

Scaling Algorithms,
Applications and Systems

This page intentionally left blank.

Scaling Algorithms,
Applications and Systems

New York / Boston / Dordrecht / London / Moscow

eBook ISBN: 0-306-47011-X
Print ISBN:

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com

0-7923-7745-1

Volume 3, No. 3, September 1999

Special issue on Scaling Data Mining Algorithms, Applications, and Systems to
Massive Data Sets by Applying High Performance Computing Technology
Guest Editors: Yike Guo, Robert Grossman

Parallel Formulations of Decision-Tree Classification Algorithms

A Fast Parallel Clustering Algorithm for Large Spatial Databases

Effect of Data Distribution in Parallel Mining of Associations

Parallel Learning of Belief Networks in Large and Difficult Domains

Editorial .. Yike Guo and Robert Grossman 1

.................... 3

.. 29

... 57

... 81

Data Mining and Knowledge Discovery, 3, 235-236 (1999)
1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

YIKE GUO yg@doc.ic.ac.uk

ROBERT GROSSMAN grossman @ uic .edu

His promises were, as he then was, mighty;
But his performance, as he is now, nothing.

—Shakespeare, King Henry VIII

This special issue of Data Mining and Knowledge Discovery addresses the issue of scaling
data mining algorithms, applications and systems to massive data sets by applying high
performance computing technology. With the commoditization of high performance com-
puting using clusters of workstations and related technologies, it is becoming more and
more common to have the necessary infrastructure for high performance data mining. On
the other hand, many of the commonly used data mining algorithms do not scale to large
data sets. Two fundamental challenges are: to develop scalable versions of the commonly
used data mining algorithms and to develop new algorithms for mining very large data sets.
In other words, today it is easy to spin a terabyte of disk, but difficult to analyze and mine
a terabyte of data.

Developing algorithms which scale takes time. As an example, consider the successful
scale up and parallelization of linear algebra algorithms during the past two decades. This
success was due to several factors, including: a) developing versions of some standard
algorithms which exploit the specialized structure of some linear systems, such as block-
structured systems, symmetric systems, or Toeplitz systems; b) developing new algorithms
such as the Wierderman and Lancos algorithms for solving sparse systems; and c) develop-
ing software tools providing high performance implementations of linear algebra primitives,
such as Linpack, LA Pack, and PVM.

In some sense, the state of the art for scalable and high performance algorithms for data
mining is in the same position that linear algebra was in two decades ago. We suspect that
strategies a)–c) will work in data mining also.

High performance data mining is still a very new subject with challenges. Roughly
speaking, some data mining algorithms can be characterised as a heuristic search process
involving many scans of the data. Thus, irregularity in computation, large numbers of
data access, and non-deterministic search strategies make efficient parallelization of a data
mining algorithms a difficult task. Research in this area will not only contribute to large
scale data mining applications but also enrich high performance computing technology
itself. This was part of the motivation for this special issue.

236 GUO AND GROSSMAN

This issue contains four papers. They cover important classes of data mining algorithms:
classification, clustering, association rule discovery, and learning Bayesian networks. The
paper by Srivastava et al. presents a detailed analysis of the parallelization strategy of tree
induction algorithms. The paper by Xu et al. presents a parallel clustering algorithm for
distributed memory machines. In their paper, Cheung et al. presents a new scalable algorithm
for association rule discovery and a survey of other strategies. In the last paper of this issue,
Xiang et al. describe an algorithm for parallel learning of Bayesian networks.

All the papers included in this issue were selected through a rigorous refereeing process.
We thank all the contributors and referees for their support. We enjoyed editing this issue
and hope very much that you enjoy reading it.

Yike Guo is on the faculty of Imperial College, University of London, where he is the
Technical Director of Imperial College Parallel Computing Centre. He is also the leader
of the data mining group in the centre. He has been working on distributed data mining
algorithms and systems development. He is also working on network infrastructure for
global wide data mining applications. He has a B.Sc. in Computer Science from Tsinghua
University, China and a Ph.D. in Computer Science from University of London.

Robert Grossman is the President of Magnify, Inc. and on the faculty of the University
of Illinois at Chicago, where he is the Director of the Laboratory for Advanced Computing
and the National Center for Data Mining. He has been active in the development of high
performance and wide area data mining systems for over ten years. More recently, he has
worked on standards and testbeds for data mining. He has an AB in Mathematics from
Harvard University and a Ph.D. in Mathematics from Princeton University.

Data Mining and Knowledge Discovery, 3,237-261 (1999)
1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

ANURAG SRIVASTAVA anurag@digital-impact.com

EUI-HONG HAN han@cs.umn.edu
VIPIN KUMAR kumar@cs.umn.edu

VINEET SINGH vsingh @ hitachi.com

Yike Guo and Robert Grossman

Classification decision tree algorithms are used extensively for data mining in many domains such as
retail target marketing, fraud detection, etc. Highly parallel algorithms for constructing classification decision trees
are desirable for dealing with large data sets in reasonable amount of time. Algorithms for building classification
decision trees have a natural concurrency, but are difficult to parallelize due to the inherent dynamic nature of
the computation. In this paper, we present parallel formulations of classification decision tree learning algorithm
based on induction. We describe two basic parallel formulations. One is based on

and the other is based on We discuss the advantages and
disadvantages of using these methods and propose a hybrid method that employs the good features of these
methods. We also provide the analysis of the cost of computation and communication of the proposed hybrid
method. Moreover, experimental results on an IBM SP-2 demonstrate excellent speedups and scalability.

data mining, parallel processing, classification, scalability, decision trees

Classification is an important data mining problem. A classification problem has an input
dataset called the training set which consists of a number of examples each having a number
of attributes. The attributes are either when the attribute values are ordered, or

when the attribute values are unordered. One of the categorical attributes is
called the or the The objective is to use the training dataset
to build a model of the class label based on the other attributes such that the model can be
used to classify new data not from the training dataset. Application domains include retail
target marketing, fraud detection, and design of telecommunication service plans. Several
classification models like neural networks (Lippman, 1987), genetic algorithms (Goldberg,
1989), and decision trees (Quinlan, 1993) have been proposed. Decision trees are probably
the most popular since they obtain reasonable accuracy (Spiegelhalter et al., 1994) and they

238 SRIVASTAVA ET AL.

are relatively inexpensive to compute. Most current classification algorithms such as
(Quinlan, 1993), and (Mehta et al., 1996) are based on the classification decision
tree algorithm (Quinlan, 1993).

In the data mining domain, the data to be processed tends to be very large. Hence, it is
highly desirable to design computationally efficient as well as scalable algorithms. One way
to reduce the computational complexity of building a decision tree classifier using large
training datasets is to use only a small sample of the training data. Such methods do not
yield the same classification accuracy as a decision tree classifier that uses the entire data set
[Wirth and Catlett, 1988; Catlett, 1991; Chan and Stolfo, 1993a; Chan and Stolfo, 1993b].
In order to get reasonable accuracy in a reasonable amount of time, parallel algorithms may
be required.

Classification decision tree construction algorithms have natural concurrency, as once a
node is generated, all of its children in the classification tree can be generated concurrently.
Furthermore, the computation for generating successors of a classification tree node can
also be decomposed by performing data decomposition on the training data. Nevertheless,
parallelization of the algorithms for construction the classification tree is challenging for the
following reasons. First, the shape of the tree is highly irregular and is determined only at
runtime. Furthermore, the amount of work associated with each node also varies, and is data
dependent. Hence any static allocation scheme is likely to suffer from major load imbalance.
Second, even though the successors of a node can be processed concurrently, they all use
the training data associated with the parent node. If this data is dynamically partitioned and
allocated to different processors that perform computation for different nodes, then there is a
high cost for data movements. If the data is not partitioned appropriately, then performance
can be bad due to the loss of locality.

In this paper, we present parallel formulations of classification decision tree learning
algorithm based on induction. We describe two basic parallel formulations. One is based on

and the other is based on
We discuss the advantages and disadvantages of using these methods

and propose a hybrid method that employs the good features of these methods. We also
provide the analysis of the cost of computation and communication of the proposed hybrid
method, Moreover, experimental results on an IBM SP-2 demonstrate excellent speedups
and scalability.

Most of the existing induction-based algorithms like (Quinlan, 1993), (Agrawal
et al., 1993), (Mehta et al., 1996), and (Shafer et al., 1996) use Hunt’s
method (Quinlan, 1993) as the basic algorithm. Here is a recursive description of Hunt’s
method for constructing a decision tree from a set of training cases with classes denoted

leaf identifying class .

4

contains cases all belonging to a single class The decision tree for is a

PARALLEL FORMULATIONS 239

contains cases that belong to a mixture of classes. A test is chosen, based on
a single attribute, that has one or more mutually exclusive outcomes
Note that in many implementations, n is chosen to be 2 and this leads to a binary decision
tree. is partitioned into subsets where contains all the cases in T that
have outcome of the chosen test. The decision tree for consists of a decision node
identifying the test, and one branch for each possible outcome. The same tree building
machinery is applied recursively to each subset of training cases.

contains no cases. The decision tree for is a leaf, but the class to be associated
with the leaf must be determined from information other than For example, chooses
this to be the most frequent class at the parent of this node.

Table 1 shows a training data set with four data attributes and two classes. Figure 1
shows how Hunt’s method works with the training data set. In case 2 of Hunt’s method, a
test based on a single attribute is chosen for expanding the current node. The choice of an
attribute is normally based on the entropy gains of the attributes. The entropy of an attribute
is calculated from class distribution information. For a discrete attribute, class distribution
information of each value of the attribute is required. Table 2 shows the class distribution
information of data attribute at the root of the decision tree shown in figure 1.
For a continuous attribute, binary tests involving all the distinct values of the attribute are
considered. Table 3 shows the class distribution information of data attribute
Once the class distribution information of all the attributes are gathered, each attribute is
evaluated in terms of either (Quinlan, 1993) or (Breiman et al., 1984).
The best attribute is selected as a test for the node expansion.

The algorithm generates a classification—decision tree for the given training data set
by recursively partitioning the data. The decision tree is grown using depth—first strategy.

A small training data set [Qui93].

Outlook Temp (F) Humidity (%) Windy? Class

Sunny 75 70 True Play

Sunny 80 90 True Don’t play

Sunny 85 85 False Don’t play

Sunny 72 95 False Don’t play
Sunny 69 70 False Play
Overcast 72 90 True Play
Overcast 83 78 False Play
Overcast 64 65 True Play
Overcast 81 75 False Play

Rain 71 80 True Don’t play

Rain 65 70 True Do’nt play

Rain 75 80 Flase Play

Rain 68 80 False Play
Rain 70 96 False Play

5

240
SR

IV
A

STA
V

A
 ET A

L.

6

PARALLEL FORMULATIONS 24 1

Class distribution information of attribute

Class
Attribute
value Play Don’t play

Sunny 2 3
Overcast 4 0
Rain 3 2

Class distribution information of attribute

Class
Attribute Binary

value test Play Don’t play

65 ≤ 1 0
> 8 5

70 ≤ 3 1
> 6 4

75 ≤ 4 1
> 5 4

78 ≤ 5 1
> 4 4

80 ≤ 7 2
> 2 3

85 ≤ 7 3
> 2 2

90 ≤ 8 4
> 1 1

95 ≤ 8 5
> 1 0

96 ≤ 9 5
> 0 0

The algorithm considers all the possible tests that can split the data set and selects a test that
gives the best information gain. For each discrete attribute, one test with outcomes as many
as the number of distinct values of the attribute is considered. For each continuous attribute,
binary tests involving every distinct value of the attribute are considered. In order to gather
the entropy gain of all these binary tests efficiently, the training data set belonging to the
node in consideration is sorted for the values of the continuous attribute and the entropy
gains of the binary cut based on each distinct values are calculated in one scan of the sorted
data. This process is repeated for each continuous attribute.

7

242 SRIVASTAVA ET AL.

Recently proposed classification algorithms (Mehta et al., 1996) and
(Shafer et al., 1996) avoid costly sorting at each node by pre-sorting continuous attributes
once in the beginning. In each continuous attribute is maintained in a sorted at-
tribute list. In this list, each entry contains a value of the attribute and its corresponding
record id. Once the best attribute to split a node in a classification tree is determined, each
attribute list has to be split according to the split decision. A hash table, of the same order
as the number of training cases, has the mapping between record ids and where each record
belongs according to the split decision. Each entry in the attribute list is moved to a clas-
sification tree node according to the information retrieved by probing the hash table. The
sorted order is maintained as the entries are moved in pre-sorted order.

Decision trees are usually built in two steps. First, an initial tree is built till the leaf
nodes belong to a single class only. Second, pruning is done to remove any to
the training data. Typically, the time spent on pruning for a large dataset is a small fraction,
less than 1% of the initial tree generation. Therefore, in this paper, we focus on the initial
tree generation only and not on the pruning part of the computation.

Several parallel formulations of classification rule learning have been proposed recently.
Pearson presented an approach that combines node-based decomposition and attribute-
based decomposition (Pearson, 1994). It is shown that the node-based decomposition (task
parallelism) alone has several probelms. One problem is that only a few processors are
utilized in the beginning due to the small number of expanded tree nodes. Another problem
is that many processors become idle in the later stage due to the load imbalance. The
attribute-based decomposition is used to remedy the first problem. When the number of
expanded nodes is smaller than the available number of processors, multiple processors are
assigned to a node and attributes are distributed among these processors. This approach is
related in nature to the partitioned tree construction approach discussed in this paper. In
the partitioned tree construction approach, actual data samples are partitioned (horizontal
partitioning) whereas in this approach attributes are partitioned (vertical partitioning).

In (Chattratichat et al., 1997), a few general approaches for parallelizing C4.5 are dis-
cussed. In the Dynamic Task Distribution (DTD) scheme, a master processor allocatesa
subtree of the decision tree to an idle slave processor. This schemedoes not require com-
munication among processors, but suffers from the load imbalance. DTD becomes similar
to the partitioned tree construction approach discussed in this paper once the number of
available nodes in the decision tree exceeds the number of processors. The DP-rec scheme
distributes the data set evenly and builds decision tree one node at a time. This scheme is
identical to the synchronous tree construction approach discussed in this paper and suffers
from the high communication overhead. The DP-att scheme distributes the attributes. This
scheme has the advantages of being both load-balanced and requiring minimal communi-
cations. However, this scheme does not scale well with increasing number of processors.
The results in (Chattratichat, 1997) show that the effectiveness of different parallelization
schemes varies significantly with data sets being used.

Kufrin proposed an approach called Parallel Decision Trees (PDT) in (Kufrin, 1997).
This approach is similar to the DP-rec scheme (Chattratichat et al., 1997) and synchronous
tree construction approach discussed in this paper, as the data sets are partitioned among
8

PARALLEL FORMULATIONS 243

processors. The PDT approach designate one processor as the “host” processor and the
remaining processors as “worker” processors. The host processor does not have any data
sets, but only receives frequency statistics or gain calculations from the worker processors.
The host processor determines the split based on the collected statistics and notify the
split decision to the worker processors. The worker processors collect the statistics of local
data following the instruction from the host processor. The PDT approach suffers from the
high communication overhead, just like DP-rec scheme and synchronous tree construction
approach. The PDT approach has an additional communication bottleneck, as every worker
processor sends the collected statistics to the host processor at the roughly same time and
the host processor sends out the split decision to all working processors at the same time.

The parallel implementation of SPRINT (Shafer et al., 1996) and ScalParC (Joshi et al.,
1998) use methods for partitioning work that is identical to the one used in the synchronous
tree construction approach discussed in this paper. Serial SPRINT (Shafer et al., 1996) sorts
the continuous attributes only once in the beginning and keeps a separate attribute list with
record identifiers. The splitting phase of a decision tree node maintains this sorted order
without requiring to sort the records again. In order to split the attribute lists according to
the splitting decision, SPRINT creates a hash table that records a mapping between a record
identifier and the node to which it goes to based on the splitting decision. In the parallel
implementation of SPRINT, the attribute lists are split evenly among processors and the
split point for a node in the decision tree is found in parallel. However, in order to split the
attribute lists, the full size hash table is required on all the processors. In order to construct the
hash table, all-to-all broadcast (Kumar et al., 1994) is performed, that makes this algorithm
unscalable with respect to runtime and memory requirements. The reason is that each
processor requires memory to store the hash table and communication overhead
for all-to-all broadcast, where is the number of records in the data set. The recently
proposed ScalParC (Joshi, 1998) improves upon the SPRINT by employing a distributed
hash table to efficiently implement the splitting phase of the SPRINT. In ScalParC, the hash
table is split among the processors, and an efficient personalized communication is used to
update the hash table, making it scalable with respect to memory and runtime requirements.

Goil et al. (1996) proposed the Concatenated Parallelism strategy for efficient parallel
solution of divide and conquer problems. In this strategy, the mix of data parallelism and task
parallelism is used as a solution to the parallel divide and conquer algorithm. Data parallelism
is used until there are enough subtasks are genearted, and then task parallelism is used, i.e.,
each processor works on independent subtasks. This strategy is similar in principle to the
partitioned tree construction approach discussed in this paper. The Concatenated Parallelism
strategy is useful for problems where the workload can be determined based on the size of
subtasks when the task parallelism is employed. However, in the problem of classificatoin
decision tree, the workload cannot be determined based on the size of data at a particular
node of the tree. Hence, one time load balancing used in this strategy is not well suited for
this particular divide and conquer problem.

In this section, we give two basic parallel formulations for the classification decision tree
construction and a hybrid scheme that combines good features of both of these approaches.
We focus our presentation for discrete attributes only. The handling of continuous attributes

9

244 SRIVASTAVA ET AL.

is discussed in Section 3.4. In all parallel formulations, we assume that training cases are
randomly distributed to P processors initially such that each processor has cases.

In this approach, all processors construct a decision tree synchronously by sending and
receiving class distribution information of local data. Major steps for the approach are
shown below:

1. Select a node to expand according to a decision tree expansion strategy (e.g. Depth-First
or Breadth-First), and call that node as the current node. At the beginning, root node is
selected as the current node.

2. For each data attribute, collect class distribution information of the local data at the
current node.

3. Exchange the local class distribution information using global reduction (Kumar et al.,
1994) among processors.

4. Simultaneously compute the entropy gains of each attribute at each processor and select
the best attribute for child node expansion.

5. Depending on the branching factor of the tree desired, create child nodes for the same
number of partitions of attribute values, and split training cases accordingly.

6. Repeat above steps (1–5) until no more nodes are available for the expansion.

Figure 2 shows the overall picture. The root node has already been expanded and the
current node is the leftmost child of the root (as shown in the top part of the figure). All the
four processors cooperate to expand this node to have two child nodes. Next, the leftmost
node of these child nodes is selected as the current node (in the bottom of the figure) and
all four processors again cooperate to expand the node.

The advantage of this approach is that it does not require any movement of the training data
items. However, this algorithm suffers from high communication cost and load imbalance.
For each node in the decision tree, after collecting the class distribution information, all
the processors need to synchronize and exchange the distribution information. At the nodes
of shallow depth, the communication overhead is relatively small, because the number of
training data items to be processed is relatively large. But as the decision tree grows and
deepens, the number of training set items at the nodes decreases and as a consequence, the
computation of the class distribution information for each of the nodes decreases. If the
average branching factor of the decision tree is k, then the number of data items in a child
node is on the average of the number of data items in the parent. However, the size of
communication does not decrease as much, as the number of attributes to be considered
goes down only by one. Hence, as the tree deepens, the communication overhead dominates
the overall processing time.

The other problem is due to load imbalance. Even though each processor started out
with the same number of the training data items, the number of items belonging to the same
node of the decision tree can vary substantially among processors. For example, processor 1
might have all the data items on leaf node A and none on leaf node B, while processor 2

10

PARALLEL FORMULATIONS 245

Synchronous tree construction approach with depth—first expansion strategy.

might have all the data items on node B and none on node A. When node A is selected as
the current node, processor 2 does not have any work to do and similarly when node B is
selected as the current node, processor 1 has no work to do.

This load imbalance can be reduced if all the nodes on the frontier are expanded simulta-
neously, i.e. one pass of all the data at each processor is used to compute the class distribution
information for all nodes on the frontier. Note that this improvement also reduces the num-
ber of times communications are done and reduces the message start-up overhead, but it
does not reduce the overall volume of communications.

In the rest of the paper, we will assume that in the synchronous tree construction algorithm,
the classification tree is expanded breadth-first manner and all the nodes at a level will be
processed at the same time.

In this approach, whenever feasible, different processors work on different parts of the
classification tree. In particular, if more than one processors cooperate to expand a node,
then these processors are partitioned to expand the successors of this node. Consider the
case in which a group of processors cooperate to expand node The algorithm consists
of following steps:

11

246 SRIVASTAVA ET AL.

Processors in cooperate to expand node n using the method described in
Section 3.1.

Once the node n is expanded in to successor nodes, then the
processor group is also partitioned, and the successor nodes are assigned to processors
as follows:

1. Partition the successor nodes into groups such that the total number of training cases
corresponding to each node group is roughly equal. Assign each processor to one node
group.

2. Shuffle the training data such that each processor has data items that belong to the nodes
it is responsible for.

3. Now the expansion of the subtrees rooted at a node group proceeds completely indepen-
dently at each processor as in the serial algorithm.

If the number of successor nodes is greater than

1, Assign a subset of processors to each node such that number of processors assigned to
a node is proportional to the number of the training cases corresponding to the node.

2. Shuffle the training cases such that each subset of processors has training cases that
belong to the nodes it is responsible for.

3. Processor subsets assigned to different nodes develop subtrees independently. Processor
subsets that contain only one processor use the sequential algorithm to expand the part of
the classification tree rooted at the node assigned to them. Processor subsets that contain
more than one processor proceed by following the above steps recursively.

At the beginning, all processors work together to expand the root node of the classification
tree. At the end, the whole classification tree is constructed by combining subtrees of each
processor.

Figure 3 shows an example. First (at the top of the figure), all four processors cooperate
to expand the root node just like they do in the synchronous tree construction approach.
Next (in the middle of the figure), the set of four processors is partitioned in three parts.
The leftmost child is assigned to processors 0 and 1, while the other nodes are assigned
to processors 2 and 3, respectively. Now these sets of processors proceed independently to
expand these assigned nodes. In particular, processors 2 and processor 3 proceed to expand
their part of the tree using the serial algorithm. The group containing processors 0 and 1
splits the leftmost child node into three nodes. These three new nodes are partitioned in
two parts (shown in the bottom of the figure); the leftmost node is assigned to processor
0, while the other two are assigned to processor 1. From now on, processors 0 and 1 also
independently work on their respective subtrees.

The advantage of this approach is that once a processor becomes solely responsible for
a node, it can develop a subtree of the classification tree independently without any com-
munication overhead. However, there are a number of disadvantages of this approach. The

Otherwise (if the number of successor nodes is less than

12

PARALLEL FORMULATIONS 247

Partitioned tree construction approach

first disadvantage is that it requires data movement after each node expansion until one pro-
cessor becomes responsible for an entire subtree. The communication cost is particularly
expensive in the expansion of the upper part of the classification tree. (Note that once the
number of nodes in the frontier exceeds the number of processors, then the communication
cost becomes zero.) The second disadvantage is poor load balancing inherent in the algo-
rithm. Assignment of nodes to processors is done based on the number of training cases in
the successor nodes. However, the number of training cases associated with a node does
not necessarily correspond to the amount of work needed to process the subtree rooted at
the node. For example, if all training cases associated with a node happen to have the same
class label, then no further expansion is needed.

13

248 SRIVASTAVA ET AL.

Our hybrid parallel formulation has elements of both schemes. The
in Section 3.1 incurs high communication overhead as the frontier

gets larger. The of Section 3.2 incurs cost of load
balancing after each step. The hybrid scheme keeps continuing with the first approach as
long as the communication cost incurred by the first formulation is not too high. Once this
cost becomes high, the processors as well as the current frontier of the classification tree
are partitioned into two parts.

Our description assumes that the number of processors is a power of 2, and that these
processors are connected in a hypercube configuration. The algorithm can be appropriately
modified if is not a power of 2. Also this algorithm can be mapped on to any parallel
architecture by simply embedding a virtual hypercube in the architecture. More precisely
the hybrid formulation works as follows.

• The database of training cases is split equally among processors. Thus, if is the
total number of training cases, each processor has training cases locally. At the
beginning, all processors are assigned to one partition. The root node of the classification
tree is allocated to the partition.

• All the nodes at the frontier of the tree that belong to one partition are processed together
using the synchronous tree construction approach of Section 3.1.

• As the depth of the tree within a partition increases, the volume of statistics gathered at
each level also increases as discussed in Section 3.1. At some point, a level is reached when
communication cost become prohibitive. At this point, the processors in the partition are
divided into two partitions, and the current set of frontier nodes are split and allocated
to these partitions in such a way that the number of training cases in each partition is
roughly equal. This load balancing is done as described as follows:

On a hypercube, each of the two partitions naturally correspond to a sub-cube. First,
corresponding processors within the two sub-cubes exchange relevant training cases
to be transferred to the other sub-cube. After this exchange, processors within each
sub-cube collectively have all the training cases for their partition, but the number of
training cases at each processor can vary between 0 to Now, a load balancing
step is done within each sub-cube so that each processor has an equal number of data
items.

• Now, further processing within each partition proceeds asynchronously. The above steps
are now repeated in each one of these partitions for the particular subtrees. This process
is repeated until a complete classification tree is grown.

• If a group of processors in a partition become idle, then this partition joins up with any
other partition that has work and has the same number of processors. This can be done by
simply giving half of the training cases located at each processor in the donor partition
to a processor in the receiving partition.

A key element of the algorithm is the criterion that triggers the partitioning of the current
set of processors (and the corresponding frontier of the classification tree). If partitioning

14

PARALLEL FORMULATIONS 249

is done too frequently, then the hybrid scheme will approximate the partitioned tree con-
struction approach, and thus will incur too much data movement cost. If the partitioning is
done too late, then it will suffer from high cost for communicating statistics generated for
each node of the frontier, like the synchronized tree construction approach. One possibility
is to do splitting when the accumulated cost of communication becomes equal to the cost
of moving records around in the splitting phase. More precisely, splitting is done when

As an example of the hybrid algorithm, figure 4 shows a classification tree frontier at
depth 3. So far, no partitioning has been done and all processors are working cooperatively
on each node of the frontier. At the next frontier at depth 4, partitioning is triggered, and
the nodes and processors are partitioned into two partitions as shown in figure 5.

A detailed analysis of the hybrid algorithm is presented in Section 4.

The computation frontier during computation phase.

Binary partitioning of the tree to reduce communication costs.

15

250 SRIVASTAVA ET AL.

Note that handling continuous attributes requires sorting. If each processor contains
training cases, then one approach for handling continuous attributes is to perform a parallel
sorting step for each such attribute at each node of the decision tree being constructed.
Once this parallel sorting is completed, each processor can compute the best local value for
the split, and then a simple global communication among all processors can determine the
globally best splitting value. However, the step of parallel sorting would require substantial
data exchange among processors. The exchange of this information is of similar nature as
the exchange of class distribution information, except that it is of much higher volume.
Hence even in this case, it will be useful to use a scheme similar to the hybrid approach
discussed in Section 3.3.

A more efficient way of handling continuous attributes without incurring the high cost of
repeated sorting is to use the pre-sorting technique used in algorithms (Mehta et al.,
1996), (Shafer et al., 1996), and (Joshi et al., 1998). These algorithms
require only one pre-sorting step, but need to construct a hash table at each level of the
classification tree. In the parallel formulations of these algorithms, the content of this hash
table needs to be available globally, requiring communication among processors. Existing
parallel formulations of these schemes [Shafer et al., 1996; Joshi et al., 19981 perform
communication that is similar in nature to that of our synchronous tree construction approach
discussed in Section 3.1. Once again, communication in these formulations [Shafer et al.,
1996; Joshi et al., 1998] can be reduced using the hybrid scheme of Section 3.3.

Another completely different way of handling continuous attributes is to discretize them
once as a preprocessing step (Hong, 1997). In this case, the parallel formulations as presented
in the previous subsections are directly applicable without any modification.

Another approach towards discretization is to discretize at every node in the tree. There
are two examples of this approach. The first example can be found in [Alsabti et al., 19981
where quantiles (Alsabti et al., 1997) are used to discretize continuous attributes. The second
example of this approach to discretize at each node is (Srivastava et al., 1997) where
a clustering technique is used. has been shown to be very efficient in terms of runtime
and has also been shown to perform essentially identical to several other widely used tree
classifiers in terms of classification accuracy (Srivastava et al., 1997). Parallelization of
the discretization at every node of the tree is similar in nature to the parallelization of
the computation of entropy gain for discrete attributes, because both of these methods
of discretization require some global communication among all the processors that are
responsible for a node. In particular, parallel formulations of the clustering step in
is essentially identical to the parallel formulations for the discrete case discussed in the
previous subsections [Srivastavaet al., 1997].

In this section, we provide the analysis of the hybrid algorithm proposed in Section 3.3.
Here we give a detailed analysis for the case when only discrete attributes are present. The
analysis for the case with continuous attributes can be found in (Srivastava et al., 1997). The

16

PARALLEL FORMULATIONS 251

Symbols used in the analysis.

Symbol Definition

Total number of processors

Number of categorical attributes
Number of classes

Unit computation time

Total number of training samples

Number of processors cooperatively working on tree expansion

Average number of distinct values in the discrete attributes

Present level of decision tree

Start up time of comminication latency [KGGK94]
Per-word transfer time of communication latency [KGGK94]

detailed study of the communication patterns used in this analysis can be found in (Kumar
et al., 1994). Table 4 describes the symbols used in this section.

• The processors are connected in a hypercube topology. Complexity measures for other
topologies can be easily derived by using the communication complexity expressions for
other topologies given in (Kumar et al., 1994).

• The expression for communication and computation are written for a full binary tree with
leaves at depth The expressions can be suitably modified when the tree is not a full

binary tree without affecting the scalability of the algorithm.
• The size of the classification tree is asymptotically independent of for a particular

data set. We assume that a tree represents all the knowledge that can be extracted from a
particular training data set and any increase in the training set size beyond a point does
not lead to a larger decision tree.

For each leaf of a level, there are class histogram tables that need to be communicated.
The size of each of these tables is the product of number of classes and the mean number
of attribute values. Thus size of class histogram table at each processor for each leaf is:

Class histogram size for each leaf =

The number of leaves at level is Thus the total size of the tables is:

Combined class histogram tables for a processor =

17

252 SRIVASTAVA ET AL.

At level the local computation cost involves I/O scan of the training set, initialization
and update of all the class histogram tables for each attribute:

(1)

where is the unit of computation cost.

reduction of class histogram values. The communication cost1 is:
At the end of local computation at each processor, a synchronization involves a global

(2)

When a processor partition is split into two, each leaf is assigned to one of the partitions
in such a way that number of training data items in the two partitions is approximately the
same. In order for the two partitions to work independently of each other, the training set
has to be moved around so that all training cases for a leaf are in the assigned processor
partition. For a load balanced system, each processor in a partition must have training
data items.

This movement is done in two steps. First, each processor in the first partition sends the
relevant training data items to the corresponding processor in the second partition. This is
referred to as the “moving” phase. Each processor can send or receive a maximum of
data to the corresponding processor in the other partition.

(3)

After this, an internal load balancing phase inside a partition takes place so that every
processor has an equal number of training data items. After the moving phase and before
the load balancing phase starts, each processor has training data item count varying from 0
to Each processor can send or receive a maximum of training data items. Assuming
no congestion in the interconnection network, cost for load balancing is:

(4)

A detailed derivation of Eq. 4 above is given in (Srivastava et al., 1997). Also, the cost for
load balancing assumes that there is no network congestion. This is a reasonable assumption
for networks that are bandwidth-rich as is the case with most commercial systems. Without
assuming anything about network congestion, load balancing phase can be done using
transportation primitive (Shankar, 1995) in time 2 * * time provided

Splitting is done when the accumulated cost of communication becomes equal to the cost
of moving records around in the splitting phase (Karypis, 1994). So splitting is done when:

18

PARALLEL FORMULATIONS 253

This criterion for splitting ensures that the communication cost for this scheme will be
within twice the communication cost for an optimal scheme (Karypis and Kumar, 1994).
The splitting is recursive and is applied as many times as required. Once splitting is done,
the above computations are applied to each partition. When a partition of processors starts
to idle, then it sends a request to a busy partition about its idle state. This request is sent to a
partition of processors of roughly the same size as the idle partition. During the next round
of splitting the idle partition is included as a part of the busy partition and the computation
proceeds as described above.

Isoefficiency metric has been found to be a very useful metric of scalability for a large number
of problems on a large class of commercial parallel computers (Kumar et al., 1994). It is
defined as follows. Let be the number of processors and the problem size (in total
time taken for the best sequential algorithm). If needs to grow as to maintain an
efficiency then is defined to be the isoefficiency function for efficiency and the
plot of with respect to is defined to be the isoefficiency curve for efficiency

We assume that the data to be classified has a tree of depth This depth remains constant
irrespective of the size of data since the data “fits” this particular classification tree.

Total cost for creating new processor sub-partitions is the product of total number of
partition splits and cost for each partition split using Eqs. (3) and (4). The number
of partition splits that a processor participates in is less than or equal to —the depth of
the tree.

(5)

Communication cost at each level is given by Eq. (2) (=θ(log)) The combined com-
munication cost is the product of the number of levels and the communication cost at each
level.

(6)

The total communication cost is the sum of cost for creating new processor partitions and
communication cost for processing class histogram tables, the sum of Eqs. (5) and (6).

(7)

Computation cost given by Eq. (1) is:

(8)

19

254 SRIVASTAVA ET AL.

Total parallel run time (Sum of Eqs. (7) and (8) = Communication time + Computation
time.

(9)

In the serial case, the whole dataset is scanned once for each level. So the serial time is

To get the isoefficiency function, we equate times total parallel run time using Eq. (9)
to serial computation time.

Therefore, the isoefficiency function is θ log Isoefficiency is 8 log assum-
ing no network congestion during load balancing phase. When the transportation primitive
is used for load balancing, the isoefficiency is

We have implemented the three parallel formulations using the MPI programming library.
We use binary splitting at each decision tree node and grow the tree in breadth first manner.
For generating large datasets, we have used the widely used synthetic dataset proposed in
the paper (Mehta et al., 1996) for all our experiments. Ten classification functions
were also proposed in (Mehta et al., 1996) for these datasets. We have used the function
2 dataset for our algorithms. In this dataset, there are two class labels and each record
consists of 9 attributes having 3 categoric and 6 continuous attributes. The same dataset
was also used by the algorithm (Shafer et al., 1996) for evaluating its performance.
Experiments were done on an IBM SP2. The results for comparing speedup of the three
parallel formulations are reported for parallel runs on 1, 2, 4, 8, and 16 processors. More
experiments for the hybrid approach are reported for up to 128 processors. Each processor
has a clock speed of 66.7 MHz with 256 MB real memory. The operating system is AIX
version 4 and the processors communicate through a high performance switch (hps). In our
implementation, we keep the “attribute lists” on disk and use the memory only for storing
program specific data structures, the class histograms and the clustering structures.

First, we present results of our schemes in the context of discrete attributes only. We
compare the performance of the three parallel formulations on up to 16 processor IBM
SP2. For these results, we discretized 6 continuous attributes uniformly. Specifically, we
discretized the continuous attribute to have 13, to have 14, to have
6, to have 11, to have 10, and to have 20 equal intervals. For measuring
the speedups, we worked with different sized datasets of 0.8 million training cases and 1.6

20

PARALLEL FORMULATIONS 255

Speedup comparison of the three parallel algorithms.

million training cases. We increased the processors from 1 to 16. The results in figure 6
show the speedup comparison of the three parallel algorithms proposed in this paper. The
graph on the left shows the speedup with 0.8 million examples in the training set and the
other graph shows the speedup with 1.6 million examples.

The results show that the synchronous tree construction approach has a good speedup for
2 processors, but it has a very poor speedup for 4 or more processors. There are two reasons
for this. First, the synchronous tree construction approach incurs high communication cost,
while processing lower levels of the tree. Second, a synchronization has to be done among
different processors as soon as their communication buffer fills up. The communication
buffer has the histograms of all the discrete variables for each node. Thus, the contribution
of each node is independent of its tuples count, the tuple count at a node being proportional

21

256 SRIVASTAVA ET AL.

to the computation to process that node. While processing lower levels of the tree, this
synchronization is done many times at each level (after every 100 nodes for our experiments).
The distribution of tuples for each decision tree node becomes quite different lower down
in the tree. Therefore, the processors wait for each other during synchronization, and thus,
contribute to poor speedups.

The partitioned tree construction approach has a better speedup than the synchronous
tree construction approach. However, its efficiency decreases as the number of processors
increases to 8 and 16. The partitioned tree construction approach suffers from load imbal-
ance. Even though nodes are partitioned so that each processor gets equal number of tuples,
there is no simple way of predicting the size of the subtree for that particular node. This
load imbalance leads to the runtime being determined by the most heavily loaded processor.
The partitioned tree construction approach also suffers from the high data movement during
each partitioning phase, the partitioning phase taking place at higher levels of the tree. As
more processors are involved, it takes longer to reach the point where all the processors
work on their local data only. We have observed in our experiments that load imbalance
and higher communication, in that order, are the major cause for the poor performance of
the partitioned tree construction approach as the number of processors increase.

The hybrid approach has a superior speedup compared to the partitioned tree approach
as its speedup keeps increasing with increasing number of processors. As discussed in
Section 3.3 and analyzed in Section 4, the hybrid controls the communication cost and
data movement cost by adopting the advantages of the two basic parallel formulations.
The hybrid strategy also waits long enough for splitting, until there are large number of
decision tree nodes for splitting among processors. Due to the allocation of decision tree
nodes to each processor being randomized to a large extent, good load balancing is possible.
The results confirmed that the proposed hybrid approach based on these two basic parallel
formulations is effective.

We have also performed experiments to verify our splitting criterion of the hybrid algo-
rithm is correct. Figure 7 shows the runtime of the hybrid algorithm with different ratio of
communication cost and the sum of moving cost and load balancing cost, i.e.,

The graph on the left shows the result with 0.8 million examples on 8 processors and the
other graph shows the result with 1.6 million examples on 16 processors. We proposed that
splitting when this ratio is 1.0 would be the optimal time. The results verified our hypothesis
as the runtime is the lowest when the ratio is around 1.0. The graph on the right with 1.6
million examples shows more clearly why the splitting choice is critical for obtaining a
good performance. As the splitting decision is made farther away from the optimal point
proposed, the runtime increases significantly.

The experiments on 16 processors clearly demonstrated that the hybrid approach gives a
much better performance and the splitting criterion used in the hybrid approach is close to
optimal. We then performed experiments of running the hybrid approach on more number
of processors with different sized datasets to study the speedup and scalability. For these
experiments, we used the original data set with continuous attributes and used a clustering

22

PARALLEL FORMULATIONS 257

Splitting criterion verification in the hybrid algorithm.

technique to discretize continuous attributes at each decision tree node (Srivastava et al.,
1997). Note that the parallel formulation gives performance as the serial
algorithm in terms of accuracy and classification tree size (Srivastava et al., 1997). The
results in figure 8 show the speedup of the hybrid approach. The results confirm that the
hybrid approach is indeed very effective.

To study the scaleup behavior, we kept the dataset size at each processor constant at 50,000
examples and increased the number of processors. Figure 9 shows the runtime on increasing
number of processors. This curve is very close to the ideal case of a horizontal line. The
deviation from the ideal case is due to the fact that the isoefficiency function is log
not Current experimental data is consistent with the derived isoefficiency function
but we intend to conduct additional validation experiments.

23

25 8 SRIVASTAVA ET AL.

Speedup of the hybrid approach with different size datasets.

Scaleup of our algorithm.

24

PARALLEL FORMULATIONS 259

In this paper, we proposed three parallel formulations of inductive-classification learning
algorithm. The performs well if the classification
tree remains skinny, having few nodes at any level, throughout. For such trees, there are rel-
atively large number of training cases at the nodes at any level; and thus the communication
overhead is relatively small. Load imbalance is avoided by processing all nodes at a level,
before synchronization among the processors. However, as the tree becomes bushy, having
a large number of nodes at a level, the number of training data items at each node decrease.
Frequent synchronization is done due to limited communication buffer size, which forces
communication after processing a fixed number of nodes. These nodes at lower depths of
the tree, which have few tuples assigned to them, may have highly variable distribution of
tuples over the processors, leading to load imbalance. Hence, this approach suffers from
high communication overhead and load imbalance for bushy trees. The

works better than if the
tree is bushy. But this approach pays a big communication overhead in the higher levels of
the tree as it has to shuffle lots of training data items to different processors. Once every
node is solely assigned to a single processor, each processor can construct the partial clas-
sification tree independently without any communication with other processors. However,
the load imbalance problem is still present after the shuffling of the training data items,
since the partitioning of the data was done statically.

The hybrid approach combines the good features of these two approaches to reduce
communication overhead and load imbalance. This approach uses the

for the upper parts of the classification tree. Since there are few
nodes and relatively large number of the training cases associated with the nodes in the
upper part of the tree, the communication overhead is small. As soon as the accumulated
communication overhead is greater than the cost of partitioning of data and load balancing,
this approach shifts to the incrementally. The
partitioning takes place when a reasonable number of nodes are present at a level. This
partitioning is gradual and performs randomized allocation of classification tree nodes,
resulting in a better load balance. Any load imbalance at the lower levels of the tree, when
a processor group has finished processing its assigned subtree, is handled by allowing an
idle processor group to join busy processor groups.

The size and shape of the classification tree varies a lot depending on the application
domain and training data set. Some classification trees might be shallow and the others
might be deep. Some classification trees could be skinny others could be bushy. Some
classification trees might be uniform in depth while other trees might be skewed in one part
of the tree. The hybrid approach adapts well to all types of classification trees. If the decision
tree is skinny, the hybrid approach will just stay with the

On the other hand, it will shift to the as
soon as the tree becomes bushy. If the tree has a big variance in depth, the hybrid approach
will perform dynamic load balancing with processor groups to reduce processor idling.

25

260 SRIVASTAVA ET AL.

A significant part of this work was done while Anurag Srivastava and Vineet Singh were at
IBM TJ Watson Research Center. This work was supported by NSF grant ASC-96347 19,
Army Research Office contract DA/DAAH04-95-1-0538, Cray Research Inc. Fellowship,
and IBM partnership award, the content of which does not necessarily reflect the policy
of the government, and no official endorsement should be inferred. Access to computing
facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research
Inc., and NSF grant CDA-9414015.

1. If the message size is large, by routing message in parts, this communication step can be
done in time : + * MesgSize) * for a small constant Refer to (Kumar et al.,
1994) section 3.7 for details.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Database mining: A performance perspective. IEEE Transactions

Alsabti, K., Ranka, S., and Singh, V. 1997. A one-pass algorithm for accurately estimating quantiles for disk-

Alsabti, K., Ranka, S., and Singh, V. 1998. CLOUDS: Classification for large or out-of-core datasets.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and Regression Trees. Monterrey, CA:

Catlett, J. 1991. Megainduction: machine learning on very large databases. PhD thesis, University of Sydney.
Chan, Philip K. and Stolfo, Salvatore J. 1993a. Experiments on multistrategy learning by metaleaming. Proc.

Second Intl. Conference on Info. and Knowledge Mgmt, pp. 314-323.
Chan, Philip K. and Stolfo, Salvatore J. 1993b. Metalearning for multistrategy learning and parallel learning. Proc.

Second Intl. Conference on Multistrategy Learning, pp. 150-165.
Chattratichat, J., Darlington, J., Ghanem, M., Guo, Y., Huning, H., Kohler, M., Sutiwaraphun, J., To, H.W., and

Yang, D. Large scale data mining: Challenges and responses. Proc. of the Third Int’l Conference on Knowledge
Discovery and Data Mining.

Goil, S., Alum, S., and Ranka, S. 1996. Concatenated parallelism: A technique for efficient parallel divide and
conquer. Proc. of the Symposium of Parallel and Distributed Computing (SPDP’96).

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimizations and Machine Learning. Morgan-Kaufman.
Hong, S.J. 1997. Use of contextual information for feature ranking and discretization. IEEE Transactions on

Joshi, M.V., Karypis, G., and Kumar, V., 1998. ScalParC: A new scalable and efficient parallel classification

George Karypis and Vipin Kumar. 1994. Unstructured tree search on simd parallel computers. Journal of Parallel

Kufrin, R. 1997. Decision trees on parallel processors. In Parallel Processing for Artificial Intelligence 3. J. Geller,

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. 1994. Introduction to Parallel Computing:

Lippmann, R. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4(22).

on Knowledge and Data Eng., 5(6):914-925.

resident data. Proc. of the 23rd VLDB Conference.

http://www.cise.uft.edu/~ranka/dm.html.

Wadsworth.

Knowledge and Data Eng., 9(5):718-730.

algorithm for mining large datasets. Proc. of the International Parallel Processing Symposium.

and Distributed Computing, 22(3):379-391.

H. Kitano, and C.B. Suttner (Ed.). Elsevier Science.

Algorithm Design and Analysis. Redwod City: Benjamin Cummings/Addison Wesley.

26

PARALLEL FORMULATIONS 261

Mehta, M., Agrawal, R., and Rissaneh, J. 1996. SLIQ: A fast scalable classifier for data mining. Proc. of the Fifth

Pearson, R.A. 1994. A coarse grained parallel induction heuristic. In Parallel Processing for Artificial Intelligence

Ross Quinlan, J. 1993. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.
Shafer, J., Agrawal, R., and Mehta, M. 1996. SPRINT A scalable parallel classifier for data mining. Proc. of the

22nd VLDB Conference.
Shankar, R., Alsabti, K., and Ranka, S. 1995. Many-to-many communication with bounded traffic. Frontiers ’95,

the Fifth Symposium on Advances in Massively Parallel Computation. McLean, VA.
Spiegelhalter, D.J., Michie, D., and Taylor, C.C. 1994. Machine Learning, Neural and Statistical Classification.

Ellis Horwood.
Anurag Srivastava, Vineet Singh, Eui-Hong Han, and Vipin Kumar. 1997. An efficient, scalable, parallel classi-

fier for data mining. Technical Report TR-97-0 10,http://www.cs,umn.edu/~kumar, Department of Computer
Science, University of Minnesota, Minneapolis.

Wirth, J. and Catlett, J. 1988. Experiments on the costs and benefits of windowing in ID3. 5th Int’l Conference on
Machine learning.

Int’l Conference on Extending Database Technology. Avignon. France.

2, H. Kitano, V. Kumar, and C.B. Suttner (Ed.). Elsevier Science, pp. 207-226.

works at Digital Impact, a silicon valley start-up, developing data mining technologies for
application to targeted email marketing. Prior to this, he was a researcher at Hitachi’s data mining research labs.
He did his B. Tech. from Indian Institute of Technology, Delhi 1995 and M.S. from University of Minnesota,
Minneapolis in 1996. Most of his work has been in design and implementation of parallel and scalable data mining
algorithms.

is a Ph.D. candidate in the Department of Computer Science and Engineering at the
University of Minnesota. He holds a B.S. in Computer Science from the University of Iowa and an M.S. in
Computer Science from the University of Texas at Austin. He worked at CogniSeis Development and IBM for
several years before joining the Ph.D. program. His research interests include high performance computing,
clustering, and classification in data mining. He is a member of ACM.

is a Professor in the Department of Computer Science and Engineering, and the director of graduate
studies for the Graduate Program in Scientific Computation. Vipin Kumar’s current research interests include High
Performance computing, parallel algorithms for scientific computing problems, and data mining. His research
has resulted in the development of the concept of isoefficiency metric for evaluating the scalability of parallel
algorithms, as well as highly efficient parallel algorithms and software for sparse matrix factorization (PSPACES),
graph partitioning (METIS, ParMetis), VLSI circuit partitioning (hMetis), and dense hierarchical solvers. He
has authored over 100 research articles, and coedited or coauthored 5 books including the widely used text
book “Introduction to Parallel Computing” (Publ. Benjamin Cummings/Addison Wesley, 1994). Kumar has given
numerous invited talks at various conferences. workshops, national labs, and has served as chair/co-chair for many
conferences/workshops in the area of parallel computing and high performance data mining. Kumar serves on the
editorial boards of IEEE Concurrency, Parallel Computing, the Journal of Parallel and Distributed Computing,
and served on the editorial board of IEEE Transactions of Data and Knowledge Engineering during 93-97. He is a
senior member of IEEE, a member of SIAM, and ACM, and a Fellow of the Minnesota Supercomputer Institute.

is an a start-up developing new products for ecommerce marketing. Previously, he has been Chief
Researcher at Hitachi America’s Information Technology Lab and he has held research positions in IBM, HP,
MCC, and Schlumberger. He has a Ph.D. from Stanford University and a Master’s from MIT.

27

This page intentionally left blank.

Data Mining and Knowledge Discovery, 3,263-290 (1999)
1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

XIAOWEI XU* Xiaowei.Xu@mchp.siemens.de

JOCHEN JÄGER jaeger@informatik.uni-muenchen.de
HANS-PETER KRIEGEL kriegel@informatik.uni-muenchen.de

Yike Guo and Robert Grossman

The clustering algorithm DBSCAN relies on a density-based notion of clusters and is designed to
discover clusters of arbitrary shape as well as to distinguish noise. In this paper, we present PDBSCAN, a parallel
version of this algorithm. We use the ‘shared-nothing’ architecture with multiple computers interconnected through
a network. A fundamental component of a shared-nothing system is its distributed data structure. We introduce
the dR*-tree, a distributed spatial index structure in which the data is spread among multiple computers and the
indexes of the data are replicated on every computer. We implemented our method using a number of workstations
connected via Ethernet (10 Mbit). A performance evaluation shows that PDBSCAN offers nearly linear speedup
and has excellent scaleup and sizeup behavior.

index structures, spatial databases
clustering algorithms, parallel algorithms, distributed algorithms, scalable data mining, distributed

Spatial Database Systems (SDBS) (Gueting, 1994) are database systems for the management
of spatial data, i.e. point objects or spatially extended objects in a 2D or 3D space or in some
high-dimensional feature space. Knowledge discovery becomes more and more important
in spatial databases since increasingly large amounts of data obtained from satellite images,
X-ray crystal-lography or other automatic equipment are stored in spatial databases.

is a step in the KDD process consisting of the application of data analysis and
discovery algorithms that, under acceptable computational efficiency limitations, produce
a particular enumeration of patterns over the data (Fayyad et al., 1996). Clustering, i.e.
grouping the objects of a database into meaningful subclasses, is one of the major data
mining methods (Matheus et al., 1993). There has been a lot of research on clustering
algorithms for decades but the application to large spatial databases introduces the following
new conditions:

*This work was performed while the author was still working at the Institute for Computer Science, University of
Munich.

264 XU ET AL.

(1) Minimal requirements of domain knowledge to determine the input parameters, because
appropriate values are often not known in advance when dealing with large databases.

(2) Discovery of clusters with arbitrary shape, because the shape of clusters in spatial
databases may be non-convex, spherical, drawn-out, linear, elongated, etc.

(3) Good efficiency on very large databases, i.e. on databases of significantly more than
just a few thousand objects.

Ester et al. (1996) present the density-based clustering algorithm DBSCAN. For each
point of a cluster, its Eps-neighborhood (for some given 0) has to contain at least
a minimum number of points > 0). DBSCAN meets the above requirements in
the following sense: first, DBSCAN requires only two input parameters and
supports the user in determining an appropriate value for it. Second, it discovers clusters of
arbitrary shape and can distinguish noise. Third, using spatial access methods, DBSCAN is
efficient even for very large spatial databases. In addition, a generalized version of DBSCAN
can cluster point objects as well as spatially extended objects (Sander et al., 1998).

In this paper, we present a parallel clustering algorithm PDBSCAN which is based on
DBSCAN for knowledge discovery in very large spatial databases. We use the ‘shared-
nothing’ architecture which has the main advantage that it can be scaled up to hundreds
and probably thousands of computers. As a data structure, we introduce the dR*-tree, a
distributed spatial index structure. The main program of PDBSCAN, the master, starts a
clustering slave on each available computer in the network and distributes the whole data
set onto the slaves, Every slave clusters only its local data. The replicated index provides an
efficient access of data, and the interference between computers is also minimized through
the local access of the data. The slave-to-slave and master-to-slaves communication is
implemented by message passing. The master manages the task of dynamic load balancing
and merges the results produced by the slaves.

We implemented our method on a number of workstations connected via Ethernet
(10 Mbit). A performance evaluation shows that PDBSCAN scales up very well and has
excellent speedup and sizeup behavior. The results from this study, besides being of interest
in themselves, provide a guidance for the design of parallel algorithms for other spatial data
mining tasks, e.g. classification and trend detection.

This paper is organized as follows. Section 2 surveys previous efforts to parallelize other
clustering algorithms. Section 3 briefly describes the algorithm DBSCAN and Section 4
presents our parallel clustering algorithm PDBSCAN. Section 5 shows experimental re-
sults and evaluates our parallel algorithm with respect to speedup, scalability, and sizeup.
Section 6 lists the conclusions and highlights directions for future work.

Several authors have previously proposed some parallel clustering algorithms. Rasmussen
and Willett (1989) discuss parallel implementations of the single link clustering method on
an SIMD array processor. Their parallel implementation of the SLINK algorithm does not
decrease the time required by the serial implementation, but a significant constant
speedup factor is obtained. Li and Fang (1989) describe parallel partitioning clustering (the

30

A FAST PARALLEL CLUSTERING ALGORITHM 265

means clustering algorithm) and parallel hierarchical clustering (single link clustering al-
gorithm) on an n-node hypercube and an n-node butterfly. Their algorithms run in log
time on the hypercube and log2 on the butterfly. Olson (1995) has described several
implementations of hierarchical clustering algorithms. His implementation of hierarchical
clustering algorithm achieves time on a -node CRCW PRAM and log time
on node butterfly networks or trees. All these parallel clustering algorithms have the
following drawbacks:

1. They assume that all objects can reside in main memory at the same time.
2. They need a large number of processors (about the size of the data set) to achieve a

reasonable performance.

Both assumptions are prohibitive for very large databases with millions of objects. There-
fore, database oriented parallel clustering algorithms should be developed.

Recently, (Pfitzner et al., 1998) present a parallel clustering algorithm for finding halos in
body cosmology simulations. While overcoming the above two drawbacks, their method

relies on some problem-specific knowledge and may be inappropriate for other disciplines.
In the literature, several parallel algorithms for mining association rules have been pro-

posed recently (cf. Agrawal and Shafer, 1996; Cheung et al., 1996; Park et al., 1995).
However, for many applications, especially for mining in large spatial databases, scalable
parallel clustering algorithms are still in great demand.

In this section, we present a parallel clustering algorithm PDBSCAN which is based
on DBSCAN for knowledge discovery in very large spatial databases. We use the shared-
nothing architecture, with multiple computers interconnected through a network
(Stonebraker, 1986).

The key idea of density-based clustering is that for each point of a cluster the neighborhood
of a given radius has to contain at least a minimum number of points i.e.
the cardinality of the neighborhood has to exceed some threshold.

We will first give a short introduction of DBSCAN including the definitions which are
required for parallel clustering. For a detailed presentation of DBSCAN see Ester et al.
(1996).

point w.r.t. and in the set of points if

1. E is the subset of contained in the Eps-neighborhood of
2. ≥

Density-reachable: A point p is from a point w.r.t. Eps
and in the set of points D, denoted as if there is a chain of points

Directly density-reachable: A point p is from a

31

266 XU ET AL.

Density-reachability and density-connectivity.

such that and is directly density-reachable from w.r.t.
and

Density-reachability is a canonical extension of direct density-reachability. This relation
is transitive, but not symmetric. Although it is not symmetric in general, it is obvious that the
density-reachability is symmetric for points o with ≥ Two “border
points” of a cluster are possibly not density-reachable from each other because there are
not enough points in their neighborhoods. However, there must be a third point in the
cluster from which both “border points” are density-reachable. Therefore, we introduce the
notion of density-connectivity.

Density-connected: A point is to a point w.r.t.
and in the set of points if there is a point o ∈ D such that both and are
density-reachable from w.r.t. and in

Density-connectivity is a symmetric relation. Figure 1 illustrates the definitions on a
sample database of points from a 2-dimensional space. Note however, that the above
definitions only require a distance measure and will also apply to data from a metric space.

A is defined as a set of density-connected points which is maximal w.r.t. the
density-reachability and the is the set of points not contained in any cluster.

a non-empty subset of satisfying the following conditions:

1. Maximality: ∀p, q ∈ D: if p ∈ C and q > D p w.r.t. Eps and MinPts, then also q ∈ C.
2. Connectivity: ∀p, q ∈ C: p is density-connected to q w.r.t. Eps and MinPts in D.

Noise: Let be the clusters w.r.t. and in Then, we
define the as the set of points in the database not belonging to any cluster , i.e.

We omit the term “w.r.t. and in the following whenever it is clear from
the context. There are two different kinds of points in a clustering: (satisfying
condition 2 of Definition 1) and (otherwise). In the following, we will refer
to this characteristic of a point as the of the point. The non-core points

32

Cluster: Let be a set of points. A w.r.t. and in is

A FAST PARALLEL CLUSTERING ALGORITHM 267

in turn are either (not a core point but density-reachable from another core
point) or (not a core point and not density-reachable from other points).

The algorithm DBSCAN was designed to discover the clusters efficiently and the noise
in a database according to the above definitions. The procedure for finding a cluster is based
on the fact that a cluster is uniquely determined by any of its core points:

• First, given an arbitrary point for which the core point condition holds, the set
of all points o density-reachable from in forms a complete cluster and ∈

• Second, given a cluster and an arbitrary core point ∈ in turn equals the set
(cf. Lemmata 1 and 2 in Ester et al., 1996).

To find a cluster, DBSCAN starts with an arbitrary point in and retrieves all points
of which are density-reachable from with respect to and If is a core
point, this procedure yields a cluster with respect to and If is a border point,
no points are density-reachable from and is assigned to the noise. Then, DBSCAN
visits the next point of the database

The retrieval of density-reachable points is performed by successive
A returns all points intersecting a specified query region. Such queries are
supported efficiently by spatial access methods such as the R*-trees (Beckmann et al.,
1990).

The algorithm DBSCAN is sketched in figure 2.

Algorithm DBSCAN.

33

DBSCAN
// Precondition: All objects in are unclassified.

FOR ALL objects in DO:
IF is unclassified

call function to construct a c;ister wrt/ containing

FUNCTION
retrieve the neighborhood of
IF //

neighborhood of
IF l l

268 XU ET AL.

In this section, we present the parallel clustering algorithm PDBSCAN for mining in large
spatial databases. We outline the proposed method in Section 4.1. The data placement
strategy is crucial for the performance of the parallel algorithm. In Section 4.2, we propose
an R*-tree based data placement strategy and the distributed spatial access method dR* -tree.
The implementation of PDBSCAN is described in Section 4.3.

In this section, we outline the basic idea of our parallel clustering algorithm. We focus on
the parallelization of DBSCAN for the following reasons:

1. DBSCAN is a clustering algorithm designed for knowledge discovery in spatial databases
and it satisfies the requirements of discovering clusters of arbitrary shape from noisy
databases as well as good efficiency on large databases.

2. The experience in the implementation of parallel DBSCAN may be directly used in other
parallel clustering algorithms, e.g. DBCLASD (Xu et al., 1998), because they have the
same algorithmic schema.

An overview of the hardware architecture is presented in figure 3. It consists of a number of
computers (e.g. workstations or PCs) connected via a network (e.g. Ethernet). The problem
is defined as follows:

Given a set of d-dimensional points a minimal density
of clusters defined by and and a set of computers
connected by a message passing network; find the density-based clusters with respect to the
given and values.

We use a partitioning strategy (Jaja, 1992) to implement parallel DBSCAN. Our method
consists of three main steps. The first step is to divide the input into several partitions, and to
distribute these partitions to the available computers. The second step is to cluster partitions
concurrently using DBSCAN. The third step is to combine or merge the clusterings of the
partitions into a clustering of the whole database. We describe this method more formally
in the following:

Proposed architecture (shared-nothing).

34

A FAST PARALLEL CLUSTERING ALGORITHM 269

1. divide the input data set into partitions such that and
The partition is distributed on where = 1, 2, . . . ,

2. process the partitions concurrently using DBSCAN on the available computers
C2, . . . , i.e. call algorithm DBSCAN(Si, concurrently on for =
1,2, . . . ,

3. merge the clustering results obtained from the partitions 1,2, . . . , into a
clustering result for

The first step is called in the literature (Mehta and DeWitt, 1997). In
a shared-nothing environment, a proper data placement is not only crucial for the perfor-
mance and scalability of the parallel algorithm, but also for its load balancing. An ideal
data placement strategy for our parallel clustering algorithm should satisfy the following
requirements:

1. The data should be placed such that in the second step all concurrent
parallel 1, 2, . . . , will be finished at the same time.
Since the run-time of DBSCAN only depends on the size of the input data, the partitions
should be almost of equal size if we assume that all computers have the same processing
(computing and performance. If the computers have different processing perfor-
mance, then we can distribute the input data on computers according to their processing
performance. To simplify the description, we assume that all computers have the same
processing performance in the following.

2. The data should be placed such that the communication
cost is minimized. To achieve this goal, each concurrent process of

1,2, . . . , should avoid accessing those data located on any of the other
computers, because the access of the remote data requires some form of communication.
Nearby objects should be organized on the same computer.

3. The data should be placed such that both local and remote data
can be efficiently accessed. Without any spatial access method to support efficient access
to local data, the run-time of the concurrent DBSCAN in step 2 is where is
the number of objects contained in the input data set 1, 2, . . . , This is also the
run-time complexity of parallel DBSCAN which does not scale well for large databases.
Therefore, we need a spatial access method such as the R*-tree to support efficient
access to the local data in order to reduce the run-time to log Figure 4

Illustration of the necessity of the access to remote data.

35

270 XU ET AL.

illustrates the necessity of the access to remote data: For a given and 5, if
there is no support of accessing remote data, then the neighborhood of object would
contain only 3 points which is less than and therefore would not be a core
point. In this case, would not be density-reachable from any point in the partition

According to the cluster definition (cf. Definition 4), would not be assigned to
the cluster. Therefore, to obtain correct clustering results, a “view” over the border of
partitions is necessary, i.e. the access to remote data should be supported. Ofcourse, we
have to pay communication cost for every access to remote data. This communication
cost, however, can be minimized by the replication of indices which we will introduce
in the following Section 4.2. On the other hand, access to remote data takes place only
for the objects located on the border of two neighboring partitions. Another pay-off of
remote data access is that we can efficiently merge the clustering results. We will discuss
the merging issues in Section 4.3.

In the following section, we will present a new data placement method which satisfies
the three requirements above. Our method, based on the R*-tree, provides not only a

strategy for clustering, but also efficient access to spatial data in a shared-
nothing architecture through the replication of indices. The new data placement strategy is
not only useful for the parallelization of clustering, but may also be directly applied to other
spatial data mining algorithms such as trend detection and classification.

Data placement is an important resource management issue in the shared-nothing parallel
and distributed database system. Much excellent research has been conducted on both
relational databases and spatial databases. All previous work used the
to place data among available computers.

Declustering exploits parallelism but it also leads to higher communication cost.
Declustering minimizes the query time for a single query. DBSCAN needs one range query
for every object in the database, and thus we have to maximize the throughput of range
queries, If we use a declustering strategy, the network may became the bottleneck. There-
fore, declustering is not an optimal data placement strategy for efficient parallel clustering
according to the requirements stated in Section 4.1.

According to the requirement of minimized communication cost in section 4.1, the objects
that are close together in space and therefore likely to belong to the same cluster should
be stored on the same computer. The goal is to reduce the communication cost and the
interference between concurrent clustering operations. We call this strategy a

Given a spatial database, our first reaction would be to divide the data space into equi-sized
grid cells and distribute buckets over available computers such that adjacent buckets are
placed on the same computer. While this method satisfies the minimized communication cost
requirement, it does not provide an efficient method for distributed data access (requirement
3 in Section 4.1).

Due to its good performance and its robustness, we use the R*-tree as our database
interface to spatial data mining, as mentioned in (Ester et al., 1995). Let be the number

36

A FAST PARALLEL CLUSTERING ALGORITHM 271

of directory entries that fit into a node and let be a parameter specifying the minimum
number of entries in a non-leaf node, 2 ≤ ≤ An R*-tree satisfies the following
properties:

• The root has at least two children unless it is a leaf.
• Every non-leaf node contains between and entries unless it is the root.
• The tree is balanced, i.e. every leaf node has the same distance from the root.
• Non-leaf nodes contain entries of the form where ptr is a pointer to a child node

in the R*-tree; is the MBR (minimal bounding rectangle) that covers all rectangles in
the child node.

• Leaf nodes contain entries of the form where is a pointer to the object
description, and is the MBR of the object.

These facts lead to the idea of grouping the MBRs of leaf nodes of the R*-tree into
partitions such that the nearby MBRs should be assigned to the same partition and the
partitions should be almost of equal size with respect to the number of MBRs. We assign
the partitions to the computers. To achieve efficient access to distributed data, the index will
be replicated on all computers. We have the following three design decisions:

1. How to partition the MBRs of the leaf nodes such that nearby rectangles are in the same

2. How to distribute the partitions of rectangles onto the computers?
3. How to replicate the index among computers?

partition, and the size of each partition is almost the same?

For the first question, we propose to use space filling Hilbert curves to achieve good clus-
tering. In a k-dimensional space, a space-filling curve starts with a path on a k-dimensional
grid of side 2. The path visits every point in the grid exactly once without crossing itself.
This basic curve is said to be of order 1. To derive a curve of order each vertex of the
basic curve is replaced by the curve of order 1 which may be appropriately rotated
and/or reflected. Figure 5 shows the Hilbert curves of order 1, 2 and 3 in the 2-dimensional
space. The space filling curve can be generalized for higher dimensionality. An algorithm
for higher dimensionality is presented by Bially (1969). The path of a space filling curve
imposes a linear ordering which may be calculated by starting at one end of the curve
and following the path to the other end. This ordering assigns a unique value, the Hilbert

to each grid point. Figure 5 shows such an ordering. It was shown experimentally
that the Hilbert curve achieves better clustering than other comparable methods (Faloutsos
and Roseman, 1989). For a given R*-tree, this method works as follows. Every data page
of the R*-tree is assigned to a Hilbert value according to its center of gravity. Thanks to
the good clustering properties of the Hilbert curve, successive data pages will be close in
space. We sort the list of pairs (Hilbert value/data page) by ascending Hilbert values. If the
R*-tree has d data pages and we have slaves, every slave obtains data pages of the
sorted list.

The solution to the second question is obvious: we distribute the partitions of the data
pages on all available computers.

37

272 XU ET AL.

Hilbert curves of order 1, 2 and 3.

We propose to replicate the directory of the R*-tree on all available computers to enable
efficient access to the distributed data. This replicated R*-tree is called dR*-tree which
stands for distributed R*-tree. The goal is to increase the concurrency of the access. The
dR*-tree has only the following structural differences from a traditional centralized R*-tree:

• the data pages are distributed on different computers
• the indices are replicated on all computers
• the pointer to the child node consists of a computer identifier and a page identifier

i.e.

An example of a dR*-tree is given in figure 6. The original R*-tree has 7 data pages.
These data pages are distributed onto two computers with 3 data pages on computer 1 and 4
data pages on computer 2.

The query can be started on every available computer. The query processing on a dR*-tree
is very similar to the query processing on an R*-tree: a query is performed by starting at the
root and computing all entries whose rectangle qualifies. For these entries, the corresponding
child nodes are read into the main memory and the query process is repeated, unless the

Distributed spatial index.

38

A FAST PARALLEL CLUSTERING ALGORITHM 273

node in question is a leaf node. If the qualifying node is a local node, then this node can
be read into the main memory. Otherwise, a “point to point” message must be sent to the
computer where the node is stored. The remote node will be sent back by a “point to point”
mess age.

In a central system, the run-time of a query is often measured by the number of pages
accessed. In a distributed system, the run-time of a query is usually measured by the num-
ber of pages accessed and the number of messages. The following lemmata describe the
performance of the dR*-tree with respect to the query processing.

Since a dR*-tree has the same structure as the corresponding R*-tree except that
the leaf nodes are distributed on different computers, a dR*-tree is balanced and the height

(log

of a dR*-tree is equal to the height of the corresponding R*-tree, i.e. (log

According to Lemma 1, a dR*-tree has the same performance as an R*-tree with re-
spect to the number of accessed pages. In addition to the cost, a dR*-tree has also
communication cost but the following lemma shows:

See Appendix.

Although it makes no significant difference whether a query is processed by using a
dR*-tree or an R*-tree according to Lemma 2, the dR*-tree enables a batch of queries to be
concurrently processed on a distributed environment without interference. This advantage
of the dR*-tree makes it very attractive for data mining algorithms if the goal is maximizing
the throughput.

To summarize, the proposed dR*-tree meets the requirements for parallel clustering for
the following reasons:

1. The number of objects (workload) on every computer is almost the
same, because the number of data pages on every computer is almost the same. If the
space utilization of the R*-tree is high (near 100%), the number of objects on every data
page will be almost the same. 100% space utilization can be achieved by using index
packing techniques (cf. Kamel and Faloutsos, 1993).

2. Nearby objects are assigned to the same computer by
partitioning data pages using Hilbert curves.

3. Local and remote data can be efficiently accessed (cf. Lemma 2).

We can also use the same idea to extend other spatial access methods of the R-tree family,
such as the X-tree (Berchtoldet al., 1996), to distributed spatial index structures onto several
computers.

39

274 XU ET AL.

After introducing the data placement strategy and the distributed spatial access method
dR*-tree, we will present the algorithm PDBSCAN in this section.

We implemented PDBSCAN using the (Geist et al., 1996) in which
a separate “control” program termed is responsible for process spawning, initial-
ization, collection, displaying of results, and the timing of functions. The programs
perform the actual computations involved.

In our implementation, the master program of PDBSCAN spawns one slave on each
available computer (site). Every slave is responsible for clustering the data stored locally on
its computer and reports the result to the master. The workload is a partition of the database
which is obtained by using the data placement strategy proposed in Section 4.2. Later it is
also called

Figure 7 illustrates the master-slave model. Obviously, the run-time of PDBSCAN is
determined by the slowest slave. Therefore, in order to maximize the throughput, load
balancing between all slaves is required. We achieve good load balancing with our data
placement strategy which gives each slave nearly equal workload.

SLAVE is implemented to cluster points which are stored locally by using the modified
DBSCAN algorithm PartDBSCAN which we will discuss later in this section. Once the
initial workload is processed, SLAVE sends the clustering result as one packet to the master.

The goal of PartDBSCAN is, to find clusters in a partition (workload) of the database
PartDBSCAN uses the same density-based notion of clusters as DBSCAN. Unlike

the algorithm DBSCAN, PartDBSCAN handles only the partition instead of the whole
database Therefore, we have to adapt DBSCAN to the This leads to
the adaptation of the related definitions adding a space constraint.

First, we introduce the adaptation of direct reachability. In the adapted definition, point
(core point) is restricted to the partition because PartDBSCAN is only responsible for

finding clusters in the partition On the other hand, to achieve a correct clustering result,
PartDB-SCAN has to know for every point in the number of objects contained in the

-neighborhood If is near the border of the Eps-neighborhood
may contain objects located in adjacent partitions of This case is illustrated in figure 8

Master-slave model for PDBSCAN.

40

A FAST PARALLEL CLUSTERING ALGORITHM 275

Illustration of the direct density-reachability with respect to a space constraint.

where our core point is located in partition However, contained in is
located outside of Therefore, we adapt the definition of the direct density-reachability
as follows:

and if

Directly density-reachable with respect to the space constraint
A point is directly density-reachable from a point w.r.t. the space constraint

1. q ∈ S,
2. p ∈ and
3. ≥ (core point condition).

From Definition 6, core point must be located in the partition however, point
does not necessarily reside in and if is equal to the whole data space then being
directly density-reachable w.r.t. the space constraint is equivalent to being directly density-
reachable. In general, it is obvious that if a point is directly density-reachable from a
point w.r.t. the space constraint and where then is also directly
density-reachable from w.r.t. the space constraint and Obviously, this
direct density-reachability is symmetric for pairs of core points. In general, however, it is
not symmetric if one core point and one border point are involved. Figure 8 illustrates the
definition and also shows the asymmetric case.

Density-reachable with respect to the space constraint A point is density-
reachable from a point w.r.t. the space constraint and denoted by >5
if there is a chain of points such that is directly density-
reachable from w.r.t. the space constraint and

In Definition 7, points = (core points) must be located in the partition
However, point does not necessarily reside in If is equal to the whole data space
then being density-reachable w.r.t. the space constraint is equivalent to being density-
reachable. In general, it is obvious that if a point is density-reachable from a point
w.r.t. the space constraint and where then is also density-reachable
from w.r.t. the space constraint and As density-reachability is a canoni-
cal extension of direct density-reachability, the density-reachability defined here is also a
canonical extension of the direct density-reachability. This relation is transitive, but it is

41

276 XU ET AL.

Density-reachability and density-connectivity w.r.t. a space constraint.

not symmetric. Figure 9 depicts the relations of some sample points and, in particular, the
asymmetric case. Although it is not symmetric in general, it is obvious that the density-
reachability w.r.t. the space constraints is symmetric for core points because a chain from

to can be reversed if is also a core point.
Similar to the density-connectivity for a cluster, we introduce the notion of density-

connectivity with respect to a space constraint.

Density-connected with respect to the space constraint S: A point is
density-connected to a point w.r.t. the space constraint and if there is
a point o such that both, and are density-reachable from w.r.t. the space constraint

and
In Definition 8, point o (core point) must be located in the partition However, the

points and do not necessarily reside in If is equal to the whole data space
then being density-connected w.r.t. the space constraint is equivalent to being density-
connected. In general, it is obvious that if a point is density-connected to a point w.r.t.
the space constraint and where then is also density-connected
to w.r.t. the space constraint and This density-connectivity is symmetric
and reflexive (cf. figure 9).

Now, we can define a density-based cluster found w.r.t. a space constraint. Similar to
our previous density-based cluster definition, a density-based cluster found w.r.t. the space
constraint is defined to be the maximum set of density-connected points which are density-
reachable w.r.t. the space constraint S.

Cluster found with respect to the space constraint Let be a database
of points and A cluster found w.r.t. the space constraint and in

is a non-empty subset of satisfying the following conditions:

1. Maximality: ∀p, q: if p ∈ C and p > s q, then also q ∈ C.
2. Connectivity: ∀p, q ∈ C: is density-connected to w.r.t. the space constraint

and

42

A FAST PARALLEL CLUSTERING ALGORITHM 277

Note that a cluster found w.r.t. the space constraint and contains at least
one core point for the following reasons. Since contains at least one point must
be density-connected w.r.t. the space constraint to itself via some point (which may
be equal to Thus, at least has to satisfy the core point condition. Consequently, the

neighborhood of o has at least This leads to the statement that a cluster found
w.r.t. the space constraint contains at least points. According to the definition of
a cluster (cf. Definition 4), a cluster is obviously a cluster found with respect to the space
constraint (cf. Definition 9). But a cluster found with respect to the space constraint S,
where is not necessarily a cluster. (Note: Lemma 6 shows when a cluster found
w.r.t. the space constraint where is also a cluster in the whole data space, i.e. a
cluster found wrt. the space constraint

The following lemmata are important for validating the correctness of our clustering
algorithm PartDBSCAN, executed by the slaves. Intuitively, they state the following. Given
the parameters and we can discover a cluster w.r.t. the space constraint in a
two-step approach. First, choose an arbitrary point from satisfying the core point condition
as a seed. Second, retrieve all points that are density-reachable w.r.t. the space constraint

from the seed to obtain the ‘constrained’ cluster containing the seed. We omit the proof,
because it is an analogue to the proof of Lemma 1 in (Ester et al., 1996).

 ≥ {o ∈

Let be a cluster found w.r.t. the space constraint and is uniquely
determined by any of the core points in ∩ and, therefore, contains exactly the points
which are density-reachable w.r.t. the space constraint from an arbitrary core point in

 ∩ The following lemma states the fact. We omit the proof again, because it is analogous
to the proof of Lemma 2 in (Ester et al., 1996).

Let p ∩ (p)) ≥

We want to show that clusters (found w.r.t. the space constraint i.e. clusters found
by DBSCAN, can be obtained by merging clusters with respect to adjacent space constraints
found by PartDBSCAN. Obviously, if all members of a cluster found w.r.t. the space
constraint are contained in its partition i.e. then is also a cluster w.r.t.
the space constraint However, according to Definition 9, may contain a point
outside of i.e. ∈ \ This could take place in two cases:
1. is a core point, i.e. ≥
2. is a border point, i.e. (p)) <

If is a core point, a cluster w.r.t. the space constraint will be generated from
according to Lemma 3, where S2 is adjacent to In this case, and should be

merged in order to achieve the clustering result for DBSCAN. If p is a border point, there
will be no cluster w.r.t. the space constraint generated from p, and in this case is kept
as a member of C1. Figure 10 illustrates our discussion using 4. The following
lemmata are important to validate the algorithm of merging two clusters found w.r.t. their
space constraints.

43

278 XU ET AL.

Illustration of the relationship between clusters found w.r.t. adjacent space constraints.

 ∃p ∈ C1 ∩ C2 ∩ (S1 U S2). ≥

(1) Maximality: let and Since and the
density-reachability w.r.t. a space constraint is transitive, it follows that Hence,

Connectivity: All points in are density-connected w.r.t. the space

The following lemma tells us when the fusion of clusters found w.r.t. adjacent space
constraints should be terminated. So for a cluster (found w.r.t. the space constraint S)
if there is no core point belonging to located outside of then is also a cluster
w.r.t. the space constraint This lemma is also important to validate the algorithm of
PDBSCAN.

If ∀ p ∈ C\S:

constraint via point

See Appendix.

PartDBSCAN is a modified DBSCAN algorithm for finding clusters w.r.t. the given space
constraint To find such a cluster, PartDBSCAN starts with an arbitrary point within

and retrieves all points which are density-reachable from w.r.t. the space constraint
and If is a core point, this procedure yields a cluster w.r.t. the space

constraint and (see Lemmata and 4). If is not a core point, no points
are density-reachable from w.r.t. the space constraint and PartDBSCAN visits the next
point in partition If all members of are contained in is also a cluster (w.r.t. the
space constraint according to Lemma 6. If there are members of outside of may
need to be merged with another cluster found w.r.t. an adjacent space constraint according
to Lemma 5. In this case, should be sent to the master. We call a To
achieve an efficient implementation, we apply two techniques: (1) merging candidates will
be gathered during the clustering procedure and sent to the master as one packet at the end

44

A FAST PARALLEL CLUSTERING ALGORITHM 279

Illustration of the intersecting area of two clusters.

of the clustering procedure. (2) the size of each merging candidate is reduced to a subset
which consists of only points near the border of the partition

The gathering of merging candidates is very simple: we use a list to store all merging
candidates. If a cluster extends to a point outside of its space constraint, this cluster will
be appended to the list At the end of the clustering procedure, list will be sent to the
master.

The reduction in size of a merging candidate is a little more complex: according to
Lemma 5, the master PDBSCAN needs to merge with another cluster found w.r.t. an
adjacent space constraint if these two clusters have a core point located in their intersection.
According to the definition of a cluster found w.r.t. a space constraint (see Definition 9),
each point must be density-reachable from a core point in the space constraint. Therefore,
outside of (the space constraint of there are no points of having a distance greater
than from the border of For the same reason, inside of there are no points of
another cluster found w.r.t. an adjacent space constraint having a distance larger than
from the border of Hence, the area where two clusters may intersect
is an area around the border of the constraint S with a distance to either side of the border of
no more than Figure 11 depicts the intersecting area for shown as a hollow shaded
rounded rectangle, and the constraint represented as the thick rectangle. Therefore, the
merging candidate can be reduced from to a subset of

Obviously, S) should be contained in the intersecting area and consists of all
points of which satisfy the following condition: If o is inside of then must be a core
point and its neighborhood must contain at least one point outside of If this is the
case, may also be directly density-reachable from w.r.t. an adjacent space constraint,
and may be a member of another cluster found w.r.t. an adjacent space constraint according
to Definition 9. In this case, C may intersect with another cluster found w.r.t. an adjacent
space constraint in or Therefore, both, and should be contained in If
o is outside of then must be directly density-reachable from a core point inside of

according to the cluster definition (cf. Definition 9). In this case, may intersect with

45

280 XU ET AL.

another cluster found w.r.t. an adjacent space constraint in or Therefore, both, and
should be included in In figure 11, points and meet the condition for

and point does not meet the condition. To summarize, if a core point of
which is located inside of and its neighborhood contains at least one point outside
of then both point and all points which are located outside of but are still directly
density-reachable from w.r.t. the space constraint are contained in

The following lemma validates as reduced merging candidate:

See Appendix.

Lemma 7 means that contains all core points belonging to C1 ∩ C2 ∩ (S1 U S2)
for any and Therefore, according to Lemmas 5 and 7, we can use and

instead of and to test whether and should be merged or not. The
advantage is that the size of the merging candidates is reduced, and this makes the size of
the packet to send to the master smaller and the merging algorithm more efficient.

The test when two clusters found with respect to adjacent space constraints should be
merged can be further simplified: we just have to calculate the intersection

and do not have to check whether there is any core point in this intersection
or not. The advantage is that we can avoid the core point test and this makes the fusion of
clusters even more efficient. The following lemma validates this idea.

See Appendix.

The algorithm PartDBSCAN is sketched in figure 12. is the partition (workload). The
dR*-tree is a distributed R*-tree which provides efficient access to local and remote data.
L is a list of merging candidates. The merging candidates are the subset of clusters (found
w.r.t. some space constraint) that may need to be merged in order to achieve the same
clustering result as DBSCAN. The merging candidates are collected and appended to
will be sent to PDBSCAN at the end of the clustering procedure. ExpandCluster, which is
the most important function used by PartDBSCAN, is presented in figure 13.

During the expansion of the current cluster, whenever a point outside of the partition
is reached, the point and its core point are inserted into a set which defines the reduced

46

A FAST PARALLEL CLUSTERING ALGORITHM 281

PartDBSCAN
// S is the workload and UNCLASSIFIED
// L is the list of merging candidates
initialize to be empty;

objects in
is UNCLASSIFIED
//construct a cluster wrt. and containing

ExpandCluster
increase

empty
send to the master;

Algorithm PartDBSCAN.

Eps, Boolean;
MC.init(); // initialize the merging candidate set;
retrieve neighborhood
IF <

// i.e. is a core point;

// i.e. is not a core point;
mark as noise and false;

select a new and mark all objects in with
push all objects from onto the stack seeds;

seeds.empty()
:= seeds.top();

seeds.pop();

retrieve neighborhood

select all objects in not yet classified or marked as noise;
push the unclassified objects onto seeds and mark them with

Empty

// is not element of
insert into the set

insert and into set
Empty

L.append(MC);
True;

ExpandCluster function.

47

282 XU ET AL.

merging candidate of the current cluster (see Lemma 7). If is empty, this means that
the current cluster (found w.r.t. the space constraint is also a cluster w.r.t. the space
constraint (see Lemma 6). Otherwise, the current cluster may need to be merged with
another cluster (see Lemmas 5 and 7). At the end of the expansion, will be appended
to The retrieval of the neighborhood for a given object is performed by using a
region query. In Euclidean space, e.g., this region is a circle. The center of this circle is the
query object and the radius equals Eps. Obviously, the run-time of PartDBSCAN is
run-time of a region query): for every point in the partition a region query is performed
by using the dR*-tree. Since the partition consists of only local points and the height
of the dR*-tree is (log for small the run-time of a region query is (log on
the average. Hence, the run-time of PartDBSCAN is * log in the average case. In
general, the run-time complexity of PartDBSCAN is equivalent to DBSCAN on partition

w.r.t. the number of accessed pages and passed messages.

Since the run-time complexity of PartDBSCAN is * run-time of a region
query on the dR*-tree) and the run-time complexity of DBSCAN is run-time of a

The master PDBSCAN receives a list of merging candidates from every SLAVE who
has at least one merging candidate. Each merging candidate represents a cluster found with
respect to a space constraint which may now need to be merged with another cluster found
with respect to an adjacent space constraint. PDBSCAN collects all the lists it receives
and assigns them to a list If is non-empty, a merging function Merging (shown in
figure 14) will be executed.

The function Merging goes through the list and merges all clusters (found with respect
to their different constraints) if their intersections are non-empty. Therefore, we have the
following lemma.

region query on the R*-tree), according to Lemma 2, we have proven the lemma.

It is obvious according to Lemmas 5-8.

In this section, we evaluate the performance of PDBSCAN with respect to its scaleup,
speedup and sizeup. For this purpose, we implemented PDBSCAN on a cluster of HP/UX
workstations consisting of 8 HP C160 workstations (with a 150 MHz PA8000 CPU) inter-
connected by a 10 MB LAN using C++ and PVM (Parallel Virtual Machine, Geist et al.,
1996). In this section, we will only evaluate the efficiency of PDBSCAN and not its accuracy,

48

A FAST PARALLEL CLUSTERING ALGORITHM 283

Function: Merging

:= get

get

get
1 L2.

:= get

:=
remove

Merging function.

Synthetic data sets.

because PDBSCAN produces always the same results as DBSCAN (cf. Lemma 10). The
parameters and were chosen by using the heuristic presented in (Sander et al.,
1998). A more detailed report on experimental and theoretical evaluation of PDBSCAN
can also be found in (Xu, 1999).

For the following evaluations, we used both synthetic and real databases. The first syn-
thetic data set we used is depicted in figure 15(a), which represents two clusters, each
containing 10,000 points. For scaleup and sizeup experiments, we generated a series of
these synthetic databases of varying size from 10,000 points with one cluster to 1 million
points with 100 clusters by concatenating the original data file depicted in figure 15(a). The
1000k data set (1 million points) simply contains 50 of these two cluster sets. The databases
are named according to the number of points contained. So 100k is a database containing
100,000 points.

We also used three synthetic data sets which were used for the evaluation of the BIRCH
algorithm (see Zhang et al., 1998). The data sets birch1, birch2 and birch3 contain 100,000

49

284 XU ET AL.

Synthetic and real databases.

Number Number of Size Runtime for one
Name of points Dimensions actual clusters (in Kbytes) processor (sec)

1 000k 1,000,000 2 100 21,632 4199
birch1 100,000 2 100 2248 607
birch2 100,000 2 100 2248 551
birch3 100,000 2 100 2248 369
seq_534k 534,363 5 9 18,976 8916

2-dimensional points which were divided into 100 actual clusters. The structure of these data
sets can be seen in figures 15 (b)-(d). For scaleup and sizeup experiments a series of data sets,
beginning with 100,000 points and ending with 800,000 points, was generated. They were
named birchx_y, where denotes the data set type and y denotes the size. So birch3_500k
would be the data set birch3 concatenated five times and containing 500,000 points.

As real-world data sets we used the raster data of the SEQUOIA 2000 benchmark database
(Stonebraker et al., 1993), which is representative for Earth Science tasks. The raster data
contains 5-dimensional points obtained from several satellite images of a region on the
surface of the earth covering California. Every 1000 by 1000 meter area on the surface cor-
responds to a 5-dimensional vector, containing information for 5 different spectral channels.
Finding clusters in such feature spaces is a common task in remote sensing digital image
analysis (Richards, 1983) for the creation of thematic maps in geographic information sys-
tems. (Sander et al., 1998) describe the application of DBSCAN to the SEQUOIA data set.
We used the same data set where identical points were removed (seq 534k). For scaleup
and sizeup experiments, we used a series of data sets, beginning with 100,000 points and
ending with 800,000 points. They were named seq_y, where y denotes the size. seq_100k
corresponds to the data subset of 100,000 points of the data set sequoia. seq_500k is five
times the concatenation of this subset, so it contains 500,000 points. The characteristics of
the databases we used are summarized in Table 1.

We report on the results of a series of experiments described in Section 5.1. In Section 5.2,
we study the and communication cost factors in our experiments. The purpose was to
explore further possibilities to improve the efficiency of the PDBSCAN algorithm.

Below, we examine the speedup, scaleup and sizeup characteristics of the PDBSCAN
algorithm.

To measure the speedup, we keep the database constant and increase the number of com-
puters in the system. More formally, we apply our clustering algorithm to a given database
in a system consisting of one computer (server). Then we increase the number of computers
in the system from 1 to and cluster the database in the system with computers. The
speedup given by the larger system with computers is measured as:

run-time on one compute/run-time on computers

50

A FAST PARALLEL CLUSTERING ALGORITHM 285

Speedup.

The ideal parallel algorithm demonstrates linear speedup: a system with m times the
number of computers yields a speedup of However, linear speedup is difficult to achieve
because of the communication cost and the skew of the slaves, i.e. the problem that the
slowest slave determines the total time needed. If not every slave needs the same time, we
have this skew problem.

We have performed the speedup evaluation on databases with quite different sizes and
structures. The number of computers varied from 1 to 8. Figure 16 shows the speedup for
these databases. As the graphs show, PDBSCAN has a very good speedup performance.
This performance is almost the same for databases with very different sizes and shapes.
Birch3 has a slightly lower speedup curve, because there are many clusters with varying
density which sometimes even overlap. It is very hard to distribute the R-tree data pages to
the slaves in a manner that one slave has only neighboring points. Therefore, the skew in
this case is higher than in the other data sets and the total speedup is lower.

Speedup analysis holds the database size constant and grows the system. Scaleup mea-
sures the ability to grow both the system and the database size. Scaleup is defined as the
ability of an times larger system to perform an m-times larger job in the same run-time
as the original system. The scaleup metric is:

run-time for clustering on 1 computer/run-time for
clustering * on computer

To demonstrate how well the PDBSCAN algorithm handles larger databases when more
computers are available, we have performed scaleup experiments where we have increased
the size of the databases in direct proportion to the number of computers in the system. For
the data set birch1, e.g., 100,000 points are clustered on 1 computer and 800,000 points
are clustered on 8 computers. Figure 17 shows the performance results of the databases.
Clearly, the PDBSCAN algorithm scales very well.

Sizeup analysis holds the number of computers in the system constant, and grows the
size of the databases by the factor Sizeup measures how much longer it takes on a given
system, when the database size is times larger than the original database. The sizeup

51

286 XU ET AL.

Scaleup.

Sizeup.

metric is defined as follows:

run-time for clustering run-time for clustering

To measure the performance of sizeup, we have fixed the number of computers to 1, 2,
4, and 8 respectively. Figure 18 shows the results on 8 computers. The graphs show that
PDBSCAN has a very good sizeup performance. An 8 times larger problem needs about 8
to 10 times more time.

In this section, we study the two main cost factors of PDBSCAN, i.e. cost and com-
munication cost. Typically, the cost and the communication cost are measured by the
number of pages accessed and the number of messages passed, respectively.

To analyze the impact of cost on the performance of PDBSCAN, we fix the database
size and grow the system by increasing its number of computers. Figure 19 shows the
cost as a function of the number of computers. The vertical axis is scaled logarithmically.
The graphs show that PDBSCAN has a very good cost performance. The cost is

52

A FAST PARALLEL CLUSTERING ALGORITHM 287

cost.

Communication cost.

almost constant as the number of computers in the system increases. This shows also that
the dR*-tree has a good scalability w.r.t. the number of computers used.

To see the impact of the communication cost on the performance of PDBSCAN, again
we fixed the database size and increased the number of computers in the system. Figure 20
shows the communication cost, i.e. the number of messages passed, as a function of the
number of computers for the databases birch and SEQUOIA. The graph plots indicate that
the communication cost increases linearly w.r.t. the number of computers used.

Therefore, the performance of PDBSCAN can be further improved if we use a high
speed network, e.g. FDDI (100 Mbit/sec) or HiPPI (800 Mbit/sec to 1.6 Gbit/sec) instead
of Ethernet (10 Mbit/sec) in our shared-nothing system.

In this paper, we proposed the parallel clustering algorithm PDBSCAN for mining in large
distributed spatial databases. The main characteristics are:

53

288 XU ET AL.

1. an R*-tree based data placement strategy which minimizes the interference between
slaves.

2. a distributed spatial access method dR*-tree which meets the requirements for parallel
clustering with respect to load balancing, and minimizes communication cost as well as
distributed data access.

3. an efficient parallel clustering algorithm PDBSCAN which is based on DBSCAN. Our
theoretical analysis and the experimental evaluation show that PDBSCAN has very good
performance w.r.t. speedup, scaleup and sizeup. We have also proven that the clustering
result of PDBSCAN is the same as that of DBSCAN.

There are also some interesting issues for future research. This paper has shown that the
distributed access method is a very powerful structure for data mining in the distributed
environment. We can also use the same idea to extend other spatial access methods of the
R-tree family, such as the X-tree, to distribute spatial index structures for high-dimensional
data.

Other data placement strategies should also be considered and compared with our method.
Furthermore, the parallelization of other spatial data mining methods should be considered
in the future.

Since a dR*-tree has the same structure as the corresponding R*-tree
except that the leaf nodes are distributed on different severs, a query processed using a
dR*-tree accesses the same number of pages as a query using its corresponding R*-tree. We
denote the number of accessed pages by We use
to denote the number of accessed data pages. It is obvious that <
#accessed-pages, Two messages are passed for each accessed data page. Therefore, the
run-time of a query on a dR*-tree can be expressed as follows:

time for / time for communication cost
+ (2 x

Hence, the run-time of a query on a dR*-tree is of the same order of complexity as on an
R*-tree with respect to the number of accessed pages and the number of messages passed.

(1) Maximality: Let and let be density-reachable from w.r.t.
the space constraint and i.e. According to Definition 7, there is a
chain of points such that is directly density-reachable from

w.r.t. the space constraint and and ∈ Since 1, 1
are core points, ∈ Hence, also E (2) Connectivity: for ∀p , ∈ since is
density-connected to w.r.t. the space constraint and where then

is also density-connected to w.r.t. the space constraint and

54

A FAST PARALLEL CLUSTERING ALGORITHM 289

Let ≥ It
follows that and ≥ Since

= there are only two possibilities:

(1) In this case, we have and E This implies
that must be directly density-reachable from a point w.r.t. the space constraint
in C2. It follows that Therefore, This means that

Ø To summarize, satisfies the conditions for
and

(2) In this case, we have S1 and E It follows that must
be directly density-reachable from a point w.r.t. the space constraint in such
that and To summarize, satisfies the
conditions for that and

Let It follows that
According to the definition of is either a core point in or a point outside
of If is a core point in then according to Lemma 5 is a cluster w.r.t. the
space constraint U and If is outside of then must be in and

Therefore, will be a core point in According to Lemma 5, we have

 ∈
Therefore, ∈

proven the lemma.

Agrawal, R. and Shafer, J.C. 1996. Parallel mining of association rules: design, implementation, and experience.
IBM Research Report.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. 1990. The R*-tree: an efficient and robust access
method for points and rectangles. Proc. ACM SIGMOD Int. Conf. on Management of Data. Atlantic City, NJ,

Berchtold S., Keim D.A., and Kriegel, H.-P. 1996. The X-tree: an index structure for high-dimensional data. Proc.
22nd Int. Conf. on Very Large Data Bases, Bombay, India, Morgan Kaufmann, pp. 28-39.

Bially, T. 1969. Space-filling curves: their generation and their application to bandwidth reduction. IEEE Trans.
on Information Theory, IT-15(6):658-664.

Cheung, D.W., Han, J., Ng, V.T., Fu, A.W., and Fu, Y. 1996. A fast distributed algorithm for mining association
rules. Proc. Int. Conf. on Parallel and Distributed Information System (PDIS’96). Miami Beach, FL, USA.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large
spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. Portland, OR,
pp. 226-23 1.

Ester, M., Kriegel, H.-P., and Xu, X. 1995. A database interface for clustering in large spatial databases. Proc. 1st
Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 1995, pp. 94-99.

Faloutsos, C. and Roseman, S. 1989. Fractals for secondary key retrieval. Proc. 8th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pp. 247-252.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. Knowledge discovery and data mining: towards a unifying
framework. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. Portland, OR, pp. 82-88.

Geist, A., Beguelin, A., Dongama, J., Jiang, W., Manchek, R., and Sunderam, V. 1996. PVM: Parallel Virtual
Machine-A User’s Guide and Tutorial for Networked Parallel Computing. Cambridge, MA, London, England:
The MIT Press, 3rd printing.

pp. 322-331.

55

290 XU ET AL.

Gueting, R.H. 1994. An introduction to spatial database systems. The VLDB Journal, 3(4):357-399.
Jaja, J. 1992. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, pp. 61-65.
Kamel, I. and Faloutsos, C. 1993. On packing R-trees. Proc. 2nd Int. Conf. on Information and Knowledge

Li, X. and Fang, Z. 1989. Parallel clustering algorithms. Parallel Computing, 11:275-290.
Matheus, C.J., Chan, P.K., and Piatetsky-Shapiro, G. 1993. Systems for knowledge discovery in databases. IEEE

Mehta, M. and DeWitt, D.J. 1997. Data placement in shared-nothing parallel database systems. VLDB Journal,

Olson, C.F. 1995. Parallel algorithms for hierarchical clustering. Parallel Computing, 21(8):1313-1325.
Park, J.-S., Chen, M.-S., and Yu, P.S. 1995. An effective hash based algorithm for mining association rules. Proc.

ACM SIGMOD Int. Conf. on Management of Data. San Jose, CA, pp.175-186.
Pfitzner, D.W., Salmon, J.K., and Sterling, T. 1998. Halo World: Tools for Parallel Cluster Finding in Astrophysical

N-body Simulations. Data Mining and Knowledge Discovery. Kluwer Academic Publishers, Vol. 2, No. 2,
pp. 419-438.

Rasmussen, E.M. and Willett, P. 1989. Efficiency of hierarchical agglomerative clustering using the ICL distributed
array processor. Journal of Documentation, 45(1): 1-24.

Richards, A.J. 1983. Remote Sensing Digital Image Analysis. An Introduction, Berlin: Springer.
Sander, J., Ester, M., Kriegel, H.-P., and Xu, X. 1998. Density-Based Clustering in Spatial Databases: The Algo-

rithm GDBSCAN and Its Applications. Data Mining and Knowledge Discovery, Kluwer Academic Publishers,
vol. 2, pp. 1-27.

Management (CIKM).

Transactions on Knowledge and Data Engineering, 5(6):903-913.

6:53-72.

Stonebraker, M. 1986. The case for shared nothing. Database Eng., 9(1).
Stonebraker, M., Frew, J., Gardels, K., and Meredith, J. 1993. The SEQUOIA 2000 storage benchmark. Proc.

Xu, X. 1999. Efficient Clustering for Knowledge Discovery in Spatial Databases. Shaker, Germany: Aachen.
Xu, X., Ester, M., Kriegel, H.-P., and Sander, J. 1998. A distribution-based clustering algorithm for mining in large

Zhang, T., Ramakrishnan, R., and Livny, M. 1998. BIRCH: A New Data Clustering Algorithm and Its Applications,

ACM SIGMOD Int. Conf. on Management of Data. Washington, DC, pp. 2-1 1.

spatial databases. 14th Int. Conf. on Data Engineering (ICDE’98). Orlando, FL.

Kluwer Academic Publishers, pp. 1-40,

is a research scientist in the Siemens AG, Corporate Technology. His research interests are in
data mining and knowledge discovery in databases, particularly in scalable data mining algorithms, parallel and
distributed computing, and efficient data and index structures. He received his M.S. in 1987 from Shenyang
Institute for Computing Technology, Chinese Academy of Sciences and his Ph.D. in 1998 from the University of
Munich, Germany.

is a graduate student with the Institute for Computer Science at the University of Munich. His
research interests include data mining, especially in biological data, parallel computing and efficient data and
index structures.

is a full professor for database systems in the Institute for Computer Science at the University
of Munich. His research interests are in spatial databases, particularly in query processing, performance issues,
similarity search, high-dimensional indexing, and in parallel systems. Data Exploration using visualization led
him to the area of knowledge discovery and data mining. Kriegel received his M.S. and Ph.D. in 1973 and 1976,
respectively, from the University of Karlsruhe, Germany. Hans-Peter Kriegel has been chairman and program
committee member in many international database conference. He has published over 150 refereed conference
and journal papers.

56

Data Mining and Knowledge Discovery, 3,291-314 (1999)
1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

DAVID W. CHEUNG dcheung@csis.hku.hk
YONGQIAO XIAO

Yike Guo and Robert Grossman

Association rule mining is an important new problem in data mining. It has crucial applications in
decision support and marketing strategy. We proposed an efficient parallel algorithm for mining association rules
on a distributed share-nothing parallel system. Its efficiency is attributed to the incorporation of two powerful
candidate set pruning techniques. The two techniques, distributed and global prunings, are sensitive to two data
distribution characteristics: data skewness and workload balance. The prunings are very effective when both the
skewness and balance are high. We have implemented FPM on an IBM SP2 parallel system. The performance
studies show that FPM outperforms CD consistently, which is a parallel version of the representative Apriori
algorithm (Agrawal and Srikant, 1994). Also, the results have validated our observation on the effectiveness of
the two pruning techniques with respect to the data distribution characteristics. Furthermore, it shows that FPM
has nice scalability and parallelism, which can be tuned for different business applications.

association rules, data mining, data skewness, workload balance, parallel mining, parallel computing

Association rule discovery has attracted a lot of attention from the research and business
communities (Agrawal et al., 1993; Agrawal and Srikant, 1994; Brin et al., 1997). An
association rule is a rule which implies certain association relationships among a set of
objects (such as “occur together” or “one implies the other”) in a database. The intuitive
meaning of an association where and are set of items, is that transactions of the
database which contain tend to contain A classical example is that 98% of customers
that purchase tires and automobile accessories in a department store also have automotive
services carried out. This example is a typical association in a basket database which sounds
like common sense knowledge; however, there could be a lot of associations among the data
which may not be able to deduce from common knowledge. Therefore, efficient automated
technique to discover this type of rules is a very important area of research in data mining
(Agrawal and Srikant, 1994; Cheung et al., 1996; Fayyad et al., 1995; Park et al., 1995a;
Savasere et al., 1995). Applications of association rule mining range from decision support
to product marketing and consumer behavior prediction.

Previous studies examined efficient mining of association rules from many different an-
gles. An influential association rule mining algorithm, Apriori (Agrawal and Srikant, 1994),
has been developed for rule mining in large transaction databases. The scope of the study

292 CHEUNG AND XIAO

has also been extended to efficient mining of sequential patterns (Srikant and Agrawal,
1996a), generalized association rules (Srikant and Agrawal, 1995), multiple-level associa-
tion rules (Han and Fu, 1995), quantitative association rules (Srikant and Agrawal, 1996b),
constrainted association rules (Ng et al., 1998) etc. Although these studies are on sequential
data mining techniques, algorithms for parallel mining of association rules have also been
proposed (Agrawal and Shafer, 1996; Park et al., 1995b; Shintani and Kitsuregawa, 1996;
Zaki et al., 1996).

The development of parallel systems for mining of association rules has its unique
importance—databases or data warehouses (Silberschatz et al., 1995) have been used more
often to store a huge amount of data; data mining in such databases require substantial
processing power, and parallel system is a possible solution. This observation motivates us
to study efficient parallel algorithms for mining association rules in large databases. In this
work, we study the problem on parallel system with distributed share-nothing memory such
as the IBM SP2 (1995). In this model, the database is partitioned and distributed across the
local disks of the processors; and the processors communicate via a fast network.

It has been well studied that the major cost of mining association rules is the computation
of the set of (i.e., see Section 2.1) in the
database (Agrawal et al., 1993; Agrawal and Srikant, 1994). An itemset (a set of items) is

if the percentage of transactions that containing all these items is greater than a given
threshold. The most representative parallel algorithm for mining association rules is the
CD algorithm (Count Distribution), which is designed for share-nothing parallel systems
(Agrawal and Shafer, 1996). It extends directly the basic technique of Aprori to parallel
system. Our proposed algorithm, FPM (Fast Parallel Mining), has the following distinct
feature in comparison with CD: FPM has explored an important property between

(those that are large with respect to the partition of a processor) and
(those that are large with respect to the entire database) to develop two

powerful pruning techniques, and which can reduce the
number of candidate sets at each individual processor. Since the number of candidate sets is
a dominant parameter of the computation cost, with a substantially smaller candidate sets,
FPM performs much better than CD.

Another contribution of this work is the discovery that the effectiveness of the two afore-
mentioned pruning techniques, and hence the performance of the parallel mining, depends
on the data distribution characteristics in the database partitioning. We have captured the
distribution characteristics in two factors: and These two
factors are orthogonal properties. Intuitively, a partitioned database has high data skewness
if most globally large itemsets are locally large only at a very few partitions. On the other
hand, a partitioned database has a high workload balance if all the processors have similar
number of locally large itemsets in their partitions. (More precise definitions of skewness
and workload balance will be given in Sections 3 and 4.) We have defined metrics to mea-
sure data skewness and workload balance. We found out that both the distributed and global
prunings have super performance in the best case of high data skewness and high workload
balance. The combination of high balance with moderate skewness is the second best case.
On the other hand, the high skewness, moderate balance combination only provide moder-
ate improvement over CD, while the combination of low skewness and low balance is the
worst case in which only marginal improvement can be found.

58

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 293

We have implemented FPM on an IBM SP2 parallel machine with 32 processors. Exten-
sive performance studies have been carried out. The results confirm our observation on the
relationship between pruning effectiveness and data distribution.

The rest of this paper is organized as follows. Section 2 overviews the parallel mining
of association rules. The techniques of distributed and global prunings, together with the
FPM algorithm are described in Section 3. In the same section, we have also investigated
the relationship between the effectiveness of the prunings and the two data distribution
characteristics of data skewness and workload balance. In Section 4, we define metrics to
measure data skewness and workload balance of a data partition. Section 5 reports the result
of an extensive performance study. In Section 6, we discuss a few issues including possible
extensions of FPM to enhance its scalability. Section 7 is the conclusion.

Let be a set of Let be a database of transactions, where each
transaction consists of a set of items such that Given an a
transaction if and only if An is an implication of
the form where and (Agrawal and Srikant, 1994). The
association rule X holds in with if the probability of a transaction in

which contains X also contains is The association rule has in
if the probability of a transaction in contains both and is The task of mining

association rules is to find all the association rules whose support is larger than a
and whose confidence is larger than a

For an itemset its is the percentage of transactions in which contains
and its denoted by is the number of transactions in containing
An itemset is (or more precisely, if its support is no less
than the minimum support threshold. An itemset of size is called a It has been
shown that the problem of mining association rules can be reduced to two subproblems
(Agrawal et al., 1993): (1)
and (2) Since (1) dominates
the overall cost of mining association rules, the research has been focused on developing
efficient methods to solve the first subproblem (Agrawal and Srikant, 1994).

An interesting serial algorithm, (Agrawal and Srikant, 1994), has been proposed
for computing large itemsets at mining association rules in a transaction database, which is
outlined as follows (Agrawal and Srikant, 1994).

The large itemsets are computed through iterations. At each iteration, Apriori scans the
database once and finds all the large itemsets of the same size. At the th iteration, Apriori
creates the set of candidate sets by applying the candidate set generating function

on where is the set of all large 1)-itemsets found at the
1)st iteration, and Apriori_gen generates only those itemset candidates whose

every – 1)-itemset subset is in

59

294 CHEUNG AND XIAO

1) = apriori_gen
2) scan partition to find the local support count for all
3) exchange with all other processors to get global support counts for all
4) = x

Count distribution algorithm.

CD (Count Distribution) is a parallel version of Apriori. It is one of the earliest proposed
and representative parallel algorithms for mining of association rules (Agrawal and Shafer,
1996). We describe here briefly its steps for comparison purpose. The database is parti-
tioned into . . . , and distributed across processors. The program fragment of
CD at processor 1 for the kth iteration is outlined in figure 1. (For convenience,
we use to represent the local support count of an itemset in partition .) In step 1,
every processor computes the same candidate set by applying the Apriori_gen function
on which is the set of large itemsets found at the – 1)th iteration. In step 2, local
support counts (support in of candidates in are found. In steps 3 and 4, local support
counts are exchanged with all other processors to get global support counts (support in
and globally large itemsets (large with respect to are computed independently by each
processor. CD repeats steps 14 until no more candidate is found. We have implemented
CD on an IBM SP2 using the MPI (Message Passing Interface) (1994).

It is important to observe some interesting properties related to large itemsets in a parallel
environments since such properties may substantially reduce the number of candidate sets.
(The preliminary form of the results in this section have been developed in Cheung et al.,
(1996) and extended here.) First, there is an important relationship between large itemsets
and the processors in the database:

If an itemset is at a processor
is called gl-large at processor The set of gl-large itemsets at a processor will form

a basis for the processor to generate its own candidate sets.
Second, a gl-large itemset at a processor has the following monotonic subset relationship

property:
Combining these two properties, we have the following results.

(1

We use to denote the set of gl-large itemsets at processor and to denote
the set of gl-large itemsets at processor It follows from Lemma 1 that if ∈ then

60

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 295

there exists a processor such that all its size- – 1) subsets are gl-large at processor
i.e., they belong to

In a straightforward adaptation of Apriori, the set of candidate sets at the iteration,
denoted by which stands for size- candidate sets from Apriori, would be generated
by applying the Apriori_gen function on That is,

At each processor let be the set of candidates sets generated by applying
Apriori_gen on i.e.,

where stands for candidate sets generated from gl-large itemsets. Hence is
generated from Since is a subset of In the
following, we use to denote the set

1,

Let It follows from Lemma 1 that there exists aprocessor (1 ≥ ≥
such that all the – 1) subsets of are gl-large at processor Hence
Therefore,

Theorem 1 indicates that which is a subset of and could be much smaller
than can be taken as the set of candidate sets for the size- large itemsets. In effect, the
set of candidates in has been pruned down to those in —we called this technique

This result forms a basis for the reduction of the set of candidate sets
in the algorithm FPM. First the set of candidate sets can be generated locally at
each processor at the kth iteration. After the exchange of support counts, the gl-large
itemsets in can be found at the end of that iteration. Based on the
candidate sets at processor for the + 1)st iteration can then be generated according to
Theorem 1. According to our performance studies, the number of candidate sets generated
by distributed pruning can be substantially reduced to about 10-25% of that generated in
CD.

Example 1 illustrates the effectiveness of the reduction of candidate sets using distributed
pruning.

Assuming there are 3 processors in a parallel system in which the database
has been partitioned into and Suppose the set of large 1-itemsets (computed

at the first iteration) in which and are locally

61

296 CHEUNG AND XIAO

large at processor and are locally large at processor and and
are locally large at processor Therefore, and

Based on Theorem 1, the set of size-2 candidate sets at processor is
Apriori_gen Similarly, and

Hence, the set of candidate sets for large 2-itemsets is
) U) U total 11 candidates.

However, if Apriori_gen is applied to the set of candidate sets Apriori_gen
would have 28 candidates. This shows that it is very effective to apply distributed

pruning to reduce the candidate sets.

As a result of the count exchange, the local support counts for all processor
(1 are also available at every processor. With this information, another powerful
pruning technique called can be developed. Let be a candidate
At each partition if Therefore the local support count of

is bounded by the value c and = – 1}. Since the global
support count of is the sum of its local support count at all the processors, the
value

where

min and = – 1},

is an upper bound of If minsup x then can be pruned away.
This technique is called Note that global pruning requires no additional
information except the local support counts resulted from count exchange in the previous
iteration.

Table 1 gives an example to show that global pruning can pruning away candidates which
cannot be pruned by distributed pruning. Suppose the global support count threshold is 15
and the local support count threshold at each processor is 5. Distributed pruning cannot
prune away as and are both gl-large at processor 2. Whereas global pruning can

14 < 15. can also be pruned, because 1 + 1 + 12 = 13 < 15. However,
would survive global pruning. From this example, it is clear that global pruning is more

effective than distributed pruning, i.e., what can pruned away by distributed pruning will be
pruned away by global pruning. The three pruning techniques, the one in apriori_gen, the
distributed and global prunings, have increasing pruning power, and the latter ones subsume
the previous one.

Prune away as = 1 + 12+ 1 =

62

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 297

High data skewness and high workload balance case.

Items A B C D E F

Localsupport atprocessor 1 13 33 1 2 2 1
Localsupport atprocessor2 3 3 12 34 1 4
Local support atprocessor 3 2 3 2 1 12 33
Global support 18 39 15 37 15 38
gl-large at processor 1
gl-large at processor 2
gl-large at processor 3

1) compute candidate sets = (distributed pruning)
2) prune candidates in by global pruning;
3) scan partition to find the local support count for all remaining candidates
4) exchange {X 1 with all other processors to get global support counts for all
5) compute = minsup x minsup x for all i, 1 i n;
6) return =

The FPM algorithm.

We present the FPM algorithm in this section. It is an enhancement of CD. The simple
support counts exchange scheme in CD is retained in FPM. The main difference is the
incorporation of both the distributed and global prunings in FPM to reduce the candidate
set size.

The first iteration of FPM is the same as CD. Each processor scans its partition to find out
local support counts of all size-I itemsets and use one round of count exchange to compute
the global support counts. At the end of the 1st iteration, in addition to each processor
also finds out the gl-large itemsets for 1

For the kth iteration of FPM, 1, the program fragment executed at processor
1 is described in figure 2.

Similar to CD, FPM is also implemented by collective communication operations of
MPI on the SP2. In order to compare the effects of distributed and global pruning, we have
also implemented a variant FNG (FPM with no global pruning) of FPM. FNG does not
perform the global pruning, i.e., it's procedure is the same as that in figure 2, except step 2
is removed.

In a database partition, two data distribution characteristics, and
have orthogonal effects on prunings and hence performance of FPM.

63

298 CHEUNG AND XIAO

Intuitively, the data skewness of a partitioned database is high if the supports of most
large itemsets are clustered in a few partitions. It is low if the supports of most large itemsets
are distributed evenly across the processors. In Table 1, it is clear that all the itemsets have
high skewness.

For a partition with high skewness, even though the support of each large itemset is
clustered at a few processors, the clusterings of different large itemsets may be distributed
evenly across the processors or concentrated on a few of them. In the first case, the clusterings
of the large itemsets are distributed evenly among the processors; hence, each processor
would have similar number of locally large itemsets. We characterise this case as high
workload balance. In the second case, the clusterings would be concentrated on a few
processors; hence some processors would have much more locally large itemsets than the
others. This is the low workload balance case. For example, the itemsets in Table 1 not only
have high skewness, it also has a good workload balance; because are locally large at
processor 1, and at processor 2, whereas at processor 3.

It follows from our discussion of the pruning techniques that high data skewness would
increase the chance of candidate set pruning; however, it is not the only factor, workload is
another critical factor. In the following, we will see that given a good data skewness, if the
distribution of the clusterings amount the processors are not even, then the pruning effects
would be reduced significantly, and, to aggravate the problem more, the work of computing
the large itemsets would be concentrated on a few processors which is a very troublesome
issue for parallel computation.

As explained above, Table 1 is a case of high data skewness and high workload
balance. The supports of each itemset are distributed mostly in one partition; hence, the
skewness is high. On the other hand, every partition has the same number of locally large
itemsets; therefore, the workload balance is also high. In this case, CD will generate = 15
candidates in the second iteration. Whereas, the distributed pruning will generate only
three candidates and which shows that the pruning has good effect for this
distribution.

Table 2 is an example of high data skewness but low workload balance. The thresholds
are the same as that in Table 1, i.e., the global support threshold is 15 and the local support
threshold at each processor is 5. The support count distribution of each item is the same as

High data skewness and low workload balance case.

Items A B C D E F

Localsupport atprocessor 1 13 33 12 34 2 1
Local support at processor 2 1 3 1 2 1 4
Localsupportat processor3 2 1 2 1 12 33
Global support 16 37 15 37 15 38

gl-large at processor 1
gl-large at processor 2
gl-large at processor 3

64

EFFECT OF D A T A DISTRIBUTION I N PARALLEL MINING OF ASSOCIATIONS 299

Low data skewness and high workload balance case.

Items

Localsupportatprocessor 1 6 12 4 13 5 12
Local support at processor 2 6 12 5 12 4 13
Local support at processor 3 4 13 6 12 6 13
Global support 16 37 15 37 15 38

gl-large at processor 1
gl-large at processor 2
gl-large at processor 3

that in Table 1 except that items and are now locally large together at processor
1 instead of distributed between processors 1 and 2. In this lower workload balance case,
distributed pruning will generate 7 size-2 candidates, namely
and while CD will still have 15 candidates. Thus, the distributed pruning remains to
be very effective, but not as good as that in the high workload balance case (Table 1).

Table 3 is an example of low data skewness and high workload balance. The support
counts of the items and are almost equally distributed over the 3 processors.
Hence, the data skewness is low. On the other hand, the workload balance is high, because
the number of locally large itemsets in each processor is almost the same. In this case,
both CD and distributed pruning generate the same 15 candidate sets; hence, if we restrict
pruning to the distributed pruning, then it has no advantage over CD in this case. However,
global pruning can prune away the candidates and In other words, FPM still
has a 20% of improvement over CD in this pathological case of low skewness and high
balance.

Following Example 2, it is observed that global pruning is more effective than distributed
pruning and can perform significant candidates reduction even in the moderate data skewness
or low workload balance cases. As a note, low skewness and low balance cannot occur
together. Also, according to our analysis, distributed pruning can prune away almost

is the number of partitions) of all the size-2 candidates generated by CD in the high data
skewness and high workload balance case.

In summary, distributed pruning is very effective when a database is partitioned with high
skewness and high balance. On the other hand, in the worst cases of high skewness with low
balance or high balance with low skewness, the effect of distributed pruning is degraded to
the level in CD, however, global pruning may still perform better than CD. To strengthen our
studies, we investigated the problem of defining metrics to measure skewness and balance.

We have developed a skewness metric based on the well established notion of entropy
(Cover and Thomas, 1991). Given a random variable it’s entropy is a measurement on

65

300 CHEUNG AND XIAO

how even or uneven its probability distribution is over its values. If a database is partitioned
over n processors, the value px(i) = can be regarded as the probability of occurrence
of an itemset X in partition Di, (1 i n). The entropy H(X) = x
log(px(i))) is a measurement of the distribution of the local supports of X over the partitions.
For example, if X is skewed completely into a single partition Dk, (1 k n), i.e., it
only occurs in Dk, then px(k) = 1 and px(i) = 0, Vi k. The value of H(X) = 0 is the
minimal in this case. On the other hand, if X is evenly distributed among all the partitions,
then px(i) = 1 i n, and the value of H(X) = log (n) is the maximal in this case.
Therefore the following metric can be used to measure the skewness of a data partition.

Definition 1. Given a database partition Di, (1 i n), the skewness S(X) of an
itemset is defined by S(X) = where H(X) = - x log (px(i))) and
Hmax = log (n).

The skewness S(X) has the following properties:

• S(X) = 0, when all px(i), 1 i n, are equal. So the skewness is at its lowest value

• S(X) = 1, if E [1, n] such that px(k) = 1, and px(i) = 0 for k, 1 i n. So

• 0 < S(X) < 1, in all the other cases.

when X is distributed evenly in all partitions.

the skewness is at its highest value when X occurs only in one partition.

It follows from the property of entropy that S(X) increases with respect to the skewness
of X; hence, it is a suitable metric for the skewness of an individual itemset. Table 4 shows
the skewness of the large itemsets in Tables 1-3.

In addition to measuring the skewness of an itemset, we also need a metric to measure
the skewness of the database partition. We define the skewness of a database partition as a
weighted sum of the skewness of all the large itemsets. In other words, the skewness of a
partition is a measurement of the total skewness of all the large itemsets.

Definition 2. Given a database partition Di, (1 i n), the skewness TS(D) of the
partition is defined by TS(D) = S(X) x w(X), where Ls is the set of all the large
itemsets, w(X) = is the weight of the support of X over all the large itemsets in
Ls, and S(X) is the skewness of X.

TS(D) has some properties similar to S(X).

• TS(D) = 0, when the skewness of all the itemsets are at its minimal value.
• TS(D) = 1, when the skewness of all the itemsets are at its maximal value.
• 0 < TS(D) < 1, in all the other cases.

In Table 4, the skewness TS(D) of the partitions for the three situations have computed.
(For illustration purpose, we only have computed TS(D) with respect to the skewness of all
the size-1 large itemsets.) Note that we have ignored the small itemsets in the computation
of the skewness of a partition. Since the purpose of our task is to investigate the effect of data

66

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 301

Data skewness and workload balance.

Workload
Itemset A B C D E F

Table 1 Local count 13 33 1 2 2 1 0.329

high workload balance Local count 1 3 12 34 1 4 0.348

Local count 2 1 2 1 12 33 0.322

High data skewness, at processor 1

at processor 2

at processor 3
0.452 0.633 0.429 0.697 0.429 0.586

0.494
0.999

Table 2 Local count 13 33 12 34 2 1 0.601

low workload balance Local count 1 3 1 2 1 4 0.076

Local count 2 1 2 1 12 33 0.323

High data skewness, at processor 1

at processor 2

at processor 3
0.452 0.633 0.429 0.697 0.429 0.586

0.494
0.789

Table 3 Local count 6 12 4 13 5 12 0.329

high workload balance Local count 6 12 5 12 4 13 0.329
Low data skewness, at processor 1

at processor 2

at processor 3
Local count 4 13 6 12 6 13 0.342

0.015 0.001 0.012 0.001 0.012 0,001
0.005
0.999

skewness on candidate sets pruning, and this only involves large itemsets, this restriction
would in fact make the metric more relevant to candidate set pruning.

Workload balance is a measurement of the distribution of the support clusterings of the large
itemsets over the partitions at the processors. Based on the definition of in Definition 2
and that of in Definition 1, we define to be the

in a partition where is the set of all the large itemsets. Intuitively, the
workload in partition is the ratio of the total supports of the large itemsets in over
all the partitions. Note that 1.

67

302 CHEUNG AND XIAO

A partition has high workload balance if Wi are the same for all partitions Di , 1 i n.
On the other hand, if distribution of Wi over the partitions are very uneven, then the workload
balance is low. As has been pointed out, the workload balance has important bearing on the
pruning and performance of parallel mining. In parallel to the metric for data skewness, we
also define a metric workload balance factor to measure the workload balance of a partition,
which is based also on entropy.

Definition 3. For a database partition Di, 1 i n, of a database D, the workload
balance factor TB(D) of the partition is given by TB(D) =

The metric TB(D) has the following properties:

• TB(D) = 1, when the workload across all processors are the same;
• TB(D) = 0, when the workload is concentrated on one processor;
• 0 < TB(D) < 1, in all the other cases.

In Table 4, the workload Wi of the first and last cases (Tables 1 and 3) have a high balance,
and the values of TB(D) are almost equal to 1. In the second case (Table 2), the workload at
processor 2 has been shifted to processor 1, and hence created an unbalance case; the value
of TB(D) thus has been reduced to 0.789, which indicates a moderate workload balance.

The data skewness metric and workload balance factor are not independent. Theoretically,
each one of them could have values range from 0 and 1. However, some combinations of
their values are not admissable. First, let us consider some boundary cases.

Theorem 2.
1. If TS(D) = 1, then the admissable values of TB(D) range from 0 to 1. If TS(D) = 0,

2. If TB(D) = 1, then the admissable values of TS(D) range from 0 to 1. If TB(D) = 0,

Let D1, D2, . . . , D, be a partition of a database D.

then TB(D) = 1.

then TS(D) = 1.

Proof:

1. By definition 0 TB(D) 1. What we need to prove is that the boundary cases
are admissable when TS(D) = 1. TS(D) = 1 implies that S(X) = 1, for all large
itemsets X. Therefore, each large itemset is large at one and only one processor. If all
the large itemsets are large at the same processor i, (1 i n), then Wi = 1 and
Wk = 0, (1 k n, k i). Thus TB(D) = 0 is admissable. On the other hand, if
each processor has the same number of large itemsets, then Wi = (1 i n), and
TB(D) = 1. Furthermore, if TS(D) = 0, then S(X) = 0 for all large itemsets X. This
implies that Wi are the same for all 1 i n. Hence TB(D) = 1.

2. It follows from the first result of this theorem that both TS(D) = 0 and TS(D) = 1
are admissable when TB(D) = 1. Therefore the first part is proved. Furthermore, if
TB(D) = 0, there exists a partition Di, 1 i n, such that Wi = 1 and Wk = 0, (1
k n, k i). This implies that all large itemsets are locally large at only Di. Hence
TS(D) = 1.

68

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 303

Admissable combinations of skewness and balance

Even though, 0 1 and 0 1, we have shown in Theorem 2
that not all possible combinations are admissable. In general, the admissable combinations
will be a subset of the unit square such as the one in figure 3. It always contains the two
segments 1 = 1 in figure 3) and 1 1 in figure 3), but not the
origin, = 0, 0). After defining the metrics and studying their characteristics, we
can validate our observation on the relationship between data skewness, workload balance
and candidates pruning effect in our performance studies.

In order to confirm our analysis that the proposed FPM is an efficient algorithm for mining
associations in a parallel system, we have implemented all the algorithms on an IBM SP2
and carried out a substantial performance evaluation and comparison.

We have the following three goals in our studies: (1) to verify that FPM is faster than the
representative algorithm CD, and confirm that the major performance gain is from the two
pruning techniques; (2) to confirm the observation that both data skewness and workload
balance are two critical factors in the performance of FPM; (3) to demonstrate that FPM
has good parallelism and scalability as a parallel algorithm.

69

304 CHEUNG AND XIAO

Synthetic database parameters.

Number of items
Partition skewness
Workload balance
Number of partitions

Number of transactions in each partition

Average size of the transactions
Average size of the maximal potentially large itemsets
Number of maximal potentially large itemsets

Attributes of synthetic databases.

Name B100 B90 B70 B50 B30 B10 B100 B90 B70 B50 B30 B10

D3278K.T5.12.S90 0.86 0.85 0.86 0.87 0.85 0.88 0.99 0.88 0.69 0.47 0.29 0.08
D3278K.T5.12.S70 0.74 0.72 0.71 0.72 0.74 - 0.98 0.87 0.68 0.48 0.27 -
D3278K.T5.12.S50 0.46 0.45 0.47 0.47 - - 0.98 0.88 0.67 0.47 - -

D3278K.T5.12.S30 0.24 0.26 0.25 - - - 0.99 0.87 0.66 - - -

D3278K.T5.12.S10 0.07 0.08 - - - - 0.99 0.92 - - - -

We implemented FPM, its variant FNG, and CD. The IBM SP2 parallel system we used
has 32 POWER2 processors (66.7 MHz) with 64 MB main memory, running the AIX oper-
ating system. Communication between processors are through a high performance switch
with an aggregated peak bandwidth of 40 MBps and a latency of about 40 microseconds.
Data was allocated to the local disk in each processor, and the database partition on each
node is about 100 MB in size.

In order to be able to control the experiments to test different data distributions and
scenarios, many works (Agrawal and Srikant, 1994; Agrawal and Shafer, 1996; Han and
Fu, 1995; Park et al., 1995a; Park et al., 1995b) in mining association rules have adopted
the standard technique introduced in (Agrawal and Srikant, 1994) to generate the database.
We have enhanced the technique for the generation of database partitions and introduced
parameters to control the skewness and workload balance. Table 5 is a list of the parameters
used in our synthetic databases. Details of the data generation technique is in the appendix.

In order to compare the performance between FMP, FNG, and CD, a databases and twenty
data sets have been generated. The data sets generated and their skewness and balance factors
are listed in Table 6. The number of partitions in each case is 16 16), and the size of each

70

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 305

Performance improvement of FPM and FNG over CD.

FPM/CD FNG/CD
Response Time
Ratio B100 B90 B70 B50 B30 B10 B100 B90 B70 B50 B30 B10

D3278K.T5.12.S90 2.10 1.69 1.36 1.23 1.14 1.06 1.79 1.35 1.17 1.10 1.05 1.01
D3278K.T5.12.S70 2.07 1.41 1.23 1.13 1.06 - 1.43 1.17 1.08 1.05 1.01 -
D3278K.T5.12.S50 1.88 1.22 1.11 1.06 - - 1.25 1.10 1.05 1.01 - -

D3278K.T5.12.S30 1.55 1.17 1.08 - - - 1.08 1.06 1.01 - - -

D3278K.T5.12.S10 1.36 1.09 - - - - 1.03 1.02 - - - -

partition is about 100 MB. The name of a partition is denoted by Dx.Ty.Iz.Sr.Bl, where
is the number of transactions in each partitions, is the average size of the transactions,

is the average size of the itemsets. The two parameters Sr and B1 are two important
parameters used to control the skewness and workload balance in the data generation. (The
B1 values are listed separately in the table.) In Table 6, we have also computed the measured
skewness and the balance factor of the partitions generated. It is important
to note that these measured skewness and workload are very close to the values of the
controlled parameters, i.e., the values of and are good approximations of values of

and In addition, they cover a wide range of skewness and balanace. Thus,
our synthesized data partitions are good simulation of data partitions of various distribution
characteristics. We believe this is technically valuable because even real data may not be
general enough to cover all possible distributions.

We ran FPM, FNG and CD on the database partitions in Table 6. The minimum support
threshold is 0.5%. The improvement of FPM and FNG over CD in response time are recorded
in Table 7, and the result is very encouraging. FPM and FNG are consistently faster than CD
in all cases. In the following, we analyze the performance gain of FPM and FNG in three
aspects: (1) improvement when the workload balance is high, and the skewness varies from
high to moderate; (2) improvement when the skewness is high, and the workload balance
varies from high to moderate; (3) desirable and undesirable combinations of skewness and
workload balance values.

Figure 4 is the relative performance between FPM, FNG and CD on partitions with
different skewness and a high balance value 100). FNG performs much better than
CD when the skewness is relatively high > 0.5). On the other hand, FPM outperforms
CD significantly even when the skewness is in the moderate range, (0.1 0.5).
When 90, the result in Table 7 shows that FPM is again much faster than CD. This
demonstrates that FPM outperforms CD consistently given a high workload balance and at
least a moderate skewness.

Figure 5 is the relative performance given a high skewness = 90) and different workload
balance. Both FPM and FNG perform much better than CD when the workload balance
is relatively high 0.5); however, the improvement in the range of moderate balance,
(0.1 ≤ ≤ 0.5), is marginal. This confirms our observation that workload balance is an
essential requirement. It shows that a high skewness has to accompany by a high workload

71

306 CHEUNG AND XIAO

Relative performance on databases with high balance and different skewness.

Relative performance on databases with high skewness and different workload balance.

balance. The effect of a high skewness with a moderate balance may not be as good as that
of a high balance with a moderate skewness.

In figure 6, we vary both the skewness and balance together from a low value range to a
high value range. The trend shows that the improvement of FPM over CD increases faster
when both values approach the high value range.

Combining the observations in the above three cases together with the results in Table 7,
we can divide the area covering all the admissable combinations of skewness and balance
in our experiments into four performance regions as shown in figure 7. Region A is the
most favorable region in which the balance is high and the skewness varies from high to

72

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 307

Relative performance on databases when both skewness and balance change.

Performance regions (FPM/CD) in the admissible combinations of skewness and workload balance.

73

308 CHEUNG AND XIAO

Pruning effect on databases in figure 4.

moderate. FPM in general is 50 to 100% faster than CD. In region B, the workload balance
value has degraded moderately and the skewness remains high; in this case, the gain in
FPM over CD is around 50%. Region C covers combinations that have very low workload
balance; the gain in FPM falls into a moderate range of about 30%. Region D contains the
most undesirable combinations; FPM only has marginal performance gain.

Figure 8 provides us another view to understand the candidates pruning effects. It shows
the ratio on the number of candidate sets between FPM (FNG) and CD for the same experi-
ments in figure 4. The reduction ratios for the runs in the database D3278K.T5.12.Sr.B100,

90, 70, 50, 30, 10), are in the first graph. When the skewness is high, = 0.9), dis-
tributed pruning has a 79.2% of reduction in candidate sets comparing with CD, and global
pruning has a 93.9% reduction. When the skewness is low, = 0.1), distributed pruning
only has a 6.6% reduction, but global pruning has a 30.7% reduction. This confirms our
observation on the effect of high balance combined with high or moderate skewness.

In order to study the efficiency of FPM as a parallel algorithm, we investigate its and
against CD. Speedup is the reduction in response time vs. the number of processors,

given that the total size of the database remains unchanged. The more processors are used,
the faster the computation should be. The ideal speedup is a linear function on the number of
processors. Scaleup is the performance vs. the number of processors when the database size
is scaled up proportional to the number of proccesors. If the algorithm has high efficiency and
low overhead, its performance would maintain uniform when both the number of processors
and the size of the database scaled up proportionally.

In the speedup experiment, we execute the algorithms on a fixed size database with
various number of processors and partitions. We selected the database with high skewness

74

EFFECT OF D A T A DISTRIBUTION I N PARALLEL MINING OF ASSOCIATIONS 309

Speedup on a Database = 90, = 100).

and balance as a representative to perform the study. The database is listed in Table 8. It has
a total size of 1.6 GB, and was first divided into 16 partitions. Subsequently, we combined
the partitions to form databases with 8, 4, 2, and zero partitions.

Figure 9 is the execution times and speedups of FPM, FNG, and CD on the databases.
The speedups are also shown in Table 8. FNG had a linear speedup and FPM achieved
a remarkable superlinear speedup. The reason behind FPM’s superlinear speedup is the
increase in the skewness when the number of partitions increases.

In the scaleup experiment, both the database size and the number of processors are
scaled up proportionally. The number of processors involved were increased from 1 to 16,
and the sizes of the databases were increased correspondingly from 100 MB to 1.6 GB. Each

75

310 CHEUNG AND XIAO

Speedup on five databases with different distribution characteristics.

Speedup of FPM Speedup of FNG Speedup of CD

Databases = 2 = 4 = 8 = 16 = 2 = 4 = 8 = 16 = 2 = 4 = 8 = 16

D3278K.T5.12.S90,B100 1.97 4.37 10.29 22.50 1.85 3.79 7.91 19.19 1.85 3.01 5.54 10.70

Scaleup on a database = 90, = 100).

76

EFFECT OF D A T A DISTRIBUTION I N PARALLEL MINING OF ASSOCIATIONS 311

database were partitioned according to the number of processors such that every partition
is maintained at the size of 100 MB. We performed the experiment based on the database
D3278K.T5.12.S90.B100, i.e., the databases are generated with the same parameters. Fig-
ure 10 shows the result of the experiment. Surprisingly, both FPM and FNG not only can
maintain the performance, their response time in fact had gone down when the database was
scaled up. The prime reason for this is the increase in pruing capability when the number
of partitions increases.

To restrict the search of large itemsets in a small set of candidates is essential to the perfor-
mance of mining association rules. The pruning techniques we proposed are theoretically
interesting, because they have effect only in the parallel case but not the serial case. Both
distributed and global pruning provide significant amount of pruning power, in particular,
when the data distribution is in a favorable situation, i.e. when workload balance is high
and the skewness is at least at a moderate level. It is important to study partition techniques
that can deliver a good data distribution. Random approaches in general will deliver par-
titions which have good balance. However, the skewness would be difficult to guarantee
together with good workload balance. Clustering technique such as the means algorithm
(MacQueen, 1967). will give good skewness. It remains an open problem how to mod-
ify clustering technique to generate partitions which have good skewness and also good
workload balance.

A parallel algorithm FPM for mining association rules has been proposed. A performance
study carried out on an IBM SP2 shared-nothing memory parallel system shows that FPM
consistently outperforms CD. It also has nice scalability in terms of speedup and scaleup.
The gain in performance in FPM is due mainly to the pruning techniques incorporated.
It was discovered that the effectiveness of the pruning techniques depend highly on the
data distribution characteristics, which can be measured by two metrics: data skewness and
workload balance. Our analysis and experiment results show that the pruning techniques are
very sensitive to workload balance, though good skewness will also have important positive
effect. The techniques are very effective in the best case of high balance and high skewness.
The combination of high balance and moderate skewness is the second best case. In the
worst case of low balance and low skewness, FPM can only deliver the performance close
to that of CD. Since mining associations has many interesting applications, important future
works would include fine tuning of the proposed parallel techniques on real business cases.

The synthetic databases used in our experiments are generated using similar techniques
introduced in (Agrawal and Srikant, 1994). We have enhanced it to generate data partitions

77

312 CHEUNG AND XIAO

and introduced two parameters to control the skewness and workload balance. Table 5 is a
list of the parameters used in our synthetic databases.

The synthetic database partitions are generated from a pool of potentially large itemsets.
The first step is to generate the relative weights of these large itemsets. These weights
are then broken down into smaller weights with respect to the partitions. Therefore, every
itemset in the pool has weights associated with it. Each one of these weights corresponds
to the probability of occurrence of the itemset in a partition. The weight of each itemset
in the pool is picked from an exponential distribution with unit mean. A skewness level
s for the itemset is then drawn from a normal distribution with mean and variance 0.1.
Following that, probability values from an exponential distribution with variance equal
to s are picked. These values are normalize so that their sum equals to 1. The skewness of
these probability values are computed according to the skewness metric in Definition 1.
We repeat this random process until a set of values, whose skewness falls into the permitted
range of ± 0.02, is generated. These probability values are then randomly assigned to
the partitions. Eventually, the weight of the itemset is broken down into weights by
multiplying it with then probability values. We repeat this process to generate the weights of
all the itemsets and their breakdowns. If we use these generated weights as the distribution
of the support counts of the itemsets, a high workload balance among the partitions will be
resulted because of the randomness in the process. In order to control the balance factor, we
redistribute the weights among the partitions starting from this high balance configuration.
Firstly, we randomly determine a nondescending order for the workloads of the partitions.
We will reshuffle the weights among the partitions according to this order. Secondly, we
pick an itemset from the pool randomly, shuffle its weights among the partitions such that
they will be ordered according to the determined workload order. We check the workload
balance according to Definition 3, and repeat the process until the balance value is in the
permitted range of 0.02. Since the balance value starts at the highest value, it will
converge into the expected range. At the end of this step, both the balance value and the
workloads of all the partitions are determined.

The second step is to generate the itemsets in the pool. We first divide the items into
disjoint ranges whose lengths are proportional to the workloads of the corresponding

partitions. In order to control the skewness of the itemsets, we regard the (1
probability values generated for an itemset in the previous step as the probability of choosing
items from the ith range to put into the itemset. For an itemset whose weights have been
determined in the previous step, we first determine the ranges in which the items are picked.
These ranges are determined by tossing a side weighted coin, where the weight of side

is the ith probability of the probability values of the itemset. Once a range has been
determined, an item is picked randomly in it. Repeating this procedure, items are picked
until the number is equal to the size of the itemset. Some items of the subsequent itemsets
are copied from the previous itemset according to the correlation level as in (Agrawal and
Srikant, 1994), while the remaining items are picked in the same way as in the first itemset.

The last step is to generate the transactions in all the partitions. The technique follows
primary the one introduced in (Agrawal and Srikant, 1994) with the following modification.
After we shuffled the weights to control the workload balance factor, the workload will be
different at different partitions. We add a dummy weight to each one of those partitions

78

EFFECT OF DATA DISTRIBUTION IN PARALLEL MINING OF ASSOCIATIONS 313

whose workload is less than the maximum workload to make the workload of all of them
equal. The dummy weight corresponds to the weights of the small itemsets in each partition.
Therefore, it won’t affect the true workload balance. In generating the transactions for
partition (1 we normalize the ith weights of all the itemsets so that their
sum equals to 1 and use the normalized weight as the probability of occurrence of the
associated itemset in partition i. Each transaction in the partition is assigned a series of
large itemsets, which are chosen by tossing an 1)-side weighted coin, (1 extra side
is for the dummy weight), where the weight for a side is the ith weight of the associated
itemset. In the special case that a dummy weight is selected, a dummy which corresponds
to small itemsets will be inserted into the transactions. Since the dummy represents small
itemsets, it won’t be counted into the large itemsets found.

1. This result is stronger than that in (Savasere et al., 1995)-the result there states that a
globally large itemset is locally large in some partition; while Lemma 1 states that all
its subsets must be locally large together at the same partition.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large databases.
Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data. pp. 207-216.

Agrawal, R. and Shafer, J.C. 1996. Parallel mining of association rules: Design, implementation and experience.
Special Issue in Data Mining, IEEE Trans. on Knowledge and Data Engineering, IEEE Computer Society,

Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining association rules. Proc. 1994 Int. Conf. Very Large
Data Bases. Santiago. Chile, pp. 487-499.

Brin, S., Motwani, R., Ullman, J., and Tsur, S. 1997. Dynamic itemset counting and implication rules for market
basket data. Proc. of 1997 ACM-SIGMOD Int. Conf. On Management of Data. Tucson, Arizona, pp. 255-264.

Cheung, D.W., Han, J., Ng, V.T., Fu, A.W., and Fu. Y. 1996. A fast distributed algorithm for mining association
rules. Proc. of 4th Int. Conf. on Parallel and Distributed Information Systems. Miami Beach, FL, pp. 31-43.

Cheung, D.W., Han, J., Ng, V.T., and Wong, C.Y. 1996. Maintenance of discovered association rules in large
databases: An incremental updating technique. Proc. 1996 IEEE Int. Conf. on Data Engineering. New Orleans,
Louisiana.

8(6):962-969.

Cover T.M. and Thomas, T.A. 1991. Elements of Information Theory. John Wiley & Sons.
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. 1995. Advances in Knowledge Discovery

Han J. and Fu, Y. 1995. Discovery of multiple-level association rules from large databases. Proc. 1995 Int. Conf.

Han, E., Karypis G., and Kumar, V. 1997. Scalable parallel data mining for association rules. Proc. of 1997

Int’l Business Machines. 1995. Scalable POWERparallel Systems, GA23-2475-02 edition.
MacQueen, J.B. 1967. Some methods for classification and analysis of multivariate observations. Proceedings of

the 5th Berkeley symposium on mathematical statistics and probability, pp. 281-297.
Message Passing Interface Forum. 1994. MPI: A Message-Passing Interface Standard.
Ng, R., Lakshmanan, L., Han J., and Pang, A. 1998. Exploratory mining and pruning optimizations of constrainted

and Data Mining. AAAI/MIT Press.

Very Large Data Bases. Zurich, Switzerland, pp. 420-431.

ACM-SIGMOD Int. Conf. On Management of Data.

association rules. Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data. Seattle, WH.

79

314 CHEUNG AND XIAO

Park, J.S., Chen, M.S., and Yu, P.S. 1995a. An effective hash-based algorithm for mining association rules. Proc.

Park, J.S., Chen, M.S., and Yu, P.S. 1995b. Efficient parallel data mining for association rules. Proc. 1995 Int.

Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large

Shintani, T. and Kitsuregawa, M. 1996. Hash based parallel algorithms for mining association rules. Proc. of 4th

Silberschatz, A., Stonebraker, M., and Ullman, J. 1995. Database research: achievements and opportunities into

Srikant R. and Agrawal, R. 1995. Mining generalized association rules. Proc. 1995 Int. Conf. Very Large Data

Srikant R. and Agrawal, R. 1996a. Mining sequential patterns: Generalizations and performance improvements.

Srikant R. and Agrawal, R. 1996b. Mining quantitative association rules in large relational tables. Proc. 1996

Zaki, M.J., Ogihara, M., Parthasarathy, S., and Li, W. 1996. Parallel data mining for association rules on shared-

1995 ACM-SIGMOD Int. Conf. Management of Data. San Jose, CA, pp. 175-186.

Conf. on Information and Knowledge Management. Baltimore, MD.

databases. Proc. 1995 Int. Conf. Very Large Data Bases. Zurich, Switzerland, pp. 432-444.

Int. Conf. on Parallel and Distributed Information Systems.

the 21st century. Report of an NSF Workshop on the Future of Database Systems Research.

Bases. Zurich, Switzerland, pp. 407-419.

Proc. of the 5th Int. Conf. on Extending Database Technology. Avignon, France.

ACM-SIGMOD Int. Conf. on Management of Data. Montreal, Canada.

memory multi-processors. Supercomputing’96, Pittsburg, PA, Nov. 17-22.

received the M.Sc. and Ph.D. degrees in computer science from Simon Fraser University,
Canada, in 1985 and 1989, respectively. He also received the B.Sc. degree in mathematics from the Chinese
University of Hong Kong. From 1989 to 1993, he was with Bell Northern Research, Canada, where he was a
member of the scientific staff. Since 1994, Dr. Cheung has been faculty member of the department of computer
science and information systems in The University of Hong Kong. His research interest includes data mining, data
warehousing, Web databases, multimedia databases and database concurrency control. Dr. Cheung has served as
program committee members in numerous international conferences including VLDB’97, VLDB’99, ICDE’99,
KDD’97, DASFAA’99, PAKDD’97, PAKDD’98, and PAKDD’99.

was a Ph.D. student at The University of Hong Kong.

80

Data Mining and Knowledge Discovery, 3, 315-339 (1999)
1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Y. XIANG* yxiang @cs.uregina.ca

T. CHU

Yike Guo and Robert Grossman

Learning belief networks from large domains can be expensive even with single-link lookahead search
(SLLS). Since a SLLS cannot learn correctly in a class of problem domains, multi-link lookahead search (MLLS)
is needed which further increases the computational complexity. In our experiment, learning in some difficult
domains over more than a dozen variables took days. In this paper, we study how to use parallelism to speed
up SLLS for learning in large domains and to tackle the increased complexity of MLLS for learning in difficult
domains. We propose a natural decomposition of the learning task for parallel processing. We investigate two
strategies for job allocation among processors to further improve load balancing and efficiency of the parallel
system. For learning from very large datasets, we present a regrouping of the available processors such that slow
data access through the file system can be replaced by fast memory access. Experimental results in a distributed
memory MIMD computer demonstrate the effectiveness of the proposed algorithms.

belief networks, parallel implementation of data mining

Probabilistic belief networks (Pearl, 1988; Jensen, 1996) have been widely used for infer-
ence with uncertain knowledge in artificial intelligence. As an alternative to elicitation from
domain experts, learning belief networks from data has been actively studied (Cooper and
Herskovits, 1992; Heckerman et al., 1995; Herskovits and Cooper, 1990; Lam and Bacchus,
1994; Spirtes and Glymour, 1991; Xiang et al., 1997). Since the task is NP-hard in general
(Chickering et al., 1995), it is justified to use heuristics in learning. Many algorithms de-
veloped use a scoring metric combined with a single-link lookahead search (SLLS), where
alternative network structures differing from the current structure by link are evaluated
exhaustively before one of them is adopted. Although the complexity is polynomial on the
number of variables of the problem domain, the computation is still expensive for large
domains. Furthermore, a class of domain models termed pseudo-independent (PI) models
cannot be learned correctly by a SLLS (Xiang et al., 1997). One alternative is to use a
multi-link lookahead search (MLLS) (Xiang et al., 1997), where consecutive structures

*Author to whom all correspondence should be addressed.

316 XIANG AND CHU

differ by multiple links. However, the complexity of a MLLS is higher. In our experiment
(Section 11), learning a 35 variable PI domain model (containing two small PI submodels)
took about two and half days, and learning a 16 variable PI domain model (containing a
slightly larger PI submodel) took about 25 days.

In this paper, we study parallel learning to speed up computation during SLLS in large
domains and to tackle the increased complexity during MLLS in potential PI domains. We
focus on learning decomposable Markov networks (DMNs) (Xiang et al., 1997) and show
that the lessons we learned are applicable to learning Bayesian networks (BNs) (Pearl, 1998).
To the best of our knowledge, this is the first investigation on parallel learning of belief
networks. As learning graphical probabilistic models has become an important subarea in
data mining and knowledge discovery, this work extends parallel data mining to learning
these models. We focus on multiple instruction multiple data (MIMD) distributed-memory
architecture for it is available to us, and we discuss the generalization of our lessons to other
architectures.

The paper is organized as follows: To make it self-contained, we briefly introduce PI
models and MLLS in Sections 2 and 3. In Sections 4 through 9, we propose parallel
algorithms for learning DMNs and their refinements. We present experimental results in
Sections 10 and 1 1. Graph-theoretic terms unfamiliar to some readers and a list offrequently
used acronyms are included in Appendix.

Let be a set of discrete variables in a problem domain. A of is an assignment
of values to every variable in (PDM) over determines
the probability of every tuple of for each For disjoint sets and of vari-
ables, and are given if

0, which we shall denote by If =ø, and are
denoted by

Table 1 shows a PDM over four binary variables. The PDM satisfies
In the subset each pair is marginally dependent, e.g., and
is dependent given the third, e.g., However in the subset
although each pair is dependent given the third, e.g., we have
and Hence and are said to be even though and
are marginally independent (so are and This PDM is a PI model. In general, a PI model
is a PDM where proper subsets of a set of collectively dependent variables display marginal
independence (Xiang et al., 1997). Example PI models include and

A PI model.

(0,0,0,0) 0.0225 (0,1,0,0) 0.0175 (1,0,0,0) 0.02 (1,1,0,0) 0.035
(0,0,0,1) 0.2025 (0,1,0,1) 0.0075 (1,0,0,1) 0.18 (1,1,0,1) 0.015
(0,0,1,0) 0.005 (0,1,1,0) 0.135 (1,0,1,0) 0.01 (1,1,1,0) 0.12
(0,0,1,1) 0.02 (0,1,1,1) 0.09 (1,0,1,1) 0.04 (1,1,1,1) 0.08

82

PARALLEL LEARNING OF BELIEF NETWORKS 317

(a) Minimal I-map of PDM in Table 1. (b) Network structure learned by a SLLS.

problems (Xiang et al., 1997). PI models have also been found in real datasets. Analysis of
data' from 1993 General Social Survey (conducted by Statistics Canada) on Personal Risk
has discovered two PI models, one on and the other on
(Hu, 1997).

For disjoint subsets and of nodes in an undirected graph we use
to denote that nodes in intercept all paths between and A graph is an of a
PDM over N if there is an one-to-one correspondence between nodes of G and variables
in N such that for all disjoint subsets and of is
a I-map if no link can be removed such that the resultant graph is still an I-map.
The minimal I-map of the above PDM is shown in figure 1(a).

Several algorithms for learning belief networks have been shown being unable to learn
correctly when the underlying PDM is PI (Xiang et al., 1996). Suppose learning starts with
an empty graph (with all nodes but without any link). A SLLS will not connect and
since Neither will and be connected. This results in the learned structure in
figure 1(b), which is incorrect. On the other hand, if we perform a double link search after
the single-link search, which can effectively test whether holds, then
the answer will be negative and the two links and will be added. The structure
in figure 1(a) will be learned.

The parallel learning algorithms presented in the paper are based on the sequential MLLS
algorithm Seq (Xiang et al. 1997), which learns the structure (a chordal graph) of a DMN
using K-L cross entropy (Kullback and Leibler, 195 1) as scoring metric. Once the structure
is learned, numerical parameters can be easily estimated from the same dataset. Search is
organized into (the outer for loop) and the number of lookahead links is identical
in the same level. Each level consists of multiple (the loop). In each pass
at the same level, alternative structures that differ from the current structure by the same
number of links are evaluated. Search at each pass selects links that decrease the cross
entropy maximally after evaluating all distinct and valid combinations of links. If the
corresponding entropy decrement is significant, the links will be adopted and the next
pass at the same level starts. Otherwise, the first pass at the next higher level starts.

83

318 XIANG AND CHU

- 1)/2

1

Note that each intermediate graph is chordal as indicated by the statement in the
innermost loop. The condition that is implied by a single clique means that all links in

are contained in the subgraph induced by It helps reduce search space. Note also that
the algorithm is greedy while the learning problem is NP-hard. Hence, a link committed
early in the search is not necessarily contained in a corresponding minimal I-map.

Figure 2 illustrates Seq with a dataset over variables A SLLS is performed
for simplicity. Search starts with an empty graph in (a). Six alternative graphs in (b) through

An example of sequential learning.

84

PARALLEL LEARNING OF BELIEF NETWORKS 319

(g) are evaluated before, say, (b) is selected. The next pass starts with (b) as the current
strucuture (redrawn as (h)) and graphs in (i) through (m) are evaluated. Repeating the above
process, suppose eventually the graph in (n) is obtained. In the last pass, suppose none of
the graphs in (o) and (p) decreases the cross entropy significantly. Then the graph in (n)
will be the final result.

In algorithm Seq, for each pass at level 1, structures are evaluated before a link
is added. structures are evaluated before links are added in a pass at level
To tackle the complexity of MLLS and to speed up SLLS in large domains, we explore
parallelism. To this end, we decompose the learning task based on the following observation:
At each pass of search, the exploration of alternative structures are coupled only through
the current structure. Given the current structure, evaluation of alternative structures are
independent, and hence the evaluation can be performed in parallel.

As mentioned earlier, this study is performed using an architecture where processors com-
municate through message passing (vs. shared memory) only. We partition the processors
as follows: One processor is designated as the search and the others are structure

The manager executes Mgr1 (Algorithm 2). For each pass, it generates alternative
graphs based on the current graph. It then partitions them into sets and distributes one set
to each explorer.

85

δh

1

0;

δ

320 XIANG AND CHU

An example of parallel learning.

Each explorer executes Epr1. It checks chordality for each graph received and computes
for each chordal graph. It then chooses the best graph and reports and to

manager. Manager collects the reported graphs from all explorers, selects the global best,
and then starts the next pass of search.

Figure 3 illustrates the parallel learning with two explorers and a dataset over variables
A SLLS is performed for simplicity. Manager starts with an empty graph in (a).

0

86

PARALLEL LEARNING OF BELIEF NETWORKS 32 1

It sends six alternative graphs in (b) through (g) to explorers 1 and 2. Explorer 1 checks
graphs in (b), (c) and (d). Suppose the one in (b) is selected and reported to manager.
Suppose explorer 2 reports the one in (e), After collecting the two graphs, manager chooses
the one in (b) as the new current graph. It then sends graphs in (i) through (m). Repeating
the above process, manager finally gets the graph in (n) and sends graphs in (o) and (p) to
explorers. Suppose none of them decreases the cross entropy significantly. Then manager
chooses the graph in (n) as the final result and terminates explorers.

In algorithm Mgr1, alternative graphs are allocated to explorers. However, the amount
of computation in evaluating each graph tends to swing between two extremes. If a graph is
non-chordal, it is discarded immediately without further computation. On the other hand,
if a graph is chordal, its cross entropy decrement will be computed. Figure 4(a) shows an
example graph. There are six supergraphs (graphs with links) that differ by one link.
If any of the dotted links in (b) is added to (a), the resultant graph is non-chordal. If any of
the dashed links in (c) is added to (a), the resultant graph is chordal. Since the complexity
of checking chordality is where is the number of links in the graph,
the amount of computation is very small. Since the complexity of computing cross entropy
decrement is (Xiang et al., 1997), where is the number of
distinct tuples appearing in the dataset, the amount of computation is much greater. As a
result, even job allocation may cause significant fluctuation among explorers in the amount
of computation. As manager must collect reports from all explorers before the new current
graph can be selected, some explorers will be idle while others are completing their jobs.

Figure 5 shows the time taken by each of six explorers in a particular pass in learning
from a dataset over 37 variables, where a distributed memory MIMD computer was used.
Explorer 1 took much longer than others did.

The above analysis implies that more sophisticated job allocation strategy is needed to
improve the efficiency of the parallel system. In the following sections, we propose two
strategies: multi-batch allocation and two-stage allocation.

Multi-batch allocation is based on the idea of keeping some jobs unallocated in the initial
allocation and allocating them later to explorers who finish early. The multi-batch allocation
problem can be abstracted as follows:

Chordal and nonchordal alternative structures.

87

322 XIANG AND CHU

Job completion time of six explorers.

Let be the total number of job units, each of which corresponds to a graph to be
evaluated. A job unit is either of type 0 (non-chordal) or of type 1 (chordal). It takes time

to process a unit of type 0 job and for that of type 1. After an explorer has finished a
given batch of job units, it takes time to send another batch of job units (by one message)
to the explorer. We shall refer to any batch sent to an explorer after the first batch as an

batch. The goal is to find the proper size of each batch such that the sum of idle
time of all explorers is reduced during the completion of job units.

In deriving the batch sizes, we make the following assumptions:

and are constants in a pass.

is the computation time to test the chordality of a graph. Since the complexity of
checking chordality is and each graph in the same pass has the identical
number of nodes and links, can be treated as a constant.

is the time for manager to send an additional batch to an explorer. An additional batch
is much smaller (as will be seen) than the first batch. A message for an additional batch is
thus very short. Messages are sent through communication channels (> 10 M bps) within
the parallel computer, and the actual data transfer is very fast. Consequently, consists
mainly of handshaking time and only varies slightly from message to message.

is a constant in a pass and is much larger than and

is the computation time to process one unit of type 1 job which involves checking
the chordality of a given graph and computing the cross entropy decrement of a chordal
graph. It is much larger than and For example, in learning from a database with 37
variables, we found to be between 0.007 to 0.009 sec and about 0.017 sec in our
parallel computing environment. was at least 0.06 sec. However, the assumption that
is a constant is less accurate. When the variation of clique sizes in a chordal graph is small,

tends to be close to a constant. When the variation is large, tends to vary depending
on specific job unit. Still, we found the assumption to be a useful approximation in deriving
a simple method to determine the batch size.

Suppose the first batch allocated to each explorer has units. Let
denote the number of type 1 (0) units in the batch assigned to explorer Let denote the

88

PARALLEL LEARNING OF BELIEF NETWORKS 323

total number of type 1 units in the batches. Let = be the percentage of type 1
units in the batch to explorer Let = be the percentage of type 1 units in the
batches. Without losing generality, suppose = and we alternatively denote

by
The time taken by explorer to process its first batch is

(1)

Let be the sum of the idle time of explorers 2 through while explorer 1 is processing
its first batch. We can derive

(2)

Substituting in Eq. (2), we have

- - -

= - - (3)

To make use of the idle time we allocate the - (denoted by reserved job
units in additional batches to explorers who finish their first batches before explorer 1.
Denote the percentage of type 1 jobs in the units by Ideally, the units should be
allocated to explorers 2 through such that they will be fully engaged during the [0,
time period and all units will be completed at time Using the result in Eq. (1), this
condition can be expressed as

(4)

where is the total number of additional batches to allocate the units. The value of
depends on the actual size of each batch (including and its estimation will be discussed
shortly.

Eqs. (3) and (4) imply

(5)

Solving Eq. (5), can be expressed as

(6)

To compute we need the values for and However, they are unknown at
the beginning of the search pass when is to be computed. The estimation of these values
is discussed below:

The values of and can be estimated based on the following assumption:

The difference between the values of in successive search passes
is small.

89

324 XIANG AND CHU

and values obtained with eight explorers.

Assumption 3 usually holds since the graphs involved in successive passes differ by only
links. Figure 6 shows the values of and from search pass 5 to 75 in learning from

a dataset of 37 variables, which provides an empirical justification of the assumption.
The value of usually varies from to We can approximate

of Eq. (6) by the average 0.5
By Eq. (6), estimation errors in and can make smaller or larger than the ideal

value. If is smaller, more units will be reserved, resulting in more additional batches. On
the other hand, if is larger, less units will be reserved and some explorers will be idle
after all units have been allocated.

Finally, we consider the estimation of From the numerator of Eq. (6), the effect of
estimation error in is small because is larger than and is much
larger than

Based on Assumption 3 and the above analysis, manager can collect the values
and from the previous pass of search to calculate the value of as follows:

(7)

We have now determined the size of the first batch to each explorer.
Next, we determine the size for additional batches. As an example, consider a situation

illustrated by figure 5. Suppose that the histogram depicts the computation time of the
first batch by each explorer. Explorer 4 finishes the first. Let be the size of the second
batch allocated to explorer 4. The most conservative batch size is - 1), which
effectively assumes that every explorer (other than explorer 1) finishes at this moment.
Usually other explorers will finish later and hence this size will under-allocate for explorer
4. However, the under-allocation will only slightly increases the number of additional

90

PARALLEL LEARNING OF BELIEF NETWORKS 325

batches. Since is very small, a few more additional batches will not affect the overall
efficiency significantly. We have therefore adopted this conservative batch size.

In general, let be the remaining job units after the allocation of a batch of units
to the explorer that finishes the first, be the remaining job units after the allocation of a

to the explorer that finishes the place will be
batch of units to the explorer that finishes the second, and so on. The batch size allocated

(8)

where 1,2, . . . , and . Note that after the number of remaining units drops
below - 1), jobs are allocated unit by unit to achieve high degree of load balancing.

Based on Eqs. (7) and (8), we modify Mgr1/Epr1 into algorithms Mgr2/Epr2.
Manager executes Mgr2. For each pass, it computes according to equation (7), and then

sends the current graph and a batch of graphs to each explorer. Each explorer executes
Epr2. It checks chordality for each graph received and computes the entropy decrement for
each chordal graph. The explorer then sends a signal to manager indicating

4

1

0; 0;

91

326 XIANG AND CHU

its completion of the batch. Upon receiving the signal, manager computes size for an
additional batch and sends the batch to the explorer. If no job units are left for this pass,
manager will signal the explorer for report. After reports are collected from all explorers,
manager updates the relevant search parameters and starts the next pass. Note that both
and are updated to account for the inaccuracy of Assumptions 1 and 2.

The two-stage allocation is based on the fact that a chordal structure and a non-chordal one
require significantly different amount of computation in evaluation, and the difference is
the major source of unbalanced load among processors in even allocation.

To improve load balancing, we modify even job allocation of Mgr1/Epr1 by allocating
jobs in two stages as shown in algorithms Mgr3/Epr3. In the first stage, manager (see Mgr3)
partitions alternative graphs and distributes one set to each explorer. Each explorer
(see Epr3) checks the chordality for each graph received and reports to manager valid
candidates (chordal graphs). Since the complexity of checking chordality is
and each graph has the identical number of nodes and links, the computation among

0 :=

explorers is
In the second stage, manager partitions all received graphs and distributes one

set to each explorer. Each explorer computes entropy decrement for each graph received. It
then chooses the best graph and reports it and its entropy decrement to manager. Manager

92

PARALLEL LEARNING OF BELIEF NETWORKS 327

collects the reported graphs, selects the best, and then starts the next pass. Since all graphs
are chordal in the second stage, the degree of load balance mainly depends on the variability
of the sizes of the largest cliques.

Compared with multi-batch allocation, two-stage allocation is much simpler. It only needs to
partition and distribute job units twice. With the multi-batch allocation, multiple batches are
sent to each explorer, resulting higher communication overhead. For example, in learning
from a database of 37 variables with 12 explorers, we found that on average six batches
are sent to each explorer. The data collection and computation involved in multi-batch
allocation are also more expensive.

However, two-stage allocation suffers from variation in the amount of computation for
calculating entropy decrements as each set of new links forms new cliques whose sizes
may vary significantly. On the other hand, the multi-batch allocation has the resistance to
the variation in clique size since allocation is dynamically adapted to the amount of
computation used for each batch.

We present the experimental comparison of the two strategies in Section 11.

1

0;

93

328 XIANG AND CHU

0 :=

In order to learn a belief network with satisfactory accuracy, a dataset of large number of
cases is preferred. During learning, the data will be frequently accessed by each explorer to
obtain marginal probability distributions (marginals) of subsets of variables (for computing
entropy decrements). Using a distributed-memory architecture, the available local memory
to each processor is limited. If the dataset (with a proper compression) can be fit into the
local memory such that each processor has one copy of the dataset, then data can be accessed
effectively during learning. Otherwise, special measure has to be taken for data access.

One obvious solution is to access data through the file system. However file access is much
slower than memory access. Even worse, many parallel computers have limited channels
for file access, making it a bottleneck. For example, in the computer available to us, file
access by all processors must be performed through a single host computer.

To achieve efficient data access, we propose an alternative using so called
to avoid file access completely during learning. The idea is to split the dataset so

that each subset can be stored into the local memory of a processor. A group of (say
such processors is then given the task of serving explorers in computing partial marginals
from their local data.

In particular, the servers are connected into a pipeline. The dataset is parti-
tioned into 1 sets, where the size of each set may not be identical as we will discuss
shortly. Each server stores one set of data and each explorer one copy of
the remaining set.

As an example, consider the computation of the marginal over two binary variables
Suppose and there are one explorer and two marginal servers.

94

PARALLEL LEARNING OF BELIEF NETWORKS 329

Data storage using servers.

Tuples in explorer Tuples in server 1 Tuples in server 2

(0, 0) 2000 1000 500
(0, 1) 1500 500 1000
(1, 0) 1000 500 500
(1, 1) 500 500 500

We store 5000 tuples in the explorer and 2500 in each server. Table 2 shows one possible
scenario of how the tuples might be distributed according to

When the explorer needs to compute the marginal over y}, it first sends to
servers, and then computes locally the (non-normalized distribution) (2000, 1500,
1000, 500). Requested by the explorer, server 1 computes the local potential (1000, 500, 500,
500) and sends to server 2. Server 2 computes its local potential, adds to the result from
server 1 to obtain the sum (1500, 1500, 1000, 1000), and sends the sum to the explorer.
The explorer adds the sum to its local potential to obtain (3500, 3000, 2000, 1500) and
normalizes to get the marginal (0.35, 0.3, 0.2, 0.15).

Two-stage allocation enhanced by marginal servers is implemented in Mgr4, Epr4 and
Svr. Multi-batch allocation can be enhanced accordingly.

1

1

0;

δh,

95

330 XIANG AND CHU

Manager executes Mgr4. It partitions data into 1 sets, distributes to explorers and
servers, and starts the search process. In the first stage of each pass, manager generates
alternative graphs based on the current graph. It partitions them into sets, distributes
to explorers and servers, and receives reported valid graphs. In the second stage, manager
partitions valid graphs into sets and sends one set to each explorer.

Each explorer executes Epr4. In the first stage of each pass, it checks the chordality
of each received graph and reports valid graphs to manager. In the second stage, the ex-
plorer receives a set of valid graphs from manager. For each graph received, it identifies the
marginals (each over a subset necessary in computing entropy decrement. For each
marginal, it sends a request to servers, computes a local potential, receives a potential from
a server (to be specified below), sums them up and obtains the marginal. After evaluating
all valid graphs received, the explorer chooses the best graph and reports to manager. Man-
ager collects reported graphs from all explorers, selects the best as the new current graph,
sends a signal to each server to notify the end of the current pass, and then starts the next
pass.

Each marginal server executes Svr. In the first stage of each pass, each server functions as
an explorer (testing chordality). In the second stage, a server processes requests repeatedly
until it receives a signal to end the current pass. For each request (a marginal over a subset

a server computes a local potential, adds to the potential from its

0

predecessor if it is not the head of the pipeline, and sends the sum to the next server or the
requesting explorer depending on whether it is the end of the pipeline.

96

PARALLEL LEARNING OF BELIEF NETWORKS 33 1

To keep all processors fully engaged, the dataset must be properly partitioned among
explorers and servers. Since each server serves explorers, the processing of one request
by a server must be times as fast as the local processing of a requesting explorer. This
implies where and are the time to process one marginal request by a server
and an explorer, respectively. Let and be the number of tuples stored locally in
each server and each explorer, respectively. and can be expressed as and

where and are coefficients, and is the computation time
to identify the marginals necessary in computing entropy decrement. Therefore, we have

(9)

In algorithm Mgr4, is partitioned into 1 sets and hence

(10)

Denoting and solving Eqs. (9) and (10), we obtain

where with its value between 0.003 to 0.006 in our experimental environment. In
practice, and must be rounded to integers, and must be upper bounded

by the available local memory for data storage. As an example, suppose =
= 20k, = 1000, 30 and = 0.005. We have = 6, 24 and 3.334k.

97

332 XIANG AND CHU

Ternary tree topology.

The parallel algorithms presented have been implemented on an ALEX AVX Series 2
distributed memory MIMD computer. It contains root nodes and 64 compute nodes, which
may be partitioned among and used by multiple users at any time. Each root node is a 805
processor, which can be used to control the topology of compute nodes. Each compute node
consists of an 860 processor (40 Mhz) for computation and a 805 processor for message
passing with other nodes through four channels at each node. Data transmission rate is
10 Mbps in simplex mode and 20 Mbps in duplex mode. The 860 and 805 processors at
each node share 32 MB memory and the latter has its own additional MB memory. All
access to the file system is through a root node and a host computer.

We configure the available processors into a ternary tree (figure 7) to reduce the length
of message passing path. The root is manager and non-root nodes are explorers/servers.
Servers cooperate as a pipeline.

We tested our implementation using the network (Beinlich et al., and four
randomly generated networks 1, . . . ,4) each of which is a PI model.
has 37 variables. 1 has 26 variables and contains an embedded PI submodel over three
variables. 2 has 30 variables and contains two embedded PI submodels each of which
is over three variables. 3 has 35 variables and contains two embedded PI submodels
similar to those of 2. 4 has 16 variables and contains one embedded PI submodel
over four variables. Five datasets are generated by sampling the five control networks with
10000, 20000, 25000, 30000 and 10000 cases, respectively.

We measure the performance of our programs by and Given
a task, let (1) be the execution time of a sequential program and be that of a parallel
program with processors. Then = (1)/ and

We demonstrate the performance of multi-batch and two-stage allocation strategies and the
benefit of using marginal servers.

The DMN learned from dataset is shown in figure 8 (left). Since the task de-
composition that we used for parallelism does not introduce errors, the learning outcome
is to what is obtained by Seq with the same learning parameters. Figure (right)

98

PARALLEL LEARNING OF BELIEF NETWORKS 333

Experimental results for even and two-stage allocations.

Even allocation Two-stage allocation

Time (s) Speed-up Efficiency Time (s) Speed-up Efficiency

1 3160 1 .0 1 .0 3160 1 .0 1.0
2 1750 1.81 0.903 1617 1.95 0.977
4 957 3.30 0.825 850 3.72 0.929
6 712 4.44 0.740 609 5.19 0.865
8 558 5.66 0.708 472 6.69 0.837
10 486 6.50 0.650 393 8.04 0.804
12 454 6.96 0.580 351 9.00 0.750

DMNs learned from data obtained from ALARM (left) and PZM3 (right).

shows the DMN learned from 3 dataset. Nodes labeled 6, 8 and 9 form a PI submodel
in 3 and so do nodes labeled 14, 15 and 16.

In learning from the ALARM dataset, we compared even (Mgr1/Epr1), multi-batch
(Mgr2/Epr2) and two-stage (Mgr3/Epr3) allocations. The dataset, after compression, was
loaded into the local memory of each explorer. Table 3 shows experimental results for even
and two-stage allocations as the number of explorers increases from 1 to 12.

Columns 3 and 6 show that as increases, speed-up increases as well when either
allocation strategy is used. This demonstrates that the parallel algorithms can effectively
reduce learning time and provides positive evidence that parallelism is an alternative to
tackle the computational complexity in learning belief networks.

Comparing column 3 with 6 and column 4 with 7, it can be seen that two-stage allocation
further speeds up learning and improves efficiency beyond that of even allocation. For
example, when eight explorers are used, speed-up is 5.66 and efficiency is 0.708 for even
allocation, and 6.69 and 0.837 for two-stage. Figure 9 plots the speed-up and efficiency for
all three strategies for comparison.

Among the three strategies, even allocation has the lowest speed-up and efficiency, espe-
cially when increases. There is no significant difference between multi-batch and two-stage

99

334 XIANG AND CHU

Experimental results in learning PI models.

1 2 3 4

1 Time (min) 262.4 868.6 3555.4 36584

12 Time (min) 26.8 89.3 352.2 3382
Speed-up 9.8 9.7 10.1 10.8
Efficiency 0.82 0.81 0.84 0.90

24 Time (min) 17.2 54.2 179.4 1735
Speed-up 15.3 16.0 19.8 21.1
Efficiency 0.64 0.67 0.83 0.88

36 Time (min) 12.5 37.7 124.5 1197
Speed-up 21.0 23.0 28.6 30.6
Efficiency 0.58 0.64 0.79 0.85

Speed-up (left) and efficiency (right) in learning from dataset.

allocations. For 6, multi-batch allocation is slightly better than two-stage allocation.
As increase beyond 9, two-stage performs better than multi-batch. This is because the
overhead of multi-batch job allocation becomes more significant as the number of explorers
increases.

The results also show a gradual decrease in efficiency as increases. This decrease is
due to allocation overhead. At the start of each pass, manager allocates jobs to explorers in
sequence. Hence an explorer is idle between submission of its report in previous pass and
receipt of the next batch of jobs. However, efficiency decrease will be less significant when
learning is performed in large or PI domains as the proportion of message passing time in
each pass will be much smaller than computation time. This is illustrated by our learning
results in PI domains as follows:

Table 4 shows experimental results for learning models 1, . . . ,4), where
triple-link lookahead is used for learning 1, , . . , 3) and six-link lookahead is used

100

PARALLEL LEARNING OF BELIEF NETWORKS 335

Experimental results by using four marginal servers.

5 6 7 8 9 10 11 12

Time(s) 2870 1616 1166 1015 910 819 762 737
Speed-up 4.45 7.91 10.96 12.59 14.04 15.60 16.77 17.34
Efficiency 0.891 1.318 1.566 1.574 1.560 1.560 1.525 1.445

for learning 4. The first column indicates the number of explorers used. As expected,
speed-up is shown to increase with

The third column shows results in learning 1. When 12 explorers are used, speed-up
and efficiency are 9.8 and 0.82. The table shows rapid decrease of efficiency when 24 and
36 explorers are used. The similar trend can be seen in column 4 for learning 2. This is
because the two domains are relatively small (with 20 and 30 variables, respectively) and
less complex (sparse, and with one and two small PI submodels, respectively). Message
passing time is significant compared with computation time in these cases.

Column 5 shows results for learning 3. The domain contains 35 variables and two PI
submodels, and the control network is more densely connected. Significantly longer compu-
tation time (3555.4 min) was used by the sequential program. The last column shows results
for learning 4. Although its domain is not large (16 variables), the fact that it contains a

sub-model with 4 variables and a six-link lookahead is needed to identify the sub-model
makes its computation expensive. It took the sequential program over days min).
Compared with 1 and 2, speed-up and efficiency in learning these two models are
much better when larger number of explorers are used. Note that with 36 explorers, the time
to learn 4 is reduced from over 25 days to less than one day (1197 min).

Finally, we demonstrate the use of marginal servers by learning the network.
Although is not very large and the dataset can be loaded entirely into the local
memory of each explorer, we choose to use it for two reasons: First, domain size does
not hinder demonstration of correctness of the server method. Second, if we decrease the
available local memory below what we have, at some point, it would not be large enough
to hold dataset. In that case, data access by file system would be necessary if the
server method were not used. Hence, generality is not compromised by using

To demonstrate the effect of using servers, we assume that the dataset cannot be loaded
into local memory of explorers. Using data access by file system, it took 12780 sec for the
sequential program to complete learning Table 5 shows results of learning
by using 4 servers. The number of explorers ranges from one to eight. The data size
stored in each explorer was twice as large as that in each server. Note that since marginal
servers replace slow file access by fast memory access, the efficiency can be larger than 1.0
as shown in the table.

Flynn’s taxonomy (Moldovan, 1993) classifies hardware into SISD, SIMD, MISD and
MIMD. MIMD computers can be further classified into shared or distributed memory. The

101

336 XIANG AND CHU

following discussion extends our lessons from using distributed memory MIMD to the suit-
ability of other architectures for parallel learning of belief networks. As SISD is incapable
of true parallelism (Lewis and Rewini, 1992), we discuss only SIMD, MISD and MIMD.

An MISD computer applies multiple instructions to a single data stream. For example, it
can perform matrix operations and simultaneously. The task of learning belief
networks decomposes naturally into evaluation of alternative network structures (multiple
data streams) as we have investigated in this study. Therefore, the MISD architecture appears
unsuitable for this task.

SIMD computers consist of multiple arithmetic logic units (ALUs) under the supervision
of a single control unit (CU). CU synchronizes all the ALUs by broadcasting control signals
to them. The ALUs perform the same instruction on different data that each of them fetches
from its own memory. For instance, CM-2 connect machine has 64K processors each of
which is an one-bit CPU with 256K one-bit memory. Normal instructions are executed by a
host computer and the vector instructions are broadcast by the host computer and executed
by all processors.

In learning belief networks, each alternative network structure has a unique graphical
topology and requires a unique stream of instructions for its evaluation. Therefore, SIMD
computers do not appear suitable if the learning task is decomposed at the level of network
structures. In other words, it appears necessary to decompose the task at a much
abstraction level. One alternative is to partition the dataset into small subsets each of which
is then loaded into the memory of one processor. Each marginal can then be computed
by cooperation of multiple processors when requested by a host computer. However, the
host computer must carry out all other major steps in evaluating each alternative structure.
This is essentially the sequential learning (algorithm Seq) with parallelism applied to only
marginal computation. The degree of parallelism is much reduced compared with what we
have presented. Therefore, SIMD computers do not appear a better architecture than the
MIMD that we have used.

In a MIMD computer, each processor can execute its own program upon its own data.
Cooperation among processors is achieved by either shared memory or message passing (in
distributed memory architectures). In a MIMD computer with shared memory, all programs
and data are stored in memories and are accessible by all processors with the restriction
that each memory can be accessed by one processor at any time. This restriction tends to put
an upper bound on the number of processors that can be effectively incorporated. Therefore,
shared memory systems are efficient for small to medium number of processors.

For parallel learning of belief networks on a shared memory MIMD computer, our man-
ager/explorer partition of processors can be used. Manager generates alternative structures
and stores them in one memory. Each explorer can fetch one or more structures for eval-
uation at each time, which can be controlled by accessing a critical section. Hence job
allocation can be performed similarly to our multi-batch or two-stage strategies. On the
other hand, dataset access will become a bottleneck if a large number of processors want
to access the same memory for data at the same time. The problem may be alleviated by
duplicating the dataset in multiple memories. However, this may not be practical for large
datasets due to limited total memory.

102

PARALLEL LEARNING OF BELIEF NETWORKS 331

Based on our investigation using a distributed memory MIMD computer and the above
analysis, we believe that this architecture is most suited to parallel learning of belief networks
among the four architectures considered.

We have investigated parallel learning of belief networks as a way to tackle the computa-
tional complexity when learning in large and difficult (e.g., PI) problem domains. We have
proposed parallel algorithms that decompose the learning task naturally for parallelism and
they do not introduce errors compared with a corresponding sequential learning algorithm.
We have studies multi-batch and two-stage job allocations which further improve the effi-
ciency of the parallel system beyond the straightforward even allocation strategy. We found
that multi-batch is more effective when the number of processors is small and two-stage is
more effective when the number is large. We have proposed marginal server configuration
to replace slow data access through file system by fast memory access. This allows parallel
learning from very large datasets be performed effectively. We have implemented the algo-
rithms in a distributed memory MIMD computer and our experimental results confirmed
our analysis.

Our study has focused on learning DMNs. However, our results can be easily extended
to learning Bayesian networks (BNs). This is because all known algorithms for learning
belief networks (whether they are DMNs or BNs) are based on evaluation of alternative
network structures (often using local computations) relative to the given dataset. Therefore,
our results on task decomposition, job allocation strategies and use of marginal servers are
applicable to learning any type of belief networks.

We have extended the lessons we learned from using the distributed memory MIMD
system to other architectures based on Flynn’s taxonomy. Our analysis of the features of
each architecture and the features of learning belief networks makes us believe that the
distributed memory MIMD architecture is most suited to this task.

Let G be an undirected graph. A set of nodes in is if each pair of nodes in
is adjacent. A set of nodes is a if is complete and no superset of is complete.
A is a link that connects two nonadjacent nodes. is if every cycle of length
>3 has a chord.

A decomposable Markov network (DMN) over a set of variables is a pair where
G is a chordal graph and is a probability distribution over Each node in = is
labeled by an element of Each link in G signifies the direct dependence of its end nodes.
For disjoint subsets and of nodes, signifies and hence
can be factorized into marginal distributions over cliques of

BN: Bayesian network
DMN: decomposable Markov network

103

338 XIANG AND CHU

PDM: probabilistic domain model
PI: pseudo-independent
MIMD: multiple instruction, multiple data
MISD: multiple instruction, single data
MLLS: multi-link lookahead search
SISD: single instruction, single data
SIMD: single instruction, multiple data
SLLS: single link lookahead search

This work is supported by research grants from the Natural Sciences and Engineering
Research Council of Canada and from the Institute for Robotics and Intelligent Systems in
the Networks of Centres of Excellence Program of Canada.

1. The survey is over 469 variables. Analysis was performed only on data about some subtopics due to limited
time, More PI models may be found if analysis is applied to the entire data.

1. Beinlich, LA., Suermondt, H.J., Chavez, R.M., and Cooper, G.F., 1989. The alarm monitoring system: a
case study with two probabilistic inference techniques for belief networks. Technical Report KSL-88-84,
Knowledge Systems Lab, Medical Computer Science, Stanford University.

2. Chickering, D., Geiger, D., and Heckerman, D. 1995. Learning Bayesian networks: serach methods and
experimental results. In Proc. of 5th Conf. on Artificial Intelligence and Statistics. Ft. Lauderdale, Society for
AI and Statistics, pp. 112-128.

3. Cooper, G.F. and Herskovits, E. 1992. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, (9):309-347.

4. Heckerman, D., Geiger, D., and Chickering, D.M. 1995. Learning Bayesian networks: the combination of
knowledge and statistical data. Machine Learning, 20: 197-243.

5. Herskovits, E.H. and Cooper, G.F. 1990. Kutato: an entropy-driven system for construction of probabilistic
expert systems from database. Proc. 6th Conf. on Uncertainty in Artificial Intelligence. Cambridge, pp. 54-62.

6. Hu, J. 1997. Learning belief networks in pseudo indeependent domains. Master’s thesis. University of Regina.
7. Jensen, F.V. 1996. An Introduction to Bayesian Networks. UCL Press.
8. Kullback, S. and Leibler, R.A. 1951. On information and sufficiency. Annals of Mathematical Sratistics,

9. Lam, W. and Bacchus, F. 1994. Learning Bayesian networks: an approach based on the MDL principle.
22:79-86.

Computational Intelligence, 10(3):269-293.
10. Lewis, T.G. and El-Rewini, H. 1992. Introduction to Parallel Computing. Prentice Hall.
11. Moldovan, D.I. 1993. Parallel Processing: From Applications To Systems. Morgan Kaufman.
12. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

13. Spirtes, P. and Glymour, C. 1991. An algorithm for fast recovery of sparse causal graphs. Social Science
Kaufmann.

Computer Review, 9(1):62-73.

104

PARALLEL LEARNING OF BELIEF NETWORKS 339

14. Xiang, Y. 1997. Towards understanding of pseudo-independent domains. Poster Proc. 10th Inter. Symposium

15. Xiang, Y., Wong, S.K.M., and Cercone, N. 1996. Critical remarks on single link search in learning belief

16. Xiang, Y., Wong, S.K.M., and Cercone, N. 1997. A ‘microscopic’ study of minimum entropy search in learning

on Methodologies for Intelligent Systems.

networks. Proc. 12th Conf. on Uncertainty in Artificial Intelligence, Portland, pp. 564-571.

decomposable Markov networks. Machine Learning, 26(1):65-92.

is an Associate Professor in the Department of Computer Science at University of Regina, Canada.
He received his Ph.D. from University of British Columbia in 1992. He is a Principle Investigator of the Canadian
Institute of Robotics and Intelligent Systems (IRIS). His main research interest concerns probabilistic reasoning
with belief networks, knowledge discovery from data, distributed inference in multiagent systems, diagnosis and
trouble-shooting. He developed the toolkit WEBWEAVR-III for normative decision support available from his
homepage. He can be reached at yxiang@cs.uregina.ca.

received his B.S. and Ph.D. in mechanical engineering from University of Jiaotong, China, and his
M.S. in computer science from University of Regina, Canada. He was an Assistant Professor at Northwest Institute
of Light-Industry, China and worked on computer-aided design and manufacturing in mechanical engineering.
Since 1997, he has been a software engineer at Avant! Corporation, California. His current research interests
include computer-aided design of VLSI circuits with emphasis on formal verification.

105

