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iv  PREFACE

Figure 7.16

(b)) Expressing the acceleration of the centre
of mass (7 in terms of the acceleration of
the centre A.

For 25 yews we ha}'ve taught the two-semester introductory course in

engineering mechanics
could understand our ¢
the textbook, This com
that differs from the trz

. During that time, students oftén told uvs that they
lassroom presentation, but had difficulty understanding
ment led us to examine what the instructor does i class
ditional textbook presentation, and eventally resulted

in this book. Our approach is to present material the way we do in the

classroom, using more
careful visual analysis
we keep the student fo

sequences of figures and stressing the importance of
and conceptual understanding. Throughout the book,
remorst in mind as our audience.

Goals and Themn
Problem Solving

105

e emphasize the critical importance of good problem-

solving skills. In our [worked examples, we teach students to think about
problems before they q[egin their solution. What principles apply? What must
be determined, and in what order? Separate Strafegy sections that precede most
of the examples il]ustra{[te this preliminary analysis. Then we give a careful and
complete description of the solution, often showing alternative methods.
Finally, many examples conclude with Discussion sections that point out
properties of the solutjon, or comment on and compare alternative solution
methods, or point out ways to check the answers. (See, for instance, Example
3.2, pp. 106-7.} Our objective is to teach students how to approach problems
and critically judge thejresults. In addition, for those students who tell us that
they understand the ‘aterial in class, but don’t know how to begin their
homework problems we also provide brief Strategy sections in selected
homework problems.

Visualization One
is visualization, especi

instructor can draw a

developing the solution
thing in: this book, shoy
carefully indicating the
9, instead of simply shq
with the isolated part h
image. In this way we s
become the free-body
image to indicate the m
visnalize the true moti

[ the essential elements in successful problem solving
Ily the use of free-body diagrams. In the classroom, the
fiagram ome step at a time, describing each step and
in paraliel with the diagrarn. We have done the same
ing the same sequence of diagrams we use in class and
relationships between them, In Example 8.2, pp. 378~
wing the free-body diagram, we repeat the initial figure
ghlighted and cverything else shown as a pale ghosted
how the student exactly how to isolate the part that will
diagram. In Example 9.8, p. 456, we use a ghosted
otion of a rigid body about an axis. Thig helps students

We use colour to

n of the object.
elp students distinguish and understand the various

elements in figures. B | using the same colours for particular elements con-
sistently - such as blue for force vectors and green for accelerations — we
have tried to make the Tyook easier for students to read and understand. (See,

for example, Figure 7

116 on the left.) In addition, the greater realism of




colour illustrations helps motivate students. (See Figure 3.7, p. 117; Figure
5.13, p. 202; and problem illustrations throughout the book.)

Emphasizing Basic Principles Our primary goal for this book is to teach
students fundamental concepts and methods. Instead of presenting dynamics
as a sequence of independent methods, we emphasize its coherence by
showing how energy and momentum technigues can be derived from Newton's
second law, We apply the same approach to a system of particles to obtain the
equations describing the dynamics of rigid bodies. In describing motions of
rigid bodies, we consistently use the angular velocity vector and the vector
equations deseribing the relative motiong of points, Traditionally, dynamics
texts have waited until they discuss rigid bodies to show that the sum of the
external forces acting on an object is equal to the product of its mass and the
acecleration of its centre of mass., We introduce this simple result as soon as
we have discussed Newton’s second law, in Chapter 3, because we find our
students gain confidence in their solution. They don’t need to be concerned
about whether a given object can be modelled as a particle; they know they’re
determining the motion of its centre of mass, To help students identify
important results, key equations are highlighted (see, for example, p. 18),
and the concepts discussed in each chapter are reinforced in a chapter-end
sumITary.

Thinking Like Engineers Engineering is an exciting discipline, requiring
creativity and imagination as well as knowledge and systematic thinking. In
this book we try to show the place of engineering mechanics within the larger
context of engineering practice. Engineers in industry and the Accrediting
Board for Engineering and Technology (ABET) are encouraging instructors to
introduce design early in the engineering curriculum, We include simple
design and safety ideas in muny of our examples and problems without
compromising emphasis on fundamental mechanics. Many problems are
expressed in terms of design and safety considerations (for example, Problems
3.101 and 3.102, p. 136); in some cases, students are asked to choose a design
parameter from a range of possible values based on stated criteria (for
cxample, Problems 4.118, p. 180; and 4.125, p. 181). Our students have
responded very positively to these motivational elements and have developed
an awareness of how these essential ideas are applied in engineering.

Pedagogical Features

Based on our own teaching experiences and advice from many colleagues, we
have included several features to help students learn and to broaden their
perspective on engincering mechanics.

Problemn-Solving Shralegies Worked examples and homework problems
are the heart of a course in engineering mechanics. Throughout the book, we

PREFACE v
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PREFACE

provide descriptions o
students will finel help

I
: the approaches that we use in the examples and which
ul in working problems. We do not provide recipes that

thought that apply to broad classes of problems and give useful advice and

students are intended g) follow rgidly. Instead, we describe general lines of

helpful warnings of gommon pitfalls, the kind of information we give to

students during office

thours, (See, for example, pp. 33, 242, 262 and 311.)

Applicafions Manjﬂ of our examples and problems are derived from actual

engineering practice,
engineering applicatio
Engineering’ provide

ranging from familiar household items to advanced
ns, In addition, examples labelled as ‘Applications to
more detailed case studies from different engineering

disciplines. These examples show how the principles learned n the text are
directly applicable to gurrent and future engineering problems. Our goal is to

help students see the

portance of engineering mechanics in these applica-

tions and so gain the motivation to learn it. (See, for example, pp. 79, 118 and

218.)

Computer Problem-ls Surveys tell us that most instrugtors make some use

of computers in engin
how it should be don

ering mechanics courses, but there is no consensus on

:. We give the instructor the oppertunity to introduce

students to computer gpplications in dynamics, including the use of finite

differences to integrat

equations of motion, without imposing a particular

approach. Optional se(irtions called *‘Computational Mechanics” contain exam-
ples and problems suitable for the use of a programmable calculator or

computer. (See, for e
how students solve

language, a spreadshee
sections are independe

Chapter Openings |

application of the idea

)¥ample, pp. 128 and 174.) The instructor can choose

ese problems, for example by using & programming
or a higher-level problem-solving environment. These
t and self-contained.

We begin each chapter with an illustration showing an
in the chapter, often choosing objects that are familiar

to students. By seeing how the concepts in this course relate to the design and
function of familiar objects around thern, students can begin to appreciate the
importance and excitex?nent of engineering as a career, (See pp. 98, 230 and

302.)

Commitment to|Students and Instructors

We have taken precautions that ensure the accuracy of this book to the best of

our ability. Reviewers
have each solved the

cxamined cach stage of the manuscript for errors, We
roblems in an effort to be sure that their answers are

correct and that the prablems are of an appropriate level of difficulty. Tugene
Davis, author of the Solutions Manual, further verified the anSwers while
developing his solutiorﬁs. As a further check, James Whitentorm"examined the
entire text for errors that crept in during the typesetting process,

Any errors that ren

in are the responsibility of the authors. We welcome

L | ) :
communication from sﬁudents and instructors concerning errors or areas for
improvement, Our mailing address is Department of Aerospace Engineering

and Bngineering Mec

anics, University of Texas at Austin, ‘Austin, Texas

78712, USA. Our elect%rOnic mail address is bedford@aw.com. '

i
|




Printed Supplements

instructor’s Solutions Monual The manual for the instructor containg
step-by-step solutions to all problems. Each solution includes the problem
statement and the associated art.

Study Guide This guide reinforces the Strategy-Solution-Discussion
process outlined in the text. Selected solutions are provided in great detail,
accompanied by suggested sirategies for approaching problems of that type.

Transparencies  Approximately 100 figures from the text have been
prepared in four colours on acetate for use on an overhead projector.

Software Supplements

Student Edition of Working Model® Working Model (Knowledge
Revolution, Inc.) is a simulation and modelling program that allows the
student to visualize engineering problems. The program calculates the effects
of forces on an object (or objects), animates the results, and provides output
data such as force, moment, velocity and acceleration in digital or graphical
form. The Student Edition make this powerful program affordable for under-
graduate students. It is available in both Windows and Macintosh versions.

Working Model © Simulations  Approximately 100 problems and exam-
ples from the text have been re-created on disk as Working Model simulations.
These simulations have been constructed to allow the student to change
variables and see the results. The student can explore physical situations in
a ‘what if* manner and thereby develop deeper conceptual insights than
possible through quantitative problem solving alone. Students can purchase
these simulations combined with the text for 2 nominal additional charge.
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he first space shuttle

flight tock place on
12 April 1981. The

space shuttle Columbia
went into orbit 271 km
above the carth. To
achieve orbit, it had to
attain a veloeity relative
to the centre of the earth
of approximately 8 km per
second.  After two  days,
with Commander John
Young at the controls, it
landed at Edwards Air
Force Base, California,




Infroduction

T HE Space Shuttle was conceived as an economical
method to transport personnel and equipment to orbit.
Throughout its development, engineers used the principles
of dynamics to predict its motion during boost, in orbit and
while landing. These predictions were essential for the
design of its aerodynamic configuration and structure,
rocket engines and control system. Dynamics 1s one of the
sciences underlying the design of all vehicles and machines.




2 CHAPIER 1

INTRODUCTION

S

1.1 Engine

i

ering and Mechanics

How do engineers c::%
|

before they are cons

designs. Modern engi

ign complex systems and predict their characteristics
cted? Engineers have always relied on their knowledge

eers add a powerful technique: they develop mathe-

of previous designs, ‘%xpcriments, ingenuity and creativity to develop new

matical equations bas
design. With these ma

d on the physical characteristics of the devices they
hematical models, engineers predict the behaviour of

their designs, modify therm, and test them prior to their actual construction.
Aerospace engineers used mathematical models to predict the paths the space
shuttle would follow in flight. Civil engineers used mathematical models to

analyse the response t
Chicago,

! loads of the steel frame of the 443 m Sears Tower in

il

Engineers are respansible for the design, construction and testing of the

devices we use, from
complicated ones such
a deep understanding
familiar with the use
Students of engineerin
viour of physical syste
At 1ts most basic le
Elementary mechanics
brium, and dymamics,
elementary mechanics

|imple things such as chairg and pencil sharpeners to

as dams, cars, airplanes and spacecraft, They must have
of the physics underlying these devices and musi be
of mathematical models to predict system behaviour.
b begin to learh how to analyse and predict the beha-
n1s by studying mechanics.

¢l, mechanics is the study of forces and their effects.
is divided into statics, the study of objects in equili-
he study of objects in metion. The results obtained in
apply directly to many fields of engineering. Mechan-

ical and civil engineers who design structures use the equilibrium equations
derived in statics. Civil engineers who analyse the responses of buildings to

earthquakes and aerosp

lites use the equations

Mechanics was the

ace engineers who determine the trajectories of satel-

nf motion derived in dynamics.
first analytical science; consequently fundamental

concepts, analytical methods and analogies fromi mechanics are found in

virtually every fleld o
electrical engineering

I . . .
engineering, For example, students of chemical and

ain g deeper appreciation of basic concepts in their

fields such as equilibrjum, energy and stability by learning them in their

original mechanical co
historical development

1.2 Learni%g Mechanics

‘texts. In fact, by studying mechanics they retrace the
of these ideas.

|

Mechanics consists of b#oad principles that govern the behaviour of objects. In

this book we describe
dermonstrate some of

‘{hesc principles and provide you with examples that
heir applications. Although it’s essential that you

practise working problems similar to these examples, and we include many

problems of this kind,

ur objective is to help you understand the principles

well enough to apply th m to situations that are new to you, Each generation of
engineers confronts new problems.




Problem Solving

In the study of mechanics you learn problem-solving procedures you will use
in succeeding courses and throughout your career. Although different types of
problems require different approaches, the following steps apply to many of
them:

e Identify the information that is given and the information, or answer, you
must determine. It’s often helpful to restate the problem in your own
words. When appropriate, make sure you understand the physical system
or mode! involved.

e Develop a strategy for the problem. This means identifying the princi-
ples and equations that apply and deciding how you will use them to
solve the problem. Whenever possible, draw diagrams to help visualize
and solve the problem.

s Whenever you can, try to predict the answer. This will develop your
intuition and will often help you recognize an incorrect answer.

¢ Solve the equations and, whenever possible, interpret your results and
compare themn with your prediction. The latter step is called a reality
check. Is your answer rcasonable?

Calculators and Computers

Most of the problems in this book are designed to lead to an algebraic
expression with which to calculate the answer in terms of given quantities, A
calculator with trigonometric and logarithmic functions is sufficient to deter-
mine the numerical value of such answers. The use of a programmable cal-
culator or a computer with problem-solving software such as Mathcad or TK!
Solver 1s convenient, but be careful not to become too reliant on tools you will
not have during tests.

Scctions called Computational Mechanics contain examples and problerns
that are suitable for solution with a programmable calculator or a computer.

Engineering Applications

Although the problems are designed primarily to help you learn mechanics,
many of them illustrate uses of mechanics in engineering. Sections called
Application to Engineering describe how mechanics is applied in various
flelds of engineering,

We also include problems that emphasize two essential aspects of engi-
neering;

» Design. Some problems ask you to choese values of parameters to
satisfy stated design criteria.

e Safery. Some problems ask you to evaluate the safety of devices and
choose values of parameters to satisfy stated safety requirements.

1.2 LEARNING MECHANICS 3




4 CHAPTER

INTRODUCTION

1.3 Fundamental Concepls
|

Some topics in mechamfcs will be familiar to you from everyday experience or

. t
from previous exposure

to them in physics courses. In this section we briefly

teview the foundations jof elementary mechanics.

Space and nim;éi

Space simply refers to

daily expetiences give |

¢ three-dimensional universe in which we live, Our
$ an intuitive notion of space and the locations, or

positions, of points in space. The distance between two points in space is the
length of the straight line joining them,

Measuring the dista
We use both the Interna
units, Tn SI units, the y
Customary umts, the uy

Time is, of course, f

ce between points in space requites a unit of length.
tional System of ynits, or SI units, and US Customary
nit of length is the metre (abbreviated to m). In TS
it of length is the foot (it).

imiliar —our lives are measured by it, The daily cycles

of light and darkness a,lnd the hours, minutes and seconds measured by our
clocks and watches givﬁ us an intuitive notion of time. Time is measured by

the intervals between r
dulum or the vibrations
Customary units, the u
(min), hours (h) and da

If the position of a p

peatable events, such as the swings of a clock pen-
of & gquartz crystal in a watch. In both Sl units and U8
hit of time is the second (abbreviated 1o §), Minutes
ys are also frequently used.

pint in space relative to some reference point changes

with time, the rate of change of its position is called its velocity, and the rate of

change of its velocity is called its aceeleration. In SI units, the velocity is
expressed in metres per seccond (m/s) and the acceleration is expressed in
metres per second per gecond, or metres per second squared (m/s%). In US

Customary units, the vElocity is expressed in feet per second (ft/s) and the
acceleration is expressed in feet per second squared (ft!sz).

Newton's Laws

Flementary mechanics was established on a firm bagis with the publication, in

1687, of Philosophiae

naturalis principia mathematica, by Isaac Newton,

Although highly original, it built upon fundamental coneepts developed by

many others during a

fong and difficult struggle towards understanding.

Newton stated three ‘laws’ of motion, which we express in modern terms:

(1) When the sum of

he forces acting on a particle is zero, its velocity is

constant. In partica;ldw; if the particle is initially stationary, it will remain

SHaronary.

(2) When the sum of th'!e Jorees acting on a particlg is not zevo, the sum of the

Jorces is equal fo

\the rate of change of the linear momentum of the

particle. If the mags is constant, the sum of the forces is equal to the
product of the masy of the particle and its acceleration.
(3) The forces exerted by two particles on each other are equal in magnitude

and opposite in difction.

Notice that we did not define force and mass before stating Newton'’s laws.
The modern view is that these terms are defined by the second law. To




demonstrate, suppose that we choose an arbitrary object and define it to have
unit mass. Then we define a unit of force to be the force that gives our unit
mass an acceleration of unit magnitade. In principle, we can then determine
the mass of any object: we apply a unit force to it, measure the resulting
acceleration and use the second law to determine the mass. We can also
determine the magnitude of any force: we apply it to our unit mass, measure
the resulting acceleration and use the second law to determine the force.

Thus Newton’s second law gives precise meanings to the terms mass and
force. In SI units, the unit of mass is the kilogram (kg). The unit of force is the
newton (N}, which is the force required to give a mass of one kilogram an
acceleration of one metre per second squared. In US Customary units, the unit
of force is the pound (1b), The unit of mass is the slug, which is the amount of
mass accelerated at one foot per second squared by a force of one pound.

Although the results we discuss in this book are applicable to many of the
problems met in engingering practice, thers are limits to the validity of
Newton’s laws. For example, they don’t give accurate results if a problem
involves velocities that are not small compared with the velocity of light
(3 x 10° m/s). Einstein’s special theory of relativity applies to such problems.
Elementary mechanics also fails in problems involving dimensions that are not
large compared with atomic dimensions. Quantumn mechanics must be used to
describe phenomena on the atomic scale,

Newtonian Gravitation

Another of Newton’s fundamental contributions to mechanics is s postulate
for the gravitational force between two particles in terms of their masses m;
and m; and the distance # between them (Figure 1.1}, His expression for the
magnitude of the force is

F o= Gmm'lz

(1.1)

s

where (18 called the universal gravitational constant.

Newton calculated the gravitational force between a particle of mass my and
a homogencous sphere of mass mq and found that it is also given by Equation
(1.1, with r denoting the distance from the particle to the centre of the sphere.,
Although the earth is not a homogeneous sphere, we can use this result to
approximate the weight of an object of mass m due to the gravitational
attraction of the carth.

o Gmmy
W o - (1.2)

where mg is the mass of the earth and » is the distance from the centre of the
earth to the object. Notice that the weight of an object depends on its location
relative to the centre of the earth, whereas the mass of the object is 4 measure
of the amount of matier it contains, and doesn’t depend on its position,
When an object’s weight is the only force acting on it, the resulting
acceleration is called the aceeleration due to gravity. In this case, Newton’s
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Figure 1.1

The gravitatonal forces between two particles
are equal in magnitude and directed along the
line between them.
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second law states that| W = ma, and from Equation (1.2) we see that the
acceleration due to gravity is

a=2E | (1.3)

The acceleration due o gravity at sea level is denoted by g. Denoting the
radius of the earth by Ri, we see from Equation (1.3) that Gmg = gRZ.
Substituting this result)into Equation (1.3), we obtain an expression for the
acceleration due to gravity at a distance r from the centre of the earth in terms
of the acceleration duefto pravity at sea level:

RE
ﬁ (1.4)

o

Since the weight of the pbject ¥ = ma, the weight of an object at a distance »
from the centre of the earth is

;
W = mg g%:- (1.5)
i\

Al sea level, the weight Eof an object is given in terms of its mass by the simple
relation ?

W=mg (1.6)
a
The value of g varie§ from location to location on the surface of the earth.
The values we use in examples and problems are g = 9.81 nv's* in SI units and
g=3221ts% in US Cu%;tomary units,

Numbers

Engineering mcasurcmgms, calculations and results are expressed in numbers,
You need to know how {lve express numbers in the examples and problems and
how to express the ms%lts of your own calculations.

|
Significant Digits 'this term refers to the number of meaningful (that is,
accurate) digits in a nl mber, counting to the right starting with the first
nonzero digit. The two numbers 7.630 and 0.007 630 are each stated to four
significant digits. If only the first four digits in the number 7630000 are
known 10 be accurate, ﬂ:ﬂl.ls can be indicated by writing the number in scientific
notation as 7.630 x 10§,

If a number is the reiult of a meusurement, the significant digits it contains
are limited by the accuracy of the measurement, Lf the result of a measurement
is stated to be 2.43, this|means that the actual value is believed to be cloger to
243 than to 2.42 or 2,44,

Numbers may be ml{ndeﬂ off to a ¢ertain number of significant digits. For
example, we can express the value of 7 to three significant digits, 3.14, or we
can express it to six significant digits, 3.14159. When you use a calculator or
computer, the number If significant digits is limited by the number of digits
the machine is designed to carry.




Use of Numbers in This Book You should treat numbers given in
problems as exact values and not be concerned about how many significant
digits they contain. If a problem states that a quantity equals 32.2, you can
assume its value is 32,200, ., . We express intermediate results and answers in
the examples and the answers to the problems to at least three significant
digits. If you use a caleulator, your results should be that accurate. Be sure to
avoid round-off ervors that occur if you round off intermediate results when
making a series of calculations. Instead, carry through your calculations with
as much accuracy as you can by retaining values in your calculator.

1.4 Units

T4 UNITS 7

The SI system of units has become nearly standard throughout the world. In
the USA, US Customary units are also used. In this section we summarize
these two systems of units and explain how to convert units from one system
to another.

International System of Units

In SI units, length is measured in metres (m) and mass in kilograms (kg). Time
is measured in seconds (), although other familiar measures such as minutes
{min), hours (hr) and days are alse used when convenient. Metres, kilograms
and seconds are called the base units of the SI system. Force is measured in
newtons (N). Recall that these ynits are related by Newton’s second law: one
newton is the force required to give an object of one kilogram mass an
aceoleration of one metre per second squared.

IN = (1 kg)(1 m/s*) = | kg.m/s?

Since the newton can be expressed In terms of the base units, it is called a
derived unit.

To express quantities by numbers of convenient size, multiples of units are
indicated by prefixes. The most common prefixes, thelr abbreviations and the
multiples they represent are shown in Table 1.1. For example, 1km ig
1 kilometre, which is 1000m, and 1 Mg is 1megagram, which is 10%g or
1000 kg. We frequently use kilonewtons (kN),

Table 1.1 The commeon prefixes used in SI units and the
multiples they represent.

Prefix Abbreviation Multiple
nang- n 10*
micro M 1n-¢
milli- m 10™?
kilo- k 10°
mega- M 10°
giga- G 10°
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Definition of an angle in radians,

Us Customary lini&

In US Customary units,
pounds (Ib). Time is mg
US Customary system.

of mass is the slug, wh
second squared by a fo

rlength is measured in feet () and force is measured in
asured in seconds (s). These are the base nnits of the
n this system of units, mass is a dérived unit. The unit
ch is the mass of material accelerated at one foot per
ce of one poupd. Newton’s second law states that

11b = (1 slug)(] ft/s%)

From this expression we obtain

1 slug == ll‘é).sz/ﬂ

We use other US Cu ‘tomary units such as the mile (1 mi== 5280 ft) and the

inch (1ft=12in.). We

1150 use the kilopound (kip), which is 1000 Ib.

In some engineering applications, an alternative unit of mass called the
pound mass (Ibm) is uéled, which is the mass of material having a weight of

one pound at sea level.
one slug is

W = mg e

80 11bm =(1/32.2) slug
usually denoted by the

Angular Units

In both 51 and US Cust
(rad}. We show the valug
be the ratio of the part o
circle. Angles are also

[he weight at sea level of an object that has a mass of

(1slug)(32.2 ft/s%) = 32.21b

. When the pound mass is used, a pound of force is
abbreviation 1bf.

bmary units, angles are normally expressed in radians
of an angle & in radians in Figure 1.2. It is defined to
f the circumference subtended by @ to the radius of the
expressed i degrees. Since there are 360 degrees

(360°) in a complete circle, and the complete circumference of the circle is

2nR, 360° equals 2mrad.

Equations containing
tion that angles are exp

angles are nearly always derived under the assump-
ressed in radians. Therefore when you want to sub-

stitute the value of an angle expressed in degrees into an equation, you should
first convert is into radians. A notable exception to this rule is that many

calculators are designed

to accept angles expressed in either degrees or radians

when you use them to évaluate functions such as sin 8.

Figure 1.2




Conversion of Unifls

Many situations arise in engineering practice that require you to convert values
expressed in units of one kind into values in other units. If some data in a
problem are given in terms of SI units and some are given in terms of US
Customary units, you must express all of the data in terms of one system of
units. In problems expressed in terms of SI units, you will occasionally be
given data in terms of units other than the base units of seconds, metres,
kilograms and newtons. You should convert these data into the base units
before working the problem. Similarly, in problems involving US Customary
units you should convert terms into the base units of seconds, feet, stugs and
pounds. After you gain some experience, you will recognize situations in
which these rules can be relaxed, but for now they are the safest procedure.

Converting units is straightforward, although you must do it with care.
Suppose that we want to express 1 mi/hr in terms of fi/s. Since one mile equals
52801t and | hour equals 3600 seconds, we can treat the expressions

52801t and 1hr
1 mi 36005
as ratios whose values are 1. In this way we obtain

: . 5280 R 1 hr .
I mifhr = 1 mi/hr x ( Tmi ) x (36(}05) = 1.47 fi/s

We give some useful conversions in Table 1.2,

Table 1.2 Umt conversions,

Time 1 minutg - 60 second

1 hour = 60 minutes

1 day s 24 hours
Length 1 foor = 12 inches

1 mile = 5280 feet

1 inch = 25.4 millimetres

1 foot = 0.3048 metres
Angle 2 radians = 360 degrees
Mass 1 slug = 14.59 kilograms

Force 1 pound = 4448 newtons

14 UNITS 9
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Exomple 1.1

If an Olympic sl:atim:::«L (Figure 1.3) runs 100 metres in 10 seconds, his average
velocity is 10m/s. What is his average velocity in mi/br?

Figure 1.3
SOLUTION
1t bmi 36005
1om/s =1 m/s x (0.304Sm) * (5280ﬁ) " ( Thr )
= 2¥ 4 mi/hr
3 R ; T T e .

Example 1.2

Suppose that in Einstgins equation

E = mel

the mass m is in kg and the velocity of light ¢ is inm/s.
{a) What are the 31 units of £7?
(b) If the value of £ i) SI units is 20, what is its value in US Customary base units?

STRATEGY
|

{a) Since we know thg units of the terms m and ¢, we can deduee the units of £ from
the given equation,
(b} We can use the unjt conversions for mass and length. from Table 1.2 to convert £
from SI units to US Gustomary wnits.

SOLUTION

{a} From the equatio& for &,

E=(m %g)(cm/s)z

the ST units of £ arc l%g.mzfsz.
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(b) From Table 1.2, 1 slup = 14.59 kg and | fl == ,3048 m, Therefore

1slug S
L kgm? /s = 1 kg.m? /st
gm’/s em/s" X\ 750kg) * \o 3048 m

= 0.738 slug.ft* /s*

The value of E in US Customary units is

E = (20)(0.738) = 14.8 slug-ft* /¢*

i ’f: 2 b g T EAa i AR

George Stephenson’s Rocket (Figure 1.4), an early steam locomotive, weighed about
7 tons with its tender. (A ton is 20001b.) What was its approximate tass in
kilograms?

Figure 1.4
STRATEGY

We can use Equation (1.6) to obtain the mass in slugs and then use the conversion
given in Table 1.2 to determine the mass in kilograms,

SOLUTION
The mass in slugs is

W 156801b
M= =

. = m = 4870 Slugs

From Table 1.2, 1 slug equals 14.5%kg, so the mass in kilograms is (to three
significant digits)

m = (487.0)(14.59) = 7105 kg

A AR S e S ey PR P AP e e Gl G e s SR e e N T N A
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Problems

1.1 The value of 7t is 3,141 592 654 ... . What is its value to four
significant digits?

1.2 What is the value of e (the base of natural logarithms) to five
significant digits?

1.3 Determine the value of the expression 1/(2 - n) to three
significant digits.

1.4 Ifx==3, whatis the value of the expression | — e to three
significant digits?

1.5 Suppose that you have just purchased a Ferrari Dine 246GT
coupe and you want to know whether you can use your set of
wrenches to work on it You have wrenches with widths
wm | /din, 1/2in., 3/4in. and 1in., and the car has nuts with
dimensiong #=35mm, 10mm, 13mm, 20mm and 25 mm. Defin-
ing a wrench to fit if w is no more that 2 per cent larger than »,
which of your wrenches can you use?

P1.5

1.6 The 1829 Rocket, shown in Example 1.3, could draw a
carriage with 30 passengers at 25 mi‘hr. Determine its velocity to
three significant digits; (a) in ft/s; (b} in kevhr

1.7 High-speed “hullet traing” began running between Tokyo and
Osaka, Japan, in 1964, 1f a bullet train ravels at 240 km/hr, what is
its velocity in mi/hr to three significant digits?

1.8 Engineers who study shock waves sometimes express velo~
city in millimetres per microsecond (mm/us). Suppose the velogity
of a wavefront is measured and determined to be 5mm/us.
Dretermine its velocity: (a) in m/s; (b) in mifs.

1.9 Geophysicists measure the motion of a glacier and discover it
is moving at 80 mm/year. What i3 its velocity in m/g?

110 The acceleration due to gravity at sea level in SI units is
£=9.81 m/s®. By converting units, use this value 1o determing the
acceleration due to gravity at sea level in US Customary units.

1.11 | A furlong per fortnight is a facetious unit of velocily,
perhaps made up by a student as a satirical comment on the
bcwiléi'lem'ng varicty of units engineers must deal with. A furlong
is 66()‘11: (1/8mi), A fortnight is two weeks (14 nights). If you walk
to clais at 5 fi/s, what iy your velocity in furlongs per fortnight to
three gignificant digits?

1.12 | The cross-sectional area of a beam is 480in%, What is its
cross-sectional area in m*?

1.13 § A truck can carry 15 cubic yards of gravel. A yard equals 3
feet, low many cubic metres of gravel can the truck carry?

1.14 | A pressure transducer measures a valuc of 300Th/in®.
Determine the value of the pressure in pascals. A pascal (Pa) is
1 N/m?,

1.15 |
the n

A horsepower is 550 1t.0b/s. A watt is 1 N.m/s. Deterine
ber of watts generated by (a) the Wright brothers® 1903

passe 'gcr jet with 2 power of 100000 horsepower at cruising

acrop‘T[mc, which had a I2-horsepower engine; (b) a modern
speed.

P1.15

116 1In 81 units, the wuniversal gravitational constant
G=667 x 107" N.m¥ky?. Determine the value of & in US
Custotnary base units,

1.17 | If the earth is modelled as a homogeneous sphere, the
velocity of a satellite in a circular orbit is

2
L e
¥

where Ry is the radius of the earth and # is the radius of the orbit,
{a) If g is in m/s” and Rp and # are in metres, what are the units of
v? '
(b} IfiRg =6370km and r = 6670kin, what is the value of v to
three significant digits?

i




(¢) Forihe orbit described in part (b), what is the value of » in mifs
to three significant digits?

1.18 In the equation

1. 4
T o frp®
20!)

the term / s in kg-m® and w is in s\,

fa) What are the ST units of 72

(b) 1f the value of T'is 100 when [ is in kg-m?® and e is in 577,
what is the value of T when it i3 expressed in terms of US
Customary base units?

1.19  The *crawler’ devcloped to transpert the Saturn ¥ launch
vehicle from the vehicl: assembly building to the launch pad is the
largest land vehicle ever built, weighing 4.9 x 10%1b at sea level.
(3) What i3 1ts mass in slugs?

(b) What is its mass in kilograms?

(2} A typical car has a mass of about 1000kg. How many such
cars does it take to have the same weight as the crawler at sea level?

1.20  The acceleration due fo gravity is 13.2 fi's® on the surface of
Mars and 32.2 ft/s? on the surface of earth, If a woman weighs
125Ib on earth, what would she weigh on Mars?

1,21 The acceleration due to gravity is 13.2 f/s* on the surface of
Mars and 32.2 f's® on the surface of the earth. A woman weighs
1251b on carth. To survive and work on the surface of Mars, she
must wear life-support equipment and carry tools. What is the
maxirnum allowable weight on earth of the woman’s clothing,
equipment and tools if the engineers don’t want the total weight on
Mars of the woman and her clothing, equipment and tools to
gxceed 125167

1.22 A person has a mass of 50 kg.
(a) The acceleration due to gravity at sea level is g=9.81 m/s%.
What is the person’s weight at sea level?

PROBLEMS 13

(b) The acceleration due to gravity on the surface of the moon is
1.62 m/s*. What would the person weigh on the moon?

1.23  The acceleration due to gravity at sea level is g = 9.81 m/s%,
The radius of the carth is 6370km. The universal gravitational
constant G=6.67 x 107" N-m*kg®. Use this information to
determine the mass of the earth,

1.24 A porson weighs 180 1b at sea level. The radius of the earth
is 3960 mi. What force is exerted on the person by the pravitationat
attraction of the earth if he is in a space station in near-earth orbit
200mi above the surface of the earth?

1.25 The acceleration due to gravity on the surface of the moon
is 1.62m/s* The radius of the moon is Ry = 1738 km. Determine
the acceleration due to gravity of the moon at a point 1738km
above its surface,

Strategy: Write an equation equivalent to Equation (1.4) for the
acceleration due to gravity of the moon.

1.26 If an object is near the surface of the earth, the variation of
its weight with distance from the centre of'the earth can often be
neglected. The acceleration due to gravity at sea lewel is
£=9.81m/s* The radius of the earth is 6370km. The weight of
an object at sea level is mg, where m ig it§ mass. At what height
abové the surface of the earth does the height of the object decreasc
to 0.99 mg?

1.27  The centres of two oranges are 1 m apart. The mass of each
orange is 0.2kg. What gravitational force ‘do they exert on each
other? (The wniversal gravitational constant G=6.67 x 10~ "
N.m*kg*)

1.28  One inch equals 25.4 mm. The musd of one cubic matre of
water is 1000kg. The aceeleration due to gravity at sea level is
g=9.81m/s*. The weight of one cubic footiof water at sea lovel is
approximatety 62.41b. By using this infortation, determine how
many newtons equal one pound,

PR




he position and velocity of the

Voyager 2 space probe at the

time of its release ncar Earth
determined the trajectory (path) it
followed to reach the planet Jupiter.
The gravitational field of Jupiter
altered the trajectory of Foyager 2
so that it could pass near Saturn,
which altered its trajectory again so
that it could pass near Uranus, and
$0 on t¢ Neptune. In this chapter you
will determine trajectories of objects
and analyse their positions, veloci-
ties and accelerations using difforent
types of coordinate systems.




Chapter 2

Motion of a Point

NGINEERS designing a vehicle, whether a bicycle or a

E spacecraft, must be able to analyse and predict its motion.
To design an engine, they must analyse the motions of each of
its moving parts. Even when designing ‘static’ structures such
as buildings, bridges and dams, they must often analyse
motions resulting from wind loads and potential earthquakes.
In this chapter we begin the study of motion. We are not
concerned here with the properties of objects or the causes of
their motions - we merely want to describe and analyse the
motion of a point in space. However, keep in mind that the point
can represent some point (such as the centre of mass) of a
moving object. After defining the position, velocity and accel-
eration of a point, we consider the simplest example: motion
along a straight line. We then show how motion of a point along
an arbitrary path, or trajectory, is expressed and analysed in

various coordinate systems.

15
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2.1 Position, Velocity and

Accel

14}

Figure 2.1

{(a) The position vector ¥ of P relative to ().
{b) Motion of P relative to O.

() Change in the position of P from ¢ to
14 A

ﬁbraﬁon

We can describe the pcfsition of a point P by choosing a reference point O and

introducing the positi%n vector r from O to P (Figure 2.1(a)). Supposc that £
is in motion relative tq ¢), so that r is a function of time  (Figure 2.1(b)). We

express this by the no

r o= r{{)

lation

i. . ,
The velocity of P relative to O at time ¢ is defined by

dr

V:E._

where the vector r(z -+

lim
P2 Ar

2.1

'iAt) ~ () is the change in position, or displacement of

B, during the interval of time At (Figure 2.1(c)). Thus the velocity is the rate of
change of the positionﬂL of P relative to O,

The dimensions of

v+ Al - w(t)

a derivative are determined just as if it were 4 ratio, so

the dimensions of v are (distance)/(time), The reference point being used is

often obvious, and wi
remember that the pg

F simply call v the velocity of F. However, you must
sition and velocity of a point can be specified only

relative to some refergnce point.

Notice in Equation

(2.1) that the derivative of a vector with respect to time

is defined in exactly thp same way as 1s the denivative of a sealar function. Asa
result, it shares some of the properties of the derivative of a scalar function. We
will use two of these properties. The time derivative of the sum of two vector

functions u and w is

d
3;(“ + w)|

ld'u

dw
dt

T a

]
and the time derivatiye of the product of a scalar function f and a vector

function u is

dt

&
d(fu) gl[
cgt

.du
ll'{-fgt"




The acceleration of P relative to O at time ¢ is defined by

_dv YR AN—v()
g T e

where v(1 + Af) = v({) is the change in the velocity of P during the interval of
time Af (Figure 2.2). The acceleration is the rate of change of the velocity of P
at time £ (the second time derivative of the displacement}, and its dimensions
are (distance)/(time)*.

2.2 Straight-Line Motion

22 STRAIGHT-LINE MOTION 17

Vi)

V(1)

Figure 2.2

Change in the velocity of P from ¢ to
t+ At

We discuss this simple type of motion primarily so that you can gain
experience and insight before proceeding to the general case of motion of a
point. But engineers must analyse straight-line motions in many practical
situations, such as the motion of a vehicle on a straight read or track or the
motion of a piston in an internal combustion cngine.

Description of the Motion

We can specify the position of a point P on a straight line relative to a
reference point (@ by the coordinate s measured along the line from O to P
(Figure 2.3(a)). In this case we define s to be positive to the right, so s is
positive when P is to the right of © and negative when P is to the left of (. The
displacement As relative to O during an interval time of time from 7, t ¢ is the
change in the position, As = s(r) — s(¢).

By introducing a unit vector e that is parallel to the line and points in the
positive s direction (Figure 2.3(b)), we can write the position vector of £
relative to O as

r—=§¢

If the line does not rotate, the unit vector e is constant and the velocity of £
relative to O is

mdrmds
@&

We can write the velocity vector as v = ve, obtaining the scalar equation

_ds
S
The velocity » of point £ along the straight line is the rate of change of its
position s. Notice that » is equal to the slope at time f of the line tangent to the
graph of s as a functien of time (Figure 2.4).
The acceleration of P relative to €2 is

a—:i?~&;(ve)

0 ¢ .
e

{u}
o P

¥
I €
{b)
Figure 2.3

(a) The coordinate s fiom O (o P
(b) The unit vector e and position vector r.

—_—

Figure 2.4

The slope of the straight line tangent to the
graph of ¥ versus 7 is the velocity at time £
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" . . .
Writing the accele:ratmﬁ; vector as a = g ¢, we oblain the scalar equation

o do_dis
Cdr T dr

The acceleration a is eqhal to the slope at time ¢ of the ling tangent to the graph

h

of v as a function of ti ; e (Figure 2.5),

Figure 2.5

The slope of the straight line tangent to the 7

graph. of v versus £ 1s the acceleration at
time £,

By introducing the

describing the motion ¢

- f———

unit vector e, we have obtained scalar equations

f P The position is specified by the coordinate s, and

the velocity and acceleration are governed by the equations

dy
WV o——

dt

I
i!
!

2.3)

2.4)

Analysis of the Adoﬁon

In some situations, you will know the position 5 of some point of an object as a
function of time. Engincers use methods such as radar and laser-doppler

interferometry to meas

positions as functions of time. I this case, you can

obtain the velocity and acceleration as functions of time from Equations (2.3)

and (2.4) by diﬂ“ercntiahfon. For example, if the position of the truck in Fipure
2,6 during the interval éf timne from ¢ = 25 to £ = 45 is given by the equation

§ = (6 +%?13)m

Figure 2.6

The coordinate 5 measures the position
of the centre of mass of the track relative to
a reference point.

Ou




its velocity and acceleration during that interval of time are

_ds

2
dr—tm/s

o

dv 3
a= = 2tm/s

However, it is more common to know an object’s acceleration than to know
its position, because the acceleration of an object can be determined by
Newton'’s second law when the forces acting on it are known, When the
acceleration is known, you can determine the welocity and position from
Equations (2.3) and (2.4) by integration. We discuss three important cases in
the following sections.

Acceleralion Specified as o Function of Time  If the acceleration is a
known function of time a(f), we can integrate the relation

dy
(—i—t— = a(t) (2.5)

with respect to time to determine the velocity as a function of time
e /a(t) dt+ 4 (2.6)

where 4 i an integration constant, Then we can integrate the relation

ds

e 2.7

dt v (2.7)
to determing the position as a function of time

3 fvdH—B (2.8)

where 5 is another integration constant, We would need additional information
about the motion, such as the values of » and 5 at a given time, to determine the
constants 4 and B.

Instead of using indefinite integrals, we can write Equation (2.5) as

dv = a(r) dt

and integrate in terms of definite integrals:

l:dvz[:a(r)dt

The lower limit v is the velocity at time fo, and the upper limit » is the velocity
at an arbitrary time 7. Evaluating the left integral, we obtain an expression for
the velocity ag a function of time:

v =ty + [r a(t) dr (2.9

b

2.2 STRAIGHT-LINE MOTICN
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(a)

Figure 2.7

Relations between areas defined by the
graphs of the acceleration and velocity of £
and changes in its velocity and position,

We can then write quﬂation (2.7) as

ds = vdt

and integrate in terms of definite integrals

t ;
[ds:ﬁ vt
L H’“D

where the lower limit 5y is the position at time £, and the upper limit s is the
position at an arbitrary time ¢ Evaluating the left integral, we obtain the
position as a function faf time:

£ =80 -I—f vt (21 0)
[

Although we have s}jlown how to determine the velocity and position when
you know the acceleration as a function of time, you shouldn’t try to remember
results such as Equati hiis {2.9) and (2.10). As we will demonstrate in the
examples, we recommend that you solve straight-line motion problems by
beginning with Equatigns (2.3) and (2.4).

We can make some |useful observations from Equations (2,9) and (2.10):

s The area defined by the graph of the acceleration of P as a function of time
from { to ¢ is equal to the change in the velocity from £y to ¢ (Figure
2.7(a)). _

* The arca defined by the graph of the velocity of P as a function of time
from #p to ¢ is equa] to the displacément, or change in position, from ¢ to ¢

(Figure 2.7(b}).

i)

B e AR 5 §{1) - 5 {1

e Area = U0 - Eiitﬂ) e

o

You can often use thesd relationships to obtain a qualitative understanding of
an object’s motion, and}in some cases you can even use them to determing its
motion.

In some situations, ithe acceleration of an object is constant, or nearly
constant. For example, if you drop a dense object such as a golf ball or rock
and it doesn’t fall too far, you can neglect aerodynamic drag and assume that
its acceleration is equall to the acceleration of gravity at sca level,
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Let the acceleration be a known constant ag. From Equations (2.9) and
(2.10), the velocity and position as functions of time are

vwvn-{-cxg(t—tg) (2.11)

1
5 = 5y + vold - fo) an(r e t‘())2 (2.12)

where sp and vy are the position and velocity, respectively, at time #. Notice
that if the acceleration is constant, the velocity is a linear function of fime.

We can use the chain rule to express the acceleration in terms of a deriv-
ative with respect to s

dv  deds  dve

NG Ta T dt

Writing this expression as wdv = apds and integrating,

Y
jm’v:fao ds
2+ S

we obtain an equation for the velocity as a function of position:
o= tﬁ + 2ay(s — s0) (2.13)

You are probably familiar with Equations (2.11)-(2.13). Although these
results can be useful when you know that the acceleration is constant, you
must be careful not 1o use them othetwise.

The following examples illustrare how you can use Equations (2.3) and (2.4)
to obtain information about straight-line motions of objects. You may need
to chaase the reference point and the positive direction for 5. When you know
the accelerution as a function of time, you can integrate Equation (2.4} to
determine the velocity and then integrate Equation (2.3) to determine the

position,

STRAIGHT-LINE MOTION 21
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Example 2.1

Engincers tosting a \Hchiclc that will be dropped by parachute estimate that its
vertical velocity whcm'ﬂ it reaches the ground will be 6.1 m/s, If they drop the vehicle
from the test rig in Figure 2.8, from what height 4 should they drop it to simulate the

parachute drop?

Figure 2.8

STRATEGY

We can assume that the vehicle’s acceleration during its short fall is g =9.81 m/s%,
We can determing the%‘height h in two ways:

_ o First methed Wf:i‘ can integrate Equations (2.3} and (2.4) to determine the
. vehicles motion.
i
o Secand method, Wc van use Equation (2.13), which relates the velocity and
position when thelacceleration is constant.

SOLUTION

We let s be the posiliol of the bottom of the platform supporting the vehicle relative
to its initial position (Figure (a)). The vehicle’s acceleration is @ = 9.8 m/s2,

First Method  Fron| Equation (2.4),

dv i 2
e a = 981 m/s

Integrating, we obtain]
i

=981k + 4
|
i\
where 4 is an 'mtegrar:‘ion constant. 1 we let £ = 0 be the instant the vehicle is
I




SR

() The coordinate s measures the position of the bottom of the platform
relative to its position.

dropped, » == 0 when £ = 0, 50 .4 = 0 and the velocity as a function of time is

v 931 m/s

Then by integrating Equation (2.3),

ds
i v = 9811

we obtain
§ == 4.9056 + B

where B is a second integration constant. The position x =} when f =0, 50 8 =0
and the position as a function of time is

§ = 4.905¢

From the equation for the velocity, the time of fall necessary for the vehicle to reach
6.0 m/fs is 1=46.1/9.81 = {1622 5. Substituting this time into the cquation for the
position, the helght A needed to simulate the parachute drop is

h = 4.905(0.622)° = 1.90 m

Second Method Because the acceleration is constant, we can use Equation
(2.13) to determine the distance necessary for the velocity to increase to 6.1m/s:

Vo= v% + 2ag(s = 5¢)
GAF =0+ (980 —0)

Solving for s, we obtain k= 1.90m.

2.2 SIRAIGHT-LINE MOTION 23
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Example 2.2

PR

LSt EET,

£ o s

The cheetah, deinomix jubatus (Figure 2.9), can run as fast as 7S mi/hr. If you
assums that the animal’s acceleration is constant and that it reaches top speed in 4 5,
what distance can it cover in 105?

Figure 2.9

STRATEGY

The acceleration has {‘a constant value for the first 45 and. is then zero, We can
determine the distmncei‘imvc]led during each of these ‘phases’ of the motion and sum
them to obtain the total distance covered. We do so both analytically and graphically.

SOLUTION

The top speed in terms of feet per second is

— . 528011 {br
75mi/hri= 75 mi/hr x (—l—n—n—) x (36008) = 110 1fi/s

i
First Method Let ‘ﬂ!g be the acceleration during the first 45. We integrate
Equation (2.4), i

il ‘ e
f dv = f o dr
0 D

i
obtaining the velocity “a.\) a function of time during the first 4 :

v = agt f/s




2.2

When ¢ == 45, v == |101t/s, s0 29 = 110/4 =275 ft/s°. Now we integrate Fquation

(2.3,
4
fwmfmam
0 Y]

obtaining the position as a function of time during the first 4 s:
s = 13,757 ft

At £ = 45, the position is s=13.75(4)* =220 ft.
From £ =4 to t = 104, the velocity is constant, The distance travelled is

(110 1t/s)(6s) = 660 ft
The total distance the animal travels is 220 -+ 660 = 880 ft, or 268.2m in 10s.

Second Method We draw a graph of the animals velocity as a function of
time in Figure (a). The acceleration is constant during the first 4 5 of motion, so the
velocity is a linear function of time from v =0 at ¢ = 0 to v= 110ft/s at ¢ = 45,
The velocity is constant during the last 6 5. The tetal distance covered is the sum of
the areas during the two phases of motion:

%(4 S0 f/5) + (65)(110 f/s) = 220 ft = 880 fL

Area equals the distance
traveled from & 0 to 7 H s,

1, seconds

{c) The cheetah’s velocity as a function of time.

DISCUSSION

Notice that in the first method we used definite, rather than indefinite, intcgrals to
determine the cheetah’s velocity and position as functions of time. You should
rework the example using indefinite integrals and compare your results with ours.
Whether to use indefinite or definite integrals is primarily a matter of taste, but you
need to be familiar with both procedures.

STRAIGHT-LINE MOTICN
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Example 2.3

Suppese that the accela ‘ation of the frain in Figure 2.10 during the interval of tme
from ¢ =25 to £ =45 is a=2um/s%, and at £ = 25 its velocity is » = 180 km/hr,

What is the train’s velgeity at + = 45, and what is its displacement (change in
position) from t = 25 td { = 47

STRATEGY

We can integrate Equations (2.3) and (2.4) to determine the train’s velocity and
position as functions of itime.

SOLUTION

The velocity at #= 25 inl terms of m/s is

Figure 2,10

Lkm 36008

180 km/hr k= 180 ken/hr x (1000”‘) x ( Lbr ) = 50m/s
|
We write Equation (2.4)'as
dv=adt =l 2t dr

and integrate, introducing the condition v = 50 m/fs gt fz=2g:

fdv:ﬂtht
50 EE

Evaluating the integrals, we obtain
v="~£ 446 m /s

Now that we know the vélocity as a function of time, we write Equation (2.3) as
ds =vdi = '(ﬁ o $6Y ot

and integrate, defining th¢ position of the train at 7 = 25 to he s = 0;

2 1
f ds= | (7 +46)dt
¢ 2

The posivon as a functim% of time ig
1,
5= gnf' + A61 = 94,7 | m
Using our equations for the velocity and position, the velocity dt f=4 g is

v = (4 + 46 = 62 my/s

and the displacement fmtﬂ I=2510 (=45 is

As = [_3]: (4)* - 46(4) - 94.7]. —0=1107m
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DISCUSSION

The acceleration in this example is not constant. You must not try to solve such
problems by using equations that are valid only when the acceleralion is constant.
To convince yourself, try applying Equation (2.11) to this example: set ag = 2¢m/s°,

21

fg=2s, and vy =50m/s, and solve for the velocity at i=4s.

Problems

The following problems involve straight-line motion, The
time tis in seconds unless otherwise stated,

2.1 The graph of the position & of a point as a function of time is
a straight line, When f=4s, s=24m, and when =205,
s 72m,

(2} Determine the velocity of the point by calculating the slope of
the straight line.

{b) Oblain the equation for s as a function of time and wvse it to
determine the velocity of the point.

2.2 The graph of the position 5 of a point of a milling machinc as
a function of time is a straight line. When ¢ = 0.2 5, s = 90 mm.
During the interval of time from ¢t =10.65 to +=12s, the
displacement of the point is As= — 180 mm.

(2) Determine the equation for s as a function of time.

(b) What is the velocity of the point?

P2.2

2.3 The graph of the velocity » of a point as a function of time
i a straight line. When =235, »=4m/s, and when ¢ =45,
= ~10m/s.

(a) Determine the acceleration of the point by caleulating the slope
of the straight line.

(b) Qbtain the equation for v as a function of time and use it to
determine the acceleration of the point.

2.4 The position of 4 point is 5 = (232 - 1)m.

(a) What is the displacement of the point from t = 0 to ¢ = 4 5?
(b) What are the velocity and acceleration gt § = 07

(¢) What are the velocity and acceleration at 1 = 4?

2.5 A rocket starts from rest and wavels straight up. Its height
above the ground is measured by radar fromv = O to ¢ = 45 and i3
found to be approximated by the function 5= 10 m,

(a) What is the displacement during this interval of time?

(by What is the velocity at ¢ = 487

(v) What is the acceleration during the first 457

P2.5

2.6 The position of a point during the interval of time from ¢t = 0
10 £ = 68is 5= (=4 + 62 + 4)m.

{a) What is the displacement of the point during this interval of
time?

(b) What is the maximum veloeity during this interval of time, and
at what time does it occur?

(e} What is the acceleration when the velocity is a maximum?
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2.7 The posilion of a point during the interval of time from £ == 0
10f=3siss= {1245 - F)m.

{(a) Whai is the maximum velocity during this interval of time, and
at what time does it oecur?

(b) What is the acceleration when the velocity is a maximum?

2.8 A seismograph measures the horizontal motion of the ground
during an earthquake. An engineer analysing the date determines
that for a 105 interval of time beginning at £ =0, the position is
approximated by s == 100 cos(2xs) mm. What are the () maximum
velocity and (b) maximum accelcration of the ground doring the
105 interval?

2.9 During an assembly operation, 2 robot’s arm moves along a
straight line. During an interval of time from ¢ == 0 to == 13, ity
position is given by s = (757'—507) mm. Determine, during this 1 s
interval: (a) the displacement of the arm; (b) the maximum and
minimurn values of the velocity; (¢} the maximum and minimum
values of the acceleration,

p2.9

2.10 In atest of a prototype car, the driver starts the car from rest
at ¢ =10, accelerates, and then applies the brakes. Engineers
measuring the position of the car find that from r =0 to t = 185
it is approximated by s = (1.5f +0.1£ — 0.006/ m.

(a) What is the maximum velocity, and at what time does it occur?
(b) What is the maximum acceleration, and at what time does it
ocen?

211 | uppose you wait to approximate the position of a vehicle
you areftesting by the power series § = A + i 4- Cf2 4 D, where
A, B, Cland D arc constants. The vehicle starts from rest at ¢ = 0
and s=0, Al f =48, 5= 54m and at { == 88, s = 136 m.

(a) Delermine 4, B, C and D,

(b} Whit are the approximate velocity and acceleration of the
vehiclefat ¢ == 8 57

212 ‘i;rhe aceeleration of a point is @ = 20m/¢*. When ¢ = 0,
s=40m and v=—10m/s. What are the position and velocity at
[=38%

213 ?l’he acceleration of a point is @ = (60t — 36/%) m/s*. When
£=0, 5= 0 and v =20m/s, What are the position and velocity as
functions of time?

214 iSuppose that during the preliminary design of a car, you
assume }its magimum acteleration is approximately constant, What
constant acceleration is necessary if you want the car to be able to
accelerqte from rest to a velocity of 88km/hr in 10s? What
distance would the car travel during that lime?

|
2.15 An entomologist estimates that a flea 1 mm in length attains
a velocity of 1.3m/s in a distance of one body length when
jumping, What constant acceleration is necessarv to achieve that
velocitﬂ?

P2.15




2.16 Missiles designed for defence against ballistic missiles
achieve accelerations in excess of 100 g% or one hundred times
the acceleration of gravity. If a missile has a constant acceleration
of 100 g%, how long does it take to go from rest to 96 km/hr? What
is its displacement during that time?

P2.16

2.17 Suppose you want to throw some keys to a friend standing
on a first-tloor balcony. If you release the keys at 1.5 m above the
ground, what vertical velocity is necessary for them to reach your
friend's hand 6 m above the ground?

2.18 The Lunar Module descends toward the surface of the moon
at 1m/s when its landing probes, which extend 2m below the
landing gear, touch the surface, automatically shuiting off the
engines. Determine the velocity with which the landing gear
contacts the surface. (The acceleration due to gravity at the surface
of the moon i I.62m/s2.)
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219 Tn 1960 B. €. Owens of the Baltiimore Colts blocked a
Washington Redskins field goul atternpt by jumping and knocking
the ball away in front of the cross bar at a point 3.35 m above the
field. If he was 1.90m tall and could reach (.36 m above his head,
what was his vertical velocity as he left the ground?

2.20 The velocity of a bobsled is »=13rm/s. When ¢ = 25, its
position is ¢ = 7.5 m. What is its position when ¢ = 10s?

P2.20

2.21 The acceleration of an object is g ==(10 - 2£m/s*. When
tem 0,2 0 and v = 0. What is its maximum velocity during the
interval of time from ¢ =0 to # = 1057

2.22 The velocity of an object is v=(200 — 2" m/s. When
t==3s8, its position is 5= 600m. What are the position and
acceleration of the object at ¢ = 657

223 The acceleration of g part widergoing 4 machining opera-
tion is measured and determined to be a = (12 — 67)mm/s*. When
t=0, v=0. For the interval of time from =0 to {=4s,
determine: (a} the maximum velocity; (b) the displacement.

2.24 The missile shown in Problem 2.16 starts from rest and
accelerates straight up for 3 s at 100g%. After 3 5, its weight and
agrodynamic drag cause it to have a constant deecleration of 4 g's,
How long does it take the mussile to go from the ground to an
altiede of 15 240m?

225 A car is traveling at 48km/hr when a traffic light 90m
ahead turns amber. The light will remain amber for 5s before
turning red.

{2) What constant acceleration will cause the car to reach the kHght
at the instant it turns red, and what will the velocity of the car be
when it reaches the light?

{b) If the driver decides not to try to make the light, what constant
rate of acceleration will cause the car to come to a stop just as it
reaches the light?

30 misbr
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226 At =0, a motorist travelling at 100%km/hr sees a deer
standing in the road 100 m zhead. After a reaction time of 0.3 s, he
applics the brakes and decelerates at a constant rate of 4m/s*, If
the deer takes 5s from ¢ = 0 to react and leave the road, docs the
motorist miss him?

2.27 A high-speed mail transportation system has a top speed of
100 m/s, For the comfort of the passengers, the magnitude of the
acceleration and deceleration is limited to 2m/s”. Determine the
minimum time required for a trip of 100km.

Strategy: A graphical approach ¢an help you solve this problem,
Recall that the change in the position from an initial time 2, to a
time £ is equal to the area defined by the graph of the velocity as a
function of time from 5, to 1.

P2.27

228 The nearest star, Proxima Centauri, is 4.22 light years from
the earth. Ignoring relative motion between the solar system and
Proxima Centauri, suppose that a spaccoraft accelerates from the
vicnity of the earth at 0.01g (0.01 times the acceleration due
gravity at sca Jevel} until it reaches one-tenth the speed of light,
coasts until time to decelerate, then decelerates at 0.01 g until it
comes to rest 1a the vicinity of Proxima Centauri. How long does
the trip take? (Light travels at 3 x 10%m/s. A solar year is
365.2422 solar days.)

229 A racing car stas from rest and accelerates at
a=(1.5+0.60m/s* for 0s. The brakes are then applied, and
the car has a constant acceleration ¢ = —9m/s* until it comes to
rest. Determine: (a) the maximom velocity; (b) the total distance
travelled; (¢} the total time of travel.

2,30 When ¢ =0, the position of a point is s=6m and ils
velocity is vs=2m/s. From ¢t =0 to { =65, its acceleration is
a=(2+2¢)m/s%, From ¢ = 65 until it comes to rest, its aceelera-
tion is @ = ~d4 m/g".

(2) What is the total time of travel?

{b} What total distance docs it move?

2.31 Zoologists studying the ecclopy of the Screngeti Plain
gstimate that the average adult chectah can run 100km/hr and
the average springbok can run 65 km/hr. 1f the animals run along
the same straight line, start at the same time, and arc cach assumed
to have constant acceleration and reach top speed in 4 5, how close
must a cheetah be when the chase begins to catch a springbok in
1587

2.32 : uppase that a person unwisely drives at 120km/hr in an
80km/hr zone and passes a polive car going at 80 km/hr in the
same cliprrection. If the police officers begin corstant acceleration at
the insti‘r;]t they are passed and increase their velocity to 130 km/hr

inds, hl\ w long dogs it take them to be level with the pursued car?

2.33 lilfﬁ': 1rad and d6/dt=1rad/s, what is the velocity of P
relative o (7

Straregy: You can write the position of P relative to () as
5w (2m)cosf + (2m) vos 0,

then takf:e the derivative of this expression with respect to time to
determigie the velocity.

P2.33

234 In Problem 2.33, if f=lrad, df/dt=~2rad/s and
d*0/df =0, what are the velocity and acceleration of P relative
to Q7

235 If 8= 1rad and d0/dt = 1rad/s, what is the velocity of #
relative to (7




Acceleration Specified as a Funclion of Velocity Aerodynamic and
hydrodynamic forces can cause an object’s acceleration to depend on its
velocity (Figure 2.11). Suppose that the acceleration is & known function of
velocity a(v):

e =z () (2.14)

Flgure 2.11

moves relative to the

motion,

We cannot integrate fhis equation with respect to time to determine the
velocity, because a(v) is not known as a function of time. But we can separate
variables, putting terms involving » on one side of the equation and terms
involving ¢ on the other side:

dv
e T 2.1
pra (2.15)
We can now integrate
4 f
f v f &t (2.16)
w a(u) fo

where wp is the velocity at time #. In principle, we can solve this equation for
the velocity as a function of time, then integrate the relation

ds
dt

=

to determing the position as a function of time.

Aerodynamic and hydrodynamic
forces depend on an object’s
velocity. The faster the object
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fluid, the greater is the force resisting its
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i
|

By using the chain ru%"f:, we can also determine the velocily as a function of

the position. Writing the| acceleration as
n

dv_duds jdv
di  dsdt " ds
and substituting it into E;quation (2.14), we obtain

ﬁ’u =a(v) -

ds
Sepatating variables,

v _ s
ale)

and integrating,

4 4
u a(v) 35,

we can obtain a relation betwee:n the velocity and the position.

|
Acceleration Specified as a Function of Position Gravitational
forces and forces exerted by springs can cause an object’s acceleration to
depend on its position. Ifi the acceleration is a known function of position,

% =a(s) | .17

i
we cannot integrate with fespect to time to determine the velocity because s is

not known as a function;‘ of time. Moreover, we cannot separate variables,
because the cquation contping three variables, v, ¢ and s. However, by using the

¢hain rule,

dv_dvds _dv
dr~ dsdt av .

we can write Equation (2{17) as

dv
2;;1; == g(s)

Now we can separate vmifhbles,
vdv = a(s)ds : (2.18)

and integrate;

'[v:'vdv:/s:;l(s)ds 219




In principle, we can solve this equation for the velocity as a function of the
position:

v = %; = o) (2.20)

Then we can separate variables in this equation and integrate to determine the
position as a function of time:

The next two examples show how you can analyse the motion of an object
when its acceleration is a function of velacity or position. The initinl steps
are summarized in Tuble 2.1.

Table 2.1. Determining the velocity when you know the
acceleration as & function of velocity or position.

If you know a = a(v): Separate variables,
dv
i a(v)
v _
a(y
or apply the chain rule,
-@—@@—@v—a'v)
G dasd - ds T

then separate vanables,

vy
;(—13 ws (Y
If you know a = a(s): Apply the chain rule,
dv _ duds _ dvv = a(s)
dt  dsdt ds T

then separate vaniables,

vedv = a(s) ds

22 SIRAIGHT-LINE MOTION 33
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Example 2.4 ﬁ

After deploving its dra% parachute, the acroplane in Figure 2.12 has an acceletation
a = —0.00407 m/s, |
(2) Determine the timg required for the velocity to decrease from 80m/s to 10m/s.

(b) What distance doe% the plane cover during that time?

Figure 2.12

STRATEGY i}

In part (b), we will ude the chain rule to express the acceleration in terms of a
derivative with respectﬂ to position and integrate to obtain a relation between the
velocity and the position.

SOLUTION

(a) The acceleration isi

dv
[ | &
a 0t 0.004¢

We separate variables,

%? - ww-a.fm dr

and integrate, defining |}r = 0 to be the time at which v = 80m/s:

" du

it
== | —0.004ds
&0 v -[0

]
Evaluating the integral§ and solving for #, we obtain
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The time required for the plane to slow to + = 10m/s is 21.95, We show the

velocity of the agroplane as a function of time in Figure 2,13,

80

2, mis
E
/

1 TE—
0 0 5 10 115 20 l 25 30
- 21.9 -
1, seconds
(b} We write the acceleration as
dv  deds d
o 2 e o 22 ey 2 ), 000

separate variables,

@ == (). (04ds
v

and integrate, defining 5 == 0 to be the position at which ¢ = 80m/s:

o f -(.004ds
0

80 ¥

Evaluating the integrals and solving for s, we obtain

£ =250 1n(§9)
v

The distance required for the plane to slow to v = 1lm/s i3 519.9m.

DISCUSSION

Figure 2,13

Graph of the aeroplane’s velocity as a

function of time. o

Notice that our results predict that the time elapsed and distance travelled continue
to increage without bound as the aeroplane’s velocity decreases. The reason 1s that
the modelling is incomplete. The equation for the acceleration includes only
aerodynamic drag and does not account for other forces, such as friction in the

aeroplane’s wheels,

35
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Figure 2.14

Example 2.5

In terms of distance s fr}‘om the centre of the earth, the magnitude of the acceleration
due to gravity is gRE/s%, where Ry, is the radiug of the earth. (See the discussion of
gravity in Section 1.3})l|ll" a spacecraft is a distance 5y from the centre of the earth
(Figure 2.14]), what outward velogity o, must it be given to reach a specified distance
h from the centre of thé: eaith?

SOLUTION
The acceleration duc lo‘ gravity is fowardy the centre of the earth

4
a:—@—p&

825
Applying the chain rulf;;,

dv_deds  dv gR:

@ T Ea &S
and separating variable§, we obtain
eyl

R
vy mg&iﬁ(.(v
¥

We integrate this cquatﬁon using the initial condition, » = vy when s = &, as the
lower limits, and the final condition, v = @ when s = A, as the upper limits:

A o2
R
/0 2y =i ifmil‘:ds
W ’ 5 &

)

Evaliating the integral:‘s and solving for =), we obtain the inital velocity vy
necessary for the spacc&raﬁ to reach a distance k;

/ 1
= {2eR[1— -~
ki) & BCSU h)

DISCUSSION

We can make an inteﬂ;ésting and important observation from the result of thig
cxample. Notice that asl‘ the distance A increases, the necessary initial velocity v
approaches a finite limit. This limit,

i}
Vpge == h{l;.[;‘% Ty ==

2eRE

S

is called the escape vel;:ocity. In the absence of other effects; an object with this
initial velocity will continue moving ontwards indefinitely, The existence of an
escape velocity makes fit feasible to send probes and persons to other planets.
Once escape veloeity s pttained, it isn’t necessary to expend additional fuel to keep

going,
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2.36 The acceleration of an object is & = —2vm/s?, When ¢ = 0,
8 == () and v == 2 m/5. Determine the object’s velocity as a function
of time.

237 In Problem 2.36, determine the objeet’s position as a
function of time.

2.38 The hoat is moving at 20 m/s when ies engine is shut down.
Due to hydrodynamic drag, ils acceleration is @ = =0,1v% m/s”,
What is the boat’s velocity 2 s later?

p2.38

2.39 In Problem 2.38, what distance does the boat move in the
25 following the shutdown of its engine?

2.40 A steel ball is releaged from rest in a container of oil. Its
downward acceleration is @ == (.9g¢ — cv, where g is the accelera-
tion due to gravily at sea level and ¢ is a constant. What is the
velocity of the ball as a function of time?

P2.40

2.41 In Problem 2.40, determine the position of the ball relaive
to its initial position as a function of time.

Problems

242 The greatest ocean depth yet discovered is in the Marianas
Trench in the western Pacific Ocean, A stegl ball released at the
surface requires 64 min to reach the bottom. The ball’s downward
acceleration is a = 0.9g — cv, where g is the acceleration due to
gravity at sea level and the constant ¢ = 3.02 4", What is the depth
of the Maransas Trench in kilometres?

243 To study the effects of meteor impacts on satellites, engi-
neers use a rail gun to accelerate a plastic pellet to a high velocity.
They determine that when the pellet has travelled | m from the gun,
its velocity is 2.25km/s, and when it has uavelled 2 m from the
gun, its velooity is 1.00 kny/s. Assumie that the acceleration of the
pellet after it leaves the gun is giver by a = —ar?, where ¢ is a
constant

{a) What is the value of ¢, and what are its SI units?

(b} What was the velocity of the pellet as it left the rail gun?

P2.43

2.44 1 agrodynamic drag is taken into account, the acceleration
of a falling object can be approximated by @ = g — cv?, where g is
the acceleration due to gravity at sea level and ¢ is a constant.
() If an ohject is released from rest, what is its velocity as a
function of the distance 5 from the point of release?

(1) Determine the limit of your answer to part (a) as ¢ —» 0, and
show that it agrees with the solution you obtain by assuming that
the acceleration a = g,
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2.45 A sky diver jumps from a helicopter and is falling straight
down at 30m/s when her parachute opens. From then on, her
downward acceleration is approximately ¢ =g — oo?, where
g=981m/s* and ¢ is a constant. After an initial ‘transient’
period, she descends at 4 ncarly constant velocity of 5m/s,

(2} What is the value of ¢, and what are its I units?

(b) What maximum doccleration is she subjected to?

(c) What is her dewnward velocity when she has fallen 2 m from

the point where her parachute opens?

P2.45

246 A rocker sled starts from rest and accclerates at
a =37/ m/s* until its velocity is 1000m/s, It then hits a water
brake, and its acceleration is a = 0,001+ m/s until its velocity
decreases (o 500 m/s. What tota] distance does the sled travel?

2.47 The velocity of a point is given by the equation
v (24 = 269 m/s

What i its aceeieration when s = 2 m?

2.48 ‘Fhe velooity of an object subjected to the earth’s gravita-
tional field is
]

I A
i 2 2
=[asan(- D)

where i:g is the velocity at position sg and Rg is the radius of the
earth. {Ising this equation, show that the ohject’s acceleration is
a=—gRL/s.

2.49 [Engineers analysing the motion of a linkage determine that
the velgeity of an attachment point is given by v = (4 -- 45%) m/s,
where # is a constant. When s=2m, its acceleration is measured
and determined to be @ = 320 m/s*. What is its velocity when

|
§ = 2m?

2.50 ‘Ihc acceleration of an object is given by the function
@=25m/s’. When ¢ =0, v = 1m/s. What is the velocity when

the object has moved 2m from its initial position?

2.81  [the acceleration of an object is given by a = 3s? m/¢%. At
§=0, fits velocity is » = 10m/s. What is its velocity when
§ = 4m=‘?
|
!
2.52 e velocity of an object is given by o = k/s, where kis a
constant. If ¢ == 4m/s and § = 4 m at 7 = 0, determine the constant

k and the velocity at ¢ == 2 5.

253 A spring-mass oscillator consists of a mass and a spring
connected as shown. The coordinate s measures the displacement
of the mass relative to its position when the spring is unstretched. 1f
the spring is linear, the mass is subjected to a deceleration
proportional 1o ». Supposc that g = ~dg m/s* and that you give
the mass a velocity v = 1 m/s in the position ¢+ = 0.

(a) How far will the mass move to the right before the sprning
brings it to a stop?

{(b) Whit will be the velocity of the mass when it has returned to
the position s = 07

P2.53




2.54  In Prblem 2,53, suppose that at £ = 0 you release the mass
from rest ity the position 5 = 1 m. Determine the velocity of the
mass as a function of 5 as it moves from the initial position to
s=0.

2.55 In Problem 2.53, suppose that at 7 = 0 you release the mass
from rest in the position s = 1 m. Determine the position of the
mass as a function of time as it moves from its initial position to
§u 0,

256 If a spacecrafi is 160km. above the surface of the earth,
what initial velocity vy straight away from the earth would be
required for it to reach the moon’s orbit 383 000 km from the centre
of the earth? The radius of the earth is 6370 km, Neglect the effect
of the moon’s gravity. (See Example 2.5.)

P2.56

257 The radius of the moon is Ry = 1738 km. The acceleration
of gravity at its surface is 1.62 m/s?. If an object is released from
rest 1738 km above the surface of the moon, what is the magnitude
of its velocity just before it impacts the surface?

258 Using the data in Problem 2.57, determine the escape
veloeity from the surface of the moon. (See Example 2.5.)
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2.59 Suppose that a tunnel could be drilled straight through the
earth from the North Pole to the South Pole and the air evacuated.
An ohiject dropped from the surface would fall with acceleration
@ == —gs/Rg, where g is the acceleration of gravity at sea level, Rg
is the radius of the earth, and s is the distance of the object from the
centre of the earth. (Gravitational acceleration is equal to zero at
the centre of the earth and increases linearly with distance from the
centre,) What is the magnitude of the velocity of the dropped object
when it reaches the centre of the earth?

o Tunnel

P2.59

260 The acceleration of gravity of a hypothetical two-dimen-
gional planet would depend upon the distance s from the centre of
the planet according to the relation a = ~k/s, where £ is a
constant. Let the radius of the planet be Rr and let the magnitude
of the acceleration due to gravity at its surface be gr.

(a) 1f an object is given an initial outward velocity vy at a distance
sy from the centre of the planet, determing its velocity as a funetion
of 5.

(b) Show that there is no escape velocity from a two-dimensional
planet, thereby explaining why we have never been visited by any
two-dimensional beings.

P2.40
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A cartesian coordinate system with its origin
at the reference point O,

2.3 Curvilinﬂear Motion

If the motion of a poin’“ is confined to a straight line, its position vector r,
velocity vector v and aécclcration vector a are described completely by the
scalars, s, » and a, respectively. We know the directions of these vectors
hecause they are paralﬁcl to the straight ling. But if a point describes a
curvilinear path, we must specify both the magnitudes and directions of these
vectors, and we require icoordjnate system to express them in terms of scalar
components. Although the directions and magnitudes of the position, velocity
and acceleration vector$ do not depend on the coordinate system used to
express them, we will show that the representations of these vectors are dif-
ferent in different cooniinate Systems. Many problems can be expressed in
terms of cartesian coordinates, but some sitaations, including the motions of
satellites and rotating m#uchines, can be expressed more naturally using other
coordinate systems. In|the following sections we show how curvilinear
motions of points are analysed in terms of various coordinate systems.

. L
Cartesian Coordinales

Let r be the position vector of 4 point P relative to a reference point (2. To
express the motion of £ 1n terms of a cartesian coordinate system, we place the
origin at O (Figure 2.15)] so that the coroponents of r are the x, y, z coordinates
of P ;

r=xityjHzk

Figure 2.15 3

Assuming that the coordi;natc system does ot rotate, the unit vectors i, j and k
are constants. (We will discuss rotating coordinate systems in Chapter 6.) Thus
the velocity of P is '

dxi, dy, dz
matldk'gr-]wkﬁk (2.21)

Y oo

S

Expressing the velocity in terms of scalar components,

ve=ityft+ ek (2.22)




we obtain scalar equations relating the components of the velocity to the
coordinates of F; |

dx dy dz
Uy == *{}; Uy == ;i—r' Up = "&"‘; (223)
The acceleration of P is
dy due, dv di
e e i _— —k
=TT A g
and by expressing the acceleration in terms of scalar components,
a =i+ aj + ak (2.24)
we obtain the scalar equations
duy duv dv
dy = i ay = MEEEK f, = gf {2.25)

Equations (2.23) and (2.25) deseribe the motion of a point relative to a
cartesian coordinate system. Notice that the equations describing the motion in
each coordinate direction are identical in form to the equations that describe
the motion of a point along a straight line. As a consequence, you can often
analyse the motion in each coordinate direction using the methods you applied
to straight-line motion,

The projectile problem is the classic example of this kind. If an object is
tirown through the air and aerodynamic drag is negligible, it accelerates
downwards with the acceleration due to gravity. In terms of a cartesian coor-
dinate system with its p axis upwards, the acceleration is a, = 0, a, = —g,
a. = 0. Suppose that t = 0, the projectile is located at the origin and has
velocity #p in the x—y plane at an angle 8y above the horizontal (Figure
2.16(a)).

Figure 2.16

4

(a)
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Y (a} Initial conditions for a projectile problem,
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At £ =0,x =0 and v, = vpcosfp. The acceleration in the x direction is
Zer0,

d :
ax=&—_+0

dt

50 v, i8 constant and rémaing equal to its initial value:

d
Vg = d—j = 1ty co$ (2.26)

{This result may seem ;ilnmaiistic; the reason is that your intuition, based upon

everyday experience, i:accounts for drag, whereas this analysis does not.)
Integrating this equatién,

X 3
fdxwﬁ v €08 Oy ot
0 0

we obtain the x coordihate of the object ag a function of time:
x = up c08 gt 2.27)

Thus we have dete ‘ ed the position and velocity m the x direction as

functions of time withput considering the motion in the y or z directions.

At t =0,y = 0 and », = v sin fy. The acceleration in the y direction is

Integrating with respet%t to time,
/‘W du e f —g dt
g Sin Gu 1 i
we obtain
vy = mdg = wy 5in g — gt (2.28)
a
Integrating this equation,
W it
f dy = ﬁ (o sinflg — gf) dt
0 0
we find that the y c-nofdinate as a function of time 13
y = g sin for — % gt (2.29)

You can see from this analysis that the same vertical velocity and position are
obtained by throwing ithe projectile straight up with initial velocity w sin Oy
(Figures 2.16(b), 2.16&:)). The vertical motion 1s completely independent of
the hotizontal motion.’
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v Figure 2.16
(b) Positions of the projectile at equal time
intervals Az, The distance Ax = vy cos (oA,
. {c) Pesitions at equal time intervals Ar ol a
prejectile given an initial vertical velocity
gqual to wp sin 0.

Ay Ax dx Av dx

by (¢)

By solving Equation (2.27) for ¢ and substituting the result into Equation
(2.29). we obtain an equation describing the parabolic trajectory of the
projectile:

g 2 :
e e, 30
¥ = tan Byx 21% o Go}" (2.30)

In the following example we discuss a situation in which you can use
Equations (2.23) and (2.25) to determine the motion of an object by
analysing each coordinate direction independently.
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e

e e lmag o

Example 2.6 1.

During a test flight q‘l which a hclicopter starts from rest at ¢ = 0 (Figure 2.17),
acecleromcters mount;‘ed on board indicate that its components of acceleration from

t = 0tor= 105 are closely approximated by

ay = (}.éz‘m/s2
ay = (18 ~ 0.360) m/s’
&y == 0

Determine the helicopter’s velocity and position as functions of time.

Figure 2.17 y

STRATEGY

We can analyse the n%otion in each coordinate direction independently, imegrating
the acceleration to determine the velocity and then integrating the velocity to

determine the position,

SOLUTION

The velocity is zero ‘at ¢ = 0, and we assume that x = y=2 =10 at ;= 0. The
acceleration in the x cgiirection is

tl"u,d; 2
= et == 367 M/S
= /

Integrating with respect to time,

B i A3
] e, ;&-/ 0.61 0t
0 + Jo

we obtain the velocit}} component &, as a function of time:
dx
e = = &= 0.5 m/s
Uy P /
Integrating again,

X it
f dr= | 032 dr
]

g 2}




we obtain x as a function of time:
x=01 m

Now we analyse the mofion in the y direction in the same way, The acceleration is
d
a == = (1.8 = 0.36m/s’

Integrating,

’
[Vydz{y&f(l.g—(l%!)dt
0 0

we obtain the velocity,

= % = (1.8t — 0.18%)m/s

integrating agair,

ﬁyldymfoj(l.Stmo.ISF)dt

we determine the position:
¥y =09 - 0.06)m

You can easily show that the z components of the velocity and pesition are v, = 0
and z = 0. We show the position of the helicopter as a function of time in Figure (a).

t= 105

|
50 m 100 m

(e Position of the helicopter at 25 intervals.

DISCUSSION

This example demonstrates how the inertial navigation systems used in commercial
acroplancs and ships work, They contain accelerometers thal measure the x, p and z
components of acceleration. (Gyroscopes maintain the alignments of the acceler-
ometers.) By integrating the acceleration components twice with respect to time, the
systems compute changes in the x, y and z coordinates of agroplang ot ship,
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2,61 The cartesian coordinates of a point (in metres) are
xm2t+4y=r ~2z=4 ~4, where ¢ is in seconds. What
are its velocity and acceleration at § = 487

Strategy. Since the cartesian coordinates are given as functions
of time, you can use Equations (2.23) to determine the compornents
of the velocity as functions of time and then use Equations (2.25)
to determine the components of the acceleration as functions of
time.

2.62 The velocity of a point is v = (21 -+ 32 ) m/s. At = Q its
position is r = —i + 2 j (m), What is its position at ¢ = 25?

2.63 The acceleration components of a point (in m/s®) are
a, = 3t3,ay =6t and @, =0. At t=0,x=5m, », =3m/s,
y=1m, »,=-2m/s, z=0 and », = 0. What are ils position
vector and velocity vector at £ = 3s?

2.64 The acccleration components of an object (in m/s”) are
ay =2, a, =4 -2 and a, = —6. Al 1= 0 the position of the
object is r = (10§ — 10k) m and its velocity is v = (2i — 4j) m/s.
Determing its position when £ = 43,

2.65 Suppose you are designing a mortar to send a rescuc line
from a Coast Guard boat to ships in distress. The line is attached to
a weight that is fired by the mortar, The mortar is to be mounted so
that it fires at 45° above the horizomital. 1f you neglect aerodynamic
drag and the weight of the line for your preliminary design and
assume a muzzle velocity of 30m/s at £ = 0, what are the x and y
coordinates of the weight as functions of time?

P2.65

2.66 In Problem 2.65, what must,the mortar’s muzzle velocity be
to reach ships 300m away?

Probiemfs

2.67 1 a stone is thrown horizontally from the top of 2 30 m tall
buil(f‘ling at 15m/s, at what horizontal distance from the point at
whidh it is thrown does it hit the ground? (Assume level ground )
Wha is the magnitude of its velocity just before it hits?

I8 mis

P2.67

j
2.68; A projectile is launched from ground level with an initial
vclo#ity vg. What initial angle fly above the horizontal causes the
range R to be a maximum, and what is the maximum range?

P2.68




2.69 A pilot wants to drop supplies to remote locations in the
Augtralian outback, He intends to fly horizontally and release the
packages with no vertical velocity. Derive an equation for the
horizontal distance o at which he ghould release the package in
terms of the acroplane’s velocity » and altitude 4.

2.70 A batter strikes a baseball at 1 m above home plate and pops
it up at an angle of 60° above the horizontal, The second baseman
catches it at 2m above second base. What was the ball’s initial
velocity?

P2.70

271 In Problem 2.70, how high above the field did the ball go?
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2.72 A baseball pitcher releases a fastball with an initial velocity
tp = 145 kn/hr. Let ¢ be the initial angle of the ball’s velocity
vector above the horizontal. When it is released, the ball is 1.83 m
above the ground and 17.68m from the bafier’s plate. The batters
strike zone (between his knees and shouldets) extends from 0,56 m
above the ground to 1,.37m above the ground. Neglecting aero-
dymainic effects, determine whether the ball 'will hit the strike zone:
{ayif #=1° (b} if 8 = 2°.

P2.72

2.73  In Problem 2.72, assume that the pitcher relcases the ball at
an angle ¢ = 1° above the horizontal and determine the range of
velogities vy (in my/s) within which he must release the ball to hit
the strike zonc.

2.74 A zoology graduate student is arméd with a bow and an
arrow tipped with a sytinge of tranquillizer and assigned to
measure the temperature of a black thinoceros (Diceros bicornis).
The maximum range of his bow ig 100m, If a truculent rhino
charges straight towards him at 30 ke /hr and he aims his bow 20°
above the hotizontal, how far away should the rhino be when he
releases the arrow?

P2.74
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2.75 The cliff divers of Acapuleo, Mexico, must time their dives
so that they enter the water at the crest (high point) of a wave. The
crests of the waves are 0.6m above the mean water depth
h = 3.6m and the horizontal velocity of the waves is /gh. The
diver’s aiming point is 2m out from the base of the cliff. Assume
that his velocity is horizontal when he begins the dive.

{s) What is the magnitude of his velocity in kilometres per hour
when he enters the water?

(b) How far from his aiming point should a wave ercst be when he
dives in order for him to enter the water at the crest?

P2.75

276 A projectile is launched at 10n1/s from a sloping surface.
Determine the range R.

P2.76

2.77] A skier leaves 1 20° slope at 15m/s.

(a) Petermine the distance 4 to the point where he lands.

(by Determine his components of velocity parallel and perpendi-
culat to the 452 slope when he lands.

SN 45“\<

A P2.77

278 A1/ =0, a steel ball in a tank of cil is given a horizontal
velotity v = 2im/s. The component of its acceleration in m/ s% arc
a; = —1. 2. 0y = ~8 — 120, @, = —1.2u,. What is the velocity

of tﬁ;e ball at £ = 1s?
|

P2.78

2.79 In Problems 2.78, what is the position of the ball at 7 = 13
relative to ils position at ¢ = 0?

2.8@ You must design a device for an assembly line that launches
sma#l parts through the air into a bin. The launch point is
x =200 mm, y = ~50mm, z = ~100mm. (The y axis is vertical
and|positive upwards.) To land in the bin, the parts must pass
thm#lgh the point x = 600 mm, y = 200mm, z = 100 mm moving
horizontally. Determine the components of velocity the launcher

mus)t give the parts.




281 If y= 150 mm, dy/dt==300 mm/s, and d?p/df =0,
what ar¢ the magnitudes of the velocity and acceleration of point
F?

P2.81

2.82 A car travels at a constant speed of 100 km/hr on a straight
road of increasing grade whose vertical profile can be approxi-
mated by the equation shown. When the car’s horizontal coordinate
is x = 400 m, what is its acceleration?

¥ = 0000362

Angular Motion

We have seen that in some cases the curvilinear motion of a point can be
analysed using cartesian coordinates. In the following sections we describe
problems that can be analysed more simply in terms of other coordinate
systems. To help you undersiand our discussion of these alternative coordinate
systems, we introduce two preliminary topics in this section: the angular
motion of a line in a plane and the time derivative of a unit vector rotating in a

plane.

Angular Motion of a Line  We can specify the angular position of a ling [,
in a particular plane relative to a reference line Ly in the plane by an angle 6
(Figure 2.18). The angular velocity of L relative to Lo is defined by

oot
T odr
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2.83 Suppose that a projectile hag the initial conditions shown in
Figure 2.16(a). Show that in terms of the x'y" coordinate system
with its origin at the highest point of th¢ trajectory, the equafion
describing the trajectory is

, g 2
J 2t cos? 6y ')

¥

\ P2.83

284 The acceleration components of o  point  are
iz A Cos 21, ay == -A5in 21, g, = 0. At {20 ity position and
velocity are ¥ = i, v = 2. Show that: (4) the magnitude of the
velocity i3 constant; (b) the velogity and acceleration vectors are
perpendicular; (¢) the magnitude of the acgeleration is constant and
points towards the origin; (d) the trajectory of the point is a circle
with its centre at the origin,

(2.31)
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and the angular acce];remtion of L relative to Ly is defined by

2
DL (2.32)

drmW

The dimensions of the!‘angular position, angular velocity and angular accel-
eration are radians (rad), rad/s and rad/s’, respectively. Although these
guantities are often expressed in terms of degrees or revolutions instead of
radians, you should convert them into radians before using them in calcula-
tions. ;

Notice the analogy l%etween Equations (2.31) and (2.32) and the equations
relating the position, v%looity and acceleration of a point along a straight line
(Table 2.2). In each cast the position is specified by a single scalar coordinate,
which can be posil;ivai or negative. (In Figure 2.18 the counterclockwise
direction is positive.) Becanse the equations are identical in form, you can

analyse problems invol*llring angular motion of a line by the same methods you

applied to straight-line iimoticm.

Tablej2.2, The equations governing

straight-line motion and the equations
goverling the angular motion of a line
are idpntical in form.

Straight-line motion Angular motion
Tt Cod
Podv dls "= do  d*0
CdtdP Codt T di

Rotating Unit Vecfor We have seen that the cartesian unit vectors i, j and
k are constants provided the coordinate system does not rotate. However, in
other coordinate systeins the unit vectors used to deseribe the motion of a
point rotate as the poipt moves. To obtain expressions for the velocity and
acceleration in such cogrdinate systems, we must know the time derivative of a
rotating unit vector.

We can deseribe thejangular motion of a unit vector € in a plane just as we
deseribed the angular motion of a line. The direction of e relative 1o a reference
ling Ly is specified by the angle @ in Figure 2.19(a), and the rate of rotation of e
relative to Ly is specified by the angular velocity

df

G)M“&}“

The time derivative of ;ie is defined by

de . o(t+AD - e(r)
dr A}I—Eo " At

Figure 2.19(b) shows t}ie vector e at time £ and at time £ + Az, The change in e
during this interval is Ae = e(f + Af) — e(?), and the angle through which e




2.3 CURVILINEAR MOTION &1

rotates is A = O(t 4 Ar) — 0(f). The triangle in Figure 2.19(b) is isosceles, so
the magnitude of Ae is

|Ae| = 2le| sin{AB/2) = 2 sin{AB/2)

To write the vector Ae in terms of this expression, we introduce a unit vector n
that points in the direction of Ae (Figure 2.19(b)):

Ae = |Aen = 2 sin{A/2)n
In terms of this expression, the time derivative of e is

de lim Ae lim 2gin(Af8/2)n
dt v At Aro At

To evaluate this limit, we write it in the form

ﬂ'f ~ Tim sin(AG/Z)_A_Qn
dt a0 AB/2 At

In the limit as At approaches zero, sin{A8/2)/(A6/2) equals 1, AB/Ar equals
df/dt, and the ynit vector n is perpendicular to e(#) (Figure 2.19(c)). Therefore
the time derivative of e is

de db

= 33

Tt n=wn (2.33)
where n is a unit vector that is perpendicular to e and points in the positive &
direction (Figure 2.19(d)). In the following scetions we use this result in
deriving expressions for the velocity and acceleration of a point in different
coordinate systems.

Figure 2.19
(a) A unit vector e and reference line
L.
Ae (b) The change Ae in e from 7 to ¢ -+ At
(¢) As At poes to zero, n becomes
perpendicular to e(r).
(d) The time derivative of e,

elf + AN

()

L

0

el + AN 4

0 Ly
(©) (d)
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Example 2.7

The rotor of a jet engmg is rotating at 10 000 rpm (revolutions per minute) when the
fuel is shut off. The cqfaumg angular acceleration is o = —0.02w, where o is the
angular velocity in rad/s.

(2) How long does it tal\e the rotor to slow to 1000 rpm?

(b} How many revolutmm does the rotor tum while decelerating (o 1000 rpm?

STRATEGY i

To analyse the angular imotion of the rotor, we define a line L that is fixed to the
rotor and perpendlculaz{to its axis (Figure 2.20). Then we examine the motion of L
relative to the reference!\lme Lg. The angular position, velocity and acceleration of L
define the angular motion of the rotor,

Figure 2.20

Introducing a line L and reference line Ly
to specify the angular position of the
rotor.

SOLUTION

The: conversion from rpim to rad/s is

1 _ 1‘ svoluti , 2mrad 1 min
rpm = Lrevolution/min x - a0

1 revolition
= (/30 rad /s

e




(@) The angular acceleration is

dm
fr w‘}[— = 0,02

We separate variables,

o = ()02 dt
t

and integrate, defining / = 0 to be the time at which the fiel is turned off:

1000%,/31t "
[ do / ~0.024
1 4]

000030 04

Evatuating the integrals and solving for f, we abtain

1 10000%/30
[N S —~——e— | == 115,
! (0.02) ln( 10007730 ) 15.1s
(by We wnite the angular acceleration as

dw do df  dw

w (L0200

at =@ T A T de”
separate variables,

diy == 0,02 d0

and integrate, defining ¢ = 0 to be the angular position at which the fuel is wrned

olf:
10007/30 )
f dw:f (1,02 0
166007/30 0]

Solving for 8, we obtain

1
= (m)[(IUUOOIC/S(]) — (10007/30)]

= 150007 rad = 7500 revolutions
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2.85 What are the magnitudes of the angular velocities (in rad/s)
of the minute hand and the hour hand of the clock?

P2.85

2.86 Lot L be aline from the centre of the earth to a fixed point
on the equator and let Ly denote a fixed reference direction. The
figure shows the earth seen from above the North Pole.

(a) Is dfi/dr positive or negative?

(b) What is the magnitudes of d8/ds in rad/s?

P2.8é

2.87 The angle berween a line L and a reference line Ly is
) = 26 rad,
(a) What arc the angular velocity and angular acceleration of L
relative to Ly at # = 657
(v How many revolutions does L rotate relative to Ly during the
interval of ime from ¢ = 0 to ¢ = 657

Strategyp: Use Equations (2.31) and (2.32) to determine the
angular velocity and angular acceleration as functions of time.

2.88 The angle ¢ hetween the bar and the horizontal fine is

@ = (* — 27 4+ 4) degrees. Determine the angular velocity and
angular acceleration of the bar at ¢ = 10s.
Y
e
//"' ;’-/
y

p2.88

Problemsﬂ

2.89 . The angular acceleration of a line L relative Lo & reference
line fy is o« = (30 — 6¢) rad/s®. When t=0,0 =20 and o = 0,
What fis the maximum angular velocity of L relative to Ly during
the interval of time from ¢ = 0 to ¢ = 10s?

290 : A gas wrbine starts mtdting from rest at £ ==0 and has
:mgulsir acceleration o = 6¢rad/s” for 3s. It then slows down with
comtant angular deceleration o = ~3 md/s until it stops.

{a) WJlat maximum angular velocity does it attain?

(b} Tﬁmugh what total angle does it turn?

2.91  The rotor of an electric generator is rotating at 200 rpm
(revolutions per minute) when the motor iy turned off. Due to
frictional effects, the angular deceleration of the rotor after it is
turneci off is « = —0.01w rad/s?, where @ is the angular velocity in
rad/s.iHow many revolutions does the rotor turn after the motor is
turm:ci off?

2.92 © A necdlc of a measuring instrument is connected to a
torsiofal spring that subjects it to an angular acceleration
o = ~48 rad/s*, whers 8 is the needle’s angular position in radians
relative to a reference direction. If the neadle is released from rest
at & == | rad, what is its angular velocity at 8 == 07

P2.92

293 . The angle ¢ measures the direction of the unit vector e
relative to the x axis. Given that a = d0/di = 2rad/s, determine
the vc;gcwr de/dt: (a) when 8 =0, (b) when & = 90°; (¢) when
= 180°
Stm”tegy You can obtain these results either by using Equation
(2. 33)wor by expressing ¢ in terms of its x and y components and
taking its time derivative, v

P2.93

294 {In Problem 2.93, suppose that the angle # = 2¢% rad. What
ig the vector de/df at ¢ = 452




2.95 The line OF is of constant length R. The angle 8 = wg,
where @y is 4 constant.
{a} Use the relations

dx dy

U_t:‘—i; v‘V”‘JE

to determine the velocity of peint P relative to O.
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(b) Use Equation (2.33) to determine the velocity of point P
relative to (), and confirm that your result agrees with the result
of part {(a).

Strategy: In part (b), write the position vector of £ relative to O
as r = Re, where e is a unit vector that points from ¢ towards P

Normal and Tangential Componenis

In this method of describing curvilinear motion, we specify the position of a
point by its position measured afong its path, and express the velocity and
acceleration in terms of their components tangential and normal (perpendi-
cular) to the path. Normal and tangential components are particularly useful
when a point moves along a circular path. Furthermore, they provide unique
ingight into the character of the velocity and acceleration in curvilinear motion.

Consider a point P moving along a plane, curvilinear path (Figure 2.21(a)).
The position vector r specifies the position of P relative to the reference point
O, and the coordinate s measures the position of P along the path relative to a
point O on the path. The velocity of P relative to O is

mf{zm llmwm lim Ar

dt A0 At T A0 Af (2.34)

where Ar = r(t + AD — v(6) (Figure 2.21(b)). We denote the distance travelled
along the path from ¢ to £ -+ Af by As. By introducing a unit vector e defined to
point in the direction of Ar, we can write Equation (2.34) as

,As
V= Al}gluﬁ?e (2.34)

As At approaches zero, As/At becomes ds/dt and e becomes a unit vector
tangent to the path at the position of P at time ¢, which we denote by e, (Figure
2.21(c)):

(2.35)

P2.95

Figure 2.21

(8) The position of P along its paths is
specified by the coordinate s,

(b} Position of P at time ¢ and at time £ + A%
(c) The limit of e as Af — 0 is a unit

vector tangent to the path.
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Figure 2.22
The path angle .

Figure 2.23

(a) Velocily of P at f and at £ 4+ Az,
(b) The tangential and normal
components of the change in the veloity.

The velocity of a pmﬁt in curvilinear motion is a vector whose magmmde
equals the rate of dlswnce travelled along the path and whose direction is
tangent to the path.

To determine the acteleration of £, we take the time derivative of Equation
(2.35):

dv  dv de;
= TR (2.36)

If the path is not a stralght line, the unit vector e; rotates as P moves, As a
consequence, the time lgenvatlve of e is not zero. [n the previous section we
derived an expression {br the time derivative of a rotating unit vector in tertns
of the unit vector’s angular velocity, Equation (2.33). To use that result, we
define the path angle r;specifying the direction of e, relative to a reference
line {(Figure 2.22). Then from Bquatien (2.33), the time derivative of e, is

de, _df
a o a
i
where e, is a unit vedtor that is nofmal to e and peints in the positive ¢
direction if d0/dr is pﬁ)sitive (Figure 2.22). Substituting this expression into
Equation (2.36), we ot%tain the acceleration of P

i

- mep{ivdg (237)

We can derive thisjresult in another way that is less rigorous but gives
additional insight into Lhe meanings of the tangential and normal components
of the acceleration. Flgure 2.23(a) shows the velocity of P at times ¢ and
t + Ar. In Figures 223('!)), you can see that the change in the velocity,
vt + Af) — v(#), consists of two components. The component Aw, which is
tangent to the path atitime ¢, i3 due to the change in the magnifude of the
velocity. The compone%t A0, which is perpendicular to the path at time 7, is
due to the change in th¢ direction of the velocity vector. Thus the change in the

velocity is (approximately)

V(I + Af) = v(£) = Ave +vAle,

(a)
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To obtain the acceleration, we divide this expression by A¢ and take the limit
as At - O

a— lim Av__ W Av + Ab
MO AL also| A L vRe

wg}.’ + ?Lqe
TEAT g,

Thus we again obtain Equation (2.37). However, this derivation clearly points
out that the tangential component of the acceleration ariges from the rate of
change of the magnitude of the velocity, whereas the normal component arises
from the rate of change in the direction of the velocity vector. Notice that if the
path is a straight linc at time 4, the normal component of the acceleration
equals zero, because in that case d8/dr is zero.

We can express the acceleration in another form that is often more con-
venient to use. Figure 2.24 shows the positions on the path reached by P at
times ¢ and ¢ 4 dt. If the path is curved, straight lines extended from these
points perpendicular to the path will intersect as shown. The distance p from
the path to the point where these two lines intersect is called the instantanecus
radius of curvature of the path. (If the path is circular, p is simply the radius
of the path.) The angle 46 is the change in the path angle, and dy is the dis-
tance travelled, from f to ¢ + dt. You can see from the figure that p is related to
ds hy

= pdl

Figure 2.24

The ingtantaneous radius of curvature p.

Using this relation, we can write Equation {2.37) as

dv ~i“3£c
d‘,e‘é n

For a given value of », the normal component of the acceleration depends on
the instantaneous radius of the curvature. The greater the curvature of the path,
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the greater the normal c;?mpnnent of acceleration. When the acceleration is

expressed in this way, the unit vector ¢, must be defined to point towards the
concave side of the pathi(Figure 2.25).

Figure 2.25

The unit vector normal to the path points
towards the concave side of the path.

Thus the velocity a :(i acceleration in terms of normal and tangential
components are (Figure 2.26)

Il

]
d
Ve = j«:et (2.38)
' A= ae +ay e (2.39)
where
|
dv de 7
ay — ""d}" dn 'UEI- = ; (2.40)

Figure 2.26

Normal and tangential components of
(a) the velocity and (b) acceleration,

(a} )]

Circular Motion Ifa fmint P maoves in a circular path of radius R (Figure
2.27), the distance s is related to the angle & by

5= RO Clrcular path

Figure 2.27 .
A point moving in a circular path. -




This relation means we can speeify the position of P along the circular path by
either & or 6. Taking the time derivative of this equation, we obtain a relation
between v = ds/dt and the angular velocity of the line from the centre of the
path to P:

df
o = R-d—t— = R Circular path (2.41)

Taking another time derivative, we obtain a relation between the tangential
component of the acceleration o = dv/dt and the angular acceleration:

d
dy == REC; = R Circular path (2.42)

For the circular path, the instantaneous radius of curvature p = R, so the
normal component of the acceleration is

b4
iy == fﬁ = R? Cireular path (2.43)

Because problems invelving circular motion of a point are so common, these
relations are worth remembering. But you must be careful to use them ondy
when the path is circular,

The following examples demaonstrate the use of Equations (2.38) and (2.39)
to analyse curvilinear motions of objects. Because the equations relating s, v
and the rangential component of the acceleration,

dv

@ ==
t

are identical in form to the equations that govern the motion of a point along
a straight line, in some cases you can solve them using the same methods
Yyou applied to straight-line motion,
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;1 Example 2.8

{0) The coordinatc £ measures the distance
along the track.

The motorcycle n Figure 2.28 starts from rest at ¢ = 0 on a cirewlar track of 400 m
radius. The tangential component of its acceleration s g, = (2 4+ 020 m/s%. At
t = 105, determine: (a) the distance it has moved along the track; (b) the magnitude
of its acceleration.

STRATEGY e

Let s be the distance alo?g the track from the initial position (2 of the motorcycle to
its position at fime 7 (Figure (a)). Knowihg the tangential acceleration as a function
of time, we can integrate to determine » and s as functions of time,

SOLUTION
(a) The tangential acceleration is

dv
dt

v ht
f d?}mf(Z +0.26) dt
0 4

we obtain v ag a function of time:

b = == (2 4 0.20) /s

Integrating,

s _ Iy
tw:ﬁ_(zwo.u ym/s

Integrating this cquation,

fﬁwfw+MMm
L] )

the coordinate s as a fuiction of time is

§ = (tz -i-g,;—l-rz’)m

Al ¢ =103, the distance moved along the track is
| 0.1
we (1072 ol LR
§=(10) + 3 (10)° = [333m

(b) At ¢ = 108, the tangential component of the acceleration is

a, =2+ 02(10) = 4 m/s’
We must also determine! the normal componeunt of acccloration. The instantaneous
radius of curvature of thie path is the radius of the circular track, p == 400m, The
magnitude of the velocity at ¢ = 10s is

p=2(10) 4+ 0.1{10)* = 30m/s

Therefore




e,

==y =225 m/s*

The magnitude of the acceleration at f = 105 is

Iaf = /a2 + a2 = /(4 + (0258 = 459 m/s?
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A satellite is in a circular orbit of radius R around the earth. What is its velocity?

STRATEGY

The acceleration due to gravity at a distance R from the centre of the earth is
gRE/R?, where Rg is the radius of the earth, By using this expression together with
the equation for the acceleration in terms of normal and tangential components, we
can obtain an equation for the satellite’s velocity.

SOLUTION

In terms of normal and tangential components (Figure 2.29), the acceleration of the
satellite is

_dv +U2(:
A=A TR

This expression must cqual the aceeleration duc to gravity towards the centre of the
earth;

d # o]

7 i
w8 TR %—7{2—"

Because there is no ¢ component on the right side, we conclude that the magnitude

of the satellite’s velocity is constant:

dv

=)
dt

Equating the e, components and solving for » we obtain

gk}
R

=

DISCUSSION

Tn Example 2.5 we determined the escape velocity of an object travelling straight
away from the carth in terms of its initial distance from the contre of the earth. The
escape velocity for an object a distance R from the centre of the earth,
g = ﬁgRE/R is only /2 times the velocity of an object in a circular orbit of
radius R. Thig explaing why it was possible to begin launching probes to other
plancts not long after the first satellites were placed in orbit.

Figure 2.29

Describing the satellite’s motion in terms of
normal and tangential components,

Fre,
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Figure 2.30

¥

Example 2.10

(&) Cartesian components of the velocity
and the path angle 8,

T 036
m/s?

(D) Determining the tangential and normal
components of the acceleration from
the cartesian components.

b o s A S S R

During a flight in which a helicopter starts from rest at 7 =0, the cartesian
components of its acceleration are

a; = 0.6tm/s*
day = (1.8~ 0.36¢) m/s?
!
What are the normal and tangential components of its acceleration and the
instantanecus radius oflcurvature of its path at = 4 g7

STRATEGY

We can integrate the cadesian components of acceleration to determine the cartesian
components of the velotity at £ = 4s. The velocity vector is tangent to the path, so
knowing the cartesian omponents of the velocity allows us to determine the path
angle.

SOLUTION ?i

i
Integrating the compon&%mts of acceleration with respect to time (see Example 2.6),
the cartesian components of the velocity ate

uy = 0.3%mys
v, = (1.8f — 0.182)m/s

Att=4ds, y = 4.80m/s and », = 4,32 m/s, Therclore the path angle (Figure {8))
is

4.32 )
A= arctan](amlmg«o«) = 42.0

The cartcsian components of the acceleration at r = 45 are

a, = 1.8 £ 0.36(4) = 0.36'm/s>

By calculating the comppnents of these accelcrations in the directions tangential and
normal to the path (Figlre (b)), we obtain ¢; and a,:

ay = (2.4) c0§42.0° + (0.36) 5in 42.0° = 2.02 m/s*
3n = (2.4)5ind2.0° — (0.36) cos42.0° = 1,34 m/s*

To determine the instanfancous radius of curvature of the path, we usc the relation
a, == v /p. The magnityde of the velocity at ¢ = 45 is

- m = J(AK0% 4 (432 = 6.46m/s

!
so the value of p =45 {s

7 _(6.46)°
p= =g =32m

Bt
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Problems

2.96 The armature of an eleetric motor rotates at a constant rate.  2.99 A powerboat being tested for manoeuvrability is started

The magnitode of the velocity of peint P relative to O is 4m/s. from rest and driven in a circular path of 40m radius. The

(2) What are the normal and tangential components of the accel-  magnitude of its velocity is increased at a constant rate of

eration of P relative to &7 2m/«*. In terms of normal and tangential components, determine:

() What is the angular velocity of the armature? {a) the velocity as a function of time; (b} the acccleration as a
function of time.

P2.96

2.97 The armature in Problem 2.96 starts from rest and has
constant angular aceeleration o = 10rad/s”. What arc the velocity
and acceleration of P relative to ¢ in terms of mormal and
tangential components after 1057

2,100 The angle 6 = 2% rad.
2.98 Centrifuges are used in medical laboratories to increase the (a) What are the magnitudes of the velocity and acceleration of P
speed of precipitation (settling) of solid matter out of solutions.  ajative to O at ¢ = 187
Suppose that you want to design a centrifuge to subject samples (o (b) What distance along the citcular path does P move from £ = 0
accelerations of 1000 g%, tof= 18
{(a) Tf the distance from the centre of the centrifuge to the sample is
300 mm, what speed of rotation in rpm (revolutions per minute) is
necessary?
(b) If you want the centrifuge to reach its design 1pm in 1min,
what constant angular acceleration is necessary?

P2.100

2.101 In Problem 2.100, what are the magnitudes of the velocity
and aceeleration of P relative to O when P has gone one revolution
around the circular path starting from ¢ = (7

- 300 mm — P2.98
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2,102 The radius of the earth ig 6370 km. If you arc standing at
the equator, what is the magnitude of your velocity relative to the
centre of the carth?

2.103 The radius of the carth is 6370km. Tf you are standing at
the equator, what is the magnitude of your acceleration relative lo
the centre of the earth?

2.104 Suppose that you are standing at point P at 30° north
latitude (that is, a point that is 30 north of the equator). The radius
of the carth i3 K = 6370km. What ar¢ the magritudes of your
velocity and acceleration relative to the centre of the earth?

Equator

P2.104

2.105 The magnitude of the velocity of the aeroplane is constant
and equal to 400m/s. The rate of change of the path angle @ is
constant and equal to 5°/s.

(a) What arc the velocity and acceleration of the agroplane in tetms
of normal and tangential components?

(b) What is the instantaneous radins of the curvature of fhe
acroplane’s path?

P2.105

2.106  Att = 0, a car starls from rest at point 4. [t moves towards
the right, and the tangential component of its acceleration is
@ = 0.4tm/s>. What is the magnitude of the car’s acceleration
when it reaches point 87

ISO m

200m

41___3_

P2.106

2.107 :A car increases its speed at a constant ratc from 64 km/hr
at 4 to 96 km/hr at B, What is the mapgnitude of its acceleration 2 g
after it fasses point A7

24m fﬁ# .

P2.107

2.108 Determine the magnitude of the acceleration of the car in
Problen 2.107 when it has travelled along thé road a distance {a)
36m frgm A; (b) 48 m from A,

2.109 |An astronaut candidate is to be tested in a centrifuge with
a deUSI‘Of 10 m. He will lose consciousness if his total horizontal
acceleratlon reaches 14 g%, What is the maximum constant angular
acceleration of the centrifuge, starting from rest, if he is not to lose
consciousness within 1 min?

P2.10%

2110 A projectile has an initial velocity of 6m/s at 30° above
the homzontal
(a) Whaﬁt are the velocity and acceleration of the projectile in terms
of nonmil and tangential components when it is at the highest point
of its trqjectory"
(b} What is the instantaneous radius of curvatuse of the projectile’s
path thn it is at the highest point of its trajectory?

Smmﬁ In part (b), you can determine the instantaneous radius
of curvature from the relation a, = 1%/p.

i P e

sy e Bt

0 ~

P2.110




2111 In Problem 2.110, lat £ = 0 be the instant at which the
projectile is launched,

(a) What are the velocity and aceeleration in terms of normal and
tangential components at ¢ = (.2 s?

(b What is the instantaneous radius of curvature of the path at
f = 0 S’!’

2112 The cartesian coordinates of a point moving in the x-y
plane are
x=(204+4m y=010-Nm

What is the instantaneous radius of curvature of the path at r = 35?7

2.113 A satellite is in a circular orbit 320 km above the surface
of the earth, The radius of the earth is 6370 km.

(1) What is the magnitude v of the satellite’s velocity relative to the
centre of the earth?

(b) How long does it take for the satellite to complete one orbit?

320 km P2.113
2.114  For astronaut training, the acroplane shown is to achieve
‘weightlessness’ for a short period of time by flying along a path
such that its acceleration is @, = 0, @, = ~g. If its velocity at @ at
time ¢ =0 1§ v = i, show that the autopilot must fly the acro-
plane so that its tangential component of acceleration as a function
of time is

_ (gt/)
S T ey

P2.115

2115 1In Problem 2.114, what is the aeroplana’s normal compo-
nent of acceleration as a function of time?
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2.116 Iy = 100 mm, dy/dt = 200mm/s and d>y/di* = 0, what
are the velocity and acceleration of # in terms of normal and
tangential components?

TTRT A

P2.116

2.117  Suppose that the point £ in Problem.2.116 moves upwards
in the slot with velocity v = 300 e, mm/s. When y = 150 mm,
what are dy/dt and d%y/di*?

2.118 A car travels at 100 km/hr on a straight road of increasing
gradient whose vertical profile can be approximated by the equa-
tion shown, When the car’s horizontal coordinate is x = 400 m,
what are the tangential and normal components of its acceleration?

¥

¥ = 0.0003x
™,

P2.118

2119 A boy rides a skateboard on the concrete surface of an
empty drainage canal deseribed by the equation shown. He starts at
v=>6m and the magnitude of his velocity is approximated by
v=/2(0.81)(6 — »)m/s. What are the normal and tangential
components of his acceleration when he reaches the bottom?

X

P2.119

2120 In Problem 2.119, what are the normal and tangential
components of the boy’s acceleration when he has passed the
bottom and reached y = 3m?
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Figure 2.31

(a) The polar coordinates of P
(b) The unit vector e, and ey and position
vector r.

T\ r A8
W4

(e)

Figure 2.32

The position vector of P at ¢ and at ¢ - Ar.

Polar and Cylintg#irical Coordinates

Polar coordinates are ofEen used to describe the curvilinear motion of a point.
Circular motion, certain orbit problems and, more gencrally, central force
problems, in which the| acceleration of a point is directed towards a given
point, can be expressed|conveniently in polar coordinates.

Consider a point P injthe x-y plane of a cartesian coordinate system. We can
specify the position of P relative Lo the origin O either by its cartesian coor-
dinates x, y or by its polar coordinates r, & (Figure 2.31(a)). To express vectors
in terms of polar coordinates, we define a unit vector e, that points in the
direction of the radial ljine from the origin to P and a unit vector €p that is
perpendicular to ¢, and points in the direction of increasing 6 (Figure 2,31(b)).
In terms of these vectors, the position vector r from O to P is

T =re, (2.44)

{Notice that r has no component in the direction of eg.)
We can determine the velocity of P in terms of polar coordinates by taking
the time derivative of E(ﬁuation (2.44);

dr dr de,
Yoo «c?t- ool ;}?‘e" »»i«« rw‘}mzm (2-45)
As P moves along a cutvilinear path, the unit vector e, rotates with angular
velocity w == dfi/dt, Thetefore, from Equation (2.33), we can express the time

derivative of e, in termsiof ey as
de, _do !

= - i 2.4
dr - dr (2.46)

Substituting this result igto Equation (2.45), we obtain the velocity of P:

dr L dr
VE—J?E»"FPT“CECHWQEW”*“V”’E& (247)

We can obtain this resilt in another way that i3 less rigorous but more direct
and intuitive. Figure 2.32?‘ shows the position vector of F at times 7 and ¢ + A,
The change in the position vector, r(t + Ar) — r(f), consists of two compo-
nents. The component Af; is due to the change in the radial position » and is in
the e, direction. The component r A8 is due to the change in # and is in the ey
direction. Thus the change in the position of P is (approximately)

(- Af) - 1(0) = Are, 4+ rAfeg

Dividing this expression &)y At and taking the limit as Az — 0, we obtain the
velocity of P.

i [A4 Al
VE e A A

_dr

&+ roe
dr ¥ 4
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One component of the velocity is in the radial direction and is equal to the rate dey  dB  de, dB
of change of the radial position r. The other compotent is normal, or VAT dir A
transverse to the radial direction, and is proportional to the radial distance
and to the rate of change of 0.

We obtain the acceleration of P by taking the time derivative of Equation
(2.47):

dv  d°r drde, drdd Figure 2.33
A o r——— —--i-er e e ———— 9 "
dt  dr dr dt  drdt (2.48) Time derivatives of ¢, and ep.
-+ F a6 ey 4 rEg iﬁ‘i
d U

The time derivative of the unit vector e, due to the rate of change of 8 is given
by Equation {2.46). As P moves, € also rotates with angular velocity d8/dt
(Figure 2.33). You can see from this figure that the time derivative of ey is in
the ~e, direction if df/dr is positive:

dey _di
dt ~ dr

Substituting this expression and Equation (2.46) and Equation (2.48), we
obtain the acceleration of P

a = fﬁfur -6?—@)2 &+ r@—kilﬂ-dﬂe
""" dir " \a) |77 e T Y de ]

Thus the velocity and acceleration are (Figure 2.34)

dr
v=ue +rgep = +rmey (2.49)
and
A=u e +uyey (2.50)
Figure 2.34
¥ v P Radial and transverse components
/,/ \ P e \\ of (a) the velocity and
e P v oy agty a \\ (b) aceeleration
(]
)
EB e, ty L,
Er Er
r r r F
0 8

(a) tb)
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¥

(a)

E)]

Figure 2,35

A point P moving in a circular path, (a) Polar
coordinates. (b) Mormal and tangential
components.

Figure 2.36

Cylindtical coordinates r, 0, z of point £ and
the unit vectors e,, ey, ¢..

where

dr (dﬂ) d*r 2
U, = e —rw

ar \dt dr
@2.51)
0 drd0
=ttt i a Tt g

The term —rw? in the iradial comporient of the acceleration is called the
centripetal aceeleratio ':, and the terms 2(dr/df)w in the transverse compo-
nent is called the Corio js acceleration.

Circular Motion Clrcular motion can be conveniently described using

either radial and transycrsc or normal and tamgential components. Let’s

compare these two methods of expressing the velocity and acceleration of a

point P moving in a circ{jllar path of radius R (Figure 2.35). Because the polar

coordinate » = R is constant, Equation (2.49) for the velocity reduces to
v=Rmweg

In terms of normal and tangential compaonents, the velocity is

Vo= e

Notice in Figure 2.35 that ¢y = & Comparing these two expressions for the
velocity, we oblain the relatmn between the velocity and the angular velocity
in circalar motion:

v = Rw

From Equations (2.50) and (2.51), the acceleration in terms of polar
coordinates for a citculat path of radius R is

a = —Rw® e, + Roreg

and the acceleration in térms of normal and tangential components is

~d1) +'uﬁe
—dtet R n

The unit vector e, = —e,. Because of the relation v = Rw, the normal
components of acceleration are equal: »*/Rw?. Equating the transverse and
tangential components, wWe obtain the relation

dr

— e R
d T a

Cylindrical Coordlna#es Polar coardinates describe the motion of a point
P in the x-y plane. We\ can describe three-dimensional motion by using
cylindrical coordinates r, 0, z (Figure 2.36). The cylindrical coordinates r
and # are the polar coordinates of P measured in the plane parallel to the x-y




plane, and the definitions of the unit vectors e, and ey are unchanged, The
position of P perpendicular to the x-y planc is measured by the coordinate z,
and the unit vector e, points in the positive z-axis direction.

The position vector r in terms of cylindrical coordinates is the sum of the
expression for the position vector in polar coordinates and the z component:

r=re +ze, (2.52)

(The polar coordinate » does not equal the magnitude of r except when P lies
in the x-y plane.) By taking time derivatives, we obtain the velocity,

r
Y = _f = Dy -+ Upln + 1€

d 9
“f{fe + reoe +d—ze 2
S TR T e

and the acceleration,

dv
o m = R, -+ dpep -+ e, (2.54)
where
dr dr d*z
a, :;112 Rl (1) e ) mrrx-}-Z:{?m ay 2"3;{ (2.55)

Notice that Equations (2.53) and (2.54) reduce to the polar coordinate
expressions for the velocity and acceleration, Equations (2.49) and (2.50),
when P moves along a path in the x-y plane.

The next two examples demonstrate the use of Equations (2,49} and (2.50)
te analyse curvilinear motiony of ebjects in terms of polar coovdinates.

23 CURVILUNEAR MOTION 6%
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Figure 2.37

Example 2.11 |

gt o

(o) Your position in terms of polar
coordinates,

Suppose that you are standmg on g ldrge dise (@ merry-go-round) rotating with
constant angular veloci‘ty oy and you start walking at constant speed vy along a
straight radial line pairted on the disc (Figure 2.37). What are your velocity and

acceleration when you fare a distance # from the centte of the disk?

STRATEGY

We can describe your njotion in terms of polar coordinates (Figure (a)). By using the
mnformation given abo:& your motion and the motion of the dis¢, we can evaluate the
terms in the expressions for the velocity and acceleration in terms of polar
coordinates.

SOLUTION

The speed with which! you walk along the radial line is the rate of change of
r,dr/dt = vy, and the; angular velocity of the disc is the rate of change of
B, o = wy. Your velocity is

dr .
Vmﬁ;er@hr(uea =y @& -+ 1 €y

Your velocity consists of two components: the radial component due to the speed at
which you are walking ﬁnd a fransverse component due to the dise’s rate of rotation.
The transverse compoq‘cnt increases as your distance from the centre of the disc
increases.

Your walking speed vy = dr/di is constant, so d%r/d? = 0. Also, the disc’s
angular velocity g = d6/dt is constant, so d?0/dr* = (). The radial component of
your acceleration is

_&r a2 2
4 =~ - PO =

and the fransverse component is

dr
s i D ez DD
ay re. - a‘xw Pty

DISCUSSION

If you have ever tried iwalking en a merry-go-round, you know it is a difficult
proposition. This cxanmiple indicates why: subjectively, you are walking along a
straight line with canstant velogity, but you are actually experiencing the centripetal
acceleration a, and the iCoriolis acceleration @y due to the disk’s rotation.
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Example 2.12

The robot arm in Figure 2.38 is programmed so that point P describes the path ¥

rFe=(l - 035c082n)m
f = (0.5 — 0.2 5in 2ni) rad

At t = 0.85, detennine: (a) the velocity of P in terms of radial and transverse
components; (b} the cartesian components of the velocity of P

STRATEGY

(a) Since we are given r and & as functions of time, we can calculate the derivatives
in the expression for the velocity in terms of polar coordinates and obtain the
velocity as a function of time,

(b) By determining the value of # at ¢ =085, we can use trigonometry to
determine the cartesian components in terms of the radial and transvetse compo-
nents,

SOLUTION Figure 2.38

{a) From Equation (2.49), the velocity is

e, | dgc
Yo pro
ar " a

= (msin2zie, + (1 — 0.5 cos 2me)(—0.4n cos 2ar)ey
Attt =08 8,
v = (—2.99e, — 0.328 es)m/s

(b) Al {=0.8s, 0==00690rad=395" (Figure (a)). The x component of the
veloeity of P is

vy = v, 60§ 39.5° — 1y 5in 39,5
= (w2 09 0839 5° e (=0.328) 5in39.5" = ~2.09 m/s

and the y component is

wy = vy $i0 3957 4 v €08 39.5°
= (=2.99)8in 39.5° 4 (=0.328) 05 39.5° = -2.16 m/s

DISCUSSION (@) Position at £ = 0.8 .

When you determine components of a vector in terms of different coordinate
systems, you should always check them to make sure they give the same magnitude.
In this example,

vl = y/(~2.99)* + (~0.328)* = \/(—2,09)2 +(=2.16)* = 3.01 m/s

Remember that atthough the components of the velocity are different in the two
coordinate systems, those components describe the same velocity vector.

N i G e g e e e e
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i

Problems ”

2.121 At a particular time, the polar coordinates of a point P
moving in the x-y planc are # = 4m, f = 0.5rad, and their time
derivatives are dr/dt = 8 m/s and d8/dt = ~2rad/s.

(a) What is the magnitude of the velocity of £?

(b)y What are the cartesian components of the velocity of £?

2.122 In Problem 2.121, suppose that &2r/df = 6m/¢* and
d20/df = 3rad/s*. At the instant described, determine: (a) the
magnitude of the acceleration of P; (b} the instantaneous radius of
curvature of the path.

2.123 The polar coordinates of a point £ moving in the x-y plane
are r = (* —40)m, ( = (# — fjrad. Determine the velocity of £ in
terms of radial and transverse components at ¢ = 1 s.

2.124 In Problem 2.123, what is the acceleration of £ in terms of
radial and transverse components af # == 1 3?

2,125 The radial rotates with a constant angular velogity of
2rad/s. Point P moves along the line at a constant speed of
4m/s. Determine the magnitudes of the velocity and acceleration
of £ when p = 2m.

/

2rad/s

X

P2.125

2.126 1 A boat searching for underwater archaeology sites in the
Aegean Sea moves at 4 knots and follows the path r = 106m,
where # is in radians. (A knot is one nautical mile, or 1852 m, per
hour) When 8 = iz rad, determine the boat’s velocity (a) in terms
of polak coordinates; (b) in (erms of cartesian coordinates.

P2.126

2.127 , In Problem 2.126, what is the boat’s acccleration i terms
of polar coordinates?

Strategy. The magnitude of the boat’s velocity is constant, so
you knpw that the tangential component of its acceleration equals
ZET0.

2.128 | A point P moves in the x-p plane along the path described
hy the equatmn r == e, where ¢ is in radians. The angular velocity
df/dt = ax _constam amd =0 att = 0.

() Dra:yv a polar graph of the path for values of # from zero to ?7.
(b) Shgw that the velocity and acceleration as functions of time are
v = ane™(e, - eg), 8 = 2fe ™ ¢y,

2.129 : In Problem 2.128, show that the instantznecus radius of
curvatuje of the path as a function of time is p = /2%,

2.130 i n Example 2. 12, determine the acceleration of point P at
¢=0.8p (a) in terms o radial and transverse components; (b) in
terms of cartestan components.

2.131 |\ A bead slides along a wire that rotates in the x-y plane with
comtan; angular velogity we. The radial component of the bead’s
anccleratmn is zero. The radial component of its velocity is n,
when r = ry. Determine the radial and transverse components of
the bead’s velocity as a function of 7.

Stratégy: The radial component of the bead’s velocity is

dr
P

P d




and the radial component of its acceleration is

_dr (A _dv s
= dt) ~ dt 0
By using the chain rule,
du, _dudr _dv,

dt " drdt dr

you can express the radial component of the acceleration in the
form

F2.131

2,132 The bar rotates in the x-y plane with constant angular
velocity ay. The radial component of acceleration of the collar C is
ay = —Kr, where K is a constant. When r = ry, the radial compo-
nernt of velocity of C is . Determing the radial and transverse
components of the velocity of C as a function of r,

X

P2.132

2.133 The cartesian coardinates of a point P in the x-p plane are
related to its polar coordinates by the relations x = rcos(,
y=rsinf.

(a) Show that the unit vectors i and j are rclated to the unit vectors
¢, and ey by

i=e cosl —epsin
j = e, 8inf 4+ ey cos
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(b) Beginning with the expression for the position vector of P in
terms of cartesian coordinates, r = xi + yj, derive Equation (2.44)
for the position vector in terms of polar coordinates,

{¢) By taking the time derivative of the position vector of point 2
expressed in terms of cartesian coordinates, derive Equation (2.47)
for the velocity in terms of polar coordinatzs.

¥

P2.133

2.134 The acroplane flies in a straight line at 640 km/hr, The
radius of its propeller is 1.5 m, and it turns at 2000 rpm (revolutions
per minute) in the counterclockwise direction when seen from the
front of the acroplanc. Determine the velocity and acecleration of a
point on the tip of the propeller in terms of ¢ylindrical coordinates,
(Let the z axis be oriented as shown in the figure.)

P2.134

2.135 A charged particle # in 2 magnetic field moves along the
spiral path described by r = |'m, # = 2z rad, where z is in metres.
The particle moves along the path in the dircetion shown with
constant speed |v| = | km/s. What is the velocity of the particle in
terms of cylindrical coordinates?

y

| m/s P2.135

2.136  What is the acceleration of the charged particle in Prob-
lem 2.133 in terms of gylindrical coordinates?
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2.4 Orbifali Mechanics

() Initial position and velocity of an earth

(b) Specifying the subsequent path in terms
of polar coordmates.

Newton’s analytical determination of the elliptic orbits of the planets, which
had been deduced fmm observational data by Johannes Kepler (1571-1630),
was a triumph for Ncwtoman mechanics and confirmation of the inverse-
square relation for gravatatmnal acceleration. We can. use the equations
developed in this chaper to determine the orbit of an earth satellite or planet.

Suppose that at ¢ = 0 a satellite has an initial velocity v at a distance #y
from the centre of thé earth (Figure 2.39(a)). We assume that the initial
velocity is perpendlcular to the line from the centre of the earth to the satellite.
The satellite’s posmomdunng its subsequent motion is specified by its polar
coordinates (r, 8), whére @ is measured from its position at { = 0 (Figure
2.39(b)). Our objectivé is to determine r as a function of .

Figure 2.39

satellite.

If we model the eai’th as a homogencous sphere, the acceleration due to
gravity at a distance » from the centre is

R
amwgwige,
¥

where Rg is the ea;rth’%: radius. By setting this expression equal to Equation
(2.50) for the acceleration in terms of polar coordinates,

d*r do d*0  _ drdf g’
[;z;f (df) }“r*["d—ﬂ“zﬂ“@"—vﬁ

and equating e, and e components, we obfain the equations

dr d? z R
- ’”(d&) - _gmrgt (2.56)
) |
&0 drdd _ 0 2.5

Tt aE

We can write Equation (2.57) in the form

1d 2 dB -0
rdi dI




which indicates that

,df
I =y = constant (2.58)

At t =0 the components of the velocity are v = 0, vg = 1y, and the radial
position is r = ry. We can therefore write the constant in Equation (2.58) in
terms of the imitial conditions:

df)
EE = g — Fovg (259)

Using Equation (2.59) to eliminate <8/d! from Equation (2.56), we obtain

2. 2,2 2
d'r _rgyy _ gRg

P75 B (2.60)

We can solve this differential equation by introducing the change of variable

7 Rl

! {(2.61)
¥

In doing so, we also change the independent variable from { to # because we
want to determine » as a function of the angle ¢ instead of time. To express
Equation (2.60) in terms of u, we must determine d2r/df* in terms of u. Using
the chain rule, we wrile the derivative of » with respect to time as

dr  d {1 1 du 1 dudb

wa(;;) ST w T TR G (262
Notice from Equation (2.59) that

do Foyto 2

P i 3 m Pougtd (2.63)
Substituting this expression inte Equation (2,62}, we obtain

dr dut

E‘; == = Foth gﬂﬁ (264)

We differentiate this expression with respect to time and apply the chain rule
again:

dr _df o odu\_ _dOd (de\ _  didu
A2 T\ TR T e N ge) T T

Using Eguation (2.63) to eliminate df/dt from this expression, we obtain the

second time derivative of » in terms of u:

&
de?

do?

= —Rru
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If the ratio r/d is constant, the curve
describes a conic section.

Substituting this resulfjinto Equation {2.60) yields a lincar differential equation
for u as a function of ¢

du  gRE
"

The general solution ¢f this equation is
R

we dsinf -+ Beos ) 4 5
i

(2.65)

where 4 and B are constants. We can use the initial conditions to determing A
and B. When 0 = 0, li = 1/ry. Also, when @ =0, the radial component of
veloeity o, = dr/dr =0, so from Equation (2.04) we see that du/d0 = 0. From
these two conditions, 'we obtain

1 gR?
A=0 B o %
: o oty

Substituting these regults info Equation (2.65), we can write the resulting
solution for » = 1/u as

r 1+-g

- L 2.66
ro l4ecos8 (2.66)
where
2
foly
N | 2.67
gRE (267

The ¢urve called a conic section (Figure 2.40) has the property that the
ratio of 7 to the perperidicular distance d to a straight line, called the directrix,
is constant. This ratig, r/d = rp/dy, is called the eccentricity of the curve,
From Figure 2.40 we see that

reosfl 4+ d == ry + do

Figure 2.40

Direetrix

Cone secten




which we can write in terms of the eccentricity as

ro 1 +(I"n/dq)

) 14 (r‘o/dgjwcm

Comparing this expression with Equation (2.66), we sce that the satellite s
orbit describes a conic section with eccentricity &,

The value of the eccentricity determines the character of the otbit (Figure
2.41). If the initial velocity » is chosen so that & = 0, Equation (2.66) reduces
to r == ry and the orbit is circular, Setting & = 0 in Equation (2.67) and solving
for ug, we obtain

R2
w= [0F (2.6%)
4]

which agrees with the velocity for a citcular orbit we obtained in Example 2.9
by a different method.

If 0 < ¢ <1, the orbit is an ellipse. The maximum radius of the ellipse
occurs when 6 = 180°. Setting § equal to 180° in Equation (2.66), we obtain
an expression for the maximum radius of the ellipse in terms of the initial
radius and &

Finax = rU(l h 8) (2.69)

l-g

Notice that the maximum radius of the ellipse increases without limit as
&=+ 1. When ¢ = 1, the orbit is a parabola, which means that v, is the escape
velocity. Setting & = 1 in Equation (2.67) and solving for 1, we obtain
2R}
=V

oy

which is the same value for the escape velocity we obtained in Example 2.5 for
the case of motion straight away from the earth, If £ > 1, the orbit is a
hyperbola.

The solution we have presented, based on the assumption that the earth is a
homogencous sphere, approximates the orbit of an earth satelite. Determining
the orbit accurately requires taking into account the variations in the earth
gravitational field due to its actual mass distnibution. Similarly, depending on
the accuracy required, determining the otbit of a planet around the sun may
require accounting for perturbations due to the gravitational attractions of the
other planets.
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Figure 2.41
Orbits for different values of the eccentricity,
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Example 2.13! lw

#I’ﬁ'-g,",.-}."»" -
P

Figure 2.42

Orbit of an earth satellite with a perigee of
6700 km and an apogee ol 16 090km.

D e

An carth satellite is ih an ¢lliptic orbit with a tninirum radius of 6700km and a
maximum radius of 16090 km. The radius of the earth is 6370 km.

{a) Determine the satélhte: s velocity when it is at perigee (its mininuumn radius} and
when it is at apogee Qts maximum radius),

(b) Draw a graph of the orbit.

STRATEGY

We can regard the radius and velocity of the satellite at perigee as the initial
conditions rg and u used in obtaining Equation (2.66). Since we also know the
maximum radius of the orbit, we can solve Equation (2.69) for the ecoentricity of
the orbit and then use Equation (2.67) to determine #o. From Equation (2.58), the
product of » and the r:ransveree component of the velocity it constant. We can use
this condition to detefmine the velociry at apogee.

SOLUTION
(2} Solving Equation!(2.69) for ¢ the eccentricity of the orbit is

_ Fmgfro -1 16 090/6700 - 1

= : = a (0,412
Fmax{ o+ 1 16 090/6700 4 1 ¢

Now from Equation (2.67), the velocity at perigee is

_ [+ DeRe /A2 T DO ENIE3T0X1000)F

o .o (6700)(1000)
= 9170 m/s

At perigee and apoged, the velocity has only a tranaverse component. Therefore the
velocity at apogee, vy is related to the velocity v at perigee by

Fotg == f?aax”a

We solve this equation for the velocily al apogee:

o L E 6700 -
Ty == e g == (16 090)(9170) 3819m/s

{b) By plotting Equalion (2.66) with & = 0.412, we obtain the graph of the orbit
(Figure 2.42). ‘
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Example 2.14

Application fo Engineering

Communication Salellites

A communication satellite is usually placed in geosynchronous orbit, a circular orbit
above the cquator in which the satellite remains above the same point on the earth as
the earth rotates beneath it, The satellite is placed into geosynchronous orbit starting
from a circular parking orbit nearer the earth by a procedure called 2 Hohmann
tranyfer (Figure 2.43). Let o) be the velocity of the satellite in the circular patking
orbit. The satellite is first boosted from v to a velocity v, in the direction tangent to
the parking orbit to put it into an elliptic orbit whose maximum radius equals the
radivs of the geosynchronous orbit, When the satellite reaches the geosynchronous
orbit, its velocity has slowed from v, to a velocity vy, It is then boosted to the
velocity wa necessary for it (o be in the circular geosynchronons orhit, completing
thc Hohmann transfer.

(a) Determine the radius ry (in km) of the geosynchronous otbit.

{b) The racdius of the earth is Rg = 6370 km. If the radius of the circular parking
orbit is r, = 6670 km, determine the velocities =, 1w, o3 and 4.

Figure 2,43

ERiptic orbit
-

Boost from
D0 U,

Parking orbit

Gicosynchronous

/ orbit

STRATEGY

{8) To be I geosynchronous orbit, a gatellite must complete one revalution in
approximately 24 hr while the arth turns one revolution beneath it. This condition,
together with Equation (2.68) for the velocity of a satellite in circular orbit, allows
us to determine the radius of a geosynchronous orbit,

{(b) Since the parking and geosynchronous orbits are circular, we can use Equation
(2.68) 1o determine +; and vy, The initial conditions for the elliptic orbit are
ro = Fy, tp = . We want the maximum radius of the elliptic orbit to be equal o the
radius of the geosynchronous orbit: P = r,- We can solve Equation (2.69) for the
cccentricity of the elliptic orbit and then use Equation (2.67) to determine vp = vy,
From Equation (2.58), the product of » abd the transverse component of the velocity
is constant while the satellite is in the elliptic orbit, sp we can detertmine the velocity
vy from the relation rpen = rgey.

A Hohmann transfer,
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SOLUTION :

(8) TLet T = 24 hr= (:24)(3600) . Intime T, a satellite in geosynchronous orbit must
travel the distance 217, 50

2ary =l (2.70)

From Equation (2v68§, the velocity 14 and radius », must also satisfy the equation

Substituting this expéession into Equation (2,70} and solving for ry, we obtain

TR 24)(3600)(6.37 x 1050
= ()7 < gy (00163 x 10)

= 4,22 x 10* km

]
(b From Equation (2.68), the velocity of the satellite in the parking orbit is

Ry (9.81)(6.37 x 106)?
= 7 =y et = T2 §
"V 6.67 % 10° a8 m/s

and its velocity in thé geosynchronous orbit is

(9. 81)(6 37 x 100
= 3070 ny/'s
\/ - \/ .22 % 107 m/s

From BEquation (2.69), the maximum radius of the elliptic orbit is related to its
eccentricity by

1o
B=h_,

Solving for g, we obfain

el =1

- = 0.727
rofbp 41

Now we can solve Ehuation (2.67) for w:

_ jgREe+ 1) [(9.81)(6.37 x 106)2(0.727+1)
N, om 6.67 % 10

= 10153 m/s

From the relation #,h = rpos, the velocity vy is

vy = (53!1)1,»; = 1604 m/s
fig




DESIGN ISSUES

Communiecation satellites (Figure 2.44) have revolutionized communications, mak-
ing possible the real-time transmission of audiovisual information to every part of
the planet. Because satellites are placed in geosynchronous orbit, earth stations used
to send signals to and receive signals from the satellites can use simple and
relatively inexpensive fixed antennas. (The familiar ‘dish’ antennas used to receive
Iclevision transmissions are aimed at satellites in geosynchronous orbit)

Because the radius of a geosynchronous orbit is large in comparison to the earth’s
radius—ry = 4.22 x 10°km, which is approximately 26 200 mi— building commu-
nication satellites and launching them is a formidable problem in system design. In
Example 2,14, the satellite in civcular parking orbit must be hoosted froni v to vz,
an increase in velocity of 2427 m/s, 10 initiate the clliptic orbit. It must then be
boosted from vz 10 w4, an increase in velocity of 1467 m/s, to achieve geosynchro-
nous orbit. The satellite must be equipped with rocket engines capable of producing
these substantial increases in velocity. In addition, it must have guidance and
attitude (orientation) control systems that can align the satellite so that the necessary
changes in velocity occur in the correct directions, Once in geosynchronous orbit,
the satellite must be able to determing its orientation and aim ils own antennas to
receive and transmit signals.
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Figure 2.44
Intelsat ¥V Communicadtion Satellite,

e g e :
[T N A e T TR R W A A

T R i T

Use the value R = 6370km for the radius of the ecarth,

2,137 A gatellite ig in a circular orbit 320km above the earth’
surface.

(2) What is the magnitude of its velocity?

(b) How long does it take to complete one revolution?

2.138 The moon is approxitnately 383 000km from the earth.
Assurning that the moon’s orbit around the earth is circular with
velocity given by Equation (2.68), determine the time required for
the moon to make one revolution around the earth.

2139 A satellite is given an initial velocity vy =6700m/s at a
distance #y = 2Ry from the centre of the earth, as shown in Figure
2.39(a).

{2} What 15 the maximum radius of the resulting elliptic orbit?
(b} What is the magnitude of the velocity of the satetlite when it i3
at its maximum radius?

2140 Draw a graph of the clliptic orbit described in Problem
2.139.

2,141 A satellite is given an inital velocity vy at a distance
rp == 6800km from the centre of the carth, as shown in Figure
2.39(a). The resulting clliptic orbit has a maximum radius of
20000 km. What is o7

2,142  In Problem 2.141, what velocity ve would be necessary to
put the satellitc into a parabolic escape orbit?

2.143 From astronomigal data, Kepler deduced that the ling from
the sun to a planct traccs out equal areas in equal times (Figure (a)).
Show that this result follows from the fact that the transverse
component ag of the planet’s acceleration is zero. (When r changes
by an amount dr and # changes by an amount 48 (Figure (b)), the
resulting differential element of area is dA = % r(r d8).)

(b) P2.143
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2144 Atr = 0, an earth satellite ig a distance ry from the centre
of the earth and has an initial velocity vg in the direction shown.
Show that the polar equation for the resulting orbit is

r (e 4+ )cos? B

¥ = [(a-+ Decos? f — 1] cos ! — (2 -+ 1) 8in ff cos fsin @ - 1
where ¢ = (ro/gRE) — L.

P2.144

2,145 Draw the graphs of the orbits given by the polar equation
obtained in Problem 2,144 for & == 0 and § = 0, 30° and 60°,

Probilems 2.146~2.149 are related to Example 2.14.

An earth sat¢llite is in a circular parking orbit of radius
68()() km. Determine the increase in velogity v, — 2y neces-
sary f!o put it into an elliptic orbit with maximum radius equal to the
radiu rq of a geosynchranous orbit.
2.14? (a) Determine the velocity vy of the satellite in Problem
2.146 when it reaches the radius of geosynchronous otbit. (b)
Detc]irlmmc the increase in velocity vq — v3 necessary to place the
satelhte in geosynchronous orbit,

2 146 A satellite is in a circular parking orbit of radius
rp = 7337 km from the centrg of the earth. Determine the velocity
mcreases vz = 97 and w4 — ¥y necessary to perform a Hohmann
transfer to a circular orbit with radiug equal to the radius of the
mmcm s orbit 383 000 km,

2149 A satellite is in a circular parking orbit of radius
r, ='3500 km from the centrc of Mars. The radius of Mars 1:.
3394 L, the acceteration due to gravity at its surface is 3.73 m /5%,
and Lt tumns on its polar axis once every 24 hr 37 min. Determine
the velority increases vz — vy and vq = vy necessary to place the
satellite in a synchronous orbit around Mars,

25 Relam;#e Motion

OQur discusgion so f'afr has been limited to the motion of a single point.
However, often it is ndt the motion of an individual point, but motions of two

of more points relative to each other that we must consider. For example, if a

pilot wants to land

i an aircraft carrier (Figure 2.45(a)), the individual

motions of the carrier and his plane relative to the carth concern him less than

Figure 2.45{c1)

In many situations the relative motion of
objects is of greater importance than their
individual motions,

(a)
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the motion of his plane relative to the carrier. Pairs skaters (Figure 2.45(b))
must carefully control both their individual motions relative to the ice and their
motion relative to each other to successfully complete their moves, In this
section we discuss the analysis of the relative motions of points.

Suppose that 4 and 8 are two points whose individual motions we measure
relative to a reference point O, and let's consider how to describe the motion of
A relative to B. Let r, and rg be the position vectors of points 4 and B relative
to O (Figure 2.46). The vector 14/ is the position vector of point A relative to
point B. These vectors are related by

rq=Tp-+Typ (2.71)

Taking the time derivative of this relation, we obtain

Vg == Vg -+ Vap .72

where v, 15 the velocity of A relative to O, vz is the velocity of B relative to O,
and vy, = dryp/dt is the velocity of A relative to B,

Figure 2.45(k)

Figure 2.46

Twe points 4 and B and a reference

point . The vectors ry and rp specify the
positions of A and B relative to O, and ry,
specifics the position of A relative to A.

Ih our example of an agroplane approaching an aircraft carrier, the plane
could be point 4 and the carrier point B, The individual motions of the carrier
and the plane would be measured (for example, by using on-board inertial
navigation systems) relative to a reference point O fixed relative (o the earth,
Knowing the velocities of the plane, v, and the carrier, vy, the pilot could use
Equation (2.72) to determine his velocity relative to the cartier.

Taking the time derivative of Equation (2.72), we obtain

ay = Ay + A8 (2.73)

where a4 and ap are the accelerations of 4 and B relative to O and
a4/5 = dv,p/dt is the acceleration of A relative to 8. In deriving Equations
(2.72) and (2.73), we have assumed that the position, velocity and acceleration
vectors are expressed in terms of a reference frame that does not rotate. We
discuss relative motion expressed in terms of & rotating reference frame in
Chapter 6.

The following examples show how you can use Equations (2.71)—(2.73) to
analyse relative motions of objects,
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Figure 2.47

The acroplane (4), carrier (B} and a point O
fixed relative to the carth,

Example 2.15

An aircraft carrier travl‘els north at 15 knots (nautical miles per hour) relative to the
earth, With its radar, the carricr determines that the velocity of an asroplane relative
to the carrier is horizontal and of magnitude 300 knots towards the northeast. What
are the magnitude and direction of the planc’s velocity relative to the earth?

N
0/ A
i Wi J}E
: .\44/
5

Iy

300 knots 15 knots

]

STRATEGY

Since we know the carrier’s velocity relative to the earth and the velocity of the
planc relative to the darrier, we can use Equation (2.72) 1o determine the plane’s
velogcity relative to the carth,

SOLUTION

Let the aeroplane be point 4 and let the aircruft be point B (Figure 2.47). Point O

and the xy coordinate system are fixed relative to the earth. The velocity of the

carrier relative to the sarth and the velocity of the plane relative to the carrier are
shown. The velocity af the carrier is

vp = 15jknots
and the velocity of thé plane relative to the carrier is
viip = (300 cos 45° § 4 300 sin 45° j) knots
Therefore the veloa:it)q of the plane relative to the zarth is

Vg = Vg +Vap = 300c0s 4571+ (15 + 300 8in 45°)
= (212.1i +227.1 j) knots

i
The magnitude of the:agroplance’s velocity relative to the carth is

\/ (212.1)* +(227.1)* = 310.8 knots

and its direction is arétan (212.1/227.1)=43.0° east of north.
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Example 2.16

A ship moving at 5 m/s relative to the water is in a uniform current flowing cast at
2m/s. If the captain wants to sail northwest relative to the carth, what dircetion
should she peint the ship? What will the resulting magnitude of the ship's velocity
relative to the earth?

STRATEGY

Let the ship be point 4 and let & be a point rmoving with the water (Figute (a)), Point
O and the xy coordinate system are fixed telalive 1o the carth, We know vp, the
degired direction of v, and the magnitude of v45. We can use Equation (2.72) to
determine the magnitude of v4 and the direction of vyp.

SOLUTION

The velocity of the ship relative to the earth is equal 1o the velocity of the water
relative to the earth plus (he veloeity of the ship relative to the water:

Vg = ¥ b Ve

In Figure (b) we show this relationship together with the information we know about
these velocities: the velocity of the current is 2 m/s towards the cast, the magnitude
of the velocity of the ship relative to the water i3 Sm/s, and the dircction of the
velocity of the ship relative to the earth is northwest. In terms of the coordinate
system shown, the velocity of the current is vp = 2im/s. We don’t know the
magnitude of v4 but, because we know its direotion, we can write it in terms of
components as

Vi = —|vy|cosd5¥ T+ |v, gin 457§
The velocity of the ship relative to the water is
Vg = Vg = vy = —(|v| cos 457 4 2)i + [v,] sin 45° §

The magnitude of thus veotor is

[Varnl = 1/ (v, cos 45° 4 2)° + (|v4] sin45°) = 5m/s
/

Sclving this equation, we obtain |v4] = 3.38 m/s, so the velocity of the ship relative
to the water is

v = (—4.390+ 239 jym/s

The captain must point her ship at arctan (4.39/2.39) = 61.4° west of north {0 cause
the ship to travel in the northwest direction relative to the earth.

DISCUSSION

The problem described in this example must be solved whenever a ship travels in a
current or an aeroplane flies in a wind that is not parallel to its degired course.

Figure 2.48

(¢ The ship A and a point B maving with
the water,

(b) Diagram of the velocity vectors.
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4 rad/s

e Ty

!

I 2m

Figure 2.49

—1) m—f

(0) Determining the acceleration of
relative to F.

| 2 me

{b) Determining the acceleration of P
relative to Q.

The bars O P and £ @ in Figure 2.49 rotate in the x-p plane with congtant angular
velocities. In terms ofjthe fixed coordinate system shown, what is the acceleration of
point ¢} relative to thé fixed point O7?

STRATEGY

¥ Relative to point P, point {2 moves in a cireular path around P with constant angular

velacity. We can usejpolar coordinates to determine apy» and then express it in
terms of components in the xy coordinate system. Point P moves in a circular path
about O with mnat.mt angular velocity, so we can also use polar coordinates to
determinc the accclcrat:on ap and then express it in terms of components in the xy
coordinate system. THen the acceleration of () relative to (7 s ag = a, -+ ag;p.

SOLUTION

Expressing the motion of () relative to £ in terms of polar coordinates (Figure (a)),
we obtain the radial component of the acceleration,

dip 5 . 5 _ )
@y = == v’ = ) - (V2)(~8) = 9051 m/s

and the transverse cofmponent,

dr
aurrockkzawzo

Therefore, the acceleration of 2 relative to P in terms of the xp coordinate system is

We also express the acceleration of P relative to O in terms of polar coordinates
(Figure (b)). The radidl compuonent is

»

d°¥
0y = = = rw? = 0= (@A) = ~32m/¥’

and the transverse co:inponcnt is
o odr
tp=rad2—w=0
a #+ 7
The acceleration of P relative to () in terms of the xy coordinate system is
ap = a i = ~32i (m/s%)
Therefore the accelerdtion of  relative to (2 s

ag = aP-l-ag/.n = =320~ 641 64j
= (961~ 64y m/s
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DISCUSSION

By using polar coordinates in this example, do we violate our assumption that the
vectors in Equations (2.71){2.73) are expressed in terms of a reference frame that
does not rotate? We do not, becausc the expressions for the velocity and acceleration
in polar coordinates account for the fact that the unit vectors rotate. They give the
velocity and acceleration relative to the reference frame in which the polar
coordinates (», ) are measured. For the same reason, you can also use normal
and tangential components to evaluale the terms in Equations (2.71)-(2.73).

This example demonstrates an important use of the concept of relative motion,
The motion of point ¢ relative to point € is quite complicated. But because the
motion of @ rclative to P and the motion of F relative to @ are comparatively
simple, we can take advantage of the equations describing relative motion to obtain
information about the motion of { relative to 0.

. ‘ Problems |i:

2.150 Two cars A and B approach an intersection. Car A is going
20 m/s and is decelerating at 2 m/s®, and car B is going 10 m/s
and is decelerating at 3 m/s”. In terms of the garth-fixed coordinale
systemn shown, determine the velogity of car A relative to car B and

2.153 Two sailing boats have constant velocities v, and vy
relative to the earth. The skipper of boat 4 sights a point on the
horizon. behind boat B. Seeing that boat B appears stationary
relative to thal point, he knows he must change course to avoid a

the velocity of car B relative to car 4. collision. Use Equation (2.72) to explain why.

X
0 P2.150

2151 In Problem 2.150, determine the acceleration of car 4
relative to car B and the acceleration of car B relative to car A.

2.152 Suppose that the two cars in Problem 2,150 approach the
intersection with constant velocities. Prove that the cars will reach
the intersection at the same time if the velocity of car 4 relative to
car 8 points from car 4 towards car B.

P2.153
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2.154 ‘Two projectiles 4 and B are launched from O at the same
time with the initial velocities and elevation angles shown relative
io the earth-fixed coordinate systems, At the instant 8 reaches its
highest point, determine: (a) the acceleration of 4 relative to B,
{b) the velocity of A relative to 8; (c¢) the position vector of A
relative to B.

P2.154

2.155 In a machining process, the disk rotates about the fixed
point O with a constant angular velocity of 10 rad/s. Tn terms of the
non-rotating coordinate systern shown, what is the magnitude of
the velocity of 4 relative to B?

P2.165

2.156 In Problem 2.155, what is the magnitude of the accelera-
tion of 4 relative to 5?

2157 'The bar rotates about the fixed point © with a constant
angular velocity of 2rtad/s. Point 4 moves outwards along the bar
at a comstant ratc of 100 mm/s. Point B is a fixed point on the bar,
At thé instant shown, what is the magnitude of the velocity of point
A reldtive to point B?

P2.157

2.15§ In Problem 2.157, what is the magnitude of the accelera-
tion of point B relative to point 4 at the ingtant shown?

2,159 The bars O4 and 4 K are each 400 mm long and rotate
in the x-y plane. Q4 has a counterclockwise angular velocity
of 10rad/s and a counterclockwise angular acceleration of
2rad/s®. 4B has a constant counterclockwise angular velocity of
Srad/s. What is the velocity of point B relative to point 4 in terms
of the fixed coordinate system?

P2.156%

2.160 In Problem 2.159, what is the acceleration of point B
relative to point 47

2.16'!;‘ In Problem 2.159, what is the velocity of point 8 relative
to thel fixed point O7?

2.162 1In Problem 2.159, what is the aceccleration of point B
relative to the fixed point 07




2.163 The train on the circular track is travelling at @ constant
speed of 15m/s. The train on the straight track is travelling at
6m/s and is increasing its speed at 0.6 m/s”. In terms of the carth-
fixed coordinate systermn shown, what is the velocity of passenger A4
refative to passenger B?7

?‘5
[ TEFPFTI83TT

a

e
L ETE

x5
o

[TT1%

P2.163

2.164 In Problem 2.163, what 15 the acceleration of passenger 4
relative to passenger B?

2.165 The velocity of the boat relative to the earth-fixed coordi-
nate system is 12 m/s and is constant. The length of the tow rope is
15m. The angle 8 is 30° and is increasing at a constant rate of
10°/s. What are the velocity and acecleration of the skier relative o
the boat?

P2.165
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2.166 In Problem 2.165, what are the velocity and acceleration
of the skier relative to the earth?

2167 The hockey player is skating with velocity components
v =1.2m/s, v, = —6m/s when he hits a slap shot with a veloeity
of magnitude 30m/s refative to him. The position of the puck
when he hits it is x = 3.6m, z = 3.6 m. If he hits the puck so that
its velocity vector relative fo him is directed towards the centre of
the goul, where will the puck intersect the x axis? Will it enter the
2m wide goal?

P2.167

2168 Tn Problem 2,167 at what point on the x axis should the
player aim the puck’s velocity vector relative to him so that it enters
the centre of the goal?

2169 An aeroplané flies in a jet stream flowing east ai
160km/hr, The acroplane’ airspeed (its velocity relative to the
air) is 800 kmi/hr towards the northdest. What are the magnitude
and direction of the agroplane’s velocity relative to the earth?

e

5,
“«\ N
" |
: £l
Wf{*\rj-ﬁ
S
Wi, o™
i
~ P2.169

2.170 In Problem 2.169, if the pilot wants to fly towards a city
that is northwest of his current position, in which dirgetion should
he point the aeroplane, and what will be the magnitude of his
velocify relative to the earth?
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2171 A river flows north at 3m/s. (Assume that the current is
uniform.} If you want to travel in a straight line from point C to
point [ it a boat that moves at 4 constant speed of 10 m/s relative
to the water, in what direction do you point the boat? How long
does it take to make the crossing?

P2.171

2.172 In Problem 2.171, what is the minimum boat speed
relative 1o the water necessary lo make the trip from point C to
point D?

2173 Relative w the earth, a sailing boat sails north at velocity
vy and then sails east at the same velocity. The velocity of the wind
is uniform and constant. A ‘tetl-tale’ on the boat points in the
direction of the velocity of the wind relative to the boat. What are
the direction and magnitude of the wind’s velocity relative to the
garth? (Your answer for the magnitude of the velocity of the wind
will be in terme of v,.)

P2.173

2.174 ", The origin O of the non-rotating coordinale system is at
the cenlre of the earth, and the y axis points north. The satellite 4
on the x axis is in a cireular polar orbit of radius R, and its velocity
is 4. !cht w be the angular velocity of the earth. What is the
satellita’s velocity relative to the point B on the earth directly below
the satellite?

P2.174

2175 " In Problem 2.174, what is the satellite’s acceleration
relative to the point £ on the earth directly below the satellite?
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The following example and problems are designed for the use of a programmable
caleulator or commuter,

Example 2.137

With buoyancy accounted for, the downward acceleration of 4 steel ball falling in a
particular liquid is o = 0.9g — cv, where ¢ is a constant that is propertional to the
viscosity of the liquid. To determine the viscosity, a rheologist releases the ball from
rest at the top of 2 2 m tank of the liquid. Tfthe ball requires 2 s to fall to the bottorm,
what ig the value of ¢7

STRATEGY

We can obtain an cquation for ¢ by determining the distance the ball falls as a
function of time.

SOLUTION

We measure the ball’s position s downward from the point of release (Figure (a}) and
let £ = 0 be the time of release,
The acceleration is

dv
a-«;i;m().ﬁig—-cv

Separating variables and integrating,

Y de !
— = di
/c: 09g = ¢ ](;

dy 0.9

1 e e L]

dr ¢

we obtain
— ewf‘l)

Integrating this equation with respect to time, we obtain the distance the ball has
fallcn as a function of the time from its release:

0.9g

s 7(::! ~14e)

We know that & == 2m when £ = 2 5, so determining ¢ requires the cquation

o) = (Fc—1+e"¥)—2=0

(0.9)(9.81)
o2
We can’t solve this wanscendental equation in closed form o defermine ¢
Problem-solving programs such as Mathead and TK! Sofver are designed to obtain
roots of such cquations. Anather approach is to compute the value of f(¢) for a
range of values of ¢ and plot the results, as we have done in Figure 2.51. From the
graph we estimate that ¢ = 8357 .

Figure 2.50

§

{Q) The ball is rcleased from rest at the
surface,

Figure 2.51
Graph of the function f(¢).
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Problems

. 2,076 An engineer analysing a machining process determines
-1 that from ¢ = 0 to ¢ = 4 5 the workpiece starts from rest and moves
4 in a straight ling with acceleration

¢ (2+t“‘5 =" NYm/s

4 (a) Draw a graph of the position of the workpiece relative to its
'} position at £ = 0 for values of time from =0 to 1 = ds.

1 (b) Estimate the maximum velocity during this time interval and
-1 the time at which it oceurs,

1 2177 In Problem 2.72, determine the range of angles 0 within
which the pitcher must release the ball to hit the strike zone.

1 2078 A catapault designed (o throw a line to ships in distress
| throws a projectile with initial velocity vy(1 — 0.4 sin 6,), where
9 is the angle above the horizontal. Determine the value of &y for
"1 which the distance the projectile is thrown is 4 maximum, and show
;1 that the maximum distance is 05593 /5.

U1 — 04 sin 6,)
223 \\

2.17% At r=0, a projectile is Jocated at the origin and has a

velocity of 20m/s at 40° above the horizontal. The profile of the
“ ground surface it strikes can be approximated by the equation

v = 0.4x — 0.006x*, where x and y are in metres. Determine the
¢ approximate coordinates of the point where it hits the ground,

20 m/s
N

¥ =04x - 0.006x"
/

P2.179

2.180j A carpenter working on a house asks his apprentice to
throw! him an apple. The apple is thrown at 10m/s. What two
value§ of 8y will cause the apple to land in the carpenters hand,
3.85 m horizontally and 3.85 m vertically from the point where it is
throwin?

P2.180
2,181 A motoreyele starts from rest at ¢ = 0 and moves along a
circular track with 400 m radivs. The rangential component of its
acceleration is @ = (2 4 0.20) m/s%, When the magnitude of its
total acceleration reaches 6 m/ §*, friction can no longer keep it on

the cifeular track and it spins out. How long after it starts does it
spin out, and how fast is it going?

P2.181




2.182 Atz =0, a steel ball in a tank of oil is given a horizontal
velocity v = 2im/s. The components of its acceleration are
y = =Cly, &y = —0.8g —cv,, ¢; = —cv,, where ¢ 15 2 constant.
When the ball hits the bottom of the tank, its position relative to its
position at ¢ = 0 is ¥ = (0.8 — j} m. What is the value of ¢?

P2.182

2.183 The polar coordinates of a point P moving in the x-y plans
are r == (£ ~ 40m, § = (£ — frad.

(a} Draw a graph of the magnitude of the velocity of P from ¢ = 0
to =23

{b) Estimate the minimum magnitade of the velocity and the time
at which it oceurs.

2.184 () Draw a graph of the magnitude of the acceleration of
the point P in Problem 2.183 from 2 = 0 to f = 2.

(b) Estimate the minimum magnitude of the acceleration and the
time at which it occurs,

RS AED
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path

r=(l = 05co82n) m
0 = {0.5 — 0.2 sin[27(t - 0.1)]} rad

Determine the values of r and # at which the magnitude of the

velocity of P attains its maximum. value.

v

P2.185

2,186 In Problem 2.185, determine the values of » and 0 at which
the magnitude of the acceleration of P attains its maximum value. i

ERS LAl et e

2,185 The robot is programmed so that point P describes the[}

The position of a point P relative to a reference point Q is specified by the
position vector r from O to F The velocity of P relative to O is

dr K tion (2.1)
Y om uanon (4,
dt 1

and the acceleration of P relative to O is

dv
a ———

= 7 Equation (2.2)

Straight-Line Motion

The position of a point P on a straight line relative to a reference point O is
specified by a coordinate s measured along the line from € to P The co-
ordinate s and the velocity and acceleration of /* along the line are related by
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v = % Equation (2.3)
e=% quat (2.4)
= f.quation (2.

If the acceleration is specified as a function of time, the velocity and position
can be determined as functions of time by integration. If the acceleration is
specified as a function of velocity, dv/dt = afv), the velocity can be deter-
mined as a function of time by separating variables:

dv f
— = | dl Equation (2.16)
y a(f}) [

1f the acceleration is spedificd as a function of position, dv/df = a(s), the chain
rule can be used to express the acceleration in terms of a derivative with
respect to position:

dv _ duds g dv

E—&a—-z{ﬂﬁd@')

Separating variables, the velocity can be determined as a function of position;

s
fﬂdﬂm./j als)ds Equation (2.19)
g b

Cartesian Coordinates

9
The paosition, velocity and acceleration are [Equations (2.21)-(2.25)]
F
(x.y.2)
rz=yxityj+zk
¥
\ . dx, dy, dz
Q *x Vﬁvxl+t‘},]+v,kw&;i+~&?j+-&;k
¢ o . _duy,  du,, | dy
a_axl"{"ayj*‘*‘“azkm dz]"l“""(}?]“}““‘};“k
The equations describing the motion in each coordinate direction are identical
in form to the equations: that describe the motion of a point along a straight
line.
L Angular Motion
/-9/ The angular velocity o and angular acceleration o of L relative to Ly are
| L,
= ?’0 Equation (2.31)
= quation (2.
do 48

o Equation (2.32)

@ T dE




Normal and Tangential Components

The velocity and acceleration are
ds .
Vo gy = ;i;el Equation (2.38)

a=ae +ue, Equation (2.39)

where

Equation (2.40)

The unit vector e, points toward the concave side of the path. The term p is the
instantaneous radius of curvature of the path,

Polar Coordinates

The position, velocity and acceleration are

r=re, Equation (2.44)

dr
v=u%et+mwe = aer + rereg Equation (2.49)

a = a8 -y ey Equation (2.50)

where

_dr . a8 Z*dzr e
&= i a) Tae "

Equation (2.51})

%0 drd® dr

=2
[24)] rdt2+

Relative Mofion

The vectors vy and ry specify the positions of 4 and B relative to O, and ry;
specifies the position of 4 relative to B

ry=rg+ryp Equation (2.71)
Taking time derivatives of this equation gives the relations
V4 = Vg -+ Vg Equation (2.72)

where v, and vy are the velocities of 4 and B relative to ¢ and
Vg = dryg/dt is the velocity of 4 relative to B, and

a4 = ag -+ dyp Equation (2.73)

where a4 and ay are the accelerations of 4 and B relative to O and
a4/5 = dv4p/dt i8 the acceleration of 4 relative to B.

CHAPTER SUMMARY 95
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Review Probléms

o—

2.187 Supposc that you must determine the duration of the
amber light at a highway intersection, Assume that cars will be
approaching the intersection travelling as fast as 105km/hr, that
drivers’ reaction times are as long as 0.5 s, and that cars can safely
achieve a deceleration of at least 0.4g.

(a) How long must the light remain amber to allow drivers to come
to a stop safely before the light ums red?

(b) What is the minimum distance cars must be from the intetsec-
tion when the light turns amber to come to a stop safely at the
intersection?

2.188 The acceleration of a point moving along a straight line is
2 = (4t +2)m/s’. When /= 2s, its position is s = 36m, and
when ¢ =45, its position is 5 = 90m. What is its velocity when
=457

2,189 A model rocket takes off straight up. lts acceleration
during the 25 its motor hurns is 25 m/s%, Negleot acrodynamic
drag. Determine: (a) the maximum velocity during the flight; (b)

P2.189
the maximurn altitude reached.
2,190 In Problem 2.189, if the rocket’s patachute fails lo open,

what is the total time of flight from take-off until the rocket hits the
ground?

2191  The acceleration of & point moving along a straight line is
a = v’ , where ¢ is a constant. If the velocity of the point is »,
what distance does it move before its velosity decreases to vy /2?

2,192 Water leaves the nozzle at 20° above the horizontal and
strikes; the wall at the point indicated. What was the velocity of the
water 4s it left the nozzle?

Strapegy, Determine the motion of the water by treating each
particle of water as a projectile,

P2.192

2.193 . In practice, a quarterback throws the football with velocity
vy at 45° above the horizontal. At the same instant, the receiver
standing 6m in front of him starts running straight downfield
at 3m/s and catchos the ball. Assume that the ball is thrown
and caught at the same height above the ground. What is the
velocity w?

3ls

P2.193




2,194 The constant velocity ¢ = 2m/s. What ate the magnitudes
of the velocity and acceleration of point £ when x = 0.25 m?

| I'm

2.195 In Problem 2.194, what is the acoelcration of point P in
terms of normal and tangential components when x == 0.25m?
What is the instantaneous radius of curvatore of the path?

2.196 in Problem 2.194, what is the acceleration of point P in
terms of radial and transverse components (polar coordinates)
when x = 0.25 m?

2197 A point P moves along the spiral path r = (0,1)0 m, where
# is in radians. The angular position 8 = 2¢rad, where ¢ is in
seconds, and # =0 at f=0. Determine the magnitudes of the
velocity and acceleration of P at ¢ = | 5.

P2.197
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2.198 A manned vehicle (M) attempts to rendezvous with a
satellite (8) to ropair it. (They are not shown to scale) The
magnitude of the satellite’s velocity is [vs| = 6km/s, and a sight-
ing determines that the angle f = 40°. 1f you assume that their
velocities remain constant and that the vehicles move along the
straight lines shown, what should be the magnitude of vy to
achieve rendezvous?

F2.198

2.199 In Problem 2.198, what is the magnitude of the veloeity of
the manned vehicle relative to the spacecraft ouce the magnitude of
vy has been adjusted to achieve rendezvous?

2,200 The three 1 m bars rotate in the x-y plane with constant
angular velocity . If w = 20rad/s, what is the magnitude of the
veloeity of point € relative to point A in terms of the fixed
coordinate system?

P2.200

2.201 In Problem 2.200, what is the velocity of point C relative
to the fixed point 07

2.202 In Problem 2.200, accelerometers mounted at ¢ indicate
that the acceleration of point C relative to the fixed point O is
ac = (~1500i — 1500f)m/s>. What is the angular velocity w?
Can you determine from this information whether @ i3 counter-
clockwise or clockwise?




racing motorcycle can aceel-

ergte from rest to 60wmi/hr

(96.6km/hr) in 3w Its
acceleration is related by Newton
second law to the combined mass of
the motorgycle and rider and the exter-
nal ferces acting on them. [n this
chapter we will use free-body dia-
grams and Newton's second law to
determine the motions that result
from the forces acting on objects.




Force, Mass and
Acceleration

NTIL now we have analysed motions of objects without

considering the forces causing them. Here we relate
cause and effect: by drawing the free-body diagram of an
object to identify the forces acting on it, we can use Newton’s
second law to determine its acceleration. Once the accelera-
tion is known, we can determine its velocity and position by
the methods developed in Chapter 2.
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3.1 Newlon’s Second Law

Neswton stated that the force on a particle is equal to the rate of change of its
linear momentum, which 15 the product of its mass and velocity:

d
f=—(mv):
dz( )
If the particle’s mass is &onsta:ut, the foree equals the product of its mass and
acceleration:
dv
f o g9 R
m— ma (3.1

We pointed out in Chapter | that the sccond law gives previse meanings to the
terms force and mass. Once a unit of mass 1s chosen, a unit of force 1s defined
to be the force necessary to give one unit of mass an acceleration of unit
magnitude. For example; the unit of force in SI units, the newton, is the force
necessary to give a mass of one kilogram an acceleration of one metre per
second squared. In principle, the second law then gives the value of any force
and the mass of any object. By subjecting a one-kilogram mass to an arbitrary
force and measuring thé acceleration, we can solve the second law for the
direction of the force and its magnitude in newtons. By subjecting an arbitrary
mass to a one-newton force and measuring the acceleration, we can solve the
socond law for the valug of the mass in kilograms.

If you know a parti¢le’s mass and the force acting on if, you can use
Newton’s second law to determine its acceleration. In Chapter 2 you learned
how to determine the velocity, position and path, or trajectory, of a point when
you know its acceleration. Therefore, with the second law you can determine a
particle’s motion when you know the force acting on it.

3.2 Inertial Reference Frames

When we discussed thg motion of a point in Chapter 2, we specified its
position, velocity and ageeleration relative to an arbitrary reference point O.
But Newton'’s second law cannot be expressed in terms of just any reference
point. Suppose that no force acts on a particle, and we measure the particle’s
motion relative to a pdrticular reference point O and determine that its
acceleration is zero. In terms of this reference point, Newton’s second law
agrees with our observation. But if we then measure the particle’s motion
relative to a reference pojnt O that is accelerating relative to O, we determine
that its acceleration is not zero. Relative to ', Newton's second law, at least in
the form given by Equation (3.1}, does not predict the correct result, Equation
(3.1) also will not predict the correct result if we use a coordinate system, or
reference frame, that is rotating.

Newton stated that the second law should be expressed in terms of a non-
rotating reference frame that does not accelerate relative to the “fixed stars’.




3.3 EQUATION OF MOTION FOR THE CENTRE OF MASS 101

Even if the stars were fixed, that would not be practical advice because
virtually every convenient reference frame accelerates, rotates, or both due to
the earth’s motion, Newton’s second law can be applied tgorously using
reference frames that accelerate and rotate, by properly accounting for the
acceleration and rotation. We explain bow in Chapter 6, But for now, we need
to indicate when you can apply Newtons second law and when you cannot.

Fortunately, in nearly all ‘down to earth’ situations, you can express
Newton’s second law in the form given by Equation (3.1) in teims of a
reference frame that is fixed relative to the earth and obtain sufficiently
accurate answers. For example, if you throw a piece of chalk across a room,
you can use a coordinate system that is fixed relative to the room to predict the
challk’s motion, While the chalk is in motion, the earth rotates, and therefore
the coordinate system rotates. But because the chalks flight is brief, the effect
on your prediction is very small. (The earth rotates slowly—its angular velo-
city is one-half that of a clock’s hour hand.) You can also obtain accurate
answers 1 most situations using a reference frame that translates with constant
velocity relative to the earth. For example, if you and a friend play tennis on
the deck of a cruise ship moving with constant velocity, you can apply
Fquation (3.1} in terms of a coordinate system fixed relative to the ship to
analyse the ball’s motion. But you canmot if the ship is tuming or changing its
speed. In situations that are not ‘down to earth’, such as the motions of earth
satellites and spacecrall near the ¢arth, you can apply Equation ¢3.1) by using
a non-rotating coordinate system with its origin at the centre of the earth,

If a reference frame can be used to apply Equation (3.1), we say that it is
imertial, We discuss inertial reference frames in greater detail in Chapter 6, For
now, you should assume that examples and problems are expressed in terms of
inertial reference frames,

3.3 Equation of Motion for the
Centre of Mass

Newton’s second law is postulated for a particle, or small element of matter,
but an equation of precisely the same form describes the motion of the centre
of mass of an arbitrary object. We can show that the total external foree on an
arbitrary object is equal to the product of its mass and the acceleration of ity
centre of mass.

To do 50, we conceptually divide an arbitrary object into N particles. Let m;
be the mass of the ith particle, and let r; be its position vector (Figure 3.1(a)).
The object’s mass m is the sum of the masses of the particles,

mmE "y
i

where the summation sign with subscript { means “the sum over { from 1 to N,
The position of the object’s centre of mass is

E mry
T

m

r
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Figure 3.1

() Dividing an object into particles. The
vector ry is the position vector of the ith
particle and r is the position vector of the
object’s centre of mass,

(b} Forces on the ith particle.

By taking two time derivatives of this expression, we obtain

&r

dzf;

where a is the accelerat;on of the object’s centre of mass,

The ith particle of thfz object may be subjected to forces by the other
particles of the object. Ligt £, be the force exerted on the ith particle by the jth
particle. Newton'’s third ]aw states that the /th particle exerts a force on the jth
particle of equal magmtude and opposite direction: f; = —fy. Denoting the
external force on the rtlj particle (that is, the total force exerted on the ith
particle by objects other than the object we are considering) by fF, Newton’s
second law for the ith particle is (Figure 3.1(b))

d'r;
Z £ + 1= iy

We can write this equdtion for each particle of the object. Summing the
resulting equations from i = 1 to N, we obtain

Z Z i+ Y £ ma (3.3)

where we have used Equation (3.2). The first term on the left side, the sum of
the internal forces on the object, is zero due to Newton's third Jaw:

Z E fy =fp+fo + gty 4+ =0
i

The second term on the left side of Equation (3.3) is the sum of the external
forces on the object. Dienoting it by ZF, we conclude that the sum of the
external forces equals the product of the mass and the acceleration of the
centre of mass:

2F == ma (3.4

Because this equa.tio%l is identical in form te Newton’s postulate for a
particle, for convenience we also refer to it as Newton’s second law. Notice that
we made no assumptionis restricting the nature of the ‘object’ or its state of
maotion in obtaining this fesult. The sum of the external forces on any object or
collection of objects— so[id, liquid or gas—equals the product of the total mass
and the acceleration of the centre of mass. For example, suppose that the space
shuttle is in orbit and hag fuel remaining in its tanks. If its cngines are turned
om, the fuel sloshes in a complicated manner, affecting the shuttle’s motion due
to internal forces betwedn the fuel and the shuttle. Nevertheless, we can use
Equation (3.4) to determine the exact acceleration of the centre of mass of the
shuttle, including the fijel it contains, and thereby determine the velocity,
position and trajectory of the centre of mass.
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To apply Newton’s second law in a particular situation, you must choose a
coordinate system. Often you will find that you can resolve the forces into
components most conveniently in terms of a particular coordinate system, or
your choice may be determined by the object’s path, In the following sections
we use different types of coordinate systetns to determine the motions of
objects.

Cartesian Coordinates and Siraight-Line Motion

Expressing the total force and the acceleration in Newtons second law in
terms of their components in a cartesian coordinate system,

(S + RF,j+ZFK) = mlad + af + aK)

we obtain three scalar equations of motion:

ZF,=ma, LF,=ma ZF =ma (3.5)

The total force in each coordinate direction equals the product of the mass and
the component of the acceleration in that direction (Figure 3.2(a)).

If the motion is confined to the x-y plane, a, == 0, so the sum of the forces in
the z direction is zero. Thus when the motion of an object is confined to a fixed
plane, the component of the total force normal to the plane equals zero, For
straight-line motion along the x axis (Figure 3.2(b)), Equations (3.5) are

LFy=ma, ZF,=0 LF,=0

In straight-ling motion, the components of the total force perpendicular to the
line equal zero and the component of the total force tangent 1o the line equals
the product of the mass and the aceeleration of the object along the line.

The following examples demonstrate the use of Newton’s second law fo
analyse motions of objects. By drawing the free-hody diagram of an object,
you can identify the external forces acting on it and use Newton’s second
law to determine its acceleration. Conversely, if you know the motion of an
vhject, you can use Newion’s second law to derermine the external forces
acting on it. In particular, if you know that an object’s acceleration in a
specific direction is gera, the sum of the external forces in that direction must
also equal zero.

b

Figure 3.2

(o) Force and acceleration companents in
cartesian coordinates.

{b) An object in straight-line motion along
the x axis.
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j Figure 3,3

Example 3.1

The aeroplane in Figure 3.3 touches down on the aircraft carrier with a horizontal
velocity of 50m/s retdlive to the carmier. The horizontal component of the force
exeried on the arresting gear is of magnitude 100000 N, where » is the plane’s
velocity in metres per second. The plane’s mass is 6500 kg.

{a) What maximum ho;‘rizontal force does the arresting gear exert on the plane?
{b) If other horizontal forces can be neglected, what distance does the plane travel

before coming to rest?

STRATEGY

{a) Since the plane begins to decelerate when it contacts the arrcsting gear, the
maximum force occurs-at first contact when ¢ = 50m/s.

() The horizontal forée cxerted by the arresting gear equals the product of the
plane’s mass and its ac:(%clcration. Onee we know the acceleration, we can integrate
to determine the distance required for the plane to come to rest.

SOLUTION

(a) The magnitude of the maximum force is
100000 = (10000}30) = 500 000N

(b) Using the coordinale system shown. in Figure (a), we obtain the equation of
totion;

ZF —ma,:
— 100000, = ma,




S 4 .

10000

(a} The x axis is aligned with the plane’s horizontal mation.

The acroplane’s acceleration is a funetion of its velocity, We use the chain rule to
cxpress the acceleration in terms of g derivative with respect to x:

. dv, dx d
ma, = miiﬂ =m mwﬁ{vx = 10 000w,

ar M d =

Now we integrate, defining x = 0 to be the position at which the planc contacts the
arresting gear:

1] x
f mdy, = —f 10000 dx
51) 0

Solving for x, we obtain

S0m  (50)(6500)
] o= i 'g
10000 = 10000 &M

DISCUSSION

As we demonsirate in this example, once you have used Newton's second law to
determine the acceleration, you can apply the metheds developed in Chapter 2 to
determine the position and velocity.,
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£
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Example 3.2

Figure 3.4

(@) Free-body diagram of craie 4.

X

(b) Free-body diagram of crate 8.

The two crates in Figure 3.4 are reledsed from rest. Their masses are m, = 40kg
and mp == 30 kg, and’the coefficients of friction between crate 4 and the inclined
surface are gy, = 0.2, gy == 0.15. What is their acceleration?

STRATEGY

We must first deterfhine whether A slips. We will assume the crates remain
stationary and see whether the friction force necessary for equilibrium exceeds
the maximum friction force, If slip occurs, we can determine the resulting
acceleration by drawing free-body diagrams of the crates and applying Newton'’s
second law to them mdividually.

SOLUTION

We draw the free-body diagram of erate 4 in Figure (a). If we assume it does not
slip, the equilibrium équations apply,

EF, =T 4 magsin20® —f =0
LF, =N - ngc0s20” = 0

and the tension 7 equals the weight of crate B, Therefore the friction force necessary
for equilibrium ig

f=mpg 4+ mygsm20° = (30 + 40sin 20°)(9.81) = 42R.5N

The normal force N == mygeos 207, so the maximum friction force the surface will
support is

S = N == (0.2)[(40)(9.81) cos 20°] = 73.TN

Crate A will thereford slip, and the friction foree is /= y.N. Applying Newton's
second law,

EF, =T+ magsin20° — uN = mqa,
LA, =N - mageos20® =0

Crate A has no aceeleration normal to the surface, so the sum of the forees in the v
direction equals zero. In this cuse we do not know the tension T because crate B is
not in equilibrium. Frém the free-body diagram of crate B (Figure (b)) we obtain the
equation of motion

ZF, =myg - T = mga,

(Notice that in terms ¢f the two coordinate systems we use, the two crates have the
same acceleration «..) By applying Newton's secand law to both crates, we have
obtained three equations in terms of ihe unknowns T, N and a,. Solving for a., we
obtain ¢, = 5.33m/s%




DISCUSSION

Notice that we assumed the tension in the cable to be the same on each side of the
pulley (Figure (c)). In fact, the tensions muyst be different because a2 moment is
necessary to cause angular acceleration of the pulley. For now, our only recourse is
to assume that the pulley is light enough that the moment necessary te acoelerate it
is neghigible, In Chapter 7, we include the analysis of the angular motion of the
pulley in problems of this type and obtain more realistic solutions.
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(C¢) The tension is assumed (o be the same onf
both sides of the pulley.
A ERE N

R At

3.1 The total external force on a 10 kg object is (901 — 60§+
20 k) W. What is the magnitude of its acceleration relative to an
mnertial reference frame?

3.2 The total external force acting on a 20 kg object is
{101+ 20 j) N. When ¢ = 0, its position vector relative 10 an inertial
relerence frame is rs=0 and its velocily is v= (21— j) m/s.
Determine the position and velocity of the object whent = 2 3.

3.3 The total cxternal force on an object is (102 14 60 j) N.
When 7 =0, its position vector relative to an incrtial rcferenee
frame is r == 0 and its velogity is v = 0.2 jm/s. When f = 55, the
magnitude of ity position vector is measured and determined o be
8.75m. What is the mass of the object?

3.4 The position of a 10 kg object relative to an inertial reference
frame is ¥ = (42 i+ 47 j — 302 k)m, What are the components of
the total exiernal force acting on the object at £ = 1057

3.5 Ifthe 7000 kg helicopter starts from rest and its rotor exerts a
constant 90 kN verlical foree, how high does it risg in 2 §?

Problems

3.6 The 1 kg collar A 15 initially 4t rest in the position shown on
the smooth horizontal bar, At 1 =0, a force F = (&~ i+ Lrj—
a5 k) N is applied to the collar, causing it to slide along the bar.
What is the velocity of the collar when it reaches the right end of
the bar?

P3.6

3.7 Suppose you are in an elevator and standing on a set of
scales. When the elevator is stationary, the scales read your weight,
4
{3} What is the acceleration of the elevator if the scales read
1.01 W
(b) What is its acceleration if the scales read 0.99W?

Strategy. Draw your free-body diagram. The upward force
exerted on you by the scales equals the force you exert on the
scales,
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3.8 A cart partially filled with water is initially stationary (Figure
{a)). The total mass of the cart and water is . The cart is subjected
to a time-dependent force (Figure (b)), If the horizontal forces
exerfed on the wheels by the floor are negligible and no water
sloshes out, what is the x coordinate of the centre of the cart after
the motion of the water has subsided?

o 2r

P3.8

3.9 The rocket travels straight up at low altitude. [ts weight at the
presept time is 890 kN and the thrust of its engine is 1200kN. An
on-bdard accelerometer indicates that its acccleration is 3 m/s®
upwatds. What is the magnitude of the acrodynamic drag force on

the récket?

R P3.9

3.10 The aeroplane weights 90kN. At the instant shown, the
pilot increases the thrast Tof the engine by 22.5 kN, The horizontal
component of the aeroplane’ acceleration the instant before the
thrust is mereased is 6m/ s, What is the horizontal component of
the aéroplane’s acceleration the instant after the thrust is increased?




31 The combined weight of the motorcycle and rider is
1600N. The coefficient of kinetic friction between the motor-
cycle’s tyres and the road is g, == 0.8. If he spins the rear (drive)
wheel, the normal force between the rear wheel and the road is
1100N, and the horizontal force exerted on the front wheel by the
road is negligible, what is the resulting horizontal acceleration?

P3.11

3.12 The bucket & weighs 1800N and the acceleration of its
centre of mass is a = (=101 — 3 ym/s®. Determine the x and y
components of the total force exerted on the bucket by its supports.

P3.12

313 During a test ftight in which a 9000kg helicopter starts
fram rest at £ = (), the acceleration of ils centre of mass from ¢ = 0
o £=10s is

a = [(0.60i + (1.8 = 0.368) j] m/s*

What is the magnitude of the total external forve on the helicopter
{(including its weight) at ¢ = 67
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3.14 The engineers conducting the test described in Problem
313 want to express the total force on the helicopter at / = 65 in
terms of three forces: the weight 7 a component T tangent to the
path, and a component L normal to the path. What are the values of
W, T and L?

Y

P3.14

3.15 The robot manipulator is programmed so  that
x = (100 4 25y mm, ¥ = 6x* mm, z = 0 during the interval of
time from ¢ = 0 to £ = 4 5, What are the x and ¥ components of the
total force exetted by the jaws of the manipulator on the Skg
widget 4 at ¢ = 2 g?

P3.18

3.16 The robot manipulator in Problem 3.15 {5 stationary at
t=0 and is programmed so that a, = (50 — 0.40,) mm/s’,
ay == (25 - 0.2u,) mm/s?, a, = 0 during the interval of time from
t = Uto ¢t = 45 What are the x and y components of the total force
exerted by the jaws of the manipulator on the 5kg widget 4 at
£== 287
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3.17 1In the sport of curling, the object is to slide a ‘sione’
weighing 200 N onto the cenire of a target located 28 m from the
point of release. tf py = 0.01 and the stone is thrown directly
towards the target, what initial velocity would result in a perfect
shot?

Curling
stong

P3.17

3.18 The two weights are released from rest. How far does the
50N weight fall in one-half second?

P3.18

3.19 In Example 3.2, what is the ratio of the tensian in the cable
to the weight of crate B after the crates are released from rest?

3,201 Each box weighs 200 N and friction can be neglected. If the
boxey start from rest at ¢ = {, determine the magnitude of their
velocity and the distance they have moved from their initial
position at # = 1s.

P3.20

3.21  In Problem 3.20, determine the magnitude of the velocity of
the bowes and the distance they have moved from their initial
position at £ == 15 if the coefficient of Kinetic friction between the
boxes and the surface is 1y, = 0.15.

3.22  The masses mp = 15kg, my = 30kg, and the cocfficients
of friction between all of the surfaces are y, = 0.4, p = 035
What is the largest foree F that can be applied without causing A4 to
slip rélative to B7 What is the resulting acceleration?

P3.22




3.23 The crane’s wolley at 4 moves to the right with constant
acceleration, and the 800kg load moves without swinging,

(a) What is the acceleration of the trolley and load?

{b) What is the sum of the tensions in the paralle]l cables support-
ing the load?

P3.23

3.24 The 50kg crate is initially stationary. The coefficients of
friction between the crate and the inclined surface are p, = 0.2,
ty = 0.16. Determine how far the crate moves from its initial
position in 25 if the horizontal force £ = 500N.

P3.24

3.25 In Problem 3.24, determine how far the crate moves from its
initial position in 25 if the horizontal force F = 150N,
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3.26 The crate has a mass of 120kg gand the coefficients of
friction between it and the sloping dock are g, = 0.6, g, = 0.5,
(a) What tension must the winch exert on the cable to start the
stationary crate sliding wp the dock?

(b} If the tension s maintained at the value determined in part (a),
what is the magnitude of the crate’s velocity when it has moved
10m up the dock?

P3.26

3.27 The utility vehicle is moving forwards at 3m/s. The
coefficients of friction between it§ load A and the bed of the
vehicle are g = 0.5, gy, = 0.45. If & = 0, determine the shortest
distance in which the vehicle can be brought to a stop without
canging the load to slide on the bed.

P3.27

3.28 InProblem 3.27, determine the shoriest distance if the angle
o is (a) 15%; (b) —15°.
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3.29 In an assembly-ling process, the 20kg package A starts
from rest and slides down the smooth ramp. Suppose that you want
to design the hydraulic device B to exert a constant force of
magnitude F on the package and bring it to rest in a distance of
100 mm. What is the required force F'?

P3.29

330 The force exerted on the 10kg mass by the lincar spring is
F = —ks, where k is the spring constant and s is the displacernent
of the mass from its position when the spring is unstretched. The
value of & is SO0N/m. The mass is released from rest in the position
s== 1m.

(a)} What is the acceleration of the mass at the instant it is released?
(b) What is the velocity of the mass when it reaches the position
s =07

P3.30

331t A sky diver and his parachute weight 900 N. He is falling
vertigally at 30m/s when his parachute opens. With the parachute
open; the magnitude of the drag force is 0.50%

(a) What is the maghitude of his acceleration at the instant the
parachute opens?

(hy What is the magnitude of his velocity when he bas descended
6m from the point where his parachute opens?

P33

3.32 A 100kg ‘bungee jumper’ jumps from a bridge 40 m above
a rivér. The bungee cord has an unstretched length of 18m and hasg
a spring constant £ = 200 N/m,

(a) How far above the river is he when the cord brings him to a
stop?

{b) What maximum force does the cord exert on him?

P3.32

3,33 In Problem 3.32, what maximum velocity does the jumper
reach, and at what height above the niver does 1t occur?




3.34  Inacathode-ray tube, an electron (mass==9.11 x 107> kg)
is projected at € with velocity [v (2.2 x 107)i]m/s. Whilc it is
between the charged plates, the electric field generated by the plates
subjects it to a force F = —ef j, where the charge of the slectron
e=1.6x10""C (coulombs) and the electric field strength
E = 15 kN/C. External forces on the electron are negligible when it
is not between the plates. Where does it strike the screen?

3.35 In Problem 3.34, determine where the clectron sirikes the
screen if the clectric field strength is £ = 15 sin{eaf) kN/C, where
the circular frequency o = 2 x 10%s™ "

336  An astrobaut wants to travel from 4 space station to a
satellite that needs repair. He departs the space station at O. A
spring-loaded launching device gives his manoeuvring unit an
imitial velocity of 1m/s (relative to the space station) in the y
dircction. At that instant, the position of the satellite is x = 70m,
vy = 50m, z = 0, and it is drifiing at 2.m/s (relative to the station)
in the x dircction. The astronaut intercepts the satellite by applying
a constant' thrust parallel to the x axis. The total mass of the
astronaut and his manoeuvring unit is 300 kg.

{(2) How long does it take him to reach the satellite?

(b) What is the magnitude of the thrust he must apply to make the
intercept?

(¢) What is his velocity relative to the satellite when he reaches it?

P3.36

3.4 APPLICATIONS 113

337 What is the acceleration of the 8kg collar A4 relative to the
smooth bar?

P3.37

3.38 In Problem 3.37, determine the acceleration of the collar 4]
relative to the bar if the coefficient of kiretic friction between the
collar and the har is p, = 0.1,

3,39 The acceleration of the 10kg collar 4 s (2i«3j -~ 3 k)
m/s°. What is the force F7

P339

3,40 In Problem 3.39, determine the force F if the coefficient o
kinetic friction between the collar and the bar is py, = 0.1,
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3.41 The crate is drawn acrose the floor by a winch that retragts
the cable at a constant rate of 0.2 m/s. The crates mass is 120kg,
and the coefficient of kinetic friction between the crate and the
floor is p4, = (1,24,

(a) At the instant shown, what is the tension in the cable?

(b) Obtain a ‘guasi-static’ solution for the tension in the cable by
ignoring the crate’s aceeleration, and compare it with your result in
part (a).

F3.41

3.42 If y=100mm, dy/dt=600mm/s, and d’v/di =
—200 mm/s”, what horizontal force is exerted on the 0.4 kg slider
A by the smooth circular slot?

P3.42

343§ The two 50kg blocks are released from rest, Determine the
magnjtude of their accelerations if friction at all the contacting
surfades is negligible.

Strategy: Use the fact that the components of the accelerations
of theiblocks perpendicular to their mutual interface must be equal.

P3.43

3.44 _ In Problem 3.43, determine how long it takes block 4 to fall
Im if g4 = .1 at all the contacting surfaces.




Normal and Tangential Components

When an object moves in a plane curved path, we can express Newton's
second law in terms of normal and tangential cornponents:

(E F[et —+ = Fnen) = m(ﬂt €+ an cn) (3.6)
wherc
_ dv _ v_z
S = n = )

Equating the normal and tangential components in Equation (3.6), we obtain
two scalar equations of motion:

The sum of the forces in the tangential direction equals the product of the mass
and the rate of change of the magnitude of the velocity, and the sum of the
forces in the normal direction equals the product of the mass and the normal
compenent of acceleration (Figure 3.5). The sum of the forces perpendicular
to the planc curved path must equal zero.

Figure 3.5

and a.

In the following examples we use Newton's second law expressed in terms of
normal and tangentiol components to analyse motions of objects. By
drawing the free-body diagram of an object, you can identify the compo-
nents of the forces acting on it and use Newton's second law to determine
the components of its acceleration. Or, if you know the components of the
acceleration, you van use Newton'’s second law (o determine the external
Jorces. When un object follows a circular path, normal and tangential
components are usually the simplest choice for analysing ity motion,
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Figure 3.6

() Free-body diagram of a person standing in
the oecupied ring,

Example 3.3

Future space stations may be designed to rotate in order to provide simulated gravity
for their inhabitants (Figure 3.6). If the distance from the axis of rotation of the
station ta the occupicd outer ring is R = 100 m, what rotation rate is necessary to
simulate one-half of carth’s gravity?

et

STRATEGY

By drawing the freesbody diagram of a person in equilibrium and expressing
Newiton’s second law in torms of normal and tangential components, we can relate
the force exerted on the person by the floor to the angular velocity of the station.
The person exerts an equal and opposite force on the floor, which is his effactive
weight.

SOLUTION

We draw the free-body diagram of a person standing in the outer ring in Figure (a),
where N is the force gxeried by the floor. Relative to the centre of the station, he
moves in a circular path of radius R. Newton’s second law in terms of normal and
tangential components is

EF = ma

dv  0?
N By = m(*'c}?cl +7€en)

Therefore n = mv? /R, The magnitude of his velocity is © = Rw, where w is the
angular velovity of ‘the station. If one-half of earths gravity is simulated,
N = 1mg. Thercfore

g = &
g = M 7

2

Solving for w, we obthin the nccessary angular velocity of the station,

(g {es
w““ﬁ/ﬁ%“““’ ——(2)(100)m0.221rad/s

which is one revolution every 28.4s.

"
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Example 3.4

The experimental magnetically levitated train in Figure 3.7 is supported by magnetic
repulsion forces exerted norrnal to the tracks. Motion of the train transverse o the
tracks is prevented by lateral supports. The 20 Mg (mepagram) train is travelling at
30m/s on a circular segment of track of radius R = 150m, and the bank angle of
the track is 40°. What force must the magnetic levitation sysiem exert to support the
train, and what total force is exerted by the lateral supports?

STRATEGY

We know the train’s veloeity and the radius of its circular path, so we can determine
its normal component of acceleration. By expressing Newlon's second Jaw in terms
of normal and tangential components, we can determine the components of force
normal and transverse 1o the track.

SOLUTION

The train% path viewed from above is circular (Figure (a)). The unit vector e, is
horizontal and points towards the centre of the circular path, Tn Figure (b) we draw
the free-body diagram of the train seen from the front, where M is the magnetic
force normal to the tracks and & is the transverse force, The sum of the forces in the
vertical direction {perpendicular to the train’s path) must equal zero:

M cos 40" + Ssin 407 — mg = 0

The sum of the forces in the ¢, direction equals the product of the mass and the

normal component ol the aceeleration:

2

XFH =m—
i

-
M sind0” — § cos 40° = m%

Solving these two equations for M and §, we obtain M = 227.4kN, § = 34 2kN.

Figure 3.7

'TOP VIEW

(&) The train’s circulir path viewed from
above,

B

FRONT VIEW

(b) Free-body diagram of the train.

T T Ty
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Application to Engineering

Figure 1.8

Moftor Vehiclé Dynamics

A civil engineer’s preliminary design for a frecway offeramp is circular with radius
R = 100 m (Figure 3.8). If she assumes that the coefficient of static friction between
tyres and road is at leagt p, = 0.4, what is the maximum speed at which vehicles can
enter the ramp without losing traction?

STRATEGY

Since a vehicle on the.off-ramip moves in a circular path, it has a normal component
of acceleration that depends on its velocity, The necessary normal component of
force is exerted by friction between the tyres and the road, and the friction foree
cannot be greater than; the product of u, and the nonmal force. By assuming that the
friction force is equal to this value, we can determine the maximum velocity for
which slipping will not oceur.

SOLUTION

We view the free-body: diagram of a car on the offeramp from above the car in Figure
(a) and from the front of the car in Figure (b). The friction force f must equal the

(1) Top view of thé free-body diagram. (b) Front view.




product of the car's masg m and its normal component of acceleration:

2
v
f"—mi—

The required friction force increases as v increases. The maximum friction force the
surfaces will support is i = N = jgmg. Therefore the maximum velocity for
which slipping does not oceur is

v == o g = 4/ (0.4)(9.81)(100) = 19.8 m/s
or 71.3km/hr,

DESIGN ISSUES

Autemative enginzers, civil engineers who design highways, and engineers who
study traffic accidents and their prevention must analyse and measure the motions of
vehicles under different conditions. By using the methods discussed in this chapter,
they can relate the forces acting on vehicles to their motions and study, for example,
the factors influencing the distance necessary for a car to be brought to a stop in an
emergency, or the effects of banking and curvature on the velogity at which a car can
safely be driven on a curved road (Figure 3.9),

In example 3.5, the analysis indicates that vehicles will lose traction if they enter
the freeway off-ramp at speeds greater than 71.3 km/hr. This result can be used as
an indication of the speed limit that must be posted in order for vehicles to enter the
ramp safaly, or the off-ramp could be designed for a greater speed by increasing the
radivs of curvature. Or, if a larper safe speed is desired but space limitations forbid a
larger radius of curvature, the off-ramp could be designed to incorporate banking
(see Problem 3.65).
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Figure 3.9

Tests of the capabilities of vehicles to
negotiate curves influence the design of both
vehicles and highways,
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Problems

3.45 If you choose the velocity of the train in Example 34 3.48 Small parts on a conveyer belt moving with constant
properly, the lateral force § exerted on it as it travels along the  velocity v are allowed to drop mto a bin. Show that the angle

cireular track is zero. at which the parts start sliding on the belt satisfigs the equation
(a) What is the necessary velocity? | 2
{b) Explain why this would be the most desirable velocity from the COSX = ~—§ing = —
passengers’ point of view, #s gk

where; p, 1s the coefficient of siatic friction between the parts
3.46 An earth satellite with a mass of 4000kg is in a circular  and the bell,
orbit of radius R = 8000km. Its velocity relative to the centre of
the earth is 7038 m/s.
(a) Use the given informztion to determine the gravitational force
acting on the satellite, and compare it with the satellite’s weight at
sea level,
{b) The acceleration due to gravity at a distance R from the centre
of the carth is gRE/R?, where the radius of the carth is
Rp = 6370km. Use this expression to confinn your answer to
part (a).

3.47  The 2 kg slider A starts from rest and slides in the horizontal
plane along the smooth circular bar under the action of a tangential
force Fy = &t W, At t = 45, determine (a) the magnitude of the
velocity of the slider; (b) the magnitude of the horizontal force P —
exerted on the slider by the bar

P3.4a

3.49 The mass m rotates around the vertical pole in a horizontal
cireuldr path. Determine the magnitude of its velocity in terms of §)
aud L.

TOP VIEW P3.47

P3.49

350 :In Problem 3.49, if m = 13kg, L = 1 m and the mass is
moving in its circular path at ¢ = 5 m/s, what is the tension in the
string?




351 The 10kg mass m rotates around the vertical pole in a
horizontal circular path of radius R = 1 m, If the magnitude of its
velocity is v = 3my/s, what arc the tensions in the strings 4 and 57

P3.51

3.52 In Problem 3.51, what is the range of values of ¢ for which
the mass will remain in the circular path described?

3.53 Suppose you are designing a monorail transportation sys-
tem that will travel at 50 m/s, and you decide that the angle & that
the cars swing out from the vertical when they go through a fum
must not be larger than 20°. If the turns in the track consist of
circular arcs of constant radius R, what is the minimum allowable
value of R?

P3.53

34 APPUCATIONS 121

354  An aeroplane of weight W = 900kN makes a turn at
constant altitude and at constant veloeity v == 180m/s. The bank
angle is 15°.

(a) Determine the lift force L.

{b) What is the radivs of curvature of the plane’s path?

P3.54

AB8  The suspended mass m is stationary.

{2) What are the tensions in the strings?

{b) If string 4 is cut, what is the tension in string B immediately
afterwards?

P3.55
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3.56 An aeroplane flics with constant velocity » along a circular
path in the vertical plane. The radiug of its circular path is 1500 m.
The pilot weighs 660 N.

(2) The pilot will experience ‘weightlessness’ at the top of the
circular path if the aeroplane exerts no net force on him at that
point. Draw a free-body diagram of the pilot, and use it to
determine the velocity » necessary to achieve this condition.

(b) Determine the force exerted on the pilot by the aeroplane at the
top of the circular path if the aeroplane is travelling at iwice the
velocity determined in part (a).

P3.56

3.57 The smooth circular bar rotates with constant angular
velocity wy about the vertical axis A8, Determine the anglc f§ at
which the slider of mass m will remain stationary relative to the
ciroular bar.

P3.57

3.58 The force exerted on a charged particle by 2 magnetic field
is

F=gvxB

whete ¢ and v are the charge and velocity vector of the particle and
B is the magnetic field vector. A patticle of mass m and positive
charge ¢ is projected at O with velocity v = wgi into a uniform
magnetic field B = Bok. Using normal and tangential components,
show that: (a} the magnitude of the particle’s velocity is constant;
(b) the particle’s path is a circle with radivs nwg/gBy.

P3.58

3.59 A mass m is attached to a string that is wrapped around a
fixed post of radius R. At ¢ = 0, the object is given a velocity wy as
shown. Neglect external forces on s other than the force exerted by
the string. Determine the tension in the string as a function of the
angle 0.

Strategy: The velocity vector of the mass is perpendicular to the
string. Express Newton's second law in terms of normal and
tangential components,

P3.59

3.60 In Problem 3.59, determine the angle 6 as a function of
time,




Problems 3.61-3.65 are related 1o Example 3.5,

3.61 A caris travelling on a straight, level road when the driver
perceives a hazard ahead. After a reaction time of 0.3 s, he applies
the brakes, locking the wheels. The coefficient of kinetic fiietion
between the tyres and the road is py = 0.6. Determine the total
distance the car travels before coming to rest, including the
distance travelled before the brakes are applied, if it is travelling
at (a) 88 km/hr; (b) 105 km /hr.

3.62 1f the car in Problem 3.61 is travelling at 105 km/hr and
rain decreases the value of w to 0.4, what total distance does the
car travel before coming to rost?

3.63 A car tavelling at 30m/s is at the top of a hill. The
coellicient of kinetic friction between the tyres and the road is
e = 0.8 and the instantaneous radins of curvature of the car’s path
is 200 m. If the driver applies the brakes and the car’s wheels lock,
what is the resulting deceleration of the car in the direction tangent
to its path?

P3.63

384  Suppose that the car in Problem 3.63 is at the bottom of 2
depression whose radius of curvature is 200m when the driver
applies the brakes. What is the resulting deceleration of the car in
the direction tangent to its path?

P3.64
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3.65 A freeway off-ramp is circular with radius R (Figure (a)),
and the roadway is barked at an angle 8 (Figure (b)) Show that the
maximnum constant velocity at which a car can travel the offeramp
without loging traction is

_ sin ff + g cos B
v \/ ()

P3.65
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Radial and transverse components of T F

Polar Coordinates

In terms of polar coordinates, Newton's second law for an object moving in the
x-y plane is

(ZFe, + 2 Fg €g) = mla, e + ag eg) (3.8)

where

d*r 4(:19)2 &,
ty = = Pl e [ e e — )
di

de2 dr?
B gjg+ drdd L4
WETE T T dt

Equating the e, and ey components in Equation (3.8), we obtain the scalar
equations

A2 y
LE = ma. = m(—-—dt2 — F ) (3.9)
. dr
Zl*o:magzm(roc+2~&;w) (3.10)

The sum of the forces in the radial direction equals the product of the mass and
the radial component of the acceleration, and the sum of the forces in the
transverse direction equals the product of the mass and the transverse
component of the acceleration (Figure 3.10),

¥

Figure 3.10

and a.

In the following example we use Newton’s second law expressed in terms of
polar coordinates, or radial and transverse components, to analyse the
motions of an object. By-drawing the free-body diagram of an object, you
can identify the compongnts of the forces acting on it and use Newton’s
second law to determine the components of its acceleration. Or, if you know
the components of the acceleration, yon can use Newton’s second law to
determine the external furces.
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Example 3.6

The smooth bar in Figure 3,11 rotates in the horizontal plane with constant angular
velogity ax. The unstretched length of the linear spring 1s rp. The collar A has mass
m and is released at » = ry with no radial velocity.

{a} Deterrnine the radial velocity of the collar as a function of r.

{b) Determine the horizontal force exerted on the collar by (he bar as a funetion
of »,

STRATEGY

{a) The only force on the collar in the radial direction 1s the spring force, which we
can express in polar coordinates in terms of #, By integrating Equation (3.9), we can
determine the radial velocity ». as a function of #

(0} Onee v, =dr/dt is known in terms of », we can use Equation (3.10) to
determime the transverse force exerted on the collar by the bar.

SOLUTION

(a) The spring cacrts 4 radial force (¢ — rp) in the negative r direction (Figure (a)).
Smee the bar is smooth, 1t exerts no radial force on A4, but may exert a transverse
force Fy. From Equation (3.9),

dzf' 9 dﬂr 4
EF s wk(p = py) = m(F - ) ) =m (W - rcuo)

By using the chain rule to express the time derivative of v, in terms of a derivative
with respect to r,

dv, _dvedr v,
dt  drdt dr T

k k
v, du, = [(wﬁ —;)r-k— ;ru:| dr
f:u, du, =fr l:(wﬁ —ﬁ)r—f—ﬁm] dr
0 ry m m

we obtain the radial velocity as a function of #;

k 2%k
br = ‘/(wﬁ - “m“)("z - 13) +-,‘"“Vu(" = tu)

(b) From Equation (3.10), the transverse force excricd on A4 by the bar is

we obtain

Integrating,

‘ d
Fiy == m (ro: +2 Z;w) == 2midg vy

Substituting our expression for v, as a function of #, we obtain the horizontal force
exerted by the bar as a function of r:

Fy = meo\/(wg - %) - i)+ %ro(r - ¥y)

Figure 3.11

(&) Radial and transverse forces on 4.

P
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Problems

3.66 The polar coordinates of an object are r = (#* +2)m,
8 =26 — £ rad, and its mass is 44 kg. What are the radial and
transverse components of the total external force on the object at
[ 1s?

3.7 The polar coordinaies of an object are v = (27 + 49)m,
0 = (* —~ Hrad, and its mass is 20kg. What are the rudial and
transverse components of the total external foree on the object ar
t =187

3.68 The robot is programmed so that the 0.4 kg part 4 describes
the path

r=(1-—05c082m) m
= (0.5 — 0.2 sin 2n7) vad

At f =23, determine the radial and transverse components of force
exerted on 4 by the robot’s jaws.

P3.68

3.69 In Example 3.6, what is the maximum radial distance
reached by the collar 4?

3.70 The smooth bar rotates ia the horizental plane with con-
stant angular velocity wy = 60rpm (revolutions per minuie). If the
2kg collar A4 is released at » == 1 m with no radial velocity, what is
the magnitude of ils velocity when it reaches the end of the bar?

P3.70

3.71 In Problem 3.70, what is the maximum horizontal force
exerted on the collar by the bar?

3.72 The mass m is relcased from rest with the string horizongal,
By using Newton’s sccond law in terms of polar coordinates,
determine the magnitude of the velocity of the mass and the
tension in the string as functions of 4.

P3.72




3.73 The skier passes point.4 17m/s. From 4 to B, the radius of
his circular path is 6 m, By using Newton's second law in terms of
polar coordinates, determine the magmitude of his velocity as he
leaves the jump at B. Neglect transverse forces other than the
transverse component of his weight.

P3.73

3.74 A 2kg mass rests on a flat horizontal bar. The bar begins
tatating in the vertical plane about O with a constant angular
acceleration of 1 rad/s>. The mass is observed to slip relative to the
bar when the bar is 30° above the horizontal. What is the stalic
cocfficient of friction between the mass and the bar? Does the mass
glip towards or away from 7

1 m |

P34
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3.75 The 0.25kg slider 4 is pushed alonp the circular bar by the
slotted har. The circular bar lies i the horizontal plane. The
angular position of the slotted bar is # = 10# rad. Determinc the
radial and iransverse components of the total external force exerted
on the shider at ¢ = 0.2 5.

P3.75

3.76 In Problem 3.75, supposed that the circular bar lies in the
vertical plane. Determine the radial and transverse components of
the total force exerted on the slider by the circular and slotted bars
at t=0.25s,

3.77 The slotied bar rotates in the horizontal plane with constant
angular velocity wq. The mass m has a pin that fits in the siot of the
bar, A spring holds the pin against the surface of the fixed cam. The
surface of the cam is deseribed by + = ry(2 = cos ). Determine the
radial and transverse components of the total external force exerted
on the pin as functions of €.

P3.77

3.78 In Problem 3.77, suppose that the unstretched length of the
spring is ry. Determine the smallest value of the spring constant &
for which the pin will remain on the surface of the cam.




computer.

= Computational Mechanics
f2cn The material in this seclion is designed for the use of a programmable calculator ar

So far in this chapter you have seen many situations in which you were able to
determine the motion of an object by a simple procedure: after using Newton's
second law to determing the acceleration, you integrated to obtain analytical, or
closed-form, expressions for the object’s velocity and position. These examples are
very valuable — they teach you to use free-body diagrams and express problems in
different eoordinate systems, and they develop your intuitive understanding of
forces and motions. But you would be misled if we presented examples of this kind
only, because most probléms that must be dealt with in engineering cannot be solved
in this way. The functions describing the forces, and therefore the acceleration. are
often loo complicated for vou to integrate and obtain closed-form solutions. In other
situations, you will not know the forces in terms of functions but instead will know
them in terms of data, either as a continuous recording of forec as a function of time
(analogue data) or as values of force measured at discrete times (digital data).
You can obtain appréximate solutions to such problems by using numerical
integration. Let's consider an object of miass m in straight-ling motion along the x
axis (Figure 3.12) and assume that the x component of the total force may depend on

the time, position and velocity:

E px = 2[%@({,,\,—, L‘.!‘)

Figure 3.12

An object moving along the x axis.

(3.17)

Suppose that at a particular time £, we know the position x(fy) and velocity v.(1g),

The acceleration of the object at #y is

% ) = 2 o 00, vl

The definition of the timé derivative of v, at &y is

dv D oy = ) m 2o+ A7) — 0ulto)
o n,« 0 At

(3.12)

By choosing a sufficiently small value of A¢, we can approximate this derivative by

vy ) = O (lp + AL — v,(1g)
dt VT At

and substitute it into Equation (3.12) to obtain an approximate expression for the

velocity at o + Af:

o]
veltp + &) = vlfy) + - 2 Folty, x(to). velto)] At

(3.13)




The relation between the velocity and position at £ is

%(10) = v:(ty)

Approximating this derivative by

du, o x(to -+ Ar) ~ x(f)
T (tp) == B VR

we obtain an approximate expression for the position at f -+ Az
x(to -+ Aty = xltp) + v:lto) At (3.14)

Thus, if we know the position and velocity at a time £, we can approximate their
values at f + Ar by using Equations (3.13) and (3.14). We can then repeat the
procedure, using x(#y 4 Ar) and we{to + Af) as initial conditions to determing the
approximate position and velocity at 1y 4+ 2A7, By continuing in this way, we obtain
approximate solutions for the position and velocity in terms of time. This procedure
is easy to carTy out using a caloulator or computer, Tt is called a finite-difference
method because it determincs changes in the dependent variables over finite
intervals of time. The particular method we deseribe, due to Leonhard Euler
(1707-83), is called forward differencing: the value of the derivative of a function
at #y is approximated by using its value at £y and its value forward in time, at &, 4 Af.
Although more claborate finite-difference methods exist that result in smaller errors
in gach time step, Fuler's method is adequate to introduce you 0 numetical
solutions of problems in dynamics. Notice that Equation (3.11) does not need o
be a functiongl expression to carty out this process. The values of the total force
must be known at times .t + At, ..., and can be determined either from a
function or from analogue or digital data.

You can determine the velocity and position of an object in curviliner motion by
the same approach. Supposc that an object moves in the x-y plane and that the
components of force may depend on the time, position and velocity:

IF, =EF(t,x,p,v5.0,) EF =XF{xyt,0,)

If the position and velocity are known at a time 7p, we can use the same steps leading
to Equations (3.13) and (3.14) to obtain approximate expressions for the compo-
nents of position and velocity at & 4 At

x(to + AL = x(in) + v, (o) At

Wi + A = ylio) + v, (o) At

velto + AN = v ltg) - %pr[i‘o( x(t), v(1). ve(t)d, Vy(tu)] Af (3.15)

1
tylty + Af) = vt} + =~ LF,lty, x(ta), y(to). vx{to), vy{in)] AL
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The material in this section is designed for the use of a programmable calculator or
computer.

Example 3.7

Figure 3.13

The forces on the projectile are its weight
and the drag lorce I,

A 1450kg projectilc is launched from x =0,y =0 with inital velocity
vy = 120m/s, v, = 120m. (The y axis is pesitive upwards,) The aerodynamic
drag force is of magnitide C'|v|*, where C is a constant. Determine the trajectory for
values of C of 0.1, 0.2 and 0.3,

SOLUTION

To apply Equations (3,15), we must determine the x and y components of the total
force on the projectile. Tet I be the drag force (Figure 3.13). Since v/|v| is a unit
veclor in the direction of v, we can write D as

,¥
D= ~CVf = ~Clvlv
¥

The external forces on ;the projectile are its weight and the drag,
ZF = —mgj—Clvlv

50 the compenents of the total force are

ZF,=~C fol+ vf:; e ZFy s g - O[3 4 115 vy (3.16)

Consider the case C= 0.1, and let At = 0.1. At the initial time & = 0, x(i) and
¥ig) are zero, vdly) = 120m/s and (4} = 120m/s. The components of the
position and velocity after the first time: step are

Xty A+ AL) == x(ty) -+ v (1) A
x(0.1) = x(0) 4 v,(0) Az
= 04 {120)0.1) = 12 m

Wi + Ary= pr) + wytg) Al
W01} = p{Q) ++ v,(0) At
= ) o (120)(0.1) = 12 m

(s + AR = w5y + ;};Xﬂffo, x(tp), ¥(to), veltn), m(to}] AL

0 (0.1) = .(0) + {— € JloOF + 15,007 vx(o)} At

=.120 + [mi%‘g%‘/(lzo)z + (120)? (120)](0.1)

= 119.86m/s

| .
wlfy 4+ Al) = v,(%) + ;E Fylra, x(0), ylta), vilto), vy(to)] At

5O =10 + {5 = = flsOF + b OF v0)] &

. _gpy B2 2 2
m120+[ 981 ~ = 1207 + (120) (120)}(0.1)

= 118.88 m/s




Continuing in this way, we obtain the following results for the first five time steps:

When there is no drag (€' = (), we can obtain the closed-form solution for the
trajectory and compare it with numerical solutions. In Figure 3.14, we present this
comparison using Af == 3.5 5, 1.0 g and 0.1 5. Netice that the numerical solution with

Time, s X, In ¥, m Uy, MJE Tyy M/
0.0 0.00 0.00 120.00 120.00
0.1 1200 1200 119.86 118.88
0.2 2399 2389 11972 11776
0.3 3596 3566 11958 116.64
0.4 4792 4733 11944 115.33
0.5 59.86 3888 11931 114.41

Ar = 0.1 s closely approximates the closed-form solution.

In Figure 3.15, we show the numerical solutions for the various values of
obtained using At = (.15, As expected, the range of the projectile decreases as ¢
increases. Also, when drag is present, the shape of the trajectory is changed. The

projectile descends at an angle siceper than that when it ascends.
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DISCUSSION

The development of the fitst complelely electronic digital computer, the ENIAC
(Electronic Numerical Integrator and Computer), built at the University of Penn-
sylvania between 1943 and 1945, was motivated in parl by the nced to caleulate
trajectaries of projectiles. A room-size machine with 18 000 vacuum tubes, it had 20

bytes of random-access memory and 450 bytes of read-only memory.
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Figure 3.14

The closed-form solution for the trajectory
when € = O compared with numerical
solutions.

Figure 3.15
Trajectories for various values of C.
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Problems

379 A 1kgobject moves along the x axis under the action of the
force Fp == 6fN. At t == 0, its position and velocity arc x == 0 and
v, = 10m/s. Using numerical integration with Ar = 0.1s, deter-
mine the position and valocity of the object for the first five time
steps.

Strategy, AL the initial time {1y = 0, x(f) = 0 and v,{) = 10
m/s. You can use Equations (3.13) and (3.14) to determine the
velocity and position at time & -+ At == 0.1 8. The position is

*(ty + Aty = x{ip) + v, (ty) At
x(0.1} = x{0) - (0} At
a ) b (10)(0.1) == 1 m

and the velocity 18

l
‘i‘)x(f(] + Af) = 'I}x(f()) -+ ;Fx(tu) A
1
(0 1) = 10 -+ (l) 6(0)(0.1) = 10 m/s
Use these values of the pesition and velocity as the initial
conditions for the next time step.

3.80  Forthe 1 kg object described in Problem 3.79, draw a graph
comparing the exact solution from f=0 to t=10s with the
solutions obtained uging numerical integration with As =23,
Ar=035sand A = 0,15,

3.81 At r=10, an object released from rest falls with constant
acceleration g = 9.81 m,’sz‘

(8} Using the closed-form selution, determine the velocity of the
object and the distance it has fallen at ¢ = 2 5.

(t) Approximate the answers to part (a) by using numerical
intogration with A7 = (.25,

3.82 In Problem 3.81, draw a graph of the distance the object
falls a8 a function of time from ¢ =0 to ¢ = 43, comparing the
closed-form solution, the numerical solution using At = 0.5s, and
the numerical solution using Af = 0.03 5,

383 A 1000ke rocket starts from rest and travels straight up.
The total force exerted on it is Fu= (100000 -+ 100007 — 4} N.
Using numerical intcgration with At = 0.1 s, determine the rocket’s
height and velocity for the first time steps. (Assamc that the change
in the rocket’s mass is negligible over this time interval.)

P3.83

3.84 The force exerted on the 50 kg mass by the linear spring is
I = —Jkx, whert x is the displacement of the mass from its position
whenp the spring is unstretched. The spring constant & is S0N/m.
The mass is released from rest in the position x = 1m. Use
numerical integration with At = 0.01s to determine the position
and velocity of the mass for the first five time steps,

et

e P S vy

£3.84

3.85 In Problem 3.84, use numerical integration with Af =
0.015 to determine the position and velocity of the mass in
terms ol time from f=0 to f= 10s. Draw graphs of your
resulls,




3.86 At =10, the velocity of a 50kg machine clement that
moves along the x axis is . = 7 m/s. Mcasurements of the total
force £ F, acting on the element at 0.1s intervals from ¢ =0 to
{ = (.95 give the following values:

Time, s Forece, N Time,s Force, N
0.0 50.0 0.5 58.8
0.1 LN 0.6 576
0.2 56.0 0.7 55.4
0.3 57.2 0.8 52.1
0.4 585 0.0 459

Determine approximately how far the element moves from £ == 0 1o
t =15 and ils approximate velocity at £ = 1.

3.87 'The lateral supporis of a 100 kg structural element exert the
horizontal force components
Fo oz -2000x £y = —2000y

where x and y are the coordinates of the centre of mass in metres,
At t = (), the coordinates and component of velocity of the centre
of mass are x=0.1m, y=0 v, =0 and o, = Tm/s. Using
Ar ={.1s, determine the approximate position and velocity of
the centre of mass for the first five time steps.

P3.87

PROBLEMS 133

388 In Problem 387, use numerical

Ar=10.001s to determine the elliptical path described by the *

centre of mass, and draw a graph of the path.

3.89 A car starts from rest at ¢ == . lts acceleration is
a m= (10 4 2¢ — 0.01856) m/s?

(a) Using the closed-form solution, determine the distance the car
has travelled and its velocity at ¢ == §s.

(b) Use numerical integration with Ar = 0.1 s to approximate the
answers obtained in part (a).

{c) Use numerical integration with Ar = 0.01 s to approximate the
answers obtained in part (a).

390 A 20kg projectile is launched from the ground with
velacity components #, = 100m/s, », = 49m/s. The magnitude
of the aerodynamic drag force is C|v|?, where Cis a constant, If the
range of the projectile is 600m, what is the constant C7
(Use numerical integration with At = 0.01§ to compute the
trajectory.)

g { |
O |
= "

—

100 m/és

+ . A

(00 m wl
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Chapter Summary

The total external force on an object is equal to the product of its mass and the
acceleration of its centre of mass relative to an inertial reference frame:

ZF = ma Equatien (3.4)

A reference frame is sajd to be inertial if it is one in which the second law can
be applied in this form. A reference frame translating at constant velocity
relative to an inertial reference frame is aiso inertial.

Expressing Newton's second law in terms of a coordinate system yields
scalar equations of motion:

Cartesion Coordindtes

%LE = ma, LF, =ma, 5 F, = ma, Equatien (3.5)

Normal and Tangential Components

di 2
TH = mw?» TF, = mfm Equation (3.7)
dt e

Polar Coordinates

0
T F = m(%rg ~ rcoz) Equation (3.9)

TFg=m (rfx 2 %w) Equation (3.10)

If the motion of an object is confined to a fixed plane, the component of the
total force normal to the plane equals zero. In straight-line motion, the com-
ponents of the total forice perpendicular to the line equal zero and the com-
ponent of the total fored tangent to the line equals the product of the mass and
the acceleration of the object along the line.

Review Probléms F‘

391 I a future mission, a spacecralt approaches the surface of
an asteroid passing near the carth. Just before it touches down, the
spacecrafi is moving downwards at constant velocity relative to the
surface of the astcroid and its downward thrust is 0.01 M. The
computer decreases the downward thrust to 0.005 N, and an on-
board laser interferometer determines that the acceleration of the
spacecraft relative 1o the surface becomes 5 x 107% m/s* down-
wards. What is the gravitational acceleration of the asteroid near its
surface?

P3.91




392 A ‘cog’ engine hauls three cars of sightseers to a mountain-
top in Bavaria. The mass of each car including its passengery is
10 Mg and the friction forces exerted by the wheels of the cars are
negligible. Determine the forces in the couplings 1, 2 and 3 if (a)
the engine is moving at constant velocity; (b) the engine is
accelerating up the mountain at 1.2 m/s*.

P3.92

3.93 The car drives at constant velocity up the straight segment
of road on the left. If the car’s tyres continue to exert the same
tangential force on the road after the car has gone over the crest of
the hill and is on the straight segment of road on the right, what
will be the car’s acceleration?

P3.93

3.94 The aircraft carrier Nimitz weighs 810 MN, Suppose that it
is travelling at its top speed of approximately 30 knots (a koot is
1852 m/hr) when its engines are shut down. If the water exerts a
drag force of magnitude 292« kN, were v is the carrier’s velocity in
metres per second, what distance does the carrier move before
coming to rest?
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395 If my = 10kg, mp = 40kg and the coeflicients of kinctic
friction between all surfaces is g, == 0.11, what is the acceleration
of B down the inclined surface?

P3.95

3.96 In Problem 3.95, if 4 weighs 300N, B weighs 1500 N, and
the coefficient of kinetic friction between all surfaces 18 g = 015,
what is the tension in the cord as B slides down the inclined
surface?

3.97 A gas gun is used to accelerate projectiles to high velocities
for research on material properties. The projectile is held in place
while gas is pumped into the tube to 4 high pressure pg on the left
and the tube is evacuated on the right. The projectile is then
released and is sccelerated by the expanding gas. Assume that the
pressure p of the gas is related to the volume ¥ it oconpies by
p¥! = constant, where y is a constant, If friction can be neglected,
show that the velocity of the projectile at this position x is

2p0dxl 1 1
miy =1 \xp~t 27t

where m is the mass of the projectile and A is the cross-sectional
arga of the tube.
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398 The weights of the blocks are W, = 1800N and
Wy = 300N and the surfaces are smooth, Determine the accelera-
tion of block A and the tension in the cord.

P3.96

3.99 The 100 Mg space shuttle is in otbit when its engines are
turned on, exerting a thrust forve T = (104 — 20 j + 10 K)kN for
2s. Neplect the resulting change in its mass. At the end of the 25
burn, fiel is still sloshing back and forth in the shuttle’ tanks.
What is the change in the velocity of the centre of mass of the
shuttle (including the fuel it containg) due to the 2 s burn?

3.100 The water skier contacts the ramp with a velocity of
40 kmn/hr parallel to the surface of the ramp. Neglecting friction
and assuming that the tow rope exerts no force on him once he
touches the ramp, estimate the horizontal length of his jump from
the end of the ramp.

P3.100

3101, Suppose you are designing 4 roller coaster track that will
take the cars through a vertical loop of 12 m radius. If you decide
that, for safety, the downward force exerted on a passenger by hig
seat atithe top of the loop should be at Icast one-half his weight,
what is the minimum safe velocity of the cars at the top of the
loop?

2 iy

T TN A RN

P3.101

3.102 If you want to design the cars of a train to tilt as the train
goes afound curves to achieve maximum passenger comfort, what
is the rélationship between the desired tilt angle a, the velocity » of
the traih, and the instantancous radius of curvature p of the track?

S pao2

3103 . If acar is iravelling at 48 km/hr on a straight road and the
coeflicient of static friction between its tyres and the road is
i, = 0.8, what i8 the largest deceleration the driver can achieve
by applying the brakes?




3.104 If the car in Problem 3.103 is travelling on an unbanked,
circular curve of 30w radius, what is the largest tangential
deceleration the driver can achieve by applying the brakes?

3.105 To determine the coefficicnt of static friction between two
materials, an cngineer places a small sample of one material on a
horizontal disc surfaced with the other ong, then rotates the disc
from rest with a constant angular acceleration of 0.4 rad/s®. If she
determings that the small sample slips on the disc after 9,903 s,
what is the coefficient of friction?

P3.105

3.106 As the smooth bar rotates in the horizontal plane, the
string winds up on the fixed cylinder and draws the ! kg collar 4
inwards. The bar starts from rest at = ) in the position shown and
rotates with constant angular acceleration. What is the tension in
the string at ¢ = 187

] rad/s*

P3.106

3.107 In Problem 3.106, suppose that the coefficient of kinetic
friction hetween the collar and the bar is u; = 0.2, What is the
tension in the string at ¢ = 1s?

3,108 The 1kg slider 4 is pushed along the curved bar by the
slotted bar. The curved bar lies in the horizontal plane, and its
profile is described by » = 2(6/2n + 1) m, where @ is in radians,
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The angular position of the slotted bar is 8 &= 2¢fad, Determine the
radial and transverse components of the total external force exerted
on the slider when { = 120°,

P3.108

3.109 In Problem 3.108, suppose that the curved bar lies in the
vertical plane. Determine the radial and transverse components of
the total force exerted on 4 by the curved and slotted bars at
t =055,

3.110 The ski boat moves relative to the water with a constant
veloeity of magnitude Jvg| = 10m/s. The magnitude of the §0kg
skier’s velocity relative w the boat is |vs/s| = 3 m/s, The tension in
the 11m tow rope is 180 N, and the horizontal force exerted on the
skier by the water is perpendicular to the direction of his motion
telative to the water. If you can néglect other horizontal forces,
what is the skier's acceleration in the direction of hig motion
relative to the water?

P3.110

3111 Jn Problem 3.110, what is the magnitude of the horizontal
force excried on the skier by the water?
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he ski lift per
forms work on the
skigrs, increasing
their  gravitational po-
tential energy. Going
down the hill, the skiers
trade their gravitational
potential encrgy for ki-
netic energy. To avoid
gomg too fast, they
must ski so thar the
show performs negative
work on them decreas-
ing their kipetic energy.
In this chapter we usec
the concepts of work
and energy to analyse
motions of ohjects.




Chapter 4

Energy Mefhods

NERGY methods are used in nearly every area of science
E and engineering. Changes in energy must be considered
in the design of any device that moves, including ski lifts as
well as skis. The concepts of energy and conservation of
energy originated in large part from the study of classical
mechanics. A simple transformation of Newton’s second law
results in an equation that motivates the definitions of work,
kinetic energy (energy due to an object’s motion) and potential
energy {(energy due to an object’s position). This equation
relates the work done by the external forces acting on an object
to the change in magnitude of its velocity. This relationship
can greatly simplify the solution of problems involving forces
that depend on an object’s position, such as gravitational
forces or forces exerted by springs. In addition, studying the
derivation and applications in this chapter will develop your
intuitiont concerning energy and its transformations and give

you insight into applications of these 1deas in other fields.

139
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Work and Kinetic Energy

You have used Newton’s second law to relate the acceleration of an object’s
centre of mass to its mass and the external forces acting on it. We will now
show how this vector equation can be mathematically transformed into a scalar
form that is extremely useful in certain circumstances. We begin with New-
ton’s second law in the form

em ¥
SF=m= @1

and take the dot product of both sides with the velocity:

dv
EF ve=m—-- 4.2
Ml i (4.2)

By expressing the velocity on the left side of this equation as dr/dr and
observing that

i(v.v)-—:d_‘r vty ﬁ-—’) ﬁ .y
dt T dr dt— T ar
we can write Equation (4.2) as
1
TF dr= 5m (1) (4.3)

where v* = v+ v is the square of the magnitude of v. The term on the left is the
work expressed in terms of the total external force acting on the object and the
infinitesimal displacement dr. We integrate this equation,

L] ’U% 1
f IF-dr= [ —m d(v?) (4.4)
n 2

vt

where v and 23 are the magnitudes of the velocity at the positions ¥y and r;.
Evaluating the integral on the right side, we obtain

1 i
U= imvﬁ - imv“]?“ 4.5)

where

v,
Umf EF-dr (4.6)

L¥]




is the work done as the centre of mass of the object moves from position r( to
position ry, The term {mv? is called the Kinetic energy. The dimensions of the
work, and therefore the dimensions of the kinetic energy, are (force) x (length).
In US Customary units, work is expressed in foot-pounds. In SI units, work is
expressed in newton-metres, or joules (J).

Equation (4.5) states that the work done on an object as it moves from a
position r) to a position 1, is equal to the change in its kinetic energy. This is
called the principle of work and energy. If you can evaluate the work, this
principle allows you 1o determine the change in the magnitude of an object’s
velocity as it moves from one position to another, You can also equate the total
waork done by external forces on a system of ohjects to the change in the total
kinetic energy of the system i no net work is done by internal forces. Internal
finetion forces can do net work on a system (See Example 4.3.)

Although the principle of work and energy relates changes in position o
changes in veloeity, you cannot use {t to obtain other information about the
motion, such as the time required v move from one position to another.
Furthermore, since the work is an integral with respect to position, you can
usually evaluate it only when the forces doing work are known as functions of
position. Despite these limitations, this principle is extremely useful for certain
problems because the work can be determined very easily,

4.2 Work and Power
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In this section we discuss how to determine the work done on an object, both
in general and in several common and important special cases. We also
define the power done by the forces acting on an object and show how it is
calculated.

Evaluating the Work

Let’s consider an object in curvilingar motion (Figure 4.1{a)) and specify its
position by the coordinate s measured along its path from a reference point O,
In terms of the tangential unit vector e, the object’s velocity is

v—--g..‘s.‘.
="

Because v == dr/dt, we can multiply the velocity by df to obtain an
expression for the vector 4r describing an infinitesimal displacement along the

path (Figure 4.1(b)):

dr = v dt = dy &

The work done by the external forces acting on the object as a result of the
displacement dr is

EF"drm(EF‘e[)dSMEngS

where Z Fy is the tangential component of the total force. Therefore, as the

(a)

]

Figure 4.1

(a) The coordinate s and tantential unit
vector.
(b) An mfinitesimal displacement dr.
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{c) The work done from 5; and 57 is
determined by the tangential component of
the external forces

(2) The work squals the area defined by the
graph of the tangential force as a function of
distance along the path.

() Negative work is done if the tangential
force is opposile to the dirsction of motion.
(¢) The work done by a constant tangential
force equals the product of the force and the

object moves from a position $; to a position s, (Figure 4.1(c)), the work is
2 I3
U :f S F, ds (4.7)
R}

The work is equal to the integral of the tangential component of the total force
with tespect to distan¢e along the path. Thus the work done is equal o the area
defined by the graph of the tangential force from s, to s, (Figure 4.2(a)).
Components of force perpendicular to the path do no work. Notice that if X F;
15 opposite to the dirgction of motion over some part of the path, which means
the ohject is decelerating, the work is negative (Figure 4.2(b)). If ZF; is
constant between s; and s, the work is simply the product of the total
tangential force and the displacement (Figure 4.2(¢)):

U =EFs —5) Constant tangential force (4.8)

Figure 42 IR

. a
distance. (@)

(b

{«)

In the following examples we apply the principle of work and energy and use
Equations (4.7} and (4.8) to evaluate the work, You should consider using
work and energy whén you want to relate the change in velocity of an abject
to a change in ity position. This typically involves two steps:

(1) Udentify the forces that do work ~By drawing a free-body diagram, you
must determine which external forces do work on the object.

(2) Apply work and energy - Equate the total wark done during a change in
position to the change in the object’s kinetic energy.
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Example 4.1

The 180kg container 4 in Figure 4.3 starts from rest at position s =0 and is
subjected to a horizontal force F = 700 — 455 N by the hydraulic cylinder. The
coefficient of kinetic friction between the container and the floor i5 14 = 0.26, What
is the velocity of the container when it has reached the position = 1.2m?

Figure 4.3

SOLUTION

Identify the Forces That Do Work We draw the free-body disgram of the
container in Figure (a). The forces teengent to its path are the force exerted by the
hydraulic eylinder and the friction force, The container’s acceleration in the vertical j
direction is zero, so N = 1766 N. !

N ﬂ[v

(&) Free-body diagram of the container,

Apply Work and Energy  Let v be the magnitude of the container’s velocity at
5= 1.2m. Using Equation (4,7} to evaluate the work, we obtain

[] P ds = My == sy

1.2

(F = wN)ds = %mv’ -0

f m[(700 —455) — (0.26)(1766)]ds = ! (_1»83)@2
0 ‘ 219381

Evaluating the integral and solving for ., we obtain . == 1.69m/s.

. " i
D P DS £ I RN U ISR N
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The two crates in Figure 4.4 are released from rest. Their masses are my == 40kg
and my = 30kg, and the kinetic coefTicient of friction between crate 4 and the
inclined surface is g = 0.15. What is their velocity when they have moved
400 mm?

Figure 4.4

STRATEGY

We will determine the velocity in two ways,

First method By diawing free-body diagrams of cach of the crates and applying
the principle of work and energy to thém individually, we can obtain two cquations
in terms of the magnitude of the velocity and the tension in the cable.

Second method Wo can draw a single free-body diagram of the two crates, the
cable and the pulfey and apply the principle of work and energy to the entire system,

SOLUTION

First Method  We diaw the free-body diagram of crate 4 in Figure (a). The forces
that do work as the crate moves down the plane are the forces tangential to its path:
the tension 7, the tangential componcnt of the weight s sin 20°, and the friction
force py. N. Because the acceleration of the ¢rate nermal o the surface is zero,

N=nigcos (. Let v be the magnitude of the crate’s velocity when it has moved

(0) Free-body diagram of 4. @




400 mm, Using Equation (4.7) to determing the work, we equate the work done on A
to the change in its kinetic energy:

fhEFds lm'u2 ]mz
i ds = ey~ Cmuy
. t 2 2 2 1

4
1
/0 [T -+ mygsin 20° — g (myg cos 20°))ds = Em,wz -0 4.9
0

The forces that do work on crate & are its weight mug and the tension 7 (Figure (h)).
The magnitude of its velocity is the same as that of crate 4. The work done on 8
equals the change in its kinetic energy:

2 l A
E ﬁﬂc&n%mv%——imu; :

A 1
f (mgg—T) ({S‘mim‘g’uzmo (410)

By summing Equations {4.9) and (4.10), we eliminate 7, obtaining

4 l )
f (mag sin 207 = g mag cos 20° <4 mpg) ds = E(MA + pghe?
0

[40 sin 20° — (0.15)(40) cos 20° -+ 30)(9.81)(0.4) = ; (40 + 30)¢*

Solving for v, the velocity of the boxes is v = 2.07 m/s.

Second Method  We draw the free-body diagram of the system consisting of the
craies, cable and pulley in Figure (¢). Notice that the cable tension does not appear
in this free-body diagram. The reactions at the pin support of the pulley do no work,
because the support does not move, The total work dene hy external forges on the
system as the bexes move 400 i is equal to the change in the total kinetic energy
of the system:

0.4

0.4
f [reg sin 20° — p (mag cos 20°)] ds + f myg ds
0 D

1 1
= (Emwz +§m3v2) —0:

1
[405in.20° — (0.15)(40) c0s 20° + 30](9.81)(0.4) = (40 + 30)0"

This equation is tdentical to that we obtained by applying the principle of work and
energy io the individual crates,

DISCUSSION

You will often find it simpler to apply the principle of work and energy to an entire
system instead of its separate parts. However, as we demonstrate in the next
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(b) Free-body diagram of B,

(C) Free-body diagram of the system.

example, you need to be aware that intermal forces in a system can do net work.

ey B X e Y TJﬁmﬁﬁfﬁﬁbﬁfi{w:M‘ T T

T
T
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Example 4.3

! Crates 4 and B in Figure 4.5 are relensed from, rest. The coefficient of kinetic
friction between 4 and B is t4,, and friction between £ and the inclined surface can
be neglected. What is their velocity when they have moved a distance b7

STRATEGY
By applying the pringiple of work and energy to each crate, we can obtain two
equations in terrs of the tension in the cable and the velociny.

SOLUTION

We draw the free-body diagrams of the crates in Figures (a) and (b). The
acceleration of A4 normal to the nclined surface is zero, so N=mgoos. Lot o
be the magnitude of the velocity when the crates have moved a distance 5. The work
done on 4 equals the change in its kinetic eneriry,

‘|Figure 4.5 .
‘ fA(T—mAgshlﬂ—ukmAgcosﬂ) ds :»Z-arn,m2 (4.11)
L]

and the work done on B equals the change in its kinetic energy,

f(—T+mggsin9ukmAgcosﬂ) dx =%m3v2 (4.12)
0

Summing th¢se equations to eliminate 7' and solving for v, we obtain

gy S
N A

v = /2bg{(mg — ma)sin D — gz 008 O]/ (mtg - mig).
{0) Free-body diagram of 4.
ION
. j’v DISCUSSIO
! Ty If we attampt to solve this example by applying the principle of work and energy to

the system consisting iof the crates, the cable and the puliey (Figure (c)), we obtain
an incorrect result. Equating the work done by external forces 1o the change in the
total kinetic energy of the system, we obtain

” I |
fmgg sind ds — f Mg Sin 6 ds = —mg? + —mgo®
0 0 2 2

. 1 1
(mag sin 6)b — (mag sin Db = Em‘wz +3 mgy”

But if we sum our work and energy equations Tor the individual crates — Equations
(4.11) and (4.12)—we obtain the correct equation:

1 1
[(msg sin )b — (m g sin )] + [~(2pmag cos )b] = 5 m v+ 51113112
Work by Work by
external forces internal forces

The internal friction forces the crates exert on each other do net work on the system.
We did not account for this work in applying the principle of work and energy to the
free-body diagram of the system.

S L T I T I e T e R e T e i SRR i g S T R . . N 4




Work Done by Various Forces

You have seen that if the tangential component of the total external force on an
object is known as a function of distance along the object’s path, you can use
the principle of work and energy to relate a change in position to the change in
the object’s velocity, For certain types of forces, however, not only can you
determing the work without knowing the tangential component of the force as
a function of distance along the path, you don’t even need to know the path.
Two important examples are weight and the force exerted by a spring.

Weight To cvaluate the work done by an object’s weight, we orient a
cartesian coordinate system with the y axis upwards and suppose that the
object moves from position 1 with coordinates (x;, 1, z() to position 2 with
coordinates (xz,vs,2;) (Figure 4.6(a)). The force exerted by its weight if
F = —mg j. (Other forces may act on the object, but we are concerned only
with the work done by its weight) Because v = dr/dt, we can multiply the
velocity, expressed in cartesian coordinates, by #f to obtain an expression for
the vector dr:

dz

dx , dy s .
dr = (c—!fl+dtj+;i?k)dthxl+dyj+de

Taking the dot product of F and dr,
Fedr = (~mgj): (dri-+dyj+dzk) = —mg dy

the work done as the object moves from position 1 to position 2 reduces to an
integral with respect w

¥ V2
Um/ F-dr:[ g dy
31 h

Evaluating the integral, we obtain the work done by the weight of an object as
it moves between two positions:

U = —mg(y, — y1) (4.13)

The work is simply the product of the weight and the change in the object’s
height. The work done is negative if the height increases and positive if it
decreases. Notice that the work done is the same no matter what path the
object follows from position 1 to position 2 (Figure 4.6(b)). You don’t need to
know the path to determine the work done by an object’s weight—you only
need to know the relative heights of the two positions.

What work is done by an object’s weight if we account for its variation with
distance from the centre of the earth? In terms of polar coordinates, we can
write the weight of an object at a distance » from the centre of the earth as
{Figure 4.7)

mgRE
g
i

F=—

r
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(8) An object moving between two positions
(b} the work done by the weight is the
same for any path,

Figure 4.7

Expressing an object’s weight in polar

conrdinates,
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Figure 4.8

Bxpressing the force exerted by a lincar
spring in polar coordinates.

Using the expression for the velocity in polar coordinates, the vector dr = v gt
is

dr db
dr = (H; ¢r+rm&?e9)dtzdre,+rd()e9 (4.14)

The dot product of ¥ and dr is

mgR:

; ]
mgRe e,) Adre, +rdleg) = — Tk g

i

F-drm(w 3

so the work reduces to: an integral with respect to

¥y . ra R2
Um/ F-drmf ~TETE g
8 o Is

3
1 F

Evaluating the integral, we obtain the work done by an object’s weight
accounting for the variation of the weight with height;

11
U = mgRE (— - —) (4.15)

2R

Again, the work is independent of the path from position 1 to position 2. To
evaluate it, you only need to know the object’s radial distance from the centre
of the earth at the two positions.

Springs  Suppose that a linear spring connects an object to a fixed support.
In terms of polar coordinates (Figure 4.8), the force exerted on the abject is

F o= —k(r - rg)e,

where & is the spring constant and ry is the unstretched length of the spring.
Using Equation (4.14), the dot product of F and dr is

Fodr = [—k(r —rg)e.): (dre, +rdfeg) = —k(r — ry) dr

It is convenient to express the work done by a spring in terms of its extension
defined by § =» —ry (Although the word exiension usually means an
increase in length, we use this term more generally to denote the change in
length of the spring. A megative extension is a décrease in length.) n terms of
this variable, ¥« dr = «&S§ 48, and the work is

Ty 52
U:f F-dr:f —kS dS
" M

The work done on an ebject by a spring attached to a fixed support is

U= —%k(sf - 83 (4.16)

where 81 and S are the values of the extension at the initial and final positions.
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You don’t need to know the object’s path to determine the work done by the
spring. You must remember that Equation (4.16) applies to a linear spring. In
Figure 4.9 we determine the work done in stretching a linear spring by
calculating the area defined by the graph of &S as a function of S.

kS Lo 1, 1,2 &2
U= 35,0k = 28,668 = k-5)) Figure 4.9

Work done in stretching a linear spring from $, to
8y, (If 53 > 8§\, the work done or

the spring is positive, so the work done by

the spring is negative,)

Power

Power is the rate at which work is done. The work done by the external forces
acting on an object during an infinitesimal displacement Jr is

ZF-dr

We obtain the power P by dividing this expression by the interval of time dr
during which the displacement takes place:

P=EF-v (4.17)

This iy the power transferred to or from the object, depending on whether P is
positive or negative. In SI units, power is expressed in newton-metres per
second, which is joules per second (J/s} or watts (W), In US Customary units,
power is expressed in foot-pounds per gecond or in the anachronistic horse-
power (hp), which is 746 W or 550 ft-lbs/s.

Notice from Equation {4.3) that the power equals the rate of change of the
kinctic ¢nergy of the object:

Cd

Transferring power to or from an object causes its kinetic energy to increase or
decrease. Using this relation, we can write the average with respeet to time of
the: power during an interval of time from # to £ as

] 5 7
Py = ! der S f L d{z*)
Iz —h Jy f2 =0 Sy 2

This result states that the average power transferred to or from an object during
an interval of time is equal to the change in its kinetic energy, or the work
done, divided by the interval of time:

Pav:

(4.18)
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Example 4.4 r

S A
s B

Figure 4.10

i
%3
gi'
)

The skier in Figure 4.10 is travelling at 15m/s at position 1. When he reaches the
level end of the ramp at position 2, he jumps upwards, achieving a vertical
component of velocity of 3 m/s, (Disregard the change in the vertical position of]
his centre of mass due to his jump.) Neglect aerodynamic drag and the friction
forces on his skis.

(a) What is the magnitude of his velocity as he leaves the ramp at position 27
(b) At the highest point of his jump, position 3, what is his height A above
position 2?7

STRATEGY

(a) Tf we neglect actodynamic and friction forces, the only force doing work from
position | to position 2 is the skier’s weight, so we can apply the principle of work
and encrgy to deterrgine his velocity at position 2 before he jumps,

(b) From the time he leuves the ramp at position 2 until he reaches position 3, the
only force is his weight, 50 4, = 0 and the horizontal component of his velocity is
constant, That means that we know the magnitude of his velocity at position 3,
because he is moving horizontally at that point. Therefore we can apply the principle
of work and cnergy to his motion from position 2 to position 3 to determine 4.

SOLUTION

(a) Using Equation (#.13) to evaluate the work done by his weight from position 1
to position 2, the principle of work and energy is

1 1
—~mglvy — y1) = §mv% — Emv% :

—m(9.81)2 — 20) = -;-my% - :,Iz-m(l 5y

Solving for v,, the magnitude of his velocity at position 2 before he jumps upwards
is 24.04m/s. After he jumps upwards the magnitude of his velocity at position 2 is

vy = +/(24.04 F 3V = 24.23 /s,
(b} The magnitude of his velocity at position 3 is equal to the horizontal component

of his velocity at position 2: vy = 24 04m/s. Applying work and energy to his
mgtion from position 2 to position 3,

1 1
—mg(ys — 1) = 5"”’% - im(%)z :

—m(9.81)k = %m(24.04)2 - %m(24.23)2

we obtain & = (3.45%in.

DISCUSSION

Although we negleciéd aerodynamic effects, a ski jumper is actually subjected to
substantial aerodynamic forces, both parallel to his path (drag) and perpendicular to
it (lift).

R T

T k:m""Ix‘_‘_‘5&i'L,'wc'i'if__‘ﬂg’s'E'f;:"A.:i_d"", L I e T RN NGRS
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Example 4.5

In the forgoing device shown in Figure 4,11, the 40 kg hammer is lifted to position 1
and released from rest. It falls and strikes a workpiece when it ig in position 2, The
spring constant &= 1500N/m, and the tension in each spring is 150N when the
harmmet is in position 2, Neglect friction.

(a) What is the velocity of the hammer just before it strikes the workpicee?

(b) Assuming that all of the hammer’ kinetic energy is transferred to the work-
piece, what average power is transferred if the duration of the impuct is 0.02 57

STRATEGY

Work is done on the hammer by its weight and by the two springs. We can apply the
principle of work and energy to the motion of the hammer from position | to
position 2 to determine ils velocity at position 2.

SOLUTION

{a) Lot ro be the unstretched length of one of the springs, [ position 2, the tension
in the spring is 150N and its length is 0.3 m. From the relation between the tension
in 4 linear spring and its extension,

150 == k(0.3 = rg) = (1500)(0.3 — ro)

we obtain ro = 0.2 m. The values of the extension of each spring in positions 1 and 2
arc Sy = \/(0.4)2 + (0.3 =02 =03mand §; = 0.3 — 0.2 = 0.1 m. From Equa-
tion (4.16), the total work done om the manner by the two springs from position 1 to
position 2 is

Usprings = 2[—%!«%" - S?)] = —~(1500)[(0.1)" — (0.3f'] = 120N.m

The work done by the weight from position 1 to position 2 i§ positive and equal to
the product of the weight and the change in height:

Ui = mg(0.4m) = (40)(2.81)(0.4) = 156.96 N.m
From the principle of work and energy,

1
2 2,
Uspringg -+ Ungm w sy e Ty

2 2

1
120 4+ 156.96 = E(40)1;5 -0

we abtain « =372 mJs,

(b} All of the hammer’s kinetic energy is transferred to the workpicee, so Equation
{(4.18) indicates that the average power equals the kinetic cnergy of the hammer
divided by the duration of the impact;

p - (1/DA0kg)(3.72m/5)"

= 13.8kW (kilowatts)

Figure 4.11
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Problem%

4.1 The fictional starship Enterprise obtains its power by com-
bining matrer and antimatter, achieving complete conversion of
mass into energy, The amount of ¢nergy contained in an amownt of
matter of mags m is given by Einstein's equation £ = mc?, where ¢
is the speed of light (3 x 10® m/s).

(a) The mass of the Enterprise is approximately 5 x 10” kg. How
much mass muost be converted into kingtic cnergy to accelerate it
from rest to one-tenth the speed of light?

{b) How much mass must be converted into kinetic energy to
accelerate a 0000 kg airliner from rest to 965 kivhr?

P4.1

4.2 The meteor crater near Winslow, Arizona, is 1200m in
diameter. An cxplogion of energy £ near ground level causes a
crater whose diameter is roughly proportional to E'/*. Tests
indicate that an explogion of 1 tonne of TNT, with an energy of
4.6 x 10°N.m, causes a crater approximately |3m in diameter.
(a) How many tonnes of TNT would be equivalent to the energy
due to the impact of the meteor?

(b) If the mctcor was moving at 7600m/s when it struck the
ground and you assume as a first approximation that all of its
kinetic energy went into creating the crater, what was the meteor’s
tasa?

P4.2

4.3 The force exerted on a charged particle by a magnetic field is
F=gvxB

whete ¢ and v are the charge and velocity vector of the particle and
B is. the magnetic field vector, If other forces on the particle are
negligible, use the ptinciple of work and energy to show that the
magnitade of the particle’ velocity is constant.

4.4 A | tonne drag racer can accelerate from rest to 480 karv/hr in
4000,

(2) How much work ig done on the car?

(b) If you assume as a first approximation that the tangential force
exerted on the car is constant, what is the magnitude of the force?

P4.4

4.5  Assume that all of the weight of the drag racer in Problem 4.4
acls pn ils rear {drive) wheels and that the coefficients of friction
between the wheels and the road are g = gy =0.9. Use the
principle of work and energy to determine the maximum velocity
in kilometres per hour the car can thcorctically reach in 400 m.
What do yvou think might account for the discrepancy between your
answer and the car’s actual velocity of 480 ken/hr?

4.6  Assuming as a first approximation that the tangential force
exerted on the drag raccr in Problem 4.4 is constany, what is the
maxijuumn power tranaferred to the car as it accclerates from rest to
480 km/r?

4.7 A 10Mg (megagram) aeroplane must reach a velooity of
60mys to take off. If the horizontal force exerted by its engine is
601N and you neglect other horizontal forces, what length runway
is needed?




4.8 Suppose you want to design an auxitiary rockct unit that will
allow the aeroplane in Problem 4,7 to reach its takeoff speed using
only 100m of runway. For your prcliminary design calculation,
you can assume that the combined mass of the rockel and acro-
plane is constant and cqual to 10.5 Mg. What horizontal compo-~
nent of thrust must the rocket unit provide?

P4.8

4.9 The force exerted on a car by a prototype crash barrier 4s the
barrier crushes is F = —~(3000 + 150000s) N, where s is the
distance in metres from the initial contact. Suppose you want to
design the barrier so that it can stop a 2200kg car travelling al
130 km/hr. What is the necessary effective length of the barmer?
That is, what is the distance required for the barrier to bring the car
to a stop?

P4.9
4,10 The component of the total external force tangent to a 1kg
object’s path is £ F,=(60s — 505°)N, where s is its position
measured along the path in metres. At s=0, the object’s velocity
is v=3m/s,
(a) How much work is done on the object as it moves from s = 0 to
y=1.2m?
(b) What is its velocity when it reaches 5 ==1.2m?

4.11 The component of the total external force tangent to a 10kg
objeet’s path is £ F, = (100-20) N, where ¢ is in seconds. When
t==0, its velocity is ¢ —4m/s. How much work is donc on the
ohject from t=2 to =4 57

4,12 The compunent of the total external force tangent to the
path of an object of mass m is LF = —co, whore v is the
magnitude of the object’s velocity and ¢ is a constant. When the
position s=0, its veloeity 18 v == vy. How much work is done on
the object as it moves from s =0 to a position s =57
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4.13  The 200mm diameter tube is evacuated on the right of the
8 kg piston, On the left of the piston the tube contains gas with
pressure po=1 % 10° Pa (N/m?). The force F is slowly increased,
moving the piston 0.5m to the left from the position shown. The
forge is then removed and the piston aceelerates to the right. If you
neglect friction and assume that the pressure of the gas is related to
its volume by pV= constant, what is the velocity of the piston
when it has returned (o its original position?

is
. Pizton

A e T e

P4.13

4.14 In Problem 4.13, if you assume that the pressure of the gas
is related to its volume by p¥ = constant whilt it is compressed (an
isothermal process) and by pl'* = constant while it iy expanding
(an isentropic process), what is the velocity of the piston when it
has returned 1o its origingl position?

4.15 The systern is released from rest. By applying the principle
of work and energy to each weight, determine the magnitude of the
velocity of the weights when they have moved 1m.,

P4.15

4.16 In Problem 4.15, what is the tension i the cable during the
motion of the system?

4.17  Solve Problem 4,15 by applying the principle of work and
energy to the syslem consisting of the two weights, the cable and
the pulley,
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4.18 Suppose that you want to design a *bumper’ that will bring
a 25 kg package moving at 3m/s to rest 150 mm from the point of
contact, If friction is neglible, what is the necessary spring constant
k?

P4.18

4.19 In Problem 4.18, what spring constant is necessary 1t the
coefficient of kinetic friction between the package and the floor is
e =0.3 and the package contacts the spring moving at 3 m/g?

420 The system is rteleased from rest with the spring
unstretched. If the spring constant is k== 440 N/m, what maximum
velocity de the weights attain?

P4.20

4.21 Suppose you don’t know the spring consiant & of the system
in Problerm 4.20. If you release the system from rest with the spring
unstretched and you observe that the 200N weight falls 0.6m
before rebounding, what s k7

4,22 In Example 4.5, suppose that the unstretched length of each
spring is 200 mm and you want to design the device so that the
hammer strikes the workpicce at 5 m/s. Determine the necessary
spring constant .

4.23 The 20kg crate is released from rest with the spring
unstretched. ‘The spring constant k== 100 N/m. Neglect friction.
(@) How far down the inclined surface does the crate slide before it
stops?

{(b) What maximum velocity does it attain on the way down?

P4.23

4.24 Solve Problem 4.23 if the coefficient of kinetic friction
between the crate and the surface is pg = 0.12.

4.25 :Solve Problem 4.23 if the coefficient of kinetic friction
between the crate and the surface is gy == 0.16 and the tension in the
spring 'when the crate is released is 20 N.

4.26 The 30kg box starts from rest at position 1. Neglect
friction. For cases (a) and (b), determine the work done on the
hax from position 1 to position 2 and the magnitude of the velocity
of the box at position 2,

P4.26

4.27 Solve Problem 4.26 if the coefficient of kinetic friction
between the box and the inclined surface is py = 0.2,




4.28 The masses of the three blocks are m, =40kg, mz=16kg,
and m¢ =12 kg, Neglect the mass of the bar holding C in place.
Friction is negligible. By applying the principle of work and energy
to 4 and A individually, determine the magnitude of their velocity
when they have moved 500mm.

Pa.28

4.29 Solve Problem 4.28 by applying the principle of work and
energy to the system consisting of 4, B, the cable connecting them,
and the pulley,

4.30 In Problem 4.28, determine the magnitude of the velocity of
A and B when they have moved 300 mm if the coefficient of Kinetic
friction between all surfaces is ;. =0.1.

Strategy:  The simplest approach is to apply the principle of
work and energy to A and £ individually. if you treat them as a
single system, you must accounl for the work dong by internal
friction forces, Scc Example 4.3,

4.31 The 2 kg collar starts from rest at position 1 and slides down
the smooth rigid wire. The y axis points upwards. What ig the
collar’s velocity when it reaches position 27

Lo (53 2m

2k

X
2 4) m

P4.31
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432  The voefficients of friction between the 160 kg crate and the
ramp are =03 and . =028,

{a) What tension 7} must the winch éxert to start the crate moving
up the ramp?

(by If the tension remains at the value Ty after the crate starts
sliding, what total work is done on the crate as it slides a
distance s=3m up the ramp, and what is the resulting velocity
of the crata?

P4.32

4.33 if the winch exerts a  tension

In  Problem
T == Tp(1 4 0.15) after the crate starts sliding, what total work is
done on the crate as it shides a distance £ = 3 m up the ramp, and
what 1% the resulting velocity of the crate?

4.32,

4.34  The mass of the rocket is 250 kg, and it hag a constant thrust
of 6000N. The total length of thé launching ramp is 10m,
Neglecting friction, drag, and the change in mass of the rocket,
determine the magnitude of its velocity when it reaches the end of
the ramp.
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4.35 The 1100 kg car is travelling at 64 km/hr at position 1. If the
combined effect of the aerodynamic drag on the car and the
tangential force exerted on the road by its wheels is that they
exert no net tangential force on the car, what is its velocity at
position 27

P4.35

4.36 In Problem 4.35, if the combined eflect of the aerodynamic
drag on the car and the tangentizl force cxerted on the road by
its wheels is that they exert a constant 1800 N tangential force on
the car in the direction of its motion, what is its velocity at
position 27

4.37 The ball of mass m is released from. rest in position 1.
Determine the work done on the ball as it swings to position 2
(a) by ils weight; (b) by the force exerted on it by the string.
(c) What is the magnitude of its velocity at position 27

P4.37

4.38 In Problem 4.37, what is the tension in the sting in
position 27

4.39 The 200 kg wrecker’s ball hangs from a é m cable. If it is
stationdry at position 1, what is the magnitude of its velocity just
before it hits the wall at position 27

P4.39

A4.40 In Problem 4.39, what is the maximum tension in the cable
during the motion of the ball from position 1 to position 2?

4,41 A stunt driver wants to drive a car through a cireular loop of
radius R and hires you as a consultant to tell him the necessary
velocity vp at which the car must enter the loop so that it can coast
through without losing contact with the track.

(a) What is » if you neglect friction and aerodynamic drag for
your first rough estimate?

(b) What is the resulting velocity of the car at the top of the
loap?




4.42 Suppose that you throw rocks from the top of a 200m cliff
with a velocity of 10m/s in the three directions shown, Neglecting
aerodynamic drag, use the principle of work and energy to
deterrnine the magnitude of the velocity of the rock just before it
hits the gound in each case.

200 m

PA.42

4.43 A small pellet of mass a starts from rest at position 1 and
slides down the smooth surface of the eylinder,

{(3) What work is done on the pellet as it glides from position 1 to
position 2?7

(b) What is the magnitude of the pellet’s velocity at position 27

P4.43

4.44 In Problem 4.43, what is the value of the angle « at which
the pellet leaves the surface of the cylinder?

448 TIn Problem 4.43, at what distance from the centre of the
eylinder does the pellet strike the floor?
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446 The 10kg collar starts from rest at position 1 with the
spring unstretched. The spring constant is, &= 600 N/m. Negleot
friction. How far does the collar fall relative to position 1?

P4.46

4,47 In Problem 4.46, what maximum veloeity does the collar

attain?

448 What is the solution of Problem 4.46 if the tension in the
spring in position 1 is 13 N?

4.49 The 4kg collar is released from rest at position 1. Neglect
friction. If the spring constant is &= 6kIN/m and the spring is
unstretched in position 2, what is the velocity of the collar when it
has fallen to position 27

mm

i e o S

AN

L 200 mm —J

P4.49
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{{ 4.80 |In Problom 4.49, if the spring constant is k=4 kN/m and
. the fefision in the spring in pogition 2 is SO0N, what is the velocity
of the collar when it has fallen to position 27

451 In Problem 4.49, supposc that you don’t know the spring
constant k. If the spring is unstretched in position 2 and the velocity
of the collar when it has fallen to position 2 is 4 m/s, what is &7

4.52 The 10kg collar starts from rest at position 1 and slides
along the smooth bar. The y axis points upwards. The spring
constant is &= 100 N/m and the unstretched length of the spring is
2m. What is the velocity of the collar when it reaches position 27

: 21@4, 4, 21m

1i (1,1, 00m

P4.52

4.53 Suppose an object hag a siring or cable with constant
ension T attached as shown, The force exerted on the object can
be expressed in terms of polar coordinates ag F== — Te,.. Show
that thc work done on the object as it moves along an arbirrary
plane path from a radial position »| to a radial position ry is
U= —=T{r;—r).

P4.53

4.54 The 2kg collar is imitially at rest at position 1. A constant
100N force is applied to the string, causing the collar to slide up
the smoath vertical bar. What is the velocity of the collar when it
reaches position 27

500 mm '.

(100 N

P4.54

4.55 The 10kg collar starts from rest at position 1. The tension
in the string is 200N, and the v axis points upwards. If friction is
negligible, what is the magnitude of the collar’s velocity when it
reacheg position 27

~ (B, 2, 1} m
200N

P4.55




4.56 A spring-powered mortar is used to launch 5kg packages
of fireworks into the air. The package starts from rest with the
spring compressed to a length of 150 mum; the unstretched length of
the spring is 750 mm. If the spring constant is & = 19kN/m what is
the magnitude of the velocity of the package as it legaves the
mortar?

P4.56

4.57 Suppose you want to design the mortar in Problem 4.56 to
throw the package to a height of 45 m above its initial position,
Meglecting friction and drag, determine the necessary spring
constant.

4.58 The system is released from rest in the position shown. The
weights are #,= 180N and Wp==1350 N, Neglect friction. What
is the magnitude of the velocity of A when it has risen 1.2m?

1.&m I

P4.58
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4,59 In Problem 4.58, suppose that the dystem is released from
rest with the weight A level with the pultey; What is the magnitude
of the velocity of A when it hay fallen 0.3 m?

460 A spacecraft 320km above the surface of the earth has
cscape velooity pge = ,/Z!g;.R’EE /v, where 7 is its distance from
the centre of the earth and Rp=6370km is the radius of the
earth, What is the magnitude of the spacecraft’s velocity when
it reaches the moon’s orbit 383 000km from the centre of the
earth?

320 km

et e it g,
R R
o™ i e

o I

P4.60

4.867 A piece of gjecta thrown up by the impact of a meteor on
the moon has a veloeity of 200 m/s inagnitude relative to the centre
of the moon when it is 1000 km above the moon’s surface. What is
the magnitude of its velocity just beforg it strikes the moon
surface? (The acceleration due to gravity a1 the moon’s surface is
1.62m/s* and the moon’s radius is 1738 km.)

{ '%f&

1000 km

P4.61

4.62 A satellite in 3 circular orbit of radiys » atound the earth has
velacity v = +/gRe/r, where Rg=6370km is the radius of the
carth. Suppose vou are designing a rocket to transfer a 900 kg
communication satellite from a parking orbil with 6700 km radiug
to a geosynchronous orbit with 42 222 km tadius. How much work.
must the rocket do on the satellite?

4.63 A 900kg drag racer can accelerate from zero to 480 km/hr
in 6 5. What average power is transferred to the car?

4.64  TnProblem 4.9, what power is transferred from the car when
it first contacts the barrier?

4.65 In Problem 4.32, what maximum power must the winch
provide while pulling the crate up the ramp?

4.66 In Problem 4.39, if the wrecker's ball is brought to rest in
0.1s as a result of hitting the wall, what average power does it
transmit to the wall?
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4.67 A Boeing 737 weighing 554 kN can acceleratc to a takeoff  4.68 The Winter Park ski area in Colorado has a vertical drop of
speed of 55m/s in 305, 704m, Four skiers get on a chair lift to the top every 8 s, the chair
(a) What average power is transferred to the plane? moves at | 2m/s and the ride o the top takes |8 min, If the average
(b) Tf you assume the (angential force exerted on the plane is  skier with equipment weighs 700N, approximately how much
constant, what is the maximum power transferred to the plane power is necessary to operate the chair lift?

during its takeoff run?

7 T AT (VL L ETLEE
g JHULE 2Bl s

P4.67

R

Potential Energy

4.3 Conservation of Energy

The work done on an object by some forces can be expressed as the change of
a function of the object’s position, called the potential energy. When all the
forces that do work on a system have this property, we can state the principle
of wotk and energy as a conservation law: the sum of the kinetic and potential
energies is constant,

When we derived the principle of work and encrgy by integrating Newton’s
second law, we were able to evaluate the integral on one side of the equation,
obtaining the change in the kinetic energy:

ra 1 1
umf EF-drzEmvngmvi’ (4.19)
Lot

Suppose we could determine a scalar function of position ¥ such that
dV = ~Lf dr (4.20)

Then we could also evaluate the integral defining the work:

'y Vz
U=f SF-dr= | —dV =¥ -~ 1 (4.21)
r

g




where ¥ and V7 are the values of Vat the positions ry and ry. The principle of
work and energy would then have the simple form

é—mv% +V = %mv% + ¥, (4.22)

which means that the sum of the kinetic energy and the function ¥is constant:

1
-2~m1;2 + V' = constant {4.23)

If the kinetic energy increases, V must decrease, and vice versa, as if V
represents a reservoir of ‘potential® kinetic energy. For this reason, ¥ is called
the potential energy.

If a potential energy exists for a given force F, which means that a function
of position ¥ exists such that dF = —F - dr, then F is said to be conservative.
If all the forces that do work on a system are conservative, the total energy —
the sum of the kinetic energy and the potential energies of the forces—is
constant, or conserved. In that case, the system is said to be conservative, and
you can yse conservation of energy instead of the pringiple of work and energy
to relate a change in its position to the change in its kinetic energy. The two
approaches are equivalent, and you obtain the same quantitative information.
But you gain greater insight by using conservation of energy, because you can
interpret the motion of the object or system in terms of transformations
between potential and kinetic energies.

4.4 Conservative Forces
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You can apply conservation of energy only if the forces doing work on an
object or system arg conservative and you know (or can determineg) their
potential energies. In this section, we determine the potential energies of some
conservative forces and use the results to demonstrate applications of con-
servation of energy. But before discussing forees that are conservative, we
demonstrate with a simple example that friction forces are not.

The work done by a conservative foree as an object moves from a position 1
to a position 2 is independent of the object’s path. This result follows from
Equation (4.21), which states that the work depends only on the values of the
potential energy at positions 1 and 2. Tt also implies that if the object moves
along a closed path, returning to position |, the work done by a conservative
force is zero. Suppose that a book of mass m rests on a table and you push 1t
horizontally so that it slides along a path of length L. The magnitude of the
friction force i pymg, and it points opposite to the direction of the book's
motion (Figure 4.12). The work done is

of,
U= f — g ds = —hmgl,
0

The work is proportional to the length of the path and therefore is not
independent of the object’s path. Friction forces are not conservative.

Figure 4.12

The book’s path fiom pogition 1 to
position 2. The friction force points opposite
1o the direction of the modon.
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Pofential Energies of Various Forces

The weight of an objéct and the force exerted by a spring attached to a fixed
support are conservative forces, Using therm as examples, we demonstrate how
you can determine the potential energies of other conservative forces. We also
use the potential energies of these forces in examples of the use of conserva-
tion of energy to analyse the motions of conservative systems.

Weight To determine the potential energy associated with an object’s

weight, we use a cartésian coordinate system with its y axis upwards (Figure

4.13). The weight is F=—mg}], and its dot product with the vector dr is
Fodr = (~mgj) (dvi+dvj+ dzk) = ~mg dy

Figure 4.13 &

Weight of an object expressed in terms of a

coordinate systemn with the y axis upwards,

From Equation (4.20), the potential energy ¥ must satisfy the relation
dV = —F-dr = mg dy (4.24)

which we can write s

Integrating this equation, we obtain
Ve mgy + C

where C is an integration constant. The constant (' is arbitrary, because this
expression satisfies Equation (4.24) for any value of . Another way of
undetstanding why C is arbitrary is to notice in Equation (4,22) that it is the
difference in the potential energy between two positions that determines the
change in the kinetic energy. We will let €' =0 and write the potential energy
of the weight of an object as

V =mgy (4.25)

The potential encrgy is the product of the object’s weight and height, The
height can be measured from any convenient reference level, or datum. Since
the difference in potential energy detérmines the change in the kinetic energy,
it is the difference in hgight thal matters, not the level from which the height is
measured.
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Damm Figure 4,14
Q) {2} Roller coaster and a reference level, or

>&‘ datum
b (b) The sum of the potential and kinetic
: engrgies is constant.

(u)

Kinetic energy

Tolal encrgy = 0

Potential energy

(0

The roller coaster (Figure 4.14(a)) is a classic example of conservation of
energy. If asrodynamic and friction forces are neglected, the weight is the only
force doing work and the syster is conservative, The potential energy of the
roller coaster is proportional to the height of the track relative 1o a datutn, In
Figure 4.14(b), we assume the roller coaster started from rest at the datum
level. The sum of the kinetic and potential energies is constant, so the kinetic
energy ‘mirrors” the potential energy. At points of the track that have equal
heights, the magnitudes of the velocities are equal.

To account for the variation of the weight with distance from the centre of
the earth, we can express the weight in polar coordinates as

ng%

F o= 2

€

where 7 15 the distance from the centre of the earth (Figure 4.15). From
Equation (4.14), the vector dr in terms of polar coordinates is Figure 4.15

(4.26) Expressing the weight in terms of polar

dr =dre. +rdiey coordinates,
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Figure 4.16
Expressing the force exerted by a linear
spring in polar coordinates,

The potential energy must satisfy
ngf;
dV = —~Frdt = —=% dr
)

or

av _ mgR%

dr— 2

We integrate this equation and let the constant of integration be zero, obtaining
the potential ehergy

_mgRy
F

Vo= (4.2

Springs In terms of polar coordinates, the force exerted on an object by a
linear spring is

F=~k(r - rp)e,

where ry is the unstretched length of the spring (Figure 4.16). Using Equation
(4.26), the potenfial encrgy must satisfy

dV = —F~dr = f(r — ry) dr

Expressed in terms of the extension of the spring § = r — ry, this equation is
dV = kS dS, or

dV
)
ds

Integrating this equation, we obtain the potential energy of a linear spring:

i

V= Eksz (4.28)

In the following examples we use conservation of energy to relate changes in
the positions of consetvative systems to changes in their kinetic energies.
This typically involves two steps:

(1) Determine the potential energy — You must identify the conservative forces
that do work and evaluate their potential energies in terms of the position
of the system,

(2} Apply conservation of energy—By equating the sum of the kinetic and
potential energies of the system at two positions, you can oblain qn
expression for the change in the kinetic energy,
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Example 4.6 | - j
In Example 4.5, the 40 kg hammer is lifted into position 1 and releascd from rest. Its N
weight and the two springs (k== 1500N/m} accelerate the hammer downwards to i
position 2, where it strikes a workpiece, 1lse conservation of energy to determine the
hammer’s velocity when it reaches position 2.
] | e .. Hamnmer ‘

STRATEGY | R
Work is done on the hammer by its weight and the two springs, so the system is | & : 2 g 400 ;
conservative. By equating the sums of the potential and kinetic energies at positions ; I mm
I and 2, we can obtain an equation for the velocity of the hammer at position 2. - 270 e i 5

3 »ﬁ\tﬁ i“fg.if}g\ ; Datum b

i )"‘ \.{\,f‘u A
SOLUTION
Determine the Potential Energy The potential energy of each spring is { k87, —
where S is the extension, so the total potential energy of the two springs is 300 mm |« ;

[ 2(% kgﬁ) Figure 4.17 5
() Measuring the height of the hammer

In Example 4.5 the extensions in positions 1 and 2 were determined to be relative to position 2.

Sp=03m, §==0.1m. The potential energy associated with the weight is
Fusight = mgy
where v is the height relative to a conveniont datum (Figure (a)).

Apply Conservation of Energy  The sums of the potential and kinetic energies
at positions 1 and 2 must be equal:

i 1 1 I
Z(Ekbf) -+ ey +§mv"," - 2(5%*5) + mgvn +§mv% :

(15005(0.3Y + (40)(9.81)(0.4) + 0 = (1500)(0.1)* + 0 + -;-(4)1;5

350
/-Tolal energy
Solving this equation, we obtain .z = 3.72 m/s. 300 & : :
250 - _ - Towal potential
DISCUSSION T N
From the graphs of the total potential energy associated with the springs and the 2'3 150 F 0
weight and the kinetic energy of the hammer as functions of y (Figure 4.18), you can & 100 i
. n 1 . . (¥ ¥ i
see the transformation of the potential encrgy into kinetic energy as the hammer 5 K inetic cncris i
falls. Notice that the total energy of the conservative system remains consiant, 50 Retic eherey i
0 1, 1 1) 1 J, 1 ) 1 ji )
400 300 2a0 100 n
¥, mm
Figure 4.18

The potential and kinetic energies as
functions of the y coordinate of the hammer,

i ol e s S 30 R o EAE28 NS AARTRR: S N

e Ry A VO TP o g " i ®
PR S A e b W i RN S NI ¥ e, PRI
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Example 4.7

Figure 4.19

T

A spacecraft at a distands rg = 2Rg from the centre of the earth is moving outwards
with initial velocity v = 2ZgRE/3 (Figure 4.19), Determine its velocity as a
function of ity distance from the centre of the earth.

SOLUTION

Determine the Potential Energy The potential energy associated with the
spacecraft’s weight is given in terms of its distance r from the centre of the earth by
Equation (4.27):

mek
Vo= ENE
r

Apply Conservation of Energy  Let v be the magnitude of the spacecraft’s
velocity at an arbitrary distance r. The sums of the potential and kinetic energies at
ry and at » musl be equal:

mgR: 1 mgRe 1,
e rﬂr-l-mémvgm— rE+§mv°,
mghE 1 (2 mgRE 1,
[PG AL W o g7 I PR, AN~ T W
Ry T3\ 38 y rgm

Solving for v, the spacecrall’s velocity as a function of r is
8 1
v ek (T B 5)

DISCUSSION

We show graphs of the Kinetic energy, potential energy and total energy as functions
of r/Re in Figure 4.20. The kinetic energy decreases and the potential energy
increases as the spacecraft moves outwards until its velocity decreases to zero at
ro= ORg.

Figure 4.20

Energies as functions of the radial
coordinate,

o Knetic enerygy

e

__Tolal cnergy

7 Potential energy




Relationships Belween Force
and Polenfial Energy

Here we consider two questions: (1) Given a potential energy, how can you
determine the corresponding force? (2) Given a force, how can you determine
whether it is conservative? That is, how can you tell whether an associated
potential energy exists?

The potential energy J” of a force F is a function of position that satisfies the
relation

dV = ~F-dr (4.29)
If we express ¥ in terms of a cartesian coordinate systemn,

V=Vyz
its differential dV is

ay v av
AV = — dy 4 — e .
Herrc-k , dy+ﬂz dz {4.30)

Expressing F and dr in terms of their cartesian components, their dot product
s

Frdr = (Fi+F,j+ F,K)-(dri+ dyj + dzk)

xF,[dx“%Fydy-}-dez

Substituting this expression and Equation (4.30) into Equation (4.29), we
obtain

av

av ar
= dlx W dy -+ r dz = —(Fedx + Fydy + F.dz)

ox
which implics that

v aV al
Fx=—'7— F _wa Fzﬂ—% (431)

Given a potential energy V expressed in cartesian coordinates, you can use
these relations to determine the corresponding force. The force F is

Fm 1 + ......... JI

(¥
ax y 07

k) = -~V (4.32)

where VV is the gradient of J/ By using expressions for the gradient in terms
of othet coordinate systems, you can determine the force F when you know the
petential energy in terms of those coordinate systems, For example, in terms of
cylindrical coordinates,

W 1av v _
S AP adl 4.33
(Bre+r 3 5 e’) (4.33)

4.4 CONSERVATIVE FORCES
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If a force F is conservative, its curl V x F is zero. The expression for the
cutl of F in cartesian coordinates is

b
a a4 8
VxF=|— =~ =— ,
xF m oAy w {4.34)
F, F, F,

Substituting Equations (4.31) into this expression confirms that ¥ x F == 0
when F is conservative. The converse is also true: a force F is conservative if
its curl is zero. You can use this condition to determine whether a given force
is conservative. In terms of cylindrical coordinates, the curl of K is

{2

€ Fep e
118 a 8 )
VxF=-]-~ o = ,
% Fior 06 & (4.35)
b, VFG Fz
» Example 4.8 o

From Equation (4.27), the potential energy associated with the weight of an object
of mass m at a distance » from the centre of the earth is (in polar coardinates)

mgRy,
¥

V =

where Ry is the rading of the earth. Use this expression to determine the force
exerted on the object by its weight.

STRATEGY

The force F = —V¥, The potential energy is expressed in terms of polar coordi-
nates, so we ¢an use Equation (4.33) to detenmnine the force.

SOLUTION

The partial derivatives of ¥ wilh respect to #, ¢ and z are

v _meR: W _ . e,
e e A bz

From Equation (4.33), the force is

r

2
FﬁwVVﬁwmng
2
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DISCUSSION |

We already know that the force is conservative, because we know its potential
energy, but we can use Equation (4.35) to confirm that its curl is zero:

[-8 Fep @

1 i .,3_ g
Vsz; ar B 2| =0
R2

,%2& 0 0

¥

Although we used cylindrical coordinates in determining F and in evaluating the
cross product, the expression for ¥ and our resulting expression for F are valid only

if the object remains in the plane z==0.

B T 4 0 B Rk ATy o

R M

Problemé

4.69 Suppose that you kick a soccer ball straight up. When it
leaves your foot, it is 1 m above the ground and moving at 12 m/s.
Neglecting drag, use conservation of energy to determine how high
above the ground the ball goes and how fast it will be going just
before it hits the ground. Obtain the answers by expressing the
potential energy in terms of a datum (a) at the level of the hall
initial position; (b) at ground level,

ll2 m/s IIE s
@ T Datum @
i

1

[m

b —— Datum

(a) by
P4 .69

4.70 The Lunar Module could make & safe landing if its vertical
velocity at impact was 5 m/8 or less. Suppose that you want to
detepming the greatest height i at which the pilot could shut off the
enging if the velocity of the lander relative to the surtace was (4)
zero; (b) 2 m/s downwards; (c) 2 m/s upwards. Usc conservation of
enerpy to determine b in cach case. The acceleration due to gravity
at the surface of the moon is 1.62 m/s*,
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471 The ball is released from rest in position 1,

{a) Use conservation of energy to determine the magnitude of its
velocity at position 2.

(b) Draw graphs of the kinetie energy, the potential energy and the
total energy for values of o from zero to 180°.

P4.71

4.72 T1faball is released from rest in position 1, use conservation
of energy to determine the initial angle & necessary for it to swing
to position 2.

P4.72

4.73 The bar is smooth. Use conservation of energy to determine
the miinimum velocity the 10kg slider must have at 4 (a) to Teach
C; (b) to reach D,

P4.73

4.74 In Problem 4.73, what normal force does the bar cxert on
the slider at B in cases (a) and (b)?

4.78 The 10kg collar starts from rest at position 1 and slides
along the bar. The y axis points upwards, The spring constant is
k= [00N/m, and the unstretched length of the spring is 2m. Use
conservation of energy to determine the collar’s velocity when it
reaches position 2.

1

P4.75

4.76 A rck climher of weight W has a rope attached a distance h
below him for protection. Suppose that he falls, and assume that
the rope behaves like a lingar spring with unstretched length £ and
spring constant k== C/h, where C1is a constant. Use conservation of
energy to determine the maximum force exerted on him by the
rope, (Notice that the maximurm force is independent of &, which is
a reassuring result for climbers — the maximum force resulting from
a lovg fall is the same as that resulting from a very short one.)

PA.7TH




4.77 The 5kg collar starts from rest at .4 and slides along the
semicircular bar. The spring constant is k== 3200N/m and the
unstretched length of the spring is 1 m. Use conservation of energy
to determine the velocity of the collar at B.

160 mm H

P4.77

4.78 The force exerted on an objcct by a nonlinear spring is
F = —[k(r - o) +q(r = r0)'Je,

where & and g are constants and rp iy the unstretched length.
Determine the potential energy of the spring in terms of its
exiension § = r — ry,

P4.78
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4.79 The 20kg cylinder is released at the position shown and
falls onto the linear spring (k==3000N/m). Use conservation of
energy to determine how far down thé cylinder moves after
contacting the spring.

P4.79

4.80 Suppose that the spring in Problem 4.79 is a nonlinear
spring with potential energy ¥ =148 +148% where k=
3000 N/m and ¢ == 4000 N/m?®, What is the velogity of the cylinder
when the spring has been compressed 0.5 m?

4.81 The string exerts a force of constant magnitude 7 on the
objeet. Determine the potential énergy associated with this force in
terms of polar coordinates,

T P4.81
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4.82 The system is at rest in the position shown, with the Sky
collar 4 resting on the spring (k=300N/m), when a constant
150N force 15 applied (o the cable. What is the velocity of the
collar when 1t has nsen 0.3 m?

}v 0.6 m

P4.82

4.83  The tube (cross-sectional area A) is evacuated on the night
of the piston of mass m and on the left it contains gas at pressure p.
Let the value of the pressure when s == 5o be pg, and assume that
the pressure of the gas is related to its volume ¥ by pl/ == constant.
(a) Determine the potential energy associated with the force
exerted on the piston in terms of s.

(b} If the piston starts from rost at s = sy and friction is neglgible,
what is its velocity as a function of s7

ey - P4.83

4.84 Solve Problem 4.83, assuming thal the pressure of the gas is
related to its volume by pV! = constant, where 7 18 a constant,

4.85 A satellite at a distance »y from the centre of the carth has a
velocity of magnitude vy, Use conservation of cnergy 1o determine
the magnitude of its velocity « when it is a distance » from the
centre of the earth.

P4.85

4.86 Astronomers detect an asteroid 100000 km from the earth
moving at 2km/s relative to the centre of the earth. If it should
strike the earth, use conservation of energy to determing the
magnitude of its velocity as it enters the almosphere (You can
neglect the thickness of the atmospherc in comparison to the earth’s
6370 km radius.)

4.87 A satellite is in an elliptic orbit around the earth, Tts velocity
at the perigee A is 8620mys. Use conservation of energy 10
determine its velocity at B. The radius of the earth is 6370 km.

11340 km

b | T b it QLS K e 8043 km»’

P4.87

4.88 For the satellite orbit in Problem 4.87, use conservation of
energly to determine the veloeity at the apogee C. Using your result,
confirm numerically that the velocities ar perigee and apogee
satisfy the relation ryry = revg,




4.89 The component of the total external force tangential to the
path of a 10kg object moving along the x axis is £ F, = 333N,
where x is in metres. At x=2m, the objects wvelocity s
U, == 4 m/s,

(a) Use the prineiple of work and energy to determine its velocity
atx==6m.

(b) Determine the potential energy associated with the force
L F, and use conservation of energy to determine its velocity at
x=061m.

4.90 The potential encrgy associated with a force F acting on an
object is ¥ = 2x* - y N.m, where x and y arc in metres,

(a) Determine F.

(b) If the object moves from position 1 to position 2 along the
paths 4 and B, determine the work done by F along each path.

(L Dm

P4.90

4.91  An object is subjected to the force ¥ = yi—xj N, where x
and y are in metres.

(a) Show that F is nor conservative.

(b) Tf the object moves from point | to point 2 along the paths 4
and & shown in Problem 4.90, determine the work done by F along
each path,

4.92 In terms of polar coordinates, the potential energy asso-
ciated with the force F exerted on an object by a nonlinear
gpting is

Vo= 1k(r—r)2+] (r = ro)?

=3 0 4q 0

where & and ¢ are constants and rg is the unsiretched length.
Determine F in terms of polar coordinates,
4.93  In terms of polar coordinates, the force exerted on an object
by a nonlinear spring is

F = ~[k(r ~ro) +q(r = ro¥'¢,

where £ and g are constants and », i the unstretched length, Use
Equation (4.35) to show that F is conservative,
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4.94 The potential energy associated with a force F acting on an
object is ¥ = =rsin@ + r> cos® # N.m, where r is in metres.

(a) Determine F,

(b) If the object moves from poink 1 to point 2 along the circular
path, how much work is done by F?

P4.94

4.95 In terms of polar coordinates, the force exerted on an object
of mass m by the gravity of a hypothetical two-dimensional planet
i8 F = w(mgyRy/r) e, where gy is the accéleration due to gravity
at the surface, Ry is the tadius of the planei, and r is the distance
from the centre of the planet,

(@) Determine the potential energy associated with this gravita-
tional force.

{t) 1f the object is given a velocily w at a distance rp, what is ils
velocity . ag a function »?

P4.95

496 By substituting Equations (4.31) into Equation (4.34),
confirm that ¥V > F = 0 if F is consérvative.

4.97 Determine which of the following forces are conservative:
(2) F=(32 - 20 — 2 §;

(b) F = (x %) +aiv§,

(©) F= (2 by (20%y — 3004 j.

498 Determine which of the following forces are conservative:
() F == 3% sin? B e, 4 2 5in § cos Oep:

(h) F=(2rsind ~ cos0) e, + (rcosd — sin. ey;

(¢) F = (sin @+ rcos’ B)e, + (cos ) — rsind cos ) ey.
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Computational Mechanics

The following exam;o!e and problems are desighed Jor the use of a programmably
calculator or comptiter.

i

|

Example 4.9

In the mechanical delay switch shown in Figure 4.21, an electromagnet releases thg
1 kg slider at position 1. Under the actions of gravity and the lincar spring, the shide
moves along the smooth bar from position ¥ to position 2, closing the switch. Thg
constant of the spring is k=40 N/, and its unstretched length is rg =50 mm. The
dimensions are A =200 mm and /== 100 mm. What is the magnitude of the slider
maxirmum velocity, und where does it ocew?

Figure 4.21

STRATEGY

We can usc conservation of energy to obtain an equation relating the stider’s velocity
to its position. By drawing a graph of the velocity as a finction of the position, w
can estimate the maxinum velocity and the position where it oceurs.

SOLUTION

We can specify theé slider’s position by the angle 0 through which it has moveg
relative to position 1 (Figure (a)). In position 1, the cxtension of the spring equals it

SRS S ——

Datum

Q) The ang 8 specifies the slider’s position,
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length in positien 1 minus its unstretched length:

81 = /(R + B — g

When the slider has moved through the angle 0, the extension of the spring is

5 = /(R + Reos 82 - (h + RsinB) ~ ro

We express the potential energy of the slider’s weight using the datum shown in
Figure (a). The sum of the potential and kinetic encrgies at position 1 must equal the
sum of the polential and kinetic cnergies when the slider has moved through the
angle #:

| o2 LR e L 2.
vz—ln?, + mgy +§mvl ”~2~kS +mgy+§mv :

Ll T
*ﬁk[ (?..R)""r*hZM!‘U:I +04+0

2
m%k[J(R»%chsB)?’ + (b + Rsin ) —~r0:|

—mgi‘i'sinl?+%mw2

Selving for v, we obtain

v = [ (k/m)[ (R 44 — rﬂ]z

2 12
m(k/m)l-J(R + Rcos B + (h + Rsin 0y — r(,:l +24 R sin B]

Computing the values of thig expression as a fupction of 8, we obtain the graph
shown in Figure 4.22. The velogity is a maximum at approximately § =135° By
examining the computed results ncar 1357,

f m's
1322 2.5393
1330 2.5397
134° 2.5399
138° 2.5398
136 2.5394
137¢ 25389
138° 2.5380

we estimate that a maximum velocity of 2.54 m/s occurs at 6 = 134°

Figure 4.22
Magnitude of the velocity as a function of 6,

ié 15 /]

0‘5 . -

0 20° 407 60° R0 100°1207 140° 160° 180°
4
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4103 The system is released from rest m the position shdwn.
Problems The weights arc 7, =900 N and W= 1350N. Neglect fricfon.
o Determine the maximum velocity attained by 4 as it rises,

|

4.99 The component of the total external force tangential to a
4kyg objecty path i £ F, = (200 4 25% — 0.25%)YN, where s is ils
4 position measured along the path in metres. At s =1, the object’s
i velocity is # = 10 m/s, What distance along its path has the object
travelled when its velocity reaches 30 m/s?

4 4,100 The 6kg collar is released from rest in the pogition shown,
If the spring constant is & =4 kN/m and the unstreiched length of
the spring is 130 mm, how far does the mass fall from its initial
position before rebounding?

250 mim

P4]103

i
i

4.104 Tn Problem 4.103, what maximum height is reached By 4
relative to its initial position?

4,105 The 16kg cylindor is released at the position shownland
falls onto a nonlinear spring with  potential en£rgy

PA.100 ¥ =1kS? +145*, where k= 2400 N/m and g = 3000 N/m®. Dfter-
} mine how far down the cylinder moves after contagting
7 the spring.

i 4101 How far below its initial position does the collar in
H1 Problem 4,100 rcach its maximum velocity, and what is the
maximum velogity?

4.102 How far below its initial position docs the power being
transferred 1o the collar in Problem 4,100 reach its maximum, and
what is the maximum power?

PANIOS

i
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4.106 In problem 4,105, what is the maximum velocity attained
by the cylinder?

4,107  In Problem 4.82, how high does the collar A rise relative to
its mitial position?

4.108 In Problem 4.9, what is the maximmun power transferred by
from the car by the barrier, and what distance has the car wavelled |
from its initial contact when it oceurs? A
<

|

4.109 A swdent runs at 4.5 m/s, grabs a rope, and swings out j'
over a lake. Doterming the angle 8 at which he should release the |
rope to maximize the horizontal distance b. What is the resulting
value of 4?7 :

Chapter Summary

Principle of Worlc and Energy

The principle of work and energy states that the work U done on an object ag
it moves from a position ry to a position r, is equal to the change in its kinetic
energy,

]

U m*ﬂ?v% - Py

3 5 Equation (4.5)

where
T
U= j ZFdr Exquation (4.6)
T

The total work done by external forces on a system of objects equals the
change in the total kinetic energy of the system if no net work is done by
internal forces.

Evaluating the Work

Let s be the position of an object’s centre of mass along its path. The work
done on the object from a position s, to a position s, is

S

U e f T Fids Equation (4.7)
B!

where £ F} is the tangential component of the total external force on the object,

Components of force perpendicular to the path do no work,

Weight In terrms of a coordinate systemn with the positive y axis upwards,
the work done by an object’s weight as its centre of mass moves from position
1 to position 2 is

U= —mg(y; ~») Ryuation (4.13)
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The work is the product of the weight and the change in the height of the
centre of mass. The work is negative if the height increases and positive if it
decreases.

When the variation o6f an object’s weight with distance r from the centre of
the earth is accounted for, the work done by its weight is

1

1
U= ngﬁu(;; - ;1-) Equation (4.15)

where Rg is the radius of the earth.

Springs The work done on an object by a spring attached to a fixed support
is

U=— %k(S% - 5h Equation (4.16)

where §; and S, are the values of the extension at the initial and final positions.

Power

The power is the rate at which work is done. The power transferred to an
object by the external forces acting anp it is

P=Z%F-v Equation (4.17)

The power equals the rate of change of the object’s kinetic energy. The average
with respect to time of the power during an interval of time from # to 7, is
equal to the change in its kinetic energy, or the work done, divided by the
interval of time:

Ly d o Lo 2
5§ = 5 My U
Po=i 22 L ¢ Equation (4.18)
Lh—4 b=

Potential Energy

For a given force F acting on an object, if a function ¥ of the object’s position
exists such that

dV = -F-dr

then F is said to be conservative and V is called the potential energy
associated with F. The work done by F from a position 1 to a position 2 is

U=V -1 Equation (4.21)

If all the forces that do work on a system are conservative, the total energy —~
the sum of the kinetic energy and the potential energies of the forces—is
conserved:

1
Emvz + V =constant  Equation (4.23)




Weight In terms of a cartesian coordinate system with its y axis upwards,
the potential energy of the weight of an object is

V = mgy Equation (4.25)

The potential energy is the product of the object’s weight and the height of its
centre of mass measured from any convenient referetice level, or datum.,

When the variation of an object’s weight with distance » from the centre of
the earth s accounted for, the potential energy of its weight is

_ ng%

Vo= Faquation (4.27)

r

where Ry 1s the radius of the earth.

Springs The potential energy of the force exerted on an object by a linear
sprng is

£ %sz‘z Equatton (4.28)

where  is the extension of the spring.

Relationships Between Force and Potential Energy

A force F is related to its associated potential energy by

o fav ey Ay
- ax ay

-+ j+ F k) = V¥ Equation (4.23)

A force F is congervative if its curl 15 zero:

i j k
a o8 23
F. F, F
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Review Problems

4.110  The driver of a 1360 kg car moving at 64 kiv/hr applies an~ 4.111  Suppose that the car in Problem 4,110 is on wet pavement

increasing force on the brake pedal. The magnitude of the resulting
friction force exerted on the car by the road is f= (1000 440 5) N,
where s i3 the car’s horizontal position in metres relative to its
position when the brakes were applicd. Assuming that the cai’s
tyres do not slip, determine the distance required for the car to stop
(a) by vsing Newton’s second law; (b} by using the principle of
work and encrgy.

and the cocfficients of friction between the tyres and the road are
pe= 04, u =035, Determing the distance required for the car to
stop.
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4.112 An astronaut in a small rocket wvehicle {combined
mass =450kg) 15 hovering 100m above the surface of the Moon
when he discovers he is nearly out of fuel and can only exert the
thrust necessary to cause the vehicle 1o hover for 5 more seconds.
He quickly considers two strategies for getting to the surface:
(a) fall 20m, um on the thrust for 55, then fall the rest of the way,
(b} {all 40m, turn on the thrust for 5s, then fall the rest of the
way. Which strategy gives him the best change of surviving? How
much work is done by the engines thrust in each case?
(Bmoon =1.62m/5%)

4.113  The coefficients of friction between the 20kg crate and the
inclined surface are p, = 0.24 and 14, = 0.22, If the crate starts from
rest wnd the horizontal force £ == 200 W, what is the magnitude of
its velocity when it has moved 2 m?

P4113

4.114 1In Problem 4,113, what is the magnitude of the crate’s
veloeity when it has moved 2 m if the horizontal force F=40N?

4.115 The Union Pacific Big Roy locomotive weighs 5.29
million N, and the tractive effort (tangential force) of its drive
wheels is 600000 N. If you neglect other tangential forces, what
distance is required for it to accelerate from zero to 100 kovhe?

4116

In Problem 4.115, suppose that the acceleration of the
locometive as it accelerates from zero to 100kmvhr is (Fo/m)
(1 —v/100), where Fo=600000N, m is its mass, and v is its
velocity in km/hr.

() How much work is done in accelerating it to 100 km/he?

(t) Determune its veloeity as a function of time.

4117 If a car travelling at t0Skm/hr hits the crash barricr
described in Problem 4.9, determine the maximum decleration
the passengers arc subjected to if the car weighs (a) 11 120N; (b)
22240N.

4.118 In a preliminary design for a mail sorting machine,
parcels moving at 0.6 m/s slide down a smooth ramp and are
brought to rest by a linear spring. What should the spring constant
be if you don’t want a 5kg parcel to be subjected to a maximum
deceleration greater than 10 gs?

ljmunsans (}.() 19)/5s
i

P4.118

4.119 When the 1kg collar is in position 1, the tension in the
spring is SO N, and the unstretched length of the spring is 260 mm.
If the collar is pulled to position 2 and released from rest, what is
its velocity when it returns to 17

300 mm

P4.119

4.120 [n Problem 4.119, suppose that the tensions in the spring
in positions 1 and 2 are 100N and 400 N, respectively.

(a) What is the spring constant &?

(b) If the collar is given a velocity of 15m/s at 1, what is its
velocily when it reaches 27




4.121 The 14kg weight is released from rest with the two
springs (k4 =440 N/m, kp = 220 N/m) unstretched,

{(a) How far does the weight fall before rebounding?

(b) What maximum velocity does it attain?

P4.121

4122 The 12kg collar 4 is at rest in the position shown at
t=0 and is subjected to the tangential force F=(24 — 12N
for 1.5s. Neglecting friction, what maximum height A does it
reach?

P4.122

4123 When a 22 Mg rocket’s engine burns out at an aftitude of
2km, its velocity is 3 kmv/s and it i travelling at an angle of 60°
relative to the horizontal. Neglect the variation in the gravitational
force with altirde,

{a) If you neglect aerodynamic forces, what is the magnitude of the
racket’s velocity when it reaches an altitude of 6 km?

(b) If the rocket’s actual velocity when it rcaches an altitude of
6lom is 2.8 kn/s, how much work is done by aerodynamie forces as
the rocket moves from 2km to € km altitude?
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4.124 The piston and the load it supports are accelerated
upwards by the gas in the cylinder. The total weight of the piston
and load is 4450N. The cylinder wall gxerts a constant 220N
friction force on the piston as it rises. The net forge exerted on the
piston by pressure is (p — pam ) 4. where p is the pressure of the
£#88, Pam = 101300 Pz is atmosphéric pressure, and 4=0.1 m" is
the cross-sectional area of the piston. Assume that the produet of p
and the volume of the cylinder is constant, When s=0.3m the
piston is stationary and p =239 250 Pa. What is the velocity of the
piston when s = 0.6 m?

Piston

Gas - : f'—

P4.124

4.125 Supposc that in designing a loop for a roller coaster’s
irack, you establish as a safety criterion that at the top of the loop,
the normal force exerted on a passenger by:the roller coaster should
equal 10 per cent of the passenger’s weight. (That is, the passen-
ger’s ‘effective weight' pressing him down into his seat is 10 per
cent of his weight.) The roller coaster is moving at 20 m/s when it
enters the loop. What is the necessary instantaveous radius of
curvature p of the track at the top of the loop?
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4,126 An 80 kg student runs at 4.5 m/s, grabs a rope, and swings
out over a lake. He releases the rope when his velogity is zero.
(a) What is the angle # when he releases the rope?

{b) What is the tension in the rope just before he releases it?

(c) What is the maximum tension in the rope?

P4.126

4.127 1If the studont in Problem 4,126 releases the rope when
=25 what maximum height does he reach relative to hig
position when he grabs the rope?

4.128 A boy takes a running start and jumps on his sled ar 1, He
leaves the ground at 2 and lands in deep snow at a distance b == 6 m.
How fast was he going at 17

P4.128

4.129 1n Problem 4.128, if the boy starts at 1 going at 4.5 m/s,
what distance & does he travel through the air?

4130 The lkg collar A4 is adtached to the linear spring
(k= 500 N/m) by a string. The collar starts from rest in the position
shown, and the initial tension in the string is 100 N. What distance
docs the collar slide up the smooth bar?

P4.130

4.131 The y axis is vertical and the curved bar is smooth, If the
magnitude of the velocity of the 4kg slider is 6m/s at position 1,
what is the magnitude of its velocity when it reaches position 27

P4.131

4.132 In Problem 4.131, determine the magnitude of the slider’s|
velecity when it reaches position 2 if it is subjected fo the




4.133 Suppose that an object of mass m is beneath the surfacc of
the earth. In terms of a polar coordinate system with its origin at
the earth’s centre the gravitational force on the object is
—(mgr/Rp)e,, where Ry is the radius of the earth. Show that the
potential encrgy associated with the gravitational force is
V = mgr? /2R,

4.134 1t has been pointed out that if tunnels could be drilled
straight through the earth between points on the surface, traing
could travel between those points using gravitational force for
acceleration and decelcration. (The effects of friction and aero-
dynamic drag could be minimized by evacusting the tunnels and
using magnetically levitated traing)} Suppose that such a train
travels from the North Pole to a point on the equator. Determine
the magnitude of the trains velocity (a) when it amrives at the
equator; (b) when it is halfway from the North Pole to the equator.,
The radius of the earth is Rp == 6370 km.

\
—
S/

N

P4.134

4,135 In Problem 4.115, what is the maximim power trangferred
1o the locomotive during its acceleration?

4136  Just before it lifts off, the 10.5 Mg acroplane is travelling
at 60m/s. The total horizontal force cxerted by its engines is
189 kN, and the plane is accelerating at 15 m/s”.

() How much power is being transferred to the plane by its
engines?

{b) What is the total power being transferred to the plane?

P4.136
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4.137 The *Paris Gun’, used by Germany in World War 1, had aj
range of 120km, a 37.5m barrel, a muzze velocity of 1550 m/s
and it fired a 120kg shell,

(@) If you assume the shell’s acceleration to be constant, whaf
maximum power was transferred to it ds it travelled along thg
barrel? .

(b} What everage power was transferred to the shell?

P4.137




he total linear momentum of the

vehieles is the same immediately

after their collision. By analysing
simulated traffic accidents, engineers
obtain information useful in the design
of the structures of wvehicles, their
steering and braking systems, and
devices for protecting passengers. In
. this chapter you will vge methods
based on linear and angular momen-
tum to analyse motjons of’ objects.




| Chapter 5

Momentum
Methods

i

I N Chapter 4 we transformed Newton’s second law to obtain

the principle of work and energy. In this chapter we integrate

Newton’s second law with respect to time, obtaining a relation .
between the time integral of the forces acting on an object and
the change in the object’s linear momentum, With this result,
called the principle of impulse and momentum, we can

determine the change in an object’s velocity when the external

forces are known as functions of time.

By applying the principle of impulse and momentum to
two or more objects, we obtain the principle of conservation of

linear momentum. This conservation law allows us to analyse

i
=
i
i

impacts between objects and evaluate forces exerted by
continuous flows of mass, as in jet and rocket engines.

By another transformation of Newton’s second law, we _
obtain a relation between the time integral of the moments
exerted on an object and the change in a quantity called :

angular momentum. We show that in the circumstance called

central-force motion, an object’s angular momentum is con-

served.

185
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5.1 Principle of Impulse
and Momentum

Figure 5.1
Principle of impulse and momentum.

The principle of work and energy is a very useful tool in mechanics. We can
derive another useful tool for the analysis of motion by integrating Newton'’s
second law with respect to time. We express Newton'’s second law in the form

dv
DT e e
"

Then we integrate with respect to time to obtain

oty
j ZF¥dr = mvy — mvy (5.1)
h

where v) and v; are the velocities of the centre of mass of the objects at the
times #; and 3. The term on the left is called the linear impalse, and mv is the
linear momentum. This result is called the principle of impulse and
momentum: the impulse applied to an object during an interval of time is
equal to the change in its linear momentum (Figure 5.1), The dimensions of
the linear impulse and linear momentum are {force) x (time).

time £,

.,

Rt o
N

Notice that Equation (5.1) and the pringiple of work and energy, Equation
(4.5), are quite similar. They both relate an integral of the external forces to the
change in an object’s velocity. Equation (5.1) is a vector equation that tells you
the change in both the magnitude and direction of the velocity, whereas the
principle of work and ehergy, a scalar equation, tells you only the change in
the magnitude of the velocity. There is a greater difference between the two
methods, however: in the case of impulse and momentum, there is no class of
forces equivalent to the conservation forces that make work and energy so easy
to apply.

When you know the external forces acting on an object as functions of
time, the principle of impulse and momentum allows you to determine the
change in its velocity during an interval of time. Although this is an important
result, it is not new. When you used Newton’s second law in Chapter 3 to
determine an object’s acceleration and then integrated the acceleration with




5.1

respect to time to determine the velocity, you were effectively applying the
prineiple of impulse and motnentumn, However, in the rest of this chapter we
show that this principle can be extended to new and interesting applications.

The average with regpeet to time of the total forge acting on an object from
fto b is

s
ZF,, =- f X F dt
L=thJ,

s0 we can write Equation (5.1) as
(2 — 1)EFy = mvy —mv, (5.2)

With this equation you can determine the average value of the total force
acting on an object during a given interval of time if you know the change in
its velocity.

A force of relatively large magnitude that acts over a small interval of time
is called an impulsive force (Figure 5.2). Determining the actual time history
of such a force is usuvally impractical, but its average value can often be
determined. For example, a golf ball struck by a club is subjected to an
impulsive force. By making high-speed motion pictures, we can determine the
duration of the impact. Also, the ball’s velocity can be measured from motion
pictures of its motion following the impact. Knowing the duration and the
ball’s linear momentum following the impact, we can use Equation (5.2) to
determnine the average force exerted on the ball by the club. (See Example 5.2.)

F Figure 5.2

ay
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An impulsive force and its average value.
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Example 5.1 [&

IFigure 5.3

(A) The rotating booster.

The rocket booster in Figure 5.3 is travelling straight up when it suddenly starts
rotating counterclockwise at 0.25 rev/s. The range safety officer destroys it 2 s later.
The boosters mass is == 90Mp, is thrust is 7= LOMN, and it is moving
upwards at 10m/s when it starts rotating. Tf aerodynamic forces are neglected, what
is the booster’s velocity at the time it is destroyed?

STRATEGY

Because we know the angular velocity, we can determine the direction of the
booster’s thrust as a function of time and calenlate the impulse during the 2 s period.

SOLUTION

The booster’s angular velocity is 772 rad/s. Lefting r = 0 be the time at which it
starts rotating, the angle hetween its axis and the vertical is (n/2) (Figure (a)). The
total force on the booster is

EF = (uTsingt)i+ (Tmsgf - mg)j

5¢ the impulse romt=0to =25 is
2 > - -
LEMWA [(stin-i«i)-i»%(Tcos»jtwmg)j]dr
2 = 2.m b
= [(T:casy)i»h (T;am:,):t --—mgt) 1]0

4
N A P
p i—2mgj

From the principle of impulse and momentym,

2
f LRt == mvy = vy
0
4 ,
—— (1 10%)i = 2(90 x 10%)(9.81)j = (90 x 107)(vy = 10j)

Solving lor vy, we obtaih vy = (—14.151 — 9.62 j)my/s.

DISCUSSION

Notice that the rocket’s thrust has no net effect on its y component of velocity during
the 2 s interval. The effect of the positive y component of the thrust during the first
quarter revolution is cancelled by the effect of the negative vy component during the
second quarter revolution. The change in the y component of veloeity is caused
entirely by the rocket’s weight. The thrust has a negative x component during the
entire 2 s interval, giving the rocket its negative x component of velocity at the time
it is destroyed.

s
e

G R U e
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Example 5.2 EMMW a

A golf ball in flight is photographed at intervals of 0.0015 {Figurc 5.4). The
0.046kg ball is 43 mm in diameter. If the club was in contact with the ball for
0.0006 5, estimate the average value of the impulsive force exerted by the club.

Figure 5.4

-
‘43 mm

(Q) Estimating the distancé travelled during
one 0.001 s intérval.

STRATEGY

By measuring the distance travelled by tho ball in one of the 0.001 s intervals, we
can estimate its velocity after being struck, then use Equation (5.2) to deterimne the
average total force on the ball.

SOLUTION

By comparing the distance moved during one of the 0.001 s intervals with the
known diameter of the ball, we cstimate that the ball travelled 48 mm and that its
direction is 21° above the horizontal (Figute (a)). The magnitude of the ball’s
velocity 1s

0.048 m

0T = A8 m/s

The weight of the ball is ((L046)9.81)=0.451 N, and its mass is (.046 kg, From
Equation (5.2),

(t2 - l‘l)z Fy = mvy — mv)
(0.0006)E Fyy == (0.046){48)(cos 21%i +5in21°j) — 0

we obtain

I ¥, = (34361 + 1319 j) N

DISCUSSION

The average force during the time the ¢lub is in contact with the ball includes both
the impulsive force exerted by the club and the ball’s weight. In comparison with the
large average impulsive force exerted by the club, the weight (—045jN) is
negligible,

[ DA S

G T . e
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8.1 The aircraft carrier Nimirz weighs 810 MN, Suppose that its
engines and hydrodynamic drag exert a constant 4.45MN decel-
crating force on it

(#) Use the principle of impulse and momentum to determine how
long it requires the ship to come to rest from its top speed of
approximately 30 knots. (A knot is approximately 1.85 km/hr).
(b} Use the principle of work and energy to determine the distance
the ship travels during the tire it takes to come to rest.

P5.1

5.2 The 900 kg drag racer accelerates from rest to 480km/hr in
6s.

(2) What impulse is applied to the car during the 6s?

{b) If you assume as a first approximation that the tangential force
exerted on the car is constant, what is the magnitude of the force?

P5.2

Problemsi

5.3 The 21900kg Gloster Sarp Protector, designed for rapid
responie 1o airport emergencies, accelerates from rest to 80 km/hr
in 35s.

(a) What impulsc is applied to the vehicle during the 35s?

(b) If you assume as a first approximation that the tangential force
exerted on the vehicle is constant, what is the magnitude of the
force?

(¢) What average power is transferred to the vehicle?

P5.3

5.4 The combined weight of the motoreycele and rider is 1350 N,
The coeflicient of kinetic ftiction between the motoreycle’s tyres
and the road is 2, = 0.8. Suppose that the rider starts from rest and
sping the rear (drive) wheel. The normal force between the rear
wheel and the road is 1100 N.

{a) What impulse does the friction force on the rear whee! exert in
547

{b) If you neglect other horizontal forces, what velocity is attained
in §s?

P5.4




5.5 An astronaut dnfts towards a space station at §m/s. He
carries a manoeuvring unit (a small hydrogen peroxide rocket) that
has an impulse rating of 720 N.s. The total mass of the astronaut,
his suit and the manoeuvring unit is 120kg. If he uses all of the
impulse to slow himself down, what will be his velocity relative to
the station?

5.6 The total external force on a 10kg ohject is constant and
equal o (907 — 60§ - J0k)N. At ¢ =25, the object’s velocity is
(~8i4+6j)m/s.

(a) What impulse is applied to the object from ¢ =25 to f = 4 87
(b) What is the object’s velocity at ¢ = 457

5.7 The total external force on an object is F = (10¢i - 60 jIN,
At 1= Oy its velocity i v = 20 jm/s, At == 125, the » component
of its velocity is 48 m/s.

(a) What impulse is applied (o the object from £ = ( to ¢ = 67
(b) What is its velocity at t = 657

5.8 During the first 55 of the 15000kg aeroplane’s takeoff roll,
the pilot increases the engine’s thrust at a constant rate from 25 kN
to its full thrust of 125 kN,

{a) What impulse does the thrust exert on the acroplane during the
587

{b) If you neglect other forces, what total time is required for the
agroplane to reach its takeoff speed of 50 m/s?

P5.8
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9.9 The 45kg box starts from rest and is subjected to the
force shown. If you neglect friction, what is the box’s velocity at
toa= By?

HBON|- ~

1, sgconds

P59

5.10 Solve Problem 5.9 if the coefficients of foction between the
box and the floor are g, =y, = 0.2.

511 The crate has a mass of 120kg and the coefficients of
friction between it and the sloping dock afe u, = 0.6, 4 = 0.5
The c¢rate starts from rest, and the winch exerts a tension
I'=1220N.

(a) What impulse is applied to the crate during the first second of
motion?

(b} What is the crate’'s velocity after 1s?

P5.11

5.12  Solve Problem 5.11 if the craté starts from rest at ¢ = 0 and
the winch exerts a tension 1" = (1220 4 2006 N.
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5.13  In an asscmbly-line process the 20 kg package 4 starts flom
rest and slides down the smooth ramp. Suppose that you want to
design the hydraulic device B to exert a constant force of magni-
tude F on the package and bring it to rest in 0.25. What is the
required force F7

P5.13

5.14 In Problem 5.13, if the hydraulic device B exerts a force of
magnitude F = 540(1 + 0.4)N on the package, where ¢ is in
seconds measured from the time of first contact, what time is
required to bring the package to rest?

5.15 In a cathode-ray tube, an electron (mass =9.11x 10~ kg),
is projected at & with velocity v = (2.2 x 107)i{m/s). While it iz
hetween the charged plates, the electric field generated by the
plates subjects it to a force F = —eE j. The charge of the electron is
e 1.6 x 1070 (coulombs), and the electric field strength is
E = 15sin( kN/C, where the frequency e = 2 x 10751,

(a) What impulse does the electric field exert on the clectron while
it iy between the plates?

{b) What is the velocity of the electron as it leaves the region
between the plates?

T T

e 30mm e

P5.15

5.16 The two weights are released from rest. What is the
magnitude of their velocity after one-half second?

Strategy: Apply the principle of impulse and momentum to each
weight individuatly.

P5.16

5.17 The two crates are released from rest. Their masses are
my = 40kg and mp == 30kg, and the coefficient of kinetic friction
between crate 4 and the inclined surfage is g, == 0,15, What is the
magnitude of their velocity after 1 8?

P5.17

5.18 In Example 5.1, if the range safety officer destroys the
booster 1s after it starts ratating, what is ite velocity at the time it is
destroved?




5.19 An ohject of mass m slides with constant velocity vy on a
horizontal table (seen from above in the figure). The ohject is
attached by a string to the fixed point {7 and is in the position
shown, with the string parallel to the x axis, at £ = 0.

() Determine the x and ¥ components of the force exerted on the
mass by the string as functions of time,

(b) Use your results from part (a) and the principle of impulse and
maomentum to determine the velocity vector of the mass when it has
travelled one-quarter of a revelution about point &,

rooP509

520 At =0, a 25kg projectile is given an initial velocity of

12m/s at 60° above the horizonial. Neglect drag.
{a) What impulse is applied to the projectile from £ = 0to 1 = 287
(b) What is the projectile’s velocity at £ = 257

521 Al gun, which uses an electromagnetic field to accelerate
an object, accelerates a 30 g projectile to 5km/s in 00005 5, What
average foree is exerted on the projectile?

5.22 The powerboat is going at 80km/hr when its motor is

turned off. In 55 its velocity decreases to 48 km/hr. The boat and
its passengers weigh & kM, Determine the magnitude of the average
force exerted on the boat by hydrodynamic and aerodynamic drag
during the 5s.

P5.22
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5.23 The 77kg skier is travelling at 10m/s at |, and he goes
from 1 to 2 in 0.7s. '

(a) If you neglect friction and acrodynamic drag, what 15 the time
average of the tangential component of force exerted on him as he
moves from | to 27

(b) Tf his actual vetocity is measured at 2 and determined to be

13.1 m/s, what is the time average of the tangential component of
force exerted on him ag he moves from 1 to 27

P5.23

5.24 In a test of an energy-absorbing bumper, a 1270kg car is
driven into a barrier at & km/hr. The duration: of the impact is 0.4 5,
and the car bounces back from the barrier at 1.6km/hr.

(n) What is the magnitude of the average horizontal force exerted
on the car during the impact?

(by What is the average deceleration of the dar during the impact?

P5.24
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§.25 A bioengineer, using an instrumented dummy to test a
protective mask for a hockey goalie, launches the 170 g puck so
that it strikes the mask moving horizontally at 40m/s. From
photographs of the impact, she estimates its duration to be 0.025
and observes that the puck rebounds at 5m/s.

(8} What lincar impuls¢ does the puck exert?

(b) What is the average valug of the impulsive force exerted on the
mask by the puck?

P5.25

5.26 A fragile object dropped onto a hard surface breaks because
it 13 subjected to a large impulsive force. If you drop a 0.057 kg
watch from 1.2 m above the floor, the duration of the impact is
(.001 s, and the watch bounces 50 mm above the floor, what is the
average valug of the impulsive force?

5.27 A 25kg projectile is subjected to an impulsive forec with a
duration of 0.01s that accelerates it from rest to a velocity of
12m/s at 60" above the horizontal. What is the average value of
the impulsive force?

Strategy. Use Equation (5.2) to determine the average total force
on the projectile. To determing the average value of the impulsive
force, you must subtract the projectile’s weight,

§.28 An entomologist measures the motion of a 3 g locust during
its jump and determines that it accelerates from rest to 3,4m/s in
25ms (milliseconds). The angle of takeoff is 55° above the
horizontal. What are the horizontal and vertical compenents of
the average impulsive force exerted by the insect’s hind legs during
the jump?

529 A 0.14kg baseball is 1 m above the ground when it is struck
by a bat. The horizontal distancs to the point where the ball strikes
the ground is 55 m, Photographic studies indicate that the ball was
moving approximately horizontally at 30m/s before it was struck,
the duration of the impact was 0,015 5, and the ball was travelling at
307 above the horizontal after it was swuck. What was the
magnitude of the average impulsive force exerted on the ball by
the bat?

P5.2%

530 The kg ball is given a hofizontal velocity of 1.2 m/s at A,
Photographic measurements indicate that b=1.2m, A= 1.3m,
and the duration of the bouncc at F is 0.1s. What are the
components of the avirage impulsive force exerted on the ball by
the floor at 57

P5.30
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5.2 Conservation of
Linear Momentum

In this section we consider the motions of several objects and show that if the
effects of external forces can be neglected, total linear momentum is con-
served. This result provides you with a powerful ol for analysing interactions
hetween objects, such ag collisions, and also permits you to determine forces
exerted on objects as a result of gaining or losing mass.,

Consider the objects A and B in Figure 5.5. F 45 is the force exerted on A by
B and Fp, is the force exerted on 8 by 4. These forces could result from the
two objects being in contact, or could be exerted by a spring connecting them.
As a consequence of Newton’s third law, these forces are equal and opposite;

Fig+Fas =0 (5.3)
Supposc that no other external forces act on 4 and B, or that othet external
forces are negligible in comparison with the forces that 4 and B exert on

each other, We can apply the principle of impulse and momentum to each
object for arbitrary times £ and é:

15
f FAB dt = MV 49 — M4V
bl

(5}
j Fgdt = mpvgs — mpve
5

If we sum these equations, the terms on the left cancel and we obtain
MAYAL "t MyVgy = MV -+ Mpvis

which means that the total linear momentum of 4 and B is conserved:

M4V, + mpvy = constant (5.4

We can show that the velocity of the combined centre of mass of the objects 4
and B {that is, the centre of mass A4 and B regarded as a single object) is also
constanf. Let ry and rp be the position veetors of their individual centres of
mass (Figure 5.6). The position of the combined centre of mass is

r o Murs -+ mprp
T omy+mp

Figure 5.6

and B.

Figure 5.5

Two objects and the forces they exert on
each other.

Position vector r of the centre of mass of 4
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By taking the time denvative of this equation, we obtain
(me + mp)v == myvy + mgvy = constant (5.5

where v = dr/dr is the velocity of the combined centre of mass, Although
your goal will usually be to determine the individual motions of the objects,
knowing that the velocity of the combined centre of mass is constant can
contribute 1o your understanding of a problem, and in some instances the
motion of the combined centre of mass may be the only information you can
obtain.

Even when significant external forces act on 4 and B, if the external forces
are negligible in a particular direction, Equations (5.4) and (5.5) apply in that
direction. These equatiohs also apply to an arbitrary number of objects: if the
external forces acting on any collection of objects are negligible, the total
Tinear momentum of the objects is conserved and the velocity of their centre of
mass is constant.

In the following example we demonstrate the use of Equations (5.4) and
(3.5) to analyse motions of objects. When you know initial positions and
velocities of objects and you van neglect external forces, these equations
relate their positions and velocities at any subsequent time,

Figure 5.7

Example 5.3

A person of mass my stands at the centre of a stationary barge of mass mp (Figure
5.7). Neglect horizontal forces cxerted on the barge by the water.

(a) If the person starts rurming to the right with velocity ve relative to the water,
what is the resulting veocity of the harge relative to the water?

(b) If the person stops when he reaches the right end of the barge, what are his
position and the barge’s position relative to their original positions?

STRATEGY

(2} The only horizontal forces exerted on the porson and the barge are the forces
they exert on each other. Therelore their total linear momentum in the horizontal
direction is conserved and we can use Equation (5.4) to determine the barge’
velovity while the person is running.

{b) The combined centre of mass of the person and the barge is initially stationary,
s0 it must remain stationary, Knowing the position of the combined centre of mass,
we can determine the positions of the person and the barge when the person is at the
right end of the barge.
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SOLUTION

(a) Before the person starts running, the total linear momentum of the person and
the barge in the horizontal direction is zero, so it must be zero after he starts
running. Letting oy be the value of the barge’s veloeity 1o the left while the person is
running (Figure (a)), we obtain

mptp + mp(~vp) =0

so the velocity of the barge while he runs is

mp
by m [ e Qg
L dt]

(b) Let the origin of the ceordinate system in Figure (b) be the original horizontal
position of the centres of mass of the barge and the person, and let xy be the position
of the barge’s cenirg of mass to the left of the origin. When the person has stopped at
the right end of the barge, the combined centre of mass must still be at x = 0

Xpip b (—xp)mn -0
mp - mp

Solving this cquation together with the relation xp + xp = £/2, we obtain

mpl mpl,

" 2mp + mn)

DISCUSSION

This example is a well-known illustration of the power of momentum methads.
Notice that we were able to determine the velocity of the barge and the final
positions of the person and barge even though we did not know the complicated
time dependence of the horizonlal forces they exert on each other.

(@) Velocities of the person and barge.

(b) Positions after the person has stopped.

e S
Ao
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5.3 Impacis

Figure 5.8

(8) Velocities of 4 and B before
and after the impact and the
velocity v of their cenire of mass.
(b) A perfectly plastic impact.

In magchines that perform stamping or forging operations, dies impact against
workpieces. Mechanical printers create images by impacting metal elements
against the paper and platen, Vehicles impact each other intentionally, as when
railway cars are rolled against each other to couple them, and unintentionally
in accidents. Impacts occur in many situations of concern in engineering. In
this section we consider a basic question: if yon know the velocities of two
objects before they collide, how do you determine their velocities afterwards?
In other words, what is the effect of the impact on their motions?

If colliding objects are not subjected to external forces, their total linear
momentum must be the same before and after the impact. Even when they are
subjected to external forces, the force of the impact is often so large, and its
duration so brief, that the effect of external forces on their motions during the
impact is negligible. Stppose that objects 4 and B with velocities v and vz
collide, and let v/, and v}, be their velocities after the impact (Figure 5.8(a)). If
the effects of external forces are negligible, their total linear momentum is
conserved;

MAV4 + MEVy = M4V, + mgvy (5.6)

Furthermore, the velocity v of their centre of mass is the same before and after
the impact. From Equation (5.5),

v M4V 4 -+ MYy

5.7
mg + mg S

If 4 and B adhere and remain together after they collide, they are said to
undergo a perfectly plastic impact. Equation (5.7) gives the velocity of the
centre of mass of the object they form after the impact (Figure S.8(b)). A
remarkable feature of this result is that you can determine the velocity
following the impact without considering the physical nature of the impact.

If 4 and B do not adhere, linear momentum conservation alone 15 not
sufficient to determine their velocities after the impact. We first consider the
case in which they travel along the same straight line before and after they
collide.




Direct Central Impacts

Suppose that the centres of mass of A and B travel along the same straight line
with velocities 14 and vy before their impact (Figure 5.9(a)). Let R be the
magnitude of the force they exert on each other during the impact (Figure
3.9(b)). We assume that the contacting surfaces are oriented so that R is
parallel to the line along which they travel and directed towards their centres of
mass. This condition, called direct central impact, means that they continne
to travel along the same straight line after their impact (Figure 5.9(c)). If the
effects of external forces during the impact are negligible, their total linear
mementum is conserved:

MU + mpog = m,q-uj, -+ mgv%. (5.8)

(a) Before
Tapact

(b) During
Impact

(¢} Afier
Tmpact

However, we need another question to determine the velocities »/, and v, To
obtain it, we must consider the impact in more detail.

Let £ be the time at which 4 and B first come into contact (Figure 5.10(a)).
As a result of the impaet, they will deform and their centres of mass will
continue lo approach each other. At a time ., their centres of mass will have
reached their ncarcst proximity (Figure 5.10(b)). At this time the relative
velocity of the two centres of mass is zero, so they have the same velocity. We
denote it by ve. The objects then begin to move apart and separate at a time £,
(Figure 5.10(c)). We apply the principle of impulse and momentum to A4
during the intervals of time from # to the time of closest approach 7 and also
from 1 to 1y

i
f —Rdt = myve — mavy (5.9)

]

i
/ —Rdt = mAv; -~ MU (5.10)

e

Then we apply this principle to B for the same intervals of time:

U
f Rdt = mpve — mpup (5.11)

]

o
f Rdi = mgv:g - Mg (5.12)
I

(o
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Figure 5.9

(8) Objects 4 and B travélling along the
same straight ling,

(b} During the impact, they exert a force R
on each other.

(c) They travel along the same straight line
after the central impact.

()

Figure 5.10

(a) First contact, £ = 1.

(b) Closest approach, 7 = t¢.
(¢c) End of contact, t = 1.




200 CHAPTERS MOMENTUM METHODS

Figure 511
An oblique central impact,

As a result of the impact, part of the objects’ kinetic energy can be lost due
to a variety of mechanisms, including permanent deformation and generation
of heat and sound. As a consequence, the impulse they impart to each other
during the ‘restitution’ phase of the impact from ¢ to #, is in general smaller
than the impulse they impart from £y to ¢.. The ratio of these impulses is called
the coefficient of restitution:

{7
[ ra
fe
i
f Rdt
4

Its value depends on the properties of the objects as well as their velocities and
orientations when they collide, and it can be determined only by experiment or
by a detailed analysis of the deformations of the objects during the impact.

[f we divide Equation (5.10) by Equation (5.9) and divide Equation {5.12)
by Equation (5.11), we can express the resulting equations in the forms

e =

(5.13)

(ve = vgle = v~ vg
(ve ~ vple = vy — v

Subtracting the first equation from the second one, we obtain

i’ ?
- -y
, e___w% A

Vg — Uk

(5.14)

Thus the coefficient of restitution is related in a simple way to the relative
velocities of the objects before and after the impact. If e is known, you can use
Equation (5.14) together with the equation of conservation of linear momen-
tum, Equation (5.8), to determine v/, and vy,

It e =0, Equation (5.14) indicates that v} = /. The objects remain
together after the impact, and the impact is perfectly plastic. If e == 1, it can be
shown that the total kinetic energy is the same before and after the impact:

~1~m,4v§ + lmwﬁ = lm,q(vi,)z ~|—1mg(vj;)2 (When ¢ = 1)
2 2 2 2

An impact in which kinetic energy is conserved is called perfectly elastic.
Although this is sometimes a useful approximation, energy is lost in any
impact in which matcrial objects come into contact. If you can hear a collision,
kinetic energy has been converted into sound. Permanent deformations and
vibrations of the colliding objects after the impact also represent losses of
kinetic energy.

Oblique Central Impacts

We can extend the procedure used to analyse direct central impacts to the
case in which the objects approach each other at an oblique angle. Suppose
that 4 and & approach with arbitrary velocities v and v (F igure 5.11) and
that the forces they excrt on each other during their impact are parallel to the x
axis and point towards their centre of mass. No forces are exerted on thern in




the y or z directions, so their velocities in those directions are unchanged by
the impact:

(vjll)y = (VA)); (v;i')y = (vﬂ)y

(5.13)
Ve = (va),  (vp), = (va),
In the x direction, linear momentum 18 conserved,
ma(Va), +mp(vy), = my(vy), + ma(vy), (5.16)

and by the same analysis we used to arrive at Equation {5.14), the x
components of velocity satisfy the relation
(¥g), — (vy),

Sy o1

We can analyse an impact in which 4 hits a stationary object like a wall
(Figure 5.12) as an oblique central impact if friction is negligible. The y and =
components of A% velocity are unchanged, and the x component after the
impact is given by Equation (5.17) with 8% velocity equal to zero:

(qu)x = "e(vA)x

Figure 5.12

In the following example we analyse the impact of two objects. If an impact
is perfectly plastic, which means the objects adhere and remain logether, you
can derermine from Equation (5.7) the velocity of their centre of mass after
the impact. In a direct central impact, in terms of the coordinate system
shown in Figure 5,11, the y and z components of the velacities of the objects
are unchanged and you can solve Equations (5,16) and (5.17) for the x
components of the velocities afier the impact.

Tmpact with a stationary object,

53
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Example 5.4

The Apollo USM (4) altempts to dock with the Soyur capsule (B), 15 July 1973
(Figure 5.13). Their masses are my = 18Mg and my = 6.6 Mg. The Soyuz is
stationary relative (o the reference frame shown, and the CSM approaches with
velocity vy = (0.2i+ 0.03j — 0.02 K)m/s.

(a) If the first atternpt at docking is successful, what is the velocity of the centre o
mass of the combined vehicles afterwards?

{b) If the first attempt is unsuccessful and the cocfficient of restitution of the
resulting impact is e = 0.95, what are the velocities of the two spacecralt after thd
imipact?

Figure 5.13

STRATEGY

{a) It the docking is successful, the impact is perfectly plastic and we can use
Equation (5.7) 1o détermine the velocity of the centre of mass of the combined
object after the impact.

(b) By assuming an oblique central impact with the forces exerted by the docking
collars paralle] 1o the x axis, we can usc Equations (5.16) and (5.17) to determine the
} velocities of both spacecraft after the impact,

SOLUTION

() From Equation (5.7), the velocity of the centre of mass of the combined vehicle
18

MgV mpvy
; my - my

(180284 0.03f — 0.02Kk) 4 0
- 18 +6.6

= (0.146i +0.022 ] — 0.015 k) m/s




(b} The y and = components of the velocities ¢f both spacecraft are unchanged. To
determine the x components, we use conservation of lingar momentum, Equation

(5.16),
ma(Va), + mp(vel, = ma(Vy), + mp(ve),
(18)(0.2) = (18)(v},), +(6.6)(Vp),

and the coefficient of restitution, Equation (5.17},

(VB )x (VA ) X

(VA ) (VB)

(VB) (V; )x
093="67"0

Solving these two equations,
0.285m/s, so the velocities of the spacecraft after the impact are

v, = (0.095i 4+ 0.03j — 0.02k) m/s

v, = 0.285im/s

we obtin (v}, =0.095m/fs and (v}) =
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531 A girl weighing 440 N stands at rest on a barge weighing
2200 N. She starts ronming at 3 m/s relative 1o the barge and runs
ofl' the end. Negleet the horizontal force exerted on the barge by the
water.

(2) Just before she hits the water, what ig the horizontal component
of her velocity relative to the water?

(b) What is the velocity of the barge relative to the water while she
Tuns?

P5.31

532 A 60kg astronaut aboard, the space shutile kicks off
towards the centre of mass of the 15 Mg shuttle at 1 m/s relative
to the shuttle. He travels 6 m relatiye to the shuttle before coming
to rest at the opposite wall,

(2) What is the magnitude of the change in the velocity of the
shuttle while he is in motion?

(b} What is the magnitude of the:displagement of the centre of
mass of the shuttle due to his “flight’?

P5.32
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533 A 36kg boy sitting in a stationary 9kg wagon wants 1o
simulate rocket propulsien by throwing bricks out of the wagon.
Neglect horizontal forces on the wagon’s wheels. If he has three
bricks weighing 40N each and throws them with a horizontal
velocity of 3 m/s relative to the wagon, determine the velocity he
attains (a) if he throws the brcks one at a time; () if he throws
them all at once.

P5.33

534 Two railroad cars (my = 1.7mp) collide and bccome
coupled. Car 4 is {ull and car 8 is half~ful! of carbolic acid. When
the cars impact, the acid in B sloshes back and forth violently.

{a) Immediately afier the impact, what is the velocity of ihe
common centre of mass of the two cars?

(b) A few seconds later, when the sloshing has subsided, what is
the velocity of the two cars?

i,

e W E

P5.34

535 In Problems 534, if the track slopes one-half degree
upwards to the right and the cars are initially 3 m apart, what is
the velocity of their common centre of mass immediately after the
impact?

5.36 A 400kg satellite § travelling at 7km/s is hit by a 1kg
meteor M travelling at 12 km/s. The meteor is embedded in the
satellite by the impact. Determine the magnitude of the velocity of
their common centre of mass afier the impact and the angle j
between the path of the cantre of mass and the original path of the
satellite,

7 knifs

|
-, !

F45°
S
12 ks

M

P5.36

537 The cannon weighed 1800N, fired a cannonball weighing
45N, and had a muzzle velocity of 50 m/s, For the 10" elevation
anglc shown, determine (a) the velocity of the cannon afier it was
fired, (b) the distance the cannonball tfravelled. (Neglect drag.)

P5.37

5.38 A bullet (mass m) hits a stationary block of wood (mass mp)
and becomes embedded in it. The coefficient of kinetic friction
between the block and the floor i8 . As a result of the impact the
block slides # distunce D before stopping. What was the velocity v
of the bullet?

Strategy: First solve the impact problem to determine the
veloeity of the block and the embedded bullet after the impact in
terms of v, then relate the initial velocity of the block and the
cmbedded bullet to the distance D that the block slides.

P5.38

5.39 The overhead conveyor drops the 12kg package 4 into the
1.6 kg carton B. The package is ‘tacky’ and sticks to the bottom of
the carton. If the coefficient of friction between the carton and the
horizontal conveyor is 4 = 0.2, what distance does the carton
slide after the itnpact?

2 /s
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P5.39




540 A 0.028kg bullet moving horizontally hits a suspended
50kg block of wood and becomes embedded in it If you measure
the angle through which the wires supporting the block swings as a
result of the impact and determine it to be 79, what was the bullet’s
velocity?

P5.40

541  Suppose you investigate an accident in which a 1360kg car
with velocity ve = 32 jkm/hr collided with a 53440 kg bus with
velocity vy = 16kkm/hy. The vehicles became entangled and
remained together after the collision.

(2) What was the velocity of the common centre of mass of the two
vehicles after the collision?

(b} If you estimate the coefficient of friction between the sliding
vehicles and the road after the collision to be g, = 0.4, what is the
approximate final position of the common centre of mass relative to
its position when the impact ocours?

P5.41
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5.42 The velocity of the 100 kg astronaut 4 relative lo the space
station is (40i+ 30 j)mm/s. The velocity of the 200kg structural
member B relative to the station is (201 + 30 j )mm/s. When they
approach each other, the astronaut grasps and clings to the
structural member.

(a) Determine the velocity of their commen centre of mass when
they arrive al the station.

(b) Determine the approximate position at which they contact the
station, :

P5.42

543 Objects 4 and B with the same mass m undergo a direct
central impact. The velocity of A before the impuct is v, and B is
stationary. Determine the velocities of 4 and B after the impact if it
is (a) perfectly plastic (¢ = 0); (b) perfectly clastic (¢ = 1).

P5.43

544 In Problem 543, if the velocity of £ afer the impact is
0.6v,4, determine the coefficient of festitution ¢ and the velocity of
A after the impact,

545 Objects 4 and B with masses my ahd mp undergo a direct
central impact. :

{a) If e = 1, show that the total kinetic energy after the impact is
equal to the total kinetic energy before the impact.

(b) T e = 0, how much kinetic energy is lost as a result of the
collision?

P5.45
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5.46 The two 5kg weights slide on the smooth horizontal bar.
Determine their velocities after they collide if the weights are
coated with Velero and stick together.

1.5 ms
fc——

P5.46

5.47 Determine the velocities of the weights in Problem 5.46
after their impact if you assurne it to be perfectly elastic.

5.48 Determine the velocities of the weights in Problem 5,46
after their impact if the coctficient of restitution is e = 0.8.

549 Two cars with energy-absorbing bumpers collide with
speeds vy = vy = 8km/hr. Their weights are W, = 12kN and
Wg = 20kN. If the coefficient of restitution of the collision is
e = {1.2, what are the velocities of the cars after the collision?

ta g 7 g P
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550 In Problem 5.49, if the duration of the collision is 0.1s,
what are the magnitudes of the average acceleration to which the
aceupants of the two cars are subjected?

551 The 10kg mass 4 is moving at 3 m/s when it is 1 m from
the stationary 10kg mass B. The cocfficient of kinetic friction
between the floor and the two masses 15 p, = 0.6, and the
coefficient of restitution of the impact is e = .5, Determine how
far B moves from its initial position as a result of the impact,

Smis

P5.51

5.52 Suppose you investigate an accident in which a 1300kg caf
A struck a parked 1200kg car 8. All four of B% wheels werd
locked, and skid marks indicate that it slid 2 m after the impact. [
you estimate the coefficient of friction hetween B’ tyres and the
road to be py, = 0.8 and the coefficient of restitution of the impac
to be e= 04, what was A5 velocity just before the impact
(Assurne that only one impact occurred.)

553 Supposc you drop a basketball 1.5m above the floor and i
bounces to a height of 1.2 m. If you then throw the ball downwards
releasing it | m above the floor moving al 10my/s, how high does i
bounce?

5.594 By making measurements directly from the photograph of
the bouncing golf ball, estimate the coefficients of restitution,

5.55
0.6 m/s and release it 1.2 m above the surface, what is the distance
between the first two bounces?

If you throw the golf ball in Problem 5.54 horizontally at




556 A bicengineer studying helmet design strikcs a 2.4kg
helmet containing a 2 kg simulated hurnan head against a rigid
surface at 6m/s. The head, being suspended within the helmet, is
not immediately affected by the impact of the helmet with the
surface and continues to move to the right at 6my/s, so it then
undergoes an impact with the helmet. 1f the coefficient of restitu-
tion of the helmet’s impact with the surface is 0.8 and the
cocfficient of restitution of the following impact of the head and
helmet is 0.2, what are the velocities of the helmet and head after
their initial interaction?

P5.56

5.57 () In Problem 5.36, if the duration of the impact of the
head with the helmet is 0.008 s, what average force is the head
subjected to?

(b} Suppose that the simulated head alone strikes the surface at
6m/s, the coelficient of restitution iz 0.3, and the duration of the
impact is 0.002 s. What average force is the head subjected to?

558 Two small balls, each of mass m, hang from strings of
length L. The left ball is released from rest in the position shown.,
As a result of the first collision, the right ball swings through an
angle fi. Determine the coefficient of restitution,

0
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5.59 A 15kg object 4 and a 30kg objeét B undergo an oblique
central impact. The coefficient of restitution is ¢ = 0.8, Before
the impact, vz =—10im/s, and aftér the impact. v, =
(—15i+4) +2K)m/s. Determing, the velocity of 4 before the
impact and the velocity of B after the impact,

P5.59

5.60 The cue gives the cue ball 4 ve]ocity parallel to the y axis.
It hits the 8-ball B and knocks it straight injto the comer pocket, If
the magnitude of the velocity of the' cue ball just before the impact
is 2m/y and the coefficient of restitutionis ¢ = 1, what are the
velocity vectors of the two balls just'after the impact? (The balls are
of equal mass.)

P5.60

5.61 In Problem 5.60, what are the velogity vectors of the two

P5.58 balls just after the impact if the coefficient of restitution is e = 0,97
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5,62 Ifthe coefficient of restitution is the same for both impacts,
show that the cue ball’s path after two banks is parallel (o its
original path.

P5.62

5.63 The cue gives the cue ball A a velocity of magnitude 3 m/s.

The angle fi = 0 and the coefficient of restitution of the impact of

the cue hall and the 8-ball & is ¢ = 1. If the magnitude of the 8-
ball’s velocity affer the impact is 0.9 m/s, what was the coefficient
of restitution of the cue ball’s impact with the cushion? (The balls
are of equal mas

P5.63
5.64 What is the solution of Problem 5.63 if the angle ff = 10°?

5.65 What is the solution of Problem 5.63 if the angle f = 10°
and the coefficient of restitution of the impact between the (wo
balls is ¢ = 0.97

5.66 A ball is given a horizontal velocity of 3m/s at 2 m above
the smooth floor, Determine the distance D belween its first and
second bounces if the coefMicient of restitution is ¢ = 0.6.
[ e 3 11/ 3

-

EXS]

m N

£67 The velocity of the 170g hockey puck s
vp = (10§ — 4 jym/s. If you neglect the change in the velocity
vg = vy j of the stick resulting from the impact and the coefficient
of restitution is e = 0.6, what should 25 be to send the puck
towards the goal? v
Direction
of goal

20°

P5.67

5.68 In Problem 5.67, if the stick responds to the impact like an
object with the same mass as the puck and the coefficient of
restitution is e = 0.6, what should v¢ be to send the puck towards
the goal?

§5.69 In a forging operation, the 500N weight is lifted into
position 1 and released from rest. It falls and strikes a workpiece
in position 2. If the weight is moving at 5 m/s immediately before
the impact and the coefficient of restitution is e == 0.3, what ig itg
veloeity immediately after the impact?

4K mm

P5.469

570 1In Problem 5.69, suppose that the spring constant is
k = 1750 N/m, the springs are unstretched in position 2, and the
coefficient of restitution is 2 == 0.2, Determine the veloeity of the
weight immediately after the impact,

571 In Problem 569, suppose that the spring constant is
k = 2400 N/m, the springs are unstretched in position 2, and the
weight bounces 75mm aller impact. Find the coefficient of
restitution.
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Here we derive a result, analogous to the principle of impulse and momenturm,
that relates the time integral of a moment to the change in a quantity called the
angular momentum. We also obtain a useful conservation law: when the total
moment due to the external forces acting on an object is zero, angular
mementum is conserved.

Principle of Angular Impulse and Momentum

We describe the position of an object by the position vector ¥ of its centre of
mass relative to a reference point O (Figure 5.14(a)). Recall that we obtained
the very nseful principle of work and energy by taking the dot product of
Newton’s second law with the velocity. Here we obtain another useful result by
taking the cross product of Newton's second law with the position vector, This
procedure gives us a relation between the moment of the external forees about
Q and the object’s motion.
The cross product of Newton'’s second law with r is

o .
rxXFmrxmamrme‘: (5.18)

Notice that the time derivative of the quantity r x mv is

4 T % = (7 v)+{rx md—“i
T xeme) = | gpxem dt
— i ——““-.’

=0

{The first term on the right is zero because dr/dt = v, and the cross product of
parallel vectors 1s zero.) Using this result, we can write Equation (5.18) as

dHy
ZF = woe 19
rx - (519
where the vector
Ho =71 xmv (5.20)

is called the angular momentum about O (Figure 5.14{b)). If we interpret the
angular momentum as the moment of the linear momentum of the object about
O, this equation states that the moment r x £ F equals the rate of change of
the moment of momentum about O. If the moment is zero during an interval of
time, Hy is constant,

Integrating Equation (3.19) with respect to tme, we obtain

f " (E X B F)df = (Hy), — (Ho), (5.21)

The integral on the left is called the angular impulse, and this equation is

Figure 5.14

(a) The position vectar and the total external
force on an object.

{b) The angular momentum vector and the
right-hand rule for determining its direction.
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0

(b)

Figure 5.15

(a) Central-force motion

(b} Expressing the position and velocity in
eylindrical coordinates,

called the principle of angular impulse and momentum: the angular impulse
applied to an object during an interval of time is equal to the change in its
angular momentumn. 1f you know the moment ¥ x £ F as a function of time,
you can determine the change in the angular momentum.

Central-Force Moltion

If the total force acting on an object remains directed towards a point that is
fixed relative to an inertial reference frame, the object is said to be in central-
force motion, The fixed point is called the centre of the motion, Orbit prob-
lems are the most familiar instances of central-force motion. For example, the
gravitational force on an earth satellite remains directed towards the centre of
the earth.

If we place the reference point O at the centre of the motion (Figure
3.13(a)), the position vector r is parallel to the total force, so r x £ F equals
zero. Therefore Equation (5.21) indicates that in central-force motion, an
object’s angular momenturm is conserved:

Hy == constant (5.22)

In plane central-force motion, we can express r and v in cylindrical coordi-
nates (Figure 5. 15(b)):

r=re, V== 1,8 + o8y

Substituting these expressions into Equation (5.20), we obtain the angular
momentum:

Hy = (re,) x (v, & -+ vgeg) = mruge,

From this expression, we see that in plane central-force motion, the product of
the radial distance from the centre of the motion and the transverse component
of the velocity is constant:

rvg — constant (5.23)

In the following examples we show Irow you can use the principle of angular
impulse and momentwm and conservation of angular mementum lo analyse
motions of objects. If you know the moment r x LF during an interval of
time, you can calculate the angular impulse and determine the change in an
object’s angular momentum. In central-force motion —the total force acting
on an ohbject points towards a point Q-you know that the angular
momentum abour O is conserved.
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Example 5.5

A disc of mass m attached to a string slides on a smooth horizontal table imder the
action of a constant transverse force F (Figure 5.16). The string is drawn through
a hole in the table at (@ at constant velocity wg. At r=10,r=ry and the
trangverse velocity of the disc is zero. What is the discs velocity ag a function
of time?

SIRATEGY

By expressing » as a function of time, we can determing the moment of the forces on
the dise about (2 as a function of time. The disc’s angular momentum depends on its
velocity, so we can apply the principle of angular impulse and momentum (o obtain
information about its veloeity as a function of time.

SOLUTION

The radial position as a function of fime is 7= ry — vot. In terms of polar
coordinates (Figure (2)), the meoment about Q of the forces on the disk is

rx EF == re, x (—Te, + Fep) s F(rg ~ vpt) e,
where 7' is the tension in the string, The angular momentum at time ¢ is

Hy =t % mv = re,. x m{u, e, vyed)

= mug(rg — Vo) By

Substituting these expressions irto the principle of angular impulse and momentum,
we obtain

" (r % SF)dt = (Ho), — (Ho)

—1

f Frg —~ vol) &g dt = mug(re — vor) e, — @
0

Evaluating the integral, we obtain the transverse component of velocity as a function
of time:

[rur = (/21
(rg = volIm

-

The disc’s velocity as a finction of time is

[rot — (1723000 F .

Voo ) € ;
o {(rp — vof)m

Figure 5.16

>xC
4 \
d F
,/ 7 T

5

(€1) Expressing the mement in terms of
polar coordinates,

—remE
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Example 5.6

When an carth satellite is at perigee (the point at which it is nearest to the earth), the
magnitude of its velocity is vp == 7000m/s and its distance from the centre of the
earth is pp == 10 000km (Figure 5.17). What are the magniude of its velocity v,
and its distance r, from the earth at apogee (the point at which it is farthest from the
earth)? The radius of the earth 15 Rp = 6370 km.

STRATEGY

Because this is central-force motion about the centre of the carth, we know that the
product of the distance from the centre of the earth and the transverse component of
the satellite’s velocity is constant. This gives us one equation relating »4 and ry. We
can obtain a sccond equation relating »4 and ra by using conscrvation of energy.

SOLUTION

Figure 5,17 From Equation (5.23), conscrvation of angular momentum fequires that
FAVa == Fplp

| From Equation (4.27), the satellite’s potential energy in terms of distance from the

centre of the earth is
y = _meh
i ’
;- The sum of the kinetic and potential energies at apogee and perigee must be equal:
i
i
| lmvf,‘ - ——ngé = lmv% - ——ng%
ié 2 ¥4 2 Po

Substituting ra = rpvp/v, into this equation and rearranging, we obtain
X 29R2
(vg — DP)(*UA +op =2 ]*) =10
i a rplp
This cquation yiclds the trivial solution vs = wp and alse the solution for the
veloeity at apogee:

i 2 RE

A Bp £ p

: rptip

Substituting the values of g, Rp,rp and wp, we oblain v =4373m/s and
ra = 16 007 km.

g
[ i &7 T L o e
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5.72  An object located at r = 12i+4j — 3K (m) relative to a
point @ is meving 130m/s, and its angular momentum about () is
zero, What is its velogity veston?

573 The total external force on a 2kg object is
LF = 2ti+ 4j(N), where 7 is time in seconds. At time ¢ = 0,
its position and veloeity are r = 0, v = 0,

{a} Use Newtons second law to determine the object’s position r
and velocity v as functions of time.

(b) By integrating r x £F with respect to time, determine the
angular impulse from ) = 0 to ; = 6s.

(¢) Use your resulls from part (a) to determine the change in the
object’s angular momentum from 4 =0 to ; = 6.

5.74  An astronaut moves in the x-y plane at the cnd of 2 10m
tether attached to a large space station at (3, The total mass of the
astronaut and his equipment is 120 kg,

(a) What is his angular momentym about ¢ before the tether
becomes taut?

(b) What is the magnitude of the component of his velocity
perpendicular to the tether immediately after the tether becomes
taut?

2im/s

P5.74

§.75 In Problem 574, if the coefficient of restitution of the
‘impact’ that occurs when the astronaut reaches the end of the
tether ig ¢ = (.8, what are the x and p components of his velocity
immediately after the tether becomes taut?

5.76 In Example 8.5, determinc the disk’s velocity as a function
of time if the force is £ = Ct, where C is a constant.

Problems

8.77 A 2kg disc slides on a smooth' horizontal table and is
connected 1o an elastic cord whosg tension is T = 6r N, where » ig
the radial position of the disc in metres. If the disk is at # == 1 m and
is given an initial velocity of 4m/s in the iransverse direction, wha
are the magnitudes of the radial and transverse components of itq
velocity when 7 = 2 m?

P5.77

578 In Problem 577, determine the maximum value of r
reached by the disc.

5.79 A disc of mass m slides on a smooth horizental table and is
aitached to a string that passes through a holc in the table,
{(a) Tfthe mass moves in a circular path of tadius ry with transverse
velocity v, what is the tengion 7'
(b} Starting trom the initial condition described in part (a), the
tension is increased in such a way that the string is pulled through
the hole at a constant rate until » = j'-rf,. Determine 7 as a function
of » while this is taking place.
(¢) How much work is done on the mass in pulling the string
through the hole as described in part (b)?

P5,79
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580 Two gravity research satellites {my = 250 kg, my = 50kg)
are tethered by a cable. The satellites and cable rotate with angular
velocity wy = 0.25 revolution per minute, Ground controllers
order satellite 4 to slowly unreel 6 m of additional cable, What is
the angular velocity afterwards?

P5.80

5.81 A satedlite at »p = 16 000 km from the centre of the earth is
given an initial velocity »g = 6000m/s in the direction shown.
Determine the magnitude of its transverse component of velocity
when » == 32 000 km. The radius of the earth is 6370 km.

P5.81

5.82 InProblem 5.81, determine the magnitudes of the radial an‘:ll

iransverse  components of the gatellite’s velocity whe
r =24 000 km.
5.83 [n Problem 5.81, determine the maximum distance #

reached by the satellite,

the cciling at O moves with velocity v, in a horizontal circular path
of radius ry. The string is then drawn threugh the hole until the bal
moves with velocity vp in a horizontal circular path of radius rp.
Use the principle of angular impulse and momentum (o show that
Pty ™= FRUB.

Strategy: el € be a unit vector that is perpendicular to the
ceiling. Although this is not a central-force problem — the ball's]
weight does not point towards O - you can  show thay
e (rx LF) =10, so that e+ Hy i3 conserved.

5.84 A ball suspended from a string that goes through a hole in|
|

S P5.84
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In this section we use conservation of linear momentum to determine the force
exerted on an object as a result of emitting or absorbing a continuous flow of
mass. The resulting equation applies to a variety of situations including
determining the thrust of a rocket and calculating the forces exerted on objects
by flows of liquids or granular materials.

suppose that an object of mass m and velocity v is subjected to no external
forces (Figure 5.18(a)) and it emits an element of mass Amy with velocity ve
relative to the object (Figure 5.18(b)). We denote the new velocity of the
object by v 4+ Av. The linear momentum of the object before the element of
mass is emitted equals the total linear momentum of the object and the element
afterwards.

mv = (m — Am}v + Av) + Amp(v -+ vp)

(a) (b)

Evaluating the products and simplifying, we obtain
mAv -+ Ampvp - Ampy = () (5.24)

Now we assume that, instead of a discrete element of mass, the object emils a
continuous How of mass and that Amy is the amount emitted in an interval of
time Ar. We divide Equation (5.24) by At and write the resulting equation as

Av  Amg Am; Av
e N e D "
mm+At ve At A !

Taking the limit of this equation as A¢ — 0, we obtain

de ma
dr '

where a is the acceleration of the object’s centre of mass. The term dimy/df is
the mass flow rate, the rate at which mass flows from the object. Comparing
this equation with Newton’s second law, we conclude that a flow of mass from
an object exerts a force

Fp=—— .
Fe 7 \Z3 (5.25)

on the object. The force is proportional to the mass flow rate and to the
magnitude of the relative velocity of the flow, and its direction is opposite to
the direction of the relative velocity. Conversely, a flow of mass # an object
exerts a force in the same direction as the relative velocity.

Figure 5.18

An object’s mass and veloeity
{a) before and {b) after cmitting
an clement of mass,
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Figure 5.19
A rocket with its exhaust alighed with the

The ¢lassic example of a force ereated by a mass flow is the rocket (Figure
5.19). Suppose that it has a uniform exhaust velocity v¢ parallel to the x axis|
and the mass flow rate from the exhaust is dms/dr. Tn terms of the coordinate
system shown, the velocity vector of the exhaust is vp = —v¢i, so from]|
Equation (5.25) the force exerted on the rocket is

dmg dmy
AR S |

dr dt

t= -

X axis,

The force exerted on the rocket by its exhaust is towards the right, opposite to
the direction of the flow of its exhaust. 1f we assume that no external forces act
on the rocket, Newton’s second law is

dmy dv

The mass flow rate of fuel is the rate at which the rocket’s mass is being
consumed. Therefote the rate of change of the mass of the rocket is

dm B dmg

dr o dt

Using this expression, we can write Equation (5.26) as
dv = —vp—
m

Suppose that the rocket starts from rest with initial mass my. If the exhaust
velocity is constant, we can integrate this equation to determine the velocity of
the rocket as a function of its mass:

v d
m
f di)zjwm'vfm
] . "

The result is

2= veln (T-“) (5.27)

m

The rocket can gain more velocity by expending more mass, but notice that
inereasing the ratio mg/m from 10 to 100 only increases the velocity attained
by a factor of 2. In contrast, increasing the exhaust velocity results in a
proportional increase in the rocket’s velocity.
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Example 5.7

A hotizontal stream of water with velocity vy and mass flow rate dmy /@t hits a plate
that deflects the water in the horizontal plane through an angle 8 (Figure 5.20),
Assume that the magnitude of the velocity of the water when it leaves the plate is
approximately equal to vy, What force is exerted on the plate by the water?

STRATEGY

We can determine the force exerted on the plate by treating the part of the stream in
contact with the plate as an “object’ with mass flows entering and leaving it,

SOLUTION

In Figure (a) we draw the free-body diagram of the stream in contact with the plate.
Streams of mass with velocity vy enter angd leave this ‘object’, and Fp is the force
exerted on the stream by the plate. It is the force ~Fp exerted on the plate by the
stream that we wish to determine. First we consider the departing stream of water,
The mass flow rate of water leaving the free-body diagram must be cqual to the
mass flow rale entering. In terms of the coordinate system shown, the velocity of the
departing stream is

¥p = UpCos di 4 v 8N 6]

Let Fy, be the force exerted on the object by the departing stream,
From Equation (5.25),

dny dmy
Fpy = sy, oo 2 0801+ vpsindj
D — g (vocosdi+ vy sindj)
The velocity of the entering strcam is v¢ = vg i. Since this flow is entering the object
rather than leaving it, the resulting force Fg is in the same direction as the relative
velocity:

dm r
dt

dﬂ'If

Fy = @

¥, = 'ugi

The sum of the forces on the free-body diagram must equal zero,
Fp+Fg-Fp =0

so the force ¢xerted on the plate by the water is (Figure (b))

~Fp = FD +F’;3 - %'D{J[(] — Q08 ﬂ)i —Sil'laj]

DISCUSSION

Thas simple example gives you ingight inlo how turbine blades and aeroplane wings
can create forces by deflecting streams of liquid or gas (Figure (c)).

Figure 5.20

iy N U
s
|
" AN
:,”I N

{¢) Pattern of moving fluid around
an agroplane wing,
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Example 5.8

Figure 5.21

Application to Engineering

Jet Engines

In a turbulent engine (Figure 5.21), a mass flow rate dni./dt of inlet air enters the
compressor with velocity »;. The air is mixed with fuel and ignitcd in the
combustion chamber. The mixture then flows through the turbine, which powers
the compressor. The exhaust, with a mass flow rate equal to that of the air plus the
mass flow rate of the fuel, dm/dt + dmg/dy, exits at a high exhaust velocity »,,
exerting a large force on the engine. Suppose that dmg/dt = 13.5kg/s and
dmefdt = 0.13kg/s. The inlet air velocity is v; = 120m/s, and the exhavst velocity
is ve = 490 m/s. What is the engine’s throst?

dm
- dt
dm
R
dt

STRATEGY

We can determine the engine’s thrust by using Equation (5.25). We must include
both the force exerted by the engine’s exhaust and the force exerted by the mass flow
of air entering the compressor to determine the net thrust.

SOLUTION

The engine’s exhaust exerts a foree to the left equal to the product of the mass Alow
rate of the fuel - air mixture and the exhaust velocity. The inlet air exerts a force to
the right equal to the product of the mass flow ratc of the inlet air and the inlet
velocity. The engine’s thrust (the net force to the icft) is

dm, dmy dm,,
T"(df * d[)’* “a
= (13,5 + 0.13)(490) — (13.5)(120)
= 5059 N




DESIGN ISSUES

The jet engine was developed in Europe in the years just prior to World War 11,
Although the turbojet engine in Figure 5.21 was a very successful design that
dominated both military and commercial aviation for many years, it has the
drawhack of relatively large fuel consumption.

During the past 30 years, the fan-jet engine, shown in Figure 5,22, has become
the most commonly used design, particularly for commercial acroplanes. Part of its
thrust is provided by air that is accelerated by the fan. The ratio of the mass flow rate
of air entering the fan, dmm, /dt, to the mass flow rate of air entering the compressor,
dame, fdt, is called the bvpass rativ.

The force exerted by a jet engine’s exhaust cquals the product of the mass flow
rate and the exhaust velocity. In the fan-jet engine, the air passing through the fan is
not heated by the combustion of fuel and therefore has a higher density than the
exhanst of the turbojet engine. As a result, the fan-jet engine can provide & given
thrust with a lower average exhaust velocily. Since the work that must be expended
(o create the thrust depends on the kinetic energy of the exhaust, the fan-jet engine
creates thrust more efficiontly,
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Figure 5.22

A fan-jet engine. %Part ofi the entering mass
flow of air is accelerated by the fan and

does not enter thé compressor.
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&

Problems

5.85 The Cheverton fire-fighting and rescue boat can pump 5.87 A front-end loader moves at 3km/hr and scoops up
3.8kg/s of water from each of its two pumps at a velocity of  30000kg of iron ore in 3 5. What horizontal force must its tyres
4dm/s, If both pumps point in the same direction, what iotal force  exert?

do they exert on the boat?

P5.87

5.88 The snowblower moves at 1 m/s and scoops up 750 kg/s of
ps.85  snow Determine the force exerted by the entering flow of snow,

5.86 A vozzle mounted on a fire truck emits a stream of water ut
24 m/s with a mass flow rate of 50kg/s. Determine the moment
about 4 due to the force exerted by the steam of water.

P5.88

5.89 If you design the snowblower in Problem 5.8% so that it
blows snow out at 45° above the horizontal from a port 2 m above
the ground and the snow lands 20 m away, what horizontal force is
excrted on the blower by the departing flow of snow?

P5.84




590 A nozzle ejects a stream of water horizontally at 40m/s
with a mass flow rate of 30kg/s, and the stream is deflected in the
horizontal plane by a plate. Determine the force exerted on the
plate by the stream in cases {a), (b)), (¢).

P5.90

591 A stream of water with velocity 80im/s and a mass flow
rate of 6kg/s strikes a turbine blade moving with constant velocity
20im/s.

(a) What force is exerted on the blade by the water?

(b} What is the magnitude of the velocity of the waler as it leaves
the blade?
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592 The nozzle 4 of the lawn spriiikler islocated at (175, ~12,
12} mm. Water exits each nozzle at &im/s with a mass flow rate of
0.25kg/s. The direction cosings of the flow direction from 4 are
(:-/'-5 - :}7 , ;15). What is the total moment about the # axis exerted on

the sprinkler by the flows from all four nozzles?

pP&.92

593 A 45kg/s flow of gravel exits the chute at 2m/s and falls
onto a conveyer moving at 0.3m/s. Determine the components of
the force exerted on the conveyer by the flow of gravel if 8 = 0.

x  P5.93

5.94 Solve Problem 5.93 if = 30°.
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595 A toy car is propelled by water that squirts from an internal
tank at 3 m/s relative to the car. Tf the mass of the empty caris 1 kg,
it holds 2 kg of water, and you neglect other tangential forces, what
is its top speed?

P5.95

6.96 A rocket consists of a 2 Mg payload and a 40 Mg boostet.
Eighty per cent of the booster’s mass is fuel, and ite exhaust
velocity is 1km/s. If the rocket starts from rest and you neglect
external forces, what veloeity will it reach?

Payload

Booster

P5.96

597 A rocket consists of a 2 Mg payload and a booster, The
bouoster has two stages whose total masg is 40 Mg, Eighty per cent
of the mass of each stage is fuel, When the fuel of stage 1 is
expended, it is discarded and the motor in stage 2 is ignited. The
exhaust velocity of both stages is 1 km/s. Assume that the rocket
starts from rest and neglect external forces, Determine the velocity
reached by the rocket if the two stages are of equal mass and
compate your results to the answer to Problem 5.96. |

hd I
Payload |
|

P5.97

598 In Problem 5.97, determine the velocity reached by the
rocket for three scts of values of the masses of the two stages:
(8) my=25Mg, my=15Mg; (b} my == 35Mg, my = 5Mg
(c) iy = 38 Mg, mp = 2 Mp.

5.99  Aftor its rocket motor bums out, a rocket sled is slowed by a
water brake. A tube extends info a trough of water so that water
flows through the tube at the velocity of the sled and flows out in a
direction perpendicular 1o the motion of the sled. The mass flow
rate through the tube is prd, where p = 1000kg/m* is the mass
density of the watcr, » is the flow velocity, and 4 == 0.01m” is the
cross-sectional area of the tube, The mass of the sled is 50kg.
Negleoting friction and aerodynamic drag, determine the time and
the distance regquired for the sled to decelerate from 300m/s to
30m/s.

P5.99

5.100 Suppose that you grasp the end of a chain that weighs
45 N/m and lift it straight up off the floor at a constant specd of
0.6m/s.
(a) Determine the upward force Fyou must exert as a function of
the height .
() How much work do you do in lifting the top of the chain to
s=12m?

Strategy: Treal the part of the chain you have lifted as an objest
that is gaining mass.

P5.100




5.101 Solve Problem 5.100, assuming that you lift the end of the
chain straight up off the floor with a constant aceeleration of
0.6 m/s.

5.102 It has been suggested that a heavy chain could be used to
gradually stop an acroplane that rolls past the end of the runway. A
hook attached to the end of the chain engages the plane’s nose
wheel, and the plane drags an increasing length of the chain as it
rolls. Let m be the aeroplane’s mass and »q its initial velocity, and
let p; be the mass per unit length of the chain. If you neglect
friction and aerodynamic drag, what is the agroplane’s velocity as a
function of s7

P5.102

8.103 In Problem 5,102, the friction force exerted on the chain
by the ground would actually dominate other forces as the distance
s mercases. If the coefficient of kinetic friction between the chain
and the ground is g, and you neglect all forces except the friction
force, what is the aeroplane’s velocity as a function of 57

Problems 5.104-5,108 cre reluted to Example 5.8.

5,104 The turbojet engine in Figure 5.21 is being operated on a
test stand. The mass flow rate of air entering the compressor is
13.5kg/s, and the mass flow rate of fuel is 0.13 kg /5. The effective
velocity of the air emtering the compressor is zero, and the cxhaust
veloeity is 500 m/s. What is the thrust of the engine?

5.105 Suppose that the engine deseribed in Problem 5.104 is in
an aeroplane flying at 400 km/hr, The effective velocity of the air
entering the inlet is equal to the aeroplane’s velocity. What is the
thrust of the enging?
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5.106 A turbojet engine’s thrust réverser causes the exhaust to
exit the engine at 20° from the engine centreling. The mass flow
rate of air entering the compressor is 45kg/s and it enters at
601m/s. The mass fow rate of fuel is 1.5kg/s, and the exhaust
velocity is 360m/s. What braking force does the engine exert on
the agroplane?

P5.104

5,107 The 13.6 Mg aeroplane is moving at 400 km/ht. The total
mass flow rate of ait entering the comptessors of its turbojet
engires s 280kg/s, and the total mass. fow rate of fuel is
2.6kg/s. The effective velocity of the air eniering the compressors
is equal to the aeroplane’s velocity, and the exhaust velocity is
480 m/s. The ratio of the lift force L to the drag foree D is 6, and
the z component of the acroplane’s acceleration is zero. What is the
x component of its acccleration?

P5.107

5108 The fan-jet engine in Figure 5.22 is similar to the Pratt and
Whitney JT9D-3A engine used on early models of the Boeing 747.
When the aeroplane beging its takedff run, the velocity of the air
entering the compressor and fan is negligible. A ‘mass flow rate of
560kg/s enters the fan and is accelerated to 270 m/s. A mass flow
rate of 112kg/s enters the compressor. The thass flow rate of fuel is
3.36kg/s and the exhaust velocity is 363m/s (2) What is the
bypags ratio? (b) What is the thrugt of the engine? (c) If the
agroplane weighs 2,22 MN, what is its initial acceleration? (It has
four engines.)
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Chapter Summary

Principle of Impulse and Momentum

The linear impulse applied to an object during an interval of time is equal to
the change in its linear momenturn;

2
f ZFdt = mvy —mwv; Equation (3.1)
el

This result can also be expressed in terts of the average with respect to time
of the total force:

(tz — Z Wy = mvy — my, Equation (5.2)

Conservation of Linear Momentum

If objects 4 and B are not subjected to external forces other than the forces
they exert on each other (or if the effects of other external forces are negli-
gible), their total linear momentum is conserved,

m4v4 -+ mpvy = constant Equation (5.4)
and the velocity of their common centre of mass is constant,

Impacts

If colliding objects are not subjected to external forces, their total linear
momentum must be the sarme before and after the impact. Even when they are
subjected to external forces, the force of the impact is often so large, and its
duration so brief, that the effect of external forces on their motions during the
impact is negligible.

If objects A and B adhere and remain together afier they collide, they are
said to undergo a perfectly plastic impact. The velocity of their common
centre of mass before and after the impact is given by

v M V1 -+ MYy

Equation (5.7)
My -+ My

Central Impacts

In a direct central impact (Figure (a)), linear momentum is conserved,

Mv4 + MRug = Mat'y + Mgty Equation (5.8)

Before impact After impact
(a)




and the velocities are related by the coefficient of restitntion:

2

vy = v,
@ mm it Equation (5.14)
Dy — g

If e = 0, the impact is perfectly plastic. If e = 1, the total kinetic energy is
conserved and the impact is called perfectly elastic.

In an oblique eentral impact (Figure (b)), the components of velocity in
the y and z directions are unchanged by the impact:

V), = (va), (), = (v
( A=t ) py = 2 Equation (5.5)
In the x direction, linear momenturn is conserved,

ma(V0)y + mg(vp), = ma(v), -+ mg(vy),  Equation (5.16)

and the velocity components are refated by the coefficient of restitution:

) — (),

J 0. = (e, Equation (5.17)

(b)

Principle of Angular Impulse and Momentum

The angular impulse about a point @ applied to an object during an interval of
time is equal to the change in its angular momenturm about O:

f lz(r x TF)dt = (Hy), — (Hy),  Equation (5.21)

i
where the angular momentum ig

Hy =1 x mv Equation (5.20)
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Central-Force Motion

If the total force acting on an object remains directed towards a fixed point, the
object is said to be in central-force motion, and its angular momentum about
the fixed point is conserved:

H; == constant Equation (5.22)

In plane central-force motion, the product of the radial distance and the
trangverse component of the velocity is constant:

tug = constant Equation (5.23)

Mass Flows

A flow of mass from an object with velocity vy relative to the object exerts a
force

) dmy :
Fp = — T Vi Equation (5.25)

on the object, where dmg/dt is the mass flow rate, The ditection of the force is
opposite to the direction of the relative velocity. A flow of mass te an object
exerts a force in the same direction as the relative velocity.

Review Problems

5.109 An aircraft arresting system is used to stop aeroplanes  5.111 A spacceraft is in an elliptic orbit around a large asteroid.
whose braking systems fail. The system stops a 47.5 Mg aeroplane  The acceleration due to gravity of the asteroid is unknown, When
moving at 80 m/s in 9.15 5, the spacecraft is at its elosest approach, its distance from the ¢entre
(a) What impulse is applied (o the aeroplane during the 9.15 «? of the asteroid is rp == 2 km and its velocity is vp = 1 m/s. When it
(b} What is the average deceleration to which the passengers are  is at its farthest point from the asteroid, its distance is ra =6 km.
subjected? What is the velocity va?

‘ - /
\/ PS.111
P5.109

5.110 The 1895 Austrian 150 mm howitzer had a 1.94 m long
barrel, 1 muzzle velocity of 300 my/s, and fired a 38 kg shell. If the
shell took 0.013 s to travel the length of the barrel, what average
force was exerted on the ghell?




5112 It Problem 5111, what ig the asteroids mass? If you
agsume that the asteroid is approximately spherical with an average
mass density of 7000 kg/m?, what is its radius?

Strutegy: Use conservation of energy and express the gravita-
tional potential energy in the form V = —Gmma/r, where
G = 6.67 x 107" N.am®/kg® is the universal gravitational constant
and mA is the mass of the asteroid.

5113  An athlete throws a shot put weighing 72N. When he
toleases it, the shot put is 2.1m above the ground and its
components of velocity are v, = 2.3m/s, v, = §m/s

{a} If he accelerates the shot put from rest in 0.8 s and you assume
as a first approximation that the force F he exerts on it is constant,
use the principle of impulse and momentum to determine the x and
¥ components of F.

(b) What is the horizontal distance from the point where he
releases the shot put to the point where it strikes the ground?

¥

P5.113

5114 The 3000kg pickup truck A moving at 12m/s collides
with the 2000 kg car B moving at 10 m/s.

(a) What is the magnitude of the velocity of their common centre
of mass after the impact?

{by If you treat the collision as a perfectly plastic impact, how
much kinetic energy is lost?

114
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5115 Two hockey players (my = BOkg, mp = 90kg) converg-
ing on the puck at x = 0, y = 0 become entengled and [all. Before
the collision, vy = (9§ +4j)m/s and vy = (~3i+ 6 )m/s, If the
coefficient of kinetic friction between the players and the ice is
thy = 0.1, what is their approximate posifion when they siop
sliding?

P5.114

8.116 An acceptable handball will bounck to 4 height between
1.07m and 1.22 m when it is droppcdéonto a hardwoed floor from a
height of 1.78 m. What is the acceptable range of coefficients of
restitution for handballs?

5117 A Lkg ball moving horizontal at 12m/s strikes a 10kg
block. The coefficient of restitution of the impact is ¢ = 0.6, and
the coefficient of kinetic friction between the block and the inclined
surface is p, = 0.4. What distance .does the block slide before
stopping?

P5.117
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§.118 A Peace Corps volunteer designs the simple device shown
for drilling water wells in remoto arcas. A 70kg ‘hammer’, such as
a section of log or a steel drum partially filled with concrete, is
hoisted to /r == 11m and allowed to drop onto a prolective cap on the
section of pipe being pushed into the ground. The mass of the cap
and section of pipe is 20 kg. Assume the coefficient of restitution is
nearly zero.

(a) What is the velocity of the cap and pipe immediately after the
impact?

{by If the pipe moves 30mm downwards when the hammer is
dropped, what resistive force was exerted oa the pipe by the
ground? (Assume the resistive force is constant during the motion
of the pipe.}

P&.118

8.119 A tugboat (mass =40Mg) and a barge (mass =160 Mg)
are stationary with a slack hawser connecting them. The tugboat
accelerates to 2 knots {one knot= 1852 m/hr) before the hawser
becomes taut. Determine the velocities of the tugboat and the barge
Jjust after the bawser becomes taut (a) if the “impact’ is perfectly
plastic (e =0); (b) if the ‘impact’ is perfecily elastic (e = 1).
Neglect the forces exerted by the wates and the tugboats engines.

P5.119

5120
impulsive force exerted on the tugboat in the two cases if the
duration of the “impact’ is 45 Neglect the forces exerted by the
water and the tugboat’s engines during this period.

In Problems 5.119, determine the magnitude of the

5.121 The balls are of equal mass m. Balls 8 and € are
connected by an unstreiched linear spring and are stationary, Ball
A moves towards ball 8 with velocity v,. The impact of 4 and 8 is
perfectly elastic (¢ = 1). Neglect external forges,

(a) ‘What is the velocity of the cormon centre of mass of the balls
B and C immediatcly after the impagct?

(b) What is the velocity of the cormmon centre of mags of the ballg
B and ¢ at time ¢ after the impact?

P5.121

5122 1n Problem 5.121, what is the maximum compressive
force in the spring as a result of the impact?

5.123 Supposc you interpret Problem 5.121 as an impact
between the ball A and an ‘object’ £ consisting of the connected
balls 8 and C.

{a) What is the coefficient of restitution of the impact between A
and [?

(b} If you consider the total energy after the impact to be the sum
of the Kinetic cnergies ém(-vji)z ~i~é(2m)(vb)2, where ), is the
velocity of the centre of mass of D after the impact, how much
energy is ‘lost’ as a result of the impact?

{¢} How much energy is actually lost as a result of the impact?
(This problem is an interesting model for one ofthe mechanisms of
energy loss in impacts between objects. The energy ‘loss’ calcu-
lated in part (b} is transformed into ‘internal energy’—the vibra-
tional motions of B and C relative lo their common centre of mass. )

5.124 A small object starts from test at A and slides down the
smooth ramp, The coefficient of restitution of its impact with the
floor is e = 0.8, At what height above the floor does it hit the wall?

P5.124




5.125 A baskeiball dropped on the floor from a height of 1.2m
rebounds to a height of 09m. In the ‘lay-up’ shot shown, the
magnitude of the ball’s velocity is 1.5m/s and the angles between
ils velocity vector and the positive coordinate axes are
f, = 42°, 0, == 68° and B, = 124° just before it hits the backboard,
What are the magnitude of its velocity and the angles between its
velocity vector and the positive coordinate axes just after it hits the
backboard?

P5.125

5.126 Tn Problem 5.125, the basketball’s diameter is 240 mm, the
coordinates of the «centre of the basket rim are
xw 0,y 0,z 300mm, and the backboard lies in the x-p
plane. Determine the x and ¥ coordinates of the point where the
ball must hit the backboard so that the centre of the ball passes
threugh the centre of the basket rim.

8127 The snow is 0.6m deep and weighs 3150N/m® the
snowplough is 2.4m wide, and the truck fravels at 8km/hr
What force does the snow exett on the truck?

P5.127
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|
5.128 An empty 25 kg drum, 1 m in diameer, stands on a set of
scales, Water begins pouring into the drum: at 550 kg/min from
24m above the bottom of the drumn. The density of water is
approximatcly 1000 kg/m". What do the scales read 40 s after the
water starts pouring?

@ P5.128

5.129 The ski boat’s jet propulsive system: draws waler in at 4
and cxpels it at B at 25 m/s relative tlo the Boal. Assume that the
water drawn in enters with no horiz?mal vaiocity relative to the
surrounding water. The maximum mags ﬁowlrate of water through
the engine is 36 kg/s. Hydrodynamic dk‘ag exelts a force on the boat
of magnitude 240N, where v is the boat’s v’lelor:ity in metres per
second, I you neglect aerodynamic drag, what is the ski boat’s
maximum velocity? : :

es.29

5.130 The ski boat in Problem 5.129 wcigins 12.5kN. The mass
flow rate of water through its engine is 36kg/s, and it starts from
rest at ¢ == (. Determine the boat’s velocity (a) at £ == 20s; (b) at
1= G0 s, i

5.131 A crate of mass m slides across the smooth floor pulling
chain from a stationary pile. The mass per unit length of the chain
is p,. If the velocity of the crate is|vy when 5 =0, what is its
velocity as a function of s7 5

P5.131

Project 5.1 By making measurements, deterine the coefficient of
restitution of a tennis ball bouncing| on a tigid surface. Try to
determine whether your result is inde endenk of the velocity with

whigh the ball strikes the sutface. Wite a brief report describing
your procedure and commenting on possible sources of error,




he gear that is engaged deter

mines the ratio of the angular

veloeity of the pedals and
sprocket to that of the bicycle's rear
wheel, The ratio of the sprocket’s
radius to that of the gear equals the
ratio of the wheel’s angular velocity to
that of the sprocket. In this chapter
you will ebtain results of this kind by
modelling objects as rigid bodies.




"1 Chapter 6

Planar Kinematics
of Rigid Bodies

NTIL now, we have considered situations in which you

could determine the motion of an object’s centre of; mass
by using Newton’s second law alone. But you must often
determing an object’s rotational motion as well, even when
your only objective is to determine the motion of its centre of
mass. Moreover, the rotational motion itself can be of interest
or even central to the situation you are considering, as in the
motions of gears, wheels, generators, turbines and gyro-
scopes.

In this chapter we discuss the kinematics of objects, the
description and analysis of the motions of objects without
consideration of the forces and couples that cause them. In
particular, we show how the motions of individual points of an

object are related to the object’s angular motion.

231
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6.1 Rigid Bodies and Types of
Motion

If you throw a brick (Figure 6.1(a)), you can determine the motion of its centre
of mass without having to be concerned about its rotational motion. The only
significant force is itg weight, and Newton’s second law determines the
acceleration of its centre of mass. But suppose that the brick is standing on the
floor, you tip it over (Figure 6.1(b)), and you want to determine the motion of
its centre of mass as it falls. In this case, the brick is subjected to its weight and
also a force exerted by the floor. You cannot determine the force exerted by the
floor, and the motion of the brick’s centre of mass, without also analysing its
rotational motion,

Figure 6.1

(a} A thrown brick—its rotation
doesn’t affect the motion

of #1s centre of mass.

(b} A tipped brick —the rotation
and the motion of the centre of

mass arc interrelated.

{a}

{b)

Before we can analyse such motions, we must consider how to describe
them. A brick is an example of an object whose motion can be described by
treating it as a rigid body. A rigid body is an idealized model of an object that
does not deform, or change shape. The precise definition is that the distance
between every pair of points of a rigid body remains constant, Although any
object does deform as it moves, if its deformation is small you can approx-
imale ity motion by modelling it as a rigid body. For example, you can model a
twirler’s baton in normal use as a rigid body (Figure 6.2(a)), but not a fly-
casting rod (Figure 6.2(b)).

To describe a rigid body’s motion, it is sufficient to describe the motion of a
single point, such as the centre of mass, and the rigid body’s rotational motion
about that point. Some particular types of motion occur frequently in appli-
cations, To help you visvalize them, we use a coordinate system that is fixed
relative to the rigid body and so moves with it. Such a coordinate system is
said to be body-fixed.

Figure 6.2

(a) A baton can be modelled as
a rigid body.

(b) A fishing rod is too Hexible
under normal use to model

ag 3 rigid body.

(a1}




6.1

Translation 1f a rigid body in motion does not rotate, it is said to be in
translation. Every point of a rigid body in translation has the same veloeity
and acceleration, so you completely describe the motion of the rigid body if
you describe the motion of a single point. The point may move in a straight
line, or it may undergo curvilinear motion. The directions of the axes of a
body-fixed coordinate system remain constant (Figure 6.3(a)). For example,
the child’s swing in Figure 6.3(b) is designed to translate so that it will be
easier to ride. Each point of the swing moves in a circular path, but the swing
does not rotate it remains level.

Rotation About o Fixed Axis  After translation, the simplest type of rigid-
body motion is rotation about a fixed axis. For cxample, in Figure 6.4(a) the z
axis of the body-fixed coordinate system remains fixed and the x and y axes
rotate about the z axis. Each point of the rigid body not on the axis moves in a
circular path about the axis. A disc in a compact dise player and the rotor of an
electric motor (Figure 6.4(b)) are examples of objects rotating about a fixed
axis. The motion of a ship's propeller relative to the ship is also rotation about
a fixed axis. We discuss this type of motion in more detail in the next section,

() (b}
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Figure 6.3

(a) An object in translation does
not rotate.

{(b) The translating swing rermains
level, '

Figure 6.4

(a) A rigid body rotating about
the z axis.

(b) 1f the motoi’s framg is
stationary, its rotor rotates
about a fixed axis.
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= Plang of
the mation

Figure 6.5

(a} Two-dimensional, or planar, motion.
(h) A wheel in planar motion.

Translation, rotation about a fixed axis, and
plarar motion irf an automobile engine.

Two-Dimensional Mofion In this chapter we are concerned with twod
dimensional motions of rigid bodies. A rigid body is said to undergo two
dimgnsional, or planar, motion if its centré of mass moves in a fxed plang
and an axis of & body-fixed coordinate system remains perpendicular to thd
plane (Figure 6.5(a)}. We refer to the fixed plane as the plane of the motion
Rotation of a rigid body about a fixed axis is a special case of two-dimensional
motion. When a car moves in a straight path, its wheels are in two-dimensional
motion (Figure 6.5(h)).

(b

The components of an internal combustion engine running on a test stand)
illustrate these three types of motion (Figure 6.6). The pistons translate within
the cylinders. The connecting rods are in two-dimensional motion, and the)
crankshaft rotates about a fixed axis.

We begin our analysis of rigid-body motion in the next section with al
discussion of rotation about a fixed axis. In this type of motion, peints of the
rigid body move in circular paths about the fixed axis. We can therefore use
results developed in Chapter 2 for the motion of a point in a circular path.
Using normal and tangential components, we express the velocity and accel-
eration of a point of the rigid body in terms of the rigid body’s angular velocity
and angular acceleration. In the following sections we consider general two-
dimensional motion and obtain expressions relating the relative velocity and
acceleration of points of a rigid body to its angular velocity and angudar,
acceleration. With these relations we analyse particular examples of gereral
two-dimensional motion, such as rolling, and also analyse motions of con-
nected rigid bodies.

Figure 6.6

Pistomn
(translalion)

)
Conmecting rod ~———— F
(general planar mntim))

Crankshaft”
(rotalion)
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6.2 Roftation Abouf a
Fixed Axis

FIXED AXIS 235

We can introduce some of the concepts involved in describing the motion of a
rigid body by first considering an object rotating about a fixed axis. Consider a
body-fixed straight line within such an object that is perpendicular to the fixed
axis. To describe the object’s position, or orientation about the fixed axis, we
specify the angle 0 between this body-fixed line and a reference direction
(Figure 6.7). The object’s angular velocity @, or rate of rotation, and its
angular acceleration x are

40 do  d°
W= :_'1*;* o == mg}w m W&“ﬁ* (61)
Figure 6.7

™ Fixed axis Specifying the orientation of dn objec

Body-fixed P
i rotating about a fixed axis.

line .

™ Reference
direction

Each point of the object not on the fixed axis moves in a circular path about
the axis. Using our knowledge of a point in a circular path, we can relate the
velocity and acceleration of the motion of a point to the object’s angular
velocity and angular acceleration. In Figure 6.8, we view the object in the
direction parallel to the fixed axis. The velocity of a point at a distance # from
the fixed axis is tangent to its circular path (Figure 6.8(a)) and is given in terms
of the angular velocity of the object by

(6.2)

V=P

A point has components of acceleration tangential and normal to its circular
path (Figure 6.8(b)). In terms of the angular velocity and angular acceleration
of the object, the components arc given by

(6.3)

Figure 6.8

——

<0

-,
4

(a) ]

(a) Velocity and (b) accelergtion of a point
of a rigid body rotating about a fixed axis,
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With these relations we can analyse problems invelving objects rotating
about fixed axes, For example, suppose that we know the angular velocity o
and angular acceleration oy of the left gear in Figure 6.9, and we want td
determine ey and 2z, Because the velocities of the gears must be equal at /
(there is no relative motion between them at £),

Fatr g == Fplip

80 wg = (rq/rgws. Then, either by taking the time derivative of this equatioi|
or by equating the tangential components of acceleration at F, we obtai
g = (rq/ra)g.

Figure 6.9

Relating the angular velocities and angular
secelerations of meshing gears,

In the following example we demonsirate the analysis af motions of objecty
rotating about fixed axes. You can use Egquations (6.1) to unalyse fhq
angular motions and use Egquations (6.2) and (6.3} to determine the
velocities and accelerations of points,
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Example 6.1

Gear 4 of the winch in Figure 6.10 turns gear 8, raising the hook H. If the gear A
starts from rest at £ = 0 and its clockwise angular acceleration is s = 0.2/ 1ad/s?,
what vertical distance has the hook H risen and what is its velocity at 7 = 10§?

STRATEGY

By equaling the tangential components of acceleration of gears 4 and B at their
point of contact, we can determine the angular acceleration of gear B, Then we can
integrate to obtain the angular velocity of gear # and the angle through which it has
turned at 1 = 10s.

SOLUTION

The tangential acceleration of the point of contact of the two gears (Figure (4)) is
a, = (0.05m)(0.2¢ rad/s%) = (0.2 m)(eza)

Therefore the angular acceleration of gear A is

o dop _ (0.05 m)(0.2¢ rad/s?)
g T

. 2
= 03 == (0,05¢ rad/s

Integrating this equation,

g T
dwng 0.05¢dr
{0 0

we obtain the angular velocity of gear 4

vy = i%'i = 0.0258 1ad/s

Integrating again, we obtain the angle through which gear B has turned:
{5 = 0.00833¢° rad

At £ =103, tp = 8.33 rad. The amount of cable wound arcand the drum, which is
the distance the hook A has risen, is the product of 0y and the radius of the drum:
(8.33 rad)(0.1 m) = 0.833m.

At =108, wy = 2.5 rad/s. The velocity of a point on the rim, which equals the
velocity of the hook H (Figure (b)), is

vy = (L1 m)(2.5rad/s) = 0.25m/s

e e e

Figure 6.10

S0 mm

0.21 rad/s® Kg@:‘ B
s Th |1 ‘
5

t . o
() The tangential accelerations of the
gears are equal at their point of
contact.

vy (0.1 miwy,

) Determining the hook's velocity.
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Problems

6.1 The disc rotates about the fixed shaft ©. It starts from rest at
=0 and has constant counterclockwise angular acceleration
@ = 4drad/st. AL f=5s determine (a) its angular velocity and
the number of revolutions it hag turned; (b) the magnitudes of the
velocity and acceleration of point A.

P&.1

6.2 The weight 4 starts from rest at =0 and falls with a
constant aceeleration of 2m/s”, causing the disc to turn,

(1) What is the angular acceleration of the disc?

{b) How many revolutions has the disc turmed at 7 = 157

P&.2

6.3 Determine g/, and e /wy.

6.4 The bicycles 120 mm sprocket wheet turns at 3 rad/s. What
15 the angular velocity of the 45 mm gear?

Pé&.A

4.5 The rear wheel of the bicycle in Problem 6.4 has a 330 mm|
radius and is rigidly attached to the 45mm gear. If the riden
turng the pedals, which are rigidly attached to the 120mm|
sprocket wheel, at one revolution per second, what is the bicycle’s]
velocity?

6.6 The disc rotates with a constant counterclockwise angular
veloeity of 10 rad/g. What are the velocity and acceleration of poingg
A in terms of the coordinate system shown?

P&.6

6.7 In Problem 6.6, what are the velocity and acceleration off
point 4 relative to point B?

6.8 In Problem 6.6, suppose that the disc starts from rest in the
position shown at f = Q and iy subjected to a constant counter
clockwise angular acceleration of 6 rad/ 5%, Determine the velocity,
of point B in terms of the coordinate system shown at 7 == 1 5 if the
coordinate system (a) is body-fixed; (b) remains oriented with the
axes horizontal and vertical as shown.
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6.9 The bracket rotates around the fixed shaft at O If it has a  6.10 Consider the bracket in Problemy 6.9, If |vy| = 3 m/s
counterclockwise angular velocity of 20 rad/s and a clockwise [|a4| = 60 m/s”, what are }vp| and |ag)?

angular acceleration of 200 rad/s*, what are the magnitudes of the

accelerations of points 4 and B? 411 Consider the bracket in Prolilem 6.9, If [v4f == 0.9 m/s and
|ag] = 15 m/s®, what are |vg| and ja,?

450 mrn __k.‘

P5.9

Each point of a rigid body in translation undergoes the same motion. Each
point of a rigid body rotating about a fixed axis undergoes cireular motion
about the axis. To analyse more complicated motions that combine translation
and rotation, we must develop equations that relate the relative motions of
points of a rgid body to its angular motion.

Relative Velocities

In Figure 6.11(a) we view a rigid body perpendicular to the plane of its
motion, Points 4 and B are points of the rigid body contained in that plane, and
O is a reference point. We can show that the velocity of 4 relative o 8 is
related in a simple way to the rigid body’s angular velocity. The position of A
relative to B, vy, i related to the positions of the points relative to O by

Yy == Tp - Fam
Taking the time derivative of this equation, we obtain
V4 = Vg +Vip {6.4)

where v,z = drp/dt is the velocity of A relative to B. Since 4 and B are
points of the rigid body, the distance between them, |rqa|, is constant. That
means that 4 moves in a circular path relative to B as the rigid body rotates
(Figure 6.11(b)). The velocity of 4 relative to B is tangent to the circular path,
and its value equals the product of |ry.pz| and the angular velocity @ of the
rigid body. You can use this result to relate velocities of points of a rigid body
in two-dimensional motion when you know its angular velocity,

()

Figure .11

(a) A rigid body in two.dimensional motion,
{b) The motion.viewed by an ‘observer’
stationary with respect to A,
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(a)

(c}

Figure 6.12

{(®) A disk rolling with angular velocity o.
(b) Determining the velocity of the

centre 8 rolative to C.

(e} A point A4 on the tm of the disk.

{d} Determining the velocily of 4 relative
o 8,

(2} An angular velocity vector.
{b) Right-hand rule for the direction of the

For example, let’s consider a circular disc of radius R rolling on a stationary
plane surface with counterclockwise angular velocity a (Figure 6.12(a)). By
rolling, we mean that the velocity of the disc relative to the surface is zero af
their point of contact C. Let B be the centre of the disc. Relative fo C, point B
moves in a cirgylar path of radius B (Figure 6.12(b)). In terms of the coor
dinate system shown, the velocity of B relative to Cis vgc = —Rwi. Since thg
velocity of C is zero, the velocity of B is

Vg = v+ v = ~Rwi

This result is worth remembering: the magnitude of the velocity of the centre of
a round ohject rolling on q stationary surface is the product of the radins and
the magnitude of the angular velocity,

We can determine the velocity of any other point of the dise in the same
way, Consider the point 4 in Figure 6.12(c). Relative to the centre B, point A4
moves in a circular path of radius R, resulting in the relative velocity
vyp = Rwj (Figure 6.12(d)). Therefore the velocity of 4 is

Vp o Vg b v s Ko i 4 R

The Angular Velocity Vector

We can express the rate of rotation of a rigid body as a vector. Euler’y
theorem states that a rigid body constrained to rotate about a fixed point 8 can
move between any two positions by a single rotation about some axis through
B. Suppose that we choose an arbitrary point B of a rigid body that i
undergoing an arbifrary motion at a time ¢ Euler’s theorem allows us to
express the rigid body’s change in position relative to B during an interval of]
time from ¢ 1o £ -+ dt as a single rotation through an angle 48 about some axis)
At time 2 the rigid body’s rate of rotation about the axis is its angular velocity
w = df/di, and the axis about which it rotates s called the instantaneous]
axis of rotation,

The angular velocity vector, denoted by ey, specifies both the direction off
the instantaneous axis of rotation and the angular velocity, It is defined to bg
paralle] to the instantaneous axis of rotation (Figure 6.13(a)), and its magni
tude is the rate of totation, the absolute value of e, Jis direction is related 1o the
direction of the vigid body’s rotation through a right-hand rule: if you point the
thumnb of your right hand in the direction of w, the fingers curl around ea in the
direction of the rotation (Figure 6.13(b)).

Instantaneous axis of rotation Lyirection of rotation

Figure 6.13

vegtor,




For example, the axis of rotation of the rolling dise in Figure 6.12 is parallel
to the z axis, 50 its angular velocity vector is parallel to the z axis and its
magnitude is . If you curl the fingers of your right hand around the z axis in
the direction of the rotation, your thumb points in the positive z direction
(Figure 6.14). The angular velocity vector of the disc is w = wk,

The angular velocity vector allows us to express the results of the previous
section in a very convenient form. Let 4 and B be points of a rigid body with
angular velocity w (Figure 6.15(a)). We can show that the velocity of 4
relative to B is

dryp
df

Vg = 22 0 X Ca/p {6.5)

Relative to B, point 4 is moving at the present instant in a circular path of
radius |r4,5| sin B, where § is the angle between the vectors ry,» and e (Figure
6.15(b)). The magnitude of the velocity of 4 relative to B is equal to the
product of the radius of the circular path and the angular velocity of the rigid
body, [V4/g| = (Ir4;z| sin f8)|w|, which is the magnitude of the cross product of
ry5 and . In addition, v, is perpendicular to w and perpendicular to v s
But is vz equal to @ x ryp Or T4 X w? Notice in Figure 6.15(b) that,
pointing the fingers of the right hand in the direction of w and closing them
towards r,z5, the thumb points in the direction of the velocity of 4 relative to
B, 80 Vg = @ % 14,5, Substituting Equation (6.5) into Equation (6.4), we
obtain an equation for the relation between the velocities of two points of a
rigid body in tenms of its angular velocity:

Va4 =Vt 0 X Typ
mm—— (6.6)
Ya/B

Let’s return to the example of a dise of radius R rolling with angular
velocity w (Figure 6.16), and usc Equation (6.6) to determine the velocity of
point A. The velocity of the centre of the disc is given in terms of its angular
velocity by vz = R i, the disc’s angular velocity vector is w = w Kk, and the
position vector of 4 relative to the centre is r3 = Ri. The velocity of 4 is

Vi Vg + o X ¥ = —Roi+ (ok) x (Ri)

= —Rwi+ Roj

Figure 6.16

relative to B,
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Figure 6.14

Determining the direction of the angular
velocity vector of a rolling disk.

(i)

Mﬂw sin
Q. e

o [Ty
/ "”‘“M.._
e

(b

Figure 6.15

{(2) Points 4 arid & of a rotating rigid body.
(b} 4 is moving in a ¢ircular path relative
to 8B,

A rotating disc and the position vector of 4
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The following examples show how you can apply Equation (6.6). Beginning
with a point whose velocity is known, you can express the velocities of other
points of a rigid body in terms of its angular velocity, By repeating this step
Jor different points, you can analyse the motions of systems of connected
rigid bodies,

Example 6.2

If the velocity vy in Figure 6.17 is 900mm/s, what is the velocity v.7

Figure 6.17

‘ '200 mm
Ay

STRATEGY

The centre of the right pulley is fixed, go the vettical part of the cable between the
two pulleys moves upwards with velocity vp. The point of the left pulley in contact
with that part of the cable moves upwards with the same velocity. The vertical part
of the cable connected to the ceiling is stationary, so the point of the left pulley in
contact with that part of the cable is also stationary. Thus we know the velocities of]
two points of the left pulley, Using this information, we can determine its angular|
velocity and then determine the velocity of its centre, which iy equal to the velocity
.

SOLUTION

The velocity of point A of the left pulley in Figure {(a) is v4 = 900 mm/s and the
velocity of point B is zcro. Relative to B, point 4 moves in a circular path with the
angular velocity w of the left pulley, so

vg = 900mm/s = (600 mm)cr

!

A

300 T
mm
600 mmm-—e

(@) Analysing the motion of the left pulley.
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and the angular velocity of the lefi pulley is e = 900/600 = 1.5 rad/s. Point C, the
centre of the pulley, also moves relative to B in a circular path with angular velocity
, 80

e = vy, = (300 mm)o = (300)(1.5) = 450 mm/s

We can also obtain this result with Equation (6.6). In terms of the coordinate system
in Figure (b), v+ = 900jmm/s, vy = 600 mm, and the angular velocity vector of
the pulley is @ = w k. Therefore

V4 == ¥g ot o X N80
900 = Q4 (wk) x (6001) = 600w j

From this equation we obtain e = 900/600 = 1.5 rad/s. The velocity of the centre
of the pulley is

300
Imim

b— 600 mm—e

(b) Position vectors TR and Yc/B.

Vo= Vp 4w X ey

= 0+ (1.5k) x (3001) = 450 j (mm/s)

DISCUSSION

In this example, the geometry is sufficiently simple that we can easily relate the
velocities of the cable to the angular velocities of the pulleys without using Equation
(6.6). That is often not the case, The next example illustrates a situation that would
be much more difficult to solve without using Equation (6.6).

PR G R e e D T A e Y e
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Example 6.3

Figure 4,18

Bar A% in Figure 6.18 rotates with a clockwise angular velocity of 10rad/s.
Determine the angular velocity of bar 8C and the velocity of point €,

OO0 i —p—— 200 M6

STRATEGY

Since we know the angular velocity of har A8 and point 4 is fixed, we can apply
Equation (6.6) 1o points 4 and 8 to determine the velocity of 8. Then by applying
Equation (6.6) again to express the horizontal velocity of point  in terms of the
velocity of B, we will obtain a vector equation in two unknowns: the velocity of
and the angular velocity of bar BC.

SOLUTION

in terms of the coordinate system in Figure (a), the position vector of B relative to A
is raq=(04i4+04j)m.  The asngular velocity vector of bar 4B is
w4 = —10krad/s, so the velocity of B is

i § k
Vg Vydgg =041 G 0 —10
04 04 0

= {4i~4jm/s

f-w 400 mim

(&) Determining the velocity of B.




Let e be the unknown angular velocity of bar BC (Figure (b)), so that its angular
velocity vector 18 ege = wpe k. The position vector of C relative to B is
Yoy = (0.8i — 0.4 ) m. Although we don’t know the velocity of C, we know it
is 1n the horizontal direction, 50 we can write it in the form vy == w, i (Figure (b))
We express the velocity of € in terms of the velocity of B:

Vo= Vg b tage X Ve

Now we substitute the values of vg and rg,¢ and our expressions for vy and vy
into this equation, obtaining

i j k
vei=4i—4j+| 0 0 o
0.8 04 0

= 41— 4]+ 04wz i+ 0.8warc j
Equating the i and j components in this equation yields two equations:

i = 44 Ddape

= —d () Banpye

Solving them, we obtain wge = 5 rad/s and vy == 6m/s.

- = - BO0 mim —‘—I

(b) Expressing ve = v i in terms of vp.

DISCUSSION

By cxpressing the velocity of C in terms of the velocity of B, we introduced into the
solution the fact that point C is constrained to move horizontally. That is, we
accounted for the presence of the floor. Our procedure in this example—applying
Equation (6.6) systernatically to relate the velocitics of the joints to the angular
velocities — applies to many problems in which you must determine velocities and
angular velocities of connected rigid bodies. Some trial and error may be ‘necessary
to {ind the particular relationships you need,

6.3

GENERAL MOTIONS: VELOCITIES
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Example 6.4 |

e S g

Bar 4B in Figure 6.19 rotates with a clockwise angular velocity of 10 rad/s. What is]
the vertical velocity v of the rack of the rack and pinion gear?

Figure 6.19

300 mm ~

250 mm

10 rad/s

\
i
|
¥

o

.. 150 400 mm
ma

STRATEGY

To determine the veloeity of the rack, we must determine the angnlar velocity of the
member CD. Since we know the angular velocity of bar A8, we can apply Equation
(6.6) to poinis 4 and B to determine the velocity of point B Then we can apply
Equation (6.6} to points (" and 22 to obtain an equation for v¢ in terms of the angular
velocity of the member Cf). We can also apply Equation (6.6) to points 8 and C to
obtain an equation for v in lerms of the angular velocity of bar BC, By equating the
two expressions for v, we will obtain a vector eguation in two unknowns: the
angular velocities of bars BC and CD.

SOLUTION

We first apply Equation (6.6) to points 4 and B (Figure (2)). In terms of the
coordinate  systemn  shown, the posidon vector of 8 rclative to A4 is
rg4 = (01514 03)3m, and the angular velocity vector of bar AR s
wap = —10krad/s. The velocity of B is

i j ok
ve=vVytau xrma =0+ 0 0 -10
015 03 0

=3i-15j)m/s

We now apply Equation (6.6} to points C and D. Let wen be the unknown angular
velocity of member CD (Figure (a)). The position vector of ¢ relative to DD is
rep == (~0.151 4+ 0,25 )m, and the anpular velocity vector of membrane CD is
wep = —@cp Ko The veloeity of C is

i j k
Yo = Vp o Wep X P &= 0 -+ 0 4] e
~0.15 025 0

mz 0250}("]_’) i+ 0.1 ch'nj




Now we apply Equation (6.6} to points 8 and C (Figure (b)). We denote the
unknewn angular velocity of bar 8C by wpe. The position vector of C relative to B
is regg = {0.4i = 0.05j)m, and the angular velocity vector of bar BC is

wge = wge k, Expressing the velocity of 7 in terms of the velocity of B, we
abtain

i K
Vo = Vgt thgp X Top = vVp+| 0O 0 wye
04 008 0
= vg -+ 0.0505c0.4 1 + 0 Ay j

Substituting our expressions for vp and v, into this equation, we obtain

0‘25(0(;1) i 0. lSmCDj == 3 ] 5] e 0.05(1}3{: i+ 0.40)36‘ j

6.3 GENERAL MOTIONS: VELOCTIES

(@) Determining the velocities of points B
and C. terms of the velocity of point B.

Equating the i and j components yields two ecuations in terms of wge and wep:

0.25000 = 3 4+ 0.05wg
0.15w0n = w15 o O.diope
Solving them, we abtain wee = 8.92rad/s and wep = 13,78 rad/s.
The vertical velocity of the rack is equal to the velocity of the gear where it
conttacts the rack:

g = {015 m)weop = (0.15)(13.78) = 2.07m/s

(b) Expressing the velocity of pgint ¢ in

247
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Problems

6.12 A turbine rotates at 30tad/s about a fixed axis coincident 6.15 1f you model the carth as a rigid body, what is the
with the x axis. What is its angular veloeity vector? magnitude of its angular velocity vector wg? Does wy point
north or south?

616 The rigid body rotates about the 2 axis with counterclock-
wise angular velocity o,

(a) What is its angular velocity vector?

(b) Use Equation (6.6) to determine the velacity of point A4 relative
to point B.

Pé.12

6.13 The rectangular plate swings from arms of equal length,
Detorming the angular velocity vector of (a) the rectangular plate;

(b) the bar A8,

P6.16

6.17 (a) What is the annular velocity vector of the bar?

(b} Use Equation (6.6) to determine the velocity of point B relative
v to point (.

(e} Use Equation (6.6) to determine the velocity of point 4 relative

to point 8.

P6.13

2radfs

6,14  What are the angular velocity veciors of each bar of the
linkage?

¥

1m | g I m |

Pé.17

5 L0 rad/s ‘o
H [T
10 rad/s |V




6.18 («) What is the angular velocity vector of the bar?
{b) Use Equation (6.6} to determine the velocity of pomt A.

P6.18

6.19 The disc is rotating about the z axis at 50rad/s in the
clockwise direction. Use Equation (6.6) to determine the velocities
of points A, B and C,

P6.19

6.20 The car is moving to the right at 100km /hr, and its tyres are
600 mm in diameter,

{2) What is the angular velocity of its tyres?

(b) Which point on the tyre shown has the largest velocity relative
to the road, and what is the magnitude of the velocity?

P&.20
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6.21  The disc rolls on the plane sufface. Point 4 is moving to the
right at 6m/s. : '

(a) What is the angular velocity vector of the disc?

(b) Use Equation (6.6) to determine the velocities of points B, C
and 2.

L

P&.21

6.22 The ring gear is stationary, and the sun gear rotates at
120rpm {revolutions per minute} in the counterclockwise ditec-
tion. Determine the angular veloeity of the planet gears and the
magnitude of the velocity of their cenirepoints.

. Ring gear .
- {.‘ ‘pyy

RN 1

217 Planet pears (3)

P6.22

™ Sun gear

623 The bar is in two-dimensional motion in the x-p plane. The
velocity of point 4 is 8im/s. The x component of the velocity of
point 8 is 6 m/s.
{a) What is the angular velocity vector of the bar?
(b) What is the velocity of point B?

¥

x  P6.23
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6.24 Points 4 and B of the 1 m bar glide on the plane surfaces.
The velocity of point B is 24 m/s.

(a) What is the angular velocity vector of the bar?

(b) What is the velocity of point 47

e

x P6.24

6.25% 1In Problem 6.24, what is the velogity of the midpoint & of
the bar?

6.26 Bar AB rotates in the counterclockwise direction at 6 rad/s.

Determine the angular velacity of bar BCD and the velocity of
point £2.

200 mm

300 mm

Lo 150 100 |
200 mm‘J‘ mm mm

P6.26

6,27 If the crankshaft 4B rotates at 6000 rpm (revolutions per
minute) in the counterclockwise direction, what is the velocity of
the piston at the instant shown?

P&.27

6.28 Bar 4B rotates ai 10rad/s in the counterclockwise direc-
tion, Determine the angular velocity of bar CD.

Strategy: Since you know the angular velocity of the bar 48,
you can determine the velocity of A Then apply Equation (6.6) to
points 8 and C o obtain an equation for v in terms of the
angular velocity of bar BC, and apply it to points € and D
o obtain an equation for ve in terms of the angular velocity
of bar CD. By cquating the two expressicns, you will oblain
a vector equation in two unknowns: the angular velocities of
bars BC and CD.

10 radfs

2m i

P6.28




6.29 Bar AB rotates al 12rad/s in the clockwise direction.
Determine the angular velocities of bars BC and CD.

350 mm ———{

P6.29

i 300 mm

6.30 Bar CD rotates at 2rad/s in the clockwise dircetion.
Determine the angular velocities of bars A8 and BC.

6.31

In Problem 6.30, what is the magnitude of the velocity of
the midpoint G of bar BC?

6.32 Bar 4B rotates at 10rad/s in the counterclockwise direc-
tion. Determine the velocity of point E.

E
T m X

400 |
‘ nmin |

‘.,..,..._ 7000 mim TO0 mm

P6.32
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6.33 Bar A8 rotates at 4 rad/s in the counterclockwise direction.
Determine the velocity of point C.

600 mm

- O mm

200
mm

- 3@0 -
min

|+-300-~
mim

P6.33

6.34 In the system shown in Problem 6.33, if the magnitude of
the velocity of point Cis |vg| =2m }s, what are the magnitudes of
the angular velocities of bars A8 and DE?

6.35 Bars 04 and 4B are cach 2 milong. Point B is sliding up the
inclined surface at 10m/s. Determink the angular velocities of the
bars.

P6.35

6.36 The diameter of the disc is 1 i, and the length of bar 48 is
1m. The disc is rolling, and point B slideg on the plane surface.
Determine the angular velocity of bar AB and the velocity of
point 3.

4 rad/i//

P6.36
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837 A motor rotates the circular dise mounted at 4. moving the
saw back and forth. (The saw is supported by a horizontal slot so
that point {7 moves horizontally.) The radius 48 is 100 mm, and the
link BC is 350 mm long. In the position shown, § = 45° and the
link BC is horizontal. If the angular velocity of the dise 15 one
revolution per second counterclockwise, what is the velocity of the
saw?

P6.37

6.38 In Problem 6.37, if the angular velocity of the disc is one
revolution per second counterclockwise and 8 == 270°, what is the
velocity of the saw?

6.39 The diges roll on the plane surface. The angular velogity of
the left dise is 2rad/s in the clockwise direction, What is the
angular velocity of the right dise?

P&.39

640 The disc rolls on the curved surface. The bar rotates at
10rad/s in the counterclockwise direction. Determine the velocity
of point A4,

P6.40

6.41 I wup == 2rad/s and e = 4rad/s, what is the velovity of
point €, where the excavator’s bucket is attached?

¥ Y

T

P6.41

6.42 In Problem 6.41, if w.p = 2 rad/s, what clockwise angular
velocity pe will cause the vertical component of the velogity of
peint C' to be zero? What is the resulting velocity of point €7

643 In Problem 641, if the velocity of point ¢ s
Ve = (~6i—4j)m/s, what arc the angular velocities myg and
{D,Q(‘?

6.44 An athlete exercises his arm by raising the mass m. The
shoulder joint 4 is stationary. The distance AR is 300 mm, and the
distance BC 15 400 mm. At the instant shown, wyg = [ rad/s and
twge = 2rad/s. How fast is the mass m rising?

6.45

In Problem 6.44, supposc that the distance 48 is 300 mm,
the distance BC is 400mm, g = 0.6 rad/s, and the mass m is
rising at 800 mm/s. What is the angular velocity wpe?




6.46 Poinis B and C are in the x-y plane. The angular velocity
vectors of the arms AB and BC ar¢ wyp = —2Krad/s and
wpe = 0.4 krad/s. Determine the velocity of point C.

Pé.46

6.47 In Problem 6.46, il the velocity of point C ig v =
250 mm/s, what are the angular velocity vectors of the arms 4B
and BC?

648 Determine the velocity vy and the angular velocity of the
small pulley.
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6.49 Determine the velocity of the block and the angular velocity
of the small pulley.

225 mm/s

>

) H
P6.49

6.50 The ring gear is fixed and the hub and planet gears are
bonded together, The conneeting rod rotates in the counterclock-
wise direction at 60rpm (revolutiony per minute). Determine the
angular velocity of the sun gear and fhe magnitude of the velocity
of point 4. '

Planet gear —-—.__
Hub gear .
i
i -
Conneeting — . /88 8
rod ? TRE

Z m :&:40 min

P i
- B

Sun gear -

Ring gear -+~
P6.50

6.51 The large gear is fixed. Bar AB hds a counterclockwise
angular velocity of 2 rad/s. What are the angular velocitics of bars

CE and DE?
A*r“}ﬁﬂ M
n

100 '
»—»{ tm = 400 fm
G :

[]
100 mm
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Figure 6.20

(a) An instantancous centre C and a
different point 4.

(b) Every point rotates about the
instantaneous cenire,

Diraction ol
motion of A
A

Direction of
motion of B

Instantasneous
centre

Figure 6.21

(#) Locating the instantaneous centre in
planar motion.

(b Proving that wp == 0.

Instantaneous Centres

By an instantaneous centre, we simply mean a point of a rigid body whose
velocity is zero at a given instant. ‘Inistantanedus’ means it may have zero
velocity only at the instant under consideration, although we also refer to a
fixed point, such as a point of a fixed axis about which a rigid body rotates, as
an instantaneous ¢entre,

When we know the location of an. instantaneous centre of a rigid body in
two-dimensional motion and we know its angular velocity, the velocities of
other points are easy to determine. For example, suppose that point € in Figure
6.20(a) is the instantaneous centre of a rigid body in plane motion with angular
velocity . Relative to C, a point 4 moves in a circular path, The velocity of 4
relative to C is tangent to the circular path and equal to the product of the
distance from C to 4 and the angular velocity. But since C is stationary at this
instant, the velocity of A relative to C is the velocity of 4. At this instant, every
peint of the rigid body rotates about C (Figure 6.20(b)).

A A o
T NN
A e
@xe,"fm‘” ¢/
RO
N\h’_A"L;‘%—M;...“MMW

You can often locate the instantaneous centre of a rigid bedy in two-
dimensional motion in a simple way. Suppose that you know the directions of
the motions of two points 4 and B (Figure 6.21(a)). If you draw lines through
A and B perpendicular to their directions of motion, the point C where the lines
intersect is the instantancous centre.

To show that this is true, let us express the velocity of C' in terms of the
velocity of A (Figure 6.21(b)):

Vo= Vi + X Fera

Since the vector e x reyy is perpendicular to re,, this equation states that the
direction of motion of C is parallel to the direction of motion of 4. We can also
express the velocity of C in terms of the velocity of 8

Yo =V + 0 X Yoy

The vector & x re;p is perpendicular (0 re/z, 50 this equation states that the
direction of motion of C is parallel to the diteetion of maotion of B, But ¢
cannot be moving parallel to 4 and parallel to B, so these equations are
contradictory unless v = 0.




Instartaneony - RC
centre

The instantanecus centre may not be a point of the rigid body (Figure
6.22(a)). This simply means that at this instant, the rigid body is rotating about
an external point. It’s helpful to imagine extending the rigid body so that it
includes the instantaneous centre (Figure 6.22(b}). The velocity of point C of
the extended body would be zero at this instant,

Notice in Figure 6.22(a) that if you change the directions of motion of 4
and B so that the lines perpendicular to their directions of motion become
parallel, C goes to infinity. In that case, the ngid body is i translation; its
angular velocity is zero,

Direction of
motion of B

Dirgetion of
motion of A

,,.,w-\ﬁ“““‘ﬂ‘m/ﬂ /

(a)

Returning once again to our example of a disc of radius R rolling with
angular velocity w (Figure 6.23(a)), the point C in contact with the floor is
stationaty at that instant—it is the instantaneous centre of the disc. Therefore
the velocity of any other point is perpendicular to the ling from C to the point
and its magnitude equals the product of @ and the distance from C to the peint.
In terms of the coordinate system shown in Figure 6.23(b)), the velocity of
point 4 is

Vg = 2R cos 457§ + 2R sin 457 §
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Figure 6.22

(2) An instantangous centre éxternal to the

tigid body.

(b) A hypothetical extended body, Point €
would be stationary.

()

Figure 6.23

(a) Point C1is the instantaneous
centre of the rolling disc.

(b} Determiining the velocity of
poinit 4,
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In the following example we use instantaneous centres to analyse the motion
of a linkage. By identifying the instantancous centre of a vigid body in plane
motion, you can express the velocities of its points as products of their

distances from the instantancous centie and the angular velocily of the rigid
body.

b

Example 6.5

Bar AB in Figure 6.24 rotates with a counterclockwise angular velocity of 10 rad/s.
What are the angular velocilies ol bars 8C and CD7?

i
?
% Figure 6.24 8
i
!
i

* 10 rad/s V/T %
& A F?
el

STRATEGY

Because bars AR and CD rotate about fixed axes, we know the directions of motion
of points B and C and so can locate the instantaneous centre of bar BC. Beginning
with bar .48 (because we know its angular velocity), we can use the instantaneous
centres of the bars to determine both the velocitics of the points where they are
conneeted and ther angular velocilies,

SOLUTION
The velocity of B due to the rotation of bar 4B about A (Figurc (a)) is

vz = (2m)(10 rad/s) = 20m/s

10 rad/s—li

(a) Determining vg,

o ey
Ot GO ST PN TS




Drawing lines perpendicular to the directions of motion of 8 and €, we locate the
instantancous centre of bar BC (Figure (b)). The velocity of B is equal to the product
of its distance from the instantaneous centre of bar BC and the angular velocity coge,

vy = 20m/s = (2 m)age
50 wee = 10rad/s. (Netice that bar BC rotates in the clockwise direction.) Using

the instantangous centre of bar AC and its angular velocity mge, we can determine
the velocity of point

ve = (vEmwse = 10v/Em/s

Instantancons conlee of bar B

&) Determining wge and vg.

Our last step is to use the velocity of point C to determine the angular velocity of bar
CD about point D (Figure (c))

ve = 1048 m/s = («/gm)wcp

obtaining mep = 10rad/s counterctockwise.

{¢) Determining wep.

DISCUSSION

In this example, the use of instantancous centres greatly simplified determining the
angular velocities of bars #C and €0 in comparison with our previous approach.
However, notice that the lengths and positions of the bars made it very easy for us to
locate the instantaneous centre of bar BC. [f the geometry is too complicated, the use
ol inslantaneous centres can be impractical.
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Problems
Lo

6.52 If the bar has a clockwise angular velocity of 10rad/s and  6.55 Points 4 and B of the 1m bar slide on the plane surfaces.

v, = 2(tm/s, what are the coordinates of ils instantancous centre
and the value of 15?7

W

it Pt G AL B i A AW
(R AT Han e s il B g

J«- s | 1Y ~} lm IF

P6.52

6.53 In Problem 6.52,if v4 = 24 m/s and vy = 36m/s, what are
the cobrdinates of the instantaneous centre of the bar and its
angular velogity?

6.54 The velocity of point @ of the bat is vy = (~1.81 ~ 0.42])
m/s, and the bat rotates about the z axis with a counterclockwisce
angular velocity of 4 rad/s. What arc the x and p coordinates of its
instantaneous centre?

P&.54

The velocity of 8 is vg = 2im/s.
(a) What are the coordinates of the instantaneous centre?
(b) Use the instantaneous cenire to determine the velocity of 4,

\

.\

P6.55

6.56 In Problem 6.5, use the instantanecus centre to determing
the velocity of the bar’s midpoint (7.

6.57 The bar ig in two-dimensional motion in the x-y plane. The
velocity of point A is v4 = 2.4im/s, and & s moving in the
direction parallel to the bar. Determine the velocity of B (a) by
using Equation (6.6); {b) by using the ingtantaneous centre,

x P&57




6.58 Points 4 and B of the 1.2 m bar slide on the plane surfaces.
Point B is sliding down the slanted surface at 0.61m/s.

(a) What are the coordinates of the instantancous centre?

(b) Use the instantaneous centre to determine the velocity of A.

v

P&6.58

6.59 Use instantaneous centres to determine thc horizental
velocity of 8,

P6.59

6.60 When (he mechanisih in Problem 6.59 is in this position,
use instantancous centres to determine the horizontal velocity of B,

P6.60
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6.61 Bar AB rotates at 6rad/s in the clockwisc direction. Use
instantaneous centres to determine the angular velocity of bar BC.

100 g

75 mii

—
10 . |
L nim R 250 mm 4

6.62 Bar 48 rotates at 10rad/s in: the counterclockwise direc-
tion. Use instantaneous centres to detérmine the velocity of point £,

P4.61

400 mm |4

400 |
i |

= 0dmm
|
P&.62

6.63 The discs roll on the plane sutface. The left disc rotates at
2rad/s in the clockwise direction. Use instantaneous centres to
determine the angular velovitiss of the bar dnd the right dise,

2?”/“
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4.64 Bar AR rotates at 12 rad/s in the clockwise direction. Use
instantaneous centres to detcrmine the angular velocities of bars
BC and CD,

6.65 A rigid body is in planar motion. A point 4 with coordinates
x == 200mm, y=600mm is moving parallel to the unit vector
~0.9704 4+ 0.243 j, and a point B with coordinates x = 8§00 mm,

280
mm

200
mm

-

o

12 vadfs

y=400mm 15 moving paralldd to the unit vector
—0.832i 4 0.555].

{a) What are the coordinates of the instantaneous contre?

(b) Determine |v|/|vgl.

6.66 Show that if a rigid body in planar motion has two
instantaneous centres, it is stationary at that instant,

e 300 TR e T-
|

350 rhim s—

6.4 General Motions:
Accelerations

In Chapter 7 you will be concerned with determining the motion of a rigid
body when you know the external forces and couples acting on jt, The
governing equations are expressed in terms of the acceleration of the centre of
mass of the rigid body and its angular acceleration, To solve such problems,
you need to understand the relationship between the accelerations of points of
a rigid body and its angular acceleration. In this section we extend the methods
we have used to analyse velocities of rigid bodies to accelerations.

Consider points 4 and B in the plane of the motion of a rigid body in two-
dimensional motion (Figure 6.25(a)). Their velocities are related by

Vi =V A+ Vo

where v4 and vy are velocities relative to a reference point . Taking the time
derivative of this equation, we obtain

oyt Ay

Because point 4 moves in a circular path relative to point B as the rigid body
rotates, agz has normal and tangeritial components (Figure 6.25(b)). The
value of the tangential component is the product of || and the angular
acceleration o of the rigid body, The normal compenent points towards the
centre of the circular path, and its magnitude is |VA/3|2/|I‘A/B| e mzfm/gl.
Notice that because the normal component of acceleration points opposite to
the direction of the vector r,/5, we can express it as a vector by writing it as
‘(J)Zr,;/‘g.




Figure 6.25
(a) Points of 2 rigid body in
planar: motion,
(b} Components of the
acceleration of 4 relative to B,

(a)

Lels consider a circular disc of radius R rolling on a stationary plane
surface with a counterclockwise angular velocity @ and counterclockwise
angular acceleration « (Figure 6.26(a)). The disc’s centre 8 moves in a straight
line with velocity K. Its velocity is to the lefl if w is positive. The accel-
eration of the centre & is d/dt(Rw) == Ra. Its acceleration is to the left if « is
positive. The magnitude of the acceleration of the centre of a round object

rolling on a stationary surface is the product of the radius and the angular
acceleration.

Now that we know the acceleration of the dise’ centre let us determine the

acceleration of the point ' in contact with the surface (Figure 6.26(b)). In

terms of the coordinate system shown in Figure 6.26{c), the acceleration of the

centre & 1s —Rxi. Relative to B, point € moves in a circular path of radius R,

The tangential component of the acceleration of C relative to B is R i, and the

normal component is Rew? j. Therefore the acceleration of € is

ac =ap +acy = ~Rol + Rei+ Ro? |
= Rew?j

The acceleration of point C parallel to the surface is zero, but it docs have an
acceleration normal (o the surface,

Expressing the acceleration of a point 4 relative to a point B in terms of A% P

"l
s

circular path about B as we have done helps you visualize and understand it. yal

However, just as we did in the case of the relative velocity, we can obtain a4,z I

in a form more convenient for applications by using the angular velocity vector ( - i ‘ J

o, The velocity of 4 relative to B is given in terms of w by Equation (6.5): T e ]

Varg == O X Yarp \“l‘“wi @ﬁh Mr: |

. € Ru

Taking the time derivative of this equalion, we obtain x)

Figure 6.26
{(a} A disk rolling with angular velocity ¢
and angular accelefution .
(b) Toint C is in contact with the surface.
(¢) Determining thie acceleration of ¢
relative to B.

dw
A = i X P+ X V5

dw ,
z}:(?xr,q/g“{-w X (w % l‘/]‘ﬂj)
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Defining the angular acceleration veetor « to be the rate of change of the
anguiar velocity vector,

o
gy

(6.7)
the acceleration of 4 relative to B is

Bi/p = 0 X F/g -+ 0 % (00 X ¥y/p)
Using this expression, we can write equations relating to the velocities and

accelerations of two points of a rigid body in terms of its angular velocity and
angular acceleration:

Vy=vp+wx Yi/n (6,8)

A = Ap+ oA X Pyp+ o X (0x l'A/,g) (6.9)

In the case of two-dimensional mation, the term & x ¥4 ,& in Equation (6.9)
is the tangential component of the acceleration of A relative to B and
w X {w % 1,y5) is the normal component (Figure 6.27). Therefore, for two-
dimensional motion, we can write Equation (6.9) in the simpler form

a4 = A+ oL X Yyp cu?‘rﬂg (610)

Figure 6.27

Vector components of the acceleration of 4
relative to B in planar motion,

In the following examples we use Equations (6.8)—(6.10) to analyse motions
of rigid bodies. To determine accelerations of points and angular accelera-
tions of rigid bodies, usually yoir must first determine the velocities of the
points and the angular velocities of the rigid bodies, because Equations (6.9)
and (6.10) contain the angular velocity. When you find a sequence of steps
using Equation (6.8) that determines the velocities and angular velocities,
the same sequence of steps using Equation (6.9) or (6.10) will determine the
accelerations and angular accelerations.
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et

Example 6.6

The rolling disc in Figure 6.28 has counterclockwise angular velocity o and
counterclockwise angular acceleration . What is the acceleration of point 47

Figure 6.28

STRATEGY

We know that the magnitude of the acceleration of the centre of the disc is the
product of the radivs and the angular aceeleration. Therefore we can express the
acceleration of 4 as the sum of the acceleration of the centre and the acceleration of per——rme—er

A relative to the centre. We will do so both by inspection and by using Equation
6.10),

SOLUTION

In terms of the coordinate systerm in Figure (a), the aceeleration of the centre 8 is °
ag == R i. 4% motion in a circular path of radius R relative to B results in the
tangential and normal components of relative acceleration shown in Figure (b):

(1 Acceleration of the centre of the disc.

Wgpp = —fl)gRi +4- QCRj

Therefore the acceleration of A is

X

- o e R — zR . Ri
4= Ba kB Wi m et (b)  Componenis of the acceleration of A
e (—aR — W R)I + aRj relative to B.

Alternative Solution:  The angular acceleration vector of the disc is « = x Kk, and
the position of 4 relative to B is rys = Ri (Figure (c)). From Equation (6.10), the ¥
acceleration of A is

]
i
Tl/li

a4 =y + 0 X Payp —6021',4/3
= —aRi + (2 k) x (RI) — w*(R1)

22 (R o 0P R) 1 b AR

: |
e l?_:“ Lo . 1|

(C) Position of A relative to B.

R E Y W N VAL AR R 4 VR GNRANENSE {1 R o R WA SN Gl eaih EY O S | e R i SR R t
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Figure 6.29

Example 6.7 |

Bar AR in Figure 6.29 has a counterclockwise angular velocity of 10rad/s and a
clockwise angular acceleration of 300 rad/s?, What are the angular accelerations of
bars BC and CD?

10 radss T
] o

A’.

L- 2t Zm

300 radés?

STRATEGY

Since we know the angular velocity of bar 45, we can determine the velocity of
puint B. Then we can apply Equation (6.8} to points C and 2 to obtain an equation
for ve in terms of the angular veloeity of bar CD. We can also apply Equation (6.8)
to points B and C 10 obtain an equation for v¢- in terms of the angular velocity of bar
BC. By equating the two expressions for v, we will oblain a vector equation in two
unknowns: the angular velocities of bars 8C and CD, Then by following the same
sequence of steps uging Equation (6.10), we can obtain the angular accelerations of
bars BC and CD.

SOLUTION
The velocity of B is (Figure (a))
Vi = Vg lgp X Tag
=04 (10k) X (2§)
m —20im/s

T [l

10 rasdfs %~

300 rad/g®

(a) Determining the motion of 5.




Let wep be the unknown angular velocity of bar CD (Figure (b)). The velocity of C
in terms of the velocity of D is

Vo =2 Vp b Gep X Eop

i j k
=4 0 0 wen
-2 2 0

w et — 2cp §

Denating the angular velocity of bar BC by wge (Figure (2)), the velocity of C in
terms of the velocity of B is

Vo = Vg +oge X e
— 200+ (wye k) x (21)
—2(H 4 2wBC)j

Equating our two expressions for ve,
—2wpp i — 200¢p § = =201 + 2o0pe §

and equating the i and j components, wc obtain mep = 10rad/s and wze =
=10 rad/s,

We can use the same sequence of steps to determing the angular aceelerations.
The acceleration of B is (Figure (a))

Ap = A+ X4p X Ty — Wplnsg
=0 (~300K) x (2j) = (10/*(2j)
= (6001 ~ 200j) m/s*

The aceeleration of C in terms of the acceleration of D is (Figure (b))

2
A = Ap -+ Uop X Toip — Weplon

S T
=040 0 oaep|—(10P(=2i42])
~2 2 @

== (200 = 2oep)i = (200 + 2oep) §
The acceleration of C in terms of the acceleration of B is (Figure (c))

8¢ w A 4+ a0 X Reys — w%}t‘rcfﬂ
= 6001 — 200§ + (aze: k) x (21) — (—=10)(21)
= 4001 — (200 — 2ap0) §

Equating the expressions for ac, we obtain
(200 — Zucp)i — (200 4 20en) j = 4001 ~ (200 — 2upc)

and equating § and j components, we obtain the angular accelerations azc =
100 rad/s* and aep = =100 rad/s.

4.4 GENERAL MOTIONS: ACCELERATIONS 245

Al

g,

(b) Determining thejmotion of ¢ in
terms of the angular motion of bar
CD. '

e

.

(c) Determining the motion of € in
terms of the angular motjon of bar
BC.

RN R O T T

A A

L T—
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Problems

6.67  The rigid body rotates about the z axis with counterelock-
wise angular velocity w and counterclockwise angular acceleration
. Determine the acceleration of point A4 relative to point B (a) by
using Equation (6.9); (b) by using Equation (6.10).

P&.67

6.68 The bar rotates with a2 counterclockwise angular velocity of
Srad/s and a counterclockwise angulur scceleration of 30 rad/s”.
Determine the acceleration of 4 () by expressing it in terms of polar
coordinates; (b) by using Equation (6.9); (¢) by using Equation (6.10).

v

30 rad/s? 5 cad/s

i) }

[+ 2m |

P6.68

6.69 The bar rotates with a counterclockwise angular velocity of
Srad/s and a counterclockwise angular acceleration of 30 md/sz.
Determing the acceleration of 4 {a) by using Equation (6.9); {b) by
using Equation (6,10),

¥

Sradls o

30 rad/s?

P6.49

6.70 The bar rotates with 4 constant angular velocity of 20 rad
in the counterclockwise direction,

(a) Determine the acceleration of point 5.
(b) Using your result from part (a) and Equation (6.10), determing
the acceleration of point A.

i | m S e T

P6.79

6.71 The disc rolls on the plane surface. The velocity of point J
is 6m/s to the right, and its acceleration is 20 m/s* to the right.
(a) What is the angular acceleration vector of the disg?

{b) Determine the accelerations of points 8, € and D,

T

I 300 fum \\
A
]

P6.71
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6.72 The angular velocity and angular acceleration of bar 48 arc 6.74 The dise rolls on the circular surface with a constant
w4 = 2rad/s, a4y = 10tad/s”. The dimensions of the rectangular  clockwise angular velocity of | radl/s. What are the accelerations
plate are 300mm x 600 mm. What are the angular velocity and  of points 4 and B?

angular acceleration of the rectangular plate?

/ )
)\ 5016 l{lln

306 :r;m

P6.72
6.73 The endpoints of the bar slide on the plane surfaces. Show P6.74
that the acceleration of the midpoint G is related to the bar’s
angular vclocity and angular acceleration by 6.75  The ring gear is stationary; and the sun gear has angular
| Y ~ \ acceleration of 10rad/s” in the counterclockwise direction. Deter-
ag =5 Ll{ecost - wsinG)i ~ (usin + o cos 6) J] min¢ the angular acceleration of the planel gears,
- Ring gear
Planet gears (3)
- Sun gear
P6.75
P6.73

6.76 Thc sun gear in Problem :6.75 has a counterclockwise
angular velocity of 4rad/s and a (::I(‘)ckwise angular acceleration
of 12rad/s®. What is the magnimde of the acceleration of the
centrepoints of the planel gears?
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6.77 The 1m diameter dise rolls and point & of the 1 m long bar

slides on the plane surface. Determine the angular acceleration of 2 rad/s, o = 6 rad/s®. What gre the angular velocity and angular

the bar and the acceleration of point &.

10 rudds?
M‘M
4 radfs

P&.77

6.78 The crank A8 has a constant clockwise angular velocity of
200tpm (revolutions per minute). What are the velocity and
acceleration of the piston P?

50 mm

i

— w30 ]

I A0 |

P6.78

&.79  Bar 48 has a counterclockwise angular velocity of 10 rad/s
and a clockwise angular acceleration of 20 rad/s”. Determine the
angular acceleration of bar BC and the acceleration of point ¢

200 mum e L5 i) e
0 ldd}'b
_ 15

1
= J % !

20 rad/fs* 100 mny

S

P6.79

6.80 The angular velocity and acceleration of bar A8 are wg =

acceleration of bar BD?

200 mm
306G mm
X
b 200 mm 1SD ol 100 L,
i mm
P6.80

.81 In Problem 6.80, if the angular velocity and acceleration of
bar AB are w, = 2rad/s, o, = - 10rad/s*, what are the velocify
and aceeleration of point D?

6.82 Ifeayp = 6md/s and g = 20 rad/s?, what arg the velocity
andt aceeleration of point C?

—

100 mm S

F5mm T

|

100 sam 250 mm

17 —=| _—
J 1
=

P6.62




6.83 A motor rotates the circular dise mounted at A, moving the
saw back and forth. (The saw is supported by a horizontal slot so
that point ¢’ moves horizontally.} The radius AR is 100 mm, and the
link BC is 350 mm long, In the position shown, 6 = 45" and the
link BC is horizontal. If the dise has a constant angular velogity of
cone revolution per second counterclockwise, what is the accelera-
tion of the saw?

P6.83

6.84 Tn Problem 6.83, if the disc has 4 constant angular velocity
of one revolution per second counterclockwise and € = 180°, what
is the acceleration of the saw?

6,85 1f wap=2radfs, a4 =212d/s’, wpe = lrad/s and
A == 4rad/sz. what is the acceleration of point € where the
scoop of the excavator is attached?

Fé.85

8.86 If the velocity of point C of the cxcavator in Problem 6.85 is
ve =4im/s and is censtant at the instant shown, what are
W4, Qap, Wae and age?

\‘\M’\‘ ‘*w TOO mm
atay,
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6.87 Bar AB rotates in the couhterclockwige direction with a
constant angular velocity of t0rad)/s. What are the angular accel-
erations of bars 3C and CD? :

10 rad/s <

| Im 2m i

P6.87

6,88 At the instant shown, bar 4B has no angular velogity but
has a counterclockwise angular aceeleration of 10vad/s% Deter-
ming the acceletation of point E,

%)

X

ﬁ.ﬂg -‘F T00 mm

6.89 If wap = 12rad/s and O(A}:} = 100rad/s?, what are the
angular accelorations of bars BC and CD7

P5.88

300 mm

350 mm
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690 If wyp =4rad/s counterclockwise and &, = 12 rad/s®
counterclockwise, what is the acceleration of point C?

P6.90

6.21 In Problem 6.90, if w.s = 6rad/s ¢clockwise and opg = 0,
what 15 the acceleration of pomnt 7

6.92 If arm AR has a constant clockwise angular velocity of
0.8rad/s, arm BC has a constant clockwise angular veloeity of
0.2 rad/s, and arm D remains vertical, what is the acceleration of
thc part D?

mim

4,93 In Problem 692, iff arm AR has a constant clockwise
angular velocity of Q.8rad/s and you want part D to have zero
velocity and aceeleration, what are the necessary angular velocities
and angular accelerations of arms BC and CD?

B
P6.92 140 mm

250 mm

694 In Problem 6.92, if you want arm CD to remain vertical and
you want part D to have velocity vp = L.0im/s and zero accel
eration, what are the necessary angular velocities and angulas
accelerations of arms AH and BC?

6.95 Ifthe velocity of point C of the excavator in Problem 6.85 i
zero and its acceleration is a¢ = 4im/s® at the instant shown, wha
are (g, wee and age?

6.96 The ring gear is fixed, and the hub and planet gears arg
bonded together. The connecting rod has a counterclockwisg
angular sceeleration of 10 rad/s*. Determine the angular acoelera
tions of the planet and sun gears.

Planct gear ...

Connecting -
rod

Sun gear - Y

Ring gear“"“'

P6.9¢

6.97 The conneating rod in Problem .96 has a counterclock wisg
angular velocity of 4 rad/s and a clockwise angular acceleration o
12 rad/s*. Determine the magnitude of the acceleration of point 4

6.98  The large gear is fixed. The angular velocity and angulal

acceleration of bar 48 are wyy = 2rad/s, w4z = 4rad/s*, Deter
mine the angular accelerations of bars C2¥ and DE.

—’- 250 mm 7-%
I

100
——| mm |~—7 400 mm

J
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Here we consider a type of problem superficially similar to those we have
discussed previously in this chapter, but which requires a different method of
solution. For example, suppose that we know the angular velocity and angular
acceleration of the bar 48 in Figure 6.30, and we want to determine the
angular velocity and angular acceferation of bar 4C. We cannot use the
equation v4 = vy 4 @ X ry g to express the velocity of point 4 in terms of the
angular velocity of bar 4B, because we detived it under the assumption that
points 4 and B are points of the same rigid body. Point 4 is not a part of the bar
AB, but moves relative to it as the pin slides along the slot. This is an example
of a sliding contact between rigid bodies. To solve such problems, we must
re-derive Equations (6.8)-(6.10) without making the assumption that 4 is a
point of the rigid body.

Figure .30

In Figure 3.31, we assume the coordinate system is body-fixed and that B is
a point of the rigid body, but we do not assume that 4 is a point of the rigid
body. The position of 4 relative to O is

ry=rpt+xit+yj+zk
[ —
Ta/m
where x, y and z are the coordinates of 4 in terms of the body-fixed coordinate

system. Our next step is to take the time derivative of this expression to obtain
an equation for the velocity of 4. In doing so, we recognize that the unit

Figure 6.31

Linkage with a sliding contact.

A point B of a rigid body, a body-fixed
coprdinate system, and an arbitrary point 4.
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Interpreting i as the position vector of a
point £ relative ta B,

Figure 6.33

Expressing the velocity of 4 in terms of the
velacity of a point B of the rigid body.

vectors i, j and k are not constant, because they rotate with the body-fixed)
coordinate system:

ViV +£ﬁi+xﬂj+dy'»}wvdj+£—zk+zdk
AT TR AR TR dt

What are the time derivatives of the unit vectors? in Section 6.3 we showed
that if rpy is the position of a point £ of a rigid body relative to another point
8 of the same rigid body, drpp/d! = Vpsg == 10 X Fpyg. Since we can regard
the unit vector i as the position vector of a point P of the rigid body (Figure
6.32), its time derivative is d i/df = @ > i. Applying the same argument to the
unit vectors j and k, we obtain

Figure 6.32

Using these expressions, we can write the velocity of point 4 as

Vg == Ve Vol 0 X Fyp ‘
e ) {6.11)
Va/B
where
de, dy | dz
e § o T e A2
Virel dt]+dtj+dtk (6.12)

is the velocity of A relative to the body-fixed coordinate system. That is, V.4
is the velocity of 4 relative to the rigid body.

Equation (6.11) expresses the velocity of a point 4 as the sum of three
terms (Figure 6.33): the velocity of a point B of the rigid body, the velocity
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o X Ty of 4 relative to B due to the rotation of the rigid body, and the
velogity v, 0f 4 relative to the rigid body.

To obtain an equation for the acceleration of point 4, we take the time
derivative of Equation (6.11) and use Equation (6.12). The result is

a,,zag+a,4re|+2mXVA,,,1~+~ocxrA/g+mx(mxrAw) (6.13)
R4/p '
where
dx  dy ., dz
- — k 14
Ml = W I+ ©6.14)

is the acceleration of 4 relative to the body-fixed coordinate system.

The terms v 4 and a, are the velocity and acceleration of point 4 relative to
a non-rotating coordinate system that is stationary relative to point O. The
terms Ve and a4 are the velocity and acceleration of point .4 measured by
an observer moving with the rigid body (Figure 6.34). If 4 is a point of the
rigid body, vsry and 8, ate zero, and Equations (6.11) and (6.13) are
identical to Equations {6.8) and (6.9).

In the case of two-dimensional motion, we can express Equation (6.13) in
the simopler form

e
A4 = By + Agpel + 200 X Vo + 0 % Fap — WY

(6.13)
A4/R

Figure 6.34

Imagine yoursdlf to be stationary relative to
the rigid body..

In the following examples we analyse the motions of linkages with sliding
contacts. You can use the same approach that you applied to systems of
pinned rigid bodies, beginning with points whose velocities and accelera-
tions are known and applying Egquations (6.11) and (6.15).
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10 rad/s?
2 rad/s

e VU
Figure 6.35

L L L

{0 Bxpressing the velocity and acceleration
of A in terms of the angular velocity
and acceleration of bar A5,

y

] p——

(b) Direction of the velocity of 4 relative
to the body-lixed coordinate systern.

(c) Expressing the velocity and acecleration
ol A in terms of the angular velocity
and acceleration of bar AC.

Example 6.8

Bar A8 in Figure 6.35 has a counterclockwise angular velocity of 2rad/s and a
counterclockwise angular acceleration of 10tad/s*.

{a) Dctermine the angular velocity of bar AC and the velocity of the pin 4 relative to
the slot in bar AB.

(b) Determine the angular acceleration of bar AC and the acceleration of the pin 4
relative to the slot in bar AB.

STRATEGY

We can use Equation (6.11) to express v in terms of the velocity of A relative to the
slot in the bar and the known angular velocity of bar 48. 4 and C are both points of
the bar AC, so we can also express vy in terms of the angular velocity of the bar AC
in the usual way. By equating the resulting expressions for v4, we will obtain a
veetor equation in terms of the velocity of A relative to the slot and the angular
velocity ot bar AC. Then, by following the same sequence of steps but this time
using Equation (6.15), we can obtain the acceleration of 4 relative 1o the slot and the
angular acceleration of bar AC.

SOLUTION
(a) Applying Equation (6.11) to bar 48 (Figure (a)), the velogity of 4 is
Vi = Vg b Ve gy X Tqp
i j k
w3 ~+- Vel »}“ 0 0 2

08 04 ¢

Assuming the coordinate system in Figure (a) to be body-fixed with respect to bar
AR, the velocity vy is the velocity of 4 relative to this coordinate system. We don’t
know the magnitude of vy, but its dircction is parallel to the slot (Figure (b))
Therefore we cun express it ag

Virel = Varel €08 fi v m sinfj

where #§ = arctan (0.4/0.8). Substituting this expression into our equation for v4, we
obtain

Vi = (W cosf — 08) i+ (var sinfl + 1.6)]

Let ¢ be the angular velocity of bar 4C (Figure (¢)). Expressing the velocity of 4
in terms of the velocity of €, we obtain

V4 =V + Wy X Fayye
= (} + (wae k) x (0.4 )

= ""0'4(")AC i

Notice that there is no relative velocity lerm in this equation, because 4 is a point of
the bar 4C. Equating our two expressions for v, we obtain

(Pacos f—0.8) i+ (v sin f 4 1.6)j = —0.4m4c 1




Equating i and j components yields the two equations

Eind CO8 B — 0.8 = w0 4y
Vgl Sil’lﬁ*{* 16=40

Solving them, we obtain v 4,9 = —~3.581m/s and wye = 10rad/s. At this instant, the
pin 4 is moving relative to the slot at 3.58 m/s towards B. The vector v,y is

Vi = =3 58(cos fi+sinfj) = {—3.21i — 1.6j)m/s
(b) Applying Equation (6.15) to bar 4B (Figure (b)), the acceleration of 4 is

B4 = Ap + Burel + 20048 X Vel + Sap X Kasp — WouTasm
iy k| |0 K
=04ag+2 0 0 2|4+|0 0 10
~32 ~16 0 08 04 0

— (%08 +0.4)

The acceleration of 4 relative to the body-fixed coordinate system is parallel to the
slot (Figure (d)), so we can write it in the same way as we did v,

Bl = Qi) CO8 B b cty e 8in B
Substituting this expression into our equation for a, gives
By = (g 008 f— O.8)i+ (@ sin f ~ 6.4)

Expressing the acceleration of 4 in terms of the acceleration of C (Figure (c)), we
obtain

VIR Tal i FTalb O P el ‘fffc,' ar¢
=0+ {oac k) x (0.4]) ~ (10)°(0.4 )
= w0.4OCAC i 40j

Equating our expression for ay, we obtain
(@arel 0O8 i — 0.8) i+ (@4, 8inff — 6.4)j == ~D.dagyci -~ 40j
Equating i and j components yields the two equations

Tirel €08 § — 0.8 = —0.doye
Qre) SN J o 6.4 22wl

Solving them, we obtain a4, = ~75.13 m/s® and cqe = 170ad/s%. At this instant,
the pin 4 is accelerating relative to the slot at 75.13 m/s® towards B.

e 800 0 ——]

() Dircetion Eof the dcceleration of A
relative to the body-fixed coordinate
system,

4.5 SLDING CONTACTS 27J‘
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Example 6.9

Bar A8 in Figure 6.36 rolates with a constant counterclockwise angular velocity of

Yrad/s, The block B slides in a cireular slot in the curved bar 2C. At the instant
+77 shown, the centre of the circular slot is at D. Determine the angular velocity and
angular acceleration of bar BC,

350 mm

| STRATEGY

: Since we know the angular velocity of bar AH, we can determine the velocity of
! point B. Because B is not a point of bar 8C, we must apply Equation (6.1 1) to points
mm : B and C. By equating our expressiotis for vy, we can solve for the angular velocity
e e 1000 mm ‘ of bar BC. Then, by following thc same sequence of steps but this lime using
Equation (6.15), we can determine the angutar acceleration of bar 8C.

SOLUTION

To determine the velocity of B, we express it in terms of the velacity of A and the
angular velacity of bar AB. vy = vy + 004p % Yya. In terms of the coordinate
y system shown in Figure (a), the position vector of 8 relative to A is

vy = (0.500 + 0,500 008 §) i + 0.350j = (0.857i 4 0.350j)m

where fi=arcsin (350/500) = 44.4°, Therefore the velocity of B is

i ik
VE=Y 0y XTyy =04 0 & 1
t 0.857 0350 0 (6.16)
500 500 ‘ = (—.3501 + 0.857 Jym/s
™ mm mn

To apply Equation (6.11) to points B and €, we introduce a coordinate system with
its origin at C that rotates with the curved bar {Figure (b)). The velocity of B is

{0} Dotermining the velocity of point B.
i Vg = Vo 4+ Yy + Gae X Payce (6.17)
The position vector of B relative to C is

Ty = —(0.500 — 0.500 cos f)i + 0.350] = (—0.143i + 0.350j)m

Relative to the body-fixed coordinate system, point 8 moves in a cwreular path about
point £ (Figure (¢)). In terms of the angle f, the vector vgy is

Virel = =gl 80 F 1 + Vg cos B

500 We subgtitute these expressions for rg,c and vay into Equation (6.17), obtaining
T mim

-

T e e

i j k
b) A coordinate system fixed with respect e X
® to the curved lzar, P ¥y 7= lg) SI0BT A vpee COS ] 0 0 Wac

—0.143 0350 0

e e T o S 038 s




Equating this expression for vg to its value given in Equation (6.16) yields the two
cquations

~2pm 80 f — 0.350aye == —0.350
Vel COS f — 0.143cope = 0.857

Solving them, we obtain gry = 1.0m/s and wge = —1.0rad/s.
We follow the same sequence of steps to determine the angular acceleration of
bar BC. The acceleration of point B is

A
Ay = g -k Uyp X g — WyplEA

= 0+0 - (1(0.857i +0.350]) (6.18)

Because the motion of point B relative to the body-fixed coordinate system is a
circular path about point D, there is a tangential component of acceletation, which
we denote ag, and a normal component of acceleration v} ,/(0.5m). These
components are shown in Figure (d). In terms of the angle f§, the vector ag is

Bprel 5% — A SN F 1+ g cos B
— (V3 /0.5) cos Bi — (vh /0.5 sin B
Applying Equation (6.15) to points # and €, the acceleration of B is
ag = ac +apwel + 2050 X Vp
+ 0ac X Tge — Whekpse
=0 —apsinfi+apcosfif

~ [(N*/0.5]cos Bi — [(1)*/0.5] sin fj

i i k
+2/ 0 0 -1
—(sinf (Dcosf 0
i i Kk
+i 0 0 e | - (—130.1430 4 0.350)

0,143 0350 @

Equating this expression for ag to its value given in Equation (6,18} yields the two
equations

—ag 5in f — 0.3500pe + 0.143 = —~0.857
ag cas f— 0,143 — 0.350 = —0.350

Solving them, we obtain ag = 0.408m/s’ and upe = 2.040 rad/s?.
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3 C
e

(&) Velocity of B relative to the body-fixed
coordinate system.

I

() Acceleration of B relative to the
body-fixed coordinate gystom.

P
7
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6.99  The bar rotates with a constant counterclockwise angular
velocity of 10 rad/s, and the sleeve 4 slides at 4 m/s relative to the
bar. Use Equation (6.11) to determine the velocity of 4.

P6.99

6.100  The sleeve 4 in Problem 6,99 slides relative to the bar at a
constant velocity of 4m/s. Use Equation (6.15) to determine the
acceleration of 4.

6.101  The sleeve C slides at 1 m/s relative to the bar BD, What is
its velocity?

G0

mm

P&.101

4.102 In Problem 6.101, the angular accclerations of the two
bats are zero and the sleeve C slides at a constant velocity of | m/s
relative to bar BD. What is the acceleration of the sleeve C?

+| Problems |

6,103 Bar AC has an angular velocily of 2 rad/s in the counter-
clockwise direction that is decrcasing at 4rad/s®. The pin at C
stides in the slot in bar BD,

(a) Determine the angular velocity of bar 8D and the velocity of
the pin relative to the slot.

(b} Determine the angular acceleration of bar BD and the accel-
eration of the pin relative io the slot.

100 mm

B = 11111 e

‘ P6.103

6,104 In the system shown in Problem 6.103, the velocity of the
pin C relative o the slot 15 500 mm/s upwards and is decreasing at
1000 mm/s*, What are the angular velacity and acceleration of bar
A

6,105 In the system shown in Problem 6,103, what should the
angular velocity and acceleration of bar 4C be if you want the
angular veloeity and: acceleration of bar BD to be 4 rad/s counter-
clockwise and 24 rad/s® counterclockwise, respectively?

6.106 Bar A8 has an angular velocity of drad/s in the clockwise
direction. What is the velocity of the pin 8 relative o the slot?

L*—*—«w &0 mm -

-~J~“~35 TR

P6.106




6.107 1In the system shown in Problem 6.106, bar AB has an
angular velocity of 4rad/s in the clockwise direction and an
angular acceleration of 10tad/s* in the counterclockwise direction.
What is the acceleration of the pin B relative to the slopt?

6.108 Arm AR is rotating at 4rad/s in the clockwise direetion.
Determine the angular velocity of arm BC and the velocity of point
B relative to the slot in arm BC,

125 mm

P6.108

6.109 Amn AB in Problem 6.108 is rotating with & constant
angular velocity of 4rad/s in the clockwise direetion. Determing
the angular acceleration of arm BC and the acceleration of point B
relative to the slot in arm BC.

6110 The angular velocity wye = 5° per second. Determine the
angular velocity of the hydraulic actuator 8C and the rate at which
it 13 extending.

P6.110

- L m ‘L 1.2 m -

6.115 Tn Problem 6.114, the block 4 slides up the inclined
surface at a constant veloeity of 0.6 m/s. Determine the angular
acceleration of bar AC and the accélération of point C.
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6111 In Problem 6.110, if the jangular velocity wae = 57 per
second and the angular accelcrfation fae = =27 per second
squared, determine the angular :agceleration of the hydraulic
actiator BC and the rate of changé of its'rate of extension.

6.112 The sleeve at A slides upwards & a constant velocity of]
101m/s. The bar AC slides through the sléeve at 8. Determing the
angular velocity of bar 4C and the velocity at which il slides
relative to the sleeve at B '

10 m/fs

P&.112

6.113 In Problem 6.112, the sleeve at 4 slides upwards at a
constant velocity of 10m/s. Determine the angular acceleration of]
the bar AC and the rate of change ¢f the velocity at which it slides
relative to the sleeve at B :

6.114 The block 4 slides up the inclined surface at (.6 m/s,
Determine the angular velocity of bar AC and the velocity of]
point C.

1.3450

o (), TR e

P&.114




280 CHAPTER & PLANAR KINEMATICS CF RIGID BODIES

6.116 The angular velocity of the scoop is 1.0rad/s clock-
wise. Determing the rate at which the hydravlic acwator AR is
extending.

600 mm

P 750) mrn# /

Scoop

P&.116

6.117 The angular acceleration of the seoop in Problem 6.116 is
zero. Determing the rate of change of the rate at which the
hydraulic actuator A5 is extending.

6.118 Supposc that the curved bar in Fxample 6.9 rotates with a
counterclockwise angular velocity of 2 rad/s.

() What is the angular velocity of bar A7

{b) What is the velocity of the block B relative to the slot?

6.119  Suppose that the curved bar in Example 6.9 has a clock-
wise angular velocity of 4rad/s and a counterclockwisc angular
acceleration of 10rad/s®, What is the angular accelcration of
bar AB?

6.120 The disc rells on the planc surface with a counterelock-
wise angular velocity of 10rad/s, Bar AB slides on the surface of
the disc at A. Deiermine the angular velocity of bar A5,

[0} rad/.g,./

Pé.120

6121  In Problem 6.120, the disc rolls on the plane surface with a
constant counterclockwise angular velocity of 10rad/s. Determine
the angular acceleration of the bar 45,

6.122 Bar BC rotates with a counterclockwise angular velocity
of 21ad/s. A pin at B slides in a circolar slot in the rectangular
plate. Determine the angular velocity of the plate and the velocity
at which the pin slides relative to the circular slot,

i

30 mm

|

60 mm —-—’{

P&,122

6.123 The bar BC in Problem 6.122 rotates with a constant
counterclockwise angular velocity of 2 rad/s, Determine the angu-
lar acceleration of the plate.

6.124 By laking the time derivative of Equation (6.11) and using
Equation (6.12), denive Equation (6.13).
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In this section we revisit the subjects of Chapters 2 and 3 —the motion of a
point and Newton's second law. In some situations it is convenient to describe
the motion of a point by using a cooardinate system that rotates. For example,
to measure the motion of a point relative to a moving vehicle, yon might use a
coordinate system that moves and rotates with the vehicle. Here we show how
the velocity and acceleration of a point are related to their values relative to a
rotating coordinate system. In Chapter 3 we mentioned the example of playing
tennis on the deck of a cruise ship, If the ship translates with constant velocity,
you canl use the equation £ F = ma expressed in terms of a coordinate system
fixed relative to the ship to analyse the ball's motion. You cannot do so if the
ship is tuming, or changing its speed, However, you can apply the second law
using coordinate systems that accelerate and rotate by properly accounting for
the acceleration and rotation. We explain how this 15 done.

Motion of a Point Relative to a Rotating
Coordinate System

Equations (6.11) and {6.13) give the velocity and acceleration of an arbitrary
point A relative to a point & of a rigid body in terms of a body-fixed coordinate
systermn:

Vi == Va o Varg + 00 X Fyy (6.19)
A= Ap b Agrel 200 X Ve b 0 X Tygp 4 o X {00 X Typp) {6.20)

But these results don’t require us to assume that the coordinate system is
connected to some rigid body. They apply to any coordinate system rofating
with angular velocity o and angular acceleration  (Figure 6.37), The terms v.4
and a; arc the velocity and acceleration of 4 relative to a non-rotating
coordinate system that is stationary relative to Q. The terms vy, and A4
are the velocity and acceleration of A relative to the rotating coordinate system,
That is, they are the velocity and acceleration measured by an ‘observer’
moving with the rotating coordinate system (Figure 6.38).

The following examples demonstrate applications of rotating coordinate
spstemnys. If you know the morion of a point A relative to a rotating coordinate
system, you can use Equations (6.19) and (6.20) to determine v, and a,. In
other situations, you will know v, and a,. and will want to use Equations
(6.19) and (6.20) 1o determine the velocity and acceleration of A relative to a
rotating coordinate system.

Figure 6.37

A rotating coordinate system with origin B
and an arbitrary point A.

Figure 6.38

Imagine yourself to be stationary relative to
the rotating coordinate system.




282 CHAPTER 6 PLANAR KINEMATICS OF RIGID BODIES

Figure 6.39

Example 6.10

The merry-go-round in Figure 6.39 rotates with constant angular velocity .
Suppose that you are in the centre at B and observe the motion of a sccond person
A, using a coordinate system that rotates with the merry-go-round. Consider two
cases,

Case 1 The person 4 is not on the merry-go-round, but stands on the
ground next to it. At the instant shown, what are his velocity and
acceleration relative to your coordinate system?

Case 2 The person 4 is on the edge of the merry-go-round and moves
with it. What are his velocity and acceleration relative to the earth?

.
- iy
ER. i

fﬂﬂw (4] o

,“"W

o1, ! 0
R
N

"‘n.___m

CASE 1 CASE?2

=]
[ =

STRATEGY

This simple exarnple clarifies the distinction between the terms vy, a4 and the terms
Vol Agpe in Equations (6.19) and (6.20). Tn case 1, A% velocity and acceleration
relative to the earth, vy and a,, are known: he is standing still, We can use Equation
(6.19} and (6.20) (o determine v 4 and a 4, which are his velocity and acceleration
relative to your rotating coordinate system. In cage 2, v and a, rel dre known: A is
stationary relative to your coordinate system. We can use Bquations (6.19) and
(6.20) to determine v, and a..
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SOLUTION

Case 1 A is standing on the ground, so his velocity relative 1o the earth is v4 == 0.
The angular velocity vector of your coordinale system is e = w k, and at the instant
shown r,,z = Ri. From Equation (6.19),

Vi =¥t Yol 0 X Eypp !

(== 0 b Vi 4 (k) % (R1)

We find that v == —mRj. Although 4 is stationary relative to the earth, v, is
not zero. What does this wrim represent? As you sit at the centre of the merry-go-
round, you see 4 moving around you in a circular path. Relative to yowr rotating
coordinafe system, A moves in a cireular path of radius R in the clockwise direction
with a velocity of constant magnitude mR. At the instant shown, s velocity relative
to your coordinate system is —wkK j.

You know that a point moving in a circular path of radius X with velocity » has a
normal component of acceleration equal to v?/#. Relative to your coordinate
systern, person 4 moves in a circular path of radius R with velocity wR Therefore,
refative to your coordinate system, A has a normal component of acceleration

(R /R = R, At the instant shown, the normal acceleration points in the @ s
negative x direction. Therefore we conclude that A5 acceleration relative to your
coordinate system 18 a4p = — K.

[

We can confirm this result with Equation (6.20}. A% acceleration relative to the
earth is a4 = 0. The angular velocity vector of the coordinate system is constant, so

y
o = 0. From Equation (6.20), ’ ,
By A+ Birel + 200 K Ve ok 00K Y b 0 3 {00 X Fypp) R
0= 0+ a0+ 20wk) x (—aRj)+ 0+ (wk) x [(wk) x (R1)]
u..m»rﬂ'”"'/

Solving this cquation for asw;, we obtain a4 = —w KL A% velocity and accel-
cration relative to your coordinate svstem are shown in Figure (a).

(@) The velocity and acceleration of A
relative to the rotating coordinate

) . system in case 1.
Case 2 Relutive lo your coordinate system, A is stationary, so vgp = 0 and

A,y = 0. From Equation (6.19). 4% velocity relative to the earth is

Vi Vet Vgt w X = 0404 (wk) x (R
= @R}
In this case, A is moving in & ciroular path of radius £ with a velocity of constant

magnitude R relabive to the earth.
From BEquation (6.20), A% acceleration relative to the earth is

Ay = ag + Ayl + 20 X Vgl + % X Pz + @ (00 X X gp)
=04 0+0+0+(@k) x [(wk) x (Ri)]

=~ Ri

This is A's acceleration relative to the earth due to his circular motion. A% velocity
and acceleration relative to the earth are shown in Figure (b). |

(b)) The velocity and acceleration of 4
relative to the earth in case 2.

283
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Figure 6.40

O

e+ e

Example 6.11

At the instant shown, the ship in Figure 6.40 is moving north at a constant speed of
15.0 m/s relative to the earth and is turning towards the west at a constant ratc of
5.0° per second. Relative to the ship’s body-fixed coordinate system, ifs radar
indicates that the position, velocity and acceleration of the helicopter are

Fap = (420004 236.2j+212.0K)m
Vil = (—53.504+ 2.0j + 6.6 K)m/s
By = (041 —0.2j —13.0K)m/s*

What are the helicopter's velocity and acceleration relative to ‘the earth?

STRATEGY

We are given the ships velocity relative to the earth and are given enough
information to determine its aceeleration, angular velocity and angular acceleration,
Therefore we can use Equations (6.19) and (6.20) to determine the helicopter’s
velocity and acceleration relative 1o the earth,

SOLUTION

In terms of the body-fixed coordinate systern, the ships velocity is
vy = 15.0im/s. The ships angular velocity due to its rate of turning is
w = {5.0/180)n = 0,0873rad/s. The ship is rotating about the y axis. Pointing
the arc of the fingers of the right hand around the p axig in the ditection of the ship’s




rolation, the thumb points in the positive y direction, so the ship’s angular velocity
veclor 15 = 0.0873 jrad/s. The hclicopter’s velocity relative to the sarth is
Vg == Vg b Vi + 00 X Eyp
i b k
= 15,00+ (—53.51+2.0j+66K)+| O 0087 0O
420.0 2362 212.0
= (2001 +2.0j —30.1k)m/s

We can determine the ship’s acceleration by expressing it in terms of normal and
tangential components in the form given by Equation (2.37) (Figure (a)):

dv dd ,
ag = EE' + -E,Et_gn = 0+ {15)(0.0873) e,

= 1.31e, m/s’

The z axis is perpendicular to the ships path and points towards the convex side of
the path (Figure (b)), Therefore, in terms of the body-fixed coordinate system, the
ship’s acceleration is ag = —1.31kmys®. The ship’s angular velocity vector is
constant, so & = 0, The helicopier’s acceleration relative to the earth 13
By == By b Bl 200 X Vg b K T
+ w X (X I'A/E)

e 131k 4 (041 02— 13.0K)

i i K
+20 0 0.0873 0
535 20 66
i i k
+0+ 00873} x| 0  0.0873 0
4200 2362 2120

| 651 = 0.20] — 6.59 km/s”

DISCUSSION

Notice the substantial differences between the helicopter’s velocity and acceleration
relative to the earth and the values the ship measures using its body-fixed coordinate
system,

6.6 ROTATING COORDINATE SYSTEMS

{c) Determining the ship's acceleration.

e

o1

(b) Correspondence between the normal
and tangential components and the
hody-fixed coordinate systcm,
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Figure 6.41

(a) An incrtial reference frame and a
non-rotating reference frame with its origin at
the cenfre of the earth,

(b} Dctermining the motion of an object A.

Inertial Reference Frames

We say that a reference frame is inertial if you can use it to apply Newton’s
second law in the form ZF = m a. Why can you usually assume that an earth-
fixed reference frame is inertial, even though it both accelerates and rotates?
How can you apply Newton’s second law using a coordinate system that is
fixed with respect to an accelerating, turning ship or aeroplane? We are now in
a position 1o answer these guestions.

Earih-Cenfred, Non-Rofaling Coordinate System We begin by
showing why a non-rotating reference frame fixed relative to the centre of
the earth can be assumed to be inertial for the purpose of describing motions
of objects near the earth. Figure 6.41(a) shows a hypothetical nofi-accelerating
non-rotating coordinate system with origin O, and a second non-rotating,
earth-centred coordinate system. The earth, and therefore the earth-centred
coordinate system, accelerates due to the gravitational attractions of the sun,
moon, and 50 on. We denote the earth’s acceleration by the vector g

Suppose that we want to determine the motion of an object 4 of mass m
(Figure 6.41(b)). 4 is also subject to the gravitational attractions of the sun,
moon, and 50 on, and we denote the resulting gravitational acceleration by the
vector g4 The vector ZF is the sum of all ether external forces acting on A,
including the gravitational force exerted on it by the earth. The total external
force acting on 4 is £ F + mg,. We can apply Newton’s second law to A, using
our hypothetical inertial coordinate system:

LFE4+mg, =may (6.21)

where ay is the acceleration of A relative to . Since the earth-centred
coordinate system does not rotate, we can nse Equation (6.20) to write a, as

Aq == Ay + Ay e

whete a4 is the acceleration of 4 relative to the carth-centred coordinate
system. Using this relation and our definition of the earth’ acceleration
ag = g, Hquation (6.21) becomes

LF = mayp + m(gy — g) (6.22)

If the object 4 is on or near the earth, its gravitational acceleration g, due to
the attraction of the sun and so on is very nearly equal to the earth’s
gravitational acceleration gg. If we neglect the difference, Equation (6.22)
becomes

EF = ma g (6.23)

Thus you can apply Newton’s second law using a non-rotating, earth-centred
reference frame. Even though this reference frame accelerates, virtually the
same gravitational acceleration acts on the objeci. Notice that this argument
does not hold if the object is not near the earth. If you wanted to analyse the
motion of a spacecraft travelling to another planet, for example, you would
need to use a non-rotating, sun-centred reference frame.




Earlh-Fixed Coordinate Systern  For ‘down to earth’ applications, the
most convenient reference frame is a local, earth-fixed coordinate system.
Why ¢an we usoally assume that an garth-fixed coordinate system is inertial?
Figure 6.42 shows a non-rotating coordinate system with its origin at the
centre of the earth O and an earth-fixed coordinate system with its origin at a
point 8. Since we can assume that the earth-centred, non-rotating coordinate
gystern 18 inertial, we can write Newton’s second law for an object 4 of mass m
as

F = ma, (6.24)

where a4 is A% acceleration relative to (. The earth-fixed reference frame
rotates with the angular velocity of the earth, which we denote by wg We can
use Equation (6.20) to write Equation {6.24) in the form

ZF = maym + mlay + 2ag X Vg 4+ % (g X ryp)] (6.25)

where a4 is A5 aceeleration relative to the earth-fixed coordinate system. If
we can neglect the terms in brackets on the right side of Equation (6.25), the
earth-fixed coordinate system is inertial. Let’s consider each term. (Recall from
the definition of the cross product that |U x V| = |U || V| sin 0, where  is the
angle between the two vectors. Therefore the magnitude of the cross product is
bounded by the product of the magnitudes of the vectors.)

o The term oy X (g X ryp) The earth’s angular velocity oy, 1s approxi-
mately one revolution per day = 7.27 x IO”ﬁrad/ 8. Therefore the mag-
nitude of this term is bounded by wi|ra| = (5.29 x 107%)|ry,z} For
example, if the distance |rq| from the origin of the earth-fixed
coordinate system to the object 4 ig 10000m, this term is no larger
than 5.3 x 10~ m/s’.

o The term ag: This term is the acceleration of the origin B of the carth-
fixed coordinate system relative to the centre of the carth. £ moves in a
circular path due to the earth’s rotation. If B lies on the earth’s surface, this
term is bounded by w%RE, where Ry is the radius of the earth, Using the
value R; = 6370 km, we find that cuﬁRu e (3,0337 m/sz. This value is too
large to neglect for many purposes. However, under normal circumstances
this term is accounted for as a part of the local value of the acceleration
due to gravity.

o The ferm 2rop X Vypa: This term is called the Coriolis acceleration, Its
magnitude is bounded by 2oy [Vawel| = (145 x 107Y)|v 4] For example,
if the magnitude of the veloeity of 4 relative to the earth-fixed coordinate
system is 10 m/s, this term is no larger than 1.45 x 107 % m/s?.

We see that in most applications, the terms in brackets in Equation (6.25) can
be neglected. However, In some cases this is not possible. The Coriolis accel-
eration becomes significant if an object’s velocity relative to the earth is large,
and even very small accelerations becomes significant if an object’s motion myst
be predicted over a large period of time. In such cases, you can still use Equation
(6.25) to determine the motiorn, but you must retain the sipnificant terms. When
this is donc, the terms in brackets are usually moved to the left side:

EF —may — 2mody, X Vi — mody % (g X Fa/g) 6.26)

=2 A el

4.4 ROTATING CQORDINATE SYSTEMS 287

Figure 6.42

An carth-centred, nonrotating reference
frame (origin (), an earth-fixed reference
frame {origin &), and an object A.
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Written in this way, the equation has the usual form of Newton’s second law
except that the left side containg additional ‘forces’. We use quotation marks
because these terms are not forces, but are artefacts arising from the motion of
the earth-fixed reference frame.

The term —2muwyg * V4. in Equation (6.26) is called the Coriolis force. i
explains a number of physical phenomena that exhibit different behaviours in
the northern and southern hemispheres, such as the direction a liquid tends to
rotate when going down a drain, the direction a vine tends to grow around a
vertical shaft, and the direction of rotation of a storm. The earth’s angular
velocity vector wg points north. When an object in the northern hemisphere
that is moving at a tangent to the earth’s surface travels north (Figure 6.43(a)),
the cross product wg x vy points west (Figure 6.43(b)). Therefore the
Coriolis force points east- it causes an object moving north to turn to the right
(Figure 6.43(c)). If the object is moving south, the direction of v, is reversed
and the Coriolis force peints west; its effect is to cause the object moving south
to turn to the right (Figure 6.43(c)). For cxample, in the northern hemisphere
winds converging on a centre of low pressure tend to rotate about it in the
counterclockwise direction (Figure 6.44(a)).

When an object in the southern hemisphere travels north (Figure 6.43(d)),
the cross product ey X v points east (Figure 6.43(e)). The Coriolis force
points west and tends to cause the object to turn to the left (Figure 6.43(). If
the object is moving south, the Coriolis force points east and tends to cause the
object to turn to the left (Figure 6.43(f)). In the southern hemisphere, winds
converging on a centre of low pressure tend to rotate about it in the clockwise
direction (Figure 6.44(b)).

Figure 6.43

(a) An object in the northern hemispherc
moving north.

{b) Cross product of the earth’s angular
velocity with the objeets velocity.

{(c) Effects of the Coriolis foree in the northern
hemisphere.

(d) An object in the southern hemisphere
moving north.

(e) Cross product of the earth’s angular
velocity with the object’s velocity,

(f} Effects of the Coriolis force in the southem
hemispherc.

Wy
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(i) (b)

Arbitrary Coordinate Sysfern  How can you analyse an object’s motion
relative to a coordinate system that undergoes an arbitrary motion, such as g
coordinate system attached to a moving vehicle? Suppose that the coordinate
system with its origin at O in Figure 6,435 is inertial, and the coordinate system
with its origin at B undergoes an arbitrary motion with angular velocity @ and
angular acceleration ¢ We can write Newton's second law for an object A of
mass m as

IR =may (6.27)

whete a4 is A% acceleration relative to €. We use Equation (6.20) to write
Equation (6.27) in the form

ZF — mlap = 20 X ¥yl + ¢ X a5 + @
[ o (6.28)
* (0 ¥ ryz)] = mayel

where ag, is A’ acceleration relative to the coordinate system undergoing an
arbitrary motion. This 1s Newton’s second law expressed in terms of a
reference frame undergoing an arbitrary motion relative to an inertial reference
frame: if you know the forces acting on 4 and the coordinate system’s motion,
you ¢an use this equation to determine ;.

Figure 6.45

motion (origin ).
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Figure 6.44

Storms in the (a) northern and (b) southern
hemispheres.

An inertial reference frame (onigin ) and a
reference frame undergoing an arbitrary
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Example 6.12 "

i Suppose that you and a friend play tennis on the deck of a cruise ship (Figure 6.46),
: and use the ship-fixed ¢oordinate system with origin B to analyse the motion of the
hall 4, At the instant shown, the ball’s position and velocity relative to the ship-fixed
coordinate  systern  are rgp = (4314 24§+ 10.8K)m and v = (0.60~
2.4i4 6.6 k)my/s. The ball weighs 0.5 N, and the aerodynamic force acting on it at
the instant shown is F = (0.1i+0.004j + 0.01 k)N. The ship is turning at a
constant rate, and as a result the acceleration of point B relative 1o the earth is
ap = (—0.9i -+ 0.06 kK)m/s* und the ships angular velacity is « == 0.1 jrad/s.
Determine the ball's acceleration relative to the ship-fixed coordinate systerm: (a)
asswming that the ship-fixed coordinate system is inertial; (b} not assuming that the
ship-fixed coordinate system is inertial, but assuming that a local earth-fixed
coordinate system is inertial,

Figure 6.46

STRATEGY

In part (a), we know the ball’s mass and the external forces acting on it, 50 we can
simply apply Newton’s sccond law to determine the acceleration. In part (b), we can
cxpress Newton’s second Jaw in the form given by Equation (6,28), which applies to
a coordinate system undergoing an arbitrary motion relative to an inertial coordinate
sygtem,
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SOLUTION

(2} Assuming that ihe ship-fixed coordinate system is inertial, Newton's second law
is

IF =mayp:

0.5
=055 4 {015+ 0.04j -+ 001 k) = (awglw)amcl

Solving this equation, we obtain the balls acecleration under the assumption that the
ship-fixed coordinate system is inertial:

Mol = (1,961 — 9.73§ + 0.20K) m/s*

{b) Dividing Equation (6.28) by m gives

|
(;’;)EFMGBMQ.U) X Vg & X Cyp "“(1))(((,0 b4 FA/I))maAml:

[b”s—/l"g”ﬁ] [~0.5§ + (0.1 +0.04j + 0.01 K)}
TS T
(09§ 4+006ky~2{ 0 01 0 |=0
0.6 ~24 6.6
i j k
w{0I)x] 0 01 0 |=asq
45 2.4 10.8

The ball’s acceleration under the assumption that an earth-fixed coordinate sysiem is
inertial is

A = (1591 =973} +0.36k)m/s’

DISCUSSION

This example illustrates the care that you must exercise in applying Newton's
sccond law. The acceleration we predicted by assuming that the ship-fised
coordinate system is incrtial does not even approximate the carrect value.

T R R Y
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6125 A merry-go-round rotates at a constant angular velocity of
0.5rad/s. The person 4 walks at a constant speed of 1 m/s along a
radial line. Determing 4% velocily and acceleration relutive to the
earth when she is 2 m from the centre of the merry-go-round, using
two methods:

{a) Fxpress the velocity and aceeleration in lerms of palar coordi-
nates.

(b) Use Equations (6.19) and (6.20) to cxpress the velocily and
acceleration in terms of a body-fixcd coordinate system with its x
axis aligned with the line along which A4 walks and its z axis
perpendicular to the merry-go-round.

P6.125

6,126 A disc-shaped space statiom of radius & rotates with
constant angular velocily w about the axis perpendicular to the
page. Two persons are stationary relative to the station at 4 and 3,
and (F is the centre of the station, Using Equations (6.19) and

(6.20) and the body-fixed coordinate system shown, (a) determine
A velocily and acceleration relative to a non-rotating reference
frame with its origin at (%; (b) determine #s velocity and accel-
eration relative to a non-rotating reference frame whose origin
moves with point B.

P6.126

6.127 The metal plate is attached to a fixed ball and socket
support at . The pin 4 slides in a slot in the plate. At the instant
shown, x4 = lm, drg/di = 2m/s, and d%x,/di* =0, and the
plate’s angular velocity and angular acceleration are w = 2 krad/s
and o = 0. What are the x, y, z components of the velocity and
acceleration ol 4 relative to a non-totating reference frame that is
stationary with tespect to 07

P6.127




6.128 Supposc that at the instant shown in Problom 6,127,
xg=1m, dx,/dt =-3m/s, and &*x,/df =4m/s°, and the
plate’s  angular velocity and angular  acceleration  are
@={(-4j+2K)rad/s and & = (3i— 6j)rad/s*. What are thc
x, ¥, z components of the velocity and acceleration of A relative
10 & non-rotating reference frame that is stationary with respect to
o

6.129 The coordinate systern shown is fixed relative to the ship
B. At the instant shown, the ship is sailing north at 3 m/s relative to
the earth and its angular velocity is 0.02rad/s clockwise. The
acroplane s flying cast at 120m/s relative to the earth, and its
position relative to the ship is v = (6001 4 600§ + 300Ky m. 1f
the ship uses ity radar to measure the plane’s velocity relative to its
body-fixed coordinate system, what is the result?

P6.129

6.130 The space shurtle is attempting to recover a satellite for
repair. At the current time, the satellite’s position relative to a
coordinate system fixed to the shutlle is 50im. The rate-gyros on
the shutte indicate that its current angular velogity s

(0.05j +0.03 K)rad/s. The shuttle pilot measures the velocity of
the satellite relative to the body-fixed coordinate system and
determines it to be (—~2i~ (5j+2.5k)ym/s. What arc the
X, v, z components of the satellite’s veloeity relative to a non-
rotating coordinate system with its origin at the shuttle?

P6.130
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&.131  The train on the circular track is travelling at a constant
speed of 15m/s m the direction shown. The train on the straight
track is travelling at 6 my/s in the direction shown and is increasing
its speed at 0.6 m/sz. Determine the velocity of passenger A that
passenger B observes relative to the coordinate system shown,
which is fixed to the car in which & is riding.
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P6.131
6.132 In Problem 6,131, determine the acceleration of passenger

A that passenger 8 observes relative to the coordinate system fixed
to the car in which 8 is riding.

6.133  The satellite 4 is in a circular polar orbit {a eireular orbit
that intersects the poles). The radius of the orbit is R, and the
magnitude of the satellite’s velocity relative to a non-rotating
reference frame with its origin at the centre of the earth is v, At
the instant shown, the satellite is above the equator, An observer B
on the earth directly below the satellite measures its motion vsing
the earth-fixed coordinate system shown. What are the velocity and
acceleration of the satellite relative to B% earth-fixed coordinate
system? The radivs of the earth is Ry and ifs angular veloeity is .

—_ P&.133
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6.134 A car 4 at north latitude £ drives north on a north—-south
highway with constant velocity 4. The earth’s radius is Bp and its
angular velocity is we. Determine the x, y, z components of the
car’s velocity and acceleration (a) relative to the earth-fixed
coordinate system shown; (b) relative to a non-rotating coordinate
gystem with its origin at the centre of the carth.

P6.134

6.135 The aeroplane 8 conducts flight tests of a missile, At the
instant shown, the aeroplane is travelling at 200 m/s relative to the
earth in a circular path of 200 m radius in the herizontal plane. The
coordinate system is fixed relative to the seroplane. The x axis is
tangent to the plane’ path and points forward. The y axis points out
of the plane’s right side, and the z axis points out of the bottom of
the plane. The planc’s bank angle (the inclination of the z axis from
the vertical) is constant and equal o 20°. Relative to the aero-
plane § coordinate system, the pilot measures the missile’s position
and velocity and determines them to be riz = 100Gim and
VAJ‘H = I\]O()Oi + 94.0j + 34,2 k)l‘n/ﬁ.

(a) What are the x, p, z components of the aeroplane’s angular
velocity vector?

(h) What are the x, y, z components of the missile’s velocity
relative to the carth?

P6.135

6.136 'To conduct experiments related to long-term space flight,
engineers construct a laboratory on earth that rotates about the
vertical axis at B with a constant angular velocity w of one
revolution every & seconds. They establish a. laboratory-fixed co-
ordinate system with its origin at # and the = axis upwards. An
engineer holds an object at point A, 3 m from the axis of rotation,
and releases it. At the instant he drops the object, determine its
acceleration relative to the laboratory-fixed coordinate system (a)
asswming that the laboratory-fixed coordinate system is inertial; (b)
not assuring that the Jaboratory-fixed coordinate system is inertial,
but assuming that an carth-fixed coordinate system with its origin
at B is inertial.

P6.136




8.137 A dise lying in the horizonial plane rotates about a fixed
shaft at the origin with constant angular velocity ¢, The slider 4 of
mass m moves in a smooth slot in the disc. The spring is
unstretched when x = 0.

{a) By cxpressing Newton’s second law in terms of the body-fixed
coordinate system, show that the slider’s motion is governed by the

equation

.
E"‘?‘ + ("!'C" - a)z)x =10
dr? m

(b) The slider is given an initial velocity di/dr = vy at x =0,
Dctermine its velocity as a function of x.

6.138 Engineers conduct flight tests of a rocket at 30° north
latitude. They measure the rockel’s motion uging an earth-fixed co-
ordinate system with the x axis upwards and the p axis northwards,
At a particular instant, the mass of the rocket is 4000kg, its
velocity relative to their coordinate system is (20001 + 2000§) m/s,
and the sum of the forees exerted on the rocket by its thrust, weight
and acrodynamic forces is (400 +400j} N. Determine the rocket’s
acceleration relative to their coordinate system (2) assuming that
their carth-fixed coordinate system Is mertial; (b)) not assuming that
their earth-lixed coordinate system is inertial.

P6.138
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6.139 Consider a point 4 on the surface of the earth al north
latitude L. The radiug of the earth is Ry, and its angular velocity is
. A plumb bob suspended just above the ground at point A will
bang at a small angle F relative to the vertical because of the earth’s
rotation. Show that § is related o the fatitude by

an f e Ry sin L cog L
P

Strategy: Using the earth-fixed coordinate system shown,
express Newton's second law in the form given by Equation (6.25).

P6.139

6.140  Supposc that a spuce station is in orbit around the earth
and two astronauts on the station (0ss a ball back and forih, They
observe that the ball appears to travel between them in a siraight
line at constant velocity.

(a) Write Newtons second law for the ball as it travels between
them in terms of a non-rotating coordinate system that is stationary
relative to the station, What 1s the term £ F? Use the equation to
explain the behaviour of the ball observed by the astronauts,

(b) Write Newtons second law for the ball as it travels belween
them in terms of a non-rotating coordinate system that is stationary
relative to the centre of the earth. What is the term £ F? Explain
the difference between this equation and the onc you obtained in
part (a).
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Chapter Summary

A rigid body is an idealized model of an object in which the distance between
every pair of points of the object remains constant. If a rigid body in motion
does not rotate, it is said to be in transhation. If the centre of mass moves in a
fixed plane and an axis of a body-fixed coordinate system remains perpen-
dicular to the plane, it is said to undergo two-dimensional, or planar, motion.

Relative Velocities and Accelerations
The angular velocity vector w of a rigid body is parallel to the axis of
rotation and its magnitude [e| is the rate of rotation. If the thumb of the right
hand points in the direction of w, the fingers curl around w in the direction of
the rotation. The angular acceleration vector o = do/dt is the rate of change
of the angular velocity vector.

Consider a point B of a rigid body, a body-fixed coordinate system, and an
arbitrary point 4 (Figure (a)). The velocities v, and vy of the points relative to
(} are related by

Vi Ve + Vil + 0 X Typ Equation (6.11)

whete v 4 i5 the velocity of 4 relative to the body-fixed coordinate system, 1f
A is a point of the rigid body, v is zero,
The accelerations ay and az of the points relative to O are related by

+ 0 % (B2 X ) Equation (6,13}

where a,. is the acceleration of 4 relative to the body-fixed coordinate
system, in plane motion, the term w X (W X ryy) can be written in the
simpler form —w?r 4.

If 4 is a point of the rigid body, v and a4 are zero,

Instantaneous Centres

An instantaneous centre is g point of a rigid body whose velocity is zero at a
given instant. Consider a rigid body in plane motion, and supposc that  is an
instantaneous centre. The velocity of a point 4 is perpendicular to the line
from C to 4 and its magnitude is the product of the distance from C to 4 and
the angular velocity (Figure (b)),




If you know the directions of the motions of two points A and B of a rigid
body in planar motion, lines drawn through A and B perpendicular to their
directions of motion intersect at the instantaneous centre (Figure (c)).

Directions
of motion

Rotating Coordinate Systems

Consider a point 4 and a coordinate system with origin B that rotates with
angular velocity @ and angular acceleration o (Figure (d)). The velocities of 4
and B relative to a non-rotating coordinate system that is stationary with
tespect to the reference point O are related by

Vi = Vg Ve + @ X Pyp Equation (6.1%)
where vy is the velocity of A4 relative to the rotating coordinate system. The
accelerations of 4 and B relative to a non-rotating coordinate system that is

stationary with regpect to the reference point @ arc related by

Ay = Ay + Ay + 20 X Viarel
Eqnation (6.21)
+ X Fapp -+ 00 X (0 X Y48)

where a4 is the acceleration of 4 relative to the rotating coordinate system.

)
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Review Problems [0 . il Ui e T

6.141 Determine the vertical velocity vy of the hook and the
angular veloeity of the small pulley.

120 mmy/s ¥

40 mim

Pé.141

6.142 If the crankshalt 4B is turning in the counterclockwise
dircetion at 2000 rpm (revolutions per minute), what is the velocity
of the piston?

P6.142

6.143 In Problem 6.142, if the piston is moving with velogity
ve = 6 jm/s, what are the angular velocities of the crankshaft A8
and the connecting rod AC?

6.144 In Problem 6.142, if the piston is moving with velocity
ve = 6jm/s and its acceleration is zero, what are the angular
accelerations of the crankshaft 45 and the connecting rod BC?

6.145 Bar AB rotates at Grad/s in the counterclockwise direc-

tion. Use instantaneous centres to determine the angular velogity of
har BCD and the velocity of point D,

200 mm

3K am

1. zouﬂLlsnM 0D L
mm mmn nmm

P&.145

6.146 [n problem 6.145, bar AB rotates with a constant angular
velocity of 6rad/s in the counterclockwise dircction. Determine
the acceleration of point 1),

6.147 Pomt C is moving to the right at 500 mm/s, What is the
velocity of the midpoint & of bar BC?

TS mm T

|

—o)c
00 " R
LA it 250 mm H_r

P6.147




6.148 In Problem 6,147, pomnt C is moving to the right with
constant velocity of 500mm/s. What is the acceleration of the
midpoint G of bar BC?

6.149 In Problem 6.147, if the velocity of point C is
ve = 25i(mm/s), what are the angular velocity vectors of arms
AB and BC?

6,150 Points B and C are the x-y plane. The angular velocity
vectors of arms A8 and BT arc s = —0.5K(rad/s),
wpe = 2.0k (rad/s). Determine the velocity of point C.

P4,150

6151 In Problem 6,150, if the velocity of point € is
v = 1.0i(m/s), what arc the angular velocity veetors of arms
AB and BC?

6152  [n Problem 6.150, if the angular velosity vectors of artus
AB and BC are wyp = —0.5 k(rad/s), wge = 2.0k (rad/s), and
their  angular  acecleration  vectors  are O == l.Ok(md/sz),
dger = l.()k(rad/sz_}, what is the acceleration of point C?

6.153 In Problem 6.150, if the velocity of point C is
ve = 1.08(m/s) and a¢ = 0, what are the angular velocity and
angular acceleration vectors of arm BC?
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6.154 The angular velocity of arm AC is 1 rad/s counterclock.
wise. What is the angular velociry of the scoop?

= { m

0.15m donm - Scdnp

P6.154

6.185 The angular volocity of arm AC in Problem 6,154 15
2rad/s counterclockwise and s angular acceleration is 4 rad/s’
clockwise. What is the angular aceeleration of the scoop?

6.156 1f you want to program the robot so that, al the instant
shown, the velocity of point D is vp = (0.2i+ 0.8 ym/s and the
angular velocity of arm CD is 0.3 rad/s counterelockwise, whar are
the necessary angular veloeities of arms AB and BC?

P6.156

6.157 In Problem 6.156, if the acceleration of point £ and the
angular acceleration of arm CL are zero at the instant shown, what
are the angular accelerations of arms A8 and 8C?
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6.158 Arm AR is rotating at 10rad/s in the clockwise dircction,
Determine the angular velocity of arm 8¢ and the velocity at which
it slides relative to the sleeve at C.

P6.158

6,159 In Problem 6.158, arm 48 is rotating with an angular
veloeity of 10 tad/s and an angular acceleration of 20 rad/s*, both
n the clockwise direction. Determine the angular acceleration of
arm BC

6.160 Arm AR is rotating with a constant counterclockwise
angular velocity of 10rad/s. Determine the vertical velocity and
acceleration of the rack R of the rack and pinion gear.

250

|

PR— 11|31y yy—

6.161  In Problem 6.160, if the rack R of the rack and pinion gear
is moving upwards with a constant velocity of 3 m/s, what are the
angular velocity and angular acceleration of bar B8C?

6.162 The bar 4B has a constant counterclockwise angular
velocity of 2rad/s, The 1kg collar € slides on the smooth
horizontal bar, At the instant shown, what is the tension in the
cable BC?

P4.162

$.163 An athlete exercises his arm by raising the 8 kg mass m.
The shoulder joint 4 is stationary. The distance 4B is 300 mm, the
distance B is 400 mm, and the distance fiom C to the pulley is
3M0mm. The angular velocities gy = 1.5rad/s and wge =2
rad/s are constant. What is the tension in the cabla?




$.164 The coordinate sysiem rotates with a constant angnlar
velocity w = 2krad/s. The point 4 moves outwards along the x
axis at a constant rate of 5 m/s.

{a) What are the velocity and acceleration of A4 relative to the
coordinate system?

(b) What are the velocity and acceleration of A relative to a non-
rotating coordinate system with its origin at B, when 4 is at the
position x = | m”?

3 m/s

R A Pé.164

6.165 The coordinate system shown is fixed relative 1o the ship
B. The ship uscs ils radar 10 measure the position of a stationary
buoy 4 and determines it to be (4001 + 200§ym. The ship also
measures the velocity of the buoy relative to its body-fixed
coordinate system and determines it to be (Zi - &) m/s. What
are the ships velocity and angular velocity relative to the earth?
(Assume that the ships velocity is in the direction of the y axis.)

P6.145
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he front-end loader shavel under-
goes two-dimensional motion as
the hydraulic cylinder and sup-
poting members raise it and rotate it in
the vertical plane. Newton’s second
law relates the sum of the forces on
the shovel to the acceleration of its
centre of mass, and an equation of
angular motion relates the sum of the
moments about the shovel’s centre of
mass to its angular acceleration. In this
chapter we use free-body diagrams
and the equations of motion for rigid
bodies to determine the motions of
objects resulting from the forces and
couples acting on them.




Chapter 7

Two-Dimensional
Dynamics of
Rigid Bodlies

I N Chapter 6 we analysed two-dimensional motions of rigid

bodies without considering the forces and couples causing
them. You have used Newton’s second law to determine the
motions of the centres of mass of objects, but how can you
determine their rotational motions? In this chapter we derive
two-dimensional equations of angular motion for a rigid body.
By drawing the free-body diagram of an object such as an
excavator’s shovel, we can determine both the acceleration of
its centre of mass and its angular acceleration in terms of the

forces and couples to which it is subjected.

303
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7.1 Preview of the Equations
_of Motion

The two-dimensional equations of angular motion for a rigid body are quite]
simple, but you can easily lose sight of the forest among the trees as we derivel
them. To help you follow the derivations, we summarize the equations in thig|
section,

The equations of motion of a rigid body include Newton’s second law,

ZF=ma

which states that the sum of the external forces acting on the body equals the)
produet of its mass and the acceleration of its centre of mass. The equations of
motion are completed by an equation of angular motion. If the rigid body
rotates about a fixed axis O (Figure 7.1(a)), the sum of the moments about the
axis due to external forces and couples acting on the body is related to its
angular acceleration by

X M() = Iulfl

where /g is the mass moment of inertia of the rigid body about €. Just as an|
object’s mass determines the acceleration resulting from the forces acting on it,
its mass moment of inertia f, about a fixed axis determines the angular]
acceleration resulting from the sum of the moments about the axis.

In the case of general planar motion (Figure 7.1(b)), the sum of the
moments about the centre of mass of a rigid body is related to its angular
acceleration by

M =]a

where [ is the mass moment of inertia of the rigid body about its centre of
mass. If we know the external forces and couples acting on & rigid body inl
planar motion, we can use these equations to determine the acceleration of its
centre of mags and its angular acceleration,

Figure 7.1

{a) A rigid body rotating about a fixed
axis O.
{b) A rigid body in general planar mation.
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7.2 Momentum Principles for a
System of Particles

In this chapter and in our discussion of three-dimensional dynamics of rigid
bodies in Chapter 9, our derivations of the equations of motion begin with
principles goveming the motion of a system of particles, We summarize these
general and important principles in this section.

Force-Linear Momentum Principle

We begin by showing that the sum of the cxternal forces on a system of
particles equals thc rate of change of its total linear motnentum. Let us
consider a system of N particles. We denote the mass of the ith particle by m,
and denote its position vector relative (o a fixed point O by r, (Figure 7.2). Let
f; be the force exerted on the /th particle by the jth particle, and let the external
force on the ith particle (that is, the total force exerted by objects other than the
system of particles we are considering) be £, Newton’s second law states that
the total force on the ith particle equals the product of its mass and the rate of
change of its linear momentury,

{
PIR PR R HES '%(mi v;) (7.1)
J] o

where v; = d 1;/dt is the velocity of the ith particle. Writing this equation for
each particle of the system and summing from i = | to ¥, we obtain

. d
LY G+Y =" mv, (7.2)
rR i dt 5

m, Figure 7.2
A system of particles. The vector r, 1s the
. o position veetor of the ith particle.
rf O &
e
i}

The first term on the left side of this equation iy the sum of the internal forees
on the system of particles. As a consequence of Newton’s third law
{fy + fy = 0), this term equals zero:

szijmfuﬁl“fg]%fm*i" fap 4= 0
P
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Figure 7.3

The vector R, is the position vector of the ith
particle relative to the centre of mass,

The second term on the left side of Equation (7.2) is the sum of the external forees
on the system. Denoting it by LF, we conclude that the sum of the external
forces on the system equals the rate of change of its total linear momentuni:

d
ZF = | Vi .
G m 0

Let m be the sum of the masses of the particles:

moemyom,
/
The position of the centre of mass of the system is
Z mpxy
Fo= .
- (74

so the velocity of the centre of mass is

L _dr_

dt "

By using this expression, we can write Equation (7.3) as

. d
EF == (mv)

The total external force on a system of particles equals the rate of change of
the product of its total mass and the velocity of its centre of mass. Since any
object or collection of objects, including a rigid body, can be regarded as a

system of particles, this result is one of the most general and elegant in
mechanics. Furthermore, if the total mass # is constant, we obtain

YF=ma

where a == dv/dt is the acceleration of the centre of mass. The total external
force equals the product of the total mass and the aceeleration of the centre of
mass,

Moment-Angular Momentum Principles

We now obtain relations between the sum of the moments due to the external
forces on a system of particles and the rate of change of its total angular
momenturm. We follow the same procedure used in Section 5.4 to relate the
angular impulse to the change in the angular momentum,

The position of the ith particle of the system relative to O is related to its
position relative to the centre of mass (Figure 7.3) by

ri=r-+ Ri (75)

Multiplying this equation by m;, summing from 1 to N, and using Equation
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(71.4), we find that the positions of the particles relative to the centre of mass
are related by

3 m R =0 (7.6)

The total angular momentum of the system about @ is the sum of the
angular momenta of the particles

HO E Xy X my vy (7.7)

where v, = dr,/dt. The angular momentum of the system about its centre of
mass (that is, the angular momentum about the fixed point coincident with the
centre of mass at the present instant) is

H= z R,’ XMV (?8)
H

By using Equations (7.5} and (7.6), it can be shown that
Hy=rxmv-+H (7.9

This equation expresses the total angular momentim about O as the sum of
the angular momentum about € due to the velocity v of the system’s centre of
mass and the total angular momentum about the centre of mass (Figurc 7.4).

Figure 7.4

The angular momentum about 2 equals the

sum of angular momenmm about the centre

of mass and the angular momentum gbout O
due to the velocity of the centre of mass,

&

H =H+r=my
™

L (4]

o iy,

To obtain relations between the total moment exerted on the system and
its total angular momentuni, we begin with Newton’s second law. We take
the cross product of Equation (7.1) with the position vector v; and sum from
i=1toN:

L

YooY ex M) =3 1x %(mz-v,) (7.10)
. - : It

The term on the right side of this equation is the rate of change of the system’s
total angular moementim about O

d d n
}; r, xgt(miv,)zg Ei?(r‘ xm;v;')w&:;ivj :d;lo
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(The second term in brackets vanishes because the cross product of two
parallel vectors equals zero.)

The first term on the left side of Equation (7.10) i¢ the sum of the moments
about 0 due to internal forces. This term vanishes if we assume that the
internal forces between each pair of particles are not only equal and opposite,
but are directed along the straight line between the pwo particles. (This
assumption holds except in the case of systems involving electromagnetic
forces between charged particles.) For example, consider particles 1 and 2 in
Figure 7.5. If the internal forces are directed along the straight line between
the particles, we can write the moment about O due to fy; as r| x fy,
and the total moment about O due to the forces the two particles exert on each
other iy

x4 m xfy e rg x(fiz4 ) =0

Figure 7.5

Particles | and 2 and the forces they exert
on cach other, If the forces act along the line
between the particles, their total moment
about €2 is zero.

The second term on the left side of Equation (7.10) is the sum of the
moments about @ due to external forces and couples, which we denote by
T (My). Therefore Equation (7.10) states that the sum of the moments about (2
due to external forces and couples equals the rate of change of the system’s
anguolar momentam about O

sz% (7.11)

By using Equation (7.9), we can also write this result in terms of the total
angular momentum relative to the centre of mass,

EMgm%(rxmv—l— H)wlﬁ')ﬁiﬂﬂ-}-%{j {7.12)

where a is the acceleration of the centre of mass.

We also need to determine the relation between the sum of the moments
about the system’s centre of mass, which we denote by ZM, and the angular
momentum about its centre of mass. We can obtain this result from Equation
(7.12) by letting the fixed point O be coincident with the centre of mass at the
present ingtant. In that case ¥ Mgy = ZM and r = 0, and ‘we see that the sum
of the moments about the centre of mass equals the rate of change of the
angular momentum about the centre of mass:

m=2H (7.13)
fli
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7.3 Derivation of the Equations
~of Motion

We now derive the equations of motion for a rigid body in two-dimensional
motion. We have already shown that the total exernal force on any object
equals the product of its mass and the acceleration of its centre of mass:

LF=ma

Therefore this equation, which we refer to as Newton’s second law, describes
the motion of the centre of mass of a rigid body. To derive the equations of
angular motion, we first consider rotation about a fixed axis, then general
planar motion.

Rotation About a Fixed Axis

Suppose that a rigid body rotates about a fixed axis Ly through a fixed point Q.
In terms of a coordinate systern with the z axis aligned with Ly (Figure 7.6(a)),

ithparticle is dr,/dt = @0 x r; = ok x v, Let T My = £ My - k be the sum of
the moments about Ly. From Equations (7.7) and (7.11),

dHy
LMy = & (7.14)

Figure 7.6

() A coordinate system with the = axis
aligned with the axis of rotation L.

(b) The magnitude of k = r, is the
perpendicular distance from the axis of
rotation to m,.

(a) (b}

where

Hy=Hy k=3 [r, xmlwk xr)-k (7.15)
is the angular momentum about L. Using the ideniity U-(V x W) =
(U V)W, we can write Equation (7.15) as

Hy=7% mikxr) (k xrjm=3 nlk x ri|>w (7.16)
i

i

In Figure 7.6(b), we show that | k x r;[ is the perpendicular distance from L
to the ith particle, which we denote by #. Using the definition of the mass
moment of inertia of the rigid body about Ly,

Io=3" mir?
i
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i, L\;\_ PPlane of the motion
s \)(
(E! ”7;=..y

Figure 7.7

(a) A coordinate system with the z
axis aligned with L.

(b) The magnitnde of k % R, is the
perpendicular distance from L to m;.

we can write Equation (7.16) as
Hy = lyo

Substituting this expression into Hquation (7.14), we obtain the cquation of
angular motion for a rigid body rotating about a fixed axis O:

%My = Iy (7.17)

General Planar Motion

Let Ly be the axis through a fixed point O that is perpendicular to the plane of
the motion of a rigid body, and tet £. be the parallel axis through the centre of
mass (Figure 7.7(a)). We do no! assume that the rigid body rotates about Lg. In
terms of the coordinate system shown, we can express the angular velocity
vector as @ = wk, and the velocity of the ith particle relative 10 the centre of
mass is d R;/dt = cwk » Ry, From Equations (7.8) and (7.12),

d
EMoma;[(rxmv)-k+H] (7.18)
where
H = H'k:Z [R, xm;(mkxll,r)]-k
i

18 the angular momentum about L. Using the same identity we applied to
Equation (7.15), we can write this equation for H as

H =73 m(k xR)"(k x R)o =3 m|k x R;?w (7.19)

1

The term |k x Ryj = r; is the perpendicular distance from £ to the ith particle
(Figure 7.7(b)). In terms of the mass moment of inertia of the rigid body
about L,

F == Z mir‘.z
i

Equation (7.19) states that the rigid body’s angular momentum about L is
H=lw

Substituting this expression into Equation (7.18), we obtain
d
X.Mn:B}[(rxmv)-k+1(a]m(rxma)'k+foc (7.20)

With this equation we can obtain the relation between the sum of the moments
about L, which we denote by £ M, and the angular acceleration. If we let the
fixed axis Ly be coincident with L at the present instant, £ My = £ M and
r == 0, and from Equation (7.20) we obtain

XM =[In

The sum of the morments about L equals the product of the moment of inertia
about L and the angular acceleration,
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We have seen that the equations of motion for a rigid body in planar motion
include Newton’s second law,

TF=ma (7.21)

where a i the acceleration of the centre of mass, and an equation relating the
moments due to forces and couples to the angular acceleration. If the rigid
body rotates about a lxed axis O, the total moment about O equals the product
of the moment of inertia about O and the angular acceleration:

by M() e qux (722)

In any planar motion, the total moment about the centre of mass equals the
product of the mass moment of inertia about the centre of mass and the
angular acceleration:

IM =l (7.23)

OF course, this equation applies to the case of rotation about a fixed axis, but
for that type of motion you will usnally find it more convenient to use
Equation (7.22).

When you apply these equations, your objective may be to obtain infor-
mation about an object’s motion, or to determine the values of unknown forces
or couples acting on it, or both. This typically involves three steps:

(1) Draw the free-body diagram - [solate the object and identify the
external forces and couples acting on it.

(2) Apply the equations of motion — Write equations of motion suitable for
the type of motion, You should choose an appropriate coordinate system
for applying Newtons second law. For example, if the centre of mass
moves in a citealar path, you may find it advantageous to use normal and
tangential components,

(3} Determine kinematic relationships — If necessary, supplement the
equations of motion with relationships between the acceleration of the
centre of mass and the angular acceleration.

As we show in the following sections, your approach will depend in part on
the type of motion involved.
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A rigid body in translation. There is no
roiational motion to determine.

Iranslation

If a rigid body is in translation (Figure 7.8), you need only Newton’ second
law to determine its motion. There is no rotational motion to determine.
Nevertheless, you may need to apply the angular equation of motion to
determine untknown forces or couples. Since « == (0, Equation (7.23) states that
the total moment about the centre of mass equals zero:

2M=0

Figure 7.8

Figure 7.9

Example 7.1

The mass of the acroplane In Figure 7.9 is m = 250 Mg (megagrams), and the throst
of its engines during its takeoff roll is T==T700kN. Detetmine the aeroplane’
acceleration and the normal forces exerted on its wheels at 4 and B. Neglect the
horizontal forces excrted on its wheels,

b o o (1.
Y mw{ﬁmmﬂ i
e T
e

[T R e

STRATEGY

The aeroplanc is in translation during its takeoff roll, so the sum of the moments
about its centre of mags equals zero. Using this condition and Newton's second law,
we can determing the aeroplane’s acceleration and the normal forces exerted on its
wheels.
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SOLUTION

Draw the Free-Body Diagram  We draw the free-body diagram in Figure (a),
showing the aeroplane’s weight and the normal forces A4 and B exerted on the
wheels.

X

Al Sy g B

(@) Free-hody diagram of the acroplane, 1

Apply the Equations of Motion I[n terms of the coordinate system in Figure
(a), Newton's second law 15

LF,m T e oma,

LFy=A4+B—mge=10
Hrom the first cquation, the aseroplang’s acceleration is

T 700000N

BT el 2
m = 350 000kg oM/

€y ==

The angular cquation of motion 15

EM =0T +RB-(54d =0

Solving this equation together with the second eguation we obtained from Newton’s
second law for 4 and B, we obtain A = 2030 kN, 8 =402 kN.

DISCUSSION

When an object is in equilibrium, the sum of the moments about any point due to
the external forces and couples acting on it is zero. But you must rementber that
when a translating rigid bedy is not in equilibrium, you know only that the sum of
the momenls about the centre of mass 15 zero. It would be instructive for you to try
reworking this example by asquming that the sum of the momentis about A or B is
zero. You will not obtain the correct values for the normal forces exerted on the
wheels.




314  CHAPTER 7 TWO-DIMENSIONAL DYNAMICS OF RIGID BODIES

Rotation Abouf ¢ Fixed Axis

In the case of rotation about a fixed axis (Figure 7.10), you need only Equation
(722) to determine the rotational motion, although you may also need
Newton’s second law to determing unknown forces or couples.

Figure 7.10

A rigid body rotating about @. You need only
the equation of angular motion about
to determine its angular acceleration,

| Example 7.2 L

The 50kg cratc in Figure 7.11 is pulled up the inclined surface by the winch. The
coefficient of kinatic friction between the crate and the surface is p; == 0.4, The mass
moment of inertia of the drum on which the cable is wound, including the cable
wound on the drum, is 7, = 4 kg.m®. If the motor exerts a couple M = 60 N.m on the
drum, what is the crate’s acceleration?

Figure 7.11

STRATEGY

We will draw separate free-body diagrams of the crale and drum and apply the
equations of motion to them individually. The dram rotates abont a fixed axis, so we
can use the euation of angular motion about the axis to determune its angular
aceeleration. To complete the solution, we must determing the relationship between
the crate’s acceleration and the drum’s anpular acceleration,

SOLUTION

Draw the Free-Body Dlagrams We draw the free-body diagrams in Figure
(8}, showing the equal forces exerted on the crate and the drum by the cable.




{t1) Free-body diagrams of the crate and the drum,

Apply the Equations of Molion We denote the crate’s acceleration up the
inclined surface by a,i and the clockwise angular asceleration of the drum by «
{Figure (b}). Newton's sccond law for the crate is

YN, = T = 4905510 20° o g N == (50)a,

EF, =N —4905c0820° == 0

Solving the second equation for N and substituting it into the first one, we obtain
T — 490.5 8in 20" — (0.4)(490.9 cos 20°) = (50)a,

The equation of angulur motion for the drum is
EMy=M—(D15m)T = {10

We eliminate T between these two cquations, obtaining

6.67M — 490.5 sin 20° — (0.4)(490.5 cos 207) = (50ay + 6.67142
(7.29)

Qur last slep 18 to deiermine the relation between @y and a.

Determine Kinematic Relationships The tangential component of accelera-
tion of the drum at the point where the cable begins winding onto it 15 cqual to the
crate’s acceleration (Figure (b)h:

iy = (0.15ma
Using this relation, the solution of Equation (7.24) for a, is

_6.67M — 4905510 20° — (0.4){490.5 ¢05 20°)

_ 2
= (50) + 4447 =0:21m/s

DISCUSSION

Notice that, for convenicnce, we defined the angular acceleration & to be positive in
the clockwise direction so that a positive o would correspond to a positive u,.
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Ao

(b Relation between the crate’s acceleration
and the angular acceleration of the drum.
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S et

Example 7.3

The slender bar of masgs s in Figure 7.12 is released from test in the horizontal
position shown. At that instant, determine the bar’s angwlar acceleration and the
force exerted on the bar by the support 4,

Figure 7.12

STRATEGY

Since the bar rotates about a fixed point, we can use Equation (7.22) to determine its
angular aceeleration. The advantage of using this equation instead of Equation
(7.23) is that the unknown reactions at 4 will not appear in the equation of angular
motion. Cnee we know the angular acceleration, we can determine the aceeleration
of the centre of mass and use Newton's sccond law to obtain the reactions at 4.

SOLUTION

Draw the Free-Body Diagramn  In Figure (a) we draw the frec-bady diagram of
the bar, showing the reactions at the pin support.

mg

i

Paj—

{0) Free-body diagram of the bar.

Apply the Equations of Motion  Let the acceleration of the centre of mass 7 of
the bar be ag = a. i+ a, j, and let its counterclockwise angular acccleration be
(Figure (1)), Newton's second law for the bar is

EF, e A, = e,

LF, =4, — mg = ma,

44

H =

G 5T

e R s IJ
L 1 o A

‘.. L S—

1

{b) The angular acceleration and components of the
acceleration of the centre of mass.




The equation of angular motion about the fixed point 4 is

5

g
M = (’i l)mg w Lyt (7.25)

The mass moment of inettia of a slender bar about its centre of mass is f = 1—'2-miz.
(See Appendix C.) Using the parallel-axis theorem, the mass moment of inertia of
the bar about 4 is

1 1y 1
ey a e | 2 - e K
Iyome |4 dém ]zvm’ +(21) m Sml

Substituting this expression into Equation (7.25), we obtain the angular acceleration:

(1/2)mgi 3g

O/3mf ™ 21

Determine Kinematic Relationships To determine the reactions 4, and A,
we need to determine the acceleration components a, and o, We can do so by
expressing the aceeleration of G in terms of the acceleration of 4:

2
A = Aq + A XK Yaia — WG4

At the instant the bar is released, iis angular velocity =0, Also, a, =0, so we
obtain

. 1, 1,
ag = ayi+a,j = (2K} x (m— -é-l'l) = -----i-lij

Equating 1 and j components, we obtain

a, =0

a, == wmlocmng

Substituting these acceleration companents inlo Newton'’s sccond law, the reactions
at A at the mstant the bar is released are

A =10

3 I
Ay = mg +m —z8) = yme

DISCUSSION

We could have determined the acceleration of & in a less formal way. Since ¢
describes a circular path about 4, we know the magnitude of the tangential
compencnt of acceleration equals the product of the radial distance from 4 to @
and the angular acceleration. Because of the direclions in which we define « and @,
to be positive, g, = f(% N, Also, the normal component of the acceleration of ¢
equals the square of its velocity divided by the radins of its circular path. Since its
velooity cquals zero at the instant the bar is released, a, = 0.

s
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LF = ma
IM =l

Figure 7.13

A rigid body in planar motion. You must
apply both Newton's second law and the
aquation of angular motion about the centre
of mass.

General Planar Motion

If a rigid body undergoes both translation and rotation (Figure 7.13), vou need
to use both Newton’s second law and the equation of angular motion, If the
motion of the centre of mass and the rotational motion are not independent—
for example, when an object rolls—you will find that there are more unknown
quantities than equations of motion. In such cases, 'you can obtain additional

equations by relating the acceleration of the centre of mass to the angular
acceleration.

(¢} Free-body diagram of the bar.

Example 7.4 |

The slender bar of mass m in Figure 7.14 slides on the smooth floor and wall and
has counterclockwise angular velocity o at the instant shown, What is the bar's
angular aceeleration?

Figure 7.14

y
3
E
3

SOLUTION

Draw the Free-Body Diagram We draw the free-body diagram in Figure (a),
showing the bar’s weight and the normal forces exerted by the floor and wall,

Apply the Equations of Motion  Writing the acceleration of the centre of mass
G a3 g = a1+ a, j, Newton's second law is

TF, =P =ma,
LF, =N +mg=ma

Let a be the bar’s counterclockwise angular acccleration. The equation of angular
mgtion is

1, . 1
EMmN(ilsm 9) MP(Elcos 9) e fop




where [ is the mass moment of inertia of the bar about its centre of mass. We have
three equations of motion in terms of the five unknowns P N, a,, @, and o. To
complete the solution, we must relate the acceleration of the centre of mass of the
bar to its angular acceleration,

Determine Kinematic Relationships  Although we don’t know the accelera-
tions of the endpoints 4 and £ (Figure (b}). we know that 4 moves horizontally and
B moves vertically. We can use this information o obtain the needed relations
hetween the acceleration of the centre of mass and the angular acceleration.
Expressing the acceleration of 4 as a, = ayl, we can write the acceleration of the
centre of mass as

Ag = 84 + 0 X IG/e — w2 YGid »

i j k
apitayj=ayi 0 0 “w?’wi!" #i il*‘@
¥ pi=asi+| W 5 sin 841 cos j

wﬁl sin ! 4’1 cos ) 0 =

Taking advantage of the fact that a, has no j component, we cquatc the j
components in this equation, obtaining

1
ay =z e sin 8 + o cos 0)

Now we express the acceleration of £ a8 ag = ayj and write the acceleration of the
centre of mass as

Bep = Ag o X Lo ® Feyn

i i .
witaj=apj+|; ° 0 o —mz(%fsinaim%lcos(}j)
EI sin w-z-l cosd 0

We equate the i componcnts in this equation, obtaining
( 5
ay = Zl(fx cos # — w* sin {f)

With these two kinematic relationships, we have five equations in five unknowns.
Solving (hem for the angular acceleration and using the relation J = 'J'IE’"P for the
bar's mass moment of incrtia (Appendix C), we obtain

amig sin

21

DISCUSSION

Notice that by expressing the acecleration of G in terms of the accelerations of the
endpoints, we introdneed into the solution the constraints imposed on the bar by the
floor and wall: we required that point 4 move horizontally and that peint B move
vertically.

7.4 APPLICATIONS

(b) Expressing the acceleration of ¢
in terms of the accelerations of the
endpoints A and B.

319
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Example 7.5

H The slender bar in Figurc 7.15 has mass m and is pinned at A to a metal block
] of mass my that rests on a smooth level surface. The system is released from
rest in the position shown. What is the bar’s angular acceleration at the instant of
release?

Figure 7.16

STRATEGY

We must draw free-body diagrams of the bar and the block and apply the equations
ol motion to them individually. To complete the solution, we must also relate the
acccleration of the bar’s centre of mass and ils angular acceleration to the
acceleration of the block.

SOLUTION

Draw the Free-Body Diograms We draw the free-body diagrams of the bar
and block in Figure (a). Notice the opposite forces that they exert on each other
where they are pinned together.

(@) TFree-body diagrams of the bar and black.

Apply the Equations of Motion  Writing the acceleration of the centre of mass
of the bar as ag = a;1+ a, J, Newton's second law for the bar is

D = A = ma,

R, = dy = g == ma,




Letting o be the bar’s counterclockwise angular acceleration, its cquation of angular
motion is

. 1 ; |
M _A,r(—ii Cos G) +Ay(§l gin H) == Iy

We express the block’s acccleration as api and write Newton's second law for the
block:

L, = MAJ = Mpdy

EFy w N - Ay mpr s
Determine Kinematic Relationships  To rclate the bar’s mation to that of the
block, we espress the acccleration of the bar’s centre of mass in terms of the
acocleration of point A (Figore (b))

A = By T O X Fepg ™ @* ¥eia

i i k

acito=agi+ 10 1 o “l—0
— ”2"1 sin 9 El CO% 9 0
Equating i and j components, we obtain

1
axmagmilacosfi

1
a = wwéloc sin ¢

We have five equations of motion and two kinematic relations in (erms of seven
unknowns: 4, 4, N, a,, a,, & and ag, Selving them tor the angular acceleration and
using the relation / = L m? for the bar’s mass moment of inertia, we oblain

(3/2)g/0) sin{)

I — g3/4)(ﬁ;3) cos?

v

{b) Expressing the acceleration of & in
terms of the acceleration of 4,

7.4 APPLICATIONS 321
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%! Example 7.6 |

The drive wheel in Figure 7.16 rolls on the horizontal track. The wheel is subjected
to a downward force £ by its axle 4 and a horizontal force Fe by the connecting
rod. The mass of the wheel is m and the mass moment of inertia about its centre of
mass is {. The centre of mass & is offset a distance & from the wheel’s centre, At the
instant shown, the wheel has a counterclockwise angular vélocity . What is the
whecel’s angular acceleration?

Figure 7.16 Connecting rod . /‘w-"?"‘m"’

- Drive wheel
s

SOLUTION

Draw the Free-Body Diagram  We draw the free-body diagram of the drive
wheel in Figure (a), showing its weight and thc normal and friction forces exerted by
the track.

Apply the Equations of Mation  Writing the acceleration of the centre of mass
(r a8 ag = a; 1+ a j, Newton’s second law is

LF, m= f — Fp = ma,

ZFyem N o Fyom g == ma,

Remember that we must express the equation of angular motion in terms of the sum
of the moments about the centre of mass G, not the centre of the wheel. The
equation of angular motion is

LM = Fold cos ) — Fy(b sin )+ N(b sin 6) 4+ f(b cos 8 + R) = I

We have three cquations of motion in terms of the five unknowns N, f, a,, a, and g,
To complete the solution, we must relate the acceleration of the wheel’s centre of
mass to its angular acceleration.

N

(¢1)  Free-body diagram of the wheel.




Determine Kinematic Relationships The acccleration of the eentre 4 of the
rolling wheel is a4 = — Rui. By expressing the acceleration of the centre of mass,
A, in terms of a, (Figure (b)), we can obtain relations between the components of
ag and o

ag = Ay + X Igg— w? Yo
i i k
el tayj = —~Rai- 0 0 &
—bgind beost O

—w’(—h sin 0§+ b cos §f)

(b) Expressing the seceleration of the centre of mass
in terms of the acccleration of the centre A.
We equale the | and j components in this gquation, obtaining
dy = =Ro = bt cos O 4 b sin 0
@y = b sin § — boy* cos 0

With these two kincmatic relationships, we have five equations in five unknowns,
Solving them for the angular acceleration, we obtain

FelR A+ beos 0 + d cos &) -+ mgh sin 8 -+ mbRw* sin 0
[ Ad

m{h* + 2hR cos O+ R+ 1

7.4 APPLICATIONS 323




324 CHAPTER 7 TWO-DIMENSIONAL DYNAMICS OF RIGID BODIES

Example 7.7

Internal Forces and Moments in Beams

The slender bar of mass m in Figure 7.17 starts from rest in the position shown and
falls. When it has rotated through an angle #, what is the maximum bending
moment in the bar and where does it oceor?

Figure 7.17

STRATEGY

The internal forces and moments in a beam subjected to two-dimensional loading
are the axial force P, shear force ¥ und bending moment M (Figure (a)). We must
first use the equation of angular motion to determine the bar's angular acceleration,
Then we can cul the bar at an arbitrary distance x from one end and apply the
equations of motion to determine the bending moment as a function of x.

SOLUTION

The mass moment of inertia of the bar about 4 is

(¢ The axial force, shear force and
. bending moment in a beam. [ 132 |
L :I+dzntmﬁmlz+(§!) m:§m12

When the bar has rotated through an angle ¢ (Figure (b)), the total moment about A
is ZM,; = mg(%«l sin f), Point 4 is fixed, so we can write the equation of angular
motion as

EMy = Lo

[T
ng[ sin # = 3m1 o

Solving for the angular acceleration, we obtain

h 3
- = 5% sin @
| (B Determining the moment about 4.




(c) Cutting the bar at an arhitrary distance x,

In Figure (¢) we introduce « coordinate system, cut the bar at a distance x from the
top, and draw the frec-body diagram of the top part. The centre of mass 18 at the
midpoint, and we determine the mass by multiplying the bar’s mass by the ratio of
the length of the free body to that of the bar. Applying Newton’s sceond law in the y
dircetion, we obtain

x

LR = mﬁ*w;mgsin = i

mity
The mass moment of incrtia of the free: hody about its centre of mass is {5 [(x/Nm]?,
s the equation of angular motion ts

M e o

1N, 1 x N ,3g .
N APV ) 7 - 2Y86 o
M (EJ\)I = IZ(.Im)x 37 sin &

The p component of the acceleration of the centre of mass is equal to the product of
its radial distance from 4 and the angular acceleration (Figure (d)):

I 1T \3
oy = —([—-2-:{“) = *(f*ix) E% gin @

Using this expression, we can solve the two equations of motion for ¥ and A in
terms of' . The solution for M is

M= Zlfmgl sin OG)?(I - ;) (7.26)

The bending moment equals zero at both ends of the bar. Taking the derivative of
this expression with respect 1o x and cquating it to zero to determine where M is a
maximum, we oblain x = /. Substituting this value of x into Equation (7.26), we
obtain the maximum bending moment:

1
Moy = ;)m;lmmgl sin 0

The distrtbution of M is shown in Figure 7.18.

APPLICATIONS
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{d) Determining the acceleration of the

centre of mass of the free body.
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Figure 7.18

Distribution of the hending moment in a
falling bar.
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DESIGN ISS5UES

To design a member of a structure, engineers must consider both the external and
internal forces and moments it will be subjected to. In the casé of a beam, they must
b determine the distributions of the axial force B shear force ¥ and bending moment
§ M as the first step in determining whether the beam will support its design loads
§ without failing. If they know the external loads and reactions and the beam is in
|

!

equilibrium, they can apply the equilibrium equations to determine the internal
‘ forces and moment at a given cross-section. But in many situations, a beam will not
; be in equilibrium. It could be 2 member of a structure, such as the internal frame of
an acreplane, that is accelerating, or it could be a connecting rod in an internal
combustion engine. In such cases, the maximum internal forces and moments can
far exceed the values predicted by a static analysis, and the procedure we deseribe in
this example must be used.

The dynamic bending moment distribution we obtained in Example 7.7 (Figure
7.18) explains a phenomenon that has been observed during the demolition of
masonty chimneys. An explosive charge at the base of the chimney causes it to fall,
initizlly rotating as a rigid body about its base, As the chimney falls, it is observed to
fracture near the location of the maximum bending moment (Figure 7.19).

Figure 7.19

A falling chinmey fractures as it falls due to
.+ (he bending moment it is subjected to.

H
: it . - »
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1.5 D’Alembert’s Principle

In this section we describe an alternative approach o tgid-body dynamics
known as D" Alembert’s principle. By writing Newton's second law as

X F+(—ma)=0 (7.27)

we can regard it as an ‘equilibrium’ equation stating that the sum of the
external forges, including an inertial foree — ma, equals zero (Figure 7.20(a)).
To state the equation of angular motion in an equivalent way, we use Equation
(7.20), which relates the total moment about a fixed point O to the angular
acceleration in general plane motion:

IMy=(rxma)-k-+[x
Writing this cquation as
ZMy[tx(~ma)] k+ (—fx) =0 (7.28)

we can regard it as an equilibrium equation stating that the sum of the
moments about any paint due o external forces and couples, including the
moment due to the inertial force —ma acting at the centre of mass and an
inertial couple — /x, equals zero.

Instead of using the expression in Equation {7.28) to determine the moment
due to the internal force, you can often determine it more easily by multiplying
the magmitude of the inertial force and the perpendicular distance from the ling
of action of the force to poinl @ (Figure 7.20(b)). Also, remember that the
sense of the inertial couple iz opposite to that of the angular acceleration
(Figure 7.20(c)).

Figure 7.20

(#) The sum of the external forces (b) The magnitude of the moment duc {c} A clockwise inertial couple results from
and the incrtial force is zero. to the inertial foree is |~mall). a counterclockwise angular acceleration,

In the following examples we apply D’Alembert’s principle to plane motions
of rigid bodies. The sequence of steps—draw the free-body diagram, apply
the ‘equilibrium’ equarions, and determine kinematic relationships if
necessary—is the same as in applying the equations of motion. However,
in using D’Alembert’s principle, you must be particularly careful to assign
the correct signs to the terms in your equations. For example, if vou define
the angulur acceleration to be positive in the counterclockwise direction,
that is also the positive direction for the mement exeried by the Inertial force,
and the inerfial couple is clockwise.
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Example 7.8

The mass of the acroplane in Figure 7.21 is m=250 Mg (megagrams), and the
thrust of its engines during its takeoff roll is T=700kN. Use D’Alembert’s
principle to detcrmine the aeroplane’s acceleration and the nommal forces exerted
ot its wheels at 4 and 8. Neglect the horizontal forces exerted on its wheels.

Figure 7.21 *

ceemepra

e L L e i e - Ty enaang

SOLUTION

Draw the Free-Body Diagram  In terms of the coordinate system in Figare (a),
we can write the aeroplane’s acceleration as a = a,d. On the free-body diagram we
show the aeroplane’s weight, the normal forces 4 and B exerted on the wheels, and
the inertial force —ma = —ma, .

y

I —
=

B "ulllfl'\: ._ : \“\

Crevpabybiniy W |'nuug¢_uu‘:~\‘,
B &

f mg B
(o) Free-body diagram of the aeroplanc.
Apply the ‘Equilibrium’ Equations  Equation (7.27) is

F+(—ma)= 0:

Ti+(A+B-—-mg)j+ (mmai)= 0
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Equating i and j components, we obtain

]

T = ma,

A+B=mg

From the first quation, the acroplane’s acceleration is :
T 700000 N

P — —=28m/s i

YTm T 250000 kg / |
‘;'I

and the inertial force is ~may, i = ~7001 kN. (Sce Figure (b),) i

In applying Equation (7.28), we can select any point we wish as the point O. By
placing it at 4 (Figure (b)), we will obtain an equation in which the only unknown is
the force £. The acroplane is translating, so #={( and there is no inertial couple,
Defining counterclockwise moments to be positive, the sum of the moments about
Qs

e

(SHTO0000) — ()T = (S)mg + (218 = 0

T LT

From this equation we obtain B =402 kN, and then 4 = mg — B = 2050kN.

g
;|

A mg f

(b)  Placing point O at the rear wheels.

DISCUSSION
Notice that we caleulated the moment due to the inertial force by multiplying the !
magnitude of the inertial force by the perpendicuar distance to its line of action, r
(5)(700000) =3 5000 N.m counterclockwise. In this particular example that 23
method is simpler than using the cross product,
[ro(—ma)] k= [(5145]) x {~7000001)] k ?%

= 3500000 N - m  counterclockwise

but in some situations you may find that using the cross product is simpler.

You should compare this application of I’ Alembert’s principle with our deter-
mination of the aeroplane’s acceleration and the normal forees excrted on its wheels
in Example 7.1.
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Figure 7.22

Example 7.9

A disc of mass m and moment of inertia / 18 released from rest on an inclined
surface {Figure 7.22). Assuming that the disc rolls, use D’Alembert’s principle to
determine its angular aceeleration,

SOLUTION

Draw the Free-Body Ditgram  In terms of the coordinate system in Figure (a),
the acceleration of the centre of the disc 18 a=ai We define the anpular
acceleration o to be positive in the clockwise direction. In Figure (b) we draw the
free-body diagram of the disc, showing its weight, the ndrmal and friction forces
exerted by the surface, and the inertal foree and couple.

Apply the 'Equilibrium® Equations We apply Equation (7.28), evaluating
moments about the point where the disc is in contact with the surface to eliminate
Sfand N from the resulting equation:

~R(mg sin §) + R(ma,) + o =0 (7.29)

Determine Kinematic Relationships The acceleration of the centre of the
rolling disc is rclated to the angular acceleration by a,s=Ra. Substituting this
relation into Equation (7.29) and solving for o, we obtain

__ mgRsin fi
T omRI AT

(o) Acceleration of the centre of the disc (D)  Free-body diagram including]
and its angular acceleration, the inertial force and couple.

DISCUSSION

As a consequence of summing moments about the disc’s point of contact, we
did not need to use the equation EF+ (~ma)=0 in determining the angular
acceleration,
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PROBLEMS

Problems

7.1 A vefrigerator of mass m rests on castors at 4 and B, Suppose
that you push on it with a horizontal force £ as shown and that the
castors remain on the smooth floor.

(2) What is the refrigerator’s acceleration?

(b)y What normal forces are exerted on the castors at A4 and B?

IO

P7.1

7.2 In Problem 7.1, what is the largest force F' you can apply if
you want the refrigerator to remain on the floor at 4 and 87
(Assume that ¢ is positive.}

73 Thc combined mass of the person and bicycle is m. The
lacation of their combined centre of mass is shown,

(a) 1f they have acceleration ¢, what are the normal forees exerted
on the wheels by the ground? (Neglect the horizontal force exerted
on the ground by the front wheel.)

(b) Bascd on the results of part (a), what is the largest acceleration
that can be achieved without causing the front wheel to leave the
ground?

P7.3

7.4 In Problem 7.3, b==615mm, ¢=2445mm, b =985 mm and
m==T7kg. If the bicyele is travelling at 6m/s and the person
cngages the brakes, achieving the largest deceleration for which
the rear wheel will not leave the ground, how long docs it take
the bicycle to stop, and what distance does it travel during that
time?

7.5 The 6350 kg acroplane’s arresting hook exerts the force Fand
causes the planc to decelerate at 6 g's. The horizontal forces exerted
by the landing gear are negligible. Determine # and the normal
forces exerted on the landing gear.

[y S ATV [ PO 1 (T

w| |-

0.5 m

P7.5

7.6 A student catching a ride to his summer job unwisely
supports himself in the back of an acceleranng truck by exerting
a horizontal force £ on the trucks cab at 4. Determine the
horizonal force he must exert in wrms of his weight #, the ouck’s
aceeleration g, and the dimensions shown,

P7.6
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7.7 The crane moves 1o the right with constant acceleration, and
the 800%yg load moves without swinging,

{a) What is the acceleration of the erane and load?

{(b) What are the tensions in the cables attached at A and B?

7.8 If the acceleration of the crane in Problem 7.7 suddenly
decreases to zero, what are the tensions in the cables attached at 4
and 8 immediately afterwards?

7.9 The combined mass of the motorcycle and rider is 160kg.
The rear wheel exerts a 400 N horizontal force on the road, and you
can neglect the horizontal force exerted on the road by the front
wheel. Modelling the motoreyele and its wheels as a rigid body,
determine (a} the motorcycle’s acceleration; (b) the normal forces
exerted on the road by the rear and front wheels,

7.0 In Problem 7.9, the coefficient of kinetic friction between
the motoreycle’s rear wheel and the road is py.=0.8. I{ the rider]
spins the rear wheel, what is the motoroycle’s acceleration and what
are the normal forces exerted on the road by the rear and frant
wheels?

7.17  During cxtravehicular activity, an astronaut fires a thruster
of his manocuvring unit, exerting a force 7= 142N for 1s. It
tequires 605 from the time the thruster is fired for him to rotate
through one revolution. If you model the astronaut and manosyvr-
ing unit as a rigid body, what is the moment of inertia about their
centre of mass?

P71

7.12 The mass moment of inertia of the helicopters rotor is
500kg.am®. If the rotor starts from rest at ¢== 0, the engine exerts a
constant torque of 625 N.m on the rotor, and aerodynamic drag is
neglected, what is the rotor’s angular velocity w at {= 6 s?

7.13  In Problem 7.12, if aerodynamic drag cxerts a totque on the
helicopter’s rotor of magnitude 20w N.m, what is the rotor's
angular velocity at ¢ =657
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7.14  The mass momen: of incrtia of the robotic manipulator arm  7.16  The mass moment of inertia of the pulley is 0.5kg m’.
about the vertical y axis is 10 kg m”. The mass moment of inertia of Determine the pulicy’s angular acceleration and the tension in the
the 14kg casting held by the arm about the ) axis is 0.8kgm®  cable in the two cases.

What couple about the y axis is necessary to give the manipulator

arm an angular acceleration of 2 rad/s?

¥ ¥

15 mm 150 nun

Manipulator

Casting

I —n

P7.14

7.17  Each box weighs 250N, the mass moment of inertia of
the pulley is 0.8 kg.tr®, and friction can be neglected. If the boxcs
start from rest at (=0, delermino the magnitude of their velocity
and the distance they have moved from their initial position at
1=1s.

7.15  The gears 4 and B can turn freely on their pin supports.
Their mass moments of inertia are /;=0.002kgm’ and
I5==0.006kgm® They arc imtially stationary, and at (=0 a
constant couple M=—2N.m is applied o gear B. How many
revolutions has gear 4 tumed at 1 =4 g

P77

P7.15
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7.18 The slender bar weighs 30N and the disc weighs 100N,
The coefficient of kinetic friction between the disc and the
horizontal surface is gy == 0.1, If the disc has an initial counter-
clockwise angular velocity of 10rad/s, how long does it take to
stop spinning?

P7.18

7.19 In Problem 7.18, how long does it take the dise to stop
spinning if it bas an mnitial clockwise angular velocity of 10 rad/s?

7.20 The objects consist of identical 1 m, 5kg bars welded
together, If they are released from rest in the positions shown,
what are their angular accelerations and what are the components
of the reactions at 4 at that instant? (The v axes are vertical )

(a) {b)
P?1.20

7.21
together, If it is released from rest in the position shown, what is
its angular acceleration and what are the components of the
reaction at A at that instant? (The y axis is vertical.)

The object consists of identical 1 m, 5S5kg bars welded

P7.21

7.22  For what value of x is the horizontal bar’s angular acceleration

a maximurm, and what is the maxirnum angular acceleration?

P7.22

7.23 Model the arm ABC as a single rigid body. {ts mass
is 300kg, and the mass moment of inertia about its centre
of mass 15 /=360 kg.m. If point 4 is stationary and the angular
aceeleration of the arm is 0.6 rad/s® counterclockwise, what force
does the hydranlic cylinder exert on the arm at B? (The arm is
actuated by two hydraulic eylinders, one on each side of the
vehicle. You are to determing the total foree exerted by the two
oylinders.)

P7.23

7.24 In Problem 7.23, if the angular acceleration of arm ABC is
0.6 rad/s’> counterclockwise and its angular velocity is 1.4 rad/s
clockwise, what are the components of the force exerted on the arm
at A7 (There are two pin supports, one on each side of the vehicle,
You are to determing the components of the total force exerted by
the two supports.)




1.25 To lower the drawbridge, the gears that raised it arc
disengaged and g fraction of a second later a second set of gears
that lower il arc cngaged. At the instant the gears that raised it are
disengaged, what arc the components of force exerted by the bridge
on its support at (7 The drawbridge weighs 1.6 MN, its mass
moment of inertia about O is Jo=1.0 x 107kgm?, and the
coordinates of ity centre of mass at the instant the gears arc
disengaged are X==25m, = Sm,

P?.25

7.26 Arm BC has a mass ol 12kg and the mass moment of
incriia about its centre of mass is 3 kg.m”, If B is stationary and arm
BC has a constant counterclockwise angular velocity of 2 rad/s at
the instant shown, determine the couple and the components of
force exerted on arm BC at B.

P7.26
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7.27 In Problem 7.26, what are the couple and the components of
force exerted on arm BC at 8 if arm A8 has a constant clockwise
angular velocity of 2rad/s and arm BC has a counterclockwise
angular velocity of 2 rad/s and a clockwise angular acceleration of
4 rad/s* at the instant shown?

7.28 A thin ring and a circular disc, cach of mass m and radius R,
are released from rest on an inelined surface and allowed to roll a
distance D. Determine the ratio of the times required.

7.29 The stepped disc weighs 180N and its mass moment of
inertia is /= 0.2kg.m”, If it is relcased from rest, how long does it
take the centre of the disc to fall 1 m? (Assumc that the string
remains vertical.)

200 mm

P7.29
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7.30  Atr=0, a sphere of mass m and rading R (/ = $mi*) on a
flat surface has angular velocity wy and the velocity of its centre is
zero, The coefficient of kinetic friction between the sphere and the
surface is ., What is the maximum velocity the centre of the
sphere will attain, and how long does it take to reach it?

P7.30

7.31 A soccer player kicks the ball to a teammate 6 m away. The
ball leaves his foot moving parallel te the ground a1 6 /s with no
initial angular velocity. The coefficient of kinetic friction between
the ball and the grass is g, = (.4, How long does it take the ball to
reach his teammate? (The ball is 0.7m in circunference and
weighs 4N, Estimate its mass moment of inertia by using the
equation for a thin spherical shell: [ = 2mR* )

o, st 5

[ ;:-.éww.aﬁ:‘ B

P7.31

7.32 The 100kg cylindrical disc is at rest when the force F g
applied to a cord wrapped around it. The static and kinetig
coefficients of friction between the dis¢ and the surface cqual
0.2, Determine the angular acecleration of the dise if (a) F = 500 N;
(b) F=1000N.

Strategy. First golve the problem by assuming that the dise doeg
not slip, but rolls on the surface. Determine the friction force and
find out whether it exceeds the product of the friction coefficien
and the normal force. If it does, you must rework the problem
assuming that the disc slips.

P7.32

7.33 The 18kg ladder is released from rest in the position shown
Model it as a slender bar and neglect friction. At the instant of
release, determine (a) the angular aceeleration; (b) the normal fored
exerted on the ladder by the floor.

P7.33

7.34 Suppose that the ladder in Problem 7.33 has a counter
clockwise angular velocity of 1.0rad/s in the position shown
Determine (a) the angular acecleration; {b) the normal force exerted
on the ladder by the floor.




7.35 Suppose thal the ladder in Problem 7.33 hag a counter-
clockwise angular velocity of 1.0rad/s in the position shown and
that the coefficient of kinetic friction at the floor and the wall is
=02, Determine (a) the angular acceleration; (b) the normal
force exerted on the ladder by the floor,

7.36 The slender bar weighs 150N and the cylindrical disc
weighs 100N, The system is releascd from rest with the bar
horizontal, Determine the bar’s angular acceleration at the instant
of release if the bar and disc arc welded together at 4,

P7.36

7.37 In Problem 7.36, determine the bar’s angular acccleration if
the bar and disc are pinned together at A.

7.38 The 0.1kg slender bar and 0.2kg cylindrical disc are
released from rest with the bar horizontal. The disc rolls on the
curved surface. What is the bar’s angular acccleration at that
instant?

40 mm

e 04 | W1 0111

P7.38
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739 The 2 kg slender bar and § kg block are released from rest ir
the position shown. If friction is negligible, what is the block’g
acceleration at that instant?

P7.3%

740 In Problem 7.39, suppose that the velocity of the block is
zero and the bar has an anpular velocity of 4 rad/s at the inslant
shown. What is the blocks acceleration?

7.41  The 0.4kg slender bar and 1 kg disc are released from rest
in the position shown. If the disc rolls, what is the bar's angular
acceleration at that instant?

P7.41

7.42 In Problem 7.41, what is the smallest value of the coeffi-
cient of static friction for which the disc will roll when the system
is released instead of slipping?
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743 Pulley 4 weighs 20N, 1,=008kgn’, and J=0.02
kg.m?. If the system is released from rest, what distance does the
BON weight fall in ong-half sccond?

P7.43

744 The slender bar weighs 100N and the crate weighs 400N,
The surface the crate rests on is smooth. If the system is stationary
at the instant shown, what couple M will cause the crate to
accelerate 1o the left at 1m/s” at that instant?

4m |

F7.44

7.45 Suppose that the slender bar in Problem 7.44 is rotating in
the counterclockwise direction at 2 rad/s at the instant shown and
that the coefficient of kinetic friction between the <rate and the
horizontal surface is g4 = 0.2, What couple M will cause the crate
to accelerate to the left at 1m/s* at that instant?

7.46 Bar 4B rotates with a constant angular velocity of 6 rad/s in
the counterclockwise direction. The slender bar BCL weighs 50 N
and the collar that bar BCD is attached to at C weighs 10N, The y
axis points upwards. Neglecting friction, determine the compo-
nents of the forces exerted on bar BCD by the pins at 8 and C at the
instant shown.

200 mm

300hmm

e 2000 mer 150 100 ...
M rem

147  Bar 4B weighs 50 N and bar BC weighs 30 N. If the system
is released from rest in the position shown, what are the angular
acceleration of bar AB and the normal foreé exerted by the floor at
C at that instant? Neglect friction.

P7.4&

| a
=1
| !

I'm |
|

P1.47

7.48 In Problem 7.47, if the angular velocity of bar 4B is 1.0
rad/s clockwise at the instant shown, what are the angular
acceleration of bar BC and the normal force exerted by the floor
at ¢ at that instant?




7.49 The combined mass of the motoreyele and rider is 160 kg,
Each 9kg wheel has a 330 mm radius and mass moment of inertia
1=08kg.m". The engine drives the rcar wheel. f the rear wheel
exerts a 400N hotizontal furce on the road and you do rot neglect
the horizontal force exerted on the road by the fromt wheel,
determine (a) the motorcycle’s acceleration; (b) the normal forces
exerted on the road by the rear and front wheels. (The location of
the centre of mass of the motorcycle not including its wheels is
shown.)

Strategy: Teolate the wheels and draw three free-body diagrams.
The motorcycle’s engine drives the rear wheel by exerting a couple
on it,

Al 649 mm — = B

(ISTO T 10 1 P —
P7.49

7.50 In Problem 7.49, if the front wheel lifis slightly off the
road when the rider accelerates, determine (ay the motoreycle’s
acceleration; (b) the torque exeried by the engine on the rear
wheel.

751 By using Equations (7.5}-(7.8), show that the angular
momentum of a rigid body about a fixed point O is the sum of
the angular momentum about Q due to the motion of its centre of
mass and the angular momentum about its centre of mass:
Hozzr x my-+H.
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752 The mass of the slender bar is m and the mass of the
homogeneous disc is 4m. The system is released from rest in the
position shown. If the disc rolls and friction between (he bar and)
the horizontal surface is negligible, show that the disc’s angular
acceleration is o == 6g/95R counterctockwise.

’ "”t:-""f
g5
T

2R -

""| P7.52

753 If the disk in Problem 7.52 rolls and the cocfficient of]
kinetic friction betiveen the bar and the horizontal surface is 7.
what is the disc’s angular acceleration at the instant the system is
released?
7.4 The ring gear is fixed. The mass and mass moment of
and mass moment of inertia of each planct gear arc mp =40 kg,
fp=88kg.m". It a couple M = 800 N.m is applied to the sun gear,
what is the resulting angular acceleration of the planet gears, and
what tangemtial force iy exerted on the sun gear by each planct
gear?

Ring gear

" Planet gears (3)

Sun gear
P7.54

7.55 Ifthe system in Problem 7.54 starts from rest, what constant
couple M exerted on the sun gear will cause it to accelerate to
120 rpm (revolutions per minute) in | min?
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Problems 7.56-7.62 are relafed to Example 7.7.

7.56 The 3Mg rocket is accelerating upwards at 2 g’s. I you
model it as & homogeneous bar, what is the magnitude of the axial
force at the midpoint?

P7.56

7.57 The 20kg slender bar is attached to a vertical shaft at 4 and
rotates in the horizonral plane with a constant angoiar velocity of
10 rad/s. What is the axial force at the bar’s midpoint?

P7.57

7.58 For the rotating bar in Problem 7.57, draw the graph of the
axial force as a function of x,

7.59 The 50kg slender bar 48 has a built-in support at 4. The y
axis points upwards. Determine the magnitudes of the shear force
and bending moment at the bar’s midpoint if (a) the support is
stationary; (b) the support is accelerating upwards at 3 m/s®,

iDON

P7.59

7.60 For the bar in Problem 7.59, draw the shear force and
bending moment diagrams for the two cases.

7.61 The 18kg ladder is held in equilibrium in the position
shown by the force F. Model the ladder as a slender bar and neglect
friction.

() What are the axial force, shear force and bending moment at the
ladder’s midpoint?

(b) If the force £ is suddenly removed, what are the axial force,
shear force und bending moment at the ladder’s midpoint at that
instant?

« pP7.81

7.62 Tor the ladder in Problem 7.61, draw the shear force and
bending moment diagrams for the two cases.
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The material in this section iy designed for the use of a programmable calculator
or computer.

When you know the forces and couples acting on a rigid body, you can use the
equations of motion to determine the acceleration of ils centre of mass and its
angular acceleration. Tn some situations, you can then integrate to obtain closed-
form cxpressions for the velocity and position of its centre of mass and for its
angular veloeity and angular position as functions of time. But if the functions
describing the accelerations are too complicated, or the forces and couples are
knuwn. in terms ol continuous or analogne data instead ol equations, you must use a
numerical method to determine the velocities and pesitions as functions of time,

In Chapter 3, we described a simple finite-difference method for determining the
position and velocity of the cenire of mass as functions of time. You can determine
the angular position and angular velocity in the same way. Lel’s suppose that the
angular acccleration of a rigid body depends on time, its angular position and its
angular veloeity:

o =alt, f, m) (7.30}

Supposc that at a particular time £, we know the angle (7)) and angular velocity
wity), The angular acecleration at 7 is

%%U”(f[]) i %[f", f}(ﬁq)), ﬂ)([ﬂ)] (7.31)

where

ﬂﬁ} + Af) — wlty)

dew ,
rn () = Alrlin.n At

Choosing a sufficiently small value of As, we can approximate this derivative by

Wl + A1) — @lh)

dor
dr (o) = At

and substitute it into Equation (7.31) to abtam an approximaly cxpression for the
angular velocity at time #, 4 Ar

oty -+ Af) = w(ty) + «[ky, Do), wlto)|Ar (7.32)

The relation between the angular velocity and angular position at g is
df )
e (I ) 7 CO(H)
5 (1) = wits)

Approximating this derivative by

0(’0 + Aty — H(f(])

d0
)= At

we obtain an approximate cxpression for the angular position at time fo + Af:
(ty + Af) = 0(to) -+ fts)At (7.33)

With Equations (7.32) and (7.33), we can determine the approximate values of the
angular velocity and position at £y + Ar. Using these values as initial conditions, we
can tepeat the procedure to determine the angular velocity and position at time
ty+ 2A¢8, and 50 forth.
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Figure 7.23

Example 7.10

The 18 kg ladder in Figure 7.23 is released from rest in the position shown at # = 0.
Neplecting friction, determine its angular position and angular velocity as functions
of time. Use time increments At of 0.1 5, 0.01 s and 0.001 s.

STRATEGY

The initial stops-drawing the free-body diagram of the ladder, applying the
equations of motion, and determining the angular acceleration-—-are presented in
Example 7.4. The ladder’s angular acceleration is
g .
T f

where & is the angle botween the ladder and the wall and ['is its length, With this
expression, wc ean use Equations (7.32) and (7.33) to approximate the ladder’s
angular position and angular velogity as functions of time,

SOLUTION

The angular acceleration is

(3{;}2’(;)(.:)1) sin 0 = 3.68 gin 0 rad/s*

Lot Avas 0.1 5. At the initial time #g =0, 6(f) = 5" == 0.0873 rad and w(1,) = 0. We
can use Equations (7.32) and (7.33) to determing the angular velocity and position
at time £+ Af=0.15. The angular position is

0ty + AL) = (tg) + ()i
0. 1) == G0 + (D) A
o= 00873 + (0)(0.1) = 0.0873 rad

The angular velocity is

o(fy -+ Af) = w(ty) + oty )AL:
(0.1) == 0 + [3.68 sin(0.0873)](0.1) = 0.0321 rad/s

Using these valugs as the initial ¢onditions for the next time step, the angular
position at t=0.25 is

0(0.2) = 6(0.1) + w(0.1)A?
== 0.0873 + (0.0321)(0.1) = 00905 rad

and the angular velocity is

@(0.2) = @(©.1) + «(0.1)As
= 0.0321 -+ [3.68 sin(0.0873))(0.1) = 0.0641 rad/s

Continuing in this way, we obtain the following values for the first five time steps:




Time, s Oyrad  w, rad's
0.0 0.0873  0.0000
0.1 0.0873 0.0321
0.2 0.0905 0.0641]
0.3 0.0969  0.0974
0.4 0.1066 01329
0.5 0.1199 0.1721

Figures 7.24 and 7.25 show the numerical solutions for the angular position and
angular velocity obtained using Ar=0.15, Ar= 0.0y and Ar=0.001s. Trials with
smaller time intervals indicate that Af=0.0015s closcly approximates the exact
solution. We show the positions of the falling ladder at 0.2 s intervals in Figure 7.26.

0.8
0.7 - AL= 0007 s o
06 - At=001s
- 05 - Ar=01s
g 04 /
o0
02l
0.1}
0 1 1 ] I J. N J
O 02 04 06 08 1O 12 14 16
T, seconds
Figure 7.24

Numerical solutions for the ladder’s angular
position,

@, cadfs
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Ar=0001s
Ar=001s.
Ar=1{L1s.

0.5

]
0O 02 04 06 08

1.G

I, seconds

1.2

Figure 7.25

Numerical solutions for the ladder’s
angular velocity.

DISCUSSION
By using the chain rule, we can write the ladder’s angular accelcration as
dw  de  3g
R kT, sin 6

Separating varfables, we can integrate to determine the angular velocity as a

funetion of the angular posilion:
] 4 3'3
[ w dew mf 5y sinfdo

n 5.‘: t«[

We obtain

w= \/ (_éé;'lj(éoé s — cmﬂ)

This closed-form result is comparcd with the graph of our numerical solution (using
At=0.001s) in Figure 7.27. The curves are indistinguishable.

1.4

M, radfs

1.6

Figure 7.26

Position of the falling ladder at 0.2 5
intervals [rom ¢=={} to /=145

1.5
1.0 -
(5
/l 1 I 1 ) !
0 01 62 03 04 035 006 07 08

6, rad

Figure 7.27

Analytical and numerical solutions for the
ladder’s angular velocity as a function of
its angular position.
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7.66 The slender 10 kg bar is released from rest in the horizohial
position shown. Using §1=0.1 g, determine the bar’s anghlar
position and angular velocity for the first five time steps,

Problems

7.63  Continue the ealculations presented in Example 7.10, using
At=2Q,1 s, and determine the ladder’s angular position and angular
velocity at #=:0.6 5 and t==0.7 5. U

7.64 Thc mass moment of inertia of the helicopler’s Totor 15 F I'm } rl.s6
500 kg.m’. It starts from rest at £ =0, the engine excris a constant
torque of 625 Nom and acrodynamic drag exerts a torque of

magnitude 25¢° Nm where @ is the rotor’s angular velocity in 7.67 In Problem 7.66, determine the bar's angular posifion
radians per second. Using 8722 0.2 s, determine the rotor’s angular m.l d angular velocity- as; functions of time from f=0 to b=
% position and angular velocity for the first five time steps. Compare 0.8 s using Ar=0.1s, Ar=0.01 s and Ar=0.001 5. Draw
i your results for the angular velocity with the closed-form solution. ’ ’

graphs of the angular velocity as a function of the ang
position for these three cascs and compare them with the g
of the closed-form solution for the angular velocity as a func
of the angular position.

7.68 In Problem 7.66, supposc that the bar’s pin support contdi

velocity as a function of time from r=0 to t=0.8 s for the ¢
T c=0, ¢=2, ¢=4and e=8.
P64

- 769 The falling ladder in Example 7.10 will lose contact with
71 7.6 In Problem 7.64, draw a graph of the rotor’s angular the wall before it hits the floor, Using d¢==0.001 s, estimate fhe
¢ velocity as a function of time from ¢=0 to r=10s, comparing  time and the value of the angle between the wall and the ladfler
the closed-form solution, the mumerical solution uging df==1.0 8,  when this ocours.
41 and the numerical solution using 5t==02 s.

JrRTN——
w At

R Ca iy o

Appendix: Moments of Inerfia

When a rigid body is subjected to forces and couples, the rotational motipn
that results depends not only on its mass, but also on how its mass]is
distribured. Although the two objects in Figure 7.28 have the same maps,
the angular accelerations caused by the couple M are different. This differerfee
15 reflected in the equation of angular motion M = J through the mass momgnt
of inertia /. The object in Figure 7.28(a) has a smaller mass moment of inettia
about the axis L, so its angular acceleration is greater.

In deriving the equations of motion of 2 figid body in Sections 7.2 and 7J3,
we regarded it as a finite number of particles and expressed its mass momgnt
of inertia about an axis Lo as

Iy = Z mr?

¥

Figure 7.28 where m; s the mass of the ith particle and r; is the perpendicular distange
Objects of equal mass that have different from Ly to the ith particle (Figure 7.29(a)). To ¢alculate the moments of inerfia
mass moments of inertia ghout L. of objects, it is often more convenient to model them as continuous distrith-




tions of mass and express the mass moment of inertia about Ly as

[ij rdm
m

where s the perpendicular distance from Ly to the differential element of
mass dm (Figure 7.29(b}). When the axis passes through the centre of mass
of the object, we denote the axis by L and the mass moment of inertia about
Lby

(7.34)

Simple Objects

You can determine the mass moements of inertia of complicated objects by
sumiming the moments of mertia of their individual parts, We therefore begin
by determining mass moments of inertia of sotme simple objects, Then in
the next section we describe the parallel-axis theorem, which makes it posgible
for you 1o detcrmine mass moments of inertia of objects composed of
combinations of sumple parts.

Slender Bars We will determine the mass moment of incrtia of a straight
slender bar about a perpendicular axis Z through the centre of mass of the bar
(Figure 7.30(a}). *Slender’ means we assume that the bar’s length 18 much
greater than its width. Let the bar have length /, cross-sectional area A, and
mass m. We assume that 4 is uniform along the length of the bar and that the
material is homogeneous.

Consider a differential element of the bar of length dr at a distance + from
the centre of mass (Figure 7.30(b)). The element’s mass 1s equal to the product
of its volume and the mass density: dm = pA dr, Substituting this expression
inte Equation (7.34), we obtain the mass moment of inertia of the bar about a
perpendicular axis through its centre of mass:

) 1/2 1
! mf rdm m[ pdr* dr = — pAl
m 1/2 12

" (a) A slender bar.

APPENDIX: MOMENTS OF INERTIA - 345

Figure 7.29

Defermining the mass moment of inertia by
modelling an object as (a} a finite number of
particles and (b) a continuous distribution of
INASS.

(b) A differential element of length o
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The mass of the bar equals the product of the mass density and the volume of
the bar, m= pAl, so we can express the mass moment of inertia as

L

1= omi (7.35)
We have neglected the lateral dimensions of the bar in obtaining this result.
That is, we treated the differential element of mass dm as if it were
concentrated on the axis of the bar. As a consequence, Equation (7.35) is an
approximation for the mass moment of inertia of a bar. Later in this section,
we will determine the moments of inertia for a bar of finite Jateral dimension
and show that Equation (7.35) is a good approximation when the width of the
bar is small in comparison to its length,

Thin Plates Consider a homogeneous flat plate that has mass m and
uniform thickness T We will leave the shape of the cross-sectional area of
the plate unspecified. Let a cartesian coordinate system be oriented so that the
plate lies in the x-y plane (Figure 7.31(a)). Our objective is to determine the
mass moments of inertia of the plate about the x, v and z axes.

We can obtain a differential element of volume of the plate by projecting an
element of area d4 through the thickness T of the plate (Figure 7.31(b)). The
resulting volume is 7 o4. The mass of this element of volume is equal to the
product of the mass density and the volume: dm= pT dA. Substituting this
expression into Equation (7.34), we obtain the mass moment of inertia of the
plate about the z axis in the form

f(zaxis)ﬂf Fdm = pT f A
m A

where 7 is the distance from the z axis to dd. Since the mass of the plate
is mm=pTA, where A is the cross-sectional area of the plate, the product
pT=m/4. The integral on the right is the polar moment of inertia J; of the
cross-sectional area of the plate. Therefore we can write the mass moment of
inertia of the plate about the = axis ag

T iy = %Jo (7.36)

Figure 7.31

() A plate of arbitrary shape and uniform
thickness 7.

(b} An element of volume obtained hy
projecting an element of area 4 through
the plate.




From Figure 7.31(b), we see that the perpendicular distance from the x axis
to the element of area d4 is the ¥ coordinate of d4. Therefore the mass moment
of inertia of the plate about the x axis is

T i) = ] Vidm = pT f Vdd = g;,c (7.37)
m A

where [, is the moment of inertia of the cross-sectional area of the plate about
the x axis. The mass moment of incrtia of the plate about the y axis is

Hy ais) = / Pdm = pT f dd = ;’;f}, (7.38)
m A

where /, is the moment of inertia of the cross-sectional area of the plate about
the v axis.

Thus we have expressed the mass moments of inertia of a thin homo-
geneous plate of uniform thickness in terms of the moments of inertia of the
cross-scctional area of the plate. In fact, these results explain why the area
integrals /.. I, and J; are called moments of incrtia,

Since the sum of the area moments of inertia 7, and 7, is equal to the polar
moment of inertia Jp, the mass moment of inertia of the thin platc about the z
axis i3 equal to the sum of its moments of inertia gbout the x and y axes:

I{:;' uxis) — J(x axis) + [(y axis} (7%9)

In the following example we use integration to determine the mass moment
of inertia of an object consisting of two slender bars welded together. We
then present an example that demonstrates the use of Equations (7.36)—
(7.38) to determine the mass moments of inertia of a thin, homogeneous
plate with a specific cross-sectional area.

APPENDIX: MOMENTS OF INERTIA 347
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Excample 7.11

Two homogeneous, slender bars, cach of length 1, mass m, and cross-scctional area
A, are welded together to form an L-shaped object (Figure 7.32). Determine the
mass moment of inertia of the object about the axis Lo through point €. (The axis Ly
is perpendicular to the two bars.)

Figure 7.32

s i S i

STRATEGY

Using the same integration procedure we used for a single bar, we can determine the
mass moment of inertia of each bar about Ly and sum the results.

b SOLUTION

We orient a coordinate system with the = axis along Ly and the x axis colinear with
bar | (Figure (a)). The mass of the differential element of bar 1 of length dx is
dnt = pAdx, The mass moment of incrtia of bar 1 about L, is

1
ok ﬂf rdm = jf) pAxdx = -,_H:,cvi.!'3

In terms of the mass of the bar, m = pAl, we can write this result as

(lg:h = % m.[z

"3 (o) Differential element of bar 1, The mass of the element of bar 2 of length & shown in Figure (b) i dm = pddy.
' From the figure we see that the perpendicular distance from Ly to ths element is
r=/f 42 Therefore the mass moment of inertia of bar 2 about L is

J 4

; (), = f ’ d’"”f pAE +)*)dy = 5 pdl’
m ]

In terms of the mass of the bar, we obtain

. 4
(ho)y = 3 mi

The mass moment of ingriia of the L-shaped object about Ly is

1 4 5
Iy = () + (fg), = Emﬂ + gmﬂ e ;;»m!z

%

o)
| ——

B At o o CSw—
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.| Example 7.12

bt

The thin, homogeneous plale in Figure 7.33 is of uniform thickness and mass m,
Determine its mass moments of inertia about the x, y and z axes,

¥ Figure 7.33

STRATEGY

The mass moments of inertia about the x and y axes are given by Equations (7.37)
and (7.38) in terms of the moments of inertia of the cross-yectional area of the plate.
We can determine the mass moment of inertia of the plate about the z axis from
Exuation (7.39).

SOLUTION

From Appendix B, the moments of inertia of the triangular arca about the x and
v oaxes are [ = J5bk° and I, = 1hb®. Therefore the mass moments of inertia
about the x and y uxes are

nt m 1 |
xoaxix) === T Ay == e “‘""bh3 o= — hz
lawio = 5 b= w7 (12 ) 6"

m m 1 | IS
LY L Y Y FA] .
Ty wi = 20 = s (4”) 3P

The moment of inertia about the z axis is

1,1
](_2 )y = ](x sy "t [U- axig) = m(g K 'bz)

2

Eri s LA RE
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Figure 7.34

(a) An axis L through the centre of mass of
an ohject and a parallel axis Ly,
{b) The xyz and x"v'2" coordinate systems.

Parallel-Axis Theorem

This theorem allows us to determine mass moments of inertia of composite
objects when we know the mass moments of inertia of its parts. Suppose that
we know the mass moment of inertia I about an axis L through the centre of
mass of an object, and we wish to determine its mass moment of inertia /;
sbout a parallel axis L, (Figure 7.34(a)). To determine Jy, we introduce parallel
coordinate systems xyz and x'y'z’ with the 2z axis along L, and the 2’ axis along
L, as shown in Figure 7.34(b). (In this figure the axes L, and L are
perpendicular to the page.) The origin O of the xyz coordinate system is
contained in the x'-/ plane. The terms d, and d, are the coordinates of the
centre of mass relative to the xyz coordinate system,

N

The mass moment of inertia of the object about L is

Iy = L rdm = fm O %) dm (7.40)

where r 18 the perpendicular distance from Ly to the differential elerment of
mass dm, and x, ¥ are the coordinates of dm in the x-v plane, The x-y
coordinates of dm are related to its x'< coordinates by

xzx"-{-dx ymy’—f—dy

By substituting these expressions into Equation (7.40), we can write it as
Iy = [ [() + O/)*) dm + 2d, f X dm+ 2d, f Vdm
vm m "
+ [ (d} +d2) dm
m

Since (x')* + (v)* = (), where ¥ is the perpendicular distance from L
to dm, the first integral on the right side of this equation is the mass moment
of inertia I of the object about L. Recall that the ¥’ and ¥ coordinates of

the centre of mass of the object relative to the x'y'z’ coordinate system are
defined by

fx’dm f)/dm
)_C’*““ ixd T o M

f dm f dm
m m




Because the centre of mass of the object is at the origin of the x'v'7 system,
# = 0 and J = 0. Therefore the integrals in the second and third terms on the
right side of Equation (7.41) are equal to zero. From Figure 7.34(h), we see
that d7 + d7 = d*, where d is the perpendicular distance between the axes L
and Lg. Therefore we obtain the theorem

Io =1 -+ d*m (7.42)

where m is the mass of the object. This is the parallel-axis theorem. If you
know the mass moment of inertia of an object about a given axis, you
can use this theorem to dotermine its mass moment of inertia about any
parallel axis.

Tn the next two examples we use the parallel-axis theorem fo determine mass
moments of inevtia of composite objects. Determining the mass moment of
inertia about a given axis Ly typically requires three steps:

(1) Choose the parts — Try fo divide the vhject into parts whose mass moments
of inertia you know or can easily determine.

(2) Determine the mass moments of inertia of the parts- You must first
determine the mass moment of inertio of each parf about the axis through
its cenfre of mass parallel w Ly Then vou can use the parallel-axis
theorem to determine its mass moment of nertia about Ly.

(3) Sum the results—Swm the mass moments of inertin of the parts (or
subtract in the vase of @ hole or cutout) to obtain the mass moment af
inertia of the composite ohjeci.

APPENDIX: MOMENTS OF INERTIA - 351




352  CHAPTER7 TWO-DIMENSIONAL DYNAMICS OF RIGID BODIES

Example 7.13

Two homogencous, slender bars, each of tength / and mass m, are welded together
to form an L-shaped object (Figure 7.35). Determine the mass moment of inertia
of the object about the axis Ly through point O. (The axis Lq is perpendicular to
the two bats.)

Figure 7.35 7T

SOLUTION

Choose the Parls  The parts are the two bars, which we call bar 1 and bar 2
(Figure (a)).

Determine the Mass Moments of Inertia of the Pars From Equation
(7.35), the mass moment of inertia of each bar about a perpendicular axis through
ils centre of mass is f = Tli mi2. The distance from Ly to the parallel axis through the
centre of mass of bar 1 is %! (Figure (a)). Therefore the mass moment of imertia of
bar 1 about Ly is

1 L
2 2
(0) The distances from Ly to parallel axcs o)y =T+ d"m = "i“i“ml + (5 1) m= 5’”[2
through the centres of mass of bars 1

and 2. The distance from Ly to the parallel axis through the centre of mass of bar 2 is

[ 4 ¢ N*1"?. The mass moment of inertia of bar 2 about Ly is

oo ol (LN _4 o
M)y = 1 - dm —--ﬁrm’ + ’:l + (il) :|m = 3m[
Sum the Results The mass moment of inertia of the L-shaped object aboul
! LU is

1 4 5
I = (Ig), + (Ig)y = Mjnmﬂ + Emﬁ e Smﬂ

DISCUSSION

Compare this golution with Example 711, in which we used integration to
determine the mass moment of inertia of this object about L,. We obtained the
result much more easily with the parallel-axis theorem, but of course we needed to
know the mass moments of inertia of the bars about the axes through their centres of
MASS,
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Example 7.14

The object in Figure 7.36 consists of a slender, 3 kg bar welded to a thin, circular,
2kg disc. Determine its mass moment of inertia about the axis Z through its centre
of mass. (The axis L is perpendicular to the bar and disc.)

STRATEGY

We must locate the centre of mass of the composite abject, then apply the parallel-
axis theorem, We can obtain the mass moments of inertia of the bar and disc from
Appendix C.

SOLUTION

Choose the Parts  The parts are the bar and the dise. Introducing the coordinate
system in Figure (a), the x coordinate of the centre of mass of the composite object
Iy

HibanM(var) + Fidise) Midise) _ (0.3)3) + (0.6 + 0.2)(2) _

0.5m
Mibar) =+ Mgdie) 32

im

Determine the Mass Moments of Ineria of the Parts  The distance from
the centre of mass of the bar t¢ the centre of mass of the compositc object is 0.2m
(Figure (b)), Therefore the mass moment of inertia of the bar about L is

The distance from the centre of mass of the dise to the centre of mass of the
composile object 5 0.3 m (Figure (¢)). The mass moment of inertia of the disc about
Lig
1 .
Fawy = 5 (0.2 +(037(2) = 0.220 kgt

Sum the Results The mass moment of mertia of the composite object about
Lis

/= I(h:u)'*'l.(disc) =0.430 kgm2

Figure 7.36

() The coordinate ¥ of the centre of mass
of the object,

el | Rt R

(b} Distance from L to the centre of mass
of the bar,

{¢) Distance from L to the centre of mass
of the dise.
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Example 7.15

The homogeneous cylinder in Figure 7.37 has mass m, length /, and radius R.
Determine its mass moments of inertia about the x, y and z axcs.

Figure 7.37

STRATEGY

We can determine the mass moments of inertia of the cylinder by an interesting
application of the parallel-axis theorem. We first use it to determine the mass
moments of ingrtia about the ¥, y and z axes of an infinitesimal element of the
cylinder consisting of a dise of thickness ¢z, Then we integrate the results with
respect Lo z 10 obtain the moments of inertia of the cylinder.

SOLUTION

Consider an element of the cylinder of thickness dr at a distance z from the centre of
the cylinder (Figure (a)). (You can imagine obtaining this element by ‘slicing’ the
eylinder perpendicular to its axis.) The mass of the element is equal to the product
of the mass density and the volume of the element, dm = p(x R2dz). We obtain the
mass moments of inertia of the element by using the values for a thin circular plate
given in Appendix C. The mass mement of inertia about the z axis is

1 1, .
Al axisy = Edm R = 5([)% R do)R*

() A differential element of the cylinder in the form of a disc.




We integrate this result with respect to z from — 72 to /2, thereby summing the
mass moments of inertia of the infinitesimal dise clements that make up the
cylinder. The result is the moment of inertia of the cylinder aboul the z axis:

SE 1
T mm ﬂf —pn Ry = — pr B
—172 2 2

We can write this resull in terms of the mass of the cylinder, m = p(z R21), as

1 5
I wisy = "z"mR‘

The mass moment of inertia of the disc element about the ¥’ axis is
Vo | 210 2
iy i = EdmR = Z(,mr Redz)R

We use thig result and the parallel-axis theorem to determine the mass moment of
mertia of the element about the x axis:

1.
s wiay = dly angy elm = E(PZ'I deZ)RZ + Zz(p:’.'.' dez)

Integrating this expression with respect to z from - /2 to I/2, we obtain the mass
moment of inertia of the eylinder about the x axis:

12N . 1 1
Fox anis) == f]fg (H pr R 4 pm R'“’z'z)dz =m &+ 3Pm R

In terms of the mass of the cylinder,
1 1

lawin = Ele + Em[2

Dug 1o the symmetry of the ¢ylinder,

](y axig) ™ I(x nxiy)

DISCUSSION

When the cylinder is very long in comparison o its width, /> R, the first term in the
cquation for £ 4. can be neglected and we obtain the mass moment of inertia of a
slender bar about a perpendicular axis, Equation (7.35). On the other hand, when the
radius of the cylinder is much greater than its length, &3 [, the second term in the
cquation for fy, uisy can be naglected and we obtain the noment of incrtia for a thin
circular disc about an axis parallel to the disc. This indicates the sizes of the terms
you neglect when you use the approximate expressions for the moments of inertia of
a “slender’ bar and a “thin’ disc.

APPENDIX: MOMENTS OF INERDA
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7.70  The homogencous, slender bar has mass m and length /.
Use integration to determine its mass moment of inertia about the
perpendicular axis L.

Strategy; Use the same approach we used to obtain Equation
(7.35). You nieed only to change the limits of integration.

P7.70

7.71  Two homogeneous, slender bars, each of mass m and len zth
1, are welded together to form the T-shaped object. Use integration
to determine the mass moment of incrtia of the object about the
axis through point O that is perpendicular to the bars,

—

P7.71

7.72 The homogeneous, slender bar has mass m and length /.
Use integration to determine the mass moment of inertia of the bar
about the axis L.

P7.72

Problems

L

SARERERT

7.73 A homogeneous, slender bar is bent into a circular ring of
mass 1 and radius R, Determine the mass moment of inertia of the
ting (a) about the axis through its centre of muass that is perpendi-
cular to the ring; (b) about the axis L.

P7.73

7.74 The homogeneous, thin plate is of uniform thickness and
mass m. Determine its mass moment of inertia about the x, y and z
axes.

Straregy: The mass moments of inértia of a thin plate of arbitrary
shape are given by Equations (7.37)-(7.39) in terms of the
moments of inertia of the cross-sectional area of the plate. You
can obtain the moments of inettia of the rectangular area from
Appendix B,

b —

P7.74

7.75 The brass washer is of uniform thickness and mass m.

{#) Determine its mass moments of inertia about the x and = axes,
{b) Let Rj==0 and compare your results with the values given in
Appendix C for a thin circular plate.

{c} Let Ri— Ry, and compare your results with the solutions of
Problem 7.73,

P?.76




7.76 The homogeneous, thin plate is of unitorm thickness and
weighs 100N, Determine its miass moment of inertia about the y
axis.

X

R1.76

1.77 Determine the mass moment of inertia of the plate in
Problem 7.76 about the x axis.

7.78  The mass of the object is [0 kg, lts mass moment of inertia
about L, is 10kgan®, What is its mass moment of inertia about £.,7
(The three axes lie in the same planc.)

dom 0.6 m |
L L L

15

P7.78

7.79  An engincer gathering data for the design of 8 manoeuvring
nnit determines that the astronaut’s centre of mass is at x = 1.0l m,
=016 m and that his masgs moment of inertia about the z axis is
105.6 kg.m®, His mass is 81.6kg. What is his mass moment of
inertia aboul the 2 axis through his centre of mass?

APPENDIX: MOMENTS OF INERTIA 3567

7.80 ‘Two homogeneous, slender bars, each of mass m and
length I, are welded together o form the T-shaped objecl. Use
the parallel-axis theorem 1o determine the mass moment of inertia
of the object about the axis through point (2 that is perpendicular to
the bars.

1
o

' P7.80

7.81 Usc the parallclaxiz theorem to determine the mass
moment of inertia of the Teshaped object in Problem 7.80 about
the axis through the centre of mass of the object that is perpendi-
cudar to the two bars,

7.82 The mass of the homogeneous, slender bar is 20kg,
Determing its mass moment of ingrtia about the z axis.

L
i

1.5 m

It —*‘

P7.82

7.83 Determine the mass moment of inertia of the bar in
Problem 7.82 about the z* axis through its centre of mass.
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7.84  The rocket is used for atmospheric research. Tts weight and  7.88 Determine the mass moment of inertia of the plate in
its mass moment of inertia about the z axis throngh its centre of  Problem 7.87 about the y axis.

mass (including its fuel) are 45 kN and 14 000 kg.m?, respectively.

The rocket’s fuel weighs 27kN, its centre of mass is localed at  7.89 The thermal radiator {used to eliminate excess heat from a
xe—1m, y=0, z=0, and the mass moment of incrtia of the fugl  satellite) can be modelled as a homogeneous, thin, rectangular
about the uxis through the fuel’s centre of mass parallel to the z axis  plate. Its mass i3 75kg. Determine its mass moments of inertia
18 3000 kg.mz, When the foel is exhausied, what is the rocket's  about the x, y and = axes.

mass moment of inertia about the axis through its new centre of

mass parallel io the z axis?

¥

P7.84

7.85 The mass of the homogeneous, thin plate is 36 kg, Deter-
mine its mass moment of inertia about the x axis.

¥

7.90  The mass of the homogencous, thin plate is 2 kg. Detarmine
0.4 m 04m . A . . .

its mass moment of inertia about the axis through point O that is
P ‘ ‘ T perpendicular to the plate.

4 0.3 m
l X P7.85
80 mm
7.86 Determine the mass moment of inertia of the plate in 20 mm
Problem 7.85 ubowt the z axis. }
7.87 The homogeneous, thin plate weighs 50N, Determine its "
mags moment of inertia about the x axis.
130 mm ~i
¥ P7.90

m— | 25 mzn ﬂ‘*—» 125 mm W.J

|

i
125 mm

r

N P7.87
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7.91 The homogeneous cone iy of mass m. Determine its mass  7.9%  The homogeneous, rectangular parallelepiped 1s of mass .
moment of inertia about the z axis and compare your resull with the  Determine s mass moments of inertia about the x,  and z axcs
value given in Appendix C, and compare your results with the values given in Appendix C.

Strategy: Use the same approach we used in Example 7.15 lo
obtain the moments of inertia of a homogeneous cylinder.

P7.95

. 7.96 The homogencous ring consists of steel of densily
p7o1 P ==7800 kg/mg. Determune its mass mement of incrtia about the
axis L throngh its centre of mass.

7.92 Determine the mass moments of inertia of the homoge- .
neous cone in Problem 7.91 ahout the x and v axes and compare 130 mm
your results with the values given in Appendix C.

7.93 The homogeneous pyramid is of mags m. Determinc its
mass moment of inertia ahout the z axis.

mnt

P7.96

7.97 The homogenéous half-cylinder is of mass m. Determine
its masgs moment of inertia about the axis L through s centre
of mass.

P7.93

7.94 Determine the mass momcents of inertia of the homoge-
ncous pyramid in Problem 7.93 about the x and y axes.

P7.97
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7.98 The object shown consists of sieel of density p=7800 2.100 The thick platc consists of steel of density p = 7800
kg/m’. Determine its mass moment of incrtia about the axis kg/m®. Determine its mass moment of inertia about the z axis.

Lo through point O,

20 mm

PEREO

}-» 100 wa 200 i —pe 100 o

mm mm

P7.98 P7.100

7.99 Determine the mass moment of inertia of the object in 7101 Determine the mass moment of inertia of the object in
Problem 7.98 about the axis through the centre of mass of the  Problem 7.100 about the x axis.

object patallel to Ly,

Chapter Summary

Moment-Angular Momentum Relations

Let r; be the position of the ith particle of a system of particles, and let R; be
its position relative to the centre of mass. The angular momentum of the
gystem about a point O is the sum of the angular momenta of the particles,

Hy = Z Y; X WV Equation (7.7)

i
where v;=dr/dt, and the angular momentim about the centre of mass is

H= Z R; = myv; Equation (7.8)
i

These angular momenta are related by
Hy=rxmv+ H Eqgnation (7.9)

where v = dr/dt is the velocity of the centre of mass.
The total moment about a fixed point ¢ equals the rate of change of the
angular momentum about

EMy = 72 Eqguation {7.11)

This result can also be expressed in terms of the angular momentum about the
centre of mass:

EM(}E%(I‘XH!V-{- H) = rxma-{-dH

T Equation (7.12)




where a is the acceleration of the centre of mass.
The total moment about the centre of mass equals the rate of change of the
angular momentum about the centre of mass:

_dH

iIM= = Equation {7.13)

Equations of Planar Motion

The equations of motion for a rigid body in planar motion include Newton’s
second law,

ZF=ma Equation (7.21)

where a is the acceleration of the centre of mass. If the rigid body rotales about
a fixed axis O, the total moment about O equals the product of the moment of
inertia about O and the angular acceleration:

T My = Iy Equation (7.22)

In any planar motion, the total moment about the centre of mass equals the
product of the moment of inertia about the centre of mass and the angular
acceleration:

EM=1q Equation (7.23)

It a rigid body is in translation, Newton’s second law is sufficient to determine
its motion. Nevertheless, the angular equation of motion may be needed to
determine unknown forces or couples. Since o = 0, the total moment about the
cenire of mass equals zero, In the case of rotation about a fixed axis, Equation
(7.22) is sufficient to determine the rotational motion, although Newton’s
second law may be needed to determine unknown forces or couples. If a rigid
body undergoes general planar motion, both Newtons second law and the
equation of angular motion are needed.

D’Alembert’s Principle

By writing Newton’s second law as
EF 4 (-~ma)=0 Equation (7.27)

it can be regarded as an ‘equilibrium’ equation stating that the sum of the
external forces, including an inertial force — ma, equals zero. The equation
of angular motion can be written as

IZMy+[rx(—ma)] k+(~fo)=0 Equation (7.28)

stating that the sum of the moments about any point due to external forces and
couples, including the moment due to the inertial force —ma acting at the
centre of mass and an inertial couple — Jx, equals zero. Stated in this way, the
equations of motion of a rigid body are analogous to the cquations for static
equilibrium,

CHAPTER SUMMARY 361
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Moments of Inertia

The mass moment of inertia of an object about an axis L is

Iy = f Fdm Equation (7.34)

where r is the perpendicular distance from Lg to the differential element of

mass dm.

Let L be an axis through the centre of mass of an object, and let L, be a
parallel axis. The mass moment of inertia fy about Ly is given in terms of the
mass moment of inertia f about L by the parallel-axis theorem

=T+ d*m

Equation (7.42)

where m is the mass of the object and & is the distance between L and Ly.

Review Problems

7.102 The aeroplane is al the beginning of its takeoff run. Its
weight is 4.5 kN, and the initial thrust 7" exerted by its engine 1s
1.39 kN, Assume that the thrust is horizontal, and naglect the
tangential forces exerted on ity wheels,

{a) IF the acceleration of the aeroplans remains constant, how long
will it take to reach its takeofl speed of 130 km/hr?

{b) Determine the normal force exerted on the forward landing gear
at the beginning of the takeoft run.

P7.102

7.103  The pulleys can turn freely on their pin supports. Their
mass moments of inertia are [, =0,002 kg.m?, /5 =0.036 kg.m2
and Ic=10,032 kg.am®, They are initially stationary, and at r=0 a
constant couple M=2 Nm is applied to pulley 4. What is the
angular velocity of pulley C and how many revolutions has it
turned at t=25?

100 v |

200 mm

B c
P7.103

7.104 A 2kg box is subjected to a 40 N horizontal force.
Neglect friction.

(a) If the box remains on the floor, what is its acceleration?

(b) Determine the range of values of ¢ for which the box will
remain on the floor when the force is applied.

40N R {

I

JSIUPE SRR i

)

P7.I04

PN — J " : -
“_..._. 100 m”l—_ 100 mm ‘*‘l




7.105 The slender, 30 kg bar A8 is 1 m long, Tt is pinned Lo the
cart at 4 and leans against it at 5.

(a) If the acceleration of the cart is & = 6 m/s*, what normal force is
exerted on the bar by the cart at 57

(k) What i3 the largest acceleralion a for which the bar will remain
in contact with the surfacc at B?

P7.105

7.106 To determine a 4.5 kg tyre’s mass moment of inertia, an
engincer lets it roll down an inglined surface. IT it takes 3.5 s to start
from rest and roll 3m down the surfuce, what is the tyre’s mass
moment of inertia abowt ils centre of mass?

330 mm

P?.106
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7.107  The mass moment of inertia of the disc is 0.2 kg.m?. What
is the smallest coefficient of static friction batween the rope and the
disc for which the ropc will not slip when the system is released
from rest?

150 rum g

P7.107

7.108 Model the excavator’s arm ABC as a single rigid body.
Its mass is 1200kg, and the mass moment of inertia about is
centre of mass 18 /=23600kgm®. If point 4 is stationary and the
angular acceleration of the arm is 1.0 rad/s® counterclockwisc,
what force does the verfical hydraulic cylinder exert on the am
al 87

P7.108

7.109  In Problem 7.108, if the anpular sceeleration of arm ABC
is 1.0tad/s” counterelockwise and its angular velocity is 2.0 rad/s
counterclockwise, what are the components of the force exerted on
the arm at A?
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7.110  To decrease the ungle of elevation of the stationary 200 kg
ladder, the gears that raised it are disengaged and a fraction of a
second later a second set of gears that lower it are engaged. At the
instant the gears that raised it are disengaged, what is the ladder’s
angular acceleration and what are the components of force exerted
on the ladder by its support at O? The mass moment of inertia of
the ladder about O is Jy== 14 000 kg.m?, and the coordinates of its
centre of mass al the instant the gears are disengaged are ¥ = 3m,
¥ = 4m,

P7.110

7111 The slender bars cach weigh 20N and are 250 mm long,
The homogeneous plate weighs S0 N. Ifthe system is released from
rest in the position shown, what is the angular acceleration of the
bars at that instant?

200 mm
i

L TR — -’

P7.111

7.112 A slender bar of mass m is released from rest in the
position shown, The static and kinetic coefficients of friction at the
floor and wall have the same value p. If the bar slips, what is its
angular acceleration at the instant of release?

P7.112

7.113  Each of the go-cart’s front wheels weighs 25N and has a
mass moment of inertia of 0.014kg.m®, The two rear wheels and
rear axle form a single rigid body weighing 50 N and having a mass
moment of inertia of 0.1 kg.m?. The total weight of the go-cart and
rider 1s 1200N. (The location of the centre of mass of the go-cart
and driver not including the ront wheels or the rear wheels and
rear axle is shown.) If the engine exerts a torque of 16 N.m on the
rear axle, what is the go-cart’s acceleration?




7.114  Bar A5 rotates with a constant angular velocity of 10tad/s
i the counterclockwise direction. The masses of the slender bars
BC and CDE are 2kg and 3.6 kg, respectively. The v axis points
upwards. Determine the components of the forces cxerted on bar
BC by the pins at B and C at the instant shown,

JI.
f
&

400 tm

— _Jw 700 mm |

e TO() PPN
| mm

P7.114

7.115 At the instant shown, the arms of the robotic manipulator
have congtant  counterclockwise angular  velocities gz =
~0.51ad/s, g =2rad’s and wmep =4rad/s. The mass of
arm CD is 10kg. and its centre of mass is at its midpoinl. At
this instant, what force and couple are cxeried on arm CD at C7

~—— 230 mim

P7.115

7.116  Each bar i 1m in length and has a mass of 4keg. The
imclined surface is smooth, If the system is rolcased firomy rest in the
position shown, what arc the angular accelerations of the bars at
that instant?

P7.114
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7117 At the instant the system in Problem 7.116 is released,
what 1s the magnitude of the force exerted on bar QA by the support
at O

7.118 The fixed ring gear lies 11 the horizontal plane. The hub
and planet gears are bonded together, The mass and mass moment
of inertia of the combined hub and planct gears are myp = 130kg
and Jyp == 130 kg.m? The mass moment of inertia of the sun gear is
Iy == 60 kg.mz. The mass of the connecting rod is 5 kg, and it can be
modelled as a slender bar, ¥ a 1 kN.m counterclockwise couple is
applied to the sun gear, what is the resulting angular acceleration of
the bonded hub and planct gears?

Planet gear ~ ... _ —

Hub gear —. _ .«

Connecting .. /&
roed

Sun gear
Ring pear - ¥

P7.118

7.119  The system, is stationary at the itstant shown, The net
forve exerted on the:piston by the exploding fuel-air mixture and
friction is 5kN to the left. A clockwise couple M= 200 N.m acts
on the crank 48, The mass moment of inertia of the crank about 4
is 0.0003 kg.m”. The mass of the connecting rod BC is 0.36 kg, and
its centre of mass is 40 mm fom B on the line from B to C, The
connecting rod’s mags moment of incrtia about its centre of mass is
0.0004 kg, tm®. The miass of the piston is 4.6 kg. What is the piston's
acceleration at this istant? (Neglect the gravitational forces on the
crank and connecting rod.)

7.120 If the crank AB in Problem 7.119 has a counterclockwise
angular velocity of 2000 rpm (revolutions per minute) at the instant
shown, what is the piston’s acceleration?

P7.119




homopolar generator transforms the kinctic cnergy of a
rotating flywheel into electromagnetic cncrgy. The
generator shown steres 10 megajoules of rotational
kinctic energy, This type of generator can produce very large
glectric currents for short periods of time and has been used to
create the ficlds necessary to achicve nuclear fusion by mag-
netic confinement. In this chapter you will use energy and
momentum methods to analyse two-dimensional motions of




Energy and
Momentum in
Planar Rigid-Body
Dynamics

OU have seen in Chapters 4 and 5 that energy and
Y momentum methods are very useful for particular types
of problems in dynamics. If the forces on an object are known
functions of position, you can use the principle of work and
energy to relate the change in the magnitude of the object™
velocity to the change in its position. If the forces are known
functions of time, you can use the principle of impulse and
momentum to determine the change in the object’s velocity
during an interval of time. In this chapter we extend these
methods to situations in which you must consider both the

translational and rotational motions of objects,

imre oo e e
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8.1 Principle of Work and Energy

The principle of work and energy for a rigid body in planar motion is a simplg
statement and involves simple cquations, although its derivation is rathe
involved. To help you follow our derivation, we begin by summarizing th
principle. Let T be the kinetic energy of a rgid body. The principle of worl§
and energy states that the work U/ done hy external forces and couples as thg
rigid body moves between two positions | and 2 equals the change in it
kinetic energy:

U=1-T,

In general planar motion, the kinetic energy is
1 1
T = —me® + =
2" T3

where v is the magnitude of the velocity of the centre of mass and £ is the mas]
moment of inertia about the centre of mass. In the cdse of rotation about
fixed axis (J, the kinetic energy can also be expressed as

l
T e —ﬁfng
To derive these results, we adopt the same approach used in Chapter 7 tq
derive the equations of motion for a rigid body. We obtain the principle of
work and energy for a system of particles and use it to obtain the principle fof
a rigid body.

System of Particles

Let m; be the mass of the ith particle of a system of ¥ particles, and let r; be its
position relative to a fixed reference point & (Figure 8.1). We denote the sum
of the kinetic energies of the particles by T,

1
T = Z im,-v,- "V (8.1
H

where v; = dr;/dt is the velocity of the ith particle. Our objective is to relate the

Figure 8.1

A system of particles, The vector r; is the
position vector of the ith particle. o

——”S
2

)




work done on the systern of particles to the change in I We begin with
Newton's second law for the ith particle,

z fU '|"ffE = - (m,‘v,[) (82)

where 1, is the force exerted on the ith particle by the jth particle and ff ig the
external force on the ith particle. We take the dot product of this equation with
v, and sum from { == | to A"

Z: Z f,!j ‘v + Z f:j Y, = Z v "g;(mf'v-‘) (83)
i i {

We can express the term on the right side of this equation as the rate of change
of the total kinetic energy:

d d 1 dT
Zi: A\ ‘d—t(mﬂ’r) = Z imr"r"’f ﬂa

Therefore multiplying Equation (8.3) by @ vields
YOS tyedn+ Y fEedr, =dr
! 7 i
We integrate this cquation, obtaining

(redy (),
S5 [T 3 [
' i { ¢

r[]l (l'f]l

The terms on the left side are the work done on the system by internal and
external forces as the particles move from positions (r;}; to positions (r),.
Denoting the work by U, we obtain the principle of work and energy for a
system of particles: the work donc by internal and external forces equals the
change in the total kinetic energy:

U=T,-T (8.4)

This result applies to any object or collection of objects, including a rigid
body.

Rigid Bodly in Planar Motion

We have shown that the work done on a rigid body by internal and external
forces as it moves between two positions equals the change in its kinetic
energy. 1f we assume that the internal forces between each pair of particles are
directed along the straight line between the two particles, the work done on a
rigid body by internal Jorces is zero. To show that this is true, we consider two
particles of a rigid body designated 1 and 2 (Figure 8.2). The sum of the forces
that the two particles exert on each other is zero, £15 + I = 0, so the rate at
which the forces do work (the power) is

Flz-vi+ 12 vy =y - (va—vy)

8.1

PRINCIPLE OF WORK AND ENERGY 369

Figure 8.2
Particles 1 and 2 and the forces they exert
on cach other.
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We can show that fy; is perpendicular to vy — vy, and therefore the rate at
which work is done by the internal forces between these two particles is zero.
Because the particles are points of a rigid body, we can express their relative
velocity in terms of the rigid body’s angular velocity @ as

Vy w ¥ == @ X (l') o r{) (85)

This equation shows that the relative velocity v, — v is perpendicular to
r; — ry, which is the position vector from particle ! to particle 2. Since the
force 15, is parallel to r; — ry, it is perpendicular to v, — v. We can repeat
this argument for each pair of particles of the rigid body, so the total rate at
which work is done by internal forces is zero. This implies that the work done
by internal forces as the rigid body moves between two positions is zero.

The system of external forces on a rigid body may be represented as forces
and couples, so we obtain the principle of work and energy for a rigid body:
the work done by external forees and couples as a rigid body moves between
two positions equals the change in its kinetic energy. We can also state this
principle for a system of rigid bodies: the work done by external and internal
forces and couples as a system of rigid bodies moves between two positions
equals the change in their total kinetic energy.

To complete our derivation of the pringiple of work and energy for a rigid
body in planar motion, we must express the kinetic energy in terms of the
velocity of the centre of mass of the rigid body and its angular velocity. We
first consider general planar motion, then rotation about a fixed axis.

Kinetic Energy in Generol Planar Motion  Let us represeat a rigid
body as a system of particles, and let R, be the position vector of the ith
particle relative to the centre of mass (Figure 8.3). The position of the centre
of mass is

2 ma
i
I s
m

(3.6)

where m 1s the mass of the fgid body. The position of the ith particle relative
to (@ is related to its position relative to the centre of mass by

rp=r+R, (8.7)

and the vectors R, satisfy the relation

Figure 8.3
Representing a rigid body as a system of 2 miR; =0 (8.8)

particles.

The kinetic energy of the rigid body is the sum of the kinetic energies of its
particles, given by Equation (8.1)%

]
T o= Z 5V (8.9)
!

By taking the time derivative of Equation (8.7), we obtain

dR,
vi x\""}""’*

dt
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where v is the velocity of the centre of mass. Substituting this expression into
Equation (8.9) and using Equation (8.8), we obtain the kinetic energy in the
form

1 ,
Tm»uzmmv‘“% e FH e 4 s (8.10)
-

where o is the magnitude of the velocity of the centre of mass.

Let L be the axis through a tixed point O that 1s perpendicular to the planc
of the motion, and let L be the parallel axis through the centre of mass (Figure
g.4(a)). In terms of the coordinate system shown, we can express the angular
velocity vector as @ = wk. The velocity of the /th particle relative to the
centre of mass is dR,/dt = w k x R;, 80 we can write Equation (8.10) as

1 1[
T::Emv?'»iwi ‘; mf(kxR,—)-(kxlil;):lw2 {8.11)
The magnitude of the vector k x R, is the perpendicular distance r; from L o
the ith particle (Figure £.4(b)), so the term in brackets in Equation (8.11) is the
mass moment of inertia about L:

3 m(kxR) (kxR) =3 mlkx R =" mp] =1

{ i l4

Plane of
the motion

Figure 8.4

(2) A coordipate system with the z axis
aligned with L.

(b) The magnitude of k x R, is the
perpendicular distance from £ to m,,

(b)

Thus we obtain the kinetic energy of a rigid body in general planar motion in
the form

T= %va +§;«1w? (8.12)

The kinctic energy congists of two terms: the tramslational kinetic energy,
expressed in terms of the velocity of the centre of mass, and the rotational
kinetic energy (Figurc 8.5).

Kinelic Energy in Fixed Axis Rofation An object rotating about a fixed
axis is in general planar motion, and its kinetic energy is given by Equation
(8.12). But there ig another expression for the kinetic energy that you will
often find convenient. Suppose that a rigid body rotates with angular velocity  Figure 8.5

w about a fixed axis O. In terms of the distance o from O t