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PREFACE 

The calculation of cross sections and rate constants for chemical 
reactions in the gas phase has long been a major problem in theoretical 
chemistry. The need for reliable and applicable theories in this 
field is evident when one considers the significant recent advances 
that have been made in developing experimental techniques, such as 
lasers and molecular beams, to probe the microscopic details of chemical 
reactions. For example, it is now becoming possible to measure cross 
sections for chemical reactions state selected in the vibrational­
rotational states of both reactants and products. Furthermore, in 
areas such as atmospheric, combustion and interstellar chemistry, 
there is an urgent need for reliable reaction rate constant data 
over a range of temperatures, and this information is often difficult 
to obtain in experiments. The classical trajectory method can be 
applied routinely to simple reactions, but this approach neglects 
important quantum mechanical effects such as tunnelling and resonances. 
For all these reasons, the quantum theory of reactive scattering 
is an area that has received considerable attention recently. 

This book describes the proceedings of a NATO Advanced Research 
Workshop held at CECAM, Orsay, France in June, 1985. The Workshop 
concentrated on a critical examination and discussion of the recent 
developments in the theory of chemical reaction dynamics, with particular 
emphasis on quantum theories. Several papers focus on exact theories 
for reactions. Exact calculations on three-dimensional reactions 
are very hard to perform, but the results are valuable in testing 
the accuracy of approximate theories which can be applied, with less 
expense, to a wider variety of reactions. Indeed, critical discussions 
of the merits and defects of approxim3te theories, such as sudden, 
distorted-wave, reduced dimensionality and transition-state methods, 
form a major part of the book. The theories developed for chemical 
reactions have found useful extensions into other areas of chemistry 
and physics. This is illustrated by papers describing topics such 
as photodissociation, electron-scattering, molecular vibrations and 
collision-induced dissociation. Furthermore, the important topic 
of how to treat potential energy surfaces in reaction dynamics 
calculations is also discussed. 

The articles demonstrate that substantial progress has been 
made in chemical reaction theory in recent years, and they also show 
that the field is likely to develop at an even faster pace in the 
future as we get closer to the goal of making accurate predictions 
from first principles for a wide range of chemical reactions. 
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RECENT QUANTUM SCATTERING CALCULATIONS ON THE H + H2 REACTION 
AND ITS ISOTOPIC COUNTERPARTS 

George C. Schatz* 
Northwestern University 
Department of Chemistry 
Evanston, IL 60201 USA 

This paper reviews recent developments in the theoretical descrip­
tion of the H + H2 reaction and its isotopic counterparts. Both 
methods and applications are considered, with an emphasis on quantum 
dynamics applications in three dimensional reactive collisions. Among 
the methods discussed are coupled channel (CC) and coupled states (CS) 
reactive scattering methods, reduced dimensionality exact quantum 
(RDEQ) methods, infinite order sudden (lOS) methods, coupled channel 
distorted wave (CCDW) methods and approximations thereto, and one 
dimensional reaction path methods used in variational transition state 
theory (VTST). Applications discussed center on four topics: (1) in­
tegral cross sections and rate constants for H + H2' D + H2 , H + HD/DH 
and Mu (muonium) + H2; (2) vibrationally excited cross sections and 
rate constants for H + H2 and D + H2; (3) product state distributions 
in H + D2, and (4) reactive scattering resonances in H + H2' These 
applications generally indicate a high level of agreement between 
accurate theory and experiment, with several of the more approximate 
methods exhibiting nearly quantitative accuracy compared to CC or CS, 
and at a fraction of the computational effort. Some disagreement be­
tween theory and experiment still remains, however, with the rate 
constant for D + H2 (v=l) being the worst example in this regard. One 
of the most exciting new results in our review is that H + H2 posses­
es an apparently rich spectrum of resonance states associated with 
excitation of the bend mode simultaneously with the symmetric stretch. 

1. Introduction 

The H + H2 reaction has long served as a focal point for theoretical 
studies of gas phase chemical reaction dynamics. As the simplest of 
chemical reactions from the point of view of electronic structure, it 
has been the subject of numerous potential surface calculations (as re­
viewed in Ref. 1), and it is still the only reaction for which the po­
tential surface is known to within a few tenths of a kcal/mol. From 

*Camille and Henry Dreyfus Teacher-Scholar. 

D. C. Clary (ed.), The Theory of Chemical Reaction Dynamics. /-26. 
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2 G. C. SCHATZ 

a dynamics point of view it has provided an often used benchmark for 
testing exact and approximate theories. It can, in fact, claim to be 
the first reaction studied using collinear2 and three dimensiona1 3 ,4 
quasiclassical methods, the first studied by collinearS and three di­
mensiona16 ,7,8 accurate quantum scattering methods, the first reaction 
for which the thermal rate constant was calculated reliably from first 
principles to within better than a factor of tw0 9 , and the first reac­
tion for which resonances were discovered in collinear10,11 and three 
dimensional 12 scattering calculations. 

In view of all these "firsts", one might well question what re­
mains to be done in research on H + H2' The answer to this question, 
if based on the amount of activity recently devoted to this reaction, 
is evidently "plenty"! It is the purpose of this paper to review this 
recent activity in dynamical studies of H + H2 and its isotopic coun­
terparts, with an emphasis on topics where significant progress has 
been made or where important challenges remain to be answered. Al­
though the primary emphasis will be on theoretical dynamical applica­
tions, computational methods (especially new ones) will be discussed, 
and the results of recent experiments will be highlighted. 

There have been many reviews of H + H2 and related topics, and it 
is useful to summarize them here so that the stage can be set for the 
more recent results that are of interest to this paper. The most ex­
tensive reviews devoted specifically to H + H2 are two by Truhlar and 
Wyatt 1,13. These reviews cover all aspects of the H3 system up 
through 1976, including the potential surface, theoretical dynamical 
studies of the reactive, nonreactive and dissociative collision dyna­
mics, and experimental studies. More recent reviews which consider H 
+ H2 as a special topic include reviews of reactive scattering by 
Walker and Light 14 , by Schatz 1S , and by Connor16 ; of variational tran­
s !tion state theory (VTST) by Truhlar and Garrett 17 (see Ref. 17 also 
for references to earlier VTST reviews); of reduced dimensionality 
exact quantum (RDEQ) dynamical approximations by Bowman 18 ; and of 
infinite order sudden a~Broximations (IOSA) by Baer19. Also, a 
monograph on resonances has recently appeared, and there have been 
two monographs 21 ,22 which cover very wide areas in reactive collision 
processes. 

The exclusive focus of this paper will be on reactive collisions 
involving H + H2 and its isotopic counterparts in the gas phase. 
Within this area, we will first discuss the methods that are used to 
describe the reactive quantum dynamics, and then four specific 
applications: (1) calculations of ground state integral cross sec­
tions, thermal rate constants and isotope effects, (2) vibrationally 
excited cross sections and rate constants, (3) translationally hot 
(fast hydrogen atom) reactions, and (4) resonances. Space limitations 
preclude us from considering a few other topics where recent progress 
has been made, including studies of product angular distributions 23 
and rate processes involving tritium atoms 24 • 
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II. Theoretical Dynamics Methods 

With the advent of accurate quantum methods 6- 8 for describing the 
H + H2 dynamics, the emphasis in methodology development has changed 
somewhat. Existing quantum reactive scattering methods are now being 
applied to isotopes of H + H2 (H + D2, D + H2, Mu + H2) and to other 
reactions (0 + H2' F + H2), while new methods development is increas­
ingly emphasizing either very efficient exact algorithms or very 
accurate approximate theories that can be generalized easily to much 
more complex reactions. Semiclassical methods are being used only in 
evaluating one dimensional tunnelling expressions, and the quasiclas­
sical trajectory method is being used mainly for describing high 
energy collision processes including dissociation. In the following 
paragraphs the current state of the art in quantum dynamics methods is 
surveyed from the point of view of applications to 3D H + H2. 

At the top of the hierarchy of quantum dynamical methods are the 
coupled channel (CC) methods that involve solving the Schrodinger 
equation exactly by expanding the wave function in a basis set, propa­
gating the resulting coupled equations for the expansion coefficients, 
matching solutions generated in different arrangement channels on 
appropriate matching surfaces, and applying scattering boundary con­
ditions. The technology for doing these calculations is described in 
several places14 ,25,26 and recent improvements27 in this technology 
have extended the range of systems that can be studied to essentially 
all the isotopic variants of H3. However, because of the rapid growth 
in the number of projection quantum numbers needed in the rotational 
basis as the energy is increased, it is unlikely that CC methods will 
be extensively applied to any system other than H + H2. 

The best approximation to CC is called coupled states or CS28- 30 , 
and involves neglecting the kinematic couplings between the different 
projection quantum states. This approximation greatly reduces com­
puter time so that reactions involving all the H3 isotopes as well as 
a few other atom-diatom reactions are feasible. Tests of accuracy of 
the most recent versions of CS30 indicate that errors of 25% or 
smaller in cross sections or rate constants compared to CC are to be 
expected for H + H2 close to threshold. More accurate CS approxima­
tions have also been studied29 , but computational effort has generally 
made such methods prohibitively expensive to use. Recently, an 
approach which combines simplicity with physical accuracy has been 
proposed31 but not yet tested. 

Further simplifications upon CS involve approximations to the 
rotational motions. Here there are two schools of thought as to how 
best to do this. One school argues that since the rotational periods 
are usually slow compared to vibrational periods, it makes sense to 
use the rotational sudden approximation wherein the atom-diatom orien­
tation angle is fixed for motion in the reagent and product arrange­
ment channels 32 ,33. The other school argues that since rotational 
motion correlates into bend motion along the reaction path, and the 
bend is only weakly coupled by curvature to reaction path motions, 
while at the same time the bend frequency is comparable to the other 
perpendicular modes near the reaction bottleneck, it is more 

3 
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appropriate to treat the bend as adiabatic, with correlation to the 
asymptotic rotational levels described statistically18. The first 
approach is generally called the "infinite order sudden approximation" 
(IOSA)19, while the second has been labelled "reduced dimensionality 
exact quantum" (RDEQ) dynamics 18• Both methods can be applied in a 
number of different ways, with the IOSA applications being distin­
guished by the mechanism for interrelating the reagent and product 
channel rotor orientation angles, and RDEQ being distinguished by pre­
cisely how the bend is taken to be adiabatic, and whether additional 
approximations in the treatment of the centrifugal potentials are 
included. For H + H2 where the reaction path is associated with 
collinear H3 geometries, the different applications of RDEQ considered 
to date have been termed CEQ34, CEQB35 and BCRLM36 • In CEQ, a 
~ollinear !xact Quantum calculation is done to determine a reduced 
dimensional transition probability. This probability is then shifted 
by the saddlepoint bending zero point energy to define an approximate 
three dimensional cumulative probability from which cross sections and 
rate constants can be calculated using a canonical statistical ap­
proximation in the treatment of centrifugal forces. CEQB incorporates 
the local bending energy into the collinear potential surface so that 
the calculated transition probability is directly a three dimensional 
cumulative probability. BCRLM (bending corrected rotating linear 
model) is (essentially18) a CEQB calculation with the centrifugal 
potential explicitly included. 

The relative accuracy of the IOSA and RDEQ treatments of the reac­
tions is still under active investigation37 • Some of the applications 
we consider later will touch upon this, as will other chapters in this 
book. From these applications, we will see that the comparison is a 
rather strong function of what types of dynamical information are 
being considered, with the most noticeable differences arising in the 
study of product rotational distributions and reaction cross section 
threshold energies. For rotational distributions, the IOSA treats 
rotation explicitly while RDEQ assumes that they are microcanonical, 
while for energy thresholds, IOSA omits explicit incorporation of 
bending zero point energy contributions while RDEQ includes them 
directly. 

Another approach for developing approximations to CC and CS reac­
tive scattering calculations is to use distorted wave theory. In this 
approach, one considers that reaction is only a small perturbation on 
the nonreactive collision dynamics. As a result, the reactive scat­
tering matrix can be approximated by the matrix element of a pertur­
bative Hamiltonian operator using reagent and product nonreactive 
wavefunctions. Variations on this idea can be developed by using dif­
ferent approximations to the nonreactive wavefunctions. At the top of 
the hierachy of these methods is the coupled channel distorted wave 
(CCDW) method, followed by coupled states distorted wave (CSDW). 
Below this are a variety of reduced dimensionality approaches, 
including adiabatic distorted wave theory (treating either vibration 
(VADW), rotation (RADW) or both (VRADW), adiabatically) and at the 
bottom of the hierarchy is the frozen molecule distorted wave (FMDW) 
approximation. In recent years, applications of all of these dis-
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torted wave approaches have been made to H + HZ, with only eeDw38, 
eSDw38 and to a lesser extent VRADW39 capable of providing quantita­
tive cross section evaluations. VADW40 , RADW41 and FMDW42 give inac­
curate cross section magnitudes, although the relative distributions 
of product states are often quite good. An improvement upon even eeDW 
can be obtained by determining the Green's function associated with 
the expression for the transition amplitude. A recent application to 
collinear H + HZ of this approach was quite successfu1 43 • 

An important advantage of distorted wave methods over ee, es, rOSA 
or RDEQ is the absence of coordinate system related kinematics prob­
lems in the determination of the reagent and product wavefunctions and 
their overlap. The reagent to product coordinate transformation pro­
cess is confined to the S-matrix evaluation where there is often much 
flexibility since the integrand is in part a numerically determined 
function. This contrasts with matching based methods (in either full 
or reduced dimensions) where coordinates must be chosen to interrelate 
reagent and products smoothly. Of course, a big disadvantage of DWBA 
is its perturbative underpinnings. Generally it is found that eeDW 
and eSDW results are inaccurate if the total reaction probability ex­
ceeds 0.1. This restricts reliable use of these methods to low ener­
gies or temperatures. Recently it has been shown that for H + DZ VADW 
can produce qualitatively accurate product rotational distributions 
even at high energies44 ,4S where reaction is not a perturbation. 

Another class of methods which has been used in studies of H + HZ 
is based on the use of hyperspherical coordinates46 • Use of these 
coordinates for collinear reactive scattering is described in several 
articles47- S1 as well as elsewhere in this volume. When applied in 
the ee sense, this approach provides an alternative to the reaction 
path based methods described above with the advantage of a simplified 
procedure for interrelating reagent and product coordinates. Although 
applications of this approach to 3D H + HZ have not yet been pub­
lished, it appears that results will be soon forthcomingSZ and when 
they do, it is likely that ee capabilities for studying systems other 
than H + HZ will be substantially enhanced. es, rOSA, RDEQ and DWBA 
versions of the hyperspherical approach can all be imagined but have 
yet to be implemented. 

The last class of methods which shall be discussed is based on one 
dimensional "reaction path Hamiltonian"S3 methods. At its most funda­
mental level the reaction path concept simply involves the introduc­
tion of a certain coordinate system for representing the three body 
dynamics, and as such one can imagine applications using any of the 
methods (eS, ee, rOSA, RDEQ, DWBA) discussed above. A few applica­
tions of this sort have been consideredS4 but by far the most exten­
sive use of the reaction path concept has been for the purpose of 
calculating one dimensional transmission coefficients for variational 
transition state theory (VTST) applications. The concept of using a 
one dimensional barrier has, of course, been in widespread use for 
decades 1 , but earlier theories in which curvature along the reaction 
path was neglected were found to be inaccurate for most reactionsSS • 
Recently, however, several methods have been developed for directly 
incorporating curvature into a one dimension description of the dyna-
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mics. Perhaps the first was the path of Marcus and Coltrin56 (MCP) 
which follows the locus of outer vibrational turning points. This 
works well for H + H~56 and can be approximately justified based on 
more rigorous theory 7. It does however run into artifacts with other 
reactions58 , but Truhlar, Garrett and coworkers have provided improved 
methods for generalizing the one dimensional path idea to a wide spec­
trum of reactions58- 61 • For reactions involving small curvature 
(i.e., light + hea~-light, L + HL), the small curvature tunnelling 
(SCT) approximation 8 using either semiclassical or quantum vibration­
ally adiabatic ground state (SAG or VAG) potential curves has proved 
to be as good as or better than MCP in many applications. For large 
curvature reactions (i.e., H + LH), the use of corner cutting paths is 
essential, as embodied in the large curvature ground state (LCG) 
method59 • A method which searches families of paths for the one 
having the least action along the ground state adiabatic potential 
curves (LAG~ been developed recently60 which smoothly interpolates 
between the SCT and LCG limits. When applied using the WKB approxima­
tion to generate the adiabatic curves, and combined with canonical or 
improved canonical variational transition state theory (CVT or ICVT, 
respectively)61, this method can be used to generate VTST rate con­
stants which are in excellent agreement with accurate quantal 
values61 • The next Section will provide a number of applications and 
tests of "the ICVT-WKB/LAG approximation. 

I II. Applications 

A. Ground State Integral Cross Sections, Rate Constants and Iso­
tope Effects. 

In this Section we will attempt to answer the two important ques­
tions: "How well do we really know the integral reactive cross sec­
tions and rate constants for H + H2 and its isotopic counterparts"; 
and "How accurate are the approximate dynamical methods in determining 
cross sections and rate constants". The question of potential sur­
faces will be addressed only in the sense of the accuracy of com­
parisons with experiment. For the most part, our discussion will 
emphasize results obtained using the so-called LSTH surface of Liu and 
Siegbahn62 , Truhlar and Horowitz63• Recent ab initio and quantum 
monte carlo studies64- 66 have confirmed the accuracy of this surface 
to within a few tenths of a kcal/mol. Since a large number of theore­
tical studies using the PK2 surface of Porter and Karplus67 have been 
made, we will discuss results on it where comparable LSTH results are 
not available. Several theoretical studies9 have demonstrated that 
the PK2 barrier (0.396 eV) is too low (the LSTH barrier is 0.425 eV), 
leading to rate constants that are noticeably too high. 

H + H2: The most accurate quantum dynamical studies done on H + 
H2 on the~STH surface have been CC calculations due to Walker et 
a1 8 and CS calculations by Colton and Schatz 68 • Very few results from 
the Walker et al calculation have been published, but the comparison 
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of integral cross sections with those from Colton and Schatz is quite 
good. If we define Qvj as the distinguishable atom cross section 
(summed over product arrangement channels) from initial vibration/ro­
tation state (vj), then QOO = 2.8 x 10-4 and 5.3 x 10-2 a0 2 at total 
energies (relative to H + H2 at equilibrium) E = 0.5 and 0.6 eV, re­
spectively, from the Walker et al calculation, and Qoo = 2.4 x 10-4 
and 4.2 x 10-2 a0 2 at the same energies-from Colton and Schatz. The 
observed agreement to within 20% is typical of previous comparisons 
between CC and CS calculations 27- 29 • 

The CS cross sections from Colton and Schatz are plotted in Fig. 
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Logarithm of reactive cross section Qoj versus 
translational energy Et for H + H2 on the LSTH 
potential surface. These results are from n = 
o CS calculations by Colton and Schatz68 • 

(as a function of translational energy Et ) for (vj) = (00) to (08). A 
curious feature of the results is the strong dependence on initial ro­
tational state, with rotational enhancement seen at low energies and 
low rotational quantum numbers, and rotational suppression at high 
energies or for any energy at high rotational quantum numbers. These 
CS results refer to the n = 0 body fixed projection quantum number. 
At higher energy (above Et = 0.3 eV), the contributions from higher 
n's become important, and need to be included in order to compare with 
quasiclassical trajectory (QCT) results. Since recent trajectory stu­
dies of H + H2 on the LSTH surface show rotational suppression of the 
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cross section at low j followed by enhancement at high j69, it is 
apparent that the comparison of Q summed CS cross sections with quasi­
classical cross sections will provide an interesting test of the abi­
lity of trajectory simulations to predict reagent state dependent 
effects. 

Fig. 2 presents the comparison of CS and QCT cross sections for 
(vj) = (00). This comparison would not be changed by adding higher 

-N 
0 

as -0 
0 

a 

3.0 

2.0 

1.0 

0.0 

LSTH H + H2 

0.20 

aCT"" /' 
};"" / 

/ 
/ 

/ 
I. 

0.40 
Et(eV) 

/ CS 

0.60 

/ 
/ 

/ 

Figure 2. Comparison of the CS cross section QOO from Fig. 1 
with the corresponding QCT cross section from Ref. 
69 as a function of Et • 

Q's since these do not contribute to the j = 0 cross section. Evi­
dently, the agreement in Fig. 2 is quite good, comparable in fact to 
analogous comparisons between CC and QCT cross sections that were done 
for the PK2 surface long ag0 2S • This sort of comparison provides evi­
dence that QCT calculations can be accurate for integral cross sec­
tions at energies that are not too close to threshold. Unfortunately, 
we will see that this comparison does not hold for other isotopes of H 
+ H2· 

There are actually very few additional comparisons possible be­
tween the CS results in Fig. 1 and those from other dynamical theories 
on the LSTH surface. Comparisons of rOSA32,33, CEQ34 and CEQB34 re­
sults with CC have, however, been made on the PK2 surface, and the 
results are summarized in Table 1. This table indicates that of the 
three approximate methods only CEQB describes both the tunnelling 
region and post threshold region accurately. rOSA tends to be too 
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Table 1. Cross Sections (a0 2) for H + H2 on the PK2 Surface 

(A) From ini t ial state vj = (00) 

E(eV) cca IOSAb QCTc CSDwd 

0.50 0.50( -2) 0.10 0.57(-2) 
0.55 0.057 0.25 
0.60 0.35 0.57 0.35 0.42 
0.65 0.93 0.80 0.90 
0.70 1.52 1.25 1.40 

(B) Rotationally averaged 

E(eV) cca CEQe CEQBe 

0.50 1.1(-3) 4.3(-5) 1.1(-3) 
0.55 0.02 0.004 0.02 
0.60 0.064 0.06 0.09 
0.65 0.18 0.23 0.27 
0.70 0.28 0.43 0.51 

a. Ref. 25 c. Ref. 4 e. Ref. 34 
b. Ref. 32 d. Ref. 38 

high at low energy and too low at high energy, while CEQ is too low at 
low energy. These comparisons suggest that the threshold constraints 
embodied in the CEQB method are more realistic than IOSA or CEQ. This 
also justifies recent proposals37 that lOS cross sections should be 
shifted by bending zero point energies before comparing with CC. 

Other recent comparisons between approximate and exact results on 
the PK2 surface include several variants of distorted wave theor­
ies38 ,39. One interesting result of one of these comparisons38 is the 
perfect agreement between CC and CCDW reaction probabilities for the 
J = 0 partial wave over a wide range of translational energies ranging 
from deep tunnelling (pre-threshold) to just above threshold. The 
corresponding agreement of the CSDW cross sections at two energies is 
indicated in Table 1, and while not as good as for the J = 0 probabi­
lities, it is still very good. 

The thermal rate constants for H + H2 that have been obtained from 
a variety of methods on the LSTH and PK2 surfaces are summarized in 
Table 2. This table indicates that on PK2, QCT4 underestimates the 
rate constant compared to CC by a factor of 3.1 at 300 K. The VTST 
based methods (CVT9 and ICVT61 ) do much better, with the most recent 
ICVTWKB!LAG results high by 21% at 300 K and 29% at 600 K. The TST­
CEQB results35 are in comparably good agreement with CC. On the LSTH 
surface, CS or CC rate constants are not yet available, but the com­
parison with experiment70 indicates that QCT71 again is substantially 
low at 300 K, while the VTST based methods9 ,61 are quite close to 
experiment. Based on the PK2 comparisons, it seems unlikely that the 
CC rate constant on LSTH at 300 K will be above 2.3 x 10-16 , which 

9 
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Table 2. Summary of Distinguishable Atom Rate Constants 
(cm3!molec!sec) for H + H2 (v = 0) 

(A) PK2 Surface 

T(K) QCTa TST-CEQBb CVT !MCPVAG ICVT-WKB!LAG 

200 8.3(-19) 1.0(-17) 8.0(-18)C 1.6(-17)h 
300 3.1(-16) 1.0( -15) 8.0(-16)C 1.2(-15)d 
400 5.9(-15) 1.6(-14) 1.1(-14)C 1.2(-14)h 
500 3.7(-14) 6.0(-14) 5.5(-14)C 5.8( -14)h 
600 1.3(-13) 1.8(-13) 1.8(-13)C 1.8(-13)d 
1000 1.9(-12) 2.0(-12) 2.3(-12)h 2.2(-12)h 

(B) LSTH Surface 

T(K) QCTf CVT!MCPVAG ICVT-WKB/LAG 

200 2.4(-19) 1.2(-18)h 1.8( -18)h 
300 1.2( -16) 2.0(-16)C 2.3(-16)h 
400 3.1(-15) 3.8(-16)C 3.9(-15)h 
500 2. 2( -14) 2.5(-14)C 2.5(-14)h 
600 8.4(-14) 9.5(-14)C 9.3(-14)h 
1000 1.8(-12)C 1.7(-12)h 

a. Ref. 4 d. Ref. 61a g. Ref. 70 
b. Ref. 35 e. Ref. 25 h. Ref. 61b 
c. Ref. 9 f. Ref. 71 

CCe 

1.6(-17) 
9.9(-16) 
1.1(-14) 
5.0(-14) 
1.4(-13) 

Exp 

2.6(-16)g 

means that the 27% discrepancy between the LAG rate constant and 
experiment must be due to either error in the experiment or to defects 
in the potential surface. Recent estimates of the H + H2 barrier64 ,66 
which lower this from the LSTH value (0.425 eV) to about 0.418 eV will 
in fact remove most of the discrepancy. 

D + H2' H + HD: No CC or CS studies of D + H2 on the LSTH surface 
have been made yet, but numerous studies using more approximate quan­
tum methods have been done. Table 3 summarizes the current status of 
the D + H2 rate constants as obtained from QCT71 , variational tran­
sition state theor/ 2, CEQB73, IOSA74 , vAm;l5,76 and experiment77 ,78. 
Here we see that QCT is slightly above experiment at all but the 
lowest temperature listed. In view of the above comments about the 
error in the LSTH barrier, it seems likely that the CC rate constant 
will be at least 30% below experiment at 300 K, i.e., below 2.2 x 
10-16 • This would make it slightly less than the CVT!MCPSAG and CEQB 
results, the latter two being very close. IOSA is, on the other hand, 
above even the QCT rate constant, and the latter is well above experi­
ment at 300 K, in contrast to the H + H2 comparison in Table 2. Again 
we can infer from the IOSA resul t that bending zero point effects are 
important at low temperature. Note that VRADW is very close to CEQB 
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Table 3. Summary of Rate Constants for D + H2 (v = 0) (cm3/molec sec) 
Using LSTH Potential Surface 

T(K) QCra CVT /MCP SAGb TST-CEQBc IOSAd VRADwe Exp 

200 1.4(-18) 1.2(-18) 1.3(-18) 3.6(-18) 4.0(-18) 1.5(-18)f 
300 3.6(-16) 2.2(-16) 2.3(-16) 5.6(-16) 2.9(-16) 3.1(-16)f 
400 6.2(-15) 4.1(-15) 4.6(-15) 8.,1(-15) 4.5(-14) 
500 3.7(-14) 3.0(-14) 4.4(-14) 2.9(-14) 
600 1.3(-13) 9.8(-14) 1.1(-13) 1.4(-13) 1.0(-13) 1.2(-13)g 
750 3.9(-13) 4.2(-13) 4.4(-13)g 
1000 1. 7( -12) 1.8(-12) 1.9(-12) 

a. Ref. 7l 
b. Ref. 72 
c. Ref. 73 
d. Ref. 74 
e. Ref. 75,76 
f. Ref. n 
g. Ref. 78 

except at low temperature. This represents a substantial improvement 
over previous implementations of distorted wave theory where exces­
Sively low rate constants were obtained75• 

On the PK2 surface there have been several studies of D + H2, the 
most accurate of which is probably the CS calculation of Schatz and 
Kuppermann79• Fig. 3 presents the cross sections QOO from that calcu­
lation as a function of translational energy. Included are the cross 
sections for D + H2' H + HD + H2 + D, H + DH + RD + Hand H + H2• The 
first three of these all come from the same calculation, corresponding 
to different parts of the same scattering matrix. Fig. 3 indicates 
that the D + H2 cross sections are shifted down in energy by 0.01 eV 
relative to the H + H2 cross sections. This shift is also seen in 
collinear exact quantum calculations79 and can be rationalized in 
terms of symmetric stretch zero point energy differences. There is 
also a 0.04 eV shift upward in energy in going from D + H2 to H + RD 
which is mostly related to diatomic zero point energy differences and 
microscopic reversibility. The comparison between H + RD and H + DH 
is more complicated because saddle point zero point differences favor 
H + HD, but reagent and product zero point differences favor the ther­
moneutral H + DH over the endoergic H + RD. Fig. 3 indicates that H + 
DH has the larger cross section at low energy where tunnelling domina­
tes while II + HD is larger at higher energies. 

The results in Fig. 3 also have their counterparts for thermal 
isotope ratios, as is indicated in Table 4. Here are listed the D + 
H2, H + RD, II + DH and H + H2 rate constants and isotope ratios for 
temperatures in the range 100-300 K. This range is all that could be 
considered by Schatz and Kuppermann because of convergence problems in 
their cross section calculations at high energies. 

11 
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Figure 3. Logarithm of CS reactive cross section QOO from 
Ref. 79 versus Et for D + H2 , H + H2 , H + DH 
and H + RD. 

Table 4. Thermal Rate Constant Isotope Ratios (H + H2 = 1) 
from CS Calculationsa (PK2 Surface) 

Reaction T = 100 150 200 250 

D + H2 
H + DH 
H + HD 
H + H2C 

absolute 
value 
(cm3/mo­
lec sec) 

a. Ref. 79 
b. Ref. 80 

2.2 1.7 1.6 1.5 1.4 2.0 
0.083 0.067 0.074 0.084 0.10 0.21 
0.029 0.083 0.15 0.19 0.25 0.28 
1.0 1.0 1.0 1.0 1.0 1.0 

9.6(-21) 6.5(-19) 1.6(-17) 1.7(-16) 9.8(-16) 
4.3(-17) 

1. 1 
0.12 
0.17 
1.0 

9.l( -16) 

c. Value given is the distinguishable atom rate constant consistent 
with what is used for D + H2' 

As expected from Fig. 3, we find that the D + H2 rate constant is 
larger than H + H2 while H + HD and H + DH are considerably smaller, 
with a crossing between 100 and 200 K. The results at 300 K are in 
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very good agreement with results from variational transition state 
theory (ICVT/LAG)80. Conventional transition state theory (labelled 
*) also shows the same qualitative trends as CS, although the D + H2 
isotope ratio is too high and H + DH too low. The absolute magnitude 
of the * result is too low by a factor of 23 at 300 K. Overall these 
results illustrate the importance of tunnelling and variational 
effects in determining accurate isotope ratios. 

Mu + H2: Muonium (Mu) is an isotope of the hydrogen atom with a 
positive muon as the nucleus. Since it is 8.8 times lighter than H, 
tunnelling and zero point effects are enormous, and in fact the Mu + 
H2 dynamics is quite different from H + H2. Since thermal rate 
constants have recently been measured for Mu + H281 , it is an impor­
tant subject for theoretical study. The first predictions of the Mu + 
H2 rate constants (based on VTST) were made well before the experiment 
was done82 , and subsequent experimental results have been in good 
agreement with these predictions83• More recently, CS calculations84 
have confirmed that the VTST estimates for the LSTH surface are in 
fact quite accurate. 

Table 5. Thermal Rate Constants (cm3/molec sec) for Mu + H2 

T(K) CS 

200 4.9(-24) 
250 1.3(-21) 
300 7.2(-20) 
350 1.4(-18) 
400 1.4(-17) 
444 6.8(-17) 
608 3.6(-15) 
624 4.8(-15) 
669 9.7(-15) 
708 1.7(-14) 
745 2.7(-14) 
802 5.0( -14) 
845 7.7(-14) 
875 1.0( -13) 
1000 2.6(-13) 

Experimenta 

1.3±1.8(-15) 
4.7±1.3(-15) 
7.5±2.0(-15) 
2.5±0.9(-14) 
2.2±0.4(-14) 
5.4±1.3(-14) 
6.1±1.0(-14) 

ICVT-WKB/LAGb 

1.92( -20) 

5.54( -18) 

2.49( -15) 

7.60(-14) 
1.03( -13) 
3.06( -13) 

1. 2( -14) 
7.0(-15) 

1.1( -12) 1.6( -13) 

a. Ref. 81. Note that there are temperature uncertainties of about 
±20 K associated with the temperature at which each measurement is 
reported. 

b. Ref. 61a 
c. R3fo 83 

Table 5 summarizes the results of the experimental and theoretical 
results to date on Mu + H2 while Fig. 4 plots the CS, ICVT-WKB/ LAG61a 
and experimental results over the range of temperatures where the ex­
periments have been done. The Figure and Table indicate that CS, 
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ICVT-WKB/LAG and experimental results are all in excellent agreement, 
generally to within the experimental error bars. At low temperatures, 
the LAG results dip well below CS, with the difference being a factor 
of 6 at 300 K. This indicates that the LAG tunnelling calculation is 
inaccurate in the deep tunnelling regime. 

-12~~~~-~~~~~~~~~~~ 

-U 
Q) -13 en 

u 
Q) 

/CS 0 
E 

....... -14 " . 
'" VTST-LAG/ ..... 
E 
u -.::t:. 
0> -15 
0 

1000K/T 
Figure 4. Arrhenius plot of thermal rate constant k versus 

l/T for Mu + HZ' comparing the experimentally 
measured results8Z £with error bars) with the 
results of ICVT/LAG 1 and CS84 calculations. 

Table 5 also includes results from QCT calculations, run in both 
the forward (QCTF) and reverse (QCTR) sense. The QCTF results are in 
very poor agreement with CS, being high by one or more orders of 
magnitude. qcTR is much closer, being high by a factor of two. This 
comparison illustrates an extreme case where classical nonadiabatic 
"leak" leads to a gross overestimation of the rate constant by classi­
cal mechanics. The fact that qcTF is the poorer of the two methods 
simply reflects the fact that the reaction bottleneck is in the pro­
duct channel region where adiabatic zero point shifts are smaller 
coming from the products than from the reagents. 

B. Vibrationally Excited Cross Sections and Rate Constants 

The reactions H + HZ (v=l) and D + HZ (v=l) have been a source of 
controversy between experimentalists and theoreticians ever since Gor-
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don et al85 and Kneba et al86 published values for the rate constants 
for these reactions which were higher than theoretical estimates by 
factors of 10-80 15• The topic was reviewed in 1981 15 , but since then 
there has been much activity. Table 6 summarizes the current state of 

Table 6. Rate Constants (cm3/molec sec x 10 13) for H + H2 (v = 1) 
and D + H2 (v = 1) at 300 K 

(A) PK2 Surface 

QCT 
rOSA 
CEQB 
SCAD 
CS 
rCVT/LA 

1 + 0 
reactive 

0.3~ 

(B) LSTH Surface 

QCT 
rOSA 
RAIOS 

0.55h 

1 + 0 
reactive 

(B) LSTH Surface 

VADW 
BCRLM 
SCAD 
rCVT/LA 
CEQB 

(C) Experiment 

a. Ref. 91 
b. Ref. 93 
c. Ref. 92 
d. Ref. 95 
e. Ref. 35 
f. Ref. 99 

g. Ref. 27 
h. Ref. 71 
1. Ref. 94 
j Ref. 71 
k. Ref. 74 
1. Ref. 100 

H + H2 

1 + 0 
total 

1.8a ,3.0b 

H + H2 

1 + 0 
total 

3.0P 

m. Ref. 98 
n. Ref. 36 
o. Ref. 97 
p. Ref. 90 
q. Ref. 85 
r. Ref. 86 

1 + all 
reactive 

4.0a ,6.1c ,8.4b 
5.6d , 4.01-
2.6e 
1.8 f 
1.7g 

3.3v 

1 + all 
reactive 

4.8n 

2.0f 
2.0v 

s. Ref. 87 
t. Ref. 88 
u. Ref. 89 
v. Ref. 61c 

D + H2 

1 + all 
reactive 

D + H2 

1 + all 
reactive 

5.0m 
2.8n 

2.1 f 
2.1v 

0.860 

120.r 
9.8s 
16. t 
8.3u 

15 
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affairs, comparing the (1 + all) reactive, (1 + 0) reactive and (1 
+ 0) total rate constants for H + H2 and (1 + all) total for D + H2 on 
the PK2 and LSTH potential surfaces with corresponding experimental 
values85- 90 at 300 K. 

The largest change which has taken place in the last few years has 
been in the D + H2 experimental value. Recent measurements by Glass 
and Chaturvedi87 , Rozenshteyn et al88 and Wellhausen and Wolfrum98 
have dropped the estimated value by over an order of magnitude to 
around 10-12 cm3/molec sec. 

A number of new theoretical estimates of the \! = 1 rate constants 
have also appeared recently. On the PK2 surface, Schatz27 has done a 
CS calculation which indicates that if anything the earlier theoreti­
cal estimates based on trajectories71 ,91-Y3 and IOSA74 ,94,95 are too 
high rather than too low. Fig. 5 indicates the reason for this. In 

2 
Q(o 0) 

Figure 5. 
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~ 
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/ 
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/ 
/ 

/ / 
0 
05 0.6 0.70.9 1.0 

E(eV) 

Reactive cross sections QOO and QI0 versus E, 
comparing the results of CC25 with QCT5 for \! 

o and CSZ 7 with QCT91 for \! = 1. 

this figure we have compared the cross sections Qoo and QI0 for H + 
H2 on PK2 as obtained from either CC25 or CS27 calculations with those 
from Qcr5 ,91. For \! 0 the agreement is comparable to what was seen 
in Fig. 2, but for \! = 1, the QCT cross section threshold energy is 
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too low and the value of the QCT cross section near threshold too high 
compared to CS. The reason for this can be traced96 to bending energy 
zero point constraints which are present in the quantum dynamics but 
absent in QCT. This leads to a QCT rate constant in Table 6 on PK2 
that is a factor of about 3 higher than CS. The results of methods 
that incorporate bending zero point effects explicitly, such as 
CEQB35 are seen to be much closer to CS. 

Other recent calculations presented in Table 6 include IOSA74 , 
BCRlM36 and CEQB97 calculations on LSTH for D + H2, VADW98 for H + 
H2' a harmonic model semiclassical adiabatic (SCAD) calculation99 for 
H + H2 and D + H2, a rotationally averaged lOS (RAIOS) calculationlOO 
for D + H2' and ICVT calculations using a least action (LA) tunnelling 
coefficient for H + H2 and D + H261c. The comparison of the D + H2 
results with experiment shows some variation, but except for the RAIOS 
calculation, none of the other results are within a factor of 3 of 1 x 
10-12• Moreover, based on the comparisons in Tables 2 and 3, it might 
be expected that the CEQB rate constant is the most accurate of those 
given for D + H2' and this is over a factor of 10 below the average of 
the new experiments. Thus the controversy between theory and experi­
ment continues in this area. 

C. Fast Hydrogen Atom Chemistry 

A major experimental development in the past two years has been in 
the application of laser photolysis techniques for produciny transla­
tionally hot hydrogen atoms to the H + D2 + HD + D reaction 01-106. 
This has enabled the direct observation of product vibration/rotation 
distributions in this reaction for the first time. As might be expec­
ted~ these ex~eriments have prompted a flurry of theoretical activi­
ty4 ,45,107-1 2, and by and large the comparison between theory and 
experiment has been very good. 

Fig. 6 shows the comparison of experimental HD vibration/rotation 
distributions from Gerrity and Valentini102 .. and Marinero et al 106 
with QCT results due to Blais and Truhlar lO/ • The translational 
energy is a mixture of 0.55 eV and 1.3 eV, with 1.3 eV contributing 
most to the measured distributions. The Marinero et al results are 
only available for HD(v = 1,2), and for these states it is clear that 
the Marinero results are rotationally colder than those of Gerrity and 
Valentini. Possible reasons for this have been discussed at length in 
Ref. 102, but it is still not clear which set of experimental results 
is more accurate. The comparison of experiment with QCT cross sec-
t ions is closest for the Gerrity and Valentini results, with a general 
trend for QCT distributions to be rotationally hotter than experiment. 
In lower energy experiments103, the agreement with QCT is as good as 
that seen in Fig. 6. 

Given that the H + D2 experiments have all considered transla­
tional energies above 0.98 eV 103, it seems likely that trajectory 
methods should be able to describe the experiments quite well, and 
indeed, the only significant difference between Gerrity and Valenti­
ni's results and trajectories noted so far 104 has been in the 
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Figure 6. Relative cross section for H + DZ + HD (vj) + D 
at 1.3 eV translational energy (see text) as a 
function of j for v = 0,1,Z comparing the exper­
imental results of Ref. 106 and 10Z with QCT 
calculations from Ref. 107. 

branching ratio between reactive and nonreactive collisions which pro­
duce v = 1 product. Comparison between trajectory and CS results has 
also been good109 , although the energy used for the comparison (0.55 
eV) is well below that used in all of the experiments. Fig. 7 shows 
this comparison for HD (v = 0) using QCT cross sections from Blais and 
Truhlar and CS from Schatz111 • In the CS calculations it was found 
that contributions to the cross sections froml ~ j >0 are moderately 
important, so Fig. 7 includes both ~ = 0 and the sum over ~ = 0,1. 
The comparison with QCT on both a relative and absolute basis is quite 
good, and in fact the only significant discrepancy between CS and QCT 
is in the magnitude of the very tiny HD(v = 1) cross sections111 • The 
question of reactive versus nonreactive branching has not yet been 
explored. 

D. Resonances 

Although there is as yet no experimental confirmation that reso­
nances exist in the H + HZ reaction, the study of resonances in this 
reaction has been of great interest to theoreticians. Just what is 
meant by the term "resonance" is perhaps best illustrated in Fig. 8. 
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Figure 7. Reactive cross section for H + DZ + HD (vj) + D at 
0.55 eV translational energy as a function of j for 
v = O. Included in the comparison are QCT results 
from Ref. 107, and CS n = 0 and n = 0 + 1 results 
from Re f. Ill. 

There for the PKZ surface we plot the collinear transition probabili­
ties for the v = 0 + v' = 1, 1 + 0 (which is identical to 0 + 1) and 1 
+ 1 transitions, along with their (J = 0) three dimensional counter­
parts 00 + 1 (summed over product rotation), 10 + 0 and 10 + 1Z7. The 
collinear results indicate that over a fairly small energy range (0.05 
eV), the 0 + 1 probability goes through a peak. At the same time, 
other transition probabilities such as 0 + 0 exhibit a sharp dip. 
Physically this behavior occurs when the total energy equals that of a 
metastable excited state of the three atom complex, as in this limit a 
substantial amount of reactive flux is diverted temporarily to this 
excited state and thence into excited states of the product diatomic. 
In the case of collinear H + HZ we find that the 0 + 1/1 + 0 tran­
sition probability is strongly modified by the resonance while 1 + 1 
is not. The corresponding three dimensional probabilities in Fig. 8 
also show a resonance, although the resonance energy in this case is 
shifted upward in energy relative to collinear by about 0.1 eV. Such 
shifts have been noted beforelZ and are due to bending zero point 
effects which are present in 3D but not 1D. 

Although resonances are at the heart of chemical processes such as 
atom-molecule recombination and Van der Waals molecule predissocia­
tionl13 , their influence on quantities that can be measured in the H + 
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Figure 8. Collinear exact quantum and 3D exact quantum (J 
0) transition probabilities versus total energy 
for H + H2 on the PK2 surface. The collinear 
probabilities plotted are from Ref. 57, and 
include the transitions 0 + 1/1 + ° and 1 + 1. 
The 3D probabilities are from Ref. 114 and are 
for the states 00 + 1, 10 + ° and 10 + 1. 

H2 reaction is actually quite subtle. The details of exactly what 
does happen were recently studied by Schatz114 on the PK2 surface, and 
the results are shown in Figs. 9 and 10. Fig. 9 plots the 3D reaction 
probability for the 00 + 1 transition as a function of J. At E = 0.95 
eV, this probability is seen to decay smoothly to zero, typical of 
nonreactive scattering. At 0.975 eV, the peak near J = 0 broadens 
substantially, while at 0.99 eV a secondary peak at J = 3 has 
appeared. This peak shifts to higher J at 1.00 eV and eventually 
disappears at still higher energy. The standard interpretation of 
this behavior l15 ,116 is that the resonance which appears for J = 0 at 
about E = 0.975 eV (Fig. 8), moves to higher J as E increases just as 
the energy levels of a rigid rotor increase as J increases. Associa­
ted with this is a shift of the differential cross section from back­
wards to sidewards peaking, as is indicated in Fig. 10. There we see 
that at 0.95 eV, both the 10 + ° and 10 + 1 cross sections are back­
ward peaked. At 0.99 eV, however, the (1200) and (1220) resonances 



CALCULATIONS ON THE H + H, REACTION AND ITS ISOTOPIC COUNTERPARTS 

0.080 
OO~ 1 

O.975eV 

0.060 1.00eV 
,/ 

>--
.c 0.040 a3 
.c 
0 ... 
0.. 

0.020 

o.ooo~--~--~--~~~~--=-~ 
3.0 6.0 

J 
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are also in good agreement with CEQB. Since SCSA and CEQB indicate 
that other higher energy resonances should exist (Table 7), it appears 

Ta ble 7. J : I rl I Resonance Energies (eV) for H + H2 in 3D 

Assignment 

(A) PK2 Surface 

( 1000) 
( 11 10) 

(B) LSTH Surface 

( 1000) 
(11 10) 
(1200) 
(1220 ) 
(20°0) 
(20°1) 

a. Ref. 116 
b. Ref. 118 

SCSAa 

0.983 
1. 107 

0.979 
1.092 
N.P. h 
N.P. 
1.242 
1.382 

c. Ref. 113 and J.M. Bowman, 
private communication. 

d. Ref. 12 

RPOb 

0.954 
N.R. e 

CEQBc 

0.965 

0.973 
1.09 
1. 20 
1.21 
1.35 

Accurate 

0.975d 

0.984f 
I.lOg 
1.20g 
1.22-1. 24g 

e. No resonance is predicted to exist. 
f. Ref. 8 
g. Ref. 120 
h. No prediction of the energy of this 

resonance was made. 
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that the excited state vibrational spectrum of H3 is both rich and 
i nteres ting. 
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Figure 10. Differential cross section a versus reactive 
scattering angle e for the 10 + 1 and 10 + 0 
transitions in H + H2 from CS calculations on 
the PK2 surface at E = 0.95 and 0.99 eV. 
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REACTION PATH MODELS FOR POLYATOMIC REACTION DYNAMICS-­
FROM TRANSITION STATE THEORY TO PATH INTEGRALS 
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ABSTRACT. The reaction path Hamiltonian model for the dynamics of 
general polyatomic systems is reviewed. Various dynamical treatments 
based on it are discussed, from the simplest statistical 
approximations (e.g., transition state theory, RRKM, etc.) to rigorous 
path integral computational approaches that can be applied to chemical 
reactions in polyatomic systems. Examples are presented which 
illustrate this "menu" of dynamical possibilities. 

1. Introduction. 

This paper reviews recent (and current) work in my research group 
which is aimed at developing practical methods for describing reaction 
dynamics in polyatomic systems in as ab initio a framework as 
possible. To overcome the "dimensionality dilemma" of polyatomic 
systems--i.e., the fact that the potential energy surface depends on 
3N-6 internal coordinates for an N atom system--we have developed 
dynamical models based on the "intrinsic reaction path", i.e., the 
steepest descent path which connects reactants and products through 
the transi.tion state (Le., saddle point) on the potential energy 
surface. 1,2 

The determination of such reaction paths using ab initio quantum 
chemistry is feasible nowadays because computational quantum chemists 
have developed accurate and effici ent ways for computing the gradient 
of the potential energy surface (i.e., the derivative of the Born­
Oppenheimer electronic energy with respect to nuclear coordinates).3 
The procedure is that one starts at the transition state on the 
potential energy surface and then follows the (mass-weighted) gradient 
vector forward to products and backward to reactants. This is an 
inherently one-dimensional procedure even though it is taking place in 
a 3N-6 dimensional space. -- The -fnternal coordinates of the system are 
then chosen to be the reaction coordinate, the distance along this 
path, pI us (3N-7) local normal mode coordinates which descri be motion 
orthogonal to the reaction path. Three Euler angles are introduced in 
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the usual manner to describe rotation of the N-atom system in 3-
dimensional space. 

Once a Hamiltonian is constructed in terms of these c~ordinates 
and their conjugate momenta--the reaction path Hamiltonian --one needs 
dynamical theories to describe the reaction dynamics. Section II 
first discusses the form of the reaction path Hamiltonian, and then 
Section III describes the variety of dynamical models that have been 
based on it. These range from the simplest, statistical models (i.e., 
transition state theory) all the way to rigorous path integral methods 
that are essentially exact. Various applications are discussed to 
illustrate the variety of dynamical treatments. 

2. The Reaction Path Hamiltonian. 

The classical form of the reaction path Hamiltonian is given 
here; the quantum mechanical Hamibtonian operator corresponding to it 
can be obtained in standard ways. In the following equations (s,Ps ) 
denote the reaction coordinate and its conjugate momentum; (Qk'Pk), 
k=1, •.. , F-1 the local normal coordinates and momenta for vibration 
orthogonal to the reaction path (F = 3N-6); and (K,qK) the projection 
of total angular momentum along a body-fixed axis and its conjugate 
angle variable. It is useful to write the reaction path Hamiltonian 
in the following form 

H}P s,s, {Pk,Qk) ,K,qK) = HJ + HJ 
0 1 

where the zeroth order term is 

HJ 
0 

with 

F-1 
~ p2 
2 s + Vo(s) + I 

k=1 

222 A(s)(J -K )cos qK 

+ B(S)(J2-K2)sin2qK 

+ C(s)K 2 

(~ 
2 

p2 
k 

+ HJ + ... ( 2. 1 ) 2 

1 2 Q2) J ( . + - wk(s) + £rot K,qk;s) 2 k 

(2.2a) 

(2.2b) 

{Wk(S)} are the frequencies for harmonic motion orthogonal to the 
reaction path, and A(s), B(S), C(s) the three rotation constants, all 
as functions of the distance s along the reaction path. VO(s) is the 
potential energy along the reaction path. The first order coupling 
interaction is 
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- 2 P 
s 

F-1 

k=1 

F-1 

k=1 

F-1 

L 
k=1 

where the coupling functions are defined by 

N 
ClL. k(S) 
-1, 
--as-- • ~i,3N(S) 

i=1 

N 

L L. k(s) x L. 3N(s) 
-1, -1, 

i=1 

N 

~k(S) (L. k·a. - ·L. ka .• ) 
-1, -1 -1,-1 

i=1 

(2.3) 

(2.4a) 

(2.4b) 

(2. 4c) 

In Eq. (2.4) ~O(s) is the 3x3 inertia tensor, ~i(s) is the Cartesian 
coordinate vector of atom i, ~i k(s) is the component of the kth 
normal mode eigenvector on atom'i, all evaluated on the reaction path 
at distance s along it. The higher order couplings, i.e., H2, etc., 
can be obtaiued from the general expression for the reaction path 
Hamiltonian. 

The three terms in H1 have the interpretation as curvature 
couplings, coriolis coupling, and centrifugal distortion, 
respectively. The latter two obviously involve rotation-vibration 
coupling--i.e., they are zero if J=O. The first (curvature coupling) 
term describes energy transfer between the reaction coordinate sand 
the transverse vibrational modes {Qk}' The coupling functions 
Bk iN(s) of Eq. (2.4a) are determined by the geometry of the reaction 
patn; i.e., they characterize how the total curvature K(S) of the 
reaction path, -----
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ds) 

F-1 7; 

[L Bk,3N(S)2] 

k=1 

projects onto the different vibrational modes k. 

w. H. MILLER 

(2.5) 

For applications it is often useful to use an adiabatic 
representation of the Hamiltonian. A canonical transformation is thus 
carried out to replace the cartesian coordinates and momenta (Pk,Qk) 
by the adiabatic action-angle variables (nk,qk)' It is also useful to 
introduce a zeroth order rotation Hamiltonian which is that of a 
symmetric top; i.e., from Eq. (2.2b) one has 

1 2 2 2 J 2 [A(s)+B(s)](J -K ) + C(s)K + ~£rot (K,qK) (2.6a) 

where 

(2.6b) 

The asymmetric rotor coupling term ~£Jrot is included in the 
perturbation term H2 , so that in the adiabatic representation the 
zeroth order Hamiltonian is that of a one-dimensional system (because 
J, K, and n are conserved) 

(2.7a) 

where 

F=1 

k=1 

(2.7b) 

Other aspects of the reaction path Hamiltonian and its 
application have been discussed in earlier papers to which the reader 
is r'eferred. 5- 12 
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3. Dynamical Models. 

With a Hamiltonian one can begin to describe dynamics, and this 
section considers some of the dynamical models that have been based on 
the reaction-path Hamiltonian, beginning with the simplest approaches 
and proceeding to more rigorous ones. 

3.1 Transition-State Theory and Related Models. 

The simplest dynamical models are statistical ones. The 
microcanonical flux, i.e., average flux for a given total energy, 
through a "dividing surface" that is perpendicular to the reaction 
path at distance So along it, is given by 

(3.1) 

where s, the velocity along thereaction path, is given by Hamilton's 
equations 

. 
s aH/ap 

s 

the step function h(s) 

. 
s > a . a s < 0 

(3.2) 

ensures that Eq. (3.1) is the "one-way flux" through the dividing 
surface. With the reaction path Hamiltonian it is a straightforward 
calculation to show that Eq. (3.1) and (3.2) give 

N(E,s) 

F-1 

[E-vo (s)l-1;{ (F-1)! TT tiwk(s») 

k=1 

(3.3) 

where So has now been replaced simply by s. Remarkably, therefore, 
none of the coupling functions Bk k'(s) appear in the microcanonical 
flux; they have not been neglecte~ in the calculation, they simply do 
not appear in the final result. 

Transition-state theory corresponds to looking for the mInImum 
(with respect to s) flux,13 the main bottleneck to the reactions; 
i.e. , 
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min N(E,s) s 

W. H. MILLER 

(3.4) 

The thermal rate constant is given in terms of N(E), the cumulative 
reaction probability--which is approximated in transition-state theory 
by the minimum of the microcanonical flux--by 

-1 f k(T) (2~MQo) dE N(E) exp(-E/kT) 

fdE N'(E) exp(-E/kT) 

where QO is the partition function (per unit volume) of reactants. 
If there are several local minima of N(E,s) as a function of s, 

then this corresponds to several "bottlenecks" of the reactive flux. 
If one assumes that microcanonical equilibrium is established locally 
in the regions between these bottlenecks--e.g., by existence of long­
lived iutermediates--then one can derive a "unified" statistical 
model. 1 ,5 This model approximates the cumulative reaction 
probability as 

2M+1 

N(E) L 
k=1 ,3 ... 

1 
Nk(E) 

2M 

k=2, 4 ••• 

1 
Nk(E) 

-1 

<3.6) 

where for k = 1,3,5, ... , 2M+1, {Nk(E)} are the local minima of N(E,s), 
and for k 2,4, .•. , 2M they are the local maxima separating the local 
minima. 

To apply these statistical theories one thus only needs the 
potential energy along the reaction path VO(s) and the frequencies 
{wk(s)} of the transverse modes. To locate the extrema of the flux 
N(E,s) as a function of s one can show5 that the equation 

ClN(E,s)/Cls o 

is equivalent to the following one 

E v(s) (3.8a) 
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which involves the energy-independent function 

V(s) 

F-l 

VO(S) - VO'(S)(F-1)/ I 
k=l 

(3. Sb) 

To find the various extrema of the microcanonical flux one thus needs 
only to plot the function V(s) and look to see where it is equal to 
the energy E. This is a simple way to see how the reaction 
"mechanism" changes with energy. Typically, for example, at low 
energy E there is only one bottleneck, i.e., one minimum in the flux, 
so that ordinary transition-state theory is a good approximation, 
while at higher energies there may be several minima. This latter 
situation is a herald, even within this statistical description, of 
more complex dynamics, i.e., "recrossing trajectories", which cause 
the breakdown of simple transition-state theory.13 

0.4 

0.3 

~ 
a. 

0.2 <f> 
> , 
'" ;;:; 

0.1 

0 
0 

FIGURE 1. The quantity V(s) - Vs ' where the former is defined by Eq. 
(3.Sb) and the latter is the sadd£e point height, as a function of the 
(mass-weighted) reaction coordinate, for the collinear H+H2+H2+H 
reaction. 

To illustrate the above ideas, Fig. 1 shows the quantity V(s~ of 
Eq. (3.Sb) for the collinear H+H2 reaction on the porter-Karplus1 H3 
potential energy surface. In the plot the saddle point height Vsp is 
subtracted from V(s). There are several different energy regions to 
distinguish. 

(a) 0 $ E - Vsp < 0.11 eV. For energies less than 0.11 eVabove 
the barrier the only extremum in the flux occurs at s = 0, and it is a 
minimum. Thus Eq. (3.6) with M = 0 applies, and this is the case of 
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simple transition state theory. It is known that transition state 
theory gives essentially exact agreement with classical trajectory 
calculations for this energy region. 

(b) 0.11 eV < E - Vs < 0.25 eV. Fig. 1 shows that for this 
energy region there will ge two roots of Eq. (3.8a) for s > 0, and 
there will be two symmetrically related roots for s < 0, as well as 
the one at s = 0, for a total of five extrema in N(s,E), two maxima 
and three minima, so that Eq. (3.6) applies with M = 2. 

(c) 0.25 eV < E - Vsp < 0.34 eV. Fig. 1 shows that here there 
are three roots to Eq. (3.8a) for s > 0, and with the three 
symmetrically related ones for s < ° and the one at s = 0, there are 
seven flux extrema altogether so that Eq. (3.6) applies with M = 3. 

(d) 0.34 eV < E - Vsp. For energies more than 0.34 eV above the 
saddle point Fig. 1 indicates that there is just one root to Eq. 
(3.8a) for s > 0, and with the symmetrically related one for s > ° and 
the one at s = 0, there are three flux extrema, so that Eq. (3.6) 
applies with M = 1. 

The appearance and disappearance of various flux extrema as a 
function of energy is a manifestation of how the reaction mechanism 
changes as a function of energy; e.g., at low energies other 
bottlenecks appear. These same phenomena have been seen by Pechukas 
and pOllak16 in a more dynamically based theory and by Garrett and 
Truhlar17 in a calculation similar in some respects to the one 
presented here. In the more dynamical theory of Pechukas and Pollak 
the dividing surfaces at the flux extrema of the present statistical 
model become periodic classical trajectories that oscillate across the 
potential valley, i.e., "trapped trajectorieS".16 It is interesting 
to see that many aspects of this more detailed dynamical treatment 
appear, albeit approximately, in a purely statistical model. 

3.2 Semiclassical Perturbation--Infinite Order Sudden Approximation. 

Going beyond statistical approximations to more dynamically based 
treatments opens the door to a wide variety of possibilities, from 
simple approximate models to more accurate treatments that are capable 
(with sufficient effort) of arbitrary accuracy. Here I note one 
particularly simple approximate model that has been developed and 
applied to a variety of different dynamical phenomena, namely the 
semiclassical perturbation-infinite order sudden (SCP-IOS) model. 18 

The SCP-IOS model is the semiclassical approximation of Miller 
and Smith19 applied to the reaction-path Hamiltonian. It has the 
appealing feature that it behaves qualitatively correctly both in the 
adiabatic limit, which is the situation if the transverse vibrational 
motion is much faster than motion along the reaction coordinate, and 
also in the sudden limit, which is the case if reaction-coordinate 
motion is much faster than transverse vibrational motion. For the 
case of a collinear atom-diatom reaction it becomes the Hofacker­
Levine model. 20 

To illustrate how simple it is to apply, e.g., the probability of 
the vibrational transition (n 1, ... ,nF- 1) ~ (n'l' ... , n'F-l) in the 
transverse vibrational modes during motion from sl to s2 along the 
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reaction path is given by 

F-1 

TT 
k=1 

2 

I J link (y k) I 

where J~n is the regular Bessel function of order ~nk' and the 
k 

"collision integrals" Yk are given by 

with 

F-1 

V (s) 
n VO(s) + L (n + 

k 
~) 
2 wk(s) 

k=1 
s 

(\(s) Ids' 
Y-

W (s')/(2[E-V (S,)]}2 
k n 

s1 

n 1/2 (~1 + n ) 
-2 

(3.9a) 

(3. 9b) 

The collision integral Yk is a measure of how much vibrational 
excitation is induced in mode k during motion from s1 to s2: the 
Bessel function J~n (yk )2 has its maximum at link ~ Yk ' so that Yk is 

k 
the most probable vibrational quantum number change. A typical 
application of this expression would be to predict the product state 
distribution of an exothermic chemical reaction: with ~1 = 0, s1 = 0, 
and s2 = 00, Eq. (3.9) gives the distribution of product internal 
degrees of freedom. Clearly the modes with the larger coupling 
element Bk 3N will be the ones excited most during motion from the 
transition'state (s1 = 0) to products (s2 = 00). Conversely, s1 = -00 
and s2 = ° and ~2 = ° corresponds to the time-reversed situation. In 
this case the modes k for which Yk is large are the most effective 
promoting modes for the reaction; i.e., vibrational energy initially 
in such a mode will be converted with high probability into energy 
along the reaction coordinate at the transition state. 
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FIGURE 2. Transition probability for the 0 ~ 1 vibrational excitation 
of H2 by collision with He, as a function of total energy. H2 is 
modelled as a Morse oscillator. QM and SCP denote the essentially 
exact quantum mechanical results computed for this collinear system, and 
the present results of the SCP-IOS reaction path model. 

Fig. 2 shows an example of the SCP-IOS model, i.e., Eq. (3.9), 
apPliedsto vibrational excitation of H2 by collision with He 
atoms. 1 One sees that this simple dynamical model based on the 
reaction path Hamiltonian does an extremely good job of describing 
vibrational inelasticity. 

The SCP-IOS approximation has also been used to describe the 
effects of the curvature coupling elements on tunneling probabilities 
in chemical reactions. For example, the probability of tunneling 
through a simple barrier is given within the SCP-IOS model by 

F-l 

P Po IT I O(8 k) 2 (3. lOa) 

k=l 

where 

Po 
-280 

e (3.1 Ob) 

(3.10c) 
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(3.10d) 

Po is the usual one-dimensional WKB tunneling probability, and the 
effect of curvature coupling is contained in the multiplicative 
factors IO(9 k )2, one for each mode k. 10 is the Bessel function of 
imaginary argument which is an exponentially increasing function; 
i.e. , 

for 9k »0. Curvature coupling thus increases the tunneling 
probability. 

For the well-studied test case, the collinear H + H2 reaction, 
for example, Fig. 3 shows the6reaction probability as a function of 
initial translational energy. One sees that Po (i.e., VAZC) is a 
factor of -50-100 too small, but the SCP-IOS model, i.e., Eq. (3.10) 
brings it to within a factor of 2 of the correct value. 

10° 

10- 1 

• 
10- 2 

10- 3 EQ 

PR VAze 

10-6 ~ __ --,-J'-__ --,-J ___ ~ 

0.10 0.15 0.20 0.25 
Eo (eV) 

FIGURE 3. Reaction probability for collinear H+H2~H2+H on the Porter­
Karplus potential energy surface. EQ denotes the exact quantum 
mechanical values, VAZC the results of the vibrationally adiabatic 
zero curvature approximation, and the points the results of the 
present SCP-IOS reaction path model. 
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The SCP-IOS model has also been used to determine the degree of 
mode specificity in state-selected unimolecular decomposition. 21 If 
there were no coupling between the various modes of the polyatomic 
system, then the unimolecular decomposition would clearly be mode 
specific: i.e., different initial states with essentially the same 
total energy would decay at different rates because they would have 
various amount of energy in the reaction coordinate and there would be 
no energy transfer among the various degrees of freedom. Conversely, 
to the extent that coupling between the modes causes efficient energy 
transfer among them, one expects more statistical behavior, i.e., the 
rate of decomposition depending essentially only on the total energy 
of the initial state and not on the particular initial state that is 
prepared. The degree of mode specificity in the state-specific 
unimolecular decay rates is thus a sensitive measure of the intermode 
coupling and thus a direct test of the way that the SCP-IOS, or any 
other model, is able to describe this. 

3.3 Rigorous Rate Constants via Path Integrals. 

The reaction path Hamiltonian also provides a very useful 
framework for the rigorous calculation of the Boltzmann (i.e., 
thermally averaged) rate constant for a chemical reaction using the 
path integral methods described by Miller, Schwartz, and Tromp.22 In 
that paper it is shown that the rate constant can be expressed as the 
time integral of a flux-flux autocorrelation function 

k (3.11) 

where ZR is the partition function (per unit volume) for reactants, 
and the correlation function is defined by 

(3.12) 

"tr" denotes a quantum mechanical trace, B = (k BT)-l, H is the full 
Hamiltonian of the system, and F is the symmetrized flux operator 

F 2 [6(s)(p 1m) + (p Im)l)(s)] 
s s 

(3.13) 

where s is the coordinate normal to the "dividing surface" (s=O is the 
equation of the surface) through which the flux is computed. Dynamics 
enters in this expression for the rate via the time evolution 
operators, and the antiCipated efficiency of this "direct" approach 
comes about because it is necessary to determine the quantum dynamics 
only for relatively short times. 
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To make it possible to deal with systems with many degrees 9f 
freedom, the Boltzmann operator/time evolution operators e-(S/2±lt/M)H 
are represented by a Feynman path integral 23 and the path integral 
evaluated by a Monte Carlo random walk method. It is in general not 
feasible to do this for real values of the time t, however, because 
the integrand of the path integral would be oscillatory. We thus 
first calculate Cf for real values of , = it, i.e., pure imaginary 
time, 

(3.14) 

and then use these calculated values to generate a numerical analytic 
continuation to obtain Cf for real t. Since Cf is an even function of 
t, and thus of " one uses the values computed for real, to construct 
a Pade approximant in the variable ,2; ,2 is then replaced by -t 2 to 
obtain Cf(t). (This approach is4similar in spirit, though not detail, 
to methods used by Berne et al. 2 to calculate quantum mechanical 
dipole-dipole autocorrelation functions.) 

The reaction path Hamiltonian is particularly useful for 
evaluating the path integral repr'esentation of the trace, Eq. (3.14), 
because the flux operator F does not involve the "bath" degrees of 
freedom (i.e., the transverse vibrational modes {Qk})' and since they 
are harmonic oscillators the path integrals over them can be carried 
out analytically.23 All that remains to be done numerically is the 
path integral over only the reaction coordinate degrees of freedom 
itself • 

The specific form one obtains for the flux correlation function 
at complex times 'n - MS(n/N - 1/2), n-1 , .•. , N-1, is25 

a2 
+ ----

asOas n 

x jdS 1·.·jdsn_1 jdSn+ 1 ... jdsN_1 exp{- ~ 

x Z[s(,)] 

MS 
"2 
jd, 

_ I1S 
2 

<3.15) 

where Z[s(,)] is the partition functional of all the degrees of 
freedom other than the reaction eoordinate. If rotation-vibration 
coupling is ignored, one has 
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with Band C defined similarly. The exponent t:. in Eq. (3.16c), 

F-l 

k=1 
-Uk 

411( 1-e ) 

T) 

X exp[- fdT" Wk(S(T"»] 

T( 
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(3.16a) 

C3.16b) 

C3.16c) 

(3.17a) 

C3. 17b) 

(3.18) 

is the quantum analog of a friction that the reaction coordinate 
motion experiences due to coupling to the bath modes. The path 
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integral over the reaction coordinate degree of freedom [cf. EQ. 
(3.15)J is carried out by a Monte Carlo random walk algorithm. 22 

Eqs. (3.15)-(3.18) are a very powerful result and should be very 
useful. They show that, based on the reaction path Hamiltonian, one 
can determine the thermal rate constant for a general polyatomic 
reaction by carrying out an essentially one-dimensional quantum 
mechanical calculation (i.e., the path integral over the s-degree of 
freedom). True, this one-dimensional quantum mechanical problem is 
somewhat more complicated than a one-dimensional Schr5dinger equation­
-because of the partition functional in the integrand--but when 
evaluating the path integral by Monte Carlo it is only marginally more 
difficult • 

-; 
2 u 

a.> 
<f> 

'" -0 

lU 

0 
0 5 10 15 20 25 

t ( 10-15 sec) 

FIGURE 4. The flux-flux autocorrelation function for the 3-d H+H2 
reaction at T = 300 o K. 

Figure 4 shows the quantity Cf(t), 

i.e., the ratio of the real time flux correlation function (obtained 
by analytic continuation of the values computed at imaginary time) to 
the (time-independent) transition state theory rate constant for the 
three-dimensional version of the H+H2 reaction. The integral of Cf(t) 
is thus the correction factor K which multiplies the transition state 
theory rate constant to give the exact result, 

k = K kTST 

K includes the effects of tunneling through the barrier, non­
separability of the reaction coordinate from the other degrees of 
freedom, and recrossing of the transition state dividing surface. 

One sees from Fig. 4 that it is necessary to determine the 
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quantum dynamics of this system for a time gf - 20 fsec in order to 
obtain the rate constant. The integral of Cf(t) gives a value of K 

22, which is the same value obtained from the quantum scattering 
calculations of Schatz and Kuppermann. 2b 

4. Concluding Remarks. 

I have attempted in this paper to illustrate the wide variety of 
dynamical treatments that can be usefully based on the reaction path 
Hamiltonian model, from simple "back of the envelope" statistical 
approximations (TST, RRKM, etc.) all the way to rigorous computational 
methods that can be practically applied to polyatomic systems. Given 
the necessary "input" which characterizes the model -- i.e., the 
quantum chemistry calculations of the reaction path, and the energy 
and force constant matrix along it -- the example applications that 
have been discussed show that it provides a quantitative ab initio 
approach to reaction dynamics in polyatomic molecular systems.----

In this paper I have not reviewed the various chemical 
applications that have utilized the reaction path model. These 
include work in my research group on the unimolecular isomerization of 
hydrogen isocyanide (HNC ~ HCN), the unimolecular decomposition of 
formaldehyde (H2CO ~ H2 + CO), the vinylidene-acetylene rearrangement 
(H2C=C: ~ HC=CH), and hydrogen atom transfer in malonaldehyde, 

H 
o '0 

+-+ /I I 
/C .... C~C, 

H Ii H 

A number of interesting applications have also been carried out by 
Fukui, et al., including hydrogen abstraction from methane,2d b28 
Morokuma et al., including HF elmination from CHF027 and C2H5F, 
and by Yamabe et al. 29 including unimolecular decomposition of thio­
formaldehyde,3~ double proton exchange in the formamidine-water 
system. 31 In addition, a number of atom-diatom reaction systems have 
been treated using reaction path descriptions by Truhlar et al. 12 

Since the ab initio determination of a minimum energy reaction 
path (and its necessary properties) is becoming feasible for 
increasingly complex polyatomic systems, one expects to see 
applications of reaction path methods to increasingly interesting 
chemical processes. This further motivates one to develop dynamical 
methods based on these models. 
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REDUCED DIMENSIONALITY THEORIES OF QUANTUM REAcrIVE SCATTERING: 
APPLICATIONS TO MU+H2 , H+~, 0(3p)+~, D2 AND HD 
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Chicago, IL 60616 

Albert F. Wagner 
Chemistry Division 
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Argonne, IL 60439 

A hierarchy of reduced dimensionality exact quantum theories of 
reactive scattering is presented for the vibrational state-to-state 
cumulative reaction probability and vibrational state-to-state 
thermal rate constant. The central approximation in these theories 
is the adiabatic treatment of the bending motion of the reactive 
species in the strong interaction region of configuration space. 
ApKlications of the theories are made to the reactions Mu+H2 , H+~, 
O( P)+~, D2 and HD 

1. Introduction 

Quantum reactive scattering calculations are hampered by several 
difficulties which have severely impeded progress. One major difficul­
ty is in choosing a system of coordinates which can describe all the 
possible reaction channels. Progress in this area has been achieved, at 
least conceptually, by using hyperspherical coordinates. These are de­
scribed in the chapters by Kuppermann, Romelt and others. Other tech­
niques use different coordinates for each reaction channel. This 
results in the problem of matching the wavefunctions in each coordinate 
system, as described in the chapter by Schatz, or in dealing with non­
local potentials, as described in the chapters by Kouri and by Miller. 
Progress in overcoming this difficulty will certainly be made by 
these people and others in the near future. 

The other major difficulty which cannot be overcome by a judicious 
choice of coordinates or coupling scheme is the very large number of 
coupled differential or integro-differential equations to be solved by 
any basis set approac~ This number is given (at least) by the number 
of energetically accessible vibrational-rotational states. This 
number can vary from roughly one hundred to thousands for many reac-
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tions of interest and the vast majority of these states are the rota­
tional states within the sparse manifold of vibrational states. The 
major component of the rotational states is the degenerate rotational 
projection states. From a computational point of view a very useful 
approximation is to decouple these projection states. Such an 
approximation exists and is called the centrifugal sudden (CS) 
approximation. It was first formulated for non-reactive scattel!gg1,2 
and it has been used by several groups for reactive scattering. In 
this book, Schatz applies it to studies of the H+H2 reaction and it s 
isotopic variations. Although this method extends the range of 
systems which can be studied, it cannot be routinely applied to many 
atom-diatom systems of interest where the number of coupled rotational 
states may still be prohibitively large. 

We have developed an approximation which goes one step further 
than the CS approximation. In addition to that approximation we 
assume (for atom plus diatom systems) that the three-atom bending 
motion in the strong interaction re~ion can be treated by an 
uncoupled adiabatic representation.T- 12 As a result of this addi­
tional approximation, only two degrees of freedom are explicitly 
~oupled and the number of coupled equations to be integrated is 
determined by the number of vibrational states open in the reaction, 
a substantial reduction over the number of coupled equations in the 
CS and the full coupled channel approaches. This approximation was 
motivated by results of accurate quantum studies of the collinear, 
coplanar and three-dimensional H+H2 reaction. In going from the 
collinear, coplanar and three-dimensional cases the reaction 
threshold enerf!el shift by the zero-point bend energy at the tran­
sition state.1 1 This observation clearly demonstrated the exis­
tence of zero-point bending energy of the H3 transition state. 
However, it was not clear how to build an approximate quantitative 
theory based on this observation. We were able to do this and as we 
show in detail in Section 2 this approximation allows us to obtain 
the so-called cumulative reaction probability which is summed over 
all initial and final rotational states. 

We term this adiabatic bending approach reduced dimensionality 
exact quantum (RDEQ) theory because a reduced number of degrees of 
freedom are expligitly coupled. Independently, and somewhat later 
Walker and Hayes1 ,17 introduced a related approach which they 
termed the bending corrected rotating linear model (BCRLM). This 
theory is an extension of the ~arlier rotating linear model of 
Wyatt~8 and Connor and Child.1Y In the BCRLM method only the ground 
bending state has been considered and the identification of the 
resulting probability as the cumulative probability was not made. 
Walker and Pollak have recently revised the BCRLM to make this 
identification.20 (Also, see the chapter by Walker and Hayes in 
this book.) With that revision of the original BCRLM, that theory 
and the RDEQ theory are now quite similar. Recently, Carrington and 
Miller have generalized the reduced dimensionality approach to 
polyatomjc systems, where two degrees of freedom are explicitly 
coupled. Z1 
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We have given a detailed review of the RDEQ theory and applica­
tions recently12 and so here we present a brief review of the theory 
and suggest some new extensions of it in Section 2. Some new tests of 
the theory are presented for the Mu+H2 reaction as well as preliminary 
results for excited bending statJ resonances in H+H2 in Section 3. A 
review of calculations on the O( P)+H2, D2 and BD reactions is also 
given there. 

2. Theory 

The reduced dimensionality quantum theory of reactive scattering 
we have developed focuses on the so-called cumulative reaction proba­
bility. In order to motivate and review the importance of this quan­
tity we begin this section with the rigorous collisional expressions 
for the thermal rate constants for an A+BC -) AB+C reaction. 

Specifically, consider first the thermal rate constant which is 
vibrationally state-to-state but rotationally summed and averaged. 
This rate constant is given by 

kv-)v' (T) 
exp(-Ev/kT) 
------------
~ib-rot (T) 

2 3/2 1 
E (2j+l)exp(-E./kT)(--) ----

j=O J kT (n~)1/2 

(1) 

where Ej is the rotational energy of BC, Ev is the BC vibrational 
energy, ~ is the A,BC reduced mass, Et is the initial relative 
kinetic energy, 0vj->v,(Et ) is the degeneracy averaged reaction 
cross section, summed over final AB rotational states and ~ib­
rot(T) is the BC vibrational-rotational partition function. The 
cross section 0vj->v,(Et ) is given by 

---~----- EE E E (2J+l)P!jO->v'j'D" 
k2 .(2j+l) Dj'O'J=O VJ 

(2) 

where P!jO->v" '0' is the partial wave probability for the detailed 
vibrational-roiational state-to-state transition. The quantum 
numbers 0 and 0' are the projection quantum numbers of j and j' on 
the body-fixed z-axes, J is the total angular momentum quantum 
number, and 101 and 10'1 are less than or equal to J, and 

~~ (E-E -E.) 112 v J 
(3) 

where E is the total energy. Note, we have adopted the common appro­
ximation of expressing the vibrational-rotational energy of BC as Ev + 
Ej • Insert ing eqs. (2) and (3) into (1), we have 
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1 h2 
ky-)v,(T) = ----------- ---------- ~ exp[-(Ej+Ey)/kTJ 

~ib-rot(T) (2nkT~)3/2 j=O 

x f~dEt ~~ ~ ~ 
nj 'n'J 

Noting that the total energy E is just the sum Et+Ev+Ej and that 

1 

hQtrans (T) 

( 4) 

( 5) 

where Qtrans (T) is the A+BC transla tional partition function, (4) can 
be rewritten as 

1 
kv-)v,(T) = ----- -------- ------- ~J- iod(E-Ey-Ej ) 

hQvib-rot(T)Qtrans(T) 

x ~k k l:(2J+I)~ - 0_)v' - 'n' (E-Ey-E - ) exp[-(Et+Ej+Ey) /kTJ. (6) 
oj'o'J J J J 

Because ~-o-)v'j'n' has the property that it vanishes for negative 
values of ll-Ev-Ej' (6) can be rewritten as 

kv-)v' (T) 
1 

---------- - ------ J:dE ~~E ~ ~(2J+l) 
h~ib-rot(T)trans(T) joj 'o'J 

x p~jo->v,j,n,(E-Ey-Ej)exp(-E/kT) (7) 

We now define the partial wave vibrational state-to-state cumu­
lative probability ~-)v'(E) as follows 

p~-)v, (E-Ey) kl:l: l: ~jn-)v' j'O,(E-Ey-EJ-). 
joj '0' 

( 8) 

That is, ~-)v'(E-Ey) is the sum of the partial wave rotational state­
to-state probabilities evaluated at the appropriate translational 
energy for a given fixed total energy E. Because the quantum number 
indices are sufficient to determine this translational energy the 
notation E-Ev-Ej and E-Ey is redundant and so we can simply express 
(8) as 

~-)v' (E) (9) 
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Finally. kv->v.(T) can be written compactly as 

kv->v' (T) ---------!---------- /:dE ~ (2J+1)P! (E)e-E/kT• (10) 
h~ib-rot(T)Qtrans(T) 0 J=O v->v· 

Also. it sho~ld be obvio~s that ~s~al thermal rate constant k(T). 

k(T) = ~~ kv->v' (T). 
vv· 

(11 ) 

is given by 

k(T) 1 rm _T -E/kT -------------------- JodE ~ (2J+l)p-(E)e , 
h~ib-rot(T)Qtrans(T) J=O 

(12) 

where 

pI(E) = ~~ ~_>v.(E). 
vv' 

(13) 

Some additional q~antities are ~sef~l to define. Let the c~mulative 
vibrational state-to-state and total reaction probabilities. ~_>J(E) 
and P(E), be 

and 

~->v' = ~ (2J+l)~_>v·(E) 
J=O 

peE) ~l: Pv->v' (E) 
vv' 

Then. the most compact expressions for kv->v.(T) and k(T) are 

1 
-------------------- iodE P v_>v.(E)exp(-E/kT) 
h~ib-rot(T)Qtrans(T) 

k(T) 
1 

--------------------- iodE P(E)exp(-E/kT). 
h~ib-rot(T)Qtrans(:) 

(14a) 

(14b) 

(IS) 

(16) 

At this point it is important to recall that ky->v.(T) is the 
vibrational state-to-state rate constant from a thermal distrib~tion 
of initial vibrational (and rotational) states of the reactant diatom. 
In some experiments the vibrational state v may not be from a thermal 
distribution and in this case the rate constant assuming all initial 
vibrational states are v can be obtain~~ }rivially from eq. (IS) by 
multiplying that equation by ~ib(T)/e v kT. 

With these rigorous expressions for kv-> .(T) and k(T) in 
terms of cumulative reaction probabilities, a framework for 
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approximations has been established. (We should also note that 
these rate constants can also be expressed in terms of rota­
tionally averaged integral cross sections.7,8) We now wish to 
review approximations we have introduced for P!_>v,(E). The 
basis for these is the exact body-frame formulation of reactive 
scattering.22 Within this formulation the CS approximation is 
made first. As noted earlier, in this approximation a-coupling 
is ignored, i.e., 0 is assumed to be a good quantum number. 
However, j-coupling is retained (with the attendant large number 
of coupled equations). We make a further approximation in which 
the rotational motion of the diatom is described in the strong 
interaction region by an uncoupled adiabatic descripti~n. The 
details of this formulation have been given elsewhere1 and so we 
proceed with only a brief outline of the approximation. The 
reduced dimensionality hierarchy of approximations is then pre­
sented. 

2.1 Adiabatic bend theory 

We start with the full three-dimensiOn!j quantum formulation for 
the A+BC reaction in body-fixed coordinates as given in detail by 
Schatz and Kuppermann.22 The Schroedinger equation in terms of 
the mass-scaled Delves vectors L (the BC relative position 
vector) and R (the position vector of A to the center-of-mass of 
BC) is 

where 

1 

~ = [mAmnmC!(mA+mB+mC)]l 

0, (17) 

(18) 

A standard partial wave decomposition of f(R,L) is done in terms of 
the good quantum numbers J and M, the total angular momentum and its 
projection on a space-fixed axis respectively, and then each component 
is expressed as 

J 
E 

O=-J 
(19) 

in the body-fixed coordinate system where the z-axis is along R. The 
angles y and, are the polar and azimuthal angles of L in the body­
fixed system and a is the projection quantum number of l on the 
body-fixed z-axis. The resulting partial differential equation for 
t JO has been given previously.22 In the CS approximation it is, 
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--h2 a2 a2 
.2 [J(J+1)~2+j~p-20jz~] J op 

{--- (---- R + r) + + --------------------2/1 RaR2 rar2 2/1r2 2/1R2 

+ V(r,R,y) - EltJO (r,R,y,1(/) = O. ( 20) 

where j~p is the square of the angular momentum operator associated 
with ~, expressed in terms of y and v. 

Instead of proceeding with the ooupled channel expansion of 
yIn in terms of eigenfunctions of j~p we consider an adiabatic 
approximation to the y-motion. Thus, we shall express yIO as 

~n(r,R,y,v) = exp(i01(/)~nn(y:r,R)U~g(r,R)/(rR.J2n). (21) 

Inserting this into (20) we have 

~2 a2 a 02 
- ------ (--- + coty - -----

[J(J+1)-2g2]i2 
+ --------------

2I(r,R) ay2 ay sin2y 2/1R2 

+ V(r,R,y) - E}~nO(y:r,R)U~g(IjR) = 0, 

where I(r,R) equals /1(r-2 + R-2)-1. As it stands this equation 
is no less exact than eq. (20). The adiabatic approximation is 
now made. Let ~nO(y:r,R) be an eigenfunction of the rand R­
fixed Schroedinger equation 

(22) 

_~2 a2 a n2 
[-------(--- + coty-- - -----) + Vb(y,r,R)-Bnn(r,R)]~nn(y~r,R) = 0, 
2I(r,R) ay2 ay sin2y (23) 

where Vb(y,r,R) is 

Vb(y,r,R) = V(r,R,y) - V(r,R,y=O), (24) 

and V(r,R,y=O) is the full potential for the collinear reaction A+BC. 
(Note, V(r,R,y=n) would be the full potential for the collinear A+CB 
reaction.) BnO(r,R) is the adiabatic bending eigenvalue. Making the 
adiabatic approximation now results in the following Schroedinger equa­
tion for the unknown function U~o(r,R): 

-t2 a2 a2 [J(J+l)-202]t2 
(---(--- + ---) + ------------- + Bnn(r,R) + V(r,R,y=O)-E}U~o(r,R) = 0 

2/1 aR2 ar2 2/1R2 (25) 
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Before proceeding, we note that for J=O (n=O) and ignoring the bending 
energy the above equation looks like the standard Schroedinger equation 
for a two-mathematical dimensional collinear reaction. 

As discussed previously the quantity to be calculated in this 
reduced dimensionality theory is the partial wave cumulative reaction 
probability, 
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~->v, = ~ ~ ~jn->V'J·'O' 
j j '00' 

( 26) 

Note that ~jO->v'j'(l' equals I sJrjO->v'j'O,12, where S~jO-)V'j'O' 
is the full scatterIng matrix e ement. Recall also that the rull 
scattering matrix encompasses both reactions A+BC and A+CB, 
whereas the above approximate approach treats these separately. 
This implies that the bending eigenfunctions are localized for 
either the ABC or ACB configurations. Referring now to eq. (25) 
let us introduce the associa ted scattering matrix, S~~~v" In 
this adiabatic treatment n is a good quantum number in addition 
to J (which is rigorously a good quantum number) and 0 (which is a 
good quantum number within the CS approximation). If it were our 
objective to obtain an approximation to the full scattering matrix 
S~jn->v'j'D' it would be necessary to determine a correlation bet­
ween the bending state ~nO(y,r,R->m) and the free-rotor states Ijo>. 
We shall return to this point later. However, because our objective 
is an approximation to the cumulative reaction probability ~->v" 
we can wri te 

where 

p!nO _ IsJnO 12 v-)v' - v-)v' • 

(27) 

( 28) 

That is, the summation over nand n spans the same space as the summa­
tion over O,D',j and j' in eqs. (26) and (27). Equations (23) 
through (28) constitute the reduced dimensionality adiabatic bend 
theory. They also form the basis for a hierarchy of reduced dimen­
sionality theories based on the centrifugal sudden and adiabatic 
bend approximation. 

The solutions to eq. (25) with no further approximations are 
formally straightforward. For each nand n the two-mathematical 
dimensional equations are solved for each partial wave J. Quite 
often in applications it is sufficient to solve that equation for 
the ground bending state only and then to obtain the cumulative 
probability from the ground bend probability. This is because the 
bending eigenvalues &nO(r,R) can be fairly large in the neighborhood 
of the transition state and for total energies up to several 
leal/mole above the transition state energy, excited bending states 
male a negligible contribution to the cumulative probability. 

2.2 Reduced dimensionality hierarchy 

We have introduced by a different set of arguments an approxi­
mate solution to eq. (25) which reduces the computational effort 
relative to the full adiabatic solution considerably.ll In making 
these approximations we have been guided by transition state theory. 
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We now review the hierarchy of approximations to ~~~v" which 
ultimately lead to transition state theory itself. 

2.2.1 CE~ theory 

In the first approximation we replace the centrifugal potential 
[J(J+l)-202]i2/2pR2 by a constant E~, which for collinear transi­
tion states is the usual linear-molecule rotational energy at the 
transition state configuration. With this replacement eq. (25) 
becomes 

_ii2 a2 a2 
{---(--- + ---) + 8 nO(r,R) + V(r,R,r=O) - (E-Ej)}U!O(r,R) 

211 aR2 ar2 
O. (29) 

This equation is formally like the two-mathematical dimensional 
Schroedinger equation for a collinear reaction with the addition of 
the constant rotational energy ~ and the adiabatic bending energy. 
The solutions without the constant E~ are denoted CEQB (collinear 
exact quantum with adiabatic bending energy). Thus, the solutions 
U!n(r,R) can be related to the CEQB ones as follows, 

(30) 

In practice, we also replace the exact bending energy eigenvalue 
8 nO(r,R) by the harmonic/quartic-corrected valence bending energy 
8 nO(rAB,rBC),24 where rAB and rBC are the AB and BC internuclear 
distances. This replacement is quite accurate at least in the 
vicinity of tight transition states for the ground bending state.25 
This valence bending energy vanishes asymptotically for all bending 
states. As a result of eq. (30) 

(31) 

w~rg s$~B,(Elnn) is the scattering matrix element associated with 
U Q (E). The factor -IJ in eq. (31) appears because the phase 
factors exp(iJn/2) and exp(-iJn/2) which appear in the incoming and 
outgoing parts of the radial part of ~O(E) must be accounted for in 
rela ting S~~~v'(E) to S~~~,(E-Ej Inn>.1 This factor has important 
consequences for the CEQB differential cross section but it is of no 
significance for the probability. 

Thus, the CEQB theory gives 

(32) 

and for the cumulative vibrational state-to-state probability 

Pv->v,(E) = E ~(2J+l)P~~'(E-E1Inn). (33) 
J=OnO 
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2.2.2 CEQB/G theory 

A very useful additional approximation is to relate excited 
bending-state probabilities to the ground bending-state probability by 
an energy shift. Thus, 

CEOO *1 pv-)v' (E-EJ nO) (34) 

where 
(35) 

is the difference in energy between the excited and ground-bending 
energy at the transition state (appropriate to the ground bend). We 
term this approximation the CEOO/G theory. As noted above, for many 
reactions near threshold the ground bend makes the dominant contribu­
tion to the CEOO cumulative probability and for these cases the CEOO/G 
theory is essentially the same as the CEQB theory. 

2.2.3 CEQ theory 

An additional simplification to CEOO theory can be made, again 
within the spirit of transition state theory. It is to replace 
snO(r,R) by s:O' the ABC bending energy at the transition state. 
Thus, eq. (29) becomes 

o. (36) 

The scattering wavefunction U!O and its corresponding scattering matrix 
element can be directly related to those for the collinear exact quantum 
problem as follows: 

UJnn(E) = UCEQ(E-E*-~~ ) and SJnO (E) •• J ~nO v-)v' (37) 

Thus, in the CEQ theory 

(38) 

and for the cumulative vibrational state-to-state probability 

pv-)v,(E) = (39) 

2.2.4 One-dimensional reaction path theories 

All of the above theories require solving a two-mathematical 
dimensional partial differential equation which requires a fairly 
extensive, though routine, computational effort. A major reduction 
in effort results if 6~e variables rand R are replaced by reaction 
coordinates sand x,2 28 the reaction path and the displacement 
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orthogonal to it, respectively. If the vibrational x-motion is 
treated adiabatically the following equation is obtained from eq. 
(36) • 

(40) 

where Ts is the kinetic energy operator for the s-motion (including 
curvature terms), V(s) is the potential along sand eves) is the 
adiabatic vibrational energy which correlates with the BC vth vibra­
tional state as s-)-m. In this theory the scattering matrix 
S!~~v,(E) is given by 

(41) 

where S1D(E) is the scattering matrix corresponding to the one-dimen­
sional Schroedinger equation 

(42) 

A more sophisticated reaction path approach is to replace e!Q 
in eq. (40) by enO(si~ This is the essence of the approach taken by 
Garrett and Truhlar and generalized by Miller et al.28 and 
Skodje and Truhlar30 for polyatomic reactions. Truhlar and co­
workers have proposed one-dimensional paths which deviate from the 
reaction path in order to compute accurate tunneling probabilities 
from which transmission coefficients (see below) are then used to 
correct their version of variational transition state theory, the 
so-called improved canonical variational [transition state] theory 
OCVT)31,32 (also see below). 

2.2.4 Transition state theory 

Transition state theory is obtained by replacing the scattering 
matrix S;D(E) by a unit step function, 9(E-Vo-e:), where Vo and e: 
are the values of V(s) and EV(S) at the transition state. Thus, 

(43) 

and for the cumulative vibrational state-to-state probability 

pv-)v' (E) (44) 

We have deferred up to this point giving an explicit definition 
of the transition state. Several definitions are of course pos­
sible. For example, the conventional transition state is the saddle 
point configuration of the potential surface V(r,R,y=O). Another 
and better choice is obtained from a classical variational criterion 
in which the transition state is determined by maximizing V(s) + 
EV(S) + Er(s) + Enn(S) with respect to s. This would be a bit 
cumbersome because of the need to reoptimize (in the general case) 
for each v, J, 0, and n independently for each value of the total 
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energy. This approach would comprise a complete microcanonical 
variational optimizatio~ Another, simpler approach is to optimize 
in a canonical sense rather than in the microcanonical way just 
outlined. This canonical approach is well known32 and is equivalent 
to maximizing the free energy of the transition state with respect 
to s for each temperature. Improvements to this method which 
account approximately for microcanonical threshold energies have 
been made by' Truhlar and co-workers and the improved theory is 
termed ICVT.31 ,32 

Pechukas and Pollak33 ,34 made a very important conceptual 
breakthrough by defining the classically optimum transition state 
dividing surface without reference to any particular set of reaction 
coordinates. That surface is called the PODS for periodic dividing 
surface. This approach can also be viewed as the best method to 
determine a coordinate system in which to apply adiabatic theory.35 

2.3 Transmission coefficients 

It is instructive to express thermal rate constants as trans­
mission coefficients times the transition state theory rate con­
stant. First, recall that any rate constant can be written in this 
way. To see this, consider the exact rate constant kv->v,(T), (see 
eq. (15» which we rewrite as 

kv->v' (T) 
1 <Pv-)v,(E» 

---------------<N:(E»-----------
hQvib-rotQtrans v <~(E» v 

(45) 

where ~(E) is the total number of states open at the transition 
state dividing surface, excluding the state which correlates with 
the vth reactant (see below) and where we have used the short-hand 
notation < ) to indicate the thermal trace, e.~, <N:(E» equals 
f:'dEN~(E)exp(-E/kT). Equation (45) can be rewritten as 

where 

and 

k~(T) 
ky->v' (T)= ---------------rv->v, (T), (46) 

hGyib-rotQtrans 

<Pv->v' (E» 
rv_>v,(T) = ----------­

<~(E) > 

( 47) 

( 48) 

is the transmission coefficient. In the usual separable approxima-
tion 

N:(E) = ~ ~E(2J+l)e(E-Vo-Ej-E~-E:n)' 
J=Onn 

(49) 
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where eriois the transition state bending energy and e~ is the energy of 
the transition state vibration which correlates adiabatically with the 
vth vibrational state of the reactant. It follows from this separable 
form for ~(E) and the simple (but unnecessary) assumption that location 
of the transition state is independent of E that 

( 50) 

where a:ot and Q:nd are the rotational and bending partition 
functions and Vo is the potential energy of the transition state. 
(In canonical variational transition state theory the partition 
function Q~(T) is computed along the reaction path s and minimized 
with respect to s.) 

The transmission coefficients, rv_>v,(T)' corresponding to the 
reduced dimensionality hierarchy are straightforward to obtain; they 
are given by the various approximations to the cumulative reaction 
probability Pv->v,(E). Rather than derive the expression for each 
approximation we shall give a detailed derivation for the CEQB 
theory and merely quote the results for the other approximations in 
Table 1. Before deriving the CEQB transmission coefficient we note 
that the adiabatic bend transmission coefficient is simply obtained 
by replacing the exact cumulative probability Pv->v' by eqs. (27) 
and (28). 

The CEQB approximation to rv_>v,(T) is obtained as follows. First, 
using eqs. (27) and (33), the CEQB approximation to (Pv->v,(E» can 
be expressed as 

<Pv->v' (E» = ~dE E EEP;~~~'(E-EjlnU)exp(-E/kT) (51) 
J=OnU 

E(2J+1)exp(-Ej/kT)~dEEEP;~~~'(ElnO)exp(-E/kT) (52) 
J=O nO 

Qiot(T)f:dEEEP~~~'(ElnO)exp(-E/kT). (53) 
nO 

Equation (52) follows from a change of integration variable from E 
to E-Ej and the fact that p;~~,(ElnQ) vanishes for negative values 
of E. Also, it is easy to prove that 

<~(E» = Q~ot(T)f:dEED9(E-Vo-et-8:0) 
nC! 

( 54) 

Finally from eqs. (53) and (54) the CEQB transmission coefficient is 
given by 

<EEP;~~~, (ElnO» 
nU 

rv->v' (T) ( 55) 
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This result is quite transparent. The consequence of the energy 
shift E~ in the thermal trace of the CEQB expression for the cumula­
tive probability is to factor out the corresponding transition state 
partition function. Q:ot(T). In the expression for rv_>v,(T) that 
partition function exactly cancels with the same transition state 
partition function which appears in the thermal trace of N:. 
Continued energy shifting as in the CEQB/G and CEQ theories results 
in additional cancellation of partition function factors in the 
numerator and denominator. Finally. in the TST approximation to 
Py_>v,(E) the numerator cancels exactly with the denominator and the 
T~T transmission coefficient is unity. as of course it must be. The 
transmission coefficients from the hierarchy of reduced dimen­
sionality quantum theories are summarized in Table 1. The adiabatic 
bend theory approximation with no energy shifting is abbreviated ADB 
in that table. Also. as noted just after eq. (16). if the vth BC 
vibrational state is assumed to be populated with unit probability 
then the expression for kv->v,(T) is modified by a factor given 
earlier. For convenience we incorporate that factor into the 
transmission coefficient in Table 1 for "non-Boltzmann v-states". 

Table 1. Expressions for the partial wave vibrational state-to-state 
cumulative reaction probabilty p!->v' and the corresponding 
transmission coefficients rv_>v,(T). 

THEORY 

EXACT 

ADB 

CEQB 

CEQB/G 

CEQ 

TST 

J 
j~Tn' ~jS!-V'j'S!' (E) 

r pJ v,(Eln,(l) 
nS! v-

r pCEQB(E E+ E+ I ) 
nS! v-v' - J - /; n 00 

Note for non- Boltzmann v-.tate., 

rv_v'(T) - r.-v,(T)Qv (T) exp (E v IkT) 

UNITY 
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2.4 Correlation with asymptotic rotational states 

The centrifugal sudden-adiabatic bend theory we just reviewed 
represents approximations to the partial wave vibrational state-to­
state cumulative reaction probability. p!->v'. Because that quan­
tity is summed over initial and final rotational states it was not 
necessary to specify a correlation between the adiabatic bending 
states in the strong interaction region and the asymptotic reactant 
or product rotational states. However. to extend the theory to 
describe rotational state-to-state processes. some correlation pro­
cedure must be adopted. We discuss several possible procedures now. 

In fact a partial correlation does exist between the a-quantum 
number of the bending states InO) and free rotor states Ijo>. As a 
consequence of the centrifugal sudden approximation D is assumed 
to be a good quantum number. This partial correlation itself leads 
to some interesting (and qualitatively a~curate) predictions. It 
implies that in the energy range where ~->v, is given predomi­
nantly by ground state bending state probability. for which 0 equals 
zero (see eq. (33» that only initial and final rotational states 
with 0 equal to zero have significant reaction probabilities. That 
result is indeed found in the coupled channel calculations of Schatz 
and Kuppermann for H+H2(v=O) for the energies they considered. i.e •• 
E less than or equal to 0.7 eV.14 For these energies the ground 
bend state does dominate the cumulative reaction probability.7 

A completely adiabatic correlation between InO> and IjD> 
states would assume that n equals j. a result. which unlike the 
partial O-correlation. is not borne out by coupled channel calcula­
tions.14 Physically. this adiabatic correlation is untenable 
because the spatial character of free-rotor and bending wave­
functions is quite different and so non-adiabatic coupling is 
certain to be large. Thus. the change between the free-rotor and 
bending wavefunctions is better described by a sudden correlation. 
It is possible to incorporate a sudden correlation within the 
present adiabatic bend theory and to achieve the objective of 
extending that theory to describe rotational state-to-state proces­
ses. A requirement of any such extension is that the cumulative 
probability p!->v' obtained from it agree with one from the adiaba­
tic bend theory. 

One obvious way to extend Ih~ adiabtic bend theory whifh 
preserves p!->v' is to relate Sv~\v, to some approximate SvjD->v'j'O 
by an orthogonal transformation. Because 0 is assumed to be a good 
quantum number. the transformation is between n-space and j-space. 
Thus. in matrix notation we have 

(56) 

where SID is a diagonal matrix in the n-representation. i.e .• SID = 
S!~~v,6m,n and in general Ai. 10 is non-diagonal in j-space. nm 
i.e., -J..rj~ = S!jD->v'j'O· It is straightforward to sh~w that such 
a transformation preserves the cumulative probability ~->v" The 
proof of this is as follows. Note that 
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(57) 
n 

From eq. (54), eq. (57) can be rewritten as 

(58) 

(59) 

Both sides of eq. (59) can then be summed over 0 completing the 
proof that p!->v' is preserved under a unitary transfomation of SJO. 

If a strict adiabatic correlation between the nand j-spaces is 
made then Cnj = &nj in which case 

S!jO->v'j'O &j'j&jnS!~~v" (60) 

As discussed above this correlation is not reasonable and so we do 
not pursue it further. 

A physically reasonable correlation is a sudden one. This 
implies that C~n = <jOlnO> and so 

J 
SvjO->v' j '0' (E) <j'O I nO>S!~~v' (E) <nO I j 0>. (61) 

(Note that C depends on n.) This r~~ult is similar in spirit to the 
Franck-Condon theory of reactions,36-38 and eq. (61) is quite sim­
ilar to one given by Schatz and Ross for three-dimensional reac­
tions.38 An important difference is that eq. (61) is meant to be a 
quantitative approximation for the scattering matrix. Previous 
Franck-Condon theories contained an unknown electronic coupling 
interaction and so were capable of giving relative final state 
distributions. The present expression, though intended to be quan­
titative, does share a problem with those from Franck-Condon 
theories. Namely, it violates conservation of energy and so transi­
tions to energetically closed rotational states can occur. A simple 
.4 hoc procedure to eliminate energetically closed transitions is to 
restrict the matrix equation, eq. (56), to only energetically open 
values of j and j' and reorthogonalize the resulting non-orthogonal 
C-matrix. 

An important issue in obtaining S!jQ-\v'j'n by this projection 
method is where to take the projections <jfOlnO> and <nljn>. 
Clearly, the final results will depend on this. Physically, the 
projection should be made in the region where the free-rotor basis 
undergoes the most rapid change in character. (That is the pre­
scription in the Franck-Condon theory of reactions.) It may be 
possible to eliminate this dependence to a large extent by a proce­
dure which we now outline. This extension will also eliminate 
transitions to energetically closed channels. 
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The basic idea is quite simple. It is to use the uncoupled 
adiabatic InO>-basis in the strong interaction region and to do the 
arrangement channel matching in that basis. However. instead of 
continuing the integration into the asymptotic regions of space with 
that basis. a transformation to the asymptotic IjO>-basis would be 
made in each arrangement channel. The wavefunction in the new free 
rotor basis would then be propagated in each arrangement channel in 
a standard non-reactive scattering mode into the asymptotic 
regions of space. Scattering boundary conditions will be imposed as 
usual and the full rotational state-to-state S-matrix will be 
obtained. 

These ideas and many obvious modifications of them for 
extending the adiabatic bend theory to obtain rotational state-to­
state reaction probabilites are. we believe. a promising new area of 
research in the quantum theory of reactive scattering. 

In the next section. we present several applications of the 
reduced dimensionality theory just reviewed. The applications are 
to the reaction of muonium+B2• resonances in 0+B2 and the 
reactions O(3p )+B2• D2 and BD where comparisons with experiment are 
given. 

3. Applications 

3.1 Muonium plus ~2 

Schatz has recently performed three-dimensional centri~~al 
sudden (CS) calculations of the reaction of muonium with B2 (also 
see his .fd':~ter) using the ab i.iUo LSTB potential energy 
surface.' Muonium (Mu) is an unstable. very light isotope of B 
and as a result very substantial tunneling is expected in this 
reaction. Schatz's calculations offer another opportunity to test 
the reduced dimensionality theory. Previous tests for the 
B+02 (v=0.1) reactions demsnstrated the high accuracy of the reduced 
dimensionality theory.7.1 We performed CEQB/G calculations for 
this reaction using the LSTB surface. (For the total energies 
considered the ground bending state makes the dominant contribution 
to the cumulative reaction probability and so the CEQB/G results 
would be essentially identical to the full CEQB ones.) The J=O 
cumulative reaction probabilities are compared with the CS ones of 
Schatz in Figs. 1 and 2. The se~i-Iog plot in Fig. 1 shows the 
accuracy of the present calculations over a wide range of values of 
the cumulative probability. In Fig. 2 the comparison is shown for 
both the reaction with B2 (v=0) and B2(v=I). In both cases only 
MuB(v=O) is energetically open for the energy range shown. 

In Figure 3 we compare the partial wave opacities for H2(v=0) 
versus J for a total energy of 0.75 eV. As discussed in the pre­
vious section the CEQB/G approximation to P!->¥' is obtained from 
the J=O probability by a simple energy shift EJ • where E; is the 
rotational energy of the transition state. For this reaction the 
variational transition state is shifted considerably from the saddle 
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Figure 1. Semi-log plot of the J=O cumulative reaction 
probability for Mu + H2(v=0) on the LSTH surface versus 
the total energy E. The circles are the centrifugal 
sudden (CS) results of Schatz and the dashed line is the 
present reduced dimensionality (CEQB/G) result. 

point. 42 For the effective potential including the ground state bend 
the transition state is located at RMuH = 1.52 bohrs and RUH = 2.10 
bohrs. The saddle point distances are RMuH = RUH = 1.757 bohrs. 
The agreement between the simple energy-shifted CEQB/G opacities and 
the CS ones of Schatz is quite good. The sum of the CEQB/G opaci­
ties equals 0.86 the sum of the CS opacities. If the rotational 
energy of MuH2 at the saddle point is used to calculate the opaci­
ties the agreement is considerably worse with the sum of the opaci­
ties equal to 0.69 the CS summed opacities. Thus, it is very impor­
tant to use the variational transition state E; for this reaction. 
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Figure 2. J=O cumulative reaction probability for Mu + H2(v=0) and 
H2(v=1) on the LSTH surface versus the total energy E. 
The circles and squares are the centrifugal sudden (CS) 
results of Schatz for H2(v=0) and H2(v=1). respectively 
and the dashed lines are the present reduced dimen­
sionality (CEQB/G) results. 

3.2 Resonances in H+H2 

The H+H2 reaction has played a central role in the theory of 
gas phase reactions. Very recently. Schatz reported CS calc~lations 
on H+H2 on the LSTH surface for total energies up to 1.2 ev4 (also 
see his chapter in this book). A number of features. identified as 
resonances were observed. We decided to perform reduced dimen­
sionality CEQB calculations on this system with special attention to 
these resonant features. 

Reduced dimensionality CEQB reaction probabilities for the 
ground. first. and second excited bending states were calculated. 
The calculations for the ground bend state werl done with the quar­
tic correction to the harmonic bending energy2 and those for the 
excited state bends were done with the harmonic approximation to the 
bend energy. We found that for excited bending states of H3 the 
harmonic approximation for the adiabatic bending energy at the 
transition state is roughly as accurate as the quartic-corrected 
harmonic energy but for the ground bending state the quartic­
corrected harmonic energy is considerably more accurate than the 
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Figure 3. Comparison of energy shifted CEQB/G and centrifugal sudden 
(CS) partial wave cumulative opacities for Mu+H2(v=0) for a 
total energy of 0.75 eV. 

harmonic one.25 Thus. the extra effort in doing the quartic correc­
tion was made only for the ground-bend state. The results for 
H+H2(v=0)-->H2(v'=O)+H are shown in Fig. 4 as a function of the 
total energy E. As discussed in detail below, the ground and second 
excited bend probability is for J = 0 whereas the one for 
the first excited bend is for J = 1. Resonance features 
are seen in all the probability curves. As expected, the prob­
abilities for the excited bending states look qualitatively like the 
ground-bend probability shifted roughly by the bend energy at the 
transition state. However, excited bending state resonance fea­
tures, although also roughly energy-shifted from the ground bend 
ones, are broader than the corresponding ground-bend ones. The 
resonance energies for the various bending state probabilities are 
given in Table 2. These energies were simply determined by the 
energy where the probability has a local minimum. This is a rather 
crude method to determine resonance energies, especially for such 
broad resonances. As discussed in the previous section, the bending 
states are labeled by the quantum numbers nand n. the latter being 
the projection of the total rotor momentum on the body-fixed z-axis, 
with the restriction that Inl must be less than or equal to the 
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Figure 4. Reduced dimensionality CEQB reaction probabilities for 
H+H2 (v=O)-->H2 (v'=O)+H for the ground (n=O), first (n=l) 
and second (n=2) excited bending states on the LSTB 
surface. 

total angular momentum quantum number I. In the harmonic approxima­
tion, which, as noted, was used for the excited state bends, the 
bend energy for a given n is the same for all allowable vllues of n 
and n is restricted to the range -n to n in steps of two. In 
addition, the value of J must be greater than or equal to 101. 
Thus, for n equal to 0 and 1 101 equals 0 and 1 respectively and so 
the minimum values of I are also 0 and 1, respectively. For the 
second exicited bending state n equals 2 and so Inl equals 0 or 2. 
The cumulative probabilities shown in Fig. 4 are for J = 0 for n 
equal to 0 and 2 and for J = 1 for n equal to 1. In Table 2, the 
resonance energies for n = 2 are given for the components 101 equal 
to 0 and 2. They differ by the energy shift Ej that is used in the 
CEQB theory to obtain the partial wave cumulative probabilities. We 
should note that for the bending states considered here a greater 
splitting is due to anharmonic correctiof to the harmonic energy. 
These are discussed in detail elsewhere. 5 
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Table 2. Reduced dimensionality (CEOB) resonance energies for the 
ground and two excited bending states of H+H2(v=0)-->H2(v'=0)+H on 
the LSTH potential surface. 

n Inl Eres(eV) 

0 0 0.973 

1 1 1.09 

2 0 1.20 

2 2 1.21 

0 0 1.35 

1 1 1.42 

2 0 1.50 

2 2 1.51 

Several points should be noted. First, the first four reso­
nance energies listed in Table 2 are all in good agreement with the 
CS results of Schatz43 (also, his chapter in this book). Second, 
not all possible resonances in the energy range shown are given. A 
resonance for the third excited bending state could occur at a total 
energy of roughly 1.34 eV. 

The agreement noted between the ground and excited bend-state 
reduced dimensionality resonances and the CS ones of Schatz is quite 
significant. It indicates that the adiabatic bend approximation for 
this reaction continues to be a realistic description of the dynamics 
even for total energies up to 1.20 eV. This should stimulate further 
inquiry about the realism of the adiabatic bend approximation in 
reactive scattering. 

A more complete discussion of these results along with compari­
sons with approximate stabilizalion predictions of the resonances in 
this system is given elsewhere. 5 

3.3 O(3p)+H2~2 and HD 

The reactions of O(3P) with H2, D2 , and HD have become one of the 
most intensively studied set of reactions, both experimentally and theoreti 
cally. Theoretically, there have ~e!~ several three-dimensional 
quasicla!3~~~1 trajectory studies, 6 9, collinear ex~~t quantum 
studies, several r~gu~Jd dimensionality quantum5 52 and 
quasiclassical studies, - variati~~l transition state theory 
studies ~ith tunneling corrections,S, 7 and two distorted wave Born 
studies.~8,59 We recently reviewed our previous reduced dimen-
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Figure 5. Reduced dimensionality exact quantum and quasiclassical 
total reaction probabilities for the ground ~ending state 
(CEQB/G and QCTB/G, respectively) for the O( P)+DB, D2, B2 
and BD reactions versus the total energy E. The potential 
surface used is the ab iaitio MODPOLCI surface (refs. 52 
and 54). 
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sionality calculations of the O+H2 and D2 reactions.!! Our initial 
study used the CEQ reduced dimensionality theory to obtain rate 
constants for the thermal and vibration~lly excited H2 reaction 
using five potential energy surfaces.52 .!i3 Based on that study. we 
decid~~ to continue with a CEQB/G study of the H2• D2 and HD reac­
tions ~sin~ one of the ab initio potential surfaces. the MODPOLCI 
surface.!i2.5~ Here we wish to review and unify these studies and to 
present the latest comparisons with experiment. 

In Fig. 5 we present the CEQB/G and corresponding quasiclassical 
trajectory total reaction probabilities for the reactant molecule 
initially in the ground and first excited vibrational states. The 
angle given at the top of each frame is the skew angle for the reac­
tion in mass-weighted coordinates. Several obvious trends are seen 
with respect to the skew angle. First. both the quantum and quasi­
classical results show decreasing reactivity with decreasing skew 
angle. This is due presumably to increased re-crossing of the transi­
tion state with decreasing skew angle. Essentially. the incoming 
reactant flux has greater difficulty in turning the corner to form 
products as the skew angle decreases. Second. the difference between 
the quantum and quasiclassical thresholds for reaction increases with 
decreasing skew angle. This is due to increasing "corner-cutting" 
tunneling in the quantum calculation as the skew angle decreases. 
That is. the quantum mechanical tunneling can occur over extended 
regions of space especially for smaller skew angles. 

These threshold energies are very important quantitities. as 
they determine to a large degree the behavior of the corresponding 
thermal rate constants. We decided to apply vibrational adiabatic 
(VA) theory in an attempt to analyze both the quantum and quasiclas­
sical threshold energies. For the four reactions the steepest 
descent path from the saddle point was calculated in mass-weighted 
coordinates and the vibrational eigenvalues were obtained numer­
ically (by a finite difference algorithm) for the motion transverse 
to this path. For the purpose of determining adiabatic threshold 
energies all that is required is the maximum in the corresponding VA 
potential. which is simply the sum of the bare potential (which in 
this case includes the adiabatic bending energy) and the local VA 
energy. The approach to calculate VA potentials we have outlined 
has well-known difficulties in the vicinity of the saddle point. 
where transverse cuts can intersect both the reactant and product 
channels. This cutting across channels turns out to be a difficulty 
mainly for vibrationally exicted states. Fortunately. for these 
states. the maximum in the VA potentials occurs away from this 
region. For the ground vibrational state. we found that the maximum 
in the VA potential occurs essentially at the saddle point for each 
reaction. The VA barrier heights are given in Table 3 for both the 
forward and reverse directions of each reaction. Consider first the 
predicted threshold energies for the vibrational ground state reac­
tions. In general these are in good agreement with the observed 
quasiclassical threshold energies in Fig. 5. As expected. the 
quantum reaction probabilities exhibit thresholds considerably below 
the VA barrier heights. due to tunneling. For the vibrationally 
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Table 3. Vibrational adiabatic barrier heights (in eV) for 0{3p)+B2, 
D2, HD and DB forward and reverse reactions. 

Reaction vibrational state 

o 1 2 

0+H2 0.738 1.02 1.39 

OH+B 0.738 0.911 1.21 

0+D2 0.685 0.855 1.10 

OD+D 0.685 0.818 0.945 

O+HD 0.706 0.921 1.23 

OH+D 0.706 0.841 1.21 

O+DH 0.720 0.968 1.28 

OD+B 0.729 0.884 1.03 

excited state reactions the quasiclassical threshold energies are in 
excellent agreement with the predictions based on the VA barrier 
heights. As already noted, for these reactions the VA barriers 
occur away from the saddle point where the reaction path curvature 
is small. Thus, the VA assumption is expected to be quite realistic 
and so the accuracy of the predicted VA threshold energies is not 
surprlslng. The quantum threshold energies for the vibrational 
ground and excited reactions are below the VA (and quasiclassical) 
threshold energies due to tunneling, of course. 

Thermal rate constants have been measured for the 0{3p )+H2 reac­
tion by numerous groups over a wide temperature range.61- 66 The 
rate c9nstant for vibrational excited H2 has also been measured at 
298 K.67 We calculated reduced dimensionality CEQB/G and CEQ rate 
constants for these reactions, using the MODPOLCI surface,52,54 and 
the comparison with available expermients is given in Fig. 6. For 
the thermal rate, which is completely dominated by the ground vibra­
tional state of H2, the CEQB/G and the simpler CEQ results are quite 
similar and in good agreement with experiment over the entire tem­
perature range. The inset, showing the highest temperatures, 
indicates better agreement between experiment and the CEQB/G result 
than with the CEQ one. For the reaction with H2(v=1) there is a 
substantial difference between the CEQ and CEQB/G rate constants, 
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Figure 6. Reduced dimensionality CEQB/G and CEQ rate constants 
versus liT for the thermal and vibrationally excited H2• 
The inset is an expanded scale of the high temperature 
end of the thermal rate constant. The experimental 
thermal results are taken from refs. 61-66 and for the 
vibrationally excited measurment from ref. 67'- The 
recent high high temperature measurments (- - -) are 
from ref. 65. 

with the latter one in very good agreement with th~ one experimental 
measurment. The main reason for the difference between the CEQ and 
CEQB/G rate constants is in the way that the adiabatic bending 
energy is treated. Recall that in the CEQ theory the adiabatic 
bending eigenvalue is replaced by a constant value equal to its 
energy at the transition state. In these previous CEQ calculations 
the transition state was tak~n at the saddle point for both the 
ground and vibrationally excited reaction. While this is correct 
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for the ground state reaction it is not correct for the vibra­
tionally excited one. In fact, the bending energy at the transition 
state for that reaction is considerably less than at the saddle 
point and so using the higher (incorrect) saddle point bending 
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Figure 7. The r!tio of CEQB/G rate constants for the reactions 
of O( P) with H2 (solid curve) and HO, summed over the OH 
and OD reaction channels, (dotted curve) and to form OH 
(dashed-dotted curve) to the rate constant for the reac­
tion with D2 versus lIT. The corresponding experimental 
results are from refs. 64 and 65 (+),62 and 63 (0), and 
ref. 66 (0,·) 

73 



74 J. M. BOWMAN AND A. F. WAGNER 

energy excessively reduces the CEQ approximation to the cumulative 
reaction probablity which in turns results in a lower rate constant. 
The more accurate CEQB/G theory does not make this error as the 
ground state adiabatic bending energy is added everywhere to the 
potential energy surface. (For the temperature range shown for the 
H2(v=1) reaction the ground bending state dominates the summation 
over bending states for the cumulative reaction probability. Thus, 
there is in practice no difference between the ~JGB/G and the full 
CEQB rate constant.) Indeed, a simple estimate of the correct 
bending shift to apply in the CEQ theory would bring the CEQ rate 
constant into close agreement with the CEQB/G one, as expected. 

Recently measurments of i~ot9pe effects in this reaction have been 
reported by several groups.64-66,68 These effects, expressed as ratios 
of thermal rate constants, are compared to the calculated CEQB/G 
ones on Fig. 7. The agreement between theory and experiment is 
excellent. The branching ratio in the O+HD reaction to form either 
OH or OD has not 8et been measured, although experiments to do so 
are in progress. 6 
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ABSTRACT. A number of new effects in reaction dynamics discovered by 
theoretical investigations using hyperspherical coordinates, e.g. 

vibrational adiabaticity 
oscillating reactivity 
resonances and their mode specific decay 
vibrational bonding 

are presented and discussed with respect to their experimental conse­
quences. Finally it is shown that the important class of organic SW2-
reactions may be investigated in an approximate collinear treatment 
using a combination of molecular structure and reaction dynamics theory. 

1. INTRODUCTION 

Considering the literature it has to be realized that the hyperspherical 
coordinates (sometimes called Delves coordinates or mass weighted polar 
coordinates, too) have quite a long standing tradition in describing 
three body problems in a variety of physical fields. Originally they 
seem to have appeared in studies of the helium atom (1932) [IJ and 
since then a continuous stream of publications indicate their application 
to the treatment of two electron atoms [2J and the H2+ molecule [3J. 
Clapp and Delves rediscovered them for the field of nuclear physics 
( 1949) [4J and within the last two decades the set of hyperspherical 
coordinates was introduced to the theory of molecular dynamics (i.e. 
molecular collisions (1960) [5J, collision induced dissociation (1971) 
[6J, photolysis of molecules (1974) [7J, chemical reactions (1975) 
[8J, electron molecule scattering (1980) [9J, molecular vibrations 
(1981) [lOJ ) . In 1980 the first numerical examples for a quantum 
mechanically exact treatment of a collinear reaction were published 
[11,12J and since then the hypersphericaJ coordinates have provided 
a very useful tool to handle the dynamics of collinear three-body 
reaction processes 

A + BC(v) -> A + BC(v) 
-> A + BC(v') 

(elashc) 
(inelastic) 
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(1) 
(2) 
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.... AB(v") + C 
~ A + B + C 

(reactjve) 
(dissociative) 

Traditionally, chemical reactions have been treated using the natural 
reaction coordinates [13J following the chemist's view leading from 
the reactants to the products. Unfortunately It is an inherent problem 
of this picture in accurate quantum calculations that this scheme ex­
cludes the descriptIon of branching ratios (cf. [14J), dissociative 
processes (cf. [15J) or reactions associated with small skewing angles 
in mass weighted coordinates (i.e. heavy-light-heavy reactions, cf. 
[16J). Compared to these restrictions the hyperspherical coordinates 
allow a simultaneous treatment of all processes (1) - (4) for all mass 
combinations of the atoms A, B andC. Up to now a considerableamount 

( 3 ) 
(4 ) 

of work has been published applying hyperspherical coordinates to various 
reactions and revealing some new and interesting phenomena (cf. Ref. 
[17J, too). This contribution is meant to review and to summarize the 
essential results and conclusions of this work (including some very 
recent and still unpublished parts of it). Finally it is tried to outline 
some future aspects emerging from all. the effects which - at least 
from the author's point of view - might be fruitful for the field of 
reaction dynamICS. 

2. COLLINEAR REACTIONS DESCRIBED IN HYPERSPHERICAL COORDINATES AND 
THE CORRESPONDING ADIABATIC APPROXIMATION 

The purpose of the following resume is to provide the essential equa­
tions of the method and to introduce the adiabatjc approximation in 
terms of hyperspherical coordinates, which turns out to be a helpful 
and illustrative picture for an understanding of the numerical results. 
Considering the collInear reaction 

A + BC ~ AB + C 

the Hamilton operator in mass weighted coordinates x,y [18J (with the 
center of mass already factored out) is given by (in atomic units): 

X 1/2 
= (mA,BC/mBC) rA,BC 

Y = r BC 
1 d2 i V(x,y) H 2mBC 3l 

+ -} + 
3y2 

(mA BC and mBC represent the reduced masses for the configuration A+BC 
and'the BC molecule, respectively, M denotes the total mass. Note that 
the mass scaling is slightly different compared to Kuppermann's nota­
tion). The transformation to the hyperspherical coordinates r,~ (cf. 
Fig. 1) 

r = (l+i)1/2 

~ = arctan (x /y) 

(5 ) 

( 6 ) 

(7) 

(8 ) 

( 9 ) 
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m M 
(with a skewing angle cp = arctan (_B_)l/Z) 

max mAmC 

yields the following Schr5dinger 

J _1_ (1. _0_ r _0_ + ..L _Z_) 
l - 2mBC r 0 r 0 r rZ ocp Z 

y=r Be 

equation [ll,lZJ: 

+V( )-Ej\jl( )=0 r, cp r, cp 

Fig. 1 Schematic contour diagram of the potential energy surface 
for a collinear reaction A+BC+ AB+C in mass weighted coordi­
nates x,y. The hyperspherical coordinates are shown as the 
radius r and the angular variable cp 

Assuming the ansatz 
-liZ 

\jI( ) = r L X(r) <jl(r,cp), 
r, cp i 1 

substitution of this expansion (11) into the Schr5dinger equation 
(10) and integration over the angular variable cp produces two sepa­
rated parts [19J: the angular equation along cp at a constant r=~ 

1 oZ t - -Z - --Z + V ( - )j <jl. ( ~ ,cp ) = £ (~ ) <jl (~, cp 
mBC ocp r, cp 1 1 1 

and a set of coupled radial equations 

1 aZ 
{---

2mBC ar Z 

L 
j 

1 
- (E - £(r) + 'I)j X.(r) 

1 8 ~ 1 

{Z P .. (r) 
1J 

mBCr 
o ---;:;-r + Q.(r)j X .(r) 
a 1J J 
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(10) 

(ll ) 

(1Z) 

(13 ) 
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with the non-adiabatic coupling elements 

P . (r) <<ll.(r,cp) d <ll.(r,cp ) > = dr IJ 1 J 

Q .. (r) <¢.(r,cp) 
d 2 

¢.(r,cp) > = 2 IJ 1 d r J 

While the angular equation (12) can be solved numerically (cf. [12J) 
or by expansion techniques (cf. [llJ) the set of coupled radial equa­
tions (13) has been treated by propagating quantum wavefunctions 

(14 ) 

(15 ) 

(cf. [11,20,21J) or, equivalently, S-matrices (cf. [12J) or R-matrices 
(cf. [22,23J) along the hyperspherical radius r. Due to the potential 
boundaries at cp =0 and cp = cp the angular wave functions ¢. Cr, cp ) 
form a discrete and completemB~t for the entire range of collision 
energies E, even in the domain above the dissociation limit 

A + BC + A + B + C. 

This fact provides the enormous advantage that reactions probabilities 
may be calculated for high energy collisions (cf. [20,22,23 J ) and even 
collision induced dissociation can be included into the description 
of reaction processes (cf. [2~). These results are qualitatively beyond 
the capabilities of the traditional techniques. Furthermore it has 
been shown that using hyperspherical coordinates the convergence of 
reaction probabilities with respect to the number of channels included 
in the numerical treatment is much better compared to the conventional 
methods of propagation in natural reaction coordinates [12,25J. Parallel 
to the development of exact quantum techniques semiclassical approaches 
have been elaborated and applied quite successfully [19,26-28J providing 
illuminating information for the understanding of reaction mechanisms. 
In the scheme of hyper spherical coordinates the angular eq. (12) de­
scribes the internal (vibrational) motion at a fixed value of r=~ while 
the set of radial equations (13) represents the translational motion 
coupled by the vibrational mode. Here the hyperspherical radius provides 
a generalized translational coordinate including in its asymptotic 
region (r+oo) all possible reactant and product states of the processes 
(1) - (4) (cf. Fig. 1). The angular (vibrational) energjes E: .(r) deter­
mined as angular eigenenergies in subsequent potential profil~s along 

cp at a constant radius ~ (cf. eq. (12)) provide potential energy curves 
very similar to the familiar Born-Oppenheimer potentials of a diatomic 
molecule. This formal analogy in separating the angular and radial 
motion for a collinear reaction to the Born-Oppenheimer separation 
of electronic and nuclear motion [2~ allows to introduce corresponding 
experience of molecular structure theory into this type of approximation. 
In fact the Born-Oppenheimer type energy curves E: .(r) give a very 
reasonable zero-order picture for the interpretati~n of energy transfer 
processes and resonance phenomena. For those systems with non-neg legible 
coupling elements P .. and Q .. it turned out useful to go beyond the 
pure Born-Oppenheim~i type ~~tential E: (r) to the adiabatic potential 
U. (r) [3o J which includes the diagonal coupling term Q .. (r) [ 20,31,32J 

1 11 
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U.(r) = 
1 

1 
E· (r) - --'''--7"2 + Q .. (r) (16) 

1 11 8mBCr 

To illustrate this type of adiabatic potential U.(r) in hyperspherical 
coordinates let us consider the reactions 1 

F + HBr 7 FH + Br 

I + HI 7IH + I 

(17) 

(18 ) 

which will serve as typical representatives for the classes of asymmetric 
and symmetric reactions, respectively. Here they will be used as examples 
to demonstrate the essential findings emerging from a rather extended 
series of theoretical investigations in the field. Although both have 
to be regarded as reactions with the mass combination heavy-light-heavy, 
the author would like to emphasize that processes with different mass 
combinations have been treated equally well in the frame of hyperspheri­
cal coordinates (cf. [11,12,20J). In Fig. 2 and 3 the adiabatic angular 
(vibrational) potentials U.(r) are displayed for the reactions (17) 
and (18), respectively. In1 fact it has to be realized that they provide 
rather similar energy curves as t he traditional electronic potential 
energy curves of diatomic molecules. In the asymptotic limit they repre­
sent the different reactant and product states and at smaller values 
of r their shape is closely related to the variation of the angular 
potential profile along the hyper spherical radius r. For symmetric 
type of reactions the potential energy surface is symmetric with respect 
to the angle m /2. Hence the angular wavefunction can be classified "t'max . 
as g and u according to their parity against reflection at the symmetry 
axis. In the asymptotic limit reactant and product states are degenerate 
and they split in the interaction region (cf. Fig. 3). 

3. VIBRATIONAL ADIABATICITY AND OSCILLATING REACTIVITY IN COLLINEAR 
HYDROGEN TRANSFER REACTIONS 

Hydrogen transfer reactions usually provide a system with a mass combina-
tion heavy-light-heavy associated with a small mass angle cp in max 
mass weighted coordinates. For these reactions the hyperspherical coordi-
nates are extremely powerful as they provide almost the normal coordi­
nates of the system. Here the angular variable cp represents the exchange 
vibration of the light atom (asymmetric stretch vibration of the AHB 
complex), which is fast compared to the motion of the heavy nuclei 
and nearly uncoupled to their translational motion (i.e. a scan of 
cp from zero to cp m x produces only little change in the distance of 
the two heavy atoms'. Consequently there is only a very weak coupling 
in the radial equation (13) and the adiabatic approximation describing 
the reaction as an uncoupled one-dimensional process on the potential 
U.(r) is justified. Furthermore th e diagonal adiabatic correction is 
s~all and therefore U.(r) is mainly determined by the shape of the 
Born-Oppenheimer type1 angular energy curve E .(r). For symmetric type 
reactions (i.e. I+HI 7 IH+I, cf. eq. (18)) an 1 0scillative structure 
of the reaction probability with energy is found (cf. Fig. 4) [ 23J, 
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F+HBr(v=1) 

F+ HBr!v=O) 

13 14 15 16 r [A] 

Fig. 2 Adiabatic angular (vibrational) potentials U6(r ) - UlO ( r ) with 
respect to the hyperspherical radius r for the collinear reaction 
F+HBr(v) + FH(v' )+Br. The potential energy surface used is 
a LEPS potential with its parameters adjusted to expe rimental 
kinetic data by Jonathan et al. [ 33J. 
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1 3.5 4.0 ... r[ ['~J 
E [kJ· m ol- ] rT-'~-t-r----c---~....::.... ___ 

Fig. 3 

t 
-270 

-280 

-290 

-300 

-310 

26 

IHI(v=O) 

28 30 32 --..r [A] 
Adiabatic angular (vibrational) potentials U ,U ,Ul and 
Ulu with respect to the hyperspherical radiu~gr fg~ thegreaction 
I+HI +IH+I. The top abscissa displays the corresponding rI_I 
distance. The V. curve provides the potential energy minimum mln 
curve with the point of transition state indicated by t. The 
arrows at the right hand side denote the asymptotic energies 
of the corresponding reactant/product state. The LEPS-A poten­
tial used to describe the reaction is given in Ref. [ 34J. 
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Oscillating reaction probabilit~ for the process I+HI(v=O) 
~ IH(v'=O)+I versus (E t )1/ (--- quantum, --- semlclasslcal, 

rans. 1/2 
.-.-. classical treatment). At (E t ) < 5 kJ/mol the rans. 
quantum and semiclassical calculations provide identical results. 

[26-28,34J which may be explained as quantum mechanical interference 
pattern of processes occurring on the independent and asymptotic degene­
rate potentials U and U (cf. Fig. 3). Semiclassically this structure 
corresponds to th~gphenom~Hon of classical multiple encounters increasing 
in numbers with energy [19,28,35J. 

In recent model calculations these findings have been confirmed and 
verified for a full three-dimensional treatment [36J. Due to the weak 
couplings in these systems almost no V-T energy transfer occurs during 
the reaction process; i.e. the translational energy (mainly stored 
in the heavy atoms) is conserved [37J. Hence these type of reactions 
provide classical examples of the traditional "spectator stripping 
model" [38J. 

A similar situation is found for the asymmetric type of hydrogen transfer 
processes (i.e. F+HBr + FH+Br; cf. eq. (17)). Again there exists only 
very weak coupling of the heavy atom translational motion through the 
light atom exchange vibration (i.e. translational energy is conserved). 
Since for the asymmetric case the degeneracies of asymptotic reactant 
and product states are removed according to the adiabatic approximation 
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no reaction should happen at all. But a closer inspection of the adia­
batic potentials U.(r) (cf. Fig. 2) reveals that avoided crossings 
occur between curv~s U.(r) and U. l(r) providing regions with increased 

1 1+ 
non-adiabatic interactions which allow probability flow in different 
reaction channels (cf. Fig. 5). 

85 

Hence for asymmetric reactions the probability pattern is mainly governed 
by the structure of the avoided crossings between the different adia­
batic channel potentials [27,39,4DJ. Dominant elastic scattering proba­
bilities are found for F+HBr(v=D) + F+HBr(v=O) while the reaction proba­
bility for F+HBr(v=O) + FH(v'=4)+Br is quite small in the region about 
150 KJ/mol above the reaction threshold (cf. Fig. 5) [41J. For its 
isotope reactions F+DBr(v=D) + FD(v'=6)+Br and F+MuBr(v=D) + FMu(v'=3)+Br 
the corresponding probabilities are even smaller because of smaller 
non-adiabatic couplings and larger energy splittings in the avoided 
crossing region. Again the probabilities exhibit the oscillative pattern 
found for other asymmetric hydrogen transfer reactions [39,42J and 
hence the picture of the classical multiple encounters also can be 
applied. Stressing the analogy to the diatomic molecules, again, these 
oscillations can be regarded as formal counterparts to the so- called 
Landau-Zener oscillations in the theory of electronic non-adiabatic 
transitions [43J. In total the following hydrogen transfer reactions 
have been investigated by various groups obtaining similar results: 

I + HI(v) 
Cl + HCl( v) 
F + HF(v) 
H3 C + HCH3(v) 
Br + HCl( v) 
F + HBdv) 

+IH(v') + I 
+CIH (v') + Cl 
+FH( v' )+F 
+H3CH (v' )+CH3 
+BrH (v' )+CH 
+FH(v') + Br 

[ 23,26-28,34J 
[32, 23J 
[26,27J 
[ 26J 
[27,36,39,42J 
[ 41J 

Dn the experimental side a considerable amount of kinetic data for 
hydrogen transfer reactions is available. The conclusions emerging 
from these data are in a remarkable agreement with the theoretical 
findings just presented. Considering the F+HBr reaction explicitly 
the experiments exhibit an inverted FH vibrational population produced 
in the course of the reaction [33,44J. This result is in qualitative 
agreement (since the theoretical calculation dealt with a collinear 
system a quantitative comparison is not appropriate) with the theoretical 
finding of translational energy conservation. In thisexoergic reaction 
nearly all the potential energy is converted into vibrational motion 
thus producing a highly inverted product vibrational distribution. 
Furthermore the experiments reveal a surprising non-~rrhenius behaviour 
of k (T) and 0 (E) for the F +HBr [45 J and similar hydrogen trans fer 
reactions [46J that tentatively has been explained in terms of competing 
direct and migratory reaction paths (microscopic branching). However, 
this interpretation is in conflict with the analysis of rotational 
and vibrational product populations [44J. The theoretical investigation 
of collinear reactions suggests that the interference effect presented 
above may contribute to the experimental oscillating reactivity of 
the hydrogen transfer reactions corresponding to multiple encounters 
in classical trajectory simulations [33J. 
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Fig. 5 Reaction probabilities P for the processes 
a) F+HBr(v=O) -> F+HBdv=O) 
b) F+HBr(v=O)->FH(v'=4)+Br 
with respect to the total energy of the system. The LEPS surface 
used for the calculations is described in Ref. [33J. Note, 
that the scale of the probabilities is different in panel a) 
and b). 
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4. REACTIVE SCATTERING RESONANCES AND VIBRATIONAL BONDING 

Considering the set of coupled radial equations (13) with the assumption 

P .. (r) = 0 
lJ 

Q .. (r) = 0 
lJ 

we are left with the Diagonal Corrected Vlbratlonal AdJabatlc Hyper­
spherical (DIVAH) model [20,31,32] and equation (13) reduces to 

1 __ 1_ a 2 } 
1 + U.(r) - E x·(r) = 0 (17) 

2mBC ar2 l l 

(with U.(r) defined in eq. (16)). Within this model the problem of 
reactiv~ scattering is reduced to an elastic scattering treatment in 
an effective potential U.(r) (cf. eq. (16)) along the radial coordinate r. 

l 
An inspection of these effective potentials U.(r) (cf. Figs. 2,3) reveals 
the existence of quasi-bound and bound statesl(analogous to the vibra­
tional states of diatomic molecules). However, the existence of these 
states on a potential U.(r) implies distortions of the continua belonging 

l 
to potentials U.(r) (j<i), depending mainly on the magnitude of the 
corresponding n~n-adiabatic coupling elements P .. (r), Q .. (r) and leading 

lJ lJ R 
to resonance features of Feshbach type which should appear in P .. (E) 
and pR.(E) reaction probabilities. Furthermore, quasi-bound stat~s 
(behi~~ a potential barrier) are causing shape type resonances in pR.(E) 

II 
probabilities. As a matter of fact this simple model turned out to be 
a very effective and accurate tool for the prediction and interpre­
tation of resonance features in reactive scattering probabilities 
[31,47J. In Fig. 6 it is shown for the F+HBr case that this type of 
analysis accounts for the entire resonance spectrum found in a quantum 
exact two-dimensional treatment. From the shape of the resonances at 
-349 kJ/mol, -345 kJ/mol and -342 kJ/mol (being induced by quasi-bound 
states in the FH(v'=5)+Br channel potential altogether) can be seen, 
that their decay mechanism is changing with increasing energy from 
a predominantly Feshbach type (at -349 kJ/mol, -345 kJ/mol) to a pre­
dominantly shape type decay ~t -342 kJ/mol). The lifetime of these 
three resonances (T 1=0.8 ps, T 2=0.5 ps, T 3 = 5.7 fs) exceed thermal 
collision times as well as reactant or product hydride vibrational 
per iods (T HBr = 2.0 fs, T F-H=l. 3 fs). Although j. t is expected that 
in a full three-dimensional (experimental) treatment their lifetime 
will be reduced due to additional bending mode decay channels still 
they should exist longer than a vibrational period; hence a new type 
of experimental transition state spectroscopy should be possible (cf. 
[48 J ) • 

Another interesting aspect connected with resonances and their decay 
is the effect of mode selectivity of bi- and unimolecular reactions 
[49J in light-heavy-light atom processes. Here the central heavy atom 
may block the energetic flux and exchange of light atoms; i.e. for 
the Rosen-Thiele-Wilson model of two coupled Morse-oscillators 
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E 
E[kJ/ mol] [kJ I mol] 

Fi g. 6 

300 F+HBr!v=2) 
- 300 

UlO 
FH(v' =6)+Br 

-310 - 310 
Ug 

-320 - 320 

F+ HBr(v=Ol-F+ HBdv =0) 

-330 F + HBr(v =1) - 330 

Us 

-3/,0 - 3/,0 

-350 - --- - 350 

-360 F+HBr!v=O) -360 

U6 

12 13 I/, 15 16 rCA] 1.0 0.9 0.8 P 

a) Diagonal Correc t ed Vibrational Ad i abatic Hyp er spherical 
(DI VAH ) potent ia ls U.( r ) fo r the FHBr system i ncluding the 
bound (---) and quasI -bound (--- ) states compared t o 

b) the elas t i c scatter i ng probabil i t y p t E) for t he process 
F+HBr (v =O ) -+ F+HBr (v =O ) . 
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[50,51J the process 

A + BA ( v) -+ A + BA ( v ' ) 

is almost completely non-reactive in off-resonance energy regions (cf. 
Fig. 7). Only the resonance states provide a kind of doorway for reactive 
processes [49,52,53J 

A + BA (v) -+ ABAft -+ AB (v') + A. (18) 

Interestingly their widths and amplitudes vary non-monotonously with 
energy implying non-RRKM variations of the corresponding lifetimes 
[49J (cf. the resonances at E=0.123 eV and E=0.138 eV in Fig. 7). Using 
a time dependent fast-Fourier-Transform propagation the decay of a 
variety of resonance states has been investigated [49J and it was shown 
that the corresponding lifetime depends critically on the mode structure 
associated with the resonance state: local mode resonances [51J decay 
is fast, hyperspherical modes [53] decay much slower (cf. Fig. 7). 
This type of mode selectivity may be rationalized by the structure 
of resonance wave functions in a rather similar way as pointed out for 
the H~non-Heiles model [54J. On the experimental side it is a challange 
to discover this type of hyperspherical versus local mode specifity ft 
via spectroscopic inves tigation of line widths in highly excited ABA 
molecules (possible candidates are dihydrides like H20 [10,50,51,55J 
or other systems like S02 [56J). 

Finally, a most interesting and surprising phenomenon was discovered 
in the I+HI system: vibrational bonded molecules. As shown i n Fig. 8, 
for this system even the lowest DIVAH potential curve U supports 
four bound states, which, due to the absence of a lowerO~ying continua, 
are not destroyed by non-adiabatic interactions and hence they have 
to be regarded as stable, dynamically bonded molecular complexes IHI 
[57J. Stimulated by a classical analysis of oscillating I+HI reactivity 
[35,58J (c f. Section 3) the possibility of infinite encounters was 
found corresponding to a stable IHI molecule. Quantummechanically their 
existence is based on a decrease of the angular, exchange vibrational 
zero point energy outweighting the increase in potential energy along 
the hyperspherical radius (cf. Fig. 8) [57,59J. Their bonding mechanism 
is dynamical in contrast to all other bonding types known in chemistry. 
This mechanism has been generalized to a full three-dimensional treatment 
and although it is found that the bonding effec t is considerably de­
creased by the additional bending mode a single bound state has been 
discovered [59J. The bond strength is comparable to van der Waals type 
interactions and an extensive analysis of its spectroscopic properties 
reveal an abnormal isotope effect; i.e. the bond is weakened replacing 
the hydrogen by a deuterium atom [60J. A complet e review of the litera­
ture on vibrational bonding is given in Ref. [61J. Experimentally this 
new type of chemical bonding provides a real challenge, although a 
verification is not easy, since it will be mixed up with the always 
present van der Waals interactions. Among severa] candidates the 
CS+'BrHBr- complex, being observed just recently, seem to have a small 
contribution ( - 2 kJ/mol) of vibrational bonding [62J. 
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o 
o 

n 

\ ) II p \ 

JL ~j E IE' , iii --'--r~ ,L:;1 
0.84 O.91.l LILt 1.21; 1.34 1.1.;1.; 

.10-' 
\. 5~ 1.6 t; 1.7L; l. E~ I . ~:; 2. c~ 

Fig. 7 Reaction probabilities for the process A+BA(v=O)+ AB(v'=O)+A 
for the Rosen-Thiele-Wilson model of t~o coupled Morse-oscilla­
tors (mA « mB). The resonance at E=0.123 eV is a local mode 
one ( T=O.17 ps), the resonance at E=0.139 eV is of hyperspheri­
cal character (T =4.7 ps ) . 
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E -290~~~~~~~--~~--~~--~-
[kJ/moO 

o 
-300 

-305 

28 30 32 34 r [.&J 

91 

Fig. 8 Minimal potential energy V . (r) and the DIVAH potentials U (r) mIn og 
and U (r) for the collinear I+HI(v=O)~ IH(v'=O)+I reaction. 

ou 
The LEPS potential used is described in Ref. [34J. The bound 
states in the U (r) potential are indicated by horizontal 
lines. og 
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5. FUTURE ASPECTS 

As shown in section 3 and 4, the theory of molecular dynamics in hyper­
spherical coordinates revealed a number of new and exciting effects 
(e.g. vibrational adiabaticity, oscillating reactivity, resonance 
features and their mode specificity vibrational bonding). They prov.i.de 
real challenges for experimentalists as well as theoreticians to verify 
and to investigate these phenomena in more detail. But, as emphasized 
before, it is necessary to bear in mind that their theoretical pre­
diction and interpretation in many instances still suffer from the 
restriction to collinearity (physical 10) in the theoretical treatments. 
There have been great efforts to extent the basic ideas to the full 
three-dimensional (experimental) situation in terms of classical, semi­
classical or even approximate quantum methods. Nevertheless it is highly 
desirable to adopt the dynamical treatment in hyperspherical coordinates 
to the full three-dimensional situation. As far as theory and computa­
tional methodology is concerned, several strategies have been developed 
[63-66J, but, due to the enormous amount of computational power in­
volved, only preliminary results are available [66 ,67J. But the author 
is hopeful that in the near future a physical 3D extended computer 
code will be generated, giving the opportunity fo r more realis tic 
studies, which will provide even more insight into the intimate mecha­
nisms of elementary reactions. Despite this natural tendency to a 3D 
extension, the collinear methods remain important for a rather large 
class of reactions: in organic chemistry there is an enormous field 
which due to electronic structure or steric forces are kept in a perfect 
collinear arrangement. An example for this type of reaction is repre­
sented by the class of bimolecular nucleophilic substitutions [ 68J 
(SN2-reaction; cf. Fig. 9): 

II Y + H3CX -+ [y ... CH 3 ... X J .... YCH 3 + X (19) 

H 

[v----'"b ~"-x 1 H 

V + "'c -x .. ... v-c l + x 
,/j Ry :\ R x ~\ 
HH HH HH 

Fig. 9 Schematic mechanism of a bimolecular nucleophilic substitution 
(SN2-reaction ) . 
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The attacking nucleophile approaches the H3C-X molecule perpendicular 
to the H3-plane at the central carbon atom and under inversion of the 
CH3-umbrella (Walden inversion [69J) the system reacts via a necessarily 
collinear arranged Y .•• C ... X transition complex (due to the elec­
tronic sp2-hybridization at the central C atom) to the product confi­
guration Y-CH +X. Hence in this reaction the bond-breaking and the 
bond-forming distance are fixed to a collinear configuration. In a 
zero-order approximation this bimolecular reaction can be treated as 

Y + R-X -+ [Y /I 
R '" X J -+ Y -R + X 

(the central CH3 group is considered as structureless particle R) in 
complete analogy to the conventional collinear atom plus diatom pro­
cesses [70 J. 

Identifying Y and X with a hydrogen negative ion and a hydrogen atom, 
respectively 

H- + HCH -+ [H ... CH3 ... HJ - -+ HCH3 + H 

(20) 

(21 ) 

a complete two-dimensional potential energy surface has been calculated 
with a very good accuracy (cf. Table I) using ab initio electronic 
structure methods [70J. The CH3 umbrella inversion has been taken into 
account in a minimal energy path approximation; e.g. the optimal inver­
sion angle 8 (cf. Fig. 9) was calculated at each point of the two­
dimensional surface. In Fig. 10 the potential energy together with 
the inversion angle is plotted along the minimal energy reaction path. 
At large distances there is a shallow well accompanied by a slight 
decrease of the angle 8, due to the static multipole interactions, 
which is followed by a steep barrier ( - 56 kcal/mol) and a sudden 
inversion of the central CH3 group. This mechanism deduced from the 
calculations is in contrast to the experimental findings [71J, assuming 
a much smoother reaction process. Obviously this discrepancy is due 
to solvent effects [72J. Preliminary dynamical calculations on the 
ab initio surface indicate the tendency that increasd translational 
energy enhance vibrational non-adiabaticity; e.g. the product vibra­
tional distribution approach more and more a statistical distribution 
with increasing translational energy. 
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E(kcal/(mol) 

-60 

-70 

-80 

- 90 

-100 

G( grad) 

110 

100 

90 

6 

R~O 2 3 4 5 6 7 R(a ) 
Minimal Energy Reaction Path 0 

95 

Fig. 10 Ab initio calculated electronic potential energy E and inversion 
angle 8 (angle H-C-X, cf. Fig. 9) along the minimal energy 
reaction path for the SN2-reaction H-+H3C- H + H-CH 3+H- . 
The arrows at the right han~ side denote the corresponding 
asymptotic values (R +(0); R' = R = 0 corresponds to the loca­
tion of the transition state complex. 
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pR 

5 

3 

1 

Fig. 11 

E - E B (kcal/(Mol) 
Total reaction probability pR = ~ ~ pR v'v v'v 

for the model SN2 

reaction H + R-H(v) + H-R(v') + H as a function of the energy 
difference E_EB. E and EB denote the total energy and the 

B If -value of the electronic energy barrier E = E (CH 5), respec-
tively. 

Fig. 11 displays the total reaction probability (from all reactant 
to all product states energetically accessible) for the SN2 model 
reaction (cf. eqs. (20), (21)) 

H + R+H(v) + H-R(v') + H (22) 

as a function of energy. The onset of the probability is found to be 
lower by about 2 kcal/mol compared to the electronic potential energy 
barrier due to vibrational bonding and tunnelling effects. This result 
demonstrates, that it is not sufficient just to know the potential 
energy surface but dynamical effects have to be incorporated in the 
theoretical treatment in order to calculate such an important parameter 
like the reaction barrier of a chemical process. As in the present 
model only the bond-breaking and bond-forming C-H distances are taken 
into account explicitly the vibrational bonding effect will be even 
greater considering all degrees of freedom in the system. 
More studies are in progress considering different attacking and leaving 
groups Y and X, respectively, in order to investigate their influence 
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on the mechanism and dynamics of the system. It is absolutely clear 
that this kind of treatment is only a very crude approximation, but 
nevertheless it should provide a useful and illuminating look into 
the details of these important organic chemistry reactions. In the 

97 

light of classical trajectory calculations [73J as well as gradient 
analysis [74J the approximation to fix the C-H distances seems to be 
justified, whereas the angular degree of freedom is considerably involved 
in the reaction process, which contradicts our assumption of a structure­
less central CH3 group. Therefore a generalization of the hyper spherical 
treatment to polyatomic reactions [75J or a combination of two hyper­
spherical (representing the bond-breaking and bond-forming degrees 
of freedom) and 3N-S ordinary normal coordinates (serving as a kind 
of energy storage medium) [76J would improve the quality of these 
investigations considerably. Furthermore this project represents another 
example [77J, that ab initio potential energy surfaces can be used 
in dynamical studies. Since the quality of electronic structure calcu­
lations is improving more and more, it is the author's op inion, that 
both fields, electronic structure theory and molecular dynamics theory, 
should come into much closer contact to design efficient and, for the 
purpose of dynamical treatments, satisfying strategies to improve mole­
cular potential energy surfaces. Similar collaboration would be useful 
on other problems, too; e.g. ab initio calculations are able to provide 
electronically non-adiabatic coupling elements [7SJ and, just recently, 
pioneering work has been presented including more than one electronic 
potential energy surface in collinear reaction processes [&3,79J. 
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6. CONCLUSION 

A variety of new and exciting phenomena have been presented resulting 
from molecular reaction dynamics studies in the frame of hyperspherical 
coordinates. The rule of translational energy conservation in heavy­
light-heavy atom reactions based on the effect of vibrational adia­
baticity could be related to highly in~erted product vibrational dis­
tributions in corresponding exogetic processes. Oscillating reactivity, 
interpreted as classical multiple encounters, may contribute to the 
remarkable non-Arrhenius behavior of reaction rates for some hydrogen 
transfer reactions in a close analogy to oscillatory electron transfer 
reactions. Resonance features have been discovered and consequences 
of their mode specific decay have been discussed providing a challenge 
for experimentalists to develop methods and experiments for the 
fascinabng field of "spectroscopy of the transjtion state", which 
to the authors opinion will be one of the most exciting and fruitful 
problems in future reaction dynamics. A new dynamical kind of chemical 
bonding, vibrational bonding, was discovered which still needs to be 
verified and investigated in more detail by experiments as well as 
theory. Finally a litle step has been undertaken in the direction of 
investigating the chemically very important class of bimolecular nucleo­
philic substitutions (SN2-reactions) by combining molecular structure 
and molecular dynamics theory. 
The author would be glad, if this little review will be able to transfer 
some of his own fascination of molecular reaction dynamics theory onto 
the reader and it is his greatest hope, that it may stimulate experi­
mentalists to new and interesting experiments. 
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ABSTRACT. We review the theory and applications of the Bending­
Corrected Rotating Li near Mode 1 (BCRLM) to problems .in the quantum 
description of reactions between atoms and diatomic molecules. 

1. INTRODUCTION TO BCRLM 

The Bending··Corrected Rotating Linear Model (BCRLM) is a straight· 
fOl'ward extension of the Rotating Linear Model (RLM) proposed in the 
late 1960's by Child,' Wyatt,2 and Connor and Child.) The RLM con· 
strains the dynamics of three dimensional (30) collisions by requiring 
the molecular species to maintain an orientation collinear with the 
atomic species during the course of collision. The classical dynamics 
of three particles on a line was considered prior to this by Jepsen and 
Hirschfelder,~ and more recently by Agmon,S but the BCRLM is an out­
growth of the model presented by the authors of Refs. 1-3. 

By neglecting the two internal rotational (or bending) degrees of 
freedom, the mathematical description of the rearrangement collision 
event is simplified so extensively that the computational treatment of 
reaction dynamics within this model is routinely possible. Tlds compu­
tational simplication arises because the rotational motion of the line 
of collision is treated analytically by a partial wave expansion of the 
scattering wavefunction. Consequently, the computational effort reduces 
to that of a family of collinear reactive scattering calculations, one 
for each partial wave term in the wavefunction expansion. 

The obvious shortcoming of the RI~ is its neglect of the internal 
rotational degrees of freedom. In comparison to the asymptotic vibra­
tional degrees of freedom, the asymptotic rotational degrees of freedom 
impose a relatively modest constraint on the energetics of collision, 
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but they correlate adiabatically to higher energy bending states when 
the collision partners are close together. The results of the earliest 
accurate 20 and 3D coupled-channel calculations6-1~ for the H+H2 re­
action showed that these bending degrees of freedom are important in 
determining the energetic position of the reaction threshold. Conse­
quently. Walker and Hayes1S implemented the suggestion made in Wyatt's2 
paper, and supplemented the RLM wi th an ~ J!()_C, conection to include the 
adiabatic effects of the lowest energy bending degrees of freedom, 
producing the bending-corrected RLM, or BCRLM. Including the bending 
degrees of freedom as an effective potential within a collinear reactive 
framework was first described by Mortensen and Pitzer 16 ,17 and is now 
widely used by Bowman and coworkers18-2~ in reduced dimensionality 
theories of reaction. and by Truhlar and coworkers 2S - 32 in variational 
transition state theories of reactions. 

In practice, all BCRLM calculations to date have been done so that 
only the lowest energy (i.e .. zero point) bending state has been ex 
plicitly treated. At this level. the additional computational effort 
for a BCRLM calculation instead of an RLM calculation is minimal it 
is necessary only to compute an effective collinear potential energy 
surface which is the sum of the usual collinear potent.ial and the 
bending zero point. energy determined at each collinear geometry. In 
principle, however, a full treatment of the bending degrees of freedom 
within the adiabatic approximation would require a family of RLM cal­
culations, one for each bending state. 

Another obvious defect of both the RLM and BCRLM models is that 
they assume a collinearly dominated reaction intermediate. While the 
potential energy surfaces for many collision systems do favor collinear 
geometries. there are of course many reactions which do not. Extensions 
of the BCRLM model are therefore needed to treat noncollinear systems. 
perhaps along the lines defined by the Carrington and Miller)) reaction 
surface Hamiltonian theory. 

In the next section (Sec. 2), we will develop the theory of the 
BCRLM. We discuss the solution of the coupled-channel equations in both 
natural collision coordinates3~-)8 and hyperspherical coordinates.39-~7 
Both coordinate systems are widely used to treat collinear reactive 
scattering processes. We will discuss the projection~5,~8 of the hyper­
spherical equations on coordinate surfaces appropriate for applying 
scattering boundary conditions and review the definition of integral and 
differential scattering cross sections in this model. 

In Sec. 3, we will briefly review applications of BCRLM calcula­
tions to reactive systems and discuss in Sec. 4 some possible future 
development.s which may be made through extensions of the method. Sec. 5 
then concludes with a summary. 

2. THEORY 

In this section, we will present a mathematical description of the 
BCRLM. We will define the classical and quantum mechanical Hamiltonian 
for the translational, vibrational, tumbling, and bending degrees of 
freedom for the system. After expanding the scattering wavefunction in 
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a total angular momentum representation, we obtain coupled--channel equa­
tions which may be solved numerically subject to reactive scattering 
boundary conditions. The solution of these coupled-channel equations at 
a fixed total scattering energy E and angular momentum J determines the 

scattering matrix, ~J(E). From the scattering matrix, we can then com-­

pute reaction probabilities, integral and differential cross sections, 
and reaction rate constants. 

2.1. Internal Coordinate Systems 

We restrict ourselves here to the atom-diatom reactive collision 
process defined chemically by the equation 

A + He(m) ~ AB(n) + C, (1) 

in which A and BC are the reactant atom and molecule respectively, and 
AB and C are the product molecule and atom. The vibrational quantum 
numbers of the reactant and product molecules are m and n respectively. 
We further assume that the collision dynamics is represented by the 
motion of the A, B, and C nuclei on a single Born Oppenheimer electronic 
potential energy surface, at energies below the threshold for collision 
induced dissociation. The atomic masses are defined as rnA' mB, and mC' 

Coupled-channel equations arise in scattering dynamics when all but 
one of the degrees of freedom of the system are expanded in a square 
integral basis (of "channels"). The coupled-channel equations are then 
solved numerically and describe motion in the unbound, or scattering 
coordinate. The principal difficulty of any reactive scattering calcu­
lation is that the coordinate system which best describes the asymptotic 
motions of reactants differs from the coordinate system best suited for 
products. Consequently, computational methods commonly use different 
coordinate systems in different parts of configuration space. Boundary 
conditions are expressed in terms of Jacobi coordinates (sometimes 
refel'red to as "cal'tesian coordinates"), where in the A+BC arrangement 
r BC is the internuclear sepat'at.ion of the BC molecule. 

( 2) 

and RA,BC is the distance between the atom and the center of mass of the 

BC molecule, 

(3 ) 

-> ~ -> In Eqs. (2) and (3),the vectors rA, r B, and rc locate the atoms A, B, 

and C, respectively, relative to an origin of a space-fixed Cartesian 

reference frame, and 111 denotes the length of the vectot' 1. Equations 
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analogous to (2) and (3) are obtained for the B + AC and C + AB arrange 
ments by cyclically permuting the A, B, and C labels, and define the 
appropriate Jacobi coordinates for other asymptotic confiy,nrations. 
Because the RLM and BCRLM consider only collinear or near 'collinear 
reaction intermediates. only a single arrangement of product species is 
possible (as in Eq. (1)), and so we need tb consider only the Jacobi 
coordinates for A+BC geometries (the ~ arrangement) and AB+C geometries 
(the Y arrangement). We then define mass~scaled Jacobi coordinates so 
that motion in both rand H occurs with the same effective reduced mass. 
These coordinates 

R 
~ 

r 
~ 

C 4 
ct 

C 
~ 

C 
~ 

al'e 

-1 
RA BC 

r BC 

R C 1 
RC,AB Y ., 

r C r AB , 
'Y 'Y 

Early treatments of collinear reaction dynamics addressed the 
coordinate problems associated with different asymptotic arrangement 
channels by usjng natural collision coordinates. 34 - 38 The generic 

M 

-------- ...... "' ....... 

II 
I 

o 

(4 ) 

Figure 1. Collinear configuration space, subdivided into regions ([-[V) 
in which different coordinate systems are used. Regions I and II are 
for reactants, and III and IV are for products. M is a matching line 
between reactants and products, and TC is the or 1 glll of the pol ar 
natural collision coordinates used in Regions II and III. 
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feature these curvilinear coordinate systems share is that they deform 
smoothly from the Jacobi coordinates of reactants to the Jacobi coor-­
dinates of products. In practice, BCRLM calculations lS have used 
natural collision coordinates~9 which can be visualized with the aid of 
Fig. 1. The NCC are actually plane polar coordinates with an origin 
located at a turning center labelled TC in Figure 1. The TC has 
projections R~ and r~ on the 01 axes and R~ and ~ on the .., axes. For 

computational purposes, the collinear configuration space (between the 
ROI and R.., axes in Fig. 1) is divided into four regions. Regions I and 

II (reactants) are separated by a matching surface M from regions III 
and IV (products). In region I. containing geometries in which ROI>R~, 

and 
-1 

tan (rOl/ROI ) < \POI' Jacobi cOQrdinates ROI and rOl are used. Sim.ilar-

ly, in Region IV, Jacobi coordinates R.., and r.., are used. Natural col-

lision coordinates uOl and VOl are used for configurations in Region II, 

within the triangle defined by (0, TC, R*); coordinates u 
01 .., 

and v are .., 
used in Region III, within the triangle defined by (0, TC, ~). In 

terms of R and rOl , u and v are 
01 01 01 

* R R 7101°01 
sinT 

01' a a 

* r r - 7101° OICOS T 01' 01 01 

7101 
1 + VOl/OOl ' 

T 
01 

11:/2 - ~OI - UOl/OOl ' 

(5 ) 

Equations analogous to Eq. (5) define R.., and 1'.., in terms of u.., and v..,' 

Natural collision coordinates defined in this way are convenient 
for many reactive systems but have the drawback that one must decide 
where to locate the turning center TC. Physical considerations require 
that it be placed far away from the origin, in a region of sufficiently 
high potential energy that the scattering wavefunction, once determined, 
will be negligibly small there. This requirement immediately implies 
that these coordinates are unsuitable at scattering energies above the 
threshold for collision induced dissociation. 

A second problem is encountered for "heavy--light--heavy" (HLH) 
systems in which the mass of the transferred atom B is small in com­
parison to the masses of A and C. In such cases, the skew angle 
(~OI"'~OI+~"" see Fig. 1) becomes very small, and tunneling between the 

reactant and product valleys may occur at large distances, requiring 
that TC be located far from the origin. When this is done, the vibra­
tional motion of the system is poorly represented by the v coordinate. 
Consequently, slices of the potential at fixed values of u generate 
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broad effective vibrational wells whose shape changes rapidly with u. 
As a result, a large basis of target functions in the v coordinate is 
required in the coupled-channel equations at each of a large number of 
integration steps in the coordinate u. 

It is more economical to use hyperspherical coordinate systemsi9-~7 
for HLH systems. For collinear configurations, these coordinates are 
also plane polar coordinates, but the turning center is located at the 
orlgln. These coordinates have had a wide application to collinear re'~ 

actions,9o-s1 especially those of the HLH variety. The hyperspherical 
radius p is independent of the arrangement channel index 

2 
P R 2 + 2 ., r., o ~ p < co, 

and the hyperspherical angle depends in a simple way on ~ or ., 

tan~ = r~/R~, 

tan(\~.,-~) = r.,/R." 

(6 ) 

(7 ) 

Whether the numerical problem is solved in natural collision 
coordinates or in hyperspherical coordinates, we still must express 
boundary conditions in the appropriate asymptotic Jacobi coordinates. 
[n the natural collision coordinates of Fig. 1, there is a common boun­
dary between Regions I and II in the ~ coordinates, between Regions III 
and IV in ., coordinates, and between Regions II and III separating 
arrangement channels. In a hyperspherical approach, however, the 
boundaries between regions which employ different coordinates do not 
match, as in Fig. 2. Consequently, we must numerically project the 
solutions of Schrodinger I s equation inside the hyperspherical I'egion 
onto constant R~ and R., surfaces. This projection is more complicated 

in comparison to the analagous but analytic projection procedures~9 
required in the NCC approach. This asymptotic matching requirement may 
be regarded as a minor disadvantage of hyperspherical coordinates. 

2.2. The Classical Kinetic Energy 

The classical kinetic energy of an A+BC system in a 3D center-of·-mass 
frame may be written in mass-scaled ~ Jacobi coordinates as 

where ~ is a reduced mass common to all arrangements (because of the 
mass scaling of Eq. (4)), 

(8) 

(9) 
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In Eq. (8). e and t are the spherical polar angles of the 1 vector in a a a 
a space-fixed coordinate frame (see Eqs. (3) and (4». and ta and va are 

the corresponding spherical polar angles of the 1 vector. 
a 

The essence of the approximation in the RLM is to require that both 
.... 
r a and Ra be parallel. and hence their spherical polar angles are equal . 

The atoms A. B. and C now lie on a line 
angles are defined as e and t. so that 

e e = a a ., 

ta = t., 

in 3D, whose spherical polar 

(10 ) 

Consequently. the RLM kinetic energy is simpler than Eq. ( 8 ). name I y • 

('2 
·2 (R2 r2)(e 2 sin2a ~2)], T = J.I/2 Ra + r + + t-
a a a 

('2 ·2 (R2 r2) (e 2 sin2a ~2)] . = J.I / 2 R., + r + + + ., ., ., 
(11) 

In natural colI ision coordinates, the Rl.M k.i netic energy becomes 

T = J.I/2 T7 u + v + P (9 t- sin 9 t ) , [ 2,2 ·2 2·2 2·2 ] (12) 

and in hyperspherical coordinates we obtain 

r' 2 2·2 2 · 2 2·2 1 T ~ J.I/2 ~ I- P ~ + p (a + sin 9 t ) . (13) 

2.3. The Quantum Mechanical Kinetic Energy Operator 

To obtain the quantum kinetic energy operator. we first rewrite the 
classical expression in terms of momenta conjugate to the coordinates, 
and then follow the prescription described by Podolsky62 or Margenau and 
Murphy.CJ In a-channel Jacobi coordinates, we obtain 

(14 ) 

where J is the total angular momentum operator for the system 

[ 1 a sin 
a 1 

~~-l .]2 _ fl.2 ---
9 

+ sin e aa aa sin2 9 at 2 • ( 15) 

In natural collision coordinates, T becomes 
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TRLM 
1'12 

[ 
1 a p2 a a l1P2 a 

1 
.)2 

+ + 

2/-1 112P2- au au l1P2 av av 2/-1p2 

and .in hyperspher.icaJ coordinates we obta.in 

TRLIII 
1'12 ( __ = ~_ P 3 ~_ + ~ ~) ] .)2 

+ 
2/-1 3 ap ap 2 a~2 2/-Ip2 

p p 

In the RLIII, the Hamiltonian operator is simply 

where V1D(H,r) is the electronic potential energy hypersurface, for 

collinear geometries. Of course, we assume VID may be evaluated as 

needed in any of the required coordinate systems. 

2.4. The Bending Hamiltonian 

(16 ) 

(17) 

(18 ) 

We next elaborate upon the RLIII to account approximately for the 
neglected bending degrees of freedom. Bending is treated as if it is 
adiabatically separable from motion in the R and I' coordinates, as if 
bending time scales were faster than time scales for translational and 
vibrational motion. The true time scales associated with these motions 
almost never satisfy these conditions (especially asymptotically), ex-­
cept for some reactions with highly constrained linear intermediates and 
at collision energies near the reaction threshold. Nevertheless, we 
include the bending approximation to improve the threshold behavior of 
reactions, hoping that in some average sense, it may recover some of the 
features expected from the internal rotational degrees of freedom in a 
more accurate 3D theory. However, the two degenerate bending modes 
correlate to zero-frequency modes asymptotically, and not to the proper 
diatomic rotational levels. Consequently, we cannot identify the reo 
suIts of a BCRLM calculation for a specific set of bending states with 
those of a 3D theory for specific rotational transitions. However, as 
we describe later, we may identify bending avel'aged64 BCRLM results with 
rotationally averaged 3D results. 

Following Garrett and Truhlar,2s we define the angle Y (not to be 
confused with the arrangement channel index) as the bond angle between 

the -;BC and ;AB vectors defined by Eq. (2). For small displacements in 

the Y angle, we may define a bending Hamiltonian for each (N,r) or (p,~) 

1'12 a2 
=--- -- + Vbend(Y;R,r), 

2Ib ay2 

where Ib is a moment of inertia, 

(19a) 
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(19b) 

The eigenvalues of this Hamiltonian are €A (R,r), 

~ ",bend = (R )ilibend 
bend A €A ,r TA (20) 

and form an effective potential which, when added to the collinear poten­
tial surface, forms the BCRLM potential. We have therefore 

(21) 

-A1A z 
HBCRLM = TRLM + VA1A2 (R,r). (22) 

The bending eigenvalue functions appear twice in Eq. (2]) because of the 
degeneracy of the two bending modes of a linear triatomic molecule. In 
practice, BCRLM calculations have been reported15,'~-71 only for an 
approximate form of the bending eigenvalue function, and for Al~A2=O. 
The approximation used15 is expressed in natural collision coodinates, 

(23) 

where Vo is the value of v where the potential V1D (u,v) has a minimum at 

fixed u. This approximation has been used for computational convenience 
but may have several disadvantages. The first problem1s arises because 
the approximation is tied to the definition of the natural collision 
coordinates. This dependency arises because the position of the vib­
rational minimum Vo depends slightly on the location of TC, and lines of 

constant u are not perpendicular to the minimum energy path from the 
saddle point toward reactants (or products). A second problem arises in 
hyperspherical coordinates, because Eq. (23) becomes quite cumbersome to 
implement, and indeed, the effective potential becomes multivalued at 
Te. A third problem arises at subthreshold collision energies, where 
collinear calculations show that significant corner-cutting of reactive 
flux occurs to the concave side of the minimum energy path. It has been 
pointed out72 that in this region, the approximate potential is likely 
to be larger than €A: consequently, the barrier to tunnelling may be 

overestimated. The simple solution to each of these problems is to 
avoid the approximation Eq. (23) altogether. 

2.5. The Coupled-Channel Equatibns 

The angular momentum operator in Eq. (15) suggests that the overall 
rotational degrees of freedom can be expanded in partial waves using 

o spherical harmonics YJ(a,~), so that 
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2 A~ 'l'~A,A2(H.r) y~(a.<I». 
.1=0 

(24) 

where A, and A2 label adiabatic bending states. J is the total angular 
momentum quantum number, and m labels the initial vibrational state. 

The coefficient AJ is chosen to sat i sfy asymptotic boundary conditions 
m 

in Sec. 2 . 8. We next expand the coefficient functions 'l'.1A,A 2 (R,r) as 
m 

appropriate for each coordinate system. In Jacobi coordinates, we have 

M N 

p - l 2 (25) 

i=1 n=1 

and in natural collision coordinates, we have 

M N 
• .1A,A 2 (R,r) - 1 1/2 2 ~ (. ) ( ) "m = P 17 g u ; ] J A , A 2 . G v ; I JA , A 2 , nm n 

(26) 

i =l n =1 

and in hyperspherical coordinates, we have 

M N 

'l'~A,A2 (R,r) = p - 3 / 2 2 2 hnm(p; iJA,A 2 ) Hn(¥' ; iJA,A 2 )· (27) 

i"1 n=1 

In Eqs. (25)-(27), we subdivided configuration space into sectors. each 
labeled by the index i; the boundary between sectors in each coordinate 
system is formed by curves on which the propagation variables (R, U, and 
p, respectively) are constant. Since the wavefunction expansion may 
change from sector to sector, the functions f, F, g, G. h, and H depend 
parametrically on the i index. as well as the total angular momentum 
index J and the adiabatic bend quantum numbers A, and A2 • 

The functions F, G. and H are determined by solving a reference 
vibrational Hamiltonian defined at the center of each sector, 

€ ~ ( iJA, A 2 ) 1 G (v; iJA 1 A 2) = 0, 

€ H ( iJA 1 A 2 ») If (I" ; iJ A, A 2 ) 0 . 
n 

(20) 

(29) 

(30) 
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The actual choice of the reference vibrational potential depends on the 
particular application. In the RXNID program,?· a quadratic reference 
potential is chosen4 • in the NCC and Jacobi coordinate systems, and the 
functions F and G form a harmonic oscillator basis. In hyperspherical 
coordinates, we use the entire potential and determine the basis H by a 
finite difference approach. 

Combining Eqs. (24)-(30) with Eqs. (14)--(18), we obtain the coupled­
channel equations for the propagation functions f (R), g (u), and nm nm 
hnm(p), which after suppressing the parametric labels ( iJA 1 A 2 ) are, 

N 
d2 

f (R) L (~F)nn' f , (R), 
dR 2 

nm n m 
n'=O 

(31) 

N 
d2 

gnm(U) 2 (~G)nn' gn' m (u) , 
du2 

n'=O 

(32) 

(33) 

where in Eqs. (31)-(33) the coupling matrices (we denote matrices by a 
double underline) are 

fl2 
-- (gF )nn' 
2p 

(€ -E)6 ,+ n nn 

+ <F IV, , 
n "1"2 

3 6 + 
402 nn' 

[ € - E + ~[J(J+l) + -43]]6nn , + 
n 2pp2 

+ <HnIV - VHIH n ,>· 

(34) 

(36) 

When we change the target basjs (Eqs. (28)-(30» between two adjacent 
sectors, we must ensure that the wavefunction and its derivative are 
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continuous across the sector boundary. Enforcing this requirement 
def i nes overlap matri ces ~ in each coordj nate sys tem, and fOI' Jacobi 

coordinates we obtain 

'" [ l1v(i,i+l)] ,f, (R. 1;i+1), L =r nn n m 1+ 
n' 

[l1 D U,i+1)] , 
~ [. nil 

<F (r;i)l¥ (r;i+1», n n' 

(37) 

(38) 

where we have suppressed the labels (JA 1 A2 ) on the f's. ¥'s. and T's. 
In Eq. (37). R~ and R! are the values of the propagation coordinate at 

I 1 

the inner and outer boundaries of sector i. Equatiolls analagous to Eqs. 
(37)-(38) also hold in the Nce and hyperspherical coordinate systems. 

2.6. Solving the Coupled~Channel Equations 

The coupled -· channel equations (Eq. (31), (32), or (33)). may be solved 
in a variety of ways. but we usc the R -matrix propagation method of 
Light and Walker. 49 ,74-76 We will review this method briefly in this 
section. as applied to the (:oupled - channel equations ill Jacobi COOl' 

dinutes. The approach is essentially the same in other coordinates. 
The coupli ng matrices Q (Eqs. (34) - (36)) are eval uated at the centcl' of 

each sector. and are assumed to be constant across the sector. The rea] 
symmetric 9 matrices are diagonalized by a real orthogonal matrix U. 

(3H) 

where uT is the transpose of U. The matrix U transforms to a locally 

uncoupled representation. and defines new propagation functions f (R;i) . nm 
in each sector, 

!(R;i) = ~(i)·[(H;j). 

The global R matrix, between the initial sector and sector i, is 

I!l (i) 

~3 Ii) 

~2(i) 

~4 (j ) 

The sector R matrix relating the values oj' tht~ locally uncoupled 
functions to derivatives within sector (i+1) is 

[ ;IR~J "H) 

1 I [1 (i+1) [2(i+1) 

1 
[ -~'(R~ ' J;iH) ~ 1 + 

N + 
,\(RH1;i~1) [3(i~1) r4 ( i + 1 ) f'(R i +1 ;i+1) 

(40) 

(41) 

1 
(42) 
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where for open channels (A2 S 0) we have 

= 0 ,[--IA (i) 1-1cot{~R_IA 1-1) I)] . nn n' 1 n 

=0 ,[-IA (i)I-\SC{~R.IA (j)I}]. nn n 1 n 

and for closed channels (A 2 ~ O} the sector R matrix is 

o ,[IA (i)I--lcoth{~R.IA (i)I}]. nn n 1 n 

[1'20)] ,=[r3 (i)] ,=0 ,[IA (i)l-lcsch{~R.IA (ill}). = nn = nn nn n 1 n 

In Eqs. (43) - (44). ~R. is the width of sector i. The transformation 
1 

matrix from the locally uncoupled representation of sector i to the 
locally uncoupled representation of sector i+1 is 
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(43) 

(44) 

(45) 

Assuming we know the global R matrix of Eq. (41). we can now compute the 
global R matrix for sector 1+1 using the sector R matrix of Eq. (42) and 
the overlap matrix of Eq. (45). The R-matrix recursion relations are77 

~1 ( i + 1 ) 

~2(i~1) 

~4(i+l) 

~(i+l) 

~1 (i) ~2 (i ) . ! (i. i + 1). ~ (i -l 1) . JT ( i • i + I)'!h (j ) . (46) 

~!(i+l) ~2(1)'!(i.i+I)'~(i+l)·~2(i+l). (47) 

~4(i+1) ~3(i+1)·!(i+l)·~2(i+l). 

[~l(i+l) - !T(i,i+l)·!4(i)'!(i,i+I)]-1. 

(48) 

(49) 

By repeatedly applying Eqs. (46)-(49), the coupled-channel equations are 
solved by propagating towards asymptotic regions of configuration space. 
We also note76 that, if desired, we may propagate the R-matrix inverse 
(the log-derivative or L matrix) wjth equations essentjally the same as 
Eqs. (46)-(49), where only the definition of the sector L matrix is 
changed. At the conclusion of the propagation. we compute the scat­
tering matrix ~ by enforcing boundary conditions. 

In the RXNID program,73 both the Nee and Jacobi coordinate systems 
are used. We begin at the collinear matching surface (M in Fig. 1) with 
a sector R matrix as the first "global" R matrix, and propagate all four 
blocks of the R matrix outwards toward the (Jt.-channel asymptotic region, 
and then switch to (Jt.·Jacobi coordinates when R(Jt.=R~. For asymmetric sys--

terns (mA;lI:mC)' propagation resumes at the matching sllt'face, and proceeds 

toward the Y-channel asymptotic region, switching to y-Jacobi coordi­
nates when R =R*. The (Jt.- and y-channel R matrices are then combined and 

Y Y 

boundary conditions enforced. 
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In hyperspherical coordinates. propagation begins at a small hyper­
spherical radius. and continues to larger hyperspherical radii. Because 
the potential is repulsive at small radii. only regular functions at the 
origin are physically allowed. and in this case it is necessary to prop­
agate only the ~4 block of the R matrix. As p increases. the angular 

potential evolves from a single well to a double well. one each for the 
reactant and product molecules. At energies below dissociation. the 
barrier between the two wells becomes large and broad enough that the 
eigenstates of the angular potential are completely localized within 
each well. For symmetric systems (mA~mC)' we may obtain degenerate 

pairs of delocalized functions. but these are easily localized (i.e .. 

"'(local) "2- 1I2 ["'1±"'2J). Once the angular eit'.enstates are localized. 
we may continue propagating in Jacobi coordinates. or if appropriate. we 
may enforce boundary conditions. However. in either case we first 
pI'oject the hypersphel'ical solutions onto constant Rot (and R'Y) surfaces. 

2.7. Hyperspherical Projection 

Asymptotic boundary conditions are most conveniently expressed in Jacobi 
coordinates. and so if we solve the coupled-channel equations in hyper­
spherical coordinates. we first express our solutions. defined on a 
hyperspherical radius. on the appropriate Jacobi surfaces (see Fig. 2). 

a 
Figure 2. Collinear configuration space, showing the projection of 
hyperspherical solutions onto Jacobi surfaces. The solid arcs are the 
inner and outer boundaries of the last hypersphel'ical sector, and the 

dashed arc is the center of the sector. The Jacobi surfaces RP and RP 
ot 'Y 

intersect the dashed arc at the vibrational minima. 
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We describe in this section a procedure which determines a two-surface R 
matrix (four blocks) from the single surface hyperspherical R matrix. 
The procedure we describe is essentially that of Bondi and Connor.~S,~8 
except for minor differences in strategy (they evaluate asymptotic 
boundary conditions directly on the final hyperspherical radius). We 
begin by recalling the definition of the final hyperspherical R matrix, 

(50) 

where here M labels the final hyper spherical sector (see Eq. (27)), and 
PM is the value of P at the outer boundary of this sector. Within the 

last sector, the propagation functions (and their derivatives) may be 
expanded in sine- and cosine-like solutions. so that 

~(p;M) 

~' (p;M) 

~ (p ; M) • ~ + ~ (p ; M) • ~M' 

~'(p;M)'~ + ~'(p;M)'~M' 

(51) 

(52) 

where ~ and ~M al'e undetermined coefficient matrices, constant within 

the final sector, which depend on asymptotic boundary conditions. The 
diagonal matrices ~(p;M) and ~(p;M) are 

s (p) sin[kM(p-1>II))' channel n open. 
n n 1'1 

sinh[k:(p-PM)], channel II closed. 

cn (p) 
M 

cos [kn (P-1>M) ] • channel n open, 

M 
cosh [k n (P-1>M)] • channel n closed, 

where PM is the value of P at the center of the final sector. and 

r kM12 I ( ) I L nJ = QH nn . 

By substituUng Eqs. (51) and (52) into Eq. (50), we can relate the 
coefficient matrices A and ~. 

~M' ~M' 
+ H + -1 + H + 

[~(PM) - B '~'(PM)] • [S(PM) - ~ 'S'(PM)], 

(53) 

(54 ) 

(55) 

(56) 

We now require the right hand sides of Eqs. (25) and (27) to agree on 
p 

the projection surface Ra Ra (see Fig. 2). 
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- ]/2 2 ph, (p ; M) H ,( II' ; M ) n m n "f (J/)F(r), L. nm ot n ot 
(57) 

n' n 

and a similar equation must also hold for the derivatives 

a (p-1/2" h , (p;M) 1\ ,(II';M)] ~ "f' (RP ) F (r ). (58) 
- - L. n m n L. nm ot n ot 
a Rot n' n 

Two additional equations. similar to Eqs. (57) and (58), also hold on 
P * the product surface R.., We next multiply by Fn(rot ) and integrate ovel' 

rot (and over I'.., on the product surface). and usc Eqs. (51) and (52) to 

obtain equations for thl! prOpaf~i1t .ion functions in Jacobj coordinates, 

I f(T/') 

] [ 
1(1) 0 

[ 
1 (2) 0 

~ ot ' 'at , ·ot 
(5~j ) ]A 1 • ~M' 

fol) 1 (1) 
=M 

1(2 ) 
0 0 

~ 'Y ~.., "'Y 

[ 
f' (HP ) 

[ 
1 (3) 0 

[ 
1(4 ) 0 ]~M = ot ~ot " ot (fiO) - ./1 1 

f' (ll) 1(3) 
~M 

1 (4) 0 0 
= 'Y ''Y ,-.., 

when, the ot -- chntlnel matchill}~ mal!- ices are defined (sllPPl'essing the M 
label on the s, c, and H functions) 

[.I~1)]nn' 
00 

10 F (I') - 1/2 () H ('P) d n 0/ p sn' P n' I·ot · (fi 1 ) 

[ I (2)] 
~ot nn' 

00 J -1/2 

O
F (1' ) p C ,(p) H ,(II') drot' 

n ot n n 
(fi2) 

00 f - 1/2 
O

F (r ) p ' {s ' , (p) " ,( 11') cos'P 
n ot n n 

- 1 
(2p) sn' (p) lin' ('P) cos'P 

-1 
.. P s n' (p) Il~, ('P) s i n'P} dr ot 

[ r (4)) 
' ot nn' 

foo -- 112 
O

F (r ) p {c' , (p) II ,( 'P) cos'P 
n ot n n 

1 
(2p) cn ' (p) HIl , (V') cos¥' 

- 1 
pc, (p) II', ('P) s i !l'P} dr. 

n n ot 
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h d · I I k f h (1) (2) (3) d (4) . . T e off- lagona b oc sot e!. !. !, an! matrIces In Eqs. 

(59)-(60) are zero because we have assumed that the hyperspherical 
angular eigenfunctions have been localized in the reactant and product 
potential wells. Referring back to Eq. (41), we can define an R matrix 
for the Jacobi coordinates 

[~::~: I [:[:~ 1 [~:::~: I 
Combining Eqs. (59) and (60) with Eqs. (56) and (65), the Jacobi N 
matrix is determined in terms of the matching matrices as 

( (-if) ) 

(66) 

where in Eq. (66) we have implicitly ananged the rows and columns of X 

to agt'ee with the labeling implied by Eqs. (59)-(60). Having determined 
the R matrix in Jacobi coordinates, we can now either continue the 
propagation or apply asymptotic boundary conditions. 

2.8. Boundary Conditions 

The coupled-channel equations 
values of R (or R ), because 

Ot "f 

(Eqs. (31) and (34» decouple at large 
in the limit that p ~ R, we obtain 

2 
1'1 (D) 
--- ~F nn I 
2j-1 

[ 1'12 oJ 
~ €n - E " --2[J(J+l)+I] 6 I • 

2j-1R nn 
(87) 

The form of Eq. (67) implies that the fUllcti ons f nm (R; J) wi 11 approach a 

linear combination of Bessel functions of unusual order, because of the 

J(J+l)+1 term. In our calculations, we have ignored the additional I/R2 
centrifugal potential in applying boundary conditions, in order to use 
the more familiar spherical Bessel functions. Our experience has been, 
and others have shown,70 that this approximation has a small effect on 
the magnitudes and phases of the final S-matrix elements. We therefore 
require the functions f (R;J) to go asymptotically) as 

nm 

whel'e 

the S 

first 

k 
n 

f (R;J) - -ik RfA,(l)(k R)6 + A,(l)(k R) (k /k )--1I2s.1 ], (68) 
nm n l J n nm J n m n nm 

is the channel wavenumber fl2k~ ~. 2j-1(E-€n)' S~m is an element of 

matrix, and the functions A,J are srilierical Hankel functions of the 

and second kind, which themselves have the asymptotic behavior 

(6H) 

The wavefunction of Eq. (24) must satisfy the boundary condition) 
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),1),2 .... ) "" J '1'm (R,r,9,,,, - F (r )exp[ik R cos9 + ma ma O! 

+ R- 1 " exp[ik R J F""(r ) A (9,4», (70) a L. nan a nm 
n 

when Ra is large, 

-1 2 00 R exp[ik ,R J F ,(r ) A , (9,4», .., n.., n .., n m (71 ) 

n' 
when R.., is large. 

00 
In Eqs. (70)-(71), the functions F (r) are the eigenfunctions of the 
asymptotic vibrational Hamiltonian. and A(9,4» is the scattering 
amplitude. Using the asymptotic form of f defined in Eqs. (68) and 

nm 
(69) in the right-hand-side of Eq. (24). we determine the expansion 

coefficients A~ in Eq. (24) and the scattering amplitude Anm by equating 

with Eqs. (70) and (71). The coefficients A'] are determined by equating 
m 

the coefficients of the incoming spherical waves. obtaining 

AJ = k -1 i J +1 [K(2J+l)J~/2 
m m 

(72 ) 

The scattering amplitude is similarly determined by equating the 
coefficients of the outgoing spherical waves. after first expanding Anm 

in Legendre polynomials. We obtain! 

A (9,4» = i(4k k )-1/2" (2J+l) (0_3J ) PJ(cos9). (73) 
nm n m L. nm nm 

J=O 

The calculation of the 3 matrix from the final R matrix is accom­
plished by rewriting Eq. (68) and its derivative in matrix form. 

f(R;J) ~ !(J) _ ~(J).~-1/2.~J.~1/2. 

t'(R;J) = ~'(J) _ ~,(,J).~1/2.~J.~1/2. 

(74 ) 

(75) 

where t(R) and t'(R) are matrices of the values of the propagation 

functions and their derivatives on the final R-matrix boundaries in both 
the a and.., arrangement channels. Here the diagonal ~ and ~ matrices 

(and their derivatives) are the spherical Hankel functions of Eq. (68). 
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[0'(.1)] 
= . nn ik R A. ( 1) (k R). 

n .1 n 
(76) 

* [1- (J)] 
~ nn [0' (.1) 1 . = nn 

(77 ) 

* where denotes the complex conjugate. The 0' matrix defilled here should 

not be confused with the over'lap matrix used in Eqs. (37). (38). and 
00 

(45). Defining the final R matrix as ~. and combining the definition of 

the R matl'ix (see Eq. (65» with Eqs. (74)-(75). the S matrix is 

sJ ~ ~1I2. (l!(J) . ('l!' (J)]1. (~(J) - f·f!.,' (J)r,~112 (78) 

2.9. Differential and Integral Cross Sections. Thermal Rate Constants 

The differential scattering cross section in the RLM is defined as 
usual, the ratio of the spherically scattered flux into final state n 
originating from an incident plane wave in molecular state m, 

do (9,<I>;E) = (k Ik ) IA (9.<I»I~ ctfl nm n m nm 
(79) 

whel'eA (9,<1» is defined in E<i. (73). The integral cross section is 
nm 

obtained by integrating over the polar angles, giving the familiar form 

00 

a (EI = 1(k 2 '" (2.1+1) 16-S.1 12. nm m L. nm nm 
.1=0 

From the integral cross section we can compute a state-to--state 
thermal rate constant in the standard way.78 

00 

x So Et °nm(Et+€m) exp[-Et/kBT] dEL' 

(80) 

(81) 

where N is Avogadro's number, kB is Boltzmann's constant, Et is the 

initial translational energy of reactants in vibrational state m. and 
~A.BC is the reduced mass of the initial collision partners. 

~A,BC = mA(m B + mC)/(mA + mB + mC)' (82) 

Definitions similar to Eqs. (79)-(81) also hold for differential cross 
sections, integral cross sections. and rate constants in the BCRLM, ex­
cept that each is obtained for ev(!ry choice of bending states Al and A2 . 
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2.10. The Relationship between RLM/BCRLM and 3D -- Rotational Averaging 

Although cross sections and rate constants in the RLM are well defined 
quantities. it is nevertheless difficult to compare directly to full 
three-dimensional calculations because the RLM neglects internal bending 
and rotational degrees of freedom. Philosophically. it is better to ask 
how one should sum or average the results of full 3D calculations in 
order to obtain quantities which best compare with the models. Since in 
the RLM or BCRLM. the diatomics do not rotate before or after the col­
lision. we may be tempted to compare 3D (n.j=O) -+ (n' .j'~O) processes 
with RLM n-+n' processes. In cases where such comparisons can be made. 
the RLM probabilities. cross sections. and rate constants are larger 
than the corresponding 3D quantities at all energies and temperatures. 
The comparison is improved for 3D processes from (n.j=O) to (n' .all j'); 
but even here. RLM results are too large. especially at reaction thresh­
olds. where at least for the cases where detailed 3D results are avail­
able. 6 - 8 • 13 threshold behavior is strongly influenced by the bending 
zero point energy of the collision complex in the strong interaction 
region (i.e .. the transition state). It is this latter effect which we 
address to some extent by augmenting the RLM with a bending Hamiltonian. 

The inclusion of effective potentials into the BCRLM in order to 
account approximately for the neglected bending degrees of freedom in 
the RLM should make it possible to compare more directly with 3D calcu­
lations. Such comparisons are difficult because bending motion is 
relevant only when the collision partners are close together. and not 
asymptotically. where boundary conditions are imposed and where the 
angular motion becomes that of a free rotor. Although the lowest 
bending states Al~2=0 do correllate with the lowest free rotor states 
j=j'=O. we cannot generally define a mapping between higher bending 
states and higher free rotor states. Consequently. comparisons between 
BCRLM and full 3D calculations require that we average both sets of 
results. 64 ,79 In the BCRLM. we average over the bending degrees of 
freedom labelled by Al and A2 • and compare to 3D calculations averaged 
over the analogous rotational degrees of freedom j. j'. 1. and 1'. where 
I is a label for orbital angular momentum. 

The appropriate kind of rotational averaging has been discussed for 
several years by Bowman and coworkers. 18 - a4 in connection with a hier­
archy of dimensionality reducing theories of reactions. Although the 
BCRLM differs in origin from these dimensionality reducing theories. it 
resembles them in spirit. and in detail at some levels. Specifically. 
the application of microcanonical rotational averaging to BCRLM has been 
presented by Walker and Pollak. 64 and we will review only the final 
results here. 

In this section. we use square brackets ([]) to indicate quantities 
which have been microcanonically summed. braces ({}) to indicate 
quantities which have been microcanonically averaged. and angle brackets 
«» to indicate quantities which have been thermally averaged. The 
appropriate 3D microcanonically averaged rotational cross section with 
which we wish to compare is64 ,80 
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{o (E)} = 'It [" (E)] I [k 2]. (83) 
nm nm m 

where [k 2] is a cumulative translational wavenumber for reactants, 
lit 

00 

(84) 

and € . is the internal energy of the initial molecule in vibrational 
m] 

state m and rotational state j. The Heaviside function 9(x) in Eq. (84) 
indicates that the summation runs over only open channels at total 
energy E. In Eq. (83), [,. (E)] is a cumulative rotational probability, 

nm 
which for a full 3D calculation is defined as 

()O 00 

["nm(E)] = 2 (2J+l) 2 2 P~j'l'mjl (E-€mj)' (85) 

J=O j,j'=O 1,1' 

where the sums over I and I' run ove r the triangle inequality with J and 
J j (or j'), and P is the reaction probability, the absolute 
nj'l'mjl 

square of an element of the 3D S matrix. 
In the SCRLM, the cumulative reaction probability is one in which 

we sum over the bending degrees of freedom, approximating Eq . (85) as 

00 

(86) 

A=O I\=-A J = Il\1 

where A is a principal bending quantum number (A = Al +A 2 ), 1\ is an 
internal bending angular momentum (l\ = A1 -A 2 ), and the notation I2 
indicates that the summation over 1\ goes in steps of two . The reaction 
path multiplicity factor A in Eq. (86) assumes values of one or two, the 
latter for the case of an initial homonuclear diatomic. In practice,6~ 
we have further approximated Eq. (86) by writing reaction probabilities 
for higher bending states in terms of those for the lowest bending 
state, using transition state theory arguments.19,2~ 

Given the cumulative reaction probabilities, we can compute 
thermally averaged rate constants, 

K (T) = f12 N(2rr)1/2(f.I k T) - 3/2 <3' (E» / Qm(T), (87) 
nm A,Be B nm 

where Qm is the rotational parti tion function 

Q (T) 
m 

00 

2 (2j+l) exp( - €mj/ksT), 

j=O 

and the thermal average of the cumulative reaction probability is 

(88) 
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.,. 
~ (E» 

nm J exp( --E/kBT) [,. (E)] dE. 
o nm 

(89) 

3. REvrEW OF APPLrCATrONS OF THE BCRLM 

To date, the BCRLM has been applied to a handful of chemically reactive 
systems, namely the hydrogen exchange reaction H + H2 and its isotopic 

counterparts,lS,6~,~S and to the F + H2 reaction and its isotopic 

counterparts. 66 - 69 Some preliminary results have also been presented67 

for the He + H2+ reaction as well. Lagana70 has extended the 

calculations for the H+H2 reaction to higher collision energies, and de 

Haar, Balint-Kurti, and Wyatt7 1 have considered the H + Cl 2 reaction. 

We have already discussed in the previous section an extension64 of the 
BCRLM in which we define averaged cross sections and rate constants; 
when applied to the D+H2 (m=O,1) reaction, we obtained an excellent 

comparison with shifted sudden calculations of Abu-Salbi, Kouri, Shima, 
and Baer. 81 ,82 

The primary concern of the first BCRLM paper15 was to investigate 
the extent to which the 300K rate constants (RLM and BCRLM) for the 
reactions H + H2 (m=1) and D + H2(m=1) are determined by collisions at 

energies below the height of the adiabatic reaction barrier. The rate 
constants determined were compared to experiment83 ,84 and to a classical 
trajectory calculation,8S but since they arc not rotationally averaged. 
these rates are certainly an upper limit to the true rates on the 
potential surface86 ,87 we used. 

Our interest turned then to the relationship between scattering 
resonances and the angular distribution (differential cross section) 
predicted by the BCRLM. We showed6s that for both reactions mentioned 
above, the angular distribution moves from backwards peaked at low 
collision energies to more sideways peaked at higher energies, even 
though the reaction dynamics at threshold is dominated in the H+"2(m=1) 

case by a resonance and no resonance appears in the D+H2 (m=1) case. Our 

interest in this relationship was sparked by the F+H2 reaction, which 

also shows 88 - 9s a shifl in the angular distribution, and has a definite 
threshold resonance contribution. We therefore analyzed66 the BCRLM 
angular distribution for the F.H2 reaction, and concluded that while the 

presence of a threshold resonance does contribute to the sideways shift 
in the anl',ular distribution, it is probably not the only source of the 
feature. Pursuing this idea further, we attempted to separate the 
resonant and background contributions to the angular distribution in a 
following paper,67 using isolated narrow resonance approximations. 

We have also Ilsed t.he BCRLM as a t.ool to investil',ate the 
relationship between parameters which define potential energy surfaces 
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and dynamic features such as resonances, angular distributions,58 and 
the position of reaction thresholds_ 59 This work has concentrated on 
the F+D2 reaction, and has aided the development of improved potential 

energy surfaces. 5 '. 95 

4. EXTENSIONS AND FURTHER APPLICATIONS OF THE METHOD 
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There is currently work in progress which will extend some of the ideas 
of the BCRLM either to improve the quantitative reliability of the 
method, or to enlarge the range of problems to which it is applicable. 

4.1. Hybrid Sudden and Adiabatic Methods 

As is evidenced by recent literature9 ?-lOO and in other contributions in 
this volume, there is considerable interest in understanding the nature 
of the rotation-bending dynamics of reactions in the energy regime near 
the reaction threshold. For many reactions, and perhaps for most 
reactions, the dynamics of bending motion at threshold is adiabatic, but 
above threshold energies, the motion seems to switch over to a sudden 
type of behavior." Consequently, work in progress100 - 1 would define a 
hybrid sudden-adiabatic theory which would produce reaction cross 
sections in agreement with adiabatic thresholds (e.g., BCRLM) and in 
agreement with reactive sudden cross sections·1-2.102-3 at higher col­
lision energies. If this work proves fruitful, and we learn how to 
model the crossover between adiabatic and sudden reaction dynamics, then 
we may hope to considerably improve the predictive nature of approximate 
theories of reactions. 

4.2. Non-collinearly Dominated Reactions 

The BCRLM is by its very nature constrained to treating collinearly 
dominated reaction processes. One could extend the method to non­
collinear systems by including effective potential terms and more 
complicated kinetic energy operators to represent the motion of the 
reacting system along its (bent) minimum energy path from reactants to 
products. This is indeed an example of the Carrington and Miller" 
reaction surface Hamiltonian theory, which at present is probably the 
most fruitful approach for noncollinear systems. 

4.3. Coupling the Bending Degrees of Freedom 

A fairly straightforward extension of the method would be to include the 
coupling between the lowest and higher bending degrees of freedom while 
solving the coupled-channel equations. Such an approach may have the 
beneficial effect of lowering the overall reactivity characteristic of 
the BCRLM at post-threshold energies, since inelastic bending tran­
sitions may reflect otherwise reactive flux prior to reaching the re­
action barrier. Unfortunately, there is no significance to individual 
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bend-state to bend-state cross sections, because bend states have no 
well defined asymptotic meaning; we would therefore still need to rota~ 
tionally average (i.e., bending average) our results. furthermore, any 
improvements would come at the cost of substantially increasing the 
computer requirements of the method, to a level comparable to 3D centri­
fugal sudden (CS) reactive calculations. If such a level of computer 
effort is available, it would therefore seem appropriate to do the 3D CS 
calculation instead. 

4.4. Photodissociation of Linear Trlatomics 

A promising extens.ion of" the BCRLM to new problems lies In the photodis-­
sociation of some triatomics. The application of quantwn half­
scattering methods to problems of J~otodissociatjon is well known,lo~-8 
and fOl' molecules whose ground and excited electronic surfaces a/'e line-­
arly dominated, the approximations inherent in BCRLM are quite appro­
priate. To treat photodissociation, we must compute the overlap of the 
scattering wavefunction on the excited electronic surface with the 
initial bound state wave function on the ground s~rface. Methods for 
computing the required overlaps as the Rmatrix solution of the coupled 
channel equations progresses have been described by Kulander and 
Lightl o6 and by Schneider and Taylor. loa In addHion to Hs relevance 
to photodissociation, these techniques provide a way to recover the 
scattering wavefullction from an R-matrix calcu]atiol1, since the "bound 
state" wavefunction can be a delta function or a narrow gaussian. The 
technique for accumulating these overlaps resembles the hyperspherical­
to-Jacobi projection described earlier, and so we will review it here. 

Using the Jacobi coordinate system as an example. we seek the 
overlap ~nm of the scattering wavefunction .m in Eq. (24) with a bounded 

function Y'n(R,r). We begin by expanding the propagation functions in 

each sector with si ne- and cosine-like functions, 

Sn(H;i) sin[k i (H--R:)], channel n open, 
n 1 

sn(R;i) 
. i + channel closed, slnh[k (R-R.) 1, n 

n 1 
(90) 

c (R; i) i + channel cosfk (R-R.)]. n open, 
n n 1 

cn(R;i) 
i + cosh[kn (R - Ri ) ] . channel n closed. 

where k i is the local channel wavenumber in sector i. Note specifically 
n 

that we are expanding about the right~hand-sjde of each sector, because 
it simplifies the propagation of the overlaps. Next we define primitive 
overlap integrals of the bound function(s) ill sector i. 
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+ 
Ri 

J Y (R,r) s (R;i) F (r;i) dR, - n m m R_ 
(91) 

I 

+ 
Ri 

f V (R,r) c (R;i) F (r;i) dR_ 
R~ n m m 

(92) 

1 

n n Note that if Vn(R,r) = 6(R-Ro ) 6(r-ro )' or is a narrow gaussianJ09 ,lJO 

n n centered at (Ro,ro )' then the integrals above are easily evaluated_ 

If ~(i) is the global R matrix accumulated after propagating 

through sector i, we then compute from it a local overlap in sector i, 

(93) 

and a matrix relating overlaps in sector i to those in sector i+1, 

9 (i , i + 1) = ! ( i , i + 1)' [~( R ~ +l) . [~(i + 1)' ~ i + 1] -1 + ~ (R ~ + 1 ) ] , (94 ) 

where T is defined in Eq. (45), and the diagonal ~ and c matrices are 

defined in Eq. (90). The accumulated overlap through sector i+l is now 
given by 

(95) 

The overlap propagatIon begins with 2(1) • ~(l) and continues through 

the sector where boundary conditions are imposed. At this point we 
compute the desired overlap matrix by taking the same linear combination 
of the propagated overlaps as for asymptotic boundary conditions (see 
Eq _ (74)), 

[ -1/2 .J 1/2J 
~ = 2 ( fi na I)· ~ - l!' ~ . ~ . ~ - (96) 

It should also be clear that a similar approach could be employed, if 
desired, to propagate overlaps of bound state wavefunctions with the 
gradient of the scattering wavefunction. Note from Eqs. (93)-(94) that 
the propagation of overlaps requires at each step an inversion of the R 
matrix; if one propagates the log--derivative matrix76 instead of the R 
matrix, then the propagation of overlaps by this scheme requires only a 
few additional matrix multiplications at each step. 
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5. SUMMARY 

The Bending Corrected Rotating Linear Model should be useful as a tool 
for insight into the importance of some of the three-dimensional 
features expected of collinearly dominated atom-diatom reactions. The 
Rotating Linear Model. defined by Child. 1 Connor and Child.' and by 
Wyatt. 2 augments the collinear world naturally with an impact parameter. 
making it possible to compute integral and differential cross sections. 
Adding a bending correction then improves the quantitative predictive 
ability of the method. and permits a more direct comparison with 3D 
rotationally averaged integral cross sections and rate constants. 

Additional theoretical refinement is needed before we can 
quantitatively compare BCRLM differential cross sections with 3D. The 
~Jape of the BCRLM differential cross section contains information about 
the impact parameter dependence of the reaction probability. and when-­
ever the 3D angular distribution retains only this level of dynamical 
detail. we would expect the BCRLM differential cross section to compare 
nicely. Consequently. it is likely that BCRLM will fare best when 
compared to 3D differential cross sections from the ground state of 
reactants to all product rotational states. since this type of cross 
section retains the least amount of rotational information. 
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ABSTRACT. The study of periodic orbits embedded in the continuum has 
provided a new tool for understanding the dynamics of molecular colli­
sions. The application of periodic orbit theory to classical variational 
transition state theory, quantal threshold and resonance effects is 
presented. Special emphasis is given to the stability analysis of 
periodic orbits in collinear and three dimensional systems. Future 
applications of periodic orbit theory are outlined. 

1. INTRODUCTION 

The basic question posed in reactive scattering theory today is 
simple. Given a potential energy surface for the interacting molecules, 
what will be the outcome of a collision between them. The outcome is 
described in various terms such as a reaction probability, distribution 
of final states, differential cross section, rate constant etc. All of 
these quantities depend on the initial state of the colliders. 

The laws of physics needed to answer the question are well known. 
Since the potential energy surface is given, one knows the masses of the 
colliders and so one only needs to solve the SchrBdinger equation. The 
problem of course is that the number of coupled equations that need to 
be solved is enormous and not yet within reach of present day computers. 
Necessarily then the theorist is restricted to studying model systems 
and construction of approximations. One type of approximation is to 
solve the exact classical mechanical equations of motion. 1 One selects 
initial conditions which correspond to the experimental initial state, 
integrates the equations of motion forward in time till the urocess is 
'over' and then obtains cross sections, product distributions etc. In 
essence, Hamilton's equations of motion serve as a 'black box', whose 
structure is determined by the masses and the potential energy surface. 
This black box provides the necessary transformation from initial condi­
tions to final conditions. 

The study of periodic orbits originated from an attempt to uncover 
the 'black box' and understand how the potential energy surface and 
masses affect the outcome of a collision. Even before the advent of 
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computers it was realised that the saddle point region of the surface 
was critical in determining thermal rates of reaction. Transition state 
theory formulated by Eyring2 and Wigner,3 is based on this observation. 
Wigner showed that classical transition state theory provides a varia­
tional upper bound to the classical rate. The variational theory was 
then developed by Horiuti 4 Keck 5 and Koeppl.5 In all cases though, the 
theory was formulated with the aid of expansions around the saddle point 
region. Pechukas,7 was the first to give an exact solution to the vari­
ational problem. He proved that the variational transition state must 
be itself a classical trajectory. If in an A+BC collision the atoms are 
forced to be collinear then the variational transition state is a perio­
dic orbit. Periodic orbits may be found also far away from the saddle 
point. Therefore a study of their properties reveals many aspects of 
the global dynamics. In section two we review briefly the classical 
variational transition state theory. Special attention is given to the 
stability 8 (in the Lyapunov sense) of the variational transition states. 
We show that stability analysis is useful for predicting the energetic 
threshold at which the variational theory is no longer exact. 

Classical mechanically, we know today, that periodic orbits govern 
the flow of trajectories in a collinear collision. 9 In a sense, one may 
say that classical collinear collisions are well understood. However 
the world is quantal and it is of greater interest to also try and 
understand the quantum mechanics of collinear collisions. In the past 
decade various numerical techniques have been devised which enable a 
relatively fast and cheap evaluation of exact quantal collinear reaction 
probabilities.10,11 Here too, a study of classical periodic orbits has 
provided insight into the quantum mechanics. In section III we show how 
periodic orbits may be used as an analytic tool for understanding quantal 
phenomena such as Feshbach resonances 12 and tunneling. 13 

The main objective of any theory is to be able to understand and 
predict the results of experiments. Since the world is three dimensional 
one cannot limit oneself to the study of collinear systems. In section 
IV we show how the collinear analysis based on periodic orbits may be 
generalised to three uimensional systems. 14 We provide a 3D adiabatic 
transition state theory which is used to analyse numerical computations 
as well as experimental results. A 3D analysis of quantal resonances 
predicts that one should hope that quantal resonances 15 will provide a 
new spectroscopy of transition states. A discussion of the future role 
of periodic orbits and reactive scattering is given in section V. 

II. PERIODIC ORBIT DIVIDINGS SURFACES - PODS 

a. Classical Variational Transition State Theory 

In this section we consider the reaction A+BC+AB+C where A, Band e 
are atoms with masses rnA, mB, me respectively. The classical Hamiltonian 
H of the system given in terms of the reactant diatom internuclear 
separation vector ~C, the atom to center of mass of diatom separation 
vector ~A-Be and the conjugate momenta £Bc, ~-Be is 
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(1) 

Here ~BC and ~i are reduced masses 

(2) 

and V is the potential energy surface. 
The structure of the potential energy surface is assumed to be such 

that in the reactant region, that is for large enough ~ BC and small 
EBc, V~VO(~BC) where VO(~BC) is the BC diatomic potential. Similarly in 
the product region, that is for small ~B and large enough Bc-AB ' 
V~VO(~B)' Correspondingly, the reactants (products) Hamiltonian is 
denoted as H~C(HXB)' Furthermore, we assume that at energy E there are 
two equipotential surfaces, defined by 

(3) 

running from reactants to products and enclosing between them a band of 
configuration space in which V<E. Outside these surfaces V>E. (A typi­
cal potential energy surface is plotted in Fig. 1, cf. p.140). A tra­
jectory is a line in phase space defined by the variation in time (t) of 
a set of coordinates and momenta [~(t),~(t)] under the influence of the 
Hamiltonian H. A reactive trajectory is one on which as t+-oo ~(t) is in 
the reactants region, while as tc>-j-<:o ~(t) is in the products region. 
\-lith each pOint in phase space one can associate a characteristic func­
tion of reactive phase points Xr(E'~) such that 

= {1 if (~,~) lies on a reactive traj ectory 
Xr (~,~) (4) 

o otherwise 

A dividing surface S(~)=O is defined as a (5-dimensional) surface in 
configuration space, connecting the two V=E equipotentials, without 
loops, so that the surface divides the band V<E into two pieces, one 
containing the reactants region and the other the products region. Let 
EB~) denote a unit vector (at ~) perpendicular to the surface and 
pointing in the direction of products. For a microcanonical distribution 
in phase space [a(E-H)], the number of reactive phase points crossing 
this surface per unit time per unit energy E in the direction of products 
iss (remember Liouville's equation) 

FR(E) = > r d~d~a[S(g)](3.·.!!.s)·a(E-H)Xr(E'~) (5) 

Here a (x) is the Dirac delta function and 3. is the velocity at (~,~) (&_~H). 
Note that by virtue of Liouville's theorem, FR(E) is independent of thg£ 
choice of dividing surface. As is evident from Eq. (5) all the dynamical 
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information lies in the characteristic function Xr~'~). 
The transition state approximation to the reactive flux 

obtained by replacing Xr(E'~) in Eq. (5) by the function 

= {I if (3.·~s) > 0 
X+~ds) 

o otherwise 

E. POLLAK 

FTS(E) is 

(6) 

X+ 'counts' all trajectories passing through the dividing surface S in 
the products direction. Since any reactive trajectory must ultimately 
cross the dividing surface it is clear that 

(7) 

for any dividing surface. The transition state flux FTS(E) is for any 
dividing surface an upper bound to the reactive flux. Variational tran­
sition state theory is the problem of finding that dividing surface for 
which FTS(E) is minimal. Note, that by substituting Xr by X+ we have 
done away with the dynamics. As shall be shown shortly, given a divi­
ding surface, FTS(E) is just the number of internal states at the divi­
ding surface and so is easy to evaluate. The more difficult problem to 
solve is the variational one. 

Under what conditions does FTS(E)=FR(E)? All that is needed is an 
equality in Eq. (9) for almost any point (E'~s) at the surface S at 
energy E. If any reactive trajectory at energy E crosses S only once 
then X+=Xr and transition state theory (TST) is exact. This necessary 
and sufficient condition was formulated by Wigner almost fifty years 
ago. 3 This condition can De phrased in a different form. TST is exact 
at energy E, if no trajectory of energy E that leaves the dividing sur­
face, in either products or reactants direction, ever returns. 

Thus far, the discussion of transition state theory has been very 
general. In the following the variational problem will be discussed 
for the specific case of a collinear collision. The configuration space 
of a collinear collision consists of two independent coordinates ql, q2 
defined such that the Hamiltonian of the system can be written as 

I 2 2 
+ V(ql,q2) (8) H =- (PI + P2) 2m 

where (PI,P2) are the momenta conjugate to (Ql,Q 2) and m is a mass. For 
example one might choose 

aRA_BC ' 
I 4 lli 2 (9) ql = q2 = a r BC a m = llillBC 

llBC 
Any dividing surface or equipotential is now a line in configuration 

space. The dividing surface S(ql,q2)=O is parametrized by arc length s, 
so that [ql(S), q2(S)] is the point on the line a distance s from the 
start. We now define a new set of canonical orthogonal (curvilinear) 
coordinates U(ql,q2), V(ql,q2) such that on the dividing surface 

U[ql(S), q2(S)] = u (=constant) 
o 

(10) 
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i.e., the v coordinate at u=uo coincides with the dividing line. By 
definition then, the normal to the dividing surface ~s is just the unit 
vector ~o' The volume element in phase space is invariant under canoni­
cal transformation. Also, one can show that the transformed Hamiltonian 
is l6 

122 
H = 2 ( ) [A(U,V)p + p ] + V(u,v) • 

~ u,v u v 
(ll) 

Here 

~(u,v) (12) 

;I.(u,v) (13) 

and (pu,Pv) are the momenta conjugate to (u,v). 
With these preliminaries, one can show that the transition state theory 
estimate (cf. Eq. 6) for the reactive flux is given in the new coordi-
nate system as 

_00 

2 
p 

- --;--- - V(u ,v)] 
2~I,u ,v) 0 

o 
(14) 

where e(x) is the unit step function. The form, given in Eq. (14) is 
familiar, it expresses the well known fact that the transition state 
estimate for the reactive flux crossing an arbitrary dividing surface at 
energy E is just the number of states of the internal Hamiltonian h at 
that energy. 

The integration over Pv in Eq. (14) is straightforward and one finds 
that collinearly the transition state flux is just proportional to an 
action integral. The variational problem is to vary the dividing sur­
face Uo so as to minimise the flux. Maupertuis' principle of least 
action implies that Uo must be the configuration space path of a classi­
cal trajectory of energy E.l7 However, this trajectory starts at the 
turning point v< with zero momentum [remember that V(uo,v<)=E], heads 
out perpendicular to the equipotential reaching after time T/2 the other 
equipotential at the turning point v> where it stops and heads back for 
v< along a trajectory which is just the time reversal of the motion from 
v< to v>. Therefore, the trajectory must be periodic with period T. We 
have therefore shown that the variational solution to TST is a periodic 
orbit dividing surface or in short a pods. 

The first system on which variational transition state theory has 
been tested is the (symmetric) hydrogen exchange reaction on the Porter­
Karplus (II) potential energy surface: 8 This surface has a saddle point 
at ESp=O.396eV relative to the bottom of the asymptotic reactants and 
products well. Because of symmetry, the symmetric stretch is a pods at 
all energies greater than ESp and lower than the three atom dissociation 
limit. 

The pods of the system are shown in Fig. 1. One finds that for 
ESp<E<O.603eV there is at each energy only a single pods - the symmetric 
stretch. For O.603<E<O.722eV one finds five pods, two on each side of 
the symmetric stretch. The pair on each side (not shown in the Figure) 
appears at E=O.603eV, as energy is increased one pods migrates outwards, 
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1.5 2.5 
RH"H8(O.U.) 

Figure 1. Potential energy surface, (PKII)18 pods and RPO's of the H3 
system. The dashed lines are pods, heavy solid lines RPO's. Equipoten­
tial contours are at E=O.1-1.0eV with O.leV intervals. Adapted from 
Ref. 19. 

towards reactants or products, the other pods migrates towards the sym­
metric stretch pods and coalesces with it at O.723eV. Above O.723eV one 
finds three pods, the symmetric stretch and one on each side. For almost 
all energies the pods with minimal flux, that is, the variational solu­
tion to TST is the outermost pods. In the bottom panel of Fig. 2 we 
plot the exact reaction probability (defined as the ratio of reactive 
flux to incident flux) and the variational estimate. Also shown in the 
top half of the figure is the temperature dependence of the ratio of the 
variational to the thermal rate constant as a function of temperature. 
Here, the collinear rate is defined as 

k(T) = (2n~ikT)-1/2 foodE p(E)e-E/ kT (15) 
o 

where k is Boltzmann's constant. 
There are a few important characteristic features associated with 

the results presented in Fig. 2, which are actually not specific to the 
H3 exchange reaction. Foremost, we find, that in the threshold region 
transition state theory seems to be exact. Actually, it has been 
proven20 that a sufficient condition for TST to be exact is that only 
one pods exists at a given energy. Secondly, although the variational 
result fails qualitatively at high energy this has little effect on the 
thermal rate constant. Even at 25000 K the variational rate overestimates 
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Figure 2. Classical variational 
TST for the collinear H+H2 
reaction. For details, see 
text. 

the exact rate by only fifteen percent. Since much of chemistry is 
thermal this is a very gratifying result. Variational TST is at room 
temperature highly accurate. 

b. Linear Stability Analysis of Pods 

As noted earlier, a necessary and sufficient condition for TST to 
be exact at a dividing surface is that any classical trajectory crossing 
the surface will never recross it. It is of practical interest to deter­
mine when TST must fai1.21 Usually, the complete potential energy sur­
face is not available so that one would want to develop local criteria 
for the failure of TST. Here we will shm, that the stability properties 
of periodic orbits can be used to answer this question. Loosely speaking, 
a periodic orbit is defined as stable in the sense of Lyapunov8 if every 
trajectory originating at t=O close enough to the periodic orbit remains 
close to the orbit for all time t. Obviously, TST cannot be exact if 
the pods is stable, since there are, by definition, trajectories crossing 
the pods that stay in its vicinity forever. For these trajectories 
Xr#X+ and so TST is not exact. 

One determines the stability of periodic orbits using linear stabi­
lity analysis. We denote the phase space of the periodic orbit by 
(Pu,u'Pv,v). A trajectory starting close to the orbit and at the same 
total energy shall be denoted as (Pu+oPu,u+ou,Pv+oPv,v+ov). Using the 
form of the Hamiltonian given in Eqs. (11-13) and keeping only terms 
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linear in (oPu,ou,opv,ov) we note that the linearised (Hamilton) equa­
tions of motion for (oPu,ou) are 

(o~) = [A(U ,v)/J.l(u ,v)J(op ) o 0 u 
(16) 

(op ) = _(a 2H/au2) (ou) 
u 0 

(17) 

Here, the (u,v) coordinate system is defined such that the periodic 
orbit lies on a line of constant u, that is u=uo , Pu=O. Thus the coef­
ficients is Eqs. (16,17) are time dependent but periodic with the same 
period T as that of the periodic orbit. 

Equations (16,17) can be used to define the matrix equation 

~=(O A/J.l) 
-H 0 uu 

oq (0) I 

where I is the (2x2) identity matrix and as noted A(t+T)=A(t). 
solve for oq from time t=O to t=T and define a constant matrix 
oq(T)=B. Th~ eigenvalues of B; bl,b2 can be shown8 to obey the 
bib2=1: We may therefore us~ the notation 

b = e-iST 
1 

(18) 

One may 
B as 
relation 

(19) 

where B is defined as the stability frequency of the periodic orbit. It 
is a well known theorem in stability theory 8 that if B is purely real 
then the orbit is stable, if it has an imaginary component then the 
orbit is unstable. 

This result can be understood intuitively. If S is real, then oq 
oscillates indefinitely but will stay small. Thus a small perturbation 
in the vicinity of the orbit will leave us in this vicinity. HOvJever, if 
B has an imaginary com?onent then the exponent will always cause oq to 
diverge so that one cannot stay indefinitely in the vicinity of the 
periodic orbit. Hence the orbit is unstable. 

In principle, the numerical solution of Eq. (19) is not more 
difficult than the solution of Hamilton's equations of motion. All that 
one needs are second derivatives of the Hamiltonian evaluated at the 
pods. Moreover, it is often possible to evaluate the stability frequency 
of the pods analytically. For example in a symmetric exchange reaction 
the potential energy may be expanded in the vicinity of the saddle point, 
to third order such that 

H = ---21 (p2 + p2) + -21 [AoV2 _ ku 2 - bu2v + ••. J 
rnA u v 

(20) 

where A,k and b are parameters, independent of u and v. 
Here we anticipate two properties in the saddle point region. u - the 
anti-symmetric stretch, is the translational coordinate so that the 
potential along u is basically that of an inverted harmonic oscillator 
and k>O. More importantly though, inspection of Fig. 1 shows (as can 
also be seen explicitly from Fig. 4 of ref. 22) that on the symmetric 
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stretch a2v/au2 is a monotonically decreasing function of the vibrational 
coordinate v so that also b>O. 

Disregarding all fourth order and higher contributions to the expan­
sion of the potential we find that the vibrational motion on the sym­
metric stretch (u=O) is purely harmonic. If the energy relative to 
V(O,O) is E then Eqs. (16,17) may be rewritten as 

(8~) = _1 [k+b(2E/A)1/2coswtJou (21) 
rnA 

where w is the harmonic frequency of the symmetric stretch. Eq.(21) is 
precisely the Mathieu equation whose stability properties are well 
known. In the limit E+O, Eq. (21) is just ,hat of an inverted harmonic 
oscillator with imaginary frequency (k/ma)l 2. This of course makes 
sense, at low energies, the harmonic expansion about the saddle point 
suffices and motion about an inverted harmonic oscillator is of course 
unstable. As energy increases the oscillatory t8rm in Eq. (21) becomes 
more important and one can show23 that there exists a lowest critical 
energy at which ou(t) will become a purely periodic function. At this 
point TST will of course break down. It is not too difficult to obtain 
an analytical estimate for the critical energy. In Fig. 3 we compare 

1.0 

0.8 

• 
10 

Mime 

o 

• 
20 

Figure 3. The onset of stability and breakdown of TST in the collinear 
H+H2 reaction. Solid line - estimate by analysis of Mathieu Equation. 
Open circles - the exact onset of stability; full circles - the break­
down of TST. Here M=2mA+mB for the symmetric A+BA+AB+A reaction. 

the critical energy obtained from such an estimate with exact results 
for the PK(II) potential energy surface and a variety of symmetric mass 
combinations. Note the reasonable qualitative agreement. The onset of 
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stability is a sufficient condition for breakdown of TST. Interestingly, 
it is, as seen from the figure, not a necessary condition. As the mass 
of the middle atom gets higher, stability sets in earlier and TST breaks 
down at a lower energy. Thus we expect even variational TST to be quite 
poor for a light atom transfer reaction and very good for heavy atom 
transfer. 

Lack of space prevents us from describing in any detail other pro­
perties of pods. It should be mentioned though that pods may be charac­
terized as repulsive or attractive according to the local behaviour of 
trajectories in their vicinity.9 Loosely speaking, repulsive pods repel 
trajectories in their vicinity, attractive pods attract them. These 
properties have enabled the development of a lower bound to the classi­
cal reaction probability,9 the construction of a new theory of direct 
reactions 24 as well as new numerical methods for computation of classi­
cal product state distributions. 25 ,26 The repulsive attractive proper­
ties provide a global picture of the classical flow of trajectories at a 
given energy. 

III. PERIODIC ORBITS AND COLLINEAR QUANTUM SCATTERING 

a. An Opti~al Coordinate System Defined by Pods 

One of the nice aspects of classical variational TST is that the 
theory provides upper and lower bounds to the exact classical rate of 
reaction. To date, there is no such quantal theory. Quantally, tran­
sition state theory is an approximation27 - one of the objectives of the 
theorist is to optimize the approximation. The concept of a transition 
state remains though as an important guide towards understanding the 
quantal structure of the reaction probability. In this section we shall 
see that quantal barriers and wells and their associated properties 
determine both threshold behaviour and resonance phenomena in quantal 
reactive scattering. 

To do this one must introduce the concept of vibrational adiabati­
city during a collision ~rocess. This notion is not new. The founda­
tion was laid by Marcus 2 from both a classical and a quantal point of 
view. The basic idea is that one picks out a reaction coordinate para­
metrized by u and assumes that motion along this coordinate is much 
slower than motion along the other degrees of freedom denoted by v. 
Thus the translational u motion is governed by the vibrational motion, 
just as in the Born-Oppenheimer approximation the motion of the nuclei 
is governed by the electronic motion. The analogy is complete, the 
nuclear motion does not change the electronic state - the translational 
motion cannot change the vibrational state. The energy of the vibrational 
state En depends parametrically on the translational coordinate u and so 
it effectively acts as a Dotential energy En(u) for the translational 
motion. Classically, one assumes that the translational motion cannot 
change the classical action, n, of the vibrational motion. En(u) is 
called the vibrationally adiabatic potential energy surface. 

These surfaces are used extensively in collision theory. Kupper­
mann27 and Truhlar29 ,30 have demonstrated their importance in quantum 
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Wyatt and coworkers 31 have used 
the existence of wells in these 
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mechanical transition state theory. 
them as analytic tools, to show that 
surfaces is a necessary condition for 
ces in the reaction probability. 

the appearance of quantal resonan-

All of these applications suffer from one major defect. In the 
Born-Oppenheimer approximation, the difference in mass of the nuclei 
and electrons is large enough to admit a natural set of adiabatic 
coordinates. This is not the case in the collision of an atom with a 
diatom. For any curvilinear coordinate system (u,v) one obtains diffe­
rent adiabatic surfaces. To do away with these ambiguities we will use 
the pods to define the (u,v) coordinate system. We will then find that 
a pods is necessarily a vibrationally adiabatic barrier or well and that 
at the pods the adiabatic approximation is exact. 

Suppose that we find a periodic orbit, it defines a line in confi­
guration space. We will use this line to define the coordinate system: 
a periodic orbit defines a line of constant u. We further suppose that 
the location of the periodic orbit is a continuous function of an exter­
nal parameter - the total energy of the system. Then we find a conti­
nuous set of lines of constant u and in this manner define an orthogonal 
curvilinear coordinate system. 16 For each value of u, there exists a 
value of the energy g(u) for which we find at u a periodic orbit with 
energy E=g(u). 

Consider now a line of constant u=uo at the energy E=g(uo). At 
this energy we have a periodic orbit at Uo so that Pu=Pu=O. Via Hamil­
ton's equations of motion, this implies (provided that (a~/au)~O) that 

av/au 
g(u) = V(u,v) + ~(u,v) a~/au (22) 

where we have dropped the superscript since Eq. (22) holds for all u in 
the vicinity of the pods. Note that for Eq. (22) to hold we do not have 
to assume that periodic orbits cover all of configuration space. If the 
periodic orbit is a continuous function of the energy for a finite 
interval it will cover a finite connected band of configuration space. 
Accordingly, the special curvilinear coordinate system we constructed 
will also cover this band. Within this band, which may be small or 
large, Eq. (22) holds exactly. 

Quantally, the vibrationally adiabatic potential energy surface, 
En(u) is defined by the energy eigenvalue of the n'th vibrational state 
at u. Semiclassically, the n'th eigenvalue is determined by the condi­
tion that the action in the v direction, at fixed u be equal to (n+l/2)h. 
This determines an energy En+l/2(U). Thus the action m(u) is defined as 

v 

m(u) = 2 J >{2~[Em(U) - vJ}1/2dv . (23) 
v< v> 

v< and v> are the turning points V(u'v<)=Em(u) and they are functions of 
the action m and the 'translational' coordinate u. The vibrationally 
adiabatic potential energy surface Em(u) is defined by the demand that 
m(u) be independent of u. By definition therefore 

dm d2m 
du -2 = ••• = 0 (24) 

du 
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Equation (24) enables us to study the properties of the function Em(u). 
If at Uo we find a pods whose energy g(uo) is equal to Em(uo) then it is 
easy to see (by differentiation of Eq. (23) and insertion of Eq. (22») 
that 

::m/u=O = 0 , 

in other words a periodic orbit of action m is an extremum of a vibra­
tionally adiabatic potential energy surface. Using similar reasoning, 
it is possible to obtain an explicit expression for d2Em/du2 at uo • One 
finds after some manipulation that 32 

~l 
du T f li!: dtl 11 dU 

u=u 
o 

(25) 

where T is the period of the periodic orbit at u • 
Thus far we have dealt purely with definiti8ns. We have shown that 

a periodic orbit is an extremum of a classical adiabatic potential 
energy surface and that given the periodic orbit and its immediate vici­
nity of energy dependent periodic orbits one can compute the coefficients 
of a Taylor expansion of the surface around the extremum. One must now 
turn to dynamics. In fact, it is not too difficult to show that if 
translational motion is much slower than vibrational then the Hamiltonian 
governing the translational motion may be written as 

(26) 

where M(u) is an effective mass defined as 

-1 1 IT A M (u) = - dt -
Toll 

(27) 

Consider now a periodic orbit at Uo at energy Em(u o). By definition, 
Pu=O so that at Uo Eq. (26) holds exactly. We have thus proved that 
classically, not only does a periodic orbit correspond to an adiabatic 
barrier or well but also that at the barrier or well the adiabatic appro­
ximation is exact. It is also easy to see that if the adiabatic appro­
ximation is exact at the extremum of Em(u) then at the extremum Uo one 
must find a periodic orbit of energy Em(uo). From Eq. (26) we find that 
Pu=O, and since dEm/du=O at Uo necessarily Pu=O. We have thus proved 
that a necessary and sufficient condition for the classical adiabatic 
approximation to be exact at an adiabatic barrier or well is the exis­
tence of a periodic orbit at the barrier or the well. Periodic orbits 
though are defined uniquely by the potential energy surface and the 
masses. Classically, we have removed the ambiguity in the definition of 
the extrema of Em(u). 

Given the adiabatic Hamiltonian (Eq. (26» in the vicinity of the 
pods, one may define an adiabatic stability frequency Wm for motion 
perpendicular to the orbit as 
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d2E /du2 
W2 = m 0 = l i ~ dt • l~ i l~ dt (28) 

m M(u) T j ~ T du j ~ au 
000 

Within the adiabatic approximation if ~>O then the periodic orbit is an 
adiabatic well, if w~<O then the orbit is ·an adiabatic barrier. 

There is a close connection between the adiabatic frequency and the 
stability frequency (cf. Eq. 19) of a periodic orbit. Since at the pods 
the time average of Huu is exactly d 2F~/du2 one finds that the adiabatic 
stability frequency is just the first order Uagnus approximation to the 
exact stability frequency.32 From a practical point of view it is actu­
ally easier to compute the stability frequency. Finding the adiabatic 
frequency implies actual construction of the (u,v) coordinate system. 
The stability frequency may be computed by integrating along the pods 
for one period, but using the Cartesian set of coordinates. Note that 
the stability frequency is of course independent of the coordinate 
system used. 

From the properties of the Magnus approximation, one can show32 
that if ST«l than the adiabatic approximation is excellent. Thus, 
given a pods, one may easily compute its period and stability frequency 
and so assess the validity of the adiabatic approximation in the vici­
nity of the pods. 

b. Semiclassical Adiabatic TST for Collinear Systems 

The vibrationally adiabatic approximation is coordinate dependent. 
However one may formulate the quantal adiabatic approximation using the 
coordinate system defined by pods. One can then show that up to terms 
of order fl2, that if at U o there exists a pods .,ith action (n+l/2)h, 
and energy En(uo) then also quantally Uo is an adiabatic barrier or well 
of the n-th vibrationally adiabatic potential energy surface. 33 Further­
more, the quantal adiabatic frequency for motion perpendicular to the 
pods is excellently approximated by the adiabatic frequency of the pods. 
Finally, one can show, that to order ~2, all quantal nonadiabatic coup­
ling elements are identically zero at uo. 33 In other words, one should 
expect that just as in the classical case, the coordinate system defined 
by the pods is also quantally, the optimal coordinate system for the 
vibrationally adiabatic approximation. One should also expect that the 
semiclassical barrier and well energies and frequencies computed via the 
pods are an excellent approximation to the quantal energies and frequen­
cies. 

Given the n-th adiabatic barrier height E~ one can easily formulate 
an adiabatic transition state theory for the reaction probability, from 
the n-th reagents vibrational state pAD(ET)' The simplest estimate is 
unit transmission probability for translational energies (ET) greater 
than the barrier height and zero otherwise: 

plD(E ) = e(E -E#) 
n T T n 

(29) 

Here e(x) is the unit step function, liEn the n-th adiabatic barrier 
height relative to the n-th asymptotic state of reactants. When the 
adiabatic barrier is evaluated via semiclassical quantization of periodic 
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orbits we denote the result as SemiClassical ADiabatic (SCAD) theory. 
The collinear rate constant kAD(T) at temperature T is given in terms of 
the reaction probability as 

1D -1/2 foo ID 
kn (T) = (2TI~ikT) dETPn (ET)exp[-ET/kT] 

o 
(30) 

where k is Boltzmann's constant and ~i the reduced mass of reactants. 
Insertion of Eq. (29) into Eq. (30) gives 

k 1D (T) = (kT/2TI~) 1/2exp(-.~E /kT) (31) 
n n 

The next simple estimate is to make use of the imaginary adiabatic 
or stability frequency ~n of th~ n-th adiabatic barrier to estimate the 
tunneling correction. Thus one replaces E1. (29) with the well known 
expression: 

(32) 

To obtain the tpermal rate one inserts the tunneling probability into 
Eq. (31). 

Remarkably, the SCAD estimate is very good. In Fig. 4 we analyse 
the exact quantal reaction probabilities and rate constants of the col­
linear D+H2~DH+H reaction on the LSTH 34 potential energy surface. The 
dots on the right hand panel are the exact quantal reaction probabili­
ties. The solid line is the SCAD estimate of the reaction probability 
based on Eq. (32). The dashed line is based on the SCAD approximation 
without tunneling (Eq. 29). For the ground state reaction we find that 
the SCAD estimate with tunneling gives a reasonably accurate description 
of the exact quantal reaction probability in the threshold region. In 
fact the SCAD rate is in almost perfect agreement with the quantal rate 
(cf Table I). However, upon close scrutiny one notes that the SCAD 

Table I. Rate Constants for the Collinear D+H2 Reaction a 

D+H2 (v=0fr.-J D+H2(V=1) 
NR/;;;\C---

T kex(t) kSCAD(f) ! kex(T) kSCAD(T) kex(T)+kex(T) 
200 9.13(-2) 2.46(-1) i 1. 64 (2) 2.52(2) 1.91(2) 
250 1.07 1.32 4.02(2) 5.96(2) 4.69(2) 
300 6.19 6.17 8.02(2) 1.19(3) 9.38(2) 
400 6.32 ( 1) S.B7( 1) 2.15(3) 3.24(3) 2.53(3) 
600 7.46 ( 2) 7.2S( 2) 6.71(3) 1.03(4) 8.05(3) 
1000 6.17( 3) 6.S7( 3) 1.89(4) 2.92(4) 2.33 (4) 
1500 1.90( 4) 2.19( 4) 3.24(4) 5.07(4) 4.10(4) 
2400 4.59( 4) 5.95 ( 4) i 4.72(4) 7.48(4) 6.09 (4) 

a. Exact quantal reaction rates are based on collinear quantal computa­
tions of Ref. 35. Rate constants are in units of cm/(sec molec.). 
b. Rate constants based on Eqs. (31,32) with parameters provided in 
Table 2. 
c. kNR is the rate for the inelastic 1~0 transition. ex 
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Figure 4. Probabilities and rate constants for the collinear D+H2 reac­
tion on the LSTH potential energy surface. 
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estimate is for SOme temperatures, somewhat lower than the exact rate. 
This result is worrisome. TST should always overestimate the exact 
rate! Although the adiabatic TST isn't a rigorous upper bound, one might 
expect, that barring quantal resonances - which don't exist in the D+H2 
system - the SCAD theory would give a practical upper bound. After all, 
it is well known that the harmonic tunneling correction will, if anything 
overestimate the exact tunneling probability.26 In fact at 200K, SCAD 
does overestimate the rate. Note though, that actually, the SCAD thres­
hold is ~O.OleV greater than the exact quantal threshold. This is pro­
bably a result of our using the WKB approximation in estimating the 
barrier height. As shown in Ref. 33 the exact quantal barrier energy 
will be slightly different from the WKB estimate as a result of curvature 
corrections. If in fact one lowers the SCAD estimate of the barrier 
height by O.OleV one obtains perfect agreement with the exact quantal 
resul t. 

The situation is somewhat different for D+H2(V=1). Here, SCAD with 
tunneling overestimates the exact quantal rates by 50% over the whole 
temperature range shown in the figure (cf. Table I). Here the adiabatic 
barrier is far out in the reactants region of the potential energy sur­
face so that it is almost a straight line. However, the transmission 
probability through the barrier does not account for the possibility of 
being back reflected from the interaction region. The exact quantal 
reaction probability reaches only a maximum of 0.7 while for v=O the 
maximal probability is 0.97. Note that the SCAD theory overestimates 
the rate by ~1/0.7. This point is easily checked out by adding to the 
exact reaction probability the v=l+v=O inelastic transition probability. 
This gives the open circles shown in the figure. The SCAD rates over­
estimate the quantal total inelastic rates by ~15%. 

To show that the good agreement found for D+H2 is not a fluke we 
show in Fig.5 a comparison of the SCAD estimate with exact quantal 
results 37 for the Mu+D2 and Mu+H2 thermal rate constants. The SCAD 
parameters are given in Table II. For Mu+D2 we find excellent agreement 
over a large temperature range. The overestimate at very low tempera­
tures may be attributed to the harmonic tunneling correction. Garrett 

Table II. Parameters for Collinear TST COlllDutations on the LSTH 
Potential Energy Surface 

E" ~b 
system n Ea wn n n 
D+H2 0 .2703 .5403 927 
D+H2 1 .7864 .9055 783 
Mu+H2 c 0 .2703 .7853 1137 
Mu+D~ 0 .1946 .7783 801 

a. All energies in eV relative to the asymptotic diatom well. 
b. Stability frequencies in cm- i . 

c. The threshold of this reaction is at E=.5945eV. 
d. The threshold of this reaction is at E=.5796eV. 

and Truhlar 38 using a more sophisticated tunneling approximation get 
slightly better results. The overestim~te at 2400 0 K reflects the fall­
off of the quantal reaction probability at high energies. For Mu+H2 
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the situation is similar but with one difference. For Hu+D2 the cumula­
tive reaction probability rises to 1.0 in the threshold region. For 
Mu+H2 it only reaches 0.85 and even then falls off rapidly. Thus for 
Mu+H2 the SCAD theory is at best 15% greater than the exact quantal 
results. 

c. Periodic Orbits and Collinear Quantal Resonances 

One of the intriguing facts uncovered by numerical computations for 
collinear reactive scattering of an atom on a diatom vlaS the existence 
of sharp spikes in the reaction probability as a function of energy.39 
It was immediately realised that these spikes may be called resonances 
since they are a result of a long lived intermediate. Phase shift ana­
lysis has confirmed this conclusion. 

A number of empirical facts have been established about the proper­
ties of the resonances. They usually show up at the threshold of vibra­
tional channels. Their width can vary by orders of magnitude. Their 
existence, location and width can be a sensitive function of the poten­
tial energy surface. 

Although the resonances show up on potential energy surfaces 
exhibiting a single saddle point separating reactants and products, the 
~echanism for the formation of a long lived intermediate is today quite 
well understood. Usually vibrationally adiabatic potential energy sur­
faces of excited vibrational states have wells in the interaction region. 
These wells may support quasibound states. Of course, the quantitative 
determination of the energy and width of a resonance using such an 
adiabatic model is in principle a tricky problem. The adiabatic surface 
is coordinate dependent so that different choices of the vibrational and 
translational coordinate will give different quantitative results. 
Recently though, Launay and LeDorneuf 41 and Romelt 42 have shown that if 
one uses the radial Delves coordinate system and solves the diagonal 
part of the Schrodinger equation including all 'diagonal non-adiabatic' 
terms, then one finds quantitative agreement with exactquantal computa­
tions. 

The radial coordinate system is defined by 

ql = pcos8 psin8 (33) 

where (ql,q2) are defined in Eq. (9). It is easy to see that 
A(p,8)=~(p,8)/m=p2. The adiabatic approximation is obtained by conside­
ring the angular 8 motion as the fast motion. If ¢m(8;p) denotes the p 
dependent eigenfunction with energy Em ep ) then one can show42 that the 
effective m-th potential energy surface including the diagonal non­
adiabatic correction is 

~2 ~2 d¢m I d¢m 
Um(p) = Em(p) - ----4 2 + 2m < ap- ~ > (34) 

mp 
Um(p) may have wells and these wells support bound or quasibound states 
which correspond to the resonances. 

As stressed earlier the classical signature of an adiabatic barrier 
or well is a periodic orbit. Adiabatic wells, in the Delves coordinate 
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system should correspond to periodic orbits that follow the angular 
motion at constant p values. j3 In fact such 'resonant' periodic orbits 
(p~O's)19 exist, they are shown in Fig. 1 for the H+H2 exchange reaction. 
To find the semiclassical well energies one should quantise the action 
of the orbits semiclassically. However note that the orbits in Fig. 1 
move over a double well potential and their energy is quite close to the 
potential energy of the barrier separating the two potential wells. In 
frinciple, it is necessary to include above barrier reflection terms,43, 

4 a simple quantisation of the action won't do. 
Consider though a symmetric exchange reaction. Here the angular 

wave function must be either symmetric (g) or antisymmetric (u) with 
respect to reflection about the symmetric stretch. For the uair 
of surfaces U~(p) and U~(p) one finds that as p-- U~""U~. Semiclassically, 
the doubly degenerate energies at large p are given by an (n+l/2)h 
action condition in each well. Since one has two (symmetric) wells, 
this condition may be inter~reted as (2n+l)h action taken over the 
double well. If one duesn't include any tunneling or above barrier 
reflection contributions, classical adiabaticity would imply that the 
action (2n+l)h sta~constant for all p. Thus one should quantise the 
resonant orbit with a (2n+l)h action condition. The energy of the orbit 
would correspond to the adiabatic well of the averaged adiabatic poten­
tial energy surface 

(35) 

since semiclassically, the splitting of the eigenvalues is symmetric 
about Un: . 

In Fig. 6 we show for the hydrogen exchange reaction a comparison 
between the well energies and locatio~as computed from resonant perio­
dic orbits (RPO's) and the exact quantal averaged adiabatic surfaces 
En(p) and Ufi(p). Note that there is quantitative agreement with the 
wells of Un: (p) • 

Because of the splitting due to the double well potential for fixed 
p, one knows that the real well energies of U~(p) will be lower than the 
well energy of the RPO. On the other hand, the resonance energies are 
given by adding the zero point energy for motion perpendicular to the 
well. Since both the splitting and the zero point energies are much 
smaller than the separation between the adiabatic well energies it is 
not surprising that the (2n+l)h RPO's give a good zero order estimate of 
the resonance energies. 19 For example, for H+H2, on the PKII surface, 
quantal resonances occur at E=O.87seV and 1.32eV, 3h and sh RPO's are 
found at E=O. 86 7eV and 1. 2geV, respectively. In principle though, using 
semiclassical methods, it is possible to evaluate the splitting,44 
while the zero point energy could be assessed from the adiabatic frequen­
cy of the RPO, however such a computation has yet to be done. 

A similar analysis is applicable to asymmetric reactions. RPO's 
have been computed for the F+H2 reaction and again there is good corres­
pondence between integer action quantizej RPO's and exact quantal reso­
nance energies. 19 It should be stressed though that the most im~ortant 
property of the RPO's is that they give a reasonably accurate descrip­
tion of the adiabatic well responsible for the resonance - its energy 



154 E. POLLAK 

and location, at a very cheap price. As a result RrO's are very 
useful for dealing with resonances in three-dimensional systems. 45 

Before ending this section we mention a novel application of perio­
dic orbits towards understanding the structure of resonances in reactive 
scattering. Exact quantal calculations of reaction probabilities are 
available for example, for the H+H2 exchange reaction on two different 
potential energy surfaces - the PK(II) and the LSTH surfaces. 37 One 
finds, that qualitatively the quantal reaction probabilities are identi­
cal on the two surfaces. It came therefore as quite a surprise to find 
that for the Mu+D2 reaction, t:le LSTH surface exhibits many narrow reso­
nances which simply don't exist on the PKII surface. On the other hand, 
for Mu+H2 the reaction probabilities on the two surfaces are again 
qualitatively similar - no resonances are found for either surface. 

There is though, one qualitative difference between the more 
accurate LSTH surface and the PK(II) surface. The former includes the 
van der Waals wells in the far entrance and exit valleys. Using pods, 
we've computed the adiabatic well depths for different H2 vibrational 
states. In addition we've computed the stability frequencies of the 
quantised pods. These frequencies are now of course real - the pods are 
truly stable. The results are summarised for Hu+DD in TableII!. Within 

Table III. Parameters a of van der Waals Hells in the Mu+D2 Reaction on 
the LSTH Potential Energy Surface 

E b 
c d 

n EvdW flw n n n 

0 .1946 .1904 .0218 
1 .5717 .5627 .0228 
2 .9329 .9202 .0229 
3 1.2782 1.2631 .0235 

a. All ener6ies are in eV. 
b. Energies relative to the bottom of the asymptotic DD well. 
c. van der Haals vibrationally adiabatic well energies obtained from 
quantised pods in the entrance channel of collinear ~u+DD. 
d. Real stability frequencies (in eV) of the quantised pods. 

a harmonic approximation, the adiabatic bound state energies are just 
the adiabatic well energies plus (m+1/2)~wst where w is the stability 

st frequency. 
For Mu+DD we note that the n=2 and n=3 adiabatic surfaces support 

exactly one bound state each at E=0.9285 and 1.2705eV respectively. 
These ener~ies should be compared with the exact results 0.9233 and 
1.2646eV. 3 ,46 A similar analysis may be carried out for the Mu+H2 
reaction,47 here the larger stability frequencies raise the resonance 
energy above the threshold energy so the resonance is, if at all, a 
virtual resonance, very broad and seemingly unobservable. 

To summarise, we have shown that periodic orbits are an extremely 
useful analytic tool. Many aspects of exact quantal computations were 
explained or even predicted, based on periodic orbit analysis. Here we 
should mention that the stability frequency of RPO's has been used to 
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analyse resonance widths. 48 Moreover, a study of stability of RPO's in 
light atom transfer systems has led to the discovery of a new type of 
chemical bond - the vibrational bonding of molecules. 49 

IV. PERIODIC ORBITS AND 3D QUANTAL SCATTERING 

a. A Reduction Method 

155 

In principle, one may generate adiabatic potential energy surfaces 
for n degree of freedom systems. For each value of a translational coor­
dinate u one must diagonalise (quantally or semiclassically) an n-l 
degree of freedom internal Hamiltonian h(v;u). However, such a prescrip­
tion is quite expe~sive numerically. For-example Wyatt and coworkers 50 
do not diagonalise h exactly - they fit the potential to convenient 
cumerical forms. Although, in a fully coupled reactive scattering compu­
tation, the fit is in principle not important, it may change reaction 
rates considerably in a transition state theory type computation. In 
3D, apart from the question what is the unique coordinate system to be 
used, there is also the problem of given the coordinates how does one 
compute the adiabatic potential energy surfaces efficiently. 

Garrett and Truhlar51 circumvent the latter problem by making separ­
able Taylor expansions around the bottom of the well of the internal 
Hamiltonian. For transition state theory, at low temperatures, this is 
a reasonable prescription, however the coordinate system remains arbit­
rary. Miller and coworkers 52 have derived exact expressions for the 
Hamiltonian of the system as a function of a reaction path. Their 
theory incorporates non-adiabatic and rotational coupling between the 
internal degrees of freedom, howeyer, it too is based on harmonic 
expansions and an arbitrary reaction coordinate. 

To circumvent these problems and still take advantage of the simp­
licity of the periodic orbit approach, we have taken a different 
approach which makes full use of the spirit of the adiabatic approxima­
tion. The most general motion of a triatomic molecule at an adiabatic 
barrier or well is a combination of stretching, bending and overall ro­
tation. Invariably, overall rotation is much slower than bending and 
stretching motion. Thus, one may first solve for these fast motions, 
average the Hamiltonian over the fast motion and obtain an effective 
adiabatic Hamiltonian for the overall rotation. We are thus left with 
a two degree of freedom Hamiltonian - one stretch and one bend motion. 
We also know from spectroscopy that usually stretch frequencies are 
greater than bend frequencies. Thus we may freeze the bend, solve for 
the fast stretch and obtain an adiabatic Hamiltonian for the bend motion. 
Note though that by now we have reduced the total Hamiltonian to that of 
a two degrees of freedom system-translation and vibration. For a fixed 
value of the bend angle (and the rotational angles) we find an angle 
dependent periodic orbit and quantise its action. This gives us a semi­
classical angle dependent adiabatic barrier height or well depth. We 
average the Hamiltonian over the period of the orbit and so obtain an 
adiabatic bend Hamiltonian. We then quantise the bend motion semiclas­
sically and obtain an adiabatic Hamiltonian for the overall rotation. 
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In principle there are two arbitrary ingredients in this prescrip­
tion. One must define rotational angles and a bend angle. ,[,he rotational 
angles imply a transformation from a space fixed coordinate system to a 
body fixed coordinate system. There are an infinity of such transfor­
mations and one mest choose one arbitrarily. Similarly the bend angle 
is defined arbitrarily. Of course, if a posteriori we find that indeed 
there is a good separation of time scales then this arbitrariness is 
irrelevant from a practical point of view. 

In Ref. 14 we have derived in detail a useful transformation from 
the space fixed to the body fixed coordinate system. Without going into 
detail, we provide here, the final result. The full classical Hamilton­
ian in 3D, in our body fixed coordinate system is 

+ 
2yrR 

2 2 2 (RPr-rPR)Jx + V(R,r,y) 
mer +R ) 

Ttumble 

I 
zz )J2 

I I _1 2 Y 
yy zz yz 

I 
1 ( YY )J2 + -2 2 

I I -I Z 
yy zz yz 

T 
-vz )J J 

I I _1 2 y z 
yy zz yz 

(36) 

(37) 

(38) 

Here, r,R are (for example) mass scaled diatom and atom to center of mass 
of diatom distances (cf. Eqs. 1,8,9) and y the (bend) angle between r 
and R. Actually r,R,y may represent a much wider definition of coordi­
nates. For example, ~,~ may be the heliocentric coordinates of Smith. 53 

H2D is the coplanar Hamiltonian and Ttumble represents the instantaneous 
tumbling of the body fixed nuclear plane. The components of the inertia 
tensor are given explicitly in Ref. 14. The x axis is oriented perpen­
dicular to the nuclear plane. 

The first step of the adiabatic separation is to separate the 'fast' 
variables from the slow variables. We assume that the fast motion is 
vibration, all the other variables are slow. This leads to the 'pseudo­
collinear' translation-vibration Hamiltonian 

122 
hey) = 2m (PR + Pr) + V(R,r;y) (39) 

in which y is taken to be a parameter. So far, this reduction is equi­
valent to the first step of the usual lOS scheme. 54 55 

As we have already seen in the previous section, finding adiabatic 
barriers and wells of the n-th quantal vibrational adiabatic potential 
surface for the y dependent Hamiltonian hey) is equivalent semiclassica­
lly to finding periodic orbits of hey) with quantised action - (n+l/2)h 
if the periodic orbit is over a simple well potential. The time depen­
dent coordinates and momenta of the (y dependent) periodic orbit are 
denoted rn(t;y), Rn(t;y), Pr(t;y), and PR(t;y), and the period of the 
orbit is Tn(y). We thus find for each value of y a vibrationally adia­
batic barrier or well at energy En(Y), a stability frequency ~n(Y) and 
effective mass M (uo) (cf. Eq. 27) for motion pernendicular to the 

n 
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periodic orbit. hn(Y) may then be represented as 

p~ 1 ~2 2 
h (y) = 2M ( ) + 2 M (u y)w (y)(u-uo) + En(y) (40) 

n n uo'Y non 

At this point one may make an adiabatic or a sudden assumption. If the 
translational motion is faster than the bend motion, one must first 
solve for the u motion in Eq. (40) and only then return to the full 
Hamiltonian. This sudden approximation will be derived later. If 
translational motion is slow relative to the bend then one inserts hey) 
back in the full Hamiltonian and averages the full Hamiltonian over the 
period of the angle dependent periodic orbit. The adiabatic Hamiltonian 
that emerges from this process is 

H 
n 

(41 ) 

Here the coefficients Bn(Y) and B~(y) are time averages over the angle 
dependent periodic orbit of the respective coefficients in Eq. (36), and 
likewise T~umble(y) is obtained by averaging Eq. (38). 

Since the translational and rotational motions are assumed slow 
compared to the bending motion they may now be treated perturbatively. 
The bending Hamiltonian for the n-th vibrational barrier or well is 

HnB = E (y) + B (y)p2 
n n y 

(42) 

The energy levels associated with the y motion may be approximated semi­
classically. Depending upon En(Y) , this motion will be either libra­
tional (between Ymin and Ymax) or rotational (hindered, but "complete"). 
Usually though one will find only libration at the adiabatic barriers or 
wells, so we will assume this situation in the following formulation. 
Semiclassically, the k-th bending eigenVa~ue at an adiabatic barrier or 
well is found by demanding as usual that pydy=(k+1/2)h. One now aver­
ages the full Hamiltonian over a period 0 the bend motion of the k-th 
bend state. If the potential energy surface is minimal for a collinear 
configuration then the bend vibration adiabatic Hamiltonian reduces to 

2 
pu 1 ~2 2 nk 2 

H k(u,J) = E + ---M + -2 M kW k(u-u ) + B J (43) 
n, nm nk n n 0 x 

~ ~ 
Here the frequency wnk is obtained bk averaging wn(Y) over the Y motion. 
A similar averaging gives Mnk and B~ .Since J is conserved one now solves 
for the translational u motion for each J. 

The periodic reduction method has been used to generalise the RPO 
picture of resonances to 3D collisions. 45 The zero point bend energy of 
RPO's is in good agreement with exact (J=O) 3D quantal computations of 
the shift of the resonance energy as one goes from the collinear world 
to 3D. The total angular momentum dependence of the resonance energy is 
in good agreement with all available approximate 3D computations. The 
periodic reduction method as applied to RPO's has predicted the existence 
of a bend level substructure to 3D excited resonance states. 45 This 
prediction has yet to be confirmed. The method has also been used to 
predict the 3D structure of vibrationally bonded molecules. 49 ,56 In the 
next subsection we will show in detail how the method is applied to TST. 
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The periodic reduction method may be generalised. Instead of arbit­
rarily defining a bend angle one may start with the J=O coplanar Hamil­
tonian which has three degrees of freedom. Suppose we denote an arbit­
rary orthogonal curvilinear coordinate system as (u,v,w) where u denotes 
a translational coordinate and v,w the 'internal' coordinates. For each 
value of u one can quantise the 'internal' Hamiltonian obtained by 
setting Pu=O. The internal Hamiltonian has two degrees of freedom and 
so its quantised states will carry two indices. Thus Enm(u) will be the 
n-th stretch, m-th bend, adiabatic potential energy surface. Semiclas­
sically one must use standard semiclassical quantisation techniques for 
two degree of freedom systems. The following argument should by now be 
familiar. If Enm(u) has an extremum at Uo and the adiabatic approxima­
tion is exact, then at Uo we must find a Dound orbit of energy Enm(uo). 
This orbit will usually be quasiperiodic. Conversely, if one finds a 
quasiperiodic orbit, it will be an adiabatic barrier or well. The proof 
may be derived by complete analogy to the collinear case. 

Given the quasiperiodic orbit embedded in the continuum one can 
proceed to identify in configuration space the coordinates (u,v,w). In 
principle then, using classical mechanics one is able to identify also 
in a coplanar reaction a 'best' set of adiabatic coordinates. It may 
also happen that the bend and stretch frequencies are similar in magni­
tude. In such a case the periodic reduction method cannot work. How­
ever usually the rotational motion will still be much slower than the 
stretches and bends and so could still be treated adiabatically. Such a 
scheme may be termed a quasiperiodic reduction method. 57 It has been 
applied successfully for adiabatic barriers 57 and wells. 58 However 
there is a price to pay, it is more tedious. 

b. Adiabatic and Sudden TST 

Given the bend state or angle dependent Hamiltonian, one may easily 
generalise the collinear TST, with harmonic tunneling correction to 3D 
systems. The rotationally averaged cross section from initial vibra­
tional state n summed over all final vibrational (n') and rotational (j') 
states is defined as 59 

_ 11112 
an (E) = 2\l<E > <2j+1» Pn (E) (44) 

t n n 
We let Enj denote the vibrotational energy of the n,j reactant state,E 
the total energy so that 

<E > <2j+l> 
t n n 

L (2j+l)(E-E .)8(E-E .) 
j=O nJ nJ 

(45) 

J+j J 
P (E) = L L (2J+l) L Pnj 9, (E-Enj ) 

n j=O J=O 9,=!J-j! 
(46) 

Here P~j9,(E-Enj) is the reaction propability out of reagents state n,j 
with orbital angular momentum quantum number 9, and total angular 
momentum J. Yn(E) is therefore the cumulative reaction probability out 
of reagents vibrational state n at energy E. 
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Adiabatic transition state theory is obtained by first quantising 
semiclassically the bend Hamiltonian Eq. (42). In the following we'll 
limit ourselves to a collinearly dominated potential energy surface. 
Generalisation to other cases is straightforward. With this condition, 
the bend motion is doubly degenerate. For the level with Al quanta in one 
mode and A2 in the other one may construct the bending levels EAl,A2 
using the (Ai+!)h quantization condition. For any level Al,A2 one 
defines averaged frequencies and rotational constants as 

~AIA2 = l (~ ~ ) BnAIA2 = l (BnAl+BnA2 ) 
n 2 nAI nA2' x 2 x x 

(47) 

The constraints imposed by conservation of total angular momentum make 
it useful though to employ the notation (A,A) instead,60 where A is the 
principal bend quantum number (A=Al+A2) and A is an internal rotational 
angular momentum (A=AI-A2) which takes on the A+1 values -A,-A+2, ••• A-2,A. 
Angular momentum conservation implie~ that J>IAI. For any bend state 
characterised now by EA,A, ~A,A, B~' ,A one defines a SCAD reaction 
probability as 

pJAA(E) = {l+ex [~(EA,A + Bn,A,AJ(J+l) _ E)]}-l 
n p ~~A,A n x 

(48) 

n 
The SCAD cumulative reaction probability is now 

(49) 

A sudden rotationally averaged cross section may be derived analo­
gously. In the sudden limit all reagent rotational states collapse to 
the ground rotational state and the summation over j states is replaced 
by integration over an angle. Thus 

-ADRS rrfl2 1 J1T-
a (E) = ~2 P (E,y)sinydy 

n ~ Ton 
(50) 

where ET is the translational energy (ET=E-Eno), and ADRS stands for 
ADiabatic Reactive Sudden. The angle dependent reaction probability is 
further decomposed to 

co 

p (E,y) l. (2J+1)pJ (E,y) (51) 
n J~O n 

and P~(E,y), is as usual evaluated using a harmonic tunneling correction 

J [ 21T n ] -1 Pn(E,y) = {l+exp tili (y) (En(y) + Bx (y)J(J+1)-E) } (52) 
n 

The thermal reaction rate constant from the n-th reagents vibra­
tional state is easily computed from onCE) via the well known relation-
ship Joo -E/kBT -dE e <ET> <2j+1> a (E) 
k (T)=N( __ 2 __ )3/2(1T~)-1/2 own n n 

n kBT l. (2j+1)exp[-(E .-E )/kBTJ 
. 0 nJ no J= 

(53) 

Here N is Avogadro's number and kB is Boltzmann's constant. 
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Notice that there really isn't too great a difference between the 
adiabatic and sudden TST. The only noticeable difference is in the 
reaction threshold. For SCAD the threshold is larger because of the 
zero point bend energy. One thus expects that in general, adiabatic and 
sudden rotationally averaged cross sections will be of similar magnitude, 
only shifted by the zero point bend energy relative to each other. In 
Fig. 751 we show a comparison between the SCAD theory, CS results of 
Schatz 52 and (£av) sudden results of Kouri et al. 53 (shifted by the bend 
frequency of O.0geV) for the H+H2(n=1) reaction on the PKII potential 
energy surface. We have also shown51 that the sudden results of Kouri 
et al. 53 are well approximated by the ADRS theory. Figure 7 thus shows 
that indeed, the sudden and adiabatic theories are almost identical, 
apart from the zero point bend motion. 54 

6 H + H2 (m = I ) 
(PK TIl 

N...... ... 
.r: 
0 4 .c 

~ 
w 

b 2 V 

O~~~~-~------~------J 
0.8 1.0 1.2 1.4 
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Figure 7. Rotationally averaged cross sections for the H+H 2 (n=1) 
exchange reaction. For details see text. Adapted from Ref. 61. 

The figure also shows that the CS results of Schatz, which do not 
assume an adiabatic or a sudden approach, are compatible with the SCAD 
theory. In fact, the quantal cross section seeI.1S to be primarily domi­
nated by the probability to cross the vibrational bend adiabatic barrier. 
This is an encouraging result since it indicates that TST, when properly 
applied, may be just as accurate in 3D as in ID. 
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c. 3D Stability Analysis 

One of the theoretical shortcomings of the periodic reduction 
method is the rather arbitrary definition of the bend angle. Although, 
as was the case to date, one maya posteriori verify that the adiabatic 
reduction is justified by comparing bend frequencies with stretch 
frequencies, it is still desirable to construct a method which a priori 
does not have this ambiguity. One possibility is using the quasiperiodic 
reduction method outlined in this section. However, as we shall point 
out a much simpler method may be based on stability analysis of periodic 
orbits in 3D. 

As noted earlier, the stability frequencies of periodic orbits are 
invariant under canonical transformation. 65 Consider first the J=O 
coplanar Hamiltonian 

1221112 
H2D (J=O) = 2m (Pr + PR) + 2m \2 + R2)Py + V(r,R,y) (54) 

The generalisation of the A matrix defined in Eq. (18) 

:f de(gr;:: of f;;;d)om65 

-H -H 
~SS ~qp 

is for any number 

(55) 

If we deal with a 3 degree of freedom Hamiltonian than ~ij are 3x3 sub­
matrices whose elements are the second derivatives of the Hamiltonian 
with respect to the momenta and coordinates, along the periodic orbit. 

If the potential energy surface is collinear in the sense that the 
collinear plane is everywheres a minimum then 

~ I = 0 Cly y=O • 

This means that, for a collinear periodic orbit, along the orbit, 
Py=Vr~=VRY=O. This immediately implies that the matrix stability 
tlon ~Eq. 18) decouples, into the two independent equations: 

1 o m 
0 1 

0 
m 

oq • oq 
-v -v rr rR 

0 
-v Rr -VRR 
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(:v 
1 1 1 

). 'f 
(- +-) 

m r2 R2 
o'q' 

0 
yy 

equa-

(56) 

(57) 
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Equation (56) is the stability equation for the collinear Hamiltonian. 
The bending motion does not affect the collinear stability frequencies! 

From Eq. (57) one may obtain the stability frequency for the bending 
degree of freedom. This frequency may then be used in a number of ways. 
Its value gives the harmonic bend potential and bend energy levels. Its 
magnitude relative to the stretch frequency sheds light on the validity 
of an adiabatic approximation for the bend motion. Finally, if it 
agrees with the bend frequency determined via periodic reduction then 
it validates that method. One may undertake a similar analysis using the 
full coplanar Hamiltonian CEq. 37). One finds that also angular momentum 
won't change the collinear stability frequency nor the bend stability 
frequency. 

V. DISCUSSION 

The main purpose of this article is to show that periodic orbits 
are a very useful tool for investigating and predicting the dynamics of 
reactive scattering. In this section I would like to point out various 
problems for which a periodic orbit analysis will probably be quite use­
ful. Foremost, we have only dealt with atom diatom collisions. The 
techniques outlined here are generalisable to atom-triatom and diatom­
diatom collisions. 66 ,67 Since more accurate potential energy surfaces 
are becoming available simultaneously with more detailed and accurate 
experiments such a study should be worthwhile. 

In practical applications periodic orbits have been used mainly for 
direct collisions - where the potential energy surface has a saddle point 
separating reactants and products. Ion molecule collisions have not been 
studied extensively via periodic orbits. 68 This is even somewhat surp­
rising in view of the recent controversy over the switching from loose 
to tight transition states. 69 - 71 Loose transition states are also perio­
dic orbits. Rynefors and Markovic72 have found them numerically. Clary73 
has undertaken quantal studies of neutral reactions on attractive poten­
tial energy surfaces leading to rates exhibiting negative activation 
energies. Here too, a periodic orbit analysis could provide insight 
into the quantal results. 

It seems to me that stability analysis of periodic orbits is a 
powerful tool which has yet to be fully utilised. The discussion in 
sec. IV.c is really more a research proposal than a review. No one has 
yet studied the stability of periodic orbits in 3D systems. The study 
presented in this paper is simplified since only collinear like potential 
energy surfaces were used. What happens in a s~stem like LiFH whose 
minimum energy path is certainly not collinear? 4,75 

A different example is the H1 system. Here the ground state of Ht 
is an equilateral triangle. Recent experiments of Carrington and 
Kennedy 76 indicate that H1 has a high density of quasibound states embed­
ded in the continuum above the Ht ground electronic state dissociation 
limit. These states or at least some of them should be representable as 
stable periodic and quasiperiodic orbits. 

Stability analysis may be put to other uses. Any perturbation added 
to the Hamiltonian may change the stability parameters. For example, a 
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radiation field may change the stability of RPO's causing changes in the 
resonance lifetime. An open question today is how does a bath affect 
the tunneling rate. Here, stability analysis in conjunction with the 
reaction surface Hamiltonian of Carrington and Miller 77 may prove 
instructive. 

Finally, maybe the nicest feature of periodic orbits is the very 
plastic picture they provide for the reaction dynamics. Hopefully we 
have convinced the reader that 'one picture is worth a thousand words'. 
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THE SUDDEN APPROXIMATION FOR REACTIONS 

Michael Baer, 
Soreq Nuclear Research Center, Yavne 70600, Israel 
and 
Donald, J. Kouri, 
Department of Chemistry, University of Houston, Houston TX 
77004, USA 

ABSTRACT. In this work we have examined the relevance of the reactive 
infinite order sudden approximation (RIOSA). This was done by selecting 
from our previous published results only those that can be directly 
compared either with experiment or with results obtained from less 
approximate treatments (exact quantum mechanical, coupled states). In 
addition the quasiclassical trajectory (QCT) method represents the exact 
classical reference relation to which comparisons are to be made. The 
main findings are: (a) The RIOSA yields reliable total integral cross 
sections. (b) There is strong evidence that the RIOSA yields relevant 
integral vibrational state-to-state cross sections. (c) The situation 
is unclear with regard to differential cross section because very little 
is known about the angular distributions. So far there is some evidence 
that the RIOSA is able to yield angular distributions which are encoun­
tered in ~xperiment and which the QCT method fails to do. 

1. INTRODUCTION 

The quantum mechanical treatment of a three-dimensional atom-diatom 
reactive system is one of the main subjects of theoretical chemis-
try [1] . About a decade ago when the first numerical results for the 
H + HZ reactions appeared in print [Z] it seemed that the problem was 
solved. However, difficulties associated with numerical instabilities 
and with the bifurcation into two non symmetric product channels slowed 
progress with this kind of treatment. This situation caused a change 
in the order of priorities; whereas previously most of the effort was 
directed toward developing algorithms for yielding "exact" cross sec­
tions, now it is mostly aimed at developing reliable approximations. 

Such an approximation, which is a derivative of the exact formal­
ism presented by Kuppermann Schatz and Baer (KSB) [3] is described in 
this paper ,. Use is made of the infinite order sudden approximation 
(IOSA) as applied in the inelastic case but contains significant 
changes: whereas in the inelastic case one has to treat one arrangement 
channel at a time, in the case of exchange at least two channels are 
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co be treated simultaneously [4]. This fact imposes the treatment of 
the matching of the wave functions of the two arrangement channels. 
However, the situation is even more complicated than that. The IOSA 
is a fixed y(= cos(R·i)) angle (see fig. 1) calculation. In the case 
of two arrangement channels one encounters two Y angles one in the 
entrance channel, i.e. YA and one in the exit channel, i.e. YV ' The 
relation between the two is not obvious. The reactive IOSA (RIOSA) as 
presented in this work treats the two problems and delivers a reasona­
ble solution. 

A 

c B 
r~ 

Figure 1. The coordinate system of the three-body system in three 
dimensions: R' and r', a = A,v are the unsealed distances. a a 
Note the angles yA,yv and ~AV' 

The paper is arranged in the following way. In the next 
section a few aspects of the RIOSA which are relatively new are dis­
cussed and a detailed procedure is given for doing the actual cal­
culations,. The third section deals with numerical results as obtained 
by us in the last five years. However, in contrast to what has been 
published elsewhere, we concentrate only on those results which can 
be compared either with findings obtained by reliable methods, 1. e. 
exact quantum mechanical (EQM), coupled states (CS) and quasiclassical 
trajectory (QCT) methods or with experiment. A discussion and a 
summary are given in the last section. 

2. THEORY 

2,,1. General Remarks 

The IOSA which is employed in this and in our previous publications 
is known as the Q,-labeled IOSA. In general one distinguishes between 
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two types of lI--labeling, namely lI--in in which the lI- 1.s identified with 
lI--initial (lI-i) and the lI--av in which I is identified with (lI-i+lI-f)/2 
(lI-f is the final lI--value). From the many studies performed for in­
elastic systems the lI--av is known to give much better results. This, 
as will be shown in the next section, is also the case when exchange 
is included. 

The detailed derivation of the RIOSA was given by Khare, Kouri 
and Baer (KKB) [4a]" Starting with the exact formalism of KSB, they 
obtained the RIOSA by substituting the IOSA into the wave functions in 
the various arrangement channels. Then the matching and the asymptotic 
analysis was performed exactly as in the KSB formalism [3]. This pro­
cedure, which will not be repeated here, yields the following basic 
relation: 

This is eq . (105) in KKB [4a] except that it is written for S-matrix 
elements, instead of the R-matrix elements. In this expression three 
variables YA' Yv and BVA appear, the latter being a parameter connected 
with matching which be discussed later in more detail. The three:;. 
parameters are interrelated in the sense that each two uniquely 
determine the third" Equation (1) was derived assuming BAV is given 
and Y\) is then determined (uniquely) for each y).. We now want to 
change this order and make the ansatz that eq . (1) is valid for each 
value of YA and Yv (each such pair determinates one value of BAV)' 
Consequently, eq" (1) will be rewritten as: 

169 

(1' ) 

<Wj.0..jJrl.> d~ n (I'., ) Y. n'(Y"O)S~ (y ,y,) 
1 1 1 "v"" ~V J i "" ~ ~V v ~ 

"ji0. i 
In this expression SJ"" n (Y,,) for the transition ("j. rl.) -+ (vi 0. ) 

vJv"v 1 1 . V v 

is the physical S-rnatrix element as obtained for one fixed value of 
Y" but averaged over all Yv values, S~v(Y,,'Yv)iS the fixed internal lOS 
S matrix element which is derived, as will be seen, for one given pair 
of angles from a collinear type calculation, Yjrl(Y,O) are the spherical 
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harmonics, d~ n (~A ) are the Wigne~ rotation matr!x elements and ~AV 
is the angle vo~ ro~ation from the RA axis to the Rv axis (see fig. 1). 

Multiplying eq. (1 ') by Yjvn)Yv,n) and integrating over Yv leads 
to 

(2) 

We "ow define the physical 

(3) 

and obtain 

(4) 

A 
So (Y"y )Y. ~,(y"O). 

x, V /'0. V J A " A /'0. 

Equation (4) is the general expression for a physical S-matrix element 
as obtained from the RIOSA assuming the A channel is the initial 
channel. The characteristic feature of this expression is that YA 
and Yv are completely independent so that fixing one does not impose 
any restriction on the other. 

The introduction of some kind of dependence between the two angles 
can be done only in ad-hoc fashion by multiplying the integral by 
2Q(Y~IYv) where Q(YAlyv) is a conditional probability function ful­
filling the requirement: 
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+1 
r 
J d(cosYV)Q(YA!YV) 

-1 

Consequently eq. (4) becomes: 

1 1 

1 (5) 

f f d(COSYv)d(COSYA)Q(YA!Yv)Y*jv~v(Yv,O)d~v~~[ ~ Av(YA'Yv)] 
-1 -1 

( 6) 
A 

SnAY. ,Y )Y. n '(Y"O). 
'" v A V J A "A 1\ 

171 

The reason for mUltiplying by 2Q(YA!YV) and not by Q(YAlyv) is to avoid 
overnorma1ization. Equation (6) is in the appropriate form to obtain 
a single BAV equation. For a given YA choosing a simple fixed value for 
BAV yields a single value Yv according to: 

(7) 

This can be introduced into eq. (6) by taking Q(YA!Y) to be a Dirac 
15 function: 

(8) 

Substituting eq. (8) in eq . (6) yields: 

271 '\ (2H11 ""!' . I L 2J+1"/<Q.OJi· ~' J~,><Q.OJ.~. J~.> Q.S1 / 1\ 1\ 1. 1. 1. 
A 

(9) 
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Equation (9) is the expression for the physical S-matrix element 
obtained by fixing BAV and choosing the A channel to be the initial 
channel. It also has to be emphasized that this expression is an 2-in 
expression. The extension to the 2-av case is done in an ad-hoc fashion 
exactly like in the inelastic case. 

2.2. Differential and Integral Cross Sections 

The degeneracy averaged differential cross section from an initial 
state (v)"j),) to a final vibrational state Vv is given in the form: 

do (v v 1 VA' j A 1 8 , </» 
dw = _[.1] I If(vA,jA,mAlv,j,m 18,</»1 2 (10) J A • v v v 

JVmVmA 

where w is a solid angle comprised of the scattering angle 8 and the 
azimuthal angle </>, m and m are the p-helicity quantum numbers, 
f(v1,jA,ffi1Iv ,j ,m I~,</» isv the scattering amplitude function and 
[jAJ stands ¥orv(2rA+l) . In what follows the vA and Vv ind~ces are 
dropped in order to simplify the notation. 

The scattering amplitude ;is related to the body fixed S-matrix 
element according to: 

(11) 

J 
where d (8) is the l.Jigner rotation matrix (the notation of Rose [5] mAmv 

is employed), kj is the initial wave numer defined as : 

2\.1 '2 ~ )

1 A 

kjA = 2" (E-£jA) and \.I is the mass of the system. The body fixed 

S-matrix elements are related to the Arthurs Dalgarno (AD) [6] matrix 
~lem~nts according to: 

(12) 

Employiog the orthogonal .ity relations of the Clebsch-Gordan coefficients 
and recall iog eq.. (9), one can show that the AD S-matrix elements 
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approximated within the RIOSA "u:~: 

+1 

9, -9, -29, 
• A v 
1. 
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2w I (l3) 

-1 

For the case 4 9,A - (9,A+9, )/2 no further simplifications are possible 
and thus the procedure fo~ calculating the differential cross sections 
described so far should be used. 

For the choicp. ~A= 9,-in, simplifications are possible (see 
Ref. 4) and the final result is (following integration over ~): 

do(v)vA,jA 1s) 
d(cosS) 

To obtain total cross sections we have to integrate eq. (10) over 
d(cosS)d~, which for the general case yields the following expressions: 

w ---

A more explicit expression can be obtained for the case 9, 
Le. 

(15) 

9,-in [7]. 

(16) 
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2.3. Determination of the Si(yA,B) Matrix Elements 

The only unknown functions which appear in the above formalism are 
v v 

So (yA,B), and these are determined by solving fixed angle (Y A) 
"VA 

"collinear type" Schroedinger equations. In contrast to the inelastic 
case the treatment of reactive scattering takes place in two arrange­
ment channels and therefore usually two Y angles, i.e. YA and Yv are 
encountered. As mentioned earlier the two Y angles are not necessarily 
dependent on each other and therefore the corresponding S-matrix e1e-

v 
ment S_v is expected to be dependent on two angles. However we showed 
how . tVA the general two-angle formula is reduced to a single-angle 
formula, as given in eq. (9). This reduction leads to the introduction 
of a parameter B. Consequently, each value of YA uniquely determines 
one value of Yv i.e. Yv = Yv(YA,B). In what follows we describe how 
this is accomplished. 

(RA,rA'Y~) are coordinates of a three-dimensional space in which 
YA is the polar coordinate. Fixing YA reduces the three-dimensional 
space to a plane . In the same way (RV,LV'YV) are coordinates of a 
three-dimensional space in which Yv is the polar coordinate. Fixing 
Yv reduces the three-dimensional v-space to a plane (usually the YA 
and Yv planes are different). The intersection of two planes is a 
straight line termed here the matching line. In Ref. (8) it is proved 
that the equation of this line is determined from the relation 

where B is uniquely determined by the choice of YA and Yv [8]: 

B (18) 

In a single Y {ormu1a, as the one given in eq. (9), one fixes Band 
then for each given YA the value of Yv is uniquely determined by the 
equation (4a): 

cosYA + 
cosYv 

B [1 + 

where 

and 

cosa 

2 
(l-B )cot~AO cota 

2 2 . k 
(l-B )cot ~AO] 2 

[ 2 2 2 ~ 
cosa cosYA + (B -sin YA cos a) j 

sina 
2 ~ 

(I-cos a) 

(19) 

(20) 

(21) 
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Here rnA' mB and mC are the masses of the three interacting atoms and 
the reaction that is studied is A + BC ~ AB + C. 

In the H + HZ case. [7J, B was taken to be 1, a natural choice 
for such a highly symmetrical system. The same choice was made for 
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D + HZ [9] and Cl + HCl [lOJ, whereas for the F + HZ(DZ) system, [11,121 
B was assumed to be 1.4 which yields a straight line that follows the 
ridge of the potential in the plateau region. For the particular choice 
of B = 1 eq. (19) reduces to 

cosYv = - cosY A 

or 

v 
To calculate the SY,~A(YA,B) matrix elements, one solves the 

collinear-type Schroedinger equations (4a): 

a = A,v 

(19' ) 

(19") 

(ZZ) 

Here E is the total energy, VCR ,r ;Y ) is the potential energy surface a a a where YN (a = A,v) enters as a parameter, Rand r are the scaled 
~ a a 

translational and vibrational coordinates, respectively, and ~ is the 
reduced mass of the systeM; 

~ (Z3) 

Matching the solutions ~A(RA,rA'YA) and ~v(Rv,rv'Yv) and their normal 
derivatives along the line rv = BrA' one obtains the desired 

v v 
S£vA (YA,B) matrix elements [13J. 

3. RESULTS 

Results for four different systems are presented in this section with 
the emphasis on total, vibrational state-to-state integral and dif­
ferential cross sections as well as on rate constants. Rotational 
state-to-state cross sections will not be discussed as the RIOSA final 
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rotational distributions are, in general, incorrect. The only excep­
tion is the rotation distribution obtained in the light-heavy light mass 
combinations [14], which is present in another chapterc 

Except for comparisons with experiment, the RIOSA results will be 
mainly compared with QCT results which are believed to be correct, at 
least for total integral cross sections and perhaps also for total dif­
ferential cross sections.. The RIOSA results will also be compared with 
any EQM or CS results which are available. 

1.1. The H + HZ System [7,15,16] 

The RIOSA study on H + HZ was carried out on the Porter-Karp1us poten­
tial energy surface [17]. The results for total cross sections from 
the ground state and the first excited state are shown in figs, (Z) and 
(3a). The branching ratios r defined as: 
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Figure Z. Integral total cross sections for the reaction: 
H + HZ(vi:O) + HZ + H as a function of total energy. 
-- QCT results (Ref" 18); • EQH results (Ref. 20) 
• l!,-in results; • l!,-av results. 
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_Figure 3. Results for the reaction H + HZ(v.=l) + H2 + H as a function 
of translational energy (a) Total integra11 cross sections: 
I QCT results (ref. 19); ---- 9,-av results; - - - - 9,-in results 
(b) Branching ratios r(l,O) = a(l + l)/a(l + 0) 
.• - .• -, ,- QCT results (Ref. 19); --- 9,-av results; - - - 9,-in results. 
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r = 0(1 ~ 1)/0(1 ~ 0) (24) 

are presented in fig. (3b). In all three figures ~-in. ~-av and QCT 
results [18,19] are shown. In fig. (2) EQM results [20] are also 
presented. For v. = 0, the quality of the fit with both QCT and the 
EQM results is re~sonable. In fact, for intermediate energies, both 
are located between the ~-in and ~-av results . The deviations are 
~ 30%. A ~etter fit is shown to exist in fig. (3a). Here the ~-av 
results, which are always considered to be the more accurate, overlap 
the QCT results r191 very nicely. For the branching ratio the fit with 
the QCT [19] results is good only for a short energy range for low 
translational energies. For higher energies the RIOSA branching ratios 
are much larger - the ~-av results are twice as large and the ~-in 
three times. 

Comparisons between RIOSA and QCT differential cross sections [15] 
for vi = 1 and Etot = 1. 2 eV are presented in fig. (4). Four kinds of 
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Figure 4. Differential cross sections for H + H2(Vi=1) ~ H2 + H for 
the total energy Etot = 1.2 eV.(a) Total differential cross sections. 
(b) Total differential cross sections multiplied by sine 
(c) vi = 1 ~ vf = 1 differential cross sections. (d) Vi = 1 ~ vf = 0 
differential cross sections. i (')CT results (Ref .. 15) -- ~-av results. 



THE SUDDEN APPROXIMATION FOR REACTIONS 179 

results are shown:da/dw for 1 -+ all; 1 -+ 1 and 1 -+ ° as well as 

·r da 1 sine d6, for 1 -+ all. In general the QCT distribution is always more 

backwards than that of the RIOSA. This feature, as will be seen in what 
follows, is typical for all cases. 

Rate constants for vi=O are shown in fig. 5. Here the present 
RIOSA results are compared with EQM [20] and QCT results [18]. The 
RIOSA rates are about 3 times higher than those of the EQM and about 
6 times higher than the QCT rates. The fact that the RIOSA cross 
sections for the H + H2 system in the low energy region (around and 
below the classical threshold) are much larger than the EQM results 
is the reason for this discrepancy. 
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Figure 5. Rate constants as 
H2(vi=0,Ji =0) + H ->- H + li2 • 
-.-.- QCT results (Ref. 17) 

3.2. The D + H2 System [9] 

4 

a fUnction of 103/T for 
--- EQM results (Ref. 

--- Q,-av results 

the reaction: 
20) 

The D + H2 system was studied employing the LSTH surface [21]. Total 
cross sections for v. = 0,1 and the branching ratio (see eq. (24)) are 
shown as a function 5f translational energy in fig. o. The results 
for the cross sections are compared with QCT ]22] results and a good 
fit was obtained for both, i.e. v. = 0,1. 

The branching ratios are fou~d to be strongly dependent on energy 
(like in the H + H2 case) and for Etran = 0.4 eV the value of r is ~ 4. 
This large branching ratio was recently also confirmed experimen­
tally [23]. 
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9,-in results. 
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Differenti~l cross sections are shown in fig. 7. Results for four 
different energy values and for the ground and first excited states 
are presented. A comparison with qCT results [22] was found to be 
feasible only at one energy valueffi tr = 0.48 eV)and for vi = O. For 
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Figure 7. Differential cross sections for the reactions 
D + H2(vi) -+ DH + H. -- Q,-av results f OCT results (Ref. 22). 

this case both curves are backwards, peaking, but the RIOSA curve is 
broader. In each of the other figures 7 (b) - 7 (d) two curves are 
shown, i.e. for Vi = 0,1. At the lower energy the Vi = 0 curve is 
much broader,but as the energy increases the Vi = 1 curve starts to 
swell, whereas the Vi = 0 changes only slightly. This makes the 
v. = 1 curve broader than that of v. = 0 for the higher energy, 
A~other feature is the sidewards shift of the Vi = 0 curve as the 
energy increases. This tendency is less apparent for v. = 1. 
So far no explicit experimental center of mass angular aistributions 
were published. But there is strong evidence that for translational 
energy in the range 1.0 < Etr < 2.0 eV sidewards peaking is en­
countered [23]. From private communications we know that for this 
energy range no sidewards peaking is obtained in QCT calculations. 
Thus it seems that at least qualitatively the RIOSA, in contrast to 
the QCT, yields the correct angular behavior. 
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Rate constants for vi 
ratio K defined as: 

K = k(l ~ l)/k(l ~ 0) 

M. BAER AND D. J. KOURI 

1 as well as the branching 

are given in fig. 8. In addition to the RIOSA and the QCT results we 
also show the eXperimental results [24,28]. In order to produce rate 
constants that can be compared with eXperiment, the dependence of the 
cross section on the initial rotational (and vibrational) states must 
be known. According to the RIOSA the total cross sections depend only 
on the translational energy and are in such a case, independent of the 
initial rotational state [7]. Mayne et. a1. [24] published results 
employing QCT that show that as long as j is not larger than 4 this 
assumption is valid. A reasonably good fit among the RIOSA, QCT [22] 
and experimental results [24,2.5] is shown to exist for vi = O. For 
vi = 1, the RIOSA results are almost twice as large as the QCT re­
sults but about 3-.5 times smaller than the experimental ones [27-29]. 
Here it is important to mention that although the deviation between the 
RIOSA and the experimental results is not small both have the same 
slope which means that the activation energy as predicted by the RIOSA 
treatment and found in the experiment are almost identical. 

3,3. The F + H2 System [11,30]: 

The study of the F + H2 system was carried out on the Muckerman V 
surface [31] ,. Total cross sections as a function of energy are shown 
in fig . 9. Five different results are presented; in addition to the 
£-io, and the £-av we also show CS results due to Redmon and Wyatt, 
(RW) [32], QCT results [33,34] and also classical IOSA (CIOSA) re­
sults as obtained by Jellinek and Baer [35]. It can be seen that 
there is a good fit between the .~-av and the QCT results and that the 
~-in and the CIOSA results overlap very nicely. The CS results 
deviate significantly from both the ~-av RIOSA and the QCT results 
and the reason could be duf' to some changes made by RW to the Muckerman 
V potential to improve the convergence. 

The branching ratio r(3,2) defined as: 

r(3,2) = 0(0 ~ 3)/0(0 ~ 2) 

is presented in fig. 10. Four curves are shown: two quantum, i.e. the 
RtOSA (the ~-av and £-in branching ratios are identical) and CS curves 
and two classical curves, the QCT and CIOSA. Although, sometimes 
large deviations between the two quantum curves are noticed, their 
energy dependence is similar and they differ significantly from the two 
classical ones. The fact that the CIOSA fit the QCT branching ratios 
so well is again an encouraging result for the IOSA in general. 
(More on this subject is discussed in the next chapter). 
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Figure 9. Integral reactive cross sections for the reaction 
F + HZ ~ HF + H as a function of translational theory 
.... QCT results (Ref. 33, 34), -.-. CS results (Ref. 37) 
• -. ~-av results, 0 - 0 ~-in results • ClOSA results 

Differential cross sections for the following reactions 

F + HZ(vi = 0) ~ HF(vf) + H; vf = 1,2,3 

are shown in figs. 11-13. The results in figs 11-12 were derived 
for energy values which are close to those of the experiments [36]. 
Al though the surface is now knm.m to be incorrect, still 
it was gratifying to find at least one common feature, i.e. the back­
wards scattering for vf = 2 at the lower energy and,the sidewards 
scattering at nigher energy . This, for instance is not the case for 
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~igure 11. Results for the reaction F + H2(Vi ) 7 HF(Vf) + H. 
Vibrational state resolved differential cross sections for incident 
translational energy Etr =0 . 073 eV =' 1. 68 kca1/mol. The cross 
sections are normalized to one at 8 = 1800 (the ratios being 
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Figure 12. Vibrational state resQ1ved differential cross sections for 
incident translational energy Etr = 0.156 eV = 3.54 kca1/mo1 for the 
F + H2(vi ~ 0) + HF(vf ) + H reaction. The cross sections are normalized 
to one at 8 -= 1800 (the: ratio being 1:2:3 = 0.15:1:0.32) ....• vi = 1, 
-- vi 2, ---,r i = 3. 
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Figure 13. Results for the reaction ~ + H2(vi = 0) + HF(vf) + H. A 
comparison between QCT (Ref. 37) and £-av angular distributions as 
obtained for Etot = 0.5 eV . Upper panel shows QCT results; lower panel 
£-av results. Note the sidewards distribution for the £-av vf = 2 
results and the increase in the QCT vf = 3 curve towards 8 '\, O. 
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QCT treatment [37], as can be seen from fig. 13 where the ungu!ar dis­
tributions due to the :wb treatments are~bompared for a high energy. 

3.4. The F + D2 System [12] 

The F + DZ reaction was studied extensively. However, very few com­
parisons with other treatments or experiments can be made. Only 
classical results [31,34,38] are available and the only meaningful 
comparison can be made with regard to total cross sections. This is 
presented in fig. 14. As usual the t-av results fit the classical 
ones very nicely but the t-in are somewhat lower. Since, as mentioned 
earlier, the Muckerman V surface is wrong, comparison with experiment 
is not possible. 
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Figure 14 . Integral cross sections for the reaction F + D2 + DF + D 
as a function of translational energy.[]A. QCT results (Refs. 31, 34, 
38) • t-av results, 0 t-in results. 

4. DISCUSSION 

In this work we have concentrated on results which can be compared 
either with EQM and with results due to less approximate methods or 
with experiment. In order to have a meaningful comparison with 
eXperiment a necessary condition is to have the correct potential 
energy surface. So far only one such potential energy surface is given, 
Le. the H3 (and its isotopic analogs) surface. This makes the com­
parison for D + H2, for instance, relevant but rules out any meaningful 
comparison for the F + H2(D2) system. 

Our findings may be summarized as follows: 
(a) Total Integral Cross Sections 

One of the most reliable physical magnitudes that is expected from 
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a numerical treatment is the total cross section. In general the 
RIOSA 2,-av total cross sections were found to overlap the corresponding 
QCT results reasonably well. The only exception is the H + HZ(Vi = 0) 
case where the deviations are somewhat larger than usual. On the 
other hand, the RIOSA 2,-in results, except for the H + HZ(Vi = 0) case, 
deviate significantly from the OCT results. This particular problem 
will be discussed further somewhat later. 
(b) Vibrational State-to-state integral cross sections 

The QCT vibrational state-to-state integral cross sections (VSTSICS) 
are not expected to be similar to the corresponding QM magnitudes. 
This belief is based on studies on inelastic and collinear reactive 
collisions, Thus a fit or a misfit between RIOSA and QCT VSTSICS would 
not imply whether the RIOSA treatment is relevant or not. The only case 
from which we can deduce some information on this subject is the 
F + H2(vi : 0) ~ HF(vf) + H reactions for which CS results exist. The 
only problem with these CS calculations is that in order to obtain 
converged results the ~uckerman V potential was somewhat changed. The 
change is expected to affect the total cross section significantly 
(which was found to be half the size of the corresponding OCT value) 
and vibrational branching ratio to a lesser extent. As can be seen 
from fig. 10 the QCT branching ratio r(Z,3) is energy independent, 
whereas both the CS and the RIOSA yield branching ratios which are 
strongly energy dependent. 

There is also a CS calculation for the reactions 
H + HZ(vi = 1) ~ H2(vf) + H; vf = 0,1 on the Porter-Karp Ius potential 
energy surface. [39]. However, due to numerical nroblems, no fully con­
verged results were obtained. Again, this lack of convergence may 
affect the absolute values but is expected to yield more reliable 
values for branching ratios. Here've find that the classical r(l,O) 
values are ~ 2 whereas both the CS and RIOSA yield values of ~ 4. 
(c) Differential Cross Sections 

In comparison with the integral cross sections, a statement re­
garding the relevance of the RIOSA differential cross section is less 
conclusive. Except for H + H2(vi = 0), EQM differential cross sections 
are not available and here the fit between EQM and RIOSA results is not 
satisfactory. Both treatments yield backwards scattering but the EO~ 
curve decreases faster as 8 moves away from TI. In comparing the RrOSA 
differential cross sections with QCT results similar deviations were 
observed; in fact for all cases studied the RIOSA distribution is 
broader than the classical one. In this respect it should be mentioned 
that experimental findings support the RIOSA curves and not the QCT 
Ones, The RIOSA, in contrast to the QCT, yields sidewards distribution 
for higher energies (and for several systems). Angular distributions 
of this type were found for F + HZ(DZ) (in the same energy range) and 
there is evidence that this is also the case for D + H2" It could well 
be that the QCT treatment did not result in sidewards distribution for 
F + H2(D2) due to the fact that the surface is wrong. However, the 
reliabi1itv of the RIOSA treatment would be enhanced if stronger 
experimental evidence for the sidewards n + H2 angular distribution 
were available. 
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(d) Rate Constants 
In comparing rate constants one has to be careful because a fit 

or misfit reflects only on the quality of the lowest portion of energy 
dependent integral cross sections. Consequently a good fit with QCT 
results is not necessarily a good sign for a theory because in that 
energy region the QCT treatment is not always relevant. Neverthe-
less it was found for D + H2{vi = 0) that the QCT results (derived 
for a correct surface) deviate only slightly from the experimental 
findings. The RIOSA results (both the 1-av and the 1-in) were found 
to be sl.ightly higher than the experimental ones in the low temperature 
range, but at higher temperatures were very close being the same. A 
less satisfactory fit was obtained for Vi = 1 where the experimental 
results are about 3-5 times larger than the RIOSA results (the QCT 
results are two times smaller than the RIOSA results). 
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A similar situation was encountered in the F + H2 system. The 
RIOSA results are about 2-3 times larger than the QCT results and 
about 2-3 times smaller than the eXperimental ones. However one has 
to remember that the M5 surface is wrong and so comparison with 
experiment is probably meaningless. 
(e) 1-in RIOSA versus 2-av RIOSA 

When presenting RIOSA integral cross sections both the 1-av and 
the 2-in results are always shown . He consistently find that the 
2-av cross sections compare reasonably well with the QCT results, 
while the 1-in values are always smaller. For vibrational branching 
ratios no such consistent picture is encountered; whereas for 
F + H2{D2) the results were almost the same slight differences were 
encountered for D + H2{vi = 1) and much larger deviations were obtained 
for H + H2{vi = 1). The question, therefore, is what could be the 
reason for the large deviations (in the total integral cross sections). 
There is one source for that discrepancy which is also encountered in 
the inelastic case and which is due to the different weightings of the 
various terms in the final sunnnation over 1\. However from studies 
of inelastic collisions it is known that 1-in and 1-av total integral 
cross sections differ only to a certain extent. Thus there must be 
another reason which becomes apparent only in exchange collisions. 
In order to look for that cause we refer to eos. (12)-(16). The total 
integral cross sections within the 1-in formulation is obtained by 
employing eq. (16). It is noticed that all what is required is the 
corresponding primitive y\ dependent S-matrix elements. To calculate 
the total integral cross section within the 1-av formulation eqs. (12), 
(13) and (1.5) have to be employed. In addition to the primitive 
S-matrix elements, also the angle of rotation ~(Y\,B) (see fig. 1) 
appears in the expression (this angle is of course missing in the 
corresponding inelastic expressions). He have calculated, on several 
occasions, integral (and differential) cross sections employing the 
1-av expressions, but making ~(y",B) = 71 (its value at Y" = 0). It 
was found that these modified 1-av results are rather close to the 
1-in results obtained As an example we show in fig. 1.5 differential 
cross sections (multiplied by sinB) as calculated for H + H2 for the 
energy Etot'" 0.7 eV" Four curves are shown, i. e. EQM, 1-in , 1-av 
and the modified 2-av{~ = 71). It is seen that the 2-in and 2 -av{~ = 71) 
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results are almost identical but that the £-av curve is significantly 
different and much closer to the EQM curve. Thus, the angle 6 which 
is eliminated by the algebra within the £-in formulation seems to be 
essential for obtaining the better results. 
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Figure 15. Differential cross sections multiplied by sine as obtained 
for the reaction H2(Vi = 0) + H ~ H + H2 for the total energy 
Etot = 0.7 eV. --- EQM results (Ref. 20), --- £-av results, 

£-in results, .... £-av (6 = w) results. 

Support for this finding is given in fig. 9 where QCT, £-in, 
£-av and CIOSA results are compared" (In that figure the CS results 
are also given but they, are not relevant for the present discussion.) 
The CIOSA cross sections are obtained by integrating over the quasi­
collinear reactive probabilities - an expression similar to eQ. (16). 
Thus, in this sense, the CIOSA cross sections are 1-in type results 
and as is noticed they are almost identical to the quantum £-in re­
sults. This fact supports the previous finding for H + H2 where EQM 
and QCT cross sections were, for energies above threshold, very 
similar. Since, as a rule, the £-av cross sections fit the QCT cross 
sections rather well, the £-av results should be considered to be the 
more relevant of the two. 

There is still a question to be asked: "What is the meaning of 
the £-av CIOSA?" Knowing the answer to this question will give us a 
better understanding for the £-av RIOSA in general. 
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HYPERSPHERICAL COORDINATE FORMULATION OF THE 
ELECTRON - HYDROGEN ATOM SCATTERING PROBLEM* 

Diane M. Hood and Aron Kuppermann 
A. A. Noyes Laboratory of Chemical Physicst 

California Institute of Technology 
Pasadena, CA 91125 USA 

ABSTRACT A formulation is presented for the use of hyperspherical coordinates 
and local hyperspherical surface functions in the electron-hydrogen atom scattering 
problem. Some representative numerical results of the application of this formulation 
are given. 

1. INTRODUCTION 

The use of hyperspherical coordinates and local surface functions in electron­
atom scattering problems i and in 3D reactive scattering problems2 has been suggested 
for over a decade, but so far converged calculations of differential or integral cross 
sections of inelastic or reactive processes using this methodology have not been 
published. The formalism is conceptually simple and in principle very powerful, 
affording a united treatment of non-reactive and reactive processes for molecule­
molecule collisions, and of direct and exchange processes for electron-molecule 
collisions. It has by now been extensively tested for collinear atom-diatom reactive 
scattering.:I ,4 

One of the difficulties in applying this approach is the accurate and efficient 
calculation of local hyperspherical surface functions, especially for reactive scattering 
processes. In the case of the electron-hydrogen atom system, these difficulties are 
alleviated by the symmetry of the system and the large proton to electron mass ratio. 
As a result, this is a very convenient system for the application and testing of this 
methodology. It is also, in some senses, an extreme prototype of light-heavy-light 
triatomic reactive systems in which the light-light arrangement is either not bound 
or very closed for energetic reasons. 

In Section 2 we define the symmetrized hyperspherical coordinates for the 
electron-hydrogen atom system and express the hamiltonian in these coordinates. 
In Section 3 symmetry is discussed. The appropriate symmetry wave functions are 
introduced in Section 4, the local surface eigenfunctions and energy eigenvalues in 
Section 5, and the scattering equations and asymptotic analysis in Section 6. Finally, 
some representative results are given and discussed in Section 7 and a summary of 
the conclusions is presented in Section 8. 
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2. SYMMETRIZED HYPERSPHERICAL COORDINATES 

Let the two electrons be designated e1 and e2 and the proton p. Let ri be the p 
to ei vector and R; the vector from the center of mass of the p, ei particle pair to ej 

(i,j = 1,2, i:f. j). We introduce the Delves mass-scaled coordinates5 

(2.1) 

where IA is the overall reduced mass of the system, lAi the reduced mass of the p, ei 

pair and Vi the reduced mass of the pei, ej pair. If m and M are the electron and 
proton masses, respectively, those reduced masses are given by 

= ( m2M )1/2 
IA 2m+M 

mM 
IA;= m+M 

m(m + M) 
Vi = 2m +M 

(2.2) 

In terms of these mass-scaled coordinates, the hamiltonian for the system, with the 
motion of its center of mass omitted, is 

(2.3) 

where Ii is the angle between the r; and R: (or ri and R;) vectors and Vi the 
interaction potential among the three particles. 

The system's hyperradius p and hyperangle Wi are defined by 

( 12 R/2)1. P = r i + i 2 

1 r' 
Wi = 2 tan- R', , 

(2.4) 

The value of p is independent of the choice of i whereas that of Wi is not.2a •6 The 
hyperspherical coordinate system i is defined as the set of coordinates formed by p, 
Wi, the spaced-fixed polar angles Oi, 'Pi of R: (or R;) and two polar angles which 
determine the orientation of r; (or rd. The latter can be chosen either as Or;, 'Pr;, 
the space-fixed frame angles, or Ii, 'l/Ji, the body-fixed frame angles for which R: 
is the direction of the corresponding z-axis. Other choices are possible for the four 
angles which determine the orientations of r: and R:, but will not concern us here. 
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The hyperradius p and hyperangle Wi playa central role in our formulation_ In terms 
of them, the system's kinetic energy operator is given by 

where H and ~ are, respectively, the square of the angular momenta associated with 
the rj and ~ vectors and depend on the four orientation angles denoted collectively 
by OJ. The symbols Tp and i~ represent, respectively, the hyperradial kinetic energy 
and hyperangular angular momentum operators defined by 

(2.6) 

and 
'2 2 ( f)2 f) ) 
L j = -4h OW; + 2 cot Wi OW; (2.7) 

The grand canonical angular momentum operator A~ is defined as 

(2.8) 

and in terms of it we have 

(2.9) 

So far, these expressions are exact. Th6 potential energy function, in terms of 
r}, r2 and the angle "I betwee n the corresponding vectors, is given by the simple 
expression 

(2.10) 

where 
(2.11) 

When the hyperspherical coordinates p, Wi, "Ii are used, this expression is not as 
simple; nevertheless, this use does not lead to any significant difficulties. However, 
major simplifications result if we Ilotice that 11, Ili and Vi are all equal to m to order 
m/M, and to that order r~ equals ri, R~ equals rj, "11 and "12 equal "I, J? equals ~ 
and Wj equals 7r - Wj. In the limit of vanishing m/M we can rewrite (2.5) and (2.10) 
respectively as 

(2.12) 
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and 
e2 [1 1 1] v.. (p W I = - - -- + -- -

, , ,, ) p cos T sin T VI - sin Wi cos I 
(2.13) 

In the rest of this paper, we will use this infinite proton mass approximation. The 
inaccuracies it produces are smaller than those resulting from other sources of error in 
the computations we have performed so far, and if desired can be corrected by either 
a first order perturbation theory approach or a repetition of the calculations without 
using the approximation. The last two expressions explicitly display the symmetry 
of the system, and lead to interesting insights, which justify the slight error they 
produce. 

3. SYMMETRY CONSIDERATIONS 

The hamiltonian of the electron-hydrogen atom system is invariant under (a) an 
exchange of the two electrons, and (b) an inversion of the system through its center 
of mass (which in the infinite proton mass approximation is the same as an inversion 
through the proton). The invariance under exchange brings about a quantum number 
which, for subsequent reasons related to the Pauli principle, is called the spin quantum 
number S; for wave functions whose orbital part is symmetric/ antisymmetric with 
respect to exchange (and whose spin part is antisymmetric/symmetric) this quantum 
number is equal to zer%ne and corresponds to singlet/triplet states, the exchange 
parity being therefore (-1)8. The invariance under inversion brings about the 
quantum number II which is zer%ne for symmetric/antisymmetric states which 
are said to have even/odd parity. 

In addition, if we make a plot of the equipotentials of V in a system of coordinates 
OXjYiZj defined by 

Xi = psin Wi cos Ii 

Yi = psin Wi sin Ii 

Zj = pcos Wi 

(3.1) 

these equipotentials have a plane of symmetry which, in the infinite proton mass 
approximation, becomes the OXj Yi plane. Furthermore, an i -+ j coordinate 
transformation rotates the equipotentials by a fixed angle around the OY; axis, 
without changing their shape.2a In the infinite proton mass approximation this angle 
becomes 1800 • These properties permit a convenient visualization of the nature of 
local hyperspherical surface functions when projected onto this space. 

A plot of cuts of the equipotential surfaces of V by the OXi Yi and OXi Zj planes is 
given in Figure 1. For convenience of display, these plots had the range of I extended 
from 0 to 7r to 0 to 27r by adopting the convention V(p, Wi, 27r -I) = V(p, Wi, I)' This 
reH.ection of the equipotentials through the OX j Zj plane is not used in the actual 
calculations, since the range of Ii is only 0 to 7r. Cuts of equipotentials by planes 
parallel to 0 Xi Yi approach circles as I Zi I increases, since, for a fixed ri, V becomes 
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independent of 'I as rj increases. This conclusion can also be reached from an analysis 
of (2.13). 

£ 

Z 0 
"->--

-0 -5 o 
Xi/bohr 

-Ii.! -5 , 10 

X/bohr 

Figure 1. Equipotential surfaces for the electron-hydrogen system in the coordinates 
defined by Eqs. (2.13). The right (left) part of the figure displays cuts of these 
equipotentials through the OXiZi (OX; Yd planes. The signed numbers on top and 
right margins of the panels designate the energy of the associated equipotentials in 
hartree. The energy spacing between neighboring equipotentials is 0.1 hartree. 

4. SYMMETRY WAVE FUNCTIONS 

For the purpose of calculating wave functions which satisfy the correct physical 
scattering conditions, it becomes useful to define the symmetry wave functions 
'1l JMSIl as the solutions of the set of eigenfunction equations 

H'1l JMSIl = E'1l JMSIl 

j2'1lJMSIl = J(J + 1)h2'1lJMSIl 

Jz'1lJMSIl = Mh'1l JMSIl 

P12'1l JMSIl = (_l)S'1l JMSIl 

§'1l JMSIl = (_1)11 '1l JMSIl 

( 4.1) 

In these expressions, the operators appearing on the left hand side are, 
respectively, the hamiltonian of the system, the square and the laboratory-fixed z­
component of its total spacial angular momentum, and the electron exchange and 
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inversion through the center of mass operators. The corresponding eigenvalues are E, 
J( J + 1)h2 , Mh , (_l)S, and (_l)n. For scattering problems E is given a priori and 
is larger than the energy Eo of an electron plus an infinitely removed hydrogen atom 
in its ground state. J and M are integers satisfying the usual relations J > 0 and 
IMI ~ J, and S and II have the allowed values discussed in Section 3. The physical 
scattering wave functions can be expressed as linear combinations of the iJ/Jtwsn. 

5. LOCAL SURFACE FUNCTIONS AND ENERGIES 

5.1 Definition 

We define the local surface functions ~fMsn (Wi , 0i; p) as the simultaneous 

eigenfunctions of j2, jz, F12 , {i< and the hamiltonian H( wi, Oi; p) obtained from 

II by omitting Tp(p). In other words, H is the hamiltonian of a particle of mass I-l 
confined to move on a 5-dimensional hypersphere of radius p, subject to the potential 
V. It depends on p only parametrically, and is given explicitly by 

(5.1 ) 

In addition to satisfying the last four of eqs. (4.1) , the ~fMsn satisfy the eigen­
function-eigenvalue equation 

(5.2) 

with the requirement that they be single-valued and continuous. This condition 
quantizes efsn (p), making the ~fMsn constitute an infinite discrete complete set of 
eigenfunctions of the space spanned by the five angles Wi, Oi. The symbol k stands 
for a set of appropriate quantum numbers which label the functions of this set. For 
each p these functions span regions of configuration space corresponding to the bound 
arrangement channels elP + e2 and e2P + el, as well as el + e2 + P configurations, and 
are therefore capable of describing the ionization continuum. For large values of p, 
and for efsn (p) below the ionization energy ofthe hydrogen atom, the corresponding 
~fMsn are localized mainly in the regions of configuration space corresponding to 
bound arrangements. The reason for this behavior is the presence of Vi in (5.1). 
This makes the ~fMsn constitute a good basis set for describing bound-to-bound 
scattering processes. By constrast, the K-harmonics or hyperspherical harmonics,7 
which are defined as the eigenfunctions of the grand canonical angular momentum Ar, 
are spread out over the entire Wi, Oi angular space, and form a very slowly convergent 
basis set for expanding bound-to-bound scattering wave functions. 8 

The local surface energy eigenvalues efsn (p) are degenerate with respect to M 
and tend to the eigenvalues of an isolated hydrogen atom as p increases. Considered as 
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functions of p, they are conceptually analogous to the potential energy curves for the 
electronically adiabatic states of a diatomic molecule, where the independent variable 
which is "frozen" is the internuclear distance rather than the system's hyperradius. 
In the large p limit, the ~f MS n 's become linear combinations of the degenerate 
hydrogen atom eigenfunctions having the same eigenvalues e:fsn (00). 

5.2 Determination of local surface functions and eigenvalues 

In order to determine the ~tMSn (Wi, Oi; p) and e:tsn (p) it is convenient to 
choose for OJ the space-fixed orientation angles Oi, rpi, Orj, rprj' i. e., 0i, rpi, OJ, rpj. 
From now on we set i = 1, j = 2. We now expand the ~fMsn in the eigenfunctions 

JM -2 - -2 12 Yl21, of J , Jz , 11 ,12, according to 

~fMsn (WI, 0 1 ; p) = ~Yl~r;(02' rp2; 01 , rpd!Jsn~21' (WI; p) (5.3) 
12 1, 

where 

the Yim and C being, respectively, the usual spherical harmonics and Clebsch-Gordan 
coefficients. Replacement?f (5.3) into (5.2) leads to the following set of coupled 

equations in the coefficients !Jsn~21': 

(5.5) 

where the V Ju :?:: are the surface potential matrix elements 
2 , 

(5.6) 

and can be calculated analytically. 

We now define t:121, (WI; p) as the solutions of the decoupled equations obtained 
from (5.6) by omitting all coupling terms: 

(5.7) 
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In this expression p is a symbol which labels the solution being considered. If we 
further drop the V Jll :~:: (WI; p) term from this equation its solutions become the 

analytically known Jacobi polynomials,5 which when multiplied by Yl~~ yield the 

hyperspherical harmonics discussed in Section 5.1. Changing from tt l2 1, (WI; p) to 

the function TP'121l (WI; p) defined by 

(5.8) 

we get the uncoupled equations 

where Ve~121l is the effective potential defined as 

(5.10) 

and the following boundary condition must be satisfied in order that t:121l (WI; p) not 
be divergent at WI = 0 and WI = 1r: 

(5.11) 

Eq. (5.9) is easily solved by finite difference or finite element numerical methods. 

If l2 equals It the effective potential Ve~lll is symmetric with respect to WI = i. 
The Tilll' functions are therefore either symmetric or antisymmetric with respect 

to WI = i (i. e., with respect to electron interchange), and are obtained in separate 
calculations. As a result 

for l2 f: II 

for 12 = it 
(5.12) 

The symmetry of YlfM is determined entirely by J, since this function is always even 
with respect to inversion through the proton (i. e., (_1)" = +1). If J is even, the 
singlet functions Till will be symmetric with respect to WI = i and if J is odd, then 
it is the triplet basis functions which will have this symmetry. 

As a result of this symmetry analysis we conclude that the simple product 
YI~~((}2,'P2;(}b'Pl)t:121l(Wl;P) does not possess, in general, exchange symmetry. 
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Consequently, it becomes useful to define, for l2 > ll' the 5-dimensional angular 
functions 

e~"!,:Il (WI, OI, rp 1, O2, rp2; p) = N I211 [Yl~f;I (02, rp2; OI, rp d t:1211 (WI; p) 

+ (-I)AYI~~(02' rp2; Oil rpd t:1211(1I'-Wl; p)] 
(5.13) 

where 
A=S+J-Il 

and N I211 is a normalization constant. For II = l2 = l we define eft~SIl by 

(5.15) 

where the additional index J + S on ttll results from the discussion just preceding 
and following (5.12). 

The functions e~"!,:Il have the appropriate symmetry properties under electron 
exchange and inversion through the proton. For l2 ~ ll' they are linearly independent 
and orthonormal, and constitute an appropriate basis set for expanding the surface 
functions ~fMSil. We note that in defining these etJ~:Il we have not symmetrized 

(or antisymmetrized) the ttl211 (WI; p) and YI;f;I functions separately;9 but only their 
product. This results in a saving in numerical effort. 

If we now expand the ~fMSil according to 

~fMSIl(WI,OI;P) = 2: a~f1~k(p) e~~:Il(WI,OI;p) 
'2'[ p 
'2 :2:11 

(5.16) 

and replace this expansion in (5.2), we get an eigenvalue-eigenvector set of linear 
algebraic equations for the unknown coefficients a~f::,k (p) and eigenvalues efSil (p) 
which can be further decoupled using the known symmetry properties of the 
VJ Il :?:: (WI; p) defined by (5.6). The matrix of the coefficients of the resulting 

2 1 

equations is real and symmetric and results in easily determined real eigenvalues 
and real, orthonormal eigenvectors. 

The expansion in (5.16) converges rapidly, because the basis functions e~r,:Il 
already reflect the localization properties introduced by the diagonal matrix elements 

VJIl:::~ (WI; p), and the convergence rate increases as p increases. This is in sharp 
contrast with what occurs when using hyperspherical harmonics in the expansion of 
the surface functions, in which case the rate of convergence decreases as p increases,8 
making such an approach impractical for p > 15 bohr. 
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6. SCATTERING EQUATIONS AND ASYMPTOTIC ANALYSIS 

6.1 Scattering equations 

Over a limited range of p in the neighborhood of 15 let us expand the symmetry 
wave function iJlf:'vfSll in the local surface function basis set <I>t'vlSll (WI, 0 1; 15) 
calculated at 15, according to 

iJlf:-'SIl = p-t LbJSll~/(P;15)<I>fMSll(Wl,OI;15) (6.1) 
k 

This is called the locally diabatic representation, and the set of coupled equations 
which results when replacing it into the first of (4.1), in matrix form, is: 

(6.2) 

where 

and 

(6.6) 

We divide the range of P of interest, from Pmin close to zero to Pmax sufficiently 
large for the resulting scattering matrix to have become independent of p, into 
intervals sufficiently small for a surface function basis set at a 15 in each interval to be 
appropriate for that interval. We start integrating (6.2) with the initial condition that 
at Pmin b J 5 II is the null matrix. When the value of p separates two such intervals 
we change surface functions basis sets by imposing the condition that at that value 
of p b JSll and its derivative with respect to p be continuous. 

Because of its simplicity, efficiency and adaptability to the hypercube computer 
architecture being developed at the California Institute of Technology,10 we have 
chosen Johnson's logarithmic derivative methodll to numerically integrate eq. (6.3). 

6.2 Asymptotic Analysis 

Asymptotically, in arrangement channel i, (=1,2) , the scattering wave function 
should behave as 
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(6.7) 

where 
(6.8) 

and the Rnh (r;) is the radial atomic hydrogen wave function. In addition, the 

functions G~~~~' (Rd behave asymptotically as 

(6.9) 

where 
S .(R-) _ {Sin(knR i - 121f/2) for open channels 
nlll~,1 t - exp(lknIR;) for closed channels, and (6.10) 

( ) { cos( kn Rj - 121f /2) for open channels 
Cnhl~,j R j = exp(-lknIRd for closed channels. (6.11) 

In addition, Vn is the velocity 
(6.12) 

where kn is the channel wave number given by 

(6.13 ) 

En being the energy of a hydrogen atom with principal quantum n. In matrix form 
(6.9) can be rewritten as 

(6.14) 

where G JSIl , C JSIl , and n JSIl are square matrices whose rows and columns are 
spanned by the set of indices k' == (nllI2, i), and v, S, and C are diagonal matrices 
of equal order to the previous ones and whose diagonal elements are given by (6.10) 
through (6.13). All these matrices have rows and columns associated with both 
arrangement channels (i = 1,2). A reactance matrix R JSIl for partial wave J, spin 
S, and parity II is then defined by 

(6.15) 

For computational purposes, a more appropriate form of (6.14), which starts 
being valid at smaller values of Ri , is 

(6.16) 
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where J and N are diagonal matrices whose diagonal elements are, respectively, 

and 

for open channels 
for closed channels 

N 1 {Yl. (kn R;). for open channels 
nld2 = t kl.(lknl Rd for closed channels 

Vn 

( 6.17) 

(6.18) 

The il. and Yl 2 are regular and irregular spherical Bessel functions,12 and il• and kl2 
are modified spherical Bessel functions of the first I2 and third kinds,13 respectively. 
Eq. (6.16) reduces to eq. (6.14) in the far asymptotic region. From the open-open 
sub-block R~In of R Jsn one can obtain the corresponding sub-block s~In of the 
scattering matrix by the standard relation 14 

I 'RJsn SJsn = + I 00 

00 1- iRtosn (6.19) 

The matrices R~In and stIn are real and unitary, respectively, and both are 
symmetric. 15 The cross sections for all e + H state-to-state processes can be expressed 
in terms of stIn. 

In order to determine Rt:n we must put the solution of (6.2), obtained by 
numerical integration out to Pmax, in the form of (6.16). Since the latter is expressed 
in terms of the distances Rj (of the isolated electron to the atom) and the former 
in terms of the hyperradius p, we must perform a transformation of variables to a 
common one, which we will choose to be p. This choice is made because we then need 
only the logarithmic derivative of b Jsn (rather than b Jsn and its derivative with 
respect to P separately) to accomplish this transformation, and to calculate R~:n. 
This approach is particularly suited to the Caltech hypercube architecture. Io 

This transformation of variables is accomplished by using eqs. (2.4), (6.1), and 
(5.13) through (5.16), as well as 

wtfWsn = l: YI~f;((}i,rpi;(}T;lrprJ ~G~f,~~i'(R;)Rnll(ri), 
nl,12,i t 

(6.20) 

and requiring that the wtfWsn given by (6.1) and (6.20) be equal, and that the 
respective p-derivatives also be equal. This permits the calculation of the logarithmic 
derivative of G Jsn from that of b Jsn and of appropriate numerical quadratures 
of known functions of Wi. The mathematical details of this constant p projection 
procedure of the numerical solutions of the scattering eq. (6.2) onto the asymptotic 
arrangement channel will be published elsewhere. 16 Our experience is that it is 
not only conceptually simple, as just presented, but does not numerical difficulties. 
Similarly, we will not give here the explicit expressions relating state-to-state cross 
sections to the st:n matrix, since these are standard. 17 
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7. REPRESENTATIVE RESULTS 

Although the emphasis of this paper is on the formalism we used in applying the 
method of hyperspherical coordinates and local hyperspherical surface functions to 
the e + H elastic and inelastic scattering problem, we present now a sampling of the 
results obtained. 

The computer used was an FPS164 attached processor with a fast memory of 
512 megawords, and a VAX 11/780 host. The appropriate numerical parameters, 
such as integrator step size, Po, Pmax, frequency of change of surface functions, and 
number of surface functions used, was adjusted so as to lead to scattering probabilities 
converged to about 10-3 and scattering matrix phases converged to about 10-2 

radians. Representative computing times and the number of states used are given 
in Table 1. The surface functions are independent of energy and need be computed 
only once. 

In Figures 2 and 3 we present the surface function energy eigenvalues for some 
values of J, S, and II, as a function of p, and which converge to the n = 1 through 4 
energy levels of the H atom at large p. Some of these curves present minima, and 
support bound states, which have been used in the past to model resonances in this 
system.18 

-0.2'-~--~~-r---r-----------------------------. 

-0.3 

-0.4 

's 

-0.6 

-0.7 

o 5 10 15 

p/bohr 

Figure 2. Surface function energies e, as a function of p, for J = 0 (S states), 
1 (P states)' 2 (D states) and 3 (F states), which converge to the n = 1 H-atom level 
as P -+ 00. 
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Table 1. Computing times. 

Integration Total time Time per 

Number time per for all surface 

of surface energy surface functions a function 

Partial wave functions (sec) (min) (sec) 

lS or 3S 15 20 18 0.36 

podd 25 90 19 0.23 

1 Deven or 3Deven 31 130 47 0.36 

Fodd 34 190 32 0.28 

a These surface functions were computed at. about. 200 values of p. 
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Figure 3. Surface function energies e, as a function of p, for Ipodd states, which 
converge to the n = 2,3 and 4 H-atom levels as p -+ 00. 

In Tables 2 and 3 we present a comparison of our results to those of previous 
calculations,t9-23for the contribution of the 3podd partial wave to the Is -+ 2s 
and Is -+ 2p cross sections respectively. The agreement is generally good and we 
believe that the results of the present calculation are more highly converged and 
more accurate than the previous ones. 
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Table II. 3podd contribution to 1s - 2s cross section. 

Kinetic 

Energya 

0.76 

0.78 

0.81 

0.83 

0.85 

0.86 

0.90 

0.93 

0.0384 

0.0449 

0.0545 

0.0584 

0.0570 

0.0377 

0.0418 

0.0464 

0.0461 0.0384 

0.0567 0.0421 

0.0672 0.0503 

0.0735 0.0563 

0.0596 

0.0516 

0.0582 

0.0517 

a Initial electron kinetic energy in rydberg. 

0.0429 

0.0521 

0.0614 

0.0668 

b Present results for a basis set of 25 surface functions. 

eRef. 19. 

d Ref. 20. 

e Ref. 21. 

f Ref. 22. and 23. 

CW/HMMf 

0.037 

0.045 

0.053 

0.057 

0.056 
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Table IlL 3podd contribution to 1s-2p cross section. 

Kinetic 

Energya 

0.76 

0.78 

0.81 

0.83 

0.85 

0.86 

0.90 

0.93 

0.0319 

0.0389 

0.0446 

0.0472 

0.0451 

0.0306 

0.0312 

0.0321 

0.0478 0.0406 

0.0539 0.0456 

0.0638 0.0498 

0.0674 0.0495 

0.0491 

0.0496 

0.0450 

0.0386 

a Initial electron kinetic energy in rydberg. 

0.0442 

0.0502 

0.0584 

0.0609 

b Present results for a basis set of 25 surface functions. 

c Ref. 19. 

d Ref. 20. 

e Ref. 21. 

f Ref. 22. and 23. 

CW/HMMf 

0.038 

0.041 

0.047 

0.048 

0.046 
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In Fig. 4 the integral cross section for the Is -+ 2p transition is plotted as a 
function of energy. The arrows on the lower abscissa indicate threshold energies for 
the n = 2, 3, and 4 H-atom levels. The curve is rich in resonances, whose positions 
agree quite well with those of previous calculations. 

TOTAL ENERGY/HARTREE 
-0.13 -0.11 -0.09 -0.07 -0.05 -0.03 

I r--- - .. - -.-
i 

---,-·--·"---T-----r---·~ 

I 

,+ I 

N~ " ~ 
"-- i 
~ I 
r , 

."'. OAf-

a I 
I 

I 

O·T 

oLnt~' 2----"16--=.5:---- - -'-11.-=-0- - _ _ ---ts-- ---12~~--1~25~n ;~4~ 
INCIDENT KINETIC ENERGY/eV 

Figure 4. Total cross section Q ls-..2p for the Is -+ 2p transition as a function of 
initial relative electron kinetic energy (lower scale) and total system energy (with 
respect to the e + e + p configuration). 

Fig. 5 displays an Argand diagram for the (lsI) -+ (2p2) element of the scattering 
matrix for the 1 podd partial wave in the energy region between the n = 3 and 
n = 4 thresholds. The counter-clockwise circles indicate the presence of five strong 
resonances, three of which are very narrow. 
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1 podd S ( , s, - 2 p 2 ) 
-O.IO~------~--------~--------~------~ 
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-0.16 
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-0.02 o 0.02 

Re S 
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Figure 5. Argand diagram for the Ipodd S-matrix element (lsI) --+ (2p2). The large 
arrows indicate the direction of increasing energy, from the n = 3 to n = 4 threshold. 
The crosses correspond to energies every 0.005 h, the triangles every 0.001 h, and the 
small arrows every 0.0002 h. 

Finally, in Fig. 6 we present the collision lifetime matrix eigenvalues24 associated 
with the resonances in the Ipodd partial wave occurring just before the opening of 
the n = 4 channel. As can be seen, some of these resonances live for longer than 104 

ground state electron orbit times. A detailed description and analysis of these results 
will be given elsewhere. 
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Figure 6. Collision lifetime matrix eigenvalues (in atomic units) for the 1 podd partial 
wave just below the opening of the n = 4 H-atom channel as a function of energy. 
One atomic unit of time is the classical time it takes an electron in the H-atom ground 
state to traverse one radian. The ordinates of the off-scale peaks of the dashed' and 
full curves occurring at 0.93145 Ryd and 0.93713 Ryd are 1.3 X 105 and 1.9 X 105 

atomic units respectively. The arrows locate the positions of the resonances. 

8. SUMMARY AND CONCLUSIONS 

We have presented the hyperspherical coordinate formulation for e + H elastic 
and inelastic scattering using local surface functions and have shown that it is both 
efficient and accurate. It can in principle be extended to energies above the ionization 
threshold by including hyperspherical harmonics in the surface function basis set. 
It also permits a calculation of polarization cross sections. This approach is very 
promising and should lead to a very complete description of the e + H scattering 
processes. 
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THE R-MATRIX METHOD 

John C. Light 
The James Franck Institute and The Department of Chemistry 
The University of Chicago 
Chicago. Illinois 60637. U.S.A. 

ABSTRACT. The R-matrix method is reviewed both in the L2 and R-matrix 
propagation implementation. Results are presented for a simple elastic 
scattering problem showing the improvement in convergence when non­
orthogonal L2 bases are used. Comparably accurate results are obtained 
with either non-orthogonal sine functions or a distributed Gaussian 
basis. The implications of these results. together with R-matrix propa­
gation. for reactive scattering are discussed. 

1. INTRODUCTION 

Although the accurate solution of the appropriate time independent 
SchrHdinger equation. subject to proper boundary conditions. has long 
been recognized as a rigorous approach to the prediction of chemical 
reaction dynamics. it is only relatively recently that this has been 
accomplished for the simplest of chemical reactions. the hydrogen atom­
hydrogen molecule exchange reaction [1-3]. Since experimentally far 
more complex systems are of interest. the main purpose of this Workshop 
has been to review. discuss. and propose theoretical methods. all approx­
imate to a greater or lesser degree. which can be used for accurate 
models of real systems to provide reasonably efficient and accurate pre­
dictions of their dynamic behavior. Specifically we would like to be 
able to calculate all experimentally measurable quantities ranging from 
state-to-state differential cross sections to thermal rate constants 
given only the accurate (nuclear) potential energy surface(s) for the 
system in question. Also desirable. of course. would be the ability to 
predict the course of higher energy collisions involving electronically 
non-adiabatic transitions. photodissociation via both direct and pre­
dissociation routes. and including product distributions. electron­
molecule collisions. etc. 

Since the exact solution of the SchrHdinger equation for most such 
processes of interest remains far beyond our current capabilities. both 
in terms of the algorithms for exact solution and the computational re­
sources. both software and hardware. to carry them out. most of this 
Workshop has focused on the adequacy of various physical approximations 
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and "model" approaches to the problem. While these are, of course, cur­
rently more useful as predictive tools for complex systems than any 
"exact" approach (which cannot normally be carried through), the purpose 
of this article is to present an exact approach, the R-matrix, proposed 
formally many years ago, which, given improvements in computer resources, 
theoretical understanding and in development of efficient algorithms may 
soon yield "exact" solutions to significantly more complex problems in 
chemical dynamics. 

Isolated collision processes are, essentially by definition, gov­
erned by short range forces between the interacting particles. In 1947, 
Wigner and Eisenbud [4,5] proposed that this fact be formally incor­
porated into quantum scattering theory by dividing the "scattering" 
coordinate space into two regions, the asymptotic region in which ana­
lytic solutions to the SchrHdinger equation are known, and the interior, 
or interaction region, in which all the physical coupling (and mathe­
matical difficulties) occur. Since only asymptotic information is ever 
observable experimentally, and since the continuity requirements on the 
wavefunction (solution of the SchrHdinger equation) at the interior­
exterior boundary determine the asymptotic solutions, Wigner and Eisen­
bud developed the relations between the interior solutions (evaluated at 
the boundary) and the desired asymptotic quantity, the S matrix (and 
thus differential cross sections, etc.). This reaction is the R-matrix 
--mathematically, the relation between the outward normal gradient of 
the wavefunction at the boundary, A, and the wavefunction evaluated 
there: 

R n oV'1/! I 
-- r=A 

where n is normal to the surface (here trivially r/lrl). 
the wavefunction must have its asymptotic form, namely 

1/!=IN-OoS 

-ikr 
where IN is an incoming asymptotic solution (e.g., f ), 
outgoing solution, the R-matrix is simply related to the S 
phase shift for elastic scattering, 0, with S = e 2io ), by 

S = w- 1 W* 'So ~ _ 

W = [ RO' - 0] k -1 / 2 
::s o;::t=. = = 

(1.1) 

Since at r = A 

(1. 2) 

and 0 the 
matrix (e.g., 

(1.3) 

where the primes denote the outward normal gradient, and k is the wave 
vector. 

In their original formulation, Wigner and Eisenbud used the R­
matrix primarily as a formal tool, relating the properties of the solu­
tions of the SchrHdinger equation in the internal region in an empirical 
manner to the resonances observed in nuclear scattering. Although the 
parameterizations they developed to do this were quite useful, the main 
purpose of this article is to present the methods developed (and still 
developing) for the exact evaluation of the R-matrix for more complex 
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systems, and the more general relations of the R-matrix to standard 
Green's functions. That is, we will present the developments which have 
taken the original R-matrix theory from a formalism for semi-empirical 
"explanation" of experimental observations to two quite different "exact" 
computational approaches: the L2 basis set expansion in the interior re­
gion, and the R-matrix propagation of local analytic solutions throughout 
the interior region. Although both approaches were developed over a 
decade ago, some new developments in each area will be reviewed, and a 
prognosis for applications to more complex problems will be given. 

2. L2 R-Matrix Theory: Basics 

In "chemical" scattering theory, we usually wish to solve the non­
relativistic Schr~dinger equation for the motion of the nucleii on a 
single adiabatic potential energy surface. We isolate a single coordi­
nate, the scattering coordinate which we will call R, such that as R-+oo 
the system is partitioned into non-interacting moieties, i.e., the atoms, 
molecules, or molecular fragments which are the reactants and products 
of the collision. In the case of chemical reactions, R may be the hyper­
radius of a hyperspherical (Delves) [6,7) coordinate system. Thus the 
Hamiltonian can be partitioned as 

H (II. 1) 

where the hi is the Hamiltonian of the isolated fragments (initial and 
final) and V is the potential. V must go to zero as R goes to infinity 
(in any chemical channel): 

V(R,{x}) ~ o. 

The coordinates, {x}, are the internal coordinates, and TR is kinetic 
energy operator containing both the translational kinetic energy opera­
tor for R and the overall angular momentum operators. 

We assume the asymptotic internal solutions are known 

(II. 2) 

and the two independent translational solutions must be 

(R -+ 00) (II. 3a) 

(R -+ 00) (II. 3b) 

where ~ is the total orbital angular momentum and k2 is the transla­
tional energy with respect to a space fixed coordinate system with the 
origin at the center of mass of the system. ~ and ~ are two independent 
solutions. Depending on the number and complexity of the fragments, the 
angular momentum coupling may be more or less complicated [7), but the 
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specific scheme used is not important for this discussion. Here, there­
fore, we assume that an appropriate scheme has been adopted and that a 
decomposition of the wavefunction by total angular momentum, J, has been 
made. We also assume that no external fields are present (thus space is 
isotropic and our results must be rotationally invariant) so we may 
choose the space fixed axes such that the projection of the total angular 
momentum on the space fixed z axis is zero (M = 0) . 

Given this, the asymptotic wavefunction must be a linear combination 
of the form 

1jJJ,M I C 
a,k 1:\,0. 1jJ2"k + E R+oo a,k 

+ L da,k 0k ,a 1jJ2"k (II. 4) 
a,k 

where the product is over the initial states, 0k , for the appropriate 
initial internal states in a given chemical channel and the sum (a,k) is 
over internal states, k, in a given initial channel and over possible 
outgoing channels, a. The c's and d's are coefficients which are not 
independent since we will require that all solutions satisfy the boundary 
condition at the origin: 

1jJ~,M(R) ~ finite (regular b.c. 's). (II. 5) 

We may use the orthogonality of the internal states (we assume the 
fragments are well enough separated so that the internal states of the 
different internal channels are orthogonal to each other), take the 1jJ's 
to be incoming waves and ~ the outgoing waves to define a column of the 
S-matrix: 

J 0n ,a 
1jJJ,M ndx <5 1jJ2"k + 

C E k,n 
a,n 

+_1_ La' ,n' 
dn -n 

C a' ,n' 1jJ 2,' ,n' 
n,a 

(11.6) 

or 

SJ,M 1 dn 
n',a',na C a' ,n' 

n,a 
(II. 7) 

(We note the projection has also fixed the initial orbital angular momen­
tum, 2" and the index n' refers to internal quantum numbers and 2,'.) 

Recognizing that the individual incoming and outgoing solutions are 
complex conjugates, we may write (11.6) more simply in matrix form as 

'feR) = k-1/ 2 [O* - 0 Sj (11.8) 
-::=. -s. =-:::s.::# 

where ~ is the diagonal matrix of outgoing solutions,~. The outward 
gradient is then 
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!' = f1/2[~*, _ ~'~] = -i ~1/2 ~* _ i !l/2 ~ ~ (11.9) 

where k is the diagonal matrix of wave vectors, and the k-1/ 2 factor . -norms the solutions to unit incoming flux. Since the R-matrix is de-
fined as the relation between ~ and ~', we have 

~ = R ~' .. ==~ 
(II .10) 

or, relating (11.8-10), 

S ... 
-1 

[(I-i R k)O k-l/ 2] [(I+i R k)O* k-l/ 2] • ==::= .. -&~ ... 
(II.11a) 

(I1.11b) 

Note that the relations (11.10) and (11.11) hold throughout the asymp­
totic region, the radial dependence of the ! matrix just cancelling that 
of the outward solution in the expression for the S-matrix. Since the k 
and 0 matrices are diagonal in the internal state quantum numbers, the: 
boundaries on which \ and ~ are evaluated may be different for each in­
ternal state. Having established the relation of the R-matrix to the 
S matrix, we now turn to the much more difficult task of evaluating the 
R-matrix. 

In order to evaluate the R-matrix, we may determine the operator 
for which it is the matrix representation, and seek to evaluate it 
directly. Writing the full Schrtldinger equation as 

d2 2 
{--+}:h.+V+L -E}~=O (11.12) 

dR2 i 1 

where L2 is the angular momentum operator, and we have scaled all quan­
tities by (2~/~2). We may now add the Bloch [8] operator to each side: 

}: In> OCR-An) ;R <nl (11.13) 
n 

to obtain 

(11.14) 

The operator (H - E + LO) is now easily seen to be Hermitian on the range 
O:!( R:!( An for each internal state I n> provided the translational functions 
satisfy the b.c.'s as R+O (Le., G~(R,x) R+"() 0). This permits the 
formal solution of (11.14) 

in terms of the Greens function 

-1 
G L = (H - E + LO) . 

E, 0 

(11.15 ) 

(11.16) 

Projecting Eq. (11.15) on the left with the Bloch operator (putting it 
into the internal basis representation) and integrating over R, we find 
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the R-matrix of Eq. (11.10) is just the internal state matrix representa­
tion of the Green's function evaluated at the channel boundaries: 

R n,n' (II. 17) 

The standard L2 means of evaluating (11.17) is now clear. Choose a 
multi-dimensional basis satisfying zero derivative b.c. 's for each chan­
nel at the channel radii, An; evaluate the Hamiltonian matrix in this 
basis; diagonalize to find the "internal" eigenvalues, Ai' and eigen­
vectors, ui; and project the eigenvectors onto the asymptotic internal 
states at An: 

<u.ln) 
l R=A 

n 

Then we can evaluate Rnn' as 

(11.18) 

(II.19) 

The above is difficult to carry out for arbitrary An's unless the 
asymptotic translational and internal bases are used (which will not be 
very efficient). Thus normally all An's are set to the same value, A, 
and a direct product basis satisfying zero derivative b.c. 's at A is 
used. As the basis used for expansion in the internal region becomes 
complete, the R-matrix becomes exact and the approximation to the S 
matrix converges to the exact result as well. This desired result is, 
however, difficult to achieve in practice using, as indicated above, an 
orthonormal basis in R, (gi(R», satisfying 

ago (R) 
l 

aR 

A 

J 
o 

o 
R=A 

J(R)d~ g.(R)g.(R) 
l J 

(J(R) is the appropriate Jacobian factor). 

(II.20a) 

(II.20b) 

The reason for this can be viewed in two ways. First, since the 
Bloc h operator b. c. 's effectively constrain the problem to a "box" of 
size A, the "translational component" of the eigenvalues will increase 
eventually with the square of the number of translational basis func­
tions, m, and the series converges only as 11m2 . The second view is 
that the true wavefunctions will not have zero derivative at R = A, thus 
requiring many basis functions to permit ~' to be adequately repre­
sented, in a mean square sense, by the basis. 

The first view has been addressed in two ways. Buttle, in 1967 [9], 
proposed that a complete basis could be used, albeit with an approximate 
Hamiltonian. The so-called Buttle correction does help a great deal 
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(see Section 3) and is constructed as follows. Suppose HO is a Hamil­
tonian for which the exact R-matrix is known analytically and in terms 
of an infinite sum over basis functions. Projecting these basis func­
tions onto our asymptotic internal functions at R = A, we find 

00 

L 
i=1 

o 0 

Yin Yin' 
(analytic). (11.21) 
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A Buttle correction (for lack of completeness) is determined by adding 
RO to R and subtracting the contribution of basis functions already used, 
i. e., 

FL = R + RO,oo _ Ro,m 
-Buttle __ c ~ 

(II.22) 

where Ro,m is the R-matrix of HO using the same basis as for R, and 
RO,oo is the analytic R matrix for HO. Although this helps considerably, 
it is difficult to implement, particularly for reactive collisions for 
which a suitable HO with analytic solutions is difficult to find and 
evaluate. 

Variational corrections to the R-matrix have also been proposed 
[10,11] and evaluated for elastic and simple inelastic scattering exam­
ples. Although very effective in improving convergence, these required 
the evaluation of new perturbation integrals at each energy and a con­
siderable increase in the complexity of the calculation. 

Finally, we take note of the advantages and disadvantages of the 
standard L2 R-matrix approach. It is obvious from (11.19) that once the 
diagonalization of the Hamiltonian in the internal basis and the pro­
jection of these eigenfunctions onto the asymptotic states has been 
accomplished yielding the Ai's and Yin's, the evaluation of the R-matrix 
at a series of-energies is very efficient. It requires essentially N2m 
operations where N is the number of asymptotically open internal states 
and m is the number of L2 basis functions used to diagonalize H. It is 
also obvious that the R-matrix "box" radius, A, should be as small as 
possible consistent with the imposition of known (asymptotic) boundary 
conditions. This increases the spacings of the eigenvalues, Ai' and 
hastens convergence with or without the Buttle correction. 

However, it has normally been found that 6-15 translational func­
tions per internal state are required for convergence, even with the 
above corrections. The time required to diagonalize the Hamiltonian 
matrix in the L2 basis is thus some 200 to 3000 times as long (an N3 
process) as to diagonalize, locally, the H(Ri) matrix in the internal 
basis as is required for propagation techniques. Thus only if the 
product of the number of steps required in propagation techniques, Ns ' 
times the number of energies required, NE, is of the order of 103 will 
the L2 approach be worth considering. Given the non-uniform convergence 
of the uncorrected R-matrix as well, the L2 approach has been used only 
rarely for reactive scattering (collinear only [12-14]). 

In the next two sections, therefore, we discuss alternatives to the 
"standard" R-matrix theory described above. In the next section, re­
sults and rationalizations for the use of a non-orthogonal L2 basis are 
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presented, together with a brief review of applications to reaction scat­
tering. In Section 4 we will then present the propagation equations for 
the piecewise analytic evaluation of the R-matrix. 

2. L2 R-Matrix With Non-Orthogonal Bases 

As indicated in the last section, serious problems exist with the stan­
dard L2 R-matrix with respect to slow convergence of the phase shifts 
(or S-matrix) as the number of translational basis functions is in­
creased. This has been amply demonstrated in a number of papers (e.g., 
Refs. 8-12). In all of these cases an orthogonal translational basis is 
used which satisfies fixed log derivative boundary conditions at the 
R-matrix boundary, R = A. As indicated above, the But tie correction [9] 
can be added to the R-matrix to account, in an approximate fashion, for 
the members of the complete basis not included in the explicit R-matrix 
evaluation. An additional variational correction [10,11] was proposed 
to improve the results further. Although these procedures help a great 
deal, they are both "expensive," at least in terms of programming effort 
for complex systems. 

The root of this problem appears to be that the true wavefunction 
matches the log derivative b.c.'s of the chosen translational basis only 
at an isolated set of energies. At these energies (near the Ai of the 
L2 expansion of the Green's function for a basis satisfying the Bloch 
operator b.c. 's, L00= 0) the R-matrix results are very accurate for a 
given basis size, even without the Buttle or variational correction. 
However, between these energies, the results are very poor. 

One other generalization of the standard procedure which was sug­
gested to improve the results was to replace the "zero derivative" Bloch 
operator of Eq. (11.13) by one which specified a different log deriva­
tive b.c., Le., 

Lb = I In> O(R-An)(;R - b) <nl· (III. 1) 
n 

In this case one may show [10,15] that, with the Green's function de­
fined by 

b and an R matrix defined by 

= <nl Gin'> E,Lb 

that the R-matrix is given by 
-1 

R= [I_Rb 1] Rb 
~ = ~ -b ~ 

where ~b is the (diagonal) matrix 

(III.2) 

(III. 3) 

(III. 4) 
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0' (A ) 
e n n ) 

0n,n' An 0 (A ) - b . 
n n 
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(IlLS) 

In 1972, however, Mori [15] showed that if a fixed (finite) basis 
is used, i.e., a basis which is independent ~~, then the ~ and ~ 
matrices defined above are independent of the value of b used. If, of 
course, the finite basis is changed to satisfy the log derivative b.c. 's 
at An, then the results do depend on b. However, no regular procedure 
for improving the results by varying the basis and b has ever been 
established (to my knowledge). Implicit in Mori's work, however, is the 
idea that one should use basis "functions which are defined in a wider 
region than the internal region" [15]. 

In hindsight it is surprising that this was not recognized as the 
key to accelerated convergence of the R-matrix until the very recent 
work of Bocchetta and Gerratt [16], although the technique was used 
several times [12,13] earlier. Schneider [17] explicitly recognized the 
utility of using functions which did not obey specified b.c. 's at A for 
each of matrix element evaluation in electron-molecule collisions, and 
used a floating Gaussian basis and a buttle correction to obtain excel­
lent results with uniform convergence (in E) with a modest basis set. 
It was, however, only shown in the very recent artfcle of Bocchetta and 
Gerratt [16] that the Buttle correction itself was unnecessary if Mori's 
prescription is followed, i. e., if a non-orthogonal (on 0 ~ R ~ A) 'basis 
which does not satisfy the log derivative b.c.'s at A is used. 

The introduction of such a basis does, of course, impose a penalty 
in that one must explicitly orthogonalize the basis. Thus if M is the 
matrix of overlap integrals the basis in the "R-matrix box" (O~ n ~ A) , 
then the Green's function at E is obtained by solving the generalized 
eigenvalue problem 

(III. 6) 

Two common approaches would be to Schmidt orthogonalize the transla­
tional basis before construction and diagonalization of the Hand 1 
matrices (as used in Ref. 16), or to use the symmetrically o~thogonalized 
basis using M- 1/2 (as used in Section 3). A general description of the • latter procedure, applied to R-matrix propagation, was given by Schmalz, 
Stechel, and Light [18]. 

In order to verify the ideas presented by Bocchetta and Gerratt [16] 
and above, we have done some elastic scattering calculations on a simple 
exponential repulsive potential using both a non-orthogonal sine basis 
(as in Ref. 16) and a basis of distributed Gaussian functions. The 
Hamiltonian was that used in Ref. 11: 

H ...!.... ~ + 0.25 e-2R 
2m dR2 

m = 2400. (III. 7) 

Shown in Tables II-IV are results for N = 10, 15, and 20 non-orthogonal 
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basis functions and results for an orthogonal sin basis with and without 
the Buttle correction. The non-orthogonal bases are: 

Sin basis: 

. ( n1fR 
n'ITr 

0n 
c 

Sln L+or L+or ) L A-r 
c 

0 0 A 3.75 

with the non-orthogonality controlled by. the value of oro; and 

Gaussian basis: 

'IT 1/4 2 2 
(--2) exp(-A c (R-R ) ). 

2A c n n 
n 

Here, R is chosen "semi-classically" according to the prescription given 
by Hamilton and Light [19]. 

The specific values of the basis set parameters are given in Tabler. 
Note that the integrals over 0 < R < A were performed exactly--the poten­
tial is simple enough that the transformation approach recommended by 
Schneider [17] was not required. The same results (on a finer energy 
scale) are plotted in Figures 1-3. The arrows on the energy axis show 
the values of the eigenvalues of H+LO; the bracketed numbers their in­
dices. 

As can be seen from the tables and figures, both non-orthogonal 
bases, the sine functions and the distributed Gaussian basis are much 
more accurate than the orthogonal sine basis without the Buttle correc­
tion. Although the Buttle correction improves the "orthogonal" results 
considerably, they are still in general less accurate than the non­
orthogonal basis results. 

The purpose of including the distributed Gaussian basis was two­
fold. First, it shows that the improvement obtained by relaxing the 
b.c. 's on the basis is relatively general, i.e., it is not limited to 
the use of sine functions for a translational basis. Second, Hamilton 
and Light [19] have shown that the distributed Gaussian basis is effi­
cient and accurate for multi-dimensional bound state problems. Thus, 
with a more careful choice of parameters (~, An' and c) and a larger 
basis, the original R-matrix method for reactive scattering pioneered 
almost 15 years ago by Crawford [12] and Der, et al. [13], may well be­
come the method of choice for accurate results on simple systems. Two 
other advantages of the distributed Gaussian basis for such comple; prob­
lems are the simplicity of matrix element evaluation [19] and the sparse 
nature of H and ~, particularly for large multi-dimensional systems. 

Finaliy , r would like to suggest that the use of the name "non­
orthogonal bases" is somewhat of a misnomer. The bases are, in fact, 
orthogonalized before the evaluation of the Green's function, and the 
key to their success lies not in their non-orthogonality but in the fact 
that they are not eigenfunctions of a Bloch operator, i.e., they do not 
satisfy a fixed b. c. at R = A. This permits a more accurate representa-
tion of ~/~' I Since the easy means of constructing orthogonal bases 

R=A 
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TABLE I. Basis Set Parameters 

A. A = 3.75 

B. 

Orthogonal sine: ui (r) CI. sin(Ci --})1T riA) 

Non-orthogonal sine: ui (r) CI. sin(i --})1T (r-r )/(A-r +or») ceo 
N 

10 
15 
20 

or 
o 

0.3 
0.3 
0.3 

r 
c 

0.9 
0.7 
0.6 

c. Distributed Gaussians (N=10, c=0.5, EMAX =0.06) 

0.913972 
1. 346657 
1. 706485 
2.043522 
2.374507 

1. 335353 
1. 592159· 
2.059219 
2.240886 
2.324606 

2.699403 
3.021256 
3.343117 
3.664983 
3.986848 

D. Distributed Gaussians (N= 15, c=0.5, EMAX =0.08) 

0.719194 
1. 037225 
1.293238 
1.528574 
1. 755979 
1. 977002 
2.194855 
2.41116 

2.471731 
3.034651 
4.142084 
4.670089 
4.972958 
5.191772 
5.306315 
5.385194 

R. 
l 

2.625778 
L.tl40458 
3.053531 
3.266608 
3.479687 
3.692768 
3.905848 

E. Distributed Gaussians (N = 20, c = 0.5, ~ = 0.10) 

0.581592 
0.840002 
1.045745 
1.233388 
1.411147 
1.583980 
1.751854 
1.919753 
2.084340 
2.247270 

3.743869 
4.641693 
6.461937 
7.489598 
8.135684 
8.614677 
8.869729 
9.045892 
9.322482 
9.416398 

R_ , 
2.410220 
2.573165 
2.736126 
2.897419 
3.058715 
3.220013 
3.382970 
3.544269 
3.705570 
3.866870 

2.390719 
2.413319 
2.413219 
2.413185 
2.413185 

5.424926 
5.465281 
5.506475 
5.506339 
5.506250 
5.506217 
5.506217 

A. 
l 

9.415539 
9.414919 
9.511025 
9.609485 
9.609250 
9.511031 
9.510914 
9.608865 
9.608828 
9.608828 
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TABLE II. Phase Shifts for N = 10. Columns A, distributed Gaussian 
basis; B, non-orthogonal si~es; C, orthogonal sines; D, orthogonal 
sines with Buttle correction; E, Exact. 

E(a.u. ) 

0.010 
0.012 
0.014 
0.016 
0.018 
0.020 

A 

-12.5064 
-13.3290 
-13.9090 
-14.4944 
-15.8736 
-17.3840 

B 

-12.5114 
-l3.0797 
-l3.5642 
-14.0410 
-14.3706 
-14.8681 

C D E 

-12.9929 -12.5538 -12.5031 
-l3.7299 -13.2204 -13.0773 
-15.3125 -14.2411 -l3.5545 
-14.9352 -12.5865 -l3.9582 
-16.7463 -12.5416 -14.3040 
-18.5265 -12.5481 -14.6031 

in a finite region is to fix the b.c. 's, the easy way to generate a 
basis which does not satisfy any fixed b.c. 's at R=A is to make it non­
orthogonal. The non-orthogonality itself is, however, a nuisance in 
evaluation, and a simple method to generate a flexible orthogonal basis 
without fixed b.c. 's would probably be useful. 

TABLE III. Phase Shifts for N=15. Columns A, distributed Gaussian 
basis; B, non-orthogonal sines; C, orthogonal sines; D, orthogonal 
sines with Buttle correction; E, Exact. 

E(a.u.) A B C D E 

0.010 -12.5016 -12.5020 -12.6735 -12.5039 -12.5031 
0.012 -13.0772 -l3.0776 -13.4248 -l3.0835 -l3.0773 
0.014 -l3.5528 -l3.5533 -13.5557 -l3.5531 -l3.5545 
0.016 -13.9584 -l3.9591 -14.4828 -13.9703 -l3.9582 
0.018 -14.3022 -14.3031 -14.3153 -14.3028 -14.3040 
0.020 -14.6039 -14.6050 -15.2400 -14.6182 -14.6031 
0.022 -14.8626 -14.8631 -14.8745 -14.8640 -14.8637 
0.024 -15.1042 -15.0961 -15.8098 -15.1332 -15.0919 
0.026 -15.3112 -15.2924 -15.2989 -15.2914 -15.2925 
0.028 -15.5179 -15.4776 -16.1896 -15.6504 -15.4693 
0.030 -15.7221 -15.6270 -17.0605 -16.0395 -15.6254 
0.032 -15.9249 -15.7848 -16.1828 -15.5786 -15.7632 
0.034 -15.9229 -15.8918 -17.3950 -15.6349 -15.8848 
0.036 -16.2972 -16.1020 -18.6684 -15.6489 -15.9921 
0.038 -17.0929 -16.3376 -19.8146 -15.4250 -16.0864 
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TABLE IV. Phase Shifts for N = 20. Columns A, distributed Gaussian 
basis; B, non-orthogonal sines; C, orthogonal sines; D, orthogonal 
sines with Buttle correction; E, Exact. 

E(a.u. ) 

0.010 
0.012 
0.014 
0.016 
0.018 
0.020 
0.022 
0.024 
0.026 
0.028 
0.030 
0.032 
0.034 
0.036 
0.038 

A B C D 

-12.5016 -12.5017 -12.6152 -12.5023 
-13.0774 -13.0776 -13.3316 -13.0791 
-13.5530 -13.5531 -13.5549 -13.5531 
-13.9583 -13.9585 -14.3203 -13.9609 
-14.3029 -14.3030 -14.3114 -14.3030 
-14.6031 -14.6033 -15.0240 -14.6065 
-14.8627 -14.8629 -14.8698 -14.8630 
-15.0919 -15.0921 -15.5514 -15.0963 
-15.2915 -15.2919 -15.2962 -15.2920 
-15.4691 -15.4696 -15.8929 -15.4745 
-15.6243 -15.6251 -15.7699 -15.6264 
-15.7624 -15.7635 -16.0353 -15.7674 
-15.8841 -15.8853 -16.4377 -15.8912 
-15.9907 -15.9930 -16.0503 -15.9926 
-16.0880 -16.0883 -16.7161 -16.0998 

-12 

-13 

N=IO 
-14 

:.c 
Cf) 

OJ 

'" 0 
~ a... -15 

-16 

-17 LL----!L----11L-l--'-I._...I--.<-'--"'----'L-J_--L.J..._....J 

0.1 0.25 0.4 

Energy (AU) (XIO)-I 

Figure 1. Plot for Table II. 

E 

-12.5031 
-13.0773 
-13.5545 
-13.9582 
-14.3040 
-14.6031 
-14.8637 
-15.0919 
-15.2925 
-15.4693 
-15.6254 
-15.7632 
-15.8848 
-15.9921 
-16.0864 
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Figure 2. Plot for Table III. 

-12 

-13 
N=20 

-14 
.-
..c 
en 

:1l 
0 

..c 
Cl.. -15 

-16 

0.25 0.4 

Energy (AU) (XIO) 

Figure 3. Plot for Table IV. 
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4. R-Matrix Propagation 

It is well established [20,5] and reasonable that the number of transla­
tional functions required for convergence of an L2 expansion for the R­
matrix depends on the potential, the energies desired, and the size of 
the "R-matrix box," L e., A. As the size of the box is reduced for an N 
function basis, the eigenvalues of H + L are increased and spread out, 
and the sum in Eq. (II.19) will con~erge more rapidly (for E $ AN/2)' 
Also it is obvious that the eigenvalues, Ai' near E must be given rela­
tively accurate, and a smaller A (for fixed N) usually helps in this as 
well. However, since at A one has only the L2 approximation to the 
Green's function (on 0';;; R';;; A), the connection between this "local" R­
matrix and the S-matrix must be made. For A in the asymptotic region, 
this relation is given in Eq. (11.11), but we want A to be as small as 
possible for efficiency. We therefore consider below two methods of 
connecting the R-matrix to the S-matrix using a small "R-matrix box," 
i.e., small value of A. The first is a simple WKB (adiabatic) connec­
tion, and the second the more accurate R-matrix propagation [20,21]. 

We see from Eq. (11.10) that: the R-matrix relates the exact wave­
function and derivative at the R-matrix boundary, A. If A is not near a 
classical turning point and is outside the channel coupling region, then 
with a high degree of accuracy we can take the wave function to be of 
the WKB form. For initial state i, it is: 

d R 
_-=l=-- exp{-i f k. (R)dR} 0. (x) -
Ik. (R) All 

l 

c. 
J exp{+i 

Ik. (R) 
J 

R 

f 
A 

k. (R)dR} 
l 

(IV. 1) 

where the 0i are the (perhaps adiabatically deformed) internal states 
and ki(R) is the local wave vector in state i: 

k. 
l 

[2112 (E_V .. (R»]1/2. 
-ti. II 

(IV.2) 

In order for the phases to be correct we require ~i to have the proper 
e±ikR form as R+oo, Le., 

R 
c~ exp{-i f k.(R)dR} 

l A l 

-ik·R e l • (IV.3) 

If we define the phase shift for state i from R = A to 00 by 

00 

O. (A) 
l J 

A 
[k. (R) - k.]dR 

1. 1. 
(IV.4) 
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we see that the ci are just the phase factors 

-iOi (A) + ikiA 
c. = e . 

1 

Using (IV. 1) in (II.I0) we see that 

[ck-1/ 2 -iRc* k1/ 2 S + R c* k,/ 2k3/2) 
• ::. ---=- = .. .,. '" ... 

-1 

x [c k- 1/ 2 +i R c* k 1/ 2 + R c* k,/ 2k3/2) 
:: .. ... :: :- .. ::. . 

1. C. LIGHT 

(IV.S) 

(IV.6) 

where ~ and ~ are diagonal matrices given by (IV.2) and (IV.S) evalu­
ated at R=A. «IV.6) was, in fact, used in the numerical results pre­
sented in the last section.) Although this WKB analysis is accurate where 
V'/k2 is small and where there is no channel coupling, R-matrix propaga­
tion may be used quite generally to relate an R-matrix on surface A to 
an R-matrix on a different surface, A' > A. 

Since R-matrix propagation has been reviewed several times [22,23) 
and is widely used, it will not be presented in great detail here. The 
basic idea of the R-matrix propagation is that over an interval of the 
scattering coordinate say (Ri' Ri+l) , in which the potential does not 
vary much, analytic solutions for the translational functions at arbi­
trary E and satisfying fixed b.c. 's at Ri , Ri+l can be found. These are 
just the trigonometric or hyperbolic functions (for constant potentials) 
or Airy functions (for linear potentials). The R-matrix propagation 
equations [14,20) are then the algorithm for the sequential construction 
of the R-matrix over an entire region A';:; R';:; A' from the "sector" R 
matrices, rio 

If we -assume that (li - El) in an internal basis at Ri = (Ri + RH 1) /2 
has been diagonalized by a transformation Ti to yield the internal 
eigenfunctions 9n (x,Ri) and eigenvalues A~(Ri), then the translational 
functions in the sector satisfying zero derivative b.c. 's at Ri and Ri+l 
are 

0L cos I Anl(R - Ri ) A2 ,;:; 0 
n n 

(cothlA !cR- R.» A2 > 0 
n 1 n 

(IV.7) 

0R cos I Anl(R - RH 1) A2 ,;:; 0 
n n 

= (coth I AJR - RH1 » A2 > 0 
n 

and the Green's function corresponding to zero derivative b.c. 's is 

R<R' 
G.(R,R') 
"'1 

(IV.B) 

R' <R 
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where W is the matrix Wronskian of the solutions: 
:=. 

R' L,T R 
1/1 -1/1 1/1 
::. :. . 
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(IV.9) 

For these b.c. 's in the sector, we then have the R-matrix type relation 
for the scattering function at the sector surfaces in the locally 
diagonal basis: 

l l l - l (IV.10) ~,(R"R'+l) 1 [F'(R.) 1 
~i (RHl ,RH1 ) -X' (RH1 ) 

where 1 is the vector of coefficients, fn(R) , of the wavefunction in 
sector i 

w(x,R) = L f (R) B (x; R~) n n l 
(IV.11) 

n 

In the diagonal representation the sector Green's functions are diagonal 
and are the negative of the sector R-matrices defined in Ref. 21: 

-2 (R"R,) = nn l l 
-~nn (RH1 ,'RH1 ) 

(r(i)) (r(i)) 
I" I-lcothl" I'll ,,2> 0 

n n n 
-::.1 nn ;:.4 nn 

-I" I-leoti" I'll ,,2 :( 0 
n n n 

(IV.12) 
-G (R. ,R'+l) .. nn l l 

-G (R'+l ,R,) =- nn l l 

(/i)) (i) I" I-lcschl" I'll ,,2> 0 
n n n 

=2 nn (~3 ) nn 
-I" 1-1cscl" I'll ,,2 :( 0 

n n n 

The R-matrix propagation equations are obtained by assuming the R-matrix 
is known at Ri (in the basis of section i-1) 

(IV.13) 

This is then combined with the transformation from the diagonal basis 
at Ri-l to the diagonal basis at Ri 

~i-l,i = I~-l ~i (IV.14) 
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and the sector R-matrix for sector j 

F(i)(R.) (i) (i) _F(i)'(R.) 
l 

r l r 2 l 

F(i)(R ) (i) (i) 
F' (Ri+I) i+1 r3 r 4 

to yield the R-matrix at Ri +1 in the basis of sector i: 

R(i)(R ) 
i+l 

_ [r(i) + QT R(i-l) Q ]-1 
1 i-l,i i-I ,i· 

J. C. LIGHT 

(IV.IS) 

(IV.16a) 

(IV. 16b) 

The advantage of using the R-matrix propagation, of course, lies in the 
stability of the algorithm and, for slowly varying potentials, in the 
large step size possible. Although the propagation must be repeated at 
each energy, the creation of the Hamiltonian matrix, and its diagonaliza­
tion, must be done only once. The eigenvalues and the Q matrices can be 
saved for each step and used for other energies. 

One apparent limitation of using the R-matrix propagation is that 
only (inverse) log derivative information is carried along--the wave­
function is only determined asymptotically with the imposition of b.c. 'so 
This makes the accumulation of overlap integrals for photodissociation, 
for example, somewhat more complicated. At this Workshop, however, 
R. B. Walker [24] showed that the log derivative matrix can be propa­
gated using the information evaluated in the R-matrix propagation, with 
a very similar algorithm. This permits the efficient propagation of 
overlap information in a relatively simple fashion analogous to that 
used by Kulander, et a1. for collinear "reactive" photodissociation [25] 
and by Heather, et al. for 3-D triatomic photodissociation [26]. 

5. Summary 

Although the L2 R-matrix method for scattering was proposed many years 
ago, its implementation has been quite restricted because of the slow 
convergence of the "unadorned" R-matrix to numerically adequate results. 
For inelastic scattering the use of a simple zero order Hamiltonian with 
an analytic solution to generate the Buttle correction makes it a viable 
option for some systems. In particular the increase in memory and speed 
of large computers make large basis calculations feasible. 

For reactive scattering, however, the Buttle correction cannot be 
applied easily since there exists no reasonable zero order Hamiltonian 
with two or more chemical channels for which analytic solutions are 
known. Although a Buttle type correction may be determined in a basis, 
it adds substantially to the computational effort required. 

The results presented in Ref. 16 by Bocchetta and Gerratt and in 
this article [27] using non-orthogonal bases for L2 R-matrix calcula­
tions are therefore most interesting for their implications for reactive 
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scattering. Since convergence using these bases appears to be as good 
as that with a Buttle correction (using an orthogonal basis) and appears 
to be very uniform with Nand E, it is likely that one may dispense with 
the Buttle correction entirely. For reactive scattering R-matrix calcu­
lations this is, indeed, an important development. 

As currently implemented the L2 R-matrix calculations (with non­
orthogonal functions) appear to give adequate accuracy up to an energy 
of about 1/2 to 2/3 of the highest "R-matrix box" eigenvalue (for 1-
dimension). This is, of course, about the level at which the accuracy 
of the eigenvalues begins to degrade as well. Thus we may expect that 
in higher dimensions the level of accuracy of the scattering calculation 
will be determined by the level of accuracy of the eigenvalues at the 
corresponding scattering energy, a quantity which is relatively easy to 
determine. 

The size of the "R-matrix box" is, of course, a prime determinant 
of the eigenvalues of the Hamiltonian plus Bloch operator, and, as 
shown quite definitively by Schneider and Walker [28], is directly re­
lated to accuracy for a fixed number of functions. Thus an appropriate 
strategy [16] for reactive scattering would be to use a non-orthogonal 
L2 basis in the strong interaction region (where V, V', V", etc., are 
large), with the "box" as small as possible. Outside this region, where 
the potentials do not vary too fast, the R-matrix propagation method be­
comes very efficient. Thus a hybrid L2-propagation R-matrix method 
would seem to be the approach of choice for complex systems such as 
chemical reactions. 

Acknowledgment: I am grateful to Robert Whitnall who did the calcula­
tions for the numerical results presented in Section 3. This research 
was supported by the National Science Foundation under Grants CHE-8203453 
and CHE-8505001. 
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THE TIME DEPENDENT WAVEPACKET METHOD : APPLICATION TO 
COLLISION INDUCED DISSOCIATION PROCESSES 

C.Leforestier 
Laboratoire de Chimie Theorique 
Universite de Paris-Sud 
91405 ORSAY (FRANCE) 

ABSTRACT. After reviewing the time dependent wavepacket method as ap­
plied to collision induced dissociation processes,we report accurate 
quantum results for reactive and non reactive collinear A+BC systems. 
Both systems display a vibrational enhancement effect in the low energy 
region. While the non reactive systems exhibit a vibrational inhibition 
effect at higher energies,a more complex behavior is observed in the 
reactive case. Below the classical dissociation threshold, the non reac­
tive systems display tunnelling tails which decrease with the initial 
vibrational excitation of the diatomic molecule. The reactive system 
displays important quantum effects at energies well above the classical 
dissociation threshold. 

1 . INTRODUCTION 

Collision Induced Dissociation (CID) calculations constitute a challeng­
ing problem in the field of reaction dynamics :The full 3D treatment of 
the simplest system,A+BC ~ A+B+C,is out of scope for the present time 
unless we resort to the classical approximation. Only a few lD calcula­
tions (i.e. collinear or perpendicular) have appeared in the literature 
so far1-1S,most of them being concerned with non reactive systems model­
ing an H2+Rg type collision. Three different methods have mainly been 
used for these calculations, namely 

i) the time dependent wavepacket method l - 4 

ii) the Close Coupling method, based on spherical coordinates 10 - 11 

iii) the semi-classical (Classical S-matrix) method13 - 1S • 
The rotational degrees of freedom (i.e. 2D or 3D calculations) are 

known to be important for a correct description of molecular energy 
transfer since the early works of Kelley and Wolfsberg 16 and Bergeron 
and Chapuisat 17 . This puts an important restriction on the validity of 
the dissociation mechanism as obtained from lD calculations. Neverthe­
less such quantum calculations are the only way to estimate the adequa­
cy of classical mechanics for the study of dissociation processes. Also, 
as will be discussed in the conclusion, these collinear calculations open 
the road to more realistic developments. 
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In section 2,we review the time dependent wavepacket method,which 
is now well codified since the work of Mc Cullough and wyatt 18 . Section 
3 is devoted to a comparison of classical and quantum results for reac­
tive and non reactive collinear calculations. Finally we discuss the 
possibility of extending these calculations to more realistic cases, 
such as approximate 3D quantum treatments. 

2. THE TIME DEPENDENT WAVEPACKET METHOD 

The collinear A+BC dissociative collision can be treated in a straight­
forward manner,using the Time Dependent WavePacket (TDWP) method. The 
reason is that the dissociative continuum of the BC molecule is handled 
automatically within the space discretization scheme of the grid. As 
the basic method has already been described in detail elsewhere 18 ,it 
will be only outlined here, emphasizing the technical points and some 
new features which lead to a significant reduction in computation time. 

2.1. Initial Conditions 

The method consists in computing the time evolution of a wavepacket ~, 
which represents initially an atom A impinging on a molecule BC in a 
given vibrational state v : 

~(x,y,t=O) = F(x,xO) .uv(y) (1) 

where the (x,y) coordinates,which diagonalize the kinetic energy opera­
tor,can be either the usual skewed coordinates 19 for a collinear colli­
sion or the (r,R) coordinates for a perpendicular one 15 • 

Most of the calculations have used a Gaussian k-distribution cen­
tered around the mean value kO: 

1/2 f+oo 
F(X,xO) {~/2n} ~(k,ko) .exp{-ik(x-xo)}dk 

_00 

{2no L }-1/4 exp{-(x-xo)Z/4o Z - ikox} (2) 

(3) 

As is well known, this initial distribution in momentum space allows 
to extract from the final wavepacket results for a whole range of col­
lision energies ~2k2/2WA,BC centered around the mean collision energy 
~2kn/2wA,BC. The reliability of the results as a function of the dis­
tance Ik-kol will be discussed in section 2.3. 

Other translational distribution functions F can be defined: e.g. 
Mazur and Rubin have used the Fourier transform of a Boltzmann energy 
distributionZO . The use of such distributions leads to quantities which 
are more directly related to experimental conditions. 

2.2 Propagation of the Wavepacket 

The time evolution of the initial wavepacket (eq.1) is given by the 
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evolution equation : 

~(t) = exp{-iH(t-to)/~}.~(to) (4) 

H = _~2/2~.{a2/ax2 + a2/ay2} + v(x,y). 

To treat the space dependence of this partial differential equation 
one defines a grid {xo,xo+~x' •.. 'XO+M.~X}X{YO'YO+~y' ... 'YO+N.~y} and 
requires that the solution satisfies the above equation (4) at each no­
de. To evaluate the second derivatives at node (x ,y ) ,one can use the 

p q finite difference scheme 

D(d) (~ 
1 p+1,q 

+ ~ d )} p- ,q 

+ ~ 1 ) + .•. p- ,q 

(5) 

where d is the finite difference order (d~l) and the D~d) are the cor­
responding coefficients. In Table l,we compare several~finite differen­
ce schemes using different orders for evaluating the second derivative 
of cos18x as a function of the mesh size ~x. This function roughly mo­
dels the actual space dependence of the wavepackets to be propagated. 
The total CPU time being proportional to n2 . (2d+1) ,it can be seen from 
Table 1 that high order schemes (d~3) can lead to a significant reduc­
tion in computation time for a same accuracy. 

n d=l d=3 d=5 d=7 d=9 
(=A/~x) 

---------- --------- --------- --------- --------- ---------
4 2 (-1) 2(-2) 3(-3) 5 (-4) 1 (-4) 

8 5 (-2) 4(-4) 4(-6) 6(-8) <1 (-9) 

12 2 (-2) 4(-5) 8(-8) <1 (-9) <1 (-9) 

16 1 (-2) 6(-6) 6(-9) <1 (-9) <1 (-9) 

Table 1 Relative error on the evaluation of d2cos18x/dx2 as a -------
function of 
i)the number n of grid points per wavelength A 

ii) the finite difference order d 

For each variable r,the discretization scheme is equivalent tousing 
a Dirac delta functions basis set {lr.>,i=l, .•• ,N}; from the "closure" 
relation 1 = ~ Ir.> <r. I,one can writ~ 

~ ~ ~ 

~ Ir.> <r. I~> = E R. Ir.> 
~ 1 ~ ~ 1 ~ 

(6) 

Such adelta function basis set is well suited for local operators,such 
as V which is diagonal in this basis set 

vl~> = L vir.> <r. I~> = L V(r.) R. Ir.> . 
~ 1 ~ 1 1 

(7) 

In order to handle in a similar way the non local operator a2/ar2,one 
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can use the pseudospectral method21 . In this method,one defines another 
basis set {I¢ >,n=l, ... ,N} on which one expands the function I~>: 

n 

I~> = L c I¢ > . n n n 

The expansion coefficients Rand c transform according to the relation 

R = M.c <==> (8) 

where the M matrix elements are defined as 

M. = <r.l¢ > = ¢n(r l.) • 
In l n 

(9) 

One can then define the ¢'s as the eigenfunctions of the non local op­
erator under consideration;e.g. in the case of the 32/3r2 operator, 
these will be the plane wave functions 

(10) 

The effect of the 32/3r2 operator upon the wave function I~> is computed 
in the eigenfunctions representation {I¢ >} according to the scheme: 

n 

Rl cl 
f 

q Rl 

v21~> 
M-1.R x(-k?) 
.::----> 

l 
------> 

M.c' 
(11 ) 

.::---> 

R c c' R' 
n n n n 

This method has recently been used by Kosloff and Kosloff 22 in conjunc­
tion with a Fast Fourier Transform (FFT) to switch back and forth be­
tween the {Ir.>} and {I¢ >} basis sets: The FFT operations number is 
varying as N.IogN insteag of N2 for the M.~ matrix product. As pointed 
out by these authors,the main reason to use this method is that it can 
achieve a far better accuracy than the finite difference method. In ta­
ble 2,we report such a comparison for the evaluation of d 2sin18x/dx2 , 
using sine functions for the {¢ } basis set. 

I pseudo­
A/!1x spectral 

n 

Finite Difference 
d=3 I d=5 I d=7 I d=9 

---------------------------------------------------------
2.6 3(-5) 1 (-1) 6 (-2) 3(-2) I 2(-2) 

Relative error on the evaluation of d 2sin18x/dx2 as given by 
the pseudospectral method (using 64 sine functions) and sev­
eral finite difference schemes. 

When using such a pseudospectral method,one must be cautious with 
the accuracy of the method near the edges of the grid. The results re­
ported in Table 2 correspond to an evaluation at a point located near 
the middle of the grid. Table 3 displays the accuracy on the evaluation 
of d2{sin18x/{1+exp(-~x+A)}}/dx2 as a function of the grid point loca-
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tion. The a and A parameters have been chosen such that the sine func­
tion sin18x is reduced by about three orders of magnitude at the first 
node,as compared to its value near the middle of the grid. From Table 3 
we can see that the grid must be extended slightly beyond the classical 
turning point in order that a good accuracy is reached in the physical 
region of interest. 

Grid point 
location 

2 6 10 14 18 22 26 

Relative 
error 

2 (-1) 7(-2) 1 (-2) 2 (-3) 2 (-3) 4 (-4) 4(-5) 

Table 3 Relative error on the evaluation of d2{sin18x/{1+exp(-ax+A)}} 
/dx2 (see text) as a function of the grid point location. The 
pseudospectral basis set consists of 64 sine functions. 

Two different explicit schemes have been shown to be particularly 
efficient in order to propagate the wavepacket in time: 

i) The Richardson scheme23 ,24 which corresponds to a third order 
expansion of the evolution operator (eq. (4)) 

l/J(t+l\t) = l/J(t-ilt) - 2H.t/;\.Hl/J(t) + O(ilt 3) (12) 

ii) An expansion of 
N 

exp{-iHilt} = l: 
n=O 

the evolution operator in a Chebychev series25 

a 1> (-iHilt) 
n n 

(13) 

where the a's are the expansion coefficients and the 1>'s the complex 
Chebychev polynomials. This scheme is specially adapted to long propa­
gation times because the error decreases exponentially once N is large 
enough. The error in propagation can thus be kept lower than the error 
arising from the spatial discretization scheme. 

2.3. Final Analysis 

When the reaction is complete,one can extract the state-to-state proba­
bilities by projecting the final wavepacket l/J(x,y,T) onto the asympto­
tical eigenstates. For example the inelastic probabilities P~~v' (k) at 
the collision energy Ec= ;\2k2/2~A,BC are computed from the formula 

pI ,(k)=k/k ,{4Tf2 11>(k,ko) 12 }-1 !ffdXdY u ,(y) .e-ikv,x.l/J(X,y,T) 1\2 (14) 
v~v v v 

where 1>(k,k O) is the distribution function of the incoming wavepacket 
in momentum space (see eq. (3)). A similar formula holds for the reac­
tive probabilities pR ". The dissociation probability is computed as 

~v 

pD(k) = 1 - l: 
v v' 

pI ,(k) - l: 
v-+v v" 

R 
Pv~v,,(k) . 

In order to estimate the accuracy of the calculations, several 
tests can be performed3- 4 

(15) 
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i) The first one consists in checking if the inelastic and reacti­
ve probabilities sum up to 1 below the dissociation energy. Table 4 
displays the results obtained for the reactive-dissociative H + HD sys­
tem4 ,as a function of the distance Ik-kol (see also figure 1). 

I k-ko! I 
(a.u.) <!>(k,k a) 

---------- ---------

k 2-k O=5.6 .002 .975 

Table 4 : Sum of the inelastic 
and reactive probabilities be­
low the dissociation energy as 
a function of the distance 
Ik-kO!. A value 0 of 0.25 has 
been used in eq. (3) giving the 
amplitude <!>(k,ko). 

<!> (k,ko) 

k 

ii) As a second test,one can compare the probabilities ar1s1ng from 
two distinct wavepackets with overla¥ping energy distributions. In Ta­
ble 5 we report the state-to-state Po 5 and dissociation pB probabili­
ties computed from two wavepackets fo; an inelastic H + H2 (0) system 3 • 

13 
15 
17 
19 
21 
23 

Table 5 

WP I (k O=26.3) 
I D 

PO-+5 Po 

2.11(-2) .001 
5.69(-2) .003 
9.53(-2) .019 
1.18 (-1) .065 
1.19(-1) .153 
1.03 (-1) .278 
8.00(-2) .423 

WP II (k O=30.4) 

I pDa 
PO-+5 

2.13(-2) .000 
5.67(-2) .005 
9.54 (-2) .019 
1.18(-1) .064 
1.20(-1) .149 
1.04 (-1) .272 
8.12(-2) .414 

Comparison of the inelastic PE 5 and dissociation P~ probabi--+ 
lities arising from two distinct wavepackets as a function of 
the total energy. The calculations correspond to an inelastic 
H + H 2 model system. 

iii) Finally one can check if the microreversibility principle is 
satisfied by comparing the state-to-state probabilities Pv-+v ' (ET) and 
Pv'-+v(ET ) computed from wavepackets originating respectively in the v 
and v' vibrational states. In table 6 are reported the inelastic proba­
bilities pIland PI 0 for an inelastic H+DH model system 3 ,calculated 0-+ -+ 
in the common energy range of the two wavepackets. 
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11 
15 
19 
23 
27 
31 

3. RESULTS 

2.31 (-1) 
7.78(-2) 
2.07(-2) 
4.91 (-3) 
1.11(-3) 
2.64(-4) 

2.30 (-1) 
7.77(-2) 
2.07(-2) 
4.94(-3) 
1.10(-3) 
2.71(-4) 

~~~!~_§ : Comparison of the 
direct P07 1 and reverse P170 
for different total energies. 
These calculations correspond 
to a non reactive H+DH model 
system. 
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In this section we will discuss separately the results obtained for non 
reactive systems from those obtained for reactive ones,as they display 
very different behaviors. 

3.1. Non Reactive Systems 

The results reported2 ,3,14 correspond to Rg-H2 model systems,but where 
the mass of the rare gas atom Rg has been set to 1 a.u.m. Amongst these 
systems is included the H-H2 one using a L.E.P.S. potential energy sur­
face,as studied by Kulander et al. 2 ,because it displays no reactive 
scattering for the collision energies considered. All these calcula­
tions lead to the similar trends exemplified on figure 2,namely: 

i) The dynamical threshold is much higher than the energetic one 
when the diatomic molecule is initially in its ground vibrational sta­
te. The high threshold energies observed decrease rapidly however with 
initial excitation of the diatomic molecule. 

ii) There is a strong vibrational enhancement effect at low ener­
gies and a vibrational inhibition one at high energies. This feature 
has been discussed by Hunt and Child25 using a classical S-matrix phase 
space approach. Briefly the underlaying mechanism can be explained as 
follows: In a non reactive A+BC(vO) 7 A+BC(v) collision,the more exci­
ted the initial state Vo the broader will be the corresponding final 
distribution over vibrational states v. Henceforth the final distribu­
tion associated to an initially excited Vo state will hit the dissocia­
tion limit first. When increasing the total energy,the vo=O state will 
eventually lead to a nearly complete dissociation. For this same total 
energy,the broader final distribution associated to the initially exci­
ted va state will still display some components on the highest vibra­
tional states, and thus results in a vibrational inhibition effect. 

iii) By comparison with quasi-classical results, the quantum tails 
for dissociation are larger when the diatomic molecule is initially in 
a low vibrational state. These quantum tails have been found more im­
portant for the (1,2,1) mass combination as compared to the (1,1,1) one. 
Above the threshold region, there is a reasonable agreement between the 
quasi-classical and quantum results, except for the oscillations which 
are not reproduced classically. Such oscillations have already appeared 
in the CID study of a truncated harmonic oscillator by Johnson and 



242 

"laOO 

a"?5 

a50 

a25 

OaO 

5 

C. LEFORESTIER 

DISSOCIATION PROBABILITY SYSTEM 1 
H+HH(V) 

"10 "15 20 25 

Etot 
~~2~~~_~ Comparison of quantu~ ( ___ ) and classical (- -) 

dissociation probabilities for a model H + H2(v) 
inelastic system as a function of the total energy. 
The energy is expressed in units of the fundamental 
frequency w of the diatomic molecule. The dissocia­
tion energy corresponds to 6~w. 
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Roberts 13 and in the dissociation of a forced Morse oscillator by Hunt 
and Sridharan27 . In each case the number of bumps in the dissociation 
curve was found to be equal to the initial vibrational number of the 
oscillator. 

3.2. Reactive Systems 

To date only three reaction-dissociation calculations have been repor­
ted by Manz and Romelt10,Kaye and Kuppermann 11 and Leforestier4 ,28. The 
former two used the hyperspherical coordinates method to study model 
X-X2 systems,bearing respectively one and two bound states asymptoti­
cally. The latter one,whose results are presented on figure 3,will be 
discussed below; it corresponds to a model H-HD system,HD and H2 bea­
ring respectively 7 and 6 bound states. 

Figure 3 enlightens two distinct features from the inelastic case 
(see figure 2 for a comparison) which are: 
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i) The near coincidence of the energetic and dynamic thresholds for 
dissociation. This feature has not been observed for inelastic systems. 
Even on a reactive surface,when no reactive scattering occurs at the 
dissociation energy,no coincidence between the two thresholds is obser­
ved2 . The condition for the near coincidence of energetic and dynamic 
thresholds is the presence of concomitant reactive scattering at the 
dissociation energy. It is related to the fact that energy transfer is 
more efficient in reactive collisions. 

ii) Small quantum tails at the dissociation threshold but important 
quantum effects at higher energies. Just above threshold and up to twi­
ce the dissociation energy,there 'is a very good agreement between the 
classical and quantum results. But unlike the inelastic case,one can 
note large discrepancies at higher total energies. These discrepancies 
which appear as sharp peaks in the classical dissociation probability 
curves,are due to anti-threshold effects29 ,30: These peaks result from 
the inelastic probability curve falling off. One can see however that 
the higher the initial vibrational state of the diatomic molecule,the 
better is the agreement between the classical and quantum curves. 

4. DISCUSSION 

The Time Dependent wavepacket (TDWP) method has been greatly improved 
in the last few years, essentially from the work of Kosloff et al. 22 ,25. 
This method leads to dissociation probabilities converged within 1% or 
better,as shown in this paper. Besides giving a time description of the 
collision process,the TDWP method handles only one column of the S-ma­
trix at the same time: This feature is particularly interesting for 
dissociation processes. Also the extra work which results from adding 
the time variable to the Schrodinger equation, leads to state-to-state 
probabilities for a full range of collision energies. 

The quantum calculations reported so far help to determine the va­
lidity of a classical description of CID. In the inelastic case,one 
should expect quantum effects at threshold, this effect having been 
found more important for the (1,2,1) mass combination as compared to 
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the (1,1,1) one. These threshold effects can produce large errors in 
the calculation of thermal rate constants. The results obtained at 
higher energies display a vibrational inhibition effect and show there 
is a reasonable agreement between the classical and quantum curves. On 
the converse,the results obtained in the reactive case display small 
quantum tails in the threshold region for dissociation, but large quan­
tum effects at higher energies due to anti-threshold effects. Such ef­
fects could persist in 3D calculations whenever the reaction cross sec­
tion collapses at some energy. More calculations on reactive-dissocia­
tive systems need to be performed in order to get a clearer picture of 
these effects. 

While only exact 10 calculations are feasible for the present time, 
approximate 3D quantum treatments can be used. The Infinite Order Sud­
den Approximation (IOSA) appears particularly well suited to study the 
dissociation of a heavy diatomic molecule collided by a light atom: 
This approximation considers that the diatomic molecule does not rota­
te during the collision. Within IOSA 31 ,the full 3D treatment is repla­
ced by a series of 10 calculations corresponding to: 

i) different values of the angle y between the axis of the diatomic 
molecule and the direction of the incident atom, 

ii) different values of the relative angular momentum t. 
The dissociation cross section is then computed from the corresponding 
dissociation probabilities averaged over y and t. Such a study is pre­
sently undertaken on the He-Ar2 system. 
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ABSTRACT. A review is given of recent applications of the distorted wave 
(OW) method to the theory of chemical reactions. A brief account of the 
following topics is included: the formal OW theory of reactions. static and 
adiabatic methods for choosing the distortion potentials. and the removal 
of the 3 Euler angles from the 6 dimensional OW integral. Applications 
of various OW theories to the H+H2. H+F2. O(3P) +H2. O(3p)+C( CH3) 4. 
O( 3p) +HC( CH3) 3. He+H2+. F+H2 and CI+HCI chemical reactions and 
isotopic variations are discussed. 

1. INTRODUCTION 

The distorted-wave Born-approximation (OWBA) is a quantum technique 
for calculating differential cross sections. integral cross sections and 
product state distributions for three dimensional (30) chemical reactions 
of the type 

A+BC(v.].mj) + AB(v'.j'.mj')+C, 

where v is a vibrational quantum number. j is a rotational quantum 
number with mj the projection quantum number. The DWBA is not a 
single theory. but is a generic name covering an infinite number of 
possible approximations. 

The simplest OW theories assume that the single most important 
collisional event in the entrance channel. A+BC. and in the exit channel. 
AB+C. is elastic scattering. The reaction is then treated as a 
perturbation on the elastic scattering. Distortion potentials are introduced 
to describe the elastic scattering in the entrance and exit channels. This 
approximation of considering reactive scattering as a perturbation between 
elastic scattering states should intuitively be valid for many chemical 
reactions. since elastic integral cross sections are typically several orders 
of magnitude larger than reactive cross sections. 

The OWBA has a number of important properties: 
(a) The conservation of energy. linear momentum and angular momentum 

is treated exactly. In contrast. some other approximate theories of 
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reactive scattering violate those conservation laws. For example. in 
the energy-sudden (ES) approximation. which is a part of the 
infinite-order-sudden (lOS) technique. the rotational energy levels of 
BC are assumed to be degenerate and energy conservation is lost. 

(b) The quantum states of the reactant and product molecules are 
correctly described . This is not the case in the usual quasiclassical 
trajectory method. for example. where the "boxing" of the trajectories 
to form "quantized" vibrational-rotational states can sometimes be a 
severe approximation. 

(c) The exact hamiltonian for the collision is used. In some other 
theories. approximate hamiltonians are employed. For example. in 
the centrifugal--sudden or coupled-states (CS) approximation. which 
also forms part of the reactive lOS method. certain off-diagonal 
coupling terms in the exact body·-fixed hamiltonian operator are 
ignored . 

(d) The mathematical formalism of the OWBA is general and is not 
restricted to a particular reaction. or class of reactions. This does 
not imply. of course. that the numerical effort in applying the OWBA 
is the same for all reactions. or that the error in the OW method is 
approximately constant for different collision systems. It will be 
argued in Section 2 that the most favourable chemical reactions for 
the OWBA are those whose potential energy surfaces have large 
barriers between reactants and products. 

(e) The OWBA provides all the information about a reactive collision that 
would be obtained from an exact quantum treatment. Suppose. for 
example. the differential cross section daldn for a transition (v. j. mj) 
~ (v'. j'. mj') is required. then the OWBA could calculate this very 
detailed quantity . 

(f) The transition amplitudes are calculated for each transition (v. j. mj) .. 
(v'. j'. mj') one at a time and not Simultaneously. This means that 
only those transitions of interest need be included in the 
computations . The OWBA does not involve complicated matchings of 
wavefunctions in different arrangement channels. and the manipulation 
of large matrices is avoided. 

(g) The OW method can be improved in a systematic manner to yield (in 
principle) the exact quantum result. As already mentioned. the 
OWBA neglects inelastic non-'reactive collisions and treats the reaction 
as a perturbation between elastic scattering states in the different 
arrangement channels. Including the inelastic non-reactive scattering 
yields the coupled-channels distorted-wave (CCOW) method. which 
involves solving sets of coupled differential equations for the inelastic 
collisions; the reaction is still treated as a perturbation however. 
Approximate methods for solving the coupled equations can also be 
used. as in the centrifugal-sudden distorted-wave (CSOW) method. 
Removing the perturbative treatment of the reaction in the CCOW 
approximation yields the coupled - reaction - channels (CRC) method . 

The OWBA. CCOW and cnc methods are established techniques in 
the theory of direct nuclear reactions (see. for example. the books by 
Austern [31. Glendenning [431 and Satchler [72]). In the theory of 
chemical reactions . the first large scale OWBA calculation was reported in 
1967 by Karplus and Tang [511 for the H+H2 reaction. Howover, it was 
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only in 1974 that Choi and Tang [l5] demonstrated a computationally 
effective method for handling the 60 distorted-wave integral that occurs in 
the theory (again for H+H2). The first extensive DWBA calculations for a 
reaction (other than H+H2 and its isotopic variants) that could be 
meaningfully compared with experiment. were those of Clary and the 
writer [21.26] in 1979 for the H+F2 reaction. In 1984. Schatz et al. [75J 
reported the first 3D CCOW calculation for H+H2. as did Choi et al. [20] 
using a more approximate CCDW theory. No accurate 30 CRC calculation 
has yet been carried out. 

In the remainder of this review. I shall outline the relevant theory in 
Section 2. whilst a survey of OWBA and CCDW calculations and results 
will be given in Section 3. Conclusions are in Section 4. 

2. OUTLINE OF THE THEORY 

The formalism of the OWBA as applied to chemical reactions has four 
main steps: 

(a) derivation of formal expressions. both exact and approximate. for the 
differential cross section daldn for a transition (v.j.mi) + (v'.j'.mj')' 

(b) chOOSing distortion potentials for the elastic scattering in the entrance 
and exit channels. 

(c) removal of the 3 Euler angles describing the orientation of the' ABC 
triangle in space. This operation allows the 60 distorted wave 
integral to be reduced to a sum of 3D integrals. 

(d) numerical implementation of the expressions obtained in steps 
(a)-(c). 

A full derivation of all the equations in the OWBA is a lengthy. albeit 
straightforward. exercise. In this section. I shall just summarize some of 
the key equations and ideas. A detailed. self- contained. exposition of 
many theoretical aspects of the OWBA has recently been written by Tang 
[1031. 

2. 1 Formal Scattering Theory 

The formal OW theory of rearrangement collisions is a well established 
topic in scattering theory. Detailed derivations can be found in books 
concerned with collision theory (for example. Messiah [591. Rodberg and 
Thaler [71]) or the theory of direct nuclear reactions (for example. 
Austern [31. Glendenning [431. Satchler [72]). see also Choi et al. £191. 

The differential cross section for a transition (v. j. mj) ... 
(v'. i'. mj'> can be written in terms of a T matrix element as follows 

where I-LA.BC and I-LC.AB are the reduced masses of the (A.BC) and 
(C. AB) systems respectively and kv. j and kv'. j' are the wavenumbers of 
the initial and final collision systems respectively. To avoid a 
cumbersome notation. the entrance and exit channels will be labelled by 
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a and (3 respectivoly. so that Eq. (1) becomes 

(2 ) 

The hamiltonian for the collision can be written in terms of either the 
entrance or exit channel coordinates 

( 3 ) 

In Eq. (3). Ha and H{3 are the hamiltonians for the non-interacting 
systems. For example. If Ry with y = a or (3 Is the vector for the atom 
relative to the centre-of-mass of the molecule and ry is the vector for the 
internal motion of the molecule. then in the entrance channel 

~2 2 ~2 2 
2J.La "'Rex - 2J.i& "'ra, + VBcC ra), (4) 

where J.La Is the reduced mass of BC and VBC (r a) is the potential energy 
for the isolated BC molecule. A similar expression can be written down 
for the exit channel. The term Vy in Eq. (3) is the interaction potential: 
It is that part of the total potential energy surface that tends to zero as 
Ry ... 00. 

In terms of the quantities introduced in Eqs. (2) -·(4). an exact 
expression for the T matrix element is 

(5) 

In this equation. 4>{3 is an eigenfunction of H{3. that is. 

(H{3 - E )4>,6 = 0, (6 ) 

and consists of a vibrational-rotational wavefunction for AB multiplied by a 
plane wave for the relative motion of C and AB. The quantity 'l'a < +) is 
the exact wavefunction for the system. with the superscript indicating an 
outgoing boundary condition. It satisfies 

(7) 

Another exact expression for T {3a is 

( 8) 

where 

0, (9) 

and 

o. ( 10) 

'I'{3<-> is the exact wavefunction with an incoming boundary condition. 
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The Born approximation (BA> is obtained by replacing \(Ia( +) -+ 4>a In 
the post form (5). or by replacing \(1/3(-) -+ 4>/3 in the prior form (8). 
giving 

( 11) 

The post and prior forms of the SA are identical as indicated in Eq. 
( 11) . 

The BA essentially treats the interaction potential as a first order 
perturbation on the motion of the non-interacting reactant and product 
collision systems. This approximation is not expected to be reliable for 
chemical reactions at low collision energies. Consider. for example. a 
reaction with a large barrier between reactants and products. such as 
H+H2. The distortion of the incident plane wave by the barrier is clearly 
an important physical process. This suggests a better description of the 
reactive scattering might be obtained if the distortion of the relative 
motion in the initial and final channels is taken into account. This is the 
aim of the DWBA. 

In the DW method. the interaction potential is written as the sum of 
two terms 

( 12) 

( 13) 

where the distortion potential VyO gives rise only to non-reactive 
scattering. and Vy is the term that induces reaction. The scattering from 
VyO is assumed to represent a soluble problem. so that the distorted 
wavefunctions, Xy( ±). which satisfy 

( 14) 

(15 ) 

can be calculated. An exact expression for the T matrix element is now 
given (in the post form) by 

(16 ) 

or equivalently in the prior form by 

( 17) 

The DWBA Is obtained by making the approximation \(Ia(+) .. Xa(+) In Eq. 
(16) or \(1/3<--) -+ X/3( -) in Eq. (17): 

( X/3(-)IV~IXo:(+) >, 

( X/3(-)IV~IXo:(+) >. 

The post and prior forms are equal 
Glendenning [431 or Satchler [721). 

(for a proof see. 
although if further 

( 19) 

( 19) 

for example. 
analytical or 
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numerical approximations are introduced. this property may no longer 
hold. As a check on Eqs. (16) - (19). note that If VyO := O. so that 
V~ ;;; Vy . then Eqs. (5). (8) and (11) are regained. An alternative 
form for T f3a( DWBA> follows from Eqs. (14) and (19): 

(20) 

in which V~ does not explicitly appear. 
Equations (16) and (171 for T f3a are exact results. In particular it 

does not matter how Vy is partitioned into VyO + V~ provided only that 
VyO gives rise to elastic or inelastic non-reactive scattering (otherwise. 
another term has to be added to the right hand sides of Eqs. (16) and 
(17» . 

The expressions (16) and (17) also involve the exact wavefunction. 
Clearly knowing 'i'y is equivalent to exactly solving the original Schrodinger 
equation (7) or (10) for the 3D reactive collision. The importance of 
these exact expressions for T {3a is that they allow systematic 
approximations to be made for 'i'y. which are often amenable to physical 
interpretation. Note that 'i'y need only be approximated in those regions 
of configuration space for which T{3a is non-zero. 

When 'i'y is approximated by Xy. as in the DWBA. it is clear that T f3a 
now depends on the choice of distortion potentials VaO and V{30. In fact. 
si,nce there are an infinite number of ways of partitioning Vy into VyO + 
Vy . the term DWBA covers an infinity of possible approximations. 

The distortion potentials used in the DWBA are chosen so that they 
only give rise to elastic scattering in the incident and final channels. 
(They are discussed in more detail in Section 2.2). rhus X{3(-) and 
Xa( +) each correspond to a single internal state. The DWBA 
approximation 'i'a(+) .. Xa(+) in Eq. (16) is evidently a severe one and it 
is useful to summarise the assumptions behind the DWBA: 

(a) The transfer of the atom B takes place directly from the initial to the 
final state of the system. Inelastic couplings in the entrance and exit 
channels are therefore ignored. as are resonan:::e effects and 
reactions involving long-lived complexes. However. since the starting 
equation (16) is exact. it is possible that future researches will lead 
to improved approximations for 'i'a(+) that can handle these effects 
(see also the CCDW below). 

(b) The distorted wavefunctions Xa(+) and X{3(-) are assumed to 
correctly describe the elastic scattering in the entrance and exit 
channels. In principle. this could be checked by comparison with 
experimental data. It is unlikely that the distortion potentials currently 
being used (see Section 2. 2) do in fact correctly reproduce the 
non-reactive elastic scattering. Furthermore. different distorted 
wavefunctions may have the same asymptotic phase shifts. and so 
give rise to the same elastic scattering cross sections. yet differ in 
the inner region that is important for the overlap integral (18). In 
fact. it may be that the distorted wavefunctions contributing to the OW 
overlap integral should not be constrained to reproduce the 
non-reactive elastic scattering data. 

(c) The reaction is assumed to be sufficiently weak that it can be treated 
as a perturbation between the elastic scattering states. Note that it 
is probably not correct to say that the reaction is being treated to 
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first order in the DWBA. since the choice of distortion potentials may 
include higher order effects in a phenomenological manner. 

Assumptions (a) and (b) of the DWBA can be partially removed by 
going to the CCDW approximation. In this method. the distortion potential 
VyO is chosen so that it allows inelastic as well as elastic non-reactive 
collisions. Formally we can write 

Xy = L XY'y 
y' 

(21) 

where the Xy'y satisfy a finite set of coupled differential equations in the 
y arrangement channel. Using Eq. (20). the expression for the T matrix 
element becomes 

(22) 

Although sets of coupled equations need to be solved for the inelastic 
scattering in the entrance and exit channels. note that the Ti3a are still 
calculated one at a time. The CCDW is clearly much more involved 
numerically than the simpler DWBA. The numerical effort can be reduced 
somewhat by using approximate methods to solve the coupled equations; 
for example. the CS approximation. giving rise to the CSDW method. 

2. 2 Distortion Potentials 

In the DWBA. distortion potentials are introduced to describe the elastic 
scattering in the initial and final channels. There are many ways of 
choosing these distortion potentials. One way (the static approximation) 
is to assume that the reactant or product molecule is unperturbed by the 
incoming or receding atom respectively. Another way (the adiabatic 
approximation) assumes the molecule adiabatically adjusts (wholly or 
partially) to the presence of the atom. 

In the static method. the distorted wavefunction is written in the form 

(23) 

where the first term on the rhs of Eq. (23) is the translational 
wavefunction which describes the elastic scattering and the remaining 
terms are the vibrational-rotational wavefunction of the unperturbed 
molecule. Using these static wavefunctions for the reactant and product 
molecules give rise to the static-static distorted wave (SSDW) method. 

For many potential energy surfaces with barriers. the dominant term 
in a Legendre polynomial expansion of the interaction potential is the 
leading term. that is. the spherically averaged potential: 

where 9y is the angle between the vectors Ry and ry. 
potential over the molecular wavefunction defines the 
potential for the elastic scattering 

(24) 

Averaging this 
static distortion 
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(25 ) 

It is evident that a different static distortion potential is obtained for each 
value of v and j. 

Now for some highly exoergic reactions such as T + F2. there are 
over 1000 product TF vibrational-rotational states open. ro avoid having 
to calculate a different distortion potential for each j. the usual rigid-rotor 
approximation can be made. In this case. we can write 

(26) 

with the static distortion potential defined by 

o JOC 2 S Vv(Ry) = 0 nv(ry)V (Ry,ry)dry , (27) 

which is only dependent on the vibrational quantum number v. 
In Eq. (2 n. it is still necessary to perform a quadrature over the 

vibrational wavefunction. This can be avoided if ry is replaced by its 
expectation value < r y )v for a given vibrational state. 

V~(Ry) = ~(Ry,ry =( ry >v). (28) 

An even simpler approximation is to replace ry by rye. the equilibrium 
distance of the molecule 

This distortion potential no longer depends on v. 
A different kind of static distortion potential has been used for the 

H+02 ~ 1-10+0 reaction (10.311. In this reaction. the centre of 
mass and centre of charge of the HO molecule do not coincide. with the 
result that the interaction potential in the exit channel is highly 
anisotropic. This suggests that a physically more reasonable distortion 
potential is obtained by using the preferred configuration of the atoms 
(collinear in this case) rather than performing a spherical average. The 
collinear distortion potentials are defined by 

(30) 

or more simply by 

V~(Ry) = Vy(Ry,ry =( ry >v,cosey = -1). (31) 

The spherically-averaged and collinear distortion potentials can be 
considered as two limiting cases. Thus. the spherically-averaged 
potential averages over all possible configurations of the atom with respect 
to the molecule. leading to a potential that will be too repulsive in 
general. The collinear distortion potential. on the other hand. 
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overemphasizes the collinear configuration. resulting in a potential that is 
too attractive. In fact. a better distortion potential would be complex 
valued and energy dependent. in addition to depending on the internal 
state of the molecule. No applications to chemical reactions have yet 
been made with such a distortion potential. 

In contrast to the static OW theories just discussed. the adiabatic 
theories allow the molecule to partially or wholly adjust to the presence of 
the atom. For reactions with large barriers. this should be a reasonable 
approximation at low collision energies. since the effect of the barrier is 
to slow down the approaching reactants. allowing the molecule time 10 
adjust to the incoming atom. 

In the vibrationally-adiabatic-distorted-wave (VAOW) method. the 
vibrational wavefunction of the molecule adjusts adiabatically to the 
presence of the atom. but the rotational wavefunction is held static. This 
method was introduced by Clary and the writer [211 to provide a practical 
OW technique for reactions with large numbers of product rotational 
states. such as H + F2. The distorted wavefunctions take the form 

(32 ) 

where the adiabatic vibrational wavefunction satisfies 

The change in the vibrational eigenvalue as a function of Ry then 
provides the distortion potential for the elastic scattering 

ve( Ry) = .EV( Ry) - Ev( Ry = CX). ( 34 ) 

A more sophisticated approximation is to allow both the vibrational 
and rotational wavefunction of the molecule to adiabatically adjust to the 
incoming atom. This method was introduced by Karplus and Tang [511 
for the reactant channel wavefunction Xex(+). We can formally write 

(35 ) 

where 'I'kx( Rex. rex) Is the adiabatic molecular wavefunction. For the 
rotational ground state. 1'1ex{ Rex. rex) can be factored into a perturbed 
vibrational part. 11y( Rex. rex) . and a perturbed rotational part. 
cZ>v( Rex. COS9ex) . The calculation of cZ>y( Rex. COS9ex) is simplified by 
approximating the interaction potential by the first two non-zero terms of 
Its legendre polynomial expansion. It is then found that cZ>y( Rex. COS9ex) 
satisfies an equation for a hindered rotor. This method forms part of the 
rotationally-adiabatic-distorted-wave (RAOW) approximation (also called 
the AOW method). For rotationally excited states. the method is similar 
but more complicated (Choi et al. [18]). 

In the RAOW approximation. the adiabatic molecular wavefunction is 
assumed to be a product of a vibrational part and a rotational part. This 
approximation evidently neglects the coupling between vibration and 
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rotation. Including it leads to the converged adiabatic distorted wave 
(CAOW) method. also known as the adiabatic T matrix method (Sun et 
al. [93]). In this technique. it is necessary to solve a double well 
problem [92] in order to determine the molecular wavefunction. 

In this subsection. four different ways of choosing the distorted 
wavefunctions have been discussed: static. VA. RA and CA. It is clear 
that the difficulty of calculating these wavefunctions increases in the 
order: static < VA < RA < CA. In particular. the RA and CA 
wavefunctions are considerably more difficult to compute than the static or 
VA ones. because of the requirement to treat the rotational motion 
adiabatically. Also. the treatment of excited rotational states is much 
more complicated than for the ground rotational state. However. we shall 
see in Section 3 that for H+H2 improving the quality of the distorted 
wavefunctions results in more accurate cross sections. 

It should also be noted that for each method. additional 
approximations may be introduced to make the method easier to apply. 
This means it is necessary to examine papers in the literature carefully. 
in order to find out precisely how the distortion potential is defined. 

2. 3 Evaluation of the Distorted Wave Integral 

It was shown in Section 2. 1 that simple formal expressions can be 
derived for the T matrix element. However. the simplicity of these 
expressions is deceptive. Consider. for example. the distorted wave 
integral (18). The integrand is over the vectors Ry and ry. Thus the 
OW integral is actually 6 dimensional. The numerical evaluation of a 6D 
integral. with an oscillatory integrand. is clearly a difficult problem. which 
would severely limit the usefulness of the OWBA as a practical technique. 

However for an A+BC reaction. only 3 coordinates are necessary to 
describe the internal motion of the ABC system: the remaining 3 
coordinates describe the rotation of the system as a whole. and 
correspond to the fact that the total angular momentum of the system is 
conserved. Thus by changing coordinates in the OW integral (18). it 
can be reduced from a 60 integral to (a sum of) 30 integrals. 
However. this reduction can be carried out in more than one way. 

The use of a body-fixed reference frame together with total angular 
momentum conservation was discussed by Miller [64]. whilst Brodsky and 
Levich [13] employed a space-fixed frame. However. the first 
demonstration of a numerically practical procedure was by Choi and Tang 
[15] in 1974. In their method. the prOjections of the molecular angular 
momenta of the entrance and exit channels are referred to the same 
space fixed axis. which is taken to be the direction of the incident wave 
vector kv. j. Most calculations in the literature are based on the 
Choi- Tang formulation. 

A different procedure for reducing the OW integral has been 
described by Suck [79]. This is based on the transfer of rotational 
angular momentum j{3a from the reactant molecule to the product 
molecule. If Jy is the rotational angular momentum vector and Ry is the 
orbital angular momentum vector. then since la+Ra = j{3+R{3 = J = constant 
vector. it follows that 

( 36) 
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This method has some advantages compared to the total angular 
momentum representation [791. It is widely used in the theory of direct 
nuclear reactions (Glendenning [431. Satchler [721. see also levine 
[54]) . 

Depending on the representation used. the reduction of the 6D DW 
integral is a lengthy exercise in angular momentum algebra. Details will 
not be presented here. Instead the equation for the T matrix element for 
a transition (v.j.mj) ~ (v'.j'.m),) will be given for the simplest case of 
the SSDW theory using the distorted wavefunctions (26) in the Choi-Tang 
approach: 

where 

./!-/!' . 
x r. r. 1 exp[l(Sa/!+S~/!, )]< /!OjmjlJmj >< /!'mj-mj,j'mj,IJmj > 

J II 

x iHHJ ~ ~,E(M)E(-m' )E(m'-M)< lIm'jM-·m'IJM >< /!'OJ'MIJM > 

, Im'l IM-m' I IMI ] 
x V~(r~/R~/C06S~)P/! (C06S" )Pj (C06S' )Pj' (C06S~). 

( 37> 

In this expression. €( m) Is a phase factor defined by €( m) (-1) m for 
m ;;. O. € (m) 0 for m < O. LVi/! (Ra) is a translation~1 radial 
wavefunction with asymptotic phase shift sail and the angles e. e and s" 
are defined by cose = ~v. j" ~v'. j'. coss' = 'tao A~ and cose" = Ra' R~. 
The variables ra. Rex can be expressed in terms of the integration variables 
using standard identities for a triangle. When j =- mj = 0 or j' = mj' = 
O. Eq. (37) can be simplified. 

The numerical evaluation of Eq. (37) is still a complicated task. with 
the most difficult part being the accurate calculation of the 3D integrals. 
In practice. it is found that the region around the classical turning points 
for the translational radial wavefunctions makes a major contribution to the 
i_ntegrand. However. as the collision energy increases. the integrand 
becomes more oscillatory. making it more difficult. or impossible. to 
evaluate the 3D integrals accurately. 

Equation (37) is for the simple case of the SSDW theory with the 
distorted wavefunctions (26). l he reduction of the 6D integral for the 
other DW theories is similar. but more complicated. 
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3. APPLICATIONS 

The OW theory of reactive molecular collisons is just one of many 
theoretical approaches that have been applied to simple three-body 
reactions of the A+BC type. For general reviews of the theory of 
chemical reactions with many references to the literature. see Connor 
[28.291. Micha [631. Wyatt [1091. Walker and Light [1081. Schatz [741. 
Baer [71. Basilevsky and Ryaboy [8J and other Chapters in this book. 

The Born and OW formalisms outlined in Section 2. 1 were the basis 
of many early theories of chemical reactions. see for example. Golden 
and Peiser [441. Golden [45.461. Micha [60-621. Suplinskas and Ross 
[95]. Pirkle and McGee [67.681. Gelb and Suplinskas [39]. Levich et al. 
[531. Brodskii et al. [121 and Eu et al. [381. However. in these early 
papers. it was necessary to introduce numerous simplifying approximations 
of uncertain validity in order to arrive at a tractable theory. This early 
work will not be reviewed here. More recent approximate theories based 
on the OW formalism. in particular Born and Franck-Condon theories of 
chemical reactions. are discussed in the general reviews mentioned 
above. 

Another topic that will not be discussed is the OW theory of coplanar 
(Walker and Wyatt [105.106]) and collinear reactions (Walker and Wyatt 
[1041. Gilbert and George [421. Madden [571. Babamov et al. [4-6] and 
Lopez et al. [551). 

Tables I and II summarize all OWBA calculations known to the writer 
which attempt an accurate numerical evaluation of the OW integral (18). 
The Tables also include a few unpublished calculations which should 
shortly appear in the literature. Table I is concerned with H+H2 and its 
isotopes. whilst all other reactions are given in Table II. 

The first and second columns of the Tables give the reaction and 
potential energy surface used. Standard abbreviations are employed for 
the names of the potential surfaces. Thus. PK = Porter-Karplus potential 
surface No 2 for H+H2. LSTH = Liu-Siegbahn-Truhlar-Horowitz potential 
surface for H+H2. YLL = Yates-Lester-Liu potential surface for H+H2. 
LEPS = extended London-Eyring-Polanyi-Sato potential surface and DIM = 
diatomics-in-molecules potential surface. 

The third and fourth columns of the Tables give information on the 
distorted wavefunctions Xj3 (-) and Xa (+) and in particular the 
approximation used for the vibration-rotation wavefunction of the molecule 
- see Eqs. (23). (26). (32) and (35). The abbreviations used are : 
S = static or A = adiabatic approximation for the individual vibrational or 
rotational wavefunction. and CA = converged-adiabatic approximation. 
when the coupling between vibration and rotation is included. There have 
also been a few calculations which use a semi- adiabatic wavefunction for 
Xy. In these calculations. the vibrational or rotational wavefunction is 
held static. but the adiabatic potential is used in solving for the 
translational wavefunction Fy< ±) (Ry) . This approximation is denoted Sa 
in the Tables. 

The fifth column gives an abbreviation for the OW method employed. 
In the SSOW method. the vibration and rotational wavefunctions of the 
reactant and product molecules are held static. The VAOW theory treats 
the vibrational wavefunctions of the reactant and product molecules 
adiabatically. but keeps the rotational wavefunctions static. In the RADW 
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method. the vibrational and rotational wavefunctions of the reactant 
molecule are both treated adiabatically. but the product molecule is held 
static. The CAOW method is similar except that the CA approximation is 
used for the reactant molecule (the product molecule is still kept static). 
There can be several variations of each technique. depending on the 
precise definition of the distortion potentials used in the calculations. as 
has been discussed in Section 2.2 for the SSOW method. 

The final column in the Tables gives some indication of the scope of 
each calculation. Typically. the quantities calculated are the 
state-to- state energy- dependent differential and integ ral cross sections for 
a transition (v. j ~ v'. j') where 

a(v,j • v',j') = (2j+l)-1 E E a(v,j,mj ~ v',j',mj') 
mj mj' 

Note that many of the earlier calculations only considered j=O and j'=O. 
because the OW theory is then much simpler (cf. Eq. (37». An mj' in 
the Tables indicates that information on transitions involving the projection 
quantum number is also reported. The vibrational quantum numbers can 
be assumed to be v=o and v'=O unless stated otherwise. 

3. 1 DWBA Calculations for the H+H2 Reaction and Isotopic Variations 

Table I shows that many OW calculations have been reported for the 
canonical model of H+H2 on the PK surface (for the concept of a 
canonical model. see Connor [28)). The OW results can be compared 
with the detailed exact quantum calculations of Schatz and Kuppermann 
[73]. Similarly. for H+H2 on the LSTH surface. the OW results can be 
compared with the exact quantum integral cross sections a( V" O. j"O) 
reported by Walker et al. [1071. where 

a(v,j) = E, E,a(v,j ~ v',j'). 
v J 

The general conclusion from these comparisons for Hi H2 is that the 
different OW theories give qualitatively similar results for relative quantities 
such as state-to-state differential cross sections and rotational product 
distributions. However. the absolute values of cross sections are 
different in the various OW theories. the order being: SSOW < VA OW < 
RADW < CAOW ~ exact. This order illustrates that as systematically better 
approximations (based on physical understanding) are made to the exact 
wavefunction lj1a( +) in the T matrix element (16). the magnitudes of the 
OW cross sections approach the exact result, It should be emphasized. 
however. that these conclusions have only beon tested at low energies. 
where the accurate quantum results have been calculated. and for the 
LSTH surface only limited exact results are available [l071. Next some of 
the OW results will be considered in more detail. 

The first attempt at an exact evaluation of the OW integral was made 
in 1967 by Karplus and Tang [51] for H+H2 on PK. They also introduced 
the S80W and RAOW approximations. Karplus and Tang [51] and Tang 
and Karplus [96.971 reduced the 60 OW integral to a 50 one. which they 
evaluated numerically for the ]=0 ~ ]'=0 transition by the SSOW method at 
one energy and by the RAOW technique at throe energies. They also 
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performed more extensive calculations with the help of a collinear 
approximation [S1. 971. including an application to the D+H2 reaction 
(Tang [98». Most of this early work has been reviewed by Karplus [S21. 

The method developed by Choi and Tang [1S] In 1974 for reducing 
the 6D DW integral to a sum of 3D integrals significantly extended the 
usefulness of the DWBA as a practical technique. Using this method. 
they reported in 1976 a large scale RADW calculation for H ~H2 on PK for 
many transitions. j=O -+ ),"4. at 6 energies [171. (This calculation also 
revised some of their earlier results [14.15]). Comparison with the exact 
quantum cross sections [73] showed good agreement for the magnitude of 
the j=O .. )'=1 cross section. However. the agreement for the product 
rotational distributions was less good. For example. the RADW 
distribution [17] always peaked at 1'=2 whereas the quantum distribution 
peaks at 1'=1. Nevertheless. it appeared that the RADW method gave 
good absolute values; this was assumed to be true in the period 
1976-80. 

The accuracy of the RADW method for H+H2 on PK was reinvestigated 
in 1981 (Clary and Connor [25]). This study showed that the RADW 
cross sections are always smaller than the exact ones by factors of 2 to 
8; the same result was obtained for the LSTH surface [25]. The RADW 
rotational distributions [2S] agreed better with the exact quantum results 
than did the earlier calculations of Choi and Tang [171. The inaccuracies 
in the earlier work [14.1S.17] were shown to arise from errors in the 
elastic scattering adiabatic distortion potential [251. Figure I compares 
with the exact results for H+H2 on PK. the RADW differential cross section 
for ]=0 .. )'= 1 at a translational energy of Etr = O. 327 eV. whilst Figure 2 
compares the rotational distributions at the same energy (Clary and 
Connor [25]). There is good agreement between the exact and RADW 
results. 

The simpler SSDW and VADW methods have also been applied to 
H+H2 on PK (Clary and Connor [23-251. Suck Salk and Lutrus [891. Choi 
et al. [20]). Relative distributions are generally similar to those from the 
RADW method. but the absolute values of the cross sections are smaller 
in the order: SSDW < VADW < RADW. The close agreement of the VADW 
and RADW distributions is illustrated in Figures I and 2 (Clary and 
Connor [23.25]). Even very detailed quantities such as the mj' 
dopendence of differential cross sections. are quite well predicted by the 
VADW method. Figure 3 compares differential cross sections for j=O. 
mj=O -+ )'=3. I mj' 1 .. 3 with the exact quantum results for H~H2 on PK 
(Clary and Connor [23]). The helicity representation is used in this 
figure in which the axis of quantization of both the incoming and outgoing 
rotational states is chosen to coincide with the direction of the incident 
and final wave vectors respectively. 

All the DW calculations discussed above have been for the reactant 
molecule in its ground state. with v=O. j=O. The first DW calculations for 
a rotationally or vibrationally excited reactant molecule were carried out by 
the VADW method (Clary and Connor [23.24]). Figure 4 compares with 
the exact results [73]. the VADW rotational product distributions for 
j=O. 1 . 2 for H+H2 (j) on PK [24]. There is close agreement between the 
two calculations. The effect of vibrational excitation [23] for the 
H2(v=2.j=0) molecule is illustrated in Figure S (also for PK). which plots 
0'( v=2. ]=0 -+ v' .. 2) against translational energy where 
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Figure 1 Accurate quantum. RADW and VADW differential cross sections 
dcr/dfHO. 0 ~ 0.1) for H"'H2 on PK at Etr = 0.327 eV normalized at 180°. 

Figure 2 Accurate quantum. RADW and VADW rotational product 
distributions P( O. 0 ~ O. j') for H"'H2 on PK at Etr = 0.327 eV plotted 
against rotational energy. 

.. ... , 

Figure 3 Accurate quantum and VADW differential cross sections 
dcr/dO(O. O. 0 ~ 0.3. mj') for H+H2 on PK at Etr = 0.327 eV normalized at 
180° . 
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Figure 4 Accurate quantum and VADW rotational product distributions 
P(O.j ~ O.j·) for H+H2 or PK at Etot = 0.60 eV plotted against rotational 
energy. 

r • 

. ...... j 
~ 

g.\;-"=~~,,F"'3.;;.?ik •. ~·. ;­
r,~'~I/·~ 

Figure 5 VADW cross sections 0'( v=2. 0 -+ v'';;2) for H+H 2 on PK plotted 
against translational energy. 

§!! ., r 
:VArNI 0 .• ;. 

Figure 6 RADW and VADW differential cross sections dO'/dO(O.O ... 0.2) 
for D+H2 on LSTH at Etr = 0.40 eV normalized at 180 0 . 
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(1(v.j ~ V') = Ej' (1(V,J + V',j'). 

The H+H2(V=0. j=O) reaction on the LSTH potential surface has also 
been investigated by the DWBA (Clary and Connor [251. Sun et al. [93]). 
with results similar to these discussed above for the PK surface. An 
Interesting finding Is that the (1( 0.0) cross sections calculated by the 
CADW method are larger than the RADW ones. They also agree well with 
the exact quantum (1( 0.0) cross sections at low energies, although at the 
highest energy of Etr = 0.327 eV, the CADW cross section is smaller 
than the exact one by about 30%. 

The VADW, RADW and CADW methods have also been applied to the 
D+H2 reaction on a variety of potential surfaces (see Table J). Molecular 
beam and kinetic data is also available for this reaction. As for the 
H+H2 reaction. the various DW approximations give similar relative 
quantities. but different absolute values for the cross sections in the 
order: VADW < RADW < CADW. Figure 6 shows the VADW and RADW 
differential cross section for the j=O ~ 1'=2 transition at Etr = O. 4 eV on 
the LSTH surface. whilst Figure 7 illustrates the rotational distributions for 
the same system (Clary and Connor [25]). These figures clearly 
demonstrate the close agreement of the VADW and RADW theories for this 
case. Using the CADW method for D+H2(V=0. j=O) on LSTH. and the 
RADW technique for D+H2(V=0. j=l). Sun et al. [94] have reported good 
agreement with all available experimental data for this reaction. 

There has recentiy been considerable theoretical interest in the H+D2 
reaction. Two important experiments have measured Vibrational-rotational 
product distributions under nearly single collision conditions [41.58]. The 
experiments are performed at Etr = 1. 3 eV. with a smaller product 
contribution coming from collisions with Etr = 0.55 eV. It is difficult to 
carry out a DW calculation using adiabatic distorted wavefunctlons at a 
collision energy as high as 1.3 eV. This Is because it Is necessary to 
calculate the adiabatic eigenvalues at sufficiently small values of Ry that 
the numerical evaluation of the elastic radial wavefunction can be started 
in the classically forbidden region. It becomes progressively more 
difficult to do this as Etr increases. 

There have been two SSDW calculations for H+D2 on LSTH at 1. 3 eV 
(Connor and Southall [301. Suck Salk et al. [86]) with results agreeing 
closely with each other. However. comparison with the experimental data 
shows that the SSDW product distribution are. in general. less rotationally 
excited than the experimental ones. An example is illustrated in Figure 
8. where the SSDW rotational distribution for v'=O (Connor and Southall 
[30]) is compared with a linear surprisal fit to the experimental data of 
Gerrity and Valentini [41]. Also shown is an extrapolation made by 
Marinero et al. [58] to v'=O from their experimental v'=l and v'=2 data. 
using a linear surprisal assumption. Figure 8 shows that all three 
distributions are in close agreement for 1'''4. but there are differences for 
1'>4. 

In the usual SSDW method. the spherical average of the interaction 
potential is used to define the distortion potentials (see Eq. (24) ) . 
Bowers et al. [10] have suggested that for systems such as H+D2. which 
possess a strongly anisotropic interaction in the exit channel. a beUer 
distortion potential is obtained using the preferred collinear configuration 
of the atoms. This will be called the SSDW-C method. and has been 
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Figure 7 RADW and VADW rotational product distributions for D.f H2 on 
LSTH at Etr = 0.40 eV plotted against rotational energy. 
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Figure 8 Rotational product distributions into v'=O for H+D2 at Etr 1.3 
eV. 
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Figure 9 Rotational product distributions into v'=O for H+D2 from 
collisions with Etr = 0.55 and 1.3 eV. 
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briefly discussed in Section 2.2. Using the distortion potential defined by 
Eq. (31) for H+D2 on LST H at 1. 3 eV results in more product rotational 
excitation than does the standard SSDW technique (Bowers et al. [lOJ). 

The more general collinear distortion potential (30) has also been 
applied to H+D2 on LSTH at 0.55 eV and 1.3 eV (Connor and Southall 
[31]). Figure 9 compares the SSDW-C rotational distribution for v'=O with 
the experimental results of Gerrity and Valentini [411, and with the results 
of quasiclassical (QC) trajectory calculations (Blais and Truhalar (9)). 
Because the absolute values of the DW cross sections are inaccurate, to 
allow for a meaningful comparison with experiment. the ratio of the 
SSDW·-C total cross sections at O. 55 eV and 1. 3 eV have been scaled to 
the quasiclassical ratio. Figure 9 shows that all three results are in quite 
good agreement with each other. The shoulder at low j' arises from 
collisions with Etr = 0.55 eV. 

3. 2 DWBA Calculations for Other Reactions 

Table II reports DWBA calculations for reactions containing a heavier atom 
than H. D or T. Since H+H2 is an isoergic reaction. the number of open 
product states is relatively small. In contrast. most of the reactions in 
Table II possess a large number of product vibrational-rotational states. 
For example. the highly exoergic H+F2 reaction at Etr = 0.106 eV has 
373 open HF vibrational-rotational states. whilst TF has 1023 open 
product states. In addition. it is found experimentally that product 
rotational states with j';«0 are the most populated In many cases. This 
implies that DW calculations which only compute j'=0 cannot meaningfully 
be compared with experiment in these cases. 

The VADW method was specifically designed for reactions like H+F2 
which possess a large number of open product states (Clary and Connor 
(21.261) . This method allows the reactant and product vibrational 
wavefunctions to distort adiabatically. but keeps the rotational 
wavefunctions static. An adiabatic treatment of the rotational degrees of 
freedom. although presumably more accurate. would be very cumbersome 
for reactions like H+F2. requiring the diagonalization of very large 
matrices. In addition, it is straightforward to apply the VADW method to 
reactions with rotationally excited reactants. whereas it is much more 
difficult to do the same in a RA or CA treatment. In fact. there are no 
DW calculations in Table II using the RADW or CADW techniques - only 
the VADW and SSDW methods have been employed. 

The H+F2 reaction was the first one. beyond Hi H2 and its isotopes. 
for which it was meaningful to compare large scale DW calculations with 
experiment (Clary and Connor [211). This reaction has the advantage 
that a reasonable LE PS potential surface is available (Jonathan et al. 
(491) and the product distributions are insensitive to variations in j and Etr 
for the thermal energy range. This last property allows a fixed energy 
calculation for H+F2(V=0. j=O) to be meaningfully compared with thermal 
infrared chemiluminescence data (Polanyi and Sloan (691. Brandt and 
Polanyi [111). 

Figure 10 shows the VADW distortion potential (34) for elastic 
scattering in the entrance channel H+F2(V:C0). whilst Figure 11 shows the 
corresponding distortion potential for the exit channel HF (v'=6) iF. The 
distortion potential VOD( Ra) for the entrance channel has a small barrier. 
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j. N. L. CONNOR 

Figure 10 VADW distortion potential for elastic scattering for H+F2 (v=O) 
on a LEPS surface. 

I 
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\ 

HFc ... '=e) + F 

LEPS 

Figure 11 VADW distortion potential for elastic scattering for HF (v'=6) +F 
on a LEPS surface. 

H) 

'4 

-2 
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H +F2 

LEPS 

-4 -1 

Figure 12 VADW vibrational product distribution for H+F2 (v=O, j=O) on a 
LEPS surface at Etr = O. 106 eV plotted against vibrational energy. The 
quasiclassical (QC) and experimental results are for thermal reactants at 
T = 300 K. 
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followed by a well. and finally a strongly repulsive region. 
a consequence of the "attractive" nature of the potential 
which has an early saddle point. The distortion potential 
exit channel has an exponential shape and is very similar 
v' . 

269 

This shape is 
energy surface, 
V6D ( RI3) for the 
for all values of 

Figure 12 compares the VADW vibrational distribution for 
H+F2(v=0. j=O) at Etr = 0.106 eV with thermal quasi classical trajectory 
results at 300 K (from Figure 1 of Polanyi et al. [70]) and with the 
thermal chemiluminescence experimental data (from Table V and Fig. 9 
of Brandt and Polanyi (111). There is good agreement between all three 
distributions. with the most populated vibrational state being v'=6. 

Figure 13 shows a similar comparison for the D+F2 reaction. The 
VADW distribution is for D+F2(V=0. j=O) at Etr = 0.106 eV and the 
quasiclassical results are those computed by Jonathan et al. [50). The 
experimental data is the very recent fast flow measurement made by 
Dzelzkalns and Kaufman [331. Note that the VADW calculations were 
carried out before the experimental measurement was made. Again. all 
three distributions agree well. with the most populated state being v'=9. 
However. one defect of all the theoretical distributions in Figures 12 and 
13 is that they are narrower than the experimental ones. 

Semi-adiabatic calculations have also been carried out (Clary and 
Connor [21]) for H+F2(v=0.j=0) at Etr = 0.106 eV (see Table Ill. The 
calculation using the VA approximation for reactants. and the Sa 
approximation for the product vibrations. gives a vibrational distribution 
that agrees closely with the full VADW calculation. However. agreement 
is poor when the Sa is used for reactants and the VA for products [211. 
This interesting result is probably related to the position of the barrier on 
the potential surface. An accurate description of the reaction dynamics 
is particularly important around the barrier region. and for H+ F 2. the 
barrier is located early in the entrance valley. 

Figure 14 shows the VADW rotational distributions for H+F2 for the 
four most populated vibrational states. namely v'=4. 5. 6. 7. Also 
illustrated are the thermal experimental chemiluminescence rotational 
distributions (Polanyi and Sloan [69]). The agreement between the VADW 
and experimental results is seen to be good. Note that H+F2 is a 
light+heavy-heavy atom reaction. with the consequence that the amount of 
energy released into rotational degrees of freedom is very small. The 
VADW rotational distributions predicted for D+F2(V=0. j=O) at Etr = 0.106 
eV are shown in Figure 15. There are no experimental measurements to 
compare with for this system. Vibrational and rotational distributions for 
Mu+F2 and T+F2 together with other properties are reported in [261. 

The VADW method also gives cross sections 0'( 0.0,0 ? v'. j'. mj') for 
rotational product states with different mj' values. In every case. it has 
been found for X+F2 (where X = Mu. H, D or Tl that 

This relation also holds for the H+H2 reaction (see Figure 3). as well as 
for the reactions of 0 (3p) discussed below. It is related to the fact that 
the potential energy surfaces of all these reactions favour the collinear 
configuration. 

The O( 3pl+ H2 (v~2. j~2) reaction on two potential surfaces has also 
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1'0 

'8 

·2 

o +F2 
LEPS 

.F= 9 

-2 

Figure 13 VADW vibrational product distribution for D+F2(V=0. j=O) on a 
LEPS surface at Etr = 0.106 eV plotted against vibrational energy. The 
quasiclassical (QC) and experimental results are for thermal reactants. 

Figure 14 VADW rotational product distributions for H+F2(V=0. j=O) 
LEPS surface at Etr = 0.106 eV plotted against rotational energy. 
experimental results are for thermal reactants at 1 :0. 300 K. 

on a 
The 

Figure 15 VADW rotational product distributions for D+F 2 (FO. j=O) on a 
LEPS surface at Etr = 0.106 eV plotted against rotational energy. 
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been studied by the VADW method 
potential surface is a LEPS form due 
the other is an ab initio one, fitted by 
parameters (Schinke and Lester [771>. 
of O. 54 eV and O. 60 eV respectively. 

(Clary and Connor [22]). One 
to Johnson and Winter [481. whilst 
a function containing 56 adjustable 

Both surfaces have large barriers 

The VADW method predicts that the vibrational distributions obey the 
adiabatlcity rule: v + v'=v transitions are favoured over v -+ v'1"V 
transitions. This finding is similar to the H+H2(v~2) case illustrated in 
Figure 5. 

Figure 16 shows the differential cross sections dO'(O. 0) Idn for both 
surfaces at two translational energies. On both surfaces. the peak 
moves away from the backward direction as Etr increases. The rotational 
distributions for v=O. J=O -t v'=O. 1'''11 are illustrated in Figure 17. Note 
that as Etr becomes larger. the rotational excitation of the product OH 
molecule rapidly increases. Again. the behaviour for both surfaces is 
similar. Note also that the energies in Figure 17 are close to the 3D 
quasiclassical thresholds. In this threshold energy range. it is 
particularly difficult to compute converged rotational distributions by 
quasiclassical techni~ues. 

Although the O( P) +H2 reaction has been intensively studied by the 
VADW method. as well as by other theoretical techniques (see in addition 
Table III>. no state-to-state experimental measurements have yet been 
made for it. However. several molecular beam experiments of the 
reaction of O( 3p) with saturated hydrocarbons HR. using laser induced 
fluorescence detection of the product OH molecule. have been reported 
(Andresen and Luntz [21. Dutton et al. [32]). These experiments have 
found very low rotational excitation of the OH molecule. with primary. 
secondary and tertiary hydrocarbons yielding nearly identical rotational 
distributions. Evidently the reactions are all direct. with a strong 
preference for a collinear transition state. 

Figure 18 shows the VADW rotational distribution for O( 3p) reacting 
with the tertiary hydrocarbon HC(CH3) 3 :; Isobutane into v'=1 at Etr = 
22.2 kJ mol- 1 (Clary et al. (27). The VADW result is compared with 
experimental measurements (Andresen and luntz [2]) and with 
quasiclassical trajectory computations (luntz and Andresen [56]). The 
same lEPS potential surface has been used in the VADW and 
quasiclassical calculations. There is good qualitative agreement between 
the calculated and experimental rotational distributions. Note that the 
theoretical and experimental rotational distributions in Figure 18 have been 
plotted as a function of the (theoretical and experimental> rotational 
energy of OH. rather than using the rotational quantum number (Clary et 
al. [271). 

Table II shows there have been many SSDW calculations for the F+H2 
reaction using the Muckerman 5 lEPS potential surface. The first OW 
calculation for this reaction was a semi-adiabatic one by Shan et al. 
[781. Suck (Suck Salk) and coworkers have used the transferred angular 
momentum formalism (Suck [791. see Eq. (36» to make detailed SSDW 
investigations of many aspects of the F+H2 reaction. They have studied 
topics such as: the preferred geometric configuration. the contribution of 
different partial waves to the differential cross section. the role of angular 
momentum transfer. wavenumber matching in the entrance and exit 
channels. and the post-prior equivalence (see Eqs. (18) and (19». 
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Figure 16 VADW differential cross sections do(O. 0) Idn for O(3P) +H2 at 
two translational energies normalized at 180°. 
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Figure 18 VADW. quasiclassical (QC) and experimental (AU rotational 
product distributions of OH (v' = 1) for the O( 3p) +HC (CH3) 3 reaction at Etr 
~ 22. 2 kJ mol- 1 plotted against rotational energy. 
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Many of their earlier calculations were restricted to j'=cO (Suck [80.811. 
Suck and Emmons [82.83.881. Emmons and Suck [35» but more recently 
results for j';t0 have been reported (Emmons and Suck [34.361. Suck Salk 
et al. [851. Emmons et al. [371. Suck and Emmons [88». 

Howover. it is unlikely that the SSDW method using the simple 
distortion potentials discussed in Section 2. 2. can accurately describe the 
dynamics of the F+H2 reaction on the Muckerman 5 surface. 
Approximate 3D quantum calculations for F+H2 indicate that the 
resonances obtained in exact collinear quantum reaction probabilities are 
not completely averaged out on going to 3D. As emphasized in Section 
2. the DWBA theories currently in use should work best for direct 
reactions and not reactions involving resonances. In addition. the recent 
detailed experimental molecular beam data of Neumark et al. [651 
indicates that resonances are important for F+H2. although the 
Muckerman 5 surface is not adequate to explain them. Furthermore. 
since the product distributions are sensitive to the value of the 
translational energy [651. it follows that it is probably not meaningful to 
compare a fixed energy calculation for F+H2(V=0. j=O) with thermal 
experimental results. such as infra-red chemiluminescence 
measurements. In summary. it is likely that techniques more elaborate 
than the simple DWBA method will be needed for reactions with dynamics 
as complicated as HH2. 

Table II shows that the SSDW method has also been applied to the 
He+H2+ reaction. but only preliminary results have been reported (7uhrt 
et al. [111 J Tang et al. [1021. Suck Salk and Emmons [87». For 
example. Zuhrt et al. [1111 only considered transitions into j''''0. 

3.3 Coupled-channel Distorted-wave Calculations 

All the DWBA calculations listed in Tables I and II assume that elastic 
scattering is the only non-reactive process in the initial and final 
arrangement channels. However. this is an inaccurate description of the 
non- reactive scattering. because inelastic. as well elastic. collisions can 
occur. In particular. rotational transitions occur readily even at low 
collision energies. 

Including the inelastic scattering in the incident and exit channels 
leads to the CCDW approximation. which was introduced in Section 2. I. 
Table III lists OW calculations which approximate Xcx(+) and X/3(-) (or 
both) by a finite CC expansion (see also Suck [84]). Also included are 
calculations which use the CS approximation to solve the inelastic coupled 
equations. 

Schatz et al. [75] have applied the CCDW method to H+H2 on PK. 
Comparison with the exact quantum results [731. shows that the CCDW 
technique is accurate for energies where the total reaction probability for 
each partial wave is less than about 0. 1. At higher energies. the CC 
expansions do not converge as additional closed channels are added. A 
similar result has been obtained in collinear H+H2 calculations [47). 

Since the reaction is still treated as a perturbation in the CCDW 
method. it is to be expected that this method will eventually break down 
as Etot increases (like the simpler DWBA theories). Nevertheless. for 
many reactions with high barriers. the perturbation assumption should be 
valid at thermal energies. where the dynamics is dominated by tunnelling 
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through the barrier. Schatz et al. [751 also found the simpler CSDW 
method gave results in good agreement with the exact quantum values. 
Related work suggests that the errors in the CS approximation should be 
less than 30%. 

Choi et al. [201 have extended the DWBA to include inelastic 
non-reactive scattering. However in their formalism. the CC method is 
only applied to Xa( +); the other distorted wavefunction X(3 (-) is treated by 
the SS method. as in the RADW and CADW approximations. Comparison 
with the exact quantum results for H+H2 on PK. shows the resultin!~ cross 
sections are too small. Evidently. for an isoergic reaction like H +-H2. it 
is important to include the inelastic couplings in both the entrance and 
exit channels. if accurate absolute cross sections are to be calculated. 

Choi et al. [201 also studied how the integral cross section for the 
j=O .. 1'=1 transition In I1+-H2. changed when the full vlbratlonal--rotational 
basis set was replaced by a pure vibrational one. and a pure rotational 
one for v=O. They found that the cross section using the pure vibrational 
basis set is only slightly larger than that from the SSDW method. 1 he 
cross section using the pure rotational basis set is an order of magnitude 
larger. but is still smaller than that from the full vibrational- rotational 
basis set. 

The CSDW method has been used by Schatz [761 in an e>:tensive 
study of the O(3p)+H2.HD.DH.D2 reactions. For the O(:3PHH2 
reaction. the rotational product distributions agree well with those 
calculated by the VADW method [221. see Figure 17. lhe CSDW rate 
coefficients are larger than quasiclassical ones at low temperatures owing 
to tunnelling effects through the high barrier on the surface. lhis study. 
as well as the one for H+H2 [751, indicates that the CSDW method should 
be an effective technique for reactions with high barriers. In particular. 
it should work well for energies close to the reaction threshold. wh'3re the 
quasiclassical trajectory method is least accurate. but which is the energy 
region which contributes most to thermal rate coefficients. J\nother 
reaction with a large barrier is the heavy + light-heavy atom system 
CI+HCI. Preliminary results indicate that the CSDW method can be used 
successfully for this type of reaction as well (Amaee et al. [l». 

4. CONCLUDING REMARKS 

Many quantum mechanical theories have been proposed in the 
literature for 3D chemical reactions. Only a few theories haVE! been 
shown to be viable in practice. Even fewer have been applied to 
reactions other than H+H2 and its isotopes. 

The DW theory is a practical method for studying the details of direct 
3D chemical reactions. The DW approach encompasses an infinite 
number of possible approximations. Those discussed in this review 
include the SSDW. VADW. RADW. CADW. CSDW and CCDW me,thods. 
All these methods treat the reaction as a perturbative transition between 
non-reactive scattering states in the initial and final arran!}ement 
channels. Note that the calculations reported so far have used thE! usual 
Jacobi coordinates. It would be interesting to see if more accurate 
theories would result if natural collision coordinates or hyperspherical 
coordinates were used instead. 
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For the H+H2 reaction. all DW methods give similar results at low 
collision energies for relative quantities such as differential cross 
sections. In such a situation. the simpler theories can be used. i. e .. 
the SSDW and VADW methods. The VADW technique has been shown to 
be viable for reactions with as many as 1000 product vibrational·­
rotational states. More research on better methods for choosing the 
distortion potentials in these simple DW theories would be valuable. 

As the approximations used in the DW theories are systematically 
improved. the absolute values of the cross sections approach the exact 
results (for H+H2 at least). If true in general. this indicates that the 
CSDW and CCDW methods should be reliable for the threshold region of 
reactions with large barriers. where the dynamics is dominated by 
tunnelling. 

In earlier reviews of reactive scattering. the DW approach was 
described as "inadequate for reactive collisions" (George and Ross [401. 
p. 272) or "merely a qualitative description" (Nikitin and Zulicke [661. p. 
97> . The research described in this review shows that these conclusions 
are wrong. 
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ABSTRACT. We consider three aspects of potential energy surface repre­
sentations for dynamics calculations on polyatomic systems, with special 
emphasis on generalized transition state theory and tunneling calcula­
tions. (i) We present methods for calculating the vibrational energies 
of generalized transition states from either a cartesian or internal­
coordinate force field and including the effect of mode-mode coup:.ings 
on the rate constant ~y perturbation theory and the Pitzer-Gwinn approx­
imation. (ii) We discuss practical aspects in the use of ab initio 
gradient-based electronic structure calculations for t~e c~culat;~n of 
cartesian force fields for a set of stationary points on the potential 
energy surface or for a sequence of generalized transition states. (iii) 
We discuss recent progress on the development of global analytic repre­
sentations for potential energy surfaces of polyatomic reactions. Such 
global representations can be used to generate either cartesian or 
internal-coordinate force fields for generalized transition states, and 
they can also be used to compute the potential energy surface far from 
the minimum energy path as may be required for tunneling calculations in 
some cases. 

1. INTRODUCTION 

The calculation of reaction rates is generally carried out in two steps. 
In the first step one calculates or models the potential energy sur­
face,1,2 PES (or surfaces; however ~n the present report we limit our 
attention to electronically adiabatic reactions for which only a single 
surface is involved). In the second step one calculates dynamical quan­
tities, using the PES as given. 1 ,3 It is becoming increasingly clear, 
however, that these two steps should not be performed independently. 
In the first place, the dynamics calculations are expected to be more 
sensitive to some features of the PES than to others, and it would be 
desirable (in the practical case where the PES is not equally accurate 
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for all possible geometries) to expend the greatest fraction of the 
theoretical effort on those features of the PES that are expected to have 
the greatest effect on the dynamical results of interest. 4 In the 
second place, when the PES is based on ab initio electronic structure 
calculations it is not practical economically to perform calculations 
for all possible geometries of the reacting molecule or molecules. The 
disparity between the number of calculations needed to map a reasonable 
grid of all relevant geometrical parameters and the number of affordable 
calculations grows rapidly with the number N of atoms involved. To span 
each internal coordinate with only 10 points already requires 103N- 6 

geometries to be considered, which is unaffordable for N ~ 4. Of course 
an accurate PES is not needed at all possible geometries, and thus, when 
using the ab initio approach, we want to calculate--and fit or represent 
--the potential only where it is really important. 

One approach to circumvent the problems mentioned above is to com­
bine a local representation of the PES in the vicinity of the reaction 
path with dynamics calculations based on localized bottlenecks and 
localized semiclassical tunneling paths. A large amount of experience 
has been gained with these methods S- 10 for reactions with only a few 
atoms. In our group we have made extensive tests of the reliability of 
such methods by comparing the results to those from accurate quantal 
dynamics calculations for simple systems and to experiment. On the 
basis of these tests we can conclude that methods based on localized 
dynamical bottlenecks and localized semiclassical tunneling paths are 
capable of accurate predictions of thermal and some state-selected reac­
tion rates, kinetic isotope effects, and threshold energies for overall 
reaction9- 22 and sometimes for reaction into specific product vibration­
al states,19,23,24 as well as predictions of resonance energies and 
lifetimes and branching ratios for decay 2S-29 and spectroscopic tunnel­
ing splittings. 30 Reaction path methods have also been applied to treat 
energy transfer in nonreactive processes. 31 - 33 Methods based on an 
expansion in reaction-path coordinates about the minimum-energy path are 
sometimes called reaction-path Hamiltonian (RPH) methods,8,27,28,34-36 
although the idea is older than the name. 37 - 39 The emphasis in much RPH 
research is on a correct formulation of the kinetic energy in reaction­
path coordinates. 34 ,3S,40 In the present paper, however, we wish to 
emphasize the representation of the potentials, especially for systems 
with four or more atoms. We also wish to emphasize that in many cases 
the PES must be known in regions beyond those where it can be predicted 
by a quadratic or other expansion about the minimum-energy path, e.g., 
even in regions where reaction-path coordinates are not unique. 1S ,18-22 
These wider regions are still localized though and can be identified 
with reasonable confidence so that we do not need a complete global 
representation of the PES. 

There are two reasons why one needs to go beyond a quadratic expan­
sion about the minimum-energy path. The first is anharmonicity, which 
may be especially important for low-frequency modes, and which is essen­
tial for even a qualitatively correct treatment of bifurcating reaction 
paths. It is also very important for quantitative calculations of low­
temperature rate constants to include anharmonicity of high-frequency 
modes. The second is ~unneling in systems with intermediate and large 
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curvature of the reaction path. In such systems the best semiclassical 
tunneling paths may be very far from the reaction path. In such regions 
reaction-path coordinates can become multivalued, making the RPH kinetic 
energy operator invalid. To treat such regions we transform locally to 
mass-scaled cartesians, which are valid everywhere. For systems with 
large reaction-path curvature [for short, we call these large-curvature 
(LC) systems], the region over which we require the potential may be 
envisioned as a multidimensional tube surrounding the minimum-energy 
path and including extra wide regions for possible tunneling paths on 
the concave sides of elbows. It is convenient to call this extended 
region around the reaction path the reaction sHath, and we arrive at the 
reaction-swath potential (RSP) as an intermediate construct, or level of 
required knowledge, between the RPH on one hand and the global PES on 
the other. 

Two quantities which playa primary role in the use of an RPH for 
dynamics calculations are the generalized free energy of activation 
curves ~G~T,O(s) and thevibrationally adiabatic potential curves 
V~(ni's). The former are used for variational transition state theory 
(VTST) calculations of thermal reaction rates with classical reaction­
coordinate motion, and the latter are used for calculating overall and 
state-specific threshold energies, tunneling probabilities, and t~e pro­
perties of resonance states. Section 2 reviews the basic definitions of 
these quantities and also reviews the independent-normal-mode (INM) 
approximation that provides the simplest way to actually calculate 
~G¥T,O(s) and V~(ni's) for polyatomic systems. The INM approximation 
may be implemented harmonically or anharmonically but it includes only 
principal force constants t in normal coordinates. Then we discuss a 
better method to treat anharmonicity by first modelling the potential 
energy in curvilinear internal coordinates and then transforming it to a 
normal coordinate representation. The motivations for this approach are 
presented, and the practical procedures necessary for calculations are 
outlined in detail. 

Section 2 also includes a brief review of the large-curvature and 
least-action tunneling approximations with emphasis on delineatin§ the 
regions of the PES required for such calculations. 

Sections 3 and 4 are concerned with the representation of the 
potential energy information that is needed as input for the calcula­
tions of Section 2. In particular, to carry out the calculations of 
Section 2 we must be able to generate the PES at any point near t~e 

reaction path for small-curvature (SC) systems and at any point ir the 
reaction swath, as defined above, for LC systems. 

Section 3 discusses ab initio calculations of the RPH by so-called 
"gradient methods", which-;;-re algorithms for the direct calculaticn of 

tWe use the convention, from spectroscopy, that "principal" force 
constants describe the potential within a single normal or internal­
coordinate mode whereas "interaction" force constants describe mode-mode 
coupling. This convention avoids confusion with "diagonal" and "cff­
diagonal" matrix elements in a perturbation theory treatment of anhar­
monicity. 
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PES derivatives. Gradient techniques are better suited to calculating 
expansions about the reaction path than to calculating the full RSP, and 
we will limit this initial discussion to the RPH. In a calculation 
based on ab initio gradient methods, the potential may conveniently be 
represented in terms of a finite number of force constant matrices, each 
corresponding to an expansion about a different point on or near the 
minimum-energy path. This obviates the need for choosing specific func­
tional forms, but it raises a number of new questions about computa­
tional economics and step sizes. These will be discussed and simulated 
gradient calculations based on global PES's will be presented to demon­
strate some practical difficulties. 

Section 4 discusses methods of representing the PES, or at least 
the full RSP, in terms of globally defined functional forms. This sec­
tion begins with a review of methods for fitting atom-diatom PES's and 
methods developed previously for representing polyatomic PES's. Then we 
discuss a new approach. The most important elements in the new approach 
are that the globally defined functional form is required to be accurate 
only in the reaction swath, and it is flexibilized in this swath by 
making globally significant potential parameters explicit functions of 
selected coordinates. Illustrative examples and possible pitfalls are 
also included. 

2. DYNAMICAL CALCULATIONS 

2.1. Variational Transition State Theory, Vibrationally Adiabatic 
Potential Curves, and Tunneling 

In canonical variational transition state theory (CVTST or, for short, 
CVT) the rate constant for a temperature T is calculated in three steps. 
First one calculates the hybrid generalized transition state theory 
(GTST or, for short, GT) rate constant kGT(T,SGT) as a function of the 
location SGT of the generalized transition state. 9 ,41-44 The word 
"hybrid" here refers to the fact that in this calculation the reaction 
coordinate is treated classically but all other degrees of freedom are 
quantized, and the word "generalized" refers to the fact that the gen­
eralized transition state is not required to pass through the saddle 
point as in conventiona1 45 transition state theory. In the second step 
one minimizes kGT(T,SGT) with respect to SGT yielding the hybrid CVT 
rate constant 9 ,41-44 

kCVT(T) = min kGT(T,SGT) • 

SGT 

(1) 

The lvords "canonical" and "variational" in CVT refer to the fact that in 
this step the dividing surface is variationally optimized for the canon­
ical ensemble specified by T. In the third step one multiplies kCVT(T) 
by a transmission coefficient K(T) to account for quanta 1 effects on the 
reaction coordinate, yielding the final estimated rate constant: 9 ,42-44 
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(2) 

In principle the generalized transition state can be any hypE,r­
surface in phase space except for the constraint that it must divide 
reactants from products. 46 However, in practice it would be difficult 
to calculate kGT(T,SGT) for arbitrary dividing surfaces as well as to 
perform the variational step of eq. (1) for all possible surfaces. To 
make VTST practical one must define a subset of all possible dividing 
surfaces for which these steps are realizable and yet which is capable of 
yielding the required accuracy. It is our contention, based on exten­
sive computational experience, that such a subset is provided by o. one­
parameter sequence of surfaces perpendicular to a physically chOSEn 
reference path that leads from reactants to products. In most caEes 
this reference path is chosen to be the minimum-energy path through 
mass-scaled or mass-weighted cartesians. 38 ,47-50t Here we call tt.is 
path the MEP; sometimes it is called the intrinsic reaction coordinate 
(IRC). The distance along the MEP from a reference point (which is 
usually defined as the highest saddle point if there is one) is called 
the reaction coordinate s, and the dividing surfaces are parametrized by 
the value of s at which they intersect the MEP. In the vicinity cf 
their intersection with the MEP, the dividing surfaces are taken to be 
hyperplanes in the mass-scaled cartesian space that are perpendicular to 
the MEP; more globally they are bent if necessary to insure that they 
separate reactants from products. 

The hybrid GTST rate constant for the generalized transition state 
at s is42-44 

GT ) - *,0 [ GT ° ~ ] k (T,s = (kT/h)K exp--6GT ' (s)/kT (3) 

where k is Boltzmann's constant, h is Planck's constant, Ki=,O is unity for 
unimolecular reactions and the reciprocal of the standard-state concen­
tration for bimolecular reactions, and 6G~T,0(s) is the generalized 
standard-state free energy of activation. The subscript on 6G¥T,0(s) 
denotes the temperature. The generalized free energy of activation is 
expressed as 51 

(4) 

where K~~(T,s) is a quasiequilibrium constant for forming generalized 

tIn mass-scaled cartesians the three cartesian coordinates of atom 
1 

A are scaled by (mA/~)~ where rnA is the mass of A and ~ is an arbitrary 
convenient mass. tn mass-weighted cartesians the coordinates of atom A 
are weighted by mA~. Mass-scaled coordinater have units of length; 
mass-weighted coordinates have units of mass~ length, and are usually 
given as u~ ~ or u~ aO' where 1 u = 1 universal (12C) atomic mass unit 
1822.887 me' and 1 aO = 1 bohr = 0.5291771 ~. 
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transition states from reactants. For a unimolecular reaction 

( 5 ) 

and for a bimolecular one 

(6) 

where QGT(T,s) and QR(T) are the partItIon functions for the generalized 
transition state and reactants, respectively, ,R(T) is QR(T) per unit 
volume, and VMEP(S) is the Born-Oppenheimer potential at the point where 
the generalized transition state intersects the MEP. 

In eqs. (5) and (6) the zero of energy for VMEP(s), QR(T), and 
¢R(T) is at the equilibrium geometry of reactants, and the zero of 
energy for QGT(T,s) is VMEP(s). It is also very popular to define 
partition functions with respect to the local zero point energy. For 
this purpose we define 

and 
RG 

- E: 

(7) 

(8) 

where E:G(s) is the zero point energy at s, and E: RG is the zero point 
energy of reactants. [6V~(S) is called the ground-state adiabatic 
potential curve.] Then eqs. (5) and (6) become 

(9) 

where, for example, 

(lOa) 

(lOb) 
a 

In eq. (lOb), E:(a,s) is the energy of level a of the generalized transi­
tion state and da is the degeneracy of level a. 

In calculating QGT(T,s), we fix the system in a hypersurface ortho­
gonal to the reaction path at a fixed value of s. This is equivalent to 
an adiabatic approximation with all generalized-transition-state modes 
treated as adjusting adiabatically to changes in s. The usual 
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approximation is to further assume that E(a,s) is a sum of electronic, 
vibrational, and rotational energies. The vibrational modes may be 
additionally decoupled from each other by the harmonic adiabatic approx­
imation but are coupled nonadiabatically in the kinetic energy opprator 
and anharmonically by the potential. The kinetic coupling element for 
modes k and k' is denoted by Bkk,(s) and it arises from the twisting of 
the normal modes around the MEP and into each other. Each element 
Bkk,(s) is the scalar product of the generalized normal mode vector for 
mode k' and the derivative of the generalized normal mode vector for 
mode k with respect to the. reaction coordinate at s. Since the MEP is 
curved, there are also coupling elements between the generalized normal 
mode motions and motion along the reaction coordinate. These elements 
are called ~F(S), where F indexes the reaction coordinate and thE,re are 
F-l generalized normal modes (F = 3N-S or 3N-6 for N-atom generalized 
transition states that are linear or nonlinear, respectively). Each 
term ~F(s) can be written in terms of the scalar product of the 
generalized normal mode vector of vibration k and the derivative of the 
gradient (representing motion along the reaction path) with respect to 
the reaction coordinate at s. 

So far we have outlined the CVT formalism for calculating thermal 
reaction rates. In our CVT calculations we have neglected the nonadia­
batic coupling elements, in which case CVT calculations require only 
the potential energy along the MEP and the energy levels for a sequence 
of generalized transition states. Transmission coefficients in the 
small-curvature semiclassical adiabatic (SCSA) approximation10 ,S2,S3 
depend on these same quantities plus the ~F(s) curvature elemenu. 
Several other interesting reaction attributes may also be calculated 
from VMEP(s), E(a,S), and BkF(s). For example, for interpretativE pur­
poses we are often interested in the location of the variationally opti­
mized dividing surface; this is called the canonical variational transi­
tion state, and it is located at the maximum of llG¥T,O(s). The overall 
translational threshold energy in the absence of tunneling is given in 
the VTST approximation by the maximum of llV~(S). Threshold energies for 
reactant or product molecules with a specific vibrational quantum number 
n for some high-frequency mode are sometimes given by the maxima cf 

(11) 

where Eg(ni's) is the energy of the level of the generalized transition 
state that has quantum number ni for the mode, i, that correlates to the 
specific reactant or product mode and quantum number ° for all other 
modes. (The superscript g denotes the system is in the ground state for 
all modes whose quantum numbers are not explicitly specified whereas G 
denotes ground state for all modes.) Resonance energies are sometimes 
given by the energy levels ofV~(s), and this quantity also sometimes 
serves as an effective potential for tunneling. Resonance decay proba­
bilities depend on the ~F(s) as well. 

When the canonical variational transition state is strongly depen­
dent on temperature, a more consistent theory is provided by improved 
canonical variational transition state theory (ICVTST or, for short, 
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ICVT).44 As for the quantities discussed in the last paragraph, the 
ICVT approximation to the thermal rate constant may be calculated from 
VMEP(s) and the set of £(a,s). 

We mentioned in Sect. 1 that for LC systems the semiclassical tun­
neling paths may pass through regions where the RPH breaks down. We 
originally proposed two somewhat complicated schemes for calculating the 
tunneling probabilities in LC systems,20,21 but later work 22 showed that 
almost identical results could be obtained with a simpler prescription 
for the tunneling paths. The approximation incorporating this simpler 
prescription is called the large-curvature approximation, version 3, or 
LC3. 54 In this approximation the semiclassical tunneling paths are 
straight lines through mass-scaled coordinates from an adiabatic trans­
lational turning point on the MEP in the entrance channel to a transla­
tional turning point on the t1EP in the exit channel. For ground-state 
reactants or products the adiabatic translational turning goints are 
defined as the points where an energy parameter f equals Va(s); for 
excited states they are computed from V§(ni's) or its generalization. 
The energy parameter takes on all values from £RG to the total energy. 
The region of coordinate space between the LC3 path at the lowest total 
energy for which tunneling must be considered and the region where a 
quadratic expansion about the MEP is valid is included in the reaction 
swath; clearly the swath becomes wider when lower-energy tunneling pro­
cesses must be considered. 

For intermediate reaction-path curvature, one may use either the 
SCSA or LC3 approximation, but even more accurate results are obtained 
by a'least-action (LA) method. 22 ,54 In the LA method, the tunneling 
paths are linear interpolations between the MEP and the LC3 paths. Thus 
this method does not require knowing the potential over a wider swath 
than is necessary for the LC3 method. 

Babamov and Marcus 55 have proposed tunneling models in which the 
tunneling paths correspond to a fixed hyper-radius, where the hyper­
radius is the distance from the origin in mass-scaled hyperspherical 
coordinates. These require a knowledge of the potential over about the 
same swath as required for LC3 calculations. 

2.2. Independent-Normal-Mode Approximation 

It should be clear from Sect. 2.1 that the generalized-transition-state 
energy levels £(o,s) playa central role in VTST and related theories. 
Usually one writes £(o,s) as a sum of electronic, vibrational, and rota­
tional energies, in which case the partition functions become products 
of electronic, vibrational, and rotational factors. The electronic 
problem is often well approximated by assuming that reaction occurs with 
appreciable probability only on a single potential energy surface, and 
the rotational problemis usually treated accurately enough by simple 
classical approximations. The vibrational energies, £vib(n 1 ,.·· ,nF_1's), 
where n is a vibrational quantum number, and vibrational partition 
functio~s, Q~Ib(T,s), however, are not obtained as straightforwardly, 
at least if one desires high accuracy. 

In many respects the vibrations of generalized transition states 
are like those of ordinary molecules, and thus the generalized-
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transition-state vibrational partition function Q~Ib(T,s) may be calcu­
lated by many statistical methods developed for ordinary molecules (see 
Ref. 5LI and references therein). One important distinction between a 
generalized transition state and an ordinary molecule, though, is that 
the former, being a hypersurface orthogonal to the reaction path, is 
missing one vibrational degree of freedom, which corresponds to tte 
reaction-coordinate motion. To account for this we must calculatE 
Ev ib(nl, .•• ,nF_l,s) and Q~Ib(T,s) in the (F-l)-dimensional subspace that 
is orthogonal not only to overall translations and rotations, as for a 
rea I mo lecu Ie, but a I so to the reac t ion pa th. To accomp 11 sh the dimE ns ion­
ality reduction we use the projection operator method of Miller et. a1. 34 

In this method the harmonic frequencies and corresponding generalized 
normal modes are determined by diagonalizing the projected force con­
stant matrix FP(s). This matrix is related to the force constant matrix 
[(s), defined~as the matrix of second derivatives of the potential 
~nergy with respect to mass-scaled cartesians, by34,35 

(12) 

where 1 is the unit matrix and res) is the projector which projects onto 
the moae directions correspondi~g to the three overall translations, the 
two or three rotations, and the motion along the reaction path. Thus, 
diagooalizing FP will yield 6 or 7 zero eigenvalues corresponding to the 
projected moti~ns and 3N-6 or 3N-7 generalized normal mode frequencies 
which correspond to the vibrations orthogonal to the reaction path. 

The simplest approach to treating the bound vibrational motions, in 
terms of both the computational effort and the amount of information 
required about the PES, is the harmonic approximation, under which the 
vibrational energy levels are given by 

F-l 
~ 
L 

m=l 
(n + ~)hcv (s) 

m m 
(13) 

where nm and \Jm(s) are the vibrational quantum number and frequency in 
cm- 1 for mode m, respectively, c is the speed of light in cm per unit 
time, and the energy is measured from the bottom of the vibrational 
well. The vibrational partition function, 

GT 
Q 'beT,s) 

Vl 

where S _ (kT)-l, is thus separable in the harmonic approximation and 
equals 

GT 
Q 'beT,s) 

Vl 

F-l 
IT QG\ (T,s) 

ffi=l Vl ,m 
(15 ) 

where the vibrational partition function for mode m is given by 
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exp[-SE ' b (n ,s)J 
VI ,m m 

(16) 

"ith Evib,m(nm,s) = (nm + '2)hcvm(s) in the harmonic approximation. The 
summation in eq. (16) should be terminated with the last term for which 
Evib,m(nm,s) is less than D-VMEP(s), where D is the Im,est dissociation 
energy of the system. 51 ,56 However, assuming that the contributions from 
energy levels above D-VMEP(s) are negligible for the temp e rature being 
considered and extending the summation in eq. (16) over all harmonic 
levels, it can be summed analytically to yield 

GT 
Q 'b (T,s) 

VI ,m 
exp[-hc~ (s)S!2J{1 - exp[-hcv (s)SJ}-1 . (17) 

m m 

Since, in general, the vibrational degrees of freedom are anhar­
monic, substantial errors can be obtained in CVT rate constants computed 
under the harmonic approximation. 43 ,57-59 As an example of the effect 
of including anharmonicity in the calculation of quantal CVT rate con­
stants, we consider the reaction OH + H2 + H20 + H, which has been 
studied59 using the analytic PES obtained by Schatz and Eigersma 60 by a 
fit to the ab initio calculations of Walch and Dunning. 61 For this 
reaction, the CVT!SCSAG rate constants obtained with the harmonic 
approximation for the bound vibrational motions were found to overesti­
mate the best anharmonic results [obtained within the independent-norma 1-
mode (INM) framework de scribed belowJ by factors of 2.27 at 298 K and 
1.32 at 2400 K. [Note: The G at the end of SCSAG or other tunneling 
method abbreviations denotes that K(T) is based on ground-state tunnel­
ing probabilities.J 

One practical approach to the inclusion of vibrational anharmoni­
city is to neglect the mode-mode coupling of the normal modes and to 
employ an approximate anharmonic potential curve to describe the motion 
along each generalized normal mode of the reacting system independently. 
This is called the INM method. 54 ,59 In this approach, the vibrational 
energy is just the sum of the vibrational energies within each mode, 

F-1 
I E 'b (n ,s) 

n=1 Vi ,m m 
(18 ) 

so that eqs. (15) and (16) are still valid. In order to compute the 
approximate anharmonic vibrational energy levels of mode m, we must con­
sider the potential energy along this mode, i.e., along the generalized 
normal coordinate Qm(s). This coordinate can be expressed as a linear 
combination of mass-scaled cartesian displacements ~~ from the bottom 
of the vibrational well, 

Q (s) = ~x • L (s) 
m ~_m 

(19 ) 

where L (5) is a column of the unitary matrix k(s) that diagonalizes the 
..... m -
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projected matrix ~p(s) of eq. (12):34,59,62 

(20) 

where a superscript T denotes a transpose. The nonzero eigenvalues 
kmm(s) of the diagonal matrix ~(s) are the principal normal-coordinate 
quadratic force constants, whi~h are related to the normal-mode frequen­
cies (in cm- 1 ) by 

- ~ 
\I (5) = [k (s)lI1] /21[c (21) 

m mm 

where ~ is defined in Sect. 2.1. The potential energy along mode m can 
be expressed as 

v [0 (s),sJ m m 
2 3 

~k (5)[0 (s)J + k (5)[0 (s)J + 
mm m mmm m 

4 
+ k (5)[0 (s)J + •• , 

mmmm m 
(22 ) 

where kmmm(s), kmmmm(s), etc. are higher-order principal normal­
coordinate force constants, and are related to the third, fourth, etc. 
directional derivatives of the potential energy along the normal-mode 
direction km(s). While formally correct, eq. (22) is not directly use­
ful for the present discussion because even if sufficient information 
about the potential energy in the region of the bottom of the well is 
available for the calculation of the higher-order force constants in eq. 
(22), for a general ?olyatomic system with a relatively large numcer of 
vibrational modes there is no practical way to use these force corstants 
to obtain accurately the large number of energy levels required by eq. 
(16). For this purpose, in modes possessing cubic anharmonicity [i.e., 
kmmm(s) * OJ it is useful to replace the general potential of eq. (22) 
by a Morse function, 

VM [Q (s),sJ 
l,m m 

2 
D (s){exp[-BM (s)O (s)J - I} 

e • ,m m 
(23) 

where the dissociation energy De(s) D -VMEP(s) and where the rarge 
parameter BM,m(s) is chosen so that the Morse potential has the correct 
quadratic force constant at its minimum: 

(24) 

We refer to this method of choosing De(s) and BM,m(S) as the Morse I 
approximation. 42 ,51,59 The energy levels of this potential are given by 

E 'b (n ,s) = hcv (s)(n +~)[1 - x" (s)(n +~)] (25) 
V~ ,m m m m L'I,ffi m 

where \lm(s) is the harmonic frequency of eq. (21) and xM,m(s) is the 
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unitless Morse anharmonicity constant given by 

x~l ( s) 1,m 
hc\) (s)/4D (s) . 

m e 
(26) 

This approach has been shown to provide satisfactory treatments for the 
bound stretching motion in collinear atom-diatom collisions 10 ,42,44 as 
well as for the four vibrational modes of the OH + H2 system59 that 
possess cubic anharmonicity. It should also be pointed out that in many 
cases the results obtained using the Morse I approximation agree well 
with those obtained by fitting the Morse function to the true quadratic 
and cubic force constants of the potential. The Morse I approximation 
appears to be suitable for general application to vibrational modes 
possessing cubic anharmonicity, and it has the advantage that it does 
not require derivatives of the potential higher than second. 

Some vibrational modes that, due to symmetry, have no cubic anhar­
monicity [i.e., kmmm(s)=OJ cannot be described well by the Morse model. 
Examples of such modes include bends of linear systems, out-of-plane 
bends of planar systems, and certain stretching motions (such as the 
asymmetric stretch in the water molecule). In cases where kmmmm(s) is 
known, either from differentiating the actual PES or from fitting the 
potential along the mode to some simple functional form, such modes can 
be treated by a quadratic-quartic model, which has been shown to provide 
satisfactory results in atom-diatom systems 43 ,44,57,58 and for the out­
of-plane bending motion in the OH + H2 system. 59 In this approach, the 
potential of eq. (22) is truncated after the quartic term and the energy 
levels for the resulting quadratic-quartic potential are approximated 
accurately by an analytic procedure obtained by a perturbation-variation 
method discussed elsewhere. 43 ,57,63 

Although the INM approach allows for the inclusion of anharmonic 
effects within each individual mode in a practical and relatively accu­
rate manner, it ignores the couplings between the modes, which have been 
shown to be quite important for obtaining accurate vibrational partition 
functions in the H20 and S02 molecules 64 and which are probably also 
important in describil,g the bound vibrational motions of a reacting 
system along the reaction path. Mode-mode couplings are considered in 
the next subsection. 

2.3. Mode-Mode Couplings and Vibrational Energy Calculations for an 
Internal-Coordinate Force Field 

The majority of VTST calculations performed to date have been for atom­
diatom collisions. 11 For that kind of collision, reasonably accurate 
calculations of the vibrational energy levels are possible without 
excessive labor. For example, for a collinear minimum-energy path the 
vibrations orthogonal to the path consist of one stretch and a twofold 
degenerate bend. Use of a curvilinear bend coordinate43 ,44,57,65 
reduces the bend-stretch coupling, and principal anharmonicity can be 
included accurately in the bend by the harmonic-quartic approximation 
described above or by the WKB approximation. The stretch can also be 
treated accurately by the WKB approximation. 15 It is also possible to 
estimate the effect of bend-rotational coupling,57 and in particularly 
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interesting cases one could realistically do even better. For poly­
atomic systems, the effort to systematically improve the quantalJr 
semiclassical calculation of the multidimensional bound vibrational 
energy levels rapidly becomes impractical as the number of atoms in­
creases, especially in the context of canonical VTST calculations, for 
which a knowledge of a large number of energy levels is required at each 
location of the dividing surface along the reaction path. Furthermore, 
the quantal or semiclassical calculation of vibrational energy levels 
requires detailed information about the PES, while for many polyacomic 
systems the available information may consist only of a set of ge'Jme­
tries, energies, gradients, and quadratic force constants (frequencies) 
along the reaction path. Strategies different from those used for atom­
diatom collisions are thus clearly required for treating the bound 
vibrational motions in polyatomic reacting systems. One possible ele­
ment of commonality, hmvever, would be to use curvilinear internal 
coordinates to reduce mode-mode coupling. 

One possible way to include mode-mode couplings in normal coordi­
nates is by perturbation theory. The perturbation-theory expresslons 
for the energies of a polyatomic system are usually given in terms of 
dimensionless normal coordinates, {qm(s), m=1,2, •.. ,F-l}. These are 
related to the mass-scaled normal-coordinates {Qm(s), m~I,2, ... ,F-l} of 
eq. (19) by 

q (s) = 2~[c~v (s)/h]~Q (s) 
m m m 

In these coordinates the vibrational potential energy can be evaluated 
in cm-1 by 

~ I v.(s)[q.(s)]2 + 
ill 

+ I ~ .. , (s)q.(s)q.(s)qk(s) + 
iSjSk 1JK 1 J 

(28) 

where ~i'k(s) and ~ijkt(S) are the cubic and quartic dimensionless nor­
mal coordinate force constants (in cm- 1 ), respectively, which are 
related to the appropriate third and fourth derivatives, respectively, 
of the potential energy with respect to the dimensionless normal coordi­
nates. We also define k211 =k11 2' etc. Although force constants with 
i > j do not appear in eq. (28), they do appear below in eq. (30). In 
eq. (28) we have followed the usual practice of truncating the Taylor 
series expansion of the potential energy at quartic terms. If the 
cubic and quartic force constants in eq. (28) are known, they can be 
related to the vibrational energy via perturbation theory. A standard 
procedure is to treat cubic terms to second order and quartic terms to 
first order. This yields: 66 
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v.(s)(n. +~) + 
1 1 

+ I 
i, j 

x .. (s)(n. +~)(n. +~) 
1J 1 J 

(29) 

where, omitting the dependencies on s to simplify the expressions, 

x .. 
11 

and 

x .. 
lJ 

-2 -2 -2 -2 
15k ... k ... 8v. - 3v. 

'd6k .... -~ \" (~) 1 J (30) L -2 -2 1111 -

\" 
L 

kh,j 

v. 
1 

6k ... k ... 
111 lJJ 

V. 
1 

jfi v. 
J 

-2 -
4k ... v. 

11 J 1 

-2 -2 4v - V. 
i J 

4v. 
1 

-

\" 
L 

v. 
J 

kh,j 

-2 -2 -2 

k .. kkk .. 
11 J J 

-2 - vk - Vi - Vi 
kijkvk [ _ _ _ _ _ _ _ _ _ _ _ _ ]}. 

(v.+v.+vk)(v.+v.-vk)(v.-v.+vk)(v.-v.-vk ) 
lJ lJ 1J 1J 

( 31) 

Equations (29)-(31) are for the case of nondegenerate vibrations; the 
modifications in these equations for degenerate vibrations may be found 
elsewhere. 66- 68 For the discussion below we emphasize that eqs. (29)­
(31) are based on a knowledge of the cubic and some of the quartic 
dimensionless normal coordinate force constants. 

As discussed above, the neglect of the normal coordinate inter­
action force constants often causes a great loss of accuracy. However, 
for a moderate-sized polyatomic reacting system, the direct calculation 
of the large number of normal-coordinate interaction force constants at 
each location of the dividing surface along the reaction path is not 
only impractical, but also requires more information about the potential 
energy surface than is usually available. It may be useful in such 
cases to consider the representation of the potential energy surface in 
terms of more physically meaningful curvilinear internal coordinates sa 
(e.g., bond stretches and bond-angle bends). If we use 3N-6 internal 
coordinates for an N-atom reactant molecule we may write its potential 
as' 

(32) 

In the present treatment we will pay special attention to the case where 
the sa are "valence coordinates", \vhich consist of bond stretches, bond­
angle bends, out-of-plane bends, and bond torsions. 69 (In the more 
general case one could also include interpair distances for nonbonded 
atoms.) If the cubic and quartic interaction force constants are 
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neglected in such a representation, far less loss of accuracy occurs 
than when they are neglected in the normal-coordinate representation. 
This has been explicitly demonstrated in a recent study of the vibra­
tional partition functions for the H20 and S02 molecules. 64 As an 
example of the differences between the normal coordinate and curvilinear 
internal coordinate representations of the potential energy embodied in 
eqs. (28) and (32), respectively, consider the bending and stretching 
motions in the C02 molecule. For geometries near linear, Pariseau et 
al. 67 showed that, up to the energy corresponding to about ten bending 
vibrational quanta, the minimum in the potential energy along a c-o bond 
stretching coordinate, as the bending angle is varied, describes a 
nearly circular path with a radius equal to the c-o equilibrium bond 
distance. Thus, in the internal-coordinate representation of the poten­
tial energy, the effects of bending and stretching motions are nearly 
separable (i.e., the interaction internal-coordinate force constants 
involving the bending and stretching internal coordinates are quite 
small), while in normal coordinates, which are linear combinations of 
mass-scaled or mass-weighted cartesians, a circular bending path can 
result only by substantial bend-stretch couplings of the uncoupled 
straight-line motions of the nuclei. 

A further advantage of representing the potential energy in the 
internal coordinates is that if the principal anharmonic internal coor­
dinate force constants Kaaa and Kaaaa cannot be calculated directly from 
the available information, they can often be predicted sufficiently 
accurately by modelling the potential energy along a particular curvi­
linear internal coordinate direction by a simple functional form. 64 For 
example, bond stretches can be modelled in terms of the quadratic force 
constant Kaa and the dissociation energy De by the Morse I approximation 
described above, and linear A-B-C bending motions can be modelled in 
terms of the AC diatomic Morse parameters D~C, SCC, and r~C by the anti­
Morse bend approximation: 70 

(33 ) 

where w is the bond angle, 

( 34) 

y is adjusted to reproduce Kw., and Kwwww is obtained by differentia­
tion.Sometimes even quadratic force constants can be esti­
mated;57,58,70,71 for example, for CI-H-H generalized transition states, 
satisfactory results have been obtained with a value of 0.5 for y. 

Neglecting all of the higher-order (cubic and quartic) cross terms 
in eq. (32) yields the harmonic-general-plus-anharmonic valence force 
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field (HG/AVFF):t 

(35) 

By repeated application of the chain rule for derivatives, this poten­
tial energy can be transformed through quartic terms to the representa­
tion in dimensionless normal coordinates of eq. (28) in the standard 
way.66,67,72-74 Since the internal coordinates are curvilinear while 
the normal coordinates are not, this transformation is necessarily non­
linear. 

In general the potential may be written as a function of 3N-6 
internal coordinates. In some cases, e.g., CH4, there are more than 
3N-6 valence coordinates. 74 One may always delete sufficient coordi­
nates from the list to obtain an independent set. 75 In some cases, how­
ever, either to take advantage of symmetry or obtain or use transferable 
and physically meaningful force constants, it is convenient to use more 
than 3N-6 internal coordinates. In such a case one or more coordinates 
are redundant. Another possibility is that a redundancy condition is 
satisfied only for a restricted range of geometries, including the ref­
erence geometry of the force field; this is sometimes called a con­
straint. 76 ,77 If redundant coordinates are retained or there is a con­
straint, linear force constants need not be zero [i.e., terms of the 
form Kasa may appear in eq. (35)J. 75 ,76 Both linear and higher-order 
force constants become nonunique when redundant coordinates are 
used. 62a ,75 

To use the HG/AVFF as described above, we must first determine the 
quadratic force field from the available information about the PES. 
Then the anharmonic terms can be modelled or calculated directly in 
internal coordinates. If the internal coordinates are independent there 
is a unique transformation from the normal-coordinate force field to the 
internal-coordinate one, and in particular a harmonic general force 
field may be calculated from the normal-coordinate one; alternatively 
the harmonic general force field may be calculated uniquely from any 
global PES by the chain rule. If there are redundancies, then these 
procedures do not yield unique force constants. In such cases one 
should model the force field directly in internal coordinates or intro­
duce subsidiary conditions on the force constants. 

In order to apply the HG/AVFF model to polyatomic generalized tran­
sition states, we must reference the bond stretches and bend coordinates 
to an arbitrary point on the MEP, making them functions of s. We then 
obtain 

tA valence force field includes only valence coordinates and principal 
force constants; a general force field also includes interactions. Thus 
the harmonic valence terms are the principal ones in the first sum in 
eq. (35), the harmonic general field consists of the whole first sum, 
and the anharmonic valence terms comprise the second sum. 
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v = I K (s)s (s) + I K b(s)s (s)sb(s) + 
a a a a~b a a 

+ I {K (s)[s (s)J 3 + K (s)[s (s)J 4 } 
aaa a aaaa a 

~36) 
a 

where we have included the linear force constants Ka(s) because the 
first derivatives do not vanish at a general location on the MEP, even 
for independent, unconstrained internal coordinates. The extension of 
eq. (36) to include internal-coordinate anharmonic mode-mode couplings 
is straightforward and simply consists of adding terms like 
Kabc(s)sa(s)sb(s)sc(s) to eq. (36). 
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The transformation from the internal coordinate force consta~ts 
Ka(s), Kab(S), etc. to the dimensionless normal coordinate force con­
stants ~i(S), ~ij(S), etc. can be accomplished through a set of several 
steps. For this purpose it is convenient to employ a dual notation for 
the atomic cartesian coordinates. Let i =AiY i be an index such that Ai 
can denote any of the atoms A,B,C, ••• , and Yi can be x, y, or z. Then 
the unsealed atomic cartesian coordinates are denoted Xi such that Xl' 
X2' and X3 denote the x, y, and z coordinates of the first atom, X4, XS, 
and X6 denote the x, y, and z coordinates of the second atom, etc. We 
then define difference cartesians Xij for i*j and Yi=Yj as 

XA. Y.A.Y. 
:l :l J J 

X. - X 
1 j 

(37) 

These quantities are not needed for i=j or Yi*Yj' 
For the first step of the transformation, we express the internal 

coordinates in terms of the difference cartesians. The length of the 
A-B bond is thus given by 

r = 
AB I 

Y=X,y,z 

while the angle A-B-C can be expressed as 

-1 
¢ ABC = cos [( 

\' 
L 

y=x,y,z 
XByeyXBYAY) /rBA rBCJ 

(38) 

(39) 

Corresponding expressions for the other two types of internal coordi­
nates (out-of-plane bending and torsional angles) are given elsewhere. 78 

The difference cartesian force constants k~., k~jk!' k~'k!mn"'" are 
the derivatives of V with respect to the difference carre~ians Xij; Xij 
and Xk !; Xij' Xk!' and Xmn ; ••.• These are related to the 1nternal coor­
dinate force constants by the nonlinear transformations: 79 

k'.' . I b~ .K :40) 
1J 1J a 

a 

\' a \' a b 
< 41) k" bijHKa + bijbHKab ijk! L L 

a aSb 
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and 

k" ijkQ,mn 

k" 
ijkQ,mnop 
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abc 
+ ~ b, ,bk b K b 

a2b2c 1J Q, mn a c 
(42) 

a b a b a b a b 
+ b" bk n + bk n b.. + b .. bk + b .. b + IJOP ~mn ~mnop 1J 1Jmnop Q, 1JkQ,op mn 

a b 
+ b, 'k b )K b + 1J Q,mn op a 

abc a bb bC + ba bb" bC 
+ b" bk n b + b .. k k + 1Jmn ~ op 1JOP Q, mn Q,mn 1J op 

abc abc 
+ bk n b .. b + b b .. bk n ) K b + 

~op 1J mn mnop 1J ~ a c 

+ (43) 

where we have omitted the argument s on all coefficients, and the new 
coefficients, bfj, b~jkQ,' etc. are the partial derivatives of internal 
coordinate a with respect to difference cartesian Xij' difference 
cartesians Xij and XkQ,' etc. These coefficients may be expressed ana­
lytically for each type of internal coordinate. 67 ,74,78 Some examples 
are given in the Appendix. 

In the second step of the transformation, the difference cartesian 
f " ()" ) orce constants ki' s , ki'kQ,(s , etc. are converted to mass-scaled 
cartesian force coristants ki(s), kij(s), etc. From the definition of 
the difference cartesians given in eq. (37), it is easily seen that this 
transformation is linear and that the transformation coefficients are 
given by (with xi a mass-scaled cartesian), 

i 
t 

op 

ax 
~ 
ax, 

1 

where mA is the mass of atom Ap and ~ is defined in Sect. 2. This 
transfor~ation may then be written explicity as 

k ~ ( s ) 
1 

k I ,( s) 
1J 

I k" (s)ti 
mn r:m 

m<n 

~ 
m<n:O;o<p 

k" (s)ti t j 
mnop mn op 

(44) 

(45) 

(46) 
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k~ 'k(s) =0 I k" (s)ti t j t k 
1J m<n~o<p~q<r mnopqr mn op qr 

(47) 

and 

I 
m<n~o<p~q<r~;s<t 

k" (s)ti t j t k t9-
mnopqrst mn op qr st 

(48) 

The array ki(s) is just grad V in mass-scaled cartesians. In the third 
step of the force constant transformation, we project out of kij(s) the 
contributions from motion along the reaction path and from overall rota­
tions and translations,34,59 as discussed above, and diagonalize the 
projected matrix. The nonzero ei.genvalues kmm(s) provide the general­
ized normal-mode frequencies vm(s) via eq. (21), and the associated 
eigenvectors Lm(s) [the columns of the matrix k(s) of eq. (20)J yield 
the generaliz~d normal modes. The dimensionle~s normal coordinates are 
then given by 

q (s) 
m 

where 
9- (s) 
-m 

/:'x • 9- (s) 
-m 

(49) 

(50) 

The fourth and final step of the transformation of the force constants 
from difference cartesians to dimensionless normal coordinates, i.e., 
the transformation from mass-scaled cartesian coordinates to dimension­
less normal coordinates, is thus linear and is given for the cubic and 
quartic force constants appearing in eqs. (30) and (31) by 

k' (s)9-, (s)9-, (s)9-k (s) 
mnr 1m In r 

( 51) 

and 

I 
m=:;n=:;r=:;u 

k' (s)9-, (S)9-, (s)9-k (S)9- (s) . 
mnru 1m In n 9-u (52) 

Having obtained the dimensionless normal coordinate force constants 
from those in internal coordinates, eqs. (29)-(31) can be used to obtain 
the perturbation theory approximation to the vibrational energy l,"vels. 

In many cases the energy levels predicted by perturbation theory 
will be sufficiently accurate and the above scheme will be complecely 
satisfactory. This will be true especially for calculating V~(s) or 
/:'G~T,O(s) at low T. However for moderately large anharmonicity o~ 
higher-energy levels, the accuracy of perturbation theory becomes 
worse. 64 ,68,80 An alternative procedure for estimating the vibrational 
partition function in such cases is the Pitzer-Gwinn method. 64 ,81,82 
This method is based on the fact that the ratio 0vib(T,S)/0~ib(T,s) of 
the anharmonic to harmonic quanta I partition functions , with the :~ero of 
energy located at the zero-point level (indicated by the tilde), is 
given correctly by the corresponding ratio Qvib C(T,s)/Q~ib C(T,s) of 
classical (C) partition functions in both the lbw- and high~temperature 
limits. The approximation is to assume that this relationship ho~ds at 



304 D. G. TRUHLAR ET AL. 

all temperatures. The quantal anharmonic partition function Qvib(T,s) 
is thus approximated as 

- ( ) _ -H ()[ ) H Q 'b T,s = Q 'b T,s Q'b C(T,s IQ 'b C(T,s)] VI VI VI , VI , 
(53) 

This approach has already been shown to provide accurate results for the 
vibrational partition functions of the bound molecules H20 and S02,64 
and eq. (53) should be equally applicable for generalized transition 
states. The harmonic partition functions are given b y 81 

and 

H 
Q 'b C(T,s) VI , 

-H ( ) Q 'b T,s VI 

F-l 
II 

i=l 
kT/[hcv.(s)] 

1 

F-l 
II 

i=1 

- -1 
{1 - exp[-hcv.(S)8]} . 

I 

(54) 

(55) 

The classical anharmonic partition function for the potential of eq. 
(28) is 83 

Q 'b C(T,s) VI , 
- 2)(F-l)/2 J ) (2n~kT/h dQl(S ... dQF_l(s) 

x exp {-8[V - V~1EP (s) ]} (56) 

where the integrations are over the range (_=,+00) in mass-scaled normal 
coordinates defined by 

_ l 
Q (s) = [h/c~v (S)]2q (s)/2n 

m m m 
(57) 

Contributions from energies greater than D-VMEP(s) should be excluded 
from the integrand. For small systems the integration can be performed 
conveniently by Gauss-Hermite quadrature formulas, while for larger 
systems Monte Carlo numerical integration84- 86 may be more efficient. 
The anharmonic partition function Qvib(T,s), with the zero of energy 
located at the bottom of the well, can then be obtained by combining 
Qvib(T,s) with the zero point energy calculated from eq. (29) by: 

Qvib(T,s) = QVib(T,s)exp[-8 cvib (0,O, ... ,O,s)] . (58) 

A possible pitfall in the approach discussed above is that the effective 
potential energy surface of eq. (28) may not provide an accurate repre­
sentation of the true potential energy surface in a large enough region 
about the bottom of the vibrational well, i.e., in the region about the 
bottom of the well where the integrand of eq. (56) is significant. For 
example, large cubic or large negative quartic force constants can lead 
to large, anomalous wells in the effective potential energy that cause 
great difficulty in the convergence of the numerical integration for 
Qvib,C(T,s). In such cases, one may need to resort to different choices 
for the models assumed for the potential energy along the internal­
coordinate directions, or to calculating explicitly the third and fourth 
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derivatives of the potential energy with respect to the internal coordi­
nates, or to global fitting techniques such as discussed in Sect. 4. In 
such cases it may be advantageous to use eq. (56) but with V in internal 
coordinates. Thus, rather than transform the internal-coordinate 
expression for V to normal coordinates through quartic terms before 
evaluating eq. (56), one may numerically calculate the internal coordi­
nates and the untransformed V for each point in the quadrature grid as 
eq. (56) is evaluated. This has the advantage that globally meanin~ful 
untruncated potential approximations (like the Morse I approxima­
tion42 ,51) may be employed in internal coordinates to ensure a well 
behaved potential for eq. (56), and the truncated normal-coordinate 
expression need be used only to estimate the zero point energy. 

Since we have emphasized second-order perturbation theory in this 
section, it might be useful to point out that the effect of the Bkk,(s) 
nonadiabatic coupling elements could also be included by second-orde~ 
pertutbationtheory, using a procedure analogous to that of Barton and 
Howard.87 

We have concentrated on vibrations in this section and have net 
considered hindered rotations, Coriolis coupling, or related complica­
tions. These kinds of complications will be at least as important for 
generalized transition states as for bound molecules, and these compli­
cations will have to be addressed in future work. 

Another approach to including mode-mode coupling in the hybrid rate 
constant is to perform a multidimensional, nonseparable quantal Monte 
Carlo calculation. Voter88 has recently given a convenient formulation 
that could be applied to AG~T,O(s). It includes quanta I effects by a 
Fourier expansion of Feynmann path integrals89 and allows for importance 
sampling as required for Monte Carlo calculations on processes with high 
activation energy. This formulation would be expected to be particu­
larly convenient if the transmission coefficient is close to unity and 
hence need not be evaluated. When the transmission coefficient is to 
be calculated also, one requires V~(s). This can be calculated from 
the zero-temperature limit of AG~T,O(s) or by calculating the zero 
point energies from a reaction-path Hamiltonian. The use of different 
methods for 6G~T,0(s) at T*O and V~(s) may be justified by (i) the sen­
sitivity of low-temperature results to very small energy errors, which 
are hard to make completely negligible in a Monte Carlo calculation, 
and (ii) the increasing importance of anharmonicity, and hence non­
separability of the normal modes, as T increases. 

3. DETERMINATION OF THE REACTION--PATH HAHILTONIAN FROM AB INITIO -----
CALCULATIONS 

One of the most important advances achieved in ab initio electronic 
structure theory in the last 15 or so years has~een the capability of 
determining analytic gradients of energies computed from many types of 
wavefunctions.90-100 The gradient of the energy is the vector of par­
tial derivatives of the energy with respect to each of the cartesian 
coordinates of the molecule or an equivalent set of internal coordi­
nates. 91 Gradients are extremely valuable in locating and 
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characterizing stationary points on multidimensional PES's.101-104 
There are two advantages of using analytic gradients rather than multi­
ple evaluations of the energy followed by numerical differentiation. 
First, the analytic gradients are more reliable because there are no 
artifacts caused by a poor choice of step size. Second, the use of ana­
lytic gradients is computationally much more efficient. Using a crude 
approximation to numerically determine the gradient for a nonlinear 
polyatooic molecule with N atoms and 3N-6 degrees of freedom requires 
3N-S energy calculations while only one calculation, which is 2 to 5 
times longer than one energy calculation, is required for determining 
analytic gradients. 9l Thus the use of analytic gradients becomes more 
efficient computationally as the number of atoms N increases. The use 
of analytic gradients makes the calculation of stationary points (reac­
tant, product, and saddle point geometries) computationally feasible for 
a large number of reacting systems with 3 or more atoms. 

With the availability of analytic gradients, numerical second deri­
vative matrices have been determined and employed in more efficient 
algorithms for locating stationary points.lOl-106 Also, for many types 
of wavefunctions analytic second derivatives are computationally feasi­
ble to determine. 93 ,97,98,107-111 One gains the same advantages over 
numerical differentiation using analytic second derivatives as already 
discussed for using analytic gradients. Furthermore, analytic second 
derivatives do not contain artifacts from a non-optimal distribution of 
points used in the numerical determination of the second-derivative 
matrix. Finally, it should be noted that even though ab initio analytic 
second derivatives are not currently coded for all types of correlated 
wavefunctions, the general formulas for determining analytic second 
derivatives for most types of wavefunctions have been derived 112 ,113 and 
we can look forward to their computer implementation. (Even higher 
derivatives are realizable with the recent calculation of analytic third 
derivatives for an SCF H20 calculation. 114 ) In summary, state-of-the­
art ab initio techniques can provide analytic gradients for most types 
of wavefunctions and analytic second-derivative matrices for many types 
of wavefunctions for systems with several (2 < N < 10) atoms. 

Given these techniques, the determination of a useful RPH for a 
chemical reaction can proceed at several levels of approximation. The 
first step in determining the RPH is locating the stationary points that 
correspond to the reactant, product, and saddle point geometries of 
the reaction system. The vibrational frequencies and normal mode direc­
tions as well as the imaginary frequency corresponding to the reaction 
coordinate can be determined by diagonalizing the second derivative 
matrix for the system, and cubic force fields can be obtained by numeri­
cal first derivatives of second derivative matrices. In Subsect. 3.1 we 
discuss determining the RPH from this first level of information; 
namely, the potential energy and quadratic or cubic force fields at the 
reactants, products, and saddle point geometries. At each of these geo­
metries the gradient is zero. To calculate the potential along the 
reaction path (MEP) requires following the path of steepest descent in 
mass-scaled or mass-weighted coordinates from the saddle point to both 
the reactant and product geometries. Computationally, this requires 
taking an initial step off the saddle point in both the product and 
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reactant directions along the direction of the normal mode with the ima­
ginary frequency and then following the path of steepest descent along 
the direction of the negative gradient. At each point along the reac­
tion path, the frequencies of the vibrations that are orthogonal to the 
reaction path can be determined by eqs. (20) and (21). Thus, using 
state-of-the-art computer hardware and ab initio methods, the determina­
tion of the reaction path and RPH is feasible for many systems of chemi­
cal interest. In Subsect. 3.2 we will discuss some significant practi­
cal problems to consider when using ab initio methods to determine an 
RPH. 

3.1. Simple Interpolatory Methods for Reaction Path Calculations 

Although RPH's based upon ab initio calculations of the reaction path 
and the vibrational frequencies perpendicular to the reaction path nave 
been determined for several polyatomic systems (see, e.g., Refs. 7, 115-
119), there are many polyatomic reactions for which a set of high qual­
ity ab initio calculations along the reaction path is currently not com­
putationally feasible. However, for many such systems it is feasible to 
optimize the geometries and determine the vibrational frequencies at the 
set of stationary points along the reaction path, including any saddle 
point geometries. In such cases one possible way of constructing an RPH 
is by interpolating the geometry, the potential energy, and the vibra­
tfonal frequencies along the reaction path by using information either 
pertaining solely to the stationary points or based on a small number of 
points including the stationary points. 120 This approach has been 
applied successfully to collinear A + BC reactions. 120 For the high­
barrier reactions H + H2 + H2 + Hand CI + HD + HCI + D, the potential 
energy and the real vibrational frequency in the vicinity of the saddle 
point were fit to quadratic functions in s. For the reactions F + H2 + 

HF + H and I + H2 + HI + H, which have small intrinsic barrier heights, 
an asymmetric Eckart barrier121 ,122 and a gaussian form were used to 
model the barrier while an exponential form similar to that used by 
Quack and Troe 123 ,124 for triatomic dissociation reactions was used to 
represent the vibrational frequency. Reaction probabilities based upon 
classical microcanonical variational transition state theory51 werE, 
determined and compared for both the interpolated RPH and the exact RPH 
of the global potential energy surfaces125-128 for each of these reac­
tions. The results from this investigation indicate that the interpola­
tion method works reasonably well for estimating the reaction probabil­
ity, even though it fails to predict the position of the generalized 
transition state dividing surface with high accuracy. In particular, 
for the systems studied, the error in the reaction probabilities is at 
most 18% while the predicted deviation of the variational transition 
state from the saddle point differs as much as 260% from the predicted 
position using the noninterpolated RPH. Nonetheless, it is very encour­
aging that reasonable reaction probabilities could be obtained using 
this interpolation scheme based upon a minimal amount of information 
concerning the reaction path. Notice that because three points were 
used in the vicinity of the saddle point, the method is equivalent to 
using numerical differentiation of the saddle point quadratic force 
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field. If anharmonicity is neglected, one can perform conventional 
transition state theory calculations based on quadratic force fields for 
reactants and products, but with a generalization of the method of Ref. 
120, one can perform app r oximate VTST calculations if one simply adds 
the cubic or cubic and quartic force constants at the saddle point. 

An even simpler method, but one which will often be much less reli­
able, is to interpolate based only on quadratic force fields at the sta­
tionary points. Recently, Carrington et al. 129 have approximated the 
RPH for the isomerization of vinyliden;-t;-acetylene using an interpola­
tion method based solely on a set of ab initio energies and force con­
stants at four stationary points along-the reaction path (vinylidene, 
acetylene, and two symmetrically equivalent transition states). The 
potential energy along the reaction path was interpolated by an even 
sixth-order polynomial, and a quadratic form was used for interpolating 
the vibrational frequencies of the vibrational modes perpendicular to 
the reaction path. These authors also included the BkF(s) curvature 
components and the Bkk,(s) nonadiabatic coupling coefficients in their 
RPH, and they fit these to a quadratic form. 

Other workers 130 have employed gaussian-type functions for fitting 
the curvature as a function of the reaction coordinate. In many A + BC 
reactions, curvature is not a simple function of s and the reaction 
probabilities are very sensitive to it. Attempts to approximate the 
curvature in such cases led to large quantitative errors;131 however, 
Carrington ~ ~.129 used their RPH to calculate the lifetime of vinyl­
idene and these lifetime calculations were not as sensitive to reaction­
path curvature as are most of the tunneling probabilities that have been 
studied in our group. Thus Ref. 129 provides an instructive example of 
obtaining an interpolated RPH from a minimal amount of ab initio data. 

In this subsection we have presented two examples of calculations 
where the RPH required for dynamical calculations has been based upon an 
interpolation of the potential energy, vibrational frequencies, and cur­
vature and nonadiabatic coupling coefficients from a knowledge of PES 
properties at a small number of points along the reaction path. We 
pointed out, however, that if attention is restricted only t o stationary 
points, one will generally obtain an accurate approximation to the 
dependence of the vibrational frequencies on the reaction coordinate in 
the vicinity of the saddle point only if the input data includes at 
least some of the third and fourth, as well as the second, derivatives 
at the saddle point. 120 Simple interpolatory schemes may be the only 
feasible method for investigating systems with many atoms and degrees of 
freedom. Nonetheless, further work comparing and refining these schemes 
is needed before the results can be considered reliable. 

3.2. Steepest-Descent-Path Calculations for Constructing RPH's 

In this subsection we discuss several practical considerations that 
arise when constructing RPH's for ?olyatomic systems from a set of ab 
initio calculations of the energy, gradient, and force constant matrix 
at a series of points along a reaction coordinate. To illustrate some 
of these considerations, we will use the CH3 + "2 + CH4 + H reaction and 
the inversion "reaction" of NH3 as examples. For the CH3 + H2 reaction, 
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two different kinds of empirical global PES's have been proposed in the 
literature132-134 (and are discussed in Sect. 4), and several sets of ab 
initio calculations have also been carried out. 117 ,135-147 For the NH3 
inversion, Wolfsberg and coworkers 148 have proposed an empirical PES 
based in part on an accurate anharmonic force field. We have used 
Raff's global PES for the CH3 + H2 reaction and Wolfsberg's for the 
ammonia inversion to construct RPH's. We used the former RPH for vrST 
and semiclassical tunneling calculations of the abstraction rate con­
stant, and we used the latter to calculate the splitting of the two 
lowest-energy vibrational levels caused by tunneling through the low 
(5.2 kcal/mol) inversion barrier. 
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First, we consider the problem of following the gradient to deter­
mine the ME? and the functions VMEP(s) and V~(s). As mentioned above, 
this requires following the path of steepest descent by taking steps in 
the direction of the negative gradient. However, when one uses a finite 
step size, one "zigzags" back and forth across the true ME? Thus a 
compromise must be reached between using a small enough step size that 
the true MEP is followed very closely, and using a large enough stEP 
size that the number of ab initio calculations is affordable. 

For ab initio calculations of RPH's in the literature, it has not 
always been stated what step size was used, but practical considerations 
have apparently dictated the use of fairly large steps. We will now 
discuss a few examples where step sizes are given in the literature, in 
each case expressing the step size in mass-weighted cartesians rather 
than mass-scaled cartesians because the mass-weighted choice makes it 
easier to compare different systems. Gray et al. 116 used a step s~ze of 

1 --
0.19 u'2aO for studying the HNC" HCN isomerization, and they did find 
oscillations of the computed MEP; however, they were able to smooth 
these oscillations by "hand" since only a small portion of the reaction 
path was required for determining tunneling probabilities in their 
application. Similarly, Schmidt et al. 149 stated that they typically 
used steps of 0.15 u%a O in their -;;"tudy of the rotational barrier i1 
silaethylene. In this study, these authors used the method of Ishida 
et al. 150 for stabilizing the oscillations in the calculated MEP. In 
particular, they performed an energy minimization along the bisector of 
the angle formed by the normalized negative gradients from two adjacent 
calculated points to return to the true MEP. In another example, for 
the isomerizatfon CH30 .. CH 20H, Colwell and Handy 118,151 used a step 
size of 0.05 u'2aO near the saddle point and followed the gradient with a 
step of 0.1 u%ao when VMEP(s) was about 40% below the value of the 
VMEP(s) at s=O. 

Experience in our group in studying the dynamics of many A + BC 
type reactions 10 ,13,15,16,18-28,42,44,51-53,70,122,131 has indicated 
that small step sizes are necessary, especially when the oscillations 
are not stabilized. For production runs on A + BC reactions we have 
used step sizes in the range 4 x 10-5 to 2 x 10-3 u%aO' To investigate 
this point further for the present discussion, we have graphically 
exaoined the convergence properties of the calculated MEP and VMEP(S) 
and V~(s) curves with respect to the step size for the reactions H + "2, 
OH + H2, and CH3 + H2' In these studies we used the global PES's of 
Truhlar and Horowitz,152 Schatz and Elgersma,60 and Raff,132 



310 D. G. TRUHLAR ET AL. 

respectively; the gradients were analytically evaluated; and the force 
constants were determined by converged numerical differentiation. The 
harmonic oscillator approximation was used in treating the vibrations 
that are perpendicular to the reaction path. The MEP's were computed 
using step sizes ranging from 7 x 10-2 to 1.3 x 10-4 u};;ao' Figures 1 and 2 
illustrate the resulting computed VMEP(s) and V~(s) curves, respective­
ly, for the CH3 + H2 reaction. These figures show that both VMEP(s) and 
V~(s) are quite sensitive to the step pize, and they are only well con­
verged when the step size is 1 x 10-3 u'2aO or less. Severe oscillations 
occur in the VG(s) curve computed using step sizes greater than 1 x 10-3 

k a 
u2aO' and these would have a large effect on rate constant calculations. 
Figure 1 also illustrates the cautionary fact that, even though the 
VMEP(S) curve resulting from a calculation with a large step size may be 
smooth, it is not necessarily converged. Similar results were obtained 
for the H + H2 and OH + H2 reactions, for which the MEP's reem reason­
ably well converged for step sizes of 1 x 10-2 to 1 x 10-3 u'2a O' respec­
tively. In previous work on the OH + H2 system where more strfngent 
convergence criteria were employed, a step size of 1.3 x 10-4 u'2aO was 
used. 59 Furthermore, it was demonstrated for this system that, when 
using very small step sizes, the stabilization method of Ishida et 
al. 150 actually slowed convergence of the calculated MEP. 59 The~ 
results ar~ all consistent in indicating that relatively small step 
sizes are required for obtaining converged MEP and VMEP(s) and V~(s) 
curves for reactive systems. 

A second point to consider in constructing V~(s) is that if numeri­
cal differentiation is used to calculate the force constant matrix, then 
the results may be sensitive to the distribution of points and the step 
size used in the difference formulas. We have found that frequencies 
calculated using the GAMES S153 codes can vary significantly based upon 
using 2- or 3-point numerical differentiation formulas and a step size 
ranging from 0.01 to 0.0001 aO' Of course, for SCF calculations this 
problem is eliminated with the use of analytic second derivatives as 
used by Colwell and Handy.118,151 

Another kind of difficulty emerges in calculating the MEP and 
V~!Ep(s) and V~(s) curves for an isomerization reaction. For such reac­
tions, VMEP(s) and V~(s) have double-well character. We will use the 
inversion of NH3 as an example. In this case, because of symmetry, we 
need to compute the RPH only for one side of the saddle point. We will 
use the left side for our example. To determine the ME? in the barrier 
region between the well and the saddle point, one follows the negative 
gradient from the D3h saddle point structure towards the C3v equilibrium 
structure. In this case since one is proceeding to the left, s is 
decremented at each step, starting at zero. To determine the MEP on the 
other side of the minimum, one starts from points high on the repulsive 
wall beyond the well and follows the negative gradient in toward the 
well. While carrying out this step we don't know an absolute origin for 
s that is consistent with the scale to the right of the minimum so we 
use a temporary origin at the initial point. The reaction coordinate 
referred to this temporary origin is called~. Since we are proceeding 
to the right, ~ is incremented at every step. One places the initial 
points higher and higher on the potential until V:'IEP(~) and V~(~) in the 
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Fig. 1. The potential energy as a function of the distance along the 
calculated MEP (through mass-scaled coordinates with ~ = 
mCH3mH2/mCHs) for the CH3 + HH' + CH4 + H' reaction on the Raff 
potential energy surface. The zero of VI1EP is taken to be at 
the CH3 + HH' asymptote. The different curves correspond to 
using different step sizes in following the path of steepest 
descent to determine the ~1EP. The step sizes of the curve!; are: 
0.050 aO (---),0.025 aO (--),0.010 aO (---), and 0.001 
aO (--). Results for 0.0001 aO would be superimposable on 
those for 0.001 aO to within plotting accuracy. To convert 
these step sizes to mass-weighted coordinate space, multiply 

10 by ~ 2. 



312 

C!J co 
> 

37 

35 

I 
/'\ // 

/ ,/ , . 
/ 

I 
31 

, , 
I , . 

/\J 

D. G. TRUHLAR ET AL. 

'\ / ;/\ \ / 
I \\' I 

\,' I ,-1, 
\ : ,I 

~ 
~, / 
:\ ,,/ 
I './' ,,\ 
\ i' /\ i \ 
I I \ I \ ' , 

I I t I I' I 
1/\/::\) 
\ i : i \, / 
" \, \' 
\1 \/ ,./ , , . 
\I 

29~~~--~~~~~~--~~~ 

-0.5 0.0 0.5 

Fig. 2. The ground-state adiabatic potential energy as a function of 
the distance along the calculated MEP for the CH3 + HH' + CH4 
+ H' reaction on the Raff potential energy surface. The zero 
of energy is CH3 + HH' at classical equilibrium; thus the 
curve tends to the zero point energy of the reactants at s =_00. 
The different curves correspond to using different step sizes 
in following the gradient to determine the MEP. The key for 
the curves is the same as in Fig. 1, and again the results for 
0.001 aO and 0.0001 aD are superimposable within plotting accu­
racy. 
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low-energy region of dynamical interest have converged with respect to 
the location of the starting point. 

To perform the tunneling calculations we ~equire a smooth V~(s) 
cu~ve fo~ this double-well system. From following the negative gradient 
starting at the saddle point we determined VHEP(s) and V~(s) for the 
region to the right of the equilibrium NH3 structure. Similarly, by 
following the negative gradient sta~ting from high on the potential and 
proceeding to the well, we determined VMEP(S) and V~(s) to the left of 
the equilibrium structure. However, a special problem arises in fo~­
lowing the negative gradient as one approaches the minimum from either 
direction, since the gradient approaches zero, and the reaction path 
calculated with practical-sized steps may show significant zigzagging. 
This causes the distance along such a path to be artificially longe­
than the distance along the true MEP and also introduces other errors. 
Thus we must handle three problems: (i) co~rect for the elongation of 
V~(s) and V~(s) near the minimum, (ii) convert 5 values to s values, and 
(iii) smnothly join V~(s) and V~(s) at the minimum to form a contin~ous 
V~(s) curve. 

To correct for the elongation of the MEP and the resultant erro~s 
in V~(s) and V~(s) we assume that the elongation only occurs when 
VMEP(s) or VMEP(S) is less than 0.1 kcal/mol above V~1EP(s) at the equi­
librium structure, which is taken to be the zero of energy. Therefo~e 

we fit VMEP(S) and VMEP(S) from regions where they lie between 0.1 and 
0.2 kcal/mol to the following forms: 

VMEP(S) 
~C' ~)2 A A A 3 

= a s - So +b(s-sO) (59a) 

and 

VMEP(s) 
2 3 

= a(s-sO) + b(s-sO) C:9b) 

In these equations a, ~, b, ~, sO' and So are the fitting parameters, of 
which only the last two will be used. The value obtained for So 
represents the location along the reaction coordinate of the equilibrium 
structure of NH3 . Then 5 is converted to s by the following changE' of 
origin: 

(60) 

At this point we have two segmE'nts of V~(s) available, one for s <:'0 and 
one for s > sO, We also know V~(so) accurately from a standard vibra­
tional analysis at the equilibrium geometr~; this was performed p~ior to 
any MEP calculations. By connecting the Va(s) functions smoothly 
together at sO, consistent with V~(sO)' we will have corrected for the 
effects of numerical zigzagging. This is accomplished by simultano-ously 
fitting the data from both sides of sO, using only data where the values 
of these curves are between 0.1 and 0.2 kcal/mol above V~(SO)' These 
data are then fit to the following functional form: 



314 D. G. TRUHLAR ET AL 

VG(s) 
a 

VGa(SO) ( ) ( )2 ( )3 + A 5 - So + B 5 - So + C 5 - So ( 61) 

The final V~(s) curve is a spline fit to a set of values on a grid. 
When V~(s) at the grid point isgreater than V~(so) +0.2 kcal/mol, the 
directly computed value is used as input to the spline routine: but when 
V~(s) is less than this the input to the spline routine is calculated 
from eq. (61). The final vibrational energy level splitting was the 
same when this procedure was repeated with the cubic term missing in eq. 
(61) so we assume that the order of the polynomial in eq. (61) is suffi­
ciently high to represent the V~(s) curve within 0.2 kcal/mol of its 
minimum. 

With the continuing development of computer hardware and ab initio 
methods and codes, the construction of RPH's for polyatomic sy~ems may 
become routine. However, at present, care must be exercised in using 
ab initio results to achieve a practical balance between affordability 
and distortions in the results because of errors in following the gra­
dient with an unconverged step size. One avenue that might provide fer­
tile ground for exploration would be to use interpolation methods like 
those discussed in Subsect. 3.1 in conjunction with input data at 
increasing numbers of ab initio points along the reaction coordinate. 
This might provide a r;Tiable and cost effective method for constructing 
RPH's based upon ab initio data. 

4. GLOBAL POTENTIALS 

Although, as discussed in Sect. 2, there are still significant difficul­
ties in the practical treatment of anharmonicity and mode coupling, VTST 
and semiclassical tunneling calculations have reached a high enough 
state of development that in practical applications the accuracy of a 
calculated thermal rate constant will usually be more limited by the 
uncertainties in the potential energy surface than by the errors intro­
duced by the approximate treatment of the dynamics. The ab initio 
steepest-descent-path techniques discussed in Sect. 3 provide one pro­
mising avenue for supplying the required PES data. In many cases though 
one will require a more global PES, either because large-curvature tun­
neling paths must be considered or because semiempirical adjustments are 
to be considered or both. In attempting either to construct semiempiri­
cal surfaces or to fit ab initio calculations, we require flexible ana­
lytic procedures. The difficulty of reliably representing PES data in 
an analytic form when it is available or obtainable has been just as 
serious of a stumbling block in recent years as has been the uncertainty 
in, and the difficulty of generating, the original data. In this sec­
tion we will address some of the issues involved in the analytic repre­
sentation of PES's or RSP's for polyatomic systems. 

A promising starting point in the design of polyatomic PES's is to 
extend in some manner the methods that have been used with success for 
atom-diatom PES's. This should be an especially promising approach when 
one only requires an accurate potential in the reaction swath for an 
atom-transfer reaction where at most two bond lengths differ 
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significantly from their equilibrium values. One example of this 
approach was developed by Raff 132 and applied to CH3 + HT ++ CH4 + T. 
This method, which is a polyatomic generalization of the multiparameter 
LEPS scheme (MLEPS)154,155 that has been applied so successfully to 
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A + BC reactions, seems to us to have a number of practical advantages. 
One advantage of this procedure is that the MLEPS scheme can be made 
very flexible by making the Sato parameters explicit functions of local 
variables such as internal angles or bond lengths. 156 ,157 For A + BC 
this allows one to make localized changes in the PES, and the hope is 
that one can embed this same flexibility in a polyatomic surface by 
starting with the MLEPS function for the dependence of the potential on 
the lengths of bonds that are made and broken. A worthwhile goal for 
this kind of treatment is to obtain a functional form for which one can 
refine one area of the surface in order to agree with ab initio calcula­
tions or experimental data without changing the rest of the surface. 

In Raff's PES for CH3 + HT, the potential is a sum of four three­
center MLEPS potentials, one for each of the C-H-T moieties,and an 
angle-dependent term to control the change of the methyl moiety from 
trigonal planar to tetrahedral. By breaking up the potential in this 
manner, Raff reduced the problem of modelling a six-body interaction to 
that of modelling several three-body ones. 

Table I compares the saddle point characteristics of the Raff sur­
face to those calculated by the ab initio polarization-configuration­
interaction (PolCI) method. 144 ,145 The Raff surface has a lower and 
earlier, but also thinner barrier. Since, all other things being equal, 
one expects higher barriers to have higher imaginary frequencies, it 

TABLE I 

Saddle point characteristics 

Quantity 

R 
C-H1 ,H2 ,H3 

(aO) 

R 
C-H4 

(aO) 

R 
H4-H5 

(aO) 

v* (kcal/mol)c 

-'I' -1 
v (cm ) 

a Ref . 144 and 145 

b Ref . 132 

PolCI a 

2.04 

2.78 

1. 74 

10.7 

974i 

crelative to CH3 + H2 . 

2.07 

3.02 

1.48 

9.4 

1478i 
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poses an interesting challenge to try to adjust the Raff surface to 
agree better with the ab initio one for all these characteristics. 

The basic design of the Raff surface suggests that the methods for 
localized adjustments mentioned above for atom-diatom MLEPS potentials 
could be used to correct the discrepancies between the Raff surface and 
the PolCI calculations. In these methods single parameters in the ~LEPS 
function are replaced by functional forms. The functional forms used 
should be chosen such that except for a localized region of strong 
interaction, they go smoothly to the values required to give the surface 
its correct asymptotic limits and general global form. The "turning off 
and on" of these localized functional forms is best accomplished through 
the use of switching functions. When choosing an appropriate switching 
function it is important to maintain the analyticity of the PES at least 
through second derivatives and preferably through fourth derivatives. 
Flexibility can be built in by using adjustable parameters in exponen­
tial, hyperbolic, and gaussian functions. 

A problem that sometimes occurs in reaction-path Hamiltonians, espe­
cially for bend potentials, 118, 151,158 is the bifurcation of the reaction 
path. This occurs when a harmonic frequency becomes imaginary, and for 
the Raff surface this occurs for bends on both sides of the saddle 
point. Ab initio calculations can be helpful in determining if the 
bifurcation~artifact of the form of the analytic potential func­
tion or if it is present in the actual system. When the MEP bifurcates 
it is probably best to base the RPH on a reference path centered on the 
ridge between two equivalent MEP's.20,158 This requires extra effort 
when computing vibrational energy levels since the vibrational potential 
becomes a double-minimum one, but it probably reduces mode-mode 
coupling, which (see Sect. 2) is hard to treat accurately. 

In making adjustments to the Raff surface we found that while we 
are indeed able to make localized changes, the changes caused by varying 
individual Sato parameters are not nearly as independent of each other 
as was the case l57 with the atom-diatom reaction F + H2 • To raise the 
saddle point to approximately the height of the PolCI one, all three 
Sato parameters need to be adjusted simultaneously in order to prevent 
other local maxima and minima from occurring. 

An important consideration in the design of an analytic polyatomic 
PES is to know which region of the PES is most important for the dyna­
mics. In VTST, an accurate PES is necessary only in the reaction swath. 
Thus, for the hybrid rate constants it is necessary to have an accurate 
representation of the potential along the MEP and for small deviations from 
it in the vicinity of dynamical bottlenecks, and for semiclassical tun­
neling calculations it IS sometimes necessary to know the PES for larger 
deviations from the MEP along a lengthy segment of it. For VTST/K cal­
culations it is especially important that the frequencies as functions 
of s go smoothly and realistically from their reactant values to realis­
tic saddle point values and then to their product values. This is an 
area where ab initio calculations can be very useful. 

In Sect. 2 we discussed the practical advantages of valence coordi­
nates for modelling anharmonicity. As discussed there, when the valence 
coordinates are non-redundant the valence-coordinate force field can be 
calculated directly from a global PES in any internal coordinate system, 
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e.g., interpair distances, as have been widely employed. Hase and co­
workerslSQ-166 have made great progress, however, in modelling PES'" 
directly in terms of valence coordinates. So far they have concentrated 
on association, dissociation, and isomerization reactions, but their 
methods could also be used, for example, in conjunction with MLEPS func­
tions, for some of the interactions in atom-transfer reactions. The 
basic idea in all of Hase's valence-coordinate surfaces is to write the 
potential as a sum of Morse functions for all bonds, and harmonic, 
harmonic-quartic, or Taylor series potentials for all bends and tor­
sions. The parameters in these terms are optimized using least-squares 
techniques with ab initio or spectroscopic input data. 

Cobos and Troe 16 7 have demonstrated a strong sensitivity of th,? 
calculated rate constant for the dissociation of methane to a range para­
meter that they used to control the decay of the force constants involv­
ing the breaking bond to their asymptotic values. The same sensitivity 
to force constants can occur in atom-transfer reactions. Just as in the 
CH4 dissociation, when an atom B is transferred between A and C, one 
must model the rate of decrease of an A-B-C bend potential as the AB or 
BC bond is broken. One of the first attempts to do this was by Johnston 
and Goldfinger. 168 They modelled the bending force constant by attenu­
ating the equilibrium value according to the bond order of AB and BC. 
Sims and coworkers 169 ,170 have further tested the validity of this kind 
of.mode l of the bending force constants for various hydrocarbons. They 
checked the effect of using both the square root of the product of the 
bond orders or the product of the bond orders when computing the fc,rce 
constants and then compared to experimental values. It was found that 
the product of the bond orders is the preferred choice if either of the 
bonds is undergoing a major change as the case would be during a chemi­
cal reaction. This suggests that some method of smoothly varying the 
bond order from 0 to 1 during the course of a reaction would be useful 
for modelling a bend potential on a polyatomic PES for VTST!K calcula­
tions. Quack and Troe 123 used this same kind of idea in their statisti­
cal adiabatic channel model calculations of triatomic dissociation, for 
which they modelled the bond order as an exponential function of the 
deviation of the bond length from equilibrium. The exponential fu~ction 
they used contains an adjustable range parameter. More recently,~ow­
ever, Duchovic et ~.,166 in the course of designing a surface for the 
dissociation of methane, have performed ab initio calculations that 
indicate that the bending force constant--;;;ay decay to zero more like a 
gaussian than an exponential. 

Of course once one decides how to model the variation of a bending 
force constant with bond distance, this variation is easily incorporated 
into the PES if it is expressed in valence coordinates. As a final 
example of the flexibility of NLEPS functions, however, we point out 
that this can also be done by varying the Sato parameters in Raff's 
potential for CH3 + HT. In particular we were able to adjust the C-H-T 
bend potential for a 40 0 deviation from collinearity to agree quite well 
with ab initio bend potentials for a 1.6 aO segment of the MEP by making 
one of the C-T triplet parameters a function of both the C-H-T bend 
angle and the H-T bond length. Although this procedure is mathemati­
cally quite different from the anti-Morse bend potential discussed in 
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Fig. 3. Minimum-energy path and related quantities for CH3 + HH' + 

CH4 + H'. All quantities for this figure are computed in the 
harmonic approximation for the vibrations. The abscissa is 
the distance from C to the center of mass of HH' and the ordi­
nate fS the scaled HH' distance, where the scale factor is 
(m!I1)'2, m =mH!2, and 11 =mCH3mH2!mCHS. The solid curve is the 
MEP, and the labels on it denote the values of the reaction 
coordinate s, where s is the distance along the ME? through 
mass-scaled coordinates with lJ =mCH3mH2!mCHS. The chain line 
and the dashed line are the ground-state LC3 tunneling gaths 
for tunneling from one translational turning point of Va(s) to 
the other at the most probable tunneling energies (31.S2 and 
34.S9 kcal!mol) at 3S0 and 2S0 K, respectively. The triangles 
denote coordinates of systems with zero amplitude in all their 
vibrational coordinates except the C-H-H' stretch, which is 
placed at the classical turning point on the concave side of 
the MEP. One of the points on the MEP and one of the triangles 
have been changed to squares to denote s=o. The other tri­
angles are evenly spaced in s with interval /:'s =0.2 aO. The 
light curve connects the coordinates of systems with s =0.S-0.8 
aO with zero amplitude in all vibrational coordinates except 
the C-H-H' stretch, which is placed at the radii of curvature 
for this mode. 
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Sect. 2, it is physically quite similar since the repulsive triplet C-T 
interaction potential in a C-H-T MLEPS function controls the bending 
potential for a C-H-T bend. 
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The final practical problem that we wish to emphasize in this chap­
ter is the necessity to consider the whole reaction swath. We will use 
the PES of Raff for CH3 + HH' to illustrate how one may estimate the 
region over which the potential must be known. First of all we calcu­
lated the RPH for this system using the harmonic approximation and 
general methods presented elsewhere. 54 (This RPH is also discussed in 
Sect. 2.) At every point along the MEP, we calculated the C-H and H-H' 
bond lengths for the bonds being made and broken, and from them we cal­
culated the Jacobi-like coordinates used as abscissa and ordinate in 
Fig. 3. The MEP is plotted as a solid curve in Fig. 3, which thereby 
becomes a two-dimensional internal-coordinate projection of the full­
dimensional steepest descent path through mass-scaled coordinates. The 
distance s measured through the full set of mass-scaled coordinates along 
the MEP is shown at intervals of 0.2-0.3 aO' Next, at every 0.2 aO along 
the MEP, we displaced the system through the full set of mass-scaled 
cartesian coordinates to the classical turning point (on the concave side 

1.5~--------------~r-----------~--~----------------~ 

-0 
C -~ 

::J: 
c::: 

C\I 1.0 ....... .... - 0.5 ..... ..... ..... 

~ 
E -

..... ...... .......... ... ........... 
.~.--..- ......... ~ ....... 

.~ ..... 
...... 

0.0 -0.3 -0.5 -0.7 

4.0 4.5 

Fig. 4. Same as Fig. 3 except for CH3 + HT .. CH4 + T, m = mHmT/mHT' 
~ = mCH3mHT/mCH4T' the most probable tunneling energies are 
32.07 and 34.40 kcal/mol, and the light curve is shown for 
s = 0.3-0.4 ao. 

5.0 
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of the MEP) of the generalized normal mode corresponding to the bound 
C-H-H' motion. We calculated the ordinate and abscissa of Fig. 3 for 
these geometries and plotted these points as triangles. A curve (not 
shown explicitly) passing through these triangles is an analog of the 
Marcus-Coltrin tunneling path originally found S ,171 variationally for 
collinear H + H2' The loci where the locally multivalued region of the 
reaction-path coordinate system, as estimated by the curvature of just 
the C-H-H' vibrational mode, gets closest to the MEP are shown in Fig. 3 
as a short light curve. Two LC3 tunneling paths are also shown. In 
this case neither the analog of the Marcus-Coltrin path nor the LC3 tun­
neling paths reach into the region of locally multivalued coordinates, 
i.e., they are between the MEP and the light curve. Thus it appears 
sufficient to know the potential in regions where the RPH is valid. In 
Fig. 4 we give an analogous set of curves for CH3 + HT + CH4 + T, again 
using the Raff surface. The location where the boundary for the multi­
valued region gets closest to the MEP is shown between s =0.3 and 0.4 
aO; again neither the analog of the Marcus-Coltrin path nor the LC3 tun­
neling paths enter the multivalued region. We conclude that an RPH 
formulation is adequate for CH3 + H2 + CH4 + H and isotopic analogs, at 
least according to the Raff surface. A surface with a broader barrier 
would have more widely spread ~urning points, however, and for such a 
surface the LC3 path might enter the multivalued region. Furthermore, 
for other systems with much smaller skew angles, it becomes very likely 
that the tunneling paths will enter the multivalued region where the 
reaction-path coordinates break down. (Examples have been observed for 
atom-diatom collisions. 19- 21 ) In such cases, no RPH can be valid and we 
must consider a whole reaction swath, not just a local expansion about 
the MEP. 
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APPENDIX 

In this appendix we give some exampl es of the coordinate transformation 
~oefficientrO)hat appear in eqs. (40)-(43). For convenience we define 

Xij = Xij / r AiA ·· (0) 
For the b6nd stretch llrAB = rAB - r AB ' the coefficients can be 

obtained by differentiation of eq. (38) with respect to the difference 
cartesians Xij • For Ai = Ak =Am = A, Aj = AQ =An = B, and Yi ~Yk ~Ym' this 
yields: 67 
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and 

ar'B/ax.. X .. 
" ~J ~J 

(1 

3 I 3 - -2 1) I ( (0)) 2 a r AB ax .. =3X .. (X .. - I r AB ~J ~J ~J 

4 3 
a LAB/axijaxkQ, 

422 
a rAB/axijaxkQ, 

- - -2 (0) 3 
-3X .. Xkn (5X .. - 3)/(rAB ) 

~J " ~J 

-2 
3X .. 

1J 

a4rAB/aX~jaXkQ,axmn -3XkQ,Xmn(5X~j - 1)/(ri~))3 . 
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For the angle deformation ~~ABC = ~ABC - ~i~6, we carry out a simi­
lar differentiation process with respect to eq. (39). For Ai=Ak=Am= 
A, Aj=AQ,=An=Ai' =Ak' =B, Aj' =AQ,' =C, C= cos ~ABC' S=sin ~ABC' and 
Yi =Y i , ,fYk =Yk',f Ym=Ym" th~s yields~67 

- ) IS (0) 
Xi' j' r AB ' 
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2 
a <l>ABC/ax . . ax.,., 

1 J 1 J 

[( X X "" k'Q,' X- -x C)/(O) (0) 
ij kQ, + 1 J - ij k'Q,' r AB r BC 

3 2 - - - - - -2 
a "'ABC/aXijaxkQ, = {Xk'Q,' -3 [ CXk Q, +2X i / i 'j'XkQ, +X ij x 

- - (0) 3 
x (Xk'Q,' -SCXkQ,)]}/ S(rAB ) - C[2(a¢ABC/aX ij) x 

2 2 2 
x (a ¢ABC/aXijaxkQ,) + (a¢ABC/axkQ,)(a ¢ABC/aXij)]/S + 

2 
+ (a¢ABC/aXij) (a¢ABC/axkQ,) , 

3 - - - - - - ..,' 
a ¢ABC/ax . . axkoax = 3[SCX. 'XkoX -(x., .,XkoX + lJk Q, mn + 1J ~ mn 1J ~ mn 1 J . ~ mn 

3 2 [ - -2 - - - -2 
a <l>ABC/ax .. ax.,., = 3X .. (i-X .. + CX .. X., .,) -2X .. X.,.,-

1J 1 J 1J 1J 1J 1 J 1J 1 J 

- (0) 2 (0) 2 
- CXi'j,]/S(rAB ) r BC -2C[(a<l>ABC /aX ij)(a ¢ABC/aXijaXi'j') 

+ i' j'ijij ]/S + <a<l>ABC/aXij)2(a<l>ABC/aXi'j') , 

3 2 
a <l>ABC/aXijaXk'Q,' = [XU -2X i / i 'j'\'Q,' - CXk'Q,' + 

-2 (C- - )]/S( (0»2 (0) 2C[( I ) + 3X ij Xk'Q,' -XkQ, r AB r BC - H ABC aX ij x 

x (a 2 <I> ABC I a x i j a Xk ' Q, , ) + k ' Q, , i j i j ] IS + 
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3 - -2 --
<l>ABC/ax"axk aX"" = [Xk (1-3X"+3CX"X"")-X,,,, x lJ ~ l J ~ lJ lJ 1 J 1 J 

x (Xi'j,Xk~ +ijk'~')J/S(r~~»2r~~) - C[(a<l>ABC/aXij) x 

( 2<1> lax ax ) UiJ'i'J" +i'J"iJ'U]IS + 
x a ABC k~ i' j , + 

+ (a<l>ABC/aXij)(k~)(i' j') , 

a3<1>ABC/aXijaXUaXm'n' = -[Xm'n,(Xi'j'XU +k'~'ij) + 3XijXk~ x 

x (x 
mn 

+ (a<l>ABC/aXij)(k~)(m'n') , 

and so on for the higher derivatives. In wrltlng these expressions we 
used the convention that if a term or factor is identical to the pre­
vious one except for the lower case subscripts, we only repeat those. 
Because of the S-l factors in these equations they cannot be used for 
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a linear angle. One possible set of modifications that is useful in 
such a case is described in Ref. 67. Similar equations to those given 
above but for out-of-plane bending and torsional angle internal coordi­
nates are given elsewhere. 74 ,78 
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ABSTRACT. The approximations that have been proposed for light-heavy­
light chemical reactions are reviewed. Their accuracy is examined by 
comparison with close-coupling results for the H+BrH+HBr+H reaction 
in three dimensions. Calculations are also presented of the photo­
dissociation spectrum for H2 0+ OH(2 rr )+H in which the IBI dissociative 
potential energy surface is reactive. Reactive scattering resonances 
produce some structure in this calculated spectrum. 

I. INTRODUCTION 

Chemical reactions of the form 

L' + HL + L'H + L (I) 

where Land L' are light atoms, and H is a heavy atom, have been the 
subject of several theoretical investigations. The main reason for 
this, is that these gas-phase reactions offer a mathematical 
simplification to theory which enables three-dimensional (3D) quantum 
mechanical calculations to be performed. The simplification is that 
the centre of mass of both the reactant and product diatomic molecules 
can be placed, to a good approximation, on the heavy atom H. This 
enables quantum-mechanical wavefunctions for the entrance and reaction 
channels to be matched with ease. It is this matching problem that 
has been such a stumbling block in the extension of 3D quantum theories 
to reactions more complicated than H+H2 • Thus light-heavy-light 
reactions offer a special opportunity for performing accurate 3D 
quantum-mechanical calculations and using the results to test the 
accuracy of approximate theories. 

To date, our knowledge of the accuracy of those approximate 3D 
reaction theories which can be readily extendable to a wide variety of 
reactions, is almost completely based on comparisons with accurate 
results for the H+H2 reaction. A light-heavy-light reaction such as 

H + BrH + HBr + H 
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has the important difference, when compared to the H+H2 reaction, that 
the rotational states of the reactant and product molecule, HBr, are 
much more closely spaced than those for H2 ; the rotational constant B 
for HBr is S.46cm- 1 while that for H2 is 60.S5cm- 1 [1]. Furthermore, 
in the entrance or exit channel scattering calculations on H+H2 , the H2 
rotational states with even values of j are not coupled with odd j 
states, while they are strongly coupled in H+BrH. Thus, calculations 
on a reaction such as (II) should be a much sterner test of 
rotationally adiabatic theories than computations on H+H2 • 

Light-heavy-light reactions are also of experimental significance. 
For example, molecular beam measurements of angular distributions [2] , 
and kinetic experiments yielding rate constants [3], have been carried 
out on the D+BrH+DBr+H reaction. Furthermore, there has been much 
recent interest in the competition between non-reactive and reactive 
energy transfer in collisions such as H+CIH[4]. Vibrational quenching 
reactions like 

H + FH(v=2) + HF(v=l)+H 

are also thoughtto be important in chemical laser systems [5]. 
The calculation of potential energy surfaces for light-heavy-light 

reactions has been a difficult task [6,7], and hence any good scatter­
ing calculations on proposed potential energy surfaces have value, when 
compared with reliable experimental results, in testing the accuracy of 
the potential energy surfaces. Indeed, several semiempirical potential 
energy surfaces that have been developed are known to have a reasonable 
form for the abstraction reaction (e.g. H+HF + H2 +F) while having 
reaction barriers considerably in error for the exchange reaction [S] 
(e.g. H+FH + HF+H). 

Quantum mechanical tunnelling effects are likely to be very 
important in light-heavy-light reactions. This is because the reduced 
mass of the colliding system is very close to the mass of the light 
atom, and the barriers to reaction are known to be large in many 
cases [7]. This would suggest that the most sophisticated of quantum 
theories are required in calculating reaction cross sections over the 
energy range required for rate constants. Thus, accurate quantum­
dynamical results should present a valuable test of tunnelling methods 
incorporated into modern transition state theories (TST) [91. 

Another rapidly developing area where light-heavy-light reaction 
theory will be important is in the direct photodissociation of 
symmetric triatomic molecules. If the triatomic molecule is in a given 
vibrational-rotational state n, and it is photoexcited to a new 
electronic state which is directly dissociative to an atom plus a 
diatomic molecule in vibrational-rotational state m, then the photo­
dissociation cross section is 

I=C<1/J(-)!1l!<P>2 
m D n 

H C · ,I. (-). h . f' ere, 1S a constant, 0/ 1S t e scatter1ng wave unct10n on the upper 
electronic potential ene~gy surface which satisfies incoming boundary 
conditions, llD is the transition dipole operator and <Pn is the 
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triatomic bound state n. For a symmetric triatomic molecule, such as 
H20 or H2S, the potential energy surface for the exchange channel on 
the excited potential surface must be reactive. Thus, for the photo­
dissociation of H20, the process H+OH+HO+H must be treated using a 
theory appropriate for light-heavy-light reactions. 

After reviewing, in Section 2, previous theories proposed for 
light-heavy-light reactions we describe, in Section 3, our own 
theoretical contribution in this area. A hierachy of sudden approx­
imations have been developed and these are described and compared to 
the exact theory. The relative computational merits of the various 
theories are also discussed. In Section 4 we describe a range of 
computations of integral cross sections and rate constants we have 
recently carried out on the H+BrH + HBr+H reaction using a semi­
empirical potential energy surface. In that Section we use accurate 
close-coupling results to test the accuracy of various sudden approx­
imations, together with a variational transition state theory [9] and a 
bending-corrected-rotating linear model (BCRLM) [12,13]. The 
comparisons show some important differences to those obtained for the 
H+H2 reaction. In Section 5 we describe how a version of the light­
heavy-light theory can be applied to photodissociation, and present 
results for the photodissociation of the H20 molecule into the 'B, 
state. Our conclusions are in Section 6. 

2. PREVIOUS THEORIES FOR LIGHT-HEAVY-LIGHT REACTIONS 

The mathematical simplifications in the quantum theory of light-heavy­
light reactions were discussed in a series of papers by Baer and 
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Kouri [14,151. They used an integral equation formalism [16]. The 
potential energy surfaces they used were highly simplistic. However, 
they did discuss the types of reaction integral and differential cross 
sections [14], and rotational product distributions, [15] that are 
likely to arise in these reactions. They stressed the importance of a 
"selection rule" for light-heavy-light reactions, with isotropic potent­
ials, namely that ta + js and ja + ts, where ta is an orbital angular 
momentum quantum number for the a (entrance) reaction channel, and js is 
a rotational angular momentum quantum number for the exit (S) reaction 
channel (and vice-versa). They also noted an interesting consequence of 
this selection rule: light-heavy-light reactions with an isotropic 
potential energy surface will give an isotropic differential cross 
section. Thus, the measurement of differential cross sections for 
light-heavy-light reactions gives direct information on the anisotropy 
in the potential energy surface. 

These studies were extended in a different direction by Baer [17]. 
He performed close coupling calculations on the 

H + FH(v=O) + HF(V=O) + H 

reaction in coplanar geometry. TJnfortunately, the reaction barrier of 
0.078 eV, in the potential energy surface he used was unrealistically 
low; ab initio calculations suggest that the reaction barrier for this 
exchange reaction is greater than 1.7 eV [6]. However, the study did 
highlight some interesting features, such as the drop in reaction cross 
section as j is increased. 



334 D. C. CLARY AND J. P HENSHAW 

The theory of the infinite-order-sudden approximation (rOSA) for 
3D light-heavy-light reactions was considered in detail by Barg and 
Drolshagen [18] in the body-fixed frame. The rOSA, for light-heavy­
light reactions, is described in more detail in the next Section, and 
involves the solution of the quantum scattering problem for fixed 
orientations Gy of the atom-molecule centre-of-mass vector with respect 
to the diatomic molecule vector for channel y. They noted that Ga = GS 
for light-heavy-light reactions, and this leads to particular 
simplifications in applying the IOSA to these reactions. A preliminary 
application of this approach to the D + C)',H + DC)', + H reaction was made 
by Drolshagen [19]. However, the matching condition ~ = 18 was used, 
which is not appropriate for light-heavy-light reactions. 

In the next Section, we describe our contributions to the 3D 
theory of light-heavy-light reactions, and also refer to the previous 
calculations we have performed using these theories. 

3. RECENT THEORY FOR LIGHT-HEAVY-LIGHT REACTIONS 

3.1 Close-Coupling Theory 

In Section 3 we first of all describe the approach we have used for 
performing coupled-channel (CC) calculations on 3D light-heavy-light 
reactions. Then we go on to describe some approximate theories for 
these reactions. 

We denote the entrance and exit reaction channels by a and S, 
respectively. rn space-fixed coordinates, denoted by (xyz), the inter­
nuclear distance vector of the reactant molecule is -r. and the vector 
of the colliding atom with respect to the centre of ~Xss of the 
diatomic molecule is ~y. The angle between yy and ~y is Gy . We define 
the mass-scaled coordinates 

R 
-a 

where Il'y is 
reduced mass 
ment channel 

Hy 

R , 
-a 

r 
-a 

r 
-a 

r 
-S 

the reduced mass of the diatomic molecule andll 
of the collisional system. The Hamiltonian foi 
y in space-fixed coordinates is then 

-n' 1 a' R fl' I a' 
aR' -

a? 1)-21l a ~ 
y 21l a ry y y 

~y 
, • 2 

Jy 
+ 

21l a Ry' 
+ 

2llar y' 
+ V (Ry , r y , Gy ) . 

is the 
arrange-

(1) 
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Here ~y2 is the orbital angular momentum operator, jy2 is the 
rotational angular momentum operator and V is the potent1al energy 
surface_ 

For a given total energy ETot we then wish to solve the 
Schrodinger equation 

(H - E ) 111 JM 
Y Tot y 

o 

where J is the total angular momentum quantum number and M is the 
projection of the total angular momentum along the z axis. 

(2 ) 

Calculations on reactions are usually easier to do using body­
fixed coordinates [20], which we denote by XYZ for the y channel. We 
obtain these by a rotation through the Euler angles (a, S, 0) such that 
Z points along ~y' and Y remains in the xy plane. It is now convenient 
to replace ~y2 by Iq-j y I2, where q is the total angular momentum 
operator. 

For light-heavy-light reactions, it is straightforward to use a 
curvilinear coordinate system [21, 221 for the reaction. In the strong 
interaction region, polar coordinates (uy ' v y ) are used with an origin 
at (R~, r~). We have 

* Ry Ry n a sin 0 y y y 

* ry ry n a cos 0 y y y 

0 1f/2 - E U /a 
y y y y 

n 1 + v /a (3) 
y y y • 

Where a y is the radius of the circular reference curve with centre at 
(R~, r~), and Ey is a parameter that must be chosen to ensure that, 
for u y = 0, Ea + ES = 0s ' where 0S is the skew angle for the collision. 
These polar coordinates are defined to match smoothly with the 
cartesian coordinates 

u 
y 

v 
y 

a (1f/2 -E ) + R 
Y Y Y 

o 
r - r 

y y 

* R 
y 

where r O is the mass-scaled equilibrium distance of the diatomic 
molecul~. Note that u y and v are "natural" translational and 
vibrational coordinates respe6tivelY. 

In the polar region, the wave function can be expanded in the 
coupled-channel form 

(4) 
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x (8 ,4> )/ (R r ) 
y y y y 

where f is a "translational" function. The vibrational function gn 
is determined by setting u to u 1 and then solving the equation 

y y 

+ Vo i J (u , v ) 
y y 

(5) 

(6) 

where VO is a suitably chosen potential that could obtained, for 
example, by setting 8 y = 1800 Furthermore, D~; is a Wigner rotation 
function, and yn is a spherical harmonic, where (G y , 4>y) are the 
spherical polar Jangles describing the orientation of ~y in the body­
fixed coordinate system. In the cartesian region, a similar expansion 
to equation (5) is used, with the omission of the (n y ) 1;' term. 

Substituting equation (5) into equation (2), multiplication by the 
internal basis functions and integration over (v y ,a,$,8y ,4> y l gives a 
set of close-coupled equations in the translational f functions [23]. 
These can be solved by a variety of methods. We prefer to use the 
R-matrix method of Light and Walker [22J. 

Once the close-coupled equations have been solved for each 
arrangement channel, it is necessary to ensure that the wavefunction 
and its derivative are continuous at a suitably chosen matching surface. 
For light-heavy-light reactions, an appropriate surface to use is 
u a = uB = 0 as, in the limit of an infinitely heavy central atom, 

8 = 8 
a B' a 

The matching matrices 

-aJ (u 0) f a 

and 

d 
-aJ 

(u 0) f 
du 

a 
a 

C J 
-1 and 

J -BJ 
~l ~ 

_cJ 
-2 

r = R B a 

C J 
-2 

are required 

(u B 0) 

d "fBJ (u B 0) , 

dUB 

in 

where f is a vector of solutions that refer to adiabatic states that 

(7) 

are obtained by diagonalising the close-coupling matrix at the matching 
surface. The appropriate matching matrices in primitive basis functions 
can be obtained from Schatz and Kuppermann [24J and are also discussed, 



L1GHT-HEA VY-L1GHT CHEMICAL REACTIONS 

for light-heavy-light reactions, by Barg and Drolshagen [18). For a 
sy~etric, light-heavy-light reaction the matching matrices f l

J and 
C are simply equal to the identity matrix. 
-2 Once the global wave function has been obtained, the boundary 
conditions for the reactive solution 

JM 
fn' j 'fl' 

J 
x exp (i (kn'j' RS - (J+j')rr/2) SnjQn'j'Q' 

are applied, where (njQ) is 
number for state (nj). This 
Note that we can set [24) 

Q = - m., fl' = m.' 
J ] 

the initial state, and k . is the wave­
yields the S matrix ele~Jnt S J ,., ,. 

n]Qn ] Q 

(8) 

where the helicity representation is used in which the axis of 
quantization of the incoming and outgoing rotational states, m. and 
m.', coincide with the direction of the incident and final wav~-vetors 
rJspectively. 

The differential and integral cross sections for reactive scatter­
ing are then obtained from the S matrix elements [24). For example, 
the degeneracy averaged integral cross section is 

O(n, j->-n', j') = 1T 

k 2 . (2 j +1) JQQ' 
nJ 

(2J+l) S J 2 
I n j Qn ' j , Q' I (9) 

In the actual calculations, the ~~ functions with the same 
absolute value of Q can be combined to give basis functions of definite 
parity. This enables the coupled-channel equations to be separated 
into two independent sets of definite parity. 

The above approach has been described in some detail to illustrate 
clearly how the approximations described in the next sections are 
related to the accurate close-coupling (CC) theory. The theory has 
been described for light-heavy-light reactions with complete neglect of 
the abstraction channel 

L + LH ->- L2 + H. 
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This neglect of coupling between the two channels should be 
reasonable for reactions with potentials that are collinearly dominated, 
and have significant repulsive bending potentionals away from 
collinearity. 
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3.2 The Centrifugal Sudden Approximation 

In the centrifugal sudden approximation (CSA), which is also known 
as the coupled states approximation, the operator iJ-ji' is replaced by 
a value such as [J'+j' - 2 J j J such that there is ~o coupling 
between different-Q states r~0;~4,251. The S matrix elements are then 
of the form 

and the integral reaction cross sections are obtained from 

cr(n,j+ n',j') = 1T l: (2J+l) 
k'. (2j+l) JQ 

nJ 

The matching can be done using the procedure described after 
equation (7). 

(10) 

The CSA calculations are cheaper than the CC because the basis set 
is not coupled in Q. However, the calculations do have to be repeated 
for all values of J and Q contributing to equation (10). 

3.3 The ESA-CSA Method 

In the ESA-CSA method [26J the energy sudden approximation (ESA) 
is applied to the entrance reaction channel and the CSA to the exit 
channel. This technique gives considerable computational simplications 
compared to the CC and CSA methods, although retaining a good accuracy 
as the results of Section 4 show. 

The coordinates for the ESA-CSA method are defined in Figure 1. 

r~ 

H 
Figure 1. Coordinates for L-H-L' system 
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For the entrance channel a, the coordinates 

r 
-a 
r 

a 

r x R and x 
-a -a -a 

I:a x ~al 

are used with the za axis unconventionally placed along ~a and not ~a. 
For the exit channel the normal body fixed coordinates 

~fl x ~fl 

I~S x :fll 

and 

are used. In the case of an infinitely heavy central atom, ra = ~fl 

and rfl = R. Thus the two sets of coordinate axes are entirely 
equivalentOin that limit. 
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In the application of the ESA to the entrance channel a, the 
operator ja2 in the Hamiltonian of equation (1) is replaced by the 
average value ~2 ] (]+l) [27,28]. If M is the projection of ~a along 
za' then the problem reduces to obtaining solutions for each separate M 
value. We have the coupled channel expansion 

E 
n 

a 
fM:] Q, n (u ) 

a 
g (v ) 

n a 

This gives a set of close-coupling equations coupled in the orbital 
quantum number Q, and n. As before, we solve these equations using the 
R-matrix propagator method [22,26]. 

For the exit reaction channel S, the CSA is applied in which the 
operator ~B is replaced by ~2 T (T+l) [20,25]. If N is the projection 
of 2fl along ~fl' then we now have solutions decoupled in N. The 
appropriate coupled-channel expansion is 

E 
n 

(12) 

and the equations are coupled in the rotational quantum number j and n. 
In the limit of an infinitely heavy central atom, we have 

z = z , Q, = 1s and Q, = j 
a fl -a_ -S-a 

It is thus appropriate to set 

Q, = J and N = N 

when matching the primitive basis functions of equations (11) and (12) 
so that the matching matrices equivalent to those of equation (7) can 
be determined. 

In the ESA-CSA method, the reactive translation functions for the 
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transition n ~ + n'j' are 

j .M 
fn~n'j' 

x SJ [V] 

n~n' j' 

exp [i (k ",RS-J 1T/2)] 
n J 

(13) 

Comparison with equation (8) shows that a transformation must be 
performed to rotate the entrance channel za axis so that its direction 
is along the normal body-fixed coordinate Ra instead of ra' This 
transformation is presented in [26] and the final result-is 

S J (2' 1)1/2 (_l)J+Q l,j-J-j' 
njQ n'j'Q' [ __ J_+ __ ] 

(2J+l) 

x E C(J j ~ -Q Q 0) C(~ j J Q' 0 Q') sjQ' (14) 
~ n~n'j' 

where we have set J=j and M~Q'. The C coefficients are Clebsch-Gordan 
coefficients. 

Reaction integral and differential cross sections can then be 
obtained from these S matrix elements. For example, substitution of 
equation (14) into equation (9), and using the sum rule for the Clebsch­
Gordan coefficients to sum over Q, and the series rule to sum over J, 
we get the ESA-CSA reaction cross section 

o (n, j + n', j') = ~ 
nJ 

E, 
Q 

E 1 sjQ' 12 
~ n~n' j' 

(15) 

This ESA-CSA formula has a distinct advantage over that obtained 
using the CSA, (see equation (10)). In the CSA, the calculations have 
to be repeated for many values of J. This is not necessary in the ESA­
CSA as the coupled-channel expansion in the entrance channel contains 
the orbital spherical harmonics, the sum over which in equation (15) 
achieves the partial-wave expansion. For light-heavy-light reactions 
at room temperature energies, the maximum value of J required is about 
20 and the ESA-CSA computations will then be 20 times cheaper than the 
CSA 

3.4 The Infinite-Order-Sudden Approximation 

The theory of the IOSA for light-heavy-light reactions was considered 
by Barg and Drolshagen [18]. It was then extended and implemented by 
Clary and Drolshagen [29]. Here we present an alternative derivation, 
based on the ESA-CSA method. 

In the IOSA we set both j2 and ~2 in the entrance and exit 
channels to the average values Yh 2 3y-(Jy + 1) and h~ iy iiy + 1)._ 
~urthermore, if we use the matching conditions j = ja = ~S' j' = ~a 

js' and 8 = 8a = 8 S ' we have the IOSA S matrix element 
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S j j I (6) 
n n ' . 

To obtain the rOSA equivalent of the ESA-CSA S matrix element we take 
the matrix elements 

< Y~'(6,0) sj j I (6) 
nn' 

Q' 
Y . I (6,0) > 

J 
(16) 

Substitution of this formula into equation (15), and using the 
completeness of the spherical harmonics to sum over ~, and the sum-rule 
to sum over QI, we have the rOSA reaction cross section 

a(n,j+n',j') = TI 

~ 
nJ 

.. I 2 
(2j'+l) fTI Is J ] I (6) I sin 6d6 

nn 
2 0 

(17) 
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This formula is much cheaper to compute than the ESA-CSA formula 
(15) because there is no coupled-channel expansion in angular momentum 
states, and calculations do not have to be repeated for different 
values of the projection quantum number Q'. Another important 
advantage of the rOSA for light-heavy-light reactions, is that boundary 
conditions can be applied using the correct entrance and exit channel 
wavenumbers k . and k 1'1 and hence closed rotational states cannot be 
populated. TRls aris~sJfrom the Ta = JS matching condition, which is 
not appropriate in the rOSA theory for more general reactions where 
closed rotational states can be populated (see, for example, [30,31]). 
For light-heavy-light reactions, the rOSA clearly offers special' 
simplifications that do not arise in other types of reactions (see the 
Chapter by Baer and Kouri in this book). 

3.5 The BCRLM method 

The rotating-linear model with corrections for bending zero-point 
energy (the BCRLM) has been applied recently, to reactions such as H+H2 

and F+H2 by Walker and Hayes [12,13]. rn this approach, collinear 
close-coupling calculations are performed using a hamiltonian which has 
had a centrifugal term, labelled by the orbital quantum number ~, added 
to it. 

The potential also contains the zero-point energy for bending of 
the triatomic molecule. rn the Walker-Hayes approach, which is 
described by Walker in his Chapter in this book, the bending zero-point 
energy is obtained by constructing an approximate hamiltonian in the 
valence bending angle 6 and not the atom-molecule centre of mass 
orientation angle 6. 8iagonalisation of this hamiltonian using a basis 
set of harmonic oscillators at grid-points along the reaction coordin­
ate gives the bending energy [12]. 

For light-heavy-light reactions, however, 6 = 6b to an excellent 
approximation. Thus, in this special case, an appropriate hamiltonian 
to use in obtaining the bending zero-point energy is 
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This can be diagonalised using a basis set of spherical harmonics to 
give a set of adiabatic curves labelled by the projection quantum 
number Q and i (the i'th eigenstate in the Q manifold). 

For a given (i,Q) adiabatic potential, a coupled basis set of 
vibrational basis functions is used for each ~ value and the S matrix 
elements 

S~iQ 
nn' 

are obtained. For the initial rotational state j=O, the BCRLM cross 
section is obtained from 

cr(j=O, n+n') = TI ~ (18) 
k2 ~ 

n 

One can also define the "rotationally accumulated" cross section 

cr (n'n') = TI ~ ~ ~ (2~+1) Is~iQ12 
~ ~ Q i nn' 

(19) 

n 

which involes a summation over all bending Q states. 
From cr(j=O,n+n'), the BCRLM rate coefficient can be obtained by 

Maxwell-Boltzmann averaging over these cross sections. As is shown in 
the Chapters by Bowman, Walker and Pollak, a more realistic rotation­
ally averaged BCRLM (RBCRLM) rate coefficient is obtained by Maxwell­
Boltzmann averaging the rotationally accumulated cross section cr(n+n') 
over transllitional energy, and dividing by the rotational partition 
function 

§ (2j+l) exp[ -Bj (j+l)/(kST)] 

where B is the rotor constant, kS is Planck's constant, T is temperature, 
and a rigid rotor has been assumed. Since (19) represents a sum over 
all possible bending states, which is not true in equation (18), then 
it is consistent to divide by the rotational partition function in the 
RBCRLMapproach. In practice, the Q=O state dominates the cross section 
summation for collinearly dominated reactions at lower collisional 
energies. 

Below we present a summary of the various methods we have described 
for light-heavy-light reactions. Differences between the methods can 
also be clarified by examining the cross section equations (9), (10), 
(15), (17) and (18). We note also that variational-transition-state 
theories can also be applied to light-heavy-light reactions [32] but 
as these require no special modification for these reactions, we do 
not discuss their details here. 
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Summary of Methods for Light-Heavy-Light Reactions 

Method Acronym Approximation Basis Set 

Close-Coupling CC None n x j x Q 

Centrifugal-Sudden 
Approximation 

CSA Neglect Q coupling n x j for each Q 

(Energy-Sudden 
((entrance channel),) 
(Centrigugal-Sudden ) 
((exit channel) ) 
(Approximations ) ESA-CSA 

Infinite-Order IOSA 
Sudden Approximation 

Bending Corrected BCRLM 
Rotating Linear 
Model 

Rotationally 
Averaged BCRLM 

RBCRLM 

j2 =fl j (j+l) _a 

~S=h2Q,(Q,+1) 

Neglect Rotations 
Add bending (Q=O) 
zero-point energy 

As for BCRLM but 
include all Q states 
and the rate 
constant is 
rotationally 
averaged 

4. CALCULATIONS ON THE H+BrH REACTION 

4.1 Potential Energy Surface 

n x Q, (entrance 
channel) 

n x j (exit 
channel) 

for each Q 

n, for 
quadrature in e 

n 

In this Section we discuss and compare the results obtained using the 
various theories of Section 3, and a variational transition state 
theory with a tunnelling correction [9]. The reaction we concentrate 
on is H+BrH + HBr+H. We emphasize the rate constants, but also discuss 
reaction cross sections_ The potential energy surface we used in the 
H+BrH computations is of a semiempirical diatomics in molecules type, 
the form of which (called DIM-3C) is due to Last and Baer [11]. The 
surface contains a three-centre integral term that has been parameter­
ised [33] by comparing ESA-CSA calculations with an experimental [3] 
room temperature rate constant for the D+BrH + DBr+H reaction. The 
minimum potential energy path is collinear, and there is a strong 
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bo~nding potential away from collinearity. This potential is of a 
realistic form, but we should emphasize that it is not likely that it 
is of a quantitative accuracy, and any results obtained using it should 
be compared cautiously with experiment. 

For a given value of u y = u~, the potential energy surface is 
fitted to the form [34] 

This gives a bending zero-point energy contribution to the reaction 
barrier of 0.044eV, using the methods described in 3.5. The 3D 
adiabatic barrier for this potential is 0.232eV [32]. We note that 
the methods of Garrett and Truhlar also give a bending zero point 
energy of 0.044eV [32] for this potential. 

4.2 Previous ESA-CSA and IOSA Computations 

An extensive series of 3D ESA-CSA and IOSA computations have been 
performed previously using DIM-3C potential energy surfaces. The 
reactions studied have been [33,34,35] 

(20) 

D+HC2. (v=O, 1) + DCJI,+H (III) 

D+HI (v=O) -+- DI+H (IV) 

H+BrH(v=O,l) + HBr+H (V) 

and 

D+BrH(v=O,l) + DBr+H (VI) 

The first ESA-CSA calculations [34] on the D+HC~ reaction were 
also done using a LEPS potential for comparison with the DIM-3C results. 
Calculations of integral and differential cross sections and rate 
constants were reported. It was found that the ESA-CSA calculations 
of a room temperature rate constant for the LEPS surface agreed well 
with those computed using the quasiclassical trajectory method [36]. 
However, the contribution from energies below the reaction barrier 
height to the room temperature rate constant was small and thus 
tunnelling is not important for this LEPS surface. This was not true 
in the ESA-CSA computations using the DIM-3C potential energy surface. 
Here, the reaction barrier is much narrower and the main contribution 
to the room temperature rate constant came from tunnelling energies. 
The less anisotropic LEPS potential gave a differential cross section 
that was distributed in both the forward and backward regions. The 
DIM-3C differential cross section, however, showed only backward 
scattering - which was in good agreement with experiment [2]. Since 
the anisotropy in the differential cross section directly reflected 
aristropy in the molecular potential, thus comparison suggested that 
the H+Cl0H potential should be very anisotropic. 

These ESA-CSA calculations on the DIM-3C potential surface were 
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extended to the D+BrH and D+IH exchange reactions [33], and the HBrH 
potential was obtained as discussed in 4.1. There remains considerable 
doubt [37] concerning the barrier height for the HC~H reaction, and 
thus H+BrH is a more suitable test case for a realistic study. Once 
again, ESA-CSA computations using the DIM-3C potential give a good 
agreement with the experimental [2] differential cross section, with 
strong backward peaking in the dlstribution. This is illustrated in 
Figure 2. 

~ 
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nJ 
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-'::1 
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0:: 
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100 140 180 

Figure 2. Differential Cr~ss Section5 for the D+BrH 
reaction , normalized to value at 180 . 

The ESA-CSA calculations on the LEPS surface for D+C~H were also 
extended [33] to the H+C~H, H+C~D and D+C~D exchange reactions. Here 
it was found that the room temperature rate constants agreed to within 
a factor of two with those obtained using the classical trajectory 
method and a variational state theory with semiclassical adiabatic 
ground-state transmission coefficients [38]. 

The ESA-CSA computations on the DIM-3C surface were extended [35] 
to the vibrationally excited exchange reactions H+BrH(v=l) and D+BrH 
(v=l). IOSA calculations on these reactions were also reported [35] and 
were found to give cross sections and rate constants in good agreement 
with the ESA-CSA results. This is illustrated in Figures 3 and 4 where 
ESA-CSA and IOSA comparisons of integral cross sections, summed over 
product rotational states, for these vibrationally excited reactions 
are shown. The comparison is also good for product rotational 
distributions [35]. 

345 



346 

O+BrH (v=1-.v') 
I 

D. C. CLARY AND J. P HENSHAW 

I 

/ 

I 

9 

No 

~ 1·0 -ESA-[SA 
1---.1 

I 

- -lOSA I 
I 

I 

> 
T 

m r 

f 

.0 

1-10 

'0 +-~.:r---...,--.----.-----.-----L-
·0 '1 ·2 

E1,3 (eV) 
Trans 
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This study also produced results on isotope effects, which are 
illustrated in Table 2. 

TABLE 2 

Rate Constants for the H+BrH(v)+HBr(v')+H and D+BrH(v)+ 
DBr(v')+H reactions calculated using the ESA-CSA method [35]. 
The temperature is 30OK. Units are cm3 molec- 1s- 1 • 

H+BrH (v=l) 
H+BrH(v=O) 
D+BrH (v=l) 
D+BrH (v=O) 

v'=l 

0.45(-12)a) 

0.68(-12) 

a) Numbers in parentheses are powers of 10 

v'=O 

0.20(-12) 
0.16(-13) 
0.26(-12) 
0.13 (-13) 
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These results show that, for the v=O reactions, the H+BrH reactions has 
a slightly larger rate constant than that for D+BrH, and this is because 
tunnelling is so important. For the v=l reactions, however, the effect­
ive barrier is not so large, and tunnelling is not so important. In 
this case the vibrationally adiabatic barrier is smaller for D+BrH(v=l) 
than for H+BrH(v=l), and consequently the 0 reaction has the larger rate 
constant. The results of Table 2 demonstrate that the vibrationally 
excited reactions have rate constants over an order of magnitude larger 
than those for v=O. They also show that the V=l reactions are not 
totally vibrationally adiabatic, in the sense that the v=l+v'=O rate 
constants are quite large. 

4.3. A Comparison of Results for H+BrH(V=O) 

In this Section we use results obtained using the close-coupling method 
of Section 3.1 to test the accuracy of those obtained using the CSA, 
ESA-CSA, IOSA, BCRLM and RBCRLM. We also compare with rate constants 
obtained using an improved canonical variational transition state theory 
combined with a small curvature tunnelling approximation and semi­
classical adiabatic ground state transmission coefficient (ICVT-SCTSAG 
method) [39]. The reaction is H+BrH (v=O) +HBr (v=O)+H with the DIM-3C 
potential energy surface described in 4.1 and [33]. 

The numerical details of the CC calculations are published else­
where [23], where some preliminary comparisons of the methods were made. 
The present comparison is more complete as we include CSA, BCRLM and 
RBCRLM results. Furthermore, all the IOSA and ESA-CSA computations 
reported in this Section used the initial rotational parameter 3=0. 
All of the results discussed in Section 4.2 were obtained from 
calaculations using J=3 but, as was discovered recently [23 I, it is more 
appropriate to use J=O so that artificial lowering of the effective 
reaction barrier, due to bond stretching at the transition state, is 
avoided. 
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The CC calculations of the reaction cross sections 

a(j+j') = a(n=O, j+n'=O, j') (21) 

and 

a (j) = 1: a (j+ j , ) 
j' 

(22) 

were done [23] over a range of energies sufficient to provide a room 
temperature rate constant. The CSA cross sections give very good agree­
ment with the CC results. This is illustrated in Table 3. 

TABLE 3 

Comparison of CC and CSA cross sections a(j) for H+BrH. 
Numbers in parentheses are powers of ten. 

o 
1 
2 
3 
4 
5 
6 

E 
Tot 

CC 

0.753(-4) 
0.594(-4) 
0.355(-4) 
0.161(-4) 
0.526(-5) 
0.111(-5) 
0.120(-6) 

0.22eV 

CSA 

0.757(-4) 
0.597(-4) 
0.356(-4) 
0.161(-4) 
0.528(-5) 
0.111(-5) 
0.120(-6) 

a(j)/ao 2 

E 0.34eV 
Tot 

CC CSA 

.378 (-1) .363 (-1) 

.347(-1) .330(-1) 

.288(-1) .270(-1) 

.209(-1) .188(-1) 

.134 (-1) .115 (-1) 

.745(-2) .600(-2) 

.339 (-2) .250(-2) 

One reason for the good accuracy of the CSA in this reaction is 
that the reaction is dominated by n=o+n'=o transitions [40] due to the 
strong bending potential. The n coupling, which is ignored in the CSA, 
will not thus be important. rt is also observed that the CSA works well 
for the H+H2 reaction [40,41] when compared with accurate CC results 
(see the Chapter by Schatz) . 

Figure 5 shows cross sections a(j=O) as a function of the initial 
translational energy E1rans . Results obtained using the CC, rOSA and 
BCRLM methods are comp~red in this figure. At very low collision 
energies, the BCRLM results give a superior agreement with the CC cross 

sections than those obtained using the rOSA. However, at higher 
energies, which includes the energy range most relevant to rate 
constants for temperatures from 150-300K, the rOSA cross sections are 
much more accurate than the BCRLM. 
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Figure 5. Cross Sections for the H+BrH(j=O) reaction 

This comparison is extended in Table 4, where we report reaction 
rate constants kIT) obtained by Maxwell-Boltzmann averaging the cross 
sections. 

TABLE 4 Rate Constants for the 3D H + BrH reaction. Units 
3 -1 

are em s 
molee-1 

Temp/l< Method 

ICVT- BCRLM RBCRLM roSA ESA-CSA CC [23 ] 
SCTSAG [32] 

150 4.0(-16)a) 1. 2 (-15) 1.0(-16) 3.6(-16) 2.2(-16) 1. 3 (-16) 

200 1. 7 (-15) 8.9(-15) 6.0(-16) 1. 5 (-15) 1.1 (-15) 7 . 6(-16) 

250 6.0(-15) 4 . 1(-14) 2.5(-15) 5. 2 (-15) 4.2(-15) 3.4(-15) 

300 1. 7 (-14) 1.4(-13) 7.7(-15) 1.4(-14) 1. 3 (-14) 1.1 (-14) 

a) Numbers in parentheses are powers of ten . 

Results obtained using the CC, IOSA, ESA-CSA, BCRLM, RBCRLM and ICVT­
SCTSAG methods are compared in this Table. It can be seen that all the 
approximat e methods overe stimate the CC result apart from the RBCRLM . 
At 300K, the ESA-CSA, IOSA, RBCRLM and ICVT-SCTSAG rate constants all 
agree with the CC value to within a factor of two, which must be 
considered a very satisfactory agreement considering that the rate 
constant increases by a factor of 85 over the temperature range 150-30CK. 

The agreement between the CC and IOSA and ESA-CSA rate constants 
improves markedly as the temperature increases. This is to be expected 
from the cross-section r e sults shown in Figure 5. Converse ly, the BCRLM 
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rate constants are too high by an order of magnitude. However, the 
RBCRLM rate constants show excellent agreement with the CC results at 
l50K, although the agreement gets slightly worse as the temperature is 
increased. This is because the rotational partition function appears 
to weight the rate constant too heavily at higher temperatures in the 
RBCRLM approach. 

The suitability of the BCRLM for a reaction such as H+BrH is 
further tested by determining the lowest bending wave function at the 
transition state, and determining the contribution from each j state 
(see 3.5). We find that the square of the spherical harmonic basis 
function coefficients have the values 0.075, 0.193, 0.234, 0.208, 0.145, 
0.082, 0.039, 0.015 and 0.005 for j=O,l, ... ,7,8 respectively. Thus less 
than 10% of the transition-state bending wave~unction is j=O in 
character. Hence, although j=O is assigned to the BCRLM cross section 
(18), the rotationally averaged formalism is clearly more appropriate. 

The main reason why the rOSA and ESA-CSA rate constants are 
slightly larger than the CC is that these approximate theories are not 
properly state-selective in j. The calculated CC rate constants k. (T), 
selected in the initial rotational state, showed a slight decreaseJas j 
is increased, while the ESA-CSA k(T) agreed very well with the CC k. (T) 
for j:O [23) . The reason behind the decrease in k. (T) as j is incr~ased 
is that the pctential energy surface is cOllinearl~ dominated, and any 
initial rotational excitation will make it difficult for the attacking 
atom to "lock in" to the minimum potential energy path. 

The agreement between the rCVT/SCTSAG and CC rate constants must 
be considered to be very satisfactory when it is realised that the 
SCTSAG transmission coefficient is 1050 at l50K and 5.9 at 300K [32). 
Furthermore, alternative methods [42) for computing the transmission 
coefficients have recently been developed and these might give improved 
agreement with the CC results. Also, we should emphasise that there 
are error bars, concerned with numerical convergence, on the rate 
constants of Table 4. We estimate the error to be 12% for the CC 
results [23), although since the BCRLM, rOSA, ESA-CSA and CC 
calculations were done with very similar numerical procedures [23), the 
errors involved in comparing the results of these methods will be very 
slight indeed. 

Since the ESA-CSA method gives such good rate constants, it is 
interesting to compare the rotational product distribution obtained 
using this method with those computed using the CC technique. Such a 
comparison is presented in Figure 6. rt can be seen that the ESA-CSA 
calculations give too much rotational excitation in the HBr products. 
Thus, the sUdden approximations used in the ESA-CSA, although giving a 
good accuracy for j' summed cross sections, are not quite so accurate 
for the rotational product distributions. This is also true for the 
rOSA, which gives rotational distributions that agree well with the 
ESA-CSA [35 J. 
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5. PHOTODISSOCIATION 
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As we emphasised in the Introduction, the theories for light-heavy-light 
reactions can be applied to the calculation of photodissociation spectra 
of symmetric triatomic molecules such as 

hu 
OH(x'lT)+ H, (VII) 

where the excited state of 'E, symmetry has a normal reactive scattering 
potential energy surface. Ab initio calculations suggest that the 
barrier height of the excited surface is 1.97eV [43]. Since the overlap 
between the ground and scattering state wavefunctions will only be large 
when the scattering energy is close to the energy of the barrier height, 
a large number of vibrational channels have to be included in the 
reactive scattering calculation. This makes accurate close-coupling 
or CSA computations very expensive, but IOSA and BCRLM calculations 
are tractable. Since the IOSA gave accurate cross sections at higher 
energies for the H+BrH reaction (see Figure 4), then it would seem 
appropriate to apply the IOSA to the photodissociation problem. 

The photodissociation of H20into the A 'B, state is of considerable 
experimental interest [44-46]. In particular Andresen et.al. have 
recently measured the rotation and vibration distributions of the 
product OH(X2 lT) diatomic radicals [45,46]. They used an excimer laser 
at l57nm to dissociate the H2 0 molecule. Furthermore, ab initio 
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calculations of points on the reactive potential energy surface for the 
H(2 S ) + OH(X2 n) system have been performed using the CEPA method [43). 
We have used this ab initio data to parameterise a LEPS potential energy 
surface. Thus our predictions should be realistic. 

There have been several high quality 3D calculations on the photo­
dissociation of triatomic molecules using non-reactive potential energy 
surfaces [47-51). Indeed, Segev and Shapiro calculated [47) the photo­
absorption spectrum for the process 

hv ... OH(A2 );+) + H (VIII) 

using a non-reactive potential energy surface for the product channel 
which has B1AI symmetry. As far ~s we are aware, however, there have 
been no previous 3D calculations of photodissociation cross sections 
for a reactive product potential energy surface. However, there have 
been some reactive photodissociation calculations for collinear CO2 by 
Kulander and Light [10) and for fixed-angle H2 S by Kulander [52). 

In 5.1, we describe how the IOSA is used to calculate photo­
dissociation cross sections. Particular care has to be taken in 
averaging over the orientation-angle dependent scattering wave function 
using the bending wavefunction of the ground state. To do this we 
apply, to the reaction problem, a procedure developed by Segev and 
Shapiro for the vibrational predissociation of Van der Waals complexes 
[51). Then in 5.2, we present our calculations of the photoabsorption 
spectrum for the H2 0 photodissociation (VII). 

5.1 IOSA for Reactive Photodissociation 

Here we describe the essential features of the application of the IOSA 
to reactive photodissociation. More details of the approach will be 
published elsewhere [ 53). We wish to calculate the photodissociation 
cross sections I discussed in Section 1. For most problems, the 
transi tion dipole moment surface >I will not be known. It is unlikely 
that >I will have a significant ef~ect as it is not a highly oscillatory 
functign like the scattering wavefunction, nor a highly localized 
function like the bound state. Thus, it should be a reasonable approx­
imation to compute 

I = C' < IJJ l -) I<p >2 
m n 

Here we describe the theory for initial total angular momentum J=O, 
although the theory for J>O is straightforward. 

In computing the bound-state wavefunction we continue to use the 
body-fixed coordinates defined in 3.3. We choose a fixed orientation 
anglee, neglect the j2 and ~2 terms of equation (1), and use a coupled 
basis set of harmonicYoscilrJtors to solve the resulting bound-state 
Schrodinger equation which depends on Rand r only. The energy levels 
obtained in this way are called( ,(e) aJd corrJspond approximately to 
those for the symmetric and asy~etric stretch normal coordinates. The 
wavefunction obtained from this calculation is <ps , (R,rle). Once a 
grid of~, (e) has been obtained for various value~ of e, the Schrodinger 
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equation 

b 
[j2 [1 + 1 ] + €n,(e)] e!>n"n,(e) 
---? iT 

(24) 

2J.1 ex y y 

is solved using a basis set of Legendre polynomials with ry and Ry set 
to the equilibrium values. The resulting wave function in this "10S­
bound state" approximation [51] is 

(25) 

Note that the bound state label n = (n", n' ). For many problems, 
including the one of interest here, only the ground state n=O will be 
of interest. 

For the scattering state, the 10SA is applied in the way described 
in 3.4 with the i and J quantum numbers set to zero. We obtain the e 
dependent scattering wave function 

(-) 
1jJm' (R,r ;e), 

where m' defines the final diatomic state and the boundary conditions 
appropriate to photodissociation have been applied [10]. These 
computations are repeated for various values of e, and the 10SA wave­
function 

(-) 1/2 0 
_ 1jJ , (R,r;e)(2 TT) Y < (e ,0) 

m J 

is obtained where m _ (m' ,j). The photodissociation overlap is then 
given by 

( )* 1/ 0 s b 
x1jJ ~ (R,r;e) (2TT) 2 Y.(e,O)e!> ,(R,r;e) e!> (e). 

m J n n 

(26) 

(27) 

Substitution of this expression into (23) and using the completeness 
of the spherical harmonics to sum over j gives 

1(w,m,n) 

where 

00 2 
f r dr 
o 

(28) 

* 
1jJ(-) (R,r;e) "'s, (R,r;e) 

m "'n (29) 

where m and n' now refer to vibrational states only. Hence the problem 
reduces to the calculation of the overlaps of equation (29) for each e , 

b and averaging these overlaps using the bending wave function e!>n (e) as 
shown in equation (28). 

Kulander and Light [10] described how Fmn , (e) can be calculated 



354 D. C. CLARY AND J. P. HENSHAW 

efficiently within the framework of the R-matrix propagator method [22]. 
This technique involves dividing up the scattering coordinate R into 
small sectors and propagating the R-matrix, the ratio between the 
scattering wave function and its derivative, from sector-to-sector. 
Kulander and Light showed that integrals similar to F I (6) can be 
propagated numberically at the same time as the R-mat~~x. Multiplication 
by an appropriate complex matrix at the end of the propagation ensures 
that ~~-) (R,r;e) has the correct boundary conditions [10,48,54]. 

The IOSA theory for reactive photodissociation described above, 

together with the Kulander-Light technique for calculating photo­
dissociation integrals, has been incorporated into a general computer 
program for symmetric triatomic molecules. The program can be used for 
various mass combinations. For example, calculations of the 3D photo­
absorption spectrum for 

CO2 + CO ( I l: +) + 0 (' S ) 

have been performed [53]. It should be noted that the angular range 
of e contributing to the integral (28) is highly localized about the 
equilibrium bond angle for the ground vibrational state and hence the 
lOS approximation of holding 6 fixed should be very reasonable, even 
for non light-heavy-light reactions. However, the technique is still 
best applied to light-heavy-light systems for which e is a natural 
orientation angle for the reactive scattering calculations. Clearly 
H2 0 is such a system. 

5.2 Calculations on H2 0 

We have calculated [53], the full photodissociation spectrum for the 
dissociation of H2 0 into OH(X2 n)+H on the first absorption band, the 
A 'B, state. A LEPS potential was used for the dissociating state in 
which the Sa to parameters were made e dependent and were varied to 
obtain a good fit to the ab initio data of Staemmler and Palma [43 ] . 
This potential had a barrier height of 1.97eV and, at the transition 
state, the O-H bond length was R = 1.08K and the bond angle was 
e(H2 0) = 1050 • The Sorbie-Murre~~ potential [55] was used for the H2 0 
ground state and here RO = 0.957K and e(H2 0) = 104.50 . 

Figure 7 shows our ~alculated photodissociation spectrum for H2 0, 
summed over all final OH vibrational states. The energy on the axis 
corresponds to the OH(v=O) reference energy and the energies 2-3.7eV 
correspond to the laser wavelength 141-174nm. 

The shape of the calculated spectrum is in good agreement with 
experiment [56], although the calculated peak occurs at 0.5eV higher 
than the experimental peak. This suggests that the barrier height in 
the potential used is probably too high. We also computed the OH(v) 
vibrational state population at an energy of 2.7geV which corresponds to 
a photon at 157nm, which is the wavelength at which Andresen et.al. [461 
measured the OH(v) distributions. For the relative populations in the 
v=O, 1 and 2 states we obtained the ratio 1:1.07:0.65 which compares 
fairly well with the experimental ratio of 1:1:0.15. 



LIGHT-HEAVY-LIGHT CHEMICAL REACTIONS 

0.01198 
>-
f-
.-l 

CD 9 .9119b « 
CD 
0 
a::: 
0-

0.0110. 

2.9 2.5 3.9 

ENERGY leV 

3.5 

Figure 7. Photodissociation spectrum for H2 0 

9.' 

>-
f- 0.3 

d 
CD « 
CD 
0 0.2 a::: 
0-

0.1 

2.0 2.5 3.0 

ENERGY leV 
3.5 

4.9 

4.0 

Figure 8. Reaction probabilities for H+OH(v=4)~HO(v'=4)+H 
at e = 103°. 

355 



356 D. C. CLARY AND]. P. HENSHAW 

One interesting feature of our calculated spectrum, is the 
observation of structure at higher energies. This is due to reactive 
scattering resonances. Figure 8 shows a calculation of reaction 
probabilities for H+OH(v=4)+HO(v'=4)+H at e = 1030 . It can be seen that 
the sharp extremes in these reaction probability curves correspond 
exactly to the energies at which the structure is seen in the photo­
dissociation spectrum. Furthermore, the lOS angle averaging of equation 
(28) does not completely wash out the resonance structure. The reactive 
resonance is caused by vibrationally adiabatic potential energy curves 
having local minima for higher vibrational states which cause flux to 
get temporarily trapped at certain collision energies [53]. These types 
of vibrationally adiabatic local minima are a common feature of chemical 
reaction potential energy surfaces [57J and are due to the vibrational 
force constant reducing in magnitude along the reaction path. The 
experimental search for reactive resonances has largely been confined 
to molecular beam experiments of the angular distributions for the 
products of chemical reactions [58J. Our calculations suggests that a 
more positive identification of reactive resonances might occur in high­
resolution photodissociation experiments, particularly if the spectrum 
for each final vibrational state can be resolved. Photodissociation 
experiments explicitly probe the transition-state, and the photo­
dissociation process does not suffer so heavily from the angular 
momentum summation that tends to average out resonances in 3D reaction 
cross sections [59J. Indeed, we ~edicted the importance of reactive 
resonances in photodissociation in a model calculation [60] and our 
realistic calculations discussed here suggest that they should be 
detectable. More details will be presented elsewhere [53 \ . 

6. CONCLUSION 

Light-heavy-light chemical reactions are a rare class of reaction in 
that close-coupling calculations, and a variety of approximations, can 
be used readily to calculate quantities such as cross sections and rate 
constants. Such computations are possible because the centre-of-mass 
in both entrance and exit reaction channels can be placed on the heavy 
atom, and the matching between entrance and exit channel wavefunctions 
is much simplified. We have reported close-coupling calculations for 
the H+BrH reaction in three dimensions, and these results have been used 
to test the accuracy of a variety of approximate theories including an 
extended transition state theory, some sudden approximations and two 
rotating linear models. Light-heavy-light reactions are systems which 
offer the most comprehensive and tractable test of these approximations 
for reactions beyond H+H2 . 

An application of light-heavy-light reaction theory to a problem 
of considerable current interest is to the computation of the photo­
dissociation spectra for symmetric triatomic molecules having reactive 
dissociative potential energy surfaces. We have reported IOSA 
computations of the photodissociation spectrum for the first absorption 
band of H20. Reactive scattering resonances produce some structure in 
this calculated spectrum. The results suggest that photodissociation 
experiments on symmetric triatomics might detect reactive scattering 
resonances directly. 
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ABSTRACT. The arrangement channel quantum mechanical formalism is 
discussed as a general approach to reactive scattering. Features of the 
equations are examined and the positive and negative aspects are noted. 
Both differential and integral equation versions of the theory are 
presented (with primary emphasis on the solution of the integral 
equations), as well as time independent and time dependent approaches. 
Explicit algebraic equations suitable for numerical solution are derived 
for a general 3-dimensional reactive collision system. Previous 
applications of the approach are also reviewed. 

1. INTRODUCTION 

The central difficulty in reactive scattering which complicates it 
compared to nonreactive scattering is the fact that there exist mUltiple 
asymptotia, each of which corresponds to a distinct possible clustering 
of the particles comprising the system. Associated with each cluster­
ing, there are in general sets of variables or degrees of freedom which 
describe internal motions of the cluster, there are variables describing 
the motion of various clusters relative to one another and there are 
the variables describing the motion of the overall system center of 
mass. For each arrangement of the particles into a set of distinct 
clusters, the total wavefunction must satisfy appropriate scattering 
boundary conditions in the limit that the relative separations of all 
particle clusters in that arrangement become large. The simultaneous 
imposition of these different asymptotic boundary conditions is quite 
complicated when standard Jacobi coordinates for each arrangement and 
the usual Schrodinger equation are employed. A second, related 
difficulty is the fact that the natural basis states for describing 
various internal degrees of freedom are not orthogonal for different 
arrangements, except in the limit of infinite separations. There are 
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several ways in which this difficulty can be addressed. The first was 
implemented many years ago in the early days of quantum mechanics and 
has subsequently been used in the only successful converged full three 
dimensional (3D) calculations for reactive scattering for a realistic 
atom-diatom reaction, H+H,. (1-9) In this approach, configuration space 
is divided up into separate regions in which the Schrodinger equation 
is solved using appropriate coordinates for each region. Then the 
resulting wavefunctions and their directional derivatives are matched 
on surfaces which divide the various regions. Finally, the wave function 
is required to satisfy the proper boundary conditions in the various 
asymptotic limits. The matching of the wave function and its directional 
derivative is in general very complicated and time consuming. 

A second approach to this problem of multiple asymptotia is to 
introduce specialized coordinates which change smoothly from one 
arrangement to the others in such a way as to enable one to analyze 
the wavefunction in the various arrangement limits. This leads to the 
definition of generalized "reaction coordinates". (10-16) The leading 
examples of these are the natural collision coordinates first introduced 
by Marcus (12) and the hyperspherical coordinates pioneered by Delves 
(10). These have led to important advances in reactive scattering 
theory but are discussed by others active in their study so we do not 
pursue them further here. 

The third approach to this problem was initiated in work due to 
Eyges (18), whose idea was later utilized by Faddeev (19) in the first 
rigorous mathematical treatment of the three body problem. In this 
approach, the Schrodinger equation is replaced by a system of equations 
for arrangement channel components of the wavefunction. (17-43) As we 
shall see, each piece or component of the wavefunction describes one 
(and only one) asymptotic region of the mUltiparticle system, when the 
collision energy is below the breakup threshold. In this formalism, 
the single Hilbert space associated with the Schrodinger equation is 
replaced by a direct product of Hilbert spaces, one for each arrangement 
or asymptotic limit possible. The Hamiltonian operator is also replaced 
by a matrix in arrangement channel space, which acts on a column vector 
the components of which are the pieces of the wavefunction associated 
with the various arrangements. There turns out to be considerable 
latitude possible in defining these wavefunction arrangement channel 
components and we shall focus on the one which, in our opinion, lends 
itself most simply to the treatment of reactive scattering. The Faddeev 
approach has, however, been employed in a number of studies also (44). 
These formalisms can be utilized in either differential or integral 
equation form as well as time independent or dependent form. We shall 
discuss all of these but our primary focus will be on the integral 
equation approach. This paper is organized as follows. In Section 2, 
we present the basic arrangement channel quantum mechanics formalism, 
both in differential and integral equation form. We discuss also some 
of the positive and negative features of the approach. Then in Section 
3, we show in detail how the equations are cast into a form suitable 
for actual computations. In Section 4 we briefly review the calculat­
ions done to date using the integral equation form of the equations. In 
Section 5 we discuss the status of the implementation of these equations. 
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2. ARRANGEMENT CHANNEL QUANTUM MECHANICS 

2.1 Time Independent Differential Equations 

We begin by considering the time independent Schrodinger equation for a 
system having three possible arrangements: 

A + BC + A + BC 

+ B + AC 
+ C + AB 

We shall employ Greek labels to denote an arbitrary arrangement 
(clustering). When all three particles are close to one another, the 
hamiltonian is taken to be 

H = T + V, 

(1) 
(2) 

(3) 

(4) 

where T is the total kinetic energy of the system and V is the total 
potential energy of the system. We associate with each arrangement A a 
vector RA between atom A and the center of mass of the diatom in 
arrangement A, and a vector r A between the two atoms of the diatom in 
arrangement A. Then we define HA by 

Lim 
R +00 

A 

HA is the unperturbed hamiltonian describing the atom and diatom in 
arrangement A. From equation (4), 

h (A) ° h b O dO ° 1 f h dO ° were V ~s t e ~n ~ng potent~a or t e ~atom ~n arrangement A. 
Then the perturbation responsible for scattering in arrangement A is 

V 
A 

H - H . 
A 

We notice that by equation (5), 

Lim 
R +00 

A 

V := o. 
A 

The time independent Schrodinger equation is 

(E - H) I/J = 0, 

and we note that by equation (8), 

Let us now divide the total wavefunction I/J into 3 pieces, 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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1jJ = t ,,=1 
(11) 

Then Schrodinger's equation can be written as 

Up to this point, the 1jJ" are arbitrary. We remove this arbitrariness by 
requiring that 

(E Hl ) 1jJl - V2 1jJ2 0, (13) 

(E - H2 ) 1jJ2 - V 3 1jJ3 0, (14) 

and 
(E - H3)1jJ3 - Vl 1jJl = o. (15) 

It is clear that we are simply requiring that equation (12) be satisfied 
by a particular cancellation of terms. It is the specification of how 
the different pieces in equation (12) cancel that determines the 
particular version of arrangement channel quantum mechanics (ACQM) that 
one obtains (i.e., the above choice is the "channel permuting" choice of 
Baer and Kouri (21-23), Kouri and Levin (25) and Tobocman (26), the BKLT­
ACQM formulism). A different specification of the cancellation (i.e., a 
different specification of the components 1jJ of 1jJ) leads to a variant of 
the Faddeev equations. Rewriting equations"(13)-(15), 

(16) 

(17) 

(18) 

which are the BLKT-ACQM equations for a 3-arrangement system. It is of 
interest to examine how the 1jJ" behave in the various relevant asymptotia. 
We begin by considering equation (18) in the limit that Rl becomes 
large. We note that H3 contains the full kinetic energy for the system 
plus the binding potential for atoms 1 and 2. The limit under consider­
ation is one in which the distance of atom 1 from the center of mass of 
atoms 2 and 3 becomes large. When this occurs, first Vl tends to zero 
so the equation becomes 

Lim o. (19) 
R +00 

1 

However, V12 also will tend to zero in this limit since particle 1 is 
receding away from both particles 3 and 2. Thus, the limiting form of 
the equation is 

o. (20) 
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so that W3 must have the character of a totally free wave at large 
separations of particle 1 from particles 2 and 3. However, at energies 
below the 3 body breakup, the wave function cannot display totally free 
character at large separation (this is a closed channel and therefore 
not observable at large separation). Thus, our conclusion is that 

Lim W 
R --

1 

o. (21) 

Technically, verify that (E - T ) cannot support any bound subclusters 
as Rt= so that below the breakup threshold, IjJ 3 must tend to zero in 
this limit. Arri e with this result, we now examine equation (17). The 
right hand side vanishes as Rt= due to the appearance of the factor IjJ 3 . 
Then we have 

o· , (22) 

but H2 involves the total kinetic energy and the binding potential V13 . 
This binding potential also tends to zero since particle 1 is receding 
from both particles 2 and 3. We are left with the equation 

Lim (E - T) W2 = 0, ( 2 3 ) 
Rl~O) 

so that W2 can only involve free wave motion in this limit. If the 
energy is below the breakup threshold, then the totally free channel is 
closed and cannot be observed in any asymptotic limit. Therefore, we 
conclude that 

o (24) 

also. Finally, we use this result in equation (16) to find 

o. (25) 

Now, however, the binding potential is that for particles 2 and 3, V23 , 
and this remains nonzero as particle lr~ from 2 and 3. Thus, in the 
limit Rl+oo, (E-Hl ) can support bound clusters of atoms 2 and 3, with 
particle 1 free. This is just the type of state associated with 
arrangement 1 so that WI asymptotically contains all the scattering 
information in which atoms 2 and 3 are bound and atom 1 is free. 1jJ2 and 
~ contain none of this information and indeed tend to zero in the 
region of configuration space associated with this arrangement. One may 
do an analogous analysis of equations (16)-(18) in the limit that either 
R2 or R3 tends to infinity. The result is that 

(26) 
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unless A = A' and ~Acontains all the scattering information associated 
with arrangement A, in which atom A is free and the other two atoms are 
bound. 

In the computational studies to be described in this paper, we 
actually deal with the so called amplitude densities, which are related 
to the arrangement channel wavefunction components by 

(27) 

where the index ranges from 1 to 3 on the left and modulus 3 on the 
right. It is noteworthy that while the ~A tend to zero in the limit 
RA,+oo, A'fA, the SA tend to zero in the limit that any of the scattering 
coordinates RA,+oo. This is ensured by the fact that VA~A tends to zero 
as RA,+oo, A'fA due to the factor ~A and as RA+oo due to the factor VA 
(see equation (8)). Thus, provided the VA is well behaved as RA + 0 
(i.e., not too strongly divergent), the sA can be expanded in terms of 
quadratically integrable basis functions. 

Therefore, bound state-like solution methods can be employed in 
calculating the sA. In place of the differential equations for ~A' 

equations (16)-(18), it is therefore convenient to solve instead 
integral equations for the sA. To derive these most easily, we write 
the formal solution for the ~A'S in matrix form as 

where 

+ 
~(Ai) q, ( Ai ) +G V~ (Ai ) - =0=-

[!(Ai) lA' 

[!(Ai) lA' 

V 

~A' (Ai) 

On' q,(Ai) 

on ,I (E-H A +is) 

(28) 

(29) 

(30) 

(31) 

(32) 

Here (Ai) denote the initial arrangement and quantum numbers. We then 
form 

S (Ai) (33 ) 

so that 

S (Ai) V¢(Ai)+VG+s(Ai) =- ==0-
(34) 

or explicitly 

(35) 
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1;2 (Ai) 
+ . 

0UV3<!>(3i) + V3 G3 1;3 (Al) (36) 

1;3 (Ai) 
+ . 

dUV,<!>(li) + V,G,1;, (Al). (37) 

It is clear that the inhomogeniety is zero only for two of these 
equations, but this is sufficient to ensure a nontrivial solution to the 
set of equations due to the cyclical coupling. The sequential nature of 
the coupling can be viewed in terms of the channel coupling array 
introduced by Baer and Kouri (23) and corresponds to the channel permut­
ing array choice (21-23, 25-26). This choice ensures a connected kernel 
in the equations, such that after two iterations, the kernel contains no 
terms in which there exists a spectator particle, i.e., all particles 
interact. Equations (28) or (35)-(37) are particular examples of the 
matrix generalizations of the ordinary Lippmann-Schwinger equations for 
systems permitting rearrangement processes (25, 45-46). The positive 
features of such equations include 1) all asymptotic boundary conditions 
are displayed explicitly due to the appearance of all possible partially 
interacting Green's functions, G:, i=l,2,3; 2) iteration of the 
equations is well behaved due to1the absence of so called disconnected 
diagrams after a finite number of iterations; 3) the equations can be 
explicitly decoupled so far as the arrangement channel labels are 
concerned by a simple back substitution; 4) due to explicit arrangement 
channel coupling, there occurs no need to match the wave function in 
different arrangements at some boundary surface; 5) Basis set expansions 
may be made in terms of bound state (L2) type functions due to the 
nature of the 1;A' (Ai); 6) algebraic solution methods are appropriate and 
these should be highly suited to implementation on supercomputers 
(essentially the natural solution method involves the solution of 
simultaneous algebraic equations); 7) much of the computational algebra 
can be set up as energy independent; 8) it is straight forward to cast 
the equations into a purely real form so that only in the last stage is 
complex arithmetic required; 9) a single formalism is able to describe 
all types of reactive systems. Negative features of the formalism 
include 1) The arrangement channel matrix generalization of the 
Hamiltonian is not Hermitian (this is true of all such formalisms 
including the celebrated Faddeev equations (27~,42)); 2) the optimum 
choice of expansion basis functions for the dependence on the scattering 
variables is not necessarily obvious, nor is the optimum choice of a 
distortion potential; 3) because of the great generality of the 
equations, there may exist specific methods which are more easily 
applied to certain special systems; 4) the coupled equations for the 
arrangement channel wavefunction components ~ can have solutions which 
are not permissable solutions of the original Schrodinger equations; 
5) the permutative coupling of arrangement channels is highly asymmetric 
for systems having more than 2 arrangements. In the remainder of this 
paper, we shall explicate the above points. 

2.2 Detailed Properties of the Equations 

We now wish to consider the equations in some detail in order to expose 
the features alluded to in the preceeding Section. The asymptotics of 
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the equations are most easily seen using the arrangement channel 
component ~A equations in integral form. From equation (28), we note 
that 

(38) 

For the sake of discussion, but without loss of generality let us take 
A=l. Then we have 

~l (li) ¢(li) 
+ (li) (39) + Gl V2 ~2 

~2 (li) 
+ (li) (40) G2 V3 ~3 

~3 (li) 
+ 

G3 Vl ~l (li) (41) 

It is clear that only ~l (li) has an incoming wave, ¢(li). Furthermore, 
the outgoing scattered waves in ~A' (li) are generated by the partially 
interacting Green's function Gt,. However, an unusual feature of these 
equations is that the scattering amplitude in arrangement 1 is generated 
by the amplitude density V2~2 (li)! This has been demonstrated computat­
ionally for the H+H2 collinear reaction (43). Because the asymptotic 
behavior for a given arrangement A' is concentrated in the single 
component ~A' (Ai), one may use either standard Jacobi coordinates in 
computational studies or one may employ any of a variety of natural or 
reaction coordinates. 

In discussing connectivity of the kernel, it is simplest to write 
the potential in terms of pairwise and three body interactions: 

(42) 

where V123 tends to zero if the distance between any pair of particles 
becomes large. If we label arrangements by the particle index of the 
(asymptotically) free particle, then 

V 
A 

HA = T + VA'A" 

(43) 

(44) 

where A=1,2,3 and AfA'fA"fA. Iteration of equation (28) twice yields 
the equation 

!(Ai) = ¢(Ai) + ~: V ~: V ~: V ! (Ai) (45) 

and the kernel ~ of this equation is 

G+ V G+ V G+ V. 
=0 =0 =0 

K = (46) 

He wish to examine each element of this 3X3 matrix in order to see if it 
contains any t~rms in which one of the particles does not interact with 
any others. G lnvolves the Green's functions G+, given by 

=0 A 
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where 

+ 
G o 

1/(E-H +i£) 

1/(E - T - VA'A" + i£), 

1/(E - T + iE) 
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(47) 

(48) 

(49) 

(50) 

is the totally free Green's function. Since it corresponds to all three 
particles propagating freely (without interaction), it is clear that the 
factors G+ cannot in any way influence the connectivity properties of ~. 
Thus, foro the purpose of seeing how the particles interact with one -
another in ~, it suffices to examine the product y3. By equation (32), 
this is 

(51) 

Because of the purely multiplicative nature of the VA' the order of the 
products is irrelevant and we see that V3 involves only V1V2V3 . By 
equation (42), this is 

All terms involving V123 are connected due to this being a three body 
interaction. Therefore, 

(53) 

2 2 
V12V23 + V12 V13 + manifestly connected terms. (54) 

B~t V~2V23 involves 1 interacting with 2 twice followed by 2 interacting 
wlth tnree. Graphically, this is 

:=1=1 = 
3--------------------~--------
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which is clearly connected. 

1--------,------.---------.-------

2------~----~------,+_----

( 
3-----------------------L------

which is also connected. Thus, the kernel of the twice iterated 
equation is completely connected. The iteration of the equations also 
accounts for their becoming uncoupled. This is the result of the 
property of the matrix y becoming a diagonal matrix when cubed (equation 
(51)). Equivalently, we simply back substitute equation (41) into (40), 
and this result into equation (39) to obtain 

Similarly, one can obtain slightly more complicated expressions for 
1).>2 (li) and 1).>3 (li) (which by the way are manifestly inhomogeneous 
equations due to the inhomogeniety in the 1).> (li) equation). This 
decoupling of the equations upon iteration fias potentially important 

(55) 

,;: gnificance when numerical calculations are performed since it reduces 
the size of the equations to be solved and converts the calculation of 
the other scattering amplitudes into simple matrix multiplications. 

The avoidance of the need to match the wavefunction from the 
various arrangement has been shown explicitly for the BKLT type 
equations by Baer and Kouri (21) in the first calculations done for a 
simple waveguide model. Subsequently, extensive calculations for a 
variety of collinear systems have amply verified this fact. (21-23, 
38-40,43) Basically, the boundary matching procedure explicitly couples 
the wavefunction in the various arrangement channels so that information 
of what is happening in one arrangement is communicated to the other 
arrangements. In general, this must be done for all arrangements 
simultaneously. The interarrangement coupling of the BKLT equations 
achieves this without having to define a hypersurface on which matching 
is carried out. Since the geometry of a matching hypersurface is 
strongly dependent on the potential for the system, one expects that 
different systems might require radically different matching surfaces. 
This is avoided in the present formalism. 

The choice of basis functions for expanding the amplitude density 
functions is still a subject of intensive research. Rather than state 
the optimum choice, we can only indicate the types of functions used to 
date. In the initial studies of Baer and Kouri (21-22) for simple wave­
guide models in which the atom common to two arrangements was taken to 
be infinitely massive, it could be shown analytically that the natural 
expansion functions, both for vibrational and translational (scattering 
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coordinate) variables, were the asymptotic vibrational states in the two 
arrangements. When collinear reactions with smooth realistic potentials 
were studied recently, it was found again that vibrations were readily 
expanded in terms of the as)mptotic vibrational states of the diatoms. 
For the translational or scattering variables, it was found that 
particle in a box states worked at least as well as did vibrational 
states. (38) The use of either type function is made possible by the 
fact that 'the ~A' (Ai) tend to zero in all asymptotia. 

Because one employs L2 expansion bases in all degrees of freedom, 
the relevant integral equations are converted into simulations inhomo­
geneous algebraic equations which may then be solved by a variety of 
methods. However, it is also possible to convert the equations into 
integral equations in two dimensions and it may be possible to solve 
these equations noniteratively by a generalization of the Volterra 
integral equation algorithm developed by Sams and Kouri (47-51). 
Alternatively, one may utilize a reaction coordinate approach and 
convert the equations into the form of standard close coupling equations 
whose structure is analogous to that of purely inelastic scattering. 
(41,17) Finally, it may be possible to employ a generalization of a wave 
packet formalism and solve the time dependent version of the ~A' (Ai) 
equations. These equations are 

in 
at 

~l Hl~l + V2~2' (56) 

i1'l a ~2 H2~2 + V3~3 
at 

(57) 

ifl ~3 H3~3 + Vl~l' 
at 

(58) 

which sum up to the time dependent Schrodinger equation 

Hi a 
at 

(~l + ~2 + ~3) = H(~l + ~2 + ~3)' (59) 

Tile question of the energy independence of a large portion of the 
computation will be discussed in detail in the next Section when we 
examine the explicit equations in the straightforward algebraic equation 
approach. However, it is essentially a consequence of the fact that 
only the translational portion of the Green's function involves any 
energy dependence. By means of appropriate changes of variables, we are 
able to isolate this dependence so that the same amount of energy 
dependence occurs in the three dimensional problem as arises in the 
collinear one. 

In order to work only with real arithmetic, it is standard to 
introduce the reactance operator, related to the transition operator by 
the Heitler damping equation. In inelastic scattering, the relation 
hinges on the equation 

G+=GP-inO(E-H,) (60) 
A~. 1\ 
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where Gf is the principal value or standing wave boundary condition 
Green's function which is purely real. Then 

+ 
T A = V A + V AG A T A (61) 

where by TA we refer to the ordinary transition operator for nonreactive 
scattering in arrangement A: 

+ 
TA VA + V G V 

A A 
(62) 

+ 
G 1 (63) 

E - (H + 
A V A) + iE 

Then the reactance operator is defined by 

K = V 
A A + V AG~ K A· (64) 

We form the difference of equations (62) and (64), and use equation (60) 
to write 

V GP(T -K ) - irrV 6(E-H )T . 
A A A A A A A 

The formal solution of equation (64) for K is 
A 

and solving equation (65) for TA - KA, we obtain 

or 

Now 

and 

TA 

because G+ 
=0 

G+ 
=0 

-i~(l-V GP)-l V '(E H )T 
" A A A U - A A 

K, -irrK (E-H )T . 
A A A A 

is diagonal, one can readily verify that 

GP in 6(E-H ) 
=0 =0 

o 

6(E-H )= 6(E-H2 ) 

o 
=0 

(65) 

(67) 

(68) 

(69) 

(70) 
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o 0 

o 

o 

Now we can, e.g., consider equation (34) and write it as 

Then 

v ! (Ai) + V ~; l (Ai) 

T ! (Ai). 

+ T = V + VG T ==0= 
and we define 

K = V + VGP K. = ==0 = 

371 

(7l) 

(72) 

(73) 

(74) 

(75) 

As before, we form the difference of T and ~, employ equation (69) and 
formally solve for T-K to obtain 

~ = ~ -in ~ (E-~o)~. (76) 

Associated with K there is a real amplitude density i(\i) defined as 

K 1 (Ai) V i(Ai) (77) 

such that 

(78) 

Thus, the formal structure is analogous to that of nonreactive 
(inelastic) scattering. All the calculations done recently for 
collinear systems with smooth, realistic potentials are based on 
equation (78) and the physical transition amplitudes are computed using 
the arrangement channel generalized damping relation equation (76). 

Finally, with regard to the desirable features, the above formalism 
has made no use of any special features of the reaction process. It is 
completely general and in principle can be applied to any reaction. 

Some of the negative features of these equations are as follows. 
First, and perhaps foremost, is the fact that the arrangement channel 
matrix generalized Hamiltonian is no longer Hermitian. This is a 
general feature of such formalisms, including that due to Faddeev (27, 
36,42). The consequence of this is seen if one considers the time 
dependent equations, (56)-(58), in matrix form. One has 

.'l: (Ai) H .'l: (Ai) (79) 
at 

with 
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H H + ~, (80) 
=0 

(:' 0 :\ H H2 (81) 
=0 

H3) 0 

The formal solution of this equation is 

~(Ai) = exp(-i~t/~) ~(AijO). (82) 

However, due to the lack of Hermiticity, the spectrum of B includes, in 
addition to the normal spectrum of the ordinary Hamiltonian H, the 
possibility of complex eigenvalues. The occurence of such then causes 
the general operator exp(-iBt/h) to be undefined unless one considers 
it in a projected subspace (42). Within such a subspace comprised of 
all physical solutions to the time dependent Schrodinger equation, 
equation (82) is perfectly well behaved. Let us consider again the 
time independent equation 

(83) 

Let us suppose that the components of ~ are such that 

~ ~A + 0 (84) 

except perhaps for a set of points of zero measure. Then it follows by 
equation (83) that ~ defined by 

~ = ~ ~A (85) 

must be a solution of the Schrodinger equation with energy E. The only 
solutions of equation (93) which are not also solutions of the 
Schrodinger equation are those for which 

X ~A = 0 (86) 

e··.' erywhere. These are called spurious solutions (36,42) and they can 
have complex eigenvalues. However, they are readily identified by the 
property (86). The degree to which such spurious solutions create 
problems for the BKLT formalism is not clear as yet. Certainly no 
problems have been encountered in the time independent solutions carried 
out to date. These have all been for systems having 2 rather than 3 
arrangements, although both collinear and 3-dimensional problems have 
been solved successfully. Wave packet solutions of equation (79) are 
now under study. Since this method requires the evaluation of the 
action of exp(i~t/n) on the packet, perhaps more understanding of the 
consequences, if any, of the spurious eigenstates of ~ will be forth­
coming. 

A second area of question for this approach revolves around the 
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choice of expansion basis functions. All calculations done to date have 
employed asymptotic vibrational states rather than allowing them to 
change as the reaction path is traversed. However, recently some work 
has been done on trying to generalize the treatment to include an 
adiabatic vibrational basis (17). At this point, no system has been 
attempted for which solutions have not been obtained but the convergence 
rate might be much faster with a more sophisticated basis. Similarly, 
the translational basis functions used most have been the simple 
particle in a box functions. It may be that more rapid convergence can 
be gotten with a different basis. This is still a matter of study. 
Related to this issue, most of the recent studies have made use of 
distortion potentials for the translational motion. This has the effect 
of reducing the size of the perturbation, as well as driving the 
translational part of the Green's functions to zero properly in non­
classical regions. The result was a significant acceleration in 
convergence (in fact until recently, the only successful BKLT calculat­
ions for three finite mass atoms interacting collinearly via a smooth 
potential were done with a distortion potential; now successful calcul­
ations have been done without a distortion potential and the convergence 
is found to be slower). The problem is that no systematic procedure for 
choosing the distortion potential for the 3-dimensional reactive scatter­
ing problem exists, although there is hope for finding one. The inherent 
assyrnmetry of the BKLT equations has not yet been studied since this 
requires that the system involve more than 2 arrangements. It may create 
problems with the rate at which solutions converge with basis set. 

Finally, whenever one develops a completely general procedure for 
solving problems, it often occurs that there are specific special 
problems for which hand tailored methods may be more efficient. In 
spite of this, it is still important to have both approaches available 
in order to be able to address any type of system which might be 
encountered. 

3. SOLUTION OF THE BKLT EQUATIONS 

In the following we shall focus on the 3-dimensional case since the 
simpler collinear problem can be understood readily in terms of it. An 
attractive feature of the BKLT formalism is the fact that the basic 
approach to solving the equations is the same for both collinear and 
3-dimensional problems. In addition, we shall concentrate on equations 
(35)-(37) assuming that the initial arrangement A is labeled as 
arrangement 1. Since we haven't specified which of the three 
arrangements of a general ABC system, 

A + BC 

B + AC 

C + AB, 

is 1, this entails no loss of generality. Our initial quantum index i 
represents the set of quantum numbers nojomoJoMo' respectively the 
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initial vibration, diatom angular momentum and total angular momentum 
quantum numbers. The initial state (li) is given (in the coordinate 
representation) by 

(87) 

where ~, is the vector 
atom in arrangement A I , 
in arrangement A', 

from the center of mass of the diatom to the 
is the internuclear vector of the diatom 

is a solution of the unperturbed radial equation in the body frame (if 
no distortion potential is employed, then 

is just the body frame regular Bessel function (52)), DJ is the usual 
representation coefficient for the 3-dimensional rotati~ group, Y. 
is a normalized spherical harmonic associated with the internal Jom 
angle Yl between ~l and :1; ~l' el and ~l are the Euler angles 
associated with orlenting the 3 atom triangle in space (with the 
angles el , ~l normally being chosen as the angles of ~l relative to a 
space orlented coordinate system) and 

x . (r l ) 
noJ o 

is the initial diatom vibrational state (including effects of 
centrifugal distortion when the diatom is initially in rotor state jo) 
satisfying the equation 

fJ.2 1 a 
(r2 

a j (j+ 1) 1 {--[ -----, 
ar l 

-) - -r- + V(Rl 0' r l )} Xnj (r l ) 
211 r l 1 dr l r l , 

= E 
nj X . 

nJ 
(r l ) . (88) 

Here Rl 0 is a sufficiently large value of Rl that the atom and diatom 
in arrangement 1 do not interact and 11 is the system reduced mass common 
to all arrangements (2-3); i.e., R I' r I are mass scaled coordinates. 
We form the cordinate representati~es ot the principal value version of 
equations (35)-(37) by forming the scalar products 

<!3AIEAI I1;A ' (li» 

and making use of the locality of the potentials VA. This implies that 
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<R r Iv .= V (R (R 
-X'_X' X'+l'X' X'+l -X'+l -X':X') :X'+1 (~X':X') 

X (~X '+1 (~X ,:x,) :X '+1 (~X ':X')) (89) 

for any st~te vector X, w?ere ~A'+l (~x':X') means.the vector ~X'+l 
correspond~ng to the conf~gurat~on ~x" :x' and s~m~larly for rX'+l 
(~X':A')' We employ the short hand notation fX'+l (~X':X') to denote 
funct~on associated with the X'+l arrangement but expressed in terms 
the ~X" :X' variables. Then our equations are given by 

~(X' lIn j m J M IR, ,r, ,) o 0 0 0 0 _1\ _1\ 

a 
of 

x ~(X'+llln j m J M IR~, lr~, 1)' (90) o 0 0 0 0 -1\ + -1\ + 

where again we recall that if X'=3, then X'+l is 1. We now expand the 
amplitude densities in basis sets according to 

~(X' lIn j m J M IR, ,r, ,) o 0 0 0 0 -/\ -1\ 

xnj(r x ,) D~ (4)X,8 X,1J.i X') Yjm (Yx"O) 

x ~(x'njmJMlln j m J M IR ,). 
o 0 000 X 

In addition, the Green's functions are expanded as 

(91) 

GP (R r IR' r' ) = X'+l _X'+l_X'+l_X'+l_X'+l 
E 

J'.M' 
n' j 'm' 

mil 

J' 
Dm'M' (4)x '+18 X '+l1J.i x '+1) 

~'* * X D U 
m"M' (tI>~'+18~'+11J.i~'+1) Yj'm' (Yx'+1'O) Yj'mll(y~'+l'O) 

* 
(rX'+l) Xn'j' (r~'+l)' 

where the radial Green's function is given by 

E reg 
mill 'VJ1n'j'm"'m' 

irreg 
x tlJJ'n'j1m"'m" 

(92) 

(93) 
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and 

1jJirreg 
J'n'j'mHlrn" 

is the irregular solution of the unperturbed body frame radial equation. 
We substitute these expansions into equation (90) and employ the relation 

J' 
Dm'M' (¢A'+l 8A'+1 1jJA'+l) 

J' J' 
~ d m 'T<. ( 6. A ' , A ' + 1) D1flM , ( ¢ A ' 8 A ' 1jJ A ' ) 

(94) 

which expresses the A'+l rotation matrices in terms of the A' ones with 

the angle 6.A, ,A'+l defined by (2-3) 

(95) 

This can be expressed in terms of A' arrangement coordinates only. The 
resulting expression is multiplied on both sides by the relevant basis 
functions in arrangement A' and integrated over r A"¢A,,8 A,,1jJA"Y A" use 
being made of the orthogonality of the basis functions to obtain 

* R ' 2 () A' +1 Xnj r A, 

m"m 

x 1; (A'+ln"j"m"JMlln j m J M IR' ) 
00000 A'+l 

In this equation, we point out that the argument R"'+l occuring in 

In''j"ffirn" 
g"'+l 

(96) 

must be interpreted as a function of RA, ,rA, ,Y A •. Thus, it is under the 

integrals over r", and \ •.. Similarly, V"'+l (RA,rA~Y"') means V"'+l 
expressed at the point deflned by R""rA"Y",' so It also lS under the 
integrals over r""Y",. Furthermore, we note that no coupling in J,M 
occurs in the equation and the equations are homogeneous when JfJ , MflV! . 
It follows for scattering energies that the 0 0 

1; ("'njmJMlln j m J M IR ,) = a 
o 0 0 0 0" JJ 

a ~J(A'njmlln j m IR,,), 
MM 000 " o o 

(97) 
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. f J where use has also been made of the fact that the equatlon or ~ , 

~J("'njm\ln j m [R,,) 
000 " 

* * J 
x Xnj(r"')Yjm(y",,O)diiirn (ll"',"'+l) V"'+l (R",r",Y",) 

x Yjlliii (Y"'+l'O) 

x ~J (,,'+1 n"j"m"\ln j m \R' ) 
000,,'+1 

377 

(98) 

is ~~t of M (the result of the Wigner-Eckart theorem). From this 
point on, the analysis of the equations is completely parallel to that 
of the collinear case. The only effect of the fact we deal here with 
3-dimensional reactive scattering is the occurrance of the extra integral 

over cos,,,, and the extra factors of d~(ll", ',,'+1) and Yjm(Y""O) or 
Y . 11- (y " ' + l' 0) . 

J m We now expand the radial amplitude densities in terms of an 
appropriate basis of L2 -type functions 

~J("'njm\ln j m ,R ,) = raJ("'njmt\ln j m )X(,,'t'R ,). (99) 
000" too 0 . " 

We substitute appropriately, multiply by a particular basis function and 
integrate over R", to obtain 

aJ(A'njmt\ln j m ) = 2~ 0, '3 E 
000 .fT" m 

* * * 
x X (3t\R 3) xnj (r 3 ) Yjm (Y 3 ,0) VI (R3r3Y3)Xn j (rl)Y j m(Yl'o) 

000 

x~ 
rom (1l31)\IJ~~:nomrno(Rl) + ~ nkjll fdRA,R~,JdrA,r~, 

m"mt' 
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x gJn"j"mm"(R \R' )X(A'+lt\R' )aJ(A'+ln"j"m"t'\ln j m). 
1,'+1 1,'+1 A'+l 1,'+1 0 0 0 

(100) 

The next step is to change the variables from RA" r A" cosYA, to RA'+l' 
rA'+l' cOSYA'+l and define the following energy lndependent quantities: 

EJ (, 'nJ·mt\' '+In''J·''m-\R, '+1) - 2" Jdr r2 Jd(coCN ) "" "-if >.'+lA'+l ~IA'+l 

In terms of this definition, we obtain the final equation 

a J (A 'njmt \lnojomo) = <5 A' 3 :'JdR1R1
2 EJ (3njmt \lnojom\Rl ) 

m 

Jnllj"ffimll 
x gA'+l (R \R' )aJ (A'+ln"j"m"t' \In j m ). 

A'+l 1,'+1 0 0 0 

(101) 

(102) 

This has exactly the same structure as occurs in the collinear scatter­
ing problem. The only difference is the functions EJ(A'n'j'm't' \A'+l 
njmt\RA'+l) here involve the extra integral over cOSYA'+l' and of course 
there are additional quantum numbers associated with the rotational 
degrees of freedom. However, it is important that the additional 
integral occurs only in the energy independent part of the problem 
rather than in the energy dependent part. Further, the structure of the 
equations which lead to the decoupling discussed in the preceeding 
section also applies to the solution of the algebraic equations 
represented by equation (102). Thus, simultaseous algebraic equations 
in only one arrangement must be solved with a -coefficients for other 
arrangements being obtained by an additional matrix multiplication. Of 
course, the size of the algebraic equations can be very large since the 
dimension is determined by the product of the number of vibrational 
basis states, times the number of rotational basis states, times the 
number of translational basis states. In the collinear case, converged 
results were obtained typically with 8 to 10 vibrational basis functions 
and a similar number of translational basis states, for a total of 
around 100 algebraic equations. The 3-dimensional problem will be much 
larger. However, we believe casting the problem as either the solution 
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of a large set of algebraic equations by matrix inversion (if one 
wants results for all possible initial conditions) or by other methods 
(if one desires only a subset of initial conditions) is well suited to 
the latest generation of supercomputers and we are optimistic that 
solutions will be forthcoming for the 3-dimensional problem. 

4. CALCULATIONS 

379 

In this section, we shall briefly review the systems for which 
calculations have been successfully made by the above method. The 
initial studies done by Baer and Kouri (21-22) focussed on piecewise 
constant potentials for either collinear or 3-dimensional reactive 
scattering models. Excellent agreement was obtained for the collinear 
waveguide model (21) and the first 3-dimensional model of an atom­
heteronuclear diatom reactive system was studied (22). Finally, 
preliminary studies of the 3-dimensional e +H system were carried out 
(23). Subsequently Eccles and Secrest (33-34) have done further studies 
of the e+H system obtaining converged results with a differential 
equation version of the formalism. Top and Shapiro (41) carried out a 
study of the collinear H+H2 exchange reaction also using a differential 
equation ACQM approach along with a particular reaction coordinate and 
obtained excellent results. Baer and Kouri (32) suggested the use of 
distortion potentials as a means of improving the basis set convergence 
in the integral equation approach and the first calculations were done 
by Shima and Baer (38) for the collinear H+FH+HF+H displacement reaction. 
In this system, the central F atom is sufficiently massive that the 
skewing angle is close to 900 , as it had been in the earlier waveguide 
models studied by Baer and Kouri (21-22). Next, Shima, Baer and Kouri 
(39-40,43) in a series of studies have generalized the distortion 
potential to treat a general collinear three-finite-mass-atom system and 
applied it to the H+H2 , F-iH2 and D+H2 collinear exchange reactions. In 
all cases, excellent agreement with more standard approaches was 
obtained. In addition, several alternate forms of the equations, 
including that utilized in the discussion of Section II, were shown to 
yield the correct results. Most recently, Shima, Baer and Kouri (53) 
have shown that collinear 3-finite-mass-atom systems with realistic 
smooth potential surfaces can be solved without use of a distortion 
potential, albeit this does require a larger basis set as indicated 
earlier by Baer and Kouri (32). The fact t~at successful applications 
have been made both to 3-D reactions, the e +H system and general 
collinear reactions with smooth surfaces and all atoms having finite 
mass increases confidence that this formalism can provide a general 
approach to real 3-dimensional reactive collisions. 

5. STATUS OF 3-D REACTIVE STUDIES 

The initial steps in applying this formalism to realistic 3-dimensional 
reactive systems have already been taken (17). These include the 
adaptationof programs to generate the vibrational states X . (r ), 
rotation matrices dJ , and spherical harmonics Y. , trans~Jtienal basis 
states and the regu~r and irregular radial functTons comprising the 
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Green's functions. Current efforts are being devoted to assembling these 
programs to construct the coefficient and inhomogeniety matrices and to 
invert the coefficient matrix. Initial calculation~ will be done for 
the H+H2 system for which close coupling results are available (6-8). 
However, the major effort will focus on studies of some asymmetric 
reaction systems. 
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RESONANCES IN REACTIONS: A SEMICLASSICAL VIEW 
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ABSTRACT. Recent work on quantum coupled oscillators and the collinear 
dynamics of three bodies, as models for unimolecular and bimolecular 
reactions, is reviewed with special reference to the role of resonances. 
The approach, semiclassical in spirit, exploits the approximate 
segarability of the radius of hyperspherical formulations and allows to 
localize the breakdown of adiabaticity at "ridges in the potential", 
where transitions between modes occur. 

1. INTRODUCTION 

The understanding of the elementary processes of chemical kinetics 
involves the development of advanced quantum mechanical techniques to 
deal with complicated scattering problems, including rearrangement. 
However, as often in chemistry, one can exploit with success the 
relatively large mass of nuclei with respect to that of electrons and 
use a classical picture for nuclear motion. A proper blend of classical 
and quantum mechanics is thus appropriate, both for a qualitative 
discussion of the main features associated with the reactive events and 
for the development of efficient computer codes for the reliable assess­
ments of quantities such as rate constants or cross sections for state 
to state processes. These techniques, loosely referred to as semi­
classical, can all be reduced within a common denominator by observing 
that they all depend on the possibility of treating Planck's constant as 
a small parameter, and it is this character of asymptotic behaviour with 
respect to this parameter which makes the semiclassical techniques a 
useful reference frame for the discussion of some important features 
which have recently emerged in the theoretical investigations of 
unimolecular and bimolecular reactions. 

Among these features, we will focus our attention in Section 2 on 
the role which resonance phenomena [1) play on the rate of flow of the 
energy within a molecule, thus affec~lng the characteristics of 
unimolecular decay. Mode specificity (i.e. strong dependence of the 
resonance lifetimes not only on energy) may lead to nonstatistical 
intramolecular vibrational relaxation and selective unimolecular 
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dscomposition, a topic of great theoretical and practical interest. 
Along the same line, a semiclassical view of resonances and interference 
effects in collinear reactions will be present in Section 3. 

Due to the exploratory nature of these investigations at this 
stage, rather than pretending to study realistic systems, we will limit 
ourselves to the consideration of simple models, which we believe 
contain an indication of methods to be further pursued and a useful 
phenomenology in nuce. Accordingly, in this Introductory Section, we 
will show that the semiclassical approach naturally leads to a search 
for a quasiseparable variable, and to adiabatic and diabatic represent­
ations (see the Appendix). A general analysis of transition between 
modes will then illustrate the role of local breakdown of adiabaticity 
and a semiclassical study of the pendulum motion will provide an 
introduction to the mathematical techniques involved. 

1.1 Semiclassical analysis of asymptotic separability and of its local 
breakdown 

Because of the masses and the interactions involved, molecular behaviour 
is typically a problem in semiclassical mechanics: quantum effects are 
too important to be neglected altogether, but Planck's constant is 
definitely a parameter so small that appropriate asymptotic techniques 
can be effectively exploited. The paradigmatic example is the WKB 
approach: it is useful both for bound states and for scatte ring [2] 
whenever the problem is essentially one-dimensional, and we will base 
on it many of our considerations in the following. 

The extension of the asymptotic approach to multidimensional non­
separable systems is not so straightforward: EBK quantization acts only 
on classical quasiperiodic trajectories, thus yielding only part of the 
spectrum, and cannot be generalized to scattering states. Among the 
techniques developed for dealing explicitly with inelastic scattering 
and reactions, a generalization of the Born-Oppenheimer separation of 
nuclear and electronic motion has recently been proved very successful 
[3]. It involves the search for a nearly separable variable, in terms 
of which the time independent Schroedinger equation reduces to an 
infinite set of coupled second order ordinary differential equations. 
Besides offering an effective computational scheme, the procedure allows 
to be implemented semiclassically, and each step is amenable to 
qualitative interpretation, such as is needed for deepening our insight 
of complicated quantum systems. 

Regular, quasiperiodic behaviour of a quantum system is definitely 
associated with some at least approximate separability of the equations 
of motion. (How the converse, i.e. 'chaos' whatever may be its 
definition, can be associated with nonseparability, is a matter of 
current research [4]). Separability, on the other hand, is always a 
manifestation of some symmetry: this, in quantum mechanics, corresponds 
to the existence of operators commuting with the Hamiltonian, and leads 
to the possibility of defining good quantum numbers. Although for 
intrinsically nonseparable problems separation cannot be carried out 
exactly (globally), it is nonetheless possible to find important 
examples where quasiseparability (approximate commuting operators, 
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nearly good quantum numbers) can be obtained. In the description of 
diatomic molecules, for example, electronic, vibrational and rotational 
modes are progressively considered separately following a well 
established hierarchy, which allows to arrange modes according to the 
characteristic frequencies. The underlying idea is that, if a mode is 
much slower than others, it can be considered as freezed, while studying 
the fast ones. Thus, in the familiar Born-Oppenheimer separation, 
internuclear distances are slow coordinates with respect to electron­
nucleus and electron-electron ones. The whole of quantum chemistry 
capitalizes on this idea. 

A key observation for fruitful generalization is that, to achieve 
approximate separation, one employs, more or less rigorously, asymptotic 
expansions with respect to some parameters (mass ratios, frequency 
ratios). In the present investigations, we start from the consideration 
that it is often possible, for problems of definite chemical and 
physical interest, to find some representation which allows to obtain an 
approximate separation (at least locally), by expansions which are 
asymptotic in Planck's constant, treated as a small parameter: it is a 
natural choice, since this corresponds to what is commonly understood as 
the semiclassical regime. Although these approximately separated 
representations will fail somewhere, we found [5] that the localization 
of failure may lead to a source of quantum irregular behaviour and that 
the search for special asymptotic techniques for dealing with local 
nonseparability is particularly promising. 

In the Appendix, an outline of the formalism leading to adiabatic 
and diabatic representations is given: these manipulations of the 
Schroedinger equation are particularly useful for a discussion of 
properties of systems from the point of view of asympototic methods. 
It is immediate to see from equation (A2) that whenever elements of P 
are small, since n2/2m is a small parameter, equations adiabatically 
decouple into one-dimensional problems for the effective potentialsE (p). 
In turn, these problems can be analyzed by the Liouville-Green WKB v 
technique, which requires special care whenever E = E (turning points) : 
but this problem is to be considered as effective~y solved by the method 
of comparison equations. It is important to realize that proper 
coordinate choices may lead to wide regions of p space where this 
decoupling is very effective: in such a case, approximate quantum 
numbers can be assigned, and it is possible to compute semiclassically 
bound or resonance states and scattering properties. 

As will be illustrated in the following, the success of the 
procedure critically depends on how appropriate the definition of the p 

coordinate is, to exhibit as more localized as possible any breakdown of 
approximate separability. This breakdown is measured by the P matrix 
[equation (A4)], and therefore a study of its analytical structure is an 
important step of the present program. In fact, equation (A4) shows 
that around any poles of P matrix elements sufficiently cl~se to the 
real p axis their neglect is not warranted, however small n/2m is 
considered. In the following, therefore, we will find examples where 
such features of the P matrix have been characterized. Around these 
features, adiabatic conditions fail, and nonadiabatic corrections must 
be considered. 
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1.2 Transition between modes: the semiclassical pendulum 

Strongly nonadiabatic behaviour is often localized where the actual 
character of systems changes drastically. So, when the interaction 
between two atoms is considered as a function of the internuclear 
distance R, it is found that the transition between the typical 
behaviour of separated atoms and that of a diatomic molecule is often 
localized around sharp maxima in the elements of a P(R) matrix [6]. 
These maxima correspond to poles near the real R axis in a proper 
analytic continuation of P(R), and mark the breakdown of the Born­
Oppenheimer separation. 

Several examples can be put forward in order to show that 
transition between modes, i.e. a local breakdown of adiabaticity, 
typically takes place at well defined characteristic features of the 
potential. For problems involving more than two bodies, several 
investigations have identified as a good candidate for near separability 
the hyperradial variable P [3,7]. Low values of p correspond to close­
ness of all particles, and the various possible rearrangement channels 
correspond to large P. It will be seen in Section 3 that, at least for 
the simplified situation that the three particles are constrained to be 
on a line, a rearrangement process, such as a chemical reaction, can be 
described in a time indepe ndent picture as the transition between two 
types of modes, one corresponding to an intermediate complex (transition 
state) which may dissociate into channels corresponding to reactants and 
products: the transition can be described adiabatically, nonadiabaticity 
being important only along a line in the potential energy surface (the 
ridge) which separates the valleys of reactants and products. Implement­
ing semiclassically these ideas, it has been possible to obtain not only 
qualitative descriptions, but also quantitative results for resonance 
positions and widths, and for interference effects in the probability 
for reactive collisions (Section 3). A classical study of these 
problems points at a connection between chaotic behaviour and temporary 
trapping in the transition state: again, a connection between local non­
separability and irregular modes is emerging. 

The basic physics and the related mathematics associated with mode 
transitions is illustrate d by the pendulum, whose classical mechanics 
are described in many textbooks and reviews [9·1. The two modes are 
designated vibrating or librating, and rotating or precessing at 
energies respectively lower and higher than the maximum in the potential. 
In the context of recent investigations of highly excited molecules, 
the two modes would correspond for example to normal and local 
vibrations, repectively. The two modes are sharply separated by a 
trajectory (the separatrix) corresponding to the maximum in the 
potential (the ridge, in our applications). As is often the case, in 
quantum mechanics the transition between modes is smoother [lOJ. 

Mathematically, the classical problem is completely soluble in 
terms of Jacobian elliptic functions, the quantum problem in terms of 
Mathieu, or elliptical cylinder, functions. The limiting behaviour of 
quantum solutions for the two modes are extremely well known, and the 
literature contains extensive discussions of these phenomena in the 
limiting cases: both can be handled by perturbation techniques [11 1, 
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which however fail around the ridge where a connection problem arises. 
Therefore, a discussion of the transition regime is of specific interest, 
and can be carried out by a simple uniform asymptotic technique [12). 

The Schroedinger equation for the physical pendulum [10] 

+ V cos 8) 1jJ (8) = E 1jJ ( 8) (1) 
o v v v 

is transformed into the standard Mathieu equation 

y 
v 

(a) + (tl 
v 

o (2 ) 

defining a new angle a = 8/2, the paraiT,eter 4m~2 V If? and the eigenvalue 
8m~2 Ev/ 1'l2 . 0 

Eigenvalues and eigenfunctions for this equation can be generated 
by using expansions in Fourier series (Hill's method) [13) 

! t exp[i(S+2n) ] 
11=-00 211, v 

(3) 

(where B depends on boundary conditions, see below). This expansion 
inserted in (2) leads to a secular equation, giving tI as eigenvalues 
and the coefficients t211 v as elements of eigenvector~. 

For the pendulum, tfie boundary conditions require the solutions in 
a to have n as a period, and one obtains, as a function of q, even and 
odd eigenvalues usually denoted a 2 and b 2 ' respectively. Equation (2) 
appears in many problems where pot~ntials ~ith different symmetries, 
such as three-fold periodic Henon-Heiles [5) and those describing 
restricted molecular rotations [14), are involved. In Section 2, we 
will use it for studying unimolecular decay. Also, equation (2), as 
the simplest case of a Hill equation, may represent a zero-order 
approach to problems where a potential is expanded in a Fourier series. 
In general, therefore, other periodic boundary conditions are of 
interest. A Floquet type [13) of analysis shows that for N-fold 
symmetric potentials, when N is even, solutions with period 2n are also 
acceptable: corresponding eigenvalues are denoted a 2 1 and b 2 1 for the 
even and odd cases, respectively. In the language o¥ group tReory, only 
states with the same periodicity and parity will belong to the same 
irreducible representation of the symmetry group of the potential. 

For general N, doubly degenerate solutions also appear, and their 
eigenvalues are labelled by 2n+~ where B is a rational fraction less 
than 2,B=2kl , and k=l, .. . ,-1. They induce irreducible representations 
of type E. ~t is convenient to extend the definition of k (and B) to 
the nondegenerate cases, corresponding to k=O (and B=O) for 2n states (n 
periodicity) and k=N/2 (and B=l) for 2n+l states (2n periodicity) . 

The behaviour of the eigenvalues as a function of q, well 
documented in the literature [14,15), is very clearly exhibited by a 
semiclassical analysis. Following reference [16), it is possible to 
obtain by an extended WKB procedure, a quantization rule, which holds 
asympotically in .n: 
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-1/2 
cos(a-$)= [1+exp(-2n)] cos (rrS) (4) 

where a is the phase integral for the well, and n is the tunnel integral. 
The factor 

$( n) arg r (~+in/rr) - (n/rr) (Q,n In I/rr-l) (5) 

is introduced to improve on the primitive WKB approximation, and it is 
based on a mapping of the potential maximum onto a parabola. This 
mapping makes this asymptotic approach uniform, because it holds both 
below and above the potential maximum (V for the physical pendulum) . 

The phase integrals in [4]. easily §efined for A < 2q, must be 
analytically continued for A >2q. For the Mathieu eqJation (general 
sinusoidal potential) all th~ involved integrals can be evaluated in 
closed form, in terms of elliptic integrals [15]. Defining m=AV4q+l/2, 
we find for 0<1 AI <2q 

a = 4ql/2 [E(m) - (l-m)K(m)]. 

n =_4ql/2 [E' (m) -mK' (m) ] 

and for A>2q>0 

a = 2 (A+2q) 1/2 E(l/m), 

n= 2(A+2q)1/2 [K'(l/m)-E'(l/m)]. 

The quantization rule (4) has been studied in detail recently [21]: it 
has been found that this approach is useful not only for the approximate 
computation of eigenvalues but also for describing most qualitative 
features of the transition between modes as a function of q, in 
particular the behaviour of the allowed and forbidden regions for the 
eigenvalues. The characterization of these regions (Figure 1) is of 
interest for an enormous variety of phenomena, ranging from bands in 
solids [17] and unimolecular reaction theory [18 ] , to quadrupole mass 
spectrometry [19] and particle generation by electric fields in a 
vacuum [20]. 

1.3 The P matrix and ridge effect 

As shown in Figure 1 and in many figures in books which describe Mathieu 
functions [13,14], the dependence of eigenvalues as a function of q 
shows an abrupt change in character as they go through a line correspond­
ing to 2q, which is classically the locus of separatrix trajectories. 
This is perhaps the simplest manifestation of the ridge effect, and, 
according to the nomenclature now well established in atomic physics ' [3 I 
and in chemical reaction theory [21-24 ] , 2q is identified as the ridge 
line (and -2q is the valley bottom line) . 

In typical problems, q is the slow varying variable in an adiabatic 
treatment where the fast variables fail to be so at ridge. A specific 
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example, the familiar Henon-Heiles potential, has been worked out: 
there, q was related to a slow varying radial variable, and nonadiabat­
icity, i.e. the possibility of transition between states as q varies, 
was measured by the matrix P (see Appendix) which is conveniently 
generalized and defined in the present context as 
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21T 
Pvv ' (q) = b Yv (ex q) ~ Yv ' (ex,q) dex (6) 

dq 
This matrix was introduced by F. T. Smith [25] for the treatment of non­
adiabatic (diabatic) couplings in atomic collisions. It is now familiar 
also in molecular structure problems, to indicate local breakdowns of 
the Born-Oppenheimer approximation. Within the hyperspherical formalism, 
it has been introduced in the three-body Coulomb problem [20] and in 
chemical reactions [21-24], see also Section 3. Also, from equation 
(M) 

Pvv ' (q) = (Av-Av,)-l b21T 2Yv (ex q)cos2ex Y (ex q)dex , v" 

It is then easy to show that, for q = 0, 

P vv' (0) = (V2 _ V,2)-1 

The actual computation of the P matrix was performed using the 

(7) 

matrices T of the coefficients t introduced in (3). From (6), which 
2n,v 

in matrix notation becomes 

P (q) = T (q) d T (q) 
dq 

we easily obtained P by computing T at two close q values: 

-1 -
~ (q) = ° [:!: (q) :!: (q+o) - .!::. ] (8) 

where 6 is a small number. From (7), we have, after some manipulations, 
an alternative formula 

Pvv ' 
-1 -

(q) = [A)q) - Av ,(q)] [:!: (q) d:':': (9) 
dq 

where dV ,jdq is simplyol 'I . This latter formula has the 
advantag~Vof requiring a s~~gle'aiagonalization at each q, and therefore 
becomes more convenient than (8) as the size of the secular problem 
increases. The left hand side of Figure 1 shows some computed P-matrix 
elements: maxima at ridge, to be expected from the corresponding minima 
in the eigenvalue differences (equation (9)) and the general properties 
are clearly displayed in Figure 1. 
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Figure 1. Some eigenvalues of the Mathieu equation, as a 
function of the parameter q are reported on the left, together 
with the ridge line 2q and the valley bottom line -2q (dash­
dotted). Eigenvalues corresponding to S = 2/3 and 4/3 are 
shown by dotted lines. Allowed regions for eigenvalues are 
hatched. The right-hand side shows elements of the P matrix 
as a function of q. 

We conclude by commenting briefly on the role of sequences of 
avoided crossings along the ridge, and on the related question whether 
analytic continuation would reveal true crossings for complex values of 
q. Recent results [26] on the analytic continuation of the eigenvalues 
of the Mathieu equation are motivated by the fact that their crossings 
in the complex q-plane are related to convergence radii of perturbation 
expansions. Therefore, it is not surprising to find that there is a 
correspondence between real parts of complex crossings, as listed in [26] , 
and positions of maxima in elements of the matrix P as defined in this 
work. 

Actually, the semiclassical formulas introduced in the previous 
section, although valid only asymptotically, are in the form which 
appears to be suitable for extensions in the complex q-plane. It would 
be interesting to further investigate this aspect, since 
analytic continuation plays a role in theories of nonadiabatic 
transition [27], a role which has not been firmly assessed until now 
because in actual problems the analytic structure of numerically 
generated eigenvalues is poorly understood [281. 

2. MODE SPECIFIC RESONANCES AND UNIMOLECULAR DECAY 

Recent advances in experimental techniques (in particular, laser ctnd 
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molecular beams) are promoting interesting developments in the study of 
intramolecular vibrational relaxation in molecules selectively excited 
by collisions or photon absorption [29]. These experiments can be 
carried out under conditions much more controlled than in the past, thus 
making it possible to test more accurately the statistical assumptions 
which underlie the current theories of unimolecular decompositions. An 
important goal also for practical purposes is to succeed in obtaining 
substantial deviations from statistical behaviour, thus opening the 
experimental possibility for great selectivity for the elementary 
processes of chemical kinetics and photochemistry. 

An analysis of the specificity of unimolecular decompositions and 
of intramolecular vibrational relaxation can be developed by starting 
with some simple models for coupled oscillators, for which different 
modes and (transitions among them) have been well characterized, both 
in classical and in quantum mechanics. 

2.1 Regular and irregular modes for coupled oscillators 

The analysis of the pendulum motion in Section 1.3 can be immediately 

applied to provide a semiclassical discussion of a two dimensional 
(Henon-Heiles) model for coupled oscillators [5], conveniently written 
in polar coordinates 

123 
V(p,e) = "2 p + ~ cos3e (10) 

3 
We refer to a previous paper [5] for a description of the model and of 
its relevance for a semiclassical discussion of regular and irregular 
modes in classical and quantum mechanics [30,31]. By relating the polar 
variable p and the parameter q 

q = 4 
27 

5 
AP 

the adiabatic potential energy curves £ (p) are obtained by Mathieu 
eigenvalues An(q) according to the form~la 

1 2 
£n (p) = 9 II n (q) +"2 p 

(11) 

(12) 

The elements of the nonadiabatic coupling matrix are likewise related: 

p 
nm 

(p) = dq P (q) 
dp nm 

Figures 2, 3, 4 are obtained by these formulas. 

(13) 

A useful aspect of this approach is to provide a classification 
scheme for levels. When A=O (the simple isotropic oscillator) a good 
quantum number exists, and it is designated by ±~ in references [30] and 
[31]. For finite A, the potential belongs to the C3 symmetry groups, 
the wave functions are classified according to its l~reducible represent­
ations Al , A2 and E. Mathi€u functions ce2n and Se2n , under the c 3v 
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Figure 2. For the Henon-Heiles potential with \=80 2 

(equation (2); upper broken curve, ridge profile (8=0, 2n/3; 
4n/3); lower broken curve, valley bottom profile (8=n/3, n, 
5n/3)), adiabatic potential curves En(p) (equation 12) and 
corresponding nonadiabatic coupling matrix elements Pnm(p) 
(equation (13)) as a function of radial coordinate P for Al 
and A2 symmetry. positions of levels indicated by continuous 
segments for those identified as quasiperiodic [31J and by 
dotted segments for those not identified as quasiperiodic. 
For further details, see [5J. 

symmetry operations behave respectively as Al and A2 . Their eigenvalues 
are labelled as A2n and B2n+2 , where n=O,l,2, ... (Figure 2). They are 
periodic by n and correspond to S=O. The E respresentation is induced 
by Mathieu functions of fractionary order Ce2n+S and Se2n+s' and the 
corresponding doubly degenerate eigenvalues will be designated asA2n+S. 
From the quantization formula (4), we have that for this symmetry Scan 
assume only the values 2/3 and 4/3, and therefore, in order that the 
proper boundary conditions are satisfied, the functions will have 
periodicities 3n and 3n/2. Therefore, the levels supported by each 
adiabatic curve will conveniently be labelled, both by the proper index 
of correspondinq Mathieu functions 2n+S, and by a proqressive number 
v=O,l,2 .... The Mathieu index is related to ~ by 1~1=3n+S/2 and in the 
\=0 limit the energy levels are given by 

E(v,2n+S) = 2v+l+ltl. 
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As illustrated in Figure 2, failures of the adiabatic picture, as 
measured by the elements of the matrix of nonadiabatic coupling P, occur 
at the ridge. The correlation between regular modes of classical 
investigation and the quantum mechanical states which are localized 
above the ridge has already been pointed out [5]. In our picture, 
quantum mechanical delocalization of the wave function is a process which 
is favoured by coupling between adiabatic eigenvalues in the proximity 
of the ridge, where a sequence of avoided crossings can be discussed 
within the familiar apparatus of curve crossing theory, and a striking 
similarity is apparent between these aspects and the theory of level 
perturbation for diatomic molecules [32]. Actually our current 
experience suggests that the semiclassical techniques introduced in such 
a context, are also extremely fruitful here. 

------
12.7 2 

':--, , , 
0.110 0.112 l 0.114 

Figure 3. Adiabatic curves £n(p), equation (12J, for the E 
symmetry of Henon-Heiles potential (equation (10)) for>.. close 
to 80-~=0.1118. Slight changes in >.. affect mainly the large 
p region: for example, the curves labelled as a, band c show 
how the 2/3 state varies for >..=0.110, 0.112, 0.144. The 
corresponding v=7 level varies as in inset, and thus would 
cross the v=2 level of the 20/3 state, practically unaffected 
by a change in >.. [33] (dashed curves): actually, the crossing 
is avoided and the levels behave as the continuous curves 1 
and 2. 

Figure 3, which reports similar results for the E symmetrv, focuses 
the attention onto a particularly interesting type of avoided crossing 
due to the interaction between almost degenerate levels, which the 
adiabatic curves support. This phenomenon leads to much more pronounced 
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Behaviour, at larger p, of some curves as in 
Dotted, continuous and dashed lines indicate states 
as QI' Q1I and N, respectively, in [36 ] . 

delocalization of the wavefunctions, because of the strong mutual 
perturbation of the levels, and is strongly dependent on the parameter 
A, which measures the strength of the coupling between the oscillators. 
Therefore, it has relevance with extended discussions [33] of the role 
of avoided crossings as a function of the parameter A. In the present 
approach, such avoided crossings, formerly individuated as a road to 
quantum chaos by Percival [34], are seen to arise when, because of the 
increasing import.ance of anharmonici ty for levels with high v quantum 
numbers, high v levels of lower curves enter into accidental resonance 
with low v levels of upper curves. The phenomenon is familiar in 
spectroscopy, leading to strong level repulsion [32]. For the model 
considered here, this phenomenon happens once in the neighbourhood of 
A=(80)-~=O.ll8 (Figure 3). 
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2.2 A resonance theory of unimolecular reactions 

The previous analysis is of interest not only for general mode 
transition problems, but also for providing a useful model for 
unimolecular reaction theory. 

Consider again the potential given by equation (10). If its 
behaviour is examined at large p values, it is seen that it has three 

2 -1 -1 symmetric saddles at height (6A) at P=A , and eventually goes to 
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minus infinity. Therefore all the states which it supports are actually 
metastable, and they will eventually decay by quantum mechanical 
tunnelling: in other words, they are typical quantum mechanical 
resonances, to which we may associate a width r and a lifetime, =6/r. 
This model has already been considered [35,36] for unimolecular reaction 
theory, where the resonance lifetime is most naturally related to the 
inverse of the unimolecular rate constants k=,-l 

-2.0 

> 
Q) -3.0 

ill 

-4.0 

. 
Q, A 

Figure 5. Adiabatic potential energy curves for H+MuH 
(dotted) [51, unpublished], see [21] for H+H2 • Valley bottom 
and ridge profile are shown as continuous lines. 

In a search for mode specificity in resonances, we extend the 
previous analysis to larger p values, obtaining for example for the E 
symmetry the curves in Figure 5. Also shown in Figure 5 are some levels 
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considered in reference [36] and 
and N states is also indicated. 
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their classification in terms of Q , Qrr 
Bai et al. [36] find strong mode I 

specificity for this system: the Q states show the largest 
unimolecular rate constants, the QIIstates the smallest, and the N 
states show an intermediate behavi5ur. (Here, as often [35-37], non­
specificity means dependence on energy only: it is assumed to be an 
indication of full energy randomization in the molecules and, therefore, 
a good measure of the appropriateness of statistical arguments). 

Figure 5 shows that the results of reference [36] can be qualitat­
ively understood by considering again the ridge effect: in particular, 
it is apparent that Q states, being characterized by higher vibration­
al numbers of lower cQfves, have their outer turning points well beyond 
the ridge and, therefore, may undergo extensive nonadiabatic transitions 
to the lowest curve, for which tunnelling to dissociation is clearly 
easier. Conversly, Qr states are confined inside the ridge and thus 
present the lowest decomposition rates. For the N states, for which 
the outer turning point is close to the ridge, there is clearly strong 
coupling between adiabatic states and the associated lifetimes are 
intermediate between the extremes. 

A quantitative semiclassical analysis of these effects for this 
model and similar ones, in particular for a recent model for the 
reaction CH2 0+CO+H2 [35], is being carried out [38]. This analysis is 
based on a well known semiclassical formalism for resonance positions 
and widths [39]. It leads to quantitative agreement with the RRKM theory 
in the complete randomization hypothesis and it points out the role of 
ridge effects for such a randomization. The conditions for mode 
specificity are also analyzed: an important aspect of this approach is 
that mode specificity due to symmetries in the transition state [40] 
arises in a natural way through the group theoretical labelling of 
Mathieu functions outlined in the previous section. 

3. RESONANCES AND INTERFERENCE EFFECTS IN COLLINEAR REACTIONS 

Very extensive computations have been carried out on the dynamics of 
reactions of the type A+BC. They are either founded on classical or 
on quantum mechanics, are either to be considered 'exact' or involving 
more or less drastic approximations and have been based either in the 
real three dimensional world or in somewhat artificial spaces of lower 
dimensionality. These computations are thus attempts to solve the 
three-body problem more or less accurately. Other Chapters in this book 
extensively review this subject [41]. The papers, presented at a meeting 
celebrating "Fifty Years of Chemical Dynamics", held in Berlin in 1982 
and published as an issue of the Berichte der Bunsen Gesellschaft in 
1982, should be consulted, also for providing a historical perspective 
[ 42]. 

A main difficulty which arises in understanding the interplay of 
the various factors which influence a reaction is that both the 
description of reactants and that of the products is bound to fail some­
where in the course of a reaction, and it is necessary to perform a 
transformation whose nature and characteristics are hardly understood, 
although some formal progress has been made recently. 
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Representations symmetrical for at least some of the particles are 
being actively investigated [43]: none of them is, however, 'full 
range' in the reaction, because they do not correlate smoothly with 
reactants and products, and some kind of transformation is anyway to be 
performed in order to describe the transition. Roughly speaking, there 
are essentially two different ways of achieving this: the first one is 
based on the idea that a sudden switch during the collision from the 
reactant configuration to the product configuration could serve as a 
good starting point for following the evolution of the reaction: the 
second route, which is the one we pursue here, exploits the opposite 
view that the starting point could be the individuation of a smooth 
(adiabatic) path. In [41] an account is given of both approaches. 
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3.1 The hyperspherical adiabatic approach: curvature effects 

As in the cases considered previously, the adiabatic idea attempts a 
simplification of the many-body problem by individuating a variable 
which can be approximately separated from the others: this is possible 
when the overall motion can be considered as taking place slowly with 
respect to this variable, so that the faster motion associated with the 
other ones can be effectively averaged. Nonadiabatic effects are to 
be introduced anyway for an exact description, but many significant 
features are likely to be displayed when the adiabatic coordinate is 
wisely chosen. 

The traditional view for the treatment of chemical reaction 
involves the concept of the reaction path, a coordinate smoothly Jo~ning 
reactants and products. Most important progress [44] has been done 
recently along this line, although our approach will be an alternative. 
A central concept will be that of the reaction skewing angle (a measure 
of the curvature of the reaction path) introduced in the early thirties 
[42] and incorporated by F. T. Smith [45] into the general concept of 
kinematic rotations. Very recent work along these lines have been based 
on the fact, actually already present in Smith's earlier investigation 
[46], that the kinetic energy operator for many particles can be 
interpreted as the kinetic energy operator of a single particle in a 
space of a higher dimensionality than the physical one. The effect of 
the potential energy surface is then that of distorting the straight 
line trajectories of such a particle in the hyperspace and constraints 
on vibrational exchange can be deduced [45]. 

When the curvature along the reaction path is small, adiabatic 
evolution along it is a good approximation and a starting point for 
carrying out this approach for chemical reactions is to set up a hyper­
spherical coordinate system [47], for which there are several possibil­
ities [48]. Most of the investigations carried out so far have dealt 
with the somewhat artificial constraint of particles moving on a line. 
Progress on the extension of these promising techniques to the full 
three-dimensional case has been limited to the development of analytical 
approaches and to the study of simple test cases. In the following, 
we will discuss in some detail what we have learned from the one­
dimensional case and which we believe to be of interest also for the 
real three-dimensional world. 
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A configuration such as A+BC will be best described by mass scaling 
the two corresponding orthogonal Jacobi vectors: when the same is done 
also for the configuration of products AB+C, resulted from an exchange 
of the atom B, the properties of the kinetic energy operator are such 
that the new mass scaled vectors are still orthogonal, but rotated with 
respect to the previous ones. The potential energy surface for a 
collinear reaction is actually confined in a sector, defined by the 
reaction skewing angle, a function of the atomic masses 

(14) 

The confinement in such a sector sets boundaries to the dynamics, which 
physically correspond to the prohibition, for masses on a line, to over­
come each other. It also shows that very different kinematic effects 
are likely to be associated with different mass combinations. 

Considering then formula (14) we observe that the fully symmetrical 
exchange of an atom A in the process A+AA=AA+A involves an angle of 60 
degrees. For the exchange of the atom B in the nearly symmetrical 
process A+BA=AB+A, the relative masses of A and B determine the full 
range of variation for the skewing angle from near zero when B is much 
lighter than A to near 90 when B is much heavier than A. The two 
limiting cases provide, as we shall see, very different kinematic 
effects, so that the full dynamics, obtained by introducing explicitly 
the potential energy surface, will be dramatically affected. 

Consider first the case of very large skewing angle. The path 
from reactants to products involves a bent of nearly 90 degrees: any 
coordinate system which aims at describing the reaction path from 
reactants to products will introduce a centrifugal distortion at the 
bend, but may maintain some reasonable descriptive power in the 
qualitative treatment of the reactive process. From a computational 
point of view, setting up a coordinate system more or less based on the 
idea of following the evolution of the system along the reaction path 
entails the introduction of strong coupling between channels in a 
quantum mechanical framework, or strong centrifugal distortions 
requiring fine grid integration of trajectories in a classical 
mechanical framework; this effect is especially likely to be important 
in the region where the bend is sharpest, and this most often occurs 
when the system overcomes the saddle which separates the valley of 
reactants from that of products. Introducing a non-orthogonal system 
which follows the evolution of the system from reactants to products 
becomes increasingly difficult as the skewing angle decreases, because 
the distortion required to straighten the path into a Cartesian 
coordinate introduces terms in the Jacobian transformation matrix which 
physically correspond to centrifugal forces. Therefore, evolution along 
the reaction path provides a good description of what trajectory is 
really followed only in the adiabatic limit,i.e. for an infinitely slow 
process. It is apparent that the procedure becomes impractical even 
for computational purposes since extensive channel coupling has to be 
introduced explicitly. Actually, the practical computation of quantum 
mechanical one-dimensional chemical reaction rates for small skewing 
angle is the motivation which has lead various authors to use 
hyperspherical coordinates [49J. 
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In the hyperspherical view, a radial coordinate p is defined by 
setting up a polar system in the properly mass scaled space of Jacobi 
vector components (see the Appendix). In terms of this coordinate, 
which is independent of the rearrangement channel, it is possible to 
follow the reaction as evolving from the intermediate state, where the 
particles are closer together, to reactant and product valleys. The 
numerical implementation of this approach has allowed the full 
characterization of reactions with small to moderate skewing angles. 
When matched with the more conventional method involving the reaction 
path coordinates which follow the reaction from reactants to products, 
now we have a complementary view for the full characterization of most 
of the features which collinear rearrangement processes may display 
(subthreshold behaviour, imputable to tunnel effects; resonance 
behaviour, which can be attributed to partial trapping in metastable 
states; oscillatory behaviour of cross sections for state to state 
transitions, attributable to interference between channels). Our semi­
classical view of some of these features is described in the following. 

3.2 Adiabatic energy levels 
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Following the formalism outlined in the Appendix, the first step, and 
perhaps the hardest one, is to map the interaction as adiabatic 
potential energy curves E(p) as a function of the hyperradius. This 
step is performed by solving a problem of lower dimensionality than the 
full one, and generates at the same time wavefunctions which vary 
parametrically with the hyperradius. These may then be used to obtain 
the elements of the matrix P which measures the nonadiabatic inter­
channel coupling. Fully quantum and semiclassical recipes are being 
developed and tested for carrying out this program, which is preliminary 
to the dynamical calaculations, consisting in solving more or less 
exactly equation (A2), or (A7), or similar ones. 

The investigations of these maps for model problems is of extreme 
interest, because it allows the full understanding within a unifying 
framework of most features which are observed in elaborated computation­
al studies of atomic exchange processes. The paradigmatic situation 
considered here is the one of three particles on the line, involving 
the partially symmetric system A+BA=AB+A. For other similar systems, 
reactant and product valleys may be unsymmetrical and additional 
complications are introduced by the channel coupling. However, the 
general features outlined for the symmetric cases are confirmed [50]. 

The results for such maps, which are now available for many 
reactions in the original references (see the example of H+MuH in Figure 
5 [511), lead to the following view of the reactive process: instead 
of an evolution from reactants towards products, consider a reactive 
process as a decay of the intermediate state, located in the region 
where the interaction is strongest. This corresponds for simple 
situations to the transition state, characterized by a symmetric stretch 
vibration of a bound character, and an antisymmetric stretch vibration 
leading to dissociation. The system reaches this potential energy 
saddle configuration climbing from the reaction valley: sequentially in 
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time it may come back again to give an elastic (vibrational conserving) 
collision or inelastic transition between vibrational states. 
Alternatively, it may descend to the product valley, either leading to 
the corresponding state of the products connected adiabatically to the 
original one in the reactants (adiabatic reaction), or may lead to 
vibrational states corresponding to nonadiabatic events. Again, the 
role of the ridge, which acts as the watershed between the valleys of 
reactants and products, has been found to be central. 

The first step of calculating adiabatic energy levels at fixed 
values of the radial hyperspherical coordinate p is usually performed 
numerically (by us in [21-24] employing a harmonic expansion technique, 
seethe Appendix). Typically, as p varies from values lower than the 
saddle point to larger ones, one has to solve a problem of quantization 
in a single or in a double well. We have also examined [23] the 
accuracy of semiclassical quantization prescriptions, which (as reviewed 
in [32] for spectroscopic applications) require phase integrals a for 
wells and n for barriers, and again as in equation (4) corrections ~ 

(see equation (5)) for the coalescing of turning points. 

3.3 Interferences and resonances for large curvature 

As shown in [22] (similar results were independently obtained by 
others [52]), the simplest approach to the description of reaction 
probability is to assume full adiabatic decoupling and to treat the 
dynamics as scattering from the potentials generated by the adiabatic 
levels as p varies. Neglecting coupling in an adiabatic representation 
leads to the simplest description of the probabaility p for a 
symmetric exchange reaction, in terms of phaseshifts o±v¥rom even (+) 
and odd (-) potentials [53] v 

.2+ 
Pvv = Sln (ov - 0v) (15) 

Extremely accurate results for reaction probabilities, e.g. were obtain­
ed in a few cases (e.g. I+HI and isotopic variants, [22,52]; for H+MuH 
[22], see Figure 6), using purely semiclassical techniques for scatter­
ing phaseshifts. Formula (15) allows to predict oscillations due to 
interference between even and odd propagation in the energy dependence 
of probabilities. These oscillations have been found in numerical work 
[7]. As shown in Table I (from [22]) excellent agreement with exact 
calculation was obtained for resonances in H+MuH (see also Figure 5). 

Finally, these adiabatic approaches have shown to be able to 
predict the formation of stable molecules trapped on a repulsive 
potential energy surface [54J (the stability of these molecules has been 
confirmed also by three dimensional calculations). This is a purely 
quantum mechanical effect, since classically such systems would 
dissociate: this prediction is a big success of the adiabatic approach 
to the three body problems, which therefore is being shown useful for a 
unified view of bound states and collisions. 

As the skewing angle increases, however, the simple adiabatic 
hypothesis becomes less and less satisfactory, as the H+H2 case shows, 
Figure 7 [51]. The clear inadequacy of this oversimplified approach to 
deal with the general case has pointed out the need for the semi­
classical treatment of nonadiabatic coupling. 
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Figure 6. Reaction probability for the H+MuH reaction as 
computed from equation (15) (continuous line), is compared 
with exact results (J. Manz and J. Romelt, Chern. Phys. Letters 
76, 337 (1980)) by showing the latter as a dashed line. 
Energies are measured from the dissociation limit of MuH, and 
thresholds of vibrational levels are indicated by arrows [22]. 

TABLE 1. Resonances for the H+MuH reaction 

Vibrational 
level 

o 

1 

2 

position 
eV 

- 4.1238 
- 4.1258 

- 4.142 
- 4.097 
- 4.061 
- 3.041 
- 3.054 

- 3.105 
- 2.1501 
- 2.1673 

- 2.205 

a Width 
hwhm,eV 

0.00023 
0.00027 

0.012 
0.004 

0.0005 
0.0000 

Method 

Accurate quantum [b] 
Hyperspherical 

adiabatic [c] 
C.l. stabilization [d] 
SCF stabilization [d] 
Period orbits [e] 
Accurate quantum [b] 
Hyperspherical 

adiabatic [c] 
Periodic orbits [e] 
Accurate quantum [b] 
Hyperspherical 

adiabatic [c] 
Periodic orbits [e] 

[a] Energies measured from the dissociation limit of MuH; 
[b] J. Manz and J. Romelt, Chem.Phys.Lett., 76, 337 (1980); 
[c] Present work; [d] '1'. C. Thompson and D. G. Truhlar, 

J.Chem.Phys., 76, 1790 (1982); [e] J. Manz, E. Pollak 
and J. Romelt, Chem.Phys.Lett., 86, 26 (1982). 
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Figure 7. As in Figure 6, for H+H" [51, unpublished]. 

3.4 A nondiabatic model for resonances: the ridge effect 

As a representative extreme example of failure of the adiabatic approach, 
we consider next a model for the H+FH reaction [ 23], as extensively 
studied by various authors [55]. Figure 8 shows the adiabatic curves 
for this reaction: for most of p values, they have a smooth, un­
complicated behaviour, except near the ridge which separates the valleys 
of reactants and products: wells and barriers, evidently due to mututal 
interactions, appear there. Arguments borrowed from spectroscopy of 
diatomics and atom-atom collision theory can be used to anticipate that 
couplings must be localized there. 

Figure 9 shows the adiabatic levels for the isotopic variant D+FD 
[24]. A comparison with the H+FH case indicates the same overall 
qualitative behaviour, the difference being only due to the effect of 
the masses: according to our definition of the hyperradius (see the 
Appendix), the abscissa is slightly expanded here, resulting in a slight 
decrease of the steepness of the potential ridge. The density of 
adiabatic states is however higher, because of the larger reduced mass 
of DF as compared to HF. (Mass factors for all the reactions considered 
in this account are listed in Table 2, including the skewing angle, 
equation (14)). 

In the process of computing the adiabatic eigenvalues, we generate 
the orthogonal matrix T of eigenvectors, and according to the Appendix 
and Section 1.3, we have obtained P by computing T matrices at very 
close values of p. Elements of the nonadiabatic matrix P which couple 
some of the adiabatic levels in Figure 9 are shown in Figure 10 [24]. 

These results are a striking demonstration of the effects 
associated to the potential ridge: couplings between states are local­
ized there, and adiabatic behaviour holds on both sides far from it. 
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TABLE 2. Mass 

Reaction 
A + BA 

I + MuI 
I + HI 
H + MuH 
H + HH 
0 + FO 
H + FH 
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H + FH 

1.8 2.2 2.6 
0 

Q,A 
in Figure 5, for H+FH [ 23]. 

factors 

mAB mABA Y 
.1~a.m.u. ) (a.m.u. ) (degrees) 

0.114 1.689 2.43 
1.000 7 . 982 7.20 
0.101 0.231 25.95 
0.504 0.582 60 
1.821 1.829 84.50 
0.957 0.958 87.11 
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This can be readily understood by recalling (see equation (A4) that P is 
essentially a nondiagonal antisymmetric momentum matrix: its elements 
are those of a differential operator, and close scrutiny shows that 
eigenvectors change drastically at the ridge from those of the 
transition state (an intermediate complex) to those of the separated 
collision partners. It is easy to show that asymptotically P matrix 
elements decay as p-l, and tend to overlaps of vibrational wave­
functions of diatoms. 

Alternatively, P can be viewed (equation (A4» as a matrix element 
of the force along p divided by the difference of energy eigenvalues: 
according, as noted previously (Section 1.3), adiabatic levels are 
closest at the ridge. Actually we found that maxima in calculated P 
occur, to within O.l~, at p values where the difference of the 
corresponding levels has a minimum for all the cases studied (Table III 

. + + 
llStS as Px and ~EX these values for the EO and El states) . 

T~BLE lIt. Properties of the nonadiabatic interaction between 

EO and £1· 

-!:2 -1 -!:2 
Px Fx ~EX ~xm (~ (a.m.u.) ) 

Reaction (A) (eV ft.-I) (eV) Approx. Exact 

I + MuI 20.8 0.25 0.54 0.28 <0.28 
I + HI 11.0 1.0 0.16 2.2 0.45 
H + MuH 3.50 1.3 0.82 3.3 4.33 
H + HH 1.91 2.0 0.33 7.9 8.67 
D + FD 1.69 2.8 0.15 13.8 12.72 
H + FH 1.68 3.4 0.22 15.8 14.87 

This avoided crossing structure around the ridge suggests we 
compare F /~E and P (where x indicates "in p "), F being the local 
derivativ~ ("~teepne~s") of the ridge. Table tIl sh&ws that these 
approximate values satisfactorily correlate with exact ones in the 
interesting cases that they are larger. (A scaling by the three-body 
reduced mass (Table II) has been performed, because P appears in 
Schroedinger's equation with a mass factor, see equation (A4». 

Finally, the role of the skewing angle as a measure of the purely 
kinematic effect is also apparent from Table II and III: classically, 
its increase favours temporary trapping in the transition zone, and 
obstacles direct dissociation. The increase in P as the skewing angle 
gets larger is then a manifestation that trapping is the classical 
analog for diabaticity, and direct dissociation for adiabaticity in the 
p variable. 

It has been amply demonstrated that knowledge of P and its 
properties opens the possibility of explicitly introducing nonadiabatic 
effects within a semiclassical scheme. Actually, the results of this 
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Figure 9. As in Figure 5, for D+FD [24]. 
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Figure 10. Elements of the matrix P, coupling some of the 
states for D+FD in Figure 9. ((+) states, dashed, (-) states, 
dotted) (' 24 ]. 
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Figure 11. Resonance positions for H+FH (See Table IV). (q 
are exact, a adiabatic, d assuming diabatic behaviour at 
verical lines joining states, da assuming diabatic behaviour 
between 0 and 1 only). Continuous line is the potential 
ridge [23] 

paper provide the foundation for a nonadiabatic model for resonances, 
outlined in reference [23], see Figures 11 and 12 and Table IV. The 
demonstrated locality of nonadiabaticity and its avoided crossing 
structure justifies the introduction of Landau-Zener type of treatments 
for diabatic-adiabatic behaviour at the ridge. (An estimate of the 
non-adiabatic transition probability by the Landau-Zener formula using 
the calculated P matrix confirms the diabatic behaviour postulated for 
the resonances in Figures 11, 12 and Table IV) . 
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Figure 12. As in Figure 11, for D+FD [24]. 

TABLE IV. Resonances for the reactions H+FH and D+FD. 

a 

Position (eV) Method 

H + FH D + FD 

-5.850 -5.912 Exact 
a 

-5.848 -5.911 MEPVAGa 

-5.841 -5.907 MEPr;Aa 

-5.845 SCE 
-5.861 CI 
-5.869 -5.924 Hyperspherical adiabatic 
-5.850 -5.910 Hyperspherical diabatic 

B.C. Garrett, D.G. Truh1ar, R.S. Grev, g.c. Schatz, and R.B. 
Walker, J.Chem.Phys., 85 3806 (1981); T.C. Thompson and 
D.G. Truhlar, J.Chem.Phys., 76 1790 (1982). 
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4. CONCLUDING REMARKS 

The promising theoretical advances outlined above, especially the use of 
the hyperradius as a useful adiabatic coordinate both for unimolecular 
reaction models and collinear bimolecular reactions, are likely to be 
important tools for further progress. In particular, the actual 
computed P matrix elements for the systems considered here confirm 
indications from previous studies on the limits of the validity for the 
adiabatic approximation, and offer interesting clues on how to go beyond. 
This is particularly important if we are going towards applying these 
methods to the real 3-D world [56), where resonances in reactions can 
now be seen experimentally [57). 
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APPENDIX: ADIABATIC AND DIABATIC REPRESENTATIONS 

For definiteness, we consider the case that for an (n+l)-dimensional 
problem, the variable which we separate from the others is a distance p 
from a point in an (n+l)-dimensional space [21J. SO, p is the hyper­
radius of an n-dimensional sphere, and n will denote the remaining n 
coordinates (typically, hyperangles). SUch a representation for the 
many body problem is being actively explored because the kinetic energy 
operator becomes essentially a Laplacian of a hyperspace. Also, p has 
proven to be a good choice as a nearly separable variable for many 
problems (see Section 3): other choices are of course possible, but may 
lead to the appearance of additional coupling terms in the following 
equations. 

When the total wavefunction is expanded in an adiabatic basis set 

(AI) 

+a 
the hyperradial adiabatic functions F are to be found as the solutions 
with proper boundary conditions of the infinite set of coupled linear 
differential equations [58) 

{~ [1: d o (A2) 

2m dp 

Here, the matrix of adiabatic eigenfunctions ~a(p,Q ) and the diagonal 
matrix of adiabatic potential energy curves ~(p) ar~ solutions of the 
eigenvalue problem 

{_ fj2 [.!':2 + n2 
2mp2 4 

n 2 J + V (P, n n) - .:. (P) }!a (P , n n) 
2 

o 

where the operator A2 is the angular part of the Laplacian of the 

(A3) 
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(n+l)-dimensional space, and V(p,Q ) is the interaction potential. The 
infnute sets are meant to be solve§ after proper truncation. The mass 
parameter m, which appears in equation (A2), depends on the definition 
of the hyperradius P: in Section 3, p has been defined so that m is the 
three-body reduced mass, [m m mc/(m +m +mc) ]~. 

d " , A B A ,B f 1 ' 11 I' , The a Labatlc approxlmatlon conslsts 0 neg ectlng a coup J_ng In 
equation (A2), i.e. in neglecting the elements of the antisymmetric 
matrix P(p) 
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P = <4> a lo 
vv' v-

a -1 al a 4> > = (E - E) <4> oV4> > = -p 
Vi V Vi V - Vi v'v (M) 

oP op 
the brackets denoting integration over hyperangles Q , 
made of the Hellmann-Feynman theorem. Improved versioRs 
diagonal terms of a matrix Q(p) given by Q = _P2+d P. 
further corrections to the adiabatic - dp 
approximation has also been developed [58]. 

and use has been 
add to -E the 

A schemevfor 

Diabatic representations [25] correspond to an alternative expansion 

By comparison with (AI), equation (AS) implies the definition of an 
orthogonal transformation matrix T(P) 

and 

+d +a 
F (p) = T(P)F (p) 

(AS) 

which can be obtained once equation (A3) has been solved by requiring 
that the orthogonal matrix T(p) satisfies the system 

~(p) T (p) 

As a result, first derivatives disappear from equation (A2), which 
becomes 

{_ fl2 

2m 

+d [d2 + E]~ + ~(p)} F (p)=O 
~ 

(A6) 

(A7) 

the coupling being transferred from the kinetic term in equation IA2) 
to the potential, which now is a non-diagonal diabatic matrix 

(A8) 

The prescription is not unique, since any p-independent rotat_ion 
of T is also a solution: boundary conditions are imposed on (A7) by 

requiring V(p) to coincide with E(p) at some p (local diabaticity 
[5]). - -

It is often convenient to follow the opposite route, and obtain 
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first a diabatic representation through an eigenfunction expansion: 
actually, by exploiting the algebraic advantages of the hyperspherical 
formulation, expansions in the harmonics of the n-dimensional hyper­
sphere often provide a natural way for constructing the diabatic basis 
[21,48]. They can be constructed in several ways, corresponding to 
different parametrizations of hyperangles (see e.g. [48,49]; discrete 
representations can also be devised [60]) and should prove useful for 
obtaining alternative diabatic representations corresponding to 
alternative coupling schemes. These possibilities in the choice of 
coordinate frames are of interest both for the formation of exact treat­
ments and for approximate approaches based on efficient decoupling 
schemes. 
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