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Preface

Our book is intended to serve as both a fextbook for graduate level courses in engineering and a reference
volume for engineers and scientists.. We assume that the reader has the background of the B.S. level
mechanics courses in the departments of civil, mechanical, or aerospace engineering. Aside from syn-
thesizing the main results already available in the literature, our book also contains some new research
results not yet published and many original derivations.

The subject of our book is important o structural, geotechnical, mechanical, acrospace, nuclear, and
petroleum engincering, as well as materials science and geophysics. In our exposition of this subject, we
try to proceed from simple to complex, from special to general. We try to be as concise as possible and
use the lowest level of mathematics necessary to treat the subject clearly and accurately. We include the
derivations or proofs of all the important results, as well as their physical justifications. We also include a
large number of fully worked out examples and an abundance of exercise problems, the harder ones with
hints. Our hope is that the reader will gain from the book true understanding rather than mere knowledge
of the facts.

A special feature of our book is the theory of scaling of the failure loads of structures, and particularly
the size effect on the strength of structures. We present a systematic exposition of this currently hot
subject, which has gained prominence in current research. It has been only two decades that the classical
model of size effect, based on Weibull-type statistical theory of random material strength, was found to be
inadequate in the case of quasibrittle materials. Since then, a large body of results has been accumulated

"and is scattered throughout many periodicals and proceedings. We attempt to bring it together in a single

volume. In treating the size effect, we try to be comprehensive, dealing even with aspects such as statistical
and fractal, which are not normally addressed in the books on fracture mechanics. B

Another special feature of our-book is the cmphasis on quasibrittle materials. These include concrete,
which is our primary concern, as well as rocks, toughened ceramics, composites of various types, ice,
and other materials. Owing to our concern with the size effect and with quasibrittle fracture, much of the
treatment of fracture mechanics in our book is different from the classical treatises, which were concerned
primarily with metals. '

In its scope, our book is considerably larger than the subject matter of a single semester-length course.
A graduate level course on fracture of concrete, with proper treatment of the size effect and coverage
relevant also to other quasibrittle materials, may have the following contents: Chapter 1, highlights of
Chapters 2, 3, and 4, then a thorough presentation of the main parts of Chapters 5,6, 7, and 8, parts of
Chapters 9 and 12, and closing with mere comments on Chapters 10, 11, and 13. A quarter-length course
obviously requires a more reduced coverage. ’

The book can also serve as a text for a basic course on fracture mechanics. In that case, the course
consists of a thorough coverage of Section 1.1 and Chapters 2, 3,4, 5,and 7.

Furthermore, the book can be used as a text for a course on the scaling of fracture (i.e., the size effect), as
a follow-up to the aforementioned basic course on fracture mechanics (or to courses on fracture mechanics

based on other books). In that case, the coverage of this second course may be as follows: the rest of

Chapters 1 and 5, a thorough exposition of Chapter 6, the rest of Chapters 7 and 8, much of Chapter 9,
followed by highlights only of Chapter 10, bits of Chapter 11, and a thorough coverage of Chapter 12.
Chapters 13 and 14, the detailed coverage of which is not included in the foregoing course outlines,
represent extensions important for computational modeling of fracture and size effect in structures. They
alone can represent a short course, or they can be appended to the course on fracture of concrete or the
course on scaling of fracture, although at the expense of the depth of coverage of the preceding chapters.
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We were stimulated to write this book by our teaching of various courses on fracture mechanics, damage,
localization, material instabilities, and scaling.,! ‘Our collaboration on this book began already in 1990,
but had to proceed with many interruptions, dueto exteénsive other commitments and duties. Most of the
book was written between 1992 and 1995. E

Our book draws heavily from research projects at Northwestern University funded by the Office of Naval
Research, National Science Foundation, Air Force Office of Scientific Research, Waterways Experiment
Station of the U.S. Army Corps of Engineers, Argonne National Laboratory, Department of Energy, and
Sandia National Laboratories, as well as from research projects at the Universidad Politécnica de Madrid,
funded by Direccién General de Investigacién Cientifica y Técnica (Spain) and Comisién Interministerial
de Ciencia y Tecnologfa (Spain). We are grateful to these agencies for their support.

The first author wishes to express his thanks to his  father, Zdéngk J. BaZant, Professor Emeritus
of Foundation Engineering at the Czech Technical University (CVUT) in Prague, and to his grandfather
Zden&k BaZant, late Professor of Structural Mechanics at CVUT, for having excited his interest in structural
mechanics and engineering; to his colleagues and research assistants, for many stimulating discussions;
and to Northwestern University, for providing -an environment ‘conducive to scholarly inquiry. He also
wishes to thank his wife Iva for her moral support and understanding. Thanks are further due to Carol
Surma, Robin Ford, Valerie Reed and Arlene Jackson, secretaries at Northwestern University, for their
expert and devoted secretarial assistance. S .

The second author wishes to express his thanks to his mother Maifa Rosselld, and to his'sisters Joana
Marfa and Marfa for their continuous encouragement. He ‘also ‘wishes to thank his wife Diana for her
patience and moral support. He further expresses his thanks to Manuel Elices, professor and head of
Department of Materials Science, for his continued teaching and support and for allowing the author to
devote so much time to his work on this book; to assistant professor Gustavo V. Guinea for his stimulating
discussions and friendly support; to Claudio Rocco, visiting scientist on leave from the Universidad de la
Plata (Argentina), for providing test results and pictures for the section on the Brazilian test; to"Gonzalo
Ruiz, assistant professor, for providing test results and figures for the section on minimum reinforcement;
and to all the colleagues, research students and personnel'in the Department of Material Science, for their
help in carrying out other duties which suffered from the author’s withdrawal to his writing of the book.

Z.PB.and J.P.
Evanston and Madrid
April, 1997

'In the case of the first author: The course on Fracture of Concrete, ‘introduced at Northwestern University in 1988,
and intensive short courses on these subjects tanght at ‘Politecnico di Milano (1981, 1993, 1997), Swiss Federal Institute
of Technology, Lausanne (1987, 1989, 1994), Ecole Normale Supérieure de Cachan, France (1992), and Lulea University,
Sweden (1994). In the case of the second author: “The undergraduate courses on Fracture Mechanics and Continuum
Mechanics and the doctoral-level courses of Physics of ContinuumMedia and Advanced Fracture Mechanics at the Universidad
Politécnica de Madrid, and intensive short courses on Fracture Mechanics taught at Universidad Politécnica and at Universidad
Carlos III in Madrid (1994, 1995), and at Universidad de la Plata, Argentina (1995).

Vector and Tensor Notation

In this book, both component and compact form are used for representation of vectors and tensors.
Component notation is standard, since cartesian reference axes are used in general. For the compact
notation that is used in several chapters to simplify the expressions, the following conventions are used:
1. Geometric vectors are bold faced lower case roman latin letters: e.g,n,t m.
2. Microplane or, in general, microscopic vectors are denoted by a superimposed arrow, thus 7, £, &.

3. Except for a few greek boldmath for classical stresses and strains (o and €), second-order tensors
are represented as bold face upper case roman latin letters, such as E,N,M, A, etc.

4. Fourth-order tensors are represented as bold faced upper case italic latin letters, such as E ,C, B,
etc.

5. The transformation of a vector by a second-order tensor into another vector is represented by simple
juxtaposition: t = onort = Tn.

S

The transformation of a second-order tensor by a fourth-order tensor into another second-order
tensor is represented by simple juxtaposition as well: & = Fe, € = Co or H = DN, etc.

7. Theinner-product of two vectors or two second-rank tensors is represented byadot,e.g., 77, n-m,
G568, o-6e, T-F,etc. Accordingly, the expression T - CS represents the inner product of the
second order tensors T and B = C8, the latter being the transformed by the fourth-order tensor
C of the second-order tensor S.
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1
Why Fracture Mechanics?

Fracture mechanics is a failure theory that

1. determines material failure by energy criteria, possibly in conjunction with strength (or yield)
criteria, and

2. considers failure to be propagating throughout the structure rather than simultaneous throughout
the entire failure zone or surface.

While fracture mechanics has already been generally accepted in failure analysis of metal structures,
especially in aerospace, naval, and nuclear engineering, its advent in the field of concrete structures is
new. Therefore, after briefly outlining the history of this discipline, we will attempt in this introductory
chapter to spell out the reasons for adopting the fracture mechanics approach and will focus especially on
the structural size effect — the main reason for introducing fracture m\cchanics into the design of concrete
structures.

1.1 Historical Perspective

Concrete structures are, of course, full of cracks. Failure of concrete structures typically involves stable
growth of large cracking zones and the formation of large fractures before the maximum load is reached.
So why has not the design of concrete structures been based on fracture mechanics, a theory whose
principles have been available since the 1950s? Have concrete engineers been guilty of ignorance?

Not really. The forms of fracture mechanics that were available until recently were applicable-only to
homogeneous brittle materials, such as glass or to homogeneous typical structural metals. The question
of applicability of these classical theorics to concrete was explored long ago, beginning with Kaplan
(1961) and others, but the answer was negative (e.g., Kesler, Naus and Lott 1972). Now, we understand
that the reason for the negative answer was that the physical processes occurring in concrete fracture are
very different from those taking place in the fracture of the aforementioned materials and, especially, that
the material internal length scale for these fracture processes is much larger for concrete than for most

- materials. A form of fracture mechanics that can be applied to this kind of fracture has appeared only

during the late 1970s and the 1980s.

Concrete design has already seen two revolutions. The first, which made the technology of concrete
structures possible, was the development of the elastic no-tension analysis during 1900-1930. The second
revolution, based on a theory conceived chiefly during the 1930s, was the introduction of plastic limit
analysis during 1940-1970. There are now good reasons to believe that introduction of fracture mechanics
into the design of concrete structures might be the third revolution. The theory, formulated mostly after
1980, finally appears to be ripe.

1.1.1 Classical Linear Theory

The stimulus for fracture mechanics was provided by a classical paper of Inglis (1913), who obtained the
elastic solution for stresses at the vertex of an ellipsoidal cavity in an infinite solid and observed that, as
“the ellipse approaches a line crack (i.e., as the shorter axis tends to zero), the stress at the vertex of the
ellipse tends to infinity (Fig. 1.1.1). Noting this fact, Griffith (1921, 1924) concluded that, in presence of
a crack, the stress value cannot be used as a criterion of failure since the stress at the tip of a sharp crack
in an elastic continuum is infinite no matter how small the applied load (Fig. 1.1.1b).
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Figure 1.1.1 -The stress at the ellipse vertices is finite in-an elastic plate with an elliptical hole (a); but the
stress concentration tends to infinity as the ellipse shrinks to a-crack (b).

This led him to propose an energy criterion of failure, which serves as the basis of the classical linear
elastic fracture mechanics (LEFM) or of the more géneral-elastic fracture mechanics (EFM, in which
linearity is not required). According to this criterion, which may be viewed as a statement of the principle
of balance of energy, the crack will propagate if the energy avdilable to extend the crack by a unit surface
area equals the energy required to do so. Griffith took this énergy to be equal to 2y,, where 7, is the
specific surface energy of the elastic solid, representing the energy that must be supplied to break the
bonds in the material microstructure and, thus, create 2 unit area of new surface.

Soon, however, it was realized that the energy actually required for unit crack propagation is-much
larger than this value, due to the fact that cracks in most materials are niot smooth and straight but rough and
tortuous, and are accompanied by microcracking, frictional slip; and plasticity in a sizable zone around
the fracture tip. For this reason, the solid state specific surface energy 2+, was replaced by a more general
-crack growth resistance, R, which, ini the simplést approximation, is a constant. The determination of
R has been, and still is, a basic problem in experimental fracture mechanics. The other essential problem
of LEFM is the determination, for a given structure; of the energy available to advance the crack by a unit
area. Today, this magnitade is called the energy release rate; and is usually called G (note lhat the rate
is with respect to crack length, not time). ‘

The early Griffith work was considered of a rather academic nature because it could only explain the
failure of very brittle materials such as glass. Research in this field was not intensely pursued until the
1940s. The development of elastic fracture mechanics essentially occurred during 1940-1970, stimulated
by some perplexing failures of metal structures (e.g., the fracture splitting of the hulls of the “Liberty”
ships in the U.S. Navy during World War I). During this period, a good deal of theoretical, numerical, and
experimental work was accomplished to bring LEFM to-its present state of mature scientific discipline.

In a highly schematic vision, the essence of the theoretical work consisted in generalizing Griffith’s
ideas, which he had worked out only for a particular case, to-any situation of geometry and loading, and
to link the energy release rate G (a structural, or global, quantity) to the elastic stress and strain fields.
The essence of the experimental work consisted in setting up test methods to measure the crack growth
resistance R. In the energetic approach, the last theoretical step was the discovery of the I-integral by
Rice (1968a,b). It gave a key that closed, on very general grounds, the circle relating the energy release
rate to the stress and strain fields close to the crack tip for any elastic material, linear or not, and supplied a
logical tool to analyze fracture for more general nonlinear behaviors. Today, it is one of the cornerstones
of elastoplastic fracture mechanics, the branch -of fmcture mechamcs dealing with fracture of ductile
materials.

The second major achievement in the theoretical foundation-of LEFM was due to Trwin (1957), who
introduced the concept of the stress intensity factor K as a‘parameter for the intensity of stresses close
to the crack tip and related it to the energy release rate: Irwin’s approach had the enormous advantage
that the stress intensity factors are additive, while Griffith’s energy release rates were not. However, his
approach was limited to linear elasticity, while the concept of énergy release rate was not.

Historical Perspective ‘ 3

1.1.2 Classical Nonlinear Theories

LEFRM, which is expounded in Chapters 2-4, provides the basic tool today for the analysis of many
structural problems dealing with crack growth, such as safety in presence of flaws, fatigue crack growth,
stress corrosion cracking, and so on. However, soon afier the introduction of the fracture mechanics
concepts, it became evident that LEFM yielded good predictions only when fracture was very brittle,
which meant that most of the structure had to remain elastic up to the initiation of fracture. This was
not the case for many practical situations, in particular, for tough steels which were able to develop large
plastic zones near the crack tip before tearing off. The studies of Trwin, Kies and Smith (1958) identified
the size of the yielding zone at the crack tip as the source of the misfit. Then, various nonlinear fracture
mechanics theories were developed, more or less in parallel. Apart from elastoplastic fracture mechanics
(essentially based on extensions of the J-fategral concept, and outside the scope of this book), two major
descriptions were developed: equivalent elastic crack models and cohesive crack models.

In the equivalent crack models, which will be presented in detail in Chapters 5 and6, the nonlinear
zone is approximately simulated by stating that its effect is to decrease the stiffness of the body, which is
approximately the same as increasing the crack length while keeping everything else elastic. This longer
crack is called the effective or equivalent crack. Its treatment is similar to LEFM except that some rules
have to be added to express how the equivalent crack extends under increased forces. In this context,
Trwin (1958) in general terms, and more clearly Krafft, Sullivan and Boyle (1961), proposed the so-called
R-curve (resistance curve) concept, in which the crack growth resistance /R is not constant but varies
with the crack length in a manner empirically determined in advance. This simple concept still remains a
valuable tool provided that the shape of the R-curve is correctly estimated, taking the structure geometry
into account.

For concrete, the equivalent crack models proposed by Jeng and Shah (1985a,b) and BaZant and co-
workers are among the most extended and have led to test recommendations for fracture properties of
concrete (see Chapters 5 and 6). The 1980s have also witnessed a rise of interest in the size effect, as one
principal consequence of fracture mechanics. A simple approximate formula for the effect of structure
size on the nominal strength of structures has been developed (BaZant 1984a) and later exploited, not
only for the predictions of failures of structures, but also as the basis of test recommendations for the
determination of nonlinear fracture properties, including the fracture energy, the length of the fracture
process zone, and the R-curve. This R-curve concept has also been applied to ceramics and rocks with
some success, although until recently it has not been recogmzed that the R-curves are not a true material
property but depend on geometry.

The cohesive crack models, which are discussed in detail in Chapter 7, were developed to simulate
the nonlinear material behavior near the crack tip. - In these models, the crack is assumed to extend
and to open ‘while still transferring stress from one face to the other. The first cohesive model was
proposed by Barenblatt (1959, 1962) with the aim to relate the macroscopic crack growth resistance to the
atomic binding encrgy, while relieving the stress singularity (infinite stress was hard to accept for many
scientists). Barenblatt simulated the interatomic forces by introducing distributed cohesive stresses on
the newly formed crack surfaces, dependmg on the separation between the crack faces. The distribution
of these cohesive atomic forces was to be calculated so that the stress singularity would disappear and the
stresses-would remain bounded everywhere. Barenblatt postulated that the cohesive forces were operative
on only-a small region near the crack tip, and assumed that the shape of the crack profile in this zone
was independent of the body size and shape. Balancing the external work supplied to the crack tip zone
—which he showed to coincide with Griffith’s G— against the work of the cohesive forces —which was
2+ by definition— he was able to recover the Griffith’s results while eliminating the uncomfortable stress
singularity. ’ '

Dugdale (1960) formulated a model of a line crack with a cohesive zone with constant cohesive stress
(vield stress). Although formally close to Barenblatt’s, this model was intended to represent a completely
different physical situation: macroscopic plasticity rather than microscopic atomic interactions. Both
models share a convenient feature: the stress singularity is removed. Although very simplified, Dugdale’s
approach o plasticity gave a good description of ductile fracture for not too large plastic zone sizes.
However, it was not intended to describe fracture itself and, in Dugdale’s formulation, the plastic zone
extended forever without any actual crack extension. g

More elaborate cohesive crack models have been proposed with various names (Dugdale-Barenblatt
models, fictitious crack models, bridged crack models, cracks with closing pressures, etc.). Such models
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include specific stress-crack opening relations simulating complete fracture (with a vanishing transferred
stress for large enough crack openings) to simulate various physically different fracture mechanisms:
crazing in polymers (which must take viscoelastic strains into account, see C‘hqpter 11), fiber and crack
bridging in ceramics, and frictional aggregate ‘interlock and crack overlapping in concrete.. All these
models share common features; in particular, a generic: model can be formulated such that all of them
become particular cases, and the mathematical and numerical tools are the same (Elices and Planas 1989).
However, the fictitious crack model proposed by Hillerborg for concrete (Hillerborg, Modéer and
Petersson 1976) merits special comment . In geneéral, all the foregoing fracture mechanics theories
require a preexisting crack to analyze the failure of a structure 6r component. If there is no crack, neither
LEFM nor EFM, equivalent crack models or classical cohesive crack models, can be applied. This is
not so with Hillerborg’s fictitious crack model. It is'a cohesive crack in the classical sense described
above, but it is more than that because it includes crack initiation rules for any situation (even if there is
no precrack). This means that it can be applied to initially uncracked concrete structures and describe
all the fracture processes from no crack at all to complete structural breakage. It provides a continuous
link between the classical strength-based analysis of structures and the energy-based classical fracture
mechanics: cohesive cracks start to open as dictated by a strength criterion that naturally and smoothly
evolves towards an energetic criterion for large cracks. We will discuss this model in detail in Chapter 7.

¥

1.1.3 Continuum-Based Theories

The foregoing description is, at Jeast for concrete, only half of the story: the half dealing with researchers
interested in discovering when and how a preexisting crack-like flaw or defect would grow.” The other
half deals with structural engineers wanting to describe the crack formation and growth from an initially
flaw-free structure (in a macroscopic sense). The first finite element approaches to that problem consisted
in reducing to zero the stiffness of the elements in which the tensile strength was reached (Rashid 1968).
Later, more sophisticated models were used with progresswe failure of the elements (progressive softening)
and, starting with the work of Kachanov (1958), there was a great proliferation of continuum damage
mechanics models with internal variables describing softening.

However, even though some results ‘were very promising, it later became apparent that numerical
analysis using these continuum models with softening ‘yielded results strongly dependent on the size of
the elements of the finite element mesh (see the next section for details). To overcome this difficulty while
keeping the continuum mechanics formulation —which seems more convenient for structural analysis—
BaZant developed the crack band model in which the crack was simulated by a fracture band-of a fixed
thickness (a material property) and the strain was uniformly distributed across the band (BaZant 1976,
1982; BaZant and Cedolin 1979, 1980; BaZant and Oh 1983a; Rots et al. 1985). This approsimation,
analyzed in depth in Chapter 8, was initially rivalling Hillerborg’s model, but it soon became apparent
that they were numerically equivalent (Elices'and Planas 1989).

Since the 1980s, a great effort, initiated by BaZant (1984b) with the imbricate continuum, was devoted
to develop softening continuum models that can give a consistent general description of fracture processes
without further particular hypotheses regarding when and how the fracture starts and develops. In the
nonlocal continuum approach, discussed in Chapter 13, the nonlinear response at a point is governed not
only by the evolution of the strain at that point but:also by the evolution of the strains at other points in
the neighborhood of that point. These models, which probably constitute the most general approach to
fracture, evolved from the early nonlocal elastic continua (Eringen 1965, 1966; Kroner 1967) to nonlocal
continua in which the nonlocal variables are internal irreverdible variables such as damage or inelastic

‘strain (Pijaudier-Cabot and BaZant 1987; BaZant and Lin 1988a;b).- Higher-order continuum models; in
which the response at a point depends on the strain tensor and on higher order gradients (which include
Cosserat continua) are related to the nonlocal model and are also'intended to handle fracture in a continuum
framework (e.g., de Borst arid Miihlhaus 1991). However, the numerical difficulties associated with using
generalized continuum models make these models available for practical use to only a few research groups.
Moreover, sound theoretical analysis conceming convergence and uniqueness is still lacking, which keeps
these models somewhat provisional. Nevertheless; the generalizing power of these models is undeniable

and they can provide a firm basis to extend some simpler and well accepted models. It has been recently

shown, for example, that the cohesive crack models arise as rigorous solutions of a certain class of nonlocal
models (Planas, Elices and Guinea 1993).

Reasons for Fracture Mechanics Approach 5

1.1.4 Trends in Fracture of Quasil_)rittle Materials

The research activity in fracture mechanics of quasibrittle materials —concrete, rocks, ceramics, com-
posites, ice, and some polymers— experienced a burst of activity during the 1980s. Much research effort
was —and still is— devoted to refine the foregoing models, to improve the analytical and numerical tools
required to handle the models, to develop experimental methods to measure the parameters entering the
various theories, and to relate the macroscopic fracture behavior to the microstructural features of the
materials. In this respect, idealized models reflecting the heterogeneous nature of concrete have been
developed to help understanding of the macroscopic behavior (see Chapter 14 for details). Extensive
bibliographies and historical reviews of concrete fracture mechanics have recently appeared in the reports
of various committees (Wittmann 1983; Elfgren 1989; ACI Committee 446 1992).

Recently, it is being recognized that fractures of concrete and of modern toughened ceramics exhibit
strong similarities. Their exploitation should benefit both disciplines. In fact, the way to toughen ceramics
is to make thém behave more like concrete, especially reinforced concrete.

At present, we are entering a period in which introduction of fracture mechanics into concrete design
is becoming possible (see Chapter 10). This will help achieve more uniform safety margins, especially
for structures of different sizes. This, in turn, will improve economy as well as structure reliability. It will
make it possible to introduce new designs and utilize new concrete materials. Fracture mechanics will no
doubt be especially important for high-strength concrete structures, fiber-reinforced concrete structures,
concrete structures of unusually large sizes, and other novel structures. Applications of fracture mechanics
are most urgent for structures such as concrete dams and nuclear reactor vessels or containments, for which
the safety concerns are particularly high and the consequences of a potential disaster enormous.

One of the simplest ways to incorporate fracture mechanics into design practice is through. the size
effect, or modification of structural strength with the size of the structure. The analysis of size effect starts
later in this chapter and permeates most of the book.

1.2 Reasons for Fracture Mechanics Approach

Since concrete structures have been designed and successfully built according to codes that totally ignore
fracture mechanics theory, it might seem unnecessary to change the current practice. Nevertheless, there
are five compelling reasons for doing so.

Reason 1: Energy required for crack formation must be taken into account.

Reason 2: The results of the structural analysis must be objective.

Reason 3: The structural analysis must agree with the absence of yielgl plateau from the load-deflection
diagram.

Reason 4: The structural analysis must adequately compute the energy absorption capability and duc-
tility.

Reason 5: The structural analysis must capture the size effect.

Let us examine these reasons in more detail.

1.2.1 Energy Required for Crack Formation

From the strictly physical viewpoint, it must be recognized that while crack initiation may depend on
stress, the actual formation of cracks requires a certain energy —the fracture energy. Hence, energy
criteria should be used. This reason might suffice to a physicist, but not to a designer, at least at a first
glance. There are, however, more practical reasons for taking the fracture mechanics approach.

1.2.2  Objectivity of Analysis

A physical theory must be objective, in the sense that the results of calculations made with it must not
depend on subjective aspects such as the choice of coordinates, the choice of mesh, etc. If a theory is found
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Figure 1.2.1 Sof{ening stress-strain curves in smeared cracking models: (a) step softening; (b) progressive
softening (from ACI Committee 446 1992). ) ' i

(@t t tt (b) ‘ () 1.t ¢
Zone of . _ lll_ ]
k= decreased ) ' L
strength K
- mesh B
ATETE EXTE A EEXTATA A S S S S ¥

(d) {load (e)]10ad ; (f)tenergy

fracture mechanics
& nonlocal models

mesh A
’ strengthcriterion
mesh A ¢ & local models
mesh B

mesh B

displacement crack length number of elements

Figure 1.2.2 ‘Illustralion of lack of mesh-objectivity in classical smeared crack models (adapted from ACI
Committee 446 1992). : :

t6 be unobjective, it must be rejected. There is no need to even compare it to experiments. Objectivity
comes ahéad of experimental verification. :

A powerful, widely used approach to finite element analysis of concrete cracking is the concept of
smeared cracking, introduced by Rashid (1968), which does not utilize fracture mechanics."According to
this concept, the stress in a finite element is limited by the tensile strength of the material, fi. After the
strength limit is reached, the stress in the finite element must decrease. In the initial practice, the stréss
was assumed to drop suddenly. to zero, but it was soon realized that better and more realistic results are
usually obtained if the stress is reduced gradually, i.e.; the material is assumed to exhibit gradual strain
softening (Scanlon 1971; Lin and Scordelis 1975); see Fig. 1.2.1. The concept of sudden or gradual
strain-softening, though, proved to be a mixed blessing: After this concept had been implemented in large
finite clement codes and widely applied, it was discovered that the convergence propetties are incorrect
and the calculation results are unobjective as they significantly depend on the analyst’s choice of the mesh
(BaZant 1976, 1983; BaZant and Cedolin 1979, 1980,.1983; BaZant and Oh 1983a; Darwin 1985; Rots et
al. 1985).

This problem, known as spurious mesh sensitivity, can beillustrated, for example, by the rectangular
- panel in Fig. 1.2.2a, which is subjected to a uniform vertical displacement at the top boundary. A smail
region near the center of the left side is assumed to have a slightly smaller strength than the rest of

the panel, and consequently a smeared crack band starts growing from left to right.” The solution is

obtained by incremental loading with two finite ‘element meshes of very different inesh sizes, as shown
(Fig 1.2.2b,¢). Stability check indicates that cracking must always localize in this problem into a band
of single-element width at the cracking front. Typical numerical results for this as well as other similar
problems are illustrated in Fig. 1.2.2d-f. In the load-deflection diagram (Fig. 1.2.2d), one can see that the
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Figure 1.2.3 Load-deflection curves with and without yielding plateau (adapted from ACI Committee 446
1992). " : .

peak load as well as the post-peak soflei’ﬁng strongly depends on the mesh size, the peak load being roughly
proportional to h~1/2 where h is the element size. Plotting the load vs. the length of the crack band, one
again finds large differences (Fig. 1.2.2¢). The energy that is dissipated due to cracking decreases with
the refinement of the mesh (Fig. 1.2.2f), and converges to zero as h — 0, which is, of course, physically
unacceptable.

The only way to avoid the foregoing manifestations of unobjectivity is some form of fracture mechanics
or nonlocal model. By specifying the energy dissipated by cracking per unit length of the crack or the
crack band, the overall energy dissipation is forced to be independent of the element subdivision (see the
horizontal dashed line in Fig. 1.2.2f), and so is the maximum load.

1.2.3 Lack of Yield Plateau

Based on load-deflection diagrams, onc may distinguish two basic types of structural failure: plastic
and brittle. The typical characteristic of plastic failure is that the structure develops a single-degree-of-
freedom mechanism such that the failure in various parts of the structure proceeds stmultancously, in
proportion to a single parameter. Such failures are manifested by the existence of a long yield plateau
on the load-deflection diagram (Fig. 1.2.32). If the load-deflection diagram lacks such a plateau, the
failure is not plastic but brittle (Fig. 1.2.3b) . When there are nosignificant geometric effects (such as
the P-A effect in buckling), the absence of a plateau implies the existence of softening in the material
due to fracture, crackmg, or other damage. This further implies that the failure process cannot develop
a single-degree-of-freedom mechanism but consists of propagation of the failure zones throughout the
structure. The failure is nonsimultaneous and propagating.

To illustrate such behavior, consider the punching shear failure of a slab (Fig. 1.2.4). The typical (ap-
proximate) distributions of tensile stress ¢ along the failure surface are drawn in the figure. If the material
is plastic, the cross-section gradually plasticizes until all its points are at the yield limit (Fig. 1.2.4b).
However, if the material exhibits strain softening, then the stress peak moves across the failure zone,
leaving a reduced stress (strain softening) in its wake (Fig. 1.2.4c,d). The stress reduction in the wake is
mild if the structure is small, i which case the plastic limit analysis is not too far off (Fig. 1.2.4¢c). If the
structure is large, however, the stress profile develops a steep stress drop behind the peak-stress point, and
then the limit analysis solutions grossly overestimate the faiture foad (Fig. 1.2.4d).

1.2.4 Eﬁergy Absorption Capability and Ductility

The area under the entire load-deflection diagram represents the energy that the structure will absorb
during failure. Consideration of this energy is important, especially for dynamic loading, and determines
the ductility of the structure. Plastic limit analysis can give no information on the post-peak decline of the
load and the energy dissipated in this process. According to plasticity, the load is constant after the peak,
and the energy absorption theoretically unlimited. So-some form of fracture mechanics is inevitable.

1.2.5 Size Effect

The size effect is, for design engineers, the most compelling reason for adopting fracture mechanics.
Therefore, we discuss it more thoroughly now; and we will return to it in considerable detail in future
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Figure 1.2.4 Influence of the structure size on the length of the yielding plateau in a punched slab (from ACI
Committee 446 1992). )

chapters. By general convention, the 1oad capacity predicted By plastic limit analysis or any (déterministic)
theory in 'which the material failure criterion is expressed in terms of stress or strain (or both) are said to
exhibit no size effect. The size effect represents the deviation from such a prediction, i.€., the size effect
on the structural strength is the deviation, engendered by a change of structuse size, of the actual load
capacity of a structure from the load capacity predicted by plastic limit analysis (or any theory based on
critical stresses or strains). )

The size effect is rigorously defined through a comparison ofigeometriqally similar structures of different
sizes. It is conveniently characterized in terms of the nomiinal strength, o ., representing the value of
the nominal stress, o'y, at maximum (ultimate) load, P, The nominal stress, which serves as a load
parameter, may, but need not, represent any actual stress in the structure and may be defined simply as
on = P/bD when the similarity is two-dimensional or as / D* when the similarity is three-dimensional;
b = thickness of a two-dimensional structure, and D = characteristic dimension of the structure, which
may be chosen as any dimension, e.g., the depth of the beam, or the span, or half of the span, since only
the relative values of oy matter. The nominal strength is then oy = Py, /bD or P, /D? (see Section
1.4.1 for more details). :

According to the classical failure theories, such as the ¢lastic analysis with allowable stress, plastic
limit analysis, or any other theory that uses some type of a strength limit or failure surface in terms of
stress or strain (e.g., viscoelasticity, viscoplasticity), o'y, is constant, i.e., independent of the structure
size, for any given geometry, notched or not."We can, for e#mple; illustrate it by considering the elastic
and plastic formulas for the strength of beams in bending shear and torsion. These formulas are found to
be of the same form except for a multiplicative factor. Thus, if we plot log o' ny, vs. log D, we find the
failure states, according to strength or yield criteria, 1o be always given by a horizontal line (dashed line
in Fig. 1.2.5). So, the failures according to the strength or yield criteria exhibit no size effect.

By contrast, failures governed by linear elastic fracture mechanics exhibit a rather strong size effect,
which in Fig. 1.2.5 is described by the inclined dashed line of slope — 1/2, as we shall justify in Chapter 2.
The reality for concrete structures is a transitional behavior illustrated by the solid curve in Fig. 1.2.5.
This curve approaches a horizontal line for the strength criterion if the structure is very small, and an
inclined straight line of slope —1/2 if the structure is very large. )

There is another size effect that calls for the use of fracture mechanics. It is the size effect on ductility
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Figure 1:2.5 Size effects: (a) on the curves of nominal stress vs. relative deflection, and (b) on the strength
in a bilogarithmic plot (adapted from ACI Committee 446 1992).
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Figure 1.2.6  Size effect on the structural ductility (adapted from ACI Committee 446 1992).

of the structure, which is the opposite of brittleness, and may be characterized by the deformation at
which the structure fails under a given type of loading. For loading in which the load is controlled,
structures fail (i.e., become unstable) at their maximum load, while for foading in which the displacement
is controlled, structures fail in their post-peak, strain-softening range. In a plot of oy vs. the defiection,
the failure point is characterized by a tangent (dashed line in Fig. 1.2.6) of a certain constant inverse slope
—Cs where Cj is the compliance of the loading device (see e.g., BaZant and Cedolin 1991, Sec. 13.2).
Geometrically similar structures of different sizes typically yield load-deflection curves of the type shown
in Fig.'1.2.6. As illustrated, failure occurs closer to the peak as the size increases. This effect is again
generally predicted by fracture mechanics, and is due to the fact that in a larger structure more strain
eriergy is available to drive the propagation of the failure zone.

The well-known effect of structure size or member size on crack spacing and crack width is, to a large
extent, also explicable by fracture mechanics. It may also be noted that the spurious effect of mesh size
(Reason 2, Section 1.2.2) can be regarded as a consequence of the structural size effect.

1.3 Sources of Size Effect on Structural Strength

There are six different size effects that may cause the nominal strength to depend on structure size:

1. Boundary layer effect, also known as the wall effect. This effect is due to the fact that the
concrete layer adjacent to the walls of the formwork has inevitably a smaller relative content of
large aggregate pieces and a larger relative content of cement and mortar than the interior of the
member. Therefore, the surface layer, whose thickness is independent of the structure size and
is of the same order of magnitude as the maximum aggregate size, has different properties. The
size effect is due to the fact that in a smaller member, the surface layer occupies a large portion of
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Figure 1.3.1 The essence of the difference between statistical and fracture size effect (adapted from ACT

Committee 446 1992).

the cross-section, while in a large member, it occupi(as‘ a small part of the cross-section. In most
situations, this type of size effect does not seem to be very strong. A second type of boundary layer
effect arises because, under normal stress parallel to the surface, the mismatch between the elastic
properties of aggregate and mortar matrix causes {ransverse stresses in the interior, while at the
surface these stresses are zero.. A third type of boundary Tayer size effect arises from the Poisson
effect (lateral expansion) causing the surface layer to nearly be in plane stress, while the interior
is nearly in plane strain. This causes the singular stress field at the termination of the crack front
edge at the surface to be different from that at the interior points of the crack front edge (BaZant
and Estenssoro 1979). A direct consequence of this, easily observable in fatigue crack growth in
metals, is that the termination of the front:edge of a propagating crack cannot be orthogonal to the
surface. The sccond and third types exist even if the composition of the boundary layer and the
interior is the same. ) ' :

2. Diffusion phenomena, such as heat conduction or pore water transfer. Their size effect is due to the
fact that the diffusion half-times (i.e., half-times of cooling, heating, drying, etc.) arc proportional
to the square of the size of the structure.” Atthe same time, the diffusion process changes the material
properties and produces residual stresses which in turn produce inelastic strains and cracking. For
example, drying may produce tensile cracking in the surface layer of the concrete member. Due
to different drying times and different stored energies, the extent and density of cracking may be
rather different in small and large riemibers, thus engendering a different response. For long-time
failures, it is important that drying causes a change in concrete creep properties, that creep relaxes

. these stresses, and that in thick members the: drying happens much slower than in thin members.

3. Hydration heat or other phenomena associated with chemical reactions. This effect is related to
the previous one in that the half-time of dissipatioi\ of the hydration heat produced in a concrete
member is proportional to the square o thieé thickness (size) of the member. Therefore, thicker
members heat to higher temperatures, 2 well-known problem in concrete construction. Again, the
nonuniform temperature rise may cause cracking, induce drying, and significantly alter the material
properiies. : .

4. Statistical size effect, whichis caused by the randomness of imaterial strength anid has traditionally
been believed to explain most size effects in concrete structures. The theory of this size effect,
originated by Weibull (1939), is based ‘on the miodel of a chain. The failure load of a chain is
determined by the minimum value of the strength of the links in the chain, and the statistical size
effect is due to the fact that the longer the chain, the smaller is the strength value that is likely to be
encountered in the chain. This explanation, which certainly applies to the size effect observed in
the failure of a long concrete bar under tension (Fig. 1.3.1), is described by Weibull’s weakest-link
statistics. However, as we will see in Chapter 12, on closer scrutiny, this explanation is found to be
inapplicable to most types of failures of reinforced concrete structurcs. In contrast to metallic and
other structures, which fail at the initiation-of-a macroscopic crack (i.e., as soon as a microscopic
flaw or crack reaches macroscopic dimensions), concrete structures fail only after a large stable
growth of cracking zones of fractures. The stable crack growth causes large stress redistributions
and a release of stored energy, which, in turn; causes a much stronger size effect, dominating over
any possible statistical size effect.. At the same time, the mechanics of failure restricts the possible

~ locations of the decisive crack growth at the moment of failure to a very small zone. This causes
the random strength values outside this zone to become irrelevant, thus suppressing the statistical
size effect. We will also see that some recent experiments on diagonal shear failure of reinforced
concrete beams contradict the prediction of the statistical theory.
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5. Fracture mechanics size effect, due to the release of stored energy of the structure into the fracture

front. T}{xs is the most impO{‘tant source of size-effect, and will be examined in more detail in the
next section and thoroughly in the remainder of the book.

6. F;‘acral nature of crac_k surfaces. | f fractality played a significant role in the process of formation
of new crack surface, it would modify the fracture mechanics size effect. However, such a role is

not indicated b) recent studies (ChﬂPtCI {2 and BaZant 1997d). Probabl this size effect is only a

In' practlca} testing, the first 3 sources of size effect can be, for the most part, eliminated if the structures
of dlfferent. sizes are geometrically similar in two rather than three dimensions, with the same thickness
for a}l the sizes. Source 1 becomes negligible for sufficiently thick structures. S(,)urce 2 is negligible ift}?c
specimen is seal.cd and is at constant temperature. Source 3 is significant only for very massiic structures
The st?u.stlcal size effect is always present, but its effect is relatively unimportant when the fracture si .
effect is important. Let us now give a simple explanation of this last and dominant size efl fect.‘ *

1.4 Quantification of Fracture Mechanics Size Effect

!n .the classical theories based on plasticity or limit analysis, the strength of geometrically similar structures
is independent of {Iﬂc structure size. As already pointed out, however, concrete structures and, in general
struct}lres made of brittle or quasibrittle materials, do not follow this trend. In this section wc; ﬁrsbt defi :
whatis l‘mderslgo.d by strength-and size of a Structural element and then examine how the strength de cnr(;:
on the size. We finally give a simple justification of BaZant’s size effect law. The experimental evigenc

supporting the existence of size effect will be presented in the next section. ( °

1.4.1 -Nominal Stress and Nominal Strength

"1“‘hc size effect is ux)df:rstood as the dependence of the structure strength on the structure size. The strength
is colnvznuonally defined as the value of the so-called nominal stress at the peak load. The nominal stress
is a load parameter defined as proportional to the Joad divided by a typical cross-sectional area:

P . P
oN = cN—BE for 2D similarity, oN = CNﬁ for 3D similarity (1.4.1)

in wh.1c11 P = applied load, b = thickness of a two-dimensional structure (which, for certain reasons, in
experiments should be preferably chosen the same for all structure sizes); D = characteristic dimension
of the strljxcture. or specimen; and ¢y = coefficient introduced for convenience, which can be chosen as
eN = 1‘, 1.f desired. For P = }3 = maximum load, Eq. (1.4.1) gives the nominal strength, onw.
C.oetﬁaen.t ¢y can be chosen to make Eq. (1.4.1) coincide with the formuta for the stress ;n a certain
paruf:ular point of a structure, calculated according to a certain particular theory. For example, consider
the simply supported beam of span S and depth h, loaded at mid-span by load P, as shown in Fig 1.4.1a
Now we may choose, for example, oy to coincide with the elastic bending formula for the m;&xi-rr{un;

. N
ormal S[leS/ s in the beam (Fi 1.4.1b), and the bean (1€pﬂl as the characteristic dimension (D h)s m

3PS P . -
oN = i T CNEE , withey = LSE (1.4.2)

) It appears that ¢y depends on the span-to-depth ratio which can vary for various beams. It is thus
1r.np.onant to note that the size effect may be consistently defined only by considering oe<')metricall
su.mlar specimens ot structures of different sizes, with geometrically similar notches or ?nitial cracksy
Without gt?ometrlc similarity, the size effect would be contaminated by the effects of varying structun;
shape. Wlth {his restriction (most often implicitly assumed); coefficient cx is constant b;cause for
geometrically similar structures, S/ is constant by definition. - o

The foregoing definition of oy is not the only one possible. Alternatively, we may choose on 0
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Figure 1. 4 1 (a) Three-point bent beam. (b) Elastic stress: distribution. (c) Plastic stress distribution. (d)
Elastic shear stress distribution. (e) Plastic shear stress distribution.: (f) Shaft subjected to torsion. (g) Elastic
shear stress distribution. (h) Plastic shear stress distribution. (i) Cantilever beam with linearly distributed load.

o
ry
w2
Y

 coincide with the plastic bending formula for the maximum stress (Fig. 1.4.1¢), in which case we have

_Ps_ P '

ON =R T NbD

Alternatively, we may choose as the characteristic dimension the beam span instead of the beam depth
(D = 8), in' which case we have :

3PS P 52
W ZCN'ED— , WlthCN—15h2

We may also choose o to coincide with the formula for the maximum shear stress near the support
according to the elastic bending thcory (Fig. 1.4. ld) in whxch case we have, with D =h, -

with'en =—‘}Sl'— (= constant) o . (1.43)

ON = (= constant) A (1.4.4)

P P
| ON = jb—h =CNTR with ey =0.75 ‘(= constant) ' (1.4.5)
Alternatively, using the span as the characteristic-dimengion (D = S), we may write
P 735
oN = 2‘3—5; =CNpp with cN T (= constant) (1.4.6)

Al the above formulae afe valid definitions of the nominal strength for three-point bent beams, although
 the first one (1.4.2) is the most generally used (and that used throughout this book). Other examples are
given next.

Example 1.4.1 Consider torsion of a circular shaft of radius 7, loaded by torque T" = 2Pr where P
is the force couple shown in Fig. 1.4.1f. Using o n to coincide with the elastic formula for the maximum
shear stress, we may write, taking D = 27 = diameter,

4P 16P - P m16'_ )
ON =3 = 55 TONF w1tl;cN = (= constant) . (1.4.7)
If, instead, we chose the radius as the characteristic dimension (D = 7), we may write
4P . P 4, - ,
oN= 5= C,NEE , withicy = . (= constant) o (1.4.8)

Note that in this case we have a three-dimensional similarity. i

Example 1.4.2 Consider the cantilever of span £ and cross-section depth A shown in Fig: 1.4.1i; which
is loaded by distributed load p(x) increasing linearly from the cantilever end. We chose the value of the
distributed load at the fixed end to be denoted as P/£ (£ is used to achieve the correct dimension). Now,

li
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choosing oy to coincide with the elastic bending formula for the maximum stress, and the characteristic
dimension to coincide with the beam depth (D = h), we may write

bt P
bz = NpD

. 14
oN = withey = 7 (=constant) (1.4.9)

which is again of the same form. I

To sum up, the nominal stress can be defined by the simple equation (1.4.1) regardless of the complexity
of structure shape and material behavior, and can be used as a load parameter having the dimension of
stress. ’

142 Size Effect Equations

With the foregoing definitions, the size effect consists in the variation of the nominal strength oy, with
size D. There are various possible plots showing special aspects of the size effect, but the most widely
used is the bilogarithmi¢ plot already shown in Fig. 1.2.5 in which log oy, is plotted vs. log D. As
previously discussed in Section 1.2.5, the strength theory (based.on yield or strength criteria) predicts no
size effect (horizontal dashed line in Fig. 1.2.5b); this is the kind of response assumed in most engineering
approaches and codes (see Chapter 10 for a detailed discussion about the need of including the size effect
in the codes.) On the other extreme, we have the purely brittle behavior of structures that fail by crack
instability at a fixed crack-to-size ratio (relative crack length). In the next chapter, after presenting the
essentials of linear elastic fracture mechanics (LEFM) we will see that the size effect in such a case is
shown in the plot of Fig. 1.2.5b as an inclined line of slope -1/2. The actual size effect behavior is best
described by a transitional curve having the two straight lines as asymptotes, as sketched in Fig. 1.2.5b.

The simplest size effect law satisfying this condition was derived by BaZant (1984a) under very mild
assumptions which apply, approximately, to a large number of practical cases. BaZant’s size effect
equation brings into play the energy required for crack growth as shown in the next paragraph, where a
short derivation is presented. However, the final expression can be written (without explicitly showing
the fracture energy term) as a function depending on only two parameters as

B 1
ONu = I — (1.4.10)

1+ D/Dy

where f/ is the tensile strength of the material, introduced only for dimensional purposes, B is a dimen-
sionless constant, and Dy is a constant with the dimension of length.. Both B and Dy depend on the
fracture properties of the material and on the geometry (shape) of the structure, but not on the structure
size. Simple derivations of this size effect law are given next.

1.4.3 Simple Explanation of Fracture Mechanics Size Effect

~ Consider a uniformly stressed panel as shown in Fig. 1.4.2. Imagine first that fracture proceeds as the

formation of a crack band (or fracture band) of thickness h s across the central section of the panel. Now,
the extension of the crack band by a unit length will require a certain amount of energy that, per unit
thickness of the specimen, is called fracture energy and is denoted as Gy. The value of Gy may be
considered, for the present purposes, approximately a material constant. To determine the load required
to propagate the band, an energy balance condition must be imposed by writing that the energy available
is equal to the energy required for band extension. )

To do so, one writes that the strain energy released from the structure at constant & N (whxch is the
condition 'of maximum load) is used to further propagate the crack band. As an approximation, we may
assume that the presence of a crack band of thickness hj reduces the strain energy density in the band
and cross-hatched area from '3 A /2E (for the intact panel) to zero (E = elastic modulus of material). The
cross-hatched area is limited by two lines of some empirical slope k. When the crack band extends by Aa
at no boundary displacements, the additional strain energy that is released comes from the densely cross-
hatched strip of horizorital dimension Ac (Fig. 1.4.2a). If the failure modes are geometrically similar, as
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Figure 1.4.2 Sketches for explaining size effect: {a) blunt erack band, (b) slit-like process zone (adapted from
ACI Committee 446 1992).

is usually the case, then the larger the panel, ihe longer is the crack band at failure.-Consequently, the arca
of the densely cross-hatched strip for a larger panel is also larger. Therefore, in a larger structure, more
enexgy is released from the strip by the same extension of the crack band. This is the source of size effect.

Quantitatively, the energy released per unit panel thickness is given by the area of the densely cross-
hatched region h s Aa +2kagAa times the thickness, times the energy density of the intact panel 0% /2E.
Therefore, the release of energy from the aforementioned sirip (at constant boundary displacement) is
b(hyAa + 2kaoAa)o, /2, where b is the panel thickness. This must be equal to the energy required
to create the fracture, which is G fbAa.Therefore;

5
b(hyha + 2ka Aa)% =G bAa S a4
Solving for the nominal stress, one obtains the size effectlaw (1.4.10) in which ' ‘

2GE - : " h¢D : »
Bf = T = constant, -and: Do = ko = constant. (1.4.12)
Note that Dy depends on the structure shape through the constant k but is independent of the structure
size if the structures are geometrically similar (D /ag = constant); f1 = tensile strength, introduced for

convenience; and h y = width of the fracture band front, which is treated here approximately as a constant,

independent of structure size. )

Lest one might get the impression that this explanation of size effect works only for a crack band but not
for a sharp line crack, consider the similar panels of different sizes with line cracks as shown'in Fig. 1.4.2b.
In concrete, there is always a sizable fracture process zone aheadof the tip of a continuous crack, of some
finite length which may, in the crudest approximation, be considered constant. Over the length of this
zone, the transverse normal stress gradually drops from f1 0 0.-Because of the presence of this zone, the
elastically equivalent crack length that causes the reléase of strain energy from the adjacent material is
Jonger than the continuous crack length, ao, by a distance ¢y Which can be assumed to be approximately
a material constant. ‘

When the crack extends by length Aa, the fracture process zone travels with the crack tip, and the area
from which additional strain energy is released consistsof the strips of horizontal dimension Aa that are
densely cross-hatched in Fig. 1.4.2b. Following {hie same procedure as before for the crack band, we see
that the area of the zone from which energy is released is 2k(ao + ¢5)Aa. So the total energy release
is b2k(ao + Cf)ZXaai, /2E, which must be equated to the energy tequired for crack extension, bG'rAa,
thus delivering the equation : :

. S .
b2k(ag + cf)Aag—g— = GbAa (1.4.13)
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Solving for oy, one again obtains the size effect law in (1.4.10) in which now

GyE - D
Bf] = ZIZ - constant, and Do = cg~— = constant. (1.4.14)
ka ag

The foregoing equations are only approximate in their details, because of the simplifying assumptions
in determining the structural energy release. However, their structure is correct. The same formis obtained
using simplified theories for other geometries (e.g., bending). The fine-tuned equations require the use of
more sophisticated fracture mechanics concepts, and their presentation will be deferred until Chapter 6.

As will be shown in Chapter 9, Eq. (1.4.10) can also be derived, in a completely general way, by
dimensional analysis and similitude argﬂmcnts (BaZant 1984a). This general derivation rests on two basic
hypotheses: (1) the propagation of a fracture or crack band requires an approximately constant energy
supply (the fracture energy, G ) per unit area of fracture plane,, and (2) the energy released by the structure
due to the propagation of the fracture or crack band is a function of both the fracture length and the size
of the fracture process zone at the fracture front.

Applications of Eq. (1.4.10) to brittle failures of concrete structures rest on two additional hypotheses:
(3) the failure modes of geometrically similar structures of different sizes are also geometrically similar
(e.g., a diagonal shear crack has at failure about the same slope and the same relative length), and (4) the
structure does not fail at crack initiation (which is really a requirement of good design).

These hypotheses arc never perfectly fulfilled, so it must be keptin mind that Eq. (1.4.10) is approximate,
valid only within a size range of about 1:20 for most structures (for abroader size range, a more complicated
formula would be required). This size range is sufficient for most practical purposes, but for some structures
the range of interest extends beyond the applicability range. This is so because a sufficiently large change
of structure size may alter the failurc mode and thus render Eq. (1.4.10) inapplicable beyond that size; this
happens, for example, for the brazilian split-cylinder tests. The analysis of such ‘anomalous’ size effect
will be deferred until Chapter 9.

Exercises

1.1 In fracture mechanics manuals, it is customary to use for o the maximum tensile stress computed
elastically for an unnotched specimen. Express oy for a beam in terms of the maximum bending moment M, -
the beam depth I, and the central moment of inertia of the cross-section I. (Answer: on = M D/2I)

1.2 Determine o as in the previous exercise for a hollow cylindrical bar of outer diameter D and inner
diameter oD (o < 1) subjected to a torsional moment M. (Answer: oy = 16Mr/[xD¥(1 — o*)])

1.3 . With the same criteria as inthe previous exercises, determine oy fora circular bar of diameter D subjected

to simultancous tension and torsion; let P be the tensile force and Mz = 3P D the torque, where 3 is some
dimensionless constant. Give the coefficient ¢ corresponding to Eq. (1.4.1). Hint: use Mohr’s circle to find
the maximum tensile stress.

1.4 Results from the literature were analyzed by the authors using a characteristic specimen dimension D
and a nominal stress o defined with cx = 1. The results for the best fit of B f+ and Do were 1.15 MPa and
322 mm, respectively. To compare with other results, you want to use a nominal stress defined using the same
characterisiic size D, but a constant én = 2.5. What would the values of the best-fit constants (say Bf{ and
Dpg) in this case. (Answer: Bff = 2.88 MPa, Dy = 322 mm.)

L5 Generalize the previous exercise and prove that if, for a particular selection of ¢y and D, the size effect
parameters are Bf: and Qo, for a different selection &y and D (where D/D = constant), their value is
Bfi = (én/cn)Bfi and Do = (D/D)Do. ‘

1.6 Find the relationship between hy and ¢y that make identical Egs. (1.4.12) and (1.4.14).
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Table 1.5.1 Summary of size effect test series,
: b ]

Experimental Evidence for Size Effect

Pl SEN-TPB

thickness &
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S
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DP po2s®

J

DEN-EC - DEN-T
P i 9 +
D D/6 P D6 P
2 1D/ P s T
¥ ¥
8D/3 o3|
P
P2 A
BPO 4 UPT P24

D
LRB-UB . D, LRB-AB D, PS
,P/2¢ #P/Z P/z¢ #P/Z
" [a) . [a
thickness b . ID R thickness b [D {ﬁ
A D A A 7D A
7.5D 7.38D

) Specimen . ]

Series Material type® ay/D . S/D :(mm) - cn Reference

AT-Ab concrete SEN-TPB 173 4 762 6 Walsh 1972
B1 concrete SEN-TPB 1/6 2.5 3817 375 BaZant and Pfeiffer 1987
B2 concrete DEN-EC 1/6 — 38.1 1 Ibid.
B3 concrete DEN-T 1/6 — 191 1 Ibid. :
B4 © concrete DEN-S 1/6 — 38.1 1 BaZant and Pfeiffer 1986
Cl mortar SEN-TPB 1/6, 2.5 381375 BaZant and Pfeiffer 1987
Cc2 mortar DEN-EC 1/6 — 38.1 1 Ibid.
C3 mortar DEN-T 1/6 & o— 19.1 1 Ibid.
C4 mortar DEN-S 1/6 — 38.1 1 BaZant and Pfeiffer 1986
D1 HSC SEN-TPB 1/3 2.5 38.1 3.75 Gettu, BaZant and Karr 1990
El marble SEN-TPB  .0.5 4 30 6 Fathy 1992
E2 granite SEN-TPB 05 4 30 6 Ibid.
Fl limestone SEN-TPB - 0.4 4 13 6 BaZant, Gettu and Kazemi 1991
G1 Si0; - SEN-TPB 0.2° 4 =D 6 McKinney and Rice 1981°¢
G2 SiC CN-137 SEN-TPB 0.2 4 =D 6 Ibid.
G3 SiCCN-163  SEN-TPB 0.2 4 =D 6 Ibid.

H1-2 concrete DP - e — 04 Marti 1989
It microcon. BPO — — e A Bazant and Sener 1988
I mortar UPT — — e 0.75 BaZant, Sener and Prat 1988
J2 R. mortar RPT —_ — o 0.75 Ibid.
K1 R. mortar LRB-UB — — e 05 BaZant and Kazemi 1991
K2 R. mortar LRB-AB — - — 0.5 Ibid., :
L1 microcon. PS - — — 1/m BaZant and Cao 1987

“See specimen types in Fig. 1.5.1.
bVariable. Results have been reduced to a fixed ap/D=0.2:
¢See also BaZant and Kazemi 1990b.

1.5 Experimental Evidence for Size Effect

The size effect law proposed Ey BaZant (Eq. (1.4.10)) has'been verified by a large number of experimental
data, for both notched fracture specimens and unnotched structures. We will postpone a full discussion
of the implications of size effect for structural analysis until Chapter 10, but we will review the evidence

N

now.

Results from 23 test series, among those available, are briefly examined in the following, corresponding
to various authors, materials, and specimens.: The essentials of the specimen characteristics are summa-
rized in Table 1.5.1 and Fig. 1.5.1. In particular, the coefficient ¢y corresponding to Eq. (1.4.1) to each
series of experiments is included in Table 1.5.1.-Some characteristics of the materials, together with the
size range and the best fits for B f; and Dy, are summarized in Table 1.5.2, where the sources of the data
are also displayed. Further details of the tests are given'in the following; however, detailed descriptions
are not given; they can be obtained from the referenced sources.

Since various fitting procedures have been used in the literature to gét the optimal fit of the size effect law
to the experimental data, a unified procedure has'been usedsin this book. In this procedure the nonlinear
regression is directly performed on the data presented as a bilogarithmic diagram (see Chapter 6 for a
discussion of the fitting procedures). To do so, we call v = In o, and take v to be the variable whose
quadratic error is to be minimized with the following approximating equation —equivalent to.(1.4.10):

v ="n(Bf;) —05In (1,+ D£> (1.5.1)
0

The optimal fits for B f] and Dy were calculated using a‘standard Levenberg-Marquardt algorithm." The
values of B f] and Dy with their standard errors are given'in Table 1.5.2.
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Figure 1.5.1 = Summary of specimens used for size effect verification.

Table 1.5.2 Essential data of size effect tests

d.®  Strength®  Elastic Modulus  Size Range BJ] Do
Series Material (mm) (MPa) (GPa) {(mm) (MPa) (mm)
AT concrete 12.7 231 n.a. 76-381 45%09 36 £ 17
A2 concrete 12.7 354 na. 76-381 2.8+ 0.5 157 £ 99
A3 concrete 12.7 14.3 n.a. 76381 32421 34+ 52
Ad concrete 12.7 15.6 n.a. 76-381 1.7+03 126 £ 78
A5 concrete 12.7 46.8 na. 76-381 29+04 212 + 114,
A6 concrete 12.7 327 n.a. 76-381 4.1+0.7 55423
Bl concrete 12.7 34.1 n.a. 76305 6.0 £0.3 60+ 10
B2 concrete 12.7 374 n.a. 76-305 39+02 54410
B3 concrete 12.7 29.1 n.a. 76-152 27401 184 4 38
B4 concrete 12.7 39.7 n.a. 76-305 46+0.1 719 4+ 130
Ct mortar 4.83 48.4 n.a. 76-305 144 77+4.4
c2 mortar 4.83 48.1 n.a. 76-305 6.6+13 105
C3 mortar 4.83 46.4 n.a. 76-152 3.3+0.1 95+ 17
C4 mortar 4.83 49.0 n.a. 76-305 5.9+£02 190 + 25
D1 HSC 9.5 96.0 n.a. 38-152 32+8 19411
El marble 4 7.7° 36 12.5-100 3.7+0.2 47+ 10
E2 granite 2 12.3¢ 39 12.5-100 5.1+£02 35+k5
Fl1 limestone 1.5 3.45° 30.5 13-102 33401 45+ 6
Gl SiO2 0.02 — - 58 5-32 1743 26+1.2
G2 SiC CN-137 2 —— 130 7-37 36+4 101 + 157
G3 SiC CN-163 2 —_ 140 7-37 35+3 73122
H1 concrete 9.5 333 n.a. 76-610 27401 352 £ 63
H2 concrete 9.5 23.6 n.a. 76-1219 195+ 005 60183
It microcon. 6.35 45.8 13-51 459 36 + 14 66
J1 mortar 4.83 437 n.a. 38-152 54403 37+6
12 mortar ~ 4.83 43.6 : n.a. 38-152 6.2+2.1 23+ 20
K1 . mortar 4.83 - 46.8 n.a. 41163 22+0.1 151+ 40
K2 mortar 4.83 46.2 na. . 21-330 4.6+1 11+6
L1 microcon. 6.35 na 43-53 25-102 103+1.3 178 + 178

®Maximum aggregate or grain size.

bCompressive unless otherwise stated.

“Splitting tensile strength,
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Figure 1.5.2 ° Size effect results of Walsh (1972).
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Figure 1.5.3 Size effec\t results of BaZant and Pfeiffer (1986, 1987).

1.5.1 Structures with Notches or Cracks

The size effect law was originally verified (BaZant 1983, 1984a) by comparisons with the tests of Walsh
(1972), whose results are summarized in Fig.1.5.2. Walsh used single-edge-notched beams in three-point
bending (SEN-TPB, see Table 1.5.1 and Fig. 1.5.1, test series A1-6). Walsh was apparently first to plot
JAhe test results as log oy, vs. log D, but did not'try to describe this plot mathematically or generalize
it. Walsh’s classical tests, however, were of limited range, too short for the scatter obtained, and included
only one type of fracture specimen, and so the comparisons were not completely conclusive. |

A stronger experimental verification was presented by BaZant and Pfeiffer (1986, 1987), covering
a broader size range and four very different types of specimens @ -SEN-TPB, double-edge-notched in
eccentric compression (DEN-EC), double-edge notch in eccentric compression (DEN-EC), and double-
edge notch in shear (DEN-S); see Table 1.5.1 and Fig.'1.5:1; test series B1-4 and C1-4. The research
included tests on concrete (series B1—4) and on mortar (series C1-4). The test results and their optimum
fits by the size effect law are shown in Fig. 1.5.3. Obviously, the comparison provides a strong justification
for the size effect law (for statistical comparisons, see the original paper). The data points in Fig. 1.5.3
refer to individual tests.

An experimental size effect study of high strength concrete has been conducted by Gettu; BaZant and

Karr (1990), using SEN-TPB. The results are shown in Fig.1.5.4, again in comparison with the optimum. -

fits by the size effect law and its asymptotes. : e .
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Figure 1.54 Size effect results of Gettu, BaZant and Karr (1990). Results of BaZant and Pfeiffer (1987) for
ordinary concrete are also included for comparison.

For concrete, the foregoing results have been complemented by the extensive size effect data for SEN-
TPB specimens published by BaZant and Getwu (1992). These tests (as well as similar tests of fracture
of limestone by BaZant, Bai and Gettu 1993), however, also included a systematic investigation of the
effect of the loading rate, and, thercfore, the presentation of these data is better postponed to Chapter 11,
Further, it has been shown (BaZant, Kim and Pfeiffer 1986) that the size effect law agrees well with the
results of the size effect tests by Jenq and Shah (1985a,b), although a good fitting was not possible because
the size range was too limited compared to the scatter obtained. '

The ability of the size effect law (1.4.10) to describe the strength variation of notched specimens in
materials other than concrete has been investigated, too, particularly for rocks and ceramics. Moving from
coarser grained rocks to ceramics, Fathy (1992) tested marble and granite; BaZant, Gettu and Kazemi
(1991) limestone; and McKinney and Rice (1981} slip-cast fused silica (SiO2) and nitridized silicon
carbide (SiC CN-137 and SiC CN-137). Fig. 1.5.5 summarizes their test results. It can be scen that the
size effect law describes the various results acceptably well.

Recent experimental data indicate a similar degree of agreement for composites and for ice. BaZant,
Daniel and Li (1996) tested in tension both single- and double-edge notched specimens of highly or-
thotropic carbon-epoxy fiber laminates and they found good agreement with the size effect law fora 1:8
range of sizes. Adamson et al. (1995) and Mulmule, Dempsey and Adamson (1995) performed various
series of tests on sea ice using various specimen geometries. In one of the series, square plates with a
notch subjected to opening forces at the notch mouth were tested with a size ratio of 1:160 (the specimens
ranged from 0.5 to 80 m in size)! This is the test series of wider size range known to date. The results
showed a very good agreement with the size effect law.

1.5.2 Structures Without Notches or Cracks

Extensive tests have been carried out to verify (1.4.10) for various types of failure of unnotched concrete
structures. Good agreement of (1.4.10) with test results has been demonstrated for:
1. Double-punch tests of cylinders (Marti 1989).

2. Pullout failure of bars (BaZant and Sener1988), pullout of studded anchors (Eligehausen and OZbolt
1990), and bond splices (Sener 1992).

3. Failures of unreinforced pipes (Gustafsson and Hillerborg 1985, BaZant and Cao 1986).
. Torsional failure of beams (BaZant, Sener and Prat 1988):

[N

5. Diagonal shear failure of longitudinally reinforced beams without or with stirrups, unprestressed
or presiressed (BaZant and Kim 1984; BaZant and Sun 1987; BaZant and Kazemi 1991).

6. Punching shear failure of slabs (BaZant and Cao 1987).
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Figure 1.5.5 = Size effect results for various kinds of rocks and ceramics (Fathy 1992; BaZant, Géttu and Kazemi -

1991; McKinney and Rice 1981).
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Figure 1.5.6 - Size effect in double punch tests (Marti 1989) and bar pullout (BaZant and Sener 1988).

A sample of the results, which can be regarded as an additional verification of applicability of fracture
mechanics to brittle failures of concrete structures, are shown in Figs. 1.5.6.and 1.5.7.

As further evidence of applicability of fracture mechanics, Fig. 1.5.8 shows, for the punching shear
failure, that the post-peak load drop becomes steeper and larger as the size increases. This is because, in
a larger specimen, there is (for the same o' jy) more energy to be released into a unit crack extension. The
load must be reduced since the fracture extension dissipates the same amount of energy.

The existing test data on concrete specimens with regular-size aggregate reported in the literature also
offer evidence of size effect, and the need for a fracture: meghanics based explanation has been pointed

out by various researchers, beginning with Reinhardt (1981a, 1981b). The data from the literature are -

generally found to agree with Fig. 1.2.5b although often the evidence is not very strong because the data
exhibit very large statistical scatter and the size range is insufficient.

Due to large scatter and size range limitation, about equally good fits can often be obtained with other
theories of size effect, e.g., Weibull’s statistical theory. However, the measured size effect curves in
the Figs. 1.5.2-1.5.7 do not agree with the Weibull-type statistical theory. This theory gives a straight
line of slope ~1/6 for two-dimensional similarities and =~ 1/4 for two-dimensional similarity, which are
significantly smaller than seen in the figures.

Much of the scatter probably stems from the fact that the test specimens of various sizes were not
geometrically similar. Theoretical adjustments must, therefore, be made for the factors of shape before
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Figure 1.5.7 Size effect in torsion for plain (J1) and reinforced (J2) concrete prisms (BaZant, Sener and Prat
1988); diagonal shear failure of longitudinally reinforced beams for unanchored (K1) and anchored (K2) bars
(BaZant and Kazemi 1991); and punching shear of slabs (BaZant and Cao 1987).
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Figure 1.5.8 Size effect on the load-deflection curve in punching of slabs (adapted from BaZant and Cao 1987,
series L1 in Tables 1.5.1 and 1.5.2).

the comparison with (1.4.10) can be made and, since the exact theory is not known, such adjustments
introduce additional errors, manifésted as scatter.

Exercises

1.7 In the plastic limit (D/Dy < 1), the nominal strength is given by Bfi. Determine the largest size
for which BaZant’s size effect law differs from the plastic limit less than 5%. Hint: use the approximation
(1 +a)” Va1 —g/2fore < L. .

18 Apply the result of the preceding exercise to the tests in Tables 1.5.1 and 1.5.2. Decide, for each test
series, whether specimens of such size can be representatxvc of the material. Hint: compare the specimen size
with the maximum aggregate or grain size. :

L9 1Inthe LEFM limit (D/Dy >> 1), the nominal strength is given by B fi+/ Do/ D. Determine the smalest
size for which BaZant’s size effect law differs from the LEFM hmn less than 5%. Hint: use the approximation
(+z) 1 —z/2fora < 1.
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1.10 - Apply the result of the preceding exercise to-the tests in.Tables 1.5.1 and 1.5.2. Decide, for each test
series, whether specimens of such size can be manufactured forlaboratory testing.

1.11  We say that one structure is more brittle than another when its situation on the log o, vs. log D size
effect plotis closer to LEFM limit. If (and only if) two structures are'geometrically identical but made of different
materials, the difference in the brittleness is entirely due to the difference in material brittleness. Decide which

are the more brittle materials in the following tests (defined-in ‘Tables'1.5.1 and 1.5.2 and Figs. 1.5.1-1.5.7): -

(a) Concrete in series B1-4 and mortar in series C1-4; (b)'Marble iin series E1 and granite in series E2; (c)
Concrete in series H1 and concrete in series H2; (c) ceramic.materials in series G1, G2, and G3."

2
Essentials of LEFM

Linear elastic fracture mechanics (LEFM) is the basic theory of fracture, originated by Griffith (1921,
1924) and completed in its essential aspects by Irwin (1957, 1958) and Rice (1968a,b).

LEFM is a highly simplified, yet sopisticated, theory, that deals with sharp cracks in elastic bodies. As
we shall see, LEFM is applicable to any material as long as certain conditions are met. These conditions
are related to the basic ideal situation analyzed in LEFM in which all the material is elastic except in a
vanishingly small region (a point) at the erack tip. In fact, the stresses near the crack tip are so high that
some kind of inclasticity must take place in the immediate neighborhood of the crack tip; however, if the
size of the inclastic zone is small relative to linear the dimensions of the body (includingb the size of the
crack itself), the disturbance introduced by this small mplasuc region is also simall and, in the limit, LEFM
is verified cxactly.

Thus, LEFM is the basic theoretical reference to describe the behavior of any material with cracks,
even if, as it happens for concrete, the geometry and dimensions of structures built in practice do not allow
direct usc of LEFM.

This and the next two chapters give an overall view of thie mathematical theory of LEFM with some
straightforward applications to idealized cases. They are not intended as a substitute for handbooks or
treatises on LEFM. Their objective is to simplify the access of the reader to the concepts required in the
remaining chapters and, at the same time, to provide in this book a self-contained presentation, so that
recourse to external references be minimized. ’

This introductory chapter gives a short account of the most essential concepts in LEFM. Section 2. {
develops the energetic approach to fracture —the Griffith approach. It introduces the concept of energy
release rate G, representing the encrgy available for fracture, and the fracture energy or crack resisting force
R, representing the energy required for fracture. Also included in this section are the basic expressions
for G, and some techniques to describe fracture processes (Section 2.1). The systematic mmly51s of the
techniques available to compute G and to measure R is deferred until the next chapter.

Section 2.2 introduces the concept of stress intensity factor K based on a simple example and describes
the general properties of the stresses and displacements near the crack tip (the formal derivation of such
properties is skipped in this introductory chapter and postponed until Chapter 4). It also shows that the
energetic approach and the approach based on I{; ——Irwin’s approach-— are equivalent, and rewrites the
crack growth criterion in terms of the stress intensity factor. The presentation of the methods to compute
stress intensity factors and other pelated quantities is postponed until the next chapter.

The final Section 2.3 deduces the size effect laws for classical plasticity and for LEFM. As explained
in the previous Chapter, these are the reference laws for any nonlinear fracture model, and are extensively

used for comparison with experimental as well as theoretical nonlinear size effects in the remainder of
the book.

2.1 Energy Release Rate and Fracture Energy

Formation of a crack in an elastic solid initially subjected to uniform uniaxial tension disrupts the trajec-
tories of the maximum principal stress in the manner depicted in Fig. 2.1.1a. This indicates that stress
concentrations must arise near the crack tip. They were calculated by Inglis (1913) as the limit case of
his solution for an elliptical hole.

From Inglis’s solution, Griffith (1921, 1924) noted that the strength criterion cannot be applied because
the stress at the tip of a sharp crack is-infinite no matter how smali the load is (Fig: 2.1.1b). He further
concluded that the formation of a crack necessitates a certain energy per unit area of -thé crack plane,

23
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Figure 2.1.1 (a) Disruption of the trajectories of maximum prificipal stress by a crack; (b) singular distribution
of normal stress ahead of the crack tip (adapted from ACI Committee 446 1992).
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Figure2.1.2 Crack growth in a cracked specimen: (a) initial situation; (b) co-planar crack growth upon further
loading. - :

which is a material property, provided the structure is $0 large that the crack tip region in which the
fracture process takes place is negligible. However, more general approaches accept that the specific
energy required for crack growth may depend on the-cracking history instead of being a constant. In such
cases, the energy required for a unit advance of the crack is called the crack growth resistance, .

The basic problem in fracture mechanics is to find the amount of energy available for crack growth and
to compare it to the energy required to extend the crack::Although conceptually simple, the problem is
far from trivial and deserves a detailed analysis.

2.1.1 The General Energy Balance

Consider a plane structure of thickness b in which a preexisting straight crack of length a is present
(Fig. 2.1.2). Assume that upon quasi-stati¢ loading, a certain load level is attained at which the crack
advances an elemental length éa in its own plane, sweeping an‘element of arca A = bda. The encrgy
SWF required to do so is the‘ increment of area times the crack growth resistance:

6WF=7zb6% (2.1.1)

. Alternative notations found in the literature for the crack growth resistance R are G'r whenit is history-
dependent, and G, and Gy, (critical energy release rate) when it is a material property not dependent
on the cracking history. In this book, we use Gy for the latter case because this is the most widespread
notation in the field of concrete fracture. G iscalled the specific fracture energy, or fracture energy, for
short. In Section 2.1.5 we will justify that the only case consistent with the hypotheses of elastic fracture,
where the inelastic zone isnegligibly small, is that of ® = constant = G.

The total energy supply to the structure is the external work; which, in the infinitesimal process under
consideration, is denoted as §WW. From this total stpply, a partis stored in the structure as elastic energy,
SU. The remainder is left to drive other processes and to generate kinetic energy 6/C. When the only
energy-consuming process is fracture, and the process is quasi-static (6K = 0), this remainder is the
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available energy for fracture, or elemental energy release SWE:
SWR = §W — sU o (2.12)

Although Eq. (2.1.2) may. be directly handled in many cases (as done by Griffith 1921), it is often more
convenient to work with specific energies (energies per unit area of crack growth). The specific available
energy, usually called the energy release rate, G, is thus defined so that

G béa =W =W — U (2.1.3)

The essential advantage of using G is that, as it will turn out in the next paragraph, G is a state function.
This means that G depends on the instantaneous geomeltry and boundary conditions, but not on how they
vary in the actual fracture process, or on how they have been attained.

The balance of energy requires that, in a quasi-static process,

Géa=TRéa for quasi-static growth (2.1.4)

and in a more general incipiently dynamic situation (initial kinetic energy K = 0, kinetic energy increase
SK >0y, .

Géa =TRba+6K/b (2.1.5)

Since 6K > 0 (because initially /C = 0 and always K > 0), the equations may be made to hold in any
circumstance (as they should, the balance of energy being a universal law, the first law of thermodynamics)
if the following fracture criterion is met:

if G<R then da=0 and 6K =0 Nocrack growth (stable) (2.1.6)
if G=7R then 6a >0 and 6K =0 Quasi-static growth possible (2.1.7)
if §>7R then éa>0 and 6K >0 Dynamic growth (unstable) (2.1.8)

This system of conditions summarizes what seems obvious: If the energy available is less-than that
required, then the crack cannot grow (and the structure is stable). If the energy available equals the
required energy, then the crack can grow statically, i.e., with negligible inertia forces (and the structure
can be stable or unstable depending on the vatiation of G — R with displacements). If the energy available
exceeds that required, then the structure is unstable and the crack will run dynamically (the excess energy
being turned into kinetic energy). .

The central problems of elastic fracture mechanics are to measure the crack growth resistance, R, for
particular materials and situations, on one hand, and to calculate the energy release rate G, on the other.
This latter problem may be handled in various equivalent ways, the bases of which are explored next.

2.1.2 Flastic Potentials and Energy Release Rate

Consider the plane elastic specimen in Fig. 2.1.2, in which the crack length o can take any value. Let P
be the load and u the load-point displacement. By definition, the elementary work is

W = Péu (2.1.9)

for any incremental process. For an equilibrium situation and given any crack length a, there is a unique
relationship between the equilibrium force and the displacement (which can be calculated by solving the
elastic problem). So we can write ’

P = P(u,a) (2.1.10)

where P(u,a) can be determined by elastic equilibrium analysis of the structure. Based on the corre-
sponding elastic solution, the stored (elastic) strain energy can also be calculated for any w and a:

U =U(u,a) (2.1.11)
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Consider, then, that the elastic body with a crack of length ¢ is subjected, in a static manner, to displacement
Su, with no crack growth. In this situation, all the work is stored as strain energy, so that

—[8U}, =0 C(2112)

where subscript a indicates that the crack length remains constant ini this process.
Consider now a general process where both u and @ are allowed to vary. Then, Eq. (21.3), whxch is
the definition of G, can be written as

’g béa = P(u,a)du -~ { [Qﬂéiu_"ll}agu+ [8—21—5%1)]“6@} | (2.1.13)

Considering equilibrium variation at §a@ = 0, one obtains the well-known second Castigliano’s theorem:

U (u,a) '
(01 ) = | 2.1.
Pluya) [ o L (2.1.14)
So the first two terms in (2.1.13) in an equilibrium process'cancel and we get
OU(u,a)
2.1.15
9 =0(u,a) = b,[ da L (2.1.15)

This basic résult shows that the energy release rate G isindeed a state function, because it depends only
on the instantaneous boundary conditions and geometry (in‘this case uniquely defined by wand a).

Sometimes one may prefer to use the equilibrium load P rather than the equilibrium displacement
u as an independent variable. In such case, it is prcferablc to introduce a dual elasuc potential, the
complementary energy U*, defined as

= Pu—U (2.1.16)

Substituting I/ from this equation in the expression for the available energy (2.1.2), together with the
expression (2.1.9) for the elemental work, one gets for the elemental energy release

SWR = 6W — 68U = Péu ~ 6(Pu—U") = 8U* —usP . (21.17)

Writing the complementary energy and the displacement as functions of the applied load and the crack
length .

w=u(Pa), —U" : U*(P,a) -~ (2.1.18)

and considering an equilibrium process in which both P and a-are allowed to vary, Eq. (2.1.17) yields
OU*(P;a) aU* (P, a)
= - P e
Gbéa u(P,a)é +{[-————ap L&P—F{ % Pﬁa k (2.1.19)

Considering equilibrium variation at 6o = 0, one géts the well-known first Castigliano’s theorem .

u( P, d) = [Qy—gﬂ}a (2.1.20)
So the first two terms in (2.1.19) cancel and we have
- 1 [ou(Pa)
Q~Q(P,a)— 5 { e JP (2.1.21)

The couple of equations (2.1.20) and (2.1.21) are smctly equwalent to the couple (2.1.14) and (2.1. 15)
Indeed, in this single-point-load problem there are 4 mechanical variables, namely, P, u, a,and G, but
only two of them are independent variables (Elicés 1987).: The choice of the independent variables is
arbitrary, and is usually done depending on the boundary conditions and the avaitable data.

Remark: Under isothermal conditions (s]ow loading, slow crack growth), U represents the Helmholtz’s free
energy of the structure and U/ * its Gibbs’ free energy.-Under isentropic (or adiabatic) conditions (rapid loading,
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rapid growth), U represents the internal (total) energy of the structure and I* represents the enthalpy (see e.g.,
BaZant and Cedolin 1991, Sec. 10.1).

Other potentials can be used to perform the foregoing analysis. For example the potential energy II of the
structure-load system, defined as IT = Uf — W (u), where Wa(u) = f P, (u') du' is the work of the applied
load P.(u), which is assumed to be defined independently of the structure. The energy release rate is easily
expressed in terms of the potential energy as

G Glua) = _% [Q%] (2.1.22)

Same as for the strain energy, a dual potential can be defined for the potential energy, the complemen(an y potential
energy IT* of the structure-load system, defined as [T* = U* - W (P), where Wo(P) = f( u(P’)dP’ is the
complementary work of the applied load (which is 0 for dead loads). The energy releasc rate is easily expressed
in terms of the complementary potential encrgy as

G=G(P,a)= % {_#_an*gf, a)] » (2.1.23)
P

In this book, the potential ener:; gy and complementary potential energy of the structure-toad system will not be
used. A

The foregoing results may seem too particular because no distributed loads were considered. This
limitation may be overcome in most practical cases by defining generalized forces and displacements.
A generalized force ) and its associated generalized displacement g are defined in such a way that the
external work § W may be written as

W = Qéq (2.1.24)

With this definition, all the foregoing expressions hold as long as one interprets P as a generalized
force and v as its generalized displacement.

There are many well known cases of generalized forces used in engineering. For cxamplc the general-
ized displacement associated with a torque is the angular rotation; the generalized displacement associated
with a pressure acting inside a cavity is the volume variation of the cavity.

Example 2,1.1 To illustrate the application of the above equations, consider a long-arm double can-
titever beam (DCB) specimen subjected to constant moments M as depicted in Fig. 2:1.3a. Assume
further that the material is linear elastic, and that the arms are slender enough for the classical theory of
bending to apply. With these hypotheses, the elastic or complementary energy per unit length of the beam
is known from the theory of strength of materials (¢.g., Timoshenko 1956):
* 2
- (2.125)
dr ~ dr  2EI
where z is the coordinate of a cross-section along the beam axis, 2 the elastic modulus, and [ the inertia
moment of the cross-section of the beam. We thus compute the elastic or complementary energy of the
specimen as the energy of two pure bent cantilever beams of length a:

M? .
U =U*=2a—, 2.1.26
; “2EI (2:1.26)
and compute the energy release rate by direct application of (2.1.21)
MZ
= e 2.1.27
6= (2.1.27)

with M taking the place of P. 1[I

Example 2.1.2  As another example, conisider the double cantilever specimen in Fig. 2.1.3b. The
bending moment distribution for the upper arm, M = P, is also shown in this figure. Within the
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Figure2.1.3 Long double cantilever beam specimen subjected to(a) pure bending, and (b) opening end forces.

class_ical beam theory (neglecting shear), the cdrresponding complementary energy per unit iength of one
arm is given now, according to (2.1.25), by dU{* /dzx = P222 /2 ET. The total complementary energy is
obtained by integration along both arms of the specimen
) P2 a L Pplgd :
U :2——/ T dr = e (2.1.28)
0 ;

2E1 3EI

With this, Equations (2.1.20) and (2.1.21) provide expressions for the relative displacement between the

load points, u, and for the energy release rate G
_ 2Pa® . 8Pd? P 12P%?
T3EI T EOR' ° T BEI B (2.1.29)

in ' which we set I = bh3/12. Except for a factor 2, the first expression for u in the previous equation is
very well known in the field of strength of materials. The factor 2 comes from the relative displacement
of the forces (working displacement) being twice the deflection of one beam.

2.1.3 The Linear Elastic Case and the Compliance Variation

The foregoing general results are greatly simplified in the particular, yet essential, case of linear elasticity,
because of the linear relationship between uand P-at constant a. This may be written as

w=C@P (2.1.30)

where C{(a) is the (secant) compliance for a crack length a.’ After substituting u from Eq. (2.1.30) into
Eq. (2.1.20), it immediately follows by integration that the complementary energy must be

* 1 ,
U* = EC(a)Pz. (2.1.31)
Substitution of this expression into Eq. (2.1.21) gives the follgwing result for the energy release rate:
L]
P2dC(a) . P?
Pay="— = '
G(P,a) = Fp =52 = 5:C'0), IR kD

where, in the second expression, the first derivative of the compliance has been briefly denoted as C'(a).
In the foregoing derivation, (P, a) were taken as independent variables. But one can equally well
use (u,a) as independent variables. Substituting P from Eq.(2.1.32) into Eq. (2.1.14), it follows by
immediate integration that the elastic energy must be i
2
U(u,a

)=§g—@ / ' o (2.1.33)
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Henceforth, from Eq. (2.1.21), the energy release rate is found to be

w2 dC(a) _

9(w9) = 35cia) da - 26CP(a)

C'(a) ‘ (2.1.34)

which, in view of (2.1.30), turns out to be identical to the previous Eq. (2.1.32), as it must.

At this point it is worth to recall the well-known fact that, in linear elasticity, the elastic energy and
the complementary energy always take the same value (although they are conceptually different, as
graphically shown in the next subsection). In the case of a single point load, it is sometimes useful to
rewrite Eqgs. (2:1.31) and (2.1.33) in the form

1
U=U"= EPu (2.1.35)

Example 2.1.3 Consider again the pure bent DCB in Fig. 2.1.3a with the same hypotheses as stated
in the previous section. Taking M. as the generalized force, the relative rotation  of the arm ends is the
corresponding generalized displacement. Since the rotation of each beam end is 6/2, and such rotation
has an expression well known from the strength of materials: 8/2 = aM/EI. Therefore, the generalized
compliance is

@ a

C=gr =22 (2.1.36)
g 1

o

The use of (2.1.32) leads again to Eq. (2.1.27) for

Example 2.1.4 Consider again the long-arm DCB specimen of Fig. 2.1.3b subjected to loads P at
the arm tips. In this case, the deflection of each arm is well known to be u) = Pa?/3EI. Thus the
displacement over which the loads P work is u = 2uy = 2Pa?/3E1, from which it follows that

_ 2403

C=3ET

(2.1.37)

Using (2.1.32) again yields the result (2.1.29). 0

Example 2.1.5 Consider the center cracked panel depicted in Fig. 2.1.1a. Let the dimensions of the
panel —width, height, thickness— be, respectively, D, H, and b; and assume a central crack of total
length 2a. (Note: it is customary to use 2a instead of a for the crack length for this kind of internal
cracks; this requires special care when differentiating with respect to crack length, see below.) A detailed
elastic analysis (Chapter 4) delivers the relative displacement of the upper and lower edges of the panel
as a function of the crack size. For small cracks (2a < D, 2a < H) and plane stress, this displacement

turns out to be
oH 27a® PH 27a?
- = i uidbell 2.1.
U=F (HDH) BDE(1+DH> (2.1.38)

where we wrote that the resultant load is P = ¢BD. From the last expression we get C = u/P and
using (2.1.32) with a replaced by 2a, we get : :

i . P dC P’ra o?

- LT 2 2.1.39
2B d(2a) BD'E B (2.1.39)

This is one of the most celebrated Griffith’s results (although Griffith, obtained it in a different way). 0
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Figure 2.1.4  (a) Quasi-static load-displacement curve. (b) ‘Area répresenting the total work supply: (c) Areas
representing elastic strain energy and complementary energy. (d) Area representing encrgy supply for fracture
and energy dissipated in fracture.

2.1.4 Graphical Representation of Fracture Processes

The energetic equations allow graphical interpretation which,-in many instances, supply vivid pictures
helpful for problem-solving and explaining. A loading process of a specimen or structure is sometimes
best followed on a load-displacement plot. In the case of asingle load P, the displacement to consider is
the load-point displacement . Let the plot of a quasi-static P-u curve for a given specimen be as shown
in Fig. 2.1.4a. The work supplied to the specimen {rom the beginning of the loading, point O, up to point
A, is the integral of P du, which is equal to the area-OM AA’O shown in Fig. 2.1.4b. The area that
complements this to rectangle OA” AA’ is the integral of wd P, and is called the complementary work.

If all of the material remains linear. clastic except for a zoine of negligible volume along the crack
path, the (elastic) strain energy U is represented by the-area of the triangle OAA’ in Fig. 2.1.4c. The
complementary energy U™ is the area of the triangle O A A" ‘which complements QO A A’ to the rechnglc
OA’AA", of area Pu.

The energy supplied for fracture is the difference between the work and the fracture energy, hence,

“the area OM AO in Fig. 2.1.4d (it is also’the difference between the complementary energy and the
complementary work). If the curve shown corresponds to an actual quasi-static fracture process, then
the energy supplied for fracture must coincide: with the eneigy consumed by fracture; hence, the area
OM AO in Fig. 2.1.4d is also the energy consuinied in fracture.

An equilibrium fracture process from point A, where the crack length was a, to a nearby point B, where
the crack length has increased by Aa, may be represented as shown in Fig. 2.1.5a. The energy release
available for fracture is the area of triangle-O'AB. This area coincides, except for second-order small
terms, with those corresponding to the virtial (nonequilibrium) processes represented in Figs. 2.1.5b,
¢, and d, respectively, corresponding to constant displacement, ‘constant load, and arbitrary' AP/ Au..
The energy release rate G is the limit of the ratio-of the area of any of the shaded triangles to the crack
extension. This shows, again, that G is path independent, hence, a state function. When Fig. 2.1.5b
is used, Eq. (2.1.15) is obtained. .When Fig. 2.1.5c is used, Eq. (2.1.21) is obtained. Both turn out to
be identical to Eq.(2.1.32) as the reader may easily check: For example, taking the shaded tnangle in
Fig. 2.1.5¢, we express the fracture energy as .

G bAa = area(OAB”) = 1 P (AF7) = L PIPC(a + Aa) ~ PC(a) = LP2Cila)aa @2.1.40)
2 2 : 2

from which Eq. (2.1.32) immediately follows.

As previously stated, only two of the four variables P, u, @, and G can be taken as mdependent variables.
Any pair of them may be used to'define the entire fracture process. However, it is useful to take conjugate
variable pairs, as is customary in thermodynamics, because then the areas in the graphical representation
have direct energetic interpretations. One of such pair is'the P-u representation just analyzed. The other
is the G-a representation. This representation has the advantage that G is the “driving force” for crack
growth which is directly related to the material property R, the “resisting force”.

If one then imagines a plot of a loading process in a G-a plane, such as that in Fig. 2.1.6a, oné finds
that OM is a loading at constant crack length under increasing G, At point-M, the crack starts to increase
under increasing G up to point A. The total energy released is the integral of G da, equal, henceforth,
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Figare2.1.5 (a) Actual (equilibrium) incremental fracture process. (b-d) Virtual (nonequilibrium) incremental
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Figure 2.1.6 (a) Loading path in a G — « plot. (b) Area representing the total energy supply for fracture and
the energy dissipated in fracture.

to the area OM AO'O in Fig. 2.1.6b. Moreover, if the process is an actual quasi- -static (equilibrium)
process, this coincides with the total fracture energy.

Furthérmore, the instantaneous G on the M A portion, where the crack is actually growing, must coincide
with the instantaneous fracture energy which, in this example, is not constant. This is an example of the
so-called R-curve behavior, a short for resistance curve behavior, in which the crack growth resistance
increases with the crack extension (Chapter 5). In Section 2.1.6 we argue that this is not a kind of behavior
consistent with the hypotheses of LEFM, which really imply that the crack growth resistance must be a
constant.

2.1.5 Rice’s J-Integral

One of the most famous equation§ in fracture mechanics is the J-integral, due to J. Rice (1968a). Although
in its original derivation, the J-integral was not directly related to G, soon after that Rice (1968b) realized
that J was equal to G. In the following paragraphs we introduce the J-integral as a particular form of
expressing the encrgy release rate.

In deriving the J integral, the general expression (2.1.3) is used, together with a particular way of
expressing the work and the elastic energy and a particular virtual process. To start fixing the main
concepts, we first notice that although we have been continuously referring to a given body, any part of a
body is another body in mechanical terms. Henceforth, all the equations used so far may be used for any
subbody. In a plane case, we can take any contour I" surrounding the crack tip to define a subbody and
apply to it the energy balance equations —in particular Eq. (2.1.3)—to find G . This is what is done in
the derivation that follows.

The derivation of the J-integral is done in many books in an Eulerian framework, where the axes and
the contour I move with the crack tip. It is important to realize that ours use the Lagrangian coordinates
(coordinatés of material points in the initial state), and then the reference subbody defines a closed
system. If that were not the case, the flow (transport) terms would have to be included in the energy
balance equations. ’

In the plane case, the elemental external work §W is (for stress-free crack surfaces) just the work done
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Figure 2.1.7 Determination of the variation of elastic energy by the J-integral.

¥

by the surface tractions on the boundary I':
W = b/ tibu; ds (2.1.41)
e ' »

where ds is the differential of arc-length along the contour T',#; the components of the surface traction
vectors acting on this boundary, and u; the components of the displacement vector (summation i is implied
by repeated indices).
We write the elastic energy U as the integral of the elastic (or strain) energy density, If, throughout the
volume of the subbody defined by F which, for a plane case reads p
U=> 17 dA (2.1.42)
A(T)

where A(T") stands for the plane area of the subbody.
Substitution of the above equations (2.1.:41) and (2:1:42) into Eq. (2.1.3) leads to:

g6a=/ti6uid5-—6 / UdA
r : JA(T)

The next step is to evaluate the variations 6 in any virtual'elemental process. To obfain the J-integral
expression, we select a virtual process in which we translate all the fields (displacement, stress, energy
density) a distance da parallel to the crack, while extending the crack by this same amount. The variation
of the displacement of a given material point, situated at (27,7, ) due to the translation is easily obtained:

(2.1.43)

buizy, z2) = vy = 66, 22) —us(xy, 22) = —ui 1 {z), 23)0a (2.1‘44)
where u;,1 stands for Qu,; /9. »

The other variation to be computed is that of the elastic energy — the integral in Eq. (2.1.43). Tt may be
evaluated in various ways. Direct analytical treatment using an expression for the elastic energy density
similar to the previous equation (2.1.44) is straightforward. However, the solution may be obtained in a
much more physical (and graphical) way-as follows: Let the cross-hatched area shown in Fig. 2.1.7a be
the subbody A(T") defined by the contour I in its initial situation. When the crack is extended and the
fields arc translated by 8a, the subbody reaches a state as defined in Fig. 2.1.7b. Because, by construction,
the fields in part (b) of the figure are those in-part (a) translated, the final energy of the subbody A(T)
coincides with the initial energy of a subbody A’(I') definéd by a contour I obtained by displacing
I' a distance §a towards the left, as shown in Fig. 2.1:7a by a lightly shaded area partially hidden by

A(T"). Therefore, the variation of U between the initial and final states, is equal to the difference of
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initial energies between the two bodies A’(I') and A(T'):
U = UJA(T)] — UA(T)] o (2.1.45)

and, graphically, this energy reduces to the energy contained in the two crescents shown in Fig. 2.1.7c,
positive for the lightly shaded part (on the left) and negative for the cross-hatched part (on the right). The
result may be expressed as a contour integral using the infinitesimal surface elements and the contour
orientation depicted in Fig. 2.1.7d:

U = bs [ UdA
A(T)

= ~b/ﬁdz2 Sa (2.1.46)
r

Substitution of this result and that in Eq. (2.1.44) for éu; in Eq. (2.1.44), finally leads to the followmg
expression for the energy release rate:

g = /(Z_/{_ dwy — t;us,1ds) (2.1.47)
r

The integral expression in the right hand member is Rice's J-integral. This integral can be computed
(i.e., it is defined) whenever all points on contour I are elastic, even in situations where elastic fracture
mechanics does not apply. However, the J-integral is equal to the energy release rate, G, only if (1) the
nonelastic zone reduces to a point in the interior of I', (2) the crack faces are traction-free, and (3) the
crack is plane and extends in its own plane.’

The J-integral as written in 2.1.47 is —because the factor dx; must take the proper sign— an oriented
line integral. It must be performed anti-clockwise, from the lower to the upper face of the crack, to give
the correct result. This need may be avoided by realizing that the sign is correctly captured if one writes
dza = nyds where n, is the component along the crack line of the unit outward normal to the contour,
and ds is the unoriented arc-length differential. The J-integral may then be written as an unoriented
contour integral with positive arc-length differential. (This is, in fact, equivalent to considering the line
integral as a surface integral per unit thickness, where ds = dA/b is the lateral area per unit thickness.)
The resulting expression is

J = /(ﬁm —ti ui,l)ds (2.1.48)
r

Although the J-integral can be analytically evaluated in only very few cases (one of which is shown in
the forthcoming example), it is a very powerful theoretical tool.

Example 2.1.6 Consider again the pure bent DCB in Fig. 2.1.3a with the same hypotheses as stated in
the preceding section. Let us compute the J integral following the path ABCDEF shown in Fig. 2.1.8.
Since n; = 0 and ¢; = 0 along BC and DE, the contribution of these two segments to the J integral
is zero. So is the contribution from C D if one assumes that this segment is far enough from the crack
tip to be stress free. Therefore, only the segments AB and AF contribute to the integral. Moreover,
their contribution is identical, by symmetry arguments. If we call o the bending stress, which is the
pormal stress ¢; in the direction of the arm axis and the only nonzero component of the stress tensor,
we have (along F'E, for example): (1) n, =—1;QU = 0%/2E; (3) t; = ~0 (note the sign); and (4)

uy, =¢en = o/E. Thus
1 FZ
= d
ZE/EU s

Using o = Mz /21 where z is measured from the center line and ds = dz, Eq. (2.1.27) for G is readily
recovered.
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Figure 2.1.8 Integration path (dashed line) used to compute J in the pure bending DCB.
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Figure 2.1.9 (a) In true LEFM, crack growth-must take place under constant G. - (b) A load-
ing-cracking-unloading process in a LEFM specimen. ’

2.1.6 Fracture Criterion and Fractur¢ Energy

In true LEFM, in which nonlinear behavior and fracture occur ata single mathematical point at the crack
tip, the crack must grow statically under constant G, because the matérial has no memory of the previous
loading. This 1mphes that the crack growth resistance is a constant: R = G ;. Sothe quasi-static loadmg
path in a G-a plot is a step function as depicted in Fig. 2.1.9a;

When the LEFM limit is applicable, a loading-cracking-unloading path in the G- plot looks as shown
in Fig. 2.1.9b. Along the segment OM, G increases while'the crack retains its initial length ag. Along
M A, the crack grows under constant G = G/y. If at point A the specimen is unloaded, the crack will not
heal, andso the unloading AQ’ will take place at constant crack length ¢ = a; down to zero load.

This process may be also plotted in a P-u plot,-a much more usual way of plotting experimental results.
In such a plot, the constant crack length segments O M and AQ’ become constant compliance lines, i.e.,
straight lines through the origin. The M A segment is an is0-G curve corresponding to' G = Gy, the
equation of which is obtained by eliminating the crack length @ from equations 2.1.21 and 2.1.22:

u= C’(a) P (2:1.49).

Gy = ——C’( ) (2.1.50) k

2b

The resulting P-u plot for the process shown in Fig: 2.1:9b typically looks as shown in Fig. 2.1.10a,
“with negative slope for the iso-G curve. However, there. exist certain geometrics where the iso-G curves
display posmve stope as depicted in Fig. 2.1.10b.

Example 2.1.7 ‘A DCB specimen similar to that in Fig. 2.1.3b has a thickness b = 10 inm, width
2h = 20 mm, and initial crack length ¢p = 80 mm, with & = 300 GPaand G =100 N/m. We want to
describe the evolution of the crack by means of the G{a) and P{u) curves in a quasi-static test in which
the displacement is monotonically increased until the crack doubles its initial length and then is decreased
until complete unloading.

The G(a) curve is immediate (Fig. 2.1.11a): the crack length is constant and equal to ag = 80 mm
while G is increasing up to Gy = 100 N/m-(segment OM); from this point on, the fracture energy is
kept constant at 100 N/m until the crack reaches 160 mm (pomt A) where unloading begins at ¢onstant
crack length down to O'.

To follow the P{u) process we use the approximate results for u and G from Examples 2.1.2 and 2.1.4.
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Figure 2.1.10  P-u plot of a loading-cracking-unloading in LEFM: (a) For a typical structure where iso-G
curves display downwards slope; (b) for more exotic structures or loadings the slope of the iso-G curves may
be positive.
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Figure 2.1.11  Process experienced by the DCB specimen in Example 2.1.7; (a) G~a; (b) P~ diagram.

Initially, ¢ = ap = 80 mm, and the load grows proportionally to the displacement following’ the first of
(2.1.29) with @ = ag:
_ 8Pa}
T EbR?
where the dimensions in parentheses indicate the units for the load and the displacement.

Point M corresponds to G = Gy witha = ag; the load Py at which this condition is met is obtained
from the second of (2.1.29):

= . P(N)=7324u(mm) (2.151)

_ 12P2 M“o
= TEWRY
corresponding to a displacement s that, according to (2.1.51), is given by ups = 0.8533 mm. From

this point on, the crack will grow and the dxsplacement and load will evolve following Eqgs. (2.1.29) with
G = Gy. The results are:

Gy = = Py =0625N . (2.1.52)

. 2
P(N) = 625 % and  u(mm) = 0.8533 & (2.153)
0

which are the parametric equations of the P—u curve during the process M A inFig. 2.1.11a. The cartesian
equation is obtained by eliminating a from the foregoing equations. The resultis P = Pys+/uns/u or
P(N)=577.4 u“/z(mm‘l/z).

Values P4 and u 4 at the unloading point A are obtained by setting @ = a4 = 2aq in the parametric
equations (2.1.53) with the result P4 = 312.5N and uy = 3.413 mm. The unloading branch then
follows as a linear equation down to the origin, i. e., P == Pau/us or P(N) = 91.55 u(mm). Figure
2.1.11b shows the curve followed in the P-u diagram.
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Figure 2.1.12 Illustrations for exercises 2.1 (left) aﬁd 2.8 (right).

Exercises

2.1 Consider the mechanism in Fig: 2.1.12 consisting of two rigid bars AB and BC joined by 4 hinge at B,
and a spring M N of constant k. The spring is connected to bar AB by a frictional slider D and to the rigid
support EC by a rolling support. Let L be the known length of bar AB, a the position of the slider on this bar,
P the vertical load applied at point A, and u-the vertical dlsplacement of point A. (a) Find the elastic energy
of the system as a function of v and «. (b) Find the load as‘a function &f w and a. (c) Find the energy available
to displace the slider a unit length, called G by analogy with crack growth. (d) Show that § is no more than the
component along AB of the force that the spring exerts on the shder (e) Show that the slider tends to move
towards point B whatever the direction of the load P.

2.2 Give a detailed proof of Egs. (2.1.20) and (2.1.21);

2.3 Derive the equivalent of equation (2.1.3)-for the energy release rate in circular cracks of growing radius
a in an axisymmetric stress ﬁeld (Answer: 27aG 6a = §W*H.)

2.4 Show that the generalized displacement associated with the resultant force of a uniform traction distribu-
tion is the average displacement in the direction of the tractions over the area of their appllcatlon (Hint:. write
t; = oe;, where o is a variable stress and ‘e; is a fixed unit vector.)

2.5 To simulate rock fracture in the labotatory, a very large panel of thickness b with a relatively small crack
of length 2a is tested by injecting a fluid into the crack. From Inghs (1913) results it is known that under pressure
p the straight crack adopts an elliptical shape, with minor axis ¢'= 2pa/E’, where the effective modulus £’ is
equal to the Young modulus % for generalized plane stress and equal to E/(1 — v?) for plane strain, with v =
Poisson’s ratio. (a) Find the complementary energy as-a function of p and a. (b) Pmd the energy release rate
for this case (note that a is the half crack length, not the crack length).

2.6 To test the fracture behavior of rock, a large 50-mm=thick slab will be tested in a laboratory by injecting a
fluid into a central crack of initial length 2a¢ = 100mm. Let p be the fluid pressure and V the volume expansion
of the crack. In the assumption of full linear elastic behavior with Gy = 20 N/m, find and plot the p-V and
G-a curves the panel expenences when it is subjected to'a controlled-volume injection until the crack grows
up to 1000 mm, after which it is unloaded to zero pressure. Use effective elastic modulus E' = 60 MPa in the
expression for G obtained in exercise 2.5.

2.7 For the panel of exercise 2.6, find and plot the p-V.and G-a curves for a test in which the crack extends
from 100 mm to 1000 mm under volume expansion:control and then the panel is unloaded: Assume that
resistance to crack growth varies with crack exténsion Aa in the form

R =20, [1—%] for 0<Aa<h (2154
R=Gs for Aa > X (2.1.55)

where G5 == 100 N/nrand A = 276 mm. Find the peak pressure and the maximum increase in volume. Use an
effective elastic modulus B’ = 60 GPa.

2.8 - Find the J integral for an infinite strip, of thickness b'and width 2h, with a symmetric semi-infinite crack
subjected to imposed zero displacements on its lower face and constant vertical displacement u on its upper
face (Fig. 2.1.12; Rice 1968a). Assume Imear elasticity ‘and plarie strain with known elastic modulus E and
Poisson’s ratio v.
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Figure 2.2.1 Center cracked infinite panel subjected to remote equiaxial tension.

2.9 A double cantilever beam specimen with arm depths A = 10 mm, thickness b = 10 mm, and initial
crack length ap == 50 mm, is made of a material with a fracture energy G’y == 180 ¥/m? and an elastic modulus
E = 250 GPa. The specimen is tested at a controlled displacement rate so that the load goes through the
maximum and then decreases, at still increasing displacement, down to 25% of the peak load. When this point
is reached, the specimen is completely unloaded. Assuming that LEFM and the beam theory apply, find the
P(u) and G(a) curves. Give the equations of the different arcs and the coordinates of the characteristic points.

2.2 LEFM and Stress Intensity Factor

It was a great achievement of Irwin to reformulate LEFM problem in terms of the stress states in the
material close to the ¢rack tip rather than energetically and prove that this, so-called local, approach was
essentially equivalent to the Griffith energetic (or global) approach.

The essential fact is that when a body contains a crack, a strong stress concentration develops around
the crack tip. If the behavior of the material is isotropic and linear elastic except in a vanishingly small
fracture process zone, it happens that this stress concentration has the same distribution close to the crack
tip whatever the size, shape, and specific boundary conditions of the body. Only the intensity of the stress
concentration varies. For the same intensity, the stresses around and close to the crack tip are identical.

To prove this assertion and to be able to solve problems for cracked structures of interest in engineering,
mathematical tools specially suited to handle problems of elastic bodies with cracks were developed in
the theory of elasticity. However, a user of LEFM (even a proficient one) does not need to make use of the
sophisticated mathematical formalisms required to prove the most general properties of the elastic fields
in cracked bodies. Therefore, in this section we present the most important results regarding linear elastic
bodies with cracks. Chapter 4 gives the mathematical treatment and derivation of these results, intended
only for those readers who wish to understand the sources of LEFM in greater depth.

We also restrict the analysis to the so-called mode I, by far the most often encountered mode in
engineering practice.. ‘This is the mode where the crack lies in a plane of geometrical and loading
symmetry of the structure and, therefore, no shear stresses act on the crack plane. The shear loading
modes (II and III) and the fracture criteria associated with them will be analyzed in Chapter 4.

2.2.1 The Center Cracked Infinite Panel and the Near-Tip Fields

Consider a crack of length 2a in a two-dimensional infinite linear elastic isotropic solid, subjected to
uniform normal stress 0o at infinity in all directions (Fig. 2.2.1). The solution of this problem was
obtained by Griffith (1921), as a particular solution of the panel with an elliptical hole obtained by Inglis
(1913), and is derived in full in Chapter 4. Using the central axes shown in Fig. 2.2.1, the normal stresses
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022 along the uncracked part of the crack plane (2 = 0, 2} — 4% > 0) are expressed as:

1]

PV a2
This result shows that the stresses tend fo infinity when the crack tips are approached from the solid.
So the stress field has a singularity at the crack tip. I order to determine the asymptotic riear-tip stress
field, we write the stresses as a function of the distance r to the nght crack tip, that is, replacing z; — a
with r (and z, with r + a, and 2, + a with r + 2a). Then; setting 2?2 —a® = (z; + a)(z; —a), we get

for o2 the following asymptotic approximation: : -

2
T/ 57
SOy = +—— onr-die ST 222
n=—= |1 e (22.2)
where the factor in square brackets shows the first three terms of the Taylor series expansion of (1 +
r/a)/+/1 + 7 /2a. This factor obviously tends to 1 for r' & ¢. It is now customary to denote

K =ovra ‘ (2.2.3)

and call it the stress intensity factor (Subscript I refers to the opening mode of fracture, or mode I, to be
distinguished from the shear modes If and 11l whose discussion'is deferred to Chapter 4) The near-tip
(r/a— O) expression for gy, now becomes

K '
oy =t (2.2.4)

2 V2mr

which shows that the stress displays a singularity of order 7= 1/2 at the crack tip.
For the normal displacements wu; along the crack faces (:c% a2 < 0), the elastic solution delivers

- ') = :f:-—ET— : a? = 11}’12 ‘ v v (2.2.5)
where u;’ and u, are, respectively, the vertical displacement of the uppervand lower faces of the crack,
and E’ is the effective elastic modulus defined as

E' =E for plane stress 2.2:6)
E'=E/(1~v?*)  forplane strain -

The crack opening w is the jump in displacement between the faces of the crack, w = ui‘” - Uy and
is obtained from Eq. (2.2.5) as

4o,
W= 'f(j? | a? =¥ 227

To see how the crack opening behaves in the neighborhood of the crack tip, we rewrite the last equation
as a function of the distance r from the right crack tip (now r =@ =) and substitute 0, = K1 /+/7a
to get

8 oot '
w = m[{]ﬁ [1 - Za - é‘é‘(‘l—i + ] N (242.8)

where the factor in the square brackets shows the first three terms of the Taylor series ekpansion of
v/ 1 —r/2a. Thus, the near-tip (r < a) expression for the crack opening w is

. g i )
W = e KT L2
VIrE! , @-29)
which shows that the profile of the deformed crack is parabolic (more precisely, a parabola of the second
degree with its axis coincident with the crack line:)
Although the above near-tip results made use of a quite particular case, they remain valid for all the
mode I loading cases. This will be-further discussed next. .

(221)
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Figure 2.2.2  #xes for near crack tip field description.

2.2.2 The General Near-Tip Fields and Stress Intensity Factors

The results of the previous section may be generalized to any mode 1 loaded crack using various math-
ematical formulations described in Chapter 4 to come. The analysis shows that the stresses oi;(r,0) at
any distance 7 of the crack tip may be wrilten as are given by

Ky
V2ar

where K is the mode 1 stress intensity factor proportional to the load, and functions S;;(r, 8) of polar
coordinates (r, §) —Fig. 2.2.2— are regular everywhere, except at load points, other crack tips and
reentrant corners. These functions are dimensionless, and thus independent of structure size and load,
but they depend on the geometry of the structure and of the loading . When the crack tip is approached
(r — 0), the general near-tip expression may be written as

oij(r,0) = Sij(r,0) (2.2.10)

K I I ) -
oi4(r, 8) W Si;(8) (2.2.11)
where K7 is proportional to the load and the dimensionless functions S7, ;(8) = 545(0, ) are independent
of geometry and the same for all mode [ situations. They are given in Secuon 4.3.2,Egs. (4.3.18)-(4.3.19).

This result means that two different linear elastic cracked bodies (different sizes, shapes, and material)
subjected to mode I loading have identical stress distribution close and around the crack tip if the values
of the stress intensity factors K are the same for both of them.

When 7 is not very small, the expression (2.2.11) represents the first term (the dominant one) of the
series expansion in powers of T of the general expression (2.2.10). To illustrate this, the general power
series expansion for the oy, stress component along the crack plane, which is analogous to that for the
center cracked panel, Eq. (2.2.2), is

'ITL

d 1+ﬂ1 +/32 + +ﬂm @2.12)

022 =

where D is a characteristic dimension of the structure (which may be, but in general need not be, chosen
as the crack length g, as it was for the center-cracked panel). The dimensionless coefficients Bm, depend
on the details of geometry and loading.

In the case of the center-cracked panel subjected to equiaxial remote stress, the series expanswn is
given by Eq. (2.2.2). For this geometry the first term is dominant, with error under within 3%, at distances
7 < 0.04a. For other geometries, the first term of the above series is identical, but the subsequent terms
may differ appreciably (Wilson 1966; Knott 1973). However, if the size of the fracture process zone is
much less than the X;-dominated zone (a few percent of the crack size, in general) the remaining terms
can be neglected and LEFM holds. If the fracture zone is too large, some inclastic. fracture theory must be
introduced. This is the case for concrete in most practical situations, and the main concern of this book.

Similar conclusions are reached if the displacement field around the crack tip is analyzed. The general
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Figure 2.2.3 Near-tip stresses and crack openings in crack propagation: (a) initial situation, (b) after crack
advanced an amount §a. : : .

solution using polar coordinates at the crack tip is of the'form

u(r,6) = —Eﬂ/ %rt Dy(r,6) (22.13)

where the dimensionless functions D;(r, §) are regular and depend on the geometry and loading. The
near-tip distribution for  — 0, however, is geometry independent:

ui._gf\/ﬁl)’(e) | | (2.2.14)

" The dimensionless functions D] (8) = D;(0, ) are given in Section 4.3.2, Eq. (4.3.20).

Animportant consequence of Eq.(2.2.13)is the expression of the crack opening profile. The uppercrack
face corresponds to @ = 7 and the lower crack face to 8 = 1, s0 we can write w = up{r, m)=uz(, ~7).
Thus, using (2.2.13) and expanding the resulting expression in power serics of © we get an cxpressmn
similar to Eq. (2.2.8) for the center cracked panel:

8 T’I?l
w:mmﬁ 1+7, JHYZD’ ...-mmm-+...] ’(22.15)

where D is the characteristic dimension of the structure previously introduced in Eq. (2.2.12), and the
dimensionless coefficients 7y, depend again on the geometry of structure and loading. It can be proved
(see Chapter 4) that they are related to coefficients By, of the stress expansion as follows:

=y

T S~ loge (2.2.16)

Ym =

2.2.3 Relationship Between K; and §

Since the asymptotic near-tip stress field is unique, and since the rate of energy ﬂow into the crack tip
must depend only on this field, there must exist a unique relationship between the energy release rate g,
and the stress intensity factor K. There aré various way&to derive it. The simplest is to calculate the
work of stress during the opening of a short slit ahead of the crack. We consider Mode T and imagine the
crack tip to be advanced by an infinitesimal distance 8¢ in the direction of axis z (Fig. 2.2.3a ,b). Let
A and B be the initial and final state. We use the procedure illustrated in Fig. 2.2.4, where the initial
stress state A has been preserved by introducing a line slit of length 6a-ahead of the preexisting crack,
but keeping it closed by means of external surface tractions ¢qual to the stresses existing in the actual
state A (Fig. 2.2.4a). The final state B is then reached by reducing these stresses proportionally down to
zero. In doing so, the intermediate states are such as the one depicted in Fig. 2.2.4b, in-which the surface
traction (closing tractions) are reduced to TUZA}, where 7 is a scalar load parameter varying from 1 in the
initial state A to 0 in the final state B (Fig. 2.2.4d).- The crack openings in the intermediate States must
vary linearly with T because the structure is €lastic,-and so they must be proportional to (1 —7) and,
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Figure 2.2.4 Proportional release of the closing tractions are used to compute the energy release rate.

therefore, equal to (1 — 7)w? (Fig. 2.2.4d). Since the remote boundaries are assumed clamped, the only
energy supply in going from the initial to the final state is the work done by the closing surface tractions.
The elemental work per unit area at a given location on the crack surface when the crack opens dw under ~
tractions 02, i —a9pdw, the minus sign coming from the different orientation of ¢, {(closing) and dw
(opening). Using this for an elemental intermediate step in which the load factor 7 varies by dr, the work
(external energy supply) per unit surface of the slit turns.out to be

d<(b17w> = —(Taﬁ)d[(l -y w?B = —TUZZ( dr w?) (2.2.17)

where b is the thickness of the body. Integration yields the total work per unit surface done by thc surface
tractions in passing from state A to B:

dWa_p 0 1
g o3 wB/l Tdr = —zaﬁ w? (22.18)

Therefore, the total external work supply — thus also the elastic energy variation at.clamped boundaries
— is obtained by integration of the previous equation with respect to r:

. N 1 Sa
uB_uA:WA—B:”‘E b/o O’g’wB dr (2.2.19)

Since &a is vanishingly small, one may now use the near-tip field expressions (2.2.4) and (2.2.9),
K 32KP
A I_ . B_,/ I\ [6a —
gt ol w T a—7r (2.2.20)
After substitution into Eq. (2.2.19), this leads to

ZKAKB o [5g — K KB
SU=Ug — Uy =~ / ey ,’ ba (2.2.21)

in which the integration has been performed by means of the substitution 7 = éa sin®¢t. Noting that
under fixed boundary conditions Gbda = —61/1 and that KB — K# = K for §a — 0, we obtain the
celebrated Irwin’s result:

2
g = K (2222)

This shows that Griffith’s and Irwin’s approaches are equwalem, and allows us to discuss fracture criteria.

2.2.4 Local Fracture Criterion for Mode It K.

Mode 1is quite simple. Since the stress state of the material surrounding a very small fracture process
zone —the crack tip— is uniquely determined by K7, the crack will propagate when this stress intensity
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factor reaches a certain critical value K7, called fracture toughness. Ky for the giveq material may
be determined petforming a fracture test and determining the Ky value that provoked failure. Becauge :
the energy fracture criterion must also hold, and indeed does according to the fundamental relationship
(2.2.22), K| is related to the fracture energy Gj by.

Kie=+E Gy ' » (2.2.23)

v

With this definition, the local fracture criterion for pure:mode I may be stated in analogy to tbe ehergy
“criterion: indexfracture criterion!in local approgcll

if K; < K. thén:  No crack growth (stable) S (2:2.24)

if Kj= I, then: - Quasi-static growth possible ) (2.2.25)
if Kj; > Kj. then: Dynamic growth' (unstable) (2.2.26)

For loadings that are not pure mode 1, the problem becomgs more difficult bec.ausc, mn genffral, an
initially straight crack kinks upon fracture and the criteria must give not only the loading combm.atlon that
produces the fracture, but also the kink direction. This is sti!l an open probﬂlcm today, and t!}c mtc.restefd
reader may find a summary of the most widely used criteria in Chapter 4. For most of the discussions in
this book, LEFM mode I fracture is all that is needed:

Exercises

2.10 Estimate the strength of a large plate under unidxial tensile stress if it contains through cracks of up to
10 mm. The plate is made of a brittle steel with K. = 60 MPay/m.

i icabili v he expression for the stress intensity factor
2.11 Assuming plane stress and applicability of beam theory, find ; s int
(mode I) of a dogble cantilever beam specimen of thickness b, arm length a, and arm depth h subjected to two
opposite bending moments M (see Fig. 2.1.3). ’

2.12 Determine the stress intensity factor of the éemer-cracked panel subjected to internal pressure, described
in exercise 2.5 (a) Use Irwin’s relationship, (b} use the near-tip expansion for the crack opening.

2.13  To test the fracture behavior of rock, alarge 50-mm-ihick panel of this material will be }ested ina
laboratory by injecting a fluid into a central crack ‘of initial lengt.h 2a0 = IOOrpm‘ Let p be the fluid pressure
and V the volume expansion of the crack. ‘Assuming linear elast;c behgvmr with K. =35 kPa\/E,_ﬁpd qnd
plot the p-V and K-a curves the panel would experience if it were subjected to a cor}ll'ollcd vglumf: injection
until the crack grew up to 1000 mm, and was then unloaded o zero pressure. Use Inghg result given in exercise
2.5 and an effective elastic modulus E’ =60 MPa in the determination of the volume increase.

2.14 Find the stress irtensity factor for the infinite strip of exercise 2.8.

2.15 Check that the coefficients of the near-tip power expansions for oz and w for the center cracked panel
subjected to remote equiaxial stress satisfy the relationship (2.2.16).

2.3 Size Effect in Plasticity and in LEFM

Scaling laws are the most fundamental aspect of ‘every physical theor){. As discusspd in Ch.apter 1,
the problem of scaling law and size effect in the theories of stru.ctural failure has re.celved consxde‘rable
attention, particularly with regard to distributed damage and nor}lmezfr fracture behavior. The necessity of
using theories that correctly predict the size effect was_emphz.mzed in Section 1.2.5 and the ba§1s for Fhe
general analysis together with some simple size effect derivations and examplgs was preseqted in Section
1.4. It was shown that for plasticity theory (and:for allowable-stress ana.1y81_‘su too).no size effect_ \{v/azs
predicted, but that for LEFM the nominal structural strength decrfeased with increasing size as D .
The main objective of the present section is to derive these properties from the‘ basic theories. ]
To do so, we first study the implications of limit analysis for size effect. Then we set up the general

forms that the expressions for Ky and G must take, and derive’thc size effect for LEFM. We end the section‘
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with a brief discussion of the effect of structure size on the strength of structures containing relatively
very small flaws whose size is independent of the size of the structure.

We remember from Section 1.4 that, unless otherwise stated, the size effect is defined by comparing
geometrically similar structures of different sizes (in the case of notched or fractured structures, the
geometric similarity, of course, means that the notches or initial traction-free cracks are also geometrically
similar). In this section, our interest is in analyzing the effect of the size on the nominal strength o,
which was defined in Section 1.4.1. We recall that its general form for plane problems is

P, , v
ONu =CNpH » (2.3.1)

where ¢y depends only on geometrical ratios and thus is a constant for geometrically similar structures.

We also recall from Section 1.4 that, Since any two consistently defined nominal stresses are related
by a constant factor, the general trend of the size effect is independent of the exact choices for ¢y and
D. However, for quantitative analysis and, specially, for comparison of results from various sources, it is
useful to make a consistent choice throughout.

2.3.1 Size Effect for Failures Characterized by Plasticity, Strength., or Allowable Stress

Consider a family of geometrically similar structures subjected to proportional loading characterized by
the nominal stress oy. Assume that the response of the matertal can be fully described by a certain
constitutive equation relating the stress and strain tensors. No restrictions other than rate independence
arc imposed on this relation. It may be linear or nonlinear elastic, elasto-plastic, or of some other more
sophisticated kind. The point is that the constitutive equation and fracture criterion contain parameters
which either are dimensionless (hardening exponents, strain thresholds, etc.) or have the dimension of
stress (elastic moduli, yield stresses), but do not contain any parameter with dimension of length. In other
words, no characteristic size exists.

Consider a reference structure of size D and a scaled geometrically similar structure of size D' = AD.
Assume that for the reference structure (that of size D) the stress at an arbitrary point of coordinates
(x1,22) for a given load characterized by oy is given by oyj(on, 21, 22). This stress distribution
satisfies the equilibrium equations and the traction-imposed boundary conditions. Considering the scaled
structure, it turns out that if the stresses at homologous points of coordinates ] = Ay and x5 = Azy is
taken to be identical to those for the reference structure, then this state corresponds to the actual solution
for the second structure. This correspondence may be analytically stated as:

Ugj(Uvaﬁ,z’z) =oi(on,21,%2)  with z} = Az and Th = ATy (2.3.2)

Then, it is easy to prove that, with this condition, (1) the traction-imposed boundary conditions are auto-
matically satisfied because of the similitude (the imposed surface tractions at the boundary are identical at
homologous points); (2) the equilibrium conditions o35 ; = 0 are also trivially verified; (3) the constitutive
equation is also satisfied if the strdin fields are related by an equation similar to (2.3.2):

Egj(aN,a:'l,a:;) =¢giilon,T1,22)  withz) = Az and 7} = ATy (2.3.3)
where ¢;5 and e;j are the strain tensors for the structares of sizes D and D', respectively; and (4) the las
equation is verified if the similitude law for the displacements is given by -

7“2(UN,$'1,I'2) = Aui{on, 21, 22)  With z1 = Az; and Th = Az (2.3.4)

~which is proven as follows:

1 { ou! o, 1/ Mou; Aou; N

B0y 0w

1
= ¢gii(on,21,22)  With zp = Az and zh = Az, (2.3.5)

Therefore, the laws of similitude (2.3.2) and (2.3.3) just state that for a given nominal stress oN,
the stresses and strains at homologous points of two geometrically similar structures are identical. This
implies, in particular, that the stress and strain maxima and minima also occur at homologous points.
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If failure is assumed to occur when-the stress; strain, or, in’ general, a certain function of the two
& (045, €45) reaches a critical value, i.c., when:
' - ®(o3j,65) = e (2.3.6)

where ®, is a given critical or allowable value, thenthe two similar structures will fail at the same nominal
stress. Thus, for theories such as plasticity or elasticity with strength limit or allowable stress, the nominal
strength of two similar structures of sizes D and D' isidentical:

Ohu = ONu (2.3.7)

In such a case we say that there is no size effect.
The foregoing result may be also obtained from dimensional analysis. Indeed in this kind of problem,
the external load at fracture is completely determined by o, ‘D and a number of geometrical ratios y;

- (those defining the shape, for example, the span-to-depth ratio). The material response is determined by

a certain critical or allowable stress o and a number of dimensionless ratios j; (the hardening exponent,

strain parameters, and ratios of elastic modulus to the allowable stress, B /o, for example). With these
variables, the only dimensionally correct expression for the nominal strength is :

ONy = Uc¢('7iy,”i) ) | (2.3.8)

where ¢(7;, 1£:) is a dimensionless function.Since the arguments -; are geometrical ratios that remain
constant for geometrically similar structures, and since the ji; are constants for a given material, (2.3.7)
follows. i

2.32 General Forms of the Expressions for K ahd G

Since crack growth in LEFM is defined by the condition G.= Gy or K1 = K¢, weneed to know the
structure of the equations for Ky and G if we want to investigate the influence of the size. And since size
effect is one of the main topics of this book, it is also convenient to define the conventional forms of the
equations we are going fo use so that the size D is'made explicit. Systematization of the presentation of
the existing results also requires using general mathematical forms of the equations for Krand G, so that
a single experimental or numerical result may be used for any similar specimen or structure.

To determine the geheral form, we consider a family of geometrically similar structures subjected to
the same type of loading (for example, the center cracked panel in Fig. 2.1.1 or the DCB specimens in
Fig. 2.1.3). Let D be a characteristic dimension (for éxample, the panel width or the arm depth in the

* DCB specimen), all the remaining dimensionis being proportional (for example, the height-to-width ratio

of the panel and the total length-to-depth ratio for the DCB); except for the crack-to-depth ratio a/D,
which is free to vary. The purpose of the analysis is to obtain the general expression for G and K7
showing explicitly the dependence on the variables P (or o), D and o = a/D. Let us first elaborate
the examples:

Example 2.3.1 For the center cracked panel with a short crack (@ = a/D < 1) the expression for
the stress intensity factor (2.2.3) can be written in either of the two following forms:

Ki = onVDy7o f_—%\/’ﬁ . (239)

where we set o = o = P/bD, and bis the panel thickness. . [

Example 2.3.2  For the DCB specimen-of Fig.'2.1.3b, we take the approximate expression (2.1.29),
substitute it into Trwin’s relationship (2.2.22) (assuming p‘lanc stress, B/ = F), and then we get

; Siip
K= m/ﬁza\/i = ﬁ:zoz\/i (2.3.10)

where we substituted D = h, oy = P/bD. 1l

Size Effect in Plasticity and in LEFM 45

The resemblance of the expressions for the these two simple cases-is evident. They only differ in the
factors depending on ¢ (/T for the panel and 204/3 for the DCB specimen). This result is general.
Indeed, because the response is linear elastic, the stress intensity factor must be proportional to the force
per unit thickness P/b. Since the stress intensity factor must have dimensions of Forcex Length~3/? and
must depend on the relative crack depth e, the only possible forms of the expression based on P and o -
are:

P .
Ki = —— k(o) = onVD k(a .
K1 =375 (@) =on (a) (23.11)
where E(c) and k(o) are dimensionless functions, o = a/D is the relative crack depth, and k{a) =
k() /cn. The convention of using ‘hatted” k for expressions based on P and plain k for expressions
based on oy will be retained throughout the book.

The general forms for the energy release rate G may be obtained directly from the foregoing by using
Irwin’s relationship (2.2.22). They are

PZ 2
G= PDE glay or G= gEﬂ/D g(a) (2.3.12)
where :
da) =k (a) ad gla)= c%g(a) = k*(a) (2.3.13)
N

In what follows, we systematically use the forms (2.3.11) and (2.3.12). Other equivalent forms can be
found in the literature, as'discussed latter.

Another simple argument leading to (2.3.12) is to note that the complementary energy of the structure
must be expressible as U* = 2UV f(a), where U = 0%, /2E" is a nominal energy density, V = bD?
is the volume of the structure and f(alpha) is a dimensionless function.. Then § = oU* [bda =
(8U* ) 9a)JbD = (o /E"YDf'(r). Setting g{c) = f'(x), one gets Eq. (2.3.12).

2.3.3 Size Effect in LEFM

Consider now a family of geometrically similar plane cracked structures loaded in mode L. Let ag be
the initial crack length and crp = 0/ D the initial relative crack length. From (2.3.11), the crack growth
condition, K = K. is fulfilled when oy reaches a'value o y; (initiation stress) given by

oNi = e (23.14)
2 WD
\/Ek:(ao) . :
After reaching this point, the crack will grow and the nominal stress will vary to keep K1 = K., i,
UNZ'—I—{;IE— for a > (2.3.15)
VDk(@) ’ -

Obviously, if k(c) increases with ¢, then oy decreases after the crack starts to grow and the peak load
coincides with the onset of crack growth. If, on the other hand, k(cr) decreases with @, then oy increases
after the crack starts to grow and, eventually, reaches a maximum when k(o) reaches a minimum. The
first case corresponds to the so-called positive geometries (Planas and Elices 1989a) and for them

on :UN,:_KLC_'
¢ ' VDk{()

where k') stands for the derivative of k() at o = ayp. For negative geometries, the peak load occurs
when the crack length reaches a value cps for which k(c) goes through a minimum, thus,

. . I{Ic
\ N = Do)

if K'(ag)>0 " (2.3.16)

it k(o) >0 k{ap) = minimum (2.3.17)
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In any case, since both ag and « s are constant for geometrically similar structures, it turns out that
the nominal strength is always inversely proportional to the square root of the size. Hence, for similar
precracked structures of sizes Dy and D = A Dy, the nominal strengths are related by

. 5 :

ONu = ONu, Dl A 200, « D12 (2.3.18)
Thus, it has been generally. proved that geometrically similar structires following LEFM exhibit the
inverse square root size effect. . :

234 Structures Failing at Very Small Cracks Whose Size is a Material Property

The foregoing size-effect analysis applies always to structures in which the crack length at maximum
load is proportional to the size of the structure. This kind of size effect, however, differs from that found
in normal kinds of metallic and other structures which'become unstable and fail (or must be assumed
to fail) before a small flaw, represented by a microcrack, can become a macrocrack of sxgmﬁcant length
compared to the structure size.

If the crack is small compared to the distances over which the stresses vary appreciably (let’s call
them microcracks, for short), it is easy to show (see the superposition method to compute-Kt in the next
chapter) that the stress intensity factor always takes the form

K; =kyorv/a : (2.3.19)

where ¢ is the stress normal to the microcrack plane at the microcrack location computed as if no
microcrack existed in the structure; a-is the-half-length or radius (for a pennyshape) of the microcrack
“and kg a constant depending on the exact shape and-location of the crack (but not on microcrack or
structure size). Consider now two structures that are similar (which means macro-geometrically similar)
and contain identical microcracks in-homologous positions. :Since we have proved in Section 2:3.1 that
the stresses at homologous positions are identical, it follows-that the microcrack at a specific site-starts
to grow in both structures at the same nominal stress leével. If one further assumes that global failure
follows immediately after one of the cracks starts to grow, it turns out that the two structures will fail at
the same nominal stress level. Hence, in this'type of similitude no size effect is present because, in fact,
it is equivalent to analysis based on allowable-stress or strength criterion (in which the allowable stress
or strength varies from microcrack site to microcrack site).

However, getting similar structures with identical distribution of microcracks is practically impossible,

50 actual structures are macroscopically similar but microscopically random. Then the strength of the -

structure can be defined only on statistical (probabilistic) grotnds, and a size effect appears because the
probability of getting larger flaws in the more highly stressed regions of the structure increases with the
structure size. The analysis of this kind of size effect will be deferred until Chapter 12, where we prove
that the statistical size effect vanishes asymptotically when macrocracks or notches exist at the start of
failure in the body (see also the short discussion in"Section 1.3).

With respect to quasibrittle materials, and particularly concrete, it is important to note that they contain
plenty of microcracks, but failure does not happen-as soon'as one of these microcracks starts to grow. It
only occurs after many microcracks have grown and coalesced to form a macroscopic fracture process
zone. This is a feature that makes the classical statistical theory of strength inapplicable to these materials.

Exercises

2.16  Show that the stress intensity factor for a penny shaped crack of radius a coaxial to a cylmdncal bar
of diameter D subjected to umaxxal stress o must take the form (2 3:11). ‘What is the form if K is written in
terms of the axial load P = onD?/4?

2.17 Find the general forms for the energy release rate of a.penny shaped crack of radius a coaxial to a
cylindrical bar of diameter D subjected to uniaxial stress o

2.18 In most handbooks on stress intensity factors, K is written in the form K; =Yora where aisthe
crack length, ¢ a characteristic stress, and Y a dimensionless factor depending only on geometrical ratios, in
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pamcular on the relative notch depth /D where D is a characteristic Jinear dimension of the body. Rewrite
this in the form (2.3.11) and find the relationship between ¥ and k(c).

2.19 Write the stress intensity factor of the DCB specimen of Fig. 2.1.3b in terms of the relative displacement
u of the load-points. Show that the general form of Ky forimposed displacement mustbe K7 = (Fu/v/D )L(a
where E is the elastic modulus, u the displacement, D a characteristic dimension of the body, a = a/D the
relative crack depth, and k() a nondimensional function.

2.20- To analyze the behavior of alarge structure with cracks, which is assumed to behave in an essentially
linear elastic manner, a reduced scale model is built at a 1/10 scale. The model is tested so that the stresses at
homologous points are identical in both model and reality, and we require the full scale and reduced models to
break at the same stress level. Determine tége scale factors for (a) loads, (b) toughness, and (c) fracture energy.
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Determination of LEFM
Parameters

The application of LEFM to practical problems requires knowledge of the stress intensity factors or the
energy release.rates for the actual geometry and type of loading. In many cases one further needs the
evolution of K with crack length. The selection of the method adequate to treat a particular problem
depends very much on external inputs: economical importance of the problem,; time available for analysis;
bibliographical, analytical, numerical, and experimental facilities available to the analyst.

Fracture mechanics literature contains a vast number of closed form solutions of various elastic bodies
with cracks. If the problem at hand can be approximated by one of the cases in the handbooks or papers,
the problem is solved with ease. Section 3.1.1 briefly shows the use of closed form solutions from the
handbooks. Quite-often the problem does not coincide with any of the cases of the handbook, but can
be obtained by superposition of other cases. The superposition may range from simple two-state cases
to continuous weighted superposition in the sense of Green’s function. Section 3.1.2 illustrates by some
examples the use of the superposition method.

Close to the handbook cases solved with ease are the cases where the elastic energy release rate can be
analytically calculated using the energetic approaches of Section 2.1, together with adequate simplifying
assumptions. The stress intensity factor, usually mode I intensity factor, then follows from Irwin’s
relationship K = +/E’G. Section 3.2 illustrates some of the available approximations.

When no closed-form solutions are available, other strategies are at hand for the analyst to choose.
The first one is to try to find an analytical solution. This is a highly specialized mathematical task out of
the reach of most engineering practitioners and researchers. It can be accomplished by one of the formal
approaches described in Chapter 4, and is outside the scope of this book. i

When all the analytical treatments fail — because Green’s functions are not available for the geometry
of interest, for example — one may resort to numerical methods, an expedient that is getting increasingly
easy to handle, increasingly reliable, and becoming readily accessible to engineers (Section 3.3.1). Al-
ternatively, the stress intensity factor of reduced-scale elastic specimens can be experimentally measured
in various ways (Section 3.3.2).

Application of LEFM to practical cases requires the fracture parameters of the given materials to be
known, too. The main aspects of the determination of K. and Gy are presented in Section 3.4.

Anaspectoften involved in fracture problems is the determination of displacements and similar variables
such as crack volume or crack opening profile. Section 3.5 shows how these displacements can be
calculated when closed form expressions for the siress intensity factor as a function of crack length are
known. As a corollary, the stress intensity due to a point load on the crack faces is determined from
the expressions of the crack opening profile and stress intensity factor for another arbitrary loading —an
expression known as Bueckner’s (1970) weight function.

3.1 Setting up Selutions from Closed-Form Expressions
3.1.1 Closed-Form Solutions from Handbooks

A large number of solutions for stress inténsity factors have been collected in handbooks (Sih 1973;
Rooke and Cartwright 1976; Tada, Paris and Irwin 1985; Murakami 1987). The energy release rates are
not included in these handbooks because the expressions for K are simpler, and the expressions for G
are very casily obtained from those for K using Irwin’s equation.
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Figure 3.1.1 Notched beam in three-point bending.  (a) Deﬁnmon of geometry and expression for K, (b)
variation of the shape factor p(c). . :

A few of the collected solutions are exact. Most of them are empirical fits of approximate but accurate
numerical results. In a few cases no analytical expressions are given, but a graphical representation of
the results is provided. In most cases of complex analytical expressions, a graphical representation is
provided as well as the closed-form expression.” Different fits, with different ranges of applicability and
different accuracies, may be available for a given case, a point that must never be overlooked.

In this book, we write the expressions for K in the form (2.3.11) because of our interest in the
‘size effect. This is to be taken into account when comparisons arc made with handbooks in which the
prototype expression for a stress intensity factor is taken to be that for a center cracked infinite panel,
so most handbooks use the form K; = oy +/makF (&), where F(c) is a dimensionless function of the
relative crack length. Comparing this with (2.3.11), it turns out that the relationship between k() and

Fla)is k(o) = /raF(a).

Example 3.1.1 For a single-edge crackéd beain subjected to three-point bending (Fig.. 3.1.1a), the
expression for K depends mildly on the shear force magnitude near the central cross-section, i.e., on
the span-to-depth ratio. Fig. 3.1.1b shows a plot of k(a) for the limiting casc of pure bending (formally
equivalent to S/ — co) and for the case S/D = 4 (a standard ASTM testing geometry). Analytical
approximate expressions for these two cases were produced by Tada, Paris and Irwin (1973), for pure
bending, and by Srawley (1976), for S/ D ="4. Recently, Pastor et al. (1995) produced expressions
accurate within 0.5% for any a/D. The latter expressions have the advantage over the former that their
structure is identical (additionally, they correct a-4% error that crept in the Srawley formula in the limit
of short cracks). With the definition of o shown in Fig::3.1.1; the shape factor takes the form

Ja pS/D(a)

(1 +2a)(’1":“)_3/“z (3.1.1)

ks)p =

where p, (@) is a fourth degree polynomial in a.. The expressxon of the polynomials for S/D = 4 and
0o (pure bending) are

pa(@) = 1.900 — o [~0.089 + 0.603(1~cr) — 0.441(1 = @)* + 1.223(1 - @)*] (3.12)

Poo(@) = 1.989 — ar(1-cx) [0.448 ——'0.458(1 - o) + 1.226(1 — a)z] o (3‘.1.3)

Note that for very short cracks (o — 0) the shape factors k(c) behave as co+/mc , where cq is a constant
close to 1.12. For very deep cracks (o — 1), k{ar) o< ¢(1 = a)~3/2, where ¢y is a constant close to
2/3. This is the general trend for specimens in which the resultant force over the crack plane is zero.
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Figure 3.1.2  Center crack loaded by symmetric concentrated forces.

Example 3.1.2 The stress intensity f{actor for the center cracked panel of Fig. 2.1.1 was obtained
numerically by Isida (1973) with very high accuracy for H 3> D. These results may be approximated
within 0.1% by the Feddersen-Tada expression (Feddersen 1966; Tada, Paris and [rwin (1973))

ges

K;=oVDk{e), kla)=

(1 =0.1a? 4 0.960") (3.1.4)
Cos QY

In this case, the behavior for short cracks coincides with that for an infinite panel, k(a) — /7a; for
fong cracks (o — 0.5), k() — (1 — 22)~ /2 where ¢, is a constant very closeto 1. {1

Example 3.1.3 The stress intensity factors for cracks with concentrated loads applied on the crack
faces display a completely different typc of dependence on the crack length. The simplest case is that of
a center-cracked infinite panel loaded with (wo equal and opposite forces at the centers of the crack faces
(Fig. 3.1.2, with o/ H and a/D < 1). The stress intensity factor is then written as

P . .
K = = N 3.1.5
1= Y (:1:9)
which shows that for-a given load P the stress intensity factor decreases as the crack length increases.
It is obvious, however, that this decrease cannot be indefinite for a real (finite) plate.. Indeed, based on
numerical results by Newman (1971), Tada, Paris and Irwin (1973) proposed the following modified
formula for a finite panel of width D and height H = 2D:

- 1-05 0.9570* — 0.16c°
_ia/D), ka)= athle (3.16)
b\/— ma(l - 2a)
with error less than 0.3% for any a/D. Note that for a relatively small crack length (a/D — 0), this
cxpressmn coincides with that for the infinite panel. On the other hand, for large cracks (a/D —0.5),
k(oz) — ¢p{1 — 2c)~"/2, which coincides with the previous example if one sets o = P/bD.

K=

312 Superposition Methods

One of the advantages of LEFM is that the solutions for different loading cases are additive in stresses,
strains, and displacements. “Since stress intensity factors are nothing but parameters of the stress field,
the stress intensity factors are also additive. This explains why Irwin’s local approach is more popular
than Griffith’s global approach, even though they are generally equivalent. The energy release rates are
not additive (although they are square-root additive); however, special care must be taken in problems
in which geometrical nonlinearities arise. Such is generally the case when the resultant mode 1 stress
intensity factor at any of the crack tips becomes negative. This implies interpenetration of the faces of
the crack which is in reality impossible; instead, there is partial closing of the crack with face-to-face
compression, which is a nonlinear phenomenon. )
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Figure 3.1.3  Load decomposition in three-point bent beams.

The literature is replete with problems solvable by superposition. Many cases are quite obvious: the
actual loading often is just a superposition of various simplerloadings for which the stress intensity factors
are known. This is the case for eccentric tension or compression of cracked strips which are solved by
superposition of a pure tension or compression state and a pure bending state. Sometimes the simple
states are not so obvious, as the following example shows.

Example 3.1.4 To obtain the stress intensity factor of a single-edge cracked specimen subjected to
three-point bending for arbitrary span-to-depth ratio,-Guinea (1990) and Pastor et al. (1995) used the
approximate superposition illustrated in Fig: 3.1.3. " In this approximation, the solutions for §/D = 4
(Fig. 3.1.3b) and for pure bending (Fig.-3.1.3c) are superposed so that the resulting bending moment
distribution over the central part is the same as that for the actual beam (Fig. 3.1. 311) The result may be
written as:

ksjp(a) = keo(a) + 4—[2[’%(&) ~ koo(e)] (3.1.7)

where ks(c) and koo (@) are the solutions for §/D =4 arid co giveniin the example 3.1.1. Rearrangmg,
the final expression turns out to be of the form (3.1.1) with Ps/D (a) given by

ps75(0) = Pool®) + *2[pu(0) = pus(o)] Gy

with ps() and peo(x) given by (3.1.2) and (3.1.3). This solution was checked against existing results in
the literature for S/ D = 8 (Brown and Srawley 1966) and finite element results using very small singular
quarter-node elements for /D = 8 and 2.5 (Pastor etal’ 1995). The results coincided within 1%.

A particularly important class of superposition is that in' which the effect of remotely applied stresses
is first reduced to the effect of a stress distribution over the crack faces and then the stress intensity factor,
due to this stress distribution, is obtained by integration of the stress intensity factor due to a point load at
an arbitrary location on the crack faces. Let us 1llustrate these steps by examples; first the reduction to a
case with stresses on the crack faces. .

Example 3.1.5 - Consider a center-cracked panel subjected to remote uniaxial stress 0. We may de-
compose the whole elastic solution (Fig. 3.1.4a) as the solution for an uncracked panel (Fig. 3.1.4b) and

the solution for a cracked panel with the faces of the cracks subjected to stresses identical but opposite to

those in the uncracked panel (Fig: 3.1.4c). Inthis way, the remote boundary conditions are satisfied, as
well as the boundary conditions on the crack face.' Of course, the stress intensity factor for load case (b) is
zero (there is no singularity in an uncracked panel) so that one finds that the stress intensity factors of cases
(a) and (c) are identical. This particular example proves that the stress intensity factor for a center-cracked
panel subjected to remote uniaxial stress ¢ is identical to that corresponding to a center-cracked panel
with the crack subjected to internal pressure p = 0.
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Figure 3.1.4 Solution for a cracked panel expressed as superposition of the solution for an uncracked panel
and the solution for a loaded crack with no remote stresses.
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Figure 3.1.5 Superposition used to analyze thermally induced stress intensity factors,

Even if the foregoing examples may-seem very simple, the basic procedure is always the same. In
particular, this is the most usual method when internal stresses build up due to thermal or moisture
gradients. In those cases, the internal stress distribution is first computed for the body without crack (but
with non-uniform temperature or moisture distribution), and then equal and opposite stresses are applied
on the crack faces (while keeping uniform temperature).

Example 3.1.6 Consider a long center-cracked panel with free ends subjected to heating on both its
sides.  Assume that at a given instant the temperature profile is parabolic fcross the section: AT =
ATo(22/D)? (Fig. 3.1.52). We decompose this state in the state shown in Fig. 3.1.5b, with thermal
gradient and no crack, and the state shown in Fig. 3.1.5¢, with no thermal gradient and stresses on the
crack faces equal and opposite to those in case (b). The stresses in case (b) may be estimated in the
classical way by assuming that initially plane sections remain plane. If we call § the coefficient of linear
thermal expansion, the result for the stress distribution along the crack plane is

2z
1~2(D) ] (3.1.9)

Except for a change in sign, this.is the stress distribution to be applied on the crack faces in state (c). As
in the previous example, the stress intensity factor for the original state (a) is equal to that for state (c)
because in state (b) there is no crack and thus there is no stress singularity.

= ~6EAT0

Once the equivalent problem with stresses on the crack faces has been obtained, the problem remains of
finding the stress intensity factor for this case. This may be done directly if the so-called Green function
for the problem is known. The Green function is no more than the expression for the stress intensity factor
engendered by a unit point load applied at any location on the crack face.

To be systematic, we write the stress intensity factor generated by a load-pair Py, located at point  on

B
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Figure 3.1.6 Superposition based on Green’s function:  (a) Base problem; (b) general problem for a center
- cracked panel; (¢) Superposition corresponding to the general ‘problem.

the crack faces (Fig. 3.1.6a) in the form
K= —Ez—kg(oz,x/D) ‘(3.1.10)
WD .
where k¢{o, /D) is the dimensionless Green function (the Green’s Tunction with dimensions includes
the factor 1/bv/ D). If kg is known, the stress intensity factor generated by an arbitrary stress distribution
over the crack faces is easily obtained by integration, as shown in the following example (which can easily
be generalized to other more complex situations).

Example 3.1.7 - Consider the center-cracked panel subjbclcd to a known normal stress distribution over
the crack faces, symmetric with respect to the-crack plane (Fig. 3.1.6b). Let the stress at relative distance
z/D from the crack center be o (/D). /If we subdivide the crack into infinitesimal length elements
dz, the element at z contributes with an elemental concentrated load dP, = bo(z/D). “According to
(3.1.10) this produces an infinitcsimal stress intensity factor dKp = (o(2/D)/VD)kg(a, z/D) dz.
Now, adding up the contributions from all the elements we get

l a
Kiy= | dK; = —= o(z/DYke(o,; 2/ D) dx (3.1.11
1= [dii= o= [ ote/D)ks(ez/D) s
or, with the change z/D =u
Kr=+vD o(u) kelo,u) du (3.1.12)

To check this approximation, let us consider the prévious Examples 3.1.5 and 3.1.6 for the limiting case
a = a/D <« 1. Insuch a limit, the plate may be considered to be infinite, and the function kg (o, u),
with u = /D, simplifies to : )

B 1vradu
o e 3.1.13
I”G(azu) ﬁam ( )
Substitution of this expression into (3.1.12) gives ’4
i @ atu
K =\/D——/ o) —==—= du . 3.1.14
! Ve " e —e ~ G1.14)

For the case of uniform tension o(u) ='o = constant, the integration readily delivers the well-known
result K; = o+/7a (in the integral, set u = asint, du = q/cost dt). For the case of the parabolic
distribution of temperature in Example 3.1.6 we notice that since we are considering /D < 1, and since
z < a, then the term 2(2x/D)2 in (3.1.9) is also negligible. Thus, the stress intensity factor for this case
isjust K = BEATy/7a/3.
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The function mg = K1/Py = kg(a,3/D)/vD is called the weight function, of which kg is a
dimensionless version. Finding the weight function for a particular case is a difficult problem of elasticity
theory, which will be briefly outlined in Section 3.5.5. For a systematic approach to the weight function
method, see Wu and Carlsson (1991).

Exercises

3.1 - A long strip of width D = 400 mm is subjected to variable uniaxial stress with peaks of 14 MPa. In
these conditions, edge cracks may be assumed to grow due to fatigue, and the designer wants the strip not to
fail before the fatigue cracks are clearly visible. Determine the required toughness (K re) if the crack length at
which the strip fails must be (a) at least 10 mm, (b) at least 50 mm. Give also the values of the fracture energy
if the material is a steel (£’ =2 200 GPa)¥

3.2 Inalong strip of width.D = 300 mm, the expected peak stress (uniaxial) is 30 MPa. If there exist welding
flaws which resemble a center crack, determine the maximum flaw size allowable if the fracture toughness is
96 MPa+/m and (a) the strength safety factor is 1; (b) the strength safety factor is 2. (Hint: make a first estimate
of e assuming a/ D < 1, and then iterate until 1% accuracy of the result.)

3.3 Estimate the stress intensity factor for cccentric tension in a single-edge cracked strip. Let P be the load,
D and b the strip width and thickness, and ¢ the eccentricity (positive towards the cracked side). Write the
results as (a) (P/bv/D)k(a); (0) oV Dk(ar), with ox cqual to the mean remote tensile stress; (¢) same, but
with o equal to the maximum remote tensile stress; show that in this latter case, the shape function k(c) for
very short cracks tends to the same value as that for'a semi-infinite plate with an edge crack.

3.4 Athinslit of length 2¢ is machined in a large panel of thickness b made of a brittle material. A flat jack
of identical length is inserted into the slit and pressure is applied to it until a crack propagates symmetrically.
Determine the stress intensity factor at the crack tips for arbitrary crack length 2a and jack pressure p. Show
that when a >> c, the stress intensity factor approaches that corresponding to a center crack loaded at its center
by a pair of forces equal to the jack force.

3.5 In the pressurized panel of the previous exercise, plot the evolution of the pressure in the jack vs. tlie

- crack length for quasi-static crack growth, Assume tha the initial slit behaves as a crack, and that the fracture

toughness K. is known. (Hint: plot p\/¢/ K. vs afc) - ) ’

3.6 A large panel has a center crack of length 2a subjected to a symmetric internal pressure distribution
which takes the value py at the crack center and decreases linearly to zero at the crack tips. Determine the stress
intensity factor.

3.7 Show that if a center crack in a large pancl is subjected to an arbitrary symmetric pressure distribution
of the type p = pog(a/a), where ¢(z/a) is a dimensionless function of the relative coordinate 2/« along the
crack, the resulting stress intensity factor is always of the form Ky = kpoy/ma where k is a constant.

&

3.2 Approximate Energy-Based Methods

Building on the results of Section 2.1, let us now review the techniques that provide approximate solutions
for G in a number of cases. The presentation is not intended to be exhaustive. Its purpose is twofold: to
give at least a minimum of insight on how to obtain the energy release rate, and to provide a number of
simple equations for G which can be used in solving typical fracture problems.

The section covers first the simplified approaches to truly linear problems, relying only on simple
mechanics of materials, After that, a certain geometrically nonlinear case is briefly analyzed: the extension
of a surface delamination crack due to buckling under compression.

32.1 Examples Approximately Solvable by Bending Theory

In Section 2.1 we already presented the DCB specimen as an example of structuges in which the energy
telease rates may be approximately calculated by bending theory (Fig. 2.1.3). The energy relcase rates of
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Figure 3.2.1 Structures with energy release rate approximately solvable by beam theory.

¥

the beams or structures shown in Fig. 3.2.1 canalso be solved in this way if they are slenderand the cracks
are assumed to grow straight ahead. The solutions are asymptotically exact as the slenderness tends to
infinity. . i

The approximation, which has already been used in Examples 2.1.1-2.1.4, consists of using the classical
beam theory to determine the load-point displacement and the elastic energy for the arms at both sides
of the crack, assuming fixed ends at the crack root sections.. Two basic approaches may be used. In the
first, the bending moment distribution is computed; then the energy per unit length of beam, M?[2EI,
is integrated to find the total elastic energy or the complémentary energy and the energy release rate is
determined by differentiation with respect to crack length according to Egs: (2.1.15) or (2.1.21). This
procedure was illustrated in° Examples 2.1.1 and 2:1.2.: The second approach is to compute first the
compliance and use Eq. (2.1.32) to determine the encrgy releasé rate in the manner in Examples 2.1.3 and
2.14.

All the structures shown in Fig. 3.2.1 can be solved ineither way, although some structures are statically
indeterminate and then the redundant forces must be solved first. Care should be taken regarding the value
of the crack length in these structures, which is a when'a single crack tip exists, but Na when N crack
tips are present. Hence, pariial derivatives must be with respect to Na to oblain the energy release rate
per crack tip.

3.2.2 Approximation by Stress Relief Zone

Consider the center cracked panel of Fig. 3.2.24 subjected to remote stiess 0o perpendicular to the
crack plane, and assume that the crack length is much less than the remaining dimensions of the plate.
The principal stress trajectories in Fig. 2.1.1a reveal that the formation of a crack causes stress relief in
the shaded, approximately triangular regions next to the crack.- As an approximation, one may suppose
the stress relief region to be limited by lines of some constant slope k (Fig. 3.2.2a), called the “stress
diffusion” lines, and further assume that under constam_b%mdary displacements the stresses inside the
stress relief region drop to zero while remaining unchanged outside. Based on this assumption, the
total loss of strain energy due to the formation of ‘a crack of length 2¢ at controlled (fixed) boundary
displacements is AU = —2ka*b(ol,/2E) where o3, /2E is the initial strain energy density. Writing
that 0o, = Eu/L where v and L are the panel elongation and length, we can rewrite the Joss of strain
energy as AU = —2ka?bE(u?/2L?) and, therefore, the energy release rate per crack tip is

1 1o(Au)
B —E[ 20a

) : 2 2 )
]ﬂm%:m% ' (3.2.1)

w

whiere in reaching the last equality we assume that after crack formation the relationship 0 = Bu /L is
still approximately valid, an assumption that we will show to hold later.
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Figure 3.2.2 Approximate zones of stress relief: (a) for a center cracked panel, (b) for a penny-shaped crack.

The foregoing approximate result is in exact agreement with Griffith solution (1924) if one assumes
that k = 7 /2 = 1.571. Even if k is unknown, the form of this equation obtained by the stress relief
argument is correct. If the stress relief zone is assumed to be a circle of radius a passing through the crack
tips, the result also happens to be exact. The same is true when the zone is taken as a rectangle of width
2a and height wa/2, or any geometrical figure whose area is ma?.

For the penny-shaped crack in an infinite elastic space subject to remote tension oo, (Fig. 3.2.2b), the
stre§s relief region may be talgcn to consist of two cones of base wa? and height ka. Therefore, AU =
—2ind’ka(c’, [2E) = —~Rrka*Eu?[L?). Also, G = ~[0AU/8(ma?)], = ~[DAU/Bal, [2ra,

ie.,

kola kola
G = 2? = 2; (3.2.2)

Again, this equation is of the correct,form and is in exact agreement with the analytical result (Sneddon
1946) if one assumes that k = 8/7r. The exact value also results if the stress relief zone is assumed to be a
rotational eltipsoid of minor semiaxes @, ¢ and 8a/7 or any geometrical figure whose volume is 16a* /3.

The approximate method of stress relief zones can be applied in diverse situations for a quick estimate
of G. The value of k depends on geometry and its order of magnitude is 1 (except in the case of high
orthotropy). The error in intuitive estimations of & can be substantial; however, the form of the equation
obtained for G is correct.

There is a dichotomy in the method of stress relief zone which one must be aware of. Since the stress
relief zone in Fig. 3.2.2 does not reach the top and bottom boundaries, the stress ¢ at top and bottom can
remain constant and equal to 0. -Since there is a continuous zone of constant stress ¢ = o', connecting
the top and bottom boundaries, the displacements at top and bottom also remain constant during the crack
extension at constant 0. ) .

However, from Eq. (2.1.32), it follows that a non-zero G implies an increase of the compliance due to
the presence of the crack. This, in turn, implies that the stress cannot remain constant while the crack
extends at constant displacement. The variation of compliance due to crack extension may be obtained
from Eq. (3.2.1) and from this the stress variations at constant displacement may be inferred. Let D be
the width of the panel, L its length, u the relative displacement between the top and bottom boundaries.
The resultant load and initial (uncracked) compliance then are: )

P =0,bD (3:2.3)
L
Co = WDE (3.2.4)

Inserting the foregoing expression for P into Eq. (2.1.32) (taking care to change the total crack length
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" Figure 3.2.3- Herrmann’s apptoximation.

@ to 2a) and cquating the result to Eq. (3.2.1), one easily finds

dC{a) . Bka ’
da ~ bD2E (-23)
which integrates to
4ka? o
C(a) =Cy + m (3.2.6)

From this, one sees that the variation of compliance contains-the factor (a/ D)? whose absolute value -

tends to vanish when the size of the panel is much farger than the crack length. The remote stress drop due
to crack extension at constant displacement is also shown to vanish as (a/ D)?. Indeed, by differentiating
the relation u = C(a) P one finds the first-order approximation for the remote stress drop as

4ka?

Acgs(u,a) = —Uoo(ﬂ,())i"— (327)

where the higher order terms in 4ka? /LD have been neglected. .

Henceforth, the initial contradiction between thé hypotheses of both constant remote stress and dis-
placement exists at the theoretical level, but is resolved at-the approximation level because it has been
proved a posteriori that, in this case, the stress drop is vanishingly small when the crack is small r¢lative

to the size of the panel.

32.3 Herrmann’s Approximate Method to Obtain G by Beam Theory

A remarkably simple method for close approximation of Gin notched beams was discovered by Kienzler
and Herrmann (1986) and Herrmann and Sosa (1986). The method was derived from a certain unproven
hypothesis (postulate) regarding the energy release when the thickness of the fracture band is increased.
Bavant found a different derivation of this method (Bazant 1990a) which is simpler and at the same time
indicates that the hypothesis used by Herrmann et al.might not be exact but merely a good approximation.
Also, Herrmann’s method relies on more sophisticated concepts (material forces) which are elegant but
seem more complicated"than necessary to ‘obtain the result. An even a simpler method of deriving
Bavant’s and Herrmann's results has been recently developed by Planas and Elices (1991d). This last will
be presented now. : . i

The method consists of approximating the cracked beam by a triangularly notched beam as shown in
Fig. 3.2.3, and calculating its energy in the frame of the strength of materials theory (bent beam of variable
inertia.) : :

Let k be the slope of the sides of the triangular notch, to be determined empirically. Let b and D
be, respectively, the thickness, and depth of the unnotched beam, and let M be the constant bending
moment over a central portion of the beam of letigth 2L > 2ka. With the axis shown in Fig. 3.2.3, the
complementary energy of the central portion is

ka 2 .

M {

U* = 1\42/ LSS (e (L~ ka)y=+ (3.2.8)
0 B .

EI(0) EL,

where EI is the bending stiffness of the unnotched beam and EI(c) is the bending stiffness when the
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Figure 3.2.4 (a) Buckling of 2 subsuri@cc layer. (b) Load-displacement curve for a buckling beam.

depth has been reduced to ¢,

c:D—~a+x

7; (3.2.9)

Applying Eq. (2.1.21) to Eq. (3.2.8), onc finds:

ka
9 1 de 1 M?
bQ:MZ/ (—<~—~>——d' Mook — ke
| e\ B9 ) 3 M ERDY VB (3.2.10)

where, since I{D) = I, the second and third terms cancel out. Moreover, from Eq. (3.2.9), dc/Ba =
—k B¢/ Oz, Integration now delivers Herrmann’s result

k(1 1 )
G = ; (Efz_ﬁ)M (3.2.11)

where EI, is the bending stiffness of the central (notched) section.
When the remote flexural stress oy = M D /21 is used as a measure of the load, and the expressions
of the inertia moments for rectangular cross-section are substituted, the previous equation reads

_chrfr D 3
=35 (b—:&) -1 (3.2.12)

According to Kienzler and Herrmann (1986, Figs. 3 and 4), this compares (for k = 1) very well with
accurate solutions from handbooks. However, it appears that the agreement would be even better for some
value k # 1 (BaZant 1990a). For very shallow notches, this method requires rather large k-value (about
4) to accurately fit the results. But in this case, the approximation by a beam of variable thickness is poor.

The results of Herrmann and Sosa (1986) for double-cdge-notched and center-cracked specimens may
also be obtained using the Planas and Elices expedient of approximating the crack by a triangular notch
(coinciding with the shaded areas in Fig. 3.2.2a for the center cracked panel), and performing a classical
analysis with the assumption that the cross-sections remain plane.

3.2.4 Subsurface Cracking in Compression by Buckling

A slightly exceptional case in LEFM is that shown in Fig. 3.2.4a, where a subsurface (delamination) crack
may grow due to buckling of the layer above it, induced by a remotely applied compressive stress Oeo. In
this case the computation of G must take into account the geometrical nonlinearity implied in buckling.
To do this, one computes the elastic energy of abuckled beam, Uy, asthe work supply when no dissipative
processes take place. This coincides with the area swept by the P-u curve, where P is the compressive
load applied to the beaim and u is the beam shortening. When h, b, and 2a are, respectively, the depth,
thickness, and length of the beam, the P-u curve coincides with the straight line P = bhEu/2a for loads
below Euler’s buckling load Pg and is horizontal (P = Pg) for further displacements (Fig. 3.2.4). The
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area under the curve U}, is

1, A (2854 ’
= Pgpti— - Pgug = 2abh (———-) 2.
U, eu— 5 Ppup abhop (- ~ 5% (3.2.13)
where 0 g = Pg/bh is the buckling stress, which, for fixed ends and rectangular cross-section, is
Op = T 3.2.14
E = 1242 ( . )

The fundamental simplification in our problem consists 6f assuming that the displacement of the ends
of the buckling layer of length 2a is imposed by the deformation of the surrounding material which stays
at stress level 0o, S0 we have

u=2a339’ ‘ : (3215)

E
and, after substitution into Eq. (3.2.13), the strain energy of the buckled layer is

Uy = abhZE (20oo —OF) (3.2.16)

The energy U of the wholc system is Uy plus the strain energy of the surrounding material, which is the

strain energy density o2 2, /2E times the surrounding volume, cqua] in turn, to the total (constant) volume
of the body V minus the volume of the buckling layer Zabh The resulting expression is

(000 — 05)?
= (V —2abh) 22 4 abhZE (2600 — & V— ~ 2abh TR 9B © (3.2.17
= a ) 7t ( oo E) 5F 35 (32.17)
From this, the expression for G follows at once using Eq. (2.1.15) with the condition, following from the
simplifications used in the derivation, that o, remains constant at constant displacement. After inserting
Eq. (3.2.14) and differentiating with respect to a, one gets the following expression for the energy release
rate: '

T (3.2.18)

This result captures some, but not all, of the important aspects of the problem of delamination in layered
composites (Sallam and Simitses 1985, 1987; Yin, Sallam, and Simitses 1986).

1oy} - h [, a%h? rtht o,
=7 [28«1]“_ {”“J’ T

3.3 Numerical and Experimental Procedures to Obtain K; and ¢

In many practical problems there is no analytical solution for the energy release rate, and one must resort
to experimental or numerical approximations. While experimental procedures have been extensively used
in the past, modern computers have made the numerical procedures relatively easy. In this section we
give only a brief sketch of the available methods for the case in which the propagation direction is known.

3.3.1 Numerical Procedures S

There are various numerical approaches to solving linear elastic fracture problems. For our purposes,
the best classification is based on commercial availability. Special purpose computer programs, which
make use of special properties of the fields in plane elasticity (see Chapter 4) and are usually usually not
available commercially, may be very accurate; but are generally restricted to research by specialists. This
is the case of the so-called boundary collocation, in ' which special power expansions of the unknowns are
used for a particular problem and the coefficients of the expansion are determined so that'the boundary
conditions be satisfied only in some average sense.

Restricting attention to commercial programs, we may distinguish between special purpose programs
and general purpose programs. Special purpose programs are specifically designed to deal with cracks
and determine stress intensity factors, so that the user may access to post-process routines that will readily
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compute the stress intensity factor from a basic numerical solution. General purpose programs are those
available to solve general elasticity problems, which can be used, with special strategies, to solve fracture
problems. With the general purpose programs, two basic strategies may be used: (1) incremental stiffness
method, and (2) near-tip field fitting.

The incremental stiffness method essentially consists of determining the compliance for two different,
but close, crack lengths a — Aa and a-+ Aa. Then the energy release rate G is estimated as

2
G~ P? Cla+Aa)— Cla - Aa) 331
2b 2Aa

Any finite element, finite difference, or boundary element code may be used to produce the two compliance
values for two close crack lengths. Numerical resolution and mesh refinement limit the accuracy of this
procedure. In very general terms, there are two possible approaches: (1) use only one mesh and simulate
crack extension by freeing one node, so that the crack extends by one element, or (2) modify the mesh
for the second calculation in which the node at the crack tip is displaced by Aa. The first method is easy
to use and does not require modification of the global stiffness matrix, but requires a fine mesh so that
the numerical differentiation in (3.3.1) gives accurate results. The second method decouples the crack
extension from the mesh size, but requires partial recalculation of the stiffness matrix.

Example 3.3.1 A commercial finite elément code was used to analyze a single-edge cracked beam in
three-point bending, with a span-to-depth ratio S/ D= 4 (Guinea 1990). Half the beam was discretized
so that 100 equally sized elements were placed along the crack plane. The crack length was varied
by changing the boundary conditions along the nodes in the crack plane, from opening displacement
prevented (no crack at this node) to load free (crack at this node). Computations were performed in plane
stress with D = 1,b = 1,and E = 1, for a load P = 1 (in arbitrary, but consistent, units). Although,
the purpose of the computations was other than determining K, the results can be used to examine the
accuracy of the differential stiffness method.

Consider, forexample, the case ¢ = 0.5.D. The displacements computed for crack lengths o = 0.49D
ay = 0.51D were, respectively, 57.261 and 61.663, numerically identical to the compliance values
(because P = 1). The energy release rate is then evaluated from (3:3.1) as G = (12/2)(61.663 —
57.261)/0.02 = 110.1 in appropriatc units. Now, since we always write G =. (P/bD)j(cx), it turns out
that in our calculation the numerical value of G (with its arbitrary units) coincides with the dimensionless
value of §(0.5). Therefore, §(0.5) ~ 110. The stress intensity factor follows from Irwin’s equation as
Ky = VE'G = /110 = 10.5. Now, since we write K7 = on \/Ek(oz), we may easily find £(0.5)
upon noting that for a span-to-depth ratio of 4, oy = 6P/bD. The result is £(0.5) =~ 10.5/6 = 1.75.
This value is to be compared with that given by equations (3.1.1) and (3.1.2) (or Fig. 3.1.1) which give
k(0.5) = 1.77. Thus, the numerical estimate turns out to be about 1.2% lower than the more accurate
value.

The near-tip field fitting consists of making use of the known near-tip behavior of the stress and
displacement or crack opening fields to make an estimate for K. It can make use, for example, of the
stress distribution ahead of the crack tip, which is known to behave as 0y, = K /v2nr, where o,
is the stress normal to the crack plane, and r is the distance to the crack tip. This means that a plot of

22V 277 vs. 7 should tend to K as 7 approaches zero. It is also possible to use the displacement field,
particularly the crack opening, which is known to behave as w = 8 K+/r/E’+/2x. Therefore, the limit
of wE'/2m /8+/T asr — Ois also K.

Example 3.3.2  The results of the nodal reactions along the uncracked ligament, or the crack opening
distribution, may. be used to make a near-tip field fit. We use Ky = lim,_,o 022V 271, and agree to write
Kr=opn \/_k(a) and for a given value of ¢, we define.

R(r) = 22 7’;— (332)
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Figure 3.3.1 Plot of normal stresses times /7 vs. 7 .(r =distance to-crack tip). Extrapolation to zero gives
the dimensionless stress intensity factor. )

then k() = lim,o k(r). Plotting the nodal values of Ky vs. the distance to the crack tip, and
extrapolating to zero, we get an estimate of k(cx); This was used in the finite element computations
described in the previous example (now.for /D ="0.5). The nodal normal stresses were obtained as
o, = Ry /bh, where Ry, is the nodal reaction and h the width of the elements. From this, the nodal
values of & were obtained and plotted as shiown in Fig. 3.3.1: The extrapolated value gives k(0.5) = 1.65.
This value differs by 7% from the more accurate value k(0.5)" = 1.77 obtained from equations (3.1.1)
and (3.1.2) (or Fig. 3.1.1).  [1 : ¢

The foregoing examples show two of the ways to determine K and G from numerical results. The
determination of J{ from the crack opening profilé is left as one of the exercises. The general experience
is that the differential stiffness method is more accurate for a given mesh size. This is probably due
to the cancellation of constant errors in the differentiation process. However this method requires two
‘computations, while the near-tip field fitting requires only one, although this is really not a problem with
the kind of computers available today.

Getting good results (less than 5% error) with near-tip analysis requires extremely fine meshes, because
of the difficulty in representing the crack tip singularity with ordinary finite elements. Indeed, careful
studies of convergence by Wilson (1971) and Oglesby and Lamackey (1972) showed that the near-tip
approximate solution may not converge to the analytical solution whatever the mesh refinement. To solve
this problem, one needs special elements whose shape functions include a r1/2 singular term.

Various singular finite elements have been devéloped (see, €.g.,- Aliabadi and Rooke 1991), but most of
them incorporate special shape function and require specially designed finite element codes. Aremarkable
exception is the sorcalled quarter-node isoparametric element (Barsoum 1975, 1976; Henshell and Shaw
1975). In this formulation, a standard 8-node isoparametric quadrilateral element is collapsed, as shown
in Fig. 3.3.2a, to a triangular quarter-point element. - The vertex corresponding to the collapsed nodes
1-7-8 becomes the singular point, and a 77172 singularity is achieved by placing nodes 2 and 6 at a
quarter (from the singular vertex) of the radial sides of the triangle. These elements are placed in a rosette
around the crack tip as shown in Fig. 3.3.2b. : :

The stress intensity factor may be evaluated from the displacement fields of any of the elements, but
mostusually K7 is obtained from the values of the crack opening evaluated at the iwo nodes.along the crack
faces. With this method, values of K7 accurate within afew percent may be obtained without much mesh
refinement. However, recent recommendations by ESIS Technical Committee 8 (1991) suggest, again,

_ that best results for stress intensity factors are obtained if energetic approaches based on the determination
of G are used instead of near-tip fields. .

The differential stiffness method is not the:only way to determine G. The J-integral and other path-
independent integral expressions may be (and have been) used to determine the energy release rate. This
has the advantage that the evaluation of .J is made using values of the fields at points far from the crack
tip, where the errors are expected to be smaller. It also avoids numerical differentiation, and a single
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Figure3.3.2 (a) Collapsing of an 8-node quadratic isoparametric clement into a singular quarter-node element.
(b) Rosette of singular finite elements at a crack tip.
%

computation is enough. It requires, however, special postprocessing routines, both in finite elements
codes and in boundary element codes.

Although finite element codes dominate the market, commercial codes based on boundary elements
have recently become available. They yield Kj-values of much higher accuracy than finite element codes.
The main advantage of this kind of formulation is that only the boundary of the elements must be modeled,
so that the number of degrees of frecdom is greatly reduced. This is, of course, achieved at the cost of
larger complexity of the code, especially the postprocessing. In particular, handling cracks may require

special formulations and special postprocessing which are outside the scope of this book (for details, see
Aliabadi and Rooke 1991).

3.3.2 Experimental Procedures

Experimental procedures to determine the stress intensity factor were often used with some intensity in
the past, when numerical calculations were of limited availability. All the methods relied on measuring
some features of the displacement ficlds of clastic specimens, and relating them to the energy release rate
or to the stress intensity factor. - :

The simplest method, which is generally used in laboratory environments, uses the experimental version
of the differential stiffness method. It is implemented by measuring the compliance of a specimen for
variotis crack depths and determining G from G = (P?/2b)dC/da. In principle, two tests with two
slightly different crack lengths are enough to get a result for a given crack length. However, experimental
accuracies being always very limited, it is usually better to make a larger number of tests over a finite
range, fit a smooth curve to these results, and then perform the differentiation. Because the experimental
accuracy in obtaining the compliance is rarely better than 1%, this method is not very reliable unless the
compliance variation due to the growth of the crack is a sufficiently large fraction of the total compliance.
This excludes large specimens or structures with tiny cracks (or, generally speaking, small relative crack
depths). In some test setups, afurther source of error is that, in order to have a good control of the
geometry, cracks are substituted by cut slits (notches). In this case, the notch width must be much less
than any relevant dimension of the specimen (crack length, remaining ligament length, distance of applied
loads from the crack tip, etc.).

Other methods rely on the analysis of the properties of the strain or displacement fields close to the
crack tip. These include: strain gauge techniques, photoelastic techniques, interferometric techniques,
and the caustics method. :

The strain gauge technique measures the strain and stress at a set of points around the crack tip by
means of bonded electrical strain gauges. In the photoelastic technique, the shear strain field around the
crack is measured in a specimen made of a photoelastic polymer. In the interferometric techniques, the
displacement field (usually the component normal to the crack plane) is mapped by interferometry. From
the experimental results of stress, shear-strain, or displacement vs. the distance to the crack tip, near-tip
fitting techniques similar to those sketched for numerical methods are used to infer the value of the stress
intensity factor.

The principle of the caustics method is different of the former in that it uses the out-of-plane displace-
ments to find the stress intensity factor. Due to Poisson effect, a depression of the surface of the specimen
is produced around the crack tip. If the surface is polished, a mirror with a profile determined by the elastic
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field is produced. When a beam of light impinges normally over this mirror, the reflected rays produce a
bright kidney-shaped spot whose size is related to the stress intensity factor. If transparent specimens are
used, transmitted light can be used and then the specimen acts as-a lens with a profile determined by the
elastic field.

In all these techniques, it is essential to guarantee that the plastic zone is small compared to the size of
the region over which the stresses, strains, or displacements are measured. If notches, instead of cracks,
are used (which is usual in photoelastic techniques), corrections are required to take into account the finite
radius at the tip.

For details of the experimental techniques, see Smith and Kobayashi 1993.

3.4 Experimental determination of K;. and Gy

When a crack in a laboratory specimen may be guaranteed to behave in alinear elastic way, the experimental
determination of K. or G is conceptually easy. The simplest way is to use a specimen in which the
crack growth initiation coincides with the peak toad (all the standard specimens belong to this category).
In this case, one simply loads the specimen up to failure and records the peak load P,. If LEFM conditions
are fulfilled, the value of the stress intensity factor for thisload coincides with K7,

bv/'D

where o = a/ D is the relative crack length at the beginning of the test.

The difficulties in this kind of testing arise at two different levels: (1) Specimen preparation (precrack-
ing), and (2) verification of LEFM conditions. These aspects are well defined for metals in most national
standards, particularly in ASTM E 399. The crack is:grown from a normalized starter notch by fatigue

Kre=Kp,= '—PLk(a) (3:4.1)

under controlled conditions. The LEFM conditions are verified in two ways. First, the nonlinearity of -

the load displacement curve before peak is limited (an ideally brittle material is completely linear up to

" failure). This is done as shown in Fig. 3.4.1a by defining a kind of conventional (load) elastic limit Ps for
which the secant stiffness is 95% of the initial tangent stiffness. Deviation from linearity is acceptable if
either the peak load occurs before the elastic limit or the ratio P,/ Ps is less than 1.1 (see the standards
for details). : : .

Apart from this direct verification of linearity, there is a further condition which verifies that the specimen
thickness and size are large enough for the nonlinéar zone at fracture to be negligible (for engineering
purposes). Since the standard specimens are designed so that their thickness is one-half of their width
or depth (b = 0.5D) and the crack length is close to half the depth (o ~ 0.5D), the thickness and size
conditions are expressed in a single condition:

2
b22.5<K’C> (42

J¢

where o is a conventional flow stress (usually a value between the conventional 0.2% proof stress and
¢ y p

the tensile strength). The origin of the foregoing equation is discussed in detail in the next chapter. Here,
it is enough to say that the factor (Kr./ oo)tis proportional Yo the size of the plastic zone, so the equation

- really places a limit on the extent of the plastic zone relative to the specimen size. .
‘For materials other than metals, the situationis ‘more ‘complex. . Cracks in polymers and structural

ceramics cannot easily be grown using cyclic loading. For polymers, cracking by forcing a razor blade

into the notch root has been chosen by ASTM standards (ASTM 1991). For fine ceramics, no standards are
yet available, and round robins are being performed to compare toughness test results on specimens with
different kinds of notches and cracks, as that promoted by ESIS TC 6 (Pastor 1993; Primas and Gstrein
1994). Specifications for the minimum size required for LEFM to apply have been set for polymers, and
are similar to those previously stated for metals. No agreed limitations have been set yet for ceramics.
For concrete, it is generally accepted today that the sizes required for LEFM to apply are really huge
(several meters or even tens of meter). Therefore, special purpose tests taking into account the nonlinear
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Figure 3.4.1 ‘Experimental determination of fracture properties: () Load—displacemeni curves and definition
of the conventional limit Ps (After ASTM E 399, simplified); (b) determination of G 5 from experiment.

fracture behavior of concrete have been set. They will be analyzed in the following chapters, where
nonlinear models are introduced. ’

For any material, nonstandard tests may also be used to determine the fracture properties of the material
whenever the size of the specimen is large enough for LEFM to apply. One such method, based on ar;
energetic analysis, consists of performing a stable test (controlling the displacement rather than the applied
load) and simultaneously measuring the load, P, the load point displacement, u, and the crack length, a.
Let the P — u curve be known between the points 1 and 2 at which the crack lengths were measured to be,
respectively, a; and a; (Fig. 3.4.1b). Then, according to Section 2.1.4, the energy consumed in fracture
between points 1 and 2, AW{i 2» is the area of the curvilinéar triangle 012, while the area of the newly
formed crack is b(az — a1); hence,

AW, 3.43
b(a; — ay) (3.4.3).

The accuracy of the result depends on the accuracy of the individual measurements, which may be
controlled to some extent by adequate experimental design, but it also depends on the degree of accuracy
of the hypotheses underlying the equation above. The method becomes inaccurate, even invalid, if the

inelastic zone ahead of the crack tip is so large that the hypothesis of negligible inelastic zone is no longer
acceptable.

Gi=

) Determination of how large the inelastic zone is, relative to the specimen dimensions, and how large
its size must be to stay reasonably close to LEFM is, to a great extent, one of the objectives of the various
inelastic fracture mechanics approaches that will be analyzed in the remaining chapters. At this stage, we
only list the most obvious conditions that the experimental outputs should fulfill:

1. Deviation from linearity prior to theé peak load should be small. This applies to specimens where
the iso-G curves are monotonically decreasing as in Fig. 2.1.10a. The more rounded the peak,
the farther the behavior is from LEFM. Quantitative criteria to ensure prepeak linearity can be
formulated, similar to those previously given by ASTM E 399.

2. The P — w curve after the peak should be an iso-G curve. The most direct way to check this point
is to take various arcs 1-2, 2-3, 3-4, and so on, and calculate a value of G5 for each of these arcs.
They should be equal if LEFM applies.

3. When unloading is performed, the unloading curve should be straight and unload to the origin.
Deviation from this behavior indicates deviation from LEFM.

Exercises
3.8 Find the expression for the energy release rate of the structure in (a) Fig. 3.2.1a, (b) Fig. 3.2.1c.
3.9 Abrittle material may contain planar voids. If these voids are similar to penny-shaped cracks, determine

the maximum diameter of the voids which allow the material to be used up to 90 gcrcent of its elastic limit.
Complementary tests delivered values of 55 MPa for the yield strength and 16 kJ/m® for the fracture energy.
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Figure 3.4,2 Test output in an experimental determination of Gy.

3.10  Use the triangular notch approximation of Planas and Elices to get the energy releasc rate of a center-
cracked panel such as that depicted in Fig. 3.2.2.- Show that for the limiting case a/D — 0 the expression
coincides with that obtained from the stress relief zone approximation in Section 3.2.2. :

3.11 The results of the finite element calculation of Guinea (described in example 3.3.1) gave, for a/D=0.5,
the crack opening profile near the crack tip included in the table below, where r and w are, respectively, the
distance to the crack tip and the crack opening (in appropriate fength tnits; remember that in the computation
b=D=1,P =1, E =1 and plane stress was used). (a) Show that K; = lim,—¢ wk' /7 /32r. (b) Plot

wE~/7/32r vs. T and get an estimate of K for the computedcase. (¢) For-the usual definition of oy shown

in Fig. 3.1.1, determine from the previous result an estimate of the shape factor k£(0.5). (d) Evaluate the error -

of the estimate in comparison with the more precise equations of example 3.1.1L

T 001 002 0.03 0.04 0.05 0.06 0.07 0.08 0.09
w | 3.1669 45816  5.7928 68123 7.7424 8.6050::9.4201 10.198 10947

3.12 Compliance tests have been performed on single-edge crack specimens of 25 mm thickness and 50 mm
depth made of a material with an elastic modulus of £ = 3 GPa.-Nine specimens with crack lengths ranging
between 23 and 27 mm were subjected to the same load, P = 500 N, and their displacement was measured.
The results are shown in the following table.” Give an estimate of the energy release rate, in J/m?, for a specimen
of this particular shape, size, and material with a crack length of 25 mm, for any load, P expressed in N.

23.6- 239 244 24,9 25.6 258265 270
317 347 348 ..369 397

o (mm) | 23.1
u (pm) l 270 291 289 310

3.I3 A specimen geometrically similar to that in the preceding exercise has been loaded upto crack initiation.

The specimen had a thickness of 10 mm and a depth of 100 mm,.with an initial crack of 50 mm. The load
at which the crack started to grow was 17.5 kN. Additional testing provided for the elastic modulus of that
material, the value F = 100 GPa. Estimate the fracture energy under the assumption that LEFM applies.

3.14 A double-cantilever beam specimen subjected to opposite point loads at the ends of its arms has been
tested under displacement control. The specimen thickness was 50 min and the arm depth 30 mm. The resulting
load-displacement curve is shown in Fig. 3.4.2b. If the initial crack length-was 150 mm, (a) give an estimate of
the elastic modulus of the material. (b) Give an estimate of G5 using the peak load value and the initial crack
length. (¢) Give estimates of the crack length at points°A, B, C,and D. (d) Give average values of the crack
growth resistance over arcs AB, BC, and DE. () Decide whethér LEFM is a reasonably good approximation,
and, if it is, give a final estimate for Gy. i : .
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3.5 Calculation of Displacemeﬁts from K;-Expressions

3.5.1 Calculation of the Displacement

f[‘he procedure to obtain the displacement from the expression of K7y as a function of the crack depth is,
in fact, the reverse of that used in Section 2.1 to obtain G from the expression of the compliance. To

obtain the compliance (from which the displacement follows trivially), we couple (2.1.32) with Irwin’s
relationship (2.2.22) to get

1 Pde’(a) - ﬁ
2b da E’

This provides the basic equation to solve ¥r the compliance, which may be simplified by using the general
expression (2.3.11) for K:

(3.5.1)

dCla) 2
— k2 .

da ~wE" @ (3:32)
This equation may be integrated between the limits for no crack, for which the compliance is Cy, and an
arbitrary crack length a:

2 -a - 2 a/D - ‘
Cla)y=Co+ m/o k*(a)da = Cy + EE;/O k*(e) da (3.5.3)

where the second expression follows by sctting da = D dov.
Thus, setting 4 = C'P, the displacement can be written as

u:—iﬁ(a) a=2 (3.54)
bE TN D -
The dimensionless function #(cr) is given by
L e S
¥a) = O + 0%x), D= U 9(q) = 2/ k') do/ (3.5.5)
0 B

il} which ug is the elastic displacement of the structure in the absence of crack and 9°() is the additional
displacement due to the crack. . :

Often the displacement is expressed in terms of the nominal strength oy = ¢y P/bD instead of the

load P. Making the substitution and taking into account the definitions of functions E(c) and k() given™
in and below (2.3.11), one gets

oN a
u = ETD’U(CX), o = 5 (356)
The dimensionless function v{c) js given by
El a
wla) = v +v{@), v=u——, v(a)= 2/ k(o) de! (3.5.7)
onD 0

in wh.ich, again, ug is the elastic displacement the structure would experiment if uncracked. Note that the
equauons are formally the same as before, except that the functions labeled by hats (which we always use
with P) are replaced by functions without hats, representing variables expressed in terms of o .

Exa{nple 3.5.1 Consider a large plate with a very short edge crack (a << D) subjected to remote stress
o (Fig. 3.5.1). The approximate expression of the stress intensity factor is K7 = 1.12150+/ma, which
may be rewritten as Ky = oV D1.1215 /7. Therefore, taking oy = o we have

k(o) = 1.1215/7a (3.5.8)

Thus, from the last equation of (3.5.7), we get

o
vé(a) =2 x 1.2587r/ o do' = 1.258wc? ‘ (3.5.9)
. 0
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Figure 3.5.1 Single-edge cracked kpanel subjected to remote uniaxial stress.
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Since the displacement for an uncracked panel is ug = o H/E, the second equation of (3.5.7) gives
v=H / D. Therefore, the total displaccmgnt is

; " , ‘
u= E’ -Np (D A-1.258ra ) (3.5.10)
Identical results are obtained if calculations are done in terms of the resultant load P = ¢bD. "1

The foregoing expressions hold for a single-tipped crack, and a stands for the total crack length. For
the center cracked panel, or more generaily for internal cracks, where the total crack length is customarily
tepresented by 2a, the matters become a little more complex in the case of loadings that are not symmetric
with respect to the axis normal to the crack: Insuch a case, the encrgy release rates are different at one
and the other tip. This means that in reality 8U*/8a = G + G~ where the superscripts + and — refer
to the right and left tips, respectively. Therefore, we must also distinguish the stress intensity factors
K} and K and their associated shape factors k™ () and &~ (a) A development strictly parallel to
the previous one for a smgle upped crack leads toidentical expressions for the displacement, except that
function v¢(a) is now given by

v¥(0) = 2/0(x [k*z(a’) + k;z(a')] do! ‘ (3.5.11)

and similarly for the functions with hats. This shows that, for symmetric loadings (k* = k™ = k), the
double-tip case reduces to the single-tip one just by replacing do by 2d. But for nonsymmetric loading,
the expression is quite different.-

352 vCompliances, Energy Release Rate, and Stress Intensity Factor for a System of Loads

To calculate arbitrary displacements from K7 expressions, it is convenient to establish a more general
framework in which a system of independent forces P; (2 =1, ...,n) is assumed to act on a cracked
elastic body. Let the displacement of the load-point 7 in the direction of P; be u;. The displacements may
be written as linear functions of the loads: \
i : & :
us :ZCij(a)P,- i=1, .0 L (35.12)

where Cy; (a,) are the elements of the comphance matrix (whlch depend upon the cr. ack length a). Asa
consequence of the reciprocity theorem, the compliarice matrix is symmetric: Cy; =

The elastic and complementary energies are equal, and ‘are given by U = U* = Zb Pu; [2.
Substltutmo (3.5.12), the complementary energy is obtained as

ZZC,](a)P P , (3.5.13)

z—l]l
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From this expression and (2.1.21), we obtain the following expression for the energy release rate:

1 & dCyj(a
:%ZZPP ”( (3.5.14)

For a general system of loads, this equation is the equivalent of (2.1.34)
For the stress intensity factor, we may apply the superposition principle and write

n 1 n .
Ki=) Kp=—=> Pk 5.
T ; T b@; (a) (3.5.15)

where Kp; = (P /bV/D)k;(a) is the stress intensity factor due to P; alone. Now, according to Irwin’s
equation, G = K3/E’, and so :

1 dc;
EEZZ dj(a)PP = szE/ sz k (e P - (3.5.16)

=1 F=1 i=] =1

The values of the P;s are arbitrary. So for the equality to hold for any P, the coefficients of the products
P; P; on both sides of the equation must be identical. We thus find that
dCij(a) _
da bDE’

which is the generalization of (3.5.2) to any system of forces. This equauon can be integrated in the same
way as before, to obtain

Fiki) (G, 5=1,...,n) (3.5.17)

2 a/D R
C’,J(a) = Cij() -+ EE; /0 k,(a)k](a)da (’L, j = 1, e ,'I’L) (3.5.18)

" where Cj;, is the component of the compliance matrix for the uncracked body {(a = 0). This equation

provides the means of obtaining the displacements u; at various points caused by only one force, say
(all the remaining forces being zero). The result is, obviously, u; = C’]1P|

The foregoing equation can be recast in terms of the full expression of the stress intensity factor, by
setting that k() = bv/D K;/P; and thus

2 [*KnKy

Cs@) =Ciuo+ 5 | R,

@Gi=1, ...,n) (3.5.19)
which does not require a particular form of expressing the stress intensity factor, and can be directly used
when P; are generalized forces rather than point loads.

Note, again, that in the foregoing expressions a stands for the total crack length, and the energy release
rates correspond to a single crack tip. For the center cracked panel, the two crack tips must be made

explicit, as previously done for the single force loading, Eq. (3.5.11). The general expression for multiple
10'\dmg is:

a/D N
Cisla) = Cujy + 5%7/(; [k+( ) HOES (a)k;(a)] dee  4,j=1,...,n (3520

where l%j' (e) and IAci” () are the shape factors for the stress intensity factor created by load P; at the right
and at the left crack tips, respectively.

3.5.3 Calculation of the Crack Mouth Opening Displacement

As an important application of the foregoing general result, let us calculate the expression for the crack
mouth opening displacement (CMOD), which we denote as wyy (Fig. 3.5.2). Aside from the actual
load P, we also consider a virtual loading Py consisting in a pair of forces at the crack mouth working
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Figure 3.5.2 - Crack mouth opening war, applied 1oad P, and crack mouth load Pys.

thirough wyy. In the previous expressions we now have 7n'="2, and we set Py = P, P = Pur,uy =,

Uy = Wiy, Cii (@) = C(a), and Cpp(a) = Cry(a) so that we write the displacements as
w=C(a) P+ Crla) Pur (35.21)
Wpy = CM((Z)P+CMM((L) Prr . (3.5.22)
We also set &y (o) = lAc(a) and 1%2(01} =k (e) for the shape factors corresponding to forces P and

Pys. Noting that Cprg = Chag = O (because when the crack Terigth is zero, the crack opening is also
zero), the cross-compliance for the CMOD, Cjy{a), follows from (3.5.18):

' 9 a/D -
Cula) = = / F(o)hut (@)da (3.523)
bE" Jo :
Thus, according to (3.5. 22), the crack mouth openmﬂr displacement when the structure is loaded by-P
alone is i ‘
P A B e N P
wpp = bE’vM(a) Dar(a)y =21 " k(a Yk (a)da (3.5.24)
0
Again, this can be expressed in terms of oy instead of P; the result is
: o ) ’
wa = —E7DvM(a) (o) = 2/ k(o Ve (o )da! (3.5.25)
0 .

where we notice again that the expression is identical to the prev1ous one except that the hat is removed
for k(cx) (but not for ks (o).

Example 3.5.2 Consider again the plate of Fig. 3.5.1.- When a pair of loads Py is applied to the
‘crack mouth (as shown in Fig. 3.5.2), the correspording stress intensity factor is expressed as Ky =
2.594 Py /by/ma (Ouchterlony 1975; also Tada, Paris and Irwin 1985). This can be rewritten as K; =
{Pr/bV/D)2.594/ /7. Therefore, the shape function kaula)is

2.594

| feng (o) =

3.5.26
] . VT : ( : .)
Substituting this and (3.5.8) into (3.5.25) we get the CMOD: ’
o « . o O B o

which is'the expression found, for example, ianada, Paris and Irwin (1985). 1
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3.5.4 Calculation of the Volume of the Crack

A further interesting application of the general relation (3.5.18) is the determination of the volume of the

opened crack. To this end, we must consider a loading which is work-conjugate to volume, i.e., such

that the work is expressible as the product of the conjugate generalized force with the variation of crack

volume dV. Such a loading is a uniform internal pressure p over the crack faces; then p and V are

conjugate variables and can be used directly in the energetic expressions. It is now necessary to adjust

(3.5.18), because the dimensions of the variables are different. This is fairly easy and is left to the reader

as an exercise. Here we execute a simple trick to be able to use (3.5.18) as it is: we define a generalized .
force Py from p, and its associated displacement u,, ox V so that Pyuy = pV and the dimensions be

those of force and length:

™ C oy
Py =pbD and  uy = D (3.5.28)
(Note that the crack length a must not appear in the definition of P, and uy.) Working now as in
our calculation of the CMOD, we have n- =2, and set Py = P, P, = Py, u; = u, up = uy,
Cii{a) = C(a), and Cya(a) = Cy (a). So we may write the displacements as
w=C(a) P+ Cy(a) Py (3.5.29)
Uy = Cy (a) P4 va((L) Py (3.5.30)

We also set kj(a) = k(a) for the shape factor corresponding to force P, and /%2( ) = ky{) for the
one corresponding to the internal pressure — in which the stress intensity factor must be written in the
form K; = (Py /bf)kv (c). Thus, the cross-compliance for uy, Cy (a), follows from (3.5.18) with
Cyo = 0120 = 0 (because when the crack length is zero, the crack volume is also zero):

2 a/D . N

Cy(a) = @/0 k(a)ky (a)do (3.5.31)

The crack volume follows from (3.5.30) and (3.5.28):

PD
V =bDuy = bDCy P = 5 Oy () (3.5.32)
where
’ a . .
Q) =2 / h(a')hy ()do! (3.5.33)
‘ 0

If we write V' in terms of o instead of P, we get
~ [24
V = %bgzvv(a) y ’Uv(a) = 2/ 'k(a’)kv(a’)da' (3.5.34)
0

where k(a') is the shape factor defined in (2.3.11) and kv ('} is defined so that the stress intensity factor
created by a uniform pressure inside the crack is written as K7 = pv/Dky (a).

Example 3.5.3 Consider again the plate of Fig. 3.5.1. When a uniform pressure p is applied to the
crack faces, the superposition sketched in Fig. 3.5.3 shows that the stress intensity factor is identical
to that corresponding to a remote uniaxial stress o = p. The corresponding stress intensity factor is
K = 1.1215p+/7a, and so the shape function ky (c) is

ky(a) = 1.1215/7a (3.5.35)
Substituting this and (3.5.8) in (3.5.34), we get the crack volume:

o 2 * 4 2.9 0O 2
V= EbD 2/0 1.2587a do/ = EbD o’ = ~E~/1.2587rba, (3.5.36)

~ where we wrote Da = a. 1
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Figure 3.5.3 Stress intensity factors for internal pressure p and remote uniaxial stress p are identical.

Figure 3.5.4 Virtual Joading used in the computation of the crack opening profile.

For an internal crack oé leﬂgth 2a, thé results are similar, except that the shape factors at both tips of
the crack appear explicitly, as in previous sections.- Then the expression for vy (@) in (3.5.34) must be
replaced by k :

vy (a) = 2/; [kﬂq’)k&(q’) + k+(d’)k“‘,(a’)] do/ L (3537)

355 Calculation of the Crack Opening Profile

To obtain the crack opening profile from K; expressions; we need to know the stress intensit)./‘fz\ctor
produced by a pair of point loads at an arbitrary position  along the cYack, .Let P, bethe m'flgmtude.of
the loads located at z (Fig 3.5.4). The displacement conjugate of the pair Py, is t.he crack' opening at point
z, w(z). The stress intensity factor may be written as in(3:1.10), where now it is essential to remark that
when thie point loads are applied on the uncracked part of the crack p}ane (i.e., when z > a)they do not
generate any stress intensity factor at the crack tip, so that we can write

ko(a,z/D) =0 - for x> a (orz/D > ) _ (3.5.38)

Then we proceed as we did in calculating the CMOD. We first write the displacements as
u = C(a) P+ Cyla) Py (3.5.39)
w(z) = Cola) P + C%(a) P, (3.5.40)

The cbmpliance C, = C is obtained from (3.5.18) with ki (@) = k(a), k2() = ke(a;z/D), and
C]zo =0: .

a/D
Cala) = 2 /0 F(a)ka(a,2/D)da (541

bE'
Now, taking into account (3.5.38) and (3.5.40), the crack opening profile is obtained as

P
w(z,a) = i)“ET,”Uz

(@) By(o) = 2/;:3 k(o Yke(o! z/D)do! (3.5.42)
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where it is understood that this equation is valid for z < a, and that, obviously, w(z, a) =0forz > a.
The foregoing equation can be rewritten interms of o'y as

w(z,a) = %sz(a) , o vgla) = 2/; k(o Yka(e!,x/D)de! (3.5.43)

where, again, k() is defined in (2.3.11).
For an internal crack for which a is the half crack length, the previous adjustment for two crack tips
must be performed again. The result is identical to (3.5.43) except that v(a) is now replaced by

vp(a) = 2/:) [k (kG (e /DY + k(e Ykg (e, 2/ D)] do’ (3.5.44)

Example 3.5.4 Consider the center cracked panel of Fig, 2.1.1 subjected to remote uniaxial stress o, and
assume the crack to be very small relative to the dimensions of the panel . To obtain the crack opening profile
we use the stress intensity factor for a pair of point loads on the crack faces introduced in Example 3.1.7
(Fig. 3.1.6¢), with kg(a, x/D) given Eq. (3.1.13). Because of the symmetry, the shape factor for the
tip on the left is kg (@, 2/ D) = ki (v, —z/D). Introducing this and k* (@) = k= (o) = /7@ into
(3.5.44), and substituting the result in the first of (3.5.43), we get

* 4o/ 4
LAY L S———
E z/D /a’2~— (x/D)Z E
which does coincide with the solution obtained by the complete elastic analysis of the problem; see Section
2.2.1.

w(z,a) =

Va? —z? (3.5.45)

3.5.6 Bueckner’s Expression for the Weight Function

Bueckner (1970) devised a procedure to obtain the weight function kg (e, £/D) from the solution for
the stress intensity factor and crack opening profile for arbitrary loading. This is the method exploited in
the book by Wu and Carlsson (1991). Here it suffices to exploit (3.5.42) for demonstrating the simplest
version of Bueckner’s result. Differentiating that equation with respect to a (and keeping in mind that
o = a/D), we get:

dw(z,a) _on O0s(a) 1 on ) /D) =
8a B 8o D sz(a)kc(q,l/D) -

2K,
ED

where in the last expression we substituted (2.3.11), i.e., Ky = onvDk(e). Solving for kg (e, z/D),
we get :

ko(onz/D)  (3.5.46)

E'/D duw(z,a)
Ki(a) 28a

The arguments ¢ and  have been made explicit for clarity. Note that, compared to the expressions in
other texts, our analysis is limited to pure mode I (structures and loadings symmetric with respect to the
crack plane), and so the half crack opening w/2 is equal to half the displacement of the upper face, which
is the usual variable included in the weight function expressions. We use the crack opening rather than
the displacement of one crack face because in the following chapters the crack opening is the essential
variable,

Consider now the center-cracked panel. Since it has two crack tips, we cannot get both weight functions
from a single loading. This is clear from (3.5.44) where two unknowns are present, namely kg (g, z/D)

and kg (@, z/ D). In particular, from the solution for a symmetric loading for which l%;‘” () = k() =

ke(o, 1/ D) =

(3.5.47)
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: lAcs (), we can find only the symmetric part of the weight function. Indeed, proceeding as before, we get

; NI 61:)5 ;) ‘
k&(a/D,z/D) + kgla/D, x/D) = IE(,:/(a—) ~———2—%~92 (3.5.48)

where subscript s indicates that the loading corresponding to-this sol}ition must be symmetric. Tl?e
symmetric part of k¢ is all that is needed to obtain further crack opening profiles for other symmetric
loadings. To obtain the complete expression for the right and left weight functions, we filso need to solve
the amisym‘metric case, for which k(@) = —k; (@) I this solution is available, it is easy to find the
antisymmetric part as

E'bD - dw,(z,a) = E'VD dw,(z,a)

k&(a/D,z/D) - kg(a/D,z/D) = PitD) 20 Kl 20a (3.5.49)

where subscript a refers to antisymmetric loading. Combining (3.5.49‘) and (3.5.48), one can easily obtain
the expression for the weight functions corresponding to-both crack tips.

Exercises

3.15 The stress intensity factor for a center cracked strip of width D, wit]? a crack of l?ngth 2a subjcgtcd to
remote uniaxial stress, may be approximated by the Feddersen-Tada expression (3.1.4) within O 1%. Wn.te th(;
-equation for the additional compliance of the strip due to the crack. Take two terms of the series expansion o
the integrand in powers of a/D, calculate the additional compliance, and estimate the values a/D for which
this result is accurate within 2%. : g . ce

3.16 For the panel in Exercise 3.4, find the volume of hydraulic fluid injected into the jack for given crack

length 2a and pressure p, assuming the fluid to be incompressible: Hints: Define P = 2pbcand u = V/2be. -

Watch the integration limits. Integrate by parts twice. : L

3.17  Find the volume of a cenfrally located crack in’a'large panel subjected to equal and opposite normal
forces at the crack center.

3.18  Find the crack opening profile of a centrally located crack.in a lérge panel subjected to equal and opposite
normal forces at the crack center. Note the logarithmic singularity at z = 0.

4
Advanced Aspects of LEFM

In this chapter, we summarize some advanced topics in LEFM that were not covered in depth in the
preceding chapters. First, we present thggtheoretical framework to analytically handle planc clasticity
problems with ¢racks. Emphasis is put on the understanding of various methods of solution, such as
the complex potentials (expounded in Scction 4.1), Westergaard stress functions (presented in Section
4.2), and Airy stress functions (developed as exercises). The presentation does not aim at complete,
formal presentations (for this purpose, sce, ¢.g., England 1971). Neither it aims at teaching the skills to
obtain the solution from scratch. It only aims at facilitating insight into the use of complex potentials and
Westergaard stress functions to obtain stress and displacement fields. As a basic example, these methods
are applied to the analysis of the infinite center-cracked panel.

The complex potentials are next used to analyze the near-tip fields (Section 4.3). The in-plane case,
involving fracture modes I (pure opening) and 11 (in-plane shear), is discussed first. Then the formalism
to handle the antiplane case of mode [I1 (antiplane shcar) is introduced and the general anliplane stress
and displacement near-tip fields are obtained.

The next topic covered is that of the path-independent integrals, of which the J—integral is the most im-
portant. Section 4.4 shows formally that Rice’s J-integral is path-independent under certain assumptions;
it introduces a further path-independent integral for the LEFM case which is based on the reciprocity theo-
rem and is used to provide another derivation of Irwin’s relation, Finally, other path independent integrals
are briefly discussed (I, Ji—, L, and M-integrals),

The last section deals with the topic of mixed mode fracture in LEEM. The existing fracture criteria are
briefly described, with emphasis put on the single-parameter models, especially the maximum principal
stress criterion (Erdogan and Sih 1963), .

4.1 Complex Variable Formulation of Plane Elasticity Problems

4.1.1 Navier’s Equatiohs for the Plane Elastic Problem

We take axes x1, 2; lying in the plang of the structure, and axis 3 perpendicular to it. Plane states always
require 013 = o3 = 0, while 033 = 0 in generalized plane stress, and €33 = 0 in plane strain.

Restricting attention to the in-plane components of vectors and tensors (i.e., restricting indices to values
1 and 2), the equilibrium equation for negligible body forces are reduced to state that the 2D divergence
of the stress tensor must vanish:

94,5 =0 - (4.1.1)

where subscript ; implies partial derivative with respect to the corresponding cartesian coordinate (i.e.,
f.; = 0f/0z;). Repeated indices imply summation over § = 1,2,
The plane version of Hooke’s law may be reduced to (see, for example, Malvern 1969):

0ij = Newrby; + 2Gei; (4.1.2)

where G is the shear modulus and V' is an effective plane Lamé constant. These clastic constants can be
written as

E o B
= 7y [ = 4.1.3
“=sizy N 0-v75 (4.13)
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and 0o = Krn//Fap in (7:5.25) and (7.5.26) and take the limits for ap — co. The first terms of Maclaurin’s
series expansion of sec x and In(1 +x) are 1 + )2 4 and &+ -+, respectively.]

7.23 Consider a Dugdale model for the asymptotic limit of large crack in large body. (a) Use (7.5.70)
to determine the function g{n); (b) calculate Ky -as a function of R; (c) calculate the crack tip opening
displacement wy as a function of R; and (d) compare the results of parts (b) and (c) with those of parts (a) and
(b) in the previous exercise. )

7.24 For a Dugdale model, show that the crack opening profile in the cohesive zone for a semi-infinite crack
in an infinite body is given by

1 1 * . ; -
w6) stt/ n"‘/z(n—ﬁ)‘/zdn=%}‘[m~glnw~—l+‘ﬂ_€] -
3 .

wE VE
8R! £ 1H/T=¢€ . oz .
= ﬁTt [1/1 ~¢{-3n i—_———m} s oowith  £= o (7.5.74)

7.25 -Show that for the Dugdale model, Ageo = R/3.

7.26 For a rectangular softening, determine the asymptotic values R. and Naco at peak load as a function
of £ep,.

Crack Band Models
and Smeared Cracking

Modeling of fracture by discrete line cracks, which has been discussed in the preceding chapters, is not the
only viable approach. Another approach, which has gained wide popularity in finite element analysis of
concrete structures (Meyer and Okamura, Eds., 1986) and is used almost exclusively in design practice, is
to represent fracture in a smeared manner. In this approach, introduced by Rashid (1968), infinitely many
parallel cracks of infinitely small opening are imagined to be continuously distributed (smeared) over the
finite element. This can be conveniently modeled by reducing the material stiffness and strength in the
direction normal to the cracks after the peak strength of the material has been reached. Such changes of
the stiffness matrix are relatively easy to implement in a finite element code, and, hence, the appeal of
smeared cracking. The evolution of the cracking process down to full fracture implies strain softening,
a term which describes the postpeak gradual decline of stress at increasing strain.

The term evolved from the terminology of plasticity where work hardening describes the gradual
increase of yield stress resulting in a rising stress-strain diagram of a slope that is positive but smaller than
the elastic slope. After it was realized that the hardening is not merely a function of the plastic work, a
scalar, but depends on all the components of the strain tensor, the term strain hardening has been adopted.
From the viewpoint of plasticity, the postpeak decline of stress may be regarded as a gradual decrease of
the yield limit, i.e., softening. This phenomenon again is not just a function of work (in which case we
could speak of work softéning) but of all the strain components; hence, strain softening.

The smeared cracking (with strain softening), however, leads to certain theoretical difficulties which
were initially unknown or unappreciated. They consist of the so-called localization instabilities and
spurious mesh sensitivity of finite element calculations. After years of controversies and polemics, it

- has now been generally accepted that these difficulties can be adequately tackled by supplementing the

material model with some mathematical condition that prevents localization of smeared cracking into
arbitrarily small regions. The simplest way to attain this goal is the crack band model, which is the object
of this chapter. )

Since it is essential to understand why fracture cannot be consistently and objectively described just
by postulating a stress-strain curve with softening and nothing else, we first analyze in this chapter the
strain localization in systems displaying softening. We start with the series coupling of discrete elements
(Section 8.1), which serves as the starting point for the analysis of the Jocalization of strain in a softening
bar (Section 8.2). .From this, it follows that some kind of localization limiter must be associated with
the softening stress-strain curve to get meaningful results. Next, we analyze the basic issues in the crack
band model, in the simplest uniaxial approximation (Section 8.3). Then we deal with the underlying
stress-strain relations with. softening, first in the simple uniaxial version (Section 8.4) and then in full
three-dimensional analysis (Section 8.5). After this, we discuss the triaxial features of the crack band
models and smeared cracking, with emphasis placed on the numerical issues (Section 8.6). A comparison
of the crack band and cohesive crack approaches closes the chapter (Section 8.7).

8.1 Strain Localization in the Series Coupling Model

Whenever a structure contains elements that may soften, localization of the strain can take place. This
section analyzes this phenomenon for the simple, yet important, quasi-static uniaxial case. The case of
two nominally identical elements coupled in series is first presented and studied from the point of view
of the imperfection approach to bifurcation (no two elements can be exactly identical), and then from the
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Figure 8.1.1 (a)‘Serics coupling of two softening elements. ‘(b) Load—displacement curve of one element. (c)
Resulting load-displacement curve (full line).

point of view of the more general thermodynamic analysis of bifurcations. Next, as a simple extension, a
chain of many softening elements is analyzed to show that, after reaching the peak load, only one element
will be stretched further, while all the remaining elements unload. This s the starting point for the analysis
of a'softening continuous homogeneous bar, considered in the next section.

8.1.1 Series Coupling of Two Equal Strain Softening Elements: Imperfection Approach

Consider two nominally identical elements1 and 2 coupled in series as shown in Fig. 8.1.1a. Assume
that each element has a load-elongation (P-AL) curve displaying softening as sketched in Fig. 8.1.1b
for element 1. In this plot, the full line is for morotonic extension, and the dashed line corresponds to
unloading (shortening) right at the pcak The question is: What is the load-clongation response of the
series coupling of the two clements? :

A quick answer, extrapolated from the more usual cases of hardemng stmctmes would be: Just multxply
the elongation by a factor of two. Wrong! Softening breaks down the usual rules. To clarify this, we
take first the imperfection approach to bifurcation.- In this approach, one realizes that no two ‘elements
can be really identical. One of them must have a'strerigth (peak load) slightly smaller than the other one.
Assume that such is the case for element 1. Sothe element 2, whose curve is depicted in Fig. 8.1.1c, has
a strength only slightly larger than clement 1.”The difference is ) slight that it cannot be discerned at the
scale of the drawing.

As the series coupling is extended, both eléments 1'and 2 load up until the peak A’ of elément 1 is
reached. Upon further extension, element 1 must begin to soften, following path A’-5" with decreasing
load. Since the load on both clements is identical, the load on element 2 must decrease, too. But since
element 2 has not yet reached the peak, it is not gomg to'soften. It is going to unload following the path
AH U’,

Therefore, as soon as one element réaches the peak, further straining leads to softening of this element
and to unloading of the other. We say that strain localizes into one element due to softening. Fig. 8.1.1d
shows the resulting P-AL curve as a full line. ‘The dotted line represents the (wrong) result obtained
by assuming that both elements go into the softening regime (we call it homogencous deformation, same

extension in each element). Note that the rising portion of the curve (the hardening part) displays a.

displacement that is twice the displacement for a single element, the classical result. The difference lies
only in the softening portion of the curve.

The foregoing result (see also BaZant and Cedolin 1991, Séc.-13.2) is based on the idea that the strength
of the two elements cannot be identical. Note that the amount by which they differ is immaterial. The
same will happen if the difference were only one part in 1012, which is much less than what can be
experimentally detected.

We have assumed that element 1 was the weaker element. In practlce, we caniot know prton 'which
of the two elements is going to break. We can only state that; if the loading system is perfectly symmetric,
the probabilities of failure through one or other elerent must be equal, so that 50% of tests will show
failure of element 1 and 50% failure of elemient 2. -
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Figure 8.1.2 Series coupling of two strictly identical softening clements: (a) the two possible paths, (b) graph-
ical representation of second-order work and second-order complementary work, (c) postpeak, second-order
work, (d) postpeak, second-order complementary work.

8.1.2 Series Coupling of Two Equal Strain Softening Elements: Thermodynamic Approach

The foregoing discussion makes use of inhomogencities or imperfections to get a general conclusion.
However, this result may be also obtained on the basis of thermodynamics. To do so, we consider a serics
coupling of two identical elcments, and consider the possibility of bifurcation at the peak load. The two
possible resulting paths are depicted in Fig. 8.1.2a. Path A-H (dotted line) corresponds to a homogeneous
deformation, while path A-L (full line) corresponds to softening that localizes into onie of the elements,
while the other unloads. Which is the preferred path? Following BaZant and Cedolin (1991, Sec. 10.2),
for the correct path, the second-order work §2W = L8P 8u for imposed displacement increment Su
must be minimum, or, alternatively, the sccond-order complementary work §2W* = 8P §u — §*W for
imposed load increment 6 P must be maximum.

Fig. 8.1.2b shows the graphical representation of the second-order work and second-order complemen-
tary work for a softening incremental process. Note that the values of the second-order areas are negative
because § P < 0. Therefore, the foregoing principles may be restated by expressing that the second-order
area below the P-u curve must be maximum at fixed §u, and that the second-order area over the P-u
curve must be minimum at fixed §P.

Figs. 8.1.2¢-d show the application of the foregoing principles to our case. It is obvious that the correct
path is that for which the localization occurs (see also BaZant and Cedolin 1991, Sec 13.2).

8.1.3 Mean Stress and Mean Strain

Whatever the nature of the foregoing elements, we can define the mean uniaxial stress as the load per unit
representative area of the cross section, and the mean strain of each element and the mean strain of the
whole coupling as the elongation per unit initial length, i.e., we set, in general,

_ P AL
g = Z s £ = T (811)
where A is the representative area.

The advantage of this representation is that the hardening portions of the (mean) stress-strain curves
are identical for each of the elements and for the series coupling. This is not so, however, for the softening
part of the curves. Let €5 be the mean strain on the hardening branch of the curve for any one of the two
elements. Further, let £, be the strain at the same stress level on the unloading branch emanating from
the peak, and let £41 be the strain at the same stress level on the softening part of the curve, as indicated
in Fig. 8.1.3c~d. The curves in this figure are the same as those in Fig. 8.1.1, with a change of scale. The
resulting (mean) stress-strain curve is shown in Fig. 8.1.3d, in which the mean strain at the given stress
level is given by "

e = { (Lient + Loepo) /(L) + Ly) = 8]1‘1 for hardening

(Lncay + Logua) /(L1 + Lo) = €u1 + (et — 1) for softening (8.1.2)
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Figure 8.1.3 Series coupling of two softening elements: load-average strain curves.
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Figure 8.1.4 (a) Series coupling of N equal 'softening elements. (b) Stress vs. average-strain curves for
" various values of V. :

8.1.4 . Series Coupling of N Equal Strain Softening Elements

Consider now a chain of N nominally identical softening ‘elements (Fig. 8.1.4a). Following the same
reasoning as in the previous analysis, it is irﬁmediately obvious that after reaching the peak, only one of
the elements, say element 1, will soften, while the remaining N — 1 will unload. Keeping this in mind,
we consider how the mean strain will evolve as a function of N. :

The mean strain of the whole chain'is

N : N
e ZZT\JI Lzéz = lzfz (8.1.3)
,Zi:l L : Ni:l

where ¢ indicates the element number, and ; the strain of that element. Expressing the fact that on the
hardening branch all the strains are identical'and equal to €5, and that on the softening branch the strain
of the first element is €57 while the strain of the remaining N ~ 1 elements is &1, we get the following
result for the mean stress-strain curve:

e { Ehl - for hardening (8.1.4)

Euil F %(651 — &41) " for softening

Fig. 8.1.4b plots the foregoing-analytical results for N=1; 2, 4; 8, and oo based on the curve of Fig. 8.1.3b
(note that the horizontal scale has been expanded).:: The construction of the softening branch is very
easy to perform graphically: at each stress level, take the segment U H where U and H are the points,
respectively, on the unloading and softenirig branches for a single element. Then, take a segment N tines
smaller with origin at U. The other end of the segment determines the point of the softening branch of
the series coupling of IV elements. ‘
One essential result of this analysis is that, while the peak load does not change with the number
of elements, the brittleness does so in the sense that the larger the number of elements, the steeper the
softening branch gets. In the limit of an infinite number of elements, the behavior is perfectly britile.
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Exercises

8.1 Analyze the response of a series coupling of two equal elements whose load-displacement curve shows a
perfect plateau at peak load. For simplicity, assume that the load-clongation curve has the shape of a trapezium,
rising linearly from (0, 0) to (Py, o), then extending horizontally to (P, u1), and finally descending linearly
to (0, uz), where up < u| < u2. :

8.2 Consider the series coupling of elements that have a triangular load-displacement curve and are identical
except for small imperfections. Assume that for one element the peak occurs at 1.2 kN for an elongation of
5 pm, and that a zero load is reached for an elongation of 200 um. Determine and make a sketch of the
load-displacement curve for (a) 2 elements, (b) 10 elements, (c) 100 elements, and (d) determine the number
of elements for which the load drops vertically just after the peak .

8.3 Consider the series coupling of elements with exponential softening. The load-displacement curve for
one single element is given by the equations

=1 GP for AL <GP,
AL = { CoP +uIn{P,/P) for AL > GoP, (3_1,5)

in which Cy = 1.1 pn/kN, P, = 3.1 kN, up"= 68.2 um. Determine: (a) the energy required to break one
element, (b) the load-elongation curve for a coupling of 10 elements, (c) same for 100 elements (draw the
curve). (d) Determine also the lowest number of elements for which the resulting softening branch displays a
vertical tangent.

8.2 Localization of Strain in a Softening Bar

In the preceding section we obtained some general results concerning a series coupling of discrete elements,
for which the reasoning is somewhat easier than for a continuous bar, Now let us discuss the behavior of
a uniaxially stressed bar of a homogeneous material. ] }

It may appear that using a classical stress-strain formulation including softening is a natural way to
introduce fracture (loss of strength down to zero). However, this is not straightforward. If no other

precaution is taken, the resulting model is both physically incorrect and numerically ifl-posed. Let us see
why.

8.2.1 Localization and Mesh Objectivity

Consider a homogeneous bar of initial length L (Fig. 8.2.1a) made of a material whose stress-strain
curve (uniaxial) is assumed to exhibit softening, as sketched in Fig. 8.2.1b. Because of the hypothesis of
homogeneity, we can imagine the bar to be subdivided in NV identical shorter bars (N being arbitrary)
which then act as N equal elements coupled in series, as sketched in Fig. 8.2.1c. We have seen in the
previous section that when N elements are coupled in series, the strain localizes after the peak in only
one of them, so that the resulting o-€ curves look similar to that in Fig. 8.1.4b.

Therefore, the postpeak softening of the bar depends totally on the assumed subdivision, as indicated in
Fig.8.2.1d. This has two direct consequences: on purely mechanical grounds, the result is absurd because
the physical result cannot depend on the imagined subdivision; on numerical grounds, it implies that the

result one would obtain by using finite elements would completely depend on the number of elements or

clement size. This is a subjective choice of the analyst, and, thus, is not an objective property, as pointed
out by BaZant (1976). This last property is referred to as lack of mesh objectivity, or as spurious mesh
Sensitivity.

Keeping the numerical point of view, we must realize that the response of the foregoing model is reached
upon infinite mesh refinement, i.e., for N — oo. This means that strain localization is predicted to occur
only within dne infinitely thin element, i.e., an element of infinitely small length and volume. Now, is
that consistent with the principles of thermodynamics? Yes, it is. We stated in the previous section that
among many possible equilibrium paths, the actual one is that in which the second-order complementary
work §2W* at constant § P is maximum. Since, in the softening branch, § P is negative, the maximum
82W* occurs for the path with the largest (positive) inverse slope. As shown in the figure, this slope does
indeed correspond to considering infinitely many elements (Fig. 8.2.1d).
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Figure 8.2.1 (a) Homogeneous bar. (b) Stress-strain curve of the material. (c) Subdivision of the barinto N
equal elements. (d) Resulting stress-strain curve. :

&

" A further implication is that any variable that is ultimately bounded by the length or the volume w.ill
vanish. (We say that a variable ¢ is ultimately bounded by volume V if |¢| < MV, for some finite
M > 0.) This is so for the inelastic displacement and the energy-dissipation after the peak. We say that
the corresponding physical quantities have measire zero. Let us take a closer look at this problem for
one special, yet important case. ] :

8.2.2 Localization in an Elastic-Softening Bar

Consider a homogeneous bar of length L (Fig. 8.2.2a) that hasa stress-strain curve of the elastic-softening
type, as depicted in Fig. 8.2.2b, and is characterized by alinedr elastic behavior up to the peak, followed
by strain-softening. We can then write the strain on the softening branch as

o .
’@:E+H‘: IR

where F is the elastic modulus and &/ is the inelastic fracturing strain, graphically defined as shown
in Fig. 8.2.2b. Unloading from the peak is assumed. to be fully elastic. We further assume that- the
softening branch is unique, i.e:, that a unique relationship exists between o and e/ as long as & increases
monotonically:

o =¢(e") i (82.2)

This function can be extracted from the o-¢ curve and plotted independently as shown Fig. 8.2.2¢. Wclcan
also compute the work yp required to fully break a unit volume of material (the fracture energy density):
it is the area under the o-¢ curve, and so the area under the o-&7 curve:

71::/() adéf:/o b(e?) def | (8.2.3)

Note that Figs. 8.2.2 and 7.1.3 and the foregoing integral are similar to thg definition of Gg in (7.1.8).
It might seem that the correspondence is immediate and logical. It is not. .

Consider a quasi-static process in which the bar is monotonically stretched. Up to the peak, the strain
is uniform, equal to the elastic strain. At peak, justas seen before, a bifurcation can occur so thgt aportion
of the bar, of length & < L, continues stretching, while the rest of the bar unloads elastically (Fig. 8.2.24d).
The total elongation of the bar in the softening branch is thus: ’ : :

d d
E E

where we see that the first term in the last inequality is the elastic elongation. Therefore, we can défine
the fracturing elongation as : .

AL=Z(@L-h+|[Z+el|h=Zr4eln o (824)

AL =eln - (823)
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Figure 8.2.2 (a) Homogcncous bar, (b) Elastic-softening stress straiﬁ curve. (¢) Stress-fracturing strain curve.
(d) Bar with a softening band of length h.

On the other hand, the total work supply required to break the whole specimen is just the work required
to break the softening portion (the remainder is always elastic) so that

) o OO
Wp = A/ o d(hel) = Ah/ o def = Ahyp (8.2.6)
0 0 ‘

where A is the area of the cross section of the bar.

Up to now A has been arbitrary, but what is its preferred value? To find it, we apply again the maximum
second-order work condition (§*W* = max) and find immediately that the thermomechanical solution is
h = 0, in complete concordance with the previous result N = oo for equaily sized elements. It follows
from this essential result and from (8.2.5) and (8.2.6) that, according to this model, both the inelastic
displacement and the fracture work are zero. This is physically unacceptable and contrary to experiment.

8.2.3 Summary: Necessity of Localization Limiters

The foregoing simple analysis corresponds (o static loading and shows that the simple stress-strain model
with strain softening Jeads to unacceptable behavior both physically and computationally: (1) the softening
zone has a zero width and volume; (2) the inelastic strain and fracture work are zero; and (3) the
computational results are mesh-unobjective.

Further-analyses indicate that similar conclusions apply to dynamic situations. For example, BaZant
and Belytschko (1985) analyzed the problem of two converging elastic waves propagating from the ends
of a bar towards its center, where they add up to exceed the tensile strength. The results show that failure
is instantaneous and occurs again over a zone of zero width, and with zero energy dissipation. Belytschko,
BaZant et al. (1986) reached similar conclusions for converging elastic waves in a sphere or a cylinder;
although the fracture pattern was chaotic, with fracture occurring at many locations, the results still had
zero measure and were mesh unobjective (see also BaZant and Cedolin 1991, Sec. 13.1).

The conclusion is that these models are not suitable at all because they allow localization in a region of
zero volume. Therefore, if a continuum formulation based on stress-strain curves with strain softening is
to be used, it is necessary to complement it with some conditions that prevent the strain from localizing
into a region of measure zero. Such conditions are generically called localization limiters (BaZant and
Belytschko 1985). ) ’

The model with the simplest localization limiter is the crack band model that we introduce next. Models
with more general limiters are the nonlocal models that are presented in Chapter 13.

Exercises

8.4 Consider a bar with a triangular stress-strain curve defined as Ee — o for Be < f], and Fe =
(I+m)fi —mo <for f{ < Ee < (1+m)f, where E = 30 GPa, f; = 3MPa, E = 30 GPa, and m = 21;
the stress is zero for Ee > (1 + m) f{. Determine the load-elongation curve and the energy supplied to break
the bar if its length is 0.5 m and the softening localizes in a zone of width @ h =25cm, (b) h = 10 cm, ()
h=3cm,(dh=1cnm. :
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85  Inthe previous exercise, determine the width of the softenmg zone for which the stress drops verucally
to zero right after the peak.

8.6 Consider a bar that has an exponential stress-strain cuirve defined as

= forEBe< fi
Pes { o+mf{In(f{/o) for FEe< f:’ (8.2.7)

in which E = 27 GPa, f{ = 3.1 MPa, m = 12. Determine the load-elongation curve and the energy supplied
to break the bar if its length is 0.5 m and the softening localizes'in a zone of width (a) h = 25 cm, (b) b = 10
cm, (c)h—3cm @ h=1cm

8.7 In the previous exercise, determine the width of thé sdftening zone for which the tangeni to the stress-
elongation curve right after the peak becomes vertical..

8.3 Basic Concepts in Crack Band Models

From the preceding analysis it is clear that, in order to make strain softening an acceptable constitutive
relation, localization of strain softening into arbitrarily small regions must be prevented. This s, in general,

achieved by some mathematical concept; called the localization limiter. There are various such concepts

of varying degrees of generality and complexity. The most general concept is the nonlocal continuum
concept, which will be discussed in Chapter 13, ‘Now we describe a rather simple albeit less general
concept, known as the crack band model, which ' was proposed in general terms in BaZant (1976), and
was developed in full detail for sudden cracking in BaZant-and Cedolin (1979, 1980, 1983) and Cedolin

and BaZant (1980), and for gradual strain softening in BaZant (1982) and BaZant and Oh (1983a). The )

basic attribute of the crack band model is that the given constitutive relation with strain softening must be
associated with a certain width k. of the crack band, which represents a reference width and is treated as
a material property. Here we-discuss the most basic aspects only; wnh the help of simple uniaxial models.
The three-dimensional analysis is deferred until Section 8.6.

8.3.1 Elastic-Softening Crack Band Models

As for cohesive cracks, the prepeak stress-strain relation can be nonlinear, but for many purposes it is
enough to assume a linear behavior up to- the peak followed by softening (Section 8.2.2). Then, the
stress-elongation curve is given by (8.2.4), for arbitcary h.- In BaZant’s approach, the width of the band
cannot be less than a certain characteristic value hy: Thus, substituting b = h, in (8.2.4), we get an
expression that is formally identical to the corrésponding expression for the cohesive crack if we identify
heel with the cohesive crack opening displacement w:

‘hevf—w’ : ‘ (8.3.1)

Thus, the stress-elongation curve for the band model and for the cohesive model will coincide if we relate
the softening curve of stress vs. fracturing strain d)(af )to'the softcnmg curve of stress vs. erack opening
of the cohesive crack, i.e.,

$(e) = Flw) = F(he!) or  fw) = g(w/h,) (832)

where F{w) is the equation of the softening curve for the cohesive crack model. Therefore, there is a
unique relationship between the crack band model and the cohesive crack model, at least for the simple
elastic-softening case that we are analyzing. The correspondence is illustrated in Fig. 8.3.1 which shows
the softening curve for the cohesive crack (Fig. 8.3.1a) and the corresponding stress- strain curve for the
crack band (Fig. 8.3.1b). Also shown is the correspondence for the initial linear approximation to the
curve, the horizontal intercept of which satisfies €= wy/he It follows that a linear approximation
for the softening of crack bands will be a good approximation in the same circumstances as it was for
the cohesive crack model, principally for peak loads-of not too Jarge specimens, if notched, but any size
specimens, if unnotched). This explains why the use of linear softening was very successfulin the work
of BaZant and Oh (1983a).
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° (b)

€ =w,/h,
Figure 8.3.1 Correspondence between the softening curve of the cohesive crack model (a), and the stress-strain

curve of the crack band model (b).

) The correspondence is obviously maintained for the specific fracture energy G Indeed, from (8.2.6)
it follows that the energy required to form a complete crack (or a fully softened band) is

w
Gr =7 =har (8.33)

From this, the characteristic size £, can be easily obtained in terms of the properties of the crack band
model as

EG E
bon = = = h—F (8.3.4)
£ t

The characteristic size, £;, based on the initial linear softening is then

n=E29_p 5 8.3.5
T/ Y o6

where € is the horizontal intercept of the initial tangent (Fig. 8.3.1b).

A parameter of interest in numerical calculations using the crack band model is the softening modulus
L for the linear approximation (Fig. 8.3.1b). It is a simple matter to show that

20y = h, (1 - g) (8.3.6)

1

The correspondence between the two models can further be systematized by defining a characteristic
strain &5, "and a reduced fracturing strain 7 as

hcf{ ft/ Ef
Eop = —=mt = AL and &f = 8.3.7
¢ Gp  F Ech (3.7)

With this, the nondimensional expression for the softening function is identical to that for the cohesive
model, with the obvious change & « 01.,i..:

&= f(&f) (8.3.8)

\

Therefore, all the softening curves discussed in the previous chapter can be directly implemented in the
crack band fhodel. The only difference between the results for one and other model is in the strain and
displacement distribution. Figs. 8.3.:2a and b show the comparison of the axial displacement distribution
in a bar for a cohesive crack and a crack band model. Figs. 8.3.2c and d show the corresponding strain
distributions. Obviously, the difference is nil for engineering purposes if h, < L. This is almost
invariably true in practical situations because, as we will see later in more detail, k. is of the order of a
few maximum aggregate sizes (BaZant and Oh 1983a).
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Fxgure 8.3.2 . Comparison of the distributions of axial displacement and of strain in a bar for the cohesxve crack
model (a, ¢) and the crack band model (b, d). &
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Figure 8.3.3 (a) Curvilinear stress-strain curve. (b) Curvilinear strcss fx acturing strain curve. (c) Plot of the
curve defined in Eq. (8.3.9),

8.3.2 Band Models with Bulk Dissipation

The cracking in reality does not begin upon reaching the tensile strength; but earlicr, and so the diagram
of stress vs. strain should have the form shown in Fig. 8.3.3a."As discussed in Section 7.1.6 for cohesive
crack models, such behavior can be incorporated into the computational models with relative concep-
tual simplicity, but it considerably complicates the numerical treatment and experimental interpretation.
Moreover, at least for concrete, neglecting the prepeak notilinearity is gene‘rally acceptable for practical
engineering use, and so the elastic-softening models we previously discussed are those most used. This
seems to be clearly established (Planas, Elices and ‘Guinea 1992) when there is one main-crack, ie.,
sharp localization occurs, because then the large postpeak strains dominate over the prepeak deformation.
However, for situations where the localization is not sharp, the prepeak nonlinearity may play a dominant
role, and its inclusion might be necessary. This may be the case in the prelocalization stages when there
is reinforcement or when the stress field has a high gradient (as in the case for shrinkage stresses).

In our discussion of cohesive crack models, the inclusion of ‘bulk dissipation (prepeak inelasticity)
required defining an inelastic constitutive equation-for the bulk in‘addition to the softening curve for the
cohesive crack. One of the appealing features of the crack band model is that such a dichotomy is not
necessary.’ Indeed, it is enough to define a single curvilinear stress-strain curve such as that shown in
Fig. 8.3.3a. Then we can split the strain into the elastic and‘inelastic or fracturing part and use the curve
of stress vs. inelastic strain as shown in Fig. 8.3.3b.. For example, BaZant and Chern (1985a) proposed
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Figure 8.3.4 (a) General trend for the unloading-reloading branches found in experiments. (b) Construction
of the unloading branch according to the secant-tangent rule (BaZant and Chern 1985a,b).

the following power-exponential curve:
o=¢(e) = ChefPe " ‘ (8.3.9)

where Cj, p, b, and g are constants. Fig. 8.3.3c shows the appearance of this curve forp = 1/3,¢ = 0.55
as derived by BaZant and Chern (1985a) by fitting of various experimental data. Note that the curve has
been nondimensionalized so that its peak and area are equal to one..

Alternatively, the complete stress-strain curve can be given in the form o = (g). This is equivalent
to giving the o (&) curve in parametric form as:

o = Pe)

8.3.10

& = - LU(e) (8:3.10)

Among the formulas of this kind we have the power-exponential form (BaZant 1985a):
o= FEee™’ (8.3.11)
where E is the elastic modulus and b, and ¢ are constants. Another expression is

Ee

= — 8.3.12

1+ ae + be? ( )

which was introduced by Saenz (1964) for compression strain softemng, and in which @, b and ¢ are
constants.

8.3.3 Unloading and Reloading

For general applications in finite element programs, one must also specify what happens when, after partial
or full cracking, the material is unloaded or reloaded. Experimentally observed behavior at unloading and
reloading is rather complicated and looks approximately as sketched in Fig. 8.3.4a which is characterized
by hysteretic loops of considerable area (Reinhardt and Cornelissen 1984; Hordijk 1991). In most finite
element programs, however, it is assumed that unloading and reloading are linear. In the next section,
devoted to the uniaxial softening models, we show how these linear unloading-reloading curves are
generated within theoretical frameworks that can be easily generalized to the general three-dimensional
models.

If the detailed umax1a1 unloading-reloading curves need to be reproduced, the expressions developed
to generate realistic unfoading-reloading curves in cohesive crack models (Section 11.7.4) are easily
incorporated into the crack band model through the basic relationship (8.3.1).

A simpler rule, called the secant-tangent rule, was proposed in the frame of crack band models by
BaZant and Chern (1985a,b), as illustrated in Fig. 8.3.4b. Given the stress-strain diagram for monotonic
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Figure 8.3.5 Energy dissipation ina crack band model with prepeak inelasticity.

stretching, o = ¥(g), the secant-tangent rule assumes that the unloading has always the same slope as

the secant-modulus for virgin loading at the'same strain valug, i.e.,

do = w—(;lde if de<0 T (33.13)

Graphicaly, this means '(Fig. 8.3.4b) that segment 23 is parallel to the secant 03, segment 34 is parallel

to the secant 06, etc., where points 5, 6, 7 are obtained from points 2, 3, 4 by vertical projections onto the
virgin stress-strain curve. :

For reloading one may assume either the sarne path as for unloading, or, better, a straight line reloading
‘up to point 8 on the strain axis and then either a straight line back to point 1 where unloading started
or a straight line 89 parallel to the secant 01. The tangent-secant rule undercstimates-the area of the
hysteresis loops, but it has the advantage thatit yields, without any additional material parameters, an
approximately correct location of point 4 at which the initial ¢lastic slope is resumned. Furthermore, using
the rule shown by curve 489, point 9 at which the virgin curve is reached again is approximately correct:
The tangent-secant rule was applied in a finite element program for combined smeared cracking, creep,
and shrinkage of concrete (BaZant and Chern 1985a,b).

8.3.4 Yracture Energy for Crack Bands With Prepeak Energy Dissipation

For stress-strain curves with prepeak inelasticity, the energy dissipation consists of two- terms. One
corresponds to the energy dissipated in the prepeak range, which is proportional to the volume, and the
second corresponds to the energy dissipated after peak which, in'the cases of localization in a single band,
is proportional to the volume of the band hoA, where'Ais the area of the main surface of the crack band.
“ Therefore, the problem is identical to-that for the cohesive crack with bulk dissipation (Section7.1.6).
An analysis analogous to that for the cohesive cracks was performed by Elices and Planas (1989): fora
uniform bar in tension (Fig. 8.3.5a), with the stress-strain curye shown in Fig. 8.3.5b, the material follows
initially the path O.P up to the peak. Then the bifurcation occurs and the material outside the crack band
follows the unloading path P BB’ while the matexial in the crack band follows the path PAA’. Therefore,
the total work of fracture is : ’

Wp = A(L ~ h.) area(OPBB'O) + Ahg area{ OPAA'O) =
AL area(OPBB' O} + Ah, area( BB'AA'B) (8.3.14)

’

The area O PBB’O (lightly shaded in the figure) is the-eniergy supplied to a unit volame when itis
loaded up to the peak and then unloaded; we representit by vyy. The area BB’ AA' B (darker shading
in the figure) represents the extra energy supply required:to br@ak 4 unit volume of material in the crack
band. Therefore, we may write the foregoing equation as

Wr = ALvy + Ahcyr (8:3.15)

Now; identifying the second term as the surface energy dissipation, we can apply (8.3.3) and getan

Basic Concepts in Crack Band Models 225
€] () (© (@) (e
ittt - :
X - o c o
i
h_cL ¥ |
_ , h® ) *
1 4 B A B A |
I I | i Uh
: : o I
! : € g 1 \e 1Y &
ol Hil & e e e e

Figure 8.3.6 (a) Bar discretized in finite elements of size h.. (b) Bar discretized in finite elements of arbitrary
size h'®), (c) Triangular stress-strain curve for a physical band of width h.. (d) Corresponding stress-strain
curve for an element of size h(?), in which BA(®) = BA h(")/hc. (&) Same for too large an element, leading
to snapback; the arrows indicate sudden failure at peak load.

expression identical to (7.1.19). From this point-on, the analysis is identical to that for the cohesive cracks
with bulk dissipation, which leads to a dependence of the mean fracture energy given by (7.1.22). This
can obviously be recast in terms of the properties of the stress-strain curve using (8.3.3):

D B Ehayr ‘
Grm = hevr [1 + am](:,f—;)} ) ay = ’YU,2 , Lo = fzf (83.16)
C t t )

8.3.5 Simple Numerical Issues

Strict application of the crack band model, as formulated by BaZant, with h, equal to a material constant,
would require a finite element mesh in which the cracking band has exactly a width h.. Thus, if the
crack-band location is not known in advance, all the finite elements would have to be of width k. as
depicted in Fig. 8.3.6a for the uniaxial case. This is unpractical and, fortunately, unnecessary. The
fundamental reason is that A, does not enter explicitly the essential macroscopic parameters, of which the
most important is G = h.yp. Therefore, if finite elements larger than b, need to be used, it is possible
to keep the essential response if we preserve the fracture energy. To do so, an adequate approximation is to
distribute uniformly the fracturing strain over the element and rescale the softening part of the stress-strain
curve to keep G constant. The resulting stress-strain curve will depend on the element size, and must
be scaled so that

. h
OV —heye = A = ROR : (8.3.17)

where h(€) is the size of the element and 729 the density of fracture energy to be used for this element.

For models of the elastic-softening type with stress-strain curves such as the one shown in Fig. 8.3.1b,
the scaling is easy: just multiply €/ by the factor in the preceding formula, i.e.,
f(e) he e f

= @
Note that only the fracturing part of the strain must be scaled. The result of the scaling is shown in
Figs. 8.3.6c-¢ for the simple linear softening.” Note also that if the size of the element is too large, as
deliberately shown in Fig. 8.3.6e, the resulting softening branch for the stress-strain curve of the element
will show a snapback. In these cases, the finite element will become unstable at the snapback point, and
the stress will drop suddenly to zero. Then the energy dissipated cannot be made equal to G, since all
the elastic energy in the element is released. Therefore, either the element must be kept small so that no
snapback would occur, or the curve must be modified to preserve the energy dissipation. This problem
will be addressed in Section 8.6 in a wider three-dimensional framework.

The matters are a bit more complicated if the stress-strain curve has a prepeak nonlinearity as in
Fig. 8.3.7a. In that case, the strain in the hardening and unloading branches must not be scaled; only the

e (8.3.18)
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Figure 8.3.7 (a) Definition of the unloading and softening branches, for a physical band, of width h; -

(b) unloading and softening branches to be used in a finite element of a larger width A, for which
BAE) = BA h'®) /h; (cysame, but for an element so large that it leads to snapback.
$

strain contribution to the surface component of energy must. Therefore, the strain on the softening branch
has to be scaled so that
A ‘
s(e) ey ls . 8.3.19
e — gt = e —¢ 3.

(e =) (83,19
where €° and €% are the strains on the softening branch and on'the unloading branch, respectively, for the
same level of stress (Fig. 8.3.5a~c). This can be rewritten as

“h 1 h
(o) e s f Tei u
€= AOH (h(e) .1> & (8:320)

Thus, as shown in Fig. 8.3.7b~c, only the part of the softening curve on the right of the unloading branch
is to be scaled. This may substantially complicate the use of otherwise simple stress-strain curves (i.e.,
with simple, beautiful expressions). Note, again; that snapback may occur in this case, too, if the element
is too large, as shown in Fig. 8.3.7¢c. : s ) :

In the foregoing it is implicitly assumed that the fracture will localize in a single element, since we
showed that this is /1€ solution in the preceding two'sections. However, if a homogencous case, such as the
tensioned bar (or, in three dimensions, a pure'bend beam), is numerically analyzed, and if the elements are
given exactly the same properties, a normal finite element code will not catch the bifurcation. The reason
is that the program will search for a solution by extrapolating from the previous step, and thus all elements
will go through the peak into the softening branch simultaneously. And they will stay there! To avoid
sophisticated bifurcation analysis (which is more elegant and more robust, but much more complicated),
a simple expedient may be used: put imperfections intothe material. Then either one clement selected
at random is taken to be a few percent weaker than the rest; or the strength of each element is assigned
at random using a narrow strength distribution function. - This is necessary only for structures with a
nominally homogeneous distribution of elastic stresses and strains (laboratory specimens, typically). In
most structures the elastic fields have stress concentrations which trigger localization without the need for
introducing imperfections. (However, in some situations, the danger remains that the loading step is too
large for the imperfections assumed to trigger localization. Theoretically, without bifurcation analysis,
one is not sure, in general, that a localization 'has not been missed.) .

We have addresscd here two basic aspects of the numerical computation: the stress-strain curves to use,
and the way to trigger the localization. This, of course, does:not exhaust the discussion on the numerical
models, but the other important aspects are fundamentally three-dimensional and are discussed later in
Section 8.6, after presenting the three-dimensional softening models.

8.3.6 Crack Band Width

From the foregoing analysis it transpires that, in a finite ¢lement formulation with a free element size, the

. strain-softéning curve must be adjusted according to'the element size so that the calculations would yield

macroscopically consistent results whatever the element size.-This is close to saying that the erack band
width h, is arbitrary since it is replaced by h{¢) without a'noticeable effect (as long as the element size
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is kept small). This means that k. cannot be determined from fracture tests in which a single crack (or
crack band) is formed. ) .

The value of h., however, does have an effect in those situations where cracking docs not localize but
remains distributed over large zones. This may happen as a consequence of a dense reinforcement grid
or in problems such as shrinkage, where the mass of concrete in front of the drying zone restrains the
cracking zone and may (but need not) force the cracking to remain distributed. Thus, the value of h, can
be identified only by comparing the results of fracture tests with the results of tests in which the cracking
is forced to be distributed. The problem is the same as that in determining the characteristic length for
nonlocal models, and we will discuss it in more detail in Chapter 13.

In a crude manner, the value of i can be approximately identified from fracture tests for specimens of
various geometries, in which the cracking is localized to a different extent. This has been done in BaZant
and Oh (1983a), with the conclusion that the crack band width k. = 3d, where d, = maximum aggregate
size, is approximately optimal. However, the optimum was weak, and crack band width anywhere between
2d, and 5d, would have given almost equally good results.

A better test for determining hg was conceived by BaZant and Pijaudier-Cabot (1989). Localization
was prevented by gluing parallel thin rods on the surface of a uniaxially tensioned prism. However, a
uniform field of strain-softening was still not achieved. For details, see Section 13.2.4.

Exercises

8.8 Give a detailed proof of Eq. (8.3.6).

8.9 Determine the uniaxial stress-strain curves for a concrete which, according to experimental measurements,
hasan elastic modulus of 25 GPa, a tensile strength of 2.8 MPa, and a fracture energy of 95 N/m, and is assumed to

display an elastic-softening behavior with triangular softening and a crack band width of 50 mm (approximately
equal to 3d, with d, = 16 mm). . :

8.10  Determine the uniaxial stress-strain curves to be used for the same material as defined in the previous
exercise if the numerical analysis is to be performed using finite elements 20 cm in size. -

8.11 Determine the maximum size of the finite clements to be used-in a numerical analysis with the same
material in order for the stress-strain curve to be stable.

8.12 " Determine the uniaxial stress-strain curves for a concrete which, according to experimental measure-
ments, has an elastic modulus of 25 GPa, a tensile strength of 2.8 MPa, and a fracture energy of 95 N/m, and is
assumed to display an elastic-softening behavior with exponential softening and a crack band width-of 50 mm
(approximately equal to 3d, with d, = 16 mm).

8.13 Determine the uniaxial stress-strain curves to be used for the material defined in the previous exercise
if the numerical analysis is to be performed using finite elements 20 cm in size.

8.14 Determine the maximum size 6f the finite elements to be used in a numerical analysis with the foregoing
exponential material in order for the stress-strain curve to be stable (not to exhibit snapback).

8.15 For the material defined by Eq. (8.3.9), determine the fracturing strain f and stress f1 at which the
peak occurs as a function of the constants Cy,p, b, and g. Show that the equation can be rearranged to read
o = f{&F exp[—p(¢? — 1)/q), in which £ = & /ef.

8.16 For the material defined by Eq. (8.3.9), show that the fracture energy density v can be written as

_ C; p+1
= qb(P+1)/qF( q )

where I" (n) is the Eulerian Gamma function defined as I" (n) = f0°° 2" le™dp,

8.17  Consider a material with a stress-strain curve given by o = Eee ™%, Show that E is indeed the elastic
modulus. Determine b in terms of F and f;. Determine, as a function of £ and f;, (a) the total energy density
absorbed by a material element that follows the softening branch; (b) the energy density absorbed by a material
element loaded up to the peak and then unloaded, if it is assumed that the unloading is linear with the same
elastic modulus as for the initial loading; (¢} the density of fracture energy yr; and (d) show that for this model
the ratio he/Len is constant and determine its value. [Answers: (a) 7.39f/*/E, (b) 1.45f{*/ E, (c) 5.94 >/ E,
(d) hefbon = 0.17.]
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Figure 8.4.1 Types of stress-strain curves: (a) stiffness degradation; (b) yield limit degradation; (c) mixed
behavior; (d) more realistic behavior with nonlinear unloading.

8.4 Uniaxial Softening Models

After explaining the basic concepts in crack band models, we can now discuss in detail the uniaxial version
of various simple constitutive models for strain softening. Depending on the behavior at unloading, one
_ may distinguish three basic types of models: : -

1. Continuum damage mechanics, in which strain-softening is due solcly to degradation of elastic
moduli and no other inelastic behavior takes place: The basic characteristic of such theory is that
the material unloads along a straight line pointed toward the origin (Fig. 8.4.1a).

2. Plasticity with yield limit degradation, in which the constitutive relation is the same as-in plasticity
except that the yield limit is decreasing, rather than increasing. The elastic moduli remain constant
(Fig. 8.4.1b). The basic characteristic is that the unloading slope is constant, equal to the elastic
modulus F.

3. A mixed theory, in which both the elastic moduli ‘and the yield limit suffer degradation. This

behavior, for which the unloading slope is intermediate (as shown Fig. 8.4.1c), is normally a better

description of experimental reality:

The foregoing classification neglects the fact that the unloading-reloading response is actually nonlinear,
as discussed in Section 8.3.3 and depicted in Fig. 8.4.1d: Models including such behavior can be generated,
but they are considerably more complex; and are a subject for specialized studies that will not be treated
here. As an exception; the microplane model, which implements this kind of behavior naturally, will be
discussed at length in Chapter 14.

8.4.1 Elastic-Softening Model with Stiffness Degradation

As a simple continuum model of a material fracturing in tension, we can adopt the elastic-softening
model whose behavior for monotonic stretching was described in Fig. 8.2.2. To give a physical content
. to the model, we can assume that this behavior corresponds to an elastic matrix with an array of densely
distributed cracks normal to the load direction (Fig: 8.4.2a). Thus, we assume that the total strain is the
sum of the elastic strain of the elastic matrix; ¢, and the strain contributed by the crack opening, &7

5:561+6f—;%+5f (B4

where E is the elastic modulus of the matrix (i.e., of the virgin material between the cracks). .For monotonic
straining the assumed behavior is that shown in Fig.'8.2.2. Consider now the unloading behavior after
the specimen has been loaded until a certain maximum inelastic strain &/ (Figs. 8.4.2b-d). Let us further
" assume that unloading is $traight to the origin. This :means that during unloading, the cracks close so
that they are completely closed at zero stress. As depicted in (Fig. 8.4.2b), &/ represents the maximum
cracking strain reached before unloading, and ¥ the actual cracking strain. Obviously, for such unloading
zf
fo e
Ev ¢(gf) a : (8.4.2)
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Figure8.4.2 (a)Densely crackedelastic material. (b) Model with cracks completely closed after full unloading.
(c) Model with totally prevented crack closure. (d) Mixed type model with partial crack closure upon unloading.

But this equation also holds if the loading is monotonic (i.e., if fracture is taking place) because then
ef = & and ¢ = $(£f). However, we must impose the condition that the line that corresponds to
monotonic loading can never be crossed. This can be expressed in various ways, but two are most useful:
one in terms of & and &, and the other in terms of &/ and &7:

o-¢EHY <0 o el -&f <o (8.43)

Note that while £ can decrease, & is a nondecreasing variable.

Now, the foregoing results can be reformulated so as to look as a genuine continuum damage model.
To this end, one may define a derived variable w, the damage, as
w I &f E&f
—— = s or W= =
1-w #(E) E&f + ¢(&f)

Then we just insert this definition into (8.4.2) and the result into (8.4.1), which yields the classical form
of continuum damage mechanics for an elastic matrix: :

(8.4.4)

o2

£ = m (8.4‘5)

We will introduce this expression in a more standard way after we analyze the strength degradation model
and the mixed model for this elastic softening model.

8.4.2 Elastic-Softening Model with Strength Degradation

Consider now the same basic parallel crack model of Fig. 8.4.2a, but assume that upon unloading the cracks
cannot close, as depicted in Fig. 8.4.2c. This is, of course, a tremendous simplification, but frictional
grain interlock, as well as debris and surface mismatch, can prevent cracks to a large extent from closing
in materials such as concrete. Obviously, the resulting model is of a plastic type with softening such that
ef = P where 7 is the plastic strain.

Now we need only to specify that, since we do not consider compression, ef = &/ at all times and that
the monotonic curve cannot be exceeded. As before, we thus have

o-¢(E) <o (8.4.6)

as the plastic criterion. Note that in this case we cannot use the criterion in terms of el Note also that it
may seem that making a distinction between £/ and &/ is superfluous. However, for the three-dimensional
case the distinction will be essential because &f is a second-order tensor, while & will remain a scalar
(known as the equivalent uniaxial inelastic strain). :

8.4.3 Elastic-Softening Model with Stiffness and Strength Degradation

We consider the same mode] as before, but consider now that, upon unloading, some permanent strain e?
remains at zero stress, as depicted in Fig. 8.4.2d. We can simply write that, on the unloading-reloading
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Figure 8.4.3 (a) Parallel micro-rod coupling (Dougill 1976).:(b) Determination of the damage parameter in
terms of the maximum inelastic strain.

branch,

gf = p . -
ef —gp g 2 € :
& — (8.4.7)
FCIRd
The only extra information required is the evolution.of £P.-The simplest assumption is that it is a unique
function of &/, For example, Ortiz (1985) assumed (in"a -much more complex framework) that the
permanent strain is a fixed fraction of the (maximum) inelastic strain, i.c.,

eP=qef - : (8.4.8)

where o is a constant between 0. (for pure-damage) and 1 (for pure plasticity).

8.4.4 A Simple Continuum Damage Model

Let us now briefly review a very simple damage model. -We base it on Dougill’s approach in which a
material element is considered to be formed, ‘ideally, by many infinitesimal rods connected in parallel
(Fig. 8.4.3a). We assume that the rods are identical in all ‘but strength, which is randomly distributed.
Upon stretching, the weaker rods fail first.- At a given strain level & fraction w of the rods have failed.
Then, the resulting stress is given by

o= E(l ~w)e (8.4.9)

Note that this is the average stress. The stress in the surviving rods is that for the virgin, undamaged
material. Therefore, the relationship between the macrostress ‘¢ and the microstress 7 (also called the
true-stress) is

[22

F= . (8.4.10)
. 1—-w ] .
This is the basic relation in contintium damage mechanics, initiated by Kachanov (see, e.g., Lemaitre and
Chaboche 1985). This relation applies not only to brittleé materials in which the relationship between the
true stress and the strain is linear, as we have here, but toany other (true) stress-strain relationship.

The model must specify the evolution of damage. Thisis:done on the basis of the uniaxial stress-strain
curve as shown in Fig. 8.4.3b. ‘Assuming that the data are'in’the form of the O‘(Ef) curve, we get the
damage at each point by writing

o ézs(e'f )

Vv = 5 T S B

(8.4.11)

from which (8.4.11) follows. So, the two formulations are fully equivalent, even though the underlying
micromodels seem to be completely different.
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Figure 8.4.4 'Models with prepeak inelasticity: (a) stress-strain curve for monotonic loading; (b) stiffness
degradation; (c) strength degradation; (d) mixed behavior.

8.4.5 Introducing Inelasticity Prior to the Peak

Although, for concrete in tension, the inelastic strain prior to the peak is relatively small, for some
reinforced materials the prepeak nonlinearity can be important and must be taken into account. This can
be done exactly as before, with the only assumption that the cracking strain (or damage) starts before the
peak is reached. This is illustrated in Fig. 8.4.4a, which shows the full o(€) curve, and Figs. 8.4.4b-d,
which show the three possibilities of untoading behavior.

Therefore, to get a model incorporating the prepeak nonlinearity, it suffices to use the adequate expres-
sion for the function ¢(6f) Some candidates for such a model were given in Section 8.3.2. .

We recall here that, when used in finite element formulations in which the element width A is greater
than the characteristic crack band width k., the softening part of the curve must be scaled as indicated in
Section 8.3.5.

8.4.6 Crack Closure in Reverse Loading and Compression

For concrete as well as for other quasibrittle materials, the basic inelastic deformation mechanism in
tension is cracking. If the material is subjected to tensile stress producing a crack, then is unloaded and
the stress reversed into compression, the crack closes and the stiffness in compression is recovered to a
large extent. As already pointed out, a nonlinear unloading behavior suchas that sketched in Fig. 8. 4.1d is
observed (except at strong lateral confinement). However, the simpler models based on damage mechanics
may be more convenient for computational purposes, and-then some mechanism must be devised to ensure
that the compliance reduction due to damage, as shown in Fig. 8.4.5a, would not appear on the compression
side. Then, the split form (8.4.1) together with (8.4.2) is most efficient in handling the problem. It suffices
to write that, for o < 0, the crack opening must be zero; this may be compactly written as

G 5f + . .
R AT g (8.4.12)

where ((7)+ is the positive part of ¢, defined as o for positive values and zero for negative values, or, in
algebraic terms:

= (8.4.13)

The behavior becomes elastic, characterized by the initial elastic modulus as soon as the stress becomes
negative (Fig. 8.4.5b).

For the case of pute strength degradation, no special precaution needs to be taken since, by definition,
the crack opening is fully irrecoverable. For the case of mixed unloading behavior (Fig. 8.4.4d), the
positive part must include the entire expression (8.4.7), and so the total strain may be written as:

_0 o T ' (84’14)
5‘E+<5_+ PEp) "> *
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Figure 8.4.5 Reversing the stress sign: (a) invalid result with stiffress degradation also in compression; (b)
model with crack closure; (c) stress-strain curve showing softening in compression as well as in tension.

In this way, the material recovers the undamaged behavior in compression as soon as the unloading branch
reaches the initial elastic line, as shown in Fig. 8.4.5¢c.

Certainly, inelastic strain and cracking occur in compression, too.  In practical analysis of concrete.

structures, especially in the analysis of beams and plates based on a uniaxial or biaxial stress-strain
diagram, it is normally assumed that the stress-strain diagram of concrete in uniaxial compression also
exhibits a peak followed by strain softening (Fig.”8.4.5d)..- As a consequence of this hypothesis, all
localization phenomena described for tension occur for compression as well.

This means that one needs to also use fracture mechanics for compression behavior. Similar totension,
one needs to introduce either a softening band in compression (BaZzant 1976) or one might postulate a
compressive fictitious crack, as suggested by Hillerborg (1989).If, however, triaxial stress-strain relations
are considered, such assumptions do not reflect realistically the actual mechanism of compression failure.
Compression strain softening is not due to-large strain'in the ditection of compression, unlike tensile
strain softening, but is due to volume expansion of the material which causes large strainsin the.directions
transverse to the direction of compression.  So, compression softening is a strictly triaxial phenomenon,
while tensile strain softening can, to a large extent, be treated as a uniaxial phenomenon. If volume
expansion (transfer of strains) is prevented, e.g., by strong enough confining reinforcement or encasement
of concrete in a strong enough pipe, then there is no compression softening and the stress-strain relation
has no peak in compression. S

A realistic triaxial stress-strain relation for compression strain softening must reflect these features. Bu
many existing triaxial constitutive models do not, and the biaxial ones, in fact, cannot because they do not
involve volume expansion as a variable. In any case, whether compression softening is modeled directly
as a function of the compression strain or as a triaxial phenomenon associated with volume expansion, the
fracture mechanics aspects associated with Jocalization of compression softening need to be taken into
account. Much research remains to be done in this direction. '

8.4.7 - Introducing Other Inelastic Effects

In the foregoing we have adopted thie simplest approach and assumed that the inelastic behavior is corm-
pletely due to cracking. This allows building models ‘with a minimum of information. Indeed, for the
pure damage or pure strength-degradation models all that is.needed is the function ¢(ef).deduced from
a tensile test, For the mixed model, a furthet function relating £ to &7 is required. :
However, this simple approach neglects othet sources of inelastic behavior that may take place in the
bulk material between the cracks, such as plastic-type strains, creep (viscoelasticity or viscoplasticity), or
shrinkage. A simple, yet effective way of modeling more complex behaviors is to relax the assumption of
elastic material between cracks implicit in (8.4.1) and allow the bulk to suffer inelastic strains, too.  This
can be conveniently sketched as a series coupling of the ¢racking strain, that we represent by a fracturing
element in Fig. 8.4.6, with a bulk element that can be purely elastic as in Fig. 8.4.62, or include inelastic
strains as in 8.4.6b, which are represented by a black-box where we can introduce the desired inelastic
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Figure 8.4.6 (a) Elastic-fracturing series coupling. = (b) Elastic-bulk-inelastic-fracturing model.  (c)
Stress-strain curve split in which all the prepeak inelasticity is confined to the bulk and all the postpeak softening
is confined into the fracturing element.

behavior. For example, BaZant and Chern (1985a) used a fracturing element coupled with a viscoelastic
element and a shrinkage elemént. This means that the inelastic strain is now split into an inelastic strain
associated with bulk behavior £ and an inclastic strain associated to fracturing el that is,

€= % +e?pef (8.4.15)

Focusing on time-independent models, the bulk inelasticity and the fracturing strain can each be modeled
as done in the foregoing analysis in which a single inelasticity mechanism was assumed. Of course, more
information is required to model the behavior. In particular, one function ¢, (8% is required to describe
the growth of the inelastic bulk strain, in addition to the function ¢ f(éf ) that describes the evolution of
the fracturing strain. )

Obviously, the experimental determination of the two functions is very difficult. One particular sim-
plifying hypothesis may help to get an casy-to-handle model. It consists in assuming that all the prepeak
inelasticity in tension is due to the bulk inclasticity. Then the stress-strain curve in the softening branch
may be split as shown'in Fig. 8.4.6¢, so that the fracturing part would be the only part that has to be scaled
according to the size of the element. So, Eq. (8.3.20) is reduced to the simple form

e h
A Eéaf (8.4.16)
However, this is a split for mathematical convenience only, since most material scientists will agree that
cracking (fracturing) starts before the peak. Nevertheless, since the amount of cracking prior to the peak
is only a small fraction of the total, the ad hoc split can be justified on practical grounds.

Due to the enormous variety of combinations that arise as soon as one combines the two inelastic
strain mechanisms, the following analysis will be restricted only to the fracturing mechanism. The other
mechanism can be added as convenient based on classical inclasticity models without softening.

Exercises

818 Consider the uniaxial constitutive equation o = Eee™ and assume that it unloads to the origin.
Determine the evolution law for the damage parameter w. [Answer: w = 1 — e %]

8.19 ~ Consider the uniaxial elastic-softening model defined by anexponential softening curveéz‘z f{e‘(sl/s“)
for monotonic straining, and assume that the unloading is to the origin. (a) Show that the full stress-strain curve
can be written as ¢ = (1/E + Cf)o in which C7 is a function of &l = maxﬁsf), and determine this
function. (b) Determine the fracturing work supply per unit volume of material o, defined as the external
work supply density when the fracturing strain increases up to &' and then the stress is fully released. [Answer:
yf = fleo[l — (1 + &f /250) exp(—€/e0).] (¢) Determine v, the fracture work per unit volume for complete
rupture.

820 ‘For the model in the previous exercise, (a) determine the rate of the fracturing work density; (b) show
that 4/ = ¢?CY /2; (c) generalize the result to any mode! that unloads to the origin.
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Figure 8.5.1 (a) Idealized crack band. (b) Detail of crack displacements. (c) Base vectors.

821 Write the rate of fracturing work (as defined in the previous two exercises) for a tnodel with stiffness
degradation as a function of the damage parameter w. :

8.5 Simple Triaxial Strain-Softening Models for Smeared Cracking

The smeared cracking models have the advaritage that they ‘can capture the influcnces of all the triaxial
stress and strain components on the fracture process. provided that the triaxial stress-strain relation is
known. Unfortunately, formulation of this relation, which is needed forfinite element programs, is a
difficult problem of constitutive modeling. There is in the literature a huge number of models trying to
adequately model fracture of concrete and similar materials in genéral triaxial situations. A whole book
would be required to describe all of them and their modifications and possible extensions. In this section,
we just touch the simplest models for smeared cracking, focusing on tensile stress states: Although they
do not suffice to describe the complete behavior of concrete at complex triaxial stress states and histories,
such -as those with high compression stresses parallel to the crack planes, they are adequate for many
practical instances of tensile cracking.

8.5.1 Cracking of Single Fixed Orientation: Basic Concepts’

For many purposes one can assume that the cracks in concrete are patallel and have a fixed difection,

which does not change during the loading process. This isa reasonable approximation for those loading -

processes in which the axes of principal stress.and strain directions do not change drasticaily since first
cracking. We can then consider, as in Section 8.4.1, that a cracked zone has formed consisting of an
elastic material intersected by an array of densely distributed parallel cracks, Our task is to describe how
the equations must be arranged to incorporate the response of this array of cracks to triaxial loading,

We consider that in an initially isotropic elastic material the maximum principal stress reached the tensile
strength, and so a zone of cracked material formed. After that; the crack\mg process can be idealized as
shown in Fig. 8.5.1a, which shows a crack band, formed by layers of elastic material separated by parallel
cracks whose normal is defined by the unit vector 7. This normal vector is fixed and coincides with the
maximum principal stress direction at the onset of cracking.  Let s be the mean spacing of the cracks
and A the mean displacement between the faces of the cracks (Fig. 8.5.1b). We can define the mean
cracking strain vector f as the crack opening per unit crack-band width, i.e., ‘

el (8.5.1)

s
Now, take point O in the cracked zone as a reference (Fig: 8.5.1a). Let xq be its position' vector, and
let A be any other point within the cracked zone, with position vector x. The distance between O and
‘A measured normal to the cracks is (Fig. 8.5.1a) OA" = (x — x¢) - i, where the dot indicates the
scalar (internal) product. Heiice, the number-of cracks between the two points is (X — Xo) -7/s and,
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correspondingly, the displacement generated by the cracks is

_(x—x0) -7
S

o AT = [(x - xo) - AJAG (8.5.2)

Taking the gradient of the displacement function, and then its symmetric part, we get the macroscopic
small strain tensor that corresponds to the cracking:

1 \
e =5 (iod +& o) = (& &) (8:5.3)

where from now on we use T to indicate the symmetric part of an arbitrary second-order tensor T. The
foregoing result indicates that the cracking strain is not a general symmetric tensor, since it has three of
the six possible components identically zero. Indeed, taking an orthonormal base {#, 8, t_} so that the
unit vectors & and £ are parallel to the cracks (Fig. 8.5.1c¢), we easily find that )

ehh=cl,=el,=0 ' (8.5.4)

The fracturing strain tensor thus has only three degrees of freedom, corresponding to the three components
of the vector &7, . i

“The foregoing equations define the kinematics of the problem. Before getting any further, we must
emphasize that a consistent set of rules must be used to properly define the foregoing vectors. It is implied
in our sketch in Fig. 8.5.1b that one of the two faces of the crack is taken as reference; then 7 is taken as
the unit normal to that face external to the uncracked material, and 80 is the displacement of the other
face of the crack relative to the first. The reader can easily verify that, upon changing the reference to the
other face of the crack, 7 and €% change sign but €/ remains unchanged. .

The total strain tensor is obtained by adding up the elastic strain to the fracturing strain:

14+v

€=
where E and v are, respectively, the elastic modulus and Poisson’s ratio of the bulk (uncracked) material.
This is one of the basic equations of the fixed crack models. Note that it provides six equations, while
we need nine equations. Given the strain tensor, we need to compute the stress tensor and the fracturing
strain vector, nine components in all. The remaining three equations must relate the crack opening to the
stress. : :

Since the basic internal variable is the vector &7, rather than the fracturing strain tensor &, it is natural
to look for a relationship between € and the traction vector & on the crack faces, rather than trying to

directly connect £f to the stress tensor o, Therefore, we assume that the cracking behavior of the material
is defined by a vectorial relationship of the form:

o - %H o1+ (@ 7)° (8.5.5)

F=oi==a7-) - (8.5.6)
where ® must be understood as a functional which, given crack orientation, evolution of & and, possibly,
some other variables acting as parameters, yields the traction vector on the crack faces. Various defini-

tions of this functional have been proposed and more could be invented. We discuss next some of the
possibilities.

8.5.2 Secant Approach to Cracking of Fixed Orientation

For application to problems with monotonic crack opening close to mode I, BaZant and Oh (1983a)
proposed a crack band model in which the stress-strain relations have a secant form, with varying secant
compliances. Here we give an enhanced version that explicitly considers the crack sliding (crack shearing)
and that naturally leads to a damage formulation of the cracking problem.

Consider first proportional paths in which the microcrack opening and shearing increase monotonically.
For these very paiticular paths we can assume the traction vector to be a function of the fracturing strain

_ vector, i.€., ) . . :

& =Fa) (8.5.7)
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where I (-)isa vector-valued function of two vector arguments. Note that & is made to depend on the
orientation of the crack; this is essential to disclose the structure of F'(-). The material containing the
crack band is assumed isotropic. Therefore, we require that, if we rotate simultaneously the crack and
the crack strain vector, we must obtain a traction vector rotated by the same angle. This means that the
function F(&7, ) must be isotropic, i.¢., that :

F(QE,Qn) = QF (&, 1) (8.5.8)

for any orthogonal second-order tensor Q. - A classical representation theorem (Spencer 1971) then
requires the traction vector to have the form

&= SN (e{,,e?)a{vﬁ + ST(E{V‘, e,{w)eﬁ (8.5.9)

where Si (E{\,, 55«) and S’T(eﬁ,, 5,51) are scalar functigfns. that have t?le meaning of noi;m.ﬂ and tangent
secant stiffnesses; €3, is the normal component of &7, &% is'the vectorial component of £7 in the plane of

the cracks, and sé is the magnitude of that component. Algebraically,

=i, =&, =@=ye- g 6510

If we similarly define the normal and shear componenits of the traction vector, i.c.,

s =

oN =617, Op =0~ OoNT; UT:laT|:\/&T'ET (8.5.11)
the foregoing equations reduce to-

oN = SN(E{V,ng)E{V and o = ST(E{\],Eiv)é:f; ©(8.5.12)
which has a beautiful uncoupled form, with &r parallel to 6_'{“ Certainly we could have assur_n'cd this. ffo'm
the onset. But we now have proved that this is the most general possibility consistent with the. initial
assumption (8.5.7) and the condition of isotropy. This ‘means that we need to specify two functions of
two variables to determine the material behavior for proportional monotonic loading.

No doubt, many simplifications will be-required to characterize limited experimental evidf:ncc. Ijlowﬂ
ever, before attempting such simplifications, let us find the general structure of the stress-strain relauo‘ns.
TFirst we solve for the components &f from (8.5.12) and substitute them into (8.5.3) to get the expression
of the fracturing strain tensor:

ef = Cyoy Qi+ Cr(Gr ©7)° . (8.5.13)
Cp and C’T are the normal and shear compliarnceks, defined as

1 1 .
Cy = ———— O = eyt (8.5.14)
Snleloeh) © Sr(eh ef) ‘

where a.dependence on E{V and s{« is implied (attheugh hidden from now on). This expression is now
substituted into (8.5.5) to get the total strain tensor as

14v
E

" For computational purposes this relation is best'expressed in a component form relative to the base {f, 5,1t
inFig. 8.5.1c, arranging the stresses in the six-dimensional column matrix (Cuins Oss, Ot OnsyOsts Otn)
and the strains in the corresponding column matrix (Enn €553 Etty Tnss Vst Yin)? where Yu, = 2640

" It turns out that the equations for the normal and shear components arc mutually uncoupled and can be
written as

e = o - %tm 14 Cyon A& A + Op(Gp @ 7)S (8.5.15)

Enn 1 1+ ECN =V —v Tnn
Ess =% —V el =p Oss (8.5.16)

Ett —v —v 1 T4
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and
Vns 11 0 0 Ons )
Yst = —é—’ 0 1 +GCT 0 Tst (8.5.]7)
Yin 0 0 1+ GCT Tin

where G = F/2(1 + v) is the shear modulus. .

The foregoing secant equations are particularly simple: they depend only on the two functions Cn
and C that appear in only three diagonal elements. Now we must specify how these functions evolve.
In the early times of the smeared crack applications (see Rots 1988, for the basic references), before
fracture mechanics concepts became widely accepted, the structural finite element codes used to set
both the normal and tangential stiffnesses to zero just after cracking starts. This is equivalent to setting
Cy = Cr = oo in the foregoing equations. This turned out to lead to numerical problems because
of the sudden energy release implied by such approximation, and a certain amount of shear stiffness
was retained, such that vs, = 05,/ (8:G), where 3; was called the shear retention factor (Suidan and
Schnobrich 1973; Yuzugullu and Schnobrich 1973), whose value was of a few tenths, typically 0.2. This
is equivalent to setting the shear compliance C'r equal to a constant of value

_ lwﬂs
- B.G

The introduction of the shear retention factor, however, is not satisfactory for four reasons: (1) it has no
physical interpretation, (2) it is difficult to measure experimentally (if possible at all), (3) it leads to a
behavior in' which the material always has a stiffness in shear even if the crack is widely open, which is
completely unrealistic, and (4) it seems a variable made to play with in numerical simulations. At any
rate, for cases in which the cracking occurs close to mode I, the importance of the shear retention factor
is not great. However, the results b\y Rots (1988) indicate that very low values of 35 —even zero— give
better results in most cases.

For the normal compliance, BaZant and Oh (1983a) introduced a progressively degrading compliance
as dictated by the uniaxial tension data. This is the equivalent to postulating that shearing the crack does
not contribute to degradation in the normal direction. This is certainly a simplification, but.can be realistic
if the magnitude of shear is limited. This hypothesis allows a complete determination of the normal
compliance C'jy from the uniaxial stress-stiain curve. Then, for monotonic straining normal to the crack,
we have

Cr (8.5.18)

i

é(el)

where d)(s{v) is the function ¢ = ¢(ef) which is deduced from uniaxial tests and has been repeatedly
analyzed in the two previous sections (only the name of the argument changes, since for uniaxial loading
ef = e{v). .

The foregoing hypothesis implies lhfqt the cracking process is controlled by 61{,. For very small e{\,
very little damage exists and the shear compliance should be small; for very large 6{\, the damage is large
and the shear compliance should be correspondingly large. Thus it seems logical, as done by Rots (1988)
in a slightly different formulation to be defined later, to take Cr as an increasing function of Cy. The
simplest of all is to assume Cp as proportionalto C, i.e.,

N = (8.5.19)

Cr = erCn(eh) : " (8.5.20)

where ¢ is a constant that should be determined by experiment.
This is a very simplified model, devised for monotonic crack opening, that can be easily brought to a
more general formulation involving unloading to the origin, i.e., to a damage model as described next.

8.5.3 Scalar Damage Model for Cracking of Fixed Orientation

To convert the foregoing model into a damage model with unloading to the origin, it suffices to postulate
that C and Cp are functions, not of the instantaneous value of 61{,, but of its maximum past value,
defined as é{v. Thus, Cy and Cr get “frozen” as soon as 5{\, starts to decrease.
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Although not strictly necessary, we may define a normal damage function similar to (8.4.4):

ECy 1 GCr 8521
“NETyEey M YT Tvdor (320)
from which (8.5.16) and (8.5:17) reduce to - .
Enn 1 _1/(1—(4)]\[) e g Tnn .
Esq = — Y ol Css ‘ (8.5.22)
Ett E -V U 1 X Tt .

and

Yns i 1 0 : 0 Ons ’ ]
{ Vst } == [ 0 1/(1 ~wr) 0 Tst (8.5.23)
Yin G 0 0 1/(1 '; UJT) ; Tin

If we adopt the simple form (8.5.20) and select Cp = 2(1 4+ v)Cy, the model further siinplifies,
because then

_ . Ee
Eel, 4 ¢(e])

where we noted that the expression is identical to that for the uniaxial case (8.4.4). This is tl}e s:implest
possible model with unloading to the origin that is based only on the information from the uniaxial test.

WN = W W (8.5.24)

'8.5.4 Incremental Approach to Cracking of Fixed Orientation

The foregoing formulation can obviously be rewritten in incremental form, which is obtaineq by diffgr—
entiating the equations. However, it is possible'to directly formulate an increme{ual forxr_u.llatlon tl.u.xt, in
general, is not equivalent to a secant formulation-becatise it-does not satis.fy t.he 11_1tcgrab111}y conditions.
This happens with the incremental approach proposed by Rots (1988) which is bricfly outlined now.

The incremental form is obtained by establishing relationships between the rates of the variables.
Egs. (8.5.5) and (8.5.6) are replaced by

1+v
E

) 5
e=-Tlo-Zu g1+ (¢ en) (8.5.25)

& =on—=st& (8.5.26)

where the superimposed dot indicates the time rate, and S? is a'second-order tensor defining the tangent
stiffnesses for the cracks. The structure of this tensor depends on the details of the model. The tensor
neéd not be symmetric. - It may have up to' nine independent, components, which are reduced to ﬁve
if one assumes that the tensor depends only on the crack orientation 7 and the instantaneous cracking
strain vector 7. At any rate, much more infotmation is réquired thai is currently available from the
experimental knowledge, and strong simplifi¢ations are introduced. Rots (1988) assu.mcd th.at the normal
and tangent components of stress and strain-were mutually proportional, with no mixed s:tlffness terms.
With this assumption, the equations are similar to those for the secant formulation. In particular, (8.5.12)
is replaced by ‘

= . S
on = S4(el)el,  and  Gp= Sh(el)ér (8.5.27)

where Sf\, and S} are incremental (tangent) stiffnesses. Rots (1988) further assumed that both S}\, and
S} depended only on the normal cracking strain €3y, but introduced independent functions to describe
them. Sf\, is derived from the uniaxial tensile test-and is related to the secant stiffness and the softening

fanction q,')(e}f\,) by

B(Svel)  9a(el)

g —
_68{\,- o 86{\,

(8.5.28)
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Figure 8.5.2 Multiple cracking: (a) primary cracks; (b) shear stress built up due to principal stress rotation;
(c) secondary cracking formed; (d) tertiary cracking.

For the incremental shear stiffness S%, Rots introduced a decreasing function that was infinite for zero
crack opening and decreased progressively to vanish for the normal cracking strain at which the normal
stress drops to zero. He showed that this is equivalent to using an incremental shear retention factor’
varying from 1 just after crack creation, down to 0 for a fully broken material.

At first glance, it may appear that this formulation is equivalent to the secant formulation. It is not;
indeed, if we differentiate (8.5.12) to get the rate equations for the secant model (with the assumption
that the stiffnesses depend only on the normal cracking strain), we find that the equation for the normal
component is equivalent, but the equation for the shear component is

. . aS7(ed
Gr = Sp(el)ap + in)e?{, el (8.5.29)
Oey -

This is certainly not equivalent to (8.5.27) except for proportional straining (see exercises), and gives a
lower tangential stiffness than (8.5.27) because Sy is decreasing. No comparative analysis of the two
approaches has been performed to date. The difference is analogous to that between the incremental and
the total-strain theories of plasticity. The latter is known to give better (softer) stiffness predictions for the
first deviation from a proportional loading (predicting the so-called vertex effect), and the same probably
applies here. .

8.5.5 Multi-i)irectional Fixed Cracking

A difficult question with the foregoing formulation is the orientation of cracking. The practice which has
been and is still typical of most large finite element codes is to set the crack direction to be normal to
the maximum principal stress at the-moment the tensile strength (or the tensile yield surface) is reached
(Fig. 8.5.2a). During the subsequent Joading process, the direction of the maximum principal stress can
rotate. At the moment the cracks begin to form, there is, by definition, no shear stress on the cracking
planes. However, due to keeping the cracking orientation fixed and assuming shear interlocking of the
opposite crack faces, shear stresses can arise later if the principal stress direction rotates (Fig. 8.5.2b). It
was for this reason that the diagonal compliances or stiffnesses for shear had to be included in Eqs. (8.5.17)
and (8.5.23). :

When the principal stress direction rotates, it is possible that the tensile strength f{ is reached again in
another direction that is inclined with regard to the normal of the originally formed cracks. In that case, it
is assumed that a second system of smeared cracks forms in the direction normal to the currént principal
stress (Fig. 8.5.2c). This system is inclined at some general angle Ao with regard to the orientation of
the primary cracks. The cracking strain due to the formation of secondary cracks is then superposed on
the original cracking strain, which means that another fracturing strain tensor (52f ® ﬁ)s is added to the
right-hand side of Eq. (8.5.5). The orientation of the secondary cracks is also kept fixed even when the
principal stress directions subsequently rotate during the loading process. Thus, it may happen that the
tensile strength is again reached in a third direction (Fig. 8.5.2d), in which case tertiary smeared cracks
begin to form and the corresponding cracking strain needs to be again superimposed in Eq. (8.5.5).

The laws governing the secondary and.tertiary cracking strains may be asswmed to be the same as
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Figure 8.5.3 -Multi-crack system with fixed angular separation.
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for the primary cracking, although sonie formulations allow for interaction between the various crack
systems. The formulation of multiple cracking with fixed directions, which has been worked out.in the
greatest gencrality perhaps by de Borst (1986), can.obviousty get quite complicated when some crack
systems open and cause others to close. Special computational strategies must then be devised to follow
the possible bifurcation paths. - S i
In the method just described, the secondary (and tertiary) cracks can have arbitrary orientations with
regard to the primary ones. In this manner, cracks of many directions can form. In that case, it may be
more convenient to assume that the cracks may form only in certain specified spatial orientations which
“ are uniformly distributed among all spatial directions (Fig.'8.5.3). Such an assumption is also more
realistic because it prevents the angle between intersecting cracks from being too small (say 10°, which
is unlikely to occur). This approach, in which; again, the cracking strains from all the assumed discrete
crack orientations are superimposed, makes it possible to describe the fact that a principal stress of a
certain direction may cause microcracking with various intensities at various orientations (tliis is captured
more systematically by the context of the microplane approach to be discussed in Chapier 14; see Carol
and Prat 1990, and Carol and BaZant 1997).

8.5.6 Rotating Crack Model

When the smeared cracks of the primary direction start forming, which is the start of strain softening,
there is actually only a system of discontinuous microcracks. If the maximum principal stress direction
rotates, these microcracks partially close and microcracks of a new orientation begin to form (Fig. 8.5.4a).
Eventually the secondary microcracks may become the major ones-and the primary ones may get nearly
closed. Although a precise description would be rather difficult (and would perhaps.be best done in
terms of the microplane model, Chapter 14), the fact that the previously formed microcracks may to a

large extent close and microcracks.of a new orientation may become dominant can be better described by

assuming that the direction of smeared cracking rotates (Fig: 8.5.4b) and remains always normal to the
maximum principal stress. In reality, of course, a crack; once formed, cannot actually rotate. ‘

The notion of a rotating crack (also called swinging crack), originally proposed by Cope et al. (1980)
and reformulated by Gupta and Akhbar (1984), and Crisfield and Wills (1987), is just a computational
convenience. The reality is more complicated than the preceding discussion suggests. Even for a constant
principal stress direction, the microcracks during the process of crack formation do not have the same
orientation; due to heterogeneity of the microstructure, microcracks arise in all directions, and one can

Figure 8.5.4 Rotating crack process: (a) Primary cracks form; (b) secondary cracks form and become domi-
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only say that the microcracks that are normal to the maximum principal stress direction are the statistically -
dominant ones.

The rotating crack model can be formulated in a way very similar to the fixed crack model, although the
resulting equations are simpler. Consider first a single crack system. By the very definition of the model,
the normal to the cracks 71 is now coincident with py, the unit vector in the direction of the maximum
principal strain, which coincides with the principal stress direction. Then, the crack displacements are in
pure opening and we can write, referring to Fig. 8.5.1b '

AW = Awp; = & =efp, . (8.5.30)

Proceeding again as in Egs. (8.5.3)~(8.5.5) with 71 replaced by p,, we get the total strain ténsor as

1+v v ¥
£ = o — Etror 14+ p®p, (8.5.31)

E

in which the fracturing strain tensor now depends on only one scalar variable, ef.

As for the equation governing microcracking, Eq. (8.5.6) now becomes a scalar equation since, by
definition op, = o,p,, where ¢, is the principal stress with principal direction p,. Thus, we need only a
relationship between e and ¢ ;. This coincides with the uniaxial stress-fracturing strain relation (for the
monotonic loading case), i.e.,

o= ¢(e!) = Sn(e)e! (8.5.32)

in which we keep the nomenclature in the previous sections to keep the meaning clear. From the foreéoing
equation, we can solve for e (at constant secant stiffness) and get the secant formulation:

1+v v
e = 5 o — Etra 1+CN01P,®p, (8.5.33)
The component expression for this equation is particularly simple if the axes are taken along the
principal stress and strain directions: i

& 1 1+ECy —v —v o, .
Eu :—E —v 1 —v oy (8.5.34)

€ —v —v 1 T

in which the similarity with (8.5.16) is blatant.

In the foregoing, Eq. (8.5.32) is valid for virgin loading. Unloading and reloading require further rules.
The simplest is a damage model in which Cyy is taken to be a function of &/, the maximum fracturing
strain ever reached. Then, if e/ < &/, the unloading-reloading proceeds at constant Cy and, for virgin
loading, e/ = &/ and Cy increases.

The model can further be extended by consideririg three mutually orthogonal jointly rotating systems
of cracks, normal to the three principal stress and strain directions. Each system is allowed to follow
an independent cracking process, same as described before, characterized by fracturing strains ef, with
v =1, 11, or IIl. The resulting equation, which incorporates the three fracturing strains, can be written as

1

14+v v -
e=—% U—Enral+§cN(s£)a,,p,®p,, (8.5.35)
whose component form is
s 1 1+ ECN(Elf) —v —v a,
&= —v 1+ ECn(E]) —v O (8.5.36)
Em : -y —v 1+ ECn(ED) T

Note that although there are three different damage components, the behavior of the material is described
with only one material function which can, in principle, be determined from the uniaxial test.
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8.5.7 Generalized Constitutive Equations with Softening

It is possible to put the constitutive equations with softening into a very general framework that embraces

. most known models. The most general thermomechanical approach is outside the scope of this book, and
the reader may refer to the book by Lemaitre and Chaboche (1985).
A general constitutive equation may be based on three fundamental concepts:

-

1. A set of independent internal variables, py, which together with the infinitesimal strain tensor
{or the stress tensor o) are assumed to characterize uniquely the instantaneous state of the body at
a given point. The internal variables may represent-a physical magnitude or be abstract in nature.
They can be related to kinematic events or to structural features. For example, the vector € in the
smeared crack models is intended to represent the internal kinematics of cracks and 7, the crack
orientation, is a structural internal variable. It must benoted that, when a set of internal variables is
chosen, any other set, uniquely related to the first, is strictly equivalent and, consequently, can be
used instead of the first. This makes the phy51cal mterpretation of a given set of mternal variables
somewhat ambiguous. ’

2. A system of equations relating the stress to the strain and to the internal variables:

e =E(0,pi) (85.37)

where E(-) is a symmetric tensor-valued function. In modern thermodynamic formulations E(-)
is derived from a free energy function, which is‘a scalar function to be specified instead of E(-).
Usually, E(-) is assumed to be linear in' the infinitesimal strain tensor, that is,

€ = C(pr)o +e(pr) : (8.5.38)
where C(py;) is the secant fourth-order conpliance tensor, depending only on the internal variables;
€P(py) is the irrecoverable -or plastic strain”tensor; which again depends only on the internal
variables. When €?(py) = 0 and C (p,c = C° = constant, the clastic behavior is obtained.
When e®(py,) varies, and C{py) = ="constant, a model displaying strength degradation
is obtained. When €P(p;) = 0 and C(pk) is variable, one obtains a model displaying stiffness
degradation, which always unloads to the origin (¢ = 0 for £ = 0, and vice versa). "When both
C(pr.) and e (py, ) are variable, a generat damage model with mixed behavior is obtained,

3. A set of flow rules, which specify the way in which the internal variables increase during loading.
This is a delicate yet essential point, since assigning different flow rules to models having the same
set of internal variables and the same structure for the stress-strain relation will lead to different
behaviors. Moreover, the flow rules must be consistént with the irreversibility condition posed by
the second law of thermodynamics. A’ detailed discussion of this important aspect is outside the
scope of this book, so only general aspects will be mentioned. (By analogy with plasticity, the term
“flow rule” is used even though “cracking rule” would be more logical in models in which cracking
dominates.) )

The flow rules may be specified at many different levels of generality. :One relatively simple way is to
use one or more loading functions obtained by direct generalization of the theory of classical plasticity
For the simplest case of a single yield surface, a loading function F'(py, o, 1) is specified, in which
(4 is one further internal variable that governs hardening and softening (it can be singled out from the
beginning). The loading function defines the region in which the behavior is elastic (i.e., in which du == 0
and dpy, = O for any k) which can be written as

F(pi,o,) <0 (8:5.39)
The associated flow rules are: ’ . :
“Pr = Hy(ppso,m)i owith p >0 " (8.5.40)

where 1is the hardening-softening variable which takes the place of the plastic multiplierand Hy(px, o, 1)
are the hardening-softening functions. The flow rule for jritself is deduced from the consistency condmon
requiring that F(p;,, o, 1) remain equal to O if 2> 0;
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Although this is a rather general formulation, it is not the only one possible. Formulations of the
endochronic type and multi-yield surface type are also possible.

In the literature, one can find many models meant to describe more or less general softening behaviors,
from the simplest, with a single scalar internal variable (plus the hardening-softening variable), to very
sophisticated models in which the internal variables are tensors of second or fourth order (even eighth-order
tensors have been proposed as internal variables). For example,.a very interesting model was proposed

~ by Ortiz (1985) in which the full fourth-order compliance tensor is one internal variable (equivalent'to a

set of 21 internal variables, the independent components of the compliance tensor), and the second-order
tensor of plastic strain a further internal variable (equivalent to a set of six scalar variables). However,
this model is too complex to be described here in detail. Only two very simple models will be bricfly
discussed: Mazars’ scalar (isotropic) damage model and Rankine’s associated plastic model with strain
softening.

8.5.8 Mazars’ Scalar Damage Model

Mazars (1981, 1984, 1986) developed a serics of damage models, which aim at damage in tension and
compression. When specialized for tension, the only primary internal variable is the scalar damage w,
varying form w = 0 (for no damage), to w = 1 (for complete failure). The hardening-softening variable
is 4 = € where & has the meaning of an equivalent uniaxial strain. The equations for this model are

1 1 +v v k
w = Q(E) 7 « ) (8.5.42)
& = max (") with et = /()T - (e)T (8.5.43)

Q(&) is a scalar function characterizing the material and (g} is the positive (or tensile) part of the strain
tensor, defined as the tensor possessing the same principal directions as & and having principal values
that coincide with those of € when positive and are set to zero when negative. This model is restricted to
tensile damage since, by its very definition, no damage is introduced if the principal strains are negative.
Note also that, due to its simplicity, brought about by the scalar naturc of the internal variable, the flow
rule takes an integrated form.

The function Q(€) is uniquely determined from the uniaxial stress-strain curve. Indeed, taking the axis
z to lie along the specimen axis and the axes 2, and z3 to be normal to it, it turns out that in uniaxial
tension (e) g = = £11613615, so that for monotonic straining & = et = g); = ¢ (where € denotes the
axial strain). Then, if the stress strain curve is given by o = 1)(g), we substitute this into (8.5.41), solve
for w, and equate the result to (8.5.42) to get )

.

- ¥(E)
w = E}=1-— ——— 8.5.44
Q) =1 -4 (5549
The main problem with this model is that the prediction for the transverse strain is unrealistic. Indeed,
it is easily verified that, for uniaxial tension in the direction of 1, we have &3y = €33 = —vey; at all

times. This means that, for full fracture, when €17 — oo, we get &y = €33 — —00, which is unrealistic.
Therefore, a directional scalar damage model such as that given by (8.5.33) in which Cly is the scalar
damage variable and £/ the haidenmg softening vmable, may often be more suitable to describe the
fracture behavior.

8.5.9 Rankine Plastic Model with Softening

This is a very simple model with strength degradation, which exhibits a certain analogy with the rotating
crack model. In the rotating crack model the inelastic strain has the same principal directions as the stress
tensor, while in Rankine plasticity this holds for the inelastic strain increments.

The formulation is classical. The'compliance tensor is fixed, and so we write

=g 4P : (8.5.45)
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where the only primary internal variable is taken to be €?.. The loading function is taken to be the Rankine
yield criterion, :

o1 — ¢(P) SC ’ - (8.5.46)

where o is the largest principal strain, £ the equivalent plastic uniaxial strain, and ¢ is a function defining
the evolution of the strength. This means that the inelastic strain occurs when the major principal stress
attains the instantaneous strength. The flow rule simply states that the inelastic strain takes place in the
direction of the maximum principal strain, ie.: : .

&P =pepé (8.5.47)

where P, is a unit eigenvector corresponding to the principal stress o7.
The reader can easily check that for uniaxial tension under monotonic straining, &P =¢ePandoy = 0.
So, the function ¢(£P) is nothing more than the curve of stress vs. inelastic strain for uniaxial tension.

8.5.10 - A Simple Model with Stiffness and Strength Degradation

It is relatively simple to build a model with mixed properties, by combining the simple rotating crack
model given by Eq. (8.5.33) and the foregoing plastic Rankine model. We assume the total strain to be
split into the elastic and fracturing parts, :

e=e g el O (B.5.48)
and assume further that the fracturing strain & ¢an be splitinto a term linear in the stress and a permanent
(irreversible) strain tensor eP:

el =Cf op;@p;+eP ) (8.5.49)

in which CY is the inelastic unloading-reloading compliance (which replaces the secant compliance Cn).
The evolution of C -is given in integrated form as a function of the hardening variable &éf, while the
evolution of £? is given in incremental form as before:

o =qety ©(8.5.50)
‘ CdHEEY o
R .
’ el =p. QP _“d“"—éf € 4
where n{(&f) and H(£7) are material functions which will be related in the sequel to the uniaxial stress-

strain curve. The evolution of the hardening-softening parameter &1 is deduced from the loading function
and the consistency condition which is taken according to the Rankine criterion:

o= p(e) <0 , (8.5.52)

(8551

Considering the uniaxial tensile test with monotonic stretching; letus call o, &f and &” the axial components
of the stress, and fracturing and permanent strain tensors, respectively, we obviously have gy = o and,
by definition, ef = &, and so gﬁ(gf) is again the softening function. On the other hand, p; is a vector
coinciding with the axis of the uniaxial tension. And according to (8.5.51), the permanent strain is readily
integrated; it has only a nonzero component, namely the axial one,

e = H(E) o (8553)

Substituting this into (8.5.48)-and identifying the axial components (the remaining ones aré all 7zero), we
get :

gl = n(gf)¢(5f) 3 H(gf) (8.5.54)

from which we can solve for 7(&7):

(&) = SoRE) (8.5.55)
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Therefore, given ¢(&/) and H(&/), the properties of the material are completely determined. Note that,
according to (8.5.53) H (éf ) is nothing else than the permanent strain which is obtained when the specimen
in a uniaxial test is stretched up to &f and then unloaded. If no further information is available, it may be
assumed that this is a fixed proportion ¢ of the maximum inelastic strain, i.e., H(éf) = q&f (in which
a < 1). With this, the flow rules can be rewritten as

5f
¢r=(-a —¢(E€f) | (8.5.56)
P =ap ®p; 4 (8.5.57)

This constitutes the simplest triaxial generalization of the uniaxial mode! described in Section 8.4.3,
and may also be viewed as a strongly simplified version of Ortiz’s model (1985). However, on¢ useful
feature of Ortiz’s model is that it describes softening in compression as well as tension, which is obviously
not the case with this simplified version.

- Exercises

822 -Show that &f in (8.5.13) can be written in a general tensorial form as
ef =(CyA+CrB)o (8.5.58)
where A and B are (for constant 7) constant fourth-order ténsors which are given in cartesian components by
Ajrt = ningngng ,  Biju = %&knm]‘ +%§jknmi ~ nimnEny (8.5.59)

8.23 Consider a fixed-direction crack model with elastic-softening behavior defined by exponential softening

S . _ef . . . .
in uniaxial tension, o = fie~% /%9, Determine the evolution of the axial and transverse stress components in
uniaxial extension; in which ey = ¢'increases monotonically and all the remaining components of the strain
tensor are zero:

8.24 Show that the response for the uniaxial extension in the preceding exercise is identical for fixed and
rotating crack models as long as the strain-softening curve is the same.

8.25  Consider a fixed-direction crack model with elastic-softening behavior defined by exponential softening

R . —ef . . . S
in uniaxial tension, o = f{e™%" /%, Determine the evolution of the axial and transverse strains in a plane stress
tension test, in which €11 = € increases monotonically and €33 = 022 = 0, the shear components being zero.

8.26 Consider a fixed-direction crack model that exhibits elastic-softening behavior defined by exponential
softening in uniaxial tension, ¢ = f{efsf/s", and is amenable to the scalar damage model described in
Section 8.5.3. Referring to cartesian axes {1, z2, 23}, consider a process in which the stress components
o = on = on = o3 = 0, while the fracturing strain tensor evolves such that 5{1 = oA, slfz = oA’ in
which A increases monotonically starting at A = 0. All the remaining components are zero. Assuming that
v = 0.2, determine: (a) the evolution of the stress components; (b) the evolution of the maximum principal
stress; and (c) whether a secondary crack forms. [Hint: Note that for A — 0, the shear component is negligible,
and thus the crack band forms normal to z;.] -

8.27 Same as the preceding exercise except that 6{2 = goAp in which X increases monotonically starting at
X = 0 and u varies in a way to be determined. Determine the upper bound for y as a function of A so that
secondary cracking would not occur. Determine the evolution of the stress for the limiting case. [Answer:

] < 2(1 = v)e? VT — e X ‘

828 Generalize the foregoing result to any softening function d)(éf). )

829 Show that the tangent approach with Sx and Sy depending only on 5{\, cannot be distinguished from
Rots’ incrémental approach for proportional microcracking, i.e., for loadings such that €7, = e{\’,ﬁi, where 71
is an arbitrary vector in the crack plane. Find S% in terms of St for this particular case.

8.30 Consider a material conforming to Mazars’ isotropic damfage model with elastic-softening behavior
defined by exponential softening in uniaxial tension, o = fle€" /%, Determine the evolution of the axial
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and transverse stress components in uniaxial extension, in which gi1 = ¢ increases monotonically and all the
remaining components of the strain tensor are zero.

8.31 : Consider a thin layer of a material conforming to Mazars’ lsotxopxc damage model with elastic-softening

behavior defined by exponential softening in uniaxial tension, o = f{e™¢ 7 /%0, This layerissandwiched between
two thick plates of an elastic material with the same elastic moduli as the adjacent material, and the sandwich is
subjected to uniaxial tension normal to the layer: Neglecting end effects, determine the evolution of the stress
tensor in the layer as a function of the strain of the layer in the normal direction (assume that the transverse
strain in the layer is dictated by the transverse strain in the elastic plates, which is, in turn, dictated by the elastic
Poisson effect). .

8.32 Carry out the algebra Ieéding to (8.5.56) and (8.5.57).

8.33 Determine the strain evolution in a material element following the gcneral model in Section 8:5.10 if
the response is elastic-softening with an exponential softening curve‘,a = fle™*® 77%0 Consider that the element
is subjected to proportional loading with o= 2673 and all the remaining stress components are equal to zero,
while e11 = € increases monotonically up to 1.4g¢ and then the clement is unloaded. Take ey = IOf{/E, and
v =0.2. : .

8.6 Crack Band Models and Smearéd Cracking

In Section 8.3.5, we discussed a simple way to determine the stress-strain curve for a finite clement of any
size based on the stress-strain curve for the band. However, this applied only for the uniaxial case, which
is extremely simple. In this section, we will address the complexmes raised by the triaxial nature of most
practical problems, although we consider principally two-dimensional problems. We start by seeking the
triaxial strain-softening equations for a finite element of any size: '

8.6.1 Stress-Strain Relations for Elements of Arbitrary Size . S -

To be precise, we limit the analysis to elastic-softening materials and consider a fracturing model with one
definite cracking orientation (fixed or rotating). Consider first & case in which the crack band evolves.with
the cracks oriented parallel to one of the directions of the finite element mesh, as depicted in Fig. 8.6.1a-c.
It is intuitively clear that the stress-strain relations for the direction normal to the band must be very
close to the uniaxial formulation deduced in Section 8.3.5. However, in that uniaxial formulation, the
transversal strains were ignored, while in the actuial three- or two-dimensional elements, a mismatch of
strains parallel to the cracks can occur between the crack band that softens and the remainder of the
element that unloads. In view of thie other simplifications involved, this might not cause a serious error,
but it is not difficult to enforce the proper interface continuity requirements at this interface. In fact, the
formulation in Section 8.4.2 ensures compatibility automatically. ‘ :
Consider the simple case in Fig. 8.6.1d. After the stress peak; the material inside the crack band softens,
while the rest of the element unloads (for the ¢lastic-softening case considered here, unloading means
elastic behavior). We want to enforce that the strain componentsin the plane of the cracks be the same for
the unloading and softening regions, which, with reference to the base vectors in Fig. 8.5.1c, is written as
ey = €5, , @ €4y =€, and £f = ¢f, ) (8.6.1)
where superscripts © and s refer to the unloading region and to the softening band. Now, according to the
hypothesis of elastic-softening behavior, the strain tensor inthe unloading region is related to the stress
tensor by the elastic relations, while the strain tensor in the softening band is given by (8.5.5), and so we
have:

1 |
g% = zyq“ - %tr a"_‘l - (862)
1 : : .5 '
=0 Lo (& @) (8.6.3)

B
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Figure 8.6.1 Rectangular panel with various mesh sizes, identical (a), larger (b), or smaller (c) than the crack
band width he. (d) Detail of an element with an embedded crack band.

Therefore, writing the components appearing in (8.6.1), and taking into account (8.5.4), we can reduce
the strain conditions to identical conditions in stresses, i.e.,

U S u 8 . u .8
T = Op1 5 Oss = Ogs vand Ot = Oig, (864)

If we now take into account that the traction vectors on the interface of (he softening and unloading parts
must be equal, i.e.,

o'l = o’R (8.6.5)
it turns out that the remaining three components of the stress tensors in the two regions must also be -
mutually equal. Therefore, the compatibility and continuity equations are satisfied if the stress tensors in
the softening band and in the unloading region are identical, so that we can write

o¥=0"=0 (8.6.6)

Since the stress tensors are the same, the two regions are fully coupled in series. The average strain in the
element can be obtained by stipulating that the virtual work of the mean fields is equal to the sum of the
virtual works in the unloading and softening portions, that is

o - 5OV o g% SV 4 g 5 (8.6.7)

where V(&) V%, and V* are, respectively, the volumes of the element, the unloading region and the
softening region. By virtue of (8.6.6), this condition is 1dentxcally satisfied for all the stress states and

virtual strain increments if

e = (1~ fle¥ + fe* (8.6.8)

where f is the volume fraction of the crack band, Substituting (8.6.6) into (8.6.2) and (8.6.3) and the
results in (8.6.8) we get the final expression
(e) _ 14+v

E

—0 - Etr ci+f(Fer)’ (8.6.9)

which shows that the equation for the element has a structure identical to the original stress-strain model,
except that the fracturing strain is affected by the factor f. This factor is trivially equal to h./h for the
simple cases shown in Fig. 8.6.1 in which the elements are rectangular and the crack band is pe1 pendicular
to one pair of sides. "

This case occurs frequently in the analysis of test results for mode 1 crack growth, and its use was
pioneered by BaZant and Oh (1983a), who analyzed with success a tremendous amount of experimental
data. BaZzant and Oh used a crack band mode! with a finite strain slope in a finite element analysis with
square meshes. In computations, small increments of the load-point displacement were prescribed, and
the reaction, representing the load P, was calculated in each loading step. The same stress-strain relation
was assumed to hold for all the finite elements, although only some of them entered nonlinear behavior.
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Figure 8.6.2 Comparison of the peak load predictions of the crack band model of BaZant and Oh (1983a) with
the experimental data of Walsh (1972).

A plane stress state was assumed for all the calculations. Although the width of t‘he crack’bandl(size of
the square elements) was found to have very little effect, its optimum was,app.roxmlately we =3d, (e
= maximum aggregate size), and this value was used throughout the computations. ;

The crack band theory was able to reproduce with accuracy the experimental results of Nau§ (1971),
Walsh (1972), Kaplan (1961), Mindess, Lawrence and Kesler (1977), Huang (1981), Carpinteri (1980),
Shah and McGarry (1971), Gjgrv, Sorensenand Arnesen (1971), Hillerborg, Modéer and Petersson (1976),
Sok, Baron and Frangois (1979); Wecharatana and Shah'(1980), Brown (1972), ‘and Entov and ‘Yaguist
(1975). As an example, we plot in Fig: 8:6.2a-f the results for the six Walsh’s series (1972) described in
Section 1.5 (see Tables 1.5.1 and 1.5.1, Series AL-AG, and Figs. 1.5.1 and 1.5.2).

8.6.2 Skew Meshes: Effective Width

The foregoing considerations are, of course, applicable even when a crack band of wi.dth heis cmbc_dded
in a finite element of size h and is inclined with respect to the size of the clement (Fig. 8.6..3a),. an issue
that has been used repeatedly in various fields. The idea of embedding a band of strain softening in a finite
element was first developed for plastic shear bands (Pietruszczak and Mréz 1981), and the subseguent
development of a finite element with an embedded crack band (Willam, Bi¢ani¢ and Sture 1936; Willam,
Pramono and Sture 1989) was mathematically analogous. Recently, a general and fully consistent thiee-
dimensional formulation for an embedded strain-softening band in general finite elements was presented
by Dvorkin, Cuitifio and Gioia (1990). . ’

In the present formulation, the only modification that is necessary is to substitute a proper value for
the volume fraction of the crack band within the element f. For square meshes, BaZant and Oh (1983a)
proposed to use an effective bandwidth for the ele’ment hp-such that

: )
fele i b= —

— 8.6.10
hy o cosd ( )

Crack Band Models and Smeared Cracking 249

(b)

Figure 8.6.3 (a) Element skew to the crack band. (b) Centered band, with large volume fraction. (c) Lateral
band, with small volume fraction. (d) Sketch to define the average volume fraction.

where @ is the angle between the band and the base of the element. An approximate generalization of this
rule to irregular elements was proposed in BaZant (1985a). In general, however, such extrapolations to
irregular elements can hardly be satisfactory, and a more general approach is needed.

The problem, however, is not trivial. The reason is that the volume fraction, when the crack band is
inclined with respect to the element side, or the element is irregular, is not well defined: it depends on
the precise position of the crack band with respect to the element. This is illustrated in Figs. 8.6.3b and
¢, for which the volume fractions are in the proportion 2:1, approximately. Therefore, either information
on the position of the band within the element must be given —which is not possible if ordinary elements
are used— or else, the bandwidth must be defined in an average sense. The average can be obtained in
the following manner. Consider a bidimensional element of thickness b, arbitrary size and shape, and
arbitrarily oriented with respect to the band, which is drawn horizontal (Fig. 8.6.3d). Let y be the axis
normal to the band, with its origin at the lowest point of the element. If the band is located at distance v,
as shown in the figure, the volume of the band is approximately given by V(y) = hcbe(y) where c(y) is
the length of the intercept of the center of the band with the element. Let (y)dy be the probability that
the band lies at a distance between y and y + dy. Then the average volume of the band is given by

Ry
Vo=heb [ plo)ets) dy (8.6.1)
0

where by, is the maximum ordinate of the element, which coincides with the projected element size. 1f
the probability density is uniform, then ¢ = 1/hy and we get

_ﬁ‘gb hp

W, =
’ by Jo

cly) dy (8.6.12)

but b foh” ¢(y) dy is the volume of the element, and therefore,

he
= E—p“ (8.6.13)

This indicates that for equally probable distributions, the element bandwidth coincides with the projected
size of the element (projected on the normal of the crack band). This coincides with the formula proposed
by Bazant (1985a) for rectangular meshes, and has been implemented in commercial finite element codes
(e.g., SBETA; Cervenka and Pukl 1994). However, it must be clearly understood that it is an average
value, which may differ appreciably from the actual value for a particular element in a particular mesh.

The foregoing calculation is based on the assumption that the strain is uniform within the element,
which is generally not the case because quadratic or higher order elements are used with various possible
integration schemes (i.e., distribution of integration points). In such cases, the analysis would have to be
redone starting from the virtual work equation (8.6.7), a task that is not straightforward. Rots (1988) used
a trial-and-error method to determine the effective bandwidths of the elements for a particular problem,
and Oliver (1989) proposed an objective formulation of an integral to define hy. Cervenka et al. (1995)
empirically found that using the projected element size gave a still larger dissipation for inclined bands,
and proposed a correction factor -y so that

hy = 7hy : (8.6.14)
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Figure 8.64 (a) Skew cracking orientation at the integration points. (b Inclined cracking in the shaded
element induces stress in the uncracked element (from Rots:1989). (¢} Load-CMOD curves for a compact
specimen under mixed mode loading (from Rots 1989). :

Here 1y varies linearly from 1 for clement sides perpendicular to the band to y = 1.5 for sides at 45°; in
the case of irregular clements, an averagé side angle needs to be used. With this correction, they obtained
results approximately independent of the orientation of the miesh, for mode I cases (bending and tension).

It seems that using conventional finite elements with plai'n'smcaring, as used in most finite element
codes, implies a variable degree of uncertainty in the definition of the element bandwidth for meshes
skew to the band. There are two alternatives to circumvent this problem: (1) usc remeshing techniques to
achieve a mesh in which the band runs parallel and perpendicular to the sides of the clements it crosses (see
Fig. 8.7.3b), or (2) use enriched elements with embedded strain discontinuities similar to those described
in Section 7.2.3. In fact, the displacement discontinuity in Oliver’s element depicted in Fig. 7.2.10 is
numerically implemented as a thin band with large, but finite, constant strain, very similar to an embedded
crack band. -

8.6.3 Stress Lock-In

As pointed out before, the crack band analysis for mode I and elements aligned with the crack path gives,
in general, good results. Various details of numerical modeling, however, deserve attention. Leibengood,
Darwin and Dodds (1986) modeled the crack ‘band by square elements with four integration points
straddling the line of symmetry. They showed that the results for the crack band and the discrete crack
closely match each other if the cracking directions at the infegration points within the finite elements are
forced to be parallel to each other and to the symmnetry line of the crack band. But if this parallelism is
not enforced, the cracks form at different orieniations.at each intégration point of the same element, as
shown in Fig. 8.6.4a. Then the response predicted by the crack band model is somewlhiat stiffer than that
predicted by the discrete crack model, evén if the element sides are parallel to the true crack.

"The reason for this behavior is that the integration points lying out of the symmetry plane sense the shear
components, and so the cracks form at an angle. This results'in spurious fracturing strain components
parallel to the crack path, whicl cause large strains in the neighboring elements parallel to the main ¢rack
path, which results in overall stiffening. Although the crack growth is actually in mode I, the problem is
aggravated because, at the integration points, the loading is interpreted as mixed mode. This is manifested
by a spurious sensitivity of the solution to thé shear retention factor 5, which, for mode I, should be nil.
A solution to this problem is to determine the crack normal and the cracking strain on the average or at

a single integration point at the center of the element. This js actually the only way consistent with the

hypothesis that the cracking strain is uniformly distributed over the element. i
The foregoing problem is related to the phenomenon known asstress lock-in, that appears in mixed
mode problems, when the crack grows skew to the mesh (Rots 1988, 1989). The stress lock-in consists
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Figure 8.6.5 Linear softening and tensile stress modiﬁcatioh.

in the effect that the elements near the crack band remain stressed after a nearly complete failure of the
elements in the crack band, because the inelastic strain in the band induces stresses in the neighbors, as
sketched in Fig. 8.6.4b. Rots’ (1988, 1989) results indicate that the degree of stress lock-in is very sensitive
to the shear retention factor, as illustrated by the results in Fig. 8.6.4c, corresponding to a double cantilever
beam tested by Kobayashi et al. (1985). The fixed crack must be used with a zero shear retention factor
to get a better approximation. In the example shown, the smeared crack model with the best behavior is
the rotating crack model, but in other cases (single-notch sheared beams, for example), the fixed crack
with a zero shear retention factor may be better (Rots 1988, 1989).

‘ The only effective solution to this problem (keepingclassical finite elements) is to first run the calcula-
tions With‘a standard mesh to get the approximate crack path, and then remesh to get mesh lines aligned
with the crack path and run the calculation again (see also Section 8.7.4).

8.6.4 Use of Elements of Large Size

In all the fqregoing analyses, it is assumed that the finite element is small énough for the resulting stress-
strain curve to be stable. If the element is foo large, then the resulting stress-strain curve has a sknapback,
as shown in Fig, 8.3.6d. If this occurs, the finite element analysis will be very difficult to stabilize and
will dissipate more energy than it actually should. Tt may be argued that the problem should be solved by
using smaller elements, but this may be computationally too expensive and it may be worth using larger
clements if the accuracy is not greatly sacrificed.

To simplify the problem, let us consider the simple linear softening depicted in Fig. 8.6.5a for the actual
crack band thickness h,. If the element sizeis h > h., the stress-strain curve for the element is as shown
in Fig. 8.6.5b. The softening branch becomes vertical when ethe/h = fl/E (see Fig. 8.6.5¢), i.e., for
h = hee Eff!. Since in this linear case Gr = h.fle1 /2, eliminating h, leads to the simple condition

ho= 2L, (8.6.15)

Thus, forh > 20, a snapback occurs as shown in Fig. 8.6.5d. Because in the finite element computation
tl?e podal displacements are controlled, the stress will drop to zero as soon as the peak is reached and the
dissipated energy will appear to be the area OP B instead of the area OP A which is the correct value,
This means that using larger elements wiil make the material appear tougher than it actually is.

A solution to this problem (BaZant 1985b,c) is to replace the actual stress-strain curve with snapback
by a stress-strain diagram of the same area having a vertical stress drop (Fig. 8.6.5¢). To keep the same
area, one must reduce the tensile strength from fito feq so that

h f eq 2 ZZch
2FE h
Thus, the strength must be reduced in inverse. proportion to the square root of the element size. For
the case of vertical stress drop, the fracture process zone has the smallest length permitted by the finite )
element subdivision. Therefore, this represents the closest possible approximation to LEFM. Since the
element size is normally taken proportional to the structure size, this means that the crack band model with
a vertical drop yields an approximate equivalent LEFM behavior for structures of large sizes. However,

=Gr = fu=f (8.6.16)
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Figure 8.6.6 Sketch of the computational procedure of BaZant and Cedolin (1979, 1980): (a) initial state; (b)
intermediate state; (c) final state.

this is not the only way to handle the problem of brittle behavior with large elements. In the following,
an energy-based analysis is presented as'a possible alternative.

8.6.5 Energy Criterion for Crack Bands with Sudden Cracking

As just described, if the cracks are assumed to form suddenly, i.e., the stress to drop suddenly to zero,
a spurious mesh sensitivity and lack of objectivity appears because of the dependence of the apparent
energy dissipation on the element size. This effect is-eliminated by the previous equivalent strength
method, but can also be eliminated by directly applying an energy criterion analogous to linear elastic
fracture mechanics. The proper form of the energy criterion; which was obtained by BaZant and Cedolin

(1979, 1980) by generalization of Rice's (1968b) encrgy analysis of the extension of a notch, can be '

formulated as follows. The crack band extension by length:-Aq into volume AV (of the next finite
element, Fig. 8.6.6) may be decomposed for calculation purposes into two stages.

Stage I. Smeared cracks are created in concrete inside volume AV of the element ahead of the crack in
the direction of tensile principal stress (Fig. 8.6.6b), while at the same time, the deformations and stresses
in the rest of the body are imagined to remain fixed (frozen). This means that one must introduce surface
tractions At® applied on the boundary ‘AS: of volume AV, and distributed forces Af® applied at the
concrete-steel interface, such that they replace the action of concrete that has cracked upon the remaining
volume V' — AV and upon the reinfor¢ement within AV,

Stage II. Next, forces At® and Af° (Fig. 8.6: 6¢) are released (unfrozen) by gr'ldually applying the
opposxte forces ——Ato and —AfP, reaching in this way the final state.

Let u® and £ be the displacement vector and strain tensor before the crack band advance, and lét u
and € be the same quantities after the crack band advance. For the purpose of analysis, the reinforcement
may be imagined to be smeared in a separate layer coupled in parallel and undergoing the same strains as
concrete in the crack band. The interface forces between steel and concrete, AfP, then appear as volume
forces applied on the concrete layer.

Upon passing from the initial to the intermediate state (Stage 1), the strains are kept unchanged while
crackmg goes on. Thus, the corrcspondmv stress changes within concrete in AV are given by Aoy =
o)) — E'ed, = (5, + vERE /(1 —v?) — Eeno Aoy = 05, Aoty = 0 (cracks are assumed
to propagate in the principal stress direction). ‘Here, ¢; denote the components of stress carried before
cracking by the concrete alone (they are defined as the forcs,s in concrete per unit area of the steel-concrete
composite); and F and v are the Young's modulus and Poisson’s ratio of concrete. The values B/ = E
and ' = v apply to plane stress and E' = E‘/(l —v¥and v = v/(1 — v) to plane strain. The change
in strain energy of the system during Stage I in Fig. 8.6:6b is given by the elastic energy mmally stored
in AV and released by cracking, i.e., .

N ZM/ ;( 0.0 ed Hyav. ©6.17)
AV

The change in strain energy during Stage I1is given by the work done by the forces At® and Af® while
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they are being released, i.e.,

IN%

AU, = Iae. (u —u®)dS + / Iap. (u—u®)av. (8.6.18)
AS 2 : 2

Coefficients 1/2 must be used because forces t and f at the end of Stage II are reduced to zero.

If the concrete is reinforced, part of the energy is consumed by the bond slip of reinforcing bars during
cracking within volume AV, This part may be expressed as AW} = fs Fybpds, in which &, represents
the relative slip between the bars and the concrete which is required to accommodate fracture advance;
F}, is the average bond force during displacement 8, per unit length of the reinforcing bar (force during
the slip); and s is the length of the bar segment within the actual fracture process zone of width A, (and
not within volume AV, since the energy consumed by bond slip would then depend on the element size).

The energy criterion for the crack band extension may now, be expressed as follows:

AU =U'Aa = GyAa — AU — AU, — AW, > 0 stable, no propagation
k = {( equilibrium propagation.  (8.6.19)
< 0 unstable

Here AU is the energy that must be externally supplied to the structure to extend the crack band of width
h by length Aa. (AU = total energy in the case of rapid, or adiabatic fracture, and Helmholtz free energy
in the case of slow, isothermal fracture.) If AU > 0, then no crack extension can occur without supplying
energy to the structure, and so the crack band is stable and cannot propagate. If AU < 0, crack band
extension causes a spontaneous epergy release by the structure, which is an unstable situation, and-so the
crack extension must happen dynamically, the excess energy —AU being transformed into kinetic energy.
If AU = 0, no energy needs to be supplied and none is released, and so the crack band can extend in a
static manner.

For practical calculations, the volume integral in Eq. (8.6.17) needs to be expressed in terms of nodal
displacements using the distribution functions of the finite element. The boundary integral in Eq. (8.6.18)
is evaluated from the change of nodal forces acting on volume AV from the outside. The energy AU,
relcased from the surrounding body into AV may also be alternatively calculated as the difference between
the total strain energy contained in all the finite elements of the structure before and after the crack band
advance. According to the principle of virtual work, the result is exactly the same as that fromEq. (8.6.18).
This calculation, however, is possible only if the structure is perfectly elastic whereas Eq. (8.6.18) is correct
even for inelastic behavior outside the process zone; providing Aa is so small that t and £ vary almost
linearly during Stage 1.

It may also be noted that Pan, Marchertas and Kennedy (1983) calculated AU, in their crack band
finite element program by means of the J-integral, keeping the integration contour the same for various
crack lengths. This calculation must yield the same AU if the integration contour passes through only
the elastic part of the structure, except for crossing the crack band behind the fracture process zone where
the stresses are already reduced to zero.

Under general loading, the crack band may propagate through a mesh of finite elements in an inclined
direction, in which case the band has a zig-zag shape. This means that the crack length increment during
the breakage of the next element is not well defined, and an effective crack extension Aa, must then
be used for the element. This crack extension is easily determined based on the effective bandwidth of
the clement, by writing that (for two dimensions) the area of the element A A, must be identical to the
effective bandwidth h, times the effective crack extension Aae, and thus

AA,

Aag, = he

(8.6.20)

where, if no further analysis is available, it may be assumed that the effective bandwidth is the projected
element size hyp. For rectangular meshes this reduces to the formula proposed by BaZant (1985a).

The ability of the energy balance and equivalent strength methods to describe the fracture processes in
large structures was demonstrated in a series of papers by BaZant and Cedolin (1979, 1980, 1983) and by
BaZant and Oh (1983a). As an example of their results, we consider here the problem of a plain concrete
panel with a center crack, as depicted in Fig. 8.6.7a. BaZant and Cedolin (1980) analyzed the results for
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Figure 8.6.7 " (a) Center-cracked panel analyzed by BaZant and Cedolin (1980). (b) Mesh-dependent results
derived from constant-strength formulations. (c) Mesh independent results based on the energy formulation.
(d) Comparison of the finite element results with the exact LEFM predictions.

three finite element meshes with element sizes in the relation 1:2:4, as sketched in Fig. 8.6.7a. If the
classical tensile strength criterion (i.c., constant tensile strength) with sudden drop is used, the results
shown in'Fig. 8.6.7b are found, where it appears that the effect of the element size is trémendous. The
strength for each crack length is seen to be smaller, the smaller the clement size. This result may be
expected because the results must converge to LEFM with an apparent fracture energy equal to the elastic
energy density at fracture f{ /2E times the element width /v This means that G Fapparent < b — 0 for
h — 0, and the strength tends to zero for infinite mesh refinement, which is obviously wrong.

On the contrary, Fig. 8.6.7c shows the tesult obtained following the energy balance method, which
shows very little influence of the mesh size. The curves for the equivalent strength method closely follow
the results of the energy method (BaZant and Cedolin:1980). -To check that the results of the crack
band analysis are not only mesh independent, but also accurate, it suffices to compare them with the
prediction deduced from LEFM analysis;, which can be obtained in closed form for this case (using the
solutions for the center cracked panel and K. = +/EGF ). The comparison in Fig. 8.6.7d shows that
the correspondence is excellent. ) :

From the foregoing, we can conclude that if the mesh refinement is feasible so that A < 284, and if
each element displays progressive softening, the classical finite element analysis suffices to get consistent
results. For larger elements, either the equivalent strength approximation in Section 8.6.4 or the energy
balance method just described, will give mesh-independent and accurate results.
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Exercises

8.34 Consider a rectangular uniform mesh, with elements of dimensions hq and Ay in the horizontal and
vertical directions, respectively, and a crack band extending at an angle @ from the horizontal. Show that the
mean or effective width for these elements is hy = h,sinf + hy cos 8. Show that for square meshes of size h,
this reduces to hv/2 cos(45° — 8) (BaZant 1985a). '

835 Consider a rectangular uniform mesh, with elements of dimensions hy and hy in the horizontal
and vertical directions, respectively, and a crack band extending at an angle 6 from the horizontal. Show
that the effective crack extension Aaggy when a crack band extends by one element is given by Aagpr =
hahy/(hz sin0 + hy cos8). Show that for square meshes of size h, this reduces to h/[V/2 cos(45° — 0]
(BaZant 1985a). ' . '

8.36 To make a simple and fast analysis of a concrete gravity dam, a bidimensional model is generated,
having approximately square elements with 3 m sides. The elastic modulus, strength, and fracture energy are
estimated to be B = 19 GPa, f{ = 21 MPaand G = 92 N/m. Determine the stress-strain curve with sudden
strength drop that should be used. :

8.7 Comparison of Crack Band and Cohesive Crack Approaches

During the 1980s, there was a lively debate on the relative merits and deficiencies of the crack band and
cohesive crack representations of concrete fracture. There are four aspects of comparison to consider: (1)
the ability to describe fracture that has localized in a single crack; (2) the ability to describe distributed
fracture; (3) the ability to describe the micromechanical level; and (4) the possibility to predict fracture
of arbitrary direction.

8.7.1 Localized fracture: Moot Point Computationally

First, we should recall that the cohesive crack model (i.c., the fictitious crack model of Hillerborg) and
the crack band model yield about the same results (with differences of only about 1%, for h = hg) if
the stress-displacement relation in the fictitious crack model and the stress-strain relation in the crack
band model are calibrated through Eq. (8.3.1), that is, if the crack opening displacement w is taken as
the fracturing strain ef that is accumulated over the width he of the crack band. This equivalence, for
example, follows from the fact that in the crack band model the results are almost insensitive to the choice
of he, as well as h, and in the limit for h — 0 the crack band model becomes identical to-the fictitious
crack model (provided that the fracture energy equivalence is preserved, of course).

Thus, the question “Discrete crack or crack band?” is moot from the viewpoint of computational
modeling. The only point worthy of debate is computational effectiveness and convenience. In the
cases where boundary integral methods can be applied, the use of the cohesive crack model can be
computationally more efficient. When the general finite element method is used, these two models appear
to be about equal when the fracture propagates along the mesh lines. However, the programming of the
crack band model is generally easier, and that is why it has been preferred in the industry. For other
fracture paths, there are various differences but special methods must be used for both models.

8.7.2 Nonlocalized Fracture: Third Parameter

As we recall from Section 7.1.3, if the shape of the tensile softening curve is fixed, then the cohesive crack
(fictitious crack) model is defined by two material parameters, G g and f;. The crack band model, on
the other hand, is defined by three material parameters, G, f/, and h.. For the fictitious crack model,
too, a third material parameter with dimensions of length, namely £, has been defined (sce Section
7.1.3); however, this is a derived parameter, not an independent one, while A, is an independent material
parameter. Why does the crack band model, in its simplest form, have one more material parameter?

In answer to this question, we must first recall from Section 8.3.6 that, for localized fracture, the effect
of the value of /i, on the results is almost negligible, provided, of. course, that the softening part of the
stress-strain diagram is adjusted so as to always yield the same fracture energy G for any value of
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Figure 8.7.1 (a) Reinforced concrete bar and definition of linear cohesive crack model and the corresponding
band model. (b) Resulting stress—mean strain curves for several possibilities (full lines are for adherent bar,
dashed lines for unbonded bar).

he. Therefore, in the case of isolated fracture, the crack: band model has, in effect, only two material
parameters, G and f{, just like the fictitious crack model.- -

The value of crack band width, b, however, does make a difference in the case of nonlocalized fracture,
that is, when densely spaced parallel cracks-can form.: Such situations, in which the strain softening state
is stable against localization (in the macroscopi¢ sense), can arise in various situations; for example,
when there is sufficient reinforcement that can stabilize distributed cracking against localization (this
occurs when the reinforcement is so strong that the tangential stiftness matrix of the composite of steel
and cracked concrete is positive definite even though that of ¢racked concrete alone is not). Another
possibility is the parallel cracks caused by drying shrinkage, which may be stabilized (against localization
into isolated fractures) by the intact concrete in front of the cracks, due to shear stiffness of the material.
The same situation can arise in bending, if the beam is sufficiently reinforced. e

" From these examples it transpires that the physical significance of h. is not really the width of the
actual cracking zone at the fracture front but the minimum possible spacing of parallel cohesive crz;cl::s,
each of which is equivalent to one crack band.’ Since- adjacent crack bands cannot overlap (the material

cannot be cracked twice), the distance between the symmetry fines of the adjacent crack bands is at least
he. o
CNow, is it necessary that the minimum possible spacing of parallel cracks be a material fracture pa-
rameter? In the early analysis of the problem it seemed, based on some cxamples, that it was so. Fgr
example, Bazant (1985b, 1986a) discussed the problem of areinforced concrete bar loaded in centric
tension, see Fig. 8.7.1, where the reinforcing bar represerits five percent of the cross section area. In that
case, smeared cracking is stable against localization. Bazant's (1985b, 1986a) interpretation was that the
cohesive cracks could form at any spacing, s, and as far as the fictitious crack model is concerned, these
cracks could be arbitrarily close. He concluded that the number of cracks per unit length can approach
infinity while each crack can have a finitc opening width w. But this would mean that, according to the
fictitious crack model, the energy dissipated by the cracking'of concrete in the bar could approach infinity
- a paradoxical result. Onthe other hand, if there is such a condition as the minimum spacing s, ther.l, of
course, the energy dissipated by the cracking in'the bar is bounded, even according to the computations
based on the fictitious crack model. .

However, Bazant's theoretical example can be reinterpreted in different terms, as done by Planas and
Elices (1993b). For these authors, the cracks can be infinitely close while having a vanishingly small crack
opening. This implies that no appreciable softening takes place, and thus the concrete deforms at o = ft’ .
Therefore, the heavily reinforced concrete behaves in an elastic-perfectly plastic fashion. Moreover, this

. solution, with infinitely many cracks, is consistent with BaZant’s simplified analysis, which assumed
that the cross-sections of the bar remained plane during the stretching process and that full bond existed
between the bar and the concrete. However, it is easily shown that if two cracks form at any finite spacing
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Figure 8.7.2 Strain distribution across the fracture process zone: (a) actual distribution; (b) cohesive crack ap-
proximation; {c) crack band model approximation; (d) nonlocal approximation; (¢) finite element approximation
(adapted from report of ACI Committee 446 1992). (f) Tortuous crack path.

s, the subsequent infinitesimal loading step causes the tensile strength to be exceeded at the middle point
between them. Therefore, a third crack must form and we have cracks spaced at $/2. Repeating the
reasoning ad infinitum it tarns out that if the bar is bonded and if we assume plane cross sections to
remain plane, then the only solution consistent with the cohesive crack model is that cohesive cracks form |
infinitely close to each other. However, we know by experiment that, at the end, a collection of discrete
cracks appear, even for strongly reinforced bars. The key point in-the explanation of this effect is that,
upon localization, the sections cease to be plane, an effect that cannot be caught by the simple classical
analysis.

It is worth to note that the solution based on the assumption of Planas and Elices does converge to the
crack band solution for h, — 0, as shown in Fig. 8.7.1 by the full lines. The dashed lines correspond to
localized crack solutions valid only if bond is neglected, in which case the reinforcement is not interacting
with concrete except at the ends of the bar, and then the bifurcation analysis given in the first section
indicates that both the cohesive crack model and the crack band model predict that a single crack will
occur.

Therefore, the simplified analysis of this problem seems to show that, in accordance with Planas and
Elices (1993b) hypothesis, it is still possible to use the cohesive crack model for fully distributed cracking
in conjunction with-an associated elastic-perfectly plastic Rankine model. The problem still remains,
however, of determining when the fracture will localize. Intheir work on shrinkage, Planas and Elices made
some special assumptions for the localization point, but pointed out that the actual localization must be
determined by bifurcation analysis, which could be based on the principle of minimum second-order work
(as done in the simple case of the series coupling model in Section 8.1.2 and justified thermodynamically
in BaZant and Cedolin 1991, Sec. 10.1).

8.7.3 Relation to Micromechanics of Fracture

The normal microstrains across the fracture process zone may be distributed roughly as shown in
Fig. 8.7.2a. The discrete fictitious crack model simplifies this random strain distribution as a Dirac delta
function, Fig. 8.7.2b. The crack band model simplifies it as a rectangular strain distribution, Fig. 8.7.2¢.
The nonlocal continuum model, which we will discuss in Chapter 13, describes this strain distribution as a
smooth bell-shaped profile across the crack band, as shown in Fig. 8.7.2d (cf. BaZant and Pjj audier-Cabot
1988). The finiie element approximation to the nonlocal continuum simplifies the strain distribution in
the form of several steps as in Fig. 8.7.2¢. Now, which representation is more correct?

Among the simple distributions, i.e., those for the fictitious cohesive crack and the crack band (Figs.
8.7.2b-c) neither one is better or worse, as an approximation to the trae distribution in Fig. 8.7.2a. Efforts
have been made to physically observe the microcracks and strains throughout the fracture process zone. In
optical microscopic observations, distributed cracking has not been seen in concrete (although it has been
clearly observed in ceramics). The explanation might be that it is difficult to distinguish new very fine
microcracks from the pre-existing ones, or that the microcracks on the fringes of the fracture process zone
have extremely small openings while being extremely numerous and thus still contributing significantly
to the overall relative displacement across the width of the fracture process zone.

With regard to the optical observations, it must be noted that fracture in concrete is normally highly
tortuous, meandering to each side of the fracture axis by a distance approximately equal to the maximum
aggregate size (Fig. 8.7.2f). Now, even if all the microcracking is concentrated on a line, but this line is
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highly tortuous, the fracture is represented by a straight line ¢rack no better than by a crack band of width
of about two aggregate sizes. So, even if cohesive cracks are a reality for concrete, one still cannot claim
that a straight fictitious crack is a more realistic model than'a crack band.

It is also pertinent to mention that measurements of the Iocalizations of the acoustic emission during
the fracture process in concrete (Labuz, Shah and Dowding 1985; Maji and Shah 1988) indicate, despite
considerable scatter, that the locations of the emission sources ‘are spread over a relatively wide band in
the frontal region of fracture. This tends to support the crack band model. On the other hand, various
measurements of strains on the surface, for example by interferometry (Cedolin, DeiPoli and lori 1983,
'1987) or by laser holography (Miller, Shah and Bjelkhagen 1988), indicate that very high strains are
concentrated within a very narrow zone at the front of fracture. - This might be better modeled by a
cohesive crack than a crack band. It should be noted, though; that the fracture strains might be localized
at the surface of concrete specimens to a greater extent than'in the mv151ble interior, due to the will effect
as well as other effects.

In view of the foregoing three arguments, there séems to be no gpmpelling reason for rejecting either the
crack band model or the cohesive (fictitious) crack model. The cheice seems to be a matter of convenience
of analysis. When the fracture shape is known in advance, -both formulations appear to be about equally
convenient. However, if the shape of the fracture is unknown'in advance, the crack band model might be
more convenient.

8.74 Fracture of Arbitrary Direction : "

Finite element modeling of fracture is easy-and accurate only if the fracture runs along the mesh lines.
If the fracture path is known in advance, either from experience or some preliminary calculations, then
it is possible*to design the mesh to accommodate ‘the fracture ‘path as a smooth path along the mesh
lines. In general practical problems, however, the fracture path is not known. It is one of the unknowns
to be found by analysis. . In such general situations, which need to be tackled in gencral purpose finite
element programs, there are basically two'possibilities to proceed: either to modify the finite element
mesh each time the fracture advances, or.to keep afixed mesh and allow the fracture to have a rugged
boundary and zig-zag shape (Fig. 8.7.3¢). The second possibility is not possible with the fictitious crack

model, since it would cause serious problems with interlocking in the case of shear. On the other hand,

the first possibility, that is, remeshing, exists both for the'discrete fictitious crack and for the crack band,
although in practice it has so far been used apparently only for the cohesive crack approach. The automatic
remeshing (Fig. 8.7.3a,b) at crack advance is not simple to program; however, various research groups
have nevertheless succeeded in developing finite clement programs which do just that (see Section 7.2.3).
So far, however, the remeshing approach has ‘not gained a wide popularity, due to the complexity of
remeshing.

Although remeshmg has not yet been used in conjunctxon with the crack band modeling of fracture, one
must realize that this is a possibility which would be no more complex than remeshing for the cohesive
crack. The algorithm for remeshing as developed by Ingraffea and co-workers (Section 7.2.3) could, no
doubt, be easily adapted for remeshing in the case of crack bands (Fig. 8.7.3b).

As normally perceived, however, one of the advantages of the crack band approach 1s that fracture of
arbitrary direction can be represented without any remeshing. The next element that undergoes cracking
is decided on the basis of either the strength criterion (for the tensile sudden stress drop) or the stress-strain
relation with strain softening. The zig-zag band is normally found to propagate roughly in the direction
of previous cracking, however, it is possible under certain situations (for example a strip of concentrated
shear stress) to obtain propagation of the band of cracked elements in a direction that is inelined to the
direction of cracking in the elements. This represents shear fracture or mixed mode fracture (e.g., Ba¥ant
and Pfeiffer 1986).

However, as discussed in Section 8.6.2 and Section 8.6.3, there are certain errors associated with a

zig-zag crack band. Due to the inevitable development of shear stresses on the planes parallel to the .

overall direction of the zig-zag band, there is some degree of interlocking, i.e., an increased resistance to
shear, larger than that obtained with a' smooth crack (cohesive crack) or a smooth band with remeshing
(Fig. 8.7.3a,b). Although, to a large extent, the errors are tolerable compared to other errors mvolved in
the analysis of fracture, remedies are needed to obtain accurate results.

The problem can be parually alleviated by using a square mesh'in which each square is subdivided

s

Comparison of Crack Band and Cohesive Crack Approaches : : 259

(@ - ®) B

(©) (d)

Figure 8.7.3 Descnpuon of fracture path inclined with respect to initial mesh lines: (a) cohesive crack with
remeshing; (b) crack band with remeshing; (c) zig-zag crack band in a square mesh; (d) mesh allowing better
representation of inclined fracture.

into four triangular elements. In this case, there are not only horizontal and vertical mesh lines, but also
mesh lines at 45° inclinations (Fig. 8.7.3d). This kind of mesh, which allows approximating an arbitrary
fracture propagation direction more closely, should always be used with the crack band model when the
propagation direction is unknown.

A better remedy is to employ a nonlocal approach, to be discussed in the next chapter. This, however,
brings the penalty that there must be several finite elements across the width of the crack band, which in
turn necessitates either a more refined mesh in the fracture zone or an artificial increase of the width of
the crack band (with the corresponding modification of the postpeak stress-strain relation). Probably the
simplest solution is to use a standard mesh (of the type shown in Fi g.8.7.3d) to get the approximate crack
path, and then remesh to fit the mesh lines to the crack path, as indicated in Fig. 8.7.3b, and recalculate.
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. Brittleness and Size Effect
in Structural Design

Except for a terse review in the introduction to the book, we have so far focused on fracture specimens
and have not given adequate attention to real structures, reinforced as well as unreinforced. We will focus
attention on them in this chapter, however, with a deeper focus on some structures than others. After
dealing in the first section with the general aspects of brittleness and size effect and the general procedures
to introduce them in practical formulations, we will devote three sections to a relatively thorough analysis
of two important types of structural failure: the diagonal shear of longitudinally reinforced beams (Sec-
tion 10.2 and Section 10.3), and the reinforced beams in bending —with particular emphasis on lightly
reinforced beams (Section 10.4). The last section of the chapter will concisely review some of the main
issues for other structural elements, from torsion of beams to reinforced columns,

10.1  General Aspects of Size Effect and Brittleness in Concrete Structures

- In the preceding chapter, it became obvious that the strength ‘'of geometrically similar speéimens of a
quasibrittle material —particularly concrete-— can be written in the general form

D
ONu = fi o (7,geometry> (10.1.1)

where f; is the tensile strength, D a characteristic structural dimension, and £ a characteristic material
size; we explicitly indicate that the function depends on geometry, which is equivalent to say that the
dependence on D /£ is different for different structural types and loading.

The material characteristic size £ (as well as the function @ itself) is different for the various existing
models. However, as shown in the previous chapter, all the models can be set to give very similar size
effect predictions over the practical experimental range; thus, there is a strong correlation between the
fracture parameters of the various models for a given material.

In principle, the foregoing equation can be computed for every geometry and material model. In
practice, computations can be very complex except for some simple cases. Thus, simplified expressions
are convenient to extrapolate the experimental results. The simplest of these expressions is BaZant’s size
effect Jaw expounded in Chapters 1 and 6 —LEqs. (1.4.10) or (6.1.5). As discussed in the previous chapter,
this Jaw can be generalized to give more precise descriptions over a broader range of sizes and a broader
range of geometries. However, the extended size effect laws, including those derived from cohesive
models, require information that is usually lacking for the classical tests on which the formulas for the
) codes were based. Therefore, in this chapter, we mostly use'the simplest (BaZant’s) law in comparing the
: experimental trends and the theoretical size effect. The correlations in the previous chapter can then be
used to shift to other models.

In this section, we first discuss the conditions under which BaJant’s size effect law is expected to give
a good description of the size effect; we then analyze the existing proposals to characterize the structural
brittleness through a brittlencss number. We conclude the section by examining the general methodology
proposed by BaZant to generate size effect corrections to ultimate loads in codes, including the effect of
reinforcement. - B
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Figure 10.1.1 * (a) Load-deflection curves for a relatively ductile structure (full line), and for a brittle structure
that fails at first cracking (dashed line). (b) A brittle structure failing at crack initiation, the crack at maximum
load still being microscopic.

10.1.1 Conditions for Extending BaZant’s Size Effect Law to Structures

As briefly mentioned in Section 1.4.3, extension of the size effect law to real structures that have no
notches is valid only if the following two additional hypotheses are fulfilled:

1. The structure must not fail at macrocrack initiation.

2. The shapes and lengths of the main fracture at the maximum loads of similar structures of different
sizes must also be geometrically similar.

According to the available experimental evidence as well as finite clement simulations, the foregoing
assumptions appear to be satisfied for many types of failure of reinforced concrete structures within the
size range that has been investigated so far. Let us examine the reasons for this, and the exceptions, more
closely. :

In astructure failing at crack initiation, the maximum load P, is equal to the initial cracking load Py as
indicated by the dashed [oad-deflection curve in Fig. 10.1.1a; in such a failure, the crack at maximum load
is still microscopic, as shown in Fig. 10.1.1b. The case P, & Py can occur for metallic structures: with
initial flaws. But since the main purpose of reinforcing concrete is to prevent failure at crack initiation,
good practice requires designing concrete structures in'sucha manner that P, > Py as illustrated by
the solid load-deflection curve in Fig. 10.1.1a. For some types of failure this is explicitly required by the
design codes (for example the ACI code requires that, for the bending failure, the maximum load, after
applying the capacity reduction factor, be at least: 1.25P,, and-for a good design it is normally much
larger); furthermore, this is indirectly enforced by many other design code provisions on reinforcement
layout. Then, the major cracks at P, necessarily intersect a major portion of the cross section (say 30%
- 90%). .

There are, of course, cases in which the first condition is'not met. This is the case for unnotched

unreinforced structures such as the beams for rupture modulus tests (see Section 9.3), and some cases of -

footings, retaining walls, and pavement slabs. Except for these, and some cases of more theoretical than
practical interest involving large under-reinforced structures, there is hardly any case of a structure failing
at crack initiation, and so it is of little interest to develop the size effect formulation for failures at small
cohesive cracks for other structure types. :

The second hypothesis is illustrated in Fig. 10.1.2. This hypothesis means that the main fracture at
the maximum load has the shape AB and A’B’. Point B’ i§ located at same relative distance to the

- boundaries as point B. If the fracture front at the maximum'load of the larger structure were at point C’
rather than B’,-the size effect law could not apply. Likewise, it .could not apply if the main fracture at
maximum load were A’ B’ or A’ B for the larger structare in Fig: 10.1.2.

It appears that a deviation from this similarity of the‘main fractures at the maximum load is the main
reason for the deviations from the size effect law which are observed in the Brazilian split-compression
failure of cylinders of very large sizes (see Section 9.4). :

The large major crack in a typical-concrete structures at maximum load has the same effect as the
notches in fracture specimens. In effect; well-designed structures develop, in a stable manner, large
cracks which behave the same as notches. However, thete is‘a small difference. In fracture specimens,
the notches are cut precisely. In real structures, the ‘growth of large major cracks is influenced by the

s
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L #-

@ A % A
Figure 10.1.2  Illustration of the condition of crack similarity at peak load. Crack ‘A’B’ in the large structure
is similar to crack AB in the small structure. Cracks A’C’, AT, and A’E' are not. .

randomness of material properties, originating from material heterogencity. Thus, the major fractures
in similar structures of various sizes can be geometrically similar only on the average, in the statistical
sense. In individual cases, there are deviations. For example, point B’ can have a slightly smaller
relative distance to the top boundary than point B. The consequence of this randomness is that in real
structures in which there are no notches the measured maximum load values are more scattered than in
fracture specimens. Further randomness is, of course, caused by environmental effects and their random
fluctuations, by inferior quality control, etc. For this reason, the question of the precise shape of the size
effect curve [for example, the question whether exponent r in Eg. (9.1.34) should be different from 1] is
not practically very important. :

Tt may be useful to also recall some other previously introduced assumptions. If the size effcct should
not be mixed with other influences, we must consider structures made of the same material, which means
the same mix proportions and the same aggregate size distribution. If the maximumn aggregate size d,
were increased in proportion to the structure size, the material in structures of different sizes would be
different. This is not only because of the increased d,,, but also because a change in d,, requires a change
in the mix proportions, particularly in the specific cement content.

10.1.2 Brittleness Number

The concept of brittleness of structural failure, which is the opposite of ductility, is an old one, but foralong
time, the definition of brittleness has been fuzzy and has not stabilized. One of the fundamental reasons
is that the apparent brittleness depends simultaneously on the material, the geometry of the structure and
loading, and the size of the structure. Therefore, it is not easy to find a single figure properly incorporating
all these influences.

The first idea in quantifying the brittleness is to look for a quantity that is vanishingly small for the
perfect plasticity limit and infinitely large for the elastic-brittle limit. A number with these properties is
the ratio D /£ appearing in the general size effect law (10.1.1). Therefore, any variable proportional to it
is a good candidate to be a brittleness number:

D

Broc (10.12)

Over the years, there have been various proposals for brittleness numbers of these forms. Well known

+ in the metals community is the brittleness characterization based on Irwin’s estimate of the nonlinear

zone (see Section 5.2.2) which is at the basis of the ASTM E 399 condition for validity of the fracture
toughness test. This brittleness number, say B, can be written as

_ Dff?

Bk = K2

(10.1.3)

With this definition, the condition for valid fracture toughness measurements reduces to Fx > 2.5.
" Inthe field of concrete, probably the first ratio used as a brittleness nimber was put forward by Hillerborg
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and co-workers. It was defined as

‘ EG B
By = _l_)_ , O = —_-;: (10.1.4)
ech o . t,~

in which G refers to the fracture energy of the underlying cohe.sive ;rack model. Note that the foregoing
two equations are essentially identical, because of Trwin's rel'fatlonshlp }_’( Ic = \/.EG o
The foregoing brittleness numbers are useful to compare various matenal_s and sizes for. agiven structural
shape and loading, but they cannot be used directly to compare thc. bmttlenc.ss of .dltferepF structural
geometries, because the dependence of brittleriess on:geometry is nc?t 1nclu'ded in thellr definition.
Pertaining to this category, but with a slightly different deﬁnition, is Carpinteri’s brittleness number s¢

(Carpinteri 1982):

G F )
S0 = = - © o (10.1.5)
Df A
We notice that it is the inverse of a brittleness (the more brittle, the smaller s¢), and should better be
called a ductility number. Note also that it is related to the Hillerborg brittleness by

_hi L

" F bn

This méans that Carpintéﬁ’s brittlericss number can be used to compare brittleness of ygrious materials

only as long as they have the same fi/ E ratio.-It hasthe same limitations as Byr in not giving comparable
results for different geometries.

To get a brittleness number that embodics the influences of material, geometry, and shape, we may
recall the concept of intrinsic size defined in Section 5.3.3 and use the brittleness number defined as

T (10.1.6)

B, % (10.1.7)

in which D is given by (5.3:11) and (5.3.12). The first brittleness number of this category was ;introduced
by BaZant (19871; also BaZant and Pfeiffer 1987); although the concept of intrinsic size was still to come.
BaZant’s brittleness number was defined as .

[3:2:2 (10.1.8)

ey Do ‘
whete the second expression is the original definition; which is equivalent to the first because of (6..2.2).
Brittleness numbers similar in concept, but based on the cohesive crack modelhave also t?een extensively
used. Planas and Elices (19892, 1991a) introduced the obvious extension of Hillerborg’s brltgleness number

as

Bp = -—P— (10.1.9)
: Len

which gives a unified representation of the size effect-and brittleness properties in,thg médium and l‘arge
range of sizes (Gp > 0.04) for most laboratory geometries (Llorca, Planas and Elices 1989; Guinea,
Planas and Elices 1994a). : . » .

The foregoing definition of 8p is, however, sensitive to the shape of the soficning curve. Although (as
discussed in Chapters 7 and 9) there is not much variability of shapes for ordinary concrete., it .turned 9ut
to be better to use a brittleness number that reférs the intrinsic size to the properties of the mm'al portion
of the softening curve, characterized by the tensile strength and the horizontal intercept wy (Fig. 7.1.8);
itg definition is

B = 6 =L (10.1.10)
Bi Y
This brittleness number adequately captures the fracture properties for small and med‘ium sizes; including
most practical situations (0.1 < 31 < 1). Moreover; from the Planas-Elices correlation (7.2.14), we get

BRSSP/ -~ (o)

D Euy
0!
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and it turns out that the two brittlenesses can be interchangeably used since the factor 5.3 is independent
of the shape and size of the structure as well as of the material, as long as the material softening curve
can be approximated by a straight line in its first part. This is usually the case for concrete. For granite,
there is also evidence of this fact (Rocco et al. 1995). In the remainder of this chapter we will mainly use
BaZant's brittleness number 5. '

10.1.3 Brittleness of High Strength Concrete

High strength concrete (HSC) is known to be more brittle than normal strength concrete (NC). This is so
because ¢ is smaller for HSC and then, for a given geometry DTS¢ < DNC. Therefore, considerable
care must be exerted in extrapolating the results obtained for NC to HSC.

There are few data to establish general correlations. Gettu, BaZant and Karr (1990), based on size effect
tests on notched beams, proposed the following approximate formula for HSC:

CHSC DHSC yNC 1/3
ch = e pree (10.1.12)
) Dy b

where it is understood that the aggregate size is identical for both NC and HSC. However, this equation
is a rough approximation. The aggregate shape, strength, and stiffness, or whether a crushed aggregate or
river aggregate is used, etc. may have significant influence, too. Further studies are needed, but it is clear

that the transitional size is substantially less for HSC and so the behavior is more brittle for HSC than for
NC.

10.1.4 Size Effect Correction to Ultimate Load Formulas in Codes

In principle, plastic limit analysis is a wrong theory for the majority of the design code provisions which
deal with brittle failures, such as diagonal shear, torsion, punching, pullout, etc. So, in fact, is LEFM.
The theoretically best approach would be to base the design on nonlinear fracture mechanics taking into
account the large size of the fracture process zone. However, as pointed out in the previous section, this
would be quite complicated for the basic design problems covered. by the code, and not redlly necessary
because a highly accurate fracture analysis is not necessary for most situations. A simple way to obtain
the load capacities corresponding to nonlinear fracture mechanics is to exploit the size effect law (1.4.10).
Two kinds of formulas are possible:

1. One can start from the formula based on plastic limit analysis which now exists in the code, and
introduce in it a correction due to the size effect law.

2. Alternatively, one can set up the ultimate load formula based on LEFM, and again introduce into it
a correction according to the size effect law.

The first kind is no doubt preferable to the concrete engineering societies, because it makes it possible
to retain the formulas that now exist in the codes, and introduce in them only a relatively minor correction
(of course, the formula needs to be slightly scaled up because, for normal sizes, it must give about the
samie load capacity as before, even after the reduction for the typical structure size according to the size
effect law has been introduced). Obviously, the accuracy of this type of correction would decrease with
increasing size, as the behavior is getting more brittle and more remote from the size to which plastic
limit analysis approximately applies. Some structurés of normal sizes exhibit failures that are closer to
limit analysis than to LEFM. For such structures, the accuracy by the first type of correction is adequate.

However, for very large structures or for certain types of failure (anchor pullout, diagonal shear), the
failure is known to be very brittle, actually closer to LEFM than to plastic limit analysis.. In that case, the
second kind of formula, based on LEFM, must be expected to give a more realistic result. The error of
this correction increases with a decreasing structure size and is the smallest for large sizes close to the
LEFM asymptote.

In the remainder of this section, we discuss how to introduce the size effect correction into the formulas
existing in the codes. We consider first the ideal case of plain concrete structures (or structures for which

the steel does not contribute appreciably to strength, such as anchor pullout). Then we analyze how these

formulas must be modified to include the contribution of the reinforcement.




324 : Brittleness and Size Effect in Structural Design

10.1.5 Size Effect Correction to Strength-Based Formulas

For reinforced structures in which the steel does not contribute appreciably to the overall strength, one can
expect a structural size effect approximately given by (1.4.10). This equation contains two parameters,
B f{ and Dy, which would need to be specified for the new design formulas in the codes. Now, for very
small sizes we must have o, = O'fvu in which o?\,u is'the plastic limit (.., the strength computed from
plasticity or limit analysis). Therefore, in (1.4.10) we must have Bf] = ok = and we can rewrite that
equation as

Cop ) 3
TNy = TNy B= _2
v = ==
Vi+g8 Dy
Since the design formulae in the code have been based both on limit analysis and experiments, one can
assume that the code formula provides a prediction of the ultimate strength 0, which coincides with

the foregoing formula for the size used in the experiments that served to validate the code formula. We
thus must have

©(10.1.13)

¢ T g r (10.1.14)
o =t == 1.
Ne T T+ B, Dy

where D;. is the size of specimens used in the calibration tests (on average).

Solving for O‘pNu from (10.1.14) and substituting in (10.1:13) we get the size effect correction to-the
formulas in the code as ;

B==. (10'.1.15)

where sz,u is the value obtained from the current formula‘in the code.

Assuming that D, can be estimated from the data on the test series in the Hterature, the only parameter
that needs to be estimated is Dy. Its theoretical calculation is more difficult because it depends both on
the geometry of the structure and on the fracture properties of the material. Indeed, from (6.1.4) we have

2k

D(): ]{:o

-(10.1.16)

which shows that Dy consists of two factors. The first factor, Zk(’) / ko, is purely geometrical and can be
easily determined by elastic calculations for notched specimens of positive geometry in which the relative
crack length is well determined. For unnotched specimens, the problem is not well posed because the
substitution of ag = 0 leads to Dy = co. Thus, slow crack growth must take place, as described in the
previous section, and then ¢y is an unknown, Therefore, for these geometries the geometric factor must
be determined either experimentally or by numerical simulation using a nonlinear fracture model.

The second factor is a material property which should, in prificiple; be experimentally determined
for each concrete, but this would be impractical.. The optimum approach would be to get a sound

- correlation between ¢y and the basic characteristics of concrete, particularly fLand the aggregate size d,.
Unfortunately, such correlation is still unavailable.

Certain approximations, however, exist for some particular cases. For example, although the theoretical
and experimental support is limited, BaZant and co-workers suggested that approximately ¢y o< dg, where
d, is the maximum aggregate size. Thus, according to-(10.1.16), for a fixed structural geometry also
Dy x dg. The proportionality factor can be obtained by analysis'of the existing experimental data. For

example, from the tests of diagonal shear failure of beams, one can recommend the value Dy = 25d,."

These values are only estimates based on seven classical data series studied by BaZant and Kim (1984)
and BaZant and Sun (1987); see Section 10.2.2..However, the size of the beam was not the only parameter
varied and the size range was not broad enough; becatse of other influences, such as differences in the
shear span and the overall span to length ratio, as well as the use of different concretes, the scatter of these
data was very large. Nevertheless, the size effect trend is clearly evident and makes it possible to obtain
the aforementioned value of Dy, valid, of course, only for diagonal shear (see Section 10.2).
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10.1.6 Effect of Reinforcement

* To counteract brittle failure, one may use densely distributed reinforcement such as shear (or torsional)

stirrups in beams. Together with the longitudinal reinforcement of beams, the shear reinforcement alone,
at its yield limit, can resist a certain load, characterized by a nominal stress 0%, When the structure is
sufficiently large, there may be enough strain energy stored in the structure to drive a crack through the
entire cross section at a load that only slightly exceeds the load carried by plastic reinforcement. However,
there can be no size effect if that load is not exceeded. So, the size effect law rfust be applied only to the
portion of the load capacity ornominal stress that is in excess of O3y that is

ot = T Blo) = ~2— (10.1.17
VIR T T Do) )

where o7, is a possible contribution of concrete to the overall strength at the plastic limit, Dg(p) is a
function with the dimension of length, and p is the steel reinforcement ratio. Note the explicit dependence
of the brittleness number on the steel ratio. -

The procedure to determine J%’u is analogous to that sketched in the previous section, and requires
no more than using the classical formulas of the code in (10.1.15). The determination of Do(p) is more
difficult. For plain concrete, Eq. (10.1.16) shows that Dy is a constant that is determined by the materiat
fracture property ¢y and the structure geometry. Now, the structure geometry is altered by the presence
of the reinforcement. Therefore, the geometrical factor must depend on the steel ratio as well as on other
dimensionless ratios defining the layout of the reinforcement.

Let us now sketch a possible unified framework for the influence of the steel ratio on the value of Dy.
We write § in the form (10.1.8) and substitute the general form (5.3.11) for D:

ONu =~ U}g\/u + U;:Vui

D_ K 10.1.18
cr - cf28a1(1 . ( o )

A=
where J, denotes partial differentiation with respect to a. Néxt, we use the superposition principle and
write the condition that the stress intensity factor is the sum of the stress intensity without reinforcement,
minus the stress intensity factor caused by the steel-concrete interaction. The negative sign is due to the
fact that the steel forces tend to close the crack. The resulting equation for K can always be written in
the form -

Kr = onVDk(a) - posV Dks() (10.1.19)

where 0 is the stiess in the steel bar and k,(c) a shape factor taking into account the steel distribution.

The simplest behavior one can encounter is that in which the effect of the reinforcement is exactly
equivalent to decreasing the externally applied load (a pure parallel coupling). For such cases, k (a) o
k() and ‘ ' ’

B(p) = B(0) =5,  Do(p) = Do(0) = Dy (10.1.20)

Pure cases of this kind are difficult to find in practice, but the results of BaZant and Kim (1984) seem to
indicate that this is approximately valid for longitudinal reinforcement in diagonal shear.

For a densely distributed reinforcement, the behavior is quite different and one cannot assume that
ks o< k. The result for Do(p) is then obtained as

1—mip osks(ag) oskl(ap)
D, =—2>"D = S = 2T
o(p) T—1mop o my onk(co) mg Tk (a0) (10.1.21)

For small values of p, we can take a MacLaurin expénsion and write
Do(p) = (1 +mpyDy, m=mg—my (10.1.22)

This is the form postulated by BaZant and Sun (1987) for the influence of the stirrups on the size effect
in diagonal shear. As it transpires from the foregoing derivation, m is a geometrical factor that can
be, in principle, determined either from experiment or from numerical simulation. As an example, for
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Figure 10.1.3  Longitudinally reinforced beam subjected to constant shear:

the diagonal shear of beams, BaZant and Sun’(1987) proposed the following formula, determined by
optimization of data fits and the condition that 7 = 0 for'short spans and 1 — constant for large spans:

m = 400 [1 + tanh (2% ~556)] (10.1.23)

where s is the shear span and D the effective depth of the: reinforcement (see Fig. 10.1.3).

10.2 Diagonal Shear Failure of Beams
10.2.1 Introduction

In the current ACI Standard 318 (Sec. 11.3), the nominal shear ‘strength is not based on the ultimate load
data but on data on the load that causes the formation of the first large cracks. The current ACT formula
can be written: -

fe D ] fe . '
ONu=V. =0y | 1.9 - + 2500pw~? <3.50] pa o) = 1psi = 6.895kPa  (102.1)
1 1

where v, = V./(byD) nominal shear strength provided by concrete, D = effective depth of the longi-
tudinal steel, by, = width of the beam web, fé = compressive strength of concrete, py = longitudinal
steel reinforcement ratio, and :

1o Mu
5= .

in which Vj, = factored shear force at ultimate, M,, = factored moment at ultimate. For the case of
constant shear of Fig. 10.13 5" = s.

If the first diagonal shear crack were considered to'be very small compared to beam depth D, no size
effect would occur, as implied by Eq. (10.2.1). However, it seemms that most data refer to the formation of
relatively large cracks, in which the size effect oght to occur even though it is ignored in Eq. (10.2.1).

The fact that the strength-based failure criterion used in contemporary design codes is not very realistic
is, for example, confirmed by the extremely large scatter of the vast amount of test data available in
the literature (Park and Paulay 1975; .BazZant -and Kim 1984; Bazant and Sun 1987). Moreover, in
the commentary to the ACI Code (Sec. R11.3.2:1) itis acknowledged that the diagonal shear failure
experiments of Kani (1966, 1967) reveal a decrease of the shear strength with the depths of the beam.
These results are not considered in the code ACI 318-89, which is justified by assuming the code to be
based on the load at initiation of very small cracks rather than formation of first large cracks or the ultimate
load. For deep beams such that L/ D < 5 (I = clear span of the beam), the nominal shear strength is
obtained by multiplying Eq. (10.2.1) with the factor (3.5 — 2.55' / D), which is intended to introduce the
increase of the shear strength from the first cracking load to the ultimate load in deep beams. (This is
explained by assuming that the mode of shear resistance ¢hanges from flexure to arch action or the action
of diagonal compression struts.) s ’ )

_Some revisions to the code that partially addressed some concerns stemming from fracture mechanics
were proposed by ACI-ASCE Committee 426 (1973,1974,1977) and by MacGregor and Gergely (1977),

(10.2.2)
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log v,

Bazant's
size effect law

Figure 10.2.1 Experimental data are available only fora range over which both the CEB formula and BaZant’s
equation describe the results adequately, given the large experimental scatter.

but have not been incorporated into the ACI Code (they were proposed on the basis of an exhaustive study
of experimental data obtained prior to 1974). Reinhardt (1981a) analyzed some suitably chosen test data
and in 1981 found that there was a size effect and that it agreed quite well with LEFM. Later, however,
the LEFM size effect was found to be too strong by BaZant and Kim (1984). k

These authors, and also BaZant and Sun (1987), concluded from a statistical analysis of over 400 test
series that the code approach to design, which is not based on the maximum load, does not provide a
uniform margin of safety against failure of beam of various sizes because it ignores size effect. They
noted that introduction of the size effect law leads to a better agreement with the ultimate load test data
compared to the current ACI Code formulas which lack the size effect (as well as an LEFM-type formula
proposed by Reinhardt, in which the nominal strength decreases inversely to the /D, which s too strong).

An empirical formula for the size effect in diagonal shear has been introduced in the CEB Model Code
design recommendations (CEB 1991). It has the form v, = wo(1 + v/ Do/ D), where vy and Dy are

-constants. This formula, however, has the opposite asymptotic behavior than the size effect law. For large

sizes, it approaches a horizontal asymptote, and for small sizes it approaches an inclined asymptote of
slope -1/2, which cannot be logically justified. The reason that this formula compared acceptably with the
test data is that the data used pertained only to the middle of the size range. Due to scatter, distinguishing
various laws without any theory is impossible for such limited data, as illustrated in Fig. 10.2.1.

The diagonal shear strength was also investigated using the cohesive crack model by Gustafsson (1985)
and Gustafsson and Hillerborg (1988), but not with the aim to produce code formulas. Rather, their
objective was to show that a size effect was theoretically predicted and to inVesiigate how the shear
strength is influenced by the fracture properties, particularly the fracture energy.

Other models have also been used to analyze the diagonal shear of beams. Jeng and Shah (1989)
extended their two parameter model to describe crack growth in mixed mode and applied it to diagonal
shear. A nonlocal microplane has also been used to analyze the size effect in diagonal shear of beams
(Bazant, Ozbolt and Eligehausen 1994; OZbolt and Eligehausen 1995)

In this section, some of the most important results of the aforementioned works are summarized. In
the next section, a recent modification of the classical truss model (or strut-and-tie model) is described
which approximately captures the effect of energy release and explains the physical mechanism of size
effect in a simple, easily understandable way.

10.2.2 Bazant-Kim-Sun Formulas

BaZant and Kim (1984) and BaZant and Sun (1987) developed a set of phenomenological equations to
describe the dependence of the diagonal shear strength on the size, shape, and steel ratios of beams failing
in diagonal shear. The work of BaZant and Kim has three essential ingredients. The first one is the general
structure of the formula which is based on the approach described in Section 10.1.5, and thus takes the form
(10.1.13). The second is the development of a rather general expression for oﬁlu derived by analyzing the
arch action and the composite beam action and summing their contributions. The combination of these
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Figure 10.2.2  Diagonal shear strength analysis of BaZant-and Kim (1984): (a) geometry; (b) actions at
intermediate cross section; (¢) decomposition of normal forces;

two ingredients lead the authors to the gencral formula for the shear strength effect:

- VL
ONu = Uy == —mee (10.2.3)

V1+D/Dy
. ANK'S T .
vl = o1k p? [<i°—> + kz\/ﬁ(g) J ; o1 ="1psi = 6.895 kPa (10.2.4)
1\

in which we recognize the numerator vE as equivalent to aﬁ,u, and where p, ¢, r, ky, and ks are dimen-
sionless constants. ] :

The expression for v% is similar to that used in the ACI Code (10:2.1), but it is to a greater extent based
on mechanics analysis and contains more empirical parameters, namely k1, k2, p, ¢, and . As pointed out
in Section 10.1.5, the parameter Dy, characterizing the size effect, must also be empirically determined.

BaZant and Kim’s derivation of the general expression for v}, follows the classical trends in simplified
structural analysis. Consider the end portion of the beai as depicted in Fig. 10.2.2a. The overall actions
V' and M at a cross-section at & are as showri in Fig. 10.2.2b; The normal forces at the cross-section can,
be decomposed into the steel force 7°(z) and the compressive resultant on the conerete, C' (), located at

distance j(x) D above the reinforcement (Fig. 10.2.2¢). Then; from the horizontal equilibrium condition, -

we have C(z) = T'(z), and from the condition of equilibrium of moments,

M(z) =T(z)j(z)D (10.2.5)
The overall equilibrium equation for the beam requires that V' = 0M (z) /8 and thus
: , dj
V=Vi+V, V= dTTixlj(a:)D s —Jd—(f—)T(w)D (10.2.6)

where Vi-and V; are known as the composite beani action and arch action, respectively. BaZant and Kim
empirically approximated j(z) by a power law furiction: . i

Loy e NT () '
i@ =k (2) LEr@p o (027
The value of dT'/dz is obtained from the equilibrium condition along the reinforcement which requires
dT /dxz = nymw DyTy, where ny is the number of bars, 7 Dy their perimeter, and 73 the shear bond stress.
Since the perimeter of the bars is proportional to the squaré root of their area —hence, proportional to
/P and the ultimate bond strength is roughly proportional to 2% with ¢ = 1/2, Bajant and Kim were
able to write V] at the critical section = = s as

Vi = kgp /25D (10.2.8)
where ky is a constant. Next, using (10.2.7) and assuming that the critical cross section for arch action is
atz = D, and that, at failure, the steel stress isa constant, they found

- xz
Vs = cop! m(—

S) bD , (10.2.9)

;
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Figure 10.2.3  Size-effect plot for Bazant-Kim-Sun formuia, compared to 461 available data points for beams
without stirrups (data from BaZant and Sun 1987).

Substituting the last two expressions into the first of (10.2.6) and rearranging leads to Eq. (10.2.4) for vl
(where the dummy stress ¢ has been introduced for dimensional compatibility).

BaZant and Kim compared this formula to a large number of tests from the literature in order to get
average values for the foregoing empirical parameters. It was shown that BaZant’s size effect law was
able to describe the size dependence of the classical data by Kani (1966, 1967) and Walraven (1978).
As shown in Section 1.5, this finding was further supported by the tests by Bazant and Kazemi (1991);
Fig. 1.5.7, series K1 and K2. . B

Comparison of equation (10.2.3) to the results {from seven classical data serics was used by BaZant and
Kim to optimize the parameters in that equation. The values of the parameters so determined were as
follows : )

1 o1 5

3, 9=, 1=,k =10, ky=3000, Dy =25d, (10.2.10)
3 2 2
With this formula, BaZant and Kim were able to fit 296 experimental data points with a coefficient of
variation of 30%, much better than the ACI formula. )

Later, BaZant and Sun (1987) further improved Eq. (10.2.4) by introducing the effect of maximum
aggregate size d,. This led to the replacement of the value 10 for the factor k; in (10.2.10) with the
expression .

D=

ki =65 (1+\/c0/¢a) . co=02in=5.1mm (102.11)

BaZant and Sun alse collected and tabulated a still larger set of data than BaZant and Kim (1984), involving
461 test data, and showed that the improved formula gives still better results, reducing the coefficient of
variation to 25%. Fig. 10.2.3 shows the size effect plot for the 461 data points.

BaZant and Sun further introduced in the formula the influence of the stirrups that the ACI code
neglects. Although in the original work the approach was completely empirical, a theoretical background
is now provided by the analysis in Section 10.1.6. The equations (10.1.22) and (10.1.23) introduce the
modification of the size effect due to the stirrups. Thus, the final formula taking all factors into account is

-1/2
Vy = 0+ VP [1 + 55] (10.2.12)

in which vg, vE¢ and Dy are given by

vy, = pufyu(sina + cos o) ' (10.2.13)
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Figure 10.2.4 Size-effect plot for BaZant-Kim-Sun formuila; compared to 87 available data points for beams
of rectangular cross section with stirrups (data from BaZant and Sun 1987).

’Upc = 0’161\/_ H fc 43000 ,

Dy = 25d,(1 + mpy) (10.2.15)

oy = 1psi = 6.895kPa .. (10.2.14)

in which p,, is the steel ratio of stirrups fyv the yield strength of the stirrups, ¢; = 6.5, and m is given
by (10.1.23). The foregoing value of ¢ is adequate to-obtain the best fit on average. For design, ¢ is
reduced to'c; = 4.5.

Fig. 10.2.4 shows the size effect plot for BaZant-Kim- Sun-formula and 87 available data pomts ‘for
beams of a rectangular cross section with stirraps from the test data listed by BaZant and Sun (1987).
Although the scatter is large, the experimental results lie relatively ¢lose to the Bazant-Kim-Sun formula,
closer than to other expressions including the ACI formulas:

10.2.3- Gustafsson-Hillerborg Analysis

Gustafsson (1985) and Gustafsson and Hlllerborg (1988) performed appmxumte analysls of dngonal
shear failure of reinforced beams of various depths. In their analysis, they assumed that a single polygonal
cohesive crack with linear softening was formed as depictedin Fig. 10.2.5a, while the bulk of the concrete
remained linear elastic. The interaction between steel and concrete was represented by the curve of
shear stress vs. bond slip displacement, which was ‘assumed to be of the elastic-perfectly plastic type
“(Fig. 10.2.5b). The behavior of the reinforcing steel ‘was assumed to be linear elastic all the time. To
determine the strength of the beam, 5 possible crack paths; as shown in Fig. 10.2.5¢, were analyzed using
finite elements. A typical, albeit idealized, load-displacement curve is shown in Fig. 10.2.5d. There
is a maximum M caused by the failure of the concrete in tension followed, eventually, by a snapback.
However, since in the computation the material surrounding the crack is assumed to be linear elastic, the
load starts to increase again due to progressive stressing of the reinforcement. If the material behavior
were really elastic, the load would increase forever along the dashed curve, approaching an asymptote
(dash-dot line) corresponding to a fully cracked concrete sewed up by the reinforcement.

Of course, this is not actually possible, and failure does occur either by yielding of reinforcement or by
crushing of concrete in the compressed ligamient. In'the analysis of Gustafsson and Hillerborg, only the
crushing of concrete is considered. To this end, at eachcrack growth step Gustafsson and Hlllerborg make
a check of the integrity of the ligament based on the criterion described below. The computation ends
at a certain point C in Fig. 10.2.5d when the crushing criterion is satisfied. Gustafsson and Hillerborg
found that point C lies above point M for the cracks closer1othe loading cross-section (path 1) and goes
down as the path deviates more and more from the vertical. Flg 10.2.5¢e sketches the values of the load
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Figure 10.2.5 Gustafsson-Hillerborg model. (a) Geometry of the problem with polygonal cohesive crack path.
(b) Bond stress-slip relationship. (c) Crack paths considered in the calculation. (d) Idealized load-displacement
curve, (¢) Cracking and crushing load vs. crack path mouth position and definition of beam strength. (f) Normal
a_nd shear forces across the ligament. (g) Crushing criterion. (Adapted from Gustafsson 1985.)

corresponding to points M (circles) and C (¢rosses) vs. the relative position of the crack mouth z/D (see
Fig. 10.2.5a). Since the strength for a given path is given by the upper branch (heavy line), Gustafsson
and Hillerborg assumed that the actual strength of the beam corresponds to the path with less strength,
given by point A in the figure. For this path, the loads for point M and C are identical (identical cracking
and crushing strength).

A few words regarding the crushing failure criterion. At each step in the calculation, the resultant
normal and shear forces(Ng, Tp) across the uncracked ligament were computed (Fig. 10.2.5f). From
them and the equilibrium condition, the normal and shear forces (IV, T') across any plane at an arbitrary
angle could be computed, as well as the corresponding average stresses (7, 7). Gustafsson and Petersson
postulated that crushing failure occurred as soon as, for some orientation, a criterion defined by a condition
F(F,7) = 0 was met, where the criterion was graphically defined as depicted in Fig. 10.2.5g.

Using the foregoing approach, Gustafsson and Hillerborg analyzed the influence of the size (beam
depth), the steel ratio p, and the shear span ratio s/D. Fig. 10.2.6 summarizes the results of their
computations. Although Gustafsson and Hillerborg proposed a size effect in which vy, < D™/* for
0.4 < D/l < 35, as suggested by other researchers, it appears that an exponent of —0.3 instead of
—0.25 fits the results better (dashed lines in Fig. 10.2.6). )

10.2.4 LEFM Analyses of Jenq and Shah and of Karihaloo

Jenq and Shah (1989) analyzed diagonal shear fracture using LEFM. They considered the idealized
diagonal crack shown in Fig. 10.2.7a and approximated the solution as the superposition of the cases
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Figure 10.2.,6 Nondimensional shear strength vs. beam decp'th for various span-to-depth ratios and steel ratios
according to Gustafsson and Hillerborg model (data from Gustafsson 1985). The dashed lines correspond to
power law expressions of the form v, oc D73, :
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Figure 10.2.7 Jeng and Shah’s (1989) analysis of diagonal shear.

shown in Figs. 10.2.7b-c. The first case corresponds to the'concrete taking a load V,, such that the stress
intensity factor at the crack tip is Ky, The'second case corresponds to concrete plus reinforcement taking
a load V; computed from classical no-tension stiength of material analysis (no crack singularity, neutral
axis at the crack tip, linear stress distribution along the ligament). Note that in this model only the situation
at ultimate load is considered, and the equations that follow cannot be used to analyze the crack growth,
This means, in particular, that a. is the critical crack length (actually its vertical projection), understood
as the crack length at peak load.

Because there is no closed-form expression for the precise geometry in Fig. 10.2.7b, Jenq and Shah
(1989) assumed that the stress intensity factor can be approximated by the stress intensity factor of a pure
bend beam with a symmetric edge notch of depth a subjected to the bending moment corresponding to
the cross section at the mouth of the crack (i.e::: M =V, x; note that it is not clear why the moment
should not be taken at the cross section at the tip of the crack, M™* = V,x.j). According to this, the crack
growth condition is L

VDE(a), i =

6V
2

42

ch D

(10:2.16)

where in the first fraction we recognize the expression for the nominal stress in bending (6M /bD?) and
k(ex) is given, for example, by Srawley’s expression (5.4.8); From this we get

KDY
¢ 6rk{oy) !

= (10.2.17)

e
D
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On the other hand, the equilibrium of moments for the case in Fig. 10.2.7¢ requires

y 1 2D a
Vs =T (z)—~ =D—-c—- (D - =— = — 10.2.
s =T )Ick ,Y c-z(D—a)="+z-c (10.2.18)
Given z and a, (together with the initial geometry of the beam), the foregoing equations determine V if
the distribution of the steel force T'(x) is known. Jenq and Shah (1989) assume as a simplification that
this distribution can be approximated by a power law: ’ : :

T(z) = Tinax (E)N ’ k (10.2.19)

where Ty is the value of the steel force below the concentrated load. Based on test data by Ferguson
and Thompson (1962, 1965), Jenq and Shah (1989) proposed a formula for Thy. They made an intensive
numerical analysis of the influence of the exponent V, from which they recommended the value N = 2.5,
The recommended expression for Ty is:

T = 2.5095f{4 | % (10.2.20)

where the result is in kN if s and D arc in mm and f] in MPa. This result is strictly valid only for beam
thicknesses of 10 in (254 mm) and for a single steel bar. To obtain a dimensionally correct equation, it is
better to express the force carried out by the steel at the central section as the length of the steel bars s,
times their perimeter nym Dy, times the average bond shear stress (Karihaloo 1992) 73:

Tnax = snpn Dy (10.2.21)

Setiing now nym D2 /4 = pbD and 75 o f!/D, as deduced by Jenq and Shah from the Ferguson and
Thompson data (1962, 1965), we get the result

nppb
D

The value of Ly is determined so that this formula coincides with (10.2.20) for ny = 1 and b = 254 mm.

Given z (or 6) and a., the shear strength is determined from the foregoing equations setting v,, =
(Ve + Vi)/bD; the result is

Tinax = Luys fly Ly=2.509m (102.22)

= LD g a2y v
" bD 't \s Tk

bzk(a) T D (10.2:23)
Karihaloo analyzed this model and improved it in a series of papers (Karihaloo 1992, 1995; So and
Karihaloo 1993). First he modified the way the model is applied and used it as a forensic engineering tool
by using the values of x and . as measured (optically) in a test. Using this method on two beam tests, he
concluded that the Jeng-Shah model predicted shear strengths that were too low (see exercise 10.3). So
and Karihaloo (1993) extended the range of applicability of (10.2.20) to include other parameters. They
reevaluated the results of Ferguson and Thompson (1962, 1965) and proposed a new formula that takes
into account the bar diameter and the number of bars; for an embedment length L., the formula reads

Trvax = L, vV 4nb7prD T5 (10.2.24)
where F is a reduction factor for ny = 2 ( the formula is strictly applicable only for one or two bars):
93 + 1354, — 7A% b b
==, Al=— -1, Ay=-—-1 10.2.25
1T 9311354, — 742 = 179D, ( )

The average ultimate bond shear strength 7 is given by

k1
=P {0.4684\/7,; (%L:) +(0.0271(c — 1.5Dy)| , = n = —0.8205D;°%%  (10.2.26)
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Figure 10.2.8 Comparison of eéxperimental results for diagonal shear with computed values obtaine.d using a
nonlocal microplane model (data from BaZant, OZbolt and Eligehausen 1994). The fit by BaZant’s size effect
law is also shown. '

where all the dimensions must be in millimeters and fin MPa. The factor F} is given by
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Although this equation substantially improves the Jeng-Shah expression for T,}mx, the Prbblem .of the
shape of the distribution (particularly the value of exponent N in (1(?.:2,19))? sn]l.rf:mams. .Kalrlhaloo
(1995) further improved the treatment of the LEEM crack growth condition by explicitly co‘lxsfdermg the
mixed mode condition at the crack tip. But even with this enhancement, the strength predictions of the
model'were too low, even for exponents N aslowas 1.25.

10.2.5 Finite Element Solutions with Nonlocal Microplane Model

Additional insight and even partial validation of the design formulas for brittle faih_lres of concrete strug
tures, including diagonal shear, can be gained from careful finite element analysis based on a realistic
material model verified over a broad range of experimentally observed behavior. One such model appears
to be the nonlocal finite element model combined, onthe material level, with the microplane m.odel for
the stress-strain relation (BaZant, OZbolt and Eligehausen 1994). These models, which will l?e discussed
in detail in Chapters 13 and 14, provided, for the diagonal shear tests of BaZant and Kazemi, the results
shown by the triangular data points in Fig. 10.2.8. The figure also shows the test data and the best fit by

the size effect law. It is seen that the agreemient is quite close. -

10.2.6 Influence of Prestressing on Diagonal Shear Strength

The effect of longitudinal prestréssing on the-diagonal shear of longitudinally reinforce beamg was a.d~
dressed by BaZant and Cao (1986) and also by Gustafsson (1985). Similar to the procedur_e of BaZant, Klm
and Sun, BaZant and Cao first used simple equilibrium considerations to get an approximate expression
for vP and then applied the size effect correction (10.1:13). Their result is:

‘ D\ D 7 N
vy = Vh (1 + Fo) R 5 c1oy }El + €0 (10.2.28)

where Dy, ¢1, and ¢, .are empirical constants, s is'the shear span, and o the uniaxial stress du.e to
prestressing; oy = 1 psi = 6.895 MPais introduced for dimensional compatibility. From the analysis of
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235 test results from the literature, BaZant and Cao proposed the following values of the constants:
Do = 25d, , ¢ =49, ¢ = 0.54 (10.2.29)

These values yield the average shear strength; for design, they proposed the values ¢; = 4, ¢; = 0.4.

It must be realized that although the analysis of data showed a clear size effect, the scatter was so
large that the values of the parameters are merely roughly indicative. Nevertheless, the study of BaZant
and Cao also shows that the proposed formula provides a better agreement with test results than other
formulas found in the literature such as the ACI formula or the formula proposed by Sozen, Zwoyer and
Siess (1958).

In contrast to nonprestressed beams, the arch action was not considered in the derivation of the foregoing
formula. However, in prestressed beams it is difficult to distinguish the arch action from the effect of
prestress. To some extent, the separate consideration of shear force ;0. D/s associated with prestress
substitutes for the consideration of arch action. However, improvements might be in order.

The foregoing formula did not anchor the size effect into a complete plasticity solution, which should
be applicable for an infinitely small size. However, according to the size effect data, the plasticity solution
would be applicable, in theory, for beam depths smaller than the aggregate size, and thus it is not clear
whether the application of plasticity is permitted. It calls for further research to determine whether this
might be so and, if it would, then one could draw on various elegant plasticity solutions for diagonal shear
(for example, the recent developments in truss analogy, see Section 10.3).

Exercises

10.1 Karihaloo (1992) reported tests on two reinforced concrete beams tested in three-point bending. The
dimensions of the beams were as follows (refer to Fig 10.2.7 for notation): s =800 mm, D = 150 mm, b =
100 mm, ¢ = 25 mm. Beam number 1 was reinforced with one ribbed bar 12. mm in diameter and beam
number 2 with two ribbed bars of the same characteristics, giving steel ratios of 0.0075 and 0.015, respectively.
The steel had a yield strength f,- = 463 MPa. The concrete mix had the following characteristics: do =

. 20 mm, f. =38 MPa, E = 30 GPa, f, = 3.4 MPa. The fracture toughness was estimated (from tests on

similar mixes) as K. = 1.27 MPay/m. Beam number 1 failed in bending with a main crack close to the central
cross-section, while beam number 2 failed in diagonal shear. The failure loads were approximately equal to
24 kN and 33 kN, respectively (note that this is the total load P = 2V). (a) Determine the expected strength
of the beams according to the BaZant, Kim and Sun’s formula whenever applicable. (b) Determine the design
strength according to the BaZant, Kim and Sun’s model, and determine the actual safety factor for the beam that
failed in diagonal shear.

10.2  Consider the beams in the previous example. (a) Make an estimate of the values of Gr and £, to be
used in the Gustafsson-Hillerborg model. (b) Plot the experimental resiilts on a copy of Fig. 10.2.6. (c) Give at
least two reasons for each beam (not necessarily the same) why the results of Hillerborg and Petersson cannot
be applied directly.

10.3 Consider again the beams in the previous examples. (a) Determine the shear strength of beam number 2

using the Jeng-Shah model with IV = 2.5, with the following assumptions (based on the observed failure, taken
from Karihaloo 1992); x & 250 mm, a. = 125 mm, & =~ 45°. Compare the result to the experimental value.
(b) Determine the value of exponent /N that should be used to make the model deliver the observed strength,

10.3 Fracturing Truss Model for Shear Failure of Beams

The truss model of Ritter (1899) and Mdrsch (1903), also called the strut-and-tie model, has been widely
used in successively refined versions to analyze the failure of beams in diagonal shear (Nielsen and
Braestrup 1975; Thiirlimann 1976; Collins 1978; Collins and Mitchell 1980; Marti 1980, 1985; Schlaich,
Schafer and Jannewein 1987; Hsu 1988, 1993; Collins, Mitchell et al. 1996). A fracture model retaining
the basic hypotheses of the truss model has recently been proposed. It explains the size effect observed in
this type of structures based on the concepts previously analyzed in Section 9.5, particularly the generation
and growth of a band of axial splitting cracks parallel to the compressive principal stress (BaZant 1996b),
or alternatively a shear compression crack propagating across the strut. In this section we present the
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Figure 10.3.1 (a) Compression strut in a beam-without stirrups and crushing zone propagating across the

compression strut during failure, (b) stress Iehcfzones caused by crushing band propagating across compression
strut in beams of different sizes.

basic hypotheses underlying the model and two alternative theoretical analyses, one based on the stress
relief zone and strain energy release, and the other based on the stress redistribution and complementary
energy. The section closes by discussing thesize effect on‘the cracking load, which is sometimes claimed
to be free from size effect.

10.3.1 Basic Hypotheses of Fracturing Truss Model

Consider the sheared beam in Fig. 10.1.3 (which shows-only the left-end portion of the beam). For the

sake of simplicity, the beam is considered to have a rectangular cross section (a generalization to flanged
cross sections, however, would not be difficult). The analysxs of the size effect performed by BaZant
(1996b) rests on the two following hypotheses:

Hypothesis I: The failure modes at maximumi load af beains of different sizes are geomemcally
similar.
This means that, for example, the shear spans and tl1e length c of the material failure zone at
maximum load are geometrically similar (Fig.-10. 3.1). Inother words, the ratios s/D and c/D are
assumed to be constant. The hypothesis is applicable only within a certain range of sizes. However,
experience from testing as well as finite element analysis indicates that this range ¢overs the size
range of practical interest.’

Hypothesis II: The maximum load is determmed by the compression failure in the inclined com-
pression struts,
The compression failure must be interpreted as a temporary incremental strain- softenmg in com-
~ pression (or progressive crushing) of concrete in‘the strut, characterized by a negative slope of the
stress-strain diagram. Hypothesis 1f means that the concrete in the compression strut is suffering
splitting cracks in the direction of compression only during a certain, possibly short, portion of
the loading history during which the applied load is reaching its maximum. It does not mean that
the concrete will get crushed completely ‘once-the load will be reduced to zero (such complete
crushing is seen only in T-beams; Leonhardt 1977). During the postpeak softening, the splitting
cracks may interconnect to produce what locks like compression shear cracks in the horizontal or
vertical direction (Fig. 10.3.2) (however, if the failure were assumed to be caused by propagation
.of a horizontal or vertical shear crack across the strut, the calculation results would be the same).
Thus, after the failure is completed, the failure might not look as crushed concrete but as a diagonal
crack and a shear crack. The lack of complete crushing may be caused by the failure process taking
place under a decreasing load, after the maximum load.” The concrete in the strut may have been
partially damagcd by compression splitting but need not have disintegrated.

Denying the existence of progressive failure of the compression strut at maximum load ‘would be
tantamount to denying the validity of the truss model (strut-and-tie model). If this model is valid, then
(1) diagonal tensile cracks must form before the maximum load, (2) the tensile and shear stresses (crack-
bridging or cohesive stresses) transmitted across these cracks must be negligible compared to compression

stresses in the struts, and (3) the compression struts between these cracks must be aligned in the direction

of the compressive principal stress in concrete.- Only under these conditions, the concrete, stirrups, and
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Figure 10.3.2 Splitting crack interconnection to form horizontal or vertical compression-shear cracks: (a,b)
beams without stirrups; (c—€) beams with stirrups.

longitudinal bars may be treated as a truss. Assuming that the stirrups and longitudinal bars are designed
strong enough, the truss can fail only in concrete. Because the concrete is in uniaxial compression, the
failure must be compression failure.

The stresses transmitted across the diagonal cracks are, of course, nonzero, because the cracks are not
open widely enough at maximum load. But the important point, which justifies the truss model, is that
these stresses are much smaller in magnitude than the compression stresses in the struts.

The energy release due to fracture propagation can be calculated in two ways: (1) from the change
of the strain energy of the structure-load system at constant displacement, or (2) from the change of the
complementary energy of the structure at constant load (see Chapter 3). We will examine both approaches
in a simplified manner and show that they give approximately the same results.

10.3.2  Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally
Reinforced Concrete Beams Without Stirrups

The typical pattern of cracks forming during the failure of a simply supported beam is seen in Fig. 10.3.1a.
Although after the failure only one final crack emerges, cracks of various orientations form during the
loading process. The first cracks caused by shear loading are tensile cracks of inclination approximately
45°. On approach to the maximum load, these cracks interconnect and form a larger crack running
approximately along the line connecting the application point of the load V to the support in Fig. 10.3.1a.
This major crack is free of shear stresses and has approximately the direction of the maximum principal
compression stress, oyy.

According to the truss model (or strut-and-tiec model), we may imagine that most of the load is transferred
through the shaded zone called the compression strut (in the case of distributed load, it would be a
compressed arch). The normal stress in the direction orthogonal to the strut is essentially zero and the
material can expand freely in that direction.

The failure behavior is approximately idealized as shown in Fig. 10.3.1b for two geometrically similar
beams of different size. Although for calculation purposes the compression strut is assumed to represent
a one-dimensional bar connecting the point of application of V' and the support, it has a finite effective
width, denoted as kD (Fig. 10.3.1b) where D is the depth to lhe reinforcement and £ is approximately a
constant, independent of the beam size.

According to experimental evidence, supported by finite element results, a beam (with a positive bending
moment) fails at maximum load due to compression failure of the concrete, usually near the upper end
of the compression strut, provided that the longitudinal bar is anchored sufficiently so that it cannot slip
against concrete near the support. Aside from the fact that the compression failure (axial splitting or
compression shear crack) occurs only within a portion of the length of the strut, the basic premise of the
present analysis is that the width h of the cracking zone in the direction of the strut is for a given concrete
approximately a constant (which is probably approximately proportional to the maximum aggregate s1ze
and also depends on Irwin’s characteristic length and on other material characteristics).

The fact that h, in contrast to the length and width of the stress-relieved strip in the strut (the white strip
56785 in Fig. 10.3.1b), is not proportional to the beam size is the cause of the size effect. If the width h
of the crushing zone were proportional to the beam size, there would be no size effect. For calculation
purposes, we will assume that the compression failure of the material consists of a band 12341 of splitting
cracks (Fig. 10.3.1b) growing vertically across the strut upward or downward, or both (which of these is
immaterial for the present analysis). These cracks may interconnect after the peak load to produce what
looks as a shear crack. :
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Microscopically, the compression failure may be regarded as internal buckling of an orthotropically
damaged material (BaZant and Xiang 1994, 1997; see Section 9.5). The failure begins by formation of
dense axial splitting microcracks in the direction of maximum compression, which greatly reduces the
transverse stiffness of the material, thus causing the microslabs of the material between the microcracks
to buckle laterally. The details of the process are, however, not needed for the present analysis. Neither
is it important that the crushing band is pictured to propagate vertically. If it propagated across the strut
in an inclined or horizontal direction, the calculation results would be about the same.

The growth of the splitting crack band, which causes the load-deflection curve to reach a maximum
load and subsequently decline, relieves the compression stress from the strip 56785 shown in Fig. 10.3.1b.
The reason that the boundaries of the stressirelief zone, that is, the lines 16, 25, 38, and 47, are parallel to
the direction of the strut is that the material is heavily weakened by cracks parallel to the strut. Otherwise,
a more realistic assumption would be a triangular shape of the stress relief zone, as considered in the case
of tensile failures (Section 1.4; see also the remark at the end of Section 9.5).

Now, how to make the size effect intuitively clear with minimum calculations? To this end, note that
the area of the stress relief zone 56785 in Fig. 10.3:1b is proportional to ca, where ¢ is the length of the
crack band at failure. Since ca = (¢/D)(a/D}D? and'¢/D and a/D are constants, independent of
D, the area of the stress relief zone is proportional to D?. Because the average strain energy density in
the strut is proportional to the nominal shear stress at ultimate load, vﬁ, the total energy rélease from the
stress-relieved strip 56785 of the strut is proportional to v2 D%, However, assuming the energy dissipation
per unit volume of the crack band to be constant, the energy dissipation in the entire cracking band is
proportional to I, because the area of the ¢rushing band is proporticnal to ¢ch = (¢/D)hD. Therefore,
varying the beam size D, 'vﬁD2 must be proportional to-D, which means that v, must be proportional to
1/ v/D. This represents a very strong size effect corresponding to LEFM.

In summary, the cause of the size effect is simply ‘the fact that the energy release from the struc-
ture is approximately proportional to v2 D? whereas the energy consumed by fracture is approximately
proportional to D.

Let us now do thé calculations in.detail, following the stress relief zone approximation illustrated in
Section 3.2.2. The condition that the entire shear force V must be transmitted by the compression strut
yields, for the axial compression stress in the strut; the following expression: ) .

go b V. wfs D - (10.3.1)
¢ bkDsinfcos8 -k \D s i

in which 8 is the inclinationangle of the compression strut from the horizontal (note that tan 6 =D/s).
The strain energy density in the strutis 02 /2B, where E, is the elastic modulus of concrete. ‘The volume
of the strut is sbe (where b = beam width). Therefore, the loss of strain energy from the beam caused by
stress relief during the formation of the'crack band at constant load-point displacement is, approximately:

AU, ~~Uz she = v s, P zslr 10.3.2)
c= 2B T TR \D s ) 7" (103

The minus sign expresses the fact that this is an energy loss rather than gain. The energy release rate due
to the growth of the cracking band is obtained from (2:1.15) as

gﬁ,_l —Bﬁ ,—_l oAU, X ____v?i‘i. _S_FB ’ ‘ 10;53
T A, bli0e ], 2EREA\D s (10:3:3)

The encrgy dissipated by the cracking zone may be expressed on the basis of the fracture energy G's
characterizing the axial splitting microcracks in the crack band. The length of these cracks is b (width of
the band), and their average spacing is denoted as 5. The number of axial splitting cracks in the band
is ¢/s.. Thus, the total energy dissipated by the crack band is Wy = (¢/3.)bhGy. Differentiating with
respect to ¢, we find that the energy dissipation in the crack band per unit length of the band and unit
width of the beam (which we call R because it has the meaning of a crack growth resistance) is:

R= ::icf ~ (10.3.4)
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In this equation, however, it would be too simplistic to consider h to be a constant through the entire
evolution of the crack band. Naturally, the crack band must initiate from a small zone of axial splitting
cracks. The length of these cracks first extends in the direction of the strut until they reach a certain )
characteristic length hp. After that the crack band grows across the strut at roughly constant width
h = hg (see the intuitive picture of the subsequent contours of the crack zone in Fig. 10.3.1a). Such
behavior may be simply described by the equation

c

h =
wo t Cho (10.3.5)

in which hg, wo = positive constants; hg represents the final width of the crack band. Thus, strictly
speaking, our hypothesis of a constant width of the cracking zone means that the final width rather than
h is a constant.

The increase.of R with ¢, as described by (10.3.4) with (10.3.5), represents an R-curve behavior
(because R represents the resistance to fracture). The R-curve behavior in tensile fracture is also caused
by the growth of the fracture process zone size. Here, however, this growth is expressed indirectly in
terms of the length of the axial splitting cracks in the cracking band. .

It is also conceivable that, instead of a band of parallel splitting cracks, a shear crack would propagate
in a direction inclined to the compression strut (Fig. 10.3.2). In that case

: c
R =Ggs haie (10.3.6)
where G ¢, = fracture energy of the shear crack and ho now characterizes the R-curve behavior of the
shear crack. This is mathematically identical to (10.3.4) if one sets G = G,8¢/ ho, and so we will not
pursue it further.

The balance of energy during equilibrium propagation of the crushing band requires that G = R.

Substituting here the expressions in (10.3.3)-(10.3.5), one obtains the result:

_ DAT\2

vy = p (1 + D;) : (10.3.7)

in which the following notations have been made A

D
, Dy = wo (10.3.8)
s D\ .
vp = cp K, (—[3 -+ ;—) (10.3.9)
2h0 C/D
K. = +/E.Gy, cp =k - 3.

VEGs ,, w5, 3D (10.3.10)

Here the expression for K is that for the fracture toughness (the critical stress intensity factor) of the
axial splitting microcracks. An important point is that, because of our assumptions (constant ¢/ D and
s/ D), the values of Dy, vy, and ¢, are constant, independent of size D. The value Vp is the limiting
(asymptotic) value of the nominal shear strength for a very small size D.

Eg. (10.3.7) represents the size effect law discussed in Chapters 1 and 6. This law was introduced into
the analysis of diagonal shear failure by BaZant and Kim (1984), however, on the basis of a more general

_ and less transparent argument (see Section 10.2.2).

By the same calculation procedure, it can also be easily shown that if and only if, contrary to our
hypothesis, the width h of the crushing band were proportional to I) instead of obeying (10.3.5), there
would be no size effect. If constant wo were taken as 0, one would have v, « D12 which is the
size effect of linear elastic fracture mechanics (LEFM), representing the strongest size effect possible.
However, the experimental data exhibit a weaker size effect, which implies that the constant wo should
be considered finite.

As seen in Chapters 1 and 6, the size effect curve given by (10.3.7) represents a smooth transition
from a horizontal asymptote corresponding to the strength theory or plastic limit analysis to an inclined
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asymptote of slope —1/2, corresponding to LEFM. The approach to the horizontal asymptote means that
the plasticity approach, that is, the truss model (or strut-and-tie model), can be used only for sufficiently
small beam sizes D. )

For very small beam sizes D, we may substitute in (10.3.1) 6, = ff == compression strength of the
strut, and replace v, by plastic nominal strength v,,. From this we can solve:

b . . L
vy = ka(B i ?) ’ (10.3.11)
which is an alternative to (10.3.9). Thus, the size effect law in (10.3.7) can be alternatively written as
. -1 —i/2
s D D :
=kfPl =+ = P 10.3.12
w=kt(5+2) (1+5) (10312

which also shows the effect of the relative shear span s/ D on the nominal shear strength. Note that fi’
cannot be expected to represent the uniaxial compression strength f of concrete because the progressively
fracturing concrete in the strut is under high transverse tensilé strain in the other diagonal direction and
has been orthotropically damaged by cracking parallel to the strut due to previous high transverse tensile
stress (Hsu 1988, 1993). So ff is a certain biaxial strength of ‘concrete, depending both on the uniaxial
compression strength £/ and the direct tensile strength” f{.~ This dependence necds to be calibrated by
shear tests of beams. -

It is interesting (o determine the ratio to the nominal strength for bending failure, U?\,u. The ultimate
bending moment in the cross section under the load V-is ‘M, = V,s = as’vbsD. From the moment
equilibrium condition of the cross section under the load V', we also have M, = (fypr)ka, in which
fy.is the yield strength of the longitudinal reinforcing bars, p is the reinforcement ratio (which means
that pbD is the cross section area of the longitudinal reinforcing bars), and &y D represents the arm of the
internal force couple at the ulfimate load. As is well known, kj is approximately constant. Equating the

expressions for M, we obtain U’,’V = pfyksD/s. Considering now (10.3.12), we conclude that:
b .
oy _ plyks s D D .
= = e I+ — 10.3.13
v kfEAD TS Do (103.13)

This equation shows that the ratio of the nominal bending strength to the nominal shear strength of the
beam decreases when the relative shear span s/ increases, which confirms a well-known fact. It means
that slender beams, for which s/ D is large, fail by bending, while deep beams, for which s/ D is small,
fail by shear. However, as is clear from (10.3.13), the relative shear span (s/ D), at the transition between
the shear and bending failures is not constant but is larger for a larger beami size D. To express it precisely,
one sets af?v = vy i (10.3.13), and needs to solve’(10.3:13).for s /D, which is a cubic equation. The
transitional shear span obviously exhibits a size effect. ‘

The foregoing analysis assumes the reduction of the compressive stress o all the way to zero. Similar
to the analysis of compression fracture in Section 9.5, it could be that the compression stress o is reduced
to some small but finite residual strength o,.. However, the residual stress is anyway likely to be smaller
than for uniaxial compression, due to the existence of large tensile strain. A finite o seems more realistic
when we consider beams with stirrups, which provide some degree of confinement. If ¢, were nonzero
for the present case, it would have the effect of adding'a constant term to the right hand side of (10.3.7).

The tensile strength of concrete, f, has played no direct role in the foregoing analysis. The tensile
strength is not a material parameter in LEFM, nor in the ‘R-¢urve model of nonlinear fracture. It does
appear in the cohesive (fictitious) crack model or the crack:band model. However, those models are
too complicated for achieving a simple analytical solution.- Thetenisile strength, of course, controls the
initiation of the inclined shéar cracks, however, their growth is governed by fracture energy. In the present
analysis we take the view that the inclined cracks due to shear loading have already formed before the
maximum Joad. .

Does shear stress transmission across cracks due to ftiction and aggregate interlock play any role? It
could, although according to the present analysis, it ‘cannot be significant. As shown in Fig. 10.3.1a,
only cracks rather curved within the area of the compression stmit can be subjected to shear and normal
loading. Their capability of shear stress transmission decréases with the crack width, and the crack width
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Figure 10.3.3 Evolution of diagonal cracks in beam with stirrups under shear loading: (a) diagonal crack for-
miation before maximum load, (b) growth of crushing band across compression strut during failure at maximum
load, (c) beam at maximum load with the crushed and stress-relieved parts of the compression strut removed, (d)
state of béam without crushed and stress-relieved concrete after collapse (i.c., when the load has been reduced
to a small value), (e) location of the states represented in Figs. a—d on the load deflection curve, (f) equilibrium
of forces in stirrups and struts, and (g) Mohr circle of strains. \

may be assumed to increase with an increasing beam size, which obviously would also introduce a size
effect (this idea was proposed by Reineck 1991). The cracks are most inclined to the compression strut
direction and are opened the most widely at the bottom of the beam. However, the maximum load appears
to be controlled by progressive compression crushing near the major crack at the top of the beam. For
this reason, the effect of crack opening on the shear stress transmission across cracks can hardly play a
major role in the size effect on the maximum load.

10.3.3  Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally
Reinforced Concrete Beams With Stirrups

Consider now a beam with stirrups (Fig. 10.3.3aj. The stirrups cause the diagonal cracks due to shear to

“be more densely distributed. The first hairline cracks, shown by the dashed lines in Fig. 10.3.3a, form near

the neutral axis, with inclination about 45° before the maximum load. These cracks later interconnect
and form continuous major cracks at inclination angle § with the horizontal (Fig. 10.3.3a). These cracks
run in the direction of the maximum principal compressive stress o7, transmitting no shear stresses.
They are, of course, cohesive cracks transmitting tensile bridging stresses. These stresses will probably
be less than one half of the tensile strength, f{, while the compression stresses in the truss will be equal or
nearly equal to the compressive strength of concrete, f. So, itis safe to assume that the tensile principal
stress is negligible (sigrna, & 0) compared to the compressive principal stress, which justifies treating
the beam approximately as a truss. This makes the truss statically determinate. It is this circumstance that
makes the well-known simple apalysis of the truss model (or strut-and-tie model) possible. If oy were
not negligible, the truss model would be invalid.

The failure at maximum load is assumed to be caused by the progressive crushing of concrete in the
compression struts between the major inclined cracks. Similar to beams without stirrups, a crack band
which consists of dense axial splitting microcracks first widens to its full width A and then propagates
sideways as shown in Fig. 10.3.3b. For the case of a positive bending moment, this crack band probably
forms near the top of the beam and may be assumed to propagate horizontally, to the left ¢r to the right,
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Figure 10.3.4 Stress relief zones caused by a crack band propagating across the compression strut in beams
of different sizes with stirrups. The beam in (b) is similar to the beam in (a) except that the crack band width h
is the same, :

or both. The location and direction of the propagation of the crack band is actually not important for the
present analysis, and the same results would be obtained if the band propagated at other inclinations to the
compression strut. An important point, howevet; is that the final length ko of the axial splitting cracks,
that is, the final width kg of the band, is'a material property; independent of the size of the beam. If the
width kg of the band were proportional to beam depth D, there would be no size effect. Since it is less
than proportional to D, there must be size effect. S

Thus, the cause of the size effect is the localization of the compression failure of the strut into a crack
band of a fixed width, and the growth of this band across the strut.

An important point is that the stirrups as well as the longitudinal steel bars are not necessarily yielding -

during the failure at maximum load. They might riot have yielded before the crushing of the strut began,
or they may have yielded and unloaded. There is no reason why the yielding of steel should occur
simultancously with the progressive compression crushing. .

The formation of the crack band 12341 (Fig.10.3.3b) may again be assumed to relieve the compression
stress from the entire length of the comipression struts in the region 12561 (Fig. 10.3.3b). This causes a
release of strain energy from the compression struts, which is then available to drive the propagation of
the crack band. This represents the mechanism of failure at maximum load.

With the stress relieved from the compression struts; the beam acts essentially as shown in Fig. 10.3.3¢,
as if there were a gap in concrete (provided the residual strength of crushed concrete is neglected).
However, since the steel is not in general yielding,-this does not represent a failure mechanism. - A
failure mechanism can be created only when'a sufficient number of compression struts fail as shown in
Fig. 10.3.3d, in which.case even nonyielding bars permit free movement because the bending resistance
of the bars is negligible. However, this-type of collapse mechanism eorresponds to a postpeak state at
which the load is already reduced to a very small value (such as state D in Fig. 10.3.3e). Thus, the stress
relief at maximum load does not imply the structure has become a mechanism. »

First, let us explain the size effect mechanisin in'the simplest possible terms. Theareaof the compression
struts from which the compression stress is relieved, that is, area 12561 in Fig. 10.3.4, is proportional
to.cD, which is equal to (¢/D)D?. But since the failure is assumed to be geometrically similar for
beams of different sizes (shown in Fig: 10.3.4), ¢/ D is"a constant, and so the area of the stress relief
zone is proportional D?. The strain energy dersity before the stress relief is proportional to vt J2E.,
and so the total energy release is proportional to v2 D2 The area of the crack band is proportional to
ch = (¢/D)hD. Since both h and ¢/ D areconstant for beams of different sizes, the area of the crack
band is proportional to D, and so is the energy dissipated in the crack band. So, considering the failures
of geomietrically similar beams of different sizes, 'U%LD2 must be proportional to D, which means that
v, must be proportional to 1/ V/D. Again, same as for the beam without stirrups, we thus obtain a size
effect, and it is the strong size effect of LEFM. Ini practice, the size effect for smaller beam sizes is weaker
because of the R-curve behavior of the crack band 12341, :

We assume the stirrups to be uniformly distributed (smeared). Equilibrium on a vertical cross section
of the beam (Figs. 10.3.4 and -10.3.3f) requires that

Fe v bD 1 2uy,
o, = — e S (10.3.14)
bDcos 8 sinf: bDcos 8 sin 20
in which 8 is the inclination of the compression struts, F,;= compression force in the strut per length D,
and o is the compression stress transmitted by the'strut (which, in general, is not equal to the standard
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compression strength f£ of concrete and depends on the size of the beam'in a manner to be determined).

Equilibrium on an inclined cross section of the beam parallel to the compression struts further requires
that .

L oy =(Vsy/A,D)tand = v, s,btan /A, (10.3.15)

in which 4, = cross section of the stirrups, s, = spacing of the stirrups, and o, = tensile stress in the
stirrups, which, in general, is not equal to the yield stress. The stress in the longitudinal bars is obtained
from the moment equilibrium condition in a cross section and is ¢, = M/A;kyD, in which M =
bending moment, A = cross section area of the longitudinal bars, and ky ) = arm of the internal force
couple inthe cross section. : .

We do not attempt to determine the angle § of the diagonal cracks and the struts by fracture analysis.
The diagonal cracks delineating the struts start to form before the maximum load, and not during failure.
For the sake of simplicity, we assume the orientation of the major diagonal cracks not to rotate and adopt
the method introduced into the truss model by Mitchell and Collins (1974) in their compression field
theory, in which they used the compatibility condition for the average strains in the truss in a similar
way as Wagner (1929) used the compatibility condition for approximate analysis of the shear buckling of
the webs of steel beams. The average strains of the truss are defined as the strains of a homogeneously
deforming continuum that is attached to the joints of the truss at the nodes (tops and bottoms of the
stirraps). According to the Mohr circle shown in Fig. 10.3.3¢ (in which € denotes the strains, and &, is the
strain in the longitudinal bars), the overall compatibility of the average strains of the struts, the stirrups,
and the longitudinal bars requires that

2,  Ev—Ec (U,,/Es) _f(o'c)
tan” § = o (Us/Es) o) (10.3.16)

Here the strains have been expressed in terms of the stresses assuming the steel not to be yielding and
denoting by f(o.) the stress-strain diagram of concrete. (For the precise method in which the strains
entering (10.3.16) are calculated, see Mitchell and Collins 1974.) The foregoing calculation, of course,
requires that the diagonal cracks and the struts be aligned with the direction of the compressive principal
strain, which coincides with the direction of the compressive principal stress.

Fracture analysis begins by expressing the strain energy change (Fig. 10.3.4) caused by the formation
of the crack band of length c at constant load-point displacement: ’

2
AU, = —m(aczEj’) D (10317)
The minus sign reflects the fact that this is an eneigy loss rather than gain.

The stress o, in the foregoing equation represents the residual compression strength of the crack band
of concrete. In this study, the residual compression strength o, is considered to be an empirical property.
However, it can be mathematically expressed on the basis of the concept of internal buckling of a material
heavily damaged by axial splitting microcracks, as proposed in BaZant (1994a) and BaZant and Xiang
(1997); see Section 9.5. ’

The energy release rate may be calculated as:

G- _l oAU (0. —or
T b Oe |, 2E.

)? ‘
D (10.3.18)

The energy dissipation rate (fracture resistance) of the crack band is again given by (10.3.4),ie, R =
th/sc, in which the width of the crack band may be assumed to evolve again according to (10.3.6), i.e.,
h = hgc/(wo + ¢).

Substituting now (10.3.14) and (10.3.15) into (10.3.18), and using the fracture propagation criterion
G = R, we obtain an equation which can be easily solved for v,,. This provides the result:

py?
va = vp | 1 5 + vy (10.3.19)
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Figure 10.3.5  Size effect in shear failure of concrete beamvifi terms of the logarithm of either vy, or v,, — vy

in which we introduced the notations:

D

sin 20 B [k c .
ve= o =K 2sc2u§’/55m20 (10.3.21)

The size effect described by (10.3.19) is plotted in Fig: 10.3:5 in two ways, in terms of log(vy -~ vy)
and in terms of log v,,. By virtue of the residual compteéssion strength, the nominal shear strength of the
beam tends at infinite size to a finite value. An equation of the form of (10.3.19) was proposed .on the
basis of general considerations in Bazant (1987a). : ,

The question whether the confinement of concrete by stirrups suffices to cause the residual compression
strength o, and thus the residual nominal strength vy, t,ok be nonzero needs to be studied further. It is on
the safe side to take v = 0, in which case, the effect of stirrups on the residual nominal strength provided
by concrete is neglected. s .

10.3.4 Analysis Based on Stress Redistribution and Complementafy Energy

The truss model also allows an easy alternative calculation of the energy release on the basis of comple-
mentary energy U, . For the sake of simplicity, we now consider the residual strength v, = 0, although a
generalization to finite v, would be feasible.

In the truss model, we isolate the representative cell limited by the shaded zone in Fig. 10.3.4. This
cell must alone be capable to resist the applied shear force. V.- The compression failure of concrete in
the band 12341 (Fig. 10.3.4) is considered to completely relieve the stress from the inclined strip 12561.
If the applied shear force V' is kept constant, the stress-in-thé cell must redistribute such that all of the
compression force in the inclined strutis carried by the remaining strips, shaded in Fig. 10.3.4. After that,
all of the complementary energy in concrete inthe cell is contained in the shaded strips. According to
BaZant (1996b), the eneigy density is given by the shaded area in Fig. 10.3.6, and so the complementary
energy density may be expressed as U = (52/2Ec‘) V inwhich’V = b(Dcosf — csinf)D/sin§ =
volume of the shaded strips (Fig. 10.3.4), ¢, = F,/b(D cos 8 — csin @) = average normal stress in the
direction of the strut, and F, = V/sin8 = v,bD/sin§ = compression force transmitied by the strut.
This yields for the complementary energy, after the stress redistribution at constant shear force V, the
expression: . )

ur = (2D oD 10.3.22
¢ 7 \sind/ 2E.(Dcosd— csinf)sind - (10322)

Accordihg to (2.1.21), the"energy release rate is obtained by differentiation of the complementary energy
at constant load (or constant shear force V): ; : s

_1{(%{:] o wD?
b e}y 2E.sin’0(Dcosd — csinf)?

This must be equal to the energy dissipation rakte,bwhich is given by the following equations, same as

g

(’10.3'.23)
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Figure 10.3.6 Compression stress-strain diagram of concrete with unloading after peak stress and area repre-
senting the strain energy release.
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There is now one difference from the previous approach. In (10.3.18), the energy relcase rate was
constant, while in (10.3.23) it increases with ¢. This difference should not surprise since both solutions
are approximate. In the case of variable G, which is a typical case in fracture mechanics, the crack length
at maximum load, that is, at a loss of stability, need not be considered as empirical, as done in our previous
calculation based on the strain energy change, but can be calculated from the stability criterion. It is well
known that, at the limit of stability, the curve of energy release rate at constant load must be tangent to
the R-curve (see Section 5.6.3):

R = S]le, h= (10.3.24)

0G dR
e T de
(This stability criterion could not be applied to the previous case with (10.3.18), because in that case, due

to the approximations made, we had 8G/Jc = 0 and-thus ¢ was indeterminate.) Because G = R, an
equivalent condition is

(10.3.25)

106 1dR

Gdc R dc
which is more convenient. We may now substitute here the expressions in (10.3.23) and (10.3.24), and
carry out the differentiations. This leads to a quadratic equation for ¢/ D, whose only real solution is

[# 311)0 8d
- = — | =1 - — [’ 10.3.27
P 2 ( +\/1-|9w0cot> ( )

This represents a theoretical expression for the length of the crack band at maximum load (i.e., at stability
loss).

It may now be observed that ¢/ D tends to zero as the size D — oco. In that limiting case, the stress
relief region would become an infinitely narrow strip, which would not be a realistic model. Therefore,
(10.3:27) is meaningful only for sufficiently small sizes. For this reason, and for the sake of simplicity,
we consider the second term under the square root in (10.3.27) to be small compared to 1. Because
V1+2x = 14z whenz < 1, (10.3.27) for small D yields the approximation:

(10.3.26)

¢ cotd
— = e 10.3.28
D 3 ( )

Substituting this into the fracture propagation criterion G = R, along with (10.3.23) and (10.3.24), we
obtain an equation whose solution furnishes the simple result:

DA\~
Uy = vy <1 + E)) (10.3.29)

in which we have introduced the notations:

Do = 3wg tan 8 (10.3.30)
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Figure 10.3.7 (a) Stress redistribution zones foriinitial diagonal shear cracks. (b) Localization of the openings
of diagonal cracks into one major diagonal crack in a-beam with stirrups. (c) Tensile stress-displacement
diagram for the opening of a cobesive crack. (d) Moht circle of strains. (¢) Localization of openings of diagonal
cracks into one major crack in a beam without stirrups.-(f) Mohr circle of stresses.

[he . ..
vy = K, TTeowe sxkn29\/cot9 (10.3.31)

The result we have obtained has the same formras (10.3:19), although the expressions for the size effect
constants Dy and v, are partly different. The differences reveal the degrees of uncertainty caused by the
simplifications of analysis we made. The comparison-of (10:3.19) and (10.3.29) indicates that the general
form of the size effect we obtained ought to be tealistic although the coefficients Dg and vp cannot be
fully predicted by the present theory but must be corroborated on the basis of experiments.

10.3.5  Size Effect on Nominal Stress at Cracking 'Load

It has been suggested that the size effect might not be of concern because the current ACI Code (ACI
Committee 318, 1992) and other codes are intended to provide safety against the cracking load at which
large diagonal cracks form, rather than against the collapse load, which is considerably higher. However,
the nominal stress corresponding to the cracking load also exhibits size effect. There are two-possibilities
to define the cracking load.

Load Causing Cracks of Given Relative Depth

One possibility is to define the cracking load as the load that produces initial diagonal shear cracks of a
depth D; representing a given percentage of bearn'depth D;i.e., such that the ratio D; /D isagivenconstant
(Fig. 10.3.72), say 0.5. We.imagine an array of the initial ctacks, as shown in Fig. 10.3.7a. The formation
of each initial crack causes stress redistribution in triangular zones 1321 and 1341, shaded in Fig. 10.3.7a.
(Incontrast to Fig. 10.3.4, the stress relief zones aré not strips, nor clongated triangles, because the material
is not orthotropically damaged before the initial cracks form:) For the sake of simplicity, these zones may
be assumed to consist of triangles with angles roughly f =45°, each two triangles making a square. The
shape of these zones and the length of the initial cracks obviously determines their spacing.

Before the initial diagonal cracks form, the vertical stress in'the beam is 0, and so the stirrups have
no stress, while shear force V' is resisted by shear stresses in concrete taken approximately as v =
V/bd. The complementary energy initially contained in the shaded square cell in Fig. 103.7ais Uy =
(022G )b(c; cos B) (s sinb) = w2 (1+1)bc} sin 0 cos 6/ Ee, where G = E¢/2(1+v) = elastic shear
modulus of concrete, v = Poissonratio (v 72 0.18), and ¢; s defined inFig. 10.3.7a. Afterthe initial cracks
form, the diagonal tensile stress in the shaded square zone is reduced to 0 and the applied shear stress v is

Fracturing Truss Model for Shear Failure of Beams 347

then cmied by truss action in the cell, i.e., by tensile stress oy, in the vertical stirrups, given by (10.3.15)
and by diagonal compressive stress o, given by (10.3.14). So the complementary energy contained. i;l the’
celzl after the initial cracks form is approximately calculated as U = (02 /2E.)b(c; sin 8)(c; cos §) +
(fT‘v/?.‘E.S)A‘U(C%/S) sinf@cos 8, where 0, = vbstanb/A,, 0. = —v/sinfcosf. For the sake of
simplicity, we assume 6 = 43°. The complementary energy change per crack at constant V is AU* =
Uy — U, which yields N

: be2v? (1 —v bs E
Ay =24 : =L
E, < 7 4nAv> : "= E, (10.3.32)

Consider now the final infinitesimal crack length increment §¢; by which the crack size ¢; is reached
(the shaded square zone in Fig. 10.3.7a grows with ¢;, and at the end of this increment, it Z[youches the
square zone corresponding to the adjacent crack). During this increment, the change of complementary
energy is [O(AU*)/Bc;])6c;. This must be equal to the energy consumed and dissipated by the crack
which is bRéc;; R is the crack resistance, which represents the critical energy release rate required for7

crack g.rowth. In general, R depends on ¢;, representing an R-curve behavior. This dependence may be
approximately described as -

Ci
7 co+ ¢
where ¢ is a positive constant. For large enough ¢;, R = Gy = fracture energy of the material. The
balance of energy during the crack length increment requires that ‘

B(AU)

R=G (10.3.33)

Subs}ituting (10.3.32) here, we obtain an equation whose solution yields, for the size effect on the applied
nominal shear siress v, at initial cracking, the following equation:

Cop T2
Ver = Verg | 1 + Do) (10.3,35)
in which the following constants have been introduced:
2
D E.G s 140\
Do = co— o= | 22 —
0 coCi, Vero p <2+2nAv 5 ) (10.3.36)

Note that the ratio D /c; is assumed to be a given constant by which the cracking load is defined. Equation
(10.3.35) Ashows that the applied nominal shear stress at cracking follows again BaZant’s size effect law.
As a special case, this equation applies to a beam without stirrups (A4, = 0).

Load Causing Cracks of Given Opening Width

Another possibility is-to define the cracking load as the load that produces cracks of a given critical width
wep. Consider first the beams with stirrups. - Under a certain load, a number of parallei diagonal cracks
may initiate. The cracks are cohesive. This means that crack-bridging stresses are transmitted across the
cracks (due to aggregate pullout and other phenomena). Reduction of the crack-bridging stress to zero
re.quires a considerable opening displacement of the crack, as is clear from the typical stress-displacement
diagram used in the cohesive (fictitious) crack model; see Chapter 7. Furthermore, it is known that when
many parallel cracks form, only one of them may open widely, while the others unload and close. In fact,
such a localization of crack openings into one among many parallel cracks is a necessity unless there is
enough reinforcement to ensure a stiffening rather than softening behavior (see Chapter 8; also Chapter
12 in BaZant and Cedolin 1991). Thus, unless the stirrups are extremely strong, the situation as shown in
Fig. 10.3.7b must be expected. ) .

Since the reduction of the crack-bridging stress to zero requires a very large opening, we consider that
the stress is reduced only to a certain small but finite fraction k; of the tensile strength f{ of concrete.
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Consider now the relative displacement between points 5 and 6 at the bottom and top of the beam, lying
on a line normal to the cracks after one large crack formis.” This displacement may be approximately
expressed as Auy = (D/ cos 0)(k; f{/Ee) + Wer,in which: D/cosf is the length of the line segment
56, and we, is a critical crack opening displacement at which the crack bridging stress is reduced from
fi to ky f{ (Fig. 10.3.7c). Dividing this by the length of segment 56, we obtain the average normal strain
in the direction orthogonal to the diagonal cracks: :

& = Aup o kf] wcrcosa_
e = DJcosé ~ E. D

Displacement Aw, or strain &7, must be compatible with the overall deformation of the truss. Imag-
ining the nodes of the truss to be attached to a homogeneously deforming continuum, this condition
means that strain &y, must be tensorially compatible with the normal strains &, in the inclined struts
and £, in the vertical stirrups, as well as with the principal direction angle #. This strain compatibility
condition may be easily deduced from the Mohr ¢ircle in Fig. 10.3.7d. Noting that 14 = (¢, —&.) cot 4,
R =05 =01 = 14/sin20 = (&, — &) cotf/sin20,-&r. = e, + 2R, we obtain the following
expression for the average strain in the direction orthogonal to the diagonal cracks:

Ey —Ec iy

& =g+ e m —E.cot?d ) (10.3.38)
In terms of the stresses, €, = 0,/ E;, £, = o¢/ Eey in'which Ey = elastic modulus of steel and E, =
secant modulus for the compression strut at the moment the diagonal cracks form, which is less than the
initial elastic modulus but larger than the ‘secant modulus for the peak stress point of the compression
stress-strain diagram. Here the stresses may be expressed from the equilibrium conditions of the truss:
Oy = Verspbtan8/A, , o, = —2v,,/sin26, where A, = cross section area of one stirrup, and
Ver = Ver/bD = nominal stress corresponding 1o the shear force at the moment of formation of large
diagonal cracks. Substituting these expressions intd (10.3.38), we obtain: :

=2 (b ctON : ©(103.39
1= 26 \AE, T g ) Ver - (103.59)

Setting this expression equal to (10.3.37), wé obtain an equation for v,,.; the solution of which furiiishes
. the result: ‘ i -

' Wer

Ver = Voo +p (10.3.40)
D

Here we introduced the notations:
)
. Syb i cot’ ky 100
vo =sin@cos? § | LT Vepy = ot er, 103.
0 (AvEs Ezec ) y oo E,cos0 ( 0.3 41)

Equation (10.3.40) describes a size effect which is an altemative to (10.3.35). The asymptotic constant
value v, exists because we assume. that the critical erack opening we, corresponds to nonzero crack
bridging stress k; f; if this stress were neglected, we would obtain ve, = 0. o '

Consider now a beam without stirrups. This problem is more complicated because there is no truss
model that could give the value of the average strain along the line 23 in Fig. 10.3.7c. Other simplifications
are, therefore, needed to obtain a simple result, - We will assume that the normal strains along the line
segment 23 in Fig. 10.3.7¢ may be approximatéd according to the beam theory. The shear stress in the
vertical plane is distributed parabolically, and so, -at poirit-1 at -mid depth of the beam (neutral axis), it
has the value 77 = 1.5v,.. From the Mohr ¢ircle in Fig.10.3.7f, we then obtain the normal stress o in
the direction 23 at point 1 and the corresponding strain:. €] = 1.5v,, 5in20/E,. The normal strain in
the direction 23 may also be assumed distributed parabolically, in which case the average normal strain
along this line is & = v, sin20/E,. Multiplying this by the lengthof segment 23, we obtain the relative
displacement between points 2 and 3 in the direction 23: :

' D D - )
Augy = & —— = " sin 20—
y23 S o z, sin 200056 ~ (10342)

©(10.337)
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At the same time, in analogy to (10.3.37):
D kfl
Aty = +Jft
cosf E.
Equating the last two expressions, we obtain the same equation as (10.3.41), that is, Ve = Vo +
vg(we/ DY), in which we now make the notations:
— Zktftl Un = Ecwcr
* 7 3sin28’ ° 3sin .

+ Wey (10.3.43)

(10.3.44)

10.3.6 Conclusions

L. The fracture modification (BaZant 1996b) of the classical widely used truss model (or the strut-
and-tie model) for the shear failure of reinforced concrete beams describes the energy release and
localization of damage into a band of compression splitting cracks (or a compression-shear crack)
within a portion of the compressed concrete strut.

2. If the analysis of the maximum load based on the truss model is valid (and if the stirrups are de-
signed sufficiently strong), the concrete strut must undergo compression softening (with progressive
fracture) during the portion of loading history in which the maximum load is reached.

3. Analysis of the energy release into the crack band shows that a size effect on the nominal strength
at shear failure of a reinforced concrete beam must occur and that it should approximately follow
BaZant’s size effect law. Converscly, the fracture behavior of the truss model (strut-and-tie modet),
particularly the damage localization with energy release, provides an explanation of the size effect
widely observed in many tests as shown in the previous section.

4. The applied nominal shear stress that causes the initial large diagonal cracks also exhibits a size
effect. The law of this size effect depends on how the large diagonal cracks are defined.

" 5. The foregoing size effect formulae have not yet been calibrated and verified by the available test
results for beams. The expressions for the coefficients in these formulas need to be studied further
in order to develop a design procedure incorporating the size effect.

10.4 Reinforced Beams in Flexure and Minimum Reinforcement

In this section, we examine with some detail the existing approaches to the failure of beams in bending.
In general, it is accepted that strongly reinforced beams that fail by steel yielding are mostly fracture-
insensitive. -So, structures of this type have not been much investigated from the viewpoint of fracture
mechanics. However, there are situations in which fracture plays a role; two extreme cases have been
investigated by various authors: (1) failure of concrete in compression for normally reinforced concrete,
and (2) failure of lightly reinforced beams.

The first type of failure, which was investigated by Hillerborg (1990), will be discussed in Section
10.5.12, mainly to show that even if normally reinforced beams are not sensitive to fracture in tension,
they do show size effect due to fracture in compression. Investigations on the second case tremendously
expanded in recent years. They will be discussed now.

10.4.1 Lightly Reinforced Beams: Overview

The question of minimum reinforcement calls for answering two problems: (1) stability of a system
of interacting cracks, which ensures that the cracks will remain densely spaced, and (2) avoidance of
snapback in bending at a cross section with only one crack. The first problem controls the spacing of
bending cracks in beams which in turn controls their width. A certain minimum reinforcement is required
to prevent a large crack spacing, causing a large crack opening. This problem is important for serviceability
under normal loads and small overloads. The second problem, which is important for preventing sudden
catastrophic failure without warning, will be discussed now.
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In recent years, the analysis of lightly reinforced beams and of minimum reinforcement received
considerable attention. This is probably due'to the widespread feeling that this is a problem that can be
handled with relative ease using fracture mechanics. In particular, lightly reinforced beams in three-point
bending fail by a single crack across the central cross section, as opposed to normally reinforced beams
in which multiple or distributed cracking occurs prior to collapse. '

Before reviewing the various theoretical approaches to this problem, let us describe the main empir-
ical facts. Figs. 10.4.1a~c show load-displacement curves measured for various reinforcement ratios.
Fig. 10.4.1a shows the results by Bosco, Carpinteri and Debernardi (1990b), for concrete reinforced with
standard ribbed steel. Fig. 10.4.1b shows some results reported by Hededal and Kroon (1991) on a similar
material; note that in these tests, the beams had a short notch =~5% of beam depth-— on the tension side
of the beam, which explains the sharper peak. Fig. 10.4.1¢ shows very recent results of Planas, Ruiz and
Elices (1995) for lightly reinforced beams made of microconcrete.  Although the materials and the test
arrangements were quite different, the results are clearly similar.

From their tests and the theoretical analysis to be described later (Section 10.4.4), Ruiz, Planas and
Elices (1993, 1996) suggested that for steel with low Strain hardening, the load-deflection curve can
generally be sketched as shown in Fig. 10.4.1d. Alinearportion OL is followed by a nonlinear zone up to
the peak LM after which a U-shaped portion M N P follows; ending at point P at which the reinforcement
yields (if the reinforcement is elastic-perfectly plastic). This is followed by a relatively long tail PT" with
mild softening which theoretically has no end (for ideal steely but in practice ends by steel necking and
fracture. Since the steel never follows exactly anideal plastic behavior with a sharp transition from elastic
to plastic, the actual curve may look closer tothe dashed curve N P'T' which rounds the cornerat P due
to strain-hardening.

In an ideal situation (no internal stresses due to shrinkage, no thermql gradients, nor chemical reactions)
the linear limit depends only on the tensile strength of concrete, with ok & 7 f{ (we do not care here about
the 5% difference due to the concentrated load that was discussed in Section 9.3 with reference to the
rupture modulus). After that limit, a fracture zone'starts to grow towards the reinforcement across the
cover, and the load-displacement curve for similar unreinforced beams is approximately followed (dashed
line). When the fracture zone approaches or reaches the steel, two phenomena occur simultaneously: (1)
the fracture zone is sewed up by the reinforcément,-which is still elastic thus requiring an extra Joad to
continue cracking; and (2) steel pullout and slip takes place. Therefore, the peak and near postpeak in the
load-displacement curve and its neighborhood is controlled by three factors: (a) The steel ratio; (b) the
bond-slip properties; and {c) the steel cover.

The influence of the steel ratio on the peak load was alréady ilustratéd in Figs. 10.4.1a—c. The influence
of the bond is illustrated in Fig. 10.4.1¢ which shows the results of Planas, Ruiz and Elices (1995) for a
fixed stee) ratio and for two different types of reinforcement: ‘tibbed bars with strong bond, and smooth
bars with weak bond. It is clear that the bond strength modifies substantially thic response. . Finally, the
influence of the cover is not so evident and little experimental support is available. However, that the cover
must play a role can be inferred by the following reasoning. If the cover is large enough, the specimen
load will exhibit a peak before the fracture zone reaches the reinforcement; then, after some load decrease,
the growing fracture zone will reach the reinforcement and will be arrested, thus engendering hardening

followed by a second peak and further softening:: Therefore, the cover must influence the response.-

Indeed, Ruiz and Planas (1995) have detected, both experimentally and theorctically, the existence of the
double peak, as shown in Fig. 10.4.1f. Certainly there also must be an indirect effcct of the cover thickness
and bar spacing because these variables are known to modify the bond strength, but this'is a secondary
influence in the usual analysis.

Several models have been proposed to desctibe the foregoing results; they can be classmed as pertaining
to three wide groups: (1) models that make use of LEFM as the basic tool; (2) models that use a simplified
smeared cohesive cracks; and (3) models that use cohesive cracks. Iii the following, we describe the mean
features of these three groups of models.

' 1042 Models Based on LEFM

All the LEFM models are rooted in the model first proposéd by Carpinteri (1981, 1984; also 1986, Sec.
6.2). Figs. 10.4.2a—c show the basic superposition in Carpinteri’s approach: the reinforced beam with a
crack of length @ subjected to bending (Fig. 10.4.2a) is approximated by a beam subjected to the bending
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Figure 10.4.1 Influence of steel ratio on the load-displacement curves: (a) data from Bosco, Carpinteri and
Debernardi (1990b); (b) data from Hededal and Kroon (1991); (c) data from Planas, Ruiz and Elices (1995) for
microconcrete. (d) General trend of the load-displacement curve according to Ruiz, Planas and Elices (see the
text for details). (e) Influence of bond on the response (after Planas, Ruiz and Elices 1995). (d) Experimental
double peaks for a relatively thick cover (data from Ruiz and Planas 1995).




352 i Brittleness and Size Effect in Structural Design

(a) () L ©
ol

M
T o (M) = (M| 4@ ~ Q»
__l_.__JLl_T.‘ FS F: F: S F:

Figure 10.4.2 Carpinteri’s LEFM approximation,

moment and to the steel force applied Iemorely from the crack plane (Fig. 10.4.2b). Next, the steel action
is decomposed in a standard way into a bending moment and a centric force (Fig. 10.4.2¢).
With this decomposition, we can casily write the stress intensity factor as:

6M'

K =
1= 9p7

\/_I»M(a) ls)\/Bkg(a) s e %5 M =M - F, <§ - cs> (10.4.1)
where kps(cv) and ko (c) are the shape function for pure beriding and for a uniform remote tension,
respectively, and ¢; is the steel cover (see Fig.'10:4.2). - An approximate, but accurate, expression for
k(e is given, for example, by (3.1.1) for /D= 00; an expression for k4 (ct) can be found in most
stress intensity factor manuals (e.g.; Tada, Paris and Irwin 1985).

Carpinteri also calculated the additional rotation caused by to the crack 6, according to the method
described in Section 5.5.2 with Py = M, 8, =u1; and Py = F, with the result

6M' F,
0 = T omm(@) - ElbDvMa(a) M =M-FD (5 - n/> (10.4.2)

where v ='c, /D is the relative cover thickness and

v (@) = 12/ B3 (oYde! ; upgla) = 12/ knr(aVks (o Ydo! (10.4.3)
o Jo

Carpinteri assumed that the steel behavior was élastic-perfectly plastic, and that the crack was closed
- (8. =.0) while the steel remained elastic.” Therefore; the crack growth takes place only when the steel
yields and, simultaneously, K; = K .. Withthese conditions; it is easy to obtain the parametric equations
of the moment-rotation curves (with parameter ). Indeed, setting F = pbDf, v (where p is the steel
ratio and f,, the steel yield stress) and K = K7 in'the foregoing equations, the solutions can be written

as ;
O’N\/ﬁ 1 ( ka ) N :
= {326y F = N, 1044
Kre ks i kw) " , ( )
/ ; o
8.E'D _ Uy ksvgrar — knmvms N, (10.4.5)
K. knr kur

where, as "tlwa s, On = 6M /bD?, and NNy, is Carpinteri’s brittleness number for reinforced ‘beams in
y P

bending defined as .
D (K )2 '
Ny = — = ( 10.4.6
P ep P fy ( )

Here we have introduced the length £, to emphasize the similitide of this brittleness number to those
based on Irwin’s or Hillerborg’s characteristic size: the only change is to replace the tensile strength of
concrete by the tensile strength of the reinforcement fy.

One of the limitations of this model is that, due to the smphﬁcanons involved in its derivation, the
crack cannot grow while the stecl remains elastic and does not slip (in reality, it must slip). This limitation

was removed, using very different methods; by Baluch, Azad and Ashmawi (1992) and by Bosco and: .

Carpinteri (1992).
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Figure 10.4.3 Model of Baluch, Azad and Ashmawi (1992): (a) stress-strain curve for concrete; (b) strain
distribution; (c) stress distribution; (d) comparison of experimental and theoretical curves of load vs. crack
length for lightly reinforced beams with a notch.

The model of Baluch, Azad and Ashmawi keeps Carpinteri’s solution after steel yielding, but relaxes
the assumption that the crack remains closed while the steel is elastic. In the elastic regime for steel, the
model retains the stress intensity equation (10.4. 1) and the condition K; = K., which can be rewritten
as

sz\/_ kar(ar) — zi) /5 [(3 —6—5) k() +ka(a)} (10.4.7)

which provides one equation with two unknowns, namely, M and F, (& is given in this context). To
determine Fy, Baluchet al. introduced a classical analysis based on a stress-strain formulation with the
following assumptions: (1) the stress-strain curve is as depicted in Fig. 10.4.3a, parabolic in compression
and linear in tension down to the failure stress f, which is taken to coincide with the modulus of rupture
rather than with the tensile strength; (2) the softening in tension is linear, as depicted by the dotted line in
Fig. 10.4.3a, but the softening slope depends on the geometry as indicated later; (3) the strain distribution
is linear (Fig. 10.4.3b); (4) the fracture process zone is represented by a lincar distribution of stress
which is zero at the crack tip as shown in Fig. 10.4.3¢c. Note that the essential difference with respect to
other formulations is that here the softening curve for concrete in tension is nof related to the strain in a
predefined way; rather, the form of the spatial distribution of stress is postulated. With these hypotheses,
and given the stress-strain curve of the steel, it is possible to determine a relationship between Fg and M.
For elastic behavior of the steel, the strain distribution is obtained from Fig. 10.4.3b:

_ Az
T AE, D—c¢s—x

where A, is the steel cross section and E its elastic modulus; z is the depth of the neutral axis. From
this, the stress distribution can be determined as sketched in Fig. 10.4.3¢. Then, the equilibrium of forces
provides an equation with the two unknowns Fy and z, and the equilibrium of moments a further equation
with the three unknowns Fy, z, and M. Complementing these two equations with (10.4.7), we get a
system that determines the three aforementioned unknowns. This system must be solved numerically.
Baluch, Azad and Ashmawi (1992) use two iteration loops: given a, they assume a value for F and solve
iteratively for z from the condition of equilibrium of forces (inner iteration loop); then they compute M
from the equilibrium of moments and from (10.4.7); if the two values coincide, this is the solution for the
given crack depth; if not, they start over with a new value of F (outer iteration loop).

Baluch, Azad and Ashmawi (1992) checked their model by comparing the load-crack length curves for

Ko =

(10.4.8)

" two lightly reinforced notched beams tested in three-point bending (the determination of load—displacg:ment
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Figure 10.4.4 LEFM app‘réximation of Bosco and Carpinteri (1992).
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or moment-rotation curves were not included as part of the formulation). Fig. 10.4.3d shows the exper-

imental results and the theoretical predictions (the dashed curves correspond to Carpinteri’s model; note
that the prediction of both models coincide after the yielding of steel). Note also that, much like what
we indicated for the load-displacement curves in Fig 10.4.1c, the theory predicts a sharp change of slope
upon steel yielding, while the experiments show a rounded transition.

Bosco and Carpinteri (1992) adopted an apprdach radically different from the one just discussed. They
modified the initial Carpinteri’s model by letting the force of the reinforcement act on the crack faces
rater than remotely from the crack plane; as shown'in Figs. 10.4.4a-b. However, the slip of reinforcement
which must occur near the crack faces was neglected (even though elasticity indicates infinite stress at the
point of intersection of the steel bar with the crack face). With this, the expression for the stress intensity
factor reads

oM F X _a G
szb—D—Z\/ﬁkM(a)—ﬁj\/l—)kp(a,v), a=5. Y=L (10.4.9)

where kps(ar) is the same as in Eq. (10.4.1), and ki (0,7) is the shape factor for a pair of forces acting
~ on the faces of the crack; a closed form expression for this shape factor can be found in Tada, Paris and
Irwin (1985). ’ ‘ - ‘

Now it is no longer necessary to assume that the crack is closed everywhere while the steel is elastic;
it is enough to assume that the crack is closed at the:point where the reinforcement crosses it. Allowance
for bond slip could also be made; however, Bosco and Carpinteri did not consider this possibility. The
method in Section 5.5.2 is used to determine expressions for the rotation and the crack opening at the
reinforcement level with Py = M, u; = 0, and Py = —F;up = wy, where wy is the crack opening at
the reinforcement level. The resulting expressions are as follows:

6M R

Oc = ppavim () = grsvar (e ) ' (10.4.10)
M F, )

w = WUMF(O‘:'Y) — =Zvpp(a,7) (10.4.11)

E'b

where vaz s (@) is given by the first of (10.4:3), while vprr (o, v) and vrp (o, 7y) are given by
o i 1e4
’UMF(a)fY) = 12/ kIVI(a,7’Y)kF<aI:’Y) do/ ) vFF(al’Y) = 2/ k%’(alyf)/) ,da, (10'4‘12)
v : ¥

The integration is carried out over the crack portion in excess of cover thickness. This is so because for
shorter cracks the stress intensity factor caused by the point loads is zero, i.e., kp(a, ) = 0 for o < 7.

Assuming that the functions vasar; vy F and V5 have been determined, Egs. (10.4.9)~(10.4.11) com-
pletely solve the problem of crack propagation. Two cases can arise:

Case 1: The steel is still in elastic state. In this situation, we set w,; = 0 in (10.4.11), solve for F
from the resulting equation and substitute it in (10.4.9), simultaneously setting {7 = K7; then we solve
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Figure 10.4.5 Bosco-Carpinteri model: (a) dimensionless load-curvature plot; (b) Massabd’s (1994) fit to
experimental curves by Bosco, Carpinteri and Debernardi (1990b)

the resulting equation for M. Finally, the rotation follows from (10.4.9). The final results are:

onvD VEF
K\Ii_ kyvpp — Skrpumr
posVD = UM E for o, < fy (10.4.13)
K. kyvpr — 6kpunr ‘
QCEI\/B _ 1 6vprpopmm — vZZVIF
K. 6 kyvrp —Okpumr

where the arguments of the shape functions have been dropped for brevity, and o is the stress in the steel.
Note that the right hand sides of these equations are independent of the brittleness number /N, defined in
(10.4.6). 1f the value of o resulting from the foregoing equations exceeds the steel yield stress fy, then
we move to the next case.

Case 2: The steel yields. In this case, we set Iy = bD fy in (10.4.9)~(10.4.11) and solve for M (or
on) and 8, (it might be useful to also check that w, > 0; otherwise, we are in case 1). The resulting
equations then are

UN\[E 1 kr
= —+ LN,
I,(\I/_ kv kae
0 E'VD - vmm  krvmm +vmrky N, for w, >0 (10.4.14)
K. ke kar
Sw, E’ _ L _ kpvp g + 6UFFkMN
KrvVD ka ke ?

The plot of the o () curves in terms of the nondimensional variables X = 8,E'/D/K, and
Y = onv/D/K ], consists of two parts as sketched in Fig. 10.4.5a. The arc M N Pis a part of the fixed
curve LM N P(Q) which is given by (10.4.13); this curve depends only on the relative steel cover -y, but
is independent of the beam size, of the amount and quality of steel, and of the properties of concrete; it
is a pure geometrical property. The arc PT" corresponds to the solution for yielded steel and its shape
is concave with a horizontal asymptote which corresponds to fully broken concrete. This branch. PT'
depends only on the brittleness number IV, as sketched in the figure (and also on the relative cover
thickness which is constant for geometrically similar beams).

In the foregoing equations, the rotation includes only the additional rotation caused by the crack at
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remote cross sections. When dealing with the load-displacement curves, one can either subtract the elastic
displacement from the total displacement to isolate the rotation due to the crack, or conversely, one can add
the elastic displacement (analyticaily computed) to the concentrated rotation determined by the foregoing
theory. This last approach was used in a recent work by Massabd (1994) to analyze the experimental
results of Bosco, Carpinteri and Debernardi (1990a;b).

Massabd (1994) determined the values of vpfar, vasp, and ver for each v and vy by numerically
performing the integrations in (10.4.3) and (10.4.:12). The integration for vp p deserves further comments
because as written in (10.4.12), its value is infinite. Thisis so because, for simplicity, the load was assumed

to be applied at a single point, which always gives a logarithmic singularity at the load-point. In reality, -

the action of the reinforcement is distributed over a'certain area which is of the order of the diameter
of the bars. This problem can be easily handled by assuming, for example, that the force is uniformly
distributed and using the general formulas to determiné the crack opening profile as given in Section 5.2.
But this requires a double integration which greatly complicates the solution of the problem: Therefore,
Massabd (1994) proposed to take this effect inito account by performing the integral over an interval that
does not include the load-point, as follows:

23
UFF(O‘>7) =2 k%’(a’77) do’ (10'4'15)

e g .
Here, for a single layer of steel bars, € is a small value proportional (but not identical) to the ratio Dy /D,
with Dy, = diameter of the bars. :

Fig. 10.4.5b shows the kind of agreement with the experitents attained with the model of Bosco
and Carpinteri. Note that the postpeak behavior is reasonably well predicted, but the model predicts a
very large initial strength (for short cracks). This is a general limitation for the LEFM-based models
because the stress intensity factor is always zero for uncracked specimens, implying that, in strict LEFM,
a crack can never initiate in an unnotched specimen.- Therefore, all these models must be interpreted as
approximately describing the evolution of the fracture after the ¢rack has formed; the crack initiation itself
can be described only by recourse to nonlinear fracture mechanics, as in the models to be described next.

10.4.3 Simplified Cohesive Crack Models

Inthe literature, there are two slightly different approachesthatuse the cohesive crack model in a simplified
form that avoids finite element computations. One model was put forward by the research group at Aalborg
University (Ulfkjeer, Brincker and Krenk 1990; Ulfkjer et al. 1994) and the other by the group at the
University of New Mexico (Gerstle et al. 1992), ' )

The basic idea is to describe the fictitious crack as a smeated crack of width A as shown in Fig. 10.4.6a.
It is further assumed, based on the hypothesis of plane cross sections remaining plane, that the strain
distribution along the beam depth is linear (Fig. 10.4.6b)." Thén, assuming a linear softening curve,
the stress distribution can be computed as sketched in Fig: 10.4.6¢. The stress-strain curve in tension
is completely ‘determined by the tensile strength f{ and the critical ctack opening w,, as shown in
Fig. 10.4.6d. The stress-strain curve in compression is assumed to be linear all the way to complete
fracture. The essential difference between the two approaches is that Ulfkjeer et al. consider a smeared
band width proportional to the size, h = D, while Gerstleet al. consider a width twice the instantaneous
cohesive crack length (h = 2y, see Fig. 10.4.6). : ' )

Although the analytical approaches vary, the essential steps are the same: (L)write the strain distribution
as a function of the curvature x and the position of the neutral axis z; (2) use the stress-strain curves
for conerete and steel to express the stress distribution and the steel force as a function of % and (this
includes the determination of y); (3) write the equation of equilibrium of forces and solve for z as a
function of x; (4) write the equation of equilibrium of moments; (5) finally, from the three equations
deduced in (2)-(4), solve for y, z, and M for any given k. Obviously, the system of equations depends
on the load level because of the discontinuity in the derivatives of the stress-strain curves for concrete and
steel. :

As pointed out before, the smearing band width assumed i these models is different. Ulfkjzr et al.
assume kb = 0D, with 7 = 0.5. This value of 17'was based on comparisons of the load-displacement
(moment-curvature) diagrams for unreinforced beams predicted by the approximate model and by accurate
finite element computations. Gerstle etal. assuméy priorithat h'= 2y and verify that, for an unreinforced
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Figure 10.4.6 Simplifiéd cohesive crack models. (a) Smearing band. (b) Strain distribution. (c) Stress
distribution. (d) Approximate stress-strain curve. (¢) Experimental and theoretical nominal stress-rotation
curves computed by Ulfkjeret al. (1994). (f) Theoretical nominal stress-cohesive crack length curves computed
according to the model by-Gerstle et al. (1992).

beam, the moment vs. cohesive crack length curve predicted by their model is reasonably close to the
curve obtained by finite elements. However, this verificdtion has been done only for the ascending part
of the curve and only for one size. Further validation is necessary.

Secondary differences between these models are that, in the formulation of Ulfkjzer et al., the steel cover
is arbitrary and the steel is allowed to yield in a perfectly plastic manner, while Gerstle et al. consider
only a vanishing cover thickness to obtain simpler expressions and assume the steel to be always elastic,
as is manifested by the increasing load value at the tail of the curves in Fig 10.4.6f.

10.4.4 Models Based on Cohesive Cracks

The cohesive crack model has been used by several investigators to analyze lightty reinforced beams in
three-point bending. All the analyses up to now simplify the problem by assuming that a single cohesive
crack forms at the central cross section while the concrete in the bulk behaves elastically and the steel
is elastic-perfectly plastic. The various analyses differ in the computational method and in the way they
incorporate the effect of the reinforcement. ’
Hawkins and Hjorsetet (1992) use a commercial finite element code to simulate the experiment of
Bosco, Carpinteri and Debernardi (1990b). They use the method described in Section 7.2.3 in which the
cohesive zone is modeled by an array of elastic-softening springs. Although they do not explicitly consider
bond slip, they made two kinds of analysis: one standard (called P-MAX) in which perfect adherence was
assumed, and another (catled P-MIN) in which the cross sections were forced to remain plane. In'the first
case, a large strain is generated in the reinforcement as soon as the crack tip reaches it, which causes the
steel to yield. In the second case, the strain is smeared over the element width, which is similar (although
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Figure 10.4.7 Numerical load~displacemem curves computed by Hawkins and Hjorsetet (1992) using a co-
hesive crack model; P-MAX curve corresponds to perfect bond; P-MIN to plane cross sections.
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Figure 10.4.8 Simple—pullout model (a) and application to-the reinforced beam (b) (from Ruiz 1996).

“not identical) to having a slip length equal to the element width. Fig. 10.4.7 shows the results of the
computations together with the experimental results of Bosco, Carpinteri and Debernardi (1990b). Note
that the P-MAX and P-MIN predictions differ appreciably, especially as far as the peak load is concerned;
this indicates that the bond must play an important role in defining the minimum reinforcement. '

Hededal and Kroon (1991) and Ruiz et al. (Ruiz, Planas and Elices 1993, 1996; Ruiz and Planas 1994, ‘
1995; Planas, Ruiz and Elices 1995; Ruiz 1996) usé very similar computational procedures, traceable

to Petersson’s influence matrix method (see Section 7.4). The two groups consider bond slip in a very
similar fashion, but use a different way to implement it numerically. They both consider the same classical
load-displacement curve which is obtained for pullout from a rigid half-space, depicted in Fig. 10.4.8a.
They also assume that, in the actual test, the steel displacement u, is given by half the crack opening at
the reinforcement, w, (Fig. 10.4.8b); therefore, the force-crack opening displacement is given by

mT f w, = 2t :
F, = TePs AstisWs 01‘7"-’s<wy”psEs,rC (10.4.16)

Asfy forwy <y

where Fy is the resultant tensile force in the steel at the central cross section, 7. is the bond shear strength
(rigid-plastic behavior assumed), p, and A; are the perimeter and the area of the reinforcement, and Es,
and fy are the elastic modulus and the yield limit of steel (clastic-perfectly plastic behavior is assumed).
Hededal and Kroon (1991) introduce the action of the steel on the concrete as the force Fs concentrated
at the surface of the cohesive crack and treat it as a cohesive force with a load-crack opening curve as
deduced from (10.4.16). Their theoretical predictions compare quite realistically with their experimental
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Figure 10.4.9 Comparison of the numerical and experimental results of Hededal and Kroon (1991).
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Figure 10.4.10 Approximations analyzed by Planas, Ruiz and Elices (1995): (a) concentrated forces on the

crack faces; (b) concentrated forces at the center of gravity of the bond stresses; (c) distributed bond stresses.
(From Planas, Ruiz and Elices 1995.)

results as shown in Fig. 10.4.9. In making the predictions, Hededal and Kroon use material parameters
determined from independent experiments, except for the bond strength which they select in each case to
give a good fit of the postpeak values. The softening curve for concrete is assumed to be bilinear and is
determined from tests on notched plain concrete specimens. The steel bars are threaded bars rather than
conventional reinforcing steel bars, The ultimate load and the apparent elastic modulus are determined
from tensile tests. Note that Hededal and Kroon use the product 7¢p; instead of 7, to characterize the
bond strength; 7,p; is the shear force per unit length of reinforcement.

Ruiz and Planas (1994) and Ruiz, Planas and Elices (1993) use a different numerical approach which
incorporales the effect of the reinforcement by means of internal stresses. This allows considering the
steel-coricrete interaction to be located within the concrete rather than at the surface. They analyze the
three options depicted in Fig. 10.4.10a—c. In their first approach, they analyze the case of perfect bond
with the steel-concrete interaction represented by two forces acting on the crack faces (Fig. 10.4.10a;
Ruiz, Planas and Elices 1993; Ruiz 1996).

This analysis reveals that the cohesive crack growth process follows the stages shown inFig. 10.4.11a-e:
in stage (a), the cobesive zone extends through the cover and may go through the first peak if the cover
is thick; then the cohesive crack is pinned by the steel and hardening occurs until, as shown in (b), the
tensile strength is reached at points ahead of the reinforcement; from then on, two separate cracks exist
at both sides of the reinforcement until the yield strength is reached in the steel as shown in (c); then a
softening phase begins, with an open crack extending across the reinforcement as shown in (d).

The analysis confirms Hawkins and Hjorsetet’s (1992) conclusion that perfect adherence implies a very
sharp and high peak. However, it also turns out that this peak depends strongly on the width (diameter)
of the reinforcement or, if the steel force is concentrated at.a node, on the width of the elements used in
the computations. The reason is that, in this approach, the steel force is modeled as a nodal force, which
causes that the computational procedure smears this force roughly over an element width, and thus one
fever deals with a concentrated force but with a distributed force; if the force were really concentrated at a
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Figure 10.4.11  Crack growth process for full bond of reinforcement: (a) The cover cracks; (b) new crack
forms ahead of the reinforcement; (c) steel yields; (d) full crack formed. (Adapted from Ruiz 1996.)
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Figure 10.4.12 Influence of distributing ihe steel force on the crack faces: (a) three possible distributions; (b)
: corresponding load-displacement curves. (After Ruiz 1996.)

point, the compliance would be infinite and the peak would decrease. This effect is shown in Fig. 10.4.12,
where the effect of smearing the force over 1,3, or 5 nodes is shown for equal elements 1/100 of the beam
depth in size (Ruiz 1996). It is clear that the wider the reinforcement, the stiffer the response.

The foregoing problem —the effect of the element size ‘of reinforcement width— appears whenever
the stecl force is concentrated at the crack faces, even if theé bond slip is taken into account. To avoid
introducing the width of the reinforcement s ‘a ‘further variable, Planas, Ruiz and Elices (1995) and
Ruiz (1996) let the steel-concrete interaction occur inside the concrete as shown in Fig. 10.4:10b~c. The
simplest approach uses a concentrated force acting at the ceriter of gravity of the shear stress distribution,
much like in the approach by BaZant and Cedolin (1980); called the effective slip-length model. The
location of the concentrated forces varies with the crack opening at the level of steel as follows:

L, |A.E
L _ ‘_i e - $ 5 .
e = T s (10.4.17)

where L, is the slip length, which is readily obtained from the simple pullout model. :
To solve the numerical problem in a computationally inexpensive way, Ruiz ct al. first write the actual
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Figure 10.4.14 Approximate closed form solution for the internal pair of forces (from Ruiz 1996).

problem (Fig. 10.4.13a) as the superposition of the three elastic cases shown in Figs. 10.4.13b-d. The first
two cases are the classical cases appearing in plain concrete. The third case —introducing crack openings,
but no stresses—1is handled as shown in Figs. 10.4.13e-g which involve the determination of the stresses
engendered on the central cross section in-an uncracked beam: this is an internal stress field which is
then handled in a way similar to thermal or shrinkage stresses (Petersson 1981; Planas and Elices 1992b,
1993b). The only problem is the determination of the stresses in the auxiliary problem in Fig 10.4.13f.
This is approximately solved in closed form as follows (Ruiz and Planas 1994; Ruiz 1996).

The actual problem —Fig. 10.4.14a— is considered as the elastic solution for two concentrated loads
parallel to the surface of an elastic half-space (Fig. 10.4.14b) plus the elastic solution for the beam
subjected to surface tractions canceling those in the previous solution (Fig. 10.4.14¢). The last problem
is approximately solved by replacing it with a mechanically equivalent linear stress distribution at the
cross-section, as sketched in Fig. 10.4.14d-e. The complete stress distribution can thus be obtained in a
closed form from Melan’s (1932) elastic solution for a point load parallel to the surface of the half-space.
The integration of the surface tractions and their moments, required to find the solution in Fig. 10.4.14e,
can be performed analytically (a symbolic mathematical package was used by Ruiz to get the closed form
quadratures; see Ruiz 1996 for details). : - .

The model was further refined by Ruiz (1996) to allow distributed bond stresses to be directly used as
shown in Fig. 10.4.13a. The stress distribution caused by the reinforcement can be obtained in a closed
form by integrating the solution for the concentrated load. This is cumbersome but feasible if one of
the modern symbolic mathematical packages is used. However, detailed comparisons showed that the
differences with respect to the effective slip-length approach are negligible for most practical cases (Ruiz
1996):

This model was successfully used to describe the tests on microconcrete performed by Ruiz et al. as

e
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Figure 10.4.15 Comparison of the experimental (dotted lines) and numerical (full lines) load~displacerpent
curves (from Planas, Ruiz and Elices 1995): (a) influence of the reinforcement ratio; (b~d) influence of the
bond strength on bearns with the same reinforcing ratio but different depth. Note that the bond was determined
from independent pullout tests: no parameter fitting has been done.

illustrated in Fig 10.4.15a (Ruiz and Planas 1995; Planas, Ruiz and Elices 1995; Ruiz 1996). The im.portant
point in this comparison is that all the parameters required to make the predictions were determined by
independent tests, In particular, the bond strength 7 was-determined form pullout tests; much better fits
carn be achieved if the value of 7. is adequately selected for each test. Moreover, the model, conceptually
simple as it is, shows that the problem is governed by four dimensionless parameters. These parameters
are the following:

, D As o 'fy'” n7cPst o a
v Y L w oy = [ LB ;o (10.4.18
D* = PE fy A FIA, ( )

where #; is the characteristic size based on the initial linear softening defined in (1(“).1.10), pis t.hc steel
ratio, f7 is the relative yield strength of steel, i is a dimensionless parameter which characterizes the
bond, and n = E,/E, is the ratio of the elastic moduli of steel and concrete. )

The foregoing model was used to investigate the influence of various parameters on the behavior of
lightly reinforced beams. The most important result is that a closed-form expression has been found for
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the first peak of the load-displacement curve. Since this first peak occurs at the initial stages of cracking,
before much softening take place, the peak load is controlled by the characteristics of the initial straight
portion of the softening curve. Consequently, as discussed in Section 7.2.4, the size effect is controlled
by £y, rather than by £.h; see (7.1.17). Moreover, since the steel remains elastic at this stage, the yield
strength of steel cannot influence the value of this first peak. This means that the nominal stress at the
first peak o v can be written as

‘ D¢
' $
one=[id | 5 5P 1t (10.4.19)
0’4
where ¢ is a dimensionless function and c¢; is the steel cover. Numerical simulations showed that this
function may be, in a crude approximation, expressed as

ONe = fr4 pfin 6 (1 - —%) P (10.4.20)

where f is the rupture modulus and 9 a factor depending on the beam depth and cover thickness,
approximately given by

S P\ V4
W= <_> ~36122>0 (10.4.21)

where the last inequality defines the range of application of the formula.
Note that the modulus of rupture in the foregoing formulas s itself size-dependent and can be approx-
imated by the formula (9.3.12) due to Planas, Guinea and Elices (1995).

10.4.5 Formulas for Minimum Reinforcement Based on Fracture Mechanics

In most cases, the minimum reinforcement must ensure that-the ultimate (collapse) load (point T" in
Fig. 10.4.1d) be equal to the first peak load (point M in Fig. 10.4.1d). Based on purely experimental
grounds, Bosco and Carpinteri (1992) proposed a formula which correlates the brittleness number Npin
at which the-minimum reinforcement condition is met, to the compressive strength of the concrete, f:

N,

Pmin

—01+0238 ) 4 =100 MPa (10.4.22)
[

From this and the definition (10.4.6), we can solve for py;, and get

I(Ic fc
in = 0.1+0.23=
Pmin fy\/—D—( o

Note that this formula is purely empirical since the first peak of the load cannot be adequately predicted
with the model of Bosco and Carpinteri (1992).

Baluch, Azad and Ashmawi (1992) proposed the following formula for minimum reinforcement based
on the model described in Section 10.4.2:

) , o1 = 100 MPa (10.4.23)

1.9134 K52
fO9922(1.7 —2.6¢,/D)

Pmin = (10.4.24)
where K. and f,, must be expressed, respectively, in MPa,/m and MPa. Note that the lack of dimensional
consistency indicates that there is a certain degree of empiricism in this equation. (In the original paper,
there is a misprint-in the formula using units of N and mm ——the factor in the numerator should appear
in the denominator; here the standard IS-units are used, and the formula has been checked against the
tabulated values in that paper.) ’ .

Gerstle et al. (1992) pushed the definition of pp,, further by requiring that the load increase mono-
tonically all the time during the test (e.g., curve for pEs/E, = 0.10 in Fig. 10.4.6f). The formula they
proposed is :

1/2

— 0.0900 (10.4.25)

ftD

CwC

s

Prmin = %ﬁ \/0.0081 +0.0148
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Note that this formula, due to the particular definition of the authors, does not depend on the strength of
the reinforcement, but only on its elastic properties. We will see that this formula gives values far larger
than the other models and larger than the currently accepted values in the codes.

Hawkins and Hjorsetet (1992) also proposed a formula for minimum reinforcement based on the
cohesive crack model as well as some concepts derived from Carpinteri’s approach. ‘Their final formula
reads

frD

min = 0.175 =—————=
Pmin fy(D = Cs)

(10.4.26)

where f; is the rupture modulus for an unreinforced beam of the same dimensions as the actual reinforced

beam. According to these authors the modulus of rupture can be computed using a cohesive crack
model with the appropriate softening curve. Thérefore, it is possible to use the equation (9.3.12) to get a
closed-form expression as

, 1 \  fiD Eeun ‘
o= 0.1 = 10.4.
Prin = 0.175¢ (1 sy 2.3D/€1> AD=ey’ T f (104.27)

where { = 1.046 for three-point bending ‘and 1 for four-point bending. v
None of the preceding formulas take irito account the bond strength. Ruiz, Planas and Elices (1996)
and Ruiz (1996) have proposed a formula taking this effect'into account. The formula is based on the
- cohesive crack model, more specifically on the expression (10.4.20) giving the first peak load. The final
plastic collapse load is obtained from ¢lementary considerations of equilibrium of moments as

D
Then, setting oy = 0 Np, solving for p = pym;-and inserting (9.3.12), one gets

ONp = pfy 6 (1 - c—s) (10.4.28)

¢ 14 (0.85+23D/8)"
60 =e/D) g,/ u[(D/0) 7" =361,/

Pain = (10.4.29)

Comparing the aforementioned models is not straightforward because they are based on-different
assumptions and depend on different parameters. ' This' means that the predictions can be similar for
certain conditions and differ for other conditions; no exhaustive comparison has been done to date.
Fig. 10.4.16 shows the dependence on size of the minimum reinforcement for the various models in a
particular case defined as follows:

1. The concrete is assumed to be characterized by ff =4 MPa, f. = 40 MPa, E, = 30 GPa, Gp =
160 N/m (total fracture energy, as determined from the' work-of-fracture test). For Carpinteri’s
and Baluch’s model, it is assumed that Irwin’s relation holds: K7, = /E.Gp = 2.19 MPa./m.
For Gerstle’s formula, linear softening is assumed with w, = w; = 2Gp/f] = 80 um. For
Hawkins’ formula, Petersson’s bilinear softening is‘assumed with wy = Gp/f{ = 48 ym. For
Ruiz’s models, bilinear softening is assumed with wy = Gp/ f/ = 40 pym.

2. The steel is assumed to have E; =210 GPa, f, = 480 MPa.
3. The cover of concrete reinforcement is assumed to be of constant thickness ¢, = 24 mm.

4. For Ruiz’s model, the bond parameter j¢'is taken to be constant. This is achieved by using bars
of the same diameter for all beam sizes. Two values are considered: p = 10 (weak bond,16 mm
diameter bars with 7. = 0.4 f]) and ;2 ' =40 (strong bond, 8 mm diameter bars with 7, = 3 f;).

Fig. 10.4.16a shows the entire set of curves with a vertical logarithmic scale making it cléar that the
formulas of Baluch, Azad and Ashmawi (1992) and of Gerstle et al. (1992) give too large “alues.
Fig. 10.4.16b shows an enlarged plot (with a linear scale)in ‘which soine code specifications have been
included for comparison. From the plots it is evident that, for small beam depths, the models of Bosco and
Carpinteri, Hawkins and Hjorsetet, and Ruiz, Planas and Elices give very similar results, slightly higher
than those specified by ACI 318(92), and higher that the specifications of the Model Code and Eurocode 2.
For medium and large sizes, the model of Bosco and Carpinteri gives values sharply below those of ACI

and the other models, while the formula of Hawkins and Hjotsetet gives values very close to those given
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Figure 10.4.16 Comparison of minimum reinforcement formulas for various models (data from Ruiz 1996).

by the formula of Ruiz et al. in the case of weak bond, both giving values between those in the Model
Code and the ACT Code. For a strong bond, the mode! of Ruiz et al. predicts a minimum reinforcement

that first decreases with the size and then increases, with values between those recommended by the ACI
code and the Spanish Code.

Exercises

10.4 Show that in the plot of Fig. 10.4.5a the position of the asymptotes on the right is given by.Y =
6(1 ~ ) Np, where 1 — y = 1 ~ ¢,/ D is the relative depth of the reinforcement. .

10.5 Derive Eq. (10.4.28) in detail.

105 Other Structures

In this section, we give a brief account of some of the existing results for structures or structural elements
not included in the preceding analysis: torsion of beams, punching of slabs, anchor pullout, bond-slip of
reinforcing bars, beam and ring failure of pipes, concrete dams, footings, pavements, keyed joints, failure
of joints, break-out of boreholes, and compression failure of concrete beams.

10.5.1 Torsional Failure of Beams

Torsion leads to another type of brittle failure of reinforced concrete beams. The classical test data existing
in the literature, which were analyzed by BaZant and Sener (1987), and particularly the data by Humphrey
(1957), Hsu (1968), and McMullen and Daniel (1975), reveal that a size effect exists, but cannot indicate
which equation should describe it because the data were too scattered, the size range was too narrow, and
geometrical similarity was not maintained.

Geometrically similar tests of size range 1:4 were conducted on microconcrete beams with reduced
maximum aggregate size by BaZant, Sener and Prat (1988). The tests were made both on unreinforced
beams and beams reinforced longitudinally. These tests clearly revealed a strong size effect and were
shown to agree well with the size effect law. The results were briefly described in Section 1.5, Fig. 1.5.7
(series J1'and J2). From these tests it appears that the size effect in torsion is very strong, and the behavior
is quite close to the LEFM asymptote. However, the scatter of the limited experimental data is quite large,

and more extensive tests are needed. The scatter is larger for longitudinally reinforced beams, which
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may be attributed to the fact that bond fajlure must accompany -a torsional crack, and bond failure is a
phenomenon of high random scatter. s o

The code formulas for torsion of beams with rectangular cross section are based on the plastic limit
analysis solution, which indicates that the nominal shear strength in torsion (Park and Paula}f 1975) is
vy = T/(epb? D), ap= [L ~ (b/3D))/2, where T = torque, b = length of the shorter side of Fhe
rectangular cross section, :-ID = length of the longer side (depth). Since the small size limit of the size
effect law should coincide with the plastic solution, BaZant, Serier and Prat (1988) proposed the correction
indicated, in general, by Eq. (10.1.13) and showed that itagrees well with the data. Calculations v‘vith the
microplane model by BaZant, OZbolt and Eligehausen (1994) also agree quite well with the experimental
points and the size effect correction.

No test data seem to exist on the size effect in torsional failure of reinforced concrete beams with stirrups.
However, it may be expected that the stirrup effect would be similar to that discussed for diagonal shear,
and that the size effect would disappear beyond a certain critical reinforcement ratio of the stirrups.

Torsion in beams is normally combined with bending, and so the interaction diagram between the
maximum torque and the maximum bending moment:is of considerable interest for design. Hawkins
(1985) examined the test results of Wiss (1971) on diagonal tension cracking combined with torsion and
bending. Using an energy based fracture criterion for failure under combined loading, he calm.llated
the interaction diagram and showed it to be'circular (when the maximum shear force and the maximam
torque are normalized with respect to their values for pure torsion or pure shear). He sugge§teq thx§ was
an argument for applicability of fracture mechanics, pointing out that the strength—baseq criteria yle_lc.l a
straight-line interaction diagram. However, this is niot sufficient proof of fracture mechanics applicability
because the lower-bound plastic limit analysis also gives a circular interaction diagram (g Hodge 1959).

10.5.2 Punching Shear Failure of Slabs

Quasibrittle behavior accompanied by a transitional size effect is also characteristic of the punching shear
failure of reinforced concrete slabs. For the nominal shiear strength in to punching shear, ACI currently
uses the formula R ) :

X [f1
’UZ = k‘]O’l[l + (AzD/b)] g—j N oy =1psi = 6.895 kPa (10.5.1)

in which ki, k, = empirical constants, D = thickness of the slabs, and b = punch diameter (ACI
Committee 318, 1989). This equation was derived by strength analysis based on a modified Coulomb
yield criterion, which exhibits no size effect. Based on a series of displacement-controtled punching shear
tests on geometrically similar two-way reinforced circular slabs of three diffcrent sizes (1:2:4), mz_lde of
concrete of reduced aggregate size, BaZant arid Cao (1987) proposed a size-dependent generalization of
this formula based on (10.1.13):- N

4 DN e (1462 O (1052)
ONu = Oy (1—1—-D~;> w1thal\’,u~(:1flt ( bey (105.
where ¢y f, G2, and Dy are empirical constants. The test results by which this formula was calibrated
are shown in Section 1.5, Fig. 1.5.7, along with the optimum fit by the size effect law (series L1). The
size effect was considerably milder than in the diagonal shear tests, which might be due to the fact that
the largest slab was not sufficiently large: Fig: 1.5.8 shows the load-defiection diagrams measured on t'he
small, medium, and thick plates. This figure illustrates how the postpeak softening is getting steeper w¥th
an increasing size and thus confirms a transition from relatively ductile behavior (the small slab with mild
postpeak slope) to very brittle behavior (the largest slab, with a very steep postpeak drop).

The fact that the size effect should be considered in‘calculating the punching shear strength of slabs was
also confirmed by the study of Broms (1990), which was focused on punching shear under high biaxial

(radial) compressive stresses and suggested a formula of the type v = v9(k/D)'/3. The exponent 1/3, -

according to the present theory, cannot be right for extrapolations to very large sizesy however, in the
middle of the size effect transition, it wotks well.-‘From the test data alone, it is not possible to say what
should be the exact form of the size effect formula. Nevertheless, the presence of the size effect, and thus
inapplicability of plastic limit analysis, is clearly verified by the test results.
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Cryptodome failure of nuclear reactor vessel slab. The failure of thick prestressed concrete nuclear reactor
vessels (primary vessels for gas-cooled reactors which were intensely researched between 1960--1980) is known
to occur through a conical surface similar to the punch failure (called cryptodome), rather than by bending. The
design of these nuclear reactor vessels has been done according to strength criteria, however, it now appears
that, because of the similarity to the punching shear failure, a fracture behavior exhibiting a size effect should
be expected (BaZant 1989b). If nuclear power is revived, this question should be researched further.

10.5.3 Anchor Puallout

The current ACI Code provisions for the pullout failures of bars and anchors are based on plastic limit
analysis (ACI Committee 408, 1979; ACI Committee 349, 1989). However, the size effect is very strong
in this kind of failure, and considerable work has been done in the last decade to increase the understanding
of anchor pullout in terms of fracture mechanics, a topic of considerable interest because it is at the base
of the design of anchors and of the recently introduced nondestructive test method for concrete strength
based on pullout of a headed stud (the Swedish “lok” test).

The ACI Code provision (Sec. 15.8.3) requires that the “anchor bolts and mechanical connections shall
be designed to reach their design strength prior to anchorage failure or failure of surrounding concrete”.
This means the anchor bar must yield before fracture occurs, but this can be ensured only if the load
causing the fracture is correctly predicted. ACI Committee 349 (1989) recommends that “the design
pullout strength of concrete, Py, for any anchorage shall be based on a uniform tensile stress of 4/ f.
acting on an effective stress area whichis defined by the projected area of stress cones radiating toward the
attachment from the bearing edge of the anchors”. This gives the pullout force P, and nominal strength

— fz/: 2 — Pu N fé _ . .
Pu=kon/=2aD?,  oyu= 5 =hkoiy/>5, o1 =1psi=6895kPa  (105.3)
oy D o1

in which k; = empirical constant, f, = standard compression strength of concrete, and D = the -
embedment depth of the anchor bolt. This expression obviously corresponds to plastic limit analysis, the
size effect being ignored. ) . '

A clear confirmation of a strong size effect in the pullout failure of reinforced concrete bars without
anchors was provided by the tests of BaZant and Sener (1988); see Fig. 1.5.6 (series [1). They tested
microconcrete cubes of size ratio 1:2:4. The bar diameter and the embedment length were scaled so as to
maintain geometric similarity. Asis seen from Fig. 1.5.6, in the logarithmic size effect plot, the test results
lie very close to the LEFM asymptote. This reveals an extremely high brittleness number for this type of
failure. Eligehausen and OZbolt (1990) and BaZant, OZbolt and Eligehausen (1994) further showed that
these test results agreed closely with nonlocal finite element solutions using a realistic material model for
concrete (the microplane model). :

Eligehausen and Sawade (1989) proposed a LEFM-based formula for pullout strength. This formula
was written as

P, =21EGrD¥? oroyy = 0.67f! %h ' (10.5.4)

in which the fracture parameters appear explicitly. To avoid the explicit use of fracture parameters ~—
which have not been measured in most of the available test series in the literature, Eligehausen et al.
(1991) proposed the following formula based only on the cube compression strength:

P, = a1/ fec D’ ©(10.5.5)

They evaluated the results of 209 pullout tests of headed anchors carried out at different laboratories. In
all tests, the failure occurred by a conical crack surface. The tests were done on concretes of various
strengths, and, therefore, the measured maximum loads were normalized to the cube compression strength
fee = 25 MPa, by multiplying them with the factor 1/25/ fec. The normalized failure loads are plotted
in Fig. 10.5.1 as a function of the effective embedment depth’ D, together with the fit of Eq. (10.5.5).
From this fit it turns out that a; ~ 15.5 for P, in N, f.. in MPa, and D in mm. The formula is seen to
closely describe the experimental results, which means that the nominal strength almost follows LEFM.
This was confirmed numerically by Eligehausen and OZbolt (1990) using a microplane nonlocal model:
the LEFM formula and BaZant’s size effect law differed less than 6% up to embedment length of 400 mm.
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Figure 10.5.1 - Size effect in the pullout of headed studs (data from Eligehausen et al. 1991).

Apart from the nonlocal microplane model just mentioned, many different appmaches. lmv; beeniuksed
in the last decade to analyze this interesting problem. A’ two-dimiensional LEFM_apalysxs with a mixed-
mode crack was used by Ballarini, Shah and Keer (1985) to study the pullout of rigid anchor bolts. They

used the Green’s function for a concentrated force inan elastic half space, represented the crack opening

by means of dislocations and thus reduced the problem to a'system of singular in‘lcgral eqqations, whose
numerical solution yielded the mixed-mode stress intensity factor. The calculations p!‘owded the crack
profiles and crack growth. Stability checks were made and the results were cgn];)glx'ed with anchor pullOl.lt
experiments. An interesting point was that'if the support reactions are sufficiently rcmf>v§d frqm the axis
of the anchor, crack propagation becomes unstable'and the load capacity is reduced (this is obviously due
to the higher stored energy when the support reactions act farther away). On the other hand, for §upport
reactions close to the anchor axis, as well as for sufficiently deep embedments, the crack propagation was
found to be stable. :

The pullout of circular disc-shaped anchors was studied by Elfgren, Ohlsson, and G)flltoft (1989). T.hey
used the finite element discrete crack.approach,-in'which the tensile and shear softening were Faken into
account according to the forinulation of Gylltoft (1984). They studied straight cracks ipclincd by 4§° _and
67° from the pullout axis as well as a crack starting at angles 73° and curving accordmg to the pnnrmpal
tensile stress direction, They found the lowest pullout strength to occur for the 45° straight crack. They
did not study the size effect, nor the effect of geometry. .

The plane stress and axisymmetric problems of anchor pullout were analyzed by numerous rt?searchers in
a recent round-robin contest (Elfgren 1990) using various numerical procedures based on various fracture
mechanics models, from LEFM to lattice models. - Eifgren-and Swartz (1992) published sumimaries of
the contributions and a state-of-the-art report is in preparation by Elfgren, Eligehausen, and Rots.

Some of the results can be found in the proceedings of a special seminar on anchorage engineering held
at Vienna Technical University in 1992 (Rossmanith, ed.; 1993).: :

10.5.4 Bond and Slip of Reinforcing Bars

The bond and slip of reinforcing bars embedded in concrete is an important and certa}nly difficult phe-
nomenon. In the previous sections, the bond strength was considered a secondqry “mter.nal” problem
which was treated by means of very simple models of perfectly plastic shgar—sh{) behavior.” The ACI
Code, 100, gives simple provisions for the so-called development length of rein formlng bars,. representing
the length of embedment in concrete required for ensuring that the bar can dc\_/clop its full yn‘;ld capacity.
These formulas- are also based on plasticity.- The development length is obtal_ncd by balanm‘ng the steel
force atyield F; = f,, A, against the bond strength T.ps L, where p; is the perimeter of %h'e remforceme'nt
and L; the slip (development) length. Taking then 7. oc ff ‘x \/72 leads to ACI empirical formulas in
which the development length is Cy A f, / \/JTC’_ orCafy/ \/]Té, where C and C; are empirical constants
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Figure 10.5.2 Cracking in bar pullout: .(a) Transverse cracks; (b) longitudinal (splitting cracks); (c) shear-slip
interfacial crack.

369

defined in the code. The code also gives various modifications of these formulas to take into consideration
the clear spacing of parallel bars, thickness of concrete cover, and corrections for the case of lightweight
aggregate concretes and for epoxy coated reinforcement. The formulas, however, do not consider any
size effect associated with the brittlencss of concrete. ’

In reality, the problem of bond and slip is a fracture problem; even more, it is a multiple fracture
problem, and a three-dimensional one. Fig. 10.5.2 sketches the three kinds of cracks or crack systems
involved in the pultout of a bar from a concrete cylinder or prism. The first system of cracks is transverse to
the prism, as shown in Fig. 10.5.2a; the cracks are conical in shape (secondary cracks) or plane (principal
cracks). The second system of cracks is longitudinal to the prism; the cracks are generated by hoop
stresses and vary in number depending of the morphology of the cross-section (Fig. 10.5.2b). The third
system of cracks consists of the shear cracks generated at the interface of steel and concrete; the jump in
displacements at the interface is the crack sliding (Fig, 10.5.2c).

The role of transverse fracture of concrete in the bond between concrete and deformed reinforcing
barg was first studied by Gylltoft (1984) and by Ingraffea et al. (1984). Gylltoft examined the role of
fracture in axisymmetric pullout of bars from concrete blocks. He considered both monotonic and cyclic
loading, carried out experiments, and was able to successfully predict the load-slip diagrams observed in
the pullout tests. Special crack elements that involve linear strain softening of concrete in tension and a
linear strain hardening in shear were used to model the interface. Ingraffea et al. (1984) used a discrete
mixed-mode nonlinear fracture model in axisymmetric finite element analysis. They applied the cohesive
crack model to characterize the tensile softening at each bond crack, and adopted the aggregate interlock
model of Fenwick and Paulay (1968) to characterize the shear softening. The study of Ingraffea et al.
(1984) indicated that secondary cracking around the primary cracks contributed to bond slip. Placing
special interface elements at the primary crack locations, and comparing numerical results to test results

-for a center-cracked reinforced concrete plate under uniform tension, Ingraffea et al. (1984) calculated

the degradation of stiffness and the crack opening profiles. Ingraffea et al. used in their finite element
program (FRANC) a sophisticated technique for remeshing around the crack tip as the crack tip advances.
Rots (1988, 1992) analyzed the problem of transverse cracking concomitant with longitudinal cracking,
He used a smeared crack approach for the secondary cracks, and a discrete crack approach modeled by
interface elements for the primary cracks.

A problem in the foregoing analysis is to correctly handle longitudinal cracking that occurs simulta-
neously with transverse cracking. In reality, a three-dimensional formulation ought to be used to analyze
the problem in detail; however, this would require an enormous computational effort. Axisymmetric
formulations have been used, with the expedient of using a circumferential stress-strain relationship that
is a smeared version of a cohesive crack. This is done as in Chapter 8 for the uniaxial case, except that

now the stress is the circumferential stress 0 and the cracking strain is €g- These are related to each other
and to the crack opening by

¢ etwlr) 2rr

Eg=no = 0g = flw@)) =7 < 63> (10.5.6)

ne

where w(r} is the opening of each crack at a distance r from the rotational axis, n the number of cracks,
and f(w) the softening function (for a single crack). Note that the numberof cracks nn° must bé assumed
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before the calculation and cannot be inferred from the analy51s It is usually selected between 2 and 4,
based on experience.

An entire family of simplified analyses of longituditial splitting cracks taking into account the fracture
behavior of concrete was developed based on modifications of the initial approach by-Tepfers (1973,
1979). Tepfers assumes that the rise of interfacial shear stresses 7 is accompanied by a rise of a contact
normal stress o. He further postulates that at splitting failure, o and 7 are related by a Coulomb-type law
that he writes as '

=7 tang (10.5.7)

where ¢ is a constant complementary friction angle. Tepfers then reduces the analysis to an axisymmetric
problem of a thick-walled concrete tube subjected to inner pressure o. Tepfers considers only elastic-
brittle behavior and elastic-perfectly plastic behavior. Keeping this approach, several researchersextended
Tepfers’-analysis to include softening and fracture.. All'these analyses use further simplifications, such
as neglecting Poisson’s effect, and use the circumferential smeared cracking as given by (10.5.6). The
main difference is in the kind of softening curve used by the various authors: van der Veen (1991) uses a
power-law softening (Reinhardt 1984); Reinhardt and Van der Veen (1992) and Reinhardt (1992) use the
CHR softening curve (Cornelissen, Hordijk and Reinhardt 1986b; see Section 7.2.1); Rosati and Schumm
(1992) use a hyperbolic law; and Noghabai ((1995a,b) uses a linear softening. As a further difference,
Rosati and Schumm (1992) consider, instead of the Coulomib criterion (10.5.7), a Mohr-Coulomb condition
givenby o = (7 — 7p) tan ¢, in which 7o is'a constant “‘cohesion”.

The problem of discrete longitudinal splitting cracks ‘was directly addressed by Choi, Darwin and '

McCabe (1990). They used a three-dimensional finite element method to analyze test results and demgn
code provisions on the bond failure of epoxy-coated or uncoated steel bars as a function of the bar size,
variations in interface characteristics, and specimen geomeétry. Splitting fractures observed in the tests
were well reproduced by the computational model ~~based on a cohesive crack model— and the results
provided support to some empmcal code provisions. The computational results described well the increase
of pullout strength with the cover thickness.

Recently, Noghabai (1995a,b) considered the numerlcal analysis of longitudinal splitting cracks based
on the boundary conditions in Tepfers’ approach (concrete thick-walled tube with internal stress @) and
analyzed localized cracking using three numerical approaches with the same underlying material model (a
cohesive crack with linear or nonlinear softening). - The first numerical procedure —the so-called discrete
crack approach— was carried out by placing 28 radial layers of interface elements incorporating the stress-
crack opening relationship. The strength of the layers was randomly assigned to promote localization into
asmall number of cracks. The second numerical procedure was the classical smeared crack approach, with
the crack opening distributed within the elements.- The third procedure used enriched shape functions to
describe the displacement jump within each element ~the so-called inner softening band finite elements
(Klisinski, Runesson and Sture 1991; Klisinski, Olofsson and Tano 1995). The three procedures gave
similar results for the curves of pressure vs. radial deformation, although none were able to contiriue into
the structural softening branch. The inner softening band method seems very promising for capturing the
cracking pattern. Still, the weakest link-in‘the model:is‘the relationship between the normal and shear
stresses. A realistic relationship between the normal and shear stresses at the interface must somehow be
related to the slip between steel and concrete.

The third type of crack involved in the pullout process is the shear-slip (mode II) crack occurring at
the steel-concrete interface (see Fig. 10.5.2¢, where the separation between the bar and the concrete is
grossly exaggerated). A straightforward approach is to treat this:shear-slip crack as a cohesive crack, i.e.,
to postulate that a certain relationship exists between the transferred shear stress 7 and the relative slip s:

7 = 1(s) S (1058

where t(s) is the softening function for shear-slip.:Introduced by BaZant and Desmorat (1994), this is a
very simplified model which does not take into-account friction and dilatancy occurring at the interface.
More sophisticated models involving the crack opening due to dilatancy and the influence of the normal
stress may be formulated, but will not be further described (for an overview of models and a thorough
discussion of the coupling between normal and shear stresses and displacements, see Cox 1994). The
simple model defined by (10.5.8) can, however, suffice to get a rough picture of the influence of the bond
degradation on the overall response in bar pullout.
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A simple and crude mathematical model which, nevertheless, realistically captures some aspects of
fracture and the size effect was used by BaZant and Desmorat (1994), who considered a uniaxially stressed
bar (or fiber) embedded in a concrete baralso behaving in an uniaxial manner, each with the cross section
remaining plane and orthogonal to the bar axis. The interface between the bar and the concréte tube is
characterized by the 7 — s relation (10.5.8). For the sake of simplicity, this relation was assumed linear
(triangular stress-displacement diagram). The solution can then be obtained analytically, by integration
of the differential equation of equilibrium in the axial coordinate . The solution yields simple formulas.
It is found that, during failure, zones of slip initiate at the beginning of embedment of the bar or at the
bar end, or both, and spread along the bar as the end displacement of the bar is increased, as sketched
(for a more general case) in Fig. 10.5.2c. For geometrically similar situations, a strong size effect is
observed. The size effect is caused by the fact that the ratio of the length of the slipped zone to the bar
diameter decreases with increasing diameter, i.e., the slip zone localizes. For a sufficiently small size,
the slip zone at-the maximum load extends over the entire length of the bar embedment, and for a size
approaching infinity, the relative length of the slipped zone tends to zero. The calculated size effect curve
turned out to be very close to the generalized size effect law proposed by BaZant [Eq. (9.1.34)], with the
exponent 7 = 1.25 for a concave nonlinear softening law. The one-dimensional solution may, of course,
be expected to be good only when the slip zone is very long or very short compared to the bar diameter and
the concrete cover around the bar is not too thick. In general, three-dimensional fracture analysis is, of
course, required. Nevertheless, despite the one-dimensional simplification, it seems that the generalized
size effect law indicated by this analysis may be applied as a simple approach to practical problems.

Further tests of bar pullout from normal and high strength concrete cubes were conducted by Bazant,
Li and Thoma (1995). In these tests, it was tried to separate the effect of radial fractures emanating from
the bar and the bond crack along the bar. The tests were designed so that no radial fractures would form
and the bar would fail only due to bond fracture and slip. This was achieved by using a relatively short
embedment of the bar in the concrete cube. The results again revealed a strong size effect. Because of the
absence of radial cracks, it was admissible to compare the results to the aforementioned one-dimensional
solution of BaZant and Desmorat (1994). The comparison was satisfactory although large scatter prevents
considering this as a validation of the BaZant and Desmorat’s equation.

A similar degree of brittleness as in pullout occur in the failure of splices of reinforcing bars in which
the lapped bars are not connected and the tensile force in the bars is transmitted through the concrete in
which the bars are embedded. The codes provide empirieal provisions for the length of overlap and for
the so-called development length over which the yield force of the bar can be transmitted from concrete to
the bar. These formulas are of the strength theory type which exhibit no size effect. Sener (1992) reports
experiments which confirm that splices indeed exhibit a strong size effect which may be well described
by BaZant’s size effect law and is rather close to LEFM (in more detail, Sener, BaZant and Becg-Giraudon
1997). The aforementioned type of correction of the existing formula —Eq. (10.1.13)— is also needed
in this case.

10.5.5 Beam and Ring Failures of Pipes

In the failure of pipes, it has for a Jong time been recognized that the apparent strength is different for
the transverse bending that leads to ring-type failure (Fig. 10.5.3a) and for longitudinal bending of the
whole pipe that leads to beam-type failure (Fig. 10.5.3b). Gustafsson and Hillerborg (1985) analyzed
such failures using the fictitious (cohesive) crack model. A plot of the size effect that they obtained is
shown in Fig. 10.5.3c. In this plot, oy is defined as the maximum elastic stress according to mechanics
of materials theory. Thus, for the ring failure, we have

3D , D= Di+ Do (10.5.9)

ag =
, Nu w2

where I, is the maximum force per unit length of pipe, D; and D, the inner and outer diameters,
respectively, and ¢ the pipe thickness. The nominal stress for the beam failure is

M, Dy —TL(Dé _ Df) (10.5.10)

INu =TT =4
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Figure 10.5.3 Size effect in unreinforced concrete pipes according to the computations of Gustafsson and
Hillerborg (1985): (a) scheme of ring (crushing) failure; (b) scheme of bending (beam) failure; (c) strength vs.
size for the two types of failure. (o . = is the maximum elastically-computed stress at peak load, see the text.)

in which M, is the ultimate bending moment (at the failure cross section), and [ is the centroidal moment

of inertia of the ring cross section. It is apparent that the size effect displays the same general trends as

the size effect for the modulus of rupture (Section 9.3, and, thus, is expected to have similar properties.
Indeed, the plot in Fig. 10.5.3¢ is a modification of Gustafsson and Hillerborg’s results-which uses the
property that, for unnotched specimens, the size effect carve isindependent of the softening when plotted as
a function of D /£, where ¢ is the characteristic size associated to the initial linear softening.. Gustafsson
and Hillerborg performed the computations using Petersson’s bilinear softening curve (Section 7.2.1), and
produced plots of oy / fi vs. D/E.y; the plot in Fig. 10.5.3¢ has been rescaled by taking into account
that for such softening £; = 0.6£c; and in the given form can be applied to any softening curve with
initially linear softening. :

From the foregoing results, it follows that smaller pipes are seen to be stronger and more ductile in
their postpeak response than larger pipes (D; in the figure is the inner pipe diameter).. It follows from
this analysis that a size independent “modulus of rupture” currently used in design (ACI Committee 318,
1989) is unconservative for large pipes. Gustafsson and Hillerborg also observed that the ring-type failure
is more size sensitive than the beam-type failure (Fig. 10.5.3¢).

The failure of pipes was also studied by BaZant and Cao (1986), who considered the test results from
Gustafsson (1985) and Brennan (1978). They compared the available test results to BaZant’s size effect
law and concluded that the size effect is strong and that Bazant’s size effect law could be used. However,
it must also be cautioned that the size effect law should not be fully applicable in this case, because the
pipes reach their maximum load after only a small crack growth (that is, a large crack does not develop
before failure). ‘Thus, the size effect is primarily due to the formation of the fracturé process zone, as
characterized, for example, by the cohesive crack model or ¢rack band model. Therefore, BaZant’s size
effect law mlght not work well if the range of sizes is increased or the scatter of measurements reduced.

10.5.6 Concrete Dams

Concrete dams typically fail by fracture. However, even though'they are unreinforced, they do-not fail at
crack initiation. Rather, very large cracks, typically longer than‘one-half of the cross section, grow in a
stable manner before the maximum load is reached. Therefore; if geometrically similar dams of different
sizes with geometrically similar cracks are considered; a strong size effect, essentially followmg BaZant’s
size effect law [Eq. (1.4.10)], must be expected. ;

Even though the large aggregate size used'in dams (up-to 250 mm in older dams and about 75 min in
recent dams) forces the fracture process zone to be considerably larger than in normal structural concretes
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(with aggregates up to 30 mm in sizc), most dams are so large that their global failure may be, in most
situations, analyzed by LEFM (Ingraffea, Linsbauer and Rossmanith 1989; Linsbauer et al. 1988a,b;
Saouma, Ayari and Boggs 1989). Large cracks are often produced in dams as a result of thermal and
shrinkage stresses or differential movements in the foundations and abutments, and, in an earthquake, as
a result of large inertial forces and dynamic reactions from the reservoir. Cracking is often promoted by
weak construction joints. Currently, the design, its computer evaluation, and analysis of seismic response,
are being done on the basis of the strength theory; however, fracture mechanics should, in principle, be
introduced. This is particularly nceded for evaluating the performance of dams that have already developed
large cracks, which is known to.occur frequently. Evaluation of the effectiveness of repair methods also
calls for fracture mechanics.

LEFM analysis with mixed-mode cracks was applied by Linsbauer et al. (1988a,b) to determine the
profile and growth of a crack from the upstream and downstream faces of a doubly curved arched dam.
On the basis of their anisotropic mixed-mode fracture analysis, Saouma, Ayari and Boggs (1989) found
that the classical method of analysis is normally much more conservative than fracture analysis. This
conclusion suggests that fracture analysis might not be needed to obtain safe designs, but there is an
opportunity to optimize the design. The U.S. Army Corps of Engineers (1991) have issucd guidelines that
require applying fracture mechanics for the safety and serviceability analysis of existing cracked dams
(Saouma, Broz et al. 1990). The existing computational studies considered only two dimensional cracks
(Ingraffea, Linsbaver and Rossmanith 1989; Linsbauer et al. 1988a,b; Saouma, Ayari and Boggs 1989).
Three-dimensional cracks (Martha et al. 1991) still need to be studied, and so does the propagation of
cracks along interfaces between concrete and rock or along construction joints.

For analyzing dam fracture, the proper value of fracture energy (or fracture toughness), and of the
effective length of the fracture process zone cg, needs to be known for concretes with very large aggregates.
This question was experimentally studied by Brithwiler and Wittmann (1990), Saouma, Broz et al. (1991),
BaZant, He et al. (1991), and He et al. (1992). The last mentioned study utilized geometrically similar
wedge-splitting fracture specimens with maximum cross section dimension 6 ft., and exploited the size
effect method for determining the fracture energy of the material. The effect of moisture content and water
pressure in the crack on the fracture energy was found by Saouma, Broz et al. (1991) to be important.
Zhang and Karihaloo (1992) studied the stability of a large vertical crack extending from the upstream
phase of a buttress-type dam. They treated concrete as a viscoelastic material, took into account tensile
strain softening, and demonstrated feasibility of the fracture analysis.

Since large fractures often grow in dams slowly, over a period of many years, the effects of loading
rate and duration need to be understood. These effects were studied by BaZant, He et al. (1991). Testing
dam concrete as well as normal concretes, BaZant (1991a) and BaZant and Gettu (1990) observed that the
slower the loading, the more brittle the response (in the sense that in the logarithmic size effect plot, the
response points move to the right, i.e., closer to the LEFM asymptote, as the load duration is increased or
the loading rate is decreased; see Chapter 11 for details and mathematical modeling.

One interesting question, which was provoked by BaZant (1990b) is the question of safety or the
so-called “no-tension” design. It has been a widespread opinion that fracture analysis of dams can be
avoided by using the so-called “no-tension” design, which is based on an elasto-plastic analysis with a
yield criterion in which the tensile yield limit is zero or nearly zero (Rankine criterion or a special case of
Mohr-Coulomb criterion).

However, it was demonstrated (BaZant 1991a) that such a design is not guaranteed to be-safe. The
stress intensity factor at the tip of a large crack that satisfies the no-tension criterion according to the
elasto-plastic analysis can be, and often is, non-zero and positive. For the latter, BaZant’s size effect law
ought to apply, and thus it follows that, for a given crack and dam geometry and a fixed nominal stress
characterizing the loading, there always exists a certain critical dam size such that for larger sizes the
critical value of the stress intensity (fracture toughness) is exceeded. Examples of this have been given
by Gioia, BaZant and Pohl (1992) and BaZant (1996a). The detailed study by BaZant (1996a) led to the
following conclusxons

1. For a brittle (or quasi-brittle) elastic structure, the elastic- perfectly plastic analysis with a zero value
of the tensile yield stréngth of the material is not guaranteed to be safe because it can happen that:
(a) the calculated length of cracks or cracking zones corresponds to an unstable crack propagation,
(b) the uncracked ligament of the cross section, available for resisting horizontal sliding due to-
shear loads, is predicted much too large, compared to the fracture mechanics prediction, (c) the
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Figure 10.5.4 * Crack patterns and lines of principal stress; - (a) Closely spaced cracks and trajectories of
minimum principal stress for no-toughness design; (b) closely spaced cracks for dry masonry; (¢) approximate
trajectories of minimum principal stress for Ko > 0.-(Adapted from BaZant 1996a.)

calculated load-deflection diagram lies lower than that predicted by fracture mechanics, or (d) the
load capacity for a combination of crack face pressire and loads remote from the ‘crack front is
predicted much too large, compared to the fracturg mechanics prediction.

2. Due to the size effect, the preceding conclusions are true; not only for zero fracture toughness
(no-toughness design), but also for finite fracture toughness, provided the structure is large enough.

3. The no-tension limit design cannot always guarantee the safety factor of the structure to have the
specified minimum value. Fracturg mechanics is:required for that.

4. Increasing the tensile strength of the material can cause the load capacity of a brittle (or quasi-brittle)
structure to decrease or even drop to zero. - ‘

5." The no-tension limit desi gn would be correct if the tensile strength of the material were aétUally Zero
throughout the whole structure. This is true for dry masonry with sufficiently densely distributed

- Joints, but not for concrete (or for jointed rock masses).

One simple explanation of the foregoing conclusions is that the finiteness of the tensile strength of the
material at points farther away from the cracks or rock joints (or construction joints) of negligible tensile
strength causes the structure to store more strain energy. Thus, energy can be released at a higher rate
during crack propagation. ’ :

The reason that an increase of strength of the material from zero to a finite value causes a crack
to propagate is illustrated in Fig. 10.5.4. For zero tensile strength (which is the case of dense cracking,
Fig. 10.5.4a, or dry masonry, Fig. 10.5.4b), there are many cracks and the tensile principal stress trajectories
are essentially straight. But for finite strength, these trajectories get compressed at the crack tip as shown
in Fig. 10.5.4¢, which causes stress concentration and crack propagation. .

The results of the finite element study by Gioia, BaZant'and Pohl (1992) are summarized in Fig. 10.5.5.
The geometry of the cross section of the Koyna dam, which was stricken by an earthquake in 1967, was
considered. Fig. 10.5.5a shows the finite element mesh and the shape of the critical crack for the loading
considered. Finite element solutions were compared according to no-tension plasticity and according to
fracture mechanics. The yield surface of no-tension plasticity was a particular case of Otossen’s (1977)
yield surface (described also in Chen 1982, Sec. 5.7.1) for the tensile strength approaching zero. Because
the origin of the stress space must lie inside the.yield surface, the calculations have actually been run
for a very small but nonzero value of the tensile yield strength of concrete, approximately 10 times
smaller than the realistic value. Similarly, the no-toughness design was approximated in the finite element
calculations by taking the K .-value to be approximately 10 times smaller than the realistic value. The
crack length obtained by fracture mechanics is very insensitive to the K, value because K7 represents
a small difference of two large values: K; due to water pressure minus K due to gravity load.

In the calculations, some of whose results are plotted in Fig. 10.5.5b-c, the hei ght of the water overflow
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Figure 10.5.5 Koynadamanalyzed by Gioia, BaZantand Pohl (1992): (a) finite element mesh and failure mode;
(b) comparison of curves of overflow height vs. deflection for no-tension plasticity analysis and no-toughness
fracture analysis; (c) curves for no-tension limit analysis and fracture analysis with realistic values of strength
and toughness. (Adapted from BaZant 1996a; the peak and postpeak branches obtained by Jirdsek for the
branched crack b are not shown.) '

above the crest of the dam was considered as the load parameter. A downward curving crack, which was
indicated by calculations to be the most dangerous crack, was considered (Fig. 10.5.5a).

The differences between the no-tension limit design and fracture mechanics have been found to be
the most pronounced for the case when water penetrates into the crack and applies pressure on the crack
faces, as shown in Fig. 10.5.5b. Because plastic analysis cannot describe crack growth, the dam has been
assumed to be precracked and loaded by water pressure along the entire crack length.

From the results in Fig. 10.5.5¢, it is seen that the diagram of the load parameter vs. the horizontal
displacement at the top of the dam lies lower for fracture mechanics than it does for no-tension plasticity.
In other words, the resistance offered by the dam to the loading by water is lower according to the fracture
mechanics solution, with a realistic value of K, than it is according to no-tension plasticity. It should
be added that, for these finite element calculations, the maximum of the load-deflection diagram could
not be reached for realistic heights of overtopping of the dam. The reason has been found by Jirdsek
and Zimmermann (1997). A descent of the load is caused by crack branching due to the formation of a
secondary crack (crack b in Fig. 10.5.5), the possibility of which was not checked by Gioia, BaZant and
Pohl (1992). If this is.considered, a maximum foad point occurs on curves in Figs. 10.5.5b—c, and another
curve descends from that point.

10.5.7 Footings

One well-documented case of fracture in a footing comes from the collapse of the New York State Thruway
Bridge over the Schoharie Creek in 1987, which caused the death of 10 people. A flood produced scouring
under the foundation plinth supporting a pier, which caused fracture of the plinth which was very weakly
reinforced. Although crack stability and propagation were not analyzed (Wiss, Janney, Eltsner Associates,
Inc., and Mueser Rutledge Consulting Engineers 1987), finite element analysis based on nonlinear fracture
mechanics of discrete cracks was used by Swenson and Ingraffea (1991) who concluded that although
the bridge failed primarily because of scouring beneath the foundation plinths (pier footing), a necessary
complementary cause was unstable fracture in the pier. It was recommended that foundation plinth bridges
of this type should be designed with consideration of crack propagation stability and crack arrest. In the
disaster, the crack must have become unstable before it ceased to be small compared to the cross section
size, and, therefore, the behavior described by the size effect law due to BaZant probably did not play a
significant role. Rather, a boundary layer type size effect due to formation on the fracture process zone
of a cohesive crack, same as in the case of the modulus of rupture, must have played a significant role.
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Figure 10.5.6 (a) Crack distribution at the surface of a half spaceA (b) Crack distribution in a pavement. (c)
Determination of the initial crack jump by intersection of instantaneous and average energy release curves.

10.5.8 Crack Spacing and Width, with Application to Highway Pavements

The prediction of the spacing and opening of cracks in-asphalt-or concrete pavements of roads and
runways is important for their durability assessment.. This problem is similar to the ice plate—a plate
resting on Winkler elastic foundation—but the foundation is:much stiffer. Similar to the problem of sca
ice penetration (Scction 9.6), the crack spacing also is important for the size effcct.

One basic problem is the spacing s of parallel planar cracks-initiating from a half space surface
(Fig. 10.5.6a), which was solved approximately by Bazant and Ohtsubo (1977) and BaZant, Ohtsubo and
Aoh (1979), and rigorously by Li, Hong and BaZant (1995) (see also Buant and Cedolin 1991,.Ch. 13).
The crack opening at the crack mouth is approximately w = =%, where £° is the free shrinkage strain
or thermal (cooling) strain (€2 < 0).

The problem of crack spacing in pavements has been solved according to the theory of plate (beam) on
Winkler elastic foundation (Fig. 10.5.6b) by Hong, Li and BaZant (1997). The calculated values of crack
spacing were in relatively good agreement thh the prevmusly reported observations on asphalt concrete
pavements.

The theory of initiation of parallel equxdxstant cracks from a smooth surface, developed in Li and BaZant

(1994b) as an extension of the approximate crack spacing criterion proposed by BaZantand Ohtsubo (1977)
and BaZant, Ohtsubo and Ach (1979) (sce also BaZant and Cedolin 1991, Ch. 13), was applied in the

aforementioned study. Although the strength concept must be applied for the crack initiation stage, the
cracks are considered simply as LEFM cracks afterward. The theory, which was studied rigorously in Li,
Hong and BaZant (1995), rests on the following three conditions:

1 Just before crack initiation from a smooth surface; the stress at the surface reaches the material
strength limit, f;.

2. After initial cracks of a certain initial length g form (by a dynamic jump), the energy release rate
must be equal to the fracture energy of the material or the R-curve value.

3. The total energy release due to the initial crack jump must be equal to'the energy needed to produce
the initial cracks, according to the fracture energy G t-or the R-curve (an equivalent staternent is
that the average of energy release rate during the'initial crack formation must be equal to the value
of the fracture energy G5 or the average value of the R-curve, as illustrated in Fig: 10.5.6¢):

The problem can be solved if the stress intensity factor (or energy release rate) as a function of the crack
length, the crack spacing and the load parameter (.., the penetration depth of the cooling or drying
front) is known. For the elastic halfspace, the ‘stress intensity factor has been solved from a Cauchy
integral equation (Li, Hong and BaZant 1995). The solution of conditions 2 and 3 graphically represents
the intersection of the curves giving the energy release rate’and the average encrgy release rate (the
intersection always exists if the fracture geometry-is, or becomes; positive); see Fig. 10.5.6c. All three
conditions together allow solving three unknowns: the initial crack spacings, the initial crack length, and
the load level (load parameter) at Wthh the cracks initiate. Generalization to the full cohesive crack model
is possible.

A different basic problem is how a system of pamllcl cracks evolves after it has initiated. Often it
happens that every other crack stops growing and closes when a certain critical length a., is reached
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Figure 10.5.7 Specimen used in studying cracking in keyed joints in scgmental box girder sections (after
Buyukozturk, Bakhoum and Beattie 1990). ‘

* (Fig. 10.5.6a). The value of a,, is decided by stability and bifurcation analysis of the interacting crack

system (BaZant and Ohtsubo 1977; BaZant, Ohtsubo and Aoh 1979; BaZant and Cedolin 1991, Ch. 13;
BaZant and Wahab 1979, 1980). The increase of spacing of the opened crack causes their opening width
(due to shrinkage or strain) fo increase. Although this problem has been analyzed only two-dimensionalty
so far, the crack pattern viewed orthogonally to the surface of halfspace is often hexagonal or random,
calling for three-dimensional analysis.

10.5.9 Keyed Joints

Rectangular sheared keys are used to improve the resistance against shear slip of joints between the
segments of prestressed box-girder bridges. Buyukozturk and Lee (1992a) showed that this is a very
brittle type of failure, exhibiting a strong size effect close to LEFM. They used LEFM mixed-mode
fracture analysis (Swartz and Taha 1990, 1991) to study the failure of typical shear keys used in bridge
construction (Fig. 10.5.7). In contrast to the diagonal shear cracks in beams, which can be counteracted
by shear reinforcement (stirrups), a diagonal crack which is initiated at the shear key may also propagate
parallel to the joint. Such a path is not crossed by any shear reinforcement (Buyukozturk, Bakhoum and
Beattie 1990).

The design provisions of the Post-Tensioning Institute (1988) for the segmenls of prestressed box-girder
bridges are at present empirical and follow the strength theory, exhibiting no size effect. They are based on
the shear capacities determined by tests of prestressed beams failing by flexure-shear cracks or web-shear
cracks. An enhanced formula was proposed by Buyukozturk, Bakhoum and Beattie (1990), but this was
still free from size effect.

Based on their mixed-mode LEFM analysis, Buyukozturk and Lee calculated design charts correspond-
ing to the failure criterion

CRE? + K} = K2, (10.5.11)

where K, Kyy = stress intensity factors in Mode I and Mode 11, K, = Mode 1 fracture toughness of
concrete, and Cy = empirical constant (which obviously represents the ratio of Mode 11 fracture toughness
to Kr.). The high brittleness of failure is further compounded by the use of high strength concrete in these
bridges. Another aggravating factor for brittleness is the presence of large uniaxial compressive stresses
normal to the joint, which are beneficial by increasing friction but detrimental increasing the brittleness.
Thus, even though this relatively small size of the shear keys would indicate the use of nonlinear fracture
mechanics with a transitional size effect (following the size effect law), it appears that LEFM is applicable.

10.5.10 Fracture in Joints

Cracks in joints differ from cracks in bulk material in three respects. (1) Cracks in concrete usually (albeit
probably not always) propagate in the direction normal to the maximum principal stress as in Mode I,
but a crack in a joint is subjected to normal as well as shear loading and is of a mixed-mode. (2) The
roughness of a crack in a smooth joint can be much smaller than the roughness of a crack in the bulk of
concrete. Thus, aggregate interlock plays a lesser role and friction dominates as a means of transferring
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Figure 10.5.8 ' Fracture of joints: (a) sketch of tests by Reinhardt (1982); (b-c) tests I?y Buyukozturk and Lee
(1992by; (d) average shear stress-slip curves for Reinhgrdt’s tests: (e) size effect in ReinhardU’s tests.

shear stresses across a joint. (3) A crack in concrete exhibiltls considerable dilatancy associated with shear
slip, but in a smooth joint, the dilatancy may be quite small. .

ﬁ“hc behavior of jognts of dissimilar materials was investigated experimentally by Remharfi[ (1982) am}i1
by Buyukozturk and Lee (1992b). Reinhardt tested joints of strong concrete and mortar of variable strength
subjected to various compressive normal stresses (Fig. 10.5._8a). Buyukozturk and Lee tested SflI}dWl;
specimens of granite and mortar with an interfacial crack (Fig. 10.5.8a) as a means of charactenzx?lg the
aggregate-mortar interface, although their results could be useful for macroscop‘lc structures as well.

Fig. 10.5.8d shows shear stress-slip curves for the same joint length, two dlffe‘rent mortar strengths
and, in each case, three different compressive normal stresses across the joint. It is seen that lhf.: str.esls1
first rises abruptly with very little slipup to a certain,maxim.ur.n and ther?, for the joints made in hllg
strength mortar, a steep drop of stress follows, while for the _](’)m.ts made in low strength _mortar on yha
mild drop is seen. After the development of a full crack; a frictional plaFez.\u gets .cstabhsl}ed with the
residual shear capacity determined by the comp_ressive Stress across the joint. This capacity does not
depend on the slip magnitude, nor on the mortar strength. (It might be noted, though, that the response
shown could have been influenced by the stiffness of the loading frame as well as the response frequency
of the servo-controlier.) . o

A plot of the normalized shear strength of the three different joints vs. the le‘:n.gth of the joint is shov:ln
in Fig. 10.5.8¢. The joint made with low strength mortar was found to ex!n@t no depf%ndence of ¢ ef
shear strength on the joint length, i.e., no size effect..On'the ‘othef hand, the joint made with a morta(; o
high strength exhibited a strong size effect close to LEFM (in this case, the joint strength decrc§§§_ as
L~ Y2, with | = joint length). The joint made with a mortar of medium strength was found to exhibit an
intermediate size effect. 2 . . )

The interfacial crack propagation was interpréted by Reinhardi (1982) on the basis of the LEFM
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Figure 10.5.9 Break-out of boreholes; {oyoo| 3> lowoo]-

solutions of Sih (1973), Rice and Sih (1965), and Erdogan (1963) for particular geometries of cracks at
the interface of two dissimilar halfspaces. Buyukozturk and Lee (1992b) also interpreted their tests in
terms of LEFM, based on solutions by Suo and Hutchinson (1989). The LEFM treatment of interfacial
crack theory is outside the scope of this book; it is a conceptually involved topic, because the power series
expansion that is relatively simple to handle for the single material problem (Section 4.3) has complex
exponents for the bimaterial case. The dominant solution of the displacement field still decays as ri/2
near the tip, but displays an oscillating behavior near the origin. For example, it can be shown that the
dominant term for the crack opening at a distance 7 from the crack tip takes the form

w(r) o Vr cos(¢p +wlnr) ' (10.5.12)

where ¢ and w depend on the loading, geometry, and elastic properties of the two materials; w = 0
if the two bodies have identical elastic constants. Note that when r approaches zero (the crack tip),
the factor cos(¢ + wInr) oscillates between —1 and 1 with frequency tending to infinity (because
lim,_p(In7) = —o0). This means that the solution always includes negative crack openings, which are
not physically admissible (there would be interpenetration of the opposite faces of the crack). This is but
one of the difficulties involved in the interfacial crack problem.. The interested reader is referred to the
original papers and to recent papers by Rice (1988), Hutchinson (1990), and He and Hutchinson (1989).

10.5.11 Break-Out of Boreholes

When the mass of rock (or concrete) in which a borehole has been drilled is subjected to large compressive
stresses, it may suddenly collapse in a brittle manner. This type of failure is called the break-out. The
classical approach to the break-out has been by plasticity. However, because the failure occurs by cracking,
fracture mechanics appears to be more appropriate. Its use, of course, inevitably leads to size effect, which
is known to occur in the break-out of boreholes in rock, as experimentally demonstrated by Nesetova and
Lajtai (1973), Carter (1992), Carter, Lajtai and Yuan (1992), Yuan, Lajtai and Ayari (1993), and Haimson
and Herrick (1989).

An approximate energy-based analytical solution of the break-out has been obtained (BaZant, Lin and
Lippmann 1993) under the simplifying assumption that the splitting cracks occupy a growing elliptical
zone as sketched in Fig. 10.5.9 (although in reality this zone is narrower and closer to a triangle). The
assumption of an elfiptical boundary permits the energy release from the surrounding infinite solid to be
easily calculated (BaZant, Lin and Lippmann 1993) according to Eshelby’s (1956) theorem for uniform
eigenstrains in ellipsoidal inclusions in infinite medium. According to the theorem (see, e.g., Mura 1987),
the following approximate expression for the energy release from the infinite rock mass has been derived: -

(1l = v?)

AU = B [(a+2R)Ro2o + (20 + R)szz!oo — 20R0 400000 — 262025 (10.5.13)

in which R = borehole radius, a = prinéipal axis of the ellipse (Fig. 10.5.9), 0500 and 0yeo = remote
principal stresses, F = Young’s modulus of the rock, and v = Poisson ratio. A similar analysis as that for

the propagating band of axial splitting cracks, already explained in Section 9.5, has provided a break-out
stress formula of the type )

ONu & CoD™Y 1 Cy (10.5.14)

where Cy and C are constants.
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Figure 10.5.10 Hillerborg’s (1990) analysis of beniding of reinforced concrete beam: (a) sketch of the failure
cross section; (b) stress-strain curve in compression; (¢) no-tension zone (L—-A), clastic zone (A-B), and
softening zone (B~CY); (d) strain profile; (e} stress profile; (f) moment-curvature diagrams for various sizes;
(g) stress-strain curve in compression according to'the CEB-FIP Model Code; (h) stress-strain curve thh
size-dependent cut-off proposed by Hillerborg (1990).

10.5.12 Hillerborg’s Model for Compressive Failure in' Concrete Beams

Hillerborg’s (1990) model for compressive failure in concrete beams follows, in the formal aspects, the
classical bending theory for concrete: a uniaxial stress=strain relation with plane cross sections remaining
plane and no-tension for concrete: ‘The essential differerice is that he introduces softening and strain
localization in'compression to explain the size effect on ductility.

Fig. 10.5.10a shows the central section of the beam where the inelastic behavior is represented by

a no-tension crack and a compressed zone (shaded in the ﬁgurc) of width h into which the strain will
localize. Hillerborg assumes that

h=nx . (10.5.15)

as indicated in the figure, where  is the depth of the compressed zone, and 77 is a constant (approximately
equal to 0.8). Hillerborg further assumes linear softening expressed by a stress-displacement o (w) curve,
where w here has the meaning of an inelastic displacement in ‘compression, equivalent to the crack opening
in tension. Fig. 10.5.10b shows the corresponding stress-strain curve.. Note that the slope depends on
the depth of the compresswn zone z, hence also on the size of the beam, w, is assumed to be a material
property, and so is the compressive strength f, and the elastic modulus E.

According to these hypotheses, the beam depth (Fig 10.5.10c) is divided into three patts: over part LA
no stress is transferred (except across the reinforcement), over part AB the concrete is compr’essed and
elastic, and over BC' the concrete undergoes crushing and strain localization. The strain is assumed to
vary linearly as shown in Fig. 10.5.10d, so that

€= kz (10.5.16)

where & is the curvature. From this, together with the stress-strain curves of the stecl and of the concrete
already defined, the stress profile can be computed as a function of the position of the neutral line = and
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the curvature &, as sketched in Fig. 10.5.10e. Then « is computed from any given & from the equilibrium
of forces, and next the bending moment is computed from the equilibrium of moments. In this way, the
full moment-curvature diagram is obtained.

The essential feature is that, since the stress-strain curve of concrete is made to depend on the depth of

the compression zone, the resulting moment-curvature diagrams are size-dependent. More specifically,
they depend on the dimensionless size D* defined as

D wE
D* == == 10.5.
£ YA (10.5.17)
£, represents the characteristic material length for fracture in compression. Fig. 10.5.10f illustrates
Hillerborg’s results, which clearly display an increase of brittleness with the size and with an increasing
steel ratio.

Certainly this model is crude, but offers one simple way of taking into account the softening behavior
in compression to predict a size-dependent response of concrete in bending. This is not actually included
in the codes, which take size-independent stress-strain curves for concrete in compression, such as the
parabola-rectangle diagram of the CEB-FIP Model Code shown in Fig. 10.5.10g. Hillerborg suggests
a simple way of using this kind of diagrams to include the size effect: the strain cut-off &, is made to
depend on the depth of the compression zone as

k
£y = = (10.5.18)
T

where k) is a parameter, with dimensions of length, which includes the fracture properties in compression
—roughly proportional to £, in (10.5.17)— and which might, eventually, depend on the geometrical
details of the beam. However, further research is required, both on the experimental and theoretical sides,
to settle on the best model that should go into the code provisions.
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Nonlocal Continuum
Modeling of Damage
lLocalization

In concrete and other quasibrittle materials, fracture develops as a result of localization of distributed
damage due to microcracking. Indiscrete fracture models which have been discussed in previous chapters,
the damage due to distributed cracking is lumped into a fine, but this is not sufficiently realistic for all
applications. The width and microcracking density distribution at the fracture front may vary depending
on structure size, shape, and type of loading.

Such behavior can be captured only by continuum damage models. However, such models cannot
be implemented in the sense of the classical, local continuum, i.e., a continuum in which the stress at a
point depends only on the strain at the same point. Rather, one must adopt the more general concept of
a nonlocal continuum, defined as a continuum in which the stress at a point depends also on the strains
in the neighborhood of that point or some type of average strain of the neighborhood. The reasons for
introducing the nonlocal concept are both mathematical and physical:

1. Themathematical reason is that, as we discussed in Chapter 8 (BaZant 1986¢), a local strain softening
continuum exhibits spurious damage localization instabilities, in which all damage is localized into
a zone of measure zero. This leads to spurious mesh sensitivity. The energy that is consumed
by cracking damage during structural failure depends on the mesh size and tends to zero as the
mesh size is refined to zero. The reason is that the energy dissipation, as described by the local
stress—strain relation per unit volume, and thus also the total dissipation, converges to zero if all
damage is localized into a band of single element width as the element size tends to zero. Such
$purious localization on a set of measure zero is prevented by the nonlocal concept.

2. The physical reason is that microcracks interact (BaZant 1994b; BaZant and Jirdsek 1994a,b)).
The formation or growth of one microcrack either promotes or inhibits the formation or growth of
adjacent microcracks. Continuum smearing of such inferactions inevitably leads to some kind of a
nonlocal continuum. The interaction of microcracks is the physical reason why a continuum model
for distributed strain softening damage ought to be nonlocal. A secondary physical reason is that a
crack has a macroscopically nonnegligible dimension, causing the crack growth to depend on the
macroscopic stress field in a zone larger than the crack (BaZant 1987c, 1991b). '

Spatial averaging integrals and interaction integrals are not the only way to describe a nonlocal con-
tinuum. If the strain field in the neighborhood of a point is expanded into a Taylor series, the strains
in the neighboring points are approximately characterized by the spatial partial derivatives (gradients)
of the strain tensor at the given point. Thus, the nonlocal continuum may alternatively be defined as
a continuum in which the stress at a point depends not only.on the strain at that point but also on the
successive gradients of the strain tensor at that point (BaZant 1984b, Triantafyllidis and Aifantis 1986).
This approach may. be regarded as a generalization of Cosserat’s couple stress continuum or Eringen’s
micropolar elasticity. Cosserat’s continuum was considered as an alternative approach to achieve reg-
ularization of-the strain-localization problem in softening materials, but they have been superseded by
fully nonlocal or high-gradient models, and will not be presented here. The interested reader may refer,
among others, to the works by de Borst, R. (1990) Vardoulakis (1989}, de Borst (1991), de Borst and
Sluys (1991), and Dietsche and Willam (1992).

In Chapter 8 we have already seen the crudest but simplest type of nonlocat approach—the crack band
model, in which the dependence of stress on the average deformation of a certain representative volume
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Figure 13.1.1 - Spatial averaging. (a) Profiles of micro strain dnd average straiy along a scgment centered at
point x in the center of a representative volume.  (b) Skeich of the representative vo‘lume ccm.—cred‘at X. ©)
Representative volume near the surface of the body. “(dy Uniforny vs. smoothly decaying averaging functions.
(Adapted from BaZant 1990c.) ) ‘

of the material is enforced by preseribing the minimum crack band width, _coinciding with a minimum
element size (the reason is that, in a constant strain finite ¢lement, the strain approxnngtcs the average
strain of the material within the element area). - The first-part of this chapter will describe the nonlpcz.ll
models based on the idea of averaging, approached ina phenomenological manner. The sec_ond part of Plns
chapter will present a recent development in which the nonlocal concept ?s derl_w_:('l from nl{cromc.clxanlc.al
analysis of crack interactions. The mathematical aspects of Igcalizanon instabilities a.nnd bifurcations will
not be discussed in detail and the reader is referred to the book by BaZant and Cedolin (1991, Ch. 13).

13.1 Basic Concepts in Nonlocal Approaches
_13.1.1 The Early Approaches

The concept of nonlocal continuum for materials' with-a randémly 11§tel'ogen001xs microstrgcture was
originally conceived and extensively studied for elastic materials (Ern}gen 196%, 1966; Kronejr 1967,
Levin 1971; Kunin 1968; Eringen and Edelen (1972); Eringen and Ari 1983). For such matglals, the
constitutive relation is considered as a relation between the average continuum stress tensor & (x) and
strain tensor €(x), which are defined as the statistical averages of Fhe randomly scattered microstresses
over a suitable repreésentative volume of the material centered at point x (Fig. 13.1.1a-b). -

Intuitively, the justification for nonlocal averaging may:be explained by Fig. 13.?.1b, show1'ng:a
representative volume of the material with an aggregate microstructure: (The repx‘cseplatlve volume is, in
the statistical theory, defined as the smallest volume for which the statistics of _thc nncrf)struc?ure are not
changed by shifting the volume.) The formation of a crack in the ¢enter of this clement obvw.usly do;s
not depend only on the continuum strain at the center of the crack; but on the overall deformation of th%s
representative volume, which determines-the strain energy content and thus the energy release from this
volume. . ;

The simplest way to introduce a nonlocal'strain measure is to definie the average strain tensor as

|
E(X) =
5= 75 |
in which e(x) is the usual (local) strain tensor at point x, V. the volume of the structure, and ar)isa

scalar function of the distance r = |x — s| between the point at which the average is takel? and the point
contributing to that average; V;. is a normalizing factor introduced so that, for uniform strain, the average

is also uniform and coincides with the local value. It is a simiplé matter to find the required relationships -

/a(|x_s|)g(é)dv(s):/‘d(x,s)e(s)dV(s) (13.1.1),
v : v
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between V., o, and &

V(%) :/‘;a(]x—sf)dV(s) and  &(x,s) = 5‘[(‘[;((%;)5” (13.1.2)

The function ¢ (r) decays with the distance from point x and is zero or nearly zero at points sufficiently
remote from x. The simplest is the uniform averaging function, for whicha = 1 ina sphere of diameter

- £ and 0 outside. For points in the interior of the body. whose distance to any boundary is larger than £/2,

V;- is the volume of the averaging sphere V,. = 73 /6. However, for points closer to the surface, the part
of the sphere that protrudes outside the body does not contribute to the integral in (13.1.2) and V,. must
be considered a variable (Fig. 13.1.1¢).

We may note that according to (13.1. 1)and (13.1.2), & may be multiplied by an arbitrary factor without
introducing any charige in the nonlocal variable, because V. also gets multiplied by the same factor. This
means that we can rescale o at will. In the following, we scale ¢ so that the value of ¢ at the originis 1,
ie.,

a(0) =1 : (13.1.3)
as depicted in Fig. 13.1.1d.
The convergence of numerical solutions is slightly better if o is a smooth bell-shaped function

(Fig. 13.1.1d, full line) rather than rectangular (Fig. 13.1.1d, dashed line). According to BaZant (1990c),
an effective choice is the function

a=[1(r/pol)’]" it Il <pol, a=0 it || > pol (13.1.4)

where 7 = |x — s is the distance from point x, £ is the characteristic length (a material property,
Fig. 13.1.1), and py'is a coefficient chosen in such a manner that the volume under function o given by
Eq. (13.1.4) is equal to the volume of the uniform distribution in Fig. 13.1.1d. From this requirement,
one may calculate that py = /35 /4 ='0.8178. In the earlier works, the normal (Gaussian) distribution
function has also been used instead of Eq. (13.1.4) and was found to work well, although its values are
nowhere exactly zero. Note that the limit of nonlocal continuum for £ — Qs the local continuum (because
£ - g). : :

The foregoing approximation deals with three-dimensional averaging. In many cases, however, two-
or one-dimensional approximations are required. In those cases, similar definitions can be written for the
averaging operator. For the two-dimensional case V; must be replaced by A,, a representative area, and
the integrals become surface integrals. For the uniaxial case the integrals reduce to simple integrals and
V;. is replaced by a reference length L,.. Tt is an easy matter to see that if the size of the representative
zone is £ in either dimension, and the averaging is uniform, then, for interior points A, = 7é?/4 and
L, = {. For the bell-shaped function (13.1.4), the values of p, to be used for two and one dimensions
are adjusted so that they give the same values for A, and L, as the uniform distribution (see the exercises
at the end of this section). )

Now that we have introduced the concept of nonlocal averaging, formulating the equations of a nonlocal
continuum seems to be a simple matter: Just replace some or all of the classical local variables by their
nonlocal averages. However, this is not easy because, in general, some physically problematic features
appear and the model does not work at all. In the remainder of this section we focus on uniaxial models
to illustrate some of the problems that may arise and the approaches devised to overcome them, leading
to various useful models.

13.1.2 Models with Nonlocal Strain

The simplest model imaginable is the nonlocal version of the classical linear elastic model. Its uniaxial
version simply reads

o(z) = EF, 5:%A’a(|s~.x|)s(s) ds (13.1.5)

where ¢ and ¢ are the uniaxial stress and strain, Consider, for the sake of simplicity, an infinitely long
bar subjected to uniaxial stress o, and assume that the averaging rule is rectangular, such that alry =1
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for r] < £/2 and zero otherwise. The ethbnum of the bar requires ¢ to be constant, and so we need
to solve the equation

- e(s)yds=o (="const.’) ‘ (13.1.6)

This is an integral equation that accepts as a trivial solution'e = ¢ / E. However, the solution is not
unique. Indeed, we can write the general solitionas £ = ¢/ E +&* and substuute into the foregoing
equation to find that the condition to be satisfied by the-unknown function e*

z+2/2
/ e*(s)ds = (13.1.7)
2-4/2 .

This equatlon simply states that the mean of the function over any segment of length £ is zero. There are
infinitely many solutions of this equation since any harmonic function whose wavelength is a submultiple
of £ satisfies this condition, i.e., any function of the type

2
+ B cos —7%1—8 (13:1.8)

£*(s) = Acos 2mn g
£
is a solution whatever the constants A and’B and the nonzero integer 7.

It may be shown that many bell-shaped curves also lead to multiple solutions. To avoid this problem,
the averaging function ¢ must have the property that its Fourier transform is positive for any wave number
(see Bazant and Cedolin 1991, Sec. 13.10): Onie particular possibility is to take a weight function with a
Dirac §-spike at its center. Then the nonlocal elastic equation (13.1.5) can be rewritten as

og=vEe+ (1 =4%)EE, ?zzl:/Las(ls—xl)e(s) ds (13.1.9)

in which the first term cormes from the spike, and 0 <y <-1; v is a constant that measures the relative
weight of the spike, and a; is the smooth part of the weight function. It is obvious that for v = 1 the
response is purely local (in which case the elastic solution is unique), while for v = 0 the response is
purely nonlocal and displays the aforementioned multxple solutions. If <y is selected large enough, then
the multiple solutions can be avoided.

This kind of approach, with intermediate values of «y, can be interpreted as a parallel couplmg of a
focal elastic model with a nontocal model, in which < has the meaning of the volume fraction of local
medium. Such a model may also be regarded asa nonlocal continuum model overlaid by a local elastic
continuum. The overlay by an ordinary elastic.continuum(called the imbricate continuum) was introduced
to stabilize the solutions for softening nonlocal continua (BaZant, Belytschko and Chang 1984; BaZant
1986¢). However, such an overlay prevents ‘strain-softening from reducing the stress to zero. Other later
formulations were proposed, such that this artificial expedient could be avoided.

Before proceeding to other models, we may note that in the foregoing simple analysis the multiplicity
of solutions arises because the strain can accept alternating solutions. This is so because the strain can,
in principle, take any value, positivé or negative. However, if nonlinear ever- increasing variables (such
as cumulated plastic work or damage) were to appear in nonlocal equations simitar to (13.1.7), then no

arbitrary solution could exist, because the average of a‘nonnegative variable cannot be zero unless the -

variable vanishes everywhere. This is at the root of the most recent nonlocal models in' which the stress
and strain are considered to be local, while some nondecreasing internal variable is taken as nonlocal. We
will examine a number of models of this kind'in the sequel. But before doing so, it is useful to generalize
the nonlocal idea of averaging to other kinds of operators, in particular, differential operators which lead
to the so called gradient models. .

s

13.1.3 * Gradient Models

Consider an uniaxial model in which a certain scalar variable ~—for example, the uniaxial strain— is
assumed to be nonlocal, as given by the second of (13.1.5), and assume further that the function o is
> a rectangular or bell-shaped function as ‘sketched in Fig. 13.1.1d. If we further assume that the bar is
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very long compared to £, so that the averaging integral would extend from —c0 to -Fco, then, setting
u = § — X, we may rewrite the expression for the nonlocal variable as N

+oo )
= %/_w ofjul)e(z + u) du (13.1.10)

If the local variable € is assumed to be smooth and varying slowly over a segment centered at z in which o

is (.]ifferent from zero, we can approximate £(z + u) by a truncated Taylor power series expansion about
point z. Thus, we get the following expansion:

- Je 8%
E(x) = e(z) + 7 (@) + 55— 2( )l + -+ ?8 e (T} i, (13.1.11)

in which p1; are the dimensionless moments of the weight function, defined as

teo s"ds
Fn :/ allsh gz (13.1.12)
~00

Since e is even, the odd moments are equal to zero, and only the even moments need to be retained in
the foregoing expansion. In cases in which the local variable (¢ in this example) varies slowly over the
length £ (and thus can be approximated by an arc of second-degree parabola), a two-term expansion is a
good approximation of the nonlocal variable. Therefore, setting p262/2 = (A/27)?, we get

2

_ 8 o
eze(:u)+z2“228§2(x) (z)+<27r) %(z) (13.1.13)

as proposed by BaZant (1984b, Eqs. 44, 55, 64,70 and 73).

We thus see that, under certain smoothness conditions, the nonlocal integral operator can be approxi-
mated by a differential operator involving even-order gradients. For the second-order case, the differential
operator reduces to the harmonic operator in (13.1.13).

The harmonic operator as well as fourth-order differential operators have been proposed to describe
materials with softening. They have the advantage of leading to differential equations which are easier
to treat analytically and numerically than the integral equations posed by the full nonlocal approach
(following BaZant 1984b, such models, called second gradient models, have also been introduced by
Miihlhaus and Aifantis 1991, de Borst and Miihlhaus 1992, and others).

 Itis easy to show that the gradient approaches also display multiple solutions if the nonlocal variable can
take arbitrary positive or negative values. We thus turn attention to the nonlocal models (including their

gradlent approximations) based on assuming that the nonlocal variable is one irreversible (nondecreasing)
internal variable.

13.14 A Simple Family of Nonlocal Models

A setof nonlocal models with a common underlying local formulation can be formulated with relative ease,
as dor}e by Plvanas, Elices and Guinea (1993, 1994). These modéls have the advantage of decoupling the
material nonlinearity, involved in the softening curve, from the nonlinearity introduced by the localization.

To be specific, we select the uniaxial softening model with strength degradation described in Section 8.4.2
for which ‘ ’

T et
€= E,_F € (13.1.14)
éf = max(ef) _ (13.1.15)
o < ¢(&) (13.1.16)

where in the last condition the equality holds whenever £/ and &' are both increasing,

We know from the analysis in Section 8.3 that this model leads to strain-localization into a zone of
measure zero. To avoid this, various nonlocal modifications are possible. The simplest is probably to
modify only the last equation (13.1.16) and let it depend on a nonlocal variable Q. Since the last equation
defines the evolution of strength, we can call this type of model a nonlocal strength model.
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® |°

Figure 13.1.2 - (a) Bar subjected to tension, with a localized zone A ‘and unloading zones B. (b) Postpeak
softening curve of stress vs. nonlocal fracturing strain . (Adapted from Planas, Elices and Guinea 1993.)

There are various ways to include nonlocality iﬁ the strength equation. A simple one is to modify
(13.1.16) to read } e . .

o < (1) (13.1.17)

T is a nonlocal variable defined from the {racturing strain dist;ibuﬁon as
T(z)=F [ (s);2] (13:1.18)

inwhich [ef (s); a:] denotes a spatial operator relating the distribution of inelastic strains to the nonlocal
variable. This operator can, in principle, be of the differential or integral type, or of other types.

To see how the general equations are obtained, considera very long bar (i.c., neglect the end effects) and
assume that, upon reaching the peak, strain localization occurs within zone A while over the remainder
of the bar unloading takes place (Fig. 13.1.2a). This means thate/ > 0, and 0 = @(T) for z € A,
and e/ = Qand o < ¢(Y) for z € B. Equilibrium further requires that o = constant along the
bar. Therefore, if we assume, as usual, that after peak the function (') is monotonically decreasing as
depicted in Fig. 13.1.2b, the foregoing conditions can be rewritten as

ef >0amd T =T, forzc A (13.1.19)
ef =0and T <Y, forz € B (13.1.20)

in which T 4 is the constant value that the nonlocal variable assumes in'the softening zone. Given Y 4,
the stress is.obviously obtained as 0 = ¢(Y 4). )

Substituting now Y from (13.1.18) in the two last equations, the problem is reduced to the functional
‘equation )

F {ef(s);z] =T4 for - xands€ A (13.1.21)
subjected to the restriction

Flef(s);z] <T4  for  zcBandsc A (13.1.22)

The solution of this equation yields the distribution of €/ foreach ¥ 4, which is the basic problem to
solve. Note that appropriate jump conditions at the interface between zones A and B may be necessary
to complete the solution. They depend on the type of operator envisaged. Note also that the zZone 4 over
which localization takes place is not known a priori, and so it must ensue as a part of the solution. This
means that, even if the nonlocal operator F is linear, the overall problem is not.

We tmn next to the analysis of three types of operators and their properties. They are all linear
operators, and so the localization problem in Egs. (13:1:21)~(13.1.22) is quasi-linear. In this way, the
material nonlinearity, included in the softening furiction, is decoupled from the localization problem,
which sheds light on the mathematical aspects of the problem:
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Figure 13.1.3 Nonlocal gradient model with harmonic operator. (a) Bar subjected to tension, with a Jocalized
zone A and unloading zones 3. Distributions for Y (b), &/ (c) and inelastic displacement w’ (d). (Adapted
from Planas, Elices and Guinea 1993.)

13.1.5 A Second-Order Differential Model

Consider the differential harmonic operator in Eq. (13.1.13). Then (13.1.21) reduces to the equation

AN\ 9%f
Ef+<§;> E%:TA for ze€A (13.1.23)

whose general solution is

o .
ef =74+ Ceos <—7;+¢) for z€A (13.1.24)

where C and ) are arbitrary constants. To determine these constants and the possible size of the localization
zone, the jump conditions between the regions A and B must be determined. These conditions are obtained
easily if the solution is analyzed in the sense of the theory of distributions. Then, since &/ = T = 0 at
the interior points of B and T = Y 4 at the interior points of A, the solution for YT has C'~! continuity,
therefore, the solution for for €/ must have C7—! continuity, where n is the differential order of the
operator (a jump in the n-th derivative exists). In our case n = 2, and so &/ must have C! continuity,
i.e., it must be continuous, with a continuous first derivative.

Taking the  origin to lie at the left interface between parts A and B, as shown in Fig. 13.1.3a, and
requiring that at this point both &/ and its first derivative must vanish, we get C' = —T4and ¢ = 0,
from which the possible solution takes the form

T

2
ef =71, (1 — cos %) =27 4 sin? 3 (13.1.25)

_ Writing now the continuity conditions at the right interface between A and. B, we find that the size b of the

localization zone can take only discréte values b = m), withm = 1, 2, . Thus, a periodic solution
with an integer number of wavelengths is possible. However, we immediately see that the inelastic
displacement and energy requirements are minimum for the smallest possible size, i.e., for a single
wavelength. Figs. 13.1.3b-d show the resulting distributions for T, £ and v/, where v/ = ffoo el dx
is the displacement associated with the fracturing strain.

Note that in solving this problem we assume that there is a region B in which the material unloads, and
that the softening region A is continuous. Obviously, there also exist solutions in which (a) the strain is
uniform along the bar and-e¥ = T 4 everywhere, or (b) there exist various nonoverlapping distributions
identical in shape to that in Fig. 13.1.3c. However, it is easy to see that the single wavelength solution in
this figure is encrgetically preferred.
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Figure 13.1.4 Examples of weight functions: (a) Réctangular; [®)] second—degree' parabola,
alz) = 1 — (z/0.756)% (c) fourth-degree parabola, Eq. (13.1.4) with py = 15/16; (d) cosine,
o =1+ cos(wz /). (Adapted from Planas, Elices and Guinea1993.) :

13.1.6 An Integral-Type Model of the First Kind

A simple integral functional was investigated by Planas, Elices and Guinea (1993, 1994). It leads to an
_integral equation of the first kind. Its solution, surprisingly, can be obtalned in a closed form, and it turns
out to be a cohesive crack.

In this model, the expression for the nonlocal variable is

Y(z)=F [ef(g);m] =

in which the weight function ¢ is assumed to be smooth-and to have a maximum only at the center. This
function is normalized so that @(0) = 1;and L; Is given by the-uniaxial version of (13.1.2), which ensues
by replacing the volume integral by a simple integral and V- 'by L,.. For very long bars (L extending from
—o0 to +00) L, = £ = characteristic length. Examples of such weight functions are given in Fig. 13.1.4.

Planas, Elices and Guinea (1993,.1994) showed that when a very long bar is considered and the
foregoing expression for the functional is substituted into Eqs. (13.1.21)-(13.1.22), the resulting problem
accepts a solution consisting of a Dirac’s é-function: -

ef =wé(x), - with = w="Tal (13.1.27)

where we assume the origin of coordinates to coincide with the splkc location; w is the dlsplacement jump
associated with the §-function, i.e., the crack opening. Since o = @(T 4), the foregoing resuit indicates
that the solution of this nonlocal mode! is physically equivalent to a cohesive crack model with a softening
function

o= fw) =9 (%) | 3128)

Note also the remarkable similitude of the foregoing result-and Eq. (8.3.2) for the crack band model.
That the foregomg expression isindecd a solutionis easily shown by substituting(13.1.27) into (13.1.26)
and performing the integration; the result is

T(z) = Ta a@)‘ | (13.129)

which shows that, since a(0) = 1, T = T 4 at the origin.where £/ > 0, and T < Y 4 everywhere else,
as required. Fig. 13.1.5b shows the distribution for the nonlocal variable T'; Figs. 13.1.5¢—d display the
distributions for the fracturing strain and displacement."

Certainly, however, this is not the only solution, at-léast on pure mathematical grounds. First, the
location of the §-spike is arbitrary. Second, an array of any number of §-functions is also possible,
which is equivalent to having multiple cohesive cracks: However, the principle of minimum second-order
work indicates, similar to the localization analysis in' Chapter 8, that only one crack will occur in reality.
Planas, Elices and Guinea (1994) further showed that if the weight function satisfies very mild conditions,
solutions with bounded strains distributed over a finite support are not possible. Therefore, it appears that
the single §-spike is the solution of this simple nonlocal model. This provides theoretical support for the
cohesive crack models.

Zl—/ a(ls—x|)sf(s) ds ‘(13.1.26) |
v JL
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Figure 13.1.5 Nonlocal integral model of the first kind. (a) Bar subjected to tension, with a localized zone
reduced to point A and unloading zones B. Distributions for Y (b), ef (c), and inelastic displacement uf (d).
(Adapted from Planas, Elices and Guinea 1993.)

13.1.7 An Integral-Type Model of the Second Kind

Although the foregoing integral model involves a localization limiter in the sense that the solution for the
inelastic strain has a finite measure (i.e., the model gives a finite inelastic displacement, w, and a finite
energy dissipation), the localization still occurs over a segment of vanishing size. Planas, Guinea and
Elices (1996) have extended the analysis to include a linear term along with the integral term in (13.1.26).
They take the integral operator as

T(z) = F [ (s);2] = —yel(z) + lLﬂ/ afls - z|) ¥ (s) ds (13.1.30)
T L

in which -y is constant. Obviously, for v = 0 we recover the previous model. Considering again a very
long bar in which localization takes place in region A far from both ends as sketched in Fig. 13.1.2a, we
have L, = {. Taking the z-origin to lie at the center of the localization zone, as depicted in Fig. 13.1.2a,
we can reduce Egs. (13.1.21)-(13.1.22) to the following Fredholm integral equation of the second kind:

T4y

. h/2
—yel () + 7 / alls —zD)ef(s) ds = Ta forz € [~h/2,h/2] (13.1.31)
—h/)2

subjected to the restrictions

@) >0 forz € [~h/2, h/2) (13.1.32)
14+ R/2

7 alls—z))ef(s)ds < T4 forz & [-Rh/2,h/2) (13.1.33)
s
Here it is understood that £/ (z) = Oforx ¢ [~h/2, h/2]. The integral equation (13.1.31) is a Fredholm
equation of the second kind that can be solved for a given-h by any of several known methods (see, e.g.,
Mikhlin 1964; Press et al. 1992). The key point here is that k is not known a priori, but that it has to be
obtained as part of the solution, because if A is picked at random the solution will fail to satisfy (13.1.32)
or (13.1.33), or both.

Planas, Guinea and Elices (1996) investigated the behavior of the problem both theoretically and
numerically. On the theoretical side they showed that, for the solutions with a zero-measure to be
excluded, 4 must be positive. - They also showed that the solution for ef must be continuous across
the interfaces between the softening and unloading regions. On the numerical side, they investigated
symmetric modes of localization by discretizing the bar in equal eleménts of constant €/ and using point
collocation at the center of the elements. The integral was evaluated using a single integration point in
the center of each element. A certain value of h was initially assumed and the resulting linear system
was solved using standard methods (LU decomposition). It was found that if A was too small, condition
(13.1.33) was violated, as shown for one particular case in Fig. 13.1.6a by the full lines, while if h was too
large, (13.1.32) could not be fulfilled, as shown in the same figure by the dashed line. The solution was-
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Figure 13.1.6  Uniaxial nonlocal model of the second kind. (a) Solutions of the‘intcgml equation (13.1.31)
for too small a value of b (full lines) and for too large a value of h'(dashed lines). (b) Complete solutions of the

problem for various weight functions. (c) Distributions of fracturing strains for various 7. (d) Influence of the
factor -y on the width h of the localization zone. (Af;er Planas; ‘Guinea and Elices 1996.)

found iteratively, first with relatively large elements (£ /12'in size) and then for a refined mesh (element
size £/100 to £/1000 depending on the cases). The results can be summarized as follows:

1. The distribution of &7 is parabolic in shapeand is not very sensitive to the shape of the weight

function e, as shown in Fig. 13.1.6b, in which the distributions for the a-functions in Figs. 13.1.4a,
b, and d are compared for y = 1.-We see that h varies only between 1.3 and 1.6, approximately.

2. Thewidth hofthe softening zone is very much influenced by the value of v, as shown in Fig. 13.1.6¢c. -

Indeed, since the exact solution for v ='01s known to be the Dirac é-function for which & = 0, we
must have h — 0 for v — 0. For the cases investigated by Planas, Guinea and Elices (1996) the

asymptotic relationship is of the power-type: b o y™€ where m is of the order of 1/3, as shown in
Fig. 13.1.6d.

13.1.8 Nonlocal Damage Model

In a series of papers, BaZant and Pijaudier-Cabot developed an isotropic nonlocal dzimagc model, whose ‘
uniaxial version was thoroughly investigated (BaZ¥ant and Pijaudier-Cabot 1988; Pijaudier-Cabot and
Baiant‘ 1987, 1988). The underlying local damage model is similar to the damage models analyzed in
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Sections 8.4.1 and 8.4.4, which can be rewritten as
o= (1-Q)Ee (13.1.34)

€ is the damage, a nondecreasing variable that is made nonlocal using adequate flow rules. Ba¥ant and
Pijaudier-Cabot used two different sets of flow rules which are equivalent in the local version but lead to
slightly different models in the nonlocal version. For the underlying local model they assume, based on

energy considerations, that the driving force for the growth of damage is the damage energy release rate
Y, defined as

ou i :
V=t = Be? ’ 13.1.35
o 2 ( )
inwhichll = (1/2)oe = (1/2)(1~ Q)& is the elastic energy density. Once the driving force is defined,
the evolution of €} is assumed to be described by a unique function of the maximum driving force ever

~ experienced by the material:

Q=F(Y) wih ¥ =max(Y) (13.1.36)

where F(Y’) is a monotonically increasing function of ¥, Because F(¥) is monotonic, it tuins out that
Flmax(Y)] = max[F(¥)], and thus, on purely nonlocal grounds, the foregoing growth rule is strictly
equivalent to writing

Q = max(w) with w=F(Y) . (13.1.37)

Although these two formulations are equivalent in the local framework, they lead to two different
nonlocal models according to whether the nonlocal averaging is applied to Y in (13.1.36) or to w in
(13.1.37). In the first case Pijaudier-Cabot and BaZant (1987) introduced the nonlocal variable Y as

Y(z)= fl;/La([s -z} Y (s) ds - (13.1.38)

and then modified (13.1.36) to read -

Q= F(?) with Y = max(Y) . (13.1.39)

They called this the energy averaging approach because of the meaning of V. In their second formulation
(BaZant and Pijaudier-Cabot 1988) they averaged the intermediate variable w in (13.1.37) (which they
called the. damage averaging approach). The new nonlocal variable W is defined as

1/
w(z) = —/ ofls —z)Jw(s)ds  with  w=F(Y). (13.1.40)
L /. ;
and then the evolution of £ is defined as
Q=0  with T =max(@) (13.1.41)
Recently, Jirdsek (1996) showed that averaging of different variables yields models with very different

postpeak responses, and suggested that averaging ‘of the inelastic strain or damage seems to be most
realistic.

Pijaudier-Cabot and BaZant (1987, 1988) used the energy average model to investigate dynamic strain
localization in a bar subjected to two shock waves traveling from both ends and converging in the center

‘of the bar. The analyses confirmed that the nonlocal formulation does prevent zero measure fracture

modes. Furthermore, the computations were shown to be mesh-objective. In a further work, BaZant
and Pijaudier-Cabot (1988) analyzed the static localization in a bar subjected to tension. Although the
complete analysis is globally nonlinear, it is incrementally linear, and the incremental formulation for
the initiation of localization takes a form similar to that described in the preceding paragraph, namely,
that of a Fredholm equation of the second kind subjected to certain restrictions. To see this, consider the
damage average formulation (13.1.41), and assume that the bar is homogeneously deformed up to a point
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Figure 13.1.7 (a) Incremental strain distribution at the onset.of localization in the nonlocal damage model.
(b) Convergence to the solution for successive mesh refinement.-(After Bazant and Pijaudier-Cabot 1988.)

on the softening branch; We want to analyze the initiation of localization; and so we consider the rate (or
incremental) equation derived by differentiating (13.1:34) with respect to time:

E(1 ~Qo)éo — Beg =6 (= const.) (13.1.42)

Here we have set = Qg and € = &¢. These are the values reached prior to localization, which are,
by hypothesis, uniform. Note also that equilibrium requires & to be uniform. Inseiting (13.1.40) into
(13.1.41) and differentiating, we get :

Q= <5T_’2@/Lo¢(ls ~af)é(s) ds> - Eﬁgﬁfﬁ </La(|s — a]) &(s) ds> (13.1.43)

in which F/(Y) = dF(Y)/dY and (-) are the Macauley brackets, equal to its argument if it is positive,
or zero if it is negative; the second equality holds because . '(Y) and ¢ are positive (remember that F )
is monotonically increasing). Therefore, (13.1.42) can be rewritten as follows:
1 ; :
E(1 — )é(z) = 2BF'(Yo)Yo <f/ alls—z|)&(s) ds> =0 (= const.). " (13.1.44)
T JL

This is an integral equation of the second kind in € which; however, is not linear because of the presence
of the Macauley brackets. BaZant and Pijaudier-Cabot solved this integral equation numerically f(_)r
various weight functions and characteristic lengths. They found the typical strain-rate profiles shown in
Fig. 13.1.7a. They also found that the size h of the localized zone was proportional to £, and that the
convergence with mesh refinement-was fully satisfactory, as shown in Fig. 13.1.7b.

The results for the strain-rate profiles are remarkably similar to those found in the previous paragraph
for the so-called integral model of the second kind, -and Planas, Guinea and Elices (1996) examined
whether the two problems were related. It turned out that they were: it suffices to write the problem in
terms of an inelastic strain rate ¢/ defined as :

o

f g S 13.1.45

&= Hi oy (3.1.45)

Solving this equation for € and inserting the result into (13.1.44), the integral equation is transformed into
(1-90) < A 1/ g >M

S 2 () = (i [ a(ls —x])é () ds ) =0 (13.1.46)

Now, to analyze this problem we can split the bar, as before; into region A in which localization occurs
(and hence the expression into angle brackets is positive) and region B in which unloading occurs and
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thus £/ = 0 and the expression in brackets is negative. Taking further into account that the stress evolves
along the softening branch for which & = — |&] < 0, the foregoing equation can be split into two:

1-Q) 1 .
_g(m@%/);éf(z) b /Laqs —al) el (s) ds = »E-(I‘f‘_'_go) forze A (13.1.47)
Z]:/La(ls —a|)é(s) ds < E(li_lm forz € B (13.1.48)

For very long bars, this system reduces to (13.1.31)-(13.1.33) if we introduce the following correspon-
dences ‘

5| /E Ly (1~ ) .
TE (Y Ye— (L— Q) 7 2F(Yo)Yo— (1— Gy |

This result, combined with the analysis in the previous paragraph, shows that the relationship between
the characteristic length £ and the extent of the localization zone h depends on the characteristics of
the softening function at the point where the localization occurs. This was pointed out by BaZant and
Pijaudier-Cabot (1988), and can now be quantitatively assessed using the plot in Fig. 13.1.6d and the
expression for 7y from the preceding formula. )

ef el

(13.1.49)

Exercises

13.1 Consider the bell-shaped averaging function defined in (13.1.4), restricted to two dimensions. Determine
po so that the value of A, = fA a(|s — x|)dA(s) coincide with that for a uniform distribution over a circle of
diameter £. [Hint: use polar coordinates to carry out the integral and get pp = \/§/2.]

13.2  Consider the bell-shaped averaging function defined in (13.1.4), restricted to one dimension. Determine
po so that the value of L, = fL a(|s — a})ds coincide with that for a uniform distribution over a segment of
length £, :

13.3 Consider anonlocal model with a uniform weight function and its high gradient harmonic approximation.
Determine the relationship between £ and .

13.4 Consider a nonlocal model with the parabolic weight function defined in Fig. 13.1.4b, and its high
gradient harmonic approximation. Determine the relationship between £ and M.

13.5  Show that the energy and damage averaging in (13.1.39) and (13.1.41) are exactly equivalent if F(Y')
is linearin Y.

13.6  Show that along the softening branch 2F'(Y)Y — (1 — Q) > 0 if no localization occurs, and that the
denominators in (13.1.49) are always positive.

13.7 BaZant and Pijaudier-Cabot use a (local) damage function given by
1
FYy=1—- — %

) 14 6(Y — Yy)
where b = 20.5 (MPa)~! and ¥; = 8.54 MPa. With E = 32 GPa, they analyzed the initiation of localization
at various uniform strains. For the particular strain gy = 0.003, they found that the size of the localization
zone was h =¢ 2/ for a bell-shaped weight function. Verify that this is consistent with the results predicted by

the nonlocal strength theory of the second kind. To this end, compute first Yo and Qg; then compute + from
(13.1.49) and use the curve in Fig. 13.1.6d to find A /2.

(13.1.50)

13.2 - Triaxial Nonlocal Models and Applications

In the preceding section we discussed the most basic issues of the nonlocal models based on simple
uniaxial cases. Now we address various othér possible phenomenological formulations with features that
are essentially three-dimensional, and show the general aspects of some practical applications. We also
address the most basic problem of making an experimental determination of the characteristic length £.
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Figure 13.2.1 Finiteelement meshes used by BaZant and Lin(1988a) 10 analyze three-point bending of notched
specimens of three sizes in the ratios 1:2:4 (from BaZant and Lin 1988a), -

13.2.1 Triaxial Nonlocal Smeared Cracking Models

The nonlocal concept can, in principle, be applied to any inelastic constitutive model. It has been applied
to the smeared cracking model described in Chapter 8. Theréare two variants of this model, both of which
have been studied. One variant is the cracking of fixed dircction (Section 8.5.3) in which the damage w,
which is used to modify the compliance matrix, is considered to be a function of the normal strain €,,,, in
the direction normal to the cracks. The nonlocal generalization is obtained by considering the nonlocal
damage W to be the same function of the averaged strain 2,5, in the direction normal to the cracks (for
details, see BaZant and Lin 1988a). ey )

Another variant is the rotating crack model; for which the local formulation was presented in Section
8.5.6. Again, the nonlocal generalization is obtained by replacing the dependence of the normal compli-
ance Cy on the local principal strain by an identical dependence calculated as a function of the nonlocal
principal strain €,. Of course, when the cracks do not rotate, the first and second variant coincide. When
they rotate, the second variant seems to be closer to reality. .

The model was used by BaZant and Lin (1988a) to simulate three-point-bend fracture specimens, and
particularly the size effect. Fig. 13.2.1 shows the finite element meshes for three specimens sizes in the
proportions 1:2:4. Fig. 13.2.2 shows a comparison of the nonlocal finite element analysis with test results.
The strain-softening law has been considered in two forms: exponential (dashed) and linear (dash-dot).
The calculations are compared to the test results of BaZant-and Pfeiffer (1987) and to the optimum fit
of these results with the size effect law, Eq (1.4.10). The results demonstrate that the nonlocal model
eliminates mesh sensitivity (because the ratio of the element size to specimen size is very different for the
three specimens). They also demonstrate that the transitional size effect is well described by the nonlocal
model. The width of the fracture process zone is, in these calculations, found to be roughly 2.7 £, where
£ = characteristic length, in-agreement with the calculations of BaZant and Pijaudier-Cabot (1988).

Fig. 13.2.3 shows finite element calculations on unnotchéd beams with deliberately slanted meshes.
These calculations show that the nonlocal model in which:the charaeteristic length is sufficiently larger
than the element size is free of directional mesh bias.’ The cracking band can propagate in any direction,
without bias, to the mesh lines or the diagonal directions.

13.2.2 Triaxial Nonlocal Models with Yield Limit Degradation

The plasticity models can also be adapted to nonlocal analysis of distributed damage. To this end, plastic
hardening is replaced by softening, which means, for example; that the plastic hardening modulus H
becomes negative, as illustrated by the negative slope in Fig.'13.2.4 for a Mohr-Coulomb yield surface
model. If this is done, of course, Drucker’s stability postulite for plasticity ceases to be satisfied, but this
is not fundamentally incorrect (see Chapters 10 and 13in BaZant and Cedolin 1991} because this postulate
cannot be expected to apply in the case of damage.  The nionlocal concept is introduced into the miodel
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Figure 13.2.2  Size effect plot comparing the test results of BaZant and Pfeiffer (1987) to the size cffect la-w as
well as to finite element results of the nonlocal smeared cracking model for linear and exponential softenings
(after BaZant and Lin 1988a).

Figure 13.2.3 Strain localization zones at three l‘oading stages for a mesh aligned with the crack path (left)
and for a skew mesh (right) (from BaZant and Lin 1988a).

by replacing the plastic strain increment, as soon as it is calculated, by its spatial average and using this
average in the constitutive relation.

A debatable feature of this formulation is the fact that Prager’s continuity condition of plasticity
(consistency condition) is satisfied by the local rather than the nonlocal plastic strain increments, which
means that the constitutive law is local and the nonlocality is introduced as separate adaptation. This
approach appears to be in line with the conclusions of the analysis of crack interactions (BaZant 1994b)
which will be explained later. Some theorists (e.g., de Borst) have insisted that the continuity relation
must be satisfied by the nonlocal strains, which, however, would cause a tremendous complication of the
model because the continuity condition would become an integral equation over the entire structure. Such
a complexity would defeat the advantages of the nonlocal approach. It is true, however, that if Prager’s
continuity condition is not satisfied by nonlocal strains, there is no precisely defined nonlocal constitutive
law.. Theoretically, this is a weak point of this type of formulation.
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Figure 13.2.4 Mohr-Coulomb yield criterion with strain-softening due to yield limit degradation: (a) yield

locus in the deviatoric stress space; (b) yield locus in the principal stress plane; {(c) triaxial stress-strain curves
with softening for various confining stresses. (Adapted from BaZant and Lin 1988b.)
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Figure 13.2.5 Analysis of mesh sensitivity. (a) Rectangular panel with various mesh subdivisiohs; and the
corresponding load-displacement curves for (b) local modeling, and (c) nonlocal modeling . (Adapted from
BaZant and Lin 1988b.)

Fig. 13.2.5 shows an example (BaZant and Lin 1988b) of a réctangular panel solved by meshes of three
different refinements. The local plasticity solution with'a degrading yield limit gives the response in Fig.
13.2.5b and the nonlocal model gives the responses shown'in'Fig. 13.2.5¢. '

" This model has also been applied to the analysis of failure of a tunnel excavation in grouting soil; see

Fig. 13.2.6, which shows meshes of four different refinements and the boundaries of the strain softening -

zones obtained by the four meshes. Note again that the nonlocal approach is basically free of mesh
sensitivity. i
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Figure 13.2.6 BaZant and Lin’s (1988b) finite element analysis of a tunnel excavation in a grouted soil with a
degrading yield limit: (a) finite element meshes; (b) boundaries of the softening zone at full tunnel excavation

obtained for the four meshes shown in (a); (c) exaggerated deformation at full excavation. (Adapted from
BaZant and Lin 1988b.)
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13.2.3 Nonlocal Microplane Model

The most powerful and versatile approach to complex constitutive modeling, including strain softening,
. appears to be the microplane model which will be explainied in the next chapter. Suffice to say at this

point that the nonlocal microplane approach has proven veryeffective and provided, so far, the best finite
- element results in the modeling of damage and failure of concrete structures, including the size effect.

13.2.4 Determination of Characteristic Length

The characteristic length is a parameter that controls the spread of the nonlocal weight function. It may
be defined as the diameter of an averaging region (line segment; circle, or spherc in one-, two-, or three-
dimensions) with a uniform wei ght function that has the same volume as the actual weight function used.
The characteristic length £ cannot be directly measured but mist be inferred indirectly from test of suitable
types. There are two types of tests suitable for thispurpose: (1) the use of size effect, and (2) the use of
elastically restrained tests. Let us examine each of the two possibilities.

(a) Use of size effect. The size effect is the most blatant and most important manifestation of nonlocality.
It is necessary to carry out tests of geometrically similar notched specimens of sufficiently different sizes
and determine the size effect plot (Chapter 6)." Then the characteristic length of the nonlocal model needs
to be varied until the finite element calculations mateh the experimentally determined size effect curve in
the optimum way. Generally, it is observed that the transitional size Dy of the size effect plot (intersection
of the horizontal and inclined asymptotes) is approximately (but not exactly) proportional to the value of
characteristic length £. Therefore, an éffective strategy is to assume characteristic length £/, calculate bya
nonlocal finite element code the nominat strength of specimens of different sizes, and trace the size effect
curve. Optimum fitting of this curve with the size effect:law makes it possible to obtain the horizontal
and vertical asymptotes and determine their intersection Dy Then the best estimate of the corrected
characteristic length is g

The process is then repeated and the value 6f £ corrected iteratively. Normally no more than two cotrections
are required for convergence. ’

(b) Blastically restrained tensile test. Ancther approximate way of determining £ was proposed by
BaZant and Pijaudier-Cabot (1989). A long prismatic specimen of concrete, with a thickness of only
a few aggregate sizes, is cast and many longitudinal thin steel rods are glued to its surfaces by epoxy
as shown in Fig. 13.2.7. It is assumed that the glued steel bars are sufficient to force the strain in the
specimen to be uniformly distributed, and for.this reason the specimen must be as thin as possible. If
that is the case, the tensile load-deflection diagram directly yields the stress-strain curve for the fracture
process zone of concrete. This is illustrated in Fig.'13.2.7¢; where the inclined straight line of slope
K gives the stress carried by steel bars and epoxy alone; and the shaded zone represents the additional
contribution due to concrete. If the slope of the load-deflection curve is always positive, localization
should not happen according to uniaxial localization analysis. Thus, plotting the results in terms of the
average stress and average strain, the shaded area in Fig. 13.2.7¢ gives the energy W, dissipated per unit
volume of the fracture process zone, on the average. Hence, the average width of the softening zone h
should approximately be given by

h=Gs/w, (13.2.2)

which has the dimension of length because Gy~ Jim? and Wy ~ Jim®. The fracture energy Gy is
determined by any of the previously discussed methods. ‘A particular nonlocal model is then needed to
correlate b and £, although it may be assumed that & ~ € (BaZant and Pijaudier-Cabot 1989).

In practice, however, it turned out that this method givesonly a crude estimate of the characteristic length
because the specimen with tensile restraining elastic bars does not behave uniaxially. The deformation
becomes nonuniform transversely and there is somie degree, although not a large degree, of localization, as
transpired from a thorough investigation by-Berthaud, Ringot and Schmitt (1991). Further development
would be required before £ can be accurately determined by this method.

e:e'DO/Dg (13.2.1)
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Figure 13.2.7 BaZant and Pijaudier-Cabot’s (1989) method to determine the characteristic length for concrete:
(a) sketch of restrained specimen; (b) cross-section with the arrangement of the steel bars at the surface of
concrete; (¢} sketch of the stress-strain curves for the specimen with the glued rods. (Adapted from BaZant and
Pijaudier-Cabot 1989.)

13.3 Nonlo&al Medel Based on Micromechanics of Crack Interactions
13.3.1 Nonlocality Caused by Interaction of Growing Microcracks

The local constitutive law may be written in the incremental form
Ao = E(Ae — Ae") = EAe — AS (13.3.1)

where Ao and Ae are the increments of the stress and strain tensors, E is the fourth-rank tensor of
elastic moduli of uncracked material, Ae” the inelastic strain increment tensor, and AS the inelastic
stress increment tensor. ’ :

- In a nonlocal continvum formulation, this equation is replaced by

Ao = EAe — AS (13.3.2)

where AS is the nonlocal inelastic stress increment tensor. In the phenomenological approach discussed
in the previous sections, this tensor is directly obtained by a spatial averaging integral

- AS(x) = A§:/Vo‘e(x,§)AS(£) dv(&) (13.3.3)

completely analogous to (13.1.1), in which we remember that the weight function ¢ is to be postulated.
Following BaZant (1994b), we now describe how the equation governing the evolution of AS can be
developed from the mechanics of crack interactions.

Consider an elastic solid that contains, at the beginning of the load step, many microcracks numbered as
#=1,...N (Fig. 13.3.1). On the macroscale, the microcracks are considered to be smeared, as required
by a continuum model. Exploiting the principle of superposition, we may decompose the loading step of
prescribed load or displacement increment into two substeps:

I In the first-substep, the cracks (already opened) are imagined temporarily “frozen” (or “filled with a
glue”), that is, they can neither grow and open wider nor close and shorten. Also, no new cracks
can nucleate. The stress increments, caused by strain increments Ae and transmitted across the
temporarily frozen (or glued) cracks (I in Fig. 13.3.1), are then simply given by EAe. This is
represented by the line segment 13 (Fig. 13.3.2) having the slope of the initial elastic modulus E.

II In the second substep, the prescribed boundary displacements and loads are held constant, the cracks
are “unfrozen” (or “unglued”), and the stresses transmitted across the cracks are relaxed. This
is equivalent to applying pressures (surface tractions) on the crack faces (I in Fig. 13.3.1). In
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Figure 13.3.1 Superposition method for solid with many ‘cracks. In part I, the cracks are closed and
Ag' = EAe. Invpart I, the strésses’ Ap; on the crack faces generated in part I are released, either si-
multaneously (alternative a) or iteratively keeping all the cracks'closed but one (alternative b); adapted from
BaZant 1994b.
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Figure 13.3.2 Local and nonlocal inelastic stress increments during loading step (adapted from BaZant 1994b).

response to these pressures, the cracks are now allowed to open wider and grow (remaining critical
according to the crack propagation criterion), or to ‘close and shorten. Also, new cracks are now
allowed to nucleate.

If cracks neither grew nor closed (nor new cracks nucleated), the unfreezing (or unglueing) at prescribed
increments of loads or boundary displacements that cause macro-strain increment Ae would engender the
stress drop 34 down to point 4 on the secant line 01 (Fig. 13.3.2). The change of state of the solid would
then be calculated by applying the opposite of this stress drop onto the crack surfaces. However, when
the cracks propagate (and new cracks nucleate), a larger stress drop defined by the local strain-softening
.constitutive law and represented by the segment AS = 32:in Fig. 13.3.2 takes place. Thus, the normal
surface tractions ’ :

Ap, =ny, - AS;n, ) (13.3.4)

representing the normal component of tensor AS,;, must be considered in the second substep as loads
Ap,, that are applied onto the crack surfaces (Fig. 13.3.1), the unit normals of which are denoted as n,.
(Note that for mode II or Hl cracks, a similar equation could,in general, be written for the tangential
tractions on the crack faces.) . . ’

Let us now introduce two simplifying hypotheses:
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(®)

Figure 13.3.3 Details of crack interactions: (a) Actual crack pressure distribution and mean pressure; (b)
mean pressure distributions generated at cracks number A and £ by a unit uniform pressure at crack v, all other
cracks being frozen. (Adapted from BaZant 1994b.)

1. Although the stress transmitted across each temporarily frozen crack varies along the crack, we
consider only its average, i.e., Ap,, is constant along each crack (Fig. 13.3.3a). This approximation,
which is crucial for our formulation, was introduced by Kachanov (1985, 1987a). He discovered
by numerical calculations that the error is negligible except for the rare case when the distance
between two crack tips is at least an order of magnitude less than their size.

2. We consider only mode I crack openings, i.e., neglect the shear modes (modes I1 and 1II). This is
often justified, for instance in materials such as concrete, by a high surface roughness which prevents
any significant relative slip of the microcrack faces (the mode I1 or TN relative displacements that
can occur on a macroscopic crack are mainly the result of Mode I openings of microcracks that are
inclined with respect to the macrocrack). :

A simple-minded kind of superposition method would be to unfreeze all the cracks, load by pressure
only one crack at a time, and then superpose all the cases (Fig. 13.3.1a).” In this approach, the pressure
on each crack, Ap,,, would be known. But one would still have to solve a body with many cracks.

A better kind of superposition method is that adopted by Kachanov (1985, 1987a, which was also
used by Datsyshin and Savruk (1973), Chudnovsky and Kachanov (1983), Chudnovsky, Dolgopolski and
Kachanov (1987), and Horii and Nemat-Nasser (1985), and, in a displacement version, was introduced
by Collins (1963). In this kind of superposition, all that is needed is the solution of the given body for the
case of only one crack, with all the other cracks considered frozen (Fig. 13.3.1b). The cost to pay for this
advantage is that the pressures to be applied at the cracks are unknown in advance and must be solved.
By virtue of Kachanov’s approximation, we apply this kind of superposition only to the average crack
pressures. The opening and the stress intensity factor of crack y are approximately characterized by the
uniform crack pressure Ap,, that acts on a single crack within the given solid that has elastic moduli E
and contains no other crack. This pressure is solved from the superposition relation:

N
Aﬁu = Apu + ZA;UJAﬁU o= 1, SN (1335)

v=1l

where the superimposed bar indicates averaging over the crack length; A, are the crack influence
coefficients representing the average pressure (Fig. 13.3.3b) at the frozen crack p caused by a unit
uniform pressure applied on unfrozen crack v, with all the other cracks being frozen (Fig. 13.3.1b); and
Ay = 0 because the summation in (13.3.5) must skip v = . The reason for the notation for AP,
with a tilde instead of an overbar-is that the unknown crack pressure is uniform by definition and thus its
distribution over the crack area never needs to be calculated and no averaging of pressure actually needs
to be carried out.

Note that the exact solution requires considering pressures Ap,(z') and Ap,(z’) that vary with
coordinate 2’ along each crack. In numerical analysis, the crack must then be subdivided into many
intervals. This could hardly be reflected on the macroscopic continuum level, but is doubtless unimportant
at that level.
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Substituting (13.3.4) into (13.3.5), we obtain

it
Ay -Sun,) = Alw, - Sun,) + 3 AwAn, - §,ony) (13.3.6)

vl

Now we adopt a third simpIifying hypothesis. In each loading step, the influence of the.microcracks
at macro-continuum point of coordinate vector ¢ upon the microcracks at macro-continuum: point of
coordinate vector X is determined only by the ‘dominant microcrack orientation. This orientation is
normal to the unit vector n,, of the maximum principal inelastic macro-stress tensor AS(1 at the location
of the center of microcrack p. We use the definition:

Ag;()) = A(nu . Sunu) = [nu - gunu]ncw o [n/,L : Sunu]o]d (13.3.7)

The subscripts ‘new” and ‘old’ denote the valties at the beginning and end of the loading step, respectively.

" - According to this hypothesis, the dominant crack orientation generally rotates from one loading step to

the next. Eq. (13.3.6) may now be written as:

N [
ASD = 3" AW ASD = A (13.3.8)

v=1
The values of Agu are graphically reg‘ﬁcscmcd\in Fig. '13.3.2 by the segment AS =35, This segment

can be smaller or larger than segment 32, . .
Alternatively, one might assume n,, to approximately coincide with the direction of the maximum

principal strain. Such an approximation is simpler to use in finite ‘element programs, and it might be

realistic enough, especially when the elastic strains are relatively small.

When the principal directions of the inclastic stress tensor'S do not rotate, the increment operators A.

can of course be moved inside each product in (13.3.6), i.¢;, Alng-Sun,) =1, AS,n,, etc. One
might wonder whether this should not be done even when these directions rotate (i.e., when n,, varies),
which would correspond to crack orientations being fixed when the cracks begin to form. But according
to the experience with the so-called rotating crack model, empirically verified for concrete, it is'more
realistic to assume that the orientation of the dominant cracks rotates with the principal direction of S.

It might seem in the foregoing equations we should have taken only the positive part of tensor AS,,.
But this is not necessary since the unloading criterion prevents AS ; from being negative.

13.3.2 Field Equation for Nonlocal Continuum

Now comes the most difficult step. We need to determine the nonlocal macroscopic field equation which
represents the continuum counterpart of (13.3.8). The homogenization theories as known are inapplicable,
because they apply. only to macroscopically uniform fields while the nonuniformity of the macroscopic
field is the most important aspect for handling localization problems. The following simple concept has
been proposed (BaZant 1994b): : i

The continuum field equation we seek is the equation whose discrete approximation can be written
in the form of the matrix crack interaction relation (13:3.8). : ) .

This concept leads to the following field equation for the continuum approximation of microcrack
interactions (BaZant 1994b): :

ASD(x) — / A(x, €)ASW(£)av (g) = AST(x) (13.3.9)

Indeed, an approximation of the integral by a sum over the continuum variable values at the crack cénters
yields (13.3.8). Here we denoted A(x,,, €,) = £(A,,)/ Vi = crack influence function, V, is a constant
that may be interpreted roughly as the material volume per crack; and &£ is a statistical averaging operator
which yields the average (moving average) over a certaini appropriate neighborhood of point x.or £. Such
statistical averaging is implied in the macro-continuum smoothing and is inevitable because, in a random
crack array, the characteristics of the individual ¢racks must be expected to exhibit enormous random
scatter.
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It must be admitted that the sum in (13.3.8) is an unorthodox approximation of the integral from
(13.3.9) because the values of the continuum varfable are not sampled at certain predetermined points
such as the chosen mesh nodes but are distributed at random, that is, at the microcrack centers. Another
point to note is that (13.3.8) is only one of various possible discrete approximations of (13.3.9). Since
this approximation is not unique, the uniqueness of (13.3.9) as a continuum approximation is not proven.
Therefore, acceptability of (13.3.9) will also depend on computational experience (which has so far been
favorable; see OZbolt and BaZant 1996).

When (13.3.9) is approximated by finite elements, it is again converted to a matrix form similar to .
(13.3.8). However, the subscripts for the sum then runs over the integration points of the finite elements.
This means the crack pressures (or openings) that are translated into the inelastic stress increments are only
sampled at these integration points, in the sense of their density, instead of being represented individually
as in (13.3.8). Obviously, such a sampling can preserve only the long-range interactions of the cracks and
the averaging. The individual short-range crack interactions will be lost, but they are so random and vast
in number that aspiring to represent them in any detail would be futile. -

For macroscopic continuum smearing, the averaging operator — over the crack length now needs
reinterpretation. Because of the randomness of the microcrack distribution, the macro-continuum variable
at point x should represent the spatial average of the effects of all the possible microcrack realizations
within a neighborhood of point x whose size is roughly equal to the spacing £ of the dominant microcracks
(which s, in concrete, approximately determined by the spacing of the largest aggregates, which is in turn
proportional to the maximum aggregate size); hence,

ASD(x) = /‘ ASD(E)alx, £)dV (€) (13.3.10)

The weight function a(x, €) is analogous to that in Eq. (13.1.1). It should vanish everywhere outside
the domain of a diameter roughly equal to £. For computational reasons, it seems preferable that & have
a smooth bell shape. Because of randomness of the microcrack distribution, function a:(x, &) may be
considered as rotationally symmetric (i.e., same in all directions, or isotropic).

“Strictly speaking, the macroscopic avcra§ing domain could be a line segment in the direction of the
dominant microcrack (that is, normal to ASU)(x)), or an clongated, roughly elliptical domain. However,
averaging only along a line segment seems insufficient for preventing damage from localizing into a line,
in the case of a homogeneous uniaxial tension field, and it would also be at variance with the energy
release argument for nonlocality of damage presented in BaZant (1987¢, 1991b).

Equation (13.3.9) represents a Fredholm integral equation (i.e., an integral equation of the second kind
with a square-integrable kernel) for the unknown AS(')(X), which corresponds in Fig. 13.3.2 to the
segment 35. The inelastic strain increment tensors AS (D(x) on the right-hand side, which correspond in
Fig. 13.3.2 to the segment 32, are calculated from the strain increments using the given local constitutive
law (for example, the microplane model, continuum damage theory, plastic-fracturing theory, or plasticity
with yield limit degradation).

13.3.3 Some Alternative Forms and Properties of the Nonlocal Model

The solution of (13.3.9) can be written as:
ASD(x) = ASO(x) — / K(x,&)AS0)(£)dV (€) (13.3.11)
1%

in which function K (x, £) is the resolvent of the kernel A(x, £). (This resolvent could be calculated
numerically in advance of the nonlocal finite element analysis, but it would not allow a simple physical
interpretation and a closed-form expression.) With the notation

\Puu = 6uu - A;w (13.3,12)

where é,,, = Kronecker delta, Eq. (13.3.8) can be transformed to
w

S 9, A5 = A (13.3.13)
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The macro-continuum counterpart of this discrete-matrix relation is

| / U(x, )ASD ()aV(€) = ASD () (133.14)
1 N < N

= [ ast@ameavie
which represents an integral equation of the first kind for the unknown function A S (&). Obviously,
U(x, &) =6(x =€)~ A(x,£) (13.3.15)
where §(x — £) = Dirac delta function in twoor three dimensions; indeed, substitution of this expression

into Bq. (13.3.14) yields Eq. (13.3.9).
Defining the inverse square matrix:

[Bun] =19,]7" (13.3.16)
we may wrile the solution of the equation system (13.3.13) as '
AS’}(}I) = ZB#,,AS,’SI) = ZC“AASS): Cor = ZB‘“/(XV/\_ (13.3.17)
v A ; v

with c,\ = ax,, &, ). The macro-continuum counterpart of the last equation is

85960 = [ B AT @av(e) = | cmoasv@ae  sam

where B(x,,,¢,) = £(B,)/V. and C(x,€) = S B(x,&)a(e,x)dV(€). The kemnel B(x,¢)
represents the resolvent of the kernel W(x,€) of (13.3.14). Furthermore,

B(x,£) = 6(x~¢€) ~If(e<,£) ©(13.3.19)

because substitution of this equation into Eq.'(13.3.18) furnishes Eq: (13.3.11). With (13.3.18) we

have reduced the nonlocal formulation to'a similar form as (13.3.3) for the previous nonlocal damage
formulations (Pijaudier-Cabot and BaZant 1987;:BaZant and Pijaudier-Cabot 1989: BaZant and O¥bolt
1990, 1992). However, the presence of the Dirac delta function in the last equation makes Eq. (13.3.18)
inconvenient for computations.” Aside from that, it seems inconvenient to calculate in finite element codes
function B(x, £). Another difference is that the weight function (i.e.; the kernel) is anisotropic (and, in
the present simplification, associated solely with the principal‘inelastic stresses).

Note also that if we set A(x, &) = 0, the present model would become identical to the aforerhentioned
previous nonlocal damage model. But this would not be realistic. The directional and tensorial interactions
characterized by A(x, £) appear to be essential, = - ‘

Because the nonlocal integral in (13.3.21) is additive to the local stress AS, the present nonlocal model
can be imagined as an overlay of two solids that are forced to have equal displacements at all points: (i)
the given solid with all the damage due to cracks, but local behavior (no crack interactions); and (ii) an
overlaid solid that describes orily crack interactions. - The nonlocal stress AS represents the sum of the
stresses from both solids. This is the stress that is to be used in formulating the differeritial equilibrium
equations for the solid. S

For the sake of simplicity, we have so far assumed that the inflience of point € on point x-depends only
on the orientation of the maximum principal inelastic stress at £, ‘Since at & there might be cracks normal
to all the three principal stresses (denoted now by superscripts 1 = 1, 2,3 in parentheses), it might be
more realistic to consider that each of them separately influences point x. In that case, Egs. (13.3.8) and
(13.3.9) can be generalized as follows: ) :

N 3 . :
ASD =N AGASD = As (13.3.20)

=l j=I
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3 .
ASD(x) — / > A (x,£)ASD(€)dV (€) = ASD(x) (6 =1,2,3) (13.3.21)
- = ;
Similar generalizations can be made in the subsequent equations, too. Note that when the body is infinite,
all the present summations or integrations are assumed to follow a special path labeled by ©, which will
be defined in the next section.
The heterogeneity of the material, such as the aggregate in concrete, is not specifically taken into

. account in our equations. Although the heterogeneity obviously must influence the nonlocal properties

(e.g., Pijaudier-Cabot and BaZant 1991), this influence is probably secondary to that of microcracking. The
reason is that the prepeak (hardening) inclastic behavior, in which microcracking is much less pronounced
than after the peak while the heterogeneity is the same, can be adequately described by a local continuum.
The main effect of heterogeneity (such as the aggregates in concrete, or grains in ceramics) is indirect; it
determines the spacing, orientations, and configurations of the microcracks. .

13.3.4 Admissibility of Uniform Inelastic Stress Fields

In the previous nonlocal formulations, the requirement that a field of uniform inelastic stress and damage
must represent at least one possible solution led to the aforementioned normalizing condition for the
weight function cv. Similarly, we must now require that the homogeneous stress field AS() = ASH
satisfy (13.3.8) and (13.3.9) identically. This yields the conditions that the integral of A(x, £) or the sum
of Ay, over an infinite body vanish. However, the asymptotic behavior of A(x, &) for 7 — 0o which will
be discussed later causes this integral or sum to be divergent. Therefore, the conditions must be imposed
in a special form—the integral in polar coordinates is required to vanish orily for a special path, labeled
by ©, in which the angular integration is completed before the limit 7 — o0 is calculated, that is,

o} R 2
/ A(x, €)dV(€) = lim / (/ A(x,'ﬁ)rdqﬁ) dr = 0 (for 2D)
v 0 0

R—o0

R 2n 7
/VO A(x, £)dV (&) = Rh_rgo/o <‘/(; /0 | A(x,&)r?sin Hd(-)dgzﬁ) dr = 0 (for 3D) (13.3.22)

7, ¢ are polar coordinates; 7, 8, ¢ arc spherical coordinates. Furthermore, again labeling by ® a similar
summation path (or sequence) over all the cracks v in an infinite body, the following discrete condition
needs to also be imposed:

° :
ZAW =0 (13.3.23)

This condition applies only-to an array of infinitely many microcracks that are, on the macroscale,
perfectly random and distributed statistically uniformly over an infinite body (or are periodic). By the
same reasoning, for an infinite body we must also have

/O K(x,£)dV(€)y=0 (13.3.24)
\4

[e] » [0} 0]
[ veew© - [ Bxowe - [ oo =1 (13.3.25)
v . Vv v .

and in the discrete form

© © © ©
Z\I//w = Za;w = ZB;W = ZC‘“’ =1 (13.3.26)

For integration paths in which the radial integration up to 7 — o0 is carried out before the angular
integration, the foregoing integrals and sums are divergent.
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13.3.5 Gauss-Seidel Iteration Applied to Nonlocal Averaging

For the purpose of finite element analysis, we will now assime that subscripts ¢4 and v label the numerical
integration points of finite elements, rather than‘the individual microcracks. This means that the micro-
cracks are represented by their mean statistical characteristics sampled only at the numerical integration
points. ) :

In finite element programs, nonlinearity is typically handled by iterations of the loading steps. Let
us, therefore, examine the iterative solution of (13.3:8) or (13.3:13), which represents a system of N
linear algebraic equations for N unknowns AS’S) if AS#l are givén. The matrix of ¥, is, in general,
nonsymmetric (because the influence of a large crack on a small crack is not the same as the influence
of a small crack on a large crack). This nonsymmetry‘'seems disturbing until one realizes. that this is so

only because of our choice of variables AS’,SI) and AS, (’,), which'do not represent thermodynamically

conjugate pairs of generalized forces and generalized displacements. If AS,(LI) were expressed in terms
of the crack opening volumes, then the matrix of the equation system resulting from (13.3.8) or (13:3.13)
would have to be symmetric (because of Betti’s theorem) and also positive definite (if the body is stable).
These are the attributes mathematically required for convergence of the iterative solution by Gauss-Seidel
method (e.g., Rektorys 1969; Collatz 1960; Korn and Korn 1968; Varga 1962; Fox 1965; Strang 1980).
Aside from that, convergence of the iterative solution of (13:3.8) or (13.3.13) must also be expected on
physical grounds (because it is mechanically equivalent to the relaxation method, which always converges
for stable elastic systems).

In the r-th iteration, the new, improved values of the unknowns, labeled 'by superscripts [r + ‘1], are
calculated from the previous values, labeled by superscript 7], either according to the recursive relations:

A]}E:_H] = Apu + Z A[.LUAﬁxl/T] : (13.3;27)
v=]
~ Ty N o .
AS‘(LI)[W)—IJ — AS}LI) 'l’ZA,uVAS,Sl)[T] (/»L: 1,...,N) (13.3‘28)'

v=1

or according to the recursive relations:

-1 N
Al =Ap, + > A AR > AwAp (b=1,.,N) (13329)
v=] v=p+1 "

— b1 N
ASOEHT = ASED + 57 A, ASDI+H > AW ASE (=1, ., NY (13.3.30)

=1 v=p4l s

Equation (13.3.28), also known as the Gauss method or Jacobi method, is less, but normally only slightly
less efficient than (13.3.30), in which the latest approximations are always used. The values of AS’;(LI)
may be used as the initial values of A5, ;a]) ) 5 the first iteration.

It is possible to derive Eqs. (13.3.27) and (13.3.28) more directly, rather than from (13.3.5). To this
end, we note that the sequence of iterations isidentical to a 'solution by the relaxation method in which
one crack after another is relaxed (i.e., its pressiire reduced to zero) while all the other cracks are frozen

(so in each relaxation step, one has a problem with oné crack only), as illustrated in Fig. 13.3.1b. Each .

relaxation produces pressure on the previously relaxed cracks.-After relaxing all the cracks one by one,
the cycle through all the cracks is repeated again and again. Thiskind of relaxation is known in mechanics
to converge in general (this was numerically’ demonstrated for a system of cracks and inclusions by
Pijaudier-Cabot and BaZant 1991). The solution to which the relaxation process converges is obviously
* that defined by Eq. (13.3.8). (Note also that this relaxation argument in fact represents a simple way to
prove the superposition equation (13.3:5).) ) k )

For structural engineers, it is interesting to note the similarity with the Cross method (moment distri-
bution method) for elastic frames. Relaxing the pressure-at one crack while all the othér microcracks
are frozen (glued) is analogous to relaxing one joint in'a frame while all the other joints are held fixed.
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Repeating this for each joint, and then repeating the cycles of such relaxations of all the joints, eventually
converges to the exact solution of the frame.

The macro-continuum counterpart of the Gauss-Seidel iterative method, which converges to the solution
of the Fredholm integral equation (13.3.9), is analogous to (13.3.28) and is given by the following relation
for successive approximations (iterations):

ASOI+ 0 :ZS_W(?H/ A(x. £)ASDUI(E) av (¢) (13.3.31)
v .

The discrete approximation of the last relation is the equation that ought to be used in finite element
programs with iterations in each step. We see that the form of averaging is different from that assumed
in the phenomenological models we described. There are now two additive spatial integrals: one for
close-range averaging of the inelastic stresses from the local constitutive relation, and one for long-range
crack interactions based on the latest iterates of the inelastic stresses.

In programming, the old iterates need not be stored in the computer memory. So the superscripts [r] and
[+ I] may be dropped and equations (13.3.9) and (13.3.31) may be replaced by the following assignment
statements: ’

N
Ag‘(ll) —ASY ZAWAS*I(}) (p=1,2,.N)  (13.3.32)
’ v=l
A5V« A5G + [ Ax a0 avie) (13333)
v

A strict implementation of Gauss-Seidel iterations suggests programming each iteration loop for
Eq. (13.3.32) to be contained within another loop for the iterations of the loading step in which the
displacement and strain increments in the structure are solved. However, it is computationally more
efficient to use one common iteration loop serving both purposes. Then, of course, the iteration solution
is not exactly the Gauss-Seidel method because the strains are also being updated during each iteration.
There is already some computational experience (Ofbolt and BaZant 1996) showing that convergence is
still achieved. :

The common iteration loop has the advantage that it permits using the explicit load-step algorithm for
structural analysis. Ineachloading step of this algorithm, one evaluates in each iteration at each integration
point the elastic stress increments FAe and the local inelastic stress increments AS from fixed strains
Ag; then one uses (13.3.32) to.calculate from AS the nonlocal inelastic stress increments AS for all the
integration points, solves new-nodal displacements by elastic structural analysis, and, finally, updates the
strains.

13.3.6 Statistical Determination of Crack Influence Function

The basic characteristic of the new formulation is the crack influence function A, whose rate of decay is
determined by a certain characteristic length £, This function represents the stress field due to pressurizing
asingle crack in the given elastic structure, all other cracks being absent. In practice, the structure is always
finite, and thus the values of A, should, in principle, be calculated taking into account the geometry of
the structure. However, the crack is often very small compared to the dimensions of the structure. Then
the present formulation has the advantage that one can use, as a very good approximation, the stress field
for a single crack in an infinite body, which is well known and calculated easily. This is, of course, not
possible for cracks very near the boundary of the structure,

The cracks in structures are distributed randomly and their number is vast. Thus, on the macro-
continuum level, function A;w cannot characterize the stress fields of the individnal cracks, Rather, it
should characterize the stress field of 4 representative crack obtained by a suitable statistical averaging of
the random situation on the microstructure level.

A method of rigorous mathematical formulation of the macroscopic continuuin crack influence function
A was briefly proposed in the addendum to BaZant (1994b) and was developed in detail in BaZant and
Jirdsek (1994a). This method will now be described.

The crack that is pressurized by unit pressure, as specified in the definition of A, will be called the
source crack, and the frozen crack in the structure on which the influence is to bc found will be called
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Figure 13.3.4 Definition of relative crack locations: (a) general position of the source crack and target crack;
(b) various possible random locations of the source crack influencing a target crack; (c) dominant cracks
appearing in regions of size s that determine their typical spacing. (Adapted from BaZant and Jirdsek 1994a.)

the target crack (Fig. 13.3.4a). For the purpose of calculations; the térget crack is, of course, closed and
glued, as if it did not exist, and the stresses transmitted across the target crack are calculated assuming
the body to be continuous. In the following, the global axes will be denoted with capital letters and the
position vectors of the target and source cracks by X and &= (Fig. 13.3.4a). We take axes (,y) to be,
respectively, parallel and perpendicular to the source crack with origin at its center, and call £ the vector
from the source to the target crack (Fig. 13.3.4a). Then function A(0, &) represents the influence of a
source crack centered at x = O on a target crack centered at €.(Fig. 13.3.4a).

. At the given macro-continuum point, there may or may not be'a crack in the microstructure. Function
A corresponding to that point must reflect the smeared statistical properties of all the possible microcracks
occurring near that point. To do this, we must idealize the random crack arrangements in some suitable
manmner. : i

We will suppose that the center of the source crack-can occur randomly anywhere within a square
of size s centered at point x = 0; see Fig. 13.3.4b,c, where various possible cracks are shown by the

dashed curves, but only one of these, the crack showed by the'solid lines, is actually realized. The value -

of s is imagined to represent the typical spacing of the dominant cracks. In a material such as concrete,
approximately s = md,, where d, = spacing of the largest aggregate pieces and m = coefficient larger
“than 1 but close to 1 (m would equal d,, if the aggregates were arranged at the densest ideal packing and
if there were no mortar layers within the contact zones).

To simplify the statistical structure of the system of dominant cracks, one may imagine the material -

to be subdivided by a square mesh of size s as'shown in Fig: 13.3.4c, with one and only one crack
center occurring within each square of the mesh. This is, of course, a simplification of reality because
the underlying square mesh introduces a certain directional bias (as is well known from finite element
analysis of fracture). It would be more realistic to assumc that the possible zone of occurrence of the
center of each crack is not a square but has a random shape and area about s X s, and that all these areas
are randomly arranged. But this would be too difficult for statistical purposes, and probably unimportant
with respect to the other simplifications of the model.

Let us now center coordinates  and ¥ in the center of the square s X s, as shown in Fig. 13.3.4b, and
consider the influence of a source crack within this square on a target crack at coordinates & = (€,7).
The macroscopic crack influence function should describe the influence of any possible source crack
within the given square in the average, smeared macroscopic sense. Therefore, A(0, £) is defined as the
mathematical expectation £ with regard to all the possible random realizations of the source crack center
within the given square s X s, that is

A0,y =€ [U(”‘(E —~z,n - y)] ; © o (13.334)

The vector (£ — z,7— y) = r = vector from the center X = (x,) of a source crack to the center
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£ = (&, 7m) of the target crack. In detail,
1 s/2 s/2
20.9=% [ [ ww e €y (13.3.39)
§TJs/2d—s/2

Here o(!) is the field of the maximum principal stresses caused by applying a unit pressure on the faces of
the source crack, and the integrals represent the statistical averaging over the square s x s (Fig. 13.3.4b).
Certain specified weights w(z, y) have been introduced for this averaging. At first, one might think that
uniform weights w might be appropriate, but that would not be realistic near the boundaries of the square
because a crack cannot intersect a crack centered in the adjacent square, and, in practice, cannot even lie
too close. Rigorously, one would have to consider the joint probability of the occurrences of the crack
center locations in the adjacent squares, but this would be too complicated. We prefer to simply reduce the
probability of occurrence of the source crack as the boundary of the square is approached. For numerical
computations we choose a bell-shaped function in both the  and y directions, given as

‘ 712 212
(z,y) =w 1_<%E> 17(@) ' - (13.3.36)
v ’z_/ 0 s s ’ T ea - -
forz < 5/2,y < s/2, and w(z,y) = O otherwise; constant wy is selected so the integral of w(z, y)
over the square s X s be equal to 1. It may be added that there is also a practical reason for introducing
this weight function. If the weights were uniform over the square, function A would not have a smooth
shape, which would be inconvenient and probably also unrealistic for a continuum model.

The stress field o(1) to be substituted into (13.3.36) is given for two dimensions by the well-known
Westergaard’s solution (see Chapter 4). However, the integral in Eq. (13.3.35) is difficult to evaluate
analytically, and it is better to use numerical integration to obtain A.

The asymptotic properties of function A for large 7 can nevertheless be determined easily (BaZant
1992b, 1994b) by considering the tines: of influence from various possible source cracks to the given
target crack as shown in Fig. 13:3.4b. If the target crack is very far from the square in which the source
crack is centéred, all the possible rays of influence are nearly equally long and come from nearly the same

di(re)ction. Therefore, the integral in Eq. (13.3.35) should exactly preserve the long range asymptotic field
1 ‘
o

13.3.7 Crack Influence Function in Two Dimensionsv

Consider now a crack in an infinite solid, subjected to uniform pressure o (Fig. 13.3.3b). According to
Westergaard’s solution (Chapter 4) the stress distribution can be written as

oz =ReZ —yIlmZ' —0, oy =ReZ-+ylmZ ~0, 714y=-yReZ (13.3.37)
in which 0, and Oyy are the normal stresses, Tyy is the shear stress, and
Z =0z (7 —a?)" V% z=rel® (13.3.38)

Here 2a = crack length, iZ = —1, Z' = dZ/dz, and 1, ¢ = polar coordinates with origin at the crack
center and angle ¢ measured from the crack direction z. For r 2> a we have the approximation:

a? -1/2 a? s @
Z:a<1~m> =U(I+2—7“2—C +...>:a<1+5;5 +> (13.3.39)

From this, we calculate

I

Re Z

CLZ
o2 <1 + ﬁ C052¢ + ) N

oa’r sing Im (—r_3e_3i4’) = —gar™? sin¢ (—sin3¢) (13.3.40)

i

yIm Z’
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Substituting this into (13.3.37) and using the formulas for products of trigonometric functions, we gét
the following simple result for the long-range (r > a) asymptotic field (BaZant 1992b, 1994b):

Ozz = ok(r) 0024(15, U;y = ok(r) (cos 20 — c0324¢)
Ty = ah(r) sind¢ ; sin2¢ (13.3.41)

where k(r) = a? / 2. Subscripts z, y refer to cartesian coordinates with origin at point £ coinciding with

‘the crack center and axis y normal to the crack; Oy and oy are the normal stresses, 7o, is the shear
stress; and ¢ are polar coordinates with origin at the ¢rack center; with the polar angle ¢ measured from
axis z. The principal stresses o(*) and o(2) and the first principal stréss direction ¢! are given by:

o = ok(r) (COS 26 + siin ¢$) e W= Uk(r) (COS 29 sin gb) (13.3.42)

2 2
tan 2¢0) = = cot 3¢

The foregoing expressions describe the long-range form of function A(x, £). It does not matter that
they have a 72 singularity at the crack cénter, because they are‘invalid for not too large r. Note that the
average of each expression over the circle = constant is zero, which is, in fact, a necessary property.

By virtue of considering only principal stress directions, A(x; ¢) is a scalar. All the information on the”

relative crack orientations is embedded in the values of this function. The principal stress direction at point
&, whichcan be regarded as the dominant crack direction at thatlocation (Fig. 13.3.4a), is all the directional
information needed to calculate the stress components at point X; see (40), in which 7 = ||x—£|} = distance
between points x and & The value of A(x,£), needed for (13:3.31) or (9), may be determined as the
projection of the stress tensor at point X onto the principal inelastic stress direction at that point. According
to Mohrecircle: 2A(%, €) = (04q +0yy ) + (0o —0yy) €08 2{th = 0) — 274y sin 2(1h — ) in which 8, =
angles of the principal inelastic stress directions at points €, x, respectively, with the line connecting these
two points (i.e., with the vector x — ). Substituting here for ¢ etc., the expressions from (13.3.41),
one obtains a trigonometric expression which can be brought by trigonometric transformations (Planas
1992) to the form: -

k(r)
Ax8) = - =5
where § = 90° — ¢. Note that the function A(x, ¢) is symmetric. This is, of course, a necessary
consequence of the fact that the body is elastic. .

Two properties contrasting with the classical' nonloeal formulations explained before should bé noted:
(1) the crack influence function is not isotropic but depends on the polar angle (i.e., is anisotropic), and
(2) it exhibits a shielding sector and an amplification sector. " We may define the amplification sector as
the sector in which oy, (the stress component normal to the crack plane) is positive, and the shielding
sector as the sector in which oy, is negative. The amplification sector oy, > 0, according to (13.3.41),
is the sector ¢ < ¢, where

¢y =55740° S (13.3.44)

The sector in which the volumetric stress oz -+ Oyy-(first stress invariant) is positive is ¢ < 45°, The
sector in which oy, > 0is ¢ < 22.5° and ¢ >'67.5°. The sector in which 2 7inax = 0gg — Oyy 20

is ¢ < 45°. The maximum principal stress o{ is positive for all angles ¢, and the minimum principal
stress o(?) is positive for ¢ < 21.471°, :

The consequence of the anisotropic nature of the crack influence function is that interactions between

adjacent cracks depend on the direction of damage propagation with respect to the orientation of the
maximum principal inelastic stress. In a cracking band that is macroscopically of mode I (Fig. 13.3.5a),
propagating in the dominant direction of the microcracks, the microcracks assist each other in growing
because they lie in each other’s amplification sectors. In a ¢racking band that is macroscopically of mode
II' (Fig. 13.3.5b), the microcracks are mutually in.the transition between their amplification and shielding
sectors, and thus interact little.  Under compression, a band of axial splitting cracks may propagate

[cos20 +cos 24 cos2(0 + ) | (13.3.43)
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Figure 13.3.6 Radial dependence of A.

sideways (Fig. 13.3.5¢), and in that case, the microcracks inhibit each other’s growth because they lie in
cach other’s shielding sectors. Differences in the kind of interaction may explain why good fitting of test
data with the previous nonlocal micreplane model required using a different material characteristic length
for different types of problems (e.g., mode 1 fracture specimens vs. diagonal shear failure of reinforced

. beam). :

For small 7, function A(x, ) is a result of interactions in all directions. As the first approximation,
these interactions may be assumed to cancel each other. Accordingly, we replace function k(r) = a?/r?
by a simple function of the same asymptotic properties for » — co which does not have a singularity at
7 = 0 and for r — 0 approaches 0 with a horizontal tangent:

klr \?
k(r) = ( ) ) (13.3.45)

2+ 2

Here « is an empirical constant such that x¢ roughly represents the average or effective crack size @ for
the. macro-continuum; £ is a certain constant representing what may be called the characteristic distance
of crack interactions (it represents the radial distance to the peak in Fig. 13.3.6). This length may be
identified with what has been called the characteristic length of the nonlocal continuum. It reflects the
dominant spacing of the microcracks, which in turn is determined by the size and spacing of the dominant
inhomogeneities such as aggregates in concrete.

The foregoing expressions give the crack influence function Ao, which is exact asymptotically for
7 — 00 but is only a crude approximation for small . It is now convenient to represent the complete
crack influence function A in the form: ’

A(0:€) = Ao (&,m) + Ay (€, m). (13.3.46)

where A; represents a difference that is decaying to infinity faster (i.e., as a higher power of ) than A
and can, therefore, be neglected for sufficient distances r.from the center of the source crack.

The complete function A was determined by numerical integration of Eq. (13.3.35) using a dense
square mesh; see 13.3.7a (BaZant and Jirdsek 1994a). The target crack was considered parallel to the
source crack, and a/s = 0.23. The asymptotically correct analytical expression for the crack influence
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function from Eq. (13.3.45) is plotted in Fig. 13.3.7b:=/After its subtraction from the A, values, one
obtains the plot of the difference A| shown in Fig. 13.3.7¢c. A table of numerical values of Al was reported
in BaZant and Jirdsek (1994a)).

Function A;(z, y) obviously depends on the relative crack size a/s. However, it has been found that
it depends on a/ s only very little when @ /s 2> 0.25. For smaller o /s, the crack interactions are probably
unimportant. So perhaps a single crack influence function eéxpression could be used for all the cases.

A statistical definition of A in three dimensions that is analogous to Bq. (13.3.35) can obviously be
written, t0o.

13.3.8. Crack Influence Function in Three Dimensions

The case of three dimensions (3D) is not difficult when the ¢racks are penny-shaped (i.e., circular) and

the boundary is remote. The stresses around suchcracks have traditionally been expressed as integrals of

“Bessel functions (Sneddon and Lowengrub 1969; Kassir and Sih1975), which are however cumbersome
for calculations. Recently, though, Fabrikant (1990) ingeniously derived the following closed-form
expressions:

oy +Re oy o =Reags ‘ Imo,
U“:T’ Uyyz_'*z“‘_, Tay = )
Tz = Re T, Tyz =Im 7T, (13.3.47)
in which
‘ 2
gzz%ri(z%p), oy & U{(1+2u)B+D]
. 2 2 6[ _2 2 2y _ zy4d
oy = % 2_”‘”2123 1—wq? [a2(63 4112”‘"9 ) = 5b]
Ll GG
20 zl[d®(455 =5 4+ 141
7y=—elt 222 [‘? ( ol ) o i (13.3.48)
. (8 lzl

2774 _
gt als aresin . _ az’[l} +a%(2a? +22% - 3p%)]

l} ly’ : 1§l

Ly~L Ly+ L o P I —
11 =——*—'~22 ‘, 12:'—7—2‘“]*, 13: l%—az, l.x: l%—llz
Ly = /{a —p)? + 22, Ly =y/la+p)?+ 2

in which a = crack radius; 7, 8, ¢ are the spherical coordinates (Fig. 13.3.8) attached to cartesian coor-
dinates x, y, z at point &, with angle & mieasured from axis z which is normal to the crack at point £; 7
= distance between points x and &; p, ¢,z are the cylindrical coordinates with origin at the crack center;
and p, ¢ are polar coordinates in the:crack plane, angle ¢ being measured from axis z.

The long-range asymptotic form of the foregoing stress field has been derived (BaZant 1994b). The
derivation is easy if one notes that, for large' r, Lj =~ v~ asiné, L, &~ r - asiné (see the mean-
ing of Ly and Ly in Fig. 13.3.8a), I} =~ asinf,ly =~ 7 and, for 7 > «, arcsin(a/ly) = [1 +
(a?/61D)]a/la, /IE — a2 ~ r[1 —(a?/2r%)]. The result is the following long-range asymptotic field:

il

Tpp

ok(r) {(1 +2v) <sin2 g - %) +(1= 20 = 5 cos* ] sin? 0}
opg = ok(r) [(1 +2v) (sin2 60— %) =~ (1= 2v ~5cos’ §) sin? 0}

3
Gpe = — ok(r) sin20 (4 = 55in” ), Opgp = Oz =0

2 ,
04z = ok(r) [ sin?8 — —) : _ (13.3.49)
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Figure 13.3.7 Crack influence function determined by BaZant and Jirdsek (1994a)): (a) total crack influence
function for the case of parallel source and target cracks, (b) analytical expression having the correct long-range
asymptotic field, and (c) difference of the crack influence functions in (a) and (b). (From BaZant and Jirdsek
1994a.)
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Figure 13.3.8 Crack illﬁuence function in Lhre(; dimensions: (a) definition of coordinates for a penny-shaped
crack (adapted from BaZant 1994b); (b) radial dependence of the influence function.

in which, for three dimensions, E(r) = a®/(wr®). For the same reasons as those that led to Eq. (13.3.45),
this expression may be replaced by :

1 wlr o \? '
k(r)= — (“7'2 ~ ez) (13.3.50)

(Fig. 13.3.8b) which is asymptotically correct for + - o0 and nonsingular at 7 = 0. The crack influence
function based on (13.3.49) satisfies again the condition that its spatial average over every surface r =
constant be zero. - ) Ee i

For large distances r, the crack influence function in three dimensions asymptotically decays as 3,
whereas in two dimensions, it decays as r—2, Again, in contrast to the phenomenological models we
expounded before, the weight function (crack influence function) is not axisymmetric (isotropic) but
depends on the polar or spherical angles (i.e., is anisotropic). '

Eurther note that one can again distinguish a shielding sector and an amplification sector. According
to the change of sign of o, in Eq. (13.3.49), the boundary of these sectors is given by the angle

0y = arcsin/2/3 = 54.736° (13.3.51)

or 90° — 8, = 35.264°. Thus, the amplification sector @ > @y is significantly narrower in three than in
two dimensions. ' i

In the case of a field that is translationally symmetric in’2, one might wonder whether integration
over z might yield the two-dimensional crack influence furiction However, this is not so because the
two-dimensional crack influence function represents in thies dimensions the effect of an infinite strip (of
thickness dz) at coordinate z of pressurized cracks aligned-in the z direction on the stressés in a strip

of glued cracks at coordinate €. This cannot yield the same properties as the field of one penny-shaped
crack. -

13.3.9  Cracks Near Boundary

When the boundary is near, the crack influence function should be obtained by solving the stress field
of a pressurized crack located at a certain distance d from the boundary; Fig. 13.3.5d-g. Obviously,
the function will depend on d as a parameter, i.c., A(x,€;d). Functions A will be different for a free
boundary, fixed boundary, sliding boundary, and elastically supported boundary or interface with another
solid (Fig. 13.3.5d~g). When the crack is neara boundary corner (Fig. 13.3.5f), A represents the solution
of the stress field of a pressurized crack in the wedge, and will depend on the distances from both boundary
planes of the wedge. These solutions will be muich more complicated than for a crack in infinite body, and
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simplifications will be needed. On the other hand, because of the statistical nature of the crack system,
exact solutions of these problems are not needed. Only their essential features are.
A crude but simple approach to the boundary effect is to consider the same weight function as for an

_ infinite solid, protruding outside the given finite body. In the previous nonlocal formulations, based on

the idea of spatial averaging, the same weight function as for the infinite solid has been used in the spatial
integral and the weight function has simply been scaled up (renormalized), so that the integral of the
weight function over the reduced domain would remain 1. In the present formulation, such scaling would
have to be applied to all the weight functions whose integral should be 1, i.e., ¢, %, B, C. For those
weight functions whose integral should vanish, a different scaling would be needed to take the proximity
of the boundary into account; for example, the values at the boundary should be scaled up so that the
spatial integral would always vanish, as indicated in (13.3.22). As a reasonable simplification, this might
pethaps be done by replacing the A, values for the integration points &, of the boundary finite elements
by &y A, where the multipicative factor ky, is determined from the condition that Z,],V:I Ay = 0 (with
the summation carried over all the points in the given finite body);

kb.:.— Z AW/ Z A (13.3.52)

interior v boundary v

13.3.10 Long-Range Decay and Integrability

Consider now an infinite two-dimensional elastic solid in which the stress, strain, and cracking are
macroscopically uniform. All the microcracks are of the same size a, and the area per crack is s2. The
stress o applied on each microcrack is the same. From (13.3.41) we calculate the contribution to the
nonlocal integral from domain V; outside a circle of radius Ry that is sufficiently large for permitting the
approximation k(r) = a?/r%,

© R 2T a2 cos b rdddr 1 oo paw 082
R ey A S W
Vi R—co frop Jo=o 21 s 282 Jyer Jomo 1

(13.3.53)
Now an important observation, to which we already alluded: the last expression is an improper integral
which is divergent (because it is divergent when the integrand is replaced by its absolute value; see e.g.,
Rektorys 1969). This also means that the value of the integral depends on the integration path. For some
path the integral may be convergent, and that path, shown in (13.3.53), has been labeled by ©. So we
must conclude that a homogeneous AS field, that is, a field with a uniform length increment of all the
cracks in an infinite body that is initially in a statistically uniform state, is impossible.

But this is not all that surprising. As known from the analysis of bifurcation and stable equilibrium
path, strain-softening damage (which is due to microcrack growth) must localize (e. g., BaZant and Cedolin
1991). So, in practice, the two-dimensional domain of the integrals such as the last one must nét be
infinite in two.directions. It can be infinite in only one direction, as is the case for a localization band.
The basic reason for this situation is that the asymptotic decay r 2, which we have obtained, is relatively
weak—much weaker than the exponential decay assumed in previous works (for an exponential decay,
the integration domain could be infinite in all directions without causing this kind of problem).

A similar analysis of uniférm damage can be carried out for an infinite three-dimensional solid, and
the conclusion is that the integration domain, that is, the zone of growing microcracks, can be infinite in
only two directions (a localization layer), but not in three.

A similar divergence of the integral over infinite space has been known to occur in other problems of
physics, for example, in calculation of the stresses from periodically distributed inclusions, or the light
received from infinitely many statistically uniformly distributed stars. For a perspicacious mathematical
study of this type of probleim, see Furuhashi, Kinoshita and Mura (1981).

13.3.11 General Formulation: Tensorial Crack Influence Function

In Eq. 13.3.9, the principal stress orientations at points x and £ are reflected in the values of the ‘scalar
function A(x, &). For the purpose of general analysis, however, it seems more convenient to use a tensorial
crack influence function referred to common structural cartesian coordinates X = X Y =X5,7 = Xs,
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and transform all the inelastic stress tensor commponents to X , Y, Z. The local cartesian coordinates
T =1I1,y = 2, 2 = 3 at point £ are chosen 5o that axis y coincides with the direction of the maximum
principal value of the inelastic stress tensor S(£), and axes z'and z coincide with the other two principal
directions.

Equations (13.3.32) and (13.3.33) may be rewritten'in‘common structural coordinates as follows:

N3
ASy,, « ZS/HJ + Z Z Rﬁﬁ)Jk,ALigkl'Ag,ﬁi) (0 =1,2, N (13.3.54)

ve=l =1

ASyy(x) — AS(x) + /V SRDWEOAD x,A5D@E)av(e)  (3355)
i=] .

in which, similar to (13.3.21), we included the inﬂuehce of the dominant cracks normal to the principal
stress direction at each point; Rglj)kl(ﬁ) or R,(f,) gk = Cr1cyy = fourth-rank coordinate rotation tensor
(programmed as a square matrix when the stress tensors are programmed as column matrices) at point
Eorg 1 CkI, €1y = coefficients of rotation transformation of coordinate axes (direction cosines of new
axes) from local coordinates 2; at point'€ (having, in general, a different orientation at each &) to common
structural coordinates X (cer = cos(zr, X1), X1 = cpr2g, 015 = CLrcyor);-subscripts I, J, or
k,l refer to cartesian components in the common struciural coordinates or in the local coordinates at &
and A,f,zk, or A,(:l)(x, &) = components of a tensorial discréte or continuous nonlocal weight function
(crack influence function, replacing the scalar function A); which are equal to £~ fimes the cartesian
stress components o, for o = 1 as.defined by (13.3.41) for two dimensions, or £~3 times such cartesian
components as defined by (13.3.49) for three dimensions (with r = ||x — £[)).

13.3.12 Constitutive Relation and Gradient Approximation

As is clear from the foregoing exposition, the constitutive relation is defined only locally. It yields the
inelastic siress increment AS(H (x), illustrated by segment 32 shown in Fig. 13.3.2. In the previous
nonlocal formulations, by contrast, the nonloca]’inelaslic strain, stress, or damage was pdrt of the consti-
tutive relation. This caused conceptual difficulties as well as continuity problems with formulating the
unloading criterion. Furthermore, in the ¢ase of nonlocal plasticity, this may also cause difficulties with
the consistency condition for the subsequent loading surfaces.

Here these difficulties do not arise, because the nonlocal spatial integral is scparate from the constitutive
relation. Thus the unloading criterion can; and must; be defined strictly locally. If plasticity is used‘to
define the Jocal stress-strain relation, the consistency ‘condition of plasticity is also local.

In principle, the nonlocal model! based on crack interaction can be applied (o any constitutive model for
strain-softening, for example, parallel smeared cracking; isotropic damage theory, plasticity with yield
limit degradation, plastic-fracturing theory, and endochronic theory. But to fully realize the potential of
this approach, a more realistic model, such as the microplane model, appears more appropriate and has
already been applied by Ozbolt and BaZant (1996).- This will be discussed and documented in the next
chapter. :

Recently there has been much interest in limiting localization of cracking by means of the so-called
gradient models. These models can be looked at as approximations of the nonlocal integral-type models,
and can be obtained by expanding the nonlocal infégral in Taylorseries (BaZant 1984b); see Section 13.1.3.
Unlike the present model, there have been only scant and vague attempts at physical justifications for the
gradient models, especially for aggregate-matrix composites such as concrete. 1t seems that the physical
justification for the gradient models of such materials must tome indirectly, through the integral-type
model. However, if that is the case, the present results signal a problem. If the spatial integral in (13.3.9)
were expanded into Taylor series and truncated, the long-ranige decay of the type 7% or 7~ could not’
be preserved. Yet it seems that this decay is impostant for microcrack systems. If so, then the gradient
approximations are physically unjustified. -
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13.3.13 Localization of Oriented Cracking into a Band< )

The nonlocal model based on crack interactions has been applied to the problem of localization of
unidirectional cracking into an infinite planar band parallel to the cracks (BaZant and Jirdsek 1994b)).
The body either is infinite or is an infinite planar layer parallel to the cracks, of thickness L. This represents
the most fundamental localization problem, which is one dimensional, with the coordinate z normal to the
cracks as the only coordinate. Due to translational symmetry in directions z and z parallel to the layer, the
constitutive relation given by Eq. (13.3.9) with (13.3.43) can be integrated in the direction y parallel to the
layer (the original problem is considered two-dimensional, although generalization to three dimensions
would be possible). For the approximate crack interaction function (Bq. (13.3.43) with (13.3.45)) with
0 = 1) = 0), which is asymptotically correct at infinity, the integral can be evaluated analytically. This
yields the following one-dimensional field equations for the increments of stresses and strains

Ao = C(z)Ae(z) - AS(z) (13.3.56)
AS = / ” B(x, ) AS()de + / ” Mz, &)AS(&)de (13.3.57)
qA)(m?g) :'/ ®(I70;€r77)d777 ]\(‘7:75) = /_ A(x:O;éy"])dn (13~3-58)

A(CIB, 6) =

mr? [16¢5 +24¢* +6¢% + 1
l 41+ 2

¢ = (z — &)/¢; C = elastic material stiffness (modulus); & is the one-dimensional weight function for
spatial averaging, corresponding to the averaging over crack surface in Kachanov’s method; and A is the
one-dimensional crack influence function. Note that function A(z, £) is always positive, in contrast to
the two-dimensional function A. . '

The solutions of Egs. (13.3.56)—(13.3.59) have been studied numerically, by introducing a discrete
subdivision in coordinate z and reducing the equations to a matrix form. As the boundary condition, the
layer of thickness L was considered fixed at both surfaces. The localization profiles of strain increment
Ag, beginning from a state of uniform strain of various magnitudes, have been calculated and the evolution
of the strain profile during loading has been followed. Fig. 13.3.9ashows the evolution of the strain profile
across the layer, obtained for a local stress-strain relation that is linear up to the peak and then decays
exponentially. Fig. 13.3.9b shows the stress-displacement diagram obtained for various ratios L /£ of
the thickness of the layer to the nonlocal characteristic length. It is clear that the formulation prevents
localization into a layer of zero thickness and enforces a smooth strain profile through the localization
band. It is also seen that the size effect on the postpeak softening slope is obtained realistically. An
interesting point is that localizations according to this formulation can happen even before attaining the
maximum load. For further details, see BaZant and Jirdsek (1994b).

- 4|§|3} (13.3.59)

13.3.14 Summary

The inelastic stress increments in a microcracking material are equal to the stresses that the load increment
would produce on the cracks if they were temporarily “frozen” (or “glued”), i.c., prevented from opening
and growing. The nonlocality arises from two sources: (1) crack interactions, which means that appli-
cation of the pressure on the crack surfaces that corresponds to the “unfreezing” (or “ungluing”) of one
crack produces stresses on all the other frozen cracks; and (2) averaging of the stresses due to unfreezing
over the crack surface, which is needed because crack interactions depend primarily on the stress average
over the crack surface (or the stress resultant) rather than the macroscopic stress corresponding to the
microcrack center. The crack interactions (source 1) can be solved by Kachanov’s (1987a) simplified
version of the superposition method, in which only the average crack pressures are considered.

The resulting nonlocal continuum model involves two spatial integrals. One integral, which corresponds
to source (1) and has been absent from previous nonlocal models, is long-range and has a weight function
‘whose spatial integral is 0; it represents interactions with remote cracks and is based on the long-range
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Figure 13.3.9 Localization in a bar predicted by nonlocal model based on crack interactions: (a) normalized
strain profiles along a bar; the profiles are symmetric with respect to'the origin, and an exponential softening
law was used; (b) load-displacement diagrams for various bar lengths L. (From Jirdsck and BaZant 1994.)

asymptotic form of the stress field caused by pressurizing one ¢rack while all the other cracks are frozen. -
ymp Yy p g

Another integral, corresponding to source (2), is short-range; involves a weight function whose spatial
integral is 1, and represents spatial averaging of the local inélastic stresses over a domain whose diameter
is roughly cqual to the spacing of major mxuocmcks (whichi is roughly equal to the spacing of large
aggregates in concrete).

As an approach to continbum smoothing when the macroscopic field is nonuniform, one may seek
a continuum field equation whose possible discrete” "1pprox1mat10n coincides with the matrix equauon
governing a system of interacting microcracks.

The long-range asymptotic weight function of the nonlocal 1ntegml represcnting crack interactions
(source 1) has a separated form which is calculated as the femote stress field of a crack in infinite body. It
decays with distance 7 from the crack as 72 in two dimiensions and 3 in three dimensions. This long-
range decay is much weaker than assumed in previous nonlocal models. In conscquence, the long-range
integral diverges when the damage growth in an infinite body is‘assumed to be uniform. This means that
only the localized growth of damage zones can be'modeled.

In contrast to the previous nonlocal formulations, the weight function (crack influence function) in
the long-range integral is a tensor and is not axisymmetric (isotropic). Rather, it depends. on the polar
or spherical angle (i.e., is anisotropic), exhibiting sectors of shielding and amplification. The weight

~function is defined statistically and can be obtained by evaluating a certain averaging integral in which
the integrand is the stress field of one pressurized crack in the given structure.

When an iterative solution of crack inferactions according to the Gauss-Seidel iterative method is
considered, the long-range nonlocal integral based on'the crack influence function yields the nonlocal
inelastic stress increments explicitly. This explicit form is suitable for iterative solutions of the loading
steps in nonlinear finite element programs. The nonlocal inelastic stress increments represent a solution
of a tensorial Fredholm mtegral equation in space, to which the iterations converge.

The constitutive law, in this new formulation, is strictly local. This is a major advantage. It ehmlnates
difficulties with formulating the unloading criterion and the continuity condition, experiénced in the
previous nonlocal models in which nonlocal inelastic stresses or strains have been part of the constitutive
relation. .

14

Material Models for Damage
and Failure

Computer analysis of concrete structures requires a general and robust material model for distributed
cracking and other types of strain-softening damage such as softening plastic-frictional slip. The material
model must perform realistically under a wide range of circumstances. The problem can be approached
through two types of models: (1) the continuum approach, in which case the structure is usually solved
by finite element discretization (although boundary elements and other methods aie possible), and (2)
the discrete (or lattice) approach, taking the form of discrete element method or its variants—the random
particle model or lattice model. Inthe former approach, the material is characterized by a general nonlinear
triaxial stress-strain relation coupled with a nonlocal formulation. In the latter approach, the material is
represented by a lattice of particles and connecting bars for which simple rules of deformation and breakage
must be devised. <

At present, the continuum approach is more general, more widely applicable to structural analysis under
general types of loading. The discrete approach provides some valuable insight into the micromechanics
of failure and the fole of heterogeneity, but only when the failure is due principaily to tensile cracking and
fracture. The computational demands of the discrete approach are still prohibitive for large structures and
three-dimensional analysis, and attemps to develop the discrete approach for compression or compression-
shear failures have so far been unsuccessful. In this chapter, we will first discuss the continuum approach
and later briefly review the lattice approach.

The preceding chapter, dealing with nonlocal formulations, already presented one of two necessary
components of the continuum approach to general analysis of softening damage due'to microcracking and
frictional-plastic slip. The other necessary component—the general triaxial stress-strain relation—will be
described in this chapter. We have already touched this subject in chapter 8 while describing the triaxial
stress-strain relation for the crack-band model, such as the fixed-crack and rotating crack models. But
these simple models are not sufficiently general to deal with compression sph[tmu and compression shear,
cracking combined with plastic-frictional slip and softening slip.

Formulation of a general constitutive relation for such phenomena is a rather difficult problem, to which
numerous studies have been devoted during the last two decades. Although many valuable advances have
been made, this chapter will present in detail only one approach—the microplane model, which currently
appears most realistic, powerful, and versatile. Other approaches, which use classical types of constitutive
relations based on the invariants of the stress and strain tensors and include models such as plasticity,
continuum damage mechanics, fracturing theory, plastic-fracturing theory, and endochronic theory, will
not be treated.

All the constitutive models describing fracture exhibit properties such as post-peak strain softening and
deviations from the normality rule (or Drucker’s postulate). As discussed in Chapter 8, these properties,
which are inevitable if the constitutive relation should describe cracking, friction, and loss of cohesion
realistically, cause well-known mathematical difficulties such as ill-posedness of the boundary value
problem, spurious localization instabilities, and spurious mesh sensitivity. To avoid these difficulties, the
constitutive relations presented in this chapter must be combined with some kind of localization limiter.
The nonlocal approach described in the preceding chapter is an effective method of solving these problems.

It is often thought that the continuum approach cannot be applied to the final stages of failure, in
which damage localizes into large continuous cracks. However, the continuum approach can provide a
relatively good (albeit not perfect) model for the propagation of such cracks. Theteasons have already
been explained in Chapter 8, in connection with the crack band model, which may be regarded as the
simplest version of the nonlocal approach. The width of the localized damage band has, in most cases,
negligible influence on the results of structural analysis.. A zero width, that is, a distinct crack, and a
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finite width (not excessively large, of course) often yields about the same results. Forcing, through the
nonlocal concept, the distinct crack to spread over a width of several finite element sizes, or forcing a
narrow damage band to be wider than the real width, is-usually admissible, provided that the energy

dissipation per unit length of advance of the band is adjusted to remain the same. It should be noted that

such spreading of damage over a width of several element sizes is also a convenient way to avoid the
directional bias of finite element mesh.

14.1 Microplane Model

The microplane model (BaZant 1984c) trades simplicity of concept for increased numerical work left to the
computer. This model represents a generalization of the basic idea of G.1. Taylor (1938), who proposed
that the constitutive behavior of polycrystalline’ metals ‘may be characterized by relations between the
stress and strain vectors acting on planes of all possible orientations within the material, and that the
Macroscopic strain or stress tensor may then be obtained as a summation (or resultant) of all these vectors
under the assumption of a static or kinematic micro-macro constraint. )

Taylor’s idea was soon recognized as the most realistic'way to describe the plasticity of metals, but
the lack of computers prevented practical application in the early times. Batdorf and Budianski (1949)
were first to describe hardening plasticity of polycrystalline-metals by a model of this type, and many
other researchers subsequently refined or modified this approach to metals (Kroner 1961; Budianski and
Wu 1962; Lin and Tto 1965, 1966; Hill 1965, 1966; Rice 1970). Taylor’s idea was also developed for the
hardening inelastic response of soils and rocks (Zienkiewicz and Pande 1977; Pande and Sharma 1981,
1982; Pande and Xiong 1982). .

In all the aforementioned approaches, it was assumed that the stress acting on various planes in the

material, called the slip planes, was the projection’of the macroscopic stress tensor. This is a static
constraint. As shown later, the static constraint prevents such models from being generalized to postpeak
“strain softening behavior or-damage. In an effort to model concrete, it was realized that the extension to
damage requires replacing the static constraint by a kinematic constraint, in which the strain vector on
any inclined plane in the material is the projection of the macroscopic strain tensor (BaZant 1984c). The
kinematic constraint makes it possible to avoid spuriouslocalization among orientations-in which alt the
strain softening localizes preferentially into a plane of only one orientation. ’

In all applications to metals, the formulations based on Taylor’s idea were called the slip theory of
plasticity, and in applications to rock, the multi-laminate model. These terms, however, became unsuitable
for the description of damage in quasibrittle materials. . For example, the salient inelastic behavior of
concreté does not physically represent plastic'slip (except under extremely high confining stresses), but
microcracking. For this reason, the neutra} term “microplari¢ model”, applicable to any physical type of
inelastic behavior, was coined (BaZant 1984c) (althougha nondescriptive term such as “Taylor-Batdorf-
Budianski model”, possibly with the names of further key contributors, could also be used).  The term
“microplane” reflects the basic feature that the material properties are characterized by relations between
the stress and strain components independently for planesof various orientation within the microstructure
of the material. This term also avoids confusion with the type of micro-macro constraint, which has always
been static in the slip theory of plasticity but must be kinematic for strain-softening of concrete. Also, as
introduced for the microplane model (BaZant 1984c); the tensorially invariant macroscopic constitutive
relations are obtained from the responses on the microplanes of all orientations in a more general manner
than in the slip theory of plasticity—by means of a variational principle (or the principle of virtual work).

The microplane model of concrete was developed in detail first for the tensile fracturing (BaZant and Oh
1983b, 1985; BaZant and Gambarova 1984), and later for nonlinear triaxial behavior in compression with
shear (BaZant and Prat 1988b). The reason that these new models used the kinematic rather than static
constraint for the microplanes was to avoid spurious instability of the constitutive model due/to strain
softening (which always occurs for the static constraint). Because the tangential material stiffness matrix
loses positive definiteness (due to postpeak strain softening as well as lack or normality), the nonlocal
approach, which prevents spurious excessive localization of damage in structures and spurious mesh
sensitivity, was combined with the microplane model {BaZzant and OZbolt 1990, 1992; Ozbolt and BaZant

- 1991, 1992). An explicit formulation and an efficient numerical algorithm for the microplane model of
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BaZant and Prat (1988b) was recently présented by Carol, Prat and BaZant (1992). It was also shown that
the microplane model with a kinematic constraint can be cast in the form of continuum damage mechanics
in which the damage, understood as a reduction of the stress-resisting cross section area fraction in the
material, represents a fourth-order tensor independent of the microplane material characteristics (Carol,
BazZant and Prat 1991; Carol and BaZant 1997).

Although the microplane model of BaZant and Prat (1988b) was initially thought to perform well
for postpeak softening damage in both compression and tension, Jirdsek (1993) found that, in postpeak
uniaxial tension, large positive lateral strains develop at large tensile strains. He showed that this was
caused by localization of tensile strain softening into the volumetric strain while the deviatoric strains on
the strain softening microplanes exhibited unloading. It was recognized that this localization of tensile
softening damage into one of the two normal strain components in tension (that is the volumetric one),
was an inevitable consequence of separating the normal strains into the volumetric and deviatoric parts.
However, this separation was previously shown necessary (BaZant and Prat 1988b) for correct modeling
of triaxial behavior in compression as well as for achieving the correct elastic Poisson ratio. The problem
was overcome by introducing a new concept—the stress-strain boundaries (BaZant 1993c; BaZant, Jirdsek
et al. (1994); BaZant, Xiang and Prat 1996), which will be described in detail. This concept allows an
explicit algorithm and is computationally efficient. : i

The basic philosophy of microplane model blends well with the philosophy of finite elements. Finite
elements represent a discretization with respect to space (or distance), while the microplane model repre-
sents a discretization with respect to orientations. In both, the principle of virtual works is used, as will be
seen, in analogous ways—to establish the equilibrium relations and stiffness for the postulated kinematic
constraint, which is given by the shape (or interpolation) functions for finite elements or by the kinematic
constraint between orientations. This analogous structure is suitable for explicit programs (Fig. 14.1.1).

In another sense, the microplane model can be regarded as complementary to the nonlocal concept.
Whereas the nonlocal concept handles interactions at distance, the microplane model handles interactions
between orientations (Fig. 14.1.2). ‘The nonlocality prevents spurious localization in space, whereas -
the kinematic constraint of the microplane model prevents localizations between orientations, as will be
pointed out.

14.1.1 Macro-Micro Relations

In the classical approach, the constitutive relation is defined by algebraic or differential relations between
the stress tensor o and the strain tensor € , based on the theory of tensorial invariants. In the microplane
approach, the constitutive relation is defined as a relation between the stress and strain vectors acting
on a plane of arbitrary orientation in the material. The orientation of this plane, called the microplane,
is characterized by the unit normal 7. The basic hypothesis, which makes it possible to describe strain
softening (BaZant 1984c), is that the strain vector £ on the microplane (Fig. 14.1.3a) is the projection
of the macroscopic strain tensor €, that is,

En = efl " (14.1.1)

The stress vector &'N on the microplane cannot be exactly equal to the projections of the macroscopic
stress tensors ¢ if the strains represent the projections of €. Thus, static equivalence or equilibrium
between the macro and micro levels must be enforced only approximately, by other means. The way to
enforce it is to use a variational principle, that is, the principle of virtual work. For equilibrium, it suffices
that, for any variation §e, the virtual work of the macrostresses within a unit sphere be equal to the virtual
work of the microstresses on the surface clements of the sphere (BaZant 1984c¢). This condition is written
as: . »
%a-és:/&'N-édeQ (14.1.2)

Q

where the dot represents scalar product of two vectors or two second-order tensors.

Remark: A more detailed justification of this relation may be given as follows. We consider a small repre-
sentative volume of the material, given by a small cube of side Ah. A pair of two parallel sides corresponds




~

530 - Material Models for Damage and Failure

(a) Local program, macroscopic constitutive law

Nodal Kinematic i
) Displacements Constraints | Strains
Solution for T
o 1o Constitutive
grven Laws
load changes .
Nodal Inelastic| (" Principle of Stresses -elastic
Forces virtual work J° and inelastic
(b) Local program, microplane model : / S
~ Nodal Kinematic Strains - i Kinematic Microplane
Displacements Constraints Constraint Strains
Solution for Constitutive
'

given
load changes
Principle of Microplane
virtual work Stresses

Nodal Inelastic Principle of Stresses--elastic
Forces virtual work and inelastic ¢

(c) Nonlocal program, microplane model

Nodal [ Kinematic S Kinematic Microplane
Displacements Constraints Strains Constraint | ] Strains
Elastic
e

Solution for —
Constitutive
Stresses _Law
Y
f

given

load changes
Principle of . ' Principle of )| Microplane
virtual work virtual work

Nonlocal Nonlocal - Inelastic
Inelastic Influences Sne astic
Stresses and Averaging | Stresses

Figure 14.1.1 General flow charts of iteration cyclés in load steps of explicit finite element programs (using
initial elastic stiffness matrix). - : ’ ‘
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Figare 14.1.2 : (a) Interaction at distance (nonlocality) and (b} interaction between orjentations (microplane
concept).
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(a)

Figure 14.13 (2) Microplane normal and microstrain vectors, and normal and shear components of the
microstrain vector. (b) Directions of microplane normals (circles) for a system of 21-microplanes per hemisphere
(after BaZant and Oh 1986, adapted from BaZant, Xiang and Prat 1996).

to microplane labeled by subscript N, and the other two pairs of sides correspond to orthogonal microplanes
labeled by subscripts P, and Q. The strain vectors on these microplanes may be assumed to have the meaning
definedby Aty /AR = €y, Adp/Ah =&p,  Aiig/AR = Agp in which Ay, Aidp, and Adlg are
the differences in the displacement vector between the opposite sides of the cube in the directions by labeled
by N, P, and Q. The equality of the incremental virtual work of stresses within the. representative volume on
the macrolevel and the work of stresses on the three microplanes representing the sides of the cube implies
that AR - §e = AR} &N - 8AlN + Gp - SATp + o - 6Aiig), where § denotes the variations and
AR? = area of the sides of the clementary cube. The strain vectors €n, £p and &g include the contributions of
elastic deformations as well as displacements due to cracking (and possibly also to plastic slip). The cracking
or other inelastic deformation happens randomly on planes of various orientations within the material, and the
macroscopic continuum must represent these strains statistically, in the average sense. Therefore, ‘

Abio - be = AhZE;—/ (Gn - 6AtN + Gp - 8ATp + Gg - 6AUg) dQ (14.1.3)
0 Ja

in which the integral represents averaging over all spatial orientations; d€} = sinfd@d¢ where 6, ¢ =
spherical angles, (2 = surface of a unit hemisphere, and Qy = 2n = its surface area, Now, obviously,
Jo On - 80INdD = [ Fp - SATpdQ = J, %o - AtigdQ. Thus the variational equation (14.1.3) yields
(14.12). A

Substituting (14.1.1) into the integral in (14.1.2) and factorizing 8&, we obtain

{?U—/ﬂ(&]\r@ﬁ)sdﬂ} e =0 (14.1.4)

where ® indicates tensorial product and superscript S for a tensor denotes the symmetric part of such
tensor, i.e., T = (T + T7)/2, in which T is an arbitrary second-order tensor and T7 its transpose.
Since the variational equation (14.1.4) must be satisfied for any variation &g, it is not only sufficient but
also necessary that the expression in parentheses vanish. This yields the following fundamental relation
from which the macroscopic stress tensor is calculated:

3 . 5
= e [ 14.1.5
o=o Q( N ®7)°dQ ( )

To compute the integral over the unit sphere, Gaussian integration can be used, and so the cartesian stress
components o;; are computed as

New

3
0y =5 /Q sidQ ~ Y wysth (14.1.6)

n=l
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Figure 14.1.4 Flow of calculation between micro- and macro levels (adapted from BaZant, Xiang and Prat
1996).

in which

sy = (@ ©7)°], = %(UNinj +oning) (14.1.7)
and the last expression represents an approximate numerical evaluation of the integral over the hemisphere;
subscripts p represent a chosen set of integration points representing orientations of discrete microplanes
defined by unit vectors nf’ (shown by the circled points in Fig. 14.1 .3b); w,, are the integration weights
associated with these mlcroplanes normalized so that Z Wy, = 1; and superscript p labels the values
corresponding to these directions. While the integral over Q represents integration over infinitely many
microplanes, the numerical approximation repreésents summation over a finite number of suitably chosen
discrete microplanes.  The flow of calculation between the miacro- and micro-levels is explained by
Fig. 14.1.4 .

Formulation of an optimal numerical integration formula over the surface of a hemisphere is not a trivial
matter. The problem has been studied extensively by mathematicians, and Gaussian integration formulas
of various degrees of approximation have been developed. The simplest integration formulas, for which
all the weights are equal, are obtained by taking the discrete microplanes identical to the faces of a regular
polyhedron (Platonic solid). But the regular polyhedron of the largest number of sides is the icosahedron,
with 20 faces, which yields 10 microplanes per hemisphere. It has been shown that the accuracy of
the corresponding integration formula is insufficient for representing the postpeak stress-strain curve of
concrete (this was demonstrated by the fact that tigid-body rotations of the set of discrete microplanes can
yield unacceptably large differences in stresses); see Bazarnit'and Oh (1985, 1986). Thus, formulas based
on a regular polyhedron cannot be used, which means that'the discrete microplanes cannot have equal
weights. Determination of the optimum weights is not a trivial matter. The weights must be determined
so that the formula would exactly integrate polynomials up to the highest possible degree and that the
integration error due to the next higher-degree term of the:polynomial be minimized (BaZant and Oh
1986).

One sufficiently accurate formula, which consists of 28 microplanes (i.e., 28 mtegr'mon points) over a
hemisphere, is given by Stroud (1971). A more efficient and only slightly less accurate formula, involving
21 microplanes, was derived by BaZant and Oh (1986) (and was used in the nonlocal finite element
microplane program by OZbolt, and in the program EPIC by Adley at WES). This 21-point formula
exactly integrates polynomials up to the 9th degree.” The normals to the microplanes of this formula
represent the radial directions to the vertices and to the centers of the edges of a regular icosahedron (as
shown in Fig. 14.1.3b). Fewer than 21 microplanes cannot give sufficient accuracy (BaZant and Oh 1985).

14.1.2  Volumetric-Deviatoric Split of the Microstrain aﬁd Microstress Vectors

It is well known in continuum mechanics that for many purposes it is useful to decompose the strain tensor
into its hydrostatic and deviatoric parts, by writing € = (1/3)tr e 1 -+ €/, where 1 is the unit tensor and
€’ the deviatoric strain tensor. When applied to (14.1:1), the following decomposition of the microstrain
vector follows

En=ey RA+Ep (14.1.8)
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in which ey is called the volumetric strain and €p the deviatoric strain vector acting on the microplane;
they are defined as

ey = gtr € apd Ep =€'n (14.1.9)

The deviatoric strain vector is further decomposed into its normal component € that we call deviatoric
strain for short, and its component tangential to the microplane that we call the shear strain vector &7

7 o —

ep=¢&p-n=¢en-n and Ep=€p—¢€pn (14.1.10)

The microplane strain vector can, thus, be written as

En = eyt +epii+ &p (14.1.11)
Analogous components oy, op, and o are defined for the microstress vector, and so we write
On = oyt +opft+ dr (14.1.12)

Note that both the volumetric and deviatoric components contribute to the normal component at the
microplane. We can thus define the total normal microstrain and microstress € and o as

ey=¢y+€p, ~ON=0v+op . (14.1.13)

Based on the foregoing definitions, a particular microplane constitutive law consists in a set of rules
specifying how the microstress components oy, op, and G change as ey, £p, and & evolve. The
simplest case to be solved is the lmear elastic case that we analyze next.

14.1.3 Elastic Response

In the elastic regime we must have a linear relationship between & and & for every #i; therefore, we must
seek a relationship of the form i

&n = L(e, 7) (14.1.14)

where the function E(e, 1) is linear in €. Moreover, isotropy requires that if the microplane (and its
normal vector) and the macrostrain tensor are both rotated through any orthogonal tensor Q, the resulting
microstress must be correspondingly rotated, i.e.,

L(QeQT, Qi) = QFn = QL(e, ) (14.1.15)

which indicates that the function E(ef' v, 7t) is an isotropic vector-valued function of a second-order tensor
and a vector. The most general function of this type that is linear in € can be written as

L&, @) = ditr e + by (et - )i + c1e7 (14.1.16)

where a;,b;, and ¢; are scalar constants. This can readily be rewritten in terms of the volumetric,
deviatoric, and shear components of the microstrain:

oy = Eyey i+ Epep 7t + Epér - (14.1.17)

where By, Ep, and Er are microplane elastic moduli corresponding to volumetric, deviatoric, and shear
straining. In-view of (14.1.12), the foregoing expression can be split into the following three relations:

ov = Eyey , op = Epep and o = Brér (14.1.18)

The microplane elastic moduli can be determined in terms of the macroscopic elastic moduli by identi-
fying the macroscopic stress-strain response predicted by the microplane model with the classical Hooke
equations. The macroscopic response is obtained by substituting &y from (14.1.17) into (14.1.5) and
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then into the expressions for the microplane strain components in terms of the macrostrain tensor. The

resulting macroscopic relationship is

o= —3K¢r eA+ TT (Ae' +€'A) +(Ep — Er)Be’ (14.1.19)

where A and B are, respectively, the following second- and fourth-order tensors:
. 3 03 .
A=-—«/fi®fidﬂ and Bz'—/ﬁ@ﬁ@n@nd&l (14.1.20)
2r Q 27 Q N

These two tensors can be computed with relative ease using various methods (sce the exercises at the end
~ of this section). The result is simple; Lo
A=1 ’ and SBijkl = 157_']‘6/:1 4= 5ik5jl + 51'[6]'}9 114.1.21)

where Bj;1; are the rectangular cartesian components of B. Substituting these expressions into '(14.1.19)
we get the final expression for the macrostress tensor as: ‘

E 2Ep -+ 3E .
o="Vypery 22T (14.1.22)
3 5
Comparing now this expression with the classical expression of isotropic elasticity
E E : ‘
o = trel € 14.1.23)
3(1=2v) rel+ I+v ( )
where E is the elastic modulus and v the Poisson ratio, we easily find that
‘ E SE
By =+, Ep=
1-2v

Q131 0)

whete pt = Ep/Ep is a free parameter which may be chosen.
Parameter 4 can be optimized so as to-best match the given test data. BaZant and Prat (1988b), who

gave relations cquivalent to (14.1.24) but in‘terms of parameter ) = Ep /By instead of y, found the

range of 7-values giving the optimum fits of test data for, concrete. This range corresponds to p-values
close to 1. Therefore, the value yi= 1. has subsequently been used in all the data fitting that we cite later
in this section. Note also that the inverse of (14.1:24) yields. & and v in terms of By, Ep,and p.

As revealed by the study of Carol; BaZant and Prat (1991), the value i = 1 is also conceptually
advantageous because it makes it possible to-characterize damage, in the sense of continuum damage
mechanics, by a fourth-rank tensor that is independent of the material stiffness properties. This will be
discussed in more depth later. ’

Itis interesting to note that for the choice 11 = (1= 4v)/(1 4+ v), one has By = Ep. Then one can
setony = Enen, where Exy = Ey = Ep. So; inthat case'there is no volumetric-deviatoric split. But
that would not be realistic for concrete. o

One reason that the normal strain on the mictoplane must be split into the volumetric and deviatoric
normal components is that a general model cught to be capable of giving (for any 1) any thermodynamically
admissible value of Poisson’s ratio, that is,’~1-< ¥ <:0.5. That this is indeed so can be checked by
eliminating f from (14.1.24) and solving for v, which yields v = (SEy — 2Ep — 3E7)/(10Ey +
2Ep + 3E7p). This relation also shows that, for the case of no split (which corresponds to the case
By = Ep = EN), one would have v = (En — E7)/(4Ex -+ Er), and so the Poisson ratio would be
restricted to the range —1 < v < 0.25." Although ‘this range would suffice for concrete, the microplane
model, in principle, could not be fully realistic if it were restricted to Poisson’s ratios less than 0.25. )

It may also be noted that if the shear stiffness were neglected (Er = 0 or 1 = 0), then any Poisson
ratio between —1 and 0.5 could still be obtained, provided that the volumetric and deviatoric normal
microplane strains would be split. However, if they were not (i.e.; U‘N\ = Enen), which was implied in
the initial model of BaZant and Oh (1983b, 1985) for tensile fractuing only, then Poisson’s ratio would
be restricted to the value v = 0.25. Such a restrictionis not-realistic, and besides, the shear stiffness on
the microplane level appears to be important for correct modeling of the effect of confining pressure on
compression failure. - :

Br = ulvp (14‘[.24)
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The main reason for the volumetric-deviatoric split with independent moduli Ey and Ep (BaZant
and Prat 1988b) is the absence of a peak and of postpeak strain softening for hydrostatic compression
test and uniaxial strain compression test (sec.the tests of BaZant, Bishop and Chang 1986), while at
the same time the loading by uniaxial compressive stress or other compressive loadings with uninhibijted
volume expansion exhibits stress peak followed by postpeak strain softening. Without the aforementioned
split, compressive loading with restricted volume expansion (hydrostatic compression and uniaxial strain)
would also, incorrectly, exhibit a peak stress and postpeak strain softening.

In the initial proposal of microplane model with strain softening (BaZant 1984c), the stress-strain
relation for the normal and shear components of stresses and strains of the microplanes had the form
of incremental plasticity, based on subscquent yield surfaces and loading ‘potentials for the microplane.
However, subsequent studies have shown that this was unnecessarily complicated. Asitturned out (BaZant
and Oh 1985; BaZant and Prat 1988b), one can assume a total algebraic stress-strain relation for these
components for the case of virgin loading, that is, o'y, op, and &y can be assumed to be functions of
£v,€p, and &p. Further it turned out that each stress component can be considered to depend only on
the associated strain component, with the exception of shear stress &'r, which is considered to depend on
o N to express internal friction (and, at high pressures, plasticity). Without the frictional aspect, it is not
possible to model standard triaxial tests at high confining pressures.

14.1.4  Nonlinear Microplane Behavior and the Concept of Stress-Strain Boimdaries

In the original microplane model for compressive failure (BaZant and Prat 1988b), the stress-strain relations
for the microplanes were smooth curves. However, difficulties arose in the handling of the transition from
reloading to virgin inelastic loading in the quadrants of negative stress-strain ratio, and complicated rules
had to be devised (Hasegawa and BaZant 1993; and OZbolt and BaZant 1992). Also, the modeling of cyclic
loading was difficult. These difficultics can be circumvented with the concept of stress-strain boundaries.
However, the main reason for introducing this concept is the modeling of triaxial behavior in tension.

The condition that the response must not exceed a specified boundary curve ox = Fy (e x ) —where
X indicates the appropriate microplane component— makes it easy to ensure continuity at the transition
from elastic behavior, which is defined separately for volumetric and deviatoric components, to the strain-
softening damage behavior in tension, which is defined without the volumetric-deviatoric split (BaZant
1993c). It seems next to impossible (o devise explicit algebraic stress-strain relations that would describe
such transitions without any discontinuity.

The stress-strain boundaries, shown in Fig. 14.1.5, are defined as (BaZant, Xiang and Prat 1996):

oN = FN(EN),GV = -Fv(*€\/),0’]) = —FD(—EVD),O'D = FB'(ED),UT = FT(O’N) (14.1‘25)

in.-which op stand for either opr or ¢, (the components of shear stress vector on two arbitrarily assi gned
orthogonal axes M and L within the microplane). It might seem that, from the viewpoint of rotational
invariance in the microplane, the shear stress vector G = (o, o) should be considered parallel to
&r, ie., &r/|o7| = & /|€p|. Such a formulation (BaZant and Prat 1988b), however, did not perform
very well for complex loading paths. It appeared preferable and simpler to consider that o in (14.1.25)
stands either for ops or 0, ie., oar = Fp(on) and o, = Fr{on), thus allowing & and &7 to be,
in general, nonparallel. Of course, this implies a directional bias for the chosen orientations of axes M
and L on each microplane. However, due to averaging on the macroscale, such a bias becomés negligible
on the macroscale if the orientations of M and L on various microplanes are chosen with nearly equal
probability (or frequency) for various possible orientations, and if there are many integration points of
finite elements within the representative volume of material. ‘ )

Function Frr defines only the boundary for positive stresses. The other, for negative stresses, is
symmetric. The reason for writing the minus signs in (14.1.25) is that functions Fiy, Fy, Fp are defined
as positive-valued functions of positive arguments. Function Fp defines only the boundary for the
magnitudes of the shear stresses (Fig. 14.1.5d). The dependence of o7 on o characterizes friction on
the microplane, as well as the fact that a widely opened rough crack offers less resistance to shear than a
narrow rough crack. )

The response anywhere within the boundaries may be simply assumed to be elastic, as given in the rate
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. Figure 14.1.5 Stress-strain boundaries. General form for the deviatoric (a), volumetric (b), normal (c), and
shear (d) components. For a classical macroscopic formulation; the boundary would be an arbitrary surface in
the 12-dimensional o;;—€;; as indicated by the thick curve in (¢).: (Adapted from BaZant, Xiang and Prat 1996.)

form by equations similar to (14.1.18):
Gv = BEyéy,  6p= Epép,  and - Gy = Epéy (14.1.26)

This simple assumption, of course, implics the Stress-strain path for the microplane to exhibit a sudden
change of slope when the elastic response artives to the boundary curve. However, such changes of slope
on the macroscale are not so abrupt because different microplanes reach the boundary at different times.
Nevertheless, the response can be made smoother by the formulation in the following remark.

Remark: The response on the microscale can be made smooth by introducing a transition curve between the
* elastic straight line and the boundary curve. ‘The transition curve, however, cannot be defined as a simple
function of strains because the elastic lines and boundary curvés are functions of dlfluem components.. A
helpful idea i 19 to define the transition implicitly, in terms of (i) the elasllc suess value ¢ and (ii) the boundary
curve value o, both of them correspondmg to the'same strain €. When 0 > o¢ > 0, the transition curve must
nearly comcxdc with ¢°, and when ¢® = o®, it must lie farthest below both curves. These required properties
can be achieved by the following formula for the transition curve (BaZant, Xiang and Prat 1996):

b e b e
—g% 6
T, ot = ZHECH0 on (2eosn T m2 =D \ (14.1.27)
2 280 )
where 0¢ = op, o sN’ or o, o = a,),zrl,’\,, or G'T, and 61,60 are constants, which have been chosen as

6 =0.10 fo 31gn(a and & = 0.24 fosign(o®) with fo = f1, f, or f. Forthe volumetric boundary, no
transition curve is introduced because the stope change-is mild.

For 6; = 0 the transition curve would approach the elastic curve and the boundary curve asymptotically at
+o0 (this may be easily checked by noting that, for large |z|; 2coshz = explz|). But the response near the
origin of stress-strain space must be exactly elastic. Therefore, the Jeft-side asymptote of the transition curve is
shifted up by distance §;. This causes the transition to intersect the elastic curve. By choosing a small enough
&, the slope change at the intersection is small and acceptable.

V The transition curve (14.1.27) with §; = 0 approaches the elastic line and the boundary curve exponenually,
ie., very rapldly Another formula of similar properties was alsoexplored: T'(¢, o ) = {o®+0°+ 6 -
[(O’ — 0% — &) + 6§1'/?}/2. This formula would be fastér to exccute compu(atlonally (which matters
somewhat because it is evaluated a great many times). ‘However, for 61 = 0, it approaches the elastic and
boundary curves too slowly, much slower than (14.1.27), which'is therefore preferable. A

The stress-strain boundary may be regarded as a strain-dependent yield limit. Such an idea could hardly
be introduced in the classical macroscopic.invariant approach to plasticity, because the boundary would
be a surface in a 12-dimensional space of all o35 and €55 components. The microplane concept makes the
idea of strain-dependent yield limit feasible, in fact simple, because there are only a few components on

- the microplane level. The strain-dependent yield limit may be illustrated by the curve inFig. 14.1.5¢. The
classical (stress space) plasticity is in this figuré represented by the horizontal linc for the yield limit. Now
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(a)

" Figure 14.1.6. (2) Orthonormal base associated to a microplane. (b) Microstrain compdnentsl

note that plastic metals and fracturing materials (Dougill 1976) have also been satisfactorily described by
strain-space plasticity, which corresponds to the vertical line in this figure. Obviously, a general curve

should allow a better description because it is a combination of stress-space and strain-space plasticity
theories.

14.1.5 Numerical Aspects

In finite element programs, a system of at least 21 microplanes must be associated with each integration
point of each finite element (BaZant and Oh 1985, 1986; used in BaZant and O%bolt 1990). Their number,
however, can be reduced for the symmetries of plane stress, plane strain, axisymmetric behavior, and
uniaxial stress.

For a given microplane, the normal and shear componen(s of the microstrain vector are conveniently
handled by defining an orthonormal base {7, 77 €} (Fig. 14.1.6). Since the sclection of 77 and £ is
arbitrary, we may, for example choose vector m; to be normal to the global axis x3, in which case
the cartesian components of 771 in the global coordinate system are my = ny(n? + nd)~ 12 my =
—m(n +n2)”/2 m3 = Obutm; = landmy = m3 = 0if n; = ny = 0. To get a vector m; normal
to ax1_s 21 Or axis zp, we carry out permutations 123 — 231 — 312 of the indices in the preceding
equations. (To minimize directional bias, the procedure of generating vectors m; should be such that if
for one microplane m; is normal to z;, for the next numbered microplane it is normal to 25, for the next
to x3, for the next again to x, etc.) The other coordinate vector £; within the microplane is obtained as
vector product, £ = 71 X 7. -

Once the components of the base vectors for the microplane are obtained, the determination of the
components of the microstrain vector given the macrostrain tensor immediately follow as:

en = Nyeiz,  em = Miey, ep = Liey; (14.1.28)

where €7 and &y, are the components of the shear microstrain vector (i.e., &7 = £/ + 5LZ), and the
projection tensors IN, M, and L are given in component form by

i 1
Ny =nm;,  My= E(mmj +myn), Ly = E(Einj +4;m;) (14.1.29)

To write an efficient finite element program, the values of Njf;, M2, L} should be calculated, for all
the discrete microplanes (labeled here by superscript 4}, in advance o% ﬁmte element analysis and stored
in memory. The values of nf' and of the weights w,, in the integration formula (14.1.6) must also be
stored in advance.

In each loading step, an explicit computational algorithm can be formul'lted as follows. First, the new
values of macro-strains €5 are calculated at each integration point from the new (incremented) values of
nodal displacements. Then, for each integration point, the new values of €5, €y, and €, -are calculated
for all the microplanes from (14.1.28) and the volumetric and deviatoric components £y and £p are
determined from the first of (14.1.9) and (14.1.13). Using these values, the following new stress values
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are calculated for each microplane:

o = ol + By(ev —€)), 0% = ob + Eplep — %), 0% = o + 0 (14.1.30)

o4y = afw + Er(ep = €4y), 08 = ol + Er(ep = €h), ol = Max[o?, ~Fy(ev)] (14.1.31)
o = oy + Min{Max[oh, —Fp((~ep))); F ((ep))} o (141.32)
on = Min[oly, Fn({en), 6v), 6v] ‘ S (14.1.33)

Superscripts ¢ denote the previously calculated iritial values ‘at the beginning of the loading step, and
superscripts e denote the new stress values based on elastically ¢alculated increments; (z) = Max(z,0) =
positive part of x (this symbol, called the Macauley bracket, is-used so that functions Fr,...Fp could
be defined for only the positive values of strain‘arguinents), and 6y = o, but if the load step is iterated,
it helps accuracy to take Gy as the value of o'y obtainied in the previous iteration. After sweeping through

all the microplanes jz =1, .". . N,;;, one must calculate
N0 :
Tv =Y wuok ' (14.1.34)

pn=l1

Then, for each microplane one can calculate
oy = Min(ey,,5y) 4 (14.1.35)

forey —et, > 0: ’
of = Min{o%, T[o%, Fr((er), ov)]}, ‘or = Max|o, ~Fr({~e7),0v)]  (14.1.36)

forav—el{, <0: ;
0‘6« = MHX{U%,T[O’%, —Fp((—ET>,Gv)]}', op = Min[rf&«, FT((ET>7UV)] (14.1.37)

After sweeping again thi’ough all the microplanes, all the new value$ of the microplane stresses at the
end of the loading step are known, and the macrostresses can then be caleulated from (14.1.6) where the
expression for the components of ;5 in terms of the components of the microstress vector is easily seen
to be: ;

Sij = UNNij +0’1\/1M,;j +O‘LL7;]' (14.1.38)

The inelastic parts of the new macrostresses mmust subsequently be modified according to a suitable
nonlocal formulation. This subject is discussed later in Section 14:3.

Note that the foregoing algorithm gives the new stresses as explicit functions of the new strains. No
equations need to be solved. This is important'for comptitational efficiency.

14.1.6  Constitutive Characterization of Material on Microplane Level

By fitting of various types of test data for concrete; the following functions, characterizing the constitutive
properties of the material, have been identified (BaZant, Xiang and Prat 1996):

Fy(-ev) = fiexp (—f%) . 1% = Bkiks, (any ev) © {14.1.39)
. s .
<, 1 o . . .
Fooep) = 13 (1-2) . Jp = Bhies, (0<0) (14.1.40)
12
€ - |
FYlep) = esf% (1+ > ) ,(ep>0) ~ (14.1.41)
kicacs ' ;

-1 ~
=Ciay

'FN(EN,Uv) = f?\/’ I:l + (%)2} , €= é]k] + < >, f?\] = Lk, (en > 0)(14142)

FT(O‘N) = (Ek]kz - k30'N> FEE (14.1‘.43)
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Figure 14.1.7 (a-b) Vérticalgpd_radial scaling (affinity transformations) of the stress-strain curves, and (©)
concept of ductility as a ratio 03/04 (from Bazant, Xiang and Prat 1996).

in which ky, ..., ks are adjustable empirical constants, which take different values for different types
of concretes, while ¢y, ..., ¢s are fixed empirical constants that can be kept the same for all normal
concretes. They have the values ¢; = 5,¢, = 6,¢3 = 50,¢4 = 130, and ¢s = 6 (parameter cs
affects almost only the standard triaxial tests at very high pressures). It has been recommended that, in
absence of sufficient test data, the adjustable parameters may be taken with the following reference values
kbl =72x 1078 ky = 0.1,k; = 0.05,k4 = 15, and ks = 150. The value of Poisson’s ratio may be
considered as v = 0.18. Except for F, all the parameters are dimensionless.

The macroscopic Young’s modulus is a parameter whose change causes a vertical scaling transformation
(affinity transformation) of all the response stress-strain curves. If this parameter is changed from E to
some other value £, all the stresses are multiplied by the ratio £’/ at no change of strains (Fig. 14.1.7a).
Parameter k; describes radial scaling (affinity transformation) with respect to the origin. If this parameter
is changed from &; to some other value kf , all the stresses and all the strains are multiplied by the ratio
k| /ki (Fig. 14.1.7b). : .

The aforementioned reference values of material parameters along with £ =53000 MPa yield the
uniaxial compression strength f{ =42.4 MPa, as calculated by simulating the uniaxial compression test
by incremental loading. The strain corresponding to the stress peak has been found to be &p = 0.0022.
Now, if the user needs a microplane model that yields the uniaxial compressive strength f¥ and the
corresponding strain at peak 6;, orie needs to modify the reference values of only two parameters as
follows:

* *
f=k2, Eropl® (14.1.44)
Ep f c Ep

Table 14.1.1 shows the values of f7, f/ for some typical values of material parameters (“R” in Table
14.1.1 refers to the reference values stated above). It also gives the corresponding ductility r = e, E/ f/,
representing the ratio 65/@ in Fig. 14.1.7c. The smaller r, the steeper the postpeak softening. The
transformations according to (14.1.44) do not change the ratio r.

The aforementioned reference values of material parameters have been selected so that the ratio of tensile
to compressive uniaxial strengths be approximately f{/f: = 0.082; the ratio of equitriaxal (o uniaxial
compression strength f;./f; = 1.17; the ratio of the strength in pure shear to the uniaxial compressive
strength approximately f7/fi = 0.069; the ratio of residual stress for very large uniaxial compressive
strain to the uniaxial compression strength approximately o, /L. =0.07; and the ratio of residual stress for
very large shear strain to the shear strength approximately 7, /f& = 0.3. The transformations according
to (14.1.44) do not change these ratios. These ratios can be changed only by adjusting material parameters
other than F and k;.

Parameters k4 and ks can be determined exclusively from the data on hydrostatic compression tests.
Taking the logarithm of (14.1.43), the equation can be reduced to a linear regression plot, and thus
parameters k4 and k5 can be obtained by fitting the data on the hydrostatic compression test, separate from
all other parameters (because the value of ey for hydrostatic compression is the same for all microplanes
and ep = ey = €y = 0 for all microplanes). The softening tail in unjaxial compression can be
lengthened by increasing ¢, while reducing k; a little, and for tension by reducing k3 while reducing ky
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Table 14.1.1 - Strength, ductility, and typical material parameters

Ty
i

b

Tests E ki |k | ks | ks 5] ks (107°) fi Te i T
Hognestad | 3900 | 120 | R R R R R 518 |1 196 | 046 [ 1.78
van Mier | 29000 R R R R R R 40.0 | 198 | 3.75 | 1.80
Petersson | 26000 R R R 04 R R 32.1 1 243 | 3.62 | 1.65
BaZant 6000 | 112 | R R R 12 175 7551191 | 0.69 | 1.73
Green 5100 R R R R R 125 7391 193 | 0.66 | 1.78
Balmer 3500 90 20 R 0.5 18 R 3051229 033 ] 1.71
Bresler 5100 R R 102 R R R 6.49 | 2,36 | 0.40 | 2.44
Kupfer 5100 R 40 1 03] .06 R R 486 | 441 1062 | 2.22
Launay 5100 R R R |03 R R 487 12931077 | 1.73
Sinha 3200 | 113 | R R R R R 400 ] 2.07 | 036 | 1.79
“R” means reference values; 7. = e£ E/f7, r¢ = el E/f]

a little. The ratio of the tensile-to-compressive strength can be increased by reducing ¢4 or k3. The ratio

of the strength in pure shear to the uniaxial compresswe strength can be increased by increasing k, while
reducing ¢4 or ks a little.

14.1.7° Microplane Model for Finite Strain

In some applications of the microplane model, for example, the impact of missiles into hardened concrete
structures or nucléar reactor containments, -or the: analysis of energy absorption of a highly confined
column in an earthquake, very large strains, ranging from 10% to 200%, and shear angles up to 40°,

have been encountered in calculations. For such situations; the microplane model must be generalized to
finite strain. However, a thorough exposition of the finite strain generalization would require introducing
advanced mathematical apparatus that has not yet appeared in this book. Therefore, only a summary of

the main results will be given here. The interested reader can find the details in BaZant, Xiang and Prat .

(1996) and Bazant, Xiang et al. (1996) for the case of moderately large strains (up to about 10%), and in
BaZant (1997b) for the case of very latge strains (100% or more, with shear angles up to 40°).

The simplest finite strain tensor to use is Green's -Lagrangian strain tensor E = (FTF — 1)/2
where F is the deformation gradient and L the unit ténsor (see; e.g., BaZant and Cedolin 1991, Chapler
11). Its conjugate stress tensor, that is the tensor for which'Green’s Lagrangian strain tensor gives a
correct work expressmn dW = T - dE, is a tensor called the second Piola-Kirchhoff stress tensor,
T = F~'JSF~T where J = det F is the Jacobian of the transformation (giving the relative volume
change); F~T = (F~)T = (FT)~ !,

Difficult problems arise in the modeling of very 1arge strains. In finile-strain generalization of the

. microplane model, a definite physical meaning needs to be attached to the normal and shear strain
components on the microplanes. In this regard, the following two conditions must be met:

Condition I. The normal and shear componénts of the stress tensor used in the constitutive relation
must uniquely characterize the norimal and shear components of the tensor of true stress S in the
deformed material, called the Cauchy stress tensor.

Condition II. The normal strain component ej; charactenz]ng the stretch A of a material line segment
in the direction' 7 initially normal to the microplane, must be independent of the stretches of material
line segments in other initial directions. Furthermore, the shear strain component e pr (orenr),
characterizing the change of angle On s or O51 bctween two initially orthogonal material line
segments with initial unit vectors 7 and 77 (or 7 and Z) must be independent of the stretches and
angle changes in planes other than (71, 77%) or (7, Z) :

Consider first only condition 1. It turns out that, in this ‘regard, the use of the second Piola-Kirchhoff
stress tensor is possible only if the largest magnitude of the principal strains is less than about 7% to
10%, i.e., if the strain is only moderately large. - It has been stown by numerical examples (BaZant
1997b) that, for large isochoric deformations, the shear componenits of the second Piola-Kirchhoff stress
tensor T strongly depend on the volumetric componerit of the Cauchy (true) stress tensor S (i.e., the true

“hydrostatic pressure), and the volumetric component of the second Piola-Kirchhoff stress tensor strongly’
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depends on the shear components of the Cauchy stress tensor. This indicates that the projections of the
second Piola-Kirchhoff stress tensor on the microplanes have no physical meaning. They cannot be used
to characterize the strength, yield limit and damage on the microplane, nor the phenomenon of friction.

The stress tensor must be referred to the initial configuration ‘of the material (as required for the
modeling of a solid remembering the initial state). The only such tensor whose microplane components
have a physical meaning is the rotated Kirchhoff stress tensor 7 = RTJSR, where JS represents the
Kirchhoff stress tensor, and R is the material rotation tensor defined in the polar decomposition of the
deformation gradient ¥ = RU = VR. Here, U and 'V are the right and left stretch tensors. When the
principal stress axes do not rotate against the material, the rotated Kirchhoff stress tensor is equal to the
Cauchy (true) stress tensor scaled by a scalar factor, J. Only this tensor is free of the aforemcntloned
problems revealed by numerical examples.

A variational procedure can be used to obtain an expression for the finite strain tensor -y that is conjugated
by work with the rotated Kirchhoff stress tensor 7. If the principal strain axes do not rotate against the
material, this tensor is found to be identical to Hencky’s (logarithmic) strain tensor. However, when the
principal strain axes rotate, one obtains an incremental expression for d-y that cannot be integrated. This
means that the strain tensor conjugate to the rotated Kirchhoff stress tensor is nonunique, path-dependent
(nonholomonic).

The aforementioned path-dependence is strong and unacceptable, except for moderately large strains
less than about 7% to 10%. For such strains, and for larger strains for which the rotations of principal
strain axes is small, the use of Hencky’s strain tensor is advantageous. However, there is also the problem
of the efficient calculation of the Hencky tensor. This tensor is defined by the spectral representation,
which is computationally demanding for large finite element programs in which this tensor may have to
be calculated up to a billion times. Nevertheless, an easy-to-compute very close approximation of the
Hencky strain tensor has recently been found (BaZant 1997c¢).

Consider now condition II. The relative length change of a segment normal to the microplane from
length dS (in the initial configuration) to length ds (in the deformed configuration) is characterized, e.g.,
by eny = (ds — dS)/dS (called Biot strain or engineering strain), The change of angle between the
microplane normal vector 7 and vector 77} in the microplane represents the shear angle §ya7. When
Green’s Lagrangian strain tensor E is used, e;v can be expressed (exactly) in terms of the normal com-
ponent En, and @ s can be expressed (exactly) in terms of the shear component E v s and the normal
components Ey, Eyr (see, e.g., Malvern 1969, pp.165-166). In other words, the exact change of length
in normal direction and of shear angle for a microplane can be expressed solely in terms of the strain tensor
components on the same microplane. This is not true, however, for all the other strain tensors, including
Hencky’s (logarithmic) strain tensor and Biot’s strain tensor. For them, the exact ey and &, depend
also on the ratio of the principal strains (which seems an inconvenient feature for the programming of
microplane model and would increase demands on compuiter time). This dependence can be neglected
only when the maximum principal strain is less than about 25% (BaZant 1997d).

1t thus appears that, for large strains (i.e., when the maximum principal strain exceeds 7% to 10%) the
only suitable strain and stress tensors are Green’s Lagrangian strain tensor and the rotated Kirchhoff stress
tensor. These two tensors are not conjugate.

It has normally been considered a taboo to use nonconjugate stresses and strains. However, due to
the special character of the present microplane model, the use of nonconjugate stresses and strains in
formulating a constitutive relation is admissible if certain precautions are taken (see BaZant 1995d and
BaZant, Adley and Xiang 1996). One point to note in this regard is that the constitutive relation in terms of
the aforementioned nonconjugate stress and strain tensors is a transformation of the constitutive relation in
terms of conjugate stress and strain tensors such that the transformation depends only Green’s Lagrangian
strain tensor (or the stretch tensor) but, importantly, is independent of the material rotation tensor. Such
a transformation is perfectly admissible. The second point to note is that nonnegativeness of energy
dissipation is ensured for two reasons: (1) The elastic parts of strains are always small (which ensures that
the elastic part of the nonconjugate stress-strain refation preserves energy), and (2) the drop of stress to
the boundary surface is carried out in each load step at constant strain and cannot cause ncgative energy
dissipation.

A further precaution that must be taken is that the work done by the stresses (or by the nodal forces

“on displacements) cannot be directly calculated from the stresses and strains used in the constitutive law,

because the areas under the stress-strain curves for the nonconjugate constitutive law do not correctly
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characterize energy dissipation. If the work needs to be ‘calculated, one can casily obtain the second
Pjola-Kirchhoff stress tensor from the rotated Kirchhoff stress tensor and evaluate the work that way.
Also, elastic response cannot be described as a functional ‘relation between nonconjugate stresses and
strains. ) :

For moderately large strains, of course, the conjugate pair.of Green’s Lagrangian strain tensor and
second Piola-Kirchhoff strain tensor can be used; and has been used by BaZant, Xiang and Prat (1996)in

- afinite strain generalization of the microplane model. Ther# is; however, a gap in the experimental data
~for very large strains of concrete. To fill this gap, one must get réconciled with the fact that it is next to

impossible to keep the specimen deformation uniiforny when triaxial deformations become large. Triaxial
test data on concrete at strains up to shear angle of 35° at very high hydrostatic pressures (séveral times
the uniaxial compression strength) have recently been obfained by BaZant and Kim (1996b) using a novel
type of test, called the ‘tube-squash’ test. In this test, a thick:walled tube of very ductile steel is filled with
concrete, and after curing, it is compressed axially to about half the initial Tength. The concrete undergoes
shear angles over 30°. Due to high confining pressure (which exceeds 1000 MPa), the concrete in the
tube retains integrity and small cores can be drilled out-from the concrete. These cores show uniaxial
compression strength between 20% and 50% of the virgin concrete, both for normal and high strength
concretes. In the evaluation of the ‘tube-squash test” orie must fit the measured ]()ad—displacemcnt curves
with a'finite element program incorporating finité strain constitutive models for both the concrete-and the
steel. .

Finite strain tests need to be also carried out at sniall hydrostatic (confining) pressures, at which concrete
turns into rubble when large deformations occur.” A constitutive relation for such rubbelized concrete at
finite strain needs to be developed. : .

Another problem that needs to be resolved for the microplane model is the split of total normal strain into
deviatoric and volumetric components. The decomposition of large deformations into their volumetric
and deviatoric (strictly speaking, isochoric) parts is, in general, multiplicative. Specifically, it has the
form U = FpUy (Flory 1961; Sidoroff 1974; Simo 1988;Simo and Ortiz 1985; Lubliner 1986:
Bell 1985) where U is the right stretch tensor; Uy the volumetric right-stretch tensor, and Fp = the
deviatoric transformation tensor. - An additive volumetric-deviatoric decomposition exists only for the
Hencky (logarithmic) strain tensor H. .

For any type of finite strain tensor, howevér, an approximate additive decomposition in terms of
volumetric strain tensor Ey = ey 1 and deviatoric stfain ténsor Ep is possible for materials that can
exhibit only large deviatoric strains but not large volumietric strainis (BaZant 1996¢), as is the case for
concrete. Unlike F'pp, the components of Ep depend on'J, i.e., the relative volume change (unless the
Hencky strain tensor is used). However, their dependenceon’J is, in the case of Green's Lagrangian
strain tensor, negligible if the volume change is less'than about 3% in magnitude (BaZant, Xiang and Prat
1996; BaZant, Xiang et al. 1996). For Biot strain tensor ¥ = U2 1 (Biot 1965; Ogden 1984; Bazant
and Cedolin 1991), the limit is about 8% (for concrete, the volume change is —3% at highest pressure
tested so far, which is 300000 pst or 2069 MPa; BaZant, Bishop and Chang 1986). Thus, the classical
multiplicative decomposition, which is not as convenient for calcilations as the additive decomposition,
seems to be inevitable only for materials exhibiting very large volume changes, such as stiff foams, An
additive decomposition of the aforementioned kind,:developed in BaZant (1996¢), was used by BaZant,
Xiang and Prat (1996) in the generalization of the microplane model for moderately large finite strains of
concrete. :

The multiplicative decomposition could nevértheless be implemented in the microplane model by
decomposing each loading step into two substeps, pure volumetric deformation followed by pure isochoric
deformation, but that would greatly complicate the analysis, especially if the solution is not explicit.

14.1.8 Summary of Main Points

This section has explained the basic concept and the latest formulation of the general microplane model
for concrete—a constitutive model in which the nonlinear triaxial behavior is characterized by relations
between the stress and strain components on a microplane of any orientation under the constraint that
the strains on the microplane are the projections of the macroscopic stress tensor. The microplane model
simplifies constitutive modeling because the stress-strain relation on the microplane level involves only.a
few stress and strain components that have a clear physical meaninig. The passage from elastic response to
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softening damage defined in terms of different variables is efféctively handled by the concept of boundaries
in the stress-strain space. The advantage of this recently proposed concept is that various boundaries and
the elastic behavior can be defined as a function of different variables (strain components). While the
stress-strain boundaries for compression are defined separately for volumetric and deviatoric components,
the boundary for tension is defined in terms of the total normal strains. This is necessary to achieve a
realistic triaxial response at large tensile strains. A smooth transition from the elastic behavior to the
boundary curve has also been formulated.- The formulation is fully explicit, that is, the stress can be
explicitly calculated from given strains. ’

Exercises

I4.1 Based on symmetry properties, show that the rectangular cartesian components of the tensor A in
(14.1.20) satisfy the following properties: (a) the off-diagonal components are zero; (b) the diagonal clements
are equal. (c) Demonstrate that A = A1, where 4 is a scalar, and (d) compute A. (Hint: compute tr A =
3A = (3/2r) [ d2 —Why?)

14.2  Show that A in (14.1.20) can be written as A = (3 /4) fq @ 71 dQ where the integral is now extended
to the surface of the whole unit sphere and 7 is the position vector relative to the center of this sphere. Apply
the divergence theorem to this surface integral and show that A = (3/4x) fv grad 7dV where V is the region
defined by the unit sphere. Use this expression to determine A.

14.3  Let Byjp be the rectangular cartesian components of the fourth-order tensor B in (14.1.20). Shqw that
they satisfy the relations (a) Bijxi6r = Aij and Bijridix = Au. A basic property of linear elasticity is that
the most general cartesian form of an isotropic fourth-order tensor of elastic moduli, say B, such that o = Be
is isotropic, is Bijr = Bobijbrt 4 13161651, where By and B) are constants. (b) Use the results in (a) to show
that for B in (14.1.20) By = 0 and 3B; = tr A. (¢) Use the result of the previous exercise to determine By.

14.4  Show that B in (14.1.20) can be written as B = (3/4) jQ TR T QT ® 7 d{) where now the integral
is extended to the surface of the whole unit sphere and 7is the position vector relative to the center of t_l’lis sphere.
Apply the divergence theorem to this surface integral and show that B = (3/4) |, grad (F@® F @ r) dV
where V' is the region defined by the unit sphere. Show that the component form of this integral can be Feduged
to Bijrs = SaJik + 851Jix 4 8r1Js; where J is the Euler tensor of inertia products for a sphere of unit radius
and unit density with respect to its center:

J:/F@NV or J,-jz/zimj av , (14.1.45)
v v

Use the well-known result that the inertia moment of ahomogeneous sphere relative to any diameter is 2an2/5,
withm =mass and R = radius of the sphere, to prove thatJ = (1/5)1. Finally, determine the gencral expression
for the components Bijx;.

14.2  Calibration by Test Data, Verification and Properties of Microplane Model

Following the general theoretical formulation in the preceding section, we will now demonstrate calibration
and verification of the microplarie model by fitting of the relevant test data from the literature. Wc will
also show how the data afflicted by localization of damage within the gage length can be decontaminated.

14.2.1  Procedure for Delocalization of Test Data and Material Identification

Until very recently it has been general practice to identify the postpeak stress-strain relation from test data
ignoring the fact that the deformation of the specimen within the gage length often becomes nonuniform,
due to localization of cracking damage. The fact that damage must localize, except in the smallest possi-
ble specimens, was shown in detail in Chapter 8. The correct analysis of localization in strain softening
materials led first to the development of the crack band model (Chapter 8), and later to the more sophisti-
cated models described in the preceding chapter. The localization phenomena were already documented
in the early eighties. However, because the general problem of identification of material parameters in
presence of strain-softening localization (Ortiz 1987) is tremendously complex, the contamination of test
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Figure 14.2.1 Underlying crack-band model (series.coupling model) for filtering of strain softening localiza- -

tion from laboratory test data.

data by localization has typically beén ignored. ‘At the present state of knowledge, however, this is no
longer acceptable. The data must be decontaminated, delocalized.- An approximate procedure to do that,
applicable to any type of constitutive model, was recently proposed by BaZant, Xiang et al. (1996).

The delocalization cannot, and need not, be done with a high degree of accuracy and sophistication. In
the identification of the microplane model by BaZant, Xiang et al. (1996), the test data from laboratory
specimens have been analyzed taking into account the strain localization in an approximate manner. The
idea is to exploit two simple approximate concepts: (1) localization in the series coupling model described
in Sections 8.1-8.3, and (2) the effect that energy release due to localization within the cross section of
specimen has on the maximum load, as described by Bazant’s size effect law (Section 1.4 and Chapter 6).

The strain as commonly observed is the average strain €,, on'a gage length L. According to the series
coupling model and the crack band model (Sections 8.1=8.3), the strain may be assumed to localize after
- the peak into a band of width h,, as depicted in Fig. 14.2.1a; while the remainder of the gauge length
unloads. In this way, the strain of the material inside the:localized zone is €, —corresponding to the
softening branch— while in the remaining part the strain is £,,;as given by the unloading curve from the
peak (Fig. 14.2.1b).

The strain that the constitutive model for damage should predict is the strain € in the localization zone.
But this strain is difficult to measufe, for three reasons: (1) the size of the localization zone is small, which
reduces the accuracy of strain measurements; (2) the location of the localization zone is uncertain, and so
one does not know where to place the gage; and (3) the deformation of the localization zone is quite random
while the constitutive model predicts the statistical mean of many random realizations (determining this
mean requires taking measurements on many specimens).” Therefore, a simplificd method is desirable
based on measuring only the average strain £;,.

To find the simplified formula, we note that the total increment of the gauge length AL (equal'to Le,,
by definition) is obtained by adding the contributions of the softening-and unloading regions, i.e.,

Lep = hegs + (L= he)zy (14.2.1)

If we further assume that the unloading proceeds parallel to the initial elastic loading (i.e., stiffness

degradation up to the peak is negligible), then the unloading strain is €, = €, — (0, — 0)/E, where E
is the elastic modulus and &, and o, are the strain and stress at the peak of the stress-strain curve for the
glven type of loading (Fig. 14.2.1b). So we finally get <

' L L=<h —
forem, >ep: €5 =" Em c(epud” 0> So(142.2)

B O™ TR E

To correct the given test data according to (14.2.2), one must obviously know the value of the localization
length h.. It is impossible to determine this length from the reports on the uniaxial, biaxial, and triaxial
. tests of concrete found in the literature. However, a reasonable estimate can be made by experience
from other studies; £ = 3d, where d, = maximum size of the aggregate in concrete (for high-strength
concretes, £ is likely smaller, perhaps as small as £=d,;)."
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Bazant, Xiang et al. 1996 further proposed an approximate procedure to filter out of the given tensile
test data the size effect on the maximum tensile stress. This procedure was based on the size effect
law. According to the size effect on maximum load, they scaled the measured response curve by affinity
transformation with respect to the strain axis and in the direction parallel to the elastic slope. Thus, they
obtained the response curve with the peak tensile stress corresponding to specimen of size h,..

14.2.2  Calibration of Microplane Model and Comparison with Test Data

The microplane model we described has been calibrated and compared to the typical test data available
in the literature (BaZant, Xiang et al. 1996). They included: (1) uniaxial compression tests by van Mier
(1984, 1986; Fig. 14.2.2a), for different specimen lengths and with lateral strains and volume changes
measured, and by Hognestad, Hanson and McHenry (1955; Fig. 14.2.2b); (2) uniaxial direct tension tests
by Petersson (1981; Fig. 14.2.2¢); (3) uniaxial strain compression tests of BaZant, Bishop and Chang
(1986; Fig. 14.2.2d); (4) hydrostatic compression tests by Green and Swanson (1973; Fig. 14.2.2¢); (5)
standard triaxial compression tests (hydrostatic loading followed by increase of one principal stress) by
Balmer (1949; Fig. 14.2.2f); (6) uniaxial cyclic compression tests of Sinha, Gerstle and Tulin (1964;
Fig. 14.2.2g). (7) tests of shear-compression failure envelopes under torsion by Bresler and Pister (1958)
and Goode and Helmy (1967; Fig. 14.2.3a); (8) tests of biaxial failure envelope by Kupfer, Hilsdorf and
Riisch (1969; Fig. 14.2.3b); and (9) failure envelopes from triaxial tests in octahedrai plane (r-projection)
by Launay and Gachon (1971; Fig. 14.2.3c).

As seen from the figures, good fits of test data can be achieved with the microplane model. In Fig.
14.2.2a it should be noted that the uniaxial compression stress-strain diagrams are well represented for
three specimens lengths, £ = 5, 10, and 20 cm (it was already shown that the series coupling describes
well the length effect in these tests; sec BaZzant and Cedolin 1991, Sec. 13.2). Fig. 14.2.2d serves as the
basis for calibrating the volumetric stress-strain boundary, and a good fit is seen to be achieved for these
enormous compressive stresses (up to 300 ksi or 2 GPa). Fig. 14.2.2f shows that the large effect of the
confining pressure in standard triaxial tests can also be captured.

In Fig. 14.2.2g, note that the subsequent stress peaks in cycles reaching into the softening range are
modeled quite correctly, and so are the initial unloading slopes. Significant differences, however, appear
at the bottom of the cyclic loops, which is due to the fact that the unloading modulus is, in the present
model, kept constant (a refinement would be possible by changing the constant unloading slope on the
microplane level to a gradually decreasing slope, of course, with some loss of simplicity). It should also
be noted that the loading in these tests was quite slow and much of the curvature may have been due to
relaxation caused by creep.

In Fig. 14.2.3c note that the model predicts well the shape of the failure envelopes, which is noncircular
and nonhexagonal, corresponding to rounded irregular hexagons squashed from three sides. Fig. 14.2.3b
shows that the ratio of uniaxial and biaxial compression strengths found in these tests can be modeled.

1t must be emphasized that all the solid curves plotted in the figures are the curves that are predicted by
the microplane model. The dotted curves in Fig. 14.2.2 are those after correction according to the series
coupling model. The dashed curves in Fig. 14.2.2c are those after correction according to the size effect
law, and the dotted curves are those after a further correction according to the series coupling model.

Note that only six parameters need to be adjusted if a complete set of uniaxial, biaxial, and triaxial
test data is available, and two of them can be determined separately in advance from the volumetric
compression curve. If the data arc limited, fewer parameters need to be adjusted. The parameters are
formulated in such a manner that two of them represent scaling by affinity transformation. Normally only
these two parameters need to be adjusted, which-can be done by simple closed-form formulas. Thus, we
can conclude that the model may be efficiently used to describe concrete behavior in uniaxial, biaxial,
and triaxial situations.

14.2.3 Vertex Effects

There is another important property that is exhibited by the microplane model, and not, for example, by
macroscopic plasticity models. For a nonproportiorial path with an abrupt change of direction such that
the load increment in the ;5 space is directed parallel to the yield surface, the response of a plasticity
model is perfectly elastic, unless this change of direction happens at a corner of the yield surface. But
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Figure14.2.2 Experimental results from various sotirces and best fits with the microplane model (after BaZant,
Xiang et al. 1996): (a) uniaxial compression tests by van Mier (1984); (b) uniaxial compression tests by
Hognestad, Hanson and McHenry (1955; (¢) uniaxial tension tests by Petersson (1981); (d) confinéd compression
test (uniaxial strain) of BaZant, Bishop and Chang (1986): () hydrostatic compression test by Green and
Swanson (1973); (f) triaxial test data (increasing axial compression at constant lateral confining pressure) by

‘Balmer (1949); (g) uniaxial cyclic compression tests of Sinha, Gerstle and Tulin (1964). (Adapted from BaZant,
Xiang et al. 1996.)
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Figure 14.2.4 Vertex cffect: (a) preloading in the oy;-¢ space at increasing €11 and zero shear strain; (b)
in the &15-£12 space preloading corresponds to segment 01 and further tangent loading to segment 12; (c) the
further tangent loading in the o2-€ 1, diagram corresponds to segments 03 in classical plasticity models (fully
clastic loading) and to segment 04 when vertex effect is present (after BaZant, Xiang et al. 1996).

in reality, for all materials, this résponse is softer, in fact much softer; than elastic. It is as if a corner or
vertex of the yield surface traveled with the state point along the path.

This effect, called the vertex effect (see Sec. 10.7 in BaZant and Cedolin 1991), is automatically
described by the microplane model, but is very hard to model with the usual plastic or plastic-fracturing
models. Itcan be described only by models with many simultaneous yield surfaces, which are prohibitively
difficult in the o;; space. The microplane model is, in effect, equivalent to a set of many simultaneous
yield surfaces, one for each microplane component (although these surfaces are described in the space of
microplane stress components rather than in the o; 4 space).

This is one important advantage of the microplane approach. Itis, for example, important for obtaining
the correct incremental stiffness for the case when a dep-increment (segment_T§ in Fig. 14.2.4b) is
superimposed on a large strain 6‘,)1 (segment O1) in the inelastic range. Segment 03 in Fig. 14.2.4c is the
predicted response according to all classical macroscopic models with yield surfaces, which is elastic, and
segment 04 is the prediction of microplane model, which is much softer than elastic (ie., doyp/der; < 2G
where G = elastic shear modulus). Fig. 14.2.4c shows the incremental stiffness 04 calculated for the case
of the present reference parameters and E?] = 0.005. Indeed, the stope 04 is almost 1 /5 of the slope 03
which would be predicted by plasticity with a simple yield surface.

14.2.4 Other Aspects

< To check for the limit of stability and for bifurcations of the response path, the tangential stiffness matrix is

needed. The microplane model does not provide it directly, but it can always be computed by incrementing
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the strain components (or the d1sp]acements) one by one and solving for the corresponding stress changes
with the microplane model.

A greater insight into the microplane model, which may be useful for data fitting, can be achieved by
separating the geometric aspect of damage (i.e.; the effect of reduction of the stress-resisting cross section
of the material) from other inelastic phenomena. This separation has been achieved in Carol, BaZant and
Prat (1991). Correlation to plasticity models and continium:damage mechanics has been elucidated in
Carol and BaZant (1997).

14.3 Nonlocal Adaptation of Microplane Model or Other Constitutive Models

In unconfined straining, the microplane model displays softening. Therefore, localization limiters of
some kind must be used to avoid spurions localization and mesh sensitivity, as for all other models with
strain softening. This can be easily implemented using a nonlocal adaptation of the microplane model
in which the inelastic stress increment is made nonlocal following the theory of microcrack interactions
presented in the previous chapter (BaZant 1994b; see §13.3). This approach affects the flow of calculation
only partially and a general finite element scheme can beused: Fig. 14.1.1c shows the basic calculation
flowchart for this approach in which the nonlocal adaptation’is-implemented just after the microplane
stresses get computed; the flow bifurcates and the inelastic mcrememal stress is computed following the
nonlocal theory with microcrack interactions.

The microplane model as presented, or for that matter any: constitutive model for damage, gives a
prescription to calculate the stress tensor o as some tensor-valued function R of the strain tensor &
(and of some further parameters depending on the loading-history, e.g., on whether there is loading or
unloading). So, o = R(&). The most robust (although riot always the most accurate) method of structural
analysis is to base the solution of a loading step or time step on the incremental elastic stress-strain relation
with inelastic strain involving the initial elastic moduli tensor F, as explained in Section 13.3.1. Then,
for a local formulation, the inclastic stress increment tensor AS defined in (13.3.1) can be computed as

AS E(enew - Eold) R(Enew) + R(Eold) (14.3.1)

“in which qubscnpts old and new label the old and new value of the variables at the beginning and end
of the loading step (or time step); and S is the inelastic stress tensor due to nonlinear behavior. This
stress-strain relation is used for both dynamic explicit analysis and static implicit analysis (as the iterative
initial stiffness method).

A possible simple approach to introduce nonlocal effects is similar to the isotropic scalar nonlocal
approach (Pijaudier-Cabot and BaZant 1987), which was applied to the microplane model by BaZant and
Ozbolt (1990, 1992) and OZbolt and BaZant (1992). In thisapproach, the elastic parts of stress increments
are calculated locally. The inelastic parts of the increments of S must be calculated nonlocally. This

is accomplished by first determining, at each integration point of each finitc clement, the average (or

nonlocal) strains €, and then calculating nonlocal AS from these; i.e.,
Ao = EAe - AS;

The only modification required in a local finite element program is toinsert the spatial averaging subroutine
- just before the calculation of AS.
A better approach is to introduce the crack interaction concept explamed in Section 13.3 and write the
incremental elastic stress-strain relation as

Ao'=ENe~AS ' (14.3.3)

in which A8 is given by Eq..(13.3.9). The spatially averagéd strains are not calculated in this approach.
The nonlocal part of the analysis proceeds in the following steps:

1. First, ASiscalculated (in the local form) from (14.3.1) according to the micmplane model. Thenone
calculates at each integration point of each finite element the maximum principal direction vectors
n® (7 = 1,2,3) of strain tensor &, for which the value of £44 may be used as an approximation.

AS = EEu - E,,ew) = RiEnew) + R(Eqia) S (1432)
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Figure 14.3.1 Local representative volume: orientation and size (adapted from OZbolt and BaZant 1996).

2.. Then one starts a loop on prmcxpal strain directions n® (i = 1,2,3) of tensor € and evaluates
the melastlc stress changes iri the directions n{®, that is, ASC L = n® - ASn® or AS® =
n AS”n . For those principal directions 11® for which AS® < 0, the nonlocal calculations
are skxpped because the inelastic strain is not due to cracking, i.c., one jumps directly to the end of
this loop; here we make the assumption that, on the microscale (but not on the macroscale), there
is no softening in compression, which is true for the microplane model.

3. Thé values of AS® for the integration points of finite elements are then spatially averaged:
() 1 n
— )
A8, == ASPay,, AV, ‘ (14.3.4)
1

. [

where V,, = Z:}:l 0, AV, = normalizing factor, n = number of all the integration points inside
the averaging volume, and ¢, = given weight coefficients, whose distribution is suitably chosen
with a bell shape in both'z and y directions, described by a polynomial of the fourth degree. The
bell shape, which is similar to that in the nonlocal damage approach (Chapter 13, Eq. (13.1.5))
is reasonable in that it gives larger contributions to the sum from points that lie closer. Because
the spacing of major cracks in concrete is approximately the same as the spacing of the largest
aggregate pieces, the size of the averaging volume may be assumed to be approximately proportional
to the maximum aggregate size, d,. For two-dimensional analysis, the region of averaging should
probably be taken as a rectangle with its longer side in the direction normal to n(D (Fig. 14.3.1)

4. The values of the nonlocal principal inelastic stress increments AS® must then be solved from
the system of linear equations (13.3.31) based on the crack influence function A,,,,. However, as
discussed before, exact solution is normally not needed. Depending on the type of program, one of
two approximate methods can be used:

(a) In programs in which the loading step is iterated, these equations may be solved iteratively
within the same iteration loop as that used to solve the nonlinear constitutive relation, using
the following equation:

A(mew As‘”

N
Z AV, A, AP (u=1,2,..N)  (14.35)
v=1 . :

in which A}, = crack influence matrix defined in Eq. (13.3.43), which must, however, be
adjusted with factor k; for finite elements close to the boundary of concrete (Section 13.3. 9).

(b) In exphclt finite element programs without iteration, one may calculate from (14.3.5) only
the ﬁret 1terate (r = 1),'which represents one explicit calculation, requiring only the values
of AS and (AS; Z)) The premise of this approximation is that the repetitions of similar

alculallons (for = 1) in the next loading step (or time step) effectively serve as the
subsequent iterations (for 7 = 2,3, 4, ...) because the loading steps in the explicit programs
are very small. This of course means that the correct value of _A_S;‘Z gets established with a
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delay of several steps or time intervals (in other words, the computer program is using nonlocal
inelastic stress increments that are several steps old; the nonlocal interactions expressed by
- the crack influence function arc delayed by several steps).

We recall from Section 13.3.9 that the adjustment by factor ky must ensure that, even if part of the
influencing volume protrudes beyond the boundary, the condition Ziv:l AL,, = O be met. Because

this condition may be writtenas Y ;o Ak Eboundary Ay = 0, the following adjustment.

is needed for the integration points of the elements adjoining the boundary:

A, = ksl ky = =~ Z A / Z A (14.3.6)

" interior ¥ boundary v

For the remaining integration points in the intericr, no adjustment is done, i.c., A#Y = A#V.

5. At each integration point of each finite element, the nonlocal inelastic stress increment tensor is
" then constituted from its principal values according to the following equation: i

3 3
ASy = ZAg(i)n}(f)nl(i) of A8 = Zg’(l)n(” @ n® (14.3.7)
i=1 . i=1 . :

based on the spectral decomposition theoren of a tensor.

Note that if, at some integration point, all the principal values of tensor AS arc nonpositive, then the
foregoing nonlocal procedure may be skipped for that poinit.

14.4 - Particle and Lattice Models

A large amount of research, propitiated by the advent of powerful computers, has been devoted to the
simulation of material behavior based directly on a realistic but simplified modeling of the microstructure
~—its particles, phases, and the bonds between them. A spectrum of diverse approaches can be found
in the literature spanning an almost continuous transition from the finite element simulations, with the
classical hypothesis of continuum mechanics, to' discrete particle models and lattice models in which the
continuum is approximated a priori by a system of discrete elements: particles, trusses, or frames.

An extreme example of the continuum approach ~<in view of the fineness of material subdivision—
is the numerical concrete of Roelfstra, Sadouki ‘and Wittmann (1983), Wittmann, Roelfstra and Kamp
(1988) and Roelfstra (1988), in which the mortar, the aggregates, and their interfaces are independently
modeled by finite elements. This requires generation of the geometry of the material (random placement
of aggregates within the mortar) and the detailed discretization of the elements to adequately reproduce
the geometry of the interfaces. With a completely different purpose; but with the same kind of analysis,
Rossi and Richer (1987) and Rossi and Wu (1992) developed a random finite clement model in which
the microstructure is not directly modeled, but is taken"into ‘account by assigning random propertics
to the element interfaces. The common feature of these approaches is that, before cracking starts, the
displacement field is approximated by a continuous furiction: )

. The particle and lattice models do not model the material continuously, but substitute the continwum
by an array of discrete elements in the form of particles in contact, ‘trusses, or frames, in such a manner
that the displacements are defined only at the centers of the particles, or at the nodes of the truss or frame.

The origin of the particle approach can generally be traced to'the development of the so-called distinct
element method by Cundall (1971, 1978), Serrano and Rodriguez-Ortiz (1973), Rodriguez-Ortiz (1974),
Kawai (1980), and Cundall and Strack (1979) ih which the behavior of particulate materials (originally just
cohesionless soils and rock blocks) was analyzed simulating: the interactions of the particles in contact.
This kind of analysis, which deals with a genuine problém of discrete particle systems, used highly
simplified contact interaction laws permitted by the fact that the overall response is controlled mainly by
kinematic restrictions (grain interlock) rather than'by the details of the force-deformation relation at the
contacts. However, although the kinematics of the simulations appeared very realistic, the quantitative

stress-strain (averaged) response was not quite close to the actual behavior. This shortcomin g, which still
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Figuare 14.4.1 Various types of lattice models. (a) Pin-joined truss with (b) corresponding displacements and
forces at the nodes. (c) Rigid particles in a deformable matrix with (d) the displacements and rotations are
transmitted through a deformable layer by normal and shear forces. (e) Triangular regular laitice (originally
used by van Mier and Schlangen) formed by (f) beams that stretch and bend.

persists in many modern particle and lattice models, is large/ly caused by the fact that the simulations are
usually two-dimensional while a realistic simulation ought to be three-dimensional.

The basic idea of the particle model can be extended to simulate the particular structure of composite
materials, for example, the configuration of the large aggregate picces of concrete, as done by Zubelewicz
(1980, 1983), Zubelewicz and Mr6z (1983), and Zubelewicz and Bazant (1987), or the grains in arock (Ple-
sha and Aifantis 1983). In these cases the model requires defining the force interaction between particles
(aggregates or grains) which are caused mainly by the relative displacements and rotations of neighboring
particles. Although, for computational purposes, the problem is reduced to a truss (Fig. 14.4.1a-b) or to
a frame (Fig. 14.4.1c~d), the basic ingredient of such models is that the geometry (size) of the truss or
frame elements and their properties (stiffiess, strength, etc.) are dictated by the geometry of the physical
structure of the material (stiffness, size, shape, and relative position of aggregates or grains).

Incontrast to this, the pure lattice models replace the actual material by a truss or frame whose geometry
and element sizes are not related to the actual internal geometry of the material, but are selected freely
by the analyst. The truss approach to elasticity, elementary atomistic representations of the physics of
elasticity (i.e., arrays of atoms linked by springs shown in textbooks of solid state physics), was ajready
proposed as early as 1941 by Hrennikoff. The lattice models have been championed by theoretical
physicists for the simulation of fracturing in disordered materials (Herrmann, Hansen and Roux 1989;
Charmet, Roux and Guyon 1990; Herrmann and Roux 1990; Herrmann 1991) and have been developed
to analyze concrete fracture by Schlangen and van Mier at Delft University of Technology (Schlangen
and van Mier 1992; Schlangen 1993, 1995; van Mier, Vervuurt and Schlangen 1994). In their approach,
a regular triangular frame of side length less than the dimensions of the smallest aggregates, is laid over
the actual material structure (Fig. 14.4.1e~1f) and the properties of each beam are assigned according to
the material the beam lies over: mortar, aggregate or interface. However, to eliminate directional bias of
fracture, the lattice must be random (see Section 14.4.2). )

This section presents a brief overview of the main concepts and results of the particle and lattice models
as far as concrete fracture is concerned.
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Tigure 14.4.2 Random particle model of BaZant, Jirdsek et al. :(1994): (a) two adjacent circular particles
with tadii r; and r; and corresponding truss member 4j;(b) typical randomly generated specimen and its
corresponding mesh of truss elements; (c) constitutive law for.matrix. (Adapted from BaZant, Tabbara et al.
1990.)

14.4.1 Truss, Frame, and Lattice Models

The simplest model is a pin-jointed-truss, in which only the center-to-center forces between the particles
are considered (Fig. 14.4.1a-b, BaZant, Tabbara ¢t al. 1990).- A more refined model is that of Zubelewicz
and BaZant (1987), which imagines rigid particles separated by deformable thin contact layers of matrix
that respond primarily by thickness extension-contraction and shear (Fig. 14.4.1c~d). Since the internodal
links also transmit shear, moment equilibrium of the nodes needs to be considered, while for the pin-jointed
truss it need not. Therefore, this modél has three degrees-of-freedom per node (two displacements and
one rotation, with corresponding two force components and one moment) for planar lattices, while the
pin-jointed model has only two degrees-of-freedom per node.- Inthe spatial case, the model of Zubelewicz
and Bazant requires six degrees-of-frecdom per node, i.e.; three displacements and three rotations, while
the pin-jointed The simplest model truss requires only three degrees-of-freedom per node. There is an
additional important advantage of shear transmissionThe simplest model —it makes it possible to obtain
with the lattice any Poisson ratio, while a random or regular pin-jointed lattice (truss) has Poisson ratio
always 1/3 in two dimensions and 1/4 in three dimensions. '

The simplest model In the model of BaZant, Tabbara et al. (1990) and Zubelewicz and BaZant (1987),

the major particles in the material (large aggregate pieces) are imagined as circular and interacting through
links as shown in Fig. 14.4.2. In the initial work of Zubelewicz and BaZant, the link between particles
was assumed to transmit both axial forces and shear forces, the latter based on the rotations of particles.
In the subsequent model by BaZant, Tabbara et al. (1990), the particle rotations and transmission of shear
were neglected and only axial forces were assumed to be transmitted through the links. In such a case,
the system of particle links is equivalent tq a truss. 'As pointed out before, the penalty to pay for this
simplification is that the Poisson ratio of a random planar truss is always 1/3 (and for a spatial truss 1/4).
Another consequence of ignoring particlé rotations and interparticle shears is that the fracture process
zone obtained becomes narrower. But this can be counteracted by assuming a smaller postpeak softening
slope for the interparticle stress displacement law, and also by introducing a greater random scatter in the
link properties, both of which tend to widen the fracture process zone.
" Arandom particle configuration must be statistically'homogeneous and !SOllOplC on the macroscale.
In the simulation of concrete, the configuration must meet the required granulometric distribution of the
particles of various sizes, as prescribed for the 'mix of concrete.  The problem of generation of random
configurations of particles in contact under such constrains involves some difficult and sophisticated
aspects (see, e.g., Plesha and Aifantis 1983).

However, the problem becomes much simpler when the particles do not have to be in contact, as is the
case for aggregate pieces in concrete. In that case, a rather simple procedure (BaZant, Tabbara etal. 1990)
can proceed as follows: (1) using a random number generator, coordinate pairs of particle centers (nodes)
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are generated one after another, assuming a uniform probability distribution of the coordinates within the
area of the specimens; (2) for each generated pair a check for possible overlaps of the particles is made,
and if the generated particle overlaps with some previously generated one, it is rejected; (3) the random
generation of coordinate pairs proceeds until the last particle of the largest size has been placed within the
specimen, (4) then the entire random placement process is repeated for the particles of the next smallest
size, and then again for the next smallest size, etc. (The number of particles of each size is determined in
advance according to the prescribed mix ratio and granulometry.)

To determine which particles interact, a circle of radius Br; is drawn around each particle i (with
B = 5/3) as shown by the dashed lines in Fig. 14.4.2a: Two particles interact if their dashed circles
intersect each other. See BaZant, Tabbara et al. (1990) for the details of the assignment of the dimensions
of the truss element, particularly the cross-section A,,, and length L,,, of the deformable portion (labeled
with subscript m for matrix). In a later study by Jirasek and BaZant (1995a), a uniform stiffness of all the
links was assumed.

Fig. 14.4.2b shows atypical computer-generated random particle arrangement resembling concrete, and
the corresponding truss (random lattice). Fig. 14.4.2c shows the stress-strain relation for the interparticle
links, characterized by the elastic modulus Ep,, tensile strength limit f;™, and the postpeak softening
slope E (or alternatively by strain £ at complete failure, or by G'F, each of which is related to the
foregoing three parameters). The microscopic fracture energy of the material, G, is represented by the
area under the stress-strain curve in Fig. 14.4.2c, multiplied by the length of the link. The ratio of £¢ to
the strain €, at the peak stress may be regarded as the microductility of the material. B

The lattices in Fig. 14.4.1a—d attempt to directly simulate the major inhomogeneities in the microstruc-
ture of concrete. By contrast, the model introduced‘by Schlangen and van Mier (1992) takes a lattice (in
the early versions regular, but later randomized) that is much finer than the major inhomogeneities. Its
nodal locations and links are not really reflections of the actual microstructure (Fig. 14.4.1e—f). Rather,
the microstructure is simulated by giving various links different properties, which is done accordmg to
the match of the lattice to a picture of a typical aggregate arrangement.

Van Mier and Schlangen take advantage of the available simple computer programs for frames and
assume the lattice to consist of beams which resist not only axial forces but also bending. Due to bending,
the internodal links (beams), of course, also transmit shear, same as in the model of Zubelewicz and BaZant
(Figs. 14.4.1c~d and e~f). This feature is useful, because shears are indeed transmitted between adjacent
aggregate pieces and across weak interfaces in concrete, and because arbitrary control of the Poisson ratio
is possible. However, the idea of bending of beams is a far-fetched idealization that has nothing to do
with reality. No clear instances of bending in the microstructures of concrete can be identified.

The idealization of the links as beams subject to bending implies that a bending moment applied at one
node is transmitted to the adjacent node with the carry-over factor 0.5, as is well known from the theory
of frames. This value of the carry-over factor is arbitrary and cannot not have anything in common with
real behavior. In the model of Zubelewicz and BaZant (Fig. 14.4.1¢-d), the shear resistance also causes
a transmission of moments from node to node, however, the carry-over factor is not 0.5 and can have
different values. The transmission of moments is, in that model, due to shear in contact layers between
particles, whichis a clearly identifiable mechanism. In consequence of this analysis, it would seem better
to consider the carry-over factor in the lattices of van Mier and Schlangen to be an arbitrary number,
determined either empirically or by some microstructural analysis. This means that the 6 x 6 stiffness
matrix for the element of the lattice, relating the 6 generalized displacement and force components of a
beam sketched in Fig. 14.4.1f, should be considered to have general values in its off diagonal members,
not based on the bending solutions for a beam but on other considerations. ' In fact, the use of such a
stiffness matrix would require only an elementary change in the computer program for a frame (or lattice
with bending). Of course, if the need for such a modification is recognized, the model and van Mier and
Schlangen becomes essentially equivalent to that of Zubelewicz and BaZant, except that the nodes do not
represent actual particles and the lattice is much finer than the particles.

The beams'in the lattice model of Schlangen and van Mier are assumed to be elastic-brittle, and so,
when the failure criterion is met at one of the beams, the link may be removed. This means that at each
step the computation is purely elastic. This is computationally efficient, but makes the model predict a
far too brittle behavior, even for three-dimensional lattices (van Mier, Vervuurt and Schlangen 1994).

Another important aspect in lattice models is the size of the links. Unlike the lattice of Zubelewicz and
BaZant, which directly reflects the particle configurations and thus cannot (and should not) be refined, the
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Figure 14.4.3  Dependence of the load-displacement curve on the size of the lattice links: (a) basic element
geometry, (b) load-displacement curves for various lattice spacings (adapted from Schlangen 1995).

lattice of van Mier and Schlangen has an undetermined nodal spacing, which raiscs additional questions.
First, as is well known, frames or lattices with bending are on a large scale asymptotically equivalent
to the so-called micro-polar (or Cosserat) continuum (¢.g.; BaZant and Cedolin 1991, Sec.. 2.10-2.11).
Pin-jointed trusses, on the other hand, asymptotically approach a regular continuum on a large scale.
The micropolar continuum is a continuum with nonsymmetric shear stresses and with couple stresses.
It possesses a characteristic length, which is ‘essentially proportional to the typical nodal spacing of the
lattice approximated by the micro-polar continuum, While, in principle, the presence of a characteristic
length is a correct property for a modcl of concrete; the characteristic length should not be arbitrary but
should be of the order of the spacing of the major aggregate pieces. In this regard, the Iattice of van Mier
and Schlangen appears to be too refined. Moreover, as transpired from recent rescarches and the previous
chapter on nonlocal concepts, the micro-polar character or the presence of characteristic length should
refer only to the fracturing behavior and not to the-elastic part of .its bonds. The model of Schlangen
and van Mier goes against this conclusion, since even the elastic response of the lattice is asymptotically
approximated by a micro-polar rather than regular continuum, :

Furthermore, a question arises about the dependence of the résponse on the lattice spacing. A recent
study of Schlangen (1995) shows that the crack pattern is not strongly affected by the size of the beams,
but the Joad-displacement is affected in much the same way as mesh refinement in local strain-softening
models: the finer the lattice, the less the inelastic displacement and the dissipated energy, as illustrated
in the load-crack opening curves in Fig. 14.4.3 for a square specimen subjected to pure tension. Indeed,
itis easy to imagine that upon infinite refinement the stresses in a beam close to a crack tip must tend to
infinity and thus a precracked specimen must fail for a vanishingly small load (roughly proportional to the
square root of the beam size). Also, the shorter the beams, the smaller the dissipated energy, because the
volume of material affected by the crack is smaller the smaller the elements. Note that the lattice analyzed

by Schlangen in Fig. 14.4.3 has random strength in all the cases with identical probabilistic distributiop.

Therefore, randomness does not relieve mesh sensitivity as sometimes claimed.

The mesh-sensitivity of Schlangen and van Mier’s model ¢an probably be attificially alleviated or
eliminated by taking a beam strength inversely proportional to the square root of the beam size, similar to
the equivalent strength method described in Section 8.6.4 for crack band analysis. However, this is purely
speculative and a more sound basis should be built for the lattice models before they can be confidently
used as predictive (rather than just descriptive) models. - A nonlocal fracture criterion may serve as an
alternative solution to the problem, but this would break the computational efficiency of the elastic-brittle
beam lattice model. Note that nonlocality (i.e., interaction at finite distance) is automatically implemented
in the particle models because the particle distances are finite and fixed, so the lattice size should also be
fixed as dictated by the microstructure.

14.4.2 Directional Bias

An important aspect of the model is the géneration of the lattice configuration. In many works regular
lattices have been used. However, recently Jirdsek and BaZant (1995a), and also Schlangen (1995)
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Figure 14.4.4 Failure patterns for various values of o (a) 0°, (b) 15°, (c) 30°, (d) 45° using a regular lattice
with deterministic properties of the links (from Jirdsek and BaZant 1995a).

Figure 14.4.5 Failure patterns for‘various values of c: (a) 07, (b) 22.5°, (c) 45° using a regular lattice with
random strength, elastic stiffness and microfracture energy of the links (from Jirdsek and BaZant 1995a).

demonstrated that a regular lattice always impresses a strong bias on the direction of fracture propagation.

For the square lattices with diagonals analyzed by Jirdsek and BaZant, it is, of course, possible to choose
the elastic stiffnesses of the links in the main directions of the square mesh and the diagonal directions,
the corresponding strength limits of the links and the corresponding microfracture energies in such ratios
that the lattice is isotropic in terms of elastic propetties, strength along straight line cuts, and fracture
energies dissipated on such cuts for any oriesitation of the cut, However, even in that case, the fracture
tends to run preferentially among the mesh lines. This has been blatantly demonstrated by simulations
of fracture of a circular specimen on which a regular square mesh with diagonals was overlaid; see Fig.
14.4.4. In this particle simulation the fracture was caused by an impact at the bottom of the circle in
upward direction. InFig. 14.4.4a the impact was in the direction of the square mesh lines, in Fig. 14.4.4d
in the direction of the diagonals, and in Fig. 14.4.4b and 14.4.4c in two intermediate directions. Note the
enormous differences in fracture patterns, which were also manifested by great differences in peak loads
and energies dissipated. When all the properties of the links of a regular lattice were randomized, strong
directional bias of fracture still remained; see Fig. 14.4.5.

Only when a geometrically random lattice was used in Jirdsek and Bazant’s (1995a) study, the directional
bias was eliminated, except for small random differences between meshes. Similar results were found
by Schlangen (1995) for a double-edge notched specimen subjected to shear. These results indicate that
random (unstructured) lattices must be used to avoid directional bias. :

14.4.3 Examples of Results of Particle and Lattice Models

BaZant, Tabbara et al. (1990) used the random particle system described before (Figs. 14.4.1a~b and
14.4.2) to simulate tensile tests and bending tests on notched specimens. A similar model was used
by Jirdsck and BaZant (1995a,b) to relate the microscopic features of the model (such as the softening
curve and the statistics of strength distribution) to the macroscopic properties, particularly size effect and
fracture energy.

Fig. 14.4.6 shows direct tension specimens of various sizes studied computationally by BaZant, Tabbara
etal. (1990), with the results displayed in Fig. 14.4.7 as the calculated curves of load (axial force resultant)
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Figure 14.4.6 Geometrically similar specimens-of various sizes with randomly generated particles (adapted
from BaZant, Tabbara et al. 1990).

vs. relative displacement between the ends. ) ‘

Fig. 14.4.7b gives the curves for several specimens of the smallest size {rom Fig. 14.4.6. Fig. 14.4.7¢c
shows the curves for the medium size specimens-and Fig. 14.4.7d the curve for one large size specimen.
Fig. 14.4.7¢ shows, in relative coordinates, the average response curves calculated for the small, medium,

and large specimens. Note that while the prepeak shape of the load displacement curve is size independent,

the postpeak response curve is getting steeper with increasing size.

Fig. 14.4.8 shows the progressive spread of cracking in‘on¢ of the smallest specimens from Fig. 14.4.6.
The cracking patterns are shown for four different points on the load displacement diagram, as seen in
Fig. 14.4.8a, the first point corresponding to the peak load. The dashed black lincs are the normals to
the links that undergo softening and correspond to partially formed cracks. The solid lines are normal to
completely broken links and represent fully formed cracks. The gray dashed lines represent normals to the
links that partly softened and then unloaded;-and correspond to partially formed cracks that are closing.
Note from Fig. 14.4.8 that the cracking is at first widely distributed, but then it progressively localizes.

Fig. 14.4.9 shows the calculated peak loads for:the specimens from Fig. 14.4.6 in the usual size
effect plot of the logarithm of nominal strength vs. . logarithin of the size. BaZant, Tabbara et al. (1990)
interpreted the results in terms of the classical'size effect law Eq. (1.4.10) with rclatively good results.
The recent results of BaZant explained in Section 9.1, particularly the size effect formula for failures at
crack initiation from a smooth surface (Section 9.1.6) suggest that these results must be interpreted using
Eq. 9.1.42. Thus the results of BaZant, Tabbara et al. (1990) have been fitted here by the simplest version
of this curve (for whichy = 0). Fig. 14.4.9 shows the resulting fit, which is excellent for the mean values
of the data. . L

Three-point-bend fracture specimens of three sizes in the ratio-1:2:4 were simulated in the manner

. illustrated in Fig. 14.4.10a. Fig. 14.4.10b shows the size effect plot obtained from the three sizes of the
specimens in Fig. 14.4.10a for three different matetials.‘As ‘can be seen, the calculatéd maximuam.loads
can be well approximated by BaZant's size effect law, Eq: (1.4.10). )

By fitting the size effect law to the maximum Joad obtained by the lattice or particle model for similar
specimens of different sizes, one can determine the'macroscopic fracture energy Gy of the particle system
and the effective length ¢5 of the fracture process zone (see Chapter 6). It thus appears that fracture
simulations with the lattice model or random particle system provide a further verification of the general
applicability of the size effect law.
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Figure 14.4.7 Results of BaZant, Tabbara et al. " (1990) for’ direct tension of random particle speci-
~mens: (a) specimen with D = 36,72, and 144 mm; (b) load-displacement curve for small specimens; (c)
load-displacement curve for medium specimens; (d) load-displacement curve for large specimens; (e) normal-
ized load-displacement curves for specimens 1A, 2A, and 3A. (Adapted from BaZant, Tabbara et al. 1990.)
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Figure 14.4.8 Results of BaZant, Tabbaraet al. (1990) for the evolution of cracking in direct tension of random
particle specimens: (a) load-displacement curve for specimen 1A; (b) evolution of cracking with loading and
localization. (Adapted from BaZant, Tabbara et al. 1990.)
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Figure 14.4.9  Size effect plot constructed form maximumi load values €alculated for direct tension specimens
of various sizes by BaZant, Xiang et al. (1996). The solid line is the fit by Eq. (9.1.42) withy = 0. fy is a
reference strength taken to be equal to the matrix tensile strength fi™ (see Fig. 14.4.2¢).
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Figure 14.4.10 Simulation of three three-point-bend tests by random particle model.(a) Three-point-bend
specimens with d = 36, 72, and 144 mm and (b) corresponding size effect plot. (Adapted from BaZant, Tabbara
et al. 1990.)

At the same time, the size effect law is seen to be aneffective approach for studying the relationship
between the microscopic characteristics of the particle system, simulating the microscopic properties of
the material, and the macroscopic fracturé characteristics. .

Such studies have been undertaken by Jirdsek and BaZant (1995b). Fig. 14.4.11 show the results of a
large number of such simulations, dealing with two dimensional three-point-bend fracture specimens of
different sizes. In these specimens, the microductility number, representing the ratio &,/ €p, Was varied
(see Fig. 14.4.2b). The coefficient of variation of the microstrength of the particle length, used in random
generation of the properties of the links, was also varied (the microstrength was assumed to have a normal
distribution). )

It was found that both the microductility and the coefficient of the microstrength of the links have a
significant effect on the macroscopic fracture energy G and on the effective length cs of the process zone;
see Fig. 14.4.11a,c. Randomness of these plots is largely due to the fact that the number of siraulations
was not very large (the values in the plot are the averages of the values obtained in individual sets of
simulations of specimens of different sizes). The plots in'Fig. -14.4.11a,¢ have been smoothed as shown
in Fig. 14.4.11b,d by the following bilinear polynoinials which provide optimum fits:

Gy = 2.16 ~ 1.08wy -+ 0:48; = 0. 71wy, (14.4.1)
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Figure 14.4.11 Normalized fracture energy and normalized effective process zone size as a function of two
parameters: (a) and (c) computed, (b) and (d) fitted by bilinear functions (from Jirdsek and BaZant 1995b).

Cf = 0.64 + 0.08wf + 0.09’yf - 0.]9wf'yf, (14.4.2)

in which the superimposed bars refer to average values, and wy and 7]# are the coefficient of variation
of microstrength and the microductility number. Obviously, the effect of various other microscopic
characteristics of particle systems on their macroscopic fracture properties could also be studied in this
manner, exploiting the size effect law. : :

14.4.4 Summary and Limitations

The lattice models or particle systems are computationally very demanding and a very efficient compu-
tational algorithm must be used. A highly efficient algorithm, which was applied to simulation of sea ice
fracture, is presented in Jirdsek and BaZant (1995a). It is an explicit algorithm for fracture dynamics, but
it can also be used for static analysis in the sense of dynamic relaxation method. (Fracturing in particle
systerns with more than 120,000 degrees-of-freedom was simulated with this algorithm on a desktop 1992
work station.) Computational effectiveness will be particularly important for three-dimensional lattices,
the use of which is inevitable for obtaining a fully realistic, predictive model.

As it now stands, the lattice or particle models can provide a realistic picturc of tensile cracking in
concrete in two-dimensional situations. However, solution of significant three-dimensional problems or
nonlinear triaxial behavior as well as simulation of behavior in which compression and shear fracturing
is important is still beyond reach. Thus, the lattice or particle models have.not attained the degree o
generality already available with the finite element approach, :

Although computer programs for lattices are attractive by their simplicity, it must nevertheless be
recognized that a lattice modeling of a continuum is far less powerful than the finite element method
because the stress and strain tensors cannot be simulated by the elements of the lattice and, thus, nonlinear
tensorial behavior cannot be directly described. From this viewpoint, the numerical concrete of Roelfstra
and Wittmann, seems preferable to the lattice model of van Mier and Schlangen because the particles and
mortar are discretized by a much finer mesh of finite elements.

To sum up, lattice models or particle systems have proven to be a useful tool for understanding fracture
process and clarifying some relationship between the micro- and macro- characteristics of quasibrittle
heterogeneous materials. These models appear to be particularly suited for failures due to tensile fracturing
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and capture well the distributed nature of such fracturing and its localization. However, one must keep
in mind that these models, in their present form, cannot simulate three-dimensional situations, larger
structures (even two-dimensional), compressive and shear fractures, and nonlinear triaxial stress-strain
relations. Overall, these models are still far inferior to finite ‘element modcls and do not really have a
predictive capability. No doubt significant improvements may be expected in the near future.

14.5 Tangential Stiffness Tensor Via Solution of a Body with Many Growing Cracks

The power of the microplane model is limited by the assumption of a kinematic (or static) constraint,
which is a simplification of reality. To avoid this simplification, one needs to tackle the boundary value
problem of the growth of many statistically uniformly distributed cracks in an infipite elastic body. This
. problem is not as difficult as it seems. It appears possible that an approximate solution of this problem
might once supersede the microplane model as the most realistic predictive approach to cracking damage.

The problem of calculating the macroscopic ‘stiffnessténsor of elastic materials intersected by various
types of random or periodic crack systems has been systematically explored during the last two decades
and effective methods such as the self-consistent scheme (Budianski and O’Conell 1976; Hoenig 1978),
the differential scheme (Roscoe 1952; Hashin 1988), or the Mori-Tanaka method (Mori and Tanaka 1973)
have.been developed.. A serious limitation of these studies was that they dealt with cracks that neither
propagate nor shorten (Fig. 14.5.1a). -This means that; in-‘the context of response of a material with
growing damage illustrated by the curve in Fig..14.5.1a, these formulations predict only the secant elastic
moduli (such as E, in Fig. 14.5.1a). Such information does not suffice for calculating the response of a
body with progressing damage due to cracking.

To calculate the response of a material with cracks that can grow or shorten, it is also necessary to
determine the tangential moduli, exemplified by E; in'Fig.-14.5.1b. Knowledge of such moduli makes
it possible, for a given strain increment, to determine the inelastic stress drop do ¢, (Fig. 14.5.1b). This
problem has recently. been studied by BaZant and Prat (1995, 1997) and Prat and BaZant (1997). Its
solution will now be briefly reviewed.

We consider a representative volume V' of an elastic material containing on the microscale many
cracks (microcracks). On the macroscale, we imagine the cracks to be smeared and the material to be
represented by an approximately equivalent homogeneous continuum whose local deformation within the
representative volume can be considered approximately homogeneous over the distance of several average
crack sizes. Let & and o be the average strain tensor and average stress tensor within this representative
volume. To obtain a simple formulation, we consider only circular cracks of effective radius a.

Consider the material to be intersected by N families of random cracks, labeled by subscripts =
1,2, ..., N. Eachcrack family may be.characterized by its spatial orientation 71, its effective crack radius
., and the number 1, of cracks in family p per unit volume of the mz\terial The compliance tensor may
be considered as the function C = C (a1 G, iGN T ) Approximate estimation of this
function has been reviewed by Kachanov and co- workcrs (Kach'mov 1992, 1993; Sayers and Kachanov
1991; Kachanov, Tsukrov and Shafiro 1994).

To obtain the tangential compliance tensor of the méterial on the macroscale, the cracks must be allowed
to grow during the prescribed strain increment §e: This means that the encrgy release rate per unit length

Figure 14.5.1 = Stress-strain curves and moduli: (a) effective secant moduli; (b) tangential moduli and inelastic
-stress decrement due to crack growth.
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of the front edge of one crack must be equal to the given critical value R(a,,) (or to the fracture energy
G, in the case of LEFM). For the sake of simplicity, we will enforce the condition of criticality of cracks
only in an overall (weak) sense, by assuming that the average overall energy release rate of all the cracks
of one family within the representative volume equals their combined energy dissipation rate.

Our anatysis will be restricted to the case when the number of cracks in each family is not allowed
to change (6n,, = 0), i.e., no new cracks are created and no existing cracks are allowed to close. This
does not seem an overly restrictive assumption because a small enough crack has a negligible effect on
the response and can always be assumed at the outset. Besides, concrete is full of microscopic cracks (or
flaws) to begin with, and no macroscopic crack nucleates from a homogeneous material.

The incremental constitutive relation can be obtained by differentiation of Hooke’s lJaw. It reads
be = Céo + Z!ILI(@C/BCLH)U da,, from which

N7
oC
so=E |6~ 7.° ba, (14.5.1)
n=1

where § denotes infinitesimal variations and C/(a,,) is the fourth-order macroscopic secant compliance
tensor of the material with the cracks, and F/(a,,) is the fourth-order secant stiffness tensor, whose 6 X 6
matrix is inverse of the matrix of C(ay,,).

The surface area of one circular crack of radlus a,is A = 7T(L#, and the area change when the crack
radius increases by da is §A, = 27ra#6a# We assume we can replace the actual crack radii by their
effective radius a,,.

The crack radius increments a,, must be determined in conformity to the laws of fracture mechanics.
Let us assume that the cracks (actually microcracks) can be described by equivalent liniear elastic fracture
mechanics (LEFM) with an R-curve R(a,,). This means that the energy release rates must be equal to
R, (or Gy, in the case of LEFM). For the special case R(a,) = G = fracture energy of the matrix of
the material, the cracks follow LEFM. )

The complementary energy density of the material is u =u (o,a,) = 20' «C(ay)o, where the
dot indicates scalar product of two second-order tensors. To make the problem tractable, we impose the
energy criterion of fracture mechanics (energy balance condition) only in the overall, weak sense. This
leads to the following N conditions of crack growth (BaZant and Prat 1995; Prat and Bazant 1997):

ot
Oa,,

l o ocC
2 day,

o =2raunuk,R(a,) (n=1,2,..N) (14.5.2)
o =const.

(repetition of subscript £ in this and subsequent equations does not imply summation); k,, = crack growth
indicator which is equal to 1 if the crack is growing (6a,, > 0) and 0 if it is closing (éa,, < 0), while any
value 0 <k, < 1canbeused if ba, =

Differentiation of (14,5.2) provides the incremental energy balance conditions:

&*C
Ba,, 60 -+ Z (2 aauaaf — 27rnun#G’f6W> Sa, =2mnyua,Gsbr,  (p=1,2,..N)
(14.5.3)
where 8k, = 0 except when the crack growth changes to no growth or to closing, or vice versa.
The handling of the large jump in s, is exact if 5, = & and @, = a"ld because §(kua,) =
(Rpap)™ = (ruan) = K1%6a, + brk,ad0, exactly.
Substitution of (14.5.1) into (14.5.3) leads to a system of N equations for N unknowns day, ...0an:

N
> Awba, =B, (p=1,..N) (14.5.4)

v=I

where

C _oC orC
Ap=o0- <~8~—E

1
PO e ew s 14.5.5
da,,  Oa, 28a#3a,,> o+ fnun ad ( )




562 : ' e Material Models for Damage and Failure

B,=o" 9€ goe - 27,03 G 6K, _ (14.5.6)
da,, : : : .

After solving (14.5.4), evaluating o from (14.5.1) and incrementing o, one must check whether the

case 64, > 0 and onNp < 0 (or GCNT# < 0) occurs for any . If it does, the corresponding equation in
the system (14.5.4) must be replaced by the equation éa,; = 0. The solution of such a modit}ied equation
system must be iterated until the case 6, > 0 and o <0 (oref,, < 0) would no lohger occur for
any ji. :
The formulation needs to be further supplemented by a check for compression. The reason is that the
energy expression is quadratic, which means that (14.5.2) is invariant when o is replaced by 0. Thus,
a negative stress intensity factor K, can occur even when (14.5.4) is satisfied, and so the sign of Ky,
must be checked for each crack family z. The case ‘K< 0isinadmissible, :

Since the present formulation yields only the values of (K1.)? = ER(a,) but not the values of
Ky, the sign of K, must be inferred approximately. - It can be ‘considered the same as the sign of the

stress oy, = 7, - i, in the direction normal to the cracks of p-th family (47, = unit vector normal -

to the cracks). [Alternatively, the sign of K 11 could be inferred from the sign of the normal component
€Ny = Ty » €577, of the cracking strain tensor. £ = g Approximate though such estimation
surely is on the microscale of an individual crack, it nevertheless is fully consistent with the macroscopic
approximation of C implied in this model. The reason-is that all the composite material models for
cracked solids are based on the solution of one ‘crack in‘an infinite solid, for which the sign of Ky,
coincides with the sign of oy (or Ef\’,"ﬂ). ) : :

Usually the six independent components of 8¢ are known of assumed, and then (14.5.4) represents a
separate system of only NV equations for §ay, ...6ax (thisisa simplification compared to the formulation
in the paper, which led to a system of N + 6 equations).- In each iteration of each loading step, the values
of x5, are set according to the sign of ba,, in the preceding step or-preceding iteration.

If §a,, = 0O, or if(due to numerical error) |80, is nonzero but less than a certain ¢hosen very small
positive number 6, ,, is arbitrary and can be anywhere between-0 and 1, which makes equation (14.5.3)
superfluous. Thecondition (14.5.2) of energy balancein the of constant crack length becomes meaningless
and-must be dropped. It needs to.be replaced by an equation giving k, (or K7y,,) as a function of o),
which must be used to check whether £, indeed remains within the interval (0,1). However, it seems
that for proportionally increasing loads the case bay; = 0is not important and its programming could be
skipped, using conveniently the value o =0.5. G

The foregoing solution was outlined in BaZant and Prat (1995) and worked out in detail in Prat and
BaZant (1997) (with Addendum in a later issue). :

To be able to use (14.5.5), we must have the means to evaluate the effective secant stiffness C' as a
function of @,,. BaZant and Prat (1995) and Prat and BaFant (1997) adopted the approximate approach
developed by Sayers and Kachanov (1991) using the symmelric second-order crack density tensor

N : :
o= Z n“ai i & 1y, (14.5.7)
pn=1 : .

(Vakulenko and Kachanov 1971; Kachanov 1980, 1987b). In this approach, the effective secarit compli-
ance C'is derived from an elastic potential F which is considered as a function of the crack density tensor
« (in addition of the stress tensor or): - - : ’

e = o) Co (14.5.8)
do :

The elastic potential F'(or, t) can be expanded into a tensorial power series. Sayers and Kachanov (1991)
proposed to approximate potential I by a tensor polynomial that is quadratic in o and linear in o

1
Flo,a) = 50" Clod+m (o a)fodmoet o o (14.5.9)

in which 7y and 7, are assumed to depend onlyona = tra = u' n.ﬂaz, the first invariant of ¢ (Sayers
and Kachanov 1991). The strain tensor follows from (14.5.9):

e=C% o atnttaotn (ao+ o) (14.5.10)

Tangential Stiffuness Tensor Via Solution of a Body with Many Growing Cracks 563

The functions 71 (cr) and 12(e) can be obtained by taking the particular form of the preceding formu-
lation for the case of random isotropically distributed cracks and equating the results to those obtained
using, e.g., the differential scheme (Hashin 1988). To this end, we note that if the orientation, density,
and size of cracks is isotropically distributed, then v must be spherical, and since its trace is equal to ¢,
it must be & = (c/3)1. Substituting this into the preceding equation we get for this case:

2
s:C°ar+§m tr01+§7]20 (14.5.11)

Noting now that the resulting behavior in (14.5.11) must be elastic with effective elastic modulus Eest
and effective Poisson’s ratio vygr, we get the following relationship between the functions 7;, the effective
elastic constants and the a:

3 (vesr(e) 140 _
me) =5 (1LY )=

where E and v are the elastic constants of the uncracked material (included in C°); here we indicate
explicitly that the effective elastic constants depend on «v. This dependence can be obtained, for example,
by using the differential scheme which, for quasibrittle materials, gives better predictions than the self-

Eeff(a) E

AT

* consistent scheme (BaZant and Prat 1997). The resulting relationships (see e.g., Hashin 1988 for the

details of the derivation) are as follows:

5 v 15 - 45 14 vegg 5 3 — Vg
=Iln— 4+ = Ip—df | g ST O 14.5.13
T Ta oy YT, tmet s ( )
10/9 _ 1/9
Ber _ (—V“f) Pl3-v (14.5.14)
E v 3 — vy

From Eqgs. (14.5.7), (14.5.10), and (14.5.12)—(14.5.14) the cffective compliance tensor is obtained as
a function of a,. Then §a,, is calculated from Eq. 14.5.4 for a given 8¢ as indicated before.

The crack density may be characterized as a continudus function n,, of spherical angles ¢ and 6 (Prat
and BaZant 1997). Function n,, is then sampled at spherical angles ¢, and 8, corresponding to the
orientations of the microplanes in the microplane model. For isotropic materials such as concrete, the
distribution of 7., is initially uniform, and a very small but nonzero value must be assigned to every n,, as
the initial condition because no new cracks are allowed to nucleate. For an initially anisotropic material
such a rock with joints, function n,, is assumed to peak at a few specified discrete orientations @5, 07

In on-going studies, the R-curves are used by BaZant and co-workers as a means to approximate
the effect of plastic strains in the matrix of the material occurring simultaneously with the crack growth.
Unlike classical plasticity, the plastic strain cannot be considered here to be smeared in a continuum manner
because the cracks cause stress concentrations. Therefore, plasticity of the matrix will get manifested by
the formation of a plastic zone at the front edge of each microcrack. As is well known, the effect of such
a plastic zone can be approximately described by an R-curve.



References

Achenbach, J. D. and BaZant, Z. P. (1975) “Elastodynamic near-tip stress and displacement fields for rapidly
propagating cracks in orthotropic materials.” J. Appl. Mech.-T. ASME, 42, 183-189.

Achenbach, J. D., BaZant, Z. P. and Khetan; R. P. (19762) “Elastodynamic near-tip fields for a rapidly propa-
gating interface crack” Int. J. Eng. Sci.,, 14,797-809. .

Achenbach, J. D., BaZant, Z. P. and Khetan, R. P. (1976b) “Elastodynamic near-tip fields for a crack propagating
along the interface of two orthotropic solids.” Int. J. Eng. Sci., 14, 811-818.

ACI Committee 318 (1989) Building Code Requirements for Reinforced Concrete (ACI 318-89) and Com-
mentary (ACI 318R-89). U.S. Standard, American Concrete Institute, Detroit.

ACI Committee 318 (1992) Building Code Requirements for Reinforced Concrete (ACI 318-89 Revised 1992).
U.S. Standard, American Concrete Institute, Detroit.

ACT Committee 349 (1989) “Code requirements for nuclear safety structures (ACI 349.1R), Appendix B -
Steel embedments.” In Manual of Concrete Practice, Part 1V, American Concrete Institute, Detroit.

ACI Committee 408 (1979) “Suggested development, splice and standard hook provisions for deformed bars
in tension.” Concrete Int., 1(7), 44-46. (ACI 408.1R-79.)

ACI Committee 446 (1992) “Fracture mechanics of concrete: Concepts, models and determination of material
properties.” In Fracture Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science,
London, pp. 1-140. (State of Art Report.)

ACI-ASCE Committee 426 (1973) “The shear strength of reinforced concrete members: Chapters 1 to 4. J.
Struct. Div.-ASCE, 99, 1091-1187.

ACI-ASCE Committee 426 (1974) *‘The shear strength of reinforced concrete merﬁbers: Chapter 5. J. Struct.
Div.-ASCE, 100, 1543-1591. ,

ACI-ASCE Committee 426 (1977) “Suggested revisions to shear provisions for building codes.” ACI J., 74(9),
458-469.

Adamson, R. M.; Dempsey, J. P, DeFranco, S. I. and Xie, Y. (1995) “Large-scale in-situ ice fracture exper-
iments. Part I: Experimental aspects.” In lce Mechanics 1995, J. P. Dempsey and Y. D. S. Rajapakse,
eds., The American Society of Mechanical Engineers, New York, pp. 107-128. (AMD-Vol. 207, ASME
Summer Meeting, Los Angeles, CA.)

Alexander, M. G. (1987) Test data in Shah and Ouyang (1994).
Alfrey, T. (1944) “Nonhomogeneous stress in viscoelastic media” Quart. Appl. Math., 2(2), 113-119.

Aliabadi, M. H. and Rooke, D. P. (1991) Numerical Fracture Mechanics, Computational Mechanics Publica-
tions, Southampton. .

Alvaredo, A. M. and Torrent, R. J. (1987) “The effect of the shape of the strain-softening diagram on the
bearing capacity of concrete beams.” Mater. Struct., 20, 448-454.

Argon, A. S. (1972) “Fracture of composites.” In Treatise of Materials Science and Technology, Vol. 1,
Academic Press, New York, pp. 79.

Ashby, M. F. and Hallam, S. D. (1986) “The failure of brittle solids containing small cracks under compressive
stress states.” Acta Metall., 34(3), 497-510.

ASTM (1983) “Standard test method for plane-strain fracture toughness of metallic materials”’ In Annual
Book of ASTM Standards, Vol. 03.01, ASTM, Philadelphia, pp. 519-554. (Standard E399-83.)

ASTM (1991) “Standard test methods for plane-strain fracture toughness and strain energy release rate of
plastic materials.” In Annual Book of ASTM Standards, Vol. 08.03, ASTM, Philadelphia: (Standatd D
5045-91.) '

Atkins, A.G. and Mai. Y.W. (1985) Elastic and Plastic Fracture, Ellis Horwood Ltd., John Wiley & Sons,
Chichester, New York.

Ballarini, R., Shah, S. P. and Keer, L. M. (1985) “Crack growth in cement based composites” Eng. Fract.
Mech., 20(3), 433445, -

Balmer, G. G. (1949) Shearing Strength of Concrete under High Triaxial Stress—Computation of Mohr’s
Envelope as a Curve. Report No. SP-23, Struct. Res. Lab., Denver, CO.

565




566 : : References

Baluch, M. H,, Azad, A. K. and Ashmawi, W. (1992) “Fracture mechanics application to reinforced concrete
members in flexure.” In Application of Fracture Mechanics to Reinforced Concrete, A. Carpinter, ed.,
Elsevier Applied Science, London, pp. 413-436. -,

Baluch, M. H, Qureshi, A. B. and Azad, A. K. (1989) “Faﬁg‘ue crack propagationin plain concrete.” In Fracture
of Concrete and Rock, S.P. Shah and S.E. Swartz, eds., Springer-Verlag, New York, pp. 80-85. -

Barenblatt, G. 1. (1959) “The formation of cqu]hbrlum cracks during brittle fracture, general ideas and hy- .

pothesis, axially symmetric cracks.” Prikl. Mat. Mech:; 23(3), 434-444.

Barenblatt, G. L {1962) “The mathematical theory of equlhbrlum of cracks in brittle fracture.” Adv. Appl
Mech., 7,'55-129.

Barenblatt; G. 1. (1979) Similarity, Self-Similarity and Interinediate Asymptotics, Plenum Press, New: York.

Barsoum, R. S. (1975) “Further application of quadratic isoparamétric finite elements to linear fracture me-
chanics of plate bending and general shells.” Int. J. Fracture, 11, 167-169.

Barsoum, R. S. (1976) “On the use of 1soparametnc finite clements in linear fracture mechanics.” Int. J.
Numer. Meth. Eng., 10, 25-37.

Batdorf, S. B. and Budianski, B. (1949) A Mathematical Theo:y ofPlasrzuly Based on the Concept of Slip.
Technical Note No. 1871, Nat. Advisory Committee for Aeronautics, Washington, D.C.

Batto, R. A. and Schulson, E. M. (1993) “On the ductile-to-brittle transition in ice under compression.”Acta
Metall. Mater., 41(7), 2219-2225. :

Bazant, Z. P. (1967) “Stability of continuum-and compression strength.” Bulletin RILEM, 39, 99-112. (Ih
French.)

Bazant, Z. P. (1968) “Effect of folding ot reinforcing fibers on the-elastic moduli and strength of composite
materials.”” Mekhanika Po[zmemv 4,314-321. (In Russian.)

BaZant, Z. P. (1972a) “T! hcrmodymmxcs of hindered adsorpnon with apphcauon to cement paste and concrete.”
Cement Concrete Res., 2, 1

BaZant, Z. P. (1972b) “Thermodynam]cs of interacting continua with surfaces and creep analysis of concrete
structures.” Nucl. Eng. Des., 20, 477-505.

BaZant, Z. P. (1974) “Three-dimensional harinopic functions near termination or intersection of smgularlly
lines: A general numerical method.” /nt. J. Eng: -Sci.; 12,221-243.

Bajant, Z.P. (1975) “Theory of creep and shrinkage in concrete structures: A precis of recent developments.”
In Mechanics Today, Vol. 2, S. Nemat-Nasser, ed., Pergamon Press, Oxford, pp. 1-93.

BaZant, Z. P. (1976) “Instability, ductility and size effect in strain-softening concrete.” J. Eng. Mech. Div.-
ASCE, 102, 331-344. (Discussion 103,7357-358,:775-777 and 103, 501-502.)

Bazant, Z. P. (1982) “Crack band model for fracture of geomaterials.” In Proc. 4th Int. Conf. on Numerical
Methods in Geomechanics, Vol..3, Z. Eisenstein, ed.,; pp. - 1137-1152.

BaZant, Z. P. (1983) “Fracture in concrete and reinforced concrete.” In Preprints IUTAM Prager Symposium on
Mechanics of Geomaterials: Rocks, Concretes, Soils, Z: P. BaZant, ed., pp. 281-316. (See also BaZant
1985¢.)

BaZant, Z. P. (1984a) ““Size effect in blunt fxactme Concrete, rock, metal.” J. Eng. Mech.-ASCE, 110,518 535
BaZant, Z. P. (1984b) “Imbricate continuum and its variational derivation.” J. Eng. Mech.-ASCE, 110, 1693—
1712, . ’

BaZant, Z. P. (1984c) “Microplane model for strain controlled inelastic behavior™ In Mechanics of Engineering
Materials, C. S. Desai and R. H. Gallagher, ¢ds., J. Wiley, London, pp. 45-59.

Bazant, Z. P. (1985a) “Mechanics of fracture and progressive cracking in concrete structures.” In Fracture
Mechanics of Concrete: Structural Application and Numerical Calculation, G. C. Sihand A, DiTommaso,
eds., Martinus Nijhoff, Dordrecht, pp. 1-94.

BaZant, Z. P. (1985b) “Fracture mechanics and strain-softening in concrete.” In Preprints U. S.- Japan Seminar
on Finite Element Analysis of Reinforced Concrete Structures, Vol. 1, pp. 47--69.

BaZant, Z. P. (1985c) “Fracture in concrete and reinforced concrete” In Mechanics o of Geomaterials: Rocks,
Concretes, Soils, Z. P. BaZant, ed., John Wiley & Sons; Chichester, New York, pp. 259-303.

Bazant, Z.P. (1985d) “Comment on. Hillerborg’s size effect.law and fictitious crack model.” In Dei Poli
Anniversary Volume, L. Cedolin et al., eds., Politecnico di Milano, Italy, pp. 335-338.

BaZant, Z. P. (1986a) “Fracture mechanics and strain-softening of concrete.” In Finite Element Analysis of
Reinforced Concrete Structures, C. Meyer and H. Okamura; eds.; ASCE, New York, pp. 121-150.

BaZant, Z. P. (1986b) “Distributed cracking and nonlocal continuum.” In Finite Element Methods forNonlmear :

Problems, P. Bergan et al., eds., Springer, Betlin, pp. 77<102.

References 567

BaZant, Z. P. (1986¢) “Mechanics of distributed cracking.” Appl. Mech. Rev, 39, 675-705.

BaZant, Z. P. (1987a) “Fracture energy of heterogeneous materials and similitude.” In Preprints SEM-RILEM
Int. Conf. on Fracture of Concrete and Rock, S. P. Shah and S. E. Swartz, eds., Society for Experimental
Mechanics (SEM), Bethel, pp. 390-402. (See also BaZant 1989a.)

Bazant, Z. P. (1987b) “Snapback instability at crack ligament tearing and its implication for fracture microime-
chanics.” Cement Concrete Res., 17, 951-967.

BaZant, Z. P. (1987c) “Why continuum damage is nonlocal: Justification by quasi-periodic microcrack array.”
Mech. Res. Commun., 14(5/6), 407-419.

BaZant, Z. P., ed. (1988a) Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley & Sons,
Chlchesler New York.

Bazant, Z. P. (1988b) Fracture of Concrete. Lecture Notes for Course 720-D30, Northwestern University,
Evanston, Illinois 60208, U.S.A.

BaZant, Z. P. (1989a) “Fracture energy of heterogencous materials and similitude” In Fracture of Concrete
and Rock, S. P. Shah and S. E. Swartz, eds., Springer Verlag, New York, pp. 229-241.

BaZant, Z. P. (1989c) “Advances in material modeling of concrete” In Tenth International Conference on
Structural Mechanics in Reactor Technology (SMiRT10); Vol.- A, A. H. Hadjian, ed., pp. 301-330.

Bazant, Z. P. (1990a) “Justification and improvement of Kienzler and Herrmann'’s estimate of stress intensity
factors of cracked beam.” Eng. Fract. Mech., 36(3), 523-525.

BaZant, Z. P. (1990b) “A critical appraisal of ‘no-tension’ dam design: A fracture mechanics viewpoint.” Dam
Eng., 1(4), 237-247.

BaZant, Z. P. (1990c) “Recent advances in failure localization and nonlocal models.” In Micromechanics of
Failure of Quasi-Brittle Materials, S. P. Shah, S. E. Swartz and M. L. Wang, eds., Elsevier, London, pp.
12-32.

BaZant, Z. P. (1990d) “Smeared-tip superposition method for nonlinear and time—dcpcndent fracture.” Mech,
Res. Commun., 17(5), 343-351.

Bazant, Z. P. (1991a) “Rate effect, size effect and nonlocal concepts for fracture of concrete and other quasi-
brittle materials.” In Toughening Mechariisms in Quasi-Britile Materials, S.P. Shah, ed., Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, pp. 131-154. . .

BaZant, Z. P. (1991b) “Why continuum damage is nonlocal: micromechanics arguments.” J. Eng. Mech.-
ASCE, 117(5), 1070-1087.

BaZant, Z. P. (1992a) “Large-scale thermal bending fracture of sea ice plates.” J. Geophys. Res., 97(C11),
17739-17751.

BaZant, Z.P.(1992b) “New concept of nonlocal continuum damage: - Crack influence function.” In Macroscopic
Behavior of Heterogeneous Materials from Microstructure, S. Torquato and D. Krajcinovic, eds., The
American Society of Mechanical Engincers, New York, pp. 153-160. (AMD-Vol.147, ASME Winter
Annual Meeting, Anaheim.)

BaZant, Z. P. (1992c¢) “Large-scale fracture of sea ice plates.” In Proc., 11th IAHR International Ice Symposium,
Vol. 2, T. M. Hrudey, ed., Univ. of Alberta, Edmonton, Canada, pp. 991-1005.

BaZant, Z. P. (1993a) “Scaling laws in mechanics of failure.” J. Eng. Mech.-ASCE, 119(9), 1828-1844.

BaZant, Z. P. (1993b) “Current status and advances in the theory of creep and interaction with fracture.” In
Creep and Shrinkage of Concrete, Z. P. BaZant and 1. Carol, eds., E & FN Spon, London, pp. 291-307.

BaZant, Z. P. (1993c) Concept of Boundaries for Microplane Model. Intemal Research Note, Dept. of Civil
Engrg., Northwestern University, Evanston, Illinois 60208, U.S.A.

Bazant, Z. P. (1993d) “Discussion of ‘Fracture mechanics and size effect of concrete in tension’, by Tang ct
al. (1992). J. Struct. Eng.-ASCE, 119(8), 2555-2558.

BaZant, Z. P. (1994a) “Size effect in tensile and compressive quasibrittle failures.” In Size Effect in Concrete
Structures, H. Mihashi, H. Okamura and Z. P, BaZant, eds., E & FN Spon, London, pp. 161-180.
BaZant, Z. P. (1994b) “Nonlocal damage theory based on micromechanics of crack interactions.” J. Eng.

Mech.-ASCE, 120(3), 593-617. (Addendum and Errata 120, 1401-1402.)
BaZant, Z. P. (1994c) Is size effect caused by fractal nature of crack surfaces?. chort No. 94-10/402i,
Department of Civil Engineering, Northwestern University, Evanston, [llinois.

BaZant, Z. P. (1995a) “Scaling theories forquasibrittle fracture: Recent advances and new directions.” In Frac-
ture Mechanics of Concrete Structures, F, H. Wittmann, ed., Aedificatio Publishers, Freiburg, Germany,
pp. 515-534.

BaZant, Z. P. (19951)5 Scaling of Quasibrittle Fracture: 1. Asymptotic Analysis Based on Laws of Thermody-
namics. II. The Fractal Hypothesis, its Critique and Weibull Connection. Report No. 95-7/C402s, Dep.
of Civil Engineering, Northwestern University, Evanston; Illinois 60208, U.S.A.



568 References

Bazant, Z. P. (1995¢) “Creep and Damage in Concrete.” In Materials Science of Concrete IV, J. Skalhy and S.
Mindess, eds., Am. Cer. Soc., Westerville, Ohio, pp.-355-389.

Bazant, Z. P. (1995d) Microplane model for concrete.. 1. Siress strain boundaries and finite strain. Internal
Report to WES, Vicksburg, Northwestern University:

Bazant, Z. P. (1995¢) “Scaling of quasibrittle fracture and the fractal question.” J, Eng Mater. Technol -T
ASME, 117, 361-367.

BaZant, Z. P. (1995f) “Scaling theories for quasibrittle fracture:; ‘Recent advances and new directions.” In
Fracture Mechanics of szcrete Structures; Vol 1, FH. Wittmann, ed., Aedificatio Publishers, Freiburg,
Germany, pp. 515-534. ’

BaZant, Z. P. (1996a) “Is no-tension design of concrete or rock structures always safe?—Fracture analysis.” J.
Struct. Eng.-ASCE, 122(1), 2-10.

BaZant, Z. P. (1996b) Fracturing Truss Model: Explanation’of Size Effect Mechanism in Shear Failure of
Reinforced Concrete. Report No. 96-3/603f, Dept. of Civil Engrg., Northwestern University, Evanston,
1llinois; also J. of Engrg. Mechanics ASCE 123 (12),in press,

BaZant, Z. P..(1996¢) “Finite strain generalization ‘of small-strain constitutive relations for any finite strain
tensor and additive volumetric-deviatoric split” Int.-J.Solids Struct., 33(20-22), 2887-2897. (Special
issue in memory of Juan Simo.)

BaZant, Z. P. (1996d) “Untitled.” Personally communicated research note to J. Planas, November 1996.

BaZant, Z. P. (1996¢) “Can scaling of structural failure be explained by fractal nature of cohesive fracture?”
In Size-Scale Effects in the Failure Mechanisms of Materials.and Structures, A. Carpinteri, ed., E & EN
Spon, London, pp. 284-289. (Appendix to a'paper by Li and BaZant.)

BaZant, Z. P. (1997a) “Scaling of quasibrittle fracture: Asymptotic analysis.” Int. J. Fracture, 83(1), 19-40.

BaZant, Z. P. (1997b) “Recent advances in brittle-plastic:compression failure: damage localization, scaling .

and finite strain.” In Computational Plasticity, D. R:J.:Owen, E. Ofiate and E. Hinton, eds., Int. Center
for Num. Meth. in Eng. (CIMNE), Barcelona, Spain, pp.- 3-19.

Bazant, Z. P. (1997¢) Easy-to-compute finite strain tensor with symmetric inverse, approximating Hencky
strain tensor. Report No. 96-9/425¢,-Northwestern Umversny, Evanston, Hlinois. (Submitted to J: of
Engrg. Materials and Technology ASME)) -

BaZant, Z. P. (1997d) “Scaling of quasibrittle fracture: “hypotheses of invasive and lacunar fractality, their
critique and Weibull connection.” Int. J. Fracture, 83(1), 4165,

Ba%ant, Z. P. (1997¢) “Scaling of structural failure” Appl..Mech. Rev., 50(10), 593-627.

BaZant, Z. P. and Baweja, S. (1995a) ‘‘Justification and ‘refinement of Model B3 for concrete creep and
shrinkage. 1. Statistics and sensitivity.” Mater. Struct.; 28,415-430.

BaZant, Z. P. and Baweja, S. (1995b) “Justification’ and refinement of Model B3 for concrete creep and
shrinkage. 2. Updating and theoretical basis.” Mater. Struct., 28, 488-495.

BaZant, Z. P. and Baweja, S. (1995¢) “Creep and shrinkage prediction model for analysis and design of concrete
structures — model B3.” Mater. -Struct., 28,357-365. (RILEM Recommendation, in collaboration with
RILEM Committee TC 107-GCS. Erratum 29, 126.)

BaZant, Z. P. and Beissel, S. (1994) “Smieared-tip superposition method for cohesive fracture with rate effect
and creep.” Int. J. Fracture, 65,277-290.

BaZant, Z. P. and Belytschko, T. B. (1985) “Wave propagatlon in'strain-softening bar: Exact solution.” J. Eng.
Mech.-ASCE, 111, 381-389.

Bazant, Z. P. and Cao, Z. (1986) “Sizie effect in brittle failure of unreinforced pipes.” ACI J., 83(3), 369-373.
Bazant, Z. P. and Cao, Z. (1987) “Size effect in punching shear failure of slabs.” AC! Struct. J., 84, 44-53.

BaZant, Z. P. and Cedolin, L. (1979) “Blunt crack band propagation in finite clement analysis.” J. Eng. Mech.
Div.-ASCE, 105, 297-315.

BaZant, Z. P. and Cedolin, L. (1980) “Fractire mechanics of reinforced concrete.” J. Eng. Mech. Div.-ASCE,
106, 1257-1306.

BaZant, Z. P. and Cedolin, L. (1983) “Finite element modeling of crack band propagation.” J. Struct Eng. -ASCE,
109, 69-92.

Bazant, Z. P. and Cedolin, L. (1991) Stability of Structures: - Elastic; Inelastic, Fracture and Damage Theories,
Oxford University Press, New York.

BaZant, Z. P. and Cedolin, L. (1993) “Why direct tension spemmens break flexing to the side” J. Struct.
FEng.-ASCE, 119(4), 1101-1113.

BaZant, Z. P. and Chern, J.-C. (1985a)“Strain- softemng with creep and exponential algorithm.” J-Eng. Mech.-

ASCE, 113, 391-415.

References ' 569

BaZant, Z. P. and Chern, J.-C; (1985b) “Concrete creep at variable humidity: Constitutive law and mechanism.”
Mater. Struct., 18, 1-20.

BaZant, Z. P. and Desmorat, R. (1994) “Size effect in fiber of bar pullout with interface softening slip.” J. Eng.
Mech.-ASCE, 126(9), 1945-1962.

BaZant, Z. P. and Estenssoro, L. F. (1979) “Surface singularity and crack propagation.” Im J. Solids Struct.,
15, 405-426. (Addendum 16, 479-481.)

Bazant, Z. P. and Gambarova, P. (1984) “Crack shear in concrete: Crack band microplane model” J. Struct.
Eng.-ASCE, 110, 2015-2035.

BaZant, Z. P. and Gettu, R. (1989) “Determination of nonlinear fracture characteristics and time dependence
from size effect.” In Fracture of Concrete and Rock: Recent Developments, S. P. Shah, S. E. Swartz and
B. Bar, eds., Elsevier Applied Science, London, pp. 549--565.

BaZant, Z. P. and Gettu, R. (1990) “Size effect in concrete structures and jnfluence of loading rates.” In
Serviceability and Durability of Construction Materials, B. A. Suprenant, ed., American Society of Civil
Engineers' (ASCE), New York, pp. 1113-1123.

BaZant, Z. P. and Gettu, R, (1992) “Rate effects and load relaxation: Static fracture of concrete.” ACI Mater.
J., 89(5), 456-468.

BaZant, Z. P. and Jirdsek, M. (1993) “R-curve modeling of rate and size effects in quasibrittle fracture.” Int. J.
Fracture, 62, 355-373.

Bazant, Z. P. and Jirdsek, M. (1994a) “Damage nonlocality due to microcrack interactions: Statistical deter-
mination of crack influence function.” In Fracture and Damage in Quasibrittle Structures: Experiment,
Modelling and Computer Analysis, Z. P. BaZant, Z. Bittnar, M. Jirdsek and J. Mazars, eds., E&FN Spon,
London, pp. pp.3-17.

BaZant, Z. P. and Jirdsek, M. (1994b) “Nonlocal model based on crack interactions: A localization study.” J.
Eng. Mater. Technol.-T. ASME, 116, 256-259.

BaZant, Z. P. and Kazemi, M. T. (1990a) “Determination of fracture energy, process zone length and brittleness
number from size effect, with application to rock and concrete.” Int. J. Fracture, 44, 111-131,

BaZant, Z. P. and Kazemi, M. T. (1990b) “‘Size effect in fracture of ceramics and its use to determine fracture
energy and effective process zone length.” J. Am. Ceram. Soc., 73(7), 1841-1853.

BaZant, Z. P. and Kazemi, M. T. (1991) “Size effect on diagonal shear failure of beams without stirraps.” AC/
Struct. J., 88(3), 268-276.

Bazant, Z. P. and Keer, L. M. (1974) “Singularity of elastic stresses and of harmonic functions at conical
notches or inclusions.” Int. J. Solids Struct., 10, 957-964.

BaZant, Z. P. and Kim, J.-I. (1996a) Penetration fracture and size effect in sea ice plates with part-through
bending cracks. Report No. 96- 10/402p, Dep. of Civil Engincerinv, Northwestern University, Evanston,
Illinois. (Also J. of Eng. Mech., in press.)

BaZant, Z. P. and Kim, J.-J. (1996b) Tube-squash test and large strains of normal and high-strength concretes
with shear angle over 30°. Report, Northwestern University, Evanston, Illinois. (Submitted to ACI
Materials Journal.)

BaZant, Z. P. and Kim, J.-K. (1984) “Sizc effect in shear failure of longitudinally reinforced beams.” ACI J.,
81, 456-468. (Discussion and Closure 82, 579-583.)

BaZant, Z. P. and Kwon, Y. W. (1994) “Failure of slender and stocky reinforced concrete columns: Tests of
size effect”” Mater. Struct., 27, 79-90.

BaZant, Z. P. aiid Li, Y.-N. (1994a) “Cohesive crack model for geomaterials: Stability analysis and rate effect.”
Appl. Mech. Rev., 47(6), S91-S96. (Part of Mechanics U.S.A. 1994, ed. by A.S. Kobayashi, PIOC 12th
U.S. Nat. Congress of Appl. Mechanics, Seattle, WA, June.)

BaZant Z. P. and Li Y.-N. (1994b) “Penetration fracture of sea ice plate: Simplified analysis and size effect.”
J. Eng. Mech.-ASCE, 120(6), 1304-1321.

BaZant, Z. P. and Li, Y.-N. (19952) “Stability of cohesive crack model: Part I—Energy principles” J. Appl.
Mech.-T. ASME, 62, 959-964.

BaZant, Z. P. and Li, Y.-N. (1995b) “Stability of cohesive crack model: Part Il-—Eigenvalue analysis of size
effect on strength and ductility of structures” J. Appl. Mech.-T. ASME, 62, 965-969.

BaZant, Z. P. and Li Y.-N. (1995d) “Penetration fracture of sea ice plate” Int. J. Solids Struct., 32(3/4),
303-313.

BaZant, Z. P. and Li, Y.-N. (1997) “Cohesive crack model with rate-dependent crack opening and viscoelas-
ticity: I. Mathematical model and scaling” Int. J. Fracture, in press.

BaZant, Z. P. and Li, Z. (1995¢) “Modulus of rupture: Size effect due to fracture initiation in boundary layer.”
J. Struct. Eng.-ASCE, 121(4), 739-746.




570 - References

BaZant, Z. P. and Li, Z. (1996) “Zero-brittleness size—effect method for one-size fracture test of concrete.” J.
Eng. Mech.-ASCE, 122(5), 458-468.

Béiant, Z. P. and Lin, E-B. (1988a) “Nonlocal smeared ci’acking model for concrete fracture.” J. Struct.
Eng.-ASCE, 114(11), 2493-2510.

BaZant, Z. P.'and Lin, E-B. (1988b) “Nonlocal vield limit-degradation.” Int. J. Numer. Meth. Eng., 26,
18051823,

BaZant, Z. P. and Oh, B. H. (1982) “Strain rate effect in rapid triaxial loading of concrete.” J. Eng. Mech.-ASCE,
108(5), 767-782. . B

Bazant, Z. P. and Oh, B.-H. (1983a) ““Crack band theory for fracture of concrete.” Mater, Struct., 16,155-177.

BaZant, Z. P. and Oh, B.-H. (1983b) “Microplanc model for fracture analysis of concrete structures.” In Proc.
Symp. on the Interaction of Non-Nuclear Munitions with Structires, pp. 49-53. ’

BaZant, Z. P. and Oh, B.-H. (1985) “Microplane model for progressive fracture of concrete and rock.” J. Eng.
Mech.-ASCE, 111, 559-582. : :

BaZant, Z. P. and Ob, B.-H. (1986) “Efficient numerical integration on the surface of a sphere.” Z. Angew.
Math. Mech., 66(1), 37-49.

BaZant, Z. P. and Ohtsubo, H. (1977) “Stability conditions for propagation of a system of cracks.in a brittle
solid.” Mech. Res. Commun., 4(5), 353-366.

BaZant, Z. P. and Osman, E. (1976) “Double power law for basic creep of concrete” Mater. Struct., 9, 3-11.

BaZant, Z. P. and OZbolt, J. (1990) “Nonlocal microplane model for fracture, damage, and size effect in
structures.” J. Eng. Mech.-ASCE, 116(11), 2484-2504.

BaZant, Z. P. .and Ozbolt, 1. (1992) “Compression failire of ‘quasi-brittle material: Nonlocal microplane
model.” J. Eng. Mech.-ASCE, 118(3), 540-556. ’

BaZant, Z. P. and Panula, L. (1978) ‘‘Practical prediction of time-dependent deformations of concrete. Part I
— Basic creep.” Mater. Struct.; 11, 317-328. . )

BaZant, Z. P. and Pfeiffer, P. A. (1986) “She,ar fracture tests of concrete.” Mater. Struct., 19, 111=121.

BaZant, Z. P. and Pfeiffer, P. A. (1987) “Determination-of fracture energy from size effect and brittleness
number.” ACI Mater. J., 84(6), 463480, ; '

BaZant, Z. P. and Pijaudier-Cabot, G. (1988) “Nonlocal continuum damage, localization instabﬂity and con-
vergence.” J. Appl. Mech.-T. ASME, 55, 287-293. o

BaZant, Z. P. and Pijaudier-Cabot, G. {1989) “Measurement of characteristic length of nonlocal continuum.”
J. Eng. Mech.-ASCE, 115(4), 755-767.

Bazant, Z. P. and Prasannan, S. (1989) “Solidification théory for coricrete creep: 1. Formulation.” J. Eng.
Mech.-ASCE, 115(8), 1691-1703.

BaZant, Z. P. and Prat, P. C. (1988a) “Effect of temperature and himidity on fracture energy of concrete.” ACI
Mater. J., 85, 262-271. §

BaZant, Z. P. and Prat, P. C. (1988b)- “Microplane model for britile plastic matetial: I. Theory; and I1.
Verification.” J. Eng. Mech.-ASCE, 114, 1672-1702. .

BaZant, Z. P. and Prat, P. C. (1995) “Elastic material with systems ‘of growing or closing cracks: Tangential
Stiffness.” Iin Contemporary Research in Engineering Science, R. Batra, ed., Springer Verlag, New York,
pp. 55-65.

BaZant, Z. P. and Prat, P. C. (1997) “Tangential stiffness tensor of material with growing cracks.” Mech. Res.
Commun., submitted, ’ .

BazZant, Z. P. and Schell, W. E (1993} “Fatigue fracture of high-strength concrete and size effect.” ACI Mater.
J., 90(5), 472-478.

Bazant, Z. P. and Sener, S. (1987) “Size effect in torsional failure of longitudinally reinforced concrete beams.”
J. Struct Eng.-ASCE, 113(10), 2125-2136.

BaZant, Z. P. and Sener, S. (1988) “‘Size effect in pullout tésté.”ACI Mater. J, 85, 347-351.

Bazant, Z. P. and Sun, H.-H. (1987) “Size effect in dia'gonal’ shear failure: Influence of aggregate size and -

stirrups.” ACT Mater. J., 84, 259-272,

BaZant, Z. P. and Wahab, A. B. (1979) “Instability and spacing of cooling or shrinkage cracks.” J. Eng. Mech.
Div.-ASCE, 105, 873-889. . : i

BaZant, Z. P. and Wahab, A. B. (1980) “Stability of parallel cracks‘in solids reinforced by bars.” Int. -J. Solids
Struet., 16, 97-105. e

BaZant, Z. P. and Xi, Y. (1991) “Statistical size effect in quasi-brittle structures: I1. Nonlocal theory” J. Eng.
Mech.-ASCE, 117(11), 2623-2640.

References 571

BaZant, Z. P. and Xi, Y. (1994) “Fracture of random quasibrittle materials: Markov process and Weibull-type
models.” In Structural Safety and Reliability, G. 1. Schuéller, M. Shinozuka and I. T. P. Yao, eds., A. A.
Balkema, Rotterdam-Brookfield, pp. 609-614. (Proc. of ICOSSAR’93—6th Intern. Conf. on Struct,
Safety and Reliability, Innsbruck, Austria, Aug. 9-13, 1993)

BaZant, Z. P. and Xiang, Y. (1994) “Compression failure of quasibrittle materials and size effect”” In Damage
Mechanics in Composites,D. H. Allenand J. W, Ju, eds., The American Society of Mechanical Engineers,
New York, pp. 143-148. (AMD-Vol. 185, Winter Annual Meeting, Chicago.)

BaZant, Z. P. and Xiang, Y. (1997) “Size effect in compression fracture: splitting crack band propagation.” J.
Eng. Mech.-ASCE, 123(2), 162-172.

BaZant, Z. P. and Xu, K. (1991) “Size effect in fatigue fracture of concrete.” ACI Mater: J., 88(4), 390-399,

BaZant, Z. P, Adley, M. D. and Xiang, Y. (1996) “Finite strain analysis of deformations of quasibrittle material
during missile impact and penetration.” In Advances in Failure Mechanisms in Britile Materials, R. J.

Clifton and H. D. Espinosa, eds., The American Society of Mechanical Engineers, New York, (MD-Vol
75, AMD-Vol. 219.) .

BaZant, Z. P, Bai, S.-P. and Gettu, R. (1993) “Fracture of rock: Effect of loading rate.” Eng. Fract. Mech.,
45(3), 393-398. :

BaZant, Z. P, Belytschko, T. B. and Chang, T.-P. (1984) “Continuam model for strain softening.” J. Eng,
Mech.-ASCE, 110, 1666-1692.

BaZant, Z. P, Bishop, F. C. and Chang, T.-P. (1986) “Confined compression tests of cement paste and concrete
up to 300 ksi.” ACT J., 83(4), 553-560.

BaZant, Z. P, Daniel, . M. and Li, Z. (1996) “Size effect and fracture characteristics of composite laminates.”
J. Eng. Mater. Technol.-T. ASME, 118, 317-324.

BaZant, Z. P, Gettu, R. and Kazemi, M. T. (1991) “Identification of nonlinear fracture properties from size-

effect tests and structural analysis based on geometry-dependent R-curves.” Int. J. Rock Mech. Min.
Sci., 28(1), 43-51. k

BaZant, Z. P, Glazik, J. L. and Achenbach, J. D. (1976) “Finite element analysis of wave diffraction by a
crack” J. Eng. Mech. Div.-ASCE, 102, 479-496, (Discussion 103, 226-228, 497-499, 1181-1185.)

Bazant, Z. P, Glazik, J. L. and Achenbach, J. D. (1978) “Elastodynamic fields near running cracks by finite
elements.” Comput. Struct., 26, 567-574.

BaZant, Z. P, Gu, W.-H. and Faber, K. T. (1995) “Softening reversal and other effects of a change in loading
rate on fracture of concrete.” ACI Mater J, 92, 3-9.

BaZant, Z. P, He, S., Plesha, M. E. and Rowlands, R. E. (1991) “Rate and size effect in concrete fracture;
Implications for dams.” In Proc. Int. Conf. on Dam Fracture, V. Saouma, R. Dungar, and D. Morris,
eds., University of Colorado, Boulder, CO, pp. 413-425,

BaZant, Z. P, Jirdsek, M., Xiang, Y. and Prat, P. C. (1994) “Microplane model with stress-strain boundaries and
its identification from tests with localized damage.” In Computational Modeling of Concrete Structures,
H. Mang et al,, eds., Pineridge Press, Swansea, pp. 255-261.

BaZant, Z. P,, Kazemi, M. T. and Getw, R. (1989) “Recent studies of size effect in concrete structures” In
Transactions of the Tenth International Conference on Structural Mechanies in Reqctor Technology., Vol.
H, A. H. Hadjian, ed., pp: 85-93. .

BaZant, Z. P,, Kazemi, M. T, Hasegawa, T. and Mazars, J. (1991) “Size effect in Brazilian split-cylinder tests:
Measurement and fracture analysis.” ACI Mater. J., 88(3), 325-332.

BaZant, Z. P, Kim, J.-J. and Li, Y.-N. (1995) “Part-through bending cracks in sea ice plates: Mathematical
modeling” In Ice Mechanics 1995, J. P. Dempsey and Y. Rajapakse, eds., The American Society of

Mechanical Engincers, New York, pp. 97-105. (AMD-Vol. 207, ASME Summer Meeting, Los Angeles,
CA)

BaZant, Z. P, Kim, J-K. and Pfeiffer, P. A. (1986) “Nonlinear fracture properties from size effect tests.” J,
Struct. Eng.-ASCE, 112, 289--307. -

BaZant, Z. P, Lee, S-G. and Pfeiffer, P. A. (1987) “Size effect tests and fracture characteristics of aluminum.”
Eng. Fract. Mech., 26(1), 45-57.

BaZant, Z. P, Li, Z. and Thoma, M. (1995) “Identification of stréss-slip law for bar or fiber pullout by size
effect tests.” J. Eng. Mech.-ASCE, 121(5), 620-625.

BaZant, Z.P., Lin, E-B. and Lippmann, H. (1993) “Fracture energy release and size effect in borehole breakout.”
Int. J. Numer. Anal. Meth. Geomech., 17, 1-14,

BaZant, Z. P., Qhtsubo, R. and Aoh, K. (1979) “Stability and post-critical growth of a system of cooling and
shrinkage cracks.” Int. J. Fracture, 15, 443-456.



572 References

BaZant, Z. P, OZbolt, J. and Eligehausen, R.(1994) “Fracture size effect: Review of evidence for concrete
structures.” J. Struct Eng.-ASCE, 120,2377-2398, ..~

BaZant, Z. P, Sener, S. and Prat, P. C. (1988) “Size ‘effedt tests of torsional failure of plain and reinforced
concrete beams.” Mater. Struct., 21, 425-430. .

BaZant, Z. P.,, Tabbara, M. R., Kazemi, M: T. and Pijaudier:Cabot, G. (1990) “Random ' particle model for
fracture of aggregate or fiber composites.” J. Eng.-Mech.-ASCE, 116, 1686—1705.

BaZant, Z. P, Xi, Y. and Baweja, S. (1993) “Improved prediction tiodel for time-dependent deformations of
~ concrete: Part 7— Short form of BP-KX model; statistics and extrapolation of short-time data.”” Mater:
Struct., 26, 567-574.

BaZant, Z. P, Xi, Y. and Reid, S. G. (1991) “Statistical size effect in quasi-brittle structures: 1. Is Weibull
theory applicable?” J. Eng. Mech.-ASCE, 117(11), 2609-2622.

BaZant, Z. P, Xiang, Y., Adley, M. D., Prat, P. C. and Akers, §. A. (1996) “Microplane model for concrete.
I1. Data delocalization and verification.” J. Eng. Mech.fASCE, 122(3), 255-262.

BaZant, Z. P., Xiang, Y. and Prat, P. C.(1996) “Microplane model for concrete. 1. Stress-strain bouhdaries and
finite strain” J. Eng. Mech.-ASCE, 122(3), 245-254. (Erratum in 123.)

Bell, J. F. (1985) “Contemporary perspectives ift finite strain plasticity.” Int. J. Plasticity, 1, 3-27.

Belytschko, T. B., BaZant, Z. P, Hyun,'Y. W. and Chang, T.-P: (1986) “Strain-softening materials and finite
element solutions.” Comput. Struct.; 23(2), 163-180. ;

Belytschko, T, Fish, J. and Englemann, B. E. (1988) “A'finite element with embedded localization zones”
Comput. Meth. Appl. Mech. Eng., 70,59-89.

Bender, M. C. and Orszag, S. A, (1978) Advanced Mathematical Methods for Scientists and Engineers,
McGraw Hill, New York.

Beremin, F. M. “A local criterion for cleavage fractire of a'‘nuclear pressure vesse steel.” Metall. Trans. A,
14,2277-2287.

Berthaud, Y., Ringot, E. and Schniitt N..(199.1) “Experimental measurements of localization for tensile tests
on concrete.” In Fracture Processes in Concréte, Rock-and Ceramics, J. G. M. van Mier, J. G. Rots and
A. Bakker, eds., E & FN Spon, London, pp: 4150, ’

Bieniawski, Z. T. (1974) “Estimating the strength of rock materials.” J. 5. Afr: Inst. Min. Metall.,; 74, 312-320.

Biot, M. A. (1955) “Variational principles of irreversible thermodynamics with application to viscoelasticity.”
Phys. Rev., 97, 1163-1169. : ; : .

Biot, M. A. (1965) Mechanics of Incremental Deformations; Yohn Wiley & Sons, New York.

Bittencourt, T. N., Ingraffea, A. R. and Llorca, J:(1992) “Simulation of arbitrary, cohesive crack prophgation.”
In Fracture Mechanics of Concrete Striictures, Z.. P, BaZant, ed., Elsevier Applied Science, London, pp.
339-350. : i

Blanks, R. F. and McNamara, C. C. (1935) “Mass concrete tests inlarge cylinders.” ACI J., 31, 280-303.

Bocca, P, Carpinteri, A. and Valente, S. (1990) “Size tffects in the mixed crack propagation: Softening and
snap-back analysis” Eng. Fract. Mech.;35,159-170.

Bocca, P, Carpinteri, A. and Valente, S. (1991) “Mixed mode fracture of concrete” Jnt. J. Solids Struct., 27,
1139-1153. ‘ : ’

Bocea, P, Carpinteri, A. and Valente, S. (1992) *“Fracture mechanics evaluation of anchorage bearing capacity
in concrete.” In Application of Fracture Mechanics to Reinforced Concrete, A. Carpinteri, ed., Elsevier
Applied Science, London, pp. 231-265.

Bogdanoff, J. L. and Kozin, F. (1985) Probabilistic Models of Cumulative Damage, John Wiley & Sons, New
York.

Borodich, F. M. (1992) “Fracture energy in a fractal crack propagating in concrete or rock.” Doklady Akademii
Nauk., 325(6), 1138-1141. (In Russian. - Transl, in Trans.. Russian Ac. Sci., Earth Sci. Sec., 327(8),
36-40.) '

de Borst, R. (1986) Non-Linear Analysis of Frictional Materials. Doctoral thesis. Delft University of Tech-
nology, Delft, The Netherlands.

de Borst, R. (1990) “Simulation of localization using Cosserat theory.” In Proc., Int. Conf. on Computer-Aided
Analysis and Design of Concrete Structures, N. Bi¢ani€ and H.A. Mang, eds., Pineridge Press, Swansea,
pp. 931944,

deBorst, R. (1991) “Simulation of strain localization: ‘A reappraisal of the Cosserat continuum.” Eng. Comput.,
8,317-332.

~de Borst, R. and Miihlhaus, H.-B. (1991) “Continuum models for discontinuous media.” In Fracture Processes
in Concrete, Rock and Ceramics, Vol. 2, .-G M. vaii-Mier, J. G. Rots and A. Bakker, eds., E & FN
Spon, London, pp. 601-618.

References ) 573

de Borst, R. and Miihthaus, H.-B. (1992) “Cradient-dependenl plasticity: Formulation and algorithmic as-
pects.” Int. J. Numer. Meth. Eng., 35, 521-539. .

de Borst, R. and Sluys, L. J.-(1991) “Localization in a Cosserat continuum under static and dynamic loading
conditions.” Comput. Meth. Appl. Mech. Eng., 90, 805-827,

Bosco, C. and Carpinteri, A. (1992) “Fracture mechanics evaluation of minimum reinforcement in concrete
structures.” In Applications of Fracture Mechanics to Reinforced Concrete, A. Carpinteri, ed., Elsevier
Applied Science, London, pp. 347-377.

Bosco, C., Carpinteri, A. and DeBernardi, P. G. (1990a) “Fracture of reinforced concrete: Scale effect and
snap-back instability.” Eng. Fract. Mech., 38, 665-677.

Bosco, C., Carpinteri, A. and DeBernardi, P. G. (1990b) “Minimum reinforcement in reinforced concrete
beams.” J. Struct Eng.-ASCE, 116, 427-437.

Brennan, G. (1978) A Test to Determine the Bending Moment Resistance of Rigid Pipes. TRRL Supplementary
Report No. SR 348, Transport and Road Research Laboratory, Crowthorne, Berkshire.
Bresler, B. and Pister, K. S. (1958) “Strength of concrete under combined stresses.” ACT J., 55(9), 321-345.

Broek, D. (1986) Elementary Engineering Fracture Mechanics, 4th edition, Martinus Nijhoff Publishers,
Dordrecht,

Broms, C. E. (1990) “Punching of flat plates — A question of concrete properties in biaxial compression and
size effect.” ACI Struct. J., 87(3), 292-304. '

Brown, J. H. (1972) “Measuring the fracture toughness of cement paste and mortar” Mag. Concrete Res., 24,
185-196.

Brown, W. F. and Srawley, I. E. (1986) Plane Strain Crack Toughness Testing of High Strength Metallic
Materials, ASTM Special Technical Publication, No. 410.

Bruckner, A. and Munz, D. (1984) “Scatter of fracture toughness in the brittle~-ductile transition region of
a ferritic steel.” In Advances in Probabilistic Fracture Mechanics, C. Sundararajan, ed., The American
Sociéty of Mechanical Engineers, New York, pp. 105-111.

Brithwiler, E. (1988) Fracture Mechanics of Dam Concrete Subjected to Quasi-static and Seismic Loading
Conditions. Doctoral thesis. Laboratory for Building Materials, Swiss Federal Institute of Technology,
Lausanne. (Thesis No. 739. In German.)

Brithwiler, E. and Wittmann, F. H. (1990) “The wedge splitting test, a new method of performing stable
fracture mechanics tests.” Eng. Fract. Mech., 35, 117-125.
Budianski, B. (1983) “Micromechanics.” Computers and structures, 16(1-4), 3-12.

Budianski, B. and Fleck, N. A. (1994) “Compressive kinking of fiber composites: A topical review.” Appl.
Mech. Rev., 47(No. 6, Part 2-Supplement, Proc. of 12th U.S. Nat. Congress of Applied Mechanics,
Seattle), pp. S246-S255.

Budianski, B. and O’Conell, R. . (1976) “Elastic moduli of a cracked solid.” Int. J. Solids Struct., 12, 81-97.

Budianski, B. and Wu, T. T..(1962) “Theoretical prediction of plastic strains of polycrystals.” In Proc. Fourth
U.S. National Congress of Applied Mechanics, The American Society of Mechanical Engineers, New
York, pp. 1175-1185.

Budianski, B., Fleck, N. A. and Amazigo, J. C. (1997) On compression kink band propagation. Report MECH
No. 305, Harvard University, Cambrigde, Massachussets. (Submitted to J. Mech. Phys. Solids.)

Bueckner, H. E. (1970) “A novel principle for the computation of stress intensity factors.” Z. Angew. Math.
Mech., 50, 529-546,

Bui, H. D. (1978) Mécanique de la Rupture Fragile, Mz{sson, Paris.

Buyukozturk, O. and Lee, K.M. (1992a) “Implication of mixed-mode fracture concepts.” In Concrete Design
Based on Fracture Mechanics, W. Gerstle and Z. P. BaZant, eds., American Concrete Institute, Detrott,
pp. 47-62. (ACI Speciat Publication SP-134.)

Buyukozturk, O. and Lee, K.M. (1992b) “Interface fracture mechanics of concrete composites.” In Fracture
Mechanics of Concrete Structures, BaZant, Z. P., ed., Elsevier Applied Science, London, pp. 163-168.

Buyukozturk, O., Bakhoum, M. M. and Beattie, S. M. (1990) “Shear behavior of joints in precast concrete
segmental bridges.” J. Struct Eng.-ASCE, 116(12), 3380-3401.
Carneiro, F. L. L. and Barcellos, A. (1953) “Tensile strength of concrete.” RILEM Bulletin, 13, 97-123.

Carol, I. and BaZant, Z. P. (1993) “Solidification theory: A rational and effective framework for constitutive
modeling of aging viscoelasticity.” In Creep and Shrinkage of Concrete, Z. P. BaZant and 1. Carol, eds.,
E & FN Spon, London, pp. 177-188. B

Carol, I and BaZant, Z. P. (1997) “Damage and plasticity in microplane theory.” Int. J. Solids Struct., 34. (In
press.) :




574 . References

Carol, I. and Prat, P. C. (1990) “A statically constrained microplane model for the smeared analysis of concrete
cracking” In Computer Aided Analysis and Design of Concrete Structures, Vol. 2, N. Biani¢ and H.
Mang, eds., Pineridge Press, Swansea, pp. 919-930.

Carol, I. and Prat, P. C. (1991) “Smeared analysis of coricrete frécture using a microplane based multicrack

model with static constraint.” In Fracture Processes in Conérete, Rock and Ceramics, J. G. M. van Mier, .

J. G. Rots and A. Bakker, eds., E & FN Spon, London; pp. 619-628.

‘ Carol, I., BaZant, Z. P. and Prat, P. C. (1991) “Geometric damage tensor based on microplane n{odel.” J Eng.y
Mech.-ASCE, 117(10), 2429-2448. L : : -

Carol, I, BaZant, Z. P. and Prat, P. C. (1992) “Microplane-type constitutive models for distributed damage and

localized cracking in conerete structures? In Fracture Mechanics of Concrete Structures, Ba%ant, Z. P.,

ed., Elsevier Applied Science, London, pp. 299-304.

Carol, L, Prat, P. C. and BaZant, Z. P. (1992) “New explicit microplane model for concrete: Theoretical aspecté
and numerical implementation.” /nt. J. Solids Struct., 29(9),1173-1191.

Carpinteri, A. (1980) Static and Energetic Fracture Parameters for Rocks and Concretes. Report, Istituto di
Scienza delle Costruzioni-Ingegneria, University of Bologna, Italy.

Carpinteri, A. (1981) “A fracture mechanics model for reinforced concrete collapse.” In Proc. IABSE Collo-
quinm on Advanced Mechanics of Reinforced Concrete, pp. 17-30. ‘

Carpinteri, A. (1982) “Notch sensitivity in fracture testing of aggregative materials.” Eng. Fract. Mech., 16,
67-481. : B

Carpinteri, A. (1984) “Stability of fracturing process in RC bcaxﬁsﬁ” J-Struct Eng.-ASCE, 110, 2073-2084.

Carpinteri, A. (1986) Mechanical Damage and Crack Growth in Concrete, Martinus Nijhoff, Dordrecht.

Carpinteri, A. (1989) “Decrease of apparent tensile and bending strength with specimen size: Two different
explanations based on fracture mechanics.” Int, J. Solids Struct., 25(4), 407-429.

Carpinteri, A. (1994a) “Fractal nature of material microstructure and size effects on apparent mechanical
properties.” Mech. Mater., 18, 89-101. .

Carpinteri, A. (1994b) “Scaling laws and renormalization groups for strength and toughness of disordered
materials.” /nt. J. Solids Struct., 31, 291-302;

Carpinteri, A. (1996) “Strength and toughness in disordéred materials: Complete and incmﬁplcte similarity.”
In Size-Scale Effects in the Failure Mechanisms of Materials and Structures, A. Carpinteri, ed., E & FN
Spon, London, pp. 3-26.

Carpinteri, A. and Chiaia, B. (1995) “Multifractal scaling Law for the fracture energy varjation of concrete
structures.” In Fracture Mechanics of Concrete Structures; Vol; 1, F. H. Wittmann, ed., Aedificatio
Publishers, Freiburg, Germany, pp. 581-596. , ;

Carpinteri, A. and Chiaia, B. (1996) “A multifractal approach to the strength and toughness scaling of concreté
structures.” In Fracture Mechanics of Concrete Structures, Vol. 3, E H. Wittmann, e¢d., Aedificatio
Publishers, Freiburg, Germany, pp. 1773-1792. :

Carpinteri, A. and Ferro, G. (1993) “Apparent tensile strength ‘and fictitious fracture energy of coricréte: A

fractal geometry approach to related size éffects” In Fracture and Damage of Concrete and Rock, H. P.

Rossmanith, ed., E & FN Spon, London, pp. 86-94.

Carpinteri, A. and Ferro, G. (1994) “Size effects on tensile fracture properties: A unified exp]anationtb.ased
on disorder and fractality of concrete microstructure?’ Mater. Struct., 27, 563-571. -

Carpinteri, A. and Valente, S. (1989) “Size-scale transition from ductile to brittle failure: A dimensional

- analysis approach” In Cracking and Damage, Strain Localization and Size Effect, J. Mazars and Z. P,
BaZant, eds., Elsevier Applied Science, London, pp. 477-490.

Carpinteri, A., Chiaia, B. and Ferro G. (1994) “Multifractal scaling law for thé nominal strength variation of
concrete structures.” In Size Effect in-Concrete Structures; H. Mihashi, H. Okamura and Z. P. BaZant,
eds., E & FN Spon, London, pp. 193-206.

Carpinteri, A., Chiaia, B. and Ferro, G. (1995a) “Multifractal n'atu:'e‘of material microstructure and size effects
on nominal tensile strength.” In Fracture of Britile Disordered materials: Concrete, Rock and Ceramics,
G. Baker and B.L. Karihaloo, eds., E & FN Spon,-London, pp.- 21-50.

Carpinteri, A., Chiaia, B. and Ferro, G. (1995b) “‘Size effects on nominal tensile strength of concrete structures:

Multifractality of material ligaments and dimensional transition from order fo disorder” Mater: Struct., -

28,311-317. ’

Carpinteri, A, Chiaia, B. and Ferro, G, (1995¢) Multifractal scaling law: An extensive application to nominal -~

strength size effect of concrete structures. ~Atti del Dipartimento di Ingegneria Strutturale No.. 50,
Politecnico di Torino, Italy.

References ) 575

Carter, B. C. (1992) “Size and stress gradient effects on fracture around cavities”” Rock Mech. Rock Eng.,
25(3), 167-186.

Carter, B. C., Lajtai, E. Z. and Yuan, Y. (1992) “Tensile fracture from circular cavities loaded in compression.”
Int. J. Fracture, 57,221-236.

Castillo, E. (1987) Extreme Value Theory in Engineering, Academic Press, Inc., San Diego.

CEB (1991) “CEB-FIP Model Code 1990, final draft.” Bulletin d "Information du Comité Euro-International
du Béton., 203-205. : . .

Cedolin, L. and BaZant, Z. P. (1980) “Effect of finite element choice in blunt crack band analysis.” Comput.
Meth. Appl. Mech. Eng., 24, 305-316. .

Cedolin, L., Dei Poli, S. and [ori, L. (1983) “Experimental determination of the fracture process zone in
concrete.” Cernent Concrete Res., 13, 557-567.

Cedolin, L., Dei Poli, S. and Tori, [. (1987) “Tensile behavior of concrete.” J. Eng. Mech.-ASCE, 113(3),
431-449,

éervcnka, J.(1994) Discrete Crack Modeling in Concrete Structures. Doctoral thesis. University of Colorado,
Boulder, CO.

éervenka, V. and Pukl, R. (1994) “SBETA analysis of size effect in concrete structures.” In Size Effect in
Concrete Structures, H. Mihashi, H. Okamura and Z. P. Bazant, eds., E & FN Spon, L.ondon, pp. 323—
333, .

éervenka, J. and Saouma, V. E. (1995) “Discrete crack modeling in concrete structures.” In Fracture Mechanics
of Concrete Structures, F. H, Wittmann, ed., Acdificatio Publishers, Freiburg, Germany, pp. 1285-1300.

Cervenka,‘ V., Pukl, R., OZbolt, J. and Eligehausen, R. (1995) “Mesh sensitivity in smeared finite element
analysis of concrete fracture.” In Fracture Mechanics of Concrete Structures, F. H, Wittmann, ed.,
Aedificatio Publishers, Freiburg, Germany, pp. 1387-1396.

Charmet, J. C., Roux, S. and Guyon, E., eds. (1990) Disorder and Fracture, Plenum Press, New York.
Chen, W.F. (1982) Plasticity in Reinforced Concrete, McGraw-Hill, New York.

Chen, W-F. and Yuan, R. L. (1980) “Tensile strength of concrete: Double-punch test.” J. Struct. Div.-ASCE,
106, 1673-1693. i :

Cho, K. Z., Kobayashi, A. S., Hawkins, N. M., Barker, D. B. and Jeang, E L. (1984) “Fracture process zone
of concrete cracks.” J. Eng. Mech.-ASCE, 110(8), 1174-1184.

Choi, 0.C., Darwin, D. and McCabe, S.L. (1990) Bond Strength of Epoxy-Coated Reinforcement to Concrete.
S. M. Report No. 25, University of Kansas Center for Research, Lawrence, KS. .

Christensen, R. M. (1971) Theory of Viscoelasticity, Academic Press, New York.

Christensen, R. M. and DeTeresa, S. J. (1997) “The kink band mechanism for compressive failure of fiber
composite materials.”” J. Appl. Mech.-T. ASME, 64;1-6.

Chudnovsky, A. and Kachanov, M. (1983) “Interaction of a crack with a field of microcracks.” Int. J. Eng.
Sci., 21(8), 1009-1018.

Chudnovsky, A. and Kunin, B. (1987) “A probabilistic model of crack formation.” J. Appl. Phys., 62(10),
4124-4129.

Chudnovsky, A., Dolgopolsky, A. and Kachanov, M. (1987) “Elastic interaction of a crack with a microcrack
array (parts I and I1).” Int. J. Solids Struct., 23, 1-21.

Collatz, L. (1960) The Numerical Treatment of Differential Equati(;;zs, Springer, Berlin.
Collins, M. P. (1978) “Towards a rational theory for RC members in shear.” J. Struct. Div.-ASCE, 104, 396408,

Collins, M. P. and Mitchell, D. (1980) “Shear and torsion design of prestressed and non-prestressed concrete
beams.” J. Prestressed Concrete Inst., 25(5), 32-100. (Discussion 26(6), 96-118.)

Collins, M. P, Mitchell, D., Adebar, P. and Vecchio, F. J. (1996) “General shear design method.” ACI Struct.
J., 93(1), 36-45.

Collins, W. D. (1963) ““Some coplanar punch and crack problems in three-dimensional elastostatics.” Philos.
T. Roy. Soc. A, 274(1359), 507-528. . :

Commission of European Communities (1984) Eurocode No. 2. Commission of European Communities,

Cope, R. J., Rao, P. V., Clark, L. A. and Norris, P. (1980) “Modelling of reinforced concrete behaviour for
finite element analysis of bridge slabs.” In Numerical Metliods for Nonlinear Problems, Vol. 1, C. Taylor
et al,, eds., Pineridge Press, Swansea, pp. 457-470.

Cornelissen, H. A. W., Hordijk, D. A. and Reinhardt, H. W. (1986a) “Experimental determination of crack
softening characteristics of normal weight and lightweight concrete.” Heron, 31(2), 45-56.



576 References

Cornelissen, H. A. W., Hordijk, D. A.and Reinhardt, H. W.(1986b) “Experiments and theory for the application
of fracture mechanics to normal and lightweight concrete.” In Fracture Mechanics and Fracture Energy
of Concrete, F, H. Wittmann, ed., Elsevier, Amsterdam; pp::565-575.

Corres, H., Elices, M. and Planas, J. (1936) “Thermal deformation of loaded concrele at low temperatures. 3:
Lightweight concrete.” Cement Concrete Res., 16, 845-852.

Costin, D. M. (1991) “Damage mechanics in the post-failure regime.” Mech. Marer., 4, 149--160.
Cotterell, B. (1972) “Brittle fracture in compression.” Int.-J. Fract. Mech., 8(2), 195-208.

Cotterel], B. and Rice, J. R. (1980) “Slightly curved or kinked cracks.” Int. J. Fracture, 16, 155-~169.
Cottrell, A.H. (1961)1ST Special Report No. 69, Iron and Steel Insfitute. ‘

Cox, L. V. (1994) Development of a Plasticity Bond Model for Reinforced Concrete — Theory and Validation
Jfor Monotonic Applications. Technical Report No. TR-2036-SHR, Naval Facilities Engineering Service
Center, Port Hueneme, CA 93043-4328.

Crisfield, M. A. and Wills, J. (1987) “Numerical comparisons involving different ‘concrete-models’.” In JABSE
Reports 54, Colloquium on Computational Mechanics of Reinforced Concrete, Delft University Press,
pp. 177-187. -

Cundall, P. A. (1971) “A computer model for simulating progressive Jarge scale movements in blocky rock

systems.” In Proc. Int. Symp. Rock Fracture.

Cundall, P. A. (1978) BALL — A Program to Model Granular Media Using the Distinct Element Method.
Technical Note, Advanced Tech. Group, Dames and Moore, London..

Cundall, P. A. and Strack, O. D. L. (1979) “A discrete numerical model for granular assemblies.” Geotechnique, )

29, 47-65.

Darwin, D. (1985) “Concrete crack propagation — Study ‘'of model parameters” In Proc. Finite Element
Analysis of Reinforced Concrete Structures, Meyer, C..and Okamura, H., eds., ASCE, New York, pp.
184-203. :

Darwin, D. and Attiogbe, E. K. (1986) “Effect of loading rate on tracking of cement paste in compression”
In Proc. Mat. Res. Soc. Symp. No. 64 on Cement Based Composites: Strain Rate Effects on Fracture,
S. Mindess and S. P. Shah, eds., pp. 167-180. :

Datsyshin, A. P. and Savruk, M. P. (1973) “A system of of arbitrarily oriented cracks in elastic solids.” J. Appl.
. Math. and Mech., 37(2), 326-332. . -

Dauskardt, R. H., Marshall, D. B. and Ritchie, R. O. (1990) ““Cyclic letiguc—érack propagation in in magnesia-
partially-stabilized zirconia” J. Am. Ceram. Soc:;'73,893-903

Davies, J. (1992) “Macroscopic study of crack bridging phehomenon in mixed-mode loading.” In Fracture
Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science, pp. 713-718.

Davies, J. (1995) “Study of shear fracture in mortar specimens.”. Cement and Concrete Research, 25(5),
- 1031-1042.

Dietsche, A. and Willam, L. J. (1992) “Localization' analysis of elasto-plastic Cosserat eontinua.” In Damage
and Localization, J. W. Ju and K. C. Valanis, eds., The American Socicty of Mechanical Engineers, New
York, pp. 25-40. (AMD-Vol.142, Winter. Annual Megting, Anaheim.)

Dougill, J. W. (1976) “On stable progressively fracturing solids.” J. Appl. Math. Phys., 27, 423-436,

Droz, P. and BaZant, Z. P. (1989) “Nonlocal analysis of stable states and stable paths of propagation of damage
shear bands.” In Cracking and Damage, Strain Localization and Size Effect, J. Mazars and Z. P. BaZant,
eds., Elsevier Applied Science, London, pp. 183-207,

Du; I, Kobayashi, A. S. and Hawkins, N. M. (1989) “FEM dynamic fracture analysis of concrete beams.” J.
Eng. Mech.-ASCE, 115(10), 2136-2149. :

Dugdale, D. S. (1960) “Yielding of steel sheets containing slits.” J. Mech. Phys:. Solids, 8, 100-108.

Dvorkin, E. N., Cuitifio, A. M. and Gioia, G. (1990) “Finite elements with displacement interpolated embedded
localization lines insensitive to mesh size.and distortions.” Jnt. J. Numer. Meth. Eng., 30, 541-564.

Elfgren, L., ed. (1989) Fracture Mechanics of Concrete Structures, Chapman and Hall, London.
Elfgren, L. (1990) “Round robin analysis and tests of anchor bolts = Invitation.” Mater. Struct., 23;78.

Elfgreh, L. and Swartz, 8.E. (1992) “Fracture mechanics approach to modeling the pull-out of anchor bolts.”
In Design Based on Fracture Mechanics, W. Gerstle and Z. P. BaZant, eds., American Concrete Institute,
Detroit, pp. 63-78. (ACI SP-134.) :

Elfgren, L., Ohlsson, U. and Gylltoft, K. (1989) “Anchor bolts analyzed with fracture mechanics” In Fracture
of Concrete and Rock, S.P. Shah and S.E.-Swartz, eds., Springer-Verlag, New York, pp. 269-275.

References 577

Elices, M. (1987) Mecdnica de la Fractura Aplicada a Sélidos Eldsticos Bidimensionales, Dep. de Publica-
ciones de Alumnos, ETS de Ingenieros de Caminos, Canales y Puertos, Ciudad Universitaria, 28040,
Madrid, Spain. (Fracture Mechanics Applied to Two-Dimensional Elastic Solids.)

Elices, M. and Planas, J. (1989) “Material models.” In Fracture Mechanics of Concrete Structures, L. Elfgren,
ed., Chapman and Hall, London, pp. 16-66. :

Elices, M. and Planas, J. (1991) “Size effect and experimental validation of fracture models.” In Analysis of
Concrete Structures by Fracture Mechanics, L. Elfgren, ed., Chapman and Hall, London, pp. 99-127.

Elices, M. and Planas, J. (1992) “Size Effect in Concrete Structures: an R-Curve Approach.” In Application of
Fracture Mechanics to Reinforced Concrete, A. Carpinteri, ed., Elsevier Applied Science, London, pp.
169-200.

Elices, M. and Planas, J. (1993) “The equivalent elastic crack: 1. Load-Y equivalences.” Int. J. Fracture, 61,
159-172.

Elices, M. and Planas, J. (1996) “Fracture mechanics parameters of concrete: An overview.” Adv. Cem. Bas.
Mat., 4,116-127.

Elices, M., Guinea, G. V. and Planas, J. (1992) “Measurement of the fracture energy using three-point bend
tests: 3. Influence of cutting the P-4 tail.” Mater. Struct., 25, 327-334.

Elices, M., Guinea, G. V. and Planas, 1. (1995) “Prediction of size effect based on cohesive crack models.”
In Size-Scale Effect in the Failure Mechanisms of Materials and Structures, A. Carpinteri, ed., E & FN
Spon, London, pp. 309-324.

Elices, M., Guinea, G. V. and Planas, J. (1997) “On the measurement of concrete fracture energy using
three-point bend tests.” Mater. Struct., 30, 375-376.

Elices, M., Planas, J. and Corres, H. (1986) “Thermal deformation of loaded concrete at low temperatures, 2:
Transverse deformation.” Cement Concrete Res., 16, 741-748.

Elices, M., Planas, J. and Guinea, G. V. (1993) “Modeling cracking in rocks and cementitious materials.” In
Fracture and Damage of Concrete and Rock, Rossmanith, HP, ed., E & FN Spon, London, pp. 3-33.

Eligehausen, R. and OZbolt, J. (1990) ““Size effect in anchorage behavior.” In Fracture Behavior and Design of
Materials and Structures, Vol. 2, D. Firrao, ed., Engineering Materials Advisory Services Ltd. (EMAS),
Warley, West Mindlands, UK., pp. 721-727.

Eligehausen, R. and Sawade, G. (1989) “A fractuie mechanics based description of the pull-out behavior of
headed studs embedded in concrete”” In Fracture Mechanics of Concrete Structures, L. Eifgren, ed,,
Chaprnan and Hall, London, pp. 281-299.

Eligehausen, R., Fusch, W., Ick, U, Mallée, R., Reuter, M., Schimmelphenning, K. and Schmal, B. (1991)
Tragverhalten von KopfbolzenVerankerung bei Zentrischer Zugbeansprunchung. Report, Stuttgart Uni-
versity. :

England A.H. (1971) Complex Variable Methods in Elasticity, Wiley-Interscience.

Entov, V. M. and Yagust, V. 1. (1975) “Experimental investigation of laws governing quasi-static development
of macrocracks in concrete.” Mech. Solids, 10(4), 87-95. (Translation from Russian.)

Eo, S. H.,, Hawkins, N. M. and Kono S. (1994) “Fracture characteristics and size effect for high-strength
concrete beams.” In Size Effect in Concrete Structures, H. Mihashi, H. Okamura and Z. P. BaZant, eds.,
E & FN Spon, London, pp. 245-254. -

Erdogan, F. (1963) “Stress distribution in a nonhomogeneous elastic plane with cracks” J. Appl. Mech.-T.
ASME, 30(2), 232-236.

Erdogan, F. and Sih, G. C. (1963) “On the crack extension in plates under plane loading and transverse shear.”
J. Buasic Eng., 85, 519-527.

Eringen, A. C. (1965) “Theory of micropolar continuum.” In Proc. Ninth Midweéstern Mechanics Conference,
pp. 23-40.

Eringen, A. C. (1966) “A unified theory of thermomechanical materials.” Int. J. Eng. Séi., 4, 179-202.

Eringen, A. C. and Ari, N. (1983) “Nonlocal stress field at Griffith crack.” Cryst. Latt. Def. Amorph. Mat.,
10, 33-38. .

Eringen, A. C. and Edelen D. G. B. (1972) “On nonlocal elasticity.” Int. J. Eng. Sci., 10, 233-248.

Eshelby, J. D. (1956) “The continuum theory of lattice defects.” In Solid State Physics, Vol. 3, F. Seitz and D.
Turnbull, eds., Academic Press, New York, pp. 79-141. :

ESIS Technical Committee 8 (1991) “Recommendation for use of FEM in fracture mechanics.”” ESIS Newslet-
ter, (15),3-7. >

Evans, A. G. and Fu, Y. (1984) “The mechanical behavior of alumina.” In Fracture in Ceramic Materials,
Noyes Publications, Park Ridge, NJ, pp. 56-88.




578 References

Evans, R. H. and Marathe M.'S‘ (1968) “Microcracking and stress-strain curves for concrete in tension.” Mater
Struct,, 1(1), 61-64. -

Fabrikant, V. 1. (1990) “Complete solutions to sonie miked boundéry value problems in elasticity.” Adv. Appl.
Mech., 27, 153-223. :

Fairhurst, C. and- Cornet, F. (1981) “Rock fracture and fragmentation.” In Proc. 22nd U.S. Symp. én Rock
Mechanics, pp. 21-46, . R

Fathy, A. M. (1992) Application of Fracture Mechanics io Rocks and Rocky Materials. Doctoral thesis.
Universidad Politécnica de Madrid, Departamento’ de Ciéncia de Materiales, ETS de Ingenieros de
Caminos, Ciudad Universitaria, 28040 Madrid, Spain. (In English.) :

Feddersen, C. E. (1966) In Plane Strain Crack Toughness Testing of High Strength Metallic Materials, W. F.
~ Brown and J. E. Srawley, eds., American Society for Testing and Materials, Philadelphia, pp. 77-79.
(Contribution to Discussion, ASTM Special Technical Publication No. 410.)

Fenwick, R. C. and Paulay, T. (1968) “Mechanics of shear resistance of concrete beams.” J. Struct Eng.-ASCE,
94, 2235-2350.

Ferguson, P. M. and Thompson, J. N. (1962) “Development length of high strength reinforcing bars i bond.”
ACIJ, 59, 887-922. :

Ferguson, P. M. and Thomp'son, J.N: (1965) “Development length'for large high strength reinforcing bars.”
ACIJ, 62,71-93,

Fischer, R. As and Tippett L. H. C. (1928) “Limiting forms of thé frequency distribution of the largést and
smallest member of a sample.” Proc., Cambridge Philosophical Society, 24, 180-190, :

Flory, T. J. (1961) “Thermodynamic relations for high elastic materials” T. Faraday Soc., 57, 829-838.

Forman, R. G., Kearney, V. E. and Engle, R.'M. (1967) “Numerical analysis of crack propagation in cyclic-
loaded structures.” J. Basic Eng., 89, 459-464. .

Fox, L. (1965) An Introduction to Numerical Linear Algebra, Oxford University Press, New York.
Fréchet, M. (1927) “Sur la loi de probabilité de 1" écart maximum” Asnn. -Soc. Polon. Math, 6, 93.

Freudenthal, A. M. (1968) “Statistical approach to brittle fracture.” In Fracture — An Advanced Treatise; Vol.
2, H. Liebowitz, ed., Academic Press, New York, pp. 591619,

Freudenthal, A. M. (1981) Selected Papers by Alfred M. Freudenthal, Am. Soc. of Civil Engrs., New York.
Freund, L. B. (1990) Dynamic Fracture Mechariics, Cambridge University Press, Cambridge and New York.

Furuhashi, R., Kinoshita, N. and Mura, T. (1981) “Periodic distributions of inclusions.” Int. J. Eng. Sci., 19,
231-236. g )

Galileo Galilei Linceo (1638) Discorsi i Deﬁwstrazioni Matematiche intorno & due Nuove Scienze, Elsevirii,
Leiden. (English transl. by T. Weston, London (1730), pp.-178-181.)

Gélvez, J, Llorca, J. and Elices, M. (1996) “Fracture mechanics analysis of crack stability in concrete gravity
dams.” Dam Eng., 7(1), 35-63.

Gdoutos, E. E. (1989) Problems of Mixed Mode Crack Propagatior, Martinus Nijhoff Publishers, The Hague.

Gerstle, W. H., Partha, P. D., Prasad, N. N. V., Rahulkumar, P.'and Ming, X. (1992) “Crack growth in flexural
‘ members — A fracture mechanics approach” ACI Struct.-J,, 89(6), 617-625.

Gettu, R., BaZant, Z. P. and Karr, M. E. (1990) “Fractiire properties and brittleness of high-strength concrete.”
ACI Mater. J., 87, 608-618.

Gioia, G, Bazant, Z. P. and Pohl; B. P. (1992) “Is no-tension dai design always safe? — a numerical study.”
Dam Eng., 3(1), 23-34. : '

Gjgry, O. E, Sorensen, S. 1. and Arnesen, A, (1977) “Notch Sensitivily and fracture toughness of concrete.”
Cement Concrete Res., 7, 333-344.

Go, C. G. and Swartz, S. E. (1986) “Energy iethods for fracture-toughness determination in concrete.” Exp.
Mech., 26(3), 292-296. ’

Gonnermann, H. F. (1925) “Effect of size and shape of test specimen on compressive strength of concrete.”
Proc. ASTM, 25, 237-250. )

Goode, C. D. and Helmy, M. A. (1967) “The strength of concrete under combined shear and direct stress.”
Mag. Concrete Res., 19(59), 105-112.

Gopalaratnam, V. S. and Shah S. P. (1985) “Softening response-of plain concrete in direct tension.” ACI J.,
82(3), 310-323. :

Graham, G. A. C. (1968) “The correspondcnée principle of linear viscoelasticity theory for mixed boundary
value problems involving time-dependent boundary regions” Q. Appl. Math., 26., 167-174.

References 579

Green, S. J. and Swanson, S. R. (1973) Staric Constitutive Relations for Concrete. Report No. AFWL-TR-72-2,
Air Force Weapons Lab., Kirkland Air Force Base.

Griffith, A. A. (1921) “The bhenomena of rupture and flow in solids.” Philos. T. Roy. Soc. A, 221, 163-197. '

Griffith, A. A. (1924) “The theory of rupture.” In Proceedings of the First International Conference of Applied
Mechanics, pp. 55-63.

Gross, D. (1982) “Spannungsintensititsfaktoren von rifisystemen.” Ingenieur-Archiv, 51, 301-310.

Guinea, G. V. (1990) Medida de la Energia de Fractura del-Hormigon. Doctoral thesis. Dep. Ciencia de
Materiales, Universidad Politecnica de Madrid, ETS de Ingenicros de Caminos, Ciudad Universitaria,
28040 Madrid, Spain. (‘Measurement of the Fracture Energy of Concrete’, in Spanish.)

Guinea, G. V., Planas, J. and Elices, M. (1990) “On the influence of bulk dissipation on the average specific
fracture energy of concrete.” In Fracture Behaviour and Design of Materials and Structures, Vol. 2, D.
Firrao, ed., Engincering Materials Advisory Services Ltd, (EMAS), Warley, West Mindlands, U.K., pp.
715-720. .

Guinea, G. V., Planas, 1. and Blices, M. (1992) “Measurement of the fracture energy using three-point bend
tests: 1. Influence of experimental procedures.” Mater. Struct., 25, 212218,

Guinea, G. V., Planas, J. and Elices, M. (1994a) “Correlation between the softening and the size effect curves.”
In Size Effect in Concrete Structures, H. Mihashi, H. Okamura and Z. P. Bazant, eds., E & EN Spon,
London, pp. 233-244,

Guinea, G. V., Planas, J. and Elices, M. (1994b) “A general bilinear fit for the softening curve of concrete.”
Mater. Struct., 27, 99-105.

Guo, Z. and Zhang X. (1987) “Investigation of complete stress-deformation curves for concrete in tension.”
ACI Mater. J., 84,278-285.

Gupta, A. K. and Akbar, H. (1984) “Cracking in reinforced concrete aﬁalysis.” J. Struct. Eng.-ASCE, 110(8),
1735--1746.

Gustafsson, P. J. (1985) Fracture Mechanics Studies of Non-Yielding Materials Like Concrete: Modeling
of Tensile Fracture and Applied Strength Analyses. Report No. TVBM-1007, Division of Building
Materials, Lund Institute of Technology, Lund, Sweden.

Gustafsson, P. I. and Hillerborg, A. (1985) “Improvements in concrete design achieved through the application
of fracture mechanics.” In Application of Fracture Mechanics to Cementitious Composites, S. P. Shah,
ed., Martinus Nijhoff, Dordrecht, pp. 667-680.

Gustafsson, P. J. and Hillerborg, A. (1988) “Sensitivity in the shear strength of longitudinally reinforced beams
to fracture energy of concrete.” ACI Struct. J., 85(3), 286-294.

Gylltoft, K. (1983) Fracture Mechanics Models for Fatigue in Concrete Structures. Doctoral thesis. Luled
University of Technology, Luled, Sweden.

Gylltoft, K. (1984) “A fracture mechanics model for fatigue in concrete.” Mater. Struct., 17(97), 55-58.

Haimson, B. C. and Herrick, C. G. (1989) “In-situ siress calculation from borehole breakout experimental
studies.” In Proc., 26th U.S. Symp. on Rock Mechanics, pp. 1207-1218.

Hasegawa, T. and BaZant, Z. P. (1993) “Nonlocal microplane concrete model with rate effect and load cycles.
L General formulation. II. Application and verification.” J, Mater. Civil Eng., 5(3), 372-417.

Hasegawa, T., Shioya, T. and Okada, T. (1985) “Size effect on splitting tensile strength of concrete.” In Proc.
Japan Concrete Inst. 7th Conf., pp. 309-312.

Hashin, Z. (1988) “The differential scheme and its application to cracked materials.” J. Mech. Phys. Solids,
36(6), 719-734.

Hassanzadeh, M. (1992) Behaviour of Fracture Process Zones in Concrete Influenced by Simultaneously
Applied Normal and Shear Displacements. Report No. TVBM-1010, Division of Building Materials,
Lund Institute of Technology, Lund, Sweden.

Hawkes, I. and Mellor, M. (1970) “Uniaxial testing in rock mechanics laboratories.” Eng. Geol, 4, 177-285.

Hawkins, N. (1985) “The role for fracture mechanics in conventional reinforced design.” In Application
“of Fracture Mechanics to Cementitious Composites, S. P. Shah, ed., Martinus Nijhoff, Dordrecht, pp.
639-666. -

Hawkins, N.M. and Hjorteset, K. (1991) “Minimum reinforcement requirements for concrete flexural mem-
bers.” In Application of Fracture Mechanics to Reinforced Concrete, A. Carpinteri, ed., Elsevier Applied
Science, London, pp. 379-412. .

He, M.-Y. and Hutchinson, J. W. (1989) “Crack deflection at an interface between dissimilar elastic materials.”
Int. J. Solids Struct., 25, 1053-1067. .

He, S, Plesha, M. E., Rowlands, R. E. and BaZant, Z. P. (1992) “Fracture energy tests of dam concrete with
rate and size effects.” Dam Eng., 3(2), 139-159.



580 References

Hededal, O. and Kroon, I. B. (1991) Lightly Reinforced High Strength Concrete. Master thesis. University of
Aalborg, Denmark.

Heilmann, H. G., Hilsdorf H. and Finsterwalder, K. (1969) “Festigkeit und Verformung von Beton unter
Zuvspannunven " Deustcher Ausshuss fur Stahlbeton, (Heft 203)

Henshell, R. D. and Shaw, K. G. (1975) “Crack tip finite elements are unnecessary.” Int. J. Numer Meth.
Eng., 9,495-507.

Herrmann, G. and Sosa, H. (1986) “On bars with cracks.” Eng. Fract. Mech., 24, 8§89-894.

Herrmann, H. J. (1991) “Patterns and scaling in fracture.” In Fracture Processes in Concrete, Rock and
Ceramics, J. G. M. van Mier, 1. G. Rots and A. Bakker, eds.,; E & FN Spon, London, pp. 195-211.

Herrmann, H. J. and Roux, S., eds. (1990) Statistical Models for the Fracture of Disordered Media, North-
Holland, New York.

Herrmann, H. J., Hansen, H. and Roux, S. (1989) “Fracture’of disordered, elashclamces in two dlmensnons”
Phys. Rev. B 39, 637-648.

Hetényi, M. (1946). Beams on Elastic Foundatzon The University of Michigan Press, Ann Arbor.
Higgins, D. D. and Balley, J. E. (1976) “Fracture measurements on cement paste.” J. Mater. Sci., 11, 1995-
2003.

Hill, R. (1965) “Continuum micromechanics ofelastoplastlc polycrysla]s"] Mech. Phys. Solids, 13, 89-101.

Hill, R. (1966) “Generalized constitutive relations for increimiental deformations of metal crystals by multi-
slip” J. Mech. Phys. Solids, 14, 95-102.

Hillerborg, A. (1984) Additional Concrete Fracture Energy Tests Performed by 6 Laboratories According
to a Draft RILEM Recommendation. Report No.“TVBM-3017, Division of Building Materials, Lund
Institute of Technology, Lund, Sweden.

Hillerborg, A. (1985a) “The theoretical basis of a method to determine the fracture energy G'r of concrete.”
Mater. Struct., 18, 291-296.

Hillerborg, A. (1985b) “Numerical methods to ‘simulate softemng and fracture of concrete” In Fracture
Mechamcs of Concrete: Structural Application and Numerical Calculation, G. C. Sih andA DiTomasso;
eds., Martinus Nijhoff, Dordrecht, pp. 141-170.

Hillerborg, A. (1989) “Fracture mechanics and the concrete codes™ In Fracture Mechanics: Applications to
Concrete, V. C. Li and Z. P. BaZant, eds., Amerxcan Concrete Institute, Detroit, pp. 157-169. (ACI
Special Publication SP-118.)

Hillerborg, A. (1990) “Fracture mechanics concepts applied to'moment capacity and rotational capacity of
reinforced concrete beams.” Eng. Fract. Mech:, 35,233-240.

Hillerborg, A. (1991) “Reliance upon concrete tensile strength 2 In IABSL Colloguium StuttGart 9] : Structural
Concrete, LABSE, Zirich., pp. 589-604.

Hillerborg, A., Modéer, M. and Petersson, -P. E. (1976) “Analysis of crack formation and crack growth.in
concrete by means of fracture mechanics and finite elements.” Cement Concrete Res., 6, 773-782.

Hinch, E. J. (1991) Perturbation Methods, Cambridge University Press, Cambridge.
Hodge, P. G. (1959) Plastic Analysis of Structures, McGraw Hill, New York.

Hoek, E. and Bieniawski, Z. J. (1965) “Brittle fracture propagation in rock under compression.” Iit. J Fract.
Mech., 1, 137-155.

Hoenig, A. (1978) “The behavior of a flat elliptical crack in an anisotropic solid” Int. J. Solids Struct., 14,
925-934.

' Hognestad, E., Hanson, N. W. and McHenry, D. (1955) “‘Concrete stress distribution in ultimate strength
design.” ACI J., 52(4), 455-477.

Hondros, G. (1959) “Evaluation of Poisson ratio and the modulus of materials of low tensile resistance by the
Brazilian (indirect tensile) test with particular references to concrete.” Aust. J. Appl.. Sci., 10, 243-268.

Hong, A.-P, Li, Y.-N. and Bazant, Z. P. (1997) “Theory ofcrack spacing in concrete pavements.” "J. Eng.
Mech.-ASCE, 123(3), 267-275.

Hordijk, D. A. (1991) Local Approach to Fatigiie of Concrete. Doctor'll thesis. Delft University of Technology.
Delft, The Netherlands.

Hordijk, D. A. and Reinhardt, H. W. (1991) “Growth of-discrete’ cracks in concrete under fatigie loading.”
In Toughening Mechanisms in Quasi-Brittle Materials; S:"P. Shah, ed., Kluwer Academic Publishers,
Dordrecht, The Netherlands, pp. 541-554.

Hordijk, D. A. and Reinhardt, H. W. (1992) “A fracture mechanics approach to fracture of plain concrete.”
In Fracture Mechanics of Concrete Structiires, Z. P. Bazant, ed., Elsevier Applied Science, London, pp.
924-929.

References ) 581

Horii, H. (1989) “Models of fracture process zone and a system of fracture mechanics for concrete and rock.”
In Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock, H. Mihashi, H.
Takahashi and F. H. Wittmann, eds., Balkema, Rotterdam, pp. 409-422.

Horii, H. (1991) “Mechanisms of fracture in brittle disordered materials.” In Fracture Processes in Concrete,
Rock and Ceramics, J. G. M. van Mier, J. G. Rots and A. Bakker, eds., E. & FN Spon, London, pp.
95-110.

Horii, H. and Nemat-Nasser, S. (1982) “Compression-induced non planar crack extension with application to
splitting, exfoliation and rockburst.” J. Geophys. Res., 87, 6806-6821.

Horii, H. and Nemat-Nasser, S. (1985) “Elastic fields of interacting inhomogeneities.” Int. J. Solids Struct.,
21, 731-745.

Horii, H. and Nemat-Nasser, S. (1986) “Brittle failure in compression, splitting, faulting and brittle-ductile
transition.” Philos. T. Roy. Soc., 319(1549), 337-334.

Horii, H. Hasegawa A. and Nishino, F. (1989) “Fracture process and bridging zone model and infiuencing
factors in fracture of concrete.” In Fracture of Concrete and Rock, S P Shah and S. E. Swartz, eds.,
Springer-Verlag, New York, pp. 205-214.

Horii, H., Shin, H. C. and Pallewatta, T. M. (1990) “An analytical model of fatigue crack growth in concrete.”
Proc. of the Japan Concrete Institute, 12, 835-840.

Horii, H., Zihai, S. and Gong, S.-X. (1989) “Models of fracture process zone in concrete, rock, and ceramics.”’
In Cracking and Damage, Strain Localization and Size Effect, J. Mazars and Z. P. BaZant, eds., Elsevier
Applied Science, London, pp. 104-115.

Hrennikoff, A. (1941) “Solution of problems of elasticity by the framework method.” J. Appl. Mech.-T. ASME,
12, 169-175.

Hsu, T. T. C. (1968) “Torsion of structural concrete — Plain concrete rectangular sections? In Torsion of
Structural Concrete, American Concrete Institute, Detroit, pp. 203-238. (ACI Special Publication
SP-18.)

Hsu, T. T. C. (1988) “Softened truss mode] theory for shear and torsion.”” ACI Struct. J., 85(6), 624-635.

Hsu, T. T. C. (1993) Unified Theory of Reinforced Concrete, CRC Press, Boca Raton, FL.

Huang, C. M. 1. (1981) Finite Element and Experimental Studies of Stress Intensity Factors for Concrete by
Means of Fracture Mechanics and Finite Elements. Doctoral thesis. Kansas State University, Kansas.

Hughes, B. P and Chapman, G. P. (1966) “The complete stress-strain for concrete in direct tension”” RILEM
Bulletin, 30, 95-97.

Humphrey, R. (1957) “Torsional propemes of prestressed concrete.” Structural Eng., 35(6), 213-224.

Hutchinson, J. W. (1968) “Singular behaviour at the end of a tensile crack in a hardening material.”’ J. Mech.
Phys. Solids, 16, 13-31.

Hutchinson, J. W. (1990) “Mixed mode fracture mechanics of interfaces.” In Metal-Ceramic Interfaces, M.
Ruhle et al., eds., Pergamon Press, New quk, pp. 295-306.

Inglis, C. E. (1913) “Stresses in a plate due to the presence of cracks and sharp corners”” T, Inst. Naval
Architects, 55, 219-241.

Ingraffea, A. R. (1977) Discrete Fracture Propagation in Rock: Laboratory Tests and Finite Element Analysis.
Doctoral thesis. University of Colorado, Boulder.

Ingraffea, A. R. and Gerstle, W. H. (1985) “Nonlinear fracture models for discrete crack propagation."" InAppli-
cation of Fracture Mechanics to Cementitions Composites, S. P. Shah, ed., Martinus Nijhoff, Dordrecht,
pp. 247-285.

Ingraffea, A. R. and Heuzé, E. E. (1980) “Finite element models for rock fracture mechanics.” Int. J. Numer.
Anal. Meth. Geomech., 4,25-43.

Ingraffea, A. R. and Saouma, V. (1984) “Numerical modeling of fracture propagation in reinforced and plain
concrete.” In Fracture Mechanics of Concrete: Structural Application and Numerical Calculation, G.
Sth and A. DiTommasso, eds., Martinus Nijhoff, Dordrecht, pp. 171-225.

Ingraffea, A. R., Gerstle, W. H., Gergely, P. and Saouma, V. (1984) “Fracture mechamcs of bond in remfor(,ed
concrete. ”J Struct Eng. -ASCF 1106(4), 871-890:

Ingraffea, A. R., Linsbauer, H. and Rossmanith, H. (1989) “Computer simulation of cracking in large arch
dam — Downstream side cracking.” In Fracture of Concrete and Rock, S.P. Shah and S.E. Swartz, eds.,
Springer-Verlag, New York, pp. 334-342.

Irwin, G. R. (1957) “Analysis of stresses and strains near the end of a crack traversing a plate.” J. Appl.
Mech.-T. ASME, 24, 361-364. *

Irwin, G. R. (1958) “Fracture.” In Handbuch der Physik, Vol. 6, Fligge, ed., Springer-Verlag, Berlin, pp.
551-590.




582 References

Irwin, G. R. (1960) Structural Mechanics, Pergamon Press, London.

Irwin, G. R, Kies, J. A. and Smith, H. L. (1958) “Fracture strengths relative to the onset and arrest of crack

propagation.” Proc ASTM, 58, 640-657.

Isida, M. (1973) “Analysis of stress intensity factors for the tension of a centrally cracked strip with stiffened
edges.” Eng. Fract. Mech., 5, 647-655.

Janssen, J. G. (1990) Mode I Fracture of Plain Concreéte undei Monotonic and C: yelic Loading: Implementation
and Evaluation of a Constitutive Model in DIANA. Graduate thesis. Delft University of Technology, Delft,

The Netherlands.

Jeng, Y. S. and Shah, S. P. (1985a) “A fraciure toughness criterion for concrete” Eng. Fract. Mech., 21(5),
1055-1069. PILEy

Jeng, Y. S. and Shah, S. P. (1985b) “Two parameter fracture model for concrete.” J. Eng. Mech.-ASCE, 111(10),
1227-1241. :

Jeng, Y. S. and Shah, S. P. (1988a) Geometrical Effects on Mode I Fracture Parameters. Report to RILEM
Comnmittee 89-FMT. .

Jeng, Y. S. and Shah, S. P. (1988b) “On the conérete fracture testing methods.” In Fracture Toug‘hness‘ and
Fracture Energy: Test Methods for Concrete and Rock, H. Mihashi, H. Takahashi and R H. Wittniann,
eds., Balkema, Rotterdam, pp. 443-463.

Jenq, Y.S. and Shah, S.P. (1989) “Shear tesistance of reinforced concrete beams — A fracture mechanics
. approach.” In Fracture Mechanics: Applications to Concrete; V. Li and Z. P, BaZant, eds., American
Concrete Institute, Detroit, pp.'237-258. (ACI Spécial Publication SP-1 18.) .

Jirdsek, M. (1993) Modeling of Fracture and Damage in Quasi-Briitle Materials. Doctoral thesis, Northwest-
ern University, Evanston, IL.

Jirdsek, M. (1996) “Nonlocal models for concrete cracking.” ‘Oral presentation at 38th Annual Technical
Meeting of Society of Eng. Science.in Tempe, Arizona; to appear in Int. J. Solids Struct. :

Jirdsek, M. and BaZant, Z. P. (1994) “Localization analysis-of nonlocal model based on crack interactions.” J.
Eng. Mech.-ASCE, 120(7), 1521=1542; . k

Jirdsek, M. and BaZant, Z. P. (1995a) “Particle model for quasibrittle fracture and application to seaice.” J.
Eng. Mech.-ASCE, 121(8), 1016-1025. : : '

Jirdsek, M. and Bazant, Z. P. (1995b) “Mdcroscopic fracture characteristics of random particle systems.” Int.
J. Fracture, 69(3), 201-228. '

Jirdsek, M. and Zimmermann, T. (1997) “Nonlocal rotafing crack model with transition to scalar damage.” In
Computational Plasticity, Vol. 2, D. R.-J. Owen; E. Onate and E. Hinton, eds., Int. Center for Numer.
Meth. in Eng. (CIMNE), pp. 1514-1521.

Jishan, X. and Xixi, H. (1990) “Size effect on the strength of a'concrete member.” Eng. Fract. Mech:, 35,
687-696.

John, R. and Shah, S. P. (1986) “Fracture of concrete subjected to impact loading” Cement, Concrete and
Aggregates, 8(1), 24-32, ;

John, R. and Shah, S. P, (1990) “Mixed mode fracture of concrete subjected to impact loading.” J. Struct.
Eng.-ASCE, 116(3), 585-602.

Kachanov, M. (1958) “Time of rupture process under creep conditions.” Izv. Akad. Nauk. SSR, Otd." Tekh.
Nauk., No. 8, 26-31. g

Kachanov, M. (1980) “A continuum model of medium with cracks.” J. Eng. Mech.-ASCE, 106, 1039-1051.

Kachanov, M. (1982) “A microcrack model of rock inelasticity=—Part I. Frictional sliding on microcracks.”
Mech. Mater, 1, 19-41. :

Kachanov, M. (1985) “A simple technique of stress analysisinelastic solids with many cracks Int. J. Fracture,
28, R11-R19.

Kachanov, M. (1987a) “Elastic solids with many cracks: A’simplé method of analysis.” Int. J. Solids Struct.,
23,23-43. E

Kachanov, M. (1987b) “On modelling of anisotropic damage in elastic-brittle materials—a brief review” In .

Damage Mechanics in Composites, A. Wang and G. Haritos, eds., The American Society of Mechanical
Engineers, New York, pp. 99-105. S

Kachanov, M. (1992) “Effective elastic propeities of cracked solids: Critical review of some basic concepts.”
Appl. Mech. Rev., 45(8), 304-335. :

Kachanov, M. (1993) “Elastic solids with many cracks and related problems.” In Advances in Applied Me-

chanics, Yol. 30, J. Hutchinson and T, Wu, eds., Academic Press, New York, pp. 259445,

References 583

Kachanov, M. and Laures, J.-P. (1989) “Three-dimensional problems of strongly interacting arbitrarily located
penny-shaped cracks.” Int. J. Fracture, 41, 289-313. )

Kachanov, M,, Tsukrov, 1., and Shafiro, B. (1994) “Effective moduli of solids with cavities of various shapes.”
Appl. Mech. Rev., 47(1), S151-S174.

Kani, G. N. J. (1966) “Basic facts concerning shear failure.” ACI J., 63(6); 675-692.
Kani, G. N. J. (1967) “How safe are our large reinforced concrete beams?” ACI J,, 64(3), 128-141.

Kanninen, M. F. and Popelar, C. H. (1985) Advanced Fracture Mechanics, Oxford University Press, New
York. :

Kaplan, M. F. (1961) “Crack propagation and the fracture of concrete.” ACI J., 58(5), 591-610.

Karihaloo, B. L. (1992) “Failure modes of longitudinally reinforced beams.™ In Application of Fracture
Mechanics to Reinforced Concrete, A. Carpinteri, ed., Blsevier Applied Science, London, pp. 523-546.

Karihaloo, B. L. (1995) “Approximate fracture mechanical approach to the prediction of ultimate shear strength
of RCbeams.” In Fracture Mechanics of Concrete Structures, . H. Wittmann, ed., Aedificatio Publishers,
Freiburg, Germany, pp. 1111-1123.

Karihaloo, B. L. and Natlathambi, P. (1991) “Notched beam test: Mode I fracture toughness.” In Fracture
Mechanics Test Methods for Concrete, S. P. Shah and A. Carpinteri, eds., Chapman and Hall, London,
pp. 1-86.

Karp, S. N. and Karal, E C. (1962) “The elastic field behavior in the neighbourhood of a crack of arbitrary
angle.” Commun. Pur. Appl. Maih., 15, 413-421.

Kassir, M. K. and Sih, G. C. (1975) Three-Dimensional Crack Problems, Noordhoff International Publishing,
Leyden, The Netherlands.

Kawai, T. (1980) “Some considerations on the finite element method” Int. J. Numer: Meth. Eng., 16, 81-120.

Kemeny, J. M. and Cook, N. G. W. (1987) “Crack models for the failure of rock under compression.” In Proc.
2nd Int. Conf. on Constitutive Laws for Eng. Mat., Vol. 2, C. S. Desai ct al., eds., Elsevier Science
Publisher, New York, pp. 879-887.

Kemeny, J. M. and Cook, N. G. W. (1991) “Micromechanics of deformation in rock.” In Toughening Mecha-
nisms in Quasibrittle Materials, S. P. Shah, ed., Kluwer, Dordrecht, The Netherlands, pp. 155-188.

Kendall, K. (1978) “Complexities of cc}mpression'failuref’ Philos. T. Roy. Soc. A, 361, 254-263.

Kesler, C. E., Naus, D. J. and Lott, J. L. (1972) “Fracture mechanics — Its applicability to concrete.” In Proc.
Int. Conf. on the Mechanical Behavior of Materials, Vol. 4, The Soc. of Mater. Sci., pp. 113-124.

Kienzler, R. and Herrmann G. (1986) “An elementary theory of defective beams.” Acta Mech., 62, 37—46.

Kim, J.-K. hnd Eo, S.-H. (1990) “Size effect in concrete specimens with dissimilar initial cracks.” Mag.
Concrete Res., 42, 233-238, :

Kim, J.-K. et al. (1989) Size Effect on the Splitting Tensile Strength of Concrete and Mortar. Report No. CM
89-3, Korea Advanced Institute of Science and Technology, Seoul. (Data reported by Kim and Eo 1990.)

Kittl, P. and Diaz, G. (1988) “Weibull’s fracture statistics, or probabilistic strength of materials: State of the
art.” Res. Mechanica, 24, 99-207.

Kitd, P. and Dfaz, G. (1989) “Some engineering applications of the probabilistic strength of materials.” Appl.
Mech. Rev., 42(11), 108-112.

Kittl, P. and Dfaz, G. (1990) “Size effect on fracture strength in the probabilistic strength of materials.” Reliab.
Eng. Syst. Sofe., 28, 9-21.

Klisinski, M., Olofsson, T. and Tano, R. (1995) “Mixed mode cracking of concrete modelled by inner softening
band.” In Computational Plasticity, D.R.J. Owen et al., eds., Pineridge Press, Swansea, U.K., 1595-1606

Klisinski, M., Runesson, K. and Sture, S. (1991) “Finite element with inner softening band.” J. Eng. Mech.-
ASCE, 117(3), 575-587.

Knauss, W. G. (1970) “Delayed Failure — The Griffith problem for linearly viscoelastic materials.” Ins. J.
Fracture, 6, 7-20. .

Knauss, W. G. (1973) “The mechanics of polymer fracture” Appl. Mech. Rev., 26, 1-17.

Knauss, W.G. (1974) “On the steady propagation of a crack in a viscoelastic sheet: Experiments and analysis.’

In The Mechanics of Fracture, F. Erdogan, ed., The American Society of Mechanical Engineers, New
York, pp. 69-103. (AMD-19.)

Knauss, W. G. (1976) “Fracture of solids possessing deformation rate sensitive material properties.” In De-
Jormation and Fracture of High Polymers, H. H. Kausch et al., eds., Plenum Press, New York, pp.
501-541. :



584 * References

Knauss, W. G. (1989) “Time dependent fracture of polymers.” In Advances in Fracture Research, Vol. 4,
K. Salama, K. Ravi-Chandar, D. M. R, Taplin-and ‘P. Rama Rao, eds., Pergamon Press, Oxford, pp.
2683-2711. . . :

Knein, M. (1927) “Zur theorie des druckversuchs.” Abhandlungeﬁ aus dem Aerodynamischen Institut an der
Technische Hochschule Aachen, 7, 43-62,

Knott, J. F. (1973) Fundamentals of Fracture Mechanics, Butterworths, London.

Knowles, J. K.and Stemberg, E. (1972) “On a class of conseérvation laws in linearized and finite elastostatics.”
Arch. Ration. Mech. An., 44, 187-211. :

‘ Kobayashi, A. S., Hawkins, M. N, Barkér, D. B.and Liaw; B. M. (1985) “Fracture process zone of concrete.”
In Application of Fracture Mechanics to Ceméntitious Composites, S. P. Shah, ed., Martinus Nijhoff,
Dordrecht, pp. 25-50. :

Korn, G. A. and Komn, T. M. (1968) Mathematical Handbook Jor Scientists and Engineers, 2nd edition,
McGraw Hill, New York. : :

* Krafft, J. M., Sullivan, A. M. and Boyle, R.W. (1961) “Effect of dimensions on fast fracture instability of
notched sheets.” In Proc. of the Crack-Propagation Symposium, Vol. 1, pp. 8-28.

Krausz, A. S. and Eyring, H. (1975) Deformation Kinetics, Wiley-Interscience.,

Krausz, A. S and Krausz, K. (1988) Fracture Kinetics of Crack Growth, Kluwer Academic Publishers, Dor-
drecht. : :

Kréner, E. (1961) “Zur plastischen verformung des vielkristalls.” Acta Metall., 9, 155-161.

Kroner, E. (1967) “Elasticity theory of materials with long-range cohesive forces.” Jnt. J. Solids Struct., 3,
731-742. ) . .

Kunin, 1. A. (1968) “The theory of elastic media“with microstructure and the theory of dislocations.” In
. Mechanics of Generalized Continua, E. Kroner, ed., Springer Verlag, Berlin, pp. 321-328.

Kupfer, H., Hilsdorf, H. K. and Rasch, H. (1969) “Behavior of concrete under biaxial stresses” ACI J./, 66,
1656-666.

Kyriakides, S., Ascerulatne, R., Perry, E. J. and Liechti; K. M. (1995) “On the compressive failure of fiber
reinforced composites.” Int. J. Solids Struct., 32(6-7),689-738.

Labuz, J. E, Shah, S. P. and Dowding, C. H. (1985)"‘Experimenta1 analysis of crack probagation in granite.”
- Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 22(2), 85-98. .

Larsson, R. and Runesson, K. (1995) “Cohesive crack models for semi-brittle materials derived from local-
ization of damage coupled to plasticity.” Int." J.-Fracture; 69, 101-122.

Larsson, R., Runesson, K. and Akcsson, M. (1995) “Embedded cohesive crack models based ‘on regular-
ized discontinuous displacements.” In Fracture Mechanics of Concrete Structures, F. H. Wittmann, ed.,
Aedificatio Publishers, Freiburg, Gerrnany, pp: 899-911. ’

Launay, P. and Gachon, H. (1971)“Strain and ultimate strength#of concrete under triaxial stress.” In Proc.
First Int. Conference on Struct. Mechanics in Reactor Technology, T. Jaeger, ed., paper H1/3, 12 pp.

Lehner, F. and Kachanov, M. (1996) “On modeling of “winged” cracks forming under compression.” Int. J.
Fracture, 77, R65-R75. : : )
Leibengood, L. D., Darwin, D. and Dodds; R."H.-(1986) “Parameters affecting FE analysis of concrete
- structures.” J. Struct: Eng.-ASCE, 112(2),326-341.
Lemaitre, J. and Chaboche, J.-L. (1985) Mécanigue des Matériaux Solides, Dunod, Paris.
Leonhardt, ¥, (1977) “Schub bei stahlbeton und spannbeton—Grundlagen der ncueren schubbemessung?”
Beton und Stahlbetonbau, 72(11-12),270-277 and 295392,

Levin, V. M.(1971) “The relation between the mathematical expectation of stress and strain tensors in elastic
microheterogeneous media” Prikl. Mat. Mekh:, 35,694-701. (In Russian.)

Li, V. C,, Chan, C. M. and Leung, C: K.'Y. (1987) “Experimental determination of the tension-softening
relations for cementitious composites.” Cement Conciéte Res., 17, 441-452.

Li, Y.-N. and BaZant, Z. P. (1994a) “Eigenvalue analysis of size effect for cohesive crack model” Tnt. J.
Fracture, 66, 213-226. .

Li Y.-N. and BaZant Z. P. (1994b) “Penetration fracture of sea ice plate: 2D analysis and size effect.” J. Eng.
Mech.-ASCE, 120(7),.1481-1498.

Li, Y.-N. and BaZant, Z. P. (1996) “Scaling of cohesive fracture (with ramification to fractal cracks).” In
Size-Scale Effects in the Failure Mechanisms of Maierials and Structurés, A. Carpinteri, ed., E & FN
Spon, London, pp. 274-299. ‘

Li, Y.-N and BaZant, Z. P. (1997) “Cohesive crack model with rate-dependent crack opening and viscoelasticity:
Numerical algorithm, behavior and size effect” Int. J. Fracture, in press.

References 585

Li, Y.-N., Hong, A. N. and BaZant, Z. P. (1995) “Initiation of parallel cracks from surface of elastic half-plane.”
Int. J. Fracture, 69, 357-369. ’

Liaw, B. M., Jeang, F. L., Du, J.J,, Hawkins, N. M: and Kobayashi, A. S. (1990) “Improved non-linear model »
for concrete fracture”” J. Eng. Mech.-ASCE, 1106(2), 429-445.

Lin, C. S. and Scordelis, A. (1975) “Nonlinear analysis of RC shells of general forms.” J. Struct Eng.-ASCE,
101, 523-538.

Lin, T. H. and Ito, M. (1965) “Theoretical plastic distortion of a polycrystalline aggregate under combined
and reversed stresses.” J. Mech. Phys. Solids, 13, 103-115.

Lin, T. H. and fto, M. (1966) “Theoretical plastic stress-strain relationship of a polycrystal.” Int. J. Eng. Sci.,
4, 543-561.

Lindner, C. P. and Sprague, 1. C. (1955) “Effect of depth of beams upon the modulus of rupture of plain
concrete.” ASTM Proc., 55, 1062-1083.

Linsbauer, H. and Tschegg, E. K. (1986) “Fracture energy determination of concrete with cube-shaped speci-
mens.” Zement und Beton, 31, 38-40. (In German.)

Linsbauer, H., Ingraffea, A. R., Rossmanith, H. and Wawrzynek, P. A. (1988a) “Simulation of cracking in
large arch dam; Part 1. J. Struct Eng.-ASCE, 115(7), 1599-1615.

Linsbauer, H., Ingraffea, A. R., Rossmanith, H. and Wawrzynek, P. A. (1988b) “Simulation of cracking in
large arch dam: Part I1.” J. Struct Eng.-ASCE, 115(7), 1615-1630.

Llorca, J., Planas, J. and Elices, M. (1989) “On the use of maximum load to validate or 'disprove models for
concrete fracture behaviour.” In Fracture of Concrete and Rock, Recent Developments, S. P. Shah, S. E.
Swartz and B. Barr, eds., Elsevier Applied Science, London, pp. 357-368.

Lofti, H. R. and Shing, P. B. (1994) “Analysis of concrete fracture with an embedded crack approach.” In
Computational Modeling of Concrete Structures, H. Mang, N. Bicanic and R. de Borst, eds., Pineridge
Press, Swansea, pp. 343-352.

Lubliner, J. (1986) “Normality rules in large-deformation plasticity.” Mech. Mater, 5, 29-34.
Lundborg, N. (1967) “Strength-size rélation of granite.” Int. J. Rock Mech. Min. Sci., 4, 269-272.

MacGregor, J. G. and Gergely, P. (1977) “Suggested revisions to ACI code — Clauses dealing with shear in
beams.” ACI J., 74(10), 493-500: :

Mai, Y.-W. (1991) “Fracture and fatigue of non-transformable ceramics: The role of crack-interface bridging.”
’ In Fracture Processes in Concrete, Rock and Ceramics, J. G. M. van Mier, J. G. Rots and A. Bakker,
eds., E & FN Spon, London, pp. 3-26.

Maji, A, K. and Shah, S. P. (1988) “Process zone and acoustic emission measurement in concrete.” Exp. Mech.,
28,27-33.

Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood
Cliffs, New Jersey.

Mandelbrot, B. B., Passoja, D.E. and Paullay, A. (1984) “Fractal character of fracture surfaces of metals.”’
Nature, 308, 721-722.

Mariotte, E. (1686) Traité du mouvement des eaux, Posthumously edited by M. de la Hire, Engl. transl. by J.T.
Desvaguliers, London (1718), p. 249. (Also Mariotte’s collected works, 2nd ed., The Hague (1740).)

Martha, L. F, Llorca, J., Ingraffea, A. R. and Elices, M. (1991) “Numerical simulation of crack initiation and
propagation in an arch dam.” Dam Eng., 2(3), 193-213.

Marti, P. (1980) Zur Plastischen Berechnung von Stahlbeton. Bericht No. 104, Institute fiir Baustatik und
Konstrpktion, ETH, Ziirich.

Marti, P. (1985) “Basic tools of reinforced concrete beam design.” ACT J,, 82(1), 46-56. (Discussion 82(6),
933-935)

Marti, P. (1989) “Size effect in double-punch tests on concrete cylinders.” ACI Mater. J., 86(6), 597-601.

Massabd, R. (1994) Mechanismi di Rottura nei Materiali Fibrorinforzati. Doctoral thesis. Dottorato di Ricerca
in Ingegneria Strutturale, Politecnico di Torino, Torino, Italia.

Maturana, P., Planas, J. and Elices, M. (1990) “Evolution of fracture behaviour of saturated concrete in the
low temperature range.” Eng. Fract. Mech., 35(4-5), 827-834.

Mazars, J. (1981) “Mechanical damage and fracture of concrete structures.” In Advances in Fracture Research,
Preprints 5th. Int. Conf. Fracture, Vol. 4, D. Erangois, ed., Pergamon Press, Oxford, pp. 1499-1506.

Mazars, J. (1984) Application de la Mécanique de I'Endomagement au Comportement Non-Linéaire et & la
Rupture du Béton de Structures. Doctoral thesis. Université de Paris 6.




586 . References

Mazars, J. (1986) “A model for a unilateral elastic damageable material and its application to concrete.” In
Fracture Toughness and Fracture Energy of Concrete, . H. Wittmann, ed., Elsevier, Amsterdam, pp-
61-71, s

McHenry, D. (1943) “A new aspect of creep in concrete ‘and its application to design.” Proc. - ASTM, 43,
1069-1086. : :

-McKinney, K. R. and Rice, R. W. (1981) “Specimen sizé effects in fracture toughness testing of heterogeneous
ceramics by the notch beam method.” In Fracture Mecharnics Methods Jor Ceramics, Rocks, and Concrete,

S. W. Freiman and E. R. Fuller Jr, eds., American Society for Testing and Materials, Philadelphia, pp.

118-126.-(ASTM Special Technical Publication No. 745.)

McMullen, A. E. and Daniel, H. R. (1975) “Torsional strength of longitudinally reinforced beams cdntaining
an opening.” ACI J,, 72(8), 415-420.. : ;

Melan (1932 “Der spannungzustand def durch cine einzelkraft im irinern beanspruchten halbschiebe” 2
Angew. Math. Mech, 12(6).

Meyer, C. and Okamura, H., eds. (1986) Finite Element Andly.ris of Reinforced Concrete Structures, ASCE,
New York. .

van Mier, J. G. M. (1984) Strain-Softening of Concreéte Under Multiaxial Loading Conditions. Doctoral thesis.
De Technische Hogeschool Eindhoven, The Nethetlaids:

van Mier, J. G. M. (1986) “Multiaxial strain-softening of concrete; Part I: Fracture; Part 1: Load histories”
Mater: Struct., 19(111), 179-200.

van Mier, 1. G. M. and Vervuurt, A. (1995) “Micromecharical analysis and experimental verification of bound-
ary rotation effects in uniaxial tension tests on'‘concrete” In Fracture of Britile Disordered Materials:
Concrete, Rock, Ceramics, G. Baker and B.L. Karihaloo, eds., E & FN Spon, London, pp. 406-420.

van Mier, J. G. M., Nooru-Mohamed, M. B.'and Schlangen, E. (1991) “Experimental analysis of mixed mode
I and II behavior of concrete.” In Analysis of Concrete Siructures by Fracture Mechanics, L. Elfgren and
S. P Shabh, eds., Chapman and Hall, London, pp.-32-43. i

van Mier, J. G. M., Schlangen, E. and Vervuuit, A: (1996)* Tensile cracking in concrete and sandstone: Part
2 - Effect of boundary rotations.” Mater: Struct., 29, 8796, : -

van Mier, J. G. M., Vervaurt, A. and Schlangen, E. (1994) “Boundary and size effects in uniaxial tensile tests:
A numerical and experimerital study.” In Fracture and Damage in Quasibrittie Structures, Z. P. BaZant,
Z. Bittnar, M, Jirdsek and J. Mazars, eds., E & FN Spon,.London, pp. 289-302.

Mihashi, H. (1983) “A stochastic theory for fracture of concrete”” In Fracture Mechanics of Concrete, F. H.
Wittmann, ed., Elsevier Science Publishers, Amsterdarm, pp.-301-339.

Mihashi, H. (1992) “Material structure and tension softening properties of concrete.” In Fracture Mechanics
of Concrete Structures, Z. P. BaZant, ed.,‘Elsevicr, London, pp.: 239-250. “

Mihashi, H. andIzumi, M. (1977) “Stochastic theory for concrete fracture.” Cement Concrete Res., 7,411-422.

Mihashi, H. and Wittmann, E H. (1980) “Stochastic approach to'study the influence of rate of loading on
strength of concrete” Heron, 25(3).

Mihashi, H. and Zaitsev, J. W. (1981) Statistical Nature of Crack Propagation. Report to RILEM TC 50-EMC.
Mikhlin, S. G. (1964) Integral Equations, Pergamon Press, Ox{ord.}

Miller, R. A., Shah, S. P. and Bjelkhagen, H. (1988) “Measuremeént of crack profiles in mortar using laser
holographic interferometry.” Exp. Mech., 28(4), 388-394;

- Mindess, S. (1983) “The application of fracture mechaiiics (o cement and concrete: A historical review.” In
Fracture Mechanics of Concrete, F. H. Wittmann, ed.; Elsevier Science Publishers, Amsterdam, The
Netherlands, pp. 1-30. ;

Mindess, S. and Shah, S. P, eds. (1986) Proc. MRS Symp. No. 64 on Cement Based Composites: Strain Rate
Effect on Fracture, Matcrials Research Society. :

Mindess, S., Lawrence, F. V. and Kesler, C. E. (1977) “The J-integral as a fracture criterion for fiber reinforced
concrete.” Cement Concrete Res., 7,731-742. .

von Mises, R . (1936) “La distribution de la plus grande de n-valetrs.” Rev. Marh. Union Interbalcanique, 1,
1. .

Mitchell, D. and Collins, M. P. (1974) “Diagonal compreséion field theory —a rational model for structural
concrete in pure torsion.” AC7 J., 71(8), 346-408. .

‘Modéer, M. (1979) A Fracture Mechanics A[fproac/z to Failure Analyses of Concrete Materials. Report No. .

TVBM-1001, Division of Building Materials, Liind Institute of Technology, Lund, Sweden.

Mori, T. and Tanaka, K. (1973) “Average stress in matrix and average elastic energy of materials with misfit
inclusions.” Acta Metall,, 21, 571-574. -

References ‘ 587

Morsch, E. (1922) Der Eisenbetonbau— Seine Theorie und Anwendung, Vol. 1, 5th edition, Wittwer, Stuttgart.
(Reinforced Concrete Construction—Theory and Application.)

Mosolov, A. B. and Borodich, B M. (1992) “Fractal fracture of brittle bodies under compression.” Doklady
Akademii Nauk., 324(3), 546-549. (In Russian.) ’

Mueller, H. K. and Knauss, W. G. (197 1) “Crack propagation in a linearly viscoelastic strip.” J. Appl. Mech.-T. k
ASME, 38, 483-488.

Miihlhaus, H.-B. and Aifantis, E. C, (1991) “A variational principle for gradient plasticity.” Int. J. Solids
Struct,, 28, 845-858.

Mulmule, S. V., Dempsey, J. P. and Adamson, R. M. (1995) “Large-scale in-situ ice fracture experiments. Part
IE: Modeling aspects.” In Ice Mechanics 1995,1. P. Dempscy and Y. D. S. Rajapakse, eds., The American '

Society of Mechanical Engincers, New York, pp. 129-146. (AMD-Vol. 207, ASME Summer Meeting,
Los Angeles, CA.)

Mura, T. (1987) Micromechanics of Defects-in Solids, 2nd edition, Martinus Nijhoff Publishers, Dordrecht.
Murakami, Y. (1987) Stress Intensity Factors Handbook, Pergamon Press, Oxford.

Nallathambi, P. and Kari haloo, B. L. (1986a) “Determination of specimen- size independent fracture toughness
of plain concrete.” Mag. Concrete Res., 38(135), 67-76.

Nallathambi, P. and Karihaloo, B. L. (1986b) “Stress intensity factor and energy release rate for three-point
bend specimen.” Eng. Fraci. Mech., 25(3), 315-321.

Naus, D. . (1971) Applicability of Linear-Plastic Fracture Mechanics to Portland Cement Concretes. Doctoral
thesis. University of Ilinois at Urbana-Champaign.

Naus, D. J. and Lott, J. L. (1969) “Fracture toughness of portland cement concretes.” ACT J., 66, 481498,

Nemat-Nasser, S. and Obata, M. (1988) “A microcrack model of dilatancy in brittle material ” J. Appl. Mech.-T.
ASME, 55, 24-35,

Nesetova, V. and Lajtai, E. Z. (1973) “Fracture from compressive stress concentration around elastic flaws.”
Int. J. Rock Mech. Min. Sci., 10, 265-284.

Newman Jr., J. C. (1971) An Improved Meihod of Collocation Jor the Stress Analysis of Cracked Plates with
Various Shaped Boundaries. Technical Note No, TN D-6376, NASA.

Nielsen, K. E. C. (1954) “Effect of various factors on. the flexural strength of concrete test beams.” Mag.
Concrete Res., 15, 105-114.

Nielsen, M. P. and Braestrup, N. W, (1975) Plastic Shear Strength of Reinforced Concrete. Beams. Techn.
Report No. 3, Bygningsstatiske Meddelesler (Vol. 46).

Nixon, W. E (1996) “Wing crack models of the brittle compressive failure of ice.” Cold Reg. Sci. Technol.,
24, 41-55.

Noghabai, K. (1995a) Splitting in Concrere in the Anchoring Zone of Deformed Bars. Graduate thesis. Division
of Structural Engineering, Luled University of Technology, Luled, Sweden.

Noghabai, K. (1995b) “Splitting of concrete covers — a fracture mechanics approach.” In Fracture Mechanics
of Concrete Structures, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg, Germany, pp. 1575-1584,

Nuismer, R.J. (1975) “An energy release rate criterion for mixed mode fracture.” Int. J. Fracture, 11, 245-250.
Ogden, R. W. (1984) Non-linear elastic deformations, Bllis Horwood, Ltd. and John Wiley & Sons, Chichester,
UK.

Oglesby, J. J. and Lamackey, O. (1972) An Evaluation of Finite Element Methods for the Computation of
Elastic Stress Intensity Factors. Report No. No. 3751, NSRDC,

Ohgishi, S., Ono, H., Takatsu, M. and Tanahashi, I. (1986) “Influence of test conditions on fracture toughness
of cement paste and mortar.” In Fracture Toughness and Fracture Energy of Concrete, F. H. Wittmann,
ed., Elsevier Science, Amsterdam, The Netherlands, pp. 281-290.

Ohtsu, M. and Chahrour, A. H, (1995) “Fracture analysis of concrete based on the discrete crack model by the
boundary element method.” In Fracture of Brittle Disordered Materials: Concrete, Rock, Ceramics, G.
Baker and B. L. Karihaloo, eds., E & EN Spon, London, pp. 335-347.

Oliver, J. (1989) “A consistent characteristic length for smeared cracking models.” Jnt. J. Numer. Meth, Eng.,
28, 461-474.

Oliver, J. (1995) “Modeling strong discontinuities in solid mechanics via strain softening constitutive equa-
tions.” Monograph CIMNE, 28,

Olsen, P. C. (1994) “Some comments on the bending strength of concrete beams.” Mag.” Concrete Res., 46,
209-214. :

Ortiz, M. (1985) “A constitutive theory for the inelastic behaviour of coricrete.” Mech. Marer, 4, 67-93.



388 References

Ortiz, M. (1987) “An analytical study of the localized failure modes in concrete.” Mech. Mater., 6, 159-174.
© Ottosen, N..S. (1977) “A failure criterion for concrete.” J. Eng: Mech. Div.-ASCE, 103(4), 527-535. '

Ouchterlony, F. (1975) Concentrated Loads Applied to the Tips of a Symmetrically Cracked Wedge. Report
© No. DS-1975:3, Swedish Dectonic Research Foundation, .

Owen, D. R. J. and Hinton, E. (1980) Finite Elements in Plasticity: Theory and Practice, Pineridge Press,
Swansea, U.K.

O7bolt, J. and BaZant, Z. P. (1991) “Cyclic microplane model for concrete.” In Fracture Processes in Concrete,

Rock and Ceramics, J. G. M. van Mier, I. G. Rots and A.‘Bakker, eds., E & FN Spon, London, pp. 639-
650.

Ozbolt, J. and BaZant, Z. P. (1992) “Microplane model for cyclic triaxial behavior of concrete and rock.” J.
Eng. Mech.-ASCE, 118(7), 1365-1386.

O#bolt, J. and BaZant, Z. P. (1996) “Numericél smeared fracture analysis: Nonlocal microcrack interaction

approach.” Int. J. Numer. Meth. Eng., 39, 635-661:

Ozbolt, J. and Eligehausen, R. (1995) “Size effect in concrete and reinforced concrete structures.” Ih Fracture
Mechanics of Concrete Structures, Vol. 1, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg, Germany,
pp. 665-674.

Palmer, A. C. and Sanderson, T. J. O. (1991) “Fractal crushing of ice‘and brittle solids.” Philos. T. Roy. Soc.
A, 443, 469-477.

Pan, Y. C., Marchertas, A. H. and Kennedy; J. M. {1983) “Finite.element analysis of blunt crack propagation,
a modified J-integral approach.” In Transdctions of the Seventh International Conference on Structural
Mechanics in Reactor Technology, North-Holland, New York, pp. 235-292.

Pande, G. N. and Sharma, K. G. (1981) “Imiplementation of computer procedures and stress-strain laws in

geotechnical engineering.” In Proc. Symp. onImplementation of Computer Procedures and Stress-Strain
Laws in Geotechnical Engineering., C. S. Desai and S. K. Saxena,eds., Acorn Press, Durham, N.C., pp.
575-590.

Pande, G. N. and Sharma, K..G. (1982) Multi-Laminate Mode!l of Clays—A Numerical Evaluation of the
Influence of Rotation of the Principal Stress Axis. Report, Dept. of Civil Engrg., University College of
Swansea, Swansea, UK. ’ .

Pande, G. N. and Xiong, W. (1982) “An improved multi—laminaic model of jointed rock masses?”” In Proc. Int. .

Sym. on Numerical Models in Geomechanics, R. Dungar, G.N. Pande and G. A. Studder, eds., Balkema,
Rotterdam, pp. 218-226. '

Paris, P. C. and Erdogan, F. (1963) “Critical analysis of propagation laws” J. Basic Ing., 85, 528~534.

Paris, P. C., Gomez, M. P. and Anderson, W. E..(1961) ‘Rational analytic theory of fatigue.” Trends Eng.,
13(D).

Park, R. and Paulay, T. (1975) Reinforced Concrete Structures‘, John Wilcy & Sons, New York.

Pastor, J. Y. (1993) Fractura de Materiales Cerdmicos Estructurales Avanzados. Doctoral thesis. Facul-
tad de Cicncias Fisicas, Dep. de Ciencia de Materiales, Univeridad Complutense de Madrid, Ciudad
Universitaria, 28040 Madrid, Spain. (‘Fracture of Advanced Structural Ceramics’, in Spanish.)

Pastor, J. Y., Guinea, G., Planas, J. and Elices, M. (1995) “Nueva expresién del factor de intensidad de

tensiones para la probeta de flexién en tres puntos.” Anales de Mecdnica de lu Fractura, 12, 85-90. (‘A

new expression for the stress intensity factor'of a three-point bend specimen’, in Spanish.)

Paul, B. (1968) “Macroscopic critetia for plastic flow and brittle fracture.” In Fractire — An Advanced Treatise,
Vol. 2, H. Licbowitz, ed., Academic Press, New York; pp.-313-496. (Chapter 4.)

Peirce, F-T. (1926) “Tensile strength of cotton yarns. V.—~The weakest link theorems on the strength of long
and composite specimens.” J. Textile Inst., 17, T355-368;

Perdikaris, P. C. and Calomino, A. M. (1989) “Kinetics of crack growth in plain concrete.” In Fracture of
Concrete and Rock, $. P. Shah and S. E. Swartz, eds., Springer-Verlag, New York, pp. 64-69.

Petersson, P-E. (1981) Crack Growth and Devélopment of Fracture Zone in Plain Concrete and Similar

Materials. Report No. TVBM-1006, Division of Building Materials, Lund Institute of Technology, -

Lund, Sweden. :

Petrovic, J. J. (1987) “Weibull statistical fracture theory for the fracture of ceramics.” Metall. Trans. A,-18,
1829-1834.

Phillips, D. V. and Binsheng, Z. (1993) “Direct tension tests ‘on notched and un-notched plain concrete
specimens.” Mag. Concrete Res., 45,25-35.

Pietruszczak, S. and Mréz, Z. (1981) “Finite element analysis of deformation of strain-softening matérials.”
Int. J. Numer. Meth. Eng., 17,327-334.

References - 589

Pijaudier-Cabot, G. and BaZant, Z. P. (1987) “Nonlocal damage theory.” J. Eng. Mech.-ASCE, 113(10),
15121533, -

Pijaudier-Cabot, G. and BaZant, Z. P. (1988) “Dynamic stability analysis with nonlocal damage.” Comput.
Struct., 29(3), 503-507.

Pijaudier-Cabot, G. and BaZant, Z. P. (1991) “Cracks interacting with particles or fibers in composite materials.”
J. Eng. Mech.-ASCE, 137(7), 1611-1630:

Planas, J. (1992) Untitled letter. Privately communicated comment to Z. P. BaZant, Northwestern University,
July 13.

Planas, J. (1993) A Note on the Effect of Specimen Self Weight on the Effective Crack Extension Measurement
by the Compliance Method. - Report No. 93-jp02, Departamento de Ciencia de Materiales, ETS de
Ingenieros de Caminos, Universidad Politécnica de Madrid, Ciudad Universitaria sn. 28040 Madrid,
Spain. .

Planas, J. (1995) Crack growth in a n elastic medium with random crack growth resistance. Report No. 95-
jp03, Departamento de Ciencia de Materiales, ETS de Ingenieros de Caminos, Universidad Politécnica
de Madrid, Ciudad Universitaria sn. 28040 Madrid, Spain.

Planas, J. and BaZant, Z. P. (1997) Statistics of crack growth based on random R-curves. Report No. 97-jp02,
Departamento de Ciéncia de Materiales, ETS de Ingenicros de Caminos, Universidad Politécnica de
Madrid, Ciudad Universitaria sn. 28040 Madrid, Spain.

Planas, J. and Elices, M. (1986a) “Towards a measure of G'r: An analysis of experimental results.” In Fracture
Toughness and Fracture Energy of Concrete, F. H, Wittmann, ed., Elsevier, Amsterdam, pp. 381-390.

Planas, J. and Elices, M. (1986b) “Un nuevo método de andlisis del comportamiento de-una fisura cohesiva
en Modo 1. Anales de Mecdnica de la Fractura, 3,219-227.

Planas, J. and Elices, M. (1989a) “Size effect in concrete structures: Mathematical approximations and
experimental validation.” In Cracking and Damage, Strain Localization and Size Effect, ). Mazars and
7. P. BaZant, eds., Elsevier Applied Science, London, pp. 462-476. *

Planas, I. and Elices, M. (1989b) “Conceptual and experimental problems in the determination of the fracture
energy of concrete.” In Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock,
H. Mihashi, H. Takahashi and F. H. Wittmann, eds., Balkema, Rotterdam, pp. 165-181.

Planas, J. and Elices, M. (1990a) “Fracture criteria for concrete: Mathematical approximations and experi-
mental validation.”” Eng. Fract. Mech., 35, 87-94.

Planas, J. and Elices, M. (1990b) “Anomalous structural size effect in cohesive materials like concrete.” In
Serviceability and Durability of Construction Materials, Vol. 2, B. A. Suprenant, ed., American Society
of Civil Engineers (ASCE), New York, pp. 1345-1356.

Planas, J. and Elices, M. (1990c) “The approximation of a cohesive crack by effective elastic cracks” In
Fracture Behaviour and Design of Materials and Structures, Vol. 2, D. Firrao, ed., Engineering Materials
Advisory Services Ltd. (EMAS), Warley, West Midlands, U.K., pp. 605-611.

Planas, J. and Elices, M. (1991a) “Nonlinear fracture of cohesive materials.” Int. J. Fracture, 51, 139~157.

Planas, 1. and Elices, M. (1991b) “Asymptotic analysis of cohesive cracks and its relation with effective
elastic cracks.” In Toughening Mechanisms in Quasi-Brittle Materials, S. P. Shah, ed., Kluwer Academic
Publishers, Dordrecht, pp. 189-202.

Planas, J. and Elices, M. (1991¢) “The influence of specimen size and material characteristic size on the
applicability of effective crack models.” In Fracture Processes in Concrete, Rock and Ceramics, J. G. M.
van Mier, J. G. Rots and A. Bakker, eds., E & FN Spon, London, pp. 375-385.

Planas, J. and Elices, M. (1991d) On the Bazant-Herrmann Approximation to the Stress Intensity Factor in
Single Edge Notched Beams. Report No. 91-jp03, Departamento de Ciencia de Materiales, ETS de
Ingenieros de Caminos, Universidad Politécnica de Madrid, Ciudad Universitaria sn. 28040 Madrid,
Spain.

Planas, J. and Elices, M. (1992a) “Asymptotic analysis of a cohesive crack: 1. Theoretical background.” Inz.
J. Fracture, 55, 153--177.

Planas, J. and Elices, M. (1992b) “Shrinkage eigenstresses and structural size-effect.” In Fractire Mechanics
of Concrete Structures, Z.. P. BaZant, ed., Elsevier Applied Science, London, pp. 939-950.

Planas, J. and Elices, M. (1993a) “Asymptotic analysis of a cohesive crack: 2. Influence of the softening
curve.” Int. J. Fracture, 64, 221-237.

Planas, J. and Elices, M. (1993b) “Drying shrinkage effect on the modulus of rupture” In Creep and Shrinkage
: of Concrete, Z. P. Bazant and 1. Carol, eds., E & FN Spon, London, pp. 357-368.

Planas, I., Corres, H., Elices, M. and Chueca, R. (1984) “Therma! deformation of loaded concrete during
thermal cycles from 20 C to —165 C.” Cement Concrete Res., 14, 639-644.




590 References

Planas, J., Elices, M. and Guinea G. V. (1992) “Measurement of the fracture energy using three-point bend
tests: 2. Influence of bulk energy dissipation”” Mater. Strict.; 25, 305-312. )

Planas, J., Elices, M. and Guinea, G. V. (1993) “Cohesive ¢racks versus nonlocal models: Closing the gap.”
Int. J. Fracture, 63, 173-187.

Planas, J., Elices, M. and Guinea, G. V. (1994) “Cohesive cracks as a-solution of a class of nonlocal models.”
In Fracture and Damage of Quasibrittle Structures, Z: P, Bazant, Z. Bittnar, M. Jirdsek and J. Mazars,
eds., E & FN Spon, London, pp. 131-144,

Planas, J., Elices, M. and Guinca, G. V. (1995) “The extended coliesive crack » In Fracture of Brittle Disordered
Materials: Concrete, Rock and Ceramics, G. Bakker and B. L. Karihaloo, eds., E & FN Spon, London,
pp. 51-65.

Planas, J, Elices, M. and Ruiz, G. (1993) “The equivalent elastic.crack: 2. XY equivalences and asymptotic
analysis.” Int. J. Fracture, 61, 231-246.

Planas, J., Elices, M. and Toribio, J. (1989)“Approximation 6f cohesive'crack models by R-CTOD curves.” In
Fracture of Concrete and Rock, Recent Developments, S:P. Shah, S. E. Swartz and B. Barr, eds., Elsevier
Applied Science; London, pp. 203-212.

Planas, I., Guinea, G. V. and Elices, M. (1994a) SF-1. Draft Test Method for Flexural Strength and Elastic
Modulus of Notched Concrete Beams Tested in Three-Point Bending. Report No. 94-jp02, Departamento
de Ciencia de Materiales, ETS de Ingenieros de Caminos, Universidad Politéenica de Madrid, Ciudad
Universitaria sn. 28040 Madrid, Spain. (Contribution to'the Japan Concrete Institute International
Collaboration Project on Size Effect in Concreéte Structures.)

Planas, J., Guinea, G. V. and Elices, M. (1994b) SF-2. Draft Test Method for Linear Initial Portion of the
Softening Curve of Concrete. Report No. 94-jp03; Departamento de Ciencia de Materiales, ETS de
Ingenieros de Caminos, Universidad Politécnica de Madrid; Ciudad Universitaria sn. 28040 Madrid,
Spain. (Contribution to the Japan Concrete Institute International Collaboration Project on Size Effect
in Concrete Structures.)

Planas, J., Guinea, G. V. and Elices, M. (1995)"‘Rupturc modulus and fracture propertics of concrete.” In
Fracture Mechanics of Concrete Structures, Vol. 1, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg,
Germany, pp. 95-110. '

Planas, J., Guinea, G. V. and Elices, M. (1996) Basic Issiies on Nonlocal Models: Uniaxial Modeling. Report
No. 96-jp03, Departamento de Ciencia de Materiales; ETS de Ingenieros de Caminos, Universidad
Politécnica de Madrid, Ciudad Universitaria sn. 28040 Madrid, Spain.

Planas, J., Guinea, G. V. and Elices, M. (1997) “Generalized size effect equation for quasibrittle materials.”
Fatigue Fract. Eng. Mater. Struct., 20(5), 671-687.

Planas, J., Ruiz, G. and Elices, M. (1995) “Fracture of lightly reinforced concrete beams: Théory and ex-
periments.” In Fracture Mechanics of Concrete Struciures, Vol.” 2, F. H. Wittmann, ed., Aedificatio
Publishers, Freiburg, Germany, pp. 1179-1188.

?lesha, M. E. and Aifantis, E. C. (1983) “On the modeling of rocks with microstructure.” In Proc.” 24th U.S.
Symp. Rock Mech..

Post-Tensioning Institute (1988) Design and Construction Specifications for Segmental Concrete Bridges.
Final Report, Post-Tensioning Institute, Phoenix; Arizona;

Priddle, E. K. (1976) “High cycle fatigue crack propagation under random and constant amplitude loadings.”
Int. J. Pres. Ves. Pip., 4, 89-117.

Prandﬂ, L. (1904) “Uber die Flussigkeitsbewebung bei sehr kleiner Reibung™ In Verhandlungen, Il Int.
Math.-Kongr., Heidelberg, Germany. .

Prat, P.C. and BaZant, Z. P. (1997) “Tangential stiffness of elastic materials with systems of growing or closing
cracks.” J. Mech. Phys. Solids, 45(4), 611-636; wth Addendum and Errata 45(8), 1419-1420.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) Numerical Recipes in C, Cambridge
University Press, New York. - i

Primas, R. J. and Gstrein, R (1994) ESIS TC Round Robiri on Fracture Toughness. EMPA Report No. 1557088,
Swiss Federal Laboratories for Material Testing And Research (EMPA). (Draft Nov. 1994,)

Pugh, E. M. and Winslow, G. H. (1966) The Analysis of Physical Measurements, Addison-Wesley, Reading,
MA. o

Rashid, Y. R. (1968) “Analysis of prestressed concrete pressure vessels.’; Nucl. Eng. Des., 7(4), 334~355.

Reagel, F. V. and Willis, T. F. (1931) “The effect of dimensions of test specimens on the flexural strength of
comncrete.” Public Roads, 12, 37-46.

Reece, M. I, Guiu, F. and Sammur M. F. R.{1989) “Cyclic fatigue crack propagation in alumina under direct
tension-compression loading.” J. Am. Cera.’ Soc.; 72, 348-352. :

References 591

Reich, R. Cervenka, J. and Saouma, V. (1994) “Merlin: A computational environment for 2D/3D discrete
fracture analysis.” In Computational Modeling of Concrete Structures, H. Mang, N. Bicanic and R. de
Borst, eds., Pineridge Press, Swansea, pp. 999-1008.

Reineck, K.-H. (1991) “Modet for structural concrete members without transverse reinforcement.” In Proc.
IABSE Colloquium on Structural Concrete, Stuttgart, pp. 643-648. (IABSE Report Vol. 62.)

Reinhardt, H. W. (1981a) “Masstabeinfiuss bei schubversuchen im licht der bruchmechanik” Befon und
Stahlbetonbau, 7, 19-21. (“Size Effect in Shear Tests in the Light of Fracture Mechanics”. In German.)

.Reinhardt, H. W. (1981b) “Similitude of brittle fracture of structural concrete.” In Proc. IABSE Colloguium
on Advances in Mechanics of Reinforced Concrete, pp. 201-210.

Reinhardt, H. W. (1982} “Length influence on bond shear slrengtﬁ of joints in composite concrete slabs.” Int.
J: Cement Compos. Lightweight Concrete, 4(3), 139-143.

Reinhardt, H. W. (1984) “Fracture mechanics of fictitious crack propagation in concrete.” Heron, 29(2), 3-42.

Reinhardt, H. W. (1992) “Bond of steel to strain-sofiening concrete taking account of loading rate.” In Fracture
Mechanics of Concrete Structures, 7. P. BaZant, ed., Elsevier Applied Science, London, pp. 809-820.

Reinhardt, H. W. and Comélisse'n, H- A. W. (1984) “Post-peak cyclic behavior of concrete in uniaxial and
alternating tensile and compressive loading.” Cement Concrete Res., 14(2), 263-270.

Reinhardt, H. W. and van der Veen, C. (1992) “Splitting failure of a strain-softening material due to bond
stresses.” In Application of Fracture Mechanics to Reinforced Concrete, A. Carpinteri, ed., Elsevier
Applied Science, London, pp. 333-346: )

Rektorys, K. (1969) Survey of Applicable Mathematics, Kluwer Acad. Publ., Dordrecht. (Also lliffe Books
Ltd,, London, 1969.)

Rice, J. R. (1968a) “A path independent integral and the approximate analysis of strain concentrations by
notches and cracks.” J. Appl. Mech.-T. ASME, 35, 379-386.

Rice, J. R. (1968b) “Mathematical analysis in the mechanics of fracture.” In Fracture — An Advanced Treatise,
Vol. 2, H. Liebowitz, ed., Academic Press, New York, pp. 191-308.

Rice, J. R. (1970) “On the structure of stress-strain relations for time-dependent plastic deformation of metals.”
J. Appl. Mech.-T. ASME, 37, 728-737,

Rice, J. R, (1988) “Elastic fracture concepts for interfacial cracks.” J. Appl. Mech.-T. ASME, 55, 98-103.

Rice, J. R. and Levy, N. (1972) “The part-through surface crack in an elastic plate.” J. Appl. Mech.-T. ASME,
39, 185-194.

Rice, J. R. and Rosengren, G. F. (1968) “Plane strain deformation near a crack tip in a power law hardening
material.” J. Mech. Phys. Solids, 16, 1-12.

Rice, J. R. and Sih, G. C. (1965) “Plane problem of cracks in dissimilar media.” J. Appl. Mech.-T. ASME,
32(2), 418-425.

Riedel, H. (1989) “Recent advances in modelling creep crack growth.” In Advances in Fracture Research, Vol.
2, K. Salama, K. Ravi-Chandar, D. M. R. Taplin and P: Rama Rao, eds., Pergamon Press, Oxford, pp.
1495-1523. i

RILEM (1985) “Determination of the fracture energy of mortar and concrete by means of three-point bend
tests on notched beams.” Mater. Struct., 18, 285-290. (RILEM Draft Recommendation, TC 50-FMC
Fracture Mechanics of Concrete.)

RILEM (1990a) “Determination of fracture parameters (K7, and CTOD,) of plain concrete using three-
point bend tests.* Mater. Struct., 23, 457-460. (RILEM Draft Recommendation, TC 89-FMT Fracture
Mechanics of Concrete~Test methods.)

RILEM (1990b) “Size-effect method for determining fracture energy and process zone size of concrete.”
Mater. Struct., 23, 461-465. (RILEM Draft Recommendation, TC 89-EMT Fracture Mechanics of
Concrefe—Test methods.)

Ritter, W. (1899) “Die bauweise hennebique.” Schweiz. Bauzeitung Ziirich, 33(7), 59-61.

Rocceo, C. G. (1996) Influencia del Tamario y Mecanismos de Rotura del Ensayo de Compresién Diametral.
Doctoral thesis. Dep. Ciencia de Materiales, Universidad Politecnica de Madrid, ETS de Ingenieros de
Caminos, Ciudad Universitaria, 28040 Madrid, Spain. (‘Size-Dependence and Fracture Mechanisms in
the Diagonal Compression Splitting Test’, in Spanish.)

Rocco, C., Guinea, G. V., Planas, J. and Elices, M. (1995) “The effect of the boundary conditions on the cylinder
splitting strength” In Fracture Mechanics of Concrete Structures, F. H. Wittmann, ed:, Aedificatio
Publishers, Freiburg, Germany, pp. 75-84.

‘Rodriguez-Ortiz, J. M. (1974) Study of Behavior of Granular Heterogeneous Media by Means of Analogical
and Mathematical Discontinuous Models. Doctoral thesis. Universidad Politécnica de Madrid, 28040-
Madrid, Spain. .



592 References

Roelfstra, P. E. (1988) Numerical Concrete. Doctoral thesis! Laboratoire de Matériaux de Construction, Ecole
Polytéchniqué Féderale de Lausanne, Lausanne, Suisse.

Roelfstra, P. E. and Wittmann, F. H. (1986) “Numerical method to link strain softening with failure of con-
crete.” In Fracture Toughness and Fracture Energy of Concrete, F. H. Wittmann, ed., Elsevier Science,
Amsterdam, pp. 163-175. : :

Roelfstra, P, E., Sadouki, H. and Wittmann, F. H. (1985) “Le béton numérique.” Mater. Struct., 18, 327-335.

Rokugo, K., Iwasa, M., Suzuki, T. and Koyanagi, W. (1989) “‘Testing methods to determine tensile strain
softening curve and fracture energy of concrete.” In Fracture Toughness and Fracture Energy: Test
Methods for Concrete and Rock, H. Mihashi, H. Takahashi and F. H. Wittmann, eds., Balkema, Rotterdam,

pp. 153-163.

Rolfe, S. T. and Barsom, J. M. (1987) Fracture and Fatigué Control in Structures, 2nd edition, Prentice-Hall,
Englewood Cliffs, NJ.

Rooke, D. P. and Cartwright, D. J. (1976) Compendium of Stress Intensity Factors, Her Majesty’s Stationary
Office, London. .

Rdsati, G. and Schumm, C. (1992) “Modelling of local bar-to-coricrete bond in reinforced concrete beams.”
In Proc. Int. Conf. on Bond in Concrete ~ From Research to Practice, Vol. 3, A. Skudra and R. Tepfers,
eds., pp. 34-43. : :

Roscoe, R. A. (1952) “The viscosity of suspensions-of figid spheres™ Brit.- J. Appl. Phys., 3, 267-269.

Rosen, B. W. (1965) “Mechanics of composite strengthening.” In Fiber Composite Materials, Chapter 3, Ain.
Soc. for Metals Seminar.

Ross, C. A. and Kuennen, S. T. (1989)-“Fracture of concrete at high strain-rates.” In Fracture of Concrete
and Rock: Recent Developments, S. P. Shah; S. E. Swartz and B. Barr, eds., Elsevier Applied Science,
London, pp. 152-161. o

Ross, C. A., Thompson, P. Y. and Tedesco, J. W. (1989) “Split-Hopkinson pressure-bar tests on concrete and
mortar in tension and compression.” ACI Mater."J., 86(5),475-481. '

Rossi, P. and Richer, S. (1987) “Numerical modeling of concrete cracking based on a stochastic approach.”
Mater. Struct., 21, 3-12.

Rossi, P and Wu, X. (1992) “Probabilistic model for material behavior analysis and appraisemeht of concrete
structures.” Mag. Concrete Res., 44,271-280. : :

Rossmanith, H. P, ed. (1993) Fracture and Damage of Concrete and -Rock,E & FN Spon, London.

Rots J. G. (1988) Computational Modeling of Concrete Fracture. Doctoral thesis. Delft University of
Technology, Delft, The Netherlands. .

Rots, 1. G. (1989) “Stress rotation and stress locking in smeared analysis of separation.” In Fracture Touglzneb
and Fracture Energy, Test Methods for Concrete and Rock, H: Mihashi, H. Takahashi and F. H. Wittmaan,
eds., Balkema, Rotterdam, pp. 367-382.

Rots, 1. G. (1992) “Simulation of bond and anchorage: - Usefulness of softening fracture mechanics.” In
Application of Fracture Mechanics io Reinforced Concrete, A Carpinteri, ed., Elsevier Applied Science,
London, pp. 285-306. B

Rots, J. G., Nauta, P., Kusters, G. M. A, and Blauwendraad, J.:(1985) “Smeared crack approach and fracture
localization in concrete.”” Heron, 30(1), 1-48. : )

Ruiz, G. (1996) El Efecto de Escala en Vigas de Hormigon Débilmente Armadas y su Repercusion en los
Criterios de Proyecto. Doctoral thesis. Dep. Ciencia de Materiales, Universidad Politecnica de Madrid,
ETS de Ingenieros de Caminos, Ciudad Universitaria, 28040 Madrid, Spain. ('Size Effect in Lightly
Reinforced Concrete Beams and its Repercussion on Design Criteria’, in Spanish.}

Ruiz, G. and Planas, J. (1994) “Propagacién’de una fisura: cohesiva en una vigas de hormigdn debilmente
armadas: modelo de Ia longitud efectiva de anclaje” Anales de Mecdnica de la Fractura, 11,506-513.

Ruiz, G. and Planas, J, (1995) “Estudio expetimental del efecto de escala en vigas debilmente armadas.”
Anales de Mecénica de la Fractura, 12, 446-451.

- Ruiz, G., Planas, J. and Elices, M. (1993) “Propagaci(‘)n deuna fisuracohesivaen vigds de hormigén debilmente
armadas.” Anales de Mecdnica de la Fractura, 10, 141-146; :

Ruiz, G., Planas, J. and Elices, M. (1996) “Cu;”mtfa minima en flexién: - Teorfa y normativa.” Anales de
Mecdnica de la Fractura, 13, 386-391. :

Riisch, H. (1960) “Rescarches toward a general flexural theofy for structural concrete” ACIJ., 57(1), 1-28.
Russ, 1. C. (1994) Fractal Surfaces, Plenum Press, New York.

Sabnis, G. M. and Mirza, S. M. (1979) “Size effects in model concretes?” J. Struct. Div.-ASCE, 106,.1007- .

1020.

References 593

Saenz. L. P. (1964) “Discussion of ‘Equation for stress-strain curve of concrete’ by P. Desay and S. Krishnan
ACIJ., 61,1229-1235.

Saleh, A. L. and Aliabadi, M. H. (1995) “Crack growth analysis in concrete using boundary element method.”
Eng. Fract. Mech., 51, 533-545. .

Sallam, S. and Simitses, G. J. (1985) “Delamination buckling and growth of flat, cross-ply laminates.” Compos.
Struct., 4, 361-381.

Sallam, S. and Simitses, G. J. (1987) “Delamination buckling of cylindrical shells under axial compression.”
Compos. Struct., 8, 83-101. :

Sammis, C. G. and Ashby, M. E (1986) “The failure of brittle porous solids under compressive siress state.”
Acta Metall., 34(3), 511-526. ’

Sanderson, T. 1. O. (1988) Ice Mechanics Risks to Offshore Structures, Graham and Trotman, Boston.
Saouma, V. E., Ayari, M. L. and Boggs, H. (1989) “Fracture mechanics of concrete gravity dams.” In Fracture
of Concrete and Rock, S. P. Shah and S. E. Swartz, eds., Springer-Verlag, New York, pp. 311-333.
Saouma, V. E., Barton, C. C. and Gamaleldin, N. E. (1990) “Fractal characterization of fracture surfaces in

concrete.” Eng. Fract. Mech., 35, 47-53.

Saouma, V. E,, Broz, J. J., Brilhwiler, E. and Ayari, M. L. (1990) Fracture Mechanics of Concrete Dams,
Vols. 1, II, and III. Reports submitted to the Electric Power Research Institute, Department of Civil
Engineering, University of Colorado, Boulder, CO.

Saouma, V. E., Broz, J. 1., Brithwiler, E. and Boggs, H. L. (1991) “Effect of aggregate and specimen size on
fracture properties of dam concrete” J. Mater. Civil Eng., 3(3), 204-218.

Sayers, C. M. and Kachanov, M. (1991) “A simple technique for finding effective elastic constants of cracked
solids for arbitrary crack orientation statistics.” Int. 7. Solids Struct., 27(6), 671-680.

Scanlon, A. (1971) Time Dependent Deflections of Reinforced Concrete Slabs. Doctoral thesis. Univ. of
Alberta, Edmonton, Canada.

Schapery, R. A. (1975a) “A theory of crack initiation and growth in viscoelastic media I. Theoretical devel-
opment” Int. J. Fracture, 11, 141~159. ’
Schapery, R. A. (1975b) “A theory of crack initiation and growth in viscoelastic media II. Approximate

methods of analysis™” Int. J. Fracture, 11, 369-388.

Schapery, R. A. (1975¢) “A theory of crack initiation and growth in viscoelastic media IfI. Approximate
racthods of analysis” Int. J. Fracture, 11, 549-562. ' )

Schijve, J. (1979) *Four Jectures on fatigue crack growth.” Eng. Fract. Mech., 11, 167-221.

Schlaich, J., Schafer, K. and Jannewein, M. (1987) “Toward a consistent design for structural concrete.” J.
Prestressed Concrete Inst.; 32(3), 75-150.

Schiangen, E. (1993) Experimental and Numerical Analysis of Fracture Processes in Concrete. Doctoral
thesis. Delft University of Technology, Delft, The Netherlands. )

Schlangen, E. (1995) “Computational aspects of fracture simulations with lattice modéls” In Fracture Me-
chanics of Concrete Structures, F. H. Wittmann, ed., Aedificatio Publishers, Freiburg, Germany, pp.
913-928.

Schlangen, E. and van Mier, J. G. M. (1992) “Shear fracture in cementitious composites, Part 11 Numerical
simulations.” In Fracture Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science,
New York, pp. 671-676. '

Schulson, E. M. (1990) “The brittle compressive fracture of ice.” Acta Metall. Mater, 38, 1963-1976.

Schulson, E. M. and Nickolayev, O. Y. (1995) “Failure of columnar saline ice under biaxial compression:
failuré envelopes and the brittle-to-ductile transition.” J. Geophys. Res., 100(B11), 22383-22400.
Sener, S. (1992) *“Bond splice tests.” In FIP’92 Symposium, G. Tassi, ed., Hungarian Scientific Society of
Building, Budapest, pp. 357-362.

Sener, S., BaZant, Z. P. and Becg-Giraudon, E. (1997) Sizew effect in failure of lap splice of reinforcing bars
in concrete beams. Report, Northwestern University, Evanston, IL.

Serrano, A. A. and Rodriguez-Ortiz, J. M. (1973) “A contribution to the mechanics of heterogeneous granular
media”” In Proc. Symp. Plasticity and Soil Mech..

Shah, S. P. and John, R, (1986) “Strain rate effects on mode I crack propagation in concrete.” In Fracture
‘Mechanics and Fracture Energy of Concrete, E H. Wittmann, ¢d., Elsevier, Amsterdam, pp. 453-465.

Shah, S. P. and McGarry, F. T, (1971) “Griffith fracture criterion and concrete.” J. Eng. Mech. Div.-ASCE, 97,
1663-1676. ' :

Shetty, D. K., Rosenfield, A. R. and Duckworth, W. H. (1986) “Mixed mode fracture of ceramics in diametrical
compression.” J. Am. Ceram: Soc., 69(6), 437-443.




594 References

Sidorggf,g;/g 1974) “Un modéle viscoélastique non linéaire avec configuration intermédiaire.” J. de Mécanique,
, 679-713. : )

Sih, G. C. (1973) Handbook of Stress Intensity Factors for Researchers a;zd Engineers, Lehigh University,
Bethlehem, PA.

Sih, 20(5: 3(;374) “Strain energy density factor applied to mixed mode crack problems.” Jnt. J. Fracture, 10,

Simo, 1. C. (1_98_8) ‘_‘A framework for finite strain elastoplasticity based on maximum plastic (iissipation and
the multiplicative decomposition.” Comput.” Meth. Appl. Mech. Eng., 66, 199-219. (Also 68, 1-31.)

Simo, J - C. and Oliver, J. (1994) “A new approach to the analysis and simulation of strong disc'ominuitics‘.” In
Fracture and Damage in Quasibritile Structures, Z. P. Bazant, Z. Bittnar, M. Jirdsec and J. Mazars, eds.,
E & FN Spon, London, pp. 25-39. g

Simo, J. C. and Ortiz, M. (1985) “A unified appro:ach to finite deformation elasto-plasticity baséd on the use
of hyperelastic constitutive equations.” Comput. Meth. Appl.: Mech. Eng., 49, 177-208.

Simo, J. C. and Rifai, S. (1990) “A class of mixed assunied strain methods and the method of incompatible
nodes.” Int. J. Numer. Meth. Eng., 29, 1595-1638.

Simoz ILC, Qliver, J. and Armero, R (1993) “Ananalysis ofstroflg discontinuities induced by strain-softening
in rate-independent inelastic solids.” Comput.- Mech.; 12; 227-296.

Sinha, B. P., Gerstle, K. H. and Tulin, L. G. (1 964) “Stress-strain relations for concretc under cyclic loading.”
ACI T, 62(2), 195-210. ; .

Slepylagli Ll. 51.7(1990) “Modeling of fracture of sheel ice.” Jzvestia AN SSSR, Mekhanika Tverdogo Tela, 25(2),

Smith, C. W. gnd Kobay_a'shi, A.S. (1993) “Experimerital fracture niechanics.” In Handbook of Experimental
Mechanics, 2nd edition, A. S. Kobayashi, ed:, VCH Publishers and Society for Experimental Mechanics
(SEM), pp. 905-968. }

Smith, E. (1995) “Recent research on the ‘cohesive zone descxiiption of an elastic softening material” In
Fracture of Brittle Disordered Materials: Concrete, Rock, Ceramics, G. Baker and B, L. Karihaloo, eds.,
E & FN Spon, London, pp. 450-463. . . -

Sneddon, I. N. (1946) “The distribution of stress in the neighbourhood 6f a crack in an elastic solid” Philos,
T Roy. Soc. A, 187, 229-260. - ' )

:Sneddon, 1.N. and Lowengrub, M. (1969) Crdck Problems in'the Classical Theory of Llasticity, John Wiley
& Sons, New York.

So, K. O. an‘d Karihaloo, B. L. (1993) “Shear capacity of longitudinally reinforced beams — A’ fracture
mechanics approach.” ACI Struct. J., 90, 591=600. .

Sok, C., Baron, J. and Frangois, D. (1979) “Mécanique de latu ture‘a. liquée au béton hydraulique.” C t
Concrete Res., 9, 641-648. d P pPliq y que.” Cemen

Sozen, M. /.\‘, Zwoyer, E. M, and Siess, C. P. (1958) “Strength in'shear of beams without web reinforcement.”
Bulletin Eng. Experiment Station, 452,169,

Spencer, A. J. M. (1971) “Theory of invariants” In Continuiin Physics, 1 -Mathematics, A. Cemal Eringen,
ed., Academic Press, New York, pp: 239-353.

Srawley, J. E. (1976) “Wide range stress intensity ‘factor expressions for ASTM E-399 standard fracture
toughness specimens.” Int. J. Fracture; 12, 475-476. .

Steif, P. S. (1984) “Crack extension under compressiveloading.” Eng. Fract. Mech., 20, 463-473.
Strang, G. (1980) Linear Algebra and Iis Applications, 2nd edition, Academic Press, New York.

Stroh, A. N. (1957) “A theory of the fracture of metals.” Ady, Phys., Philos. Mag. Suppl., 6, 418-65.
Stroud, A. H. (1971) Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ.

Suidan, M. and Schnobrich, W. C. (1973) “Finité element analysis of reinforced concrete” J. Struct, Div.-

ASCE, 99(10), 2109-2122.

Suo, Z. and Hutchinson, 1. W, (1989) “Sandwicﬁ test specimens for measuring interface crack toughness.”
Mater. Sci. Eng. A, 107, 135-143. S

Suresh, 8. (1991) Fatigue of Materials, Cambridge University Press, Cambridge.

Swartz, S. E. and Go, C. G. (1984) *Validity of compliance calibration to cracked concrete beams:in bending.”
Exp. Mech., 24(2), 129-134. :

Swartz, S. E. and Refai, T. M. E. (1989) “Influence of size effects on opening mode fracture parameters for
precrack«;d concrete beams in bending.” In Fracture of Concrete and Rock, S. P. Shah and S. E. Swartz,
eds., Springer-Verlag, New York, pp. 242234,

References . 595

Swartz, 8. E. and Taha, N. M. (1990) “Mixed-mode crack propagation and fracture in concrete” Eng. Fract.
Mech., 35(1-3), 137-144. .

Swartz, S. E. and Taha, N. M. (1991) “Crack propagation and fracture of plain concrete beams subjected to
shear and compression.” ACI Struct. J., 88(2), 177-196.

Swartz, S. E., Hu, K. K. and Jones, G.'L. (1978) “Compliance monitoring of crack growth in concrete.” J.
Eng. Mech. Div.-ASCE, 104, 789-800.

Swartz, S. E., Hu, K. K., Fartash, M. and Huang, C. M. J. (1982) “Stress intensity factors for plain concretc
in bending — Prenotched versus precracked beams.” Exp. Mech., 22(11), 412-417.

Swenson, D. V. and Ingraffea, A. R. (1991) “The collapse of the Schoharie Creek bridge: A case study in
concrete fracture mechanics” Int. J. Fracture, 51(1), 73-92.

Tada, H., Paris, P. C. and lrwin, G. R. (1973) The Stress Analysis of Cracks Handbook, Del Research Corpo-
" ration, Hellertown, PA.

Tada, H., Paris, P. C. and Irwin, G. R. (1985) The Stress Analysis of Cracks Handbook, Paris Productions,
Saint Louis, MO.

Tandon, S., Faber, K.'T., BaZant, Z. P. and Li, Y.-N. (1995) “Cohesive crack modeling of influence of sudden
changes in loading rate on concrete fracture.” Eng. Fract. Mech., 52(6), 987-997.

Tang, T., Shah, S. P. and Ouyang, C. (1992) “Fracture mechanics and size effect of concrete in tension” J.
Struct. Eng.-ASCE, 118(11), 3169-3185.

Taylor, G. 1. (1938) “Plastic strain in metals.” J. Inst. Metals, 62, 307-324.

Tepfers, R. (1973) A Theory of Bond Applied to Overlapped Tensile Reinforcement Splices for Deformed
Bars. Doctoral thesis. Division of Concrete Structures, Chalmers University of Technology, Goteborg,
Sweden.

Tepfers, R. (1979) “Cracking of concrete cover along anchored deformed reinforcing bars” Mag. Concrete
Res., 31(106), 3~12. i

Thouless, M. D., Hsueh, C. H. and Evans, A. G. (1983) “A damage model of creep crack growth in polyerystals.”
Acta Metall., 31(10), 1675-1687.

Thiitlimann, B. (1976) Shear Strength of Reinforced and Prestressed Concrete Beams, CEB Approach. Tech-
nical Report, E. T. H. Ziirich.

Timoshenko, S. (1956) Strengrh of Materials, Van Nostrand, New York.
Timoshenko, S. and Goodier, J. N. (1951) Theory of Elasticity, 2nd edition, McGraw-Hill, New York.

Tippett, L. H. C. (1925) “On the extreme individuals and the range of samples taken from a normal population”
Biometrika, 17, 364-387.

Triantafyllidis, N. and Aifantis, E (1986) “A gradient approach to localization of deformation, I. Hyperelastic
materials.” J. Elasticity, 16, 225-237.

Tschegg, E. Kreuzer, H. and Zelezny, M. (1992) “Fracture of concrete under biaxial loading — Numerical
evaluation of wedge splitting test results.” In Fracture Mechanics of Concrete Structures, Z. P. Bazant,
ed., Elsevier Applicd Science, London, pp. 455-460. :

Uchida, Y., Kurihara, N., Rokugo, K. and Koyanagi, W. (1995) “Determination of tension softening diagrams of
various kinds of concrete by means of numerical analysis.” In Fracture Mechanics of Concrete Structures,
Vol. 1, F. H. Wittmann, ed., Aedificatio Piblishers, Freiburg, Germany, pp. 17-30.

Uchida, Y., Rokugo, K. and Koyanagi, W. (1992) “Application of fracture mechanics to size effect on flexural
strength of concrete.” Proceedings of JSCE, Concrete Engineering and Pavements, (442), 101-107.

Ulikjer, J. P. and Brincker, R. (1993) “Indirect determination of the o—w relation of HSC through three-point
bending.” In Fracture and Damage of Concrete and Rock, H. P. Rossmanith, ed., E & FN Spon, London,
pp. 135-144.

Ulikjeer, J. P., Brincker, R. and Krenk, $.(1990) “Analytical model for complete moment-rotation curves of
concrete beams in bending.” In Fracture Behavior and Design of Materials and Structures, Vol. 2, D.
Firrao, ed., Engineering Matérials Advisory Services Ltd. (EMAS), Warley, West Midlands, U.K., pp.
612-617.

Ultkjer, J. P., Hededal, O., Kroon, I. and Brincker, R. (1994) “Simple application of fictitious crack model

in reinforced concrete beams — analysis and experiments.” In -Size Effect in Concrete Structures, H.
Mihashi, H. Okamura and Z. P. BaZant, eds., E & FN Spon, London, pp. 281-292.

Vakulenko, A. A. and Kachanov, M. (1971) “Continuum theory of medium with cracks”” Mech. Solids, 6,
145-151.

Valente, S. (1995) “On the cohesive crack model in mixed-mode conditions.” In Fracture of Brittle Disordered
Materials: Concrete, Rock and Ceramics, G. Bakker and B. L. Karihaloo, eds., E & FN Spon, London,
pp. 66--80.



596 : . References

Vardoulakis, L (1989) “Shear banding and liquefaction in granular materials on the basis of Cosserat continuum

theory.” Ingenieur-Archiv; 59, 106-113.
Varga, R. S. (1962) Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

vander Veen, C. (1991) “Splitting failure of reinforced concrete at various temperatures.” In Fracture Processes
in Concrete, Rock and Ceramics, ). G. M. van Mier, J. G. Rots and A. Bakker, eds., E & FN Spon, London,
pp. 629-638.

da Vinci, L. (1500s) —see The Notebooks of Leonardo da Vinci (1945), Edward McCurdy, London (p. 546);
and Les Manuscrits de Léonard de Vinci, transl. in French by C. Ravaisson-Mollien, Institut. de France
(1881-91), Vol. 3.. :

Wagner, H. (1929) “Ebene blechwandtriiger mit sehr diinnem stegblech.” Z. Flugtechnik Motorluftschifffahr,
20,8-12. . :

Walker, S. and Bloen, D. L. (1957) “Studies of flexural strength'of concrete-Part 3: Effects of variations in
testing procedures.” ASTM Proc., 57, 1122-1139.

Walraven, J. C. (1978) The Influence of Depth.on the Shear Strength bf Lightweight Concrete Beams Without
Shear Reinforcement. Stevin Laboratory Report No. 5-78-4,:Delft University of Technology, Delft, The
Netherlands.

Walsh, P. F. (1972) “Fracture of plain concrete.” Indian Concrete J., 46(11),469~-470 and 476.
Walsh, P. F. (1976) “Crack initiation in plain concrete.” Mag. Concrete Res., 28, 37-41.

Wawrzynek, P. A. and Ingraffea, A. R. (1987) “Interactive finite ¢lement analysis of fracture processes: An
integrated approach.” Theor. Appl. Fract. Mech., 8, 137-150.

Wecharatana, M. (1986) “Specimen size effect on non-linear fracture parameters in concrete.” In Fracture
Toughness and Fracture Energy of Concrete, F. H. Wittmann, ed., Elsevier Science, Amsterdam, pp.
437-440.

Wecharatana, M. and Shah, S. P. (1980) Resistance to Crack Growth'in Portland Cement Composites. Report,
Department of Material Engineering, University of Illinois at Chicago Circle, Chicago, IL.

Weibull, W. (1939) “A statistical theory of the strength of materials” Proc. Royal Swedish Academy of Eng.
Sci., 151, 1-45.

Weibull W. (1949) “A statistical representation of fatigué failures in'solids” Proc. Roy. Inst. of Techn., (27):

Weibull, W. (1951) “A statistical distribution function of wide applicability” . Appl. Mech.-T. ASME, 18,
293-297.

Weibull W. (1956) “Basic aspects of fatigue.” In Proc.” Colloguium on Fatigue, Springer—Verlag.

Weihe, S. and Kroplin, B. (1995) “Fictitious crack models: A classification approach.” In Fracture Mechanics
of Concrete Struciures, F. H. Wittmann, ed., Aedificatio Publishers; Freiburg, Germany, pp. 825-840.

Wells, A. A. (1963) “Application of fracture mechanics at and beyond general yielding.” Brit. Weld. J., 19,
563-570. :

Willam, K., Bigani¢, N. and Sture, S. (1986) “Composite fracturé model for strain-softening and localised
failure of concrete.” In Computational Modelling of Reinforced Concrete Structures, E. Hinton and D.
R. J. Owen, eds., Pineridge Press, Swansea, pp.-122-153.

- Willam, K., Pramono, E. and Sture, S. (1989) “Fundamental issues of smeared crack models.” In Fracture of
Concrete and Rock, S. P. Shah and S. E. Swartz, eds.; Springer Verlag, New York, pp. 142-157.

Williams, M. L. (1952) “Stress singularities resulting from various boundary conditions in angular corners of
plates in extension.” J. Appl. Mech.-T. ASME, 19, 526-528:

Wilson, W. K. (1966) Untitled. In Plane Strain Crack Toughness Testing, Brown, W. F. and J. E Srawley,
eds., American Society for Testing and Materials, Philadelphia, pp::75-76. (Contribution to Discussion,
ASTM Special Technical Publication No. 410.)

Wilson, W. K. (1971) Crack Tip Finite Elements for Plane Elasticity. Report No. 71-1E7-FM-PWR-P2,
Westinghouse. :

Wiss, AN. (1971) Application of Fracture Meéchanics to- Cracking in Concrete Beams.. Doctoral thesis.
University of Washington.

Wiss, Janney, Eltsner Associates, Inc. and Mueser Rutledge: Consulting Engineers (1987) Collapse of the
Thruway Bridge at Schoharie Creek. Final Report submitted to the New York State Thruway Authority,
Wiss, Janney, Eltsner Associates, Inc. and Mueser Riitledge Consulting Engineers, Albany, New York.

Wittmana, F. H., ed. (1983) Fracture Mechanics of Concrete, Elsevier, Amsterdam.

Wittmann, F. H. and Zaitsev, Y. V. (1981) “Crack propagation and fracture of composite materials such as
concrete.” In Advances in Fracture Research, Preprints 5th: Int. Conf. Fracture, Vol. 5, D. Frangois,
ed., Pergamon Press, Oxford, pp. 2261-2274. : :

References . . ’ 597

Wittmann, E H., Roelfstra, P. E. and Kamp, C. L. (1988) “Drying of concrete: an application of the 3L-
approach” Nucl. Eng. Des., 105, 185-198.

Wittmann, F. H., Roelfstra, P. E., Mihashi, H., Huang, Y. Y., Zhang, X. H. and Nomura, N. (1987) “Influence
of age of loading, water-cement ratio, and rate of loading on fracture energy of concrete.” Mater. Struct.,
20, 103-110.

Wittmann, F. H., Rokugo, K., Brithwiler, E., Mihashi, H. and Simonin, P. (1988) “Fracture energy and strain
softening of concrete as determined by means of compact tension specimens.” Mater. Struct., 21,21-32.

Wright, P. J. F. (1952) “The effect of the method of test on the flexural strength of concrete.” Mag. Concrete
Res., 11, 67-76. :

Wu, X-R. and Carlsson A. J. (1991) Weight Functions and Stress Intensity Factor Solutions, Pergamon Press,
Oxford.

Wu, Z. S. and BaZant, Z. P. (1993) “Finite element modeling of rate effect in concrete fracture with influence
of creep.” In Creep and Shrinkage of Concrete, Z. P. Bazant and I. Carol, eds., E & FN Spon, London,
pp. 427432,

Xi, Y. and BaZant, Z. P. (1992) “Markov process model for random growth of crack with R-curve.” In Fracture
Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science, London, pp. 179-182.

Xi, Y. and BaZant, Z. P. (1993) “Continuous retardation spectrum for solidification theory of concrete creep.”
In Creep and Shrinkage of Concrete, Z. P. BaZant and L. Carol, eds., E & FN Spon, London, pp. 225-230.

Yankelevsky, D. Z. and Reinhardt H. W. (1989) “Uniaxial behaviour of concrete in cyclic tension.” J. Struct.
Eng.-ASCE, 115(1), 166-182. - .

Yin, W.-L., Sallam, S., and Simitses, G. J. (1986) “Ultimate axial capacity of wdelaminated beam-plate.” AIAA
J., 24(1), 123~128.

Young , T. (1807) A course of lectures on natural philosophy and the mechanical arts, Vol. 1, , London. (p.
144.)

Yuan, Y. Y., Lajtai, E. Z. and Ayari, M. L. (1993) “Fracture nucleation from a compression-parallel finite-width
elliptical flaw.” Int. J. Rock Mech. Min. Sci., 30(7), 873-876.

Yuzugully; O. and Schnobrich, W. C. (1973) “A numerical procedure for the determination of the behavior of
a shear wall frame system.” ACI J., T0(7), 474-479.

Zaitsev, Y. V. (1985) “Inelastic properties of solids with random cracks.” In Mechanics of Geomaterials:
Rocks, Concretes, Soils, Z. P. BaZant,, ed., John Wiley & Sons, Chichester, New York, pp. 89-128.

Zaitsev, Y. V. and Wittmann, E H. (1974) “Verformung und Bruchvorgang portser Baustoffe unter kurzzeitiger
Belastung und unter Dauerlast.” Deutscher Ausschuss fiir Stahlbeton, (232), 65-145.

Zaitsev, Y. V. and Wittmann, F. H. (1981) “Simulation of crack propagation and failure of concrete.” Mater.
Struct., 14, 357-365.

Zech, B. and Wittmann, F. H. (1977) “A complex study on the reliability assessment of the containment
of a PWR, Part 1I. Probabilistic approach to describe the behavior of materials.” In Trans. 4th Int.
Conf. on Structural Mechanics in Reactor Technology, H, T. A. Jacger and B. A. Boley, eds., European
Communities, Brussels, pp. 1-14.

Zhang, C.-Y. and Karihaloo, B.L. (1992} “Stability of a crack in a linear viscoelastic tension-softening mate-
rial” In Fracture Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science, London,
pp. 155-162.

Zhou, E. P. (1992) Time-Dependent Crack Growth and Fracture in Concrete. Report No. TVBM-1011,
Division of Building Materials, Lund University, Lund, Sweden.

Zhou, F. P. (1993) “Cracking analysis and size effect in creep rupture of concrete.” In Creep and Shrinkage of
Concrete, Z. P. BaZant and I. Carol, eds., E & FN Spon, London, pp. 407-412.

Zhou, F. P. and Hillerborg, A. (1992) “Time-dependent fracture of concrete: Testing and modelling.” In
Fracture Mechanics of Concrete Structures, Z. P. BaZant, ed., Elsevier Applied Science, London, pp.
906-911. .

Zienkiewicz, O: C. and Pande, G. N. (1977) “Time-dependent multi-laminate model of rocks—A numerical
study of deformation and failure of rock masses.” Int. J. Numer. Anal. Meth. Geomech., 1,219-247.

Zubelewicz, A. (1980) Contact Element Method. Doctoral thesis. Technical University of Warsaw, Warsaw,
Poland. (In Polish.)

Zubelewicz, A. (1983). “Proposal of a new structural model for concrete.” Archiwum Inzynierii Ladowej, 29,
417-429. (In Polish.) : .

Zubelewicz, A. and BaZant, Z, P. (1987) “Interface element modeling of fracture in aggregate composites.” J.
Eng. Mech.-ASCE, 113, 1619-1630. ,

Zubelewicz, A. and Mréz, Z. (1983) “Numerical simulation of rockburst processes treated as problems of
dynamic instability” Rock Mech. Rock Eng.;-16,253-274. . -




Reference Citation Index

Achenbach and BaZant (1975), 86, 133
* Achenbach, BaZant arid Khetan (1976a), 86, 133,

390 i

Achenbach, BaZant and Khetan (1976b), 86, 133,
390

ACI Committee 318 (1989), 366, 372

ACI Committee 318 (1992), 346

ACI Committee 349 (1989), 367

ACI Committee 408 (1979), 367

ACI Committee 446 (1992), 510, 14, 24, 185,257

ACI-ASCE Committee 426 (1973), 326

ACI-ASCE Committee 426 (1974), 326

ACI-ASCE Committee 426 (1977), 326

Adamson et al. (1995), 19 :

Alexander (1987), 280

Alfrey (1944), 408

Aliabadi and Rooke (1991), 62, 63

Alvaredo and Torrent (1987), 164, 282

Argon (1972}, 270

Ashby and Hallam (1986), 298

ASTM (1983), 106

ASTM (1991), 64

Atkins and Mai (1985), 116

Ballarini, Shah and Keer (1985), 368

Balmer (1949), 545, 546

Baluch, Azad and Ashmawi (1992), 352, 353, 363,
364

- Baluch, Qureshy and Azad (1989), 432

Barenblatt (1959), 3

Barenblatt (1962), 3, 157, 160

Barenblatt (1979), 264

Barsoum (1975), 62

Barsoum (1976), 62

Batdorf and Budianski (1949), 528

Batto and Schulson (1993), 298

Bazant (1967), 300 :

BazZant (1968), 300

BaZzant (1972a), 399

BaZant (1972b), 399

Bazant (1974), 86

Bazant (1975), 407

BaZant (1976), 4,6, 159, 217, 220,232

BazZant (1982), 4, 220

BaZant (1983), 6, 18, 135, 261, 459

BaZant (1984a), 3, 13, 15, 18, 135, 141, 261, 282,
310, 311, 385, 437, 459

BaZant (1984b), 4, 489, 493, 524

BaZant (1984c), 528, 529, 535

BaZant (1985a), 104, 223, 249, 253, 255

BaZant (1985b), 137, 251, 256, 261, 265, 467 .

BaZant (1985c), 251

BaZant (1985d), 265

BaZant (1986a), 256

Bazant (1986b), 137

Bazant (1986c¢), 489, 492
Bazant (1987a), 138,143, 261, 282, 294, 322, 344,
399

.BaZant (1987b), 114

Bazant (1987¢), 489, 511

BaZant (1988a), 407, 408

BaZant (1988b), 457, 458

BaZant (1989a), 138

BaZant (1989b), 136, 367

BaZant (1990a), 58, 59

BaZant (1990b), 373

Bazant (1990c¢), 490, 491

Bazant (1990d), 193, 207

BaZant (1991a), 373

Bazant (1991b), 489, 511

BaZant (1992a), 312, 313, 315-317, 423

BaZant (1992b), 517, 518

BaZant (1992¢), 317

BaZant (1993a), 261

BaZant (1993b), 425-427

BaZant (1993c), 529, 535

BaZant (1993d), 136

BaZant (1994a), 297, 299-302, 306, 307, 343

BaZant (1994b), 489, 503, 507-510, 515, 517520,
522,548

BaZant (1994c¢), 480, 483

BaZant (1995a), 261, 262

Bazant (1995b), 261, 264, 265, 267-269

BaZant (1995c), 427

BaZant (1995d), 541

Bazant (1995¢), 480, 483

BaZant (1995f), 480, 483

BaZant (1996a), 373-375 .

Bazant (1996b), 310, 311, 335, 336, 344, 349

BaZant (1996¢), 542 ’

BaZant (1996d), 312

Bazant {1996e), 480, 483

BaZant (1997a), 261, 262, 264, 265, 267, 268, 484

BaZant (1997b), 485, 540

BaZant (1997¢), 541

BaZant (19974), 11, 479, 480, 483-486, 541

BaZant and Baweja (1995a), 407, 408

BaZant and Baweja (1995b), 407, 408

BaZant and Baweja (1995c), 407, 408

Bazant and Beissel (1994), 193, 207, 209

BaZant and Belytschko (1985), 219

BaZant and Cao (1986), 19, 334, 372

Bazant and Cao (1987), 16, 19, 21, 366

BaZant and Cedolin (1979), 4, 6, 220, 252, 253

BaZant and Cedolin (1980), 4, 6, 220, 252-254,
360

Bazant and Cedolin (1983), 6, 220, 253

BaZant and Cedelin (1991), 9, 27, 130, 214, 215,
219,257, 300, 302, 303, 307, 347, 376,

599



600

377,490, 492, 502, 523, 540, 542, 545,
547, 554 )

BaZant and Cedolin (1993), 170

Bazant and Chern (1985a), 222, 224, 233

Bazant and Chern (1985b), 223, 224, 408

Bazant and Desmorat (1994), 370, 371

Bazant and Estenssoro (1979), 10, 86

BaZant and Gambarova (1984), 528

BaZant and Gettu (1989), 398

BaZant and Gettu (1990), 373, 398

BaZant and Gettu (1992), 19, 286, 385-387, 398,
402, 418-420, 423, 427,429

Bazant and Jirdsek (1993), 383, 385, 386, 398,
401-404, 417421

Bajant and Jirdsck (1994a), 489, 515, 516, 519~
521

BaZant and Jirdsek (1994b), 489, 525

Bazant and Kazemi (1990a), 127, 135, 136, 139,
152-154

BaZant and Kazemi (1990b), 16, 136, 154, 155

Bazant and Kazemi (1991), 16, 19, 21, 329, 458,
459, 466, 467, 469

BaZant and Keer (1974), 86

Bazant and Kim (1984), 19, 324-329, 339

BaZant and Kim (1996a), 314-315

BaZant and Kim (1996b), 542 .

BaZant and Kwon (1994), 301, 304, 307, 308

Bazant and Li (1994a), 173, 204, 205, 404

BaZant and Li (1994b), 313, 317

Bazant and Li (1995a), 173, 204, 205

Ba¥ant and Li (1995b), 163, 173, 204, 205"

BaZant and Li (1995¢), 267, 284286

BaZant and Li (1995d), 314

BaZant and Li (1996), 128, 139, 286, 287

Bazant and Li (1997), 386, 404, 425, 426, 428

BaZant and Lin (1988a), 4, 502, 503

Bazant and Lin (1988b), 4, 504, 505

Bazant and Oh (1982), 390 '

BaZant and Oh (1983a), 4, 6, 220, 221, 227, 235,
237,247, 248,253 )

BaZant and Oh (1983b), 528, 534

Bazant and Oh (1985), 528, 532, 534, 535,537

BaZant and Oh (1986), 531, 532, 537

BaZant and Ohtsubo (1977), 376, 377

BaZant and Osman (1976}, 407

BaZzant and O#bolt (1990), 512,528, 537, 548

BaZant and OZbolt (1992), 299, 300, 306, 512, 548

Bazant and Panula (1978), 407

BaZant and Pfeiffer (1986), 16, 18,258

BaZant and Pfeiffer (1987), 16, 18, 19, 111, 141~
143, 146, 147, 153, 154, 322, 467, 475,
486, 487, 502, 503

BaZant and Pijaudier-Cabot (1988), 257, 498-502

Bazant and Pijaudier-Cabot (1989), 227, 506, 507,
512

BaZant and Prasannan (1989), 407, 427

BaZant and Prat (1988a), 398401

BaZant and Prat (1988b), 528, 529, 534, 535

BaZant and Prat (1995), 560-562

BaZant and Prat (1997), 563

REFERENCI CITATION INDEX

Badzant and Schell (1993), 430, 432, 433

BaZant and-Sener (1987), 365

Bazantand Sener (1988), 16, 19, 20, 367, 458, 459
Cervenka (1994), 174

Ceryeiika and Pukl (1994), 249

Cervenka and Saouma (1995), 165, 174
Cervenka et al. (1995), 249

BaZant and Sun (1987), 19, 324-327, 329 330

_ BaZant and Wahab (1979), 377

BaZant and Wahab (1980), 377

- BaZant and Xi(1991), 438, 461465, 467-470

BaZant and Xi (1994), 438, 470

BaZarit and Xiang (1994), 338

BaZant and Xiang (1997), 297-301, 306, 308-310,
-11338,.343

BaZantand Xu(1991), 430, 432,433

" Bazant, Adley and Xiang (1996), 541

BaZant; Bai and Gettu (1993), 19, 398, 403 404,
© T A18-420
BaZant, Belytschko and Chang (1984), 492
Bazant; Bishop and Chang (1986), 535, 542, 545,
546
BaZant, Daniel and Li (1996), 19
Bazant, Gettu and Kazemi (1991), 16, 19,20, 153-
155,279
BaZant, ‘Glazik and Achenbach (1976), 86,.133,
390
Bazant; Glazik and Achenbach (1978), 390
Bazant, Gu and Faber (1995), 388, 389, 396, 398,
o420
BaZant, He et al. (1991), 291, 294, 295, 373, 402,
.418-420
Bazant, Jirdsek et al. (1994), 529, 552
Bazant; Kazemi and Gettu (1989), 110, 136 139,
: 152
BaZant, Kim and Li (1995), 313
Bazant, Kimand Pfeiffer (1986), 19, 127, 152, 178
Bazant, Lee and Pfeiffer (1987), 153
Bazant,'Li and Thoma (1995), 371
BaZant, Lin and Lippmann (1993), 297, 300 303~
305,379 )
Bazant, Ohtsubo and Aoh (1979), 376, 377
Bazant; OZbolt and Eligehausen (1994), 327,334,
366, 367

- Ba¥ant; Seiier and Prat (1988), 16, 19,21, 365, 366

BaZant, Tabbara et al. (1990), 552, 553, 555558
BaZant, Xi and Baweja (1993), 407
BaZant, Xi and Reid (1991), 280, 439, 457-45%

~BaZant, Xiang and Prat (1996), 529, 531, 532, 535,

536, 538-540, 542
Bazant, Xiang et al. (1996), 540, 542, 544 546,
547, 558
Bell (1985), 542
Belytschko; Bazant'et al. (1986), 219
Belytschko, Fish and Englemann (1988), 174
Bender and Orszag (1978), 264
Berernin (1983), 461
Berthaud; Ringot and Schmitt (1991), 506
Bieniawski (1974), 297, 300
Biot (1955), 408

REFERENCE CITATION INDEX

Biot (1965), 300, 542

Bittencourt, Ingraffea and Llorca (1992), 174

Blanks and McNamara (1935), 297

Bocca, Carpinteri and Valente (1990), 174

Bocca, Carpinteri and Valente (1991), 174

Bocca, Carpinteri and Valente (1992), 174

Bogdanoff and Kozin (1985), 470

Borodich (1992), 483

de Borst (1986), 240

de Borst (1991), 489

de Borst and Miihlhaus (1991), 4

de Borst and Miihlhaus (1992), 493

de Borst and Sluys (1991), 489

Bosco and Carpinteri (1992), 352, 354, 363

Bosco, Carpinteri and Debernardi (1990a), 356

Bosco, Carpinteri and Debernardi (1990b), 350,
351, 355-358

Brennan (1978), 372

Bresler and Pister (1958), 545, 547

Broek (1986), 108

Broms (1990), 366

Brown (1972), 248

Brown and Srawley (1966), 52

Bruckner and Munz (1984), 470

Brithwiler (1988), 147, 184

Brithwiler and Wittmann (1990), 184, 373

Budianski (1983), 270

Budianski and Fleck (1994), 270

Budianski and O’ Conell (1976), 560

Budianski and Wu (1962), 528

Budianski et al. (1997), 270

Bueckner (1970), 49, 73

Bui (1978), 93

Buyukozturk and Lee (1992a), 377

Buyukozturk and Lee (1992b), 378, 379

Buyukozturk, Bakhoum and Beattie (1990, 377

Carneiro and Barcellos (1953), 291

Carol and BaZant (1993), 407

Carol and BaZant (1997), 240, 529, 548

Carol and Prat (1990), 240

Carol and Prat (1991), 165

Carol, BaZant and Prat (1991), 529, 534, 548

Carol, BaZant and Prat (1992), 165

Carol, Prat and BaZant (1992), 529

Carpinteri (1980), 248

Carpinteri (1981), 350

Carpinteri (1982), 322

Carpinteri (1984), 350

Carpinteri (1986), 350, 438

.Carpinteri (1989), 438

Carpinteri (1994a), 479, 481, 482

Carpinteri (1994b), 479, 482

Carpinteri (1996), 479, 482, 483

Carpinteri and Chiaia (1995), 479, 482

Carpinteri and Chiaia (1996), 479, 482, 483

Carpinteri and Ferro (1993), 479, 482

Carpinteri and Ferro (1994), 170, 479,482

Carpinteri and Valente (1989), 174

Carpinteri, Chiaia and Ferro (1994), 288, 479, 483

Carpinteri, Chiaia and Ferro (1995a), 479, 483

601

Carpinteri, Chiaia and Ferro (1995b), 479, 483

Carpinteri, Chiaia and Ferro {1995c), 486

Carter (1992), 298, 300, 379

Carter, Lajtai and Yuan (1992), 298, 300, 379

Castillo (1988), 472

CEB (1991), 168, 280, 327

Cedolin and BaZant (1980), 220

Cedolin, DeiPoli and Tori (1983), 258

Cedolin, DeiPoli and lori (1987), 258

Charmet, Roux and Guyon {1990), 551

Chen (1982), 374

Chen and Yuan (1980), 291

Cho et al. (1984), 168

Choi, Darwin and McCabe (1990), 370

Christensen (1971), 409

Christensen and DeTeresa (1997), 270

Chudnovsky and Kachanov (1983), 509

Chudnovsky and Kunin (1987), 470

Chudnovsky, Dolgopolski and Kachanov (1987),
509

Collatz (1960), 514

Collins (1963), 509

Collins (1978), 335

Collins and Mitchell (1980) 335 -

Collins, Mitchell et al. (1996), 335

Cope et al. (1980), 240

Cornelissen, Hordijk and Reinhardt (1986a), 168
170

Cornelissen, Hordijk and Reinhardt (1986b), 168— .
170, 370

Corres; Elices and Planas (1986), 401 -

Costin (1991), 298

Cotterell (1972), 297, 298

Cotterell and Rice (1980), 298

Cottrell (1961), 116

Cox (1994), 370

Crisfield and Wills (1987), 240

Cundall (1971), 550

Cundall (1978), 550

Cundall and Strack (1979), 550

da Vinci (1500’s), 437

Darwin (1985), 6

Datsyshin and Savruk (1973), 509

Dauskardt, Marshall and Ritchie (1990), 432

Davies (1992), 299

Davies (1995), 299

Dietsche and Willam (1992), 489

Dougill (1976), 230, 537

Droz and BaZant (1989) 299, 300, 306

Du, Kobayashi and Hawkihs 1989, 390

Dugdale (1960), 3, 157, 160

Dvorkin, Cuitifio and Gioia (1990), 174, 248

Elfgren (1989), 5

Elfgren (1990), 368

Elferen and Swartz (1992), 368

Elfgren, Ohlsson, and Gylltoft (1989), 368

Elices (1987), 26

Elices and Planas (1989), 4, 160, 165--167, 224

Elices and Planas (1991), 117, 136

Elices and Planas (1992), 110, 128, 136, 153, 263




602

Elices and Planas (1993), 108, 126-128, 153, 178
Elices and Planas (1996), 172, 179
Elices, Guinea and Planas (1992), 172, 181, 184
188, 189
Elices, Guinea and Planas (1995), 280
Elices, Guinea and Planas (1997), 181
Elices, Planas and Corres (1986), 401
Elices, Planas and Guinea (1993), 177,178
. Eligehausen and OZbolt (1990), 19, 367
Eligehausen and Sawade (1989), 367
Eligehausen et al. (1991), 367, 368
England (1971),75 .
Entov and Yagust (1975), 248
Eo, Hawkins and Kono (1994), 282
Erdogan (1963), 379
Erdogan and Sih (1963), 75, 96
Eringen (1963), 4, 490
Eringen (1966), 4, 490
Eringen and Ari (1983), 490
Eringen and Edelen (1972), 490
Eshelby (1956), 379 :
ESIS Technical Committee 8 (1991), 62
Evans and Fu (1984), 395
Evans and Marathe (1968), 158
Fabrikant (1990), 520
Fairhurst and Cornet (1981), 298
Fathy (1992), 16, 19, 20, 279
Feddersen (1966), 51
Fenwick and Paulay (1968), 369
Ferguson and Thompson (1962), 333
Ferguson and Thompson (1965), 333
Fischer and Tippett (1928) 438
Flory (1961), 542
Fox (1965), 514
Fréchet (1927), 438
Freudenthal (1968), 438, 439 445, 466
Freudenthal (1981), 438
Freund (1990), 389, 390
Furuhashi, Kinoshita and Mura (1981), 523
Gélvez, Llorca and Elices (1996), 174
Galileo (1638), 437
Gdoutos (1989), 98
Gerstle et al. (1992), 356, 357, 363, 364 .
Gettu, BaZant and Karr (1990), 16, 18, 19, 323
Gioia, BaZant and Pohl (1992), 373-375
Gjgrv, Sorensen and Arnesen (1971), 248
Go and Swartz (1986), 113
Gonnermann (1925), 297
Goode and Helmy (1967), 545
Gopalaratnam and Shah (1985), 168
Graham (1968), 409
Green and Swanson (1973), 545, 546
Griffith (1921), 1, 23, 25, 37, 86, 437
Griffith (1924), 1, 23, 57
Guinea (1990), 52, 61, 167, 184
Guinea, Planas and Elices (1990), 167

Guinea, Planas and Elices (1992), 172, 181, 184,

189

Guinea, Planas and Elices (1994a), 172, 272,322 -

-

REFERENCIE CITATION INDEX

Guinea, Planas and Elices (1994b), 171, 172, 182,
188,271,272

Guoiand Zhang (1987), 170

Gupta and Akhbar (1984), 240

Gustafsson (1985), 158, 268, 271, 281, 282, 289
327, 330-332, 334,372

Gustafsson and Hillerborg (1985), 19, 371, 372

Gustafsson and Hillerborg (1988), 327, 330

‘Gylltoft (1983), 434

Gylltoft (1984), 368, 369
Haimson and Herrick (1989), 300, 379
Hasegawa and BaZant (1993), 535

Hasegawa, Shioya and Okada (1985), 291 295 -

. Hashin (1988), 560, 563

Hassanzadeh (1992), 165

Hawkes and Mellor (1970), 298

Hawkins (1985), 366

Hawkins and Hjorsetet (1992), 357-359, 364
He arid Hutchinson (1989), 379

He'etal. (1992), 147, 373, 420 -
Hededal and Kroon (1991), 350, 351, 358, 359

~-Heilmann, Hilsdorf and Finsterwalder (1969), 158

Henshell and Shaw (1975), 62
Herrmann(1991), 551

Heérrmann and Roux (1990), 551
Herrmann and Sosa (1986), 58, 59
Herrmann, Hansen and Roux (1989), 551
Hetényi (1946), 314, 316

Higgins and Bailey (1976), 102, 103
Hill (1965), 528

Hill (1966), 528

Hillerborg (1984), 102

Hillerborg (1985a), 147, 158, 181, 184
Hillerborg (1985b), 158

Hillerborg (1989), 232

Hillerborg (1990), 349, 380

. Hillerborg (1991), 423

Hillerborg, Modéer and Petersson (1976), 4; 107
158, 168, 248, 281

Hinch'(1991), 264

Hodge (1959), 366 ,

Hoek ‘and Bieniawski (1965), 297, 300

Hoenig (1978), 560

Hognestad, Hanson and McHenry (1955), 545, 546

Hondros (1959), 291

Hong, Liand BaZant (1997), 376

Hordijk (1991), 169, 170, 223, 434

" Hordijk and Reinhardt (1991), 432, 434

Hordijk and Reinhardt (1992), 432, 434
Horii (1989), 136 -

Horii (1991), 432, 434

Horii and Nemat-Nasser (1982), 298
-Horii-and Nemat-Nasser (1985), 509
"Horii-and Nemat-Nasser (1986), 298

Horii, Hasegawa and Nishino (1989), 136
Horii,:Shin and Pallewatta (1990), 432, 434
Horii, Zihai and Gong (1989), 136, 153

- Hrennikoff (1941), 551

Hsu(1968), 365
Hsu (1988), 310, 335, 340

REFERENCE CITATION INDEX

Hsu (1993), 310, 335, 340
Huang (1981), 248
Hughes and Chapman (1966), 158
Humphrey (1957), 365
Hutchinson (1968), 453
Hutchinson (1990), 379
Inglis (1913), 1, 23, 36, 37, 86
Ingraffea (1977), 297, 298
Ingraffea and Gerstle (1 985), 174
Ingraffea and Heuzé (1980), 298
Ingraffea and Saouma (1984), 174
Ingraffea et al. (1984), 174, 369
Ingraffea, Linsbauer and Rossmanith (1989), 373
Irwin (1957), 2, 23
Irwin (1958),3, 23, 105
Trwin (1960), 121
Irwin, Kics and Smith (1958), 3
Isida (1973), 51
Janssen (1990), 434
Jeng and Shah (1985a), 3, 19, 116, 119
Jeng and Shah (1985b), 3, 19, 116, 119
Jenq and Shah (1988a), 117
Jenq and Shah (1988b), 117
Jenq and Shah (1989), 327, 331-333
Jirasek (1993), 529
Jirdsek (1996), 499
Jirdsek and BaZant (1994), 526
Jirdsek and BaZant (1995a), 553-555, 559
Jirdsek and BaZant (1995b), 555, 558, 559
Jirdsek and Zimmermann ( 1997), 375
Jishan and Xixi (1990), 297
John and Shah (1986), 117, 390
John and Shah (1990),.117
Kachanov (1958), 4
Kachanov (1980), 562
Kachanov (1982), 298
Kachanov (1985), 509"
Kachanov (1987a), 509, 525
Kachanov (1987b), 562
Kachanov (1992), 560
Kachanov, Tsukrov and Shafiro (1994), 560
Kani (1966), 326, 329 .
Kani (1967), 326, 329, 458
Kanninen and Popelar (1985), 93, 95, 384, 404
409, 423, 431
Kaplan (1961), 1, 248
Karihaloo (1992), 333, 335
Karihaloo (1995), 333, 334
Karihaloo and Nallathambi (1991), 114, 116, 137,
147
Karp and Karal (1962), 86
Kassir and Sih (1975), 520
Kawai (1980), 550
Kemeny and Cook (1987), 298
Kemeny and Cook (1991), 298
Kendall (1978), 300
Kesler, Naus and Lott (1972), 1
Kienzler and Herrmann (1986), 58, 59
Kim and Eo (1990), 292
Kim et al. (1989), 291

603

Kittl and Diaz (1988), 438, 439

Kittl and Diaz (1989), 438, 439

Kittl and Diaz (1990), 438, 439
Klisinski, Olofsson and Tano (1995), 370
Klisinski, Runesson and Sture (1991), 174, 370
Knauss (1970), 404, 423

Knauss (1973), 404, 423

Knauss (1974), 404, 423

Knauss (1976), 404, 416, 423

Knauss (1989), 404, 423

Knein (1927), 86

Knott (1973), 39, 116, 461

. Knowles and Sternberg (1972), 94

Kobayashi et al. (1985), 251

Korn and Korn (1968), 514

Krafft, Sullivan and Boyle (1961), 3, 121
Krausz and Eyring (1975), 391

Krausz and Krausz (1988), 391, 394, 395
Kroner (1961), 528

Kroner (1967), 4, 490

Kunin (1968), 490

Kupfer, Hilsdorf and Riisch (1969), 545, 547
Kyriakides et al. (1995), 270

Labuz, Shah and Dowding (1985), 258
Larsson and Runesson (1995), 174
Larsson, Runesson and Akesson (1995), 174
Launay and Gachon (1971), 543, 547
Lehner and Kachanov (1996), 298
Leibengood, Darwin and Dodds (1986), 250
Lemaitre and Chaboche (1985), 230, 242
Leonhardt (1977), 336

Levin (1971), 490

Li and BaZant (1994a), 164, 173, 204206
Li and BaZant (1994b), 313, 376

Li and BaZant (1996), 173, 204, 205
Liand BaZant (1997), 386, 425, 428430
Li, Chan and Leung (1987), 170

Li, Hong and BaZant (1993), 376

Liaw et al. (1990), 168

Lin and Tto (1965), 528

Lin and Ito (1966), 528

Lin and Scordelis (1975), 6

Lindner and Sprague (1953), 280
Linsbauer and Tschegg (1986), 184
Linsbauer et al.(1988a), 373

Linsbauer et al.(1988b), 373

"Llorca, Planas and Elices (1989), 136,272, 322

Lofti and Shing (1994), 174
Lubliner (1986), 542

Lundborg (1967), 291

MacGregor and Gergely (1977), 326
Mai (1991), 431

Maji and Shah (1988), 258

Malvern (1969), 75, 91, 541
Mandelbrot, Passoja and Paullay (1984), 479
Mariotte (1686), 437

Martha et al. (1991), 373

Marti (1980), 335

Marti (1985), 335

Marti (1989), 16, 19, 20, 297



604

Massabd {1994), 355, 356

Maturana, Planas and Elices (1990), 398, 400, 401

Mazars (1981), 243

Mazars,{1984), 243

Mazars (1986), 243

McHenry (1943), 408

McKinney and Rice (1981), 16, 19,20

McMullen and Daniel (1975), 365

Melan (1932), 361

Meyer and Okamura (1986), 213

van Mier (1984), 545

van Mier (1986), 297, 545

van Mier and Vervuurt (1995), 170

van Mier, Nooru-Mohamed and Schlangen (1991),
165

van Mier, Schlangen and Vervuurt (1996), 170

van Mier, Vervuurt and Schlangen (1994), 551,553

Mihashi (1983), 438

Mihashi (1992), 171, 271

Mihashi and Izumi (1977), 438

Mihashi and Wittmann (1980), 389, 438

Mihashi and Zaitsev (1981), 438

Mikhlin (1964), 497

Miller, Shah and Bjelkhagen (1988), 258

Mindess (1983), 102 . ’

Mindess and Shah (1986), 389

Mindess, Lawrence and Kesler (1977), 248

von Mises (1936), 438 -

Mitchell and Collins (1974), 343

Modéer (1979), 158, 281, 296

Mori and Tanaka (1973), 560

Morsch (1903), 335 ’

Mosolov and Borodich (1992), 483 "

Mueller and Knauss (1971), 404, 423

Miihlhaus.and Aifantis (1991), 493

Mulmule, Dempsey and Adamson (1995), 19

Mura (1987), 379

Murakami (1987), 49, 302

Nallathambi and Karihaloo (1986a), 114, 116

Nallathambi and Karihaloo (1986b), 114

Naus (1971), 248

Naus and Lott (1969), 103

Nemat-Nasser and Obata (1988), 298

Nesetova and Lajtai (1973), 298, 379

Newman (1971), 51

Nielsen (1954), 280

Nielsen and Braestrup (1975), 335

Nixon (1996), 298

Noghabai (1995a), 370

Noghabai (1995b), 370

Nuismer (1975), 96

Ogden (1984), 542

Oglesby and Lamackey (1972), 62

Ohgishi et al. (1986), 162, 103

Ohtsu and Chahrour (1995), 173

Oliver (1989), 249

Oliver (1995), 174,175

Olsen (1994), 281

Ortiz (1985), 230, 243, 245

Ortiz (1987), 543

REFERENCE CITATION INDEX

Otossen’(1977),374

Ouchterlony (1975), 70

Ozbolt and BaZant (1991), 528

Ozbolt and BaZant (1992), 528, 535, 548
Ozbolt and BaZant (1996), 511, 515, 524, 549
Ozbolt'and Eligehausen (1995), 327

Palmer and Sanderson (1991), 300

Pan, Marchertas and Kennedy (1983), 253
Pande and Sharma (1981), 528

Pande and Sharma (1982), 528

*Pande and Xiong (1982), 528

Paris and Erdogan (1963), 430

. Paris, Gomez and Anderson (1961), 430

Paik and Paulay (1975), 326, 366.

Pastor (1993), 64

Pastor et al::(1995), 50, 52, 145, 287

Paul (1968),297

Peirce (1926), 438

Perdikaris and Calomino (1989), 432

Petersson (1981), 158, 167, 168, 170, 173, 186,
187, 191, 192, 271, 277, 280, 281, 361,
545, 546

Petrovic (1987), 446

Phillips-and Binsheng (1993), 170

Pietruszczak and Mrdz (1981), 248

Pijaudier-Cabot and Bazant (1987), 4, 498, 499,

© 512,548

Pijaudier-Cabot and BaZant (1988), 498, 499

Pijaudjer-Cabot and BaZant (1991), 513, 514

Planas (1992), 518

Planas(1993), 116, 193

Planas(1995), 470 .

Planas and BaZant (1997), 461, 470

Planas and Elices (1985), 170, 171

Planas and Elices (1986a), 168, 273

. Planas and Elices (1986b), 173, 193, 207,209-211

Planas and Flices (1989a), 45, 110, 111, 118, 136,
141, 272, 279, 322, 466

Planas and Elices (1989b), 181, 184

Planas and Elices (1990a), 168, 179,272, 279, 466

Planas arid Elices (1990b), 110, 136, 263

Planas and Elices (1990c¢), 177

Planasand Elices (1991a), 111, 136,173,176, 192,
208-211, 263,272,274, 322,429 -~

Plands and Elices (1991b), 128

Planas and Elices (1991c), 266, 274

Planas and Elices (1991d), 58 )

Planasand Elices (1992a), 111, 136,173,175, 176,
193, 203, 207, 209, 211, 263, 273

Planasand Elices (1992b), 163, 164,170,172, 179,

) 272,282,361 .

Planasand Elices (1993a), 111,173, 175,176,207,
209-211, 263,274

Planas and Elices (1993b), 256,257, 281,282, 361
Planas; Corres et al. (1984), 401

Planas, Elices and Guinea (1992), 167, 172, 181,
184,222

Planas,; Elices and Guinea (1993), 4, 493-497

Planas; Elices and Guinea (1994), 493, 496

REFERENCE CITATION INDEX

Planas, Elices and Guinea (1995), 160, 161, 189,
190

Planas, Elices and Ruiz (1993), 108, 126, 128, 153,

‘ 177,178 . :

Planas, Elices and Toribio (1989), 128, 178

Planas, Guinea and Elices (1994a); 183

Planas, Guinea and Elices (1994b), 183

Planas, Guinea and Elices (1995), 163, 164, 172,
268, 272, 280-286, 288-290, 363

Planas, Guinea and Elices (1996), 497, 498, 500

Planas, Guinea and Elices (1997), 163, 164, 176,
177, 264, 265, 272-279

" Planas, Ruiz and Elices (1995), 350, 351, 358~360,

362
Plesha and Aifantis (1983), 551, 552
Post-Tensioning Institute (1988), 377
Prandt] (1904), 437
Prat and BaZant (1997), 560563
Press et al. (1992), 144, 202, 497
Priddie (1976), 431
Primas and Gstrein (1994), 64
Pugh and Winslow (1966), 144
Rashid (1968), 4, 6,213
Reagel and Willis (1931), 280
Reece, Guiu and Sammur (1989), 432
Reich, Cervenka and Saouma (1994), 174
Reineck 1991, 341
Reinhardt (1981a), 20, 327
Reinhardt (1981b), 20
Reinhardi (1982), 378
Reinhardt (1984), 167, 168, 370
Reinhardt (1992), 370
Reinhardt and Cornelissen (1984), 223, 434
Reinhardt and Van der Veen (1992), 370
Rektorys (1969), 514, 523
Rice (1968a), 2, 23, 31, 36
Rice (1968b), 2, 23, 31,252
Rice (1970), 528
Rice (1988), 379
Rice and Levy (1972), 314
Rice and Rosengren (1968), 453
Rice and Sih (1965), 379
Riedel (1989), 384
RILEM (1985), 147, 171, 181, 184, 185
RILEM (1990a), 119, 120, 295
RILEM (1990b), 143, 144
Ritter (1899), 335
Rocco (1996), 181, 182, 292297
Rocco et al. (1995), 291, 292, 323
Rodriguez-Ortiz (1974), 550
Roelfstra (1988), 550
Roelfstra and Wittmann (1986), 171, 271
Roelfstra, Sadouki and Wittmann (1985), 550
Rokugo et al. (1989), 168-170,271, 282
Rolfe and Barsom (1987), 431
Rooke and Cartwright (1976), 49
Rosati and Schumm (1992), 370
Roscoe (1952), 560
Rosen (1965), 270
Ross, Thompson and Tedesco (1989), 291

Rossi and Richer (1987), 550

Rossi and Wu (1992), 550

Rossmanith, ed. (1993), 368

Rots (1988), 170, 237, 238, 249-251, 369
Rots (1989), 175, 250, 251

Rots (1992), 369

Rots et al. (1985),4,6

Ruiz (1996), 358-362, 364, 365

Ruiz and Planas (1994), 358, 359, 361

Ruiz and Planas (1995}, 350, 351, 362

Ruiz, Planas and Elices (1993), 350, 358, 359
Ruiz, Planas and Elices (1996), 350, 358, 364
Riisch (1960), 426

- Russ (1994), 480, 481

Sabnis and Mirza (1979), 290, 291

Saenz (1964), 223

Saleh and Aliabadi (1995), 173

Sallam and Simitses (1985), 60

Sallam and Simitses (1987), 60

Sammis and Ashby (1986), 298
Sanderson (1988), 298

Saouma, Ayari and Boggs (1989), 373
Saocuma, Barton and Gamaleldin (1990), 479
Saouma, Broz et al. (1990), 373
Saouma, Broz et al. (1991), 147, 373
Sayers and Kachanov (1991), 560, 562
Scanlon (1971), 6

Schapery (1975a), 404, 423

Schapery (1975b), 404, 423

Schapery (1975c), 404, 416, 423

Schijve (1979), 431

Schlaich, Schafer and Jannewein (1987), 335
Schlangen (1993), 551

Schlangen (1995), 551, 554, 555
Schlangen and van Mier (1992), 551, 553
Schulson (1990), 298

Schulson and Nickolayev (1995), 298
Sener (1992), 19, 371

Sener, BaZant and Becq-Giraudon (1997), 371
Serrano and Rodriguez-Ortiz (1973), 550
Shah and John (1986), 117

Shah and McGarry (1971), 103, 248
Shetty, Rosenfield and Duckworth (1986), 298
Sidoroff (1974), 542

Sih (1973), 49, 379

Sih (1974), 98

Simo (1988), 542

Simo and Oliver (1994), 174

Simo and Ortiz (1985), 542

Simo and Rifai (1990), 174

Simo, Oliver and Armero (1993), 174
Sinha, Gerstle and Tulin (1964), 545, 546
Slepyan (1990), 313

Smith (1995), 165, 211

Smith and Kobayashi (1993), 64
Sneddon (1946), 57

Sneddon and Lowengrub (1969), 520

So and Karihaloo (1993), 333

Sok, Baron and Francois (1979), 248
Sozen, Zwoyer and Siess (1958), 335

605




606

Spencer (1971), 236

Srawley (1976), 50, 115

Steif (1984), 298

Strang (1980), 514

Stroh (1957), 389

Stroud (1971), 532

Suidan and Schnobrich (1973), 237

Suo and Hutchinson (1989), 379

Suresh (1991), 429-431

Swartz and Go (1984), 103, 113, 432

Swartz and Refai (1989), 113, 147

Swartz and Taha (1990), 377

Swartz and Taha (1991), 377 .

Swartz, Hu and Jones (1978), 103, 112, 113,432

Swartz, Hu et al. (1982), 103, 113

Swenson and Ingraffea (1991), 375

Tada, Paris and Irwin (1973), 50, 51

Tada, Parisand Irwin (1985), 49, 70, 119, 121, 161,
202, 287, 302, 352, 354

Tandon et al. (1995), 429

Tang, Shah and Ouyang (1992), {17, 296

Taylor (1938), 528

Tepfers (1973), 370

Tepfers (1979), 370

Thirlimann (1976), 335

Thouless, Hsueh and Evans (1983), 395

Timoshenko (1956), 27

Timoshenko and Goodier (1951), 79, 281

Tippett (1925), 438

Triantafyllidis and Aifantis (1986), 489

Tschegg, Kreuzer and Zelezny (1992), 165

Uchida et al. (1995), 171, 271

Uchida, Rokugo and Koyanagi (1992), 268, 282

Ulfkjeer and Brincker (1993), 171

Ulfkjer et al. (1994), 356, 357

Ulfkjar, Brincker and Krenk (1990), 356

Vakulenko and Kachanov (1971), 562

Valente (1995), 174

Vardoulakis (1989), 489

Varga (1962), 514

van der Veen (1991), 370

Wagner (1929), 343

Walker and Bloen (1957), 280

Walraven (1978), 329

Walsh (1972), 16, 18, 102, 103, 111, 248

Walsh (1976), 102, 103, 111 -

Wawrzynek and Ingraffea (1987), 174

Wecharatana (1986), 170

Wecharatana and Shah (1980), 248

Weibull (1939), 10, 280, 437, 438, 441

Weibull (1949), 438

Weibull (1951), 437, 441

Weibull (1956), 438

Weihe and Kroplin (1995), 165

Wells (1963), 116

Willam, Bicani¢ and Sture (1986), 248

Willam, Pramono and Sture (1989), 248

Williaros (1952), 86

Wilson (1966), 39

Wilson (1971), 62

REFERENCI! CITATION INDEX

Wiss (1971), 366

-Wiss, Janiney et al. (1987), 375

Wittmann (1983), 5

Wittmann and Zaitsev (1981), 298
‘Wittmann, Roelfstra and Kamp (1988),'550
Wittmann, Roelfstra et al. (1988), 168
Wittmann; Rokugo et al. (1987), 171,271
Wright (1952), 280, 290

Wu and BaZant (1993), 385-387, 404, 425-427
Wu and Carlsson (1991), 55, 73 '
Xiand BaZant (1992), 438, 470

Xiand BaZant (1993), 408

Yankelevsky and Reinhardt (1989), 434 -
Yin; Sallam, and Simitses (1986), 60
Young (1807), 437

‘Yuan, Lajtai and Ayari (1993), 298, 379
Yuzugulluand Schnobrich (1973), 237
Zaitsev (1985), 298

Zaitsev and Wittmann (1974), 438
Zaitsevand Wittmann (1981), 298
Zechand ‘Wittmann (1977), 438, 441, 458
Zhang and Karihaloo (1992), 373

-Zhou (1992), 387-389, 424

Zhou'(1993), 388, 424

Zhou and Hillerborg (1992), 387-389, 424
Zienkiewicz and Pande (1977), 528
Zubelewicz (1980), 551

Zubelewicz (1983), 551

Zubelewicz and BaZant (1987), 551, 552
Zubelewicz and Mr6z (1983), 551

Index

activation energy, 390-397
in time-dependent cohesive crack model, 425
influence of humidity on, 400
influence of relative humidity, 400
Airy stress function, 79, 80
ASTM (496, 291--293
asymptotic analysis
of BaZant’s extended size effect law, 265-266
of BaZant’s universal size effect law
intermediate size matching, 264-265
large sizes, 263
large sizes, matching to equivalent crack
modcl, 263-264
small sizes, 264-265
of cohesive crack model, 209-211
of size effect in cohesive crack model
intermediate sizes, 275-276
large sizes, 273-274
small sizes, 274-275
average strain, in nonlocal models, see nonlocal
model, averaging integral

Bazant’s extended size cffect law, 265-266
asymptotic analysis, 265-266
Bazant’s size effect law, 13, 136
conditions for applicability, 15, 320-321
correlation
with cohesive crack model, 178-180
with Jenq and Shah’s model, 178180
derivation from equivalent elastic crack ap-
proach, 135-136
derivation from stress relief zones, 13-15
determination of R-curve from, 152-154
experimental evidence, 16-21
in notched or cracked structures, 18-19
in unnotched or uncracked structures, 19—

intrinsic representation, 139
modified, for splitting tensile test, 204-295
range of applicability, 15
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expression for stress and crack opening, -

207

for center-cracked panel, 208
integral equation, 208
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stress-integral formulation, 199-207
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integral equation, 200, 201
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Planas and Elices’ improved algorithm, 192—
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scaling of influence matrices, 195-196
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model, with tip singularity
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concept, 321 .
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BaZzant’s, 322
based on initial portion of softening curve,
322
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Planas and Elices’, 322
Bueckner’s weight function, see weight function

¢y, see critical equivalent crack extension, asymp-
totic
characteristic material size, £y, 177, 179, 182, 183,
189, 199, 221, 272, 276, 278-280, 282,
283,285, 288,289,293, 296, 322, 362~
364,372
characteristic material size, £.p, 164, 179
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and R-curve approximation, 177-178
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158-160
asymptotic analysis, 209-211
Barenblatt’s, 160
comparison with crack band model, 255-259
concept, 157
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correlation
with BaZant’s size effect law, 178-180
with Jeng and Shah’s model, 178-180
Dugdale’s, 160 .
solution for infinite center-cracked. panel,
203, 204, 208 )
with cut-off, 161, see also cohesive crack
model, softening curve, rectangular
eigenvalue analysis of stability and ductility,
206-207
experimental methods for, see experimental
methods, for cohesive crack models
for concrete, 167-179
fracture energy, Gr, 162
history-dependent, for fatigue crack growth,
434-435
in a viscoelastic medium, 413415, 423-424
in historical context, 3—4 :
nonlocal foundation of, 496
numerical methods for, sée numerical meth-
ods, for cohesive crack miodel
predictions for
modulus of rupture, see_ modulus of rup-
ture, predicted by cohesive crack model
_ size effect, see size effect, according to
cohesive crack model

splitting strength, see splitting tensile strength,

predicted by cohesive crack
softening curve
bilinear, 164, 168, 171, 176, 177, 189,
271-279, 282
definition and properties, 162-164
dimensionless form, 163 )
exponential, 162, 163
for concrete, see concrete, softening curves
for
initial linear approximation, 164
linear, 168, 170, 176, 179, 202, 205, 207,
265, 274-275,277-279, 281,284, 290,
296
quasi-exponential, 169, 170, 176, 179, 180
rectangular, 161, 168, 170, 176, 203, 208,
274,215,280
« theoretical extensions, 164-165
time-dependent
in elastic body, 424-425
in viscoelastic body, 425-429
with bulk energy dissipation, 165-167
with tip singularity, 165, 197-198
complex potentials for elastic crack problems, 77—
80

compliance .
calculation from K expressions, 67-68
matrix for a system of loads, 68-69
method, for equivalent crack length, 1 12-116 -

compression failure ’
axial splitting vs. apparent shear band, 311

312

basic mechanisms, 297-300

by splitting crack band, 297-312
effect of transverse tension, 310-311
energy analysis, 300-305
microcrack spacing, 310

of column
asymptotic size effect, 305
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effect of buckling due to slenderness, 307
309
energy analysis, 300-305
size effect, stocky column, 305-306
of RC'beam in bending, 380-381
concrete
apparent fracture toughness
variability, 101-103
cohesive models for, 167-179
deviation from LEFM, 101103
fatigue crack growth in, 432435
softening curves for, 167-170
bilinear, CEB, 168
“bilinear, general, 164, 168,171,176, 189
bilinear, Petersson’s, 168, 177 i
bilinear, Rokugo et al., 168
bilinear, Wittmann et al., 168
exponential type~CHR, 169
extra long tail, 170
quasi-exponential; 169, 170,176, 179, 180
concrete structures
plain, see unreinforced concrete
reinforced, see. reinforced concrete
continuum damage model ’
with scalar damage
for smeared crack model with fixed crack,
237-238
Mazars’ model, 243
for smeared crack model with fixed crack,
235-237
for uniaxial strain softening, 229-230
in-historical context, 4 -
Cosserat’s continuum, 489
crack band rnodel .
comparison with cohesive crack model, 255~
259
comparison with test data, 247 .
crack band width, 220, 221, 225-227
“effective, in skew meshes, 248 '
experimental determination of, 227
scaling with finite clement size, 231
in-historical context, 4 :
numerical methods, see numerical methods,
for crack band model
relation to cohesive crack model, 220
uniaxial, elastic-softening, 220-221
uniaxial, with bulk dissipation, 222-223
fracture energy for, 224-225
unloading and reloading, 223-224
crack growth resistance
alternative denomination, 24
and R-curve behavior, see R-curve
concept, 2, 24
in‘a'viscoelastic medium, 412413
: in LEFM, 34
crack influence coefficients, 509, 513
crack influence function, 511-513, 515, 516, 518~
522
definition; 510
for cracks near the boundary, 522-523
in oné dimension, for localization of oriented
cracking into a band, 525
in'three dimensions, 520-522
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crack influence function (cont.)
in two dimensions, 517--520
angular dependence, 518
radial dependence, 519
long range decay and gradient models, 524
long range decay and integrability, 523
statistical determination, 515-517
tensorial formulation, 523-524
crack interaction, see nonlocal model, based on
microcrack interactions
crack mouth opening displacement
calculation from K expressions, 69-70
definition, 69
crack opening profile
calculation from K expressions, 72-73
for center-cracked panel in tension, 82
crack volume )
calculation from K expressions, 71-72
creep
fracture tests, 388-
viscoelastic, 404418
for concrete, 407-408
critical crack tip opening displacement
in Jeng and Shah’s two-parameter model
definition, 117
experimental determination, 120
critical equivalent crack extension
approximate relation with £cp, 109
asymptotic, 109
for cohesive crack model, 176
relation with size effect parameters, 138
asymptotic, ¢y, 109-111
critical stress intensity factor, see fracture tough-
ness
CTOD,, see critical crack tip opening displace-
ment
cyclic loading, see fatigue crack growth

damage, see continuum damage model
diagonal shear of beams, 326-349
analysis by nonlocal microplane model, 334
Bazant-Kim-Sun Formulas, 327-330
fracturing truss model, 335-349
basic hypotheses, 336-337
conclusions, 349
size effect for load producing cracking,
346-349
with stirrups, 341-344
without stirrups, 337-341, 344346
Gustafsson and Hillerborg’s analysis, 330—
331
in building codes, 326-327 )
influence of prestressing, 334-335
LEFM, Jenq and Shah’s and Karihaloo’s anal-
yses, 331-334
displacement )
calculation from K expressions, 67-74
complex, 76
field
in center-cracked panel, 82
in terms of complex potentials, 7879, 87—
- 88

in terms of Westergaard’s stress function,
80

near-tip dominant term, 39, 85, 89

near-tip, in viscoelastic material, 409-412
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generalized, 27 '
Dugdale model, see cohesive crack model, Dug-
dale’s
Dugdale-Barenblatt model, 157, see also cohesive
crack model

effective crack, see equivalent elastic crack
eigenvalue analysis
of size effect, 204-206
of stability limit and ductility, 206-207
elastic-softening material, see stress-strain curve,
elastic-softening
energy balance
generalized, in BaZant’s universal size effect
law, 261-262
in elastic fracture, 24-25
energy release rate, 23-33
concept, 2, 23
definition, 25
determination by approximate energy-based
methods, 55-60
Herrmann's method, 58-59
using bending theory, 55-56
using stress relief zone, 56-58
determination by experimental methods, 63—
64

determination by numerical methods, 60-63
expression for
center-cracked panel in tension, 29
DCB subjected to bending moments, 27,
29,33
DCB subjected to opening forces, 27, 29
general forms, 44-45
subsurface crack, 59-60
expression in terms of
complementary energy, 26
complementary potential energy, 27
contour integrals, 91-92
elastic compliance, 28-29
elastic potentials, 25-28
J-integral, 33
potential energy, 27
strain energy, 26
for a system of loads, 68-69
relation with mode I stress intensity factor,
40-41,92-93
relation with stress intensity factors, 93
vs. crack length, plot of, 30, 34, see also
R-curve
equivalent elastic crack
definition, 108
extension
and R-curve, 109
critical, see critical equivalent crack ex-
tension '
definition, 108
for cohesive crack model, 176
simple estimation of, 109
length measurement from compliance data,
112-116
compliance calibration method, 112
Jenq and Shah’s method, 119-121
modified compliance calibration method,
113

Nallathambi-Karihaloo method, 114-116
models, in historical context, 3
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experimental methods
based on size and shape effects, 139
zero brittleness method, 139
based on size effect, 140-149
calculation procedure, 144147
experimental procedure, 143--144
performance, 147
regression relations, 140-142, 147-149
for characteristic material size, £), 182-183
for cohesive crack model, 180-189
bilinear softening curve, 188-189
fracture energy, Gr, 184188
initial linear part of softening curve; 182~

softening curve, 170-172
tensile strength, 181-182
for crack band width, 227, 506
for equivalent elastic crack model, 112-116
for Jenq and Shah’s model, 119-121
for LEFM parameters, 63-65
for microplane model, 543-548
for modulus of rupture, see modulus of rup-
ture
for nonlocal characteristic length, 506
for R-curve
based on size effect, 150-154
overview, 126-128
forsplitting tensile strength, see splitting ten-
sile strength
splitting tensile test, 181, 182
weight compensation in work-of-fracture test-
ing, 185, 186, 189
work-of-fracture test, 184188

fatigue crack growth, 429-435
in brittle materials, 431-432
in concrete, 432435
by history-dependent cohesive crack model
434-435
in metals, 430-431
fictitious crack model, 4, 157, 158, see also cohe-
sive crack modul
finite element method, see numerical methiods
flow rule, 242
force, generalized, 27
Fréchet’s failure probability distribution, 474-476
fractal
dimension, 480, 481
invasive, 481, 482
lacunar, 481, 482
fractal and multifractal theories of fracture; 479~

BaZant's analysis of fractal crack initiation,
485

BaZant’s analysis of fractal crack propaga-
tion, 483-485

basic concepts on fractals, 480—482

discussion of, 486-487

size effect for fracture energy, 482

size effect for nominal strength, 482483

fracture

dynamic, see time-dependent fracture, dy-
namic effects )

fractal and multifractal theories, see " fractal
and multifractal theories of fracture

in compression, see compression failure-
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statistical theory of
based on random barrier model, see ran-
v dom barrier model
“Weibull’s, see Weibull’s theory of random
strength
time-dependent, see time-dependent fracture
under sustained load, see creep
fracture behavior
brittle, 104
ductile, 104
quasibrittle, 104
fracture criterion
for mixed mode, 94-99
ellipsoidal failure locus, 95
for straight crack growth, 95
maximum energy release rate, 95-96
maximum principal stress, 96-97
: minimum strain energy density, 98-99
in terins of energy release rate, 25
in terms of stress intensity factor, 42
fracture energy
" in cohesive crack model, 162
concept, 24
effect of humidity on, 399-401
‘effect of temperature on, 398-399
experimental determination of .
based on size effect, 140149
in‘cohesive crack model, 184188
in LEFM, 64-65
for crack band model with bulk dissipation,
e 224,225
-objéctive definition, 138
relation with fracturc toughness, 42
relation with size effect parameters, 139
size effect according to fractal theories, 482
ﬁacture mechanics )
characteristics of, 1
continuum models, see strain softening
historical perspective, 1-5
linear elastic, see lincar elastic fracture me-
chanics
nornlinear
historical perspective, 3-5
reasons for using, 5-9
viscoelastic, see time-dependent fracture;, vis-
coelastic
fracture of s€a ice plates, 312-317
proof of 3/8-power law size effect, 316-317
size effect due to thermal bending, 314-316
fracture process
graphical representation, 30~-31
in LEFM, 34-35
inR-curve model, 123126
fracture process zone, 103108
and non-linear zone, 104
size for quasibrittle material, 103, 106-108
-size, dependence on loading rate, 420
fracture toughness
apparent
for concrete, see concrete, apparent frac-
“ture toughness
inequivalent elastic crack model, 109=110
definition, 42
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fracture toughness (cont.)
experimental determination of
based on size effect, 140-149,
inequivalent elastic crack model, 112~116
in Jenq and Shah’s model, 119-121
in LEFM, 64-65
in Jeng and Shah’s two parameter model, 117
relation with fracture energy, 42
relation with size effect parameters, 138
function
complex, 76
holomorphic, 77, 79, 81, 83, 88

G, see energy release rate
G, see fracture encrgy
Gy, see fracture energy
GTre, see  fracture energy
gradient models, high-, see- nonlocal model, high-
gradient approximation
Green function, for mode I stress intensity factor
definition and use, 53-55
expression for center-cracked panel, 54
Griffith’s
approach to LEFM, 1

encrgy release rate for the center-cracked panel,

Hillerborg’s model for compressive failure of RC
beams in bending, 380-381
holomorphic function, see function, holomorphic.

Hooke’s law
complex-variable form, 77
for plane problems, 75

internal variable, 242, 243
intrinsic size, 110-111, 136, 139, 140
Irwin’s estimate of plastic zone size, 105106
Irwin’s relationship

between G and K, 41

between G and Ky, Ky and Kyrr, 93

- J-integral

derivation, 31--33
expression, 33
in historical context, 2
path independence
conditions for, 91
proof of, 90-91
Jenq and Shah’s two-parameter model, 116-121
correlation
with BaZant’s size effect law, 178-180
with cohesive crack model, 178-180
definition, 117
experimental determination of K. and wre,
119-121
govyerning eqoations, 117-118
predictions for splitting tensile test, 295

K7, see stress intensity factor, mode 1
Ky, see fracture toughness

Ky, see stress intensity factor, mode Il
K11, see stress intensity factor, mode 11

Lamé’s elastic constants, 75
Laplacian, 79
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lattice model, see micromechanical models, dis-
crete, lattice
£y, see characteristic size, &
£.n, see characteristic size, £op
LEFM, see linear elastic fracture mechanics
lightly reinforced beams, 349-365
models based on cohesive cracks
Hawkins and Hjorsetet’s, 357, 359
Hededal and Kroon’s, 358, 359
Ruiz, Planas and Elices’, 358-363
simplified approaches, 356-357
models based on LEFM, 350-356
Baluch, Azad and Ashmawi’s, 353-354
Boscorand Carpinteri’s, 354-356
Carpinteri’s, 350352
overview, 349-350
linear elastic fracture mechanics
essentials of, 23-47
historical perspective, 1-2
loading modes, definitions, 85, 87
mathematical foundations, 75-89
near-tip fields
dominant term, 39, 83, 89
in center-cracked panel, 37-38, 82-83
mixed-mode power series expansion, 83—
85
mode [ power scries expansion, 39-40, 86—
87
mode I power series expansion, 88-89
linear softening, see cohesive crack model, soft-
ening curve, linear
load relaxation, 386388, 420422
loading-rate
_effect of sudden change of, 388, 420-422
influence on peak load and size effect, 385-

localization, see strain localization i
localization limiter, see strain softening, localiza-
tion limiter

mesh dependence
and objectivity of analysis, 5
mesh-dependence
in strain softening bar, 217-218
of models with strain softening, 6
microcrack spacing
in compression failure, 310
micromechanical models
discrete, lattice, 550560
concept, 551
directional bias, 554-555
effect of size of lattice links, 554
generation, 553
limitations, 559-560
of Schlangen and van Mier, 553
discrete, particle, 550-560
application examples, 555-559
concept, 550-551
frame, 552
limitations, 559560
pin- jointed truss, 552
pin-jointed truss of BaZant, 'labbara etal.,
552
random configuration, 552, 553
microplane, see microplane model



micromechanical models (cont.)

nonlocal, see nonlocal model, based on mi- '

crocrack interactions
numerical concrete, 550, 559
tangential stiffness based on body with many
growing cracks, 560-563 )
microplane model, 165, 228, 240, 327, 528-550
application to diagonal shear of beams, 334
calibration by test data, 543-548
comparison with test data, 545
procedure for delocalization of test data;
543-545 :
concept, 528-529
“elastic response, 533-535
for finite strain, 540542
macro-micro relations, 529-532
nonlincar response: stress strain boundaries
concept, 535-537
expressions for concrete, 538-540
nonlocal adaptation, 548-550
numerical aspects, 537-538
summary, 542-543
vertex effect, 545-547
volumetric-deviatoric split, 532-533
minimum reinforcement
basic concepts and results, 349-350
formulas for, 363-365
mixed mode, see fracture criterion, for mixed mode
modulus of rupture
definition, 280-281
experimental results, 289-290
predicted by BaZant’s universal size effect
law, 284--287

predicted by cohesive crack model, 281-284

predicted by Jeng and Shah’s model, 287-288
predicted by multifractal scaling law, 288~
289
size effect analysis, 280-290
multifractal scaling law, see fractal and multifractal

theories of fracture

Navier’s equations
complex-variable form, 77
for plane elasticity, 76
near-tip fields for crack in
elastic material, see linear elastic fracture
mechanics, near-tip fields
plastic material (HRR fields), 453
viscoelastic material, see time-dependent frac-
ture, viscoelastic, near-tip fields
nominal strength, 8, 1113, 43
nominal stress, 1113
nonlocal continuum models
in historical context, 4
nonlocal mode!
applications of, 501-506
averaging integral
definition, 490-491
for damage, 499
for damage driving force, 499
for fracturing strain, 496, 497
for inelastic stress increment tensor, 507,
511 : :
for strain, 490
for uniaxial strain, 491
based on microcrack interactions, 507-526

INDEX

crack influence coefficients, 509, 513
¢rack influence function, see crack influ-
ence function
field équations, alternative forms, 511--513
- field equations, basic form, 510511
“foundations and hypotheses, 507-510
Gauss-Seidel iteration, 514~515
locglization of oriented cracking intoaband,
25
properties, 511-513
experimental determination of characteristic
length, 506
for'cohesive crack, 496
high-gradient approximation
derivation, 492-493
in historical context, 4 )
microplane, 506, 548-550 ’
of BaZant and Xi for statistical size effect; 464
reasons for use of, 489
with nonlocal damage, 498502
with nionlocal fracturing strain
general formulation, 493-494
integral model of first kind, 496
integral model of sccond kind, 497-498
second-order differential model, 495
with'nionlocal strain, 491-492 :
with yield limit degradation, 502505
numerical concrete, 550, 559
numerical methods
for'cohesive crack model
boundary-integral, see boundary-integral
method
overview, 172-175 L
Petersson’s influence method, 191-193
pseudo-boundary-integral, see boundary-
integral method, pseudo
smeared-tip method, 193-195
for crack band model
éngrgy criterion for finite clements of large
size, 252-254
simple uniaxial issucs, 225-226
skew meshes and effective band width, 248—
250
stress lock-in, 250-251 ¢
triaxial issues, 240254
using finite elements of arbitrary size, 246~
248 .
using finite elements of large size, 251~
252
for microplane model, 537-538
for nonlocal model with crack interactions,
514-515
for time-dependent cohesive crack model, 426~
429 :
usiiig compliance functions (boundary-integral),
428-429
using finite elements, 426-427

objectivity of analysis, see mesh-dependence

particle model, see ‘micromechanical models, dis-
crete, particle
path-independent integrals, 90-94
I-integral, 93
Jx-integrals, 94
J-integral, see J-integral

INDEX

path-independent integrals (cont.)
L-integral, 94
M-integral, 94

Petersson’s
bilinear softening curve, 168, 169, 177
influence method, 191-193

quasi-exponential softening, see cohesive crack
model, softening curve, quasi-exponential
quasibrittle materials
definition, 104
trends in fracture of, 5

R-curve, 121-133
as approximation of cohesive crack model,
177-178
concept, 31, 109
determination from size effect, 150-154
determination of structural response from, 154
experimental determination, 126-128
in historical context, 3
R-curve
R-CTOD curve, 128-129
R-curve
R-Aa curve, 121-126
stability analysis, 130-133
under displacement control, 131
under load control, 130-131"
under mixed control, 131-133
statistical
in random barrier model, 472-474, 476~
478
time-dependent, 401-403 )
time-dependent, with creep, 418-422
random barrier model, 470479
and statistical R-curve, 472-474, 476-478
definition, 471 ’
Fréchet's failure probability distribution, 474—
476
limitations, 479
rate process theory, 390-397
elementary rate constants, 391
for fracture, 394-398 .
isothermal, displacement-controlled, 397~
398 ’
isothermal, general, 395-396
isothermal, Joad-controlled, 396-397
for fracture of concrete, 398-403
physical rate constants, 391-394
R-curve model, 401-403
R-curve model, with creep, see R-curve, time-
dependent, with creep
rectangular softening, see cohesive crack model,
softening curve, rectangular
reinforced concrete
anchor pullout, 367-368
beams
compressive failure, 380-381
diagonal failure, 326-349
minimally reinforced, see lightly reinforced
beams
torsional failure, 365-366
bond and slip of reinforcing bars, 368-371
columns, 300-311 \
footings, 375
size effect for, general aspects, 325-326

613

slabs
cryptodome failure in reactor vessel, 367
punching shear failure, 366
reinforcement
bond and slip, 368-371
influence on size effect, 325326
ratio, 325, 326 .
resistance curve, crack growth, see R-curve
Rice’s J-integral, see J-integral
RILEM recommendation, see experimental meth-
ods

scalar damage model
for smeared crack model with fixed crack,
237-238
Mazars’, 243
scale effect, see size effect
scaling law, see size effect, law
series coupling model, see strain localization, in
the series coupling model
shrinkage
stresses, 197
shrinkage stresses, 196
size effect
according to cohesive crack model, 175-177
asymptotic analysis, intermediate sizes, 275~
276
asymptotic analysis, large sizes, 273-274
asymptotic analysis, small sizes, 274-275"
eigenvalue analysis, 204-206
¢quation for notched specimens, 177
for center-cracked panel and rectangular
softening, 204
for notched structures, 271-280
for three-point-bend notched beams, 277-
280
general equations, 271-272
according to equivalent elastic crack models,
135-137
according to fractal theories, see fractal and
multifractal theories of fracture, size ef-
fect, 482483 :
according to Jeng and Shah’s model, 136-137
according to LEFM, 8, 45-46
according to plasticity, strength or allowable
stress theories, 8, 13, 4344
as manifestation of fracture processes, 7-9
asymptotic law for crack with residual stress,
270 .
asymptotic law for many loads, 269-270
corrections to ultimate Joad formulas in codes
basic approaches, 323
effect of reinforcement, 325-326
for strength-based formulas, 324
definition, 8, 13
determination of R-curve, 150-154
eigenvalue analysis, 204-206
experimental evidence, 16-21
in notched or cracked structures, 18-19
in unnotched or uncracked structures, 19—
21
experimental method based on, see experi-
mental methods, based on size effect
extended law, BaZant’s, see BaZant’s extended
size effect law
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size effect (cont.)
for failures at crack initiation from smooth
surface, 266-268
for fracture energy, according to fractal theo-
ries, 482
for structures with fixed size cracks, 46
in boundary integrals, 202-203
in compression failure
asymptotic law for compressed column,
305
by splitting crack band, 297-312
effect of buckling due to slenderness, 307—
309
effect of transverse tension, 310-311
energy analysis, 300-305

" law for compressed stocky column, 305-

in concrete structures

conditions for BaZant’s law to apply, 320~ -

321
general aspects, 319
in diagonal shear failure of beams, see diag-
onal shear failure of beams
in fracture of sea ice, 312-317
due to thermal bending, 314-316
proof of 3/8-power law, 316317
in splitting tensile test
according to cohesive crack modcl 296
accordm0 to Jenqg and Shah’s model, 295

modiﬁed BaZant’s size effectlaw,294-295 -

induced by
boundary layer effect, 9
chemical reactions, 10
diffusion phenomena, 10
fractal nature of crack surfaces, 11
fracture processes, 11
random strength, 10
influence of loading rate, 385-386
on fatigue crack growlh in concrete, 432~435
on struclural ductility, 9
on the modulus of rupture; see modulus of -
rupture
plots
bilogarithmic, 8, 13
sources of, 9-11
statistical, 10
statistical theory
BaZant and Xi’s, extended Wexbull 465+
467
based on random barrier model, see ran-
dom barrier model
in historical perspective, 437-438
Planas’ empirical interpolation, 467469
Weibull’s, see Weibull’s theory of random
strength, size cffect law
universal law, BaZant’s, see BaZant’s univer-
sal size effect law
size requirement for LEFM to hold
according to ASTM E 399, 106
for concrete, 108, 111, 112
size, intrinsic, see intrinsic size
smeared cracking
concept; 213
models, see strain softening, triaxial modcls,
and crack band mode

INDEX

softening curve, see cohesive crack model, soften-
ing curve

+ softening function, see cohesive crack model, soft-

ening curve

splitting crack band, see compression failure, by -

‘splitting crack band
splitiing tensile strength, 291-296
ASTM C496, 291-293
modified Bazant’s size effect law, 294-295
observation of cracking process, 292-293
predictions of cohesive crack model, 296
predictions of Jenq and Shah’s modet, 295
sphttmg tensile strength, predicted by cohesive crack
model, 296
stability analysis
eigenvalue method, 206-207
for R-curves, see R-curves, stability analysis

strain

“-averaging integral, in nonlocal model, 490
strain localization, see also strain softening

and mesh-dependence, 217-218

ina strain softening bar, 217-219

in elastic-softening bar, 218-219

in the series coupling model, 213-216
for N elements, 216
for two elements, imperfection-based, 214
for two elements, mican strain, 215

for two elements, thermodynamics-based,
215

‘strain softening, see also strain localization

and mesh- dcpendemc 4,6
elements with, in series coupling, 213~ 216
in historical context, 4
localization limiter, 219, 220
triaxial models, 234--245
fixed crack, general formulation, 234-235
fixed crack, scalar damage model, 237~

fixéd crack, secant formulation, 235-237
fixed crack, tangent formulation, 238239
generalized constitutive equations, 242~
243
‘Mazars’ scalar damage model, 243
model with strength and stiffness degrada-
tion, 244-245
multi-directional fixed cracking, 239-240
Rankine plastic model with softening, 243
244 .
rotating crack, 240-241
uniaxial models, 228-233
classification, 228
continuum damage formulation, 229-230
with crack closure in compression, 231--
232 '
with inelastic effects other than cracking,
7232233
with prepeak inelasticity, 231
“with stiffness and strength degradation, 229-
L0230
with stiffness degradation, 228-229
with strength degradation, 229
strength, nominal, 8, 1113, 43

INDEX

stress
field
for mode IIT, 88
in center-cracked panel, 82
in terms of complex potentials, 78— 79
in terms of Westergaard’s stress function,
80
near-tip dominant term 39, 85, 89
neat-tip, in viscoelastic material, 409412
nominal, 11~13
shrinkage, 196,197
thermal, 196, 197
stress intensity factor
critical, see fracture toughness
in historical context, 2
mixed mode, in-plane, 85
mode 1, see stress intensity factor, mode 1
mode 11, 85, 89, 95,97
mode 111, 87, 89, 93, 95
stress intensity factor, mode 1
definition, 85
critical, see fracture toughncss
definition, 39
determination of, 49-64
by approximate energy-based methods, 55~
60 ’

by bending theory, 55-56
by experimental methods, 63-64
by numerical methods, 60-63
by stress relief zone, 56-58
by superposition method, 51-55
from expressions in handbooks, 49-55
using Green function, see Green function
expression for
center-cracked panel with concentrated loads,
51,54
center-cracked panel in tension, 38
finite center-cracked panel in tension, 50
general forms, 4445
single-edge cracked beam, 50, 52
for a system of loads, 68-69
relation with energy release rate, 4041, 92—
93

stress relief zone, 56-58
stress-strain curve
and fracture energy, 225
elastic-softening, 218-220, 222, 225, 227,
228

for Baluch, Azad and Ashmawi’s model, 353
for crack band model
relation with cohesive crack model, 220

in Hillerborg’s model for compressive failure
of RC beams in bending, 380-381

in microplane model, 539

in scalar damage model, 230

mean, in the series coupling model, 215,216

possible unloading behavior, 231

relation with damage parameter, 237,243

scaling with finite element size, 225, 226,251

split into elastic and fractuung parts, 222

step softening vs. progressive soflenmg, 6

with fracturing and other inelastic effects, 233

with prepeak inelasticity, 224

with snapback, for large elements, 225, 226,
251

615

with softening
exponential, 220
implying localization, 217, 219
power-exponential, 223
triangular, 219
unloading-reloading, 223
with step softening, for large elements, 251
surface energy, specific, 2

test methods, see experimental methods
thermal stresses, 196, 197
three-point bend notched beam
expression for K7, 50, 52
three-point-bend notched beams
size effect
expérimental results, 18-19, 279-280
for bilinear softening, 277-278
for linear softening, 277
time-dependent fracture
as a rate process, 394-398
isothermal, displacement-controlled, 397
398
_isothermal, genciul, 395-396
isothermal, load-controlled, 396-397
as a rate process, for concrete, 398-403
creep, 388
dynamic effects, 389-390
effect of sudden-change of loading rate, 388,
420-422
influence of loading rate, 385-386
load relaxation, 386-388, 420-422
model using cohesive crack, see cohesive
crack model, time-dependent
overview, 384-390
R-curve model, 401-403
R-curve model, with creep, see R-curve, time-
dependent, with creep
types of, according to material behavior, 384—
385

viscoelastic, 404-418
cohesive crack growth, 413-415, 423424
crack growth analysis, 416418
crack growth resistance, 412-413
near-tip fields, 409-412
time-dependent cohesive crack growth, 425—
429
with time-dependent R-curve, see R-curve,
time-dependent, with creep
toughness, see fracture tonghness
two-parameter model, see Jeng and Shah’s two-
parameter model

universal size effect law, see - BaZant’s universal
- size effect law
unreinforced concrete
borehole breakout, 379
dams, 372-375
joints
keyed, 377
plain, 377-379
pavements, crack spacing and width, 376-
377

pipes, beam and ring failure, 371-372
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viscoelasticity, 404-418

correspondence principle (elastic-viscoelastic

analogy), 408-409
linear constitutive equations, 408

Weibull modulus, 442, 450, 453, 455, 465
for the fracture process zone, 466-467
relation with coefficient of variation, 443
Weibull’s theory of random strength, 439-460
criticisms to, 456460
effective uniaxial stress in, 447
for continuous structures, in uniaxial tension,
440-441
for discrete-element structures, 439
for independent fracture mechanisms
additivity of concentration function, 446~
447
for structures with nonhomogeneous stress
summary, 447-448
triaxial, 445-446
uniaxial, 443-445 .
modification to handle stress singularity, 460—
464
asymptotic size effect, 463
BaZant and Xi’s approximate equations,
465-467
bulk plus crack-tip statistics, 463-464 -
crack tip statistics, 461-463
limitations of theory, 470
nonlocal approach of BaZant and Xi, 464
Planas’ empirical interpolation, 467469
probability distribution function, 441-443
size effect analysis, 449-455
divergence for sharp cracks, 452-453
effect of surface flaws, 454-455
general strength probability distribution,
449-451
size effect laws, 451452
weight function, 49, 55, 73-74
Westergaard’s stress funiction, 80-83
derivation, 80
for center-cracked panel, 80-83
near-tip expansion, 82-83

wre, see critical crack tip opening displacement -

yield plateau
in plastic failure, 7
lack of, in brittle failure, 7
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