TO CALCULATE FORCES EQUILIBRATING
c ELEMENTAL STRESSES

EQLB
EQLB

Cllllli‘!llll’lllll‘l’“‘lﬂ'l’ii“l‘i"l’l’illi!l‘lll*l’iiliii!**"‘lﬁllll&i‘lEQLB

REAL L,LL

DIMENSION XYZ(NDIM, NN), VARINT (NVRS, NIP,NEL),ELCOD(NDIM, NDMX),

1 DS (NDIM, NDMX),SHFN(NDMX),CARTD (NDIM, NDMX),B(NS, NB),
2 F(NDIM,NDMX),LL(NAC),NCONN(NTPE, NEL)

COMMCN /PARS / PYI,ALAR,ASMVL,ZERO

COMMON /DATW / W(100)

COMMON /DATL / L(4,100)

COMMON /FLOW / NPLAX

COMMON /JACB / XJACI(3,3),DJACB

CR=1.
IF (NPLAX.EQ. 1)CR=2. ¥PYI

CALL ZEROR2(F,NDIM, NDMX)

DO 20 KN=1,NDN
NDE=NCONN (KN, JJ)
DO 20 ID=1,NDIM

20 ELCOD(ID,KN)=XYZ(ID,NDE)

DO 60 IP=1,NGP
IPA=IP+INDX

DO 30 IL=1,NAC

LL(XIL)=L(IL,IPA)

CALL FORMB2(JJ,MUS,R,RI, NDIM, NDMX, NDN,NS,

1 NB, NAC, ELCOD, DS, SHF N, CARTD, B, LL, LT, IP, ISTGE)
F9=CR*DJACB¥*W (IPA)

IF(NPLAX.EQ.1)F9=F9*R

o

3

U=VARINT(NS+1,IP,JJ)
SIGXT=VARINT (1, IP,JJ)+U
SIGYT=VARINT (2, IP,JJ)+U
SIGZT=VARINT(3,IP,JJ)+U
TXY=VARINT (4, IP,JJ)

IF (NDIM.EQ.2)GOTO 35

TYZ=VARINT(5,1IP,JJ)
TZX=VARINT(6,1IP,JJ)

DO 50 IN=1,NDN
F(1,IN)=F (1, IN)+(CARTD (1, IN)*SIGXT+CARTD (2, IN)*TXY
1 +CARTD(3, IN)*TZX) ¥F9
F(2,IN)=F (2, IN)+(CARTD(2, IN)*SIGYT+CARTD(1, IN) *TXY
1 +CARTD(3, IN)*TYZ)*F9
F(3,IN)=F(3,IN)+(CARTD(3, IN)*SIGZT+CARTD (2, IN) *TYZ
i +CARTD(1, IN)*TZX)*F9

50 CONTINUE
GOTO 60

35 DO 40 IN=1,NDN
F(1,IN)=F(1,IN)+(CARTD(1,IN)*SIGXT+SHFN(IN)¥SIGZT*RT

1 +CARTD (2, IN)*TXY) ¥F9

40 F(2,IN)=F (2, IN)+(CARTD(2, IN)*SIGYT+CARTD (1,IN)*TXY)*F9

60 CONTINUE
RETURN
END

EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLB
EQLR
EQLB
EQLB
EQLB
EQLB
EQLB

W@V FWN =

T PP VIRVt

Sec. 7.7] Setting up the In Situ Stresses 261

EQLB 17-18 : multiplication factor for numerical integration,
EQLB 20 : zero array F.

EQLB 22-25 : copy nodal co-ordinates into local array ELCOD,
EQLB 27 : loop on all integration points.

EQLB 30-31 : integration point co-ordinates.

EQLB 32—33 : calculate components of B matrix.

EQLB 3435 : multiplication factor for numerical integration.
EQLB 37-41] : total stresses o for 2-D.

EQLB 4445 : additional stress components for 3-D.

EQLB 47-53 : calculate BT . d (vol) for 3-D, contribution from integration
point,.
EQLB 57—60 : calculate jBTO .d(vol) for 2-D, contribution from integration

point.
EQLB 61 : end of integration point loop.

7.7.5 B matrix

Routine FORMB2 calculates the B matrix, which is made up of terms oN;/ox,
0N;/dy. These Cartesian derivatives of shape functions are calculated using the
chain differentiation rule:

ON; AN; 0% L N on
ax dF Ax an oax’

(7.5)
;BN 3% . aN; on
oy 9t 9y on oy
| | an || o
ox ox 0x o0&
= . (7.6)
aN; a8 on || v
oy ay oy on

The 3/V;/3%, dN;/dn terms are calculated in routine SHAPE. The Jacobian matrix
J(&,n) is given by

ax ay aAG aAG
- o X Vi
ot 0k L ok 0§
J= =2 (1.7)
ox ay i=1 aAG aﬁh
— = —x; — y.:
n o on ' g

The inverse of the Jacobian matrix is then given by

=

262 In Situ Stresses
9t On dy —dy
i ox ox| 1 on ot
oF i)ﬂ det) | —9x ox
ay oy om0k

(Ch.7

(7.8)

Knowing this, d/V;/dx, dN;/dy can be calculated from the above equation. The

determinant of J is calculated in routine DETMIN.

Routine FORMB2

SUBROUTINE FORMB2(J,MUS, R, RI, NDIM, NDMX, NDN, NS, NB, NAC, FRMB

1 ELCOD, DS, SHFN,CARTD,B,LL,LT, IP, ISTGE) FRMB
C!Kl!llK!!!!iiilﬁIiiilv!iK!!!l}!l!il!‘iiiiii!ii!llllKilllilllll!illl!l!liFRMB
C FORMS B MATRIX FROM AREA/LOCAL COORDS LL(NAC) FRMB
c IN ELEMENT J FOR INTEGRATION POINT IP FRMB
Ci!!iil!!l!iiii!il!llili!Iili!!iiiil!}!lklill!!*!llil!iiii!ill!li!liil(lFRMB
REAL LL FRMB
DIMENSION ELCOD(NDIM,NDMX),DS(NDIM,NDMX),SHFN(NDMX), FRMB

1 CARTD(NDIM,NDMX),B(NS,NB),LL(NAC),XJACM(3.3) FRMB -
COMMON /FLOW / NPLAX FRMB
COMMON /PARS / PYI,ALAR,ASMVL,ZERO FRMB
COMMON /DEVICE/ IR1,IR‘4,IRS,INZ,IH’-!,IH6,IH7,IW8,IH9 FRMB
COMMON /JACB / XJACI(3,3),DJACB FRMB

c FRMB
C- INITIALISE SHAPE FUNCTION AND DERIVATIVES (LOCAL COORDS) FRMB
c FRMB
CALL ZEROR2(DS, NDIM, NDMX) FRMB

CALL ZEROR1(SHFN, NDMX) FRMB

CALL ZEROR2(B, NS, HNB) FRMB

c FRMB
CALL SHAPE(IH6,LL,NAC,DS,SHFN,NDIM,NDN,LT,2,HUS) FRMB

CALL ZEROR2(XJACM,NDIM, NDIM) FRMB

c FRMB
NDN2=2 *NDN FRMB

c FRMB
DO 15 IDIM=1,NDIM FRMB

DO 15 JDIM=1,NDIM FRMB
SUM=Z2ERO FRMB

C FRMB
DO 12 IN=1,NDN FRMB

12 SUM=SUM+DS (IDIM, IN)*ELCOD (JDIM, IN) FRMB

15 XJACM(IDIM,JDIM)=SUM FRMB

C FRMB
CALL DETMIN(IN6.XJACM,XJACI,NDIM,DJACB,MUS,IP,ISTGE) FRMB

cc WRITE (IW6, 902)DJACB FRMB
CC902 FORMAT(9H JACOBIAN,2X,E16.5) FRMB
C £ RMB
C CALCULATE RADIUS FOR AXI-SYM B MATRIX FRMB
C FRMB
R=ZERO FRMB
RI=ZERC FRMB

IF (NPLAX.EQ.0)GOTO 28 FRMB

c FRMB
DO 25 IN=1,NDN FRMB

25 R=R+ELCOD(1, IN)¥*SHFN(IN) FRMB
RI=-1.0/R FRMB

c FRMB
28 DO 35 IN=1,NDN FRMB

DO 35 ID=1,NDIM FRMB
SUM=ZERO FRMB

VooV W =

e e s 2 i e e by e e S

£

i

Sec.7.7] Setting up the In Situ Stresses 263
c
DO 30 JD=1,NDIM o 2
30 SUM=SUM-DS (JD,IN)*XJACI(ID,JD) fhin o
35 CARTD(ID,IN)=SUM 152:2 23
c

. IF (NDIM. NE. 2)GOTO 52 gg:g 22

c 2 - D ELEMENT ?ﬁ:g 22

c

DO 50 IN=1,NDN ii:s %
B(1,IN)=CARTD(1,IN) FRMS go
B(2, NDN+IN)=CARTD(2, IN) FRMB 6;
IF (NPLAX.EQ.0)GOTO 45 FRMB 6
B(3,IN)=SHFN(IN)*RI FRMB 6131
45 B(U,NDN+IN)=B(1,IN) FRMB 6
50 B(4,IN)=B(2,NDN+IN) FRMB 62
c
52 IF (NDIM.NE.3)GOTO 62 g::g 2273

c

c 3 - D ELEMENT ?5:3 ?3

c

DO 60 IN=1,NDN ‘:‘2:8 1
B(1,IN)=CARTD(1,IN) FRMS 7
B(2, NDN+IN)=CARTD(2,IN) FRMB ;3
B(3,NDN2+IN)=CARTD (3, IN) FRMB T
B(4, IN)=CARTD(2,IN) FRMB 72
B (4, NDN+IN)=CARTD(1, IN) FRMB 77
B(5, NDN+IN)=CARTD(3, IN) FRMB 78
B(5, NDN2+IN)=CARTD(2, IN) FRMB 7
B(6,IN)=CARTD(3,IN) FRMB ag
B(6, NDN2+IN)=CARTD (1, IN) FRMB 8

60 CONTINUE FRMB 8;

c

62 CONTINUE gﬁ:ﬁ 8134
RETURN FRMB gs
END FRMB 86

FRMB 17-19 : zero arrays for shape functions (SHFN), derivatives (DS) and
strain matrix (B).

FRMB 21 : calculate shape functions (#V;) and derivatives w.r.t. £ and n
(0NV;/0%, ON;/an).

FRMB 22 : zero Jacobian matrix.

FRMB 26—32 : calculate components of Jacobian matrix J.

FRMB 34 : calculate determinant of J and inverse J 7.

FRMB 40 : zero radius R for axisymmetric analysis.

FRMB 44—45 : calculate radius, R, of integration point.

FRMB 46 : Rl is the inverse of R.

FRMB 48—54 : calculate Cartesian derivatives of shape functions aN;/dx
dN;/dy. The negative sign is to allow for the sign convention that
compressive strains are positive.

FRMB 60—66 : calculate B matrix for two-dimensional elements.

FRMB 64 : calculate row 3 of B matrix for axisymmetric elements only.

FRMB 72-82 : calculate B matrix for three-dimensional elements.

264 In Siru Stresses [Ch.7
Routine DETMIN
SUBROUTINE DETMIN(IWG,XJACM,XJACI,NDIM,DJACB,JL,IP, ISTGE) DETM 1
Cill*l!ill!&!l!ll!&l!il’i!l’illIK!!!Ililllﬁ!lll!!‘ililllﬁillllllilillllil[DETM 2
c CALCULATES DETERMINANT AND INVERSE OF A SQUARE 3X3 MATRIX DETM 3
c.l‘i!i§IIIlilii!i!!ﬂli!lil’i*“‘li!l!'ill&lllll}illiFKIlli*il’l’iiilll!KllDEm U
DIMENSION XJACM(3,3),XJACI(3,3) DETH 5
COMMON /PARS / PYI,ALAR,;ASMVL,ZERO DETM 6
c DETM 7
IF (NDIM, NE.2)GOTO 20 DET™M 8
DJACB=XJACM (1, 1)¥XJACM(2, 2)-XJACM(1,2)*XJACH(2, 1) DETM 9
IF (DJACB. GT.ZERO)GOTO 15 DETM 10
GOTO 60 DETH 11
c . DETM 12
15 XJACI(1,1)= XJACM(2,2)/DJACB DETM 13
XJACI(2,2)= XJACM(1,1)/DJACB DETM 14
XJACI(1,2)==XJACM(1,2)/DJACB DETH 15
XJACI(2,1)=-XJACM(2,1)/DJACB DETM 16
RETURN DETM 17
c DETM 18
20 XJACI(1,1)= (XJACH(2,2)*XJACM(3,3)-XJACM(2,3) ¥XJACM(3,2)) DETM 19
XJACI(1,2)=—(XJACM (1, 2)¥XJACM(3,3)-XJACM (1,3) *XJACM(3,2)) DETM 20
KJACI(1,3)= (XJACH(1,2)*XJACH(2,3)-XJACH(1,3)*KJACM(2,2)) DETM 21
c DETM 22
XJACT (2, 1)=—(XJACM (2, 1)*XJACM (3, 3)-XJACM (2,3)¥*XJACM(3, 1)) DETM 23
XJACI(2,2)= (XJACM(1,1)¥KJACM(3,3)-XJACM(1,3)*XJACM(3,1)) DETH 24
XJACI (2, 3)=— (XJACM(1, 1) *XJACM (2, 3)-XJACM(1,3)¥XJACM(2,1)) DETM 25
c DETM 26
XJACI(3,1)= (XJACM(2,1)*KJACM(3,2)-XJACM (2,2) *XJACH(3, 1)) DETM 27
XJACI (3, 2)== (XJACM(1, 1) *XJACM(3,2)~XJACM(1,2) *XJACM(3, 1)) DETM 28
KJACI (3.3)= (XJACM(T, 1)¥XJACM(2,2)-XJACH (2, 1)¥XJACM(1,2)) DETM 29
c DETM 30
DJACB=XJACH (1, 1)¥KJACI (1, 1)+XJACM(1, 2)*XJIACI(2, 1)+ DETM 31
1 XJACH(1,3)*XJACI(3,1) DETM 32
IF (DJACB.GT.ZERO)GOTO 32 DETM 33
GOTO 60 DETM 34
c DETM 35
32 DJACBI=1.0/DJACB DETM 36
c . DETM 37
DO 35 ID=1,NDIM DETM 38
DO 35 JD=1,NDIM DETM 39
35 XJACI(ID,JD)=XJACI(ID,JD)*DJACBI DETM 40
RETURN DETM 41
60 WRITE(IW6,900)DJACB,JL,IP DETM 42
900 FORMAT(/1X,9HJACOBIAN ,E16.5,3X,10HOF ELEMENT,I6, 3X, DETM 43
1 17HINTEGRATION POINT,I5,3X,29HIS NEGATIVE (ROUTINE DETMIN)) DETM 44
WRITE (IW6,910)ISTGE DETM 45
910 FORMAT (/1X, 36HCODE TO INDICATE STAGE OF ANALYSIS =,I5// DETM 46
1 X, NHCODE, 20X, 21HSTAGE OF THE ANALYSIS// DETM 47
2 6X,49H1 - CALLED BY RDSTRS/EQLIB/FORMB2 LOAD EQUIVALENT, DETM 48
3 198 TO INSITU STRESSES/6X,33H2 ~ CALLED BY CHANGE/EQLIB/FORMB2, DETH ug
i 32H CALCULATION OF IMPLIED LOADINGS/6X, DETM 50
5 34H3 - CALLED BY FRONTZ/LSTIFF/FORMB2, DETM 51
6 32H CALCULATION OF STIFFNESS MATRIX/ DETM 52
7 6X,38H4 - CALLED BY UPOUT/FORMB2 CALCULATION, DETH 53
8 1X,24HOF STRAINS. OUTPUT STAGE) DETHM 54
STOP DETM 55
END DETM 56
DETM 8 - branch off if not two-dimensional problem.
DETM 9 - calculate determinant of Jacobian, J, for two-dimensional

problems.
DETM 10 : check if determinant of J is positive.

e i L L i S

1wt gnhy g g

i

e T L &A% TOTS

Sec. 7.7] Setting up the In Situ Stresses

DETM 13—16 : calculate inverse J7!,

DETM 19-29 : calculate the cofactors of J for the three-dimensional case.
DETM 31-32 : calculate determinant of J.

DETM 38—40 : calculate inverse, J™*.

DETM 42—44 : print out warning message if det |J| < zero.

265

DETM 45-54 : print out codes to identify stage of analysis for debugging

purposes.

7.7.6 Print out in situ stresses

The in situ stresses have been calculated at all integration points. Also calculated

are the equivalent nodal loads for these stresses.

T}le in situ stresses calculated at all integration points are printed out in
routine INSTRS along with Cam-clay parameters p’, g, p¢ and e, the voids ratio.

Routine INSTRS
SUBROUTINE INSTRS(IW6,NN,NEL,NTPE,NIP,NVRS, NDIM, INSR
1 NDMX, NMT,MUMAX, NS, NL,XYZ, VARINT, NCONN,MAT, LTYP, INSR
2 MREL,ELCOD, DS, SHFN,CIP,LL,NTY) INSR
c‘!'.“!'l’“*""‘!“!l"!!.‘!.‘**.“*."'.....'.."!’“"*.“'.“."“““**!INSR
c ROUTINE TO PRINT OUT IN-SITU STRESSES ¥INSR
c BEFORE THE FIRST INCREMENT *INSR
c..’l‘l‘"!l!'!!"ﬁ!ﬁ!*!!l}!!!!ﬂ!iﬂ"“'.‘.l!!!!"l‘*"‘!""“llllli"’l“INsR

REAL L,LL

DIMENSION XYZ(NDIM,NN),VARINT (NVRS,NIP,6NEL) . i::g
DIMENSION NCONN(NTPE,NEL),MAT(NEL),LTYP(NEL),MREL(MUMAX) INSR
DIMENSION ELCOD(NDIM, NDMX),DS (NDIM, NDMX),SHFN(NDMX) INSR
1 CIP(NDIM),LL(NL), NTY (NMT) ' INSR
COMMON /ELINF / LINFO(50,15) INSR
COMMON /DATL / L(4,100) INSR
c COMMON /PARS / PYI,ALAR,ASMVL,ZERO INSR
NS1=NS+1 ;:22
WRITE (IW6,900) INSR
900 FORMAT(/1X, 34HINTEGRATION POINT IN~SITU STRESSES/ INSR
1 1X,34(1H~)/) INSR
c WRITE(IW6,901) INSR
DO 60 MR=1,MUMAX i::;
IF (MREL(MR).EQ.0)GO TO 60 INSR
J=MREL(MR) INSR
LT=LTYP(J) . INSR
IF(LTYP(J).LT.0)GO TO 60 INSR
NDN=LINFO(5,LT) INSR
NGP:LINFO(ll,LT) INSR
INDX=LINFO(12,LT) INSR
NACzLINFO(15,LT) INSR
KM=MAT(J) INSR
KGO=NTY (KM) : INSR
GO T0(11,11,12,12,60,60),KGO INSR
WRITE(IW6,910)MR, KGO INSR
GOTO 60 INSR
11 ICAM=0 INSR
GO TO 14 INSR
12 ICAM=1 INSR
14 CONTINUE INSR
WRITE (6,902)MR INSR

WV ON oWV EWRN =

http:Sec.7.7J

KGO — material type number.
INSR 34-39 : separate elements into two categories.
ICAM = 1, Cam-clay element.
0, otherwise.
INSR 4346 : copy nodal co-ordinates into local array ELCOD.

1l

INSR 48 : loop on all integration points.
INSR 51-52 : local/area co-ordinates of the integration point.
INSR 53 : calculate shape functions SHFN.

266 In Situ Stresses [Ch.7

c INSR 42

DO 18 KN=1,NDN Iugg ::3

NDE =NCONN (KN, J) ?risn "

DO 18 ID=1,MNDIM ISk 4o
\)=XYZ(ID, NDE) ‘

. 18 ELCOD(ID,KN)=XYZ(ID, sk 4o
DO 40 IP=1,NGP i::g 32
IPA=IP+INDX

c INSR 50
DO 25 IL=1,NAC %Egg 212

25 LL(IL)=L(IL,IPA)
CALL SHAPE (IW6,LL,NAC,DS,SHFN, NDIM,NDN,LT, 1,MR) i:zg 23

c
DO 35 ID=1,NDIM i:g; 22
SUM=ZERO ISR 56
DO 3C I=1,NDN NSk 57

30 SUM=SUM+SHFN (I)*ELCOD(ID, 1) IINS 559
- R

¢ 35 CIP(ID)=SUM ISk 22
IF (ICAM, NE. 1)GO TO 38 INSR 21
EI=VARINT (§S+2,IP,J) INSR 62
PCI=VARINT (NS+3,IP,J) INSR 63
PE:(VARINT(1,IP,J)+VARINT(2,IP,J)+VARINT(3,IP,J))*0.333333333 INSR 64
QE=Q(VARINT (1,IP,J),NS, NDIM) INSR gz
WRITE (IW6,903)IP, (CIP(ID),ID=1,NDIM), INSR 6
1 (VARINT(IK,IP,Jd),IK=1,NS1),PE,QE,PCI,EI - INSR 67
GO TO 40 INSR 68

38 WRITE(IW6,903)IP, (CIP(ID),ID=1,NDIM), (VARINT (IK,IP,J),IK=1,NS1) mgs ég
40 CONTINUE ixsg ;1
60 CONTINUE
RETURN INSR 72
901 FORMAT (1X,7H ELM-IP,S5X, 1HX, 11X, 1HY, 11X, 2HSX; 10X, INSR 73
1 2HSY, 10X, 2HSZ, 10X, 3HTXY, 9, THU, 10X, 2HPE, INSl; 7;
2 11X, 1HQ, 10X, 2HPC, 7X, 4HVOID) %:gk gé
902 FORMAT (I4) s 10
903 FORMAT(1X,I5,10E12.4,F7.4) 7
910 FORMAT (1X, THELEMENT, I5, 2X, 27HIS OF UNKNOWN MATERIAL TYPE, IS5, INSR 78
12X, 16H (ROUTINE INSTRS)) INSR 179
END INSR 80

INSR 23 : loop on all elements in user number sequence.

INSR 25 : program element no. (J).

INSR 27 - skip if element is not present in primary mesh.

INSR 28-31 : element type dependent parameters.

NDN — no. of displacement nodes.

NGP — no. of integration points. ;

INDX — starting index to arrays W and L for different element
types.

KM — material zone number.

i e P

23 Ao ich, Y

- ATl

4
FaTY,

g

t5

o

Tl

i

e o 00

Sec. 7.8] Pressure Loads and Boundary Conditions 267

INSR 55-59 : calculate integration point co-ordinates.
INSR 62—65 : calculate following parameters for Cam-clay models only.

EL — voids ratio.
PCI — pre-consolidation pressure (size of yield locus).
PE — mean normal effective stress (p").
QE — deviator stress (q).
INSR 66—67 : print out for Cam-lay elements,
INSR 69 : print out for non-Cam-clay elements.
INSR 70 : end of integration point loop.

INSR 71 : end of element loop.

7.8 PRESSURE LOADS AND BOUNDARY CONDITIONS
7.8.1 Pressure loads

The external loads which are in equilibrium with in situ stresses are now read in.
These loads are specified as pressure loads acting along element sides which lie
along the boundary. The pressures along the boundary which are restrained need
not be specified. It is sufficient to specify the restraint boundary condition along
these sides. Neither the pressures nor the restraint boundary conditions need to
be specified along free surfaces. A free surface is defined as any boundary free of
stress and restraint (e.g. ground surface).

The pressure loads along loading boundaries are read in routine INSITU.
Routine EDGLD checks that the element side belongs to the element specified,
and aligns the nodes to follow the anti-clockwise order. The pressure values are
then stored in an array PRESLD in a named COMMON block PRSLD.

Routine EDGLD
SUBROUTINE EDGLD(IW6,NEL,NDIM, NTPE, NNZ,MUMAX, NPL,NCONN,LTYP,MREL, EDGL 1
1 NREL, LNE,ND1,ND2, NP1, NP2, PDISLD, PRES, KLOD, NPT, KINS, MXLD) EDGL 2
CllllIlilIlllIllllllilli!llllllillllIllllllIIIIIIIﬁﬁllilll!ill‘iilllliiﬁEDGL 3
ROUTINE TO ALIGN NODES ALONG LOADED EDGE IN THE ANTI-CLOCKWISE *EDGL 4
c ORDER AND TO STORE THE INFORMATION *EDGL 5
c THE PRESSURES AT THE BEGINNING OF AN INCREMENT BLOCK ARE STORED *EDGL 6
c IN A TEMPORARY ARRAY COMMON BLOCK PRLDI ¥EDGL 7
c THE RATIOS OF THESE LOADING ARE ADDED TO THE CUMULATIVE LIST *EDGL 8
c (COMMON BLOCK PRSLD) *EDGL ¢
c OF PRESSURE LOADS AT THE BEGINNING OF EACH INCREMENT *EDGL 10
Cllllllll!IIil_lllll!llllllllll!llillIll!IIIIIIllllilllilllllllillllliillEDGL 1M
DIMENSION NCONN(NTPE,NEL),LTYP(NEL),NP1(NPL),NP2(NPL) EDGL 12
DIMENSION NREL(NNZ),MREL(MUMAX) EDGL 13
DIMENSION PDISLD(NDIM,NPT),PRES (NDIM, NPT) EDGL 14
COMMON /ELINF / LINFO(50,15) EDGL 15
COMMON /PRLDI / PRSLDI (10, 100),LEDI (100),NDI1(100),NDI2(100),ILOD EDGL 16
c EDGL 17
CALL ZEROR2(PRES, NDIM, NPT) EDGL 18
NE=MREL (LNE) EDGL 19
LI1=NREL(ND1) EDGL 20
LI2=NREL(ND2) EDGL 21
LT=LTYP(NE) EDGL 22
IF(LT.GT.0)GOTO 15 EDGL 23
WRITE (IW6,901)NE EDGL 24
901 FORMAT (1X, THELEMENT, I6,2X, 27THNOT PRESENT IN CURRENT MESH, EDGL 25

A

e

s g

v

268

In Situ Stresses

1 1X, 16H(ROUTINE EDGLD))
RETURN

15 NEDG=LINFO(3,LT)

NDSD=LINFO(7,LT)
NTSD=NDSD+2
INDED=LINFO(14,LT)

DO 20 K1=1,NEDG

J1=NP1(K1+INDED)

J2=NP2(K1+INDED)

I1=NCONN(J 1, NE)

I2=NCONN(J2, NE)
IF(LI1.EQ.I1,AND,LI2.EQ.I2)GO TO 25
IF(LI1.EQ.I2.AND,LI2.EQ.I1)GO TO 21

20 CONTINUE

WRITE (IW6, 903)KLOD, LNE, ND1, ND2

903 FORMAT(/13H **** ERROR :,IS5,17H TH LOAD. ELEMENT, IS5,

1 2X,25H DOES NOT CONTAIN NODES :,2I5,
2 2X,15H (ROUTINE EDGLD))
STOP

[Ch.7

EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL

o

ALIGN NODES IN SEQUENCE

EDGL
EDGL

21 LIT=LI1

LI1=LI2
LI2=LIT
NT=ND1
ND1=ND2
ND2=NT

EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL

PRES - CONTAINS THE PRESSURE COMPONENTS ALIGNED IN SEQUENCE

EDGL
EDGL

aao

DO 24 J=1,NTSD

JBACK=NTSD+1-J
DO 24 I=1,2

24 PRES(I,J)=PDISLD(I,JBACK)

GO TO 35

25 DO 30 J=1,NTSD

3

po 30 I=1,2
0 PRES(I,J)=PDISLD(I,J)

EDGL

EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL

[eNeNe]

UPDATE OR READ IN A NEW LIST

EDGL
EDGL

OO0 0

(2]

3

]

IF(KINS.EQ.0)GO TO 40

EDGL
EDGL

PRESSURE LOADS IN EQUILIBRIUM WITH IN-SITU STRESSES
NEW LIST - READ DIRECTLY INTO COMMON PRSLD

EDGL
EDGL
EDGL

CALL LODLST(IW6,LNE,ND1,ND2, PRES, NDIM, NPT, 1,MXLD)
GO TO 55

EDGL
EDGL
EDGL

PRESSURE LOADS FOR NEW INCREMENT BLOCK READ INTO COMMON PRSLDI

EDGL
EDGL

40 ILOD=KLOD

LEDI (ILOD)=LNE
NDI1(ILOD)=ND1
NDI2(ILOD)=ND2
IC=0

DO 50 IV=1,NTSD
DO 50 IJ=1,2
IC=IC+1

50 PRSLDI(IC,ILOD)=PRES(IJ,IV)
55 CONTINUE

RETURN
END

EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL
EDGL

‘-—w-rv-ﬂﬁr-¢‘?-—--

NEEL ATl /R

EDGL 3340

Sec

.7.8] Pressure Loads and Boundary Conditions

269

EDGL 18 : zero array PRES (which temporarily holds the applied pressure
load).

EDGL 19 : program element number.

EDGL 20-21 : program node numbers of nodes at either end.

EDGL 22 : element type number.

EDGL 2831 : element type dependent parameters.

NEDG — no. of element sides (edges).

NDSD — no. of displacement nodes along side (excluding

nodes at either end).

NTSD — total no. of displacement nodes along side.

INDED — starting index to arrays NP1, NP2,

at either end (normal and reverse sequence).

EDGL 4]-44 : side not found in element; stop.

EDGL 49-54 :

sequence.

EDGL 58-61 : do the same with pressure components.

EDGL 64—66
EDGL70
EDGL 75
EDGL 80-88

: skip if load is for an increment block.

Routine LODLST

SUBROUT INE LODLST(IW6,LNE,ND1, ND2, PRES,NDIM, NPT, ILST,MXLD)

: array PRES contains pressure load terms in correct sequence.

: read directly into PRESLD in named COMMON PRSLD.
: read into temporary array PRSLDI in named COMMON PRLDI.

LDLS

CEIE 0830960630636 30 00 06 D06 DK 06 0600 06 0606 06 06 006 606 08 3606 06 06 0606 06 06 06 06 J6 060606 JEEJEJE M RN JE NN NN MMNRN KR NN NNN] DS

C
C

ROUTINE TO STORE CUMULATIVE LIST OF APPLIED
PRESSURE LOADING ALONG ELEMENT EDGES

LDLS
LDLS

CHEIIIE 00300000 06060006 066 0606 060600 9606 06 06 00 06 D600 06 06 06 06 06 0 06 JE0 06 D606 JE 0 I JEJE 0 I N RN RNNNMNNNNRRNRR] D[S

OO0

DIMENSION PRES(NDIM,NPT)

COMMON /PRSLD / PRESLD(10, 100),LEDG(100),NDE1(100),NDE2(100),NLED

LDLS
LDLS

MXLD - SIZE OF ARRAYS LEDG,NDE1,NDE2,PRESLD (ROUTINE MAXVAL)

LDLS
LDLS

o

(e N el

_________ SKIP IF NEW LIST

IF (NLED.EQ.0.OR.ILST.EQ.1)GO TO 22

LDLS
LDLS
LDLS

SEARCH FOR LNE IN EXISTING LIST

LDLS
LDLS
LDLS

20

DO 20 J=1,NLED

IF (LNE.NE. LEDG(J))GO TO 20
N1=NDE1(J)

N2=NDE2(J)

IF (N1,EQ.ND1,AND.N2,EQ.ND2)GO TO 25
CONTINUE

LDLS
LDLS
LDLS
LDLS
LDLS
LDLS

OO0

ADD NEW EDGE TO THE LIST

LDLS
LDLS

22

NLED=NLED+1
IF(NLED.LE.MXLD)GO TO 23
WRITE (IW6,900)

900 FORMAT(/2TH INCREASE SIZE OF ARRAYS IN,
1 51H COMMON BLOCK PRSLD ALSO SET MXLD IN ROUTINE MAXVAL/

LDLS
LDLS
LDLS
LDLS
LDLS
LDLS

: find element side with applied pressure load by comparing nodes

side found; reverse the nodes to conform with anti-clockwise

oo EWN =

http:IF(Ll1.EQ.l1.AND.LI2.EQ

it e et

270 In Situ Stresses [Ch.7

2 25X, 16H(ROUTINE LODLST)) LDLS 30
STOP LDLS 31
23 JE=NLED LDLS 32
GO TO 30 LDLS 33
c LDLS 34
¢ UPDATE EXISTING LIST LDLS 35
c LDLS 36
25 JE=J LDLS 37
GO TO 35 LDLS 38
c LDLS 39
30 LEDG(JE)=LNE LDLS 40
NDE1(JE)=ND1 LDLS 41
NDE2(JE)=ND2 LDLS 42
c LDLS 43
35 1C=0 LDLS 44
DO 40 IPT=1,NPT LDLS 45
DO 40 IK=1,NDIM LDLS 46
1C=IC+1 LDLS 47
40 PRESLD(IC, JE)=PRESLD(IC, JE)+PRES(IK, IPT) LDLS 48
RETURN LDLS 49
END LDLS 50
LDLS 12 : skip if no existing list; therefore no need to scan.
LDLS 16 : loop on list of pressure loads.
LDSL 17 : not this element; look at next one.

LDLS 18—19 : nodes at either end of side.

LDLS 20 : element side has been found.

LDLS 21 : end of existing list.

LDLS 25 : it is a new element side with pressure load.

LDLS 27-30 : array size exceeded. Arrays LEDG, NDE1, NDE2 and PRESLD
have to be increased in size. (Also make changes in all routines in
which these appear. See Appendix C, which gives the list of
routines.)

LDLS 32 : new position at end of list.

LDLS 3738 : get the position in existing list; skip, as entries are not altered.

LDLS 40—42 : enter details for new side.

LDLS 4548 : update pressure loads.

These two routines are also called when there are pressure loads applied along
element sides in an increment block. Under these circumstances the applied
pressure loads are stored in a separate set of arrays in named COMMON block
PRLDI. At the beginning of each increment the ratio of load applied in that
increment is added to the list of cumulative load array PRESLD. This procedure
is adopted purely for equilibrium checks done at the end of each increment.
At any given increment the stresses and the applied loads can be directly
checked against each other.

7.8.2 Fixities

The details of restrained element sides are read in routine FIXX. The input data
are read element side by element side. The element side is identified by nodes at
either end, and the direction in which they are restrained is also specified. If an

[

i

3

ol

Ahip -l

Sec. 7.8] Pressure Loads and Boundary Conditions 271

element side is fixed in more than one direction then one entry (data record) is
required per direction.

The routine checks the correctness.of the node numbers with the nodes
associated with the element. The nodal sequence is aligned to follow the anti-
clockwise order about the element centre. Then the fixity information along the
element side is converted into nodal fixities at all nodes which lie along this
element side.

The same routine is called either to restrain element sides or to give the
element side a prescribed displacement or excess pore pressure. The prescribed
values are stored in the array DXYT(4,200). This allows for a maximum of 200
nodes rather arbitrarily. A maximum of 4 d.o.f. can be fixed at any given node;
only the first three are used for two-dimensional analysis.

1 2 3 4
x-disp. y-disp. ex.p.p. — for2-D

where ‘ex. p.p’ denotes excess pore pressure. TF(4,200) stores the fixity code,
which can take 1 or O for the displacements, and 0, 1 or 2 for the excess pore
pressure.

1 — to specify the incremental value of displacement/excess p.p.
2 — to specify the absolute value of excess pore pressure.

There is a distinction between restraints and prescribed displacement/excess pore
pressures. (The restraints are identified by zero values for the prescribed
variables.) The displacement restraint is self-explanatory. For the excess pore
pressures, if fixity code 1 is used along a boundary with zero prescribed values to
represent, say, a draining boundary, then no changes in pore pressure take place.
In that sense it is a pore pressure restraint. .

It is appropriate to define the terminology used for the excess pore pressures
because some terms are invented to have a precise meaning in relation to CRISP.
The hydrostatic pore pressures at rest are referred to as in situ pore pressures.
Since the program uses an incremental approach, the changes that take place in
displacements are referred to as incremental displacements — hence the term
‘incremental (excess) pore pressure’. Accumulated displacements over a number
of increments are cumulative or absolute displacements. Similarly the
summation of incremental changes to the excess pore pressures are referred to as
absolute excess pore pressures. Therefore the pore pressures at any instance
(i.e. the total pore pressure) are given by the in situ pore pressure plus the
absolute excess pore pressure. Therefore the term ‘absolute excess pore pressure’
is simply the accumulated changes in the excess pore pressure over a number of
increments.

At the end of each increment block, all the prescribed values are set to zero.
However, no changes are made to the fixity code of these nodes. Therefore there
is no ‘carry over’ from one increment block to the next, i.e. ‘no memory’in the
case of prescribed displacement. However, there is a carry over in the sense that
previously prescribed values are now fixed to zero. This procedure is adopted so

272 In Situ Stresses [Ch.7

that restraint boundary conditions need not be specified in every increment
block. They need to be specified only once, either with the in situ boundary

condition or in the first increment block.

Routine FIXX
SUBROUTINE FIXX(IR5,IW6,NEL,NTPE,NDIM,NPL,LV,MUMAX, NNZ,NCONN, LTYP,FIXX
1 MREL,NREL,NP1,NP2,V,NFX) FIXX
C!i'l!lli.lilllIli!lllllllllll!'lillllllll‘!‘lll!llllilllllllllllllillllFIXX'
[ROUTINE TO MAINTAIN A LIST OF NODAL FIXITIES. INTERPRETS FIXX
¢ FIXITIES ALONG ELEMENT EDGES INTO NODAL FIXITIES FIXX
Cllllllllllll!llllllill!IlI‘lli“!l!llllllllllllllllllililillIil!llllll!lFIxx
INTEGER TF FIXX
DIMENSION NCONN(NTPE,NEL),LTYP(NEL),MREL (MUMAX),NREL(NNZ) FIXX
DIMENSION NP1(NPL),NP2(NPL),IND(5),FV(5),V(LV) FIXX
COMMON /FIX / DXYT(4,200),MF(200),TF (4,200),NF FIXX
COMMON /ELINF / LINFO(50,15) FIXX
c FIXX
NFZ =200 FIXX
NDIM1=NDIM+1 FIXX
IF (NFX.EQ.0)RETURN FIXX
WRITE(IW6,900) FIXX
c FIXX
c LOOP ON ALL FIXED EDGES I.E. EDGES WITH PRESCRIBED FIXX
[DISPLACEMENT/EXCESS PORE PRESSURES FIXX
c FIXX
DO 200 JX=1,NFX FIXX
READ (IR, *)ML,ND1, ND2, IVAR, IFX,V FIXX
WRITE (6,902)JX,ML, ND1,ND2, IVAR, IFX, V FIXX
NE=MREL (ML) FIXX
LI1=NREL(ND1) FIXX
LI2=NREL(ND2) FIXX
LT=LTYP(NE) FIXX
LT=IABS(LT) FIXX
NVN=LINFO(2,LT) FIXX
NEDG=LINFO(3,LT) FIXX
NDSD=LINFO(7,LT) FIXX
IF (IVAR.EQ.NDIM1)NDSD=LINFO(8,LT) FIXX
NTSD=NDSD+2 FIXX
INDED=LINFO(14,LT) FIXX
c FIXX
DO 20 Ki=1,NEDG FIXX
J1=NP1(K1+INDED) FIXX
J2=NP2(K1+INDED) FIXX
I1=NCONN(J1,NE) FIXX
I2=NCONN(J2, NE) FIXX
IF(LI1.EQ.I1.AND.LI2,EQ.I2)GO TO 25 FIXX
IF(LI1.EQ.I2.AND.LI2.EQ.I1)GO TO 21 FIXX
20 CONTINUE FIXX
WRITE (IW6,903)JX,ML,ND1,ND2 FIXX
GOTO 200 FIXX
c FIXX
c ALIGN END NODES OF EDGE IN CORRECT SEQUENCE. (ANTICLOCKWSIE FIXX
c OREDER ABOUT ELEMENT CENTRE) FIXX
c FIXX
21 LIT=LI1 FIXX
LI1=LI2 FIXX
LI2=LIT FIXX
NT=ND1 FIXX
ND1=ND2 FIXX
ND2=NT FIXX
c FIXX
DO 24 J=1,NTSD FIXX
JBACK=NTSD+1=J FIXX

-
OWwoE=oWU JWhh =

VUV NNV E B S EEEEEEEWWWWWWWWWWNNNNNNNNDNDD = 2 - = 2 -
ccxlomzwl\)—-oxooaqc\\n:wm—-ommﬂom:mm—-o@m\lom:wm—-oxooaxloxmzwm—-

TR

o)

Sec.7.8] Pressure Loads and Boundary Conditions 273
28 FV(J)=V(JBACK) FIXX 59
Go TO 35 FIXX 60
c
FIXX 61
25 DO 30 J=1,NTSD FIXX 62
30 FV(I)=V W) FIXX 63
c
¢ ; FIXX 64
¢ ND - LIST OF NODES ALONG EDGE. START WITH END NODES FIXX 65
FIXX 66
35 IND(1)=LI1 FIXX 67
IND(NTSD)=LI2 FIXX 68
IF(NTSD.EQ.2)GO TO 42 FIXX 69
LC1=NVN+(K1-1) *NDSD FIXX 70
IF (IVAR. EQ. NDIM1)LC 1=LINFO(5,LT)+ (K1-1) *NDSD FIXX 71
c F
FIXX T.
c INTERMEDIATE NODES (IF NTSD=2 NO INTERMEDIATE NODES) FIXX 75
c FIXX 74
DO 40 JP=1,NDSD FIXX 75
ILC=LC1+JP FIXX 76
40 IND(JP+1)=NCONN(ILC, NE) FIXX 77
¢ FIXX 78
c LOOP ON ALL NODES ALONG EDGE FIXX 79
c ~FIXX 80
42 DO 100 KND=1,NTSD FIXX 81
I=IND(KND) FIXX 82
IF (NF.EQ.0)GO TO 58 FIXX 83
c FIXX 84
DO 50 J=1,NF FIXX 85
IF(I.EQ.MF(J))GO TO 55 FIXX 86
50 CONTINUE FIXX 87
c FIXX 88
GO TO 58 . FIXX 89
c FIXX 90
c UPDATE EXISTING VALUES FIXX 91
c FIXX 92
55 JF=J FIXX 93
GO TO 60 FIXX 94
c FIXX 95
58 NF=NF+1 FIXX 96
IF (NF.LE.NFZ)GO TO 59 FIXX 97
WRITE (IW6,904) FIXX 98
STOP FIXX 99
59 JF=NF FIXX 100
60 MF(JF)=I FIXX 101
TF (IVAR, JF)=IFX FIXX 102
DXYT (IVAR, JF)=F V(KND) FIXX 1C
100 CONTINUE FIXX 10
200 CONTINUE FIXX 105
RETURN . FIXX 106
900 FORMAT(/1X, 4HSIDE, 4X, THELEMENT, 3X, SHNODE 1, 3X, SHNODE2, FIXX 107
13X, 3HDOF, 3X, 11HFIXITY CODE, 6X,4HVAL1,6X, UHVAL2, 6X, 4HVAL3, FIXX 108
2 6X,4HVALY, 6X,4HVALS/) FIXX 109
902 FORMAT(1X, 13, %X, I5,5X,I4,4X, I4,5X,12, 12X, 13, 3X,5F10.3) FIXX 110
903 FORMAT (/13H *¥¥* ERROR :,15,19H TH FIXITY. ELEMENT, FIXX 111
1 15,25H DOES NOT CONTAIN NODES :,2I5,2X, 14H (ROUTINE FIXX)) FIXX 112
904 FORMAT(/40H INCREASE SIZE OF ARRAYS MF, TF AND DXYT/ FIXX 113
11X, 34HIN COMMON BLOCK FIX (ROUTINE FIXX)) FIXX 114
END FIXX 115
FIXX 13 : maximum size of arrays in named COMMON FIX.
FIXX 14 : maximum number of variables at any node (last one being the
pore pressure variable).
FIXX 21 : loop on all sides which have prescribed variables.
FIXX 22-23 :read and write details of side with prescribed variables.

274 In Situ Stresses [Ch.7

FIXX 24 : (program no.) element with side which is fixed.
FIXX 25-26 :(program nos.) nodesat either end of side.
FIXX 27-28 :element type no.

FIXX 29-34 :element type dependent parameters.

NVN — no. of vertex nodes.

NEDG — no. of sides (edges).

NDSD — no. of displacement nodes along side (excluding
end nodes).

NTSD — total no. of nodes along side.
INDED — starting index to arrays NP1, NP2.

FIXX 32 -NDSD — no. of pore pressure nodes along side (excluding
end nodes).
FIXX 36 - loop on all edges of element (to find side which is fixed).

FIXX 37-42 :find element side with prescribed variable by comparing nodes
at either end (normal and reverse sequence).

FIXX 44 - side not found in element; consider next side with prescribed
variable, after printing message.

FIXX 50-55 :side found; reverse nodes to conform with anti-clockwise
sequence.

FIXX 57-59° : do the same with prescribed values.

FIXX 62—63 : array FV contains prescribed values in correct sequence.

FIXX 67—68 : enter nodes at either end in IND.

FIXX 69 : skip if no nodes along side.

FIXX 70—71 :index to array NCONN for nodes along side.

FIXX 75-77 : enter node(s) along side in IND.

FIXX 81 - loop on all nodes along side.

FIXX 83 - skip if first node (i.e. no existing list).
FIXX 85—86 : scan through existing list.

FIXX 93 - position of node in existing list.

FIXX 96—97 : new node;add to the end of the list. Increment count on no.
of fixities.

FIXX 98—99 : if aliocation of array size is exceeded, print message and stop.

FIXX 101—103 : enter details of nodal fixity (fixity code and prescribed values)
— pore pressure variable is placed in location NDIM + 1, even
if it is the only variable at that node.

FIXX 104 - end of loop on all nodes along side.

FIXX 105 - end of loop on all sides with prescribed variables.

7.9 EQUILIBRIUM CHECK

Routine EQLOD is the master control routine, which checks the equilibrium of
internal stresses with external loading. (For convenience, the self-weight loading
is considered as part of the external loading.)

o

Sec. 7.9] Equilibrium Check 275

The first term of (7.9) on the R.H.S. is calculated by routine DISTLD and
SFR1. The second term is calculated by SELF (making use of SHAPE and
DETJICB). The third term has already been calculated in routine RDSTRS usin
EQLIB and placed in array PEQT. Routine RESTRN recognises the nodes whicﬁ
are restrained. The following calculation is carried out to calculate Pgq;.

Peor = LNTT d (area) + fV NTw d (vol)

— | B0 d(vol).
, (vol) (7.9)
T
J;N 7 d (area) — pressure Joads along element boundary.
T .
fVN w d (vol) — self-weight or distributed loads.
T .
fVB o d (vol) — nodal loads equivalent to element stresses summed for
all elements present in current mesh.
Peor — the error in equilibrium calculated for each i
nodal point
except the ones which are either restrained or have
prescribed values.
Routine EQLOD
1SUBROUTINE EQLOD(IW6, NN, NEL, NDF , NNOD1, NTPE, NDIM, MUMAX, NNZ , NDZ, NPR, EQLD 1
! NMT, NDMX, NL, NPL, NCONN, MAT , LTYP, MRELVV, MREL , NREL, N, NQ, JEL, IDFX, EQLD 2
NP1,NP2,XYZ, P, PT, PCOR, PEQT, XYFT, PCONI, ELCOD, DS, SHF N, F, LL, " ED 3
vxesl PR: NPT, NSP, MXEN, IEQOP, ICOR, TGRAV, IRAC, FRACT, KSTGE) EQLD 4
C !il&liilii!llillli!i!illll!!iliIllli!lkklllillllll!lillili!iilil!lEQLD
c ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR EQLD 2
g“*“l:l;’il;lED LOADING TO CARRY OUT AN EQUILIBRIUM CHECK EQLD 7
223323223222 2222 223212222
AL !illl!!IiIRiiiIIIiiliiil&li!iii*&ll‘ggtg g
DIMENSION NCONN (NTPE,NEL),MAT(NEL),LTYP (NEL)
, , , ,MRELVV (NEL) EQL
1 MREL (MUMAX),NREL(NNZ), NW (NNOD1), NQ(NN), JEL(NEL), ' Eng :(1)
2 IDFX(NDF),NP1(NPL),NP2(NPL) EQLD 12
DIMENSION XYZ(NDIM,NN),P(NDF),PT (NDF),PCOR (NDF), PEQT (NDF), EQLD 13
1 XYFT(NDF),PCONI (NDF),ELCOD (NDIM, NDMX), DS (NDIM, NDMX),SHFN (NDMX), EQLD 14
2 F(NDIM,NDMX),LL(NL),PR(NPR, NMT),PRES(10) " EQD 15

COMMON /PRSLD / PRESLD(10,100),LEDG(100),NDE1(100),N
B , NDI 1
COMMON /ELINF / LINFO(SO,:I‘S) ' 2000 NLED B0 1

COMMON /PARS / PYI,ALAR,ASMVL,ZERO Egtg]lg
C

CALL ZEROR1(PT,NDF) sgtg .’12((3)
C

E

C (1) PRESSURE LOADING ALONG ELEMENT EDGE Egll:.g g;
C

IF (NLED.EQ.0.AND. TGRAV,LT.ASMVL)GO TO 62 Egtg 23

IF(NLED.EQ.0)GO TO 32 EQLD 25
c

DO 30 KE=1,NLED EQLD 2

LNE=LEDG(KE) QtD 2

NE=MBEL (LNE) Fal> 30 '

LT=LTYP(NE) Egtg gg

o0

OO0

276 In Situ Stresses [Ch. 7 = Sec. 7.9] Equilibrium Check 277
IF(LT.GT.0)GOTO 10 EQLD 31 C—- EQLD 96
IF (KSTGE.EQ. 4)GOTO 30 EQLD 32 CALL EQLBM(IWG, NN, NNOD1, NDF, NDIM, NNZ , NDZ , NREL, NW, NQ, IDFX, EQLD 97
WRITE (IW6, 900 JLNE EQLD 33 . 1 P,PT,PCOR, PEQT, IEQOP, ICOR, IRAC) EQLD 98

900 FORMAT(/1X,u5H *¥* ERROR : IN SITU PRESSURE LOAD APPLIED TO,1X, EQLD 34 RETURN EQLD 99
1 THELEMENT, IS, 2X,28HWHICH IS NOT PRESENT IN MESH, 1X, EQLD 32 END EQLD 100
2 15H(ROUTINE EQLOD)/) - EQLS 37 :

N1 oNDE cald 3 EQLD 20 I load array (PT)
10 ND1=NDE1(KE) ; : zero total load array .
: EQLD 39 ; . ; . .
gg2égD}E$$E;XEN EQLD 40 4 EQLD 24 : skip if (a) no applied pressure loads and (b) no gravity loading.
20 PRES(KV)=PRESLD(KV,KE) Eg'}:g L‘; # EQLD 25 : skip if no applied pressure loads.
CALL DISTLD(IWE,MNH,NEL,NDF, HNOD1, NTPE, NDIM, MUMAX, NNZ, NPL,XYZ, PT, EQLD 43 ?' EQLD 27 * loop on all sides with applied pressure loads.
1 NCONN,LTYP,MREL,NREL, NV, NP1, NP2, PRES, LNE, ND1, ND2, ggtg 3; i EQLD 31 - skip if element with pressure load is present in mesh.
i
302con¥ll>;ﬁgsp'o' e EQLD 46 : EQLD 32 “skip check and calculation of equivalent pressure loads i
: EQLD 47 element has been removed
EQLD 48 . . - -
(2) SELF WEIGHT LOADING EQLD 49 ; EQLD 33--36 : print message if element is not present at in sifu stage (probable
32 IF(TGRAV.LT.ASMVL) GO TO 62 Egtg g? é : user error).
DO 60 KL=1,NEL D 52 EQLD 38—39 : nodes at either end.
LT=LTYP(KL) EqLp 5 i X
IF(LT.LT.0)GO TO 60 Egtg gg EQLD 40—41 : values of applied pressure loads. _
;E;'ﬁi?;:(‘)’g'{ﬂ EQLD 55 i EQLD 43—45 : calculate nodal Joads from pressure loading and put into PT.
INDX-LINFO(12,LT) Egtg gg = EQLD 50 : skip if no gravity loads.
mcgk}r'zigg‘s' LT EQLD 58 ; EQLD 51 : loop on all elements.
) EQLD 59 o4 EQLD 53 : skip if element is not present in current mesh;
FIND IF ELEMENT HAS BEEN ADDED IN THIS INCREMENT BLOCK EQLD 60 EQLD 55-57 : NDN — no. of displacement nodes.
THEN USE LOAD RATIO FRACT ON GRAVITY LOADING EQLD 61 . f dis .
EQLD 22 INDX — starting index for arrays W and L, for different element
DO 40 IM=1,NEL o - v types.
MUS=JEL (IM) 6) .
IF (MUS.EQ.0)GO TO 42 Egtg 62 { EQLD 58 : material zone number.
MPR=MREL (MUS) EQLD 67 i EQLD 63 - scan array JEL to see if element was added in this block.
IF (KL.EQ.MPR)GO TO 4 : e .
40 CONTINUE Egtg gg 1 EQLD 65 : zero indicates end of list.
42 FA=1, f EQLD 66—67 : element has been added in this block.
EQLD 70
GO TO 45 :)
4l FA-FRACT EQLD 71 3 EQLD 69 ‘use factor of 1 for elements which were already present before
45 DENS=PR(8,KM) ¥TGRAV*FA Egtg ;g ' the start of current block.
CALL SELF(IW6,KL,NN,NEL,NTPE, NDN, NDIM, NAC, NPR, NMT, XYZ, EQLD 74 & EQLD 71 : use FRACT for added element.
1 ELCOD,DS,SHFN,F,NCONN,MAT,LL, PR, LT, INDX, DENS, JK, KSTGE) Egtg ;Z i EQLD 72 : calculate ny term. -
¥
¥ . .
DO 55 KK=1, NDN ngl:g ;; % n — centrifugal acceleration field,
NCOR=NCONN (KK, KL) 3
KKK =NW (NCOR)~1 Egtg 23 2 EQLD 74-75 : calculate fV NTwd (vol).
DO 55 ID=1,NDIM LDy+F (1D K Egtg g; w EQLD 77 : loop on all nodes of element.
KKK +1D)=PT (KKK F(ID, .
2 P KKK A IDY=PT (KKKID)« EQLD 63 . EQLD 8182 : slot loads in PT.
62 CONTINUE e gg s EQLD 83 :end of element loop.
ADD CONTRIBUTIONS FROM POINT LOADS EQLD 36 <t EQLD 88—89 : add directly specified point loads.
Eg}:g 8&73 : EQLD 93 :identify (by entering 1 in IDFX against d.o.f.) restrained d.o.f.
oA ¥ EQLD 97-98 : t ilibrium check
70 PT(J)=PT (J)+XYFT (J)+PCONI(J) Egtg Sg 3 —98 : carry out an equilibrium check.
F WHICH ARE RESTRAINED EQLD 91] . . L
FIND DOF WhI EQLD 92 Routine EQLOD is called at the in situ stage as well as at the end of each
LL RESTRN(NDF,NNOD1, NDIM, NW, IDFX) EQLD 93 5] :
CA E (EQLD 94 e increment.
EQUILIBRIUM CHECK EQLD 95 4
i
b
i

S ——

278 In Situ Stresses

7.9.1 Pressure loads

[Ch. 7

Routine DISTLD calculates nodal loads equivalent to the current pressure

loading, and 7 values are obtained from array PRES.

Routine DISTLD

SUBROUTINE DISTLD(IWG6,NN,NEL,NDF,NNOD?,NTPE, DIM,MUMAX, NNZ, DIST

1 NPL,XYZ,RHS, NCONN,LTYP,MREL, NREL, NW, NP1, NP2, PRES, LNE, DIST

2 ND1,ND2, NPT, NSP, IPRINT, IST,FC) DIST
i e T iy
C ROUTINE TO CALCULATE EQUIVALENT NODAL LOADS FOR SPECIFIED *DIST
C PRESSURE LOADING ALONG ELEMENT EDGES USING 5 POINT (NSP) *DIST
C INTEGRATION RULE. INTEGRATES POLYNOMIAL OF ORDER NINE OR LESS *DIST
c EXACTLY. ARRAYS ILOC, PRES, PEQLD,ELCD,SHF,DERIV ARE *DIST
c TO CATER FOR A MAXIMUM OF FIVE NODES (NPT) ALONG AN ELEMENT EDGE ¥*DIST
C (ALL 2-D ELEMENTS UP TO ORDER FIVE). *DIST
CRM RN R XK NN NN NN RN NN NN RN RN RN RN N NN N RR NN RN NN RN U RN R RN ERNUD]T ST
DIMENSION NCONN(NTPE,NEL),LTYP(NEL),MREL(MUMAX), DIST

1 NREL(NNZ),NW (NNOD1),NP1(NPL), NP2 (NPL) DIST
DIMENSION RHS(NDF),XYZ (NDIM,NN),PRES(NDIM, NPT) DIST
DIMENSION ILOC(5),PSP(2),DSP(2),PEQLD(2,5),ELCD(2,5) DIST
DIMENSION SHF (5),DERIV(5),PCOM(3) DIST
COMMON /FLOW / NPLAX DIST
COMMON /ELINF / LINFO(50,15) DIST
COMMON /SAMP / POSSP(5),WEIGP(S) DIST
COMMON /PARS / PYI,ALAR,ASMVL,ZERO DIST
COMMON /LOADS / FB(2,15) DIST

NP=5 DIST
TPI=2.*PYI DIST
NE=MREL(LNE) ~ DIST
LI1=NREL(ND1) DIST
LT=LTYP(NE) DIST
IF(IST.EQ.1)GOTO 5 DIST
LT=IABS(LT)" DIST

5 IF(LT.GT.0)GOTO 10 DIST
WRITE(IW6,900)LNE DIST

900 FORMAT(/1X,44H**¥% FRROR : YOU HAVE PUT A PRESSURE LOAD ON, DIST

1 8H ELEMENT, I5,2X,28HWHICH IS NOT PRESENT IN MESH, DIST

2 17H (ROUTINE DISTLD)/) DIST
RETURN DIST

10 NVN=LINFO(2,LT) DIST
NEDG=LINFO(3,LT) DIST
NDSD=LINFO(7,LT) DIST
NTSD=NDSD+2 DIST
INDED=LINFO(14,LT) DIST

C DIST
DO 20 K1=1,NEDG DIST
J1=NP1(K1+INDED) DIST
J2=NP2(K1+INDED) DIST
I1=NCONN(J1,NE) DIST
IF(LI1.EQ.I1)GOTO 25 DIST

20 CONTINUE DIST
WRITE(IW6, 903)LNE, ND1, ND2 DIST

903 FORMAT(/21H *%¥% ERROR : ELEMENT, IS, DIST

1 2X,22H DOES NOT HAVE NODES :,2I5, DIST

2 3X, 16H(ROUTINE DISTLD)) DIST
RETURN DIST

C DIST
C STORE LOCATIONS OF NODE (IN NCONN) IN ARRAY ILOC DIST
c DIST
25 LC1=NVN+(J1-1)*NDSD DIST
ILOC(1)=J1 DIST
ILOC(NTSD)=J2 DIST
IF(NDSD.EQ.0)GOTO 31 DIST

Ve~V EW N =

A o

Sec. 7.9]

OO0

(el

OO0

[eXe]

Equilibrium Check
DIST
DO 30 JP=1,NDSD DIST
30 ILOC(JP+1)=LC1+JP DIST
“DIST
SET UP LOCAL ARRAY FOR CO-ORDINATES IN ELCD DIST
DIST
31 DO 32 KC=1,NTSD DIST
ILC=ILOC(KC) DIST
NDE=NCONN(ILC, NE) DIST
DIST
DO 32 ID=1,NDIM DIST
32 ELCD(ID,KC)=XYZ(ID, NDE) DIST
INITIALISE PEQLD DIST
CALL ZEROR2(PEQLD, NDIM, NP) DIST
-—-DIST
LOOP FOR NUMERICAL INTEGRATION DIST
DIST
DO 60 ISP=1,NSP DIST
XI=POSSP(ISP) DIST
DIST
EVALUATE SHAPE FUNCTION FOR SAMPLING POINT DIST
DIST
CALL SFR1(IW6,XI,SHF,DERIV,NTSD,LNE,LT) DIST
--------- CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS - PEQLD DIST
DO 40 IDOF=1,NDIM DIST
PSP (IDOF)=ZERO DIST
DSP(IDOF)=ZERO DIST
DIST
DO 40 IEDG=1,NTSD DIST
PSP (IDOF)=PSP (IDOF) +PRES (IDOF , IEDG) ¥SHF (IEDG) DIST
40 DSP(IDOF)=DSP(IDOF)+ELCD(IDOF, IEDG)*DERIV(IEDG) DIST
DIST
DV=WEIGP (ISP) DIST
IF (NPLAX.EQ.0)GOTO 48 DIST
RAD=0.,0 DIST
DIST
DO 45 IEDG=1,NTSD DIST
45 RAD=RRAD+ELCD (1, IEDG) *SHF (IEDG) DIST
DV=DV¥*TPI ¥RAD DIST
48 PCOM(1)=DSP(1)*PSP(2)-DSP(2)*PSP(1) DIST
PCOM(2)=DSP(1)*PSP(1)+DSP(2)*PSP(2) DIST
DIST
DO 50 IEDG=1,NTSD DIST
DO 50 ID=1,NDIM DIST
50 PEQLD(ID, IEDG)=PEQLD(ID, IEDG)+PCOM(ID)¥SHF (IEDG) *DV DIST
DIST
60 CONTINUE DIST
IF (IPRINT.EQ. 1)WRITE (IW6, 905)LNE, ND1, ND2, DIST
1 ((PEQLD(ID,IP),ID=1,2),IP=1,NTSD) DIST
905 FORMAT(1X,3I4,10E12.4/) DIST
DIST
SLOT LOADS INTO ARRAY RHS DIST
DIST
DO 80 IJ=1,NTSD DIST
JL=ILOC(IJ) DIST
NDE =NCONN (JL, NE) DIST
N 1=NW (NDE)-1 DIST
DIST
DO 80 ID=1,NDIM DIST
FB(ID,JL)=FB(ID,JL)+PEQLD(ID,IJ) DIST
80 RHS(N1+ID)=RHS(N1+ID)+PEQLD(ID,IJ)*FC DIST
RETURN DIST
END DIST

279

59
60
61
62

64
65
66
67
68
69
70

72
73
74
75
76
77

79
80
81
82
83
8u
85
86
87
88
89
90
91
92
93
9l
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
m
112
13
14
115
116
117
118
119
120
121

DIST
DIST

DIST
DIST

DIST

DIST

DIST
DIST
DIST
DIST

DIST

DIST
DIST
DIST
DIST
DIST
-DIST
DIST
DIST
DIST
DIST

DIST

DIST

41
42-43
44
45

47-50

5657
6061
6570
76
77
81
88
89
91
95-96

98-99

105

Pyi

In Situ Stresses [Ch.7

: program element number.
: program node number of node at one end of side with pressure

load.

: element type number.
- if IST = 0 then calculate loads equivalent to pressure loads

acting on elements currently being removed.

: check that the element on which pressure load is put is present

in mesh. If not, print error message.

: element type dependent parameters.

NVN — number of vertex nodes in element.
NEDG — number of element edges (sides).
NDSD — number of displacement nodes along element side

(excluding nodes at either end).
NTSD — number of (displacement) nodes along side (edge).
INDED - starting index to arrays NP1, NP2.

- loop on all element sides (loop to find side with pressure load).
: indexes to array NCONN.

: node at one end.

: skip if node numbers do not match (this is not the side which

is loaded).

:side with pressure load not found in this element; print

message {probable user error).

- store indexes to array NCONN for nodes at either end of side.
- do the same with side nodes (if any).

: set up local array with co-ordinates of nodes along side.

: loop on all integration points.

: Jocal co-ordinate of integration point.

: calculate shape functions.

: calculate stress components at integration point.

: calculate derivatives 0x/d%, 0y/0¢ at integration point.

: weighting factor. :

: calculate radial distance of integration point (for axisymmetric

problems).

: calculate x and y components of load at integration point.

DIST 101103 :
: end of loop on all integration points.

DIST 106-107 :
DIST 112-119 :

[ox ay:|
= [M|t - — |
Se ok of

calculate nodal loads equivalent to applied pressure.

print out calculated nodal loads.
slot nodal loads in array RHS.

(7.10)

vl

St e BN A

Vi b

b |

iy
=N

Sec.7.9] Equilibrium Check 281

Integration is taken along the loaded element edge Se; £ is the local co-ordinate
along the element edge, and takes values between —1 and +1.

Routine SFRI1 calculates the shape functions N; at sampling points.
Numerical integration is used to carry out the above calculations. o, T are the
normal and shear values of the applied stress distribution.

Routine SFR]

SUBROUTINE SFR1(IW6,S,SHF,DERIV,NSD,LNE,LT) SFR1 1
Ci!lililliii‘!l!!!!!i‘lllil{l'l!!!llli!!‘!l!i!l!lllll*l!'iiil*ll!!l‘lil‘llSFR‘l 2
c SHAPE FUNCTIONS AND DERIVATIVES FOR ONE-DIMENSIONAL *SFR1 3
c GAUSSIAN INTEGRATION ALONG ELEMENT EDGE. *SFR1 /
Clll!i!llll!l!!lli!ill!i!lll!ll!lllilll!!II!llllIi&ﬂ“lil!!llli!llllll!llSFR1

DIMENSION SHF (NSD),DERIV(NSD) SFR1 6
c SFR1 7
c INITIALISE SFR1 8
c SFR1 9

CALL ZEROR1(SHF, NSD) SFR1 10

CALL ZEROR1(DERIV,NSD) SFR1 11
c SFRT 12

GO TO(80,21,31,41,51),NSD SFR1 13

WRITE (IW6, 900)LNE, LT SFR1 14

900 FORMAT (1X, THELEMENT, IS5, 2X, THOF TYPE, IS, 2X, SFR1 15
1 22HUNKNOWN (ROUTINE SFR1)) SFR1 16

STOP SFR1 17
c . SFR1 18
c 2 NODES ALONG EDGE SFR1 19
c SFR1 20

21 CONTINUE SFR1 21
WRITE (IW6,910)LT SFR1 22
910 FORMAT(/1X, 12HELEMENT TYPE, IS, 2X, SFR1 23
1 30HNOT IMPLEMENTED (ROUTINE SFR1)) SFR1 24 .

GO TO 80 SFR1 25
c SFR1 26
c 3 NODES ALONG EDGE SFR1 27
c SFR1 28

31 CONTINUE SFR1 29

SHF (1)=0.5%S*(S-1.) SFR1 30

SHF(2)=(1.-5)%(1.43) SFR1 31

SHF (3)=0.5%S*(S+1.) SFR1 32

DERIV(1)=$-0.5 SFR1 33

DERIV(Z)=-2.%S SFR1 34

DERIV(3)=5+0.5 SFR1 3

GO TO 80 SFR1 3
Cc SFR1 37
c 4 NODES ALONG EDGE SFR1 38
c SFR1 39

41 CONTINUE SFR1 40

WRITE (IW6,910)LT SFR1 41

GO TO 80 SFR1 42
c SFR1 43
c 5 NODES ALONG EDGE . SFR1 44
c SFR1 45

51 50=8 SFR1 46

$1=540.5 ’ SFR1 47

$2=5-0.5 SFR1 48

S$3=541.0 SFR1 49

54=5-1.0 SFR1 50

c1=2./3. SFR1 51

c2=8./3. SFR1 52

C3=4. SFR1 53

SHF (1)= C1%S0%S1%S2%3Y SFR1 54

SHF (2)=—-C2%S0%S2%S 3454 SFR1 55

i

ey it

282 In Situ Stresses [Ch.

SHF (3)= C3%S1%S2%S3%s4 SFR1
SHF (4)=—C 2¥S0%S 143 3%54 SFR1
SHF (5)= C1%S0*S1%52%33 SFR1
DERIV(1)= C1*(S2%S4*(S1430)+S0¥S1%(S2+54)) SFR1
DERIV(2)=-C2*(S2¥S4#(S3+450)+S0*S3*(S2+434)) SFR1
DERIV(3)= C3¥(S3*SU*(S1+52)+S1%52%(S3+51)) SFR1
DERIV(H)=-C2%(S3*SU¥(S1+50)+S 1¥50%(S3+54)) SFR1
DERIV(5)= C1%(S2%S3*%(S1+50)+S1¥50%(S2+53)) SFR1
80 CONTINUE zgg:
RETURN
END SFR1
SFRI1 13 - branch off depending on no. of displacement nodes.

7

56
57
58
59
60
61
62
63
64
65
66

SFR1 21-25 : for element types with two nodes along side (no such element

types in this version).
SFR] 30—32 : shape functions along element side for LST.
SFR] 33—35 : derivatives of shape functions.
SFR1 40

- shape functions and derivatives for element types with four

nodes along element side (no such element types in this version).

SFR1 54—58 : shape functions (CuST).
SFR] 59—63: derivatives of shape functions (CuST).

7.9.2 Self-weight loads (body forces)
The self-weight loads given by

f NTw d (vol)
”

are calculated in routine SELF.

Pt =f Nivy d (vol). (7.

Byj Ve

Gravity is assumed to act in the direction of the —y axis.

Routine SELF
SUBROUTINE SELF (IW6,I,NN,NEL,NTPE,NDN,NDIM,NAC, NPR, NMT, XYZ, SELF
1 ELCOD, DS, SHFN,F, NCONN,MAT, LL, PR, LT, INDX, DENS, MUS,, KSTGE) SELF
Cl!illli!iiiiiilllli!illllllillli!Iilililli!‘!ililiilllli!lllliliillliilsﬁu.‘
c CALCULATES SELF WEIGHT LOADS SELF
cliI!lllllli!llllullll!il!lll!l!li&!llllIIlIlllllllil!l!liiilllliliiil!lsELF
REAL L,LL SELF
DIMENSION NCONN(NTPE,NEL),MAT(NEL) SELF
DIMENSION XYZ(NDIM,NN),ELCOD(NDIM,NDN),DS (NDIM,NDN),SHFN(NDN), SELF
1 F(NDIM,NDN),LL(NAC),PR(NPR,NMT),GCOM(3) SELF
COMMON /ELINF / LINFO(50,15) SELF
COMMON /DATL / L(4,100) SELF
COMMON /DATW / W(100) SELF
COMMON /FLOW / NPLAX SELF
COMMON /PARS / PYI,ALAR,ASMVL,ZERO SELF
o SELF
TPI=2.%PYI SELF
NGP=LINFO(11,LT) SELF
K =MAT(I) SELF

11)

VE=_oWV Ewh =

L i 'Lﬁ‘}‘:'f-i‘ A

S - U s,

155 iR O

e
o

i

J e,
ik

e L

283

19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42

4y
45
u6
47
48
49
50
51
52
53
54
55
56
57
58

59
&1

63

Sec. 7.9] Equilibrium Check
¢ SELF
c INITIALISE ARRAY F SELF
c SELF
CALL ZEROR2(F, NDIM, NDN) SELF
c SELF
IF (DENS.LE.ASMVL)GO TO 100 SELF
GCOM(1)= ZERO SELF
GCOM(2)=-DENS SELF
GCOM(3)= ZERO SELF
c SELF
¢ SET UP LOCAL ARRAY FOR CO-ORDINATES SELF
c SELF
DO 10 KC=1,NDN SELF
NDE =NCONN (KC, I) SELF
c SELF
DO 10 ID=1,NDIM SELF
10 ELCOD(ID,KC)=XYZ(ID,NDE) SELF
c SELF
c LOOP FOR NUMERICAL INTEGRATION SELF
c SELF
DO 60 IP=1,NGP SELF
IPA=IP+INDX SELF
c SELF
DO 35 IL=1,NAC SELF
35 LL(IL)=L(IL,IPA) SELF
c ~SELF
c EVALUATE SHAPE FUNCTION FOR INTEGRATION POINT SELF
c SELF
CALL SHAPE (IW6,LL,NAC,DS,SHFN, NDIM, NDN, LT, 2, MUS) SELF
CALL DETJCB(IW6,DJACB, NDN,NDIM,ELCOD, DS, IP,MUS, KSTGE) SELF
DV=DJACB*W(IPA) SELF
IF (NPLAX.EQ.0)GO TO 45 SELF
¢ SELF
RAD=ZERO SELF
c SELF
DO 40 IN=1,NDN SELF
40 RAD=RAD+ELCOD (1, IN)*SHFN(IN) SELF
DV=DV¥TPI*RAD SELF
c SELF
45 DO 50 IN=1,NDN SELF
DO 50 ID=1,NDIM SELF
50 F(ID,IN)=F(ID,IN)+GCOM(ID)=SHFX (IN)*DV SELF
60 CONTINUE SELF
100 CONTINUE SELF
RETURN SELF
END SELF
SELF 17 : number of integration points.
SELF 18 : material zone number.
SELF 22 : zero array F, self-weight loads of element.
SELF 24 : skip, if no self-weight loading.
SELF 25-27 : earth’ gravity acts in the negative y direction.
SELF 31-35 : copy nodal co-ordinates into local array.
SELF 39 : loop on all integration points.
SELF 40 : index to arrays W and L (IPA is the starting index — 1).
SELF 4243 : local/area co-ordinates of integration point.
SELF 47 : calculate shape functions and their derivatives w.r.t. local co-
ordinates.
SELF 48 : calculate Jacobian of transformation.
SELF 49 : weighting factor.

http:LINFO(50.15

1
'
1

284 In Situ Stresses [Ch.7

SELF 52-55 : calculate radial distance of integration point (axisymmetric
problems only).
SELF 58—60 : calculate nodal loads equivalent to self-weight.

F= fV NTw d (vol).

SELF 61 - end of integration point loop.
Routine DETICB
SUBROUTINE DETJCB(IW6,DJACB, NDN,NDIM,ELCOD,DS, IP,MUS, KSTGE) DETJ 1
C!‘!Illil‘!iilllill!llIlll.ilIiil!!lli!illili!l!i‘!lllli!!lii!‘!iiil“llDETJ 2
c CALCULATES DETERMINANT OF JACOBIAN MATRIX DETJ 3
C*!!Illilliiilil!iiliii!ll!ii!ll‘il!‘li!ii!Illllll!lli!!llil!llli!l!ll!lDETJ y
DIMENSION ELCOD(NDIM,NDN),DS(NDIM,NDN),XJAC(3,3) DETJ 5
COMMON /PARS / PYI,ALAR,ASMVL,ZERO’ DETJ 6
c DETJ 7
o NXJ - SIZE OF ARRAY XJAC DETJ 8
c DETJ 9
NXJ =3 DETJ 10
CALL ZEROR2(XJAC,NXJ,NXJ) DETJ 11
c DETJ 12
DO 10 ID=1,NDIM DETJ 13
DO 10 JD=1,NDIM DETJ 14
DO 10 IN=1,NDN DETJ 15
10 XJAC(ID,JD)=XJAC(ID,JD)+DS (ID, IN)¥ELCOD(JD,IN) DETJ 16
c DETJ 17
IF (NDIM. NE. 2)GOTO 20 DETJ 18
DJACB=XJAC(1, 1) *XJAC(2, 2)-XJAC(1,2)¥*XJAC(2, 1) DETJ 19
GOTO 50 DETJ 20
c DETJ 21
20 DJACB:XJAC(1,1)"(XJAC(Z.Z)"XJAC(3,3)—XJAC(2,3)*XJAC(3,2)) DETJ 22

DJACB=DJACB-XJAC(1,2)*(XJAC(2,1 Y¥XJAC(3,3)-XJAC(2,3)*XJAC(3,1)) DETJ 23
DJACB=DJACB+XJAC(1,3)*(XJAC(2,1 Y*XJAC (3,2)-XJAC(2,2)*XJAC(3,1)) DETJ 24

c DETJ 25

50 IF (DJACB.GT.ZERO)GO TO 60 DETJ 26

WRITE (IW6,900)DJACB,MUS, IP DETJ 27

900 FORMAT (1X, 10H JACOBIAN ,E16.5,3X, 11HIS NEGATIVE,2X, DETJ 28

1 THELEMENT, I5,2X, 10HINT. POINT,I5,2X, 16H(ROUTINE DETJCB)) DETJ 29

DETJ 30

WRITE(IW6,910)KSTGE : DETJ 31

910 FORMAT (/1X,36HCODE TO INDICATE STAGE OF ANALYSIS =,15// DETJ 32

14X, 4HCODE, 20X, 2THSTAGE OF THE ANALYSIS// DETJ 33

1 6X,u46H1 — CALLED BY INSITU/EQLOD/SELF CALCULATION OF, DETJ 34

2 1X,24HINSITU SELF WEIGHT LOADS/6X,13H2 - CALLED BY, DETJ 35

31X, HU4HANS/CHANGE /SELF LOADS DUE TO ELEMENT CHANGES/ DETJ 36

4 6X,44H3 - CALLED BY ANS/SEL1/SELF INCREMENTAL SELF, DETJ 37

5 1X, 12HWEIGHT LOADS/6X,25H4 - CALLED BY UPOUT/EQLOD, DETJ 38

6 USH/SELF SELF WEIGHT LOADS FOR EQUILIBRIUM CHECK) DETJ 39

STOP DETJ 40

60 RETURN DETJ 41

END DETJ 42
DETJ 11 : zero Jacobian matrix, J.

DETJ 13—16 : calculate components of Jacobian matrix.
DETJ 19 - calculate det |J] for 2-D.

DETJ 22-24 : calculate det |J[for 3-D.

DETJ 26 : check if det |3} is positive.

DETJ 27-29 : if not, print error message and stop.

Sec. 7.9] Equilibrium Check 285

Routines SELF, SHAPE and DETJCB are used in the simulation of construction
by the addition of elements, These routines also perform the same calculations
to determine loads equivalent to the self-weight of removed elements.

The loads equivalent to element stresses are given by

fV BTod (vol)

and. were calculated in routine RDSTRS using routine EQLIB. The loads
equivalent to the in situ stresses have been summed into PEQT(NDF).

7.9.3 Restrained nodes

PCOR, as mentioned, is calculated at all ‘free’ nodes. Routine RESTRN goes
through the list of nodal fixities and inserts 1 against all d.o.f. which are either
restrained or have a prescribed value in array IDFX(NDF). This enables routine
EQLBM to identify those variables which are free from those with restraints
or prescribed values.

Routine RESTRN
SUBROUTINE RESTRN(NDF, NNOD1, NDIM, NW, IDFX) RSTR 1
Cll!!!i!llli!lli!il&llll!!lll!!lillll!!Ilili!l!i!i!illliliill!!ii!lilliiRsTR 2
c ROUTINE TO IDENTIFY ALL DISPLACEMENT BOUNDARY CONDITIONS RSTR 3
c WHICH ARE SPECIFIED. (SET IDFX = 1 FOR ALL DOF’ RSTR 4
c WHICH ARE RESTRAINED.) RSTR 5
ci!iilil!!li!]li}illii!!l!!!iili!Illi!l&l!iliill&ll{llllll!!l!!!i!!&lll!RSTR 6
INTEGER TF RSTR 7
DIMENSION NW(NNOD1),IDFX(NDF) RSTR 8
. COMMON /FIX / DXYT(4,200),MF(200),TF (4, 200),NF RSTR 9
RSTR 10
c LOOP ON ALL NODES WITH ONE OR MORE FIXITIES RSTR 11
c RSTR 12
DO 10 J=1,NDF RSTR 13
10 IDFX(J)=0 RSTR 14
c RSTR 15
IF (NF.EQ.O0)RETURN RSTR 16
DO 40 JN=1,NF RSTR 17
NDE=MF (JN) RSTR 1¢
NFS=NW (NDE)-1 RSTR 1%
c RSTR 20
c BY-PASS IF NODE HAS ONLY PORE~PRESSURE DOF RSTR 21
c RSTR 22
JP=NW (NDE +1)=NW (NDE) RSTR 23
IF(JP.EQ.1)GO TO 40 RSTR 24
c RSTR 25
DO 20 JF=1,NDIM RSTR 26
NCDE =TF (JF, JN) RSTR 27
IF (NCDE.EQ.0)GO TO 20 RSTR 28
IDFX(NFS+JF)=1 RSTR 29
20 CONTINUE RSTR 30
40 CONTINUE RSTR 31
RETURN RSTR 32
END RSTR 33

RSTR 13—14 : zero array which indicates variables which are restrained or have
prescribed values.
RSTR 16 . :skip if no fixities (unlikely).

286 In Situ Stresses

RSTR 17 : loop on all fixities.

RSTR 18 : node with fixity.

RSTR 19 : starting index for g.v.n.

RSTR 23 : number of d.o.f. of node.

RSTR 24 sif only 1 d.o.f., skip (assumed to be the pore pressure variable).
RSTR 26 : loop on all displacement variables of node.

RSTR 27 : fixity code.

RSTR 28 if d.o.f. is free, skip.

RSTR 29 : enter as fixed/prescribed.

RSTR 30 : end of loop on all displacement d.o.f. of node.

RSTR 31 : end of loop on all fixities.

7.9.4 Equilibrium check

[Ch.7

Calculation of PCOR at each free node is done in routine EQLBM by consulting

array IDFX(NDF) to check whether the entry is 0, indicating the d.o.f. is free.

Routine EQLBM
SUBROUTINE EQLBM(IW6,NN,NNOD1, NDF, NDIM, NNZ, NDZ, NREL, EQBM
1 NW,NQ, IDFX, P, PT, PCOR, PEQT, IEQOP, ICOR, IRAC) EQBM
Cill'i!!!ﬁll'l!(!*!il!ll'll.!ll!ll!'llllll’Iil!ll'i'll'll"l'illIIII'!iIEQBM
c CARRIES OUT AN EQUILIBRIUM CHECK EQBM
c CALCULATE AND PRINTOUT UNBALANCED NODAL LOADS EQBM
cIll!i!lll!'i!!iII!IIIIﬂlllil*‘!!Illﬂllllil!!!ﬂllIlllﬁli!ll!ll!l!!ill!l!EQBM
DIMENSION NREL(NNZ),NW (NNOD1),NQ(NN), IDFX(NDF) EQBM
DIMENSION P(NDF),PT (NDF),PCOR (NDF),PEQT (NDF) EQBM
DIMENSION PAR(6),RMAX(6),TER(3) EQBM
COMMON /PARS / PYI,ALAR,ASMVL,ZERO EQBM
c EQBM
c MP - ARRAY SIZE OF PAR, RMAX EQBM
c EQBM
MP=6 EQBM
NDIM1=NDIM+1 EQBM
NDIM2=2%NDIM EQBM
IF (IRAC.LEQ. 1)CALL REACT(IW6,NN,NNOD1, NDF, NDIM, NNZ, EQBM
1 NREL,NW, NQ, IDFX, PEQT, PT) EQBM
c EQBM
c INCLUDE ALL PORE-PRESSURE TERMS IN THE LIST OF FIXED D.O.F. EQBM
c ALL EXCESS PORE PRESSURE D.O.F. ARE CONSIDERED TO BE FIXED EQBM
c EQBM
DO 2 NI=1,NN EQBM
NQL=NQ(NI) EQBM
IF (NQL.NE. 1.AND.NQL.NE. NDIM1)GO TO 2 EQBM
ILC=NW(NI)+NQL-1 EQBM
IDFX(ILC)=1 EQBM
2 CONTINUE EQBM
c EQBM
c CALCULATE OUT-OF-BALANCE LOADS FOR ALL FREE D,O.F. EQBM
c EQBM
DO .5 IK=1,NDF EQBM
IF (IDFX(IK).EQ.1) GO TO 3 EQBM
PCOR (IK}=PT (IK)-PEQT (IK) EQBM
GO TO 5 EQBM
3 PCOR (IK)=ZERO EQBM
5 CONTINUE EQBM
c : EQBM
c OUTPUT EQUILIBRIUM, OUT-OF-BALANCE AND APPLIED NODAL LOADS EQBM

WE=NOWU W =

47

A e

Sec. 7.9] Equilibrium Check
c
IF (IEQOP.EQ. 0)GOTO 25 ESSI}
WRITE (IW6, 900) EQ
WRITE (IW6, 904) EQS:
¢
DO 20 JR=1,NNZ Egg:
IF (NREL(JR).EQ.0)GOTO 20 EQBM
J=NREL(JR) EQBM
NQL=NQ(J) EQBM
IF (NQL. LE. 1)GOTO 20 EQBM
;f:(IE?Ol)’.EQ.1.AND.JR.GT.NDZ)GOTO 20 EQBM
=NW (J
N2=N1+NDIM-1 58::
WRITE(IW6,901)JR, (P(JJ),JJ=N1,N2), EQBM
Zolcéﬁ'}‘(;J),szNT,NZ),(PEQT(JJ),JJ:NI,NZ),(PCOR(JJ),JJ=N1,N2) EQBM
INUE
. 25 CALL ZEROR1(RMAX,MP) 583:
F
c CALCULATE MAXIMUM OF APPLIED AND OUT—-OF ~BALANCE Egg:
c LOADS IN ALL DIRECTIONS EQBM
C I
DO 50 IK=1,NN ESSS
NQL=NQ(IK) EQBM
IF (NQL.LE. 1)GOTO 50 EQBM
N1=NW (1K) EQBM
N2=N1+NDIM=1 EQBH
. IC=0 EQBM
EQBM
DO 35 KN=N1, N2 EQBM
IC=IC+1 EQBM
PAR(IC)=PT (KN) EQBM
35 PAR (IC+NDIM)=PCOR (KN) EQBM
c
EQBM
DO 40 IC=1,NDIM2 EgBM
RV=PAR(IC) EQBM
IF (ABS(RV).LT.ASMVL)GOTO 40 EQBM
IF (ABS(RV).GT.RMAX(IC))RMAX (IC)=ABS (RV) EQBM
40 CONTINUE EQBM
50 CONTINUE EQBM
¢ EQBM
c OUTPUT MAXIMUM OF (1) APPLIED LOADS (2) OUT-OF-BALANCE LOADS EQBM
c IN ALL DIRECTIONS : EQBM
c EQBM
WRITE (IW6,902) EQBM
c EQBM
IWARN=0 EQBM
PMAXT=RMAX (1) EQBM
DO 55 ID=2,NDIM EQBM
55 IF (RMAX(ID).GT.PMAXT)PMAXT=RMAX(ID) EQBM
IF (PMAXT.LT.ASMVL) GOTO 132 EQBM
DO 130 ID=1,NDIM] EQBM
130 TER(ID)=100. *RMAX(ID+NDIM)/PMAXT EQBM
GOTO 125 EQBM
132 IWARN=1 EQBM
DO 135 ID=1,NDIM EQBM
135 TER(ID)=ZERO EQBM
c EQBM
125 WRITE (IW6,903) EQBM
WRITE (IW6, 905) EQBM
WRITE (IW6, 907) (RMAX(JQ), JQ=1, NDIM2), (TER(ID),ID=1, NDIM) EQBM
IF (IWARN.EQ. 1)WRITE (IW6,910) EQBM
o EQBM
¢ ZERO PCOR IF NO CORRECTING LOADS ARE TO BE APPLIED IN NEXT INCR EQBM
c EQBM
IF (ICOR. NE. 0)RETURN EQBM
c EQBM

287

http:IF(NQL.LE
http:IF(NQL.NE

288 In Situ Stresses

[Ch. 7

DO 140 IK=1,NDF EQBM 106
140 PCOR (IK)=ZERO EQBM 107
RETURN ; EQBM 108
900 FORMAT (//67X,19HLOADS EQUIVALENT TO/9X, EQBM 109
1 2UHINCREMENTAL APPLIED LOAD,7X, 18HTOTAL APPLIED LOAD, EQBM 110
1 10X, 16HELEMENT STRESSES, 11X, 19HOUT ~OF ~BALANCE LOAD/ EQBM 111
2 9%, 24 (1H=-),7X, 18 (1H=), 10X, 16(1H~), 11X, 19 (1H-)) EQBM 112
901 FORMAT(1X,15,2X,8E14.4) EQBM 113
902 FORMAT(//1X, 1THEQUILIBRIUM CHECK/1X, 17 (1H-)) EQBM 114
903 FORMAT (/8X, 20HMAXIMUM APPLIED LOAD, 12X, EQBM 115
1 24HMAXM OUT-OF-BALANCE LOAD, 10X, EQBM 116
2 31HPERCENTAGE ERROR IN EQUILIBRIUM/ EQBM 117
3 8X,20(1H-), 12X, 24 (1H-), 10X, 31 (1H=)/) EQBM 118
904 FORMAT (/1X,5H NODE, 8X, THX, 13X, 1HY, 13X, THX, 13X, THY, 13X, 1HX, EQBM 119
1 13X, HY, 13X, 1HX, 13X, 14Y//) EQBM 120
905 FORMAT (11X, 1HX, 15X, THY, 16X, 1HX, 15X, THY, 17X, THX, 15X, 1HY/) EQBM 121
907 FORMAT(1X,4E16.5,2F16.5) EQBM 122
910 FORMAT(/4OH WARNING **** NO APPLIED LOADING - CHECK, EQBM 123
11X, YOHWHETHER ALL BOUNDARY CONDITIONS ARE DISPLACEMENTS, EQBM 12U
2 2X, 15H (ROUTINE EQLBM)) EQBM 125
END EQBM 126
EQBM 15-16 :indexes to arrays PAR and RMAX.
EQBM 17-18 : calculate reactions-to-earth at nodes which are restrained (or
have prescribed displacements). Identified by 1 in array
[DFX against g.v.n.
EQBM 23 : loop on all nodes.
EQBM 24 : number of d.o.f. of node.
EQBM 25 : if node has only displacement d.o.f., by-pass.
EQBM 27 - enter 1 against pore pressure d.o.f. which are not included in
the equilibrium check.
EQBM 32 : loop on all d.o.f.
EQBM 33 - by-pass either if restrained or if pore pressure d.o.f.
EQBM 34 - calculate out-of-balance load at d.o.f.
EQBM 36 - enter zero for d.o.f. if restrained or if pore pressure d.o.f.
EQBM 41 - skip if details of equilibrium check are not to be printed.
EQBM 45 : loop on all nodes in user sequence number.
EQBM 47 : program node no.
EQBM 48 :no. of d.o.f.
EQBM 49 : by-pass if node has only pore pressure d.o.f. (it is implicitly
assumed that if a node has only 1 d.o.f. then that is pore
pressure d.o.f.).
EQBM 50 - only print details at vertex nodes if [IEQOP = 1.
EQBM 51-52 :g.v.n.of first and last displacement d.o.f. of node.
EQBM 53-54 : print out incremental, out-of-balance, equilibrium and total
loads.
EQBM 61 : loop on all nodes.
EQBM 63 : skip if node has only pore pressure variable.
EQBM 64—65 :gv.n. of first and last displacement d.o.f. of node.
EQBM 68 : loop on all d.o.f. of node.
EQBM 70-71 :copy total (PT) and out-of-balance (PCOR) loads at node.
EQBM 73—77 :update maximum values of PT and PCOR.

crer |
.w

Sec. 7.9] Equilibrium Check 289

EQBM 87-88 :get maximum value of total load.

EQBM 89 1if it is negligible then no applied loading. (Could be an
analysis where displacements are prescribed at boundary,
i.e. displacement or strain controlled analysis.)

EQBM 90-91 :calculate percentage error in equilibrium (out-of-balance
loads as a percentage of total load).

EQBM 94-95 :no applied load. Set it to zero (no way of calculating

percentage error in load, as no loads have been applied).

EQBM 99-100 : print percentage error.

EQBM 106107 :if errors in loads are not to be carried forward to nex

increment, then zero them.

7.9.5 Reactions

At all nodes which are restrained or have a prescribed value,

Peor & J; NT7 d (area) + fV NTw d (vol)

~ | BTod (vol
fV o d (vol),

(7.12)

and is the reaction-to-earth. These are printed. Again IDFX(NDF) is made use of

to indicate the d.o.f, which are fixed or have prescribed values.

Routine REACT

SUBROUTINE REACT(IW6,NN,NNOD1, NDF, NDIM, NNZ,NREL,NW,NQ, IDFX, PEQT, RECT
1 PT) RECT
RN 0000060000606 NI RN RN NN NN NN N NN RN R NRURECT
C CALCULATES REACTION TO EARTH AT RESTRAINED NODES' RECT
CREBERRAR IR R RN NN RN RN NN RN AR RN NN RN AR RN RN R NN ERRUNNRUNRECT
DIMENSION PEQT(NDF),PT (NDF),NW(NNOD1),NREL(NNZ),NQ(NN),IDFX(NDF) RECT
DIMENSION R(500),NDENO(500),NDIR(500) RECT
c RECT
c NCT - SIZE OF ARRAYS R, NDENO AND NDIR RECT
C RECT
NCT=500 RECT
c RECT
c ICT - COUNTER OF TOTAL NO. OF REACTIONS RECT
C RECT
ICT=0 RECT
C RECT
DO 25 JR=1,NNZ RECT
IF(NREL(JR).EQ.0)GOTO 25 RECT
J =NREL (JR) RECT
NQL=NQ(J) RECT
c RECT
[SKIP IF NODE HAS PORE PRESSURE D.O.F. ONLY RECT
C RECT
IF(NQL.LE. 1)GOTO 25 RECT
N1=NW(J) RECT
N2=N1+NDIM=1 RECT
IDF=0 RECT
C RECT
DO 20 KN=N1,N2 RECT
IDF =IDF+1

RECT

NV EWN =

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

e S A S

290

In Situ Stresses [Ch.7

IF (IDFX (KN).NE. 1)GOTO 20 RECT 31
ICT=ICT+1 RECT 32
IF(ICT.GT.NCT)GOTO 30 RECT 33
R(ICT)=~(PEQT (KN)-PT (KN)) RECT 3Uu
NDENO(ICT)=JR RECT 35
NDIR (ICT)=IDF RECT 36
20 CONTINUE RECT 37

25 CONTINUE RECT 38
c RECT 39
WRITE (IW6, 901) RECT 40
WRITE (IW6, 903) (NDENO(JCT), NDIR (JCT),R(JCT),JCT=1,1CT) RECT 41
RETURN RECT 42
30 WRITE(IW6,906) RECT 43
STOP RECT 44
901 FORMAT(//1X, 184 LIST OF REACTIONS/2X,17(1H-)/ RECT 45
1 2X, 3(4HNODE, 4X, HDIRECTION, 7X, BHREACTION, 11X)/) RECT 46
903 FORMAT(3(1X, IS, 5X, I4,5X,E14.4,10X)) RECT 47
906 FORMAT(/1X, 35HINCREASE ARRAY SIZE OF R,NDENO,NDIR, RECT 48
11X, 16HIN ROUTINE REACT) RECT 49
END ‘ RECT 50
RECT 15 - counter of total no. of reactions (each variable is dealt with
separately).
RECT 17 : loop on all nodes in user sequence number.
RECT 18 : skip if user has not used this node no.
RECT 19 : program node number,
RECT 20 : number of d.o.f. of node.
RECT 24 - by-pass if node has only 1 d.o.f. (assumed to be pore pressure
variable).
RECT 25-26 : g.v.n. of first and last displacement d.o.f. of node.
RECT 29 - loop on all displacement d.o.f. (variables).
RECT 30 : displacement variable no. of node (i.e. 1 or 2).
RECT 31 : skip if not restrained or prescribed.
RECT 32 : increment count of reactions by 1.
RECT 33 : skip if array size is exceeded.
RECT 34 : calculate reactions-to-earth.
RECT 35 : enter user node number.
RECT 36 s enter direction (1 —x;2 —¥).
RECT 37 : end of loop on all displacement d.o.f. of node.
RECT 38 : end of loop on all nodes.

RECT 40—41 : print out list of reactions.
RECT 43—44 : print message to increase array size, and stop.

7.9.6 Initialising arrays

A set of routines to zero real and integer arrays of one, two and three
dimensions is used throughout the program. Whenever an array needs to be

zeroed, a subroutine call is made to the appropriate routine.

Al

"

¥

shalny ik [t { gl

b

= e

STl L
ama

Sl bl

{7

Bl Syttt v

E

Sec.79] . Equilibrium Check
Routine ZEROSB
SUBROUTINE ZEROI1(N,LN) ZERO
C*‘ili'ﬂiiiiIl*!i‘ﬁliiillﬁl*ii**lllillli!i*i!*ii*iili**ii'iiiii"“**li&ZERo'
c ROUTINE TO INITIALISE A 1-DIMENSIONAL INTEGER ARRAY - ZERO
C***““iil’*liilll’i*lllil*&ilililil‘l‘illlllilI’iii*ﬁll*ﬁ*i“'i*l*lll*ll’ﬁl!ZERo
DIMENSION N(LN) ZERO
c
ZER
DO 10 I=1,LN , zaag
10 N(I)=0 ZERO
RETURN ZERO
END ZERO
SUBROUTINE ZEROI2(N,L1,L2) ZERO
Cilllll*l’ii‘llli*li*lil!i*ll'illi*l’**!*l‘ill!llll’*iii‘!ll’ﬁ*‘l‘liii***l***‘lZERO
c ROUTINE TO INITIALISE A 2-DIMENSIONAL INTEGER ARRAY ZERO
C!l*lillllliiiilllill*lll*iil**il**llI'l'll'llllllil’ilii*lll’&&li*liililileRo
DIMENSION N(L1,L2) ZERO
c
ZERO
DO 10 J=1,L2 ZERO
DO 10 I=1,L1 ZERO
10 N(I,d)=0 ZERO
RETURN ZERO
END ZERO
SUBROUTINE ZEROR1(V,LV) ZERO
cl*ii*lliilli‘lll’i‘liiillil’*i**i*“*"'I’I’l."*li*‘l”li“l**lll*iii*“*.ll‘l*ZERO
c ROUTINE TO INITIALISE A 1-DIMENSIONAL REAL ARRAY ZERO
Cli‘l*l.i**l‘liili**l*l!**ﬂil’ll*ll’l’l’*li‘l*!ill"*“i***iil'***iil*i‘!}i*leRo
DIMENSION V(LV) . ZERO
c ZERO
DO 10 I=1,LV ZERO
10 V(I)=0. ZERO
RETURN ZERO
END ZERO
SUBROUTINE ZEROR2(V,L1,L2) ZERO
CIIII“lll*lll’llllll*lllilliilllﬁilll[*lil!llll‘l’l’!llll‘!il*‘llilillil’i!leRo
c ROUTINE TO INITIALISE A 2-DIMENSIONAL REAL ARRAY ZERO
CII’I*'*I!i!lllillillililllil*ﬂi*llilllllill!*llillli!lll}lll!l*‘iil‘l*illZERO
DIMENSION V(L1,L2) ZERO
c : ZERO
DO 10 J=1,L2 ZERO
DO 10 I=1,L1 ZERO
10 V(I, J)=0. 2ERO
RETURN ZERO
END ZERO
SUBROUTINE ZEROR3(V,L1,L2,L3) ZERO
Cllﬂli!lliiI‘Iilll“lil’i*i'*‘li.‘"*I’l'ii"'i!*"‘**i*llﬁ!!llliilliil’!i'ZERO
c ROUTINE TO INITIALISE A 3-DIMENSIONAL REAL ARRAY . ZERO
clillll'lli".'*'*iilli!lli*&ill‘Ilil"‘lli“‘llllll‘llill*i&l’llll‘l!l‘i*ZERo
: DIMENSION V(L1,L2,L3) ZERO
c ZERO
DO 10 K=1,L3 ZERO
DO 10 J=1,L2 ZERO
DO 10 I=1,L1 ‘ ZERO
10 V(I,J,K)=0. ZERO
RETURN ZERO
END ZERO

ZERO 1-54 : zero array in separate routines as follows:

291

LENOWV EWN =

http:IF(IDFX(KN).NE

292

In Situ Stresses

Dimensions Array type Routine name
1 INTEGER ZEROI1
2 INTEGER ZEROI2
1 REAL ZERORI
2 REAL ZEROR2
3 REAL ZEROR3

[Ch.7

BRI | R

3

Analysis

8.1 INTRODUCTION

Having set the in situ stresses, the analysis proper can begin. An equilibrium
check has also been carried out to make sure that external loads specified by the
user are equivalent to the element in situ stresses. It should be remembered that
these (in situ) loads are different from the loading applied during the course of
the analysis.

In some analyses the simple option of no initial stresses may have been
selected. However, in most geotechnical problems the in situ stresses play an
important role. CRISP stores the current stress state, and this governs behavio!
under the subsequent loading. This chapter deals with the response of the soil to
a given loading.

The loads are divided into steps, called increment blocks. These increment
blocks in turn are divided into increments. The use of increment blocks is for
convenience. The analysis can be divided into the following steps:

(i) calculation of incremental loads;

(ii) application of the boundary conditions;
(iif) assembly of the stiffness matrix;

(iv) solution of the equations;

(v) calculation of strains and stresses;

(vi) output of results.

Section 8.2 explains the use of increment blocks. Section 8.3 presents a brief

294 Analysis [Ch. 8

explanation of the subroutines listed in this chapter. Section 8.4 deals with the
calculation of incremental loads. Section 8.5 presents the details of the load
increment loop. Sections 8.6 to 8.8 deal with the calculation of the element
stiffness matrix and the global stiffness matrix. The frontal solution is dealt with
in separate sections, 8.9 to 8.12. Section 8.13 considers the calculation of
incremental strains and stresses, and the printing out of the various parameters.
Section 8.14 lists the subroutine which deals with stopping and restarting an
analysis.

The previous chapter dealt with the setting up of the in situ stresses and
satisfying the equilibrium conditions at that stage. Those readers interested in an
analysis with zero in situ stresses may have skipped the previous chapter.
However, a number of routines are common to the in situ part and the analysis
part of the program, Where applicable we refer the reader back to the
explanations in the previous chapter. :

8.2 INCREMENT BLOCKS

The entire loading is divided into a number of increments. The increments can
be grouped into a number of increment blocks. As mentioned in Chapter 4, this
facility is provided for two reasons,

(1) If the loads for each analysis increment had to be specified separately
there would be a very large amount of data input needed for most
problems. Much of this information would be repeated many times (e.g.
which element sides were being loaded).

(i) When performing an excavation (or construction) analysis the program
calculates the implied loads due to the removal (or addition) of the
elements specified by the user. These implied loads will often be too large
to be applied in a single increment when the material behaviour is non-
linear. The use of an increment block spreads these implied loads over
several increments. (Note that this procedure introduces an extra
“approximation in the modelling of excavations: the stiffness of an element
is removed entirely in the first increment of a block whereas the loads are
spread over all increments in the block.)

8.3 CONTROL ROUTINE

The master control routine is ANS. This loops around all increment blocks in the
analysis. This is the outer loop. The inner loop is on all increments within the
increment block. Each increment block contains at least one increment.

Routine ANS consists of a series of subroutine calls to various routines,
delegating tasks to them (Fig. 8.1). A brief explanation of each subroutine
discussed in this chapter is given below.

&l i M g

I TR
¢ 2 4 el g o

e

ol T

i

S

ek o fyaf

sabilay

g o B

Sec. 8.3] Control Routine 295
SELF SHAPE
~CHANGE .DETJCB
EQLIB FORMB2.—ESHAPE
DISTLD DETMIN
-SEL1 SELF SHAPE
DETJCB
FEDGLD——LODLST
L DISTLD ——SFR1
FFACTOR
-FIXX
DCON
FORMB2 —— SHAPE
ANS —— DETMIN
LODLST [LSTIFF JrC FORMP ———SHFNPP
EMAKENZ DLIN
MLAPZ FRSLOT | DMcAm
- SFwWz DCAM
FRFXLD | LSTIFA
- FRONTZ LSTFSG
STOREQ — WRTN
GETEQN——RDN
LLobine PRINTF
DCON
F FORMB2 —— SHAPE
FDLIN DETMIN
- DMCAM
- DCAM
- SHENPP
LUPARAL — UpoUT —F EVCAM —" VARCAM
- STRSEQ ANGTH
- PRINC
- UPOUT2

R ESTRN—E DETJCB

DISTLD —— SFR1
- EQLOD —ESELF SHAPE
EQLLBM —— REACT

Fig. 8.1 — Subroutine hierarchy for analysis part of program

ANS — main control routine for analysis. Reads control parameters for
increment block. Delegates tasks to routines CHANGE, SEL! and
LODINC.

CHANGE — calculates implied loads due to removal and addition of elements.

SEL1 — calculates nodal loads for self-weight loads.

FACTOR — reads load ratios, output options and time steps for each increment
within an increment block.

LODINC — control routine delegates calculation of stiffness matrices and
solution of equations to FRONTZ and printing out the results to

UPOUT (via UPARAL).

LSTIFF — calculates element stiffness matrix.

JpC — for consolidation analysis, calculates components of stiffness
matrix.,

FORMP — calculates E matrix (pore pressure gradients), i.e. Cartesian

derivatives of pore pressure shape functions,

296 Analysis {Ch. 8

SHFNPP — calculates pore pressure shape functions.
LSTIFA — calculates fVBTDB d (vol).

LSTESG — rearranges rows/columns of element stiffness matrix and forms a
one-dimensional (upper triangular matrix stored columnwise)
matrix acceptable to FRONTZ,

FRONTZ — calls LSTIFF to calculate the element stiffness matrix, and solves
the assembled equations using the frontal method.

FRSLOT = slots upper triangular element stiffness matrix in appropriate places
in the front.

FREXLD — deals with prescribed displacements and applied loads for nodes
being elminated. Also prints them out.

PRINTF — debugging routine to print out element stiffness matrix and stiff-
-ness terms and load terms in the front.

STOREQ — stores contents of the buffer of eliminated coefficients in backing
store when the buffer fills up during frontal solution.

WRTN — routine used by STOREQ to write to backing store.

GETEQN — performs the reverse task to STOREQ. Gets back a bu