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Preface  
 
 
 
This book is about the mechanical properties of saturated remoulded soil. It is written at 
the level of understanding of a final-year undergraduate student of civil engineering; it 
should also be of direct interest to post-graduate students and to practising civil engineers 
who are concerned with testing soil specimens or designing works that involve soil. 

Our purpose is to focus attention on the critical state concept and demonstrate what 
we believe to be its importance in a proper understanding of the mechanical behaviour of 
soils. We have tried to achieve this by means of various simple mechanical models that 
represent (with varying degrees of accuracy) the laboratory behaviour of remoulded soils. 
We have not written a standard text on soil mechanics, and, as a consequence, we have 
purposely not considered partly saturated, structured, anisotropic, sensitive, or stabilized 
soil. We have not discussed dynamic, seismic, or damping properties of soils; we have 
deliberately omitted such topics as the prediction of settlement based on Boussinesq’s 
functions for elastic stress distributions as they are not directly relevant to our purpose. 

The material presented in this book is largely drawn from the courses of lectures 
and associated laboratory classes that we offered to our final year civil engineering 
undergraduates and advanced students in 1965/6 and 1966/7. Their courses also included 
material covered by standard textbooks such as Soil Mechanics in Engineering Practice by 
K. Terzaghi and R. B. Peck (Wiley 1948), Fundamentals of Soil Mechanics by D. W. 
Taylor (Wiley 1948) or Principles of Soil Mechanics by R. F. Scott (Addison-Wesley 
1963). 
  In order to create a proper background for the critical state concept we have felt it 
necessary to emphasize certain aspects of continuum mechanics related to stress and strain 
in chapter 2 and to develop the well-established theories of seepage and one-dimensional 
consolidation in chapters 3 and 4. We have discussed the theoretical treatment of these two 
topics only in relation to the routine experiments conducted in the laboratory by our 
students, where they obtained close experimental confirmation of the relevance of these 
theories to saturated remoulded soil samples. Modifications of these theories, application 
to field problems, three-dimensional consolidation, and consideration of secondary effects, 
etc., are beyond the scope of this book. 

In chapters 5 and 6, we develop two models for the yielding of soil as isotropic 
plastic materials. These models were given the names Granta-gravel and Cam-clay from 
that river that runs past our laboratory, which is called the Granta in its upper reaches and 
the Cam in its lower reaches. These names have the advantage that each relates to one 
specific artificial material with a certain distinct stress – strain character. Granta-gravel is 
an ideal rigid/plastic material leading directly to Cam-clay which is an ideal elastic/plastic 
material. It was not intended that Granta-gravel should be a model for the yielding of dense 
sand at some early stage of stressing before failure: at that stage, where Rowe’s concept of 
stress dilatancy offers a better interpretation of actual test data, the simple Granta-gravel 
model remains quite rigid. However, at peak stress, when Granta-gravel does yield, the 
model fits our purpose and it serves to introduce Taylor’s dilatancy calculation towards the 
end of chapter 5. 

Chapter 6 ends with a radical interpretation of the index tests that are widely used 
for soil classification, and chapter 7 includes a suggested computation of ‘triaxial’ test data 
that allows students to interpret much significant data which are neglected in normal 
methods of analysis. The remainder of chapter 7 and chapter 8 are devoted to testing the 



 

relevance of the two models, and to suggesting criteria based on the critical state concept 
for choice of strength parameters in design problems. 

Chapter 9 begins by drawing attention to the actual work of Coulomb – which is 
often inaccurately reported – and its development at Gothenberg; and then introduces 
Sokolovski’s calculations of two-dimensional fields of limiting stress into which we 
consider it appropriate to introduce critical state strength parameters. We conclude in 
chapter 10 by demonstrating the place that the critical state concept has in our 
understanding of the mechanical behaviour of soils. 

We wish to acknowledge the continual encouragement and very necessary support 
given by Professor Sir John Baker, O.B.E., Sc.D., F.R.S., of all the work in the soil 
mechanics group within his Department. We are very conscious that this book represents 
only part of the output of the research group that our teacher, colleague, and friend, Ken 
Roscoe, has built up over the past twenty years, and we owe him our unbounded gratitude. 
We are indebted to E. C. Hambly who kindly read the manuscript and made many valuable 
comments and criticisms, and we thank Mrs Holt-Smith for typing the manuscript and 
helping us in the final effort of completing this text. 

  
A. N. Schofield and C. P. Wroth  
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Glossary of symbols  
 
 
The list given below is not exhaustive, but includes all the most important symbols used in this 
book. The number after each brief definition refers to the section in the book where the full 
definition may be found, and the initials (VVS) indicate that a symbol is one used by Sokolovski. 

The dot notation is defined in §2.3, whereby denotes a small change in the value of the 
parameter x. As a result of the sign convention adopted (§2.2) in which compressive stresses and 
strains are taken as positive, the following parameters only have a positive dot notation associated 
with a negative change of value (i.e.,

x&

xx δ−=+ & ):v,l,r.  
The following letters are used as suffixes: f failure, r radial, 1 longitudinal; and as 

superfixes: r recoverable, p plastic (irrecoverable).  
 
a  Height of Coulomb’s wedge of soil      9.1  
a   Cross-sectional area of sample in axial-test     5.2  

  Half unconfined compression strength      6.10  
  Coefficient of consolidation       4.3  

d  Diameter, displacement, depth      1.2, 2.5, 3.7  
e   Voids ratio         1.5 

  General function and its derivative      3.7  
  Height, and height of water in standpipe      3.1  

i  Hydraulic gradient        3.2  
k   Maximum shear stress (Tresca)       2.9  
k   Coefficient of permeability       3.3  
k   Cohesion in eq. (8.1)       (VVS)  8.1  
l  Length of sample in axial-test       5.2  
l  Constant in eq. (8.3) cf. λ in eq. (5.23)      8.2  

 Coefficients of volume compressibility      4.3  
n   Porosity         1.5  
n   Normal stress        (VVS)  9.5  
p   Effective spherical pressure       5.5  

   Equivalent pressure cf. 

uc

vcc

', ff

whh,

vsvc mm ,

ep e'σ       5.10  
  Undrained critical state pressure      5.10  
  Critical state pressure on yield curve      6.5  
  Pressure corresponding to liquid limit      6.9  
   Pressure corresponding to plastic limit      6.9  

  Pressure corresponding to Ω point      6.9  
p*, q*   Generalized stress parameters       8.2  
p, q   Uniformly distributed loading pressures     (VVS)   9.4  

  Equivalent stress       (VVS)   9.5  
q   Axial-deviator stress        5.5  

  Undrained critical state value of q      5.10  
  Critical state value of q on yield curve      6.5  

r   Radial coordinate        3.8  
r

up

xp

LLp

PLp

Ωp

'p

uq

xq

1, r2   Directions of planes of limiting stress ratio    (VVS)   9.5  
s   Distance along a flowline       3.2  

  Parameters locating centres of Mohr’s circles    (VVS)   9.5  
s, t   Stresses in plane strain               App. C  

−+ ss ,



t  Tangential stress       (VVS)   9.5  
t  Time          1.2  

2
1t   Half-settlement time        4.6  

u   Excess pore-pressure        3.1  
   Total pore-pressure        1.6  

u   Velocity of stream        1.7  
v   Velocity         1.2  

  Artificial velocity        3.3  
v

wu

av
s   Seepage velocity        3.3  

v   Specific volume        1.5  
vx   Critical state value of v on yield curve      6.5  

  Ordinates of κ-line and λ-line       6.1  
  Specific volume at liquid limit       6.9  
  Specific volume at plastic limit       6.9  

  Change of specific volume corresponding to plasticity index   6.9  
  Specific volume corresponding to Ω point     6.9  

w   Water content         1.5  
w   Weight          1.2  
x, y, z   Cartesian coordinate axes       1.7  
x

λκ vv ,

LLv

PLv

PIv∆

Ωv

t   Transformed coordinate       3.5  
tAA,   Cross-sectional areas             3.3, 4.1  

  Fourier coefficients        4.5  mAA,
BBA ,,  Pore-pressure coefficients       7.10  

  Compression indices             4.2, 6.9  
D   Diameter         1.2  
D

cc CC ',

0   A total change of specific volume      5.13  
E  Young’s modulus        2.7  
E&   Loading power         5.6  

 Potential functions (Mises)           2.9, 2.11, app. C  
F   Frictional force         9.1  
G   Shear modulus         2.7  
G

*,', FFF

s   Specific gravity        1.2  
H  Maximum drainage path       4.4  
H   Abscissa of Mohr-Coulomb lines     (VVS)   8.3  
K   Bulk modulus         2.7  
K, K0  Coefficients of earth pressure       6.6  
L   Lateral earth pressure force       9.1  
M   Mach number         1.7  
N   Overcompression ratio        7.10  
N   Normal force         9.1  

 Vertical loads in consolidometer      4.1  
  Active and passive pressure forces           9.1, 9.2  

sw PPP ,,

PA PP ,
P&   Probing power         5.6  
Q  Quantity of flow        3.3  
R   Force of resistance        1.2  
T   Tangential force        9.1  

  Time factor         4.4  vT



2
1T   Half-settlement time factor       4.6  

U   Proportion of consolidation       4.4  
  Recoverable power        5.6  

 Volumes              1.2, 3.3  
W   Weight          1.2  

  Dissipated power        5.7  
X

U&

vt VVV ,,

W&
1, X2, X3  Loads in simple test system       5.2  

Y   Yield stress in tension (Mises)       2.9  
LL   Liquid limit         1.3  
PL   Plastic limit         1.3  
PI   Plasticity index         1.3  
α,β  Pair of characteristics        9.9  
α,β  Angles          2.4  
γ  Engineering shear strain       2.4  

 

1.2
3.3
1.5
1.5

mass)notweight(by

waterofdensity
densitybulkSubmerged'

densitybulkDry
densitybulkSaturated

⎪
⎪
⎭

⎪
⎪
⎬

⎫

w

d

γ
γ
γ
γ

δ  Inclination of equivalent stress      (VVS)   9.5  
δ  Displacement in simple test system      5.3  
ε  Half angle between characteristics     (VVS)   9.1  
ε&   Increment of shear strain       5.5  
ε   Cumulative shear strain        6.7  

ijε&   Components of strain increment      2.10  
*ε&   Generalized shear strain increment             App. C  

η  Ratio of stresses pq        5.8  
η   Special parameter       (VVS)   9.9  
θ   Angle          9.1  
κ  Special parameter       (VVS)   9.5  
κ  Gradient of swelling line       4.2  
λ  Gradient of compression line       4.2  

−+ λλ ,   Inclinations of principal stress to a stress discontinuity   (VVS)   9.5  
µ  Viscosity         1.2  
v   Poisson’s ratio         2.7  

  Scalar factors        2.10, app. C  
ξ  Special parameter       (VVS)   9.9  
ρ  Settlement         4.1  
ρ  Angle of friction in eq. (8.1)      (VVS)   8.1  
σ  Total stress         1.6  

*,vv

'σ   Effective stress         1.6  
ij'σ   Components of effective stress       2.2  

e'σ   Hvorslev’s equivalent stress       8.2  

−+ ',' σσ  Parameters locating centres of Mohr’s circles    (VVS)   9.5  

mττ ,   Shear stresses in direct shear test      5.14  
etc.yzτ   Shear stresses         2.2  

φ  Potential function        1.7  



mφφ,   Angles of friction in Taylor’s shear tests     5.14  

−+ φφ ,   Inclinations of principal stress on either side of discontinuity  (VVS)   9.5  
ψ  Streamline function        3.7  
Γ  Ordinate of critical state line       5.9  

  Caquot’s angle       (VVS)   9.5  ∆
Λ   Parameter relating swelling with compression     6.6  
M   Critical state frictional constant       5.7  

  Major principal stress       (VVS)  9.5  
Ω  Common point of idealized critical state lines     6.9 

'∑



1  
Basic concepts  
 
 
1.1 Introduction  

This book is about conceptual models that represent the mechanical behaviour of saturated 
remoulded soil. Each model involves a set of mechanical properties and each can be manipulated 
by techniques of applied mathematics familiar to engineers. The models represent, more or less 
accurately, several technically important aspects of the mechanical behaviour of the soil-material. 
The soil-material is considered to be a homogeneous mechanical mixture of two phases: one phase 
represents the structure of solid particles in the soil aggregate and the other phase represents the 
fluid water in the pores or voids of the aggregate. It is more difficult to understand this soil-material 
than the mechanically simple perfectly elastic or plastic materials, so most of the book is concerned 
with the mechanical interaction of the phases and the stress – strain properties of the soil-material 
in bulk. Much of this work is of interest to workers in other fields, but as we are civil engineers we 
will take particular interest in the standard tests and calculations of soil mechanics and foundation 
engineering.  

It is appropriate at the outset of this book to comment on present standard practice in soil 
engineering. Most engineers in practice make calculations and base their judgement on the model 
used two hundred years ago by C. A. Coulomb1 in his classic analysis of the active and passive 
pressures of soil against a retaining wall. In that model soil-material (or rock) was considered to 
remain rigid until there was some surface through the body of soil-material on which the shear 
stress could overcome cohesion and internal friction, whereupon the soil-material would become 
divided into two rigid bodies that could slip relative to each other along that surface. Cohesion 
and internal friction are properties of that model, and in order to make calculations it is 
necessary for engineers to attribute specific numerical values to these properties in each 
specific body of soil. Soil is difficult to sample, it is seldom homogeneous and isotropic in 
practice, and engineers have to exercise a considerable measure of subjective judgement in 
attributing properties to soil. 

In attempts over the last half-century to make such judgements more objective, 
many research workers have tested specimens of saturated remoulded soil. To aid 
practising engineers the successive publications that have resulted from this continuing 
research effort have reported findings in terms of the standard conceptual model of 
Coulomb. For example, typical papers have included discussion about the ‘strain to 
mobilize full friction’ or ‘the effect of drainage conditions on apparent cohesion’. Much of 
this research is well understood by engineers, who make good the evident inadequacy of 
their standard conceptual model by recalling from their experience a variety of cases, in 
each of which a different interpretation has had to be given to the standard properties.  

Recently, various research workers have also been developing new conceptual 
models. In particular, at Cambridge over the past decade, the critical state concept 
(introduced in §1.8 and extensively discussed in and after chapter 5) has been worked into 
a variety of models which are now well developed and acceptable in the context of 
isotropic hardening elastic/plastic media. In our judgement a stage has now been reached at 
which engineers could benefit from use of the new conceptual models in practice.  

We wish to emphasize that much of what we are going to write is already 
incorporated by engineers in their present judgements. The new conceptual models 
incorporate both the standard Coulomb model and the variations which are commonly 
considered in practice: the words cohesion and friction, compressibility and consolidation, 
drained and undrained will be used here as in practice. What is new is the inter-relation of 
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concepts, the capacity to create new types of calculation, and the unification of the bases 
for judgement. 

In the next section we begin abruptly with the model for sedimentation, and then in 
§1.3 we introduce the empirical index tests and promise a fundamental interpretation for 
them (which appears in chapter 6). Mechanical grading and index properties form a soil 
classification in §1.4, and in §1.5 we define the water content and specific volume of soil 
specimens. Then in §1.6 we introduce the concept of effective stress and in §1.7 digress to 
distinguish between the complex mathematical consequences of a simple concept (which 
will apply to the solution of limiting stress distributions by the method of characteristics in 
chapter 9) and the simple mathematical consequences of a complex concept (which will 
apply to the critical states). 
 
1.2 Sedimentation and Sieving in Determination of Particle Sizes 

The first model to be considered is Stokes’ sphere, falling steadily under gravity in 
a viscous fluid. Prandtl2,3 discusses this as an example of motion at very small Reynolds’ 
number. The total force of resistance to motion is found from reasons of dynamical 
similarity to be proportional to the product (viscosity µ) × (velocity v) ×  
(diameter d). Stokes’ solution gives a force of resistance R which y has a coefficient 3π as 
follows:  

dR πµν3=          (1.1) 
The force must be in equilibrium with the buoyant weight of the sphere, so that 

( ) 31
6

3 dGd ws γππµν −=                  (1.2) 

where Gsγw is the weight of unit volume of the solid material of the sphere and γw is the 
weight of unit volume of water. Hence, if a single sphere is observed steadily falling 
through a distance z in a time t, it can be calculated to have a diameter 

( )
2

1

1
18

⎭
⎬
⎫

⎩
⎨
⎧

−
=

t
z

G
d

ws γ
µ         (1.3) 

This calculation is only appropriate for small Reynolds’ numbers: Krumbein and Pettijohn4 

consider that the calculation gives close estimates of diameters of spherical quartz particles 
settling in water provided the particle diameters are less than 0.005 mm. They also suggest 
that the calculation continues to hold until particle diameters become less than 0.1 microns 
(0.0001 mm), despite the effect of Brownian movement at that diameter. This range of 
applicability between 0.05 mm and 0.0001 mm makes a technique called sedimentary 
analysis particularly useful in sorting the sizes of particles of silt and clay soils. 

Typical particles of silt and clay are not smooth and spherical in shape, nor does 
each separate particle have the same value of G, as may be determined from the aggregated 
particles in bulk. So the sizes of irregularly shaped small particles are defined in terms of 
their settling velocities and we then use adjectives such as ‘hydraulic’ or ‘equivalent’ or 
‘sedimentation’ diameter. This is one example of a conceptual model in that it gives a 
meaning to words in the language of our subject. 

The standard5 experimental technique for quantitative determination of the small 
particle size distribution in a soil is sedimentation. The soil is pre-treated to break it up 
mechanically and to dissolve organic matter and calcium compounds that may cement 
particles together. Then, to counteract certain surface effects that may tend to make 
particles flocculate together, a dispersion agent is added. About 10 gm of solid particles are 
dispersed in half a litre of water, and the suspension is shaken up in a tube that is 
repeatedly inverted. The test begins with a clock being started at the same instant that the 



 3 

tube is placed in position in a constant temperature bath. After certain specified periods a 
pipette is inserted to a depth in the tube, a few millilitres of the suspension are 
withdrawn at that depth and are transferred into a drying bottle. 

mm100=z

Let us suppose that originally a weight W of solid material was dispersed in 500 
millilitres of water, and after time t at depth 100 mm a weight w of solid material is found 
in a volume V of suspension withdrawn by the pipette. If the suspension had been sampled 
immediately at then the weight w would have been WV/500 but, as time passes, w 
will have decreased below this initial value. If all particles were of a single size, with 
effective diameter D, and if we calculate a time 

0=t

( ) 21
18

DG
zt
ws

D γ
µ

−
=         (1.4) 

then before time tD the concentration of sediment at the sampling depth  
would remain at its initial value WV/500: at time t

mm)100( =z
D the particles initially at the surface of 

the tube would sink past the depth mm,100=z and thereafter, as is shown in Fig. 1.1, there 
would be clear liquid at the depth z. 

It is evident that if any particles of one specified size are present at a depth z they 
are present in their original concentration; (this is rather like dropping a length of chain on 
the ground: as the links fall they should preserve their original spacing between centres, 
and they would only bunch up when they strike the heap of chain on the ground). 
Therefore, in the general case when we analyse a dispersion of various particle sizes, if we 
wish to know what fraction by weight of the particles are of diameter less than D, we must 
arrange to sample at the appropriate time tD. The ratio between the weight w withdrawn at 
that time, and the initial value 

 
Fig. 1.1 Process of Sedimentation on Dispersed Specimen 

  
WV/500, is the required fraction. The fraction is usually expressed as a percentage smaller 
than a certain size. The sizes are graded on a logarithmic scale. Values are usually found 
for D = 0.06, 0.02, 0.006, and 0.002 mm, and these data6-11 are plotted on a curve as shown 
in Fig. 1.2. 

A different technique5, sieving, is used to sort out the sizes of soil particles of more 
than 0.2 mm diameter. A sieve is made with wire cloth (a mesh of two sets of wires woven 
together at right angles to each other). The apertures in this wire cloth will pass particles 
that have an appropriate intermediate or short diameter, provided that the sieve is shaken 
sufficiently for the particles to have a chance of approaching the holes in the right way. 
The finer sieves are specified by numbers, and for each number there is a standard12 
nominal size in the wire cloth. The coarser sieves are specified by nominal apertures. 
Clearly this technique implies a slightly different definition of diameter from that of 
sedimentary analysis, but a continuous line must be drawn across the particle size 
distribution chart of Fig. 1.2: the assumption is that the two definitions are equivalent in 
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the region about 0.05 mm diameter where sieves are almost too fine and sedimentary 
settlement almost too fast. 

 
Fig. 1.2 Particle Size Distribution Curves 

 
Civil engineers then use the classification for grain size devised at the Massachusetts 
Institute of Technology which defines the following names:  
Boulders are particles coarser than 6 cm, or 60 mm diameter; 
Gravel contains particles between 60 mm and 2 mm diameter;  
Sand contains particles between 2 mm and 0.06 mm diameter;  
Silt contains particles between 0.06 mm and 0.002 mm diameter;  
Clay contains particles finer than 0.002 mm (called two microns, 2µ).  
 

The boundaries between the particle sizes not only give almost equal spacing on the 
logarithmic scale for equivalent diameter in Fig. 1.2, but also correspond well with major 
changes in engineering properties. A variety of soils is displayed, including several that 
have been extensively tested with the results being discussed in detail in this text. For 
example, London clay has 43 per cent clay size, 51 per cent silt size and 6 per cent sand 
size. 
 
1.3 Index Tests 

The engineer relies chiefly on the mechanical grading of particle sizes in his 
description of soil but in addition, two index numbers are determined that describe the 
clayeyness of the finer fraction of soil. The soil is passed through a sieve, B.S. No. 36 or 
U.S. Standard No. 40, to remove coarse sand and gravel. In the first index test5 the finer 
fraction is remoulded into a paste with additional water in a shallow cup. As water is added 
the structure of fine soil particles is remoulded into looser states and so the paste becomes 
progressively less stiff. Eventually the soil paste has taken up sufficient water that it has 
the consistency of a thick cream; and then a groove in the paste (see Fig. 1.3) will close 
with the sides of the groove flowing together when the bottom of the cup is given a 
succession of 25 blows on its base. The paste is then at the ‘lowest limit’ of a continuing 
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range of liquid states: the water content (defined in §1.5) is determined and this is called 
the liquid limit (LL) of that soil. 

The strength of the paste will increase if the paste is compressed either by 
externally applied pressure, or by the drying pressures that are induced as water evaporates 
away into the air and the contracting surfaces of water (menisci) make the soil particles 
shrink into more closely packed states. This hardening phenomenon will be discussed more 
extensively in later chapters; it will turn out (a) that the strength of the paste increases in 
direct proportion to the increase of pressure, and (b) that the reduction of water content is 
proportional to the logarithm of the ratio in which the pressure is increased. 

In the second index test5 the soil paste is continuously remoulded and at the same 
time allowed to air-dry, until it is so stiff that when an attempt is made to deform the soil 
plastically into a thin thread of 1/8 in. diameter, the soil thread crumbles. At that state the 
soil has approximately a hundred times the strength that it had when remoulded at the 
higher water content that we call the liquid limit: because of the logarithmic relationship 
between pressure (or strength) and water content it will turn out that this hundred-fold 
increase in strength corresponds to a characteristic reduction of water content (dependent 
on the compressibility of the soil). The water content of the crumbled soil thread is 
determined and is called the plastic limit (PL). The reduction of water content from the 
liquid limit is calculated and is given the name plasticity index (PI) = (LL – PL). Soils with 
a high plasticity index are highly plastic and have a large range of water contents over 
which they can be remoulded: in English common speech they might be called ‘heavy’ 
clay soils. 

 
Fig. 1.3 Liquid Limit Test Groove (After Lambe20) 

 
Skempton13 found that there is a correlation between the plasticity index of a soil 

and the proportion of particles of clay size in the soil. If a given specimen of clay soil is 
mixed with various proportions of silt soil then there is a constant ratio of  

micronstwothanfinerpercentage
indexplasticityActivity=  

The activity of clay soil depends on the clay minerals which form the solid phase 
and the solute ions in the water (or liquid phase). 
 
1.4 Soil Classification  

The engineer’s classification of soil by mechanical grading and index tests may 
seem a little crude: there is a measure of subjective choice in the definition of a mechanical 
grading, the index tests at first appear rather arbitrary, and we have quite neglected to make 
any evaluations either of the fabric and origin of the soil, or of the nature of the clay 
minerals and their state in the clay-water system. However, in this section we will suggest 
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that the simple engineering classification does consider the most important mechanical 
attributes of soil. 

It is hard to appreciate the significance of the immense diversity of sizes of soil 
particles. It may be helpful to imagine a city scene in which men are spreading tarred road 
stone in the pavement in front of a fifteen-story city building. If this scene were reduced in 
scale by a factor of two hundred thousand then a man of 1.8 metres in height would be nine 
microns high – the size of a medium silt particle; the building would be a third of a 
millimetre high – the size of a medium sand grain; the road stones would be a tenth of a 
micron  –  the size of what are called ‘colloidal’ particles; the layer of tar would correspond 
to a thickness of several water molecules around the colloidal particles. Our eyes could 
either focus on the tarred stones in a small area of road surface, or view the grouping of 
adjacent buildings as a whole; we could not see at one glance all the objects in that 
imaginary scene. The diversity of sizes of soil particles means that a complete survey of 
their geometry in a soil specimen is not feasible. If we select a volume of 1 m3 of soil, 
large enough to contain one of the largest particles (a boulder) then this volume could also 
contain of the order of 108

 sand grains and of the order of 1016 clay particles. A further 
problem in attempting such a geometrical or structural survey would be that the surface 
roughness of the large irregular particles would have to be defined with the same accuracy 
as the dimensions of the smallest particles. 

An undisturbed soil can have a distinctive fabric. The various soil-forming 
processes may cause an ordering of constituents with concentration in some parts, and the 
creation of channels or voids in other parts. Evidence of these extensively occurring 
processes can be obtained by a study of the microstructure of the soil, and  
this can be useful in site investigation. The engineer does need to know what extent of any 
soil deposit in the field is represented by each specimen in the laboratory. Studies of the 
soil-forming processes, of the morphology of land forms, of the geological record of the 
site will be reflected in the words used in the description of the site investigation, but not in 
the estimates of mechanical strength of the various soils themselves.  

In chapters 5 and 6 we consider macroscopically the mechanical strength of soil as 
a function of effective pressure and specific volume, without reference to any microscopic 
fabric. We will suggest that the major engineering attributes of real soils can be explained 
in terms of the mechanical properties of a homogeneous isotropic aggregate of soil 
particles and water. We show that the index properties are linked with the critical states of 
fully disordered soil, and we suggest that the critical state strengths form a proper basis of 
the stability of works currently designed by practising engineers.  

Suppose we have a soil with a measured peak strength which (a) could not be 
correlated with index properties, (b) was destroyed after mechanical disturbance of the soil 
fabric, and (c) could only be explained in terms of this fabric. If we wished to base a design 
on this peak strength, special care would be needed to ensure that the whole deposit did 
have this particular (unstable) property. In contrast, if we can base a design on the 
macroscopic properties of soil in the critical states, we shall be concerned with more stable 
properties and we shall be able to make use of the data of a normal soil survey such as the 
in situ water content and index properties. 

We gave the name clay to particles of less than 2 micron effective diameter. More 
properly the name clay should be reserved for clay minerals (kaolinite, montmorillonite, 
illite, etc.). Any substance when immersed in water will experience surface forces: when 
the substance is subdivided into small fragments the body forces diminish with the cube of 
size while surface forces diminish with the square of size, and when the fragments are less 
than 0.1 micron in size the substance is in ‘colloidal’ form where surface forces 
predominate. The hydrous-alumino-silicate clay minerals have a sheet-like molecular 
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structure with electric charge on the surfaces and edges. As a consequence clay mineral 
particles have additional capacity for ion-exchange. Clearly, a full description of the 
clay/water/solute system would require detailed studies of a physical and chemical type 
described in a standard text, such as that by Grim.14 However, the composite effects of 
these physico-chemical properties of remoulded clay are reflected to a large measure in the 
plasticity index. In §6.9 we show how variation of plasticity corresponds to variation in the 
critical states, and this approach can be developed as a possible explanation of phenomena 
such as the al sensitivity of leached post-glacial marine clay, observed by Bjerrum and 
Rosenqvist.15

In effect, when we reaffirm the standard soil engineering practice of regarding the 
mechanical grading and index properties as the basis of soil classification, we are asserting 
that the influence of mineralogy, chemistry and origin of a soil on its mechanical is 
behaviour is adequately measured by these simple index tests. 
 
1.5 Water Content and Density of Saturated Soil Specimens 

If a soil specimen is heated to 105°C most of the water is driven off, although a 
little will still remain in and around the clay minerals. Heating to a higher temperature 
would drive off some more water, but we stop at this arbitrary standard temperature. It is 
then supposed that the remaining volume of soil particles with the small amount of water 
they still hold is in effect ‘solid’ material, whereas all the water that has been evaporated is 
‘liquid’. 

This supposition makes a clear simplification of a complicated reality. Water at a 
greater distance from a clay particle has a higher energy and a lower density than water 
that has been adsorbed on the clay mineral surface. Water that wets a dry surface of a clay 
mineral particle emits ‘heat of wetting’ as the water molecules move in towards the 
surface; conversely drying requires heat transfer to remove water molecules off a wet 
surface. The engineering simplification bypasses this complicated problem of adsorption 
thermodynamics. Whatever remains after the sample has been dried at 105°C is called 
solid; the specific gravity (Gs) of this residue is found by experiment. Whatever evaporates 
when the sample is dried is called pore-water and it is assumed to have the specific gravity 
of pure water. From the weights of the sample before and after drying the water content is 
determined as the ratio: 

.
solidsofweight

waterporeofweightcontentwater =w  

In this book we will attach particular significance to the volume of space v 
occupied by unit volume of solids: we will call v the specific volume of unit volume of 
solids. Existing soil mechanics texts use an alternative symbol e called ‘voids ratio’ which 
is the ratio between the volume of ‘voids’ or pore space and the volume of solids: .1 ev +=  
A further alternative symbol n called porosity is defined by .//)1( vevvn =−=  Figure 
1.4(a) illustrates diagrammatically the unit volume of solids occupying a space v, and Fig. 
1.4(b) shows separately the volumes and weights of the solids and the pore-water. In this 
book we will only consider fully saturated soil, with the space )1( −v full of pore-water.  
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Fig. 1.4 Specific Volume of Saturated Soil 

 
The total weight when saturated is { } ws vG γ)1( −+ and dry is Gsγw. These weights within a 
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It is useful to remember a relationship between the water content w and specific volume v 
of a saturated soil  

.1 wGv s+=          (1.6) 
Typical values are as follows: sand with Gs = 2.65 when in a loose state with v = 1.8 will 
have γ = 1.92γw; in a dense state with v = 1.5 will have γ = 2.10γw;   clay with Gs = 2.75 
when at the liquid limit might have w = 0.7 and then with v = 1+2.75×0.7 = 2.92 it will 
have γ = 1.60γw; at the plastic limit it might have w = 0.3 and then with v = 1+2.75×0.3 = 
1.83 it will have γ = 1.95γw. Actual values in any real case will be determined by 
experiment.  
 
1.6 The Effective Stress Concept  

We will discuss stress and strain in more detail in the next chapter, but here we 
must introduce two topics: (a) the general the treatment of essentially discontinuous 
material as if it were continuous, and (b) the particular treatment of saturated soil as a two 
phase continuum. 

 The first of these topics has a long history.16 Navier treated elastic material as an 
assembly of molecular particles with systems of forces which were assumed to be 
proportional to the small changes of distance between particles. In his computation of the 
sum of forces on a particle Navier integrated over a sphere of action as if molecular forces 
were continuously distributed, and ended with a single elastic constant. Subsequently, in 
1822 Cauchy replaced the notion of forces between molecular particles with the notion of 
distributed pressures on planes through the interior of a continuum. This work opened a 
century of successive developments in continuum mechanics. Cauchy and other early 
workers retained Navier’s belief that the elasticity of a material could be characterized by a 
single constant but, when Green offered a derivation of the equations of elasticity based on 
a potential function rather than on a hypothesis about the molecular structure of the 
material, it became clear that the linear properties of an isotropic material had to be 
characterized by two constants – a bulk modulus and a shear modulus. 

Thereafter, in the mathematical theory of elasticity and in other sections of 
continuum mechanics, success has attended studies which treat a volume of material 
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simply as a space in which some properties such as strain energy or plastic power are 
continuously distributed So far the advances in solid state physics which have been 
accompanied by introduction of new materials and by new interpretations of the properties 
of known materials, have not led to a revival of Navier’s formulation of elasticity. There is 
a clear distinction between workers in continuum mechanics who base solutions of 
boundary value problems on equations into which they introduce certain material constants 
determined by experiment, and workers in solid-state physics who discuss the material 
constants per se. 

Words like specific volume, pressure, stress, strain are essential to a proper study of 
continuum mechanics. Once a sufficient set of these words is introduced all subsequent 
discussion is judged in the wider context of continuum mechanics, and no plea for special 
treatment of this or that material can be admitted. Compressed soil, and rolled steel, and 
nylon polymer, must have essentially equal status in continuum mechanics. 

The particular treatment of saturated soil as a two-phase continuum, while perfectly 
proper in the context of continuum mechanics is sufficiently unusual to need comment. We 
have envisaged a distribution of clean solid particles in mechanical contact with each other, 
with water wetting everything except the most minute areas of interparticle contact, and 
with water filling every space not occupied by solids. The water is considered to be an 
incompressible liquid in which the pore pressure may vary from place to place. Pore-water 
may flow through the structure of particles under the influence of excess pore-pressures: if 
the structure of particles remains rigid a steady flow problem of seepage will arise, and if 
the structure of particles alters to a different density of packing the transient flow problem 
of consolidation will occur. The stress concept is discussed in chapter 2, and the total stress 
component σ normal to any plane in the soil is divided into two parts; the pore-pressure uw 
and the effective stress component ,'σ  which must be considered to be effectively carried 
by the structure of soil particles. The pore-pressure uw can be detected experimentally if a 
porous-tipped tube is inserted in the soil. The total stress component can be estimated from 
knowledge of the external forces and the weight of the soil body. The effective stress 
component 'σ  is simply calculated as 

wu−=σσ '          (1.7) 
and our basic supposition is that the mechanical behaviour of the effective soil structure 
depends on all the components of the effective stress and is quite independent of uw. 

 
Fig. 1.5 Saturated Soil as Two-phase Continuum 

 
In Fig. 1.5 the different phases are shown diagrammatically: each phase is assumed 

to occupy continuously the entire space, somewhat in the same manner that two vapours 
sharing a space are assumed to exert their own partial pressures. In Fig. 1.6 a simple tank is 
shown containing a layer of saturated soil on which is superimposed a layer of lead shot. 
The pore-pressure at the indicated depth in the layer is uw = γw×hw, and this applies 
whether hw is a metre of water in a laboratory or several kilometres of water in an ocean 
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abyss. The lead shot is applying the effective stress which of controls the mechanical 
behaviour of the soil. 

 
Fig. 1.6 Pore-pressure and Effective Stress  

 
The introduction of this concept of effective stress by Terzaghi, and its subsequent 
generalization by Rendulic, was the essential first step in the development of a continuum 
theory of the mechanical behaviour of remoulded saturated soils. 
 
1.7 Some Effects that are ‘Mathematical’ rather than ‘Physical’  

Most texts on soil mechanics17 refer to work of Prandtl which solved the problem 
of plane punch indentation into perfectly plastic material; the same texts also refer to work 
of Boussinesq which solved various problems of contact stresses in a perfectly elastic 
material. The unprepared reader may be surprised by the contrast  
between these solutions. In the elastic case stress and strain vary continuously, and every 
load or boundary displacement causes some disturbance – albeit a subtle one – everywhere 
in the material. In direct contrast, the plastic case of limiting stress distribution leads to 
regions of constant stress set abruptly against fans of varying stress to form a crude 
patchwork. 

We can begin to reconcile these differences when we realize that both types of 
solution must satisfy the same fundamental differential equations of equilibrium, but that 
the elastic equations are ‘elliptic’ in character18 whereas the plastic equations are 
‘hyperbolic’. A rather similar situation occurs in compressible flow of gases, where two 
strongly contrasting physical regimes are the mathematical consequence of a single 
differential equation that comes from a single rather simple physical model. 

The general differential equation of steady compressible flow in the (x, y) plane has 
the form19

( ) 01 2

2

2

2
2 =

∂
∂

+
∂
∂

−
yx

M φφ        (1.8) 

where φ is a potential function, and M (the Mach number) is the ratio u/vso of the flow 
velocity u and the sonic velocity vso corresponding to that flow. The model is simply one of 
a fluid with a limiting sonic velocity. 

To illustrate this, we have an example in Fig. 1.7(a) of wavefronts emanating at 
speed vso from a single fixed source of disturbance O in a fluid with uniform low-speed 
flow u<vso. After a time t, the centre of the disturbance has been carried a distance ut 
downstream, 
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Fig. 1.7 Wavefronts Disturbing Uniform Flow 

 
but this is less than the radius vsot of the wavefront. The wavefronts will eventually reach 
all points of the fluid. 
 In contrast, in Fig. 1.7(b) we have the same source disturbing a fluid with uniform 
high-speed flow u>vso. In this case the wavefronts are carried so fast downstream that they 
can never cross the Mach cone (of angle 2α where M sin α = 1) and never reach points of 
the fluid outside it. 

 
Fig. 1.8 High-speed Flow past an Aerofoil 

 
In the subsonic case where M<1 the general differential equation (1.8) is elliptic 

without real ‘characteristic’ directions (i.e., there is no real solution for α) and the Mach 
cone is not generated. In the supersonic case where M>1, the general differential equation 
is hyperbolic with real ‘characteristic’ directions existing at angles ± α to the direction of 
flow. 

The example of high speed flow past an aerofoil is shown in Fig. 1.8; above the 
aerofoil we show an ‘exact’ pattern of characteristics and below the aerofoil an 
approximation. The directions of the characteristics are found from the local sonic velocity 
and the flow velocity. Conditions along straight segments ‘a’ and ‘b’ of the profile dictate 
straight supersonic flow in domains A and B. The flow lines have concentrated changes of 
direction at the compression shocks C and E; in the exact solution a steady change of 
direction occurs throughout the expansion wave D – a  centred fan of characteristics – 
whereas in the approximation a concentrated expansion D’ leads to a concentrated change 
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of direction. This approximation is valid for calculations of integrated effects near the 
aerofoil. 

 Some simple intuitive understanding of a problem of plane plastic flow can be 
gained from Fig. 1.9, which shows inverted extrusion of a contained metal billet pressed 
against a square die. The billet A is rigidly contained: the billet advances on the die with a 
certain velocity but when the metal reaches the fan B, it distorts in shear and it leaves the 
die as a rigid bar C with twice the billet velocity. Each element of metal is rigid until it 
enters the fan, it shears and flows within the fan, and on exit it abruptly freezes into the 
deformed pattern. The effect of the die is severe, and local. The metal in the fan is stressed 
to its yield limit and it is not possible to transmit more pressure from the billet to the die 
face through this yielding plastic material. In the mathematically comparable problems of 
supersonic flow we have regions into which it is not possible to propagate certain 
disturbances and the inability of the material to disperse these disturbances results in 
locally concentrated physical effects. 

 
Fig. 1.9 Extrusion of Metal Billet (After Hill) 

 
We have to explain in this book much more complicated models than the models of 

compressible flow or plastic shear flow. It will take us three more chapters to develop 
initial concepts of stress and strain and of steady and transient flow of water in soil. When 
we reach the new models for mechanical behaviour of a soil it will take four more chapters 
to explain their working, and the last chapter can only begin to review what is already 
known of the mathematical consequences of older models. 
 
1.8 The Critical State Concept 

The kernel of our ideas is the concept that soil and other granular materials, if 
continuously distorted until they flow as a frictional fluid, will come into a well-defined 
critical state determined by two equations 

Mpq =  
.ln pvΓ λ+=  

The constants M, Γ, and λ represent basic soil-material properties, and the parameters q, v, 
and p are defined in due course. 

Consider a random aggregate of irregular ‘solid’ particles of diverse sizes which 
tear, rub, scratch, chip, and even bounce against each other during the process of 
continuous deformation. If the motion were viewed at close range we could see a 
stochastic process of random movements, but we keep our distance and see a continuous 
flow. At close range we would expect to find many complicated causes of power 
dissipation and some damage to particles; however, we stand back from the small details 
and loosely describe the whole process of power dissipation as ‘friction’, neglecting the 
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possibilities of degradation or of orientation of particles. The first equation of the critical 
states determines the magnitude of the ‘deviator stress’ q needed to keep the soil flowing 
continuously as the product of a frictional constant M with the effective pressure p, as 
illustrated in Fig. 1.10(a). 

Microscopically, we would expect to find that when interparticle forces increased, 
the average distance between particle centres would decrease. Macroscopically, the second 
equation states that the specific volume v occupied by unit volume of flowing particles will 
decrease as the logarithm of the effective pressure increases (see Fig. 1.10(b)). Both these 
equations make sense for dry sand; they also make sense for saturated silty clay where low 
effective pressures result in large specific volumes  –  that is to say, more water in the voids 
and a clay paste of a softer consistency that flows under less deviator stress. 

Specimens of remoulded soil can be obtained in very different states by different 
sequences of compression and unloading. Initial conditions are complicated, and it is a 
problem to decide how rigid a particular specimen will be and what will happen when it 
begins to yield. What we claim is that the problem is not so difficult if we consider the 
ultimate fully remoulded condition that might occur if the process of uniform distortion 
were carried on until the soil flowed as a frictional fluid. The total change from any initial 
state to an ultimate critical state can be precisely predicted, and our problem is reduced to 
calculating just how much of that total change can be expected when the distortion process 
is not carried too far. 

 
Fig. 1.10 Critical States 

 
The critical states become our base of reference. We combine the effective pressure 

and specific volume of soil in any state to plot a single point in Fig. 1.10(b): when we are 
looking at a problem we begin by asking ourselves if the soil is looser than the critical 
states. In such states we call the soil ‘wet’, with the thought that during deformation the 
effective soil structure will give way and throw some pressure into the pore-water (the 
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amount will depend on how far the initial state is from the critical state), this positive pore- 
pressure will cause water to bleed out of the soil, and in remoulding soil in that state our 
hands would get wet. In contrast, if the soil is denser than the critical states then we call the 
soil ‘dry’, with the thought that during deformation the effective soil structure will expand 
(this expansion may be resisted by negative pore-pressures) and the soil would tend to suck 
up water and dry our hands when we remoulded it. 
 
1.9 Summary  

We will be concerned with isotropic mechanical properties of soil-material, 
particularly remoulded soil which lacks ‘fabric’. We will classify the solids by their 
mechanical grading. The voids will be saturated with water. The soil-material will possess 
certain ‘index’ properties which will turn out to be significant because they are related to 
important soil properties – in particular the plasticity index PI will be related to the 
constant λ from the second of our critical state equations. 

The current state of a body of soil-material will be defined by specific volume v, 
effective stress (loosely defined in eq. (1.7)), and pore-pressure uw. We will begin with the 
problem of the definition of stress in chapter 2. We next consider, in chapter 3, seepage of 
water in steady flow through the voids of a rigid body of soil- material, and then consider 
unsteady flow out of the voids of a body of soil-material while the volume of voids alters 
during the transient consolidation of the body of soil-material (chapter 4). 

With this understanding of the well-known models for soil we will then come, in 
chapters 5, 6, 7, and 8, to consider some models based on the concept of critical states. 
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2  
Stresses, strains, elasticity, and plasticity  
 
 
2.1 Introduction  

In many engineering problems we consider the behaviour of an initially unstressed 
body to which we apply some first load-increment. We attempt to predict the consequent 
distribution of stress and strain in key zones of the body. Very often we assume that the 
material is perfectly elastic, and because of the assumed linearity of the relation between 
stress-increment and strain-increment the application of a second load-increment can be 
considered as a separate problem. Hence, we solve problems by applying each load-
increment to the unstressed body and superposing the solutions. Often, as engineers, we 
speak loosely of the relationship between stress-increment and strain-increment as a ‘stress 
– strain’ relationship, and when we come to study the behaviour of an inelastic material we 
may be handicapped by this imprecision. It becomes necessary in soil mechanics for us to 
consider the application of a stress-increment to a body that is initially stressed, and to 
consider the actual sequence of load-increments, dividing the loading sequence into a 
series of small but discrete steps. We shall be concerned with the changes of configuration 
of the body: each strain-increment will be dependent on the stress within the body at that 
particular stage of the loading sequence, and will also be dependent on the particular 
stress-increment then occurring.  

In this chapter we assume that our readers have an engineer’s working 
understanding of elastic stress analysis but we supplement this chapter with an appendix A 
(see page 293). We introduce briefly our notation for stress and stress-increment, but care 
will be needed in §2.4 when we consider strain-increment. We explain the concept of a 
tensor being divided into spherical and deviatoric parts, and show this in relation to the 
elastic constants: the axial compression or extension test gives engineers two elastic 
constants, which we relate to the more fundamental bulk and shear moduli. For elastic 
material the properties are independent of stress, but the first step in our understanding of 
inelastic material is to consider the representation of possible states of stress (other than the 
unstressed state) in principal stress space. We assume that our readers have an engineer’s 
working understanding of the concept of ‘yield functions’, which are functions that define 
the combinations of stress at which the material yields plastically according to one or other 
theory of the strength of materials. Having sketched two yield functions in principal stress 
space we will consider an aspect of the theory of plasticity that is less familiar to engineers: 
the association of a plastic strain-increment with yield at a certain combination of stresses. 
Underlying this associated ‘flow’ rule is a stability criterion, which we will need to 
understand and use, particularly in chapter 5. 
  

2.2 Stress 
We have defined the effective stress component normal to any plane of cleavage in 

a soil body in eq. (1.7). In this equation the pore-pressure uw, measured above atmospheric 
pressure, is subtracted from the (total) normal component of stress σ acting on the cleavage 
plane, but the tangential components of stress are unaltered. In Fig. 2.1 we see the total 
stress components familiar in engineering stress analysis, and in the following Fig. 2.2 we 
see the effective stress components written with tensor-suffix notation. 
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Fig. 2.1 Stresses on Small Cube: Engineering Notation 

 
The equivalence between these notations is as follows: 
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We use matrix notation to present these equations in the form 
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Fig. 2.2 Stresses on Small Cube: Tensor Suffix Notation 

 
In both figures we have used the same arbitrarily chosen set of Cartesian reference axes, 
labelling the directions (x, y, z) and (1, 2, 3) respectively. The stress components acting on 
the cleavage planes perpendicular to the 1-direction are 11'σ , 12'σ  and .'13σ  We have 
exactly similar cases for the other two pairs of planes, so that each stress component can be 
written as ij'σ  where the first suffix i refers to the direction of the normal to the cleavage 
plane in question, and the second suffix j refers to the direction of the stress component 
itself. It is assumed that the suffices i and j can be permuted through all the values 1, 2, and 
3 so that we can write 
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The relationships jiij '' σσ ≡ expressing the well-known requirement of equality of 
complementary shear stresses, mean that the array of nine stress components in eq. (2.1) is 
symmetrical, and necessarily degenerates into a set of only six independent components. 

At this stage it is important to appreciate the sign convention that has been adopted 
here; namely, compressive stresses have been taken as positive, and the shear stresses 
acting on the faces containing the reference axes (through P) as positive in the positive 
directions of these axes (as indicated in Fig. 2.2). Consequently, the positive shear stresses 
on the faces through Q (i.e., further from the origin) are in the opposite direction. 

Unfortunately, this sign convention is the exact opposite of that used in the standard 
literature on the Theory of Elasticity (for example, Timoshenko and Goodier1, Crandall 
and Dahl2) and Plasticity (for example, Prager3, Hill4, Nadai5), so that care must be taken 
when reference and comparison are made with other texts. But because in soil mechanics 
we shall be almost exclusively concerned with compressive stresses which are universally 
assumed by all workers in the subject to be positive, we have felt obliged to adopt the same 
convention here. 

It is always possible to find three mutually orthogonal principal cleavage planes 
through any point P which will have zero shear stress components. The directions of the 
normals to these planes are denoted by (a, b, c), see Fig. 2.3. The array of three principal 
effective stress components becomes 
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and the directions (a, b, c) are called principal stress directions or principal stress axes.  
If, as is common practice, we adopt the principal stress axes as permanent reference axes 
we only require three data for a complete specification of the state of stress at P. However, 
we require three data for relating the principal stress axes to the original set of arbitrarily 
chosen reference axes (1, 2, 3). In total we require six data to specify stress relative to 
arbitrary reference axes. 

 
Fig. 2.3 Principal Stresses and Directions 

 
 2.3 Stress-increment 

When considering the application of a small increment of stress we shall denote the 
resulting change in the value of any parameter x by  This convention has been adopted in 
preference to the usual notation & because of the convenience of being able to express, if 
need be, a reduction in x by  and an increase by 

.x&

x&+ x&−  whereas the mathematical 
convention demands that xδ+ always represents an increase in the value of x. With this 
notation care will be needed over signs in equations subject to integration; and it must be 
noted that a dot does not signify rate of change with respect to time. 
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Hence, we will write stress-increment as 
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where each component ij'σ& is the difference detected in effective stress as a result of the 
small load-increment that was applied; this will depend on recording also the change in 
pore-pressure This set of nine components of stress-increment has exactly the same 
properties as the set of stress components 

.wu&

ij'σ  from which it is derived. Complementary 
shear stress-increments will necessarily be equal ;'' jiij σσ && ≡ and it will be possible to find 
three principal directions (d,e,f) for which the shear stress-increments disappear 0' ≡ijσ& and 
the three normal stress-increments ij'σ& become principal ones. 

In general we would expect the data of principal stress-increments and their 
associated directions (d,e,f) at any interior point in our soil specimen to be six data quite 
independent of the original stress data: there is no a priori reason for their principal 
directions to be identical to those of the stresses, namely, a,b,c. 
 
2.4 Strain-increment 

In general at any interior point P in our specimen before application of the load-
increment we could embed three extensible fibres PQ, PR, and PS in directions (1, 2, 3), 
see Fig. 2.4. For convenience these fibres are considered to be of unit length. After 
application of the load-increment the fibres would have been displaced to positions , 

, and . This total displacement is made up of three parts which must be carefully 
distinguished: 

Q'P'
R'P' S'P'

(a) body displacement 
(b) body rotation  
(c) body distortion. 

 
Fig. 2.4 Total Displacement of Embedded Fibres 

  
We shall start by considering the much simpler case of two dimensional strain in Fig. 2.5. 
Initially we have in Fig. 2.5(a) two orthogonal fibres PQ and PR (of unit length) and their 
bisector PT (this bisector PT points in the spatial direction which at all times makes equal 
angles with PQ and PR; PT is not to be considered as an embedded fibre). After a small 
increment of plane strain the final positions of the fibres are  and (no longer 
orthogonal or of unit length) and their bisector . The two fibres have moved 

Q'P' R'P'
T'P'
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respectively through anticlockwise angles α and β, with their bisector having moved 
through the average of these two angles. This strain-increment can be split up into the three 
main components: 

(a) body displacement represented by the vector  in Fig. 2.5(b); PP'
(b) body rotation of ( βαθ += 2

1& ) shown in Fig. 2.5(c); 
(c) body distortion which is the combined result of compressive strain-
increments 11ε&  and 22ε&  (being the shortening of the unit fibres), and a relative 
turning of the fibres of amount ( ),2

1
2112 αβεε −≡≡ && as seen in Fig. 2.5(d). 

 
Fig. 2.5 Separation of Components of Displacement 

 
 The latter two quantities are the two (equal) shear strain- increments of irrotational 
deformation; and we see that their sum ( )αβεε −≡+ 2112 && is a measure of the angular 
increase of the (original) right-angle between directions 1 and 2. The definition of shear 

 
Fig. 2.6 Engineering Definition of Shear Strain 

 
strain, γ,* often taught to engineers is shown in Fig. 2.6 in which 0=α and γβ −= and use 
of the opposite sign convention associates positive shear strain with a reduction of the 
right-angle. In particular we have 21122

1 εεγθ &&& ==−= and half of the distortion γ is really bodily 
rotation and only half is a measure of pure shear. 

Returning to the three-dimensional case of Fig. 2.4 we can similarly isolate the 
body distortion of Fig. 2.7 by removing the effects of body displacement and rotation. The 
displacement is again represented by the vector  in Fig. 2.4, but the rotation is that 
experienced by the space diagonal. (The space diagonal is the locus of points equidistant 
from each of the fibres and takes the place of the bisector.) The resulting distortion of Fig. 
2.7 consists of the compressive strain-increments 

PP'

332211 ,, εεε &&& and the associated shear 
strain-increments :,, 211213313223 εεεεεε &&&&&& === and here again, the first suffix refers to the 
direction of the fibre and the second to the direction of change. 
 
* Strictly we should use tan γ and not γ; but the definition of shear strain can only apply for angles so small that the 
difference is negligible.  
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Fig. 2.7 Distortion of Embedded Fibres 

 
We have, then, at this interior point P an array of nine strain measurements 
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of which only six are independent because of the equality of the complementary shear 
strain components. The fibres can be orientated to give directions (g, h, i) of principal 
strain-increment such that there are only compression components 
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The sum of these components ( )ihg εεε &&& ++ equals the increment of volumetric 
(compressive) strain ( )δνν −=& which is later seen to be a parameter of considerable 
significance, as it is directly related to density. 

There is no requirement for these principal strain-increment directions (g, h, i) to 
coincide with those of either stress (a, b, c) or stress-increment (d, e, f), although we may 
need to assume that this occurs in certain types of experiment. 

 
2.5 Scalars, Vectors, and Tensors 

In elementary physics we first encounter scalar quantities such as density and 
temperature, for which the measurement of a single number is sufficient to specify 
completely its magnitude at any point. 

When vector quantities such as displacement di are measured, we need to observe 
three numbers, each one specifying a component (d1, d2, d3) along a reference direction. 
Change of reference directions results in a change of the numbers used to specify the 
vector. We can derive a scalar quantity ( ) ( )iidddddd =++= 2

3
2

2
2

1  (employing the 
mathematical summation convention) which represents the distance or magnitude of the 
displacement vector d, but which takes no account of its direction. 

Reference directions could have been chosen so that the vector components were 
simply (d, 0, 0), but then two direction cosines would have to be known in order to define 
the new reference axes along which the non-zero components lay, making three data in all. 
There is no way in which a Cartesian vector can be fully specified with less than three 
numbers. 
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The three quantities, stress, stress-increment, and strain-increment, previously 
discussed in this chapter are all physical quantities of a type called a tensor. In 
measurement of components of these quantities we took note of reference directions twice, 
permuting through them once when deciding on the cleavage planes or fibres, and a second 
time when defining the directions of the components themselves. The resulting arrays of 
nine components are symmetrical so that only six independent measurements are required. 
There is no way in which a symmetrical Cartesian tensor of the second order can be fully 
specified by less than six numbers. 

Just as one scalar quantity can be derived from vector components so also it proves 
possible to derive from an array of tensor components three scalar quantities which can be 
of considerable significance. They will be independent of the choice of reference directions 
and unaffected by a change of reference axes, and are termed invariants of the tensor. 

The simplest scalar quantity is the sum of the diagonal components (or trace), such 
as ( ) ( ,''''''' 332211 cbaii )σσσσσσσ ++=++= derived from the stress tensor, and similar 
expressions from the other two tensors. It can be shown mathematically (see Prager and 
Hodge6 for instance) that any strictly symmetrical function of all the components of a 
tensor must be an invariant; the first-order invariant of the principal stress tensor is 
( ,''' cba )σσσ ++ and the second-order invariant can be chosen as 
( baaccb '''''' )σσσσσσ ++ and the third-order one as ( ).''' cba σσσ  Any other symmetrical 

function of a 3 × 3 tensor, such as ( )222 ''' cba σσσ ++ or ( ),''' 333
cba σσσ ++ can be expressed 

in terms of these three invariants, so that such a tensor can only have three independent 
invariants. 

We can tabulate our findings as follows: 
 

Array of zero order first order second order 
Type scalar vector tensor 

Example specific volume displacement stress 
Notation υ di ij'σ  

Number of 
components 30 = 1 31 = 3 32 = 9 

Independent data 1 3 
⎩
⎨
⎧

symetrical if 6
generalin  9

 

Independent scalar 
quantities that can be 

derived 
1 1 3 

 
2.6 Spherical and Deviatoric Tensors 

 A tensor which has only principal components, all equal, can be called spherical. 
For example, hydrostatic or spherical pressure p can be written in tensor form as: 
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For economy we shall adopt the last of these notations. A tensor which has one principal 
component zero and the other two equal in magnitude but of opposite sign can be called 
deviatoric. For example, plane (two-dimensional) shear under complementary shear 
stresses t is equivalent to a purely deviatoric stress tensor with components 
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It is always possible to divide a Cartesian tensor, which has only principal components, 
into one spherical and up to three deviatoric tensors. The most general case can be divided 
as follows 
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 2.7 Two Elastic Constants for an Isotropic Continuum 

A continuum is termed linear if successive effects when superposed leave no 
indication of their sequence; and termed isotropic if no directional quality can be detected 
in its properties.  

The linear properties of an elastic isotropic continuum necessarily involve only two 
fundamental material constants because the total effect of a general tensor ij'σ will be 
identical to the combined effects of one spherical tensor p and up to three deviatoric 
tensors, ti. One constant is related to the effect of the spherical tensor and the other to any 
and all deviatoric tensors. 

For an elastic specimen the two fundamental elastic constants relating stress-
increment with strain-increment tensors are (a) the Bulk Modulus K which associates a 
spherical pressure increment with the corresponding specific volume change p& ν&  
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ν
νεεε
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p        (2.5) 

and (b) the Shear Modulus G which associates each deviatoric stress-increment tensor with 
the corresponding deviatoric strain-increment tensor as follows 
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(The factor of 2G is a legacy from the use of the engineering definition of shear strain γ in 
the original definition of the shear modulus t = Gγ. We are also making the important 
assumption that the principal directions of the two sets of tensors coincide.) 

It is usual for engineers to derive alternative elastic constants that are appropriate to 
a specimen in an axial compression (or extension) test, Fig. 2.8(a) in which 

.0'';'' === cbla σσσσ &&&&  Young’s Modulus E and Poisson’s Ratio v are obtained from 
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By reference to Fig. 2.8(b) we can split this strain-increment tensor into its spherical and 
deviatoric parts as follows: 

( ) ( )

( ) ( ) .
0

1
1

3
1

1
0

1

3
1

1
1

0

3
1

1
1

1

3
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

baac

cbcba

c

b

a

εεεε

εεεεε
ε

ε
ε

&&&&

&&&&&

&

&

&

 (2.8) 

 

 
Fig. 2.8 Unconfined Axial Compression of Elastic Specimen 

 
But from eq. (2.5) 
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Substituting in eq. (2.8) and using eq. (2.7) we have 
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which gives the usual relationships 
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−ν       (2.9) 

between the various elastic constants. 
We see that axial compression of 1/E is only partly due to spherical compression 

1/9K and mostly caused by shearing distortion 1/3G; conversely, indirect swelling v/E is 
the difference between shearing distortion 1/6G and spherical compression 1/9K. 
Consequently, we must realize that Young’s Modulus alone cannot relate the component of 
a tensor of stress-increment that is directed across a cleavage plane with the component of 
the tensor of compressive strain-increment that gives the compression of a fibre embedded 
along the normal to that cleavage plane. An isotropic elastic body is not capable of 
reduction to a set of three orthogonal coil springs. 
 
2.8 Principal Stress Space 

The principal stresses ( cba ',',' )σσσ experienced by a point in our soil continuum 
can be used as Cartesian coordinates to define a point D in a three-dimensional space, 
called principal stress space. This point D, in Fig. 2.9, although it represents the state of the 
particular point of the continuum which we are at present considering, only displays the 
magnitudes of the principal stresses and cannot fully represent the stress tensor because the 
three data establishing the directions of the principal stresses are not included. 

The division of the principal stress tensor into spherical and deviatoric parts can 
readily be seen in Figs. 2.9 and 2.10. Suppose, as an example, the principal stresses in 
question are ;3',6',12' === cba σσσ then, recalling eq. (2.4), 

 

( ) ( )

( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
−

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
1

1

3
''

1
0

1

3
''

1
1

0

3
''

1
1

1

3
'''

'
'

'

3
6

12

baac

cbcba

c

b

a

σσσσ

σσσσσ

σ
σ

σ

 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
1

1
2

1
0

1
3

1
1

0
1

1
1

1
7

 



 26 

ODCDBCABOA =+++=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
2

2

3
0

3

1
1

0

7
7

7

 

 

 
Fig. 2.9 Principal Stress Space 

 
Hence, we see that the point D which represents the state of stress, can be reached either in 
a conventional way, OD, by mapping the separate components of the tensor 
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and three different deviatoric stress tensors and mapping AB, BC, and CD: 

.
0

2
2

and,
3

0
3

,
1

1
0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
 

So AB is a vector in the plane perpendicular to the u-axis and with equal and opposite 
components of unity parallel with the other two principal axes: and similarly BC and CD 
are vectors as shown.  

As mentioned in §2.1, the principal stress space is particularly favoured for 
representation of theories of the yield strength of plastic materials. Experiments on metals 
show that large changes of spherical pressure p have no influence on the deviatoric stress 
combinations that can cause yield. Consequently, for perfectly plastic material it is usual to 
switch from the principal stress axes to a set of Cartesian axes (x, y, z) where 
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Fig. 2.10 Section of Stress Space Perpendicular to the Space Diagonal 

 
The x-axis coincides with the space diagonal; change of spherical pressure has no 
influence on yielding and the significant stress combinations are shown in a plane 
perpendicular to the space diagonal. In the Fig. 2.10 we look down the space diagonal and 
see the plane yz: the z-axis is coplanar with the x-axis and the c'σ -axis, but of course the 
three axes ba ',' σσ and c'σ are to be envisaged as rising out of the plane of Fig. 2.10. The 
mapping of the three different deviatoric stress tensors of our example is shown by the 
pairs of vectors AB and BC and CD in Fig. 2.10. 

When we consider the yielding of perfectly plastic material the alternative theories 
of strength of materials can be either described by algebraic yield functions or described by 
symmetrical figures on this yz-plane, as we will now see in the next section. 
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2.9 Two Alternative Yield Functions 
Two alternative yield functions are commonly used as criteria for interpretation of 

tests on plastic behaviour of metals. The first, named after Tresca, suggests that yield 
occurs when the maximum shear stress reaches a critical value k. We can see the effect of 
the criterion in the sector where in which the function becomes 

02'' =−−= kF ca σσ         (2.11) 

and the intersection of this with the plane ( ) .const'''
3
1

=++= cbap σσσ defines one side IN 

of the regular hexagon INJLKM in Fig. 2.11. The other sides are defined by appropriate 
permutation of parameters. 
The second function, named after Mises, is expressed as 

( ) ( ) ( ) 02'''''' 2222 =−−+−+−= YF baaccb σσσσσσ     (2.12) 
where Y is the yield stress obtained in axial tension. This function together with 

( ) const.'''
3
1

=++= cbap σσσ  has as its locus a circle of radius Y⎟
⎠
⎞

⎜
⎝
⎛

3
2 in Fig. 2.11. Since 

these two loci are unaffected by the value of the spherical pressure ( ) ,'''
3
1 pcba =++ σσσ  

they will generate 

 
Fig. 2.11 Yield Loci of Tresca and Mises 

 
for various values of p (or x) hexagonal and circular cylinders coaxial with the x-axis. 
These are illustrated in Fig. 2.12: these cylinders are examples of yield surfaces, and all 
states of stress at which one or other criterion allows material to be in stable equilibrium 
will be contained inside the appropriate surface. 
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Fig. 2.12 Yield Surfaces in Stress Space 

 
Most tests are what we will call axial tests, in which a bar or cylinder of material 

sustains two radial principal stresses of equal magnitude (often but not always zero) and 
the axial principal stress is varied until the material yields in compression or extension. 
Data of stresses in such axial tests will lie in an axial-test plane in principal stress space; 
the three diagonal lines IL, JM, KN, in Fig. 2.11, each lie in one of the three such planes 
that correspond to axial compression tests with cba oror ''' σσσ respectively as the major 
principal stress. Now if we consider, for example, the axial-test plane for which ,'' cb σσ =  
this intersects Tresca’s yield surface in the pair of lines ,2'' kca ±=−σσ and it intersects 
Mises’ yield surface in the pair of lines .'' Yca ±=−σσ We cannot use axial-test data to 
decide which yield function is appropriate to a material  –  each will fit equally well if we 
choose 2k = Y. More refined tests* on thin-wall tubes of annealed metal in combined 
tension and torsion do appear to be fitted by Mises’ yield function with rather more 
accuracy than by Tresca’s yield function: however, the error in Tresca’s function is not 
sufficient to invalidate its use in appropriate calculations. 

  
2.10 The Plastic-Potential Function and the Normality Condition 

As engineers, we concentrate attention on yield functions, because when we design 
a structure we calculate the factor by which all loads must be multiplied before the 
structure is brought to collapse. We use elastic theory to calculate deflections under 
working loads, and generally neglect the calculation of strain-increments in plastic flow. 
We will find in later chapters that our progress will depend on an understanding of plastic 
flow. 

When any material flows without vorticity it is possible to find a potential function, 
such that the various partial derivatives of that function at any point are equal to the 
various velocity components at that point. We will meet ‘equipotentials’ when we discuss 
seepage in the next chapter, but the idea of a potential is not restricted to flow of water. It 
is the nature of plastic material to flow to wherever it is forced by the heavy stresses that 
bring the material to yield, so the potential function for plastic flow must be a function of 
the components r of stress. The classical formulation of theory of plasticity considers a 
class of materials for which the yield function F(u) also serves as the plastic potential for 
the flow. Each of the plastic strain-increments is found from the partial derivatives of the 
yield function by the equation (which is in effect a definition of plasticity) 

ij

ij
p F

'σ
εν

∂
∂

=&           (2.13) 

* An early set of tests was carried out in the engineering laboratories at Cambridge by G. I. Taylor and H. Quinney.7  
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where v is a scalar factor proportional to the amount of work used in that particular set of 
plastic strain-increments. 

If a material yields as required by Mises’ function, eq. (2.12), we can calculate the 
gradients of this potential function as 
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For given values of ( )cba ',',' σσσ these equations fix the relative magnitudes of the strain-
increments, but the number v which adjusts their absolute magnitudes will depend on the 
amount of work used to force that particular set of plastic strain-increments. With given 
values of ( cba ',',' )σσσ  we can equally well associate a point in principal stress space on 
the yield surface: we can then visualize the plastic strain-increment vector as being normal 
to the yield surface at that point. Once we have decided upon a yield surface then the 
associated flow rule of the theory of plasticity obeys a normality condition: for Mises’ 
yield function the plastic strain-increments are associated with vectors perpendicular to the 
cylindrical surface, while for Tresca’s yield function the associated vectors are 
perpendicular to the faces of the hexagonal prism. 
 
2.11 Isotropic Hardening and the Stability Criterion 

In the yielding of a metal such as annealed copper we observe, as shown in Fig. 
2.13, that once the material has carried an axial stress Y it has hardened and will not yield 
again until that stress Y is exceeded. We will be particularly interested in a class of 
isotropic hardening plastic materials, for which we can simply substitute the increasing 
values of Y into equations such as (2.12) and get yield surfaces that expand symmetrically.  

Our assumption of isotropic hardening does not mean that we dismiss an apparent 
occurrence of Bauschinger’s effect. Some metal specimens, on hardening in axial tension 
to a stress Y, will yield on reversal of stress at an axial compressive stress less than Y, as 
illustrated in Fig. 2.13: in metals this indicates some anisotropy. In soil the yield strength is 
found to be a function of spherical pressure 

 
Fig. 2.13 Hardening in an Axial Test 
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and specific volume, so a major change of yield strength is to be expected on reversal of 
stress without anisotropy. 

In Fig. 2.14(a) we have sketched a yield locus .0=F  The vector ij'σ represents a 
combination of stress that brings the material to the point of yielding. The fan of small 
vectors ij'σ& represent many possible combinations of stress-increment components which 
would each result in the same isotropic hardening of the material to a new yield 
locus  In Fig. 2.14(b) we sketch a normal vector to the yield locus: no matter what 
stress-increment vector is applied the same associated plastic strain-increments will occur 
because they are governed by the particular stress combination that has brought the 
material to yield. The plastic strain-increments are not related directly to the stress-
increments, nor are they directly proportional to the stress components (we can see in the 
figure that the strain- increment vector is not sticking out in the same direction as the 
extension of

.0'=F

ij'σ ). The plastic strain-increments are found as the gradients of a potential 

function  –  the function is F and is normal to F. ij
pε&

Engineers have understandably been slow to accept that the materials with which 
they commonly work really do obey this curious associated flow rule. Recently, D. C. 
Drucker8 has introduced the most persuasive concept of ‘stability’ which illuminates this 
matter. For all stress-increment vectors directed outwards from 

  
Fig. 2.14 Isotropic Hardening and Associated Plastic Flow 

  
the tangent to the yield locus, the vector product of the stress-increment vector ij'σ& with the 

associated plastic strain-increment vector will be positive or zero ij
pε&

          (2.14) .0' ≥ij
p

ij εσ &&

Plastic materials are stable in the sense that they only yield for stress increments that 
satisfy eq. (2.14). It is not appropriate for us now to make general statements that go 
further with the stability concept: it has been the subject of various discussions, and from 
here on we do best to develop specific arguments that are appropriate to our own topic. 
Our chapters 5 and 6 will pick up this theme again and go some way towards fulfilment of 
a suggestion of Drucker, Gibson, and Henkel9, that soil behaviour can be described by a 
theory of plasticity.10,11 

 

 

2.12 Summary 
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Most readers will have some knowledge of the theories of elasticity, plasticity and 
soil mechanics, so th

 components can be defined in the 

at parts of this chapter will already be familiar to them. As a 
consequence, the omission and the inclusion of certain material may seem curious on first 
reading, but the selection and emphasis are deliberate. 

We are concerned with the development of a continuum analysis, so that we need 
to be clear about the manner in which stress and strain
interior of a granular body. It will be found that the current state of a soil depends on the 
stress and the specific-volume: stress is a second-order symmetrical tensor which requires 
six numbers for a definition, while specific volume is a scalar and is defined by one 
number. By emphasizing the importance of the elastic bulk modulus K and shear-modulus 
G we hope to develop a feeling for these tensor and scalar quantities. 

For those who are familiar with Mohr’s circle as a representation of stress it may be 
a surprise to find no mention of it in this chapter, although it will be required as an 
appendix to chapters 8 and 9. Its omission at this stage is deliberate on the grounds that 
Mohr’s representation of stress imparts no understanding of the interrelation of stress-
increment and strain-increment in elastic theory, that it plays little part in continuum 
theories, and that the uncritical use of Mohr’s circle by workers in soil mechanics has been 
a major obstacle to the progress of our subject. 

In contrast, the representation of stress ,'ijσ  stress-increment ij'σ& and strain-
increment ,ijε& as compact symbols with the tens uffix is helpful to r progress. 
Representation of stress in principal stress space is useful and gives an understanding of 
the difference between spherical pressure and the deviatoric stress tensors. A cautionary 
word is needed to remind our readers that when a point in principal stress space is defined 
by three numbers we necessarily assume that we know the three direction cosines of 
principal directions (needed to make up the six numbers that define a symmetrical 3×3 
tensor). When we plot a stress-increment tensor in the same principal stress space, or 
associate a normal vector to a yield surface with the plastic strain-increment tensor, we 
necessarily assume that these tensors have the same principal directions: if not, then some 
more information is needed for the definition of these tensors. It will follow that the 
principal stress space representation is appropriate for discussion of behaviour of isotropic 
materials in which all principal directions coincide. 

We have met yield surfaces that apply to the yielding of elastic/plastic metal. As 
long as the material is elastic the stress and strain 

or s  ou

are directly related, so the state of the 
metal at yield must be a function of stress, and the yield surface can be defined in principal 
stress space. When metals yield, only plastic distortion occurs, and there is no plastic 
volume change. The hardening of metal can be defined by a family of successive surfaces 
in principal stress space and the succession is a function of plastic distortion increment. 
However, soils and other granular materials show plastic volume change, and we will need 
to innovate in order to represent this major effect. 

We have defined a parameter p, where 

3
''' cbap σσσ ++

=       from eq. (2.4) 

gives an average or mean of the 
pressure. One innovation that we will introduce is to propose that soil is a material for 
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3  
Seepage  
 
 
In this chapter the structure of soil particles within our two-phase continuum is considered 
to be stationary and effectively rigid, and we shall study the flow of water through it. This 
restriction means that we are investigating states of steady flow only, and we shall see in 
chapter 4 that transient flow implies change in effective stress which necessarily results in 
deformation of the soil matrix. 
 
3.1 Excess Pore-pressure  

A simple apparatus for investigating the one-dimensional flow of water through a 
soil is the permeameter of Fig. 3.1. The apparatus consists of a perspex cylinder containing 
a soil specimen, in this case a saturated sand, supported by a gauze mesh with suitable size 
of aperture. De-aired water is supplied from a source at a constant head higher than the top 
of the permeameter, so that water is forced to flow upwards through the sand specimen. 

Tappings at two neighbouring points, A and B, in the centre of the cylinder are 
connected with manometer tubes so that the pressures in the water can be recorded for both 
these points, with the level of the horizontal upper surface of the sand being used as datum. 

Measuring z positively downwards, and h positively upwards from this datum, the 
total pressure in the pore-water at A recorded by the manometer is simply wu

( .hzu ww += )γ Similarly, the total pressure at B is ( ).hhzzuu www δδγδ +++=+  

 
Fig. 3.1 Simple Permeameter 

 
The difference between these two expressions 

( hzu ww )δδγδ +=        (3.1) 
is the difference in total pore-pressure between A and B and consists of two terms: 

a) zwδγ  which is the ‘elevation’ head, solely due to the difference in levels between A 
and B; it ensures that the total pressures are related to the same datum, and 
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b) hwδγ  which will be denoted by uδ  and termed the excess pore-pressure between B 
and A; it is the sole cause of the (steady) flow of water upwards from B to A. 

 
The quantity, ,uδ  represents the energy loss per unit volume of water that flows from B to 
A; it is dissipated (a) in viscous drag as the water flows through the individual pores of the 
soil structure, and (b) in change of kinetic energy. In seepage problems in soil mechanics 
the latter term is negligible, and all the energy is effectively lost in drag, with 
corresponding reactions being generated in the soil structure, normally termed seepage 
forces. 
 
3.2 Hydraulic Gradient  
 The points A and B have been chosen to be on the same flowline (i.e., water flows 
from one point on a flowline to the next) which happens to be vertical in this particular 
apparatus. Generally the flow will not be vertical, and Fig. 3.2 illustrates the case of 
seepage of groundwater where A and B are still neighbouring points on a flowline 
separated by a distance δs measured along the flowline but against the flow. 

The hydraulic gradient i at the point A is a vector quantity defined to have 
magnitude 
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−=       (3.2) 

and to have direction of the flowline at A towards B. This choice of sign convention means 
that the hydraulic gradient is positive in the direction of the flow that it causes; and we 
need to note that it is a pseudo-dimensionless quantity, representing the space rate of 
energy loss per unit weight of water.  

 
Fig. 3.2 Seepage of Groundwater 

  

3.3 Darcy’s Law 
Darcy’s law (1856) resulted from experiments to establish the relationship between 

hydraulic gradients and rates of flow of water. If Q is the volume of water flowing through 
the permeameter during time t, then the artificial (or approach and discharge) velocity of 
the water is given by 

av

tA
Qv

t
a =  

where At is the total cross-sectional area of the interior of the perspex cylinder. 
Darcy’s law states that there is a linear relationship between hydraulic gradient and 

velocity for any given soil (representing a case of steady laminar flow at low Reynolds 
number) 
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s
hkkiva d

d
−==         (3.3) 

where the constant k is the coefficient of permeability (sometimes called the hydraulic 
conductivity) and has the dimensions of a velocity. Although the value of k is constant for 
a particular soil at a particular density it varies to a minor extent with viscosity and 
temperature of the water and to a major extent with pore size. For instance, for a coarse 
sand k may be as large as 0.3 cm/s = 3×105 ft/yr, and for clay particles of micron size k 
may be as small as 3×10-8 cm/s = 3×10-2 ft/yr. This factor of 107 is of great significance in 
soil mechanics and is linked with a large difference between the mechanical behaviours of 
clay and sand soils. 

 
Fig. 3.3 Results of Permeability Test on Leighton Buzzard Sand 

 
Typical results of permeability tests on a sample of Leighton Buzzard sand 

(between Nos. 14 and 25 B.S. Sieves) for a water temperature of 20°C are shown in Fig. 
3.3. Initially the specimen was set up in a dense state achieved by tamping thin layers of 
the sand. The results give the lower straight line OC, which terminates at C. Under this 
hydraulic gradient ic the upward drag on the particles imparted by the water is sufficient to 
lift their submerged weight, so that the particles float as a suspension and become a 
fluidized bed. This quicksand condition is also known as piping or boiling. 

At this critical condition the total drag upwards on the sand between the levels of A 
and B will be At hAu wt δγδ = and this must exactly balance the submerged weight of this 
part of the sample, namely .' sAt δγ  Hence, the fluidizing hydraulic gradient should be given 
by  

.
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1'
d
d

e
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s
hi s

w
f +

−
=+=−=

γ
γ        (3.4) 

For the sand in question with e = 0.620 (obtained by measuring the weight and overall 
volume of the sample) and Gs = 2.65, eq. (3.4), gives a critical hydraulic gradient of 1.02 
which is an underestimate of the observed value of 1.29 (which included friction due to the 
lateral stresses induced in the sand sample in its preparation). 

If during piping the supply of water is rapidly stopped the sand will settle into a 
very loose state of packing. The specific volume is correspondingly larger and the resulting 
permeability, given by line OD, has increased to k=0.589 cm/s from the original value of 
0.293 cm/s appropriate to the dense state. As is to be expected from eq. (3.4), the 
calculated value of the fluidizing hydraulic gradient has fallen to 0.945 because the sample 
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is looser; any increase in the value of e reduces the value of if given by eq. (3.4). We 
therefore expect ic>id. 

The variation of permeability for a given soil with its density of packing has been 
investigated by several workers and the work is well summarized by Taylor1 and Harr2. 
Typical values for various soil types are given in Table 3.1. 
 

Soil type Coefficient of permeability 
cm/sec 

Gravels          k > 1 
Sands          1> k >10-3

Silts          10-3 > k > 10-6

Clays          10-6 > k 

Table 3.1 Typical values of permeability 
 

The actual velocity of water molecules along their narrow paths through the 
specimen (as opposed to the smooth flowlines assumed to pass through the entire space of 
the specimen) is called the seepage velocity, vs. It can be measured by tracing the flow of 
dye injected into the water. Its average value depends on the unknown cross-sectional area 
of voids Av and equals Q/Avt. But 
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where Vt and Vv are the total volume of the sample and the volume of voids it contains, and 
n is the porosity. Hence, for the dense sand sample, we should expect the ratio of velocities 
to be 

.62.21
=

+
=

e
e

v
v

a

s  

It is general practice in all seepage calculations to use the artificial velocity va and 
total areas so that consistency will be achieved. 

 
3.4 Three-dimensional Seepage 

In the last section dealing with Darcy’s law, we studied the one-dimensional flow 
of water through a soil sample in the permeameter. We now extend these concepts to the 
general three-dimensional case, and consider the flow of pore-water through a small 
cubical element of a large mass of soil, as shown in Fig. 3.4.  
Let the excess pore-pressure at any point be given by the function  which 
remains unchanged with time, and let the resolved components of the (artificial) flow 
velocity v

),,( zyxfu =

a through the element be Since the soil skeleton or matrix remains 
undeformed and the water is assumed to be incompressible, the bulk volume of the element 
remains constant with the inflow of water exactly matching the outflow. Remembering that 
we are using the artificial velocity and total areas then we have 
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Darcy’s law, so far established only for a flowline, is also applicable for resolved 
components of velocity and hydraulic gradient.  

 
Fig. 3.4 Three-dimensional Seepage 

 
In addition, it is possible for the permeability of the soil not to be isotropic, so that we have 
as the most general case 
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and on substituting these equalities in eq. (3.6) we obtain  
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which is the general differential equation for the excess pore-pressure u(x, y, z) causing 
steady seepage in three dimensions.  

Having derived this equation we have an exact analogy with the corresponding 
differential equations for the steady flow of electricity and heat through bodies, 
respectively 
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where V is the electric potential, Rx, Ry, and Rz are electrical resistances, Θ is the 
temperature, and Cx, Cy, and Cz are thermal conductivities. Consequently, we can use these 
analogies for obtaining solutions to specific seepage problems. 
 
3.5 Two-dimensional Seepage 

In many real problems of soil mechanics the conditions are essentially two-
dimensional, as in the case of seepage under a long sheet-pile wall or dam. We shall 
examine the former of these in the next section. 
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If we take the y-axis along the sheet-pile wall, there can be no flow or change in 
excess pore-pressure in the y-direction; hence .0≡∂

∂
y

u  We can further simplify the 

problem by taking kx = kz, because even if this is not the case, we can reduce the problem 
to its equivalent by distorting the scale in one direction.* To do this we select a new 
transformed variable 
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so that the basic equation, (3.8), is reduced to 
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This equation (known as Laplace’s equation) is satisfied by plane harmonic functions, 
which are represented graphically by two families of orthogonal curves; one family forms 
the equipotentials and the other the flowlines, as shown in Figs. 3.5 and 3.6. 

However, there will not be many cases of particular boundary conditions for which 
eq. (3.9) will be exactly soluble in closed mathematical form, and we shall depend on the 
various approximate methods described in relation to the sheet pile example of the next 
section, 3.6. 
 
3.6 Seepage Under a Long Sheet Pile Wall: an Extended Example 

 Figure 3.5 is a section of a sheet pile wall  forming one side of a long coffer 
dam built in a riverbed: the bed consists of a uniform layer of sand overlying a horizontal 
(impermeable) stratum. The analysis of the cofferdam for any given depth of driving could 
pose the problems of the quantity of seepage that can be expected to enter the working area 
from under the wall, or the stability against piping which will be most critical immediately 
behind the wall. Approximate answers could be obtained from the following alternative 
methods: 

POP'

(a) Model experiment in the laboratory. A model of the riverbed is constructed in a narrow 
tank with glass or perspex sides which are perpendicular to the sheet pile. The different 
water levels on each side are kept constant, with the downstream level being just above the 
sandbed to ensure saturation. Probes are placed through these transparent sides at 
convenient positions, as for the permeameter, to record the excess pore-pressures and 
thereby indicate the equipotentials. The flowlines can readily be obtained by inserting 
small quantities of dye at points on the upstream surface of the sand (against one of the 
transparent faces of the tank) and tracing their subsequent paths. We can also measure the 
quantity of seepage that occurs in a given time. 

There will be symmetry about the centre line  and the imposed boundary 
conditions are that (i) the upper surface of the sand on the upstream side, AO, is an 
equipotential 

OPP'

,h=φ  (ii) the upper surface of the sand on the downstream side, OB, is also 
an equipotential ,0=φ (iii) the lower surface of the sand is a flowline, and (iv) the buried 
surface of the sheet pile itself is a flowline. Readings obtained from such a laboratory 
model have been used to give Fig. 3.5.  
 
* For full treatment of this topic, reference should be made to Taylor1 or Harr2 however, it should be noted that these 
authors differ in their presentation. Taylor’s flownets consist of conjugate functions formed by equipotentials of head and 
of flux, whereas Harr’s approach has conjugate functions of equal values of velocity potential and of velocity. There is, in 
effect, a difference of a factor of permeability between these two approaches which only becomes important for a soil 
with anisotropic permeability. Here we have an isotropic soil and this distinction need not concern us.  
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(b) Electrical analogue. A direct analogue of the model can be constructed by cutting out a 
thin sheet of some suitable conducting material to a profile identical to the section of the 
sand including a slit, OP, to represent the sheet pile. A potential is applied between the 
edges AO and OB; and equipotentials can be traced by touching the conducting sheet with 
an electrical probe connected to a Wheatstone bridge. 
 

 
Fig. 3.5 Seepage under Model of Long Sheet Pile Wall 

 
Unlike method (a) above, we cannot trace separately the flow-lines of current. This 

method can be extended to the much more complicated case of three-dimensional seepage 
by using an electrolyte as the conducting material.  
(c) Graphical flownet. It is possible to obtain a surprisingly accurate two-dimensional 
flownet (corresponding to that of Fig. 3.5) by a graphical method of trial and error. Certain 
guiding principles are necessary such as the requirement that the formation of the flownet 
is only proper when it is composed of ‘curvilinear squares’: these will not be dealt with 
here, but are well set out in Taylor’s book.1
(d) Relaxation methods. These are essentially the same as the graphical approach of (c) to 
the problem, except that the construction of the correct flownet is semi-computational. 
 
3.7 Approximate Mathematical Solution for the Sheet Pile Wall 
The boundary conditions of the problem of §3.6 are such that with one relatively 
unimportant modification an exact mathematical solution can be obtained. This 
modification is that the sandbed should be not only of infinite extent laterally but also in 
depth as shown in Fig. 3.6. In this diagram we are taking OB1B2 as the x-axis and OPC1C2 
as the z-axis, and adopting for convenience a unit head difference of water between the 
outside and inside of the cofferdam; we are taking as our pressure datum the mean of these 
two, so that the upstream horizontal equipotential ,2

1+=φ and the downstream one is 
.2

1−=φ The buried depth of sheet pile is taken as d. 
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Fig. 3.6 Mathematical Representation of Flownet 

 
We need to find conjugate functions ),(),( zxandzx ψφ of the general form 

)()( ixzfi +=+ ψφ that satisfy the boundary conditions of our particular problem; the 
Laplace differential equation, (3.9), will automatically be satisfied by such conjugate 
functions. (Differentiating we have 
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from which we have  
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i.e., Laplace’s equation is satisfied.)  
Consider the relationship  

d
ixzi )(cos)( 1 +

=+ −ψφπ       (3.10) 
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Equating real and imaginary parts 
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Eliminating φ  we obtain  
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which defines a family of confocal ellipses, each one being determined by a fixed value of 
cψψ = and describing a streamline. The joint foci are given by the ends of the limiting 

‘ellipse’ 0=ψ which from eq. (3.11) are .,0 dzx ±==  
Similarly, eliminating ψ we obtain 

1
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which defines a family of confocal hyperbolae, each one being determined by a fixed value 
of cφφ =  and describing an equipotential. The limiting ‘hyperbola’ corresponding to 0=φ  
leads to the same foci as for the ellipses. 

We have yet to establish that the boundary conditions are exactly satisfied, which 
will now be done. 
For eq. (3.11) demands that either  0=x

0=ψ  
leading to, ,cosπφdz =  i.e., P’OP; or 

0=φ  
leading to ,coshπψdz =  i.e., PZ (or positive z-axis below P).  
(The possibility of 1=φ gives the negative z-axis above P’.)  
For eq. (3.11) demands that either 0=z

2
1=φ  

leading to ;sinh πψdx −= or  

2
1−=φ  

leading to .sinh πψdx =  
  

If we arbitrarily restrict ψ  to being positive then 
0,2

1 ≥= ψφ  gives the negative x-axis OA1A2 

0,2
1 ≥−= ψφ  gives the positive x-axis OB1B2. 

We have therefore established a complete solution, and in effect if we plot the 
result in the ),( ψφ plane in Fig. 3.7 we see that we have re-mapped the infinite half plane 
of the sand into the infinitely long thin rectangle. This process is known as a conformal 
transformation, and has transformed the flownet into a simple rectilinear grid. In particular 
it can be seen that the half ellipse with slit POA1A2C2B2B1OP has been distorted into the 
rectangle and the process can be visualized in Fig. 3.7 as a simultaneous 
rotation in opposite directions of the top corners of the slit about the bottom, P.  

POB'A'PO 2221

At any general point Q of the sandbed the hydraulic gradient is given by 
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where s is measured ‘up’ a streamline. Appropriate differentiation and manipulation of eqs. 
(3.11) leads to the expression 
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Hence we can calculate the hydraulic gradient and resulting flow velocity at any 
point in the sandbed, and compare the predictions with experimental values obtained from 
the model. 

 
Fig. 3.7 Transformed Flownet 

  
Typical experimental readings obtained from the laboratory model are:  

Depth of sheet pile in sand = 6.67 in.; depth of sand bed 12 in.; breadth of model b 
= 6.55 in.; upstream head of water h = 3.85 in.; average voids ratio of sand e = 
0.623 for which the specific gravity Gs=2.65 and the permeability k=0.165 in./s; 
rate of seepage Q = 1.75 in.3/s; and time for dye to travel from x = - 5 , z = 7 to x = 
- 3.7, z = 8 was 30 s.  
 

(a) Comparison of seepage velocity. The coordinates of Q, the mean point of the measured 
dye path, are x = - 4.35, z = 7.5 and substituting in eq. (3.14) we get for unit head 

.1.81 ×= πqi  Hence predicted seepage velocity at Q will be  
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This compares with a measured value of 
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and is an overestimate by 18 per cent.  
 
(b) Total seepage. The mathematical solution gives an infinite value of seepage since the 
sand bed has had to be assumed to be of infinite depth. But as a reasonable basis of 
comparison we can compute the seepage passing under the sheet pile, z = d, down to a 
depth z = 18d which corresponds with the bottom of the sand in the model. This is 
equivalent to taking the boundary of the sand as a half ellipse such as A2C2B2 where 0C2 = 
1.8d. 
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But on the line x = 0, the streamlines are all in the positive x-direction and 
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This compares with a measured value of 1.75 in.3/s and is as expected an underestimate, by 
an order of 9 per cent. 

The effect of cutting off the bottom of the infinite sand bed below a depth z = 1.8d 
in the model, is to crowd the flowlines closer to the sheet-pile wall; consequently, we 
expect in the model a higher measured seepage velocity and a higher total seepage. The 
comparatively close agreement between the model experiment and the mathematical 
predictions is because the modification to the boundary conditions has little effect on the 
flownet where it is near to the sheet pile wall and where all the major effects occur. 

A further important prediction concerns the stability against piping. The predicted 
hydraulic gradient at the surface of the sand immediately behind the sheet-pile wall 
( 2

1,0 −== )φψ  is h/πd. Hence the predicted factor of safety against piping under this 
difference of head is 

( ) .5.5
623.185.3

67.665.1
)1(

)1('
=

×
××

=
+

−
=

π

πγ
γ

ed
h

G
i

s

w

 

 
3.8 Control of Seepage 

In the previous sections we have explained the use of a conceptual model for 
seepage: the word ‘model’ in our usage has much the same sense as the word ‘law’ that 
was used a couple of hundred years ago by experimental workers such as Darcy. We only 
needed half a chapter to outline the simple concepts and formulate the general equations, 
and in the rest of the chapter we have gone far enough with the solution of a two-
dimensional problem to establish the status of the seepage problem in continuum 
mechanics. Rather than going on to explain further techniques of solution, which are 
discussed by Harr2, we will turn to discuss the simplifications that occur when a designer 
controls the boundaries of a problem. 

Serious consequences may attend a failure to impound water, and civil engineers 
design major works against such danger. There is a possibility that substantial flow of 
seepage will move soil solids and form a pipe or channel through the ground, and there is 
also danger that substantial pore-pressures will occur in ground and reduce stability even 
when the seepage flow rate is negligibly small. The first risk is reduced if a graded filter 
drain is formed in the ground, in which seepage water flows under negligible hydraulic 
gradient. The materials of such filters are sands and gravels, chosen to be stable against 
solution, and made to resist movement of small particles by choosing a succession of 
gradings which will not permit small particles from any section of the filter to pass through 
the voids of the succeeding section. 

These drains have a most important role in relieving pore-pressure and, for 
example, reducing uplift below a dam: wells serve the same function when used to lower 
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groundwater levels and prevent artesian pressure of water in an underlying sand layer 
bursting the floor of an excavation in an overlying clay layer. The technical possibilities 
could be to insert a porous tipped pipe and cause local spherical flow, or to insert a porous-
walled pipe and cause local radial flow, or to place or insert a porous-faced layer and cause 
local parallel flow. These three possibilities correspond to more simple solutions than the 
two-dimensional problem discussed above: 
  
(a) The Laplace equation for spherical flow is 
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which can be integrated to give 
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and (b) the Laplace equation for radial flow is 
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which can be integrated to give 
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and (c) the Laplace equation for parallel flow is 
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which can be integrated to give 
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where is the loss of head between coordinates r)( 21 hh − 1 and r2. 

A contrasting technical possibility is to make a layer of ground relatively 
impermeable. Two or three lines of holes can be drilled and grout can be injected into the 
ground; a trench can be cut and filled with clay slurry or remoulded ‘puddled’ clay; or a 
blanket of rather impermeable silty or clayey soil can be rolled down. Seepage through 
these cut-off layers is calculated as a parallel flow problem. 

In ‘seepage space’ a cut-off is immensely large and a drain is extremely small. The 
designer can vary the spatial distribution of permeability and adjust the geometry of 
seepage by introducing cut-offs and drains until the mathematical problem is reduced to 
simple calculations. Applied mathematics can play a useful role, but engineers often carry 
solutions to slide-rule accuracy only and then concentrate their attention on (a) the actual 
observation of pore-pressures and (b) the actual materials, their permeabilities, and their 
susceptibility to change with time. 
 
References to Chapter 3 

1 Taylor, D. W. Fundamentals of Soil Mechanics, Wiley, 1948.  
2 Harr, M. E. Groundwater and Seepage, McGraw-Hill, 1962. 



4  
One-dimensional consolidation  
 
 
In the previous chapter we studied briefly the conditions of the steady flow of water 
through a stationary soil structure; in this chapter we shall be concerned with the more 
general conditions of transient flow of water from and through soil-material. The seepage 
forces experienced by the soil structure will vary with time, and the soil structure itself 
may deform under the varying loads it sustains. 

 
Fig. 4.1 Consolidometer 

 
While the soil structure will exhibit compressibility, its response to an external 
compressive load will take time – the time necessary for the transient flow of pore-water to 
cease as the excess pore- pressures dissipate.  

The time-dependent process during which a soil specimen responds to compression 
is commonly called the process of consolidation. Laboratory tests for measuring such 
compressibility of a soil are conducted either in a consolidometer (sometimes known as an 
oedometer) or in an axial compression cell (usually known as a ‘triaxial’ cell). We shall 
here confine our attention to a consolidometer, the principles of which are illustrated in 
Fig. 4.1. The apparatus consists essentially of a rigid metal cylinder with closed base, 
containing a soil sample in the shape of a thick circular plate sandwiched between two thin 
porous plates. The porous plates, generally made of ceramic or some suitable stone, allow 
the passage of water into or (more usually) out of the soil sample, but their pores are not 
sufficiently large to allow any of the soil particles to pass through them. Both porous plates 
are connected to constant head reservoirs of water, and vertical loads are applied to the 
sample by means of a closely fitting piston. A test consists of the instantaneous application 
of a constant increment of load and observation of the consequent settlement of the piston 
(and hence consolidation of the sample) with time. 
  
4.1 Spring Analogy 

The soil sample in the consolidometer is at all times carrying the total vertical load 
transmitted by the piston; and, as such, forms a load-carrying system. But the soil is a two-
phase continuum, and it contains two separate materials (water and the structure of soil 
particles) which can be thought of as two independent structural members in parallel, as, 
for example, two members in parallel could make a double strut. The two members have 
markedly different stress – strain characteristics, and we can only discover the share of the 
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total load taken by each (at any one instant) by considering both their statical equilibrium 
and strain compatibility, just as we have to do in the example of a composite member such 
as a double strut. We shall continue to assume that the water is incompressible compared 
with the soil structure. (Typical values are compressibility of water = 48×10-6 cm2/kg and 
compressibility of London clay = 3000×10-6 cm2/kg.) 

There is an analogy between the behaviour of the soil sample in the 
consolidometer, and that of the spring in Fig. 4.2. (Note our caveat that an isotropic elastic 
continuum cannot properly be represented by a system of springs.) The spring is also in a 
consolidometer, fully surrounded by water and supporting a similar piston, except that it is 
assumed to be frictionless, weightless, and leakproof. The lead connecting the bottom of 
the cylinder to the reservoir above the piston contains a valve and is of small bore so that 
the water can only flow very slowly between the cylinder and reservoir, with a resulting 
pressure difference between the two containers. 

Let us carry out a test in parallel on both soil sample and spring by applying a total 
vertical load P to both pistons. This additional load P will act at all levels within 

 
Fig. 4.2 Spring Analogy of Consolidation Process 

 
the cylinder, but the proportions carried by the two structural members (water and soil) 
will vary not only with time but also with the particular level being considered. At any 
instant and at a certain level ZZ let the vertical load carried by the soil or spring be Ps, and 
that by the water Pw; then simple statics demands that at all times Ps+Pw=P. The load 
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carried by the water is measured as excess pore-pressure u, recorded by the pressure 
tapping and manometer tube shown in Fig. 4.2. 
  If we divide these forces by the total cross-sectional area A of the cylinder (as for 
seepage) we have 
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Loading process 
Before the start of the test the valve V is closed so that immediately the load P is 

applied, no water can escape from the cylinder, the piston cannot move, the soil or spring 
cannot be strained and cannot therefore experience any stress. Hence, at the very start, 
when A

Put ==== σσ ,0',0 and we have the case of Fig. 4.2(a). 
We now open the valve and observe that the water flows out of the cylinder into the 

reservoir, that the piston settles, and by so doing starts to compress the spring. At time t = 
t1 after the valve is opened we have the situation of Fig. 4.2(b). 

);('0 u−=< σσ  'σ increasing with time 
;0>> uσ   u decreasing with time. 

The rate of flow of water, and hence of settlement, will decay with time, and 
eventually after infinite time all excess pore-pressure will have dissipated, all settlement 
ceased, and all the load will be carried by the spring or soil. We have then at the case 
of Fig. 4.2(c) 

∞=t

0' === uandA
Pσσ  

and a total settlement of the piston recorded as ρ. 
  
Unloading process 

We now attempt to reverse the process by removing the total applied load P. 
Immediately after having done this, no time has elapsed for water to be sucked into the 
cylinder and for the piston to rise, so the spring will still be compressed by p and exerting 
an upward force P. Since the total load is zero, this force must be matched by a ‘negative’ 
one provided by ‘tension’ or a drop in pressure in the water. Consequently, at t = 0 we shall 
observe Fig. 4.2(d) 

.0)'(;';' =+=−== uuA
P σσσσ  

As time elapses, the spring stretches and pushes the (weightless) piston upwards as 
water is sucked into the cylinder from the reservoir. At time t = t1 after the start of this 
unloading process we have the situation of Fig. 4.2(e) 

'σ>A
P    decreasing with time 

;0)'( <−=<− σuA
P   u increasing with time. 

Finally, after infinite time the system will have reached equilibrium with 
,0' u==σ and the piston will have regained its original position having risen by ρ, see Fig. 

4.2(f). We shall find in the next section that the soil sample often does not unload with the 
same characteristics as for the loading process, and that not all the settlement ρ may be 
recovered. 
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4.2 Equilibrium States 
If we carry out a consolidation test on a real soil, and observe the settlement of the 

piston as a function of time we shall obtain results which when plotted give a curve of the 
form of Fig. 4.3, that at first sight appears to have a ‘horizontal’ asymptote and to reach a 
maximum settlement which remains fixed at some point such as E. 

 
Fig. 4.3 Settlement of Piston 

 
A second, closer look will show that after E is reached the piston will continue to settle 
indefinitely by a very small amount exhibiting the well-known phenomenon of creep. The 
settlement from O to E is known as primary consolidation and that after E as secondary 
consolidation; the choice of the position of E is not entirely arbitrary and a suitable 
definition will be given in §4.5. Throughout this chapter we shall be concerned only with 
primary consolidation, totally ignoring all secondary consolidation, so that we can consider 
E to represent effectively an equilibrium state marking the end of settlement under a given 
loading increment.  

 
Fig. 4.4 Terzaghi Equilibrium States 

 
If a series of load-increments is applied to a specimen which is initially very wet, 

the resulting equilibrium states will appear when plotted, as in Fig. 4.4. In Fig. 4.4(a) with 
the effective vertical stress 'σ  to a natural scale are the results of a sequence of loading 
and unloading processes, showing hysteresis loops where the specimen has been allowed 
to swell and then be reconsolidated. The outermost curve connecting the points when the 
specimen is in the loosest possible states is often called the virgin consolidation line, but 
will be referred to here as the virgin compression line, because it is strictly the line 
connecting equilibrium states whereas consolidation is a term used only for the time-
dependent process between any pair of equilibrium states. 
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In Fig. 4.4(b), the same results are plotted with 'σ on a logarithmic scale in which 
the virgin compression line becomes straight. Terzaghi1 fitted such data by a line of 
equation 

0
100 '

'log
σ
σ

cCee −=          (4.1) 

in which the constant Cc, is called the compression index; it should be noted that the base 
10 is used in this definition rather than the natural logarithm, which we denote by ln.  

Later in this book instead of Terzaghi’s expression, eq. (4.1), the virgin 
compression line will be denoted by the equation 

0
0 ln

p
pvv λ−=  

and each swelling and recompression loop will be represented by a single straight line of 
the form 

,ln
0

0 p
pvv κ−=  

where λ and κ are characteristic constants for the soil. We suppose that the virgin 
compression λ-line represents an irreversible process, whereas the swelling and 
recompression κ-lines represent reversible processes. 
  
4.3 Rate of Settlement 

The rate of settlement of the piston that will occur inside the consolidometer will be 
governed by the speed with which water can be expelled from the innermost pores of the 
soil specimen: it will depend both on the permeability and on the length of drainage path. 
In the case of sand, the permeability is so high that the process of consolidation is 
effectively instantaneous, whereas for a clay layer in the ground, settlement may continue 
for years. The following analysis is relevant to clays. 

In Fig. 4.5 we consider a suitably thin horizontal layer of the soil specimen and 
investigate its condition at some instant during the consolidation process during virgin 
compression. We assume that the process is entirely one-dimensional (with no lateral 
variations) so that the velocity and pressure of the pore-water are only functions of the 
depth z measured vertically downwards from the surface of the specimen, and of the time t. 
We imagine that two small probes are inserted so that the pore-pressures of the top and 
bottom surfaces of the layer are known. Our sign convention will require that the artificial 
velocity  is taken as positive downwards in the direction of z, and opposite to that of the 
permeameter in Fig. 3.1; also a positive increment of excess head h is shown which will 
cause an upward velocity, i.e., negative  

av

av .

 
Fig. 4.5 Specimen Layer of Clay 
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The loading increment )( δσσ =& applied to the specimen is such that the initial and 
final equilibrium states are E0 and E1, shown in Fig. 4.6. At the present time t after the start 
of the consolidation process, the state of the thin layer will be represented by some point T 
between E0 and E1. The conventional assumption introduced by Terzaghi in his classic 
theory* of primary consolidation is that T always lies on the straight line joining E0 and E1. 
The slope of this straight line, which will change for different initial states E0, is defined as 

vcmee )1(
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d
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σ
        (4.2) 

where is the coefficient of volume compressibility. A similar constant  but of much 
smaller value will be required for steps in the swelling and recompression loops of Fig. 4.4. 

vcm vsm

This definition allows us to relate settlement with change in effective stress. Let δρ 
be the settlement experienced by the thin layer during time δt. The reduction in volume of 
the layer will be A δρ which can be expressed as 
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Because of continuity, the reduction in volume of the thin layer must be exactly 
matched by the volume of water expelled, which during time δt will be 
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Since the loading increment is a fixed one of δσσ =& we have '' σδδσ == u = 
constant so that ,//' tut δσ −∂=∂∂ and eq. (4.4) can be taken a step further to give  
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Fig. 4.6 Loading Increment 

 
* We continue to use the parameter e here as in eq. (4.1) although in subsequent chapters we will use exclusively the 
parameter v = 1 + e.  
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Finally, we can obtain another relationship between va and u by employing Darcy’s 
law,  
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Differentiating this with respect to z, and combining with eq. (4.5) 
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This is Terzaghi’s fundamental differential equation for one- dimensional consolidation, 
usually written as 
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where vcwvc mkc γ/= is the coefficient of consolidation; a typical value for a stiff clay is 
2×10-3 in.2/min. Once having solved the consolidation equation for a particular set of 
boundary conditions, we can calculate for any given time the total settlement ρ, the excess 
pore-pressure u, and effective stress 'σ at any depth. In the next two sections an 
approximate and an exact solution will be derived for the one-dimensional consolidation of 
a clay layer under the same conditions as occur in the consolidometer. 
 
 4.4 Approximate Solution for Consolidometer 

We have made an approximation to the physical problem in the construction of the 
model for one-dimensional consolidation. Before we become involved in Fourier’s 
analysis in §4.5, we set out in this section an approximate solution2 which fits the boundary 
conditions, but only has terms in z and z2 so that it does not satisfy exactly the (already 
approximate) differential equation (4.7). We believe this solution to be helpful in providing 
an intuitive understanding of the various aspects of the problem.  
Figure 4.7 represents part of a clay layer of large area A and depth H resting on an 
impermeable stratum so that no drainage can occur at the base: the boundary conditions are 
identical with that of the consolidometer when drainage is prevented at the base by closing 
the lead to the reservoir (Fig. 4.1). If we place a series of imaginary probes along the line 
AB at 45° to the horizontal to act as standpipes, their levels at any instant will provide a 
distribution of the excess pore-pressure u with depth z. 

 
Fig. 4.7 Case of Consolidometer with no Drainage at Base 

 
Immediately after the application of the increment of vertical load σ& at t =0, the 

excess pore-pressure everywhere will be σ&  and all standpipes will show a level of wγσ /&  
above pressure datum at the top of the clay layer. As time elapses, the excess pore-
pressures dissipate as load is transferred to the soil structure and a series of lines  
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Fig. 4.8 Parabolic Isochrones 

 
at t = t1, t = t2, etc., will be obtained. Each one is known as an isochrone (from the Greek 
‘equal time ‘), and since the length AC is equal to the depth H the gradient of the isochrone 
at any point is equal to dh/dz and represents the hydraulic gradient i that is acting upwards. 
In this case i is positive upwards and causing the flow of water to be vertically upwards 
everywhere in the clay layer. It is usual and convenient to depict the isochrones all rotated 
clockwise through 90° as seen in the right-hand part of Fig. 4.7.  

We can obtain an approximate but fairly accurate solution by assuming that the 
isochrones are all parabolas and distinguishing two stages of consolidation as shown in 
Fig. 4.8. Immediately consolidation starts the pore-pressure at the surface A must drop to 
zero, and a typical isochrone for the first stage will be as AL in Fig. 4.8(a). Since the 
hydraulic gradient must be continuous (this is not a necessary condition in a layered soil) 
the parabola must have its apex at L with a vertical tangent there. The apex L rapidly 
moves down '' DE  and on reaching  the first stage is complete. 'D

During the second stage, a typical isochrone will appear as AM. This must have its 
apex at M with a vertical tangent there, because the boundary conditions at the base  
demand no flow and hence zero hydraulic gradient. The point M gradually traverses  
and eventually reaches  when all consolidation is complete. 

''CD
''CD

'C
 
First stage 

The isochrone AL for t = t1 is given by 
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The settlement that has occurred will be, from eq. (4.3) 
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of flow of water out of the surface. But this is the value of va for z = 0, i.e., from eq. (4.8) 
the upwards velocity is 
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Hence  
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and integrating for the appropriate limits 
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It is convenient here to introduce two useful parameters. The first is the proportion 

of the total settlement that has occurred so far, defined by 
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The second is a dimensionless time factor defined by  
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During this first stage of consolidation, 
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and the first stage will end when l=H, i.e., .
12
1

=vT  

Second stage ⎟
⎠
⎞

⎜
⎝
⎛ ≥

12
1

vT  

  
The isochrone AM for t = t2 is given by 
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Proceeding exactly similarly as for the first stage we have 
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and after integration 
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The proportion of settlement 
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If we now put the two stages of consolidation together and plot U against Tv we 
obtain Fig. 4.9 where in the first stage we have a straight line of slope 3

2 and the second a 
curve decaying exponentially. 

Should the clay layer rest on a permeable stratum, as in Fig. 4.10, and drainage 
occur from both top and bottom surfaces, as will be the more usual case in laboratory 
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experiments in the consolidometer, we can make immediate use of the above solution for 
the case of single drainage. This case of double drainage has symmetry about the mid-
plane with all flow being upwards above this, and all flow being downwards below it. 
Typical isochrones are as shown, and we see that the top half has identical conditions with 
that of the case of single drainage. Hence we adopt the solution for single drainage, and 
double the settlements. In particular, in order to make use of the time factor, we must 
evaluate H as half of the depth in Fig. 4.10, and we can avoid any ambiguity by redefining 
it as the maximum drainage path, i.e., the longest path that any water particle has to travel 
to be expelled. 

 
Fig. 4.9 Settlement Results from Parabolic Isochrones 

 

 
Fig. 4.10 Case of Consolidometer with Drainage at Both Surfaces 

 
4.5 Exact Solution for Consolidometer  

The above approximate solutions, although exactly fitting the boundary conditions, 
do not satisfy exactly the differential equation, (4.7). We can obtain an exact solution of 
the differential equation satisfying the relevant boundary conditions which for single 
drainage are  
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Our experience with the parabolic isochrones suggests that we separate variables and 
assume that u is the product of independent functions of z and t. We try u = φ(t)f(z) and 
substitution in eq. (4.7) then gives us  
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Since this must hold for all z and all t, each side of this equation must be constant. For 
convenience let each side be equal to and then by integrating we find  ,2Acvc−
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where α, β and γ are constants of integration. To satisfy the boundary conditions we might 
start by putting  
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but this could never satisfy the first boundary condition as it is. So we have to employ 
Fourier analysis and take the infinite series 
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To solve this we adopt the standard procedure; we multiply by sin (nπz/2H) where n is an 
integer and integrate over a range of π to find 
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The complete solution then becomes 
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Fortunately, because of the exponential factor both of these series are rapidly convergent 
and only two or three of their terms need be evaluated. For small values of t or Tv, the latter 
expression approximates to the straight line π/4 vTU = having a slope of 2/√π compared 
with 2/√3 for the parabolic isochrones. 

Figure 4.11 shows the resulting curve obtained from eq. (4.25) compared both with 
experimental results obtained in the laboratory on specimens of saturated remoulded Gault 
Clay, and with the comparable approximate solution. The agreement is very close 
principally because with small thin laboratory specimens the assumptions and conditions 
implicit in Terzaghi’s classic theory are fulfilled. 

A method for establishing the end of primary consolidation suggested by Taylor3 is 
as follows, as indicated in Fig. 4.11. The best straight line possible, E0A, is drawn through 
the initial experimental points, and a second line, E0B, with a slope 15 per cent less is 
drawn through the initial point, E0. This line will cut the theoretical curve at U = 0.9, so 
that its intersection with the experimental curve is taken to be this point; hence the scale on 
the U-axis can be fixed together with the value of 100 per cent primary consolidation at E1. 
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Further settlement after E1, called secondary consolidation, is the topic of much current 
research.4-6 

 
4.6 The Consolidation Problem 

This chapter has considered transient flow of pore-water in one dimension, using 
the heat equation. The mathematically inclined reader may now expect us to generalize 
Terzaghi’s model in some manner that leads us to an equation resembling that of three-
dimensional heat transfer. Unfortunately, we cannot solve the consolidation problem with 
the same ease as was possible for the seepage problem. Terzaghi’s model has a spring 
constant which is comparable to Young’s modulus for an elastic body, and soil is no more 
capable of being reduced to a model with three orthogonal springs than is an isotropic 
elastic body. Terzaghi’s model has one spring constant for virgin compression and a 
different constant for swelling, so we have to model a material with an elastic/plastic 
hardening character; we have to model the behaviour of the soil structure both in 
compression and in distortion; and if we can meet these difficulties we will be so far from 
the linear heat-transfer model that we shall not be able to make use of the elegant solution 
of problems of transient heat-transfer in three dimensions. However, we can make some 
general comments on the problem of transient flow in three dimensions by reference to 
what we now know of one-dimensional transient flow. 

 
Fig. 4.11 Experimental Laboratory Results 

 
In the one-dimensional problem the relative displacement of the two opposite 

surfaces (ends) of the body was called ‘settlement’ and equalled the total quantity of 
drainage out of the body per unit cross-sectional area. In general, an engineer will want to 
know a ‘differential settlement’, that is the relative displacement of two adjacent points of 
a three-dimensional body such as one point at the centre of an oil tank and another point at 
the edge of the tank. In this general case, the normal component of the rate of displacement 
of a point on the surface of the loaded soil body will not equal the rate of flow of seepage 
water through the surface at that point, and the rate of change of differential settlement of 
two points need not equal the rate of total flow of water out of the body. 
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Although an engineer might like to categorize any consolidation problem .by 
numerical values of two parameters:  

 
(a) a maximum differential settlement, and  

 
(b) the time required before halfsettlement* occurs,  
 
the exact calculation of these two parameters will clearly be a formidable problem in any 
non-trivial case. However, approximate estimates may be made with less difficulty. 

Let us calculate the half-settlement time factor T1/2 for the problem of one-
dimensional consolidation. We had an approximate solution using parabolic isochrones in 
eq. (4.20), into which we can introduce U = 1/2 to give our first estimate 
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The curve of U against √Tv for this solution has an initial slope  
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We also had an exact series solution in eq. (4.25): the curve of U against √Tv for that 
solution has a comparable initial slope 
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and gives an exact half-settlement time factor  
20.02/1 =T          (4.29) 

which is only 10 per cent different from the value estimated by the approximate solution.  
For further comparison let us note results from exact solutions of two different 

problems. In the first case consider a layer where initial excess pore-pressure decreases 
linearly from some value at the drained surface to zero at z = H; this sort of distribution is 
generated when a vertical load is applied somewhere on the horizontal surface of a clay 
layer, and in known1 solutions of this problem the half-settlement time factor is found to be  

.09.02/1 ≅T          (4.30) 
In contrast, consider a second case of a layer where initial excess pore-pressure increases 
linearly from zero at the drained surface to some value at depth; this sort of distribution is 
generated when a body of soil is placed as a slurry in ‘hydraulic fill’, and for this case the 
half-settlement time factor is known1 to be  

.29.02/1 ≅T          (4.30) 
Comparison of these three values of T1/2 suggests that a useful range of problems will have  

0.1 < T1/2 < 0.3        (4.31) 
which is a much smaller range of variation than is likely in H2 and in cvc.  

We may generally calculate the time required before half-settlement occurs as  

,2/1
2

2/1
vcc
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and for a useful range of problems a crude numerical estimate can be made using 
 .2.02/1 =T

 
* We have chosen the half-factor arbitrarily: some practicing engineers regard 80 per cent as significant. In limiting 
equilibrium calculations dissipation of 90 per cent of maximum excess pore-pressures is considered significant. Although 
these differences are important we will not discuss them here.  
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If we accept as a proper approximation that  
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2
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then we can draw a useful distinction between undrained and drained problems. For any 
given soil body let us suppose we know a certain time tl in which a proposed load will 
gradually be brought to bear on the body; construction of an embankment might take a 
time tl of several years, whereas filling of an oil tank might involve a time tl, of less than a 
day. Then we can distinguish undrained problems as having t1/2 >> tl, and drained 
problems as having t << tl.  

Equation (4.34) can be written  
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in which form we can see directly the effects of the different parameters mvc, k, and H. 
More compressible bodies of virgin compressed soft soil will have values of mvc associated 
with λ and longer half-settlement times than less compressible bodies of overcompressed 
firm soil having values of associated with k (elastic swelling or recompression). Less 
permeable clays will have much smaller values of k and hence longer half-settlement times 
than more permeable sands. Large homogeneous bodies of plastically deforming soft clay 
will have long drainage paths H comparable to the dimension of the body itself, whereas 
thin layers of soft clay within a rubble of firm clay will have lengths H comparable to the 
thinness of the soft clay layer. This distinction between those soils in which the undrained 
problem is likely to arise and those in which the drained problem is likely to arise will be 
of great importance later in chapter 8. 

The engineer can control consolidation in various ways. The soil body can be 
pierced with sand-drains that reduce the half-settlement time. The half-settlement time may 
be left unaltered and construction work may be phased so that loads that are rather 
insensitive to settlement, such as layers of fill in an embankment, are placed in an early 
stage of consolidation and finishing works that are sensitive to settlement are left until a 
later stage; observation of settlement and of gradual dissipation of pore-pressure can be 
used to control such operations. Another approach is to design a flexible structure in which 
heavy loads are free to settle relative to lighter loads, or the engineer may prefer to 
underpin a structure and repair damage if and when it occurs. A different principle can be 
introduced in ‘pre-loading’ ground when a heavy pre-load is brought on to the ground, and 
after the early stage of consolidation it is replaced by a lighter working load: in this 
operation there is more than one ultimate differential settlement to consider. 

In practice undetected layers of silt6, or a highly anisotropic permeability, can 
completely alter the half-settlement time. Initial ‘elastic’ settlement or swelling can be an 
important part of actual differential settlements; previous secondary consolidation7, or the 
pore-pressures associated with shear distortion may also have to be taken into account. 
Apart from these uncertainties the engineer faces many technical problems in observation 
of pore-pressures, and in sampling soil to obtain values of cvc. While engineers are 
generally agreed on the great value of Terzaghi ‘s model of one- dimensional 
consolidation, and are agreed on the importance of observation of pore-pressures and 
settlements, this is the present limit of general agreement. In our opinion there must be 
considerable progress with the problems of quasi-static soil deformation before the general 
consolidation problem, with general transient flow and general soil deformation, can be 
discussed. We will now turn to consider some new models that describe soil deformation. 
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5  
Granta-gravel  
 
 
5.1 Introduction  

Previous chapters have been concerned with models that are also discussed in many 
other books. In this and subsequent chapters we will discuss models that are substantially 
new, and only a few research workers will be familiar with the notes and papers in which 
this work was recently first published. The reader who is used to thinking of 
‘consolidation’ and ‘shear’ in terms of two dissimilar models may find the new concepts 
difficult, but the associated mathematical analysis is not hard.  

The new concepts are based on those set out in chapter 2. In §2.9 we reviewed the 
familiar theoretical yield functions of strength of materials: these functions were expressed 
in algebraic form F = 0 and were displayed as yield surfaces in principal stress space in 
Fig. 2.12. We could compress the work of the next two chapters by writing a general yield 
function F=0 of the same form as eq. (5.27), by drawing the associated yield surface of the 
form shown in Fig. 5.1, and by directly applying the associated flow rule of §2.10 to the 
new yield function. But although this could economically generate the algebraic 
expressions for stress and strain-increments it would probably not convince our readers 
that the use of the theory of plasticity makes sound mechanical sense for soils. About 
fifteen years ago it was first suggested1 that Coulomb’s failure criterion (to which we will 
come in due course in chapter 8) could serve as a yield function with which one could 
properly associate a plastic flow: this led to erroneous predictions of high rates of change 
of volume during shear distortion, and research workers who rejected these predictions 
tended also to discount the usefulness of the theory of plasticity. Although Drucker, 
Gibson, and Henkel2 subsequently made a correct start in using the associated flow rule, 
we consider that our arguments make more mechanical sense if we build up our discussion 
from Drucker’s concept3 of ‘stability’, to which we referred in §2.11.  

 
Fig. 5.1 Yield Surface 

 
The concept of a ‘stable material’ needs the setting of a ‘stable system’: we will 

begin in §5.2 with the description of a system in which a cylindrical specimen of ideal 
material is under test in axial compression or extension. We will devote the remainder of 
chapter 5 to development of a conceptual model of an ideal rigid/plastic continuum which 
has been given the name Granta-gravel. In chapter 6 we will develop a model of an ideal 
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elastic/plastic continuum called Cam-clay4, which supersedes Granta-gravel. (The river 
which runs past our laboratory is called the Granta in its upper reach and the Cam in the 
lower reach. The intention is to provide names that are unique and that continually remind 
our students that these are conceptual materials – not real soil.) Both these models are 
defined only in the plane in principal stress space containing axial-test data: most data of 
behaviour of soil-material which we have for comparison are from axial tests, and the 
Granta-gravel and Cam-clay models exist only to offer a persuasive interpretation of these 
axial-test data. We hope that by the middle of chapter 6 readers will be satisfied that it is 
reasonable to compare the mechanical behaviour of real soil-material with the ideal 
behaviour of an isotropic-hardening model of the theory of plasticity. Then, and not until 
then, we will formulate a simple critical state model that is an integral part of Granta-
gravel, and of Cam-clay, and of other critical state model materials which all flow as a 
frictional fluid when they are severely distorted. With this critical state model we can clear 
up the error of the early incorrect application of the associated flow rule to ‘Coulomb’s 
failure criterion’, and also make a simple and fundamental interpretation of the properties 
by which engineers currently classify soil. 

The Granta-gravel and Cam-clay models only define yield curves in the axial-test 
plane as shown in Fig 5.2: this curve is the section of the surface of Fig. 5.1 on a 
diametrical plane that includes the space diagonal and the axis of longitudinal effective 
stress o (similar sections of Mises’ and Tresca’s yield surfaces in Fig. 2.12 would show 
two lines running parallel to the x-axis in the xz-plane). The obvious features of the pear-
shaped curve of Fig. 5.2 are the pointed tip on the space diagonal at relatively high 
pressure, and the flanks parallel to the space diagonal at a lower pressure. A continuing 
family of yield curves shown faintly in Fig. 5.2 indicates occurrence of stable isotropic 
hardening. Our first goal in this chapter is to develop a model in the axial-test system that 
possesses yield curves of this type. 
 

 
Fig. 5.2 Yield Curves 

 
5.2 A Simple Axial-test System  

We shall consider a real axial test in detail in chapter 7: for present purposes a 
much simplified version of the test system will be described with all dimensions chosen to 
make the analysis as easy as possible. 
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Fig. 5.3 Test System 

 
Let us suppose that we enter a laboratory and find a specimen under test in the 

apparatus sketched in Fig. 5.3. We first examine the test system and determine the current 
state of the specimen, which is in equilibrium under static loads in a uniform vertical 
gravitational field. We see that we may probe the equilibrium of the specimen by slowly 
applying load-increments to some accessible loading platforms. We shall hope to learn 
sufficient about the mechanical properties of the material to be able to predict its behaviour 
in any general test.  

The specimen forms a right circular cylinder of axial length l, and total volume v, 
so that its cross-sectional area, a = v/l. The volume v is such that the specimen contains 
unit volume of solids homogeneously mixed with a volume (v – 1) of voids which are 
saturated with pore-water and free from air.  

The specimen stands, with axis vertical, on a pedestal containing a porous plate. 
The porous plate is connected by a rigid pipe to a cylinder, all full of water and free of air. 
The pressure in the cylinder is controlled by a piston at approximately the level of the 
middle of the specimen which is taken as datum. The piston which is of negligible weight 
and of unit cross-sectional area supports a weight X1 so that the pore-pressure in the 
specimen is simply uw=X1.  

A stiff impermeable disc forms a loading cap for the specimen. A flexible, 
impermeable, closely fitting sheath of negligible thickness and strength envelops the 
specimen and is sealed to the load-cap and to the pedestal. The specimen, with sheath, 
loading cap, and pedestal, is immersed in water in a transparent cell. The cell is connected 
by a rigid pipe to a cylinder where a known weight X2 rests on a piston of negligible weight 
and unit cross-sectional area. The cell, pipe, and cylinder are full of water and free from 
air, so that the cell pressure is simply 2Xr =σ  which is related to the same datum as the 
pore-pressure. The cell pressure is the principal radial total stress acting on the cylindrical 
specimen. 

A thin stiff ram of negligible weight slides freely through a gland in the top of the 
cell in a vertical line coincident with the axis of the specimen. A weight X3 rests on this 



 64 

ram and causes a vertical force to act on the loading cap and a resulting axial pressure to 
act through the length of the specimen. In addition, the cell pressure rσ  acts on the loading 
cap and, together with the effect of the ram force X3, gives rise to the principal axial total 
stress lσ  experienced by the specimen, so that  

).(3 rlaX σσ −=  
Hence, three stress quantities uw, rσ and ),( rl σσ − and two dimensional quantities v, 

and l, describe the state of the specimen as it stands in equilibrium in the test system.  
 
5.3 Probing  

The test system of Fig. 5.3 is encased by an imaginary boundary which is 
penetrated by three stiff, light rods of negligible weight shown attached to the main loads 
X1, X2, and X3. These rods can slide freely in a vertical direction through glands in the 
boundary casing, and they carry upper platforms to which small load-increments can be 
applied or removed. The displacement of any load- increment is identical to that of its 
associated load within the system, being observed as the movement of the upper platform. 

We imagine ourselves to be an external agency standing in front of this test system 
in which a specimen is in equilibrium under relatively heavy loads: we test its stability by 
gingerly prodding and poking the system to see how it reacts. We do this by conducting a 
probing operation which is defined to be the slow application and slow removal of an 
infinitesimally small load-increment. The load-increment itself consists of a set of loads 

(any of which may be zero or negative) applied simultaneously to the three 
upper platforms, see Fig. 5.4. 

321 ,, XXX &&&

 

 
Fig. 5.4 Probing Load-increments 

 
Each application and removal of load-increment will need to be so slow that it is at 

all times fully resisted by the effective stresses in the specimen, and at all times excess 
pore-pressures in the specimen are negligible. If increments were suddenly placed on the 
platforms work would be done making the pore-water flow quickly through the pores in 
the specimen. 

We use the term effectively stressed to describe a state in which there are no excess 
pore-pressures within the specimen, i.e., load and load-increment are both acting with full 



 65 

effect on the specimen. In Fig. 5.5(a) OP represents the slow application of a single load-
increment X& fully resisted by the slow compression of an effectively stressed specimen, 
and PO represents the slow removal of the load-increment X& exactly matched by the slow 
swelling of the effectively stressed specimen. It is clear that, in the cycle OPO, by stage P 
the external agency has slowly transferred into the system a small quantity of work of 
magnitude  and by the end O of the cycle this work has been recovered by the 
external agency without loss. 

,)2/1( δX&

In contrast in Fig. 5.5(b) OQ represents a sudden application of a load-increment 
X&  at first resisted by excess pore-pressures and only later coming to stress effectively the 
specimen at R. During the stage QR a quantity of work of magnitude  is transferred 
into the system, of which a half (represented by area OQR) has been dissipated within the 
system in making pore-water flow quickly and the other half (area ORS) remains in store 
in the effectively stressed specimen. Stage RS represents the sudden removal of the whole 
small load-increment 

δX&

X& from the loading platform when it is at its low level. Negative 
pore-pressure gradients are generated which quickly suck water back into the specimen, 
and by the end of the cycle at O the work which was temporarily stored in the specimen 
has all been dissipated. At the end of the loading cycle the small load increment is removed 
at the lower level, and the external agency has transferred into the system the quantity of 
work  indicated by the shaded area OQRS in Fig. 5.5(b), although the effectively 
stressed material structure of the specimen has behaved in a reversible manner. In a study 
of work stored and dissipated in effectively stressed specimens it is therefore essential to 
displace the loading platforms slowly.  

δX&

 

 
Fig. 5.5 Work Done during Probing Cycle 

 
For the most general case of probing we must consider the situation shown in Fig. 

5.5(c) in which the loading platform does not return to its original position at the end of the 
cycle of operations, and the specimen which has been effectively stressed throughout has 
suffered some permanent deformation. The total displacement δ observed after application 
of the load-increment has to be separated into a component  which is recovered when 
the load-increment is removed and a plastic component  which is not. 

rδ
pδ

Because we shall be concerned with quantities of work transferred into and out of 
the test system, and not merely with displacements, we must take careful account of signs 
and treat the displacements as vector quantities. Since we can only discover the plastic 
component as a result of applying and then removing a load-increment, we must write it as 
the resultant of initial, total, and subsequently recovered displacements  

.rp δδδ +=  
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When plastic components of displacement occur we say that the specimen yields. As we 
have already seen in §2.9 and §2.10 we are particularly interested in the states in which the 
specimen will yield, and in the nature of the infinitesimal but irrecoverable displacements 
that occur when the specimen yields.  
 
5.4 Stability and Instability 
 Underlying the whole previous section is the tacit assumption that it is within our 
power to make the displacement diminishingly small: that if we do virtually nothing to 
disturb the system then virtually nothing will happen. We can well recall counter-examples 
of systems which failed when they were barely touched, and if we really were faced with 
this axial-test system in equilibrium under static loads we would be fearful of failure: we 
would not touch the system without attaching some buffer that could absorb as internal or 
potential or inertial energy any power that the system might begin to emit.  

If the disturbance is small then, whatever the specimen may be, we can calculate 
the net quantity of work transferred across the boundary from the external agency to the 
test system, as  

∑ .
2
1 p

iiX δ&  

For example, with the single probing increment illustrated in Fig. 5.5(c) this net quantity of 
work equals the shaded area AOTU. If the specimen is rigid, then and the 
probe has no effect. If the specimen is elastic (used in the sense outlined in chapter 2) then 

 all displacement is recoverable and there is no net transfer of work at the 
completion of the probing cycle. If the specimen is plastic (also used in the sense outlined 
in chapter 2) then some net quantity of work will be transferred to the system. In each of 
these three cases the system satisfies a stability criterion which we will write as  

∆ ,0 r
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p
i δδ ≡≡

,0≡p
iδ

∑ ≥ ,0p
iiX δ&          (5.1) 

and we will describe these specimens as being made of stable material.  
In a recent discussion Drucker5 writes of  
‘the term stable material, which is a specialization of the rather ill-defined term 
stable system.  
A stable system is, qualitatively, one whose configuration is determined by the 
history of loading in the sense that small perturbations produce a small change in 
response and that no spontaneous change in configuration will occur. Quantitative 
definition of the terms stable, small, perturbation, and response are not clear cut 
when irreversible processes are considered, because a dissipative system does not 
return in general to its original equilibrium configuration when a disturbance is 
removed. Different degrees of stability may exist.’ 
 
Our choice of the stability* criterion (5.1) enables us to distinguish two classes of 

response to probing of our system: 
I Stability, when a cycle of probing of the system produces a response satisfying the 
criterion (5.1), and  
II Instability, when a cycle of probing of the system produces a response violating the 
criterion (5.1).  
 
* This word will only be used in one sense in this text, and will always refer to material stability as discussed in §2.11 
and here in §5.4. It will not be used to describe limiting-stress calculations that relate to failure of soil masses and are 
sometimes called ‘slope-stability’ or ‘stability-of-foundation’ calculations. These limiting-stress calculations will be met 
later in chapter 9.  
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The role of an external attachment in moderating the consequence of instability can 
be illustrated in Fig. 5.6. The axial-test system in that figure has attached to it an 
arrangement in which instability of the specimen permits the transfer of work out of the 
system: Fig. 5.6(a) shows a pulley fixed over the relatively large ram load with a relatively 
small negative load-increment applied by attaching a small weight to the chord 
round the pulley. At the same time a small positive load-increment is applied to 
the pore pressure platform, and we suppose that, for some reason which need not be 
specified here, the change in pore-pressure happens to result, as shown in Fig. 5.6(b), in 
unstable compressive failure of the specimen at constant volume. The large load on the 
ram will fall as the specimen fails, and in doing so will raise the small load-increment. The 
external probing agency has thus provoked a release of usable work from the system. In 
general, the loading masses within the system would take up energy in acceleration, and 
we would observe a sudden uncontrollable displacement of the loading platforms which we 
would take to indicate failure in the system.  

)0( 3 <X&

)0( 1 >X&

The study of systems at failure is problematical. The load-increment sometimes 
brings parts of a test system into an unstable configuration where failure occurs, even 
though the specimen itself is in a state which would not appear unstable in another test in 
another system. In contrast, the study of stable test systems leads in a straightforward 
manner, as is shown below, to development of stress – strain relationships for the specimen 
under test. Once these relationships are known they may be used to solve problems of 
failure.  

It is essential to distinguish stable states from the wider class of states of static 
equilibrium in general. A simple calculation of virtual work within the system boundary 
based on some virtual displacement of parts of a system, would be sufficient to check that 
the system is in static equilibrium, but additional calculations are needed to guarantee 
stability. Engineers generally must design systems not only to perform a stated function but 
also to continue to perform properly under changing conditions. A small change of external 
conditions must only cause a small error in predicted performance of a well engineered 
system. For each state of the system, we check carefully to ensure that there is no 
accessible alternative state into which probing by an external agency can bring the system 
and cause a net emission of power in a probing cycle. 

 
Fig. 5.6 Unstable Yielding 
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In the following sections we begin by considering the stressed state of the specimen 
and the increments of stress and strain. Then come calculations about power, and the use of 
power in the system. This leads to certain interesting calculations, but in §5.10 we will 
return to this stability criterion and make use of it to explain why it is that in some states 
some load-increments make the specimens yield and others do not. The stability criterion is 
essential to this chapter, but before developing it in detail we must select appropriate 
parameters.  
 
5.5 Stress, Stress-increment, and Strain-increment  

Let the state of effective stress experienced by the specimen be separated into 
spherical and deviatoric components, in the same manner that proved helpful to an 
understanding of the mechanical behaviour of elastic material in §2.6 and §2.7. The total 
stresses acting on the specimen uw, σr, and σl can be used to define parameters somewhat 
similar to eq. (2.4):  
effective spherical pressure  
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rl up σσ        (5.2) 

and axial-deviator stress  
.rlq σσ −=          (5.3) 

In Fig. 5.2 the space diagonal axis has units of √(3)p and the perpendicular axis has units 
√(2/3)q; an alternative and simpler representation of the state of stress of the axial-test 
specimen is now given in Fig. 5.7 where axes p and q are used directly without the 
multiplying factors √(3) and √(2/3)q. 

 
Fig. 5.7 Stress Paths Applied by Probes 

 
In a corresponding manner, parameters of stress-increment can be calculated and used to 
describe any load-increment, namely:  
effective spherical pressure increment  

w
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and axial-deviator stress-increment  
.rlq σσ &&& −=          (5.5)  

The parameters define a vector in the (p, q) plane, and Fig. 5.7 illustrates two 
examples. In each example the specimen drains into the pore-pressure cylinder with no 
pore-pressure load-increment, 

),( qp &&

.0≡wu& One example, AB, (equivalent to a conventional 
drained compression test) involves load-increment only on the ram platform and not on the 
cell pressure platform so that 
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In this example, eqs. (5.4) and (5.5) give  
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so that the load-increment brings the specimen into a state of stress represented on the (p, 
q) plane by some point B on the line through A of slope 3 given by .3

1 qp && = The probing 
cycle would be completed by removal of the load-increment and return of the specimen to 
the original stress state at A (though not necessarily to the original lengths and volumes).  

The second example, AC (equivalent to a drained extension test), involves load-
increment on the cell pressure platform and an equal but opposite negative stress-increment 
on the ram platform, so that  In that case eqs. (5.4) and (5.5) 
give  
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so that the load-increment brings the specimen into a state represented in the (p, q) plane 
by some point C on a line through A of slope 2

3− given by .3
2 qp && −=  As before, 

completion of the probing cycle requires removal of load increments, and a return to a state 
represented by point A.  

The choice of strain-increment parameters to correspond to and  
requires care. It is essential that when the corresponding stress and strain-increments are 
multiplied together they correctly give the incremental work per unit volume performed by 
stresses on the specimen. This essential check will be carried out in the next section, §5.6. 
But in introducing the strain-increment parameters an appeal to intuition is helpful. 
Clearly, change in specimen volume can be chosen to correspond with effective spherical 
pressure and pressure increment. The choice of a strain parameter to correspond with axial-
deviator stress and stress-increment is not so obvious. The ram displacement I does not 
correspond simply to axial-deviator stress; indeed, if an elastic specimen is subjected to 
effective spherical pressure increment without any axial- deviator stress there will be a 
longitudinal strain of one third of the volumetric strain. This suggests the possibility of 
defining a parameter

),( pp & ),( qq &

6 called axial-distortion increment  
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to correspond to axial-deviator stress. The correctness of this choice will be shown in §5.6.  
Care must be taken with signs of these parameters. Since stress is defined to be 

positive in compression, it is necessary to define length reduction and radius reduction as 
positive strain-increments, lε& and rε& respectively. Then defining longitudinal strain-
increment as  
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we have volumetric strain-increment,  
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and eq. (5.6) can be re-written  
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It will be appropriate to distinguish between deformations called  
length reduction when ε&  > 0  

 
and   radius reduction when ε&  < 0.  
 
A little conceptual difficulty may be met later because volumetric strain-increment has 
been defined in eq. (5.8) to be positive when the volume v is being reduced.  

It should be noted that for this choice of parameters to be meaningful principal axes 
of stress, stress-increment, and strain- increment must coincide. 
 
5.6 Power  

The rate (with respect to strain*) of working of the main loading within the system 
on the specimen during the displacements provoked by the external agency will be called 
the loading power of the system. It can be simply calculated from the observed 
displacements of Fig. 5.4 to be  

.)( lavvuE rlrw
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The upward displacement of the pore-pressure piston is equal and opposite to the 
downward displacement of the cell-pressure piston, and so the loading power depends only 
on the effective stresses  
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and eq. (5.10) can be re-written  
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Introducing eqs. (5.7) and (5.8), the loading power per unit volume of specimen 
becomes  
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in which form the rate of working of effective stresses moving at their respective strain 
rates is directly evident.  
But from eqs. (5.2), (5.3), (5.8), and (5.9) we obtain  
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which when added give  
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This confirms the correctness of the choice of strain-increment parameters, because 
comparison of eqs. (5.11) and (5.12) shows that  
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which is clearly necessary.  
* Equations of the theory of plasticity are independent of time.7  
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At this juncture we must recall the mechanical working of the system and the 
external agency, see Fig. 5.4. The loads within the casing of the test system are relatively 
heavy and they may well have brought the specimen to the point of yielding. The object of 
the tests is to learn how this loaded specimen will adjust itself when it is gently probed. 
During the small displacements that are provoked by the external agency the heavy loads 
moving within the system generate power E&  which the specimen must either store or 
dissipate: in the following section §5.7 we will define the nature of the Granta-gravel 
material by stating the manner in which it disposes of this loading power. All this is taking 
place within the system. In addition, there is the small power input P& by which the external 
agency is controlling, and at the same time provoking, the displacements of the system, 
given by  
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This power is transmitted across the casing or boundary of the system during application of 
the load-increment, but it is altogether smaller than the power of the heavy loads that are 
causing the specimen to deform. We think of P& as a small input signal that controls the 
powerful heavy loads within the system.  

During application of the load-increment the loading power per unit volume 
transferred from the heavy loads to the specimen is, from eq. (5.13),  
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During subsequent unloading the recoverable power per unit volume returned by the 
specimen to the heavy loads within the system is  
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The remainder of the loading power which is not transferred back and has been dissipated 
within the specimen is  
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Of course transfers from heavy loads to specimen and back again do not involve any 
transfer across the casing that surrounds the system. However, there may be some net work 
transferred by the external probing agency across the boundary to the system in the 
complete probing cycle, which is the small quantity  
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corresponding to the shaded area in Fig. 5.5(c). We have already discussed the importance 
of this in §5.4 and seen that our criterion of stability (5.1) requires  
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5.7 Power in Granta-gravel  

To specify the mechanical behaviour of a material it is necessary to prescribe the 
nature of the four terms on the right of eqs. (5.14) and (5.15). For example, if a gas were 
tested only the first term of the first equation v

vp r& would be significant and all the other 
terms would be negligible. Again, if a perfectly elastic material were tested and pv&
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pε& would be zero, and and might be prescribed functions of and  In 
formulating an artificial material we are free to choose what ingredients we like for the 
recipe provided by these two equations. We require Granta-gravel to be an ideal 
rigid/plastic material and so we shall take as our first and major simplification the 
requirement that it never displays any recoverable strains, i.e.,  

rv& rε& pp &, ., qq &

.0≡≡ rrv ε&&          (5.17)  
This means that the application of a probing load-increment either meets with a 

rigid response, or causes yield, but that the subsequent removal of the load-increment has 
no effect at all. There can be no recoverable power U and all loading power & E& is dissipated 
within the specimen as  .W&

We need to specify how this work W  is dissipated, and as Granta-gravel is 
intended to be as simple a model as possible of a frictional granular material we shall 
assume that  
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In this equation M (capital µ) is a simple frictional constant so that W  is linearly 
dependent on p > 0. The modulus sign is required for 

&

ε& because frictional work is always 
dissipated and W  must always be positive. This property of Granta-gravel is a sort of 
‘friction’ in the sense loosely defined in §1.8.  

&

Combining these assumptions and re-writing eqs. (5.14), (5.15), and (5.16) we have 
specified for Granta-gravel  
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and the stability criterion becomes  
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5.8 Responses to Probes which cause Yield 

If we have a specimen of Granta-gravel of specific volume v1 under test, in 
equilibrium at the stressed state (p1, q1), and we apply a series of different probes  
we can now use eq. (5.19) to predict responses of the system. Generally, the specimen 
remains rigid but there may be certain probes which cause it to yield, and when yielding 
occurs the power equation (5.19) tells us what ratio of (permanent) increments of strain the 
specimen will experience.  
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For the case of length reduction, ,0>ε&  we have  
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and for radius reduction, ,0<ε&  
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These equations provide relationships between stress ratio η1= (q1/p1) and strain-increment 
ratio ,

1ε&
&
v

v  and reveal the importance of the constant M. We will describe specimens which 

yield when 11 Mpq < as being weak at yield, and those which yield when 11 Mpq > as 
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being strong at yield, and those which yield when 11 Mpq = as being in a critical state at 
yield.  

At this stage, in order to develop the argument economically, we shall confine our 
attention to specimens that are experiencing a positive deviator stress, q1 >0, and subject to 
reduction of length .0≥ε&  This is equivalent to conducting conventional axial compression 
tests only, but we shall see later that this restriction does not cause loss of generality, as 
similar results can be obtained for extension tests where q1 <0 and .0≤ε&  

 
5.9 Critical States 

Although we are taking q1 >0 and 0≥ε&  we still have three distinct classes of 
specimen to consider:  

a) q1 <Mp1 for which eq. (5.21a) shows that 0>−= vv δ&  so that all specimens weak at 
yield must be compacting,  

b) q1 >Mp1 for which we must have 0<−= vv δ& so that all specimens strong at yield 
must be dilating,  

c) q1 = Mp1 for which  so that specimens yielding in what we call ‘critical states’ 
remain at constant volume, 

0=v&
ε&  is indeterminate, and in these states yield can 

continue to occur without change in q1, p1, or v1. The material behaves as a 
frictional fluid rather than a yielding solid; it is as though the material had melted 
under stress.  
 
The behaviour of each of these three classes (a), (b), and (c) is indicated in Fig. 5.8 

from which it is clear that when the states of  

 
Fig. 5.8 Condition of Specimens at Yield in Relation to Line of Critical States 

 
specimens are represented by the parameters (p, v) in Fig. 5.9 a distinct curve separates an 
area in which yielding specimens compact, from one in which they dilate. In addition, any 
point such as C appropriate to a specimen yielding in a critical state with 

must lie on this curve.  111 , vvMpq ==
Experimental evidence 8-11 supports the assumption that for specimens of Granta-

gravel in tests with length reduction there exists a unique curve of critical states in (p, v, q) 
space. This curve, which will always be shown in diagrams as a double line, is given by the 
pair of equations  

Mpq =         (5.22)  
defining the straight line projection in Figs. 5.8(a), (b), and (c),  
and   pΓv lnλ−=               (5.23) 
 
defining the projected critical curve of Fig. 5.9. (We shall expect a mirror image of this 
critical state curve on the negative side of the q = 0 plane for tests with radius reduction.) 
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 It is experimentally difficult to keep a specimen under control as it approaches the 
critical state and tends towards frictional fluid behaviour. Axial-test specimens have 
closely defined right-cylindrical shape at the start of a test, but we can clearly see them 
lose shape and we must expect that the test system will become unstable and exhibit 
‘failure’ before average conditions in the specimen correspond closely to critical 
conditions. However, leaving to one side at present the difficulties of the specific system of 
Figs. 5.3, 5.4, 5.6, it is necessary to idealize and assume that specimens of Granta-gravel 
can reach a critical state.  

 
Fig. 5.9 Line of Critical States for Length Reduction 

 
5.10 Yielding of Granta-gravel 

From our outline of theory of plasticity in chapter 2 we expect the permissible 
stressed states of a particular specimen of Granta-gravel to be bounded by a convex closed 
yield curve in the axial-test plane or the (p, q) plane of Fig. 5.10. We expect that under 
changes of states of stress represented by paths within the boundary, such as from L to K, 
the specimen of Granta-gravel will remain rigid with no displacements and with its specific 
volume unchanged at v1.  

 

 
Fig. 5.10 Closed Convex Yield Curve 

 
Let us examine in detail the behaviour of a specimen under the state of stress given 

by S, which is on the yield curve with coordinates (ps, qs). We can apply a variety of 
infinitesimal probes as a result of which the specimen either remains rigid or yields 
with permanent deformations satisfying eq. (5.19). The inequality (5.20) tells us whether 
such yielding is stable or unstable. Combining these and eliminating  we obtain the 
inequality  

),,( qp &&

v&

0)( ≥+− εεε &&&&& qpqMpp sss  
and since we have previously specified 0≥ε& we have the requirement for stable yielding  
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Fig. 5.11 Probing Vectors at Point on Yield Curve 

 
Considering in Fig. 5.11 all possible probing vectors at the point S, we can now distinguish 
between those such as ST which are directed outwards from a line through S of slope  
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those such as SR which are directed inwards from the line, and those such as SS' which are 
directed along the line. Under the first of these probings yielding would satisfy the stability 
criterion and inequality (5.24): under the second of these probings rigidity must be 
postulated so that ε&  is zero if the stability criterion is to be satisfied: under the third of 
these probings the specimen experiences a neutral change of state in which it moves into 
an adjacent state of limiting rigidity, still on the point of yielding.  

In this manner we can link the stability criterion with the theory of plasticity, as 
also set out in chapter 2. We can integrate eq. (5.25) to give  

const.ln == p
Mp
q         (5.26)  

  

 
Fig. 5.12 Yield Curve for Specimens of Granta-gravel of Volume v1
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We can evaluate the constant of integration as we know that the yield curve must 
pass through the critical state C1 appropriate to this specimen of specific volume v1. Let 
this be denoted by so that the yield curve becomes  ),( uuu Mpqp =

).0(1ln >=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ q

p
p

Mp
q

u

       (5.27) 

Our argument has been confined so far to loads with q >0 so the yield curve given 
by eq. (5.27) is confined to the positive quadrant as shown in Fig. 5.12(a). If the argument 
of this and the last section (5.9) is now repeated for specimens subject to negative deviator 
stress q <0 and reduction of radius 0≤ε& (equivalent to a conventional extension test) we 
shall get exactly similar expressions but with appropriate changes of sign throughout, and 
derive a yield curve which is the mirror image of that above, i.e.,  
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       (5.28)  

Putting the two together we have established a symmetrical closed convex curve, 
Fig. 5.12(b). The main features of this curve are that it passes through the origin (with the 
q-axis as tangent), has zero gradient at the critical states C1 and , and has a vertex at V1'C 1 
where the gradients are ±M. In particular, the pressure at the vertex denoted by Pe is such 
that i.e.,  ,1)/ln( =ue pp

.718.2 ue pp =         (5.29)  
It must be remembered that the yield curve only applies to specimens of the 

particular specific volume v=v1 that we have considered, and that it is a boundary 
containing all permissible equiiibrium states of stress for this set of specimens. 
Mathematically, in eqs. (5.27) and (5.28) it is the parameter pu which is a unique function 
of v1. In the next section we will consider the family of yield curves that apply to sets of 
specimens of other specific volumes.  
 
5.11 Family of Yield Curves 

In the last section we established the yield curve of Fig. 5.12(b) for specimens of 
specific volume v1. If instead we have a specimen of different specific volume v2, the 
appropriate critical states C2 and  will have moved to a different position on the 
critical curve of Figs. 5.9 and 5.13 dictated by  

2'C ),( uu vp

.ln pΓv λ−=       (5.23 bis)  
We shall have a second yield curve of identical shape but of different size, with the 
position of C (and ) acting as a scaling factor. Both of these curves clearly belong to a 
nest or family of yield curves.  

'C

This family of curves generates a closed surface in the three-dimensional space (p, 
v, q) which must contain all permissible states of specimens; it will not be possible for a 
specimen to be in stable equilibrium in a state represented by a point outside this surface. 
Hence it is called9 the stable-state boundary surface and is represented by the single 
equation  

⎟
⎠
⎞

⎜
⎝
⎛ −

−
+= pvΓMpq ln1

λ
       (5.30)  

obtained from eqs. (5.23) and the pair (5.27) and (5.28). A view of the surface is best seen 
in the direction of the arrow of Fig. 5.13; and the upper half is shown thus in Fig. 5.14.  
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Fig. 5.13 Separate Yield Curves for Specimens of Different Volumes 

 
If we consider a set of specimens all at the same ratio η = q/p>0 at yield, we see 

from substitution in eq. (5.30) that their states must lie on the line  

const.1ln =+⎟
⎠
⎞

⎜
⎝
⎛ −=+ Γ

M
pv ηλλ       (5.31)  

 
Fig. 5.14 Upper Half of State Boundary Surface 

 



 78 

This is illustrated in Fig. 5.15; where each curve, constant,ln =+ pv λ  corresponds to one 
value of η and vice versa. The critical curve C1C2C3 and the curve joining the vertices 
V1V2V3 are seen to be special members of this set. If the lower diagram, Fig. 5.15(b), is 
plotted with p on a logarithmic scale the set of curves become a set of parallel lines of 
slope – λ, in Fig. 5.15(c).  
 
5.12 Hardening and Softening  

At this stage we must return to consider certain special circumstances in which an 
inward probing vector must be associated with unstable yielding of Granta-gravel.  

Whenever yielding does occur the specimen will suffer permanent deformation 
),( ε&&v  so that after removal of the probe the specimen will have (marginally) changed its 

specific volume from v1 to )()( 11 vvvv &−=+δ and it will then be in state  
From the point of view of the observations that can be made by the external agency the 
specimen will have been distorted into a different rigid specimen of specific volume 

 which in effect is a different material with its own distinct yield curve. It will not 
be possible to reverse this process to return the specimen to its original state at S.  

).,,( 1 ss qvvp &−

),( 1 vv &−

 

 
Fig. 5.15 Set of Specimens Yielding at Same Stress Ratio 
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Fig. 5.16 Hardening 

 
From §5.9 it is apparent that the critical curve divides all possible states of a 

specimen into two distinct categories. Let us first concentrate on specimens which are 
weak at yield for which and show that the application of a small outward 
probing cycle is consistent with stable yielding and permanent deformation 

,0 ss Mpq <<
)0,( >ε&&v to an 

isotropically hardened state. 
From eq. (5.12a) we know that this volumetric strain-increment  must be positive, 

thus δv is negative and the specimen will compact to a smaller total volume 
v&

),()( 112 vvvvv &−=+= δ at which it has a new larger yield curve. On removal of the load-
increment to complete the probing cycle as illustrated in Fig. 5.16, the specimen is left in 
the rigid stressed state ),,( 12 srsr qqvvvpp =−== & which is represented by the point R2, 
inside the dotted yield curve that is appropriate to specimens of specific volume v2. We 
could now add a permanent load-increment of  to our new ‘denser’ specimen at R),( qp && 2 
before bringing it to the verge of yielding again at some point S2 on the larger yield curve. 
The effect of our probe has been to deform the specimen into one that is slightly stronger 
or harder, so that our original assumption of stable yielding is valid. This phenomenon is 
known as hardening and will be the consequence of any outward probe that we choose to 
apply to a specimen with stressed state .0 ss Mpq <<  

In contrast, let us now consider a similar specimen which is in a stressed state F1 
given by (pf, v1, qf) in Fig. 5.17, where it is strong at yield with  We will now 
find that yielding has to be associated with application of an inward probe, and this is 
consistent with instability. If the probing causes the specimen to yield and undergo 
permanent deformation 

.ff Mpq >

)0,( >ε&&v then in this case the volumetric strain-increment v  must 
be negative, the sample must expand to a larger volume 

&

,113 vvvv >+= δ  and in this 
condition at H3 the new ‘looser’ specimen is just in equilibrium governed by a smaller 
yield curve. Hence the probing cycle had to be directed inwards and it will now be 
impossible to complete the cycle and restore the state to (pf, qf) because this state lies 
outside the dotted yield curve and the specimen can no longer sustain these stresses in 
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equilibrium. This means that the effect of probing has been to deform the specimen into 
one that is weaker or softer: we will call this process softening. 

 

 
Fig. 5.17 Softening 

 

 
Fig. 5.18 Rigidity, Stability, and Instability 
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In engineering terms the condition of the specimen at F is what we would recognize 
as a state of incipient failure, and we would need some buffer to arrest displacements if we 
were to try to control the specimen and reduce loads during the softening process. Of 
course if we hàd tried to apply an outward probe such as F1I1 to the original specimen we 
should have observed catastrophic uncontrollable failure. 

The results of probing both categories of specimen are summarized in Fig. 5.18.  
 
5.13 Comparison with Real Granular Materials  
 At this stage we need to take stock of the development of Granta-gravel as an ideal 
artificial material and see whether it has developed into a useful model and whether its 
behaviour bears meaningful and worthwhile resemblance to that of real granular materials. 
We have established certain important features of its behaviour and seen what a dominant 
role the line of critical states plays in dividing the states of the material into those in which 
it will display continuous stable yielding and ‘harden’ from those in which it will ‘fail’ in 
unstable yielding and ‘soften’.  

In our test system we are considering the application of small fixed increments of 
load and imitating a stress controlled test. In reality most modern laboratory testing is 
conducted in a strain-controlled manner, but for the results to be valid the rate of strain 
must be sufficiently slow that pore-pressure gradients are negligible at all times. This will 
be equivalent to applying a continuous sequence of infinitesimal load-increments of 
different intensity so that the rate of strain is constant, i.e., .t&& ∝ε  It will consequently be 
legitimate for us to predict what the results of strain-controlled tests on Granta-gravel 
would be, from our ‘stress-controlled theory’.  

For simplicity, let us consider a compression test on a specimen of initial state (p0, 
v0, q=0) in which at all times the effective spherical pressure p is held constant at p0, so 
that  The state of the specimen throughout the test must lie in the p = p.0≡p& 0 plane, which 
intersects the positive half of the state boundary surface in the straight line  

vpΓ
Mp

qpp −−+== )ln( 0
0

0 λλλ      (5.32) 

obtained directly from eq. (5.30), and shown in Fig. 5.19 in the three projected views of the 
stable-state boundary surface containing all the points A, B, C, D, E, F, G, and V.  

If the initial condition is such that )ln( 00 pΓv λ−> the specimen will start at state 
A, in a condition looser or wetter than critical. As the axial-deviator stress is increased the 
specimen will remain rigid until it yields at B (when it reaches the yield curve 
corresponding to v = v0) and then continue to yield in a stable hardening manner up BDC 
until it eventually reaches the critical state at C after infinite strain. 

Conversely, a specimen with )ln( 00 pΓv λ−< will start at state E in a condition 
denser or drier than critical. The specimen remains rigid until it reaches state F and 
thereafter exhibits unstable softening down FGC until it reaches the critical state at C, after 
infinite strain.  
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Fig. 5.19 Constant-p Test Paths 

 
For convenience, let Z always be used to denote the point in (p, v, q) space 

representing the current state of the specimen at the particular stage of the test under 
consideration. As the test progresses the passage of Z on the state boundary surface either 
from B up towards C, or from F down towards C will be exactly specified by the set of 
three equations:  
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The first two equations govern the behaviour of all specimens and the third is the 
restriction on the test path imposed by our choice of test conditions for this specimen. We 
will find it convenient in a constant-p test to relate the initial state of the specimen to its 
ultimate critical state by the total change in volume represented by the distance AC (or EC) 
in Fig. 5.19(c) and define  

.ln 0000 pΓvvvD c λ+−=−=       (5.34) 
The conventional way of presenting the test data would be in plots of axial-deviator 

stress q against cumulative shear strain ε and total volumetric strain ∆v/v0 against ε; and 
this can be achieved by manipulating equations (5.33) as follows. From the last two 
equations and (5.34) we have  

)( 000 DvvMpq −+−= λλ  
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and substituting in the first equation  
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Remembering that δεε +=&  whereas vv δ−=&  this becomes  
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Integrating 
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and if ε is measured from the beginning of the test  
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which is the desired relationship between 
0v

∆v and ε.  

 
Fig. 5.20 Constant-p Test Results 
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Similarly we can obtain q as a function of ε  

[ ].)(
)()(exp

0000

0000

qDvMpD
qMpvDvM

λλ
λε

λ −+−
−

=
⎭
⎬
⎫

⎩
⎨
⎧ −
−    (5.37) 

These relationships for (i) a specimen looser than critical and (ii) a specimen denser 
than critical are plotted in Fig. 5.20 and demonstrate that we have been able to describe a 
complete strain-controlled constant-p axial-compression test on a specimen of Granta-
gravel.  

In a similar manner we could describe a conventional drained test in which the cell 
pressure rσ is kept constant and the axial load varies as the plunger is displaced at a 
constant rate. In §5.5 we saw that throughout such a test ,3

1 qp && =  so that the state of the 
specimen, Z, would be confined at all times to the plane .3

1
0 qpp +=  Hence the section of 

this ‘drained’ plane with the state boundary surface is very similar to the constant-p test of 
Fig. 5.19 except that the plane has been rotated about its intersection with the q = 0 plane 
to make an angle of tan-1 3 with it.  

The differential equation corresponding to eq. (5.35) is not directly integrable, but 
gives rise to curves of the same form as those of Fig. 5.20.  

An attempt to compare these with actual test results on cohesion-less granular 
materials is not very fruitful. Such specimens are rarely in a condition looser than critical; 
when they are, it is usually because they are subject to high confining pressures outside the 
normal range of standard laboratory axial-test equipment. Among the limited published 
data is a series of drained tests on sand and silt by Hirschfeld and Poulos12, and the 
‘loosest’ test quoted on the sand is reproduced in Fig. 5.21 showing a marked resemblance 
to the behaviour of constant-p tests for Granta-gravel.  
 

 
Fig. 5.21 Drained Axial Test on Sand (After Hirschfeld & Poulos) 

 
For the case of specimens denser than critical, Granta-gravel is rigid until peak 

deviator stress is reached, and we shall not expect very satisfactory correlation with 
experimental results for strains after peak on account of the instability of the test system 
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and the non-uniformity of distortion that are to be expected in real specimens. This topic 
will be discussed further in chapter 8.  

However, it is valuable to compare the predictions for peak conditions such as at 
state F of Fig. 5.19 and this will be done in the next section. 
 
5.14 Taylor’s Results on Ottawa Sand  

In chapter 14 of his book13 Fundamentals of Soil Mechanics Taylor discusses in 
detail the shearing characteristics of sands and uses the word ‘interlocking’ to describe the 
effect of dilatancy. He presents results of direct shear tests in which the specimen is 
essentially experiencing the conditions of Fig. 5.22(a); the direct shear apparatus is 
described in Taylor’s book, and the main features can be seen in the Krey shear apparatus 
of Fig. 8.2. In these tests the vertical effective stress 'σ  was held constant, and the 
specimens all apparently denser than critical were tested in a fully air-dried condition, i.e., 
there was no water in the pore space. (It is well established that sand specimens will 
exhibit similar behaviour to that illustrated in Fig. 5.22(b) with voids either completely 
empty or completely full of water, provided that the drainage conditions are the same.)  

 

 
Fig. 5.22 Results of Direct Shear Tests on Sand 

 
On page 346 of his book, Taylor calculates the loading power being supplied to the 

specimen making due allowance for the external work done by the interlocking or 
dilatation. In effect, he calculates for the peak stress point F the expression 

xAyAxA &&& '' µσστ =−        (5.38) 
(total loading power = frictional work) 

 
which has been written in our terminology, and where A is the cross-sectional area of the 
specimen. This is directly analogous to eq. (5.19),  

εε &
&

& Mp
v
vpq =+  

which relates true stress invariants p and q, and which expresses the loading power per unit 
volume of specimen. The parameters are directly comparable: q with τ, p with 'σ , ε&  with 

 and with ,x& vv /& y&− (opposite sign convention); and so we can associate Taylor’s 
approach with the Granta-gravel model.  
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Fig. 5.23 Friction Angle Data from Direct Shear Tests (Ottawa Standard Sand) (After Taylor) 

 

 
Fig. 5.24 Friction Angle Data from Direct Shear Tests replotted from Fig. 5.23 

 
The comparison can be taken a stage further than this. In his Fig. 14.10, reproduced 

here as Fig. 5.23, Taylor shows the variation of peak friction angle mφ  (where 'tan σ
τφ m

m = ) 
with initial voids ratio e0 for different values of fixed normal stress 'σ . These results have 
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been directly replotted in Fig. 5.24 as curves of constant mφ (or peak stress ratio 'σ
τ m ) for 

differing values of v = (1 + e) and 'σ . 
There is a striking similarity with Fig. 5.15(b) where each curve is associated with a 

set of Granta-gravel specimens that have the same value of q/p at yield. Taylor suggests an 
ultimate value of φ for his direct shear tests of 26.7° which can be taken to correspond to 
the critical state condition, so that all the curves in Fig. 5.24 are on the dense side of the 
critical curve.  
 
5.15 Undrained Tests  

Having examined the behaviour of Granta-gravel in constant-p and conventional 
drained tests, we now consider what happens if we attempt to conduct an undrained test on 
a specimen. In doing so we shall expose a deficiency in the model formed by this artificial 
material.  

It is important to appreciate that in our test system of Fig. 5.4, although there are 
three separate platforms to each of which we can apply a load-increment,  we only 
have two degrees of freedom regarding our choice of probe experienced by the 
specimen. This is really a consequence of the principle of effective stress, in that the 
behaviour of the specimen in our test system is controlled by two effective stress 
parameters which can be either the pair 

,iX&

),( qp &&

)','( rl σσ or (p, q). The effects of the loads on the 
cell-pressure and pore-pressure platforms are not independent; they combine to control the 
effective radial stress r'σ  experienced by the specimen.  

Throughout a conventional drained test we choose to have zero load-increments on 
the pore-pressure and cell-pressure platforms and to deform the specimen by 
means of varying the axial load-increment and allowing it to change its volume.  

)0( 21 ≡= XX &&

,3X&

In contrast, in a conventional undrained test we choose to have zero load-increment 
 on the cell-pressure platform only, and to deform the specimen by means of varying 

the axial load-increment  However, we can only keep the specimen at constant volume 
by applying a simultaneous load-increment  of a specific magnitude which is dictated 
by the response of the specimen. Hence for any choice of made by the external agency, the 
specimen will require an associated  if its volume is to be kept constant.  

2X&

.3X&

1X&

1X&

Let our specimen of Granta-gravel be in an initial state  represented by 
I in Fig. 5.25. As we start to increase the axial load by a series of small increments  the 
specimen remains rigid and has no tendency to change volume so that the associated are 
all zero. Under these conditions there is no change in pore-pressure and 

)0,,( 01 =qvp
,3X&

1X&

qp && 3
1=  so that the 

point Z representing the state of the sample starts to move up the line IJ of slope 3.  
This process will continue until Z reaches the yield curve, appropriate to  at 

point K. At this stage of the test in order that the specimen should remain at constant 
volume, Z cannot go outside the yield curve (otherwise it would result in permanent 

and

,0vv =

v& ε& ); thus as q further increases the only possibility is for Z to progress along the yield 
curve in a series of steps of neutral change. Once past the point K, the shape of the yield 
curve will dictate the magnitude of that is required for each successive  At a point 
such as L the required will be represented by the distance 

1X& .3X&

∑ 1X& ,pLM 3
1

0 pq −+=  so that 
this offset indicates the total increase of pore- pressure experienced by the specimen.  
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Fig. 5.25 Undrained Test Path for Loose Specimen of Granta-gravel 

 

 
Fig. 5.26 Undrained Test Results for Loose Specimen of Granta-gravel 

 
Eventually the specimen reaches the critical state at C when it will deform at 

constant volume with indeterminate distortion .ε  The conventional plots of deviator stress 
and pore-pressure against shear strainε will be as shown in Fig. 5.26, indicating a 
rigid/perfectly plastic response.  

As mentioned in §5.13, when comparing the behaviour in drained tests of Granta-
gravel with that of real cohesionless materials, it is rare to find published data of tests on 
specimens in a condition looser than critical. However, some undrained tests on Ham River 
sand in this condition have been reported by Bishop14; and the results of one of these tests 
have been reproduced in Fig. 5.27. (This test is No. 9 on a specimen of porosity 44.9 per 
cent, i.e., v = 1.815; it should be noted that for an undrained test 02 31 ≡+= εε &&&

v
v so that 

strain.axial)( 1313
2 ==−= εεεε &&&& ) 
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Fig. 5.27 Undrained Test Results on very Loose’ Specimen of Ham River Sand (After Bishop) 

 
The results show a close similarity to that of Fig. 5.26. In particular it is significant 

that axial-deviator stress reaches a peak at a very small axial strain of only about 1 per 
cent, whereas in a drained test on a similar specimen at least 15–20 per cent axial strain is 
required to reach peak. We can compare Bishop’s test results of Fig. 5.27 with Hirschfeld 
and Poulos’12 test results of Fig. 5.21. These figures may be further compared with Fig. 
5.26 and 5.20 which predict extreme values for Granta-gravel which are respectively zero 
strain and infinite strain to reach peak in undrained and drained tests.  

 
Fig. 5.28 Undrained Test Path for very ‘Loose’ Specimen of Ham River Sand 

 
Although the Granta-gravel model is seen to be deficient in not allowing us to 

estimate any values of strains during an undrained test, we can get information about the 
stresses. The results of Fig. 5.27 have been re-plotted in Fig. 5.28 and need to be compared 
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with the path IKLC of Fig. 5.25. An accurate assessment of how close the actual path in 
Fig. 5.28 is to the shape of the yield curve is presented in Fig. 5.29 where q/p has been 
plotted against ),ln( upp and the yield curve becomes the straight line  

[ .ln(1 uppMp
q −= ]        (5.27 bis) 

The points obtained for the latter part of the test lie very close to a straight line and indicate 
a value for M of the order of 1.2, but this value will be sensitive to the value of pu chosen 
to represent the critical state.  

 
Fig. 5.29 Undrained Test Path Replotted from Fig. 5.28 

 
Consideration of undrained tests on specimens denser than critical leads to an 

anomaly. If the specimen is in an initial state at a point such as I in Fig. 5.30 we should 
expect the test path to progress up the line IJ until the yield curve is reached at K and then 
move round the yield curve until the critical state is reached at C. However, experience 
suggests that the test path for real cohesionless materials turns off the line IJ at N and 
progresses up the straight line NC which is collinear with the origin.  
 

 
Fig. 5.30 Undrained Test Path for Dense Specimen of Granta-gravel 

 
At the point N, and anywhere on NC, the stressed state of the specimen is 

such that in the initial specification of Granta-gravel, we have the curious situation in 
which the power eq. (5.19) (for

Mpq =

0≥ε& )  

εε &&
&

Mpq
v
vp

=+  

is satisfied for all values of ε& , since .0≡v&  Moreover, the stability criterion is also satisfied 
so long as  which will be the case. Hence it is quite possible for the test path to take ,0>q&
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a short cut by moving up the line NC while still fulfilling the conditions imposed on the 
test system by the external agency. This, together with the occurrence of instability when 
specimens yield with (as shown in Fig. 5.18), lead us to regard the plane Mpq > Mpq =  
as forming a boundary to the domain of stable states. Our Fig. 5.14 therefore must be 
modified: the plane containing the line C1C2C3C4 and the axis of v will become a boundary 
of the stable states instead of the curved surface shown in Fig. 5.14. This modification has 
the fortunate consequence of eliminating any states in which the material experiences a 
negative principal stress, and hence we need not concern ourselves with the possibility of 
tension-cracking.  
 
5.16 Summary  

In this chapter we have investigated the behaviour of the artificial material Granta-
gravel and seen that in many respects this does resemble the general pattern of behaviour 
of real cohesionless granular materials. The model was seen to be deficient (5. 15) 
regarding undrained tests in that no distortion whatsoever occurs until the stresses have 
built up to bring the specimen into the critical state appropriate to its particular volume. 
This difficulty can be overcome by introducing a more sophisticated model, Cam-clay, in 
the next chapter, which is not rigid/perfectly plastic in its response to a probe.  

In particular, the specification of Granta-gravel can be summarized as follows:  
 
(a) No recoverable strains  

0≡≡ rrv ε&&  
(b) Loading power all dissipated  

εε &&
&

Mpq
v
vp

=+         (5.19 bis) 

(c) Equations of critical states  
Mpq =          (5.22 bis) 

pΓv lnλ−=          (5.23 bis) 
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6  
Cam-clay and the critical state concept 
 
 
6.1 Introduction  

In the last chapter we started by setting up an ideal test system (Fig. 5.4) and 
investigating the possible effects of a probing load-increment applied to any 
specimen within the system. By considering the power transferred between the heavy loads 
and the specimen within the system boundary we were able to establish two key equations, 
(5.14) and (5.15). These need to be recalled and repeated: 

),( qp &&

(a) the recoverable power per unit volume returned to the heavy loads during the unloading 
of the probe is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= r

r

q
v
vp

v
U ε&

&&
       (6.1) 

and (b) the remainder of the loading power per unit volume (applied during the loading of 
the probe) is dissipated within the specimen 

p
p

q
v
vp

v
U

v
E

v
W ε&

&&&&
+=−=       (6.2) 

For the specification of Granta-gravel we assumed that there would be no 
recoverable strains  and that the dissipated power per unit volume was )0( ≡≡ rrv ε&&

.ε&& MpvW =  With the further assumption of the existence of critical states, we had then 
fully prescribed this model material, so that the response of the loaded axial-test system to 
any probe was known. The behaviour of the specimen was found to have a general 
resemblance to the known pattern of behaviour of cohesionless granular materials.  

In essence the behaviour of a specimen of Granta-gravel is typified by Fig. 6.1(a, b, 
c). If its specific volume is v0, then it remains rigid while its stressed state (p, q) remains 
within the  yield curve; if, and only if, a load increment is applied that would take 
the stressed state outside the yield curve does the specimen yield to another specific 
volume (with a marginally smaller or larger yield curve). The stable-state boundary surface 
in effect contains a pack of spade-shaped leaves of which the section of Fig. 6.1(a) is a 
typical one. Each such leaf is a section made by a plane 

0vv =

constant,=v  and is of identical 
shape but with its size determined by a scaling factor proportional to exp v. 

The modification which is to be introduced in the first half of this chapter in 
development of a more sophisticated model1,2, is that Cam-clay displays recoverable (but 
non-linear) volumetric strains. This has the effect of slightly ‘curling’ the leaves formed by 
the family of yield curves so that in plan view each appears as a curved line in Fig. 6.1(e), 
which is straight in the semi-logarithmic plot of Fig. 6.1(f). 
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Fig. 6.1 Yield Curves for Granta-gravel and Cam-clay 
 

Recalling the results of one-dimensional consolidation tests described in chapter 4 
and in particular Fig. 4.4, we shall assume for a specimen of Cam-clay that during isotropic 
(q = 0) swelling and recompression its equilibrium states will lie on the line given by 

)ln( 00 ppvv κ−=        (6.3) 
in which κ is considered to be a characteristic soil constant. This line is straight in the plot 
of Figs. 6.1(f) and 6.2, and will be referred to as the κ-line of the specimen. It will be 
convenient later to denote the intercept of this κ-line with the unit pressure line p=1, by the 
symbol vκ so that 

pvv lnκκ +=        (6.4) 
We have seen for the Granta-gravel model the important role that lines of slope 

λ−  play in determining its behaviour. We shall also find it useful to denote by the symbol 
 the intercept of the particular λ-line on which the specimen’s state lies, with the unit 

pressure line, so that 
λv

pvv lnλλ +=        (6.5) 
As a test progresses on a yielding specimen of Cam-clay both these parameters 

and will vary, and they can be used instead of the more conventional parameters, v 
and p, for defining the state of the specimen. Each value of is associated with a 
particular density of random packing of the solids within a Cam-clay specimen; the 
packing can swell and be recompressed without change of during change of effective 
spherical pressure p. 

κv λv

κv

κv



 95 

We will carry our theoretical discussion of the Cam-clay model only as far as §6.7 
where we show that the model can predict stress and strain in an undrained axial test. At 
that point we will interrupt the natural line of argument and delay the close comparison of 
experimental data with the theoretical predictions until chapter 7. Refined techniques are 
needed to obtain axial-test data of a quality that can stand up to this close scrutiny, and 
engineers at present get sufficient data for their designs from less refined tests. Although 
we expect that research studies of stress and strain will in due course lead to useful design 
calculations, at present most engineers only need to know soil ‘strength’ parameters for use 
in limiting-stress design calculations. We will suggest in chapter 8 that only the data of 
critical states of soil are fundamental to the choice of soil strength parameters. We outlined 
the critical state concept in general terms in §1.8, and we will return to expand this concept 
as a separate model in its own right in the second half of this chapter. Certain qualitative 
interpretations based on the critical state concept will follow, but the strong confirmation 
of the validity of this concept will be the closeness with which the Cam-clay model can 
predict the experimental data of the refined tests that are the subject of chapter 7. We do 
not regard this interpretation of axial-test data as an end in itself; the end of engineering 
research is the rationalization and improvement of engineering design. In due course the 
accurate calculation of soil displacements may become part of standard design procedure, 
but the first innovation to be made within present design procedure is the introduction of 
the critical state concept. We will see that this concept allows us to rationalize the use of 
index properties and unconfined compression test data in soil engineering. 
 
6.2 Power in Cam-clay 
 As in §5.7 for Granta-gravel, we have to specify the four terms on the right-hand 
sides of eqs. (6.1) and (6.2). If we consider the application of a probe (in the absence of 
any deviator stress) which takes the sample from A to B in Fig. 6.2 then the work done 
during loading is 

p&

;)( vpvvp ba δ−=− this is stored internally in the specimen as elastic 
energy which can be fully recovered as the probe is unloaded and the specimen is returned 
to its original state at A. The process is reversible and the amount of recoverable energy, 
denoted by  can be calculated from eq. (6.3) to be ,rvp &−

ppvvpvp ba
r && κκδ ==−=− )(      (6.6) 

We shall assume that Cam-clay never displays any recoverable shear strain so that 
0≡rε&         (6.7)  

Combining these, the recoverable power per unit volume 

v
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v
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v
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r &
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&& κε +=⎟⎟
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⎝

⎛
+−=       (6.8) 

We shall also assume, exactly as before, that the frictional work is given by 

0>= ε&
&

Mp
v

W        (6.9) 

and so we can write 

εκε &
&&&&

&
&

Mp
v

W
v
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v
pq

v
vp

==−=−+      (6.10) 

or (for unit volume) loading power less stored energy equals frictional loss. 
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Fig. 6.2 Elastic Change of State 

 
6.3 Plastic Volume Change  

Let us suppose we have a specimen in a state of stress on the verge of yield, 
represented by point D in Fig. 6.3. We apply a loading increment which causes it to 
yield to state E, and on removal of the load-increment which completes the probing cycle it 
is left in state F having experienced permanent volumetric and shear strains. Because we 
have applied a full probing cycle the state of stress of the specimen is the same at F as at 
D, so these points have the same ordinate 

),( qp &&

.df pp =  Because of our assumptions that Cam-
clay exhibits no recoverable shear strain, and that its recoverable volumetric strain occurs 
along a κ-line, the points E and F must lie on the same κ-line, and have the same value of 

 .κv

 
Fig. 6.3 Plastic Volume Change during Yield 

 
One of the unfortunate consequences of our original sign convention (compression 

taken as positive) is now apparent, and to avoid difficulty later the position is set out in 
some detail. In Fig. 6.3(a) and (b) two situations are considered, one with a probe with 

 and the other with  Remembering our sign convention, and since strain-
increments must be treated as vector quantities, we have for both cases 

0>p& .0<p&
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Adding, and noting that  is also the permanent change of experienced by the 
specimen, we have 

)( df vv − κv

p
pvvvvvv rp &

&&&&&
κδ κκ −=+===−       (6.11)  

which can be derived directly from eq. (6.4), defining  .κv
It is important for us to appreciate that yield of the specimen has permanently 

moved its state from one κ-line with associated yield curve to another κ-line having a 
different yield curve: it is the shift of κ-line, measured as that always represents the 
plastic volume change and governs the amount of distortion that occurs (cf. eq. (6.13) to 
follow).  

,κv&
pv&

 
6.4 Critical States and Yielding of Cam-clay 

So far the specification of Cam-clay is 
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with the stability criterion becoming 

0≥+ ε&&
&

& q
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vp
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       (6.12)  

Comparison with eq. (5.19) and (5.20) confirms that Granta-gravel is merely a special case 
of Cam-clay when κ =0. This distinction between the two model materials is the only one 
to be made; and we shall now examine the behaviour of Cam-clay in exactly the same way 
as the procedure of chapter 5.  

Re-writing eq. (6.10) and using (6.11) 

εεκκ &&
&&&

qMp
v
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vp

v
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−=−=        (6.13)  

For the case of length reduction, ,0>ε& we have 

p
qM
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−=
ε
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       (6.14a) 

and for radius reduction, ,0<ε&  

p
qM

v
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−−=
ε
κ

&

&
       (6.14b)  

As a consequence we distinguish between specimens: 
(a) those that are weak at yield when Mpq <)( and ,0>−= κκ δvv&  

(b) those that are strong at yield when Mpq >)( and ;0<−= κκ δvv& and 
(c) those that are at the critical states given by 

Mpq =        (6.15) 
and 

pΓv lnλ−=         (6.16)  
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6.5 Yield Curves and Stable-state Boundary Surface 
Let us consider a particular specimen of Cam-clay in equilibrium in the stressed 

state in Fig. 6.4, so that the relevant value of ),,( iii qvp≡Ι iii vpvv κκ κ =+= ln say. As 
before, we shall expect there to be a yield curve, expressible as a function of p and q, 
which is a boundary to all permissible states of stress that this specimen can sustain 
without yielding. In general, a small probe will take the state of the specimen to 
some neighbouring point within the yield curve such as J; its effect will be to cause no 
shear strain 

),( qp &&

),0( =ε& but a volumetric strain v which is wholly recoverable, and of sufficient 
magnitude to keep the specimen on the same κ-line, so that  

&

p
pvvvv rp &

&&&&
κ

κ +=−=== ;0  

 
Fig. 6.4 Yield Curve for Specimen of Cam-clay 

 
and 

)ln()(ln ppvvpvvv iijjji && ++−=+== κκκκ  
All states within the yield curve are accessible to the specimen, with it displaying a 

rigid response to any change of shear stress q, and a (non-linear) elastic response to any 
change of effective spherical pressure p, so as to keep the value of constant. Probes 
which cross the yield curve cause the specimen to yield and experience a change of , so 
that it will have been permanently distorted into what in effect is a new specimen of a 
different material with its own distinct yield curve. 

κv

κv

Following the method of §5.10 we find that probes which cause neutral change of a 
specimen at state S on the yield curve, satisfy 
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and we can integrate this to derive the complete yield curve as 
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In chapter 5 were used as coordinates of the critical state on any particular yield 
curve, which was planar and therefore an undrained section of the state boundary surface. 
For Cam-clay the yield curves are no longer planar and to avoid later confusion the 
relevant critical state will be denoted by —as in Fig. 6.1— and will be 
reserved for the undrained section. The yield curve is only completely described in (p, v, q) 
space by means of the additional relationship 

),( uu qp

),( xx qp ),( uu qp

 constantln =+= pvv κκ      (6.18)  

 
Fig. 6.5 Upper Half of State Boundary Surface for Cam-clay 

 
The critical state point for this one yield curve is given by the intersection 

of the κ-line and critical curve in Fig. 6.4(b) so that 
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⎭
⎬
⎫

−=
+=+

xx

xx

pΓv
pvpv

lnand
lnln

λ
κκ

 

Eliminating px and vx from this pair of equations and eq. (6.17) we get 

)ln( pvΓMpq λκλ
κλ

−−−+
−

=      (6.19)  

as the equation of the stable-state boundary surface sketched in Fig. 6.5. As a check, if we 
put κ=0 it must reduce to eq. (5.30) for the Granta-gravel stable-state boundary surface.  
Continuing the argument, as in §5.12, we find that specimens looser or wetter than critical 

6.2) Fig.see;ln( Γpvv >+= λλ will exhibit stable yielding and harden, and specimens 
denser or dryer than critical )( Γv <λ will exhibit unstable yielding and soften:  
Fig. 5.18 will also serve for Cam-clay except that in plan view in Fig. 5.18(b) the yield 
curve should now appear curved being coincident with a κ-line.  
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6.6 Compression of Cam-clay 

If we consider a set of specimens all at the same ratio 0)( >= pqη at yield, we 
find from eq. (6.19) that their states must all be on the line: 

 constant1)(ln =+⎟
⎠
⎞

⎜
⎝
⎛ −−=+= Γ

M
pvv ηκλλλ    (6.20) 

This is illustrated in Fig. 6.6 where each curve given by vλ = constant corresponds 
to the set of specimens with one fixed value of η and vice versa. This curve becomes a 
straight line in the semi-logarithmic plot of Fig. 6.6(c), which is parallel to the line of 
critical states and offset from it by a distance { })()()( MaΓv ηκλλ −−=− measured 
parallel to the v-axis. 
 

 
Fig. 6.6 Set of Specimens Yielding at Same Stress Ratio 

 
If we choose to make one of this set of specimens yield continuously under a 

succession of load-increments chosen so that  
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then its state point will progress along this line (given by eqs. (6.20) and (6.21)). As this 
specimen yields, the ratio of volumetric strain to shear strain is governed by eq. (6.13) for 
the case ,0>ε&  i.e.,  
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but from eq. (6.20)  
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so substituting for , we get p&
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For convenience we shall denote { })(1( λκ− by , so that it is another soil constant (but 
not an independent one). Re-writing this in terms of the principal strain-increments 

Λ

lε&  and 

rε&  we have 
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Similarly, for a case of radius reduction when ,,0,0 rl εεεη &&& <<< we obtain 
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The values of these ratios depend on the material constants and on η, but for a 
given ratio of principal stresses Cam-clay undergoes compression with successive principal 
strain-increments in constant ratio. 

One special case is isotropic compression in the axial-test apparatus where the 
imposed boundary conditions are that ,0≡q  i.e., .0≡η  From experience we expect there 
not to be any distortion (in the absence of deviator stress) so that the loading increments of 

would only produce volumetric strain. Unfortunately, the mathematical prescription of 
Cam-clay produces uncertainty for this particular case; if we take the limit as 
p&

0→η  for 
eqs. (6.24) and (6.25) we have 
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These limiting ratios do not allow the possibility that lε&  is equal to 4 (unless λκ = which 
is unacceptable). This is an example of a difficulty met in the theory of plasticity when a 
yield curve has a corner: there are always two alternative limiting plastic strain increment 
vectors, depending on the direction from which the corner was approached. It is usual to 
associate any plastic strain- increment vector that lies between these two limiting vectors 
with yielding at the state of stress at the corner. Amongst these permissible vectors is the 
one along the p-axis corresponding to  i.e., ,0=pε& .rl εε && =  

Although there is uncertainty about distortions, the volumetric strains associated 
with this condition are directly given by eq. (6.20) from which ppv &λ= . These Cam-clay 
specimens are metastable; yielding under any increment of effective spherical 
pressure, they exist in a state of isotropic compression at the corners of successive yield 
curves. It has been usual to call real soil specimens ‘normally consolidated’ under these 
conditions: such specimens of Cam-clay are in a very special and abnormal condition and 
(because the term ‘consolidation’ is reserved for the transient process of drainage) we 
prefer to call them virgin compressed.  

0>p&

Above, we chose a particular stress ratio η and then calculated the associated vector 
of plastic strain-increments. We could equally well have chosen a particular combination 
of strain-increments and then located a point on the Cam-clay yield curve where that given 
vector is normal to the curve. This method is necessary for the analysis of one-dimensional 
compression in the consolidometer where the boundary conditions imposed are such that 

0≡rε&  and hence .23=ε&& vv  From eq. (6.23) we find that ΛM 2
3−=η  and this determines 
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one point on the curve if  .2
3 ΛM >  However, if ,2

3 ΛM ≤  then we must associate this 
particular strain-increment vector with yielding at the corner where .0=η  Thus, if the 
coefficient of earth pressure ‘at rest’ is defined as ,''0 lrK σσ=  we have 
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Values of K0 predicted by eq. (6.26) are higher than those measured in practice. In recent 
research,3 to resolve this difficulty, a modified form of the Cam-clay model has been 
suggested. 
 

6.7 Undrained Tests on Cam-clay 
 We have now reached a stage where we can imagine an undrained test on a 
specimen of Cam-clay, and justify its existence as a model and its superiority over Granta-
gravel. Let us consider a specimen virgin compressed in an initial state )0,,( 00 =qvp  
represented by point V in Fig. 6.7 so that .ln 000

κλλλ −+=+= Γpvv  This is already on 
the yield curve (at the vertex) corresponding to its particular structural packing,  so 
that as soon as any load-increment is applied yielding will occur at once.  

,
0κ

v

 

 
Fig. 6.7 Undrained Test Path for Virgin Compressed Specimen of Cam-clay 

 
The volumetric strains must satisfy eq. (6.11) viz. )( ppvvv p &&&& κκ −== and also the 

added restriction 0≡v&  imposed by the requirement that our test should be undrained. 
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Hence, as the point representing the state of the sample moves across the stable-state 
boundary surface from V to a neighbouring point W, the shift of κ-line must be exactly 
matched by a reduction of effective spherical pressure of amount 

κv&
.pp&κ− This 

compensating change of effective spherical pressure will be brought about by an increase 
of pore-pressure, as was discussed in §5.15. 

This process will continue with the test path moving obliquely through successive 
yield curves until the critical state is reached at C. The equation of the test path 
is obtained by putting 

),,( 0 uu qvp

00 ln pΓvv λκλ −−+==  into eq. (6.19) of the stable-state 
boundary surface 
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This is related to the initial effective spherical pressure p0 and can be alternatively 
expressed in terms of the critical effective spherical pressure pu, since 
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Either of these equations represents the test path in the plot of Fig. 6.7(a). 
The rate of distortional strain experienced along the test path comes directly from 

eq. (6.13) with 
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Choosing the conventional case of length reduction 0,0 >> qε& this becomes 
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Integrating 
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and measuring ε from the beginning of the test we have 
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Substituting back into equation (6.28) we obtain 

⎟
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Mp
q 0exp1      (6.31) 

Both of these relationships are illustrated in Fig. 6.8 and provide a complete description of 
an undrained test on a virgin compressed specimen of Cam-clay. Detailed comparison with 
experimental resuits is made in the next chapter, but reference to Fig. 5.26 for Granta-
gravel shows that the introduction of recoverable volumetric strains in Cam-clay has 
allowed us to conduct meaningful undrained tests. 
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Fig. 6.8 Undrained Test Results for Virgin Compressed Specimen of Cam-clay 

 
6.8 The Critical State Model 

The critical state concept was introduced in §1.8 in general terms. We are now in a 
position to set up a model for critical state behaviour, postulating the existence of an ideal 
material that flows as a frictional fluid at constant specific volume v when, and only when, 
the effective spherical pressure p and axial-deviator stress q satisfy the eqs. (5.22 
bis) and 

Mpq =
pΓv lnλ−=  (5.23 bis). 

 

 
Fig. 6.9 Associated Flow for Soil at Critical State 
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This concept was stated in 1958 by Roscoe, Schofield and Wroth4 in a slightly 
different form, but the essential ideas are unaltered. Two hypotheses are distinguished: first 
is the concept of yielding of soil through progressively severe distortion, and second is the 
concept of critical states approached after severe distortion. Two levels of difficulty are 
recognized in testing these hypotheses: specimens yield after a slight distortion when the 
magnitudes of parameters (p, v, q) as determined from mean conditions in a specimen can 
be expected to be accurate, but specimens only approach the critical state after severe 
distortion and (unless this distortion is a large controlled shear distortion) mean conditions 
in the specimen can- not be expected to define accurately a point on the critical state line. 

It seems to us that the simple critical state concept has validity in relation to two 
separate bodies of engineering experience. First, it gives a simple working model that, as 
we will see in the remainder of this chapter, provides a rational basis for discussion of 
plasticity index and liquid limit and unconfined compression strength; this simple model is 
valid with the same accuracy as these widely used parameters. Second, the critical state 
concept forms an integral part of more sophisticated models such as Cam-clay, and as such 
it has validity in relation to the most highly accurate data of the best axial tests currently 
available. Certain criticisms5,6 of the simple critical state concept have drawn attention to 
the way in which specimens ‘fail’ before they reach the critical state: we will discuss 
failure in chapter 8. 

The error introduced in the early application of the associated flow rule in soil 
mechanics can now be cleared up. It was wrongly supposed that the critical state line in 
Fig. 6.9(a) was a yield curve to which a normal vector could be drawn in the manner of 
§2.10: such a vector would predict very large volumetric dilation rates 

.Mvv p =ε&& However, we have seen that the set of points that lie along the critical state line 
are not on one yield curve: through each critical state point we can draw a segment of a 
yield curve parallel to the p-axis in Fig. 6.9(b). Hence it is correct to associate a flow 
vector which has with each of the critical states. At any critical state very large 
distortion can occur without change of state and it is certainly not possible to regard the 
move from one critical state to an adjacent critical state as only a neutral change: the 
critical state curve is not a yield curve. 

0=pv&

 

6.9 Plastic Compressibility and the Index Tests 
If we have a simple laboratory with only a water supply, a drying oven, a balance 

and a simple indentation test equipment (such as the falling cone test widely used in 
Scandinavia), we can find a value of λ for a silty clay soil. We mix the soil with water and 
remould it into a soft paste: we continually remould the soil and as it dries in the air it 
becomes increasingly strong. There will be a surface tension in the water of the menisci in 
the wet soil surface that naturally compresses the effective soil structure as water 
evaporates. As long as the soil is continually being remoulded it must remain at the critical 
state. We use the simple indentation test equipment to give us an estimate of the ‘strength’ 
of the soil, and we prepare two specimens A and B such that their strengths qa and qb, are 
in the ratio 

100=
a

b

q
q  

within the accuracy of our simple test equipment. 
While we are handling the specimens in the air the external total stress is small, but 

the water tensions generate effective spherical pressures pa and pb. We can not measure the 



 106 

effective spherical pressure directly, but from the critical state model we know in Fig. 
6.10(a) that 

bbaa MpqMpq == and  
so that 

a

b

a

b

p
p

q
q

==100  

and the ratio of indentation test strengths gives an indirect measure of the increase in 
effective spherical pressure that has occurred during the drying out of the soil specimens. 

We find the water contents (expressing them as ratios and not percentages) of each 
specimen wa and wb using the drying oven and balance. Assuming that the specific gravity 
Gs of the soil solids is approximately 2.7 we have 

)(7.2)( babasba wwwwGvv −≅−=−  
 
From the critical state model we have from Fig. 6.10(b) and eq. (5.23 bis) 

bbaa pvΓpv lnln λλ +==+  

Hence  ,6.4100lnln)(7.2 λλλ ===−≅−
a

b
baba p

pvvww  

i.e.,    )(585.0 ba ww −≅λ      (6.32) 
so that we can readily calculate λ from the measured water contents. The loss of water 
content that corresponds to a certain proportional increase in strength is a measure of the 
plastic compressibility of the soil. 
 

 
Fig. 6.10 Critical State Line and Index Tests 

 
If we prepare further specimens that have intermediate values of indentation test 

strength, then we will expect in Fig. 6.10(c) to be able to plot general points such as G on 
the straight line AB on the graph of water content against ‘strength’ (on a logarithmic 
scale). If we arbitrarily choose to define the state of the soil at A as liquid and the state of 
the soil at B as plastic then we can define a )( babg -ww)-w(windex liquidity =   which 
gauges the position of the specimen G in the range between B and A. We can then add a 
second set of numbers to the left of Fig. 6.10(c), giving zero liquidity to B, about 0.6 
liquidity to G (in the particular case shown) and unit liquidity to A. It is a direct 
consequence of the critical state model that a plot of this liquidity index against the 
logarithm of strength should give a straight line.  
 In §1.3 we discussed the widely used and well-respected index tests of soil 
engineering. In the liquid limit test it seems that high decelerations cause a miniature 
slope-failure in the banks of the groove of Fig. 1.3: the conditions of the test standardize 
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this failure, and we might expect that it corresponds with some fixed value of shear 
strength q. 

 
Fig. 6.11 Relation between Liquidity Index and Shear Strength of Remoulded Clays  

(After Skempton & Northey) 
 

In the plastic limit test the ‘crumbling’ of soil implies a tensile failure, rather like 
the split-cylinder7 or Brazil test of concrete cylinders: it would not seem that conditions in 
this test could be associated with failure at a specific strength or pressure.  

However, in a paper by Skempton and Northey8 experimental results with four 
different clays give similar variation of strength with liquidity index as shown in Fig. 6.11. 
From these data it appears that the liquid limit and plastic limit do correspond 
approximately to fixed strengths which are in the proposed ratio of 1:100, and so we can 
reasonably adopt A as the liquid limit and B as the plastic limit. 

The measured difference of water contents )( ba ww − then corresponds to the 
plasticity index of real silty clay, and we can generalize eq. (6.32) as 

PI217.0PI585.0 ∆v≅≅λ      (6.33) 
where denotes the plasticity index expressed as a change of specific volume instead of 
the conventional change of water content 

PI∆v
( ){ }.)( sGvw ∆=∆  Similarly, it will be useful to 

denote the liquid and plastic limits as and  (In eq. (6.33) and subsequent equations, 
PI, LL and PL are expressed as ratios and not percentages of water content.) 

LLv .PLv

In Fig. 6.12 the critical state lines for several soils are displayed, and these have 
been drawn from the experimental data assembled in Table 6.1. Each line has been 
continued as an imaginary straight dashed line9 beyond the range of experimental data at 
present available; this extrapolation is clearly unlikely to be justified experimentally 
because besides any question of fracture and degradation of the soil particles under such 
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high pressures, the lines cannot cross and must be asymptotic to the line v = 1 which 
represents a specimen with zero voids. 

However, this geometrical extension allows some interesting analysis to be 
developed since these dashed lines all pass through, or very near, the single point Ω given 
by  In addition, the points on each critical state line 
corresponding to the liquid and plastic limits have been marked. Those associated with the 
plastic limit are all very close to the same effective spherical pressure 

The pressures associated with the liquid limits show a much wider 
range of values but this scatter is exaggerated by the logarithmic scale. 

.lb/in1500,25.1 2≅≅ ΩΩ pv

.lb/in80 2
PL ≅= pp LLp

In Fig. 6.13 these experimental observations have been idealized with all lines 
passing through Ω, and  and  assumed to have fixed values. This means that in Fig. 
6.14, where the liquidity index has replaced specific volume as the ordinate, all critical 
state lines coincide to one unique straight line.  

LLp PLp

For any one critical state line in Fig. 6.13 (that is for any one soil) we have 
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Fig. 6.12 Family of Experimental Critical State Lines 
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Note. The critical-state values for Klein Belt Ton and Wiener Tegel V are based on results of Shearbox tests on the 
assumption that )''(' 312

1
2 σσσ += at the critical state; evidence of this has been observed by Bassett, reference 11 of 

chapter 5. 
 
Substituting the quoted values for Ω and in the first of these equations we get  PLp

( ) )35.6()09.0PL(92.025.1341.0i.e.,

,93.2
80

1500ln25.1

PL

PL

−≅−=

==−

v

v

λ

λλ
 

This predicted linear relationship is drawn as a dashed line in Fig. 6.15 where the 
experimental point for each soil is also plotted.  
 

 
 

Fig. 6.13 Idealized Family of Critical State Lines 
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Fig. 6.14 Idealized Critical State Line 

 
Similarly, we can predict from eq. (6.34b) the linear relationship 

( )09.0LL36.0)25.1(133.0 LL −≅−= vλ     (6.36)  
on the basis that so that eq. (6.34c) is identical with (6.33). ,100 LLPL pp ≅

The best correlation of these predicted results with the quoted data is that between 
λ and the plastic limit simply because seems to be conveniently defined by the test 
conditions as approximately  

PLp

 

 
Fig. 6.15 Relationship between λ and Plastic Limit 

 
.lb/in80 2  This suggests that the plastic limit test may be more consistent than the liquid 

limit test in measuring associated soil properties. 
From this simple approach we can deduce two further simple relationships. The 

first connects plasticity index with the liquid limit; by elimination of λ from eqs. (6.33) and 
(6.36) 

)09.0LL(615.071.1PI −≅≅ λ      (6.37)  
This relationship has been drawn as the heavy straight line ‘B’ in Casagrande’s plasticity 
chart10 in Fig. 6.16 and should be compared with his ‘A’ line 

)2.0LL(73.0PI −≅  
The second relationship connects the compression index for a remoulded clay with the 
liquid limit. In eq. (4.1) the virgin compression curve was defined by 

cC '

),'/'(log' 0100 σσcCee −= which is comparable to )ln( 00 ppvv λ−= except that the 
logarithm is to the base of ten. Hence,  

)09.0LL(83.0303.210ln' −≅== λλcC     (6.38)  
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which compares well with Skempton’s empirical relationship11

)1.0LL(7.0' −=cC  
The parameter Γ  was defined as the specific volume of the point on the critical state line 
corresponding to unit pressure which we have adopted as 1 lb/in2. We must be careful to 
realize that the value of Γ for any soil will be associated with the particular unit chosen for 
pressure (and will change if we alter our system of units). 
 

 
 

Fig. 6.16 Plasticity Chart (After Casagrande) 
 
From the idealized situation of Fig. 6.14 we can predict that  

λλ 3.725.11500ln +=+≅ ΩvΓ  
which from eqs. (6.33) and (6.35) can be written in the forms 

(6.39)PI27.425.1
PL7.665.0)09.0PL(7.625.1

+≅
+=−+≅Γ

 

At the bottom of the family of critical state lines in Fig. 6.13 we have the silty 
sandy soils that are almost non-plastic with low values of λ. These soils show almost no 
variation of critical specific volume with pressure, and it is for such soils that Casagrande 
first introduced12 his original concept of a critical void ratio independent of pressure. 

In contrast, at the top of the family of lines we have the more plastic silty clays and 
clays. It was for such soils that Casagrande later used13 data of undrained axial-tests to 
derive a modified concept of critical ‘conditions at failure’ with voids ratio dependent on 
pressure. 

In this section we have suggested various relationships between the constants of the 
critical state model and the index tests which are in general agreement with previous 
empirical findings. We also see that we could obtain a reasonably accurate value of λ from 
a simple apparatus such as that of the falling cone test, and can confirm this by establishing 
the plastic limit for the soil, which can also give us an estimate of the value of   .Γ
 
6.10 The Unconfined Compression Strength 

The critical state model is the natural basis for interpretation of the unconfined 
compression test. It is a simple test in which a cylindrical specimen of saturated clayey soil 
sustains no total radial stress ,0=rσ and the total axial stress lσ is rapidly increased until 
the specimen yields and fails. The unconfined compressive strength qu is defined to equal 
the ultimate total axial stress .lσ  No attempt is made to measure pore-pressure, and no 
sheath is used to envelop the specimen, but the whole operation is so rapid relative to the 
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drainage of the specimen that it is assumed that there is no time for significant change of 
volume. Thus the specimen still has its initial specific volume v0 when it attains its ultimate 
total axial stress .2 uul cq ==σ   

We have already discussed in §6.7 the close prediction of changes of pore-pressure 
during the yielding of undrained specimens of Cam-clay: in the unconfined compression 
test no measurement is taken until the termination of yielding at what we will assume to be 
the critical state. So a simple prediction of the ultimate effective stresses can be made by 
introducing the initial specific volume v0 into the equations for the critical state line 

pΓvandMpq ln0 λ−==   
With 0=rσ and urlul cqc 2,2 =−== σσσ so that 
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⎜
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0exp
2

vΓMcu      (6.40) 

This equation expresses cu in terms of v0, the soil constants MΓ ,,λ and the same units of 
pressure as that used in the definition of  (i.e., lb/inΓ 2). In Fig. 6.7 this is equivalent to 
disregarding the stress history of the specimen along the path VWC and assuming that the 
path merely ends at the point C. 
Let us apply this result to samples of soil taken at various depths from an extensive stratum 
of ‘normally consolidated’ or virgin compressed clay. At a particular depth let the vertical 
effective pressure due to the overburden be v'σ and the horizontal effective  
 

 
Fig. 6.17 Specific Volumes of Anisotropically Compressed Specimens 

 
pressure be vh K '' 0σσ = so that the state of the specimen before extraction is represented by 
point K in Fig. 6.17, where 



 113 

)1('''and)21(
3
'

3
'2'

00 KqKp vhvK
vhv

K −=−=+=
+

= σσσσσσ  

From eq. (6.20) the specific volume of the specimen is given by Kv
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It will prove helpful to compare this specimen with an imaginary one which has 
been isotropically virgin compressed under the same vertical effective pressure ,'vp σ=  so 
that its state is represented by point I. Its specific volume will be given by putting 10 =K in 
eq. (6.41) or directly from eq. (6.20) 

Γv vI +−+−= )('ln κλσλ   
The difference in specific volume of the two specimens will be 
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The value of appears to be approximately Λ M3

2  for most clays, so that for specimens 
with a minimum value of K0 of 0.6, say, the maximum value of 

λλλ 0565.0)364.03075.0(
2.2
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⎛ ×

+≅− KI vv    (6.43)  

which even for kaolin with λ as high as 0.26 is equivalent to a difference in specific 
volume of only 0.0147 or only 2

1 per cent water content. 
Therefore, in relation to the accuracy of the unconfined compression test and this 

analysis we can ignore this small difference in specific volume and assume that both 
specimens I and K have the same v0, and hence will be expected to reach the same value of 
cu in a test. But we have a simple relation for the isotropically compressed sample I 
between its initial effective spherical pressure  and its final value  at the critical state, 
given by eq. (6.28) 

Ip up

Λ
p
p

u

I exp=   

Hence, the unconfined compressive strength of both specimens is  
)exp(')exp(2 ΛMΛMpMpqc vIuuu −=−=== σ  

and we have arrived at a very simple expression for the ratio of unconfined shear strength 
to overburden pressure of a ‘normally consolidated’ specimen as a constant for any one 
soil:  

)exp(
' 2

1 ΛMc
v

u −=
σ

      (6.44)  

This agrees with Casagrande’s working hypothesis13 which led to the well-established 
result that undrained shear strength increases linearly with depth for a ‘normally 
consolidated’ deposit. If we adopt numerical values for Weald clay of and 

this gives 
95.0≅M

628.0≅Λ
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254.0
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which agrees well with the figure of 0.27 quoted by Skempton and Sowa14. 
This result is also in general agreement with the empirical relationship presented by 

Skempton15 between vuc 'σ  (denoted as pcu by him) and plasticity index reproduced in 
Fig. 6.18, and represented by the straight line 

PI37.011.0
'

+=
v

uc
σ

      (6.45) 

 
 

Fig. 6.18 Relationship between cjp and Plasticity Index for Normally Consolidated Clays  
(After Skempton) 

 
If we adopt this we can use it in conjunction with eq. (6.44) to obtain another relationship 
between soil properties 

ΛΛM exp)267.122.0(exp)PI74.022.0( λ+≅+≅  
6.11 Summary 

In summarizing this chapter we are aware of the point at which we decided not to 
introduce at this stage further theoretical developments of the critical state models. We 
have not introduced the generalization of the stress parameters p and q that turns eq. (6.17) 
into a function F=0 and following Mises’ method of eq. (2.13) can be used to derive 
general plastic strain rates, but we will introduce this in appendix C. We have not 
introduced a research modification of the Cam-clay model that generates a corner that is 
less sharp for virgin compression, and shifts one-dimensional consolidation to correspond 
more closely with observed coefficients of lateral soil pressure. At §6.8 we called a halt to 
further theoretical developments, and introduced the simplified critical state model. With 
this model we have been able to interpret the simple index tests which engineers have 
always rightly regarded as highly significant in practice16 but which have not previously 
been considered so significant in theory. In the next chapter we consider the precise 
interpretation of the best axial-test data and will begin by describing the sort of test for 
which this interpretation is possible. 
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7  
Interpretation of data from axial tests on saturated 
clays 
 
 
7.1 One Real Axial-test Apparatus  
 In conventional strain-controlled tests the loading ram of the axial-test cell is 
driven down at a constant rate: we will distinguish between the more usual slow tests in 
which the strain rates are chosen to achieve negligible pore-pressure gradients by the time 
of ultimate failure, and the rarer very slow tests in which the strain rates are chosen to 
achieve negligible pore-pressure gradients at all stages of yielding. The slow tests give 
ultimate data which we can interpret in terms of the critical state model for engineering 
design purposes: the very slow tests give data of yielding before the ultimate states which 
we can interpret by the Cam-clay model, and although this interpretation is too refined for 
use in practical engineering at present we consider that some understanding is helpful for 
correct use of the critical state model. 
The Cam-clay model is based on a conceptual axial-test system that we introduced in 
chapter 5. We will now describe briefly a stress-controlled test apparatus that closely 
resembles the conceptual system. We do not regard this apparatus as ideal, but it does 
provide the standard of comparison by which we can judge whether published data of 
strain-controlled tests are or are not fully satisfactory for our particular purpose. 

The original text1 The Measurement of Soil Properties in the Triaxial Test by 
Bishop and Henkel of Imperial College, University of London, contains a detailed 
exposition of axial testing on the basis of extensive work by them and their students. A 
variation2 of this original equipment by research workers at the Norwegian Geotechnical 
Institute with some slight modifications3 introduced at Cambridge is illustrated in Fig. 7.1. 
We will describe one class of test only, the stress-controlled test; since our aim is not to 
present a general review of the many varieties of axial-test apparatus but to introduce a 
new approach to the analysis of the data, we will merely describe one test technique in 
sufficient detail to draw attention to the problems that must be overcome. 

In Fig. 7.1 is shown a cylindrical specimen K of soil 4 in. long, 2 in. diameter 
standing on a 2¼ in. diameter pedestal P and supporting a loading cap I of the same 
diameter. A natural rubber latex membrane L of 0.01 in. thickness and 2 in. diameter when 
unstretched, envelopes the specimen and is closely bound to the loading cap and to the 
pedestal by highly stretched rubber O-rings J of 1½ in. internal diameter and 16

3 in. 
(unstretched) cross-sectional diameter. A mirror polish on the vertical surfaces of the 
pedestal and the loading cap minimizes the possibility of leakage of cell water past the 
bindings and into the pore-water.  

The cell consists of a transparent plexiglass cylinder O permanently clamped 
between a top-plate F and a middle plate R by three lengths of threaded tube H. The cell is 
bolted down to the bottom-plate S by three long bolts with wing-nuts D. When the cell is 
assembled, the loading ram G that passes through a bushing E in the centre of the top plate 
is accurately co-axial with the pedestal P that is in the centre of the bottom plate. The 
bushing E is rotated at a constant rate by a small auxiliary motor, so there is effectively no 
friction resisting vertical movement of the ram through the bushing. 
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Fig. 7.1 Stress-controlled Axial-test Apparatus 

 
The cell-water N fills the cell and surrounds the sheath, loading cap, and pedestal. 

A thin tube T connects the cell-water to a constant pressure device M of a type devised by 
Bishop and described by him (loc. cit.) as the self-compensating mercury control. This 
consists of a pot of mercury suspended by a spring, with leakage of water out of the cell 
causing the mercury to flow from the hanging pot; the consequent reduction in weight of 
the pot causes a shortening of the spring length which is so designed to maintain the 
mercury level constant and exactly sustain a constant pressure in the cell-water. 

The bottom of the loading cap has a mirror polish and is lightly greased. The top of 
the pedestal also has a mirror polish and is lightly greased, except in the centre where a ¼ 
in. diameter porous stone Q allows drainage of pore-water from the specimen. Thus the 
ends of the specimen are effectively free to expand laterally4 by about 12 per cent. The 
porous stone is itself mounted in a short length of threaded tube (see detail in Fig. 7.1) 
which is screwed down into a small recess in the top of the pedestal. From the recess two 
lengths of 16

1  in. diameter ‘hypodermic’ steel tube U connected the pore-water with two 
devices outside the cell. 

One device W is a back-pressured burette shown in Fig. 7.2(a). This burette Y is 
enclosed in a cylinder in which a constant water pressure is maintained by a second self-
compensating mercury control. Changes in the silicone oil levels in the top of the cylinder 
and the burette show clearly the volume of pore-water that drains out of the specimen. The 
second device X is an accurate pore-pressure transducer which measures the change of 
pore-pressure that occurs when drainage is prevented. In Fig. 7.2(b) we show the system 
that was introduced by Bishop and has been widely used. Change of pore-pressure tends to 
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alter the level of the mercury Z in the 1 mm bore glass tube: this tendency is observed and 
counteracted by adjustment of the control cylinder so that the mercury level and hence the 
volume of pore-water within the specimen are kept constant. The pore-pressure uw is 
indicated directly on the Bourdon gauge. 

 

 
Fig. 7.2 Devices for Measuring Volume and Pressure of Pore-water 

 
The loading ram G tends to be blown out of the bushing by the cell pressure; it is 

held down by a hanger C carrying a load V. A measuring telescope B fixed to a vertical bar 
that rises above the cell from the base is focussed on to a vertical scale A fixed to the 
hanger, so that change of the axial length of the specimen can be observed directly.  

This particular apparatus permits study of specimens in a stress- controlled manner 
similar to that outlined in §5.2, etc. Each successive load-increment can be left long 
enough for the specimen to attain 100 per cent primary consolidation, and to be considered 
to be in equilibrium, because we have assumed that secondary phenomena are to be 
neglected. 

The small but significant secondary displacements that occur over long periods 
after primary consolidation form a difficult topic of current research interest. We are faced 
with a rate process that is something other than Terzaghi’s primary diffusion of water out 
of soil: it does appear that the best axial tests at a constant very slow strain rate give data 
that are more useful in this research than the standard stress-controlled test that we are 
describing. 

 
 7.2 Test Procedure  

Two alternative test procedures commonly adopted are those for (a) the undrained 
test with pore-pressure measurement, and (b) the drained test. Both have much in common; 
the following brief account outlines the main features of what is a complicated technique 
and is only supposed to be a typical (but not perfect) test procedure. Readers of Bishop and 
Henkel (loc. cit.) will find much more on this point. 

The first requirement is to ensure that the measuring devices W and X are free of 
air. The porous stone Q is removed from the base P, placed in a small evaporating dish and 
boiled. A temporary plug is screwed in its place and the pore-water system is checked by 
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forcing de-aired water from the hand-operated ram of the apparatus X without detectable 
changes of the pore-water levels Y and Z. 

When this check is complete the back-pressured burette is then set to a desired 
level, and the connecting tube W is closed. A thin film of silicone grease is smeared over 
the base P, the plug is removed, the recess is flooded with water, and the saturated porous 
stone is screwed into the recess without trapping any air. A small quantity of water is 
forced up through the stone to ensure saturation and then the connecting tube X to the 
pore-pressure measuring apparatus is closed. Any excess water is removed from the 
surface of the porous stone, and if possible the base is then placed in a humid 
compartment. 

The soil specimen is trimmed in the humid compartment and placed centrally on 
the pedestal. The rubber membrane, which has been soaked in water, is expanded by 
external suction back against a tube of 2½ in. internal diameter and placed round the 
specimen. The greased loading cap is carefully placed on the specimen, and firmly held 
against vertical movement by a clamp. The rubber membrane is released from the expander 
so that it embraces the specimen, cap, and pedestal. Any air bubbles trapped between the 
specimen and membrane are worked out, and three bindings rings are then placed at each 
end. The specimen and base are removed from the humid compartment, and the 
specimen’s length and diameter are accurately measured. 

The cell is then placed round the specimen, filled with de-aired water and a little oil 
is introduced below the loading ram. A pressure of 100 lb/in.2, say, is applied 
simultaneously both to the cell-water and back-pressured burette and the valve W opened; 
if there is any air in the pore-water system it is detected by observing movement of the 
level Y in the burette. 

The specimen can now be consolidated, if necessary, to some predetermined 
condition by reducing the back pressure on the burette to some value uw. The specimen is 
then experiencing an effective spherical pressure )100('' wrl u−==σσ  and as 
consolidation takes place pore-water will drain into the burette. For some specimens the 
back pressure may need to be raised again to allow the specimen to swell to an over-
compressed state. 

The specimen having experienced the required consolidation history is ready for 
shearing. If the specimen is to undergo an undrained test the connection to the burette W is 
closed and that to the pore-pressure device X opened, whereas for a drained test the 
connection to the burette is left open. Successive increments of load are applied to the 
hanger and after each increment sufficient time is allowed for primary consolidation to 
occur. Observations are made of the axial load, the consequent axial displacement of the 
loading cap, and either of (a) the pore-pressure, or of (b) the level of pore-water in the 
back-pressured burette. 

The succession of load-increments concludes (after failure) with removal of loads 
from the hanger. The back pressure is raised to equal the cell pressure and, after sufficient 
time for swelling, the level in the burette is observed. The back pressure and cell pressure 
are then reduced to that of the atmosphere and again the level in the burette is observed. 
The apparatus is dismantled and finally, in the humid compartment, the sheath is removed 
and the specimen removed for determination of its final weight and water content.  
 
7.3 Data Processing and Presentation 

The data of an axial test fall into three main categories: 
 
(a) the measurements of specimen length, diameter, weight, etc., and readings of any 
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consolidation which must be applied to the specimen to bring it to the desired initial 
condition (p0, v0, q0); 
(b) test constants such as calibration of proving ring (or load transducer), thickness and 
strength of membrane, specific gravity of specimen, etc.; and 
(c) readings of time, axial load, axial displacement, change of volume and/or pressure of 
pore-water, and change of cell pressure, which occur during the test proper. 

From this information we want to evaluate a variety of parameters, such as 
etc.,,,'',,, εσσ rlqvp  and repetitive calculations such as these are ideally performed by 

electronic digital computers. A suitable computer program can readily be devised to meet 
the special requirements of a particular laboratory or investigation, and will depend on 
what computer is available so we shall not attempt to set out a ‘standard’ program. 

  
Typical input and output data from such a program are included in appendix B (see page 
209). These are for a very slow strain-controlled undrained axial compression test on a 
specimen of virgin compressed kaolin which forms one of a recent series of tests.5 The 
particular choice of parameters was: 

  
(a) Axial train ( )∑ ∑ −= lll δε&  

(b) Volumetric strain ( ) ( )∑ ∑ −= VVvv δ&  

(c) Cumulative shear strain ∑∑ ∑ −= vvl &&&
3
1εε  

(d) Voids ratio  
(e) Pore-pressure u

1−= ve
w  

(f) Axial-deviator stress q  
(g) Mean normal stress p  
(h) Stress ratio pq=η  
(i) epq where  is Hvorslev’s equivalent pressure  
(j) 

ep

epp  
(k) vλ 
(1) vκ  
(m) εκ && vv  
(n) ε&& epq  
(0) ε&& epp  
(p) ε&& vv p  
 
7.4 Interpretation of Data on the Plots of v versus ln p 

One assumption of the Cam-clay model is that recoverable compression and 
swelling should be governed by one constant κ and take the form given by eq. (6.3) 

( ).ln 00 ppvv κ−=  
Data of swelling and recompression of remoulded London clay specimens from Henkel6 
are shown in Fig. 7.3. (The technique of remoulding used in these tests involved severe 
handling of specimens at relatively low water-content. The general character of these data 
differs from that of data from tests where specimens are consolidated from a slurry in that 
different values of Γ are indicated.) Some hysteresis occurs but the curves can be 
approximated by eq. (6.3) taking as numerical value for London clay .016.0062.0 ±=κ  
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Fig. 7.3 Isotropic Consolidation and Swelling Curves for London Clay (After Henkel) 

 
Having found values of κ and λ that are appropriate to the set of soil specimens under 
consideration we can compute vκ and vλ. We then know the coordinates of any point S in 
Fig. 7.4 either by values of v and p, or values of vκ and vλ which fix the κ-line and λ-line 
passing through the point S. We will be interested in changes of state of the specimen and 
can think of the current state point such as S and of a state path followed by a specimen 
during test. 

 
Fig. 7.4 Critical State Line Separating Differences in Behaviour of Specimens 

  
One prediction shared by the Granta-gravel and Cam-clay models — see §5.9 — is 

that on the plot of v versus ln p (Fig. 7.4) there should be a clear division between an area 
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of the plot in which specimens are weak at yield and either develop positive pore- 
pressures or compact, and another area in which specimens are strong at yield and either 
develop negative pore-pressures or dilate. These areas lie either side of a critical state 
curve, which should be one of the λ-lines for which .Γv =λ  

Data of slow strain-controlled tests by Parry7 on remoulded London clay specimens 
are shown in Fig. 7.5. For each specimen a moment of ‘failure’ occurs in the test when the 
system has become unstable and although the specimen is not wholly in a critical state, as 
will be discussed further in chapter 8, it is seen to be tending to come into the critical state. 
In Fig. 7.5(a) the data are points representing the following classes of specimens: 
(a) drained but showing zero rate of volume change at failure, 
(b) drained and showing continuing volume decrease at failure,  
(c) undrained but showing zero rate of pore-pressure change at failure,  
(d) undrained and showing continuing pore-pressure increase at failure.  
 
All these points in Fig. 7.5(a) lie on the wet side of a certain straight A-line on the v versus 
ln p plot. In contrast, in Fig. 7.5(b) the data are points representing the following classes of 
specimens: 
(a) drained and showing continuing volume increase at failure,  
(b) undrained and showing continuing pore-pressure decrease at failure.  

 
Fig. 7.5 Data of Tests on Remoulded London Clay at failure (After Parry) 

 
All these points in Fig. 7.5(b) lie on the dry side of a certain λ-line on the v versus ln p 
plot. We see that we have the same λ-line in Fig. 7.5(a) and (b). It closely resembles the 
predicted critical state line of Fig. 7.4. 

A prediction of the Cam-clay model (§6.6) is that during compression under 
effective spherical pressure p the virgin compression curve is, from eq. (6.20) when ,0→η  

)(ln κλλλ −+=+= Γpvv         (7.1) 
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so that it is displaced an amount )( κλ −=∆v to the wet side of the critical state curve. In 
Fig. 7.5 the position of the virgin compression curve is indicated by Parry. It is displaced 
an amount 096.0035.075.2 =×≅= ∆wG∆v s to the wet side of the critical state curve:  
this is comparable with the prediction .099.0)( =−κλ  
 
7.5 Applied Loading Planes 

Having looked at the changing states of specimens on the v versus ln p graph we 
now need to move away from the plane of v and p into the projections of (p, v, q) space in 
which we can see q. It is possible to relate geometrically the method of loading that we 
apply to the specimen, with the plane in which the state path of the test must lie, regardless 
of the material properties of the specimen. 

In §5.5 it was shown that a specimen in equilibrium under some effective stress (p, 
q) will shift to a state ),( qqpp && ++ when subject to a stress-increment. If the stress-
increment is simply ,0,0 >= lr σσ && and if there is no pore-pressure change as in a 
drained test, then 

,0=wu&

ll qp σσ &&&& == ,
3
1          (7.2) 

giving the vector AB indicated in Fig. 5.7. We can thus introduce the idea of an applied 
loading plane in Fig. 7.6. Consider first in Fig. 7.6(a) the case of a drained compression 
test in which initially rl p σσ == 0 and then later .0pl >σ  From eq. (7.2) 3dd =pq and 
with initial conditions we find  ,,0 0ppq ==

,
3
1

0 qpp +=           (7.3)  

which is the equation of the inclined plane of Fig. 7.6(a). The imposed conditions in the 
drained compression test are such that the state point (p, v, q) must lie in this plane. 

Next consider the conditions imposed in §6.6, where we considered a drained 
yielding process with 

0.constant >=== η
p
q

p
q
&

&
       (6.21 bis) 

In this case the principal effective stresses remain in constant ratio Klr ='' σσ where  

.
23

3
η
η

+
−

=K  

The imposed conditions in such a test require the state point to lie in the plane illustrated in 
Fig. 7.6(b). 

The conditions imposed in the undrained test are such that and for this 
specimen the state points must lie in the plane 

,0=v&

0vv = illustrated in Fig. 7.6(c). 
Alternatively, it is possible to conduct extension tests in the axial-test apparatus for 

which lr σσ > and  For a drained test of this type we have (from §5.5 and Fig. 5.7) .0<q

3
2

d
d

−==
q
p

p
q
&

&
 

and the applied loading plane becomes  

.
3
2

0 qpp −=           (7.4) 

This is illustrated in Fig. 7.7; other examples could be found from tests in which the 
specimen is tested under conditions of constant p, or of constant q (as the mean normal 
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pressure is reduced), etc. At this stage we must emphasize that the applied loading planes 
are an indication only of the loading conditions applied by the external agency, and they 
are totally independent of the material properties of the soil in question. 
 

 
Fig. 7.6 Applied Loading Planes for Axial Compression Tests 

 

 
Fig. 7.7 Applied Loading Plane for Drained Axial Extension Test 
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7.6 Interpretation of Test Data in (p, v, q) Space 
The material properties of Cam-clay are defined in the surface shown in Fig. 6.5. If 

we impose on a specimen the test conditions of the drained compression test, the actual 
state path followed by the specimen must lie in the intersection of a plane such as that of 
Fig. 7.6(a) and the surface of Fig. 6.5. This intersection is illustrated in Fig. 7.8.  

 
Fig. 7.8 State Path for Drained Axial Compression Test 

 
The prediction of the Cam-clay model is fully projected in Fig. 7.9. We are 

considering a specimen virgin compressed to a pressure represented by point I and then 
allowed to swell back to a lightly overcompressed state represented by point J. The test 
path in Fig. 7.9(a) is the line JKLMN. The portion JK represents reversible behaviour 
before first yield at K; and in Fig. 7.9(b) this portion JK is seen to follow a re-compression 
curve (or κ-line). At K the material yields and hardens as it passes through states on 
successive (lightly drawn) yield curves. Simple projection locates points L, M, and N 
which then permit plotting of Fig. 7.9(c), which predicts the equilibrium values of the 
specific volume of a specimen under successive values of q.  

 
Fig. 7.9 Projections of State Path for Drained Axial Compression Test 
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In a similar manner, we appreciate in Fig. 7.10 that the intersection of the loading 
plane for an undrained compression test with the stable-state boundary surface must give 
the state path JFGH experienced by a similar specimen, which is shown projected in Fig. 
7.11. Figure 7.11(a) and (b) show the plane const.0 == vv  crossing various yield curves at 
F, G, H, and by simple projection we can plot the predicted stress path in Fig. 7.11(c). 

 
Fig. 7.10  State Path for Undrained Axial Compression Test 

 

 
Fig. 7.11  Projections of State Path for Undrained Axial Compression Test 

 
Data of a very slow strain-controlled undrained axial test are shown in Fig. 7.12: the 
specimen* of London clay was initially in a state of virgin compression at the point E. The 
experimental points have been taken from results quoted by Bishop, Webb, and Lewin8 
(Test No. 1 of Fig. 17 of their paper) and replotted in terms of the stress parameters p and 
q. A prediction for this curve can be obtained from eq. (6.27) 
 
* In this case the specimen was prepared as a slurry at high water content and then consolidated, rather than being 
remoulded at relatively low water content. However, the form of this curve is similar to that found for remoulded 
specimens subject to the same test.  
 



 127 

 
Fig. 7.12  Test Path for Undrained Axial Compression Test on Virgin Compressed Specimen of 

London Clay (After Bishop et al.) 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

p
p

Λ
Mpq 0ln          (6.27 bis)  

which was discussed in §6.7 and sketched in Fig. 6.7. Accepting previously quoted values 
of 161.0=λ and 062.0=κ for London clay, we find that with p0 = 145 lb/in2 and a choice 
of M = 0.888 we can then predict an undrained test path which fits closely the observed test 
data. It is to be noted that the test terminates with a failure condition (defined by maximum 
q) before an ultimate critical state is reached: we will have more to say about ‘failure’ in 
chapter 8. 
 
7.7 Interpretation of Shear Strain Data  

From the Cam-clay model we can predict the cumulative (permanent) distortional 
strain ε experienced by a specimen. Examples where calculations can be made in a closed 
form are for undrained tests and p-constant tests which have already been discussed briefly 
in §6.7 and §5.13 respectively. The discussion in §5.13 is strictly limited to Granta-gravel, 
but exactly similar development for Cam- clay leads to similar results for constant-p tests, 
i.e., 
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which reduces to eq. (5.36) when .0=κ  
 If we consider the case of the test on a virgin compressed specimen of London clay 

(prepared from a slurry) of Fig. 7.12, the relevant equations for an undrained test are: 
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Using the numerical values of ,,,, 0pMλκ already quoted, we get the curves of Fig. 7.13 
where the points corresponding to total distortion of 1, 2, 3, 4, and 8 per cent are clearly 
marked. 

In comparison, we can reason that relatively larger strains will occur at each stage 
of a drained test. In Fig. 7.14(a) we consider both drained and undrained compression tests 
when they have reached the same stress ratio .0>η  From eq. (6.14) we have 

)0()( >−== εεηκ &&
&&

M
v
v

v
v p

 

so that in each test there will be the same shift of swelling line for the same increment of 
distortion 

κv&
.ε&  The yield curves relevant to the successive shifts of swelling line are lightly 

sketched in Fig. 7.14(a). We see the undrained test slanting across them from U1 to U2 
while the drained test goes more directly from D1 to D2. It follows that for the same 
increment of distortion ε&  there will be a greater increment of η&  in an undrained test than 
in a drained test, which explains the different curves of pq versus ε, in Fig. 7.14(b). 

 
Fig. 7.13 Predicted Strain Curves for Undrained Axial Compression Test of Fig. 7.12 

 

* For the undrained test, differentiating eq. (6.27) we get qpMΛ && −=)( η  which equals the plastic volume change 

)0since(0 ≡vvv &&κ and hence we have eq. (7.5). For the drained test, differentiating eq. (6.19) we get 

{ )()( ppvM &&& λκλη −+−= }  and since 3=pq && we also have ).)(3()3(
2

κηηη vvppppqpq &&&&&&& −−=−=−=  
Eliminating  and  we obtain eq. (7.6).  p& v&
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We can, in fact, derive expressions for these quantities. It can readily be shown* 
that for the increment U1U2 in the undrained test  

)()( 0undrained0 vvvM
M
Λ

=−= εηηκ
&&      (7.5)  

 
whereas for D1D2 in the drained test 

drained0)(
3

11 εηη
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λ && vM
M
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⎞
⎜⎜
⎝

⎛
−

+        (7.6)  

(where v varies as the test progresses and is ≤v0).  

 
Fig. 7.14 Relative Strains in Undrained and Drained Tests 

 
Hence the ratio of distortional strains required for the same increment of η is  
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and we shall expect for specimens of remoulded London clay (a) at the start of a pair of 
tests when  
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and (b) by the end when ( ) .52.3,95.0and ud0d ≅≅→ εεη &&vvM It so happens that the minor 
influences of changing values of η and v during a pair of complete tests almost cancel out; 
and to all intents and purposes the ratio ud εε && remains effectively constant (3.45 in this 
case). 

This constant ratio between the increments of shear strain ud εε && will mean that the 
cumulative strains should also be in the same ratio. This is illustrated in Fig. 7.15 where 
results are presented from strain controlled tests by Thurairajah9 on specimens of virgin 
compressed kaolin. The strains required to reach the same value of the stress ratio η in each 
test are plotted against each other, giving a very flat curve which marginally increases in 
slope as expected. 
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Fig. 7.15 Comparison of Shear Strains in Drained and Undrained Axial Compression Tests on 

Virgin Compressed Kaolin (After Thurairajah) 
  

However, in general, plots with cumulative strain ε as base are unsatisfactory for 
two reasons. First, ε increases without limit and so each figure is unbounded in the 
direction of the ε-axis: this contrasts strikingly with the plots in (p, v, q) space where the 
parameters have definite physical limits and lie in a compact and bounded region. 
Secondly, and of greater importance, different test paths ending at one particular state (p, v, 
q) will generally require different magnitudes ε, so that the total distortion experienced by 
a specimen depends on its stress history and is not an absolute parameter. In contrast, the 
strain increment ε&  is a fundamental parameter and is uniquely related at all stages of a test 
on Cam-clay to the current state of the specimen (p, v, q) and the associated stress- 
increments  In effect, a soil specimen, unlike a perfectly elastic body, is unaware of 
the datum for ε chosen by the external agency. In the following section we will consider 
the possibilities of working in terms of relative strain rates. 

).,( qp &&

 
7.8 Interpretation of Data ofε& , and Derivation of Cam-clay Constants 

In §7.4 we mentioned work by Parry which gave support to the critical state 
concept. He also plotted two sets of data as shown in Fig. 7.16 where rates of change of 
pore-pressure or volume change occurring at failure have been plotted against ( fu pp ). 
(Failure is defined as the condition of maximum deviator stress q.) This ratio is that of the 
critical state pressure , (corresponding to the specimen’s water content in Fig. 7.5) to 
its actual effective spherical pressure at failure ; this ratio is a measure of how near 
failure occurs to the critical state, and could just as well be measured by the difference 
between at failure and the value 

up fw

fp

λv Γv ≅λ for the critical state λ-line. 
 



 131 

 

 
Fig. 7.16 Rates of Volume Change at Failure in Drained Tests, and Rates of Pore-pressure change 

at Failure in Undrained Tests on London clay (After Parry) Critical state 
 
In the upper diagram, Fig. 7.16(a), results of drained tests are given in terms of the rate of 
volume change expressed by 
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This clearly shows that the further failure occurs from the critical state the more rapidly the 
specimen will be changing its volume. 

Conversely, in Fig. 7.16(b) the results of undrained tests are presented in terms of 
rate of pore-pressure change expressed by  
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This clearly shows that the further failure occurs from the critical state the more rapidly the 
specimen will be experiencing change of pore-pressure. 

In each case the existence of the critical state has been unequivocably established, 
together with the fact that the further the specimen is from this critical state condition at 
failure the more rapidly it is tending towards the critical state. 

In the case of Cam-clay it is possible to combine these two sets of results. Our 
processing of data in §7.3 has provided values of  which tell us on which λ-line the state λv
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of a specimen is at any stage of a test. We also know values of and κv εκ && vv which 
represent the current κ-line and the rate (with respect to distortion) at which the specimen 
is moving across κ-lines. The prediction of the Cam-clay model is that for all compression 
tests (whether drained, undrained, constant-p.. .) the data after yield has begun should obey 
eq. (6.14a) 

η
ε
κ −=−= M

p
qM

v
v
&

&
        (7.8) 

and while the state of the specimen is crossing the stable-state boundary surface we have 
from eq. (6.19) 
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Combining these we have  
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which is a simple linear relationship between the rate of movement towards the critical 
state εκ && vv with the distance from it ),( Γv −λ and one which effectively expresses Parry’s 
results of Fig. 7.16. It is possible to express the predictions for Cam-clay in terms of 
Parry’s parameters and obtain relationships which are very nearly linear on the semi-
logarithmic plots of Fig. 7.16. The relationships are for undrained tests 
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The experimental data are such that values of η and are determined to much greater 
accuracy than 

λv
εκ && vv and it is better to present them in the two separate relationships of 

eqs. (7.8) and (7.9) than the combined result of (7.10). The predicted results will be as in 
Fig. 7.17; a specimen of Cam-clay in an undrained test starting at some state such as A will 
remain rigid (without change of εκλ or,vv ) until B, and then yield until C is reached. 
Similarly, we shall have the theoretical path DEC for a specimen denser (or dryer) than 
critical. 

We shall expect real samples to deviate from these ideal paths and are not surprised 
to find real data lying along the dotted paths, which cut the corners at B and particularly at 
E. We also know that we have taken no account of the small permanent distortions that 
really occur between A and B or between D and E, and some large scatter is to be expected 
in the calculation of εκ && vv when ε& is small. However, the plot of Fig. 7.17 will allow us to 
make a reasonable estimate of a value of M which we may otherwise find difficult. A 
direct assessment from the final value of q/p of Fig. 7.14(b) could only be approximate on 
account of the inaccuracies in measurement of the stress parameters at large strain, and 
would underestimate M because failure intervenes before the critical state is reached.  
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Fig. 7.17  Predicted Test Results for Axial Compression Tests on Cam- clay 

 
Results of a very slow strain-controlled undrained test on kaolin by Loudon are 

presented in Figs. 7.18 and 7.19 and are tabulated in appendix B. This specimen was 
initially under virgin compression, but experimentally we can not expect that the stress is 
an absolutely uniform effective spherical pressure. Any variation of stress through the 
interior of the specimen must result in mean conditions that give a point A not quite at the 
very corner V. These initial stress problems are soon suppressed and over the middle range 
of the test the data in Fig. 7.18 lie on a well defined straight line which should be of slope 

).()( κλ −M  As we have already established values for κ and λ, we can use them to 
deduce the value of M. For the quoted case of kaolin 

.265.3and02.1soand05.0,26.0 ≅≅== ΓMκλ   
For a series of similar tests we shall expect some scatter (even in specially prepared 

laboratory samples) and it will be necessary to take mean values for M and Γ. It should be 
noted that failure as defined by the condition of maximum deviator stress q, occurs well 
before the condition of maximum stress ratio η, is reached.  

 
Fig. 7.18 Test Path for Undrained Axial Compression Test on Virgin Compressed Kaolin  

(After Loudon) 
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Turning to Fig. 7.19, the results indicate the general pattern of Fig. 7.17(b) but in 
detail they show some departure from the behaviour predicted by the Cam-clay model. The 
intercepts of the straight line BC should be M on both axes; but along the abscissa axis the 
scale is directly proportional to κ so that any uncertainty in measurement of its value will 
directly affect the position of the intercept. 

Thus, in order to establish Cam-clay constants for our interpretation of real axial-
test data we need two plots as follows: 
 
(a) Results of isotropic consolidation and swelling to give v against ln p as Fig. 7.3 and 
hence values for κ and λ.  
 
(b) Results of conventional undrained compression test on a virgin compressed specimen 
to give  against η as Fig. 7.18 and hence values of M and Γ. λv
 

Having established reasonable mean values for these four constants we can draw 
the critical state curve, the virgin compression curve, and the form of the stable-state 
boundary surface, and in Fig. 7.20 we can use these predicted curves as a fundamental 
background for interpretation of the real data of subsequent tests. 
 At this stage we must emphasize that the interpretation is concerned with stress–
strain relationships, and not with failure which we will discuss in chapter 8. We also note 
that there are two alternative ways of estimating the critical state and Cam-clay constants. 
The data of ultimate states in slow tests, in sufficient quantity, will define a critical state 
line such as is shown in Fig. 7.5. The slow tests cannot be used for close interpretation of 
their early stages when the data look like Fig. 7.21 and indicate a specimen that is not in 
equilibrium. However, from the data of slow axial tests and of the semi-empirical index 
tests, we can obtain a reasonable estimate of the critical state and Cam-clay constants. The 
second alternative is to use a few very slow tests and subject the data to a close 
interpretation. Although in Fig. 7.20 we concentrate attention on undrained tests, the 
interpretive technique is equally appropriate to very slow drained tests.  

 
Fig. 7.19 Rate of Change of v during Undrained Axial Compression Test on Virgin Compressed 

Kaolin (After Loudon) 
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Fig. 7.20 Cam-clay Skeleton for Interpretation of Data 

 
 

 
Fig. 7.21 Test Path for Test Carried out too quickly 

 
7.9 Rendulic’s Generalized Principle of Effective Stress 

Experiments of the sort that we outlined in §7.1 were performed by Rendulic in 
Vienna and reported10 by him in 1936. He presented his data in principal stress space, in 
the following manner. First he analysed the data of drained tests and plotted on the 

)')2(,'( 31 σσ plane contours of constant water content; that is to say, if at  
and  in one test that specimen has the same water content as another 
specimen at and in a different test then the points (125, 115) 
and (128, 108) would lie on one contour. Rendulic plotted the data of effective stress in 
undrained tests and found that these data lay along one or other of his previously 
determined contours. He thus made a major contribution to the subject by establishing the 
generalized principle of effective stress; for a given clay in equilibrium under given 
effective stresses at given initial specific volume, the specific volume after any principal 
stress increments was uniquely determined by those increments. This principle we embody 
in the concept of one stable-state boundary surface and many curved ‘elastic’ leaves as 
illustrated in Fig. 6.5: a small change will carry the specimen through a well defined 
change  which may be partly or wholly recoverable. We could have mentioned the 

2
1 lb/in125' =σ

2
3 lb/in115' =σ

2
1 lb/in128' =σ 2

3 lb/in108' =σ

),( qp &&

v&
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contours of constant specific volume at an earlier stage but we have kept back our 
discussion of Rendulic’s work until this late stage in order that no confusion can arise 
between our yield curves and his constant water content contours. 

Rendulic11 emphasized the importance of stress – strain theories rather than failure 
theories. He found that the early stages of tests gave contours that were symmetrical about 
the space diagonal, while states at failure lay unsymmetrically to either side. This led him 
to consider that yielding was governed by a modification of Mises’ criterion with yield 
surfaces of revolution about the space diagonal, while failure might be governed by a 
different criterion. 

In Henkel’s slow strain-controlled axial tests on saturated remoulded clay that we 
have already quoted so extensively, the tests were timed so that there were virtually no 
pore-pressure gradients left at failure. Before failure, in the early stages of tests, these data 
do not define effective stress states with the same accuracy that lies behind Fig. 7.12. A 
precise comparison of Figs. 7.12 and 7.23 will quickly reveal differences between the two. 
However, the general concept and execution of these tests makes them worth close study. 
His interpretation12 follows Rendulic’s approach. In Fig. 7.22 he plots contours from 
drained tests and stress paths for undrained tests of a set of specimens all initially virgin 
compressed. In Fig. 7.23 he plots, in the same manner, data of a set of specimens all 
initially overcompressed to the same pressure 120 lb/in2 and allowed to swell back to 
different pressures. These contours correspond respectively to our stable-state boundary 
surface (with some differences associated with early data of slow tests) and to the elastic 
wall that was discussed for Cam-clay. Cam-clay is only a conceptual model and clearly 
Figs. 7.22 and 7.23 show significant deviation for isotropic behaviour from the predictions 
of the simple model. The Figs. 7.22 and 7.23 also show data of failure which will be 
discussed in detail later. 

 

 
Fig. 7.22 Water Content Contours from Drained Tests and Stress Paths in Undrained Test for 

Virgin Compressed Specimens of Weald Clay (After Henkel) 
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Fig. 7.23  Water Content Contours from Drained Tests and Undrained Stress Paths for Specimens 

of Weald Clay having a Common Consolidation Pressure of 120 lb/in2 (After Henkel) 
 
 Rendulic clearly explained the manner in which pore-pressure is generated in 
saturated soil, and separated the part of the total stress that could be carried by the effective 
soil structure from the part of the total stress that had to be carried by pore-pressure. In the 
light of our development of the Cam-clay model, we can restate the generalized effective 
stress principle in an equivalent form: ‘If a soil specimen of given initial specific volume, 
initial shape, and in equilibrium under initial principal effective stresses is subject to any 
principal strain-increments then these increments uniquely determine the principal 
effective stress-increments’. 

The generalized principle of effective stress in one form or another makes possible 
an interpretation of the change of pore-pressure. 
 
7.10 Interpretation of Pore-pressure Changes 

Change of effective stress in soil depends on the deformation experienced by the 
effective soil structure. The pore-pressure changes in such a manner that the total stress 
continues to satisfy equilibrium.  

Attempts have been made to relate such change of pore-pressure to change of total 
stress. Curves such as those in Fig. 7.13(c) have been observed in studies of axial tests on 
certain soft clays where the increase in major principal total stress was matched by the rise 
in pore-pressure. For example, if a virgin compressed specimen under initial total stresses 

222 lb/in50lb/in80lb/in80 === wlr uσσ  
was subjected to a total stress-increment  it would come into a final 
equilibrium with 

,lb/in10 2=lσ&

222 lb/in60lb/in90lb/in80 === wlr uσσ  
The simple hypothesis which was first put forward was that the ratio of pore-pressure 
increment to major principal total stress- increment wu& lσ& was simply 
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This relationship was modified by Skempton13 who proposed the use of pore-
pressure parameters A and B in a relationship 

{ .rlrw ABu σσσ &&&& −+= }       (7.12) 
Here, B is a measure of the saturation of the specimen; for full saturation B=1. The 

parameter A multiplies the effect of q and relates the curves (b) and (c) of Fig. 7.13. An 
alternative coefficient introduced by Skempton for the case rl σσ && >  is  
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In either form, if we introduce full saturation (B =1), and consider only the compression 
test ( 0=rσ& ), both eqs. (7.12) and (7.13) reduce to 
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The simple hypothesis eq. (7.11) suggested that for virgin compressed clay a basis for 
prediction of pore-pressures would be .1== BA  

In Fig. 7.24(a) we show the predicted undrained test path for a virgin compressed 
Cam-clay specimen. The point V is an initial state, point W represents applied total stress 
and point X represents applied effective stress. For the simple case, when const.=rσ  and 

0=rσ& which we show in the figure,  

.
3
qpuw
&

&& =+  

 
Fig. 7.24  Comparison of Cam-clay with 1=B  Hypothesis  

 
The yielding of Cam-clay in an undrained test was discussed in §6.7, where eq. (6.27) 
determines the changing effective stresses (q, p), and defined the Cam-clay path of Fig. 
7.24(a) which is close to a straight line. In Fig. 7.24(b) we show the changing effective 
stresses that would be applicable to a material for which .1=B  The 1=B  hypothesis is 
only a little different from the prediction of Cam-clay, for which it can be shown that 
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for this type of test.  
We will next consider what we have called ‘over compressed’ specimens, meaning 

specimens that have been virgin compressed under a high effective spherical pressure  0Np
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and then permitted to swell back under a reduced effective spherical pressure  In Fig. 
7.25 on the graph v versus ln p we see the sequence of virgin compression to  at point 
J, followed by swelling to an effective pressure and a specific volume  at point K. 
Points I and L are on the virgin compression and critical state lines at specific volume . 
Swelling from J to K, with reduction of effective spherical pressure from to , results 
in increase of specific volume of 

0p .

0Np

0p 0v

0v

0Np 0p
).ln( Nκ  So we can calculate that the effective spherical 

pressures at I and L are 
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Fig. 7.25  Increase of Specific Volume during Isotropic Swelling in terms of  

Overcompression Ratio 
 
and the separation of K from the critical state line is  
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We have already defined the offset KM as ),( Γv −λ  so that for any general point  
)ln1)(( NΓv −−=− κλλ        (7.18) 

from which we see at once that a family of specimens all having the same overcompression 
ratio N will have the same value of  i.e., lie on the same λ-line. ,λv

We can see in Fig. 7.26 the manner in which the pore-pressure develops in an 
undrained compression test on an initially overcompressed specimen. The line KQ 
represents the applied total loading; and the curve KRL represents the behaviour of Cam-
clay consisting of an initial elastic part KR and subsequent plastic part RL of the state path 
approaching the critical state at L. The ultimate pore-pressure if the critical state 

were reached would be  
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Fig. 7.26  Development of Pore-pressure during Undrained Compression Test on Overcompressed 

Specimen 
 
Let us introduce a parameter Au defined by 
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For the case of London clay with 614.0=Λ  and 888.0=M  this becomes  

.8.02 614.0 −≅ −NAu        (7.21)  
 

 
Fig. 7.27  Relationship between Pore-pressure Parameter A and Over-compression Ratio N  

(After Simons) 
 

In Fig. 7.27 we show data of pore-pressure coefficient Af observed at failure on sets 
of overcompressed specimens of undisturbed Oslo clay and remoulded London clay quoted 
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by Simons14. For comparison, the dotted line is the relationship predicted by eq. (7.21) for 
London clay for the pore-pressure coefficient Au appropriate to the critical state.  

From the work by Parry already quoted, we shall expect that on the wet (or loose) 
side of the critical state line Af < Au and on the dry (or dense) side Af > Au. The cross-over 
of the experimental and predicted curves must occur when Af = Au = 0, which from eq. 
(7.21) will be when 

.45.45.2 614.01 ==N  
This pattern of behaviour is borne out in Fig. 7.27 and the fact that it is the same for the 
remoulded London clay specimens as for the undisturbed Oslo clay specimens suggests 
that the critical state concept has wide application. 

However, we must emphasize that the pore-pressure parameter A is not itself a 
fundamental soil property. In Fig. 7.28(b) we illustrate the overcompression of two 
specimens X and Y and the virgin compression of a specimen W. In Fig. 7.28(a) we 
illustrate the changing effective stresses that would occur in undrained tests on these three 
specimens. At failure each has approached the near vicinity of the critical state C. En route 
to failure, the pore-pressure uw is the horizontal offset between the faint lines 

 that represent total stress application and the firm lines WC, XC, YC that 
represent effective stress response. For specimen W the simple hypothesis 

'YY,'XX,'WW
1=B  has some 

meaning, but not for specimen Y where the pore-pressures show small initial positive 
values followed by subsequent negative pore-suction. 
 

 
Fig. 7.28  Differing Pore-pressure Responses of Specimens with differing Amounts of 

Overcompression 
 
There is nothing fundamentally significant about the applied loading lines. Other 

loading conditions would give different inclinations to these lines. The strains of the 
deforming effective soil structure, as it yields and approaches C from W or X or Y, do bear 
a fundamental relationship to the effective stresses. The pore-pressure simply carries 
whatever excess there may be of total pressure over and above effective spherical pressure. 

We can take an example, other than the axial-test situation, and consider the 
advance of a pile tip in a layer of clay initially in a state of virgin plastic compression. 
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Figure 7.29(a) shows two positions I and II in the advance of that pile, and a small 
elemental specimen of clay being displaced. The geometry of displacement imposes on the 
specimen some increment of distortionε& , see Fig. 7.29(b), and the rapid advance of the 
pile ensures that there is no drainage or volume change of the specimen. If the initial state 
(q, p) of the specimen is point I in Fig. 7.29(c), the subsequent state II is completely 
determined by the distortion ε&  at constant volume. As the pile tip advances, the deforming 
clay must experience a fall in effective pressure. The clay specimen moves relatively closer 
to the pile tip and total pressure must rise during the increment. There will be a marked rise 
in pore-pressure to ensure that total stresses continue to be in equilibrium round the pile 
tip. In general it seems that the analysis of such problems does not involve the pore-
pressure parameters, but does require some fundamental statements of a relationship 
between change of effective stress and the deformation experienced by the effectively 
stressed soil. 

 
Fig. 7.29  Pressure Change caused by Advance of Tip of Pile 

 
7.11 Summary  

The close interpretation of data of very slow strain-controlled axial tests on 
saturated clay specimens has proved most rewarding. The position has been decribed in 
detail because it is hoped that it will prove to be of value to engineers who are involved in 
soil testing. In §7.8 we introduced new methods of plotting data which are illustrated in 
Figs. 7.18 and 7.19, and at the end of §7.8 it is concluded that the combination of Figs. 7.3 
and 7.18 will give the best basis for interpretation of test data. 

The last two sections, §7.9 and §7.10, have reviewed two notable alternative 
interpretations of the data of axial testing. The plotting of contours of constant water 
content by Rendulic produces an interesting display of data, and after our detailed 
development of the Cam-clay model we can appreciate the great contribution that was 
made by Rendulic’s work. The introduction of pore-pressure parameters A, B, and B is 
particularly interesting in showing how 1=B  corresponds well with the Cam-clay model. 
However, neither Rendulic’s approach nor the use of pore-pressure parameters seem to 
offer us as complete an interpretation as can be obtained by introduction of the critical state 
and Cam-clay models. 

When the new soil constants are obtained by interpretation of test data the question 
that immediately arises is of their use in design calculation. It is evident that the Coulomb 
failure criterion which we will approach in the next chapter is the main model with which 
design calculations are presently made. However, it will prove possible to use our new 
understanding of the yielding of soil to make a rational choice of Coulomb strength 
parameters for design calculations: in this sense the new constants may prove to be useful. 
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8  
Coulomb’s failure equation and  
the choice of strength parameters 
 
 
8.1 Coulomb’s Failure Equation 
 The past three chapters have developed stress – strain theories for soil: they have 
also recognized that in the general progress of deformation there will be a ‘peak’ stress at 
which a stress-controlled system can fail because of the state of an element of soil within 
the system. The question of the state of soil at peak stress was discussed in the first source 
of soil mechanics — the paper1 by Coulomb in 1776. 

Coulomb considered, Fig. 8.1(a), that soil was a rigid homogeneous material which 
could rupture into separate blocks. These blocks remained in contact but slid relative to 
each other along the contact surface. Coulomb observed such rupture surfaces in soil and 
rock. His experiments on solid rock specimens and on mechanisms with sliding contact 
suggested that both cohesion and friction must be overcome during slip along the rupture 
surface, Fig. 8.1(b). We follow Sokolovski and denote cohesion by k and angle of friction 
by ρ in order to ease the introduction to his text. (In general, symbols (c,φ) are used, but 
these have over the years become very confused by innumerable definitions and suffices.) 
If we call the effective stress component across the rupture surface 'σ , then the shearing 
stress τ that is available to resist motion along the rupture surface is written 

.tan' ρστ +≤ k        (8.1) 
  

 
Fig. 8.1 Coulomb’s Failure Criterion 

 
This is the ‘Coulomb equation’: it is implicit in Coulomb’s derivation of another 

eq. (9.5) to which we will come later, although it was not written explicitly in the 1776 
paper.  
 For engineers ‘classical’ soil mechanics is the extensive set of design calculations 
and studies which is based on eq. (8.1). These studies reach their highest development in 
the recent text of Sokolovski on the limiting equilibrium of soil which are discussed with 
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other calculations of limiting equilibrium in chapter 9. Before we introduce these classical 
calculations we must decide what values of k and ρ to choose for each soil.  

In this chapter we will meet two quite distinct sets of values of (k,ρ). The first set 
will be discussed in sections 8.2 to 8.4 where we are concerned with the experimental fact 
that data of peak strengths of soil specimens do fit a modified form of the Coulomb 
equation. However, in §8.5 we explain that it would be incorrect to use these ‘peak’ values 
(k,ρ) in design calculations, because strength falls from its peak to lower values after 
failure. The second set of values (k,ρ) that can be used rationally in design calculations are 
discussed in sections 8.6 to 8.8, which follows the rationale given by Bishop and Bjerrum2 
in 1960. It does seem that this choice of a second set of values (k,ρ) for design is consistent 
with our use of the critical state model and we will call these rationally chosen design 
values the critical state strengths.  
 
8.2 Hvorslev’s Experiments on the Strength of Clay at Failure 

Studies of the strength of clay specimens in Terzaghi’s laboratory in Vienna 
succeeded in fusing together the concept of effective stress and Coulomb’s concept of 
failure. We have already explained how Rendulic correctly generalized the effective stress 
concept, and now we outline Hvorslev’s work.  

 
Fig. 8.2 Shear Apparatus used by Hvorslev 

 
We know from the previous chapters 4, 5, and 6, that the specific volume of soil changes 
under changing effective stress, and we also know that yield strengths vary with specific 
volume. Equation (8.1), as it stands, takes no account of this change, and it was in 
elucidation of this point that the notable experiments of Hvorslev3 made such a significant 
contribution. 

Hvorslev used shear boxes of Terzaghi’s design in a shear apparatus with a rocking 
cradle of Krey’s design, as shown in Fig. 8.2. Clay specimens were consolidated from a 
slurry and brought into equilibrium under various normal loads. They were then subjected 
to successive increments of shear load: the experiments which we quote were very slow 
stress-controlled drained tests. Hvorslev defined ‘failure’ to be occurring under that shear 
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stress for which the very slow rates of shear displacement showed signs of continued 
acceleration. 

Immediately after failure the shear boxes were quickly dismantled. A strip 3 mm 
thick and 2 cm wide was cut from the middle of the failure zone, as shown in Fig. 8.3; it 
was divided into five parts and the average water content for the zone of failure was 
determined. Observation of the rise or fall of the upper porous stone also indicated dilation 
or compression of the clay specimen during shear before failure. 

 
Fig. 8.3 Specimens for Determination of Final Water Content 

 
Fig. 8.4 Failure States of Specimens of Wiener Tegel V (After Hvorslev) 

 
In Fig. 8.4(a) the solid line indicates a cycle of virgin compression, swelling, and 

recompression on a silty clay (Wiener Tegel V) said to resemble London clay. A dozen 
specimens were prepared each at a different stage in this cycle. Each specimen was then 
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sheared. Some exhibited a loss of water and others a gain during distortion. For all twelve 
specimens the circled dots indicate their state immediately after failure. A dashed line is 
drawn to link these points but this does not mean that a specimen changes; for instance, 
from the state at failure for 1 to the state at failure for 2. In Fig. 8.4(b) the set of failure 
strengths of these specimens is shown. 

The data of Fig. 8.4 appear confusing, but Hvorslev introduced a major 
simplification. In Fig. 8.5 we re-plot the dashed curves of Fig. 8.4 together with the solid 
curve for virgin compression. For each water content on the dashed curve we read at the 
same water content on the solid curve a normal pressure which Hvorslev called the 
equivalent compressive pressure ;'eσ  for clarity, only points 1, 4, and 7 are shown. 
Hvorslev found the equivalent pressures and replotted the data of Fig. 8.4(b) in the form of 
Fig. 8.6. All data lie on one straight line  
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Introducing an equation for the virgin compression curve (in which l is an appropriate 
constant) 
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we obtain an alternative form 
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These equations (8.4) elucidate a major significance of the Coulomb equation: it is that the 
cohesion component k increases exponentially with decrease of water content. 
 

 
Fig. 8.5 Derivation of Equivalent Pressure (After Hvorslev) 

 
This excellent set of accurate data was not subject to sufficiently close scrutiny by 
subsequent workers. It was not appreciated that the phenomenon that Hvorslev called 
failure was only observed in a limited range of states of soil: for Wiener Tegel V in Fig. 
8.7 the range II is 6.0)''(05.0 << eσσ  and it is most striking4 that in range I for 
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)''(6.0 eσσ<  no failure was observed. There is an accumulation of points at the end C of 
the line on the boundary between regions I and II; in the light of the work of previous 
chapters we readily see that C indicates the near vicinity of the critical state. Specimens 
originally in region I, being wetter than critical, will have moved through that region in 
process of yielding without failure; not until they approach the critical states will failure 
have terminated the yielding process.  

 
Fig. 8.6 Data of Failure (Wiener Tegel V) (After Hvorslev) 

 
 

 
Fig. 8.7 Range of Observed Data of Failure 

 
It is therefore clearly wrong to represent Hvorslev’s results in the manner shown in 

Fig. 8.8(a), as some workers have done. It is wrong to consider the line OC to represent 
successive states of plastic compression in the presence of shear. In the near vicinity of the 
critical states plastic distortion increments are very large and no presently available test 
apparatus can hold a specimen in a condition close to the critical states sufficiently long for 
any controlled plastic compression to be imposed. It is also wrong to extend the lines of eq. 
(8.4) across the line OC into region I where Hvorslev did not obtain data of failure. A 
correct way to represent Hvorslev’s equation is shown in Figs. 8.8(b) and (c) where we 
show what we call the Hvorslev – Coulomb surface in ),,'( τσ w space. This surface applies 
to a limited range of states of failure in the near vicinity (and rather to the dry side) of the 
critical states. 
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Fig. 8.8 Hvorslev – Coulomb Surface 

Hvorslev himself went on from shear box tests to apply his criterion to analysis of 
some unconfined compression tests. He used q for the axial-deviator stress, and we have 
adhered to this usage. He suggested that Mises’ function F of eq. (2.12) could be employed 
for soils. We can introduce a generalization of our parameters, 

2*2
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and       *
321 3)'''( p=++ σσσ

and appendix C generalizes the Granta-gravel yield function in a form F(p*, v, q*)=0 that 
fulfils Hvorslev’s suggestion. However, we also see that such yielding occurs in region I of 
Fig. 8.8 whereas we associate Coulomb’s rupture with region II. 
 
8.3 Principal Stress Ratio in Soil about to Fail 

The Hvorslev – Coulomb surface specifies stress components only on the failure 
plane. From chapter 2 and appendix A we readily appreciate that this does not fully specify 
all the principal effective stress components in the soil continuum when it is yielding and 
about to fail. Let us assume that the rupture surface will be acted on by the maximum and 
minimum principal effective stresses max'σ  and min'σ , so that the intermediate principal 
effective stress can have any magnitude in the range minmax '' σσ →  without affecting the 
equilibrium or the inclination of the failure surface. We still need some additional 
assumption if we are to calculate the ratio of principal stresses minmax '' σσ  in soil about to 
fail. 

The first assumption to be considered is that of Rankine, who studied soil without 
cohesion (k = 0) or pore-pressure (uw = 0). He asserted that in a continuous body of soil 
when the ratio of principal stresses reached its peak the obliquity of the stress vector on 
any plane could not exceed the angle of friction ρ. It followed, as we will see below, that 
Rankine could write 
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A generalization became possible following the introduction of Mohr’s circle of effective 
stress, see appendix A. For soil with cohesion k and friction ρ, introducing the notation 
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in Fig. 8.9, we see from the geometry of the figure that 
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Fig. 8.9 Mohr–Rankine Criterion 

 
Introducing k = 0 = H we find Rankine’s earlier expression to be included in eq. (8.7), 
which we now will call the Mohr–Rankine criterion for peak effective stress ratios in soil 
about to fail. 

A distinction has now been made between the peak stress criterion in which the soil 
body is still considered to be a homogeneous continuum, and the Hvorslev–Coulomb 
equation for limiting equilibrium between two separate parts of an only just ruptured body. 
Further, we note that, at the Mohr–Rankine peak stress ratio, there are two directions 
through a soil body of planes on which the obliquities of stress vector are identical. The 
Mohr–Rankine criterion does not indicate in which of the two directions the Coulomb 
rupture is expected to be propagated. 

A further uncertainty becomes apparent when we try to represent the Mohr–
Rankine criterion in the (q, p) plane. At one extreme we have the extension test with the 
intermediate stress equal to the major principal stress, and at the other extreme the 
compression test where it is equal to the minor principal stress. Let us consider the simple 
case without cohesion, k = 0. The first possibility involves failure in extension with 
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The second possibility involves failure in compression with ,'','' minmax σσσσ == rl and 
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Fig. 8.10  Mohr–Rankine Limiting-stress Ratios 

 
Thus there are two lines which are drawn dotted on the (q, p) plane, Fig. 8.10, and which 
indicate states when compression and extension tests respectively reach their peak Mohr– 
Rankine stress ratio.  
 

 
Fig. 8.11 Mohr–Rankine Criterion in Principal Stress Space 
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If we also want the principal stress space representation we simply convert scales 
by factors of 

3
2 and 3  , and obtain the dotted lines in Fig. 8.11(a). A section of principal 

stress space on the plane CE normal to the space diagonal is shown in Figs. 8.11(b) and 
8.12. The peak stresses in Fig. 8.12 now lie on an irregular hexagonal cone of an almost 
triangular section in the plane perpendicular to the space diagonal. Principal points on the 
Mohr–Rankine peak stress locus are C and E, which refer to peak stress ratios in 
compression and extension.5
 
  

 
Fig. 8.12 Mohr–Rankine Limiting Surface for k=O 

 
The yield surface of Fig. 5.1 is a surface of rotation about the space diagonal which, 

for states rather drier than critical, lies outside the irregular cone of Fig. 8.12. Thus, the 
Mohr – Rankine criterion predicts that for these states a limiting stress ratio occurs before 
the yield surface is reached. We now compare this prediction with some data of states of 
failure. 
 
8.4 Data of States of Failure  

We have already discussed the data of experiments which Henkel interpreted to 
give broad support to Rendulic’s generalized effective stress principle. In Figs. 7.22 and 
7.23 we see that state paths end with ‘failure states’ which lie on two lines rather similarly 
placed in their asymmetry about the space diagonal as the prediction of the Mohr – 
Rankine criterion. In detail neither a simple critical state curve, nor a simple Mohr – 
Rankine criterion with constant cohesion, will fit these data of failure; it is necessary to 
have cohesion varying with water content. 

In Fig. 8.13 we present data of a comprehensive series of tests on Weald clay 
reported by Parry.6 Each point shown is the failure condition (defined by maximum axial-
deviator stress q) for one separate axial test quoted in Parry’s tables. This series includes 
both compression and extension tests: and in each category three types of drained test 
((a) r'σ constant, (b) l'σ constant, (c) p constant), and two types of undrained test ((a) rσ  
constant (b) lσ constant). 

The results have been plotted in the same format as Hvorslev’s presentation of Fig. 
8.6, except that we have introduced a minor variation in our choice of parameters. Instead 
of dividing by Hvorslev’s equivalent pressure e'σ (or pe) to make the parameters 
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dimensionless, we have divided by pu which has exactly the same effect. The effective 
spherical pressure pu can be plotted on the critical state line at the particular value of the 
water content wf of each separate specimen at failure, whereas a point (pe, wf) could be 
plotted on the virgin compression line. The actual values adopted for pu were taken from 
the similar plot to that of Fig. 7.5 for Weald clay. From chapter 6 we have already 
established that the ratio Λpp ue exp= and should be constant for any particular clay. 

We see that although these data of failure are from a wide variety of tests (with 
significantly different stress paths) they are closely represented by a pair of lines of the 
Mohr – Rankine type of Fig. 8.10,  
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Fig. 8.13  Data of Failure from Tests on Weald Clay (After Parry) 

  
The line for compression is from eq. (8.9) 
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and the line for extension is from eq. (8.8) 
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The closeness of the fitting suggests that we can extend Hvorslev’s concept of 
cohesion as a function of specific volume (or water content), and introduce this concept 
also in the Mohr – Rankine peak stress ratio criterion. 

As before, there is a range II of uf pp  to which the failure criterion is applicable, 
and to either side there are ranges I and III in which there are no data of failure: although 
the positions of the exact boundaries to range II are open to some doubt. 

Also plotted is the section of the boundary surface appropriate to Weald clay which 
has an average .95.0and,093.0,0346.0 === Mλκ  This gives  and 628.0=Λ

.875.1exp == Λpp ue  With the exception of three results from extension tests this curve 
encloses all the data. (Extension tests are more susceptible to experimental error than 
conventional compression tests, particularly in regard to estimates of water content at 
failure  Any error in leads to a wrong choice of which would move a plotted 
point directly towards or away from the origin of coordinates O.) 

.fw fw up

This use of the Coulomb equation to fit data of failure is close in essence to 
Hvorslev’s use of the same equation with cohesion as a function of water content. We will 
not offer a theoretical explanation for the closeness of this fitting, but it is helpful to 
compare and contrast Figs. 8.13, 7.12, and 5.18. We began with a theoretical rigid/plastic 
model for which we predicted rigidity within a certain area of Fig. 5.18: we supposed that 
in a certain area of that figure stable yielding could progress towards an ultimate critical 
state. We learn from experiments that stable yielding does occur in the undrained axial test 
but in Fig. 7.12 we see failure intervene just before the specimen reaches a critical state. 
Now we find that lines such as those in Fig. 8.13 cut across the area of rigidity in Fig. 5.18, 
and these lines mark the peak stress ratios that can be attained. 

Perhaps it is helpful here to draw an analogy with the simple theory of buckling of 
struts in which experiments on real struts terminate at peak loads less than the limiting 
loads predicted by simple elastic theory. 
  
8.5 A Failure Mechanism and the Residual Strength on Sliding 
Surfaces 
 

So far we have shown, for intact soil specimens, that the Mohr – Rankine or 
Hvorslev – Coulomb criteria do describe the limiting condition just before propagation of a 
failure surface. We now must consider what happens at and after such failure. 

Consider in Fig. 8.14 the state path AB which Hvorslev’s clay could have followed 
if it had been homogeneously remoulded at  constant  The portion AB represents 
deformation of the intact specimen before peak stress. The fact that when Hvorslev 
sampled water content he did not find all circled points in Fig. 8.4(a) lying close to the 
critical states, but rather found water contents such as B in Fig. 8.14(b), shows that the 
specimens stopped behaving uniformly at peak deviator stress. Photographs showed very 
thin slip zones or rupture surfaces in which most distortion became concentrated after 
failure. We show, in Fig. 8.15(a), the water content slice and, in Figs. 8.15(b), (c), a much 
magnified view of the 3 mm thick slice. Figure 8.15(b) shows homogeneous distortion and  

.σ'
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Fig. 8.14 Change in State at Failure in Drained Shear Test 

 
uniform water content just before failure. Upon failure, soil in the thin slip zone 
experiences dilation (increase of water content) and weakens (decrease of shear strengthτ )  
following path BC in Fig. 8.14(c). The gain in water content of the failure region is 
temporarily at the expense of the blocks to either side of the failure surface, which 
experience loss of water and increase of stiffness as the stress decreased following path BD 
in Fig. 8.14(c). Consequently, displacements are concentrated in the thin failure zone and 
Fig. 8.15(c) also shows water content change in the vicinity of the failure. Water is shown 

 
Fig. 8.15 Conditions in a Slip Zone 
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being sucked, with presumably a small value of pore- pressure, in towards the slip zone Z, 
but Hvorslev’s rapid dismantling process ensured that the average water content that he 
measured represented the water content just before and at failure. By this interpretation the 
Hvorslev – Coulomb equation applies to peak stress ratios of an intact soil body.  

The sucking in of water towards the thin slip zone, illustrated in Fig. 8.15(c), has 
been observed in the field. In an investigation of a retaining wall failure (which will be 
discussed at length in §8.8) Henkel reported the water content variation shown in Fig. 8.16,  

 
Fig. 8.16 Observations of Water Content of a Slip Zone (After Henkel) 

 
and associated this with local dilation accompanying severe local shear strains. It is 
consistent with our critical state theories to link the changing water content with fall of 
stress from peak values (on the dry side) to critical state values.  

As displacement on the rupture surface increases there appears to be some 
development of anisotropy: Hvorslev writes of a significant permanent change of structure 
in the vicinity of the rupture surface, which permitted one clay sample to be separated into 
two blocks along the rupture surface which was then seen to possess a dull shine. 

 

 
Fig. 8.17 Skempton’s Definition of Residual Strength 
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Gould7 studied landslides in coastal California and from their evident limiting 
equilibrium concluded that ‘the strength actually mobilized in slides or mass creep is 
inversely proportional to the amount of displacement which has occurred previously in the 
shear zone’. He considered that ‘the means by which large shear strain eliminates true 
cohesion is not clear’, but writes of a ‘pattern of irregular slick surfaces’. Wroth8 studied 
the strength of randomly packed 1 mm steel balls in simple shear, and found that after very 
large cumulative shear distortion the ultimate strength fell to two-thirds of the critical state 
strength, and this deterioration of strength was seen to correspond to a development of 
regularity of packing in the material. Hence, although it is consistent with our critical state 
concepts to predict a fall of strength from peak values (on the dry side) to critical state 
values, it is also clear that large displacements on sliding surfaces have to be associated 
with a further fall below the critical state values. 

Skempton9 (in the fourth Rankine lecture of the British Geotechnical Society in 
1964) discusses the fall of strength, and a figure such as his Fig. 6 (our Fig. 8.17) shows 
the typical curves relating increasing displacement to fall of strength from peak values to 
what he identifies as a residual strength value. He also correlates fall of strength with 
passage of time after failure, but it is more consistent with our purely mechanical 
interpretation of the yielding of soil for us to follow Gould and associate fall of strength 
only with displacement on the rupture surface. Skempton shows (Fig. 8.17) a line of peak 
strengths of overcompressed soil which we reproduce in Fig. 8.18(a) as the line ABC, and 
a line of residual strengths which we reproduce as the line OEF. Between these lines 
Skempton interposes a line of peak strengths of virgin or lightly overcompressed soil. We 
see in Fig. 7.12 that the peak strength of axial compression tests of such soil occurs just 
before the critical state is reached. We wish to introduce in Fig. 8.18(a) a line ODC which 
corresponds to the critical state strengths. 

 
 

 
Fig. 8.18 Definition of Critical State Strength 

 
The introduction of line ODC in Fig. 8.18(a) is based simply on our desire to 

approach this problem from a point of view that is consistent with our critical state 
theories. As soon as we attempt to define precisely the slope of the line ODC we find a 
deficiency in the existing development of our theories in that the symbols τ  and 'σ  have 
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not appeared so far. To fit the Mohr-Rankine limiting surface of Fig. 8.12 to conditions in 
the rupture zone we must take 0k =  for soil in the critical state, so that .tan' ρστ =  We 
see that the peak of the undrained axial compression test of Fig. 7.12 occurs when 

,Mpq ≅  so to fit ρ to the critical state we must, for example, use 
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together with eq. (8.9) 
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This gives 415.0tan =ρ and in Fig. 8.18(a) the line ODC has been drawn at the slope 
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In Fig. 8.18(b) we show Skempton’s curve for the fall of strength of weathered London 
clay at Hendon, with . For this we calculate 2lb/in2.13'=σ

2lb/in5.5'415.0 == στ  
 
which is plotted in Fig. 8.18(b). It lies about half-way between Skempton’s peak value and 
his residual value. Skempton himself introduces a residual factor R for interpolation 
between these extremes. It seems that our use of a critical state theory agrees well with the 
use of a residual factor that Skempton proposes in this case. 

As the overcompression ratio increases, the line BDE in Fig. 8.18(a) will move 
nearer the origin with the consequence that the ratio (BD/BE) will increase. This suggests 
the use of a residual factor that increases with overcompression ratio N. 

  

8.6 Design Calculations  
In order to help us to stand back from the close detail of interpretation of data, and 

to take a rather more broad view of the general problems of design, let us review the well-
known calculations that occur in structural engineering design. Design of a structure such 
as a welded steel portal frame, Fig. 8.19(a), can involve two stages of calculation. In one 
stage, Fig. 8.19(b), some simple calculations are made of the collapse of the frame under 
various extreme loadings, and the design consideration might be that when the expected 
working loads are increased by a load factor (for example this might be 2) the structure 
should not quite collapse. In another stage, Fig. 8.19(c), other calculations are made of the 
performance of the frame under various working conditions, and the design consideration 
might be that the deflections or perhaps the natural period of vibration of the structure 
should be within certain limits. At one stage of the design the steel is represented by a 
rigid/plastic model with a characteristic yield strength (fully plastic moment Mp in Fig. 
8.19(e)). At another stage of the design the steel is represented by an elastic model with a 
characteristic elastic stiffness (EI in Fig. 8.19(f)). Experimental moment-curvature data for 
the steel, Fig. 8.19(d), are such that one model applies in one range of the data and another 
model applies in another range. Each design calculation illuminates one aspect of 
performance of the structure, and both are of importance to the designer. 
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Fig. 8.19 Design of Steel Portal Frame 

 
In soil mechanics we also have a variety of calculations that are appropriate to 

various aspects of design. Each calculation involves a well defined model such as those 
discussed in chapters 3 and 4, and the engineer must choose values for parameters such as 
permeability or compressibility that are appropriate to each specific soil. There is a well 
known and extensive set of classical calculations of limiting equilibrium based on 
Coulomb’s equation, and Bishop and Bjerrum2 have discussed in a joint paper two 
different types of problem concerning the performance of loaded bodies of soil for which 
these classical calculations are appropriate, provided that the strength parameters (k, ρ) are 
chosen in a rational manner. It is usual to introduce a factor of safety to cover inadequacies 
in the design calculations. In a passage of his 1776 paper Coulomb expressed a wish that 
his retaining wall design should offer a resistance ‘d’un quart en sus de celle qui seroit 
nécessaire pour l’équilibre’ (a quarter above what is needed for equilibrium). Thus 
Coulomb used a load factor of 125, and today, in slope stability calculations, engineers 
adopt a similar value for a factor of safety applied to the chosen strength parameters. This 
is a low value which is clearly not appropriate to a peak strength such as is shown in Fig. 
8.18, but which does appear to be appropriate to critical state strengths.  

The two types of problem are: 
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I. The immediate problem of the equilibrium of soft ‘wet’ soil under rapidly applied 
loading. The whole soil mass yields as a perfectly plastic body with positive pore-pressure 
being generated throughout the interior (the significant lengths H of drainage path are of 
the same order as the overall dimensions of the body and the half- settlement times are 
long in comparison with typical loading times). Bishop and Bjerrum quote many cases for 
which the classical calculations with values (which are in effect critical state strengths)  

0ρtanand == uck      (8.12) 
are clearly appropriate.  
 
II. The long-term problem of the equilibrium of firm ‘dry’ soil. Under an increase of 
deviatoric stress without increase of effective spherical pressure, the whole soil body may 
rupture into a rubble of lubricated blocks (the significant lengths H of drainage paths are of 
the same order as the thickness of a slip zone). In typical cases the loading is sustained for 
a sufficient time for the conditions of the problem to become effectively ‘drained’ in the 
sense suggested in §4.6. Bishop and Bjerrum quote cases of long-term failure for which 
classical calculations either with values  

Mandk ==
sinρ-3
ρsin60     (8.13) 

or with k = 0 and ρ at some suitable residual value would have been appropriate in design.  
In identifying these two groups of problems, Bishop and Bjerrum drew on a wide 

experience of many case histories. We will not repeat their list of cases but will concentrate 
on two examples of failures which are well documented in the literature of the subject.  
 
8.7 An Example of an Immediate Problem of Limiting Equilibrium  
 At a building site between Stirling and Glasgow in Scotland, during the 
construction of the roof of a single-storey building, the most heavily loaded footing failed 
and caused structural damage. Calculations subsequently showed11 that this footing, at a 
depth of about 5 ft 6 in below ground level, had applied a net increase of pressure of about 
2500 lb/ft2 on an underlying layer of about 14 ft of soft clay. In the site investigation 
Skempton took small undisturbed cylindrical samples of the soft clay and tested them in 
rapid unconfined compression; the results, shown in Fig; 8.20, indicate that the soft clay 
had strength cu of about 350 lb/ft2. Skempton used alternative methods of calculation 
including 
 
(a) limiting equilibrium with cohesion k alone on a slip circle (this type of calculation will 
be discussed in §9.4), and  
(b) limiting equilibrium of a two-dimensional stress distribution in a purely cohesive soil 
(this type of calculation will be discussed in §9.6.1). 
 
By these methods he estimated the bearing capacity of the clay layer to be about 2300 
lb/ft2. With various arguments which it is inappropriate to discuss in detail here, he 
demonstrated that this estimated bearing capacity correlated well with the increase of 
pressure that actually caused failure. 
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Fig. 8.20 An Example of an Immediate Failure of Bearing Capacity (After Skempton) 

 
We need to review the reasons why, in this case, the immediate limiting 

equilibrium calculation using k=cu, ρ = 0, was appropriate. In the first place the calculated 
amount of consolidation which took place in the few months of construction was 
negligible. The clay was compelled to deform at the same constant specific volume as it 
had initially, and whatever pore-pressures were generated would have had no time to 
dissipate. Second, although the clay might have been slightly overcompressed, the possible 
undrained test paths as shown in Fig. 7.28(a) all come to an end near the ultimate critical 
state point C. In the fully deformed state any history of overcompression would have been 
eradicated and the effective spherical pressure would have come close to the critical state 
value in Fig. 7.28(a). The total pressures could then be whatever values were applied, since 
any change in total pressure would simply cause variation of pore-pressure. (We know that 
total pressure cannot generate friction in an analogous situation when we accidentally tread 
on a bladder full of water, such as a rubber hot-water bottle. The weight on the foot 
generates water pressure but there is little pressure generated between the internal faces of 
the bladder so that there is little friction.) In Fig. 7.26 we see that qu = Mpu; the strength 
has a frictional character but it depends on the mean effective spherical pressure pu in the 
deforming clay. The total pressure cannot alter the mean effective pressure unless there is 
some change in the specific volume, v0 in Fig. 7.25. So the limiting equilibrium calculation 
proceeds on the basis of a constant (low) value of shear strength k = cu, and no friction. 
 
8.8 An Example of the Long-term Problem of Limiting Equilibrium 

It is less easy to find good text-book examples of the drained than the undrained 
limiting equilibrium problem. Our choice of a retaining wall failure is dictated by the ease 
with which the original paper12 can be found and the clarity with which the description and 
discussion13 is developed. 
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8.21 An Example of Long-term Failure of Retaining Wall (After Watson) 

 
A railway cutting was made in 1912 through a gently sloping clay hill near 

Uxbridge, which is a suburb of London. Since then there has been a history of intermittent 
slips; and in 1937 when the railway was widened and a new retaining wall built, a serious 
slip occurred during its construction. The slope behind the wall cracked and was made 
good with hard-core rubble to support some houses at the top of the slope. In 1954 another 
serious slip broke the wall, and renewed cracks at the head of the slope made it necessary 
to demolish the houses. Forward movement of the toe of the wall menaced the railway 
tracks but promptly executed remedial works arrested movement and restored stability.  
The paper shows, Fig. 8.21, the findings of a site investigation by means of a trench cut 
into the slope. The stiff fissured London clay contained an inclined layer within which 
there were many thin slip zones which are seen to be not continuous. These thin slip zones 
were ‘clearly exposed since large chunks of clay slipped away when digging near the 
surfaces, which appeared to consist of very thin moist slide-surfaces with marks of relative 
movement rather than softened zones’. Borings were put down in an endeavour to find 
these ‘moist slide-surfaces’, but examination of several samples known to be driven across 
slide-surfaces uncovered in the trench failed to locate the surfaces in the laboratory. Only 
in one sample did the moist zone attain sufficient thickness (about 50 mm) for increase of 
water content to show the results already indicated in Fig. 8.16. (Even at that thickness the 
remoulded softened clay paste in the slip zone remains ‘drained’ rather than ‘undrained’ in 
relation to the time of construction and loading.) 

Henkel reported in the discussion the results of limiting equilibrium calculations 
which used straight slip surfaces in a manner outlined in the examples of §9.1 and §9.2. 
Henkel’s choice of parameters was the value of ρ = 20° that he found from an 
interpretation of data of peak-strengths of London clay specimens in the manner of §8.4, 
but he then found that the value of k, which could have been contributing to stability of the 
ground which actually failed, was less than the peak value. In §8.6 from eq. (8.13) we 
suggest the comparable critical state parameters k = 0 and ρ = 22½° for London clay. 
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When such failure first takes place the body of clay disintegrates into a rubble of 
lubricated blocks, sliding on each other on very thin moist zones of soft, lubricating clay 
paste. Critical state theory explains the failure mechanism, and also gives us the key to the 
behaviour of this lubricating clay paste. The soft clay is being severely remoulded but it 
can only soften to the critical state that corresponds with its effective spherical pressure. 
This pressure, and the corresponding critical state strength, increase with depth in the 
rubble. The ‘friction’ concept involves a resistance to relative motion that depends on the 
effective stress between blocks. We can apply the well established friction calculations to 
the limiting equilibrium of a slipping rubble of clay blocks only because the strength with 
which the blocks adhere to each other is proportional to the pressure that has long been 
effective between them. 
 
8.9 Summary  

In chapter 5 we began asking what state of effective stress could be sustained in 
stable equilibrium by a block of our first model soil. We then developed a new group of 
critical state theories of yielding of soil but found that as yielding progressed there came a 
stage at which soil specimens in actual test systems ‘failed’ before they could be brought 
into a critical state. The data of peak strengths proved to be capable of very close 
description by the Coulomb equation, when properly modified to account for the effect of 
water content changes on cohesion. However, in classical calculations of limiting 
equilibrium for design purposes, it proves rational in general to use strength parameters (k, 
ρ) that are based on the critical state model rather than on the peak strengths. In chapter 9, 
the actual classical calculations of limiting equilibrium are given attention. 
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9  
Two-dimensional fields of limiting stress  
 
 
9.1    Coulomb’s Analysis of Active Pressure using a Plane Surface of Slip  

In 1776, before the concept of stress was clear, Coulomb1 published his notable 
first paper on the application of the differential calculus to problems of architectural statics. 
His basic assumption was that the effective stress components 'σ normal andτ  tangential to 
a rupture plane satisfied a relationship such as 

.ρtan'στ +≤ k       (8.1 bis)  
But the importance of Coulomb’s work lies in the analysis that he developed rather than in 
this basic assumption. 

Let us consider the simple case of a smooth vertical wall which retains a horizontal 
layer of uniform soil, illustrated by the section of Fig. 9.1(a). For convenience, the analysis 
will be applied to unit length of the wall (perpendicular to the section) and we shall 
examine the conditions of limiting equilibrium which apply to one possible (plane) surface 
of rupture XY. 

The total forces acting on the wedge OXY are (a) the total force R acting across the 
rupture surface, (b) its weight ,2

1 axW γ=  and (c) the lateral force L supplied by the wall 
(which must be horizontal in this case). Suppose that this force L is applied through a 
hydraulic jack, and it is gradually reduced. We see directly from the triangle of forces in 
Fig. 9.1(a) that the force R must gradually be reduced, and more significantly that its 
inclination to the normal across the plane XY is increased. 
At some stage during this process the distributed pressures across the plane XY could have 
resultants on three segments 1, 2, and 3 as shown in Fig. 9.1(b). We have no knowledge of 
the actual distribution of stress except for the facts that the polygon of forces in Fig. 9.1(b) 
must close, and that for each segment the local shear stress τ cannot exceed the limiting 
magnitude given by eq. (8.1). 

However, if the jack force L can be reduced until on every segment of this 
particular rupture surface the limiting condition is reached then the local reactions can be 
divided into two parts of known magnitude. The force due to cohesion along the segment is 
proportional to the length of the segment; and in general with curved rupture surfaces the 
resultant of all cohesive reactions equals a cohesive force C parallel to the chord of the 
surface. The frictional reaction is inclined at the limiting angle ρ to the normal to the 
segment; and in general with curved rupture surfaces, the resultant F of all frictional 
reactions will depend on the distribution of normal pressure. If large normal pressures act 
at one end of the surface then the overall frictional reaction will be close to the normal to 
the curve at that end of the surface. However, in the special case of a plane surface of 
rupture the cohesion resultant C acts parallel with the plane and the overall frictional 
resultant F acts at an angle ρ to that plane. 
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Fig. 9.1 Limiting Equilibrium of a Retaining Wall 

 
So in the limiting case, the total sum of resolved components across each segment 

of the rupture surface must be as shown in Fig. 9.1(c), such that the total normal force 
θγθ cossin 2

1 axLN +=   
induces a total frictional resistance to sliding of 

ρtan)cossin(ρsin 2
1 θγθ axLFT +==  

which together with the total cohesive force )( 22 xakC +=  must be in equilibrium with 
the resolved components of W and L 

.cossin2
1 θθγ Lax −  

Multiplying through by )( 22 xa + and eliminating θ we get 

( ) ( ) ( )LxxaxakLaax −=+++ 2
2
1222

2
1 ρtan γγ  

and collecting terms we obtain 
 

ρtan
ρtan 222

2
12

2
1

ax
kakxaxxa

L
+

−−−
=

γγ
    (9.1) 
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for the least lateral force L that can successfully hold up the wedge OXY. If the total lateral 
force is allowed to fall below L then that particular wedge will actively slide down and 
increase the lateral force to the value L again. 

If we plot L versus x we find the lower curve of Fig. 9.2(a) with a maximum value 
when  

( )( )
( )2

22
2
1

ρtan
ρtan2ρtan

d
d0

ax
xaxaka

x
L

+

−−+
==

γ
    (9.2) 

which is satisfied by 

.
2
ρ

4
where,tan ⎟

⎠
⎞

⎜
⎝
⎛ −==
πεεax      (9.3) 

 
Fig. 9.2 Bounds of Possible Values for Lateral Force on Retaining Wall 

 
The significance of this maximum is as follows. Suppose the lateral force on the 

jack is slowly reduced and let us represent this by a shift of the faint horizontal lines in Fig. 
9.2(a) from value Li to Lj. The first rupture plane that can become active is the one at 

,tanεax =  inclined to the wall at an angle .)2ρ4( −π  The lateral force cannot fall 
below this value. If the lateral force could be reduced to Lk there would be two possible 
rupture planes, but any attempt to reduce the total force will simply be matched by activity 
of the weakest slip wedge at .tanεax =  The magnitude of this active lateral force is found 
by substituting εtanax = in the expression for L to give 

 εεγ tan2tan22
2
1 kaaLPA −==      (9.4)  

Where PA is Coulomb’s active lateral pressure force. Coulomb himself published this 
expression in the form 

lkamaPA −= 2         (9.5)  
and it was the derivation of this equation that was probably Coulomb’s major achievement 
in soil mechanics. He appreciated that for soil without cohesion (k = 0), PA reduces to 

,tan22
2
1 εγa and for soil without cohesion or friction )0ρ( ==k the active lateral force PA 

is 2
2
1 aγ  and simply reduces to the fluid force. The presence of friction and cohesion 

together reduce the active lateral force needed to retain this soil, below that needed to 
retain a fluid of the same density. 
 
9.2 Coulomb’s Analysis of Passive Pressure 

Coulomb’s calculation was then developed by considering that the lateral force 
becomes so large that wedges of soil tend to slip upwards along plane surfaces of rupture. 
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In that case the variation of lateral force L corresponds to the upper curve in Fig. 9.2(a) 
given by an equation 

 
ρtan
ρtan 222

2
12

2
1

ax
kakxaxxa

L
−

++−
=

γγ
     (9.6) 

which can be obtained directly from the active case by changing the signs of k and ρ 
throughout. This curve has a minimum at εcotax =  when 

.cot2cot22
2
1 εεγ kaaPP +=        (9.7)  

The significance of this minimum is that when the lateral force rises causing passive 
resistance of the soil, the first plane of rupture on which slip can occur is the plane inclined 
to the vertical wall at an angle ).2ρ4( +π  If slip occurs on this plane the soil can 
continue to resist passively but with lateral force of not more than PP. This force is in 
excess of the fluid pressure 2

2
1 aγ  because of both friction and cohesion. 

In the range of possible lateral force PA PLP ≤≤  the soil is at rest. In the case of 
cohesionless soil with 3

12tan,30 == ερ o and the ratio .9=AP PP  This very wide range of 
possible values of L makes it necessary to introduce some additional consideration if a 
close estimate of a value of L is to be made. For example, in Coulomb’s design free-
standing walls withstand a lateral force 1.25 PA without overturning. It is recognized that 
the lateral force L may well exceed this design value but if it does so, it is supposed that a 
little outward movement of the wall will relieve the lateral force, which will then fall to the 
design value. In several experiments on large model retaining walls Terzaghi2 did establish 
this effect of Fig. 9.2(b); after a very small outward rotation (0.001 radian) of a retaining 
wall the lateral force fell to the active value, but much larger inward rotation (0.1 radian) 
was required before the lateral force approached the passive pressure. A phrase common in 
the literature is that the strains required to ‘mobilize the strength’ of the ground are large in 
the passive case and small in the active case. 

However, we must not forget that Coulomb’s calculation does not in itself contain 
any mention of the magnitude of strains or displacements. All that is specified is the 
direction of incipient movement on the slip plane as shown in Fig. 9.3. 

 

 
Fig. 9.3 Slip Planes for Active and Passive Failures 

  
By putting  in the eq. (9.5) for the active force 0=AP

εεγ tan2tan
2
10 22 kaaPA −==  

Coulomb found the height to which a face could stand unsupported to be  

;
tan
4

εγ
ka ≤       (9.8)  

and a face of this height would certainly fail under its own self- weight. He went on to 
consider whether a larger active force (or a lower unsupported height of a vertical face) 
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would be found for some surface of sliding other than plane (Fig. 9.4) and introduced the 
important idea of using vertical slices to find the pressures on a curved rupture surface. 
Unfortunately, he was writing before the nature of stress in a continuum was well 
understood and he wrongly supposed that he needed to specify limiting stresses both on the 
rupture surface and on the vertical planes between slices; this error prevented Coulomb 
from making a successful development of the method of slices. 

It is clearly possible to extend this simple method of analysis to obtain general 
solutions to problems where the retaining wall is battered, or rough, or the backfill is not 
horizontal or consists of several different strata. 

 
Fig. 9.4 Possible Curved Failure Surface Considered by Coulomb 

 

9.3 Coulomb’s Friction Circle and its Development in Gothenberg  
 In 1785 Coulomb wrote a prize paper3 on problems of cordage and rigging of ships. 
This paper included the solution to the problem of slip of ropes round frictional bollards, 
and the solution to the problem of the torsion of round spars. The paper also introduced the 
friction circle construction for analysis of the slip of a shaft, Fig. 9.5, in a frictional plane 
bearing. The shaft turns and slips along a line contact such that the reaction is inclined to 
the radius R at the friction angle ρ. Conveniently a ‘friction circle’ of radius R sin ρ is 
drawn, and a graphical construction is made in which the limiting reaction is tangential to 
the friction circle. Coulomb’s technique of 1785 was to be applied in 1916 to the problem 
of slip of soil on circular surfaces of rupture4 by the engineers of the Swedish port of 
Gothenberg where there was a series of failures of the quay walls. 

 

 
Fig. 9.5 Circular Shaft about to Slip 

 
One successful design of quay wall, Fig. 9.6(a), was based on the consideration of 

straight planes of sliding. In Fig. 9.6(b) the active force A, due to pressure of retained soil 
and superposed traffic, is made small by placing highly frictional gravel behind the wall; 
and the passive force P, due to resistance of a wedge of soil in front of the toe of the quay, 
is made large by placing highly frictional gravel there also. The next quay wall, shown in 
Fig. 9.7, should have been by these considerations more stable than its forerunner; the clay 
below this new fill was considered to be stiffer than at the former site, and yet ‘the quay 
wall slid slowly into the river in March 1916 just before it was completed and before any 
live load had been added to the quay area’. Borings and other observations showed that the 
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movement approximated to slip on a circular surface of sliding through the clay below the 
gravel fill. Yet another large quay wall was under construction for the Central Harbour and 
this failure made it imperative for the engineers concerned to revise their design principles. 

 

 
Fig. 9.6 Quay at the Sannegard Harbour 1914 (After Petterson) 

 

 
Fig. 9.7 The Stigberg Quay, Sliding Surface, 1 916 (After Petterson) 

 
Their investigation was based on the general view held at that time, that friction 

governed the behaviour of all kinds of soil and that a graphical method of polygons of 
force was the most practical basis for the analysis. An existing gravel fill in the Central 
Harbour project was extended to form a test load: when this test was in the stage shown in 
Fig. 9.8 a crack was observed in the fill and the soil moved slowly about 17 cm outward 
and 25 cm downwards and did not come to rest for 9 days. Analysis of the failures of both 
the quay wall and test load was made in the manner shown in Fig. 9.8. 
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Fig. 9.8 Investigation of Stability under the Test Load in the Free  

Harbour, 1916 (After Petterson) 
 

A possible circular sliding surface of radius R was drawn through the ground, the 
cross-section within the circle divided into vertical slices, and the vertical weight V and 
centre of gravity determined for each slice. A horizontal force H was assumed to act 
between slices at the lower third point of the interface. A tentative value was assumed for 
the friction angle effective along the circular arc and a friction circle of radius R sin ρ was 
drawn. For each slice number n the vertical weight V, was known, and the frictional 
reaction across the base of the slice had to be in a direction tangential to the friction circle 
inclined at an angle nα to the vertical. Hence the difference between the horizontal forces 
to either side of this slice was 

.tan1 nnnn VHH α=− −  
The force polygon of Fig. 9.8 was constructed starting from the first slice; when the 

last slice was reached the polygon should close with no horizontal reaction to the right. 
Trials with different values showed what frictional angle ρ was required just to maintain 
equilibrium of the sliding mass within that particular circular surface of sliding. Then many 
other possible sliding surfaces were thus analysed and it was considered that the surface 
which required the largest value of ρ was the most critical and failure would occur first 
along it. In the analysis of the Central Harbour failure of Fig. 9.8, a frictional angle ρ = 24° 
was assumed for the part of the sliding surface that passed through the gravel, and the 
largest value of ρ required for stability of the clay was found to be about 14°. For the quay 
wall failure of Fig. 9.7 the value of ρ required for stability was about 10°.  

The analysis of these failures made it clear that quay walls with heavy gravel fills 
were unsuitable for that particular clay foundation. The design for the new quay wall in the 
Central Harbour was modified as shown in Fig. 9.9(a). The weight of gravel filling in front 
of the quay wall was unaltered but the weight below the quay was reduced; the quay 
became a loading platform resting on wooden piles that were driven down through a gravel 
slope into the underlying clay. The factor of safety of the new design was estimated as 
follows. The force polygon was started from both ends. A division was introduced at the 
vertical plane tangential to the friction circle. All slices to the right of this plane were 
considered to be actively causing an increase of horizontal force between slices, and the 
worst case included traffic loading on these slices; all slices to the left of this plane were 
considered to be passively resisting the horizontal force from the right and the worst case 
allowed no traffic loading on these slices. The polygons completed from each end up to 
this vertical plane gave a horizontal force HA active from the right and a horizontal force 
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HP available in passive resistance to the left. The ratio HP/HA was regarded as the factor of 
safety of the design: in the Central Harbour design this factor was about  ,1 2

1  and in 

another case a factor of 3
11  was considered satisfactory. 

The method of slices was clearly capable of extension. Non circular surfaces could 
later be considered, and the division between ‘active and passive slices’ would then simply 
be found by drawing a tangent at slope ρ to the curve of sliding. Cohesion could also be 
considered and a suitable polygon of forces quite simply found. The effect of pore-pressure 
in producing variation of effective normal stress across the sliding surface was later 
introduced. Other later definitions of factor of safety included a ratio of moments taken 
about the centre of the circle of ‘disturbing’ active forces and ‘restoring’ passive forces. 

An extensive literature5–8 has been written on the analysis of equilibrium on rupture 
surfaces. When referring to these texts the reader should be careful to note what 
assumption each writer makes about distributions of pore-pressure and of total normal 
pressure along any assumed rupture surface, and what definition is used for factors of 
safety. In each of these respects a certain variation of practice exists. 

 
Fig. 9.9 Quay in the Free Harbour as built, and Evaluation of the Stability of the Quay in the Free 

Harbour, 191 6 (After Petterson) 
 
9.4 Stability due to Cohesion Alone 

Only a few years after the original analysis of the slips at Gothenberg alternative 
analyses were developed based on cohesion alone. 
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Fig. 9.10 Cylindrical Slip Surface in Clay 

 
In Fig. 9.10 we show the section of a semi-infinite half-plane of homogeneous clay 

loaded to the right with a uniformly distributed load q and to the left with a uniformly 
distributed load p. Here we are again introducing nomenclature which will enable the 
reader to gain more ready access to Sokolovski’s Statics of Granular Media.9 No confusion 
need arise with the use of p and q in earlier chapters. The problem is analysed on the 
supposition that the clay ruptures and rotates clockwise on a cylindrical slip surface which 
will be assumed of unit length perpendicular to the section. All normal reactions on the slip 
surface pass through the centre of the slip-circle, and all tangential reactions are simply of 
magnitude k per unit length of arc. It is clear that the worst circles have centres over the 
edge which divides the loading, since any extension of q to the left or p to the right will 
reduce the loading power available for dissipation. 

Let the family of circles with centres over the edge be determined by the parameter 
α, the half-angle shown in Fig. 9.10. During a small clockwise rotation of  it is assumed 
that the total power of the descending load less the power of the rising load must equal the 
power dissipated in overcoming cohesion on the cylindrical slip surface. The distance 
moved by the centre of gravity of both moving loads is 

θ&

θα &)sin( 2
1 R so that 

,2)sin(sin)( 2
1 θαθαα && RRkRRpq =−  

i.e.,      .
sin

4)( 2α
αkpq =−    (9.9) 

This expression for (q – p) has a minimum when 

,cotcosec2cosec
sind

d0 22
2 αααα
α

α
α

−=⎟
⎠
⎞

⎜
⎝
⎛=  

i.e., when     αα 2tan =     (9.10) 
which is satisfied by ' . On substitution in eq. (9.9) this gives, for 
the worst case, a maximum loading differential 

4766rad1656.1 o==α

.53.5)( max kpq =−        (9.11)  
Let us apply this result to the stability of river banks. In general a river bank may be 

most inclined to fail locally, as in Fig. 9.11, with a weight W of soil slipping round the 
circular arc AB. The resultant of the cohesion k round the arc AB is then equal to a force K 
parallel to the chord AB; the weight W simply depends on the geometry of the section and 
the unit weight γ of the soil. The triangle of forces shown in Fig. 9.11 indicates a value of k 
needed just to satisfy statical equilibrium. However, when slope protection works are put 
in hand and a well drained bank or an anchored sheet-pile wall or piled quay is built over 
purely cohesive ground, the possibility of deep-seated failure places an overall restriction 
on the difference of level or of loading that can be carried. 
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Fig. 9.11 Local Failure of River Bank 

 
For example, imagine in Fig. 9.12 a wide river passing across land where there is a 

considerable depth of clay with cohesion k = 3 tonnes/m2 and of saturated weight 16 
tonnes/m3. If the difference of level between the river banks and the river bed was h, then 
(ignoring the strength of the clay for the portion BD of the sliding surface,  
 

 
Fig. 9.12 Deep-seated Failure of River Bank 

 
and the weight of the wedge BDE) for an approximate calculation we have 

hhphq w 0.1and6.1 === γ  when the river bed was flooded or 0=p when the river bed 
was dry giving in the worst case .6.1)( hpq =−  We also have from eq. (9.11) 

2
max tonnes/m6.1653.5)( ==− kpq      (9.12)  

so that    ,m10
6.1
6.16
=≤h say  

which gives one estimate of the greatest expected height of the river banks. If the river 
were permanently flooded the depth of the river channel could on this basis be as great as  

m.6.27
6.0
6.16
≅      (9.13)  

An extensive literature has been written on the analysis of slip-circles where the 
soil is assumed to generate only cohesive resistance to displacement. We shall not attempt 
to reproduce the work here, but instead turn to the theory of plasticity which has provided 
an alternative approach to the solution of the bearing capacity of purely cohesive soils. 
 
9.5 Discontinuity Conditions in a Limiting-stress Field 
 In this and the next section we have two purposes: the principal one is to develop 
an analysis for the bearing capacity problem, but we also wish to introduce Sokolovski’s 
notation and provide access to the extensive range of solutions that are to be found in his 
Statics of Granular Media. In this section we concentrate on notation and develop simple 
conditions that govern discontinuities between bodies of soil, each at some Mohr—
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Rankine limiting stress state: in the next section we will consider distribution of stress in a 
region near the edge of a load — a so-called ‘field’ of stresses that are everywhere limiting 
stresses. 

 
Fig. 9.13 Two Rectangular Blocks in Equilibrium with Discontinuity of Stress 

 
In Fig. 9.13 we have a section through two separate rectangular blocks made of 

different perfectly elastic materials, a and b, where material b is stiffer than a. The blocks 
are subject to the boundary stresses shown, and if a'σ and b'σ  are in direct proportion to 
the stiffnesses Ea and Eb then the blocks are in equilibrium with compatibility of strain 
everywhere. However, the interface between the blocks acts as a plane of discontinuity 
between two states of stress, such that the stress c'σ across this plane must be continuous, 
but the stress parallel with the plane need not be. 

In a similar way we can have a plane of discontinuity, cc, through a single perfectly 
plastic body such as that illustrated in Fig. 9.14(a). Just above the plane cc we have a 
typical small element a experiencing the stresses ),'( aca τσ and ),'( cac τσ which are 
represented in the Mohr’s diagram of Fig. 9.14(b) by the points A and C respectively on 
the relevant circle a. 
  Just below the plane cc the small element b is experiencing the stresses 

),'( bcb τσ and ),'( cbc τσ which are represented by the points B and C respectively on the 
relevant Mohr’s circle b. In order to satisfy equilibrium we must have 

cbbccaac ττττ ≡≡≡ but as before there is no need for a'σ  to be equal to .'bσ  Since the 
material is perfectly plastic there is no requirement for continuity or compatibility of strain 
across the plane cc. 

We can readily obtain from the respective Mohr’s circles the stresses acting on any 
plane through the separate elements a and b; and in Fig. 9.14(c) the principal stresses are 
illustrated. The key factor is that there is a marked jump in both the direction and 
magnitude of the major (and minor) principal stresses across the discontinuity — and this 
will be the essence of the plastic stress distributions developed in the remainder of this 
chapter. This will be emphasized in all the diagrams by showing the major principal stress 
in the form of a vector, and referring to it always as 'Σ . 
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Fig. 9.14 Perfectly Plastic Body Containing Stress Discontinuity 

 
In Fig. 9.15(a) we see a section through a plane body of soil across which there act 

stress components n normal and τ tangential to the section. These components define a 
point P in the stress plane of Fig. 9.15(b), in which we see also the Mohr—Rankine 
limiting lines 

,ρtan'στ += k  
intersecting the axis at O where OJ = k cot ρ = H. It proves convenient to transform all 
problems to equivalent problems of either perfectly frictional or perfectly cohesive soil. So 
in cases where Sokolovski introduces an additional pressure H as well as the stress 
components n and t, and in Fig. 9.15(c) the equivalent stress (remembering that the 
symbols p and q are used by Sokolovski and in this chapter only for distributed loading on 
some planes) '  is such that 

0ρ ≠

p tp =δsin'  and ).(cos' Hnp +=δ  
In Fig. 9.16(a) there are seen to be two alternative circles of limiting stress through 

the point P. One circle has centre Q+ and the other has centre Q–. The line OP cuts these 
circles as shown in Fig. 9.16(a) and the angle ∆ is such that 

0).ρ(
ρsin

sinsin ≠=
δ∆      (9.14)  
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We must be careful about the sign conventions associated with the definition of ∆. The 
angle of friction ρ is a material constant and is always positive (or zero), so that the sign of 
∆ is always the same as δ. All angles in Mohr’s diagram are measured positive in an 
anticlockwise direction so that positive δ and ∆ are associated with positive shear stress τ; 
in particular when P is below the 'σ -axis, ∆<0. 

Use of this angle ∆ was suggested by Caquot and was then brought in to the second 
edition of Statics of Granular Media.  
 

 
Fig. 9.15 Sokolovski’s Equivalent Stress 

 
Another symbol that figures extensively in the book is ,1κ ±=  in such contexts as 
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∆
∆

∆
∆

∆
∆p

     (9.15) 

This convenient notation permits Sokolovski to write general equations, and to distinguish 
between a maximal limiting-stress state when 1κ +=  and a minimal limiting-stress state 
when  These alternative states can exist cheek by jowl, facing each other across a 
discontinuity on which the stress components n and t act as in Fig. 9.16; this case 
represents the biggest allowable jump or change in stress across the discontinuity. 

.1κ −=
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Fig. 9.16 Maximal and Minimal Limiting Stresses 

 
The first condition that applies to these limiting stress states is that the shift in 

centre of the stress circles must satisfy the condition 

)sin(
)sin(

'
'

δ
δ

σ
σ

−
+

=
−

+

∆
∆     (9.16) cf. Sokolovski (2.42) 

A second condition is that the change in inclination of the direction of the major principal 
stress  also depends on ∆. In Fig. 9.16(b) we define the anticlockwise angles* from the 
direction of the discontinuity to the directions of 

'Σ
'Σ  on either side as −λ and +λ . The general 

condition is 

πδπλ m∆ +−+−= κ
2

)κ1(2      (9.17) cf. Sokolovski (1.17) 

where m is an integer, chosen to agree with the sign convention for λ. 

⎭
⎬
⎫

−−±=−=
−=+=

−

+

δπλ
δλ
∆

∆
2  have we1κ
2  have we1κFor

 

where the + sign is associated with positive shear (δ >0) and the – sign is associated with 
negative shear (δ<0). The second condition applying to the discontinuity is therefore 

∆−±=− +− 2
πλλ        (9.18)  

 
 
 
* This is a minor departure from Sokolovski who measures the clockwise angle from 'Σ  to the discontinuity: it makes no 
difference to the mathematical expressions but means all angles have a consistent sign-convention.  
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Fig. 9.17 Limiting-stress Circles for Purely Cohesive Material 

 
If we consider instead the case of a perfectly cohesive soil (ρ=0) we have the 

situation of Fig. 9.17 for which this second condition remains valid. However, the first 
condition of eq. (9.16) must be expressed as 

)sin(
)sin(

'
'

δ
δ

σ
σ

−∆
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=
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+

=
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+

−

+

Hs
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so that as )eachand',','and(0 ∞→→ −+ Hpσσδ  it can be expanded to give  

.cos2 ∆kss =− −+       (9.19) cf. Sokolovski (4.32)  
We also have to redefine ∆ in the form  

0).ρ(sin ==
k
t∆       (9.20)  

 
Fig. 9.18 Planes of Limiting-stress Ratio 

 
We will be dealing with a number of discontinuities all at different inclinations, so 

it becomes important to have a pair of fixed reference axes. Sokolovski uses Cartesian 
coordinates x horizontal and positive to the left, and y vertical and positive downwards 
which is consistent with our sign convention for Mohr’s circle (appendix A). The angle φ 
is defined to be the anticlockwise angle between the x-axis and the direction of major 
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principal stress  in Fig. (9.18). This angle will play a large part in the remainder of this 
chapter, and should not be confused with its widespread use in the conventional definition 
for the angle of friction. 

'Σ

In Fig. 9.18(a) we have a point P in a perfectly plastic body in a state of limiting 
stress, with appropriate Mohr’s circle in Fig. 9.18(b). From this we can establish the 
direction of the major principal stress 'Σ  and the directions r1 and r2 of the planes of 
limiting stress ratio. The angle between these is such that )2ρ4( −= πε and this agrees 
with the definition in eq. (9.3) in §9.2 on Coulomb’s analysis. 

In order to define a limiting-stress state in soil of given properties (k, ρ) only two 
pieces of information are needed: one is the position of the centre of the stress circle, either 

'σ or s, and the other is the direction of major principal stress relative to the horizontal x-
axis described by φ. Across a discontinuity the change of the values of these data is simply 
related to ∆, which is defined by eqs. (9.14) and (9.20). 
 
9.6 Discontinuous Limiting-stress Field Solutions to the Bearing 
Capacity Problem 
  

We can now turn to the bearing capacity problem. Previously, in §9.4 when we 
considered the possibility of circular rupture surfaces, we only attempted to specify the 
distribution of stress components across the sliding surface. In this section we will be 
examining the same problem on the supposition that there are discontinuities in the 
distribution of stress in the soil near a difference of surface loading, and we will fully 
specify limiting-stress states in the whole of the region of interest. 

We shall simplify the problem by assuming the soil is weightless ),0( =γ  but we 
will see later that this is an unnecessary restriction and that the analysis can be extended to 
take account of self-weight. The cases of (a) purely frictional and (b) purely cohesive soils 
need to be considered separately, and the latter, which is easier, will be taken first. 
 
9.6.1. Purely cohesive soil )0,0ρ( == γ  
 Figures 9.19(a), 9.20(a), and 9.21(a) show a section of a semiinfinite layer of 
uniform soil supporting a known vertical stress p applied to the surface along the positive 
x-axis. The problem is to estimate the maximum vertical stress q that may be applied along 
the negative x-axis. In the limiting case the stress p must be a minor principal stress so that 
the associated major principal stress 'Σ  must be in a horizontal direction ).0( =φ In 
contrast, the stress q will be itself a major principal stress in the vertical direction 

),2( πφ = so that somewhere in the vicinity of the y-axis we must insert one or more 
discontinuities across which the value of φ can change by π/2. 

If we have n discontinuities it is simplest to have n equal changes of φ, i.e., 
)2/( nπδφ += at each discontinuity. With the boundary conditions of Fig. 9.19 we shall be 

concerned with negative shear, i.e., ,0≤∆ so that we select from eq. (9.18) 

∆−−=−=− +−+− 2
)()( πλλφφ   

and for each discontinuity 
 

.11
22222

⎟
⎠
⎞

⎜
⎝
⎛ −=+−=+−=−+−=∆ −+ nn

πππδφπφφπ    (9.21) 
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Fig. 9.19 Limiting-stress Field with One Discontinuity for Cohesive Soil 

 
Fig. 9.20 Limiting-stress Field with Soil Discontinuities for Cohesive soil 
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Substituting in eq. (9.19) we have for the shift of Mohr’s circles  

.sin2
2

sin211
2

cos2cos2)( δφππ k
n

k
n

k∆kss ==⎟
⎠
⎞

⎜
⎝
⎛ −==− −+    (9.22)  

The case of a single discontinuity )1( =n is fully illustrated in Fig. 9.19, for which 0=∆  
and the two stress circles have centres separated by a distance 2k. The corresponding value 
of q is   .4kp +
 
For the case of two discontinuities (n = 2) in Fig. 9.20, 4π−=∆ and the three stress circles 
have centres spaced √(2)k apart giving  .83.4)2(22max kpkkpq +=√++=

When n becomes large, Fig. 9.21, it is convenient to adopt the differentials from 
eqs. (9.21) and (9.22)  

δφδφδ

δφπ

kksss

∆

2sin2and
2

==−=

+−=

−+

 

 
Fig. 9.21 Limiting-stress Field with n Discontinuities for Cohesive Soil 

 
which are illustrated in Fig. 9.22(a). Integrating, we find that the total distance apart 
between the centres of the extreme stress circles becomes 

kks πφ
π

== ∫∫
2

0

d2d  
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leading to .14.52max kpkkpq +=++= π  

 
Fig. 9.22 Shift of Limiting Stress Circles for Small Change of φ 

 
9.6.2 Purely frictional soil )0,0( == γk  

Figures 9.23(a), 9.24(a), and 9.25(a) illustrate successive solutions to the same 
problem for n= 1, n=2, and large n except that the soil is now purely frictional. As before, 
we shall have a change of φ of (π/2n) at each discontinuity, and negative shear  so 
that 

)0( ≤∆

.11
22

⎟
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⎞
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n
∆ πδφπ  

This must be substituted into the appropriate equation, (9.16), to give 
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and introducing ρsinsinsin ∆=δ we obtain  
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For a single discontinuity when 0,1 === ∆n δ and the two stress circles are spaced so that 

;
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Fig. 9.23 Limiting-stress Field with One Discontinuity for Frictional Soil 

 
in addition 
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To take a specific example, if ρ = 30° then .9max pq =  
For two discontinuities when 

ρsin)2/1(sin,4,2 −=−== δπ∆n  
and on substitution in eq. (9.23) we can obtain 
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Fig. 9.24 Limiting-stress Field with Two Discontinuities for Frictional Soil 

 
For  this gives  o30ρ = .7.14max pq =

When n is large we adopt the differential form as before. From eq. (9.16) 
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Integrating, we find that the extreme stress circles are related by 
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For ρ=30° this gives  .19max pq ≅
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Fig. 9.25 Limiting-stress Field with n Discontinuities for Frictional Soil 

 
 In the six solutions presented above, each contains regions of unform stress 
separated by strong discontinuities. The change of pressure across each discontinuity is 
characterized by the change of the major principal stress '.Σ  Essentially, in this analysis we 
have replaced the simple idea of one discontinuity of displacement around the surface of a 
slip circle, by a number of discontinuities of stress which allow successive rotations and 
changes in magnitude of the major principal stress. 
  
9.7 Upper and Lower Bounds to a Plastic Collapse Load 
 

We now have two strikingly different approximate solutions to the problem of 
bearing capacity of cohesive ground. In §9.4 our solutions are based on what can be called 
kinematically admissible velocity fields: the mechanism of sliding blocks is compatible 
with the imposed displacements and the power of the loads moving through the 
displacements equals the plastic power of dissipation in the cohesive ground. The general 
solution 

α
α
2sin

4)( kpq =−       (9.9 bis) 

allows us to take for example in Fig. 9.10 



 187 

kkpq 28.62)(
2

==−= ππα  

or equally to find a minimum at 
.53.5)('4766 kpq =−= oα  

In contrast in §9.6 we developed solutions based on what can be called statically 
admissible stress fields: the distributed stresses are in equilibrium with the applied loads 
and nowhere in the interior do they exceed the yield limit. The distribution with a single 
discontinuity Fig. 9.19 gave us 

;4)( kpq =−  
with two discontinuities Fig. 9.20 gave us 

,83.4)( kpq =−  
and a fan of many discontinuities Fig. 9.21 gave us 

.14.5)( kpq =−  
These five estimates of the bearing capacity of cohesive ground can be brought into focus 
if we take advantage of certain theorems established by Prager and his co-workers.10 Using 
some virtual work calculations and the normality condition for perfectly plastic associated 
flow, they showed that for perfectly plastic material solutions based on kinematically 
admissible velocity fields must be upper bounds to the actual collapse loads, whereas those 
based on statically admissible stress fields must be lower bounds. Hence we estimate that 
the actual bearing capacity would lie in the range max)( pq −

.48.414.5)(53.528.6 max kkkpqkk >>≥−≥>  
The calculations based on slip circles give us loads that are certainly powerful 

enough to cause failure in the assumed mechanism, and could well exceed the loads that 
we would calculate if we were able to think of another more subtle mechanism in which 
the surface could move down with less power being dissipated in the ground. The 
calculations based on stress distributions give us loads that the ground could certainly carry 
in the assumed manner, and these loads could well be exceeded if we were to think of a 
more subtle distribution by which we could pack a little more stress in the ground. To put 
the matter even more succinctly, the slip-circle calculations would be all right for 
demolition experts who wanted to be sure to order enough load to cause a failure; but civil 
engineers who want to be sure of not overloading the ground ought to think first of stress 
distributions. 

Of course, to say this is to oversimplify the matter. The upper and lower bound 
theorems are established only for perfectly plastic materials: the present uncertainty about 
the flow rule and about the instability of soil that comes to fail on the ‘dry side’ of critical 
states makes it possible only to draw inferences. However, when we recall how slight are 
the factors of safety commonly used in slope design it is clearly wise to pay close attention 
to calculations that appear to offer us statically admissible stress distributions. The study of 
the solutions by the method of characteristics that are set out by Sokolovski becomes 
particularly attractive. 

In the next section we briefly consider the simple effects of bodyweight in 
horizontal layers of soil of differing properties: in a later section we discuss Sokolovski’s 
general method for analysis of limiting-stress fields with body-weight acting throughout 
the field.  
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9.8 Lateral Pressure of Horizontal Strata with Self Weight )0ρ,0( >>γ  

We illustrate the application of Sokolovski’s method to the case of Fig. 9.26(a) in 
which two horizontal layers of frictional soil with different properties are shown to be 
retained by a smooth vertical wall. (We have chosen a simple problem in order to ease the 
introduction of further unfamiliar symbols and illustrate the nature of  

 
Fig. 9.26 Limiting Lateral Pressure on Retaining Wall: Active Case 

 
Sokolovski’s methods; the same solution could be obtained more directly by the 
conventional method due to Rankine.) The upper layer has thickness h1 and material 
properties γ1, ρ1 and H1, while the lower layer has properties γ2, ρ2 and H2 and is of 
considerable thickness, extending below the base of the wall. A surcharge consisting of a 
vertical load  is assumed to act on the surface; so that Sokolovski’s equivalent stress 
on the surface  is simply 

0≥p
)0( =y .' 1Hpp +=   

At a depth y below the surface the vertical stress will be: 
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In the minimal limiting stress state of active pressure on the wall the major principal stress 
 will be vertical 'Σ ),2/(πφ = and the appropriate Mohr’s circle for a point at depth y in the 

upper layer is shown in Fig. 9.26(b). 
 From the geometry of the figure, the minor principal stress x'σ is related to y'σ by 
the expression 
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We have an exactly similar situation for the lower layer, so that we can express the 
horizontal effective pressure experienced by the retaining wall in the active case as: 
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    (9.26)  

The actual total pressure on the wall will include the pore-pressure; for fully 
saturated soil in the absence of any groundwater flow the pore-pressure yu ww γ= will 
increase linearly with depth. The values of γ1 and γ2 for the soil must take into account any 
buoyancy effects. 
 

 
Fig. 9.27 Limiting Lateral Pressure on Retaining Wall: Passive Case 

 
The passive case is illustrated in Fig. 9.27(a) where the limiting stress is now 

maximal. The major principal stress is horizontal (φ = 0); and in the related Mohr’s 
diagram x'σ and y'σ have interchanged their positions from the active case. Equation (9.25) 
is directly replaced by 
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so that for the passive case we have 
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Using Sokolovski’s elegant notation we can combine eqs. (9.26) and (9.28) and write 
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where 1κ −=  gives the active case 
and     1κ +=  gives the passive case. 
 
In each layer the lateral pressure varies linearly with depth and the distributions are plotted 
in Fig. 9.28. The slopes 
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depend only on the local value of γ and ρ. So change of cohesion k or surcharge p would 
only change the datum of the pressure-distribution line (as would a change in pore pressure 
uw): it requires a change of density γ or friction ρ to rotate the line. 

For the construction of Fig. 9.28 it has been assumed that the groundwater table is 
at the surface so that the soil is fully saturated, and the submerged bulk densities must be 
used for calculation of 

 
Fig. 9.28 Limiting Lateral Pressure Distribution 

  
effective stresses. The following values have been adopted: 1hp wγ= and for the upper 
layer 

o306ρ.,.,tan,0,' 13
1
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11 ===== πεγγ eiHw  
and for the lower layer 

'.36223945.0ρ.,.,tan,,' 29
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2
o===== eihH ww εγγγ  

Across the interface there is, of course, no sudden jump in the value of the vertical 
effective pressure y'σ  (although its derivative is not continuous); figuratively speaking, if 
an observer inserted the palm of his hand horizontally into the soil he could not detect 
where the interface was or whether the soil was in a maximal or minimal stress state. 
 However, just above the interface the lateral effective pressure would be 
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whereas just below 
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An observer who was able to insert the palm of his hand vertically could detect the 
presence of the interface and the state of the soil. 

If a greater value of H2, for example, H2 = 2γwh1, had been appropriate, we would 
have required 19

2' hwx γσ −= to bring the soil just below the interface into a minimal limiting 
state. But since the effective stress between the soil and the wall cannot be tensile, 
Sokolovski introduces the restriction 0' ≥xσ that and concludes that where the 
mathematical expressions would lead to a negative value of x'σ the soil cannot be in a 
limiting state. 

In Fig. 9.28 the distribution of pore-pressure uw has been drawn to the left of the 
vertical axis of y, with the result that the total lateral pressure at any depth is readily 
obtained. 

Clearly this method can be extended to any number of strata, and can be adapted to 
take account of other groundwater conditions, or a particular layer that is considered to be 
purely cohesive. 
 
9.9 The Basic Equations and their Characteristics for a Purely 
Cohesive Material 
 

In this section we will be covering much of the material set out in Sokolovski’s 
Statics of Granular Media §3 and §17, but in detail our treatment will be closer to that 
presented by Hildebrand.11

When we consider the two-dimensional field of stress acting on any material we 
have two differential equations of equilibrium. For the reference axes of Fig. 9.29 these 
are: 
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     (9.3) 

which can be obtained directly by resolving the forces acting on the element, and using the 
identity of complementary shear stresses ).( yxxy ττ =  We only require one further equation 
to make the three unknowns yxyx ',,' στσ determinate. 
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Fig. 9.29 Stresses Acting on Element of Soil 

 
To take a simple example Fig. 9.30(a), consider the calculation of shear stress in a 

uniform horizontal cantilever of length l, of rectangular section with breadth b and depth d, 
and carrying a concentrated load W at its free end. If we assume the linear distribution of 
axial stress x'σ  across a vertical section (at a distance x from the 

 

 
Fig. 9.30 Stress Distributions for Loaded Cantilever 

 
root of the cantilever) in Fig. 9.30(b), then by taking moments we have 
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This equation is the third one necessary to make the problem completely determinate and 
we have no further freedom to make other specifications. 

The first equilibrium equation (9.30a) gives 
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and integrating with the boundary condition 0=τ at 2dy ±=  we obtain the familiar 
parabolic distribution for shear stress 
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which is illustrated in Fig. 9.30(c). (The second equilibrium equation leads to ;' yy γσ = in 
normal circumstances this would be negligible compared with the values of x'σ and xyτ ) 

It is significant that this result is independent of the actual material of the beam 
whether it is steel, concrete, wood, or plastic so long as the assumption of the linear 
distribution of x'σ  remains valid. The material properties will only influence the resulting 
elastic strains of the cantilever. 
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Fig. 9.31 Characteristic Directions for Cohesive Soil 

 
In the same way, in the theory of two-dimensional limiting-stress fields as soon as 

we postulate that the stresses shall be limiting everywhere we have made the problem 
completely determinate. We now choose to concentrate on purely cohesive materials, so 
that the condition of limiting stress is given by 
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4
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which is the equation to the Mohr’s circle of Fig. 9.31. 
It is convenient to express this in an alternative form by the parameters s and φ 

(which respectively specify the centre of Mohr’s circle and the direction of major principal 
stress) as follows: 
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Substituting these into the equilibrium eqs. (9.30) we have 
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    (9.35) 

provide four equations for the four unknowns 
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The solution of the problem of limiting-stress distributions in purely cohesive materials lies 
in this set of four equations. Leaving aside the special case of finite discontinuity in values 
of s and φ we consider small regions or zones in which there is a continuous variation in 
values of these parameters. At a typical point (x, y) in Fig. 9.3 1(c) we have data of (s,φ) 
while at an adjacent point )d,d( yyxx ++  the data are ).d,d( φφ ++ ss  If we know values 
of dx, dy, ds, dφ can we find values of ,,,, yxysxs ∂∂∂∂∂∂∂∂ φφ and vice versa? If we 
can, then a reasonable approximation to the values of s and φ in a region surrounding the 
two points can be obtained by extrapolation. To decide whether this is possible we must 
examine the equations in detail. 

In order to calculate the partial derivatives from given values of dx, dy, ds, and dφ 
we will need to invert the matrix of coefficients on the left-hand side of equations (9.35). 
This inversion will not be possible when the associated determinant is zero, i.e., when 
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Clearly for the directions given by { })4(tandd πφ ±=xy the determinant is zero; 
and we shall have no prospect of finding partial derivatives if the values of ds and dφ that 
are adopted happen to come from adjacent points in one of these characteristic directions. 
It is necessary to study conditions along the characteristics. 

Sokolovski multiplies the first equation of the set (9.35) by { },)4(sin πφ ± the 
second equation by { )4(cos }πφ ±−  and adds the results to obtain (after some 
manipulation) 
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He then introduces two new parameters ξ and η where 
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Partial differentiation of these parameters and substitution into eq. (9.37) leads to 
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Along the β-characteristic in Fig. 9.31(c), 
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we can re-write the first equation as 
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which leads to the important result that 
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Similarly, along the α-characteristic 
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Although we cannot calculate the partial derivatives of s and φ we do know the 
total differentials of ξ and η along the characteristics. In the next sections we will show 
how this remarkable property of the characteristics may be used to solve problems of 
limiting-stress fields in a cohesive soil.  
 
9.10 The General Numerical Solution 

We will explain, in general terms, the development of the numerical solution for 
one simple example that involves a body of purely cohesive soil with self weight, in a 
minimal stress state, below a horizontal boundary Ox on which a vertical surcharge causes 
an unevenly distributed normal pressure. In Fig. 9.32(a) at points A00 and A11 on the 
boundary the normal pressures are p0 and p1, where  

 
Fig. 9.32 Mapping of Characteristics for Numerical Solution 

 
p0<p1. Just below each of these points the states of stress in the soil are defined by  
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From these values we calculate 
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in Fig. 9.32(b) we display the plane of characteristics (ξ, η) on which we can plot points 
A00 and A11. 

Through A00 we draw the characteristic ,const. 0ηη == through A11 we draw the 
characteristic ,const. 1ξξ == and these intersect in the point A10. The point A10 is such that 
and therefore 
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and the stress parameters s and φ at the point A10 are clearly 
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So the consequence of the property of the characteristics (that total differentials are known 
along them) is that we now know exactly what the stresses are at this point A10 in the soil 
below the loaded surface. The remaining numerical problem is simply one of mapping; to 
find where the point A10 is on the (x, y) plane — that is to map the sheet A11A10A00 from 
the (ξ, η) plane on to the (x, y) plane. 
 Sokolovski gives an approximate method that is quite effective for mapping out 
these points. A table is drawn up where each row and each column correspond to a 
characteristic. The table resembles the construction of lines on the (ξ,η) plane in Fig. 
9.32(b). Diagonally across the table the values given to parameters (x, y, s,φ) are those for 
the appropriate positions on the boundary. At two points 1 and 2 within the table let the 
values (x1, y1, s1,φ1) and (x2, y2, s2,φ 2) be known. To find the values at the next successive 
point 3, replace the differential equations by recurrence formulae  
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and hence the values of (x3, y3, s3,φ3) may be determined. As this programme of calculation 
is followed so successive compartments of the table are filled. The numbers in each 
compartment fix the position of one node in the pattern of characteristics shown in Fig. 
9.32(a) and the state of stress at that node. 

It is clear that although the above paragraphs only cover one example, the same 
method will apply to soil with internal friction, with or without self weight: of course 
different recurrence formulae will be appropriate for different problems12 and special 
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formulae will have to be developed to meet special difficulties at some boundaries, but for 
all such developments direct reference should be made to Sokolovski’s texts. 
 
9.11 Sokolovski’s Shapes for Limiting Slope of a Cohesive Soil 

We now consider Sokolovski’s use of integrals of the equations of limiting 
equilibrium in regions throughout which either ξ or η has constant values. We consider 
only regions where ξ is constant, since those with η constant are the exact converse and the 
families of characteristics become interchanged. In the regions where ξ is constant 
everywhere and η varies then 
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and the one constant ξ0 applies to every β-characteristic. The family of α-characteristics for 
which )4tan(dd πφ −= xy  must become a set of straight lines since 
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so that φη d2d −=  and φ will be constant along each α-characteristic. The equation of any 
α-characteristic becomes 
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where (x(φ), y(φ)) are the coordinates of some fixed point on the characteristic. 

For the special case when all α-characteristics pass through one point we can 
choose it as the origin of coordinates so that ;0)()( ≡≡ φφ yx  and the family of α-
characteristics is simply a fan of radial straight lines. The curved β-characteristics having 
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are then segments of concentric circles orthogonal to these radii. 
Solutions to specific problems can be constructed from patchwork patterns of such 

regions, as we see for the general case of the limiting stability of a slope of a cohesive soil 
shown in Fig. 9.34 (and as we saw for the case of high-speed fluid flow in Fig. 1.8). The 
essential feature of these solutions is that the values of one parameter (ξ in Fig. 9.34) 
which are imposed at one boundary (OA0) remain unchanged and are propagated through 
the pattern and have known values at a boundary of interest (0A3).  
 

 
Fig. 9.33  Limiting Shape of Slope in Cohesive Soil 

 
A limiting shape for a slope in cohesive soil is shown in Fig. 9.33 and we begin by making 
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a simple analysis of conditions along the slope, which forms the boundary of interest. 
Above O there is a vertical face of height γkh 2= for which the soil (of self-weight γ and 
cohesion k) is not in a limiting state. At any point on the curved slope the major principal 
stress is at an angle φ equal to the angle β of the slope at that point, and of magnitude 2k so 
that the values of the parameters s and φ along the curve are 

 βφ == andks        (9.49)  
In Fig. 9.33 we have taken the slope at O to be vertical so that ,20 πββ == but in 

Fig. 9.34 we show a generalized slope problem where the weight of soil above the line 
OA0 is replaced by a uniformly distributed surcharge p, and .20 πβ ≠  Below the line OA0 
in Fig. 9.34 is a region A0OA1 dependent on the conditions along the boundary OA0. It is a 
region of a single state (ξ0, η0) with straight parallel characteristics in each direction and 
with 
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The shape of the slope must be such that retains the value given in eq. (9.50), and that the 
conditions of eq. (9.49) are satisfied. 
 

 
Fig. 9.34  General Limiting Shape of Slope in Cohesive Soil (After Sokolovski) 

 
We have, therefore, 
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But at any point on the slope βtandd xy = so that substituting for y from eq. (9.51) we find 
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which can be integrated to give 
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The limiting slope must therefore have as its equation  
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and have a horizontal asymptote 
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Various slope profiles corresponding to different values of β0 are shown in Fig. 9.35 which 
is taken from Fig. 178 of the earlier translation of Sokolovski’s text. 

In the particular case of Fig. 9.33 when 20 πβ =  the slope equation becomes 
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Fig. 9.35 Limiting Shapes of Slope in Cohesive Soil for Various Values of Surcharge  

(After Sokolovski) 
 
having a horizontal asymptote .γπky =  Thus the maximum difference in height between 
the left and right hand levels of Fig. 9.33 is ,)2( γπ k+ which is the maximum difference 
predicted in §9.7. 
 
9.12 Summary  

At this stage of the book we are aware of the consequences of our original decision 
to set the new critical state concept among the classical calculations of soil mechanics. Our 
new models allow the prediction of kinematics of soil bodies, and yet here we have 
restricted our attention to the calculation of limiting equilibrium and have introduced 
Sokolovski’s classical exposition of the statics of soil media. The reason for this decision 
is that it is this type of statical calculation that at present concerns practical engineers, and 
the capability of the new critical state concept to offer rational predictions of strength is of 
immediate practical importance. In this chapter we have reviewed the manner of working 
of the classical calculations in which the only property that is attributed to soil is strength. 
We hope that this will give many engineers an immediate incentive to make use of the new 
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critical state concept, and perhaps in due course become actively interested in the 
development of new calculations of deformation that the concept should make possible.  
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10  
Conclusion 
 
 
10.1 Scope  

We have introduced the new critical state concept among older concepts of 
classical soil mechanics, but it would be wrong to leave any impression at the end of this 
book that the new concept merely rejuvenates the classical calculations. In this brief 
conclusion we concentrate only on the new concept of critical states and try to illustrate in 
a compact manner the new insight into the mechanical behaviour of soil under three 
headings:  
§10.2 We acquire a new basis for engineering judgement of the state of ground and the 
consequences of proposed works. 
§10.3 We can review existing tests and devise new ones. 
§10.4 We can initiate new research into soil deformation and flow. 
 
10.2 Granta-gravel Reviewed 

 Let us review the Granta-gravel model in Fig. 10.1(a), where we plot six curved λ-
lines at equal spacings lettered VV, AA, BB, CC, DD, and EE on the (v, p) plane. The 
double line CC represents the critical states and the line VV represents virgin isotropic 
compression of Granta-gravel. Between VV and CC we have wet states of soil in which it 
consolidates in Terzaghi’s manner, and AA and BB are typical curves of anisotropic 
compression. Under applied loading the wet soil flows and develops positive pore-
pressures or drains and hardens; the whole soil body tends to deform plastically, and hence, 
the typical drainage paths are long and the undrained problem occurs resulting in 
immediate limiting equilibrium problems which involve calculations with and 

 
uck =

.0ρ =

 
Fig. 10.1  Review of Granta-gravel 

 
In contrast, the curves DD and EE are in the dry states of soil in which it ruptures 

and slips in Coulomb’s manner as a rubble of blocks. Each thin slip zone has a short 
drainage path and the drained problem occurs resulting in long-term limiting equilibrium 
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problems which involve calculations with k = 0 and ρ at a value consistent with the critical 
states. 

Across the Fig. 10.1(a) we draw two bold lines that correspond to two interesting 
engineering problems. The first line is at constant effective spherical pressure pc and it 
intersects the λ-lines at specific volumes The second line is at constant 
specific volume and it intersects the λ-lines at  In Fig. 10.1(b) we 
plot the stable state boundary curve that corresponds to the first line; what does the figure 
imply? 

.and,,,, edcba vvvvv

cv .and,,,, edcba ppppp

We can think of as being the alternative specific volumes to 
which a layer of saturated remoulded Granta-gravel can be compacted by alternative 
increasingly costly compaction operations. Suppose that the layer will eventually form part 
of an embankment in which it will be under some particular value of effective spherical 
pressure We consider what benefit is to be gained from increased compaction, and Fig. 
10.1(b) shows that from there is a steady increase in strength q, but from 

further compaction is wasted. For, while individual blocks might have 
increasing strengths (near the dotted line in Fig. 10.1(b)), the engineering design of the 
embankment would have to proceed on the assumption that the blocks would be ruptured 
in the long-term problem and that the relevant strength parameter was Mp

edcba vvvvv and,,,,

.cp

cba vvv   to  to

edc vvv   to  to

c. There is no 
gain in guaranteed strength with increased compaction beyond the critical state. 

 
Fig. 10.2  The Crust of a Sedimentary Deposit 
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The second line in Fig. 10.1(a) at constant specific volume leads in Fig. 10.2 to 
three diagrams. Figure 10.2(c) is identical to part of Fig. 10.1(a) rotated through 90°, and 
10.2(b) shows the stable state boundary curve that corresponds to the second line; what do 
these figures imply? 

Figure 10.2(a) shows a sedimentary deposit of saturated remoulded (isotropic and 
homogeneous) Granta-gravel with particles falling on to the surface and forming a deposit 
of constant specific volume  As the deposit builds up so the effective spherical pressure 
on any layer of material steadily increases; we plot the axis of p increasing downwards 
with depth in the deposit. In Fig. 10.2(c) the deposit of Granta-gravel remains rigid at 
specific volume of  to a depth at which anisotropic compression (under K

.cv

cv 0 conditions) 
occurs under effective spherical pressure pa. The sediment above that depth forms a sort of 
crust: we can ask what would be the response of material at various depths to any 
disturbance. During any deformation the Granta-gravel will require a sufficient supply of 
power to satisfy the basic equation, (5.19), 

.εε &&
&

Mpq
v
vp

=+  

At a depth where the effective spherical pressure is pa, there is enough power available 
from plastic collapse of volume to satisfy eq. (5.19) without any need for a large additional 
deviatoric stress to cause the disturbance. At a smaller depth, where the effective spherical 
pressure is only pb, there is less power available from plastic collapse of volume and more 
deviatoric stress would be needed to cause the disturbance: that is to say, the material gains 
strength higher in the crust. At a critical depth where the effective spherical pressure is pc, 
there is no plastic collapse of volume, and the crust has its greatest strength. Above the 
critical depth we expect the material to deform as a rubble of slipping blocks in Coulomb’s 
manner. 

A small digression is appropriate about the possible tension zones in Fig. 10.2(b). 
Introducing 0''' 321 ==> σσσ into the generalized stress parameters briefly suggested in 
§8.2 
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we find ,3**and,'*,3'* 11 === pqqp σσ  which gives one radial line shown in Fig. 
10.2(b). Another radial line with 5.1** =pq corresponds with 0''' 321 =>= σσσ where 
we find ( )3'2* 1σ=p and .'* 1σ=q  These two lines indicate the range of values 

( ) 3**5.1 << pq in which one or more of the principal effective stress components 
( 321 ',',' )σσσ  becomes zero. In that zone we can have stressed soil bodies with one stress-
free face, which implies that slight tension cracks or local pitting of the surface of the 
sedimentary deposit could occur. 

Finally, moving down through the deposit in Fig. 10.2(a) we have first a shallow 
zone of possible tension cracks above a zone of slipping rubble; below a critical depth 
(which is a function of vc) the material would behave as a stiff mud, readily expelling water 
under small deviatoric stress, and finally all material below the depth associated with pa is 
in some state of anisotropic compression at a specific volume less than vc. A Granta-gravel 
sediment would not experience this anisotropic compression until it was overlain by a 
thickness of crust formed by subsequent sediment. 
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In Fig. 10.1(b) we have considered the value of compaction to alternative specific 
volumes, and in Fig. 10.2 the state of a sedimentary deposit. Clearly with the critical state 
concept we have acquired a new basis for engineering judgement of the state of ground and 
the consequences of proposed works. 
 
10.3 Test Equipment 
 We have seen (6.9) that the plasticity index corresponds to a critical state property 
that could be measured with more precision by other tests, such as indentation by a falling 
cone. Our discussion of the refined axial-test apparatus of §7.1 shows that an apparatus 
which attains this high standard can give data of altogether greater value than the 
conventional slow strain-controlled axial-test apparatus in current use. The new critical 
state concept gives an edge to our decisions on the value of various pieces of existing test 
equipment. 

All that we have written in this book has been concerned with saturated remoulded 
soil. Of course engineers need to test unsaturated soil, to test natural anisotropic or 
sensitive soil, and to test soil in situ. The new critical state concept enables us to separate 
effects that can be associated with isotropic behaviour from these special effects that are 
not predicted by the critical state models. The critical state concept gives a rational basis 
for design of new tests that explore aspects of behaviour about which little is known at 
present. 
 
10.4 Soil Deformation and Flow 
 The limiting equilibrium calculations that we have introduced in chapters 8 and 9 
correspond to problems of the ‘strength’ of a soil body experiencing imposed total stress 
changes indicated by the arrows from B and D in Fig. 10.3(a). The arrow from B 
corresponds to a problem of immediate limiting equilibrium (such as that discussed in 
§8.7), and the arrow from D corresponds to a problem of long-term limiting equilibrium 
(such as that discussed in §8.8). 

 
Fig. 10.3  Engineering Design Properties 

 
However, we have not considered in this book a wide class of civil engineering 

design problems concerned with the ‘stiffness’ of a soil body. For example, in Fig. 10.3(b) 
the arrow of effective stress change from D might correspond to the distortion of firm 
ground beneath the base of a deep-bored cylinder foundation, and the arrow of effective 
stress change from B might correspond to the distortion of soft ground around a sheet-piled 
excavation. This type of design problem must become increasingly important in civil 
engineering practice, and it is clear that a better understanding of the stiffness of soil and 
its strain characteristics is required. 
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The critical state models that we have discussed in this book provide the basis for 
calculation of deformation in the rather special case of yielding of ‘wet’ soil. These models 
as they stand will not allow prediction of distortion for the loading of Fig. 10.3 because 
they are rigid for such loading, but research experiments and theoretical modifications to 
the models (for example, to allow recoverable distortion) do suggest the existence of 
‘contours’ of equal distortion increments such as those shown in Fig. 10.3(b). 

In addition to research experiments on axial-test specimens, a wide variety of other 
experiments on models and on other shapes of specimen is being conducted by us and our 
colleagues and by research workers in our own and in other laboratories. In reading reports 
of such research it is helpful to recall the differences between Figs. 10.3(a) and (b). 
Engineering design calculations at present concentrate on strength: as increasing skill is 
shown by designers so stiffness becomes a problem of increasing importance. Present 
research which explores the stiffness of apparently rigid soil bodies should prove to be of 
increasing importance to engineering designers as their skill in design increases. 

 
Fig. 10.4  Material Handling Properties 

 
Throughout this book we have taken the civil engineer’s viewpoint that it is, in 

general, undesirable for soil-material to move. We could equally well have taken the 
viewpoint of a material-handling engineer who wants powders and rubble to move freely. 
In Fig. 10.4 we repeat the (q, p) and (v, p) diagrams and indicate in a very crude manner 
the difference between states (p, v, q) in which the material (a) oozes as wet mud, (b) slips 
as a rubble of blocks (that stick to each other with an adhesion that depends on the pressure 
between the blocks), and (c) flows in the critical states. Clearly there are others as well as 
the civil engineer who may profit from the concept of §1.8 that ‘granular materials, if 
continuously distorted until they flow as a frictional fluid, will come into a well-defined 
critical state’. 
 



APPENDIX A 

Mohr’s circle for two-dimensional stress 
 
 
Compressive stresses have been taken as positive because we shall almost exclusively be 
dealing with them (as opposed to tensile stresses) and because this agrees with the 
universal practice in soil mechanics. Once this sign convention has been adopted we are 
left with no choice for the associated conventions for the signs of shear stresses and use of 
Mohr’s circles. 

 

 
Fig. A.1  Stresses on Element of Soil 

 
The positive directions of stresses should be considered in relation to the Cartesian 

reference axes in Fig. Al, in which it is seen that when acting on the pair of faces of an 
element nearer the origin they are in the positive direction of the parallel axis. The plane 
on which the stress acts is denoted by the first subscript, while the direction in which it acts 
is denoted by the second subscript. Normal stresses are often denoted by a single subscript, 
for example, x'σ instead of .'xxσ  

For Mohr’s circle of stress (Fig. A.2) we must take counterclockwise shear as 
positive, and use this convention only for the geometrical interpretation of the circle itself 
and revert to the mathematical convention for all equilibrium equations. Hence 

X has coordinates ),'( xyxx τσ −  
and    Y has coordinates ),'( yxyy τσ +  
But from equilibrium we require that .yxxy ττ =  

 
Fig. A.2  Mohr’s Circle of Stress 

Suppose we wish to relate this stress condition to another pair of Cartesian axes (a, 
b) in Fig. A.3 which are such that the counterclockwise angle between the a- and x-axes is 
+θ. 

Then we have to consider the equilibrium of wedge-shaped elements which have 
mathematically the stresses in the directions indicated. 
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Fig. A.3  Stresses on Rotated Element of Soil 

  
Resolving forces we get: 

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

=+
−

−=

−
−

−
+

=

+
−−

=

+
−

+
+

=

.2cos2sin
2

)''(

2sin2cos
2

''
2

''
'

2cos2sin
2

)''(

2sin2cos
2

''
2

''
'

abxy
yyxx

ba

xy
yyxxyyxx

bb

xy
yyxx

ab

xy
yyxxyyxx

aa

τθτθ
σσ

τ

θτθ
σσσσ

σ

θτθ
σσ

τ

θτθ
σσσσ

σ

    (A.1) 

 
In Mohr’s circle of stress 

A has coordinates ),'( abaa τσ −  
and    B has coordinates ).,'( babb τσ +  

A very powerful geometric tool for interpretation of Mohr’s circle is the 
construction of the pole, point P in Fig. A.4. Through 

 
Fig. A.4 Definition of Pole for Mohr’s Circle 

 
any point on the circle a line is drawn parallel to the plane on which the corresponding 
stresses act, and the pole is the point where this line cuts the circle. In the diagram XP has 
been drawn parallel to the y-axis, i.e., the plane on which xx'σ and xyτ act. 

This construction applies for any point on the circle giving the pole as a unique 
point. Having established the pole we can then reverse the process, and if we wish to know 
the stresses acting on some plane through the element of soil we merely draw a line 
through P parallel to the plane, such as PZ, and the point Z gives us the desired stresses at 
once. 
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This result holds because the angle XCA is +2θ (measured in the counterclockwise 
direction) as can be seen from eqs. (A.1) and by simple geometry the angle XPA is half 
this, i.e., +θ  which is the angle between the two planes in question, Ox and Oa. 
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APPENDIX C 

A yield function and plastic potential for soil under 
general principal stresses 
 
 

The yield function, F(p, q), for Granta-gravel, from eq. (5.27), is 
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We can treat the function F* as a plastic potential in the manner of §2.10, provided we 
know what plastic strain-increments correspond to the stress parameters p and q. In §5.5 
we found that υυ&  corresponded to p, and ε& corresponded to q. Therefore, from eq. (2.13), 
we can first calculate 
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and then we can calculate 
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This restates eq. (5.21) and thus provides a check of this type of calculation.  
 We wish to generalize the Granta-gravel model in terms of the three principal 
stresses and obtain a yield function ),',','(* 321 upF σσσ  where  remains as specified 
above. Let us retain the same function as before, eq. (C.1), but introduce the generalized 
parameters of §8.2, 
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The function F* then has equation 
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This function F* generates a surface of revolution about the diagonal of principal stress 
space as shown in Fig. 5.1. Variation of pu generates successive surfaces as indicated in 
Fig. 5.2. 
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Let us treat F* as a plastic potential. Clearly, the stress parameters )',','( 321 σσσ  
are associated with plastic strain-increments ),,( 321 εεε &&& since the loading power is 

.''' 332211 υ
εσεσεσ E&
&&& =++      (C.4)  

Therefore, from eq. (2.13) we calculate 
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If we introduce *,ε&  a scalar measure of distortion increment that generalizes eq. (5.6) and 
eq. (5.9), in the form 
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then, as in eq. (C.3), we find from eq. (C.5) that 
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It is now convenient and simple to separate (C.5) into two parts: 
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The first part, eq. (C.8), is a scalar equation relating the first invariant of the plastic strain-
increment tensor to other scalar invariants. The second part, eqs. (C.9), is a group of 
equations relating each component of a plastic strain-increment deviator tensor to a 
component of a stress deviator tensor. We will now show that these equations can be 
conveniently employed in two calculations. 

First, we consider the corner of the yield surface. When and 0* =q
*,''' 321 p=== σσσ  we find that eqs. (C.9) become indeterminate, but eq. (C.8) gives 
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Here, as in §6.6, we find that a plastic compression increment under isotropic stress is 
associated with a certain measure of distortion. 



 218 

Next, we consider what will occur if we can make the generalized Granta-gravel 
sustain distortion in plane strain at the critical state where .0)( 321 =++ εεε &&&  In plane strain 

,02 =ε& so at the critical state, .031 =+ εε && With eqs. (C.9) these give 
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from which 
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We satisfy this equation if we introduce the simple shear parameters (s, t) where 
.',',' 321 tssts −==+= σσσ  In terms of these parameters, the values of p* and q* are 
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The yield function F* at the critical state reduces to 
,0** =−Mpq  

so that 
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This result was also obtained by J. B. Burland1 and compared with data of simple shear 
tests. In fact the shear tests terminated at the appropriate Mohr-Rankine limiting stress ratio 
before the critical state stress ratio of eqn. (C. 12) was reached. 
 
  
1 Burland, J. B. Deformation of Soft Clay, Ph.D. Thesis, Cambridge University, 1967.  
 
 


