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Figure 7.16 

N 

(a) Free-body diagram of the wheel. 

(b) Expressing the acceleration of the centre 
of mass G in tenus of the acceleration of 
the centre A. 

Preface 

For 25 years we ha~'1 e taught the two-semester iutroductory course in 
engineering mechanic I. Duriug that time, students often told us that they 
could understand Our c' assroom presentation, but had difficulty understanding 
the textbook. This com ent led us to examiue what the in:;tructor does in class 
that differs from the traditional textbook presentatioo, and eventually resulted 
in this book. Our aPl\roach is to present matetial the way we do in the 
classroom, using mordl sequences of figur. es and stressing the importance of 
careful visual analysis I and conceptual understanding. Throughout the book, 
we keep the student f9remorst iu mind as our audience. 

II 

I Goals and Theryes 
Problem Solving 'fe emphasize the critical importance of good problem­
solving skills. In our.llworked examples. we teach students to think about 
problems before they ~egin their solution. What principles apply? What must 
be determined, and in 'iha! order? Separate Strategy sections that precede most 
of the examples ilIusIDjte this preliminary aoalysis. Then we give a careful and 
complete description (,f the solution, often showing alternative methods. 
Finally, many examPlt, s conclude with Di,'cussion sections that point out 
properties of the solut on, or comment on and compare alternative solution 
methods, or point out ,ays to check the answers. (See, for instance, Example 
3.2, pp. 106-7.) Our 01iective is to teach students how to approach problems 
and critically judge Ih results. Tn addition, for thos. e stud.ents who tell us that 
they understand the aterial in class, but don't know how to begin their 
homework problems te also provide brief Strategy sections in selected 
homework problems. ,I 

Visualization One Jf the essential elements in successful problem solving 
is visualization, cspec' y lbe use of free-body diagrams. In the classroom, the 
instructor can draw a . agram one step at a time, describing each step aod 
developing the solutio in parallel with the diagram. We have done the same 
thing iu this book, ing the same sequence of diagrams we use in class and 
carefully indicating lationships between them. In Example 8.2, pp. 378-
9, instead of simply sh . g the free-bOdy diagram.,. we repeat the initial figure , 
with the isolated part h ghlighted and everything else showo as a pale ghosted , 
image. In this way we ow the student exactly how to isolate the part that will 
become the free-body lldiagram. In Example 9.8, p. 456, we use a ghosted 
image to indicate the motion of a rigid body about an a.xis. This he ips students 
visualize the true moti~n of the obiect. 

We use colour to ,elp students distinguish and understand the various 
elements in figures. Bt using the same colours for particular clements eon­
sistently - such as blU~~ for force vectors and green for accelerations - we 
have tried to make the ook easier for students to read and understand. (See, 
for example, Figure 7! 16 on the left.) In addition, the greater realism of 



colom illustrations helps motivate students. (See Figure 3.7. p. 117; Figure 
5.13, p. 202; and problem illustrations throughout the book.) 

Emphasizing Basic Principles Our primary goal for this book is to teach 
students fundamental concepts and methods. Instead of presenting dynamics 
as a sequence of independent methods, we emphasize its coherence by 
showing how energy and momentum techniques can be derived from Newton's 
second law. We apply the same approach to a system of particles to obtain the 
equations describing the dynamics of rigid bodies. Tn describing motions of 
rigid bodies, we consistently uSe the angnlar velocity vector and the vector 
equations describing the relative motions of points. Traditionally, dynamics 
texts have waited until they discuss rigid bodies to show that the sum of the 
external forces acting on an object is equal to the product of its mass and the 
acceleration of its centre of mass. We introduce this simple result as soon as 
we have discussed Newton'S second law, in Chapter 3, because we find our 
students gain confidence in their solution. They don't need to be concerned 
about whether a given object can be modelled as a particle; they know they're 
determining the motion of its centre of mass. To help students identifY 
important results, key equations are highlighted (see, for example, p. 18), 
and the concepts discussed in each chapter are reinforced in a chapter-end 
summary. 

Thinking Like Engineers Engineering is an exciting discipline, requiring 
creativity and imagination as well as knowledge and systematic tllinking. In 
this book we try to show the place of engineering mechanics within the larger 
context of engineering practice. Engineers in industry and the Accrediting 
Board for Engineering and 1echnology (ABET) are encouraging instructors to 
introduce design early in the engineering curriculum. We include simple 
design and safety ideas in many of om examples and problems without 
compromising emphasis on fundamental mechanics. Many problems arc 
expressed in terms of design and safety considerations (for example, Problems 
3.101 and 3.102, p. 136); in some cases, students are asked to choose a design 
parameter from a range of possible values based on stated criteria (for 
example, Problems 4.118, p. 180; and 4.125, p. 181). Our students have 
responded very positively to tl,ese motivational elements and have developed 
an awareness of how these essential ideas are applied in engineering. 

Pedagogical Features 
Based on our own teaching experiences and advice from many colleagues, we 
have included several features to help students learn and to broaden their 
perspective on engineering mechanics. 

Problem-Solving strategies Worked examples and homework problems 
are the heart of a course in engineering mechanics. Throughout the book, we 
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I 
provide descriptions o~ th~ appro~ches that we use in the examples and which 
students WIll find helptul m worldng problems. We do not proVide recipes that 
students are intended 10 follow rigidly, Instead, we describe general lines of 
thought that apply to IProad classes of problems and give useful advice and 
helpful warnings of dommon pitfalls, the kind of information we give to 
students dUling office ~ours, (See, for example, pp. 33, 242, 262 and 311.) 

Applications Manl of our examples and problems are derived from actual 
engineering practic~ehmging from familiar household items to advanced 
engineering applicatio I s. In addition, examples labelled. as 'Applications to 
Engineering' provide lore detailed case studies from different engineering 
disciplines. These e I pies show how the principles learned in the text are 
directly applicable to durrent and future engineering, problems. Our goal is to 
help students see the Vnportance of engineering mechanics in these applica­
tions and so gain the 1l10tivation to learn it. (See, for example, pp. 79, 118 and 

218.) I 
Computer Problems Surveys tell us that most instructors make some use 
of computers in enginJering mechanics courses, but there is no consensus on 
how it should be donl. We give the instructor the opportunity to introduce 
students to computer rpplications in dynamics, including the use of finite 
differences to integratr equations of motion, without imposing a particular 
approach. Optional se9:tions called 'Computational Mechanics' contain exam­
ples and problems suitable for the use of a progranunable calculator or 
computer. (See, for e~ample, pp. 128 and 174.) The instructor can choose 
how students solve bse problems, for example by using a progranuning 
language, a spreadsheel or a higher-level problem-solving environment. These 
sections are independe

l 
t and self-contained. 

Chapter Openings ' We begin each chapter with an illustration showing an 
application of the idea, in the chapter, often choosing objects that are familiar 
to students. By seeing pow the concepts in this course relate to the design and 
function of familiar objects around them, students can begin to appreciate the 
importance and exciteIPent of engineering as a career. (Sec pp. 98, 230 and 
302.) , 

Commitment to Students and Instructors 

We have taken precautt'bns that ensure the accuracy of thiS. book to the b. est of 
our ability. Reviewers I xamined each stage of the manuscript for errors. We 
have each solved the lroblems in an effort to be sure that their answers are 
correct and that the pr~blems are of an appropriate level of difficu!J;y:'Eugene 
Davis, author of the $olutions Manual, further verified the 'lfiSwers while 
developing his soluti03s. As a further check, James Whitentoi examined the 
entire text for errors thl.t crept in during the typesetting proc¢ss. 

Any errors that r"nfin are the responsibility of the auth~rs. We welcome 
conununication from sl',udents and instructors concerning errprs or areas for 
improvement. Our mai ing address is Department of Aerospa~e Engineering 
and Engineering Mec~anics, University of Texas at Austin, 'Austin, Texas 
78712, USA. Our electonic mail address is bedford@aw.com. ' 

II 

II 
'il 



Printed Supplements 
Instructor's Solutions Manual The manual for the instructor contains 
step-by-step solutions to all problems. Each solution includes the problem 
statement and the associated art. 

study Guide This guide reinforces the Strategy-Solution-Discussion 
process outlined in the text. Selected solutions are provided in great detail, 
accompanied hy suggested strategies for approaching problems of that type. 

Transparencies Approximately 100 figures from the text have been 
prepared in four colours on acetate for use on an overhead projector. 

Software Supplements 
Student Edition of Working ModefllJ Working Model (Knowledge 
Revolution, inc.) is a simulation and modelling program that allows the 
student to visualize engineering problems. The program calculates the effects 
of forces on an object (or objects), animates the results, and provides output 
data such as force, moment, velocity and acceleration in digital or graphical 
form. The Student Edition make this powerful program affordable for under­
graduate students. It is available in both Windows and Macintosh versions. 

Working Model ® Simulations Approximately 100 problems and exam­
ples from the text have been re-created on disk as Working Model simulations. 
These simulations have been constructed to allow the student to change 
variables and see the results. The student can explore physical situations in 
a 'what if' manner and thereby develop deeper conceptual insights than 
possible through quantitative problem solving alone. Students cao purchase 
these simulations combined with the text for a nominal additional charge. 
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The first space ~huttle 

flight took place on 
12 April 1981. The 

space shuttle Columbia 
went into orbit 271 km 
above the carth, To 
achieve orbit, it had to 
attain a velocity relative 
to the centre of the earth 
of approxImately 8 km per 
second. After two days, 
with Commander John 
Young at the controls, it 
landed at Edwards Air 
Force Basel California. 



Chapter 1 

Introduction 

THE Space Shuttle was conceived as an economical 

method to transport personnel and equipment to orbit. 

Throughout its development, engineers used the principles 

of dynamics to predict its motion during boost, in orbit and 

while landing. These predictions were essential for the 

design of its aerodynamic configuration and structure, 

rocket engines and control system. Dynamics is one of the 

sciences underlying the design of all vehicles and machines. 



2 CHAPTER 1 INTRODUCTION 

1.1 EnginJering and Mechanics 
............. . I 

How do engineers de ign complex systems and predict their characteristics 
before they are cons cd? Engineers have always relied on their knowledge 
of previous designs, periments, ingenuity and creativity to develop new 
designs. Modern eng s add a powerful technique: they develop mathe-
matical equations un the physical characteristics of the devices they 
design. With these mathematiCal models, engineers predict the behaviour of 
their designs, modify hem, and test them prior to their actual construction. 
Aerospace engineers u I ed mathematical models to predict the paths the space 
shuttle would follow ir flight. Civil engineers lIsed mathematical models to 
analyse the response tqloads of the steel frame of the 443 m Sears Tower in 
Chicago. :1 

Engineers are resPllnsible for the design, construction and testing of the 
devices we use, from I imple things such as chairs and pencil sharpeners to 
complicated ones such b dams, cars, airplanes and spacecraft. They must have 
a deep understanding ~f (he physics underlying these devices and must be 
familiar with the use rf mathematical models to predict system behaviour. 
Students of engineerin~ begin to learn how to analyse and predict the beha­
viour of physical systelns by studying mecbanics. 

At its most basic lei II el, mechanics is the study of forces and their effects. 
Elementary mechanics is divided into statics, the study of objects in equili­
brium, and dynamics, he study of objects in motion. The results obtained in 
elementary mechanics pply directly to many fields of engineering. Mechan­
ical and civil engineer~, who design structures usc the equilibrium equations 
derived in statics. Civil engineers who analyse the responses of buildings to 
earthquakes and aerosJace engineers who determine the trajectories of satel­
lites use the equations pf motion derived in dynamics. 

Mechanics was thol first analytical science; consequently fundamental 
concepts, analytical III thods and analogies from mechanics are found in , 
virtually every field 0 engineering. For example, students of chemical and 
electrical engineering ain a deeper appreciation of basic concepts in their 
fields such as equilibr'um, energy and stability by learning them in their 
original mechanical co 'texts. In fact, by studying mechanics they retrace the 
historical development I~f these ideas. 

1.2 learni~g Mechanics , __ 
Mechanics consists Ofb~Oad principles that govern the behaviour of objects. In 
this book we describe fuese principles and provide you with examples that 
demonstrate some of ~heir applications. Although it's essential that you 
practise working probldms similar to these examples, and we include many 
problems of this kind, ~ur objective is to help you understand the principles 
well enough to apply th1m to situations that are new to you. Each generation of 
engineers confronts new problems. 



Problem Solving 
In the study of mechanics you learn problem-solving procedures you will usc 
in succeeding courses and throughout your career. Although different types of 
problems require different approaches, the following steps apply to many of 
them: 

• IdentifY the information that is given and the information, or answer, you 
must determine. It's often helpful to restate the problem in your own 
words. When appropriate, make sure you understand the physical system 
or model involved. 

• Develop a strategy for the problem. This means identifYing the pnnci­
pIes and equations that apply and deciding how you will use them to 
solve the problem. Whenever possible, draw diagrams to help visualize 
and solve the problem. 

• Whenever you can, try to predict the answer. This will develop your 
intuition and will often help you recognize an incorrect answer. 

• Solve the equations and, whenever possible, interpret your results and 
compare them with your prediction. The latter step is called a reality 
c.beck. Is your answer reasonable? 

Calculators and Computers 
Most of the problems in this book arc designed to lead to an algebraic 
expression with which to calculate the answer in terms of given quantities. A 
calculator with trigonometric and logarithmic functions is sufficient to deter­
mine the numerical value of such answers. The use of a prograrrunable cal­
culator or a computer with problem-solving software such as Mathcad or TK' 
Solver is convenient, but be careful not to become too reliant on tools you will 
not have during tests. 

Sections called Computational Mechanics contain examples and problems 
that are suitable for solution with a programmable calculator or a computer. 

Engineering Applications 
Although the problems are designed primarily to help yon leam mechanics, 
many of them illustrate uses of mechanics in engineering. Sections called 
Application to Engineering describe how mechanics is applied in various 
fields of engineering, 

We also include problems that emphasize two essential aspects of engi­
neering: 

• Design. Some problems ask you to choose values of parameters to 
satisfY stated design criteria . 

• Sqfety. Some problems ask you to evaluate the safety of devices and 
choose values of parameters to satisfY stated safety requirements. 

1.2 LEARNING MECHANICS 3 



4 CHAPTER 1 INTRODUCTION 

'I 1.3 Fundatirlental Concepts 
m 'I ................................ ---"------.. 

Some topics in mecha~cs will be familiar to you from everyday experience or 
from previous exposurd to them in physics courses. In this section we briefly 
review the foundations l~of elementary mechanics. 

Space and T;m~ 
Space simply refers to ~e three-dimensional universe in which we live. Our 
daily experiences give ~s an intuitive notion of space and the locations, or 
positions, of points in space. The distance between two points in space is the 
length of the straight lme joining them. 

Measuring the dista,ce between points in space requires a unit of length. 
We use both the International System of units, or 81 units, and IJS Customary 
nnits. Tn SI units, thetnit of length is the metre (abbreviated to m). In US 
Customary units, the I it of length is the foot (ft). 

Time is, of course, I iliar-our lives aTe measured by it. The daily cycles 
of light and darkness ahd the hours, minutes and seconds measured by our 
clocks aod watches givt us an intuitive notion of time. Time is measured by 
the intervals between r!peatable events, such as the swings of a clock pen­
dulum or the vibrations lof a quartz crystal in a watch. In both S[ units and US 
Customary units, the urit of time is lhe second (abbreviated to s). Minutes 
(min), hours (h) and days are also frequently used. 

If the position of a ppint in space relative to some reference point changes 
with time, the rate of ch&nge of its position is called its velocity, and the rate of 
change of its velocity \IS called its acceleration, In SI units, the velocity is 
expressed in metres Pef second (m/s) and the acceleration is expressed in 
metres per second per recond, or metres per second squared (m/s2

). In US 
Customary units, the v~locity is expressed in feet per second (ftJs) and the 
acceleration is expresse~ in feet per second squared (ftJs2

). 

Newton's Laws 'I 

I' 

Elementary mechanics Jas established on a firm basis with the publication, in 
1687, of Philosophiae Iinaluralis principia mathematica, by Isaac Newton. 
Although highly originJIl, it built upon fundamental concepts developed by 
ma.ny others during a !llong and difficult struggle towards understanding. 
Newton stated three 'lars' of motion, which we express i)1 modern terms: 

(1) When the sum of ihe forces acting on a particle is zero, its velocity is 
cunstant. In partic~lar, if/he particle is initiaily stationary. it will remain 
stationary. 'I 

(2) When the sum of l1e forces acting on a particle is not ;wro, the sum of the 
forces is equal to ,I the rate of change of the linear momentum of the 
partieie. If the mall S is constant, the sum of the forces is equal to the 
product qf the rna : of the particle and its acce/eratioll. 

(3) The forces exerted y two particles on each other are equal in magnitude 
and opposite in di Ilee/ion. 

Notice that we did ntlldt define force and mass before stating Newton's laws. 
The modern view is ,at these terms are defined by the second law. To 



demonstrate, suppose that we choose an arbitrary object and define it to have 
unit mass. Then we define a unit of force to be the force that gives our unit 
mass an acceleration of unit magnitude. In priuciple, we can then determine 
the mass of any object: we apply a unit force to it, measure the resulting 
acceleration and use the second law to determine the mass. We can also 
determine the magnitude of any force: we apply it to our unit mass, measure 
the resulting acceleration and use the second law to determine the force. 

Thus Newton's second law gives precise meanings to the terms mass and 
force. In SI units, the unit of mass is the kilogram (kg). The unit afforce is the 
newton (N), which is the force required to give a mass of one kilogram an 
acceleration of one metre per second squared. In US Customary units, the unit 
of force is the pound (Ib). The unit of mass is the slug, which is the amount of 
mass accelerated at one foot per second squared by a force of one pound. 

Although the results we discuss in this book are applicable to many of the 
problems met in engineering practice, there are limits to the validity of 
Newton's laws. For example, they don't give accurate results if a problem 
involves velocities that are not small compared with the velocity of light 
(3 x 108 mls). Einstein's special theory of relativity applies to such problems. 
Elementary mechanics also fails in problems involving dimensions that are not 
large compared with atomic dimensions. Quantum mechanics must be used to 
describe phenomena on the atomic scale. 

Newtonian Gravitation 
Another of Newton's fundamental contributions to mechanics is his postulate 
for the gravitational force between two particles in terms of their masses m I 
and m2 and the distance r between them (Figure 1.1). His expression for the 
magnitude of the force is 

In, 
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F -
Figure 1.1 

F _ Gmlm2 
- r2 

The gravitational forces between two particles 
are equal in magnitude and directed along the 

(I. I) line between them. 

whcrc G is called the universal gravitational constant. 
Newton calculated the gravitational force between a particle of mass ml and 

a homogeneous sphere of mass mz and found that it is also given by Equation 
(1.1), with r denoting the distance from the particle to the centre of the sphere. 
Although the earth is not a homogeneous sphere, we can use this result to 
approximate the weight of an object of mass m due to the gravitational 
attraction of the earth. 

W = GmmE 
r2 

(1.2) 

where mE is the mass of the earth and r is the distance from the centre of the 
earth to the object. Notice that the weight of an object depends on its location 
relative to the centre of the earth, whereas the mass of the object is a measure 
of the amount of matter it contains, and doesn't depend on its position. 

When an object's weight is the only force acting all it, the resulting 
acceleration is called the acceleration due to gravity. In this case, Newton's 
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second law states thatli W = rna, 
acceleration due to graVity is 

glnE 
a=--

r2 

II , 

and from Equation (1.2) we see that the 

(1.3) 

The acceleration due to gravity at s.ea level is denoted by g. Det)oting the 
radius of the earth b~~:1 RE, we see from Equation (1.3) that GmE = gR~. 
Substituting this result into Equation (1.3), we obtain an expression for the 
acceleration due to gra ~ity at a distance. r from the centre of the earth in tenns 
of the acceleration duellto gravity at sea level: 

, 

ii (1.4) 
II 

Since the weight of the Ibbject W = rna, the weight of an object at a distance r 
from the centre of the Jarth is 

I 
,I 

R2 
W=mg~ 

rl 
(1.5) 

At sea level, the weight lof an object is given in tenns of its mass by the simple 
relation 

W=mg (1.6) 

The value of g variet from location to location on the surface of the earth. 
The values we use in examples and problems are g = 9.81 mls2 in SI units and 
g = 32.2 ft/sz in US cu~tomary lilits. 

Numbers 
Engineering mcasurcmdnts, calculations and results are expressed in numbers. 
You need to know how ke express numbers in the examples and problems and 

1 how to express the results of your own calculations. 
II 

II 

Significant Digits this teml refers to the number of meaningful (that is, 
accurate) digits in a n~mber, counting to the right starting with the first 
nonzero digit. The two linumbers 7.630 and 0.007630 are each stated to four 
significant digits. If orily the first four digits in the number 7 630000 are 
known to be accurate, t!\is can be indicated by writing the number in scientific 
notation as 7.630 x lOt 

If a number is the rdult of a measurement, the significant digits it contains 
are limited by the accurAcy of the measurement. If the result of a measurement 
is stated to be 2.43, thislmeans that the actual value is believed to be closer to 
2.43 than to 2.42 or 2.i4. 

Numbers may be ro~nded off to a certain nu~be~ of significant digits. For 
example, we can expre1-. the value of 1t to three slgmficant dIgIts, 3.14, or we 
can express it to six si iliaan! digits, 3.14159. When you use a calculator or 
computer, the number If significant digits is limited by the number of digits , 

the machine is designe . to carry. 



Use of Numbers in This Book You should treat numbers given in 
problems as exact values and not be concerned about how many significant 
digits they contain. If a problem states that a quantity equals 32.2, you can 
assume its value is 32.200 .... We express intermediate results and answers in 
the examples and the answers to the problems to at least three significant 
digits. If you use a calculator, your results should be that accurate. Be sure to 
avoid round-off errors that occur if you round off intermediate results when 
making a series of calculations. Instead, carry through your calculations with 
as much accuracy as you can by retaining values in your calculator. 

1.4 Units 
The S[ system of units has become nearly standard throughout the world. In 
the USA, US Customary units are also used. In this section we summarize 
these two systems of units and explain how to convert units from one system 
to another. 

International System of Units 
In SI units, length is measured in metres (m) and mass in kilograms (kg). Time 
is measured in seconds (s), although other familiar measures such as minutes 
(min), hours (hr) and days are also used when convenient. Metres, kilograms 
and seconds are called the base units of the SI system. Force is measured in 
newtons (N). Recall that these units are related by Newton's second law: one 
newton is the force required to give an object of one kilogram mass an 
acceleration of one metre per second squared. 

IN = (1 kg)(I m/s2) = I kg.m/s' 

Since the newton can be expressed in terms of the base units, it is called a 
derived unit. 

To express quantities by numbers of convenient size, multiples of units are 
indicated by prefixes. The most common prefixes, their abbreviations and the 
multiples they represent are shown in Table 1.1. For example, I km is 
I kilometre, which is 1000 m, and I Mg is I megagram, which is 10' g or 
1000 kg. We frequently use kilonewtons (kN). 

Table 1.1 The common prefixes used in 51 units and the 
multiples they represent. 

Prefix Abbreviation Multiple 

nano- n 10-9 

micro I' 10-6 

milli- m 10-3 

kilo- k 103 

rnega- M 10' 
giga- G 10' 

1.4 UNITS 7 
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Ii 

US Customary ll,nits 
In US Customary units, length is measured in feet (ft) and force IS measured in 
pounds (lb). Time is m 'asured in seconds (s). These are the base units of the 

I 

US Customary system., this system of units, mass is a derived unit. The unit 
of mass is the slug, wh'ch is the mass of material accelerated at one foot per 

I 
second squared by a fo ce of one pound. Newton's second law states that 

.I 

lIb", (I SI~g)(1 ft/s2) 
, 

From this expression wlo obtain 

I slug = Ills2/ft 

We use other US Cu{tomary units such as the mile (1 mi = 5280 ft) and the 
inch (1 ft= 12 in.). We tlso use the kilopound (kip), which is lOOOlb. 

In some engineering applications, an alternative unit of mass called the 
pound mass (Ibm) is us:ed, which is the mass of material having a weight of 
one pound at sea leveL the weight at sea level of an object that has a mass of 
one slug is 

w mg i'(l slug)(32.2 ft/s2) 32.21b 

so I Ibm = (I /32.2) slud. When the pound mass is used, a pound of force is 
usually denoted by the ~bbreviation Ibf. 

!I 

II 

Angular Units 
In both SI and US Cust~mary units, angles are normally expressed in radians 
(rad). We show the valut of an angle e in radians in Figure 1.2. It is defined to 
be the ratio of the part of the circumference subtended by e to the radius of the 
circle. Angles are also II expressed in degrees. Since there are 360 degrees 
(360') in a complete cil-cle, and the complete circumference of the circle is 
2nR, 360" equals 2n rai' 

Equations containing angles are nearly always derived under the assump­
tion that angles are ex~ressed in radians. Therefore when you want to sub­
stitute the value of an .;jgle expressed in degrees into an equation, you should 
tirst convert is into ra<\ians. A notable exception to this rule is that many 
calculators are designedl:to aceept angles expressed in either degrees or radians 
when you use them to ~valuate functions such as sin O. 

Figure 1.2 
Definition of an angle in radians. 



Conversion of Units 
Many situations arise in engineering practice that require you to convert values 
expressed in units of one kind into values in other units, If some data in a 
problem are given in terms of SI units and some are given in terms of US 
Customary units, you must express all of the data in terms of onc system of 
units, In problems expressed in terms of SI units, you will occasionally be 
given data in terms of units other than the base units of seconds, metres, 
kilograms and newtons, You should convert these data into the 'base units 
before working the problem, Similarly, in problems involving US Customary 
units you should convert terms into the base units of seconds, feet, slugs and 
pounds, After you gain some experience, you will recognize sitoations in 
which these rules can be relaxed, but for now they are the safest procedure, 

Converting units is straightforward, although you must do it with care, 
Suppose that we want to express I milhr in terms of ft/s, Since one mile equals 
5280 ft and I hour equals 3600 seconds, we can treat the expressions 

(
5280,ft) 

1 ml 
and (3!~S) 

as ratios whose values are I, In this way we obtain 

. ,(5280ft) (1 hI" ) I ml/hr = 1 ml/hr x --, x --0- = 1.47 ft/s 
1 mt 360 s 

We give some useful conversions in Table 1.2, 

Table 1.2 Unit conversions. 

Time 1 mUlutc 60 second 
1 hour 60 minutes 
I day 24 houTS 

Length I foot 12 inches 
1 mile 5280 feet 
1 inch 25.4 millimetres 
1 foot 0,3048 metres 

Angle 2n radians 360 degrees 

Mass 1 slug 14,59 k110grams 

Force I pound 4,448 newtons 

1.4 UNITS 9 
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I 

I 

I 
LI 

Figure 1.3 

SOLUTION 

Suppose that in Einst~in's equation 

E = me2!r 
!i 

the mass m is in kg a~d the velocity of light c is in m1s. 
Cal What are the SI ~lits of E? 
(b) If the value of E id Sl units is 20, what is ils value in US Customary base units? 

STRATEGY 

Cal Since we know thJ umts of the terms m and c, we .can deduce the units of E iTom 
the given equation. i! 

(b) We can use the unh conversions for mass and length from Table 1.2 to convert E 
iTom SI units to US ~ustomary units. 

SOLUTION 

Cal From the equatio~ for E, 
, 
II 

E = (m~g)Ccmjs)2 

ii 2 2 
the SI units of E are ~g.m /s . 



(b) From Table 1.2, I slug = 14.59kg and 1 Il=0.3048 m. Therefore 

lkgm
2
/s

2 
lkg.m'/s' x C~~~U x (0.3~:8S 

= 0.738 slug.Il' /s' 

The value of E in US Customary units is 

E = (20)(0.738) = 14.8 slug-It' Is' 

Example 1.3 

George Stephenson's Rocket (Figure 1.4), an early steam locomotive, weighed about 
7 tons with its tender. (A ton is 2000 lb.) What was its approximate mass in 
kilograms? 

Figure 1.4 

STRATEGY 

We can use Equation (1,6) to obtain the mass in slugs and then use the conversion 
given in Table 1.2 to determine the mass in kilograms. 

SOLUTION 
The mass in slugs is 

W 15680lb 
In = - = ft 2 = 487.0 slugs 

g 32.2 /s 

From Table 1.2. I slug equals 14.59 kg. so the mass in kilograms is (to three 
significant digits) 

m = (487.0)(14.59) = 7105kg 

1.4 UNITS 11 
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1.1 The value ofn is 3.141 592 654 ... . What is its value to four 
significant digits? 

1.2 What is the value ofe (the base of natural logarithms) to five 
significant digits? 

1.3 Detel1Dinc the value of the expression 1/(2 - n) to three 
significant digits. 

1.4 If x = 3, what is the value of the expression 1 - e~X to three 
significant digits? 

1.5 Suppose that you have just purchased a Ferrari Dino 246GT 
coupe and you want to know whether you can use your set of 
wrenches to work on it. You have wrenches with widths 
w = 1/4 in., 112 in., 314 in. and I in., and the car has nuts with 
dimensions n = 5 mOl, 10 mm, 15 mm, 20 mm and 25 mm, Defin­
ing a wrench to fit if w is no more that 2 per cent larger than n, 
which of your wrenches can you use? 

P1.5 

1.6 The 1829 Rocket, shown in Example 1.3, could draw a 
carriage with 30 passengers at 25 miJhr. Detel1Dinc its velocity to 
three significant digits: <aJ in tVs; (b) in kmIhr. 

1.7 High-speed 'bullet trains' began running between Tokyo and 
Osaka, Japan, in 1964. If a bullet train travels at 240 kmlhr, what is 
its velocity in milhr to three significant digits? 

1.8 Engineers who study shock waves sometimes express velo~ 
city in mil1imetres per microsecond (mmlJ,(s), Suppose the velocity 
of a wavefront is measured and dete11l1ined to be 5 nun! ItS, 

Determine its velocity: (a) in mls; (b) in mils. 

1.9 Geophysicists measure the motion of a glacier and discover it 
is moving at 80 mmlyear. What is its velocity in m/s? 

1.10 The acceleration due to gravity at sea level in SI units is 
g=9.81 mls2

. By c.onverting units, use this value to detennine the 
acceleration doe to gravity at sea level in US Customary units. 

1.11 II A forlong per jonnigh! is a facelious unit of velocity, 
perhaps made up by a student as a satirical comment on the 
bewildering variety of units engineers must deal with. A furlong 
is 660

t
'lft (118 mil. A fortnight is two weeks (14 nights). If you walk 

to cia s al 5 tVs, what is your velocity in fiulongs per fortnight to 
three ignificant digits? 

II 
1.12 II The cross-sectiona1 area of a beam is 480i02

, What is its 

croSS}i ectional area in O12? 

1.131 A truck can carry 15 cubic yards of gravel. A yard equals 3 
feet. ,ow many cubic metres of gravel can the truck carry? 

" " 1.1411 A pressure transducer measures a value of 300Ib/in2. 
Deterfine the value of !he pressure in pascals. A pascal (pa) is 

I Nlrnl' 

1.15 I A horscpower is 550 ft.lb/,. A watt is I N .. mls. Determine 
of watts generated by (a) the Wright brothers' 1903 

",::~~~,;~, which had a 12-horsepower engine; (b) a modem 
p' ' jet with a power of 100 000 horsepower al cruising 

1.16 illn Sl unils, the 
G=6!.67 x 1O- II N.m2/kg2 

Custo~ary base units. 

(shown to scale) 
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universal gravitational constant 
Dctcnnine the value of G in US 

1.17 Ilf the earth is modelled as a homogeneous sphere, the 
veloci~y of a satellite in a circular orbit is 

'V=~ 
where liRE is the radius of the earth and r is the radius of the orbit. 
(a) Ifb is in mls2 and Rn and r are in metres, what are the units of 
v? ,I 

(b) Tfi~E=6370km and r=6670km, what is the value of v to 
three ~,ignificant digits? 



(c) For the orbit described in part (b), what is the value of v in mils 
to three significant digits? 

LIB In the equation 

1 , 
T = ~/or 

2 

the tcnn I is in kg_m2 and (j) is in s ~ I" 
(a) What arc the SI units of T ? 
(b) If the value of T is 100 when I is in kg-m' and OJ is in s ~ I, 
what is the value of T when it is expressed in tenus of US 
Customary base units? 

1,19 The 'crawler' developed to transport the Saturn V launch 
vehicle [rom the vehicle assembly building to the launch pad is the 
largest land vehicle ever built, weighing 4.9 x \Q61b at sea level. 
(a) What is its mass in slugs? 
(b) What is its mass in kilograms? 
(c) A typical car has a mass of about 1000 kg. How many such 
cars does it take to have the same weight as the crawler at sea level? 

1.20 The acceleration due to gravity is 13.2 fils' on the surface of 
Mars and 32.2 fils' on the surface of earth. If a woman weighs 
1251b on earth, what would she weigh on Mars" 

1.21 The acceleration due to gravity is 13.2 fils' on thc surfacc of 
Mars and 32.2 ftls2 on the surface of the earth. A woman weighs 
1251b on earth. To survive and work on the sutface of Mars, she 
must wear life.support equipment and carry tools. What is the 
maximum allowable weight on earth of the woman's clothing, 
equipment and tools if the engineers don't want the total weight on 
Mars of the woman and her clothing, equipment and tools to 
exceed 1251b? 

1.22 A person has a mass of 50 kg, 
(a) The acceleration due to gravity at sea level is g=9.81 mls'. 
What is the person's weight at sea level? 
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(b) The acceleration due to gravity on the ·swiace of the moon is 
1.62 rnls2. What would the person weigh on the moon? 

1.23 The acccleration due to graviiy at sea level is g '" 9 ,81 mls', 
The radius of the earth is 6370km. The universal gravitational 
constant G=6.67 x 1O~lJN~m2Ikg2. Use this infonnation to 
detennine the mass of the earth. 

1.24 A person weighs 180 Ib at sea level. The radius of the earth 
is 3960 mi. What force is exerted on the person by the gravitational 
attraction of the earth if he is in a space station in ncar-earth orbit 
200 mi above the surface of the earth? 

1.25 The acceleration due to gravity on the surface of the moon 
is 1.62m1s2 The radius oflhe moo" is RM'= 1738km. Dctcnminc 
the acceleration due to gravity of the moon at a point 1738 km 
above its surface. 

Strategy: Write an equation equivalent to Equation (1.4) for the 
acceleration due to gravity of the moon. 

, .26 If an object is near the stuface of thb earth, the variation of 
its weight with distance from the centre of: the earth can often be 
neglected. The acceleration due to gra,vity at sea level is 
g=9.81 mis', The radius of the earth is 6370km. The weight of 
an object at sea level is mg, where m is it& mass. At what height 
above the surface of the carth does th.c height ofd,e object decrcasc 
to O.99mg? 

1.27 The centres of two oranges ate 1 m apart. The mass of each 
orange is 0.2 kg. What gravitational force ;do they exert on each 
other? (The universal gravitational consqmt G~6.67 x 10- 11 

N.m'/kg'.) 

1.28 One inch equals 25.4mm. ~c mas~ of one cubic metre of 
water is 1000 kg. The acceleration due to :gravity at sea level is 
g'= 9.81 mls'. The weight of one cubic footl of water at sea level is 
approximately 62.4 lb. By using this infQrrpation, detennine how 
many newtons equal one pound. 

P1.19 



The position and velocity of the 
~ayager 2 space probe at the 
time of its release ncar Earth 

detennined the trajectory (path) it 
followed to reach the planet Jupiter. 
The gravitational field of Jupiter 
altered the trajectory of fVyager 2 
so that it could pass ncar Saturn, 
which altered its trajectory again so 
that it could pass near Uranus, and 
so on to Neptune. In this chapter you 
will determine trajectories of objects 
and analyse their positions, veloci­
ties and accelerations using different 
types of coordinate syslems. 



I Chapter 2 I 

Motion of a Point 

ENGINEERS designing a vehicle, whether a bicycle or a 

spacecraft, must be able to analyse and predict its motion. 

To design an engine, they must analyse the motions of each of 

its moving parts. Even when designing 'static' structures such 

as buildings, bridges and dams, they must often analyse 

motions resulting from wind loads and potential earthquakes. 

In this chapter we begin the study of motion. We are not 

concerned here with the properties of objects or the causes of 

their motions - we merely want to describe and analyse the 

motion of a point in space. However, kcep in mind that the point 

can represent some point (such as the centre of mass) of a 

moving object. After defining the position, velocity and accel­

eration of a point, we consider the simplest example: motion 

along a straight line. We then show how motion of a point along 

an arbitrary path, or trajectory, is expressed and analysed in 

various coordinate systems. 

15 
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o 
tal 

o 
(hi 

Figure 2.1 
(a) The position vector r of P relative to O. 

(b) Motion of P relative to O. 
(e) Change in the position of P from t to 

t+ ~t. 

II 

2. 1 POSitioh, Velocity and 
~cce/fration 

We can describe the pJsition of a point P by choosing a reference point 0 and 
introducing the Positi~n vector r from 0 to P (Figure 2.I(a). Suppose that P 
is in motion relative t9 0, so that r is a function of time t (Figure 2.I(b)). We 
express this by the no~tion 

r = ret) 

The velocity of P rel",live to 0 at time I is defined by 

v = dr = !'l1m ret + Llt) - ret) 
dt 1'HO !J.t 

(2. I) 

where the vector ret +jILlt) - ret) is the change in position, or displacement of 
P, during the interval oftime Lli (Figure 2.1(0). Thus the velocity is the rate of 
change of the positio~! of P relative to O. 

o 
(e) 

The dimensions of Ii a derivative are detenllined Just as if it were a ratio, so 
the dimensions of v ,e (distancelj(timc). The reference point being used is 
often obvious, and wf simply call v the velocity of P However, you must 
remember that the p~ISition and velocity of a point can be specified only 

1 . Ii I . re ahve to some re er nee pomt. 
Notice in Equation :(2. 1) that the derivative elf a vector with respect to time 

is defined in exactly tlje same way as is the derivative of a scalar function. As a 
result, it shares some 0if the properties of the derivative of a scalar function. We 
will use two of these I1roperties. The time derivative of the sum of two vector 
functions u and W is I! 

d II du dw 
d/u + w)il= dt + dt 

:1 

" 
" and the time derivatite of the product of a scalar function f and a vector 

function u is 



The acceleration of P relative to 0 at time t is defined by 

(2.2) 

where vet + !'.I) - vet) is the change in the velocity of P during the interval of 
time !'.I (Figure 2.2). The acceleration is the rate of change of the velocity of P 
at time t (the second time derivative of the displacement), and its dimensions 
are (distance)/(time)2 

2.2 Straight-Line Motion 
We discuss this simple type of motion primarily so that you can gain 
experience and insight before proceeding to the general case of motion of a 
point. But engineers must analyse straight-line motions in many practical 
situations, such as the motion of a vehicle on a straight road or track or the 
motion of a piston in an internal combustion engine. 

Description of the Motion 
We can specifY the position of a point P on a straight line relative to a 
reference point 0 by the coordinate s measured along the line from 0 to P 
(Figure 2.3(a». In this case we define s to be positive to the right, so s is 
positive when P is to the right of 0 and negative when P is to the left of 0. The 
displacement 6s relative to 0 during an interval time of time from to to t is the 
change in the position, /j.s = set) - s(to). 

By introducing a unit vector e that is parallel to the line and points in the 
positive s direction (Figure 2.3(b)), we can write the position vector of P 
relative to 0 as 

r = se 

If the line does not rotate, the unit vector e is constant and the velocity of P 
relative to 0 is 

dr ds 
V=-=-c 

dt dt 

We can write the velocity vector as v = ve, obtaining the scalar equation 

ds 
v=-

dt 

The velocity v of point P along the straight line is the rate of change of its 
position s. Notice that v is equal to the slope at time t of the line tangent to the 
graph of s as a fhnction of time (Figure 2.4). 

The acceleration of P relative to 0 is 

dv d dv 
a=-=-(vc)=-e 

dt dt dt 
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V(I) 

V(:?2V(1 + ';1) - v(I) 

as vet) 

Figure 2.2 
Change in the velocity of P from t to 
t+M. 

o 

( a) 

o P 
--';;.;"'-~-"J""----s ...... r e 

(b) 

Figure 2.3 
(a) The coordinate s from 0 (0 P. 
(b) The unit vector e and position vector f. 

Figure 2.4 
The slope of the straighllinc tangent to the 
graph of s versus t is the velocity at time t. 
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Writing the acceleratio~ vector as a = a e, we obtain the scalar equation 

dv d!¥s 
a - -_.--dl-4,2 

, 
The acceleration a is eq;" al to the slope at time t of the line 1angent to the graph 
of v as a function of ti I e (Figure 2.5). 

I 

II 

Figure 2.5 
The slope of the straight line tangent to the 

graph of v versus t is the accelemtion at 
time t. 

v 

By introducing the II unit vector e, we have obtained scalar equations 
describing the motion of P. The position is specified by the coordinate s, and 
the velocity and accele~tion are governed by the equations 

ds 
v=-

dt 

dv 
a=-

dt 

II 

I! 

(2.3) 

(2.4) 

Analysis of the rotion 
In some situations, you till know the position s of some point of an object as a 
function of time. Engineers use methods such as radar and laser-doppler 
interferometry to meas~ positions as functions of time. In this case, you can 
obtain the velocity and hcceleration as functions of time from Equations (2.3) 
and (2.4) by differentia~on. For example, if the position of the truck ill Figure 
2.6 during the interval Jf time from t = 2 s to t = 4 s is given by the equation 

Figure 2.6 
The coordinate s measures the position 

of the centre of mass of the track relative to 
a reference point. 



its velocity and acceleration during that interval of time are 

ds 
v = - = (2m/s 

dt 

a 
dv 

dt 

However, it is more common to know an object's acceleration than to know 
its position, because the acceleration of an object can be determined by 
Newton's second law when the forces acting on it are known, When the 
acceleration is known, you can determine the velocity and position from 
Equations (2.3) and (2.4) by integration. We discuss three important cases in 
the following sections. 

Acceleration Specified as a Function of Time If the acceleration is a 
known function of time aCt), we can integrate the relation 

dv 
dt = aCt) (2.5) 

with respect to time to determine the velocity as a function of time 

v = f aCt) dt + A (2.6) 

where A is an integration constant Then we can integrate the relation 

ds 
-=v 
cit 

(2.7) 

to determine the position as a function of time 

s= fVdt+B (2.8) 

where B is another integration constant. We would need additional information 
about the motion, such as the values of v and s at a given time, to determine the 
constants A and B. 

Instead of using indefinite integrals, we can write Equation (2.5) as 

dv = aCt) dt 

and integrate in terms of definite integrals: 

r dv = [' a(t)cli 
Jro lto 

The lower limit Vo is the velocity at time to, and the upper limit v is the velocity 
at an arbitrary time t. Evaluating the left integral, we obtain an expression for 
the velocity as a function of time: 

v = Vo + [' a(t) dt 
flO 

(2.9) 
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a 

(a) 

Figure 2.7 
Relations between areas defined by the 

graphs of the ac\,.:eleration and velocity of P 
and changes in its velocity and position, 

We can then write Eqqation (2.7) as 

ds = vdt 

and integrate in tOnTIS bf definite integrals , 

[ ds = : vdt I [" 

Jso [+..O 

where the lower limit L is the position at time to and the upper limit s is the 
position at an arbitrmiY time t. Evaluating the left integral, we obtain the 
position as a function tf time: 

A
I' 

s=.<o+, vdt 
~ 

(2.10) 

'I 
Although we have s~own how to determine the velocity and position when 

you know the acceleration as a function of time, you shouldn't try to remember 
results such as Equatirns (2.9) and (2.10). As we will demonstrate in the 
examples, we recommend that you solve straight-line motion problems by 
beginning with Equatiins (2.3) and (2.4). 

We can make somelluseful observations from Equations (2.9) and (2.10): 
, 

• The area defined bYi the graph of the acceleration of P as a function of time 
fi'Om to to t is eq*al to the change in the velocity from to to t (Figure 
2.7(a)). 

• The area defined by the graph of the velocity of P as a function of time 
from to to tis equaj to the displacement, or change in position, from to to t 
(Figure 2.7(b)). .. 

___ -- An," == V(I) tJ~to) 

'I 

v 

(bl 

You can often use these relationships to obtain a qualitative understanding of 
an object's motion, and]lin some cases you can even use them to determine its 
motIOn. il 

, 

In some situations, lithe acceleration of an object is constant, or nearly 
constant. For example, if you drop a dense object such as a golf ball or rock 
and it doesn't fall too fh, you can neglect aerodynamic drag and asstune that 
its acceleration is equalll to the acceleration of gravity at sea level. 



Let the acceleration be a known constant ao. From Equations (2.9) and 
(2.10), the velocity and position as functions of time are 

v = Vo + ao(t - tol 

1 2 
S = So + "o(t - tol -I- -aoU - to) 

2 

(2.11) 

(2.12) 

where So and Vo are the position and velocity, respectively, at time to. Notice 
that if the acceleration is constant. the velocity is a linear fonction oftime. 

We can use the chain rule to express the acceleration in terms of a deriv­
ative with respect to s: 

dv dvds d" 
ao =-=-~=-v 

dt dsdt ds 

Writing this expression asvdv = aods and integrating, 

l 'VdV = [ ao ds 
V() So 

we obtain an equation for the velocity as a function of position: 

·i = v~ + 2ao(s - so) (2.13) 

You arc probably familiar with Equations (2.11)···(2.13). Although these 
results can be useful when you know that the acceleration is constant, you 
must be careful not to use them otherwise. 

The following examples illustrate how you can use Equations (2.3) and (2.4) 
to obtain information aboul straight-line motions of objects. You may need 
10 choose the reference poinl and the positive direction for'!; When you know 
the acceleration as a function of time, you can integrate Equation (2.4) to 
determine the velocity and then integrate Equation (2.3) to determine the 
position. 

22 STRAIGHT-LINE MOTION 21 
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Example 2.1 

Engineers testing a ~ehiclc tilal will be dropped by pardchute estimate that its 
vertical veloclty whe~it reaches the ground will be 6. I m/s. If they drop the vehicle 
from tile test rig in Figure 2.8, from what height h should they drop it to simulate the 
parachute drop? ., 

Figure 2.8 

STRATEGY 

We can aSf>l.UllC that tHe vehicle's acceleration during it!) short fall is g= 9.81 m/s2, 

We can deteonine th~1 height II in two ways: 

• First method. Well can integrate Equations (2.3) and (2.4) to determine the 
vehicle's motion. " 

" • Second method. '¥c (;ail usc Equation (2.13)~ which relates the velocity and 
position when thc!!acccicration is constant. 

SOLUTION 

We let s be the posilio{t of the bottom of the platform supporting the vehicle relative 
to its initial position figure (a», The vehicle's acceleration is a;;;;; 9,8 m/s2, 

First Method Fro~ Equation (2.4), 

dv 
-d = a '* 9.81 mis' t, 

Tntegrating, we obtainil 

,'=9.811+A 
!I 

'I 
where A is an integration constant. If we let t = 0 be the instant the vehicle is , 

Ii 



(0) The coordinate s measures the position of the bottom of the platfonn 
relative to ill; position. 

dropped, v = 0 when 1 = 0, so A = 0 and the velocity as a function of time is 

v = 9.81 mls 

Then by integrating Equation (2.3), 

we obtain 

ds 
~ = v = 9.8!t 
dl 

.. = 4.9051' + B 

where B is a second integration constant. The position x = 0 when t = 0, so B = 0 
and the position as a function of time is 

s = 4.905/2 

From the equation for the velocity, the time offall neccssaty for the vehicle to reach 
6.1 mls is t= 6.1/9.81 = 0.622 s. Substituting this time into the equation for the 
position, the height h needed to simulate the parachute drop is 

h = 4.905(0.622)2 = 1.90 m 

Second Method Because the acceleration is constant, we can use Equation 
(2.13) to detem1ine the distance necessary for the velocity to increase to 6.1 m/s: 

v2 = v~ + 2ao(s so) 

(6.1), = 0 + (9.81)(s - 0) 

Solving for s, we obtain h= L90m. 
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The cheetah, (Figure 2.9), can run as fast as 75 mi/hr. If you 
asswne that the "'"11,,\/' acceleration i$ constant and !that it reaches top speed in 4 s, 
what distance can it in 10 ,? 

Figure 2.9 

STRATEGY 

The acceleration ha<; la C()fistant value for the fimt 4 s and is then zero. We can 
determine the distance;ltravclled during each of these Iphases' of the motion and sum 
them to obtain the total distance covered. We do so both analytically and graphically. 

SOLUTION 

The top speed in temis offeet per second is 

. . (5280ft) (I hr ) 75ml/hr.=75ml/hrx --. x --- ~110ft/8 
I ml 36008 

Ii 

First Method Let ~o be ille accder.tion during the first 4 s. We integrate 
Equation (2.4), 

(' dv = [' ao dt 
10 Jo 

,I 

obtaining the velocity!las Ii flUlction of time during the first 45: 
, 

v=aotftl/, 



When t = 4 s, v = II Oft/s, so 00 = 110/4 = 27.5 ft/s'- Now we integrate Equation 
(2.3), 

[ ds = /,'27.5tdf 

obtaining the position as a function of time during the first 4 s: 

s = 13.752 ft 

At t = 48, the position is s=13.75(4)'=220ft. 
From t = 4 to t = lOs, the velocity is constant. The distance travelled is 

(\ \0 ft/s)(6 s) = 660 ft 

The total distance the animal travels is 220 + 660 = 880 ft, or 268.2 m in lOs. 

Second Method We draw a graph of the animal's velocity as a function of 
time in Figure (a). The acceleration is constant during the ftrst 4 s of motion, so the 
velocity is a linear function of time from v = 0 at t = 0 to v = llOftjs at t = 4s. 
The velocity is constant dming the last 6 s. The total distance covered is the sum of 
the areas during the two phases of motion: 

\ 
2(4 s)(11 0 ft/s) + (6 s)(11 0 ft/s) = 220ft = 880ft 

Area equals the distance 
Lmvdcd from t:::: 0 to t 10 s. 

f, seconds 

(0) The cheetah's velocity as a function of time. 

DISCUSSION 

Notice that in the first method we used definite, rather than indefinite, integrals to 
determine the cheetah's velocity and position as functions of time. You should 
rework the example using indefinite integrals and compare your results with ours. 
Whether to use indefinite or definite integrals is primarily a matter of taste, but you 
need to be familiar with both procedures. 
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Figure 2.10 

Suppose that the aCC.le~ation of the train in Figure 2.10 during the interval of time 
from 1= 2 s to 1= 4s * a = 2Im/,'. and at t = 2 s its velocity is ,,= 180 km/hr. 
What is the train's velJcity at t = 4 s, and what is its displacement (change in 
position) from t = 2 s td t = 4 s? , 

STRATEGY 

We can integrate Equations (2.3) and (2.4) to determine the train's velocity and , 
position as functions ofitime. 

SOLUTION 
II 

The velocity at (=28 i~lterms ofm/s is 

II (1000m) (1 hr ) 180km/hr~ 180km/hrx lkm x 3600. =50m/s 

II 

We write Equation (2.4) "as 

dv = adt =j 21dt 

and integrate, introducin$ the condition v = 50 m/s at t :::: 2 s; 

rdv= rl 2tdt 150 Jz 
Evaluating the integrals, ~'e obtain 

v = i' + 46m/s 

Now that we know the v~locilY as a function of lime, we wrile Equation (2.3) as 

ds=vdt=Kt'+46)dt 

and integrate, defining th~ position of the train at t = 2 s to be s = 0: 

2 ]II 

( ds = /, Ii' +46) dl 
Jo , ,I 

The position as a functio1 of time is 

Using our equations for 1$e velocity and position, the velocity at t = 4 s is 

v = (4)' +4~ ~ 62m/s 

and the displacement frorrj t = 2 s to t = 4 s is 
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DISCUSSION 

The acceleration in this example is not constant. You must not try to solve such 
problems by using equations that are valid only when the acceleration is constant. 
To convince yourself. try applying Equation (2.11) to this example: set ao = 21m!". 
10 =28, and vo=50rn/s, and solve for the velocity at t=4s. 

The following problems Involve straight-line moflon. The 
time f Is In seconds unless otherwise stoted. 

2.1 The graph of the position s of a point as a function of time is 
a straight line. When t = 4 s. s = 24 m, and when t = 20 s, 
s = 72m. 
(a) Detennine the velocity of the point by calculating the slope of 
the straight line. 
(b) Obtain the equation for s as a function of time and use it to 

detennine the velocity of the point. 

2.2 The graph of the position s of a point of a milling machine as 
a function of time is a straight linc. When t = 0.2 s) s = 90 fIllIl. 
During the interval of time from t = 0.6 s to t = 1.2 S, the 
di~placement of the point is 111'> = - 180 mm. 
(a) Detennine the equation for s as a function of time. 
(b) What is the velocity of the point? 

P2.2 

2.3 The graph of the velocity 11 of a point as a function of time 
is a straight line. When 1=2s, v=4m!s, and when 1=4s, 
v = -IOm!s. 
eaJ Detennine the acceleration of the point by calculating the slope 
of the straight line. 
(b) Obtain the equation for v as a function of time and use it to 
detcnnine the acceleration of the point. 

2.4 The position of a point is s = (2r - 10) m. 
(a) What is the displacement of the point from 1 0 to 1 = 4s" 
(b) What are the velocity and acceleration at 1 = O? 
(c) What are the velocity and acceleration at 1 = 4 s? 

2.5 A rocket stans from rest and travels straight up. Its height 
above the ground is measured by radar from 't = 0 to t = 4 s and is 
found to be approximated by the function" '" 1 Or m. 
(a) What is the displacement during this interval of time'? 
(b) What is the velocity at I = 4 s? 
(c) What is the acceleration during the first 4 s? 

i; , 
i 

P2.5 

2.6 The position of a point dUting the interval oftime from t = 0 
to t = 65 is s = (_~t3 + 612 +41)m. 
(a) What is the displacement of the point during this interval of 
time? 
(b) What is the maximum velocity during this interval oftitne, and 
at what time does it occur? 
(c) What is the acceleration when the velocity is a maximum? 
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2.7 The position of a point during the interval oftimc from 1 ~ 0 
to 1 = 3 s is s = C 12 + 5r - ,') m. 
(a) What is the maximum velocity during this interval of time, and 
at what time does it occur? 
(b) What i~ the acceleration when the velocity is a maximum? 

2.8 A seismograph measures the horizontal motion of the growld 
during an earthquake. An engineer analysing the data detennines 
that for a lOs interval of time beginning at t = 0, the position is 
approximated by s = 100 cos(2nl) mm. What arc the Ca) maximum 
velocity and (b) maxhmun acceleration of the ground during the 
lOs interval? 

2.9 During an assembly operation, a robot's arm moves along a 
straight hne. During an interval of time from t :::::::: 0 to t = 1 S, its 
position is given by s = (75r -SOr') mm. Detennine, during this I s 
intervaL (al the displacement of the ann; (b) the maximum and 
minimwn values of the velocity; (c) the maximum and minimum 
values of the acceleration. 

P2.9 

2.10 In a test of a prototype car, the driver starts the car from rest 
at t = 0, accelerates, and then applies the brakes. Engineers 
measuring the position of the ear find that from t = 0 to t = 18 s 
it is approximated by s=(1.5t'+0.1i' O.006t4)m. 
(a) What is the maximum velocity, and at what time does it occur? 
(b) What is the maximum acceleration, and at what time does it 
occur? 

• 
P2.10 

2.11 ii' uppose you wan. t to approximate the position of a vehicle 
you are testing by the power series s = A + Sf + CI' + Di', where 
A, B, C and D arc constants. The vehicle starts from rest at t = 0 
and ,/,0. At 1 = 4.,,, = 54m and at t = 8s" = 136m. 
(a) Dctknnine A. B. C and D. 
(b) WJJ~t are the approximate velocity and acceleration of the 
vehiclellat t= 8 s? 

2.12 fhe acceleration of a point is a=20tm/s2
• When t = 0, 

s=40rl, and v=-lOm/s. What are the position and velocity at 
" t = 3 s~i 

2.13 he acceleration of a point is a = (60, 361') m/s'. When 

t = 0, 'il= 0 and v = 20 m/s. What are the position and velocity as 
functio*s of time? 

2.14 uppose that during the preliminary design of a car, you t' assume !its maximum a.cceleration is' approximately constant. What 
constant acceleration is necessary if you want the car to be able to 
acceler~te from rest to a velocity of 88 km/hr in lOs? 'What 
distanc~ would the car travel during that time? 

II 

2.15 ~n entomologist estimates that a flea l,mm in length attains 
a velocity of 1.3 m/s in a distance of one body length when 
jumpin~. What constant acceleration is necessary to achieve that 
veloci~r! 

P2.15 



2.16 Missiles designed for defence against ballistic missiles 
achieve accelerations in excess of 100 g's or one hundred times 
the acceleration of gravity. If a missile has a constant acceleration 
of 100 g's, how long does it take to go from rest to 96 km/hr'l What 
is its displacement during that time? 

P2,16 

2.17 Suppose you want to throw some keys to a friend standing 
on a first-floor balcony, If you release the keys at 1.5 m above the 
ground, what vertical velocity is necessary for them to reach your 
friend's hand 6 m above the ground? 

2,18 The Lunar Module descends toward the surface of the moon 
at 1 m/s when its landing probes) which extend 2 ttl below the 
landing gear, touch the surface, automatically shutting off the 
engines. Determine the velocity with which the landing gear 
contacts the surface. (The acceleration due to gravity at the surface 
of the moon is 1,62 m/s'.) 

P2.IS 
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2.19 Tn 1960 R. C. Owens of the Baltiinore Colts blocked a 
Washington Redskin, field goal attempt by jumping and knocking 
the ball away in front of the cross bar at a point 3.35 m above the 
field. If he was 1.90m tall and could reach a.36m above his head, 
what was his vertical velocity ali he left the ground? 

2,20 The velocity of a bobsled is v=3tm/s. When t = 28, it, 
position is s = 7.5m, What is its position when t = lOs? 

P2,20 

2.21 The acceleration of an object is a={10 - 21)m/,'- When 
0, s = 0 and v = 0, What is its maximum velocity during the 

interval of time from t = 0 to t = lOs? 

2.22 The velocity of an object is v = (200 - 2(') m/s. When 
l = 3 s, its position is s = 600 II1. What arc the position and 
acceleration of the objecl at t = 68? 

2.23 The aeceicration of a part undergoing :l machining opera­
tion is measured and determined to be a = (12 - 61) mm/s'. When 
t = 0, v = D. For the interval of time from t == 0 to t = 4 s, 
determine: (a) the maximum velocity; (b) the displacement. 

2.24 The missile shown in Problem 2.16 starts from rest and 
accelerates straight up for 3 s at 100 g's, After 3 s, its weight and 
aerodynamic drag cause it to have a constant deceleration of 4 g's. 
How long does it take the missile to go from the ground to an 
altifilde of 15240 m'l 

2.25 A car is traveling at 48 km/hr when a traffic light 90 m 
ahead turns amber. The light will remain amber for 5 s before 
turning red. 
(a) What constant ac.celeration will cause the car to reach the light 
at the instant it films red, and what will the velocity of the car be 
when it reaches the light? 
(b) If the driver decides not to try to make the light, what constant 
rate of acceleration will cause the car to corne to a stop just as it 
reaches the light? 

30 mi/hr Driver', - [ .• vlew...--

, 
~~~--~--~----~~, 

I------~~~· 295 ft 
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2.26 At t = 0, a motorist travelling at 100 km/hr sees a deer 
standing in the road 100m ahead. After a reaction time of 0.3 s, he 
applies the brakes and decelerates at a constant rate of 4m/s2, If 
the decr takes 5 S ITom t = 0 to react and leave the road, docs tho 
motorist miss him? 

2.27 A high-speed rail transportation system has a top speed of 
100m/so For the comfort of the passengers, Ole magnitude of the 
acceleration and deceleration is limited to 2m/s2

, Determine the 
minimum time required for a trip of lOOkm. 

Strategy: A graphical approach can help you solve this problem. 
Reeall that the change in the position ITom an initial time to to a 
time t is equal to the arca defined by the graph of tho velocity as a 
function of time from to to t. 

P2.27 

2.28 Thc noarcst star, Proxima Centauri. is 4.22 light years ITom 
the ealth. Ignoring relative motion between the solar system and 
Proxima Centauri! suppose that a spacecraft accelerates from the 
vicinity of the earth at 0.0 I g (0.0 I times the acceleration due to 
gravity at sea level) until it reaches one-tenth the speed of light, 
coasts until time to decelerate, then decelerates at 0,01 g tUltii it 

comes to rest in the vicinity of Proxima Centauri. How long does 
the trip take? (Light travels at 3 x IO'm/s. A solar year is 
365.2422 solar days.) 

2.29 A racing car starts ITom rest and accelerates at 
a=(1.5 + 0.61) m/s2 for lOs. The brakes are then applied, and 
the car ha."I a constant acceleration a = -9 m/s2 until it comes to 
rest. Determine: (a) the maximum velocity; (b) the total distance 
travelled; (c) the total time of travel. 

2.30 When' = 0, the pooition of a point is s = 6 m and its 
velocity is v=2m/s. From t = 0 to t = 65, its acceleration is 
a = (2 + 2r)m/s2

, From t = 6 s until it comes to rest, its acce1era­
tion is a = -4 O1/s2, 
(a) What is the total time of travel? 
(b) What tola1 distance docs it move? 

2.31 Zoologists studying the ecology of the Screngcti Plain 
estimate that the average adult cheetah can run 100 km/hr and 
the average springbok can run 65 km/hr. If the animals nm along 
the same straight line, stalt at the same time, and are each assumed 
to have constant acceleration and reach top speed in 4 s, how close 
must a cheetah be when the chase begins to catch a springbok in 
15 s7 

II 
2.32 ~uppose that a person unwisely drives at 120 km/hr in an 
80km/~r zone and passes a police car going at 80km/hr in the 
same ditection. If the police offiCt"J'Sl begin constant acceleration at 
the insu{nt they are passed and increase their velocity to 130 km/hr 
in 4 s, hbw long does it take them to be level with the pursued car? 

II 

II 
2.33 If $= 1 rod and dO/dt= 1 rad/s, what is the velocity of P 

" relative ~o O? 
Strategj!: You can write the position of P relative to 0 as 

s = (2m)00sO + (2m) cos 0, 

then t:ai\b the derivative of this expression with respect to time to 
detenni*e the velocity. 

P2.33 

'I 
2.34 I~ Problem 2.33, if O=lrad, dO/dt=-2rad/s and 
d'O/dt'I=0, what are the velocity and acceleration of P relative 
to 0'1 

II 

2.35 If e = 1 rad and dO/dt = I rad/s, what is the velocity of P 
relative io 01 

P2.35 



Acceleration Specified as a Function of Velocity Aerodynamic and 
hydrodynamic forces can cause an object's acceleratioo to depend on its 
velocity (Figure 2.11). Suppose that the acceleration is a known function of 
velocity a(v); 

dv 
- = a(v) dt . (2.14) 

Figure 2.11 
Aerodynamic and hydrodynamic 
forces depend on an object's 
velocity. The faster the object 
moves relative to the 

2.2 STRAIGHT-LINE MOTION 31 

fluid, the greater is the force resisting its 
motion. 

We cannot integrate this equation with respect to time to determine the 
velocity, because a( v) is not known as a function of time. But we can separate 
variables, putting terms involving v on one side of the equation and terms 
involving t on the other side; 

dv 
-=dt 
a(v) 

We Can now integrate 

i'dV 1t -- dt 
"' a(v) - to 

(2.15) 

(2.16) 

where .0 is the velocity at time to. In principle, we can solve this equation for 
the velocity as a function of time, then integrate the relation 

ds 
-=v 
dt 

to determine the position as a function of time. 
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By using the chain ru\:e. we can also determine the velocity as a function of 
the position. Writing thell acceleration as 

II 

dv dvds..J dv 
dt = dsdt --r ds v 

and substituting it into I1huation (2,14), we obtain 

dv 
~v = at,,) 
ds 

Separating variables, 

vdv 
-=ds 
a(v) 

and integrating, 

r vdv 

J" a(v) 

we can obtain a relation ~etween the velocity and the position. 

Acceleration Specif)~d as a Function of Position Gravitational 
forces and forces excrte~ by springs can cause an object's acceleration to 
depend on its position, r~ the acceleration is a known function of position, 

dv 
dt = a(s) (2,17) 

we cannot integrate with ~espect to time to determine the velocity because s is 
not known as a functio~ of time. Moreover, we cannot separate variables, 
because the equation cont~ins three variables, v, t and s. However, by using the 
chain rule .. 

dv dvdsdv 
-=--=--v 
dt ds dt ds 

we can wnte Equation (2i 17) as 

dv 
~v = a(s) 
ds 

:1 

Now we can separate variables, 

vdv = a(s)ds' 

and integrate: 

r 'vdv = [(1(S) ds lvo So 

(2.18) 

(2.19) 



In principle, we can solve this equation for the velocity as a function of the 
position: 

ds _ () 
v = -v s 

dt 
(2.20) 

Then we can separate variables in this equation and integrate to detennine the 
position as a function of time: 

-= dt £. ds l' 
'" v(s) '0 

The next two examples show how you can analyse the motion of an object 
when its acceleration is a fanction of velocity or position. The initial steps 
are summarized in Table 2.1. 

Table 2.1. Dctcnnining the velocity when you know the 
acceleration as a function of velocity or position. 

If you know a - a(v): 

If you know a - a(s): 

Separate variables, 

dv 
dt - a(v) 

dv 
-=dt 
a(o) 

or apply the chain rule, 

dv d1)ds dv . 
-=--=-v_a(v) 
dt ds dt ds 

then separate vaIiables, 

vdv 
--=ds 
a(v) 

Apply the chain rule, 

dv dvds dv 
dt = J;di ·······v 

ds 

then separate variables! 

vdv = a(s)ds 

a(s) 
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Figure 2.12 

A fter deploying its dral! parachute, the aeroplane in Figure 2,12 has an accelemtion 
a = -0,004.' mis, ii 
(a) Determine the time required for the velocity to decrease from 80m/s to lOm/s, 
(b) What distance do"" the plane cover during that time? 

STRATEGY 
In pan (b), we will u~c the chain rule to express the acceleration in tenns of a 
derivative with respect!1 to position and integrate to obtain a relation between the 
velocity and the positiqIl. 

SOLUTION 
(a) The acceleration is" 

dv, , 
a = = -0,004v­

dt 

We separate variables, 

dv , = -O,Q04dt 

and integrate, defining!~ = 0 to be the time at which v = 80m/s: 

r ~' = I:' , -O,004dt 19o ,0 

!i 

Evaluating the integral~ and solving for t, we obtain 
II 

t=250(L~) 
" 80 



The time required for the plane to slow to l' = lOm/s is 21.9s. We show the 
velocity of the aeroplane as a function of time in Figure 2,13, 

XI ) 
Figure 2.13 
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I Graph of the aeroplane's velocity as a 
function of time, 
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(b) We write the acceleration as 

i 

I 

i -.. I 
I 

! 

IU 15 

r, seconds 

dv dvds dv 2 
a = - = -- = -11 = -0.004,) 

dt d" dt d" 

separate variables, 

, 

20' 25 
21.9 

and integrate. defining s ~ 0 to be the position at which v ~ 80m/s: 

Ldp [ - = -O.004ds 
80 Ii 0 

Evaluating the integrals and solving for s, we obtain 

s = 250 InC:) 
The distance required for the plane to slow to v = lOm/s is 519.9m. 

DISCUSSION 

30 

Notice that our results predict that the time elapsed and distance travelled continue 
to increase without bound as the aeroplane's velocity decreases. The reason is that 
the modelling is incomplete. The equation for the acceleration includes only 
aerodynamic drag and does not account for other forces, such a~ friction in the 
aeroplane's wheels, 

" 
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Figure 2.14 

In terms of distance oS' ~m the centre of the earth, the magnitude of the acceleration 
due to gravity is gR~/~·l. where RE is the. radius of the earth. (See thc discussion of 
gravity in Section 1.3.)1 If a spacecraft is a distance So from the centre of the earth 
(Figure 2.14), what ou ard velocity Vo must it be given to reach a specified distance 
h ~ . II 

,rom the centre of th¢ earth? 

SOLUTION 

The acceleration due t~: gravity is towards the centre of the earth: 

gR' 
a=-~ 

s '! 

Applying the chain rul~, 

dti ~vds dv gR~ 
a =-=t---~- =~v=~-

dt lis dt as ,2 

and separating variable~, we obtain 

R' vdv=-~{lS' 
~.2 

We integrate this equation using the initial condition, 'I) = ·v() when s = So, as the 
lower limits, and the fi~al condition, v : 0 when s = h, as the upper limits: 

Evaluating the integralS and solving for 1)(), we obtain the initial velocity Vo 
necessary for the spacc~raft to reach a distance h: 

~ 1 I) 
Vo = 2gR~ r - -h 

:~() 

DISCUSSION 

We can make an interesting and important observation from the result of this 
example. Notice that as:1 the distance h increases, the necessary initial velocity Vo 
approaches a tinite limi~, This lunit, 

, . ::1 tgRf; 
Ve~c = 1ml Vo;;;:::: --

h-+c4 So 

is called the escape ve~~city. In the absence of other effects~ an object with this 
initial velocity will co~tinuc moving outwards indefinitely. The existence of an 
e<cape velocity makes lit feasible to send probes and pCTRons to other planets. 
Once escape velocity is ~ttained, it isn't necessary to expend additional fuel to keep 
going. 



2.36 The acceleration of an object is a = -2v m/s2. When t = 0, 
s = 0 and v = 2 m/s. Determine the object's velocity as a function 
of time. 

2.37 In Problem 2.36, detenninc the object's position as a 
fUllction of time. 

2.38 The boat is moving at 20 mls when its engine is shut down. 
Due to hydrodynamic drag, its acceleration is a = -0.1 J' m/s'. 
What is the boat's velocity 2 slater? 

P2.38 

2.39 In Problem 2.38, what distance does the boat move in the 
2 s following the shutdown of its cngine? 

2.40 A ~leel ball is released from rest in a container of oil. Its 
downward acceleration is a = O.9g - Ct), where g is the accelera­
tion due to gravity at sea level and c is a constant What is the 
velocity of the ball as a nmction of time? 

P2.40 

2.41 In Problem 2.40. determine the position of thc ball relative 
to its initial position as a function of time. 
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2.42 The greatest ocean depth yet discovered is in the Marianas 
Trench in the western Pacific Ocean. A steel ball released at the 
surface requires 64 min to reach the bottom. The ball's downward 
acceleration is a '" 0.9 g - cv. where g is the acceleration due to 
gravity at sea level and the constant<.-' = 3.028-1, What is the depth 
of the Marianas Trench in kilometres? 

2.43 To study the effects of meteor impacts on satellites. engi­
neers use a rail gun to accelerate a plastic pellet to a high velocity. 
They determine that when the pellet has travelled I m from the gun, 
its velocity is 2.25 ktn/s, and when it has t\jlvelled 2 m from the 
gUll, it. velocity is 1.00 kmls. Assume that the acceleration of the 
pel1et after it leaves the gun is given by a :: -c"?; where c is a 
constant 
(aJ What is the value of c, and what are its Sf units? 
(b J What was the velocity of the pe][et as it left the rail gun? 

P2.43 

2.44 If aerodynamic drag is taken into account, the acceleration 
of a falling object can be approximated by a = g - cJ, where g is 
the acceleration due to gravity at sea level and c is a constant. 
(a) If an object is released from rest, wha,t is its velocity as a 
function of the distance s from the point of release? 
(bJ Deteonine the limit of your answer to part (aJ as c...,. 0, and 
show that it agrees with the solution you obtain by assuming that 
the acceleration a == g, 
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2.45 A sky diver jumps from a helicopter and is falling straight 
down at 30m/s when her parachute opens. From then on, her 
downward acceleration is approximately a = g - cv2, where 
g = 9.81 m/s2 and c is a constant. After an initial 'transient' 
period, she descends at a nearly constant velocity of 5 m/s. 
(a) What is the value of c, and what arc its SI units? 
(b) What maximum deceleration is she subjected to? 
(c) What is her downward velocity when she has fallen 2 m from 
the point where her parachute opens'? 

P2.45 

2.46 A rocket sled starts from rest and accelerates at 
a = 31' mis' until its velocity is 1000 m/s. It then hits a water 
brake, and its acccicI"dtion is a = -O.OOIt? m/s until its velocity 
decreases to 500 m/s. What total distance does the sled travel? 

2.47 The velocity of a point is given by the equation 

v = (24 - 2,,')'/2 mls 

What is its acceleration when s = 2 m? 

P2.46 

2.48 'jrhe velocity of an object subjected to the earth's gravita­
tional tlcld is 

I! 

Ii [ (1 1)]'/2 
, li= vi+2gR~;-.;;; 

where 13 is the velocity at position So and RE is the radius of the 
earth, W,sing this equation, show that the object's acceleration is 
a = -gRV? 

2.49 ~ngineers analysing the motion of a hnkage deteonine that 
the vel&city of an attachment point is given by v = (A + 48') mis, 
where 1 is a constant. When s = 2 m, its acceleradon is measured 
and ddennined to be a = 320 m/s2 Whal is its velocity when 

II 
s = 2l1j? 

2.50 kc acceleration of an object is given by the function 
a = 2sj\;i,'- When t ~ O. v = I m/s. What is the velocity when 
the objJct has moved 2 m from its initial position? , 

2.51 he acceleration of an object is given by a = 3s'm/s'. At 
s = 0, I~t~~ velocity is 'v = 10m/s, What is its velocity when 
s = 4rrf? 

il 

'I 
2.52 lfhc velocity of ao object is given by,? = kl s, where k is a 
constant. If r 4 mls and s = 4 Tn at t == 0, detennine the constant 
k and t~e velocity at t = 2 s. 

2.53 ~ spring-ma.<>s oscillator consists of a mass and a spring 
connect~d as shown. The coordinate s measures the displacement 
of the mass relative to its position when the spring is unstretched. If 
thc spring is linear, the mass is subjected to a deceleration 
proport(bnal to s. Suppose that a = -4sm/s2 and that you give 
the mas~ a velocity v = 1 mls in the position s = o. 
<a) HO~ lar will the mass move to the rigltt before the spring 
brings il to a stoP? 
(b) Whitt will he the velocity of the mass when it has returned to 
the position s == O? 

P2.53 



2.54 In Prblem 2.53, suppose that at t = 0 you release the mass 
from rest in the position s = 1m. Detennine the velocity of the 
mass as a function of s as it moves from thc initial position to 
s= O. 

2.55 In Problem 2.53, suppose that at t = 0 you release the mass 
from rest in the position s = I m. Detennine the position of the 
mass as a function of time as it moves from its initial position to 
s= O. 

2.56 If a spacecraft is 160 km above the surface of the earth, 
what ittitial velocity Vo straight away from the earth would be 
required for it to reach the moon's orbit 383 OOOkrn from the centre 
of the earth? The radius of the earth is 6370km. Neglect the effect 
of the moon's gravity. (See Example 2.5.) 

P2.56 

2.57 The radius of the moon is RM = 1738 km. The acceleratton 
of gravity at its surface is 1.62 m/s'. If ao object is released from 
rest 1738 km above the surface of the moon, what is the magnitude 
of its velocity just before it impacts the surface? 

2.58 Using the data in Problem 2.57, detennine the escape 
velocity from the surface of the moon. (See Example 2.5.) 
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2.59 Suppose that a tuonel could be drilled straight through the 
earth from the North Pole to the South Pole and the air evacuated. 
An object dropped from the surface would fall with acceleration 
a = -gsj RE, where g is the acceleration of gravity at sea level, RE 
is the radius of the earth, and s is the distance of the object from the 
centre of the earth. (Gravitational acceleration is equal to zero at 
the centre of the earth aod increases linearly with distaoce from the 
centre,) What is the magnitude of the velocity of the dropped object 
when it reaches the centre of the earth? 

N 

...-_Tunnel 

s P2.S9 

2.60 The acceleration of gravity of a hypothetical two-dimen­
sional planet would depend upon the distance s from the centre of 
the planet according to the relation a = -kJs, where k is a 
constant. Let the radius of the plaoet be RT and let the magnitude 
of the acceleration due to gravity at its surface be gr, 
(a) If an object is given an initial Qutward velocity Vo at a distance 
SD from the centre of the planet. detennine its velocity as a function 
of s. 
(b) Show that there is no escape velocity from a two~dimensional 
planet, thereby explaining why we have never been visited by any 
two-dimensional beings. 

P2.60 
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_________ 2_._3_C_u_rv,_il�_·n+--:earlv!o~tl_·o_n~ _____ _ 
If the motion of a poinl is confined to a straight line, its position vector r, 
velocity vector v and a~cc1eration vector a are described completely by the 
scalars, s, v and a, respectively. We know the directions of these vectors 
because they are parallel to the straight line. But if a point describes a 
curvilinear path, we mtist specify both the magnitudes and directions of these 
vectors, and we require ~ coordinate system to express them in terms of scalar 
components. Although the directions and magnitudes of the position, velocity 
and acceleration vector* do not depend on the coordinate system used to 
express them, we will s~ow that the representations of these vectors are dil~ 
ferent in different coor4inate systems. Many problems can be expressed in 
temlS of cartesian coordinates, but some situations, including the motions of 
satellites and rotating m~chines, can be expressed more naturally nsing other 
coordinate systems. In i! the following sections we show how curvilinear 
motions of points are adaIysed in telll1S of various coordinate systems. 

Cartesian Coordinates 
Let r be the position vJctor of a point P relative to a reference point O. To 
express the motion of P ~ terms of a cartesian coordinate system, we place the 
origin at 0 (Figure 2.15) I so that the coraponents of r are the x, y, z coordinates 
ofP: . 

Figure 2.15 
A cartesian coordinate system with itA origin 

at the reference point O. 

r=xi+yjltzk 

)' 

(x,)', z) 

~~~----------x 

Assuming that the coordinate system does not rotate, the urlit vectors i, j and k 
are constants. (We will discuss rotating coordinate systems in Chapter 6.) Thus 
the velocity of P is 

(2.21) 

Expressing the velocity in terms of scalar components, 

v = Vx i + vyj + Vz k (2.22) 



we obtain scalar equations relating the components of the velocity to the 
coordinates of P: . 

dx 
vx=~ 

dl 

The acceleration of P is 

dy 
v -­
Y - dt 

dz 
v~­

Z - dt 

dv dvx. dVYj dV'k a=-=-I+- +-
dt dt dt dt 

(2.23) 

and by expressing the acceleration in terms of scalar components, 

we obtain the scalar equations 

dvv 
Qy =:::-' 

dt 
dvz 

a -­
Z - dt 

(2.24) 

(2.25) 

Equations (2.23) and (2.25) describe the motion of a point relative to a 
cartesian coordinate system. Notice that the equations describing the motion in 
each coordinate direction are identical in form to the equations that describe 
the motion of a point along a straight line. As a consequence, you can often 
analyse the motion in eacb coordinate direction using the methods you applied 
to straight-line motion. 

The projectile problem is the classic example of this kind. If an object is 
thrown through the air and aerodynamic drag is negligible, it accelerates 
downwards with the acceleration due to gravity. In terms of a cartesian COOf­

dinate system with its y axis upwards, the acceleration is ax = 0, ay -g, 
a, = O. Suppose that t = 0, the projectile is located at the origin and has 
velocity vo in the x-y plane at an angle eo above the horizontal (Figure 
2.16(a)). 

Figure 2.16 
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y 
(a) Initial conditions for a projcctlle pl'Oblern. 

1--1 ______ .< 
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At t = 0, x = 0 an4 Vx = VO cos 80• The acceleration in the x direction is 
zero, 

dvx 
ax,=-' =0 

dt 

so Vx is constant and ¢mains equal to its initial value: 

dx 
'Vx = - = :Po cos 00 dt 

, 

(2.26) 

(This result may seem ~nrealistic; the reason is that your intuition, based upon 
everyday experience, ;:accow1!S for drag, whereas this aoalysis does no!.) 
Integrating this equatit!)n, 

1X dx = A' Vo cos Go dt 

we obtain the x coordiihate of the object as a function of time: 

x = vo cos Oot (2.27) 

Thus we have dete~ed the position aod velocity in the x direction as 
functions of time with6ut considering the motion in the y or z directions. 

At t = 0, Y = 0 an" Vu = Vo sin 00 • The acceleration in tbe y direction is 

'I 
dvy , 

ay=-=-g 
dt 

Integrating with respe¥ to time, 

we obtain 

dy , Ii vy=-=vosm o-gt 
dt 

Integrating this equati<!)n, 

f dy = A' (vo sin eo - gt) dt 

we find that the y coofdinate as a function of time is 

y = vo sin Qot - ~gf2 

(2,28) 

(2.29) 

You cao see tram this Falysis that the same vertical velocity aod position are 
obtained by throwing ~e projectile straight up with initial velocity Vo sin 00 
(Figures 2,16(b), 2.16\c)), The vertical motion is completely independent of 
the horizontal motion. ,I 
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y Figure 2.16 

.. /' 

=1 
(b) Positions of the projectile at equal time 
intervals /It. The distance ill: = Va cos OoAt. 
(e) Positions at equal time intervals At of a 
projectile given an initial vertical velocity 
equal to Vo sin 00. 

;( 
v'~ 

x { ~'-v--''-v--'~'--..-' 
£.1x Llx .1x .1.\ !1x 

(b) (c) 

By solving Equation (2.27) for t and substituting the result into Equation 
(2.29), we obtain an equation describing the parabolic trajectory of the 
projectile: 

y = tau80x g ,Xl 
2'~ cos2 00 

(2.30) 

In the following example we discass a situation in which you can U,.e 
Equations (2,23) and (2,2:;) to determille the motion of an object by 
analysing each coordinate direction independently. 
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During a le,t flight ih which a helicopter starts from rest at I = 0 (Figure 2.17), 
accelerometers mountbd on board indicate that its components of acceleration from 
I = 0 to t = lOs are ~losely approximated by 

ax = o.~tm/s2 
ay = (i,,8 O.36t)m/,' 

at = 0 

Determine the helico~tcr's velocity and position as functions of time. 

Figure 2.17 y 

L. ___ . _____ x 

STRATEGY 

We can analyse the ~otion in each coordinate direction independently, integrating 
the acceleration to ~etennine the velocity and then integrating the velocity to 
detertnine the positio6. 

SOLUTION 

The velocity is zero "at i = 0, and we assume that x ::::::: y = Z :: 0 at t = O. The 
acceleration in the x ~irection is 

dvx,' 2 
a., = -;F = O.6Im/s 

Integrating with respdpt to time, 

1', j.t 
dv" ~ 0.61 df 

o I> 
, 

we obtain the veloci~ component t.'x as a function of time: 

dx 2 
V = - lb 0.31 m/s 

j' dt" 

Integrating again, 

r dx = r' 0.3~ dl io ..}I) 



we obtain X as a function of time: 

x=O.lt'm 

Now we analyse the motion in the y direction in the same way, The acceleration is 

d1.y ") 
Oy = -d = (1.8 - O,36t)m/s' . I 

Integrating, 

f dvy = {(l.8 -O.36t)dt 

we obtain the vc10cityj 

dy " 
11)' = dt = (1.8t- O.18r)m/s 

I ntegrating again, 

r f' Jo dy = Jo (1.81 O.18r2) dt 

we detennine the position: 

y = (0,91' 0,061') m 

You can easily show that the z components of the velocity and position are Vi: = 0 
andz = O. We show the position ofthe helicopter as a function of time in Figure (a). 

t = 8 s 

~-----_-:c'-_---____ :-'--__ x 

o SOm 100m 

(CI) Position of the hell copter at 2 s intervals. 

DISCUSSION 

This example demonstrates how the inertial navigation systems used in commercjal 
aeroplanes and ships work. They contain accelerometers that measure the x, y and z 
components of acceleration. (Gyroscopes maintain the alignments of the acceler~ 
ometers.) By integrating the acceleration components twice with respect to time, the 
systems compute changes in the x, y and :z coordinates of aeroplane or ship, 
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:2.61 The cartesian coordinates of a point (in metres) are 
x = 21 + 4,y = I' - 21, z = 4" 4, where t is in seconds, What 
are its velocity and acceleration at t = 4 s? 

t·jtrategy.' Since the cartesian coordjnates are given as fWlctions 
oftimc~ you can use Equations (2.23) to determine the components 
of the velocity as functions of time and then use Equations (2.25) 
to dctcnnine the components of the acceleration as functions of 
time. 

2,62 The velocity of a point is v = (2 i + 3t' j) mis, At t = 0 its 
position is r ~ -i + 2 j (m), What IS its position at t = 2 s? 

2,63 The acceleration components of a point (in m/") are 
ax:;:;: 3t2• ay ;;;;;; 6t and az = O. At t = 0, x = 5 Ol, Vx = 3 mis, 
y = 1m, fly = -2 mis, z = 0 and tlz ;;;;;; 0. What are its position 
vector and velocity vector at t = 3 s? 

2.64 The acceleration components of an object (in rn/s2) are 
ax = 2t, a)' = 4t2 - 2 and az = -6, At t;;;:; 0 the position of the 
object is r = (10 j - 10 k) m and its velocity is v = (2 i - 4 j) mis, 
Dctcnnine its position when t = 4 s. 

2.65 Suppose you are designing a mortar to send a re8CUC line 
from a Coast Guard boat to ships in distress, The line is attached to 
a weight that is fired by the mortar. The mortar is to be mounted so 
that it fires at 45 11 above the horizonlal if YOli neglect aerodynamic 
drag and the weight of the line for your preliminary design and 
assume a muzzle velocity of 30 m/s at t = 0, what arc the x and y 
coordinates of the weight as functions of timc? 

P2,65 

2.66 In Problem 2.65, what mustt.~he mortar's muzzle velocity be 
to rcach ships 300 m away? 

2,6~ If a stone IS thrown horizontally from the top of a 30 m tall 
bui14ing at 15m/s, at what horizontal distance from the point at 
whh!h it is thrown doe, it hit the ground? (Assume level ground.) 
Wlli\\ is the magnitude of its velocity just before it hits? 

, , , , , 
, , , , , , 

\ 
\ 

\ 
\ 

\ 

2.68 A projectile is launched from ground lcvel with an initial 
velo~ity Yo, What initial angle Hu above the horizontal causes the 
TanKe R to be a maximum, and what i!{ the maximum range? 

--



2.69 A pilot wants to drop supplies to remote locations in the 
Australian outback. He intends to fly horizontally and release the 
packages with no vertical velocity. Derive an equation for the 
horizontal dislance d at which he should release the package in 
terms of the aeroplane's velocity "" and altitude h. 

P2.69 

2.70 A batter strikes a baseball at I m above home plate and pops 
it up at an angle of 60° above the horizontal. The second baseman 
catches it at 2 m above second base. What was the ball's initial 
velocity? 

P2.70 

2.71 In Problem 2.70, how high above the field did the ball go? 
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2.72 A baseball pitcher releases a fastball with an initial velocity 
Vo = 145 km/hr. Let e be the initial angle of the ball's velocity 
vector above the horizontal. When it is released, the ball is 1.83 m 
above the ground and 17.68m from the ba~er's plate. The batter's 
strike zone (between his knees and shoulde1"s) extends from 0.56 m 
above the ground to 1.37 m above the graund. Neglecting aero. 
dynamic effects. detennine whether ihe ball will hit the strike zone: 
(a) if 0 = 1'; (b) if 0 ; 2'. 

2.73 In Problem 2.72, assume that the pil\'her releases the ball at 
an angle 0 = 10 above the horizontal and determine the range of 
velocities Vo (in m/s) within which he mus! release the ball to hit 
the strike zone. 

2.74 A zoology graduate student is armed with a bow and an 
arrow tipped with a syringe of ttanquiljizer and assigned to 
mcas1,lre the temperature of a black rhinoceros (Diceros bicornis). 
The maximum range of his bow i$ 100 m. If a truculent rhino 
charges straight towards him at 30 km/hr and he aims his bow 20" 
above the horizontal, how far away should the rhino be when he 
releases the arrow? 

P2.74 
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2.75 The cliff divers of Acapulco, Mexico, must time their dives 
so that they cnter the water at the crest (high point) of a wave, The 
crests of the waves are 0.6 m above the mean water depth 
h = 3.6 ill and the horizontal velocity of the waves is w. The 
diver's aiming point is 2m out from the base of the cHf[ Assume 
that his velocity is horizontal when he begins the dive. 
(a) What is the magnitude of his: velocity in kilometres per hour 
when he enters the water? 
(b) How far from his aiming point should a wave crest be when he 
dives in order for him to enter the water at the crest? 

~, 
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P2.75 

2.76 A projectile is launched at 10mjs from a sloping surface. 
Dctenninc the range R. 

P2.76 

2.7711 A skier leaves a 20' slope at 15 mj,. 
(a) fetemline the distance d to the point where he lands. 
(b) etermine his components of velocity paJallel and perpendi­
cula, to the 450 slope when he lands. 

P2.77 

2.7$ At t = 0, a steel ball in a tank of oil is given a horizontal 
velocity v = 2 j m/s. The component of its acceleration in rn/52 are 
Ox ~ -1.2v.t.ay = -8 -1.2vy ,a,. = -L2v.;. What is the velocity 

of 11c ball at t = 1 s'l 

P2.78 

2.79 In Problems 2.78, what is the position of the ball at t = I, 
relative to its position at t = O'! 

2.SB You must design a dcvice for an assembly line that launchc, 
srn41 parts through the air into a bin. The launch point is 
x = ,;200 mm, Y = -50 mm, Z = -100 ffinl. (The y axis is vertical 
andiipositive upwards.) To land in the bin, the part!'; must pass 
throfgh the point x = 600 nunl Y = 200 rnm, z = 1 00 mm moving 
hOrl)ontally. Detenninc the components of velocity the launcher 

II. h must gIVe t e parts. 



2.81 If Y= 150 nun. dy/dt= 300 mm/s. and d2y/dfi =0, 
what are the magnitudes of the velocity and acceleration of point 
P? 

P2.81 

2.82 A car travels at a constant speed of 100 km/hr on a straight 
road of increasing grade whose vertical profile can be approxi­
mated by the equation shown. When the car's horizontal coordinate 
is X = 400 m, whal is its acceleration? 

v 

P2.82 

Angular Motion 

2.3 CURVILINEAR MOTION J 
2.83 Suppose that a projectile has the initial conditions shown i 
Figure 2.16(a). Show that in tenns of the x'y' coordinate syste 
with its origin at the highest point of the trajectory, the equation 
describing the trajectory is 

, g ( ,)2 
Y 2v~ coa2 eo x 

y 
y' 

P2.83 
L--_______ -L_

A
• 

2.84 The acceleration components of a point are 
Q;o; -4cos21,Uy=-4sin2t,az=O. At f=O its position and 
velocity are r = i, v = 2 j. Show that: (a) the magnitude of the 
velocity is constant; (b) the velocity and acceleration vectors are 
perpendicular; (e) the magnitude ofthe acceleration is constant and 
points towards the origin; (d) the trajectory of the point is a circle 
with its centre at the origin. 

We have seen that in some cases the curvilinear motion of a point can be 
analysed using cartesian coordinates. In the following sections we describe 
problems that can be analysed more simply in tenus of other coordinate 
systems. To help you understand our discussion of these alternative coordinate 
systems, we introduce two preliminary topics in this section: the angular 
motion of a line in a plane and the time derivative of a unit vector rotating in a 
plane. 

Angular Motion of a Line We can specifY the angular position of a line L 
in a particular plane relative to a reference line Lo in the plane by an angle e 
(Figure 2.18). The angular velocity of L relative to Lo is defined by 

[ ill = dO [ 
dt 

(2.31) 
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and the angular acce\~ration of L relative to Lo is defined by 

(2.32) 

The dimensions of tbeiiangular position, angular velocity and angular accel­
eration are radians (rad), rad/s and rad/s\ respectively. Altbough tbese 
quantities are often expressed in tcullS of degrees or revolutions instead of 
radians, you should co~vert tbem into radians before using them in calcula­
tions. 

Notice the analogy ~etween Equations (2.31) and (2.32) and tbe equations 
relating the position, v~locity and acceleration of a point along a straight line 
(Table 2.2). In each casp tbe position is specified by a single scalar coordinate, 
which can be positiv~ or negative. (ill Figure 2.18 the counterclockwise 
direction is positive.) Because the equations are identical in fonn, you can 
aualyse problems involting angular motion of a line by tbe same methods you 
applied to straight-line i;motion. 

TablelI2.2. The equations governing 
strai~t-line motion and the equations 
gove4ing the angular motion of 1). line 
arc id~"l1tical in form. 

S~ight.line motion Angular motion 

Rotating Un" Vector We have seen tbat the cartesian unit vectors i. j and 
k are constants providJd the coordinate system does not rotate. However, in , 
otber coordinate systers the unit vectors used to describe the motion of a 
point rotate as the pair' moves. To obtain expressions for the velocity and 
acceleration in such cOQrdinate systems, we must know the time derivative of a 
rotating lllit vector. 

We can describe thellangular motion of a unit vector e in a plane just as we 
described tbe angular nption of a line. The direction of e relative to a reference 
line Lo is specified by t*e angle e in Figure 2. 19(a), and the rate of rotation of e 
relative to Lo is specifi~d by the angular velocity 

dO 
W=-

dt 
II 

The time derivative of ie is defined by 
., 

de _ 1trn ~(t + /),/) - e(t) 
dt IIHO III 

Figure 2. 19(b) shows t~e vector e at time t and at time t + /),to The change in e 
during tbis interval is ~e = eCt + Ill) - e(t), and tbe angle tbrough which e 

Ii 



rotates is M = O(t + M) - 8(1). The triangle in Figure 2.19(b) is isosceles, so 
the maguitude of t.. is 

It.el = 21el sin(t.O/2) = 2 sin(M/2) 

To write the vector t.. in terms of this expression, we introduce a unit vector n 
that points in the direction of L\e (Figure 2.19(b)): 

t.e = It.eln = 2 sin(L\0/2) n 

In terms of this expression, the time derivative of e is 

de = lim t.e 
dl "t->O M 

1
. 2 sin(M/2) n 
1m 
M~O M 

To evaluate this limit, we write it in the form 

de = lim 'in(M /2) L\8 n 
dt "140 M /2 M 

In the limit as M approaches zero, sin(L\O/2)/(M/2) equals I, L\O/L\t equals 
dO/dt, and the unit vector n is perpendicular to e(t) (Figure 2.19(c)). Therefore 
the time derivative of e is 

de dO 
-=-n=wn 
dt dt 

(2.33) 

where n is a unit vector that is perpendicular to e and points in the positive 8 
direction (Figure 2.19(d»). In the following sections we use this result in 
deriving expressions for the velocity and acceleration of a point in different 
coordinate systems. 

(a) 
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Figure 2.19 
(a) A unit vector e and reference line 
Lo. 
Cb) Thc change .l. in • from t to t + .It. 
(e) As At goes to zero, n becomes 
perpendicular to e(t). 
(d) The time derivative of e. 

~--~----------------LO 

(b) 

de de 
-""-0""(1)0 
ill £It 

~=----------------- to ~ __ .J.::. _______________ to 

(c) ld) 
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Figure 2.20 
Introducing a line L and reference line Lo 

to specify the angular position of the 
rotor. 

Example 2.7 

The rotor of a iet engin~ is rotating at 10 000 rpm (revolutions per minute) when the 
fuel is shut off. The e~suing angular acceleration is O! ~ -0.02(0, where (J) is the 
angular velocity in !""ddt s. 
(a) How long does it take the rotor to slow to 11)00 rpm? 
(b) How many revolut~bns does the rotor turn while decelerating (0 1000 rpm? 

STRATEGY 

To analyse the angular'motion of the rotor, we define a line L that is fixed to the 
rotor and perpendicularlto its axis (Figure 2.20). Then we examine the motion of L 
relative to the referenceilline Lo. The angular position, velocity and acceleration of L 
define the angular moti'pll of the rotor. 

SOLUTION 

The conversion from qjm to cadIs is 

Ii • • (2nrad) (' min) I rpm = 1 revolutlOn/mm x ,. x"---O 
1 revo utlon I) S 

= (n/30) rad/s 



<aJ The angular acceleration is 

dOl 
" = - = -0.020l 

dl 

We separate variables, 

dm 
= -0.02dl 

w 

and integrate, defining t :::::: 0 to be the time at which the fuel is turned off': 

l
IOOOIt/)() dO) j.t 

-'" -O.02d! 
IOOOOn/l0 (j) 0 

Evaluating the integrals and solving for t, we obtain 

I", (_1_) In(1O 000n/30) = 115.1 
0.02 1000n/30 s 

(b) Wc write the angular acceleration as 

dw dO) de dOl 
• = -= -=~- =-OJ = -0.02w 

dt dO dl dO 

separate variables, 

<1m = -0.02 dO 

and integrate, defining () = 0 to be the angular position at which the fuel is turned 
olr: 

IIooon/3D 1," 
dOl = -0.02dO 

IOODOn/3D () 

Solving for 0, we obtain 

& = (O.~2)!(Ioooon/30) - (lOOOn/30)] 

= 15 OOOn rad = 7500 revolutions 

2.3 CURVILINEAR MOTION 53 

I I 

I 



54 CHAPTER 2 MOTION OF A POINT 

2.85 What arc the magnitudes of the angular velocities (in rad/s) 
of the minute hand and the hour hand of the clock? 

1'2.85 

2.86 Let L be a line from the centre of the earth to a fixed point 
011 the equator and let Lo denote a fixed reference direction. The 
figure shows the earth seen from above the North Pole. 
Ca) Is dO/dt positive or negative? 
(b) What is the magnitudes of dO/dt in rad/s? 

P2.86 

2.87 The angle between a line L and a reference line Lo is 
0= 2t' rad. 
(,) What arc the angular velocity and angular acceleration of L 
relative to Lo at t = 6 s? 
(b) How many revolutions does L rotate relative to Lo during the 
interval of time from I = 0 to I = 6 s? 

Strategy: Use Equations C2.31) and (2.32) to determine the 
angular velocity and angular acceleration as flmctions of time. 

2.88 The angle e between the bar and the horizontal line is 
e = (I' - 21' + 4) degrees. Determine the angular velocity alld 
angular acceleration of the bar at t = 10ft 

:2.89 " The angular acceleration of a line L relative to a reference 
line 40 is " = (30 - 6t) rad/s2 When t = 0, 0 = 0 and OJ = O. 
What ,is the maximum angular velocity of L relative to Lo during 
the inferval of time from t = 0 to t = 10 s? 

2.90 ,A gas turbine starts rotating from rest at t = 0 and has 
angul~ acceleration 0: = 6tradjs2 for 3 s. rt then slows down with 
constqrit angular deceleration a = -3 red/52 until it stops. 
(a) IWutt maximum angular velocity does it attain? 

I 
(b) Tllrough what total angle does it tum? 

2.91 :1 The rotor of an electric generator is rotating at 200 rpm 
(revol*tions per minute) when the motor is turned off. Due to 
rrictio~al effects, the angular deceleration of the rotor after it is 
turne~ olf is> = -O.Olwmd/s2

, where w is the angular velocity in 
radjs.!How many revolutions does the rotor tum after the motor is 
turned off? 

2.92 A needle of a measuring instrument is C01U1ected to a 
torsioQal spring that ::iubjects it to an angular acceleration 
" = -!48 Illd/s2

, where e is the needle's angular position in radians 
relati~~ to a reference direction. If the needle is released from rest 
at 0 :::;: 1 rad, what is its angular velocity at (:J = 01 

P2.92 

2.93 The angle e measures the direction of the ullit vector e 
relatiV!' to the x axis. Given that w '" dO/dt '" 2rad/s, detenuine 
the vtietor de/dt: (a) when e = 0; (b) when 0 = 90'; (c) when 
0= I?O°. 

Strdtegy: You can obtain these results either by using Equation 
(2.33)!:or by expressing e ill terms of its x and y components and 
takingi: its time derivative. 

P2.93 

2.94 lIn Problem 2.93, suppose that the anglc 0 = 21' cad. What 
P2.88 is the weetor de/dt at t = 4 s? 



2.95 The line OP is of constant length R. The angle B = wof, 

where evo is a constant. 
(a) Use the relations 

dx 
Vol = dt 

dy 
Vy = dt 

to determine the velocity of point P relative to 0. 
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y 

;:::/P 
r:-:: e 

(b) Use Equation (2.33) to determine the velocity of point P 
relative to 0, and confinn that your result agrees with the result 
of part (a). 

----------·~o~--~------x 

Strategy: In part (b), write the position vector of P relative to 0 
as r = R e~ where e is a unit vector that points from 0 towards P. 

Normal and Tangential Components 
In this method of describing curvilinear motion, we specify the position of a 
point by its position measured along its path, and express the velocity and 
acceleration in terms of their components tangential and nol1lUl! (perpendi­
cular) to the path. Normal and tangential components are particularly useful 
when a point moves along a circular path. Furthermore, they provide unique 
insight into the character of the velocity and acceleration in curvilinear motion. 

Consider a point P moving along a plane, curvilinear path (Figure 2.21(a». 
The position vector r specifies the position of P relative to the reference point 
0, and the coordinate s measures the position of P along the path relative to a 
point d on the path. The velocity of P relative to 0 is 

v = dr = lim ret + M) - ret) = lim At 
dt A'~O Ilt A'~O Ilt 

(2.34) 

where Ilr = ret + Ill) - ret) (Figure 2.21 (b». We denote the distance travelled 
along the path from t to t + M by Ils. By introducing a unit vector. defined to 
point in the direction of Ilr, we can write Equation (2.34) as 

1
. !ls 

V= un-e 
A, ... oM 

(2.34) 

As III approaches zero, Ils / Ilt becomes ds / dt and e becomes a unit vector 
tangent to the path at the position of P at time t, which we denote by., (Figure 
2.21(c): 

ds 
v=vet=-~ 

dt 

p 

(al 

0'_ 

(2.35) 

Pitl 

s--

(b) 

Figure 2.21 
(a) The position of P along its paths is 
specified by the coordjnate s. 

P2.95 

(b) Position of P at time f and at time t + M. 
(c) The limit of e as III -+ 0 is a unit 
vector tangent ,to the path. 

P(t) ---

() 

(e) 
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o 

Figure 2.22 
The path angle fl. 

Figure 2.23 
(a) Velocity of Pat t and at t + !',.t. 

(b) The tangential and nom1a1 
components of the change in the velocity. 

The velocity of a poirit in curvilinear motion is a vector whose magnitude 
equals the rate of dist\mce travelled along the path and whose direction is 
tangent to the path. 

To determine the aceeleration of P, we take the time derivative of Equation 
(2.35): 

dv dv de, 
a= =tce,+v-

dt lit dt 
(2.36) 

If the path is not a straight line, the unit vector e, rotates as P moves. As a 
consequence, the time l~erivative of e, is not zero. [n the previous section we 
derived an expression ~or the time derivative of a rotating unit vector in temlS 
of the unit vector's an~lar velocity, Equation (2.33). To nse that result, we 
define the path angle 1;0 specifying the direction of e, relative to a reference 
line (Figure 2.22). Thqh rrom Equation (2.33), the time derivative of e, is 

de, dO 
di=d,eQ 

II 

where Iln is a unit ve¢tor that is normal to " and points in the positive Ii 
direction if dO / dt is ppsitive (Figure 2.22). Substituting this expression into 
Equation (2.36), we olltain the acceleration of P: 

I 

(2.37) 

We can derive this;, result in another way that is less rigorous but gives 
additional insight into ~e meanings of the tangential and nonnal components 
of the acceleration. Figure 2.23(a) shows the velocity of P at times t and 

I, 

t + tJ.t. In Figures 2.23(b), you can see that the change in the velocity, 
vet + tJ.t) - vet), consifts of two components. The component !',.", which is 
tangent to the path at !Itime t, is due to the change in the magnitude of the 
velocity. The componeht vfl.li, which is perpendicular to the path at time t, is 
due to the change in th~ direction of the velocity vector. Thus the change in the 
velocity is (approximalcly) 

v(t + fl.t) ... v(t) = fl.ve, + I'M! en 

p e, 
v(, ) 

(a) (b) 



To obtain the acceleration, we divide this expression by At and take the limit 
as At -> 0: 

I. 6.v l' [Av M] a= ImT= 1m -et+v-en 
81-+0 ut .t11~O 6.t lit 

Thus we again obtain Equation (2.37). However, this derivation cleatly points 
out that the tangential component of the acceleration arises from the rate of 
change of the magnitude of the velocity, whereas the normal component arises 
trom the rate of change in the direction of the velocity vector. Notice that if the 
path is a straight line at time t, the normal component of the acceleration 
equals zero, because in that case de / di is zero. 

We can express the acceleration in another form that is often more con­
venient to use. Figore 2.24 shows the positions on the path reached by P at 
times I and 1+ dl. If the path is curved, straight lines extended from these 
points perpendicular to the path will intersect as shown. The distance p from 
the path to thc point where these two lines intersect is called the instantaneous 
radius of curvature of the path. (If the path is circular, p is simply the radius 
of the path.) The angle de is the change in the path angle, and ds is the dis­
tance travelled, from t to t + dl. You can see from the figore that p is related to 
ds by 

ds = pdO 

Figure 2.24 
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The instantaneous radius of curvature p. 

Dividing by dl, we obtain 

ds 
dl 

v 
dO 

P dl 

+d8 

Using this relation, we can write Equation (2.37) as 

dv v2 

a=-d e,+~cn 
I p 

For a given value of v, the normal component of the acceleration depcnds on 
the instantaneous radius of the curvature. The greater the curvature of the path, 
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the greater the normal cpmponent of acceleration. When the acceleration is 
expressed in this way, th~ unit vector en must be defined to point towards the 
concave side of the pathii(Figure 2.25). 

Figure 2.25 
The unit vector nonnal to the path points 

towards the concave side of the path. 

Figure 2.26 
Normal and tangential components of 

(a) the velocity and (b) acceleration. 

Thus the velocity a~id acceleration in terms of normal and tangential 
components are (Figure *.26) 

where 

'I 

ds v = v'" = ;ftc, 
a atCt +qll en 

dO if dv 
at=-

dt 
Qn=V-=-

dt p 

(a) (bl 

(2.38) 

(2.39) 

(2.40) 

Circular Mofion If a point P moves in a circular path of radius R (Figure 
2.27), the distance s is related to the angle e by 

s =R& clrcuJar path 

Figure 2.27 
A point moving in a circular path. 

--~P-.. ,. 

R 



This relation means we can spccify the position of P along the circular path by 
either s or e. Taking the time derivative of this equation, we obtain a relation 
between v = ds / dt and the angular velocity of the line trom the centre of the 
path to P: 

de 
v=R-=Rw 

dl 
Circular path (2.41) 

Taking another time derivative, we obtain a relation between the taogential 
component of the acceleration a, = dv/dt and the angular acceleration: 

dO) 
at=R-=R~ 

dl 
Circular path (2.42) 

For the circular path, the instantaneous radius of curvature p = R, so the 
normal component of the acceleration is 

Circular path (2.43) 

Because problems involving circular motion of a point are so common. these 
relations are worth remembering. But you must be careful to use them on(y 
when the path is circular. 

The following examples demonstrate the use of Equations (2.38) and (2.39) 
to ana(yse cu",ilinear motions of objects, Because the equations relating s, v 
and the tangential component of the acceleration, 

ds 
v= 

dt 

dv 
at =-

dt 

are identical in form to the equutions that govern the motion of a point along 
a straight line, jn some caSes you can solve them using the same methods 
you applied to straight-line motion, 
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Figure 2.28 

(0) The coordinate s measures the distance 
along the track. 

The motorcycle in Figute 228 starts from rest at t = 0 on a circular track of 400 m 
radius. The tangential ~ornponent of its acceleration is at =- (2 + 02t)m/s2. At 
t = lOs, detennine: (a) !he distance it has moved along the track; (b) the magnitude 
of its acceleration. 

STRATEGY 

Let s be the distance alopg the track from the initial position 0 of the motorcycle to 
its position at time t (Figure (a», Knowing the tangential acceleration as a function 
of time, we can integraL~ to detenninc I) and .Ii as functions of time. 

SOLUTION 

(a) The tangential acceteration is 

Integrating, 

d" at = - = (2 + 0.2t)m/,2 
dl 

r I' 10 dv = }q (2 + 021) dl 

we obtain v as. a ftmctio)1 of time: 

ds. 2 
v = dl = (21 + 0,11 Jm/s 

Integrating this cquatioll" 

[ dS= t'(2t+O.1I2)dt 
o Jo: 

the coordinate s as a function of time is 

At t = 10 Sj the distance. moved along the track is 

1101 
s = (10)' t:j-(lO)l = 133.3rn 

(b) At t = lOs, the tangential component of the acceleration is 

at = 2 + 0.2(10) = 4m/s' 

We must also determine::the nomlal component of acceleration. The instantaneous 
radius of curvature of tqe path is the radius of the clfcular track j p ::::: 400 m. The 
magnitude of the velocity at t = lOs is 

v = 2(10) t 0.1(10), = 30m/s 

Therefore 



if (30)2 , 
ao = = -- = 2.25 m/s' 

p 400 

The magnitude of the acceleration at t =- lOs is 

101 = ).1 + a; = )(4)' + (0.25), = 4.59 mis' 

A satellite is in a circular orbit of radius R around the earth. Mat is its velocity? 

STRATEGY 

The acceleration due to gravity at a distance R from the centre of the earth is 
gRV R2, where RE is the radius of the earth. By using this expression together with 
the equation for the acceleration in terms of nonnal and tangential components, we 
can obtain an equation for the satellite's velocity. 

SOLUTION 

In terms of nonnal and tangential components (Figure 2,29), the acceleration of the 
satellite is 

dv ,; 
a=-et+-cn dt R 

This expression must equal the acceleration due to gravity towards the centre of the 
earth: 

Because there is no Ct component on the right side, we conclude that the magnitude 
of the satellite IS velocity is constant: 

dv 
~=() 

dt 

Equating the en components and solving for v, we obtain 

DISCUSSION 

Tn Example 2.5 we determined the escape velocity of an object travelling straight 
away from the earth in tenns of its initial distance from the centre of the earth. The 
escape velocity for an object a distance R from the centre of the earth. 
t'esc = j2gRV R, is only ,J2 times the velocity of an object in a circular orbit of 
radius R. This explains why it was possible to begin launching probes to other 
planets not long after the first satellites were placed in orbit. 
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Figure 2.29 
Describing the satellite's motion in tenus of 
nonnal and tangential components, 
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Figure 2.30 

y 
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(a) Cartesian components of the velocity 
and the path angle O. 

(b) Dctcnnining the tangential and normal 
components of the acceleration from 
the cartesian components, 

During a flight in w~ich a helicopter starts from rest at t = 0, the cartesian 
components of its acceleration are 

ax = O.6/)njs' 

a, = (1.8- 0.361) mis' 
:1 

\VIlat are the nonnal, and tangential components of its acceleration and the 
instantaneous radius of Ii curvature of its path at ,t = 4 s'! 

STRATEGY 

We can integrate the c"4esian components of acceleration to detennine the cartesian 
components of the vclofity at t = 4 s. The velocity vector is tangent to the path, so 
knowing the cartesian qomponents of the velocity allows us to detennine the path 
angle. 

SOLUTION 

Integrating the compon~nts of acceleration with respect to time (see Example 2.6), 
the cartesian components of the velocity ate 

Vx = O.3/2'm/s 

Vy = (1.81"- 0.18t')m/s 

At 1 = 4s, Vx = 4.80m!s and Vy = 4.32mjs. Therefore the path angle (Figure (a)) 
is 

!J = arctan -~ = 4 .0 " 1(4.32) 2 x 
. 4.80 

The cartesian compone~ts of the acceleration at t = 4 s are 

Il, = 0.6(4) 2Am/" 

ay = 1.8 ~ 0.36(4) = OJ6m/s2 

By calculating the comppnents of these accelerations in the directions tangenlial and 
normal to the path (Fig\\re (b)). we obtain at and a,: 

at = (2.4) cO$42.0" + (036) sin 42.0' = 2.02 m/s2 

., = (2.4)'i042.0" - (0.36) cos 42.0" = 1.34 mis' 

To detennine the instan¢mcous radius of curvature of the path, we usc the relation 
a, = ,)21 p. The magnil1lde of the velocity at 1 = 4 S IS 

V= vi +'l~ = /(4.80)' + (4.32)' =6.46 mls 

II 

so the value of fl = 4 s is 



2.96 The armature of an electric motor rotates at a constant rate. 
The magnitude of the velocity of point P relative to 0 is 4 m/s. 
<aJ What are the normal and taogential components of the aceel­
emtion of P relative to O? 
(b) What is the angular velocity of the armature? 

P2.96 

2.97 The armature in Problem 2.96 starts from rest and has 
constant angular acceleration ex = lOradjs2, What arc the velocity 
and acceleration of P relative to 0 in tenns of normal and 
tangential components after lOs? 

2.98 Centrifuges are used in medical laboratories to increase the 
speed of precipitation (settling) of solid matter out of solutions, 
Suppose that you want to design a centrifuge to subJoct samples to 
accelerations of IOOOg's 
(a) If the distance from thc CL'11tre ofthc centrifuge to the sanaple is 
300 nun, what speed of rotation in rpm (revolutions per minute) is 
necessary? 
(b) If you want the centrifuge to reach its design rpm in 1 min, 
what constant angular acceleration is necessary? 

P2.98 
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2.99 A powerboat being tested for manoeuvrability is started 
from rest and driven in a circular path of 40m radius. The 
magnitude of its velocity is increased at a constant rate of 
2 m/s2. In terms of normal and tangentia1 components, determine: 
(al the velocity as a function of fune; (b) the accelemtion as a 
function of time. 

P2.99 

2.1 00 Th~ angle 0 = 2P rad. 
(a) What are the magnitudes of the velocity and acceleration of P 
relative to 0 at t = 1 s'! 
(b) What distance along the circular path does P move from t = 0 
to t = I s'/ 

p 

; 
i ." / e 

.... '-~O 
4ft 

P2.100 

2.101 In Problem 2.100, what are the magnitudes of the velocity 
~Uld acceleration of P relative to 0 when P has gone one revolution 
around the circular path starting from t = 0'1 
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2.102 The radius of the earth is 6370km, If you arc standing at 
the equator, what is the magnitude of your velocity relative to the 
centre of the earth? 

2.103 The radius of the earth is 6370km. Tfyou are standing at 
the equator, what is the magnitude of your acceleration relative to 
the centre of the earth? 

2.104 Suppose that you are standing at point P at 30' north 
latitude (that is, a point that is 30{) north of the equator). The fadiu!': 
of the earth jg Rr. = 6370km. What arc the magnitudes of your 

2.107 A car increases its speed at a constant rate from 64 km/hr 
at A to ~6 km/hr at B, W)lat is the magnitude of its aceelemtlOn 2 s 
after it i?asses point A? 

velocity and acceleration relative to the centre of the earth? A 

Equator 

P2,104 

2.105 The magnitude of the velocity of the aeroplane is constant 
and equal to 400m/s. The rate of change of the path angle 0 is 
constant and equal to 5CJ Is. 
(a) What arc the velocity and acceleration of the aeroplane in tertns 
of normal and tangential components? 
(b) What is the instantaneous radius of the curvature of the 
aeroplanels path'! 

e 

P2.105 

2.106 At t = O. a car starts from rest at point A. It moves towards 
the right, and the tangential component of its acceleration is 
at = OAtmjs2, What is the magnitude of the car's acceleration 
when it reaches point B? 

~ 

A 

, 

,'----200m 

;' 
50 m 

B 

P2.106 

24m---1 

24 tn··· ... 1 

P2.107 

2.108 "Determine the magnitude of the acceleration of the car in 
Prohleoj 2.107 when it has travelled along the road a distance (aJ 
36m from A; (b) 48m from A. 

2.109 :iAn astronaut candidate is to be tested in a centrifuge with 
a radiusliof [Om. He will lose consciousness ifhis total horizontal 
accelera~ion reaches 14 g's. What is the maximum constant angular 
acceleration of the centrifuge, starting from rest, ifhe is not to lose 
conscio?sness within 1 min? 

P2.109 

2.110 ,A projectile has an initial velocity of 6m/s at 30" above 
the hori~ontal. 
(a) Wh~t are the velocity and acceleration of the projectile in terms 
of nortn~1 and tangential components when it is at the highest point 
of its tn(iectory? 
(b) Wh~t is the instantaneous radius of curvature of the projectile's 
path wh\'I1 it is at the highest point of its trajectory? 

Strateb: In part (b), you can detennine the instantaneous radius 
of curvature from the relation an = '/.,)- / p. 

P2.1l0 



2.111 In Problem 2.110, let t = 0 be the instant at which the 
projectile i~ launched. 
(a) What are the velocity and acceleration in tenns of nonnal and 
tangential components at t = 0,2 s7 
(b) What is the instantaneous radius of curvature of the path at 
t = Os? 

2.112 The cartesian coordinates of a point moving in the x-y 
plane are 

x=C20+412)m y=(IO-f)m 

What is the instantaneous radius of curvature of the path at t = 3 s7 

2.113 A satellite is in a circular orbit 320km above the suriace 
of the earth. The radius of the earth is 6370km. 
Ca) What is the magnitude v of the satellite's velocity relative to the 
centre of the eanth? 
(b) How long does it take for the satellite to eomplere one orbit? 

320 kill P2.113 

2.114 For astronaut training, the aeroplane shown is to achieve 
'weightlessness' for a short period of time by flying along a path 
such that its acceleration is ax = 0, aj' = -g. If its velocity at 0 at 
time t = 0 is v = Vo i, show that the autopilot must tly the aero­
plane so that its tangential component of acceleration as a function 
of time is 

(gl/VO) 

; ,,; x 

o 
P2.115 

2.115 Tn Problem 2.114, what is the aeroplane's nonnal compo­
nent of acceleration as a function of time? 
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2.116 Ify = 100mm, dy/dt = 200mm/s and d2y/dP = 0, what 
are the velocity and acceleration of P in tenns of normal and 
tangential components? 

P2.116 
2.117 Suppose that the point P in Problem.2.l16 moves upwards 
in the slot with velocity v = 300 ",mm/s. When y = 150mrn, 
what are dy/dt and d'y/dt'? 

2.118 A car travels at 100 km/hr on a straight road of increasing 
gradient whose vertical profile can be approximated by the equa .. 
tion snown. When the car', horizontal coordinate is x = 400 m, 
what are the tangential and normal components of its acceleration? 

P2.118 
2.119 A boy rides a skateboard on the concrete surface of an 
empty drainage canal described by the equation shown. He starts at 
y = 6 m and the magnitude of his velocity is approximated by 
v = )2(9.81)(6 - y)m/s. What are the normal and tangential 
components of his acceleration when he reaches the bottom'! 

2.120 In Problem 2.119, what are the normal and tangential 
components of the boy's acceleration when he has passed the 
bottom and reached y '" 3 m? 
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~-l-----_x o 
(a) 

)' 

., 

(b) 

Figure 2.31 
(0) The polar coordinates of P. 
(b) The unit vector Cr and eo and position 

vector r. 

o~-------------

Figure 2.32 

The position vector of P at t and at t + L1t" 

Polar and Cylinfrical Coordinates 
Polar coordinates are o~en used to describe the curvilinear motion of a point. 
Circular motion, certai~ orbit problems and, more generally, central force 
problems, in which theil acceleration of a point is directed towards a given 
point, can be expressedi,conveniently in polar coordinates. 

Consider a point P inilthe x-y plane of a cartesian coordinate system. We can 
specity the position of {' relative to the origin 0 either by its cartesian COOr. 

dinates x, y or by its polar coordinates r, e (Figure 2.31(a», To express vectors 
" in terms of polar coordinates, we denne a unit vect()r e, that points in the 

direction of the radial line from the origin to P and a unit vector eo that is 
perpendicular to er and oints in the direction of increasing e (Figure 2.31 (b)). 
Tn terms of these vecto .~, the position vector r from 0 to P is 

(2.44) 

(Notice that r has no C<1mponent in the direction of eo.) 
We can determine thJ velocity of P in terms of polar coordinates by taking 

the time derivative of Eguation (2.44): 

dr dr' de,< 
V=~=--l,e +r~ 

dl d{r dt (2.45) 

As P moves along a cUllvilinear path, the unit vector er rotates with angular 
velocity w = dO/dt. Therefore, from Equation (2.33), we can express the time 
derivative of er in termsil of eo as 

der dO 
~=~elJil 
dt dt (2.46) 

Substituting this result *0 Equation (2,45), we obtain the velocity of P: 

(2.47) 

We can obtain this res~lt in another way that is less rigorous but more direct 
and intuitive. Figure 2.3i shows the position vector of P at times t and t + Ill. 
The change in the position vector, r(t + Ill) ret), consists of two compo­
nents. The component Ilil is due to the change in the radial position r and is in 
the er direction< The comronent rile is due to the change in e and is in the eo 
direction. Thus the chan~e in the position of P is (approximately) 

r(1 + Ill) - ret) ,= Ilr e, + rflO eo 

Dividing this expression /ly Ilt and taking the limit as Ilt -> 0, we obtain the 
velocity of P: 

[Il~~ MJ ] 
v = lim "A' .. e, + "Tell 

8.t_O tit:: Ll.t 

dr 
= dter+rWeo 



One component of the velocity is in the radial direction and is equal to the rate 
of change of the radial position r. The other component is normal, or 
transverse to the radial direction, and is proportional to the radial distance 
alld to the rate of change of O. 

We obtain the acceleration of P by taking the time derivative of Equation 
(2.47): 

a = dv = ,p,. e + drde, + drdO eO 
dt dt2 ' dt dt dt dt 

d20 dlJdeo 
+ r dt2 eo + ,. dt dt 

(2.48) 

The time derivative of the unit vector e, due to the rate of change of 0 is given 
by Equation (2.46). As P moves, eo also rotates with angular velocity dO I dt 
(Figure 2.33). You can see from this figure that the time derivative of <0 is in 
the -c, direction if dlJ lilt is positive: 

deo de 
---e 
dt - dt ' 

Substitnting this expression and Equation (2.46) and Equation (2.48), we 
obtain the acceleration of P: 

Thus the velocity and acceleration are (Figure 2.34) 

dr 
v = vrer +voeo dtet +rweo (2.49) 

and 

I a = lI, e, + lie eo I (2.50) 

2.3 CURVILINEAR MOTION 67 
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Figure 2.33 
Time derivatives of Cr and eo. 

Figure 2.34 
y 

(a) (b) 

Radial and transverse components 
of (a) the velocity and 
(b) acceleration 



68 CHAPTER 2 MOTION OF A POINT 

Figure 2.35 

\' 

R 

e 10<"_'"-_-+ __ x 

(a) 

'R 

(0) 

A point P moving in a circular path. (a) Polar 
coordinates. (b) Normal and tangential 
components. 

Figure 2,36 
Cylindrical coordinates r, 0, z of point P and 
the unit vectors er• Cu. ez. 

where 

(2.51) 
d2g drdO dr 

ao = r-+2-- = rO(+2-ev 
dt2 dl dl dt 

The term -rw' in the ;;radial component of the acceleration is called the 
centripetal acceleratio~, and the terms 2(dr / dt)w in the transverse compo­
nent is called the CorioOs acceleration. 

Circular Motion Cireular motion can be conveniently described using 
either radial and trans~ersc or normal and tangential components. Let's 
compare these two meti(ods of expressing the velocity and acceleration of a 
point P moving in a circ(Ilar path of radius R (Figure 2.35). Because the polar 
coordinate r = R is con!\tant, Equation (2.49) for the velocity ",duces to 

v = Rw eo 

In terms of nonnal and tangential components, the velocity is 

Notice in Figure 2.35 that co = Ct. Comparing these two expressions for the 
velocity, we obtain the riilation between the velocity and the angular velocity 
in circular motion: 

v= Rev 

From Equations (2.59) and (2.51), the acceleration in terms of polar 
coordinates for a circul"" path of radius R is 

a = -Rw2 e,. +R!1.co 

and the acceleration in terms of nomml and tangential components is 

dv .J 
a = -Ct +~en 

dt R 

The unit vector e, = ~en' Because of the relation v = Rev, the normal 
components of accelera~on are equal: .,; / Rw2 Equating the transverse and 
tangential components, ""e obtain the relation 

dv 
-=a,=RC/, 
dt 

Cylindrical Coordlna(es Polar coordinates describe the motion of a point 
P in the x-y plane. We;1 can describe three-dimensional motion by using 
cylindrical coordinates .'r, 0, Z (Figure 2.36). The cylindrical coordinates r 
and e are the polar coordinates of P measured in the plane parallel to the x-y 



plane, and the definitions of the unit vectors e, and eo arc unchanged, The 
position of P perpendicular to the x-y plane is measured by the coordinate z, 
and the unit vector e, points in the positive z-axis direction. 

The position vector r in telms of cylindrical coordinates is the sum of the 
expression for the position vector in polar coordinates and the z component: 

r=rcr+zc;: (2,52) 

(The polar coordinate r does not equal the magnitude of r except when Plies 
in the x-y plane,) By taking time derivatives, we obtain the velocity, 

dr 
v = dt = VrCr + V{}C(J + vzez 

ifr dz 
(2.53) 

= -, e, + rweo + -d e, 
c.t t 

and the acceleration, 

a (2.54) 

where 

dr 
a() = m + 2 dl w a, (2.55) 

Notice that Equations (2.53) and (2.54) reduce to the polar coordinate 
expressions for the velocity and acceleration, Equations (2.49) and (2,50), 
when P moves along a path in the x-y plane, 

The next two examples demonstrate the use of Equations (2.49) and (2.50) 
to analyse curvilinear motions of objects in terms of polar coordinates. 
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Figure 2.37 

y 

l!'-,-....-,+-t---- x 

(a) Your position in terms of polar 
coordinates. 

Suppose that you are ~tanding on a hil'g. disc Ca mcny-go-roOlld) rotating with 
constant angular velocJty Wo and you start walking at constant speed 110 along a 
straight radial line paujted on the disc (Figure 2.37). What are your velocity and 
acceleration when you ~are a distance r from the centre of the disk? 

STRATEGY 

We can describe your ~otion in terms of polar coordinates (Figure (a». By using the 
infonnation given about your motion and the motion of the disc; we can evaluate the 
terms in the expressions for the Velocity and acceleration in tenns of polar 
coordinates. 

SOLUTION 

The speed with whiCh' you walk along the radial line is the rate of change of 
r, dr/cit = Vo, and the:. angular velocity of the disc is the rate of change of 
0, w::::; Wo. Your velocity is 

dr 
v = dt Cr +rcveo = voc,. +rwoeo 

Your velocity consists qf two components: the radial component due to the speed at 
which you are walking fu,d a transverse component due to the disc's rate of rotation. 
The transverse compo~ent increases as your distance from the centre of the disc 
increases. 

Your walking speeg Vo = drjdf is constant. so d2rldt' = 0. Also, the disc's 
angular velocity illO = /lOldt is constant. so d'Ojdt' = 0. The radial component of 
your acceleration is 

and the transverse component is 

dr 
aD =:: ret. +: 2 - 0) = 2t'oWo 

dt 

DISCUSSION 

If you have evcr tried iiwalking on a meny-go-roOlld, you know it is a difficult 
proposition. This cxaniple indicates why: subjectively, you are walking along a 
straight line with constaht velocity, but you are actually experiencing the centripetal 
acceleration ar and the ICoriolis acceleration ao due to the disk's rotation. 



The robot arm in Figure 2.38 is programmed so that point P describes the path 

I' = (1- 0,5 cos 2m) m 

e = (0.5 - 0.2 sin 2m) rad 

At t = 0.8 s; dctcnninc: (a) the velocity of P in tenns of radial and transverse 
components; (b) the cartesian components of the velocity of P. 

STRATEGY 

Ca) Since we are given r and 0 as functions of time, we can calculate the derivatives 
in the expression for the velocity in tenns of polar coordinates and obtain the 
velocity as a function of time, 
(b) By determining the value of 0 at t = 0,8 S, we can use trigonometry to 
dctcnnine the cartesian components in terms of the radial and transverse compo­
nents. 

SOLUTION 

Ca) From Equation (2.49), the velocity is 

dl' dO 
v=-c +r-c(} 

dt' dt 

= (n sin 2nt)e, + (I - OJ cos2nt)( -DAn cos2nt)eo 

At t = 0.8s, 

v = (-2,99., - 0.328 eR) m/s 

(b) At 1=0.8" O=O.690rad=39.5" CFigure (a)). The x component of the 
velocity of P is 

VT = v, cos 39.5" - vo sin 39.5" 

= (-2.99)cos39S - (-0.328) ,in 39.so = -2.09m/' 

and the y component is 

Vy == v, sin 39.5° + vo cos39.So 

= (-2.99)sin39S + (-0.328)cos39S = -2.16m/s 

DISCUSSION 

When you determine components of a vector in tenus of different coordinate 
systems, you should always check them to make sure they give the same magnitude. 
In tilis example, 

Ivl = )(-2.99)' + (-0.328)' = )(-2.09)' + (-2.16), = 3.01 m/s 

Remember that although the components of the velocity are different in the two 
coordinate systems. those components describe the same velocity vector. 

2,3 CURVILINEAR MOTION 71 

Figure 2.38 
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(a) Position at 1 = 0,8 s. 
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2.121 At a particular time, the polar coordinates of a point P 
moving in the x-y plane arc r = 4rn, f} = O.Srad, and their time 
derivatives are dr/dt 8m/s and dU/dt = -2rad/s. 
(al What is the magnitude of the velocity of PI 
(bl What are the cartesian components of the velocity of PI 

2.122 In Problem 2.121, suppose that d'r/dt' = 6m/s' and 
d'O/dt' = 3 rad/s'. At the instant described, dctertnine: Ca) the 
magnitude of the acceleration of P; (b) the instantaneous radius of 
curvature of the path. 

2.123 The polar coordinates of a point P moving in the x-y plane 
are r = (t' - 4t)m, 0 = (t' - t)rad. Detertnine the velocity of Pin 
tenns of radial and transverse components at t = t s. 

2.124 In Problem 2.123, what is the acceleration of P in terms of 
radial and transverse components at t = 1 s7 

2.125 The radial rotates with a constant angular velocity of 
2 rad/s. Point P moves along the line at a constant speed of 
4 m/s. Determine the magnitudes of the velocity and acceleration 
ofP when r = 2m. 

y 

o~L------------------x P2.125 

2.126 I! A boat searching for underwater archaeology sites in the 
Aegean' Sea moves at 4 knots and follows the path r = 100 m, 
where ~ is in radians. (A knot is one nautical mile, or 1852 m, per 
hour.) "",hen e = 2nrad, detennine the boat', velocity (a) in tCrtn, 
of polot coordinates; (b) in tertns of cartesian coordinates. 

,----
/ 

./' 

/ 
/ 

I 
I 

I 
I 

I 

P2.126 

2.127" In Problem 2.126, what is the boat's acceleration in lerms 
of polar coordinates? 

Stra~'egy, The magnitude of the boat's velocity is constant, so 
you knbw that the tangential component of its acceleration equals 
zero. 

2.128 " A point P moves in the x-y plane along the path described 
by the tquation r = eO ~ where () is in radians. The angular velocity 
dO/dt 'i' Ol() =eonstant, and 0 = 0 at t = O. 
Cal Dr~w a polar graph of the path for values of 0 from zero to 2n. 
(b) Shqw that the velocity and acceleration as functions of time are 
v = w()¢wot(er + eo), a = 2ru5cwot eo. 

2.129 : In Problem 2.128, show that the instantaneous radius of 
curvature of the path as a function of time is p = ";2ewo', 

2.130 :: In Example 2.12, determine the acceleration of point Pat 
1= 0.88 (al in terms of radial and transverse components; (b) in 
terms of cartesian components. 

2.131 l: A bead slides along a wire that rotates ill the x-y plane with 
constanl angular velocity OJo. The radial eomponent of the bead's 
acceler~tion is Zero. The radial coinponent of its velocity is Vo 
when r ~ roo Determine the radial and transverse components of 
the beaq's velocity as a function of r. 

Slratdgy: The radial component of the bead's velocity is 

dr 
Vr=~ 

Ii dt 



and the radial component of its acceleration is 

d'r (dO)' dv, , 
Or = dt2 -r dt =Yt-rwo 

By using the chain rule~ 

dVr dVr dr dVr 
7ft = dr dt = dr 'VI" 

you can expreslI the radial component of the acceleration in the 
form 

y 

P2.131 

2.132 The bar rotates in the x-y plane with constant angular 
velocity OJo. The radial component of acceleration of the collar C is 
ar = -Kr, where K is a constant. When r = 1'0, the radial compo~ 
nent of velocity of C is ~)o' Dctcnnine the radial and transverse 
components of the velocity of C as a function of r, 

y 

~~~------------------x 

P2.132 

2.133 The cartesian coordinates ofa point P in the x-y plane are 
related to ih'; polar coordinates by the relations x = r cos 0, 
y = r sin Ii, 
(a) Show that the unit vectors i and j are related to the unit vectors 
e,. and eo by 

i = c1 cosO - eosine 
j ;;:;;;;; c,. sin () + eo cos 0 
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(b) Beginning with the expression for the position vector of P in 
tenus of cartesian coordinates, r = xi + y J, derive Equation (2,44) 
for the position vector in terms of polar coordinates. 
(c) By taking the time derivative of the position vector of point P 
expressed in terms of cartesian coordinates, derive Equation (2.47) 
for the velocity in tel111s of polar coordinates. 

y 

\" -
~er 

/1' 
A "'-___ i'-_, ______ x P2,133 

2.134 The aeroplane flies in a straight line at 640 kmjhr, The 
radius of its propeller is 1.5 m, and it turns at 2000 rpm (revolutions 
pcr minute) in the counterciocic\",isc direction when seen from the 
front of the aeroplane. Determine the velocity and acceleration of a 
point on the tip of the propeller in temlS of cylindrical coordinates. 
(Let the z axis be oriented as shown in the figurc.) 

-'----z 

P2.134 

2.135 A charged particle P in a magnetic field moves along the 
spiral path described by r = I m, 0 = 2z rad, where z is in metres, 
The particle moves along the path in the direction shown with 
constant speed Ivl = 1 kmjs, What is the velocity of the particle in 
tenns of cylindrical coordinates? 

P2.135 

2.136 What is the acceleration of the charged particle in Prob­
lem 2.135 in terms of cylindrical coordinates? 
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2.4 Orbita~ Mechanics 

Newton's analytical detemlination of the elliptic orbits of the planets, which 
had been deduced frorj\ observational data by Johannes Kepler (1571-1630), 
was a triumph for Nq)monian mechanics and confirmation of the inverse­
square relation for gtavitational acceleration. We can use the equations 
developed in this chapler to determine the orbit of an earth satellite or planet. 

Suppose that at t =10 a satellite has an initial velocity Vu at a distance ru 
from the centre of th~ earth (Figure 2.39(a». We assume that the initial 
velocity is perpendicular to the line from the centre of the earth to the satellite . 

.i 
The satellite's positioniiduring its subsequent motion is specified by its polar 
coordinates (r, 0), wh~re 0 is measured from its position at t = 0 (Figure 
2.39(b». Our objectivt1 is to determine r as a function of fl. 

Figure 2.39 
(al Initial position and velQcity of an earth 

satellite. 
(b) Specifying the subsequent path in terms 

of polar coordinates. 
, 

\ 
\ 

(a) 

\ 
\ 
\ 
\ 

( ,,,!!;'-+--'--'! 

(h) 

If we model the eaj'th as a homogeneous sphere, the acceleration due to 
gravity at a distance r ,from the centre is 

a 
gR~ 
-2 e, 
r 

where RE is the earth'~ radius. By setting this expression equal to Equation 
(2.50) for the accelera(ion in terms of polar coordinates, 

and equating e, and e~: components, we obtain the equations 

(2.56) 

rd
2
8 +2'!::dO = 0 

dt' dt dt 
(2.57) 

We can write Equatio~ (2.57) in the form 

~ d (r2 dB), = 0 
r dt dt 



which indicates that 

, de 
r - = rV6 = constant 

dt 
(2.58) 

At t = 0 the components of the velocity are v, = 0, va = vo, and the radial 
position is r = ro, We can therefore write the constant in Equation (2,58) in 
terms of the initial conditions: 

dO 
,2 dt = rvo = rovo (2.59) 

Using Equation (2.59) to eliminate dO/dt from Equation (2.56), we obtain 

(2,60) 

We can solve this differential equation by introducing the change of variable 

I 
U=~ 

r 
(2.61) 

In doing so, we also change the independent variable from t to 0 because we 
want to determine,. as a function of the angle 0 instead of time. To express 
Equation (2.60) in terms ofu, we must determine d'r/dt' in terms ofu, Using 
the chain rule, we write the derivative of r with respect to time as 

I du 

Notice from Equation (2,59) that 

dO rovo 2 
~=-=rovou 
dt ,.2 

I dudO 
u'dO dt 

Substituting this expression into Equation (2.62), we obtain 

dr du 
-= -rOv{I-
dt dO 

(2,62) 

(2,63) 

(2.64) 

We differentiate this expression with respect to time and apply the chain rule 
again: 

d',. = !!.. (-ruvu dU) = -rovo dO !!.- (dU) = -rovo ~~ ~~~ 
dt2 dt dO dt dO dO dt d02 

Using Equation (2,63) to eliminate dOjdt from this expression, we obtain the 
second time derivative of r in terms of u: 
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Substituting this resul~intQ Equation (2.60) yields a linear differential equation 
for u as a function of (i: 

The general solution 6f this equation is 

2 
U = A sin /I + BcosO + g,Ri 'O"to 

(2.65) 

where A and B are cOllstants. We can use rhc initial conditions to det.nnine A 
and B. Whcn 0 = O. ~ = llro. Also, when e = 0, the radial component of 
velocity v, = drldt = O. so from Equation (2.64) we see thatduldO = O. From 
these two conditions, 'we obtain 

A = 0 B 
ro 

Substituting these re$ults into Equation (2.65), we can write the resulting 
solution for r = I I u as 

where 

r I","" 
ro I +ecosO 

_ rovij I 
£---, -

gRE 

(2.66) 

(2.67) 

The curve called ~ conic section (FIgure 2.40) has rhe property rhat the 
ratio of r to the perpeddicular distance d to a straight line, called the directrix, 
is constant. This ratiQ, rid"" roldo, is called the eccentricity of the curve. 
From Figure 2.40 we see that 

rcosO+d "" ro +do 

Figure 2.40 
If the ratio rid is constant, the curve 

describes a conic section. COrll!.: "~':ljon 

Directrix 

,. 
" 



which we can write in terms of the eccentricity as 

r 1+ (ro/do) 
ro I + (ro/ dScos 0 

Comparing this expression with Equation (2.66), we see that the satellite s 
orbit describes a conic section with eccentricity e. 

The value of the eccentricity determines the character of the orbit (Figure 
2.41). If the initial velocity Vo is chosen so that e = 0, Equation (2.66) reduces 
to r = 'u and the orbit is circular. Setting f. = 0 io Equation (2.67) and solving 
for vo, we obtain 

Vo = ;gR~ 
ro 

(2.68) 

which agrees with the velocity for a circular orbit we obtained in Example 2.9 
by a different method. 

If 0 < c < I, the orbit is an ellipse. The maximum radius of the ellipse 
occurs when e = 180'. Setting 0 equal to 180' in Equation (2.66), we obtain 
an expression for the maximum radius of the ellipse in temlS of the initial 
radius and e: 

(
1 +8) rmax = Yo ~-
1- e (2.69) 

Notice that the maximum radius of the ellipse increases without limit as 
8 - I. When f, = I, the orbit is a parabola, which means that Vo is the escape 
velocity. Setting e = I in Equation (2.67) and solvhg for Vo, we obtain 

;2~Rt vo= ~­
ro 

which is the same value for the escape velocity we obtained in Example 2.5 for 
the case of motion straight away ftom the earth. If c > I, the orbit is a 
hyperbola. 

The solution we have presented, based on the assumption that the earth is a 
homogeneous sphere, approximates the orbit of an earth satellite. Dctennining 
the orbit accurately requires taking into account the variations in the earth'8 
gravitational field due to its actual mass distribution. Siolilarly, depending on 
the accuracy required, determining the orbit of a planet around the Sun may 
require accounting for perturbations due to the gravitational attractions of the 
other planets. 

2.4 ORBITAL MECHANICS 77 

\£> 1 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

O<f<i ____ \ -- ........... \ 
J~~ " \ 

/' '~ \ / E=O \ 
I 

I 
I 
\ 
\ 
\ 

" " " 

o 
............... _-----

Figure 2.41 
Orbits for different values of the eccentricity. 
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Figure 2,42 
Orbit of an earth satellite with a perigee of 
6700km aod an apogee of 16090km. 

An earth satellite is ip an elliptic orbit with a minimum radius of 6700 Ian and a 
maximlUll radius of 1:6 090 km. The radius of the earth is 6370 km. 
(a) Determine the sat~llite's velocity when it is at perigee (its minimum radius) and 
when it is at apogee ~its maximum radius). 
(b) Draw a graph oflhe orbit. 

STRATEGY 
We can regard the rjldius and velocity of the satellite at perigee as the initial 
conditions ro and vo rused in obtaining Equation (2.66). Since we also know the 
maximum radius of ~e orbit) we can solve Equation (2.69) for the eccentricity of 
the orbit and then US~ Equation (2.67) to determine "~. From Equation (2.58), the 
product of r and the transverse component of the velocity is constant. We can use 
this condition to dete$nine the velocity at apogee. 

SOLUTION 
(a) Solving Equation "(2.69) for " the eccentricity of the orbit is 

r"",,{ro - I 16090/6700 - I ,= = = 0.412 
rmax/ro + I 16090/6700 + I 

Now from Equation (~.67), the velocity at pengee is 

_ J~' + l)gR~ _ )(0.412 + 1)(9.81)[(6370)(1000)]' 
Vo - ': ro - (6700)(1000) 

=9170m/s 

At perigee and apoge~, the velocity has only a transverse component. Therefore the 
velocity at apogee, -VII~ is related to the velocity Vo at perigee by 

We solve this equatioh for the velocity at apogee: 

ro: ( 6700 ) v, = ;::;vo = 16090 (9170) = 3819m/s 

(b) By plotting Equa!ion (2.66) with F. = 0.412, we obtain the graph of the orbit 
(Figure 2.42). 



Application to Engineering .. ~ __ ... ........ . 
Communication Satellites 
A corrununication satellite is usually placed in geosynchronous orbit, a circular orbit 
above the equator in which the satellite remains above the same point on the earth M 
the earth rotates beneath it. The satellite is placed into geosynchronous orbit starting 
from a circular parking orbit nearer the earth by a procedure called a Hohmann 
tran,fer (Figure 2.43). Let t'l be the velocity of the satellite in the circular parking 
orbit. The satellite is first boosted from VI to a velocity V2 in the direction tangent to 
the parking orbit to put it into an elliptic orbit whose maximum radius equals the 
radius of the geosynchronous orbit. When the satellite reaches the geosynchronous 
orbit, its velocity has slowed from '" to a velocity ",. It is then boosted to the 
velocity 114 necessary for it to be in the circular geosynchronou." orbit, completing 
the Hohmann transfer. 
(a) Determine the radius rg (in krn) of the geosynchronous orbiL 
(b) The radius of the earth is RE = 6370 lan. If the radius of the circular parking 
orbit is r'p ::::: 6670 km, determine the velocities VI, VZ, V3 and V4. 

STRATEGY 

.~--.--,/ 
" 

Elliptic orbit 
/ 

" , 
\ . 

rr=Yt. \ / Boo;! trom (2/ "l
lOV

, 

/ -, 
/ 'I 

Parking orbit 

Geosynchronous 
// orbit 

Figure 2,43 
A Hohmann transfer. 

(a) To be in geosynchronous orbit, a satellite must complete one revolution in 
approximately 24 hr while the earth turns one revolution beneath it. This condition, 
together with Equation (2.68) for the velocity of a satellite in circular orbit, allows 
us to determine the radius of a geosynchronous orbit. 
(b) Since the parking and geosynchronous omits are circular, wc can use Equation 
(2.68) to determine v, and "4. The initial conditions for the elliptic orbit are 
ro = rpt Vo ::::: 1-'2. We want the maximum radius of the elliptic orbit to be equal to the 
radius of the geosynchronolls orbit: rmax = rg_ We can solve Equation (2.69) for the 
eccentricity of the elliptic orbit and then use Equation (2.67) to determine Vo = v" 
From Equation (2.58). the product of r and the transverse component of the velocity 
is constant while the satellite is in the elliptic orbit, so we can detennine the velocity 
V3 from the relation rpt'2 :::::: rgV3. 
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SOLUTION , 

:1 

(a) Lct T = 24 hr = (24)(3600) s. In time T, a satellite in geosynchronous orbit must 
travel the distance 2nfg, so 

(2.70) 

From Equation (2,68V. the velocity V4 and radius r g must also satisfy the equation 

V 
_ffR~, 

4- - r. ' 

Substituting this exptession into Equation (2.70) and solving for rg, we obtain 

ro = g'f3 (:~E )'/3 = (9.81)'/' (24)(3600)~:.37 x J0
6)f' 

= 4.22 x 104km 

" (b) from Equation (:2.68), the velocity of the satellite in the parking orbit is 

v, = fijji = (9.81)(6.37 X ~06)' = 7725 m/s 
V+-;;; 6.67 x 10 

and its velocity in the geosynchronous orbit is 

fff.R~ (9.81)(6.37 x 10')' 
V4 = "---" = = 3070 mls 

rg 4.22 X 107 

From equation (2.6~), the maximum radius of the elliptic orbit is related to its 
eccentricity by 

Solving for e, we oblain 

c = ."r "'elf] ''-c--;- 0.727 
rg/tp + I 

Now we can solve Equation (2.67) lor v,: 

v, = M(. + 1) = )<9.81)(6.37 x 106)2~O.727 + 1) 
V-:- "p 6.67 x 10 

=10153 m/s 

From the relation rp112 = rgV3, the velocity V3 iR 

1)) = (qc)t'2 = 1604m/s 
c, 



DESIGN ISSUES 

Communication satellites (Figure 2.44) have revolutionized communications. mak­
ing possible the real·timc transmission of audiovisual intonnation to every part of 
the planet. Because satellites are placed in geosynchronous orbit, earth stations used 
to send signals to and receive signals from the satellites can use simple and 
relatively inexpensive fixed antennas. (The familiar' dish' antclUlas used to receive 
television transmissions are aimed at satellites in geosynchronous orbit) 

Because the radius ofa geosynchronous orbit is large in comparison to the earth's 
radius-r, = 4.22 x 104 km, which is approximately 26200mi-building commu­
nication satellites and launching them is a formidable problem in system design. In 
Example 2.14. the satellite in circular parking orbit must be boosted from til to V2, 

an increase in velocity of 2427 mis, to initiate thc elliptic orbit. It must then be 
boosted from V3 to V4, an increase in velocity of 1467 mis, to achieve geosynchro~ 
nous orbit. The satellite must be equipped with rocket engines capable of producing 
these substantial increases in velocity. In addition, it must have guidance and 
attitude (orientation) control systems that can align the satellite so that the necessary 
changes in velocity occur in the correct directions, Once in geosynchronous orbit, 
the satellite must be able to detennine its orientation and aim its own antennas to 
receive and transmit signals. 
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Figure 2.44 
Intelsat V Communication Satellite. 

Use the value R, = 6370 km for the radius of the earth. 

2.137 A satellite is In a circular orbit 320km above the earth's 
surface. 
(a) What is the magnitude of its velocity? 
(b) How long does it take to complete one revolution? 

2.143 From astronomical dala, Kepler deduced that the line ITom 
the sun to a planet traces out equal areas in equal times (Figure (a)). 
Show thaI this result follows ITom the f.et that the transverse 
component ao of the planet~s acceleration is zero. (When r changes 
by au amount dr and B changes by an amount dO (Figure (b)), the 
resulting differential element of area is dA ::::: 1 r(r dO),) 

2.138 The moon is approximately 383000 km ITom the earth. 
Assuming that the moon's orbit around the earth is circular with 
velocity given by Equation (2.68), detennine the time required for 
the moon to make one revolution around the earth, 

2.139 A satellite is given an initial velocity Vo = 6700 mls at a 
distance 1"0 = 2RE from thc centre of the earth, as shown in Figure 
2.39(a). 
<a) What is the maximum radius of the resulting elliptic orbit? 
(b) What is the magnitude of the velocity of the satellite when it is 
at its maximum radius? 

2.140 Draw a gmpb of the elliptic orbit described in Problem 
2.139. 

2.141 A satellite is given an initial velocity Vo at a distance 
ro = 6800 km ITom the centre of the earth, as shawr in Figure 
2.39(a). The resulting elliptic orbit has a maximum radius of 
20000 km. What is vo? 

2.142 In Problem 2.141, what velocity Vo would be necessary to 
put the satellite into a parabolic escape orbit? 

'2 +.11, 

y 

A 

(aj 

(b) P2.14l 
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2.144 At t = 0) an earth satellite is a distance ro from the centre 
of the earth aod has ao initial velocity Vo in the direction shown. 
Show that the polar equation for the resulting orbit is 

r (p. + l)eos' fJ 
;:;; = I(a + l)co02 P 1] cos B - (e + l)sinflcos/isin8 + I 

where B = (ro'l1/gR~) l. 

P2.144 

2.145 Draw the graphs of the orbits given by the polar equation 
obtained in Problem 2.144 for 8 = 0 aod Ii = 0, 30' and 60~. 

Protilems 2.146-2.149 are related to Example 2.14. 

2.14 An earth satellite is in a circular parking orbit of radius 
fp = 1~800 km. Detemline the increase in velocity Vz - 1)] neces­
sary lo put it into an elliptic orbit with maxbnum radius equal to the 
radiu~ rg of a geosynchronous orbit. 

2.147 (a) Determine the velocity V3 of the satellite in Problem 
2.146 when it reaches the radius of geosynchronous orbit. (b) 
Detc~ine the increase in velocity V4 - V3 necessary to place the 
satellite in geosynchronous orbil. 

2.148 A satellite is in a circular parking orbit of radius 
rp =7337 lan from the centre of the earth. Determine the velocity 
increhses V2 VI and 1/4 - V3 necessary to perfonn a Hohmann 
transfer to a circular orbit with radius equal to the radius of the 
moOl)" orbit 383 000 lan. 

2.149 A satellite is in a circular parking orbit of radius 
rp = 3500 km from the centrc of Mars, The radius of Mars is 
339~i lan, the acceleration due to gravity at its surface is 3.73 mis', 
and ,:t turns on its polar axis once every 24 hr 37 min. Determine 
the v,:elocity increases V2 - VI and V4 - V3 necessary to place the 
satellite in a synchronous orbit around Mars. 

2.5 Relati.}e Motion 

Figure 2.45(0) 
In many situations the relative motion of 

objects is of greater importance than their 
individual motions. 

Our discussion so far has been limited to the motion of a single point. 
However, often it is nil! the motion of an individual point, but motions of two 
or more points relativ! to each other that we must consider. For example, if a 
pilot wants to land 9" an aircraft carrier (Figure 2.45(a», tbe individual 
motions of the carrier ;and his plane relative to the earth concern him less than 

(a) 



the motion of his plane relative to the carrier. Pairs skaters (Figure 2.45(b» 
must carefully control both their individual motions relative to the ice and their 
motion relative to each other to successfully complete their moves. In this 
section we discuss the analysis of the relative motions of points. 

Suppose that A and B are two points whose individual motions we measure 
relative to a reference point 0, and let's consider how to describe the motion of 
A relative to B. Let fA and fB be the position vectors of points A and B relative 
to 0 (Figure 2.46). The vector TAIB is the position vector of point A relative to 
point B. These vectors are related by 

(2.71) 

Taking the time derivative of this relation, we obtain 

I VA = VB + VAlE I (2.72) 

where VA is the velocity of A relative to 0, VB is the velocity of B relative to 0, 
and vAIB = dTAIB/dt is the velocity of A relative to B. 

A Figure 2.46 

Figure 2.45(b) 

Two points A and B and a reference 
point 0. The vectors rA and rB specifY the 
positions of A and 8 relative to 0, and rAIR 
specifics the position of A relative to B. 

In our example of an aeroplane approaching an aircraft carrier. the plane 
could be point A and the carrier point B. The individual motions of the carrier 
and the plane would be measured (for example, by using on-board inertial 
navigation systems) relative to a reference point 0 fixed relative to the earth. 
Knowing the velocities of the plane, VA, and the carrier, VB, the pilot could use 
Equation (2.72) to determine his velocity relative to the carrier. 

Taking the time detivative of Equation (2.72), we obtain 

(2.73) 

where aA and aB are the accelerations of A and B relative to 0 and 
aAIB = dVAIB/dt is the acceleration of A relative to B. In deriving Equations 
(2.72) and (2.73), we have assumed that the position, velocity and acceleration 
vectors are expressed in terms of a reference frame that does not rotate. We 
discuss relative motion expressed in terms of a rotating reference frame in 
Chapter 6. 

The following examples show how you can use Equations (1.71)-(2.73) to 
analyse relative motions of objects. 
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Figure 2.47 
The aeroplane ~4), carrier (B) and a point 0 

fixed relative to the earth. 

y 

o 

:1 

An aircraft carrier tra\l~els north at 15 knots (nautical miles per hour) relative to the 
earth. With its radar, qe carrier dctennines that the velocity of an aeroplane relative 
to the carrier is horizontal aod of magnitude 300 knots toward, the northeast. What 
are the magnitude an~ direction of the plane's velocity relative to the earth? 

N 

J. 
WI ! E 

'-y 

} 

S 

, J5 knO!$ 

STRATEGY 

Since we know the carrier's velocity relative to the earth and the velocity of the 
plane relative to the darrierJ we can use Equation (2.72) to determine the plane's 
velocity relative to the earth. 

SOLUTION 

Let the aeroplane be Hoint A and let the aircraft be point B (Figure 2.47). Point 0 
and the xy coordinatdl system are fixed relative to the earth. The velocity of the 
carrier relative to the ~arth and the velocity of the plane relative to the carrier are 
shown. The velocity df the carrier is 

Vo = 15i,1mots 

and the velocity of th~ plane relative to the cartier is 

VAI8 = (300 cos 45' i + 300 sin4S' i) knots 

Therefore the velocit~ of the plane relative to the earth is 

VA = V8"+ vAIR = 300c0845' i + (15 + 300 si045') i 
= (212.1 i+227.1 j) knots 

" The magnitude ofthe:aeroplanc's velocity relative to the earth is 

(227.1)' = 310.8knots 

and its direction is arctan (212.1/227.1)=43.0' east of north. 



A ship moving at 5 m/s relative to the water is in a unifonn current flowing cast at 
2 mil'. If the captain wants to sail northwest relative to the earth, what direction 
should she point the ship? What will the resulting magnitude of the ship's velocity 
relative to the earth? 

STRATEGY 

Let the ship be point A'and letD be a point moving with the water (Figure (a)), Point y 

o and the xy coordinate system arc fixed relative to the earth, We know vo, the 
desired direction of VA and the magnitude of vAIB. We can use Equation (2.72) to 
determine the magnitude of VA and the direction of VA/B. 

SOLUTION 

The velocity of the ship relative to the earth is equal to the velocity of the water 
relative to the carth pills lhe velocity of the ship relative to the water: 
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I 
Figure 2,48 

o --------------x 
In Figure (b) we show this relationship together with the information we know about 
these velocities: the velocity of the current is 2 m/s towards the cast, the magnitude 
of the velocity of the ship relative to the water is 5 mis, and the direction of the 
velocity of the ship relative to the earth is northwest. In terms of the coordinate 
system shown, the velocity of the current is Va = 2im/s. We don't know the 
magnitude of VA but. because we know its direction, we can write it in terms of 
componcntl\ as 

The velocity of the ship relative to the water is 

The magnitude of this vector is 

Solving this equation, we obtain IVA I = 3.38 mis, so the velocity of the ship relative 
to th~ water is 

VAIB = (-439 i + 2.39 j) mls 

The captain must point her ship at arctan (4.39/2.39) = 61.4' west of north 10 cause 
the ship to travel in the northwest direction relative to the earth. 

DISCUSSION 

The problem described in this example must be solved whenever a ship travels in a 
current or an aeroplane flies in a wind that is not parallel to its desired course. 

o 

(a) The shIp A and a point B moving with 
the water. 

VB 
'-y-' 

l rnls 

~-----------x 

(b) Diagram of the velocity veclors. 
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4 rad/s 

The bars 0 P and P ~ in Figure 2.49 rotate in the x-y plane with constant angular 
velocities. In tenus oHthe fixed coordinate system shown, what is the acceleration of 
point Q relative to the fixed point O? 

STRATEGY 

~OJi;~fI!!i:::::::::Ii:i!l:~L-':-i--1- x Relative to point P, pd,Ptt Q moves in a circular path around P with constant angular 

I 
velocity. We can useilpolar coordinates to detennine aQIP and then express it in I- ..................... 2 m ................................. [ III tenns of components ~n the.xy coordinate system. ,Point P moves in a circular path 

Figure 2.49 

I...-J 111--

(a) Determining the acceleration of Q 
relative to P. 

v 

I 4 radis 

o 6',~::7t 
p 

e, 

(b) Determining the acceleration of P 
relative to O. 

about a with constant an!,TUlar velocity, so we can also use polar coordinates to 
determine the accclcrition 3p and then express it in ,terms of components in the .xy 
coordinate system. Tijen the acceleration of Q relative to 0 is 3Q ;;;; 3p + aQ/p. 

SOLUTION 

Expressing the moriot) of Q relative to P in tenns of polar coordinates (Figure (a)), 
we obtain the radial ct:unponent of the acceleration, 

and the transverse en(nponent, 

dr 
a(l~rr:x+2~w=O 

dl 

Therefore, the acceleration of Q relative to P in terms of the xy coordinate system is 

DQff = tircos45° i +ar sin45" j":::, (-64i - 64j) rnjs2 

We also express the acceleration of P relative to 0 in tenns of polar coordinates 
(Figure (b)). The radiM component is 

d2 .. 

a, = ~- rw2 = 0 - (2)(4)' = -32 m/s' 
dl 

and the transverse cOIhponent is 

dr 
ao=r"+2-w=O 

dt 

The acceleration of P' relative to 0 in terms of the xy coordinate system is 

ap = a, i = ·-321 (m/s2) 

Therefore the acceler",tion of Q relative to a is 

aQ = Op +aQfP = -321 - 641 - 64] 

= (-9/i 1 64 j) m/s' 



DISCUSSION 

By using polar coordinates in this example, do we violate OUT as.sumption that the 
vectors in Equations (2.1l)-{2.73) arc expressed in terms ofa reference frame that 
does not rotate? We do not, because the expressions for the velocity and acceleration 
in polar coordinates account for the fact that the unit vectors rotate. They give the 
velocity and acceleration relative to the reference frame in which the polar 
coordinates (r,O) are measured. For the same reason! you can also use normal 
and tangential components to evaluate the terms in Equations (2.71)-{2.73). 

This example demonstrates an important use of the concept of relative motion. 
The motion of point Q relative to point 0 is quite complicated. But because the 
motion of Q relative to P and the motion of P relative to Q are comparatively 
simple. we can take advantage of'the equations describing relative motion to obtain 
information about the motion of Q relative to O. 
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V J1 

2.150 Two cars A and B approach an intersection. Car A is going 
20 m/s and is decelerating at 2 m/s2, and car B is going 10 m/s 
and is decelerating at 3 rn/s2. In terms of the earth-fixed coordinate 
system shown, determine the velOCIty of car A relative to car 8 and 
the velocity of car B relative to car A. 

2.153 Two sailing boats have constant velocities VA and VB 

relative to the earth. The skipper of boat A sights a point on the 
horizon behind boat B. Seeing that boat B appears stationary 
relative to that point~ he knows he must change course to avoid 
collision, Usc Equation (2.72) to explain why. 

P2. ISO 

2.151 In Problem 2.150, determine the acceleration of car A 
relative to car B and thc acceleration of car B relative to car A. 

2.152 Suppose that tile two cars in Problem 2.150 approach thc 
intersection with constant velocities. Prove that the cars will reach 
the intersection at the same time if the velocity of car A relative to 
car B points from car A towards car B. 

P2.153 
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2.154 '!Wo projectiles A and B are launched from 0 at the same 
time with the initial velocities and elevation angles shown relative 
to the earth-fixed coordinate systems. At the instant B reaches its 
highest point~ determine: (a) the acceleration of A relative to B; 
(b) the velocity of A relative to B; (c) the position vector of A 
relative to B, 

y 

P2.154 

2.155 In a machining process, the disk rotates about the fixed 
point 0 with a constant angular velocity of lOrad/s. Tn tenns of the 
non~rotatjng coordinate system shown, what is the magnitude of 
the velocity of A relative to B? 

P2.155 

2.156 In Problem 2.155, what is the magnitude of the accelera­
tion of A relative to B? 

2.15? The bar rotates about the fixed point 0 with a constant 
angulfU' velocity of 2 rad/s. Point A moves outwards along the bar 
at a c.onstant rate of IOOmrn/s. Point B is a fixed point on the bar. 
At th9 instant shown, what is the magnitude of the velocity of point 
A relative to point B? 

P2.157 

2. 15~ In Problem 2.157, what is the magnitude of the accelera­
tion qf point B relative to point A at the instant shown? 

2.159 The bars 0 A and A B are each 40D mm long and rotate 
in th~ x-y plane. OA has a counterclockwise angular vei(}city 
of IOrad/s and a counterclockwise angular acceleration of 
2 rad}S2. A B has a constant counterclockwise angular velocity of 
5 rad/s. What is the velocity of point B relative to point A in terms 
of th~ fixed coordinate system? 

y 

il ,I 

~~---------------x 

P2.159 

2.16Q In Problem 2.159, what is the acceleration of point B 
relative to point A? 

2.161 In Problem 2.159, what is the velocity of point B relative 
" to the) fixed point O? 

2.162 In Problem 2.159, what is the acceleration of point B 
relati"e to the fixed point 07 



2.163 The train on the circular track is travelling at a constant 
speed of 15 m/s. The train on the straight track is travelling at 
6m/s and is increasing its speed at O.6m/s2. In terms of the earth­
fixed coordinate system shown, what is the velocity of passenger A 
relative to passenger B? 

y 

0"---------· .... B ......... A .... --x 

j 
o m/s 

P2.163 

2.164 In Problem 2.163, what is the acceleration of passenger A 
relative to passenger B? 

2.165 The velocity of the boat relative to the earth-fixed coordi­
nate system is 12m/s and is constant. The length of the tow rope is 
15 In. The angle 8 is 30' and is increasing at a constant ralc of 
10"/8. What arc the velocity and acceleration of the skier relative to 
the boat? 

y 

P2.165 
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2.166 In Problem 2.165, what are the velocity and acceleration 
of the skier relative to the earth? 

2.167 The hockey player is skating with velocity components 
v, =1.2m/s, v, = -6m/s when he hits a slap shot with a velocity 
of magnitude 30m/s relative 10 him. The position of the puek 
when he hits it is x = 3.6m, z = 3.6m. If be hits the puck so that 
its velocity vector relative to him is directed towards the centre of 
the goal, where will the puck intersect the x axis'? Will it enter the 
2 m wide goal? 

P2.167 

2.168 Tn Problem 2.167 at what point on the x axis should tile 
player aim the puck's velocity vector relative to him so that it enters 
the cenlre of the goal? 

2.169 An aeroplane flies in a iet slTeam flowing east at 
160km/hr. The aeroplane's airspeed (its velocity relative to the 
air) is 800 km/hr towards the northwest. What arc the magnitude 
and direction of the aeroplane's velocity relative to the earth? 

2.170 In Problem 2.169, if the pilot wants to fly towards a eity 
that is northwest of his current position, in which direction should 
he point the aeroplane, and what will be the magnitude of his 
velocity relative to the earth? 
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2.171 A river flows north at 3 m/s. (Assume that the current is 
uniform.) If you want to travel in a straight line from point C to 
point D in a boat that moves at a constant speed of Wm/s relative 
to the water, in what direction do you point the boat? How long 
does it take to make the crossing? 

N 

i ! 

/~ W+ +E 
"t/ 

S 
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2.172 In Problem 2.171, what is the minimwn boat speed 
relative to the water necessary to make the trip from point C to 
point D? 

2.173 Relative to the earth, a sailing boat sails north at velocity 
Vo and then sails east at the same velocity. The velocity of the wind 
is uniform and constant. A 'tell-tale' on the boat points in the 
direction of the velocity of the wind relative to the boat What are 
the direction and magnitude of the wind's velocity relative to the 
earth? (Your answer for the magnitude of the velocity of the wind 
will be in terms of v".) 

1
"0 ~ .. :;:.·~-v ' '''-' " - " .', 0 

•. ~~ \ /60' 

Tell-ltl;~ V 
/ \ 
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2.174 !! The origin 0 of the non-rotating coordinate system is at 
the cenlre of the earth, and the y axis points north. The satellite A 
on the ~ axis is in a circular polar Droit of radius Rj and its velocity 
is VA j.IILet ill be the angular velocity of the earth. What is the 
sate11it~'s velocity relative to the point B on the earth directly below 
the satellite? 

P2.174 

2.175 In Problem 2.174, what is the satellite's acceleration 
relative: to the point B on the earth directly below the satellite? 



Computational Mechanics 
The following example and problems are designed for the us;"~j~""l;~g;;;;;;~~~bj~"""" 
calculator or computer. 

Example 2.18 

With buoyancy accounted for, the downward acceleration of a steel ball falling in a 
particular liquid is a = O.9g cv, where c is a constant that is proportional to the 
viscosity of the liquid. To detennine the viscosity. a rheologist releases the ball from 
rest at the top of a 2 m tank of the liquid. If the ball requires 2 s to fall to the bottom, 
what is the value of c? 

STRATEGY 

We can obtain an equation for c by detennining the distance the ball falls as a 
function of time. 

SOLUTION 

We measure the ball's position s downward from the point of release (Figure (a») and 
let t = 0 be the time of release, 

The acceleration is 

dv 
a '" dt ; Q.9g - cv 

Separating variables and integrating, 

r d, fo'dl 
10 Q.9g - Ct! 10 

we obtain 

Integrating this equation with respect to time, we obtain the distance the ball has 
fallen as a function of the time from its release: 

O.9g
c s = -2- ct 

C 

We know that s :::: 2 m when t = 2 s, so determining c requires the equation 

f(c) = (O.9)c~·81) (2c - 1 + e-"') - 2 = [) 

We can't solve this transcendental equation in closed form to detennine c. 
Problc:m~solving programs such as Mathcad and TK! Solver are designed to obtain 
roots of such equations. Another approach is to compute the value of fCc) for a 
range of values of c and plot the results, as we have done in Figure 2.51. From the 
graph we estimate that c = 8.3 s ~ 1. 
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Figure 2.50 

(0) The ball is released from rest at the 
surface. 
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Figure 2.51 
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~ 
h. 
[.,:11' 2.176 An engineer analysing a machining process determines 

1 that from t = 0 to t = 4 s the workpiece starts from rest and moves I in a straight line with acceleration 

.j a = (2 + ,o.J _ (")m/s' 

(a) Draw a graph of the position of the workpiece relative to its 
position at t = 0 for values of time from t = 0 to t ::;; 4 s. 
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tl 
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I 
I II 
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II 
",.1 

'I 
I 

(b) Estimate the maximum velocity during this time interval and 
the time at which it occurs. 

2.177 In Problem 2.72, determine the range of angles 0 within 
which the pitcher must release ~,e ball to hit the strike zone, 

2.178 A cat.p.ult designed to throw a linc to ships tn distress 
throws a projectile with initial velocity v,,( I OA sin 80), where 80 
is the angle above the horizontal. Determine the value of 00 for 
which the distance the projeclile is thrown is a maximum j and show 
that thc maximum distance is O.559t~/g. 

, 
\ 

8" 
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i II 2.179 At' = 0, a projectile is located at the origin and has a 
!:! velocity of 20m/8 at 401;) above the horizontal. The profile of the 
I':! ground sUiface it strikes can be approximated by the equation 
1'1 y = O.4x O.006r. where x and y arc in metres, Determine the 
1:1 approximate coordinates of the point where it hits the ground. 

II 
II 
II 

II 
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20 mls 
, y = OAx - 0.006x' 
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2.18Q A carpenter working on a house asks his apprentice to 
throw! him an apple. The apple is thrown at IOm/g, What two 
value$ of 00 will cause the apple to land in the carpenter's hand, 
3.851]1 horizontally and 3,85 m vertically from the point where it is 
thrown? 
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2.181 A motorcycle starts from rest at t = 0 and moves along a 
circular track with 400 m radius. The tangential component of its 
acceleration is at = (2 + 0.21) rn/s2

, When the magnitude of its 
total ~ccclcmtion reaches 6 m/s1, friction can no longer keep it on 
the circular track and it spins out. How long after it starts does it 
spin out, and how fast is it going? 

P2.181 
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2.182 At t = O. a steel ball in a tank of oil is given a horizonkl1 
velocity v = 2 i m/s. The components of its acceleration are 
ax = -CVx , ay = -O.8g - cVy , at = -CVt, where c is a constant. 
When the ball hits the boltom of the tank, its position relative to its 
position at 1 = 0 is r = (0.8i - j) m. What is the value of c'? 

:~~~ The robot is programmed so that point P describes the~ 

r = (1 - 0.5 cos2rr!) m I 
0= {O.5 0.2 sin[2rr(t - o. nil rad 

Detennine the values of r and e at which the magnitude of the I 
velocity of P at1ains its maximum value. .J 

P2.182 

2.183 The polar coordinates of a point P moving in the x-y plane 
are r (t' 41) m, 0 = (f1 ... I) rud. 

Ca) Draw a graph of the magnitude of the velocity of P from 1 = 0 
tOI=2s. 
(b) Estimate the minimum magnitude of the velocity and the time 
at which it occurs. 

2.184 (a) Draw a graph of the magnitude of the acceleration of 

y 

the point P in Problem 2.183 from t = 0 to 1 = 2 s. 2.186 In Problem 2.185, determine the values of rand 0 at 
(b) Estimate the minimum magnitude of the acceleration and the the magnitude of the acceleration of P attains its maximum 
time at which it occurs. 

Chapter Summary 
--~-------------------------------

The position of a point P relative to a reference point a is specified by the 
position vector r from a to P. The velocity of P relative to a is 

dr 
V=~ 

dt 
Equation (2.1) 

and the acceleration of P relative to a is 
<Iv 

a=-
dt 

Equation (2.2) 

Straight-Line Motion 

The position of a point P on a straight line relative to a reference point a is 
specified by a coordinate s measured along the line from a to P. The co­
ordinate s and the velocity and acceleration of P along the line are related by 

i 
":i 

Ii 
1:1 
I 
I. 
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y 

(X,)1,7.) 

QO~ ______________ x 

ds v=-
dt 

I1;quation (2.3) 

dv 
a=~ 

dt 
Equation (2.4) 

If the acceleration is spe,pified as a function of time, the velocity aod position 
cao be determined as functions of time by integration. If the acceleration is 
specified as a function of velocity, dv/dt = a(v), the velocity can be deter­
mined as a function of time by separating variables: 

-= dt [ dv I' 
'. a(v) '0 

Equation (2.16) 

Tfthe acceleration is speqified as a function of position, dv/dt = a(s), the chain 
rule cao be used to ex!'res. the acceleration in terms of a derivative with 
respect to position: 

dv = dvds d dv v = a(s) 
dt ds dt ds 

Separating variables, the velocity cao be determined as a function of position; 

[ vdv = t a(s)ds 
110 JsS! 

Equation (2.19) 

Cartesian Coordinati;!s 

The position, velocity aod acceleration are [Equations (2.21)-(2.25)] 

r=xi+yj+zk 

dx dy dz 
V=v i+v.'J'+v k= .... -i+-j+-k 

x 7' dtdtdt 

The equations describing the motion in each coordinate direction are identical 
in form to the eqnations: that describe the motion of a point along a straight 
line. 

Angular Motion 

The aogular velocity (J) and angular acceleration rt. of L relative to Lo are 

dB 
(J) = '--

dt 
Equation (2.31) 

Equation (2.32) 



Normal and Tangential Components 

The velocity and acceleration are 

where 

ds 
v = vet =-Ct 

dt 
Equation (2.38) 

Equation (2.39) 

dO v2 dv 
a--
1- dt an =v-= 

dt p 
Equation (2.40) 

The unit vector en points toward the concave side of the path. The term p is the 
instantaneous radius of curvature of the path. 

Polar Coordinates 

The position. velocity and acceleration are 

Equation (2.44) 

dr 
v=vrer+voeo = dtCr+r(j)ee Equation (2.49) 

Equation (2.50) 

where 

Equation (2.51) 

d20 drdO dr 
ao =r-+2-- = r~ = 2-w 

dt2 dt dt dt 

Relative Motion 

The veelors fA and rB specify the positions of A and B relative to 0, and rAIB 
specifies the position of A relative to B: 

Equation (2.71) 

Taking time derivatives of this equation gives the relations 

Equation (2.72) 

where VA and VB are the velocities of A and B relative to 0 and 
vAIB = drAIB/dt is the velocity of A relative to B, and 

aA = aB + aAIB Equation (2.73) 

where aA and aD are the accelerations of A and B relative to 0 and 
aAIB = dVAIB/dt is the acceleration of A relative to B. 
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2.187 Suppose (hat you must detennine the duration of the 
amber light at a highway intersection. Assume that cars will be 
approaching the intersection travelling as fast as 105 lan/hr, (hat 
dnvers' reaction times are as long as 0.5 S, and that cars can safely 
achieve a deceleration of at least DAg. 
(a) How long must the light remain amber to allow drivers to come 
to a stop safely before the light turns red? 
(b) What is the minimum distance cars must be from the intersec~ 
tion when the light turns amber to come to a stop safely at the 
intersection? 

2.188 The acceleration of a point moving along a straight tine is 
a=(4t+2)m/s' When 1~2s, its position is s=36m, and 
when t = 4 s, its position is s = 90 m. What is its velocity when 
t = 4s? 

2.189 A model rocket takes off straight up. ltil acceleration 
during the 2 s its motor burns is 2501/82

, Neglect aerodynamic 
drag. Determine: <a) the maximum velocity during the flight; (b) 

P2.189 

the maximum altitude reached. 

2.190 Tn Problem 2.189, if the rocket's parachute fails 10 open, 
what is the total time of flight from take-off until the rocket hits the 
ground? 

2.191 The acceleration ofa point moving along a straight line is 
a = -:c1.'3, where c is a constant If lhe velocity of the point is 1.'0, 

what distance does it move before its velocity decreases to vo/2? 

2.192 Water leaves the nozzle at 200 above the horizontal and 
sltikes:the wall at the point indicated. What was the velocity of the 
water $.s it left the nozzle? 

Strategy; Detenninc the motion of the water by treating each 
particle of water as a projectile. 

P2.192 

2.193 Tn practice, a quancrback throws the football with velocity 
Vo at 4'5" above the horizonta1. At the same instant, the receiver 
standing 6 m in front of him starts running straight down field 
at 3 m}s and catches the ball. Assume that the ball is thrown 
and caught at the same height above the ground. What is the 
velocity V()? 

P2.193 



2.194 The constant velocity v = 2 m!s. What are the magnitudes 
of the velocity and acceleration of point P when x = 0.25 m? 

y 

-------~ I In --_ ...... . 
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2.195 In Problem 2.194, what is the acceleration of point P in 
terms of normal and tangential components when x:::;; 0.25 m? 
What is the instantaneous radius of curvature of the path? 

2.196 In Problem 2.194, what is the acceleration of point P in 
terms of radial and transverse components (polar coordinates) 
when x = 0.25 m'l 

2.197 A point P mnves along the ,piral path r = (O.I)Om, where 
o is in radians. The angular position (J = 2trad, where t is in 
seconds, and r:'..".:: 0 at t = 0. Determine the magnitudes of the 
velocity and acceleration of P at t = 1 s. 

P2.197 
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2.198 A manned vehicle (M) attempl, to rendezvous with a 
satellite (8) to repair it. (They are not shown to scale.) The 
magnitude of the satellite', velocity is Ivsl = 6 km!s, and a sight­
ing determines that the angle f3 = 40'. If you assume that their 
velocities remain constant and that the vehicles move along the 
straight lines shown, what should be the magnitude of VM to 
achieve rendezvous? 

P2.198 

2.199 In Problem 2.198, what is the magnitude of the velocity of 
the manned vehicle relative to the spacecraft (,)nce the magnitude of 
VM has been adjusted to achieve rendezvous? 

2.200 The three I m bars rotate in the x-y plane with constant 
angular velocity w. If OJ = 20 radjs, what is the magnitude of the 
velocity of point C relative to point A in terms of the fixed 
coordinate system? 

y 

--~---x 
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2.201 In Problem 2.200, what is the velocity of point C relative 
to the fixed point Q? 

2.202 Tn Problem 2.200, accelerometers lflounted at C indicate 
that the acceleration of point C relative to the fixed point 0 is 
.c = (-15001 -1500j)m!s2. What is the angular velocity w" 
Can you determine from this information whether (j) is counter­
clockwise or clockwise? 



I 

A racing motorcycle can accel~ 
erate from rest to 60mi/hr 
(96.6 kmjhr) in 3 s. Its 

acceleration is reJated by Newton's 
second law to the combined mass of 
the motorvycle and rider and the exter­
nal forces acting on them. In this 
chapter we will use free-body dia­
grams and Newton IS second law to 
determine the motions that result 
from the forces acting on objects. 



I Chapter 3 I 

Force, Mass and 
Acceleration 

UNTIL now we have analysed motions of objects without 

considering the forces causing them. Here we relate 

cause and effect: by drawing the free-body diagram of an 

object to identify the forces acting on it, we can use Newton's 

second law to determine its acceleration. Once the accelera­

tion is known, we can determine its velocity and position by 

the methods developed in Chapter 2. 

99 
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3.1 Newton's Second Law 
Newton stated that the force on a particle is equal to the rate of change of its 
linear momentum, which IS the product of its mass and velocity: 

d 
f = -(mv) 

dt 

If the particle's mass is ~onstant, the force equals the product of its mass and 
acceleration: 

I f=m~~m:J (3,1) 

We pointed out in Chapter I that the second law g:;ves precise meanings to the 
terms force and mass, Oree a unit of mass is chosen, a unit of force is defined 
to he the force necessary to give one unit of mass an acceleration of unit 
magnitude, For exanlple, the unit of force in SI units, the newton, is the force 
necessary to give a mass of one kilogram an acceleration of one metre per 
second squared, In princiiplc, the second law then gives the value of any force 
and the mass of any obj~ct By subjecting a one-kilogram maSs to an arbitrary 
force and measuring th¢ acceleration, we can solve the second law for the 
direction of the force an4 its magnitude in newtons, By subjecting an arbitrary 
mass to a one-newton force and measuring the acceleration, we can solve the 
second law for the value of the mass in kilograms, 

If you know a particle's mass and the force acting on it, you can use 
Newton's second law to detennine its acceleration, In Chapter 2 you learned 
how to determine the velocity, position and path, or trajectory, of a point when 
you know its acceleratiOliL Therefore, with the second law you can determine a 
particle s motion when you know the force acting on it 

3.2 Inertia/iReference Frames 
When we discussed thtj motion of a point in Chapter 2, we specified its 
position, velocity and a'leeleration relative to an arbitrary reference point 0, 
But Newton's second la,\r cannot be expressed in terms of just any reference 
point Suppose that no force acts on a particle, and we measure the particle's 
motion relative to a particular reference point 0 and determine that its 
acceleration is zero, In ~enns of this reference point~ Newton's second law 
agrees with our observ~tion, But if we then measure the particle's motion 
relative to a reference pOint U' that is accelerating relative to 0, we detennine 
that its acceleration is nol zero, Relative to 0', Newton's second law, at least in 
the form given by Equation (3.1), docs not predict the correct result Equation 
(3.1) also will not predicl the correct result if we use a coordinate system, or 
reference frame, that is rPtating, 

Newton stated that the second law should be expressed in terms of a non­
rotating reierence ftamethat does not accelerate relative to the 'fixed stars', 
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Even if the stars were fixed, that would not be pmctical advice because 
virtually every convenient reference frame accelerates, rotates, or both due to 
the earth's motion, Newton's second law can be applied rigorously using 
reference frames that accelerate and rotate, by properly accounting for the 
acceleration and rotation, We explain how in Chapter 6, But for now, we need 
to indicate when you can apply Newton's second law and when you cannot. 

Fortunately, in nearly all 'down to earth' situations, you can express 
Newton's second law in the fonn given by Equation (3.1) in !enns of a 
reference frame that is fixed relative to the earth and obtain sufficiently 
accurate answers, For example, if you throw a piece of chalk across a room, 
you can use a coordinate system that is fixed relative to the room to predict the 
chalk's motion. While the chalk is in motion, the earth rotates, and therefore 
the coordinate system rotates. But because the chalk's/light is brief, the effect 
on your prediction is very smalL (The earth rotates slowly - its angnlar velo­
city is one-half that of a clock's hour hand,) You can also obtain accurate 
answers in most situations using a reference frame that tmoslates with constant 
velocity relative to the earth, For example, if you and a friend play tennis on 
the deck of a cruise ship moving with constant velocity, you can apply 
Equation (3.1) in tenns of a coordinate system fixed relative to the ship to 
analyse the ball's motion, But you cannot if the ship is turning or changing its 
speed, In situations that are not 'down to earth', snch as the motions of earth 
satellites and spacecraft near the earth, you can apply Equation (3,1) by using 
a non-rotating coordinate system with its origin at the centre of the earth. 

If a reference frame can be used to apply Equation (3,1), we say that it is 
inertial. We discuss inertial reference frames in greater detail in Chapter 6. For 
now, you should assume that examples and problems are expressed in terms of 
inertial reference frames, 

3.3 Equation of Motion for the 
Centre of Mass 

Newton's second law is postulated for a particle, or small element of matter, 
but an equation of precisely the same form describes the motion of the centre 
of mass of an arbitrary object. We can show that the total external force on an 
arbitrary object is equal to the product of its mass and the acceleration of its 
centre of mass, 

To do so, we conceptually divide an arbitrary object into N particles. Let »I, 

be the mass ofthc ith particle, and let 'I be its position vector (Figure 3, I (a)), 
The object's mass m is the sum of the masses of the particles, 

m=Lmi 

where the summation sign with subscript i means 'the sum over i from 1 to N'. 
The position of the object's centre of mass is 

rn 
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(a) 

Lr + rh 
~J IJ I 

O'---::-r,---"mi 
(bl 

Figure 3,1 
(0) Dividing an object into particles. The 
vector rj is the position vector of the ith 
particle and r is the position vector of the 
object's centre of mass. 
(b) Forces on the ith particle. 

By taking two time deriiVatives of this expression, we obtain 

(3.2) 

, 
where a is the acceleration of the object's centre of mass, 

The ith particle of yhe object may be subjected to forces by the othcr 
particles of the object. 4't f'j be the force exerted on the itb particle by the jtb 
particle, Newton's third Jaw states that the ith particle exerts a force on the jth 
particle of equal magnitude and opposite direction: fji = -fy, Denoting the 
extemal force on the ltp particle (that is, the total force exerted on the ith 
particle by objects otherl than the object we are considering) by rf, Newton's 
second law for tbe ith Panicle is (Figure 3. I (b» 

We can write this equ~tion for each particle of the object Summing the 
resulting equations from i = 1 to N, we obtain 

L L fij + L f~ = rna (33) 
j 

where we have used Eqllation (3.2), The first term on the left side, the sum of 
the intemal forces on th~ object, is zero due to Newton's third law: 

L L fi] ",f ,2 +f2, +f13 +f31 +, .. =0 
j 

The second term on the 'left side of Equation (3.3) is the sum of the external 
forces on the object D~noting it by l:F, we conclude that the sum of the 
external forces equals the product of the mass and the acceleration of the 
centre of mass: 

(3.4) 

Because this equatioh is identical in form to Newton's postulate for a 
particle, for conveniencel:we also refer to it as Newton's second law. Notice that 
we made no assUl11ptiori~ restricting the naturc of the 'object' or its state of 
motion in obtaining this tesult The sum of the exte, mal forces on any object or 
collection of objects - solid, liquid or gas - equals the product of the total mass 

I and the acceleration of tile centre of mass, For example, suppose that the space 
shuttle is in orbit and ha~ fuel remaining in its tanks, If its engines are tumed 
on, the fuel sloshes in a complicated manner, affecting the shuttle's motion due 
to intemal forces between the fuel and the shuttle. Nevertheless, we can use 
Equation (3,4) to determine the exact acceleration oIthe centre of mass of the 
shuttle, including the fi4el it contains, and thereby determine the velocity, 
position and trajectory of the centre of mass, 



3.4 Applications 
------------------------

To apply Newton'8 second law in a particular situation, you must choose a 
coordinate system. Often you will find that you can resolve the forees into 
components most conveniently in terms of a particular coordinate system, or 
your choice may be determined by the object's path. In the following sections 
we use different 1ypes of coordinate systems to determine the motions of 
objects. 

Cartesian Coordinates and Straight-Line Motion 
Expressing the total force and the acceleration in Newton's second law in 
terms of their components in a cartesian coordinate system, 

we obtain three scalar equations of motion; 

I EFx = ma., EFy = may EP~ = ma, (3.5) 

The total foree in each coordinate direction equals the product of the mass and 
the component of the acceleration in thaI direction (Figure 3.2(a)). 

If the motion is confined to the x-y plane, a, = 0, so the sum of the forces in 
the z direction is zero. Thus when the motion of an object is confined to a fixed 
plane, the component of the total force normal to the plane equals zero. For 
straight-line motion along the x axis (Figure 3.2(b)), Equations (3.5) are 

EF, = max EFv = a EP~ = 0 

In straight-line motion, the componeots of the total force perpendicular to the 
line equal zero and the component of the total force tangent to the line equals 
the product of the mass and the acceleration of the object along the line. 

The following examples demonstrate the use of Newton's second law to 
analyse motions of objects. JJy drawing the free-body diagram of an object, 
you can identifY the external forces acting on it and use Newton ~v second 
law to determine its acceleration. C'l1Iversely, if you know the motion of an 
object, you can use Newton's second law to determine the external forces 
acti1lg on j~ 111 particular, if you know that an object's aceeleratio1l in a 
specific direction is zero, the sum of the externalforees in that direction must 
also equal zero. 
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(a) 

(b) 

Figure 3.2 
(0) Force and acceleration components in 
cartesian coordinates. 
(b) An objc"t in straight-line motion along 
the x axis. 
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Figure 3,3 

The aeroplane in Figur9 3,3 touches down on the aircraft carrier with a horizontal 
velocity of 50 m/s rel~tive to the carrier. The horizontal component of the force 
exerted on the arresting gear is of magnitude 10000. N, where" is the plane's 
velocity in metres per iccond. The plane's mass is 6500 kg. 
(a) \¥hat maximum hopzontal force does the arresting gear exert on the plane? 
(b) If othcr horizontal forces can be neglected, what distance does the plane travel 
before coming to rest? 

STRATEGY 

<a) Since the plane begins to decelerate when it contacts the arresting gear, the 
ma.'Ximum force occurs "at fLrst contact when v 50 m/s. 
(b) The horizontal fo"!c exerted by the arresting gear equals the product of the 
plane's mass and its acceleration. Once we know the acceleration, we can integrate 
to detennine the distan~e required for the plane to come to rest. 

SOLUTION 

(a) The magnitude of the maximum force is 

l(JOOOv = (lOOOO)(50) =50000(lN 

(b) Using the coordinate system shown in Figure (a), we obtain the equation of 
motion: 

:EFT :::;max : 

-100001.')( =<mux 



y 

(a) The x axis is aligned with the plane's horizont.a.l motion. 

The aeroplane's acceleration is a function of its velocity. We use the chain rule to 
express the acceleration in tenns of a derivative with respect to x; 

dvx dvx. dx dvx 
max = m-' = m~d ~d = m~dx Vx = lOOOOvx dt x I 

Now we integrate, defining x = 0 to be the position at which the planc contacts the 
arresting gear: 

10 l' mdvx = - 10000dx 
5(1 0 

Solving for x, we obtain 

= 50m = (50)(6500) = 12 5 
x 10000 10000 •. m 

DISCUSSION 

As we demonstrate in this example. once you have used Newton's second law to 
determine the acceleration, you can apply the methods developed in Chapter 2 to 
detennine the position and velocity. 

3.4 APPLICATIONS 105 
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B 

Figure 3.4 

-x 

(0) Free-body diagram of crate A. 

,.-----y 

T 

(b) Free-body diagram of crate B. 

Example 3.2 

The two crate, in Figure 3.4 are released from rest. Their masses are rnA = 40 kg 
a.nd mB = 30 kg, and ';the coefficients of friction between crate A and the inclined 
surface are 1i'8 = 0.2, ~lk :::: 0.15. What is their acceleration? 

STRATEGY 

We must first dctcnpinc whether A Slips. We will assume the crates remain 
stationary and see whether the friction force necessary for equilibrium exceeds 
the maximum frictiqn force. If slip occurs, we can determine the resulting 
acceleration by draw41g free~body diagrams of the crates and applying Newton's 
second law to them individually. 

SOLUTION 

We draw the free-bo4y dIagram of crate A in Figure (a). If we assume it does not 
slip, the equilibrium ¢quations apply, 

"EF, = T+mAgsin20' - f = 0 

"E F, = IV mAgeo,20' = 0 

and the tension T equ;;;.ls the weight of crate B. Therefore the friction force necessary 
for equilibrium is 

f = mBg + mAg sin 20' = (30 + 40 sin 20')(9.81) = 428.5N 

The nonnal force N ~ mAg cos 20", so the maximum friction force the surface will 
support is 

fm" = l'iN = (0.2)[(40)(9.81) cos 20'] = 73.7N 

Crate A will therefofQ' slip, and the friction force is f = flkN. Applying Newton's 
second law, 

'£F, = 't + rnAg sin 20' - I',N = mAa, 

"EF, =N - rnAg cos 20' = 0 

Crate A has no accelc;ration normal to the surface, so the som of the forces in the y 
direction equals zero. In this case we do not know the tension T because crate B is 
not in equilibrium. Ff(l)m the free-body diagram of crate B (Figure (b» we obtam the 
equation of motion 

(Notice that in tCIIDS 9f the two coordinate systems we use, the two crates have the 
same acceleration a,.~ By applying Newton', second law to both crates, we have 
obtained three equatidns in tems of the unknowns T, N and OX' Solving for ax. we 
obtain ax = 5.33 m/sz. 
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DISCUSSION 

Notice that we assumed the tension in the cable to be the same on each side of the 
pulley (Figure (c)). In fact, the tensions must be different because a moment is 
necessary to cause angular acceleration of the pulley. For now, our only recourse is 
to assume that the pulley is light enough that the moment necessary to accelerate it 
is negligible. In Chapter 7, we include the analysis of the angular motion of the 
pulley in problems of this typc and obtain marc realistic solutions. 

3.1 The total external force on a 10 kg object is (90 i - 60 j + 
20 k) N. What is the magnitude of its acceleration relative to an 
inertial reference frame'? 

3.2 The total external force acting on a 20 kg object is 
(10 i + 20 j) N. When t = 0, its position vector relative to an inertial 
reference Ji-arne is r:::= 0 and its velocity is v = (2 i j) m/s. 
Determine the position and velocity of the object when t = 2 s. 

3.3 Thc total cxtcrnal force on an object is (lOt i + 60 j) N. 
When t = 0, its position vector relative to an inertial reference 
frame is r = 0 and its velocity is v = 0,2 j m/s. \¥hen t 5 s, the 
magnitude of its position vector is measured and determined to be 
8.75m. What is the mass. of the object? 

3.4 The position of a 10 kg object relative to an inertial reference 
frame is r = (t (3 i + 4t i - 30(' k) m. What are the components of 
the total external force acting on the object at t ~ lOs? 

3.5 If the 7000 kg helicopter starts from rest and its rotor exerts a 
constant 90 kN vertical forcc~ how high docs it rise in 2 s7 

(c) The tension is assumed to be the same 
both sides of the pulley. 

3.6 The 1 kg collar A is initially at rest in the position shown on 
the smooth horizontal bar. At t = 0, a torce F = (to (2 i + m t j -
Jr/ k) N is applied to the collar, causing it to slide along the bar. 
What i8 the velocity of the collar when it reaches the right end of 
the bar'? 

y 

F 

4 m ················································.1 

P3.6 

3.7 Suppose you are in an elevator and standing on a set of 
scales. When the elevator is stational)" the scales read your weight, 
W. 
(a) What is the acceleration of the elevator if the scales read 
1.01 W? 
(b) 'What is its acceleration if the scales read 0.99 W'? 

Strategy: Draw your frcc~body diagram. The upward force 
exerted on you by the scales equals the force you exert on the 
scales. 



108 CHAPTER 3 FORCE, MASS AND ACCELERATION 

3.8 A cart partially filled with water is initially stationary (Figure 
(all. The total mass of the cart and water is m. The cart is subjected 
to a time-dependent force (Figure (b)), If the horizontal fortes 
exerted on the wheels by the floor are negligible and no water 
sloshes out, what is the x coordinate of the centre of the cart after 
the motion of the water has subsided? 

y 

---x 

( a) 

F 

. 

y 

---x 

(b) 

P3,8 

3.9 The rocket travels straight up at low altitude" Its weight at the 
presert time is 890 kN and the thrust of its engine is 1200 kN, An 
on-bqard accelerometer indicates that its acceleration is 3 m/52 

upwafcis. What is the magnitude of the aerodynamic drag force on 
the rocket? 

P3,9 

3.10 The aeroplane weights 90kN. At the instant shown, the 
pilot increases the thrust Toftite engine by 22.5 kN. The horizontal 
comp~onent of the aeroplane's acceleration the instant before the 
thrus~ is mcreased is 6 m/s2

, What is the horizontal component of 
the a~roplane's acceleration the instant after the thrust is increased? 

v 

P3,10 



3.11 The combined weight of the motorcycle and rider is 
1600 N. The coefficient of kinetic friction between the motor­
cycle's tyres and the road is III = 0.8. If he spins the rear (drive) 
wheel, the normal force between lhe rear wheel and the road is 
1100 N, and the horizontal force exerted on the front wheel by the 
road is ncgligihlcl what is the resulting horizontal acceleration? 

P3.11 

3.12 The bucket 8 weighs 1800 N and the acceleration of its 
centre of mass is • = (-10 1 - 3 j) m/s'. Dctcnninc the x and y 
components of the total force exerted on the bucket by its supports. 

P3.12 

3.13 During a test flight in which a 9000 kg helicopter starts 
from rest at t = 0, the acceleration of its centre of mass from t = 0 
tOI=lOsis 

• = [(0.61)1 + (1.8 - 0.361) i] m/s2 

What is the magnitude of the total external force on the helicopter 
(including its weight) at 1 = 6 s? 
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3.14 The engineers conducting the test described in Problem 
3. \3 want to exprcss the total force on the helicopter at I = 6 s in 
terms of three forces: the weight W, a component T tangent to the 
path, and a component L nonnal to the path. What arc the values of 
W, T and L'I 

)' 

----

L----___________ x 

P3.14 

3.15 Thc robot manipulator is programmed so that 
x = (100 + 25t')mm. y = 6:.:2 mm, Z = a during the interval of 
time from I ::::: 0 to t = 4 s. What are the x and y components of the 
total force exerted by the jaws of the manipulator on the 5 kg 
widget A at t = 2 s? 

o A 

P3.15 

3.16 The robot manipulator in Problem 3.15 is stationary at 
t = 0 and is programmed so that a, = (50 - 0.4v,)mm/s2

, 

ay = (25 O.2vy)mm/s2. az = 0 during the interval of time from 
t = 0 to t = 4 s. What are the x and y components of the tolal force 
exerted by the jaws of the manipulator on the 5 kg widget A at 
t = 2 s? 
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3.17 In the sport of curling. the object is to slide a 'slone' 
weighing 200 N onto the centre of a target located 28 m from the 
point of release. If Ji.k =: 0.01 and the stone is throv .... n directly 
towards the target, what initial velocity would result in a perfect 
shot? 

P3,17 

3.18 The tv.'o weights are released from rest. How far does the 
50 N weight fall in one-half second? 

P3,18 

3.19 In Ilxample 3.2, what is the ratio of the tension in the cable 
to the weight of crate B after the crates are released from rest? 

3,20" Each box weighs 200 N and friction can be neglected. If the 
boxelii start from rest at t :::::::: O. determine lhe magnitude of their 
veloc,ity and the distance they have moved from their initial 
positton at t ::::::: 1 s. 

P3.20 

3.21 In Problem 3.20, determine the magnitude ofthc velocity of 
the bpxcs and the distance they have moved from their initial 
position at t = I s if the coeffiCIent of kinetic friction between the 
boxes and Ihe surface is /1k = IU5. 

3.22 The masses rnA = 15 kg, mg = 30 kg, and the coemei.nts 
of friction between all of the surfaces are /1, = 0.4, /1k = 0.35. 
What is the largest force F that can be applied without causing A to 
slip r¢lativc to B? What is the resulting acceleration? 

P3.22 



3.23 The crane's trolley at A moves to the right with constant 
acceleration, and the 800 kg load moves without swinging, 
<al What is the acceleration of the trolley and load? 
(b) What is the som of the tensions in the parallel cables support­
ing the load? 

P3.23 

3.24 The 50 kg crate is initially stationary. The coefficients of 
friction between the crate and the inclined surface are fl~ = 02, 
tlk = 0.16. Determine how far the crate moves from its initial 
position in 2 s if the horizontal force f = 500 N. 

30" 
l.. 

P3.24 

3.25 In Problem 3.24. determine how far the crate moves from its 
initial position in 25 if the horizontal force F = 150 N, 

3.4 APPLICATIONS III 

3.26 The crate has a mass of 120 kg and the coefficients of 
mction between it and the sloping dock are IL, = 0.6, ILk = 0.5. 
(a) What tension must the winch exert on the cable to start the 
stationary crate sliding up the dock? 
(b) If the tension is maintained at the value determined in part (a), 
what is the magnitude of the crate's velocity when it has moved 
10 III up the dock? 

P3.26 

3.27 The utility vehicle is moving forwards at 3 m/s. The 
coe!l;iei.nts of friction between its load A and the bed of the 
v.hiole are /1, = 0.5, I'k = 0.45. If. = O. determine the shortest 
distance in which the vehicle can be brought to a stop without 
causing the load to slide on the bed. 

P3.27 

3.28 In Problem 3.27, determine the shortest distance if the angle 
o is Cal 15"; (b) -15'. 
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3.29 In an assembly-line process. the 20 kg package A starts 
from rest and slides down the smooth ramp. Suppose that you want 
to design the hydraulic device B to exert a constant force of 
magnitude F on the package and bring it to rest in a distance of 
100 mm. What is the required force F? 

P3.29 

3.30 Tho force exerted on the 10 kg mass by the linear spring is 
F = -ks, where k is the spring constant and s is the displacement 
of the mass from its position when the spring is unstretched. The 
value of k is 50 N/m. The mass is released from rest in the position 
s = 1 m. 
(a) What is the acceleration of the mass at the imaant it is released? 
(b) What is the velocity of the mass when it reaches the position 
s = O? 

I 

P3.30 

3.31! A sky diver and his parachute weight 900 N. He is lalling 
verti,ally at 30m/s when his parachute opens. With the parachute 
open~ the magnitude of the drag force is 0.51)2. 
(a) What is the magnitude of his acceleration at the lOstant the 
parachute opens? 
(b) What is the magnitude of his velocity when he has descended 
6 m from the point where his parachute opens? 

P3.31 

3.32 A 100 kg 'bungee jumper' jumps from a bridge 40 m above 
a river. The bung.e cord has an unstretehed length of 18 m and has 
a spmng constant k = 200 N / m. 
(a) How far above the river is he when the cord brings him to a 
stop? 
(b) What maximum force does the cord exert on him'! 

P3.32 

3.33 In Problem 3.32, what maximum velocity does the jumper 
reach, and at what height above the river does it occur? 



3.34 In a catllOde-ray tube. an electron (mass = 9.11 x 10-31 kg) 
is projected at a with velocity [v + (2·.2 x 107)1] m/s. While it is 
between the chsrged plates, the electric field generated by the plates 
subjects it to a force F = -eE j, where the charge of the electron 
e = 1.6 x 10-19 C (coulombs) and the electric field strength 
E = 15 kN/C. External forces on the electron are negligible when it 
is not between the plates. Where does it strike the screen? 

P3.34 

3.35 In Problem 3.34, detennine where the electron strikes the 
screen if the electric field strength is E = 15 sin(wt) kN/C, where 
the circular frequency QJ = 2 x 109 S - I, 

3.36 An astronaut wants to travel from a spac.e station to a 
satellite that needs repair. He departs the space station at 0. A 
spring-loaded launching device gives his manoeuvring unit an 
initial velocity of I m/, (relative to the space station) in the y 
direction. At that instant. the position of the satellite is x = 70 m, 
y = 50 m, z = 0, and it is drifting at 2.m/' (relative to the station) 
in the x direction. The astronaut intercepts the satellite by applying 
a constant,_ thrust parallel to the x axi's. The total mass of the 
astronaut and his manoeuvring unit is 300 kg. 
(aJ How long does it take him to reach the satellite? 
(b) What is the magnitude of the thrust he must apply to makc the 
intercept? 
(c) What is his velocity relative to the satellite when he reaches it? 

y .-' 
S 

P3.36 
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3.37 What is the acceleration of the 8 kg collar A relative to the 
smooth bar? 

Pl.l 

3.38 In Problem 3.37, determine the acceleration of the coUar 
relative to the bar if the coefficient of kinetic friction between th 
collar and the bar is I'k = 0.1. 

3.39 The acceleration of the 10 kg collar A is (2 i + 3 j - 3 k) 
ml S2 What is the force F '? 

y 

P3.3 

3.40 In Problem 3.39, determine the force F if the coefficient 0 

kinetic friction between the collar and the bar is Ilk = 0.1. 
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3.41 The crate is drawn across the floor by a winch that retracts 
the cable at a constant rate of 0.2 m/s, The crate's mass is 120kg, 
and the coefficient of kinetic friction between the crate and the 
floor is i'k = 0,24, 
(aJ At the instant shown, what is the tension in the cable? 
(b) Obtain a 'quasi-static' solution for the tension in the cable by 
ignoring the crate's acceleration, and compare it with your result in 
part (a), 

i---4m-----i 

P3.41 

3,42 If Y = IOOmm, dy/dt = 600mm/s, and d'y/dt' = 
-200 mm/s2. what horizontal force is exerted on the 0.4 kg slider 
A by the smooth circular slot? 

P3.42 

3.43 II The two 50 kg blocks are released from rest. Determine the 
magnitude of their accelerations if friction at all the contacting 
surfaq,es is negligible. 

Strategy: Use the fact that the components of the accelerations 
of thCI blocks perpendicular to their mutual interface must be equaL 

P3.43 

3.44 In Problem 3.43, determine how long it takes block A to fall 
1 m i~ J1k = 0.1 at all the contacting surfaces. 



Normal and Tangential Components 
When an object moves in a plane curved path, we can express Newton's 
second law in tenns of nonnal and tangential components: 

where 

dv 
at=­

dt 

(3.6) 

Equating the normal and tangential components in Equation (3.6), we obtain 
two scalar equations of motion: 

dv 
:EFt =m­

dt 
(3.7) 

The sum of the forces in the tangential direction equals the product of the mass 
and the rate of change of the magnitude of the velocity, and the sum of the 
forces in the normal direction equals the product of the mass and the nonmal 
component of acceleration (Figure 3.5). The sum of the forces perpendicular 
to the plane curved path must equal zero. 

Figure 3.5 
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Normal and tangential components of L F 
and a. 

In the following example" we use Newton ~ second law expressed ill terms of 
normal alld tangential components to allalyse motions of objects. By 
drawing the free-body diagram of an abject, you can identify tire compo­
nents of the forces acting on it and use Newton ~ second law to determine 
the components of its acceleration. Or, if you know the components of the 
acceleration, you can use Newton's second law to determine the external 
forces. When an object fol/ows a circular path, normal and tangential 
components are usually the simplest choice for analysing its motion. 



116 CHAPTER 3 FORCE, MASS, AND ACCELERATION 

Figure 3,6 

(0) Free-body diagmm of a person standing in 
the occupied ring. 

Future space stations may be designed to rotate in order to provide simulated gravity 
for their inhabitants (figure 3,6). If the distance from the axis of rotation of the 
station to the occupie~ outer ring is R = 100 m, what rotation rate is necessary to 
simulate one-half of earth's gravity? 

STRATEGY 

By drawing the free.,body diagram of a person in equilibrium and expressing 
Newton's second law in terms of normal and tangential components, we can relate 
the force exerted on the person by the floor to the aJlgular velocity of the station. 
The person exerts an equal and opposite rorce on the floor, which is his effective 
weight 

SOLUTION 

We draw the free~body, diagram of a person standing in the outer ring in Figure (a), 
where N is the force ~xerted by the floor. Relative to the centre of the station, he 
moves in a circular p<l:,th of radius R. Newton's second law in tenns of nomlai and 
tangential component~ is 

!:F ilia: 

(dV V') N en = rn dt Ct +/iell 

Therefore n = rnv2 j R. The magnitude of his velocity is v = Rm, where m i::; the 
angular velocity of Ithe station. If onc~half of earth's gravity is simulated, 
N = 4 mg. Therefore 

I (RUJ)' 
~mg:: li1--
2 . R 

Solving for cu, we ob$in the necessary angular velocity of the station, 

fg 9.81 
w = V'iR = (2)(100) = 0,221 radls 

which is one revolutio'JI every 28.4 s. 



The experimental magnetically levitated train in Figure 3.7 is supported by magnetic 
repulsion forces exerted normal to the tracks. Motion of the train transverse to the 
tracks is prevented by laterdl supports. The 20 Mg (megagram) train is travelling at 
30 mjs on a circular segment of track of radius R = 150 m, and the bank angle of 
the track is 40°, What force must the magnetic levitation system exert to support the 
train, and what total force i!i: exerted by the lateral supports? 

Figure 3.7 

STRATEGY 

We know the train's velocity and the radius of its circular path, so we can determine 
its normal component of acceleration. By expressing Newlon's second law in tenus 
of nonnal and tangential components, we can detennine the components of force 
!lonnal and transverse to the track. 

SOLUTION 

The train's path viewed from above is circular (Figure (a), The unit vector ell is 
horizontal and points towards the eentre of the circular path, In ,Figure (b) we draw 
the free~body diagram of the train seen from the front, where lv! is the magnetic 
force nonnal to the tracks and S is the transverse force. The sum of the forces in the 
vertical direction (perpendicular to the train's path) must equal zero: 

M cos40' +Ssin40' - mg ~ 0 

The sum of the forces in the en direction equals the product of the mass and the 
nonnal component of the acccIcmtion: 

Msin40" 

v' rFn =m-: 
p 

v' 
Scos40° = m/i 

Solving these two equations for M and S, we obtain M = 227.4kN, S = 34.2kN. 

3.4 APPLICATIONS 

(0) The train's circular path viewed from 
abov~;. 

s 

M 

FRONTVIF.W 

(b) Free-body diagram of the train. 



118 CHAPTER 3 FORCE, MASS, AND ACCELERATION 

Figure 3.8 

Application to Engineering 
~~~,-~~-

Motor Vehic/~ Dynamics 
A civil engineer's pre(iminary design for a freeway off~ramp is circular with radius 
R = 100 m (Figure 3.~). If she assumes that the coefficient of static friction between 
tyres and road is at Ic<4t fls = 0.4, what is the maximum speed at which vehicles can 
enter the ramp witho4t losing traction? 

STRATEGY 

Since a vehicle on theoff~ramp moves in a circular path, it has a normal component 
of acceleration that d~pends on its velocity, The necessary nonnal component of 
force is exerted by friction between the tyres and the road and the friction force 
cannot be greater than the product of !" and the normal force. By assuming that the 
friction force is equaQ to this value, we can determine the maximum velocity for 
which slipping will not occur, 

SOLUTION 
We view the free*body; diagram of a car on the o1f~ramp from above the car in Figure 
(a) and from the front of the car in Figure (b). The friction force f must equal the 

(0) Top view of the free-body diagram. 

~l 
.r 

(b) Front view. 



product of the car's mass m and its normal component of acceleration: 

The required friction force increases as v increases. The maximum friction force the 
surfaces will support is f~ = I',N = I',mg. Therefore the maximum velocity for 
which slipping does not occur is 

v = ./It,gR = -/(0.4)(9.81)(100) - 19.8 mls 

or 71.3 km/hr. 

DESIGN ISSUES 

Automotive engineers. civil engineers who design highways, and engineers who 
study traffic accidents and their prevention must analyse and measure the motions of 
vehicles tulder difterent conditions. By using the methods discussed in this chapter, 
they can relate the forces acting on vehicles to their motions and study, for example, 
the factors influencing the distance necessary for a car to be brought to a stop in an 
emergency, or the effects of banking and curvature on the velocity at which a car can 
safely be driven on a cUlVed road (Figure 3.9). 

In example 3.5, the analysis indicates that vehicles wi1l10sc traction if they enter 
the freeway off-ramp at speeds greater than 71.3 km/hr. This result can be used as 
an indication of the speed limit that must be posted in order for vehicles to enter the 
ramp safely. or the off-ramp could be designed for a greater speed by increasing the 
radius of curvature. Or, if a larger safe speed is desired but space limitations forbid a 
larger radius of curvature, the off~ramp could be designed to incorporate banking 
(see Problem 3.65). 

r" < 
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Figure 3.9 
Tests of the capabilities of vehicles to 
negotiate curves influence the design of both 
vehicles and highways. 
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3,45 If you choose the velocity of the train in Example 3.4 
properly, the lateral force S exerted on it as it travels along the 
circular track is zero. 
Ca) What is the necessary velocity? 
(b) Explain why this would be the most desirable velocity from the 
passengers' point of view. 

3.46 An earth satellite with a mass of 4000 kg is in a circular 
orbit of radius R 8000 km. Its velocity rdative to the centre of 
the earth is 7038 m/s. 
(a) Use the given information to determine the gravitational force 
acting on the satellite, and compare it with the satellite's weight at 
sea level. 
(b) The acceleration due to gravity at a distance R from the centre 
of the earth is gRV R', where the radius of the earth is 
RE = 6370 krn. Use this expression to conJinn your answer to 
part (a). 

3.47 The 2 kg slider A starts from rest and slides in the horizontal 
plane along the smooth circular bar under the action of a tangential 
force F, = 41 N. At t = 4 s, determine <a) the magnitude of the 
velocity of the slider; (b) the magnitude of the horizontal force 
exeIied 011 the slider by the bar. 

TOP VIEW 
P3.47 

3.48 Small parts on a conveyer belt moving with constant 
veloc~ty .z: are allowed to drop into a bin. Show that the angle ct. 

at which the parts start sliding on the belt satisfies the equation 

1. v2 

cosa = --··sma =-
fl, gR 

where, fls is the coefficient of static friction between the parts 
and the belt. 

v 

; '\' 

P3.48 

3.49 The mass m rotates around the vertical pole in a horizontal 
circul;!r path. Determine the magnitude of its velocity in terms of () 
and L.. 

P3.49 

3.50 '! In Problem 3.49, if m = 15 kg, L = I m and the mass is 
moving in ito; circular path at v ~ 5 mis, what is the tension in the 
string? 



3.51 The lOkg mass m rotates around the vertical pole in a 
honzonta! circular path of radius R = I m. If the magnitude of its 
velocity is v = 3 mis, what are the tensions in the strings A and B? 

P3.51 

3.52 In Problem 3.51, what is the range of values of v for which 
the mass will remain in the circular path described? 

3.53 Suppose you are designing a monorail transportation sys­
tem that will travel at 50 mis, and you decide that the angle a that 
the cars swing out from the vertical when they go through a tum 
must not be larger than 20'. If the tums in the track consist of 
circular arcs of constant radius R, what is the minimum allowable 
value of R? 

P3.53 
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3.54 An aeroplane of weight W = 900 kN makes a turn at 
constant altitude and at constant velocity v' = 180m/s. The bank 
angle is t 5°. 
(a) Detennine the lift force L. 
(b) What is the radius of curvature of the plane's path? 

15' 

3.55 The suspended maSS m is stationary. 
(a) What are the tensions in the strings'! 

P3.54 

(b) If string A is cut, what is the tension in string B inunediately 
afterwards? 

B 

m 
A 

P3.SS 
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3.56 An aeroplane tlies with cons1ant velocity v along a circular 
path in the vertical plane. The radius of its circular path is 1500 m. 
The pilot weighs 660 N. 

(a) The pilot will experience 'weightlessness' at the top of the 
circular path if the aeroplane exerts no net force on him at that 
point. Draw a free-body diagram of the pilot, and use it to 
detennine the velocity v necessary to achieve this condition, 
(b) Detennine the force exerted on the pilot by tlle aeroplane at the 
top of the circular path if the aeroplane is travelling at twice the 
velocity determined in part (a). 

,. 

P3.56 

3.57 The smooth circular bar rotates with constant angular 
velocity (00 about the vertical axis AB. Detennine the angle f3 at 
which the slider of mass m will remain stationary relative to the 
circular bar. 

A 

8 

P3.57 

3.58 The force exerted on a charged particle by • magnetic field 
is 

F=qvxB 

where q,and v are the charge and velocity vector of the particle and 
B is tho magnetic field vector. A particle of mass m and positive 
charge q is projected at 0 with velocity v = voi into a uniform 
magneti.c field B = Bok. Using nannal and tangential components, 
show that: (a) the magnitude of the particle)s velocity is constant; 
(b) the particle's path is a circle with radius mvo/qBo. 

y 

P3.58 

3.59 A mo." m is attached to a string that is wrapped around a 
fixed po!t of radius R. At t = 0, the object is given a velocity Vo as 
shown. 1i:leglect external forces on m other than the force exerted by 
the string. Detennine the tension in the string as a function of the 
angle 0.' 

Strategy,' The velocity vector of the mass is perpendicular to the 
string. Express NewtOll's second law in terms of normal and 
tangenti!}l components. 

~~~----------~-------4,~m 

L 

P3.59 

3.60 In Problem 3,59, determine the angle e as a function of 
time. 



Problems 3,61-3,65 are related to Example 3,5, 

3.61 A car is travelling on a straight, level road when the driver 
perceives a hazard ahead, After a reaction time of 0.5 s, he applies 
the brakes, locking the wheels. The coefficient of kinetic friction 
between the tyres and the road is flk = 0.6. Determine the total 
distance the car travels before coming to rest, including the 
distance travelled before the brakes are applied, jf it is travelling 
at Ca) 88 km/hr; (h) 105 km/hr. 

3.62 If the car in Problem 3,61 is travelling at 105km/hr and 
rain decreases the value of Itk tC) 0.4, what total distance does the 
car travel before coming 10 Tcst? 

3,63 A car travelling at 30m/, is at the top of a hill. The 
coefficient of kinetic friction between the tyres and the road is 
I'k = 0,8 and the instantaneous radius of curvature of the car's path 
is 200 m, If Ole driver applies the brakes and the car's wheels lock, 
what is the resulting deceleration of the car in the direction tangent 
to its path? 

~;. 

P3,63 

3,64 Suppose that d,e car in Problem 3.63 is at the bottom of a 
depression whose radius of curvature is 200 m when the driver 
applies the bmkes. What is the resulting deceleration of the car in 
the direction tangcnt to its path? 

: i",'1 

P3,64 
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3,65 A freeway of!:ramp is circular with radius R CFigure (a), 
and the roadway is banked at an angle {J (Figure (h), Show that the 
maximum constant velocity at which a car can travel the offMramp 
wjthout losing traction is 

v= R(Sin P+ ",cos P) 
g cos {J - 1', sin P 

(b) 
P3.65 
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Polar Coordinates 
In tenns of polar coordinates, Newton '8 second law for an object moving in the 
x-y plane is 

(E F,e, + E Po eo) = mea, e, + ae eel (3.8) 

where 

a = d1r _,,(dIJ)2 = d1r -rill 
'dt" dt dt" 

d10 dr dO dr 
ae=r--, +2--=,.cx+2-w 

dt" dl dt dt 

Equating the e, and ell ,omponents in Equation (3,8), we obtain the scalar 
equations 

(3.9) 

(3,10) 

The sum of the forces in the radial direction equals the product of the mass and 
the radial component of the acceleration, and the sum of the Forces in the 
transverse direction cqu;lIs the product of the mass and the transverse 
component of the acceleration (Figure 3,10), 

Figure 3,10 

Radial and transverse components of L F 
and •. 

y 

~---L----_______________ x 

In the following example we use Newlon's second law expressed in terms of 
polar coordinates, or radial and trallsverse components, to analyse the 
motions of all object, .By drawillg Ihe free-body diagram of an object, you 
call identifY the compon¢nts of the forces acting on it and USe Newton ~ 
second law to determille the component., of ils acceleration. Or, if you know 
the CQmpOllcllts of the acceleratioll, YOIl can use Newton's second law to 
determine the external forces. 



The smooth bar in Figure 3.11 rotates in the horizontal plane with constant ,angular 
velocity Woo The unstretched length of the linear spring is ro_ The collar A has mass 
In and is released at r = '0 with no radial velocity. 
(a) Detcnnine the radial velocity of the collar as a function of r. 
(b) Detertnllie the horizontal force exerted on the collar by the bar as a function 
of r. 

STRATEGY 

(a) The only force on the collar in the radial direction is the spring force, which we 
can express in polar coordinates in terms of r, By integrating Equation (3.9), we can 
detenuine the radial velocity v, as a function of r. 
(b) Once v, = dr/dt is known in tenus of r, we can usc Equation (3.10) to 
dctcnnine the transverse force exerted on the collar by the bar. 

SOLUTION 

<al The spring excrts a radial [orce k(r - ro) ill the negative r direction (Figme (a)). 
Since the bar is smooth1 it exerts no radial force on A, but may excrt a transverse 
force Fa. From Equation (3.9), 

(d
2 

r 2) (dV' ') LF.=-k(r-ro)=m --I'm =m --1'£0. 
I dt2 dt 0 

By using the chain rule to express the time derivative of v" in terms of a derivative 
with respect to r, 

dVr dVr dr dv, 
dt = dtd! = diU, 

we obtain 

v, dv, = [(w~ !:..)r + !:..I'u] dr 
m m 

lntegrating, 

we obtain the radial velocity as a function of r: 

(b) From Equation (3.10). the transverse force exerted on A by the bar is 

Substituting our expression for v, as a function of r, we obtain the horizontal force 
exerted by the bar as a function of r: 

Fo = 2m",o) (wi -~)(r2 - rij) + ~: ro(r - ro) 

3.4 APPLICATIONS 125 

Figure 3.11 

,/,/ 
. 

o // 
" 

(a) Radial and transverse forces on ,4. 
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3.66 The polar coordinates of an object are r = (t' + 2) m, 
o = 2t' - (2 rad, and its mass is 44 kg. What are the radial and 
transverse components of the total external force on the object at 
1 = Is? 

3.67 The polar coordinates of an object are r = (213 + 4t)m, 
o = (I' - t) rad, and its mass is 20 kg. What are the radial and 
transverse components of the total external force on the object at 
t = 1 s7 

3,68 The robot is prob'faromed so that the 0.4 kg part A describes 
the path 

/' = (I - 0,5 cos 2m) m 

0= (0,5 - 0.2 sin 2m) rad 

At t = 2 R, detennine the radial and transverse components of force 
exerted on A by the robot's jaws. 

P3.68 

3.69 In Example 3.6, what is the maximum radial distance 
reachcd by the collar A? 

3.70 ifhe smooth bar rotates ill Ihe horizomal plane with con­
stant a.t:\gular velocity <Oil = 60 rpm (revolutions per minute). If the 
2 kg collar A is released at r = 1 m with no radial velocity. what is 
the magnitude of ils velocity when it .reaches the end of the bar? 

P3.70 

3.71 In Problem 3.70, what is the maximum horizontal force 
exerted on the collar by the bar? 

3.72 The mass m is released from rest with the string horizontal. 
By using Newton's second law in terms of polar coordinate!>, 
determine the magnitude of the velocity of the mass and the 
tension in the string as functions of 8. 

e 

m 

P3.72 



3.73 The skier passes point A 17m/s. From A to E, the radius of 
his circular path is 601, By using Newton's second law in tenns of 
polar coordinates. determine the magnitude of his velocity as he 
leaves the jump at B. Neglect transverse forces other than the 
transverse component of his weight. 

P3.73 

3.74 A 2kg mass rests on a fi.t horizontal bar. The bar begins 
rotating in the vertical plane about 0 with a constant angular 
acceler.tion of 1 rad/s2 The mass is observed to slip relative to the 
bar when the bar is 30° above the horizontal. What is the stalic 
coefficient of friction between the mass and the bar? Does the mass 
slip towards or away from O? 

o ~;';~~~: . :, .. c'."' '.: ,':: ::',';", !.';'; .:!:' ";:":E*,>:i!!L::::".::: I 

1--1 ~-Im 
P3.74 
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3.75 The 0.25 kg slider A is pushed along the circular bar by the 
slotted bar. The circular bar lies in the horizontal plane. Thc 
angular position of the slotted bar is 0 = lOP fad. Detenninc the 
radial and transverse components of the total external force exerted 
on the slider at t = 0.2 s. 

P3.75 

3.76 In Problem 3.75, supposed that the circular bar lies in the 
vertical plane. Detennine the radial and transverse components of 
the total force exerted on the slider by the circular and slotted bars 
at t = 0.25s. 

3.77 The slotted bar rotates in the horizontal plane with constant 
angolar velocity Wo. The mass m has a pin that fits in the slot ofthe 
bar. A spring holds the pin against the surface of the fixed earn. The 
surface of the cam is described by r = ro(2 - cos 0). Detennine the 
radial and transverse components of the total exlernal force exerted 
on the pin as functions of e. 

Cum 

P3.77 

3.78 In Problem 3.77, suppose that the unstretehed length of the 
sprin~ is roo Detennine the smallest value of the spring constant k 
for which the pin will remain on the surface of the cam. 



Computational Mechanics 
------

The material in this secfjon is designed for the use of a programmable calculator or 
computer. 

So far in this chapter Y9u have seen many situations in which you were able to 
detcnninc the motion of an object by a simple procedure: after using Newton's: 
second law to determine the acceleration, you integrated to obtain analytical; or 
closed~form, expression& for the object's velocity and position, These examples are 
very valuable - they teach you to use free-body diagrams and express problems in 
different coordinate systems. and they develop your intuitive understanding of 
forces and motions. But you would be misled if we presented examples of this kind 
only, because most problems that must be dealt with in engineering canDot be solved 
in this way. The functions describing the forces, and therefore the acceleration, arc 
often too complicated for'You to integrate and obtain closed-fonn solutions. In other 
situations, you will not kp.ow the forces in tenns of functions but instead will know 
them in lenns of data, either as a continuou:-i recording of force: as a function oftime 
(analogue data) or as values of force measured at discrete times (digital data). 

You can obtain appr0ximate solutions to such problems by using numerical 
integration. Let's eonsideJ an object of mass m in straight-line motion along the x 
axis (Figure 3.12) and assume that the x component of the total force may depend on 
the time, position and velocity: 

Figure 3.12 
An object moving along the x 

(3.11 ) 

Suppose that at a particular time to, we know the position x(to) and velocity v1'(lo). 
The accelcnttion of the object at to is 

dv, J. 
-d (to) = ~:EfAto,x(tol, vxltol] 

t m 

The defmition of the time derivative of Vx at to is 

dv, () I'." .. x,,(t:::.o...:+_A~I)_'c.:)x,,(I,,"o) -io=lll-
dt Atr~O IJ.t 

(3.12) 

By choosing a sufficiently small value of At, we can approximate this derivative by 

dvx (I l = vAto + At) - vito) 
dl 0 At 

and substitute it into Equation (3.12) to obtain an approximate expression for the 
velocity at to + At: 

v,(lo + At) = v,(to) +~:EFxllo, x(lo), v.,(to)] AI 
III 

(3.13) 



The relation between the velocity and position at to is 

Approximating this derivative by 

xU, + at) - x(to) 
at 

we obtain an approximate expression for the position at to + at: 

x(to + M) = x(to) + .vAto) M (3.14) 

Thus1 if we know the position and velocity at a time to, we can approximate their 
values at to + M by using Equations (3.13) and (3.14). We can then repeat the 
procedure, using x(to + at) and 1I,(to + M) as initial conditions to detennine the 
approximate position and velocity at to + 2M. By continuing in this way, we obtain 
approximate solutions for the position and velocity in tenns of time. This procedure 
is easy to carry out using a calculator or computer. It is called a finite~difTerence 
method because it determines changes in the dependent variables over finite 
intervals of time. The particular method we describe, due to Leonhard Euler 
(1707-83), is called forward differencing: the value of the derivative of a function 
at to is approximated by using its value at to and its value forward in timc j at to + At, 
Although more elaborate finite~difference methods exist that result in smaller errors 
in each time step. Euler's method is adequate to introduce you to numerical 
solutions of problems in dynamics. Notice that Equation (3.11) docs nol need to 
be a functional expression to carry out this process. The values of the total force 
must be known at times to, to + 6.t, ' , ., and can he detennined either from a 
function or from analogue or digital data, 

You can determine the velocity and position of an object in curviliner motion by 
the same approach. Suppose that an object moves in the x~y plane and that the 
components of force may depend on the time, position and velocity: 

If the position and velocity are knmli,'ll at a time to, we can use the same steps leading 
to Equations (3.13) and (3.14) to obtain approximate expressions for the compo­
nents of position and velocity at to + At: 

x(to + tlt) = x(to) + v.,(to) III 

y(to + Ilt) y(lo) + vy(to) III 

vx(to + at) = vx(to) +.!:. EF,[to. x(to). y(to), v,(to), vy(to)] at 
m 

Vy(to + /1t) = vy(to) + .!:.EF,[to, x(to),y(to), v./to). vy(to)]llt 
In 

(3.15) 
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y 

L-----_______ x 

Figure 3.13 

The forces on the projectile are its weight 
and the drag force D. 

The material in this sec;tion is designedfor the use 0/ a programmable calculator or 
computer. 

A 1450kg pr"jectilc is launched from x = O,y = 0 with mitial velocity 
Vx = 120m/s, Vy = 12,om. (The y axis is positive upwards,) The aerodynamic 
drag force is of magni~de Clvl2, where C is a constant. Determine the trajectory for 
values of C of 0.1, 0.2 and 0.3, 

SOLUTION 

To apply Equations (3,)5), we must detennine the x and y components of the total 
force on the projectile. Let D be the drag force (Figure 3,13). Since "/lvl is a unit 
vector in the direction Of v, we can write D as 

;' 2 V 
D = -Clvl'- = -Clvlv 

Ivl 

The external forces on Ithe projectile are its weight ,and the drag, 

:!::F ~ -mg j - Clvlv 

so the components of the total force are 

I: Fy = -mg cJt'.~ + v~ Vy (3.16) 

Consider the caSe C = D. I, and let 81 = 0, I. At the initial time 10 = 0, x(lo) and 
y(lo) arc zero, "x(to) '" 120m/s and Vy(lo) ~ 120m/s. The components of the 
position and velocity a~er the first time step arc 

x(to + 81) x(lo) + vAlo) 81 : 

x(O.l) '" x(O) + v,(O) 81 

= 0 + (120)(0. I) = 12 m 

y(lo + 81) t= y«o) + vilo) 81 : 

y(O, 1) = yeO) + Vy(O) 81 

= 0+ (120)(0.1) = 12 m 

I 
v,(to + 81) = v,(lo) + - IF,rlo, X(lo), y(IO) , v,(lo), 1',(10)] 81 : 

In . 

v,(O.l) = 1',(01 + {- ~ J[v'(O)]' + [Vy(O)]' v'(O)} 81 

= 120 + [ = I~';O J(l20)' + (120)' (120)}0, I) 

= 119.86m/s 

vAlo + 81) ~ vy(loJ +.!.:!:: FAto. X(IO), y(lo), v,(to), vy(tol] 81 : 
It! 

vy(O,I) = v,.(O) + {-g fJ[v,(O)li~+ [v](O)]' v,(O) }81 

= 120 + [-9.81 - I~';O 1(20)' + (120)' (120J}O. I) 

118.88 mls 



Continuing in this way, we obtain the following results for the fust five time steps: 

Time, s x, In y,m V x• mls vY' mls 

0.0 0.00 0.00 120.00 120.00 
0.1 12.00 12.00 119.86 118.88 
0.2 23.99 23.89 119.72 117.76 
0.3 35.96 35.66 119.58 116.64 
0.4 47.92 47.33 119.44 115.33 
0.5 59.86 58.88 119.31 114.41 

When there IS no drag (C = 0), we can obtain the closed-fom solution for the 
trajectory and compare it with nwnerical solutions. In Figure 3.14, we prescnt this 
comparison using At 3.5 ti, 1.0 s and 0.1 s. Notice that the numerical solution with 
~t = 0.1 s closely approximates the closed-form solution. 

In Figure 3.15, we show the numerical solutions for the various values of C 
obtained using M = 0.1 s. As expecled, the range of the projectile decreases as C 
increases. Also) when drag is present j the shape of the trajectory is changed. The 
projectile descends at an angle steeper than that when it ascends. 

s 

!Coo ,----------------------::-:,---, 
/ ilt 3.5 s. 

,)()() 

60n 1200 IgOO 
\.lll 

1400 

~ !It= 1.0, 
/ ~I::: 0.1 s 

Exact solution 

.1000 

1201l~-----------------:-----_, 

/C=o 
901l / ,<=111 

//~<=O.1 
.-, 600 ~~~3::::~:::: c = 0 .. 1 

O~----~6(L.I(~I----~12~(m-:-----~I~~O~O~~~24~O~0~--~1~OO~O~--~J6~00 
.\,111 

DISCUSSION 

The development of the first completely electronic digital computer, the ENIAC 
(Electronic Numerical Integrator and Computer), built at the University of Penn­
sylvania between 1943 and 1945, was motivated in pari by the need to calculate 
trajectories of projectiles. A room-size machine with 18000 vacuum tubes, it had 20 
bytes of random-access memory and 450 bytes of read-only memory. 
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Figure 3.14 

The closed-form solution for the trajectory 
when C = 0 compared with numerical 
solutions. 

Figure 3.15 
Trajectories for variolls values of C 
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3.79 A 1 kg object moves along the x axis under the action of the 
force Fx = 6tN. At t = 0, its position and velocity arc x = 0 and 
ilx :;;;:;; 10m/s. Using numerical Integration with At =: 0.1 s, deter~ 

mine the position and velocity of the object for the first five time 
steps. 

Strategy: At (he initial (hnc to = 0, x(to) = 0 and v,(to) = 10 
m/s. 'rou can use Equations (3.13) and (3.14) to detel111ine the 
velocity and position at time to + At :;;:: 0.1 s, The position is 

x(lo + dt) = x(to) + 'vxCto) dt : 

x(0. I) = xeD) + "x(O) dt 

= 0 + (10)(0.1) = 1m 

and the velocity is 

I 
V,(IO + dt) '" 11,(10) +-F.(lo) dl : . m . 

1 
vAO.I) = 10 + (I) 6(0)(0.1) = 10 m/s 

Use these values of the position and velocity as the initial 
conditions for the next time step. 

3.80 For the 1 kg object described in Problem 3.79, draw a graph 
comparing the exact solution from t = 0 to t = lOs with the 
solutions obtained using numerical integration with tlf = 25, 
dt = O.Ss and dl = 0.1 s. 

3.81 At t = 0, an object released from rest falls with constant 
acceleration g = 9.81 m/ s2. 
(a) Using the c1oscd .. fonn solution, detenninc the velocity of the 
object and the dhitance it has fallen at t = 2 s. 
(b) Approximate the answers to part (a) by using numerical 
integration with At = 0,2 s. 

3.82 In Problem 3,81, draw a graph of the distance the object 
falls as a function of time from t = 0 to t = 4 s, comparing the 
closed~form solution, the numerical solution using /J.( = 0.5 s, and 
the numerical solution using III = 0.05 s, 

3.83 A 1000 kg rocket starts from rest and travels straight up. 
The total force exerted on j( js F=(IOOOOO+ 100001 vl)N. 
Using numerical integration with At = 0.1 s, dctemlinc the rocket's 
height and velocity for the first time steps. (Assume that the change 
in the rocket's mass is negligible over this time Interval.) 

P3.83 

3.84 The force exerted on the 50 kg mass by the linear spring is 
F = -kx, where x is the displacement of the mass from its position 
when the spring is unstretched. The spring constant k is 50N/m 
The mass is releas~d from rest in the position x = 1 m. Use 
numerical integration with Ilt == 0,01 s to detennine the position 
and velocity of Ute mass for Ute first five (ime steps. 

3.8S 
0.01 s 
tenns 
rcsufts. 

x 

P3.84 

In Problem 3.84, use numerical integration with 8{ = 
to detennine the position and velocity of the mass in 
of time from t = 0 to I = lO s. Draw graphs of your 



3.86 At t = O. the velocity of a 50 kg rtlachine clement that 
moves along the x axis is t'x == 7 m/s. Measurements of the total 
force ~ Fr; acting on the clement at 0.1 s intervals from t = 0 to 
t = 0.9 s give the following values: 

Time, s Force, N Time, s Force, N 

0,0 50,0 05 58,8 
0,1 51.1 0,6 57,6 
0.2 56,0 0,7 55,4 
0,3 57,2 0,8 52,1 
0.4 58,5 0,0 49,9 

Detennine approximately how far the element moves from t :::::: 0 t.n 
t = I s and its approximate velocity at t = 1 s. 

3.87 The lateral supports of' a 100 kg structural element exert the 
horizontal force components 

Fx = -2000x Fv = -2000y 

where x and yare the coordinates of the centre of mass in metres. 

At t = O. the coordinates and component of velocity of the centre 
of mass are x = 0.1 m, )-' = 0, Vx = 0 and Vy = 1 m/s. Using 
At = 0, I s, determine the approximate position and velocity of 
the centre of maRS for the first five time steps. 

v 
'I 

-x 

P3,87 
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3.88 In Problem 3,87, use numerical integration with 
At = 0,001 s to detennine the elliptical path described by the 
centre of rtlaSS, and draw a graph of the path, 

3.89 A car starts from rest at t = O. Its acceleration is 

a = (10 + 21 - 0,018513) mis' 

(a) Using the closed-foM solution, detenninc the distance the car 
has travelled and its velocity at t = 6 s. 
(b) Use numerical integration with 6.t = 0, t s to approximate the 
answers obtained in part (a), 
(c) Usc numerical !TItegration with At ~ 0.01 s to approximate the 
answers obtained in part (a), 

3.90 A 20 kg projectile is launched from the ground with 
velocity components 11x:;::;; IOOm/:;;, 1Jy = 49n~/s. The magnitude 
of the aerodynamic drag force is Clvl', where C is a constant. If the 
rdnge of the projectile is 600 m, what is the constant C? 
(Use numerical integration with !!t = 0.01 -5 to compute the 
trajectory,) 

~x 
----600m------- ·1 

P3,90 
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Chapter Sl;Immary 
----------~~~ -~ 

The total external force on an object is equal to the product of its mass and the 
acceleration of its centre of mass relative to an inertial reference frame: 

l:F=ma Equation (304) 

A reference frame is said to be inertial if it is one in which the second law can 
be applied in this fonn. A reference frame translating at constant velocity 
relative to an inertial reference frame is also inertiaL 

Expressing Ne"ton:s second law in terms of a coordinate system yields 
scalar equations of motion: 

Cartesian Coordlnqtes 

:E Fz = rna:: Equation (3.:5) 

Normal and Tangeriltial Components 

v2 

l: F" = m Equation (3.7) 
p 

Polor Coordlnotes 

!: F = m .- - rol (
d

2
r ) 

, dr' Equation (3.9) 

l:Fo = m(r~ +2~ to) Equadon (3.10) 

If the motion of an object is confined to a fixed plane, the component of the 
total force normal to t4e plane equals zero, In straight-line motion, the COIll­

ponents of the total fOt:ce perpendicular to the line equal zero and the com­
ponent ofthc total force langent to the line equals the product of the mass and 
the acceleration of the phjcc! along the line, 

3.91 In a future mission, a spacecraft approaches the surface of 
an asteroid passing near the earth. Just before it touches down, the 
spacecraft is moving downwards at constant velocity relative to the 
surface of the asteroid and its downward thrust is 0.01 N. The 
computer decreases the downward thrust to 0.005 N, and an on~ 
board laser interferometer determines that the acceleration of the 
spacecraft relative to the sutface becomes 5 x 10-6 m/s2 down­
wards. What is the gravitational acceleration of the asteroid near its 
surface? 

P3,91 



3.92 A 'cog' engine hauls three cars of sighlseers to a Illountain­
top in Bavaria. The mass of each car including its passengers is 
10 Mg and the friction forces exerted by the wheels of the cars are 
negligible. Determine the forces in the couplings I, 2 and 3 if Cal 
the engine is moving at consttUlt velocity; (b) the engine is 
accelerating up the mountain at 1.2 mj S2. 

P3.92 

3.93 The car drives at constant velocity up the straight segment 
of road on the left. If the car's tyres continue to exert the same 
tangential force on the road after the car has gone over the crost of 
the hill and is on the straight segment of road on the right, what 
will be the car's acceleration? 

5' 

P3.93 

3.94 The aircraft carrier Nimitz weighs 810MN. Suppose that it 
is travelling at its top speed of approximately 30 knots (a knot is 
1852 mjhrl when its engines are 'hut down. If the water exerts a 
drag force of magnitude 292v kN, were v is the camer's velocity in 
metres per second, what distance does the carrier move before 
coming to rest? 
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3.95 If mA = !Okg, mn = 40 kg and the coefficients of kinetic 
mction between all surfaces is P-k = 0.11, what is the acceleration 
of B down the inclined surface? 

P3.95 

3.96 In Problem 3.95, if A weighs 300N, B weighs ISOON, and 
the coefficient of kinetic friction between all surfaces is J1.k = 0.15, 
what is the tension in the cord as B slides down the inclined 
surface? 

3.97 A gas gun is used to accelerate projectiles to high velocities 
for research on material properties. The projectile is held in place 
while gas is pumped into the tube to a high pressure po on the left 
and the tube is evacuated on the right. The projectile is then 
released and is accelerated by the expanding gas. Assume that the 
pressure p of the gas is related to the volume V it occupies by 
pVY = constant, where y is a constant. If friction can be neglected, 
show that the velocity of the projectile at this position x is 

v= 2poAxb (1 I) 
m(y -1) X;-I - x,-I 

where m is the mass of the projectile and A is the cross-sectional 
area of the tube. 

Projectile 

P3.97 
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3,98 The weights of the blocks are WA = 1800N and 
Wn = 300 N and the surfaces are smooth, Detenninc the accelera­
tion of block A and the tension in the cord, 

P3.98 

3,99 The 100 Mg space shuttle is in orbit when its engines arc 
turned on, exerting a thrust force T = (10 i - 20 j + 10 k)kN for 
2 s. Neglect the resulting change in its mass. At the end of the 2 s 

bum, fuel is still sloshing back and forth in the shuttle's tanks. 
What is the change in the velocity of the centre of mass of the 
shuttle (including the fuel it contains) due to the 2 s burn'? 

3,100 Thc water skier contacts the ramp with a velocity of 
40 kmjhr parallel to the surface of the ramp. Neglecting friction 
and assuming that the tow rope exerts no force on him once he 
touches the ramp. estimate the horizontal length of his jump from 
the end of the ramp. 

P3.100 

3.101 Suppose you arc designmg a roller coaster track that will 
take tile cars through a vertical loop of 12m radius. If you decide 
that, for safety, the downward force exerted on a passenger by his 
seat at the top of the loop should be at least one-half his weight, 
what i~ the minimum safe velocity of the cars at the top of the 
loop? 

P3,101 

3.102, If you want to design the cars of a train to tilt as the train 
goes around curves to achieve maximum passenger comfort, what 
is the r~lationship between the desired tilt angle ", the velocity II of 
the traih, and the instantaneous radius of curvature p of the track? 

a 

P3,102 

3,103 If a car is travelling at 48 kmjhr on a straight road and the 
coefficipnt of slatie friction between its tyres and the road is 
/18 = 0.8, what is the largest deeeleration the driver can achieve 
by applying the brakes? 



3.104 If the ear in Problem 3.103 is travelling on an unbanked, 
circular curve of 30 m radius, what is the largest tangential 
deceleration the driver can achieve by applying the brakes? 

3.105 To determine the coefficient of static friction between two 
materials, an engineer places a small sample of one material on a 
horizontal disc surfaced with the other one. then rotates the disc 
from rcst with a constant angular acceleration of 0.4 rad/s2

. If she 
determines that the small sample slips on the disc after 9.903 s, 
what is the coefficient of friction? 

P3.105 

3.106 As the smooth bar rotates in the horizontal plane, the 
string winds up on the fixed cylinder and draws the 1 kg collar A 
inwards, The bar starts from rest at t = 0 in tile position shown and 
rotates with constant angular acceleration. What is the tension in 
the string at t = 1 8? 

6 rad/s4. 

P3,106 

3,107 In Problem 3,106, suppose that the coefficient of kinetic 
friction between the collar and the bar is Ilk ~ 0.2, What is the 
tension in the string at t = 1 s? 

3,108 The I kg slider A is pushed along the eurved bar by the 
slotted bar. The curved bar lies in the horizontal plane, and its 
prome is described by I' = 2(O/2n + I) m, where 8 is in radians. 
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The angular position of the slotted bar is 0 ;= 2trad, Determine the 
radial and transverse components of the total extemal force exerted 
on the slider when 0 = 120', 

P3.108 

3,109 In Problem 3,108, suppose that the curved bar lies in the 
vertical plane. Detennine the radial and transverse components of 
the total force exerted on A by the curved and slotted bars at 
t ~ 0,5 s, 

3.110 The ski boat moves relative to the water with a constant 
velocity of magnitude IVBI = 10m/so The magnitude afthe 80kg 
skier's velocity relative to the boat is I"s/B 1 = 3 m/)t The tension in 
the 11 m tow rope is 180 N, and the horizon,al force exerted on the 
skier by the water is perpendicular to the ~rection of his motion 
relative to the water. If you can neglect either ,horizontal forces. 
what is the skier's acceleration in the direction of his motion 
relative to the water? 

P3,11 0 

3,111 In Problem 3,110, what is the magJ)itude of the horizontal 
force exerted on the skier by the water? 



The ski lift per­
fomlS work on the 
skiers, increasing 

their gravitational po­
tential energy. Going 
down the !rill, the skiers 
trade their gravitational 
potential energy for ki~ 

netic energy. To avoid 
going tno fas~ they 
must ski so that the 
snow performs negative 
work on them decreas­
ing their kinetic energy. 
In this chapter we u,e 
the concepts of work 
and energy to analyse 
motions of objects. 

,. , .. 
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! I Energy Methods 

ENERGY methods are used in nearly every area of science 

and engineering. Changes in energy must be considered 

in the design of any device that moves, including ski lifts as 

well as skis. The concepts of energy and conservation of 

energy originated in large part from the study of classical 

mechanics. A simple transformation of Newton's second law 

results in an equation that motivates the definitions of work, 

i : 

I 

i : 

kinetic energy (energy due to an object's motion) and potential ! . 

I • energy (energy due to an object's position). This equation 

relates the work done by the external forces acting on an object 

to the change in magnitude of its velocity. This relationship 

can greatly simplify the solution ofprobJems involving forces 

that depend on an object's position, such as gravitational 

forces or forces exerted by springs. In addition, studying the 

derivation and applications in this chapter will develop your 

intuition concerning energy and its transformations and give 

you insight into applications of these ideas in other fields. 

139 
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L_~_"', , ." ~;~;/~jl Work and Kinetic Ener~ 

4.1 Principle or Wor~c;J"'~~"'~~9X 
-------------------------------~ 

You have used Newtol1's second law to relate the acceleration of an object's 
centre of mass to its tTIass and the external forces acting on it. We will now 
show how this vector equation can be mathematically transformed into a scalar 
form that is extremelY useful in certain circumstances. We begin with New­
ton's second law in the form 

and take the dot product of both sides with the velocity: 

dv 
:1:F'v=m--'v 

dt 

(4.1) 

(4.2) 

By expressing the ve'locity on the left side of this equation as dr I dr and 
observing that 

d dv dv dv 
-(v·v) == - ·v+v· - = 2 -_·v 
dt dt dt dt 

we can write EquatiO!i (4.2) as 

(4.3) 

where v 2 = V· v is the, square of the magnitude ofv. The term on the left is the 
work expressed in ten'lls of the total external force acting on the object and the 
infinitesimal displacement dr. We integrate this equation, 

1" , lVi 1 :EF·dr", ,-m d(v2) 
rl Vi 2 

(4.4) 

where VI and V2 are tbe magnitudes of the velocity at the positions rl and r2. 

Evaluating the integrail on the right side, we obtain 

where 

I 2 I 2 
U=-mv---mv 

2 2 2 I 

1'" U = :1:F·dr 

" 

(4.5) 

(4.6) 



is the work done as the centre of mass of the object moves from position rl to 
position '" The term tmv2 is called the kinetic energy. The dimensions of the 
work, and therefore the dimensions oflhe kinetic energy, are (force) x (length). 
In US Customary units, work is expressed in foot-pounds. In SI units, work is 
expressed in newton-metres, or joules (1). 

Equation (4.5) states that the work done On an object as it moves from a 
position rl to a position r2 is equal to the change in its kinetic energy. This is 
called the principle of work and energy. If you can evaluate the work, this 
principle allows you to determine the change in the magnitode of an object's 
velocity as it moves from One position to another. You can also equate the total 
work done by external forces on a system of objects to the change in the total 
kiuetic energy of the system ifno net work is done by internal/orees. internal 
friction forces can do net work on a system (See Example 4.3.) 

Although the principle of work and energy relates chaoges iu position to 
changes iu velocity, you cannot usc it to obtain other information about the 
motion, such as the time required to move from one position to another. 
Furthermore, since the work is an integral with respect to positiou, you can 
usualJy evaluate it only when the forces doing work are known as functions of 
position. Despite these limitations, this principle is extremely useful for certain 
problems because the work can be determined very easily. 

4.2 Work and Power 
------

In this section we discuss how to determine the work done on an object, both 
in general and in several common and important special cases. We also 
define the power done by the forces acting on an object and show how it is 
calculated. 

Evaluating the Work 
Let's consider an object in curvilinear motion (Figure 4.1 (a)) and specify its 
position by the coordinate s measured along its path from a reference poiut O. 
[n terms of the tangential unit vector 'to the object's velocity is 

ds 
v = l't 

dt 

Because v = dr / dt, we can multiply the velocity by dt to obtain an 
expression for the vector dr describing an infinitesimal displacement along the 
path (Figure 4.l(b»: 

dr = v dt = ds e( 

The work done by the external forces acting on the object as a result of the 
displacement dr is 
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e, 

(a) 

(b) 

Figure 4.1 
(al The coordmate s and tantentialuoit 
vector. 

where L Ft is the tangential component of the total force. Therefore, as the (b) An infinitesimal displacement dr. 
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(e) The work done trom SI and S2 is 
determined by the tangential component of 
the external forces 

object moves from a position s, to a position S2 (Figure 4.1(c». the work is 

(4.7) 

The work is equal to the integral ofthe tangentiaJ component of the total force 
with respect to distan¢e along the path. Thus the work done is equal to the area 
defined by the graph of the tangential force from s, to S2 (Figure 4.2(a». 
Components of force perpendicular to the path do no work. Notice that if 1: Ft 

is opposite to the dire.ction of motion over some part of the path, which means 
the object is decelerating. the work is negative (Figure 4.2(b». If 1:F, is 
constant between s I and S2, the work is simply the product of the total 
tangential force and the displacement (Figure 4.2(c»: 

Constant tangential force (4.8) 

Figure 4.2 !F; 
(aj The work equals the area defined by the 

graph of lhe tangential force as a function of 
distance along the path. 

(b) Negative work is done if the tangential 
force is opposite to the direction of motion. 
(0) The work done by a constant tangential 

force equals the product of the force and the 
distance. 

o~------~------~L-----
S] 82 

(a) 

o f---'""".....--"'-----.f-.---+ 

(hi 

r.f.. 

0 
8

J S2 

(e) 

In the following e.l;amples we apply the principle of work and energy and use 
Equations (4.7) and (4.8) to evaluate the work. You should consider using 
work and energy when you want to relate the challge in velocity of all object 
to a change in its position. This typically involves two steps: 

(1) IdentifY the forces that do work-By drawing a free-body diagram. you 
must determine which external forces do work on the object. 

(2) Apply work and energy - Equate the total work done during a change in 
position to the change in the object's killetie energy. 



The 180 kg container A in Figure 4.3 starts from rest at position s = 0 and is 
subjected to a horizontal force F = 700 - 458 N by the hydraulic cylinder, The 
coefficient of kinetic metion between the container and the floor is Ilk = 0.26, What 
is the velocity of the container when it has reached the position s = 1.2 m? 

Figure 4,3 

SOLUTION 
Identify the Forces Thai Do Work We draw the free-body diagram of the 
container in Figure (a), The forces teen gent to its path are the force exerted by the 
hydraulic cylinder and the friction force. The container's acceleration in the vertical 
direction is zero, so N = 1766 N. 

A 

¢= '--s 

Il,N ~N 
(a) Free-body Jiagram of the container, 

Apply Work and Energy Let v be the magnitude of the container', velocity at 
s = 1.2 ro, Using Equation (4,7) to evaluate the work, we obtain 

1" 1 1 ~PI ds = -mv~ _m2 . 
• 2 2 I' 

/,

1.2 I 
(F - ItkN)ds = - mv' - 0 

o 2 

{2[(700 - 45 s) - (0,26)( I 766)]ds = ~ G.~~)v' 

Evaluating the integral and solving for ", we obtain. = 1,69 mis. 
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The two crates in Figure 4.4 are released from rest. Their masses are rnA :=: 40 kg 
and mB = 30 kg. and the kinetic coefficient of friction between crate A and the 
inclined surface is J1.k;:::;: 0.15. What is their velocity when they have moved 
400mm" 

Figure 4.4 

STRATEGY 

We will detem~ine the. velocity in two ways. 

Firs! method By drawing free-body diagrams of each of the cratcs and applying 
the principle of work and energy to them individually, we can obtain two equations 
in terms of the magnitude of the velocity and the tension in the cable. 

Second method We eao draw a single free-body diagram of the two crates. the 
cable and the palfey mId apply the principle of work and energy to the entire system. 

SOLUTION 

First Method We cttaw the free-body diagram of crate A In Figure (a). The forces 
that do work as the crlite moves down the plaoe are the forces tangential to its path: 
the tension T. the tan~ential component of the weight mAg sin 20', and the friction 
force Jl.kN. Because tl).e acceleration of the crate Donnal to the surface is zero, 
N=mAftcos20". Let ,v be the magnitude of the crate's velocity when it has moved 

(a) Free-body diagram of A. 



400 mm, Using Equation (4,7) to determine the work. we equate the work done on A 
to the change in it.'\ kinetic energy: 

[
" 1 1 

'J:.Ft ds = -2mv~ - -mv7 
s] 2 

(4.9) 

The forces thai do work on crate B are its weight mBlJ and the tension T (Figure (b)). 
The magnitude of its velocity is the same as that of crate A. The work done on B 
equals the change in its kinetic energy: 

o (4.10) 

By summing Equations (4.9) and (4.10), we eliminate T, obtaining 

[40 sin 20" - (0.15)(40) cos 20' + 30](9.81)(0.4) = ~ (40 + 30).' 

Solving for v, the velocity of the boxes is t':!:': 2.07 mls. 

Second Method We draw the free-body diagram of the system consisting ofthc 
crates, cable and pulley in Figure (c), Notice that the cable tension does not appear 
in this free-body diagram. The reactions at the pin support of the puIJey do no work, 
because the support does not move. The total work done by external forces on the 
system as the boxes move 400 nun is equaJ to the change in the total kinetic energy 
of the system: 

('14 [0.4 
10 [m.,gsin20" - ilk(mAgcos20')] ds+ 10 m8g ds 

[40 sin 20' - (0.15)(40) co, 20' + 30](9.81)(0.4) = ~(40 + 30)v' 

This equation is identical to that we obtained by applying the principle of work and 
energy to the individual crates. 

DISCUSSION 

You will often find it simpler to apply the principle of work and energy to an entire 
system instead of its separate parts. However, as we demonstrate in the next 
example, you need to be aware that internal forces in a system can do net work. 
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(b) Free-body diagram of B. 

m 

B 

(e) Free-body diagmm of the system. 
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I· i Figure 4.5 
, . 

1,1 

Ii 
, 

(a) Free-body diagram of A. 

(b) Free-body diagram of B. 

(e) Free-body diagmll1 of the system. 

Crates A and B in Figure 4.5 are released from rest. 111e coefficient of kinetic 
friction between A and B is I'k. and friction between B and the inclined surface can 
be neglected. What is their velocity when they have moved a distance b? 

STRATEGY 

By applying the prin¢iplc of work and energy to each crate, we can obtain two 
equations in terms of the tension in the cable and the velocity. 

SOLUTION 

We draw the frcc-b¢dy diagrarus of the crates in Figures <a) and (b) The 
acceleration of A nortnal to the inclined surface is zero, so N = rnA-geos e. Let v 
be the magnitude of the velocity when the crates have moved a distance h. The work 
done on A equals the change in its kinetic energy, 

(4.11) 

and the work done on' B equals the change in its kinetic energy, 

r" (_ T + mag sin e - !"mAg cos 0) ds = ~ rnBv' 
~ 2 

(4.12) 

SUlluning these equations to eliminate T and solving for V; we obtain 

DISCUSSION 

If we attampt to solve this example by 'applying the principle of work and cnergy to 
the system consisting lof the crates, the cable and the pulley (Figure (e», we obtain 
an incorrect result. Equating the work done by external forces to the change in the 
total kinetic energy of the system, we obtain 

But if we sum our work and energy equations for the individual crates - Equations 
(4.1 1) and (4J2)~we obtain the correct equation: 

[(mag sin 0)/1 <mAg sin O)b] + [-(2!'kmAg cos 8)b] = ~rnAv2 + ~mBv2 
I . '. 2 2 

Work by Work by 
external forces internal forces 

The internal friction forces the crates exert on each other do net work on the system. 
We did not account fot this work in applying the principle of work and energy to the 
free-body diagram of the system. 



Work Done by Various Forces 
You have seen that if the tangential component of the total external force on an 
object is known as a function of distance along the object's path, you can use 
the principle of work and energy to relate a change in position to the change in 
the object's velocity. For certain types of forees, however, not only can you 
determine the work without knowing the tangential component of the force as 
a function of distance along the path, you don't even need to know the path. 
TWo important examples are weight and the force exerted by a spring. 

Weight To evaluate the work done by an object's weight, we orient a 
cartesian coordinate system with the y axis upwards and suppose that the 
object moves from position 1 with coordinates (XhYl, z,) to position 2 with 
coordinates (XZ,Y2, Z2) (Figure 4.6(a)). The force exerted by its weight if 
F = -mg j. (Other forces may act on the object, but we are concerned only 
with the work done by its weigh!.) Because v = dr/dt, we can multiply the 
velocity, expressed in cartesian coordinates, by dt to obtain an expression for 
!he vector dr: 

Taking the dot product of F and dr, 

F·dr = (-mgj)· (dd + c6,j + dzk) = -mg dy 

the work done as the object moves from position 1 to position 2 reduces to an 
integral with respect to y: 

1" f" u= F·dr= -mgdy 
rl Yl 

Evaluating the integral, we obtain the work done by the weight of an object as 
it moves between two positions: 

(4.13) 

The work is simply the product of the weight and the change in lhe object's 
heigh!. The work done is negative if the height increases and positive if it 
decreases. Notice that the work done is the same no matter what path the 
objectjollows/i'omposition I to position 2 (Figure 4.6(h)). You don't need to 
know the path to determine the work done by an object's weight-you only 
need to know the relative heights of the two positions. 

What work is done by an object's weight if we account for its variation with 
distance from the centre of the earth? In terms of polar coordinates, we can 
write the weight of an object at a distance r from the centre of the earth as 
(Figure 4.7) 
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z 
(b) 

Figure 4.6 

(a) An object moving between two positions 
(b) the work done by the weight is the 
same for any path, 

F 

Figure 4.7 
Expressing an object's weight in polar 
coordinates. 
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Figure 4.8 
Expressing the force exerted by a linear 
spring in polar coordinates. 

Using the expression for the velocity i11 polar coordinates, the vector dr = v dt 
is 

The dot product of F and dr is 

F.dr= (_m;~~ e')'(dre,+rdOeo) = 

so the work reduces to an integral with respect to r: 

mgR~ 
--dr 

r2 

(4.14) 

mgR~ dr 
r' 

Evaluating the integral, we obtain the work done by an object's weight 
accounting for the variation of the weight with height: 

u = mgR~(~ -~) 
"2 '1 

(4.15) 

Again, the work is independent of the path from position I to position 2. To 
evaluate it, you only need to koow the object's radial distance ii'om the centre 
of the earth at the two positions. 

Springs Suppose that a linear spring connects an object to a fixed support. 
In terms of polar coordinates (Figure 4.8), the force exerted on the object is 

F"" -k(r - role, 

where k is the spring constant and ro is the unshetched length of the spring. 
Using Equation (4.14), the dot product of F and dr is 

F, dr = [-k(r - ro) e,)' (dre, + rdOeo) = -k(r - ro) dr 

It is convenient to express the work done by a spring in terms of its extension 
defined by S == r - ro'. (Although the word extension usually means an 
increase in length, we use this term more generally to denote the change in 
length oftha spring. A ,negative extension is a decrease in length.) In temlS of 
this vruiable, F . dr = ~kS dS, and the work is 

The work done on an object by a spring attached to a fixed support is 

(4.16) 

where Sl and S, are the values of the extension at the initial and final positions. 



You don't need to know the object's path to determine the work done by the 
spring. You must remember that Equation (4.16) applies to a linear spring. In 
Figure 4.9 we determine the work done in stretching a linear spring by 
calculating the area defined by the graph of kS as a function of S. 

kS FIgure 4.9 
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u = ~SPS2) - ~SI(kSI) ~ 4k(S; -5;) 

\ Work done in stretching a linear spring from S I to 
S2. (If S, > SI, the work done on 

Power 

the spring is positive, so the work done hy 
the spring is negative.) 

Power is the rate at which work is done. The work done by the external forces 
acting on an object during an infinitesimal displacement dr is 

LF·dr 

We obtain the power P by dividing this expression by the interval of time dt 
during which the displacement takes place: 

P = LF·v (4.17) 

This is the power transferred to or from the object, depending on whether P is 
positive or negative. In SI units, power is expressed in newton-metres per 
second, which is joules per second (J/s) or watts (W). [n US Customary units, 
power is expressed in foot-pounds per second or in the anachronistic horse­
power (hp), which is 746 War 550 ft-Ibs/s. 

Notice fTOm Bquation (4.3) that the power equals the rate of change ofthe 
kinetic energy of the object: 

p =~(~mv2) 
dt 2 

Transferring power to or from an object causes its kinetic energy to increase or 
decrease. Using this relation, we can write the average with respect to time of 
the power during an interval of time from II to 12 as 

I 1" 1 l Vl 
1 2 P" = Pdt = -m d(v ) 

t2 - (I • (1 tz - t[ v~ 2 

This result states that the average power transferred to or from an object during 
an interval of time is equal to the change in its kinetic energy, or the work 
done, divided by the interval of time: 
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y 

~=,---x 

Figure 4.10 

The skier in Figure 4.10 is travelling at 15m1s at position 1. When he reaches the 
level end of the ramp at position 2, he jumps upwards, achieving a vertical 
component of velocity of 3 mls. (Disregard the change in the vertical position 0 

his centre of mass due to his jump.) Neglect aerodynamic drag and the friction 
forces on his skjs. 

(a) What is the magnitude of his velocity as he leaves the ramp at position 27 
(b) At the highest point of his jump, position 3, what IS his height h above 
position 21 

STRATEGY 

(a) Ifwe neglect ac~odynamic and friction forces, the only force doing work from 
position 1 to positioyJ 2 is the skier's weight, so we can apply the principle of work 
and e~orgy to detel1\1ine his velocity at position 2 before he jumps, 
(b) From the time he leaves the ramp at positi.on 2 until he reaches position 3, the 
only force is his weight, so aJ; :::!: 0 and the horizontal component of his velocity is 
constant. That meaIl$ that we know the magnitude of his velocity at position 3, 
because he is movina horizontally at that point. Therefore we can apply the principle 
of work and encrgy to his motion from position 2 to position 3 to detennine h, 

SOLUTION 

(a) Using Equation ~4.13) to evaluate the work done by his weight from position I 
to position 2, the principle of work and energy is 

Solving for 1)2, the magnitude of his velocity at position 2 before he jumps upwards 
is 24.04 mis, After he jumps upwards the magnitude of his velocity at position 2 is 

v; = JC24,04)' + cw = 24,23 m/s. 
(b) The magnitude of his velocity at position 3 is equal to the horizontal component 
of his velocity at p~sition 2: V3 = 24.04mJs, Applying work and energy to his 
motion from positiotl! 2 to position 3, 

1 , 
-mg(y, -,Y2) = 2 mV3 I (')2 2m 1)2 

I I 
-m(9,81)h = Zm(24,04)' - Zm(24,23)' 

we obtain h = 0.459 tn, 

DISCUSSION 

Although we neglect¢d aerodynamic effects, a ski jumper is actually subjected to 
substantial acrodynatnic forces, both parallel to his path (drag) and perpendicular to 
it (lift) 



In the forgoing device shown in Figure 4.11, the 40 kg hammer is lifted to position 1 
and released from rest. It fans and strikes a workpiece when it is in position 2. The 
spring constant k= 1500 N/m, and the tension in each spring is 150 N when the 
hammer is in position 2, Neglect mction, 
(a) What is the velocity of the hammer just before it strikes the workpiece? 
(b) Assuming that all of the hammer's kinetic energy is transferred to the work~ 
piece, what average power is transferred if the duration of the impact is 0.02 5? 

STRATEGY 

Work is done on the hammer by its weight and by the two springs. We can apply the 
principle of work and energy to the motion of the hammer from position I to 
position 2 to detemline its velocity at position 2. 

SOLUTION 

<a) Let ro be the unstretcbed length of one of the springs. In position 2, the tension 
in the spring is 150 N and its length is 0.3 m. From the relation between the tension 
in a line'df spring and its extension, 

150 = k(O.3 - ro) = (1500)(0.3 - fO) 

we obtain ro = 0.2 m. The values ofthe extension of each spring in positions I and 2 
arc 51 = /(0.4)' + (0.3), - 0.2 = 0.3 m and 5, = 0.3 - 0.2 = 0.1 m. From Equa­
tion (4.16), the total work done on the manner by the two springs from position 1 to 
position 2 is 

U,P""" = 2[ - ~ k(S? - Si) ] = -(1500)[(0.1), - (0.3)'] = 120 N.m 

The work done by the weight from position 1 to position 2 is positive and equal to 
the product of the weight and the change in height: 

Uw,i.h1 = mg(O.4m) = (40)(9.81)(0.4) = 156.96N.m 

From the principle of work and energy, 

I 
120 + 156.96 = z(4o)vl- 0 

we obtain " = 3.72 mls. 
(b) All of the hammer's kinetic energy is transferred to the workpiece, so Equation 
(4.18) indicates that the average power equals the kinetic cncrb'Y of the harruner 
divided by the duration of the impact: 

p _ (1/2)(40kg)(3.72m/s)' 
ilV - 13.8 kW (kilowatts) 

0.02 s 
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400 
mOl 

t 

300mm 

Figure 4.11 
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4.1 The fictional starship Enterprise obtains its power by com~ 
bining matter and antimatter, achieving complete conversion of 
mass into energy. The amount of energy contained in an amount of 
matter of mass m is given by Einstein's equation E::;;: me2) where c 
is the speed of light (3 x I08m1s). 
(a) The mass of the Enterprise is approximately 5 x lQ'kg. How 
much mass must be converted into kinetic energy to accelerate it 
from rest to one~tenth the speed of light? 
(b) How much mass must be converted into kinetic energy to 
accelerate a 90 000 kg airliner irom rest to 965 kmlhr? 

P4.1 

4.2 The meteor crater near Winslow, Arizona, is 1200 m in 
diameter. An explosion of energy E near ground level causes a 
crater whose diameter is roughly proportional to El/3 Tests 
indicate that an explosion of 1 tonne of TNT, with an energy of 
4.6 x 109 N.m, causes a crater approximately 10m in diameter. 
(a) How many tonnes of TNT would be equivalent to the energy 
due to the impact of the meteor? 
(b) If the mctcor was moving at 7600m/s when it strock the 
ground and you assume as a first approximation that all of its 
kinetic energy went into creating the crater, what was the meteor's 
mass? 

P4.2 

4.3 The force exerted on a charged particle by a magnetic field is 

F =qv x B 

whete q and v are the charge and velocity vector of the partlCle and 
B is the magnetic field vector, If other forces on the particle are 
negligible, tlse the principle of work and energy to show that the 
magnitude of the particle's velocity is constant. 

4.4 A 1 tonne drag racer can accelerate from rest to 480 kmlhr in 
400 tn. 
(al How much work is done on the car? 
(b) If you assume as a first approximation that the tangential force 
exerted on the car is constant, what is the magnitude of the force? 

P4.4 

4.5 Assume that all of the weight ofthe drag racer in Problem 4.4 
acts on its rear (drive) wheels and that the coefficients of friction 
between the wheels and the road are )J., = Ilk = 0.9. Use the 
prin~,iple of work and energy to determine the maximum velocity 
in ki;lometres per hour the car can theoretically reach in 400 m. 
Whal do you think might account for the discrepancy between your 
ansWer and the car', actual velocity of 480 kmIhr? 

4.6 Assuming as a rust approximation that the tangential force 
exer1!!ld on the drag racer in Problem 4.4 is constant, what is the 
rnaxi)num power traniifcrred to the car as it accelerates from rest to 
480kmihr? 

4.7 A 10 Mg (megagram) aeroplane must reach a velocity of 
60 m1s to take off. If the horizontal force exerted by its engine is 
60 leN and you neglect other horizontal forces, what length runway 
is needed'! 



4.8 Suppose you want to design an auxiliary rocket unit that will 
allow the aeroplane in Problem 4.7 to reach its takeoff speed using 
only 100 m of runway. For yom preliminary design calculation) 
you can assume that the combined mass of the rocket and acro~ 
plane is constant and equal to 10.5 Mg. What horizontal compo­
nent of thrust must the rocket tmit provide? 

P4.8 

4.9 The force exerted on a car by a prototype crash barrier as the 
barrier crushes is F = -(3000 + 150000s) N, where s is the 
distance in metres from the initial contact. Suppose you want to 
design the barrier so that it can stop a 2200 kg car travelling al 
130 kmIhr. What is the necessary effective lenglh of the barrier! 
That is, what is the distance required for the barrier 10 bring the car 
to a stop? 

P4.9 

4.10 The component of the total external force tangent to a 1 kg 
object's path is l:Ft=(60s 50i')N, where .. is its position 
measured along the path in metres. At ,'I::;;;; 0, the object's velocity 
isv=3m1s. 
(a) How much work is done on the object as it moves from s;;;::; 0 to 

s= 1.2m? 
(b) What is its velocity when it reaches s = 1.2 m? 

4.11 The component of the total external force tangent to a 10 kg 
object's path is l:Ft = (lOO-20t)N, where t is in seconds. When 
t = 0, its velocity is v = 4 mIs, How much work is done on the 
object from t = 2 to t = 4 s'l 

4.12 The component of the total external force tangent to the 
path of an object of mass m is EFt = -CV, where v is the 
magnitude of the object's velocity and c is a constant. When the 
position s=O, its velocity is V=Vo. How much work is done on 
the object as it moves from s = 0 to a position s:: Sf? 
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4.13 The 200mm eliameter tube is evacuawd on the right ofthe 
S kg piston, On the left of the piston the tube contains gas with 
pressure Po = 1 x 10' Pa (N/m'). The force F is slowly increased, 
moving the piston 0.5 m to the left from the: position shown. The 
force is then removed and the piston accelerates to the right. If you 
neglect friction and assume that 1he pressure Of the gas is related to 
its volume by pV = constant, what is the "Iocity of the piston 
when it has returned to its original position? 

Ga~ Piston 

. ( ~ ." ~, 

F 

1----1 m ----I 
P4.13 

4.14 In Problem 4.13, if you assume that the pressure of the gas 
is related to its volume by pV = constant while it is compressed (an 
isothermal process) and by pVL4 =constant while it is expanding 
(an isentropic process), what is the velocity of the piston when it 
has returned to its original position? 

4.15 The system is released from rest. By applying the principle 
of work and energy to each weight, determine the magnitude of the 
velocity of thc wcights when they have moved 1 ro. 

P4.15 

4.16 In Problem 4.15, what is the tension in the cable during the 
motion of the system? 

4.17 Solve Problem 4.15 by applyil\g the ~rinciple of work and 
energy to the system consisting of the two ~jghts, the cable and 
the pulley. 
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4.18 Suppose that you want to design a 'bumper' that win bring 
a 25 kg package moving at 3 mI, to rest 150 mm Irom the point of 
contact. If mction is neglible, what is the necessary spring constant 
k? 

.1 m/~ -
P4.18 

4.19 In Problem 4.18, what spring constant is necessary It the 
coefficient of kinetic friction between the package and the floor is 
I'k = OJ and the package contacts the spring moving at 3 mls? 

4.20 The system is released ITom rest with the spring 
unstrctched. lfthe spring constant is k=440N/m, what ma.ximum 
velocity do the weights attain? 

P4.20 

4.21 Suppose you don't know the spring constant k of1he system 
in Problem 4.20. If you release the system from rest with the spring 
unstrctched and you observe that thc 200 N weight faJls 0.6 m 
before rebounding, what is k'? 

4.23 The 20 kg crate is released ITorn rest with the spring 
unstret~hed. The spring constant k= \00 N/m. Neglect friction. 
(a) How far down the inclined surface does the crate slide before it 
stops? 
(b) \\That maximum velocity does it attain on the way down? 

P4.23 

4.24 Solve Problem 4.23 if the coefficient of kinetic friction 
between the crate and the surface is Ilk::::O.12. 

4.25 Solve Problem 4.23 if the coefficient of kinetic mction 
betweep. the crate and the surface is fl)<::= 0.16 and the tension in the 
spring rwhen the crate is released is 20 N. 

4.26 The 30 kg box starts fi·om rest at position L Neglect 
mction. For cases (a) and (b), determine the work done on the 
box frQm position 1 to position 2 and the magnitude of the velocity 
of the box at position 2. 

:"-'.~ 
," ) 

(b) 

P4.26 

4.27 Solve Problem 4.26 if the coefficient of kinetic mction 
4.22 In Example 4.5, suppose that the unstretched length of each between the box and the inclined sorface is Pk = 0.2. 
spring is 200 mm and you want to design the device so that the 
hammer strikcs the workpiece at 5 m/s. Determine the necessary 
spring constant k. 



4.28 The masses of the three blocks are rnA = 40 kg, mn = 16 kg, 
and me = 12 kg. Neglect the mass of the bar holding C in place. 
Friction is negligible, By applying the principle of work and energy 
to A and B individually, detennine the magnitude of their velocity 
when they have moved 500 rom. 

P4.28 

4.29 Solve Problem 4.28 by applying the principle of work and 
energy to the system consisting of A, B, the cable cOMecting them, 
and the pulley. 

4.30 In Problem 4.28, detennine the magnitude of the velocity of 
A and B when they have moved 500 mm if the coefficient of kinetic 

mction between all surfaces is J'k = 0.1. 
Strategy: The simplest approach is to apply the principle of 

work and energy to A and B individually. If you treat them as a 
single system, you must account for the work done by internal 
mction forces. Sec Exanlplc 4.3. 

4.31 The 2 kg collar starts from rest at position I and slides down 
the smooth rigid wire. The y axis points upwards. What is the 
collar's velocity when it reaches position 27 

y 
(. (5,;:;,2) III 

2 kg 

}-------/------x 

2 (J,-i,))m 
P4.31 
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4,32 The coefficients of friction between the 160 kg crate and the 
ramp are 1', = 0.3 and I'k = 0.28. 
(a) What tension To must the winch exert to start the crate moving 
up the ramp? 
(b) If the tension remain, at the value To after the crate starts 
sliding, what total work is done on the crate as it slides a 
distance s = 3 m up the ramp, and what is the resulting velocity 
of the crate? 

P4.32 

4.33 In Problem 4.32, if the winch exerts a tension 
T = 1'0(1 + O.h) after the crate start.., slidillg, what total work is 
done on the crate as it slides a distance .i' = 3 m up the ramp, and 
what is the resulting velocity of the crate? 

4.34 The mass of the rocket is 250 kg, and it has a conRtant thrust 
of 6000 N. The total length of the launohing ramp is 10m. 
Neglecting friction, drag, and the change iIi mass of the rocket, 
detennine the magnitude of its velocity when it reaches the end of 
the ramp. 

2111 

~ 

P4.34 
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4.35 The 1100 kg car is travelling at 64 kmlhr at position 1. If the 
combined effect of the aerodynamic drag on the car and the 
tangential force exerted on the road by its wheels is that they 
exert no net tangential forc·e on the car, what is its velocity at 
position 27 

36111 

P4.35 

4.36 In Problem 4.35, if the combined eiTecl of the aerodynamic 
drag on the car and the tangential force exerted on the road by 
its wheels is that they exert a constant 1800 N tangential force on 
the car in the direction of its motion, what is its velocity at 
position 2? 

4.37 The ball of mass m is released from rest in position 1. 
Determine the work done on the ball as it swings to position 2 
(a) by its weighl; (b) by the force exerted on it by the string. 
(c) What is the magnitude of its velocity at position 2? 

P4.37 

4.38 In Problem 4.37, what is the tension in the string in 
position 2? 

4.39 The 200 kg wrecker's ban hangs from a 6 m cable. If It is 
stationary at position 1", what is the magnitude of its velocity just 
before it hits the wall at position 2? 

P4.39 

4.40 10 Problem 4.39, what if; the maximum tension in the cable 
during the motion of the ball from position 1 to position 2? 

4.41 A stunt driver wants to drive a car through a circular loop of 
mdius R and hires you as a consultant to tell him the necessary 
velocity Vo at which the car must enter the loop so that it can coast 
through without losing contact with the track. 
(a) What is Vo if you neglect friction and aerodynamic drag for 
your first rough estimate? 
(b) What is the resulling velocity of the car at the top of the 
loop'! 

P4.41 



4.42 Suppose that you throw rocks from the top of a 200 m cliff 
with a velocity of 10m/s in the three directions shown. Neglecting 
aerodynamic drag, use the principle of work and energy to 
determine the magnitude of the velocity of the rock just before it 
hits the gound in each case. 

200m 

P4.42 

4.43 A small pellet of mass m starts froIll rest at position 1 and 
slides down the smooth surface of the cylinder. 
(a) What work is done on the pellet as it slides from position I to 
position 2? 
(b) What is the magnitude of the pellet's velocity at position 2" 

P4.43 

4.44 In Problem 4.43, what is the value of the angle" at which 
the pellet leaves the surface of the cylinder? 

4.45 Tn Problem 4,43., at what distance from the centre of the 
cylinder does the pellct strike the floor? 
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4.46 The 10 kg collar starts frOIl) rest at position I with the 
spring unstretched. The spring constant is k= 600N/m. Neglect 
friction. How far does the collar fall relativ~ to position 1? 

k 

P4.46 

4.47 Tn Problem 4.46, what maximum velocity does the collar 
attain? 

4.48 What is the solution of Problem 4.46 if the tension in the 
spring in position 1 i~ 1 g N? 

4.49 The 4 kg collar is released from rest at position l. Neglect 
friction. Tf the spring eonstant is k = 6 kJ;:/m and the spring is 
un stretched in po'ition 2, what is the velocity of the collar when 1t 
has fallen to position 2? 

250mm 

I 

i.'.l 'I 

P4.49 
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./~, 
Ii 4.50 JIn Problem 4.49, if the spring constant is k=4kN/m and 
~J.nsion in the spring in position 2 is 500 N, what is the velocity 

of the collar when it has fallen to position 2? 

4.51 In Problem 4.49, suppose that you doo't know the spring 
constant k. Tfthe spring is unstrctchcd in position 2 and the velocity 
of the collar when it has fallen to position 2 is 4 mis, what is /{! 

4.52 "!be 10 kg collar starts from rest at position 1 and slides 
along the smooth bar. "!be y axis points upwards. The spring 
constant is k = 100 N/m and the unstrctched length of the spring is 
2 m. What is the velocity of the collar when it reaches position 2'1 

"(4.4,2) m 

I; 

r----------_· __ x 

P4.52 

4.53 Suppose an object has " string or cable with constant 
tension T attached as shown. The force exerted 011 the object can 
be expressed in terms of polar coordinates as .," = T er • Show 
that the work done on the object as it moves along an arbitrary 
plane path from a radial position rl to a redial position r2 is 
U = -T(r, - r,). 

P4.53 

4.54 "!be 2 kg collar is initially at rest at position 1. A constant 
100 N force is applied to the string, causing the collar to slide up 
the smooth vertical bar. What is the velocity of the collar when it 
reaches position 2? 

500mm 

lOON 

P4.54 

4.55 "!be 10 kg collar starts from rest at position 1. "!be tension 
in the string is 200 N. and the y axis points upwards. If friction is 
negligible, what is the magnitude of the collar's velocity when it 
reache~ position 21 

,/ 

)' 

j' (1. 1.0) m 

'(4.4.2)m 

:;;::::::<>- (6,2. I) m 

200N 

)-----------A 

P4.55 



4.56 A spring-powered mortar is used to launch 5 kg packages 
of fireworks into the air. The package starts from rest with the 
spring compressed to a length of 150 nun; the unstrctchcd length of 
the spring is 750mm. Tfthe spring constant is k= 19kN/m what is 
the magnitude of the velocity of the package as it leaves the 
mortar'! 

P4.56 

4.57 Suppose you want to design the mortar in Problem 4.56 to 
throw the package to a height of 45 TIl above its initial position. 
Neglecting friction and drag, determine the necessary spring 
constant 

4.58 The system is released from rest in the position shown. The 
weights are w,. = 180 Nand W8 = 1350 N. Neglect friction. What 
is the magnitude of the velocity of A when it has risen 1.2 m? 

I---I.R rn---------j 
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4,59 In Problem 4.58, suppose that thc Wstem is released from 
rest with the wcight A level with the pul1eYi What is the magnitude 
of the velocity of A when it has fallen 0.3 rn? 

4.60 A spacecraft 320 km aboye the surface of the earth has 
escape velocity Vcsc = .j2gR~/rt where r is its distance from 
the centrc of the earth and RE =6370km is the radius of the 
earth, What is the magnitude of the spacecraft's velocity when 
it reaches the moon's orbit 383 OOOkm from the centre of the 
earth? 

... 
320 km 

P4.60 

4.61 A piece of ejecta thrown up by the impact of a meteor on 
the moon has a velocity of 200 mls magnitude relative to the centre 
of the moon when it is 1000 km above the moon's surface. What is 
the magnitude of its velocity just before it strikes the moon's 
surface? (The acceleration due to gravity at the moon's surface is 
1.62 mis' and the moon's radius IS 1738 km.) 

. ............ 
1000 km { 200 m/s 

~, 
\ 

,! I 
'-* "!, ,', /' 

~, .. ' i J 
' "~!" " :" 

-...,S/ P4.61 

4.62 A satellite in a circular orbit of radius r around the earth has 
velocity v = ,JgR~/r, where RE =6370km is the radius of the 
earth. Suppose you are designing a rocket to transfer a 900 kg 
communication satellite from a parking orbit with 6700 km radius 
to a geosynchronous orbit with 42222 kIn radius, How much work 
must the rocket do on the satellite'! 

4.63 A 900 kg drag racer can accelerate 'from zero to 480 kmlhr 
in 6 s. What average power is transferred to the car? 

4.64 Tn Problem 4.9, what power is transferred from the car when 
it first contacts the barrier? 

4.65 In Problem 4.32, what maximum ,power must the winch 
provide while pulling the crate up the ramp? 

4.66 In Problem 4.39, if the wrecker's ball is brought to rest in 
0.1 s as a result of hitting the wa.ll, what average power does it 

P4.58 transmit to the wall? 
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4.67 A Boeing 737 weighing 554 kN can accelerate to a takeoff 
speed of 55 mls in 30 s. 

4.68 The Winter Park ski arca in Colorado has a vertical drop of 
" 700 m. Four skiers get on a chair lift to the top every 8 s. the chair 

(a) What average power is transfcm:d to the plane? 
(h) If you assume the tangential force exerted on the plane is 
constant, what is the maximum power transferred to the plane 
during its takeoff run? 

moves at 1.2 mls and the ride to the top takes 18 min. If the average 
skier with equipment weighs 700 N, approximately how much 
power is necessary to operate the chair lift? 

P4.68 
P4.67 

i~~~~~~:[l~~~rum::='HFtHU~.~_L~ Potential E nergy li:~I~~-·-·· .. -~-::~:] 

4.3 Consel'llotion of Energ=y"---___ _ 
The work done on an object by some forces can be expressed as the change of 
a function of the object's position, called the potential energy. When all the 
forces that do work on a system have this property, we can state the principle 
of work and energy as a conservation law, the sum of the kinetic and potential 
energies is constant. 

When we derived the principle of work and energy by integrating Newton's 
second law, we were able to evaluate the integral on one side of the equation, 
obtaining the change in the kinetic energy' 

u= LF'dr=-mvl--mv; 1" 1 I 

'1 2 2 
(4.19) 

Suppose we could determine a scalar function of position V such that 

dV=-Lf·dr (4.20) 

Then we could also evaluate the integral defining the work, 

(4.21) 



where VI and V2 are the values of Vat the positions r, and r2. The principle of 
work and energy would then have the simple form 

(4.22) 

which means that the sum of the kiuetic energy and the function V is constant: 

1 2 mv' + V = constant (4.23) 

If the kinetic energy increases, V must decrease, and vice versa, as if V 
represents a reservoir of 'potential' kinetic energy. For this reason, V is called 
the potential energy. 

If a potential energy exists for a given force .~ which means that a function 
of position V exists such that dV = -F· dr, then F is said to be conservative. 
If all the forces that do work on a system are conservative, the total energy­
the sum of the kinetic energy and the potential energies of the forces - is 
constant, or conserved. In that case, the system is said to be conservative, and 
you can usc conservation of energy instead of the principle of work and energy 
to relate a change in its position to the change in its kinetic energy. The two 
approaches are equivalent, and you obtain the same quantitative information. 
But you gain greater insight by using conservation of energy, because you can 
interpret the motion of the object or system in tenns of transfonnations 
between potential and kinetic energies. 

4.4 Conservative Forces 
You can apply conservation of energy only if the forces doing work on an 
object or system are conservative and you know (or can determine) their 
potential energies. In this section, we determine the potential energies of some 
conservative forces and use the results to demonstrate applications of con­
servation of energy. But before discussing forces that arc conservative, we 
demonstrate with a simple example that triction forces are not. 

The work done by a conservative force as an object moves from a position 1 
to a position 2 is independent of the object's path. This result follows from 
Equation (4.2 I), which states that the work depends only on the values of the 
potential energy at positions 1 and 2. It also implies that if the object moves 
along a closed path, returning to position I, the work done by a conservative 
force is zero. Suppose that a book of mass m rests on a table and you push it 
horizontally so that it slides along a path of length L. The magnitude of the 
friction force is J.lkmg, and it points opposite to the direction of the book's 
motion (Figure 4.12). The work done is 

The work is proportional to the length of the path and therefore IS not 
independent of the object's path. Friction forces are not conservative. 
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2 

Figure 4.12 
The book's path from position 1 to 
position 2. The friction force points opposite 
to the direction of the motion. 
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Potential Energies of Various Forces 
The weight of an object and the force exerted by a spring attached to a fixed 
snpport are conservative forces. Using them as examples, we demonstrate how 
you can determine the potential energies of otber conservative forces. We also 
use the potential energies of these forces in examples of the use of conserva­
tion of energy to analyse the motions of conservative systems. 

Weight To determme the potential energy associated with an object's 
weight, we use a cartesian coordinate system with its y axis upwards (Figure 
4.13). The weight is F = -mgj, and its dot product with the vector dr is 

F·dr = (~mgj)' (dxi + a:vJ +dzk) = -mg dy 

Figure 4.13 
Weight of an object expressed in tenns of a 
coordinate system with the y axis upwards. 

y 

-mgj 

From Equation (4.20), the potential energy V must satisfY the relation 

dV = -F'dr = rng dy 

which we can write as 

dV 
-=mg 
dy 

Integrating this equation, we obtain 

V=mgy+C 

(4.24) 

where C is an integration constant. The constant C is arbitrary, because this 
expression satisfies Equation (4.24) for any value of C. Another way of 
understanding why C is arbitrary is to notice in Equation (4.22) that it is the 
difference in the potential energy between two positions that determines the 
change in the kinetic energy. We will let C = 0 and write the potential energy 
of the weight of an object as 

(4.25) 

The potential energy is the product of the object's weight and height. The 
height can be measured from any convenient reference level, or datum. Since 
the difference in potential energy determines the cbange in the kinetic energy, 
it is the difference in height that matters, not the level from which the height is 
measured. 



Datum 

I~ , 

(a) 

r-:;!::-------------------- Total energy:::; 0 

~ :,~ " / Potential energy 

\ ~......,.~-
(b) 

The roller coaster (Figure 4. 14(a)) is a classic example of conservation of 
energy. If aerodynamic and friction forces are neglected, the weight is the only 
force doing work and the system is conservative. The potential energy of the 
roller coaster is propoltionai to the height of the track relative to a datum, In 
Figure 4,14(b), we assume the roller coaster started ITom rest at the datum 
level. The sum of the kinetic and potential energies is constant, so the kinetic 
energy 'mirrors' the potential energy. At points of the track that have eqnal 
heights, the magnitudes of the velocities arc equal. 

To account for the variation of the weight with distance ITom the centre of 
the earth, we can express the weight in polar coordinates as 

F= 
mgR~ 
--er ,.' 

where ,. is the distance ITom the centre of the earth (Figure 4,15), From 
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Figure 4,14 
<a) Roller coaster and a reference level, or 
datum 
(b) The sum of the potential and kinetic 
energies is constant. 

Equation (4.14), the vector dr in terms of polar coordinates is Figure 4.15 

dr = dre,. + rdOee (4.26) Expressing the weight in terms of polar 
coordinates. 
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Figure 4.16 

Expressing ule force ex~d by a linear 
spring in polar coordinates, 

The potential energy 11')ust satisfY 

or 

mgRI, 
dV = -F·dr = -,- dr 

r" 

dV mgR~ 
dr r2 

We integrate this equatron and let the constant of integration be zero, obtaining 
the potential energy 

(4.27) 

Springs Tn terms of polar coordinates, the force exerted on an object by a 
linear spring is 

F = -k(r - role,. 

where ro is the unstretched length of the spring (Figure 4.16). Using Equation 
(4.26), the potential energy must satisfY 

dV = -F'dr = k(r - roldr 

Expressed in terms of the extension of the spring S = r - ro, this equation is 
dV = kS dS, or 

dV 
=kS 

dS 

Integrating this equation, we obtain the potential energy of a linear spring: 

(4.28) 

In the following examples we use conSet'l'atioll of energy to relate changes in 
the po .• itions of conservative system .• to changes in their kinetic energie .•. 
This typically involves two steps: 

(1) Detennine the potential energy - You must identijj, the conservative forces 
that do work and evaluate their potential energies in terms of the position 
of the system. 

(2) Apply conservatiolli of energy-By equating the sum of the kinetic and 
potential energies of the system at two positions, you can ohtain an 
expression for the change in the kinetic energy. 



Tn Example 4.5, the 40 kg hammer is lifted into position 1 and released from rest Its 
weight and the two springs (k= 1500N/m) accelerate the hammer downwards to 
position 2, where it strikes a workpiece. Use conservation of energy to detennine the 
hammer's velocity when it reaches position 2. 

STRATEGY 

Work is done on the hammer by its weight and the two springs, so the system is 
conservative. By equating the sums of the potential and kinetic energies at positions 
I and 2, we can obtain an equation for the velocity of the hammer at pasHion 2. 

SOLUTION 

Determine the Potential Energy The potential energy of each spring is ~ kS2, 
where S is the extension, so the total potential energy of the two springs is 

In Example 4.5 the extensions in positions 1 and 2 were detem1ined to be 
SI OJ m, S2 0.1 m. The potential energy associated with the weight is 

whcre y is the height relative to a convenient datum (Figure (a». 

Apply Conservation of Energy The sums of the potential and kinetic energies 
at positions 1 and 2 must be equal: 

(
I ,2) I 2 (1 ') 1 2 2 2""" +mgy, +:1: IIIV , = 2 2""'" +mgy, +2/11V, 

(1500)(0.3)' + (40)(9.81)(0.4) + 0 = (1500)(0.1)' + 0 +~(4)vl 

Solving this equation, we obtain ,,:z=3.72m/s. 

DISCUSSION 

From the graphs of the total potential energy associated with the springs and the 
weight and the kinetic energy of the hammer as functions ofy (Figure 4.18), you can 
sec the transfonnation of the potential energy into kinetic energy as the hammer 
falls. Notice that the total energy of the conservative system remains constant. 
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Figure 4.19 

A spacec.raft at a distance ro = 2RE from the centre of the earth is moving outwards 
with initial velocity Vo = ftiilIiT'J (Figure 4.19). Detennine its velocity as a 
funetion of its distance 'from the centre of the ealth. 

SOLUTION 

Determine the Potential Energy The potential energy associated with the 
spacecraft's weight is given in tenus of its distance r from the centre of the earth by 
Equation (4.27): 

Apply Conservation of Energy Let v be the magnitude of the spacecraft's 
velocity at an arbitrary distance r. The sums of the potential and kinetic energies at 
ro and at r must be equal: 

mgR~ 1 2 mgR~ 1 2 
-~+2mvo:= --r-+2'mv 

Solving for v. the spacecraft's velocity as a function of r is 

DISCUSSION 

We show graphs of the k;inetic energy, potential energy and total energy as functions 
of r / RE in Fignre 4.20. The kinetic energy decreases and the potential energy 
increases as the spacecraft moves Dut\vards until its velocity decreases to zero at 
r = 6R£ . 

Figure 4.20 
Energies as functions of the radial 

coordinate. 
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Relationships Between Force 
and Potential Energy 
Here we consider two questions: (1) Given a potential energy, how can you 
determine the corresponding force? (2) Given a force, how can you determine 
whether it is conservative? That is, how can you tell whether an associated 
potential energy exists? 

The potential energy V of a force F is a function of position that satisfies the 
relation 

dV = -F'dr 

If we express V in terms of a cartesian coordinate system, 

V = V(x,y. z) 

its differential dV is 

dV av d av d av d 
=axx+ayY+az z 

(4.29) 

(4.30) 

Expressing F and dr in terms of their cartesian component., their dot product 
is 

= Fxdx+Fydy+F,dz 

Subshtuting this expression and Equation (4.30) into Equation (4.29), we 
obtain 

av av av 
a dx +. dy + -;:;- dz = -(Fxdx + F;,dy + Fzdz) 
!t By uZ • 

which implies that 

<IV 
F ---

x - ax 
BV 

Fy =--ay 
av 

F, = - oz (4.31) 

Given a potential energy Vexpressed in cartesian coordinates, you can usc 
these relations to detenuine the corresponding force. The force F is 

(4.32) 

where I7V is the gradient of V. By using expressions for the gradient in terms 
of other coordinate systems, you can determine the force F when you know the 
potential energy in terms of those coordinate systems. For example, ill terms of 
cylindrical coordinates, 

F= (
av I av av) -e +--e'J+-e 
8r'rae az' 

(4.33) 
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If a force F is conservative, its curl 'iI x F is zero. The expression for the 
curl of F in cartesian coordinates is 

k 

a a a 
(434) 'ilxF= ax By 8z 

F, Fy F, 

Substituting Equations (4.31) into this expression confirms that 'iI x F = 0 
when F is conservative. l1le converse is also true: a force F is conservative if 
its curl is zero. You cao use this condition to determine whether a given force 
is conservative. In terms of cylindtical coordinates, the curl of 1<' is 

e, reo e, 

1 a a a 
(4.35) 'VxF=-

r or Be iJz 
F, rFa F, 

From Equation (4.27), the potential energy associated with the weight of an object 
of mass m at a distance r from the centre of the earth is (in polar coordinates) 

v=_mgR~ 
r 

where RE is the radius of the earth. Use this expression to detemlinc the force 
exerted on the object by its weight 

STRATEGY 

The force F = - 'VV. The potential energy is expressed in tenns of polar coordi· 
nates. so we can use Equation (4,33) to detemrine the force. 

SOLUTION 

The partial derivatives of V with respect to r, 0 arId z are 

av mgR~ 
a;:=-;r 

From Equation (4.33), the force is 

mgR~ 
F=-'VV=~--e, r' 

8V = 0 
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DISCUSSION 

We already know that the force is conservative, because we know its potential 
energy, but we can use Equation (4.35) to confirm that its curl is zero: 

0, ren e, 

a 8 8 f -, 

1 
"xF= or 8e 8z =0 

r 
mgR~ 

0 0 --,-, 
Although we used cylindrical coordinates in detennining F and in evaluating the 
cross product, the expression for V and our resulting expression for F are valid only 
if the object remains in the plane z = O. 

4.69 Suppose that you kick a soccer ball straight up. When it 
leaves your foot, it is 1 m above the ground and moving at 12 mls. 
Neglecting drag, use conservation of energy to determine how high 
above the ground the ball goes and how fast it will be going just 
before it hits the ground, Obtain the answers by expressing the 
potential energy in terms of a datum Ca) at the level of the hall's 
initial position; Cb) at ground level. 

1m 

I Datum 

(a) Ib) 

P4.69 

4.70 The Lunar Module could make a safe landing if its vertical 
velocity at impact was 5 mJs or less. Suppose that you want to 
determine the greatest height h at which the pilot could shut off the 
engine if the velocity of the lander relative to the surface was (a) 
zero; (b) 2m/s downwards; (c) 2m!s upwards. Usc conservation of 
energy to detennine II in each case. The acceleration due to gravity 
at the surface of the moon is 1.62 mil', 

P4.70 
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4.71 The ball is released ftom rest in position I. 
Cal Usc conservation of energy to detennine the magnitude of its 
velocity at position 2. 
(b) Draw graphs of the kinetic energy, the potential energy and the 
total energy for values of !J. from zero to 180". 

I. 

P4.71 

4.72 Ifa ball is released from rest in position 1, use conservation 
of energy to determine the initial angle a necessary for it to swing 
to position 2, 

. I 
P4.72 

4.73 The bar is smooth. Use consclV'd.tion of energy to detemline 
the minimum velocity the 10 kg slider must have at A (a) to reach 
C; (b) to reach D. 

clll-.-~-I!ll 

B P4.73 

4.74, In Problem 4,73, what nannal force does the bar exert on 
the slider at B in cases (a) and (b)? 

4.75" The 10 kg collar starts from rest at position I and slides 
along the bar. The y axis points upwards. The spring constant is 
k= WON/m, and the unstretehed length of the spring is 2m. Usc 
conservation of energy to dctcnnine the collar's velocity when it 
reaches position 2. 

v 

~ 
(6,2.Dm 

)--------------x 

P4.7S 

4.76, A rock climber of weight W h .. , a rope attached a distance h 
below him for protection. Suppose that he falls, and assume that 
the rope behaves like a linear !ipring with unstretched length hand 
spring constant k= Clh, where C is a constant. Use conservation of 
energy to detennim: the maximum force exerted on him by the 
rope: (Notice that the maximum foree IS Independent of h, which is 
a reassuring result for climbers~ the maximum force resulting from 
a long fall is the same as that resulting from a very short one.) 

P4.76 



4.77 The 5 kg collar starts from rest at A and slides along the 
semicircular bar. The spring constant is k=3200N/m and the 
unstretchcd length of the spring is 1 m. Use conservation of energy 
to determine the velocity of the collar at B. 

16~ mm H~ 

A 
k 

B P4.77 

4.78 The force exerted on an object by a nonlinear spring is 

F = -[k(r - ro) + q(r - ro)']e, 

where k and q are constants and ro is the unstretched length. 
Detennine the potential energy of the spring in terms of its 
extension S = r - roo 

\ 

\ 
~ 

\ 

P4.78 
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4.79 The 20 kg cylinder is released at the position shown and 
falls onto the linear spring (k=3000Nlm). Use conservation of 
energy to detemlme how far down the cylinder moves after 
contacting the spring. 

,1 
!21111 

, ! ~ 
1.5 III 

~ 
P4.79 

4.80 SllPPOSC that the spring in Problem 4.79 is a nonlinear 
sprin,g with potential energy V = ~kS2 + !qS"" where k = 
3000N/m and q = 4000 N/m3

• What is the velocity ofUle cylinder 
when the spring has been compressed 0,5 ~? 

4.81 The string exerts a force of constant magnitude T on the 
object. Dctennine the potential energy associated with this force in 
terms of polar coordinates. 

'" T P4.81 
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4.82 The system is at rest in the position shown, with the 5 kg 
collar A resting on the spring (k=300N/m), when a constant 
150 N force IS applied to the cable. What is the velocity of the 
collar when it has risen 0,3 m? 

=--~_150N 

1m 

A 

P4.82 

4.83 The tube (cross-se<olional area A) is evacuated on the right 
of the piston of mass m and on the left it contains gas at pressure p. 
Let the value of the pressure when s = So be Po, and assume that 
the pressure of the gas is related to its volume V by P V = constant. 
(a) Detcnninc the potential energy associated with the force 
exerted on the piston in tenns of ,\', 
(b) If the piston starts from rest at .'1'=80 and friction is negligible, 
what i~ lt$ velocity as a function of 57 

Oft!. Piston 

P4.83 

4.84 Solve Problem 4.83, assuming thai the pressure of the gas is 
related to its volume by pVv::::: (iOnstant, where }' is a constant. 

4.85 A satellite at a distance 1'0 from the centre of the earth has a 
velocity of magnitude Vo. Use conservation of energy to determine 
the magnitude of its velocity 1) when it is a distance r from the 
centre of the earth. 

'Z • , \ 
/ \ 

\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 

IVo 
"'-'f----- '" 
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4.86 Astronomers detect an asteroid 100000 km from the earth 
moving at 2 kmls relative to the centre of the earth. If it should 
strike the earth, usc conservation of energy to determine the 
magnitude of its velocity as it enters the atmosphere (You can 
neglect the thickness of the atmosphere in comparison to the earth's 
6370 ian radius.) 

4.87 A satellite is in aa elliptic orbit around the earth. Its VelOCIty 
at the perigee A is ~620 mls. Use conservation of energy to 
determine its velocity at B. Thi~ radius of the earth is 6370 km. 

B 

II .34() km 

lhO!JOkm 

P4.87 

4.88 For the satellite orbit in Problem 4.87, usc conservation of 
energy to determine the velocity at the apogee C. Using your result, 
confiJ;111 numerically that the velocities at perigee and apogee 
satisfY the relation rAt'A = rcvc. 



4.89 The component of the total external force tangential to the 
path of a 10 kg object moving along the x axis is ~ Fx "" 3x'i N, 
where x is in metres. At x:::;; 2 01, the object's velocity is 
vx=4m/s. 
(a) Use the principle of work and energy to deternrine it, velocity 
at.t= 6m. 
(b 1 Detennine the potential energy associated with the force 
r Fx and usc conservation of energy to determine its velocity at 
x=6m. 

4.90 The potential energy associated with a force }' acting on an 
object is V = 2x2 - y N.m, where x and y arc in metres. 
(al Determine F. 
(b) If the object moves ITom position I to position 2 along the 
paths A and B, determine the work done by F along each path. 

y 

r--___ --1
2 
(1.1) m 

A 

--4--___o ___ .l-___ 
x 

B 

P4.90 

4.91 An object is subjected to the force F = y i-x j N. where x 
and y are in metres. 
(a) Show that F is flO! conservative. 
(b) If the object moves from pomt I to point 2 along the paths A 
and B shown in Problem 4.90, determine the work done by F along 
each path. 

4.92 In terms of polar coordinates, the potential energy asso~ 
ciated with the force F exerted on an object by a tionlinear 
spring is 

I ,I 2 
V ~2k(r-r()) +4Q(r-rol 

where k and q are constants and ro is the unstretched length. 
Determine F in tenus of polar coordinates. 

4.93 In terms of polar coordinates, the force exerted on an object 
by a nonlinear spring is 

F = -[k(r - ro) + q(r - roll] c, 

where k and q are constants and Yo is the unstretched length. Use 
Equation (4.35) to show that F is conservative. 
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4.94 The potential energy associated wit!) a force F acting on an 
object is V = -r sin 0 + ,; cos2 () N.m, where r is in metres. 
(al Determine F. 
(b 1 If the object moves from point I to point 2 along the circular 
path, how much work is done by F? 

y 

2 

1m 

---+~------~~--x 

P4.94 

4.95 In terms of polar coordinates, the force exerted on an object 
of mass m by the gravity of a hypothetical two~dimcnslOnal planet 
is F = -(mgyRr/r)er, wheregT is t:he acceleration due to gravity 
at the surface, RT is the radius of the planet. and r is the distance 
from the centre of the planet. 
(a) Determine the potential energy associated with this gravita­
tional torce 
(b) If the object is given a velocity ~o at a distance ro, what is Hs 
velocity" as a function r? 

: I 

P4.95 

4.96 By substituting Equations (4.31) into Equation (4.34), 
confinn that V x F = 0 if F is conservative. 

4.97 Determine which of the following forces are conservative: 
(a) F = (3x' - 2xy)1 - x' j; 
(b) F=(x:o/')i+x'yj; 
(e) F = (2xJ + 1)1 + (2i'y - 3xl) j. 

4.98 Detcrmine which of the following forces are conservative: 
(al F = 3r2 sin' 8c, +2,.' sinGcosO'e,; 
(b) F = (2rsinO - cos 0) e, + (rcosO - sin. 9) '0; 
(c) F~(sin O+rcos' Oje,+(cosO-rsinOcosO)eo 
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Computational Mechanics 
are 

calculator or computer. 

In the mechanical delay switch shown in Figure 4.21, an electromagnet releases 
1 kg slider at position 1. Under the actions of gravity and the linear spring, the 
moves along the smooth bar from position 1 to position 2, closing the switch. 
constant of the spripg is k=40N/m. and its unstretched length is ro=50mm. 
dimensions arc R =200 mm and h = 100 mm. What is the magnitude of the 
maximum velocity, and where does it occur'! 

Figure 4.21 

STRATEGY 

We can usc conservation of energy to obtain an equation relating the slider's 
to its position. By clrawing a graph of the velocity as a function of the position, 
can estimate the maximum velocity and the position where it occurs. 

SOLUTION 

We can specify th~ slider's position by the angle 0 through which it has 
relative to position 1 (Figure (a». Tn position 1, the extension of the spring equals' 

__ L.. __ Datum 

(a) The angle 8 specifies the slider's position. 



length in position 1 minus its unstretched length: 

s, = J(2R)' + h' - ro 

When the slider has moved through the angle 0, the extension of the spring is 

S = J(R+RCOSO)' + (h +RsinO), - ro 

We express the potential energy of the slider's weight using the datum s"own in 
Figure (a). The sum of the potential and kinetic energies at position I must equal the 
sum of the potential and kinetic energies when the slider has moved through the 
angle (): 

I, 1,1, I, :iRS, +mgy, +2mv , ='ikS +mgy+Zmv : 

~k[ J(2R)2 +h' -roJ' +0 + 0 

= ~k[ J(R + Reose)' + (h + Rsin OJ' - ro r 
-mgRsine+!mv' 

2 

Solving for v, we obtain 

v = {(klm)[ /<2Ri':;;' -ro)' 

-Cklm{ J(R + Reose), +'(h + RSinO)' - ro r +2gRsin 8} '/2 

Computing the values of this expression as a function of (J, we obtain the graph 
shown in Figure 4.22. The velocity is a maximum at approximately 0= 135°. By 
examining the computed results ncar 135". 

0 mig 

1320 2.5393 
133' 2.5397 
134' 2.5399 
135' 2.5398 
136' 2.5394 
137' 2.5389 
138' 2.5380 

we estimate that a maximum velocity of 2.54 m/s occurs at e::'!';; 1340 

Figure 4.22 
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4.99 The component of the total external force tangential to a 
4 kg objcct's path is ~ Ft = (200 + 2s' 0.2s3) N, where s is its 
position measured along the path in metres. At s = 0, the object's 
velocity is v::::::: 10 m/s. What distance along its path has the object 
travelJed when its velocity reaches 30 mls? 

4.100 The 6 kg collar is released from rest in the position shown. 
If the spring constant is k=4kN/m and the unstretched length of 
the spring is t 50 mm, how far docs the mass fall from its initial 
position before rebounding? 

I 
250mm 

1 

P4.IOO 

4.101 How far below its initial position does the collar in 
Problem 4.100 reach its maximum velocity, and what is the 
maximum velocity: 

4.102 How far below its initial position docs the power being 
transferred to the collar in Problem 4.100 reach its maximum, and 
what is the maximum power? 

4.103 Thc system is released from rest In the position sh n. 
The weights arc ItA =900N and W8= 1350N. Neglect fric ·on. 
Determine the maximum velocity attained by A as it rises. 

T 

1111 

P4 03 

4.104 Tn Problem 4.103, what maximtun height is reached y A 
relative to its initial position? 

4.105 The 16kg cylinder is released at the position shown and 
fans onto a nonlinear spring with potential en rgy 
V =!kS" +*qS4, where k=2400N/m and q=3000N/m'- D ler· 
mine how far down the cylinder moves after conta ing 
the spring. 

1 
2m 

,+ 
1.5m 

~ 
==..., 

P4105 



4.106 In problem 4.105, what 15 the maximum velocity attailled 
by the cylinder? 

4.107 In Problem 4.82, how high does the collar A rise relative to 
its initial position? 

4.108 In Problem 4.9, what is the maximum power transferred 
from the car by the barrier, and what distance has the car travelled 
from its initial contact when it occurs? 

4.109 A student nms at 4.5 mis, grabs a rope, and swings out 
over a lake. Determine the angle a at which he should release the 
rope to maximize the horizontal distance b. What is the resulting 
value of b? 

Chapter Summary 
Principle of Work and Energy 

The principle of work and energy states that the work U done on an object as 
it moves from a position r, to a position r, is equal to the change in its kinetic 
energy, 

where 

1 , 
U = -mv2 

2 
Equation (4.5) 

Equation (4.6) 

The total work done by exlernal forces on a system of objects equals the 
change in the total kinetic energy of the system if no net work is done by 
internal forces. 

Evaluating the Work 

Let s be the position of an object's centre of mass along its path. The work 
done on the object from a position s, to a position S2 is 

u Equation (4.7) 

where EFt is the tangential component of the total external force on the object. 
Components of force pelpendiculal' to Ihe palh do no work. 

Weight In terms of a coordinate system with the positive y axis upwards, 
the work done by an object's weight as its centre of mass moves from position 
1 to position 2 is 

U = -mg(V2 - Yl) Equation (4.13) 

CHAPTER SUMMARY 17 

1 

P4.I09 
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The work is the product of the weight and the change in the height of the 
centre of mass. The work is negative if the height increases and positive if it 
decreases. 

When the variation Of an object's weight with distance r from the centre of 
the earth is accounted for, the work done by its weight is 

2 (1 1) U = mgRE' ---
r,), rl 

Equation (4.15) 

where RE is the radius of the earth. 

Springs The work done on an object by a spring attached to a fixed support 

'S 

Equation (4.16) 

where S, and S, are the values of the extension at the initial and final positions. 

Power 

The power is the rate at which work is done. The power transferred to an 
object by the external forces acting on it is 

P=IF"v Equation (4.17) 

The power equals the rate of change of the object's kinetic energy. The average 
with respect to time of the power during an interval of time from /, to /, is 
equal to the change in its kinetic energy, or the work done, divided by the 
interval of time: 

£quation (4.18) 

Potential Energy 

For a given force F acting on an object. if a function V of the object's position 
exists sucb that 

dV=-F·dr 

then F is said to be conservative and V is called the potential energy 
associated with F. The work done by F from a position I to a position 2 is 

Equation (4.21) 

If all the forces that do work on a system are conservative, the total energy­
the sum of the kinetic energy and the potential energies of the forces - is 
conserved: 

1 :2 m,' + V = constant Equation (4.23) 



Weight In leImS of a cartesian coordinate system with its y axis upwards, 
the potential energy of the weight of an object is 

V=mgy Equation (4.25) 

The potential energy is the product of the object's weigbt and the height of its 
centre of mass measured from any convenient reference level, or datum. 

When the variation of an object's weight with distance l' from the centre of 
the earth is ,ccOlmted for, the potential energy of its weight is 

mgR2 V= ___ E 
Equation (4.27) 

r 

where RE is the radius of the earth. 

Springs The potential energy of the force exerted on an object by a linear 
spring is 

Equation (4.28) 

where S is the extension of the spring. 

Relationships Between Force and Potential Energy 

A force F is related to its associated potential energy by 

(
av av av) F=- -i+-j+ k =-'ilV ax ily az Equation (4.23) 

A force F is conservative if its curl is zero: 

k 

a a a 
'ilxF= ax ay az =0 

Fx Fy F, 

Review Problems 

REVIEW PROBLEMS 17 

4.110 The driver of a 1360 kg car moving at 64 kmIhr applies an 
increasing force on the brake pedal. The magnitude of the resulting 
metion force exerted on the car by the mad i'f= (lOaD + 40s)N, 
where s is the car's horizontal position in metres relative to its 
position when the brakes were applied, Assuming that the car's 
tyees do not slip, determine the distance required for the car to stop 
(a) by using Newton's second law; (b) by using the principle of 
work and energy_ 

4. III Suppose that the car in Problem 4.110 is on wet pavement 
and the coefficients of metion between the tyres and the road are 
1', = OA, J.lk = 0.35. Determine the distance required for the car to 
stop. 
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4. 112 An astronaut in a small rocket vehicle (combined 
mass = 450 kg) is hovering 100 m above the surface of the Moon 
when he discovers he is nearly out of fuel and can only exert the 
thrust necessary to cause the vehicle to hover for 5 more seconds. 
He quickly considers two strategies for getting to the surface: 
(a) fall 20m, turn on the thmst for 5 s, then fall the rest of the way; 
(b) lall 40 m, tum on the thrust for 5" then fall the rest of the 
way. Which strategy gives him the best change of surviving? How 
much work is done by the engine's thrust in each case? 
(gmonn ;;;;1.62rn1s2.) 

4,113 The coefficients of friction between the 20kg crate and the 
inclined surface arc I', = 0.24 and Ilk ~ 0.22, If the crate starts from 
rest and the horizontal force F = 200 N, what is the magnttude of 
its velocity when it has moved 2 m? 

P4.113 

4.114 In Problem 4,113, what is the magnitude of the crate's 
velocity when it has moved 2 m if the horizontal force F = 40 N? 

4.115 The Union Pacific Big Boy Incomotive weighs 5,29 
million N, and tlle tractive effort (tangential force) of its drive 
wheels is 600000 N, If you neglect other tangential forces, what 
distance is required for it to accelerate from zero to 100 krnlhr? 

4.117 If a car travelling at 105 klll/hr hits tl,e crash barrier 
described in Problem 4.9, determine the maximum deeleration 
the passengers arc subjected to if the car weighs (a) 11 120 N; (b) 
22240N, 

4,11 a In a preliminary design for a mail 'orting machine, 
parcels moving at 0.6 mls slide down a smooth ramp and are 
brought to rest by a linear spring, What should the spring constant 
be if you don't want a 5 kg parcel to be subjected to a maximum 
deceleration greater than 109's? 

P4,118 

4,119 When the I kg collar is in position I, the tension in the 
sprin~ is 50 N, and the unstretched length ofthe spring is 260 mm, 
If the collar is pulled to position 2 and released from rest, what is 
its velocity when it returns to 1? 

P4.119 

4.120 In Problem 4,119, suppose that the ten,ions in the spring 
in positions 1 and 2 are lOON and 400N, respectively, 

115 (a) What is the spring constant k? 

4.116 in Problem 4.1 IS, suppose that the acceleration of the 
locomotive as it accelerates from zero to IOOkmlhr is (Folm) 
(I - ullOO), where Fo",600000N. m is its mass, and v is its 
velocity in krnlhr. 
(a) How much work is done in accelerating it to 100 km!hr? 
(b) Detennine its velocity as a flmction of time. 

(b) If the collar IS given a velocity of 15m1s at I, what is its 
velocity when it reaches 2'1 



4.121 The 14 kg weight is released ITom rest with the two 
springs (kA = 440 N/m, kR = 220 N/m) unstretched. 
(a) How far doe, the weight fall before rebounding? 
(b) What maximum velocity does it attain? 

P4.121 

4.122 The 12kg collar A is at rest in the position shown at 
t = 0 and is subjected to the tangential force F = (24 - l2,z) N 
for 1.5 s. Neglecting friction j what maximwn height It does it 
reach? 

I'~~ -~ 
,i' I. mmmmmm 2 m .~ 

P4.122 

4.123 When a 22 Mg rocket's engine burns out at an altitude of 
2 km, its velocity is 3 kmls and it is travelling at an angle of 60' 
relative to the horizontaL Neglect the variation in the gravitational 
force with altitude. 
<a) If you neglect aerodynamic forces, what is the magoitude ofthe 
rocke!"s velocity when it reaches an altitude of 6 km? 
(b) If the rocket's actual velocity when it rcachcs an altitude of 
6 km is 2.8 km/s, how much work is done by aerodynamic forces as 
the rocket moves ITom 2 km to 6 km altitude? 
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4.124 The piston and the load it sllpports are accelerated 
upwards hy the gas in the cylinder. The total weight of the piston 
and load is 4450 N. The cylinder wall exerts a constant 220 N 
friction force on the piston as it rises. The net force exerted on the 
piston by pressure is (p - him) A, where p is the pressure of the 
gas, Patin =: 101300 Pa is abnospheric pressure, and A = 0.1 m2 is 
the crossMsectional area of the piston. Assume that the product of p 
and the volume of the cylinder is cons~t. When s = OJ m the 
piston is stationary and p = 239 250 Pa, What is the velocity of the 
piston when s = 0.6 m? 

P4.124 

4.125 Suppose thai in designing a loop for a roller coaster's 
track, you establish as a safety criterion that at the top of the loop, 
the normal force exerted on a passe~ger by: the roller coa. ... ter should 
equal 10 per cent of the passeng""'s weight. (That is. the passen· 
ger's 'effective weight' pressing him down into hjs seat is 10 per 
cent of his weight.) The roller coaster is rq,oving at 20 mls when it 
enters the loop. What is the necessary instantaneous radius of 
curvature p of the track at the top of the loop? 

P4.12S 
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4.126 An 80 kg student runs at 4.5 mls. grabs a rope, and swings 
out over a lake. He releases the rope when his velocity is zero. 
(a) What is the angle e when he releases the rope? 
(b) What is the tension in the rope just before he releases it? 
(c) What is the maximum tension in the rope? 

4. 1;10 Thc I kg collar A is attached to the linear spring 
(k = 500 N/m) by a string. The collar starts from rest in the position 
shown~ and the initial tension in the string is 100 N. What distance 
docs the collar slide up the smooth bar? 

P4.130 

4.1~ 1 The y ",is is vertical and the curved bar is smooth. If the 
P4.126 magnitude of the velocity of the 4 kg slider is 6m1s at position I, 

what is the magnitude of its velocity when it rcaches position 2? 

4.127 If the student in Problem 4.126 releases the rope when 
0= 25°, what maximum height does he reach relative to his 
position when he grabs the rope? 

4.128 A boy takes a nmning start and jumps on his sled at 1. He 
leaves the ground at 2 and lands in deep snow at a distance b = 6 m. 
How fast was he going at 1 '? 

4.0 m 

l 
2111 

1_L---__ 
I· ········---4 m-----

---x 
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P4.128 4.1~2 Tn Problem 4.131, determine the magnitude of the slider's 
velocity when it reaches position 2 if it is subjected to the 
addjtional force F = (3x i - 2 j) N during its motion. 

4.129 In Problem 4.128, if the boy starts at I going at 4.5 mis, 
what distance b does he travel through the air? 



4.133 Suppose that an object of mass m is beneath the surface of 
the earth, In terms of a polar coordinate system with its origin at 
the earth's centre the gravitational force on the object is 
-(mgrjRE)e" where RE is the radius of the earth. Show that the 
potential energy associated with the gravitational force is 
V = mgr' j2RE. 

4.134 It has been pointed out that if tunnel, could be drilled 
straight through the earth between points on the surface, trains 
could travel between those points using gravitational force for 
acceleration and deceleration. (The effects of friction and aero­
dynamic drag could be mimmized by evacuating the tunnels and 
using magnetically levitated trains.) Suppose that sueh a train 
travels from the North Pole to a point on the equator. Dctenninc 
the magnitude of the train's velocity (a) when it arrives at the 
equator; (b) when it is halfWay from the North Pole to the equator. 
The radius of the carth is Re = 6370 krn. 

N 

P4.134 

4.135 In Problem 4.115, what is the maximum power transferred 
to the locomotive during its acceleration? 

4.136 Just before it lifts off, the 10.5 Mg aeroplane is travelling 
at 60 mls. The total horizontal force exerted by its engines is 
189kN, and the plane is accelerating at 15m/s2. 

(a) How much power is being transferred to the plane by its 
engines? 
(b) What is the total power being transferred to the plane? 

P4.136 
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4.137 The 'Paris Gun', used by Germa(lY in World War I, had 
mnge of l20krn, a 37.5m barrel, a muzZle velocity of 1550m/s 
and it fired a 120 kg shell. 
(aJ If you assume the shell's ocgeleration to be constant, wha 
maximum power was transferred to it is it travelled along th 
barrel? 
(b) What everage power was transferred to the shell? 

P4.137 
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T
he total linear momentum of the 

, vehicles is the same immediately 
after their collision, By analysing 

simulated traffic accidents, engineers 
obtain infonnation useful in the design 
of the structures of vehicles, their 
steering and braking systems, and 
devices for protecting passengers. In 
this chapLer you will use methods 
based on linear and angular mornen­
hun to analyse motions of objects. 
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Chapter 5 I 

Momentum 
Methods 

IN Chapter 4 we transfonnedNewton's second law to obtain 

the principle of work and energy. In this chapter we integrate 

Newton's second law with respect to time, obtaining a relation 

between the time integral of the forces acting on an object and 

the change in the object's linear momentum. With this result, 

called the principle of impulse and momentum, we can 

detennine the change in an object's velocity when the external 

forces are known as functions of time. 

By applying the principle of impulse and momentum to 

two or more objects, we obtain the principle of conservation of 

linear momentum. This conservation law allows us to analyse 

impacts between objects and evaluate forces exerted by 

continuous flows of mass, as in jet and rocket engines. 

By another transfonnation of Newton's second law, we 

obtain a relation between the time integral of the moments 

exerted on an object and the change in a quantity called 

angular momentum. We show that in the circumstance called 

central-force motion, an object's angular momentum is con­

served. 

185 
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Figure 5.1 
Principle of impulse and momentum. 

5. 1 Principle of Impulse 
and Momentum 

The principle of work and energy is a very useful tool in mechanics, We can 
derive another useful tool for the analysis of motion by integrating Newton's 
second law with respect to time, We express Newton's second law in the form 

dv 
:EF=m­

dt 

Theil we integrate with respect to time to obtain 

(5,1) 

where VI and V2 are the velocities of the centre of mass of the objects at the 
times II and /2, The term 011 the left is called the linear impulse, and mv is the 
linear momentum, This result is called the principle of impulse and 
momentum: the impul$e applied to an object during an interval of time is 
equal to the change in its linear momentum (Figure 5,1), The dimensions of 
the linear impulse and linear momentum are (force) x (time), 

fIl V
1+ J;2IFdt;mV2 

I 

Notice that Equation (5, I) and the principle of work and energy, Equation 
(4,5), are quite similar, They both relate an integral of the external forces to the 
change in an object's velocity, Equation (5.1) is a vector equation that tells you 
the change in both the magnitude and direction of the velocity, whereas the 
principle of work and energy, a scalar equation, tells you only the change in 
the magnitude of the veJocity, There is a greater difference between the two 
methods, however: in the case of impulse and momentum, there is no class of 
forces eqnivalent to the conservation forces that make work and energy so easy 
to apply, 

When you know the external forces acting on an object as functions of 
time, the principle of impulse and momentum allows you to determine the 
change in its velocity during an interval of time, Although this is an important 
resnlt, it is not new, When you used Newton's second law in Chapter 3 to 
determine an object's acceleration and then integrated the acceleration with 
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respect to time to determine the velocity, you were effectively applying the 
principle of impulse and momentum. However, in the rest of this chapter we 
show that this principle can be extended to new and interesting applications. 

The average with respect to time of the total force acting on an object from 
tl to 12 is 

~Fav =-- ~Fdt I liz 
t2 - 1\ tJ 

so we can write Equation (5. I) as 

(5.2) 

With this equation you can detennine the average value of the total force 
acting all an object during a given interval of time if you know the change in 
its velocity. 

A force of relatively large magnitude that acts over a small interval of time 
is called an impulsive force (Figure 5.2). Detennining the actual time history 
of such a force is usually impractical, but its average value can often be 
detennined. For example, a golf ball struck by a club is subjected to an 
impulsive force. By making high-speed motion pictures, we can detennine the 
duration of the impact. Also, the ball's velocity can be measured from motion 
pictures of its motion following the impact. Knowing the duration and the 
ball's linear momentum following the impact, we can use Equation (5.2) to 
detennine the average force exerted on the ball by the club. (See Example 5.2.) 

F 

F" -- - - - ~I --+--11--. 
I 

I 
I 

Figure 5.2 
An impulsive force and its average value. 



188 CHAPTER 5 MOMENTUM METHODS 

/\ 
T 

mg 

itlCUre5.3 

b'f-"""'----- x 

, 

(0) The rotating booster. 

The rocket booster in Figure 5.3 is travelling straight uJ? when it suddenly starts 
rotating counterclockwise at 0.25 rev Is. The range safety OffiCL'f destroys it 2 slater. 
The booster's mass is tn == 90 Mg, its thrust is T 1,0:MN, and it is moving 
upwards at 10m/s when it starts rotating. Tfaerodynamic forces are neglected, what 
is the booster's velocity at the time it is destroyed? 

ST~TEGY 

Because we know the !ligular velocity, we can detcnninc tbc direction of the 
booster's thrust as a function of time and calculate the impulse during the 2 s period. 

SOLUTION 

The booster's angular velocity is nl2 rad/s. Letting t = 0 be the time at which it 
starts rotating, the angle between its axis and the vertical is (nI2)1 (FIgure (a)). The 
total force on the booster is 

so the impulse from t = 0 to t = 2 s is 

I,''EFdt= I,' [(-Tsin~t)i+(Tcos~t-mg)jldt 
= [(T~cos~t) i + (T~sin~t -mgt) j 1: 
= - 4Ti-2mgJ 

n 

From the principle of impulse and momentum, 

12 ~Fdt ~ mV2 mv!: 

- ~(l x \0')1 - 2(90 x 103)(9.81),i = (90 x 103)(v, JO)) 

Solving for V2, we obtain V2 = (-14.15 i 9.62 j) mis. 

DISCUSSION 

Notice that the rocket's thrust has no net effect on its y component of velocity during 
the 2 s interval. The effect of the positive y component of the thrust during the first 
quarter revolution is cancelled by the effect of the negative y component during the 
second quarter revolutioh. The change in the y component of velocity is caused 
entirely by the rocket's weight. The thrust has a negative x component during the 
entire 2 s interval, giving the rocket its negative x component of velocity at the time 
it is destroyed. 



5.1 PRINCIPLE OF IMPULSE AND MOMENTUM 189 

A golf ball in flight is photographed at intervals of 0,001 s (Figure 5.4), The 
0,046 kg ball is 43 nun in dIameter, If the club was in contuct with the ball for 
0.0006 s, estimate the average value of the impulsive force exerted by the club. 

Figure 5.4 

)' 

STRATEGY 

By measuring the distance travelled by the ball in one of the 0,001 s intervals. we 
can estimate its velocity after being struck, then use Equation (5.2) to detenmnc the 
average total force on the ball. 

SOLUTION 

By comparing the distance moved during one of the 0.001 s intervals with the 
known diameter of the ball, we estimate that the ball travelled 48 mm and that its 
direction is 21" above the horizontal (Figure (a», The magnitude of the ball's 
velocity is 

0,048 m = 48 / 
0,001 s m s 

The weight of the ball is (0,046)(9,81)=0.451 N, and its mass is 0,046 kg, From 
EquatJon (5,2), 

(/2 - /,)!: F" = mY, - mv, 

(O.0006)!: F" = (0.046)( 48)(cos 21 0 1 + sin 21' j) - 0 

we obtain 

I: f'" = (34361 + 1319 j) N 

DISCUSSION 

The average force during the time the club is in contact with the ball includes both 
O,e impulsive force exer«>d by the club and the baB's weight. In comparison with the 
large average impulsive force exerted by the club, the weight (-045 j N) is 
negligible, 

(a) Estimating the 4istunce travelled during 
one 0,001 s interval. 
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5.1 The aircraft cartier Nimitz weighs 810 MN. Suppose that its 
engines and hydrodynamic drag exert a constant 4.45 MN dec-el~ 
crating force on it. 
Ca) Use the principle of impulse and momentum to determine how 
long it requires the ship to come to rest from its top speed of 
approximately 30 knots. (A knot is approximately 1.85 kIn/hr). 
(b) Use the principle of work and energy to determine the distance 
the ship travels during the time it takes to come to rest. 

P5.1 

5.2 The 900 kg drag racer accelerates from rest to 480 kIn/hr ill 
6s. 
Ca) What impulse is applied to the car during the 6 s? 
(b) If you asswne as a first approximation that the tangential force 
exerted on the car is constant, what is the magnitude of the force? 

P5.2 

5.3 The 21900kg Gloster Sara Protector, designed for rapid 
response to airport emergencies, accelerates from rest to 80 kmjhr 
in 35 s, 
(al What impulse is applied to the vehicle during the 35 s? 
(b) If you assume as a first approximation that the tangential force 
exerted on the vehicle is constant, what is the magnitude of the 
force? 
Ce) Wltat average power is transferred to the vehicle? 

P5.3 

5.4 the combined weight of the motorcycle and rider is 1350N, 
The coefficient of kinetic metion between the motorcycle's lyres 
and the road is Ilk = 0,8. Suppose that the rider starts from rest and 
spins the rear (drive) wheel. The 'llomlal force between the rear 
wheel and the road is 1100 N, 
Ca) What impulse does the metion force on the rear wheel exert in 
5 s? 
(b) If you neglect other horizontal forces, what velocity is attained 
in 5 s7 

P5.4 



5.5 An astronaut drifts towards a space station at 8 m/s. He 
cames a manoeuvring unit (a small hydrogen peroxide rocket) that 
has an impulse rating of 720 N.s. The total mass of the astronaut, 
his suit and the manoeuvring unit is 120 kg. If he uscs all of the 
impulse to slow himself down, what will be his velocity relative to 
the station? 

PS.S 

5.6 The total external force on a 10 kg object is constant and 
equal to (901 - 60j + 20k)N. At t = 2s, the object.'s velocity is 
(-81 +6j)m/s. 
(al What impulse is applied to the object from t = 2 s to t = 4 s? 
(b) What is the object's velocity at t = 4 s? 

5.7 The total external force on an object is F = (lOt i + 60 j) N. 
At t = 0, its velocity is v = 20 j m/s. At t = 12 s, the x component 
of its velocity is 48 m/s. 
(a) What impulse is applied to the object from t = 0 to t = 651 
(b) What is its velocity at t = 657 

5.8 During the first 5 s of the 15000 kg aeroplane's takeoff roll, 
the pilot increases the engine's thrust at a constant rate from 25 kN 
to irs full t.hrust of 125 kN. 
(al What impulse does the thrust exert on the aeroplane during the 
5s'! 
(b) If you neglect other forces, what total time is required for the 
aeroplane to reach its takeoff speed of SOmis? 

P5.& 
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5.9 The 45 kg box starts from rest anq is subjected to the 
force shown. If you neglect friction, what is the box's velocity at 
t = 8.? 

F Ii.' ~L' ,; 
i 
Ii ' 

F 

ISO N 
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S.10 Solve Problem 5.9 if the coefficients of friction between the 
box and the floor are 1', = i'k = 0.2. 

5.11 The crate has a mass of 120 kg ~d the coefficients of 
friction between it and a,e sloping dock ~e 1', = 0.6. Ilk = 0.5. 
The crate st.arts from rest) and the winch exerts a tension 
T = 1220N. 
(a) Wihat impulse is applied to the crate during the first second of 
motion? 
(b) What is the crate's velocity after I s? 

PS.ll 

5.12 Solve Problem 5.11 if the crate starts from rest at t = 0 and 
the wi!lch exerts a tension T = (1220 + 200t)N. 
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5.13 In an assembly-line process the 20 kg packagc A starts from 
rest and slidcs down the smooth ramp. Suppose that you want to 
design the hydraulic device B to exert a constant force of magni­
tude F 011 the package and bring it to rest in 0.2 s. What is the 
required force F? 

PS.13 

5.14 [n Problem 5.13, if the hydraulic device B exerts a force of 
magnitude F = 540(1 + 0041) N on the package, where t is in 
seconds measured from the time of first contact, what time is 
required to bring the package to rest? 

5.15 In a cathode-ray tube, an electron (mass = 9.1 I x 10~JI kg). 
is projected at 0 with velocity v = (2.2 x 10')i(mjs). While it is 
between the charged plates, the electric field generated by the 
plates subjects it to a force F ::::; -eE j. The charge of the electron is 
e = 1.6 x lO~19C (coulombs), and the electric field strength is 
E = 15 sin(wtlkNjC, where the frequency OJ = 2 x 10' S~l 
Cal What impulse does the electric field exert on the electron while 
it is between the plates? 
(b) What is the velocity of the eh~ctron as it leaves the region 
between the plates? 

5.16 The two weights are released from rest. What is the 
magnitude of their velocity after one-half second? 

Strategy: Apply the principle of impulse and momentum to each 
weight individually. 

PS.16 

5. 17 The two crates are released ,from rest. Their masses are 
mA = 40 kg .md mE = 30 kg, and the coefficient of kmetic friction 
bet\veen ~rate A and the inclined surface is P-k = 0.15. What is the 
magnitude of their velocity after 1 57 

8 

P5.17 

5.18 10 Example 5.1, if the range safety officer destroys the 

S~~~~~~~~::~:=::::~--- booster 1 s after it starts rotating) what is its velocity at the time it is 
\ x destroyed? 

PS.15 



5.19 An object of mass m slides with constant velocity 'Do on a 

horizontal table (seen from above in the figure). The object is 
attached by a string to the fixed point 0 and is in the position 
shown, with the string parallel to the x axis, at t = O. 
<aJ Detcnnine the x and y components of the force exerted on the 
mass by the string as functions of time. 
(bJ Use your results from part <a) and the principle of impulse and 
momenmm to determine the velocity vector of the mass when it has 
travelled one-quarter of a revolution about point O. 

~ ~ ___ L __ -<[ 
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5.20 At t = 0, a 25 kg projectile is given an initial velocity of 
12m/, at 600 above the horizontal. Neglect drag. 
(a) What impulse is applied to the projectile from t = 0 to t = 2 s? 
(b) What is the projectile's velocity at t = 28? 

5.21 A rail gun, which uses an electromagnetic field to accelerate 
an object, accelerates a 30 g projectile to 5 km/8 in 0.0005 s. What 
average force is exerted on the projectile? 

5.22 The powerboat is going at 80 km/hr when its motor is 
turned off. In 5 s its velocity decreases to 48 km/hr. The boat aud 
its passengers weigh 8 kN, Determine the magnitude of the average 
force exerted on the boat by hydrodynamic and aerodynamic drag 
during the 5 s. 

P5.22 
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5.23 The 77kg skier is travelling ~t IOm/s at 1, and he goes 
from I to 2 III 0.7s. 
(a) If you neglect friction and aerodynamic \lrag, what is the time 
average of the tangential c.omponent of force' exerted on him as he 
moves from I to 27 
(b) If his actual velocity IS measured at 2 and detennjned to be 
13.1 mis, what is the time average of the tangential component of 
force exerted on him as he moves from 1 to 27 

4m 

'1 

PS.23 

5.24 In a test of an energy~absorbing bumper~ a 1270kg car is 
driven into a barrier at 8 km/hr. The duratioTI'ofthc impact is 0.4 s, 
and the car bounces back from the barrier at 1.6 km/hr. 
(a) What is the magnitude of the average horizontal force exerted 
on the car during the impact? 
(b) 'What is the average deceleration of the dar during the impact? 

PS.24 
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5.25 A bioengineer, using an instrumented dummy to test a 
protective mask for a hockey goalie, launches the 170 g puck so 
that it strikes the mask moving horizontally at 40 m/ s. From 
photographs of the impact~ she (:stimates its duration to be 0.02 S 

and obsetves that the puck rebmmds at 5 mj s. 
(a) What linear impulse does the puck exert'? 
(b) What is the average value of the impulsive force exerted on the 
mask by the puck? 

P5.25 

5.26 A fragile object dropped onto a hard surface breaks because 
it IS subjected to a large impulsive force, If you drop a 0.057 kg 
watch from t.2 m above lhe floor. the duration of the impact is 
0.001 s, and the watch bounces 50 rum above the floor, what is the 
average value of the impulsive force? 

5.27 A 25 kg projectile is subjected to an impulsive force with a 
duration of 0.01 s that accelerates it- from rest to a velocity of 
12m/' at 6W' ahove the horizontal. What is the average value of 
the impulsive force? 

Strategy: Use Equation (5.2) to detennine the average total force 
on the projectile. To determine the average value of the impulsive 
force~ you must subtract the projectile!s weight. 

5.28 An entomologist measures the motion of a 3 g locust during 
its jump and determines that it accelemtes from rest to 3.4 mls in 
25 rus (milliseconds). The angle of takeoff is 55° above the 
horizontal. What are the horizontal and vertical components of 
the average impulsive force exerted by the insect's hind legs during 
the jump? 

5.29 A 0.14 kg baseball is I m above the ground when it is struck 
by a bat. The horizontal distance to the point where the ball strikes 
the ground is 55 m. Photographic studies indicatc that the ball was 
moving approximately horizontally at 30 m/s before it was struck, 
the duration of the impact was 0.015 s, and the ball was travelling at 
30" above the horizontal after it was struck. What was the 
magnitude of the average impulsive force exerted on the ball by 
the bat? 

30' 

L~ 
PS.29 

5.30 The I kg ball is given a horizontal velocity of 1.2 m/s at A. 
Photographic measurements indicate that b = 1.2 m, h == 1.3 m, 
and the duration of the bounce at B is 0.1 s. What are the 
components of the average impulsive foree exerted on the ball by 
the fioor at B? 
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5.2 Conservation of 
Linear Momentum 

----------------------------
In this section we consider the motions of several objects and show that if the 
effects of external forces can be neglected, total linear momentum is con­
served. This result provides you with a powerful tool for analysing interactions 
between objects, such as collisions, and also permits you to determine forces 
exerted on objects as a result of gaining or losing mass. 

Consider the objects A and B io Figure 5.5. FAB is the force exerted on A by 
B and F BA is the force exerted on B by A. These forces could result from the 
two objects being in contact, or could be exerted by a spriog couuecling them. 
As a consequence of Newton's third law, these forces are equal and opposite: 

(5.3) 

Suppose that no other external forces act on A and B, or that other external 
forces are negligible in comparison with the forces that A and B exert OIl 

each other. We can apply the principle of impulse and momentom to each 
object for arbitrary times 1\ and 12: 

If we sum these equations, the tenTIS on the left cancel and we obtain 

which means that the total linear momentum of A and B is conserved: 

(5.4) 

We can show that the velocity of the combined centre of mass of the objects A 
and B (that is, the centre of mass A and B regarded as a single object) is also 
constanl. Let r A and rn be the position vectors of their individual centres of 
mass (Figure 5.6). The position of the combined centre of mass is 

mArA +mnrB 
r= 

rnA +mB 

Figure 5.6 

Figure 5.5 

Two objects and the forc,es they exert on 
each other. 

( Position vector r of the centre of mass of A 
and B. 

o 
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Figure 5.7 

By taking the time derivative of this equation, we obtain 

(5.5) 

where v = dr I dl is the velocity of the combined centre of mass. Although 
your goal will usually be to determine the individual motions of the objects, 
knowing that the velocity of the combined centre of mass is constaot can 
contribute to your understaoding of a problem, aod in some instances the 
motion of the combined centre of mass may be the only information you can 
obtain. 

Even when significaot external forces act on A and B, if the external forces 
are negligible in a particular direction, Equations (5.4) and (5.5) apply in that 
direction. These equations also apply to an arbitrary number of objects: if the 
external forces acting on any collection of objects are negligible, the total 
lineal' momentum of the objects is conserved and the velocity of their centre of 
mass is constant. 

In the fol/owing example we demonstrate the use of Equation" (5.4) and 
(5.5) to analy .• e motions of objects. When you know initial positions and 
velocities of objects and you clin neglect external force", these equations 
relate their positions and velocities at any subsequent time. 

A person of mass mp stands at the centre of a stationary barge of mass mn (Figure 
5.7). Neglect horizontal forces exerted on the barge by the water. 
(a) If the person start.'! running to the right with velocity v(' relative to the water, 
what is the resulting veocity of the barge relative to the water? 
(b) If the person stops when he reaches the right end of the barge, what are his 
position and the barge's position relative to their original positions? 

STRATEGY 
Ca) The only horizontal forces exerted an the person and the barge are the forces 
they exert on each other. Therelbre their total linear momentum in the horizontal 
direction is conserved and we can use Equation (5.4) to determine the barge's 
velocity while the person is running. 
(b) The combined eenlN;l of mass of the person and the barge is initially stationary, 
so it must remain stationary. Knowing the position of the combined centre of mass; 
we can detennine the positions of the person and the barge when the person is al the 
right end of the barge. 
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SOLUTION 

(a) Before the perS()D starts running, the total linear momentum of the person and 
the barge in the horizontal direction is zero) so it must be zero after he starts 
running. LeLting VB be the value of the barge's velocity to the left while the person is 
nmning (Figure (a)), we obtain 

so the velocity of the barge while he runs is 

VB = (mp)v, 
niB 

(b) Let the origin of the coordinate system in Fignre (b) be the original horizontal 
position ofthc centres of mass of the barge and the person, and letxa be the position 
of the barge's centre of mass to the left of the ortgtn. When the person has stopped at 
the right end of the barge, the combined centre of mass must still be at x = 0: 

Solving this equation together with the relation xp + Xs = L/2, we obtain 

mpL 
XB =--_ ........... . 

2(mp + mBl 

y 

DISCUSSION 

This example is a well-known illustration of the power of momentum methods. 
Notice that we were able to detennine the velocity of the barge and the final 
positions of the person and barge even though we did not know the complicated 
time dependence of the horizontal forces they exert on each other. 

(0) Velocities of the person and barge. 

(b) Positions after the person has stopped. 
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Figure 5.8 
(a) Velocities of A and 8 before 

and after the impact and the 
velocity v of lheir centre of mass. 

(b) A perfectly plastic impact. 

5.3 Impacts 
In machines that perfonn stamping or forging operations, dies Impact against 
workpieces. Mechanical printers create images by impacting metal elements 
against the paper and platen. Vehicles impact each other intentionally, as when 
railway cars are rolled against each other to couple them, and ,mintentionally 
in accidents. Impacts occur in many situations of concern in engineering. In 
this section we consider a basic question: if you know the velocities of two 
objects before they collide, how do you determine their velocities afterwards? 
In other words, what is the effect of the impM:t on their motions? 

If colliding objects are not subjected to external forces, their total linear 
momentum must be the same before and after tbe impact. Even when they are 
subjected to external forces, the force of the impact is often so large, and its 
duration so brief, that the effect of external forces on their motions during the 
impact is negligible. Suppose that objects A and, 8 with velocities VA and VB 

collide, and let v~ and VB be their velocities after the impact (Figure 5.8(a». If 
the effects of external forces are negligible, their total linear momentum is 
conserved: 

(5.6) 

Furthermore, tbe velocity v of their centre of muss is the same before and after 
the impact. From Equation (5.5), 

(5.7) 

If A and B adhere and remain together after they collide, they are said to 
undergo a perfectly plastic impact. Equation (5.7) gives the velocity of the 
centre of mass of the object they form after the impact (Figure 5.8(b». A 
remarkable feature of this result is that you can determine the velocity 
following the impact without considering the physical nature of the impact. 

If A and B do notadherc, linear momentunl conservation alone is not 
sufficient to detennine lheir velocities after the impact. We first consider the 
case in which they travel along the same straight line before and after they 
collide. 

(aJ (h) 

VR~ 
.~ 

.. "J ... .. ' -'" , 



Direct Central Impacts 
Suppose that the centres of mass of A and B travel along the same straight line 
with velocities VA and VH before their impact (Figure 5.9(a». Let R be the 
magnitude of the force they exert on each other during the impact (Figure 
5.9(b». We assume that the contacting surfaces are oriented so that R is 
parallel to the line along which they travel and directed towards their centres of 
mass. This condition, called direct central impact, means that they continue 
to travel along the same straight line after their impact (Figure 5.9(0)). If the 
effects of external forces during the impact are negligible, their total linear 
momentum is conserved: 

1.~ vB 

--------------------A~~~~t~)+--~~.,~-5~~~~~~n---

(5.8) 

(a) Before 
Impact 

(b) During 
Impact 

(e) Afler 
Tmpacl 

However, we need another question to detennine the velocities v~ and v~. To 
obtain it, we must consider the impact in more detail. 

Let 11 be the time at which A and B first come into contact (Figure 5.1 Ora)). 
As a result of the impact, they will defoml and their centres of mass will 
continue to approach each other. At a time Ie, their centres of mass will have 
reached their nearest proximity (Figure 5.1O(b». At this time the relalive 
velocity of the two centres of mass is zero, so they have the same velocity. We 
denote it by vc. The objects then begin to move apart and separate at a time 12 

(Figure 5.IO(c». We apply the principle of impulse and momentum to A 
during the intervals of time from 1, to the time of closest approach Ie and also 
from Ie to 12: 

(5.9) 

(5.10) 

Then we apply this principle to B for the same intervals of time: 
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FIgure 5.9 

(aJ Objects A and B travelling along the 
same straight line. 
(b) During the impact, they exert a force R 
on each other. 

(c) They travel along the same straight line 
after the central impact. 

(u) 

(b) 

te) 

Figure 5.10 

(a) First contact. t = fl. 

l
Ie 

R dt = mBVe - mB"B 
I, 

(5.11) (b) Closest approach, t = fe. 
(c) End of contact, 1 = 12. 

l
Ie 

R dl = mBV~ - mBVC 
Ie 

(5.12) 
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Figure 5.11 
An oblique central impact. 

As a result ofthc impact, part of the objects' k.inetic energy can be lost due 
to a variety of mechanisms, including pel111anent defol111ation and generation 
of heat and sound. As a consequence, the impulse they impart to each other 
during the 'restitution' phase of the impact from Ie to 12 is in general smaller 
than the impulse they impart from II to Ie. The ratio of these impulses is called 
the coefficient of restitlltioll: 

f
l' 

Rdt 

e = fl~c 
Rdt 

I, 

(5.13) 

Its value depends 011 the properties oflbe objects as well as their velocities and 
orientations when they collide, and it can be detennined only by experiment or 
by a detailed analysis of the deformations of the objects during the impact. 

If we divide Equatiotl (5.10) by Equation (5.9) and divide Equation (5.12) 
by Equation (5.1 I), we ,an express the resulting equations in the fOl111s 

(ve vB)e v~ - Vc 

Subtracting the first equation from the second one, we obtain 

(5.14) 

Thus the coefficient of restitution is related in a simple way to the relattve 
velocities of the objects before and after the impact. If e is known, you can use 
Equation (5.14) together with the equation of conservation of linear momen­
tum, Equation (5.8), to dctenlline v~ and v~. 

If e 0, Equation (5.14) indicates that vI. = v:4' The objects remain 
together after the impact, and the impact is perfectly plastic. If e = 1, it can be 
shown that the total kinetic energy is the same before and after the impact: 

An impact in which kinetic energy is conserved is called perfectly elastic. 
Although this is sometimes a useful approximation, energy is lost in any 
impact in which material objects come into contact. If you can hear a collision, 
kinetic energy has been converted into sound. Pel111anen! defOtmations and 
vibrations of the colliding objects after the impact also represent losses of 
kinetic enerbY. 

Oblique Central Impacts 
We can extend the procedure used to analyse direct central impacts to the 
case in which the objects approach each other at an oblique angle. Suppose 
that A and B approach with arbitrary velocities VA and Vu (Figure 5.1 J) and 
that the forces they exert on each other during their impact are parallel to the x 
axis and point towards their centre of mass. No forces are exerted on them in 



the y or z directions, so their velocities in those directions are unchanged by 
the impact: 

(v~)y (VA)y 

(v~), = (VA), 

(v~)y = (vs)y 

(v~), = (vnlz 

In the x direction, linear momentum is conserved, 

(5.15) 

(5.16) 

and by the same analysis we used to arrive at Equation (5.14), the x 
components of velocity satisfY the relation 

(5.17) 

We can analyse an impact in which A hits a stationary object like a wall 
(Figure 5.12) as an oblique central hnpac! if friction is negligible. The y and z 
components of A's velocity are uncbanged, and the x componel1t after the 
impact is given by Equation (5.17) with B's velocity equal to zero: 

~ 
'-

'­,~, 

y 

___ +, t-\-____ x 

Figure 5.12 

Impact with a stationary object. 

In the following example we analyse the impact of two objects. If an impact 
is perfectly plastic, which means the objects adhere and remain together, you 
call dele,mille from Equation (5.7) the velocity of their centre of mass after 
the impact III a direct central impact, ill terms of the coordinate system 
showlI ill Figure 5.11, they and z components of the velocities afthe objects 
are unchallged and you can solve Equation,~ (5.16) and (5.17) for the x 
components of the velocities after the impact 
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Figure 5.13 

The Apollo CSM (AJ attempts to dock with the Soyuz capsule (B), 15 July I 
(Figure 5.13). Their masses are rnA = 18Mg and mE = 6.6Mg. The Soyuz 
stationary relative to the reference frame shown, and the CSM approaches 
velocity VA = (0.2 i + 0.03 j - 0.02 kJm/s. 
(a) If the first attempt at docking is successful, what is the velocity of the centre 
mass of the combined vehicles afterwards? 
(b) If the first attempt. is unsuccessful and the coefficient of restitution of 
resulting impact is e = 0.95, what are the velocities of the two spacecraft after 
impact'? 

STRATEGY 

(a) If the docking is successful> the impact is perfectly plastic and we can 
Equation (5.7) to determine the velocity of the centre of mass of the cOIllb:ine,dl 
object after the impact. 
(b) By assuming an oblique central impact with the forces exerted by the docking I 
collars parallel to the x axis, we can usc Equations (5.16) and (5.17) to determine 
velocities of both spacc(;raft after the impact. 

SOLUTION 
Ca) From Equation (5.7), the velocity of the centre of mass of the combined veltidel 
IS 

(18)(0.21 + 0.03 i - O:~2k) + () 
18 + 6.6 

= (0.146 i + 0.022j - 0.015 k) mls 



5.3 IMPACTS 203 

(b) They and z components of the velocities of both spacecraft are unchanged. To 
detennine the x components, we use conservation of linear momentum, Equation 
(5.16), 

(18)(0.2) "" (l8)(v~)x + (6.6)(v~)x 

and the coefficient of restitution, Equation (5.17), 

e 

O 95 "" (v~)x (v~)x 
. 0.2 - 0 

Solving these two equations l we obtain (,,~)x = 0.095 m/s and (v~)x = 
0.285 mis, so the velocities of the spacecraft after the impact are 

v~ = (0.095 i + 0.03 j - 0.02 k) m/s 

v~ = 0.285 i m/s 

5.31 A girl weighing 440 N stands at rest on a barge weighing 
2200 N. She starts running at 3 mls relative to the barge and runs 
otrthe end. Neglect the horizontal force exerted on the barge by the 
water. 
(a) Just before she hits the water, what is the horizontal component 
of her velocity relative to the water'? 
(b) What is the velocity of the barge relative to the water while she 
runs? 

P5.31 

5.32 A 60 kg astronaut aboard' the space shuttle kicks off 
towards the centre of mass of the I ~5 Mg ~huttle at 1 mls relative 
to the shuttle. He travels 6 m relative to the shuttle before coming 
to rest at the opposite wall. 
(a) What is the lllilgnitude of the change in the velocity of the 
shuttle while he is in motion? 
(b) What is the magnitude of the displacement of the centre of 
mass of the shuttle due to his 'flight'? 

P5.32 
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5.33 A 36 kg boy sitting in " ,tationill)' 9 kg wagon wants to 
simulate rocket propulsion by throwing bricks out of the wagon. 
Neglect horizontal forces on the wagon's wheels. If he has three 
bricks weighing 40 N each and tluows them with a horizontal 
velocity of 3 mls relative to the wagon, determine the velocity he 
attains (a) if he throws the bricks one at a time; (b) if he throws 
them all at once. 

PS.33 

5.34 Two railroad cars (rnA = 1.7mB) collide and become 
coupled. Car A is full and car B is half-full of carbolic acid. WIlen 
the cars impact, the acid in B sloshes back and forth violently. 
(a) Immediately after the impact, what is the velocity or the 
common centre of mass of the lwo cars? 
(b) A few seconds later, when the sloshing has subsided, what is 
thc velocity of the two cars'? 

P5.34 

5.35 In Problems 5.34, if the track slopes one-half degree 
upwards to the right and the cars are initially 3 m apart, what is 
the velocity of their common centre of mass immediately after the 
impact? 

5.36 A 400kg satellite S travelling at 7km/s is hit by a 1 kg 
meteor M travelling at 12 km/s. The meteor is embedded in the 
satellite by the impact. Determine the magnitude of the velocity of 
their conunon centre of mass after the impact and the angle fJ 
between the path of the centre of mass and the original path of the 
satellite. 

7 km/s 

PS.36 

5.37 The cannon weighed 1BOON, fired a cannonball weighing 
45N, and had a muzlle velocity of 50m/s. For the 10" elevation 
angle shown, determine (a) the velocity of the cannon after it was 
fired; (b) the dIstance the cannonball travelled. (N egleet drag.) 

100 

PS.37 

5.38 A bullet (mass m) hits. st.tioOill)' block of wood (m.ss rnTI) 
and becomes embedded in it. The coefficient of kinetic friction 
between the block and the floor is 11k' As a result of the impact the 
block slides a distance D before stopping. What was the velocity v 
of the bullet? 

Strategy: First solve the impact problem to detennine the 
velocity of the block and the embedded bullet .fter the impact in 
terms of v. then relate the initial velocity of the block and the 
embedded bullet to the distance D that the block slides. 

PS.38 

5.39 The overhead conveyor drops the 12 kg package A into the 
1.6 kg carton B. The package is 'tacky' and sticks to the bottom of 
the ctmon. If the coefficient of friction between the carton and the 
horizontal conveyor is Ilk = 0,2, what distance does the carton 
slide after the impact? 

PS.39 



5.40 A 0.028 kg bullet moving horizontally hits a suspended 
50kg block of wood and becomes embedded in it. If you measure 
the angle through which the wires supporting the block swings as a 
result of the impact and determine it to be 7°. what was the bullet's 
velocity? 

P5.40 

5.41 Suppose you investigate an accident in which a 1360 kg car 
with velocity Vc = 32jkm/hr collided with a 5440kg bus with 
velocity VR = 161 km/hr. The vehicles became entangled and 
remained together after the collision. 
(a) What was the velocity of the common centre of mass of the two 
vchicles after the collision? 
(b) If you estimate the coefficient of friction between the sliding 
vehicles and the road after the collision to be J-Lk = O.4 j what i!\ the 
approximate final position of the conunon centre of mass relative to 
its position when the impact occurs? 

P5.41 
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5.42 The velocity of the 100 kg astronaut A relative to the space 
station is (40 i + 30 j) mm/s. The velocity 'Of the 200 kg structural 
member B relatIve to the station is (~20i + 30j )mm/s. When they 
approach each other, the astrona:ut grasps and clings to the 
structural member. 
(a) Detennine the velocity of their common centre of mass when 
they arrive at the station. 
(b J Determine the approximate position at' which they contact the 
station. 

P5.42 

5.43 Objects A and B with the same mass m undergo a direct 
central impact. The velocity of A before the impact is VA! and B is 
stationary. Detennine the velocities of A an(i B after the impact if it 
is (aJ perfectly plastic Co = 0); Cb) perfectly clastic (e = 1). 

P5.43 

5.44 In Problem 5.43, if the velocity of B after the impact is 
O.6VA, determine the coefficient oCt'estitution e and the velocity of 
A after the impact. 

5.45 Ubjects A and B with masses rnA and mn undergo a direct 
t:cntrdl impact. 
(aJ If e = 1, show that the total kinetic en(ll'g)' after the impact is 
equal to the total kinetic energy before the' impact. 
(b) If e = 0, how much kinetic energy is lost as a result of the 
collision? 

P5.45 
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5.46 The two 5 kg weights slide on the smooth horizontal bar. 
Determine their velocities after they collide if the weights are 
coated with Velcro and stick together. 

PS.46 

5.47 Determine the velocities of the weights in Problem 5.46 
after their impact if you assume it to be perfectly elastic, 

5.48 Detennine the velocities of the weights in Problem 5.46 
after their impact if the coefficient of restitution is e = 0.8. 

5.49 Two cars with energy~absorbing bumpers collide with 
speeds VA = v. = 8 km/hr. Their weights are WA = 12 kN and 
W. = 20 kN. [f the coefficient of restitution of the colli,ion is 
e = 0.2, what are the velocities of the cars after the collision? 

!AI'" U'" 1 i))i'J f'f.:,:; 1.1(1 /../f{, ~ :.t.) 13 l" 

( 

. \ VA -' " 
5.50 In Problem 5.49, if the duration of the collision is 0.1 s, 
what are the magnitudes of the average acceleration to which the 
occupants of the two cars are subjected? 

5.51 The 10 kg mass A is moving at 5 mls when it is I m from 
the stationary 10 kg mass B. The coefficient of kinetic friction 
between the floor and the two masse, is I'k = 0.6, and the 
coefficient of restitution of the impact is e = 0.5. Determine how 
far B moves from its initial position as a result of the impact. 

5 m/s -
I-- I rn-I 

P5.51 

5.52 Suppose you investigate an accident in which a 1300kg 
A struck a parked 1200 kg car B. All four of B's wheels 
locked, and skid marks indicate that it slid 2 m after the impact. 
you estimate the coefficient of friction between B'g tyres and 
road to be Ilk ; 0.8 and the coefficient of restitution of the 
to be e = 0.4, what was A's velocity just before the im]pactl 
(Assume that only one impact occurred,) 

5.53 Suppose you drop a basketball 1.5 m above the ftoor and 
bounces to a height of 1.2 m. If you then throw the ball do'wnwalrdsl 
rel~asing it 1 m above the floor moving at lOm/s, how high docs 
bOlJ.l1ce? 

5.54 By making measurements directly from the photograph 
the b01.mcing golf ball, estimate the coefficient" of restitution, 

5.55 If you throw the golf ball in Problem 5.54 horizontally 
0.6 mls and release it 1.2 m above the surf.ce, what is the diSllan(:<j 
between the first two bounces? 



5.56 A bioengineer studying helmet design strikes a 2.4 kg 
helmet containing a 2 kg simulated human head against a rigid 
surface at 6 m/s. The head, bcing suspended witliin tlie helmet, is 
not immediately affected by the impact of the hel met with the 
surface and continues to move to the right at 6 mis, so it then 
lmdergoes an impact with the helmet. If the coefficient of rcstitu~ 
tion of the helmet's impact with the surface is 0,8 and the 
coefficient of restitution of the following impact of the head and 
helmet is 0.2, what are the velocities of the helmet and head after 
their initial interaction? 

6m/s 
-~~:':""_l'" 

P5.56 

5.57 (a) In Problem 5.56, if tlie duration of the impact of the 
head with tlie helmet is 0.008 s, what average force is tlie head 
subjected to? 
(b) Suppose that the simulated head alone strikes tlie surface at 
6 mis, the coefficient of restitution is 03, and the duration of the 
impact is 0.002 s. What average force is the head subjected to? 

5.58 Two small balls, each of mass m, hang from strings of 
length L The left ball is released from rest in th.l position shown. 
As a rcsult of the first collision, the right ball swings through an 
angle {J. Determine the coefficient of restitution. 
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5.59 A 15 kg object A and a 30l<:g object B undergo an oblique 
central impact. The coefficient of'restitulion is e = 0.8. Before 
the impact, VB = -to im/s, and after the impact. v~ = 
(-15i+4j +2k)m/s. Determine, the velocity of A before the 
impact and the velocity of B after ~e impact. 

y 

.E)-:i,.B x 
, 

'I ' 
"I 

PS.S9 

5.60 The cue gives the cue ball A ~ velocity parallel to tlie y axis. 
lt hits tlie 8-ball B aud knocks it str~ight i~to the comer pocket. If 
the magnitude of the velocity of the' cue ball just before the impact 
is 2 m/s and the coefficient of res~itutioni is e = 1, what are the 
velocity vectors Dfthe two balls just'after th~ impact? (The balls are 
of equal mass.) 

L-------------___________ x P5.60 

m 5.61 In Problem 5.60, what are the velocity vectors of the two 
P5.S8 balls just after the impact if the coefficient orrestilution is e = 0,9'1 
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5.62 l!"the coefficient of restitution is the same for baul impacts, 
show that the cue ball's palb after two banks is parallel to its 
original path. 

PS.62 

5.63 The cue gives the cue ball A a velocity of magnitude 3 m/s. 
The angle fI = 0 and the eoeffielent of restitution of the impact of 
the cue ball and the 8-boll B is e ; 1. If the magnitude of lbe 8-
ball's velocity after the impact is 0.9 mIs, what was the coefficient 
of restitution of the cue ball's impact with the cushion? (The balls 
are of equal mass.) 

PS.63 

5.64 What is the solution of Problem 5.63 iflbe angle fJ = 10"7 

5.65 What is the solution of Problem 5.63 if the angle fJ = 10" 
and the coefficient of restitution of the impact between the two 
balls is e = 0.97 

5.66 A ball is given a horizontal velocity of 3 mls at 2 m above 
the "nooth floor. Determine the d,stance D between its first and 
second bounces if the coefficient of restitution is e = 0.6 . 

... ,.,--_3m/s 

2m 

D -l p5.66 

5.67 The velocity of the 170 g hockey puck is 
Vp = (10 i - 4 j) m/s. If you neglect the change in the velocity 
Vs ;;;;; t's.i of the stick resulting from the impact and the coefficient 
of restitution is e:::!::: 0.6, what ·should 1.15 be to send the puck 
towards the goal? 

Direction 
of goal 

7 

P5.67 
5.68 In Problem 5.67, if the stick responds to the impact like an 
object with the same mass: a..1; the puck and the coefficient of 
restitution is e = 0.6, what should Vs be to send the puck towards 
the goal? 

5.69· In a forging operation, the 500 N weight is lifted into 
position I and released from rest. It falls and stJikes a workpiece 
in position 2. If the welght IS moving at 5m/s irrunediately belore 
the impact and the coefficient of restitution is e ,= 0.3, what is its 
velocity immediately after the impact? 

r 
..J.OOmlll 

1 

300 nllll-.i PS.69 

5.70 Tn Problem 5.69, suppose that lhe spring constant is 
k = 1750 N/m, the springs are unstretched in position 2, and the 
coefficient of restitution is e ::::::: 0.2. Detennine the velocity of the 
weight immediately after the impact. 

5.71 In Problem 5.69, suppose that the spring constant is 
k: 2400N/m, the springs a1'<: ullstretched in position 2, and the 
weight bounces 75 mm alter impact. Find the coefficient of 
restitution. 
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5.4 Angular Moment_u_m __________ _ 
Here we derive a result, analogous to the principle of impulse and momentum, 
that relates the time integral of a moment to the change in a quantity called the 
angular momentum. We also obtain a useful conservation law: when the total 
moment due to the external forces acting on an object is zero, angular 
momentum is conserved. 

Principle of Angular Impulse and Momentum 
We describe the position of an object by the position vector r of its centre of 
mass relative to a reference point 0 (Figure 5.14(a)). Recall that we obtained 
the very useful principle of work and energy by taking the dot product of 
Newton's second law with the velocity. Here we obtain another useful result by 
taking the cross product of Newton's second law with the position 'Vector. This 
procedure gives us a relation between the moment of the extemal forces about 
o and the objecfs motion. 

The cross product of Newton's second law with r is 

dv 
r x I:F = r x rna = r x m dl 

Notice that the time derivative of the quantity r x mv is 

.... ·(rxmv)= -xmv + rxm-d. (dr) ( dV) 
dt dl dt 
~ 

=0 

(5.18) 

(The first term on the right is zero because dr/dt = v, and the cross product of 
parallel vectors is zero.) Using this result, we can write Equation (5.18) as 

dHo 
rxI:F=-­

dt 

where the vector 

Ho=rxmv 

(5.19) 

(5.20) 

is called the angular momentum about 0 (Figure 5.14(bl). If we interpret the 
angular momentum as the moment oflhe linear momentum of the object about 
0, this equation states that the moment r x I: F equals the rate of change of 
the moment of momentum about O. If the moment is zero during an interval of 
time, Ho is constant. 

Integrating Equation (5.19) with respect to time, we obtain 

1.', (r x I: F) dt = (Hol, - (Ho)t 
't 

(5.21) 

The integral on the left is called the angular impulse, and this equation is 

tF 

o 
(a) 

(b) 

FIgure 5.14 

(a) The posibon vector and the total external 
force on an object. 
(b) The angular mom~ntum vector and the 
right~hand rule for det~rmining its direction. 
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o 
(a) 

Figure 5.15 
(a) Central·force motion 

called the principle ofangular impulse and momentum: the angular impulse 
applied to an object during an interval of time is equal to the change in its 
angular momenlnm. If you know the moment r x !: F as a function of time, 
yon can determine the change in the angular momentum. 

Central-Force Motion 
l:F If the total force acting on an object remains directed towards a point that is 

fixed relative to an inertial reference frame, the object is said to be in central­
force motion. The fixed point is called the centre of the motion. Orbit prob­
lems are the most familiar instances of central-force motion. For example, the 
gravitational force on an earth satellite remains directed towards the centre of 
the earth. 

If we place the reference point 0 at the: centre of the motion (Figure 
5.15(a)), the position vector r is parallel to the total force, so r x !:F equals 
zero. Therefore Eqnation (5.21) indicates that in central·force motion, an 
object's angular momentum is conserved: 

Ho = constant (5.22) 

In plane central·force motion, we can express r and v in cylmdrical coordi· 
nates (Figure 5.l5(b»): 

Substituting these expressions into Equation (5.20), we obtain the angular 
momentum: 

Ho (re,) x m(v,e,+voeo) mrvoe, 

(b) Expressing the position and velocity in 
cylindrical coordinates. 

From this expression~ we see that in plane central-force motion, the product (~r 
the radial distance from the centre of the motion and the transverse component 
of the velocity is constant: 

rV(I = constant (5.23) 

In the following examples we show IIow you can use tile principle of angular 
impulse and momentum and conservation oj' angular momentum to analyse 
motions of objects. If you know the moment r x !:F during an interval of 
time, you can calculate the 11IIguiar impulse olld determine the challge in all 
object's angular momell/um. 111 celltral-force motioll-the total force aclillg 
all all object point.. towards a point 0·· you kllow that the angular 
momelltam about 0 is cOllserved. 



A disc of mass m attached to a string slides on a smooth horizontal table tmder the 
action of a constant transverse force P (Figure 5.16). The string is drawn through 
a hole in the table at 0 at constant velocity Yo. At t = 0, r = ro and the 
transverse velocity of the disc is zero. What is the disc's velocity as a function 
of time? 

STRATEGY 

By expressing r as a function oftirne, we can detennine the moment of the forces on 
the disc about 0 as a function of time. The disc's angular momentum depends on its 
velocity, so we can apply the principJe of angular impulse and momentum to obtain 
infonnation about its velocity as a function of time. 

SOLUTION 

The radial position as a function of time is r = Yu - vot. In tcons of polar 
coordinates (Figure (a», the moment about 0 of the forces on the disk is 

r x EF = re, x (-Te, +Feo) = F(ro vot)e, 

where T is the tension in the string. The angular momentum at time t is 

Ho = r x mv = rer x m(VrCr +voeO) 

= mvo(ro - vot) ez 

Substituting these expressions into the principle of angular impulse and momentum, 
we obtain 

f' (r x E F)dt = (Ho), - (Ho), : 
,-I 

r F(ro - t'ot) Cz dt = mvo(ro Dot) ez - 0 
j" 

Evaluating the integral, we obtain the transverse component of velocity as a function 
of time: 

vo 
[rot (1/2)t'of']F 
='(r-o=,;;I);;-

The disc's velocity at:; a function of time is 

[rot (l/2)vOt2]F 
Y=1loer +. eo 

(ro vol)m 

5,4 ANGULAR MOMENTUM 21 

Figure 5.16 

(0) Expressmg the moment in tenns of 
polar coordinates. 

I 

I 
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Figure 5.17 

:-1 

When an earth satclli~e is at perigee (the point at which it is nearest to the earth), the 
magnitude of ilr.; velocity is Vp = 7000m/s and its distance from the centre of the 
earth is rp = 10 000 km (Figure 5.17). What are the magnitude of its velocity VA 

and its distance rA from the earth at apogee (the point at which it is farthest from the 
earth)? The radius of the earth is RE = 6370 km. 

STRATEGY 

Because this is central-force motion about the centre of the carth. we know that the 
product of the distance from the centre of the earth and the transverse component of 
the satellite's velocity is constant. This gives us one equation relating VA and rA' We 
can obtain a second equation relating VA and rA by using conservation of energy, 

SOLUTION 

From Equation (5.23)~ conservation of angular momentwn requires that 

From Equation (4.27), the satellite's potential energy in terms of distance from the 
centre of the earth is 

v = _ mgR~_ 
I" 

The sum of the kinetic and potential energies at apogee and perigee must be equal: 

Substituting rA = rpVp/VA into this equation and rearranging, we obtain 

( 
2gRf,) 

(1-'A-VP) VA+vP---' =0 
rpvp 

This equation yields the trivial solution VA =, VI' and also the solution for the 
velocity at apogee: 

2gR~ 
VA =-- VI' 

!"pVp 

Substituting the values of g. RE, I"p and VI', we obtain VA = 4373 m/s and 
I"A = 16007km. 
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Problems 

5.72 An object located at r = 12 i + 4 j 3 k (m) relative to a 
point 0 is moving 130m/s, and its angular momentum about 0 is 
zero. What is its velocity vector? 

5.73 The total external force on a 2 kg object is 
I.:}' = 2t i + 4 j (N)~ where t is time in seconds. At time tl = OJ 
its position and velocity are r = 0, v = O. 
(a) Use Newton's second law to dclennine the object's position r 
and velocity v as functions of time. 
(b) By integrating r x I:.F with respect to time, detcnnine the 
angular impulse from I, = (] to 12 = 6 s. 
(c) Use your results from part (a) to detcrmine the change in the 
object's angular momentum from tl = 0 to t2 = 6 s. 

5.74 An astronaut moves in the x~y plane at the end of a 10 m 
tether attached to a large space station at O. The total ma'iS of the 
astronaut and his equipment IS 120 kg. 
(a) What is his angular momentum about 0 before the tether 
becomes taut? 
(b) What is the magnitude of the component of his velocity 
perpendicular to the tether immediately after the tether becomes 
taut? 

y 

2i III Is 

P5.74 

5.75 In Problem 5.74, if the coefficient of restitution of the 
'impact' that occurs when the astronaut reaches the end of the 
tether is e = 0.8, what are the x and y components of his velocity 
immediately after the tetllcr becomes taul? 

5.76 In Example 5,5, detenninc the disk's velocity as a function 
of time if the force is F ~ Ct, where C is a constant. 

5.77 A 2 kg disc slides on a smooth' horizontal table and i 
connected to an elastic cord whose tensiO~l is T = 6r N, where r i 
the radial position of the disc in metres, Tfthe disk is at r = 1 m an 
is given an initial velocity of 4 mjs' in the transverse direction, wha 
arc the magnitudes of the mdial a,ld transverse components of it 
velocity when r = 2 m? 

P5.77 

5.78 In Problem 5,77, determine the maximum value of r 
reached by the disc. 

5.79 A disc of mass m slides on a smooth horizontal table and is 
attached to a string that passes through a ,hole in the table. 
(a) If the mass moves in a circular path of-radius f() With transverse 
velocity VO, what is the tension T'! 

(b) Starting from the initial condition described in part (a), the 
tension is increased in such a way that the string is pulled through 
the hole at a constant rate until r ==: !ro. Detenninc Tas a function 
of r while this is taking place. 
(c) How much work is done on the mass in pulling the string 
through the hole as described in part (b)? 

P5.79 
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5.80 Two gravity research satellites (mA = 250 kg, mB 50 kg) 
are tethered by a cable. The satellites and cable rotate with angular 
velocity Wo = 0.25 revolution per minute. Ground controllers 
order satellite A to slowly unreel 6 m of additional cable. What is 
the angular velocity afterwardl;? 

PS.80 

5.81 A satellite at ro = 16 000 Ian from the centre of the earth is 
given an initial velocity Vo =: 6000m/s jn the direction shown. 
Determine the magnitude of its transverse component of velocity 
when r = 32 000 km. The radius of thc earth is 6370 kill. 

P5.81 

5.82 In Problem 5.81, determine the magnitudes of the radial an 
transverse components of the satellite's velocity whc 
r = 24 ~OOlan. 

5.83 [n Problem 5.81, dl~tennine the maximum distance r 
reached by the satellite. 

5.84 A ball suspended from a siring that goes through a hole i 
the c,ciling at 0 moves with velocity t'A in a horizontal circular path 
of radius rA. The siring is then drawn through the hole Ulltil the ball 
moves with velocity VB in a horizontal circular path of radius '0. 

Use the principle of angular impulse and momenlum to show that 
rA't'A = rBVB. 

Strategy: Let • be a unit vector that is perpendicular to the 
ceiling. Although this is not a central-force problem ~ the ball's 
weight does not point towards 0 ~ you can show that 
e' (r x E F) = 0, so that e' Ho is conserved. 

/ 
/ 

r 
\ 

PS.84 



5.5 Mass Flows 
In this section we use conservation of linear momentum to determine the force 
exerted on an object as a result of emitting or absorbing a continuous flow of 
mass, The resulting equation applies to a variety of situations including 
detennining the thrust of a rocket and calculating the forces exerted on objects 
by flows of liquids or granular materials, 

Suppose that an object of mass m and velocity v is subjected to no external 
forces (Figure 5,18(a» and it emits an element of mass ~mf with velocity v, 
relative to the object (Figure 5,18(b», We denote the new velocity of the 
object by v + ~v, The linear momentum of the object before the element of 
mass is emitted equals the total linear momentum of the object and the element 
afterwards, 

mv = (m - ~mf)(v + ~v) + ~mc(v + vc) 

Figure 5, III 
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An object's mass and velocity 
(al before and (b) after emitting 
an clement of mass. 

(a) (b) 

Evaluating the products and simplifYing, we obtain 

m~v + ~mrVf - ~mfv = 0 (5,24) 

Now we assume that, instead of a discrete element of mass, the object emits a 
continuous flow of mass and that ~mf is the amount emitted in an interval of 
time M, We divide Equation (5,24) by M and write the resulting equation as 

~v ~mf ~mr~v 
m-+-vr---M=O 

~I 6.t ~I ~t 

Taking the limit of this equation as ~I -> 0, we obtain 

dmc 
----Vf=ma 

dt 

where a is the acceleration of the object's centre of mass, The tann dmr/dt is 
the mass flow rate, the rate at which mass flows from the object. Comparing 
this equation with Newton's second law, we conclude that a flow of mass/rom 
an object exerts a force 

dmf 
Fr= --Vf 

dt 
(5.25) 

on the object. The force is proportional to the mass flow rate and to the 
magnitude of the relative velocity of the flow, and its direction is opposite to 
the direction of the relative velocity, Conversely, a flow of mass to an object 
exerts a force in the saroe direction as the relative velocity, 
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The classic example of a force created by a mass flow is the rocket (Figure 
5.19). Suppose that it has a uniform exhaust velocity Vf parallel to the x axis 
and the mass flow rate from the exhaust is dmr/dl. Tn terms of the coordinate 
system shown, the velocity vector of the exhaust is Vf = -1!f i, so from 
Equation (5.25) the force exerted on the rocket is 

dmr dmr. 
Ff=--vr=-vr 1 

dt dt 

Figure 5.19 

A rocket with its exhaust aligned with the 
x axis. 

)' 

~ I _ 

-""r-li- .'~";''''_'''''~'-- x 

The force exerted on the rocket by its exhaust is towards the right, opposite to 
the direction of the flow of its exhaust. If we assume that no external forces act 
on the rocket, Ncwton's second law is 

dmr dl' 
-vf = rn-­
dt dt 

(5.26) 

The mass flow rate of fuel is the rate at which the rocket's mass is being 
consnmed. Therefore the ratc of change of the mass of the rocket is 

dm dmr 
dt -

Using this expression, we can write Equation (5.26) as 

dm 
dv = -Vr­

m 

Suppose that the rocket starts from rest with initial mass mo. If the exhaust 
velocity is constant, We can integrate this equation to determine the velocity of 
the rocket as a function of its mass: 

[OV dv = [ -Vf dm 
10 mil ttl 

The result is 

(5.27) 

The rocket can gain more velocity by expending more mass, but notice that 
increasing the ratio mo/m from 10 to 100 only increases the velocity attained 
by a factor of 2. In contrast, increasing the exhaust velocity results in a 
proportional increase in the rocket's velocity. 



A horizontal stream of water with velocity 1!0 and mass flow rate dmrfdt hits a plate 
that deflects the water in the horizontal plane through an angle B (Figure 520), 
Assume that the magnitude of the velocity of the water when it leaves the plate is 
approximately equal to Va What force is exerted on the plate by the water? 

STRATEGY 

We can determine the force exerted on the plate by treating the part of the stream in 
contact with the plate as an 'object' with mass flows entering and leaving it. 

SOLUTION 

In Figure (a) we draw the free-body diagram of the stream in contact with the plate, 
Streams of mass with velocity Vo enter and leave this 'object', and Fp is the force 
exerted on the stream by tile plate, It is the force -Fp exerted on the plate by the 
stream that we wish to detetmme . .First we consider the departing stream of water. 

The mass flow ratc of water leaving the free-body diagram must be equal to the 
mass flow rate entering. In tem1S of the coordinate system shown~ the velocity of the 
departing stream is 

,If = va cos(}i + Vo sin OJ 

Let Fl) be the force exerted on the object by the departing stream, 
From Equation (5,25), 

The velocity of the entering stream is Vf = Vo i. Since this flow is entering the object 
rather than leaving it, the resulting force FE is in the same direction as the relative 
velocity: 

The sum of the forces on the free-body diagram must equal zero, 

so the toree exerted on the plate by the water is (Figure (b)) 

-Fp = FD + FE = dm
l 

f vo[(1 - cos 0) i-sin 8 il 
<t 

DISCUSSION 

This simple example gives you insight into how turbine blades and aeroplane wings 
can create forces by deflecting streams of liquid or gas (Figure (e)), 
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0",_' 

Figure 5,20 

(a) Free-body diagram of the stream, 

(b) Force exerted on the plate, 

(e) Pattern of moving fluid around 
an aeroplane wing, 
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Figure 5.21 

Application to Enginee~ing 
. .=-------

Jet Engines 
In a turbulent engine (Flgurl' 5.21), a mass flow rate dmddt of inlet air enters the 
compressor with velocity Vi. The air is mixed With fuel and ignited in the 
combustion chamber. The mixture then flows through the turbine, which powers 
the compressor. The exhaust, with a mass flow rate equal to that of the a.ir plus the 
mass flow rate of the fuel, drncJdt + dmr/dt. exits at a high exhaust velocity Ve, 

exerting a large force on the engine. Suppose that dmd dt = 13.5 kg/ s and 
dmrfdt = 0.13 kg/so The inlet air velocity is Vi = 120m/s, and the exhaust velocity 
is De = 490m/s. What is the engine's thrust? 

STRATEGY 

dm f 
dt 
dml.' 
dt 

We can detennine the cngill:c's thrust by using Equation (5.25). We must include 
both the force exerted by the engine's exhaust and the filfce exerted by the mass flow 
of air entering the compressor to detennine the net thrut::t. 

SOLUTION 

The engine ~ exhaust exerts a force to the left equal to the produet of the mass flow 
rate of the fuel-air mixture and the exhaust velocity, The inlet air exerts a force to 
the right equal to the product of the mass flow rate of the inlet air and the inlet 
velocity. The engine's thrust (the net force to the left) is 

= (13.5 + 0,13)(490) - (13.5)(120) 

= 5059 N 



DESIGN ISSUES 

The jet engine was developed in Europe in the years just prior to World War 11. 
Although the tUIbojet engine in Figure 5.21 was a very successful design that 
dominated both military and commercial aviation for many years, it has the 
drawback of relatively large fuel conswnption. 

During the past 30 years, the fan-jet engine, shown in Figure 5.22, has become 
the most commonly used design, particularly for commercial aeroplanes. Part of ii' 
thrust is provided by air that is accelerated by the fan. The ratio of the mass flow rate 
of air entering the fan, dmb/dt, to the mass flow rate of air entering the compressor, 
dm,/dt, is called the bypass ratio. 

The force exerted by a jet engine's exhaust equals the product of the mass flow 
ratc and the exhaust velocity. In the fan~jet engine, the air passing through the fan is 
not heated by the combustion of fuel and therefore has a higher density than the 
exhaust of the turbojet engine. As a result, the fan-jet engine can provide a given 
thrust with a lawer average exhaust velocity. Since the work that must be expended 
to create the thrust depends on the kinetic energy of the exhaust, the fan-jet engine 
creates thrust more etlicicntly. 
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Figure 5,22 
A fan~jet engine. !Part o~ the entering mass 
flow of air is acc~lerated by the fan and 
does not enter th~ compressor. 

I, 

i 
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5.85 The Cheverton fire-fighting and rescue boat can pump 
3.8 kg/s of water from each of its two pumps at a velocity of 
44m/s. [fboth pumps point in the same direction, what total force 
do they exert on the boat? 

5.87 A front-end loader moves at 3 km/hr and scoops up 
30000'kg of iron ore in 3 s. What horizontal foTC!: must its tyres 
exert? 

P5.87 

5.88 The snowblower moves at I m/s and scoops up 750kg/s of 
PS.85 snow. betermine the force exerto,d by the entering flow of snow. 

5.86 A nozzle mounted on a firl! truck emits a stream of water at 
24 m/s with a mass flow rate of 50 kg/so Determine the moment 
about A due to the force exerted by the steam of water. 

1m 

P5.86 

PS.88 

5.89 If you design the snowblower in Problem 5.88 so that it 
blows SnOw out at 45<) above the horizontal from a port 2 m above 
the ground and the snow lands 20 m away, what horizontal force is 
exerted on the blower by the departing flow of snow? 



5.90 A nozzle ejects a stream of water horizontally at 40m/s 
with a mass flow rate of 30 kg/ 5, and the stream is deflected in the 
horizoou.1 plane by a plate. Determine the force exerted on the 
plate by the stream in cases (al.. (b), (e). 

L-______ r 

(a) 

)1'~I ... I.;; .,d} 
~-' "":,' 

I ~' '. 

x 
(b) (c) P5.90 

5.91 A stream of waler with velocity 801m/s and a mass flow 
rate of 6 kgjs strikes a turbine blade moving with constant velocity 
20Im/s. 
Cal What force is exerted 00 the blade by the water" 
(b) What is the magnitude of the velocity of the water as it leaves 
the blade? 

gO m/~ -
P5.91 
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5.92 The nozzle A of the lawn sprinkler islocated at (175, -12, 
12)mm, Water exits each nozzle at 8tnjs wi~h a mass flow rate of 
0.25 kg/s. The direction cosines of the flow direction from A are 
( ~. ~-. j,). What is the total moment about the z axis exerted on 
v~ v3 ,,3 

the sprinkler by the flows from all four noziles? 

P5.92 

5.93 A 45 kg/, flow of gravel exits the chute at 2 m/s and falls 
onto a conveyer moving at 0.3 m/s. Detetmine the components of 
the fOfCe exerted on the conveyer by the flow of gravel if e = o. 

P5.93 

5.94 Solve Problem 5.93 if 0 = 30'. 



222 CHAPTER 5 MOMENTUM METHODS 

5.95 A toy car is propelled by water that squirts from ao internal 
tank at 3 m/s relative 10 the car. Ifthe mass of dIe empty car is I kg, 
it holds 2 kg of water, and you neglect other tangential forces, what 
is its top speed? 

P5.95 

5.96 A rocket consists ofa 2Mg payload and a 40Mg booster. 
Eighty per cent of the booster's mass is fuel, and its exhaust 
velocity is I km/s. If the rocket starts from rest and you neglect 
external forces, what velocity will it reach? 

~--y--.--C-J 
Booster Payload 

P5.96 

5.97 A rocket consists of a 2 Mg payload and a booster. The 
booster has two stages whose total mass is 40 Mg. Eighty per cent 
of the mass of each stage is fuel. When the fuel of stage 1 is 
expended, it is discarded and the motor in stage 2 is ignited. The 
exhaust velocity of both stages is 1 km/s, Assume that lhe rocket 
starts from rest and neglect external forces. Dctcnnine the velocity 
reached by the rocket if the two stages are of equal mass and 
compare your results to the answer to Problem 5.96. I 

I 

P5.97 

5.98 In Problem 5.97, detenninc the velocity reached by the 
rocket for three sets of values of the masses of the two stages: 
(a) ml = 25Mg, m2 = ISMg; (b) m, = 35Mg, m, = SMg; 
(e) m, = 38Mg. m, = 2Mg. 

5.99 Aftcr its rocket motor bUJns out, a rocket sled is slowed by a 
water brake. A tube extends into a trough of water so that water 
flows through the tube at the velocity oflhe sled and flows out in a 
direction perpendicular to the motion of the sled. The mass fiow 
rate through the tube is pvA, where p = 1000 kg/m' is the mass 
density of the water. v is the flow velocity, and A : .. 0.0 I m2 is the 
cross-sectional area of the tube:. The mass of tht~ sled is 50 kg. 
Neglecting frktion and aerodynamic drag, determine the time and 
the distance required for the sled to decelerate from 300 mls to 
30m/s. 

PS.99 

5.100 Suppose that you h'fasl' the end of a chain that weighs 
45 N/m and lift it straight up off the floor at a constant speed of 
0.6m/s. 
(a) Determine the upward force P you must exert as a function of 
the height s. 
(b) How much work do you do in lifting the top of the chain to 
s = 1.2m? 

Strategy: Treat the part of the chain you have lifted as an object 
that is gaining mass. 

P5.100 



5.101 Solve Problem 5.100, assuming that you lift the end of the 
chain straight up off the floor with a constant acceleration of 
0.6m/s. 

5.102 It has been suggested that a heavy chain could be used to 
gradually stop an aeroplane that rolls past the end of the runway. A 
hook attached to the end of the chain engages the plane's nose 
wheel, and the plane drags an increasing length of the chain as it 
rolls. Let m be the aeroplane's mass and Vo its initial velocity, and 
let PL be the mass per unit length of the chain. If you neglect 
friction and aerodynamic drag, what is the aeroplane's velocity as a 
function of s? 

P5.102 

5.103 In Problem 5.102. the friction force exerted on the chain 
by the ground would actually dominate other forces as the distance 
s increases. If the coefficient of kinetic friction between the chain 
and the ground is 11k and you neglect all forces except the friction 
force) what is the aeroplane's velocity as a function of s'! 

Problems S.104-5.108 are related 10 Example 5.6. 

5.104 The turbojet engine in Figure 5.21 is being operated on a 
test stand. The mass flow rate of air entering the compressor is 
13,5 kg/s, and the mass flow rate of fuel is 0.13 kg/so The effective 
velocity of the air entering the compressor is zero, and the exhaust 
velocity is 500m/s. What is the thrust of the engine? 

5.105 Suppose that the engine described in Problem 5.104 is in 
an aeroplane flying at 400 km/hr. The effective velocity of the air 
entering the inlet is equal to the aeroplane's velocity. What is the 
thrust of the engine? 
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5.106 A turbojet engine's thrust reverser causes the exhaust to 
exit the engine at 200 from the engine cent;reline. The rna liS flow 
rate of air entering the compressor is 45 kg/' and it enrers at 
60m/s. The mass flow ratc of fuel is 1.5 kg/s, and the exhaust 
velocity is 360 m/s. What braking force does the engine exert on 
the aeroplane? 

PS.106 

5.107 The 13.6Mg aeroplane is moving at 400 km/hr. The total 
mass flow rate of air entering the compt!essors of its turbojet 
engines is 280 kg/s, and the total mass flow rate of fuel is 
2.6 kg/so The effective velocity of the air entering the compressors 
is equal to the aeroplane's velocity; and the exhaust velocity is 
480 mis, The ratio of the lift force L. to the drag force D is 6, and 
the z component of the aeroplane's acceleration is zero. What is the 
x component of its acceleration? 

PS.I07 

5.106 The fan-jet engine in Figure .5.22 is similar to the Pratt and 
Whitney JT9D-3A engine used on eO)"ly models of the Boeing 747. 
When the aeroplane begins its takeoff run, the velocity of the air 
entering the compressor and fan is negligible. A mass flow rate of 
560 kg/s enters the fan and is aecelemted to 270 m/s. A mass flow 
rate of 112 kg/s enters the compressor. The rnass !low rate offuel is 
3.36kg/s and the exhaust velocity is 363 m/s (aJ What is the 
bypass ratio? (b) What is the thrast of the engine? (cJ If the 
aeroplane weighs 2.22 MN, what is its initial acceleration? (It has 
four engines.) 
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Chapter Summary 
Principle of Impulse and Momentum 

The linear impulse applied to an object during an interval of time is equal to 
the change in its linear momentum; 

f'l 
:!:Fdl = mvz - mVI 

'~I 

Equation (5.1) 

This result can also be expressed in terms of the average with respect to time 
of the total force: 

Equation (5.2) 

Conservation of Linear Momentum 

If objects A and B are not subjected to external forces other than the forces 
they exert on each other (or if the effects of otller external forces are negli­
gible), their total linear momentum is conserved, 

mAvA + mnVn = constant Equation (5.4) 

and the velocity of their common centre of mass is conslant. 

Impacts 

If colliding objects are not subjected to external forces, their total linear 
momentum must be the same before and after the inlpact. Even when they are 
subjected to external forees, the force of the impact is often so large, and its 
duration so brief, that the effect of external forces on their motions during the 
inlpact is negligible. 

If objects A and B adherc and remain together after they collide, they are 
said to undergo a perfectly plastic impact. The velocity of their common 
centre of mass before and after the impact is given by 

Equation (5.7) 

Central Impacts 

In a direct central impact (Figure (a», linear momenlum is conserved, 

Equation (5.8) 

Before impact After impact 
(a) 



and the velocities are related by the coefficient of restltntion: 

v' - v' e = B A .:quation (5.14) 
VA - 'UB 

If e = 0, the impact is perfectly plastic. If e = 1, the total kinetic energy is 
conserved and the impact is called perfectly elastic. 

In an oblique central impact (Figure (b». the components of velocity in 
the y and z directions are unchanged by the impact: 

(,1,), = (VA)l' (v'n)y = (v.)y 

(v~), = (VA), (V~)z = (VB), 
Equation (5.5) 

In the x direction, linear momentum is conserved, 

Equation (5.16) 

and the velocity components arc related by the coefficient of restitution: 

e = (v~), - (v~)x 
(vAlx - (vBlx 

Equation (5.17) 

Ib) 

Principle of Angular Impulse and Momentum 

The angular impulse about a point 0 applied to an object during an interval of 
time is equal to the change in its angular momentum about 0: 

1
'2 
(r x !: F) dt = (Ho), 

I, 

Equation (5.21) 

where the angular momentum is 

Ho=rxmv Equation (5.20) 
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Central-Force Motion 

If the total force acting on an object remains directed towards a fixed point, the 
object is said to be in central-force motion, and its angular momentum about 
the fixed point is conserved: 

Ho = constant Equation (5.22) 

In plane central-force motion, the product of the radial distance and the 
transverse component of the velocity is constant: 

ruo = constant Equation (5.23) 

Mass Flows 

A flow of mass pom an object with velocity Vf relative to the object exerts a 
force 

.Ff = 
dmr 
dt Vf Equation (5.25l 

on the object. where dmc/dt is the mass flow mte. The direction of the force is 
opposite to the direction of the relative velocity. A flow of mass to an object 
exerts a force in the same direction as the relative velocity. 

5.109 An aircraft arresting system is used to stop aeroplanes 
whose braking systems fail. The system stops a 47.5 Mg aeroplane 
moving at 80 mls in 9.15 s. 

5.111 A spacecraft is in an elliptic orbit around a large asteroid. 
The acceleration due to gravity of the asteroid is llnknOwn. When 
the spacecraft is at its closest approach, its distance from the centre 
of the asteroid is I'p = 2 Ian and its velocity is vp =, I mls. When it 
is at its farthest point from the asteroid, its distance is r A = 6 km. 
What is the velocity VA? 

(al What impulse is applied to tlte aeroplane during thc 9.15 s? 
(b) What is the average decelcmtion to which the passengers are 
subjected? 

PS.l09 

5.11 0 The 1895 Austrian 150 mm howitzer had a 1.94 ill long 
barrel, a muzzle velocity of300 mis, and fired a 38 kg shelL If the 
shell took 0.013 s to travel the length of the barrel, what average 
force was exerted on the shell? 

P5." 1 



5.112 In Problem 5.111, what is the asteroid's mass" If you 
assume that the asteroid is approximately spherical with an average 
mass density of 7000 kglm', what is its radius? 

Strate.gy: Usc conservation of energy and express the gravita­
tional potential energy in the fonn V = -GmmAlr, where 
e = 6.67 x 1O~11 N.m'/kg2 is the universal gravitational constant 
and rnA is the mass of the asteroid. 

5.113 An athlete throws a shot put weighing 72 N. When he 
releases it, the shot put is 2.1 m above the ground and its 
components of velocity are '/)x = 9.5 mis, Vy = 8 m/s. 
(a) Tfhe accelerates the shot put from rest in 0.8 s and you assume 
as a first approximation that the force F he exerts on it is constant, 
use the principle of impulse and momentum to determine the x and 
y components of F. 
(b) What is the horizontal distance from the point whem he 
releases the shot put to the point where it strikes the ground? 

PS.113 

5.114 The 3000 kg pickep lruek A moving at 12 mls collides 
with the 2000 kg car B moving at 10 m/s. 
(a) What is the magnihlde of the velocity of their common centre 
of mass after the impact? 
(b) If you treat the collision as a perfectly plastic impact, how 
much kinetic energy is lost? 
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5.115 Two hockey players (mA ~ 80 kg, ms = 90 kg) converg­
ing on the puck at x = 0, y = 0 become ent$gled and fall. Before 
the collision, VA : (9 i + 4 j) mls and VB = (-3 i + 6 nm/s. Tfthe 
coefficient of kinetic friction between the players and the ice is 
{tk = 0.1, what is their approximate position when they stop 
sliding? 

y .j 

---------;jr---'---x 

P5.115 

5.116 An acecptabJc handball willi bounc~ to a height between 
1,07 m and 1.22 m when it is droppcdionto a hardwood floor from a 
height of 1.78 m. \\!hat is the accepjable ra,nge of coefficients of 
restitution for handballs? 

5.117 A lkg ball moving horizontal at 12m/s strikes a 10kg 
block. The coefficient of restitution ~f the impact is e = 0.6, and 
the coefficient of kinetic friction bct:\V~en the block and the inclined 
surface is i'k = 0.4. What distance ,does the block slide before 
stopping'? 

P5.117 
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5.118 A Peace Corps volunteer designs the simple device shown 
for drilling water wells in remote areas. A 70 kg 'hammer', such as 
a section of log or a steel drum partially filled with cOllcrete, is 
hoisted to h = I m and allowed to drop onto a protective eap on the 
section of pipe being pushed into the ground. The mass of the cap 
and section of pipe is 20kg. Assume the coefficient ofrest1tution is 
nearly zero. 
(a) What is the velocity of the cap and pipe immediately after the 
impact? 
(b) If the pipe movcs 30mm downwards when the hammcr is 
dropped, what resistive force was exerted on the pipe by the 
ground? (Assume the resistive force is constant during the motion 
of the pipe.) 

PS.118 

S.119 A tugboat (mass=40Mg) and a bargc (mass=160Mg) 
arc stationary with a slack hawser cOlU1ecting them. The tugboat 
accelerates to 2 knots (one knot = 1852m/hr) before the hawser 
becomes taut. Dctcnninc the velocities of the tugboat and the barge 
just after the hawser becomes taut (a) if the 'impact' is perfectly 
plastic (e = 0); (b) If the 'impact" is perfectly elastic (e = I). 
Neglect the forces exerted by the wate} and the tugboat's engines. 

P5.119 

5.120 In Problems 5.119, detelmine the magnitude of the 
impulsive force exerted on the tugboat in the two cases if the 
duration of the 'impact' is 4 s. Neglect the forces exerted by the 
water and the tugboat's engines during this period. 

5.121 The balls are of equal mass m. Balls Band Care 
connected by an unstretched linear spring and are stationary. Ball 
A moveS towards ball B with velodty VA_ The impact of A and B is 
perfectly elastic (e = I). Ncglect ,:xtemal forces. 
(a) What is the velocity of the cornman centre ofrnass of the baHs 
B and C immediately after the impact? 
(b) \Vhat is the velocity of the corrnnon centre of mass of the balls 
B and C at time t after the impacl? 

A B c 

P5.121 

5.122 In Problem 5,121, what is the maximum compressive 
force in the spring as a result of thc impact? 

5.123 Suppose you interpret Problem 5.121 as an impact 
between the ball A and an 'object' D consisting of the connected 
balls Band C. 

(a) What is the coefficient of restitution of the impact between A 
and D? 
(b) If you considcr the total energy after the impact to be the sum 
of the kinetic energies !meVA)2 +!(2m)(voi, where v1> is the 
velocity of the centre of mass of D after the impact, how much 
energy is 'lost' as a result of the impact? 
(e) How much energy is actually lost as a result of the impact? 
(This problem is an intetesting model for one of the mechanisms of 
energy loss in impacts betwcen objects. The energy 'loss' calcu~ 
lated in part (b) is transfoITIlcd into 'internal energy' ~the vibra­
tional motions of Band C relative to their common centre ofmass.) 

5.124 A small object starts trom rest at A and slides down the 
smooth ramp. The coefficient of restitution of its impact with the 
floor is e = 0.8. At what height above the floor does it hit the wall? 

A 

PS.I24 



5.125 A basketball dropped on the floor from a height of 1.2 ill 
rebounds to a height of 0,9 m. In the 'lay-up' shot shown, the 
magnitude of the ball's velocity is 1.5 m/ s and the angles between 
ils velocity vector and the positive coordinale axes are 
0, = 420 ,0, = 680 and 0, = 1240 just before it hits the backboard. 
What are the magnitude of its velocity and the angles between its 
velocity vector and the positive coordinate axes just after it hits the 
backboard? 

P5,125 

5.126 In Problem 5.125, the basketball's diameter is 240mm, the 
coordinates of the centre of the basket rim are 
x = 0, y = 0. z = 300 mm, and the backboard lies in Ole x-y 
plane. Determinc the x and y coordinates of the point where the 
ball must hit the backboard so that the centre of the ball passes 
through the centre of the basket rim, 

5,127 The snow is O.6m deep and weighs 3IS0N/m', the 
snowplough is 2.4 m wide, and the truek travels at 8 km/hr. 
What force does the snow exert on the truck? 

P5.127 
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5,128 An empty 25 kg drum, 1 m i~ diame1er, s\ands on a set of 
scales, Water begins pouring into th¢ drum at 550 kg/min from 
2.4 m above the bottom of the drum. The density of water is 
approximately 1000 kg/m'. What do the seales read 40 s after the 
water starts pouring? 

PS.128 
! 

5.129 The ski boat's jet propulsive I systenj draws water in at A 
and expels it at B at 25 m/s relative to the boat. Assume that the 
water 4rawn in entcrs with no horiz~ntal vJlocity relative to the 
surrounding water. The maximum mass flow Irate of water through 
the engine is 36 kg/so Hydrodynamic cifag exe~s a force on the boat 
of mag.nitude 24v N, where v is the fuoal's ~elocity in metres per 
second. If you neglect aerodynamic !drag, What is the ski boat's 
maximum velocity? ' 

", .. : ............... ~ ......... - .... : .... ·1 ...... · ............ . 

5.130 The ski boat in Problem 5.12,9 weig~s 12.5 kN. The mass 
flow rate of water through its engine '~s 36kg/s, and it starts from 
rest at t = O. Determine the boat's v~locity (a) at t = 20 s; (b) at 
t = 60 S. 

5.131 A crate of mass In slides across the; smooth floor pulling 
chain from a stationary pile. The mas~ per u~it length of the chain 
is PL' If the velocity of the crate isivo when s = 0, what is its 
velocity as a function of .'I? 

P5.131 

Projec~ 5,1 By making measnrement~, detenJ,ine jhe coefficient of 
restitut~on of a tClUlis ball bouncingl on a ngid. surface. Try to 
determine whether your result is ind<;\>enden1 of the velocity with 
whi .• h the ball strikes the surface. Wtite a brief report describing 
your procedure and commenting on possible ~ources of error. 



The gear that is engaged deter­
mines the rdtio of the angular 
velocity of the pedals and 

sprocket to that of the bicycle's rear 
wheel. The ratio of the sprocket's 
radius to that of the gear equals lhe 
ratio of the wheel's angular velocity to 
that of the sprocket. In this chapter 
you will obtain results of this kind by 
modelling objects as rigid bodies. 



I Chapter 6 I 

Planar Kinematics 
of Rigid Bodies 

I I 

UNTIL now, we have eonsidered situations in whieh you 

could detennine the motion of an object's centre of mass 

by using Newton's second law alone. But you must often 

detennine an object's rotational motion as well, even when 

your only objective is to detennine the motion of its centre of 

mass. Moreover, the rotational motion itself can be of interest 

or even central to the situation you are considering, as in the 

motions of gears, wheels, generators, turbines and gyro­

scopes. 

In this chapter we discuss the kinematics of objects, the 

description and analysis of the motions of objects without 

eonsideration of the forces and couples that cause them. In 

particular, we show how the motions of individual points of an 

object are related to the object's angular motion. 

231 
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Figure 6.1 

(a) A thrown brick-its rotation 
doesn't affect the motion 

of its centre of mass. 
(b) A tipped brick -the rotation 
and the motion of the centre of 

mass arc interrelated. 

Figure 6.2 

(al A baton can be modelled as 
a rigId body. 

(b) A fishing rod is too flexible 
under nonnal U81:;; to model 

as a rigid body. 

6. 1 Rigid Bodies and Types of 
Motion 

----- -----------

If you throw a brick (Figure 6.1 (a)), you can dctennine the motion of its centre 
of mass without having to be concerned about its rotational motion. The only 
significant force is its weight, and Newton's second law determines the 
acceleration of its centre of mass. Bui suppose that the brick is standing on the 
floor, you tip it over (Figure 6.1 (b), and you want to determine the motion of 
its centre of mass as it falls. In this case, the brick is subjected to its weight and 
also a force exerted by the fioor. You cannot determine the foree exerted by the 
floor, and the motion of the brick's centre of mass, wiihout also analysing its 
rotational motion. 

(a) 

(h) 

Before we can analyse such motions, we must consider how to describe 
them. A brick is an example of an object whose motion can be described by 
treating it as a rigid body. A rigid body is an idealized model of an object that 
does not deform, or change shape. The precise definition is that the distance 
between every pair of points of a rigid body remains constant. Although any 
object does deform as it moves, if its deformation is small you can approx­
imate ils motion by modelling it as a rigid body. For example, you can model a 
twirler's baton in normal use as a rigid body (Figure 6.2(a»), but not a fly­
casting rod (Figure 6.2(b»). 

To describe a rigid body's motion, it is sufficient to describe the motion of a 
single point, such as the centre of mass, and the rigid body's rotational motion 
about that point. Some particular types of motion occur frequently in appli­
cations. To help you visualize them, we use a coordinate system that is fixed 
relative to the rigid body and so moves with it. Such a coordmate system is 
said to be body-fixed. 

en) 

(b) 
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Translation If a rigid body in motion does not rotate, it is said to be in 
translation. Every point of a rigid body in translation has the same velocity 
and acceleration, so you completely describe the motion of the rigid body if 
you describe the motion of a single point. The point may move in a straight 
line, or it may undergo curvilinear motion. The directions of the axes of a 
body.fixed coordinate system remain constant (Figure 6.3(a». For example, 
the child's swing in Figure 6.3(b) is designed to translate so that it will be 
easier to ride. Each point of the swing moves in a circular path, but the swing 
does not rotate ... it remains level. 

y 

x y 

(a) 

(h) 

Rotation About a Fixed Axis After translation, the simplest type of rigid· 
body motion is rotation about a fixed axis. For example, in Figure 6.4(a) the z 
axis of the body.fixed coordinate system remains fixed and the x and y axes 
rotate about the z axis. Each point of tbe rigid body not on the axis moves in a 
circular path about the axis. A disc in a compact disc player and the rotor of an 
electric motor (Figure 6.4(b») are exaroples of objects rotating about a fixed 
axis. The motion of a ship's propeller relative to the ship is also rotation about 
a fixed axis. We discuss this type of motion in more detail in the next section. 

(a) (b) 

Figure 6.3 
(al An object i~ translation does 
not rotate. 
(b) The translaiing swing remains 
level. 

Figure 6.4 

(a) A rigid body rotating about 
the z axis. 
(b) If the motot's frame is 
stationary, its rotor rotates 
about a fixed axis. 
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I 
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" 

(a) 

Figure 6.5 

the motion 

(a) Two~dimcnsional, or planar, motion. 
(b) A wheel in planar motion. 

Two-Dimensional Motion In this chapter we are concemed with two 
dimensional motions of rigid bodies. A rigid body is said to undergo two 
dimensional, or planar, motion if its centre of mass moves in a fixed plan 
and an axis of a body-fixed coordinate system remains perpendicular to th 
plane (Figure 6.5(a)). We refer to the fixed plane as the plane of the motion 
Rotation of a rigid body about a fixed axis is a special case of two-dimension a 
motion. When a car moves in a straight path, its wheels are in two-dimensiona 
motion (Figure 6.5(h)). 

(h) 

The components of an internal combustion engine running On a test stand 
illustrate these three types of motion (Figure 6.6). The pistons translate within 
the cylinders. The connecting rods are in two-dimensional motion, and the 
cnlllkshaft rotates about a fixcd axis. 

We begin our analysis of rigid-body motion in the next section with a 
discussion of rotation about a fixed axis. In this type of motion, points of the 
rigid body move in circular paths about the fixed axis. We can therefore use 
results developed in Cbapter 2 for the motion of a point in a circular path. 
Using nonnal and tangential components, we express the velocity and accel­
eration of a point of the rigid body in terms of the rigid body's angular velocity 
and angular acceleration. Tn the following sections we consider general two­
dimensional motion and obtain expressions relating the relative velocity and 
acceleration of points of a rigid body to its angular vclodty and angular 
acceleration. With these relations we analyse particular examples of general 
two-dimensional motion, such as rolling, and also analyse motions of con­
nected rigid bodies. 

Figure 6,6 
Translation, rotation about a fixed axis, and 

planar motion in an automobile engine. 

ConnecHng rod --_. 
(general planar 

(rotulion) 



6.2 Rotation About a 
Fixed Axis 

We can introduce some of the concepts involved in describing the motion of a 
rigid body by first considering an object rotating about a fixed axis. Consider a 
body-fixed straight line within such an object that is perpendicular to the fixed 
axis. To describe the object's position, or orientation about the fixed axis, we 
specify the angle 0 between this body-fixed line and a referenoe direction 
(Figure 6.7). The object's angnlar velocity ro, or rate of rotation, and its 
angular acceleration a are 

dO 
W= 

dt (6.1) 

Figure 6.7 

6.2 ROTATION ABOUT A 

Fixed axis Specifying the orientation of an obje¢t 
rotating about a fixed axis. 

Reference 

direction 

Each point of the object not on the fixed axis !noves in a circular path about 
the axis. Using our knowledge of a point in a circular path, we can relate the 
velocity and acceleration of the motion of a point to the object's angular 
velocity and angular acceleration. In Figure 6.8, we view lbe object in the 
direction parallel to the fixed axis. TIle velocity of a point at a distance r from 
the fixed axis is tangent to its circular path (Figure 6.8(0) and is given in terms 
of the angular velocity of the object by 

(6.2) 

A point has components of acceleration tangential and normal to its circular 
path (Figure 6.8(b». In terms of the angular velocity and angular acceleration 
of the object, the components arc given by 

(6.3) 

Figure 6.8 
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(a) Velocity and (b) acceleration of a pomt 
of a rigid body rotating about a fixed axis. 

(a) (b) 
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With these relations we can aRaIys. problems involving objects rotatin 
about fixed axes. FOr example, suppose lbat we know the angular velocity w 
and angular acceleration <x" of the left gear in Figure 6.9, and we want t 
detennine WB and (lB. Because the velocities of the gears must be equal at 
(there is no relative motion between them at P), 

so WB = (rA/rBlwA. Then, either by taking the time derivative of this equatio 
or by equating lbe tangential components of acceleration at P, wc obtai 
an = (rA/rBlcxA. 

Figure 6.9 
Relating the angular velocities and angular 

accelerations of meshing gears, 

In the following example we demonstrate the analysis of motion .• "f object 
rotating about fixed axes. You can use Equalion .• (6. T) to analyse th 
angular motions and use Equations (6.2) and (6.3) to determine th 
velocities and accelerations of points. 



Gear A of the winch in Figure 6.10 turns gear B! raising the hook H. rfthe gear A 
starts from rest at t = 0 and its clockwise angular acceleration is CIA := O.:L:lradjs2, 

what vertical distance has the hook H risen and what is its velocity at t == 10 s? 

STRATEGY 

By equating the tangential componcntf> of acceleration of gears A and 11 at their 
point of contact, we can determine the angular acceleration of gear B. Then we can 
integrate to obtain the angular velocity of gear B aad the angle through which it has 
turned at 1 = lOs, 

SOLUTION 

The tangential acceleration of the point of contact of the two gears (Figure (a» is 

a,; (0,05m)(0,2trad/s2); (0,2m)('R) 

Therefore the angular acceleration of gear B is 

dWR (0,05 m)(0,2Irad/s') 
'H = -- = 0,051 radls' 

dl (0,2 m) 

Integrating this equation, 

rw
' [' 10 dWH; 10 0,051dt 

we obtain the angular velocity of gear 13: 

dO. .2 
W, = dt; 0,025, radls 

Integrating again, we obtain the angle through which gear B has turned: 

08 ; 0,008331' rad 

At t = 10 S, 8n = 8.33 rad. The amount of cable wound around the drum, which is 
the distance the hook H has risen, is the product of 08 and the radius of the drum: 
(8.33 rad)(O, I m); 0,833 m, 

At t = lOs, WB = 2.5 radls, The velocity of a point on the rim, which equals the 
velocity of the hook H (Figure (b», is 

VIf = (0.1 m)(2.5 rad/s) ~ 0,25 mls 
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Figure 6.10 

50 mm. t~::~\a8 
02, radl,' \5~4 11:

1
.• J ) 

.. : .; 
, :'4'::': 
~ 

(a) The tangential accelerations of the 
gears are :equal at their point of 
contact. 

(b) Determining the hook's velocity, 
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6.1 The disc rotates about the fixed shaft O. It starts from rest at 
t = 0 and has constant counterclockwise angular acceleration 
" = 4 rad/s2

, At t '" 5~, detennine (a) its angular velocity and 
(he number of revolutions it has turned; (b) the magnitudes of the 
velocity and acceleration of point A. 

P6.1 

6.2 The weight A starts from rest at t = 0 and falls with a 
constant acceleration of 2 m/s2~ causing the disc to turn. 
(a) What js the angular accc1e:mtion of lhe disc? 
(b) How many revolutions has the disc turned at t = 1 s? 

A 
P6.2 

IOOmrn, 

IOGmm 

P6.3 

6.4 The bicycle's 120 mm sprocket wheel turns at 3 rad/s, 
is the angular velocity of the 45 mm gear? 

6,5 The rear wheel of the bicycle in Problem 6.4 has a 330 
radius and is rigidly attachlld to the 45 mm gear, If the 
(urns (he pedals, which are rigidly attached to the 120 
sprocket wheel, at one revolution per second, what is the bicvcle's! 
velocity? 

6.6 The disc rotates with a constant counterclockwise an,gulatj 
velocity of 10 fad/s. What are the velocity and acceleration 
A in terms of the coordinate system shov.rn? 

y 

I 

6.7 JI1 Problem 6,6, what are the velocity and acceleration 
poinl A relative to point B? 

6.8 In Problem 6,6, ,uppose that the dISC ,tatis from rest In 

position shown at t:::::: 0 and is subjected to a constant COllnt'''-I 

clockwise angular acceleration of 6 Tad/52, Detennine the velloeity! 
of point Bin tenns of the coordinate system shown at t = 1 s 
coordinate system (a) is body-fixed; (b) remain:; oriented with 
axes horizontal and vertical as shown, 
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6.9 The brru::ket rotates around the fixed shaft at O. If it has a 
counterclockwise angular velocity of 20 rad/s and a clockwise 
angular accelerotion of200 rod/". what are the magnitude, of the 
accelerations of points A and B? 

6.10 Consider the bracket in Problem 6.9. If IVAI = 3 mls 
18AI '" 60 mis', what are IVBI and 18BI? 

6.11 Consider the bracket in Pro~lem 6,9, [flvAI ; 0.9 mls and 
la81 = [5 mis', what are IVBI and iaAI? 

P6.9 

6.3 General Motions: Velocities 
Each point of a rigid body in translation undergoes the same motion. Each 
point of a rigid body rotating about a fixed axis undergoes circular motion 
about the axis. To analyse more complicated motions that combine translation 
and rotation, we must develop equations that relate the relative motions of 
points of a rigid body to its angular motion. 

Relative Velocities 
In Figure 6.11(a) we view a rigid body perpendicular to the plane of its 
motion. Points A and B are points of the rigid body contained in that plane, and 
o is a reference point. We can show that the velocity of A relative to B is 
related in a simple way to the rigid body's angular velocity. The position of A 
relative to B. rA/H, is related to the positions of the points relative to 0 by 

Taking the time derivative of this equation, we obtain 

(6.4) 

where VA/B = drA/B/dt is the velocity of A relative to B. Sitlce A and B are 
points of the rigid body, the distance between them. IrA/BI, is constant. That 
means that A moves in a circular path relative to B as the rigid body rotates 
(Figure 6.11 (b)). The velocity of A relative to B is tangent to the circular path, 
and its valuc equals the product of IrA/BI and the angular velocity (j) of the 
rigid body. You can use this result to relate velocities of points of a rigid body 
in two-dimensional motion when you know its angular velocity. 

o 

Figure 6.11 
(a) A rigid body in tw9~dimensional motion. 
(b) The motion:viewed by an 'observer' 
stationary with respect to B, 
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(u) 

y 

·----x 

(e) 

Figure 6.12 
(a) A disk rolling with angulm velocity w. 
(b) Detennining the velocity of the 
centre B relative to C. 
(e) A pOInt A on the rim of the disk. 
(d) Detenmining the velocity of A relative 
to B. 

For example, let's consider a circular disc of radius R rolling on a station 
plane surface with counterclockwise angular velocity (1) (Figure 6.12(a)). B 
rolling, we mean that the velocity of the disc relative to the surface is zero a 
their point of contact C. Let B be the centre of the disc. Relative to C, point 
moves in a circular path of radius R (Figure 6.12(b)). In terms of the coor 
dinatc system shown, the velocity of B relative to Cis vSIC '" -ROJ i. Since th 
velocity of C is zero, the veloc.ity of B is 

Vs = Vc + vBle '" -ROJ i 

This result is worth remembering: the magnitude of the velOCity of the centre 0 
a round object rolling on a stationary su~race is the product of the radius an 
the magnitude of the angular velocit:>~ 

We can determine the velocity of any other point of the disc in the sam 
way. Consider the point A in F'igure 6.12(e). Relative to the centre B, point 
moves in a circolar path of radius R, resulting in the relative veloe; 
VAIB '" ROJj (Figure 6.12(d)). Therefore the velocity of A is 

VA '" VB + VAIB '" -ROJ i + ROJj 

The Angular Velocity Vector 
We can express the rate of rotation of a rigid body as a vector. Euler' 
theorem states that a rigid body constrained to rotate about a fixed point B ca 
move between any two positions by a single rotation about some axis throug 
B. Suppose that we choose an arbitrary point B of a rigid body that i 
undergoing an arbitrary ruotion at a time t. Euler's theorem allows us t 
express the rigid body's change in position relative to B during an interval 0 

time from t to t + dt as a single rotation througlt an angle de about some axis. 
At time t the rigid body's rate of rotation about the axis is its angular veloci 
OJ = de/dt, and the axis about wl\ich it rotates is called the instantaneou 
axis of rotation. 

The angular velocity vector, denoted by w, specifies bOUI the direction 0 

the instantaneous axis of rotation and the angular velocity. It is defined to b 
parallel to the instantaneous axis of rotation (Figure 6.13(a»), and its magni 
tude is the rate of rotation, the absolute value of OJ. Its direction is related to th 
direction oftlte ligid body's rotation through a right-hand rule: if you point th 
thumb of your right hand in the direction of 0', the fingers curl around", in th 
direction of the rotation (Figure 6.13(b)). 

Instantaneous axis of rotation Direction of rotation 

" 
! i / 

Figure 6.13 
( a) An angular velocity vector. 

(b) Right-hand rule for the direction of the 
vector, / (a) 

fi~ 
/ 

(b) 



For example, the axis ofrotation ofllle rolling disc in Figure 6.12 is parallel 
to the z axis, so its angular velocity vector is parallel to the z axis and its 
magnitude is w. [fyou curl tho fingers of your right hand around the z axis in 
the direction of the rotation, your thumb points in the positive z direction 
(Figure 6.14). The angular velocity vector of the disc is 00 = wk. 

The angular velocity veclor allows us to express the results of the previous 
seclion in a very convenient form. Let A and B be points of a rigid body with 
angular velocity 00 (Figure 6.15(a)). We can show that the velocity of A 
relative to B is 

drAIB 
vAIB = -- = 00 x fAIB 

dt 
(6.5) 

Relative to E, point A is moving at the present instant in a circular path of 
radius IrA/BI sin p, where p is the angle between the vectors rAID and 00 (Figure 
6.15(b)). The magnitude of the velocity of A relative to B is equal to the 
product of the radius of the circular path and the angular velocity of the rigid 
body, IVAIRI = (IrAIBI sinp)lool, which is the magnitude of the cross product of 
rAIB and 00. In addition, vAIR is perpendicular to 00 and perpendicular to rAIB. 

But is vAIR equal to 00 x TAIB or rAIB x Ii>? Notice in Figure 6.15(b) that, 
pointing the fingers of the right hand in the direction of 00 and closing them 
towards rAIB, the thumb points in the direction ofth. velocity of A relative to 
E, so vAIB = 00 x rA/B. Substituting Equation (6.5) into Equation (6.4), we 
obtain an equation for the relation between the velocities of two points of a 
rigid body in terms of its angular velocity: 

(6.6) 

Let's return to the example of a disc of radius R rolling with angular 
velocity w (Figure 6.16), and use Equation (6.6) to determine the velocity of 
point A. The velocity of the centre of the disc is given in terms of its angular 
velocity by VB = -Rm ~ the disc's angular velocity vector is 00 = m k, and the 
position vector of A relative to the centre is r AlB = R i. The velocity of A is 

VA = VB + Ii> X TAIB = -Rwi + (wk) x (Ri) 

= -Reoi + ROJj 

'0 ---~~ 
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y 

~ 
rf'. ' / ' 

, 

, :', J. 

x 

~lffli ;.'~ 
• I 

Z 

Figure 6.14 
Detennining the direction of the angular 
velocity vector' of a rolling disk. 

(:I) 

C-"~Sinfi 

, ---~ 

B 

(b) 

Figure 6.15 
(aJ Points A and B of a rotating rigid body. 
(b) A is moving in a circular path relative 
to B. 

(" B~A Figure 6.16 
.--~"", __ /,,-__ ~~ ----x A rotating disc and the position vector of A 

relative to B. 
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The following examples show how you can apply Equation (6.6). JleJ~;n,"ln,gl 
with a point whose velocity is known, YOIl can express the velocities AF .• ",.,' 

points of a rigid body in terms of its anglliar velocity. By repeating this 
for dijJerent points, YOIl can allalyse the motiolls of systellls of eOJ"",,et.,dl 
rigid bodies. 

If the velocity va in Figure 6.17 is 900nun/s, what is the velocity VL? 

Figure 6.17 

STRATEGY 

The centre of the right pulley is fixed, :;lO the vertical part of the cable between 
two pulleys moves upwards with velocity v •. The point of the lejt pulley in cOllta"tl 
with that part of the cable moves upwards with the same velocity. The vertical 
of the cable connected to the ceiling is stationary, 80 the point of the left pulley . 
contact with that part of the cable is also stationary. Thus we know the velocities 
two points of the left pulley. Using this infonnation, we can detennin. its an"ularl 
velocity and then dctcnninc the velocity of its centre, which is equal to the vcllJcitvl 

"c· 

SOLUTION 

The velocity of point A of the left pulley in Figure <aj is VA = 900mm/s and 
velocity of point B is zero. Relative to B, point A moves in a cin;ular path with 
angular velocity w of the left pulley, so 

VA = 900nun/s = <600mmjw 

(0) Analysing the motion of the left pulley. 



and the angular velocity of the left pulley is (}) = 900/600 = 1.5 rad/s. Point C, the 
centre of the pulley, also moves relative to B in a circular path with angular velocity 
0), so 

Vc = VL = (300mm)w = (300)(1.5) = 450mm/s 

We can also obtain this result with Equation (6.6). In tenns ufthe coordinate system 
in Figure (b), VA = 900j lurn/S, rAjB = 600mm, and the angular velocity vector of 
the pulley is '" = Q) k. Therefore 

900j = 0 + «ilk) x (600i) = 600wj 

From this equation we obtain w = 900/600 = 1.5 rad/s. The velocity of the centre 
of the pulley is 

A--x 

(b) Position vectors rAj8 and fe/B-

O+(1.5k) x (300 i) -450j(mm/s) 

DISCUSSION 

In this example, the geometry is sufficiently Simple that we can easily relate the 
velocities of the cable to the angular velocities of the pulleys without using Equation 
(6.6). That is often not the case. The next example illustrates a situation that would 
be much more difficult to solve witllout using Equation (6.6). 
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Figure 6.18 

Bar AB in Figure 6.18 rotates with a clockwise angular velocity of lOrad/s. 
Deteonine the angular velocity of bar BC and the velOCity of point C. 

R 

4DOmm 

1... 400 mm -4--- 800 mm ----I 

STRATEGY 

Since we know the angular velocity of bar AB and point A is J-ixed, we can apply 
Equation (6.6) to points A and B to detennine the velocity of B. Then by applying 
Equation (6.6) again to express the horizontal velocity of point C in tenns of the 
velocity of B, we win obtain a vector equation in two unknowns: the velocity of C 
and the angular velocity of bar BC. 

SOLUTION 

[n terms of the coordinat~ system in Figure (a), the position vector of B relative to A 
is fBIA = (OA1+0Aj)m. The angular velocity vector of bar AB is 
.:IAB = -IOkrad/s, so the velocity of B is 

VB = VA + WAR X rlt/A = 0 + Q 

j k 

o -10 

0.4 OA 0 

= (41 - 4J)m/s 

8 

I : 
I- 400mm-~ 

(0) Detennining the velocity of B 



Let Wee be the unknown angular velocity of bar BC (Figure (b)), so that its angular 
velocity vector is WR(' = WBC k. The position vector of C relative to B is 
rein ~ (0.81 - O.4j) m. Although we don't Imow the velocity of C. we know it 
is in the horizontal direction, so we can write it in the form Vc = Vc i (Figure (b)). 
We express the velocity of C in tenns of the velocity of B: 

Vc = VB + Wac x fBIC 

Now we substitute the values of VB and rlJ/c and our expressions for Vc and «Ise 
into this equation! obtaining 

k 

vcl=41-4j+ 0 o 
0.8 -004 0 

= 4 I - 4 i + OAwne 1+ O.8OlEd 

Equating the i and j components in this equation yields two equations: 

l{: = 4 + O.4wBe 

o = -4 + 0.8WBC 

Solving them, we obtain rune = 5 cadjs and Vc = 6m/s. 

r 
400 mm 

I 

DISCUSSION 

y 

R()Omm--~ 

(b) Expressing Vc :::: '1.-'( i in tenns of Va_ 

By expressing the velocity of C in terms of the velocity of B, we introduced into the 
solution the fact that point C is constrained to move horizontally. That is, we 
accounted for the presence of the floor. Our procedure in this example-applying 
Equation (6.6) systematically to relate the velocities of the joints to the angular 
velocities-applies to many problems in which you must delcnninc velucities and 
angular velocities of connected rigid bodim". Some trial and en-or may be necessary 
to lind the particular relationships you need. 

6.3 GENERl>iL MOTIONS: VELOCITIES 
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Figure 6.19 

Bar A8 in Figure 6.19 rotates with a clockwise angular velocity of 10 rad/s. What 
the vertical velocity VR of the rock of the mck and pinion gear? 

STRATEGY 

1 SO --t-~~-40C !TIm --_.f.­
mm 

To determine the velocity of the rack, we must detennine the angular velocity 
member CD. Since we know the angular velocity of bar AB, we can apply "quarlon) 
(6.6) to points A and B to detennine the velocity of point B. Then we can 
Equation (6.6) to points C and D to obtain an equation for Vc in terms of the an"ula,rl 
velocity of the member CD. We can also apply Equation (6.6) to points Band C 
obtain an equation for Vc in ienns of the angular velocity of bar BC. By equating 
two expressions for "c, we will obtain a vector equation in two unknowns: 
angular velocities of bars Be and CD. 

SOLUTION 

We first apply Equation (6.6) to points A and 8 (Figure (a». In terms of 
coordinate system shown, the position vector of B relative to A 
fBIA =(O.15i+O.3j)m, and the angular velocity vector of bar AB 
WAR := ~ '1 0 k rad/s. The velocity of B it; 

i k 

VB=VA+wABxrBIA=O+ 0 0 -10 

0.15 OJ 0 

= (3 i - 1.5j)m/s 

We now apply Equation (6.6) to points C and D. Lei Wm be the unknown angular 
velocity of member CD (Figure (a)). The position vector of C rdative to D is 
rC/D = (-0.15 i + 0.25 Dm, and the angular velocity vector of membrane CD is 
WeD = -(!JeD k. The velocity of C is 

k 

Vc = Vo + (OeD x reiD = 0 + o o 
-0.15 0.25 0 

= D.25wcD i + 1l.15wcn j 
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Now we apply Equation (6.6) to points B and C (Figure (b)). We denote the 
unknown angular velocity of bar BC by Woe, The position vector of C relative to B 
is 'CIB = (0.11 - O.05j)m, and the angular velocity vector of bar BC is 
roBe::'!'! (DBC k. Expressing the velocity of C in terms of the velocity of B. we 
obtain 

k 

Vc = VB + (UHf) X TClll =: VB + 0 o 
0.4 -0.05 0 

= VB + 0.05wscOA i + OAWBC j 

Substituting our expressions for VB and v c into this equation, we obtain 

0.2SWCD i + O.ISwcD j = 3 i L5 j + O.OSWBC i + OAWBC j 

y y 

8 

x 

c 

(0) Determining the velocities of points B 
ande 

(b) Expressing the velocity of point C in 
terms of the velocity of point B. 

Equating the i and j components yields two equations in terms of WBe and WeD: 

O.2SWCD = 3 + 0.05WBC 

0.15wc" = - 1.5 + OAwBe 

Solving them, we obtain WBe = 8.92rad/s and WeD = 13.78rad/s. 
The vertical velocity of the rack is equal to the velocity of the gear where it 

contacts the rack: 

VR = (0.15m)wCD = (0.15)(13.78) = 2.07m/s 

x 
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6.12 A turbine rotates at 30rad/s about a fixed axis coincident 
with the x axis. What is its angular velocity vector? 

)' 

P6.12 

6.13 The rectangular plate swings from arms of equal length, 
Determine the angular velocity' vector of (a) the rectangular plate; 
(b) the bar AB, y 

6.14 What are the angular velocity vectors of each bar of the 
linkage? 

)' 

8 1 

10 radh 

In"" . .0 , , 
10 rad/~ I j 

<:' 
A '~ D--x 

P6.14 

6.15 If you model the earth as a rigid body, what is the 
magnitude of its ,-mgular vdocity vector WE" Docs WE point 
north or south? 

6.16 The rigid body rotates about the z axis with counterclock­
wise angular velocity (0, 

(a) What is its angular velocity vceror'! 
(b) Use Equation (6,6) to determine the velocity of point A relative 
to point B, 

)' 

P6.16 

6. 17 (a) What is the annular velocity vector of the bar? 
(b) Usc Equation (6.6) to detennine tlle velocity of point B relative 
to point 0. 
(c) Use Equation (6,6) to determine the velocity of point A relative 
to point 8. 

20 

~~~~~~~-x 

1m --I 
P6.17 



6.18 Cal What is the angular velocity vector of the bar? 
(bl Use Equation C6.6) to determine the velocity of point A. 

P6.18 

6.19 The disc is rotating about the z axis at 50 radl s in the 
clockwise direction. Use Equation (6.6) to detennine the velocities 
of points A, B and C. 

P6.19 

6.20 The car is moving 10 the right at 100km/hr, and its tyres are 
600 mm in diameter. 
Cal What is thc angular velocity of its tyres? 
(b) \Vhich point on the lyre shown has the largest velocity relative 
to the road, and what is the magnitude of the velocity? 

P6.20 
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6.21 The disc rolls on the plane sOOace. Point A is moving to the 
right at 6m/s. 
Ca) What is the angular velocity veefor of the disc? 
Cb) Use Equation C6.6) to dctcrmin~ the velocities of points B, C 
.odD. . 

P6.21 

6.22 The ring gear is stationary. and the sun gear rotates at 
120 rpm (revolutions per minute) in the c9untcrelockwise direc­
tion. Determine the angular velocity of the planet gcars and the 
magnitude of the velocity of their centrepoints. 

," Ring gear 

., .... Planet gcar& (3) 

Sun gear P6.22 

6.23 The bar is in two-dimensional rhotio~ in the x~y plane. The 
velocity of point A is 8 j m/s. The x compo~ent of the velocity of 
point 8 is 6 m/s. 
C.) What is the angular velocity vector of the bar? 
(b) What is the velocity of point B? 

y 

x P6.23 
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6.24 Points A and B of the I m bar slide on the plane surfaces. 
The velocity of point B is 2 i mis. 
(aJ What is the angular velocity vector of the bar? 
(b) What is the velocity of point A? 

/ 

( 
P6.24 

6.25 In Problem 6.24, what is the velocity of the midpoint G of 
the bar'? 

6.26 Bar AB rotates in the counterclockwise direction at 6rad/s. 
Determine the angular velocity of bar BCD and the velocity of 
point D. 

y 

mill 

!~'7'~ ~+·t 
300 mrn 

:J:.A ~ ,_-,--,------~l x 

120~mlll I l.'O 1 100 I r +rnm-{ 1111ll ~ 
P6.26 

6.27 If the crankshaft AB rotates at 6000 rpm (revolutions per 
minute) in the connterclockwise direction, what is the velocity of 
the piston at the installt shown? 

P6.27 

6,28 Bar AB rotates at 10 radis in the cOLUlterclockwisc direc· 
tion. Determine the angular velocity of bar CD. 

Strategy: Since you know the angular velocity of the bar AS, 
you can detenoine the velocity of B. Then apply Equation (6.6) to 
points 8 and C to obtain an equation for Vc in tenns of the 
angular velocity of bar BC, and apply it to points C and D 
to obtain an equation for Vc in tenus of the angular velocity 
of bar CD. By equating the two expressions, you will obtain 
a vector equation in two unkJlO'wns: the angular velocities of 
bars BC and CD. 

1--- 2 m --1---2 III ~ 

P6.28 



6.29 Bar AB rotates at 12 radls in the clockwise direction. 
Determine the angular velocities of bars BC and CD. 

350 
mm 

j- 300 mrn --1---350 mrn--1 

D 

P6.29 

6.30 Bar CD rotates at 2 radls in tile clockwise direction. 
Determine the angular velocities of bars AB and BC 

~:l()Omm~ 
.A8 G G 

/ 
2S() mill 

/' ~~, 

'< 
A D 

P6.30 

6.31 In Problem 6.30, what is the magnitude of the velocity of 
the midpoint G of bar BC! 

6.32 Bar AB rotates at 10rad/s in the counterclockwise direc­
tion, Detennine the velocity of point E. 

B 

~~-x 

" "'1~7()()mm+~}:p,~7()()mm~ 
P6.32 
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6.33 Bar AB rotates at 4rad/s in the counterclockwise direction. 
Determine the velocity of point C. 

y 

1-300-
mill 

• 300-1 
mOl 

P6.33 

6.34 In the system shown in Problem 6J3, if the magnitude of 
the velocity of point C is IVel = 2 m)s, wha! arc the magnitudes of 
the aogular velocities of bars AB ano DE? 

6.35 Bars OA and AB arc each 2 m ,long, Point B is sliding up the 
inclined surface at to mIs, Determin¢ the angular velocities of the 
bars, 

A 

P6.35 

6.36 The diameter of the disc is I ~, and the length of bar AB is 
I m, The disc is rolling, and point Q slides on the plane surface. 
Detetmine the angular velocity of bar AS and the velocity of 
point B, 

B 

P6.36 
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6.37 A motor rotates the circular disc rnoWltcd at A, moving the 
saw back and forth. (The saw is supported by a horizontal slot so 
that point C moves horizontally,) The radius AB is 100 mm, and the 
link Be is 350 mm long. In the position shown, 8 = 450 and the 
link BC is horizontal. If the angular velocity of the disc is one 
revolution per second counterclockwise, what is the velocity of the 
saw? 

y 

P6.37 

6.38 In Problem 637, if the angular velocity of the disc is one 
revolution per second counterclockwise and () = 2700, what is the 
velocity of the saw? 

6.39 The discs roll on the plane surface. The angular velocity of 
the left disc is 2 rad/s in the clockwise direction. What is the 
angular velocity of the right disc? 

P6.39 

6.40 The disc rolls on the curved surface. The bar rotates at 
10 rOOls in the counterclockwise direction. Detell111ne the velocity 
of point A. 

P6.40 

6.41 If WAB = 2 rad/s and WBe = 4 rad/s, what is the velocity of 
point C, where the excavator's bucket is attached? 

y 

5.5 III 
5111 

C-,----,.~lL 
4111 2.3 m ····1 

P6.41 

6.42 In Problem 6,41, if w,w = 2rad/s, what clockwise angular 
velocity (J)BC will cause the vertkal component of the velocity of 
point C to be zero? What is the resulting velocity of point C? 

6.43 In Problem 6.41, if <he velocity of point C is 
Ve = (-6 i - 4 j) mis, what arc the angular velOCities WAB and 
(ORe? 

6.44 An athlete exercises his arm by raising the mass m. The 
shoulder joint A i$ stationary. The distance AB is 300mm, and the 
distance BC is 400 mm, At the instant shown, WAR = 1 fad/:; and 
wac = 2 rad/s. How fast is the mass m rising? 

P6.44 

6.45 [n Problem 6.44, SUppORC that the distance AB is 300 mm. 
the distance Be is 400mm, WAD = O.6rad/s, and the mass m is 
rising at 800mmjs. What is the angular velocity WBe'? 



6.46 Points Band C an: in the x-y plane. The angular velocity 
vectors of the anns AB and BC arC "'A8 = -2 krad/s and 
WBe = 0.4 k rud/s. Determine the velocity of point C. 

P6.46 

6.47 In Pmblem 6.46, if the velocity of point C is Vc = 
250 j mm/s. what arc the angular velocity vectors of the anns AB 
andBC? 

6.48 Determine the velocity Vw and the angular velocity of the 
small pulley. 

50 

tl'a 
P6.48 
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6.49 Determine the velocity of the block and the angular velocity 
of the small pulley. 

P6.49 

6.50 The ring gear is fixed and the h\lb and planet gears are 
bonded together, The connecting rod rotateS in the counterclock­
wise direction at 60rpm (revolutions per rninute). Determine the 
angular velocity of the :;un gear and the magnitude of the velocity 
of point A. 

Planet gear-.~~ __ _ 
A, 

Hub gear ____ ~ 

Connecting -~7"'~~--_ 
,rod 

Sun gear 

Ring gear 

P6.50 

6.51 The large gear is fixed, BaJ' AB h4s a counterclockwise 
angular velocity of 2 rad/s. What are the angular velocities of bars 
CE and DE" 

• 
IOOmm 

I 
E 

P6.51 
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Figure 6.20 
(al An instantaneous centre C and a 

different point A. 
(b) Every point rotates about the 

instantaneous centre. 

Direction of 

Instanlaneou,> 
centre 

Figure 6.21 

(a) 

(b) 

(a) Locating the instantaneous centre in 
planar motion. 
(b) Proving that Vc = o. 

Instantaneous Centres 
By an instantaneous centre, we simply mean a point of a rigid body whose 
velocity is zero at a given instant. 'Instantaneous' means it may have zero 
velocity only at the instant under consideration, although we also refer to a 
fixed point, such as a point of a fixed axis about which a rigid body rotates, as 
an instantaneous centre. 

When we know the location of an instantaneous centre of a rigid body in 
two-dimensional motion and we know its angular velocity, the velocities of 
other points are easy to determine. For example, suppose that point C in Figure 
6.20(a) is the instantaneous centre of a rigid body in plane motion with angnlar 
velocity w. Relative to C, a point A moves in a circular path. The velocity of A 
relative to C is tangent to the circular path and equal to tbe product of the 
distance from C to A and the angular velocity. But since C is stationary at this 
instant, the velocity of A relative to C is the velocity of A. At this instant, every 
point of the rigid body rotates abont C (Figure 6.20(b)). 

(a) 

(b) 

You can often locate the instantaneous centre of a rigid body in two­
dimensional motion in a simple way. Suppose that you know the directions of 
the motions of two points A and B (Figure 6.21(a)). If you draw lines through 
A and B perpendicular to their directions of motion, the point C where the lines 
intersect is the instantaneous centre. 

To show that this is true, let us express the velocity of C in terms of the 
velocity of A (Figure 6.21(b): 

Vc ::::; VA + IJ.) x rCjA 

Since the vector w x TCIA is perpendicalar to TCI4' this equation states that the 
direction of motion of C is parallel to the direction Of motion of A We can also 
express the velocity of C in terms of the velocily ,of B: 

Vc = VB + w x rCIO 

The vector w x rC/B is perpendicular to rC;B, so this equation states that the 
direction of motion of C is parallel to the direction of motion of B. But C 
call1lot be moving paraUel to A and parallel 10 B, so these equations are 
contradictory unless Vc = O. 



The instantaneous centre may not be a point of the rigid body (Figure 
6.22(a)). This simply means that at this instant, the rigid body is rotating about 
an external point. It's helpful to imagine extending the rigid body so that it 
includes the instantaneous centre (Figure 6.22(b)). The velocity of point C of 
the extended body would be zero at this instant. 

Notice in Figure 6.22(a) that if you change the directions of motion of A 
and B so that the lines perpendicular to their directions of motion become 
parallel, C goes to infinity. In that case, the rigid body is in translation; its 
angular velocity is zero. 

Direction of 

Ink(an'an~nu~ ~~_____ C 

\,X'l1tr(' 

(a) 

Direction of 

(b) 

Returning once again to our example of a disc of radius R rolling with 
angular velocity w (Figure 6.23(a), the point C in contact with the floor is 
stationary at that instant - it is the iustantaneous centre of the disc. Therefore 
the velocity of any other point is perpendicular to the line from C to the point 
and its magnitude equals the product of w and the distance from C to the point. 
In terms of the coordinate system shown in Figure 6.23(b)), the velocity of 
point A is 

VA = -v"iRw cos 45' i + v"iRw sin 45' j 

= -Rwi+Rwj 

c 
(0) 

y 

~, -12 Rw 

(h) 
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Figure 6.22 
(a) An instantaneous centre extern.l to the 
rigid body. 
(b) A hypothetical extended body. Point C 
would be stationary. 

Figure 6.23 
(a) Point C is the instantaneous 
centre of t11c rolling disc. 
(b) Determining the velocity of 
point A. 



, I , 

256 CHAPTER 6 PLANAR KINEMATICS OF RIGID BODIES 

In the fol/owing example we use in .• tailtaneous centres to analyse the motion 
of a linkage. By identifYing the instantaneou .• centre of a rigid body in plane 
motion, you can express the velocities of its points as product~ of their 
distances from the instantaneous centre and th" angular veloci(v of the rigid 
body. 

Bar AB in Figure 6.24 rotates with a counterclockwise angolar velocity of IOrad/s. 
What are the angular velocities or bars BC and CD? 

Figure 6.24 

10 fad/s 

STRATEGY 

Because bars AB and CD rotate about fixed axes, we know the directions of motion 
of points Band C and so can locate the instantaneous centre of bar Be. Bcgirming 
with bar AB (because we know its angular velocity); we can use the instantaneous 
centres of the bars to dctcmlinc both the velocities of tlle points where they are 
conneded ano th~ir anguicu vei()l;ities, 

SOLUTION 

The velocity of B due to the rotation of bar AB about A (Figure (a)) i, 

VB = (2 m)(10radjs) = 20m/s 

B c 
"B 

L :2 m 

10rad/~ :/~~ 
A~ 

(a) Determlnmg VB. 
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Drawing lines perpendicular to the directions of motion of B and e, we locate the ['I 
instantaneous ecntrc of bar Be (Figure (b». The velocity of B is equal to the product 
of its distance from the instantaneous centre ofhar Be and the angular velocity WEe, 

VB = 20m/_ = (2 m)mnc 

so Wac = IOrad/s. (Notice that bar Be rotales in the clockwise direction.) Using 
the instantaneous centre of bar BC and its angular velocity Wac, we can determine 
the velocity of point C; 

InSlantaneou~ centre or har Be 

2111 

20 mh. 

(I) Determining Woe and Vc· 

Our last step is to use the velocity of point C to detennine the angular velocity ofhar 
CD aboul point D (Figure (c» 

Vc = I00!m/s = (.Jilm)wcD 

obtaining WeD = lOrad/s counterclockwise. 

(c) Determining WCD. 

DISCUSSION 

In this example, the use of instantaneous centres greatly simplified determining the 
angular velocities of bars Be and CD in comparison with our previous approach. 
However, notice that the lengths and positions of the bars made it very easy for us to 
locate the instantaneous centre of bar BC. If the geometry is too complicated, the use 
of instantaneous centres can be impracticaL 

i 

I 

i" 

1"1 
I 
I 

II 
II II 
I' : I 
! I 
! , 
, ! 

: I 

! i 
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6.52 Ifthe bar has a clockwise angular velocity of IOrad/s and 
VA = 20 mis, what are the coordinates of its instantaneous centre 
and the value of VB? 

I· 

l' 
A 

B A 

Im--I-I--lm~ 

x 

P6.52 

6.53 In Problem 6.52, if"A = 24m/s and VB = 36m/s, what are 
the coordina.tes of the instantaneous centre of the bar and its 
angular velocity? 

6.54 The velocity of point 0 of the bat is Vo = (-1.8 i - 0.42 j) 
mis, and the bat rotates about the z axis with a counterclockwise 
angular velocity of 4 rad/s. What arc the x and y coordinates of its 
instantaneous centre? 

v 

I 

"; 

P6.54 

6.55 Points A and B of the 1 m bar slide on the plane surfaces. 
The velocity of B is VB = 2im/s. 
(a) What are the coordinates of the instaOlaneOlL' centre? 
(b) Use the instantaneous centre to determine the velocity of A. 

A 

\ 
\ 

(J 

\\ 
.·Lr....,.l7_0'_.\~\,,1.):;.8 __ ---x 

P6.55 

6.56 In Problem 6.55, use the instantaneous centre to dctcnninc 
the velocity of the bar's midpoint G. 

6.57 The bar is in t\\'o-dimerlsional motion in tlle x-y plane. The 
velocity of point A is VA = ".4lm/s, and B j" moving in the 
direction parallel to the bar. Determine the velocity of B (al by 
using Equation (6.6); (b) by using the instantaneous centre. 

y 

x P6.57 



6.58 Points A and B of the 1.2 m bar slide on the plane surf""es. 
Point B is sliding down the slanted surface at Q.6m/s. 
(a) What are the coordjnates of the instantaneous centre? 
(b) Use the instantaneous centre to detemlinc the velocity of A, 

P6.58 

6.59 Use itlstantaneOlls centres to detemline the horizontal 
velocity of B. 

P6.S9 

6.60 When the mechanism in Problem 6,59 is in this position) 
use instantaneous centres to determine the horizontal velocity of B. 

P6.60 
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6.61 Bar AB rotates at 6 rad/s in lhe clockwise direction. Usc 
instantaneous centres to determine thQ ~gul!u' velocity of bar Be. 

11m') 

~ 
75 111m -"?'-c 

I 

P6.61 

6.62 Bar AB rotates at IOrad/s in the counterclockwise direc­
tion. Use instantaneous centres to dctennine the velocity of point E, 

P6.62 

6.63 The discs roll on the plane surface. The left disc rotates at 
2 rad/s in the clockwise direction. Use instantaneous centres to 
determine the angular velocities of the bar and the right disc. 

P6.63 
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6.64 Sar AB rotates at 12 rod/s in the clockwise direction. Usc 
instantaneous centres to dctcnnine the angular velocities of bars 
BCand CD. 

6.65 A rigid body is in planar motion. A point A with coordmates 
x = 200 mm, Y = 600 rnm is moving parallel to the unit vector 
-0.9701 + O.243j, and a point B with coordinates x = 800mm, 
y = 400 mm IS moving parallel to the unit vector 
-0.8321 + 0.555 j. 

300mm T 

f) 

350mm---j 

P6.64 

(a) What are the coordinates of the instantaneous centre? 
(b) Detonnine IVAl/lv81. 

6.66 Show that if a rigid body in planar motion has two 
instantaneous centres, it is stationary al that instant. 

6.4 General Motions: 
Accelerations 

In Chapter 7 you will be concerned with determining the motion of a rigid 
body when you know the external forces and couples acting on it. The 
governing equations are expressed in ,terms of the acceleration of the centre of 
mass of the rigid body and its angular acceleration. To solve such problems, 
you need to understand the relationship between the accelerations of points of 
a rigid body and its angular acceleration, In this section we extend the methods 
we have used to analyse velocities of rigid bodies to accelerations, 

Consider points A and B in the plane of the motion ofa rigid body in two­
dimensional motion (Figure 6.25(a)). Their velocities are relate,d by 

where VA and VB are velocities relative to a reference point 0. Taking the time 
derivative of this equation, we obtain 

Because point A moves in a circular path relative to point B as the rigid body 
rotates, "A/B has normal and tangential components (Figure 6.25(b)). The 
value of the tangential component is the product of IrA/"1 and the angular 
acceleration a of the rigid body. The normal component points towards the 
centre of the circular path, and its magnitude is IVA/BI'/lrA/BI = 0)'lrA/81. 
Notice that because the nonmal component of acceleration points opposite to 
the direction of the vector rA/B, we can express it as a vector by writing it as 
-w2

rA/B' 



( a) (bl 

Let's consider a circular disc of radius R rolling on a stationary plane 
surface with a counterclockwIse angular velocity co and counterclockwise 
angular acceleration ~ (Figure 6.26(a)). The disc's centre B moves in a straight 
line with velocity Rw. Its velocity is 10 the len if w is positive. The accel­
eration of the centre B is d / dl( Rw) = R~. Its acceleration is to the left if a is 
positive. The magnitude of the acceleration oj the centre of a round object 
rolling on a stationary surface is the product of the radius and the angular 
acceleration, 

Now that we know the acceleration of the disc's centre let us detenrnine the 
acceleration of the point C in contact with the surface (Figure 6.26(b)). In 
terms of the coordinate system shown in Figure 6.26(c), the acceleration of the 
centre B is - RiX i. Relative to B, point C moves in a circular path of radius R. 
The tangential component of the acceleration of C relative to B is Rrx i, and the 
normal component is Ro} j. Therefore the acceleration of C is 

3C 88 + 3CIB ·-RiX i + Ra i + Rw2 j 

= Rw2 j 

The acceleration of point C parallel to the surface is zero, but it docs have an 
acceleration normal to the surface. 

Expressing the acceleration of a point A relative to a point B in terms of A's 
circular path about B as we have done helps you visualize and understand it. 
However, just as we did in the caSe of the relative velocity, wc can obtain aAIB 

in a form more convenient for applications by using the angular velocity vector 
.... The velocity of A relative to B is given in terms of ... hy Equation (6.5): 

Taking the time derivative of this equation, we obtain 

d ... 
aAIB = -'dt x fAIB + ... X vAIR 

d ... 
= dt x fAIB + ... x ( ... x fAIB) 

y 

Figure 6.25 

(aJ Points of a rigid body in 
planar. motiort, 
(b) C<)mponents of the 
acceleration of A relative to B, 

'" ~ 
------r .. '.~~"" (

/ . \ 
. . . 
! . B 
• • 

. ii' '.' /' i) 
\{" .. R . . ' / I' Y 

1---/ 

(a) 

(b) 

.• ,!. 

i 

B •. !, a: 

~w i 
ew:.y 

'----~-"""'c R,,---
(c) 

Figure 6.26 

(aJ A disk rolling with angular velocity IV 

and angular acceleration 11. 

(b) Point C is in contact with thc surface. 
(c J Determining the acceleration of C 
relative to B, 
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Defining the angular acceleration vector" to be the rate of change of the 
angular velocity vector, 

dw 
<X=-

dt (6.7) 

the acceleration of A relative to B is 

Using this expression, we can write equations relating to the velocities and 
accelerations of two points of a rigid body in terms of its angular velocity and 
angular acceleration: 

'-V-A-=--V-R-+--w--x-r-A-~----------~ 

aA = as + (l x rAIR + w x (w x ~ 
(6.8) 

(6.9) 

In the case of two-dimensional motion, the term" x rAIB in Equation (6.9) 
is the tangential component of the acceleration of A relative to B and 
W x (00 x fA/B) is the normal component (Figure 6.27). Therefore, for two­
dimensional motion, we can write Equation (6.9) in the simpler form 

Figure 6.27 

Vector components of the acceleration of A 
relative to B in planar motion. 

(6. I 0) 

In the following examples we use Equations (6.8)-(6.10) to analyse motions 
of rigid bodies. To determine accelerations o/points and angular accelera­
tions of rigid bodies, usually you must first determine the ve.locities of the 
points and the angular velocities of the rigid bodies, because EqualiollS (6.9) 
and (6.10) contain the angular velocity. When you find a sequence of steps 
using Equal/O" (6.8) that determines the velocities and angular velocities, 
the same .~equence of steps using Equation (6.9) or (6.10) will determine the 
accelerations and angular acceleratirJns. 



The rolling disc in Figure 6.28 has counterclockwise angular velocity wand 
counterclockwise angular acceleration IX. What is the acceleration of point A? 
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Figure 6.28 

STRATEGY 

We know that the magnitude of the acceleration of the cenu'e of the disc is the 
product of the radius and the angular acceleration. Therefore we can expre~s the 
acceleration of A as the sum of the acceleration of the centre and the acceleration of ;""'''IT-_-''''':''''-~4_~_-~.-x 
A relative to the centre. We will do so both by inspection and by using Equation 
(6.10). 

SOLUTION 

In terms of the coordinate system in Figure (a). the acceleration of the centre B is )' 
3B == -rxR i. A's motion in a circular path of radius R relative to B results in the 
tangential and normal components of relative acceleration shown in Figure (b): 

Therefore the acceleration of A is 

= (-aR-w'R)i+allj 

Alternative Solution: The angular acceleration vector of the disc is C( = ex k, and 
the position of A relative to B is rA/8 = Ri (Figure (e)). From Equation (6.10), the )' 
acceleration of A is 

= -alli +(,k) x (Ri) w'(Ri) 

= (-all - w'R)i +allj 

(a) Acceleration of the centre of the disc. 

,n 

(b) Component of the acceleration of A 
relative to 8. 

(e) Position of A lelative to B. 
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Figure 6.29 

Bar AB in Figure 6.29 has a counterclockwise angular velocity of 10 rad/s and a 
clockwise angular acceleration of 300 rad/s2

. 'What are the angular accelerations of 
bars BC and CD? 

r 
I 

2m 

300 

2 m ---f.--- 2 III ~ 

STRATEGY 

Since we know the angular velocity of bar AB. we can determine the velocity of 
point B. Then we can apply Equation (6.8) to points C and D to obtain an equation 
for Vc in terms of the angular velocity of bar CD. We can also apply Equation (6.8) 
to points B and C to obtain an equation for Vc in tetms of the angular velocity of bar 
BC. By equating the two expre~sions for vc, we will obtain a vector equation in two 
unknowns: the angular velocities of bars BC and CD. Then by following the same 
sequence of steps using Equation (6.1 0), we can obtain the angular accelerations of 
bars BC and CD. 

SOLUTION 

The velocity of B is (Figure Ca)) 

0+ (10k) x (2l) 

= -20im/s 

A 

(e) Determining the motioll of B. 



Let WeD be the unknown angular velocity of bar CD (Figure (b». The veloCIty of C 
in tenus of the velocity of D is 

Vc = VD + ffiCD x rC/JJ 

k 

= 0 + 0 0 wCD 

-2 2 0 

Denoting the angular velocity of bar BC by mBC (Figure (e», the velocity of C in 
tenns of the velocity of B is 
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c 
; I 
1:1 

I j 
2m 

Vc = VB + "Be x rCIB (b) Determining the imotion of C in 
terms of the anIDllar motion of bar 
CD. = -201 + (w"C k) x (21) 

= -201 + 2WBCJi 

Equating our two expressions for ve! 

-2WCD I - 2(OCDj = -201 + 2WBcJ 

and equating the i and j components, we obtain WeD = 10 rad/s and OJBe = 
-IOrad/s. 

We can use the same sequence of steps to determine the angular accelerations. 
The acceleration of B is (Figure (all 

= 0 + (-300 k) x (2J) - (10)2(2j) 

= (6001 - 200j) mis' 

The acceleration of C in terms of the acceleration of D is (Figure (b)) 

j k 

=0+ 0 0 (XeD -(IO)'(-21+2j) 

-2 2 0 

= (200 2.co) 1 - (200 + 2'cD)i 

The acceleration of C in terms of the acceleration of B is (Figure (e) 

Be :;;;;;; 8H + :tHe x RC/B (jJ~crC!B 
= 6001- 200j + (>Be k) x (2 i) - (-10)2(21) 

= 4001 - (200 - 2.Bel j 

Equating the expressions for a(,. we obtain 

(200 - 2.co) 1 - (200 + 2aco) j = 4001 - (200 2.Bcl j 

and equating i and i components, we obtain the angular acceleration, "BC = 
100rad/s' and 'CD = -IOOrad/s2 

(c:) Determining the motion of C in 
tenns of tihc angular motion of bar 
Be. 

P 
I 
I 
J, 

I 
! 
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6.67 The rigid body rotates about the z axis with counterclock­
wise angular velocity wand Gounterclock-wise angular acceleration 
IX. Detetmine the acceleration of point A relative to point B (a) by 
using Equation (6.9); (b) by using Equation (6.\0). 

P6.67 

6.68 The bar rotate, with a counterclockwise angular velocity of 
5 rad/s and a counterclockwise angular acceleration of 30 fad/s2

. 

Determine the acceleration of A (a) by expressing it in tenns of polar 
coordinates; (b) by using Equation (6. 9); (c) byusing Equation (6.1 0). 

y 

30 5 
A 
-x 

m .1 P6.68 

6.69 The bar rotates with a counterclockwise angular velocity of 
5rad/s and a counterclockwise angular acceleration of 30rad/i? 
Dotonmine the acceleration of A (a) by using Equation (6.9); (b) by 
using Equation (6.10). 

)' 

P6.69 

6.70 The bar rotates with a constant angular velocity of 20 rad 
in the counterclockwise din:ction. 
(a) Determine the acceleratIon of point B. 
(b) Using your result from part (a) and Equation (6.10), dctcnni 
the acceleration of point A. 

y 

P6.7 

6.71 The disc rolls on the plane surface. The velocity of point 
is 6 m/s to the right, and its acceleration is 20 tn/s2 to the right. 
(a) What is the angular accderation vector of the disc? 
(b) Detcnminc the accelerations of points B, C and D. 

P6.7 



6.72 The angular velocity and angular acceleration of bar AB arc 
WAD = 2rnd/s, "AD = IOr.d/s', The dimensions of the rectangular 
plate are 300 Jrun x 600 mm, What are the angular velocity and 
angular acceleration of the rectangular plate? 

~ 
),~ 

500 nlln D 

300~111 
v( / 

P6.72 

6.73 The endpoints of the bar slide on the plane surfaces, Show 
that the acceleration of the midpoint G is related to the bar's 
angular velocity and angular acceleration by 

ac = ~L[("COSO - ",' sinO); - ("sinO + oi cosOli] 

,'\ 

\\ 
\ 

\ 

L 

P6.73 
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6.74 The disc rolls on the cirf:ular ~urface with a constant 
clockwise angular velocity of 1 rdd/s. What are the accelerations 
of points A and B? 

',-.-x 

P6.74 

6.75 The ring gear is stationary, and the. sun gear has angular 
acceleration of lOrad/s2 in the coqntercJo~kwise direction. Deter­
mine the angular acceleration of th~ planet gears. 

. Ring gear 

Plunet gears (3) 

SUIl gear 

P6.75 

6.76 The sun gear in Problem 6.75 4as a counterclockwise 
angular velocity of 4 rad/ s and a tlockwise angular acceleration 
of 12rad/s2

, What is the magni~de of :thc acceleration of the 
centrepoints of the planet gears? 
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6.77 The 1 m diameter disc rolls and point B ofthe 1 m long bar 
slides on the plane surface. Detennine the angular acceleration of 
the bar and the acceleration of point B. 

P6.77 

6.78 The crank AB has a constant clockwise angular velocity of 
200rpm (revolutions per minute). What arc the velocity and 
acceleration of the piston P'! 

R 

P6.78 

6.79 Bar AB has a counterclockwise angular velocity of IOrad/s 
and a clockwise angular acceleration of 20rad/s2

. Determine the 
angular acceleration of bar Be and the acceleration of point C. 

" 

-) 

--'---;--x 

P6.79 

6.80 The angular velocity and acceleration of bar AS are WAR '" 

2 radls, "An = 6 rad/s'. What are the angular velocity and angular 
acceleration of bar flD? 

y 

200mm 

~~Ii 
,100 I11Ill 

---.---,-----;-~x 
200nllll' I Iso_IIOO I .... +mJ1i~mm~ 

P6.60 

6.81 In Problem 6.80, if the angular velocity and acceleration of 
bar AB arc WAS = 2 rad/s, (i,AH 10 fad/s2

, wllat are the velocity 
and acceleration of point D? 

6.82 IfillAB ~ 6rad/s and "AS = 20rad/s', what arc the velocity 
and acceleration of point C? 

)' 

B 

T--~' 
100 mill " 

~ 
75 HUll -1'7

1

1..,-

~IOO mm~- 250 ""n----1 

P6.82 



6.83 A motor rotates the circular disc mounted at A, moving the 
saw back and forth. (The saw is supported by a horizontal slot so 
that point C moves horizontally.) The radiusAB is IOOmm, and the 
link BC is 350 mm long. In the position shown, e = 45" and the 
link BC is horizontal. lfthe disc has a constant angular velocity of 
one revolution per second counterclockwise, what is the accelera­
tion of the saw? 

y 

o 

P6.83 

6.84 Tn Problem 6.83, if the disc has a constant angular velocity 
of one revolution per second counterclockwise and (j = 180('1 what 
is the acceleration of the saw? 

6.85 If WAR =2rad/s, aA. =2radjs', WE' = Irad/s and 
'BC = 4 rad/s'. what is the acceleration of point C where the 
.scoop of the excavator is attached'! 

P6.85 

6.86 If the velocity of point C of the excavator in Problem 6.85 is 
\'c = 4 i m/s and is constant at the instant shown, what are 
0).'1.8, CXAB. OJBe and (J,BC? 
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6.87 Bar A8 rotates in the courterc1ockwise direction with a 
constant angular velocity of 10 radVs. Wh~t are the angular accel­
erations of bars Be and CD? 

I 
2111 

D~X 
10 nHt/S 

111l~~2H1~--I 
P6.87 

6.88 At the instant shown, bar AB has .no angular velocity but 
has a counterclockwise angular acceleration of IOr.d/s'. Dcter­
min~ the acceleration of point g , 

I 
B 

P6.88 

6.89 If WAH = 12 rad/s and aAO = JOOradj'" what are the 
angular accelerations of bars BC a~d CD? 

350mm--·~ 

P6.89 
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6.90 if WAB = 4rad/s counterclockwise and IXAB = 12 rad/s2 

cOlmtcrclockwisc, what is the acceleration of point C! 

c 

-1 -1T'~'~ 
600mm 

~j A 

j-600mm-
200 

I- 300 " 
mm 

111m 
300--1 
mm I 

E '-'--x 

P6.90 

6.91 In Problem 6.90, if WAS = 6rad/s clockwise and XDE = 0, 
what is the accelerdtion of point C? 

6.92 If arm AB has a constant clockwise angular velocity of 
0.8 fad/s, arm BC has a constant clockwise angular velocity of 
0<2 rad/s, and ann CD remains vertical, what is the acceleration of 
the part D? 

y 

6.94 In Problem 6.92, if you want arm CD to remain vertical an 
you want part D to have velocity VD = l.Oim/s and zero aced 
eration, what are the necessary angular ve10cities and angula 
accelerations of arms AB and Be? 

6.95 If the velocity of point C of the excavator in Problem 6.85 i 
zero and its acceleration is Be = 4 i mls2 at the instant shown, wha 

are WAB, WYC and (J.RC? 

6.96 The ring gear is fixed, and dIe hub and planet gears ar 
bonded together. The cOMeeting rod has a countercloekwis 
angular acceleralion of 10 rad/s'. Determine the angular acccicra 
tions of the planet and Sill1 gears. 

Planet gcal ~ .. ~ ____ 

Hub gear . ____ . 

Connecting -_ 

rod 

Sun gear 

Ring gear 

1\ 

P6.9 

6.97 The connecting rod in Problem 6.96 has a counterclockwis 
angular velocity of 4 rad/s and a clockwise angular acceleration 0 

12rad/s2
. Determine the magnirude of the acceleration ofpolnt A 

6.98 The large gear is fix.,d. The angular velocity and angul 
acceleration of bar AB are (l)A.B = 2rad/s j IXAB = 4rad/s2

, Deter 
mine the angular accelerations of bars CD and DE, 

100 
------1 111m 1---- 400 mm --t-250 I11m-l 

C D 
P6.92 -,~~ 

100111111 

6.93 In Problem 6.92, if arm AB has a constant clockwise -1----. 
angular velocity of O.8rad/s and you want part D to have zero I , 

I · d I . h h I I" 250 mm ve OClty an acce eratlOn, w at are t e necessary angu ar VI.:: Deities I 
and angular accelerations of aims Be and CD? I 

..i..d!~~ E 

P6.9 



6.5 Sliding Contacts 
Here we consider a type of problem superficially similar to those we have 
discussed previously ttl this chapter, but which requires a different method of 
solution. For example, suppose that we know the angular velocity and angular 
acceleration of the bar AB in Figure 6.30, and we want to determine the 
angular velocity and angular acceleration of bar AC. We cannot use the 
equation VA = VB + '" x fAIB to express the velocity of point A in terms of the 
angular velocity of bar AB, because we derived it under the assutoption that 
points A and B are points of the same rigid body. Point A is not a part of the bar 
AB, but moves relative to it as the pin slides along the slot. This is an example 
of a sliding eontact between rigid bodies. To solve such problems, we must 
re-derive Equations (6.8}--(6.10) without making the assumption that A is a 
point of the rigid body. 

Figure 6.30 
Linkage with a sliding contact. 

In Figure 3.31, we assume the coordinate system is body· fixed and that B is 
a point of the rigid body, but we do not assume that A is a point of the rigid 
body. The position of A relative to 0 is 

fA =fB+xi+yj+zk 
~. 

fAIB 

where x, y and z are the coordinates of A in terms of the body-fixed coordinate 
system. Our next step is to take the time derivative of this expression to obtain 
an equation for the velocity of A. In doing so, we recognize that the unit 

y Figure 6.31 
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A point B of a rigid body, a body-fixeq 
coordinate system, and an arbitrary point A, 

o 



272 CHAPTER 6 PLANAR KINEMATICS Of RIGID BODIES 

vectors i, j and k are not constant, because they rotate with the body-fixe 
coordinate system: 

dx. di dy. dj dz dk 
VA = VB +-I+X-+- J +v~+- k+z--

dt dt dt • dt dt dt 

What are the time derivatives of the unit veetprs'? in Section 6.3 we showed 
that if fp/E is the position of a point P of a rigid body relative to another point 
B of the same rigid body, drp/Bjdl == Vp/B ,~ '" x rPj', Sine:c we can regard 
the unit vector i as the position vector of a point P of the rigid body (Figure 
6.32), its time derivative is d ij dt = '" x i. Applying the sam" argument to the 
unit vectors j and k, we obtain 

di . 
-d=oox, 

t 

dj . 
-=OOXj 
dt 

dk 
~="'xk 
dt 

Figure 6.32 
Interpreting i as the position vector of a 

point P relative to B, 

Figure 6.33 

Expressing the velocity of A in tem)s of the 
velocity of a point B of the rigid body. 

Using these expressions, we can write the velocity of point A as 

where 

dx. dy. dz 
vArel = dt 1+ dt J + dt k 

(6.11) 

(6.12) 

is the velocity of A relative to the body-fixed coordinate system. That is. VArd 

is the velocity of A relative to the rigid body. 
Equation (6.11) expresses the velocity of a point A as the sum of three 

terms (Figure 6.33): the velocity of a point B of the rigid body, the velocity 

A • "',\\ 
) 

, 



w x r AlB of A relative to B due to the rotation of the rigid body, and the 
velocity v A ",I of A relative to the rigid body. 

To obtain an equation for the acceleration of point A, we take the time 
derivative of Equation (6.11) and use Equation (6.12). The result is 

where 

aA = aB+aMd+2w X VA rei +~ x rAIB+w x (w x rAIB) 

aAIR 

is the acceleration of A relative to the body-fixed coordinate system. 

(6.13) 

(6.14) 

The terms VA and "A are the velocity and acceleration of point A relative to 
a non-rotating coordinate system that is stationary relative to point 0. The 
terms VA rei and aA rei are the velocity and acceleration of point A measured by 
an observer moving with the rigid body (Figure 6.34). If A is a point of the 
rigid body, VA "I and BA,d are zero, and Equations (6.11) and (6.13) are 
identical to Equations (6.8) and (6.9). 

In the case of two-dimensional motion, we can express Equation (6.13) in 
the simpler form 

? 
aA = 3B + 3Arel + 2w X VA rei + IJ. x rAIB - orrAIB 

(6.15) 
aAjB 

In the following examples we analyse the motions of linkages with sliding 
contacts. You can use the same approach that you applied to systems of 
pinned rigid bodies, beginning with points whose velocities and accelera­
tions are known and applying Equations (6.11) and (6.15). 
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Figure 6.34 

Imagine yQurs~lf to be stationary relative to 
the rigid body. 
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1 
400mm 

c 1 
Figure 6.35 

y 

(a) Expressing the velocity and acceleration 
of A in terms of the angular velocity 
and acceleration orbar AB. 
y 

R 

r !jOD m111 ~~ .• - .. -

(b) DIrection of the velocity of A relative 
to the body-lixed coordinate system. 

(c) Expressing the velocity and acceleration 
orA in lenns of the angular velocity 
and acceleration arhar AC. 

Bar AD in Figure 6.35 has a counterclockwise angular velocity of 2 rad/s and u 
counterclockwise angular acceleration of lOrad.js2., 
(a) Dctennine the angular velocity of bar AC and the velocity ofthe pin A relative to 
the slot in bar AB. 

(b) Determine the angular acceleration ofhar AC and the accelemtion of the pin A 
relative to the slot in bar AB. 

STRATEGY 

We can use Equation (6.11) to express VA in terms of the velocity of A relative to the 
slot in the bar and the known angular velocity of bar AB. A and C are both points of 
the bar AC, so we can also express VA in terms ofUle angular velocity orthe bar AC 
in the usual way, By equating the resulting expressions for VA. we will obtain a 
vector equation in terms of the velocity of A relative to the slot and the angular 
velocity of bar AC Then, by fol1ow,ing the same sequence of steps but this time 
using Equation (6.15), we can obtain the acceleration of A relative to the slot and the 
angular acceleration of bar AC. 

SOLUTION 

(a) Applying Equation (6.11) to bar AB (Figure (a)), the velocity of A is 

k 

=O+VAn:l+ 0 o 2 

0.8 OA 0 

Assuming the coordinate system in Figure (a) to be body~fixed with respect to bar 
AB, the velocity v A rei is the velocity of A relative to this coordinate system. We don 't 
know the magnitude of VA reI. but its direction is parallel to the slot (Figure (b)). 
Therefore we can express it as 

where Ii = aTctan (OAjO.8). Substituting this expression into our equation lor VA, we 
obtain 

Let mAC be the angular velocity of baT AC (Figure (c)). ExpTessing the velocity of A 
in terms of the velocity of C) we obtain 

VA = Vc + WAC X rA/C 

= 0 + (WAC k) X (OA j) 

= ····0.40).4C i 

Notice that there is no relative velocity tenn in this equation, because A is a point of 
the bar AG. Equating our two expressions for "A, we obtain 

(VAre' cosf! - O.8)i + (VA",' sinf! + 1.6)j = -0.4WACi 
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Equating i and j components yields the two equations 1 
VArcl cosfi 0.8 = -O.4WAC 

VA", sin # + 1.6 = 0 

Solving them, we obtain V.4~' = -3.58 mls and wAC = IOradls, At this instant, the 
pin A is moving relative to the slot at 3.58 m/s towards B. The vector YAre] is 

VA~' = -3,58(cos/ll + sin{Ji) = (-321 i -1.6j)m/s 

(b) Applying Equation (6.15) to bar AB (Figure (b»), the acceleration of A is 

k k 

o 2 + 0 o 10 

-3.2 -1.6 0 0.8 0.4 0 

- (2)'(0.8 i + 004 j) 

The acceleration of A relative to the body .. fixcd coordinate system is parallel to the 
slot (Figure (d», so we can write it in the same way as we did VA rei: 

Substituting this expression into our equation for aA gives 

.4 = (aAnl,Cosji - 0.8)i + (aA~' sinp - 6.4)j 

Expressing the acceleration of A in terms of the acceleration of C (Figure (c», we 
obtain 

aA = Be + tXAC x rAle - w~c fAjC 

= 0 + ('.4(, k) x (004 j) - (10)'(0.4 J) 

= -O.4'AC i 40 i 

Equating our expression for aA, we obtain 

Equating i and j components yields the two equations 

aArci cos fJ - 0,8 :::;;;; -O.4o:Ac 

aAtei sin f3 - 6.4 = -40 

Solving them, wo obtain aA~' = -75.13 ml" and .AC = l70r.d/s', At this instant, 
tho pin A is accelerating relative to the slot at 75.13 ml" towards E. 

y 

(d) 

--'--.\' 

Direction 6£ the acceleration of A 
relative td the bodyMfixcd coordinate 
system, 

I 

I 

i 

I 
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Figure 6.36 

y 

x 

(0) Dctcnnining the velocity of point B. 

y 

Bar AB in Figure 6.36 rotates with a constant counterclockwise angular velocity of 
I rad/s, The block B slides in a circular slot in the curved bar Be At the instant 
shown, the centre of the circular slot is at D. Determine the angular velocity and 
angular acceleration of bar Be. 

STRATEGY 

Since we know the angular velocity of bar All, we can determine the velocity of 
point B, Because B is not a point of bar Be, we must apply Equation (6.11) to points 
Band C. By equating our expressions for VB, we can solve for thl~ angular velocity 
of bar Be. Then, by following the same sequence of steps but this time using 
Equation (6.15), we can dctennine the angular acceleratIon of bar BC 

SOLUTION 

To determine the velocity of B, we express it in tenns of the velocity of A and the 
angular velocity of bar AB: VB VA + WAR X r.8fA' In tenus of the coordinate 
system shown in Figure (a), the pOSition vector of B relative to A is 

rRIA = (0,500 + 0,50000s P) i + 0.350 i = (0,857 i + 0.350 j) m 

where fJ = arcsin (350/S00) =44A'. Therefore the velocity of B is 

VB = VA + (,JAB X ffJ/A = 0 + 

= (-0.350 i + 0,857 j) m/s 

i 

o 0 

0,857 0350 

k 

1 

o (6,16) 

To apply Equation (6.11) to points Band C, we introduce a coordinate system with 
its origin at C that rotates with the curved bar (Figure (b». The velocity of B is 

(6,17) 

m
8

( The positIOn vector of B relative to C is 

c ---" 

(b) A coordinate system fixed with respect 
to the cUived bar, 

rHIC = -(0500 - 0,500cos P) i + 0.350 j = (-0,143 i + 0.350 j) m 

Relative to the body1ixed coordinate ,system, point B moves in a clfcular path about 
point D (Figure (c)), In tenus of the angle p, the vector "BreI is 

VII rei = -VlIrcl sin{3i + /..-'BrclcosP,j 

We substitute these expressions for r.BjC and VBrt] into Equl:ltion (6.17), obtaining 

k 

VB = -VBrel sinfJi +1)Brel cos{Jj- o 0 

~O,l43 0,350 o 



Equating this expression for VB to its value given in Equation (6.16) yields the two 
equations 

-VB~l sinfi - O.350WBC = -0.350 

VBml cosfi - O.143wBc = 0.857 

Solving them, we obtain VBrel = l.Om/s and WBC = -l.Orad/s. 
We follow the same sequence of steps to dctcnnine the angular acceleration of 

bar BC. The acceleration of point B is 

= 0 + 0 - (! ),(0.857 I + 0.350 j) 

= (-0.857 i 0.350 j) mis' 

(6.18) 

Because the motion of point B relative to the body-fixed coordinate system Is a 
circular path about point D, there is a tangential component of acceleration, which 
we denote aRt, and a normal component of acceleration v~red(O.5 m). These 
components are shown in Figure (d). In tenns of the angle p, the vector aBrd is 

'B"I = - am sin II i + aBt cos fJ j 
- (v~rol/O.5) cos /I i - (v~rel/O.5) sin Ii j 

Applying Equation (6.15) to points B and C, the acceleration or B is 

as = ac + aSrel + 2woc x VSrd 

+ ClBe x fSIC - w~CrR/(, 

= 0 - (lm sin fi I + aBt cos fi j 

- [(1)2/0.5] cos Ii I - [(1)2/0.5] sin Ii j 

j k 

+2 0 0 -1 

-(I)sinfi (I)co'/I 0 

i j k 

+ 0 0 IY.BC - (-I)'(O.l431+0.350j) 

-0.143 0.350 0 

Equating this expression for an to its value given in Equation (6,18) yields the two 
equations 

-aRt sin P 0.3500BC + 0.143 = -0.857 

aB, cos P O.143'BC 0.350 ~ -0.350 

Solving them, we obtain aBt = 0.408 mis' and "Be = 2.040 rad/s2. 

LJ3 
1) 
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y 

(e) Velocity of JJ relative to the body-fixed 
coordinat¢ system. 

(d) Acceleration of B rclative to the 
body-fixed coordinate system. 

1 
J 
I , 
i 
I 

I 
I 
J 
; 
I 
I 

•• 

! 
! 

I 
I 

~~==~=~3~mm~m~~~~~~2~~~~C.~~=~~~~~==~::~=~:lj 



278 CHAPTER 6 PLANAR KINEMATICS OF RIGID BODIES 

6.99 The bar rotates with a constant counterclockwise angular 
velocity of 1 0 rad/s~ and the sleeve A slides at 4 m/s relative to the 
bar. Use Equation (6.1!) to detennine the velocity of A. 

y 

P6.99 

6.100 The sleeve A in Problem 6.99 slides relative to the bar at a 
constant velocity of 4 m/s. Use Equation (6.15) to dctcnninc the 
acceleration of A. 

6.101 The sleeve C slides at I mls relative to the bar 8D. What is 
its velocity? 

--------x 

mill 

P6.101 

6.102 In Problem 6.101, the angular accelerations of the two 
bars are zero and the sleeve C slides at a constant velocity of I mls 
relative to bar BD. What is the acceleration of the sleeve C? 

6.103 Bar AC has. an angular velocity of 2 rad/s in the counter­
clockwise direction thal is decreasing at 4rad/s2. The pin at C 
slides in the slot in bar BD. 
(a) Determine the angular velocity of bar BD atld the velocity of 
the pin relative to the slot. 
(b) Determine the angular acceleration of bar BD and the accel~ 
em,tion of the pin relative to the slot. 

Dc 

100 nun 

f--- ~, 17~ llllll-----..j 
P6.103 

6.104 In the system shown in Problem 6.103, the velocity of the 
pin C relative to the slot is 500rnrn/s upwards and is decreasing at 
lOOOnunjs2. What a,re the angular velocity and acceleration of bar 
AC! 

6.105 In the system showo in Problem 6.103. what should the 
angular velocity and acceleration of bar AC be if you want the 
angular velocity and acceleration of bar ED to b(: 4 rad/g counter~ 
c.!ockwise and 24 fad/s2 counterclockwise, respectively? 

6.106 Bar AB has an angular velocity of 4 radls in the clockwise 
direction. What is the velocity of the pin B relative to the slot? 

A 

'---SOrum 

/J 
& :;0:. c:J 

T 
60mm 

I 

~-j 
. i 

P6.106 



6.107 In the system shown in Problem 6.106, bar AB has an 
angular velocity of 4radjs in the clockwise djrection and an 
angular acceleration of IOradjs2 in the counterclockwise direction. 

What is Ihe acceleration of Ihe pin B relative to Ihe slot? 

6.108 Arm AB is rotating at 4radJs in the clockwise direction. 
Detennine the anhTU1ar velocity of arnl Be and the velocity of point 
B relative to the slot in ann Be. 

P6.108 

6.109 Ann AB in Problem 6.108 is rotating with a constant 
angular velocity of 4radjs in the clockwise direction. Dctcm1inc 
the angular acceleration of arm Be and the acceleration of point B 
relative to the slot in arm BC 

6.110 The angular velocity WAC = 5C per second. Determine the 
angular velocity of the hydraulic actuator BC and Ihe rate at which 
it is extending. 

P6.110 
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6.111 In Problem 6.110, if the jangulaT velocity ())AC = 5' per 
second and the angular accele~ation ¢.lAC = -2" per second 
squared, detennine the angular acceleration of the hydraulic 
actuator BC and the rate of change of its rate of extension. 

6.112 The sleeve at A ~lides up;wards at a constant velocity 0 

10m/s. The bar AC slides throug~ the sl¢eve at B. Determine Ihe 
angular velocity of bar AC andl:he velocity at which it slides 
relative to the sleeve at B. 

r \0 m/~ 

P6.112 

6.113 In Problem 6.112, the sibeve at A slides upwards at a 
constant velocity of 10 TIlls. Deten)line the angular acceleration 0 

the bar AC and the Tate of change iJf thc velocity at which it slides 
relative to the sleeve at B. 

6.114 The block A slides up tlle inclined surface at 0.6 m/s. 
Dctcmlinc the angular velocity of bar AC and the velocity 0 

point C. 

y 

fo--"--'-- 1 -150 III ---~+~ 0.750 111 

P6.114 

6.115 Tn Problem 6.114, the block A slides up Ihe inclined 
surface at a constant velocity of (I.6m/s. Determine the angular 
accelemtion of bar AC and the acceleration of poinl C. 
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6.116 The angular velocity of the scoop is 1.0rad/s clock­
wise. Determine the rate at which the hydraulic actuator AB is 
extending. 

B 

1.----1500 min ---1.----..1.-
:lO() 
nun 

c 

/ 
Scoop 

P6.116 

6.117 The angular acceleration of the scoop in Problem 6.116 is 
zero. Detennine the rate of change of the rate at which the 
hydraulic actuator AB is extending. 

6.118 Suppose that the curved bar in Example 6.9 rotates with a 
counterclockwise angular velocity of 2 rad/s. 
(a) What is the angular velocity of bar AB? 
(b) What is the velocity of the block B relative to the slat? 

6.119 Suppose that the curved bar in Example 6.9 has a clock­
wise angular velocity of 4 rad/s and a counterclockwi~c angular 
acceleration of IOrad/s2

, What is the angular acceleration of 
bar AB? 

6.120 The disc rolls on the plane surface with a couJ1terclock~ 
wise angular velocity of 10 Tad!s. Bar AB ,lide, on the surface of 
the disc at A. Deiennim: the angular velocity of bar AB. 

10 

300 

P6.120 

6.121 In Problem 6.120. the disc rolls on the phme surface with a 
constant counterclockwise angular velocity of JOrad/s. Detennine 
the angular acceleration of the bar AB. 

6.122 Bar Be rotates with a cOlmterclockwise angular velocity 
of 2rad/s. A pin at B slides in a circular slot in the rectangular 
plate. Determine the angular velocity of the plate and the velocity 
at which the pin slides relative to the circular slot. 

30mm 
',:" 

i 

400101-+- 60mm---....j 

P6.122 

6.123 The bar Be in Problem 6.122 rotate, with a constant 
counterclockwise angular velocity of2 fad/so Detennine the angu­
lar acceleration of the plate. 

6.124 By laking the time derivative or Equation (6.11) and using 
Equation (6.12), dcrive Equation (6.13). 



6.6 Rotating Cc)ordinate 
Systems 

In this section we revisit the subjects of Chapters 2 and 3 - the motion of a 
point and Newlon's second law. In some situations it is convenient to describe 
the molion of a point by using a cooardin.te system that rotates. For example, 
to measure the motion of a point relative to a moving vehicle, you might use a 
coordinate system that moves and rotates with the vehicle. Here we show how 
the velocity and acceleration of a point are related to their values relative to a 
rotating coordinate system. In Chapter 3 we mentioned the example of playing 
tennis on the deck of a cruise ship. If the ship translates with constant velocity, 
you can use the equation:!: F = ma expressed in terms of a coordinate system 
fixed relative to the ship to analyse the ball's motion. You cannot do so if the 
ship is turning, or changing its speed. However, you can apply the second law 
using coordinate systems that accelerate and rotate by properly acconnting for 
the acceleration and rotation. Wt~ explain how this is done. 

Motion of a Point Re/tative to a Rotating 
Coordinate System 
Equations (6.11) and (6.13) give the velocity and acceleration of an arbitrary 
point A relative to a point 8 of a rigid body in temlS of a body-fixed coordinate 
system: 

(6.19) 

(6.20) 

But these results don't require us to assume that the coordinate system is 
connected to some rigid body. They apply to any coordinate system rotating 
with angular velocity wand angular acceleration a (Figure 6.37). The terms VA 

and aA arc the velocity and aoceleration of A relative to a non-rotating 
coordinate system that is stationary relative to 0. The terms VA «I and 3A rei 

are the velocity and acceleration of A relative to the rotating coordinate system. 
That is, they are the velocity and acceleration measured by an 'observer' 
moving with the rotating coordinate system (Figure 6.38). 

The fol/owing examples demonstrate applications of rotating coordinate 
systems. If you know the motion ofa point A relative to a rotating coordinate 
system, you can use Equations (6.19) and (6.20) to determine v" and aA • Tn 
other situations, you will know v A and aA' and will want to use Equations 
(6.19) and (6.20) to determine the velocity and acceleration of A relative to a 
rotating coordinate system. 
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y 

A 

o 

Figure 6.37 

A rotating coordinate system with origin B 
and an arbitrary point A. 

Figure 6.38 

Imagine yourself to be stationary relative to 
lhe rotating coordinate system. 

x 
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Figure 6.39 

'The merry-go-round in Figure 6.39 rotates with constant angular velocity w. 
Suppose that you are in the centre at B and observe toe motion of a second person 
A, using a coordinate system that rotates with the merry-go-round. Consider m'o 
cases. 

Case 1 The person A is not on the meny-go-round, but stands on the 
ground next to it. At the instant shown, what are his velocity and 
accelemtion relative to your coordinate system? 

Case 2 The persall A is on the edge of the merry-go-round and moves 
with it. What are his velocity and acceleration relative to the earth'? 

y y 

I I 
w OJ -::--.. 

B A B A 
x x 

0 

" 
0 

R R . 
" 

CASE 1 CASE 2 

STRATEGY 

This simple example clarifies the distinction between the lemlS VA, 8 .. and Ihe temlS 
VAre!. 3Arel in Equations (6,19) and (6.20). In case 1, A's velocity and acceleration 
relative to the earth, v A and 3A, are known: he is standing stilL We can use Equation 
(6.19) and (6.20) 10 determine VA rei and aA~" which are his velocity and acceleration 
relative to your rotating coordinate system. In case 2, VA rei and aA rei are known: A is 
stationary relative to your coordinate system. We can use JEquations (6.19) and 
(6.20) to detenninc VA and aA. 



SOLUTION 
Case 1 A is standing on the ground, so his velocity relative to the earth is VA = O. 
The angular velocity vector of your coordinate system is w = OJ k, and at the instant 
shown rAID = Ri. From Equation (6.19), 

VA = Vo + "And + W X rAIn: 

0= 0 + VA," +(wk) x (Ri) 

We find that YArd = -mRj. Ahhollgh A is stationary relative to the earth, VA rei is 
not zero. What does this term represent? As you sit at the centre of the meny-go­
round, you see A moving around you in a circ·ular path. Relative to your rotating 
coordinate system, A moves in a circular path of radius R in the clockwise direction 
with a velocity of constant magmtude mR. At the instant shown, A's velocity relative 
to your coordinate system is -wR j. 

You know that a point moving in a circular path of radius R with velocity q) has a 
normal component of acceleration equaJ to v2 / R. Relative to your coordinate 
system, person A moves in a cin.:ular path of radius R with velocity mR Therefore, 
relative to your coordinate sY8tem, A has a normal component of acceleration 
((J)R)2jR = (JiR. At the instant shown, the normal acceleration points in the 
negative x direction. Therefore we (:onclude iliat A's acceleration relative to your 
coordinate system is aA 11:1 = _(1)2 R i. 

We can confirm this result with Equation (6.20). A's acceleration relative to the 
earth is 3A :;:;:;; O. The angular velocity vector of the coordinate system is constant, so 
" = 0 From Equation (6.20), 

0= 0 +'A~I +2(wk) x (-wRj)+ 0 + (wk) x [(wk) x (Ri)] 

Solving this equation for aA reh we obtain aA rei = _w2 R i. A's velocity and accel­
eration relative to your coordinate system are shown in Figure (a). 

Case 2 Relative to your coordinate system, A is stationary, so YAre! = 0 and 
aAre! = O. From Equation (6.19). A's velocity relative to the earth is 

VA =VB +'A~I + w x rAI" = O+O+(wk) x (Ri) 

= wRj 

In this case, A is moving in Ii circular path of radius R with Ii velocity of constant 
magnitude wR relative to the earth. 

From Equation (6.20), Als acceleration relative to the earth is 

3A = ao + aArei + 200 X VArel + 'X X rA/B + ro x (00 x rA/l1) 

=O+O+O+O+(wk) x [(wk) x (Ri)l 

= -w'Ri 

This is A's acceleration relative to the earth due to his circular motion. A's velocity 
and acceleration relative to the earfb are shown in Figure (b). 
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(a) 

/I A 

£uN 

The velocity and acceleration of II 
relative to the rotating coordinate 
system in case I. 

£uR 

(b) The velocity and acceleration of A 
relatIve to the earth in case 2. 
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Figure 6,40 

At the instant shown, the ship in Figure 6.40 is moving north at a constant speed of 
15.0 m/s relative to the earth and is turning towards the west at a constant rate of 
5.00 per second. Relative to the ship's body-fixed coordinate system, its radar 
indicates that the position, velocity and acceleration of the helicopter are 

TAIB = (420.01+236.2j +212.0k)m 

VArel = (-53.5 i + 2.0 j + 6.6 k)m/s 

BArel = (0041 - 0.2j -13.0k)m/s' 

What arc the helicopter's velocity and acceleration relative to the earth? 

STRATEGY 

We are given the ship's velocity relative to the earth and are given enough 
information to determine its accelemtion, angular velocity and angular acceleration. 
Therefore we can use Equations (6.19) and (6.20) to detennine the helicopter's 
velocity and acceleration relative to the earth. 

SOLUTION 

In tenus of the body-fixed coordinate system, the ship's velocity is 
VB = 15.0i m/s. The ship's angular velocity due to its rate of turning is 
w = (5.0/180)n ~ 0.0873 rad/s. The ship is rotating about the y axis. Pointing 
the arc of the fingers of the fight hand around the y axis in the direction of the ship's 
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rotation, the thumb points in the positive y direction, so the ship's angular velocity F"j 
vector is OJ = 0.0873 j rad/s. Th~: hchcoptcr's velocity relative to the earth is I!:I 

= 15.0i+(-53.5i+2.0J+6.6k)+ (I 0.087 

k 

o 
420.0 236.2 212.0 

= -(20.01 + 2.0 j -- 30.1 k) m/s 

We can determine the ship's acceleration by expressing it in terms of nonna! and 
tangential components in the fonn given by Equation (2.37l (Fignre (all: 

dv de 
a8 = -d e, + v-I C, = 0+(15)(0.0873),," 

t II 

The z axis is perpendicular to the ship's path and points towards the convex side of 
the path (Figure (b)). Therefore, in terms of the body~fixcd coordinate system, the 
ship's acceleration is aE = -lJlli, mjs2, The ship's angular velocity vector is 
constant, so Ct. = O. The hclicoph.:r's acceleration relative to the earth is 

DISCUSSION 

+ '" x (oo x rA/B) 

= -1.3lk+(OAi-O.2j -13.0k) 

k 

+2 0 

-53.5 

0.0873 

2.0 

o 
6.6 

j k 

+ 0 + (0.0873 j) x 0 0.0873 0 

4200 236.2 212.0 

= -1.65 i - 0.20 j 6.59 k m/" 

Notice the substantial dtfferences between the helicopter's velocity and acceleration 
relative to the earth and the values th~ ship mea~ure~ using its body~fixcd coordinate 
system. 

(0) Detenninitlg the ship's accclcmtion. 

C 
I 

(b) CorrcRpondcncc between the normal 
and tangemial components and the 
body-fixed coordinate system. 

·1 
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(a) 

.1 

(b) 

Figure 6.41 

(a) An inertial reference frame and a 
non~rotatitlg reference frame with its origin at 
the centre 0 f the earth. 
(b) Dctennining the motion of an object A. 

Inertial Reference Frames 
We say that a reference frame is inertial if you can use it to apply Newton's 
second law in the form ~ F = m a. Why can you usually assume that an earth­
fixed reference frame is inertial, even thongh it both accelerates and rotates? 
How can you apply Newton's second law using a coordinate system that is 
fixed with respect to an accelerating, turning ship or aeroplane? We are now in 
a position to answer these questions. 

Eorfh-Centred, Non-Rotating Coordinate System We begin by 
showing why a non-rotating reference frame fixed relative to the centre of 
the earth can be assumed to be inertial for the purpose of describing motions 
of objects near the earth. Figure 6.41(a) shows a hypothetical non-accelerating 
non-rotating coordinate system with origin 0, and a second non-rotating, 
earth-centred coordinate system. The earth, and therefore the earth-centred 
coordinate system, accelerates due to the gravitational attractions of the sun, 
moon, and so on. We denote the earth's acceleration by the vector go. 

Suppose that we want to determine the motion of an object A of mass m 
(Figure 6.4I(b». A is also subject to the gravitational attractions of the sun, 
moon, and so on, and we denote the resulting gl'lLvitational acceleration by the 
vector gAo The vector ~.F is tbe sum of all other external forces acting on A, 
inclucting the gravitational force exerted on it by the earth. The total external 
force acting on A is ~ F + mgA . We can apply Newton's second law to A, using 
our hypothetical inertial coordinate system: 

(6.21) 

where a.. is the acceleration of A relative to O. Since the earth-centred 
coordinate system does not rotate, we can use Equation (6.20) to write aA as 

where aA reL is the acceleration of A relative to the earth-centred coordinate 
system. Using this relation and our definition of the earth's acceleration 
as = gR' Equation (6.21) becomes 

(6.22) 

If the object A is on or near the earth, its gravitational acceleration gA due to 
the attraction of the sun and so on is very nearly equal to the earth's 
gravitational acceleration gB' If we neglect the difference, Equation (6.22) 
becomes 

(6.23) 

Thus you can apply Newton's second law using a non-rotating, earth-centred 
reference frame. Even though this reference frame accelerates, virtually the 
same gravitational acceleration acts on the ohject. Notice that this argument 
does not hold if the object is not near the earth. If you wanted to analyse the 
motion of a spacecraft travelling to another planet, for example, you would 
need to use a non-rotating, sun-centred reference frame. 



Earih-Fixed Coordinate System For 'down to earth' applications, the 
most convenient reference frame is a local, earth-fixed coordinate system. 
Why can we usually assume that an earth-fixed coordinate systen1 is inertial? 
Figure 6.42 shows a non-rotating coordinate system with its origin at the 
centre of the earth 0 and an earth-fixed coordinate system with its origin at a 
point B. Since we can assume that the earth-centred, non-rotating coordinate 
system is inertial, we can write Newton's second law for an object A of mass m 
as 

(6.24) 

where aA is A's acceleration relative to 0. The earth-fixed reference frame 
rotates with the angular velocity of the earth, which we denote by "'E. We can 
use Equation (6.20) to write Equation (6.24) in the form 

I: F = m aAre] + m[aB + 2"'E X vArel + WE X (WE X TA/B)] (6.25) 

where "Are] is A's accderation relative to the earth-fixed coordinate system. If 
we can neglect the terms in hrackets on the right side of Equation (6.25), the 
earth-fixed coordinate system is inertial. Let's consider each term. (Recall from 
the definition oftha cross product that IV x VI = IV II VI sin 0, where 0 is the 
angle between the two vectOfR. Therefore the magnitude of the cross product is 
bounded by the product of the magnitudes of the vectors.) 

• The term WE x (WE x r.</s): The earth's anb'll!ar velocity WE is approxi­
mately one revolution per day=7.27 x 1O--5 rad/ s. Therefore the mag­
nitude of this term is bounded by w~lrA/BI = (5.29 x 1O-')lrAIBI. For 
example, if the distance Ir.</BI from the origin of the earth-fixed 
coordinate system to the object A is 10000 m, this term is no larger 
than 5.3 X IO- 5 rn/s2

• 

o The term as: This term is Ihe acceleration of the origin B of the earth­
fixed coordinate system relative to the centre of the earth. B moves in a 
circular path due to the earth's rotation. If B lies on the earth's surface, this 
term is bounded by W~RE' where RE is the radius of the earth. Using the 
value RE = 6370 krn, we find that wtRc = 0.0337 m/s2 This value is too 
large to neglect for many pw-poses. However, lUlder normal circumstances 
this term is accounted for as a part of the local value of the acceleration 
due to gravi ty. 

o The term 2WE X VArd: This term is called the Coriolis acceleration. Its 
magnitude is bounded by 2WE IVA ,,11 = (1.45 x 1O-4)lvArolI. For example, 
if the magnitude of the velocity of A relative to the earth-fixed coordinate 
system is IOm/s, this term is no larger than 1.45 x IO- 3 m/s2 

We see that in most applications, the terms in brackets in Equation (6.25) can 
be neglected. However, in some cases this is not possible. The Coriolis accel­
eration becomes significant if an object's velocity relative to the earth is large, 
and even very small accelerations becomes significant if an object's motion must 
be predicted over a large period oftime. In such cases, you can still use Equation 
(6.25) to determine the motion, but you must retain the significant terms. When 
this is done, the terms in brackets are usually moved to the left side: 

(6.26) 
= maArc\ 
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Figure 6.42 
An earth~ccntrcd, nonrotating reference 
frame (origin 0), all earth-fixed reference 
frame (origm B), and an object A. 
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Figure 6.43 

(al An object in the northern hemisphere 
moving north, 

(b) Cross product of the earth '5 angular 
velocity with the objcct~ velocity, 

(c) Eftects of the COliolis force in the northern 
hemisphere. 

(d) An object in the southern hemi:sphcrc 
moving north. 

(e) Cross product of Ihe earth's angular 
velocity with the object's velocity, 

(f) Effect!=: of the Coriolis force in the southern 
hemisphere. 

Written in this way, the equation has the usual fOlm of NeVlton's second law 
except that the left side contains additional 'forces', We USe quotation marks 
because these terms are not forces, but are artefacts arising from the motion of 
the earth-fixed reference frame, 

The term -2m"'E x VA,,, in Equation (6,26) is called the Coriolis force, It 
explains a number of physical phenomena that exhibit different behaviours in 
the northern and southern hemispheres, such as the direction a liquid tends to 
rotate when going down a drain, the direction a vine tends to grow around a 
vertical shaft, and the direction of rotation of a storm, The earth's angular 
velocity vector "'E points notth, When an object in the northern hemisphere 
that is moving at a tangent to the earth's surface travels north (Figure 6.43(a»), 
the cross product WE x VArcl points west (Figure 6,43(b)), Therefore the 
Coriolis force points east- it causes an object moving north to tum to the right 
(Figure 6.43(c»), If the object is moving south, the direction ofv A rei is reversed 
and the Coriolis force points west; its effect is to cause the object moving south 
to tum to the right (Figure 6.43(c), For example, in the northern hemisphere 
winds converging on a centre of low pressure tend to rotate about it in the 
counterclockwise direction (Figure 6.44(a»), 

When an object in the southern hemisphere travels north (Figure 6,43(d», 
the cross product "', X VArel points east (Figure 6.43(e»), The Coriolis force 
points west and tends to cause the object to turn to the left (Figure 6.43(1)). If 
the object is moving south, the Coriolis force points east and tends to cause the 
object to tum to the left (Figure 6.43(1)), In the southern hemisphere, winds 
converging on a centre of low pressure tend to rotate about it in the clockwise 
direction (Figure 6,44(b»), 

N 

(a) (h) (e) 

N N 

I 

w" tr "v,_, 

~ 
WE X VA r~l 

, V' 

'I" i ;' 

~ I ' .':",' .' It ',' I 

','"i ,'.{',.,C , 
" ' .,:,r::::.,: 'J 

(d) (e) (f) 



(tt) (b) 

Arbitrary Coordinate System How can you analyse an object's motion 
relative to a coordinate system that undergoes an arbitrary motion, such as a 
coordinate system attached to a moving vehicle? Suppose that the coordinate 
system with its origin at 0 in Figw"c 6.45 is inertial, and the coordinate system 
with its origin at B undergoes an arbitrary motion with angular velocity '" and 
angular acceleration a, We can write Newton's second law for an object A of 
mass m as 

(6,27) 

where aA is A's acceleration relative to 0, We usc Equation (6.20) to write 
Equation (6,27) in the [mm 

:£:F m[a, 2,,, x VA "I + a x fAIE + W 

x (W x fAIB)] = maMd 
(6.28) 

where aA cd is A's acceleration relative to the coordinate system undergoing an 
arbitrary motio11, This is Newlon's second law expressed in tenns or a 
reference frame undcrgoing an arbitrary motion relative to an inertial reference 
frame, if you know the forces acting on A and the coordinate system's motion, 
you can use this equation to determine aA "I, 

;(F Figure 6,45 
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Figure 6.44 

Storms in the (aJ northern and (b) southern 
hemispheres. 

An inertial reference frame (origin 0) and a 
reference frame undergoing an arbitrary 
motion (origin B). 

(J 

/ 
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figure 6,46 

Suppose that you and a friend play tennis on the deck of a cruise ship (Figure 6.46), 
and use the ship~'flxed coordinate system with origin B to analyse the motion of the 
ball A. At the instant shown, the ball's position and velocity relative to the ship-fixed 
coordinate system arc rAI8~(4,5i+2.4j+IO,8k)m and VAml~(O,6i-

2.4 i + 6,6 k)mls, The ball weighs 0.5 N, and the aerodynamic fo'ce acting on it at 
the instant shown is F = (0.1 i + 0,004 j + 0,01 k) N, The ship is turning at a 
constant rate, and as a' result the acceleration of point B relative to the earth is 
a. = (-0,91 +0,06k)m/s2 and the ship's angular velocity is '" = 0,1 jrad/s, 
Determine the ball's acceleration relative to the ship'fixed coordinate system: <al 
assuming that the ship~fixed coordinate system is inertial; (b) not asswning that the 
ship-fixed coordinate system is inertial, but asswning that a local earth-fixed 
coordinate system is inertial 

y 

i 
! 

STRATEGY 

In part (a), we know the ball's mass and the external forces acting on it, so we can 
simply apply Newton's second law to dctcmline the acceleration. In part (b), we can 
express Newton's second law in the fonn given by Equation (6.28), which applie8 to 
a coordinate system undergoing an arbitrary motion relative to an inertial coordinate 
system. 



SOLUTION 
(a) Assuming that the ship-fixed coordinate system is inertial, Newton's second law 
is 

I:F:::::maArci : 

-0.5] + (0.1 1 + 0.04 j + 0.01 k) = (9°:1 ).A'" 
Solving this equation, we obtain the ball's accc1cration under the assumption that the 
ship-llxed coordinate system is inertial: 

"Arel = (\.961 - 9.73] + 0.20k)m/,' 

(b) Dividing Equation (6.28) by m gives 

[ 0 1 ][-O.5i+(0.Ii+O.04i+0.Olkl] 
.5/9.81 

k 

- (-0.91 +0.06k) 2 0 0.1 0 0 

0.6 -2.4 6.6 

k 

(0.1 j) x 0 0.1 0 = aA rel 

4.5 2.4 10.8 

The ball's acceleration under the assumption that an eartlFfixed coordinate system is 
inertial is 

"Ami = (1.591 - 9.73 j + 0.36 kJrn/s' 

DISCUSSION 
This example illustrates lhe care that you must exercise in applying NC\\1:on's 
second law. The acceleration we predicted by assuming that the ship-fixed 
coordjnate system is inertial does nol even approximate the correct value. 
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6.125 A merry-go~round rotates at a constant angular velocity of 
0.5 ract/s. The person A walks at a constant speed of I m/s along a 
radialline. Detem1ine A's velocity and acceleration relative to the 
earth when she is 2 m from the centre of the merry-go~round, using 
two methodo;;: 
(a) Express the velocity and acceleration in tenns of polar coordi­
nates. 
(b) Use Equations (6.19) and (6.20) to express the velocity aod 
acceleration in tennl'! of a body-fixed coordinate system with its x 
axis aligned with tht' line along which A walks and its z axis 
perpendicular to the merry~go-round. 

P6.12S 

6.126 A disc-shaped space stalion of radius R rotates with 
constant angular velocity w about the axis perpendicular to the 
page. Two persons arc stationary relative to the station at A and lJ, 
and 0 is the centre of the station. Using EquatJons (6.19) and 

(6.20) and the body-fixed coordinate system shown, (a) determme 
A's velocity and acceleration relative to a nen-rotating reference 
frame with its origin at 0; (b) determine A's velocity and accel~ 
eration relative to a non-rotating reference frame whose origin 
moves with point B. 

P6.126 

6.127 The metal plate is attached to a fixed ball and socket 
support at O. The pin A slides in a slot in the plate. At the instant 
shown. XA = 1m, dXA/dt = 2m/s. and it'XA/dt' = 0, and the 
plate's angular velocity and angular acceleration are ro = 2 k rad/s 
aod " = O. What are the x, y, z components of the velocity and 
acceleration of A relative to a non-rotating reference frame that is 
stationary with respect to 07 

y = 0.25x2 m 

P6.127 



6.128 Suppose that at the instant shown in Problem 6.127, 
XA = 1 rn, dxA/dt = -3m/s, and d'XA/di'- = 4m/s', and the 
plate's angular velocity and angular acceleration are 
'" = (-4j +2k)rad/s and" = (3i - 6j)rad/,'- What are the 
x, y, z components of the velocity and acceleration of A relative 
to a non-rotating reference frame tha1 is stationary with respect to 
0'1 

6.129 The coordinate system shown is fixed relative to the ship 
B. At the instant shown, the ship is salling north at 3 mls relative to 
the earth and its angular velocity is 0.02 rad/s clockwise. TIle 
aeroplane is flying cast at 120m/::; relative to the earth, and its 
position relative to the ship is YAiR = (!JOOi +600j +300k)m. If 
the ship uses it'! radar to measure the plane!s velocity relative to its 
body-fixed coordinate system, what is the result? 

P6.129 

6.130 The space shuttle is attempting to recover a satellite for 
repair. At the current time, the satellite's position relative to a 
coordinate system fixed to the shuttle is 50i m. The rate~gyros on 
the shuttle indicate that its current angular velocity is 
(0.05 j + 0.03 k) rad/s. The shuttle pilot measures the velocity of 
the 8atel1itc relative to thc body-fixed coordinate system and 
determines it to be (-2i I.5j+2.5k)m!,. What arc the 
x, y, z components of the satellite's velocity relative to a non­
rotating coordinate system with its origin at the shuttle? 

P6.130 
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6.131 The train on the circular track is travelling at a constant 
speed of 15 m!s in the direction shown. The train on the straight 
track is travelling at 6 mls in the direction shown and is increasing 
its speed at O.6m/s? Detcnninc the velocity of passenger A that 
passenger B observes relative to the coordinate system shown. 
which is fixed to the car in which 8 is riding. 

.> 

1.5(1 nl 

P6.131 

6.132 In Problem 6,131, detennine the acceleration of passenger 
A that passenger B observes relative: lo the coordinate system fixed 
to the car in which B is riding. 

6.133 The satellite /J is in a circular polar orbit (a circular orbit 
that intersects the poles). The radius of the orbit is R. and the 
magnitude of the satellite's velocity relative to a non-rotating 
reference frame with its origin at the centre of the earth is VA, At 
the instant shown, the satellite is above the equator, An observer B 
on the earth directly below the satellite measures its motion using 
the earth-fixed coordinate system shown. What arc thc velocity and 
acceleration of the 8atellite relative to B's earth-fixed coordinate 
system? The radius ofthe earth is R'J. and its angular velocity is We 

P6.133 
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6.134 A car A at north latitude L drives north on a north-south 
highway with constant velocity 1!. The earth's radius is RE and its 
angular velocity is WE. Determine the x, Yj z components of the 
car's velocity and acceleration (a.) relative to the earth~fixed 
coordinate system shown; (h) relative to a non-rotating coordinate 
system with its origin at the centre of the earth. 

N 

y I 
x 

P6.134 

6.135 The aeroplane B conducts flight tests of a missile. At the 
instant shown, the aeroplane is travelling at 200 m/s relative to lhe 
earth in a circular path of 200 m radius in the horizontal plane. The 
coordinate system is fixed relative to the aeroplane. The x axis is 
tangent to the plane's path and points forward. The)' axis points out 
of the plane's right side, and the z axis points out of the bottom of 
the plane. The plane's bank angle (the inclination of the z axis from 
the vertical) is constant and equal to 2W'. Relative to the aero­
plane"s coordinate system, the pilot measures the missile's position 
and velocity and determines them to be r,{tB = 1000 i m and 
VAIB = (100.0 i + 94.0 j + 34.2 k)m(s. 
(a) What are the x, y, z componcnts of the aeroplane~s angular 
velocity vector? 
(b) What are the x, y, z componcntR of the missile's velocity 
relative to the earth? 

P6.135 

6.136 To conduct experiments related to long-term space flight. 
engineers construct a laboratory on ~arth that rotates about the 
vertical axis at B with a constant angular velocity w of one 
revolution every 6 seconds, They establish a laboratory~fixed co­
ordinate system with its origin at .B and the i:" axis upwards. An 
engineer holds an object at point A, 3 m from the axis of rotation, 
and releases it. At the instant h(~ drops the object.. detennine its 
acceleration relative to the laboratory~tixed coordinate system (a) 
assuming that the laboratory~f1Xed coordinate l'Ystem is inertial; (b) 
not assuming that the laboratory-fixed coordinate system is inertIal. 
but assuming that an earth-fixed coordinate system with its urigin 
at B is inertial. 

P6.136 



6.137 A disc lying in the horizontal plane rolates about a fixed 
shaft at the origin with constant angular velocity w, The slider A of 
mass m moves in a smooth slot in the disc. The spring is 
unstrctchcd when x = 0, 
(al By expressing Newton's second law in terms of the body-fixed 
coordinate system, show that the slid'~rls motion is governed by the 
equation 

d'x + (~_ 02)X = 0 
dt2 m 

(b) The slider is given an initial velocity dxjdt = Vo at x O. 

Dctcnninc its velocity I:l~ it function of x. 

P6.137 

6.138 Engineers conduct flight tests of a rocket at 30" north 
latitude. They measure the rocket's motion using an earth-fixed co­
ordinate system with the x axis upwards and the y axi::; northwards, 
At a particular lllstant, the m3.ss of the rocket is 4000 kg, its 
velocity relative to their coordinate system is (20001 + 2000i) mis, 
and the Slim of the forces exerted on 1hc fm.:ket by its thrust~ weight 
and aerodynamic forces is (40Oi + 400j)N. Determine the rocket's 
acceleration relative to their coordinate system (a) assuming that 
their earth-fixed coordinate system is inertial; (b) not assuming that 
their earth-lixed coordinate system is inertial. 

N 

I 

P6.138 
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6.139 Consider a point A on the surtace of the earth at north 
latitude I .. The radius of the earth i'l RE and its angular velucity is 
WE. A plumb bob suspended just above the ground at pomt A will 
hang at a small angle fJ relative to the vertical because of the earth's 
rotation. Show that P is related to the latitude by 

W~RE sinL cosL 

g - UJ~RE cos2 L 
tanp 

Strategy: Using the eanh-fix~~d coordinate system shovo'O, 
express Newton's second law in the foml givcn by EquatIon (6.25). 

N 

y 

A 

// 
P6.139 

6.140 Suppose that a space station is in orbit around the earth 
and two astronaut:s on the station toss a ball back and forth. They 
observe that the baJJ appears to travel betwccn them in a straight 
line at constant velocity. 
(a) Writc Newton's second law for the ball as it travels between 
them in tenus of a non~rotating coordinate system that is stationary 
relative to the statIon. What is the term I: F? Use the equation to 
explain the behaviour of the ball observed by the astronauts. 
(b) Write Newton~s second law for the ball as it travels between 
them in terms of a non~rotating coordinate system that is stationary 
relative to the centre of the earth. What is the term L F') Explain 
the difference between thiS equation and the onc you obtained III 

part (a). 



296 CHAPTER 6 PLANAR KINEMATICS OF RIGID BODIES 
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Chapter Summary 
A rigid body is an idealized model of an object in which the distance between 
every pair of points of the object remains constant. If a rigid body in motion 
does not rotate, it is said to be in translation. If the centre of mass moves in a 
fixed plane and an axis of a body-fixed coordinate system remains perpen­
dicular to the plane, it is said to wldergo two-dimensional, or planar, motion. 

Relative Velocities and Accelerations 
The angular velocity vector ~) of a rigid body is parallel to the axis of 
rotation and its magnitude 1001 is the rate of rotation. If the thumb of the right 
hand points in the direction of 01, the fingers eml around 61 in the direction of 
the rotatiou. The angular acceleration vector (X = dw/ dt is the rate of change 
of the angular velocity vector. 

Consider a point B of a rigid body, a body-fixed coordinate system, and an 
arbitrary point A (Figme (a». The velocities VA and Vo of the points relative to 
o are related hy 

Equation (6.11) 

where v A rei is the velocity of A relative to the body-fixed coordinate system. If 
A is a point of the rigid body, VA rei is zero. 

The accelerations aA and aD of the points relative to 0 arc related by 

Equ.tion(6.t3) 

where aA rei is the acceleration of A relative to the body-fixed coordinate 
system. In plane motion, the term 00 x (m x rA/B) can be written in the 
simpler form -airA(H. 

If A is a point of the rigid body, v M,I and aA rei are zero. 

Instantaneous Centres 
An instantaneous centre is a point of a rigid body whose velocity is zero at a 
given instant. Consider a rigid body in plane motion, and suppose that C is an 
instantaneous centre. The velocity of a point A is perpendicular to the line 
from C to A and its magnitude is the product of the distance from C to A and 
the angular velocity (Figure (b». 

(b) 



If you know the directions of the motions of two points A and B of a rigid 
body in planar motion, lines drawn through A and B perpendicular to their 
directions of motion intersect at the instantaneous centre (Figure (e)). 

Dlrectiulls 
of motion 

/ 
----- /-\--
A/ '\ 

>~ n 
"-. 

(c) 

Rotating Coordinate Systems 
Consider a point A and a coordinate system with origin B that rotates 'With 
angular velocity wand angular acceleration c< (Figure (d). The velocities of A 
and B relative to a non-rotating coordinate system that is stationary with 
respect to the reference point 0 are related by 

Equation (6.19) 

where VA rei is the velocity of A relative to the rotating coordinate system. The 
accelerations of A and B relative to a non-rotating coordinate system that is 
stationary with respect to the reference point 0 arc related by 

+ '1. X rAjR + '" x (w x rAjB) 
Equation (6.20) 

where aA ,01 is the acceleration of A relative to the rotating coordinate system. 

y 

A 

o 
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6.141 Determine the vertical velocity VH of the hook and the 
angular velocity of the small pulley. 

I 
120 mmis l 

6.142 If the crankshaft AB is turning in the counterclockwise 
direction at 2000rprn (revolutions per minute), what is the velocity 
of the pif;ton? 

P6.142 

6.143 In Problem 6.142. if the piston is movttlg with velocity 
vc = 6j m/s. what are the angular velocities of the crankshaft AB 
and the connecting rod BC? 

6.144 In Problem 6.142, if the piston is moving with velocity 
Vc ~ 6jm/s and its acceleration is zero, what are the angular 
accelerations of the crankshaft AS and the connecting rod BC? 

6.145 Bar A B rotates at 6 radl s in the counterclockwise direc­
tion. Use instantaneous centres to determine the angular velocity of 
har BCD and the velocity of point D. 

y 

mm 

I 

1 
300mm 

~-,--j x 

Ion L 
111m I" 

P6.145 

6.146 In problem 6.145, bar AB rotates with a constant angular 
velocity of 6rad/s in the counterclockwise direction. Determine 
the acceleration of point D. 

6.147 Pojnt C IS moving to the right at 500mm/s. What is the 
velocity of the midpoint G of bar BC' 

y 
B 

-x 

P6.147 



6.148 In Problem 6.147, paml C is moving to the right with a 
constant velocity of 500mm/s, What is the accelenltion of the 
midpoint G of bar Be? 

6.149 In Problcm 6.147, if the velocity of point C is 
Vc = 25 i (mrnjs), what are the angular velocity vectors of anns 
AB and Be> 

6.150 Poiots B and C are tlle x-y plane. The angular velocity 
vectors of arms AB and Be arc "'AH -0.5 k (rad/s), 
lOBe = 2.0 k (rad/s). Determine the velocity of point C. 

y 

16() III 
J)J 

P6.150 

6.151 In Problem 6.150, if the velocity of point C is 
Vc = 1.0 i (m!s), what arc the angular vcloc.ity vectors of arms 
AB and Be> 

6.152 In Problem 6.150, if the angular velocity vectors of arms 
AB and BC are "'AB = -0.5k(rnd/s), "'8C = 2.0k(rad/s), and 
their angular acceleration vectors arc aAB = 1.0 k (radjs2), 
ctsc = 1.0 k (radjs2), what is the acceleration of point Cr 

6.153 In Problem 6.150, if the velocity of point C is 
Vc ~ 1.0i(rn/5) and a( = 0, what are the angular velocity and 
angular acceleration vectors of arm Be? 
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6.154 The angular velocity of ann AC is 1 rad/s counterclock~ 
wise. What is the angular velocilY of the scoop? 

P6.154 

6.155 The angular VelOCity of arm AC III Problem 6.154 IS 

2 rad/s countcrc1ockwi:Sl' and lh. angular acceleration is 4 rad/52 

clockwise. What is the angular acceleration of the scoop? 

6.156 Tf you want to program the robot so that, at the instant 
shown, the velocity of point D iii VD = (0.2 i + 0.8i) mls and the 
angular velocity o[arm CD is 0.3 radls counterclockwise, what are 
thc necessary angular velocities of anns AB and Be,) 

.~ 

.;~to 
!J'Il} . ' .., 

"-:- ! 

"':"~~~­
B~f) 

vr~ ____ . __ -,,-c· " ". . 

I", 250mm 

P6.1S6 

6.157 In Problem 6.156, If the acccleration of pomt [) aod the 
angular acceleration of ann CD are zero at the instant shown, what 
arc the angular accelerations of arms AB and BC! 
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6.158 Am1 AB is rotating at LOrad/s in the clockwise direction. 
Determine the angular velocity of arm Be and the velocity at which 
it slides relative to the sleeve at C. 

P6.158 

6.159 In Problem 6.158, ann AS is rotating with an angular 
velocity of IOradjs and an angular acceleration of 20 rad/s2, both 
in the clockwise direction. Detenninc the angular acceleration of 
arm Be. 

6.160 Ann AB is rotating with a constant cOlmterclockwisc 
angular velocity of 10rad/s. Determine: the vertical velocity and 
acceleration of the rack R of the rack and pinion gear. 

~ 150 . ..j.~_ ..tOO mrn --..J-
111m 

P6.160 

6.161 In Problem 6.160, if the rack R of the rack and pinion gear 
is moving upwards with a constant velocity of 3 m/s. what are the 
angtllar velocity and angular acceleration of bar Be? 

6.162 The bar AS has a constant counterclockwise angular 
velocity of 2 rad/s. The 1 kg collar C ,lides on the smooth 
horizontal bar. At the instant shown) what is the tension in the 
cable BC? 

P6.162 

6.163 An athlete exercises his ann by raising the 8 kg mass m. 
The shoulder joint A IS stationary. The distance AB is 300 mm, the 
distance BC is 400 mm, and the distance from C to the pulley is 
340 mm. The angular velocihes WAS = 1.5 rad/s and (j)Rr = 2 
rad/s are constant. What is the tension in the cable? 

P6.163 



6.164 The coordinate system rotates will, a constant angular 
vclocity OJ = 2 krad/s. The pomt A moves outwards along the x 
axis at a constant rate of 5 mJs 

(a) What are the velocity and ac(;elemtion of A relative to the 
coordinate system'? 
(b) Wllat are the velocity and acceleration of A relative to a ilOIl­

rotating coordinate system with its origin at B, when A is at the 
position x = I m? 

" 

L~5m/s 
~--.r 

P6.164 R A 

6.165 The coordinate system shown is fixed relative to the ship 
B, The ship uses its radar to meatiUTe the position of a stationary 
buoy A and determines it to be (400i+200j)m. The ship also 
measures the velocity of the buoy relative to its body-fixed 
coordinate system and dete1111ines it to be (2i 8j) m/s. What 
are the ship's velocity and angular velocity relative to the earth? 
(Assume that the ship's velocity is m the direction of the y axis.) 

)' 

P6.165 
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T
he front·end loader shovel under­
goe~ two-dimensional motion as 
the hydraulic cylinder and sup­

poting members raise it and rotate it in 
the vertical plane. Newton's second 
law relates th(~ sum of the forces on 
the shovel to the acceleration of its 
centre of mass, and an equation of 
angular motion relates the sum of the 
moments about the shovel's centre of 
mass to its angular acceleration. In this 
chapter we usc free-body diagrams 
and the cquabons of motion for rigid 
bodies to dctcnninc the motions of 
objects resulting from the forces and 
couples acting on them. 



I CI"Iapter 7 

Two-Dimensional 
Dynamics of 
Rigid Bodies 

IN Chapter 6 we analysed two-dimensional motions of rigid 

bodi(ls without considering the forces and couples causing 

them. You have used Newton's second law to determine the 

motions of the centres of mass of objects, but how can you 

determine their rotational motions? In this chapter we derive 

two-dimensional equations of angular motion for a rigid body. 

By drawing the free-body diagram of an object such as an 

excavator's shovel, we can determine both the acceleration of 

its centre of mass and its angular acceleration in terms of the 

forces and couples to which it is subjected. 

303 
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7. 1 Preview of the Equations 
of Motion 

The two-dimensional equations of angular motion for a rigid body are quit 
simple, but you can easily lose sight of the forest among the trees as we deriv 
them. To help you follow the derivations, we summarize the equations in this 
section. 

The equations of motion of a rigid body include Newlon's second law, 

~F=ma 

which states that the sum of the external forces acting on the body equals th 
product of its mass and the acceleration of its centre of mass. The equations 0 

motion are completed by an equation of angular motion. If the rigid body 
rotates about a fixed axis 0 (Figure 7.1 (a)), the sum oflhe moments about the 
axis due to external forces and couples acting on the body is related to its 
angular acceleration by 

~Mo = 11I~ 

where 10 is the mass moment of inertia of tllC rigid body about O. Just as an 
object's mass determines the acceleration resulting from the forces acting on it, 
its mass moment of inertia 10 about a fixed axis determines the angular 
acceleration resulting from the sum of the moments about the axis. 

In the case of general planar motion (Figure 7.1,(b»), the sum of the 
moments about the Centre of mass of a rigid body is related to its angular 
acceleration by 

~M=Ia 

where [ is the mass moment of inertia of tlle rigid body about its centre 0 . 
mass. If we know the external forces and couples acting on a rigid body in 
planar motion, we can use these equations to determine the acceleration of its 
centre of mass and its angular acceleration. 

Figure 7.1 
(a) A rigid body rotating about a fixed 

axis. 0. 
(b) A rigid body in general planar motion. 

. t/J.~' - (j,.",\-~ 

.0 . 

(a) 

(b) 
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7.2 Momentum Principles for a 
System c)f Particles 

In this chapter and in our discussion of three-dimensional dynamics of rigid 
bodies in Chapter 9, our derivations of the equations of motion begin with 
principles govcming the motioll of a system of particles. We sununarize these 
general and important principles in this section. 

Force-Linear Momentum Principle 
We begin by showing that the sum of the cxtemal forces all a system of 
particles equals the rate of change of its total linear momentum. Let us 
consider a system of N particles. Wc denote the mass of the ith particle by fil, 
and denote its position vector relative 10 a fixed point 0 by r, (Figure 7.2). Let 
fli be the force exerted on the ith particle by thejth particle, and let the external 
force on the ith particle (that is, the total force exerted by objects other than the 
system of particles we are considering) be f~. Newton's second law states that 
the total force on the tlh particle equals the product of its rna" and the rate of 
change of its linear momentum, 

(7.1 ) 

where v, = drj<lt is the velocity of the tlh particle. Writing this equation tor 
each particle of the system and summing from i = 1 to N, we obtain 

E d L L fij+L f, =<1 L m,v, 
1 I j 

o 

m , 

(7.2) 

Figure 7.2 

A system of particles. The vector fl is the 
position vector of the ith particle. 

The first term on the left sid.e of this equation is the sum of the internal forces 
on the system of particles. As a consequence of Newton's third law 
(f" + f'l = 0), this teon equals zero: 

L L fij = fl2 + b + fll + f31 + ... = 0 
, j 
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I'rI
I 

o 0 

o 
o 

o 

Figure 7.3 

The vector R, is the position vector of the ith 
particle relative to the centre of mass. 

The second term on the left side of Equation (7.2) is tnC sum ofth. external forces 
on tile system. Denoting it by l: F, we conclude tIlat the sum of tile external 
forces on the system equals the rate of change of its tota1linear momentum: 

d 
:EF=- L m·v· dt i I I 

Let m be the sum of the masses of tile particles: 

The position of the centre of mass of the system is 

r =""'---
m 

so the velocity of the centre of mass is 

dr 
v= 

dt m 

By using this expression, we can write Equation (7.3) as 

l: F = :t (mv) 

(7.3) 

(7.4) 

The total external force on a system of particles equals the rate of change of 
the product of its total mass and the velocity of its centre of mass. Since any 
object or collection of objects, including a rigid body, can be regarded as a 
system of particles, this result is one of the most general and elegant in 
mechanics. Furthermore, if the total mass m is constant, we obtain 

where a = dv/dt is the acceleration of the centre of mass. The total external 
force equals tile product of tile total mass and tile acceleration of the centre of 
mass. 

Moment-Angular Momentum Principles 
We now obtain relations between the sum of the moments due to the external 
forces on a system of particles and the rate of change of its total angular 
momentum. We follow the same procedure used in Section 5.4 to relate the 
angular impulse to the ch,mge in the angular momentum. 

The position of the ith particle of the system relative to 0 is related to its 
position relative to the centre of mass (Figure 7.3) by 

(7.5) 

Multiplying this equation by mi, summing fTom 1 to N, and using Equation 
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(7.4), we find that the positions of the particles relative to the centre of mass 
are related by 

L m,R,=O (7.6) 

The total angular momentlUn of the system about 0 is the sum of the 
angular momenta of the particles 

(7.7) 

where V, = d rtl dt. The anl~lar momentmn of the system about its centre of 
mass (that is, the angular momentum about the fixed point coincident with the 
centre of mass at the present instant) is 

(7.8) 

By using Equations (7.5) and (7.6), it can be shown that 

Ho = r x mv+ H (7.9) 

This equation expresses the total angular momentum about 0 as the sum of 
the angular momentum about 0 due to the velocity v of the system's centre of 
mass and the total angular momentum about the centre of mass (Figure 7.4). 

Figure 7.4 

The angular momentum about 0 equals the 
sum of angular momentum about the centre 
of mass and the angular momentum about 0 
due to the velocity of the centre of mass. 

To obtain relations between the total moment exerted on the system and 
its total angular momentum, we begin with Newton's second law. We take 
the cross product of Equation (7.1) with the position vector r, and sum from 
i=ltoN: 

L L r, X fif + L f~ = L ri x -dd (m,v,) 
iii I t 

(7.10) 

The term on the right side a f this equation is the rate of change of the system's 
total angular momentum about 0: 

d [d L r, x d-(m, v,) = L d-(r, x m,v,) 
I tit 

v, x m, v,] = d ". 0 
'-,---' dt 

=0 
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(The second term in brackets vanishes because the cross product of two 
parallel vectors equals zero.) 

The first term on the left side of Equation (7. I 0) is the sum of the moments 
about 0 due to internal forces. This term vanishes if we assume that the 
internal torces between each pair of particles are not only equal and opposite, 
but are directed along the straight line between the two particles. (This 
assumption holds except in the case of systems involving electroma&'11etic 
forces between charged particles.) For example, consider particles 1 and 2 in 
Figure 7.5. If the internal forces arc directed along the straight line between 
the particles, we can write the moment about 0 due to f2' as r, x [21, 

and the total moment about 0 due to the forces the two particles exert on each 
other is 

Figure 7.5 
Panicles 1 and 2 and the forces they exert 

on each other. If the forces act along the line 
between the panicles, their total momeht 

about 0 is zero. 

o 

2 

The second term on the left side of Equation (7.10) is the sum of the 
moments about 0 due to external forces and couples, which we denote by 
~ (Mo). Therefore Equation (7.10) states that the Sum of the moments about 0 
due to external foroesand couples equals the rate of change of the system's 
angular momentum about 0: 

~Mo = dHo 
dt 

(7.11) 

By using Equation (7.9), we can also write this result in tenus of the total 
angular momentum relative to the centre of mass, 

d dH 
~MII = dl(T x mv+ H) = r x ma+"dt (7.12) 

where a is the acceleration of the centre of mass. 
We also need to determine the relation between the Sum of the moments 

about the system's centre of mass, which we denote by ~ 1\1, and the angular 
momentum about its centre of mass. We Can obtain this result from Equation 
(7.12) by letting the fixed point 0 be coincident with the centre of mass at thc 
present instant. In that case ~ Mo = ~ M and r = '0, and we see that the sum 
of the moments about the centre of mass equals the rate of change of the 
angular momentum about the centre of mass: 

dH 
~M=­

di 
(7.13) 
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7.3 Derivation of the Equations 
of Motion 

We now derive the equations of motion for a rigid body in two-dimensional 
motion. We have already ';hmvn that the total exernal force on any object 
equals thc product of its mass and the acceleration of its centre of mass: 

IF rna 

Therefore this equation, which we reter to as Newton's second law, describes 
the motion of the centre of mass of a rigid body. To derive the equations of 
angular motion, we first consider rotation about a fixed axis, then general 
planar motion. 

Rotation About a Fixed Axis 
Suppose that a rigid hody rotates about a fixed axis Lo through a fixed point O. 
In terms ofa coordinate system with the z axis aligned with Lo (Figure 7.6(a)). 
we can express the angular velocity vector as m = (j) k, and the velocity of the 
ith particle is d r,fdl '" (J) x ri= (!) k x ri. Let IMo = I Mo . k be the sum of 
the moments about Lo. From ~:quations (7.7) and (7.11), 

IM = dHo 
o dl (7.14) 

(a) (b) 

where 

Ho = Ho' k = L: I: r, x m,( (J) k x rtl] , k (7.15) 

is the angular momentum about {.o. Using the identity U' (V x W) = 
(U x V)'W, we can write Equation (7.15) as 

110 = L: mi(k)( ri)' (k x ri)m = L: md k x riw (7.16) 

In Figure 7.6(b), we show that I k x ril is the perpendicular distance from Lo 
to the illl particle, which we denote by rio Using the definition of the mass 
moment of inertia of the rigid body about Lo, 

Figure 7.6 

(a) A coordinate system wlth the z aXIs 
aligned with the axis of rotation Lo-
(b) The magnitude of k x r, is the 
perpendicular distance from the axis of 
rotation to mi. 
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(a) 

( b) 

Figure 7.7 
(a) A coordinate systcm with the z 
axis aligned with L. 
(b) The magnitude of k x R is the 
perpendicular distance from L to mi-

we can write Equation (7.16) as 

Ho = low 

Substitating this expression into Equation (7.14), we obtain the equation of 
angular motion for a rigid body rotating about a fixed axis 0: 

(7.17) 

General Planar Motion 
Let Lo be the axis through a fixed point 0 that is perpendicular to the plane of 
the motion of a rigid body, and let L be the parallel axis through the centre of 
mass (Figure 7.7(a». We do /lot assume that the rigid body rotates about Lo. In 
terms of the coordinate system shown, we can express the angular velocity 
vector as QJ w k, and the velocity of the ith particle relative to the centre of 
mass is dRf/dt = w k x R,. From Equations (7.8) and (7.12), 

where 

d 
l:Mo = dt[(r x mV)'k+Hl 

H = H· k = I: [R, x m,(wk x R,l]' k 
I 

(7.18) 

is the angular momentam about L. Using the same identity we applied to 
Equation (7.15), we can write this equation for H as 

H = I: milk x R,)· (k x R,)w = I: mil k x R,1 2w (7.19) , 

Tbe term Ik x R,I = r, is the perpendicular distance from L to the ith particle 
(Figure 7.7(b)). In ten;ns of the mass moment of inertia of the rigid body 
about L, 

J = I: m,rl 
I 

Equation (7.19) states that the rigid body's angular momentum about L is 

H =]w 

Substituting this expression into Equation (7.18), we obtain 

d 
l:Mo = dl[(r x mv)· k + 1m] = (r x m a)· k + I~ (7.20) 

With this equation we can obtain the relation between the sum ofthe moments 
about L, which we denote by l: M, and the angular acceleration. If we let the 
fixed axis Lo be coincident with L at the present instant, l: Mo = l: M and 
r = 0, and from Equation (7.20) we obtain 

l:M=h 

Tbe sum of the moments about l. equals the product of the moment of inertia 
about L and the angular acceleration. 



7.4 Applications 
---

We have seen that the equations of motion for a rigid body in planar motion 
include Newton's second law, 

I ~F=ma I (7,21) 

where a is the acceleration of the centre of mass, and an equation relating the 
moments due to forees and couples to the angular acceleration, If the rigid 
body rotates about a fixed axis 0, !he total moment about 0 equals the product 
of the moment of inertia about 0 and !he angular acceleration: 

(7.22) 

In any planar motion, the total moment about the centre of mass equals the 
product of the mass moment of inertia about the centre of mass and the 
angular acceleration: 

(7,23) 

Of course, this equation applies to the case of rotation about a fixed axis, but 
for that type of motion you will usually find it more convenient to use 
Equation (7.22). 

When you apply these equations, your objective may be to obtain infor­
mation about an object's motion, or to determine the values of unknown forces 
or couples acting on it, or both, This typically involves !hree steps: 

(1) Draw the free-body diagram Isolate the object and identify the 
external forces and couples acting on it. 

(2) Apply the equations of motion - Write equations of motion suitable for 
!he type of motion, You should choose an appropriate coordinate system 
for applying Newton's second law, For example, if the centre of mass 
moves in a circular path, you may find it advantageous to use normal and 
tangential components, 

(3) Determine kincmatio: relationships - If necessary, supplement !he 
equations of motion with relationships between the acceleration of !he 
centre of mass and the angular acceleration, 

As we show in the following sections, your approach will depend in part on 
the type of motion involved. 
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Translation 

If a rigid body is in translation (Figure 7.8), you need only Newton's second 
law to determine its motion. There is no rotational motion to determine. 
Nevertheless, you may need to apply the angu!'ar equation of motion to 
determine unknown forces or couples. Since (f- = 0, Equation (7.23) states that 
the total moment about the centre of mass equals zero: 

Figure 7.8 
A rigid body in translation. There is no 

rotational motion to determine. 
";i -- ' 

.~:. 

The mass oflhe aeroplane in Figure 7.9 is m = 250Mg (megagrams), and the thrust 
of its engines during its takeoff roll is T=700kN. Determine the aeroplane's 
acceleration and the nonnal forces exerted on its wheels at A and B. Neglect the 
horizontal forces exerted on its wheels. 

Figure 7.9 

5m 

STRATEGY 

__ ~.1J 
22m -

The aeroplane is in translation during its takeoff roll, so the sum of the moments 
about its centre of mass equals zero. Using this condition andl Newton's second law, 
we can dctcnnine the aeroplane's acceleration and the nonnal forces exerted on its 
wheels. 



SOLUTION 

Draw the Free-Body Diagram We draw the free-body diagram 10 Figure (a), 
showing the aeroplane's weight and the normal forces A and B exerted on the 
wheels, 

(0) Free-body diagram of the aeroplane, 

Apply the Equations of Motion [n terms of the coordinate system in Figure 
(a), Newton's second law IS 

r.i'y =A +B- mg = () 

From the first equation. the aeroplane~s acceleration is 

u, T = 7000001~=28m/s2 
m 250000kg . 

The angular equation of motion IF; 

r. M = (2)T + (22)11 - (5)A = 0 

Solving this equation together with the second equation we obtained from Newton's 
second law for A and B, we obtain A = 2050 kN, B 402 kN. 

DISCUSSION 

When an object is in equilibrium, tht~ sum of the moments about any point due to 
the external forces and couples acting on it is zero. But you must remember that 
when a translating rigid body is not in equilibrium, you know only that the sum of 
the momenls about the cel1tre Of mass is zero. It would be instructive for you to try 
reworking this example by ao;;$uming that the S\IID of the moments about A or B is 
zero. You will not obtain the correct values for the nonnal forces exerted on the 
wheels. 
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Rotation About a Fixed Axis 
In the case of rotation about a fixed axis (Figure 7.10), you need only Equation 
(7.22) to determine the rotational motion, although you may also need 
Newton's second law to determine unknown forces or couples. 

Figure 7.10 
A rigid body rotating about 0. You need only 

the equation of angular motion about 0 
to dctemline its angular acceleration, 

The 50kg crate in Figure 7.11 is pulled up the inclined surface by the winch. Thc 
coefficient of kinetic friction between the crate and the surface is Ilk = 0.4. The lDasS 

moment of inertia of the drum on which the cable is wound, including the cable 
wound on the drum, is fA = 4kg.m'. If the motor exerts a couple M = 60N.m on the 
drum, what is the crate is acceleration? 

Figure 7.11 

STRATEGY 

We will draw separate free-body diagrams of the crate and drum and apply the 
equations of motion to them individually. The drum rotates about a fixed axis, so we 
can use the equation of angular motion about the axis to detenlllne its angular 
acceleration, To complete the solution, we must determine the relationship between 
the crate's acceleration and the drum1s angular acceleration, 

SOLUTION 

Draw the Free-Body Diagrams We draw the free-body diagrams in Figure 
(a), showing the equal forces exerted on the crate and the dnlln by tlle cable. 



(a) Free-body diagrams of the crate and the drum. 

Apply the Equations of Motion We denote the crate's acceleration IIp the 
inclined surface by Or i and the clochvise angular acceleration of the drum by a 
(Figure (b», Newton's second law for Ihe craie is 

r. F, = N 4905 cos 20" 00 ° 
Solving the second equation for N and substituting it into the first one, we obtain 

T - 490,5 sin 20" - (0.4)(490,9 cos 20") = (50)a, 

The equation of angular motion Jor the drum is 

We eliminate T between these two equations, obtaining 

6,67M - 4905 sin 20" -- (OA)(490,5 cos 20") = (50)a, + 6,67~" 
(7,24) 

OUf last step is to detennine the relation between ax and 0:. 

Determine Kinematic Relatie,nships The tangential compnnent of accelera­
tion of the drum at the point where the cable begins winding onto it is equal to the 
craie's aceclcmtion (FigU11: (b)): 

a, = (O,15m)" 

Usmg this reialion, Ihe solution of Equabon (7,24) for a, " 

Q, 
6,67M - 490.5 sin 20' - (OA)(490,5 cos 20") _ ° 2 2 

(50) + 44AlA - , 1 m/s 

DISCUSSION 

Notice that, for convenience, we defined the angular acceleration 0: to be positive in 
the clockwise direction so that a positive IX would correspond to a positive (J", 
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(b) Relation between the crate's acceleration 
and the angular acceleratIon orthe drum. 
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'Ibe slender bar of mass m in Figure 7.12 is released from test in the horizontal 
position shown. At that instant, detennine the bar's angular accek.-ration and the 
force exerted on the bar by the support A, 

Figure 7.12 

STRATEGY 

Since the bar rotates about a fixed point, we can use Equation (7.22) to dctcnnine its 
angular acce1eration. The advantage of using this equation instead of Equation 
(7.23) is that the unknown reactions at A will not appear in the equation of angular 
motion. Once we know the angular acceleration, we can dctcnnine the acceleration 
of the centre of mass and use Newton's second law to obtain the reactions atA. 

SOLUTION 

Draw the Free-Body Diagram In Figure (a) we draw the free·body diagram of 
the bar, showing the reactions at the pin support. 

(0) Free-body diagram of the bar. 

Apply the Equations of Mation Let the acceleration of the centre of mass G of 
the bar be aG = ax i + Cly j, and let its counterclockwise angular acceleration be rJ, 

(Figure (b)). Newton', second law for the bar is 

~F.v = Ay mg = may 

to., 
G6,;;11_' -x 

a, I I A 

I- z,--i 
(b) The angular acceleration and cOlllPonents of the 

acceleration of the centre of mass. 



The equation or angular motion about the fixed point A is 

(7.25) 

The mass moment of inertia ofa slender bar about its centre of mass is I = nff/F. 
(Sec Appendix C.) Using the par,allel-axis theorem, the mass moment of inertia of 
tl)e bar about A is 

'_1 = 1 +d2rn=-mt2+ -/ m=-mZ2 1 (1 )' 1 
12 2 3 

Substituting this t:xpression into Equation (7.25). we obtain the angular acceleration: 

(1/2)mgl 3 g 

(J 13)ml' = 21 

Determine Kinematic Relationships To determine the reactions Ax and A), 
we need to detenniue the acceleration components ax and ar We can do so by 
expressing the acceleratiol1 of G in terms of the acceleration of A: 

ac; = aA + ~ x rGjA 

At the instant the bar is released, its angular velocity (J) = O. Also, aA:::::::: 0, so we 
obtain 

ac = a.,i + a,j = (,k) x (-}Ii) = ... ~l,j 

Equating i and j components, we obtain 

a~ = 0 

OJ' :::::::: 

1 
-I, = 
2 

Subl'itituting these acceleration componenls inlu Newtun's second Jaw, the reactions 
at A at the ins'k'Ult the bar is released are 

A, = 0 

DISCUSSION 

We could have dctcnTIined the acceleration of G in a less ronnal way. Since G 
describes a circular path about A, we know the magnitude of the tangential 
component of acceleration equal~ the product of the )'adial distance from A to G 
and the angula), acceleration, Because of the directions in which we define (X and at 
to be positive, ay = -(! l)cr.. Also) th(: normal component of the acceleration of G 
equals the square of its velocity divided hy the radius of its circular path. Since its 
velocity equals :.ccru at the instant the bar is released, ax = O. 
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Figure 7.13 

};;F"'ma 
1:M::: fa 

A rigid body in planar motion. You must 
apply both Newlon's second law and the 
equation of angular motion about the centre 
of mass. 

r 

............ _- ---x 
N 

(a) Free-body diagram of the bar. 

General Planar Motion 
If a rigid body undergoes both translation and rotation (Figure 7.13), you need 
to use both Newton's second law and the equation of angular motion, If the 
motion of the centre of mass and the rotational motion are not independent­
for example, when an object rolls - you will find that there are more unknown 
quantities than equations of motion, In such cases, you can obtain additional 
equations by relating the acceleration of the centre of mass to the angular 
acceleration. 

The slender bar of mass m in Figure 7.14 slides on the smooth floor and wall and 
has counterclockwise angular velocity w at the instant shown. What is the bar's 
angular acceleration? 

Figure 7.14 

SOLUTION 

Draw the Free-Body Diagram We draw the free-body diagram in Figure (a), 
showing the bar's weight and the nonnal forces exerted by the floor and wall. 

Apply the Equafionsof Motion Writing the acceleration of the centre of mass 
Gas ftG = ax i + uyj, Newton's second law is 

l:Fx =P=ma), 

!:Fy=N-mg=may 

Let IX be the bar~s counterclockwise angular acceleration. The equation of angular 
motion is 



where I is the mass moment of in(..."1tia of the bar about its centre of mass. We have 
three equations of motion in terms of the five unknowns ~ N. ax. ay and rx. To 
complete the solution, we must relate the acceleration of the centre of mass of the 
bar to its angular acceleration, 

Determine Kinematic Relati(mshlps Although we don'! know the accelera­
tions of the endpoints A and B (F'gure (h)), we know that A moves horizontally and 
B moves vertically. We can use this information to obtain the needed relations 
between the acceleration of the centre of mass and the angular acceleration, 
Expressing the acceleration of A as all = oAi, we can write the acceleration of thc 
centre of mass as 

j 

I 0 
; .. J cos 0 ., 

k 
~ 

o 

Taking advantage of the fact that SA has no 
components in this equation, obtaining 

( 
I . ,I ) vi -z'sm(}I+ 21cos()j. 

component, we equate the 

Now wc express the acceleration of Bas aa u}Jj and write the acceleration of the 
centre of mass as 

j 

I 0 
--lcosO 

2 

k 

" o 

We equate the i components in this equation, obtaining 

I 
ax = 21(CI. cos 0 (j} sin 0) 

With these two kinematic relationships, we have five equations in tlvc unknowns. 
Solving them for tho angular acceleration and using the relation I = h mP for the 
bar's mass moment of inertia (Appendix C), we obtain 

3g , r. 
Ct = 27 Sin (J 

DISCUSSION 

Notice that by expressing thc acceleration of G in terms of lhe accelerations of the 
endpoints, we introduced into the solution the constraints imposed on the bar by the 
floor and wall: we required that point A move horizontally and that point B move 
vertically, 

(b) 
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Expressing the acceleration of G 
in terms of the accelerations of the 
endpoints A and B. 
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The slender bar in Figure 7.15 has mass m and is pinned at A to a metal block 
of mass mn that rests on a smooth level surface. The system is released from 
rcst in the position sho\Vl1. What is the bar's angular acceleration at the instant of 
release? 

Figure 7.15 

A 

STRATEGY 

We must draw free-body diagrams of the bar and the block and apply the equations 
of motion to them indjvidually. To complete the solution, we must also relate the 
acceleration of the bar's centre of mass and its angular acceleration to the 
acceleration of the block. 

SOLUTION 

Draw the Free-Body Diagrams We draw the free-body diagrams of the bar 
and block in Figure (a). Notice the opposite forces that they exert on each other 
where they are pinned together. 

(0) Free-body diagrams of the bar and block 

Apply the Equations of Motion Writing the acceleration of the centre of mass 
of the bar as aG = axi+ayj) Nc~ion's second law for the bar is 



Letting IX be the bar's counterclockwise angular acceleration, its equation of angular 
motion is 

We express the block's acceleration as ani and write Newton's second law for the 
block: 

Determine Kinematic Relationships To relate the bar's motion to that of the 
block, we express the acceleration of the bar's centre of mass in terms of the 
acceleration ofpoillt A (Figure (b)): 

, 
He = aA + IJ. X f(;/ .. I - w~ fG/A 

i j k 

aT i + ayj usi+ 0 0 " - !, sin e I 
2 "2' cos 9 0 

o 

Equating i and j components, we obtain 

1 
ax = an - 2 fa. cos (j 

a,,~ ~/"SinO 

We have five equations of motion and two kinematic relations in tenns of seven 
unknowns: A.o Ay, N, aT) Uy• a: and an. Solving them for the angular acceleration and 
using the relation I = 12 I1IP for the baes mass moment of inertia, we obtain 

" ~ _--,(..,3 /~2);::(g'2!./.:I):~s~in;..:O~_ 

I - (3/4)(----"'--) cos' e 
m+ms 

(b) Expressing the acceleration of G in 
tcmlS of the acceleration of A, 
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Figure 7.16 

N 

(a) Free-body dIagram of Ihe wheel. 

Example 7.6 

The drive wheel in Figure 7.16 rolls on the horizontal track. The wheel is subjected 
to a downward force FA by its axle A and a horizontal force Fe by the connecting 
rod. The mass of the wheel is m and the mass moment of inertia about its centre of 
mass is 1. The centre of mass G is offset a distance b from the wheel's centre. At the 
instant shown, the wheel has a counterclockwise angular velocity w. What is the 
wheel's angular acceleration'? 

Drive wheel 

Track 

SOLUTION 

Draw the Free-Body Diagram We draw the free-body diagram of the drive 
wheel in Figure (a), showing its weight and the nOl1l1al and friction forces exerted by 
the track. 
Apply the Equations of Motion Writing the acceleration of the centre of mass 
G as an ~ ax i + ay j, Newton's second law is 

tF;., =! - Fc = max 

Remember that we must express the equation of angular motion in terms of the sum 
of the moments about the centre of mass G, not the centre of the wheel. The 
equation of angular motion is 

I:M = Fc(d cos 0) FACh sin 8) + N(b sin 0) + feb cos 0 + R) = la 

We have three equations of motion in tenns of the five unknowns N,J, ax, ay and Ci. 

To complete the solution, we must relate the acceleration of the wheel's centre of 
mass to its angular acceleration. 



Determine Kinematic Relatlo,nshlps The acceleration of the centre A of the 
rolling wheel is aA = - Red, By expressing the acceleration of the centre of mass, 
ac. in tcnns of aA (Figure (b)), w(: can obtain relations between the components of 
aG and (X: 

k 

o o 
-b sin & b cos 8 0 

-w'( -h ,in II i + b co, II j) 

(b) Exprcssmg the acceleration of the centre of mass G 
itl terms of the acceleration of the centre A. 

We equate the i and j componenls in this equation, obtaining 

ax = -Rx - ba cos 0 + hui sin 0 

ay -ba sin () bw2 cos () 

With these two kinematic relationships, we have fivc equations in five unknowns. 
Solving them for the angular acceleration, we obtain 
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i 

I 
i 
I 

y 

L 

(0) The axial force, shear force and 
bending moment in a beam. 

\\ ,,% 
\~c8-l 

bi \'\ il \ _ A 
I, 
I, 

U (b) Detennining thc moment about A. 

Applicotio" to Engineering 
Internal Forces and Moments in Beams 
The slender bar of mass m in Figure 7,17 starts from rest in lhe position shown and 
falls. When it has rotated through an angle 0, what is the maximum bending 
moment in the bar and whe,re does it occur? 

Figure 7,17 

I 

, I 

STRATEGY 

The internal forces and moments in a beam subjected to two-dimensional loading 
are the axial force P, shear force V, and bending moment M (FIgure (a». We must 
first use the equation of angular motion to detem1ille the barls angular acceleration. 
Then we can cut the bar at an arbitrary distance x from One end and apply the 
equations of motion to determine the bending moment as a function of x. 

SOLUTION 

The mass moment of inertia of the bar about A is 

Whcn the bar haA rotated through an angle @ (Figure (b», the total moment about A 
is r MA = mg(t I sin 0). Point A is flxed, so we can write the equation of angular 
motion as 

~lrIgl sin () = 51r11'. 

Solving for the angular acceleration, we obtain 

3!i" . " IX = -.;;.. sm u 
21 



/' 
x 

\ 

\ 
(c) Cutting the bar <'t an arbitrary distance x. 

In Figure (c) we introduce (;l coordinate system, cut the bar at a distance x from the 
top. and draw the frcc.body diagram of the top part, The centre of mass is at the 
midpoint, and we dctcnuine the mass by Illultiplying the bar's mass by the ratio of 
the length ofthc ftce body to that "fthe bar. Applying Newton', ,econd law in the y 
din.:clion, we obtalll 

'F "x .., X 
.c... J = -Y ~7mgsm 6 = ,ff/ay 

The mass moment uf inertia of the free body about its. centre of mass is fJ. r(x!l)ml-r2, 

so the equation of angular motion is 

LM 1": 

(
1 )' 1 (X ) 23 

/11- 2X V=12 in/X sin 0 

The y component of the ac<.:eieralion of the centre of mass is equal to the product of 
its radial distance from A and the angular acceleration (Figure (d)): 

( 
I' • I' 3 

a =- I--X)~= ~(/--X)--~ sinO 
y 2' 2 21 

Using this expression, we can solve the two equations of motion for Vand AI in 
tenns of O. The solulion for M is 

(7.26) 

The bending moment equals zero at both ends of the bar. Taking the derivative of 
this expression with respect to x and equating it to zero to determine where Al is a 
maximum, we obtain x = ~l. Sub,;;tituting this value of x into Equation (7.26). we 
ohtain the maximum bending moment: 

1 . 
Mmax = ~mgl sm 0 

27 

The distribution of M is shown in Figure 7.18. 
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(d) Detcmlining the acceleratioll of lhe 
centre of mass of the free body. 

~t/ { 

Figure 7.18 

Distribution of the bending moment in a 
falling bar. 
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Figure 7.19 
A falling chimney fractures as it falls due to 
the bending moment it is subjected to. 

DESIGN ISSUES 

To design a member of a structure, engineers must consider' both the external and 
internal forces and moments it will be subjected to. In the case of a beam, they must 
dctcnnine the distributions of the axial force P, shear force V, and bending moment 
M as the first step in determining whether the beam will support its design loads 
withoul failing. If they know the external loads and reactions and the beam is in 
equilibl;UITI, they can apply the equilibrium equations to determine the internal 
forces and moment at a given cross~section. But in many situations; a beam will not 
be in equilibrium. It could be a member of a structure, such as the internal frame of 
an aeroplane, that is accelerating, or it could be a connecting rod in an internal 
combustion engine. In such cases! the maximum internal forces and moments can 
far exceed the values predicted by a static analysis, and the procedure we describe in 
this example must be used. 

The dynamic bending moment distribution we obtained in Example 7.7 (Figure 
7" I 8) explains a phen.omenon that has been observed during the demolition of 
masonry chimneys. An explosive charge at the base of the chimney causes it to fall, 
initially rotating as a rigid body about its base. As the chimney falls. it is observed to 
fracture near the location of the maximum bending momeot (Figure 7.19). 

-"... .. . 
i 
I r: , 
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7.5 D'Alembelrf's Principle 
........................................................... -------~~~~~. 

In this section we describe an alternative approach to rigid~body dynamics 
knov\1J as D'AJembert's principle. By writing Newton's second law as 

~ F+(-ma) = n (7.27) 

we can regard it as an 'equilibrium' equation stating that the sum of the 
external Forces, including an inertial force rna, equ.ls zero (Figure 7.20(.». 
To state the equation of angular motion in an equivalent way, we use Equation 
(7.20), which relates the total moment about a fixed point 0 to the angular 
acceleration in general plane motion; 

LMI, =(r x rna)'k+h 

Writing this equation as 

~M!) + [r x (-rna)]' k + (-fa) = 0 (7.28) 

we can regard it as an equilibrilUn equation stating that the sum of the 
moments about any point due: to external forces and couples, including the 
moment due to the inettial force ~ ma acting at the centre of mass and an 
inertial couple ~ h, equals zeTO. 

Instead of using the expression in Equation (7.28) to determine the moment 
due to the internal force, you can often detconine it more easily by multiplyiug 
the magnitude of the inertial force and the perpendicular distance from the line 
of action of the force to point 0 (Figure 7.20(b)). Also, remember that the 
sense of the inertial couple i:; opposite to that of the angular acceleration 
(Figure 7.20(0). 

Figure 7.20 

(a) The sum of the external forces 
and the inertial force is zero. 

~. 
(J 

(b) The magnitude of the moment due 
to the inertial force is I-m aiD. 

In the following examples we .• ppiy D' Alembert's principle to plane motions 
of rigid bodies. The sequence of steps - draw the free-body diagram, apply 
the 'equilibrium' equations, and determine kinematic relationships if 
necessary-is the same as in applying the equations of motion. However, 
in u.~illg D'Alemhert~' principle, you must be particularly careful to assign 
the correct signs to the terms in YOllr equations. For example. if you define 
the angular acceleration to be positive in the counterclockwise direction, 
that is also the positive tiirectio'n for the moment exerted by the inertial force. 
and the inertial couple is clockwise. 

(c) A clockw1:<;e inertial couple results from 
a counterclockwise angular al.:l.:dcration, 



I 
I 

i 

! 

i 

328 CHAPTER 7 TWO·DIMENSIONAL DYNAMICS OF RIGID BODIES 

Figure 7.21 

y 

The mass of the aeroplane in Figure 7.21 is m=250Mg (megagrams), and the 
thrust of its engines during it, takeoff roll is T=700kN. Use D'Alembert's 
principle to dctcnnine the aeroplane's accelemtiori and the Donnal forces exerted 
on its wheels at A and B. Neglect the horizontal forces exerted on its wheels. 

I 

".,-'",' """'-~·~-~i'~\-'~':':ilijiLL;J;'~:-"~~jr·' 

"I, ' B 

I----!---- 22 m --

SOLUTION 

Draw the Free-Body Diagram In terms of the coordinate system in Figure (a), 
we can write the aeroplane's acceleration as a = a,J. On the frce~body diagram we 
show the aeroplane's weight) the normal forces A and B exerted on the wheels, and 
the inertial force -m a = -max i. 

A mg 

(a) Free~body diagram of the aeroplane. 

Apply the 'Equilibrium' Equations Equation (7.27) is 

F+ (-rna) = (I: 

Ti+ (A +B mg)j + (-rna,i) = 0 

B 



Equating i and j components, we obtain 

T= max 

A +B=mg 

From the first equation, the aeroplane '8 acceleration is 

and lhe inertial force is ~ma" i = -·700 i kN. (Sec Figure (b).) 
In applying Equation (7.28), we can select any point we wish as the point O. By 

placing it at A (Figure (b)), we will obtain an equation in which the only unknown is 
the force B. The aeroplane is translating, so r"f. = (1 and there is no inertial couple, 
Denning counterclockwise moments to be positive, the sum of the mot'rlents about 
o is 

(5)(700000) - (3)T - (5)mg + (27)8 = 0 

From this equation we obtain 8 = 402 kN, and then A = mg 8 = 2050 kN. 

(b) Placing point 0 at the rear wheels. 

DISCUSSION 

Notice that we calculated the moment due to the inertial force by multiplying the 
magnitude of the inertial force by the perpendicular distance to its line of action, 
(5)(700000)=3500000N.m e{)wltcrciockwise. In this particular example that 
method is simpler than using thl: cross product, 

[r x (-ma)I' k = [(5i +5j) x (-700000iJ]'k 

3 500000 N m counterclockwise 

but in some situations you may find that using the cross product is simpler. 
You should compare this application of D' Alembe.rt's principle with our deter­

mination of the aeroplane's acceleration and the normal forces excrted on its wheels 
in Example 7.1. 

7.5 D'ALtMBERT'S PRINCIPLE 329 

1:1 



330 CHAPTER 7IWO-DIMENSIONAL DYNAMICS OF RIGID BODIES 

[. ~·~-·"'~-:·,",·-:;--'"7":~·"'·"7··TC·"'T"'C"~-''';''~----''''·""'--'~''-'~""---~-C'''-'~-----:---~-~l 

I 

I 

Figure 7.22 

A disc of mass m and moment of inertia 1 IS released from rest on an inclined 
suri.ce (Figure 7.22). Assuming that the disc roUs, use D'Alembcrt's principle to 
determine its angular acceleration, 

SOLUTION 

Draw the Free-Body Diagram In terms "fthe coordinate system in Figure (a), 
the acceleration of the centre of the disc is a = a). We define the angular 
acceleration (Yo to be positive in the clockwise direction. In Figure (b) we draw the 
free-body diagram of the disc, showing its weight, the normal and friction forces 
exerted by the surface, and the inertial force and couple. 

Apply the 'Equilibrium' Equations W. apply Equation (7.28), evaluatmg 
moments about the point where the disc is in contact with the surfac·e to eliminate 
f and N from the resulting equation: 

-·R(mg sin [3) + R(max) + f, = 0 (7.29) 

Determine Kinematic Relationships The ""celeration of the centre of the 
rolling disc is related to the angular acceleration by a;r;=Ra. Substituting this 
relation into Equation (7.29) and solving for ~, we obtain 

mgR sin Ii 
,= mR2+f 

(0) Acceleration of the centre of the disc 
and its angular acceleration. 

DISCUSSION 

y 

(b) Free-body diagram includin 
the inertial force and couple. 

As a consequence of summing moments about the disc's pomt of contact, W 

did not need to use the equation IF + (- rna) == 0 in detennining the angula 
accclenttion. 



7.1 A refrigerator of mass m rests on castors at A and 13. Suppose 
that you push 011 it with a horizontal force F as shown and that the 
castors remain on the smooth floor. 
(a) What is the refrigerator's acceleration? 
(b) What nonna! forces are cxc,rtcd on the castors at A and B? 

P7.1 

7.2 In Problem 7.1, what is tille largest force F' you can apply ir 
you want the refrigerator to remain on the floor at A and B? 
(Assume that c is positive.) 

7.3 The combined mass of the person and bicycle is m. The 
location of their combined centre of mass is shown. 
(a) If they have acceleration a, what are the normal [orces exerted 
on the wheels by the ground? (NegJcct the horizontal force exerted 
on the ground by the front wheeL) 
(b) Based on the results of part (a), what is the largest acceleration 
that can be achieved without causing the front wheel to leave the 
ground? 

································1··· 

P7.3 
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7.4 In Problem 7.3, h=615mm, c=445mm, h=985rnm and 
m 77 kg. If the bicycle is travelling at 6 m/s and the person 
engages the brakes, achieving the largest deceleratjon for which 
the rear wheel will not leave th(~ ground, how long docs it take 
the bicycle to stop, and what distance does it travel dunng that 
time? 

7.5 The 6350kg aeroplane's arr~sting hook exerts the force Fand 
causes the plane to decelerate at 6g's. The horizontal forces exerted 
by the landing gear are negligible. Determine F and the nomla] 

forces exerted on the landing gea r. 

0.:'1111 

P7.S 

7.6 A studcnt catching a ride to his SUmmer job unwisely 
supports himself in the back of an accelerating truck by exerting 
a horizont::tl force F on the truck's cab at A. Determine the 
horizontal force he mList exert in ~cmlS of his wcight W, the truck's 
acceleration a, and the dimensions shown. 

P7.6 
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7.7 The crane moves to the right with constant acceleration, and 
the 800 kg load moves without swinging, 
(a) What is the acceleration of the crane and load? 
(b) What are the tensions in the cables attached at A and B? 

7.8 If the acceleration of the crane in Problem 7.7 suddenly 
decreases to zero, what are the tensions in the cables attached at A 
and B IInmediately afterwards? 

7.9 The combined mass of tl:te motorcycle and rider is 160kg. 
The real' wheel exerts a 400 N horizontal force on the road, and you 
can neglect the horizontal force exerted on the road by the front 
wheel. Modelling the motorcycle and its wheels as a rigid body, 
determine (a) the motorcycle's acceleration; (b) the nennal forces 
exerted on the road by the rear and front wheels. 

7.10 In Problem 7.9, the coefficient of kinetic mction between 
the motorcycle's rear wheel and the road is Ilk~O.8. If the rider 
spins the rear wheel, what is the motorcycle's acceleration and what 
are thc nann a! forces exerted on the road by the rear and front 
wheels? 

7.11 During cxtrdvehicu!ar activity, an astronaut fires a thmster 
of his manoeuvring unit, exerting a force r"" l4.2N for I s. It 
rcquires 60 s from the time tl:te thruster is fired for him to rotate 
through one revolution. If you model the astronaut and manoeuvr~ 
ing unit as a rigid body, what is the moment of inertia about their 
centre of mass? 

P7.1l 

7.12 The mass moment of inertia of the helicopter's rotor is 
500 kg.m2

. If the rotor starts from rest at t:::::: 0, the engine ex.erts a 
constant torque of 625 N.m on the rotor, and aerodynamic drag is 
neglected, what is the rotor's ;:mgular velocity (.Q at 1= 6 s? 

P7.12 

7.13 In Problem 7.12. if aerodynamic drag exerts a torque on the 
helicopter's rotor of magnitude 20u} N.m, what is the rotor's 

~--- 1500 mm------i P7.9 angular velocity at t~6s? 



7.14 The mass momenl of inertia of the robotic manipulator arm 
about the vertical y axis is 10 kg. m2

" The mass moment of inertia of 
the 14kg casting held by the arm about the y' axis is O.Rkg.m2

. 

What couple about the y axis is necessary to give the manipulator 
ann an angular acceleration of ,2 r,u:i!s2? 

ManipulaLor 

arm 

1111 

y' 

--I 

P7.14 

7.15 The gears A and B can tum freely on their pin supports. 
Their mass moments of inertia are fA 0,002 kg.m2 and 
IB =O.006kg.m2

• They arc initially stationary, and at 1=0 a 
const...wt couple M = 2 N.m i~ applied lo gear B. HO\v many 
revolutions has gear A turned at t = 4 s? 

P7.1S 
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7.16 The mass moment of im·rtia of the pulley is 0.5 kg.m2 

Detennine the pulley's angular acceleration and the tension in the 
cable in the two cases. 

(<I) ~ 

P7.16 

7.17 Each box weighs 250N, the mass moment of inertia of 
the pulley is 0.8 kg.m', and friction can be neglected. 1f the boxes 
start from rest at 1=0, determine the magnitude of their velocity 
and the distance they have moved from their initial position at 
t= I s. 

P7.17 
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7.18 The slender bar weighs 50N and the disc weighs lOON. 
The coefficIent of kinetIc friction between the disc and the 
horizontal surface is Pk == 0.1, If the disc has an initial counter­
clockwise angular velocity of \0 radls, how long does it take to 
stop spinning? 

P7.18 

7.19 In Problem 7.18, how long does it take the disc to "'top 
spinning if it has an initial clockwise angnlar velocity of 10 rad/s? 

7.20 The objects consist of identical 1m, 5 kg bars welded 
together. If they are released from rest in the positions shown, 
what are their angular accelerations and what are the components 
of the reactions at A at that instant? (The y axes are vertical.) 

y y 

I I 

,a) (b) 

P7.20 

7.21 The object consists of identical 1m, Skg bars welded 
together. If it is released from rest in the position shown, what is 
its angular acceleration and what are the components of the 
reaction at A at that instant? (The y axis is verticaL) 

v 

I 

P7.21 

7.22 For what value ofx is the horizontal bar', angularaceeleration 
a maximum, and what 1S the maximum angular acceleration? 

1--
P7.22 

7.23 Model the ann ABC as a single rigid body. [ts mass 
is 300 kg, and the mass moment of inertia about its centre 
of mass is 1= 360kg.m'. If point A is stationary and Ibe angular 
acceleration of the ann is 0.6 rad/s2 counterclockwise, what force 
doe~ the hydraulic cylinder exert on the ann at B? (The ann is 
actuated by two hydraulic cylinders, one on each side of the 
vehicle. You arc to determine the total force exerted by Ibe two 
cylinders.) 

P7.23 

7.24 In Problem 7.23, if the angular acceleration of arm ABC is 
0,6 radls2 counterclockwise and its anguJar velocity is 1,4 radls 
clock wise, what are the components of the force exerted on the arm 
at A? (There are two pin supports, one on each side of the vehicle, 
You arc to determine the components of the total force exerted by 
the two supports.) 



7.25 To lower the drawbridge. the gears that raised it arc 
disengaged and a fracti()n of a second latcr a second set of gears 
that lower it are engaged. At the instant the gears that raised it are 
disengaged~ what are the components offorce exerted by thc bridge 
on its support at O? The drawbridge weighs 1.61\1N, its mass 
moment of inertia about 0 is 10= 1.0 x 1Q7 kg.m2

, and the 
coordinates of its centre of mass at the instant the gears are 
disengaged are x = 1.5 m. y = 5 m. 

P7.25 

7.26 Arm Be has a mass of' 12 kg and the mass moment of 
inertia about its centre of mass is 3 kg.m2

. Tf H is stationary and arm 
BC has a constant counterclockwise angular velocity of 2 radls at 
the instant shown~ determine the couple and the components of 
force exerted on ann BC at B. 

P7.26 
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7.27 In Problem 7.26, what are the couple and the components of 
force exerted on arm Be at B if ann AB has a constant clockwise 
angular velocity of 2 radls and ann Be has a counterclockwise 
angular velocity of 2 radls and a clockwise angular acceleration of 
4 cad/s2 at the instant shown? 

7.28 A thin ring and a circular disc, each of mass m and radius R, 
are released from rest on an inclined surface and allowed to roll a 
distance D. Determine the ratio of the times. required. 

P7.28 

7.29 The stepped disc weighs ISON and its mass moment of 
inettia is 1 = 0.2 kg.m2

, If it is released from rest, how long does it 
take the centre of the disc to fall 1 m? (Assume that the string 
remains vertical.) 

mm 

P7.29 
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7.30 At t = 0, a sphere of mass m and radius R (I = ~ mR') on a 
flat surface has angular velocity 0)0 and the velocity of its centre is 
zero, The coefficient of kinetic friction between the sphere and the 
surface is JI .. b What is the maximum velocity the centre of the 
sphere will attain, and how long does it take to reach it? 

P7.30 

7.31 A soccer playcr kicks thc ball to a t.annuat. 6 m away. The 
ball leaves his foot moving parallel to the grotmd at 6 mls with no 
initial angular velocity. The coefficient of kinetic {Tietion between 
the ball and the grass is Ji.k = 0.4. How long does it take the ball to 
reach his teammate? (The ball is 0.7 m in circumference and 
weighs 4 N. Estimate its mass moment of inertia by using the 
equation for a thin spherical shell: I = ~mR2) 

P7.31 

7.32 The 100kg cylindrical disc is at rest when the force F i 
applied to a cord wrapped around it. The static and kineli 
coefficients of friction between the disc and the surface cqua 
0.2. Determine the angular .ccckration of the disc if (a) F = 500 N; 
(b) F= IOOON. 

Strategy: First solve the problem by assuming that the disc doe 
not slip, but rolls on the surface. betennine the friction force an 
find out whether it exceeds the product of the friction coefficielt 
and the normal foree. If it does. you must rework the proble 
assuming that the disc slips. 

P7.3 

7.33 The 18 kg ladder is released from rest in the position shown 
Model it as a slender bar and neglect friction. At the instant 0 

release, determine (a) the angular acceleration; (b) the nonnal fore 
exerted on the ladder by the floor. 

P7.3 

7.34 Suppose that the ladder in Problem 7.33 has a counter 
clockwise angular velocity of 1.0rad/s in the position shown 
Determine (a) the angular acceleratIOn; (b) the normal force excrte 
on the ladder by the floor. 



7.35 Suppose that the ladder in Problem 7.33 has a counter­
clockwise angular velocity of 1.0 rad/s in the position shown and 
that the coefficient of kinetic friction at the floor and the wall is 
i'k = 0.2. Determine Cal the angular acceleration; (b) the normal 
force exerted on the ladder by the floor. 

7.36 The slender bar weighs 150N and the cylindrical dISC 

weighs 100 N. The system 1.5 released from rest with the bar 
horizontal. Determine the bar's angular acceleration at the instant 
of release if the bar and disc arc welded together at A. 

1-------1.2 111 

P7.36 

7.37 In Problem 7.36, determine the bar's angular acceleration if 
the bar and disc arc pinned together at A. 

7.38 The 0.1 kg slender bar and 0.2 kg cylindrical disc are 
released from rest with the bar hori1;ontal. The disc rol1s on the 
curved surface, What is tho bar's angular acceleration at that 
instant? 

---120mm 

P7.38 

PROBLEMS 

7.39 The 2 kg slender bar and :5 kg block are released from rest il 
the position shown. If friction is negligible, what is the block' 
acceleration at that instant? 

P7.39 

7.40 tn Problem 7.39, suppose that the veloCIty of the block is 
zero and the bar has an angular velocity of 4 radls at the instant 
shown. \\!hat is the block's acceleration? 

7.41 The OAkg slender bar and I kg disc are released fr0111 rest 
in the position shown. If the disc rolls, what is the bar's angular 
acceleration at that instant? 

m 

P7.41 

7.42 In Problem 7.41, what is the smallest value of the coeffi­
cient of slati{.: friction for which the disc will roll when the systcm 
is released instead of slipping? 
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7.43 Pulley A weighs 20N, lA=0.08kg.m'. and 18=0.02 
kg.m'. If the system is released from rest, what distance does the 
80 N weight fall in one-half second? 

P7.43 

7.44 The slender bar weighs 100 N and the crate weighs 400 N. 
The surface the crate rests on is smooth. If the system is stationary 
at the instant shown, what couple M will cause the crate to 
accelerate to the left at 1 m/s2 at that instant? 

I~-'- 2111 --1---- 4 rn ---~ 

P7.44 

7.45 Suppose that the slender bar in Problem 7,44 is rotating in 
the counterclockwise direction at 2 radJs at the instant shown and 
that the coefficient of kinetic friction between the crate and the 
horizontal surface is /1k = 0.2. What couple M will calise the crate 
to accelerate to the left at 1 m1s2 

al that instant? 

7.46 Bar AB Totates with a constant angular velocity of 6 radls in 
the counterclockwise direction. The slender bar BCD weighs 50 N 
and the collar that bar BCD is atta<;bed to at C weighs ION. The y 
axis points upwards. Neglecting. friction, determine the compo­
nents ofthe forces exerted on bar BCD by the pins at Band C at the 
instant shown. 

y 

-I 
200ll1nl 

~'-I 
100 Inm 

j 

A~ ~:o 1111:t :~I~I ,-~-'---~-~-) --'~--------'-- x 

P7.46 

7.47 Bar AB weighs 50 N and bar BC weighs 30N. If the system 
is released from rest in the position shown, what are the angular 
acceleration of bar AB and the normal force exerted by the floo!' at 
C at that instant? Neglect frietion. 

A 

1m 

_L 
1------ , 1ll----~1---1 1Il---1 

P7.47 

7.48 In Problem 7.47, if the angular velocity of bar AB is 1.0 
radls clockwise at the instant shown, what are the angular 
acceleration of bar BC and the nonnal force exerted by the floor 
at C at that instant? 



7.49 The combined mass of the motorcycle and rider is 160 kg. 
Each 9 kg wheel has a 330 nun radius and mass moment of inertia 
1 = 0.8 kg.rn2

• The engine drives the rear wheel. Lf the rear wheel 
cxerts a 400 N horizontal forc,,: on the road and you do not neglect 
the horizontal force exerted on the road by the front wheel, 
dctennine (a) the motorcycle's acceleration; (b) the normal forces 
exerted on the road by the rear and front wheels. (The location of 
the centre of mass of the motorcycle not including its wheels is 
shown.) 

Strategy: Isolate the whcels and drnw three free-body diagrams. 
The motorcycle's engine driVCfi the rear wheel by exerting a couple 
on it. 

041--649 mm-

~ IsnOmrn····························_ 

B 

P7.49 

7.50 In Problem 7.49, if the front wheel lifts slightly off the 
road when the rider acceleratl~s, determine (a) the motorcycle's 
accclcm!ion; (b) the torque exerted by thc engine on the rear 
wheel. 

7.51 By using Equations (7.5)-(7.8), show that the angular 
momentum of a rigid body about a fixed point 0 is the sum of 
the angular momentum about 0 due to the motion of its centre of 
mass and the angular rnomentwn about its centre of mass; 
Ho=r x mv+H. 

PROBLEMS 

7.52 The mass Of the slender bar is m and the mass of th 
homogeneous disc is 4m, The system is released from rest in the 
position shown, If the disc rolls and friction between lhe bar an 
the horizontal surlace is ncglig,ble, show that the disc's angul 
acceleration is rx. = 6g195R counterclockwise, 

> R . 

·1 P7.52 

7.53 If the disk in Problem '7.52 rolls and the coefficient 0 

kinetic friction between the bar and the horizontal surface is fik, 
what is the disc's angular acceleration at the instant the -:ystem is 
released? 

7.54 The ring gear is fixed. The mass and mass moment of 
inertia of the sun gear are ms = 320 kg1 Is ~ 6000 kg.m2. The mass 
and mass moment of inertia of each planet gear are mil = 40 kg, 
Ip = 88 kg.m'. If a couple M = 800 N.m is applied to the sun gear, 
what is lhe resulting angular acceleration of the planet gears, and 
what tangential force is exerted on the sun gear by each planet 
gear? 

RlI1g gear 

Phmet gear, (3) 

Sun gear 

P7.54 

7.55 If the system in Problem 7 .. 54 ~tarts from rest, what constant 
couple AI exerted on the sun gear will cause it to accelerate to 
120 rpm (revolutions per minute) in I min? 
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Problems 7.56-7.62 ore related to Example 7.7. 

7.56 The 3 Mg rocket is accelerating upwards at 2g·s. If you 
model it as a homogeneous bar, what is the magnitude of the axial 
force at the midpoint? 

6111 

P7.56 

7.57 The 20 kg slender bar is attached to a vertical shaft at A and 
rotatclS in the horizontal plane with a constant angular velocity of 
10 rddis. \\That is the axial force at the bar's midpoint? 

P7.57 

7.58 For the rotating bar in Probiem 7.57, draw the graph of the 
axial force as a function of x. 

7.59 The 50 kg slender bar AD has a built-in support at A. The y 
axis points upwards. Detennine the magnitudes of the shear force 
and bending moment at the bar's midpoint if (oj the support is 
stationary; (b) the support is accelerating upwards at 3 m/s2, 

100 N 

1-----................... 4m .. 

P7.S9 

7.60 For the bar in Problem 7.59, draw the shear force and 
bending moment diagrams for the two cases. 

7.61 The 18kg ladder is held in equilibrium in the position 
shown by the force F. Model the ladder as a slender bar and neglect 
fiiction. 

<a) What are the axial force, shear force and bending moment at the 
ladder's midpoint? 
(b) If the force F is suddenly removed, what are the axial force, 
shear force and bending moment at the ladder's midpoint at that 
instant'? 

/V 
, , 

\ 

\ 
4111 

\ 

P7.61 

7.62 For the ladder in Problem 7.61, draw the shear force and 
bending moment diagrams for the two cases. 



Computation1ol Mechanics 
-----------------

The material in this section is designed for the use of a programmable t;alculator 
or computer. 

'When you know the forces and couples acting on a rigid body, you can use the 
equations of motion to dctcnnine the acceleration of its centre of mass and its 
angular acceleration_ Tn some situations, you can then integrate to obtain c1osed~ 
form cxprc8siom: for the velocity and position of its centre of mass and lor its 
angular velocity and angular position as functions of time. But if the functions 
describing the accelerations are too complicated. or the forces and couples arc 
known in tenns of continuous 01' analogue data instead of equations, you must ut:;e a 
numerical method to determine the velocities and positions as functions of time. 

In Chapter 3, we described a simple finite-difference method for determining the 
position and velocity of the centrc of mass as functions of time. You can dctcnnine 
the angular position and angular velocity in the same way, Let's suppose that the 
angular acceleration of a rigid body depends on time, its angular position and its 
angular velocity· 

a="(I,A,w) (7,30) 

Suppose that at a particular time 10, we know the angle OCto) and angular velocity 
w(to), The angular acceleration at to is 

where 

dw 
dt (to) = *", 0(10), "'(to)] 

dw ) l' m(tll +.1.1) - 0)((0) 
-(t() = 1m 
dt AHO 111 

(7,31 ) 

Choosing a sufficiently small value of !:::.t, we can approximate this derivative by 

dw (I ) = w(l" + LIt) - u'(irJ) 
dl O. 1\1 

and substitute it into Equation (7.31) to ohtan'l an approximate expression for the 
angular velocity at time 10 + At: 

01(10 + 111) = w(lo) + a[to, DUo), W(lo)].1.1 

The relation between the angular velocity and angular position at to is 

de() . 
dt to = w(to) 

Approximating this derivative by 

de 
di (to) 

OCto + .1.1) - 8(to) 
IJ.l 

(7.32) 

we obtain an approximate cxprc~sjon for the angular position at time to + dt: 

OCto + .1.t) = 0(10) + w(lo)111 (7.33) 

With Equations (7.32) and (7.33), we can determIne the approximate values of the 
angular velocity and position at 1'0 + Ill. Using these values as initial conditions, we 
can repeat the procedure to dctcnninc the angular velocity and position at time 
to + 2At, and so forth. 
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Example 7.10 

The 18kg ladder in Figure 7,23 is released from rest in the position shown at t=O, 
Neglecting friction, detennine its angular position and angular velocity as functions 
of time, Use time increments At of 0, I s, 0,0 I sand 0,001 s. 

STRATEGY 

The initial steps-drawing the free-body diagram of the ladder, applying die 
equations of motion, and determining the angular acceleration-are presented in 
Example 7,4, The ladder's angular acceleration is 

3g , " 
'=2I smv 

where e is the angle between the ladder and the wall and I'is its length, With this 
expression, we can use Equations (7,32) and (7.33) to approximate the ladder's 
angular position and angular velocity as functions of time. 

SOLUTION 

The angular acceleranon is 

(3)(9,81) ." 3 68 ' D d/' 
.= (2)(4) Slllv=, SIll"ra S 

Let !J.I = 0 t s. At the initial time 10 0, 8(10) = 50 = 0.0873 rad and 01(10) = (), We 
can usc Equations (7,32) and (7.33) to determine the angular velocity and position 
at time to + 6.t= 0.1 s. The angular position is 

The angular velocity lS 

0(10 + At) = 0(/0) + w(lo)M: 

8(0, I) = 0(0) + w(OlM 

"" 0,0873 + (0)(0,1) = 0.0873 rad 

w(to + A/) = 01(10) + "(10)81: 

01(0.1) = 0 + (3,68 sin(0,0873)](0, I) = 0,0321 radls 

Using these values as the initial conditions for the next time step, the angular 
position at t = 0.2 s is 

0(0.2) = 8(0,1) + coCO, I)AI 

= 0,0873 + (0,0321)(0, I) = 0,0905 rad 

and thc angular velocity is 

w(0.2) = w(O,l) + "(O.I)AI 

= 0.0321 I- [3.68 sin(0.0873)](0,1I = 00641 radls 

Continuing in this way, we obtain the following values for the first five time steps: 



Time, s 0, rad OJ, rad/s 

0.0 0.0873 0.0000 
OJ 0.0873 0.0321 
0.2 0.0905 0.0641 
OJ 0.0969 0.0974 
0.4 0.1066 0.1329 
0.5 0.1199 0.1721 

Figures 7.24 and 7.25 show the numerical solutions for the angular position and 
angular velocity obtained using !'J.I = 0. Is. !'J.t= 0.01 s and !'J.t = 0.001 s. Trials with 
smaller time intervals indicate that .1.t = 0.00 I s closely approximates the exact 
solution. We show the positions of the falling ladder at 0.2 s intelvals in Figure 7.26. 
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Figure 7.24 

Numerical solutions for the ladder's angular 
position, 

DISCUSSION 

t, seconds 

Figure 7.25 

Numerical solutions for the ladder's 
angular velocity 

By using the chain rule, we calll write the ladder's angular acceleration as 

dw dw 3g. 
X=-=-(!J::::- sm f) 

dt dO 21 

Separating variables, we can integrate to detennine the angular velocity as a 
function of the angular pusition: 

1'" 1" "g OJ dw = ~)l sin 0 dO 
o 5' "" 

We obtain 

This closcd~fonn result is compared with the graph of our numerical solution (using 
!'J.I = 0.00 I s) in Figure 727. 11,e curves are indistinguishable. 

::a 
B 
S 

Figure 7.26 

Position of the falling ladder at 0.2 s 
intervals from t=O to 1= lAs. t 
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Figure 7.27 

Analytical and numerical solutions for the 
ladder's angular velocity as a function of 
its angular position. 
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7.63 Continue the calculations presented in Example 7.10, using 
tl.t:=:;; 0.1 s~ and determine the ladder's angular position and angular 
velocity at t=0.6 sand t=O.7 s. 

7.64 The mass moment of inertia of the helicopter's rotor is 
500 kg.m2

. It starts from rest at (=0, the engine exerts a constant 
torque of 625 N.m and aerodynamic drag exerts a torque of 
magnitude 25(.02 N,m where m is the rotor's angular velocity ill 
radians per second. Using t5t.:::::. 0.2 S, determine the rotor's angular 
position and angular velocity for the first five time steps. Compare 
your results for the angular velocity with the closed-form solution. 

7.65 [n Problem 7.64, draw • graph of the rotor's angular 
velocity as a function of time from t=O to t= 10 s, comparing 
the closed~fonn solution, the numerical solution using bf = 1.0 s, 
and the numerical solution using i5t = 0.2 s, 

7.66 The slender 10 kg bar is released from rest in the honz (al 
position shown. Using (;( = 0,1 s, determine the bar's an tar 
po"tion and angular velocity for the first five time steps, 

lE" :::::::=:::::::::::::=:::.. :::::::::;:::::=]J 
~ '--Im--~ P .66 

7,67 In Problem 7.66, dctennine the bar's angular POSt on 
and angular velocity as functions of time from (=0 to = 
0.8 s using dt=O.1 s, Ar=O.OI s and At=O.OOI s, Draw e 
graphs of the angular velocity as a fime!ion of the ang lar 
position for these three cases and compare them WIth the g ph 
of the closed-form solution for the angular velocity as a func On 

of the angular position. 

7.68 In Problem 7,66, suppose that the bar's pin support eont ins 
a damping device that exerts a rcsi~ting couple on the ba of 
magnitude em (N.m), where OJ is the angular velocity in radians er 
second. Using dt=O.OOI s, draw graphs of the bar's ang lar 
velocity as a function ofUme from (=0 to 1=0.8 s for the c es 
c=O, c=2, c.:::;;4 and c=8. 

7.69 The jailing ladder in Example 7,10 will lose contact ith 
the wall betore it hits the floor. Using bt = 0.001 s, estimate e 
time and the value of the angle between the wall and the I. er 
when this occurs. 

Appendix: Moments of Inertia 

(b) 

Figure 7.28 

Objects of equal m~s that have different 
mass moments of inertia about ,f." 

When a Iigid body is subjected to forces and couples, the rotational mot n 
that results depends not only on its mass, but also on how its mass 15 

distributed. Although the two objects in Figure 7.28 have the same m 8, 

the angular accelerations caused by the couple M are different. This differe co 

is reflected in the equation of angular motion M = fa through the mass mom nt 
of inertia I. The object in Figure 7.28(a) has a smaller mass moment of ine ia 
about the axis L, so its angular acceleration is greater. 

In deIiving the equations of motion of a Iigid body in Sections 7.2 and 3, 
we regarded it as a finite number of particles and expressed its mass mom ot 
of inertia about an axis Lo as 

where m, is the mass of the ith particle ,md r, is the petpendieular dist 'e 
from Lo to tlte ith particle (Figure 7.29(a). To calculate the moments of inc Ia 

of objects, it is often more convenient to model them as continuous distri 



tiuns of mass and express the mass moment of inertia about Lo as 

10 = 1 r2
dm 

m 
(7.34) 

where r is the perpendicular distance from Lo to the differential element or 
mass dm (Figure 7.29(b)). When the axis passes through the centre of mass 
of the object, we denote the axis by L and the mass moment of inertia about 
L by I. 

Simple Objects 
You can determine the mass moments of inertia of complicated objects by 
summing the moments of inertia of their individual pans, We there tore begin 
by determining mass moments of inertia of some simple objects, Tben in 
the next section we describe the parallel-axis theorem, which makes it possible 
for you to determine mass moments of inertia of objects composed of 
combinations of simple parts. 

Slender 8ars We will determine the mass mument of inertia of a straight 
slender bar about a perpendicular axis L through the centre afmas. of the bar 
(Figure 7.30(0». 'Slender' means we assume that the bar's length is much 
greater than its width. Let lbe bar have length I, cross-sectional area A, and 
mass m, We aSsume that A is uniform along the length of the bar and that the 
material is homogeneous, 

Consider a differential element of the bar of length dr at a distance r rrom 
the centre ofmas5 (Figure 7.30(b)), The element's mass is equal to the product 
of its volume and the mass density: dm = pA dr, SUbstituting this expression 
into Equation (7.34), we obtain the mass moment of inertia of the bar about a 
perpendicular axis through its centre of mass: 

1 f
l!2 1 

1 = r2drn = pAr2 dr = - pAP 
m lP 12 

Figure 7,30 

(a) A slender bar. 
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(b) 

Figure 7.29 

Dctcnnining the mass moment of inertia by 
modelling an o~icct as (a) a finite number of 
particles and (b) a continuous distribution of 
mass. 

.. ~ (b) A differential element of length dr, 

..... ' 

(a) 

dm 

(bl 
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The mass of the bar equals the product of the mass density and the volume of 
the bar, m = pAl. so we can express the mass moment of inertia as 

I 
I =-mI2 

12 
(7.35) 

We have neglected the lateral dimensions of the bar in obtaining this result. 
That is, we treated the differential element of mass dm as if it were 
concentrated on the axis of the bar. As a consequence, Equation (7.35) is an 
approximation for the mass moment of inertia of a bar. Later in this section, 
we will detenmine the moments of inertia for a bar of finite lateral dimension 
and show that Equation (7.35) is a good approximation when the width of the 
bar is small in comparison to its length. 

Thin Plates Consider a homogeneons flat plate that has mass m and 
unifonm thickness T. We will leave the shape of the cross-sectional area of 
the plate unspecified. Let a cartesian coordinate system be oriented so that the 
plate lies in the .t-y plane (Figure 7.31(a»). QUI' objective is to determine the 
mass moments of inertia of the plate about the x, y and z axes. 

We can obtain a differential element of volume of the plate by projecting an 
element of area dA through the thickness T of the plate (Figure 7.31 (b)). The 
resulting volume is T d,1. The mass of this element of volume is equal to the 
product of the mass density and the volume: dm = pT dA. Substituting this 
expression into Equation (7.34), we obtain the mass moment of inertia of the 
plate about the z axis in the fonm 

where r is the distance from the z axis to dA. Since the mass of the plate 
is m = pTA. where A is thc cross-sectional area of the plate, the product 
pT= mlA. 'Ibc integral on the right is the polar moment <;>f inertia Jo of the 
cross-sectional area of the plate. Therefore we can write the mass moment of 
inertia of the plate about the z axis as 

Figure 7.31 
(a) A plate of arbitrary shape and uniform 

thickness T 
(b) An element of volume obtained hy 

projecting an element of area dA through 
the plate. 

(a) 

v 

LL __ + ___ X 

(b) 

(7.36) 

y 

----:~~ 
,. __ ..JI 



From Figure 7,31 (b), we see tbat the perpendicular distance lTom the x axis 
to the element of area dA is the y coordinate of dA, Therefore the mass moment 
of inertia of the plate about the x axis is 

(7,37) 

where fA is the moment of inertia of the cross-sectional area of tile plate about 
the x axis, The mass moment M inertia of the plate abont the y axis is 

1 2 "1' m i(Yaxjs) = x dm'~ (1/ x-dA = -ly 
In A A 

(7,38) 

where I,. is the moment of inertia of the cross-sectional area of the plate about 
the y ~is, 

Thus we have expressed the mass moments of inertia of a thin homo­
geneous plate of uniform thickness in terms of the moments of inertia of the 
cross-sectional area of the plate, In ract, these results explain why the area 
integrals I"~ Iv and Jo are called moments of inertia, 

Since the sum of the area moments of inertia fx and fv is equal to the polar 
moment of inertia Jo, the mass moment of inertia of the thin plate aboul the z 
axi~ is equal to the sum of its moments of inertia about the x and y axes: 

'(z aXLS) = f(x axis) + r(Yaxis) (7.39) 

Tn the following example we u,~'e integration to determine the mass moment 
of inertia of an object consi"tlng of two slender bars welded together. We 
then present an example that demonstrates the use of Equation" (7.36)­
(7.38) to determine the mass moments of inertia of a thin, homogeneous 
plate witlt a specific cross-sec#ona/ area, 
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y 

dm 
\ 

2 

(0) Differential clement of bar 1. 

(b) Differential element of bar 2. 

Two homogeneous. slender bars, each of length I, mass m, and cross-sectional area 
A, are welded together to form an L-shaped object (Figure 7,32), Detennine the 
mass momcnt of inertia of the object about the axis £'0 through point 0, (The .Xl8 Lo 
is perpendicular to the two bars,) 

Figure 7,32 

STRATEGY 

Using the same integration procedure we used for a single bar, we can determine the 
mass moment of inertia of each bar about Lo and sum the results, 

SOLUTION 

We orient a coordinate system with U~C z axis along Lo and the x axis coHnear with 
bar I (Figure (a)). The mass of the differential element of bar 1 of length dx is 
dm = pAdx. The mass moment of inertia of bar 1 about Lo is 

(l0)1 = r rdm = J~ pA,2dx = ~PAt' 1m ~ 

In tenns of the mass of the bar. m = pAl, we can write this result as 

The mass of the element of bar 2 of length dy shown in Figure (b) is dm = pAdy. 
From the figure we see that the perpendicular distance from La to th~ element is 
r = ..; f2 + y2. Therefore the mass moment of inertia of bar 2 about Lo is 

(To), = 1 rdm = r' pAU' + /)dy = ~ pAl3 

m Jo 3 

In terms of the mass of the bar. we obtain 

4 2 (10), = ~ml 
3 

The mass moment of inertia of the L-shaped object about Lo is 



The thin, homogeneous plate in Figure 7.33 is of uniform thickness and mass m. 
Determine its mass moments of inertia about the Xj y and z axes. 

y Figure 7.33 

r 
II 

I~---b---

ST~ATEGY 

The mass moments of inertia about the x and y axes are given by Equations (7.37) 
and (7.38) in terms of the moments of inertia of the cross-sectional area of the plate. 
We can determine the mass moment of ineltia of the plate about the z axis from 
Equation (7.39). 

SOLUTION 

From Appendix B, the moments of inertia of the triangular area about the x and 
y a\CS are Ix = fJbh3 and ly = ~ hb3. 111Cl'cfore the mass m()ments of inertia 
about the x and y axes are 

The moment of inertia about the z axis is 
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Figure 7.34 
(a) An axis L through the centre of mass of 

an object and a parallel axi, 1.0• 

(b) The:xyz and xit coordinate systems. 

Parallel-Axis Theorem 
This theorem allows us to determine mass moments of inertia of composite 
objects when we know the mass moments of inertia of its parts. Suppose that 
we know the mass moment of inertia 1 about an axis L through the centre of 
mass of an object, and we wish to detetmine its mass moment of inertia To 
about a parallel axis Lo (Figure 7.34(a». To determine 10, we introduce parallel 
coordinate systems xyz and x'yt with the z axis along Lo and the t axis along 
L, as shown in Figure 7.34(b). (In this figure the axes Lo and L are 
perpeudicular to the page.) The origin 0 of the xyz coordinate system is 
contained in the x' -y plane. The terms dx and dy are the coordinates of the 
centre of mass relative to the xyz coordinate system, 

y y' 

(<I) (b) 

The mass moment of inertia of the object about Lo is 

10 = 1 ?dm = r (,,2 +.0) dm m 1m (7.40) 

where r is the perpendicular distance from Lo to the differential element of 
mass dm, and x, y are the coordinates of dm in the x-y plane. The x-y 
coordinates of dm arc related to its x' -y coordinates by 

y=y'+dy 

By substinlting these expressions into Equation (7.40), we can write it as 

10 = L [(X)2 + Clll dm + 2dx L :i dm + 2dy L y'dm 

+ L (d; + d;l dm 

Since (x'f + (y'? (1")2, where I" is the perpendicular distance from L 
to dm, the first integral on the right side of this equation is the mass moment 
of inertia I of the object about L. Recall that the x' and i coordinates of 
the centre of mass of the object relative to the x'i'! coordinate system are 
defined by 

-, 
x 

L x'dm 

r dm 
1m 



Because the centre efmass or the object is at the origin of the xli system, 
X' = 0 and y = 0. Therefore the integrals in the second and third terms on the 
right side of Equation (7.41) arc equal to zero. From Figure 7.34(b), we see 
that d; + d~ = d', where d is the perpendicular distance between the axes L 
and Lo. Therefore we obtain the theorem 

(7.42) 

where m is the mass of the object This is the parallel-axis theorem. If you 
know the mass moment of inertia of an object about a given axis, you 
can use this theorem to determinc its mass moment of inertia about any 
parallel axis. 

In the next two examples we use the parallel-axis tloeorem to determine mass 
moments of inertia of composite objects, Determining the mass moment of 
inertia about a given a.,<is L" typically requires three step.v: 

(1) Choose the parts - Try to divide the ubject into purls III/hose mass moments 
of inertia you know or can easily determine, 

(2) Determine the mass moments of inertia of the parts ... y,)U musl .first 
determine the mass moment (~f inertia ql each part about the axis through 
its centre of mas.I' parallel 10 Lo. Then you can use the parallel-axis 
theorem to determine its mass moment of inertia about Lo. 

(3) Sum the results-Sum the mass momelUs of inertia of Ihe parts (or 
subtract in the case of a hole or cutout) to obtain the mass moment of 
inertia of the composite object. 
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(a) The distances from Lo to parallel axes 
through the centres of mass of bars 1 
and 2. 

Two homogeneous, slender bars, each of length I and mass m" are welded together 
to form an L~shaped object (Figure 7.35). Delennine the mass moment of inertia 
of the object about the axis Lo through point 0. (The axis Lo is perpendicular to 
the two bars.) 

Figure 7.35 

SOLUTION 

Choose the Parts The parts are the two bars. which we call bar 1 and bar 2 
(Figure (a». 

Determine the Mass Moments ot Inertia of the Parts From Equallon 
(7.35), the mass moment of inertia of each bar about a perpendicular axis through 
its centre of mass is r li mt2. The distance from Lo to the parallel axis through the 
centre of mass of bar 1 is!t (Figure (a). Therefore the mass moment of inertia of 
bar 1 about Lo is 

The distance from Lo to the paraJleJ axis through thc centre of mass of bar 2 is 
[z2 + (Fy~]1/2. The mass moment of inertia of bar 2 about Lo is 

Sum the Results The mass mament of inertia of the L-shaped object aboul 
[0 is 

DISCUSSION 

Compare this solution with Example 7.11, in which we used integration to 
determine the mass moment of inertia of this object about Lo. We obtained the 
result much more easily with the parallel~axis theorem, but of course we needed to 
know the mass moments of inertia of the bars about the axes through their centres of 
mass, 



The object in Figure 7.36 consists of a slender, 3 kg bar welded to a thin, circular, 
2 kg disc. Determine its mass moment of inertia about the axis l. through its centre 
uf mass. (The axis L is perpendicular to the bar and disc.) 
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Figure 7,36 

STRATEGY 

We must locate the ccntre of mass of the composite object, then apply the parallel­
axis theorem, We can obtain the mass moments of inertia of the bar and disc from 
AppendIX C. 

SOLUTION 

Choose the Parts The parts arc the bar and the disc. Introducing the coordinate 
system in Figure (a), the x coordinate of the centre of mass of the composite object 
is 

+ (0,3)(3) + (0,6 + 0,2)(2) 
3 +2 = O.5m 

Determine the Mass Moments of Inertia of the Parts The distance irorn 
the centre of mass of the bar to the centre of mass: of the composite object is 0.2 m 
(Figure (b)). Therefore the mass moment of inertia of the bar about L i:s 

[('''' = 1 (3)(0,6)' + (0,2)2(3) = [),21Okg,m' 

The distance from the centre uf mass of the disc to the centre of mass of the 
composite object is 0.3 m (Figure (c)). The mass moment of inertia of the disc about 
Lis 

1 2,' 2 2 
ltd,,,) = 2:(2)(0,2) + (0,3) (2) = 0.220 kg,rn 

Sum the Results The mass moment of inertia of the composite object about 
Lis 

v 

... 03 rn .. I 

, 

(a) The coordinate i of the centre of mass 
of the object. 

(b) 

0,5111-'--'--

~ ... 0,2m ... 

Distance trom L to the centre of mass 
of the bar, 

0.5 rn 

(c) Distance from L to the centre of mass 
of the disc, 
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The homogeneous cylinder in Figure 7.37 has mass Itt, length I, and radius R. 
Detennine its mass moments of inertia about the x, y and z axes. 

Figure 7.37 

STRATEGY 

We can detennine the ma'{s moments of inertia of the cylinder by an interesting 
application of the parallel-a 'tis theorem. We first: use it to determine the mass 
moments of inertia about the .t, y and z axes of an infinitesimal element of the 
cylinder consisting of a disc of thickness dz. Then we integrate the results with 
respect to z to obtain the moments of inertia of the cyJinder. 

SOLUTION 

Consider an element of the cylinder of thickness dz at a distante z from the centre of 
the cylinder (Figurc (a)). (You can imagine obtaining this element by 'slicing' the 
cylinder perpendicular to its axis.) The mass of the element is equal to the product 
of the mass density and the volume of the element, dm = p(nR'dzJ. We obtain the 
mass moments of inertia of the element by using the values for a thIn circular plale 
given in Appendix C. The ma<;s moment of inertia about the z: axis is 

I 2 1. 2 2 
<11ruxis) = 2. dm R ="2 (pn R dz)R 

y 

(a) A differential element of the cylinder in the form of a disc. 



We integrate this result with respect to z from - 112 to //2, thereby summing the 
mass moments of inertia of the infinitesimal disc clements that make up the 
cylinder. The result is the moment of inertia of the cylinder about the z axis: 

We can write this result in tenns of the mass of the cylinder, m = p{n R2/), as 

The mass moment of inertia of th{: disc clement about the x! axis is 

We use this result and the parallel·,axis theorem to detennine the mass moment of 
inertia of the element about the x axis: 

Integrating this expression with re~ipect to z from - /12 to 112\ we obtain the mass 
moment' of inertia of the cylinder about the x axis: 

1n terms of the mass of the cylinder, 

I 1 1 2 
h" axis) = 4"mR + 12 ml 

Due to the symmetry of the cylinder, 

DISCUSSION 

\\Then the cylinder is very long in comparison to its width, I» R, the first ternl in the 
equation for J(.>:IlXI>l) can be neglected and we Qbtain the mass moment of inertia ofa 
slender bar about a perpendicular axis, Equation (7.35). On the other hand, when lhe 
radius of the cylinder is much greater than its length, R» I. the second term in the 
equation [or J(x mils) can be neglected and we obtain the moment of inertia for a thin 
circular disc about an axis parallel to the disc, This indicates the sizes of the tenus 
you neglect when you w::e the approximate expressions for the moments of inertia of 
a 'slender' bar and a 'thin' disc. 
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7.70 The homogeneous, slender bar has mass m and length /. 
Use integr-ation to determine its mass moment of inertia about the 
perpendicular axis Lo. 

Strategy: Use the same approach we used to obtain Equation 
(7.35). You need only In change the limits of integration. 

o o P7.70 

7.71 Two homogeneous, slender bars, each of mass m and length 
I, are welded together to fom1 th" T-shaped object. Use integration 
to detennine the mass moment of inertia of the object about the 
axis through point 0 that is perpendicular to the bars. 

°1 /-

P7.71 

7.72 The homogeneous) slender bar has mass m and length I. 
Use integration to determine the mass moment of inertia of the bar 
about the axis L. 

P7.72 

7.73 A homogeneous, slende.r bar is bent into a circular ring of 
mass m and radius R. Determine the mass moment of inertia of the 
ring (a) about the axis through its centre of mass that is perpeJ1di~ 
cular to the ring; (b) about the axis L. 

P7.73 

7.74 The homogeneous, thin plate is of unifonn thickness and 
mas') m. Determine its mass moment of inertia about the x, y and z 
axes. 

Strategy: The mass moments of inertia of a thin plate of arbitrary 
shape are given by Equations (7.37H7.39) in tenns of the 
moments of inertia of the cross-sectional area of the plate. You 
can obtain the moments of im~rtia of the rectangular area from 
Appendix B. 

y 

T ,,' ~ 

II x 

~L 
I· I> ~1 

P7.74 

7.75 The brass washer is ofunifonn thickness and tnaSS m. 
(a) Detennine its mass moments of inertia about the x and z axes. 
(b) Let Ri = 0 and compare your results with the values given in 
Appendix C for a thin circular plate. 

(c) Let R, -+ Ro• and compare your results with the solutions of 
Problem 7.73. 

)' 

P7.75 



7.76 The homogeneous; thin plate is of uniform thickness and 
weighs lOON. Detennine its mas:s moment of inertia about the y 
axis. 

P7.76 

7.77 Dctennine the mass moment of inertia of the plate in 
Problem 7.76 about the x axis. 

7.78 The mass of the object is 10 kg, Its maSS momenl of inertia 
about LI is 10 kg.m2. \Vbat is its lnass moment of inertia aboutL2? 
(The three axe!': lie in the same plane.) 

06 m --~+--- 06 Tn 

L L, P7.78 

7.79 An engineer gathering data tor the design of a manoeuvring 
unit detennincs that the astronaut'~; centre of mass is at x = LO 1 ill, 
V = 0, 16 m and that his mass moment of inertia about the z axis is 
'I05,6kg,m', His mass is 8L6kg, What is his mass moment of 
inertia about the i axis through his centre of mass? 

P7,79 
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7.80 Two homogeneous, slender bars, each of mass m and 
length I, are welded together to ",nn the T-shaped oi1iect. Use 
the parallel-axis theorem to determine the mass moment of inertia 
of the object about the axis through point 0 that is perpendicular to 
the bars, 

P7.80 

7.81 Usc the paral1cl~axis theorem to dctctminc the mass 
moment of incrtia of the T~shapcd object in Problem 7.S0 aboul 
the axis through the centre of mass of the object that is perpendi­
cular to the two bars. 

7.82 The mass of the homogeneous, slender bar is 20 kg. 
Detennine its mass moment of lneltia about the z axis. 

j 
-1 ~! ~ I/J '~'~"'.. .1' 

1m ~ 

J 

. '1, 
-'". 

, '''-. -- - ---~·x 

! ...... -.-I .. ~m-------< -I rn--I 
P7.82 

7.83 Detetmine the mass moment of inertia of the bar in 
Problem 7.82 about the t axis through its centre ormass. 
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7.84 The rocket is used for atmospheric research. Its weight and 
its mass moment of inertia about the z axis through its centre of 
mass (including its fuel) are 45 kN and 14000 kg.m', respectively. 
The rocket's fllel weighs 27 kN, its centre of mass is located at 
x'" - 1 m, y = 0, z = 0, and the mass moment of inertia of the fuel 
about the axis through the fuel '5 centre of mass parallel to the z axis 
is 3000 kg.m2 When the ruel is exhausted, what is the rocket's 
mass moment of inertia about the axis through its new centre of 
mass parallel to the z axis? 

v 

P7.84 

7.85 The ma'lS of the homogeneous, thin plate is 36 kg. Deter­
mine its mass moment of inertia about the x axis. 

P7.85 

7.86 Determine the mass moment of inertia of the plate in 
Problem 7.85 about the z axis. 

7.87 The homogeneous, thin plate weighs 50 N. Determine its 
mass moment of inertia about the x axis. 

I 

125 111 III 

y 

--125 ''''''-1-'2) ",m--I 

250mm 

--x P7.87 

7.88 Detennine the mass moment of inertia of the plate in 
Problem 7.87 about the y axis. 

7.89 The thennal mdiator (used to eliminate excess heat from a 
satellite) can be modelled as a homogeneous, thin, rectangular 
plate. lts mass is 75 kg. Detetmine its mass moments of inertia 
about the XI y and z axes. 

V 

1111 +---2111---1 

P7.89 

7.90 The mass of the homogeneous, thin plate is 2 kg. Determine 
its mass moment of inertia about the axis through point 0 that is 
perpendicular to the plate. 

1-----130 mm---- .~ 

I 

P7.90 



7.91 The homogeneous cone is of mass m. Detemrine its mass 
moment of inertia about the z axis and compare your resuH with the 
value given in Appendix C. 

Strategy: Use the same approach we used in Example 7.15 10 
obtain the moments of inertia of a homogeneous cylinder. 

y 

P7.91 

7.92 Determine the mass moments of inertia of the homoge­
neous cone in PJ'Oblem 7,91 aboillt the x and y axes and compare 
your results with the values given in Appendix C. 

7.93 The homogeneous pyramid is of mass m. Determine its 
mass moment of inertia about the z axis. 

P7.93 

7.94 Dete11111ne the mass moments of inertia of the homogc~ 
ncous pyramid in Problem 7,93 about the x andy axes. 
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7.95 The homogeneous. rectangular parallclepipt:d is of mass m, 
Determine its mass moments of inertia about the x, ]I and z axcs 
and compare your results with the values given in Appendix C. 

P7.95 

7.96 The homogeneous ring consists of slt:el of density 
p = 7800 kg/m]. Determme its ma~,s moment of inertia about the 
axis L through its centre of mass. 

J 50 

~---"'-- - --------~ , 
~: luO 1_ 

111m 

P7.96 

7.97 The homogeneous half.Gylinder IS of mas(\ m. Detemlinc 
its mass moment of inertia about the axis L through its centre 
ofma88. 

P7.97 
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7.98 The object shown consists of steel of density p = 7800 
kg/rn:l, Detennine its mass moment of inertia about the axis 
Lo through point O. 

7.100 The thick plate consists of steel of density p = 7800 
kglm3

, Detennine its mass moment of inertia about the z axis, 

y 

z 
r 
30mm 

~'-~ Ion 
111m 

P7.98 P7.100 

7.99 Detem1ine the mass moment of inertia of the o~jcct in 
Problem 7.98 aboul the axis through the centre of mass of the 
object parallel to L". 

7.101 Determine the mass moment of inertia of the object in 
Problem 7.100 about the x axis. 

Chapter Summary 
-----------------------~~-----~-------------

Moment-Angular Momentum Rel.ations 
Let r, be the position of the ith particle of a system of particles, and let Ri be 
its position relative to the centre of mass. The angular momentum of the 
system about a point 0 is the sum of the angular momenta of the particles, 

Equation (7.7) 

where Vi = dr;ldt, and the angular momentum "bout the centre of mass is 

Equation (7.8) 

These angular momenta are related by 

Ho=rxmv+H Equation (7.9) 

where v = drldt is the velocity of the centre of mass. 
The total moment about a fixed point 0 equals the rate of change of the 

angular momentum about 0: 

"" dHo ... Mo= Equation (7.11) 

This result can also be expressed in tenns ofth(: angular momeutmn about the 
centre of mass: 

d dH 
~ Mo = -d (r x m V + H) = r x m a + -d . t t Equation (7.12) 



where a is the acceleration of the centre of mass. 
The total moment about the centre of mass equals the rate of change of the 

angular momentum about the centre of mass: 

dH 
~M=­

dl 
Equation (7.13) 

Equations of Planal' Motion 
The equations of mati on for a rigid body in planar motion include Newton's 
second law, 

:!:F=ma Equation (7.21) 

where a is the acceleration of the centre of mass . Tfthe rigid body rotates about 
a fixed axis 0, the total moment about 0 equals the product of the moment of 
inertia ahout 0 and the angular acceleration: 

Equation (7.22) 

In any planar motion, the total moment about the centre of mass equals the 
product of tbc moment of inertia about the ccntre of mass and the angular 
acceleration: 

Equation (7.23) 

If a rigid body is in translation, Newton's second law is sufficient to determine 
its motion. Nevertheless, the angular equation of motion may be needed to 
determine unknown forces Ol~ couples. Since a = 0, the total moment ahout the 
centre o/mass equals zero. In the case of rotation about a fixed axis~ Equation 
(7.22) is sufficient to determine the rotational motion, although Newton's 
second law may be needed to determine unknown forces or couples. If a rigid 
body undergoes general planar motion, both Newton's second law and the 
equation of angular motion are needed. 

D' Alembert's Principle 
By writing Newton's second law as 

~F+(-ma)=O Equation (7.27) 

it can be regarded as an 'equilibrium' equation stating that the sum of the 
external forces, including an inertial force - ma, equals zero. The equation 
of angular motion can be written as 

:!:Mo+[rx (-mall'k+(-la) = 0 Equation (7.28) 

stating that the sum ofthe moments about any point due to external forces and 
couples, including the moment due to the inertial force - rna acting at the 
centre nf mass and an inertial couple - la, equals zero. Stated in this way, the 
equations of motion of a rigId body are analogous to the equations for static 
equilibrium. 
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Moments of Inertia 
The mass moment of inertia of an object about an axis Lo is 

Equation (7.34) 

where r is the perpendicular distance from Lo to the differential element of 
mass dm. 

Let L be an axis through the centre of mass of an object, and let Lo be a 
parallel axis. The IllilSS moment of inertia 10 about Lo is given in tenns of the 
mass moment of inertia J about L by the parallel-axis theorem 

Equation (7.42) 

where m is the mass of the object and d is the distance between L and Lo. 

I ~'----~"·~--~----~~:n'""~----·-·I ---_·_·-ITJiT---'-_·_-----
1._ .•• :~.L._.,3_._·_Ll F"i~ ftri·l);n!l~~.fU Review Problems 1-'.~,.~_~c:j1l._·· --'"~_----' __ J 

7.102 The aeroplane is at the beginning of its takeoff run. Its 
weight is 4.5 kN, aod the initial thrust T exerted by its engine is 
1.39 kN. Assume that the thrust is horizontal. and neglect the 
tangential forces exerted on its wheels, 
<al If the acceleration of the aeroplane remains constant. how long 
will it take to reach its takeoff speed of 130 kmIhr? 
(b) Detennine the normal force exerted on the forward landing gear 
at the bcginoing of the takeoff run. 

'i: 

··················2.1111 ...... ·· ...... ·· -I 

P7.102 

7.103 The pulleys can tum freely on their pin supports. Their 
mass moments of inertia are r, = 0.002 kg.m', In = 0.036 kg.m' 
and lc=O.032 kg.m'. They are initially stationary, and at 1=0 a 
constant couple M = 2 N.m is applied to pulley A. Wllat is the 
angular velocity of pulley C and how many revolutions has it 
turned at t = 2 s? 

P7.103 

7.104 A 2 kg box is subjected to a 40 N horizontal force. 
Neglect friction. 
(a) If the box t:emains on the Hoor, what is its acceleration? 
(b) Determine the range of values of c for which the box will 
remain on the floor when the force is applied. 

40N 

I · 
l~~~ ..... fi'l 

A 6 

100 mm~~....j..- P7.104 



7.105 The slender. 30 kg bar AB is I m long. It is pinned to the 
cart at A and leans againsl it at. B. 
(a) If the acceleralion ufthe cart is a 6m1s2, whatnOlmal force is 
exerted on the bar by the cart at Ii? 
(b) What is the largest acceleration a for whkh the bar will remain 
in contact with the surface at B? 

fi 

P7.105 

7.106 Tu dctcnninc a 4.5 kg tyre's mass moment of inertia, an 
engineer lets it roll down till inclined surface. If it take:;: 3,5 s to start 
from rest and mil 3 m down the surface, what is the tyre's mass 
moment of inertia about its centre of mass? 

P7.106 
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7.107 The mass moment of inertia of the disc is 0.2 kg.m2
, What 

is the smallest coefficient of static friction b-:twccn the rope and the 
disc for which the rope will not slip when the i'j),stem is released 
from rcst? 

P7.I07 

7.108 Model the excavator'li ann A He as a single rigid body. 
Its mass is 1200 kg, and the mass moment of inertia about its 
centre of mass If) 1 = 3600 kg,m2

, If point A is stationary and the 
angular at;;ccleration of the ann is 1.0 rad/52 counterclockwi~c, 
what force does the vertical hydraulic cylinder exert on the ann 
at B'i 

--1,7rn ..... 1,7m 

P7.108 

7.109 In Problem 7.108. iftlte angular acccicration crann ABC 
is 1.0 raJ/~2 counterclockwise and its angular velOCity is 2.0 radls 

counterclockwise, what are the components of the force exerted on 
the arm at A? 
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7.110 To decrease the angle of elevatton of the stationary 200 kg 
ladder) the gears that raised it are disengaged and a fraction of a 
second latcr a second set of gears that lower it are engaged. At the 
instant the gears that raised it are disengaged, what is the ladder's 
angular acceleration and what are the components of force exerted 
on the ladder by its support at O? The rna" moment of inertia of 
the ladder about 0 is 10= !4000kg.m2

, and the coordinates of its 
centre of mass at the in~tant the gears are disengaged are x = 3 m, 
},=4m. 

7.112 A slender bar of mass m is released from rest in the 
position shown, The static and kinetic coefficients offriction at the 
floor and wall have the same value /1. If the bar slips, what is its 
angular acceleration at the instant of release? 

\ 
\ 

P7.1l2 

7.113 Each of the go-cart's front wheels weighs 25 N and has a 
mass moment of inertia of D.014kg,m2

, The two rear wheels and 
rear axle fonn a single rigid body weighing 50 N and having a mass 
moment of inertia of D.! kg.m'. The total weight of the go-cart and 
rider is 1200 N. (The location of ti)e cenlre of mass of the go-cart 
and driver not including the front wheels or the rear wheels and 
rear axle is shown.) If the engine exerts a torque of 16 N.m on the 

P7.110 rear axle, what is the go~cart's acceleration? 

7.111 The slender bars each weigh 20N and are 250mm long. 
The homogeneous plate weighs 50N.lftlle system is released from 
rest in the position shown, what is the angular acceleration of the 
bars at that instant? 

2UOmm w-______ ~~~~--L 

~ ..................... 1000 moo ....................... ~ P7.11l 

P7.113 



7.114 Bar AB rotates with a constant angular velocity of Wrad/s 
in the counterclockwise direction. The masses of the slender bars 
BC and CDE are 2kg and 3.6 kg, respectively. The y axis points 
upwards. Detennine the components of the forces exerted on bar 
BC by the pins at Band C at tile instant shown. 

y 

1 

fI 

P7.114 

7.115 At the instant shown, the arms of the robotic manipulator 
have constant counterclocbvise angular velocities WAB = 
-0.5 rad/s, moc = 2 radls and WeD = 4 rad/s. The mass of 
ann CD is 10 kg. and its centre of mass is at its midpoint. At 
this instant, what force and cOllplc arc excrted on ann CD at C? 

y 

;', ,,'~' ',D 

1-250111111 ·I-x 

P7.11S 

7.116 Each bar is 1m in length and has a mass of4kg. The 
inclined surface is smooth. If the: system is released from rest in the 
position shown, what arc the angular accelerations of the bars at 
that instaIlt? 
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7.117 At the instant the system in Problem 7,116 is released, 
what is the magnitude ofthe force exerted on bar OA by the support 
at 0'1 

7.118 The fixed ring gear lies In the horizontal plane. The hub 
and planet gears are bonded together. The mass and mass moment 
of inertia of the combined hub and planet gears are mHP = 130 kg 
and [HP = 130 kg.m2

1 The mass momenl of inertia of the sun gear is 
Is = 60kg.m2

. The rnas!\ of the connecting rod is 5 kg, and it can be 
modelled as a slender bar. If a I kN.m counterclockwise couple is 
applied to the sun gear, what is the resulting angular acceleration of 
the bonded hub and planet gears? 

Planet 

Connecting ~ 

Sun gear 

Ring g('ar 

P7.118 

7.119 The system. is stationary at the instant shown. The net 
force exerted on the piston by the- exploding fuel-air mixture and 
friction is 5 kN to tile left. A clockwise couple M = 200 N.m acts 
on the crank A B. Th~ mass moment of inertia of the crank about A 
is 0.0003 kg.m'. The mass of the eormecting rod BC is 0.36 kg, and 
its centre of mass is 40 mm from B on the line from B to C. The 
connecting rod's mass moment of inertia about its centre of mass is 
0.0004kg.m'. The mass oflbc piston is 4.6kg. What is the piston\: 
accelemtion at this instant? (Ncglc!ct the gravitational forces on the 
crank and connecting rod.) 

P7.119 

7.120 Jfthc crankAB in Problem 7.119 has a counterclockwise 
angular velocity of 2000 rpm (revolutions per minute) at the instant 

P7.116 shown, what is the piston'8 acceleration'! 



A 
homopolar generator transfonns the kinetic energy of a 
rotating flywheel into electromagnetic energy. The 
generator shown stores 10 rnegajoules of rotational 

kinetic energy, This type of generator can produce very large 
electric currents for short periods of time and has been used to 
create the fields necessary to achieve nuclear fusion by mag­
netic confinement. In this chapter you will use energy and 
momentwn methods to analyse two~dimcnsional motions of 
rigid bodies, 

i 



Enetgyand 
MOI"enfum in 
Pla/lar Rigid-Body 
Dyn'amics 

YOU have seen in Chapters 4 and 5 that energy and 

momentum methods are very useful for particular types 

of problems in dynamics. Tfthe forces on an object are known 

functions of position, you can use the principle of work and 

energy to relate the change in the magnitude of the object's 

velocity to the change in its position. If the forces are known 

functions of time, you can use the principle of impulse and 

momentum to determine the change in the object's velocity 

during an interval of time. In this chapter we extend these 

methods to situations in which you must consider both the 

translational and rotational motions of objects. 

367 
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____ ~ ___ 8_.1_P_rinciple of Work and Energy 
The principle of work and energy for a rigid body in planar motion is a simpl 
statement and involves simple equations, although its derivation is rathe 
involved. To help you follow our derivation, we begin by summarizing th 
principle. Let l' he the kinetic energy of a rigid body. The principle of war 
and energy states thaI the work U done by external forces and couples as th 
rigid body moves between two positions I and 2 equals the change in it 
kinetic energy: 

In general planar motion, the kinetic energy is 

1 I 
T = _mv2 + -loi 

2 2 

where v is the magnitude of the velocity ofclle centre of mass and fis the mas 
moment of inertia about the centre of mass. In the case of rotation about 
fixed axis 0, the kinetic energy can also be expressed as 

To derive these results, we adopt the same approach used in Chapter 7 t 
derive the equations of motion for a rigid body. We obtain the principle 0 

work and energy for a system of particles and use it to obtain the principle fa 
a rigid body. 

System of Particles 
Let mi be the mass of the ilh particle of a system of N particles, and let ri be it 
position relative to a fixed reference point 0 (Figure 8.1). We denote the s 
of the kinetic energies of the particles by T, 

T=" ~mv'v L..,;2 111 , (8.1 

where Vi = dr/dt is the velocity of the ith particle. Our objective is to relate th 

Figure 8.1 
A Rystem of particles. The vector Ti is the 

position vector of the ith panicle. 

o 

o 
o 



work done on the system of particles to the change in T We begin with 
Newton's second law for the ith particle, 

(&.2) 

where fu is the force exerted on the ith particle by the jth particle and f~ is the 
extemal force on the jth particle. We take the dot product of this equation with 
Vi and sum from i = I to N: 

" " f 'v + " fP 'v = " v' 'i.-(m'v) ~ ~ U I ~ I 1 ~ I dt I I. 

I } I I 

(8.3) 

We can express the tCTIn on the right side of this equation as the rate of change 
of the total kinetic energy: 

d L V,' -d (miv,) 
, t 

Therefore multiplying Equation (8.3) by dt yields 

L L f ij 'dr, + L f;' dri = dT 
, J 

We integrate this equation, obtaining 

The tenns on the left side are the work done on the system by internal and 
external forces as the partides move trom positions (ri) I to positions (r,h. 
Denoting the work by V, we obtain the principle of work and energy for a 
system of particles: the work done by internal and external forces equals the 
change in the total kinetic energy: 

(8A) 

This result applies to any object or collection of objects, including a tigid 
body. 

Rigid Body in Planor Malian 

We have shown that the work done on a rigid body by internal and external 
torces as it moves between two positions equals the change in its kinetic 
energy. If we assume that the intemal forces between each pair of particles are 
directed along the straight line between the two particles, the work done (In a 
rigid hody by internal forces is zero. To show that this is true, we consider two 
particles ofa rigid body designated I and 2 (Figure 82). The sum of the forces 
that the two particles exert on each other is zero, fl2 + f21 = 0, so the rate at 

8.1 PRINCIPLE OF WORK A~ID ENERGY 

~i~the~~~~~~~ ~~&2 

Particles 1 and 2 and the forces they exert 
f 12 ,v, +f21'V2 = f 21 '(V2 -VI) on each other. 
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Figure 8.3 

Representing a rigid body as a system of 
particles. 

We can show that f21 is perpendicnlar to v 2 - V I, and therefore the rate at 
which work is done by the internal forces between these two particles is zero. 
Because the particles are points of a rigid body, we can exprcss their relative 
velocity in tenus of the rigid body's angular velocity ro as 

(8.5) 

This equation shows that the relative velocity ", - v 1 is perpendicular to 
r2 - C" which is the position vector from particle I to particle 2. Since the 
force f21 is parallel to c, - c" it is perpendicular to v, - v,. We can repeat 
this argument for each pair of particles of the rigid body, so the total rate at 
which work is done by internal forces is zero. This implies that the work done 
by internal forces as the rigid body moves between two positions is zero. 

'Ibe system of external forces on a rigid body may be represented as forces 
and couples, so we obtain the principle of work and energy for a rigid body: 
the work done by external forces and couples as a rigid body moves between 
two positions equals the change in its kinetic energy. We can also state this 
principle for a system of rigid bodies: the work done by external and internal 
forces and couples as a system of rigid bodies moves between two positions 
equals the change in their total kinetic energy. 

To complete our derivation of the principle of work and energy for a rigid 
body in planar motion, we must express the kinetic energy in tenus of tbe 
velocity of the centre of mass of the rigid body and its angular velocity. We 
first consider general planar motion, then rotation about a fixed axis. 

Kinetic Energy in General Planar Motion Let us represent a rigid 
body as a system of particles, and let R, be the position vector of the ith 
particle relative to the centre of mass (Figure 8.3). The position of the centre 
of mass is 

L miff 

r=~I--
1>1 

(8.6) 

where m is the mass of the rigid body. The position of the ith particle relative 
to 0 is related to its position relative to the centre of mass by 

(8.7) 

and the vectors R, satisfy the relation 

L miRi=O (8.8) 

The kinetic energy of the rigid body is the stirn of the kinetic energies of its 
particles, given by Equation (8.1): 

By taking the time derivative of Equation (8.7), we obtain 

dR, 
v,=v+di 

(8.9) 



where v is the velocity of the centre of mass. Substituting this expression into 
Equation (8.9) and using Equation (8.8), we obtain the kinetic energy in the 
form 

I , ~~I dR, dR, 
T= 2mv' + m . 

"" 2 ' 
(8.10) 

, 

where" is the magnitude of the velocity of the centre of mass. 
Let Lo be the axis through a fixed point a that is perpendicular to the plane 

of the motion, and let L be t!he parallel axis through the centre of mass (Figure 
8.4(a)). In terms of the coordinate system shown, we can express the angular 
velocity vector as ro = ro k. The velocity of the ith particle relative to the 
centre of mass is dR,/dt = w k X R" so we can write Equatiou (8.10) as 

(8.11 ) 

The magnitude of the vector k x R, is the perpendicular distance r, from L to 
the ith particle (Figure 8.4(b)), so the term in brackets in Equation (8.11) is the 
mass moment of inertia about L: 

I: m,( k x RI)· (k x RI) = I: mil k x R,I' = I: "wi = I 

(a) 

Pl<Ult~ of 
the Illotion 

, 

(h) 

Thus we obtain the kinetic "nergy of a rigid body in general planar motion in 
the form 

(8.12) 

The kinetic energy consists of two terms: the translational kinetic energy, 
expressed in terms of the velocity of the centre of mass, and the rotational 
kinetic energy (Figure 8.5). 

Kinetic Energy in Fixed Axis Rotation An object rotating about a fixed 
axis is in general planar motion, and its kinetic energy is given by Equation 
(8.12). But there is another expression for the kinetic energy that you will 
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Figure 8.4 
(a) A coordinate .system with the;;: axis 
aligned with L. 
(b) The magnitude or k x R, is the 
perpendicular distance from I .. to m,. 

often find convenient. Suppose dmt a rigid body rolates with angular velocity Figure 8.5 
w about a fixed axis O. Tn tC'rms of the distance d from a to the centre of mass, Kinetic energy in general pi.lllar motion. 
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Figure 8.6 
(a) Velocity of the centre of mas,. 

(b) KinetIc energy of a rigid body rotating 
about a fixed axis. 

the velocity of the centre of mass is v = {j)d (Figure 8.6(a». From Equation 
(8.12), the kinetic energy is 

According to the parallel-a'{is theorem, the mass moment of inertia about 0 is 
10 = I + d2m, so we obtain the kinetic energy of a rigid body rotating about a 
fixed axis 0 in the form (Figure 8.6(b» 

(8.13) 

(a) (bl 

8.2 Work and Potential Energy 
The procedures for delennining the work done by different types of forces and 
the expressions you learned in Chapter 4 for the potential energies of forces 
provide you with the essential tools for applying the principle of work and 
energy to a rigid body. The work done on a rigid body by a force F is given by 

(8.14) 

where rp is the position of the point of application of F (Figure 8.7). If the 
point of application is stationary, or if its direction of motion is perpendicular 
to F, no work is done. 

Figure 8.7 
The work done by a force on a rigid body is 

determined by the path of the point of 
application. 

a 



A toree F is eonservativ,~ if a potential energy Vexists such that 

F·drp = -dV (8.15) 

In tenns of its potential energy. the work done by a conservative force F is 

l
V2 

-dV= V, 
v, 

v, 

where V, and V2 are the values of Vat (rp)' and (rp),. 
If a rigid body is subjected to a couple M (Figure 8,8(a)), what work is done 

as it moves between two positions? We can evalnate the work by representing 
the cOllple by forces (Figure 8.8(b)) and determining the work done by the 
forces. If the rigid body rotates through an angle dO in the direction of the 
couple (Figure 8,8(e», the work done by each force is (~DdO)F', so the total 
work is DFdO = MdO, Integrating this expression, we obtain the work done 
by a couple M as the rigid body rotates from 0, to O2 in the direction of M: 

(8,16) 

(b) (e) 

If M is constant between 0, and O2 , the work is simply the product of the 
couple and the angular displacement.: 

Constant couple 

A couple M is conservalive ,I' a potential energy Vexists such that 

MdO = -dV (8,17) 

We can express thc work done by a conservative couple in tcrms of its 
potential energy: 

For example, in Figure S,9 a torsional spring cxcrts a eouplc on a bar that is 
proportional to the bar's angle of rotation: M = - kO From the relation 

M dF! = -kOdF! = -dV 
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Figure 8,8 

(a) A rigid body subjected t'J a couple. 
(b) An equivalent couple cOllsisting of two 
forces: DF::;: M. 
(c) Detennimng the work done by the rorces. 

Figure 8,9 

(a) A linear torsional spring connected to a 
bar. 
(b) The spring exerts a couple of magnitude 
kO in the direction opposite to the bar's 
rotation. 
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we see that the potential energy mus! satisfY the relation 

dV = klJ 
dB 

Integrating this equation, we find that the potential energy of the torsional 
spring is 

(8.18) 

If all the forces and couples that do work on a rigid body are conservative, 
we can express the total work done as it moves between two positions I and 2 
in tenns of the total potential energy of the forces and couples: 

Combining this relation with the principle of work and energy, we conclude 
that the sum of the kinetic energy and the total potential energy is constant 
energy is conserved: 

I'r-+-v-=-co-n-stan-t'l (8.19) 

8.3 Power 
The work done on a rigid body by a force F during an infinitesimal 
displacement drp of its point of application is 

We obtain the power P transmitted to the rigid body, the rate at which work is 
done on it, by dividing this expression by the interval of time dt during which 
the displacement takes place: 

P = F·vp (8.20) 

where vp is the velocity of the point of application of F. 
Similarly, the work done on a rigid body in planar motion by a couple M 

dwing an infinitesimal rotation dB in the direction of M is 

MdO 

Dividing this expression by dt, the power transmitted to the rigid body is the 
product of the couple and the angular velocity: 

P=Mw (8.21) 

The total work done on a rigid body during an interval of time equals the 
change in its kinetic energy, so the total power transmitted equals the rate of 



change of its kinetic energy: 

dT 
p=­

dt 

The average with respect to time of the power during an interval of time from 

'1 to 12 is 

This expression shows that you can determine the average power transferred to 
or from a rigid body dtlring an interval of time by dividing the change in its 
kinetic energy, or the total work done, by the interval of time: 

In thefollowillg examples we use energy methods to analyse motions of rigid 
bodies and systems of ri~:id bodies. You should consider using energy 
methods when you want 10 relate change., ill the trallslatiollal and allgular 
vdodtie" of an object to (.J change in its position. This typically illvolves 
three steps: 

(1) Identify the forces and couples that do work - YUII must use Fee-body 
diagrams to determine which external forces and couples do Ivork 

(2) Apply work and energy or conservation of energy - Either equate the 
tOlal work done during a change in position to lhe change in the kinetic 
energy or equate the sum of the kinetic and potential energies at two 
positions. 

(3) Determine kinematic mlallonships _. 7;' complete your solution, you will 
often need to relate the velocity of the centre of mass of a rigid body to its 
angular veluci(y. 
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A disc of mass m and moment of inertia I is released from rest on an inclined 
surface (Figure 8.10). Assuming that it rolls, what is the velocity of the disc's centre 
when it has moved a distance b? 

Figure 8.10 

STRATEGY 
We can determine the velocity by equating the total work done as the disc mils a 
distance b to the change in its kinetic energy. 

SOLUTION 

Identify the Forces and Couples That Do Work We draw the free-body 
diagram of the disc in Figure (a). The disc's weight docs work as it rolls, but the 
normal force N and the friction force f do not. To help you understand why the 
friction force does no work, we can write the work done by a force F as 

where "r is the velocity of the point of application of F. Since the velocity of the 
point where f acts is zero as the disc rolls, the work done by f is zero. 

(0) Free-body diagram of the disc. 



Apply Work and Energy We can dctenninc the work done by the weight by 
multiplying the component in the direction of the motion of the centre of the disc 
by the distance b: 

U = (mg sin f3)b 

Letting v and OJ be the velocity and angular velocity of the centre of the disc when it 
has moved a distance b (Figure (h», we equate the work to the change in the disc's 
kinetic energy: 

. 1 2 1 '1 

mgb sm Ii = 5.m1l +:i1m- - 0 

(b) Velocity of the centre and angular velocity 
wIlen the disc has moved a distance h. 

(8.23) 

Determine Kinematic Relatl,onshlps The angular velocity (ll of the rolling 
disc is related to the velocity 1) by w = viR. Substituting this relation iIlto Equation 
(8.23) and solving for v, we obtain 

v= 

DISCUSSION 

2gb sin f3 
1+ IjmR2 

Suppose that the surface is smooth, so that the disc sljdes instead of rolling. In this 
case, the disc hats no angular velocity, so Equation (8.23) becomes 

b . f3 I 2 mg SIn =~rn1) -0 
2 

and the velocity of the centre of the diRe iR 

Tho velocity is greater when the disc slides. You CUll see why by comparing 
the two expressions for the prindple of work and energy The work done by the 
disc's weighl is the same in each case. When the disc rolls, part of the work 
increases the disc's translational kinetic energy and part increases its rotational 
kinetic energy. When the disc Nlides, all of the work increases its translational 
kinetic energy. 
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(e) Free-body diagram of tile system. 

Each wheel of the motorcycle in Figure 8.11 has mass mw = 9 kg~ radius 
R = 330 mm, and moment of inertia I ~ 0.8 kg.m'. The combined mass of the 
rider and the motorcycle, not including the wheels, is me = 142 kg. Thc motorcycle 
starts from rest~ and its engine exerts a constant couple M == 140 N.m on the rear 
wheel. Assume that the wheels do not slip. 
(a) What horizontal distance b must the motorcycle travel to reach a velocity of 
25 mls'! 
(b) What is the maximum power transmitted to the motorcycle by its engine during 
the motion described in part (a)? 

Figure 8.11 

STRATEGY 

(a) We can apply the princlplc of work and energy to the system consisting of the 
rider and the motorcycle, including its wheels, to detennine the distance h. 
(b) TIle power transmitted by the couple exerted on the rear wheel is given by 
Equation (8.21). To determine the maximum power. we must detemline the wheel's 
maximum angular velocity, 

SOLUTION 

(a) Determining the distance b by energy methods requires three steps. 

Identify the Forces end Couples That Do Work We draw the free-body 
diagram of the system in Fihrurc (a). The weights do no work because the motion is 
horizontal, and the forces exerted on the wheels by the road do no work because the 
velocity of their point of application is zero. (See Example 8. t.) No work IS done by 
external forces and couples! However, work is done by the couple M excrted on the 
rear wheel by the engine (Fib'llre (h)). AlthOllgh this is an internal couple for the 
system we are considering - the wheel exerts an opposite couple on the body of the 
motorcycle - net work is done because the wheel rotates whereas the body does not. 

Apply Work and Energy If the motorcycle moves a horizontal distance b, 
the wheels tum through an angle blR tad and the work done by the constant 
couple Mis 



Let v be the motorcycle's velocity and (J) the angular velocity of the wheels when 
the motorcycle has moved a distance h. The work equals the change in the total 

kinetic energy: 

(h) I 2 [I 2 I 2J M Ii =Zn!ev +2 :2 nt".,t' +'21(1) 
(8,24) 

Determine Kinematic Relationships The angular velocity of the rolling 
wheels is related to the velocity li by ()) = vIR. Substituting this relation into 
Equation (8.24) and s.olving for b~ we obtain 

b = (',! me + mw +~) Rt" 
2 R' M 

~ [~(142) + (9) + J<l:.8L] (0.33)(25)' 
2' (0.33)' (140) 

= 128,7 m 

(b) The angular velocity of the wheels whcn the motorcycle reaches its maximum 

velocity is 

" 25 
OJ = R = 0.33 = 7:;,8 radls 

From Equation (S.2l). the maximum power is 

P = M(v = (140)(75,8) = 10600 W 

DISCUSSION 
Although we drew separate free-body diagrams of the motorcycle and its rear wheel 
to clarify the work done by the couple exerted by the engine, notice that we treated 
thc motorcycle, including its wheels, as a single system in applying the princip1e of 
work and energy. By doing so, we did not need to consider the work done by the 
internal forces between the motorcycle's body and Its wheels, When applying the 
principle of work and energy to a system of rigid bodies, you will usually find it 
simpkst to express the principle for the system as a whole. This is in contrast to 
determining the motion of a system of rigid bodies by using the equations of 
motion, which usually requires that you draw free-body diagrams of each rigid 

body, 
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(b) Isolating Ihe rear wheel. 
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8 

Figure 8.12 

n 

kG 

, ... /"' 
{;i::~ 

,. :fk' 
r,., ~/, 

Datum 

(a) Free-body diagram of the system, 

The slender bars AB and BC of the linkage in Figure 8.12 have mass m and length I, 
and the collar C has mass Inc. A torsional spring at A exerts a clockwise couple kO 
on bar AB. The system is released from rest in the position () = 0 and allowed 
to falL Neglecting friction, determine the angular velocity w = dOldr of bar AB as a 
function of &, 

SOLUTION 

Identify the Forces and Couples That Do Wark We draw the free-body 
diagram of the system in Figure (a). The forces and couples thai do work - the 
weights of the bars and collar and the couple exerted by the torsional spring - arc 
conservative, We can usc conservation of energy and the kInematic relationships 
between the angular velocities oftlle bars and the velocity of the collar to determine 
co as a function of 8. 

Apply Conservation of Energy We denote the centre of mass of bar BCby G 
and the angular velocity of bar BC by roBe (Figure (b)). The moment of inertia of 
each bar about its centre of mass is I = AmP. Since bar AB rotates about the fixed 
point A, we can write its kinetic energy as 

I .2 I I ,I 2 2 [ ( )' ] TharAH;;;;;;;; '2'AW =:2 J + '2' m w ;;;;;: '6 m1 (J) 

The kinetic energy of bar BC is 

The kinetic energy of the collar C is 

Using the datum In Figure (a), we obtoin the potential energies of the 
weights: 

VbMAB + Vb,,"c + Vcoll" = mgGI cos G) + mgGI cos 0) + meg(21 cos 0) 

The potential energy Of the torsional spring Is given by Equation (8.18): 

. I 0' 
t'Sprilig = '2k 

We now have all the Ingredients to apply conservation of energy. We 
equate the sum of the kinetic and potential energies at the position 
o ;;;;;; 0 to the sum of the kinetic and potential energies at an arbitrary value of 0: 

T,+V,=T,+V,: 

I I I I 
0+ 2mgl + 2mcgl = ;mPw2 + ~2mvb + -mp(J)~c + -mC'l!~ 

,,' 24 2 

I , + 2mgl cos e + 2mcgl cos 0 + 'ikO 



To determine w from thi8 equation) we must express the velocities Vc;, Vc and 
Wile In terms of 0). 

Determine Kinematic Relalie,nships We can determine the velocity of point 
B in terms of OJ and then el{prel')S the velocity of point C in tenns of the velocity of 

point B and the angular velocity WHC' 

The velocity of B is 

k 

=0+ o o 
-J sin 0 I cos e 0 

= -1m cos 0 i - Iw sin 8 j 

The velocity of C expressed in terms of the velocity of B is 

":c j = V8 + Wm.' x fC/!J 

= -Iw cos Oi lw sin 8j + 0 

I sin 0 

Equating i and j components, we obtain 

())RC = -ill Vc ~;;;; -21w sin () 

o 
I cos e 

k 

Wee 

o 

(The minus signs indicate t.hat the directions of the velocities are opposite to the 
directions we assumed in Figure (b).) Now that we know the angular velocity of bar 
Be in terms ur w, we can determine the velocity of its centre of mass in tenns of w 
by expressing it in terms of VB: 

k 

= -!O) cos () i /w sin 0 j + o o -OJ 

!lsinH 1lcosO 0 

1 
= -i1w cos Oi 

Substituting these expressions for (One, Vr and v G into our equation of conservation 
of energy and solving for w, we obtain 

B 

(b) 

c 

A 
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,'( t 

+--~x 
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!'J: 
r' 

Angular velocities 0 r the bars and the ;:~t 
velocity of the collar. I 

J 
.1 
:1 
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8.1 A main landing gearwheel ofa Boeing 747 weighs 1068 N, 
has a mass moment of inertia of 23 kg.m:!, and has a radius of 
0.6 m, If the aeroplane is moving at 75 mls and the wheel rolls, 
what is the wheel's kinetic energy? 

P8.1 

8.2 The flywheel of the homopolar generator shown on page 366 
can be modelled as a 1200 kg homogeneolls cylinder with a 
280 mm radius. Suppose that the flywheel is turning at 
6200 rpm. By converting part of the flywheel's kinetic energy 
into an electric current, the generator is used to power an electro­
magnetic rail gun that accelerates a 0.28 kg projectile to a velocity 
of 5.3 kmis. If you assume that all of the energy obtained from the 
flywheel is converted into the projectile's kinetic energy, what is the 
flywheel's final angular velocity? 

8.3 The angular velocity of the space station is I rpm (revolution 
per minute). Usc work and energy to determine the constant couple 
the station's reaction control system would have to exert to reduce 
its angular velocity to zero in 100 revolutions. The mass moment of 
inertia of the station is I = 1,5 X 1010 kg.m2

. 

P8.3 

8.4 The mass moment of inertia of the helicopter's rotor is 
400 kg,m2.1fthe rotor starts from rest, the engine exerts a constant 
torque of 500 N.m on it, and aerodynamic drag is neglected, use 
the principle of work and energy to determine how many revolu­
tions the rotor must tum to reach an angular velocity of 2 
revolutions per second. 

P8.4 

8.5 What average power is transmitred to the rotor in Problem 8,4 
in accelerating it from rest to 2 revolutions per second? 

8.6 During extravehicular activity, an astronaut fires a thruster of 
her manoeuvring unit, exerting a constant force T = 20 N. The 
mass moment of inertia of the astronaut and her equipment about 
their centre of mass is 45 kg.m2

" Using the principle of work and 
energy, determine her rate of rotation in revolutions per second 
when she has rotated one quarter of a revolution from her initial 
orientation. 

P8,6 



8.7 A slender bar of ma.'\s In is released from rest in the 
horizontal position shown. Determine its angular velocity when it 
is vertical (a) by using the principle of work and energy; (b) by 
using conservation of energy, 

P8.7 

8.8 The mass moment of inertia of the pulley is 0.4 kg.m2
. The 

pulley starts from rest For both cases, use the principle of work 
and energy to detennine the pulley's angular velocity when it has 
tumcd one revolution. 

I O() 1\ lOON 
(a) (b) P8.8 

8,9 The object consists of identical I m, 5 kg bars welded 
together. If it is released from rest in the position shown. what is 
its angular velocity when the bar attached at A is vertical? 

P8.9 
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8.10 The objects consist of identical 3 m. 10 kg bars welded 
together. If they are released from rest in the positions shown, 
what are their angular velocities when the bars a:tached at A arc 

vertical? 

45~ 

A 

(a) 

P8.l0 

8.11 The 8 kg slender bar is released from rest in the horizontal 
position. When it has fallen to the position shown, what are 
the x and y components of force exerted on the bar by the pin 
support A? 

~-2m ~. 

x 

P8.11 

8.12 The slender bar is released from rest in the position shown. 
(a) Usc conservation of energy to determine the angular velocity 
when the bar I$; vertical. 
(b) For what value of x is the angular velocity dt.:tennined in part 
(a) a maximum? 

-I 

-I PB.12 
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8.13 The gears can turn freely on their pin supports. Their mass 
moments of inertia are fA = 0.002 kg.m' and In = 0.006 kg.m2 

They arc at rest when a constant couple M = 2 N.m is applied to 
gear B. Neglecting friction! use the principle of work and energy to 
dctcnnine the angular velocities of the gears when gear A has 
turned 100 revolutions. 

PS.13 

8.14 The pulleys can tum freely on their pin supports. Their 
ma~s moments of inertia are III ':;; 0.002 kg.m2, IIJ = 0.036 kg.m2 

and /" = 0,032 kg.m2
. They are stationary when a constant couple 

M: 2 N.m is applied to pulley A What is the angular velocity of 
pulley A when it has turned 10 revolutions? 

8.15 The mass moments of inertia of gears A and B are 
IA = 0.014 kg.m' and In = 0.100 kg.m'. Gear A is connected to 
a torsional spring with constant k = 0.2 N.m/rad. If the spring is 
unstrctchcd and the surface ~uppotting the 2 kg mass is removed, 
what is the mass!s velocity when it has fallen 75 rrun? 

PB.15 

8.16 Consider the system III Problem 8.15. 
(aJ What maximum distance does the 2 kg mass fall when the 
supporting surfac.e is removed? 
(b J What maximum velocity does O,e mass achieve? 

8.17 Consider the system in Problem 8.15. Suppose that the 
torsional spring is not unslretched in the position shown, and the 
resulting tension in the string is 8 N. If the surface supporting the 
2 kg weight is removed. what is the weight's velocity when it has 
fallen 75 mm? 

B.18 Model the arm ABC as a single rigid body. Its mass is 
300 kg, and the mass moment of inertia about its centre of mass is 
1= 360 kg.m'. Struting from rest with its centre of mass 2 m 
above lhe ground (position I), the hydraulic cylinders push arm 
ABC upwards. When it is in the position shown (position 2), its 
counterclockwlsc angular velocity is 1.4 radls. How much work do 
the hydraulic c-ylinders do on the ann in moving it from position 1 
to position 27 

PB.18 

8.19 The mass of the homogeneous cylindrical disc is m. and its 
radius is R. The disc is stationary when a; constant clockwise 
couple M is applied to it. Use work and energy to detenninc the 
disc!s angular velocity when it has rolled a distance b, 

P8.19 



8.20 A disc of mass m and moment of inertia 1 starts rrom rest on 
an inclined surface and is subjecte:d to a constant clockwise couple 
M. Assllming that it rolls, what h: the angular velocity of the disc 
when it has moved a distance b? 

P8.20 

8.21 The stepped disc weighs 130 N. and its mass moment of 
inertia is 1= 0.2 kg,m2

• Tf it is released from rest, what is its 
angular velocity when the centre of the disc has fallcn 1 m? 

mill P8.21 

8.22 The 100 kg homogene()u,~ cylindrical disc is at rest when 
the force F = 500 N is applied to a cord wrapped around it, 
causing the disc to ruU. Use the principle of work and energy to 
determine the di:-;c.::'s angular v!~locity when it has turned one 

revolution. 

~~~----F 

PS.22 
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8.23 The 15 kg homogeneou, cylindrical disc is given a cloek­
wisc angular velocity of 2 radJs with the spring Ullstretched. The 
spring constant is k = 45 N/m. If the disc rolls, bow far will its 
centre move to the rigp.t? 

k 

P8.23 

8.24 The 22 kg platen P rcsts on four roller beatings. The roller 
bearings can be modelled as 1 kg homogeneous cylinders with 
30 mm radii. The pla!en is stationary and the spring (k = 900 Nt 
m) is unstrctchcd wh¢n a constant horizontal fore;, F = 100 N is 
applied as shown. What is the platen's velocity when it has moved 
200 film to the right? 

p 

PB.24 

8.25 Consider the system described In Problem 8.24. 
(a) \\'hat maximum distance docs the platen move to the right when 

the force F is applied? 
(h) \¥hat maximum velocity does the plalen achieve, and how far 
ha.'t the platen moved to the right when it occurs? 

8.26 The mles of a soapbox derby specify the required combined 
weight of the car and driver and thl~ radius of the wbeels. A young 
contestant designing her car ponders two possibilities; (a) usc 
heavy wheels; (b) use light wheels. making up the weight by 
adding ballast. Analyse this probh:n1 using the principle of work 
and energy, and explain the advice you would give her. 

P8.26 



386 CHAPTER 8 ENERGY AND MOMENTUM IN PLANAR RIGID-BODY DYNAMICS 

8.27 Each of the go-cart's rront wheels weighs 20 N and has a 
f mass moment of inertia of 0.01 kg,m2

, The two rear wheels and 
. rear axle form a single rigid body weighing 160 N and having a 

mass moment of inertia of O. I kg.m2
. The lotal weight of the rider 

and go-cart~ including its whccl~, is 1000 N. The go-cart starts 
rl "II from rest, its engine exerts a constant torque of 20 N.m on the rear 

axle, and its wheels do not shp. If you neglccC- friction and 
aerodynamic drag. how fast is it moving when it has travelled 
15 m? 

8.30 The slender bar weighs 120 N and the cylindrical disc 
weighs 80 N. The system is released from rest with the bar 
horizontal. Detennine the magnitude of the bar's angular velocity 
when it is vertical if the bar and disc are welded j,ogethcr at A. 

-1.2m-

P8.30 

8.31 In Problem 8.30, determine the magnitude of the bar's 
angular velocity when it has reached the vertical position if the 
bar and disc are connected by , smooth pin at A. 

8.32 The 45 kg crate is pullcd up the inclined surface by the 
winch, The coefficient of kinelic friction between the crate and the 
surface is Ilk = OA. The mass moment of inertia of the drum on 

P8.27 which the cable is wound, including the cable wOlUld on the dlum, 
is fA = 4 kg.m2 The motor exerts a constant couple M = 55 N.m 
011 the dmm. If the crate starts from rest~ usc the principle of work 
and energy to determine its velocity when it has moved 0,6 m, 

8.28 Determine the maximum power and the average power 
transmitted to the go-cart ill Problem 8.27 by its engine. 

8.29 Each box weighs 200 N, the mass moment of inertia of the 
pulley is 0.6 kg.m2

, and friction can be neglected. ffthe boxes start 
from rest, detenninc the magnitude of their velocity when they 
have moved I j m from their initial positions. 

P8.29 

P8.32 



8.33 The 2 m slender bars each weigh 40 N, and the rcctangular 
plate weighs 200 N. If the syst(~m is released from rest in the 
position shown, what is the veloC'lty or the plate when the bars afe 
vertical? 

P8.33 

8.34 The system starts fmm rest with the 4 kg slender bar 
horizontal. The mass of the susp«~nded cylinder is 1 () kg. What is 
the bar's angular vclocity when it is in the posilion shown? 

r 

1--- 2,"--
I 

"I P8.34 
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8,35 The unstretched length uf the spring is 1.5 m, and its 
constant is k = 50 N/I)l, When the 15 kg slender hiT is horilOntal, 
its angular velocity is 0.1 radls. \Vhat is its angular '1elocity when it 
IS in the position sho\';ll? 

2m 

8.36 Pulley A weIghs 16 N, fA = 0,060 kg. III', alld In = 
0.014 kg.m2

• If the system is released from re:'>t. what is the 
velocity of the R kg mass when it has fallen (),6 Ill? 

PS.36 



388 CHAPTER 8 ENERGY AND MOMENTUM IN PLANAR RIGID-BODY DYNAMICS 

8.37 The I R kg ladder 15 released from rest with A = 10'. The 
wall and floor are smooth. Modelling the ladder as a slender barj 

usc conservation of energy to dct,:nninc its angular velocity when 
0=40'. 

·.\ ................ ~Ill . . 
'it-

\ 
\\ \ 

P8.37 

8.38 111e 4 kg slender bar is pinned to a 2 kg shder at A and to a 
4 kg homogeneous cylindrical disc at B. Neglect the fi-ictlOn force 
on the slider and asswnc that the disc rolls. If the system is released 
from rest with 0 = 60", what i~ the har's angular velocity when 
0=0'1 

PS.3S 

8.39 If the system in Problem R.3R is released from n::st with 
a = 80', what is the bar's angular velocity when 0 20°? 

8.40 The system iN in equilibrium in the ,position sho'W11. The 
mass ofthe slender bar ABC is 6 kg, the mass of the slender bar SD 
is 3 kg) and the mass of the slider at C is I kg. The spring constant 
is k = 200 Nlm. If a constant 100 N downward force is applied at 
A, what is the angular velocity of bar ABC when it has roUlled 20' 
from it~ initial position? 

/ 
1m 

P8.40 

8.41 Bar AS weighs 45 N and bar BC weigh, 25 N. If the system 
is released from rest in the position shown, what arc the angular 
velocities of the bars at the instant just before lhe jomt B hits the 
smooth floor? 

1 
0.,1 m 

1 
1-----(J6m I -----r-- OJ In 

c 

-I 
P8.41 

8.42 If bar AB ill Problem 8.41 is rOlating at I radls in the 
clockwise direction at the instant shown, what are the angular 
velocities of the bars at the instant just before the joint B hits the 
smooth floor? 
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8.4 Principles of Impulse and 
Momentum 

In this section we review our discussion of the principle oflinear impulse and 
momentum from Chapter 5 and then derive the principle of angular impulse 
and momentum for a rigid body. These principles relate time integrals of the 
forces and couples acting on a ligid body to changes in the velocity of its 
centTe of mar;;s and its angular velocity. You can usc these principles to 
determine the effects of impul:;ive forces and couples on the motion of a rigid 
body. They also allow you to determine both the velocities of the centres of 
mass and the angular velocities of objects aller they undergo collisions. 

linear Momentum 
Integrating Newton's second law with respect to time yields the principle of 
linear impulse and momentum Itlf a rigid body: 

1I

'l:Fdt=mv,-mvl I (8.25) 

where V, and V2 are the velocities of the centre of mass at the times I, and t2 

(Figure 8. I 3). If you know the external forces acting on a rigid body as 
functions of time, this principle allows you to determine the change in the 
velocity of its centre of mass dillring an interval of time. Tn terms of the average 
with respect to time of the total force from t1 to '7., 

wc can write Equatioo (8.25) as 

(I, - (1)l: F", = mV2 - mv, (8.26) 

This form of the principle of linear Impulse and momentum is often useful 
when an object is subjected to impulsive forces. 

If the only forces acting all two rigid bodies A and B are the forces they 
exert on each other, or if other forces are negligible, their total linear 
momentum is conserved: 

(8.27) 

Time,,! 

Figure 8.13 

Principle of linear Impulse and momentum. 
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Figure 8.14 
A rigid body in planar motion with 
velocity v and angular velocity 0), 

Angular Momentum 
When you apply momentum principles to rigid bodies, you will often be 
interested in determining both the velocities of their centres of mass and their 
angular velocities. For this task, the principle of linear impulse and momentum 
alone is not sufficient. In this section we derive the principle of angular 
impulse and momentum for a rigid body in planar motion. 

Let's consider a rigid body in general planar motion relative to a fixed 
reference point 0 (Figure 8.14). In Chapter 7, we expressed the relation 
between the total moment about 0 due to external forces and couples and the 
rate of change of the rigid body's angular momentum about 0 in the form (see 
Equations 7.11 and 7.20) 

d 
:EMo = dl[(r x mv)· k+Jwj (8.28) 

where J is the rigid body's mass moment of inertia about its centre of mass. 
This equation expresses the angular momentum as the sum of the angular 
momentum about 0 due to the velocity of the centre of mass and the angular 
momentum about the centre of mass. The unit vector k is perpendicular to the 
plane of the motion, and its direction is defined by your choice of the positive 
direction for the moment and angular velocity. If you define counterclockwise 
moments and angular velocities to be positive, k points out of the page 
(Figure 8.15). 

Instead of using the cross product to evaluate the angular momentum of a 
rigid body in planar motion, you can evaluate it in the same way that moments 

Figure 8.15 
Determining the direction of k. 



of forces are determined in two-dimensional problems. The magnitude of the 
'moment" of the linear momentum (r x mv)· k equals the product or the 
magnitude of the linear momentum and the perpendicular distance from 0 to 
the line of action of the linear momentum (Figure 8.16). It is positive if the 
'moment' is in the direction of positive (j) and negative if it is in the opposite 
direction. 

Figure 8.l6 
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Detennining the angular momentum about 0 
by calculating the 'mument' of the linear 
momentum. 

o. ~ 
/0 

Angular momt:ntum 
::::: f)(mlvl) + 1m 

o' 
Angular momentum 

~D(lIIlvl) + /w 

Integrating Equation (8.28) with respect to time. we obtain the principle of 
angular impulse and momentum: 

(8.29) f
lo 

'LMo dt = [(r x mv)' k + Iwb - [(r x mv)' k + 1m], 

" 

The angular impulse about 0 during the interval oftime fTom I, to 12 is equal 
to the change in the rigid body's angular momentum about 0 (Figure 8.17). 
We can also express the principle of angular impulse and momentum in terms 
of the total moment about the centre of mass. By integrating Equation (7.23) 
with respect to time, we obtain 

f" 'LMdl=/w;:-/w, 

" 

(8.30) 

Figure 8.17 
Principle of angular impulse and momentum, 

The average with respect to time of the moment about 0 from I, to 12 is 
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() 

Figure 8.18 
Rigid bodies A and B exerting forces on 
each other by contact. 

so we can write Equation (8.29) as 

(12 -tIl(~Mo)" = [(rxmv)' k+h»h --[(rx mv)' k+lw]1 (8.31) 

You can use this equation to determine the change in the angular momentum 
of a rigid body subjected to impulsive forces and couples. 

We can also use Equation (8.29) to obtain an equation of conservation of 
total angular momentum for two rigid bodies. Let A and B be rigid bodies in 
two-dimensional motion in the same plane, and suppose that they are sub­
jected only to the forces and couples they exert on each other, or that other 
forces and couples are negligible. Let MOA be the moment about a fixed point 
o due to tbe forces and couples acting on A, and let MOB be the moment about 
o due to the forces and couples acting on B. Under the same assumption we 
made in deriving the equations of motion - the forces between each pair of 
particles are directed along the line between the particles - the moment 
MOA = -MOB. For example, in Figure 8.18, A and B exert forces on each 
other by contact. The resulting moments about 0 are M OA = r p x Rand 
MOB = r p x ( - R) = - r p x R. We apply the principle of angular impulse 
and momentum to A and B for arbitrary times II and 12, obtaining 

1'2 MOAdl = [erA x mAVA)' k + L,w.,h - [erA x m'VA)' k + r,(UA] I 

" 

1" MOBdt = [(rB x mBVB)' k + Infl).h ..... [Cr. x mBVB)' k + IBWn] I 

" 
Summing these equations, the temlS on the left cancel and we obtain 

[erA x mAvA)' k + JAWA]I + [ern x m8vB)' k +- InwBl! 

= [erA x mAVA)' k + fAwAh + [(rB x mBVn)' k + JBWB], 

The total angular momentum of A and B about 0 is conserved 

(8.32) 

Notice that this result holds eVen when A and B are subjected to significant 
external forces and couples if the total moment about 0 due to the external 
forces and couples is zero. You can sometimes choose the point 0 so that this 
condition is satisfied. This result also applies to an arbitrary number of rigid 
bodies: their total angular momentum about 0 is conserved if the total moment 
about 0 due to external forces and couples is zero. 

in the jiJllowing examples we demonstrate the use of the principles of linear 
and angular impulse Ilnd momentum to analyse motions of rigid bodies. You 
should consider using momentum methods when you know the forces and 
couples acting on an object as functions of time and want to relate them to 
changes in the velocity of its centre of mass and its angular velocity. 
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Example 8.4 

Disc A in Figure 8.19 initially has a counterclockwise angular velocity wo, and disc 
B is stationary. At t = 0, the discs are moved jnto contact. As a result of friction at 
the point of contact~ the angular velocity of A decreases and the angular velocity of 
B increases until there is no slip between them. What are their nnal angll1ar 
velocities WA and wn? The discs are supported at their centres of mass and their 
mass moments of inertia arc lA, [H" 

STRATEGY 

Since the discs rotate about flxl~d axes through their centres of mass while they arc 
in contact, we can apply the principle of angular impulse and momentum in the toml 
given by Equation (8.30) to each disc. When there is no longer any slip between the 
discs, their velocities are equal at their point of contact. With this kinematic 
relationship and lhe expressions we obtain with the principle of angular impulse 
and momentum, we can detemlinc the final angular velocities. 

SOLUTION 

We draw the free-body diagrams of the discs while slip occurs in Figure (a), 
showing the normal and friction forces they exert un each other. To apply Equation 
(8.30) to disc A, we let the fixed point a be coincident with its centre. Letting If 
be the time at which slip ceases, we obtain 

We also apply Equation (X.30) to disc B: 

111 "i.Modt = h~)2 - {(Vi : 

I, 

ilf -Rnldt = -18mB 0 

(Notice that we have defined (})H to be positive in the clockwise direction.) We divide 
the first equation by the second one and write the resulting equation as 

When there is no slip, the velocities of the discs are equal at their point of contact: 

SOlVlI1g these m-o equations, we obtain 

Not.iee that if the discs have the same radhls and mass moment of inertia. WA = J,wo 
and (jJB = ~ Wo. . L 

IniLial position 

Time f:;;;;; 0 

Figure 8.19 

(0) Fre,,-body diagrams of the discs. 
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Figure 8.20 

y 

I 

I ,~r 3m 

0.6 III { _==,,-_-,1,-__ x 

s 0 

(0) Free-body diagram of the pole. 

r 

---'---x 
o 

(b) Velocity and angular velocity at the end 
of the impact, 

Engineers design a streetlight to shear ofl' at ground level when struck by a vehicle, 
to help prevent injuries to passengers (Figure 8.20). From videotape of a test impact, 
they estimate the angular velocity of the pole to be 0.74 radls and the horizontal 
velocity of the its centrepoint to be 6,7 mls after the impact, and they estimate the 
duration of the impact to be t.t = 0,01 s. If the pole can be modelled as a 6 m, 
64 kg slender bar, the car strikes it 0.6 m above the ground, and the couple exerted 
on the pole by its support can be neglected, what average force was required to shear 
off the bolts supporting the pole? 

STRATEGY 

We can use the principles of linear and angnlar impulse and momentum, expressed 
in terms of the average force and moment exerted on the pole, to detennine the 
average shear force. 

SOLUTION 

We draw the free-body diagram of the pole in Figure (a), where F is the average 
force excrted by the car and S is the average shearing foree exerted on the pole 
by the bolts. Let m be the mass of the pole, and let IJ and (j) be the velocity 
of its centre of mass and its angular velocity ,at the end of the impact (Figure (b»), 
The principle of linear impulse and momentum expressed in terms of the average 
horizontal force is 

(t2 - t,)(!:}':,)" = (m",J, - (mv,), : 

t:.t(F - S) = m1l - 0 
(R.33) 

To apply the principle of angular impulse and momentum, we usc Equation (8.31), 
placing the fixed point 0 at thc bottom of the polc (Figure (a». The polc's anc,ularl 
momentum about 0 at the end of the impact is 

[(r x mv)' k + Iw], = [(3 j) x m(vi»)·k + Iro = -3mI' + Iw 

(We can also obtain this result by calculating the 'moment' of the linear momentum 
about 0 and adding the term Iw. The magnitude of the 'moment' is tl,e product 
magnitude of the linear momentum (mv) and the perpendicular distance from 0 to 
the line of action of the linear momentum (3 rn), and it is negative because 
'moment' is in the direction opposite to that in which we define OJ to be positive. 
Figure 8.16.) We express the principle of angular impulse and momentum in 
of the average moment about 0: 

(12 - Il)(!:Mo)" = [(r x mv)' k + [wI, - [(r x mv)· k + [wj, : 

M( -0.6F) = - 3mv + [OJ - 0 

Solving this equation together with Equation (8.33) for the average shear force S, we 
obtain 

s = 2An/v leo 2.4(64)(6.7) - r,(64)(6)'(O.74) 

0.6(0.01) 

= 147,8 kN 



8,43 The mass moment of inertia of the pulley is 0.5 kg,m'. The 
pulley starts from rest at t = 0, For both cases, use momentum 
principles to detennine the pulley's angular velocity at t = 1 g. 

411 ~ Y() J\ 
(a) (b) 

P8,43 

8.44 An astronaut fires a thruster of his manoeuvring unit, 
exerting a force T = 2(1 + tl N, where t is in seconds. The 
combined mass of the astronaut and his equipment is 122 kg, 
and the mass moment of int:rtia about their centre of mass is 
45 kg.m2

. Modelling the astronaut and his equipment as a rigid 
body, usc the principle of angular impulse and mumentum to deler­
mine how long it takes for his angular velocity to reach 0, I radis. 

P8,44 
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8.45 The manoeuvring unit in Problem 8.44 exerts an impulsive 
force T of 0-2 s duration. giving the astronaut a counterclUi.:kwise 
angular velocity of one revolution per minute. 
(a) What is the average value of the impulsive lorcc'! 

(b) What is the magnitude of the change in the velocity of his 
centre of mass? 

8.46 A flywheel attached to an electric motor is initially at rest. 
Al t = 0, the motor exerts a couple M;:;;;; 2001~ () II N.m on the 
flywheel The ma,<;.s moment of jneltia of the fl)"Nheel is 1 0 kg,m1. 
(a) What is the flywheel's angular velocity at t ~ lOs') 
(b) What maximum angular velocity will the flywheel attain'.' 

P8,46 

8,47 A main landing gear wheel of a Boeing 747 has a mass 
moment of inertia ()f 23 kg.ITt 2 a.nd a 0,6 m radius. The aeroplane 
is moving at 75 m/s when it touches down. Suppose that you 
measure the skid marks where th(: plane touches down and find that 
they are 10m long. Assuming that the aeroptan~·'s velocity and the 
normal force on the wheel am constant while the wheel skids, use 
the principle of angular impulse and momentum to estimate the 
friction force exerted on lhe wht:el while it skiLls. 

8.48 The foree a club exerts on a 0.046 kg golf ball IS shown. 
The ball is 42.7 mm in diameter and can he modelled as a 
homogeneous sph~re. The club is in contact with the ball for 
0,0006" and the magnitude afthe velocity o(,hc ball', centre 0 

mass after it is struck is 50 m/s. What is the ball's angular velocity 
after it is struck? 

P8,48 
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8.49 The "uspended 8 kg slender bar is subjected to a horizontal 
impulsive force at B. The average value of the force is 1000 N, 
and its duration is 0.03 s. If the force causes the bar to swing 
to the horizontal position before coming to a stop, what is the 
distance h? 

t 
h 

j 2m 

Bl· I 

+. I 
~;"_L P8.49 

8.50 For what value of the distance h in Problem 8.49 will no 
average horizontal force be exerted on the bar by lhe support 
A when the horizontal impulsive force is applied at B? What 
is the angular velocity of the bar just after the impulsive force is 
applied? 

8.51 The force exerted on the cue ball by the cue is horizontal. 
Determine thc valuc of h for which the ball rolls without slipping. 
(Assume that the average friction force exerted on the ball by the 
table is negligible.) 

P8.51 

8.52 [n a wcll~known demonstration of conservation of an,gulml 
momentum, a person stands on a rotating platfonn holding 
weight in each hand" Suppose that the mass moment of inertia 
the person and platfonn is 0.4 kg.m l

, and the mass moment 
inertia of each 4 kg mass about its centre of mass is 0.001 kg.m'. 
her angular velocity with her anns extended is WI ~ I ,e,'olultion! 
per second, what is her angular velocity (02 when she pulls 
weights inwards? (You have observed ftgure skaters using 
phenomenon to control their angular velocity in a spin by aitcrilnl'l 
the positions of their arms,) 

8.53 The space shuttle simultaneously deploys two satellites 
sending them into space connected together and then 
them to separate. The satellites can be modelled as 
homogeneous. cylinders of mass m, radius R, and length L 
separation, they are spillning about an axis perpendicular to 
axis of the cylinders with angular velocity (0 (Figure (a». 
attachments arc then released and they dnft apart (Figure (b)). 
(a) Use conservation of angular momentum to determine 
angular velocity Wi of the individual sate'llites, 
(b) What is the magnitude of the velocity Y of their centre:::. 
relative to the velocity of their centre of mass before separation? 
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8.54 A satellite is deployed with angular velocity w I radls 
(Figure (a)). Two internally slored antennas that span the diameter 
of the satellite arc then cxtcnd~>LL and the satellite's angular velocity 
decreases (0 w' (Figure Ib)), By modelling the satellite as a SOO kg 
sphere of" 1.2 m radius and each antenna as a 10 kg slender bar, 
dclcnninc (1)'. 

8.55 The slender bar rotales freely in the horuontal plane ahout 
a vertical shan at 0. The bar w(:ighs 90 N and it" length IS 2 tn. 

The slider A wci'gh'l 9 N. If the bar's angular velocity b 
OJ = 10 radls and the radial component of ttl(' velocity of A IS 

zero when r =: 0.3 tn, what is tht~ angular \'eloci ty of the bar when 
r = 1.2 m? (The mass moment of inertia I,)f A ,tbout its centre of 
mass is negligible; that is, lreat.A as a particlc_) 

P8,54 

8.5 Impacts 
In Chapter 5, we analysed impacts between objccts with the objective of 
detemlining tileir velocities - the velocities of their centres of mass after the 
collision, We now discuss how you can detennine the velocitics of the cenlres 
of maSS and the angular velodties of rigid bodies after they collide, 

Conservation of Momentum 
Suppose that two rigid bodies A and fl, in two-dimensional motion in the same 
plane, collide, What do the principles of linear and angular momentum tell u, 
ahout their motions after the collision? 

Linear Momentum If other forces are negligible in comparison with the 
impact forces that A and B exert on each other, their total linear momentum is 
the same before and aller tIle impact. But you must use care in applying this 
result. For example. if one of the rigid bodies has a pin support (Figure 8,21), 
the reactions exerted by the support cannot be neglected and linear momentum 
is not conserved, 

A 

Figure 8,21 

Rigid bodies A and B colliding Because of 
the pin SUppOlt, their lolul linear momenlum 
1S not conserved, but theIr total angular 
l110mentutn about 0 i~ conserved. 

P8.55 
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Angular Momentum If other forees and couples are negligible in com· 
parison with the impact forces and couples that A and B exert on each other, 
their total angular momentum about any fixed point 0 is the same before and after 
the impact (See Equation 8.32.) If, in addition, A and B exert only forces on each 
other at their point of impact P, and no couples, the angular momentum about P 
of each rigid body is the same before and after the impact (Figure 8.22). This result 
follows from the principle of angular impulse and momentum, Equation (8.29), 
because the impact forces onA andB exert no moment aboutP. If one of the rigid 
bodies has a pin support at a point 0, as in Figure 8.21, their total angular 
momentum about 0 is the same before and after the impact. 

Figure 8.22 

Rigid bodies A and B colliding at P. If only 
forces are exerted at P, the angular 

momentum of A about P and the angular 
momentum of B about P are each 

conserved. 

CoeHicient of Restitution 
[ftwo rigid bodies adhere and move as a single rigid body after colliding, you 
can determine their velocities and angular velocities using momentum can· 
servation and kinematic relationships alone. These relationships are not suf­
ficient if the objects do not adhere. But you can analyse some impacts of this 
type by also using the concept of the coefficient of restitution, 

Let P be the point of contact of rigid bodies A and B during an impact 
(Figure 8.23), and let their velocities at P be VAP and Vop just before the impact 
and v~p and v~1' just afterwards. The x axis is perpendicular to the contacting 
surfaces at P. If the thction forces resulting from the impact are negligible, we 
can show that the components of the velocities nonna! to the surfaces at P are 
related to the coefficient of restitution e by 

To derive this result, we must conslder the effects of the impact on the 
individual objects. Let 1, be the time at which they first come into contact. The 
objects are not actually rigid, but will defonn as a result of the collision. At a 
time te, the maximum deformation will occur and the objects will begin a 
'recovery' phase in which they tend to resume their original shapes. Let t2 be 
the time at which they separate. 

Figure 8.23 

Rigid bodies A and B colliding at P. The 
x axis is perpendicular to the contacting 

surfaces. 
..•. 
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Our first step is to apply the principle oflinear impulse and momentum to A 
and B for the intervals of time from I, to Ie and from tc to f2' Let R be the 
magnitude of the normal force exerted during the impact (Figure 8.24), We 
denote the velocity oflhe ""ntre of mass of A at the times I" Ie and /2 by VA, 

VAC and v~, and denote the corrcsponding velocities of the centre of mass of B 
by VB, "BC and v~. For A, we have 

(8.34) 

(8.35) 

and for B, 

(8.36) 

(8.37) 

A " 
\ 

~N/\ 
_' __ " //f>\( 

x 

The cocfficicnt of restitution is the ratio of the linear impulse during the 
rccovery phase to the linear impulse dUling the deformation phase: 

If we divide Equation (8,35) by Equation (8.34) and divide Equation (8.37) by 
Equation (8.36), we can write the resulting equations as 

(v~)x -(vAlxe + (vAc)x(1 +e) 

(v~), = -(vs),e + (VBr),(J + e) 
(8.38) 

We now apply the principle of angular impulse and momentum to A 
and IJ for the intervals of time from I, to Ie and from Ir to t2 . We denote the 
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Figure 8.:14 
The normal force R resulting from the 
impact. 
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counterclockwise angular velocity of A at the times II> Ie and 12 by WA, WA 
and w~, and denote the corresponding angular velocities of B by Wa, Wac an 
w~. We write the position vectors of P relative to the centres of mass of A an 
B as (Figure 8.24) 

rplA = XA i + YA j 

rplB = XB i + Yo j 

To apply the prineiple of angular impulse and momentum to A, we plae 
the fixed point a at the centre of mass of A. Then the moment about a du 
to the force exerted on A by the impact is fplA x (-Ri) =yARk, and w 
obtain 

(8.39 

(8.40 

The corresponding equations for B, obtained by placing the fixed point 0 
the centre of mass of B, are 

(8.41 

i
ll 

YBR dt = fBw~ - fRwBe 
Ie 

(8.42 

Dividing Equation (8.40) by Equation (8.39) and divicling Equation (8.42) b 
Equation (8.41), we can write the resulting equations as 

W~ = -WAe + wAc(1 + e) 

w~ = -WBe + WBC(l + e) 
(8.43 

By expressing the velocity of the point of A at P in terms of the velocity 0 

the centre of mass of A and the angular velocity of A, and expressing th 
velocity of the point of B at P in terms of the velocity of the centre of mass 0 

B and the angular velocity of B, we obtain 

(VAP)x (VA)x - WAYA 

(v~p)x = (v~)x - W',YA 

(V81'), = (VB), WBYB 

(V~p)x = (V~)x - W;'VR 

(8.44 

At time te, the x components of the velocities of the two objects are equal at 
which yields the relation 

(8.45 



From Equations (8.44), 

(v~pl, - (V~p)x (v~)x - (O~YB - (V~)x + (O~y" 
(VAP), - (VBP)x - (VA)x - (OAYA - (VB)x + WRYR 

Substituting EquatioM (8.38) and (8.43) into this equation and collecting 
tenns, we obtain 

(v~p)x - (v~p)x 

(VAP)x - (VBP)x 

The term in brackets vani"hcs due to Equation (8.45), and we obtain the 
equation relating the nonnal components of the velocities at the point of 
contact to the coefficient of restitution: 

e = (voP)x (v~p)x 
(VAP)x - (VBP)x 

(8.46) 

In obtaining this equation, we assumed that the contacting surfaces are 
smooth, so the collision exerts no force on A or B in the direction tangential 
to their contacting surfa .. :s. 

Although we derived Equation (8.46) under the assumption that the 
motions of A and B arc unconstrained, it also holds if they are not, for example 
if one of them is connected to a pin support. 

In the following examples we analyse collisions of rigid bodies in planar 
motion. Your approach wiU depend on the type of collision. If other jorces 
are negligible in compurison with the impact forces, total linear momentum 
is conserved. If other forces and couples are negligible in comparison with 
the impact jorces and couples, total angular momentum about any fixed 
point is conserved. If, in ~!ddjtion, only jorces are exerted at the point of 
impact P, the angalar monll!1Itum about P of each rigid body is conserved. If 
olle of the rigid bodies has a pin support at a point 0, the total angular 
momentum about 0 is conserved. If impact is assumed to exert 110 force .• on 
the colliding object .• in the direction tangential to their surface of contact, 
the coefficient of re .• titution e relate .• the normal components of the velocities 
at the point of contad through Equation (8.46). 
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h 

The homogeneous sphere in Figure 8.25 is rnoving horiZontal1y with velocily v 
and no angular velocity when it strikes the stationary slender bar, The sphere ha 
mass rnA, and the bar has mass mB and length l. The coefficient of restitution of th 
impact is e. 
(al What is the angular velocity of the bar after the impact? 
(b) If the duration of the impact is !J.t, what average horizontal force is exerted on th 
bar by the pin support C as a result of the impact? 

STRATEGY 

(a) From the definition of the coefficient of restitution, we can obtain an equatio 
relating the horizontal velocity of the sphere and the velocity of the bar at th 
point of impact after the collision occurs. In addition, the total angular momentu 
of the sphere and bar about the pin C is conserved. With these two equation 
and kinematic relationships, we can detenninethe velocity of the sphere and th 
angular velocity of the bar. (b) We ean determine the average force exerted on th 
bar by the support by applying the principle of angular impulse and momcntu 
to the bar. 

SOLUTION 

(a) In Figure (a) we show the velocities just after the impact, where "~p is Ibe bar' 
velocity at the point of impact. From the definition of the coefficient of restitution 
we obtain 

1k,Y, , 
, 

I ,--X 
i I 
I i , I 
I I 

I i 
I I 
I I 

(a) Veiocities of the sphere and bar after th' impact. 



The equation of conservation of total angular momentum about C is 

Carrying out the vector operations, we obtain 

Notice in Figure (a) that the vellocities t<~ and 'I)~J' are related to the angular velocity 
of the bar m~ by 

1 , 
... 'OJ 2 B 

h(jJ~ 

We now have four equations m the [our unknowns v~, v's, vBP and wB. Solving 
them for the angular velocity of the bar and using the expression In = lim8P, we 
obtain 

(b) Let the forces on the free-body diagram of tile bar in Figure (b) represent 
the average forces exerted during the impact. We apply thc principlc of angular 
impulse and momentum, in the form given by Equation (8.31), about the point of 

impact: 

Solving for Cp we obtain 

(h -1f)mBv~ -IB()~ C - .. -
, - hll,/ 

Using OUT solution fur w~ from part (a) and the relation v's = 1w~, we obtain the 
average horizontal force exeIted by the support: 

DISCUSSION 

Notice that the average horizontal force exerted on the bar by the support can be in 
either direction Dr can be zero, depending on where the impact occurs, The force is 

zcroifh=lL 
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(b) Average forces exerted on the bar 
during the impact. 



I. 
II 

404 CHAPTER 8 ENERGY AND MOMENTUM IN PLANAR RIGID-BODY DVNAMICS 

Figure 8.26 

(a) Aligning the x axis or the coordinate 
system tangent to the ground at P. 

The combined mass of the motorcycle and rider in "Figure 8.26 is In = 170 kg, and 
their combined moment of inertia about their centre of mass is 22 kg.m2

. Following 
a jwnp over an obstacle, the motorcycle and rider are in the position shown just 
before the rear wheel eont&ts the ground. The velocity of their centre of mass is 
magnitude I Va I = 8.8 m/s and their anh'tdar velocity is w = 0.2 fadls. If the 
motorcycle and rider are model1ed as a single 'rigid body and the coefficient 
restitution of the impact is e = 0,8, what are the angular velocity 0)' and velocity v~ 
after the impact'! Neglect the tangential component of force exerted on the 
motorcycle's wheel during the impact. 

STRATEGY 

Since the tangential component of lorce on the motorcycle's wheel during the 
impact is neglectcd, thc componcnt of the velocity of the centre of mass parallel to 
the ground IS unchanged by the impact. The coefficient of restitution relates the 
motorcycle's velocity nonnal to the ground at the point a/impact before the 
to its value after the impact. Also, the force of the impact exerts no moment 
the point of impact, so the motorcycle's angular momentum about that point is 
conserved, (We assume the impact to be so brief that the angular impulse due to the 
weight is negligible,) With these three relations we can determine the two 
components of the velocity of the centre of mass and the angular velocity 
the impact. 

SOLUTION 

In Figure (a) we align a coordinate system parallel and perpendicular to the ground 
at the point P where the impact occurs. Let the components of the velocity of the 
centre of mass before and after the impact be Va = 'Ox i + vyj and v~ = t'~ i + 1)~ J. 
respectively. The components lJx and v.v are . 

"x = 8.8 co, 50' = 5.66 m/s 

"" = -8.8 sin 50" = -6.74 m/s 



Because the component of the impact force tangential to the ground is neglected. the 
x component of the velocity of the centre of mass is unchanged: 

'/)~ = Vx = 5.66 mjs 

We can express the y component of the wheel's velocity at P before the impact in 
temlS of the velocity of the celntre of mass and the angular velocity (Figure (al): 

j'VI' = j. (ve + '" x 'I'/G) 

-I' ["" .. ,,"" 

k 

) U 0 eu 

-065 -078 0 

= Vy O.65w 

(Notice that this expression gives the y component or the velocity at P even 
though the wheel if:. spinning.) The y component of the wheel's velocity at P after the 
impact is 

j. v~ ;;;; j. (Y~ + Wi X fp/G) 

= 11' .... 0.650/ y 

The coefficient of reRtitution relateR the y componentR of the wheel'R velOCity 
at P betore and aller the impad: 

(8.47) 

The force of the impact exerts no moment about P, so angular momentum 
about I) is con~eryed: 

[(rG/p x mVG) • k + Iwl = [(rG/p X mv;;)' k + leu'] 

k k 

0,65 0,78 0 . k + TOJ = 0,65 0,78 ° 'k + To>' 

mv).' mvy 0 mt'~ mv~ 0 

Expanding the determinants and evaluating lht: dot products, we obtain 

O.65mvy ~ O.78m/;.\; + 1m = O.65mv:, - O.78m/)~ + !o./ (8A8) 

Since we have already dctcIDlincd v~, we can solve Equations (8.47) and (8.48) for 
1.',:, and (1)'. The results are 

1',~ = -3.84 m/s w' = -14.37 tadjs 

The velocity of t.he centre of mass aAcr the impact is v~ 5.66 i 3.84 j m/~, and 
the angular velocity is 14.37 radls in the dockwise direction. 
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Figure 8.27 

Example 8.8 

An engineer simulates a collision between two 1600 kg cars by modelling them as 
rigid bodies (Figure 8.27), The mass moment of inertia of each car about its centre 
of mass is 960 kg.m2

, He assumes the contacting surfaces at P Lo be smooth and 
parallel to the x axis and assumes the coefficient of restitution to be e = 0.2. What 
are the angular velocities of the cars and the velocities of their centres of mass after 
the collision? 

y 

--"",---",:;. 

m/s 

STRATEGY 

Since the contacting surfaces are smooth! the x components of the velocities of the 
centres of mass are unchanged by the collision. The y components of the velocities 
must satisfY conservation of linear momentum, and the y components of the 
velocities at the point of impact befort: and after the impact are related by the 
coefficient of restitution. The force of the impact exerts no moment about P on 
either car, so the angular momentum of each car about P is conserved. From these 
conditions and kinematic relations between the velocities of the centres of mass and 
the velocities at P, we can determine the angular velocities and velocities of the 
centres of mass after the impact. 

SOLUTION 

The components of the velocities of the centres of mass before the impact are 

and 

VA = 30 cos 20'~ i - 30 sin 20° j 

= (2g,2 i - 10,3 j) mls 

V8 = 20i mls 

The x components of the velocities are unchanged by the impact: 

v~x = VAx = 28,2 mls v~ = l'8x :'::.: 20 m/s 



The y components of the veloc.ities must ~ati5ify con5icrvation of linear momentum: 

(8.49) 

Let the velocities of the two cars at P before the collision be "AP and v sp. The 
coefficient of restitution e 0.2 relutes the y components of the velocities at P; 

(8.50) 

We can express the velocities at P after the impact in terms of the velocities of the 
centTes ofm\lss and the angular velocities atter the impact (Figure (a», The position 
of P relative to the centre of ma~s of car A is 

rplA = [(L8) cos 20' - (I) sin 20']1- (1.8) sin 20' + (1) cos 20'lJ 

= 1.35 i - 1.56 j(m) 

Therefore we can express the velocily or point.P or car A after the impact as 

k 

o O)~ 

1.35 -1.56 0 

E.quating i and j components in this equation, we obtain 

The position of P relative to the centre of mass of car B is 

rpI" = (Ui + j) m 

We can express the velocity of point P of car B aftcr thc impact as 

'/)~p.( i + v~,..yj = ,~,~j + tt~yj + 0 

1.8 

j k 
o wB 
I 0 

Equating i and j components, we obtain 

The angular momentulll of car A about P is conserved: 

k 

-1.35 1.56 0 • k+O= -1.35 1.56 

mAtJAx mAVAy 0 mAv~x mAV~y 

k 

0 
0 

(8.51) 

• k+/AW~ 
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ccntre~, of mass. 
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Expanding the determinants and evaluating the dot products, we obtain 

The angular momentum of car B about P is also conserved, 

[(rB/p x mBvS)' k + I,wB] = [(rB/p x mBv~)' k + TBwB] : 

-1.8 I 

o 

From this equation we obtain 

k 

o . k+O= -1.8 -1 

o mBv~x mlJVay 

k 

o . k +I8W~ 

o 

(8.53) 

(8.54) 

We can solve EquatIons (R.49)-{~.54) for vA> v~P) (JJ~, Va, V~p and O)~. The results 
for the velocities of the centres of mass of the cars and their angular velocities 
are 

v~ = (28.2 i - 9.08 j) mls 

vB = (20.01 - U8j) mls 

w~ = 2.65 rad/s 

wB = -3.54 rad/' 

8.56 The 2 kg slender bar starts Jrom rest in the vertical position 
and falls, striking the smooth surface at P The coefficient of 
restitution of the impact is e = 0.5. When the bar rebounds, 
through what angle relative to the horizontal will it rotate? 

Strategy.- Use the coefficient of restitution to relate the bar's 
velocity at P Just aftcr the impact to its value just before the 
impact. 

PIl.56 

8.57 The slender bar of mass m falls from rest in the position 
shown and hits the smooth projection at A. The eoeilicien! of 
restitution is e. Show that the velocity of the centre of mass of the 
bar is zero immediately after the 'impact if h2. = el2/12. 

h 

...a;c .... 
A 

.. ...-L 

l- b P8.57 



8.58 In Problem 8.57, if m = 2 kg, I = I m, b = 350 mm, 
h = 200 mm, and the cocffic1cnt of restitution of the impact is 
e = 004, delermine the bar's angular velocity after the impact. 

8.59 If the duration of the impact described in Problem R.58 is 
0.02 SI what average force is excltcd on the bar by the projection at 
A during the impact? 

8.60 Wind eanses the 600 tonne ship to drill sideways at OJ m/s 
and strike the stationary quay at P The ship's mass moment of 
inertia about its centre of mass is 4 x 108 kg.m2

, and the coeffi~ 
cient of restitution of the impaet is e = 0.2. \Vhal is the ship's 
angular velocity after the impact? 

P8.60 

8.61 In Problem 8.60, if the duration of the ship's impact with 
the quay is 1 () s, what is the average value of the force exerted on 
the ship by the impact? 

8.62 A 1 kg sphere A translating at 6 mls strikes the end of a 
stationary 10 kg slender bar R. The bar is pinned to a fixed support 
at O. What is the angular velocity of the bur .fleT the impact if the 
sphere adheres to the bar? 

, ; '~'::"<I' '1;& 

a ~' 

T ' ; 

B 
, 

t rn 
'i; 

, :\ 

~ ~ A -' () mJ~ 

P8.62 

8.63 Tn Problem 8.62, determine the velocity of the smooth 
sphere and the angular velocity of the bar after the impact if the 
coefficient of restitution is e = (L8. 
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8.64 The 1 kg sphere A is moving at 10 mls when it strikes the 
end of the 4 kg stationary slender bllT R.lfth' sphere adheres to the 
bar, what is the bar's angular v(:iodty alter the impact? 

PS.64 

8.65 In Problem 8.64, what i1i the bar's angular '/ciocity after the 
impact if the coefficient of rcstltutlon is e = 0.5'? 

8.66 In Problem 8.64, determine the total kinetic energy of 
the sphere and bar betore and aft"r the impact if (a) e = 0.5; (b) 
e = 1. 

8.67 The 0.14 kg balllS translating with veloCity VA = 25 mls 
perpendicular to the bat just befofe impact. The player is swinging 
the 0.88 kg bat with angular velocity OJ = 6n md/s before the 
impacl. Point C is the bat's in~,tantancous centre both before and 
after the impact The distances b ::;:::::: 350 mm and,}' = 650 mm, The 
bat's mass moment of inertia abuut its ccn,re of mass is 
Is = 0.045 kg.m'. The coefliclent. of rcstltution is e = 0.6, and 
the duration of the impact is 0.008 s. Detennine the magnitude of 
velocity of the ball af\.er the impact and the average force Ax exerted 
on the bat by the player during the impact if (a) d = 0; (b) 
d = 75 mm; (c) d = 200 mm. 

I 

~ .. ~\ l 
T~' 

d 

h 

! 

A, 

·r P8.6 
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8.68 In Problcm 8.67, show that the force A, is zero if 
d = IB/(mo,V). where rna is the mass of the bat. 

8.69 A slender bar of mass m is released from rest in the hori­
zontal position at a height h above a peg (Figure (a)). A small hook 
at the end of the bar engages the peg, and the bar swings from the 
peg (Figure (b)). What minimum height h is necessary for the bar 
to swing 270e ITom its position when it engages the peg? 

(a) 

(b) 

PB.69 

8.70 Is energy conserved in ProbJem 8.69? If not, how much 
energy is lost? 

8.71 A wheel that can be modelled as a 15 kg homogeneous 
cylindrical disc rolls at 3 m/s on a horizontal sutface towards a 
150 rom step. If the wheel remains in contact with the step and 
does not slip while rolling up onto it, what is the wheel's velocity 
once it is on the step? 

P8.71 

8.72 In Problem 8.71, what is the minimum velocity the wheel 
must have rolling towards the step in order to climb up onto it? 

8.73 The slender bar is released from rest in the position shown 
in Figure (aJ and falls a distance h = I m. When the bar hits the 
floor, its tip is supported by a depre&sioo and remains on the floor 
(Figure (b)). The length of the bar is I m and its weight is I N. 
What is its angular velocity w just after it hits the floor? 

~.~! 
I·' 

(a) (b) 

P8.73 

8.74 During her parallel.bars routine, the velocity of the 40 kg 
gymnast's centre of mass is (1.2 i - 3 j) mI, and her angular 
velocity is zero just before she grasps the bar at A. In the position 
shown, her mass moment of inertia about her centre of mass is 
2.4 kg.m'. If she stiffens her shoulders and hip' so that ,he can be 
modelled as a rigid body, what is the velocity of her centre of mass 
and her angular velocity just after she grasps the bar? 

y 

-------x 

PS.74 



8.75 The 20 kg homogeneous rectangular plate is released from 
rest (Figure (a») and falls 200 mm before coming to the end of the 
string attached at the corner A (Figure (b)). Assuming that the vertical 
component of the velocity of A i;5 zero just after the plate reaches 
the end of the string. determine the angular velocity ofthe plate and the 
magnitude of the vc10city of the ,comer B at that instant. 

(a) Ih) 

P8.75 

8.76 A non-rotating slender bar A moving with velocity 1)0 

strikes a stationary slender bar B Each bar has mass m and length 
t, If the bars adhere when they collide, what is their angular 
velocity after the impact? 

B 

A 

P8,76 

8.77 The horizontal velocity of the landing aeroplane is 50 m/s~ 
its vcrtical velocity (ratc of descent) is 2 m/s) and its angular 
velocity is zero, The mass of the aeroplane is 12 Mg and the mass 
moment of inertia about its centre of mass is I x 105 kg,m2

. When 
the rear wheels touch the runway, they remain in contact with it. 
Neglecting the horizontal fore,' excrted on the wheels by the 
runway, determine the aeroplane's angular velocity just after it 
touches down. 

0.:1 rn P8,n 
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8.78 Determine the angular velocity ofthe aeroplane in Problem 
'it77 just after it touches down if 'its wheels don)t ~tay in contact 
with the runway and the coefficient of restitution I)f the impact is 
e=Oo4, 

8.79 A 1270 kg car skidding on ice strikes a ,'oncrete post at 
5 km/hr, The car's moment of inertia about its cC'ntre of mass is 
2440 kg,m2, Assume that the impacting surfaces arc smooth and 
parallel to the y a.,,,is and that the coefficient of n!stitution of the 
impact is e;:,:;;; 0.8. What is the ear's angular vdocity and the 
velocity of its centre of mass attcr thc impact? 

8.80 \¥hile attempting to driv\~ on an icy street Jbr the first time, 
a student s:kids his: 1270 kg car (A) into the tmiver:H!Y chancellor's 
unoccupied 2720 kg Rolls-Royce Corniche (8). The point of 
impact is P. Assume that the impacting surfaces uc smooth and 
parallel to the y axis and that the ,coefficient of n:stitution of the 
impact is e = 0.5. The moments of inertia of the cars about their 
centres of mass are fA = 2440 kg,m' and In ; 7600 kg,m'. Deter­
mine the angular velocittes of the cars: and the VdOCltics of their 
centres of mass after the collision, 

y 

PS,80 

8.81 Each slender bar is 1,22 m long and weigh; 90 N. Bar A is 
released in the horizontal position shown. The bars are smooth and 
the coefficient of restitution of lhclr impact is e = 0.8, Detcm1inc 
the angle through which B swings aftcrward1i, 

,,::,,1 

B 

P8.al 
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8.82 The Apollo C3M (A) approaches the Soyuz space station 
(B). The mass of the Apollo is rnA = 18 Mg, and the mass moment 
of inertia about the axis through its centre of mass parallel to the z 
axis is JA = 114 Mg.m2

• The mass of the Soyuz is m. = 6.6 Mg, 
and the mass moment of inertia about the axis through its centre of 
mass parallel to the z axis is Is = 70 Mg.m2

. The Soyuz is 
stationary relative to the reference frame shown and the CSM 
approaches with velocity VA = (0.2 i + 0.05 j) mi. and no angular 
velocity. What is their angular velocity after docking? 

(A) 

y 

Chapter Summary 
Work and Energy 

P8.82 

The work done by external forces and couples as a rigid body moves between 
two positions is equal to the change in its kinetic energy; 

Equation (8.4) 

The work done on a system of rigid bodies by external and internal forces and 
couples equals the change in the total kinetic energy. 

The kinetic energy of a rigid body in general planar motion is 

Equation (8.12) 

where v is the magnitude of the velocity ofth. centre of mass and I is the mass 
moment of inertia about the centre of mass. If a rigid body rotates about a 
fixed axis 0, its kinetic energy can also be expressed as 

1 2 T = -luw 
2 

Equation (8.13) 

The work done on a rigid body by a force F is 

Equation (8.14) 

where r r is the position of the point of application of F. If the point of 
application is stationary, or if its direction of motion is perpendicular to F, no 
work is done. 



The work done by a couple Iv! 00 a rigid body in planar molion as it rotates 
from 01 to 0, in the direction of IvI is 

1
0, 

u= Aide 
(I, 

Equation (8.16) 

A couple Iv! is conservative ir a potential energy Vexists such that 

AI dO = -dV Equation (8.17) 

The potential energy of a linear torsional spring that exerts a couple kO in the 
direction Opposite to its angular dlsplacement e (Figure (a)) is tkO', 

If all the forces and couples that do work on a rigid hody are" conservative, 
the sum of the kinetic energy and the lolal potential energy is constant: 

T + V = constant Equation (8.19) 

Power 
The power transmitted to a rigid body by a force )<' is 

P F·vp Equation (8.20) 

where vp is the velocity of the point of application ofF, The power transmitted 
to a rigid body in planar motion by a Gauple IvI is 

I' = IvIw EqO:ltion (8.21) 

The average power transferred to a rigid body during an interval of lime is 
equal to the change in its kinetic energy, or the total work done, divided hy the 
mterval of time: 

Equation (8.22) 

Impulse and Momentum 
The principle of linear impulse and momentum states that the linear impulse 
applied to a rigid hody during an interval of time is equal to the change in its 
linear momentum: 

f" ~Fdt = mV2 - mVI 

'/ 
£quation (8.25) 

This result can also be expressed in terms of the average with respect to time 
of the total force: 

Equation (8.26) 

If the only forces acting on two rigid bodies A and B are the forces they exert 
on each other, or if other forces arc negligible, their totallinear momentum is 
conserved: 

ftlAVA + myv/J = constant F:quation (8.27) 
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(bJ 

The principle of angular impulse and momentum states that the angular 
impulse about a fixed point 0 applied to a rigid body during an interval of time 
is equal to the change in its angular momentum about 0: 

[
'2 
~Modt =[(r x mv)· k +Iwh 

, " 
- [(r x my)· k+Irllh Equation (8.29) 

Tbe unit vector k is perpendicular to the plane of the motion. Pointing the 
thumb of the rigbt hand in the direction of k, the fingers curl in the positive 
direction for OJ, This principle can also be expressed in terms of the average 
moment about 0: 

(12 -11)(~Mo),v =[(r x mv)· k + I(Olz 

- [(r x mv)' k + Iwh Equation (8.31) 

If the only forces and couples acting all two rigid bodies A and B in planar 
motion are the forces and couples that they exert 011 each other, or if other 
forces and couples are negligible, their total angular momentum about any 
fixed poiut 0 is conserved: 

Equation (8.32) 

This result holds even when A and B are subject to significant external forces 
and couples if the total moment about 0 due to the external forces and couples 
is zero. 

Impacts 
Suppose that two rigid bodies A and B, in two-dimensional motion in the same 
plane, collide. If other forces and couples arc negligible in comparison with 
the impact forces and couples that A and B exert on each other, their total 
linear momentum and their total angular momentum about any fixed point 0 
are conserved. If, in addition, A and B exert only forces on each other at their 
point of impact P, the angular momentum about P of each rigid body is 
conserved. If one of the rigid bodies has a pin support at a point 0, their total 
angular momentum about that point is conserved. 

Let P be the point of impact (Figure (b)). The normal components of the 
velocities at P are related to the coefficient of restitution e by 

Equation (8.46) 



8.83 The mass moment of inGItia of the pulley is 0.2 kg.m'. 
The system is released from resL Usc the principle of work and 
energy to detennine the velocity of the 10 kg cylinder when it 

has fallen I m. 

JO kg PS.S3 

S.84 Use momentum principles to detel111ine the velocity of the 
10 kg cylinder in Problem 8.83 one second after the system is 
rc1cascd from rest. 

8.85 Arm BC has a mass of 12 kg and the mass moment of 
inertia about its centre of mass is 3 kg.m2

. Point B is stationary. 
Arm BC is initially aligned with the (horizontal) x axis with zero 
angular velocity and a constant couple M applied at B causes it to 
rotate upwards. \Vhen it is in lhe position shown. its counter~ 

clockwise angular velocity is 2 Tad/s. Detennine M. 

y 

P8.85 
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8.86 The cart is stationary when a constant foret;: F ili applied to 
it What will its velocity be when it has wIled a distance b? The 
mass of the body of the cart is 1J1(, and each of the four wheels has 
mass m, radius R, and mass moment of inertia t. 

PS.86 

8.87 Each pulley has mass moment of inertia r = 0.003 kg.m2
• 

and the mass of the belt is 02 kg. If a constant COL pIe M ~ 4 N.m 
is applied to the bottom pulley, what will its angular velocity be 
when it has turned 10 revolutions? 

PS.87 
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8.88 The ring gear is fixed. The mass and mass moment of 
inertia of the sun gear are Ins = 320 kg, Is = 6000 kg.m'. The 
mass and mass moment of inertia of each planet gear are 
mp = 40 kg, Ip = 90 kg.m'. A couple M = 200 N.m is applied 
to the sun gear, Use work and energy to determine the sun gear's 
angular velocity after it has tum<:d 100 revolutions. 

Ring gear 

Planet gears (3) 

Sun gear 

P8.88 

8.89 The mass moment of inertia of the crank AB about A is 
0.0003 kg.m'. The mass of the eDlmecting rod BC is 0.36 kg, its 
centre of mass is at its midpoint, and its mass moment of inertia 
about the centre of mass is 0.0004 kg.m'. The radius of the piston 
at Cis 55 mm, and its mass is 4.6 kg, In the position shown, the air 
in the cylinder is at atmospheric pressure, Palm = 1 X 105 Pa. 
Assume that as the piston moves in the cylinder, the pressure p 
within the cylinder is inversely proportional to the volume. The net 
force towards the left exerted on the piston by pressure is 
(p - Patm)A, where A is the piston's cross~sectional area. If a 
constant couple M = 100 N.m is applied to the crank AB, what is 
its angular velocity when it has rotated 45° in the clockwise 
direction? (Neglect friction and the work done by the gravitational 
forces on the crank and connecting rod.) 

), 

/'" 
3()() mrn 

'(_/7"" 
A 

350mm 

P8.89 

8.90 In Problem 8.89, determine the angular velocity of the 
crank AB and the piston's velocity when the crank AB has rotated 
20"' in the clockwise direction. 

8.91 In Problem 8.89, what is the minimum con,tant couple M 
necessary to rotate the crank AB 45'" in the clockwise direction? 

8.92 The 0.1 kg slender bar and 0.2 kg cylindrical disc are 
released from rest with the bar horizontal. The disc rolls on the 
curved surface. What is the bar.'s angular velocity when it is 
vertical'? 

P8.92 

8.93 A slender bar of mass m is released from rest in the vertical 
position and allowed to fall. Neglecting friction and assuming that 
it remains in contact with the floor and wall, determine its angular 
velocity as a function of O. 

\ 

'" \ 

PS.93 



8.94 The 4 kg slender bur is pirmed to 2 kg silders at A and E. If 
friction is negligible and the system starts from rest in the position 
shown, what is the bar's angular velocity when the slider at A has 
fallen 0.5 m? 

1.2111 

P8.94 

8.95 A homogeneous hemisphcTC of mass m is released from rest 
in the position shown, If it rolls en the horizontal surface, what is 
its angular velocity when its fiat surface is horizontal? 

P8.95 

8.96 What nonnal force is exerted on the hemisphere in Problem 
8.95 by the horizontal surface at the instant its flat surface is 

horizontal? 
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8.97 An engineer decides to control the angular velOCIty of a 
satellit<; by deploying small masses attached to cables. If the 
angular velocity of the satellite in configuration (a) is 4 rpm, 
determine the distance d in configuration (b) that will cause the 
angular velocity to be 1 rpm, Th(~ moment of inertia of the satellite 
is f = 500 kg.m2 and each mass is 2 kg. (Assume that the cables 
and masses rotate With the sam!: angular velocity as the satellite. 
Neglect the masses of the cablc~~ aIld lhe mass moments of inertia 
of the masses about their centres of mass.) 

P8.97 

8.98 A homogeneous cylindrical disc of mass m rolls on the 
horizontal surface with angular velocity 01 Tf it does not slip or 
leave the slanted surface when it comes into contac.; with it, what is 
the angular velocity Wi of the disc immediately afterwards? 

P8.98 
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S.99 The 10 kg slender bar faIlsITom rest in the vertical position 
and hits the smooth projection at B. The coefficient of restitution of 
the impact is e 0.6, the duration of the impact is 0.1 S, and 
h = 1 m. Determine the average force exerted on the bar at B as a 
result of the impact 

3 It 

1 ~-" 

, ~i, 

• 
A B 

h -- P8.99 

8.100 In Problem 8.99, determine the value of b for which the 
average force exerted on the bar at A as a result of the impact is 
zero. 

8.101 The I kg sphere A is moving at 2 mI, when it strikes the 
end of the 2 kg stationary slender bar B. If the velocity of the 
sphere after the impact is 0.8 mls to the right. what is the 
coefficient of restitution? 

B T 
2m 

I 
P8.101 

8.102 The slender bar is released from rest with e = 45 0 and 
falls a distance h = I m onto the smooth floor. The length of the 
bar is I m and its mass is 2 kg. If the coefficient of restitution of 
the impact is e = O.4j what is the bar's angular velocity just after it 
hits the floor? 

T~ 
h 

r, c" . ....ll_, ~~,..,--,.,............~ 
PS.I02 

8. I 03 In Problem 8.102. determine the angle 0 for which the 
angular velocity of the bar just after it hits the floor is a maximlUll. 
What is the maximum angular velocity? 

8.104 An astronaut translates towards 11 non-rotating satellite at 
l.Oi mls relative to the satellite. Her mass is 136 kg, and the mass 
moment of inertia about the axis through her centre of mass 
parallel to the z axis is 45 kg.m2. The mass of the satellite is 
450 kg and its mass moment of inertia about the z axis is 675 
kg.m2

. At the instant she attaches to the satellite and begins moving 
with it, the position of her centre of mass is (-1.8. -0.9, 0) m, 
The axis of rotation of the satellite aller she attaches is paraliel to 
the z axis. What is their angular velocity? 

PS.I04 



8.105 Tn Problem R. I 04, suppose that the design parameters of 
the satellite's control system reqlLlire that its Wlgular velocity not 
exceed 0.02 rad/s. If the astronaut is moving parallel to the x axis 
and the position of her centre of mass when she attaches is ( - 1.8, 
- 0.9, 0) m, what is the maximum rdative velocity at which she 
should approach the satelliteO 

8.106 A 77 kg wide receiver jumps vertically to receive a pass 
nod IS stationary at the instant he catches the balL At the same 
instant, he is hit at P by an 82 kg linebacker moving horizontally at 
4.6 mls. The wide receiver's mass moment of inertia about his 
centTe of mass is 9.5 kg.m2 If you model the players as rigid 
bodies and assume that the coefficient of restitution is e = 0, what 
is the wide receiver's angular velocity immediately after the 
impact? 
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8.107 If the football players in Problem 8.106 do not romain in 
contact after the collision, and the linebacker's hOl;zontal velocity 
immediately after the impact is 2,75 mIs, what is the wide 
receiver's angular ve10city? 

8.108 The 2 kg slender bar is pinned at A to a 111 kg metal block 
lhat rests on a smooth level surface. The system is released from 
rest with the bar Ycrtiqal. Friction is negligible. When the system is 
in the position showR., determine (a) the magnitude of the bar's 
angular velocity; (b) the magnitude of the vclocity of the block. 

Strategy: Usc conservation of energy and conservation of linear 
momentum, 

1
1 

1\ 

lL 
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The orientation of the biplane, or 
any rigid body, can be 
described by thrce angles spe­

cifying rotations of a body-fixed 
coordinate system relative to a 
fixed reference frame. The change 
in the biplane's orientation as a func· 
tion of time is goverued by equations 
of three .. dimensional angular motion 
that relate the fon:es and couples 
acting on the biplane to its angular 
acceleration, In this chapter you will 
learn to analyse thrcc·dimcnsional 
motions of rigid bodies. 



Thre'e-DimensiotJal 
KinE~matics and 
Dynamics of 
Rigicj Bodies 

UNTIL now our discussion of the dynamics of rigid 

bodies has dealt only with two-dimensional motion. 

But for many engineering applications of dynamics, such as 

the deslign of aeroplanes and other vehicles, we must consider 

three-dimensional motion. Our first step is to explain how 

three-dimensional motion of a rigid body is described. We 

then derive the equations of motion and use them to analyse 

simple three-dimensional motions. Finally, we introduce the 

Eulerian angles used to specify the orientation of a rigid body 

in thme dimensions and express the equations of angular 

motion in terms of them. 

421 
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9.1 Kinematics 
If you ride a bicycle in a straight path, the wheels undergo planar motions; but 
if you are turning, their motions are three-dimensional (Figure 9.I(a». An 
aeroplane can remain in planar molion while in level flight, descending, 
climbing, or performing loops. But if it banks and turns, it is in three­
dimensional motion (Figure 9.1~b». If you spin a top, it may remain in planar 
motion for a brief period, rotating about a fixed vertical axis; but eventually the 
top's axis begins to tilt and rotate. The top is then in three-dimensional motion 
and exhibits interesting, apparently gravity-defying behaviour (Figure 9.1 (c». 
In this scetion we begin the analysis of such motions by discussing kinematics 
of rigid bodies in three-dimensional motion. 

Figure 9.1 
Example of planar and three-dimensional 

motions. 

(a) 

(b) 

(e) 

You are already familiar with some of the concepts involved in describing 
three-dimensional motion of a rigid body. In Chapter 6 we showed that Euler's 
theorem implies that a rigid body undergoing any motion other than transla­
tion has an instantaneous axis of rotation. The direction of this axis at a 
particular instant, and the rate at which the rigid body rotates about the axis, 
can be specified by the angular velocity vector 1lJ. 

Furthermore. a rigid body's velocity is completely specified by its angular 
velocity vector and the velocity vector of a single point of the rigid body. For 
the rigid body in Figure 9.2, suppose that we know IlJ and the velocity VB of 



point B. (The vector VB = d rBldt is the velocity of B relative to the reference 
point 0.) Then the velocity of any point A is given by Equation (6.8): 

(9.1) 

Figure 9.2 
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Points A and B of a rigid body. The velocity 
of A can be determined if the velocity of B 
and the rigid body's angular velocity are 
known. The acceleration of A can b,~ 
determined if the acceleration of B, the 
angular velocity and the angular acc:eleration 
are known. 

A rigid body's acceleration is completely specified by its angular acceleration 
vector IX '" d<oldl, its angular velocity vector, and the acceleration vector ofa 
single poin!. If we know IX, <0 and the acceleration aB of point B in Figure 9.2, 
the acceleration of any point A is given by Equation (6.9): 

I a, = ao + (l x I'A/B + <0 X rA/B) I (9.2) 

We have assumed that the vdocities and accelerations of points, the angUlar 
velocity <0, and the angular a"celeration IX 10 Equations (9.1) and (9.2) arc 
relative to a non-rotating reference frame fixed with respect to point O. In this 
chapter we will also use body. fixed coordinate systems, which are stationary 
relative to moving rigid bodies. In addition, in some situations we will use 
coordinate systems that rotate but are not body-fixed. We emphasize that even 
though a vector specifies a velocity or acceleration relative to a fixed rejerence 
frame, at any given instant we can express it in terms of its components in a 
rotating coordinate systern, 

Suppose that the angular velocity of a rotating coordinate system xyz 
relative to a fixed reference Ii'llme is described by an angular velocity vector n, 
and the angular velocity of a rigid body relative to the xyz system is Wr". Then 
the rigid body's angular velocity and angular acceleration relative to the fixed 
reference frame are 

<0 = n + <Orel 

dO. dwrcJ x dWrcl dW rel;: a=-+--+ + +[l x <Ord 
dt dt dl 

(9.3) 

The following examples dem,an.<trate the lise of Equations (9.1)-(9.3) to 
analyse rigid bodies in three-dlmemiOllal motion. You will oflen find that the 
simplest way to determine the angular velocity and angular acceleration 
vectors of a rotating rigid body is first to determine its ungular velocity <Orel 

relative to a rotating coordinate system and then use Equations (9.3). 
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Figure 9,3 

The tyre in Figure 9,3 is rolling 011 the level surface. Its midpoint is moving at 
5 m/s. The car is turning, and the perpendicular line through the tyTe's midpoint 
rotates about the fixed point P shown in the top view. 
(a) What is the tyre's angular velocity vector m? 
(b) Detennine the velocity of point A, the rearmost point of the tyre at dte instant 
sho'WTl. 

10m 
(NOT TO SCALE) 

TOPYIEW 

STRATEGY 
(n) Let B be the tyre~s midpoint. We introduce a rotating system with its origin at B 
and its y axis along the line from B to P (Figure (a». We assume that the x axis 
remains horizontal. Knowing the velocity of point B, we can detennine the angular 
velocity vector of the coordinate system and also the tyre's angular velocity relative 
to the coordinate system. Then we can use Equation (9.3) to detennine the tyre's 
anhruiar velocity. 
(b) Knowing the velocity of point B and the tyre's angular velocity, we can use 
Equation (9.1) to detennine the velocity of point A. 

SOLUTION 

(a) The angular velocity of the line PB is (5 m/s)/(IO m) =OJ rad/s. The xl'z 
coordinate system rotates about its z axis in the clockwise direction as viewed in 
Figure (a), so the angular velocity vector of the coordinate system is 

n = -0.5 krad/s 

Relative to the xyz coordinate system, the tyre rotates about the y axis with angular 
velocity (5 m/sJ/(0,36 m) = 13.9rad/s. The lyre's angular velocity vector relative to 
the coordinate system is 

""'" = -13.9jrad/s 



p 

5 m/s H 

m 

I () T11 

(Not to s(:aie) 

I 

(0) A rotating coordinate system. The y axis remains 
aligned wi1.h BP, and the x axis remains horizontal. 

The tyre's angular velocity vector is 

w= n +Wrol = (-·13.9j - 0.5 k)md/s 

(b) The position vector of point A relative to point B is fAIR = 0,36 i m. Therefore 
the velocity of point A is 

VA Vn +w x rAIB 

k 

=-5i+ 0 13.9 -0.5 

0.36 0 0 

= (-5i 0.18j+5k)m/s 

DISCUSSION 

The tyre's angular velocity vector w rotates in space as the car turns. But by 
expressing it in tcnns of a coordinate system that rotates with the car, we obtained a 
very simple expression ror w. (Notice that point A has a component of velocity in 
the negative y direction due to the rotation of the tyrc's axis,) 
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Figure 9.4 

L 

If! 

"\,/y 
VI sin f) 

'i I; 
, II 

(a) Resolving the angular velocity vector of 
the coordinate system into components. 

The point of the spinning top in Figure 9.4 remains at the fixed point 0 on the floor 
The angle & between the vertical axis L and the top's axis (the z axis) is constant 
The x axis of the coordinate system remains parallel to thejtoor and rotates about 
with constant angular velocity ~. Relative to the rotating coordinate system, the to 
spins about the z axis with constant angular velocity ;Po 
(a) What arc the top's angular velocity and angular acceleration vectors? 
(b) Determine the velocity of the centre of mass G. 

STRATEGY 

(a) We know the top's angular velocity relative to the rotating coordinate system 
and we are given sufficient information to detennine the angular velocity vector 0 

the coordinate system. We can therefore use Equation (9.3) to dctermine the top', 
angular velocity and angular acceleration veetots, 
(b) Once we know the top's anhrular velocity vector, we can detemline the velocit 
of its centrc of mass by applying Equation (9.1) to points 0 and G. 

SOLUTION 

(a) The coordinate system rotates about the vertical axis L with angular velocity 'fr. 
Therefore the coordinate system's angular velocity vector is parallel to L, and th 
right-hand rule indicates that it points upwards (Figure a). Rcsolving ~ into its y an 
z components, we obtain the angular velocity vector of the coordinate system: 

The top's angular velocity relative to the rotating coordinate system js rurel = ~ k. 
Therefore the top's angular velocity vector is 

The x, y, and z components of the angular velocities nand wrc] arc constant, so th 
top's angular acceleration vector is 

k 

a=!lxWrel= 0 ~sinO ~cos8 
o 0 ;p 

= ;P~sineL 

(a) The position vector of the centre of mass relative to 0 is rGIO = h k. The 
veloc.1ty of the centre of mass is 

Vc; :::: Vo + ()) x fOIO 

k 

=0+ 0 ~sinO ~cose+;P 
o 0 h 



9.1 A rigid body's (mgular velocity vector is 
0) = (200 i + 900 j - 600k) rad/s. Relative to a reference point 
0, tht;' position and vclocilty of its centre of mass are 
ra = (6i + 6] + 2k)m and Vr; = IOOi + 80] = 60 km/s. What 
is the velocity relative to 0 of a point A of the rigid body with 
position fA = (5.H i + 6.4 j + 1.6 k) m,? 

9.2 The angular acceleration vector of the rigid body in Problem 
9.1 is ~ = (8000 i - 8000 j - 4000 k) rad/s' and the acceleration 
of its centre of mass relative to 0 is zero. What is the acceleration 
of point A relative to 0'1 

9.3 The aeroplane's rate gyros indicate that its angular velocity is 
ill = (40i + 6.4 i + 0.2 k) rad/s .. What is the velocity relative to the 
centre of mass of the point A with coordinates (8,2,2) m? 

P9.3 

9.4 The rate gyros of the aeroplane in Problem 9.3 indicate that 
its angular acceleration is ~ = (-4i+ 12] +2k)rad/s'. What is 
the acceleration of point A relatIve to the centre of mass? 
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9.5 The rectangular parallelepiped is rotating about a fixed axis 
through points A and B. Its direction of rotation i; clockwise when 
the axis of rotation is viewed from point A towards point B. 
(a) What is its angular velocity vector O)? 
(b) What are the velocities of pomts C and ll? 

) 

111m 

P9.5 

9.6 If the angular velocity of the re!.:tangular pamllclepiped in 
Problt:m 9.5 is constant, what is the acceleration of point C? 

9.7 The turbine is rotating about a fixed a.'{is ccincidcnt with the 
line OA. 
(a) What is its angular vcloci~y vector? 
(b) What is the velocity of the point oflhe turbine with coordinates 
(3,2,2)rn? 

.4,4) m 

P9.7 
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9.8 The 900 radl s angular velocity of the turbine in Problem 9.7 
is decreasing at 100 rad/ S2. 

(a) What is the turbine's angular acceleration vector? 
(b) What is the acceleration of the point of the turbine with 
coordinate (3,2,2) m? 

9.9 The base of the dish antenna is rotating at I rad/s. The angle 
e = 30Q and is increasing at 20°1 s. 
(a) What arc the components of the antenna's angular velocity 
vector {JJ in terms of the bodywfixcd coordinate system shown? 
(b) What is the velocity of the point of the antenna with coordi­
nates (2,2. - 2) m'? 

P9.9 

9.10 The circular disc remains perpendicular to the horizontal 
shaft and rotates relative to it with angular velocity Wd. The 
horizontal shaft: is rigidly attached to a vertical shaft rotating 
with angular velocity 000_ 

(a) What is the disc's angular velocity vector ro? 
(b) What is the velocity of point A of the disc'? 

y 

t-- b 

.. ~J-.. ». A. .; I' 
(:~;~--x 
.\ 1,' 

.i;'L" 

~ 

'"' P9.10 

9.11 If the angular velocities Wd and "'0 in Problem 9.10 are 
constant) what is the acceleration of point A of the disc? 

9.1:2 The gyroscope's c1rcular frame rotates about the vertical 
axis at 2 rad/s in the counterclockwise direction when viewed from 
above. The 60 mm diameter wheel rotates relative to the frame at 
lOrad/s. Determine the velocities of points A and B relative to the 
origin. 

,/ 
x 

P9.12 



9.13 If the angular velocities of the frame and wheel of the 
gy1"Oscope in Problem 9.12 arc constant, what arc the accelerations 
or points A and B relative to the origin? 

9.14 The manipulator rotates about the vertical axis with angular 
velocity fly = 0.1 rad/s. l11e y axis of the coordinate system 
remains vertical and the coordinate !iystcm rotates with the manip­
ulator so that points A, B and C remain in the x-y plane. The 
angular velocity vectors of the anns A B and Be relative to the 
rotating coordinate system are -O.2k rad/s and OAk rud/s, respec~ 
tively. 
Ca) What is the angular veloCity vector WDe of arm B(,,? 
(b) What is the velocity of point ('" 

P9J4 
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9.16 The cone IS connected by a ball and socket joint at its vertex 
to a 100 rum post. The radius of its base is 100 mOl, and the basD 
rolls on the floor, The velocity of the cenlm of the base is 
vc=2km/s. 
(a) What is the cone's angular velocity vector a/! 
(b) What is the velocity of point A" 

x 

P9.16 

9.17 The mccha1l1sm shown tS a type of universal jOint called a 
yoke and spider. The axis l. lies in the x-z platte. Determine the 
angular velocity (u,. and the angular velocity vector Ws of the cross­
shaped 'spider' in terms of the angular velocity WR at the instant 
shown. 

9.15 Thu angular velocity of the manipulator in Problem 9.14 
about the vertical axis is constant. The angular accelerations ufthe 
anns AB and Be relative to the rotating coordinate system are zero. f/> 

Vlhat is the acceleration of pOint C? 

P9.17 
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Figure 9.5 
Mass and position of the ith particle of a 
rigid body. 

Figure 9.6 
Introducing a coordinate system with its 
origin at 0. 

9.2 Angular Momentum 
Just as in the case of planar motion, the equations governing three-dimensional 
motion of a rigid body consists of Newton's second law and eqnations of 
angular motion. In comparison with the simple equation governing angular 
motion in two dimensions, the equations of angular motion in three dimen­
sions are more complicated- three eqnations relate the components of the total 
moment about each coordinate axis to the components of the rigid body's 
angular acceleration and angular velocity. In this section we begin deriving the 
equations of angular motion by obtaining expressions for the angular 
momentum of a rigid body in three-dimensional motion .. We first consider a 
rigid body rotating about a fixed point, and then a rigid body in general three­
dimensional motion. 

Rotation About a Fixed Point 
Let l1li be the mass of the ith particle of a rigid body, and let T, be its position 
relative to a fixed reference point 0 (Figure 9.5). The angular momentum 0 

the rigid body about 0 is the sum of the angular momenta of its particles, 

Ho = L fi x mi Vi 

where v, = d r,ldt. Let's assume that the rigid body rotates about the fixed 
point 0 with angular velocity ro. Then we can express the velocity of the ith 
particle as v, = ro x r" and the angular momentom is 

Ho = L r, x l1li(ro x ri) (9.4) 

In terms of a coordinate system with its origin at 0 (Figure 9.6), we can 
express the vectors ro and 'i in terms of their components as 

ro=w,i+Wyi+w,k 

r, = Xi i + y,j + z, k 

where (Xi. y" z,) are the coordinates of the ilh particle. Substituting these 
expressions into Equation (9.4) and evaluati1)g the cross products, we can 
write the resulting components of the angular momentum vector in the fomls 

(9.5) 

The coefficients 

1"" = L 11l,(Y1 + zT) Ivy = L l1liex'f + zT) 
i 

(9.6) 



are called the moments of inertia about the x, y and z axes, The coefficients 

(9.7) 

are called the products of inertia. We can write Equations (9,5) as the matrix 
equation 

(9,8) 

where 

is called the inertia matrix of the rigid body. 
Although Equation~ (9.5) appear to be complicated in comparison with the 

simple equation Ho ~ loW for the angular momentum of a rigid body in 
planar motion about a fixed axis, we can point out simple corre~pondences 
between them. Suppose that the rigid body rotates about a fixed axis Lo 
coinciding with the x axis (Figure 9.7). From Equations (9.5), the angular 
momentum about the x axis is 

The tenn .if + z;. appearing in the definition of Ix< is the square of the 
perpendicular distance trom the x axis to the ith particle, so I", = 10. Therefore 
this equation relating Nox to Wx is equivalent to the planar equation. Notice 
trom Equations (9.5), however, that if the axis of rotation docs not coincide 
with one of the coordinate axes, the component of the angolar momentum 
about a coordinate axis depends in general not only on the component of the 
angular velocity about that axis, but also on the components of the angular 
velocity about the other axes through the products of inertia Ix." 1", and Tu. 

Figure 9.7 
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The axis of rotation /'0 cojtll~ident with the 
x axis. 
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General Motion 
Here we obtain the angular momentum for 11 rigid body undergoing general 
three-dimensional motion. The derivation and the resulting equations are very 
similar to those for rotation about a fixed point. 

Let Ri be the position of the ith particle of a rigid body relative to the centre 
of mass (Figure 9.8). The rigid body's angular momentum about its centre of 
mass is 

dR, " H = L R, x m,~- = L..... R, x m,(liJ x R,) 
, dt i 

Figure 9.8 
Position of the Ith particle of a rigid body 

relative to the centre of mass, 

Figure 9.9 
Introducing a coordinate system with its 
origin at the centre of mass. 

Introducing a coordinate system with its origin at the centre of mass (Figure 
9.9), we express liJ and R, in terms of their components as 

liJ = Wx i + w,.j + w, k 

where (x"y" z,) arc the coordinates of the ith particle relative to the centre of 
mass. The resulting components of the angular momentum vector are 

or 

H.v = -Iyxwx + Iyywy -- ~vzOJz 

Hz = -Izxwx -lzywy + J::::w; 

The moments and products of inertia are detined by Equation (9.6). 

(9.9) 

(9.10) 

These equations for the angular momentnm in general motion are identical 
in form to those we obtained for rotation about a fixed point. The expressions 
lor the moments and products of inertia are the same. However, in the case of 
rotation about a fixed point, the moments and products of inertia are expressed 
in terms of a coordinate system with its origin at'the fixed point, whereas in the 
case of general motion they are expressed in terms of a coordinate system with 
its origin at the centre of mass. 
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9.3 Moment~> and Products of Inertia 
To detennine the angular momentum of a given rigid body in three-dimen­
sional motion, you must km)w its moments and products of inertia. From your 
experience with planar rigid-body dynamics, you are familiar with evaluating 
an object'8 moment of inertia about a given axis, The same techniques apply in 
three-dimensional problems, We demonstrate this by evaluating the moments 
and products of inertia for a slender bar and a thin plate. We then extend the 
parallel-axis theorem to three dimensions to penni! the evaluation of the 
moments and products of inertia of composite objects. 

Simple Objects 
Ifwe model an object as a continuous distribution of mass, we can express the 
inertia matrix as 

[ lu 
-Ixy 

-Ixc ] 
[T] = -ly, I", -Ip 

-In -ff.Y J?? 

1 (i+z
2
)dm 

m 
i xydm i xzdm (9.11) 

= -i yxdm i (x2 + z'-)dm -1 yzdm 
m 

-i zx<lm -i zydm i (x' +/)dm 

where x, y and z are the coordinates of the differential elements of mass £1m 
(Figure 9, I 0), 

Slender Bars Let the Oligin of the coordinate system be at a slender bar's 
centre of mass with the x axis along the bar (Figure 9.11 (a)). The bar has 
length I, cross-sectional an,a A, and mass m. We assume that A is unifonn 
along the length of the bar and that the material is homogeneous, 

Consider a differential element of the bar of length dx at a distance x from 
the ccntre of mass (Figure 9.11 (h)). The mass of the clement is dm = pAdx, 
where p is the mass density, We neglect the lateral dimensions of the bar, 
assuming the coordinates of the differential element dm to be (x. 0, 0). As a 
consequence of this approx imation, the moment of inertia of the bar about the 
x axis is zero: 

The moment of inertia about the y axis is 

Expressing this result in te.IDS of the mass of the bar m = pAl, we obtain 

I 2 
iY)'=12 ml 

y 

dm IIV 

Figure 9.1(1 
Determining the moments and products of 
inertia by modelling an object as a cominuou, 
distribution I)f mass, 

A 

(il) 

(b) 

Figure 9.11 
(a) A slender bar and a cO(lrdinale sy.stcm 
with the .x axi~ aligned with the bar. 
(b) A differential element of mass of 
length dx, 



434 CHAPTER 9 THREE-DIMENSIONAL KINEMATICS AND DYNAMICS OF RIGID BODIES 

Figure 9.12 
Aligning the y axis wlth the bar, 

The moment of inertia about the z axis is equal to the moment of inertia about 
the y axis: 

Because the y and z coordinates of dm are zero, the products of inertia are 
zero, so the inertia matrix for the slender bar is 

[Il 
[

0 ° ° l.mP 12 
o 0 

(9.12) 

You must remember that the moments and products of inertia depend on 
the orientation of the coordinate system relative to the object. In terms of the 
alternative coordinate system shown in Figure 9.12, the bar's inertia matrix is 

[

l.mI' 
12 

[Il = 0 
o 

a 0] o 0 
o l.mz2 

12 

Thin Plates Suppose that a homogeneous plate of uniform thickness T, area 
A, and unspecified shape lies in the x-y plane (Figure 9. 13(a». We can express 
its mass moments of inertia in tenns of the moments of inertia of its cross­
sectional area. 

By projecting an element of area dA through the thickness T of the plate 
(Figure 9.13(b)), we obtain a differential element of mass dm = pT dA. We 
neglect the plate's thickness in calculating the moments of inertia, so the 

Figure 9.13 y y 

(a) A thin plate lying in the x-y plane. 
(b) Obtaining a diflcrcntial element of mass 
by projecting an element of area dA through 

the plate. 

o ~-----------------x 

}' 

• /oL--________ L.... _____ x 

o 
(h) 

T 

y 

/ dn! =pl'dA 

z 
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coordinates of the clement dm are (.r,y, 0). The plate's moment of inertia about 
the x axis is 

Ixx = i (l + i) dm = pT 11 dA = pTIx 

where Ix is the moment of in·ettia of the plate's cross-sectional arca about the x 
axis. Since the mass of the plate is III = pTA, the product pT = miA, and we 
obtain the moment of inertia in the fonn 

The moment of inertia about the y axis is 

lyy = 1 (x2 +:e) dm = pT { ~ dA = "'- Iv 
m JA A 

where Iv is the moment of inertia of the cross-sectional area about the y axis. 
Thc moment of inertia about tbe z axis is 

where Jo = Ix + I,. is the polar moment of inertia of the cross-sectional area. 
The product of inertia IX}. is 

1 mA 
Ix)' = .rydrn == -I Ix), 

In / -

where 

I:v = { :xydA . JA 

is the product of inertia of the cross-sectional area. (We use a superscript A to 
distinguish the product of inertia of the plate's cross-sectional area from the 
product of inertia of its mass.) If the cross-sectional area A is symmetric about 
either the x or the y axis, I~ = O. 

Because the z coordinate of dm is zero, the products of inertia J" and f,., are 
zero. The inertia matrix for the thin plate is 

"2IA 
A ' 

_"'-IA 
A _Iy 0 

[1] = _"2/A 
A .ly 

In A -I 
II Y 

0 (9.13) 

0 0 
In 
-Jo 
A 

T f you know~ or can dctenl1ine; the moments of inertia and products of inertia 
of the plate', cross-sectional arca, you can use these expressions to obtain the 
moments and products of inertia of its mass. 
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y' 

~----------·------x o 

Figure 9.14 
A coordinate system x'y'z' with its origin at 
the centre of mass and a parallel coordinate 
system ,~yz. 

Parallel-Axis Theorems 

Suppose that we know an object's inertia matrix [I'J in terms of a coordinate 
system x'y'z' with its origin at the centre of mass, and we want to determine 
the inertia matrix [1] in terms ofa parallel coordinate system xyz (Figure 9.14). 
Let (dx, dv, d,) be the coordinates of the centre of mass in the xyz coordinate 
system. The coordinates of a differential element of mass dm in the xyz system 
are given in terms of its coordinates in the x'y't' system by 

X ~X' +dx y=y' +dy (9.14) 

By substituting these expressions into the definition of I"" we obtain 

~u= {[(y')2+(z')2]dm+2dy l y'dm 
~ m 

= 2dz { z'dm + (d;. + d;) { dm 1m 1m 
(9.15) 

The first integral on the right is the object's moment of inertia about the x' 
axis. We can show that the second and third integrals are zero by using the 
definitions of the object's centre of mass expressed in terms of the x'y'z' 
coordinate system: 

1 x'dm 

i' = =le-
d
-
m
-

{ y'dm 
1m 

The object's centre of mass is at the ongm of the x'y'z' system, so 
i' = y' = Z;' = O. Therefore the seeoud and third integrals on the right of 
Equation (9.15) are zero, and we obtain 

Ixx = Ix'x' + (d~ + d;)m 

where m is the mass of the object. Sllbstiulting Equation (9.14) into the 
definition of 'XYl we obtain 

I". = L x'y'dm + dx L y' dm + dy L x'dm + dxdy L dm 

= r, 'y' + d,dym 

Proceeding in this way for each of the moments and products of inerria, we 
obtain the parallel-axis theorems: 

lxx = r,·x + (d; + d;)m 

lyy = Iy'Y ' + (d; + d;)m 

( ' d" I" = J,." + d; + .;)m 

lxy = Ix'y' + dxdym 

ZVI! = Iylzl + dydxm 

(9.16) 
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If you know an object's inertia matrix in tOnTIS of a particular coordinate 
system, you can use these theorems to determine its mertia matrix in terms of 
any parallel coordinate system. You can also use them to determine the inertia 
matrices of composite objects. 

Moment of Inertia About an Arbitrary Axis 
If we know a rigid body's inertia matrix in terms of a given coordinate system 
with origin 0, we can determine its moment of inertia about an arbitrary axis 
through 0, Suppose that the rigid body rotates with angular velocity w about 
an arbitrary fixed axis La through 0, and let e be a unit vector with the same 
direction as w (Figure 9.15), In tenTIS of the moment of inertia III about Lo, 
the rigid body's angular momentum about La is 

Ho =lolwl 

Figure 9,15 

Rigid body rotating about Lo. 

We can express the angular velocity vector as 

w = Iwl(e, i + eyj + e, k) 

so that Wx = Iwle" OJy = Iwle,., and OJ, = Iwle" Using these expressions and 
Equations (9,5), the angular momentum about ['0 is 

Flo = lIo' c = (Txxlmle, [xylwley 1",lwle,)e" 

+ (-I",IUlle" + J,'ylwley -1)"IOJle,)ey 

+ (-I"lwle, I,ylwle, + 1"lwle,)e, 

Equating our two expressions for Ho, we obtain 

Notice that the moment of inertia about an arbitrary axis depends on the 
products of inertia, in addition to the moments of inertia about the coordinate 
axe'. If you know an object's inertia matrix, you can use Equation (9. (7) to 
determine its moment of inertia about an axis through 0 whose direction is 
specified by the unit vector c, 
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Principal Axes 
For any object and origin 0, at least one coordinate system exists for which the 
products of inertia are zero; 

[

IXX 0 0 1 
[1] = 0 1" 0 

o 0 1" 
(9.18) 

These coordinate axes are called principal axes, and the moments of inertia 
are called the principal moments of inertia. 

If you know the inertia matrix of a rigid body in terms of a coordinate 
system x'y'z' and the products of inertia are zero, x'y'z' is a set of principal 
axes. Suppose that the products of inertia are not zero, and you want to find a 
set of principal axes xyz and the corresponding principal moments of inertia 
(Figure 9.16). It can be shown that the principal moments of inertia are roots 
of the cubic equation 

Figure 9.16 
The x'ylzl system with its origin at 0 and a 

set of principal axes xyz. 

z· 

For each principal moment of inertia I, the vector V with components 

J)(T"" I) 

is parallel to the corresponding principal axis. 

(9.19) 

(9.20) 

To determine the principal moments of inertia, you must obtain the roots of 
Equation (9.19). Then substitute one of the principal moments of inertia into 
Equations (9.20) to obtain the components of a vector parallel to the corre-
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sponding principal axis. By repeating this step for each principal moment of 
inertia, you can determine the three principal axes. If you don't obtain a 
solution ITom Equations (9 .. 20), try one of the other principal moments of 
inertia. You can choose the aKes you identify as x, y and z arbitrarily, although 
you must make sure your coordinate system is right-handed. See Example 9.5. 

Axes through 0 about whllch an object's moment of inertia is a minimum or 
maximum are principal axes. I f the three principal moments of inertia are 
equal, any coordinate system with its origin at 0 is a set of principal axes, and 
the moment of inertia has the same value about any axis through 0. This is the 
case, for example, if the object is a homogeneous sphere and the origin is at its 
centre (Figure 9.17(.». If two of the principal moments of inertia are equal, 
you can detel1uine a unique principal axis from the third one, and any axes 
perpendicular to the unique principal axis are principal axcs. This is the case 
when an object has an axis of rotational symmetry and the origin is a point on 
the axis (Figure 9.l7(b». The axis of symmetry is the unique principal axis. 

y 

(a) 

y 

(b) 

Figure 9.17 
(al A homogeneous sphere. Any coordinale 
system with its origin at the centre is a sct 
of principal axes. 
(b) A rotationally symmetric obj,·ct. The 
axis of symmetry is a principal axix, and any 
perpendicular axes are principal axes. 

In the following examples we determine moments and products of inertia of 
simple objects, apply the p/lral/el-ax/s theorems, and evaluate the angular 
momenta of rigid bodies. 
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The boom AB of the crane in Figure 9.1M has a mass of 4800 kg, and the boom B 
has a mass of 1600 kg and is perpendicular to boom AB. Modelling each boom as 
slender bar and treating them as a single object, detenninc the moments 
products of inertia of the object in tenus of the coordinate sy:;;tern shown. 

Figure 9.18 

x.x' 

(0) Applying the parallel-axis theorems to 
boom AB. 

STRATEGY 

We can apply the parallel~axis theorems to each boom to determine its moments and 
products of inertia in tcnns of the given coordinate system. The moments and 
products of inertia of the combined object are the sums of those for the two booms. 

SOLUTION 

Boom AB In Figure (a) we introduce a paral1el coordinate system x'y'Z! with its 
origin at the centre of mass of boom AB. In terms of the :~"ylz' i'ystem, the inertia 
matrix of boom All is 

[r'J = [~ 
0 

h~t' ] 1.- ml2 
12 

0 

= [~ 
0 0 

M4S00)(IS)' o J kg.m' 
0 h(4800)(lS)' 

The coordinates of the origin of the Xly'ZI system relative to the x)'z system arc 
dx = 9 m, dy = 0, dz = 0, Applying the parallel-axis theorems, we obtain 

1" = 1,·x· + (d; + d;)m = 0 

lyy = I"y' + (d; + d;)m = Ii (4ROO)(18)' + (9)'(4800) 

= 518400kg.m' 
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I" = I,.,. + (.1; + d;)m = /2 (4800)(18)' + (9)2(4800) 

= 518400kg,m' 

I1;Y = Ir'Y' + dxdym = 0 

Iyz = IY'r' + dY'd;;m = 0 

800m Be In Ihgure (b) we introduce a parallel coordinate system x'y'zl with its 
origin at the centre of masCi of boom Be. In tenus of the X'.V'Z! system) the inertia 
matrix of boom Be is 

[

hml' () 0] 
[I'] = 0 0 0 

o 0 ~m12 
12 

= [f:,(16~O)(61' ~ 

o 0 

o ] o kg,m' 

1:;(1600)(6)' 

The coordinates of the origin of the X'/Zl system relative to the xyz system are 
d). = 18 m, dy = -3 Ill, d~ ::::: o. Applying the parallel-axis theorems, we obtain 

2" I 2 1 
1", = f" + (d) + d;)m = 12 (1600)(6) + (-3) (1600) 

= 19200 kg,m2 

I,y = fy.y. +(J; + <I;)m = 0 + (18)'(1600) = 518400kg,m' 

f~ = I", + (d; + .1;)m = /2 (1600)(6)' + [(18)' + (-3)'](1600) 

= 537600 kg,m' 

I", = I,',' + J,dym = 0 + (1~)(-3)(1600) = -86400kg,m' 

Summing the results for the lwo booms, we obtain the inertia matrix for lhe 
single object: 

[ 

19200 -(-86400) 0 ] 

[I] = -(-86400) 51S400 + 518400 0 
o 0 518400 + 537600 

= [~:o~:~ I ;~~:~~o ~ ] kg m' 
o 1056000 

/{, 
x 6m 

x' '.'v 

~/ 
(' 

(b) Applying the parallel-axl:; theurems 10 

boom Be 
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The 4 kg rectangular plato in Figure 9.19 lies in the x-y plane of the body-fixed 
coordinate system. 
(a) Detennine the plate's moments and products of inertia. 
(b) Dctcnnine the plate's moment of inertia about lhe diagonal axis La_ 
(c) If the plate is rotating about the fixed point 0 with angular velocity 
OJ = (41 2J) rad/s. what is the plate'S momentum about 0'1 

Figure 9.19 

)' 

x 

STRATEGY 

(a) We can obtain the moments of inertia and products of inertia of the plate's 
rectangular area from Appendix B and usc Equations (9.13) to obtain the moments 
and products of inertia. 
(b) Once we know the moments and products of inertia. we can usc Equation (9.17) 
to determine the moment of inertia about Lo. 
(c) The angular momentum about 0 is given by Equation (9.8). 

SOLUTION 

(a) From Appendix B, the moments of inertia of the plate's cross~sectional area are 
(Figure (a)): 

~, = ~bh3 

fA = !b2h2 
xy 4 

1 3 
Iy = "hb 

Jo = S(bh' + hb3
) 

x 

(a) Dctcnnining the moments of inertia of the plate's area. 



9,3 MOMENTS AND PRODUCTS 01 INERTIA 

Therefore the moments and products of inertia are 

m (41 (I) 1 ' , 
r~ = A Ix = (03)(0,6) 3" (0.3)(0,6) = 0.48 kg,m 

m (41 (I) 3 2 
Iyy ~ AI" = (0.3)(0,6) '3 (0,6)(0.3) = O.12kg,m 

_"'IA_~L(,~) 2 ,_ , 
l,y - A Xl' - (0.3)(0,6) 4 (0.3) (0,6) - O.l8kg.m 

In (4) (I), 3 3 2 
/" = AJ() = (0.3)(0.6)3 1(0 . .»(0,6) + (0,6)(0.3) 1 = O,60kg,m 

(b) To apply Equation (9,17). we must determine the components of a umt vector 
parallel to ro: 

3001 + 600j . 
c =130oi+600jl = 0.4471+0.894j 

The mument of inertia about Lo is 

= (0,48)(0,447)2 + (0,12)(0,894), - 2(0,18)(0,447)(0,894) 

(c) The plate's angular moment about 0 is 

-/" -IX'][""] ill -I);; OJ) 

-l;;y In W z 

o:J [ -~] [ 

OA8 -0,18 

= -0,18 0,12 

o 0 

[ 

2,2:; ] 

= -0;96 kg,m'/s 

,j 

I 
I 

.q . 
,i 
j~ 
-l 
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2 0 
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5 
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Figure 9.20 
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/, kg_m 2 

I 
I 
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I 

1/ 

5 6 7 

In tcmlS of a coordinate system x 'y' z' with its origin at the centre of mass, the 
inertia matrix of a rigid body is 

[ 4 -2 1] 
[1'] = -2 2 -I kg_m' 

I -I 3 

Dctcnnine the principal moments of inertia and the directions of a set of principal 
axes relative to the x'ylzl system. 

SOLUTION 

Substituting the moments and products of inertia into Equatioll (9, t 9), we obtain the 
equation 

{' 91' +20{ 10 0 

We show the value of the left side of this equation as a function of {in Figure 9.20. 
The three roots, which are the values of the principal moments of mcrtia in kg.m2, 

arc I, = 0.708./, = 2.397 and r, = 5.895. 
Substituting the principal moment of inertia II = O.708kg.m2 into Equations 

(9.20) and dividing the resulting vector V by its rnagnihldc, we obtain a unit vector 
parallel to the corresponding principal axis: 

I i Graph of {' - 9{2 + 20{ - 10. 

I 

e, =0.473i+OR64j+O.l7Ik 

Substituting /z = 2.397 kg.mz into Equations (9.20), we obtain the unit vector 

e, = -0.458 i + O.076j + 0.886 k 

and substItuting h = 5,895kg,m2 into Equations (9.20), we obtain the unit vector 

., = 0.753 i - 0.497 j + 0.432 k 

We have detennined the principal moments of inertia and the components of unit 
vectors parallel to the corresponding principal axes. In figure 9.21 we show the 
principal axes, arbitrarily designating them so that 1:0; = 5.895 kg.m2 , 

i>y = 0.708 kg.m' and i" = 2.397 kg.tn'. 

Figure 9.21 
The principal axes, Our choice of which 

ones to call x. y and z is arbitrary. 

y' 

y 

/ 

-0.458; + O.076j. U.886k ._{------ x' 

'7 0.753 i ~ 0.497 j + 0.432k 

\ 
x 



9.18 The inertia matrix of a rigid body in terms of a body-fixed 
coordinate Rystem with its origin at the centre of mass is 

[11 

I 

2 -~] kg.m' 

o 6 

If the rigid body's angular velocity is(o= (10; - 5j + 10k)rad/s, 
what IS its angular momentum about its centre of mass? 

9.19 What is the moment of inertia of the ngid body JI1 Problem 
9,18 about the axis that passes through the origin and the point 
(4, -4, 7)m'? 

Strategy: Determine the components of a unit vector parallel to 
the axis and UHe Equation (9.17). 

9.20 A rigid body rotates about a fixed point 0. Its inertia matrix 
in terms OJ a body~fixed coordinate sytem with its origin at 0 is 

[[I = [ ~ 
-I 

5 ~], kg.m' 

7 I 

I r the rigid body's angular velocity is w = (6 I + 6 j - 4 k) radls, 
what is its angular momentum about O? 

9.21 What is the moment of inertia of the rigid body in Problem 
9.20 about the axis that passes through the origin and the point 
(-1,5,2)m" 

9.22 The mass of the homogeneous slender bar is 6 kg. Deter­
mine its moments and products of inertia in tCDm or the coordinate 

system shown. 

.I' 

r 
1111 

1-------2 rn ----

P9.22 
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9.23 Consider the slender bar in Problem 9.22. 
(a) Determine its moments and products oC inertia in terms of a 
parallel coordinate system X/yit ' with its origin at the bar's centre 

of mass. 
(b) If the bar is rolaling wilh angular velocity w = 4 i rad/s, what 
is its angular moml.::!utUl11 about its centre of mas:,'! 

9.24 The 4 kg thin rectangular platt: lies irJ lhe: x~y plane 
Determine its moments and products of inertia in tcnns of the 
coordinate system shown, 

x 

P9.24 

9.25 If the plate in Problem 9.24 is rotating w1th angular velocity 
ro = (6 i + 4 j - 2 k) rad/s, what is its angular momentum abuut its 
centre of mass? 

9.26 The 30kg thm triangular plate lies 111 the x-y plane. 
Detcnninc its moments and products of inertia in terms. of t.he 

coordinate system shown . 

P9.26 
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9.27 Consider the triangular plate m Problem 9.26. 
(a) Determine its moments and products of inertia in terms of a 
parallel coordinate systemx'y'zl with its origin at the plate's centre 
of mass. 
(b) If the plate is rotating with angular velocity w = (20 i 12 j + 
16 k) rad/s. what is its angular momentum about its centre of 
mass? 

9.26 The slender bar of mass m rotates about the fixed point 0 
with angular velocity ill = Wy j + Wz k. Determine its angular 
momentum (a) about its centre of mass; (b) about 0. 

y 

x 

P9.28 

9.29 The sknder bar of mass m is parallel to the x axis. If the 
coordinate system is body·fixed and its angular velocity about the 
t1xed point 0 is ill = (Oy j, what is the bar's angular momentum 
about 01 

P9.29 

9.30 Detemline the inertia matrix ofthc IOkg thin plate in terms 
of the coordinate system shown, 

y 

P9.30 

9.31 The 10 kg thin plate in Problem 9.30 has angular velocity 
w = (lOt + IOiJrad/s. What is its angular momentum about its 
centre of mass? 

9.32 In Example 9.3 the moments and products of inertia of the 
object consisting of the booms AB and Be were detennined in 
tcnns of the coordinate system shown in Figure 9.18. Determine 
the moments and products of inertia of the object in terms of a 
parallel coordinate system x'y'z! with its origin at the centre of 
mass of the object 

9.33 Suppose that the cnmc described in Example 9.3 undergoes 
a rigid body rotation about the vertical axis at 0.1 rad/s in the 
counterclockwise direclion when viewed from above. 
(a) What is its angular velocity vector oo? 
(b) What is the angular momentum of the abject consistmg orthe 
booms AB and BC about its centre of mass? 



9.34 A 3 kg slender bar is rigidly attached to a 2 kg thin circular 
disc, In terms of the bQdy~tixcd coordinate system shown, the 
angular velocity of the composite object is m = (1001-
4j +6k)rad/s. What is the object's angular momentum about its 

centrc of mass? 

)' 

P9.34 

9.35 The mass of the homogeneous slender bar is m. If the bar 
rotates with angular velocity OJ ;;;;: wo(24 j + 12 j 6 k), what i~ its 
angular momenlum about its centre of mass'! 

I 
.,< 

/' 

t P9.35 
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9.36 The Skg homogeneous ,kndor bar has ball and socket 
supports at A and B. 
(a) What is the bar's moment of inertia about the axis AH'! 
(b) If the bar rotates about the axis AB at 4rad/s, what is the 
magnitude of its angular momentum about its aXJS of rotation? 

8i 

P9.36 

9.37 The 8 kg homogeneous slender bar in Problem 9.36 is 
released from rest in the posit10n shown. (The X~Z plane is 
horizontal.) Ai that instant, what is the magnitude of the bar's 
angular acceleration about the axis AB? 

9.38 In tenns of a coordinate system Xly'ZI Wit1 its origin at the 
centre of mass, the inertia matrix of a rigid body is 

[I'] = [ ~~ ~~ 
-10 0 

"-10 ] 
o kg.m' 

80 

Determine the principal moments of inertia Hno unit vectors 
parallel to the corresponding prinl.;ipal axes, 

9.39 In tcnns of a coordinate system x'i;,' with its ongin at the 
t.:entre of mass, the inertia matrix of a rigid hod)' is 

[ 

4 -2 01 , 
[I'] = -2

0 

12 0 kg.lll" 

o 16 

If the rigid body rotates, whl:ll lS its angular momentum about its 
centre of mas~? 
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9,40 The 1 kg, I m long ,lender bar lies in the x-y plane, Its 
moment of inertia matrix is 

9,41 The mass of the homogeneous thin plate IS 140 kg, For a 
coordinate system with its origi~ at 0, determine the principal 
moments of inertia and unit vectors parallel to the corresponding 
principal axes. 

[ 

Jisin2 f3 -hsinfJcos{J 0 J 
[/'J = -i;,sinjJcosjJ ncos' fI ~ 

o 0 12 

Use Equations (9.19) and (9,20) to determine the principal 
moments of inertia and unit vectors parallel to the corresponding 
principal axes, 

J 111 ••••••••••••• ---1 
I==~~-r 

i 

v' 
I 

2 III 

. x' 

P9,40 P9,41 

9.4 Euler's Equations 
The equations governing three-dimensional motion of a rigid body, which are 
known as Euler's equations, consist of Newton's second law 

EF=ma 

and equations of angular motion. In the following sections we derive the 
equations of angular motion, beginning with momentum principles for a 
system of particles developed in Chapter 7 and using our exprcsston, for the 
anb'lliar momentum of a rigid body in three dimensions, 

Rotation About a Fixed Point 
Ifa rigid body rotates about a fixed point 0, the sum ofth. moments about 0 
due to external forces and couples equals the rate of change of the angular 
momentum about 0 (Equation 7,11): 

EM = dHo 
o dt (9,21) 

To obtain the equations of angular motion, we must substitute the components 
of the angular momentum given by Equations (9,5) into this equation, The 
coordinate system used to express these components is usually body-fixed and 
so rotates with the angular velocity <It» of the rigid body, In some situations, it 
is convenient to use a coordinate system that rotates but is not body-fixed, Let 
us denote the coordinate system's angular velocity vector by 0, where n = (J) 



if the coordinate system is body-fixed, Expressing Ho in tenus of its 
components, 

Ho = Hox i + 110) j + 110, k 

the rale of change of the angular momentum is 

dHo _ dflox i } di dHoy . dj dHo, k 11 dk 
dt - dl + l(h dt + dt J + 110y dt + lit + 0, lit 

By expressing the time deri vatives of the unit vectors in tenus of the 
coordinate system's angular vt:locity fl, 

di . 
=flxl 

lit 

d' ~=fl xj 
lit 

we can write Equation (9.21) as 

dk 
-=flxk 
dt 

" lillox, dHOy • dflo, k 
""Mo=Tt'+Tt.J+Tt fflx Ho (9.22) 

Substituting the components of Ho from Equation (9.5) into this equation, we 
obtain the equations of angular motIon: 

IMox = 
dwx 

dt 

- nz( -ivxw), + !vv(JJy !vyOJ;;) 

+ fly(-l"wx I,ywy + I"wJ 

d(l)r d(vv dwz 
I Mo, = - r,xdt- +ly, dt -I"'dt 

+ QA Tu(JJx Ixywy Jewz) 

tlx( -lnwx -I"wy + i"w,) 

d())( dw y dwz 
I Mo, = - In dt- - Ixy dt + I"di 

- Qv(1n(l)x .... lxywy - Ixzwz) 

+ 

(9.23) 

Since the components of the angular velocity, like the components of Hu, 
are expressed in tenos of a coordinate system rotating with angular velocity n 
the rigid body's angular accch:ration is 

dw dwx • dOJ)J dwz (X=-=-'+-' j+-k+flxw 
dt dt dt dt 

(924) 

If the coordinate system does not rotate or is body-fixed, the terms 
dw,fdt. dWy/dt and dw,/dl are the components of the rigid body's angular 
acceleration. Otherwise, you must use Equation (9.24) to determine the 
angular acceleration. 
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We can write Equations (923) as the matrix equation 

-It,] [WX] 
-1/,:: Wv 

I tz Wz 

(9.25) 

General Motion 

The sum of the moments about the centre of mass of a rigid body due to 
external forces and couples equal~ the rate of change of the angular 
momentum about the centre of mass (Equation 7.13); 

dH 
~M:;­

dt 
(9.26) 

In terms of the components of the angular momentum vector, we can write this 
equation as 

"'M dBx • dBy. dH, k ..... "" =-I+-J+- + .. x H dt dt dt 
(927) 

where Q is the angular velocity of the coordinate system. Substituting 
Equations (9.9) into this equation, we obtain the equations of angular motion 

_ I dwx _ I '!,Wy 
n dt xY dt 

dw, 
I . . -
" di 

n,( -Jyx())x + IJ~'wy -l).w,) 

+ nyC -1",w, -1zy(J)y + l"w,) 

dwx dwy 1 limz I --+1 -- --yx dt YY dr Y' dl 

+ n,(I",wx -lxywy - l~w,) 

- Qx( -I",wx J,yWy + Illw,) 

dwx dwy dw, 
:l:M, = -- Izxdr - TZYdr +1u -J( 

- ny(lxxwx -lxywy - Ix,w,) 

+ !l,,( -1y,,(1)x + l,ywy - Iy,w,) 

(9.28) 



or 

[IM! 1 [1M -rcy -Ix'l [ dWx/dt] 
:~v = -~J'x lyy -IF dOlJ/dt 

IM, -i", -I,y I" dw,/dt 
(9.29) 

+[ 
0 -0, OJ'l [ ixx 

-Ixy 
-1" 1 [WX] 0, 0 -Ox -lyx IVY -!vz tvy 

····Oy 0, o -1zx -Izy lzz W z 

The equat.ions of angular motion for general motion, and the expressions 
for the moments and prodm;(s of inertia, arc identical in fonn to those we 
obtained for rotation about a fixed point. However, in the case of general 
motion the equations of angular motion are expressed in terms of the com­
ponents of the moment. about the centre of mass, and the moments and pro­
ducts of inertia are expressed in tem1S of a coordinate system with its origin at 

the centre of mass. 

In the fo/lowing examples we use the Euler equtltions to analy.,. three­
dimensional motions of rigid bodies. Thi.' typica/ly involves three steps: 

(I) Choose a coordinate sy~tem - If an object rotates about a .fixed point 0, 
il usually simplifies the equations oj"angular motion if you express them 
in terms ~r a ('()ordinOle system with its origin at 0. Otherwise. you must 
use a coordinate system with its origin at the centre of mass. In either 
case, be sure to choose the coordirw.te system s orientation to simphh; 
your determination of the moments and products ol inertia. 

(2) Draw the free-body diagram - isolate Ihe ohject and idenl!ly the external 

forces and couples acting on it, 

(3) Apply the equations of Inotion - Use Newton:, second law and the 
equatiolls ~l angular motion 10 relate the fim:es and couples ading on 
the object to the acceleration of its centre of mass and ils angular 

acceleration. 
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Figure 9.22 

Example 9.6 

Dunng an assembly process, the 4 kg rectangular plate in Figure 9.22 is held at 0 by 
a robotic manipulator. Point 0 is stationary. At the instant shown, the plate is 
horizontal, its angular velocity is (JJ = (4 i - 2 j) rad/s, and its angular acceleration 
is "= (-IOi+6j)rad/s'- Determine the couple exerted on the plate by the 
manipulator. 

STRATEGY 

The plate rotates about the fixed point 0, so we can use Equation (9.25) to determine 
the total moment exerted on the plate about O. 

SOLUTION 

Draw the Free-Body Diagram We denote the force and couple exerted on the 
plate by the manipulator by F and C (Figure (al). 

(a) Free-body diagram of the plate. 



Apply the Equations of Me.tion The tot.1 moment about 0 is the "un of 
the couplc exerted by the manipulator and the moment about 0 due to the plate's 
weight: 

~ Mo = C +(0.15 i+ 0.30 j) x [-(4)(9.81) k] 

= (C 11.77 i + 5.89 j) N-m 
(9.30) 

To obtain the unknown couple C, we can determine the total moment about 0 from 
Equation (9.25). 

We let the coordinate system be body-fixed. so its angular velocity 0) equals the 
plate's angular velocity n We determine the plate's inertia matrix in Example 9.4, 
obtaining 

[ 

0.48 -1l.l8 0] 
[I] = -IUS 0.12 0 

o 0 0.6 

Therefore the total moment about 0 exerted on the plate is 

0 -(1);: 

O)YJ[I" 
-l~. 

+ [ ,n, 0 -(J)... Iy;r; rrr 
~w). Wy o 1" -In)' l 048 

-0.18 

~J[-I~J -018 0.12 

0 0 0.6 0 

[
0 0 -2J [ 0.48 + () 0 -4 -0.18 

2 4 0 0 

-0.18 

0.12 

o 

[
-ssg] 

= ~ ~~ N.m 

Substituting this result mto Equ,ltion (9.30), 

-1" J ["'x J -Iy;; OJ)' 

lzz W z 

I:Mo= C 11.77i+5.g9j -S.88i+2.52j+O.72k 

we determine the couple C: 

C = (5.g9 i 3.37 i + 0.72 k) N.m 
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""'T 
I 

J 

Figure 9.23 

y 

F 

(0) Free-body diagram of the bar. 

A slender vertical bar of mass m is rigidly attached to a horizontal disc rotating with 
con,tant angular velocity 0)0 (Figure 9.23). What force and couple are exerted on 
the bar by the disc" 

STRATEGY 

The external forces and couples on the bar are its weight and the force and couple 
exerted on it by the disc. The angular velocity and acceleration of the bar are given 
and we can detennine the acceleration of its centre of mass, so we can use the Euler 
equations to detennine the total force and couple. 

SOLUTION 

Choose a Coordinate System In Figure (a) we place the ongin of a body­
fixed coordinate system at the centre of mass with the y axis vertical and the X axis 
in the radial direction. With this orientation we will obtain simple expressions for 
the bar's angular velocity and the acceleration of its centre of mass, 

Draw the Free-Body Diagram We draw the free-body diagram of the bar III 

Figure (a), showing the force J<'" and couple C exerted by Ute disc. 

Apply the Equations of Motion The acceleration of the centre of mass of the 
bar due to its motion along its circular path is a = -w5bi. From Newton's second 
law, 

L F = F - mgj = m(-mi,hi) 

we obtain the force exerted on the bar by the ruse: 

F = -mOJ~bi + mg j 

The total moment about the centre of mass is the sum of the couple C and the 
moment due to F: 

LM = C+ (-~/j) x (-mw;hi+mgj) 

= C,i +(yj + (c" -~mlbwl) k 

The bar1s inertia matrix in terms of the coordinate system in Figure (a) is 

[

fimll 0 0 J 
[II = 0 0 0 

o 0 ~mP 12 

and its angular veloclty, w = Wo j, is constant. The equation of angular motion, 
Equation (9.29), is 

o J [ 0 J o (IJo 
r,m12 0 



The right side of this equation equals zero, so the components of the couple exerted 
on the bar by the disc arc (~, = O. C~" = 0, Cz = 1m1hm5' 

Alternative Solution The har rotates about a fixed axis, so we can also 
determine the couple C by using Equalion (9.25). Let the fixcd point 0 be the 
centre of the disc (Figure (b», and let the body-fixed coordinate system be oriented 
with the x axis through the bottom of the bar. The total moment about 0 is 

L Mo = C + (hi) x (-mwibi + mgj) + (bi+ ~!j) x (-mg J) 

=C 

Thus the only moment about 0 is the couple exerted by the disc. Applying the 
parallel-axis theorems; the barls moments and products of inertia arc (Figure (c» 

2 2 I 2 (1)' 1 2 r~=I",,+(dJ +d,)m=12 m' + '2' m=3 ml 

1yy = I,.y. +(d; +d;)m = mb' 

i" = 1,·,· + (d; + d;)m = /2"'1' + [1>2 + Gly]m = ~ml' + mb' 

Substituting these results inlo Equation (9.25). we obtain 

[ ~:J = [ ~ ~ W~] [!;~~l 
C, -(<lQ 0 0 0 

= [ ~ ] 
~mlbwt 

DISCUSSION 

-1 mhl 

mb2 

o 
o J[O] o Wo 

!mb2 + mh2 0 

If the har were attached to the disc by a hall and socket support instead of a built~in 
support, you Can see that the bar would rotate outwards due to the disc's rotation. We 
have determined the couple thaI the buill-in support exerts on lhe bar that prevents it 
from rotating outwards. 
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y 

(b) Exprcs<ing the equation ,)f angular 
motion in tenns of the Iht:d point 0 

h 
I (h, 21. 0) 

x' 

(c) Applying the paralIe1-;;lxis theorem. 
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Figure 9.24 

(0) Coordinate system with the z axis 
aligned with the cylinder axis and 
the y axis horizontaL 

The tilted homogeneous cylinder in Figure 9.24 undergoes a steady motion in which 
one end rolls on the floor while its centre of mass remains stationary. The angle t3 
between the cylinder axis and the horizontal remains a constant, and the cylinder 
axis rotates about lhe vertical axis with constant angular velocity wo. The cylinder 
has mass m, rddius R, and length I. What is OJo? 

STRATEGY 

By expressing the equations of angular motion in terms of (00, we can dctcnnine the 
value of OJ() necessary for the equations to be satisfied. Therefore our first task is to 
detennine the cylinder's angular velocity ro in terms of woo We can simplify this task 
by using a coordinate system that is not body~Jixed, 

SOLUTION 

Choose a Coordinate System We use a coordinate system in which the z axis 
remains aligned with the cylinder axis and they axis remains hDrizontal (Figure (a)). 
The reason for this choice is that the angular velocity of the coordinate systcm is 
easy to describe the coordinate system rotates about the vertical axis with the 
angular velocity OJo - and the rotation of the cylinder relative to the coordinate 
system is also easy to describe. The angular velocity vector of the coordinate system 
IS 

n::::;;: wocosfJi +mo sin/1k 

Relative to the coordinate system, the cylinder rotates about the z axis. Writing its 
angular velocity relative to thc coordinate system as Wrcl k, the angular velocity 
vector of the cylinder is 

ill = 0 + tvrel k = "'0 co, f3 i + (roo sin f3 + Wlel) k 

We can determine (.ore1 from the condition that the velocity of the point P in contact 
witl, the floor is zero. Expressing the velocity of P in terms of the vcloeity of the 
centre of mass C. we obtain 

Vp = Vc +m x r,,/c: 

0= 0 + [WI> cosfii + (wo sinp + w",)k] x [ -Ri - ~l kJ 

= [~IWoCOSP-R(WOSinfi+w",')J.I 

Solving for wm], we obtain 

Therefore the cyhnder's angular velocity vector is 

• 1 
(J) = wocos/iI + 2 (/jR)wocosfJk 



Draw the Free-Body Dlag'(lm We draw the free-body diagram of the cylinder 
in Figure (a), showing its weight and the normal force exerted by the floor. Because 
the centre of ma:s:s is stationary, we know that the floor exerts no horizontal force on 
the cylinder and the normal force is N = mg. 

Apply Ihe Equations of Mo,llon The moment about the centre of mass due to 
lhe normal force is 

LM = (mgRSin!! - ~mgleosp) j 

.... rom Appendix C, the inertia Irnatrix is. 

Substituting our expressions ror .0, (f), 1: M, and the moments and products of 
inertia into the equation of angular motion, Equation (9.29), and evaluating the 
matrix products, we obtain the equation 

mg ( Rsinli ~ICOS~) =GmR2 + i2mI2)wism[lcos[l 

~ G mR2) "'6(11 R) cos
2 13 

We can solve thifi equation for w5: 

2 g(Rsinf3 !,lcos(J) 
"'0 = (~1I2 + 1,12) sin Ii cos f3 - !IR cos' (J 

(9.31) 

DISCUSSION 

If OUI' solution yields a negative value for w~ for a given value of {J, the assumed 
steady motion of the cylinder il; not possible. For example, if the cylinder's diamerer 
is equal [0 iI, length, 2R = I, we can write Equation (9.31) as 

SIO Ii co::::,;{3--,;-;; 
"lo's-:-'in-f3""c..:...~;jj:' ! cos' [J 

In Figure 9.25 we show the graph of this equation as a function 01' /3. For values of f1 
from approximately 40f) to 45<\ there is no real solution for woo Notice that at 
f3 = 451) , Wo 0, which means that the cylinder is stationary and balanced with the 
centre of mass directly above lPoint P. 
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9.42 The inertia marnx of a rigid body in tenns of a body-fixed 
coordinate system with its origin at the centre of mass is 

[ 
4 I -1'] 

[I] = I 2 0 kg.tn' 

-I 0 6 

If the rigi': ;ody's angolar velocity is ill = (10 i 5 j + 10k) radls 
and its angular acceleration is zero, what are the component"i orthe 
total moment about its centre of mass? 

9.43 If the total moment about the centre of mass of the rigid 
body in Problem 9.42 is zero, what are the components of its 
angular acceleration? 

9.44 A rigid body rotates about a fixed point O. Its inertia 
matrix in tenns of a body-fixed coordinate system with its origin 
at 0 is 

[1]= [-~ -I 0'] 
5 I kg.m' 

I 7 

If the rigid body's angular velocity is w = (6i+6j 4k)rad/s 
and its angular acceleratiDn is zero, what are the components of the 
total moment about O? 

9.45 If the total moment about 0 due to the forces and couples 
acting on the rigid body in Problem 9.44 is zero. what are the 
components of its angular acceleration? 

9.46 At t = O. the statlOnary rectangolar plate of mass m is 
subjected to the force F perpendicular to the plate. No other 
external forces or couples act on the plate. What is the magnitude 
of the acceleration of point A at t = O? 

A 

P9.46 

9.47 The mass of the homogeneous slender bar is 6kg. At t = O. 
the stationruy bar is subjected to the force F = 12 kN at the point 
x = 2 nt, Y = O. No other external forces or couples act on the bar. 
(a) What is the bar's angular acceleration at t = 0'1 
(b) What is the acceleration of the point x ~ 2 m, y = 0 at 
t = 0'1 

.t 

P9.47 

9.48 The mass of the homogeneous slender bar is 1.2 kg. At 
t = 0, the stationary bar is subjected to the force F = (2 i + 4 kJ N 
at the point x = 1 m, y = I m. No other forces or couples act on the 
bar. 
(aJ What is the bar's angular acceleration at t = 0" 
(bl What is the acceleration of the point x = -I m. y = -I m at 
t = O? 

y 

f 
1m. 

J P9.48 



9.49 The 10 kg thin plate has angular velocity 
OJ (10 i + 10 j) rad/s, and it, angular acceleration is zero, What 
are the components of the total moment exerted on the plate abou1 
its centre of mass? 

y 

P9,49 

9.50 At Y 0, the plale in Problem 9.49 has angular velocity 
OJ = (10 I + 10 j) rad/s and is subjected to the force Ii' = -40 k N 
acting at the point (0, 150.0) mm. No other forces or couples act on 
the plate. What are the components of its angular acceleration at 
that instant? 

9,51 A 3 kg slender bar is rigidly attached to a 2 kg thin circular 
disc. In tcrms of the body~fixcd coordinate system shown, the 
angular velocity of the c()mpc'~itc object is (ii = (100 i - 4 j + 
6 k) rad/s and its angular acceleration is zero. Vlhat are the 
components of 1he total moment exerted on the object about its 
centre of mass? 

v 

x 

~600Jl1m---I 
P9,51 
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9.52 At t = 0, the composite ohject in Problem 9.51 is stationary 
and is subjected to the moment EM (-IOi + II)j)N,m about its 
centre of mass. No other forces or couples act on the objcd. Whut 
arc the components of its angular acceleratiDn at t = O? 

9.53 The base of the dish antenna is rotating with a constant 
angular velocity of I rad/s, The angle e = 3~' ,dO/dt = 20"/5, 
and d'8/dt' = -40"/s', The mass of the antenna is 280kg, and 
its moments and products of inertia in kg.m" arc 1.:r.l = 140. 
lyy lzz 220,/ty = Iyz = lzt ,= O. Determine the couple exerted 
on the antenna by its support A at this instant 

P9,53 

9,54 A thin triangQlar plate of mass m is suppOJted by a ball and 
socket at Olfit is held in the h,2Jri.(ontal pOSition ,mu released rrom 
rest, what arc the components or its angular ac(;clcration at that 
instant? 

P9,54 
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9.55 Determine the force exerted on the triangular plate in 
Problem 9.54 by the ball and socket support at the instant of 
release. 

9.56 In Problem 9.54, the mass ufthe plate is 5 kg, h = 900 mm, 
and h = 600 mm. If the plate is released in the horizontal position 
with angular velocity co = 4 i Tad/ s, what are the components of its 
angular acceleration at that instant? 

9.57 A subassembly of a space station can be modelled as rwo 
rigidly connected slender bars, each of mass 5 Mg. The subassem­
bly is not rotating at t = 0 when a reaction control motor exerts a 
force F = 400 k N at B, What is the acceleration of point A at that 
instant? 

T y 

20m 

--t,J~---x 

A~! _____ 2om ____ ~18 
P9.57 

9.58 If the subassembly described in Problem 9.57 rotates about 
the x axis at. a constant rate of one revolution every 10 minutes, 
what is the magnitude ofthe couple that its reaction control system 
must exen on it? 

9.59 The thin circular disc of radius R and mass m is attached 
rigidly to the vertical shaft. The dise is slanted at an angle # relative 
to the horizontal plane. The shaft rotates with constant angular 
velocity coo. What is the magnitude of the couple exerted on the 
disc by the shaft? 

P9.S9 

9.60 A slender bar of mass in and length I is welded to a 
horizontal shaft that rotates with constant angtllar velocity Wo. 
Determine the magnitudes of the force F and couple C exerted on 
the bar by the shaft. (Write the equations of angular motion in 
terms of the body-fixed coordinate system shown.) 

P9.60 

9.61 A slender bar of mass rn and length I is welded to a 
horizontal shaft that rotates with constant angular velocity Wo. 
Determine the magnitude of the couple C exerted on the bar by the 
shaft. (Write the equation of angular motion in tenus of the body­
fixed coordinate system shown,) 

--x 

P9.61 



9.62 The slender bar of length I and mass m is pinned to the 
vertical shaft at 0. The vertical shaft rotates with a constant angular 
velocity OJo- Show that the value of Wo necessary for the bar to 
remain at a eOMtant angle {i relative to the vertical is 

Wu = J3g /(21 cos m 

P9.62 

9.63 The vertical shaft rotates with constant angular velocity rou. 
The 35° angle betwccn the edge of the 10 kg thin rectangular plate 
pinned to the shafl and the shaft remains constant Deternline mo· 

1m 

P9.63 

94 EULER'S EQUATIONS 461 

9.64 A thin circul41r disc of mass 111 mounted on a horizontal 
shaft rotates relative to the shaft with constant angular velocity Wd. 

The horizontal shaft is rigidly atta.ched to a vertii~al shaft rotating 
with constant angular velocity (1)0, Detemline the magnitude of the 
couple exerted on the disc by the horizontal shaft, 

P9.64 

9,65 The thin triangular plale has balJ and sockel supports at A 
and B. The y axis is vertical. If the plate rotat·::s with constant 
angular velocity (00. what are the horizontal components of the 
reactions on the plate at A and B? 

v 

-x 

P9.65 
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9.66 The 5 kg thin clfcular disc is rigidly attached to the 6 kg 
slender horizontal shaft. The disc and horizontal shaft rotate about 
the axis of the shaft with constant angular ve10city Old = 20rad/s. 
The entire assembly rotates about the vertical axis with constant 
angular velocity (00 '" 4rad/s. Determine the components of the 
force and couplc cxcrtcd on the horizontal shaft by the drsc. 

x 

P9.66 

9.67 In Problem 9.66) determine the reactions exerted on the 
horizontal shaft by the two bearings. 

9.68 The thin rectangular plate is attachcd to the rectangular 
tramc by pins. The frame rotates with constant angular velocity (lJo· 
Show that 

d'fi 
-. = =w; sin Jl cos jJ 
dt'· 

x 

y 

P9.68 

9.69 The axis of the right circular cone of mass m, height h, and 
radius R spins about the vertical axis with constant angular velocity 
Wo. Its centre of mass is stationary and its base rolls on the floor. 
Show that the angular velocity (00 necessary for this motion is 

"''' '" y'lOg/3R. 
Strategy: Let the z axis remain aligned with the axis of the cone 

and the x a..'{is remain verticaL 

P9.69 

9.70 A thin circular disc of radius R and mass m rolls along a 
circular path of radius r. The magnitude t of the velocity of the 
centre of the disc and the angle e between the disc's axis and the 
vertical arc constants. Show that v satisfies the equation 

P9.70 



9.71 The vertical shaft rot'ltes with constant angular velocity Wo. 
causing the grinding mill to roll on the horizontal surface. Assume 
that point P of the mill is stationary at the instant shown, and that 
the force N exerted on the mill by the surface is perpendicular to 
the surface and acts at P. The mass of the mill is m, and it!\ 
moments and products of inertia in terms of the coordinate system 
shown are I~;f' 'n' = Iz;;, and I-.;y = l~·z = izx = O. Detennine N. 

y 

ro" 

p 

P9.71 

9.72 The view of an aeroplane"s landing gear looking from behind 
the aeroplane is shown in Figure (a). The radius of the wheel is 
300 mm, and its momcnt of inertia is 2 kg.m2

. Thc aeroplane 
lakes off al30 m/s. After tahuft: the landing gear retracts by rotat~ 
ing towards the right side of the aeroplane as shown in Figure (h). 
DetelTTline the magnitude of the couple exerted by the wheel on its 
support. (Neglect the aeroplane's angular motion.) 

, , 
l8( 

/ 

45 degls 

(n) 

P9,72 
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9.73 If the rider turns to his left will the couple exerted on the 
motorcycle by its wheels tend to cause the motorcycle to lean 
towards the rider's left side or his right side? 

P9,73 

9.74 By substituting the components of 1·10 from Equations (<).5) 
into Equation (9.22), derive Equalion, (9.23), 
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Z.z 

---Y,y 

x,x 

(a) 

Z .. ' .c 

. ,v' 

r---Y 

x x' 

(b) 

Figure 9.26 

(a) The reference position, 
(b) The rotation", about the Z axis, 
(c) The rotation 0 about the x' axis. 
(d) The rolation q, of the object relative to the 
>.)'z system. 

9.5 Eulerian Angles 
The equations of angular motion relate the total moment actlllg on a rigid bod 
to its angular velocity and acceleration. If we know the total moment and th 
angular velocity, we can determine the angular acceleraaon. But how can w 
use the angular acceleration to detemline the rigid body's angular position, 
orientation, as a function of time? To explain how this is done, we must fir 
show how to specify the orientation of a rigid body in three dimensions. 

You have seen that describing the orientation of a rigid body in plan 
motion requires only the angle e that specifies the body's rotation relative t 
some reference orientation. In three-dimensional motion, three angles ar 
required. To understand why, consider a paJticular axis that is fixed relative t 
the rigid body. Two angles arC necessary to specify the direction of the axi 
and a third angle is needed to specIfy the rigid body's rotation about the a.xi 
Although several systems of angles for describing the orientation of a rigi 
body are commonly used, the best known system is the one called th 
Eulerian angles. In this section we define these angles and exprcss th 
equations of angular motion in terms of them. 

Objects with an Axis of Symmetry 
We first explain how the Eulerian angles are used to describe the orientatIOn 0 

an object with an axis of rotational symmetry, because this case results i 
simpler equations of angular motion. 

Definitions We assume that an object has an axis of rotational symmet 
and introduce two coordinate systems: xyz, with its z axis coincident with th 
object's axis of symmetry, and XYZ, an inertial reference coordinate system 
We begin with the object in a referencc position in which xyz and X YZ ar 
superimposed (Figure 9.26(a)). 

Our first step is to rotate the object and the xyz system together through a 
angle'" about the Z axis (Figure 9.26(b». In this intermediate orientation, W 

denote the coordinate system by x'y'z'. Next, we rotate the object and Ihe xy 
system together through an angle II about the x' axis (Figure 9.26(c)). Finan 
we rotate the object relative to the xyz system through an angle", about it 
axis of symmetry (Figure 9.26(d)). Notice that the x axis remains in the X 
plane . 

Z. z' v z y 

y 

x Vf __ " 
x 

(el (d) 



The angles", and e specify the orientation of xyz system relative to the 
reference XYZ system. '" is called the precession angle, and e is called the 
nutation angle. The angle <I> specifying the rotation of the rigid body relative 
to the xyz system is called the spin angle, These three angles specify the 
orientation of the rigid body relative to the reference coordinate system and are 
called the Eulerian angles. We can obtain any orientation afthe object relative 
to the reference coordmate system by appropriate choices of these angles: we 
choose'" and () to obtain the desired direction of the axis of symmetry, then 
choose <p to obtain the desir,~d rotational position of the object and its axis of 
symmetry. 

Equations of Angular Motion To analyse an object's motion in terms of 
the Eulerian angles, we must express the equations of angular motion in terms 
of them. Figure 9.27(a) shows the rotation", from the reference orientation of 
the xyz system to its intenncdiate orientation x'y'z'. We represent the angular 
velocity of the coordinate system due to the rate of change of", by the angular 
velocity vector ~ pointing in the z' direction. (Wc usc a dot to denote the 
derivative with respect to time.) Figure 9.27(b) shows the second rotation e. 
We represent the angular velocity due to the rate of change of e by the vector iJ 
pointing in the x direction. We also resolve the angular velocity vector ,~ into 
components in the y and z directions. The components of the angular velocity 
of the xyz system relative to the reference coordinate system are 

nx = iJ 

ny = '" sin () 

fl, = ~eosU 
(9.32) 

In Figure 9.27(c), we represmt the angular velocity of the rigid body relative 
to thc xyz system by the vector (p. Adding this angular velocity to the ,mgular 
velocity of the xyz system, we obtain the components of the angular velocity 
of the rigid body relative to the XYZ system: 

w, = ~ sill e (9.33) 

OJ, =(p+~cosO 

Taking the time derivatives of these equations, we obtain 
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dw y .. . . 

d; = '/lSin 0 + 'frO cos () (9,34) Figure 9.27 

dw .... .. 
d/ = <p + r/t cos e - ",0 sin () 

(a) The fptatinn !/J and the angular 
velocity r/t. . 
(b) The rotation A, the angul"r velOCIty 0, 
and the componentg of the angular 
velocity 1jJ. 
(e) Thc rotation ¢ and the angular 
veloci'y 4). 
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Figure 9.28 
Steady precession. 
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Figure 9.29 
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Cal A spinning top seems to defy gravity. 
(b) The precession angle t/t and nutation 
angle 0 specify the orientation of the spin 
axis. 

As a consequence of the object's rotational synmletry, the products of 
inertia Ixy, Ix, and 11' are zero and I", = Iyy . The inertia matrix is of the 
form 

[

IXX 

[1] = ~ (9.35) 

Substituting Equations (9.32) (9.35) into Equations (9.28), we obtain the 
equations of "J1gular motion in terms of the Euleriatl atlgles: 

.. • 2 .. 
EM, = InO + (I" - Ixx)t/t sin e cos e + I"q,I/I sin e 
EM)' = lxA~ sinO + 2(p~cose) I,,(~iI + 4,0 cos 0) 

EM, = l,,(¢ + ~cose - (POsinG) 

(9.36) 

(9.37) 

(9.38) 

To determine the Eulerian angles as functions of time when the total 
moment is known, we must usually solve these equations hy numerical inte­
gration. However, we can obtain an important class of closed-form solutions 
by assuming a specific type of motion. 

steady Precession The motion called steady precession is commonly 
observed in tops and gyroscopes. The object's rate of spin I/> relative to the xyz 
coordinate system is assumed to be constant (Figure 9.28). The nutation angle 
e, the inclination of the spin axis z relative to the Z axis, is assumed to be 
constant, and the precession rate (P, the rate at which the xyz system rotates 
about the Z axis, is assumed to be constant The last assumption explains the 
name given to this motion. 

With these assumptions, Equations (9.36)-{9.38) reduce to 

'2 .. 
E Mx = (1" - i,,<ll/l sin e cos () + r"l/>i/l sin 0 

EM, = 0 

EM, = 0 

(9.39) 

(9.40) 

(9.41) 

We discuss two examples: the steady precession of a spinning top and the 
steady precession of an axially symmetric object that is ITce of external 
moments. 

Precession of a Top. The peculiar behaviour of a top (Figure 9.29(a», 
inspired some of the first analytical studies of three-dimensional motions of 
rigid bodies. When the top is set into motion, its spin axis may initially remain 
vertical, a motion called sleeping. As friction reduces the spin rate, the spin 
axis begins to lean over atld rotate about the vertical axis. This phase of the 
top's motion approxinlates steady precession. (The top's spin rate continuously 
decreases due to friction, whereas in steady precession we assume the spin rate 
to be constant.) 

To analyse the motion, we place the reterence systemXYZwith its origin at 
the point oflhe top and the Z axis upwards. Then we align the z axis of the xyz 
system with the spin axis (Figure 9.29(b». We assume that the top's point rests 



in a small depression so that it remains at a fixed point on the floor. The 
precession angle I/J and nutation angle 0 specifY the orientation of the spin 
axis, and the spin rate of th" top relative to the xyz system is 1>. 

The top's weight exerts a moment Mx = mgh sin e about the origin, and the 
moments M)' = 0 and M, ,= O. Substituting Mx = mgil sin e into Equation 
(9.39), we obtain 

mgh = ~(l" -lxx)lfr cos 0 + 1zz1> (9.43) 

and Equations (9.40) and (9.41) are identically satisfied. Equation (9.42) 
relates the spin rate, nutation angle and rate of precession. For example, if we 
know the spin rate if, and nutation angle e, we can solve for the top's 
precession rate ~. 

Moment-Free Steady Prrecession. A spilming axisymmetric object that 
is free of external moments, such as an axisymmetric satellitc in orbit, can 
exhibit a motion similar to the steady precessional motion of a top. We ohserve 
thi, motion when an American football is thrown in a 'wobbly' spiral. Tu 
analyse it, we place the origin of the xyz system at the object's centre of mass 
(Figure 9.30(a). Equation (9.39) becomes 

(9.42) 

and Equations (9.40) and (9.41) are identically satisfied. For a given value of the 
nutation angle, Equation (9.43) relates the object's rates or precession and spin. 

We can interpret Equation (9.43) in a way that enables you to visualize the 
motion. Let's look for a point in the y-z plane (other than the centre of mass) at 
which the object's velocity relative to the X Y Z system is zero at the current 
instant. We want to find a point with coordinates (0, y, z) such that 

(lJ x (y j + z k) = l(lilSin 0) j + (¢ + I~ cos 0) k] x [y j + z k] 

= [zl~sin 0 - y(¢ + ,~eos()li = 0 

This equation is satisficd at points in the y-z plane such that 

y sinO 

z + cosO 

This relation is satisfied by points on the straight line at an angle (3 relative to 
the z axis in Figure 9.30(b), where 

y sinO 
tan fi = -- = -c-' .. ~--.-

z + cosO 

Solving Equation (9.43) for ¢ and substituting tbe result into this cquation, we 
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obtain Figure 9 .. l0 

tanf3 = - tanO (
/,=)' 
ixx 

(a) An axisymmetric object. 
(b) Points on the straight lin" at an angle from 
the 2 aX1S are stationary relalive to the .tTl 
coordinate system. 
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Figure 9.30 
(c), (d) The body and space cones. The 

body cone roJJs 011 the stationary space cone. 
(e) When IX > 0, the interior surface of the 

body cone rolls on the 8tationary space cone. 

z 

Body 
cone ~ ___ . 

(e) 

Space 
cone , 

If Tn > I", the angle /3 < O. In Figure 9.30(c), we show an imaginary cone of 
half-angle /3, called the body cone, whose axis is coincident with the z axis. 
The body cone is in contact with a fixed cone, called the space cone, whose 
axis is coincident with the Z axis. If the body cone rolls on the curved surface 
of the space cone as the z axis precesses abont the Z axis (Figure 9.30(d)), the 
points of the body cone lying on the straight line in Figure 9.30(b) have zero 
velocity relative to the XYZ system. That means that the motion of the body 
cone is identical to the motion of the object. Yon can visualize the object's 
motion by visualizing the motion of the body cone as it rolls around the outer 
surface of the space cone. This motion is called direct precession. 

If f", < I,., the angle P > e. In this case you must visualize the interior 
surface of the body cone rolling on the fixed space cone (Figure 9.30(e». This 
motion is called retrograde precession. 

Arbitrary Objects 
In this section we show how the equations of angular motion can be expressed 
in terms of the Eulerian angles for an arbitrary object. The initial steps are 
similar to our treatment of an axially symmetric object, but in this case we 
assume that the xyz coordinate system is body-fixed. 

Eorly 
cone 
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Body 
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---y 

/~o/-~x 
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Definitions We begin with a reference position in the x yz and XYZ systems 
are superimposed (Figure 9.31(a)). First, we rotate the xyz system through the 
precession angle", about the Z axis (Figure 9.31 (b)) and denote it by x'y'z' in 
this intermediate orientation. Then we rotate the xyz system through the 
nutation angle 0 about the x' axis (Figurc 9.31 (c)), denoting it by x''y''z'', We 
obtain the final orientation oflhe xyz system by rotating it through the angle ep 
about the z" axis (Figure 9,31(d)). Notice that we have used one more rotation 
of the xyz system than in the case of an axially symmetric object. 

}
~-

,/<~~ .. 

...... _-y . .' 

X,X 

(;1) 

7 .' 

(c) 

Figure 9.31 

(a) The reference position. 
(b) The rotation IjJ about tl,e L axis. 
(e) The rotation Ii about the x' axis. 
(d) The rotation ¢ about the z" axis. 

(1I) 

We can obtain any orientation of the body-fixed coordinate system relative 
to the reference coordinate system by these three rotations, We choose'" and 0 
to obtain the desired direction of the z axis, then choose <p to obtain the desired 
orientation of the x and y axes, 

Just as in the case of an object with rotational symmetry, we must express 
the components of the rigid body's angular velocity in terms of the Eulerian 
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Figure 9.32 
Ca) The rotalion !/J and the angular 
velocity !/J. . 
(b) The rotation &, the ~ngular velocity 0, 
and the components of I/J in the X'1Y"ZII 

system. 
(c) The r9tation r/> and the angular 
velocity !/J. 
(d), (e) The components of the angular 
velocities t/I sin () and (} in the xyz system. 
(1) The angular velocities w>;, wyand W z. 
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x x' 
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(d) 

angles to obtain the equations of angular motion. Figure 9.32(a) shows the 
rotation 1/1 from the reference orientation of the xyz system to lhe inter­
mediate orientation x'y'z'. We represent the angular velocity of the body.­
fixed coordinate system due to the rate of change of 1/1 by the vector 1/1 
pointing in the z' direction. Figure 9.32(b) shows the next rotation e that 
takes the body-fixed coordinate system to the intermediate orientation 
x"y"z". We represent the angular velocity due to the rate of change of 0 by 
the vector iJ pointing in the x" direction. ln this figure we also show the 
components of the anl,,'1I!ar velocity vector I~ in the y" and z" directions. 
Figure 9.32(c) shows the third rotation 1J that takes the body-fixed coordi­
nate system to its final orientation defined by the three Eulerian angles. We 
represent the angular velocity due to the rate of change of 4J by the vector ~ 
pointing in the z direction. 

To determine wx , wyand OJ, in terms of the Eulerian angle<, we need to 
determine the components of the angular velocities shown in Figure 9.32(c) in 
the x, y and z directions. The vectors ~ and ~ cos e point in the z axis direction. 
In Figures 9.32(d) and (e), which are drawn with the z axis pointing out of the 
page, we determine the components of the vectors VI sin 0 and iJ in the x and y 
axis directions. 

By summing the components of the angular velocities in the three coor­
dinate directions (Figure 9.32f), we obtain 

(j)x = Ifr sin e sin <p + iJ cos <p 

OJy = ~ sin 0 cos <p iJ sin 4) (9.44) 

OJ, = ~cosfl+ ~ 

z' y 
y" 

'I' '. 
"\ e -" I 

, 
/ vn;inO \ y' 

z ", z • 

~ 
Itt cos(J "-',!.---r x 

x', x" 

(b) (el 

y 

)' 
x !jJ sin e L:OS ¢ ~ Osin ¢ 

-.J._--,,- x 

if! sin e sin r/I + e cos if! 

(e) 



The time derivatives of these equations are 

dw· ' . . . . 
-, x = 1/1 sinO 8in4> + 1/10 cos Osin4> + 1/14> sinO cos 4> 
,I 

+ OC084> - O¢ sin 4> 

dwy '. ' . . . ............ = 1/1 sm () eos 4> + I/Ie cos e cos 4> 1/14> sin e sin 4> (9A5) 
dt 

- ijsin 4> - O¢ cos (P 
dw.. . , , 
dr' = 1/1 cos 0 - ~/O sin 0 + 4> 

Equations of Angular Motion With Equations (9.44) and (9.45), we 
can express the equations of angular motion in terms of the three Eulerian 
angles, To simplify the equations, we assume that the body-fixed coordinate 
system xyz is a set of principal axes, Then the equations of angular motion, 
Equations (9,28), are 

.. M = I •• dOl, (/ 1) .. _ n YT W,Wy 

Substituting Equations (9.44) and (9.45) into these equations, we obtain the 
equal10ns of angular motion in terms of Eulerian angles: 

My = T,,~ sin 0 sin (I> + TnO cos </> 

+ J,A~iJcos()sin 4> + ~¢sin Oeo"p - iJc~ sin 4» 
- (J", -1,,)(ljJsin Oeos 4> - iJsin 4»(~cose + 1)) 

My =Iyy~sinOcos4> Jyy(/sin</> (9.46) 

+JyvC~/iJcOSOcos4> ~¢sinesin4> 6¢ cos 4» 
- (Iu lx,)(~ cos () + ¢ )(~ sin iJ sin 4> + iJ cos 4» 

M, = l"'fr cos () + ["';~ - J,,~i! sin () 

(Ia [y,,)(~1 sin e sin 4> + ileos 4»(~1 sin Beos 4> iJ sin 4» 

If you know the Eulerian ,mgles and their first and second time derivatives, 
you can solve these equations for the components of the total moment Or, if 
you know the total moment, the Eulerian angles, and the first time derivatives 
of the Eulerian angles, you can determine the second time derivatives of the 
Eulerian angles, You can use these equations to detennine the Eulerian angles 
as functions of time whc,n you know the total moment, but numerical 
integration is usually necessary. 
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Figure 9.33 

y 

-----

(a) Aligning the z axis with the spin axis. 
The x axis is horizontal 

In the following example we analyse the motion of an object in steady 
precession. By aligning the coordinate system as shown in Figure 9.28, you 
can use Equation (9.39) to relate the total mOffle'" about the x axis to Ihe 
nutation angle 0, precession rate ;p, and spill rate ~. 

The thin circular disc of radius R and mass m in Figure 9.33 rolls along a horizontal 
circular path of radius r. The angle 0 between the disc's axis and the vertical remains 
constant. Determine the magnitude v of the velocity of the centre of the disc as a 
function of the angle O. 

,.------- ..... 

/ 
STRATEGY 

We can obtain the vell,Jcity of the centre of the disc by assuming that the disc is in 
steady precession and determining the conditions necessary for the equations of 
motion to be satisfied. 

SOLUTION 

In Figure (a) we align the z axis with the disc's spin axis and assume that the x axis 
remains parallel to the surface on which the disc rolls, The angle (J is the nut1.tion 
angle. The centre of mass moves in a circular path of radius fG = r - R cos e. 
Therefore the precession rate, the rate at which the x axis rotates in the horizontal 
plane, is 

From Equations (9.33). the components of the disc's angular velocity are 

. v 
my = '" sinO = -sin H Yc 

.. . v 
ill, = ¢ + "'cosO = '" +-cosO 

YG 



where ~ is the spin rate. To detenlline ;p, we use the condition that the velocity of 
the point of the disc in contact with the surface is zero. In tenn!ll of the velocity of 
the centre the velocity of the point of contact is 

O=vi+wx(-Rj)=vi+ 0 ~sinli 
rr; 

o -R 

Expanding the determinant and solving ror <P. we obtain 

. v 
¢=­

R 

v 
~cosO 
r(J 

k 

1> +~cosli 
r(l 

o 

We draw the frccwbody diag:ram of the disc in Figure (b). Because the centre of 
mass moves in the horizontal plane, its acceleration in the vertical direction is ~ro, 
Therefore the nonnal force N == mg. The acceleration of the centre of mass in the 
direction perpendicular to its C1i!cular path is an = ·1,,2jrG. Newton's second law in 
the direction perpendicular to the circular path is 

(b) free-body diagram of the dIsc showing the 
normal acceleration of the centre of mass. 

Therefore the components of the total moment about the centre of mass are 

2 

:E Mx '" TR sin hi - NR cos e = m':'..- Rsine - mgR cosO 
rc; 

:EM, 0 

:EM, = 0 

Subst.ituting our expressions for !fr, ~ and ~ Mx into the equation of angular motion 
for steady precession, Equation (9.39), and solving for v, we obtain 

v= 
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9.75 A ship has a turbine engine. The spin axis of the axisym­
metric turbine is horizontal and aligned with the ship's longitudinal 
axis. The turbine rotates at 10000 rpm (revolutions per minute). Its 
moment of inertia about its spin axis is 1000 kg.m2, If the ship 
tums at a constant rate of 20 degrees per minute! what is the 
magnitude of the moment exerted on the ship by the turbine? 

Strategy: Treat the turbine's motion as steady precession with 
nutation angle e = 90°. 

I . .. '--'''~ 

P9.75 

9.76 The cenlre of the car', wheel A travels in a circular path 
about 0 at 24km/hr. The wheel's radius is 0.3 m and its moment of 
inertia about its axis of rotation is 0.9 kg,m2

, What is the magnitude 
of the total external moment about the wheel's centre of mass? 

Strategy: Treat the wheel's motion 3,<; steady prect!ssion with 
nulation angle 0 = 90'. 

o~\\\ 
I \\ \ 

I \\. ~m 
'\ \ \ , \ 

\ \ . 

P9.76 

9.77 Solve Problem 9.64 by treating the motion as steady 
precession, 

9.78 Solve Problem 9.69 by treating the motion as steady 
precession. 

9.79 A thin circular disc undergoes moment~free steady prcccs~ 
sion. The z axis is perpendicular to the disc. Show that the disc's 
precession rate is W = -211 cos O. (Notice that when the nutation 
angle is small, the precession rate is approximately two times the 
spin rate.) 

y 

P9.79 

9.80 The rocket is in moment~1tee steady precession with nuta~ 
tion angle 0 = 40" and spin rate ~ = 4 revolutions per second. Its. 
moments of inertia are 'xx = 10000 kg.m2 and I:.;: = 2000 kg.m2. 

What IS the rocket's precession rate ~ in revolutions pcr second? 

z 

P9.80 
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9.81 Sketch the body and space cones for the motion of the 9.86 Solve Problem 9.71 by lreating the motion a, ,teady 
rocket in Problem 9.80. precession. 

9.82 The lOp is in steady prccl~ssion with nutation angle () = 15C' 9.87 Solve Problem 9.72 by treating the rrotion as steady 
and prccc~sion rate Ii} = I revolution per second, The mass of the precession. 
top is 12 X 1O~1 kg, its centre of mass is 25 mm from the point, 
and its moments of inertia are i:v; = 6 X 10-6 kg.m2 and 9.88 Solve Problem 9.73 hy treating the Irotion as steady 
l'l! = 2 x lO-6kg.m2

, What is the spin rate ¢ of the top in precession. 
revolutions per second? 

P9.82 

9.83 The top described in Pwblcm 9.82 has a spin rate ¢ = 15 
revolutions per second. Draw a graph of the precession rate (m 
revolutions per second) as a ful1ction of the nutation angle () for 
values of @ from zero to 4Y'. 

9.84 The rotor of a tumbling gyroscope can be modelled as being 
in m0111ent~free steady precession- Its moments of inertia are 
Ixx IVI! ;::= 0,04 kg.m2 

j /tZ = (),l H kg,m2
. Its spin rate is 

r/J = 1500 rpm and its nutation angle is 0 = 20C!. 
(a) What is its precession 1'al!.: in rpm? 
(b) Sketch the body and space cones. 

9.85 A satellite can be modelled as an 800 kg cylinder 4 m in 
length and 2 m in diameter. If thl: nutation angle is (} = 20~' and the 
spin rate 4> is one revolution per second. what is the satellite's 
precession rate ~I in revolutions per second? 

z 

'!r---y 

P9.85 

9.89 Suppose that you are t(~sting a car <mel u~e accelerometers 
and gyroscopes to measure its Eulerian angles and their derivatives 
n:l<tlivc to a reference coordinate system, At a particular instant, 
1/1 = 15'. e = 4°. ¢ = 15'" the rates of change of thc Eulerian 
angles an~ Zt!fO. and their second time derivatives are 
~ = 0, 0 = I rad/s' and 1> = -0.5 rad/s'. The car's principal 
moments of inertia in kg.1112 are It-¥; = 2200, If'" = 480 and 
I" = 2600. What are the components of Ihe lowl moment about 
the car's centre of mass'! 

P9.89 

9.90 Trthe Eulerian angles and their second derivatives of the ear 
described in Problem 9.89 havlJ the given values but thclr rates of 
change are I~ - 0.2 rad/s. iJ = -2 rad/s and 1> =, 0, what are the 
components or the total moment ubout the car's centre of mass? 

9.91 Suppose that the Eulerian angles of the car described In 

Pmhlcm 9JN are !/1 = 40", H;;;::;;; 20" and 1);;;;;; 5", their rates of 
change arc zero, and the component~ of the total moment about the 
car's centre of ma.'lS are I M~ .= --400 N,rn j 1: M, = 200 N.m and 
'.E Mz = O. What are the x, y and z components of the car's angular 
acceleration? 
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Chapter Summary 
Kinematics 

A rigid body undergoing any motion other than translation has an instanta­
neous axis of rotation. The direction of this axis at a particular instant and the 
rate at which the rigid body rotates about the axis are specified by its angular 
velocity vector w. 

The velocity of a point A of a rigid body is given in terms of the angular 
velocity vector and the velocity of a point B by 

"quallon (9,1) 

The acceleration of a point A of a rigid body is given in terms of the angular 
velocity vector, the angular acceleration vector IX = dw/dt, and the accelera­
tion of a point B by 

Equation (9.2) 

Let 0 be the angular velocity of a rotating coordinate system xyz relative to 
a fixed reference frame, and let OJ"I be the angular velocity of a rigid body 
relative to the xyz system. The rigid body's angular velocity and angular 
acceleration relative to the fixed reference frame are 

OJ = 0 + OJrel 

dO. dWrelX dOJrel)' dw"lz 0 
~=-+--+--+--+ XOJ 1 

~ ~ ~ ~ re 

Equation (9.3) 

Angular Momentum 

If a rigid body rotates about a fixed point 0 with angular velocity If1IJ (Figure 
(a)) the components of its angular momentum about 0 are given by 

[
HOX] [1" -1xy 
Hoy = -lyx I,y 

lloz -in -l~ 

Equation (9.8) 

This equation also gives the components of the rigid body's angular momen­
lum about the centre of mass in general three-dimensional motion (Figure (b)). 
In that case the moments of inertia are evaluated in temlS of a coordinate 
system with its origin at the centre of mass. 

y 

(a> 

I~' '-~ 
(bl 



Euler Equations 

The equations governing three-dimensional motion of a rigid body include 
Newton's second law and equations of angular motion. For a rigid body 
Totating about a fixed point 0 (Figure (a», the equations of angular motion are 
expressed in terms of the components of the total moment about 0: 

Equation (9.25) 

where n is the angular velocity of the coordinate system. If the coordinate 
system is body-fixed, n = w. III the case of general three-dimensional motion 
(Figure (b», the equations of angular motion are identical except that they are 
expressed in terms of the components of the total moment about the centre of 
mass, 

The rigid body's angular acceleration is related to the derivatives of the 
components of (() by 

dm dw.,. dwy , dw, " 
~=-=-I+-J+ k+ .. xw 

dt dt dt dt 
Equation (9.24) 

If the coordinate system does not rotate or is body-fixed, the terms dwx/dt, 
dw,,/dt and dw,jdt m'e the components of the angular acceleration. 

Mome,nts and Producl!i of Inertia 

In terms of a given coordinate system xyz, the inertia matrix of an object is 
defined by [EquatIOn (9.11)] 

-fry 

fyy 

_.'", 

L zxdm 

-"] -fyz 

I" 

-1 xydm 
m 

1 (x2 +Z2)dm 
m 

-L zydm 

-1 xzdm 
m 

LYZdm 

L (x" + y')dm 

where x, y and z are the coordinates of the differential element of mass dm. The 
terms lxx, I", and T" are the moments of inertia about the x, y and z axes, and 
'XY' Tj7 and 1M are the products of inertia, 
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z y 

~--y 

x x 

(e) 

If x'y'z' is a coordinate system with its origin at the centre of mass of an 
object and xyz is a parallel system, the parallel-axis theorems state that 

Ixx = Ix'x' + (d; + d;)m 

I,y '" Jy.y. + (d; + d;)m 

Tzz = I,.,. + (d; + d;)m 
Equation (9.16) 

where (dx, dy , dz) are the coordinates of the centre of mass in the xyz 
coordinate system. 

The moment of inertia about an axis through the origin parallel to a unit 
vector e is given by 

~qu.tlon (9.17) 

For any object and origin 0, at least one coordinate system exists for which 
the products of inertia are zero. The coordinate axes are called principal axes, 
and the moments of inertia are called the principal moments of inertia. If the 
inertia matrix is known in terms of a coordinate system x'y'z', the principal 
moments of inertia are roots of the cubic equation 

[3 _ (Ix'x' + I).). + T,.,. )[2 

+ (.lx'xl/),.y, + ly",'IZ't' + iZ'Z'I.l;lx' _12, , - ,2, , _[2, ,)[ . . xy yz zx 

For each principal momcnt of inertia r, the vector V with components 

1/,. = (l,.y. - 1)(1,.,. T) I}., 

fly.. 1x 'y·(1,·" - I) + Ix·z·ly '" Equation (~.20) 

is parallel to the corresponding principal axis. 

Eulerian Angles: Axisymmetric Objects 

In the case of an object with an axis of rotational symmetry, the orientation of 
the xyz system relative to the reference XYZ system is specified by the pre­
cession angle ofr and the nutation angle e (Figure (c)). The rotation of the 
object relative to the xyz system is specified by the spin angle 1/>. 



The components of the rigid body's angular velocity relative to the XYZ 
system are given by 

Wx = iI 
(Oy = ~ sine Equation (9.33) 

w, = ¢ + ~cosi1 

The equations of angular motion expressed in terms of these Eulerian 
angles are [Equations (9.36) (9.38)]: 

'LM, = luO + (fa -lu)~2 sinOcosO +1,"¢~ sin a 

'L M, = I a( ~ sm 0 + 2ljJiJ cos 0) i,,( 1,iI + IjJU cos 0) 

EM, = I,,(~ + 1,& cos f) - ~b sin II) 

In steady precession of an axisymmetric spinning object, the spin rate ¢, the 
nutation angle (I and the pre'ccsslon rate ~ are assumed to be constant. With 
these assumptions, the equations of angular motion reduce to [Equations 
(9.39}-(9.41)] 

EM, =0 

Eulerian Angles: Arbitrolry Objects 

In the case of an arbitrary object, the orientation of the body-Axed xyz system 
relative to the reference XYZ system is specified by the precession angle 1jJ, the 
nutation angle 0 and the spin angle q, (Figure (d)). 

The components of the rigid body's angular velocity relative to the XYZ 
system are given by 

w" = ~ sin 0 sin rp + iJ cos q, 

w, = IjJ sin cos q, - IJ sin q, 

w, = ~ cos () + ,i, 
Equation (9.44) 

If xyz is a set of principal axes, the equations of angular motion in terms of 
Eulerian angles are given by Equations (9.46). 
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9.92 The slender bar oflength I and mass m is pinned to the L­
shaped bar at O. The L-shaped bar rotates about the vertical .. xis 
with a constant angular velocity CUo- Detemline the value of Wo 

necessary for the bar to remain at a constant angle /3 relative to the 
verticaL 

P9.92 

9.93 A slender bar oflength I and mass m rigidly attached to the 
centre of a thin circular disc of radius R and mass m. TIle 
composite object undergoes a motion in which the bar rotates in 
the horizontal plane with constanl angular velocity (1)0 about the 
centre of mass of the composite object and the disc rolls on the 
floor. Show that 'va = 2JiiR. 

1---1--1 

P9,93 

9.94 The thin plate ofmnss m spins about a vertical axis with the 
plane of the plate peI]lendicular to the floor, The comer of the plate 
at 0 rests in an indentation so that it remains at the same point on 
the floor. The plate rotates with constant angular velocity (J)o and 
the angle fJ is eonslanL 
(a) Show that the angular velocity WI) is related to the angle j3 by 

hW6 2 cos j3 - sin 13 
g sin' fJ - 2 sin fJ cos fJ - cos2 P 

(b) The equation you obtained in part (al indicates that WI) = 0 
when 2 cos /J - sin fJ = o. What is the interpretation of this result'! 

o P9.94 

9.95 [n Problem 9.94, detennine the range ofvalucs of the angle 
{J for which the plate will remain in the steady motion described. 



9.96 AR11 Be has a mass of 12 kg, and its moments and products 
of inertia in terms of the coordinate system shown are 
iu ::::: 0,03 kg.m2

, ~vy::::: lu = 4 kg.m2
, Ixy = I)'z = 1.1;; = 0, At the 

instant shown, arm All is rotatil.lg in the horizontal plane with a 
constant angular velocity of 1 rad/s in the counterclockwise dircc~ 
tion viewed from above. Relative to arm AB, arm Be is rotating 
about the z axis with a constant angular velocity of 2 rad/s. 
Determine the force and couple exerted on aIm Be at B. 

/' 

P9.96 
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9.99 The mass of the homogeneous thin plal(~ is 1 kg. For a 
coordinate ~ystcm with its origin at O. detennioe the principal 
moments of inertia and the dircotions of unit vecl!>rs parallel to the 

corresponding principal axes. 

\ 
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T 
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.' 
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9.100 The aeroplane's principal moments of inc,rtia in kg,m2 are 
Ix> = BOOO, I"" = 48 000 and I" = 50 000. 
(a) The aeroplane begins in the reference position :;hown and 
mano~mvres into the orientation rjJ = 0 = ¢ = 45 '. Draw a sketch 
s:howing its orientation relative to the X Y Z system. 
(b) If the aeroplane is in the onentation described in part (a), the 
rates of change of the Eulerian angles arc !/I == 0, i:' = 0.2 rad/s and 
¢ == O.2rad/s) and their second! time derivatives are :.:-;cro, what arc' 
the components of the total moment about the aeroplane's centre of 

9.97 SL!-ppose that you throw a football in a wobbly spiral with a mass? 
nUlation angle of 25". The f()otball'~ moments of inertia are 
lu = I," = 0.003 kg.m' and In = 0.001 kg.m2 If the spin rate is 
¢ = 4~-revolutions per second what is the magnitude of the 
precession rate (the rate at which it wobbles)'! 

P9.97 

9.98 Sketch the body and space cones for the motion of the 
rootball in Problem 9.97. 

P9.100 

9.101 What are the x,y at)d z components of the angular 
acceleralion of the aeroplane descL'ibed in Problem 9.100? 

9.102 If the orientation of the aeroplane in Problem 9.100 is 

VI = 45', () = 60" '" 45', the rates of change of the Eulerian 
angles are Ifr = 0, Ii = 0.2 rad/s and Ip = 0.1 rad/s, and the com· 
ponents of the total moment about the centre of maRR arc 
LM, =400N.m, LM, = 1200N .. m and LM, = 0, what arc the 
x, y and z components of the aeroplane's angular acceleration? 



Engineers use 'shake 
tables' to simulate 
the vibrations of 

buildings and other struc­
tures during earthquakes 
and investigate methods 
for minimizing structural 
damage. The tables can be 
programmed to simulate 
the magnitudes and time 
histonc8 of the ground 
vibrations measured 
during actual earthquakes. 
In this chapter we analyse 
the vibrations of simple 
mechanical systems. 

: :' 



Vibrations 

V IBRATIONS have been of concern in engineering at 

Icast since the beginning of the industrial revolution. 

The oscilllatory motions of rotating and reciprocating engines 

subject their parts to large loads that must be considered in 

their design. Operators and passengers of vehicles powe:red by 

these engines must be isolated from their vibrations. JBegin­

ning with the development of e1eetromechanical devic()s cap­

able of cn:ating and measuring mechanical vibrations, such as 

loudspeakers and microphones, engineering applications of 

vibrations have included the various areas of acoustics., from 

architectural acoustics to earthquake detection and analysis. 

In this chapter we consider vibrating systems with one 

degree of freedom; that is, the position, or configuration, of 

each system is speeified by a single variable. Many actual 

vibrating systems either have only one degree of freedom or 

their motions can be modelled by a one-degree-of-freE:dom 

system in particular circumstances. We discuss fundamental 

eoncepts, including amplitude, frequency, period, damping and 

resonance, that are also used in the analysis of systems with 

multiple degrees offreedom. 
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10. 1 Conservative Systems ---------------------------

Figure 10.1 

(a) 

ri 

~ 
................................•...•. 
!", "',,', '::~g,1 ' " 

N 

(b) 

(e) 

(a) The spring~mass oscillator has one 
degree of freedom. 
(h) Free-body diagram of the mass. 
(e) Suspending the mass. 

We begin by presenting different examples of one-degree-of-freedam systems 
subjected to conservative forces, demonstrating that their motions are 
described by the sarne differential equation. We then examine solutions of 
this equation and use them to describe the vibrations of one-degree-of-freedom 
conservative systems. 

Examples 
The spring-mass oscillator (figure 10.1 Cal) is the simplest example of a one­
degree-of-freedom vibrating system. A single coordinate x measuring the 
displacement of the mass relative to a reference point is sufficient to specify 
the position of the system. We draw the free-body diagram of the mass in 
figure 10. I (b), neglecting metion and assuming ihat the spring is unstretched 
when x = O. Applying Newlon's second law, we can write the equation 
describing horizontal motion of the mass as 

(10.1) 

We can also obtain tbis equation by using a different method that you will 
find very useful. The On ly force that docs work on the mass, the force exerted 
by the spring, is conservative, which means that the sum of the kinetic and 
potential energies is constant: 

-m - +-1<2 = constant I (dx)2 I 
2 dt 2 

Taking the time derivative of this equation, we can write the resulting equation 
as 

again obtaining Equation (10.1). 
Suppose that the mass is suspended from the spring, as shown in figure 

10.1 C c), and it undergoes vertical motion. If the spring is unstretched when 
x = 0, you can easily confirm that the equation of motion is 

fi2x k 
--0 +-x=g 
dt'· m 

If the suspended mass is stationary, the magnitude of the force exerted by the 
spring must equal the weight, kx = mg, so the equilibrium position is x = mg/k. 
(Notice that we can also detennine the equilibrium position by setting the 
acceleration equal to zero in the equation of motion.) Let us introduce a new 
variable x that measures the position of the mass relative to its equilibrium 



posItIon. X = x - mg/ k. Writing the equation of motion in terms of thi, 

variable, we obtain 

d2x k_ 
-+-x=o 
dt" m 

which is identical to Equation (10.1). The vertical molIon of the mass in Figure 
10.I(c) relative fn ifs equilibrium position is described by the same equation 
that describes the horizontal mOlion of the mass in Figure 10.1 (al relative to its 
equilibrium position. 

Let's consider a different onc-degree-of-freedom system. If we rotate the 
slender bar in Figure I 0.2(a) through some angle ami release it, it will oscillate 
back and forth. (An object swinging from a fixed point is called a pendulum.) 
There is only one degree of freedom, since 0 specifies the bar's position. 

Drawing the free-body diagram of the bar (Figure 10.2(b)) and writing the 
equation of angular motion about A, we obtain 

d2e 3g 
~+-smO=O 
df2 21 

(10.2) 

Figure 10.2 
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(a) A pendulum consisting of a slender bi;lt. 
(b) Free-body diagram or the bar. 

We can also ohtain this equation by using conservation of energy, The bar's 
kinetic energy IS T = ;IA(dO /dt)2. If we place the datum at the level of point A 
(Figure 1O.2(b), the - pOlentlal energy associated with the bar's weight is 

V -mg(tl cos 0), so 

I 
- mgI cos 0 = constant 
2 

Taking the time derivative of this equation and writing the result in the form 

(
dO) (d20 3g . ) 
di, dt' + 2z sm 0. = 0 

we obtain Equation (10.2). 
Equation (10.2) does not have the same form as Equation (10.1). However, 

if we express sin 0 in terms of its Taylor series, 

. I 3 I s 
sm()=O--O +-0 +". 

6 120 
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and assume that e remains small enough to approximate sin 0 by 0, then 
Equation (10.2) becomes identical in form to Equation (10.1): 

(10.3) 

Our analyses of the spring-mass oscillator and pendulum resulted in 
equations of motion that are identical in form. To accomplish this in the case 
of the suspended spring-mass oscillator, we had to express the equation of 
motion in terms of displacement relative to the equilibrium position. In the 
case of the pendulum, we needed to assume that the motions are small. But 
within those restrictions, you will see that the equation we obtained describes 
the motions of many one-degree-of-freedom conservative systems. 

Solutions 
Let us consider the differential equation 

(10.4) 

where w is a constant. You have seen that with (02 = kim, this equation 
describes the motion of a sprillg-mass oscillator, and with w' = 3g!21, it 
describes small motions of a suspended slender bar. Equation (10.4) is an 
ordinary differential equation, because it is cxpressed ill terms of ordinary 
(not partial) derivatives of the dependent variable x with respect to the 
independent variable f. It is linear, meaning there are no non-Imear terms in 
x or its derivatives, and it is homogeneous, meaning that each tcrm contains x 
or one of its derivatives. The general solution of this differential equation is 

(10.5) 

where A and B are arbitrary constants. 
Although in practical problems you will usually find Equation (10.5) to be 

the most convenient fonn of the solntion of Equation (l0.4), we can describe 
the properties of the solution more easily by expressing it in the alternative 
form 

x = E sin((.<)/ 40) (10.6) 

where E and 40 are COnstants. To show that these two solutions are equivalent, 
we can use the identity 

E sin (WI 40) = E(sin OJI cos rP - cos wt sin <1» 

"" (E cos rP) sin wI -I- (-E sin 40) cos mt 

This expression is identical to Equation (10.5) if the constants A and B are 
related to E and 40 by 

A=Ecos4o B = -E sin rP (10.7) 



Equation (10.6) clearly demonstrates the oscillatory nature of the solution 
of Equation (lOA). Called simple barmonic motion, it describes a sinusoidal 
function of wt. The constant .p determines the horizontal placement of the 
sinusoidal function relative to the origin ())/ = 0, which is called the phase. We 
define .p to be the distance to the right of ml = ° at which the solution fm! 
crosses the horizontal axis with positive slope (Figure 10.3). The positive 
constant E is called the amplitude of the vibration. By squaring Equations 
(10.7) and adding them, we obtain a relation between the amplitode and the 
constants A and B: 

(10.8) 

x 

Figure 10.3 
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Graph of x as a function of wI. 

_L- f----.f-------\------ ........................ _.-- WI 

We cat) interpret Equation (10.6) in terms of the uniform motion ofa point 
along a circular path. We draw a circle whose radius equals the amplitude 
(Figure lOA) and assume that the line from 0 to P rotates in the counter­
clockwise direction with constant angular velocity w. If we choose the position 
of P at I", 0 as shown, the projection of the line OP onto the vertical axis is 

E sin(mt - .p). 

//-------~ 

( 
~ 

"",~,./, 
I 

Position of Jl 
iltt=O 

I---J.-L ----\----- WI 

Figure 10.4 
Correspondence of simple harmonic motion 
with circular motion of a point. 



488 CHAPTER 10 VIBRATIONS 

Thus there is • ooo"to"ono correspondence between the circular motion of P 
and Equation (10.6). Point P makes one complete revolution, or cycle, during 
the time required for the angle wt to increase by 2rc radians. The time" = 2,,1(0 
required for one cycle is called the period of the vibration. Since t is the time 
required for one cycle, its illversel = liT is the number of cycles per unit time, 
or natural frequency of the vibration. The frequency is usually expressed in 
cycles per second, or hertz (Hz). We illustrate the effect of changing the period 
and frequency in Figure 10.5. 

Figure 10.5 
Effect of increasing the period (decreasing 
the frequency) of simple hannonic motion. I 2 3 4 

'r] < ''(2 < T1 < T4 

f, >f,>f,>I, 

In sununary, the period and natural frequency are 

2" 
t= 

w 
(10.9) 

(10.10) 

A system's period and natural frequency are determined by its physical 
properties and do not depend on the functional form in which its motion is 
expressed. 

The natural frequency f is the number of revolutions the point P moves 
around the circular path in Figure 10.4 per unit time, so w = 211/ is the number 
of radians per unit time. Therefore OJ is also a measure of the frequency and is 
expressed in rad/s. To distinguish it from;; ()) is called the circular natural 
frequency. The term ml, and the variable <p that specifies the phase, can be 
specified in either radians or degrees. 

Suppose that Equation (10.6) describes the displacement of the spring-mass 
oscillator in Fii,'1lfe 1O.I(a), so that (J} = kim. The kinetic energy of the mass is 

</» 

and the potential energy of the spring is 



The srun of the kinetic and potential energies, l' + V = I rnE'{J)2, is constant 
(Figure 10.6). As the system vibrates, its total energy oscillates between 
kinetic and potential energy. Notice that the total energy is proportional to the 
square of the amplitude and the square of the natural frequency. 
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Kinetic Potential Total Figure 10.6 

Kinetic. potential and total energies of a 

"8 spring-mass oscillator. 

'" " .... ~01 05 
~ 

~J 

" '" 
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0 2 4 5 6 

In the following examples we analyse one-degree-of-freedom vibrating 
systems. Your first objective will be to determine the equation of motion of 
the system and express it in the form of Equation (10.4): 

d'x 
df2+ w2x =O 

To do so, you must write the ,~quation of motion in terms of the displacement 
of the sY.,tem relative to it.,' equilibrium position. You may al.,o need /0 

linearize the equation by assuming that the displacement is small, as we did 
in obtaining Equation (10.3) from Equation (10.2). Once you have the 
equation of motion in thi., form, you know the value of w for the system and 
can use it to obtain the period and natural frequency from Equations (10.9) 
and (10.10). You can al.yo del'ermine the motion of tile system from Equation 
(10.5) or Equation (l0.6) if y,ou are given sufficient information to determine 
the arbitrary constants. 
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k 

Figure 10.7 

Example 10.1 

The pulley in Figure 10.7 has radius R and moment of inertia f, and the eable 
not slip relative to the pulley. The mass m is displaced downwards a distance h 
its equilibrimn position and released from rest at t;;;:;: 0, 
(a) What is the naturdllicquency of the resulting vibrations? 
(b) Dctcnninc the position of the mass relative to its equilibrium position as 
fimction of time. 

STRATEGY 

A single coordinate specify-ing the vertical displacement of the mass specifies 
positions of both the mass and pulley, so there is one degree offreedom. We 
the equation of motion of the system both by writing the individual equations 
motion of the mass and pulley and by using conservation of energy. 

SOLUTION 

Let x be the downward displacement of the mass relative to its position when 
spring is unstretched. We draw the free-body diagrams of the pulley and mass . 
Figure (a), where T c is the tension in the cable and ex is the angular acceleration 
the pulley. Applying Newton's second law to the mass, we obtain 

d2x 
mg - Tc = m dt2 

a 

Tc 

fTc 
I) 
hl8 

(a) Free-body diagrams of the pulley and 
mass. 

The equation of angular motion for the pulley is 

l'cR - (kx)R = fa (10. 

The angular acceleration of the pulley and the aecel\ll'8tion of the mass are related 
"= (d'xldi')IR, so we can write Equation (10.12) as 

Tc - kx = (fiR') ~;: 

Summing this equation and Equation (10. II), we obtain the equation of motion 

(10.13) 



Alternative Solution In tenns of the velocity of the mass, the angular 
velocity of the pulley is (dxldt)/R. Therefore we can write the total kinetic energy 
of the mass and pulley as 

T = ~m(dX)2 +~J[~ (dX)]' 
2 dt 2Rdt 

Placing the datum ror the potemial energy associated with the weight of the mass at 
x = 0, the total potential energy is 

The sum of the kinetic and potential energies is constant: 

T+ V= (m+JIR') -' -mgx+~h' =eonstant 1 (d)' 1 
2 dt 2 

Taking th~ time derivative of this equation, we again obtain Equation (10.13) 
By setting d2x/dt2 = 0 in Equation (10.13), we see thal the equilibrium position 

is x mglk. By expre_~sing Equation (10.13) in tenns of a new variable 
X = x ~ mg/k that measures the position of the mass rela.tive to its equiJibdwu 
position, we obtain the equation 

where 

(a) The natural n-cqucncy of vihration of the system is 

OJ 1 k 
I= 2" = 2n fiR' 

(h) From Equation (10.5), we can write the general solution for i in the form 

.~ = A sin wt + B cos wt 

When I;;::: 0, x = hand dxldt = O. The derivative of the general solution is 

di 
= Aw cos wt - Bw sin wI 

dt 

The initial conditions yield the equations 

h=1l 0= Ao. 

so the position of the mass relative to its equilihrium position is 

t=hcoswt 
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c, 
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The spring attached to the slender bar of mass m in Figure 10.8 is Ullstretched when 
(J = O. Neglecting mction, detenuine the natural frequency of small vibrations of the 
bar relative to its equilibrium position. 

Figure 10.8 

STRATEGY 

The angle f) spccific$ the bar's position, so there is one degree of freedom. We can 
express the kinetic and potential energies in tenns of 0 and its time derivative and 
take the time derivative of the total energy to obtain the equation of motion. 

SOLUTION 

The kinetic energy of the bar is 

1 2 1 (dO)' T~-mv +-1 -
2 2 dt 

where v is the velocity of the centTe of mass and I nml2, The distance from the 
bar's instantaneous centre to its centre of mass is ! / (Figure (a)), so v '" (! /)(dO Idt), 
and the kinetic energy is 

T ~m[~/(dO)J' +~ (~m/') (dO)' = ~mt'(dO)' 
2 2 dt 2 12 dt 6 dt 

(a) Detennining the velocity of the centre I/l&tantanc-ou~ 
centre of mass, the extension of the spring, and 

the height of the centre of mass above 
the datum. 

_._ .. _.---r ,j 

l/' 
" \ (/ 

~lcosJ': 
~atllm Jb ----'<, 
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In tenus of e, the extension of the spring is /- / cos O. We place the datum for the r 
potential energy associated with. the weight at the bottom of the bar (Figure (a», so I 
the total potential energy is 

The sum of the kinetic and pot'~ntial energies is constant: 

I (dll)' I 1 T+V=6 mI2 d~ +zmglcosl!+2:k1'(I-cosO)'=constant 

Taking the time derivative of this equation, we obtain the equation of motion: 

~ml' d'U -2' mgl sin e + kl'(1 cos 0) sill e = 0 
3 dt' 

(10.14) 

To express this equation in the form of Equation (10.4), we need to write it in tenns 
of small vibrations relative to the equilibrium position, Let (}(J be the value of () when 
the bar is in equilibrium. By seUing d'Oldr = 0 in Equation (10.14), we find that 0, 
must satisfy the relation 

mg 
cos ()e = 1--

2kl 
(10.15) 

We define 0 = e - Or;;, atld expand sin (J and cos () in Taylor series in terms of 0: 

sin (I = sin(U, + ~) = sin U, + cos ~,i'; + . 
cos (I = cn,(O, + iI) = cos 0, - sin 11,& + ... 

Sub,tituting the,e expressions into Equation (10.14), neglecting tenm, in 0 of 
second and higher orders, and using Equation (10.15), we obtain 

where 

From Equation (10.10). the natural frequency of small vibrations of the bar is 

mg ) 
4kl 
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10.1 Confinn that x = A sin OJt + B cos wt! where A and B are 
arhitrary constants~ satisfies Equation (lOA). 

10.2 Conlinn that x ~ E sinCwt - <I'), where E and rjJ arc arbi­
trary constants, satisfies Equation (lOA), 

10.3 (a) Show that x G CDS(wt 1/1). where G and 1/1 are 
arbitrary constants, satisfies Equation (10.4), (b) Detennine the 
constants A and B in the fom) of the solution given by Equation 
(10,5) in terms of the constants G and 1/1. 

10.4 TIle position of a vibrating system is 

x = [(1/,/2) sin wt - (1/,/2) CDS wt] In 

(al Determine the amplitude E of the vibration and the angle rjJ in 
degrees, 
(b) Draw a sketch of x for values of wt from zero to 4n radians, 
showing thc angle rjJ. 

10.5 The position of a vibrating system is 

x ~ [-,/2 sin wi +,/2 cos WI] m 

(a) Determine the amplitude E of the vibration and the angle rjJ in 
degrees. 
(b) Draw a sketch of x tor values of w! from zero to 4n radians, 
showing the angle <p. 

10.6 The mass m ~ IO kg and k= 90 Nim, The coordinate ., 
measures the displacement of lhc mass relative to its equilibrium 
position. At t = 0, the mass is released from rest in the position 
X::;;:O,l111. 
(a) Dctcmlinc the period and natural frequency of the re~ulting 
vibrations. 
(b) Determine x as a function of time. 

PlO.6 

10.7 The suspended object weighs 130N and k= 300Nim. At 
t = 0, the displacement of the object relative to its equilibrium 
position is ; = 75 mrn and it is moving downwards at 450 mm/s. 
(a) Dctcnmine the period and natural frequency of the resulting 
vibrations. 
(b) Detemline x as a function of time. 
(c) Draw a graph of .r as a function of time from t = 0 to t:: 3 s. 

, ' 

T 
k 

P10.7 

10.8 The coordinate x measures the displacement of the mass 
relative to the position in which the spring i~ unstretched. The mass 
is given the initial conditions 

{

X =O.lm 
1=0 dr 

~O 
dt 

(a) Detennine the position of the mass as a function of time. 
(b) Draw graphs of the position and velocity of the mass a, 
functions of time for the first 5 s of motion. 

90N/m 

P10.8 

10.9 When 1:=0) the mass in Problem 10.8 is in the position in 
which the spring is unstretched and has a velocity nf 0.3 mis to the 
right. Detennine the position of the mass as a function of time and 
the amplitude of the vibration: (a) by expressing the solution in the 
fbum given by (10.5); (b) by expressing the solution in the fonm 
given by (10.6). 



10.10 Dctem1ine the natural frequency of vibration of the mass 
relative to its equilibrium position. 

PIO.lO 

10.11 A 90kg 'hungee jumper' jumps from a bridge above a 
river. The bungee cord has an unstretched length of I f\ m and it 
stretches an additional 12 rn bcf6re he rebounds. If you model the 
cord as a linear spring, what is the period of his vertical oscilla­
tions? 

PIO.n 

10.12 A homogeneous disC' of mass m and radius R rotates about 
a fixed shaft and is attachcd to a torsional spring with constant k. 
(The iOf:sional spring exerts a H:storing moment of magnitude ke, 
where 0 i!' the angle of rotation (lfthe disc relative to its position in 
which the spring is unstretched.) Show that the period of'rotational 
vibrations of the disc is 

r = 1fRj2m/k 

.. 1J. ) 
R. 

Pl012 
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10.13 Assigned to determine. the moments of inertia of astronaut 
candidates, an engineer attaehc:s a horizontal platform to a vertical 
sleel bar. The moment of inertia of the platform about L is 
7.5 kg.m2

, and the natural frequency of torsion:tl oscillation:; of 
the unloaded platform is I Hz. With an astronaul candidate 10 the 
position shown, the natural frequency of torsiollal oscillations is 
a.520Hz. What is the candidate's moment of inertia about L? 

PlO.13 

10.14 The pendulum consists· of a homogeneous I kg diso 
attached to a 02 kg slender bar. What is the natural frequency of 
small vibrations of the pendulum? 

PI0.14 
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10.15 The homogeneous disc weighs 445 N and its radius is 
R = 0.3 m. It rolls on \he plane surface. The spring constant is 
k= 1460N/m. 
(a) Determine the natural frequency of vibrations of the disc 
relative to its equilibrium position. 
(b) At t = 0, the spring is unstretched and the disc has a clockwise 
angular velocity of 2 radls. What is the amplitude of \he resulting 
vibrations of the disc and what is the angular velocity of the disc 
whent=3s? 

PIO.IS 

10.16 The radius of the disc is R = 100 mm, and its moment of 
inertia is 1= 0,1 kg.rn2

. The mass m = 5 kg, and the spring constant 
is k= l35N/m. The cable does not slip relative to the disc. The 
coordinate x measures the displacement of the mass relative to the 
position in which the spring is wlstretched. 
(a) What arc the period and natural frequency of vertical vibrations 
of the mass relative to its equilibrium position? 
(b) Determine x as a function of time if the syslem is released from 
rest with x ~ o. 

k 

x 

PIO.16 

10.17 The 22 kg platen P rests on lour roller bearings. The roller 
bearings can be modelled as 1 kg homogeneous cylinders with 
30mm radii, and the spring constant is k=900Nlm. What is the 
natural frcquency of horizontal vibrations of the platen relative to 
its equilibrium position? 

Pl0.17 

10.18 At t = 0, the platen described in Problem 10.17 is 0.1 m to 
the left of its equilibrium position and is moving to the right at 
2 mls. What arc the platen's position and velocity at (= 4 s? 

10.19 A homogeneous disc of mass m and radius r rolls on a 
curved surface of radius R, Show that the natural frequency of 
small vibrations of the disc relative to its equilibrium position is 

IC­
I = ;; y 6(/- r) 

/ 
H 

/ 
I 

PIO.19 

10.20 The slender bar has roller supports at its ends and is at rest 
in a circular depression with an 8 m radius. What is the 
frequency of small vibrations of thc bar relative to its equilibrium 
position? 

Pl0.20 

10.21 A slender bar of mass m and length I is pinncd to a fixed 
support as shown, A torsional spring of constant k attached to the 
bar at \he support is unstretched when ille bar is vertical. Show that 
the equation governing small vibrations of the bar from its vertical 
equilibrium position is 

d'O , 
-, +w·O=O 
dt 

where oi (k-~mgl) 
ImP 
1 

Pl0.21 



10.22 The initial conditions of the slender bar in Problem 10.21 
are 

o{ d~ = 0 
-=°0 dt 

<aJ If k> tmgL, show that e is given as a function of time by 

00 . 2 (k-tmgt) o =: - sm wt where OJ;;;;;; I "' 
(() 3' miL 

(h) If k< !mgL, show that 0 1S gIVen as a function of time by 

2 (tmgl k) 
where h = 1 I' 

3m 

Strategy: To do pari (b). ~:eek a solution of the equation of 
motion of the form x = Ce,ll, where C and .1 arc constants. 

10.23 A floating sonobuoy (sound measuring device) is in 
equilibrium in the vertical po~;ition shown. (lls centre of mass is 
low enough that it is stable in this position.) It is a IOkg eyUnder 
1 m in length and 125 mm in diameter. The water density is 
1025 kg/m', and the buoyancy force supporting the buoy equals 
the weight oflhc water that would occupy the volume of the part of 
the cylinder below the surface, If you push the sonobuoy slightly 
deeper and release it, what is the natural frequency of the resulting 
vertical vibrations? 

P10.23 
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10.24 A disc rotates about a fixed vertical axis with constant 
angular velocity 11 (The plane uflhe disc is holi7onta!.) A rna" m 
slides in a smooth slot in the disc and is attached to a spring with 
constant k_ The distance from the centre of lht: disc to the mass 
when the spring is unstrctehlJd is roo Show th;;,t if' k!m > rio the 
natural frequency of vibration of the mass is f:::::: 

(1/2n)Jk/m - n'· 

PIO.24 

10.25 Suppose that alt= 0, thl! mass described in Problem 1024 
is located at r = fO and its radial velocity is drldt =:::. O. Detennine the 
position r of the mass as a function of time_ 

10.26 A homogeneous 100 kg disc with radius R = I m is 
attached to two identical cylmdrical steel bars of length L = 1 m. 
The relation between the moment M exerted on the diSC by one 0 
the bars and the angle of roU,tion e of the disc is 

M= GJ 0 
L 

where J is the polar moment of inertia of the cross~scction of the 
bar and G = HO GN/m2 is the :~hear modulus of the steel. Dctcrrnin' 
the required radius of the bars if the natural frequency of rotational 
vibrations of the disc is to be 10Hz. 

PIO.2 
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10.27 The moments of inertia of gcars A and B are fA = 
0.025 kg.m' and I. = 0.100 kg.m2

, Gear A is connected to a 
torsional spring WIth constant k= 10 N.mlrad, What is the natural 
frequency of small angular vibrations of the gears? 

PI0,27 

10,28 At t = O. the torsional spring in Problem 10.27 is 
unstrctched and gear B has a counterclockwise angular velocity 
of 2 rad/s. Determine the counterclockwise angular position of gear 
B relative to its equilibrium position as a flUlction of time. 

10.29 The moments of inertia of gears A and Bare 
IA=O,OI4kg.m2 and r.=O,IOOkg.m2. Gear A is connected to a 
torsional spring with Constant k=2N.mlrad. What is the natural 
frequency of small angular vibrdtions of the gears relative to their 
equilibrium position? 

PIO.29 

10.30 The 2 kg weightin Problem 10.29 israised 10 mm from its 
equilibrium position and released ,from rest at t = O. Determine the 
counterclockwise angular position of gear B relative to its equili­
brium position as a function of time. 

10,31 Each slender bar is of mass m and length t. Determine the 
natural frequency of small vibrations of the system. 

PIO,31 

10.32 The mass of each slender bar is I kg. If the natural 
frequency of small vibrations of the system is 0.935 Hz, what is 
the mass of the object A? 

1-' T 
2~O 

350 rnm 
mm 

~ 1. 
mm--1 PIO.32 

10.33 The slender bar of mass m and length t is held in 
equilibrium in the position shown by a torsional spring with 
constant k. The spring is unstretched when the bar is vertical. 
Determine the natural frequency of small vibrations relative to the 
equilibrium position shown. 

Pl0,33 



10.34 The masses of the slender bar and the homogeneom; disc 
arc m and mID respectively. The spring is un stretched when () = O. 
Assume that thi:: disc rolls on the horizontal surface. 
(a) shuw that the motion is governed by the equation 

(13m, 2) ,1'0 3m, . (dO)' -+- cos Ii --- 'mlleose -
3 2m dt' 2m dt 

g. k 2i Sill 0 + m (1 cos (I) sin e = 0 

(b) If the system is in equilibrium at the angle 8=(Je and 
H = () - Oe, show that the equation goveming small vibrations 
relative to the equilibrium position is 

10.35 The masses of the bar and disc in Problem 10.34 are 
m = 2 kg and md = 4 kg, respectively. The dimensions 1= 1 m and 
R=O.28m, and the spring constant is k=70N/m. 
(a) Dctcnninc the angle 01: at which the system is in equilibrium. 
(b) The system is at rest in the equilibrium position, and the disc is 
given u' clockwise angular velocity of 0, 1 rad/s. Detennine e as a 
function of time. 

10.2 Damped Vibrations 
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If you displace the mass of a spring-mass oscillator and release it, yon know 
that it won't continue to vibrate inder.niLely. It will slow down and eventually 
stop as a re,ult of frictional forces, or damping mechanisms, acting on the 
system. Damping mechanisms damp out, or attenuate, the vibration. In some 
cases, engineers intentionally include damping mechanisms in vibrating 
systems. For example, the shock absorbers in a car are designed to damp 
out vibrations of tbe suspension relative to the frame. Tn the previous section 
we neglected damping, so the solutions we obtained describe motions of 
systems only over periods of time brief enough that the effects of damping can 
be neglected. We now discuss a simple method for modelling damping in 
vibrating systems. 

The spring-mass oscillal:Or in Figure 10,9(a) has a damping element. The 
schematic diagram for the damping clement represents a piston moving in a 
cylinder of viscous fluid, which is called a dashpot, The force required to 
lengthen or shorten a damping element is defined to be the product of a 
constant c, the damping constant, and the rate of change of its length (Figure 
IO.9(b)). Therefore the equation of motion oflhe mass is 

dx d2x 
-c- kx=m 

dt 

(a) 

(bJ 

Figure 10.9 
(a) Damped spring-mass oscillator. 
(b) Free-body diagram of the mass. 
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By defining OJ = Jk/m and d = C/(2m), we can write this equation in the form 

(10.16) 

This equation describes the vibrations of many damped one-degrec-of-free­
dom systems. The form of its solution, and consequently the character of the 
predicted behaviour of the system, depends on whether d is less than, equal to 
or greater than OJ. We discuss these cases in the following sections. 

Subcntical Damping 
If d < OJ, a system is said to be subcritically damped. By assuming a solution 
of the form 

x = Celt (10.17) 

where C and }, are constants, and substituting it into Equation (10.16), we 
obtain 

This quadratic equation yields two roots for the constant A that we can write as 

A = -d ± iWd 

where i = J=T and 

(10.18) 

Because we ate assuming that d < w, the constant Wd is a real number. The two 
roots for A give us two solutions of the form of Equation (10.17). The resulting 
general solution of Equation (10.16) is 

where C and D are constants. By using the identity oie = cos 0 + i sin 0, we 
can express the general solntion in the form 

I x=c'·dt(ASinWdl+BCOSOJdt)] (10.19) 

where A and Bare constaots. Equation (10.19) is the product of an 
exponentially decaying function of time and an expression identical in form 
to the solution we obtained for an undamped system. The exponential function 
causes the expected effect of damping: the amplitude of the vibration 
attenuates with time. The coefficient d determines the rate at which the 
amplitude decreases. 

Damping has an importaot effect in addition to causing attenuation. 
Because the oscillatory part of the solmion is identical in form to Equation 



(10.5) except that the circular natural frequency w is replaced by Old, il follows 
from Equations (10.9) and (10.10) that the period and natural frequency of the 
damped system are 

(1020) 

From Equation (l0.18) we see that Old < Ol. so the period of the vibration is 
increased and its natural frequency is decreased as a result qf subcritical 
damping. 

The rate of damping is often expressed in lerms of the logarithmic 
decrement (5, which is the natural logarithm of the ratio of the amplitude at a 
time t to the amplitude at time t + To Since the amplitude is proportional to 
e -dl j we can obtain a simple relation between the logarithmic decrement, the 
coefficient d, and the period: 

Critical and Supe1rcritical Damping 
When d ~ w, the character of the solution of Equation (I O. 16) is very diiferent 
from the case of suberitic,,1 damping. Suppose that d> w. When this is the 
case, the system is said to be supcrcritically damped. We again substitute a 
solution of the form 

(10.21 ) 

into Equation (10.16), obtaining 

,l'+2d}+w' =0 (10.22) 

We can write the roots of 1this equation as 

,; = -d ± h 

where 

(10.23) 

The resulting general solution of Equation (10.16) is 

(10.24) 

where C and Dare "Onstmlts. 
When d = OJ, the system is said to be critically damped. The constant 

h = 0, so Equation (10.22) Ihas a repeated root,'\ = -d, and we obtain only one 
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solution of the form (10.21). Tn this case it can be shown that the general 
solution of Equation (10.16) is 

I x = Ce-dl + Ore-it I (10.25) 

where C and D are coustants. 
Equations (10.24) and (10.25) indicate that the motion of the system is not 

oscillatory when d ;;. w. They are expressed in tenns of exponential functions 
and do not contain sines and cosines. The condition d = OJ defines the mini­
mum amount of damping necessary to avoid oscillatory behaviour, which is 
why it is referred to as the critically damped case. Figure 10.1 0 shows the 
effect of increasing amounts of damping on the behaviour of a vibrating 
system. 

The concept of critical damping has important implications in the design of 
many systems. For example, it is desirable to introduce enough damping into a 
car's suspension so that its motion is not oscillatory, hut too much damping 
would cause the suspension to be too 'stiff'. 

Figure 10.10 
Amplitude history of a vibrating system that is 

(a) undamped; (b) subcrilically damped; 
(e) critically damped; (d) sllpercritically 

damped. 

~ [t:::::::::::d~>~W==~~~ (d) i 
<'i 

In the following examples we anatyse damped one-degree-of-freedom 
systems. By expressing the equation of motion of the system in the form 
of Equation (10.16), you can determine d and OJ. Their value .• tell yau 
whether the damping is "ubcr/tical, critical or slIpercritical, which indicates 
the form of solation you should use: 

Type of Damping Solullon 

d<(J): Subcritieal Equation (10.19) 

d=w: Critical Equation (l0.25) 

d> w: Supercritical Equation (10.24) 



The damped spring-mass oscillator in Figure 10. 9(a) has mass m = 2 kg, spring 
constant k = R N/m and damping constant c = 1 N.s/m. At 1 = 0, the mass is released 
from rest in the position x = 0.1 m. Detennine its position as a function of time. 

SOLUTION 

The constants w = .jk/m = .zradis and d=d2m=O.25radis, so the damping is 
suberitieal and the motion is d,eseribed by Equation (10.19). From Equation (10.1 R), 

From Equation (10.19), 

x = e-025'(A sin 1.981 +B cos 1.981) 

and the velocity of the mass is 

~; = - 0.25e-025'(A sin 1.981 + B cos 1.981) 

+ e-o.25'(1.98A cos 1.981 1.98B sin 1.981) 

From the conditions x=O,1 m and dx/dl=O at 1=0, we obtain A=O.OI26 and 
B = 0.1 m, so the position ofthc mass is 

x = e-025'(O.OI26 sin 1.981 + 0.1 cos 1.981) m 

The graph of x for the first lOs of motion in Figure 10.11 clearly exhibits the 
attenuation of the amplitude. 

0.1 Figure 10.11 
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Position of the mass as a function of time. 
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(0) Using the instamancou:i centre 
to detennine the relationships between 
the velocities. 

(b) Free-body diagram of the disk. 

dx 
3c­

dl 

The 20kg stepped disc in Figure 10.12 is released from rest with the spring 
'llnstrctched. Detennine the position ofthc centre of the disc as a function oftirne if 
R = 0.3 m, k= 161 N/m, c = 64.4 N.s/m and the moment of inertia cxpre"ed in 
tenns of the mass m of the disc is 1::::: 3mR2. 

Figure 10.12 

SOLUTION 

Let x be the downward displacement of the centre ofthc disc relative to its position 
when the spring is unstrctched. From the position ofthc disc's instanlaneous centre 
(Figure (a», we can see that the rate at which the spring is stretched is 2(dxldl) and 
the rale at which the damping clement is lengthened is 3(dxldt). When the centre of 
the disc is displaced a. distance x, the extension of the spring is lx. 

We draw the free-body diagram of the disc in Figure (b), showing the forces 
exerted by the spring, the damping element and the tension in the cable. NeVoion IS 
second law is 

mg dx d'x 
T-2kx-3c-=m-

<it dt' 

and the equation of angular motion is 

The angular acceleration is related to the acceleration of the centre of the disc by 
0: = (d2x/dt2)JR. Adding the equation of angular motion to Newton's second law, 
we obtain the equation of motion 

By setting d'xldr and dx/clt equal to zero in this equation, we determine that the 
equilibrium position of the disc is x;;;;: mg/4k. Rewriting the equation of motion in 
terms of the variable x =x - mRl4k. we obtain 



This equation is identical in [oml to Equation (10.16). where the constants d and (j) 

are 

9" (9)(64.4) 
d = ~m = (8)(20)~ 3.62 Tad/s 

w = (£ = fl6i ,= 2.84 rad/s V;;; '120 
The damping is ,upercritiea1, so the motion is described by Equation (10.24) with 
h = .j d2 - W' = 2.25 radls: 

.1: = Ce-(d-h)1 -t- De-(d+h)1 = Ce~1.371 + De~5.87r 

The velocity is 

di t 37C 1.37/ 5.v7Dc .. ·5S7t dt = -..e 0 

At t=O, x = -mg/4k -0.3 m and eli/dt = O. From these conditions, we obtain 
C = 0.384 TIl and D = 0.084 tn, so the position of the centre of the disc relative to 
it~ equilibrium position is 

i = -0.384c~1 371 + O.084e~SJ!7t m 

We show the graph of the position for the first four seconds of mati on in Figure 10.13. 

Figure 10.13 

10.2 DAMPED VIBRATIONS 

Position of the centre of the disc as a 
function of time. 
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10.36 (a) What are the natural frequency and period of the 
spring-mass oscillator described in Example 1O.3? (b) What arc 
the natural frequency and period if the damping element is 
removed? 

10.37 (a) What value of c is necessary for the stepped disc in 
Example 10.4 to be critically damped? (b) If e equals the value you 
determined in part (a) and the disc is released from rest with the 
spring unstrctched, determine the position of the centre of the disc 
relative to its equilibrium positlon as a function of time, 

10.38 The damping constant of the damped spring·mass oscil­
lator is c = 20 N.s/m. What are the period and natural frequency 0 f 
the system? Compare them with the period and natural frequency 
when the system is undamped. 

JOkg 

PIO.36 

10.39 At t=O, the position ufthe mass in Problem 10.38 relative 
to its equilibrium position is x = 0 and its velocity is 1 mls to the 
right. Dctennine x as a function of time. 

10.40 In Problem 10.38, what value of the damping constant c 
will cause the amplitude of vibration of the system to decrease to 
one~half of its initial value in 10 s? 

10.41 At t=O, the position of the mass in Problem 10.38 is x = 0 
and it has a velocity of 1 m/::; to the right. Detennine x as a function 
of time if c has twice the value necessary for the system to be 
critically damped. 

10.42 The homogeneous slender bar is 1 m long and weighs 
40 N, Aerodynamic drag and friction at the support exert a resisting 
moment on the bar of magnitude O.5(deldt) N.m, where dOldt is the 
angular velocity of the bar in rod/s. 
(a) What arc the period and natural frequency of small vibrations of 
the bar? 
(b) How long doe, it take for the amplitude of vibration to deercase 
to one-half of its initial value? 

1-\ 
PI0.42 

10.43 If the bar in Problem 10.42 is displaced a small angle eo 
and released from rest at 1=0, what is 0 as a funcnon of time? 

10.44 The radiu, of the pulley is R = 100 mm and its moment of 
inertia is I=: 0.1 kg,m2. The mass m = 5 kg, and the spring constant 
is k= l35N/m. The cable does not slip relative to the pulley. The 
coordinate x measures the displacement of the mass relative to the 
position in which the spring is unstretched, Detenninc x as a 
function of time if c= 60 N.sltn and d,e systcm is released from 
rest with x = o. 

PI0.44 

10.45 For the system described in Problem 10.44, detennine x as 
a function of time if c = 120 N,s/m and the system is released from 
rest with x = O. 

10.46 For the system described in Problem 10.44. choose the 
value of c so that the system is critically damped and detennine x as 
a function of time jf the system is released from rest with x = 0, 



10.47 The homogeneous disc weighs 450 N and it') radius is 
R = OJ m. It rolls on the plane surface. The spring constant is 
k = 1500 Nlm and the damping constant is c = 45 N.,/m. Deter­
mine the natural frequency of small vibratIQns ofthc disc relative to 
its equilibrium posItion. 

PIO.47 

10.48 I~ Problem 10.47. the spring is unstretched at t = 0 and the 
disc has a clockwise angular velocity of 2 rad/s. 'What is the angular 
velocity of the disc when t = 3 s? 

10.49 The moment of inertia ofthe stepped disc is f. Let e be the 
angular displacement of the dis(' relative to its position when the 
spring is unstretched. Show that the equation governing 0 is 
identical in fonn to Equation (10,16), where 

R2c 2 4R'k 
d= and (jJ = 

1 __ ' e , 

PIO.49 

10.50 In Problem 10.49. the radius R=250mm, k= 150N/m 
and lht; moment of inertia of the disc is I=2kg.m2

. 

(a) What value of c will cause the system to be critically damped'? 
(b) At t = 0, the spring is un stretched and the clockwise angular 
velocity of the disc is lOrad/s. Determine f} as a function of time if 
the system is critically damped, 
(e) Using the result of part (b), determine the maximum resulting 
angular displacement of the disc and the time at which it occurs. 

10.51 The moments of inertia of gears A and B arc 
fA = 0025 kg.m' and ili 0.100 kg.m2 Gear A is connected to a 
torsional spring with constant k = 10 N.rn/rad. The bearing sup­
porting gear B incorporates a damping element that exerts a 
resisting moment 011 gear B of magnitude 2(dOB/dt) N.m, where 
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dOB/d! is the angular velocity of gear B in rad/s. What is the 
frequency of small angular vibrations of the gears'? 

PIO.51 

10.52 At t=O, the torsional spring III i'l'0blem 10.51 is 
lUlstretched and gear B has a counterclockwise angular velocity 
of 2 rad/s. Dctcnnine the counterclockwise angular position of gear 
B relative to its eqUilibrium position as a function of time. 

10.53 The moments of inertia of gears /1 and B arc 
i A =O.014kg,m2 and [s=O.lOOkg.m2• Gear A is connected to a 
torsional spring with constant k;:::::: 2 N.m/rad. The bearing support~ 
ing gear B incorporates a damping element that exerts a resisting 
moment on gear B of magnitude l.5(deR/dt)N.m, where dOB/dt is 
the angular velOCity of gear B in l1ld/s. What is lhe frequency of 
small angular vibrations of the gears? 

PIO.53 

10.54 The 2 kg mass in Problem 10.53 is mised 10 nun from its 
equilibrium position and released from rest at t = O. Dctcnninc the 
counterclockwise angular posItion of gt:ar B rela! Ive to its equili~ 
brium position as a function of time. 

10.55 For the case of critically damped motion, cunfinn that the 
expression 

x = Ce ·de + Dte~dl 

is a solution of Equation (10.16). 
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10.3 Forced Vibrations 
.~~~--~~~~~~--

Figure 10. 14 
(al A damped spring-mass 

oscillator subjected to a time~ 
dependent force. 

(b) Free-body diagram of the 
mass. 

The tenn forced vibrations means that external forces affect the vibrations of 
a system. Until now, we have discussed free vibrations of systems, vibrations 
unaffected by external forces. For example, during an earthquake, a building 
undergoes forced vibrations induced by oscillatory forces exerted on its 
foundations. After the earthquake subsides, the building vibrates freely until 
its motion damps out. 

The damped spring-mass oscillator in Figure 10.14(a) is subjected to a 
horizontal time-dependent force F(I). From the free-body diagram of the mass 
(Figure IO.14(b»), its equation of motion is 

dx d2x 
F(r) - kx - c- = m-

dt dt' 

(al (b) 

Defining d = C/2m, w2 = kim and aCt) = F(t)lm, we can write this equation in 
the fonn 

(10.26) 

We call art) the forcing function. Equation (10.26) describes the forced 
vibrations of many damped, one-degree-of-freedom systems. It is non-homo­
geneous, because the forcing function does not contain x or one of its 
derivatives. Its general solution consists of two parts, the homogeneous and 
particular solutions: 

The homogeneous solution Xh is the general solution of Equation (10.26) with 
the right side set equal to zero. Therefore the homogeneous solution is the 
general solution for free vibrations, which we described in Section 10.2. The 
particular solution xp is a solution that satisfies Equation (10.26). In the 
following sections we discuss the particular solutions for two types of forcing 
functions that occur frequently in applications. 



OSCillatory Forcing Function 
Unbalanced wheels and shafts exert forces that oscillate at their freqnency of 
rotation. When your car's wheels are out of balance, they exert oscillatory 
forces thilt cause vibratJOns you can feel. Engineers design electromechanical 
devices that transform oscillating currents into oscillating forces for use in 
testing vibrating systems. But the principal reason we are interested in this 
type of forcing function is thalt nearly any forcing function can be represented 
as a sum of oscillatory forcing functions with several different frequencies or 
With a continuous spectrum of frequencies. 

By studying the motion of a vibrating system subjected to an oscillatory 
forcing function, we can detClmine its response as a function of the frequency 
of the force. Suppose that the forcing function is an oscillatory function of the 
form 

art) = ao sin wot + bo cos wot (10.27) 

where Go, bo and the circular frequency of the forcing f,mction Wo are given 
constants. We can obtain the particular solution to Equation (10.26) by seeking 
a solution of the form 

Xp = Ap sin mot + Bp cos wot (10.28) 

where Ap and Bp arc constants we must detemline. Substituting this expression 
and Equation (10.27) into Equation (10.26), we can write the resulting 
equation as 

(-wiAp - 2dwoBp + 0)' Ap - ao) sin mot 

+ (-{J)~Bp + 2dwoAp + w2 Bp - bo) cos (Vot = 0 

Equating the coefficients of sin wot and cos Wilt to zero and solving for Ap and 
Bp, we obtain 

(10.29) 

Substituting these results into Equation (10.28), the particular solution is 

(10.30) 

The amplitude of the particullar solution is 

(10.31) 

We showed in Section 10.2 that the solution of the equation describing free 
vibration of a damped system attenuates with time. For this reason, the par-
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ticular solution for the motion of a damped vibrating system subjected to an 
oscillatory external force is also called the steady-sta.te solution. The motion 
approaches the steady-state solution with increasing time. (See Example 10.5.) 

We illnstrate the effects of damping and the frequency of the forcing 
function on the amplitude of the particular solution in Figure 10.15. We plot 
the non-dimensional expression ro2Ep/ Jar:t7lci as a function of roo/w for 
several values of the parameter d/w. When there is no damping (d = 0), the 
amplitude of the particular solution approaches infinity a~ the circular fre­
quency roo of the forcing function approaches the circular natural frequency w. 
When the damping is small, the amplitude of the particular solution approa­
ches a finite maximum value at a value of Wo that is smaller than OJ. The 
frequency at which the amplitude of the particular solution is a maximum is 
called the resonant frequency. 

Figure 10.15 
Amplitude of the particular (steady-state) 
solution as a function of the frequency of 

the forcing function. 

2 

The phenomenon of resonance is a familiar one in our everyday experience. 
For example, when a wheel of your car is out of balance, you notice the 
resulting vibrations when the car is moving at a certain speed. At that speed, 
the wheel rotates at the resonant frequency of your car's suspension. Reso­
nance is of practical importance in many applications, because relatively small 
oscillatory forces can result in large vibration amplitudes that may cause 
damage or interfere with the functioning of a system. The classic example is 
that of soldiers matching across a bridge. lftheir steps in unison coincide with 
one of the bridge's resonant frequencies, they may damage it even though the 
bridge can safely support their weight. 

Polynomial Forcing Function 
Suppose that the forcing function aCt) in Equation (10.26) is a polynomial 
function of time: 

where at, a" ... , aN arc given constants. This forcing function is important 
in applications because you can approximate many smooth functions by 



polynomials over a given inllerval of time. Tn this case, we can obtain the 
particular solution to Equation (10.26) by seeking a solution of the same form: 

(10.32) 

where Ao. AI, A, •.... AN are constants we must determine. 
For example, if art) = ao + a, t, Equation (10.26) is 

d2x dx 2 
-d' +2d-

d 
+w x = ao +a,t 

t" t 
(l0.33) 

and we seek a particular solUilion of the form xp = Ao + A I t. Substituting this 
solution into Equation (10.33). we can write the resulting equation as 

This equation can be satisfied over an interval of time only if 

and 

Solving these two equations for Au and A" we obtain the particular solution: 

xp = (au 2dadw' + Glt)/W' 

You should confirm that this is a solution by substituting it into Equation 
(10.33 ). 

In the following examples we analyse jorced vibrations of one-degree-oj: 
freedom systems. After expr, .. sing the equation of motion of the .• ystem in 
the farm 

you must usua/ly determine ilhe homogeneous and particular solutions. The 
forms of the homogeneous solution are given in Section 10.2. 
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An engineer designing a vibration isolation system for an instrument console 
models the console and ISolation system by the damped spring-mass oscillator in 
Figure 1O.14(a) with rna,s m=2kg, spring constant k=RN/m and damping 
constant c =: 1 N.s/m. To determine the system's response to external vibration, 
she assumes that the mass is initially stationary with the spring unstrctched, and at 
1=0 a force 

F(t) = 20 sin 4t N 

is applied to the mass. 

(a) What is the amplitude of the particular (,teady.state) solution? 
(b) What is the position of the mass as a function of time? 

STRATEGY 

The forcing function is a(t);;;;: F(t)Jm = lOsin4t m/52, which is an oscillalory 
function of the form of Equation (10.27) with ao= IOml,2, bo = 0 and Wo =4radls. 
The amplitude of the particular solution is given by Equation (I OJ I ), and the 
particular solution is given by Equation (10.30). We must also detennine whether 
the damping is subcritical, critical or supcrcritical and choose the appropriate form 
of the homogeneous solution. 

SOLUTION 

(al The circular natural frequency of the undamped system is OJ = .Jk/m; 2radls 
and the constant d = cI(2m) = 0.25 rad/s. Therefore the amplitude of the particular 
solution is 

E _aD 10 

p - j(w2 _ '"6)2; 4d2W~ ,1[(21' - (4)21' + 4(025)'(4), 

= 0.822 m 

(b) Since d < w, the system is subcritically damped and the homogeneous solution is 
given ~y Equation (10.19). The circular frequency of the damped system is 
(t)d = OJ2 - d 2 = 1.98 rad/s, so the homogeneous solution is 

x" = e~o25I(A sin 1.98t + B cos 1.98/) 

From Equation (10.30). the particular solution is 

Xp = -0.811 sin 4t - 0.135 cos 4t 

and the complete solution is 

X=Xh+Xp 

= e-o.25t(A 'in 1.981 + B cos 1.981) - 0.811 sin 4t - 0.135 cos 41 

At t = 0, x = 0 and dx/dt = O. Using these conditions to detennine the constants A 
and B, we obtain A= 1.651 m and B:0.135m. The position of the mass as a 
function of time is 

x = [e~021'(l.651 sin 1.98t + 0.135 cos 1.98t) 

0.811 sin 41 - 0.135 cos 4tJ m 



Figure 10.16 shows the homogeneous. particular and complete solutions for 
the first 25 seconds of motion. The complete solution has an initial 'transient' 
phase due to the homogeneous part of the solution. As the homogeneous solu~ 
tion attcnuates~ the complete solution approaches the particular~ or steady-state, 
solution. 
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2 Figure 10.16 
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Figure 10.17 

T 2kx 

F(t) 

(0) Free-body diagram of the disk. 

Example 10.6 

The homogeneous disc in Figure 10.17 has radius R = 2 m and mass m = 4 kg. The 
spring constant is k=30N/m. The disc is initially stationary in its equilibrium 
position, and at 1= 0 a downw,,,d foree F(I) = (12 + 121 - 0.6r) N is applied to the 
centre of the disc. Detennine the position of the centre of the disc as a function of 
time. 

STRATEGY 

The force F(I) is a polynomial, so we can seek a particular solution of the form of 
Equation (10.32). 

SOLUTION 

Let x be the displacement of the centre of the disc relative to its position when the 
spring is unstretched. We draw the free-body diagram of the disc in Figure (a), 
where Tis the (ension in the cable on the left side of the disc. From Newton's second 
law, 

Vet) + mg - 21<,. - T = m ~:; (10.34) 

The angular acceleration of the disc in the clockwise direction is related to the 
acceleration of the centre of the disc by" = (d'x/dP)/R Using this expression, we 
can write the equation of angular motion of the disc as 

TR - 2k<R = -mR --(I 2) (I d2X) 
2 R dl2 

Solving this equation for T and substituting the result into Equation (10.34), we 
obtain the equation of motion 

(10.35) 

Setting d'x/dP = 0 and F(I) = 0 in this equation, we find thai the equilibrium 
position of the disc is x = mg/4k, In tenns of the position of the centre of the disc 
relative to its equilibrium position, x = x - mg/4k, the equation of motion is 

d';; 8k _ 2F(t) 
-+_··x=--
dt' 3m 3m 

This equation is identical in form to Equation (10.26). Substituting the values of k 

and m and the polynomial function Vet), we obtain 

d'-
di~ +20.1' = 2 +2t- O.lt' (10.36) 

Comparing this equation with Equation (10.26), we see that d=O (there is no 
damping) and ())2=20 (radlsl From Equation (10.19), the homogeneous solution 
is 

Xh = A sin 4.4721 + B cos 4.472t 



To obtain the particular solution, we seek a solution in the fonn of a polynomial 
of the same order as F(I): 

where Au. A i and A 2- are constant~, we must detennine. We substitute this expression 
into Equation (10.36) and collect tenns of equal powers in t: 

(lA, + 20Ao - 2) + (20A l - 2)1 + (20A, + 0.1)12 = 0 

This equation is satisfied if the cocffic1cnts multiplying each power of t equal zero; 

2A2 + 20Ao = 2 

20A l = 2 

20A, = -0.1 

Solving these three equations for An, A I and Az, we obtain the particular solutiun: 

Xp = 0.101 +01001 - 0.005t' 

The complete solution is 

X=Xh+Xp 

= A sin 4.4721 + B cos 4.4721 + 0.101 + 0.100t - O.OOSt' 

At 1=0, .t = 0 and dxjdl = O. Using these conditions to determine A and B. we 
obtain the position of the centre of the disc as a function of time: 

.i' = -0.022 sin 4.4 71 - 0.100 cos 4.471 + 0.101 + 0.1 001 0.005t2 

The position is shown for the fir:~t 25 s of mOlion in Figure 10.18. You can see the 
undamped oscillatory homogeneou~ solution superimposed on the slowly varying 
particular solution. 

Figure 10.18 
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Position of the centre of th~: disc as a 
function of time. 
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Application to Engineering 
~~~~------~~~~----------

Figure 10. 19 

Displacement Transducers 

A damped spring~mass oscillator, or a device that can be modelled as a damped 
spring-mass oscillator, can be used to measure an object's dlsplacement. Suppose 
that the base of the spring-mass oscillator in Figure 10.19 is attached to an object, 
and the coordinate Xi is a displacement to be measured relative to an inertial 
reference frame. The coordinate x measures the displacement of the mass relative to 
the base. When x = 0, the spring is unstretched, Suppose that the system is initially 
stationary, and at t;::::: 0 the base undergoes the oscillatory motion 

(10.37) 

Ifm =2kg, k=8 N/m, r=4N.s/m, a;=O.1 m, b;=O,1 mand OJ, = IOradis, what is 
the resulting steady-state amplitude of the displacement of the mass relative to the 
base? 

SOLUTION 
TIle acceleration of the mass relative to the base is d2x/dt2, so its acceleration 
relative to the inertial reference frame is (d'x/dt2

) + (d'x,/dt'), Newton's second 
law for the mass is 

-c--kx=m -+-dx . (d
2
x d

2Xi) 
dt dt' dt' 

We can write this equation as 

where d=cI2m= I radis, W =.ff/ni = 2rad/s and the function aCt) is 

(10,38) 

Thus we obtain an equation of motion identical in form to that for a spring~mass 
oscillator subjected to all oscillatory force. Comparing Equation (10.38) to Equation 
(10.27), we can obtain the anlplitude offue particular (steady-state) solution ITom 
Equation (10.31) by setting ao = Ojwt, bo = bjwt and Wo = (Vi: 

Ep 

Therefore the steady-state amplitude of the displacement of the mass relative to its 
base is 

(10.39) 



DESIGN ,ISSUES 

A microphone tranSfOnTIR sound waves into a varying voltage that can be recorded 
or transformed back into sound w.ilves by a loudspeaker. A device that transfonns a 
mechanical input into an electromagnetic output, or an electromagnetic input into a 
mechanical output, is called a transducer. Transducers can be used to measure 
displacements, velocities and accdcrations by transforming them into mcasurdble 
voltages or currents. 

In the case ofthe spring~mass oscillator in Figure 10.19; the coordinate Xi is the 
displacement to be measured. the input. A transducer can be used to measure the 
displacement x of the mass relative to the base, the output. If the relationship 
between the input and output is known, the displacement Xi can be determined, 
Some seismogrnphs (Figure 10.20) measure motions of the earth in this way. 

If Lhe input is an oscillatory displacement given by Equation (10.37), the 
amplitude of the output is given by Equation (10.39). We ean write the latter 
equation a$ 

where El '* Jar + 'R is the amplitude of the input. In Figure 10.21 we show the 
ratio EplEi as a function of the ratio of the input frequency to the natural frequency 
of the undamped system, (1)/(1>, for several values of dim, If the parameters of the 
spring-mass oscillator are known, you can usc a graph of this type to detemline the 
amplitude or the input by measuring the amplitude of the output. 

In practice, the input displacement does not usually have a single fl'equency, but 
consists of a combmation of different frequencies or even a continuous spectrum 
of frequencies. For example, the' displacements resulting from earthquakes have 
n specttUlll of frequencies. In that case; it is desirable for the ratio of the output 
amplitude to the input amplitud(: to be approximately equal to lover the range 
or the input frequencies. The response of the instmment is said to be 'flat'. In 
Figure 10.21 you can see that the response is approximately flat for frequencies w, 
greater than about 2w if the damping of the system is chosen so that dim is in 
the range 0.6-0.7, Also, notice that making the natural frequency w small increases 
the range of input frequencies over which the response of the inslrument is fiat. 
For that reason, seismographs are often designed with large masses and relatively 
weak springs. 

1.4 r--~--!C"_"'.~-------~ Figure 10.21 
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Figure 10.20 

A sej'smograph that meaflUrC51 thc local 
displacement or the earth, 
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10.56 The mass m =2 kg and k=200 N/m. Let x be the position 
of the mass relative to its position when the spring is unstretched. 
The force F(I)=36sin8tN. 
(a) Detennine the particular solution. 
(b) At 1= o. X= I m and the velocity oflhe mass is zero. Determine 
x as a function of time. 

PIO.56 

10.57 The damped spring-mass oscillator is initially stationary 
with the spring unstretched. At t = 0, a constant 1.2 N force is 
applied to the mass. 
(aJ What is the steady-state (particular) solution? 
(b) Detennine the position of the mass as a function of time. 

12Nlm 
1.2 N 

Strategy: To dctcnnine the particular solution, seek a solution of 
the form 

8, = Ap + B,c" 

where Ap and Bp are constants that you must dctcnnine. 

) Mit) 

PIO.58 

10.59 The stepped disc weighs 90 N and its moment of inertia is 
1= 0.8 kg.m'- It rolls on thc horizontal surface. The disc is initially 
stationary with the spring unstrctchcd, and at t = 0 a constant force 
F = 45 N is applied as shown. Dcknnine the position of the centre 

PIO.57 of the disc as a flmction of time. 

10.58 A disc with moment of inertia I rotates about a fixed shaft 
and is attached to a torsional spring with constant k. The angle () 
measures the angular position of the disc relative to its position 
when the spring is unstretched. The disc is initially stationary with 
the spring un stretched. At t = 0, a timcwdcpcndent moment 
M(t) = Mo(i e'l) is applied to the disc. where Mo is a constant. 
Show that the angular position of the disc as a function of time is: 

Mo[ I. I o = ~ - l sm m( - 2( ') cos Wi I w(l+w) IV 1+(0 

P10.59 



10.60 An electric motor is bolted to a metal table. When the 
motor is 00, it causes the tabletop to vibrate horizontally. Assume 
that the legs of the table behave like linear springs and neglect 
damping. The total weight of thc motor and the tabletop is 650 N. 
When the motor is not turned on, the frequency of horizontal 
vibration of the tabletop and motor is 5 Hz. When the motor is 
running at 600 rpm (revolutions per minute), the amplitude of the 
horizontal vibration is 0.25 mm, What is the magnitude of the 
oscillatory force exerted on the table by the motor at this speed'! 

Pl0.60 

10.61 The moments of inertia of gcan; A and B are 
i A =0.OJ4kg.m' and '.=O.100kg.m'. Gear A is connected to a 
torsional ~ring with constant k = 2 N.m/rad. The system is in 
equilibrium at t = 0 when it is s,ubjected to an oscillatory force 
F(t)=20sin3tN. What is the downward displacemeJlt of Ore 2kg 
mass as a function of time? 

PI0.61 
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10.62 A 1.5 kg cylinder is mO\.mh::d on a 'snng' in a wind tunncl 
with the cylinder axis transverse to the flow direction. When there 
is no flow1 a 10 N velikal torce applied to the cylinder causes it to 
deflect 0.15rnm. When air flows in the wind tunnel, vortices 
subject the cylinder to altematillg lateral forces. The velocity of 
the air is 5 mIs, the distance be1ween vortices is 80 mm, and the 
magnitude of the lateral forces is IN. If you model the lateral 
forces by the oscillatolY function F(t) = (1.0) sin wot N, what is the 
amplitude of the steady-state lateral motion of the sphere? 

PI0.62 

10.63 Show that the amplitude of the particular ",)ution given by 
Equation (10.31) is a maximlim when the frequency of the 
oscillatory forcing function is (00 :::::;, 

Problems 10.64-10.67 are mlated to Example 10.7. 

10.64 The mass in Figure 10.19 is 25 kg. The spring constant is 
k=3kN/m and c=150N.s/m. If the base is subjected to an 
oscillatOlY displacement XI of amplitude 250 rrun and circular 
frequency Wi = 15 rudis, what is the resulting steady-state ampli­
tude of the displacement of the mass relative to th·, base? 

10.65 The mass in Figure 10.19 is 100 kg. The spring constant is 
k=4N/m, and c=24N.s/m. The base is subjected to an oscilla­
tory displacement of circular frequency w, = 0.2 fad/so The steady­
state amplitude of the displacemc~nt of the mass relative to the base 
is measured and determined to be 200 rnm. What is the amplitude 
of the displacement of the base? 
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10.66 A team of engineering students builds the simple seismo­
graph shown. The coordinate Xi measures the local horizontal 
ground motion. The coordinate x measures the position of the 
mass relative to the frame of the seismograph. The spring is 
unstretched when x=o. The mass m=lkg. k=ION/m and 
c = 2 N,s/m. Suppose that the seismograph is initially stationary 
and at t = 0 it is subjected to an oscillatory ground motion 
Xj= 10 sin 2tmm. What is the amplitude of the steady-state 
response of the mass'! 

TOPVtEW 

x 

SIDE VIEW 

10.68 A sonobuoy (sound-measuring device) floats in a standing 
wave tank. It is a cylinder of mass In and cross-sectional area A. 
The water density is p, and !he buoyancy force supporting the buoy 
equals the weight of the water that would occupy the volume of thc 
part of the cylinder below the surface. When the water in the tank is 
stationary, the buoy is in equilibrium in the vertical position shown 
in Figure (a), Waves are then generated in the tank, causing the 
depth of the water at the sanobuoy's posit jon relative to its original 
depth to be d~ do sin (j)ot. Lcty be th~ sonobuoy's vertical position 
relative to its original position. Show that the sonobuoy's vertical 
position is governed by the equation 

d2
y (APg) (APg) . 

dt'+ m Y= m dosm wot 

Pl0.68 

10.69 Suppose that the mass of the sonobuoy in Problem 10.68 
Pl0.66 is m= 10 kg, its dianleter is 12Smm, and the water density is 

p= 1025kg/m'.lfthc water depth is d=O.l sin2tm, what is the 
magnitude of the steady-state vertical vibrations of the sonobuoy? 

10.67 In Problem 10.66, dctcmline the position x of the mass 
relative to the base as a function of time. 
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Computational Mechanics 
~~~~~~~~.~~--

1he material in this section is designed jor the use ofa programmable calculator or 
computer. 

In Section 10.1 we derived the equation of motion for a pendulum consisting of a 
slender oar (Figure 10.22), obtaining 

(10.40) 

By assuming that the vibrati{)nti were suflkiently small to make the approximation 
sin 0 = 0, we obtained the equation for a spring-mass oscillator. But suppose that the 
vibrations are not small, and w'e carmol linearize the equation of motion. How can 
we detennine the pendulum '5 motion? 

When systems undergo large-amplitude vibrations, the differential equations 
describing their motions are usually non-linear. Although an analytical solution of 
Equation (10040) exists, in most instances you c.amlot obtain closed-form solutions 
to such equations, Even when an analytical solution is possible for the unforced 
system, it may be subjected to external forces that are too complicated to permit a 
closcd~fonn solution. 

We c~n obtain approximate solutions to sl.lch problems by numerical integration. 
Let's consider an equation of motion that is sufficiently general to include most onc­
degree-of-freedom vibrating systems. Suppose that the acceleration is a function of 
the time, position and velocity: 

d'x ( dX) 
ill' =1 I,x, ill 

By defining v=dxldt, we can I~xpress the equations governing the system as two 
first-order dillCrcntial cquatiom:: 

d< 
-=1' 
dl 

(10041) 
il, 
dl = 1(1, x. 11) 

We can approximate the values of x and t' as functions of time by using Euler's 
method . .Assuming that at a certain time to we know the values x(to) and v(to), we 
determine their values at to + t1t by approximating the derivatives in Equation 
(10.41) by forward differences: 

x(lo + M) x(lo) + v(to ).1.t 

v(to + .1.t) = v(to) + f(lo, x(lo), v(to».1.t 

We then repeat the procedure, using x(to + ~t) and v{to + At) as initial conditions to 
determine the values of x and v:at to + 2LlI, and so on. In this way, we can detennine 
the position and its rate of change as functions of lime lor a onc~dcgrcc-o[ .. frcedom 
system. 

Figure 1(J.22 

A pendulum in the form of a slender bar. 
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The pendulum in Figure 10.22 is 1 rom long and is released from rest with an initial 
displacement 80 - Detennine () as a function of time from t::::;:: 0 to t = 4 s for the caSeS 
00 =2",45" and 90". 

SOLUTION 

We can express the pendulum's equation of motion, Equation (10.40), as two first~ 
order equations of the same forms as Equation (10041): 

dO 
-=(0 
dt 

dw 3g . 
21 Sill & 

Let us consider the cas'e 00 = 45° I and let At = 0.0 I s. At the initial time to = 0, 
0(10) = 45" = O.7854rad and w(to) = O. At time to + dl= 0.01 s, the angle is 

OCto + dt) = OCto) + w(to)dl : 

8(0.0 I) = 0(0) + w(O)~t 

= 0.7854 + (0)(0.01) '" 0.7854 rad 

The angular velocity is 

w(to + At) = w(lo) + [ - ;~ sin (8(10)) ]~I : 

0>(0.1)=0 
(3)(9.81) . 

(2)(\) sm (0.7854)(0.01) = -0.1041 radls 

Using these values as the initial conditions for the next time step, the angle and 
angular velocity at t = 0.02 s are 

0(0.02) 0.7R54 + (-0.1041)(0.01) = 0.7844 rad 

w(0.02) -0.1041 - (3l;~(~)I) sin (0.7854)(0.01) = -0.2081 md/s 

Continuing in this way, we obtain the following values for the first five time steps: 

Time, S e, rad (.I), radls 

0.00 0.7854 0.0000 

0.01 0.7854 -0.1041 

0.02 0.7844 -0.2081 

0.03 0.7823 -0.3120 

0.04 0.7792 -0.4158 

0.05 0.7750 -0.5192 



In Figure 10.23, we compare the nwnerical solutions for the angle (normalized by 
its imtlal value 00 =45°) obtained usmg l\t=O,OI s. 0,Q01 sand 0,Q005 s, Trials 
with smaller time intervals indicate that I.\t = 0,0005 S closely approximates the 
exact fl(lJution over this interval of time, Using fl.t = 0.0005 s~ we obtain the 
solutiolh' for lio=2", 45" and 90" shown in Figure 10.24, The normalized results 
for the ~ifferent initial amplitudes arc qualitatively similar, but the period of the 
vibrations increases with increasing amplitude - the bar takes longer to make larger 
swings. 
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Figure 110,23 

Numerical solutions for 80 == 45'" using 
different values or M. 

Figure 11),24 

Position of the bar a5l a function of time for 
diJferent initIal displacemen1::;:. 
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Usmg l\t=o,QOJ s, determine the displacement and velocity of 
the wall for the fIrst fIve time steps, 

10,70 The pendulum described in Example 10,8 is released 
ITom rest with Do 2'''. Using At::::= 0,01 s, calculate the values of 
the angle and angular velocity for the flIst five time steps, 

10.71 The pendulum described in Example 10.& is released 
from rest with eo = 2°. By linearizing the equation of motion, 
obtain the closed-foTIn solution for the angle as a function of 
time. Dmw a graph comparing your solution for the angle in 
degrees from t = 0 to t = 4 s with the numerical solution obtained 
using tlt=O,OI s, 

PIO, 

10.72 In his initial design of a wall to protect workers in the 
event of explosion of a chemical reactor, an engineer assumes 
that the wall behaves like a spring-mass oscillator with a mass of 
4380 kg and a spring constant of 146 kN/m, He models the blast 
force exerted on the wan by the function F = 292tc -41 kN. 

10,73 Using tlt=O,OOl s, obtain graphs of the displacement 
and velocity of the wall described in Problem 10,72 from t = 0 to 
t= 2 s. 

Chapter Summary 
---------------------------

Conservative Systems 

Small vibrations of many onc-dcgree-of-frcedom conservative systems relative 
to an equilibrium posttion are governed by the equation 

Equation (10,4) 

where w is a constant detennined by the properties of the system, Its general 
solution is 

x=A sin wt+B cos WI Equadon (10,5) 

where A and B are constants, Its general solution can also be expressed in the 
form 

x = E sin (WI </» Equation (10,6) 

where the constants E and ¢ arc related to A and B by 

A=Ecos¢ B = -£sin ¢ Equation (10,7) 

The amplitude of the vibration is 

Elluation (10.8) 



The period T of the vibration is the time required for one complete oscillation, 
or cycle. The natural frequency / is the number of cycles per unit time. The 
period and natural frequency are related to w by 

2" 
t=­

{JJ 
Equation (10.9) 

f = w 
. 2n 

Equ:iltion (10.10) 

The teoo OJ = 27[/ is called the circular natural frequency. 

Damped Vibrations 

Small vibrations of many damped one-degree-of-freedom systems relative to 
an equilibrium position are governed by the equation 

Equation (10.16) 

Subcritical Damping If d < lV, the system is said to be suberitically 
damped. In this case, the general solution of Equation (10.16) is 

l:quation (10.19) 

where A and B are constants and Wd is defined by 

Equation (Jo.t8) 

The period and frequency of the damped vibrations are 

f Equation (10.20) 

Critical and Supercriticcli Damping If d > OJ, the system is said to be 
supercritieally damped. The general solutiol1 is 

x = Ce-Ia-h)t + De-(d+h)t Equation (10.24) 

where C and D are constarllts and h is defined by 

Equation (10.23) 

If d = w. the system is said to bc critically damped. TI,e general solution is 

Equation (10.25) 

where C and D are constants. 
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Forced Vibrations 

The forced vibrations of many damped, one-degree-of-fi'eedom systems are 
governed by the equation 

d2x dx 2 
-2 +2d-+w x=a(t) 
dt dt 

Equation (10.26) 

where aCt) is the forcing function, The general solution of Equation (10,26) 
consists of the homogeneous and particular solutions: 

The homogeneons solution Xh is the general solution of Equation (10.26) with 
the right side set equal to zero, and the particular solution xp is a solution that 
satisfies Equation (10.26), 

Oscillatory Forcing Function If aCt) is an oscillatory function ofthe fonn 

aCt) = ao sin wot + bu cos wut 

where aD, bo and Wo arc constants, the palticu1ar solution is (Equation 10.30) 

[
< W2 - w~)ao + 2dWObO] , 

.tp = " 2 2 2 8111 ("oot 
(OJ2 - Wo) + 4d OJo 

and its amplitude is (Equation 10,31) 

The particular solution for the motion of a damped vibrating system suhjected 
to an oscillatory external force is also called the steady-state solution, The 
motion approaches the steady-state solution with increasing time. 

Polynomial Forcing Function If a(t) is a polynomial of the fonn 

where aJ, Q2, , , "aN are constants, the particular solution can be obtained by 
seeking a solution of the same fonn: 

Equation (10,32) 

where Ab A2, , ",AN are constants that must be detennined, 



10.74 The mass of the slender bar is m. The spring is unstretched 
when the bar is vertical, The light collar C slides on the smooth 
vertical bar so that the spring remains hori:GontaL Determine the 
natural frequency of small vibrations of the bar. 

PIO.74 

10.75 A homogeneous hemisphere of radius R and mass m rests 
on a level surface. If you rotate the hemisphere slightly from its 
equilibrium position and release: it, what is the natural frequency of 
itl! vibrations? 

PIO.75 

10.76 The frequency of the spring-mass o<cillator is measured 
and determined to be 4.00 Hz. The spring-mass oscillator is then 
placed in a barrel of oil, and its frequency is determined to be 
3.HO Hz. What is the logarithmic decrement of vibrations of the 
mass when the oscillator is imJlrlersed in oil? 

PI0.76 
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10.77 Consider the oscillator irrunersed in oil described in 
Problem 10.76. If the mass is displaced 0.1 m to the right of its 
equilibrium pOSition and released from rest, what is its position 
relative to the eqUilibrium position as a function of time? 

10.78 The stepped disc weighs 90 N and its moment of inertia is 
1= O.Rkg.m'. It rolls on the horizontal surface. If c = 120 N.s/m, 
what is the frequency of small vibrations of the disc? 

240 N/m 

c 

PIO.78 

10.79 The stepped disc described in Problem 10.78 is initially in 
equilibrium, and at t = 0 it is given a clockwise angular velocity of 
1 rad/s. Determine the position of the centre of the disc relative to 
its equilibrium position as a fUllction of time. 

10.80 The stepped disc descmbcd in Problem I O. 7~ is initially in 
equilibrium, and at t = 0 it is given a clockwise angular velocity of 
1 fad/s. Determine the position of the centre of tlle dise relative to 
its equilibrium position as a flmction of time if (' = 240 N.s/m. 

10.8·1 The 22 kg platen P re~:ts on four roller bearings. The roller 
bearings can be modelled as 1 kg homogeneous cylinders with 
30 rum radii, and the 'pring cOnstant i, k = 900 N/m. The platen IS 

subjected to a force F(t) = 100 sil13t N. What is the magnitude of 
the platen'~ steady~state horizontal vibration? 

PIO.SI 
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10.82 At t~O, the platen described in Problem 10.81 is 0.1 m to 
the right or its equilibrium position and is moving to the right at 
2 mls. Determine the platen's position relative to its equilibricun 
position as a function of time. 

10.83 The base and mass m are initially stationary. The base is 
then subjected to a vertical displacement h sin Wit relative to its 
original position. What is the magnitude of the resulting steady. 
state vibration of the mass m relative to the base? 

PIO.83 

10.84 The mass of the trailer, not including its wheels and axle, 
is m, and the spring constant of its suspension is k To analyse lhc 
suspensionts behaviour, an engineer assumes that the height of the 
road sutface relative to its mean height is h sin (2nx12). Assume that 
the trailer's wheels remain on the road and its horizontal compo­
nent of velocity is v. Neglect the damping due to the suspension's 
shock absorbers. 
(a) Dctcnninc the magnitude of the trailer's vertical steady-state 
vibration relative to the road surface. 
(b) At what velocity v does resonance occur? 

P10.84 

10.85 The trailer in Problem 10.84, not including its wheels and 
axle, weighs 4450 N. The spring constant of its suspension is 
k ~ 35 kN/m, and the damping coefficient· due to its shock absor­
bers is c = 2920 N.s/m. The road surface parameters are h 50 mm 
and ,l ~ 2.44 m. The trailer's horizontal velocity is v ~ 1.25 mls. 
Determine the magnitude of the trailer's vertical steady~state 

vibration relative to the road surface: (al neglecting the damping 
due to the shock absorbers; (b) not neglecting the damping. 



A.I Algebra 

Quadratic Equations 
The solutions of the quadratic equation 

Natural Logarithms 
The naturallogarithrn of a positive real number x is denoted 
by Inx. It is defined (0 be ·the number slIch that 

a,l-+bx+c=O 

are 

2a 

I 

where e=2.7182 ... is the base of natural logarithms. 
Logarithms have the foll'owing propertie,;: 

In(.')I) = lux + Iny 

In(~r/y) = Inx -·lny 

Iny' = xluy 

A.2 Trigonometry 

The trigonometric functions for a right-angled (riaflglc are 

. I ~ 
sm (X = --- =-- cos ex 

b 
tan" =, = a 

cosec 'X (' sec a c cot ~ b 

The sine and cosine satisfy the relation 

sin' IX + cos2 
" = I 

and the sine and cosine of the sum and difference of two angles satisfy 

sin(o: + fi) = sin" cos fi + cos IX sin fJ 
sin(a - fi) = sin" cos fi - cos" sin fi 
cos(" + fi) cos " cos fi sin " sin fi 

cos(a - fJ) = COS" cos fi + sin :l( sin fi 

! The law of cosines for an arbitrary triangle is 

and the law of sines is 

sin Cl.a sin Cl.b sin ac 
-a-=-b-= 

c 

529 
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A.3 Derivatives 

d 
dx lnx x 

f 
x"H 

xII. dx= 
n+l 

(n # 1) 

f x-I dx = Inx 

f (a + bx)'/2 dx = 3
2
b (a + I>x)3/2 

f x(a + bX)'/2 dx = _ .. ~(2a _- 3bxJ..0.:J:...bxr/2 
15b2 

d . 
dx SlTIX = COS X 

d . 
dx cos x = -8m x 

d ....... tan, 
dx .. 

A.4 Integrals 

f (1 - a2x2)'/2 dx = ~ [xO - a2il) 1/2 + ~ arCSin(ax)] 

f x(1 - a'il)'/2 dx = -~ G -il )3/2 

f il(a2 - il)'/2 dx = - ~x(a2 - X2)3/2 

+ ~[x(a2 - il)'/2 + a2 arcsin (x/a)] 

--In x+ -+x f dx 1 [ ( I ') 1/2] 
(1 + a2x2)'/2 - a a2 

d 
sinh x = cosh x 

dx 

~ cosh x = sinh x 

d 
dx tanh x = scch' x 

f dx I 
-(i--a-2x2-)~I/~2 ,= a arcsin (ax) 

1 
= - arccos (ax) 

a 

f sinxdx = - cosx 

f cosxdx smx 

f . 2 dx 1. I 
sm x '=-2smxcosx+2x 

f sin3 x dx = - ~ cos x(sin'x + 2) 

f 3 1. 2 
cos xdx = 3 smx(cos x+2) 

f cos
4 

X dx = ~ x + l sin 2x + 3
1
2 sin 4x 

f sinn X cos X dx -(S;J~~I (n #-1) 

f sinh x dx = cosh x 

f cosh x dx = sinh x 

f tanh x dx = In cosh x 



A.6 VECTOR ANALYSIS S3 

A.5 Taylor Series 

The Taylor series of a function f(x) is 

f(a + x) = f(a) + j'(a)x + ~f"(a)x2 + ~ ("'(a)x3 + ... 

where the prime~ indicate derivatives. 
Some useful Taylor series are 

x2 Xl 
e' = 1 +x+-+-+ .. · 

2' 3! 

sin(a + x) = sin a + (cos a)x - ~(Sin a)x2 - ~(COS a)xl + ... 

cos(a + x) = cos a - (sin a)x - ~(cos a)x2 + ~(sin ah' + ... 
26· 

( 1·) (Sina) tan(a+x)=tana+ -2- x+ --,- x' 
cos a cos' a 

. 2 I) Sin a 3 +--+ x+ .. · cos4 a 3 cos2 a 

A.6 Vector Analysis 

Cartesian Coordinates Cylindrical Coordinates 

The gradient of a scalar field 'fr is 

The divergence and curl of a vector field 
\' v~ i + uyj·+ vz~. are 

j k 

V'xv= a a a 
-

ax oy az 
v x t}J t'z 

The gradient or a scalar field 1/1 is 

81/1 18if; aif; 
V'I/I = -c, + --eo +--e, 

ilr rao ilz 

The divergence and curl of a vector field 
v = v,e, + voe/) + Vzf';; are 

aVr VI' 1 avo av:. 
V·v= + +--+-

ilr r r ae ilz 

e, reo e, 

1 
V'xv=- a a a 

r ii, ae ilz 

vr rv{) v, 



EIILI Appendix B I~] Properties of Area and Lines 
B.1 Areas 

The coordinates of the centroid of the area A are 

The moment of inel1iu about the x axis lx, the moment of 
inertia about the .y axis Iy, arid the product of inertia Ixy 
are 

I,y = l.w dA 

The polar moment of inertia about 0 is 

y )I' 

-b~ --I 

I T 
I 

~ i" 
101_ .. ~h" 

x' 

x 

Area",bh Rectungulur Area 

1 1 
I. '" -bh' ., 12 Ie = ..!..hb3 

) 12 1<'1 = 0 

y' ..., 
h 
I x' 

Triangular Are:J 

Area 

532 

Triangular Area 

I J 
I, =-bh . 12 

1 3 
I~ =-bh' 

36 

y' 

Circular Area 

I 4 
It'" Iv = -nR . . 4 

Semicircular Area 

IX1 = 0 

1 
Ix = Iy = 8nK' Ixy '" 0 

1 4 
Ix'" S"R 11= G Ir1 = 0 i.)K' 

9n 



"'" 
I 

I[r\,_x 
°1 4R " 

-13;:; r-
Quarli:r-Cln:ular Area 

I 
Area = _nR2 

4 

1 4 
f, = Iy = T61tR 

y 

Area = ~R2 

I = _R4 a - - sm 2a 1 ( 1" ) 
x 4 2 J _ I R4( I" 0 ) y - 4 a +2: sm ~a 

B.2 Lines 

Quartcr-Bllipticill Area 

I 
Area =0 -nab 

4 

Ch'H1 
Area=-­

n+l 

13 
Iy = i6"a b 

Spandrt>1 

y 
The coordinates of the centroid of the line L are 

x 

\' 

.-~ 

2R 
'if 

x 

2R 
7T r 

Semicin:uiar Arc 

R 

I I 

2R ~"""" .. 'iT. 

x 

i ydL 
y=_L __ 

1 dL 

y 

Cil'cular Arc 
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i; ,I Appendix C 

Slender Bar 

y' 

\ 

Thin Circular Plate 

534 

Properties of Volumes and 
Homogeneous Objects 

The mass afmoments of in em a of the object in tenns of the 
ryz coordinate system are 

'4"",,'s) = In = i (/ + zl)dm 

I(Yaxi8) = Iyy = i (.0' + z')dm 

I("',i') = 1" = /' (.0' + /)dm 1m 

In = i ry dm 1Y' = i yzdm 

I", = 1 zx dm 
m 

l(xi aXIs) = 0 

1 1 
I(;faxis) = 2' mR 

IX)' = IY' = I", = 0 

1 2 
ICvaxis) = 3mb 

1 2 2 
I(m,,) = 'jm(b + h ) 

Ix" = l1z = Jrx = 0 



Thin Plate 

Rec:tiJngulllr Prism 

Circular Cylinder 

Sphere 

I'll A 
1xy = A 1X), 

APPENDIX C 53 

(The superscripts A denote moments of inertia of the plate's cross-sectional 
area A.) 

Volume abc 

1 2 2 
Icy.x;,) = 12 mea + c ) 

1"," = 0'" = 1,,<, = 0 

Volume = nR't 

l(x,",lS) = IIy",,;s) = mGf2 +~R') 
Ixy I" 1" 0 

(
I 2 J ') I(x' aXIs) = fry aJ(i~) = m 121 + 4" R 

ft!y' = 1/;,:1 = Izlx' = 0 

I(,",,,) = f(yax;s) = m G h
2 + }O R' ) 

Ix, = IV' = I", = 0 

Itx' "m) = ilv";s) = m (:0 h2 + ~O R2 ) 

Ix'l = Il " = Iu = 0 

2 2 
I(xl axis) = J()" aXIs) = J(~I ")iis) = '5 mR 

Ix'Y = il ;, = i"x' = 0 



G.:; ;~-;:TI Appendix D pili~~ Spherical Coordinates 

This appendix summarizes the equations of kinematics and vector calculus in spherical coordinates. 

x 

536 

e, 

L The position vector, velocity and acceleration are 
p ·0 

., 
I----y 

The gradient of a scalar field if! is 

aif! I aif! I aif! -c +--e¢+-·_ ...... ·· ...... eo 
Br' ra</> rsin</>ae 

The divergence and curl of a vector field v = v,e, + voe~ + v¢e¢ are 

"" 18(,. 1 "( '''') 1 ilvo Y'v = 2"-8 rv,) +-'-J.. -;: "1_ sm 'f' +-'-;:"'0 
r r rSlllr.pao.p rSln'f'o 

e, re¢ r sin </>eo 
1 a a a 

'Yxv=,.:z. </> or a</> ae 8m 

v, rv¢ r sin </>vo 



Answers to Even-Numbered Problems ]~==;fI.""JTQR:~~::Imi] 

Chapter 1 

1.2 2.7183. 

1.4 0.950. 

1.6 CaJ 36.7ft/,; (bJ 40.2km/hr. 

1.8 (a) 5000m/s; CbJ 3.11 mils. 

1.10 g=32.2ft/s2 

1.12 O.310m2 

U4 2.07 x 106Pa. 

1.16 G=3.44 x 1O~8lb.ft2/sbJg2. 

U8 CaJ The SJ units of Tare kg.m2/s'; Cb) T= 
73.8 slug,Ct'/s'. 

1.20 5 1.2 lb. 

1.22 CaJ 491 N; (b) 81.0N; 
1.24 163lb. 

1.26 32100 m. 
1.28 4.45 N = lib. 

Chapter 2 

2.2 Ca) s = (-0.31 + OI5)m. (b) v = -0.3 m/s. 

2.4 Ca) 6s=32m. (b) v=O. a=4m/,'. (e) v= 16m/s, 

a=4m/s'-

2.6 CaJ 6s= 132m. (b) v=28m/, at 1=4,. (e) a=O. 

2.8 (a) O.628m/s. (b) 3.95m/s2 

2.10 Ca) v=37.74m/s at t= 11.88. (b) a=4.25m/8' at 
1=4.28. 

2.12 s=IOOm, v=80m/s. 
2.14 a=2,44m/s', distance 122.2m. 

2.16 0.0272 s, 6s = 0.36 m. 

2.18 2.73 m/s. 

2.20 s=151.5m. 

2.22 $= 1074m. a=-24m/,'. 

2.24 6.77 s. 
2.26 Yes, the car travels 94.7 m in 5 s. 

2.28 51.9 solar years. 

2.30 (a) 45.5 s. (b) 3390m. 

2.32 10 s. 

2.34 v=6.73m/s, a= -8.64m/8'-

2.36 v = 2c ~21 m/s. 

2.38 v=4m/s. 

0.9g , 
2.40 v = -(I - c~'), 

c 

2.42 11.1 km. 

2.44 Ca) 'f = ,[CI e~''') Cb) ,t- = 2gs. 
c 

2.46 693 m, 

2.50 v = 3 mis, 

2.52 k= 64 m'/,', ,,= 2.52 mls. 
Z.54 v = -2(1 - S')'/2 m/s. 

2.56 ton = 10950m/s=39410km/hr. 

2.58 2370 m/s. 

2.60 Cal v = ±y'r'v!'--g-TR""T--;In(s/so), 

2.62 r = (3 i + 10 j) m. 

2.64 x=29.3m, y= 63.3 m, Z,= -58.0m. 

2.66 54.3 m/s. 

2.68 eo = 45", R",,, = vi/g, 
2.70 210m/s, 

2.72 (a) Yes, (b) No. 

2.74 82.5m, 

2.76 R=18.6m. 

2.78 v = CO.602 i - 4.66 j) m/s. 

2.80 v, = 1.77m/s, Vy = 2.21 m/s." = 0.89m/s. 

2.82 a=(-O.099i+OAI4jJm/s2 

2.86 (a) Positive, (b) ApprOlumately 2,,00 ttl 24hr, 

2.88 w 4.54 rad/s, a 0.98 rad/,'. 

2.90 (aJ 27 rad/s. (b) 148.5 rad. 

2.92 OJ = +2 rad/s, 

2.94 dc/dl =~8,821 i + 13,35j. 

2.96 Ca) a, = 0, a" = 200mis'- (b) SOrad/s. 

2.98 Ca) 1730 rpm, Cb) 3.01 rad/s2 

2.100 (aJ Ivl = 16m/s, lal = 66.0m/s'. Cb) Sm. 

2.102 Ivl = 464m/s = 1669km/hr. 

2.104 Ivl = 402 mis, 131 = 0.0292 m/s2 

2.106 54.2 m/,2 
2.108 Ca) 131 13.77m/s2 (b) 131 = 18.35m/"l. 

2.110 (a) v = 5.2 'ttn/s,. = 9.81 0" m/s'- Cb) p = 2.75 m. 

2.112 218 tn, 

2.116 v = 0.212", m/s. a = (0.053't + 0.1500,,) m/s'-

2.118 at O,a" 0,426m/sl. 

2.120 at = -9,55 m/s2, atl = 2.23 m/s2. 

2.122 Ca) lal = 22.36m/s'- (b) fI = 6.03m. 

2.124 • ~ (9., - 8eo)m/s'. 

2.126 (a) v, = 0.323 m/s. vv .~ 2.032 mis, 

(b) v, = 0.323 m/s, Vy = 2,032 m/s, 

2.128 Ca) • '''' m 
". 400 m "\, 

537 



538 ANSWER TO EVEN-NUMBERED PROBLEMS 

2.130 (aJ (a = 5.97., -4.03<0)01/". 

(b) (a = 7.1701 0.696j)m/,'-

2.132 v = jV5 + (u,1, K)(r' I~) e, + rroo eo. 
2.134 v = 314,2<0 + 177.8.,m/" a = -65797.40,m/,2 

2.136 • "" -800 e, km/". 

2.138 2.36 x 10' '. or 27.3 days, 

2.140 

2.142 Vo = 10.82 km/s, 

2.146 2391 m/s. 

2.148 ", -", = 2952 m/8,"4 - V3 = 821 m/s. 
2.150 VA/B = -VBjA = (-20i - 10j)m/,. 

2.154 (a) aAjB = O. (b) vAIB = (10.981 + 10.98 j) m/'. 
(c) rAjB "" (-16,81 + 16.8])m, 

2.156 13A/81 = 283 m/s'. 
2.158 laB/AI = 0.625m/,2, 

2.160 a8/A = (-5\- 8.66 j) m/s2, 

2.162 aD = (-41.61 - 24.8j)m/s'. 

2.164 'A/B = (-1.51 - 0.6j)m/s'. 

2.166 Velocity ""(I3,3 I - 2.27j)m/s. acceleration = 
(0.40 i + 0.23 j) m/s'. 

2.168 x"" 1.5 m. 

2.170 53.1' west of north. 679 km/hr. 

2.172 2,34m/s. 

2.174 VA/B = vAj +REWk. 

2.176 Ca) l0r-~~ 

I, _wcond; 
(b) v = 3.72rnls at 1=2.31 ,. 

2.178 00 = 33.4". 

2.18060.9'and74.1'. 
, 2.182 c I.3ls-', 

2.184 (a) 51)'r--""'T--I 

40",,---" 

10 

" " 0,5 1.5 

(b) lalm" = 2.074m/8' at t = 0.310s. 

2.186 I.I~ = 22.636m/s2 at r = 1.494m. e = 20.49", 

2.188 v=42.3m/s. 

2.190 13.1 s. 

2.192 22 .. 08 m/s. 

2.194 Ivi = 2.19m/s.181 = 5.58m/,2. 

2.196 a=C-2.75e,-4.86eolm/,2. 

2.198 IVMI = 7.65km/,. 

2.200 IVe!AI = 37.0m/s. 

2.202 w ±29.64rad/s. No. 

Chapter 3 

3.2 r = 5 m, v = (3 i + j) m/s. 
3.4 (200 i - 60 k) N. 

3.6 v = 2.87 i m/s. 

3.8 x = Fot5lm. 

3.10 8.37 m/s'. 

3.12 (-1.835i+ 1.25j)kN. 

3.14 W = 88.29 kN, T= 61.67 kN, L = 66.93 kN. 

3.16 (0.1 121+49.134j)N. 

3.18 0.818m, 

3.20 Velocity=2.45m/s, distance = 1.266m. 

3.22 F = 331.1 N." = 3.92rn/". 

3.24 3.46 m up the slope. 

3.26 Ca) 1200.3 N. (b) 4.12 m/s. 

3.28 (a) 0.618m. (b) 2.046m. 

3.30 Ca) a = -Sm/s2, (b) v = -2.24m/s. 

3.32 (a) 2.93 m, (b) 3.814 kN. 

3.34 Y = -18.8 mm. 

3.36 (a) 50s. Cb) 40.8N. (e) (4.8i+j)m/s. 
3.38 2.06 m/,2 up the bar. 

3.40 F= 132.3 N. 

3.42 Fx = -0.544 N. 

3.44 0508 s. 
3.46 Gravitational force = 24.88 kN, weight at sea 

level = 39.24 kN. 

3.50 425.8 N. 

3.52 2.62:s v:S 3.74m/5. 

3.54 Ca) 932 kN. (b) 12326 m. 

3.56 (a) 12l.3m/s. Cb) 1980N downwards. 

3.60 e LaiR - J(LoIR)' :::(2vI)/R)I. 

3.62 123m. 

3.64 11.4m/s2 

3.66 EF,=-2024N,EFo=2024N. 

3.68 (9.46., + 3.44 eo) N. 

3.70 Ivl = 16.6 m/s. 

3.72 Ivi =J2gLsin8.T=3mgsinH. 



3.74 1', = 0.406. The mass slips towards 0, 

3.76 (-51e.-lleo)N, 

3.78 k;= 2m(IJ~. 
3.H2 0 

of~ .. ~ ",,j <Oi"L,., ~ II 

~ 
1\t;;;;(10~s,~ 

0 - ~-

- AI"'O,50S~ --
, // 

0 

~~ II~ -! 
II 

-:::::---
1 0 ""'" 0 I" I I 5 2 " t, ~ec'\nd~, 

3.84 Time, s Position, m 

0,00 1,0000 
0,01 1.0000 
0,02 0,9999 
0,03 0.9997 
0.04 0.9994 
0,05 0,9990 

3.86 x'" 7,55 m, ", = 8, \ m/s. 

3.88 0.2 

o 
01 

~ Oil 

S 

2····~~ 

5 .-

I 

5 

/' -, 
Lf 

I 

3 

\ 
\ 

.15 4 

Velocity, m/s 

0,0000 
-0,0100 
-0,0200 
-0,3000 
-0,0400 
-0,0500 

1 II -- - - - - --

,; -0,0 5 

-0 

··0 I 

~II 

I 

5 

2 \ ~/ 

"-j' -0.2 5 
O.l -0.1 o (I,l 0.2 

3.90 C=O.0217, 

3.92 Ca) P, = 63,1 kN, F, = 126,1 kN. F3 = 189,2 kN, 

(b) Fi = 75, I kN, F,= 150,1 kN, F3 =225,2 kN, 

3.944364m, 

3.96 47,\ N, 

3.98 "A = 1.226m/s2, T = 262,5N, 

3.100 S,96rn, 

3.102 tan a = ,?/(pg), 

3,104 5,151)1/52, 

3.106 9,30 N, 

3.108 :E F = (-10,7 <, + 2,55 eo) N. 

3,110 1.62 m/s2 

Chapter 4 

4.2 Cal 1.728 x la' tonnes, Ib) 275 x lO'kg, 

ANSWERS TO EVEN-NUMBERED PROBLEMS 539 

4.4 Ca) 8.889 x lO"N.m. Cb) 22,2kN, 

4.6 2963kW, 

4.8 129kN, 

4.10 Ca) 14.4 N,m, (b) 6,1:5 mis, 

4.12 U = :!m[(vo - csrlm)' - "5]. 
4.14 v=21.8m/s, 

4.1666.7N. 

4.18 10kN/m. 

4.20 1.542 mis, 

4.22 k=4288 N/m, 

4.24 Ca) 1.55 m, Cb) 1.74 m/s. c 
4,26 (a), (b) Work = 5R8,6 N,m, 1! = 6,26 mis, 

4.28 1)= l.72m/s. 

4.30 v= 1.14m/s, 

4.32 (a) 932,9 N, (b) Work = 89,6 N,m, v = 1,06 mis, 
4.34 21.0m/s, 

4.36 16m/8 or 57,6km/hr, 

4,)8 T = 3mg sin", 
4.40 2,33 kN. 

4.42 (a), (b), (e) 63.4m/s, 

4.44 "= arceos(2!3), 

4.46 0,327 m, 

4.48 0,267 m, 

4.50')2 = 7,03 m/5, 
4.52 5,77 mis, 

4.54 4,90m/s, 

4,56 36,85 mis, 

4.58 VA = 5.87 m/s. 

4.60 l442m/s. 

4,62 2,25 x laiD N,m, 

4.64 P = -180,6kW 

4.66 P" 10,58 kW, 

4.68 245kW, 
\ 

4.70 (a) ?72m. (b). (e) 6.48111, 
4,72 60', 

4.74 (a) 686,7N, (b) 882,SlN. 

4,76 W[] + 
4.78 V !kS' + t"S4 
4.80 'Ii = 2.30 m/s. 

4.82 v = 3.764m/s, 

4.84 (a) V 

(b) v = .j2poS:A(S~ r - sll)/[mC'I- ] )1, 

4,86 v = 11.0 km/s, 

4.88!1e 2887 mis, 
4.90 (a).' = (4,d - j)N, (b) The work is I N,m for 

any path from position 1 to position 2, 
4,92 F = -[k(r ro) + q(r ro) ']0" 
4.94 (a) I' = (sin 0 - 2r co,:' 8)e, + (cos (J + 2r sin 0 cos 8)eo, 



540 ANSWER TO EVEN-NUMBERED PROBLEMS 

(b) The work is 2N.m for any path from I to 2. 

4.98 (a) and (e). 

4.100 552.5 mm. 

4.102 58.7mm. 1277.6N.m/s (watts). 

4.104 2.15m. 

4.106 v = 6.32 m/s. 

4.108 p= -11.84MW. 

4.110 (a), (b) 61.9m. 
4.112 He should choose strategy (b). Impact velocity is 

11.8 mis, work is -251.3 kN.m. In strategy (a). 
impact velocity is 13.9m/s. work is -119.2kN.m. 

4.114 v = 2.08 m/s. 

4.116 (al 2.08 x 108 N.m. (b) 1) =, 100(1 e-(F,,/I00m)l) km/hr. 

4.118 k= 2408 N/m. 

4.120 (a) k=809.0N/m. (b) v", 6.29m/s. 

4.122 h = O.179m. 

4.124 1.56m/s. 

4.126 (a) 0=26.3'. (b) 704N. (e) 946.8N. 

4.128 V, = 2.65 m/s. 

4.130 1.02m. 

4.132 9.45 m/s. 
4.134 (al 1) = o. (b) v = .Jg"71j71= 5590 mls or 20 123 km/hr. 

4.136 Cal 11.34 MW (megawatts). (b) 9.45 MW. 

Chapter 5 

5.2 (a) 120kN.s. (b) 20kN. 

5.4 (a) 4.4kN.s. (b) 32m/s or 115km/hr. 

5.6 (a) (1801 - 120j + 40 k) N.s. (b) (10 i - 6 j + 4 k) m/s. 

5.8 Ca) 375kN.s. (b) 85. 

5.10 10.2m/s. 

5.12 (a) 22I.7N.s. (b) 1.85m/s. 

5.14 01925. 

5.16 3.27m/s. 

5.18 (-7.071 + 7.26j)m/s. 

5.20 (a) -490 j N.s. (b) v = (61 - 9.23 j) m/s. 

5.22 1450 N. 

5.24 (a) 8467 N. (b) 667m/s'-
5.26 333 N (approximately 600 times the watch's 

weight). 

5.28 Horizontal force is 0.234 N. vertical force is O.364N. 

5.30 (-O.35i+122.96j)N. 

5.32 (a) 0.000 57m/s. (b) O.00343m. 

5.34 (a), (b) 1.63m/s. 

5.36 Velocity is 6.96km/s, P=0.174'. 

5.38 ,,= J21'kgD(1 + maim). 
5.40 683 m/s. 

5.42 (a) 30j mm/s. (b) C6i+6j)m. 

5.44 e = 0.2, v~ = OAVA. 

5.46 0.75m/s to the right. 

5.48 A: 1.05m/s to the left: B: 2.55m/s to the right. 

5.50 A: 33.3m/s2
: B: 20m/,'-

5.52 VA = 7.70m/s. 

5.54 e=O.77. 
5.56 Helmet: 1.09 mls to the right; head: 1.07 mls to the left. 

5.58 e = 2/(1 - cos /J)/(1 - cos 0) - 1. 

5.60 v~ = (I + j) m/s. v~ = (- 1 + j) m/s. 

5.64 e = 0.304. 

5.66 2.30m. 

5.68 "Us = 35.3 m/s. 

5.70 0.65 m/s. 
5.72 v=(l201+40j-30k)m/s or 

V = (-1201 - 40j + 30k)m/s. 

5.74 (a) -1440k kg.m'/s. (b) l.2m/s. 

5 76 + [(l/2)Yo/' .- (1/3)vot']C 
• v = -vo er , ) eo. 

1'0 _. VOl m 

5.78 2.31 m. 

5.80 0.111 revolutions per minute. 

5.82 Iv,1 = 3378 mis, Ivvl = 2828 m/s. 
5.86919.3N.m. 

5.88 750N. 

5.90 (a)(35 I 1 849j)N.(b)(12001-1200jlN. 

(c) 2400iN. 

5.92 O.753k N.m. 

5.94 C5L91-282.2j)N. 

5.96 1.435 km/s. 

5.98 (al 1.870km/s. (b) 1.946km/s. (c) 1.797 km/s. 
5.100 Ca) V = (45s+0.85)N. (b) 334J. 

5.102 v = vo/[1 + (pr/2m).,]. 
5.1046815N. 

5.106 18.4kN. 

5.108 (a) 5. (b) 193kN. (e) 3Am/s2 

5.11 0 876.9 kN. 

5.112 Mass ~ 2.0 x 1013 kg. Radius," SgO.l m. 

5.114 Cal 1O.85m/s. (b) 21.7kJ. 

5.116 0.775:0 e :0 0.828. 

5.118 Ca) 3.45m/s. (b) 18.7 kN. 

5.120 Ca) 8.23 kN. (b) 16.5 kN. 

5.122 vA,jmk/2. 
5.124 1.36m. 

5.126 x = -O.32m.y = O.24m. 

5.128 3.90 kN (including the weight of the drum). 

5.130 Cal 9.15m/s. (b) 14.11m/s. 

Chapter 6 

6.2 (a) 20 rad/s2 clockwise. (b) 1.59 revolutions. 

6.4 8 rad/s. 



6.6 VA = (-0.2i O.2j)m/s,aA=(2i-lj)m/s2• 

6,8 (a) VB = 204 i tn/s, (b) v" = (-0.341 - 2.38 j)m/s. 

6.10 Ivai = 4.5m/', la,l = 90 m/s'. 

6.12 '" = 30Irad/,. 

6.14 "'48 = IOkrad/s,wBC = -IOkrad/s. 

"'CD = lOkrad/s. 

6.16 (a) w = wk. (b) vAIB = rAIBwj. 

6.18 (a) (Jl = 5 k rad/s. Cb) VA = (-5 i + 866j) m/s. 
6.20 Ca) 92.6rad/, clockwise. (b) The top; 200km/hr, or 

55.6 m/s. 
6.22 Angular velocity = 17.95 rad/s, or 171.4 rpm 

clockwise; velocity=3.14m/s. 

6.24 (a) OJ = 2.13 krad/s, (b) VA = -O.73jm/s. 

6.26 8 rad/s clockwise, Vn = (41 - 0.8 j) m/s. 

6.28 "'U/) = 10 rad/s counterdockwise. 
6.30 "JAB = 2 rad/s clockwise, WBe = 3.22 rad/s, 

counterclockwise 

6.32 VB = - 12.3 j m/s. 

6.34 ImAal = 4.91 rad/s, Iw",;1 = 6.77rad/s. 
6.36 m48 = 2.31 rad/s clockwise, VB = 3.15 m/s to the lert. 

6.38 Vc = 0.628 m/s. 

6.40 VA =(1.21+ 1.2j)m/s. 

6.42 WBC = 2.6\ rad/s, Ve = -9.lOim/s. 

6.44 0.95m/s. 

6.46 Ve = (0.272 i + 0.188 j) m/s. 

6.48 Vw = 0.2 mis, 4 rad/s counterclockwise. 

6.50 Angular velocity = 52.0il rad/s, or 497. I rpm, 

IVA I = 5.2 I mis, 

6.52 Xc = 3m,yc = 0, 'lIfl = 10m/s. 

6.54 x = 0.1 OS 01, Y = -0.45 m. 

6.56 Vr; = (1.00 i 0.36 j) m/:;, 

6.58 (a) (1.04, 1.2)m. (b) ",= O,6im/s, 

6.600.164m/s. 

6,62 VE = -12,25jm/s. 

6.64 (!JBC = 5.33 radjs counterclockwise, 

(I)(':D = 4.57rad/s clockwise 

6.68 (a) aA = (-50 e, + 60 eo) m/s'. 

(b), (c) aA = (-50i + 60ilm/s'. 

6,70 (a) aB = -800im/s2 (bl aA = -400im/s2 

6.72 WAC = 0. IXAC = 1.13 rad/52 clockwise. 

6.74 'A = -0.125 j m/s'. an =, 0.075 j m/s'. 

6.76 Acceleration = 3.35 m/s'. 
6.78 Velocity is 1.4 mjs to the right; acceleration is 

22.7m/s' 10 tbe left. 
6.80 W/m = 2.67 rad/s clockwise. 'BD = 6.22 rad/s' 

counterclockwise. 

6.82 Vc= 1.02im/s"c=0.175m/s'-

6,843c=515i01/s2 
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6.86 WAH = -0.879rad/8, ''vIB = -1.06rad/s' Wac = 
-l.l5rad/s, "BC = -2. 14 rad/s', 

6.88 liE = -12.25jm/s'. 

6.90 ac = (-7.78i 33.54J)mJs'. 

6.92 aD = C-0.135i 0.144j)m/s'. 

6.94 WAS = 3.55 rad/sc:lockwise, r:t.AR = 12.0~: rad/s2 clock­

wise, WgC = 2.36 rad/s counterclockwisE', aRC = 16.53 

rad/s2 counterclockwise. 
6.96 O':p!anet = 41.43 rad/52 oiockwisc, (X~un = g2.g6 rad/s2 

counterclockwise. 
6.98 "cn = 26.45 rad/s' clockwise, "TJE ~, 31.14 rad/s' 

counterclockwise, 

6.100.A = (-2001+80j)m/s", 

6.102 Oc' (-8.801 + 5.60 j) m/s'. 
6.104 WAC = 3 rad/s counterclockwise, LZ,K 6 rad/s2 

clockwise, 

6.106 0,549 m/s to the left. 

6.108 (,JBC = I. I 6 rad/s c1ocl<wise. 0.385 m/s towards C. 
6.110 WEC = 6.I7C peT second counterclockwise: rate of 

extension is 0.109 mis, 
6,112 WAC = 8.66 rad/s counterclockwise, and bar AC 

slides through the sle~ve at 5 m/s towards A, 

6.114 WAC = 0.293 rad/s clockwise, 
Vc = (-0.221 i - OAIl])m/s. 

6.116 It is extending at O.324m/s. 

6.118 (a)wAH 2 rad/sc1ockwise. (b)vsco' = 2m/stowardsC. 

6.120 OlAB = 3.88 rad/s couJjterclockwise. 
6.122 Wplatc 2 rad/t:> counlGTclockwlse, and the velocity at 

which the pin slides relative to the slot is 0.2 m/s 
downwards. 

6.126 (a) VA = Rorj, aA = -Rw1 i. 

(b) VA = 2Rwj, a4 = --2Ro}1, 

6.128 VA =(-3.5i+O.5j+4,Ok)m/s, 

0A =(-10i-6.5j-19.25k)m/s'. 

6.130 -2im/s. 

6.132 aA reI = (-4.2 i - 06j) m/s'. 

6.13'4 (a) YArd = vj. 3Arel = ~··(r2/Rr;)i. 
(b) VA = 'l'j (j)ERhcnsLk, 

aA=(-,~/RE w~REeos2L)i+ 

(!)~Rf: sin f, cos L j + 2(1~Ell sin l, k. 

6.136 (a) -9.81 km/,2 (b) (3.29; 9.RI k)m/s', 

6.138 (a) (O.1l+0.lilm/,'. 

(b) (0.125 i + 0.085 i + 0.106 k) mls'. 

6.142 Vc = 9.50 j m/s. 

6.144 "AB = 13.60 x 10J rad/s' clockwise, 

(ABC = 8.64 x 103 rad/s. counterclockwise, 

6.146 aD = -87,2 mis' 

6.148 "G = (-0.20i 0.66j)m/s2 

6.150 Vc (-1.48i+O.79j)01/s. 
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6.152 3c = (-2.99 i L40 j) m/s'. 
6.154 won = 0.733 radls counterclockwise. 

6.156 "',18 = 0.261 radls countc:rclockwise. 

WRe = 2.80 radls counterclockwise. 
6.158 WRC = L22rad/s clockwise, 17.96m/s from B towards 

C. 

6.160 Velocity =2.07 m/s upwards; acceleration = 50.6 mis' 
upwards, 

6.162 TBC = O. 

6.164 (a) VA,d = 5im/s .• Arel = O. 

(b)VAI8 '" (5i+2j)m/s. "A/R = (-4i+20j)m/s'. 

Chapter 7 

7.2 F = (b/2c)mg. 

7.4 Time = 0.980 S, distance 0' 2.94 m. 

7.6 F = Web - ca/g)lh. 

7.8 TA = 3681.1 N, Tn = 4137.1 N. 

7.10 6.78m/s2 ,NA = 1356.4N,N8 =213.2N. 

7,12 W = 7.5 rad/s. 

7.14 49,6 N.m. 

7.16 (a) o=27rad/s' clockwise, T=90N. 

(b) 0 = 19.1 rad/s' clockwise, T= 63.7N. 

7.18 Time = 1.15s. 

7.20 (a), (b)"= IOAr.d/s' counterclockwise. 

Ax = O.Ay '" 20.2N. 

7.22 x = 1/J12. "m~ = ../3g/l. 
7.24 Ax = -10.2SkN.Ay = -7.04kN. 

7.26 MB = 27.1 N.m counterclockwise, B, = -ILON, 

By = IOS.5N. 

7.28 tnng/tdlsC = .j4j3, 
7.30 tJmax = ~R(Oo, time = ~Rwn/(J.lkg), 

7.32 (al It doesn't slip, "= 22.2 rad/s2 clockwise. (bl It 

does slip, " = 53.6 tad/s' clockwise. 

7.34 (a) "= 1.84 rad/,2 counterclockwise. (b) 112.3 N. 

7.36 9.54 rad/s' clockwise. 

7.38 61.3 rad/s2 clockwise. 

7.40 O.170m/,' to the right. 

7.42 1', = 0.0339. 

7.44 M = 40S.8N.m. 

7.46 8x ; -296 N, By = -506 N, ex = 56.3 N, 

C, = 556N, 

7.48 'Be = 9.7 rad/s' counterclockwise, normal 

force = 10.8 N. 

7.50 (a) 9.34m/s'. (b) SIS.SN.m. 

7.54 Xp = 0.174 rad/s2 clockwise, force =45.4 N. 

7.56 IFI = 44.1 kN. 

7.58 
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_I, metre, 

Time; s 8,rad (0, radls Closed-form ro, radls 

0.0 0.000 0.000 0.000 
0.2 0.000 0.250 0.250 
0.4 0.050 0.499 0.498 
0.6 0.150 0.747 0.744 
0.8 0.299 0.991 0.987 
1.0 0,498 1.232 1.225 



7.64 Time, s 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

7.68 r 

O.rad 

0.000 
0.000 
0.147 
0.441 
0.881 
1.454 

w. radls 

0.000 
1.472 
2.943 
4.399 
5.729 
6.665 

(",4 

, =1': 

II I -l I " 

Il III ()' 0-- 0':; (J,() (I.I ().S 
I. ,cv'nds 

7.7010 = 1mI'. 
7.72 / := i2ml2 sin2 0. 

7.74 /(XI!.X1S) f2mh2,1(~al\ls) nmb2, 

I(zaxl~) = fim(b 2 + h2
), 

7.76 10,,,,,") = 32.6 kg.m'. 

7.78 20.8 kg.m'. 

7.80 III HmP, 
7.82 l(ztl.x,s) 47.0 kg.rn2

, 

7.84 4119.3 kg.m' 

7.86 1(",,,) = 9.00 kg.m'. 

7.88 l(y,,") = 0.130 kg.m'. 

7.90 III = 0.0188 kg.m'. 

7.92 'lXf.l.XIS) = i(}'!xis) = m(~R1: +th2), 

7.94 l(xfull~) = !(vaxl~) = m(iow,l +~h2). 
7.961=O.5815kg.m'. 

7.98 '0 = 0.003 67 kg.m'. 

7.100 I(,~,,) = O.902kg.m' 

7.102 (al 12.27s. (b)O.647kN. 

7.104 (a) 20m/s2 (b) c:5 49.1 mm. 

7.\06 1= 2.05 kg.m' 

7.108 40.2 kN. 

7.1l0 "~-0,420rad/s'. F,~. 336.3 N, F, = 1709.7N. 

r3(l 1,2) sin 0 61' cos o}g . 
7.112 fj 2 counterclockwIse. 

(2 ~)I 

7.114 B.. -1959N. By 1238N, C, = 2081 N. 

Cy = -922N. 

7.116 "OA = 0.425 tad/s' counterclockwIse, 

"AB = 1.586 rad/s2 clockwise. 

7.118 "HP = 5.37 rad/s' clockwise. 

7.120 208.2m/s' to the left. 
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Chapter 8 

8.2 504.3rad/s (4~16rpm). 

8.4 10.05 revolutions. 

8.6 0.103 revolution per second. 

8.8 Cal 21.7rad/s. Cb) 17.3rad/s 

8.10 (a). (b) 2.63 rad/s. 

8.12 (a) OJ = J2gx/(r,1' +x'J. (b) x 1/02. 
8.14 139.0 rad/s countcrd.:)ckwisc. 

8.16 (a) 0.397m. (b) 0.382m. 

8.18 II = 5634 N.m. 

8.20 OJ = /r;"ii:'i;~:;~7 Rj2~ 
8.22 16.7 rad/s clock wise. 

8.24 v = 0.413 m/s. 

8.28 p~ ~ 810 W.P" = 405 W. 

8.30 Iwl = 4.32 rad/s. 

8.320.518m/s. 

8.34 3.69 rad/s clockwise. 

8.36 2.48 m/s. 

8.38 4.52 rad/s counterclockwise. 

8.40 2.80 rad/s counterclockwise. 
8.42 WAR = 4.67t.d/s clockwise. WR. = 5.74rad/s 

counterclockwise. 

8.44 's. 
8.46 (a) 126.4rad/s (b) 200rad/s. 

8.48 OJ = 685.6 rad/s. 

8.50 h = 1.33 m. OJ = 3.75 rad/s. 

8.52 W2 = 4.55 revolutions per second. 

S.54 w' = 0.721 rad/s. 

8.56 14.5'. 

8.58 4.72 rad/s counterclockwise. 

8.60 0.00602 rad/s counterclockwise. 

8.62 1.389 rad/s counterclockwise. 

8.64 3.75 rad/s counterclockwise. 
8.66 (a) 50N.m before. 31.3N.m after. (b) 50N.m 

before, 50N.m artcr. 

8.70 Energy lost is tmgl. 

8.72 1.8 m/s. 
8.74 Velocity= (1.72 i - 0.63.i) m/s, angular 

velocity = 3,13 rad/s counterclockwise 

. 6vo I k . 8.76 w = --71 counterc OC wISe. 

S.78 w = 0.0997 rad/s = 5 71 deg/s counterclockwise. 
8.80 w~ = 0.380 rad/s clockwise. w~ = 0.122 rad/s 

clockwise, v~ = 0.174 i m/s. v~ = 0.567 i m/s. 

8.82 0.00336 rad/s clockwise. 

8.84 v = 2.05 m/s. 

8.86 ,,= JFb/[!m, + 2(m ~, /R2)]. 
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8.881».,= 12.33rad/s. 

8.90 WAR = 11.6 rad/s clockwise, Vc = 2.7 m/s. 

8.92 11.07 rad/s. 

8.94 1.77 rad/s counterclockwise. 

8.96 N = (373/283)mg. 

8.98 w' = (t + j cos jJ)w. 
8.100 b=2m. 

8.102 lO.Srad/s counterclockwise. 

8.104 0.0822 krad/s. 

8.106 4.45 rad/s counterclockwise. 

8.108 Cal 3.90rad/s. (b) 0.162m/s. 

Chapter 9 

9.2 aA = C358.8 1+ 24.0 j + 149.6 k) km/s'. 

9.4 aA = (-255.2 1+ 199.3 j - 209 klm/s2 

9.6 ar = C25 1 - 100 i - 25 k) m/s'. 

9.8 Cal" = (77.8 1 + 44.4 j + 44.4 k) rad/s2 

(b) (160.01 140.0j - 140.0klkm/s'. 

9.10 (a) w = Q)d 1 + moJ. 

(b) VA = -Reoo cos Oi + Rmd COS (} j 

+CRWd sin 0 - bwo) k 

9.12 VA =80Imm/s, VB = (-1031+ 282j 56k)mm/s. 

9.14 (al WDC = (0.1 j + 0.4 k) rad/s. 

(b) Vc = (-0.3151 + 0.085 j - 0.131 k)m/s. 

9.16 (a) OJ. = (20 1- 5 j) rad/s. 

(b) VA = (0.25 1 + l.OOj + 3.73 k)m/s. 

9.18 H ~ (25 i+ 50 k) kg.m' /s. 

9.20 Ho = (20 j 22 k) kg.m' 

9.22 In 0.67kg.m',1ry. 5.33kg.m',l" = 6kg.m2 , 

ix,v = Iyz = lu = 0, 

9.24 Ia = O.l2kg.m', fyy = 0.03 kg.m2 , 

I" = 0.15kg.m', I" = I", =, f~ = D. 

9.26 I~ = 80kg.m', Iyy = 540kg.m2, TM = 620kg.m', 

f." = IBOkg.m'.I" = Irr = O. 

9.28 (a) H = 12mt'(w,k). (b) Ho = ~mI2(wyj + (0" k). 

9.30 1= = 0.0603 kg.m', Iyy = O.0560kg.m2• 

In = 0. 1162kg.m', I,y = I", = l~ = 0. 

9.32 r"" = 15600 kg.m', Iv.>' = 226800 kg.m', fit = 

242400 kg.m', J"i = - 32400 kg.m', I", = f~ = O. 

9.34 H = (2.001 1.64j+ 2.58 I()kg.m'/s. 

9.36 (a) f = 3.56kg.m2 (b) 14.22kg.m2/s. 
9.38 I, = 16.15,1, =62.10,T, =81.75kg.m', 0, =0.9641-

O.220j +0.151 k, .2 = -0.2041 0.972j -0.114k, 
e, = 0.172 i + 0.079 j - 0.982 k. 

9.40 I, = OJ, = 1/12." = i/12kg.m', ", = cos/ll+ 

,in/1i,e2 = -sin{ii+cos{Jj.0, = k. 

9.42 LM = (-2501 250j + 125 k) N.m. 

9.44 LMO = (-521+ 132j + 120k)N.m. 

9.46 10AI = SF/m. 

9.48 (a) (. = (28.571 + 5.71.1 - 2.00k)rad/s'. 

(b) (-0.331+2.00j 19.54k)m/s' 

9.50 a=(-99.51+3.9.1+3.7k)rad/s'. 

9.52" = (-500.0i+24.4j)rad/s'. 

9.54 "= !(g/b)j. 

9.56 a = (14.53 j + 4.65 k) rad/,'. 

9.58 27.4 N.m. 

9.60 IFI = mg, ICi = 12ml2w;il sin/1cos{Jl. 

9.64 ~ mR2wowtt_ 

9.66 (-49j + 80k)N, -18IN.m. 

9.72 157 N.m. 

9.76 22.2 N.m. 

9.80 ~ = l.305rev/s. 

9.82 39.2 rpm. 

9.84 Ca) ~ = -2052 rpm. 

(b) 

B{ldyenne 

Spaor" COUt 

9.86 N = wU(h/r)f" sin' p -IMsin/icos/il/ (bsln/i-
r cos fI). 

9.88 His right side. 

9.90 IM=(2122.51 155.4j-534.0k)N.rn. 

9.92 Wo = JgSin{j/(~1 sin{J cos Ii + bcos fij. 
9.94 Cb) If OJo = 0, the plate is stationary. The solution 

of the equation 2 cos fi .- sin {J ~ 0 is the value of Ii 
for which the centre of mass of the plate is directly 
above point 0; the plate :is balanced on one comer, 

9.96 B = (52.721 + 97.35j +9.26k)N, 

MR = (0.05 i - 10.25 j + 30.63 k) N.m. 

9.98 

9.100 L M = (-·282.81 - 2545.6 j - 800 k) N.m. 

9.102 • = (0.05351 + 0.0374 j -I- 0.0160) rad/,'. 
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10.4 (a) E = I, r,b = 45', 

10.6 (a) ! =2.()9s./=0,477Hl:. (b)x=(0.1)cos3Im, 

10.8 (aJ x (O,I)cos3/m, 

04 

-() 4 L" ---'c--c:---~---'c-----; 

10.10 f = (I/2n),/kIm, 

10.14 1046Hz, 

I •• cCUIH.h 

10.16 (al! = 2,09,./ = OASHz, (b) x 0.36(1 - co,3t)m, 

10.18 0.212m to the left, 1.630m/s towards the right 

10.20 f = O,I77Hz, 

10.26 30mm, 

10.28 OE = 0,172 Sill 11.621 rad. 

10.30 08 = 0,133 cos 6.0S' rad. 

10.32 mA = 4.38 kg, 

10.36 (a)!=3.17s,/ 0,316H"(bJr=3,14,. 

f = O,3IRHz, 

10.38 T = 2.22 s,f = 0,450 Hz, (The undamped values 

a,re r = 2,09 s. I 00477 Hz.) 

10040 c = 1,39N.s/rn, 

10.42 Ca) r l.64s,f= 0,61 Hz, (b) 3.768s, 
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10.44 x = [e-"( -0,)25 sin ;:,241-

0.363 cos 2,241) + 0,363J m, 

10,46 x = [-(0.363 + 1.090I)e-" + 0.363J m, 

10,48 0,0708 radls clockwise. 

10.50 (a) 277.1 N,s/m, (b) ,9:. IOle-4
'" rad, 

(c) Om .. = 0.850rad at 1 = 0,231 s. 

10.52 OR = 0.20ge-6621 sin 9.55/rad. 

10.54 ell = e-'OS'(O,244sin3,45/+0.167cos 1A51)rad, 

10.56 (a) xp 0,5 sin 81 m, 

(b) x = (-(lAsin JOt + eos IOr+0.5 sin8lJm. 

10.60 49N. 
10.620,113mm, 

10.64 00407 m. 

10.66 5,5 mm, 

10.70 Time, s 

0,00 
0.01 
0.02 
0,03 
0.04 
0.05 

O. rad 

0.0349 
0.0349 
0,0349 
0,0348 
0.0346 
0.0344 

w. ract/s 

0.0000 
-00051 
-0.0103 
-0.0154 
-0.0205 
-0,0256 

10.72 Time, s Displacement, TIl x 106 Vcl'Jcity, m/s x 103 

0,000 0,0000 O,()()()O 
0,001 00000 
(),()02 0.0000 
0.003 0,(1664 
0,004 0.2651 
0,005 0.6614 

10.74 f = (1/2n)J3[(k/m) :'li72ijj. 
10.76 ,5 = 2,07, 

10.78 l = (),7141lz. 
10.80 x = O.0345(e-267)r 'c-·142fil)m. 

10.82 x (0,253 sin 6, 19t + 0.100 cos 6, 191+ 

0.145 sin 3.001) Tn, 

10.84 (al Ep = (2n1l/J.)2h/[k/m) (21t1l),1)2J, 

(b) v = i.y'k/m/2n, 

0.0000 
0.0664 
0.1987 
0.3963 
06587 
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Acceleration, 4, 17 
angular, 50, 235, 262 
centripetal, 68 
Coriolis, 68, 287 
cartesian coordinates, 41 
constant, 21 
cylindrical coordinates, 69 
nonnal and tangential 

components, 56, 58 
polar coordinates, 67 
spherical coordinates, 536 
straight-line motion, 18 

as a function of position, 32, 
33 

as a function of time, 19 
as a function of velocity, 31, 

33 
Acceleration due to gravity, 6 
Amplitude, 487 
Angular acceleration, 50, 235 
Angular acceleration vector, 262 

of a rotating coordinate system, 
281 

Angular impulse, 209, 391 
Angular impulse and momentum, 

principle of, 210, 390 
Angular momentum, 209, 306, 390, 

430 
Angular motion, 49 

equation of, three-dimensional, 
448 

equation of, two-dimensional, 
304, 309 

Angular units, 8 
Angular velocity vector, 240 

of a rotating coordinate system, 
281,423 

Angular velocity, 49, 235 
Apogee, 78 
Attenuation, 499 
Average force, 187, 389 
Axial force, 324 

Base units, 
International System, 7 
US Customary, 8 

Beams, internal forces and moments 
in, 324 

Bending moment, 324 
Body cone, 468 
Body-fixed coordinate system, 232 

Cartesian coordinates, 40 
acceleration, 41 
Newton's second law, \03 
position vector, 40 
velocity, 40 

Celestial mechanics, 74 
Central-force motion, 210 
Centripetal acceleration, 68 
Centroids, table of, 532 
Chain rule, 21, 32 
Circular frequency, 488 
Circular motion, 58, 68 
Circular orbit, 61, 77, 79 
Collisions, see Impacts 
Communication satellite, 79 
Conic section, 76 
Conservation of angular momentum, 

210, 392 
Conservation of energy, 160, 484 
Conservation of linear momentum, 

195,215 
Conservative force, 161, 167 

force exerted by a linear spring, 
164 

weight of an object, 162 
Conversion of units, 9 
Coordinate system, 

body-flXe(~ 232 
cartesian, 40 
cylindrical, 68 
polar, 66 



rotating, 281, 423 
spherical, 536 

Coriolis acceleration, 68, 287 
Cariolis force, 288 
Couple, 

inertial, 327 
work done by, 373 

Critical damping, 501 
Curl, 168 
Curviliriear motion, 40 
Cylindrical coordinates, 68 

acceleration, 69 
position vector, 69 
vcJocity, 69 

D' Alembert's principle, 327 
Damped vibrations, 499 

critical damping, 50! 
logarithmic decrement, Sill 
suberitic.! damping, 500 
supcrcritieal damping, 50 I 

Dampmg element, 499 
Damping mechanism, 499 
Dashpot, 499 
Datum, 162 
Degree, 8 
Degree of freedom, 483 
Derivati"e of a vector, 16 
Derivatives, table of, 530 
Derived units, 7 
Differential equation, 486, 508 
Direct central impacts, 199 
Directrix, 76 
Displacement, 16 

in straight-line motion, 17 
Displacement transducer, 516 
Dynamics, 2 
Dynamics of a system of particles, 

305 
principle of work and energy, 368 

Earth-centred coordinate system, 
286 

Earth-fixed coordinate system, 287 
Eccentricity, 76 
Energy, 141,367 

conservation of, 160, 374, 484 

kinetic, 141, 368 
potential, 161 
of a system of particles, 368 
use of in vibrations, 484 

Escape velocity, 36, 77 
Euler's equations, 448 
Euler's theorem, 240, 422 
Euler, Lconhaf{~ 129 
Eulerian angles, 464 

Finite-difference method, 129, 341, 
521 

Fixed-axis rotation, 233 
Flat response, 517 
Foot, 4, 8 
Force, 4, 100 

average, 187 
conservative, 161, 167 
external, 102, 305 
gravitational, 5 
impulsive, 187 
mertial, 327 
internal, 102, 305 
work done by, 141 

Forced vibrations, 508 
Forcing function, 508 

oscillatory, 509 
polynomial, 510 

FOlward differencing, 129 
Free vibrations, 486, 499 
Frequency, 

circular, 488 
damped, 501 
natural, 488 

Frequency spectrum, 517 

Geosynchronous orbit) 79 
Gradient, 167 
Gravity, 5 

at sea level, 6 
force between two particles, 5 
of the earth, 5 

Gyroscope, 428 

Hohmann transfer, 79 

INDEX 547 



548 INDEX 

Homogeneous differential equation, 
486 

Homogeneous solution, 508 

Impacts, 198 
direct central, 199 
oblique central, 200 
of rigid bodies, 397 
perfectly elastic, 200 
perfectly plastic, 198 

Impulse 
angular, 209, 391 
linear, 189, 389 

Impulse and momentum, principle 
of, 
angular, 210, 390 
linear, 186, 389 

Impulsive force, 187 
Inertia matrix, 43 I 
Inertial couple, 327 
Inertial force, 327 
Inertial reference frame, 100, 286 
Instantaneous axis of rotation, 240, 

422 
Instantaneous centre. 254 
Instantaneous radius of curvature, 57 
[ntegrals, table of, 530 
Internal forces and moments, 324 
International System of units, 4, 7 

Jet engine. 218 

Kepler. Johannes, 74 
Kilogram, 5, 7 
Kinematics, 231, 422 
Kinetic energy, 141, 368 

Linear differential equafjon, 486 
Linear impulse and momentum, 

principle at; 186, 389 
Linear impulse, 186,389 
Linear momentum, 100, 186 

conservation of, 195,215 
Logarithmic decrement, 501 

Mass,4, lao 
Mass flow rate, 215 
Mass flow, 215 
Mass moment of inertia, see Moment 

of inertia 
Mechanics, 2 
Metre, 4, 7 
Moment of inoma, 

area, 346 
table of, 532 

mass, 304, 344, 430, 433 
about an arbitrary axis, 437 
cylinder, 354 
inertia matrix, 431 
parallel··axis theorems, 350, 

436 
principal axes and moments of 

inertia, 438 
products 0 f inertia, 43 I 
slender bal', 345, 433 
table of,. 534 
thin plate, 346, 434 

Momentum, 
angular, 209, 306, 430 
linear, 100, 186, 195 
of a system of particles, 305 

Motion of a point, 16 
along a cUlvilineal' path, 40 
along a straight line, 17 
in cartesian coordinates, 40 
in cylindrical cOOl'dinate" 68 
in normal and tangential 

components, 55 
in polar coordinates, 66 

Motion of a rigid body, see Rigid 
body 

Motion of the centre of mass, 101, 
304 

Motor vehicles, dynamics of, 118 

Natural frequency, 488 
Newton, Isaac, 4, 5, 7, 74 
Newtonian gravitation, 5 



Newton's laws) 4 
Newton's second law, 4, 100,304, 

305 
for the centre of mass of an object, 

102 
in cartesian coordinates, 103 
in normal and tangential 

components, 1 15 
in polar coordinates, 124 
in straight-line motion, 103 
in tenns of a rotating coordinate 

system, 289 
Newton's third law, 305 
Nonnal and tangential components, 

55 
acceleration, 56, 58 
Newton's second law, 115 
velocity, 55, 5S 

Numerical solutions, 128, 341, 521 
Nutation angle, 465 

Oblique central impacts, 200 
Orbit, 74 

circular, 61, 77 
eIHptlc, 77 
hyperbolic, 77 
parabolic. 77 

Orbital mechanics, 74 
Onentation. 235 
Orientation of a rigid body, 464 
Oscillatory motion, see Vibrations 
Overdamped systems, see Subcritical 

damping 

Parallel-!",is theorems, 350, 436 
Particle kinematics, see Motion of a 

point 
Particles, system of, 305, 368 
Particular solution, 508 
Path angle, 56 
Pendulum, 485 
Perigee, 78 
Period, 

damped, 501 
free, 488 

Phase, 487 

Planar motion, 234, see also Rigid 
body, kinematics 

Polar coordinates, 66 
acceleration, 67 
Newton's second law, 124 
position vector, 66 
velocity, 66 

Position vector, 16 
cartesian coordinates~ 40 
cylindrical coordinates, 69 
polar coordinates, 66 
spherical coordinates., 536 

Potential energy, 161, 167 
of a linear spring, 162 
of an object's weight, 162 

Pound 5, 8 
Pound mass, 8 
Power, 149, 374 
Precession, 

moment-frce, 467 
steady, 466 

Precession angle, 465 
Principal axes, 438 
Principal moments of iDertia, 438 
Products of ine11ia. 431 
Projectile, 41 

Radian, 8 
Rectilinear motion, see Straight-line 

motion 
Reference point, 16 
Relative acceleration, 

in terms of a rotating coordmatc 
system, 28 I 

of two arbitrary points, 83 
of two points of a rillid body, 

260,423 
Relative motion of two points, 82 

acceleration, 83, 260 
position, 83 
velocity, 83, 239, 241 

Relative velocity, 
in terms of a rotating coordinate 

system, 281 
of two arbitrary points, 83 
of two points of a rigid body, 239, 

241,423 
Restitution, coefficient of, 200, 398 
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Right-hand rule, 240 
Rigid body, 232 

dynamics, 
conservation of energy, 374 
D' Alembert's principle, 327 
equation of angular motion in 

three dimensions, 448 
equation of angular motion in 

two dimensions, 304 
impacts, 397 
numerical solutions, 128, 341, 

521 
princIple of angular impulse 

and momentum, 391 
principle of linear impulse and 

momentum, 389 
principle of work and energy, 

368 
three-dimensional, 430 
two-dimensional, 304 

kinematics 
angular velocity vector, 240 
Euler's theorem, 240 
Eulerian angles, 464 
relative acceleration of two 

points, 260, 423 
relative velocity of two points, 

83,239, 241, 423 
rolling, 240 
rotation about a fixed axis, 

233, 235 
sliding conlact, 271 
three-dimensional, 422 
translation, 233 
two-dimensional, 23 I 

Rocket, 216 
Rolling, 240 
Rotating coordinate system, 281, 

423 
Rotating unit vector, 50 
Rotation, 

about a fixed axis, 233 
about a fixed point, 430, 448 

Rounding off, 6 

Satellite, 61, 74, 212 
Seismograph, 517 
Separating variables, 31 
Shear force, 324 

SI units, see Interuational System of 
units 

Significant digits, 6 
Simple harmonic motion, 487 
Sliding contact, 271 
Slug, 5, 8 
Space, 4 
Space cone, 468 
Spherical coordinates, 536 
Spin angle, 465 
Spin rate, 466 
Spring-mass osoillator, 484 
Statics, 2 
Straight-line 1110tion, 17 
Strategy, 3 
Subcritical damping, 500 
Supercritical damping, 501 

Tables: 
centroids of areas, 532 
centroids of lines, 533 
centroids of volumes, 535 
derivatives, 530 
integrals, 530 
moments of inertia of areas, 

532 
momentq of inertia of 

homogeneous objects, 534 
Taylor series, 531 
Time, 4 
Transducer, 517 
Translation, 233 
Trigonometry, 529 
Two-dimensional equations of 

rigid-body motion, 304 
Two-dimensional motion, see Planar 

motion 

US Customary units, 4, 8 
Underdamped systems, see 

Subcritical damping 
Unit vectors, 

in cartesian coordinates, 40 
in cylindrical coordinates, 68 
in normal and tangential 

components, 55 



in polar coordinates, 66 
rotating, 50 

Units, 
conversion of, 9 
International System, 4, 7 
US Customary, 4, 8 

Universal gravitational constant, 5 

Velocity, 4, 16 
determined using instantaneous 

centre, 254 
escape, 36, 77 
cartesian coordinates, 40 
cylindrical coordinates, 69 
normal and tangential 

components, 55, 58 
polar coordinates, 66 
spherical coordinates, 536 
straight-line motion, 18 

Vibrations, 483 
amplitode, 487 
conservative systems, 484 
danlpcd and free, 499 
forced, 508 
frequency, 488, 50 I 
numerical solutions, 521 
penod, 488, 501 
phase, 487 
undamped and free, 486 

Weight, 6 
Work, 141, 147, 372 

done by a couple, 373 
done by a linear spring, 148 
done by an object's weigbt, 147 
relation to potential energy, 160 

Work and energy, principle of, 141, 
368 
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